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Zusammenfassung:

Die adaptive Optik (AO) ALFA, die vom Max-Planck-Institut für Astronomie am Calar Alto Observatorium be-
trieben wird, steht seit einigen Jahren für astronomische Beobachtungen zur Verfügung. Die wissenschaftliche
Verwendung von mit Hilfe dieses Instruments gewonnenen Aufnahmen, wird, wie auch bei anderen AO Sys-
temen, durch orts- und zeitabhängige Variationen der Punktverbreiterungsfunktion (PSF) erschwert. Aufgrund
anisoplanatischer Effekte und/oder Überbelichtung des Leitsterns ist es i.a. nicht möglich, Informationen über
die PSF aus Aufnahmen zu entnehmen. Daher ist es wünschenswert, unabhängige Schätzungen der PSF an
jeder Stelle des Sichtfeldes durchführen zu können.
Diese Schätzungen können aus Messungen von ALFAs Wellenfrontsensor (WFS) gewonnen werden. Zu diesem
Zweck war es notwendig, einen vorhandenen Algorithmus, der für Curvature-Sensoren entwickelt wurde, für
den in ALFA verwendeten Shack-Hartmann Sensor zu adaptieren. Dieser Algorithmus wurde dann mittels
Simulationen hinsichtlich Leistung und Anwendungsmöglichkeiten getestet.
Abhängig von der Helligkeit des Leitsterns und der gewählten Regelkreisfrequenz sind WFS-Signale unter-
schiedlich verrauscht. Um zufriedenstellende Ergebnisse mit dem PSF-Schätzalgorithmus zu erzielen, muss
dieses Rauschen verlässlich bestimmt werden. Für ALFA ist diese Bestimmung nur indirekt durch Zeitreihen-
analyse der WFS-Signale möglich. In diesem Rahmen wird eine neue Schätzmethode vorgeschlagen, die im
Fall dunkler Leitsterne und niedriger Regelkreisfrequenzen sehr gute Ergebnisse ermöglicht.
PSF Schätzungen abseits der Korrekturachse erfordern die Kenntnis der vertikalen Turbulenzverteilung in der
Atmosphäre. Daher wurden simultan zu Beobachtungen mit ALFA Messungen mit einem SCIDAR-System
durchgeführt. Diese Messungen dienten zudem der Überprüfung von Werten atmosphärischer Parameter, die
aus WFS-Signalen sowie Sternaufnahmen gewonnen wurden.
Der abschließende Vergleich von aus Aufnahmen entnommenen PSFs mit den entsprechen Schätzungen ergab
in allen Fällen gute Übereinstimmung. Zudem ergab sich eine erhebliche Verbesserung der photometrischen
Genauigkeit bei Verwendung einer lokal geschätzten PSF gegenüber der Leitstern-PSF.

Abstract:

The ALFA adaptive optics (AO) system, operated by the Max-Planck-Institut für Astronomie at the Calar Alto
Observatory, has been available as a standard facility instrument for some years now. As with other AO systems,
however, the scientific use of observations with this instrument is complicated by the time- and space-variant
nature of the system point spread function (PSF). Generally, the PSF information cannot be taken from the
images due to anisoplanacy and/or overexposure of the guide star. It is therefore highly desirable to obtain an
independent estimate of the PSF at each position in the field of view.
This estimate can be derived from the wavefront sensor (WFS) signals of the ALFA system. It was necessary
to adapt an existing algorithm developed for curvature sensors to the Shack-Hartmann sensor (SHS) used on
ALFA. The practicability and performance of this algorithm was then tested using simulations of atmospheric
turbulence.
WFS signals are affected by noise, depending on the brightness of the guide star as well as the selected loop
frequency; this noise has to be reliably determined in order to obtain satisfactory results from the PSF estimation
process. With ALFA, noise estimation is only possible indirectly by time-series analysis of the WFS signals. A
new method is proposed that delivers superior results for faint guide stars and low loop frequencies.
PSF estimation away from the guide star requires knowledge of the vertical turbulence profile of the atmosphere.
Hence, SCIDAR measurements were carried out alongside AO observations. These measurements also served
to cross-check estimates of atmospheric parameters gained from WFS signals as well as images.
Finally, on- and off-axis PSFs extracted from images were compared to their estimated counterparts, with good
agreement found in all cases. Additionally, it could be shown that the photometric accuracy is strongly improved
by using a locally estimated PSF as compared to the guide star PSF.
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Chapter 1

Introduction

The last decade has seen a growing number of observatories being equipped with Adaptive Optics
(AO), a technique to correct for the degradation of astronomical imaging by the earth’s atmosphere.
The fact that the performance of telescopes was not only restricted by shortfalls in the manufacturing
of mirrors and lenses or alignment accuracy, but also, and strongly so, by the movements of the air
was noted as early as 1704 in Newton’s Opticks.

Since the invention of the telescope, there were two main desires of the astronomers using that instru-
ment: to “go deeper”, meaning to be able to see ever fainter objects in the universe, and to “resolve
higher”, in order to study finer and finer details of the celestial bodies. Both of these goals are subject
to limitations due to atmospheric turbulence. For all of the improvements of astronomical observa-
tions, beginning with photographic plates up to the modern electronic detectors like CCDs and APDs,
the maximum spatial resolution even of the latest 8 m class telescopes is not higher than that of am-
bitious amateur equipment with aperture diameters of some tens of centimeters. The reason for this
is that the resolving power of telescopes is seeing- rather than diffraction limited, i.e. determined not
by the optical properties of the instrument but by that of the atmosphere. Sensitivity is also affected
and the consequences are dramatic: while the time to reach a given signal-to-noise ratio (SNR) on a
specific object would fall with the 4th power of the aperture diameter in the diffraction limited case,
it only falls with the 2nd power under seeing conditions. So, the step from 3m to 10m class tele-
scopes could reduce the necessary integration times by a factor of 100, while under real conditions
the performance gain is more about a factor of 10.

There are two ways to overcome the restrictions of observing through the atmosphere: either by
avoiding it altogether by putting instruments in space or correcting for its degrading effects while
observing from the ground.

The success of the Hubble Space Telescope (HST) has shown the promises of observing from space.
Not only did it reach the imaging quality allowed by its optics, but it also benefited from the absence of
other complications of ground-based astronomy: notably the missing of sky background noise as well
as atmospheric emission and absorption lines in spectroscopy. The downside of HST’s tremendous
achievements, however, lies in its price; development and launch alone summed up to about 3 billion
US dollars, and its share on NASA’s budget for maintenance missions and the necessary infrastructure
is also substantial. For this reason, space telescopes offer only a partial, if very important, solution to
the problems imposed by imaging through the atmosphere.

This leaves the option to improve ground-based observations by techniques that correct for atmo-
spheric distortions. Speckle imaging solves the resolution problem but wreaks havoc on sensitivity;
the very short exposure times (several milliseconds in the visual) dictated by this method increase both
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2 CHAPTER 1. INTRODUCTION

measurement and photon noise, thus limiting its applicability to objects brighter than 11th magnitude.
Additionally, diffraction limited images are only delivered through post-processing, rendering speckle
imaging unsuitable for spectroscopy.
The method of choice is therefore AO, that actively and in real-time compensates for wavefront dis-
tortions imposed by the atmosphere. Its basic principle is the measurement of phase aberrations on
a reference source which are subsequently compensated by a deformable mirror, with the goal to
keep those aberrations as small as possible. Today, AO can be regarded as a mature technology and
consequently is part of the instrument pool of every recent observatory.

A short history of adaptive optics

The concept of adaptive optics was first described in the 1950s by Babcock (1953); his account already
contained all the elements of a modern AO system, i.e. wavefront sensor, phase corrector and a control
system. Due to the technical limitations, mainly in sensor and computer technology, the system was
not sufficiently successful. Hence, the following decades concentrated on image movement (tip-tilt)
correction only, which is much easier to achieve. Beginning in the middle of the 1970s, however,
interest in the field grew again, albeit not for astronomical but military applications; since it was
mostly classified, much of the research did not reach the scientific community.
An French group independently developed an AO system for the Observatoire d’Haute Provence,
which employed a Shack-Hartmann sensor and a deformable mirror with 19 actuators (COME-ON,
(Rousset et al., 1990)). The same system was later upgraded and installed at ESO’s 3.6m telescope
at La Silla, Chile, where it finally became the first AO user instrument under the name of ADONIS
(Beuzit et al., 1994). Meanwhile, a different group developed a new sensor type, the curvature sensor,
along with a new kind of deformable mirror, the bi-morph mirror, which was installed at the Canada-
France-Hawaii telescope (CFHT) and after several upgrades evolved into the PUEO system (Roddier,
1988).
The success of these early AO systems prompted other observatories to develop similar ones for other
3-4m class telescopes, like Mt. Wilson, the Italian Telescopio Nazionale Galilei on La Palma or the
William Herschel telescope. Of these follow up systems, ALFA was the first to go into operation; it
additionally used a laser guide star (LGS) with varying success, that has now been decommissioned
in order to free up resources for LGS projects at larger telescopes.
All of the AO systems mentioned above were able to rival the infrared resolution of the HST under
good seeing conditions; recently, AO entered a new stage by obtaining images surpassing HST in
image quality with the newly installed NACO at ESO’s VLT(Brandner et al., 2002). Several other AO
projects for 8m class telescopes are currently under development or actual deployment and promise
to reach unprecedented image quality (e.g. GEMINI, SUBARU etc.).

Current trends in adaptive optics

With all the success of AO correction of astronomical imaging, there are two drawbacks which have
to be addressed for further development: the first is sky coverage, the second anisoplanacy.
Every AO system needs a guide star as a beacon for the correction of distorted wavefronts. Since, for
good correction quality, a high temporal sampling is needed with all wavefront sensor types, the guide
star has to be bright enough, i.e. has to deliver a high enough photon flux, to make such measurements
feasible. Even under most favorable conditions a star of at least 16th magnitude is needed for nearly
all AO systems.
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Due to the second problem, anisoplanacy, the corrected field of view (FOV) for an AO is limited to
several arcseconds, which means that the bright star has to be very close to an interesting astronomical
object (see also next section). In consequence, systems using natural guide stars as corrective beacons
are limited to a sky coverage of a few percent only.
The problem of guide stars can in principle be dealt with by using an artificial beacon, projected by
a powerful laser into the sodium layer at a height of approximately 90km. There are, however, some
difficulties connected with the use of laser guide stars, an account of which can be found in Ageorges
and Dainty (2000).
While laser guide stars are helping to overcome the lack of suitable stars for AO correction, they
do net help in eliminating anisoplanacy; but, since this problem is a consequence of the exclusive
correction of aberrations in the telescope pupil, it can be tackled by extending the range of correction
to layers above the aperture. This technique is known as multi-conjugate AO (MCAO), aiming to
measure and compensate aberrations originating in various heights of the atmosphere. There are two
main approaches for the technical implementation, atmospheric tomography (Tallon and Foy, 1990)
and layer-oriented MCAO (Diolaiti et al., 2001); while tomography requires several bright guide stars
and thus most probably a costly laser system, layer-oriented MCAO promises to reach very high sky
coverage using only natural beacons (Ragazzoni et al., 2002). As of today, however, no operational
MCAO system exists, so this interesting technique still has to prove its potential at a telescope.

ALFA

The adaptive optics system ALFA (Adaptive Optics with a Laser for Astronomy) is operated by the
Max-Planck-Institut für Astronomie (MPIA) at its 3.5m telescope located at Calar Alto in Spain. It
was installed at the telescope in 1996 and after several upgrades is used for scientific observations
since 1998. Its features include a 97 actuator continuous face deformable mirror and remotely ex-
changeable lenslet arrays for its Shack-Hartmann sensor. Originally, a LGS was part of ALFAs de-
sign, operating with varying success (Rabien et al., 2000), but this component was put out of operation
in 2000 in favor of a laser for VLTs CONICA system.
From 1998 to 2000 a number of very successful improvements were introduced into the system: the
use of Karhunen-Loeve instead of Zernike modes for measurement and correction, more accurate cen-
troiding algorithms for the Shack-Hartmann sensor and the keystone design lenslet array considerably
increased average correction Strehl ratios as well as loop stability (Kasper et al., 2000a). Today, ALFA
is capable to use stars with visual magnitudes as faint as ����� ��� as guide stars and still deliver K-
Band Strehl ratios of 10-20% near the diffraction limit. Using guide stars brighter than ���	��
 , the
Strehl ratio regularly exceeds 50% under good seeing conditions.
With the technical performance goal reached, attention was turning to the reduction and interpretation
of scientific data obtained with ALFA correction.

Why PSF reconstruction is needed - an introductory example

As already mentioned, the success of AO comes at a price. In uncorrected, i.e. seeing limited obser-
vations, the imaging properties of the optical system are more or less the same over the whole field of
view; in long-exposure imaging, if aberrations occur, they are static and mostly known . In that sense,
the telescope is isoplanatic. With an AO system, however, the point spread function (PSF) is neither
time- nor space-invariant. While time dependence is not dramatic and comparable to that of an un-
corrected system, the space-variance is a fundamental difference; it is caused by the different viewing
directions of the AO system (at the guide star) and the science object (mostly not coincident with the
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Figure 1.1: Long-exposure image of a simulated star field corrected by an adaptive optics system, grayscale
is inverted for better visibility. Horizontal and vertical distances between stars are 4 arcseconds (top). Same
image deconvolved with the guide star PSF (bottom).
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Figure 1.2: Result of aperture photometry on deconvolved image.

guide star). Imaging with a single-layer AO system is therefore anisoplanatic. Of course, even the
off-axis performance of AO correction is better than seeing-limited imaging, but many of the data re-
duction techniques that rely on space-invariance of the PSF have to be used with care on AO corrected
images. To illustrate this, a simulation on a very convenient diamond shaped star-field was carried
out (details on the parameters used can be found in Chapter 2.3). Figure 1.1 shows a long-exposure
image of this simulation; correction was done with measurements on the rightmost star. Two effects
are clearly visible: with increasing distance to the guide star, correction quality drops and the PSFs
are larger than the diffraction limit; additionally, the off-(correction)-axis PSFs are all elongated in the
direction of the guide star. Now, e.g., if an estimate of the relative brightness of the stars is desired,
photometry has to be done. There are basically two ways to accomplish this: either PSF or aperture
photometry. The first of these assumes that the system PSF is known within a given accuracy, while
the second collects flux within an aperture of given size centered on a star. Obviously, both methods
rely on a constant PSF, or at least a PSF with a constant size.
In order to show the consequences of “naive” application of these techniques to an AO compensated
image, the result of the simulation was first deconvolved using the CLEAN algorithm (Högbom, 1974)
and the guide star PSF. The result of this deconvolution is shown in the bottom image of figure 1.11.
While obviously some improvement has been reached, indicated by the higher contrast and smaller
halo of even the most distant stars, both the elongation and the increasing PSF size are still clearly
visible. Now, aperture photometry is performed on the CLEANed image, with the aperture size being
adapted to the guide star PSF, i.e. the instrument resolution. All stars in the simulation have the
same brightness, but, as figure 1.2 shows, photometry delivers a completely different result, with flux
estimates relative to the guide star dropping to 10% of the actual value at a distance of 16”. Although
this simulation exaggerates a bit, since the chosen atmospheric conditions are comparatively bad (see

1The brighter circular areas around the stars are a consequence of the CLEAN algorithm.
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chapter 2.3), it clarifies the pitfalls of unreflected application of standard photometric techniques to
AO assisted imaging.
It should be noted that anisoplanacy is not the only reason for the need to reconstruct the system PSF.
A common situation is that the object of interest lies within the isoplanatic patch but is much fainter
than the guide star; in order to achieve a good SNR on the science goal, the guide star has to be
heavily overexposed, rendering useless the PSF obtained from its image. Similarly, if the beacon used
for correction is not a point source but an extended object (e.g. a LGS, an asteroid etc.), its image is
by definition not a PSF.

Goal of this work

The goal of this work is to find a way to reconstruct the on- and off-axis PSF of the ALFA system
from wave front sensor signals. For on-axis reconstruction, an algorithm was introduced by Veran
et al. (1997) for the PUEO AO at CFHT, using a curvature wave-front sensor. For several reasons
(most notably noise estimation), this algorithm has to be modified before being applicable to a Shack-
Hartmann type system. Additionally, off-axis reconstruction requires knowledge of the distribution of
turbulence throughout the atmosphere, measured simultaneously with AO observations.



Chapter 2

Turbulence and Adaptive Optics

Atmospheric turbulence is the main source of resolution limitations of ground-based optical and in-
frared astronomy. Adaptive optics has been devised as a means to overcome these limitations and
served this purpose with increasing success over the last decades; however, to use AO enhanced im-
ages for scientific ends, a fair knowledge of the properties of the used optical system is mandatory. As
these properties are neither space- nor time-invariant for AO systems, this is a non-trivial task.
This chapter will introduce the theoretical concepts necessary to obtain a good estimation of an AO
system’s optical properties, depending on controllable (AO system) and non-controllable (atmospheric
turbulence) parameters.
We start with a short review of Kolmogorov’s theory of turbulence and its effects on astronomical
imaging. Some detail will be given on the first and second order perturbations, i.e. phase variations
and scintillation respectively, caused by the atmosphere. In this context the concept of SCIDAR, a
means to measure the distribution of atmospheric turbulence, will also be discussed.
The next section deals with the general principle and the setup of a typical AO system. Although other
types of sensors will be mentioned, the discussion concentrates on Shack-Hartmann type systems with
a modal correction approach, since ALFA follows this design.
Section 2.3 reviews the foundations of on-axis (i.e. guide star) PSF reconstruction by introducing and
examining the optical transfer function components contributing to a long-exposure image of a point-
like source. Since these concepts were originally conceived for a curvature sensor type AO system
(Veran et al., 1997), some differences and problems are to be taken into account. This scheme will
then be extended to off-axis PSF reconstruction.
Finally, the example presented in the introduction will be tackled with the instruments developed in
the preceding sections, in order to show the improvements possible with a known PSF.

2.1 Effects of Turbulence on Astronomical Imaging

This section starts with a review of Kolmogorov’s theory of turbulence as applied to the atmosphere.
The most important effects of turbulence on wavefronts incident on the earth’s atmosphere are vari-
ations in phase due to refractive index fluctuations in turbulent layers and amplitude modulations
originating in diffraction at these layers. A very good and complete introduction to these problems
can be found in Roggemann and Welsh (1996), a more compact one in the second chapter of Hardy
(1998).
Both phase and amplitude modifications caused by turbulence will be examined in separate subsec-
tions, with the amplitude subsection extended by a description of a method to measure the vertical

7



8 CHAPTER 2. TURBULENCE AND ADAPTIVE OPTICS

structure of atmospheric turbulence.

2.1.1 Atmospheric Turbulence

The earth’s atmosphere is a system far from equilibrium. The diurnal cycle as well as local variations
such as cloud cover, large bodies of water etc. cause differences of the local energy input, which
give rise to bulk motions of air. Inside large low or high pressure systems this flow of air is mainly
concentrated in horizontal layers. If the Reynolds number of these flows, defined as ��� ��� ��� ���
	��
(with � � the characteristic length of the flow, � � its characteristic velocity and the kinematic viscosity
	
� ), is higher than one, turbulence will occur. With � � being typically in the range of

�����	���
�
m, � �

around � � � � m/s and the 	�� of air given by
�������

, ��� is usually about
�����

, so turbulence in airflow
is the rule rather than the exception.

Turbulence Models

Kolmogorov developed a simple model for turbulence that describes the distribution of energy in
structures (eddies) of different sizes by a power law (Pope, 2000). It is based on the assumption
that energy is transferred from large to ever smaller vortexes until the characteristic scale of the very
smallest ones reaches a size that lets the Reynolds number drop to the laminar regime where energy is
finally dissipated. According to Kolmogorov the distribution of energy in the turbulent structures can

Figure 2.1: Kolmogorov (solid) and von Karman (dotted) turbulence energy spectra. The vertical lines show
the limits of the outer and inner scale.

be described by a power law in spatial frequency space,

� ���� � ��� �� � ��� �"!#�
$
(2.1)

with the spatial wavenumber �� . Obviously this equation is only valid in the case of isotropic turbu-
lence, generally a sensible assumption for the free atmosphere. A more important restriction is the
valid range of this energy spectrum, the so-called inertial range, between an outer scale � � that gives
the size of the largest structure and the inner scale % � where turbulent movement finally breaks down.
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The outer scale usually is on the order of meters near the ground up to several tens of meters in the free
atmosphere, while the inner scale varies from millimeters to centimeters. This situation is indicated
by the dashed lines in figure 2.1. Of course the model of a sharp cutoff in energy at both ends of the
power law is quite unnatural. To overcome this problem, the Kolmogorov spectrum has been modified
in several ways, the most widely used modification being the von Karman-spectrum, given by

� ���� � � � � �� ��� � � � ��� �"!������	� � � � �� � � � � �� � $ (2.2)

where � � ��

� � � � and � � � ��� 
�
�� % � . This spectrum is also plotted in figure 2.1 for the same set of
atmospheric parameters as the Kolmogorov one.

Index of Refraction Variations and the Structure Function

The variations in energy and size of the turbulent structures lead to local variations of temperature
and pressure in a given turbulent layer. But as the index of refraction of air is a function of those
quantities, given by � ��� $�� � � � �

��� ��� �� ��� ���
$
(2.3)

where temperature
�

in K and pressure � in hPa, turbulence affects the propagation of optical waves
through the atmosphere. The refractive index is a passive quantity that has no influence on turbulence
itself and it can be shown (Obukhov, 1949) that it follows the same spatial frequency law as the energy
distribution; i.e. for the Kolmogorov case� � � � � � � � � � � � � ����� � �� � ��� �"!��
$

(2.4)

with the refractive index structure constant
� �� . In calculations and simulations, the divergence at � ��

is very inconvenient. Hence, instead of equation 2.4, the structure function of phase fluctuations, or
simply phase structure function, (readily deducible from index of refraction fluctuations by Fermat’s
principle) is used, given by (Obukhov, 1949)��� � � � � � � � � � � � � � � � �!� � � � �#" �$
�� 
 ��� 	 � � �� � � !#�&% � $ (2.5)

This equation gives the average phase difference between two parallel rays of wave number 	 �$

� ��'
a distance � apart due to a turbulent layer with structure constant

� �� and thickness
% � .In the so-called

thin layer model, atmospheric turbulence is regarded as being concentrated in a (small) number of
layers, usually a ground and a tropopausic layer, sometimes extended by several intermediate layers.
At astronomical observation sites, this model is generally a fair approximation (see also Section 3.3);
in reality however, the atmosphere should be regarded as a continuous turbulent medium, with the
structure constant defined as a function of height � over the telescopes pupil,

� �� � � �� ���	� .Thus, the
integrated phase difference can be expressed as��� � � � �(
�� 
 ��� 	 �*) �&+ ��, � -/.

� 0 � � �� ����� � � !#� $ (2.6)

with notations as given above and the airmass
) �&+ ��, � inserted to account for viewing directions other

than vertical. This equation implies the introduction of the Fried Parameter � � (Fried, 1965) as

� � �213
�� 
 ��� 	 � ) �&+ ��, � - .
�

� �������� 0 �54
��� !#� $

(2.7)
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Figure 2.2: Effects of turbulence on image quality for a circular aperture. OTF (left) and PSF (right) of
diffraction limited (solid) and turbulence limited (slashes) imaging. ������� was chosen to be 10, resulting in a
Strehl ratio (see text) of 0.035 for the turbulence limited case.

which allows Equation 2.6 to be rewritten:

��� � � � �(������� 1 � ����
� �
4 � !#� � (2.8)

The Fried parameter ��� is a very useful quantity for the characterization of atmospheric turbulence
since it has two quite intuitive physical interpretations: first, it gives the size of a (circular) aperture
over which the root mean square (rms) of phase aberrations of the incident wavefront is about one
radian; second, it defines the minimal diameter of a telescope that will deliver the maximal angular
resolution for the given atmospheric conditions. At an observation wavelength of 500 nm, � � is
usually in the range of 5 to 15 cm, much smaller than the typical size of astronomical telescopes. So,
in uncorrected long-exposure observations, increasing the diameter of a telescope does not improve
angular resolution but only sensitivity by enlarging the gathering area for incoming photons.
With the statistics of phase aberrations known, the effect of turbulence on image quality and tele-
scope performance can now be examined. Two simple approximations and their consequences will be
considered in the subsequent sections.

2.1.2 First Order Effects - Geometrical Optics

The first order approximation of imaging through a turbulent atmosphere relies wholly on geometrical
optics, i.e. the diffraction of incident waves by turbulent structures is neglected; only the differential
retardation of phase between adjacent rays due to the local differences in the index of refraction is
taken into account. For good observation sites, this approximation already describes the major part of
image degradations introduced by the atmosphere.

Optical Transfer Function

The imaging properties of an astronomical telescope can be fully described by the optical transfer
function (OTF) of the system. In the case of imaging through turbulence the total OTF is described by
the product of the telescopes’ OTF

� ���� � , which is just the autocorrelation of its pupil function, and an
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atmospheric OTF � ���� � , defined by (Roddier, 1981)

� ���� � � � ����� ����� � ������ � � � �������� �� ��� � " � ���	� � �
�
 ��� ���� ��� (2.9)

The PSF of the system is then given by the Fourier transform of the product
� ���� � � ���� � . The quantity�
	 � � � in equation 2.9 of course not only refers to the phase structure function given in equation

2.6 but to any phase structure function that can be defined on a telescope pupil. This will be of
further importance when looking at partially corrected wavefronts as produced by adaptive optics
systems. For the time being, figure 2.2 shows the effects of (Kolmogorov) turbulence on the imaging
performance of an astronomical telescope with a circular aperture. In this example, the ratio

� � � �
has been chosen to be 10. As can be seen, the OTF drops to zero much faster than in the diffraction
limited case, resulting in the filtering of high spatial frequencies. The consequence is that the peak
intensity of the PSF is considerably flattened and its FWHM strongly increased. It should be noted that
these results are valid for long-exposure imaging only, since,in equation 2.9, the ensemble average of
phase aberration realizations is given. Short-exposure imaging depends very much on the momentary
configuration of the phase in the pupil plane, which leads to an OTF that also transports high spatial
frequency information. This fact is exploited by Speckle imaging techniques (Labeyrie, 1970), see
also figure 2.4.

Strehl Ratio

Figure 2.2 also serves to introduce another useful quantity to characterize the performance of an
imaging system: the Strehl ratio (Strehl, 1902). It is defined by the ratio of the actual peak intensity� �
� � to the theoretical (i.e. diffraction limited) peak intensity

�����
of the PSF, � � � ��� � � ����� . If the

aberration function � ��� $�� � of an optical system is given, the Strehl ratio can be calculated via (Hardy,
1998)

� �
�� �

����
- �
�

- ���
�

� ���
	����� !�" � 0 � 0 �

���� � (2.10)

A problem of this equation is that the aberration function has to be known explicitly, whereas in
uncompensated and compensated astronomical imaging the phase fluctuations are at best known sta-
tistically. Therefore several simplifications of equation 2.10 have been found, notably the widely-used
Marechal approximation given by

�$# � �
��%'&("*) $

(2.11)

where �,+ is the standard deviation of the phase over the aperture (Hardy, 1998). The Marechal ap-
proximation is valid up to an phase rms of about 2 rad. Turbulence degraded wavefronts are mostly
well above this limit, hence a simple expression for this case is not available.

Anisoplanacy

Another important geometrical effect of imaging through a turbulent atmosphere is angular anisopla-
natism. It is a consequence of the fact that rays from different viewing directions will pass through
different sections of the atmosphere (see figure 2.3). While in uncompensated imaging anisoplanacy is
only significant in short-exposure observations, it is a big problem for adaptive optics. Using equation
2.6 as a starting point and assuming

� " "
� � , the mean-square error � �

�! " due to anisoplanacy
can be calculated by replacing � with � �

� � ) �&+ ��, � , where
�

as shown in figure 2.3. This calculation
yields � �

�! " � 
�� 
 ��� 	 � � ) �&+ ��, � �.- !#� � � !#� - .
� 0 � � ������	� � � !#� � (2.12)
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Image Plane
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Upper Layer

Intermediate Layer
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α

Figure 2.3: The origin of anisoplanacy. Incident plane waves from directions that are an angle � apart pass
through different sections of turbulent layers above ground.

Similar to the definition of the Fried parameter, it is possible to define an angle
�
� as

�
� �

� 
�� 
 ��� 	 � � ) �&+ ��, � � - !#� - .
� 0 � � �� ���	� � � !#���

��� !#� $
(2.13)

such that

� �
�! " � 1 �

�
�
4 � !#� � (2.14)

�
� is called the isoplanatic angle; its interpretation corresponds to that of � � , defining the angular

distance between two sources at infinity for which the difference in phase aberrations is approximately
1 rad. In contrast to the Fried Parameter, however, that is only dependent on the total integrated
structure function, the isoplanatic angle shows a strong dependency on the vertical structure of the
turbulence profile. As one would naively expect, high turbulent layers contribute strongly, while
layers at or near ground level have virtually no influence on the differential error of two incident
wavefronts.
To illustrate the effect of anisoplanacy on uncorrected imaging, the simulation package TURBULENZ
(App. A) was used to calculate short and long exposure images of two stars about 12 arcseconds apart;
the applied turbulence model was chosen such as to result in an isoplanatic angle of 8 arcseconds.
Figure 2.4 shows the results: while the short-exposure (speckle) images are clearly different, the
overall shape and size of the long-exposure images is about the same. It is also visible that the speckle
images contain much higher spatial frequencies than the integrated ones; the reason for which was
already mentioned in section 2.1.1.
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Figure 2.4: Short (top) and long-exposure (bottom) images of two stars 12 arcseconds apart in turbu-
lent conditions corresponding to

�
� � � � � .

Temporal Effects

Up to now, the temporal evolution of turbulence was largely ignored, only ensemble averages of
instantaneous realizations of phase disturbances were considered. Under real observing conditions,
however, temporal effects cannot be disregarded.
Usually the validity of the Taylor hypothesis of frozen flow is assumed, stating that the structure of
turbulence itself is fixed while the corresponding section of the layer is moving through the viewing
area of the telescope. While this is generally a good approximation for smaller telescopes up to a
pupil diameter of four meters, evolution of these structures does play a role for larger observatories.
For a single layer moving at constant speed �� the Taylor hypothesis can be formally stated by� � �� $�� � %�� � � � � �� � �� %���$�� � $ (2.15)

resulting in a temporal phase structure function��� ���� $�� � ��� � � � �� $�� � � � � �� � �� %�� $�� � � � " � (2.16)

This equation translates temporal evolution into spatial distances. Note that this introduces anisotropy
into the phase structure function, dependent on the direction of wind. If exposure times are short (or
long) enough, however, these effects will be negligible. Long enough means that any correlations
present on the medium time scale (several tens of ms) cancel out in the long-term limit, while short
enough can be quantified by the Greenwood frequency ��� (Greenwood, 1977), a measure of the
required bandwidth for any attempt to measure sensible wavefront aberrations. For a single turbulent
layer, ��� is given by ��� � � � � � � � � � , while for a turbulence distribution

�
	 �
� � � ��� 

	 � ) �&+ ��, � - .

� 0 � � �� ���	� � �� ���	� � � !#� �
� !#� $

(2.17)
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with the vertical wind speed profile �� ���	� (Greenwood, 1976). As an example, typical tropopausic
layer conditions with wind speeds on the order of

� � � ��� and an � � of � ��� � in the K-Band result in
a required bandwidth of

� 
�� 
 Hz, a demand easily met by modern sensors and control systems.

2.1.3 Second Order Effects - Scintillation and SCIDAR

Although the geometrical approximation described in the previous section already accounts for the
major part of turbulence effects on imaging through the atmosphere, wave diffraction does of course
also take place. Its most prominent influence on astronomical imaging is that of scintillation, the
origin and features of which will be explained in this section. As turbulence at astronomical sites is
generally quite weak, the so-called Rytov approximation can be used.

The Rytov Approximation

It has been shown quite early (Bergmann, 1946) that the assumption of geometrical optics is not
sufficient if propagation path lengths are in excess of 	 % �� ; then, diffraction effects at turbulent eddies
have to be taken into account. In principle it would be necessary to solve the Maxwell equation

� � � � 	 � � � ��� � � � � � � � � � � � � $
(2.18)

for the electric field
�

and the local deviation of the index of refraction from unity, � � . Dropping the
last term (depolarization) and substituting

�
�
���	� ��� � � ����� ��	 � � � � yields

� � � � � � � � � � 	 � � � ��� � � � � � � (2.19)

Now, � is substituted by � � � �#� � � , where � � represents the non-fluctuating component (the
incident wave) and � � describes fluctuation due to turbulence. If � � � � � is neglected in comparison to
� � � ��� and � � � in comparison to 

� � then � � satisfies

� � � � � 
 � � � � � � � 

	 � � � # � $
(2.20)

which has a solution given by Fante (1975)

� � � � � � 	 �

� � � � � �
-!- - 0 � � � � � � � � � � � � � � �

���	� ��� 	 � �� � �� � � �
� �� � �� � �

$
(2.21)

where
� � �

����� ��� � � . This solution has a much wider range of applicability than the geometrical
one. It has been found (Gracheva et al., 1970) that if the propagation path is such that the Rytov
variance �

�� � � ��
 � 	
� !�� � �� � � �"!��
is smaller than 0.3, the Rytov approximation is excellent. Equation

2.21 has a very simple physical interpretation that states that the Rytov approximation is equivalent
to independent diffraction of the incident wave at a series of turbulent phase screens (Lee and Harp,
1969), i.e. inclusion of multiple diffraction is not necessary. A very important point to note is that
the form of the phase structure function in equation 2.6 statistics is not changed at all, since the phase���	� ����� ��� � � � is still proportional to � � . The amplitude of an incident plane wave, however, which is
constant under the geometrical approximation, is strongly affected; a closer look at the consequences
will be taken in the subsequent paragraphs.
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Intensity Fluctuations in an Aperture

Figure 2.5 shows intensity fluctuations in an image of the aperture of the Calar Alto
� ��
 � m telescope.

The best characterization of these fluctuations can be found by calculating the covariance of the loga-
rithm of the amplitude fluctuations at two aperture locations �� � and �� � ,

��� ���� � $ �� � � � � 	 � � �� � � 	 � � �� � � " $
with 	 � � � � ��� � ��� � � � � � . � � ��� � $ � � � is related to the intensity fluctuations (Fante, 1975)

��� � �� � $ �� � � � � � � �� � � � ���� � � " � � � � �� � � " � � ���� � � "� � � �� � � " � � ���� � � " (2.22)

via ��� � �� � $ �� � � �
�
�	��
 � � � ��� � �� � $ �� � ��� � (2.23)

For the case of an incident plane wave,
�	�

is given by (Fante, 1975)

��� � �� � � � � � 	 � -/.
� 0 �

-/.
� 0 ���
� � � � �� � � � � � $ � � )�� 
 � � � � �

	 � $

(2.24)

with �� � �� � � �� � , spatial frequency � , � as defined in equation 2.4, and � the distance of the turbulence
from the aperture plane of the telescope.
Figure 2.6 plots the Rytov variance against the scin-

Figure 2.5: Intensity fluctuations in the aperture
plane of the Calar Alto 1.23m telescope.

tillation index � � for the Rytov theoretical results and
experimental data (Fante, 1975). The theoretical re-
sults for an infinitesimally small aperture are obtained
by calculating �

�� � ���	� � � ��� � � $ � ��� � �
using equa-

tion 2.24. It is obvious that the Rytov approxima-
tion is in excellent agreement with measurements for
� � � � � while it completely fails to describe the sat-
uration behavior of scintillation in severe turbulence.
However, astronomical sites usually are well below
the upper limit of validity of the Rytov approxima-
tion (see also chapter 3.3). For completeness’ sake it
should be mentioned that analytical approximations
for strong turbulence also exist, most notably the Markov approximation (Tatarski, 1971), which is
e.g. used in calculation concerning horizontal laser beam propagation.

Effects on Imaging

Many of the relations presented in the previous paragraph are only valid for an infinitesimally small
aperture. If effects of scintillation on imaging are considered, however, aperture averaging has to be
taken into account. To derive the brightness fluctuations of the image of a star in the image plane of a
telescope, one therefore calculates

� � �#"
�
- -
� 0 � �� �

- -
� 0 � �� � � � � �� � $ �� � � $ (2.25)

where integration is carried out over the pupil � of the telescope. Aperture averaging basically results
in easing the effect of scintillation, since locations well inside the aperture do not contribute to the
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Figure 2.6: Scintillation index measured in an infinitesimal aperture. Rytov approximation (solid) and fit to
measured values (dashed).

integrated brightness fluctuations any more. Only points near or at the fringe of the pupil have consid-
erable influence; thus a significant reduction of the magnitude of fluctuations is expected for growing
aperture size, a fact many times experimentally confirmed (Homstad et al., 1974).
Intensity fluctuations are, however, not the only effect of scintillations, a bigger problem is posed by
their influence on the system OTF. Roddier and Roddier (1986) showed that even if phase aberrations
caused by turbulence are perfectly removed, a performance degrading OTF term

� ���� � � ���	� � � � � ��� � ��� !#��
) �&+ ��, � � �"!�� ' � !�� -/.

� 0 � � � !�� � ����� � � � � �� � � +�� ) ��, ��' �	� � �"! � � � $ (2.26)

remains, where � ����� is the normalized
� �������� profile and

� � ��� � �
- .
� 0 � � � - !#� � � � � � � 

� � � ��� � ) � 
 � � � � ��� � $ (2.27)

with � � the Bessel function of order zero. Its overall effect is a limit on the maximum Strehl ratio
obtainable by phase correction, given by the asymptotic value of the scintillation OTF term. For
infrared imaging, this limitation is negligible, in the visual band it can be as low as 0.8.

2.1.4 Measuring
� �������� : SCIDAR

The vertical structure of
� �� is the determining factor for many imaging distortions caused by the

turbulent atmosphere. Therefore, it is highly desirable to obtain time-resolved information on it, ei-
ther for image post-processing purposes or even for the selection of sites suitable for astronomical
observatories. Although atmospheric sounding or weather balloons have been used to this end, an-
other technique has proved its potential in this important task: Scintillation Detection and Ranging
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Figure 2.7: Setup of a SCIDAR and a generalized SCIDAR system.

(SCIDAR). The principle of this method was developed by Vernin and collaborators (Vernin et al.,
1979) and has since been much enhanced, notably by the generalized SCIDAR approach (Fuchs et al.,
1998). In this section, the setup of a typical SCIDAR system will be described before looking at the
kind of data obtainable with such a device and the information on atmospheric turbulence derivable
from it.

SCIDAR system setup and measurements

Figure 2.7 shows the configuration of a SCIDAR system. Its working principle builds on the ampli-
tude variations imposed on plane waves imaged through the atmosphere, as described in the previous
section. As shown in the figure, light originating from binary stars passes through different sections
of the atmosphere. If the binary is chosen such that the cross-sections of the projected pupils over-
lap at all heights of interest, the spatial amplitude patterns of the overlap region as measured on the
aperture will be the same albeit shifted by

%
� � � � with respect to each other, with � the distance of

the layer and
�

the angular separation of the binaries. However, the amplitude variations comprising
those patterns need a distance of a few kilometers to build up to a measurable signal, thus measuring
turbulence near or at ground level is impossible with SCIDAR. Fuchs et al. (1998) found a way to
overcome this limitation, by placing a different lens into the optical path such that the conjugate height
of the observation plane is shifted from the pupil to a plane virtually below it (see figure 2.7). This
extension is known as generalized SCIDAR.
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With this extension done, the next step in measuring
� ������	� consists of taking a large number of

individual images of the virtual pupil with exposure times on the order of milliseconds (otherwise
movements of the turbulent layers and their structural evolution would smear out the amplitude pat-
tern). Subsequently, the mean-normalized auto-covariance of all the images is calculated. To illustrate
the SCIDAR measurement process in a controlled setting, a simulation, again using TURBULENZ was
carried out; the left image in figure 2.8 shows the result of the auto-covariance calculation for 1000
frames. The peaks visible in the left image are oriented in the direction of the binary’s separation. A
slice taken through the image in the separation direction can be written as (Klückers et al., 1998)

� � � � $�� � � � � � � � ��
� � � � � � � �

� � � � $ � � � � � � �
� � � � � � � � �

��� � � $�� � � ��� � � $ � � ��� $ (2.28)

with the brightnesses
� � and

� � of the binaries’ components,
� �

being related to
� �

via equation
2.23. Another slice, taken perpendicular to the given one, contains only the first term of equation
2.28 and a noise estimate away from the origin; by subtracting it from the first slice, the first term
in equation 2.28 can therefore be eliminated. Assuming the validity of the Rytov approximation, a
relation between

� � � � $�� � and
� �� ����� can be found from equation 2.24 (Tyler, 1992)

��� � � $�� � �
- .
� 0 � � �� ����� � � !��- .

� 0 ��� � - !#� � � � 	
� ) �&+ ��, � �"! � � � � � � ) �&+ ��, � � � � ) � 
 � � � � � � � � � $�� � $ (2.29)

where
) �&+ ��, � is the airmass of the binary, � � � $�� � a noise term, everything else defined as before.

Obtaining
� �� ���	� and �� ���	�

Integration over � in equation 2.29 can be done numerically. Using discrete sampling (e.g. by mea-
suring amplitude fluctuations with a CCD), equation 2.29 corresponds to

�� ��� �� � �� $ (2.30)

where �� is the extracted auto-covariance profile, � a kernel matrix calculated from the � integral, ��
the noise term and �� the desired quantity,

� �������� . This relation is analogue to a Fredholm equation of
second kind (Press et al., 1993) and can therefore be solved by an iterative method. In this work, a
conjugate gradients (CG) method was used, although different techniques have also been successfully
applied (Avila, 1998).
Figure 2.9 and table 2.1 show the results of a simulated SCIDAR run with three turbulent layers at
0, 2 and 10 km distance from the aperture plane respectively. The data reduction was done using a
SCIDAR software package, SCAVENGER (see app.B), that was developed in the context of this work.
The “measured” parameters are obviously in very good agreement with the preset ones.
On the right-hand side of Figure 2.8 the cross-covariance of time-lagged aperture images is shown.
The three layers are still clearly visible, but their positions are shifted according to the wind speed and
wind direction in the respective layer. Table 2.2 lists the parameters used in the simulation together
with those obtained from the cross-covariance. Again, these results are in very good agreement.
Similar data reductions have been done for Calar Alto data and can be found in section 3.3.
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Figure 2.8: Auto-covariance (left) and Cross-covariance (right) of a simulated three-layer turbulence SCIDAR
measurement.

Model Simulation

� � [m]
� � � � � � � � 
 ��� � � � �&��

� [”]
� � � � � � � � � � ���

Table 2.1: Simulation settings of Fried parameter and isoplanatic angle compared to results obtained with
SCAVENGER

Limitations of SCIDAR

There are two main limitations to SCIDAR measurements: the first is the validity of the Rytov ap-
proximation, the second the finite size of the measuring aperture and its associated noise.
As already stated in section 2.1.3, the Rytov approximation is only valid if � � is lower than 0.3. This
leads to a condition on

� �� ���	� � �� ���	� � 
�� � � 	 � � !�� � ��� �"!�� $
(2.31)

where � is the distance from the measurement plane, implying � � � ) �&+ ��, � � � 	�� with zenith angle, and generalized SCIDAR pupil plane “depth” � 	�� . Under all but exceptionally bad observing con-
ditions, turbulence at astronomical sites is well below this limit, and hence does not pose a problem.
Additionally, the sensitivity of SCIDAR measurements is limited by the size of the receiving aper-
ture, exposure time and star brightness. Prieur et al. (2001) found the noise per frame in SCIDAR
measurements to be

% � � � � � � ����
 � ��� � � ' � !#� � ��� !�� 0 �"! �� � � � � � � � � ��� + � �� ��� �
	 +�+�� ) � � � � � � � � � � � � � � � � � � � � � � � � �"! � $ (2.32)

where 0 � is the distance of the dominant scintillation causing layer (identified by the highest peak in
the reduced auto-covariance profile),

� � � � � the center value of the unreduced auto-covariance, � + �
the number of photons received on the detector,

�
the pupil diameter,

�
the separation of the binaries

and a brightness ratio dependent factor
�

. This noise term results in a limitation of SCIDAR accuracy
very close and very far away from the measurement plane.
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v [m/s] Direction [Degrees]

Layer 1 Model
� � � undef.

(0 km) Simulation
� � � undef.

Layer 2 Model
� ��� � � 
 � � �

(2 km) Simulation
� � ��� � � ��
 
 � 
 � � 

� � � ��� � .

Layer 3 Model
� ��� � � ��� �

(10 km) Simulation
��� ����
 � � ��
 � � ��� � � � ��� �

Table 2.2: Simulation settings for wind speed and direction compared to results.

Figure 2.9: Results of the SCIDAR simulation: Extracted autocorrelation profile (top), result of the conjugate
gradient inversion (center), and final result smoothed with the instrumental resolution (bottom).

As a summary, care has to be taken in selecting suitable binaries for SCIDAR measurements as well
as using an appropriate generalized setup for the desired measurement range. Unfortunately, suitable
binaries are not very abundant, which is why attempts are made to obtain

� �� -profiles from single star
measurements (Chun and Avila, 2002).
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2.2 Adaptive Optics Systems

After getting acquainted to the source of imaging distortions caused by the atmosphere, it is now time
to present the cure for some of its symptoms - adaptive optics. First, a quick look at the general
setup of a pupil-conjugated AO system is taken. As most modern AO systems (including ALFA) use
modal rather than zonal control for turbulence correction, the subsequent section will introduce this
important concept, before continuing with a closer look at each of the system components.

2.2.1 General AO System Setup

The idea behind AO is to measure phase distortions introduced into the system by atmospheric tur-
bulence and correct for them accordingly. The most widespread system today is that of a pupil-
conjugated AO, i.e. phase is measured and corrected in the pupil plane of the receiving telescope.
Figure 2.10 shows the schematic optical setup of such a system. A distorted wavefront is entering
the telescope and is collimated to reconstruct the phase distribution in the aperture. It then hits a
deformable mirror (DM) having (in the ideal case) the opposite shape of the distortions and therefore
reconstructs a plane wave. After this the beam is parted by a beam splitter, one part moving on to be
imaged by a science camera, the other being analyzed by a wavefront sensor (WFS) that checks for
deviations from a plane wave. DM and WFS are connected to a real time control system (RTC) that
uses the deviations as obtained from the WFS to adjust the DM accordingly.
In practice, a dichroic mirror is used instead of a beamsplitter, such that e.g. wavefront distortions
are measured in the visible while the science camera images in the near infrared. This approach
maximizes the amount of starlight available for wavefront measurements, a critical point in AO.

Turbulence

Incident Wavefront

Science Camera

Beam Splitter

Collimator

Telescope

D
eform

able M
irror

W
avefront S

ensor

C
ontrol S

ystem

Figure 2.10: Schematic optical setup of a pupil-conjugated AO system. Components treated in this text are
marked with dashed boxes.
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2.2.2 Modal Decomposition of Phase Disturbances

The phase of a distorted wavefront incident on the pupil of a telescope can be described by a function� � �� $�� � . However, it is more convenient to decompose
�

into a set of orthonormal basis functions
� � ���� �

defined on the unit circle or an annular aperture,- 0 � ���� ���� � � � ���� � � � ���� � � % ��� $ (2.33)

where � ���� � is the pupil weighting function, defined to be of constant value within the aperture and
zero outside, such that an integration over the pupil is unity. With these functions every wavefront can
be written as � ���� $�� � � .�

��� ��� � �
� � � � ���� � $ (2.34)

which has the immediate advantage of separating time from space dependence. Due to the orthonor-
mality property of the

� � ���� � , the coefficients � � �
� � are given by

� � �
� � �

- 0 � ���� ���� � � ���� $�� � � � ���� � � (2.35)

Since mostly the time average statistics of the coefficients are of interest, the explicit time dependence
will be ignored in the subsequent discussions.

Zernike Polynomials

An obvious choice of the function set are Zernike polynomials, widely used in the optical commu-
nity since the lowest order ones can be easily identified with well-known aberrations, like defocus,
astigmatism etc. Their use in the context of atmospheric turbulence has first been examined by Noll
(1976). The shape of the first ten Zernike polynomials � � ��� $�� � is shown in figure 2.11.
Using the Kolmogorov turbulence model, the modal variance matrix of the coefficients 	�
 � � � � �
�

"
over an aperture of radius � is given by

� � � � �
"
�
- 0 �� - 0 �� ��� ���� � � ������ � � ��� $�� � � � � � �� � � � � �� � � " � � ��� � $�� � � � (2.36)

An analytical solution of this equation can be found by transforming to Fourier space and using
equation 2.1 (Noll, 1976). Table 2.3 shows the result for the first ten Zernike polynomials, excluding
piston and scaled to � � � ��� � � !#� � � . An first approximation of the total variance of a turbulent
wavefront in the telescope pupil is given by the trace of this matrix,

�
� ��� � � � ��� � . Supposing that an AO

system is capable of measuring and removing variance due to the first � Zernikes, an estimate of the
maximum Strehl ratio obtainable by this (idealized) system can be found using equation 2.11

��� � ����������� 
 � 
 ��� � � �
% )'��� " � (2.37)

Noll found an expression for �
� � � � asymptotically valid for large �

�
� � � � # � ��
 
 � � � �! � ! � 1 �� � 4

� !#� $
(2.38)

e.g. assuming a seeing of 1” in the visual (corresponding to an � � of 60 cm at 2.2 " m), after removal of
the first ten Zernike modes the residual variance is

� � � ��� � � � � � � � � !#� , which gives a maximum Strehl
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���������������
�

� � � � � � � � � � � � � � ��� � � � �
� � � � � � � � � � � � � ��� � � � � �
� � � ��
 � 
 � � � � � � � � � �
��� 
� � � � ��
 � 
 � � � � � �
� � � � � ��
 � 
 � � � � �
� � � � � ��� � � � � � � �
� ��
 � � � �

� � � � ��� � � � � � � � � �
� ��
 � � �
� � � � � � � � � �
� ��
 � �
� � � � � � � � � � �
� ��
 �
� � � � � �
��� 
 � � � � � � � � �
� 
 �

����������������
�

Table 2.3: Covariance matrix of the first ten Zernike polynomials. Values are given for � � � � �	��

������� .
ratio for a 3.5m telescope of 0.47. As the uncorrected Strehl ratio of such a telescope is usually on
the order of 0.01 this is already a tremendous improvement in performance with only a comparatively
small number of modes corrected. However, the marginal gain in performance with each additional
corrected mode, � ��

�
# � � �  ��� � " ! � � (2.39)

is falling with approximately the square of the number of modes corrected.
All the results given above hold only for strict Kolmogorov turbulence conditions with an infinite outer
scale. As already mentioned above, however, the Kolmogorov model is quite unrealistic. Winker
(1991) calculated the effect of a finite outer scale on the Zernike decomposition of turbulence on
a circular aperture; he basically found a strong influence on the first few terms of the expansion,
leading to an altogether reduced variability in these contributions (ibid.); higher order terms are only
marginally affected, implying an exclusive use of these parts of the expansion to derive atmospheric
parameters defined in the Kolmogorov framework (like the Fried parameter) from measurements.
It should be mentioned that Zernike polynomials can be generalized from a circular support to an
annular support, which is more adapted for use on modern astronomical telescopes (Mahajan, 1994),
but an even more effective approach will be presented in the next paragraph.

Karhunen-Loeve functions

The non-zero off-diagonal elements of the Zernike covariance matrix in the context of Kolmogorov
turbulence suggest that there exists a more efficient basis set; this efficiency is meant in the sense
that fewer expansion terms represent the same or even higher amount of distortions introduced by
turbulence. Following Wang and Markey (1978), such a basis can be found from a two-dimensional
Karhunen-Loeve (KL) integral equation, defining the KL eigenfunctions

� � ���� � for the general covari-
ance of a stochastic process,-

0 � �� � � � �� � � ���� � �� � ��� � � �� � � � ���� �	� ��� �� � � ���� � $ (2.40)

where � �� is the variance of the � th mode. KL functions for Kolmogorov statistics have been calculated
by Wang and Markey (1978) for a circular and by Cannon (1996) for an annular support. The first ten
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Figure 2.11: Images of the first ten circular Zernike (top) and KL (bottom) functions. KL functions are
calculated for Kolmogorov turbulence conditions and an annular aperture with an inner radius ��� � ��� ����� 	

;
additionally, they are reordered to show the similarity between the two function sets.
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annular KL functions, a subset of those actually used in the ALFA system, are shown in Figure2.11,
table 2.4 shows the normalized covariance matrix of the first KL functions calculated for the Calar
Alto 3.5m telescope central obscuration and Kolmogorov turbulence; by definition, it is diagonal.

���������������
�

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � 
 � 
 � � � � � � �
� � � � � � 
 � 
 � � � � � �
� � � � � � � ��� � � � � � �
� � � � � � � �
� � � � � � �
� � � � � � � � �
� � � � � �
� � � � � � � � � �
� �
� � �
� � � � � � � � � � �
� �
� �
� � � � � � � � � � � �
��� 


����������������
�

Table 2.4: Covariance matrix of the first ten KL functions for Kolmogorov conditions and ��� � ��� ���
. Values

are given for � � � � � � 
������ � .
2.2.3 Sensors

Phase aberrations can only be corrected if an efficient way of measuring them is found. Several types
of sensors have been developed for that purpose. This section will focus on the Shack-Hartmann
type sensor (SHS), widely used for its simplicity and also implemented into the ALFA system. After
this, the curvature sensor (CWS) will be discussed, a relatively recent design (Roddier, 1988), that
exhibited excellent performance in low order AO systems; PSF reconstruction from WFS data was
first developed for this kind of sensor. The youngest type of sensor, beyond the scope of this work,
is the pyramid sensor (PWS) that is only now being introduced into AO systems (Ragazzoni and
Farinato, 1999) and promises to combine the advantages of the SHS and the CWS.

Shack-Hartmann Sensor

The principle behind the SHS was used as early as 1900 (Hartmann, 1900) to measure wavefront
aberrations of optical systems. Then, masks with circular holes were placed behind a lens, with the
images so obtained serving as a measure of local wavefront slopes. Shack and Platt (1971) improved
the system by using small lenses (lenslets) instead of the holes and arrange them such that a whole
wavefront could be examined. Figure 2.12 shows a SHS setup. A distorted wavefront enters from
the left and sub-images are formed by the analyzing lenslets. If the average slope of the wavefront
portion imaged by a subaperture is flat, then the image spot is not displaced with respect to its reference
position, otherwise for the angular displacement ��� in the x-direction (Primot et al., 1990):

��� �
� �
� � � '

� ��� 
 - �����

� � ��� $�� �� � 0 �� $ (2.41)

and likewise for the displacement in the y direction. Here, � � 
 denotes the area of the subaperture,
� � the spot displacement in the image plane, � the focal length of the lenslet, and

�
the magnification

between the pupil of the sublenslet and the pupil of the telescope.



26 CHAPTER 2. TURBULENCE AND ADAPTIVE OPTICS

Equation 2.41 implies that a SHS measures the first derivative of the wavefront at the lenslet locations,
thus information on a constant offset (piston) is completely lost. As a phase bias does not affect
image quality, this is not a problem for conventional imaging; for interferometry, however, piston is a
notorious complication of matters.
Measurement of the actual spot displacement

∆ x

Figure 2.12: Working principle of a Shack-Hartmann
sensor.

in the image plane of the SHS can be done ei-
ther by using quadcells (Roddier, 1999) or a
CCD detector array. In the CCD case, spot po-
sition estimations are usually a modification of
center of mass estimation

� � �
�

� � � � ��
�
� �

$
(2.42)

with pixel offset from the reference positions� � and pixel intensity
� � . For a closed-loop sys-

tem, estimation algorithms have to be both fast
and accurate. In his PhD thesis, Kasper (2000)
examined several such algorithms, finding a
doubly weighted pixel averaging algorithm in
combination with pixel masking to be most re-
liable and also very fast. The algorithm raises all intensity values to the 1.5th power, its expected
SNR in the photon limited case, before applying equation 2.42. Additionally pixels with a low photon
count are excluded from the weighting process.
As the SHS averages over a given portion of a wavefront, it cannot “see” perturbations with spatial
frequencies smaller than its sampling; it is therefore necessary to be careful in choosing the size of
the subapertures, which in the ideal case should be matched to � � ; this is much easier accomplished
in the infrared than in the visual regime. However, the number of photons available for centroiding
a subspot also depends on subaperture size, which implies a choice of sensor parameters for given
atmospheric conditions to attain the optimal results.
In contrast to other types of sensors, the SHS is also suitable for extended correction sources like
planets or galaxy cores. Even the granulation on the photosphere of the sun has been successfully
used to obtain diffraction-limited images (von der Lühe et al., 2002).

Curvature Sensor

The curvature sensor was invented by Francois Roddier (Roddier, 1988). The working principle is
based on the fact that local curvature of a wavefront will, when imaged, cause the corresponding focal
point to shift away from the focal plane of the imaging system. Hence, intensity measurements in
planes before and after the image plane will find intensity differences corresponding to the curvature
(see figure 2.13). Using a geometrical approximation, the normalized intensity differences are given
by (Roddier, 1988)

� ���� � �
� � ���� � � � � ���� �� � ���� � � � � ���� � �

� � � � � �
 �
� �� � � ��� � � %�� � � � � ��� � � � $

(2.43)

with � and � as defined in figure 2.13, and
%��

the impulse distribution around the pupil edge. One of
the advantages of the CWS over the SHS is that only intensities in subapertures have to be measured;
no centroiding is necessary, which reduces the computational load in the control system. As will
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f

p p

Figure 2.13: Working principle of a curvature sensor.

be seen in section 2.3, this also makes measurement noise estimation quite straightforward. Figure
2.14 shows the sampling geometry of a CWS. In practical implementations, a sinusoidally modulated
mirror is used instead of two separate sensor planes, which considerably simplifies the setup of a CWS
system (Roddier, 1988).

Another interesting feature of the CWS is its adapt-

I

II

III

IV

V

VI

VII

Figure 2.14: Sampling geometry for a CWS sen-
sor. The dashed lines depict the width of the im-
pulse distribution around the edge of the pupil.

able gain. Equation 2.43 shows that the strength of
the signal can be adjusted by varying the distance of
the measurement planes � . The geometrical approxi-
mation demands that

��� � � � � � � 0 � � � , with
���

the
guide object angular size and 0 the size of the sub-
aperture. Since 0 � � is usually much bigger than

���
this can be further simplified to

� � ��� � �0 � (2.44)

In closed loop operation,
���

will diminish due to cor-
rection and therefore allow the signal to be amplified
by reducing the distance � , which will work to stabi-
lize the loop.

Measurement noise

Of course all sensors will be subject to measurement noise, on the one hand caused by the signal
photons themselves, on the other hand by sky background photons which, however, can be neglected
for sensors measuring in the visual band. Rousset et al. (1993) showed that all WFSs operating with
subapertures have a similar dependence on the signal photon noise

�
��� �� + � 1 � 0' 4

� $
(2.45)

with the phase measurement error variance �
�
, � + � the number of photoelectrons per subaperture and

exposure time, and 0 the diameter of the (circular) subaperture.
�

refers to the angular size of the
reference source, given either by its actual size, or its virtual size caused by seeing or diffraction.
Usually, 0 and ' are fixed, so a better SNR is obtained by using bright and point-like sources and/or
highly efficient photon sensors.
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2.2.4 Modal Reconstruction

This section will concentrate on the mathematical description of modal phase distortion measurements
and reconstruction using a SHS.
As described before, a SHS delivers slope measurements of sections of a disturbed wavefront accord-
ing to its geometry. These slopes, in x- and y-direction, can be ordered into a � -dimensional gradient
vector �� , (with � �(
 � ��� � , twice the number of subapertures) describing the set of measurements for
each timestep. Of course, the actual values of such a vector will depend on the momentary configu-
ration of the turbulent wavefront; but as became clear in the framework of modal decomposition, this
wavefront can also be regarded as a (generally infinite-dimensional) modal coefficient vector �� . . A
measurement can then be written as �� ��� . �� . � �� $ (2.46)

with the interaction matrix � . and the unavoidable measurement noise vector �� . The interaction
matrix as defined here is of dimension ��� � , very inconvenient for practical calculations. This fact
is remedied by partitioning equation 2.46 as follows

�� ��� �� �	��
 �� 
 � �� $ (2.47)

where � denotes a reduced interaction matrix operating on a number of � modes �� , which are actually
controlled by the system. ��
 is again an infinite matrix, describing the propagation of the non-
controlled modes �� 
 on the gradients. This is justified by the fact that all AO systems can only correct
for a limited number of modes and, additionally, that this number is generally limited by the number
of available gradients.

Phase Estimation from Gradient Measurements

The modified measurement equation can even be more simplified by observing that, since modal co-
efficients are normally distributed with zero mean (Roddier, 1981), the expression �

 �� 
 corresponds
to an additional Gaussian noise term. This measurement noise �� and this noise therefore form again a
Gaussian noise term �� , leading to the final measurement equation

�� ��� �� � �� � (2.48)

For the operation of an AO system, where an estimate of the controlled modal coefficients
�� � has to be

found from the measured value of gradients, this poses an inverse problem�� � #�� �� (2.49)

with a � � � reconstruction matrix � . Kasper (2000) extensively studied the suitability of different
approaches to find such a matrix. The superior and most general non-iterative solution turned out to
be the Maximum a Posteriori approach (Melsa and Cohn, 1978), which gives (Law and Lane, 1996)

��� � � ��������� ����� � �	� ����
�� ��� ����� ����� $
(2.50)

where � �� is the noise covariance matrix and � �
 is the covariance matrix of modal coefficients. Both
matrices will be examined more closely below.
More simple estimators can be found directly from expression 2.50, by dropping various terms: as-
suming that no prior knowledge is available on the covariance of modal coefficients, setting � ����
 � �
results in the weighted least squares estimate

�����! � � � � � ����� � � ��� � � � ����� � (2.51)
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If additionally, the measurement error is assumed to be uniform and uncorrelated equation 2.51 re-
duces to

� �! � � � � � � ��� � � $ (2.52)

the least squares estimator, most widely used in AO for its simplicity. The least squares estimator is
closely connected to the singular value decomposition (SVD) technique (see e.g. Gershenfeld (1999)).
The framework of SVD also allows to study a limitation imposed on SHS type system, called modal
cross talk, which limits the number of controllable modes due to possible misinterpretation of linear
combinations of higher order modes as a single low order mode (Kasper et al., 2000b). In the case of
ALFA, this modal cross talk allows a maximum of 42 modes corrected when using a 28 subaperture
lenslet and KL functions are used; for Zernike polynomials, the limitations are even worse.

Modal reconstruction error

Using the least squares estimator and turning back to equation 2.48, the covariance matrix of the
reconstruction error is given by (Dai, 1996)

� � �� � ��� � � ��
� � �� � � � ����� �� 
 �� � 
�� � � � � �! �� �� �� � � � � �  $ (2.53)

with the cross-talk matrix � � � �  ��
 . It is a description of the propagation of high-order modes
on the low-order controlled modes, an effect generally termed aliasing. Thus, the two terms in the
reconstruction error matrix correspond to aliasing noise and propagated measurement noise respec-
tively. The behavior of the two noise components is quite different: while measurement noise can be
diminished by choosing very bright guide stars, aliasing noise is always present; as will be seen, it
therefore plays an important role in the framework of PSF reconstruction.
Unfortunately, � 
 cannot be calculated analytically for most sensor/modal basis set combinations,
and measurement is impossible for obvious reasons. Therefore, it can only be found by a simulation
of the sensor measurement process.

Estimation of the modal covariance matrix

The MAP estimator already emphasizes the importance of the Modal Covariance Matrix � �
 . This im-
portance lies in the fact that it carries all information on stochastic properties of the turbulent spectrum
at hand, because ensemble averages of wavefront disturbances are Gaussian with zero mean (Roddier,
1981). The knowledge of this matrix is not only crucial for the application of the MAP estimator, but
also provides atmospheric turbulence parameters like � � and can be used for an estimation of the outer
scale size (Barchers and Ellerbroek, 1999).
There is a fundamental difference between the modal covariance matrix as obtained from open- versus
closed-loop measurements: while in the open-loop case it, ideally, delivers accurate information on the
turbulence present in the atmosphere, the closed-loop measurements will provide the characteristics of
the modified atmospheric spectrum as caused by the interplay of actual turbulence and the AO system.
The starting point is the estimation equation

��� ����� �� � � ��
 �� 
 � � �� $ (2.54)

which, using the LS estimator results in
��� � �� ��� �� 
 � ���  �� � (2.55)
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Now, if �� is assumed to be uncorrelated (as it should be in a well-setup system) and cross-correlations
between �� either �� and �� 
 are neglected (justified by the delay in every real control system, see
below), the modal covariance matrix is given by

� �
 � � �� �� � � � � ��� ��� � � � ���  � �� �� � � ����! � � � �� 
 �� � 
�� � �
� � �� �� � 
 � � �

� � � �� 
 �� � � � (2.56)

If the bandwidth of the system is high enough, it is perfectly justified to drop the two cross-correlation
terms in this expression (Veran et al., 1997), thus yielding in the open-loop case (Kasper, 2000)

� �
  � + # � ��� ��� � � � ���  � �� �� � � ����! � � � �� 
 �� � 
 � � � � (2.57)

The closed-loop case differs only in the sign of the aliasing noise (Veran et al., 1997)

� �
  ��� # � ��� ��� � � � ���! � �� �� � � � � �  ��� � �� 
 �� � 
�� � � � (2.58)

The sign change can be illustratively explained by the differences of open- and closed-loop operation;
in open-loop, high-order modes will tend to add to the measurements of the low-order modes at each
time step and thus overestimate their energy, while in closed-loop, the system (over-)compensates for
the perceived low-order modes and thus tends to underestimate their energy.
In principle, all of the quantities in equations 2.57 and 2.58 are deducible from the system.

��� can
be calculated from the sensor measurements, while the recovery �� for SHS systems is one of the
subjects of this work (see section 3.2). The calculation of � requires knowledge of � 
 , which is
usually retrieved by modeling system response, as mentioned above. The covariance matrix of the
non-controlled modes � �� 
 �� � 
 � is not directly measurable and thus assumed to follow Kolmogorov
statistics. Its contribution can be found by scaling the theoretical covariance matrices (tables 2.3 and
2.4) with � � . This leaves the problem of finding � � , derivable by an iterative algorithm from open-loop
modal measurements (Kasper, 2000):

1. Assume � � � � ,

2. calculate � �� �� � � using equation 2.57,

3. estimate � � from the result of step 2 and the theoretical covariance matrix,

4. iterate from step 2 until convergence of � � .

A similar scheme can be employed in the case of closed-loop operation, as will be seen below.
As a final note, � �
 as obtained from equation 2.58 can be reentered directly into a MAP estimator,
since it delivers the closed loop statistics of the controlled mode. Unfortunately, for better results, the
MAP should be extended to non-controlled modes to yield superior results, which again requires an
estimation of the atmospheric � � .

2.2.5 Control System

In the discussions above, there were frequent references to the control component of an AO system,
without giving further detail. This will now be made up for. While the discussion is already based on
ALFA’s control architecture, technical details will only be given in section 3.1.
Most, if not all, AO systems to date are based on the principle of feed-back control, in which the
controlled quantity is reintroduced into the loop through sensor measurements. Figure 2.15 show the
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Figure 2.15: Feedback control system architecture used for ALFA. The box indicates the open-loop
components.

control system architecture employed in ALFA. The output of the system
�

on the right, is the sum of
the disturbed wavefront

���
entering from the atmosphere an the momentary shape of the DM

� � . This
wavefront is then analyzed by the SHS, delivering measured gradients �� , from which estimates of the
momentary residual modal aberration

��� are calculated via the reconstruction matrix � as described
above. The estimates now enter the actual controller, or compensator � ��, � which determines appro-
priate modal drive signals �� that are, after being translated to a suitable format �� � via a D/A and a
so-called injection matrix

�
, sent to the DM, where the cycle starts over. Of course, all operation take

a finite amount of time, and thus have to be represented by transfer functions describing its dynamics,
the actuator transfer function � � � � describing the response of the DM to driving signals, and � � � � ,
considering the combined effects of integration time on the SHS, centroiding, and calculation of the
compensation signals. Note that � and , refer to the Laplace and z-transforms, frequently used in
control system theory (Dorf and Bishop, 2001). Details on the shape of the transfer function in the
case of the ALFA control system can be found in Looze et al. (1999).
The compensation algorithm implemented in AO systems is often a variant of the so-called PID-
controller, where the letters stand for proportional, integration, and differentiation respectively. This
means, that the compensation signal will depend proportionally on the actually measured signal (usu-
ally either amplified or dampened by a gain � ), but also in certain ways on the integrated past signal
and the difference of subsequent ones. The overall effect of such a control system on a disturbed
signal (such as an individual mode in modal control) is conveniently described in the Fourier domain.
A very important concept in this context is that of the correction transfer function � � ��� � � � and the
noise transfer function � � � � � , which can be found either experimentally or analytically from the im-
pulse response of a control system (Abramovici and Chapsky, 2000). Since the power spectral density
(PSD) of a signal is directly related to its variance via integration, the calculation of the closed-loop
PSD allows a direct estimate of the performance of the control system. If � � � � � � � denotes the residual
PSD of a controlled mode after compensation of the atmospheric signal PSD � 
 � � � � � and noise, in
turn described by a PSD � � � � � , then (Gendron and Lena, 1994)� � � � � � � ��� � � � � � � � 
 � � � � � � � � � � � � � � � � � (2.59)

Additionally, the noise and correction transfer functions are related by

� � ��� � � � # � � � � � � � � (2.60)

Figure 2.16 shows the modulus of � � � � � � � and � � � � � for various loop gain factors. As can be seen,
the control loop strongly attenuates the energy at the low-frequency end of the temporal spectrum, an
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Figure 2.16: Modulus of the correction (solid) and noise (dashed) transfer functions of the ALFA
control system for a gain of 0.5 (thin) and 0.2 (fat).

effect which can be even increased by using a higher gain. However, the trade-off is an amplification
of energy to the high-frequency end. This control loop behavior is perfectly adapted to the temporal
spectrum of atmospheric turbulence in modal control, which shows high energy at low frequencies
and a steep fall-off toward higher frequencies (Conan et al., 1995).
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2.3 Point Spread Function Reconstruction

The introduction already pointed out that the temporally and spatially varying PSF of pupil-oriented
AO limits the scientific use and accuracy of astronomical images obtained with its help. Here, the
means to overcome this limitation will be discussed: on- and off-axis PSF reconstruction from WFS
data.
On-axis PSF estimation was originally developed for a system employing a curvature type WFS (Ve-
ran et al., 1997). Some of the techniques used there cannot be readily applied to an SHS AO, although
some steps in this direction have already been taken for the ADONIS instrument (Harder and Chelli,
2000).
This section will first introduce the underlying principles for on-axis PSF reconstruction, before dis-
cussing the off-axis extension as introduced by (Fusco et al., 2000). A review of the example given in
the introductory chapter will show that - under ideal circumstances - these techniques offer a consid-
erable improvement of the current situation.

2.3.1 Principles: The Long-Exposure OTF

Section 2.1.2 introduced the concept of the long-exposure OTF for an astronomical telescope, from
which the PSF can be obtained by a simple Fourier transformation. It was already mentioned that
the used phase structure function

� � ���� � was not limited to Kolmogorov or von Karman type spectra
alone. If the structure function of the residual phase for an operating AO system is introduced as����� ���� $ �� � � � � � � ���� $�� � � � � ���� � �� $�� � � � � $ (2.61)

it could serve as a basis for an estimate of the system’s PSF. The quantity
� � denotes the residual

phase entering the AO system, given by� � ���� $�� � � � � ���� $�� � � � � ���� $�� � $ (2.62)

with notations as above (figure 2.15). However, the explicit dependence on �� in equation 2.61 poses
a problem, since simple multiplication with the telescope OTF is not possible anymore. Fortunately,�����

can be replaced by its mean over ��
������ � �� � � ��� � ���� � � ���� � �� � ��� � ���� $ �� � 0 ����� � ���� � � ���� � �� �

$
(2.63)

where � ���� � is the telescopes pupil function, one inside the aperture and zero outside. With this
replacement, the total OTF

� �
�
�

of the system becomes

� �
�
� � �� � � ���	� � � �
 ������ � �� � � � � �� � $ (2.64)

where
� � �� � is the telescope OTF as introduced in section 2.1.2. Now, following similar lines as in

the discussion of modal reconstruction,
� �

can be decomposed into a part
� ���

that is controlled by the
system (low-order modes) and a part

� 
 that is not (high-order modes):� � ���� $�� � � � ��� ���� $�� � � � 
 ���� $�� � � (2.65)

From this, the residual phase of the part controlled by the system follows as:� � � ���� $�� � � � ��� ���� $�� � � � � ���� $�� � � (2.66)
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By entering this decomposition into equation 2.63,
���� �

can be written as (Veran et al., 1997)
������ � �� � � ���� � � �
�� � � �� 
 � �� � � � � � � � $ � 
 � $ (2.67)

with the last term depending on correlations between
� � � and

� 
 , which are generally very small
or even zero, depending on the modal function set used. At the very least, they can be neglected in
comparison to the other contributions (Harder and Chelli, 2000). So, the final OTF consists of three
components, � �

�
� � �� � � � � � � �� � � 
 � �� � � � �� � $ (2.68)

with the contribution of the non-controlled high-order phase aberrations
� 
 � �� � and the residual phase

of the controlled low-order aberrations
� � � � �� � .

It is now possible to go back to the modal decomposition approach of section 2.2. Supposing a modal
set

� � ��� , with � controlled modes, the atmospheric signal
�

is

� ���� $�� � � ��
� � �

� � � � � � � ���� � � .�
� � � � � � � 
 �

� � � � ���� � � (2.69)

Note that ���� � �� is used to denote the controlled modes, to emphasize the fact that in a closed-loop
a system these quantities should be small and residual. The two first terms of equation 2.67 are now
given by

���� � � � �� � � ��
�  � � �

� �� � � � ��� �
�� � $ (2.70)

and
����	� � �� � � �  � � ��

�  � � �� 
 �� � 
�� � ��� � �� �
$

(2.71)

where the � ��� depend on the used modal basis set and can be calculated using

� ��� ��� � �
��� � ���� � � ���� � �� � � � � ���� � � � � ���� � �� ��� � � � ���� � � � � ���� � �� ��� 0 ����� � ���� � � ���� � �� � 0 ��	� (2.72)

For some modal basis sets, notably Zernike and KL functions on a circular support, these functions
have been calculated analytically (Dai, 1995); as most telescopes have a central obscuration, these
analytical solutions have only limited use. Therefore, it is necessary to calculate them numerically.
As will be seen in chapter 3.4, it is sufficient to use only the first 237 � ��� of a basis set, since errors in
other quantities of the reconstruction process are by far dominant above a certain spatial frequency.
The telescope OTF, the last term in equation 2.68 is not only the autocorrelation function of the
telescope pupil, but can also account for any static aberration in the system occurring in the light-path
after the DM. This is important, since static aberrations before the DM are corrected by the AO, as if
caused by the atmosphere, aberrations after the dichroic mirror are, however, “out of reach”. So, in a
measurement setup:

Static Aberrations:
The telescope component of the system OTF,

� � �� � is obtained by measuring a reference source,
like a fiber or a very bright guidestar for which correction is nearly perfect. Fourier transform-
ing its PSF gives the desired OTF.
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2.3.2 From WFS measurements to the On-axis PSF

The formulation of the contributions of the residual of the controlled modes to the closed-loop PSF in
equation 2.70 points directly to equation 2.58, which is also valid here:

� �� �� � � # � ��� ��� � � � � �! � � �� �� � � � � �! ��� � �� 
 �� � 
 � � � � (2.73)

Again, while � ��� ��� � � is directly available from the WFS measurements and � �! , there remains the

problem to determine the measurement noise covariance matrix � �� �� � � and the contribution of aliasing
to the desired quantity.
In the original paper (Veran et al., 1997), it was proposed to deduce the noise covariance matrix
directly from Poisson noise estimates of the Avalanche Photo Diodes (APD) used in the curvature
system. This scheme is not directly applicable to a SHS system for two reasons: first, in contrast to
APDs the CCDs usually used for an SHS have a non-negligible readout noise which contaminates the
assumed photon Poisson noise and leads to a Gaussian noise distribution; second, centroiding is the
most computationally intensive task in a SHS system; but it is also the place, where any calculations on
the integrated intensity of the individual subapertures could be done; due to computational constraints,
it is therefore not possible. Noise determination, especially real- or near-real-time remains a big
problem in the application of the PSF reconstruction technique to the SHS and will be discussed
extensively in chapter 3.2.
Suppose for the time being that the noise covariance matrix has been found. Still, the aliasing con-
tribution is left to calculate. As mentioned in section 2.2 the covariance matrix of the non-controlled
high-order modes, � �� 
 �� � 
 � is assumed to follow Kolmogorov statistics and the cross-talk matrix �
is found from sensor modeling. Again, the (original) Fried parameter � � of the momentary atmo-
spheric turbulence has to be determined to scale the high-order contribution accordingly. This can be
accomplished using a modified form of equation 2.57 (Veran et al., 1997)

� �� �� � � # � �� �� � � � � � �� 
 �� � 
�� � �
� � �! � �� �� � � � � �  - � � � � � � � � 0 � $ (2.74)

where � �� �� � � is the covariance matrix of the mirror commands interpreted in the modal framework,

� � � ��
��� � � � � � � � � ���� � � (2.75)

This means that the mirror commands issued have to be recorded in order to apply equation 2.74.
Supposing now that a way to establish the noise covariance matrix is found as well, the iterative
algorithm for the determination of � � is usable again with the only difference of using equation 2.74
instead of 2.57 in step 2, leading to:

Recovering the Parameters:
During observation, three quantities need to be recorded: the measured residual modal covari-
ance matrix � ��� ��� � � , the noise covariance matrix � �� �� � � , and the mirror command covariance

matrix � �� �� � � . From their values, and the assumption of Kolmogorov turbulence together
with a suitable sensor model, an estimate of � � is found from equation 2.74. Now the actual
modal covariance matrix � �� �� � � is calculated from equation 2.73.

After this is done, everything needed to reconstruct the PSF is known.
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Putting it all together:
The structure function of the residual controlled modes to the system OTF is calculated using
equation 2.70, the contribution of high-order modes using equation 2.71 with the theoretical
modal covariance matrix scaled by � � . The structure functions are then entered into equation
2.68, yielding the system OTF. From that the PSF is found by Fourier transformation.

2.3.3 Leaving the Optical Axis - Anisoplanatic Contribution

Unfortunately, the PSF thus reconstructed is only valid for the guide star itself and objects very close
by, i.e. objects within the isoplanatic patch (cf. 2.1.2). The differences in the propagation path
between the guide star and locations away from it give rise to another source of residual wavefront
aberrations that, however, can be captured in yet another contribution to the total OTF (Fusco et al.,
2000), the anisoplanatic transfer function (ATF)

� 
 � � � �� $ � � � ���	� � � �
 � 
 � � � �� $ � � � $
(2.76)

where � is the angular distance from the guide star and
� 
 � � is the isoplanatic structure function.

The computation of the isoplanatic structure function is rather complicated, but assuming that all
controlled modes are perfectly corrected on-axis, an expression can be found (Chassat, 1989)

� 
 � � � �� $ � � � ��
��� �

.�
� � � 
 � � ��� � � � � �

��� � � ��� � ��� ��� � � (2.77)

The
�
��� are called angular correlation functions of the used modal basis set (Chassat, 1989); for

circular Zernike polynomials, there even exists an analytical expression. The most general expression,
assuming Kolmogorov turbulence, is given by (Chassat, 1992)

� ��� � � � �21 �� � 4
� !#� � .

� 0 � � �� ����� � ��� � � $ ���� .
� 0 � � �� ���	� (2.78)

with

� � � � � $ ��� �
� � � 
 �
 � !#� - - 0 � ���� � � �� � � � � � �� � � �� � ��� �"!#� ���	� � � � � � �� �� �� � � (2.79)

Here, the � � are the normalized Fourier transforms of the modal basis set,
�

is the pupil diameter and�� is the displacement vector of the off-axis positon with respect to the guide star.
When another modal basis set than Zernikes is used, the � �  � have to be calculated numerically, fortu-
nately only once. If a

� �� ���	� -profile of the atmosphere is available, e.g. using SCIDAR, the ATF can
finally be found.

Anisoplanatic contributions:
If the PSF of a star away from the guide star is to be reconstructed, a measurement of the� �� ����� -profile is necessary; if this is found, the modifications of the on-axis OTF can be found by
inserting the profile into equation 2.78 and calculating the ATF using equations 2.77 and 2.76.

2.3.4 Summary and Tasks

Figure 2.17 summarizes schematically the steps necessary to obtain accurate estimates of the on-
and off-axis PSF of an AO system. The flow of data from the measurements of the gradients �� ,
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Figure 2.17: Schematics of the on- and off-axis PSF reconstruction process.
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the calibration PSF, and the
� �� ���	� profile is depicted. The boxes enclosing the ”Simulation” and

”Numerical/Analytical” contributions indicate sub-tasks that are more comprehensively described in
appendix C. Several tasks that were necessary to be tackled within this work:

� Development of a method to obtain reliable estimates of the noise covariance matrix from
closed-loop data; preferably in real-time.

� Implementation of a closed-loop Fried parameter estimation procedure and a test of its reliabil-
ity.

� Simultaneous measurements with a SCIDAR instrument and ALFA; this served as a further
check of reliability of closed-loop atmospheric parameter estimation and a basis for off-axis
PSF reconstruction.

� Numerical calculation of the ����� and � �  � for the modal basis sets used with ALFA.

� Implementation of the PSF reconstruction process for the ALFA system.
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2.4 Introductory Example Revisited

The tools and prerequisites to reconstruct on- and off-axis PSFs from WFS data were presented in
the preceding section. Going back to the introductory example, the methods will now be validated in
a controlled, i.e. simulated, environment. Although not all aspects of the reconstruction process are
part of the simulation, it still serves both as a limiting case, highlighting the possible performance and
achievable accuracy of the method with all quantities perfectly known and a check of the workability
of the algorithm.

2.4.1 Simulation Parameters

The diamond-shaped starfield (see top image of figure 2.22) consists of 25 equally bright stars ar-
ranged with constant horizontal and vertical offsets of 4”. Table 2.5 gives the atmospheric configura-
tion of the simulation along with the total turbulence parameters derived from it.

Layer No. Height [m] Fried Parameter � � [“]

1 0 0.3
2 2000 0.5
3 10000 0.75

Total � � 22.3cm
Isoplanatic Angle

�
� 4.5”

Table 2.5: Layer configuration of the simulation.

For the simulation, a number of 500 independent realizations of turbulent phasescreens were calcu-
lated; correction was performed on the rightmost star of the field. At each step, the aperture phase
distribution of this star was decomposed into 237 KL modes. Its first 27 modal coefficients were then
multiplied by Gaussian random numbers with zero mean and a arbitrarily chosen standard deviation of
0.1, in order to simulate a non-perfect correction. The degraded coefficients were subsequently used
to synthetisize the aperture plane phase corrector (corresponding to the DM) that was then subtracted
from the pupil phase of each star before imaging. In contrast to most real systems, where wavefront
sensing and imaging are done at different wavelengths, the simulation performed both tasks at the
same wavelength of 2.2 " m1. As a 3.5m telescope with the same configuration as Calar Alto’s was
simulated, image plane sampling was set to 0.04”/pixel, to adequately sample the diffraction limited
FWHM of the PSF of around 0.13”.
Additionally, at each time step the following quantities were saved:

1. The value of the first 27 KL modal coefficients, corresponding to the mirror configuration �� in
equation 2.74.

2. The difference of �� and the degraded coefficients that were used for the calculation of the phase
corrector, corresponding to the low-order mode residuals �� in equation 2.73.

3. The image plane intensity distribution of each star.

While the modal coefficient data is sufficient to carry out the on-axis reconstruction, off-axis recon-
struction needs the knowledge of the

� �� ���	� profile. For this purpose, a corresponding SCIDAR
simulation was carried out with the same atmospheric configuration, but at a wavelength of 500 nm

1Since the dispersion of air between the visual band and the near infrared is negligible, this does not make a difference
for the results.
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and the scintillation simulation option activated (see appendix A). With this additional data, the meth-
ods of section 2.3 can be applied; there are, however, some simplifications as compared to a “real”
systems, notably the absence of measurement noise and modal aliasing2 .

2.4.2 On-axis PSF

First, the on-axis, i.e. the guide star PSF will be reconstructed. As shown in section 3.3, the quantities
needed are the covariance matrix � �� �� � " of the residual low-order modal coefficients, the covariance
matrix � �� 
 �� � 


"
of the non-controlled high order modes, and the OTF

� �
�� � of the unaberrated
system.
With the absence of noise and aliasing, � �� �� � " is directly given by the covariance of the recorded
residual modal coefficients. From this matrix, an estimate of � � is found by fitting to the theoretical
covariance of KL modes for Kolmogorov turbulence (table 2.4), yielding � � �(
 � � � � � ��
 cm, slightly
higher than the expected value of 22.3 cm (see table 2.5). The discrepancy is probably due to the
fact that while the simulation largely follows Kolmogorov statistics, it has an effective outer scale
(see appendix A) that lowers the variance of the first few modes, leading to an overestimation of
� � . Nevertheless, the estimated � � is used to scale the high-order covariances for the non-controlled
KL modes, giving � �� 
 �� � 


"
. Finally,

� � �� � is calculated for an annular aperture with a secondary
obstruction of 0 � � � � � � � 
 . The total on-axis OTF obtained by combining the results according to
equation 2.64, which in turn yields the PSF estimation by a Fourier transform. Figure 2.18 shows
a comparison of the “measured” and reconstructed PSF and OTF. As can be seen, the agreement is
nearly perfect, with all residuals very low. In fact, the largest errors are visible in the y-cut of the
PSF, but this seems to be due to a subtle shift between the image PSF and the reconstruction; the
reason for this is probably a small residual tilt on the simulated corrected pupil plane phase (since the
decomposition method involves a transformation from Cartesian to polar coordinates, this might be a
visible effect of numerical errors in the mapping (Cannon, 1996)).
The near perfection of the on-axis PSF reconstruction is not entirely unexpected: first, the low-order
residuals are known exactly, i.e. no statistical ambiguities or noise/aliasing estimation errors are
present, and, secondly, while there is a small error in the estimation of the high-order contribution, its
effect on the PSF/OTF is barely visible. Lastly, the simulated turbulence spectrum is by definition of
Kolmogorov type (save the effective outer scale), eradicating this additional potential error source as
opposed to measurements in the real atmosphere.

2.4.3 Off-axis PSF

The next step is the reconstruction of an off-axis PSF, the result of which is expected to be much closer
to reality. In contrast to the on-axis case, all the variances are now only estimated quantities, i.e. they
are not directly measurable.
The

� �� ����� profile needed for the reconstruction was calculated from the SCIDAR simulation using
the SCAVENGER package; the resulting profile is shown in figure 2.19; while it reproduces the simu-
lation parameters quite well, it also shows the smear-out effect of SCIDAR measurements. The total
turbulence parameters calculated from this profile are � � �$
�
�� � � � � � � cm and

�
� � � � � � � � � � � ” in

very good agreement with the expected values.
As in important side-note, it should be mentioned that the isoplanatic angle can also be estimated from
the decay of Strehl ratios with increasing distance from the guide star; by combining equations 2.11

2Of course, the finite sampling of the aperture plane constitutes a potential source of aliasing; however, for this simulation
the sampling was 8 pixels per (total) ��� , high enough for this effect to be negligible.
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and 2.14, one gets
�
� � �

� � ��
 1 �
� � 4

��� !#��� $
(2.80)

where � is the distance from the guide star, � the Strehl ratio at this distance, and � � the on-axis
Strehl ratio. For the simulation this estimation method gives

�
� � 
���
 � � � ��

� ”. This, however, is no

surprise, since equation 2.14 is only valid for perfect on-axis correction, i.e. a residual phase rms of 0.
Since, in reality as well as simulation, AO correction is only partial, Strehl ratio decay is always much
less dramatic3 than implied by the

� �� ����� profile. This fact should be kept in mind when comparing� �������� derived isoplanatic angles to Strehl ratio estimations in section 3.3, effectively stating that the
theoretically derived

�
� places a lower limit on the observed values.

Continuing in the reconstruction process, the turbulence profile is entered into equation 2.78 in order
to obtain an estimate of the ATF contribution to the off-axis PSF. Multiplication of this ATF with the
on-axis OTF yields the results shown in figure 2.20 for a star 12” away from the guide star (marked
by a box in figure 2.22). Although not nearly as perfect as for the on-axis case, the quality of the re-
construction is still very good with residuals lower than 10% of the PSF signal. Indeed, the difference
in the radially averaged PSF is much smaller than in the directional cuts, emphasizing the influence

3In fact, the actual degradation of the correction with increasing distance to the guide star depends on a lot of factors
such as the turbulence profile, the modal basis set used, system performance etc. (Roddier, 1999) and can in principle be
found by a thorough examination of equation 2.78. This topic, however, is beyond the scope of this work.

Figure 2.18: Comparison of measured (solid) and reconstructed (dashed) PSFs. x-cut (top), y-cut (center),
and radial average (bottom) of the guide star PSF (left) and OTF (right). The difference between each pair of
curves is also shown (dash-dotted).
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Figure 2.19: �
	
� ��� � -profile reconstructed from a simulated SCIDAR measurement with the same parameters

as the starfield simulation.

of the high-frequency “bumps” in the x- and y-direction, which might be due to the limited number of
image frames used in the simulation (leading to a relative low SNR in terms of Speckle noise). This
high-frequency discrepancy is even better visible in the OTF comparison.
Altogether, the reconstruction results for both the on- and off-axis case are very satisfactory and show
the potential of the technique.

2.4.4 Deconvolution and Photometry

Finally, the simulated image is treated the same way as in chapter 1, this time using the locally recon-
structed PSFs for the CLEAN deconvolution. To accomplish this, a quadratic grid of reconstructed
PSFs was generated, extending 20” in each direction from the guide star with a spacing of 2”. Using
this, the image was CLEANed using nearest-neighbor PSFs for the reduction, stopping when the first
image pixel turned negative. The result of the deconvolution is shown in the bottom image of figure
2.22. In stark contrast to the results of chapter 1, this time the deconvolution successfully retrieves
the original stellar pattern (as in figure 1.1, the shaded regions around the stars are a consequence of
the finite size of the deconvolution PSFs; black areas are regions where the clean algorithm reduced
image intensity to zero).
Performing aperture photometry on the CLEANed image clarifies the tremendous impact of data
reduction with a locally reconstructed PSF. Figure 2.21 shows that the flux of the stars relative to the
flux of the guide star is now estimated as

� � 
�� � � � � � .
The simulation showed that PSF reconstruction works in a controlled environment and promises to
decisively increase the accuracy of measurements performed on stellar images. In the section 34, the
results of an implementation of the methods at the AO system ALFA will be examined.
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Figure 2.20: Comparsion of measured and reconstructed PSF and OTF for a star 12” away from the guide
star. Same legend as in figure 2.18.

Figure 2.21: Result of aperture photometry on deconvolved image.
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Figure 2.22: Long-exposure image of a simulated star field corrected by an adaptive optics system, grayscale
is inverted for better visibility. Horizontal and vertical distances between stars is 4 arcseconds (top). Same
image deconvolved with the locally reconstructed PSF (bottom).



Chapter 3

Application to ALFA

While the last chapter laid the theoretical groundwork of AO PSF reconstruction, this chapter will
discuss its implementation and measurements using the AO system ALFA.
We start with an overview of the technical specifications of the instruments used in the observations.
Beginning with ALFA, its optics, sensor type and control system, then having a short look on the in-
frared science camera Omega Cass, the first section concludes with a description of Imperial College’s
SCIDAR system.
The application of PSF reconstruction to ALFA first requires a means to estimate sensor and modal
noise; while this problem is solved for open loop, problems remain in closed loop. A method to
overcome this limitation will be introduced.
Subsequently, turbulence parameters like the Fried parameter, and the isoplanatic angle as obtained
from ALFA/Omega measurements are viewed together with atmospheric turbulence profiles measured
with SCIDAR, checking the consistency of both approaches as well as to investigate the character-
istics of the atmosphere above Calar Alto. This step to obtain

� �� ����� profiles of the atmosphere
simultaneously to AO measurements, is necessary for off-axis PSF reconstruction.
Eventually all insights gained in the preceding section are brought together in order to present the
results of on- and off-axis PSF reconstruction for the ALFA AO system, showing the feasibility and
accuracy achievable with this system.
Finally, the reconstructed PSFs are used to show that off-axis photometric accuracy can be consider-
ably improved for AO images when using locally estimated imaging properties.

3.1 System Description

3.1.1 ALFA

ALFA is a pupil-conjugated Shack-Hartmann type AO system, described in great detail in Kasper et
al. (2000a) and Glindemann et al. (1997). It is in use since 1996, with its performance having since
improved by careful optimization of its wave-front sensing (Kasper, 2000) and control-system (Looze
et al., 1999).

Optics

Fig.3.1 shows the main optical elements of ALFA. The two main features are a conversion of the
default f/10 focus of the telescope to a f/24 focus by off-axis paraboloids, and re-imaging of the beam
at the original Cassegrain focus position. The beam from the telescope is reflected by a flat mirror

45
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that also serves for tip-tilt correction; after that, a f/10 paraboloid mirror re-images the telescope
pupil on the DM, where wave-front correction takes place. The collimated beam is then reflected
by a f/24 paraboloid mirror onto an IR/Visible dichroic mirror that directs infrared light back to the
original focus position and is mostly transparent to visible light which is used for wavefront aberration
measurements. One big advantage of this design is that no part of the wavefront sensor optics lies
within the science lightpath, enabling ALFA to be used in pure active optics mode for very faint
targets or observations that do not require AO correction. Additionally, it is possible to remove both
the tip-tilt mirror and the beamsplitter from the lightpath, which means that the ALFA instrument
can stay mounted on the telescope without interfering with other science instruments, which can be
attached to the ALFA science camera mounting.

A CAD rendering of the ALFA breadboard is available in Fig.3.2. In addition to the already described
components, the SHS, the tip-tilt sensor, the TV guider, the f/10 reference fiber, and an interferometer
are visible.

The reference fiber is capable of transmitting point-source like (with a diameter of about 6 " m) light
from either a white light source (used for calibration and alignment) or a HeNe laser (used for align-
ment), and can be remotely moved into or out of the lightpath. The interferometer serves as a monitor
when flattening the DM or checking the correctness of modal shapes when applied to the mirror.

A TV guider can also be entered into the beam and is mostly used for target acquisition. With its FOV
of 4 arcminutes (as opposed to the 40 seconds of arc when e.g. using Omega Cass), it allows to find
desired targets even if coordinates are insufficiently known or the telescope is mispointing strongly.

The SHS will be discussed in the next paragraph; the separate tip-tilt sensor, however, was originally
necessary for LGS operation with ALFA as well as reducing demands on the DM (see below). Since
it is not possible to infer tip-tilt aberrations from LGS observations, an additional NGS is needed to
retrieve this information. With the help of a field select mirror, that diverts light into the tip-tilt sensor,
ALFA is capable of using a different star for tip-tilt than for high-order sensing. Unfortunately, the
laser subsystem of ALFA is no longer available, therefore this capability has been removed in 2003
as well. However, since the tip-tilt aberrations are the modes with the highest variance in atmospheric
turbulence, the separation from the high-order correction system considerably reduces the necessary
stroke of the DM actuators, allowing the use of a DM with a small dynamical range.

97 Actuator
Deformable
Mirror

f/10 Paraboloid

f/24 Paraboloid

IR/Visible
Beamsplitter

Tip-tilt
Mirror

f/10 Focus

IR f/24 Focus

Figure 3.1: Optical elements of the ALFA system.
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Figure 3.2: CAD rendering of the ALFA breadboard.
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Figure 3.3: The elements of the ALFA SHS sensor.

Shack-Hartmann Sensor

Fig. 3.3 shows the components of the ALFA SHS, which was built by Adaptive Optics Associates,
Cambridge, USA. By means of the field select mirror, a guide star up to 30” away from the telescope
optical axis can be selected as a corrective beacon; this is useful for the observation of very extended
astronomical objects as well as for mosaicing of NIR images.
The next element in the light path are the field stops, used to limit the SHS field of view. This is
necessary if an extended light source is used as a guide star or to select one star within a dense cluster.
The monolithic microlens module is located at an image of the telescope’s pupil plane. The module
consists of a motorized stage, with which the lenslet array, to be used for the wavefront analysis,
can be selected. Originally, the ALFA system used hexagonal microlens arrays, of which now only
that with the highest number of subapertures is still employed; the other two have been discarded in
favor of a much superior setup, the keystone design (Kasper and Hippler, 2003). Figure 3.4 shows the
microlens arrays currently in use at ALFA; the

� � � hexagonal array, mainly used for very bright
stars, the Keystone 28 (KS28) and the Keystone 7 (KS7) array; the three lenslets are depicted in figure
3.4. The big advantage of the KS compared to the hexagonal design lies in the KS perfect adaption to
the annular shape of the telescope pupil; hence, all lenslets are equally illuminated, leading to similar
noise behavior on each of the gradients obtained with the KS7 and KS28. The selection of the array
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Keystone, 7 Subapertures à 1.17 m2 Hexagonal, 6 Subapertures à 1.18 m2

Keystone, 28 Subapertures à 0.29 m2 Hexagonal, 30 Subapertures à 0.26 m2

Figure 3.4: Microlens configurations. Hexagonal
��� �

(top right) and
� � �

(bottom right), keystone 7 (top
left), and keystone 28 array (bottom left). The shaded regions depict the illuminated annulus of the Calar Alto
3.5m telescope.

suited for a measurement depends mainly on two factors: the Fried parameter and the brightness of
the guide star. While, ideally, the size of the lenslets should be on the order of � � , a certain level
of illumination is needed, which sometimes dictates the use of the KS7, thus degrading correction
performance. In this work, all measurements were exclusively done with the keystone design, the
KS28 in the bright star case and the KS7 for faint ones.

The neutral density filters are used to darken a very bright guide star, that might impair measurements
by saturation of the CCD pixels or bright reflections showing up on the SHS camera. Imaging of the
spot pattern resulting from the lenslet array is done by the relay lens.

The SHS CCD camera uses a � � � � � pixel Lincoln Labs CCD (LLCCD) with a maximum framerate
of 1206 Hz. Its read-out noise is about 4 electrons. As can be seen from figure 3.5, its quantum
efficiency is highest between 600 and 700 nm, where it exceeds 80% . For this reason, a center
wavelength of 650 nm is assumed in the calculation of the subsequent sections (this influences scaling
of � � estimates and modal variances to the science camera observing wavelength). Also shown in
figure 3.5 is the quantum efficiency of the CCD (EEV39) used in the separate tip-tilt system. As can
be seen, its maximum sensitivity region lies between 500 and 600 nm, suggesting to use 550 nm as
the tip-tilt measurement wavelength for scaling purposes; note that, since tip-tilt values are not used
for Fried parameter estimation1 , the difference has no consequences on the estimation algorithm for
� � (see section 2.3). For PSF reconstruction, however, it has to be taken into account by scaling tip-tilt
variances differently than variances of the higher modes.

1Due to the outer scale, tip-tilt variances do not follow Kolmogorov statistics (see also chapter 2.2)
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Figure 3.5: Quantum efficiency of the SHS CCD and the tip-tilt CCD.

Deformable Mirror

ALFA’s DM is a 97 ceramic piezo actuator continuous-sheet mirror manufactured by Xinetic Inc.,
USA. It is capable of delivering an inter-actuator stroke of up to 2 " m with each actuator reaches
its commanded position within 0.2 ms. As the piezos are arranged on an 11 � 11 grid, the telescope
pupil is sufficiently sampled to accurately reproduce polynomials up to the 6th radial order, which
includes the first 28 Zernikes and Karhunen-Loeve functions (Kasper, 2000). It has been found that
the interaction between two neighboring actuators is below 10% (Wirth et al., 1998).

The linear operation range of the piezos lies between -35 and -105 Volts. If the same voltage is
applied to all actuators, the rms aberration of the reflected wave is about 600nm. Since this would
considerably reduce the performance of the system, an interferometer is used to flatten the DM during
the calibration process; this procedure is fully automated and regularly delivers a mirror flatness of
around 60nm rms (about ' � ��� rms of the measurement wavelength).

Another potential performance hazard is piezo hysteresis, which has also been found to be very small
(Kasper, 2000). The DM is, however, sensitive to temperature changes, occasionally requiring a re-
flattening if the temperature changes substantially during an observation night.

The PSF reconstruction process needs an accurate knowledge of the modal set dependent quantities
� ��� and � ��� introduced in section 3.3. These coefficients are quite sensitive to deviations of the actual
mirror shape from the theoretical values of the modes. To assess the quality of the representation of
KL modes by the DM, interferometric images of the mirror surface were taken. Figure 3.6 shows a
comparison of the mirror shape to the calculated modal shape for two exemplary modes. To account
for deviations of the DM from flatness, two measurements at different modal strengths were taken
for each mode and subsequently subtracted. As can be seen from the figure, the DM represents the
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Theoretical Deformable Mirror

KL7

KL20

Figure 3.6: Comparison of calculated (left column) and measured (right column) shape of the KL functions of
order 7 (top) and 20 (bottom). The DM images are not de-rotated in order to highlight the difference between the
KL7 mode realizations. Bumps on the KL20 DM mode are caused by non-linear responses of single actuators.

KL modes very well2. In fact, if the images are de-rotated and subtracted, one finds an average rms
of about 60-170 nm for the first 30 KL modes, corresponding to a phase rms of an order of 0.03-
0.08 for K-band imaging, small compared to the usual residual modal aberrations after correction.
Nevertheless, the � ��� and � � � coefficients used in sections 3.4 and 3.5 were calculated numerically
from the DM measurements rather than using their theoretical values.

Control System

Some of the properties of the ALFA control system have already been introduced in section 2.2 (cf.
figure 2.15). It is implemented on a VME-Bus based real-time computer system running VxWorks.
The necessary matrix operations, such as centroiding, modal reconstruction and control are done
on five interconnected digital signal processor (DSP) boards, containing four DSP chips each. The
calculations are distributed between those processors to speed up computation. Additionally, each
board has a RAM capacity of up to 8 MBytes, where intermediate information can be stored for later
processing; the most important data storable are the gradients, since they contain all the information
necessary to carry out the PSF reconstruction process (see also section 3.4). For a typical ALFA setup,
i.e. 27 modes corrected using measurements with the KS28 array at 300 Hz, about 80 seconds worth
of gradients can be recorded. Unfortunately, the loop has then to be stopped to retrieve the data; since
all I/O ports of the gradient processing board are already taken, relaying gradient data to another place
in the system is also not easily possible and would require a redesign of the modal control system.

2The rotation between the theoretical and measured modes is constant at 54 degrees; it is a consequence of the orientation
of the interferometer relative to the DM and has no influence on the accuracy of the modal representation.
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In any future upgrade of ALFA, this problem should be addressed to allow for longer uninterrupted
observations while retaining the PSF reconstruction ability.
The implementation is capable of projecting up to 50 wavefront control modes within 833 " s, thus
allowing a maximum loop frequency of 1206 Hz. This, however, is hardly used since a very bright
guide star would be required to achieve acceptable SNR on the SHS for this short an integration time.
Up to and including 300 Hz, the control algorithm is that of a PI controller, beyond this frequency, a
LQG or optimized control algorithm is used instead (Looze et al., 1999).
The VME/VxWorks system is connected to workstations running the graphical user interface (GUI)
via ethernet; this GUI is also used to control the motorized stages on the ALFA breadboard, which in
turn receive their commands from the VME system via an RS-232 link. A complete presentation of
the ALFA computer system can be found in Hippler et al. (1998).

Calibration and Setup

Before each observing run, a calibration of the ALFA system has to be carried out. Its main goal is to
establish the relation between the DM control modes and the SHS. In principle, analytically derived
relationships could also be used, but these would be very sensitive to deviations from the nominal
alignment of DM and SHS, as well as the difference between theoretical KL shape and actual DM
shape3. The calibration and setup process consists of the following steps:

1. Reference: First, the reference positions of the sublenslet spots on the SHS have to be defined.
For this purpose, after flattening the DM, the white light reference fiber is positioned at the
f/10 focus and imaged by the SHS as well as the science camera. The latter image is then used
to eradicate static aberrations occurring in the non-common path after the IR/visible dichroic
by applying fractions of correction modes until the Strehl ratio of the fiber image is satisfying
(usually a Strehl ratio of

�

90% is desired). If this aim is reached, the positions of the spots on
the SHS CCD are saved as reference positions.

2. Identification of Control Modes: Now, all of the chosen control modes are applied to the DM
sequentially with a unit modal coefficient ( � � �

� � � ) and the corresponding gradient vectors�� � calculated. Arranging these vectors in columns gives the interaction matrix � . With the
assumption of a linear relationship between DM shapes and SHS measurements, the modal
decomposition of an arbitrary combination of the control modes is then given by

�� ��� ��
$

(3.1)

where �� is the vector of modal coefficients. This equation corresponds to equation 2.46 in
section 2.2, so that all results derived there are valid in the context of ALFA.

3. Reconstruction: With � known, the next step is the calculation of a linear reconstructor such
that ��� ��� �� � (3.2)

This subject was already discussed at some length in section 2.2. Although tests with a MAP
estimator have been successfully performed at the ALFA system (Kasper, 2000), usually the LS
estimator

� � � � � � � ��� � � (3.3)

3Depending on how unevenness is distributed on the “flat” mirror, these differences vary from calibration to calibration.
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Figure 3.7: ALFA and Omega Cass mounted at the Cassegrain Focus of the Calar Alto 3.5 m telescope.

is used. In this case, cross-talk limits the number of correctable modes to about 30 for the KS28
and the 7 � 7 hexagonal array.

4. Compensation: The last step is choosing the control parameters used in closed-loop operation;
this mainly concerns the type of centroiding algorithm, the loop frequency, and gain.

After this procedure, the system is ready for observation. A number of quantities is saved during
the calibration process which are important for the PSF reconstruction, most notably the interaction
matrix � and the fiber PSF, from which the

� �
�� � part of the system OTF can be calculated.

3.1.2 Omega Cass

All star images presented in this work were taken using the Omega Cass near infrared (NIR) camera
(Lenzen et al., 1998). It covers a wavelength range of 1-2.5 " m with a 1024 � 1024 Rockwell HAWAII
array. At the telescope the camera is directly mounted beneath the ALFA breadboard (the cylindrical
tube in figure 3.7). The Omega Cass camera has been specifically designed to be used together with
the ALFA AO system. Apart from direct imaging, it offers the following observational modes:

� Polarimetry using either wire grids or Wollaston prisms,

� Long-Slit Spectroscopy with different slit sizes and grisms of spectral resolutions from 500-
1000,

� and Coronography with exchangeable masks.

All of these observing modes can be controlled and changed remotely, as can a number of broadband
(J,H,K,K’) and narrow-band filters (e.g. Br � , FeII(1.644) etc.).
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Figure 3.8: The Imperial College SCIDAR instrument mounted at the Calar Alto 1.23 m telescope.

When operated with ALFA, exchangeable f/25 optics are used, delivering an image plane pixel reso-
lution of 120, 80, and 40 mas. From August 2000 to early 2002, however, mechanical problems of the
optics wheel made it impossible to change the image plane resolution of the camera, which was for
this period of time fixed at 80 mas. This resolution only just samples the diffraction limited FWHM
of the system in K-band and had to be used for all measurements presented in this work. As will be
seen in section 3.4 this limitation considerably complicates the direct comparison of reconstructed to
measured PSFs, since the exact location of the PSF peak with respect to the imaging grid is unknown
for each image.

3.1.3 Imperial College SCIDAR System

The SCIDAR instrument used for turbulence measurements was supplied and operated by Imperial
College’s Applied Optics group at the Calar Alto 1.23 m telescope. Figure 3.8 shows the instrument
attached at the Cassegrain focus. The working principle of SCIDAR was already discussed in section
2.1. Its actual setup is remarkably simple; as indicated in the figure it consists of a shutter/mirror
combination that redirects the focus to a TV camera used for positioning, a lens wheel which sets the
conjugate “depth” of the observation plane, and an intensifier/CCD camera combination used for the
measurements. Not shown in the image is an accompanying electronics rack.
The simplicity of the instrument makes it very transportable and it has been used at various telescopes
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around the world; but this advantage is also one of its biggest drawbacks: on-site calibration is a very
lengthy process, which in the case of our measurements required several hours at daytime and nearly
a full observing night. As soon as this calibration is done, observations can be carried out without
much realignment. The usual goal is to sample the aperture plane of the telescope at around 0.01 m
per pixel, a size that is adapted to the typical size of scintillation speckles on the pupil.
In its default mode, the image of the pupil plane is sampled at a frequency of 383 Hz with exposure
times of just about 1 ms; the short exposure times are necessary, since the relaxation time of scintil-
lation patterns is not much longer than a few milliseconds (casting doubt on the Taylor frozen flow
hypothesis (Saint-Jacques and Baldwin, 2000)).
Due to the high sampling frequency, the system produces a tremendous amount of data which cannot
be processed in real-time; rather, the pupil plane images are relayed to a workstation and written on
a DAT tape for later processing. Hence, as each SCIDAR profile is derived from a 2048 image block
covering approximately 5 seconds, and breaks between individual shots about the same duration,
several tens of gigabytes have to be stored during a typical observation night.
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3.2 Noise estimation in open- and closed-loop operation

While the determination of most of the covariance matrices needed for PSF reconstruction from WFS
data is sufficiently straightforward, the retrieval of the noise covariance matrix � �� �� � " is the most
demanding task in applying the PUEO (Veran et al., 1997) method to SHS type systems. In the
case of curvature systems, the noise can be directly derived from the intensity measurements in the
subapertures. While this in principle is also possible in a SHS setup, it is much harder or outright
impossible to implement; unfortunately, intensities are measured at the most busy part of the control
system: the centroiding section, where any additional tasks (like noise determination) would increase
the already demanding constraints on computational load at this stage. Therefore, it is desirable to
find indirect methods of noise estimation; as will be seen, this is rather unproblematic for open-loop
measurements, but signal modifications introduced by the closed-loop system pose a restriction on the
use of this method.

3.2.1 Open-loop noise estimation

Open-loop noise estimation can be done in several ways if the gradient signal of each subaperture is
recorded. The noise level is then derivable by

1. identification of unlikely gradient configurations assuming a specific turbulence model (Gen-
dron and Lena, 1994), which, however, delivers only a global noise estimate averaged over the
whole telescope pupil,

2. a fit to the noise floor in the PSD of an individual gradient signal (Harder and Chelli, 2000),

3. an analysis of the auto-covariance of a gradient signal (Gendron and Lena, 1995).

Figure 3.9: Auto-covariance of a gradients signal; noise and signal contributions are indicated.
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Since different subapertures have different noise levels, method 1 is unsuitable for PSF reconstruction;
method 2 is able to find these differences, but operates in Fourier space, making a real-time implemen-
tation impossible, since data would for a duration of time have only to be collected (low computational
load) but then Fourier-transformed and fitted almost instantaneously (high computational load). Addi-
tionally, using the PSD is affected by the problems of calculating Fourier transforms on finite duration
signals. This leaves method 3, which delivers subaperture noise as well and can be implemented in
real-time (see below).

Principle and results

Method 3 rests on the assumption that the signal can be interpreted as a superposition of two com-
ponents: a slowly decorrelating atmospheric signal, caused by the current modal configuration of
turbulence in the pupil plane, and uncorrelated noise, a combination of photon noise, sky background
noise and readout noise; the central limit theorem makes Gaussian noise a sensible approximation to
the type of noise involved. Now, since the auto-covariance function of white noise consists of a Dirac
peak at a time lag of zero, and the atmospheric signal decorrelates smoothly, the signal auto-covariance
looks as depicted in Figure 3.9. Gendron and Lena (1995) showed that the atmospheric signal close to

Figure 3.10: Parabola fitted to the first 4 lagged points of a gradient auto-covariance function; noise value is
indicated.

the origin of the auto-covariance decays with � � � � ; since the maximum of this auto-covariance is also
at time lag zero, linear contributions can be ruled out and it is sufficient to fit a function of the form

� � � � � � � � � �
(3.4)

to the first few points of the auto-covariance, where
�

denotes the time lag. If � � � � � denotes the
auto-covariance function of the � th gradient, its estimated noise variance is then simply given by

�� �� � � � � � � �
� � (3.5)
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Figure 3.11: Estimated noise on the subapertures of the KS28 array of ALFA.

Additionally, the noise at different subapertures can also be regarded as uncorrelated, so that

� �� �� � " ��� � ��� � � �� � (3.6)

is the desired estimate of the noise covariance matrix. Figure 3.10 shows the algorithm in action; as
is clearly visible, a relatively good fit is obtained with only 4 points used; in fact, fitting to more than
5 or 6 points is dangerous, as can be seen in Figure 3.9, where the auto-covariance function curves
away from the parabola shape quite soon, starting at a time lag of about 20 ms.
Applying the method described above to a set of ALFA gradient measurements recorded using the
KS28 array and a sampling frequency of

�
�
�
Hz yields the results shown in Figure 3.11; the gradients

noise is plotted for the x- and y-directions alternatingly. Other than the systematic differences between
horizontal and vertical noise variance, the actual magnitude of noise is not very different between
subapertures, which is a consequence of the uniform illumination exploited by the keystone design.
There are two possible explanations for the systematically higher noise in x-Gradients: either a coma
aberration within the sensor optics (invisible for the correction since it would also be present during
calibration) and/or CCD charge transfer inefficiency, caused by a smearing of charge by the fast read-
out register in the x-direction (Kasper, 2000).

Checking the algorithm’s consistency

In order to check the accuracy and the consistency of the noise estimation, the following test was
carried out: recorded gradient measurements were cut into two pieces of equal length and the noise
estimated independently on both parts. In total, 14 (open-loop) measurements, consisting of 18000
samples per gradient each, were used for the calculation; the data was collected using the KS28
array again, but different illumination levels were used. Figure 3.12 shows the results. Each point
represents a pair of noise estimations obtained from the first and second part of a gradient time series,
plotted against each other; the straight line indicates the location of noise ratios of one. The plot
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Figure 3.12: Comparison of noise variance estimations from subsamples; the dashed line indicates a ratio of
1. The histogram of observed ratios together with a fitted Gaussian is depicted in the inset.

only seemingly implies higher estimation inaccuracy at higher noise levels, since the higher base
value exaggerates the distance from the centerline; actual estimation accuracy is estimated from the
histogram of noise estimation ratios obtained. The subplot in Figure 3.12 shows this histogram with a
fitted Gaussian, which implies a one � distribution of around

� � � � , meaning that on average estimates
are consistent within 8 percent.

Real time implementation

As already mentioned in chapter 3.1, the setup of the ALFA control system limits the number of
recordable gradients. After this limit is reached, the loop has to be stopped and the data downloaded.
This of course makes continuous measurements impossible and leads to considerable delays when
adjusting the loop to atmospheric conditions. Therefore it would be highly desirable to either reduce
the amount of data to be recorded or, if online adjustments are necessary, even perform online data
analysis with the lowest computational load possible. The noise estimation process is parted into two
tasks, one to be carried out at each timestep, the other after a given number of samples is acquired.
The auto-covariance at lag � of a discrete time series of length � is given by

� � � � �
�

�

��
��� � � � �

� �� � � � � � � � �� � $ (3.7)

where the � � are the measured values at time step � and
�� is the mean of the series. Theoretically, the

mean of a gradient is zero, but tracking errors or a drift in the tip-tilt system often introduce a slight
bias, so it is wise not to drop it for the calculation. Expanding equation 3.7 gives

� � � � #
�

�

��
��� � � � � � � �

� � � 

�
� �

� ��
��� � � ���

�
$

(3.8)
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where the approximation was done in neglecting the influence of “cutting” of the series at � on the
mean value. With this formulation the algorithm is clear:

1. Decide on a number � of time steps used for an individual noise estimation and a number � � 
 �
of lags used for it (as seen above, 4 are usually sufficient).

2. For each gradient, initialize memory to store
� � �� ,

� � � � � � � for each � , and registers to store
the past � values of the gradient

3. Repeat until � timesteps are reached: Update the sums and the past values

4. For each � , calculate the auto-covariance according to Equation 3.8 using the sums and � ,
store the results, clear memory and start over at step 2.

If e.g. a maximum lag of
�

and a sample size of � �
�
� are selected, the memory required for informa-
tion storage is reduced by a factor of

� 
 �
� . Note that the stored value for � � �
is the variance of

the measured gradients, hence all data needed for the calculation of � � according to equation 2.57 is
delivered by this algorithm. Unfortunately, this algorithm cannot be implemented into the ALFA sys-
tem, since it is impossible to access gradient measurements at other places than the centroiding control
board; calculating in the control board, on the other hand, is prohibited by computational demands.
This limitation will be addressed in future updates of the system.

3.2.2 Closed-loop noise estimation

The noise estimation used in the preceeding section rested on the assumption that noise in subsequent
measurements is uncorrelated. While true in open-loop, this requirement is not met in closed-loop;
noise is considered part of the measurement by the control system and has therefore consequences
on the shape of the DM. This feedback subsequently causes temporal correlations in the noise of a
subaperture.
To illustrate this behavior, a pure

Figure 3.13: Effect of closed-loop control on noise correlation. In-
put signal (asterisk and solid line), output signals for loop delay of 1
(triangles and dashed line) and 2 (diamonds and dotted line).

noise signal was fed into a sim-
ulation of the ALFA control sys-
tem (see Appendix C); the response
for loop delays of one and two
timesteps is shown in Figure 3.13.
It is clearly visible that the assump-
tion of uncorrelated noise does not
hold anymore. This makes the ap-
plication of the parabola method
for noise estimation dangerous, es-
pecially since the near-origin pro-
portionality of the auto-covariance
function to � � � � is not necessarily
true in closed-loop. Kasper (2000)
proposed to use only the differ-
ence of the first two values of the
auto-covariance,

�� � # � � � � � � � � �
as an estimate of noise. While that prevents the potential misfitting of a parabola, it introduces a sys-
tematic error depending on the behavior of the underlying signal, and the autocorrelation function
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of the measurement noise. A small modification of this approach (subsequently called the direct
difference method), however, can considerably improve the accuracy of closed-loop gradient noise
estimations. This modification looks as follows

�� � # � � � � � � � � � ��� � � 0 � � � + � � � � � � 0 � � � + �
�� � 0 � � � + �	� �
$

(3.9)

where
� �
� � + is the loop delay in cycles4. This approximation was found during an ARMA analysis

(Hamilton, 1994) of gradient time series, and becomes clear if it is assumed that a gradient signal � �
at time

�
can be described by

� � � � � � ��� � � � $ (3.10)

where � � denotes the noise contribution at time
�
, and � is a constant describing the influence of past

measurements on the momentary one. Of course, � is loosely related to the loop gain, but the exact
relation depends on the actual implementation of the control system. Since, in closed loop � � " � �

,
the auto-covariance is given by

� � � � � � � � � � � � " (3.11)

Using Equation 3.10, this can be expanded to

� � � � � � � � � ��� � � � � " ��� � � � � � � " � (3.12)

Since noise will only be correlated at a lag ��� �
in this equation, it is possible to write

� � � � � � � � � � � � � �
�� $ (3.13)

� � � � � � � � � � � � � (3.14)

Isolating � in the second equation and putting it into the first then results in

�
�� � � � � � � � � � � � � � � �

� � � � � � � �
� � � � � (3.15)

This is already nearly identical to equation 3.9 for 0 � � , save the factor of 2 in the denominator;
originally, this factor was found empirically, but it can be mathematically founded by the following
argumentation: strictly speaking, equation 3.10 does not operate on the individual x- and y-gradients
of a subaperture, but on the gradient subvector �� � of the � th lenslet spot5,

�� � � � �� � ��� � �� � $ (3.16)

where the noise vector is taken from a radially symmetric Gaussian distribution with a variance of �
�� .

Parting this equation to its individual components gives two equations of type 3.10 with noise terms� �  � and ���  � . The magnitude of the noise, however, is not equal to �
�� but has to be calculated as the

x/y-directional expectation value given the radial distribution:

�
�
� �

�

� � �� - - .� . 0 � 0 � � � � ���
))�� )
�

�
�

� � �� - .� . 0 � � ���

))�� )
�
- .
� . 0 � � � � ��	

))�� )
�

�
�

� � �� � 

� � �� � 

� � �� � ��


�
�
 � �� $

(3.17)

4Rounded to the nearest integer.
5In a modal control system, the control loop effectively shortens the displacement vector present in each subaperture.
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Figure 3.14: Assessment of noise estimation accuracy for the direct difference (left) and the weighted difference
approach (right) for loop delays of one cycle (top) and two cycles (bottom).

and likewise for �
�� . This means, that for equation 3.10 to be valid on an individual direction, the noise

contribution has to be multiplied by
� 
 , leading to the desired factor of 2.

Furthermore, the method can be generalized to higher loop delays: the first term is just the direct
difference method value, with the second term taking the role of a corrective factor, that estimates the
influence of the noise feedback on the decay of the auto-covariance function, resulting in equation 3.9
(subsequently called the weighted difference method).
A simulation was used to compare the noise estimation accuracy of the direct difference and the
weighted difference approaches. A recorded open-loop gradient file with a very low noise level was
augmented with pure Gaussian noise of increasing magnitude; the modified gradient file was then used
as input to a ALFA closed-loop simulation, using the corresponding interaction matrix obtained from
the ALFA observing run. The closed-loop gradients forming the output of the simulation were then
subjected to the two different noise estimation approaches. Figure 3.14 shows a comparison of the
results for loop delays of 1 and 2 cycles. There is a clear tendency of noise overestimation in the direct
difference approach, best visible at high noise levels; the result is an average overestimation of the
noise actually present by about 9%. Although the weighted difference method shows a higher spread
of estimates at high noise, the noise found is on average only 1.1% lower than the expected value,
clearly a big improvement over the direct difference method. The differences are less pronounced for
a loop delay of 2, with the first method overestimating at an average of 3.8% and the new method by
1.0%.
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Figure 3.15: Comparison of noise variance estimations from subsamples; the dashed line indicates a ratio of
1. The histogram of observed ratios together with a fitted Gaussian is depicted in the inset.

It should be noted that the weighted difference approach is not suitable for loop delays higher than
2, where the direct difference delivers better results. This, however, is not a strong restriction, since
high loop delays do only appear at very high correction frequencies (at about 600 Hz for ALFA). For
future systems, a delay of close to 1 is expected to be the rule rather than the exception, since hardware
speeds of DSPs are constantly increasing.

Estimation Consistency and Real-Time Implementation

Finally, a similar consistency check as for the open-loop case was carried (see figure 3.15 out and
again found the values from the sub-series to be consistent within 8%.
A big advantage of the presented method is the fact that the real-time implementation presented for
the open-loop data can also be used without changes. The knowledge of the first three autocorrelation
coefficients of each gradient is sufficient to reliably estimate the noise levels in closed-loop operation.
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3.3 Obtaining atmospheric parameters

The performance of an AO system is strongly influenced by the momentary configuration of the atmo-
spheric turbulence parameters � � , and

�
� . It is therefore highly desirable to achieve accurate estimates

of these quantities, which can be used to optimize the settings of the AO’s adjustable parameters or
help in the interpretation of scientific data obtained using the AO.
This section deals with measurements of atmospheric parameters obtained by SCIDAR and from
simultaneous observations with ALFA/Omega Cass, addressing the following questions:

� shape of a typical Calar Alto turbulence profile
� �� ���	�

� temporal stability of both the Fried parameter � � and the isoplanatic angle
�
� ,

� and the consistency and reliability of parameter estimates from open- and closed-loop control
system data.

Furthermore, the knowledge of the
� �� ���	� profiles is essential for off-axis PSF reconstruction, as

discussed in chapter 2.3. The results of this section have been partially published in (Weiß et al.,
2002a) and (Weiß et al., 2002b).

3.3.1 Measurements and Data reduction

As described in Chapter 2, SCIDAR observations have to be done on bright visual binaries. Tables 3.1
and 3.2 give the essential data on the stars used for the measurements presented here. Note that the

Object Name RA Dec �
�
�
� ��� � � [“] � � [m]

� Del 20:46:39.2 +16:07:27.0 4.76 1.13 9.6 186
95Her 18:01:29.9 +21:35:42.5 4.3 0.1 6.6 284

Table 3.1: Binaries used for SCIDAR atmospheric profiling

vertical resolution of SCIDAR measurements is related to the angular separation � � of the binary’s
components and the pixel sampling 0 � in the SCIDAR analysis plane by � � � 0 � ��� � . On August 31,

Object Name Guide Star RA Dec � � Exp. time [s] Filter

� Del HD 197963 20:46:38.9 +16:07:26.9 5.14 1.00 K+Br �
IC 1396 HD 206267 21:38:57.6 +57:29:30.5 5.83 0.84 K

Table 3.2: Guide stars used for ALFA/Omega Cass measurements

2000, both instruments were pointed to the same target during all observations of 95Her and � Del; on
September 1, 2000, however, SCIDAR measurements were carried out on � Del while ALFA/Omega
Cass observed the open cluster IC 1396, about 40 degrees away from the SCIDAR binary, in order
to check for possible dependencies of atmospheric parameters on the viewing direction. Elevation
angles for both objects, however, were nearly identical.



64 CHAPTER 3. APPLICATION TO ALFA

SCIDAR Data

The data reduction process for SCIDAR data basically followed the lines already explained in sec-
tion 2.1. Each of the measurements consists of 2048 pupil images recorded at a temporal sampling
frequency of 383 Hz, which were used to calculate the mean-normalized auto-covariance of the scin-
tillation in the SCIDAR analysis plane. With the help of SCAVENGER (see appendix B) a profile ac-
cording to equation 2.28 was extracted and the inverse problem of equation 2.29 solved by conjugate
gradients in order to obtain an estimate of the momentary

� �� ����� -profile; this profile was then scaled
to the zenith direction from the actual binary elevation. With this result, estimates of the atmospheric
parameters were calculated using equation 2.7 for � � and equation 2.13 for

�
� .

Of course SCIDAR measurements are affected by noise, most notably by a sampling error in the
observation plane and photon noise amplified by the intensifier. While the photon noise is quite small
for a given distance range (Prieur et al., 2001), the sampling error one was found to be of significance.
The sampling goal of the used setup was 0 � � � � � � m/pixel on the SCIDAR camera. Measuring the
size of the pupil image for several parts of a single run revealed a variation on the order of about one
pixel, giving 0 �  � � 
�� � � � � ��� � � � � �
�
� � m/pixel, effectively constituting a height sampling error.
This error might be caused by vibrations or flexure of the SCIDAR instrument; although, at about
1%, it seems relatively small, it translates to an error of around 5% in the determination of � � and

�
�

from
� �� ���	� profiles through uncertainties in the knowledge of 0 � . Finally, the contribution of errors

in the solution of the inverse problem was taken into account by assigning the noise estimates of the
conjugate gradient inversion process to each point in the

� �� ���	� profile.

Omega Cass Data

Omega Cass images of � Delphini and IC 1396 were used to estimate � � and
�
� using the configuration

as listed in table 3.2.
By measuring the FWHM of each bright star in the field of view of open-loop images (two for � Del,
four for IC 1396) � � was obtained using

�� � �(' ��������� $
(3.18)

with the error estimated by the Fried parameter differences between the stars. Additionally, 15 single
exposures respectively, spreading over a time of approximately 25 seconds due to readout delay, were
taken from a set of 60 images total to expose a possible time dependence of � � .
The isoplanatic angle was estimated from closed-loop images by a similar procedure, determining the
Strehl ratio � of each star (again two for � Del but this time only three 6 for IC 1396), and fitting the
results to

��
� � � � 1 � � 
 � �

� � 4
���"! � $

(3.19)

where � � is the distance of the � th star from the guide star, � � its Strehl ratio, and � � the Strehl ratio
of the guide star; the estimation error is naturally given by the fitting error. Note that there is some
debate on the value of the exponent in this equation, with a theoretical value of

� �
� for perfect on-axis
correction. For low-order correction, however, Roddier (1999) argued that

� �

 should be used with
the exact value depending on the number and type of corrected modes.

6The guide star was overexposed and thus not usable.
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Loop Data

Gradients were recorded in both open- and closed-loop imaging mode. In all cases, the KS28 array and
a sampling frequency of 300 Hz was used, with a closed-loop gain setting of 0.5 on the first day and 0.4
(due to worse seeing) on the second. Thus, the 18000 gradient sets in each measurement correspond
to 60 seconds of observation. Open-loop data was straightforwardly processed by estimating noise as
described in the previous chapter and using equation 2.57, while closed-loop data was first subjected
to the ALFA loop simulation to obtain the variances of the mirror modes, with noise estimated from
the gradients with the weighted difference method. With this information, � � was then estimated
according to equation 2.74.

3.3.2 Survey of SCIDAR Measurements

The measurements presented here are from two 50 minute sections of the August 31 (subsequently
Day 1) and September 1, 2000 (Day 2) measurements; they were selected since they offer a fairly
continuous coverage of this period of time, were recorded in generalized SCIDAR mode (making the
ground layer visible) and coincided with gradient measurements at the ALFA system.

Overview

Figure 3.16 shows a survey of the selected SCIDAR results of August 31, 2000. The center plot gives
the color-coded

� ������	� profiles over time, while the top and bottom plots show the values of the Fried
parameter � � at 500 nm and the isoplanatic angle

�
� at 2.2 " m, as derived from the profiles. Seeing

conditions during the measurement were excellent with 0.6” FWHM in V-Band. The same quantities
on September 1, 2000 are shown in figure 3.17; on this day, the seeing was more typical for Calar
Alto with an FWHM of 1.1” in V-Band.
The structure of turbulence on both days shows a strong domination of the ground layer. This is
expected, since the thermal interaction of air and surface as well as obstacles and the geography of
the site are a source of turbulence even in low winds. There are, however, two notable differences
of the ground layer configurations on the two days: while the maximum

� �� value is only about
1.5 � ��� ��� � � � � !#�

on Day 1, it reaches a peak value of 6.0 � ��� ��� � � � � !#�
on Day 2. Additionally,

turbulent activity seems to be confined to the immediate ground level on the first day, extending only
to around 500 m (coinciding with the instrumental resolution), it clearly exceeds 1 km in height on
the second day. The consequence of these differences is directly visible in the � � estimates won from
the profiles, yielding 17.5

�
2.7 cm on Day 1 and only 10.2

�
0.01 on Day 2. Turbulence eases off at

about 10 km from ground level, which, taking into account that the Calar Alto observatory is situated
at approximately 2.2 km, corresponds to the typical tropopausic level. The turbulence between ground
level and tropopause, however, is very different on the two days. Day 2 exhibits a very simple structure
with basically only ground and tropopausic layers present, while for Day 1 a whole region of relatively
strong turbulent activity can be identified, ranging from 3 to 10 km above ground. Within this region,
at distances of 3, 6 and 9 km respectively, variation of turbulence strength is strongest, sometimes
more than doubling from the underlying level of activity. The most stable of these disturbances is at
6 km, which seems to steadily built up during the observation period, while both the 3 km and 9 km
layers show only intermittent presence. All in all, the Day 2 turbulence structure is much more stable,
where relatively weak variations occur only in layers already present. The only interesting feature is
the slow ascent and descent of the tropopausic layer between 9 and 10 km, a phenomenon that might
be related to atmospheric gravity waves (the Brunt-Vaisala period of tropospheric waves is typically
around 10 minutes (Nappo, 2002)).
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Figure 3.16: Overview of SCIDAR results for August 31, 2000. Legend on the right of figure 3.17.
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Figure 3.17: Overview of SCIDAR results for September 1, 2000.
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Figure 3.18: Histograms of the difference in subsequent measurements of � � 30 seconds apart; data obtained
on August 31, 2000 (left) and September 1, 2000 (right). A Gaussian fitted to both histograms is depicted by
the dashed line.

The different structures of the atmospheric turbulence do not lead to much different isoplanatic an-
gles, with

� 
�� � ” � � � � ” on Day 1 and
�&� � � ”

� 
���� ” on Day 2. The strong height dependence of
�
� (cf.

equation 2.13) thus implies that turbulent activity in the upper part of the troposphere must be higher
on Day 1 than on Day 2; in fact, integrating

� �� ���	� from 3 to 15 km on both days, reveals that the tur-
bulence content in this region is on average a factor of 1.4 higher on the first compared to the second
day.
Usually it is expected that the ground layer dominates the value � � while the highest layers are respon-
sible for much of

�
� . The atmospheric structure on Day 2 shows exactly this behavior; a calculation

of the Fried parameter with integration reaching only to 5 km already accounts for 74% of the total,
while a similar calculation for the isoplanatic angle starting at 5 km is nearly sufficient, since the value
thus obtained is 98% of the total. If the same calculation is carried out for the atmosphere on Day 1,
the first 5 km give only 34% to 42% of the whole atmosphere � � . Additionally the influence of the 3
km turbulence is non-negligible for

�
� , reducing the contribution of the upper part of the atmosphere

from 98% to 90%.

Temporal Statistics of the Fried Parameter

Another interesting feature of the SCIDAR measurements is that they allow to examine the temporal
behavior of the derived atmospheric parameters. Since � � enters the PSF reconstruction algorithm at
various points the knowledge of temporal development is crucial in order to determine just how long
it can be regarded as stable.
Since single profile measurements are roughly 30 seconds apart during a SCIDAR observation, this
time period has been used for the examination. Figure 3.18 shows histograms of the relative difference
between � � estimates 30 seconds apart. Also shown are Gaussians fitted to the histograms. The fact
that this Gaussians are not centered on zero reflects suggests there is a predominantly increasing trend
present on � � on both days. More interesting, however, is the fitted standard deviation, which amounts
to 12.8% on Day 1 and 14.9% on Day 2. Assuming that measurement error on � � is independent
of the variations, these values reduce to 11.0% and 13.1% on the first and second day respectively.
This result precautions against using the same Fried parameter for PSF reconstruction purposes for a
period much longer than some tens of seconds. Although two days are too small a sample to deduce a
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Figure 3.19: Histograms of the difference in subsequent measurements of � � 30 seconds apart; data obtained
on August 31, 2000 (left) and September 1, 2000 (right). A Gaussian fitted to both histograms is depicted by
the dashed line.

general statement, it seems that the temporal variation of � � does not strongly depend on seeing and/or
structure of the turbulence, at least for good and median observing conditions.

Temporal Statistics of the Isoplanatic Angle

The same consideration as on � � has been carried out on the estimates of the isoplanatic angle. Figure
3.19 shows the results. Again, the decentering of the Gaussian reflects an increasing trend on Day 1
and a slightly decreasing one on Day 27. The standard deviations found are not much different from
that of the Fried parameter with (measurement noise reduced) values of 13.1% on the first and 11.8%
on the second day; these results are even more important than that for the Fried parameter, since � �
can be estimated from sources other than SCIDAR as well, while

�
� is only reliably accessible from

the
� �� profiles. For example, the use of balloon probe measurements of the turbulence profile for

off-axis PSF reconstruction is completely ruled due to this short timescale variations. Additionally, it
casts doubt on the argumentation (Fusco et al., 2000) that average atmospheric turbulence profiles are
sufficient for off-axis PSF reconstruction.

3.3.3 Simultaneous Fried Parameter Measurements

Figure 3.20 shows the results of all Fried parameter measurements from the different instruments
for the two selected days. As can immediately be seen, the � � estimates taken from Omega Cass
images (triangles) agree very well with the SCIDAR measurements (diamonds) on both days8. Even
when SCIDAR estimates are missing the values gained from the images seem to fill the gaps sensibly
and nicely, which gives confidence in the reliability of parallel SCIDAR measurements for assisting
AO. More important, however, are the estimates obtained from the ALFA control system. While the

7The estimates of the second day are influenced by outliers, which stem from spurious spikes in the �
)

� profiles caused
by light scattered into the SCIDAR instrument by clouds.

8This is an important result, since it establishes that dome seeing on the 3.5 m and the 1.23 m telescopes cannot be
much different. Since these measurements where done, a ventilation system was installed at the 3.5 m telescope; it would
be interesting to repeat the measurements in order to assess the impact of the ventilation.
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Figure 3.20: Comparison of � � estimates from August 31, 2000 (top) and September 1, 2000 (bottom) as
derived from SCIDAR (diamonds), Omega Cass images (triangles), open-loop (squares), and closed-loop (filled
squares) ALFA gradients.

Omega Cass values just served as a gauge for the coincidence of measurements on the two telescopes,
the comparison of SCIDAR and ALFA estimates aims at a reliability check for the latter.

Estimates of ��� from open-loop gradient data (open squares) show a slight overestimation on Day 1
that is even more pronounced on Day 2. This is in stark contrast to the excellent agreement of closed-
loop gradient Fried parameter estimates (filled squares) with the SCIDAR data, exhibiting only a
hint of underestimation on Day 2. The explanation for this fact lies in the way centroiding is done
on the SHS CCD: during calibration a square region with a size of 3” by 3” around each reference
position is determined, with only pixels lying within this region taken into account. An examination
of the open-loop gradients revealed that they are biased, i.e. they show a constant offset from the
reference position varying from measurement to measurement from 1” to 2”. Since the star image
size on the SHS is seeing limited, this offset, together with seeing disk size, leads to a PSF that lies
partially outside the centroiding area; gradient lengths are therefore underestimated in turn leading to
an overestimation of ��� . This also explains why overestimation is worse on Day 2, since seeing on
this day was nearly double that of Day 1.

Of course, closed-loop centroiding is not affected by this problem, since the correction places the SHS
PSFs near the reference positions.

It is not clear what is the reason for the slight underestimation of � � from closed-loop gradients on
Day 2: it might either hint to a systematic error or be a consequence of the different viewing directions
on Day 2.
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Figure 3.21: Comparison of � � estimates from August 31, 2000 (top) and September 1, 2000 (bottom) as
derived from SCIDAR (diamonds), and Omega Cass images (triangles).

3.3.4 Simultaneous Isoplanatic Angle Measurements

A comparison of the isoplanatic angles calculated from the SCIDAR measurements (diamonds) and
deduced from closed-loop Omega Cass images (triangles) is shown in figure 3.21. At an image sam-
pling of 0.08” the estimation of the Strehl ratios proved to be difficult, as is reflected by the large error
bars accompanying the

�
� estimates especially on Day 2. For this reason, the isoplanacy results are of

reduced value. Leaving that restriction aside, the Omega Cass
�
� estimates are almost always higher

than those of the SCIDAR measurements. Remembering section 2.4, this is no surprise. In fact, the
estimates are remarkably close to the minimum value defined by the SCIDAR profiles. Moreover, the
temporal variations of the isoplanatic angle are moving largely in parallel between the instruments,
again emphasizing the influence of turbulence fluctuations on image quality.

3.3.5 An Intermediate Summary

The results presented in this section served the purpose to show that the derivation of the Fried pa-
rameter from closed loop ALFA data is consistent with independently obtained results. Additionally
it delivered information on the temporal behavior of the atmosphere, which turned out to be rather
more variant than expected; changes in the spatial distribution of layers pose a potential problem for
off-axis PSF reconstruction, thus

� �������� profiles used for this purpose should not be offset from an
observation by more than a few minutes, contrary to the assumptions of earlier works on this subject.
Also, the changes of ��� and

�
� on timescales of some tens of seconds place limits on time for which a

PSF will sensibly be reconstructable.
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Finally, the generally good agreement of Fried parameter and isoplanatic angle measurements be-
tween the SCIDAR instrument and ALFA/Omega Cass justifies the use of SCIDAR measurements for
reconstruction purposes.
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3.4 PSF estimation

In the preceding sections, the groundwork for the application of PSF reconstruction on the ALFA AO
system was laid. With the availability of a reliable noise-estimation method and the knowledge of� �� ����� , all quantities need for the reconstruction are given. First, the quality of on-axis PSF recon-
struction for bright and faint guide stars will be examined in K-Band; then attention is turned to an
assessment of bright and faint guide star off-axis PSF reconstruction. These examinations will show
the feasibility of the algorithms for the ALFA system. Finally, a photometry will be carried out in
order to show improvents possible when using locally reconstructed PSFs for the examination.

3.4.1 Data Reduction

The goal of this section is to compare the shape of PSFs reconstructed from WFS measurements with
those extracted from NIR, more specifically K-Band, images, taken simultaneously to closed-loop
data. This comparison is complicated by the undersampling of the diffraction limited PSF, due to the
long-lasting malfunction of the Omega Cass optics wheel (cf. section 3.1).
All images were subjected to a reduction procedure, consisting of the following steps:

1. A series of dome flatfield images with increasing exposure time were used to construct flat, bad
and noise frames of the Omega Cass camera; these frames were assumed to be constant during
the night.

2. Bad pixel correction was performed by adding a median filtered version of the image, multiplied
by the bad pixel mask, to the original image, which in turn was before multiplied with the
inverted bad pixel mask.

3. Where available, a sky background frame, treated for bad pixels the same way as described
above, was subtracted.

4. Finally, pixel sensitivity variations were accounted for by dividing by the flatfield.

Keeping the results of section 3.3 in mind, the number of frames to be co-added was chosen such that
the integration timespan (start of the integration of the first coadded image to the end of the last) did
not exceed 30 seconds. Table 3.3 lists the observed objects together with some important imaging
parameters9 .

Object Type airmass Filter Sky Total Exposure Time [s] Total Obs. Time [s]

95Her binary 1.06 K+Br � 540 1920
� Del binary 1.07 K+Br � X 833 3320
M92 globular cluster 1.64 K X 460 1200

Table 3.3: Objects observed for PSF reconstruction purposes.

Table 3.4 lists the guide stars and loop parameter settings maintained during the observations. A
total of 24000 gradient sets was recorded alongside each closed-loop exposure, corresponding to 80
seconds for 300 Hz and 320 seconds for 75 Hz loop operation frequency10 . Of course, the number

9One of the reasons for the large difference between exposure and observation time is the need to stop the control loop
in order to download recorded gradients.

10Available space was not fully exhausted in the 75 Hz case, since the closed loop-exposures lasted only about 90 seconds
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Object Guide Star Brightness [ � � ] Loop Frequency [Hz] Loop Gain

95Her HD 164668 5.08 (7.08) 300 0.4
� Del HD197963 5.14 (7.14) 300 0.5
M92 CSI+43-171569 13. 75 0.2

Table 3.4: Guide stars and loop settings for the objects given in table 3.3. The numbers in brackets are the
actual brightness on the SHS, which is lower since the ND2.0 filter was employed.

of gradients was abridged before reduction to a length fitted to the integrated observing time of the
images. From these gradients all quantities needed for on-axis PSF were obtained by the following
steps:

1. Noise estimation was done using equation 3.9, giving the diagonal elements of the gradient
noise covariance matrix � �� �� � " . Off-diagonal elements of this matrix are negligible, as
they could only be caused by strong variations of the sky background or transparency, which
can safely be assumed to be small in the visual band. Transforming the noise according to
� � �� �� � " � � gave the noise covariance on the residual controlled modes

��� .
2. The next step was the recovery of the variance of the mirror modes � �� �� � " . Since ALFA’s

control system is digital, these can be determined by feeding the recorded gradients �� into a
software version of the control algorithm (see also appendix C). The modal coefficients thus
recovered have then to be doubled (mirror reflection) in order to recover �� . With these given,
� � was estimated following the iterative algorithm described in section 2.3 using equation 2.74.

3. Finally, with the Fried parameter and noise known, the crucial matrices � �� �� � " and � �� 
 �� � 

"

were determined according to equation 2.73, scaling the theoretical KL modal variance matrix
with � � as obtained in the previous step.

In principle, the results so obtained could be used directly to estimate the system OTF (and thus its
PSF) following equation 2.68. But just the supposedly easiest part in this equation poses the biggest
problem, namely the unaberrated system OTF

� � �� � . Due to the undersampling, the fiber image cannot
be reliably used to estimate the contribution of residual aberrations; this owes largely to the fact that
the exact positioning of the PSF on the 0.08”/pixel grid is not known and that the OTF obtained
from the PSF carries no information beyond a frequency of approximately

� � � � ��' . The only way
to overcome this limitation was to measure the fiber image PSF’s Strehl ratio and constructing an
according modal covariance matrix. This was done by taking a 9 � 9 matrix, with its (0,0), (1,1) and
(2,2) entries, corresponding to tip,tilt and focus variance, set to zero, as these aberrations can safely
assumed to be absent in fiber imaging. The remaining diagonal entries were then set to equal values
such that � # ���	� ��� 	 � +�� � �� �� �

" � was equal to the measured Strehl ratio. The corresponding OTF
was finally taken to represent

� �
�� � . While this approach serves to correct for possible overestimation
of the Strehl ratio by the reconstruction process by limiting its maximum to that found on the fiber, it
is not suitable to account for asymmetries present in the reference PSF.
A similar problem occurs when comparing the reconstructed to the extracted PSFs; if the reconstruc-
tion was carried out such that it directly delivered a PSF resolution of 0.08”/pixel, the shape would
be by definition symmetric in the sense that the peak PSF intensity would be located exactly on the
vertex of four neighboring pixels. To avoid this, the reconstruction and comparison process was done
the following way:
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1. The PSF delivered by the reconstruction algorithm was resolved at 0.04”/pixel.

2. From this PSF, slices in x- and y-direction were taken, and each pixel in these slices parted into
20 pixels with constant intensity.

3. The overresolved slices were then shifted and at each step regridded to a 0.08”/pixel resolution
by summing the intensities in 40 sequential bins.

4. The resulting undersampled PSFs were then compared to PSF slices taken from the image
PSFs selecting the reconstructed PSF such that the summed quadratic difference between the
measurement and the reconstruction was minimal.

As shown in chapter 2.3, off-axis PSF reconstruction requires an additional term in the OTF. This term
was calculated by selecting a nearby or synchronous

� �� ����� measurement obtained with SCIDAR and
calculating

� 
 � � � �� $ �� � as given by equations 2.77 and 2.78.
The next two sections show comparisons of selected samples of image PSFs to their corresponding
reconstructed PSF.

3.4.2 On-axis PSF Reconstruction Results

The comparisons are done for x- and y-cuts of both PSFs along with a a radially averaged PSF.
Contrary to other works on this topic, both PSFs are normalized to one in order to expose errors in its
flanks. The quality of peak fitting is assessed by comparing the Strehl ratios of the reconstructed and
the extracted PSF, given in a table accompanying each plot.

Bright Guide Star - Good Seeing

The first comparison is done on a 25 second exposure of 95Her recorded during a period with V-
Band seeing of 0.6”. Loop gain at this time was 0.4. The results are shown in figure 3.22 and table
3.5. As can clearly be seen, the reconstruction quality is quite good, with the absolute difference
between the PSFs nowhere exceeding 0.1. This becomes even clearer when looking at the OTFs:
at lower frequencies, the error is well below 1% growing to 10-15% at higher frequencies. There
are several possible sources for the high-frequency deviations, the most obvious being the insecure
knowledge of the unaberrated system PSF. Looking at the residuals, it seems that errors mostly show
up at the location of the first diffraction ring in the x-and y-cuts, and are much less severe in the
radially averaged profile. This might hint to an asymmetry of the fiber PSF which is not accounted for
by the modeling as described above.
The Strehl measured and the reconstructed Strehl ratios also agree remarkably well, with the slightly
higher Strehl given in the reconstruction corresponding to the deviations of the OTF to the upside.
The FWHM agreement is also quite good, especially taking into account the inherent inaccuracy of
measuring its value on a 0.08”/pixel array.

Measurement Reconstruction

Strehl Ratio [%] 40.8
�

1.6 42.4
FWHM [“] 0.15

�
0.01 0.14

Table 3.5: Strehl and FWHM values given by the image and the reconstruction of the guide star PSF for 95Her.
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Figure 3.22: Comparison of measured (solid) and reconstructed (dashed) PSF and OTF cuts for 95Her at a
V-Band seeing of 0.6”. The difference of each pair of curves is also shown (dash-dotted).

Bright Guide Star - Median Seeing

The second example was taken on � Del on the same day approximately one hour later. Seeing had
at this time degraded to 0.9” in V-Band, but still a higher correction quality was obtained due to the
higher loop gain setting of 0.5, as can be seen from the slightly higher Strehl ratio of around 45%.
Figure 3.23 and table 3.6 show the results for this case. On first inspection, the reconstruction quality
is very good, even better than for the first example. Still, the difference between the PSFs is nowhere
higher than 0.1, and strongest close to the first diffraction ring, further hinting to an unaccounted
asymmetry of the fiber PSF. Additionally, the deviations are very similar between this star and the first
example. This is an encouraging result, as it rules out a non-stationary error contribution unaccounted
for by the reconstruction process. Looking at the OTF comparison, the agreement between the y-cut
and radially averaged profiles is very good and generally close or even below 10%.
Finally, the measured and reconstructed Strehl ratios and FWHMs are very close, with both recon-
structed values lying within one � of the measured ones.

Faint Guide Star - Median Seeing

The last on-axis PSF example is taken from an observation of M92 on September 1, 2000. The
conditions for this observation were very different from the previous examples in brightness as well
as airmass (cf. table 3.3). Due to these conditions, the KS7 array was used with a loop frequency of
75 Hz and a loop gain of only 0.2. As this loop setup clearly represents a case with a loop delay of less
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Figure 3.23: PSF and OTF comparison for � Del at a V-Band seeing of 0.9”. Same legend as figure 3.22.

Measurement Reconstruction

Strehl Ratio [%] 45.7
�

2.00 47.6
FWHM [“] 0.14

�
0.01 0.13

Table 3.6: Strehl and FWHM values given by the image and the reconstruction of the guide star PSF for � Del.

than one cycle, ita also served as a testbed for the noise estimation method developed in section 3.2. In
fact, it turned out that no PSF reconstruction was possible unless the weighted difference estimation
was used. The reason for this was that the measurements on M92 were associated with a fairly high
noise level; the overestimation of noise by both the direct difference method and the parabola method
in conjunction with the noise amplification by the control loop leads to negative variances in equation
2.74. This physically senseless result makes an estimation of � � by the iterative process described in
section 2.3 impossible.
The PSF reconstruction results, using the weighted difference noise estimation method, are shown in
figure 3.24 and table 3.7. The agreement of the PSF x-cuts is clearly very bad, while that for the y-cut
and the radially averaged cut are surprisingly good. This discrepancy, however, can be easily explained
by a non-common path aberration. Figure 3.25 shows a contour plot of the guide star and a nearby star,
which both clearly exhibit a coma aberration. As will be seen later, this coma also appears on off-axis
stars further away and seems to be of constant strength. As the only non-common path aberrations in
the ALFA system can occur after the dichroid, the most probable explanations is a decentering and/or
tilting of the Omega Cass camera, well possible at an airmass of 1.64 corresponding to a zenith angle
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of 52 degrees. The other possibility, a static coma introduced by the ALFA SHS due to flexure of one
of its components is ruled out by both the field-independent character of the coma and the absence of
significant static coma terms on the mirror modes.

Figure 3.24: PSF and OTF comparison for M92 at a V-Band seeing of 0.8” (1.1” when scaled by the airmass).
Same legend as figure 3.22.

Measurement Reconstruction

Strehl Ratio [%] 13.2
�

1.9 13.3
FWHM [“] 0.24

�
0.02 0.22

Table 3.7: Strehl and FWHM values given by the image and the reconstruction of the guide star for M92.

Ignoring the x-cut deviations, the y-cut of the PSF, that should be largely unaffected by the coma,
shows remarkable agreement with the reconstructed PSF cut; this is even more true of the OTF, with
relative error staying close to 10% up to frequencies of

� � � � ��' .

While the relative error in the Strehl ratio estimation is much higher than in the bright star cases, the
FWHM agreement is better than before, especially taking into account that a higher FWHM is ex-
pected on the measured PSFs due to coma. This partly reflects that the faint guide star PSFs are better
sampled, with about 2.5 samples per FWHM instead of 1.6 for the bright star and good correction
case.
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Figure 3.25: Contour plots of the guide star and a nearby star for M92; offsets are from the center of the
Omega Cass detector. Coma is clearly visible on both stars.

3.4.3 Off-axis PSF Reconstruction Results

PSF reconstruction for stars far away from the guide star in principle requires the knowledge of the
on-axis PSF. Earlier works (Fusco et al., 2000) have argued that this step could be skipped and perfect
correction on the guide star assumed. While this argument leads to satisfactory results for very bright
guide stars (and associated good correction), it is prone to fail for faint guide stars. As can be seen
from equation 2.76 the

� 
 � � �
�� $ � � can basically be regarded as a modification of the residual modal
variance � �� �� � " , save high order contributions which are comparatively small. The relative strength
of the � � � and the � � � thus determines the quality of the off-axis PSF. Especially for poor correction
and low Strehl ratios achieved using a faint guide star, residual aberrations on the correction axis
are comparatively high and are thus dominant far away from the guide star, leading to an effective
isoplanatic angle much higher than its theoretical value (see below).
Another caveat in off-axis PSF reconstruction is the selection of the appropriate

� �� ���	� profile. During
the preparation of this work it has been noticed that the quality of the reconstructed PSF can be very
sensitive to even weak variations of the upper troposphere; care has therefore been taken to only use
atmospheric profiles either recorded in parallel or - if not available - within a time window of 10
minutes from the observation.

Bright Guide Star - Good Seeing

The first example is taken from the same exposure of 95Her as examined before, this time using the
second component at a distance of 6.6” from the guide star. The results are shown in figure 3.26 and
table 3.8. Note that the FWHM is not reported for off-axis stars, since it is generally different in x-
and y-direction due to the elongation in the direction of the guide star.
On first inspection, the reconstruction quality is quite similar to the the on-axis case; with the short
distance and a prevalent isoplanatic angle of 11.7”, this is not unexpected. Well inside the isoplanatic
patch, the differences should be small as can also be seen from the Strehl ratio of approximately 38%
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Figure 3.26: PSF and OTF comparison for the second component of 95Her at a distance of 6.6” from the
guide star and a seeing in V-Band of 0.6”. Same legend as figure 3.22.

Measurement Reconstruction

Strehl Ratio [%] 38.1
�

1.8 39.0

Table 3.8: Strehl ratios given by the image and the reconstruction for the off-axis component of 95Her

that lost only about 3% as compared to the guide star.
Looking at the PSF, the relatively strong deviation on the left diffraction ring region of the x-cut is still
present, which establishes the presence of an unresolved asymmetry present on the calibration PSF.
The y-cut and radial average PSFs, however, are estimated remarkably well. This is also reflected in
the OTF comparisons, with absolute errors about the same order as for the on-axis case; the relative
errors are higher, reaching about 15%, which is mostly a consequence of the generally lower OTF
values for an off-axis star.

Bright Guide Star - Median Seeing

The next example is also located within the isoplanatic patch, but at a larger distance of 9.6”. It is
taken from the same exposure of � Del as for the on-axis case. The stronger influence of off-axis terms
on the PSF can be immediately seen from the higher drop in the Strehl ratio of nearly 10%. The results
of the reconstruction process are shown in figure 3.27 and 3.9.
The x-cut of the PSF shows the expected error at a position of -0.3” from the PSF center. This
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Figure 3.27: PSF and OTF comparison for the second component of � Del at a distance of 9.6” from the guide
star and a seeing in V-Band of 0.9”. Same legend as figure 3.22.

Measurement Reconstruction

Strehl Ratio [%] 34.2
�

2.2 36.5

Table 3.9: Strehl ratios given by the image and the reconstruction for the off-axis component of � Del.

time, however, there are also stronger deviations present on the y-cut and the radial average of the
PSF. Although the overall reconstruction quality is still satisfactory, these deviations could hint on a
systematic error originating in the unknown outer scale of turbulence during the observations. This
assumption is further strengthened by the fact that the relative OTF reconstruction error is significantly
higher than in the previous examples over nearly the whole spatial frequency range: an error in the
estimation of the contribution of low spatial frequency modes, like tip, tilt, and focus, which are most
affected by the outer scale, would show exactly this behavior. Interestingly, Fusco et al. (Fusco et al.,
2000) found a similar discrepancy in their studies of the anisoplanatic PSF.

Faint Guide Star - Median Seeing

The last example is an off-axis star on the M92 image. This star lies far outside the isoplanatic angle
of 11.7” prevalent at the time, especially when scaled to the corresponding airmass which results in a�
� of only 5.5”. The results of the reconstruction are shown in figure 3.28 and table 3.10.

The x-cut of the measured PSF is still contaminated by a a coma contribution to the right side of
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Figure 3.28: PSF and OTF comparison for the second component of M92 at a distance of 15.3” from the guide
star and a airmass-scaled seeing in V-Band of 1.1”. Same legend as figure 3.22.

Measurement Reconstruction

Strehl Ratio [%] 7.6
�

1.41 9.3

Table 3.10: Strehl ratios given by the image and the reconstruction for the off-axis example from M92.
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the peak intensity, emphasizing the field independent character of this imaging aberration during the
observation. The y-cuts and radial averages of reconstructed and measured PSF, however, again agree
remarkably well considering the difficult conditions; the strongest deviations originate from high
frequency bumps, which are a consequence of the comparatively low SNR for the fainter star as
compared to the bright star examples. These high spatial frequency deviations are also clearly visible
in the OTF comparisons, where starting from around

� � � � ��' , the error is close to or even higher than
the actual value of the OTF. In the lower frequency range, the reconstructed OTF shows the same
tendency of underestimation as in the previous cases, caused by the calibration PSF uncertainties, and
being more pronounced in this case due to the lower underlying magnitude of the OTF.
While the difference of the measured and reconstructed Strehl ratios is relatively high for this example,
it still lies safely within 
 � of the measurement error.

Altogether, the PSF reconstruction results presented here are very satisfactory, especially given the
difficulties associated with the undersampling of the measurements. It should be noted that the selec-
tion of the examples is representative in the sense that they are not taken from particularly good or
bad cases, but were chosen such as to show the typical quality of reconstruction under the given set of
circumstances.
We are confident that if a properly sampled calibration PSF was available, the small low-frequency
estimation errors of the OTF would be largely accounted for. This assumption is founded on the fact
that the strongest deviations of the PSF shapes do always appear at the same location, namely to the left
of the x-cut and to the right of the y-cut peaks. This clearly points to a static nature of the deviations,
in contrast to the results found by Harder and Chelli (2000) in their work on PSF reconstruction for
SHS systems, who found non-stationary differences that strongly impaired the quality of their fits. As
of writing (March 2003), measurements at Calar Alto are underway to provide very high-resolution
(0.04”/pixel) images alongside WFS data.
While the overall quality of the reconstruction does not fully reach that found on CWS based systems,
we suspect that much of this difference would disappear for adequately sampled data.

3.4.4 Photometric Reduction

As a last step, the PSFs reconstructed over the whole field of view will now be used to perform
photometry on two binaries and the outer fringes of the M92 globular cluster. Again due to the
undersampling of the images, this proved to be quite difficult; since the exact placement of the PSF
on the image grid is a priori unknown, the CLEAN deconvolution, delivering very accurate results on
simulated images (cf. section 2.4), could not be successfully applied.
Instead, it was necessary to use a generalization of the method of the preceding section to achieve
satisfactory results that consisted of the following steps:

1. First, a grid of reconstructed PSFs was calculated, using the gradient and atmospheric turbu-
lence data, that spans from the guide star PSF to the most distant point in the field of view. This
calculation was done at a resolution of 0.04”/pixel and at PSF distance steps of 1” starting with
at the guide star.

2. Then, measured PSFs were extracted from the images at the locations of the stars on which
photometry was to be applied.

3. Then, by interpolation and rotation, the appropriate estimated PSF for each of the photometry
locations was generated.
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4. The reconstructed PSF was fitted to the measured PSF by first subdividing each pixel of the
estimation into a 20 � 20 grid of identical intensity of 1/400

� � of the original pixel intensity;
subsequently, this new gird was shifted stepwise over the whole range of 20 pixels in both
directions, at each step projecting to a resolution of 0.08”/pixel by summing intensity within
40 � 40 subarrays of the grid. For each resulting undersampled PSF the following quantity was
minimized

	 � �
�
�  �

� � ��� ��� � ��� � �
� ���

� � $
(3.20)

where
� � � is the intensity of the measured PSF at pixel ��� $ � � , � ��� its associated noise (with

� ��� � � � ��� assumed to follow Poisson statistics), � � � the intensity of the reconstructed PSF
at location ��� $ � � , which is linearly fitted to the measured PSF via

�
(”peak intensity”) and

�
(”background”).

5. Finally, the projection for which 	 � as defined in the previous step was minimal was considered
as the best fit.

Multiplication of
�

with the total brightness of the normalized reconstructed PSF then gave an estimate
of the flux on the selected star. It should be noted that for most of the examples given here, this method
is overly complicated since the separation between stars is large enough to safely assume that their
PSFs are not overlapping, making aperture photometry possible. The purpose of this section, however,
is to reveal and check improvements in photometric accuracy when using a locally reconstructed PSF
as opposed to a global one. The advantages of this approach will come to pass in observations of
dense clusters and nearby galaxies, where the mutual distances of the interesting objects are far too
small to apply aperture photometry.

Bright Guide Star: � Del and 95 Her

The first photometry example are the bright binaries � Del and 95Her; open- and closed loop images
of the systems are shown in figure 3.4.4. As seen in the previous sections, both the on- and off-axis
reconstruction quality was very good on both stars, thus a conclusive improvement of the photometric
estimation is expected in both cases. Table 3.11 shows the results of the photometry, where OL
Aperture are the results obtained from a two minute open-loop exposure with aperture photometry
(which is used as a reference), CL on-axis the values obtained with using the reconstructed on-axis
PSF on both stars, and CL local the results given by fitting the locally reconstructed PSFs. As can
be seen, the local results are clearly superior, reducing the photometric error from more than 10% to
3.5% for 95Her and from more than 25% to 3.9% for � Del; while the errors of the local method are
comparable for both stars, the much higher error using the global PSF on � Del in part reflects the
higher distance between the guide star and the second component of the binary.

OL Aperture CL on-axis CL local
�
� from

� �� ����� �
� from Grid

95Her 1.73 1.93 1.79 11.7 18.8
� Del -2.39 -1.75 -2.30 15.2 21.5

Table 3.11: Photometry Results for 95Her and � Del.

In this context it is also interesting to compare the isoplanatic angles as calculated from the
� �������� -

profile present during the observations and that inferred from the reconstruction grid via equation
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Figure 3.29: Open- (left) and closed-loop (right) images of 95Her (top) and � Del (bottom).Intensity is dis-
played in inverted logarithmic scale for better visibility.
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Figure 3.30: PSF grid used for photometry on M92 spanning from on-axis (left) to a distance of 40”; step size
is 1”, resolution 0.04”/pixel.

3.19. The results of this comparison are also shown in table 3.11. Again, the practical value of the
isoplanatic angle is much higher than the theoretical one, by a factor of 1.6 for 95Her and 1.4 for
� Del.
The higher factor in the case of 95Her is easily explained by the performance differences of the
correction: while the Strehl ratio of the guide star was 42% for 95Her, it reached 48% for � Del. The
closer the performance of the loop lies to perfect on-axis correction, however, the more the effective
isoplanatic angle approaches is theoretical minimum given from the atmospheric profile and equation
2.13. A practical consequence of this behavior is that, if an interesting object is located far from
the corrective beacon, the on-axis correction performance can be deliberately degraded to enlarge
the isoplanatic patch size. Some work to find an optimum between on-axis correction quality and
isoplanatic patch size has been done by Chassat (1992).

Faint Guide Star: M92

The next example was done on a corrected image of the outer regions of M92; with its high airmass
and low loop frequency, this example represents an extreme case in the sense that its operating at
the very limits of ALFA’s possibilities. The open- and closed-loop images used for the photometry
are shown in figure 3.4.4. Note that the coma is clearly visible on several stars of the closed-loop
image. As seen before, the on-axis Strehl ratio achieved was only about 13% in this case. This has

Distance from GS [”] OL Aperture CL on-axis CL local

4.13 1.18 1.25 1.21
8.75 1.26 1.38 1.31
8.93 1.15 1.25 1.20

12.98 1.48 1.53 1.50
16.19 N/A 0.87 0.78
18.36 N/A 1.07 0.88
22.41 0.55 0.59 0.58
22.71 0.04 0.19 0.10
30.87 0.66 0.75 0.58

Table 3.12: Photometry Results for M92

a strong effect on the difference between the effective isoplanatic angle and its theoretical minimum;
as noted when assessing the off-axis reconstruction accuracy of M92 before, the isoplanatic angle as
calculated from the

� �� ���	� profile scaled to the airmass of 1.6 was only 5.5”; using the Strehl ratios
of the deconvolution grid shown in figure 3.4.4 and equation 3.19, however, gives an effective

�
� of

26.6”, nearly five times higher.
The results of the photometry, estimating the magnitude difference of several stars at various dis-
tances with respect to the guide star, are shown in table 3.12. Again, the estimates obtained by the
local method are consistently smaller than those taken from the on-axis PSF. Additionally, with the
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Figure 3.31: Open- (left) and closed-loop (right) images of M92 centered on the guide star. Intensity is
displayed in inverted logarithmic scale and the guide star masked out for better visibility.
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exception of the two most distant stars, the difference between the open-loop aperture photometry
results and the local estimates are around a value of 3-5%, while that of the global method vary be-
tween 4 and 10%. The variation of the on-axis estimates, however, does not follow the expected
behavior, which would imply a growing error with growing distance. Thus the results obtained for the
faint guide star cannot be regarded as conclusive; nevertheless, the fact that the magnitude difference
estimation by the local reconstruction is always smaller than for the global case indicates that less
intensity is lost by applying off-axis PSFs.



Chapter 4

Conclusion

The goal of this work was the adaption and implementation of a PSF estimation algorithm for ALFA,
allowing to reconstruct the optical properties of the system from wave-front sensor signals. This abil-
ity is highly desirable, since the scientific evaluation of data obtained with AO assistance is severely
complicated by anisoplanacy and the varying nature of the PSF.
With the original algorithm developed for use with curvature systems, several modifications and adap-
tions had to be carried out; e.g. the aliasing behavior of Shack-Hartmann systems is quite different
from that of curvature systems. Another task was the calculation of the correlation functions needed
during the application of the algorithm both for the analytical shape of the Karhunen-Loeve functions
and the measured shape of the deformable mirror.
The next step consisted of carrying out simulations that were used to test the routines developed for
the PSF reconstruction task on ALFA as well as to assess the quality reachable by this estimation
method. It was shown that photometric results on a simulated starfield can be dramatically improved
using locally reconstructed PSFs.
One of the unsolved problems in the application of PSF estimation method to SHS systems was
the low quality of gradient noise estimates obtainable during close-loop operations. Section 3.2 in-
troduced a new method that operates directly on the gradient measurement time series and delivers
superior results especially for the case of low-delay loop configurations. As reliable noise estimation
is crucial for the applicability of the reconstruction algorithm, the importance of this result cannot be
overestimated.
The reconstruction of off-axis PSFs in closed loop requires the knowledge of the current vertical con-
figuration of the atmospheric turbulence. Hence, parallel measurements were carried out during an
observation campaign in August/September 2000, using the ALFA system and the Imperial College’s
SCIDAR instrument. A complete software package had to be developed in order to reduce the tremen-
dous amount of raw data provided by SCIDAR measurements. Apart from making available

� �� �����
profiles of the atmosphere, these observations also served the purpose to cross-check the reliability
of the estimation of atmospheric parameters from both systems used; a very good agreement was
found for these measurements. Additionally, an examination of the temporal variation of the essen-
tial quantities � � and

�
� placed a limit on the time that atmospheric parameters can be regarded as

constant.
The tasks described above led on to the actual comparison of measured closed-loop PSFs and OTFs
with their reconstructed counterparts. This examination, however, was much complicated by the
long-lasting malfunction of the Omega Cass camera, limiting the resolution of the images to an un-
dersampled rate. In spite of this limitation, the quality of the reconstruction was still good on bright
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and satisfactory on faint guide stars. The OTF estimation error generally was below 10% for the on-
axis and below 25% for the off-axis case; additionally the most prominent deviations where of a static
nature could be explained by the incomplete knowledge of the calibration PSF as well as a low SNR
at the flanks of the measured PSF for the faint stars. Additionally, the faint star case revealed that a
successful reconstruction of the PSF was not possible unless the new noise estimation method was
used.
Finally, the reconstructed PSFs were used in a simple fitting scheme to asses possible improvements of
photometric accuracy when using locally reconstructed PSFs; while the results were very encouraging
for the bright guide star case, where the magnitude estimation error could be reduced to below 5%,
the faint star case was not as conclusive, if pointing in the right direction.

Outlook: The PSF reconstruction software developed throughout this work is now capable to provide
an estimation of a PSF anywhere on the field of view given only the gradient measurements, its
associated interaction matrix and, if available, a

� �� ����� profile. It was designed to operate on data
recorded with a resolution of 0.04” per pixel. Its routine use, however, is hampered by the need
to stop ALFA’s control system in order to download gradient measurements after a relatively short
amount of time; additionally, the parallel recording of SCIDAR measurements is still far from being
routine.
The impossibility of direct access to gradient measurements in the ALFA system should be addressed
in any upgrade or redesign of the control system, as well as taken into account for future AO systems
planned on Calar Alto (e.g. PYRAMIR). This modification would ensure the ability to reconstruct the
on-axis PSF at all times during an AO observation run.
Obtaining constant coverage of atmospheric turbulence profiles, the requirement for off-axis PSF
estimation, is much harder to address. In the opinion of the author, SCIDAR in its current state is not
up to this task due to the impossibility of real-time or near real-time measurements and the overhead
of calibration and staff required for its operation. There are, however, efforts underway to eliminate
these disadvantages (McKenna et al., 2003). Alternatively,

� �� ���	� measurements can also be obtained
with other methods, that might be integrated with the seeing monitors already available at many sites.



Appendix A

The TURBULENZ simulation package

The TURBULENZ simulation package originated from a C program developed by Glindemann et al.
(1993) and extended by Berkefeld (1998). It simulates the imaging properties of a layered turbulent
atmosphere, and is configured by an input file containing the following information:

� The observation wavelength.

� An arbitrary number of turbulent layers with adjustable
� � � � , layer height, prevalent wind

speed and direction, a decorrelation coefficient, and the desired outer scale.

� An arbitrary number of point sources (located at infinity).

� An arbitrary number of telescopes, characterized by their aperture diameter, position and image
plane pixel scale.

During the preparation of this work, the whole C code was debugged, speed optimized and finally
ported to IDL, in order to obtain a higher system independence.
The program generates phase screens according to a Kolmogorov type power law by spectral synthesis
in Fourier space; since the size of a phase screen is limited, however, the spectrum is not perfectly
modeled at the low frequency end, resulting in an effective outer scale on the order of the size of the
phase mask. This effect is partly alleviated by the addition of so-called subharmonics (Lane et al.,
1992), with the goal of achieving a high fidelity to the Kolmogorov law down to the frequency defined
by the desired outer scale of each layer.
Deviation from the Taylor frozen flow hypothesis is also possible with TURBULENZ: the temporal
evolution of the phase screen pattern is modeled by a Markov process with adjustable strength (Glin-
demann et al., 1993).
One of the most important capabilities of the package as compared to other simulation environments
is the possibility to include the simulation of amplitude fluctuations and intensity scintillations caused
by Fresnel diffraction on the phase grid of each layer (Berkefeld, 1998).
In the context of this work, it was necessary to carry out adaptive optics as well as SCIDAR sim-
ulations using TURBULENZ. While a simple approach, described in section 2.4, was used for AO,
SCIDAR simulations demanded a stronger modification. If SCIDAR mode is switched on, the input
file must contain the following additional information:

� The distance of the SCIDAR observation plane to the aperture plane of the telescope.

� The identification of two stars used for the SCIDAR measurements.
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With this information, the phase propagation algorithm is modified such that it mimics the Rytov
approximation while retaining the Fresnel diffraction code:

1. First, the observation plane distance is added to the height of each layer.

2. Then, for both stars involved, the resulting amplitude diffraction pattern is calculated for each
layer

3. The total aperture plane scintillation pattern is found by first adding the log-amplitudes of the
individual layer patterns and then calculating the resulting total intensity.

4. Finally, the two observation plane patterns corresponding to each star are added after shifting to
the appropriate position given by the propagation distance from the aperture to the observation
plane.

As was demonstrated in section 2.1, this simulation technique delivers excellent agreement of both
”measured”

���� ���	� -profiles and wind speeds/directions with the simulation parameters (see also Berke-
feld et al. (2003)).



Appendix B

The SCAVENGER SCIDAR Package

SCIDAR measurements are delivering a tremendous amount of raw data in the form of individual
observation plane exposures. Since no standard data reduction packages exist, a software package,
SCAVENGER was developed in the context of this work.
The following tasks have to be performed in order to arrive at an accurate estimate of the

� �� ���	� -profile
of the atmosphere:

� Calculation of the mean-normalized auto-covariance of a given number of observation plane
exposures.

� Extraction of slices through the auto-covariance plane in direction of the line of separation of
the stars as well as perpendicular to this line.

� Calculation of the T-matrix, i.e. the matrix connecting measurements in the autocorrelation
plane with turbulence height and strength in the atmosphere.

� Inversion of the measurement equation.

The following paragraphs describe the tools developed to tackle those tasks.

Calculation of the auto-covariance function

The calculation of the mean-normalized auto-covariance function is straightforward but has a high
computational load; it is the main reason why real-time or near real-time data reduction is as of today
impossible with SCIDAR systems.
Since the actual value of the observation plane sampling is crucial in both determining the height
resolution as well as potential errors in the SCIDAR measurement process, the routine doing the
autocorrelation delivers an estimate of this value through the following algorithm:

� First, the average aperture image is calculated.

� Then the resulting image is binarized by assigning 0 to values below the image median value
and 1 to values above it.

� Finally, an average is taken of the 10 pairs of most distant points in the illuminated part of the
binarized image, delivering the pixel sampling and its standard deviation.

Note that these estimates are only accurate if the measurements are carried out in non-generalized
SCIDAR mode, i.e. the observation plane coincides with the pupil of the telescope.
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Figure B.1: Screenshot of the interactive profile extraction routine.

Extraction of the auto-covariance profile

With the auto-covariance function given, the next task is the extraction of the cuts through the auto-
covariance plane; for this purpose, an interactive routine was created, as shown in figure B.1. On
startup the user has to select a auto-covariance image, which is then displayed in Cartesian as well as
polar coordinates.
In order to extract the cuts, the direction of separation of the two components has to be found; this
is accomplished by asking the user first for the estimated radius of the central peak, which is then
masked out exposing the fainter off-center components. Then, the user provides a radial position
where the code scans for a secondary maximum. Taking a cut through the polar plot plane at the given
position, the code reliably finds the location of the line of separation and finally extracts cuts parallel
and perpendicular to this line, with the result of the extraction given by their difference. The cuts and
the result are also plotted for control purposes, as can be seen in figure B.1.

Recovery of the
���� ���	� -profile

After the auto-covariance profile �� has been found, the measurement equation

�� ��� �� � �� $ (B.1)

where �� is the
� �� ����� -profile and �� a noise term, has to be inverted. This first requires the numerical

calculation of the � matrix, given by equation 2.29. Apart from a brightness difference factor and the
height shift due to generalized SCIDAR, the value of � depends on the zenith angle, the observation
plane sampling and the separation of the binary’s components. All of these values have to be provided
by the user as can be seen in figure B.2. The code first checks if a suitable � -matrix has already been
calculated; if not, a subroutine is started to accomplish this task, which is very time-consuming. A
possible future update of the software package should thus involve the precomputation of a suitable
grid of � -matrices, from which the needed ones could be interpolated.
Finally, both �� and � are used to obtain a first estimate of the

� ������	� -profile by least squares inversion;
this estimate is used as the initial guess for the conjugate gradients inversion of equation B.1. The
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Figure B.2: Screenshot of the interactive �
	
� ��� � recovery routine.

original auto-covariance profile is shown along with the LSQ-estimate and the conjugate gradients
result in the

���� -Calculator window (figure B.2), as well as estimates of � � and
�
� at a wavelength of

500 nm calculated from the result.

During the development of SCAVENGER, care was taken to make the routines mostly independent of
instrument and/or telescope specific constants like CCD size, aperture size etc. Thus, the package
should be usable without major changes for any SCIDAR measurement; so far, SCAVENGER has been
successfully used to reduce data taken from SCIDAR simulations with TURBULENZ, measurements
at the Calar Alto 1.23m telescope with Imperial College’s SCIDAR instrument (this work), and first
measurements at the VATT on Mount Graham with the LBT SCIDAR instrument (McKenna et al.,
2003).

Task Automation

The large amount of data produced by SCIDAR measurements makes interactive data reduction a
very lengthy and tedious procedure. However, it is possible to automate data reduction using SCAV-
ENGER’s subroutines. Strictly speaking, user interaction is mostly necessary in the extraction of the
auto-covariance profile �� , while the other parameters, like sampling, defocus etc., either stay constant
during an observing run or change in a predictable way (e.g. the zenith angle). Thus, if these param-
eters are provided, the only task remaining is to find the line of separation between the components,
which is accomplished by the following algorithm:

� Select an auto-covariance image from the current run.
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� Map the image to polar coordinates.

� Mask the innermost and outermost radial regions of the polar auto-covariance image.

� Finally, identify the line of separation by searching for the angular cut for which variance is
maximal.

The only additional information to be provided for full task automation is the extent of the regions
to be masked; these parameters, however, are specific to the instrument and telescope used, thus
sacrificing the system independent nature of the interactive routines.
All the SCIDAR results presented in section 3.3 were calculated using the non-interactive technique,
which turned out to be effective for more than 90% of all auto-covariance images recorded.



Appendix C

ALFA PSF Reconstruction Software

This appendix lists the software packages developed during this work, which are necessary to carry
out a successful PSF reconstruction on the ALFA system. It is divided into three sections, preparatory
packages, which are usually executed only once and are only necessary to be re-run with system
upgrades etc., auxiliary packages, which are used in the PSF reconstruction process, but can also be
applied for other, stand-alone purposes, and finally the PSF reconstruction packages themselves. All
of the routines worked are written in IDL in order to be easily portable between platforms

C.1 Preparatory Packages

C.1.1 Cross-talk matrix calculation

As noted in section 2.2, the cross-talk matrix is given by

����� �! ��
 (C.1)

The interaction matrix of high-order modes is not measurable, since the DM cannot reproduce those
modes. It is therefore necessary to simulate the response of the SHS to the involved high-order
Karhunen-Loeve modes.
For this purpose, a complete model of the SHS measurement process was implemented, including the
KS7 and KS28 arrays as well as the different available centroiding algorithms (Kasper, 2000). This
simulation is used to construct the complete theoretical interaction matrix up to a given number of KL
modes, from which, together with the measured interaction matrix for a given setup, the cross-talk
matrix follows from � �����! ��
 .

C.1.2 Calculation of � ���

The knowledge of the functions � ��� is mandatory for the reconstruction of both on- and off-axis PSFs.
Although they are available in analytical form for Zernike polynomials, this is not the case for a
general modal set. Additionally, it is always better to use actual measurements of the DM shape for
the calculation of the functions instead of the theoretically expected values. For this purpose, a routine
was implemented that carries out a numerical integration

� ��� ��� � �
��� � ���� � � ���� � �� � � � � ���� � � � � ���� � �� ��� � � � ���� � � � � ���� � �� ��� 0 ����� � ���� � � ���� � �� � 0 �� $ (C.2)
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given the shapes of the used modes.
The functions � ��� are calculated for all combinations of � an � for � $ � � � � and for � � � only for� $ �
� � � , since high-order contributions are modeled from the theoretical Karhunen-Loeve covariance

matrix, which is by definition diagonal. Low-order modes, however, often show non-zero off-diagonal
elements due to deviations from perfect Kolmogorov turbulence, aliasing, noise etc.
One input parameter of the routine is a grid of the shape of modes used; thus, for modes where
interferometric measurements of the actual DM shape are available, the analytically calculated modes
can be replaced by measurements. In practice, this turned out to deliver better results during the PSF
reconstruction process.

C.1.3 Calculation of � ���

The calculation of the � ��� functions, needed for off-axis PSF estimation, follows the same lines as the
calculation of the � ��� . Again, a numerical integration is carried out, this time according

� � � � � $ ��� �
� � � 
 �
 � !#� - - 0 � ���� � � �� � � � � � �� � � �� � ��� �"!#� ���	� � � � � � �� �� �� � � (C.3)

A potential problem is posed by the divergence of the integrand with ��� �
; as shown by Chassat

(1992), the limiting value is generally non-zero for Zernike polynomials. Thus, in principle sophisti-
cated numerical integration techniques would have to be employed in order to yield sensible results;
luckily, as can be seen from equation 2.78,

�
���
�

� � � only enters the PSF estimation process in the
form of differences for equal � and � . As equation C.3 effectively is just a Fourier transform, an un-
known value for � � �

corresponds to a constant bias in real space, which cancels in the differences.
Thus, the value of the integrand at � � �

can safely be set to zero before transforming.
After calculation, the � ��� are transformed to polar coordinates which are more convenient for the use
in equation 2.78.

C.2 Auxiliary Packages

C.2.1 Noise estimation

Noise estimation is implemented following the methods developed in section 3.2. There are two
different routines, using the weighted difference and the direct difference methods respectively. The
master routine is provided the measured closed-loop gradients and the loop frequency; for frequencies
below 200 Hz, a loop delay of 1 is assumed, for frequencies up to 500 Hz a loop delay of 2; up to
this frequency the weighted difference method is used for noise estimation, for higher frequencies, the
estimation switches to the direct difference method.

C.2.2 Loop simulation

The simulation of the loop feedback in closed-loop operation is fundamental in the retrieval of the
applied mirror modes during a measurement. For this purpose a complete implementation of the
control algorithm in IDL was done. Apart from a freely adjustable gain, there are three additional
parameter sets, � , � , and

�
, which are used to select specific controller modes depending on the loop

frequency and control algorithm (Wirth et al., 1998). Table C.1 lists the values of the parameters used,
where PI denotes the standard PI controller and OPT stands for the optimal controller (Looze et al.,
1999).
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Type PI PI PI OPT
Range [Hz] 0-300 301-600

"
600 0-300

� 0.0 0.0 0.2 0.893
� (0,0,-0.3) (0,0,0) (0,0,0.5) (-0.077, -0.512, -0.350)�

(0,0,0) (0,0,0) (0,0,0) (0,0,0.390)

Table C.1: ALFA control loop parameter sets; for the OPT controller, the loop gain has to be multiplied by
59.48.

By default, the loop simulation selects the PI controller suitable for the given frequency. If the optimal
controller was used during a measurement, the parameters have to be adjusted by hand.
The other crucial input parameters of the loop simulation are the calibration matrix (the gradient
matrix) and the measured gradients. Its output is the time series of modal coefficients as applied
to the DM; in order to obtain the actual variance of the mirror modes it is necessary to double the
values obtained from the simulation (due to reflection, the output is always half the atmospheric
mode present). Additionally, the first 50-100 simulated mirror modes should not be used for variance
calculations, since they represent the initial phase of correction starting from a flat mirror and thus are
prone to unnatural oscillations.
As has been done in section 3.2, the loop simulation can also be used to simulate closed-loop operation
starting from an open-loop gradient measurement set according to the following algorithm:

1. Set up the closed-loop simulation with the desired parameters; from the first entry of the open-
loop gradient set, calculate the initial modal input using the reconstruction matrix � constructed
from the corresponding interaction matrix � .

2. Calculate the modal output of the loop, and construct the corresponding gradients by direct
application of � on the doubled value of the current mirror modal coefficients.

3. Subtract the mirror induced gradients corresponding to the desired loop delay from the next set
of open-loop gradients; use the result to calculate the next modal input to the loop.

4. Start over at step 2.

The output of this algorithm are time series of simulated closed-loop gradients and mirror modes,
which can be used to examine the actual transfer function of the loop for a given set of parameters as
well as for noise propagation studies.

C.2.3 Closed-loop � � estimation

Closed-loop estimation of the Fried parameter is essential for both correction of aliasing noise and the
scaling of the high-order mode contribution to the PSF. The routine integrates most of the results of
described above and thus has to be invoked providing the gradient matrix, the closed-loop gradients,
loop gain and frequency, as well as the cross-talk matrix. It then calls the noise estimation routine and
the loop simulation in order to get the mirror modes and the gradient noise estimates. Following the
iterative algorithm described in section 2.3 and using equation 2.58 it produces an estimate of � � .
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C.3 PSF Reconstruction Packages

The most important packages are, of course, those used for the actual PSF reconstruction. A pre-
requisite for both on- and off-axis estimation is the knowledge of the calibration PSF; thus a routine
has been implemented that takes a K+Br � filtered image of the fiber source and constructs an OTF
estimate with adequate sampling. Due to lack of suitable images, however, this routine has not been
thoroughly tested.

C.3.1 On-axis OTF/PSF calculation

The on-axis OTF/PSF reconstruction routine needs the following input:

� the on-axis OTF
� � �� � ,

� the observation wavelength '
� the interaction (gradient) matrix � ,

� the time-series of closed loop gradients �� � � � ,
� the theoretical interaction matrix � 
 as calculated by the routine of section C.1.1,

� the loop frequency and gain,

� the theoretical covariance matrix for Karhunen-Loeve modes,

� and the � ��� functions for the modal set used. obtained from C.1.2.

With this information, the reconstruction algorithm calls the auxiliary routines for noise and � � esti-
mation, which in turn are used to construct � �� �� � " and � �� 
 �� � 


"
. Together with the � ��� functions

the on-axis OTF is calculated and saved to disk, before a final Fourier transform delivering the PSF
for the given wavelength at a resolution of 0.04”/pixel.

C.3.2 Off-axis OTF/PSF calculation

Apart from the on-axis OTF, the off-axis PSF reconstruction requires additional information:

� the angular displacement �� of the reconstruction position from the guide star given in polar
coordinates,

� the
� �������� -profile of the atmosphere together with the values of � corresponding to each point

in the profile,

� and the � ��� functions as calculated in section C.1.3.

With this information, the anisoplanatic transfer function (ATF) is calculated and multiplied with the
on-axis OTF to obtain the total OTF; again, the resulting OTF is saved to disk before the off-axis PSF
is found by a Fourier transformation.

All of the routines described above are more or less adapted to the ALFA system; care has been taken,
however, to put specific parameters like mirror diameter, obstruction ratio, etc. into constants, such
that the routines can easily be modified for other telescopes and/or system, with the obvious exception
of the closed-loop simulation.
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