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Abstract 

Tumors are complex tissues with substantial intra-tumor heterogeneity, intricately 

linked to tumor progression and therapeutic resistance. Emerging single-cell RNA 

sequencing (scRNA-Seq) technologies empower researchers to elucidate these 

diverse tumor subpopulations. This thesis presents the characterization of a distinct 

glioblastoma (GB) cell population and introduces a novel bioinformatics tool designed 

to quantify similarity among cell populations. 

 

Cell-to-cell connectivity through tumor microtubes (TMs) has been discovered among 

glioma tumor cells, conferring self-repair capabilities, augmenting therapy resistance, 

and driving tumor progression. Yet, a comprehensive molecular understanding and 

precise quantification of this connectivity have remained elusive. This study delves into 

the transcriptomic landscape of the highly connected glioma cell population using 

scRNA-Seq and RNA-Seq. I found that these highly connected cells exhibited a 

notable predominance of astrocyte-like (AC) and mesenchymal-like (MES) cell states, 

while lowly connected cells were characterized by a prevalence of neuronal progenitor-

like (NPC) cell states. I established a 71-gene connectivity signature by comparing 

highly and lowly connected cells. A connectivity signature score (CSS) was developed 

based on the relative average expression levels of the connectivity signature. This CSS 

was then applied to several GB patient tumor scRNA-Seq and RNA-Seq datasets, 

consistently revealing higher CSS values for AC and MES cell states compared to NPC 

cell states. Furthermore, correlations were observed between CSS values and 

mesenchymal expression subtypes as well as between CSS values and the mutation 

status of NF1, PTEN, and TP53. One key finding is that higher CSS values were linked 

to poorer patient survival. Additionally, CHI3L1 — one of the connectivity signature 

genes — was identified as a robust marker for cell connectivity and a potential 

prognostic marker for GB patients. Investigating CHI3L1 overexpression RNA-Seq and 

proteomics datasets revealed that CHI3L1 upregulated multiple cell state markers and 

elevated CSS values. Notably, CHI3L1 overexpression also led to increased 

phosphorylation of the TM-connectivity marker GAP43. 

 

In this thesis, I present a new bioinformatic tool named Interactive Explorer of Single-

Cell Cluster Similarity (ieCS). This tool serves to link similar cell populations that share 

the same biological cell types/states across various donors or experimental conditions. 

ieCS utilizes an innovative metric to quantify similarity between cell populations. ieCS 

offers three distinct methods for identifying superclusters comprising similar cell 
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populations. Featuring a user-friendly graphical interface, ieCS enables interactive and 

intuitive visualization of these superclusters. In a demonstration dataset, ieCS 

accurately, robustly, and quickly identified superclusters across various experimental 

conditions. 

 

In conclusion, this thesis characterizes the highly connected GB cell population and 

introduces a bioinformatics tool for mapping similar cell populations. 
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Zusammenfassung 

Tumoren sind komplexe Gewebe mit erheblicher Heterogenität innerhalb des Tumors, 

die eng mit dem Fortschreiten des Tumors und der Therapieresistenz verbunden sind. 

Neue Technologien zur Einzelzell-RNA-Sequenzierung (scRNA-Seq) ermöglichen es 

Forschern, diese verschiedenen Tumorsubpopulationen aufzuklären. Diese Arbeit 

präsentiert die Charakterisierung einer bestimmten Glioblastom (GB)-Zellpopulation 

und stellt ein neuartiges Bioinformatik-Tool vor, das zur Quantifizierung der Ähnlichkeit 

zwischen Zellpopulationen entwickelt wurde. 

 

Bei Gliomtumorzellen wurde eine Zell-zu-Zell-Konnektivität durch Tumormikroröhren 

(TMs) entdeckt, die Selbstreparaturfähigkeiten verleiht, die Therapieresistenz erhöht 

und das Fortschreiten des Tumors vorantreibt. Ein umfassendes molekulares 

Verständnis und eine genaue Quantifizierung dieser Konnektivität sind jedoch noch 

nicht möglich. Diese Studie befasst sich mit der transkriptomischen Landschaft der 

stark vernetzten Gliomzellpopulation mithilfe von scRNA-Seq und RNA-Seq. Ich fand 

heraus, dass diese stark verbundenen Zellen ein bemerkenswertes Vorherrschen von 

astrozytenähnlichen (AC) und mesenchymalen (MES) Zellzuständen aufwiesen, 

während schwach verbundene Zellen durch eine Prävalenz neuronaler Vorläufer-

ähnlicher (NPC) Zellzustände gekennzeichnet waren. Ich habe eine 71-Gen-

Konnektivitätssignatur erstellt, indem ich hoch und niedrig verbundene Zellen 

verglichen habe. Basierend auf den relativen durchschnittlichen Ausdrucksniveaus der 

Konnektivitätssignatur wurde ein Connectivity Signature Score (CSS) entwickelt. 

Dieses CSS wurde dann auf mehrere scRNA-Seq- und RNA-Seq-Datensätze von 

Tumortumoren in GB angewendet und ergab durchweg höhere CSS-Werte für AC- 

und MES-Zellzustände im Vergleich zu NPC-Zellzuständen. Darüber hinaus wurden 

Korrelationen zwischen CSS-Werten und mesenchymalen Expressionssubtypen 

sowie zwischen CSS-Werten und dem Mutationsstatus von NF1, PTEN und TP53 

beobachtet. Eine wichtige Erkenntnis ist, dass höhere CSS-Werte mit einem 

schlechteren Patientenüberleben verbunden waren. Darüber hinaus wurde CHI3L1 – 

eines der Konnektivitätssignaturgene – als robuster Marker für die Zellkonnektivität 

und potenzieller prognostischer Marker für GB-Patienten identifiziert. Die 

Untersuchung der RNA-Seq- und Proteomics-Datensätze zur Überexpression von 

CHI3L1 ergab, dass CHI3L1 mehrere Zellzustandsmarker hochregulierte und die 

CSS-Werte erhöhte. Bemerkenswerterweise führte die Überexpression von CHI3L1 

auch zu einer erhöhten Phosphorylierung des TM-Konnektivitätsmarkers GAP43. 
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In dieser Arbeit stelle ich ein neues bioinformatisches Tool namens Interactive 

Explorer of Single-Cell Cluster Similarity (ieCS) vor. Dieses Tool dient dazu, ähnliche 

Zellpopulationen zu verknüpfen, die über verschiedene Spender oder 

Versuchsbedingungen hinweg dieselben biologischen Zelltypen/-zustände aufweisen. 

ieCS nutzt eine innovative Metrik, um die Ähnlichkeit zwischen Zellpopulationen zu 

quantifizieren. ieCS bietet drei verschiedene Methoden zur Identifizierung von 

Superclustern mit ähnlichen Zellpopulationen. Mit einer benutzerfreundlichen 

grafischen Oberfläche ermöglicht ieCS eine interaktive und intuitive Visualisierung 

dieser Supercluster. In einem Demonstrationsdatensatz identifizierte ieCS 

Supercluster unter verschiedenen experimentellen Bedingungen präzise, zuverlässig 

und schnell. 

 

Zusammenfassend charakterisiert diese Arbeit die stark vernetzte GB-Zellpopulation 

und stellt ein Bioinformatik-Tool zur Kartierung ähnlicher Zellpopulationen vor.  
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1. Introduction 

The text was written by Ling Hai. It has been proofread and edited by ChatGPT. 

1.1 Transcriptomics 

Transcriptomics is the study of eukaryotic transcriptomes, which represent the full set 

of ribonucleic acid (RNA) transcripts in a cell or tissue. The transcriptome provides a 

snapshot of cellular processes, enabling comparisons between different experimental 

conditions, diseases, tissues, species, times, or spaces. This sheds light on 

fundamental principles of gene expression in organisms. The applications of 

transcriptomics in biological research include: 

 

• Biomarker discovery: By comparing transcriptomes between disease and non-

disease samples, one can identify disease-associated gene signatures, gain 

insights into disease pathogenesis, and discover new biomarkers. This 

approach has been applied in various contexts, such as identifying 

transcriptomic biomarkers in cardiovascular disease (Pedrotty et al., 2012), 

prognostic biomarkers in chronic kidney disease (Ju et al., 2015), progressive 

and prognostic biomarker in melanoma (Raskin et al., 2013), carcinogenic 

biomarkers in lung cancer (Billatos et al., 2018), and specific biomarkers in 

cancers of unknown primary (Wei et al., 2014). 

• Comparative transcriptomics: Comparative transcriptomics in mouse and 

human helps researchers understand when mouse models accurately 

represent human biology and what factors need consideration for optimizing 

the mouse model (Breschi et al., 2017). Comparative transcriptomics across 

distinct species, such as worms, flies and humans can reveal conserved co-

expression modules (Gerstein et al., 2014). 

• Studying cellular differentiation: Characterizing transcriptomes of stem cells 

and monitoring transcriptomic changes during cell differentiation improve the 

understanding of cell potency and regulation factors in different stages of 

differentiation. Examples include identifying functional features of mouse stem 

cells and early embryos (Sharov et al., 2003), stage-specific gene expression 

changes during human mammary cell commitment (Raouf et al., 2008), stage-

specific gene transcription and alternative splicing during neural differentiation 

(Wu et al., 2010), regulators in the transition from embryonic stem cell to 

definitive endoderm (Chu et al., 2016), and endoderm differentiation-
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associated expression quantitative trait loci (eQTL) and predictive markers of 

differentiation efficiency (Cuomo et al., 2020). 

• Studying transcriptional regulation: Integrated analysis of gene expression and 

its regulatory elements, such as transcription factors, cofactors, enhancers, 

noncoding RNAs, and chromatin state, reveals transcriptional regulation 

mechanisms. Researchers have quantified both gene expression and 

transcription factor binding signals (Cheng et al., 2012), performed integrated 

analysis of transcriptome and chromatin accessibility in the same cell during 

neurogenesis (Chen S. et al., 2019), and integrated analysis of transcriptome, 

chromatin accessibility and surface marker abundance to identify specific 

regulatory features in mixed-phenotype acute leukemia (Granja et al., 2019). 

 

1.1.1 RNA sequencing 

RNA sequencing (RNA-Seq) is a high-throughput next-generation sequencing (NGS) 

technique used to quantify entire transcriptomes at the resolution of single bases 

(Wang Z. et al., 2009). In classical RNA-Seq experiments, the first step involves 

converting RNAs into complementary deoxyribonucleic acid (cDNA). Next, adaptors 

are added to the cDNA, and the resulting short cDNA sequences (usually 30-400 bp) 

are sequenced using NGS (Wang Z. et al., 2009). 

  

The computational analysis of RNA-Seq data typically involves several steps, including 

quality control (Andrews et al., 2010), alignment (Dobin et al., 2013), gene expression 

quantification (Liao et al., 2014), differential expression analysis across experimental 

conditions (Love et al., 2014), identification of alternative splicing (Li et al., 2018), 

detection of gene fusions (Uhrig et al., 2021), eQTL mapping (Shabalin, 2012), and 

visualization (Gu et al., 2016). Best practices of RNA-Seq analysis have been reviewed 

by Conesa et al., 2016. 

 

1.1.2 Single cell RNA sequencing 

The swift advancement of sequencing techniques has propelled us into a new era of 

single-cell RNA sequencing (scRNA-Seq), allowing for the quantification of gene 

expression in individual cells rather than in bulk populations. This provides 

unprecedented opportunities for researchers to study various aspects, including the 

behavior of individual cells (Tang F. et al., 2009), cell differentiation processes (Cuomo 
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et al., 2020), the cell type composition of tissues (Darmanis et al., 2015), cellular 

response of specific subpopulations (Park et al., 2020), tumor heterogeneity (Neftel et 

al., 2019). 

 

The typical steps involved in scRNA-Seq experiments are briefly described here, using 

protocols from full-length Smart-Seq2 (Picelli et al., 2014) and UMI-based 10x 

Genomics Chromium Single Cell 3’ Solution (10x Genomics, 2020) as examples: 

 

1) Capture single cells:  

• Smart-Seq2: Fluorescence-activated cell sorting (FACS) to sort cells 

into plates. 

• 10x Genomics Chromium: Cells are partitioned in a microfluidic 

platform. 

2) Reverse transcription:  

• Smart-Seq2: Betaine (to improve cDNA yield) and oligo(dT) primer are 

used. 

• 10x Genomics Chromium: A primer containing read 1 sequencing 

primer, cell barcode, unique molecular identifier (UMI, which quantifies 

unique RNA molecules and reduces amplification bias), and oligo(dT) 

primer. 

3) Amplify cDNA:  

• Both Smart-Seq2 and 10x Genomics Chromium use polymerase chain 

reaction (PCR). 

4) Construct library:  

• Smart-Seq2: Tn5 transposase is used for tagmentation, followed by the 

addition of sample index, P5 Illumina primer and P7 Illumina primer. 

• 10x Genomics Chromium: Enzyme fragmentation is performed, and 

then the read 2 sequencing primer, sample index, P5 Illumina primer 

and P7 Illumina primer are added. 

5) Sequencing:  

• Both Smart-Seq2 and 10x Genomics Chromium use paired-end NGS 

sequencing. 

6) Transcript data:  

• Smart-Seq2: Yields hundreds of cells with full-length coverage and 

approximately 1000,000 reads per cell.  

• 10x Genomics Chromium: Captures 500-10,000 cells per sample with 
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3’-end coverage and a minimum of 20,000 reads per cell. 

 

Some steps of the computational analysis for full-length scRNA-Seq data, like Smart-

Seq2, can use the same tools originally designed for traditional RNA-Seq, such as 

read alignment, gene expression quantification and normalization. However, scRNA-

Seq data presents additional concerns at the quality control step, where low-quality 

cells with degraded RNA need to be identified. For UMI-based 3’-end counting scRNA-

Seq data, such as 10x Genomics Chromium, the normalization step requires 

adjustments (Stegle et al., 2015). Figure 1.1 illustrates the typical analysis workflow for 

scRNA-Seq data. 

 

 

Figure 1.1 The typical analysis workflow for scRNA-Seq data. Blue boxes represent 
steps from the upstream analysis while green boxes represent steps in the 
downstream analysis. 
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The number of bioinformatics tools for scRNA-Seq data analysis has expanded 

remarkably, comprising approximately 1600 tools in 30 categories for various analysis 

tasks (https://www.scrna-tools.org/, November 2023). These tools cover alignment and 

expression quantification (Chen W. et al., 2020), quality control with doublet detection 

(Xi and Li, 2021), normalization (Chen W. et al., 2020), data correction (Chen W. et al., 

2020; Tran et al., 2020), dimensionality reduction with principal component analysis 

(Tsuyuzaki et al., 2020), unsupervised clustering (Duò et al., 2020; Krzak et al., 2019), 

cell type annotation (Abdelaal et al., 2019), pseudotime analysis/trajectory analysis 

(Saelens et al., 2019), differential expression analysis (Wang T. et al., 2019), pathway 

analysis (Holland et al., 2020), visualization (Cakir et al., 2020), and more.  

 

There are also convenient toolkits/pipelines for scRNA-Seq, such as Seurat (Stuart et 

al., 2019) in R, SCANPY (Wolf et al., 2018) in python and web-based analysis 

platforms (Gardeux et al., 2017; Zhu et al., 2017). Comprehensive benchmarking 

studies for pipelines and various tool combinations have been published (Chen W. et 

al., 2020; Tian et al., 2019; Vieth et al., 2019). A framework for benchmarking is also 

available (Germain et al., 2020). Best practices in scRNA-Seq analysis have been 

reviewed by Luecken and Theis, 2019. 

 

The development of tools for scRNA-Seq data analysis is thriving, yet several 

challenges persist (Lähnemann et al., 2020; Poirion et al., 2016; Stegle et al., 2015). 

One grand challenge is to link cell subpopulations across different donors or 

experimental conditions. To tackle this, reseachers have employed various strategies: 

 

• Integrating datasets: This approach involves identifying mutual nearest 

neighbors (MNN, Haghverdi et al., 2018), using “anchor” integration in Seurat 

(Stuart et al., 2019), employing iterative clustering in Harmony (Korsunsky et 

al., 2019) or adopting integrative non-negative matrix factorization in LIGER 

(Welch et al., 2019). The outputs are corrected/normalized matrices. 

• Classifying nearest neighbors: This approach involves searching for nearest 

neighbors on unsupervised selected features using scmap (Kiselev et al., 2018) 

or mapping cells to a reference dataset based on correlation scores in SingleR 

(Aran et al., 2019). The outputs are cell labels with scores.  

• Quantifying cell subpopulation similarity based on markers: This approach 

involves hierarchical clustering of binary-transformed markers in ClusterMap 

(Gao et al., 2019). 

https://www.scrna-tools.org/
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1.1.3 Tumor heterogeneity and scRNA-Seq 

Tumors, as complex “tissues”, exhibit not only inter-tumor heterogeneity, which 

describes differences among patients with the same tumor type, but also intra-tumor 

heterogeneity, which describes variations within tumor cells in a single tumor. Intra-

tumor heterogeneity encompasses morpho-histological differences, genomic 

instability (e.g., gene mutations and copy number alterations), epigenetic plasticity 

(e.g., DNA methylation and histone modification), and microenvironment interactions 

(Stanta and Bonin, 2018). It plays a crucial role in tumor progression, therapeutic 

resistance, and recurrences (Stanta and Bonin, 2018).  

 

Various techniques have emerged to study tumor heterogeneity, such as multi-region 

sampling, autopsy sampling, longitudinal analysis with liquid biopsy, and single cell 

sequencing (Dagogo-Jack and Shaw, 2018). Among these, scRNA-Seq empowers 

researchers to dissect intra-tumor heterogeneity, enabling the study of diverse tumor 

microenvironments, multiple genomic subclones of tumor cells, and different 

physiological states of tumor cells (Levitin et al., 2018). Furthermore, scRNA-Seq can 

facilitate the identification and classification of tumor subpopulations with distinct 

transcriptional signatures, the detection of cancer stem cells, and the discovery of 

treatment-resistant tumor subpopulations (González-Silva et al., 2020). 

 

1.2 Glioblastoma 

Gliomas are the primary brain tumors, representing about 30% of all brain tumors and 

80% of malignant brain tumors (Weller et al., 2015).  Glioblastoma (GB) is the most 

common glioma, accounting for approximately 45% of all gliomas (Ostrom et al., 2014). 

GB is an aggressive tumor with a median survival of 15 months in treated patients 

(Koshy et al., 2012; Tamimi and Juweid, 2017). 

 

1.2.1 Classification of glioma 

Traditionally, gliomas were classified by histology into astrocytic, oligodendroglial or 

ependymal tumors (Weller et al., 2015). However, the rapid development of genetic 

profiling technologies has significantly improved the classification and treatment of 
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gliomas. Based on genetic features, gliomas can now be classified as follows (Weller 

et al., 2015): 

 

• Isocitrate dehydrogenases (IDH) mutant and 1p/19q co-deleted tumors: These 

tumors with oligodendroglial morphology have the best outcome. 

• IDH mutant and 1p/19q non-co-deleted tumors: These tumors with astrocytic 

morphology have intermediate outcome. 

•  IDH wild-type (wt) tumors: These tumors have the worst outcome. 

 

In 2016, the World Health Organization (WHO) integrated both histological and genetic 

features to diagnose gliomas, resulting in the following classifications (Louis et al., 

2016):  

 

• Astrocytoma, oligoastrocytoma and oligodendroglioma based on histological 

appearance, further classified by molecular features, including IDH mutant and 

1p/19q co-deleted oligodendroglioma and IDH mutant diffuse astrocytoma and 

IDH wt diffuse astrocytoma. 

• Glioblastoma based on histological appearance, further classified as IDH 

mutant GB and IDH wt GB. 

 

In 2021, the European Association of Neurooncology (EANO) suggested several 

molecular markers for glioma diagnosis (Weller et al., 2021):  

 

• IDH1 R132 or IDH2 R172 mutation: Distinguishes IDH mutant gliomas from 

IDH wt GB and other IDH wt gliomas. 

• 1p/19q codeletion: Distinguishes IDH mutant oligodendroglioma from IDH 

mutant astrocytoma. 

• Histone H3K27M mutation: Defines diffuse midline glioma. 

• Histone H3.3 G43R/V mutation: Defines diffuse hemispheric glioma. 

 

1.2.2 Classification of glioblastoma 

The 2016 WHO classification divides GB into two main subtypes: IDH wt GB and IDH 

mutant GB (Louis et al., 2016). Approximately 90% of GB cases are IDH wt GB, while 

around 10% are IDH mutant GB (Louis et al., 2016). IDH wt GB has a higher median 

age of diagnosis and worse overall survival (OS) compared to IDH mutant GB (62 
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years vs. 44 years; 15 months vs. 31 months; Louis et al., 2016).  

 

In the current EANO guidelines, the classification of gliomas based on integrated 

histomolecular features refers to IDH mutant GB as IDH mutant astrocytoma (Weller 

et al., 2021). Within IDH wt GB, a DNA methylation-based classifier further groups GB 

into seven methylation subtypes: RTKI, RTKII, RTKIII, MES, MID, MYCN and G34 

(Capper et al., 2018). Bulk RNA-Seq datasets of IDH wt GB has defined three 

expression subtypes (mesenchymal, classical and proneural), which have different 

immune microenvironments and survival times (Wang Q. et al., 2017).  

 

Recent GB scRNA-Seq data have revealed several neurodevelopmental lineages and 

cellular states in GB tumors (Couturier et al., 2020; Neftel et al., 2019). The majority of 

GB tumors contain cells in four main cellular states (Neftel et al., 2019): 

 

• Astrocyte-like (AC-like) cells express astrocytic markers (e.g., GFAP). 

• Oligodendrocyte progenitor-like (OPC-like) cells express oligodendroglial 

lineage markers (e.g., OLIG1).  

• Mesenchymal-like cells (MES-like) cells express mesenchymal genes (e.g., 

VIM). Within the MES-like state, there are two distinct expression meta-

modules: 

a. MES1 is considered with hypoxia-independent and is characterized by 

high expression levels of specific genes, including CHI3L1, CD44 and 

APOE.  

b. MES2 is characterized by high expression levels of genes associated 

with hypoxia, such as HILPDA, as well as genes involved in glycolysis, 

such as ENO2 and LDHA.  

• Neuronal progenitor-like (NPC-like) cells have high expression levels of neural 

stem cell markers (e.g., SOX4, SOX11, DCX and CD24). Within the NPC-like 

state, there are two distinct expression meta-modules: 

a. NPC1 has the potential to differentiate into OPC and characterized by 

high expression level of DLL1 and DLL3. 

b. NPC2 has the potential to differentiate into into neurons and 

characterized by high expressions of DLX5-AS1 and DLX6-AS1.  

 

The proportions of these cell states vary between tumors and are influenced by genetic 

alterations (Neftel et al., 2019). Furthermore, single GB cells exhibit plasticity and can 
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transition between different cell states (Neftel et al., 2019). Figure 1.2 illustrates the 

four main cell states found in GB tumors.  

 

 

Figure 1.2 The cell states in glioblastoma. Green cells represent oligodendrocyte 
progenitor-like (OPC-like) tumor cells; blue cells represent neuronal progenitor-like 
(NPC-like) tumor cells; brown cells represent astrocytic-like (AC-like) tumor cells; red 
cells represent mesenchymal-like (MES-like) tumor cells. Cells with lighter or darker 
tones of specific color to indicate the strength of the specific cell state classification. 
Cell state transitions are indicated in cells between cell states. The cells with mitotic 
spindle indicate actively cycling cells. Four boxes at the bottom showing the genetic 
alterations and/or tumor microenvironment in cell sates: copy number amplification of 
PDGFRA, CDK4 and EGFR were associated with a high frequency of OPC-like, NPC-
like, and AC-like cells, respectively. NF1 alteration is associated with MES-like cells. 
The microenvironment of MES-like cells is characterized by the presence of immune 
cells and hypoxia areas. Reprinted from Figure 7G in Neftel et al., 2019 with permission 
from Elsevier. 
 

1.2.3 Cell-to-cell connectivity in glioblastoma 

The standard treatment for GB includes surgery, radiotherapy, and chemotherapy with 

the alkylating agent temozolomide (Weller et al., 2015). However, despite these 

therapies, the survival of GB patients has shown very little improvement in the past 

decade, and drug resistance remains a major challenge (Haar et al., 2012). Various 

mechanisms contribute to therapeutic resistance in GB, including drug efflux, DNA 

damage repair, cancer stem cell, hypoxia, and miRNAs (Haar et al., 2012). 

 

Recently, researchers have proposed another mechanism of therapeutic resistance 
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involving ultra-long membrane protrusions called tumor microtubes (TMs). GB tumor 

cells form a cell-to-cell network through these TMs, allowing them to invade, proliferate, 

and communicate with each other (Osswald et al., 2015). The interconnected tumor 

cells can exchange molecules through gap junctions present in the TMs, and the 

network can self-repair and protect TM-connected tumor cells from the effects of 

radiotherapy (Osswald et al., 2015). A further study has shown that TM-connected 

tumor cells are resistant not only to radiotherapy but also to chemotherapy and surgical 

lesions (Weil et al., 2017). Targeting the TM-connected tumor cell network has been 

proposed as a potential clinical application to overcome resistance in GB (Osswald et 

al., 2015; Weil et al., 2017).  

 

The gene growth-associated protein 43 (GAP43) has been identified as a driver for TM 

formation (Osswald et al., 2015; Weil et al., 2017). Knockdown of GAP43 in GB tumor 

cells has been shown to reduced invasion speed, proliferation capacity and the number 

of TM connections (Osswald et al., 2015). Moreover, GAP43-deficient tumor cells fail 

to recolonize areas of surgical lesions (Weil et al., 2017).  

 

Figure 1.3 illustrates the therapeutic resistance mechanisms, in which TM networks 

play a significant role. Additionally, studies have discovered synaptic ultrastructures 

between neurons and GB tumor cells located on TMs, termed neurogliomal synapses 

(Venkataramani et al., 2019). These synapses can activate the TM-connected tumor 

cell network and drive GB tumor cell invasion (Venkataramani et al., 2019). 
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Figure 1.3 TM network contributes to therapeutic resistance in GB. Top panel, 
Tumor microtubes (TMs) interconnect tumor cells, promoting tumor invasion. After 
surgical resection, TMs extend and translocate nuclei to the surgical lesion area. After 
TMZ chemotherapy or radiotherapy, TM-connected tumor cells have a survival 
advantage, while TM-unconnected tumor cells are more susceptible to treatment-
induced cell death. Bottom panel, TMs assist in the repair of surgical lesions. 
Xenografted glioblastoma stem-like cells (GBMSC) were observed using in vivo 
multiphoton laser scanning microscopy (MPLSM) at time point 0h and 3h, 7days after 
inducing a surgical lesion. The tumor cells extended TMs and were able to repopulate 
the lesion area. Arrowheads: extended TMs; Asterisks: transported tumor nuclei. 
Reprinted from Fig.1 in Lou, 2017 with permission from Oxford University Press. 

 

To better understand the molecular features of TM-connected GB tumor cells, a 

method to distinguish TM-unconnected and TM-connected cells is needed. Since TM-

connected GB cells exchange small molecules through gap junctions, a gap junction-

permeable dye can be used to label TM-connected cells (Osswald et al., 2015). 
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Sulforhodamine 101 (SR101) is a red fluorescent dye that can spread through gap-

junctional connections in astroglia and can monitor calcium level in cellular networks 

of astroglia and neurons (Nimmerjahn et al., 2004). Osswald et al. locally injected 

SR101 into tumors in vivo and then quantified the fluorescence intensity of SR101 in 

TM-connected and TM-unconnected cells under multiphoton laser scanning 

microscopy (MPLSM) (Osswald et al., 2015). The TM-connected tumor cells showed 

a higher SR101 fluorescence intensity than the TM-unconnected cells (Figure 1.4a, 

Osswald et al., 2015). A similar result was found in Venkataramani et al., 2019 (Figure 

1.4b). As a systemic application, a similar intravital selection method (with SR101) was 

established to distinguish TM-connected and TM-unconnected GB tumor cells (Xie et 

al., 2021), and showed SR101 uptake was higher in TM-connected than TM-

unconnected tumor cells (Figure 1.4c). 

 

 

Figure 1.4 SR101 uptake in TM-connected and TM-unconnected cells. Glioma 
tumor cells are green fluorescent protein (GFP) tagged. Image data are obtained by in 
vivo MPLSM. a) SR101 uptake in a TM-unconnected glioma cell (Left top) and TM-
connected glioma cell (Left bottom). Right, the quantification of SR101 uptake. 55 cells 
in three mice per condition; AU, arbitrary units; the p-value was obtained by Mann-
Whitney U test; *** p-value < 0.001. Reprinted from Figure 2f in Osswald et al., 2015 
with permission from Springer Nature. b) SR101 uptake in TM-unconnected cells (Left) 
and TM-connected cells (Middle). Arrowhead points to tumor cells; Arrow points to 
non-tumor cells. Right, the quantification of SR101 uptake. 116 TM-connected cells vs. 
36 TM-unconnected cells from three mice. The p-value was obtained by Mann-Whitney 
U test. Reprinted from Fig. 2e and Extended Data Fig. 4l in Venkataramani et al., 2019 
with permission from Springer Nature. c) Left, SR101 uptake in TM-unconnected tumor 
cells (arrowhead) and TM-connected tumor cells (arrow) from two cell lines. Right, 
quantification of SR101 uptake. Two-tailed unpaired Student’s t test; *** p-value < 
0.001. Reprinted from Figure 1c-e in Xie et al., 2021 with permission from Oxford 
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University Press.  
 

1.3 Aim of the study 

The primary goal of this study is to explore the transcriptome landscape of the TM-

connected GB cell population using RNA-Seq and scRNA-Seq and establish a gene 

expression signature. This signature should not only identify the presence of TM-

connected cells but also quantify the extent of their connectivity. The connectivity 

signature's robustness and efficacy will be rigorously assessed by applying it to 

multiple GB RNA-Seq and scRNA-Seq datasets. Furthermore, the study will explore 

potential correlations between the connectivity signature and various factors, including 

malignant cell states, prevalent gene mutations, GB expression subtypes, and patient 

survival outcomes. Moreover, efforts will be directed towards pinpointing a key marker 

that plays a pivotal role in the connectivity signature. 

 

Additionally, the secondary aim of this study is to address the significant challenge of 

accurately identifying similar cell subpopulations that share the same biological 

types/states across diverse donors or experimental conditions. A more specific goal is 

to develop a user-friendly bioinformatics tool capable of quantifying the similarity 

between cell subpopulations effectively. This tool will enable precise, robust, and 

efficient mapping of these similar subpopulations. 

 

Together, these aims endeavor to deepen our understanding of GB cell connectivity 

and the similarity within cell populations. 
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2. A connectivity signature in glioblastoma 

Reseachers have demonstrated that approximately half of glioma cells were 

interconnected through tumor microtubes (TMs), forming a functional network that 

promotes tumor progression and exhibits resistant to therapy (Osswald et al., 2015; 

Weil et al., 2017; Venkataramani et al., 2019; Xie et al., 2021). However, there is a 

limited number of molecular markers for TM-connectivity that have been identified, and 

the quantification of connectivity in tumor samples has remained elusive. 

 

In this section, I outline the development of a gene expression signature for the cell 

connectivity within glioblastoma (GB), referred to as the "connectivity signature". I 

introduce “connectivity signature score” (CSS) that measures the extent of connectivity 

using this signature. I validate the robustness and significance of the CSS various 

RNA-Seq and scRNA-Seq GB datasets. I conduct an examination of the relationships 

between the connectivity signature and cell states, as well as the association between 

the connectivity signature and patient survival. Additionally, I accomplish the 

identification and validation of a driver gene within the connectivity signature. 

 

Contributions 

The “wet lab” experiments were mainly conducted by Dirk C. Hoffmann from Clinical 

Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ). 

Bioinformatic analyses and data visualization were performed by Ling Hai. This section 

mainly focuses on the presentation of bioinformatic analyses. The text was written by 

Ling Hai. It has been proofread and edited by ChatGPT. 

 

2.1 Results 

2.1.1 Development of connectivity signatures 

To access the transcriptome landscape of TM-connected cells, the Sulforhodamine 

101 (SR101) dye methodology was utilized to distinguish highly connected and lowly 

connected tumor cells in three xenografted patient-derived glioma cell lines (PDGCLs, 

Figure 2.1a). SR101 is a red fluorescent dye that can spread through gap-junctional 

connections in the cell network (Nimmerjahn et al., 2004). The fluorescence intensity 

of SR101 in cells can be quantified under multiphoton laser scanning microscopy 

(MPLSM) (Osswald et al., 2015). Tumor cells with high SR101 intensity (SR101high) 

are considered highly connected, while tumor cells with low SR101 intensity (SR101low) 
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are considered lowly connected (Osswald et al., 2015; Venkataramani et al., 2019; Xie 

et al., 2020; Hai & Hoffmann et al., 2021). The tumor cells were then FACS separated 

according to SR101 intensity and subjected to both RNA-Seq and scRNA-Seq (Figure 

2.1a, Table 1).  

 

 

Figure 2.1 Development of connectivity signatures. a) Experimental design for the 
development of connectivity signatures. b) Computational strategy for the development 
of connectivity signatures from the SR101 scRNA-Seq and RNA-Seq datasets. 
Detailed in Methods. c) Heatmap showing the expression levels of connectivity 
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signature genes. Top: 71-gene connectivity signature derived from the SR101 scRNA-
Seq dataset. Expression levels of 71 genes in cells of each sample were averaged, 
scaled to z-score, and winsorized at -3 and 3. Bottom: 245-gene connectivity signature 
derived from the SR101 RNA-Seq dataset. Expression levels of 245 genes in the 
samples were batch-corrected, scaled to z-score, and winsorized at -3 and 3. PDGCL, 
Patient derived glioma cell line. Figures were adapted from Hai & Hoffmann et al., 
2021. 

 

Table 1 Overview of samples used for development of connectivity signatures. 
PDGCL: Patient derived glioma cell line.  
 

PDGCL S24 T269 P3XX 

Group High Low High Low High Low 

RNA-seq 3 3 3 3 0 0 

scRNA-Seq 1 1 1 1 1 1 

 

In the scRNA-Seq dataset, I obtained a total of 35,822 cells from three PDGCL models 

after quality controls (Table 2).  

 

Table 2 Properties of the SR101 scRNA-Seq dataset. These numbers represent the 

data after undergoing quality controls to remove low-quality cells. Table was adapted 

from Hai & Hoffmann et al., 2021. 

 

PDGCL Group Genes (n) UMIs (n) Cells (n) 

S24 SR101high 2876 7994 11190 

S24 SR101low 3153 8710 4439 

T269 SR101high 1380 2659 10245 

T269 SR101low 1590 3361 6933 

P3XX SR101high 4718 23140 2725 

P3XX SR101low 5230 26020 290 

 

To gain molecular insights into cell-cell connectivity, I performed differential expression 

analyses between SR101high and SR101low samples in the SR101 RNA-Seq and 

scRNA-Seq datasets (Figure 2.1b): 

 

In the scRNA-Seq dataset, to ensure an unbiased analysis in all three PDGCLs, I took 

several steps (Figure 2.1b): Firstly, I identified differentially expressed genes (DEGs) 

between SR101high and SR101low cells within each individual PDGCL separately using 

the FindMarker function in the Seurat package. Subsequently, I constructed a gene 

expression signature by including only those DEGs that satisfied one of the following 

criteria: 
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• DEGs that exhibited the same direction of regulation in all three PDGCLs. 

• DEGs that demonstrated the same direction of regulation and absolute log2 

fold change > 0.4 in at least two PDGCLs. 

 

Finally, I obtained a 71-gene signature, referred to as “connectivity signature” (Figure 

2.1c). Notably, this connectivity signature includes several known TM-connectivity 

genes such as GAP43 (Osswald et al., 2015; Weil et al., 2017; Venkataramani et al., 

2022), DLL1 (Jung et al., 2021), DLL3 (Jung et al., 2021), and APOE (Venkataramani 

et al., 2019) (Figure 2.1c). 

 

In the RNA-Seq dataset, I identified 245 DEGs that consistently showed dysregulation 

across two PDGCLs using the DESeq2 package (Figure 2.1b-c, Table 3). 

 

Table 3 The RNA-Seq-derived connectivity signature. Table was adapted from Hai 
& Hoffmann et al., 2021. 
 

Upregulated (n = 57): 
A2M, AC004485.3, AC009502.4, AGPAT9, AGT, AL031666.2, AP000345.1, 
APCDD1L, ARHGAP36, CARD16, CD44, CDK1, CHI3L1, CHRNA9, CLU, CNIH3, 
COL19A1, CPNE5, CYSTM1, DDO, F2RL2, GBP2, GJB2, GPER1, HBEGF, HEPH, 
HIST1H1B, HIST1H1D, HIST2H2AC, HOPX, ID3, IGFBP6, IGFBP7, LIF, 
LINC00551, LINC01057, LY96, MCHR1, MGP, NMB, NNMT, OTOS, PDCD1LG2, 
PLA2G5, PPEF1, RP11-283G6.4, RP11-3L21.2, RP11-483F11.7, SCN4B, 
SEMA3A, SPP1, SYNJ2, SYTL5, TMOD1, TRPC7, VAMP5, VSNL1 

Downregulated (n = 188): 
AC007682.1, AC053503.11, AC114730.3, AC124944.5, ACTL6B, ADAMTS7, 
ADAMTSL2, ADAP2, ADCY7, AHSG, AMER2, AMZ1, APOD, ARHGAP24, 
ARHGDIB, ARPP21, ASCL1, ASXL3, ATP1A3, ATP1A4, ATP2B3, ATP8A1, 
B3GALT2, BCL11B, BCO2, BMF, BMP2, C14orf166B, C3, CA8, CAPN3, CARD10, 
CDH20, CDKN1C, CELF5, CHRM4, CKM, CLSTN2, CLVS2, COL20A1, CRB1, 
CTRC, CUX2, CX3CR1, CYP4F12, DCX, DDX26B, DGKE, DIRAS2, DLL1, DLL3, 
DOCK9, DSCAM, ELAVL4, ELFN2, EPB41, EPHB1, FAM105A, FBN3, FERMT1, 
FERMT3, FGD3, FGL2, FLRT1, FRAT1, FRMPD1, FTMT, GADD45G, GCH1, 
GPD1, GPR123-AS1, GPR17, GRID2, HCK, HDC, HES6, HID1, HMHA1, HSPA1L, 
IFITM10, IGSF9B, JAG2, KCNH8, KCNIP3, KCNJ2, KIF19, LAG3, LIMS2, 
LINC00925, LPIN3, MAP1LC3C, MARCH1 , MCF2, MFNG, MTRNR2L10, 
MTRNR2L6, MTRNR2L7, MTSS1, MUC4, MYCL, MYCN, MYH14, MYO7B, 
MYT1L, NAA11, NAALAD2, NEU4, NKAIN1, NKAIN4, NOD2, NSG2, OLIG1, 
PACSIN1, PAK3, PARP8, PCP4, PCSK2, PDE2A, PLCL1, PLCXD2, PLXDC1, 
PODN, PON3, PRKCZ, PSD2, PTAFR, PTPRJ, PTPRM, QPCT, RAB11FIP4, 
RAB33A, RASGEF1C, RNF144B, RP11-1055B8.3, RP11-134P9.3, RP11-
161M6.2, RP11-231C18.1, RP11-309M23.1, RP11-328J6.1, RP11-430C7.5, RP11-
85M11.2, RP11-90E5.1, RP13-735L24.1, SATB1, SEMA6B, SERPINB1, 
SERPINF1, SERPINF2, SEZ6, SHD, SIGLEC1, SLC16A10, SLC17A7, SLC29A3, 
SLC7A7, SLCO4A1, SLIT1, SMOC1, SNX20, SOX8, SPNS2, SRC, STEAP4, 
STMN2, STXBP2, STXBP6, SUSD3, TAGAP, TAGLN3, TBC1D9, TBX21, TEX38, 
TF, TM6SF1, TNFRSF11B, TNK2, TNR, TPBGL, TRPV4, TSPAN15, TTC24, 
TUSC3, UCP3, UNC13D, UNC5A, VIPR2, WIPF3, ZDHHC22 
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With these analyses, I obtained two sets of connectivity signatures. The further 

comparison between the scRNA-Seq-derived and RNA-Seq-derived connectivity 

signatures is presented in the next subsection. 

 

2.1.2 Comparisons of RNA-Seq and scRNA-Seq-derived connectivity 

signatures 

To compare the connectivity signatures obtained from two different transcriptome 

profiling methods, I examined the fold changes of genes between the SR101high and 

SR101low groups in both the RNA-Seq and scRNA-Seq datasets. Fold changes 

indicate the magnitude of expression change and the direction of regulation for each 

gene. 

 

In the comparison of fold changes for all commonly detected genes, a moderate 

correlation (R = 0.44) was observed (Figure 2.2a). I hypothesized that this limited 

correlation is a result of the entirely different methodologies employed in bulk and 

single-cell sequencing. In scRNA-Seq, gene expression is quantified in individual cells, 

whereas bulk RNA-Seq comprises a mixed signal from various cell types. Additionally, 

gene drop-out events in the scRNA-Seq dataset may be influencing the correlation. By 

restricting the analysis to genes expressed in at least 10% of cells in the scRNA-Seq 

dataset, the correlation increased to R = 0.55 (Figure 2.2b). To address the potential 

influence of genes with insignificant changes between SR101high and SR101low groups, 

I only considered DEGs with adjusted p-value < 0.05 in both datasets, leading to a 

further increase in correlation to R = 0.71 (Figure 2.2c). Notably, the 13 overlapping 

genes in the two connectivity signatures exhibited a high correlation (R = 0.77, Figure 

2.2d). 
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Figure 2.2 Fold changes between highly and lowly connected samples in the 
SR101 scRNA-Seq and RNA-Seq datasets. The log2 fold change of gene expression 
was calculated using the average expression of samples/cells between the SR101high 
and SR101low groups. Correlation coefficients were determined using the Spearman 
method. a) Overall, 16,759 genes were analyzed. b) 6,984 genes were expressed in 
more than 10% of cells in the scRNA-Seq dataset. c) 297 genes showed an adjusted 
p-value of less than 0.05 in both the RNA-Seq and scRNA-Seq datasets. d) There 
were 13 overlapping genes between the bulk and single-cell RNA-Seq-derived 
connectivity signatures. Orange color indicates upregulated genes in both datasets, 
while purple color indicates downregulated genes. Figures were adapted from Hai & 
Hoffmann et al., 2021. 

 

Next, I compared the enriched gene ontologies (GOs) in both the SR101 RNA-Seq-

derived and scRNA-Seq-derived connectivity signatures using the Metascape tool 

(Zhou et al., 2019). Although only 13 DEGs overlap between the two connectivity 

signatures (Figure 2.2d), it is noteworthy that the enriched GO terms associated with 

these two signatures demonstrate substantial consistency (Figure 2.3a). Additionally, 

a significant number of genes, although not directly overlapping within these two 

connectivity signatures, share the same GO terms (Figure 2.3b). 
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Figure 2.3 Enriched gene ontologies in the connectivity signatures. a-b) Analyses 
using Metascape (Zhou et al., 2019). a) Common enriched ontologies. b) Overlaping 
genes (purple lines) and genes shared the same GO terms (blue lines). The length of 
circular arc indicates the number of genes in two connectivity signatures. Outer circle 
represents the number of genes in each gene set. Inner circle highlights the number 
of overlapping genes (dark orange). 
 

To computationally quantify the degree of connectivity in cells, I calculated a score 

based on the average relative expression of genes that constituted a connectivity 

signature, termed connectivity signature score (CSS), using the AddModuleScore 

function in the Seurat package. For each cell of the scRNA-Seq data or each sample 

of the RNA-Seq data, I calculated the CSS based on the RNA-Seq-derived or scRNA-

Seq-derived connecvitiy signature. Remarkably, both RNA-Seq-derived and scRNA-

Seq-derived CSSs can well-distinguish the SR101high and SR101low groups in each 

PDGCL in both RNA-Seq and scRNA-Seq datasets (Figure 2.4a-b). Furthermore, the 

RNA-Seq-derived and scRNA-Seq-derived CSSs exhibit a high correlation in the 

SR101 scRNA-Seq dataset (R = 0.87) as well as in The Cancer Genome Atlas (TCGA) 

GB RNA-Seq dataset (R = 0.89). 
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Figure 2.4 The scRNA-Seq-derived and RNA-Seq-derived CSSs. a) The scRNA-
Seq-derived CSS (Left) and RNA-Seq-derived CSS (Right) of cells in the SR101high 
and SR101low groups in each PDGCL in the SR101 scRNA-Seq. N = 35,822 cells. 
Tukey's boxplots display quartiles of data with whiskers drawn within 1.5 times the 
interquartile range (IQR). Mann-Whitney U test. b) The scRNA-Seq-derived CSS (Left) 
and RNA-Seq-derived CSS (Right) of cells in SR101high and SR101low groups in each 
PDGCL in the SR101 RNA-Seq. N = 3 per group per PDGCL. Barplots display means 
and standard errors (SE) of data. Two-sided paired t-test. c) Pearson correlation 
between scRNA-Seq-derived and RNA-Seq-derived CSS in the SR101 scRNA-Seq 
(Left) and TCGA GB RNA-Seq (Right) datasets. *, p-value < 0.05; **, p-value < 0.01; 
***, p-value < 0.001. Figures were adapted from Hai & Hoffmann et al., 2021. 

 

Next, I examined the CSS in cells of the SR101 scRNA-Seq dataset. I visualized the 

cells using Uniform Manifold Approximation and Projection (UMAP). UMAP can cluster 

cells with similar transcriptomic profiles together while preserving the global structure 

of the data to co-locate similar groups of cells. Cells from the same SR101 group were 

clustered together. while cells from different PDGCL were located far apart in the 

UMAPs (Figure 2.5a). I employed the "anchor" integration approach to remove the 

differences between PDGCLs, enabling cells from different PDGCLs to cluster 

together (Figure 2.5b). Both RNA-Seq-derived and scRNA-Seq-derived CSSs proved 

to be good indicators for the SR101 groups in cells in both the original and "anchor" 

integrated UMAPs (Figure 2.5a-b). The SR101high cells exhibited higher CSS values 

compared to those SR101low cells (Figure 2.5). Strikingly, cells located near the 

boundary between the SR101high and SR101low groups exhibited intermediate CSS 

values, showing a gradual and continuous increase in CSSs from SR101high to 

SR101low groups (Figure 2.5).  

 



23 
 

 

Figure 2.5 The CSSs in the UMAPs of SR101 scRNA-Seq dataset. a) Original 
UMAPs on single cells without integration. b) UMAPs on single cells with “anchor” 
integration. Cells are colored based on PDGCLs (Leftmost), SR101 groups (Second 
from Left), scRNA-Seq-derived CSSs (Third from Left) or RNA-Seq-derived CSSs 
(Rightmost). Figures were adapted from Hai & Hoffmann et al., 2021 
 

To investigate the performance of CSS in predicting the group to which a cell belongs 

(SR101high or SR101low), I calculated both RNA-Seq-derived and scRNA-Seq-derived 

CSSs for individual single cells in the SR101 scRNA-Seq dataset. Subsequently, I 

assigned cells to the SR101high group if they had positive CSS values or to the SR101low 

group if they had negative CSS values. I then compared the assigned groups with the 

FACS-sorted groups based on the SR101 fluorescence intensity. The scRNA-Seq-

derived CSS yielded an 83% accuracy, while the RNA-Seq-derived CSS had 79% 

accuracy (Table 4). As a control, scores based on randomly selected genes resulted 

in a poor prediction performance (accuracy = 0.49, Table 4). 

 

Table 4 Prediction performances of RNA-Seq-derived and scRNA-Seq-derived 
CSSs. PPV, positive predictive value; NPV, negative predictive value; Random score 
1, randomly selected gene set with the same size as RNA-Seq-derived connectivity 
signature; Random score 2, randomly selected gene set with the same size as scRNA-
Seq-derived connectivity signature. Figures were adapted from Hai & Hoffmann et al., 
2021. 
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Metrics RNA-Seq-
derived CSS 

scRNA-Seq-
derived CSS 

Random 
score 1 

Random 
score 2 

Accuracy 0.79 0.83 0.49 0.49 

Sensitivity 0.77 0.95 0.47 0.48 

Specificity 0.83 0.58 0.53 0.51 

PPV 0.90 0.82 0.67 0.67 

NPV 0.64 0.84 0.32 0.32 

 

In this subsection, I compared the RNA-Seq-derived and scRNA-Seq-derived 

connectivity signatures at multiple aspects, including the gene expression fold change 

between the high and low SR101 groups in both SR101 RNA-Seq and scRNA-Seq 

datasets, the enriched GO terms of the connectivity signatures, and the comparisons 

between the RNA-Seq-derived and scRNA-Seq-derived CSSs. A high consistency 

was found in the two connectivity signatures. Since the scRNA-Seq-derived CSS 

yielded higher prediction accuracy, I will focus on characterizing the scRNA-Seq-

derived connectivity signature and CSS, and refer to them as “connectivity signature” 

and “CSS” in the following subsections without explicitly mentioning “scRNA-Seq-

derived”. 

 

2.1.3 Connectivity and cell states 

Recently, scRNA-Seq technology has enabled reseachers to further assign tumor cells 

to various cell states. Four major cell states (AC, MES, OPC, and NPC) were identified 

in GB (Neftel et al., 2019). I assigned these cell states to cells in the SR101 scRNA-

Seq dataset. In the “anchor” integrated UMAP, cells with the same cell state were 

clustered together (Figure 2.6a). Interestingly, I found the cell state composition was 

different between the SR101high and SR101low groups (Figure 2.6b). The SR101high 

group contained high ratios of AC and MES cells, while the SR101low group had a high 

ratio of NPC cells (Figure 2.6b). Notably, the CSS were higher in AC and MES than 

NPC (Figure 2.6c). 

 

Furthermore, when comparing to cell state markers identified in Neftel et al., 2019, I 

found approximately 50% of the genes in the connectivity signature were also cell 

states markers. Among the 40 upregulated genes of the connectivity signature, 10 

were AC markers (AGT, ATP1B2, CLU, SPARC, FABP7, GFAP, HOPX, SPARCL1, 

CST3, and S100A16), seven were MES1 markers (CHI3L1, APOE, ANXA2, TAGLN2, 

TIMP1, MT2A, and S100A16), two were MES2 markers (ATF3 and ANXA2), and one 

was an NPC2 marker (TUBB2A). Additionally, there were 12 NPC1 markers 
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(MARCKSL1, BTG2, TCF12, SOX4, PTPRS, OLIG1, HES6, CHD7, MEST, DLL3, 

SHD, and DLL1), 1 OPC marker (OLIG1), and 1 NPC2 marker (SOX4) among the 31 

downregulated genes in the connectivity signature. 

 

When examining the expression level of the genes in the connectivity signature in each 

cell state, I found that the upregulated genes in connectivity signature were highly 

expressed in AC and MES cells, while the downregulated genes in the connectivity 

signature were highly expressed in NPC and OPC cells (Figure 2.6d). 

 

 

Figure 2.6 Connectivity signature and cell state in the SR101 scRNA-Seq dataset. 
a) UMAP colored by cell states. b) Percentage of cell states in the SR101 groups. c) 
CSSs of cells in each cell state. d) Average expression levels of upregulated (Top) and 
downregulated (Bottom) connectivity signature genes in each cell state. Expression 
levels were scaled to z-score across cell states. Dot size indicates percentage of 
expressed cells in each cell state. AC, astrocytic-like cell; MES, mesenchymal-like cell; 
NPC, neuronal progenitor-like cell; OPC, oligodendrocyte progenitor-like cell. Figures 
were adapted from Hai & Hoffmann et al., 2021. 
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To assess the cross-talk between cells, I identified ligand-receptor interactions in the 

SR101 scRNA-Seq dataset using CellChat (Jin et al. 2021). There are cell-cell 

communications among cell states in both SR101high and SR101low samples; however, 

the SR101high samples had a higher number of interations between cell states than the 

SR101low samples (Figure 2.7a-b). Several pathways exhibited distinct signaling 

patterns between SR101high and SR101low samples, including the NOTCH pathway 

(Figure 2.7c). Specifically, the NOTCH pathway was completely depleted in AC cells 

of SR101high, while turned on in AC cells of SR101low cells (Figure 2.7c-e). Furthermore, 

the NOTCH pathway was highly activated in NPC1 cells (Figure 2.7c-e), which were 

enriched in SR101low samples (Figure 2.6b). Downregulation of the NOTCH pathway 

has found to promote TM-connections in a previous study (Jung et al., 2021). 
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Figure 2.7 Ligand-receptor interation among cell states in the two SR101 groups. 
scRNA-Seq data from SR101high and SR101low sapmles was analyzed. a) The number 
of estimated cell interactions between cell states. The lines linking two cell states 
indicate an interation between these two cell states. The thickness of the lines indicates 
the relative number of interations between cell states. Each color represents the 
interactions from a specific cell state. b) The total number of estimated interactions 
(Left). The total interaction weights (Right). c) The overall signaling patterns of each 
cell state. Colors in the heatmap represent the relative number of interactions. The bar 
plot over columns represents the sum of the relative number of interactions in each 
cell state. The bar plot over rows represents the sum of the relative number of 
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interactions in each differentially interacted pathway. Arrows highlight the NOTCH 
signaling pathway. d) The number of interactions in NOTCH signaling pathway 
between cell states in SR101high samples (Left) and SR101low samples (Right). e) The 
expression levels of ligand/receptor genes involving in NOTCH signaling pathway. 
 

To investigate the cell state dynamics in the SR101 groups, I applied RNA velocity 

estimation to the SR101 scRNA-Seq data using velocyto (La Manno et al. 2018) and 

scVelo (Bergen et al. 2020). In the SR101high samples, the transition flow of cells 

started from the cycling cells (G2_M), then went through various cell states, and finally 

reached AC as an endpoint (Figure 2.8). The AC cell state had a higher CSS (Figure 

2.6c). This indicates that the SR101high cells tend to form a more connected and 

harmonized network. On the other hand, in the SR101 low samples, the starting point 

was also G2_M, but there were multiple endpoints of the transition, including AC and 

NPC1 (Figure 2.8). The NPC1 cell state had a lower CSS (Figure 2.6c). This indicates 

that SR101low cells tend to form a loosely connected network with the potential to 

develop multiple cell states. 
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Figure 2.8 RNA velocity in the two SR101 groups. RNA velocities were projected 
onto the principle component analysis (PCA) plots of scRNA-Seq data of the SR101high 
and SR101low cells in each PDGCL. Cells were colored according to their cell states. 
The streamline indicates the velocity vector field, showing the direction of flow. 
 

In this subsection, I investigated the relationship between connectivity and cell state in 

the SR101 scRNA-Seq dataset. I observed that SR101high cells exhibited a high 

correlation with AC and MES cell states, while SR101low cells were correlated with the 

NPC cell state. I will further evaluate the features of the connectivity signature in 

various datasets in the next subsections. 
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2.1.4 The connecivity signature in GB patient tumor scRNA-Seq datasets 

I established the connectivity signature from the scRNA-Seq data of xenografted 

PDGCL models. To access the effectiveness of the connecivity signature in patient 

tumors, 21 IDH wt GB patient tumor samples were subjected to scRNA-Seq (Table 5). 

After quality controls, I obtained a total of 213,444 single cells (Table 5). 

 

Table 5 Properties of the patient tumor scRNA-Seq dataset. N, the number; GB 

meth. subtype, glioblastoma methylation classifier in Capper et al., 2018. RTK, 

Receptor tyrosine kinase. 

 

ID Age Sex GB meth. 

subtype 

Median 

gene (n) 

Median 

count (n) 

Cell 

(n) 

T1 69 Male RTK I 561 685 932 

T2 61 Male Mesenchymal 786 1116 16721 

T3 68 Male RTK I 634 794 6634 

T4 61 Male RTK II 943 1273 9029 

T5 77 Male RTK II 767 1006 6175 

T6 73 Male Mesenchymal 1020 1440 2744 

T7 56 Male RTK II 643 846 5009 

T8 80 Female Mesenchymal 584 679 1626 

T9 67 Male Mesenchymal 1393.5 2071 15092 

T10 64 Male Mesenchymal 1097 1653.5 11192 

T11 44 Male N/A 1198 1762 14588 

T12 66 Male RTK I 996 1381 15057 

T13 54 Male RTK I 1231 1946 5165 

T14 69 Female RTK II 1289 2053 11927 

T15 53 Male RTK II 998 1310 11533 

T16 43 Female RTK II 608 728 5830 

T17 64 Male Mesenchymal 1347.5 1917 19668 

T18 56 Male Mesenchymal 810 1102 8221 

T19 55 Male RTK I 1300.5 1890 13450 

T20 32 Female Mesenchymal 856 1055 15707 

T21 55 Male RTK II 1912 3024.5 17144 

 

I observed a significant inter-tumor heterogeneity in the UMAPs of patient tumor 
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scRNA-Seq dataset (Figure 2.9a). To mitigate the differences across tumors, I 

employed “anchor” integration. This integration resulted in the merging of cells from 

different tumors in a UMAP plot (Figure 2.9b).  

 

Furthermore, I identified 24 cell clusters through shared nearest neighbor (SNN) 

analysis in the integrated dataset (Figure 2.9c). To annotate these clusters, I collected 

maker genes of seven cell types in GBs from previous studies (Neftel et al., 2019; 

Zhang Y. et al., 2016; He et al., 2016). Applying these cell type markers to the patient 

tumor scRNA-Seq data, I calculated gene signature scores of each cell type in 

individual single cells, using the AddModuleScore function in the Seurat package 

(Figure 2.9d). Notably, specific clusters exhibited higher scores in particular cell types 

(Figure 2.9d). I annotated these clusters based on their highest cell type signature 

scores. 

 

To validate the malignant and non-malignant clusters, I identified copy number 

variations in cell clusters (Figure 2.9e). As expected, the malignant clusters displayed 

amplification in chr7 and depletion in chr10, while non-malignant clusters showed no 

CNVs on these chromosomes (Figure 2.9e). 
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Figure 2.9 The patient tumor sample scRNA-Seq dataset. a-d) UMAPs of single 
cells in 21 GB patient tumor samples. a) Cells were colored by patient tumor samples. 
b) Cells were “anchor” integrated across samples and colored by patient tumor 
samples. c) Cells were “anchor” integrated across samples and colored by 
unsupervised clusters. d) Cells were “anchor” integrated across samples and colored 
by each cell type signature scores. Green circles highlight the cell subpopulation with 
the higest corresponding cell type signature score. e) Copy number variations (CNVs) 
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estimation in cell clusters in patient tumor scRNA-Seq dataset. Top, The non-malignant 
cell subpopulations as reference. Bottom, CNVs in cell clusters. Text in green indicates 
the non-malignant cell subpopulations. Figures were adapted from Hai & Hoffmann et 
al., 2021. 
 

The assignment of cells to the seven cell types were annotated in UMAPs (Figure 

2.10a-b). The cell type composition varied among the different patient tumor samples 

(Figure 2.10c). I identified marker genes corresponding to the assigned cell types in 

the patient tumor scRNA-Seq dataset (Figure 2.10d, Table 6). Notably, several typical 

markers were detected, including EGFR for malignant cells, MBP for oligodendrocytes, 

CD163 for macrophages, CLDN5 for endothelial cells, PDGFRB for pericytes, and CD2 

for T-cells (Figure 2.10d, Table 6).  

 

 

Figure 2.10 Cell types in GB patient tumor samples. The cells from 21 GB patient 
tumor sample scRNA-Seq were analyzed. a-b) UMAPs showing single cells colored 
by seven cell types with “anchor” integration (a) or without integration (b). c) The cell 
type composition in each patient tumor sample. d) Average expression levels of cell 



34 
 

type signatures. Expression levels were scaled to z-score and winsorized at -3 and 3. 
Figures were adapted from Hai & Hoffmann et al., 2021. 
 
Table 6 Cell type signatures identified in the patient tumor scRNA-Seq dataset. 
Seven cell type signatures were obtained by differential expression analysis in the 21 
GB patient tumor sample scRNA-Seq dataset. Table was adapted from Hai & 
Hoffmann et al., 2021. 
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Malignant (n = 49): 
EGFR, LHFPL3, SNTG1, PTPRZ1, RGS6, NRCAM, DPP6, ROBO2, CTNNA2, 
NRXN1, GRIK2, TNC, NOVA1, GLIS3, DGKG, SEC61G, GPM6A, RP11-40F8.2, 
LRP1B, MAP2, MEG3, KCND2, DCLK2, LPHN3, CHI3L1, VEGFA, NAV2, SLC4A4, 
SOX6, RORA, LSAMP, NLGN1, LINC00511, CSMD1, CDK14, NKAIN3, DLGAP1, 
TMEM178B, DGKB, SLC35F1, FMN2, PTN, RFX4, CADPS, TRIO, DENND2A, 
NLGN4X, ITGB8, TRIM9 

Endothelial (n = 42): 
FLT1, EGFL7, ABCB1, INSR, VWF, ANO2, GALNT18, HSPG2, CLDN5, ANGPT2, 
PTPRB, ATP10A, DOCK9, MECOM, NOX4, GPR116, ERG, PTPRM, ELTD1, 
RASGRP3, PREX2, SORBS2, MYRIP, EPAS1, LPHN2, CTGF, SLC39A10, 
PLXNA2, HECW2, PLEKHG1, PTPRG, GRAPL, AC010084.1, MYO10, FLI1, LDB2, 
NOSTRIN, NOTCH4, ARL15, NR5A2, CALCRL, SLC7A5 

Macrophage (n = 48): 
PLXDC2, TBXAS1, APBB1IP, FRMD4A, SLC11A1, SFMBT2, DOCK8, 
ARHGAP24, FYB, CD74, CSF2RA, SLCO2B1, ST6GAL1, MSR1, C10orf11, 
KCNQ3, SRGN, DOCK4, CPM, CD163, SAT1, MEF2C, MYO1F, MEF2A, ADAM28, 
FMN1, PIK3R5, RP11-556E13.1, C3, FCGBP, ATP8B4, CCL3, C1QB, SRGAP2, 
PALD1, MS4A6A, HLA-DRB1, SAMSN1, STAB1, SYK, RP11-624C23.1, HLA-DRA, 
RCSD1, RGS1, DENND3, INPP5D, MERTK, OLR1 

Pericyte (n = 43): 
MIR4435-1HG, CCDC102B, EBF1, FN1, UACA, SLC38A11, CTD-3179P9.1, 
CALD1, GRM8, CACNA1C, PRR16, PLXDC1, PDGFRB, TRPC6, COL1A1, 
COL18A1, CDH6, COL3A1, RNF152, EDNRA, LAMC3, MIR143HG, RBPMS, 
LINC00152, LAMA4, GUCY1A2, CCDC3, ZEB1, ENPEP, LAMB1, SLIT3, EPS8, 
TPM1, DCN, IGFBP7, PTEN, GJC1, SVIL, COBLL1, ACTA2, RP11-649A16.1, 
NR2F2-AS1, INPP4B 

Oligodendrocyte (n = 47): 
NKAIN2, ST18, MBP, PLP1, CTNNA3, MIR219-2, IL1RAPL1, TMEM144, RNF220, 
SPOCK3, EDIL3, SLC24A2, UNC5C, CLDN11, PEX5L, CERCAM, CNTNAP4, 
PIP4K2A, CNDP1, SLC44A1, MAP7, DOCK5, PLCL1, TF, KIRREL3, AK5, PCSK6, 
MAN2A1, C10orf90, SLC5A11, ANK3, MOBP, ENPP2, CARNS1, PLEKHH1, 
ABCA2, KCNMB4, TTLL7, KLHL32, ZNF536, KIAA1598, CDK18, MYRF, TMEFF2, 
DNM3, MOG, GRM3 

T-cell (n = 46): 
SKAP1, CD96, THEMIS, SLFN12L, PTPRC, CD247, CD2, STAT4, AC105402.4, 
TC2N, CCL4, PARP8, SAMD3, CARD11, BCL11B, BCL2, AC104820.2, IKZF1, 
CCL5, PYHIN1, GRAP2, CCND3, ITGAL, HFM1, SYTL3, RHOH, KIAA1551, 
STK17B, FAM65B, MBNL1, CD97, IL7R, PDE3B, EMB, RNF213, CDC42SE2, 
GZMA, ITK, ACAP1, PRKCB, TNFAIP8, PRKCQ, CAMK4, LCP2, LCK, RUNX3 

Astrocyte (n = 47): 
GPR98, NRG3, RNF219-AS1, GPC5, TPD52L1, SPARCL1, HPSE2, MGST1, 
ADCY2, MGAT4C, NEBL, PLEKHA5, RP11-627D16.1, FAM155A, SLC14A1, 
KCNN3, PAMR1, MAPK4, ABLIM1, MAOB, COL5A3, PITPNC1, CP, SORBS1, 
LINC01088, CTNND2, GABRB1, RANBP3L, DCLK1, AQP1, NTRK2, CNTN1, 
CD38, PRODH, SLC1A2, COLEC12, FUT9, AQP4-AS1, ARHGEF4, DTNA, 
EFEMP1, DNER, APOE, CDH20, GINS3, PARD3, CCDC85A 

 

I further assigned GB cell states to the malignant cells in the patient tumor scRNA-Seq 

dataset. I observed that the cell state composition varied among tumors (Figure 2.11a). 

I calculated CSS in each malignant cell and grouped the cells into four groups based 

on the quartiles of their CSS values. I found that the percentage of these four CSS 
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groups in tumors varied (Figure 2.11b). Notably, the tumors exhibiting a higher fraction 

of AC and MES cells showed a higher proportion of the highest CSS group (Figure 

2.11a-b). 

 

To better illustrate the relationship between the CSS and cell state, I employed various 

visualization methods to highlight different aspects: 

 

• Heatmap: I ordered individual single cells by their CSS values, visualizing their 

cell state signature scores alongside, and identified a pattern: cells with higher 

CSS values corresponded to higher AC and MES1 signature scores, whereas 

cells with lower CSS values displayed higher OPC and NPC1 signature scores 

(Figure 2.11c). 

• UMAP: I visualized the cells in UMAP plots. Cells were clustered according to 

cell states in the UMAPs. AC and MES1 cells were in regions with higher CSS 

values, while OPC and NPC1 cells were positioned in areas with lower CSS 

values (Figure 2.11d). 

• 2D plot: I projected the cells onto a two-dimensional (2D) scatterplot based on 

their cell state signature scores. Cells from the AC and MES states located in 

the upper part of the plot exhibited remarkably higher CSS values compared to 

cells in the lower part, which represented OPC and NPC cells (Figure 2.11e). 
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Figure 2.11 CSS and cell state in GB patient malignant cells. a) Percentage of cell 
states in patient tumor samples. b) Percentage of four CSS groups in patient tumor 
samples. Cells were categorized into four groups based on their CSS values’ quartiles. 
Q1: Cells with the lowest 25% CSS values; Q2: Cells with 25% to 50% CSS values; 
Q3: Cells with 50% to 75% CSS values; Q4: Cells with the highest 75% CSS values. 
c) Heatmap depicting CSS and cell state signature scores in each cell. Cells were 
ordered based on their CSS values. Scores were scaled to z-score and winsorized at 
-3 and 3. d) UMAPs of cells with anchor integration. Cells were colored by their 
respective cell states (Left) and CSS values (Right). e) Two-dimensional (2D) 
embedding of cells based on cell state signature scores. The top-left corner represents 
cells enriched with higher MES scores, the top-right corner with higher AC scores, the 
bottom-left corner with higher NPC scores, and the bottom-right corner with enriched 
OPC scores. Cells were colored by cell states (Left) and CSS values (Right). Figures 
were adapted from Hai & Hoffmann et al., 2021. 
 

I further investigated the relationship between CSS and cell states in a harmonized GB 

scRNA-Seq dataset known as “GBmap”, which comprised 338,564 annotated cells 

obtained from 110 donors (Ruiz-Moreno et al., 2022). I applied CSS to all cells within 
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the GBmap dataset, and visualized the results using UMAPs (Figure 2.12a-c). I found 

that cells annotated as AC-like and MES-like in Ruiz-Moreno et al., 2022 were 

predominantly situated in the region exhibiting the highest CSS values, whereas NPC-

like and OPC-like cells were clustered in the area with the lowest CSS values; other 

nonmalignant cells displayed intermediate CSS values (Figure 2.12a-c). Upon 

projecting the cells onto the 2D plot according to cell state signature scores, the upper 

part containing AC and MES cells displayed notably elevated CSS values (Figure 

2.12d). These findings agree with the observations from the 21-sample GB patient 

tumor scRNA-Seq dataset (Figure 2.11). 

 

 

Figure 2.12 CSS and cell type/state in the GBmap scRNA-Seq dataset. A 
harmonized GB scRNA-Seq dataset named ‘GBmap’ comprised 338564 annotated 
cells from 110 donors (Ruiz-Moreno et al., 2022). a) A UMAP of all cells is displayed, 
with colors indicating malignant and nonmalignant annotations as per Ruiz-Moreno et 
al., 2022. b) A UMAP of all cells is displayed, with colors indicating cell type/state 
annotations as per Ruiz-Moreno et al., 2022. c) A UMAP of all cells colored based on 
CSS values. d) 2D embedding of all cells based on cell state signature scores and 
colored by CSS values.  
 

Subsequently, I conducted tests to determine whether the cell type/state composition 
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within a sample influenced the CSS values. I found the compositions of cell type, cell 

state, and CSS groups exhibited significant heterogeneity across the samples within 

the GBmap dataset (Figure 2.13a-c). Despite this variability, I identified a discernible 

pattern: samples containing a higher proportion of CSS Q4 group were characterized 

by an increased proportion of malignant AC and MES cell states, while those within 

the CSS Q1 group displayed a higher prevalence of malignant NPC cell state (Figure 

2.13a-b). Moreover, I found a strong correlation between the CSS groups and the 

proportions of malignant AC, MES and NPC cell states (Figure 2.13d). Additionally, 

the proportions of diverse immune cells exhibited a positive correlation with the CSS 

Q2 group (Figure 2.13d). 
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Figure 2.13 CSS and cell type/state composition in the GBmap scRNA-Seq 
dataset. 74 donors with at least 20 malignant cells and 20 nonmalignant cells from the 
GBmap scRNA-Seq dataset. a) Percentage of four CSS groups in 125486 malignant 
cells from 74 donors. Samples were sorted by mean CSS values. Cells categorized by 
quartiles of their CSS values. Q1: Cells with the lowest 25% CSS values; Q2: Cells 
with 25% to 50% CSS values; Q3: Cells with 50% to 75% CSS values; Q4: Cells with 
the highest 75% CSS values. b) Percentage of malignant cell states in 125486 
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malignant cells from 74 donors. c) Percentage of nonmalignant cell type in 108293 
nonmalignant cells from 74 donors. d) Heatmap shows pearson correlation coefficient 
among the percentage of malignant cell states (green label), the percentage of 
nonmalignant cell types (black label), the percentage of CSS groups (orange label) 
and the mean of CSS values (oranger label) in each sample. The color and size of 
square indicates the Pearson correlation coefficient. 
 

In this subsection, I delved deeper into the relationship between the connectivity 

signature and cell states using both 21-sample GB patient tumor scRNA-Seq dataset 

and the “GBmap” harmonized 110-patient tumor scRNA-Seq dataset. Despite the 

considerable heterogeneity in cell state composition among patients, I found that the 

AC and MES cell states exhibited a strong positive correlation with the CSS values. 

Conversely, the NPC cell state displayed a negative correlation with the CSS values. 

In the following subsection, I will further validate these relationships using bulk RNA-

Seq datasets. 

 

2.1.5 The connecivity signature in TCGA GB RNA-Seq dataset 

Given that bulk RNA-Seq data is often more readily accessible compared to scRNA-

Seq data, I assessed the effectiveness of the connectivity signature using RNA-Seq 

data from a cohort of 230 samples with GB IDH wt in TCGA. 

 

I assigned three expression subtypes (mesenchymal [MS], classical [CL], and 

proneural [PN], as defined by Wang Q. et al., 2017) and the prevailing cell state (as 

defined by Neftel et al., 2019) to 230 samples in the TCGA GB RNA-Seq dataset. 

Among the samples belonging to the MS expression subtype, I found the MES1 cell 

state predominated. In the case of the CL subtype samples, the majority exhibited the 

AC cell state. Conversely, PN subtype samples displayed a variety of cell states, 

including AC, OPC, and NPC cell states (Figure 2.14a).  

 

I applied the CSS to the samples. I found that the MS subtype samples exhibited the 

highest CSS values, the CL subtype samples displayed intermediate CSS values, and 

the PN subtype samples had the lowest CSS values (Figure 2.14b).  

 

Furthermore, my investigation into the gene mutation status of the TCGA GB samples 

revealed a correlation between the CSS values and three genes—namely NF1, TP53, 

and PTEN (with FDR < 0.25 among genes mutated in at least 5% of samples, Figure 

2.14c). Notably, I observed that samples harboring TP53 mutations (found in 24% of 
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GB samples) exhibited lower CSS values compared to TP53 wt samples (Figure 2.14c). 

This observation aligns with the notion that basal TP53 expression is essential for 

mesenchymal stem cells and for nanotube development in astrocytes (Boregowda et 

al. in 2018, Wang Y. et al. in 2011). Conversely, I found that samples carrying PTEN 

mutations (detected in 30% of GB samples) displayed higher CSS values compared 

to PTEN wt samples. This observation aligns with a previous study indicating that 

astrocytes overexpressing PTEN had shorter microtube protrusions (Hohensee et al. 

in 2017). Moreover, I noticed that samples with NF1 mutations (occurring in 15% of 

GB cases) exhibited higher CSS values. NF1 mutants have been associated with 

tumor invasiveness and the MS subtype (Fadhlullah et al. in 2019, Verhaak et al. in 

2010). Interestingly, even among the samples belonging to the MS subtype, NF1 

mutants still displayed higher CSS values, suggesting that NF1 correlates with CSS 

independently of the MS subtype. 

 

 

Figure 2.14 CSS association with expression subtype and gene mutation. 230-
sample TCGA IDH wt GB cohort. a) Percentage of sample`s dominant cell state in 
three expression subtypes. 81 Mesenchymal (MS), 87 Classical (CL) and 62 Proneural 
(PN). b) CSS in three expression subtypes. c) CSS in mutation states of TP53 (57 
mutants vs. 173 wts), PTEN (76 mutants vs. 154 wts), and NF1 (35 mutants vs. 195 
wts; 16 mutants vs. 63 wts in MS subtype). *, p-value < 0.05; **, p-value < 0.01; ***, p-
value < 0.001. Mann-Whitney U test. Figures were adapted from Hai & Hoffmann et 
al., 2021. 

 

To explore the relationship between CSS and cell states in bulk RNA-Seq data, I 

employed bulk deconvolution methods to quantify the abundance of different cell 

types/states within the 230-sample TCGA GB RNA-Seq dataset. 

 

I determined the proportions of different cell types/states in the bulk RNA-Seq data 
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using a signature matrix derived from 21-sample GB patient tumor scRNA-Seq data 

through CIBERSORTx (Newman et al., 2019). A large number of samples exhibited 

dominance by the AC cell state (Figure 2.15a). Notaly, correlation analysis revealed a 

positive association between CSS values and the proportion of MES1, while a negative 

correlation was observed with the NPC1 cell states (Figure 2.15b-c). 

 

To validate the findings obtained from CIBERSORTx, I used an alternative bulk 

deconvolution method, GBMDeconvoluteR (Ajaib et al., 2023). GBMDeconvoluteR, 

designed specifically for GB, made use of multiple GB scRNA-Seq datasets as 

references (Ajaib et al., 2023). Consistent with the results from CIBERSORTx, I found 

that high MES abundance in the samples was associated with increased CSS values, 

while high NPC abundance showed a correlation with lower CSS values (Figure 2.15d-

e). Additionally, leveraging the enhanced capabilities of GBMDeconvoluteR, which 

includes more detailed immune cell annotation and refines GB cell state markers 

specifically for bulk RNA-Seq, I observed a positive correlation between CSS values 

and various immune cells (Figure 2.15d).  
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Figure 2.15 CSS and deconvoluted cell type/state in the TCGA GB RNA-Seq 
dataset. Bulk RNA-Seq data from 230-sample TCGA IDH wt GB cohort. a-c) The RNA-
Seq data of samples were deconvoluted into various cell types/states using 
CIBERSORTx with the signature matrix generated from the scRNA-Seq data of 21-
sample GB patient cohort. Samples were sorted by their CSS values. a) Cell type/state 
composition in samples. b) Pearson correlation coefficients among the percentage of 
malignant cell states (green label), the percentage of nonmalignant cell types (black 
label), the CSS values (oranger label) in each sample. The color and size of square 
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indicates the Pearson correlation coefficient. c) Scatterplots showing correlation 
between the proportions of cell states and CSS values. p value: Pearson correlation 
d-e) Deconvolution using GBMDeconvoluteR. d) Pearson correlation coefficient 
between cell types/states scores and CSS values. The color and size of square 
indicates the Pearson correlation coefficient. e) Scatterplots showing correlation 
between cell state scores and CSS values. p value: Pearson correlation. 
 

In this subsection, I employed CSS on 230-sample TCGA bulk RNA-Seq dataset and 

uncovered associations between CSS and three mutated genes. The correlation 

observed between CSS and deconvoluted cell types/states reaffirmed the conclusions 

drawn in the SR101 and patient sample scRNA-Seq dataset. This reaffirmation 

highlights the applicability of CSS to both bulk and single-cell RNA-Seq datasets. The 

forthcoming section will delve into an investigation of the relationship between the CSS 

and patient survival. 

 

2.1.6 The connectivity signature and patient survival 

Previous studies have demonstrated that TM-connected glioma cells are associated 

with therapy resistance (Osswald et al., 2015; Weil et al., 2017). Nevertheless, the 

effect of these cells on patient survival has yet to be fully elucidated. 

 

To assess the impact of cell connectivity on patient survival, I applied CSS to the 230-

sample TCGA IDH wt GB cohort. I classified the samples into three groups based on 

CSS quartiles (Q1, Q2-Q3, Q4). Kaplan-Meier (KM) survival analysis of the CSS 

groups demonstrated that the CSS Q1 group exhibited favorable survival, while Q4 

group exhibited notably poorer survival outcomes (Figure 2.16a). 

 

Furthermore, I conducted a Cox proportional hazards regression (Coxph) survival 

analysis using the continuous CSS values in samples. The results revealed a 

significant association between CSS values and overall patient survival (Figure 2.16b). 

Importantly, this association remained significant even after accounting for covariates 

such as age, gender, and expression subtypes (Figure 2.16b). 
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Figure 2.16 CSS and patient survival in the TCGA GB cohort. a) Kaplan-Meier (KM) 
survival analysis of 230 GB patients. Samples were categorized into three groups by 
quartiles of their CSS values. Q1: patients with the lowest 25% CSS values; Q2-Q3: 
patients with 25% to 75% CSS values; Q4: patients with the highest 75% CSS values. 
b) Cox proportional hazards regression (Coxph) survival analysis of 230 GB patients 
with CSS values. Exp. coef. (95% int.), exponentiated coefficients with 95% confidence 
intervals. Figures were adapted from Hai & Hoffmann et al., 2021. 
 

To investigate CSS values during glioma evolution, I applied CSS to RNA-Seq data 

from the Glioma Longitudinal Analysis Cohort (GLASS, Varn et al., 2022). I found no 

significant changes of CSS values between primary and recurrent tumors (Figure 

2.17a). In cases where patients had the same expression subtype in both primary and 

recurrent samples, CSS values did not have significant changes (Figure 2.17b). 

However, it is noteworthy that 49% of patients exhibited a switch in expression 

subtypes in recurrent tumors. When such switches occurred, corresponding changes 

were observed in CSS values (Figure 2.17c): CSS values decreased when a primary 

MS tumor transitioned to recurrent CL or PN tumor, whereas CSS values increased 

when primary CL or PN tumors switched to recurrent MS tumors (Figure 2.17c). 

 

I conducted KM survival analysis on both primary and recurrent tumors, revealing a 

more favorable overall survival in the CSS Q1 group, whereas the Q4 group exhibited 

poorer survival outcomes (Figure 2.17d). Moreover, I applied Coxph survival analysis 

to assess the relationship between continuous CSS values and OS or surgery interval 
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in primary and recurrent tumors. The analysis revealed a correlation between high CSS 

values and shorter overall survival, as well as an association between high CSS values 

and a reduced interval to the next relapse after surgery (Figure 2.17e). 

 

 

Figure 2.17 CSS in the GLASS primary and recurrent samples.  Primary and 
recurrent GB samples in Glioma Longitudinal Analysis Cohort (GLASS). a) CSS values 
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in primary (TP: n = 161) and recurrent (R1: n = 166, R2: n = 34 and R3: n = 10) tumors. 
Mann-Whitney U test. b-c) CSS values in TP and R1 tumors with the same expression 
subtypes (b) and the switched expression subtypes (c). Line indicates TP-R1 pair in 
the same patient. Paired Wilcoxon signed-rank test. d) KM survival analysis in primary 
(Left, n = 160) and recurrent tumors (Right, n = 132). Samples were categorized into 
three groups by quartiles of their CSS values. Q1: patients with the lowest 25% CSS 
values; Q2-Q3: patients with 25% to 75% CSS values; Q4: patients with the highest 
75% CSS values. e) Coxph survival analysis of both overall survival (OS) and surgery 
interval (SI) in primary (Left, n = 160) and recurrent tumors (Right, n = 132) with CSS 
values. Exp. coef. (95% int.), exponentiated coefficients with 95% confidence intervals. 
 

In this section, I examined the correlation between CSS values and patient survival in 

both the TCGA cohort and the GLASS primary and recurrent cohort. The findings 

indicated that higher CSS values were linked to poorer survival outcomes. These 

results suggest that the CSS could potentially serve as a valuable prognostic indicator. 

In the subsequent section, I will delve into the identification of the key gene within the 

connectivity signature. 

 

2.1.7 CHI3L1 as a robust marker in connectivity 

In the earlier subsections, CHI3L1 was identified as the most upregulated gene in 

SR101high cells as compared to SR101low cells in the scRNA-Seq dataset and was also 

notably upregulated in the SR101high samples in the RNA-seq dataset (Figure 2.1c, 

Table 3, Figure 2.2d). This suggests that CHI3L1 might play a role in connectivity. In 

this subsection, I delve into examining the role of CHI3L1 in GB. 

 

Firstly, I investigated the expression level of CHI3L1 in 31 tumor types and healthy 

tissues in the TCGA and Genotype-Tissue Expression (GTEx) RNA-Seq datasets 

(Figure 2.18a). I found CHI3L1 to be highly expressed in GB compared to other types 

of tumors and healthy tissues, consistent with the observation in the GB patient tumor 

scRNA-Seq dataset, where CHI3L1 exhibited higher expression in GB malignant cells 

(Figure 2.10d, Table 6). To be more specific, CHI3L1 had higher expression in MES, 

AC, and cycling cell states compared to NPC, OPC, and all nonmalignant cell types 

(Figure 2.18b). These findings suggest that CHI3L1 could serve as a GB marker. 

 

To delve further, I found CHI3L1 exhibited significantly higher expression levels in 

SR101high cells compared to SR101low cells across each cell state in the SR101 scRNA-

Seq dataset (Figure 2.18c), as well as in each PDGCL in the RNA-Seq dataset (Figure 

2.18d). Additionally, CHI3L1 exhibited the highest correlation coefficient with the CSS 
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among the 71 genes in the connectivity signature (Figure 2.18e-f). These results 

suggest that CHI3L1 can also serve as a marker for the highly connected GB cells. 

 

Furthermore, I observed higher expression levels of CHI3L1 linked to poorer survival 

outcomes in the KM survival analysis of TCGA GB samples (Figure 2.18g). This 

association remained significant even after adjusting for covariates such as age, 

gender, and expression subtypes, using the Coxph survival model (Figure 2.18h). 

Similar results were observed in the GLASS GB dataset, where patients with high 

CHI3L1 expression exhibited worse survival outcomes and a shorter interval to the 

next relapse after surgery. These results strongly indicate that CHI3L1 can serve as a 

prognostic marker for GB patients. 
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Figure 2.18 CHI3L1 association with GB malignant cell, connectivity and patient 
survival. a) CHI3L1 expression levels (median of log2[TPM]) in TCGA patient tumor 
samples from 31 cancer types and GTEx normal samples from 31 tissues. Data from 
GEPIA webpage (http://gepia.cancer-pku.cn). b) CHI3L1 expression levels (mean of 
normalized counts) in the 21-sample patient tumor scRNA-Seq dataset. c) CHI3L1 
expression levels (mean of normalized counts) in SR101 groups in each cell state in 
SR101 scRNA-Seq dataset. d) CHI3L1 expression levels (log2[FPKM]) in SR101 
groups in each PDGCL in SR101 RNA-Seq dataset. e) Pearson correlation coefficient 
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between expression levels of 71 connectivity genes (log2[FPKM]) and CSS in the 
TCGA GB RNA-Seq dataset. f) Pearson correlation coefficient between CHI3L1 
expression levels (log2[FPKM]) and CSS in the TCGA GB RNA-Seq dataset. g) KM 
survival analysis in the TCGA GB samples. Samples were categorized into three 
groups by quartiles of their CHI3L1 expression levels (log2[FPKM]). Q1: patients with 
the lowest 25% expression levels; Q2-Q3: patients with 25% to 75% expression levels; 
Q4: patients with the highest 75% expression levels. h) Coxph survival analysis in the 
TCGA GB samples with CHI3L1 expression levels (log2[FPKM]). Exp. coef. (95% int.), 
exponentiated coefficients with 95% confidence intervals. i) KM survival analysis in the 
GLASS primary samples. j) Coxph survival analysis in the GLASS primary samples. 
Figures were adapted from Hai & Hoffmann et al., 2021. 

 

To assess the functional properties of CHI3L1, PDGCLs with overexpressed (OE) 

CHI3L1 were generated. These cells were then subjected to RNA-Seq, mass 

spectrometry-based proteomics and phosphoproteomics experiments for further 

evaluation. 

 

I performed differential expression analyses in the RNA-Seq, proteomics and 

phosphoproteomics datasets of CHI3L1 OE samples (Figure 2.19a-c, Supplementary 

Table 1-3). In addition to the artificially overexpressed CHI3L1, several genes were 

overlapping between the DEGs from the RNA-Seq data and the differentially 

expressed proteins (DEPs) from the proteomics data. These genes included AC cell 

state markers such as SPARCL, SPARCL1, and CST3, OPC cell state marker FABP5, 

and NPC cell state marker UCHL1 (Neftel et al., 2019, Figure 2.19a-b). These findings 

suggest that the increased expression of CHI3L1 impacts various cell states. Notably, 

at the RNA level, CHI3L1 OE led to alterations in several connectivity signature genes, 

particularly the overlapping markers between scRNA-Seq-derived and RNA-Seq-

derived connectivity signatures, such as AGT, NMB, HOPX, CLU, ID3, APOE, HES6, 

and DLL1 (Figure 2.19a, Figure 2.2d). At the protein level, six connectivity signature 

genes demonstrated altered expression (Figure 2.19b). Interestingly, GAP43, a 

previously identified TM-connectivity marker (Osswald et al., 2015; Weil et al., 2017), 

exhibited higher phosphorylation levels in CHI3L1 OE samples (Figure 2.19c).  

 

The RNA and protein expression levels of CHI3L1 in GB patients exhibited a strong 

correlation (Figure 2.19d). The overlapping genes between DEGs and DEPs also 

displayed a strong correlation in their fold changes (Figure 2.19e). I computed CSS in 

both RNA-Seq and proteomics datasets from CHI3L1 OE samples, excluding the 

expression levels of artificially overexpressed CHI3L1. Remarkably, the CSS still 

exhibited a significant increase in the CHI3L1 OE samples (Figure 2.19f). This result 

indicates that CHI3L1 OE alone can indeed alter the CSS values. Additionally, the 



52 
 

CHI3L1 OE samples exhibited increased AC signature scores and decreased NPC1 

signatue score at both RNA and protein levels (Figure 2.19g-h). 

 

 

Figure 2.19 RNA-Seq, proteomics and phosphoproteomics of CHI3L1 
overexpressed PDGCLs. a-c) Differential expression analyses between CHI3L1 
overexpressed (OE) and control PDGCLs. a) Differentially expressed genes (DEGs) 
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in RNA-Seq data. Color coded labels: Blue:  Overlapping genes with connectivity 
signature; Green: Overlapping genes with differential expressed proteins (DEPs); Red: 
Overlapping gene with both connectivity signature and DEPs. b) DEPs in mass 
spectrometry-based proteomics dataset. Color coded labels: Grey:  Overlapping genes 
with cell state signatures; Black: Overlapping genes with kinases; Purple: Overlapping 
gene with downregulated connectivity signature genes; Orange: Overlapping gene 
with both upregulated connectivity signature genes. c) Differential phosphorated 
proteins (DPPs) in the phosphoproteomics dataset. Color codes the same as (c). d) 
Pearson correlation between paired RNA and protein expression levels of CHI3L1 in 
the 93-patient GB proteogenomic cohort (Wang L.B. et al., 2021). e) Pearson 
correlation of fold changes in the overlapping features between DEGs and DEPs. f-h) 
Signatue scores in CHI3L1 OE and control samples were calculated excluding CHI3L1 
expression level due to the artificial overexpression. Line and color indicate PDGCL. 
Paired two-sided t-test. f) CSS in the RNA-Seq (Left) and proteomics dataset (Right). 
g) Cell state signature scores in the RNA-Seq dataset. h) Cell state signature scores 
in proteomics dataset. 
 

Moreover, I conducted a comprehensive investigation into the enriched ontologies of 

CHI3L1 OE DEGs, DEPs, and DPPs. Notably, all three gene sets exhibited enrichment 

in "neuron projection development" and "cell junction organization" GO terms, both of 

which are relevant to the formation of TM-connectivity (Figure 2.20a). Intriguingly, the 

DEGs displayed enrichment in "tube morphogenesis," "regulation of trans-synaptic 

signaling" and "regulation of MAPK cascade" (Figure 2.20a). It's worth mentioning that 

a synaptic structure exists between neurons and glioma cells, situated on TMs 

(Venkataramani et al., 2019). Furthermore, MAPK and NF-kB pathways were found to 

be activated in a small population of highly active and TM-connected GB cells 

(Hausmann et al., 2023). 

 

Among the DEGs, DEPs, and DPPs, there are several overlapping genes (Figure 

2.20b). Notably, DEGs and DEPs were enriched in the transcription factors NFKB1 

and RELA (Figure 2.20c). Prior research has established the association of NF-kB with 

microtubules (Rai et al., 2015, Hausmann et al., 2023), and it has been shown that 

CHI3L1 is a target of NF-kB (Hubner et al., 2020; Zhao et al., 2022). Furthermore, a 

kinase enrichment analysis was conducted. Remarkably, all three gene sets were 

enriched in the kinases SRC and FYN (Figure 2.20d). SRC has been demonstrated to 

promote GB tumor proliferation and activate the MAPK pathway (Ahluwalia et al., 

2010). FYN, which belongs to the SRC family of kinases, has been implicated in 

synapse formation (Lim et al., 2009) and is associated with PTEN activity (Dey et al., 

2008). Notably, PTEN-mutated GB samples exhibited higher CSS values compared to 

PTEN wt samples (Figure 2.14c). Taken together, these findings strongly suggest that 

CHI3L1 plays a pivotal role in TM-connectivity. 
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Figure 2.20 Enriched ontologies of DEGs, DEPs, and DPPs in CHI3L1 

overexpressed PDGCLs. a-c) Analyses using Metascape (Zhou et al., 2019). a) 

Common enriched ontologies. b) Overlaping genes (purple lines) and genes in the 

overlapping ontology terms (blue lines). The length of circular arc indicates the number 

of genes. Outer circle represents the number of genes in each gene set. Inner circle 

highlights the number of overlapping genes (dark orange). c) Enriched transcriptional 

factors. d) Enriched kinases. Colors indicate protein-protein-interaction databases. 

Analyses in KEA3 (Kuleshov et al., 2021). 
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In this subsection, I introduced CHI3L1 as a robust marker for connectivity. I thoroughly 

investigated its functional properties across RNA, protein, and phosphorylation levels.  

 

2.1.8 A web tool for data visualization 

I designed a user-friendly web tool (https://connectivity-glioma.dkfz.de/) for visualizing 

gene expression data and metadata from the SR101 scRNA-Seq and 21-sample 

patient tumor scRNA-Seq datasets (Figure 2.21). This tool empowers users to explore 

the expression pattern of user-selected gene in the UMAPs of SR101high and SR101low 

cells, patient tumor malignant cells, or patient tumor cells. Additionally, users can 

compare specific gene’s expression in the SR101high and SR101low groups or across 

different cell states/types using boxplots. Furthermore, users can investigate the 

correlation between specific gene’s expression and CSS values through scatterplots. 

 

 

Figure 2.21 Web tool interface for metadata visualized in UMAP. Top: Navigation 
panel. Middle: Under "Metadata" tab, the metadata for the scRNA-Seq datasets are 
shown in separate sub-tabs: "PDGCL," "PatientMalignant," and "Patient." Bottom: 
Visualization examples. Bottom left: UMAP displays CSSs in the SR101 PDGCL cells 
under "PDGCL" subtab. Bottom middle: UMAP visualizes CSSs in the GB malignant 
cells under "PatientMalignant" subtab. Bottom right: UMAP presents cell type 
annotation in GB patient tumor cells under "Patient" subtab. The visualization also 
incorporates other metadata, such as RNA-Seq-derived CSSs, PDGCLs information, 
SR101 groups, and cell state annotation. 
 

Users can interactively investigate the expression levels of genes within the SR101high 

and SR101low cells, as well as GB patient tumor cells in the UMAPs (Figure 2.22). 
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Figure 2.22 Web tool interface for gene expression visualized in UMAP. a) 
Navigation panels. Top, “GeneInPDGCL” tab allows gene expression level of SR101 
scRNA-Seq data visualization in sub-tabs: “UMAP”, “InSortedGroup”, “InCellState” and 
“Correlation”. Middle: "GeneInPatientMalignant" tab visualizes gene expression levels 
in patient malignant cells in sub-tabs: "UMAP", "InConnectivityGroup," "InCellState," 
and "Correlation." Bottom: "GeneInPatient" tab presents gene expression levels in 
patient tumor scRNA-Seq in sub-tabs: "UMAP" and "InCellType". Right: User control 
panels for gene selection, and filtering cells with/without zero expression. b) 
Visualization examples. Top: UMAPs showcase expression levels of user-selected 
genes in SR101high and SR101low cells. Bottom left: UMAP displays gene expression 
levels in malignant cells. Bottom right: UMAP presents gene expression levels in the 
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patient tumor cells. 
 

Furthermore, this tool facilitates the comparison of gene expression levels between 

SR101high and SR101low groups, as well as across various cell states within the SR101 

scRNA-Seq dataset (Figure 2.23). Additionally, it enables the comparison of gene 

expression levels within the four CSS quartile groups, across different malignant cell 

states, and among various nonmalignant cell types within the GB patient tumor scRNA-

Seq dataset (Figure 2.24). Moreover, users can access the correlations between the 

expression levels of genes and scRNA-Seq-derived or RNA-Seq-derived CSS in the 

SR101 and patient tumor scRNA-Seq dataset (Figure 2.23, Figure 2.24). 

 

 
Figure 2.23 Web tool interface for comparisons of gene expression in the SR101 
scRNA-Seq dataset. a) Box plots depict gene expression in the SR101high and 
SR101low groups, including cells with zero expression (left) and excluding cells with 
zero expression (right). P-values determined by Wilcoxon test. b) Box plots illustrate 
gene expression across cell states, including cells with zero expression (top) and 
excluding cells with zero expression (bottom). P-values derived from Kruskal-Wallis 
test. c) Scatterplots demonstrate correlations between gene expression and CSS: Top, 
scRNA-Seq-derived CSSs, including cells with zero expression. Bottom, scRNA-Seq-
derived CSSs, excluding cells with zero expression. Pearson correlation coefficients 
were computed. 
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Figure 2.24 Web tool interface for comparisons of gene expression in the GB 
patient tumor scRNA-Seq dataset. a-b) Expression levels of user-selected genes in 
patient malignant cells. a) Box plots display gene expression in four CSS quartile 
groups, including cells with zero expression (top left) and excluding cells with zero 
expression (top right). P-values computed using Kruskal-Wallis test. Bar plots display 
mean expression in four CSS quartile groups, including cells with zero expression 
(bottom left) and excluding cells with zero expression (bottom right). b) Scatterplots 
demonstrate correlations between gene expression and CSSs: Top, scRNA-Seq-
derived CSSs, including cells with zero expression. Bottom, scRNA-Seq-derived 
CSSs, excluding cells with zero expression. Pearson correlation coefficients were 
computed. c) Expression levels of user-selected genes in patient tumor scRNA-Seq 
dataset. Box plot represents gene expression across cell types, including zero 
expression cells (left) and without zero expression (right). P-value computed by 
Kruskal-Wallis test. 
 

In this subsection, I introduced a web tool for the exploration of the SR101 and GB 

patient tumor scRNA-Seq datasets. Users can interactively investigate genes within 

two SR101 groups or across different GB cell states/types. 
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2.2 Methods 

2.2.1 Data collection 

2.2.1.1 In-house GB datasets 

• SR101 RNA-Seq dataset: SR101 experiments were conducted following the 

protocols described in Osswald et. al., 2015 and Xie et. al., 2019. In brief, tGFP-

tagged PDGCLs were injected into mouse brains. Subsequently, SR101 was 

administered via intraperitoneal injection in mice. The tumors were dissociated into 

single-cell suspensions, which were then subjected to FACS. The initial sorting 

step involved segregating doublets and non-viable cells from viable cells based 

on Calcein Violet and TO-PROTM-3 staining. Subsequently, human tumor cells 

were distinguished from non-malignant mouse cells based on tGFP intensity. 

Finally, tumor cells with high and low connectivity were segregated according to 

SR101 intensity. The obtained PDGCL cells underwent mRNA extraction using 

the RNeasy Micro Kit. Subsequently, RNA libraries for RNA-Seq were generated 

using the SMARTer Ultra Low Input RNA kit, following the manufacturer's 

guidelines. The resulting libraries were sequenced using an Illumina HiSeq 2000 

sequencer, employing the 50 bp single-end mode. Sequencing was performed by 

the Genomics and Proteomics Core Facility (GPCF) at DKFZ. The sequencing 

reads were aligned to the human reference genome GRCh38 using STAR 

(v.2.5.3a, Dobin et al., 2013). Subsequently, a gene count matrix was generated 

using HTSeq-Counts (Anders, Pyl, and Huber 2015) against the GENCODE v.26 

annotation. Genes that had a total count of less than 10 across all samples were 

excluded from further analysis. Dr. Ruifan Xie (R. X.) from Clinical Cooperation 

Unit (CCU) Neurooncology at DKFZ conducted this experiment. 

• SR101 scRNA-Seq dataset: First, the SR101 experiment was conducted as the 

SR101 RNA-Seq dataset. Then, the FACS-separated highly and lowly connected 

tumor cells underwent the 10X Genomics scRNA-Seq protocol using the 

Chromium Next GEM Single Cell 3’ GEM, Library & Gel Bead Kit v2, following the 

manufacturer's instructions. The generated libraries were subsequently 

sequenced on an Illumina HiSeq 4000 sequencer, utilizing the 150 bp paired-end 

mode. We achieved an approximate yield of 2 x 350 million reads per sample. The 

sequencing process was carried out by the GPCF. Dirk C Hoffmann (D. C. H.) 

from CCU Neurooncology conducted this experiment. 

• 21-sample patient tumor scRNA-seq dataset: A total of 21 frozen tumor 
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specimens were obtained from GB patients who underwent treatment at 

Heidelberg University Hospital. Single nuclei were isolated from these specimens 

and subsequently subjected to the scRNA-Seq. The processing methods was the 

same as that of the SR101 scRNA-Seq dataset. D. C. H conducted this 

experiment. 

• CHI3L1 overexpression RNA-Seq dataset: PDGCL cells overexpressing 

CHI3L1 were generated by utilizing the control of the PGK1 promoter and 

transducing them with lentiviral particles. RNA was extracted using the RNeasy 

Mini Kit. Subsequently, RNA libraries for RNA-seq were prepared using the 

Illumina TruSeq Stranded RNA Library Prep Kit, following the manufacturer's 

protocols. The resulting libraries were then subjected to sequencing on an Illumina 

NovaSeq 6000 sequencer, using the 150 bp paired-end mode. The sequencing 

process was carried out by the GPCF. The sequencing data underwent processing 

at the Omics Data Core Facility (ODCF) at DKFZ, following the pipeline outlined 

in https://github.com/DKFZ-ODCF/RNAseqWorkflow. In brief, alignment of the 

reads against the human genome (1KGRef_PhiX) was conducted using STAR 

(v.2.5.3a, Dobin et al., 2013). Duplicate reads were identified and marked using 

Sambamba (v.0.6.5, Tarasov et al. 2015). For the generation of a gene-count 

matrix, FeatureCounts (Subread v.1.6.5, Liao et al., 2014) was employed. D. C. 

H. conducted this experiment. 

• CHI3L1 overexpression proteomics and phosphoproteomics dataset: 

PDGCL cells overexpressing CHI3L1 underwent label-free mass spectrometry 

quantification. Proteins were digested using Trypsin/Lys-C enzymes. 

Subsequently, a sequential phosphopeptide SMOAC enrichment protocol was 

employed, which involved metal affinity chromatography using High-Select™ TiO2 

in combination with Fe-NTA phosphopeptide enrichment kits. The resulting 

peptide samples were subjected to analysis using nanoflow LC-MS/MS, utilizing a 

Dionex 3000 nanoUHPLC connected to an Orbitrap Exploris mass spectrometer. 

The mass spectrometer operated in data-dependent acquisition mode. The raw 

mass spectrometry data was processed using MaxQuant (v.2.0.1.0, Cox and 

Mann 2008) software. Protein and phosphopeptide identifications were performed 

using the UniProt database UP000000589. FDR < 0.01 were applied at both the 

protein and peptide levels. For further analysis, phosphopeptides with phosphosite 

localization probabilities > 0.75 were selected. In the proteomics dataset, a total 

of 5,022 proteins were retained, with a median of 4,286 proteins obtained per 

sample. In the phosphoproteomics dataset, 12,799 phosphosites were kept, with 

a median of 8,520 phosphosites per sample. Gina Cebulla and Dr. Uwe Warnken 
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from CCU Neurooncology conducted this experiment. 

 

2.2.1.2 Public GB datasets 

• TCGA 230-sample GB datasets (https://www.cancer.gov/tcga): I downloaded the 

normalized gene expression matrix (log2FPKM) derived from RNA-Seq, somatic 

mutation, and CNV information obtained from whole exon sequencing, along with 

metadata including age, gender, and patient survival information for GDC TCGA 

Glioblastoma (146 samples) and Lower Grade Glioma (502 samples) cohorts from 

the UCSC Xena Hub (http://xena.ucsc.edu). I collected somatic mutations results 

from four variant calling pipelines: MuSE, MuTect2, VarScan2, and SomaticSniper. 

I excluded all synonymous variants. I re-classified patients as GB IDH wt if they 

lacked variants in both IDH1 and IDH2 according to these four variant calling 

pipelines and exhibited intact chromosome 1p/19q based on CNV information. A 

total of 230 samples fulfilled these criteria and were subsequently selected for 

further analysis. 

• GBmap harmonized 110-sample GB scRNA-Seq datasets (Ruiz-Moreno et. al., 

2022): I downloaded the gene expression matrix (Counts) derived from scRNA-

Seq of 338,564 cells across 110 GB patients, along with metadata including cell 

annotations through the CELLxGENE data portal 

(https://cellxgene.cziscience.com/collections/999f2a15-3d7e-440b-96ae-

2c806799c08c). 

• GLASS longitudinal 425-sample GB RNA-Seq datasets (Varn et al., 2022, 

https://www.synapse.org/glass): I downloaded the normalized gene expression 

matrix (TPM) derived from RNA-Seq, along with metadata including age, gender, 

and patient survival information for 425 primary and recurrent GB samples from 

the Synapse data portal (https://www.synapse.org/glass). 

• GEPIA 31 tumor types and normal tissues RNA-Seq datasets (Tang Z. et. al., 

2017, http://gepia.cancer-pku.cn): I downloaded the median of normalized gene 

expression level (log2TPM) of CHI3L1 in each tumor type and normal tissue type 

from the GEPIA data portal (http://gepia.cancer-pku.cn), which encompasses 31 

tumor types from TCGA and normal tissue samples from the genotype-tissue 

expression (GTEx) database. 

• GB 93-pair RNA-Seq and proteomics datasets (Wang L.B. et. al., 2021): I 

obtained paired RNA-Seq data (normalized gene expression matrix [log2FPKM]) 

and proteomics data (normalized protein intensity values with log2 transformation) 
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from 93 GB patients from the supplementary data of Wang L.B. et al., 2021. 

 

2.2.2 scRNA-Seq data processing 

I generated the gene expression count matrices from the SR101 scRNA-Seq data 

using Cell Ranger (v.2.1.1, 10X Genomics, Zheng et al., 2017) against the pre-built 

human reference genome (Cell Ranger reference, hg19, v.1.2.0) with the default 

parameters.  

 

For the patient tumor scRNA-Seq data, I generated the gene expression count 

matrices using Cell Ranger (v.3.0.1) against a custom pre-mRNA human reference 

genome created using the mkref function, following the official guidelines (Cell Ranger 

reference, hg19, v.1.2.0, available at https://support.10xgenomics.com/single-cell-

gene-expression/software/pipelines/3.1/advanced/references) with the default 

parameters.  

 

I filtered low-quality cells using the following uniform exclusion criteria: 

 

1) Cells with a number of detected genes fewer than 200 or more than 8,000 were 

excluded. 

2) Cells with a number of counts below 500 or exceeding 80,000 were excluded. 

3) Cells contained more than 10% mitochondrial counts were excluded. 

 

After the uniform exclusion process, I identified sample-wise outlier cells and 

subsequently removed if either the number of genes or counts exceeded three median 

absolute deviations (MADs) above the median, using the isOutliers function within the 

scater package (v.1.10.1, McCarthy et al., 2017). 

 

For each sample, I estimated per-cell doublet scores and per-sample doublet score 

thresholds utilizing the Scrublet tool (v.0.2.1, Wolock et al., 2019) with its default 

parameters. If a doublet score threshold was situated between two peaks of the 

doublet score histogram, I adopted that specific threshold. Following this, I removed 

cells with a doublet score exceeding this threshold. 

 

I further processed the resulting cells per sample using the Seurat package (v.3.1.5, 

Stuart et al., 2019) in the following steps with default parameters: 
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1) The gene expression counts were normalized using the NormalizeData 

function. 

2) 2000 highly variable genes were identified using the FindVariableFeatures 

function. 

3) The variation in the number of counts among cells was regressed out, and the 

resulting residuals were scaled and centered by the ScaleData function. 

4) Dimensionality reduction of the data was performed by principal component 

analysis (PCA) using the RunPCA function. 

5) The number of principal components (PCs) used for further analyses was 

determined using the ElbowPlot function. 

6) Unsupervised clusters were identified using shared nearest neighbor (SNN) 

analysis in the PCA space through the FindNeighbors and FindClusters 

functions. 

7) The data was visualized in UMAP using the RunUMAP function. 

 

The visualization of the SNN clusters in UMAP allowed me to observe the presence of 

clusters that were notably distant from the majority of clusters. These isolated clusters 

were subsequently excluded from the analysis. 

 

To tackle inter-tumor heterogeneity, I performed integration across different 

PDGCLs/patients using the "anchor" integration method through the Seurat package. 

The process involved the following steps: 

 

1) Normalization and feature selection were performed for each PDGCL/patient 

as described above in steps 1-2. 

2) Pairwise "anchors" were identified between PDGCL/patients using the 

FindIntegrationAnchors function. 

3) Data integration was performed based on the identified "anchors" utilizing the 

IntegrateData function. 

4) The integrated data underwent analogous processes as described in above 

steps 3-7, encompassing variance regression, scaling, centering, PCA 

dimensionality reduction, determination of the number of PCs, SNN clustering 

and UMAP visualization. 

 

After the “anchor” integration, I identified an SNN cluster that expressed markers of 

two distinct cell types in the patient tumor scRNA-Seq dataset. Consequently, I 

excluded this cluster. 
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2.2.3 Computational development of connectivity signatures 

Figure 2.1b depictes the schematic representation of the connectivity signature 

development. 

 

For the SR101 scRNA-Seq dataset, I identified DEGs between SR101high and SR101low 

groups using the Seurat package with default parameters, following these steps: 

 

1) DEGs were identified within each PDGCL individually through the FindMarkers 

function. 

2) DEGs with adjusted p-value < 0.05 (after multiple testing correction) from all 

three PDGCLs were combined. 

3) DEGs exhibiting consistent direction of regulation and an absolute log fold-

change ≥ 0.4 in at least two PDGCLs were retained. 

4) DEGs showing the same direction of regulation across all three PDGCLs were 

retained. 

 

For the SR101 RNA-Seq dataset, I identified DEGs between SR101high and SR101low 

groups using the DESeq2 package (v.1.22.2, Love et al., 2014) with default parameters, 

in accordance with the following steps: 

 

1) To ensure consistent DEGs across both PDGCLs, the design formula of the 

DESeqDataSet function included ~ PDGCL + Group. 

2) Genes with a total count lower than 10 across all samples were filtered out. 

3) Differential expression analysis was carried out using the DESeq function. 

4) The log fold changes were shrunken using the apeglm method within the 

lfcShrink function.  

5) DEGs with an adjusted p-value of < 0.05 and an absolute log2 fold-change ≥ 1 

were retained. 

 

2.2.4 Heatmap visualization of connectivity signature 

For the SR101 scRNA-Seq dataset, I aggregated the normalized expression levels of 

the scRNA-Seq-derived connectivity signature in cells from each sample into a 

“pseudo bulk” using the AverageExpression function in Seurat. Subsequently, I scaled 
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and visualized this aggregated data as a heatmap using the ComplexHeatmap 

package (v.2.5.4, Gu et al., 2016). 

 

For the SR101 RNA-Seq dataset, I transformed the expression levels of the RNA-Seq-

derived connectivity signature using the vst function. After this transformation, I used 

the removeBatchEffect function from the limma package (v.3.36.5, Ritchie et al., 2015) 

to mitigate the variability associated with different PDGCLs. Subsequently, I scaled 

and visualized the adjusted expression levels in a heatmap using the 

ComplexHeatmap package. 

 

2.2.5 Enrichment analysis 

I determined the enriched GO terms in the RNA-Seq-derived and scRNA-Seq-derived 

connectivity signatures, and the enriched GO terms across DEGs, DEPs, and DPPs 

resulting from CHI3L1 overexpression, using Metascape (v3.5.20230501, Zhou et al., 

2019). This analysis utilized the built-in database, including GO terms, KEGG pathway 

terms, canonical pathways, hallmark gene sets, TRRUST transcription factors, and 

more. 

 

I identified the enriched kinases within the DEGs, DEPs, and DPPs of CHI3L1 

overexpression datasets, using KEA3 (Kuleshov et al., 2021). This process involved 

utilizing a built-in database that includes STRING, ChengPPI, PTMsigDB, BioGRID, 

prePPI, and so on. 

 

2.2.6 Connectivity signature score (CSS) 

I calculated CSS for single cell/sample using the AddModuleScore function within 

Seurat. This function facilitates the computation of a score for each single cell or 

sample based on a specified gene set. This score is generated by considering the 

average expression levels of the given gene set and subsequently adjusting it by 

subtracting the aggregated expression of control gene sets. The control genes are 

chosen at random from predefined bins, organized according to the average 

expression levels of the genes. 

 

𝐶𝑆𝑆𝑢𝑝   represents a score computed from the upregulated genes in the SR101high 
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samples, while 𝐶𝑆𝑆𝑑𝑜𝑤𝑛 represents a score calculated from the downregulated genes 

in the SR101high samples using the AddModuleScore function. The CSS was calculated 

using the following formular: 

CSS = 𝐶𝑆𝑆𝑢𝑝  −  𝐶𝑆𝑆𝑑𝑜𝑤𝑛 

 

2.2.7 Performance of the CSS-based prediction 

In the SR101 scRNA-Seq dataset, I predicted the SR101 group for each individual cell 

based on the CSS. If the CSS value was less than 0, I predicted the cell as SR101high; 

otherwise, I predicted it as SR101low. To assess the accuracy of these predictions, I 

generated a confusion matrix and various prediction metrics by comparing the number 

of cells predicted by CSS values with the number of cells sorted by FACS according 

to the SR101 staining intensity. 

 

I employed the R package caret (v.6.0-80, Kuhn et al., 2018) to calculate prediction 

metrics such as accuracy, sensitivity, specificity, positive predictive value, and 

negative predictive value. I conducted this assessment for both the scRNA-Seq-

derived and RNA-Seq-derived CSSs. 

 

Additionally, I generated negative controls using scores generated from randomly 

selected gene sets. A total of 100 random gene sets were generated, with each gene 

set containing 71 randomly chosen genes (40 upregulated genes and 31 

downregulated genes, the same size as the scRNA-Seq-derived connectivity 

signature). Similarly, another 100 random gene sets were created, each consisting of 

245 randomly selected genes (57 upregulated genes and 188 downregulated genes, 

the same size as the RNA-Seq-derived connectivity signature). I utilized these gene 

sets to calculate scores and determine the average prediction metrics as part of the 

assessment process. 

 

2.2.8 GB malignant cell state assignment 

I extracted cell state-defining markers from a previously published GB scRNA-Seq 

dataset (Neftel et al., 2019). These markers were utilized to compute cell state 

signature scores for individual cells or samples, using the AddModuleScore function 

within Seurat. Each cell or sample was then assigned to a specific cell state based on 
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the cell state signature score that exhibited the highest value among all calculated cell 

state signature scores.  

 

2.2.9 Ligand-receptor interaction in the SR101 scRNA-Seq dataset 

I performed the inference and visualization of ligand-receptor interaction in the SR101 

scRNA-Seq dataset using the CellChat package (v.1.6.1, Jin et al. 2021) with the built-

in ligand-receptor interaction database. 

 

The steps involved in this process are as follows: 

 

1) Input Data: The normalized expression matrix and cell state annotations for 

both SR101high and SR101low groups. 

2) Ligand-Receptor Identification: Over-expressed ligands or receptors were 

identified using the `identifyOverExpressedGenes` and 

`identifyOverExpressedInteractions` functions. 

3) Expression Smoothing: Gene expression values were smoothed using a 

protein-protein interaction network through the `projectData` function. 

4) Interaction Inference: The `computeCommunProb` function was used to infer 

ligand-receptor interaction probabilities. The `filterCommunication` function 

was then used to retain interactions involving more than 10 cells. 

5) Signaling Pathway Inference: Interaction at the signaling pathway level was 

inferred using the `computeCommunProbPathway` function. 

6) Aggregated Network: The aggregated ligand-receptor interaction network was 

created by summarizing interaction probabilities using the `aggregateNet` 

function. 

7) Merging Objects: The SR101high and SR101low objects were merged using the 

`mergeCellChat` function. The maximum number of interactions was utilized to 

control node size and edge weights in figures. 

8) Comparison Analysis: Various aspects of the comparison analysis between 

SR101high and SR101low groups were visualized, including comparisons of: 

• Total number of interactions and interaction strength. 

• Number of interactions among cell states. 

• Differential outgoing signaling in cell states visualized in a heatmap. 

• Number of interactions in the NOTCH pathway among cell states. 

• Expression levels of ligands and receptors in the NOTCH pathway 
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within each cell state. 

 

2.2.10 RNA velocity in the SR101 scRNA-Seq dataset 

I extracted the pre-mature (unspliced) and mature (spliced) mRNA count matrices 

within the SR101 scRNA-Seq dataset using velocyto (v.0.17.15, La Manno et al. 2018) 

with default settings. Then I processed these count matrices using scVelo with the 

default settings (v.0.2.4, Bergen et al. 2020) which included steps such as data filtering, 

normalization, dimensionality reduction (PCA), nearest neighbor identification, RNA 

velocity estimation, and embedding of RNA velocities as streamlines in the PCA space. 

 

2.2.11 GB cell type annotation 

I annotated cell clusters in the 21-sample GB patient tumor scRNA-Seq dataset with 

seven cell types (oligodendrocyte, macrophage, endothelial cell, pericyte, T cell, 

astrocyte, and malignant cell). This annotation involved the following steps: 

 

1) SNN Graph and Clustering: I constructed a SNN graph in the "anchor" 

integrated 21-sample GB patient tumor dataset using the FindNeighbors 

function in Seurat. This graph was then used to identify 24 unsupervised 

clusters by employing the FindClusters function in Seurat. 

2) Cell Type Marker Collection: I collected cell type markers from the following 

sources: I identified the top 100 markers for malignant cells, macrophages, T-

cells, and oligodendrocytes from a published GB Smart-Seq2 dataset (Neftel 

et al., 2019) using the FindAllMarkers function in Seurat. Additionally, I 

collected 183 astrocyte markers from a healthy brain RNA-seq dataset (from 

the Supplementary Table of Zhang Y. et al., 2016), and I collected the top 100 

markers for endothelial cells and pericytes from a brain mural cell RNA-seq 

dataset (from the Supplementary Table of He et al., 2016). 

3) Cell Type Score Calculation: I calculated cell type scores for each cell based 

on the respective cell type markers using the AddModuleScore function in 

Seurat. 

4) Cell Type Assignment to Clusters: I assigned cell types to cell clusters based 

on the MADs of cell type scores. Seven clusters were assigned to the five non-

malignant cell types, namely oligodendrocytes, macrophages, endothelial cells, 

pericytes, and T cells (cluster 5 as oligodendrocytes, cluster 8, 9, and 23 as 
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macrophages, cluster 17 as endothelial cells, cluster 19 as T-cells, and cluster 

22 as pericytes). These clusters exhibited high scores for their corresponding 

non-malignant cell types and low scores for malignant cells. 

5) CNV Analysis and Validation: I estimated CNV in cells as a validation step for 

cell type assignment. Five non-malignant cell types and 17 unassigned clusters 

were downsampled to 500 cells per cluster and subjected to infercnv (v.1.2.1, 

Tickle et al., 2019) with the settings (cutoff = 0.1, cluster_by_groups = TRUE, 

denoise = TRUE, HMM = TRUE). Among them, 16 clusters exhibited significant 

CNVs in chr7 and chr10 along with higher malignant scores, leading to their 

annotation as malignant cells. Additionally, cluster 21, which showed no CNVs 

and the highest median of astrocyte scores, was annotated as astrocytes. 

6) Cell Type Markers Identification: I identified the top 50 markers for each cell 

type in the GB patient tumor scRNA-Seq dataset using the FindAllMarkers 

function in Seurat. 

 

2.2.12 Two-dimensional visualization of cells according to their cell state 

Similar to Neftel et al., 2019, I visualized the single cells in a two-dimensional (2D) plot 

based on six cell state signature scores ( 𝑆𝐴𝐶 , 𝑆𝑀𝐸𝑆1, 𝑆𝑀𝐸𝑆2, 𝑆𝑂𝑃𝐶 , 𝑆𝑁𝑃𝐶1, 𝑆𝑁𝑃𝐶2 ). I 

employed the subsequent formula to calculate the X and Y coordinates for a given cell 

in the 2D plot: 

 

𝑌 = 𝑚𝑎𝑥(𝑆𝐴𝐶 , 𝑆𝑀𝐸𝑆1, 𝑆𝑀𝐸𝑆2)  − 𝑚𝑎𝑥(𝑆𝑂𝑃𝐶 , 𝑆𝑁𝑃𝐶1, 𝑆𝑁𝑃𝐶2)  

𝑖𝑓 𝑌 > 0, 𝑡ℎ𝑒𝑛:  𝑋 =  𝑆𝐴𝐶 − 𝑚𝑎𝑥( 𝑆𝑀𝐸𝑆1, 𝑆𝑀𝐸𝑆2)  

𝑖𝑓 𝑌 ≤ 0, 𝑡ℎ𝑒𝑛:  𝑋 =  𝑆𝑂𝑃𝐶 − 𝑚𝑎𝑥( 𝑆𝑁𝑃𝐶1, 𝑆𝑁𝑃𝐶2)  

 

As a result, cells characterized by MES1 and MES2 cell states occupy the top-left 

corner of the 2D plot; the AC cell state occupies the top-right corner; NPC1 and NPC2 

states are located in the bottom-left corner, while the OPC state resides in the bottom-

right corner. 

 

2.2.13 GB expression subtype assignment 

I assigned three expression subtypes (MS, CL, and PN) to the TCGA GB RNA-Seq 

datasets using single-sample Gene Set Enrichment Analysis (ssGSEA) as described 
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by Wang Q. et al. in 2017. This classification involved the following steps: 

 

1) Input Data: The log2-transformed FPKM matrices derived from RNA-seq data. 

2) Permutation: To generate null distributions for each gene set enrichment score, 

100,000 permutations were performed. 

3) Subtype Assignment: The subtype assignment was determined by selecting 

the subtype associated with the lowest empirical p-value. 

 

2.2.14 Gene mutation and CSS in the TCGA GB cohort 

I retrieved the somatic mutation data in the TCGA GB cohort from UCSC Xena 

database (as detailed in subsection 2.2.1.2), which included information from four 

variant calling pipelines (MuSE, MuTect2, VarScan2, and SomaticSniper). Excluding 

all synonymous variants, a total of 27 genes that exhibited variants in at least 5% of 

patients were chosen for the analysis. 

 

For each of these 27 genes, I conducted Mann-Whitney U test to compare the CSS 

between wt patients and patients with mutation, using wilcox.test function within the 

stats package. To address the issue of multiple testing, I computed False Discovery 

Rate (FDR) using the p.adjust function. 

 

2.2.15 Cell type/state deconvolution in the TCGA GB RNA-Seq dataset 

I performed cell type/state deconvolution utilizing the CIBERSORTx tool (Newman et 

al., 2019, https://cibersortx.stanford.edu/) against a custom signature matrix. 

Specifically, I used the gene count matrix from randomly selected 50 cells of each cell 

type/state (including endothelial cells, pericytes, T cells, oligodendrocytes, astrocytes, 

macrophages, and malignant AC, MES1, MES2, OPC, NPC1, NPC2, G1_S, and 

G2_M cell states) within the 21-sample GB patient tumor scRNA-Seq dataset for 

CIBERSORTx to generate the signature matrix. Subsequently, I imputed cell fractions 

in the bulk RNA-Seq data based on this signature matrix using CIBERSORTx. 

 

I employed an alternative approach for cell type/state deconvolution in the bulk RNA-

Seq using a GB-specific deconvolution tool called GBMDeconvoluteR (v.1.5.0, Ajaib 

et al., 2023, https://gbmdeconvoluter.leeds.ac.uk/). This tool integrated GB cell 

type/state markers from multiple GB scRNA-Seq datasets to estimate abundance 
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scores for various cell types and states within each sample. The gene expression 

matrix (FPKM) served as input for GBMDeconvoluteR, resulting in the computation of 

abundance scores for cell populations, such as monocytes, macrophages, mast cells, 

dendritic cells, natural killer cells, T cells, B cells, microglia, and malignant AC, MES, 

NPC, and OPC cell states.  

 

2.2.16 GB patient survival analysis 

I classified the GB patients into three distinct groups based on quartiles of their CSS 

values or CHI3L1 expression levels. The categorization was as follows: 

 

• Q1: samples with the lowest 25% values 

• Q2-Q3: samples with values ranging from 25% to 75% 

• Q4: samples with the highest 75% values 

 

I conducted Kaplan-Meier survival analysis to assess the overall survival or surgical 

interval of patients within these three CSS or CHI3L1 groups. This analysis involved 

utilizing the survfit function from the survival package (v.3.1-12, Therneau, 2020) and 

visualizing the results using the ggsurvplot function from the survminer package 

(v.0.4.2, Kassambara and Kosinski, 2018). 

 

To explore the potential association between the continuous CSS values or CHI3L1 

expression levels and the overall survival or surgical interval of GB patients, I 

performed Cox proportional hazards regression (Coxph) survival analysis. This 

analysis employed the coxph function within the survival package. In the Coxph model, 

multiple covariates were adjusted, including age, gender, and expression subtype.  

 

2.2.17 Differential gene expression analysis in the CHI3L1 OE RNA-Seq dataset 

I determined the DEGs between CHI3L1 OE and control samples using the DESeq2 

package. The procedure for identifying these DEGs was consistent with the methods 

outlined in the development of the connectivity signature from SR101 RNA-Seq 

dataset, as detailed in subsection 2.2.3. 
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2.2.18 Differential protein expression and phosphorylation analysis in the 

CHI3L1 OE proteomics dataset 

I normalized the label-free quantification proteomics and phosphorproteomics data 

using the 'vsn' method, using the DEP package (v.1.14.0, Zhang X. et al. 2018).  

 

The distribution of intensities and cumulative fraction of proteins in both proteomics 

and phosphoproteomics datasets suggested that proteins with missing values had 

lower intensities and might be under the detection threshold. To address these missing 

values, I employed the deterministic minimum (MinDet) method in the DEP package 

for missing value imputation. This approach involved substituting each missing value 

with the smallest detectable intensity (i.e., the 0.01 quantile) observed within each 

sample. 

 

I identified DPPs between CHI3L1 OE and control samples using the test_diff function 

in the DEP package, applying a threshold of adjusted p value < 0.05 and an absolute 

log2 fold change > 1.5. 

 

Given the substantial variations among PDGCLs within the proteomics dataset, I 

further mitigated these variations using the removeBatchEffect function from the limma 

package to the normalized and imputed matrix. Subsequently, I fitted a linear model to 

the corrected data through the lmFit function, and computed empirical Bayes statistics 

using the eBayes function. DEPs with adjusted p value < 0.05 and an absolute log2 

fold change > 0.5 were kept. 

 

2.2.19 Implementation of a web tool for data visualization 

I developed a web tool using the Shiny framework (Chang et al., 2020) accessible at 

https://connectivity-glioma.dkfz.de/. The web tool incorporates metadata and 

normalized gene expression matrices from SR101 and patient tumor scRNA-Seq 

datasets. UMAPs were created using ggplot2 package. Boxplots with statistical tests 

and scatterplots with correlation coefficients were generated using the ggpubr package. 

 

2.3 Discussion and Conclusions 

Recently, researchers have discovered that half of glioma cells are interconnected 
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through ultra-long membrane protrusions known as tumor microtubes (TMs) (Osswald 

et al., 2015; Weil et al., 2017; Venkataramani et al., 2019; Xie et al., 2021). These cells 

form a cell-to-cell network that exhibits self-repair capabilities, resistance to surgical 

lesions, chemotherapy, and radiotherapy. Additionally, this network facilitates tumor 

cell invasion, proliferation, and communication (Osswald et al., 2015; Weil et al., 2017). 

This phenomenon holds significant clinical implications, as targeting the TM-connected 

tumor cell network could have therapeutic potential (Osswald et al., 2015; Winkler and 

Wick, 2018). However, despite its importance, there is a lack of comprehensive 

molecular understanding of this network and a quantification method for assessing cell 

connectivity within it. 

 

2.3.1 The bulk and single-cell RNA-Seq-derived connectivity signatures 

I conducted a comprehensive characterization of TM-connected glioblastoma cells, 

employing both bulk and single-cell transcriptome data analysis. From the SR101 

scRNA-Seq data, I established a 71-gene connectivity signature. Additionally, utilizing 

SR101 bulk RNA-Seq data, I derived another 245-gene signature. These signatures 

capture the transcriptomic differences between TM-connected and TM-unconnected 

tumor cells. 

 

Within these two signatures, 13 genes were found to overlap, constituting 5% of the 

RNA-Seq-derived signature and 18% of the scRNA-Seq-derived signature. This limited 

overlap likely arises from differences between bulk and single-cell sequencing 

methodologies. In scRNA-Seq, gene expression is quantified in individual cells, while 

bulk RNA-Seq contains a mixed signal from different cell types and averages 

expression across them. 

 

Comparing fold changes in gene expression between highly connected and lowly 

connected samples from both scRNA-Seq and RNA-Seq data revealed low correlation 

across all genes. Since scRNA-Seq often experiences a high dropout rate and 

introduces greater variability, I excluded genes with a 95% dropout rate in the scRNA-

Seq dataset and found that the correlation increased to a moderate level. Additionally, 

removing insignificantly regulated genes further enhanced the correlation. Notably, the 

13 overlapping connectivity genes exhibited a strong correlation of fold changes. 

Moreover, the enriched pathways within the two connectivity signatures displayed 

remarkable similarity. 
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I introduced a score termed "CSS" (Connectivity Signature Score), which representing 

the relative expression of genes within the connectivity signature. The CSS based on 

the scRNA-Seq-derived signature, displayed a high correlation with RNA-Seq-derived 

CSS not only within the scRNA-Seq dataset but also in RNA-Seq dataset. These 

outcomes collectively indicate a robust consistency in connectivity signatures, even 

when derived from two distinct transcriptome sequencing techniques.  

 

2.3.2 Connectivity and cell states 

One notable advantage of scRNA-Seq is its ability to explore intra-tumor heterogeneity 

and characterize distinct cell states within tumors. A recent study revealed the 

presence of several diverse cell states within glioblastoma (Neftel et al., 2019). 

Therefore, I investigated the relationship between connectivity and these cell states. 

 

I observed a noteworthy difference in cell state composition between highly connected 

(SR101high) and lowly connected (SR101low) samples. Notably, among the highly 

connected samples, there was a prevalence of AC and MES cell states. In contrast, 

the NPC cell state took precedence in the lowly connected samples. Interestingly, 

nearly 50% of the connectivity signature genes overlapped with the markers of specific 

cell states identified in Neftel et al., 2019. This overlap further emphasizes the 

interrelationship between connectivity and cell states. 

 

In adidition, I applied RNA velocity to the SR101 scRNA-Seq dataset and found the 

highly connected and lowly connected cells underwent different possibilities of cell 

state transitions. Notably, the AC cell state represented the endpoint of cell state 

transitions among highly connected cells, while no specific cell state became the 

endpoint for lowly connected cells. 

 

I also found evidence from the literature showing a relationship between cell 

connectivity and astrocytes and mesenchymal cells: 

 

• Astrocytes, star-like glial cells in the brain, form intricate interconnected 

networks (Deemyad et al., 2018; Fields and Stevens-Graham, 2002; Mederos 

et al., 2018; Sul et al., 2004). Notably, astrocytes are abundant in gap junctions 

and express connexin Cx43 (Mederos et al., 2018). Within glioblastoma, TM 
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networks are linked through Cx43 gap junctions, contributing to their 

connectivity (Osswald et al., 2015). 

• Mesenchymal cells, star-like cells, originate from the mesoderm within the head 

(Fish and Schneider, 2014). Mesenchymal stem cells (MSCs) can undergo 

transdifferentiation, acquiring neuron-like characteristics (Chu et al., 2006; 

Dilger et al., 2020). MSCs exhibit robust expression of Cx43, while this 

expression diminishes as the cells differentiate (though Cx43 still maintains a 

stronger presence compared to other connexins) (Dilger et al., 2020). 

Remarkably, bone marrow MSC transplantation enhances GAP43 expression 

and mitigates neurological deficits in cases of intracerebral hemorrhage (Cui et 

al., 2017). The differentiation process of MSCs influences microtubules and 

intermediate filaments (Saidova and Vorobjev, 2019), and both Cx43 and 

GAP43 play pivotal roles in the context of TM networks (Osswald et al., 2015). 

 

Together, these results suggest an association between connectivity and AC and MES 

cell states. 

 

2.3.3 CSS and cell state 

While calculating CSS in the SR101 PDGCL-xenograft scRNA-Seq dataset, I observed 

higher CSS values in AC and MES cell states compared to NPC and OPC cell states. 

These consistent findings were also found in both the 21-sample GB patient tumor 

scRNA-Seq dataset and the GBmap 110-sample GB patient tumor scRNA-Seq 

dataset. This also demonstrates the effectiveness of the CSS in both xenograft models 

and GB patient tumors datasets. 

 

Considering the abundance of bulk RNA-Seq datasets, which are often more readily 

accessible, I investigated the relationships between CSS and cell states in the TCGA 

230-sample RNA-Seq dataset. This analysis involved the use of two bulk 

deconvolution methods—CIBERSORTx and GBDeconvoluteR. Encouragingly, I 

observed a positive correlation between CSS and the proportion of MES in samples, 

as well as a negative correlation between CSS and the proportion of NPC. 

 

The consistent application of the CSS across multiple GB patient tumor scRNA-Seq 

and RNA-Seq datasets underscores the robustness and reliability of the connectivity 

signature. 
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2.3.4 CSS and expression subtype 

Researchers have dedicated considerable efforts to classifying GB into several 

expression subtypes (Phillips et al., 2006; Verhaak et al., 2010; Wang Q. et al., 2017). 

Within the TCGA GB RNA-Seq dataset, three distinct expression subtypes 

(mesenchymal, classical, and proneural) were identified (Wang Q. et al., 2017). 

Therefore, I also investigated the relationship between CSS and these expression 

subtypes. 

 

I found that mesenchymal samples exhibited the highest CSS values, classical 

samples showed medium CSS values, and proneural samples displayed the lowest 

CSS values. 

 

The mesenchymal subtype, which is characterized by NF1 mutation and increased 

CHI3L1 expression (Behnan et al., 2019). In accordance with this, I have detected 

NF1-mutated GB tumors correlated with lower CSS values in the TCGA RNA-Seq 

dataset. In previous sections, CHI3L1 was identified as a key player in the connectivity 

signature. 

 

The proneural subtype is characterized by TP53 mutation, increased OLIG2 

expression, and NOTCH activation (Behnan et al., 2019). Notably, I observed that 

TP53-mutated GB tumors correlated with lower CSS values in the TCGA RNA-Seq 

dataset. OLIG2 was identified as a downregulated gene in the connectivity signature. 

Interestingly, when applying ligand-receptor cross-talk assessment in the SR101 

scRNA-Seq dataset, I found a notable activation of the NOTCH signaling pathway in 

the lowly connected cells. A previous study also found that the NOTCH1 pathway is 

inhibited in tumor cells with TM connections (Jung et al., 2021). 

 

In summary, these findings indicate a positive correlation between CSS and the 

mesenchymal subtype, along with a negative correlation between CSS and the 

proneural subtype. 

 

2.3.5 CSS and patient survival 

The impact of TM-connectivity on GB patient survival was not yet completely 
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addressed. In the analysis of TCGA GB cohort, I showed the correlation between high 

CSS levels and unfavorable patient survival. This relationship held true even after 

accounting for several confounding factors, including age, gender, and expression 

subtypes. Encouragingly, I obtained consistent results from the GLASS longitudinal 

cohort, which revealed that elevated CSS levels were linked to both reduced overall 

survival and shorter intervals until subsequent relapses in both primary and recurrent 

tumor samples.  

 

These findings indicate that CSS could serve as a valuable prognostic factor for GB.  

 

2.3.6 CHI3L1 as a novel marker for connectivity 

The scRNA-Seq-derived connectivity signature contains several previously recognized 

TM-connectivity markers, including GAP43 (Osswald et al., 2015; Weil et al., 2017; 

Venkataramani et al., 2022), DLL1 (Jung et al., 2021), DLL3 (Jung et al., 2021), and 

APOE (Venkataramani et al., 2019). Additionally, the connectivity signature 

encompasses other genes with unexplored associations with TM-connectivity, thereby 

unveiling new opportunities for the identification of novel markers and potential 

therapeutic targets for connectivity. 

 

In this study, CHI3L1 was the most significantly upregulated gene in both scRNA-Seq-

derived and RNA-Seq-derived connectivity signatures. Notably, CHI3L1 displayed 

upregulation consistently in highly connected cells across various cell states. 

Furthermore, the expression level of CHI3L1 demonstrated the strongest correlation 

with the CSS compared to other genes within the connectivity signature. 

 

To gain deeper insights into the functional role of CHI3L1 in connectivity, I analyzed 

the RNA-Seq, proteomics, and phosphoproteomics datasets of CHI3L1. I found the 

expression of CHI3L1 at both the RNA and protein levels exhibited a strong positive 

correlation. The overexpression of CHI3L1 led to the upregulation of multiple genes 

within the connectivity signature, as well as the upregulation of AC markers and the 

downregulation of NPC1 markers. These findings were observed at both the RNA and 

protein levels. Moreover, the overexpression of CHI3L1 prompted an increase in the 

CSS and the AC signature score, while concurrently causing a decrease in the NPC1 

score. Remarkably, the overexpression of CHI3L1 was associated with higher 

phosphorylation level of GAP43, a marker of TM-connectivity.  
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Furthermore, the pathway enrichment analyses conducted on RNA-Seq, proteomics, 

and phosphoproteomics datasets of CHI3L1 overexpression revealed associations 

with neuron projection and cell junction, as well as MAPK and NFKB pathways. 

Interestingly, these findings are in concordance with the characteristics exhibited by 

highly connected GB pacemaker cells as elucidated by the work of Hausmann et al. in 

2023. 

 

In previous studies, although not specifically described in the context of GB, CHI3L1 

has been demonstrated to play a role in connectivity in other cancer types. For instance, 

the knockdown of CHI3L1 suppresses cell migration and tube formation in endothelial 

cells (Kawada et al., 2012). Overexpression of CHI3L1 contributes to the invasion, 

migration, and growth of liver tumor cells, impacting cell-cell adhesion and adherent 

junction pathways (Qiu et al., 2018). In a breast tumorigenic epithelial cell line, CHI3L1 

regulates migration, invasion, angiogenesis, and capillary-like network formation 

(Morera et al., 2019). 

 

In summary, these findings indicate that CHI3L1 may serve as a novel marker for 

connectivity. 

 

2.3.7 CHI3L1 as a prognostic marker for GB 

In our patient tumor scRNA-Seq dataset, CHI3L1 was demonstrated high expression 

in GB malignant cells compared to nonmalignant cells. Previous study has shown 

higher CHI3L1 expression levels in gliomas compared to normal brain tissue (Ku et al. 

2011). 

 

Moreover, I found that high levels of CHI3L1 expression are linked to unfavorable 

survival outcomes in both the TCGA and GLASS GB datasets, even after adjusting for 

several covariates, including age, gender, and expression subtypes. This observation 

is consistent with previous findings that CHI3L1 expression is associated with patient 

survival in both low-grade glioma and GB (Steponaitis et al., 2016). Furthermore, 

CHI3L1 is known to regulate glioma tumor cell invasion, growth, and responses to anti-

cancer drugs (Ku et al., 2011). CHI3L1 also plays a role in promoting angiogenesis 

and tumor cell proliferation in GB (Zhao et al., 2020). 
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These findings indicate that CHI3L1 could serve as a prognostic marker for GB. 

 

In conclusion, this study characterizes highly connected GB cells using both scRNA-

Seq and RNA-Seq. The established connectivity signature and CSS robustly illuminate 

the associations between connectivity and cell states, expression subtypes, gene 

mutations, and patient survival across various scRNA-Seq and RNA-Seq GB datasets. 

Furthermore, this study highlights the potential of the connectivity signature gene 

CHI3L1 as a novel marker for connectivity and a valuable prognostic marker for GB. 

 

2.4 Outlook 

In this study, I explored the transcriptome landscape of highly connected glioblastoma 

cell populations through scRNA-Seq and RNA-Seq. There are several facets that 

worth further exploration in future studies: 

 

• The uncovered association between highly connected glioblastoma cells and 

tumor cell states prompts further investigation into the interactions of these 

highly connected tumor cells with the nonmalignant cells in the tumor 

microenvironment. 

• The developed connectivity signature was evaluated across various GB 

scRNA-Seq and RNA-Seq datasets. The emerging in situ spatial single-cell 

genomics techniques that grant direct access to the transcriptome of TM-

connected cells in their native environment could offer valuable insights. 

• The demonstrated correlation between the connectivity signature and patient 

survival points to the potential use of the connectivity signature score as a cell 

connectivity indicator in clinical studies focused on disconnection treatments in 

GB patients. 

• The identification of the connectivity signature gene CHI3L1 as a robust marker 

for connectivity and a valuable prognostic marker for glioblastoma suggests the 

need for further investigation into the functional mechanism by which CHI3L1 

drives tumor microtube formation and shapes the cell connectivity network. 

Evaluating the potential of CHI3L1 in GB clinical studies also warrants further 

attention. 
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3. Interactive explorer of single cell cluster similarity 

In heterogeneous scRNA-Seq datasets, comparing cell clusters across donors, 

experimental conditions, or sequencing technologies has remained a significant 

challenge. I introduce the interactive explorer of single cell cluster similarity (ieCS), an 

R package featuring a user-friendly graphical interface. ieCS is designed to address 

this challenge by applying a novel similarity metric and three methods to identify 

superclusters. These superclusters encompass cell clusters with similar behaviors, 

such as cell types, across heterogeneous datasets. 

 

This section elaborates on the motivation behind the development of ieCS, describes 

the design and implementation of the tool, presents the outcomes of applying the tool 

to a demonstration dataset, and discusses the evaluations of the obtained results. 

 

Contributions 

Ling Hai developed, demonstrated and evaluated ieCS. The text was written by Ling 

Hai. It has been proofread and edited by ChatGPT. 

 

3.1 Motivation 

To illustrate the motivation behind the development of ieCS, I conducted scRNA-Seq 

standard analysis using a dataset encompassing 13,999 peripheral blood 

mononuclear cells (PBMCs) subjected to two distinct experimental conditions: 

interferon-beta (IFNB) stimulated and control conditions (Kang et al., 2018).  

 

The standard analysis of scRNA-Seq data, performed using Seurat (Stuart et al., 2019, 

https://satijalab.org/seurat/articles/pbmc3k_tutorial), involved several steps: raw count 

data normalization, selecting highly variable genes as features, scaling the data, 

dimension reduction, unsupervised cluster identification, and UMAP-based data 

visualization. However, the resultant UMAPs did not exhibit coherent clustering of 

PBMCs from different experimental conditions (Figure 3.1a). Despite some cell 

clusters sharing the same cell type annotation (cell type annotation from Kang et al., 

2018), they failed to cluster together (Figure 3.1b). These results are similar with the 

observations in the original paper (Figure 3a of Kang et al., 2018). 

 

To address these condition-induced discrepancies, I separated and independently 
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analyzed the data for each condition (Figure 3.1c-f). This led to UMAPs with cells 

organized by cell types (cell type annotations got from Kang et al., 2018, Figure 3.1c, 

e). Subsequent unsupervised SNN clustering identified distinct cell clusters (Figure 

3.1d, f). In total, there are 26 cell clusters across both conditions. I renamed the cell 

clusters based on the majority of cell type annotations for cells within each cluster 

(Table 7).  

 

To link cell clusters of the same cell type across different conditions, I developed ieCS. 
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Figure 3.1 UMAP visualization of the demonstration scRNA-Seq dataset. a-b) 
Peripheral blood mononuclear cells (PBMCs) dataset (Kang et al., 2018). a) Colored 
by experimental conditions - STIM: interferon-beta (IFNB) stimulated; CTRL: control. 
b) Colored by cell type annotation. c-d) PBMCs under control condition. c) Colored by 
cell types. d) Colored by unsupervised clusters. e-f) PBMCs under IFNB stimulated 
condition. e) Colored by cell types. f) Colored by unsupervised clusters. Figures were 
adapted from Hai et al., in preparation. 
 

Table 7 The cell types and cell clusters in demo dataset. Cell type labels were 
included in the demo dataset. The name of cell clusters was determined based on the 
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majority of cell type annotations for cells within each cluster. 
 

 

 

3.2 Design and Implementation 

3.2.1 ieCS package  

I developed ieCS using R language (R Core Team, 2018). The graphical user interface 

(GUI) of ieCS was built upon the Shiny framework (Chang et al., 2020). 

 

Various functions in ieCS are based on a range of R packages, including: ape (Paradis 

and Schliep, 2018), collapsibleTree (Khan, 2018), DT (Xie et al., 2019), factoextra 

(Kassambara and Mundt, 2019), ggplot2 (Wickham, 2016), ggraph (Pedersen, 2019a), 

grid (R Core Team, 2018), gridExtra (Auguie, 2017), igraph (Csardi and Nepusz, 2006), 

pheatmap (Kolde, 2019), plotly (Sievert, 2020), plyr (Wickham, 2011), RColorBrewer 

(Neuwirth, 2014), stats (R Core Team, 2018), tidygraph (Pedersen, 2019b), methods 

(R Core Team, 2018), cluster (Maechler et al., 2021), colorspace (Zeileis et al., 2009), 
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dendextend (Galili, 2015), and ggpubr (Kassambara, 2020). 

 

The source codes of ieCS are freely available on GitHub at https://github.com/L-

Hai/ieCS/. The tool is provided as an R package, which simplifies installation and 

launch: 

devtools::install_github("L-Hai/ieCS") 

ieCS::run() 

 

The workflow of ieCS is depicted in Figure 3.2. ieCS enables users to upload input files 

via the GUI. Subsequently, ieCS computes pairwise similarity scores among cell 

clusters and discerns superclusters within and between conditions. ieCS offers three 

methods (hierarchical clustering, network partitioning, and tree aggregation) to identify 

superclusters. Users could employ these methods in separate GUI tabs. Each tab 

allows users to select different parameters, facilitating interactive exploration of 

superclusters at varying degrees of similarity. In instances where markers for reference 

cell types are available, ieCS determins similarity scores between cell clusters and 

reference cell types. These scores could then aid in annotating the identified 

superclusters.  

 

 

Figure 3.2 Workflow of ieCS. Progressing from left to right, the diagram portrays the 
sequence: Analyzing single datasets, identifying markers of cell clusters, providing to 
ieCS via ShinyApp's GUI as input. ieCS subsequently quantifies cell cluster similarity 
and identifies superclusters using three methods (hierarchical clustering, network 
partitioning, tree aggregation). Finally, ieCS visualizes superclusters using user-
provided cell coordinates. Figures were adapted from Hai et al., in preparation. 

 

The detailed description of the ieCS GUI, similarity score, three supercluster 

identification methods, and visualization will be provided in the following subsections. 
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3.2.2 ieCS GUI  

The GUI of ieCS comprises six tabs: 

 

• UploadData (Figure 3.3): This tab allows users to upload required files (Table 8) 

to perform similarity quantification between cell clusters. 

• CSHierClust (Figure 3.4): In this tab, users can explore superclusters identified 

through global hierarchical clustering (GHC). 

• CSHierClustDirect (Figure 3.5): This tab facilitates the exploration of 

superclusters identified through direct hierarchical clustering (DHC). 

• CSNetwork (Figure 3.6): This tab is dedicated to exploring superclusters 

identified through network partitioning. 

• CSTree (Figure 3.7): Users can explore superclusters identified through tree 

aggregation in this tab. 

• CellEmbeddingPlot (Figure 3.8): Here, users can upload metadata (Table 9) and 

cell embedding files (Table 10) and visualize cells of superclusters in the cell 

embedding plots. 

 

The details of similarity quantification and supercluster identification methods are 

presented in the following subsections. 

 

 

Figure 3.3 UploadData tab for input data. Within the UploadData tab, users upload 
input files in CSV format to ieCS. Upon clicking “Submit”, users configure column 
names in the files (Table 8), informing ieCS about marker order (these markers can be 
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ranked according to either fold change or p-value), markers, and cell clusters. 
Following configurations, clicking “Run” triggers ieCS to display the inputted details 
and initiate analysis. An option to upload cell type markers files as references for cell 
type annotation is available. 
 

Table 8 Input example of marker file for ieCS. The marker file required the distinct 
markers of cell clusters, order of markers, cell cluster information. If a user wishes to 
supply a cell type reference for automated supercluster annotation, the input files 
required will adhere to the same format as this table. 
 

Order (FoldChange) Cell cluster Marker 

1.763792269 CTRL_0 S100A8 

1.501863697 CTRL_0 S100A9 

1.336291325 CTRL_0 CD14 

1.477777015 CTRL_1 SELL 

1.37907061 CTRL_1 GIMAP7 

1.323339417 CTRL_1 LTB 

1.878839211 STIM_1 CCL4 

1.847322454 STIM_1 CCL3 

1.702559738 STIM_1 SOD2 

 

 

 

Figure 3.4 CSHierClust tab for global hierarchical clustering (GHC). Users can 
select various modes to calculate similarity scores between cell clusters, as detailed 
in subsection 3.2.3. They can then interactively identify superclusters using the GHC 
method in the subtabs: Heatmap, which displays a heatmap of similarity scores, and 
HierarchicalClustering_Global, where users can choose the optimal or a custom 
number of superclusters. 
 



87 
 

 

Figure 3.5 CSHierClustDirect tab for direct hierarchical clustering (DHC). Users 
can select various modes to calculate similarity scores between cell clusters, as 
detailed in subsection 3.2.3. They can then interactively identify superclusters using 
the DHC method in the subtab HierarchicalClustering_Direct, where users can choose 
the optimal or a custom number of superclusters. 
 

 

Figure 3.6 CSNetwork tab for network partitioning. In the left panel, users can select 
different cutoff values (minimum similarity scores) to generate a network of cell clusters. 
In the right panel, users can choose from various layouts to visualize the network of 
cell clusters. If a user has provided a cell type reference, they can opt to display the 
network showing both cell clusters and the reference. 
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Figure 3.7 CSTree tab for tree aggregation. In the left panel, users can select 
different cutoff values (minimum similarity scores) to generate a tree of cell clusters. In 
the right panel, users can choose from various layouts to visualize the tree of cell 
clusters. If a user has provided a cell type reference, they can opt to display the tree 
showing both cell clusters and the reference. 
 

 
Figure 3.8 CellEmbeddingPlot tab for cell visualization. In the left panel, users can 
upload a cell coordination file (Table 9) and cell information (Table 10) in CSV format 
by clicking the "Submit" button. In the right panel, cluster information and hover 
annotations can be selected from columns within the cell information file. It is possible 
to color cells based on superclusters derived from the three supercluster identification 
methods, either with or without cell type markers. Once the configuration is set, users 
can generate the cell embedding plot by clicking the "Plot" button. The hover 
annotations for selected cells will be displayed upon mouse interaction. 
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Table 9 Input example of cell coordination for ieCS. 

 UMAP_1 UMAP_2 

AAACATACATTTCC.1 6.440331 7.502754 

AAACATACCAGAAA.1 4.111667 8.648509 

AAACATACCTCGCT.1 6.241261 8.087474 

AAACATACCTGGTA.1 1.744034 3.217051 

AAACATACGATGAA.1 -9.71896 1.293408 

AAACATACGGCATT.1 5.879172 10.17724 

AAACATACTGCGTA.1 -7.08594 1.232497 

AAACATACTGCTGA.1 -10.1493 -0.05283 

 

Table 10 Input example of cell information for ieCS. 

  Condition Annotation 
Cell 
cluster 

AAACATACATTTCC.1 IMMUNE_CTRL CD14 Mono CTRL_0 

AAACATACCAGAAA.1 IMMUNE_CTRL CD14 Mono CTRL_2 

AAACATACCTCGCT.1 IMMUNE_CTRL CD14 Mono CTRL_0 

AAACATACCTGGTA.1 IMMUNE_CTRL pDC CTRL_12 

AAACATACGATGAA.1 IMMUNE_CTRL CD4 Memory T CTRL_3 

AAACATACGGCATT.1 IMMUNE_CTRL CD14 Mono CTRL_0 

AAACATACTGCGTA.1 IMMUNE_CTRL T activated CTRL_7 

AAACATACTGCTGA.1 IMMUNE_CTRL CD4 Naive T CTRL_1 

 

3.2.3 Similarity score 

I introduce the “similarity score”, an innovative metric for quantifying the similarity 

between two cell clusters. This score is determined by considering both the count of 

shared markers and the ranks of these shared markers within the two cell clusters. If 

two cell clusters exhibit numerous markers in common, especially with higher ranks, 

the resultant similarity score will be elevated, indicating greater similarity between 

these clusters.  

 

The similarity score is calculated using the following equation: 

𝑆𝑖𝑗 = ∑
50

𝑅𝑖𝑔𝑘
+ 𝑅𝑗𝑔𝑘

𝑛

𝑘=1

 

In this equation, 𝑆𝑖𝑗 denotes the similarity score between cell clusters 𝑖 and 𝑗. 𝑅𝑖𝑔𝑘
 and 

𝑅𝑖𝑔𝑘
 correspond to the ranks of overlapping marker 𝑔𝑘  within clusters 𝑖  and 𝑗 , 

respectively.  

 

The ranks of a marker undergo a reciprocal transformation, assigning a higher value 
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to the top-ranked marker (indicating greater importance) and a smaller value to the 

lower-ranked marker (indicating lesser importance) (Figure 3.9a). In addition, the non-

linear nature of the reciprocal transformation renders the value insensitive to the 

influence of markers with low ranks (Figure 3.9a). 

 

The reciprocal value is multiplied by a scale factor of 50. This scaling allows the 

maximum similarity scores, indicating two identical cell clusters, to reach a score 

around 100 even with various numbers of markers (Figure 3.9b). 

 

 

Figure 3.9 Reciprocal transformation and scale factor in similarity score. a) The 
curves depict reciprocal functions with scale factors of 10, 20, 30, 40, 50, 60, 70, 80, 
90, and 100. b) Each curve represents the maximum similarity score between two cell 
clusters with varying numbers of markers as input, and each curve corresponds to a 
specific scale factor indicated by the number on the right. Curves with a scale factor of 
50 are highlighted in red. 
 

In scenarios where cell type markers are provided as a reference (as Table 8) and 

uploaded to ieCS, the tool proceeds to calculate similarity scores between the cell 

types and the cell clusters. Two modes are available to calculate the similarity score 

matrix with reference: 

 

A. (Query + Reference) x (Query + Reference) 

B. Query x Reference 

 

In mode A, the resulting similarity score matrix contains both cell types and cell clusters 

in both rows and columns. In mode B, the resulting similarity score matrix comprises 

cell clusters in its rows and cell types in its columns. In mode A, each element in the 
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matrix represents the similarity score between a cell type and a cell type, a cell type 

and a cell cluster, or a cell cluster and a cell cluster. In mode B, each element in the 

matrix represents the similarity score between a cell cluster and a cell type. 

 

With the similarity score matrix, superclusters can be identified using hierarchical 

clustering, network partitioning, and tree aggregation methods in the ieCS. The details 

of these methods are shown in the following subsections. 

 

3.2.4 Hierarchical clustering 

I facilitated agglomerative hierarchical clustering with the complete-linkage algorithm 

to clustering cell clusters. There are two types of distance measures for hierarchical 

clustering in ieCS:  

 

A. Global Hierarchical Clustering (GHC): Computing the Euclidean distance 

between two cell clusters based on the similarity score matrix using the 

following formula: 

𝐺(𝑖, 𝑗) =  √(𝑆𝑖1 −  𝑆𝑗1)
2

+ (𝑆𝑖2 − 𝑆𝑗2)
2

+ ⋯ + (𝑆𝑖𝑛 − 𝑆𝑗𝑛)
2
 

Here, 𝐺(𝑖, 𝑗)  is the Euclidean distance between cell cluster 𝑖  and 𝑗 . 𝑆𝑖1 

represents the similarity score between cell cluster 𝑖 and cell cluster 1. 𝑛 is the 

total number of cell clusters. 

I generated the distance matrix and performed hierarchical clustering using the 

pheatmap package. 

B. Direct Hierarchical Clustering (DHC): Converting the similarity score matrix into 

a distance matrix using the following formula on each row of the similarity score 

matrix: 

𝐷(𝑟, 𝑘) = 1 − 
𝑆𝑟𝑘

𝑀𝑎𝑥(𝑆𝑟1, 𝑆𝑟2, … , 𝑆𝑟𝑛)
 

Here, 𝐷(𝑟, 𝑘) is the distance mesure between cell cluster 𝑟 (in the row 𝑟 of the 

similarity score matrix) and cell cluster 𝑘. 𝑆𝑟𝑘  represents the similarity score 

between cell cluster 𝑟 and cell cluster 𝑘. 𝑛 is the total number of cell clusters. 

𝑀𝑎𝑥(𝑆𝑟1, 𝑆𝑟2, … , 𝑆𝑟𝑛) represents the maximum score among the similarity score 

between cell cluster 𝑟 and the other cell clusters.  
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I computed the distance matrix in R, then transformed it into a distance object 

using the as.dist function. Subsequently, I performed hierarchical clustering 

using the hclust function in the stats package. 

 

In the CSHierClust tab of ieCS, the similarity score matrix is visualized in a heatmap 

with a dendrogram showing the GHC on the rows and columns using the pheatmap 

package. In the CSHierClust and CSHierClustDirect tab of ieCS, the hierarchical 

clustering of cell clusters is also displayed in the dendrogram using ggplot2, grid, stats, 

ggpubr, and factoextra packages. 

 

To identify the optimal number of superclusters based on hierarchical clustering, I 

applied the Silhouette method. The silhouette width for a range of potential 

supercluster numbers was calculated using the cluster, stats, and factoextra package. 

Optimal number of superclusters was determined by selecting the number that resulted 

in the highest average Silhouette width.  

 

In addition to employing the Silhouette method, ieCS provides users with the flexibility 

to interactively specify a total number of superclusters. Subsequently, ieCS assigns 

cell clusters into superclusters. For the assignment basing on GHC, the fviz_dend 

function from the factoextra package was used. For the assignment basing on DHC, 

the color_branches function from the dendextend package was used. 

 

In the presence of uploaded cell type markers, cell clusters were assigned to specific 

cell types based on the highest similarity score. The resulting assignment was visually 

represented using the collapsibleTree package. 

 

Additionally, ieCS provides access to overlapped genes among similar cell clusters 

within the same supercluster, allowing users the opportunity to manually annotate 

these superclusters. 

 

3.2.5 Network partitioning 

The similarity between cell clusters can be represented in a network, where each 

individual cell cluster is assigned as a node within the network. The edges linking these 

clusters are determined by the corresponding similarity scores. 
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The network of cell clusters is contructed utilizing the igraph package. Users possess 

the ability to reconstruct the network by interactively setting a minimum cutoff for 

similarity scores, allowing for the removal of certain edges between cell clusters.  

 

The process of partitioning the network into distinct communities of cell clusters, which 

correspond to superclusters, was executed using the Louvain community detection 

algorithm via the cluster_louvain function available in the igraph package. 

 

To provide visual insight into these superclusters, networks are visualized using the 

ggraph and tidygraph packages. Superclusters were visually represented using a 

color-coding scheme. Users have the flexibility to select various network layouts for 

the representation of cell clusters within the network. The available layout options 

include "auto," "fr," "kk," "gem," "dh," "graphopt," "mds," "drl," and "lgl" (using igraph 

layout algorithms via ggraph package, 

https://rdrr.io/cran/ggraph/man/layout_tbl_graph_igraph.html). 

 

When a cell type reference is provided, the similarity score matrix for (Query + 

Reference) x (Query + Reference) is computed. Each individual cell type is also treated 

as a node within the network representation. 

 

3.2.6 Tree aggregation 

ieCS can organize cell clusters into a tree structure, where comprising cell clusters as 

the leaves, and the edges are indicative of the similarity scores between these cell 

clusters. The tree is contructed through the following steps: 

 

1) User defines a cutoff, 𝐷𝑢, for the minimum similarity score to be considered.  

2) Obtaining a set of similaritiy scores 𝑆𝑒𝑡(𝑟) in the row 𝑟 of the similarity score matrix. 

This set contains similarity scores between cell cluster 𝑟 and the other cell clusters. 

𝑆𝑒𝑡(𝑟) = (𝑆𝑟1, 𝑆𝑟2, … , 𝑆𝑟𝑛) Here, 𝑆𝑟1  represents the similarity score between cell 

cluster 𝑟 and cell cluster 1. 𝑛 is the total number of cell clusters. 

3) The similarity scores less than 𝐷𝑢 in 𝑆𝑒𝑡(𝑟) are removed, leading to the generation 

of a new set 𝑆𝑒𝑡𝐷𝑢
(𝑟). 

4) Gradually increasing the cutoff and then removing the smaller similarity scores in 

𝑆𝑒𝑡(𝑟)  results in a list of sets: 𝑆𝑒𝑡𝐿𝑖𝑠𝑡(𝑟) =  𝑆𝑒𝑡𝐷𝑢
(𝑟), 𝑆𝑒𝑡𝐷𝑢+1(𝑟), 𝑆𝑒𝑡𝐷𝑢+2(𝑟),

… , 𝑆𝑒𝑡𝑀𝑎𝑥(𝑆𝑟1,𝑆𝑟2,…,𝑆𝑟𝑛)(𝑟). 
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5) Performing Step 2-4 for each row of the similarity score matrix results in 𝑛 lists of 

sets: 𝑆𝑒𝑡𝐿𝑖𝑠𝑡(1), 𝑆𝑒𝑡𝐿𝑖𝑠𝑡(2), … , 𝑆𝑒𝑡𝐿𝑖𝑠𝑡(𝑛). 

6) Ordering all the sets based on the cutoffs from 𝐷𝑢 to the maximum similarity score. 

e.g.: 

𝑆𝑒𝑡𝐷𝑢
(1), 𝑆𝑒𝑡𝐷𝑢

(2), … , 𝑆𝑒𝑡𝐷𝑢
(𝑛)

𝑆𝑒𝑡𝐷𝑢+1(1), 𝑆𝑒𝑡𝐷𝑢+1(2), … , 𝑆𝑒𝑡𝐷𝑢+1(𝑛)

⋮
𝑆𝑒𝑡𝑀𝑎𝑥(𝑆𝑟1,𝑆𝑟2,…,𝑆𝑟𝑛)(𝑟)

⋮
𝑆𝑒𝑡𝑀𝑎𝑥(𝑎𝑙𝑙)(𝑚)

  

Here, assuming the maximum similarity score 𝑀𝑎𝑥(𝑎𝑙𝑙) is in the row 𝑚. 

7) Removing redundant sets.  

e.g.: If 𝑆𝑒𝑡𝑑(𝑟) = (𝑆𝑟1) and 𝑆𝑒𝑡𝑑(1) = (𝑆1𝑟) ,  

since 𝑆𝑟1 =  𝑆1𝑟 (both represent the similarity score between cell cluster 𝑟 and 1),  

then 𝑆𝑒𝑡𝑑(𝑟) =  𝑆𝑒𝑡𝑑(1). 𝑆𝑒𝑡𝑑(1) and 𝑆𝑒𝑡𝑑(𝑟) are redundant, one of them will be 

removed. 

8) Agglomeratively merging sets: if a set with a lower cutoff contains all the cell 

clusters in a set with a higher cutoff. This merging process of cell clusters are 

stored in the Newick format for the construction of a tree. 

e.g.: If there is a set with a cutoff of 80 containing only one element, cell cluster 𝑟 

and 𝑎  ( 𝑆𝑒𝑡80(𝑟) =   𝑆𝑟𝑎 ), and another set with a cutoff of 68 containing two 

elements: cell cluster 𝑟 and 𝑎, and cell cluster 𝑟 and 𝑏 (𝑆𝑒𝑡68(𝑟) =   𝑆𝑟𝑎,𝑆𝑟𝑏), the 

merging results in Newick format will be “(((r,a):80,b):68);”. 

9) The structure of tree in Newick format is contructed into a tree diagram utilizing 

the read.tree function in the ape package. Within the tree structure, cell clusters 

are portrayed as leaves and the similarity scores are marked on the edges 

connecting cell clusters.  

e.g., 

𝐷𝑢 =   30 

𝑆𝑟𝑟 = 𝑆𝑎𝑎 = 𝑆𝑏𝑏 = 𝑆𝑐𝑐  = 𝑆𝑑𝑑 = 100 

𝑆𝑒𝑡30(𝑟) =   𝑆𝑟𝑎,𝑆𝑟𝑏 , 𝑆𝑟𝑐 , 𝑆𝑟𝑑 

𝑆𝑒𝑡53(𝑟) =   𝑆𝑟𝑎,𝑆𝑟𝑏, 𝑆𝑟𝑐 

𝑆𝑒𝑡68(𝑟) =   𝑆𝑟𝑎,𝑆𝑟𝑏 

𝑆𝑒𝑡80(𝑟) =   𝑆𝑟𝑎 

Here, 𝑆𝑟𝑟 represents the maximum similarity score of cell cluster 𝑟 (the similarity 

score between cell cluster 𝑟and itself). The structure of tree in Newick format is 

“(((((r:100,a:100):80,b:100):68,c:100):53,d:100):30);”. A tree diagram of the cell 

clusters can be presented as: 
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It indicates that these five cell clusters (r, a, b, c, d) have similarity scores higher 

than the cutoff, suggesting that they can form a supercluster. 

 

Users possess the ability to reconstruct the tree by interactively setting a minimum 

cutoff for similarity scores, allowing for the removal of certain edges between cell 

clusters.  

 

Apart from the score-marked trees, ieCS offers the functionality to color edges and 

leaves of trees based on superclusters. These trees can be visualized in five 

alternative layouts: "fan," "radial," "cladogram," "phylogram," and "unrooted" (using 

layout algorithms in ape package, https://cran.r-

project.org/web/packages/ape/vignettes/DrawingPhylogenies.pdf). 

 

When a cell type reference is provided, the similarity score matrix for (Query + 

Reference) x (Query + Reference) is computed. Each individual cell type is also treated 

as a leaf within the tree representation. 

 

3.2.7 Cell visualization 

Users can upload their cell embedding (Table 9) and metadata (Table 10) into ieCS. 

This allows cells to be visualized in the dedicated CellEmbeddingPlot tab. 

Superclusters that have been identified using the three identification methods can be 

visualized on these cell embedding plots using the plotly package. In the visual 

representations, cells belonging to the same supercluster are assigned a consistent 

color code. This color coding facilitates clear identification of cell clusters associated 

with a particular supercluster. The metadata and supercluster annotations of the cells 

will be displayed interactively when the user hovers their mouse over them. 
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3.3 Application Results 

I applied the Kang et al., 2018 PBMCs dataset (Figure 3.1 in the subsection 3.1 

Motivation) to demonstrate the usage of ieCS. The goal was to identify similar cell 

clusters across IFNB-stimulated and control conditions. Using the FindAllMarker 

function in the Seurat package, I identified the top 50 markers of each cell cluster in 

Figure 3.1d and f. These markers were then sorted by fold change and served as the 

required input for ieCS (in Table 8 format). 

 

Additionally, for cell types assigned by Kang et al., 2018 (Figure 3.1b), the markers of 

each cell type were identified using the FindAllMarker function in the Seurat package. 

These markers served as the cell type reference for ieCS (in Table 8 format). The 

UMAP embedding information (Figure 3.1a) was also uploaded to ieCS (in Table 9-10 

format). 

 

In this section, I will present the results obtained from three supercluster identification 

methods on the demo dataset. The comparison and evaluation of these results among 

different methods will be discussed in the next section, 3.4 Evaluation and Discussion. 

 

3.3.1 Hierarchical clustering 

3.3.1.1 Global hierarchical clustering 

In the CSHierClust tab of the ieCS webpage (Figure 3.4), ieCS visualized the similarity 

score matrix and the dendrograms of GHC through a heatmap (Figure 3.10). The 

heatmap displays cell clusters within the same cell types exhibit higher similarity scores 

and cluster together (Figure 3.10). 

 



97 
 

 

Figure 3.10 Heatmap of the similarity score matrix and GHC dendrograms. The 
color gradient ranges from blue to red, indicating low to high similarity scores between 
cell clusters. The dendrograms illustrates the global hierarchical clustering (GHC) 
results. 
 

To determine the optimal number of superclusters, Silhouette method was applied. 11 

superclusters exhibited the highest average Silhouette width were identified (Figure 

3.11). Notably, the superclusters consist of cell clusters that share the same cell types 

from two different conditions (Figure 3.11).  
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Figure 3.11 Optimal number of superclusters in GHC. Top panel displays the 
dendrogram resulting from GHC. Clusters are color-coded based on the optimal 
number of superclusters. The bottom panel showcases the average Silhouette width 
for varying numbers of superclusters.  
 

Moreover, users possess the flexibility to define the number of superclusters, enabling 

ieCS to allocate cell clusters accordingly basing on the GHC dendrogram (Figure 3.12). 

ieCS can dynamically respond to user input, allowing for the interactive display of 

resulting superclusters. 
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Figure 3.12 Custom number of superclusters in GHC. ieCS-assigned cell clusters 
organized into superclusters according to user-defined supercluster count of 5 
superclusters. The dendrogram visualizes GHC, and clusters are differentiated by 
distinct colors representing the superclusters. 

 

If cell type markers are uploaded onto ieCS as references (in Table 8 format), two 

modes are available to calculate the similarity score matrix: 

 

A. (Query + Reference) x (Query + Reference) 

B. Query x Reference 

 

In mode A, the heatmap displays cell clusters and cell types in both rows and columns 

(Figure 3.13). Conversely, in mode B, the heatmap exhibits cell clusters in the rows 

and cell types in the columns (Figure 3.14). In mode B, ieCS can automatically assign 

a cell cluster to the specific cell type with the highest similarity score (Figure 3.15). 

Both modes yielded in the same optimal number of 11 superclusters (Figure 3.16-17). 
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Figure 3.13 Heatmap of the similarity score matrix in mode A and GHC 
dendrograms. Mode A: (Query + Reference) x (Query + Reference). The color 
gradient ranges from blue to red, indicating low to high similarity scores. The 
dendrograms demonstrate the GHC arrangement of cell clusters and cell types. 
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Figure 3.14 Heatmap of the similarity score matrix in mode B and GHC 
dendrograms. Mode B: Query x Reference. The color gradient ranges from blue to 
red, indicating low to high similarity scores. The dendrogram on the left demonstrates 
the GHC arrangement of cell clusters, while the dendrogram on the top demonstrates 
the GHC arrangement of cell types. 
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Figure 3.15 Assignment of cell clusters to cell types in GHC with mode B. Cell 
clusters are assigned to cell types based on the highest similarity scores in Mode B: 
Query x Reference. 
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Figure 3.16 Optimal number of superclusters in GHC with mode A. Mode A: (Query 
+ Reference) x (Query + Reference). Top: The dendrograms demonstrate the GHC 
arrangement of cell clusters and cell types. Clusters are color-coded according to the 
optimal number of superclusters. Bottom: The average Silhouette width for different 
supercluster counts. 
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Figure 3.17 Optimal number of superclusters in GHC with mode B. Mode B: Query 
x Reference. Top: The dendrograms demonstrate the GHC arrangement of cell 
clusters. Clusters are color-coded according to the optimal number of superclusters. 
Bottom: The average Silhouette width for different supercluster counts. 
 

If cell type reference is not available, ieCS provides the overlapping genes among cell 

clusters within the same superclusters for users to manually annotate the supercluster 

(Table 11). 

 
Table 11 The overlapping genes among cell clusters within the same 
superclusters. Each row in the table represents a specific supercluster. 
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3.3.1.2 Direct hierarchical clustering 

In the CSHierClustDirect tab of the ieCS webpage (Figure 3.5), the dendrograms of 

the DHC method are displayed. The DHC of cell clusters led to the identification of 11 

optimal superclusters (Figure 3.18). When a cell type reference was available, the DHC 

was run in mode A: (Query + Reference) x (Query + Reference), resulting in the 
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identification of 12 optimal superclusters (Figure 3.19). The DHC method also accepts 

a user-defined number for superclusters. 

 

 

Figure 3.18 Optimal number of superclusters in DHC. Top: The dendrograms 
demonstrate the DHC arrangement of cell clusters. Clusters are color-coded according 
to the optimal number of superclusters. Bottom: The average Silhouette width for 
different supercluster counts. 
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Figure 3.19 Optimal number of superclusters in DHC with mode A. Mode A: (Query 
+ Reference) x (Query + Reference). Top: The dendrograms demonstrate the DHC 
arrangement of cell clusters and cell types. Clusters are color-coded according to the 
optimal number of superclusters. Bottom: The average Silhouette width for different 
supercluster counts. 
 

In this subsection, I demonstrated how ieCS applied GHC and DHC to identify 

superclusters and determined the optimal number of superclusters. Users have the 

flexibility to specify a custom number of superclusters. For scenarios involving cell type 

markers as reference, ieCS can effectively assign cell clusters to corresponding cell 

types based on their similarity scores.  
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3.3.2 Network partitioning 

In the CSNetwork tab of the ieCS webpage (Figure 3.6), ieCS constructes a network 

wherein cell clusters served as nodes, and the similarity scores between two cell 

clusters represented as an edge connecting these two cell clusters. User can define a 

cutoff to reconstruct the network of cell clusters. The edges with similarity scores lower 

than the cutoff will be removed. 

 

Applying a cutoff of 5 resulted in the creation of a network where edges connected all 

cell clusters (Figure 3.20). Utilizing a network partitioning method - the Louvain 

algorithm, the network of cell clusters was partitioned into 7 superclusters, each 

representing a distinct grouping of similar cell clusters (Figure 3.20).  

 

 

Figure 3.20 A network of cell clusters at a cutoff of 5. Each cell cluster is 
represented as a node, and the similarity scores serve as the weights of the edges 
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connecting these clusters. The network is enriched with colors that correspond to the 
superclusters identified through the Louvain algorithm. 
 

By applying a cutoff of 30, I observed a sparser network (Figure 3.21). Employing the 

Louvain algorithm, ieCS subsequently partitioned the network of cell clusters into 11 

distinct superclusters. Notably, these superclusters were composed of cell clusters that 

share the same cell types across IFNB stimulated and control conditions (Figure 3.21). 

 

 

Figure 3.21 A network of cell clusters at a cutoff of 30. Each cell cluster is 
represented as a node, and the similarity scores serve as the weights of the edges 
connecting these clusters. The network is enriched with colors that correspond to the 
superclusters identified through the Louvain algorithm. 
 
In situations where cell type markers are available, ieCS constructes a network that 

encompassed both cell clusters and cell types. At a cutoff of 5, the network was 

partitioning into 8 superclusters (Figure 3.22). 
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Figure 3.22 A network of cell clusters and cell types at a cutoff of 5. Each cell 
cluster and cell type are represented as a node, and the similarity scores serve as the 
weights of the edges connecting these clusters. The network is enriched with colors 
that correspond to the superclusters identified through the Louvain algorithm. 
 
Applying a cutoff of 30, I found 12 distinct superclusters (Figure 3.23). Remarkably, 

these superclusters consist of cell clusters that share the same cell types as well as 

corresponding reference cell types (Figure 3.23). 
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Figure 3.23 A network of cell clusters and cell types at a cutoff of 30. Each cell 
cluster and cell type are represented as a node, and the similarity scores serve as the 
weights of the edges connecting these clusters. The network is enriched with colors 
that correspond to the superclusters identified through the Louvain algorithm. 
 

In this subsection, I demonstrated the visualization of cell clusters within a network. 

Subsequently, I employed a network partitioning technique implemented in ieCS to 

identify superclusters. Within the demo dataset, these superclusters were formed by 

cell clusters sharing identical cell types. Furthermore, users retain the flexibility to 

define a minimum similarity score cutoff for the reconstruction of the network. 

 

3.3.3 Tree aggregation 

In the CSTree tab of the ieCS webpage (Figure 3.7), ieCS utilizes a tree aggregation 



112 
 

method to visualize and identify superclusters. Cell clusters are served as the leaves, 

and the edges are indicative of the similarity scores between these cell clusters. Users 

have the capability to dynamically reconstruct trees using varying cutoffs. 

 

Utilizing a cutoff of 5, a total of seven subtrees (representing superclusters) were 

constructed (Figure 3.24).  

 

 

Figure 3.24 A tree of cell clusters at a cutoff of 5. Seven superclusters (subtrees) 
were identified. Cell clusters are depicted as leaves, and the edges between these 
clusters are determined by their similarity scores. These similarity scores are then 
labeled on the corresponding edges. The similarity score of 112 represents the 
similarity score between the cell cluster and itself (the maximum similarity score). This 
score corresponds to the scenario where the cell clusters had 50 markers, as indicated 
by the red curve in Figure 3.9b (when 𝑥 = 50, 𝑦 ≈ 112). 
 
ieCS offers various tree visualization options. Figure 3.25 illustrates the identification 

of 11 superclusters at a cutoff of 30, visualized in a "fan" tree style. 
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Figure 3.25 Tree aggregated of cell clusters at a cutoff of 30. Eleven superclusters 
(subtrees) have been identified and visualized in a “fan” style. Each subtree is 
represented by a distinct color. 
 
When reference cell types were accessible, a total of 8 subtrees (representing 

superclusters) were constructed using a cutoff of 5 (Figure 3.26).  
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Figure 3.26 A tree of cell clusters and cell types at a cutoff of 5. Cell clusters were 
depicted as leaves, and the edges between these clusters were determined by their 
similarity scores. These similarity scores were then labeled on the corresponding 
edges. Eight superclusters (subtrees) were identified. 
 
Figure 3.27 showcases the identification of 12 superclusters at a cutoff of 30, 

accompanied by cell type references. These are visualized in a "fan" tree style. 
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Figure 3.27 A tree of cell clusters and cell types at a cutoff of 30. Twelve 
superclusters (subtrees) have been identified and visualized in a “fan” style. Each 
subtree is represented by a distinct color. 
 
In this subsection, I introduced a novel tree aggregation method. Superclusters were 

visualized as subtrees, and users can interactively reconstruct the tree of cell clusters 

using a defined cutoff for the minimum similarity score. 

 

3.3.4 Cell visualization 

In the "CellEmbeddingPlot" section of the ieCS webpage (Figure 3.8), ieCS facilitates 

the utilization of user-provided cell coordinate files, such as UMAP embeddings (Table 

9), for the purpose of visualizing cells. This feature also enables users to provide cell-

specific information (Table 10) and hover the annotation over individual cells. Users 

can apply color coding to cells based on either user-selected cell attributes or the 

superclusters generated from supercluster identification methods, which can be 

observed in the cell embedding plots interatively (Figure 3.28, Figure 3.29). 
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Figure 3.28 Cell embedding plot colored by cell types. 

 

 

 

 

Figure 3.29 Cell embedding plot colored by superclusters of GHC. 

 

Within this subsection, I introduced an additional functionality of ieCS focused on the 

visualization of both individual cells and the outcomes of supercluster analysis. 

 

3.4 Evaluation and Discussion 

ieCS is developed in the R language (R Core Team, 2018) using the Shiny package 

(Chang et al., 2020). It is open-source and available on GitHub (https://github.com/L-

Hai/ieCS/). ieCS is packaged as an R package, making it easily distributable and 

installable. Launching the ieCS GUI requires just one command (ieCS::run()). Users 
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can upload inputs and explore superclusters interactively. ieCS achieves rapid 

similarity quantification; for instance, in the demo analysis of scRNA-Seq data 

consisting of 26 cell clusters (Kang et al., 2018), the process takes only about 10 

seconds. 

 

With its user-friendly GUI, ieCS facilitates easy and interactive supercluster 

identification. Three methods are provided for supercluster identification: Hierarchical 

Clustering, Network Partitioning, and Tree Aggregation. Users can select these 

methods in separate GUI tabs. Within each method, users can adjust parameters to 

explore superclusters with varying degrees of similarity. Increasing the similarity cutoff 

results in smaller superclusters containing fewer cell clusters, but with higher similarity 

within the supercluster. ieCS instantly responds to user inputs, displaying results 

directly on web pages. All three methods allow for user-provided cell type markers to 

automatically annotate the cell clusters. In cases where no cell type markers are 

available, the overlapping markers of cell clusters within the same supercluster will be 

provided to assist in manual supercluster annotation. The similarity matrix is visualized 

as a heatmap. Superclusters are presented as dendrograms in the hierarchical 

clustering method, network graphs in the network partitioning method, and tree graphs 

in the tree aggregation method. Users can also visualize superclusters on a provided 

cell embedding plot. This variety of methods for supercluster identification and 

visualization provides comprehensive insights into cell cluster similarity. 

 

To comprehensively evaluate the results of the different supercluster identification 

methods, I undertook three assessments from varying perspectives.  

 

The first assessment aimed to determine whether the supercluster identification 

methods could link similar cell clusters (annotated as the same cell type) across IFNB-

stimulated and control conditions.  

 

The results in subsection 3.3 Application Results, showed that all three supercluster 

identification methods can successfully link similar cell clusters across different 

conditions and identified 11 superclusters. Each supercluster contains cell clusters 

from the same cell types (Table 12). However, achieving this goal involves different 

processes for each method. In the hierarchical clustering method, the optimal number 

of superclusters was determined using the Silhouette method. For the network or tree 

presentation of cell clusters, a minimum similarity score cutoff of 30 was applied to 

construct the network or tree. Subsequently, for the network partitioning method, the 
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optimal number of superclusters was determined using the Louvain community 

detection algorithm. Regarding the tree aggregation method, the optimal number of 

superclusters was determined by agglomeratively merging sets of cell clusters. 

 

Table 12 The cell clusters within the same superclusters at the optimal setting. 
Each row in the table represents a specific supercluster, while each column 
corresponds to a supercluster identification method. Results from the Silhouette 
method-based optimal number of superclusters in GHC (Figure 3.10) and DHC (Figure 
3.17), and a cutoff of 30 in network partioning (Figure 3.21) and tree aggregation 
(Figure 3.25). 
 

 

 

Although the optimal outcomes suggest a total of 11 superclusters, users have the 

option to instruct ieCS to generate a different number of superclusters. For instance, 

in the GHC method, ieCS produced 5 superclusters (Figure 3.11), each containing a 

larger number of cell clusters (Figure 3.11). While these cell clusters within the same 

supercluster might originate from various cell types, they still exhibit some degree of 

similarity; for example, CD4 Naïve T and CD Memory T were found within the same 

supercluster (Figure 3.11). Similarly, users retain the ability to adjust the minimum 

similarity score cutoff to reconstruct the superclusters in both the network partitioning 

method (Figure 3.20) and the tree aggregation method (Figure 3.24).  
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By gradually increasing the custom number or cutoff of superclusters, users can 

observe different groupings of cell clusters. This helps users gain a deeper 

understanding of the relationships among cell clusters. 

 

I carried out the second assessment to evaluate the performance of ieCS at lower 

similarity degree (Table 13). At a cutoff of 5, both network partitioning and tree 

aggregation methods yielded identical outcomes. Across all supercluster identification 

methods, cell clusters originating from CD4 Naïve T and CD Memory T were grouped 

within the same supercluster (Table 13). Superclusters encompassing cell clusters 

from T activated were identified by three methods, except for GHC, where cell clusters 

from T activated were merged with those from CD14 Mono and CD16 Mono (Table 

13). Three superclusters (one containing NK and CD8 T, one containing Mk, and one 

containing DC, pDC, B, and B Activated) were identified by three methods, excluding 

the DHC method (Table 13). 

 

Under optimal settings in the first assessment, all methods yielded uniform results in 

which each supercluster comprised cell clusters sharing the same cell types. However, 

when tested at lower similarity settings, different supercluster identification methods 

exhibited some unique characteristics. 

 

Table 13 The cell clusters within the same superclusters at a lower similarity 
setting. Each row in the table represents a specific supercluster, while each column 
corresponds to a supercluster identification method. A custom of 5 superclusters in 
GHC and DHC. A minimum similarity score cutoff of 5 in network partitioning and tree 
aggregation.  
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In the scenario that cell type markers were accessible, I applied the third assessment. 

Under optimal settings, the similar cell clusters within superclusters were consistent 

across several supercluster identification methods, with the exception of GHC, which 

grouped Eryth cells into the T_activated superclusters (Table 14). When examining the 

heatmap of the similarity score matrix of cell clusters and cell types, Eryth displayed 

little similarity to the other cell clusters and types (Figure 3.13). The dendrogram of 

GHC (Figures 3.12 and 3.15) suggests that when a number of 12 superclusters is set, 

Eryth will become a standalone supercluster. However, the Silhouette method failed to 

recommend this number of superclusters in GHC. 

 

Table 14 The cell clusters and cell types within the same superclusters at the 
optimal settings. Each row in the table represents a specific supercluster, while each 
column corresponds to a supercluster identification method. Results from the 
Silhouette method-based optimal number of superclusters in GHC (Figure 3.16) and 
DHC (Figure 3.19) methods, and a cutoff of 30 in network partioning (Figure 3.23) and 
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tree aggregation (Figure 3.27). 
 

 

 

In summary, the three assessments indicate that, in analyses of demo scRNA-Seq 

data (Kang et al., 2018), all three supercluster identification methods successfully 

identified cell clusters that shared the same or similar biological cell types. 

 

To achieve this, ieCS employs a novel metric to quantify the similarity between two cell 

clusters. It requires markers of cell clusters and their ranks as inputs, with the rank of 

a marker indicating its importance. This similarity metric considers not only the number 

of shared markers between cell clusters but also the ranks of those markers. When 

two cell clusters share numerous high-ranked markers, they are deemed highly similar. 
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While Gao et al. previously quantified similarity through marker expression binarization, 

yielding significant results (Gao et al., 2019), this approach doesn't consider marker 

importance. In contrast, ieCS allows users to define marker importance by utilizing 

metrics like p-values, fold-changes, or other criteria during marker identification. 

Moreover, ieCS provides the capability for users to upload cell type markers as a 

reference for annotating cell clusters, streamlining the calculation of similarity between 

cell clusters and cell types. 

 

3.5 Limits and Outlook 

In the application of ieCS for quantifying cell population similarity in heterogeneous 

scRNA-Seq datasets, there are several aspects that could be enhanced to make ieCS 

more powerful in the future: 

 

• ieCS introduces a novel metric for quantifying the similarity between cell 

subpopulations, relying on user-provided cell cluster markers and marker 

importance ranks. The accuracy of the clustering of cell and marker 

identification significantly influences the similarity quantification. Integrating 

reliable marker identification methods into ieCS could enhance the precision of 

similarity calculations. 

• ieCS offers three supercluster identification methods and empowers users to 

select methods and set parameters, enabling the interactive construction of 

superclusters at varying levels of similarity. To further improve user experience, 

integrating automated parameter tuning methods that determine the optimal 

supercluster compositions could enhance ieCS's efficiency. 

• ieCS accommodates user-provided cell type markers as a reference for 

annotating superclusters. Integrating a cell type database into ieCS to facilitate 

automated supercluster annotation could greatly enhance its functionality. 
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6. Supplementary Tables 

Supplementary Table 1 2978 DEGs in CHI3L1 OE RNA-Seq data. 

2252 upregulated DEGs 

C5orf38, EDN3, GAL, MED15P1, PXDN, FOLH1, ADARB2, COL3A1, CPXM2, 

ZNF626, GYPC, ADAMTS18, ST6GAL2, FABP5P7, RP11-171N4.1, COLEC12, 

AQP4, DPT, GPRC5C, DNAJC5B, RP11-597A11.1, LINC01016, NHLRC1, 

TUBB8P8, TLX1NB, CACNA1C, TEK, OTOR, AP000344.3, ADCY2, RP3-410C9.2, 

KCNQ5, NF1P4, SERTAD4, MXRA5, ST6GAL2-IT1, UNC5C, RIMS4, RP11-

347H15.1, GBP4, RP11-91P17.1, CHST9, GRM4, KAL1, RUFY4, CHST15, 

CHI3L1, CTC-264K15.6, RP11-8L8.2, MIR143HG, DNAJC15, RP11-138J23.1, 

EFEMP1, TDO2, LRRN3, VIT, AC092614.2, KCNG4, RP11-367G6.3, RP11-

6N13.1, SMTNL2, SMOC2, NF1P6, CTD-2022H16.1, PHACTR3, RXRG, 

AP004372.1, DNTT, ANO1, EGFLAM, RP11-558A11.1, HAND1, COL5A3, CTD-

2022H16.2, RIN3, RP11-1259L22.1, IL1RN, CTD-2553C6.1, CTB-78F1.2, GPRIN3, 

TIMP3, FLRT2, PCDH8, CTD-2339F6.1, RP11-344F13.1, ME3, PLEK, KCNA1, 

IGFN1, TUBBP5, ST8SIA2, GPR101, LPAR1, MXRA5P1, GPR26, RP1-214M20.2, 

AFF3, RP11-449J10.1, DUSP27, SCN4A, CXorf28, RP11-799P8.1, CTB-26E19.1, 

LMX1B, GREM2, STAT4, ATP12A, AC009093.1, RP4-796I8.1, THRB, RP11-

1112C15.2, ADRA1B, RP4-610C12.3, RP11-143J24.1, RP5-1139B12.3, RP11-

720L2.4, FRAS1, MAMDC2, CTD-2022H16.3, CASP1, KCNA5, TBX3, ITGA8, SLN, 

AKR1C1, GBP3, GBP1, FAM50B, ACAN, SCN10A, CYTL1, RP11-245J24.1, RTP4, 

NCOR1P1, TENM2, EMX2OS, ROR2, IGSF21, SAMD5, AKR1C3, DMRT2, 

CCDC42, SGIP1, AMER2, GABRG3, RP11-124N19.3, DHX58, PCDH20, CPPED1, 

ALPK2, SORBS2, FABP5, IKZF3, MYO1B, CEACAMP10, APOD, ZNF679, RP11-

391M7.3, AC109583.1, INHBA, RP11-321L2.1, ADH1C, MIR4635, ZSWIM2, 

SEMA3E, AP002856.5, CHRDL1, RP4-610C12.4, TNS1, LRRC32, FAM149A, 

DACT2, XKR8, ZSWIM5P2, SH3GL3, OLFM4, BGN, RP11-749H20.4, STMN2, 

WSCD2, ACSM5, TNFAIP8L3, NF1P8, COL8A1, FOXI2, C11orf87, DSG2, TLR4, 

ATP1A2, TFAP2C, NBEAP1, RET, SLC22A3, NANOGP1, IFI44, PSORS1C3, 

ADAMTS2, FAM90A20P, ANKRD33, C8orf48, FMO2, RP11-94B19.6, AC012123.1, 

AC096669.3, RP11-396O20.1, SLC17A8, ACSS3, CNTN2, RP11-348F1.2, LGR6, 

UGT3A2, AQP4-AS1, HSD11B1, IRX2, AC013271.3, AC092667.2, CMKLR1, 

CDH13, SLC1A2, AC017076.5, MGAT3, AC109826.1, PTGER2, SYNDIG1, IL15, 

RERG, AMIGO2, NTN4, MYL3, CACNG3, CNTN1, FAM189A1, CARD16, TAAR3, 

APOBEC3G, UST, CTC-353G13.1, SCML4, CCL24, GPR27, ELAVL2, PDGFRA, 

SERTAD4-AS1, RIT2, PCSK2, EPSTI1, CCDC8, OAS1, TLX1, LBX1-AS1, WNT5A, 
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GABRA3, GOLGA8J, OLFM2, MIR145, RP11-43F13.4, AP000345.1, SYT4, MT1A, 

CTC-321K16.1, RP11-1002K11.1, RP4-813D12.3, GLDN, RP11-578F21.12, 

ARSE, FGL2, RP11-100M12.3, F13A1, HLA-DPA1, APOBEC3D, GALNT9, 

COL1A1, RBBP8NL, TRAJ24, VCAM1, TMEM100, AKR1C2, FAM26E, PDLIM3, 

CACNA1D, RP11-155L15.1, DSC1, RP11-683L23.1, SLFN5, MDFI, C17orf72, 

PMAIP1, SHISA3, CLEC2L, RP4-745K6.1, ALX3, WFDC1, GABRG2, TRIM6, 

RP11-173M11.2, SLC6A7, HTR7, RP11-561N12.5, PRMT8, RP11-693N9.2, 

CPXM1, EVA1A, UBE2QL1, FMN1, CXCL14, RP11-648F7.1, RASL12, ICAM2, 

MRVI1, AF186192.5, TLR3, CRYGD, AL512428.1, IL10RA, RP11-531H8.1, BAI1, 

IL20RA, LBX1, RBMS3, ZNF423, GBP1P1, AIM1, RP11-297H3.4, CD79B, 

TNFSF10, NHS, LPAR4, PTGS2, RP11-94B19.5, CTD-2325B11.1, RP5-

1139B12.2, ASS1P1, CDX1, SLC12A7, C10orf105, ISLR, ARHGDIB, TEPP, 

FMOD, DIO2, SLITRK2, SPTLC3, FABP4, SALL3, AC007464.1, AP001065.15, 

RP11-710C12.1, RP3-522D1.1, RP11-449D8.2, KLHL14, XPNPEP2, RP11-

314P15.2, NRG1, USP26, RP11-3N2.13, WDR86-AS1, FUNDC2P2, AC104654.2, 

KRT79, DAB2, NPS, COL23A1, AC007750.5, RP11-148B18.4, MYOM3, RP11-

805L22.3, SLC18A1, RP11-1101H11.1, LINC00621, RP11-449D8.5, AC073135.3, 

SLC14A1, MAT1A, RP4-798P15.3, FAIM3, HTR6, RGS1, AC093627.8, MAGEE2, 

BLNK, CES5A, RP11-426L16.8, ACY3, RP11-449D8.1, TRIM29, NTM, DOK5, 

SHROOM4, CTD-2521M24.5, TLR5, RP11-459E5.1, MRGPRF, LGR5, 

AC100802.3, AF186192.1, VSNL1, ZNF831, PDCD1LG2, PRUNE2, GH1, RP11-

123K19.1, COL26A1, AMER2-AS1, SNAP25-AS1, ROR1, EID3, RP11-728E14.3, 

ENPP6, KIAA1462, ASPA, RP11-335O13.8, AP000344.4, UNC13A, SAMD9L, 

FOXF1, ETNPPL, RP1-71H24.1, RP5-944M2.3, TFAP2B, RAD51AP2, KCNJ12, 

SUSD3, AP003025.2, BX119917.1, SLC24A2, RP11-94L15.2, GRM3, RP11-

356N1.2, RP5-1104E15.6, KANK4, CTB-78F1.1, EMILIN1, LINC00277, IFITM1, 

RP11-214C8.2, TCEAL5, LONRF2, VAT1L, WNT5A-AS1, HLA-DPB1, GPR111, 

RP11-453M23.1, NUS1P2, RP11-430H10.1, ADRA1A, LINC00681, FAM65B, 

PCDP1, TMEM47, CTD-3247F14.2, RP11-429A20.4, TNFAIP3, GPR12, CTD-

2377D24.6, AQP7P2, GBP5, TUSC5, CTD-3162L10.4, CTD-2151A2.1, DDR2, 

ATP8A1, CDK15, PLVAP, CD70, LTBP1, SVIL, NR1H4, RP11-392O17.1, CYP1B1, 

THBD, VSTM2A, FGF13, CTSS, RP5-1119D9.4, CTD-2023N9.1, DOCK10, 

GADL1, RP1-45C12.1, MAGEC2, SLC9A9, BST2, KCNG3, RRN3P2, RP1-

290I10.5, KIF19, SH2D4A, NUDT7, CLIC5, SOD3, IL1RAPL2, RP5-1043L13.1, 

PTPRVP, XAF1, AC138623.1, AC004562.1, OASL, SPINT1, MYOG, AC007106.1, 

RP11-875O11.3, MAP7D2, PLXDC2, ERG, ARHGAP24, WWC1, CTD-2521M24.9, 
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GAREM, ART5, LINC00284, LAMP5, POU2F3, COL6A3, ZNF521, NEUROD4, 

RP11-845M18.7, CHMP4C, CHRM3, FAM189A2, GGTA1P, SNAI1, HLX, NKX2-4, 

COL12A1, AC099344.2, RPL29P19, PTPRO, LINC00536, HERC6, RP11-

342A23.1, BATF2, ANGPTL7, SLCO2B1, MTUS2, NCKAP1L, GBP6, ADAMTS19, 

KCNH5, C1orf222, SCUBE1, TTC40, HBE1, HOXB13, SERPINI1, GPR115, 

TMOD1, IL22RA1, CD55, LAYN, SCN2B, KIF21B, RP1-244F24.1, ATP9A, RP11-

429A20.3, LY6E, RP11-886D15.1, EBF1, HTRA3, MCHR1, VSIG1, RNF135, 

SYNM, NTN1, CTD-3157E16.1, PINLYP, AKR1C7P, RP11-363E6.3, KCNN3, RP3-

467K16.2, OR5B19P, COX6B1P4, BPIFB1, HOXB2, GABRG1, DPYD, C3orf36, 

LRRC3C, RBP1, FAM153A, XX-CR54.3, TNFRSF14, RP11-328N19.1, AMPH, 

GRAMD1B, PLCH1, RP11-431J24.2, ADRB1, GALNT5, PPARG, NRXN3, 

TMEM244, KLHL41, RP11-538I12.3, AC011294.3, PDGFB, ALOX12B, TMC1, 

IL24, IL1R1, PARP10, BIN1, BTBD17, MGLL, CLDN10-AS1, PDGFRB, GVINP1, 

ALCAM, NT5C1A, CASQ2, GFRA2, ZNF334, RBP4, RP11-104L21.2, SPOCK2, 

CCDC144NL, RP11-565P22.2, MYLIP, LINC00173, LYN, FOLR1, LOXL1-AS1, 

RP4-701O16.5, SNPH, PRRG4, MIR199A2, MAATS1, FAM26F, CMAHP, COL6A2, 

PCP4L1, TRIM34, EGR3, OVCH1, DSCAML1, HMGB1P7, FAM110B, CCK, 

ARHGAP25, COL14A1, AC013275.2, CARD6, SCUBE2, DHRS2, CSF1R, DCHS2, 

ZMYND15, SECTM1, PCDH18, RP11-478K15.6, RP11-213G2.2, PCED1B, RP11-

283I3.2, RP11-332H18.5, RP11-1049A21.2, RP11-492A10.1, TSPAN19, 

CCDC110, IL15RA, UNC5B-AS1, SORCS2, NME5, RP11-305L7.6, RP11-89K11.1, 

RP11-1277A3.2, SARDH, RP11-179A16.2, RP11-45A16.4, IGFBP5, WIPF3, 

GYG2, CLMP, ALDH1L1, CTD-2207P18.1, ANKEF1, PLAC9, SLC26A4-AS1, 

ESRRG, SEMA7A, OAF, MAGEB17, GRPR, CTB-134H23.3, KIF12, RP11-

262D11.2, SLC29A3, AC006445.7, RP11-145M4.3, RP11-930P14.2, RP11-

849I19.1, STOX2, JPH2, LBH, RP11-157J24.1, GUCY2D, PTPN3, TWIST2, RP11-

363E6.4, KIAA1755, AC010984.3, SAMD9, RP11-132E11.2, RN7SL417P, 

DNAJC12, CYP1B1-AS1, PHLDA2, GOLGA6L7P, FCN2, RP11-429P3.3, MMEL1, 

AC006946.16, MATN3, FGFR2, GS1-304P7.1, POU2AF1, TRIM22, NMUR1, 

RP11-435I10.3, RP11-301L8.2, KLKP1, PAX9, SV2C, CECR2, IFNB1, 

AC009110.1, HLA-AS1, RP11-514D23.3, NFE2, SEC16B, HOXD1, FOXD2, 

C3orf67, ZSWIM5, MICAL2, EVC2, KIAA0040, ABCA8, ETV7, GPNMB, WDR86, 

AC018865.8, PCA3, HOXC-AS5, PTPRT, RP1-71H24.4, HTATIP2, BZRAP1, 

AP001471.1, RP11-292E2.2, CMTM8, LRCOL1, RP11-94C24.8, RP11-553P9.3, 

RTN4RL2, EGFL7, RP11-268G13.1, LAMC3, POMC, RP11-75C9.1, AC093627.7, 

ALG1L15P, RP11-54D18.2, RP11-279O9.4, CACNG5, PPEF1, RP11-81H14.2, 
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C3orf80, HEYL, CTD-2562J17.7, RP13-977J11.8, NTNG2, RP11-119J18.1, 

GALNT6, IRF6, RP11-104L21.3, HLA-U, IFNLR1, RP11-295M18.2, MISP, 

NYNRIN, RP11-445P17.8, DDX25, CDR1, LNX1, AC106874.1, RP11-536C10.10, 

SCN7A, NR1I2, MAP3K7CL, LINC00639, RP11-221N13.3, TNNI2, SPON1, LIPC, 

TDGF1, RUNX2, CD84, CLEC3A, IFIT3, CRISPLD1, TESC, C2CD4A, PTPRJ, 

AC079613.1, ANGPT4, CD248, FAP, AC096669.1, MAP3K8, PROSER2, 

CREB3L3, DISP2, RP11-766F14.2, BTBD11, RP11-809C9.2, ICOSLG, INSC, 

SDC2, RFPL2, CTD-2526M8.2, INA, CCDC3, C14orf180, HIST1H2APS3, 

LINC00648, ADIRF-AS1, DOC2GP, FZD9, PMEPA1, AC092162.1, DMD, HEY1, 

TAL1, CYB5R1, RIPPLY3, RP11-1042B17.5, TRAJ6, C16orf74, DNM3OS, MAFB, 

JPH4, RP11-676F20.1, PHF11, CECR1, RP11-521O16.1, LGI4, CD24P4, 

TINAGL1, RP11-428G5.7, NMRK1, STRA6, LOXL1, AC073636.1, HNF4A, HOXB6, 

ST8SIA4, RP11-1365D11.1, RP11-10N16.2, RYR3, GMPR, SNAP25, GSN, RP11-

295M18.6, QPCT, TMEM229B, TSPEAR-AS1, HSPB8, CTD-2521M24.4, RP11-

162J8.3, HERC5, IFIH1, ACE2, CTD-2054N24.2, WNT1, NPR1, RN7SL405P, 

HOXB-AS1, HIST1H1T, RP11-70C1.1, RP11-770E5.3, C8orf22, RP11-671M22.6, 

OAS2, DSE, CTSO, GRIK4, BLACE, MYH6, C9orf135-AS1, LINC00620, UNC93B7, 

AC096574.5, SLC7A2, EMP1, GRIA1, FAM225A, SLC26A7, PTGES, MUSK, 

IFIT1B, KLHDC7A, PPP4R1L, RP5-1139I1.1, CTC-501O10.1, AL845321.1, RP11-

344E13.3, RP11-740P5.3, 45175, SCN4B, APCDD1L, TAF4B, RP11-679B19.2, 

KB-1184D12.1, DKK3, ALDH3A1, RP5-1107A17.4, PKDCC, AC011239.1, FXYD7, 

VDR, PRRX1, CTD-3065J16.6, TRIM31, CXCL9, KCNK15, CCND1, CTD-

2313J23.1, AC096669.2, ZFP92, SCARA5, LPPR3, AC087393.1, TMTC1, 

RN7SKP88, SLC10A6, PRKAG2-AS1, GPR64, RP1-93H18.7, SERPINE2, RP11-

325F22.2, CLDN2, CTA-268H5.14, CTD-3074O7.7, MX1, SLC51B, CTD-

3076O17.1, TMCO4, RP11-416N2.4, RP11-16P20.3, DNM1P51, SPARCL1, RP3-

395M20.8, PRRX2, RP5-1063M23.1, RP11-141E13.1, LINC00957, RP11-76E17.4, 

OR2B4P, SLC4A10, HS3ST3B1, RP5-1185H19.2, RP11-540O11.7, CCL5, 

FAM182A, TPD52L1, SVEP1, CXCR4, DNAH2, RARRES3, FBLL1, RFPL4B, 

FILIP1, SALL4, LEKR1, RP11-655M14.13, RP11-296L22.7, CLMN, AC079776.3, 

EPHA7, GSG1L, MEOX1, PANX2, RP11-507M3.1, GSN-AS1, RP11-141A19.1, 

PAX5, GRHL3, NTSR2, TRAJ26, RP11-720N19.1, MAGI1-IT1, CTC-548K16.1, 

IER3, RP11-128M1.1, CD274, SLC27A3, BTF3P2, LRRC3B, FAM83H, MYBPH, 

TENM1, CATSPER1, CCR4, HDAC1P1, FAM114A1, RNF182, RP11-923I11.5, 

AKR1B15, ATP8B1, SFRP2, SLC7A3, OR1L3, RP11-441F2.2, OBP2A, RP11-

467K18.2, FUT5, RP4-737E23.2, RP11-175K6.1, TRPC7, SEMA3D, RASEF, 
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HOXC13, RP11-739G5.1, ARRB1, SLC37A1, HEPH, THRB-AS1, COL9A1, 

PLSCR4, RHAG, PARD3B, RP11-348F1.3, ALDH5A1, RP11-508N12.3, 

LINC00943, LRRC14B, SLC39A8, LYPD6B, RP11-340E6.1, RP11-357H14.17, 

AFF2, ARHGAP22, KCNF1, C5orf49, SRC, CACNA1C-AS1, RBPMS2, RP11-

263F14.3, RP11-489D6.2, ANGPT2, RGPD1, LINC00355, RP11-230G5.2, PI3, 

KLF5, STAB1, FKBP6, CTC-260E6.9, CD7, RP11-115D19.1, SYN1, HLA-K, 

INPP5D, RNASEL, CRIP3, ZNF280A, SNX25P1, RP11-184M15.1, DGKE, 

TMSB4XP3, DRD5P2, MGC4294, LINC00643, AC019068.2, ZNF214, TRPV3, 

HOXB5, LYPD5, TNFSF9, SLC25A48, TLR6, ACTL6B, HCP5, RP11-6O2.4, PAK7, 

CTB-60B18.12, RP11-609L3.1, MT1G, EFTUD1P1, CTD-2547L24.3, FAM19A3, 

CTB-178M22.2, DDX60, AC139768.1, CNPY1, CHD3, CECR7, MTL5, Z83001.1, 

CALML3-AS1, APOE, NECAB2, AKR1B10, ABCA6, BDKRB2, PTGIR, RP11-

344B5.4, CTD-2247C11.1, KCNA7, LINC00589, SMCO4, SEMA3F, ARHGDIG, 

BMP2, STOM, ANKS1B, RP11-401P9.5, FZD7, FAM90A27P, XXbac-

BPG248L24.12, KCNC4, RP11-187O7.3, CD8A, APOL1, GCNT1, FUCA1P1, HLA-

G, ITGA3, AC010149.4, ASTN2, AP001625.6, RP11-680H20.2, RP11-445O16.2, 

TUBA4A, ENG, RP11-718B12.2, SULT1A1, GAS2L2, NEURL, PARP15, RP11-

295G24.5, MRVI1-AS1, AC009518.4, ADAM28, CXCL10, TSHR, NRXN1, ACSL5, 

RP11-112L6.4, FOXD2-AS1, PABPC3, CCL26, ZNF29P, DYSF, HOXB3, UBA7, 

TNXB, ABCD2, ALPL, FAIM2, NHSL2, RP11-277P12.10, TRANK1, ANK1, RINL, 

OR2H1, SP140, CTSF, GPR124, GPA33, TRAJ25, SEPP1, PAPPA-AS2, RP11-

93L9.1, ERC2, PCDHB5, THEG, STRC, RP11-273G15.2, ALOXE3, FAM163A, 

SMAD6, NPR2, CMPK2, C10orf54, KB-1639H6.4, RP11-366L20.2, RP11-

718B12.5, CCDC120, TMEM173, LAMC2, COL1A2, NKX3-1, RP11-785G17.1, 

RP11-347E10.1, SMTNL1, TMEM156, SYNPO2, RASSF3, RP11-844P9.2, RP11-

14C22.6, ELMOD1, UCN2, FBXO39, SCGB1D2, CYP1A1, ITGA9, KIAA1377, 

RP11-923I11.7, RP11-718B12.1, CDH4, RP11-561C5.7, RP11-196G18.3, RP11-

532F6.3, RP11-867G2.8, TPBG, RP11-88I21.1, TSPAN16, LGALS2, RP11-

408O19.3, RP3-473L9.4, RN7SL834P, AQP7P4, MAGEB6, AQP7P1, SNHG18, 

FUT6, BTBD3, PPIEL, CRYGN, IFI35, CTD-2609K8.3, CCDC141, RP11-350G8.5, 

SLCO2A1, CSAG4, HES5, FTLP12, BMX, ISM2, LRIT2, AC079776.2, TEX15, CLU, 

RP5-968J1.1, COPZ2, RP11-362F19.1, MIR3151, HCG4P7, PTH1R, SHC1P2, 

TSPAN1, IFITM3, KLHL29, AC109309.4, RP1-232P20.1, RP11-64P14.7, PRRT1, 

MYRF, PRR15, KCNK3, HMGN2P40, ADCY5, PADI4, CTD-3154N5.1, C11orf96, 

AC010745.1, RHBDL2, RNA5SP259, COL25A1, MDS2, XIRP1, MIR663A, RP11-

19E11.1, RNF212, EXD1, FENDRR, CPLX2, HEPACAM, TMEM27, IFIT2, ID3, 
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PADI2, ADAMTSL3, RP11-381O7.3, LAMB1, SOX18, SLC5A4, CYP4X1, KY, 

RP13-631K18.2, AC087380.14, ZNF90, SEL1L3, C2orf50, RP11-116O18.3, 

ZNF718, FAM226B, AC007000.10, SGSM1, OR2B6, RDH12, OR1H1P, GABRR1, 

CORO6, RP11-21L19.1, PIP5K1B, BTN3A3, CD1D, FOXH1, ADAM33, RAB3IL1, 

SLC25A21, RP11-973H7.1, RPH3A, AFAP1L2, VWA1, RP11-731K22.1, SIMC1, 

ESYT3, SERP2, MAGEA12, CREG1, PHOSPHO1, RP11-276E17.2, HIST2H2AA4, 

SIX1, GNAS-AS1, PARP8, HLA-DOB, AC072052.7, LRRC37A5P, FMO5, HS3ST5, 

IGF2, RGPD2, RP11-240M16.1, LTBP2, CTC-340D7.1, C2orf62, CSPG4P5, 

ADRA2A, CTD-2311M21.2, RP3-510L9.1, CPQ, PRR15L, RP4-794H19.4, 

KIAA1199, ZNF204P, CT64, SLURP1, PALM, AC079776.1, LURAP1, RP11-

145M4.2, FLNC, RP11-95P13.1, MYO6, RAB3D, ATRNL1, RP11-277B15.2, RP11-

363N22.2, C19orf35, SP140L, AC011747.7, RP13-977J11.2, CTB-35F21.4, 

PARP14, FGF12, CPNE5, NAV3, IFI6, RP11-64K12.10, SULT2B1, GS1-304P7.2, 

ABCG4, COL15A1, FGF13-AS1, GBP2, C15orf37, TRIM55, TLR10, ERP27, 

PLCE1-AS1, HELZ2, RP11-680F20.11, SRSF12, RP11-757G1.6, BMS1P17, CTD-

2611K5.5, RP11-356I2.1, RAET1E, DUOXA1, SNTG1, MSTN, TTBK1, TMEM216, 

INTS4L1, FMO4, LLNLR-299G3.1, PRCP, UNC93B3, PARK2, RP11-374A4.1, 

SATB1, RP11-268P4.5, RP11-355I22.2, RP1-79C4.4, RP11-266O8.1, MICALCL, 

ADAMTS16, RP11-4B14.3, RP1-150O5.3, AF196972.9, RP11-3L10.3, CCL2, 

SYT12, FAM183A, ITPR1, ADAMTS10, NRK, EMID1, COLCA2, SLC2A10, RP11-

579D7.8, PRSS56, GSTT1, GUCY2C, EDARADD, CILP, SLC13A3, FAM66A, 

MAOA, RP11-196E1.3, FABP9, SLC43A3, ADCY8, RNF152, UBE2E2, ROBO4, 

LINC00877, MTNR1B, CD83, ZNF572, MYH7, CTD-2267D19.3, FMO3, THSD4, 

MTTP, SPESP1, RUSC2, TEX11, MGAT4A, C15orf65, THSD7B, NBL1, CYB5R2, 

KCND1, SYNGR4, KIRREL3-AS1, GIMAP1, RP1-90G24.11, FBLN2, RASGRP2, 

PNMA3, PARP12, MYO3B, HOXB-AS2, AC016735.2, AARD, ULK4P3, ABCC11, 

PABPC1P7, RP11-2G1.1, HSH2D, SIGLEC15, RP11-407A16.1, GOLGA8M, 

CXCL11, APOBEC3F, PTK2B, CTB-60B18.18, VASN, RP11-507K2.3, SCML2P2, 

AL121578.2, RPL6P7, RP1-90G24.10, OGFRL1, POU5F1, ARG1, STX1B, RP3-

416H24.1, FAM46B, GRIN2A, RN7SL614P, GPLD1, PCOLCE2, HOXD-AS1, 

PDE1B, HCLS1, SLCO3A1, GPR68, NBPF3, RP11-347C12.3, RP1-290F12.3, 

RN7SL316P, AC079305.11, RP11-328P23.2, RS1, RP11-255E6.5, RP11-561C5.5, 

MLKL, KCTD16, RP11-1000B6.3, AC083949.1, LIPH, AP001092.4, OR13E1P, 

TNFSF12, CNRIP1, RP11-806K15.1, OR5BK1P, RP11-21A7A.3, DNM1P47, 

TBC1D10C, ABLIM2, HOXB-AS3, FABP3, RANBP3L, CSMD1, EFHD1, HIF3A, 

RP11-266L9.6, GOLGA8A, CNNM1, LAMA4, RP11-678G14.3, NKG7, TIE1, 
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SCPEP1, RIC3, CENPV, CASP4, SPINT2, RHOXF1, HOPX, RPL7AP33, MFAP2, 

RP1-69M21.2, NRP1, CCDC170, ADCY7, DHH, AL021917.1, RP11-402L6.1, 

AC007000.12, COX6A2, CARM1P1, RP11-326C3.2, PXDNL, HOTAIR, COL17A1, 

SLC22A15, CTC-260E6.11, THEMIS2, RP11-403I13.5, AC109333.10, MAP6, 

RP11-332L8.1, LINC00487, CDSN, LINC00202-1, FAM13A, RGS4, IQGAP2, SRL, 

RP11-396C23.2, FRG1B, OSTN, UMODL1, FOXP2, RP11-554A11.8, AF186192.6, 

HSPD1P7, GOLGA8S, IFITM10, CTD-3145H4.1, COCH, LRRC43, KCNC1, NFE4, 

PGM5, AP001626.2, RP1-86C11.7, MMP28, PRKCQ, PROCR, HLA-B, 

HIST1H2BD, RP11-167H9.4, LOXL2, MAFA, RP1-161N10.1, CTC-329D1.3, RP11-

23J9.4, ZNF492, RP11-70P17.1, AHNAK, AC140481.1, LDLRAD2, GPR1, ACSL6, 

FOXC1, C8orf31, TRIM21, OR2W6P, RP11-394I13.1, HERC2P3, GPC3, SLC14A2, 

RP11-46I8.3, RP11-369K16.1, SERPINF1, IZUMO4, ZNF890P, SLC26A9, CNTN4, 

PRX, SLC22A5, RP11-15B24.5, IFIT1, AC109642.1, RP11-227D2.3, LGALS12, 

RP11-1191J2.5, PCOLCE, RP11-495P10.3, MAGED1, GBX1, RP11-182J1.15, 

CTC-360J11.4, CTD-2534I21.9, TRPV2, SP100, RP11-31L23.3, RP11-297M9.2, 

EHD3, LDHAL6EP, RP1-313L4.3, DLX5, SNUPN, HOXB9, IL11RA, IMPA1P, CTD-

2227E11.1, RASGRP1, SYT6, TMEM63C, WI2-2334D6.1, AP000330.8, RP11-

177H13.2, RP11-472N13.2, C16orf96, CXCL16, RP11-175B12.2, RP11-247C2.2, 

GFI1, DDX58, RP11-110I1.12, RASD2, MYO15A, RP11-157J24.2, AC007391.2, 

RP11-492E3.2, IFITM5, COL5A1-AS1, AC145343.2, PPAPDC1A, DENND1C, 

CES4A, AGT, KCNG2, ADORA2B, AC104699.1, CD300A, CD22, RP11-89M16.1, 

RP11-483H20.6, C1orf145, RNU6-446P, SEMA3C, RP11-326C3.11, CTD-

2384A14.1, AC024704.2, DGKI, PRICKLE1, RP11-365O16.3, GOLGA6A, 

TMEM246, CCDC33, RP1-125I3.2, FCGBP, HOXB7, RP11-107N15.1, CTD-

2555A7.2, RP13-314C10.5, CRYGA, STOML3, CASP12, RP11-485G7.5, ZIC2, 

CLCA2, PSCA, RP11-351N6.1, CDHR1, PRKCD, RP11-27N21.3, CTD-3092A11.2, 

ZNF663P, AC115115.3, TRIM50, RP11-462G12.1, ACBD4, CCDC175, PGM2L1, 

RP11-461O7.1, KLF9, COL6A1, RNU6-353P, RD3, SLFN13, AC010733.4, NKX2-

5, NLRP6, TAGLN, VEPH1, SLC46A1, KLHDC9, FRMPD2, CTD-2589M5.4, CTD-

2277K2.1, PEBP4, RHOD, KCNAB3, HRH2, NPM2, ECHDC2, GREB1, SLC6A17, 

FBXO25, RP11-356I2.4, RP11-112L6.3, RTN1, AHNAK2, LY75, RP11-319G9.5, 

DENND2D, CTD-2542C24.2, RP11-275O4.3, CNTFR, NFAM1, NAT1, RP5-

1039K5.16, IMPG1, B3GAT2, KITLG, RP11-214O1.2, CDK18, DNASE2B, 

AC009950.2, MAPK8IP2, ZNF883, TBC1D3P5, AC096559.1, SMPD4P1, 

GOLGA8Q, TMEM221, DNAH3, CTC-367J11.1, BTN3A2, ARHGAP26-IT1, CASK, 

FOXP3, PIGR, TMEM88, RP11-345J13.1, RP11-145M4.1, WI2-81516E3.1, 
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RNF222, AC005559.3, RGCC, VAMP5, FXYD1, RP11-149I23.3, RP5-905G11.3, 

FGD5, AC024592.9, PLA2G16, SAMHD1, IRX3, BSND, FCGR1A, RP11-534L20.5, 

CST3, CYP19A1, PDIA2, TRNP1, AC062028.1, TEKT5, MIR298, SAR1P1, FREM1, 

LITAF, DACT1, RP11-387H17.4, TSPYL2, RP11-89B16.1, LST1, RP11-395D3.1, 

SLC40A1, USP18, RP11-150O12.6, FAM196A, ISG15, RP11-863K10.2, 

AP000783.1, RP1-249H1.4, RP11-1M18.1, RP11-445H22.3, RP11-578F21.9, 

ALDH2, TSC22D1, RNU6-548P, TOM1L1, OTOP2, SLFN11, CTB-60E11.9, 

TPTE2P1, CILP2, RP11-848P1.9, COL28A1, ARHGEF7-AS2, TMEM150C, 

SCN11A, ABCA4, EPHX2, PPP1R2P1, A3GALT2, GIPC2, MKRN7P, ETS2, 

CNTFR-AS1, NIPA2P4, ZAP70, CCDC87, AC007000.11, RP11-736K20.5, GDPD5, 

RP11-284F21.8, LRRD1, CREB3L1, RP5-915N17.3, CASP5, RP11-281O15.4, 

AC098973.2, ARHGAP26-AS1, MEIS3P1, RP11-315I14.2, KB-1460A1.2, 

DYNC2H1, CDC42EP3, AKAP7, RP11-770E5.2, AC118278.1, CCDC148, RP11-

495P10.2, CAPG, PTPRD, COL4A6, XYLT1, RP11-25I15.3, PLCH1-AS1, RP11-

413E6.1, FMO1, RP5-916L7.2, SP7, RP11-293M10.6, RP11-231G15.2, PSTPIP2, 

ARHGAP26, APOL6, FAM19A5, C9orf135, AC139100.3, MICF, APOH, SLC35D3, 

FZD4, BSPRY, GBGT1, OR52N4, RP11-480N24.4, NXF3, ATHL1, RP11-399D6.2, 

GPR18, RNU1-122P, SDR42E2, HSPA2, CXorf67, CTD-3074O7.2, DDO, KCNQ1, 

RP11-579D7.4, ZNF541, IL1R2, RP11-430B1.2, CTD-2517M22.14, RP11-

368I23.3, CSGALNACT1, COL19A1, DAAM2, UPK2, CDC42EP5, CTD-2315E11.1, 

RASGRP3, NBPF2P, SMIM2-IT1, ALDH8A1, WHAMMP2, PHKA2-AS1, 

LINC00341, ID2, RP11-495P10.5, ADC, RP11-243A14.1, RP11-1180F24.1, MT-

TT, HIST2H2BF, GIPR, CTD-3092A11.1, RP11-1094H24.4, SRGAP1, EIF4A1P12, 

RP11-657O9.1, CLDN10, SCN5A, AC015849.13, AL133493.2, CRB3, ZNF835, 

AMOTL1, CCT8P1, PCDHA1, C6orf223, NDRG4, CAMTA1-IT1, RP11-25K19.1, 

BTN3A1, NKX3-2, MLPH, RP11-68I3.10, SCTR, KCNK10, PCDHGA8, FLRT3, 

MAGED4, ADIG, SH3GL2, CTSH, GUSBP5, FAM228A, HIST1H4H, C9orf173, 

AC010987.6, ZNF454, PC, FAM71E1, KNDC1, AC009518.2, AC068831.3, RP11-

21A7A.4, RP11-236F9.2, RP11-8H2.1, TMPRSS3, RP11-91J19.4, MTOR-AS1, 

EXOC3L4, PSORS1C2, HIST1H1D, USP43, PLA2G4C, RP11-451M19.3, RP11-

535M15.2, GBX2, RP11-712L6.5, FOXD3, PATL2, STAC2, MR1, IL20RB-AS1, 

SEC14L4, RP11-158I9.5, RP11-54D18.3, HUNK-AS1, FCGR2B, RP11-326C3.14, 

CA4, RP11-81K2.1, LRRC8B, RP11-466G12.3, CCNB3, RRBP1, MAP1LC3A, 

C19orf45, RP13-152O15.5, CHST1, PDCD4-AS1, RP11-401P9.4, AC011816.1, 

WNT10B, RP1-56K13.5, CTD-3064H18.2, FAM180B, AK8, RP11-923I11.6, 

ZNF311, AC115522.3, RP11-753H16.5, ZNF618, SLC25A43, RP11-113K21.4, 
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GMCL1P1, IMMP2L, CDC37P1, RNF144B, RP11-279N8.1, AC005618.6, GPR152, 

RP5-1050E16.2, RYR1, HLA-DMB, DEFB109P1, ISM1, SLC43A1, ATP2B2, RP11-

355I22.7, AC008073.9, ADORA1, RP11-247A12.2, FAM47E-STBD1, KLF8, 

TAPSAR1, DRD5P1, AC068282.3, FIBIN, C1orf226, PRSS42, KLHDC1, MKNK1-

AS1, ULK4P2, KIF16B, RP11-508P1.2, CYP46A1, COL11A1, 45173, INSR, 

PITPNM1, RP11-227D13.1, RP11-569A11.1, NRG2, GRB7, RNU6-729P, 

AC073343.1, SELV, ONECUT2, INTS4L2, GRM6, LINC00882, OTOL1, PLCE1, 

PDYN, AC005532.5, ANKRD55, DIRC3, DYNLRB2, L29074.3, CES3, AC010092.1, 

RASSF5, PSORS1C1, AC010641.1, PKNOX2, KIAA1467, RP11-318M2.2, OVOL1, 

MIR3936, CTB-111H14.1, CATSPER2, SPARC, DENND3, RP11-179A10.1, 

MKI67IPP4, AP000351.8, GPR4, SOX30, RP11-426L16.9, RP11-678G14.2, 

DEPTOR, HCAR1, CMP21-97G8.2, CTC-241F20.3, NTF4, RNU6-1085P, CTD-

2258A20.5, UBQLNL, MYBPC1, FAM181B, RP11-473M20.5, TNFRSF10D, TEX14, 

FAM66B, C2, ROCK1P1, SORCS1, SESN3, CCR1, DLX2, DTX1, TRAJ23, RP11-

441F2.5, SULT1C2, ULK2, RP1-1J6.2, FUCA1, STXBP6, UBBP4, TBX15, 

C14orf132, TRPS1, PRPH2, RP11-819M15.1, CSF1, CXorf36, C6orf141, SPINK2, 

RDM1, FAM49A, AGBL2, ABCC8, RBM44, XXbac-BPG55C20.7, ATP5F1P5, 

DUSP13, YPEL4, AC034220.3, C17orf105, NGFR, CDON, CDH1, RPSAP52, 

CARNS1, ASAP3, RP5-882C2.2, BEAN1, LINC00594, ZNF354C, UTS2B, DLL4, 

CTC-510F12.4, TRIM5, CHRM3-AS2, RP4-764D2.1, DCDC2, KLHL7-AS1, 

C20orf166-AS1, CNN2P3, CTD-2623N2.5, RAB34, TJP2, TMEM59L, RP11-

150D20.5, RP11-782C8.3, ZNF483, SCGB2B2, TNFRSF21, PRICKLE3, ID1, TRH, 

RP11-495O10.1, PYGM, RCN3, AC114788.2, SPTBN2, PLS1, SLC12A3, 

PPFIBP1, NFATC4, FAM185BP, CTNNA3, RP11-396C23.4, CD4, SLC37A2, 

AC003102.3, AC007386.4, RP11-864I4.4, RP11-439A17.9, MT1M, PLCXD2, 

TSSC2, RP1-179N16.6, PCDHB17, BACH1-IT2, EMP3, SDAD1P1, RP11-

736K20.6, IQSEC3, CTD-2189E23.1, RP11-675F6.4, RP11-517P14.2, SYCE3, 

RP11-482M8.1, ROBO2, CACNA1E, GSDMD, PPP1R1B, RP11-43N5.1, RP11-

753H16.3, ZNF391, SIRT4, FRMPD1, PRKAG2, NSD1, BTBD19, SLC2A4, RP11-

182J1.16, RP11-1079K10.2, RGS18, ZIC5, PKD1L2, RP11-142A5.1, RIMS3, 

RP11-94C24.6, RP11-44M6.1, RNA5SP385, SIK3-IT1, FAT3, ADCY4, LPP-AS1, 

TMEM171, PTCHD4, RP11-757A13.1, FSIP1 

726 downregulated DEGs 

CEP55, RPL13P12, NETO2, RP4-575N6.2, EXO1, RP11-437L7.1, AC138655.6, 

CA14, EZR, CDHR2, LTBR, SNORD125, E2F7, RPL18A, ZWINT, CTD-2316B1.1, 

KCNRG, RPL10P3, SYCP2L, RP11-63N8.3, RNU6-1091P, ZBED3, ZNF552, 
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NPPA, NEO1, GSTT2B, RP11-116N8.1, TRAV30, RRM2, RPLP0, ARC, ENKUR, 

AC008278.2, CH17-12M21.1, RP11-436D10.3, ZNF331, RP11-282K24.1, RP3-

395M20.2, LRRC34, RAB32, RP5-826L7.1, CEP152, ELOVL6, DRP2, CTC-

529L17.1, KIF18B, PSD, MIR4673, EEF1A1P12, RP11-35O15.1, AOC1, 

GAPDHP63, RP11-215A21.2, XXbac-BPG170G13.32, SCARNA2, ZC3H12B, 

AC132008.1, TNNT1, RP1-127H14.3, RIIAD1, BAG1, TRAV41, RP11-175B9.3, 

RP5-1024G6.7, RN7SL535P, AL162151.3, SNORA47, CENPW, CTD-2044J15.2, 

NCKAP5, CDH5, AC007163.6, CDC45, AP000289.6, MT-TS1, NANOS3, 

PLEKHS1, RNU7-128P, RNF219-AS1, MCM5, PCDHB12, E2F2, IFITM4P, 

SPDYE2B, RPL18AP3, RP11-16E18.1, SDK1, RP11-375I20.6, RP11-224O19.2, 

RP11-556K13.1, PCDHA5, RP11-650L12.2, CTB-63M22.1, AC096677.1, 

NT5C3AP1, TBATA, RPS2P46, RP11-259K15.2, LRRIQ4, RP11-782C8.5, CTD-

3088G3.4, SMARCA5-AS1, SLC46A3, ABHD17AP3, OPN3, AC016708.2, 

C22orf31, AC004471.9, RP11-737O24.5, PAPLN, RP11-453F18__B.1, HCCAT5, 

CSRP2, ST6GALNAC5, CTC-543D15.1, BPIFB4, PRH2, RP1-137D17.1, 

AC138123.2, ZNF219, RP11-157F20.3, RP11-288K12.1, CTD-2561B21.3, RP11-

728K20.2, EIF4E1B, YBX1P1, FAM21B, AC018804.6, EPGN, CTD-2192J16.15, 

AC007773.1, RP11-524C21.1, BEX1, CAMK2A, AC004381.7, ASB9P1, RP11-

15A1.3, GPRIN1, AVP, PCDHA2, DDC, RN7SL771P, ZMAT1, ARHGEF28, 

RPSAP15, EEF1A2, AC006042.8, KIAA0101, RP11-811P12.3, CTHRC1, PTPRB, 

RP11-227D13.4, C2orf88, GAPDHP40, CAMK2N1, RPLP1, SMIM3, BNIP3P1, 

API5P1, RP11-774D14.1, RP11-4C20.4, RPL37P1, RP11-159N11.3, ZNF101P2, 

RP5-1172A22.1, RP11-1024P17.1, IL36G, PDLIM1, RP11-613M5.2, NMB, RPL10, 

ANKRD10-IT1, RP11-936I5.1, MYCL, PTP4A3, HUS1B, SFRP4, CTA-85E5.10, 

ENC1, RP11-73C9.1, HIST1H1B, RP11-676F20.2, RP11-561N12.7, TUBB2B, 

FOXM1, TRAV27, CTC-467M3.1, RP13-672B3.5, RP11-84A1.1, SCARNA10, RP5-

827C21.1, LINC00618, ACAP3, AC114803.3, RP5-1098D14.1, DNER, TMEM255B, 

RP11-417J8.6, PUSL1, RP11-150L8.4, FAM115C, RP11-820K3.3, RP11-36B15.1, 

AC011247.3, AC006946.15, RP11-328M4.2, HOTTIP, RP11-290L1.3, MDFIC, 

AC074289.1, RP11-594N15.3, RP11-751K21.1, RP11-114H23.3, RPS2, 

RPS3AP3, SNHG8, PLLP, WDR72, RP11-641D5.1, AC107021.1, CTD-2372A4.1, 

CR381653.1, RP1-155D22.1, HIST1H2BB, AC005795.1, AC083863.5, RP11-

43A14.1, HERC2P10, RPS2P5, CTC-575D19.1, MSH4, MIR4786, RP11-480I12.5, 

RP11-815J4.7, ACN9, RPS2P55, AP000936.1, RP11-274H2.5, RP4-694A7.4, 

TRAV28, NAV2-AS5, FGD4, RNA5SP323, AXL, RP11-195E2.4, RP11-567O16.1, 

RP11-286H14.4, SCARB1, MIR146A, MYOC, ZNF850, CHRNA5, HSD11B2, 
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AL009178.1, AK3P3, RPSAP58, RP11-376O6.2, RP11-525G13.2, HIST3H2BA, 

RP4-555D20.4, RP11-204L24.2, RP11-432F4.2, TMEM190, RP11-187C18.3, RP1-

128O3.6, PCDHB7, RP11-86H7.6, C2orf70, DRD2, SNORA84, IGHV1OR15-1, 

AC144449.1, CTC-563A5.4, RP4-676L2.1, TMEM74, VTRNA1-2, IGSF5, 

AC007375.1, RP11-145A3.1, RP11-699L21.2, FOXB1, PNPLA3, PLAU, CASC6, 

DNAH14, RP11-1007I13.4, TAS2R6, AC068538.4, GAS5, HIST1H2AJ, RP11-

360L9.7, RP11-93O7.5, AC073072.5, SMARCE1P2, MIMT1, COX6B2, MFAP3L, 

TRDV2, ACTBP7, RNA5SP493, RP11-588H23.3, CTC-265N9.1, TNS3, PTENP1, 

MIR3648, IKZF2, AC009005.2, RP11-561B11.6, RP11-33A14.1, MAP1LC3C, RP3-

395M20.3, TGIF2P1, PPIAP29, MYO18B, CLDN7, RP11-448P19.1, MND1, RNU1-

2, RP11-285C1.2, FAM127B, PROS1, SCEL, MEGF11, RP11-779O18.2, PRRG1, 

RP11-708B6.2, AC003003.5, RP11-9E13.4, AP001046.5, RP11-758M4.1, IL6, 

TAGLN3, ARL5AP3, REG1A, SCNN1G, RP11-647P12.1, CTD-3148I10.1, LRRN4, 

RP11-125B21.2, GOLGA8UP, RPL21P132, PABPC1P4, GPR52, RP1-93I3.1, 

RP11-488C13.4, AC097713.2, BCHE, RP11-696N14.1, RPL12P37, TAS2R5, 

KMO, DISC1-IT1, BX470102.3, CASC8, SNORD3B-2, LINC00511, RP11-746P2.3, 

GP6, PLOD2, MACC1, IL1RAP, JAM2, MYB, IGHG2, AC004410.3, CTNND2, 

RP11-644C3.1, RP11-131L23.2, PNLIPRP3, RP1-125I3.4, SUN5, KIAA1658, 

AC009061.1, ADH6, TRAV33, RP11-678B3.2, MB21D2, RAD21L1, PCDHA4, 

KCNMB4, NCAM2, AC019221.4, FAM19A2, THEM4, SLC7A5, IGHG3, RP11-

512H23.2, RP4-555D20.2, CCR9, RENBP, CDH19, NLGN4Y-AS1, AC012066.1, 

RP11-829H16.3, RP1-182D15.2, MAGEA8, SNORA80B, S100A2, KISS1R, 

CPLX1, SH3TC2, RP11-536O18.1, RP1-40E16.9, RP11-1275H24.1, MGST1, 

TRAM1L1, RP11-1275H24.3, UCHL1, ADAMTS14, DBNDD2, RPL29P14, EFNA5, 

RN7SKP230, ITGA1, RP11-849F2.4, CTD-2303H24.2, CA9, RFX4, S100A6, 

OPCML-IT1, RP11-698N11.2, SLC44A5, NANOGP4, RP11-17E2.2, GPC6, RP11-

647O20.1, RP11-434O22.1, C10orf55, ARL4C, C19orf81, RNA5SP442, IGF1R, 

NAP1L3, RP11-693J15.5, CHADL, RP11-351J23.2, CYR61, CDH11, TMEM169, 

PI15, RP11-381N20.2, RP11-82L7.4, KRT18P63, RP11-525A16.4, RN7SL354P, 

AC010731.2, RP11-338O1.2, RP11-219J21.1, MEST, AMOTL2, AC021218.2, 

ZNF536, RP11-439E19.7, CLGN, RP11-867G23.10, RP1-97D16.1, RP11-390F4.2, 

AKT3, NHLH1, CTNNA2, KCNH7, PLA2G3, LPCAT2, GOLGA6L2, MROH2A, 

FRMD4A, AC061992.2, CTD-2049O4.1, RP11-713P17.3, RPS4XP6, CNN2, RP11-

269F20.1, RP11-351I21.11, RN7SKP296, GLIPR1L1, RNU1-47P, RPL10P1, RP11-

284F21.7, AC073109.2, RP13-870H17.3, S100A5, RP11-838N2.4, CTA-392C11.1, 

CLVS1, RP5-1178H5.2, RP11-185E8.1, RP11-65J3.14, RP11-390P2.2, 
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TCEB1P18, RNVU1-15, GNAI1, NPTX2, ECM1, ASB9, RP5-998N21.7, LOXL4, 

RP11-352D3.2, RP11-317P15.5, DGCR11, MAGEA10, CCDC144B, H2AFY2, 

CNR1, RP11-524C21.2, RP4-668G5.1, TMEM192, RPL32P31, CYP4F12, RP11-

40F8.2, FGF11, RP11-106A1.3, RN7SK, GCOM2, PDZD2, PCAT1, RNU6-623P, 

RP11-212I21.4, GPR158, PCDHB11, S1PR4, HOXA11-AS, RP4-718D20.3, PHEX-

AS1, RP11-227D13.2, AC093677.1, TBXAS1, DTHD1, RP11-907D1.1, RP11-

351J23.1, LRRC4, MIR138-1, RP11-139K4.2, DPY19L2, RP11-15A1.2, POU5F1B, 

AC068535.3, RP11-429B14.4, RP11-218L14.4, INSM2, AC104777.4, VDAC3P1, 

B3GALT2, EPB41L4A, AC012360.6, RP11-567J24.4, MAGEA8-AS1, C10orf107, 

RP11-564C4.6, RP11-739N20.2, TERC, RP11-434I12.2, AC005754.8, TSC22D3, 

ACOT1, AC093668.1, GPR63, NAV2-IT1, HES6, LINC00896, RP11-681N23.1, 

RGS8, BARHL1, NOTCH4, RP5-857K21.4, CD200, NPY, AR, AC060834.2, RP11-

539I5.1, NEU4, KCNJ8, RP11-881M11.1, AIF1L, RP1-170O19.14, FDPSP8, 

TMLHE-AS1, RP13-439H18.4, CREG2, KRT8P3, TMTC2, LRRTM3, AC005754.7, 

NDNF, MARVELD1, MID2, OTOGL, AL353791.1, MN1, ARPP21, PID1, RP11-

348J24.2, MYO5B, RP11-85M11.2, PDLIM5, AGAP1-IT1, MIR378A, EPB41L4A-

AS2, WBSCR17, RPS3AP44, PCDH10, SNCB, RYR2, COBL, DLL1, RP11-

170M17.1, RP1-102K2.8, PCDHB3, LINC00928, TSPAN12, VCAN, HMX3, 

LINC00404, GRM8, GLDC, HIST1H3F, GPR126, DLG1-AS1, AC019118.2, USP53, 

RP11-1336O20.2, VN1R67P, TMPRSS11D, RP11-435B5.3, PKIA, NUTM2E, CTA-

992D9.7, UCA1, RP11-309M7.1, CTC-529P8.1, ARHGAP15, RP11-523L20.1, 

RP11-214L19.1, SLC30A3, SERPINB8, CASC15, PNPT1P1, AC010145.4, 

AC097713.4, FHOD3, RPE65, RP5-1033K19.2, RP11-241F15.9, RP11-563N12.2, 

RP11-838N2.5, RP11-90K6.1, KCNH8, RDH10, NNMT, CXorf57, CADM2-AS1, 

RP11-405A12.1, ERBB4, RP11-807H7.2, ZDHHC2, OPCML, ARF1P2, MFNG, LIF, 

RP11-408A13.2, DACH1, RP11-706J10.3, SLITRK3, LINC00158, TLL2, MIAT, 

AC097713.3, TEKT4P2, CTA-796E4.3, LINC00925, RP11-380P13.2, LINC00659, 

CTD-2245F17.3, SVIP, RP3-404K8.2, LPHN3, ACKR3, CTD-2023N9.3, SLC35F3, 

HPSE, RP11-379L18.1, RP11-390F4.6, LINC00403, PTCHD1, KRT8P48, CFI, 

UGT8, RP11-402J6.1, RP11-282I1.1, SEZ6L, CTA-796E4.4, EPHA5, TRBV26OR9-

2, RP11-27G24.1, YBX3, RP11-986E7.7, DOK6, GLDCP1, RP11-807H7.1, RP11-

52L5.6, CDH10, NOL4, AC005537.2, POU4F1, LYPD1, RP5-1029K10.4, MECOM, 

KCNIP1, ASXL3, GJB1, RP4-724E13.2, VENTXP4, FUT9, RP11-97N19.2, RP11-

592B15.3, RP11-410K21.2, TRAV38-1, RP11-404J23.1, S100A9, RP11-384P7.7, 

RP11-419C19.2, S100A8, RP11-280G9.1, RP11-509A17.3, LPHN2, CADM2, 

RP11-603B24.1 
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Supplementary Table 2 123 DEPs in CHI3L1 OE proteomics data. 

90 upregulated DEPs 

CHI3L1, OPTN, SPARCL1, IQGAP2, CHPF, B3GALTL, RIC8A, TAP1, UBXN1, 

PRCP, WASF1, EEA1, MYH10, EPB41L5, SWAP70, LGALSL, PGM2L1, TMTC3, 

STXBP1, NOS1AP, IFIT1, BIN1, TANC1, FABP3, CPNE2, ITPR1, ARMT1, FKBP2, 

CPQ, STIM1, SDR39U1, CRELD1, LIMS1, IGFBP2, ATP1B2, UBE2L6, 

HIST1H2AC;HIST3H2A;HIST1H2AB, COMMD9, SERPINH1, CUTA, ACTR1B, 

KIFAP3, CST3, OXR1, LLGL1, RALB, SPARC, SPATS2L, GGACT, EMILIN1, 

FABP5, SYNM, ELAC2, RFX5, KLC4, ACSF2, C11orf73, STOM, VSNL1, PSMB9, 

HSF1, IFI35, FKBP7, CPT2, DNMT3A, GYS1, TAP2, PALM, PTPRG, SNRPD1, 

SLC27A1, FKBP10, OSBPL6, ADRBK1, PDIA3, GTF2E2, WBSCR16, CASK, 

SSR1, ARMCX2, MINK1, C8orf82, TRMT1L, LAMC1, MPRIP, HIBCH, SELH, B2M, 

DAK, INPPL1 

33 downregulated DEPs 

WDFY1, NRD1, CXADR, DPY19L1, TMX2, TFRC, MPP6, ADO, ITGB8, ENDOG, 

MARCKSL1, MZT2A;MZT2B, PLXNB2, EEF1A2, CDK1, COX5A, LACTB, 

SMARCAD1, RB1, PBXIP1, S100A6, CCDC97, HN1L, STAM2, CKMT1A, 

RNASEH2A, TIMM13, NCSTN, SOGA3, BCCIP, TUBB3, LIMD1, UCHL1 

 

Supplementary Table 3 152 DPPs in CHI3L1 OE phosphoproteomics data. 

129 upregulated DPPs 

AQP4_S285_1, GAP43_S41_1, MAPT_T720_3, AHNAK_S4995_1, 

SRRM1_S715_3, DCLK2_S308_1, EPB41L1_S510_1, DPYSL5_S532_1, 

TMPO_S156_2, BCLAF1_S422_1, NDRG3_S331_1, MAP2_T1619_1, 

CTTN_S11_1, NHSL2_S801_1, DIP2C_S89_1, STIM1_S519_1, SLC4A4_S257_2, 

SLC4A4_T254_2, ITPR1_S1598_1, PTPN11_S591_1, GAP43_S154_2, 

NHSL2_S576_1, CPT1B_T745_1, CTNND1_T869_1, PSIP1_T115_1, 

MAP7D1_S116_2, LIN37_S138_1, BRD9_S56_2, DBNL_S232_1, 

NHSL2_S1214_1, CTNND1_S230_1, NHSL2_S1072_1, SUN2_S12_1, 

SPATS2L_S526_1, CAMK2D_T287_2, LMNB1_S408_2, BRAF_S365_1, 

SPATS2L_S531_1, STIM1_S401_1, EML4_S171_1, PICALM_S16_1, 

URI1_S418_1, STIM1_S521_1, CXCR4_S339_1, PPP1R12C_T560_1, 

PLEC_S4386_2, GAB2_S480_1, STIM1_S668_1, MAPK3_T202_1, 

GAB2_S264_1, AHNAK_S5400_1, EPS8_S685_1, DIP2B_S100_1, DIP2A_S94_1, 

CTTN_S150_1, EIF4G1_S1077_1, EIF3A_S1262_1, LIMA1_S369_3, 

LIMA1_S365_3, SRGAP2_S1027_1, LEMD3_S261_1, PRKAR2A_T54_1, 
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PALM_S124_1, DPYSL5_S536_2, CABLES2_S130_1, LIMA1_S15_1, 

SRGAP2_S1013_1, OXR1_S16_1, NFATC2IP_S338_1, 44448_S332_1, 

EPHA3_S968_1, LIMA1_S266_1, CHN1_T192_1, RANBP2_S1456_1, 

CDC37L1_S88_1, TOP1_S10_1, SPATS2L_S467_1, ENPP7_S245_3, 

ENPP7_T244_3, ENPP7_T250_3, ENPP7_T251_3, SIPA1L1_S161_1, 

MYH10_S1935_1, EPB41L5_S348_1, RAPH1_S980_1, APC_S2449_2, 

APC_T2442_2, DEK_S71_1, ARPIN_S2_1, NOP16_S16_1, CASP7_S47_1, 

BCLAF1_S531_2, BCLAF1_S525_2, ACIN1_S240_1, CEP170_S1165_2, 

MTSS1L_S634_1, DBNL_T291_1, RGL2_S619_1, VIM_S419_1, 

SRSF12_S219_3, SRSF12_S223_3, SRSF12_S227_3, MTSS1L_T391_1, 

ETV6_S439_1, ARHGAP21_S495_1, ZNF521_S605_1, RAB1A;RAB1B_T75_1, 

ARFGAP2_S240_1, LSM14A_S374_1, VAPB_S156_2, APBB1_S517_1, 

CDK14_S24_1, CCNY_S21_1, NOL4L_S295_1, CSDE1_T761_1, 

CEP170;PLIN5_S1160_2, COIL_T122_1, KIRREL_S574_1, TOM1L1_S323_1, 

CDC42BPB_S1686_2, CDC42BPB_S1690_2, ADCY9_S1257_1, 

MMP14_S577_1, KIF13B_S1410_1, MPRIP_T542_1, AGAP1_T836_1, 

ZNF521_S273_1, PSMG1_T18_1, KLC2_S610_1 

23 downregulated DPPs 

SPTAN1_S33_1, SRRM1_S560_1, RBM15_S257_2, RBM15_S259_2, 

PPAN_S238_1, SIPA1L1_S1255_1, ZEB2_S731_1, GBF1_S352_1, 

SPEN_S1222_1, CCNL1_S335_2, MCC_S294_1, TCOF1_S1111_1, 

FRMD4A_S604_1, LSM14A_S183_2, LSM14A_S192_2, BAZ1B_S161_1, 

MSL3_S400_1, RTN4_S184_2, TDP1_T496_2, SCG2_S532_2, SRP72_S621_2, 

REPS1_S482_1, CENPA_T21_2 
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