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Abstract 

Physical reservoir computing aims to increase computational efficiency of machine learning 

tasks by shifting the computational burden to a physical system. Reservoirs based on ion 

dynamics are of particular interest due to the non-linear and integrative nature of ion transport. 

Here, we demonstrate all-optical operation of a physical reservoir based on electrochemical 

Li-ion doping of lead halide perovskite microcrystals. Optical excitation changes lithium ion 

insertion kinetics, which in turn modulate the luminescence response. The heterogenous 

structure of the crystals leads to a large internal state space of the reservoir. The device can 

be fabricated using solution-based fabrication and operated using LED illumination, reducing 

fabrication cost. Our proof-of-concept results demonstrate optically excited state dynamics and 

ion transport as a promising platform for physical reservoir computing. 

  



Introduction 

The continued scaling and deployment of AI systems faces critical challenges related to energy 

consumption, hardware complexity, and the sheer volume of data required to train and operate 

modern algorithms. Underlying many of these issues are the fundamental constraints imposed 

by traditional computing architectures. Conventional von Neumann systems, with their clear 

separation of memory and processing units, are approaching intrinsic performance limits, 

prompting the search for paradigms that can transcend these barriers. 

One promising avenue is neuromorphic computing, which seeks to mimic the brain’s structure 

and operational principles, such as the leaky integrate-and fire behavior of spiking neural 

networks.[1] Hybrid digital-analog platforms such as BrainScaleS[2] hold the potential for 

substantial gains in energy efficiency and adaptability. However, many candidate 

neuromorphic systems face challenges regarding their trainability compared to conventional 

gradient-based learning methods. 

Within this landscape, physical reservoir computing (PRC) has emerged as a compelling 

concept that leverages the natural dynamics of physical systems as a computational resource. 

Reservoir computing shifts the focus away from training every node in a network, instead 

exploiting inherent nonlinearities, connections, and temporal dependencies present in suitable 

physical media, to transform the input data into a high-dimensional internal state space. The 

state of this system can be interpreted using a simple classical machine learning model, greatly 

reducing training cost. Such strategies draw inspiration from biological systems, where groups 

of neurons act as reservoirs to increase adaptability on new tasks.[3] 

For PRC to serve as a practical alternative, it must meet key criteria: low energy consumption, 

repeatable nonlinear responses, coupled internal states, and a capacity to encode temporal 

information.  Ion transport dynamics which are central in biological systems fulfill many of these 

criteria: Just as ions in living cells modulate membrane potentials and synaptic states, ion-

gated reservoirs can exploit electrochemical phenomena to create tunable, time-dependent 

dynamical behavior that inherently process and transform input signals.[4] However, the speed 

of data throughput is limited by the diffusion of ions trough the material.[5] 

Recently, a different approach using optically excited charge carriers instead of ions was 

repoted.[6] In these “memlumors”, input data is written into the system by a pump laser, and the 

response is read out through the photoluminescence of the material. This photoexcited 

mechanism can yield highly nonlinear, energy-efficient, and fast response dynamics. Since the 

excitation and emission are managed optically, no contacts and therefore no complex 

microstructures are required.  



Our approach combines the strengths of ion-based reservoir computing and optically excited 

carrier dynamics inside a heterogenous perovskite thin film. By adjusting the optical excitation 

intensity, we can influence ion transport[7, 8], which in turn modifies luminescence and excitation 

absorption within the reservoir. Remarkably, this hybrid strategy can be implemented with 

simple, low-cost equipment: our system can be pumped using an LED, and the output can be 

read out with commercial CMOS sensors. Furthermore, the heterogenous structure of the 

material forms on its own during scalable solution processing, reducing fabrication complexity. 

The used read-out areas in the range of 100 um translate to 104 nodes per cm². This fusion of 

ion-based and optically excited dynamics leverages the intrinsic nonlinearities, efficiency and 

temporal memory of ion-gated reservoirs, while simultaneously allowing for faster and 

contactless data throughput. 

 

 

Figure 1: General scheme for opto-ionic reservoir computing: Time-series data such as spoken digit audio 
waveforms are converted into optical excitation pulses synchronized with an AC voltage. The heterogenous and 
time-dependent nature of the physical reservoir transforms the input data into a higher-dimensional state space. 
This space is read out using photoluminescence microscopy and interpreted using a linear regression model. 

 

Results 

Photoexcited States in Ion-Gated Hybrid Perovskite as an Opto-ionic Reservoir 

Our reservoir material consists of a polycrystalline layer of MAPbBr3 microcrystals on ITO-

coated glass. Lithium ions are supplied from a film of solid electrolyte consisting of LiTFSI and 

polyethylene oxide, using aluminum as a counter electrode. Application of a voltage across the 

device causes insertion/removal of the ions into the perovskite crystals, modulating the 

photoluminescence response. Optical excitation using LED light in turn alters the ion insertion 

kinetics, which influences the photoluminescence response.  The PL response serves as 

readout from the reservoir after evolution of the initial excited state population by diffusion and 

recombination. 



This behavior is exploited to write data into the reservoir by using phase-modulated optical 

excitation pulses synchronized to an applied AC voltage. (Fig. 2A) If the optical excitation is in 

phase with the applied voltage, the photoluminescence intensity decreases as a result of 

excess Li insertion into the perovskite. In contrast, out-of-phase excitation causes an increase 

in photoluminescence due to the increased removal of Li-ions. (Fig. 2B) This is likely the result 

of increased ion conductivity upon photoexcitation: Photoexcited charge carriers can screen 

the effect of charged point defects which otherwise would slow down ions. Furthermore, 

photoexcitation can lead to phase transitions which result in weaker bonds and therefore a 

softer material, facilitating ion transport.[9] 

The perovskite film consists of many crystallites with varying shapes and sizes. Since ion 

insertion only occurs at the interface between electrolyte and perovskite, the insertion rate and 

therefore optical response is dependent on the size and aspect ratio of the crystals. This can 

be seen by the variation in kinetics at different positions on the photoluminescence microscopy 

image. (Fig. 2C) To quantify these differences, the PL microscopy video is decomposed into a 

linear combination of time-invariant images and their time-dependent weights using principal 

component analysis (PCA). Figure 2E shows the first four components of this decomposition. 

While the first two components mainly cover large-scale changes in the PL intensity caused 

by larger crystals, components 3 and 4 focus more on smaller features. This demonstrates a 

higher-dimensional internal state space of the system, which is a requirement for reservoir 

computing. Plotting the time-dependent components against each other reveals hysteresis 

loops. (Fig. 2F) This indicates that the state of the system at a specific point in time is 

dependent on its history, which is another important property of reservoir systems. 

 

Figure 2: Opto-ionic response used for physical reservoir computing: A: Binary data is written into the reservoir by 
an AC voltage and synchronized pulses of light. B: Modulation of the binary input causes changes in PL intensity 
which are integrative and non-linear. C, D: PL microscopy shows the inhomogeneities of the microcrystal film, which 
causes a range of time-dependent luminescence responses. E: Decomposition of the spatially varying kinetics 
using principal component analysis. F: Amplitude of the components during cycling shows hysteresis loops, 
demonstrating internal memory of the system.  



Electro-optic modulation of excited state dynamics by lithium insertion  

To demonstrate the impact of lithium insertion on the optical properties of the material, constant 

current of +/- 40 nA is applied to the cell for 5 minutes each cycle. Assuming 100% faradic 

efficiency, the resulting charge would correspond to an inserted Li-ion density of 7x10-18 cm-3 

or 5x10-4 per MAPbBr3 unit cell, comparable to the doping concentration achieved by 

Mathieson et al. in thicker MAPbBr3 samples using the same electrolyte.[10]  

Time-correlated single photon counting (TCSPC) measurements at different stages of the 

insertion reveal a decrease in photoluminescence intensity and increase in short-timescale 

recombination upon Li insertion. (Fig. 2C) Steady-state photoluminescence spectra show a 

shift in emission peak wavelength by 5 nm as well as a reduction in peak intensity by a factor 

of 10 between the fully inserted and removed states. 

A possible mechanism for these charging-induced optical changes is the Insertion of lithium 

into the crystal structure. Inserted Li-ions cause defects, which allows for an increase in non-

radiative recombination of excited state charge carriers, leading to a decrease in 

photoluminescence lifetime and intensity. Based on diffusion and bimolecular recombination 

kinetics, the resulting charge carrier density under optical excitation will be show a non-linear 

response to the ion concentration modulation. The shift in photoluminescence emission 

wavelength can be attributed to donating of electrons from the inserted lithium into the 

conduction band of the perovskite, increasing the bandgap.[11] During charging, the lithium ions 

also form an electric double layer at the perovskite-electrolyte interface, causing a strong 

electric field at the crystal surface. This may cause screening effects which further alter 

recombination kinetics and bandgap.[12] As these two effects (lithium insertion and double layer 

field effect) scale differently in respect to the crystal thickness, this further increases the spatial 

heterogeneity in excited state and Li insertion dynamics in our polycrystalline samples, 

widening the reservoir state dimension space. 



 

 

Figure 3: Influence of Lithium insertion/removal on the photoluminescence signal. A: Operando TCSPC traces at 
different stages of the lithium insertion/removal process. B, C: Resulting lifetimes of a biexponential fit D: Static PL 
spectrum at different stages of the insertion/removal process E, F: Peak intensity and wavelength of a Lorentzian 

fit of the spectrum. 

 

Exploiting Microstructure to increase Reservoir State Complexity 

The main purpose of physical reservoirs is to transform input data into a higher-dimensional 

latent space, facilitating data processing by classical computationally-cheap machine learning 

methods. The size of this space was explored by writing integers up to 4-bit into the system 

using in-phase (digital 1) or out-of-phase (digital 0) light pulses with respect to the applied AC 

voltage. (Fig. 4A) After each writing sequence, the state of the system was read out by 

(spectrally averaged) photoluminescence microscopy over an area of 100um. The system was 

then returned to its initial state by applying a long positive, negative and then neutral voltage, 

erasing its memory. (Fig. 4B) This is repeated 20 times for each bit sequence. The resulting 

PL intensity microscopy images were then decomposed into linear combinations of sequence-

independent spatial maps and their spatially-independent weights using PCA. The spatial 

maps of the first four principal components are shown in Fig. 4C, highlighting the difference in 

PL response between crystals. The corresponding weights to the principal components assign 

each sequence to a point in a 4-dimensional state space of the reservoir. To better visualize 

this space, the points are projected into two dimensions using t-distributed stochastic neighbor 

embedding (t-SNE). Figure 4D shows that data points with the same input sequence naturally 

form clusters, which can be distinguished already by eye, indicating that the reservoir state 

space has memory depth of at least 4 bits. 



 

Figure 4: Application of the reservoir to a 4-bit memory task: A: Encoding of a 4-bit integer into in/out-of-phase 
optical excitation pulses against the applied AC voltage. B: Spatially averaged PL response of the reservoir to input 
of different integers. A higher integer value generally corresponds to a higher PL intensity at readout. 
C: Decomposition of the spatial inhomogeneities into four principal components. D: 4D principal component space 
of the reservoir visualized by t-SNE dimensionality reduction. The Reservoir states for each integer can be easily 
identified.  

 

Conclusions 

The excited state populations in heterogenous thin films of Li-doped hybrid perovskite are 

capable to perform opto-ionic reservoir computing. The luminescent response of the material 

can be controlled optically by timed pulses of LED light synchronized to a low AC voltage. This 

is mediated by light-sensitive insertion or removal of lithium ions into the perovskite, causing 

heterogenous changes in excited state recombination kinetics. This behavior is exploited to 

encode up to four bits of binary data, resulting in a multidimensional reservoir state space that 

can be probed using photoluminescence microscopy. At a frequency of 20 Hz and a node 

density of 104 cm-2, this results in an energy consumption of 500 nJ per operation, which arises 

from the current continuous nature of illumination and electrical driving. As the data access is 

all-optical, the node density and writing speed could be further optimized down to the diffraction 

limit of visible light. Using patterned light, this would lead to node densities of 109 cm-2 and 

energy consumption of 2 fJ per operation, assuming an optimized writing speed of 2 kHz. This 

serves as a proof of concept for time-series data processing using luminescent opto-ionic 

reservoirs. As the system is simple to fabricate and can be driven using standard electronics, 

this opens up new routes for low-cost neuromorphic hardware development. 

  



Methods 

Methylammonium Lead Tribromide Microcrystal Thin Films 

Under Nitrogen atmosphere, MABr and PbBr2 were dissolved in DMF at room temperature. 

ITO-coated glass (1.1mm, 30 Ohm/sq) was cut into 16x16mm squares and activated using 

ozone treatment. The solution was spin-coated on the substrates at 1600 rpm for 20s. The 

resulting thin films were annealed for 15min at 80°C. The films were stored under nitrogen 

atmosphere for up to one month. 

Polymer Solid Electrolyte Films 

Polyethylene oxide (600k, Sigma-Aldrich) and LiTFSI was dissolved in Acetonitrile and stirred 

at 60°C for 2h. The solution was blade-coated on 20x5mm Aluminium foil sheets (15um) at a 

wet thickness of 1mm. The films were dried at room temperature for 1h and at 60°C for 1h, 

resulting in a dry film thickness of 100 um. The films were stored at a temperature of 21°C and 

relative humidity of 40% for up to one month. 

Assembly of the Hybrid Perovskite Reservoir Electrochemical Cell 

Polymer solid electrolyte films were pressed onto the perovskite thin films at 2 kPa for 20 s. At 

the edges, the perovskite was removed using Acetone. The aluminium and ITO current 

collectors were contacted using copper tape. Any unwanted contact between the aluminium 

and ITO current collectors was isolated using clear adhesive tape. The device was 

encapsulated using clear adhesive tape. The resulting cells were stored for up to 24h before 

the experiment. 

Operando Photoluminescence Spectroscopy/Microscopy 

An Olympus BX61 upright epifluorescence microscope was modified to incorporate a fiber-

coupled 430nm LED (Thorlabs) as an excitation light source. A 100 mm Achromatic doublet 

was used to focus the excitation light into the back focal plane of the 20x NA = 0.4 objective. A 

500 nm dichroic mirror as well as 450 nm short- and longpass filters were used to separate the 

optical excitation from the photoluminescence signal. Either a CMOS camera (Basler Ace 

acA720-520um) or a fiber-coupled spectrometer (OceanOptics HDX-VIS) were used to detect 

spatial or spectral variations in the photoluminescence response. All measurements were 

performed at an intensity of 300 mW/cm2. The voltage and current across the cell was 

controlled using a BioLogic SP200 potentiostat with ultra-low current (ULC) probe. 

Operando TCSPC Experiment 

Ultrafast excitation pulses at 400 nm were generated by second harmonic generation in BBO 

from a mode-locked Ti:Sapph laser (Coherent Mira, 100 fs, 800 nm, 80 MHz). The excitation 

was directed at the sample using a 75 mm plano-convex lens, resulting in a fluence of 

30 nJ/cm2.  The resulting emission was captured using a 50 mm plano-convex lens and a 



monochromator was used to select the emission peak at 530 nm. Time traces were captured 

for 10s during the Li insertion/removal process. The voltage and current across the cell were 

controlled using a BioLogic SP200 potentiostat with ultra-low current (ULC) probe. 

  



References 

[1] W. Maass, Neural Networks 1997, 10, 1659-1671. 
[2] C. Pehle, S. Billaudelle, B. Cramer, J. Kaiser, K. Schreiber, Y. Stradmann, J. Weis, A. 

Leibfried, E. Müller, J. Schemmel, Frontiers in Neuroscience 2022, 16. 
[3] P. Enel, E. Procyk, R. Quilodran, P. F. Dominey, PLOS Computational Biology 2016, 

12, e1004967. 
[4] K. Shibata, D. Nishioka, W. Namiki, T. Tsuchiya, T. Higuchi, K. Terabe, Scientific 

Reports 2023, 13, 21060. 
[5] A. Sood, A. D. Poletayev, D. A. Cogswell, P. M. Csernica, J. T. Mefford, D. Fraggedakis, 

M. F. Toney, A. M. Lindenberg, M. Z. Bazant, W. C. Chueh, Nature Reviews Materials 
2021, 6, 847-867. 

[6] A. Marunchenko, J. Kumar, A. Kiligaridis, D. Tatarinov, A. Pushkarev, Y. Vaynzof, I. G. 
Scheblykin, ACS Energy Letters 2024, 9, 2075-2082. 

[7] A. Senocrate, E. Kotomin, J. Maier, Helvetica Chimica Acta 2020, 103, e2000073. 
[8] D. W. deQuilettes, W. Zhang, V. M. Burlakov, D. J. Graham, T. Leijtens, A. Osherov, V. 

Bulović, H. J. Snaith, D. S. Ginger, S. D. Stranks, Nature Communications 2016, 7, 
11683. 

[9] Y.-C. Zhao, W.-K. Zhou, X. Zhou, K.-H. Liu, D.-P. Yu, Q. Zhao, Light: Science & 
Applications 2017, 6, e16243-e16243. 

[10] A. Mathieson, S. Feldmann, M. De Volder, JACS Au 2022, 2, 1313-1317. 
[11] A. G. M. Mathieson, W. M. Dose, H.-G. Steinrück, C. J. Takacs, S. Feldmann, R. 

Pandya, A. J. Merryweather, D. Mackanic, A. Rao, F. Deschler, M. De Volder, Energy & 
Environmental Science 2022, 15, 4323-4337. 

[12] H. T. Yi, S. Rangan, B. Tang, C. D. Frisbie, R. A. Bartynski, Y. N. Gartstein, V. Podzorov, 
Materials Today 2019, 28, 31-39. 

 


