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The myxobacteria have a remarkable life cycle that includes intercellular

communication, cell differentiation and multicellular organisation. As a response to

starvation myxobacterial cells undergo a specific developmental process leading to the

formation of spores that are enclosed in fruiting bodies. Their development represents a

model to investigate the flow of information between cells, signal transduction

pathways and differential gene expression.

In higher organisms, complex morphological processes include differentiation of the

cells from the same progeny into physiologically specialised tissues. Prokaryotic

development includes changes in cell function and cell form in order to achieve benefit

to the bacterial population to changes in environmental conditions. One aim of

prokaryotic development is the formation of spores. In some bacterial species, as

Bacillus subtilis, sporulation leads to the asymmetric division of the mother cell into

two compartments (Piggot and Coote, 1976; Errington 1993). The small compartmen

called the forespore, maturates to the metabolically quiescent endospore. The large

compartment resembles the mother cell that lyses after spore maturation to set the spore

free. In myxobacteria, differentiation of the vegetative cells into spores takes place at

the end of the complex developmental cycle. As in higher organisms cell differentiation

in myxobacteria is preceded by extensive cell movements and the formation of

multicellular structures. In order to build up these multicellular structures myxobacterial

cells coordinate their behaviour by intercellular signalling and direct cell-to-cell

contacts.

The formation of fruiting bodies of myxobacteria shows great similarities to the life

cycle of the cellular slime mould Dictyostelium discoideum (Raman, Hashimoto et al.,

1976). During starvation, these unicellular amoebae form multicellular structures from

which spores are formed that germinate when the conditions become more favourable.

The experimental accessibility of myxobacteria along with features mentioned

above, represent them as a valuable prokaryotic model to study morhogenesis and

development.
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1.1. Myxobacteria

Myxobacteria are Gram-negative bacteria classified in the order Myxococcales that

belongs into the delta-branch of the Proteobacteria. Stigmatella aurantiaca and the

closely related Myxococcus xanthus are the best studied species of the myxobacterial

group.

From the time of their detailed description by Ronald Thaxter in 1892 (Pfister, 1984)

until now, myxobacteria fascinate scientist with their complex life cycle. The life cycle

of the myxobacteria is bipartite. It is composed of a vegetative growth cycle and the

developmental cycle, which is triggered by starvation. Upon nutrient depletion, the cells

migrate into aggregations centres, from which fruiting bodies containing the

myxospores arise. When nutrients become available, the myxospores germinate and the

vegetative cycle starts again.

Myxobacteria grow on insoluble organic substrates such as decaying wood or leaves.

Vegetative cells are rod shaped and about three times longer than E.coli cells. Since

they do not have a flagella, the cells move by gliding, a special way of moving on a

solid surface. Myxobacterial cells interact with each other forming a swarming

community. The cells secrete slime containing lytic enzymes: lysozymes, proteases and

also cellulases that degrade biopolymers. This way of feeding can be achieved only at

high cells density, the so-called "wolf pack effect" (Dworkin, 1963). 

Myxobacterial cells communicate with each other by direct cell-to-cell contact and

by exchanging different signal molecules in the swarming community as well as during

development. They represent so-called social prokaryotes.

Myxobacteria have a very large genome in comparison to other bacterial species

(about two times larger than the genome of E. coli). The size of the S. aurantiaca

genome is about 9,35 Mbp and is approximately equal to that of the myxobacterium

M. xanthus (Chen et al., 1990; Neumann et al., 1992). The extremely large size of the

myxobacterial genome reflects the potential to build multicellular structures during
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development and the capability of these bacteria to produce a broad range of secondary

metabolites (Schairer, 1993).

As a group myxobacteria produce a large spectrum of secondary metabolites like

epothilon (Gerth et al., 1996), myxothiazol (Gerth et al., 1980), myxalamid (Gerth et al.,

1996), stigmatellin (Kunze et al., 1984), soraphen (Gerth et al., 1994), TA (Rosenberg

et al., 1973). Some of them are proven to be clinically very important.

1.2. Gliding motility

Myxobacteria move by gliding, a special form of locomotion that requires a solid

surface (Burchard, 1984). Gliding cells move in the direction of their long axis, with

stop intervals between and the reversal of the gliding direction. Many different classes

of bacteria move by gliding. Recent studies suggest that bacterial gliding motility

cannot be explained by only one model system. It is more likely that different types of

motors are involved in gliding motility in different classes of bacteria. Some bacteria

use type IV pilus extension and retraction powered by ATP hydrolysis to move over the

surface (Merz et al., 2000). Gliding of some filamentous cyanobacteria depend on the

polysaccharide extrusion (Hoiczyk and Baumeister, 1998). Speculation about gliding in

the myxoplasma group suggests involvement of the cytoskeleton and the surface

adhesion proteins (Korolev et al., 1994; Lünsdorf and Schairer, 2001).

1.2.1. Gliding motility of myxobacteria

In M. xanthus, gliding motility is controlled by two separated multigene systems

known as A (adventurous) and S (social) system (Hodgkin and Kaiser, 1979). The A

system controls gilding of single cells, the S system is responsible for gliding of cells in

groups. These two systems contribute equally to the wild-type gliding phenotype.
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1.2.1.1. A system

The A system includes a minimum of 37 genes whose products control the

interaction of the cell with the solid surface (Hodgkin and Kaider, 1979; MacNeil et al.,

1994). Mutants defective in A motility are divided in to two classes cgl (conditional

gliding) and agl (adventurous gliding) (Hodgkin and Kaiser, 1979). There are several

hypotheses about the mechanism of A motility.

One hypothesis suggests that import and export of macromolecules may be the direct

force that move the cells, something like propulsion of the cells. This hypothesis is

mostly based on the finding that the AglU lipoprotein has similarities to the TolB

protein of E. coli (White and Hartzell, 2000). The TolB protein is part of a large protein

complex, which uses proton motive force to transport molecules across the outer

membrane.

Another hypothesis suggests the involvement of some structures of the cell wall in A

motillity. The involvement of the specific surface structures in gliding was observed for

the first time from the scanning electron micrographs of four different gliding bacteria

species including S. aurantiaca and M. xanthus (Lünsdorf and Schairer, 2001). These

structures are described as chain-like strands that associate with each other and form

bands, which are wrapped, helically around the cell. The helical bands were not

observed on the surface of cells treated with sodium azide or potassium cyanide. These

two chemicals blocked the respiratory chain so that the cells were frozen and gliding

motility was stopped.

1.2.1.2. S system

The S motility relies on the type IV pili. The S motility mutants lack polar pili and

also removal of the pili from the wild type cells leads to defects in S motility (Kaiser,

1979). The pil gene cluster whose products are involved in pilus biogenesis are

identified. PilA is the primary pilin protein, PilB is the putative NTPase functioning in

pilus biogenesis, PilT is the putative NTPase acting in pilus retraction. PilG,-H and I are

suggested to form an ATP-binding transporter involved in the transport of proteins
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required in the pilus biogenesis (Wall et al., 1999; Wu et al., 1997; Wu et al., 1998). In

addition to the pil genes, one other gene tgl (transient gliding) is required for S motility.

Tlg is thought to be a lipoprotein whose function may be to facilitate pilus protrusion or

pilus retraction (Rodriquez-Soto and Kaiser, 1997).

A model system that suggests the mechanism of the S motility proposes that pili are

extended from the leading pole of the gliding cell. Contact between pili and surface

induces pilus retraction, which results in cell movement (Kaiser, 2000; Sun et al., 2000).

1.2.1.3. The mgl locus

Another locus in M. xanthus with an important role in gliding motility is designated

as mgl (mutual gliding). Mutations in the mgl locus abolish gliding motility of the cells.

Two cotranscribed genes mglA and mglB have been identified (Stephens et al., 1989).

The predicted amino acid sequence of MglA shows homology to the members of the

GTP-binding protein class. MglA might have an important role to control expression of

genes whose products are required for gliding motility (Hartzell, 1997). The predicted

sequence of MglB exhibits similarities to one of the calcium binding sites of the yeast

calmodulin (Hartzell and Kaiser, 1991).

The S. aurantiaca mgl genes were identified with a sequence homology of about

90% to the mglA and mglB genes of M. xanthus. Insertional mutagenesis showed that

the mgl genes in S. aurantiaca are required for the motile phenotype of the cells

(Schairer, 1993).

1.2.1.4. The frz locus

A genetic locus involved in the control of the frequency of reversal movements in

M. xanthus is called `frizzy` (frz). Cells with mutations in the frz genes either reverse

direction much less frequently or much more frequently than wild type cells. The frz

mutants showed impaired aggregation but produced normal spores. Six genes were

identified frzA,-B,-CD,-E,-G and –F with homology to the chemotaxis genes of
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flagellated enteric bacteria (She and Zusman, 1993; Ward and Zusman, 1997; Ward and

Zusman, 1999).

1.2.1.5. Rippling

Rippling is a rhythmical movement of cells. The cells start to move synchronically to

form a series of equidistant parallel ridges, which move in a pulsating manner.

Myxobacteria appear to be the only procaryotes with this specific rhythmic behaviour

(Reichenbach, 1986). Rippling precedes fruiting body formation but is not required for

it. Rippling is induced by peptidoglycan. Thus, presence of rippling cells appears to be a

sensitive indicator for the presence of extracellular peptidoglycan components. So it is

more likely that rippling is incidental with fruiting body formation because rippling is

induced by releasing peptidoglycan during development. Rippling requires the CsgA

protein which is an extracellular polypeptide essential for M. xanthus development

(Shimkets and Kaiser, 1982).

1.3. Fruiting body formation

As mentioned above, myxobacteria have a complex life cycle. During the vegetative
growth phase, cells divide by transverse fission. Upon starvation, cells start to glide into

aggregation centers from which the fruiting bodies arise. In the fruiting bodies
vegetative cells differentiate into spherical, dormant myxospores. Each fruiting body

encloses 105 myxospores, respectively. The shape of the fruiting body is species

specific. Whereas M.!xanthus fruiting bodies are simple mounds filled with spores,
S.!aurantiaca forms morphologically complex structures, resembling a small tree, with

a branched stalk harbouring several sporangioles.

The morphological changes occur in a defined temporal order during development.

In S.!aurantiaca the whole process takes about 24 h. Different morphological stages
during development are defined as early aggregates, early stalk (morel-like structure),

late stalk (champignon-like structures) and mature fruiting bodies that are visible about

9, 12, 15 and 24 h after the beginning of starvation (Qualls et al., 1978a). Fruiting body
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formation of S.!aurantiaca is stimulated by incandescent light and requires the

production of a pheromone (Qualls et al., 1978b).

Fig.1.1. Diagram of the myxobacterial life cycle (Dworkin, 1985). Fruiting body of M. xanthus
and S. aurantiaca are illustrated.

1.3.1. Pheromone  activity in S. aurantiaca

S. aurantiaca cells secrete and respond to a pheromone that is necessary for fruiting

body formation. The pheromone was eluted from cells assayed for fruiting body

formation on filter paper and purified by steam distillation followed by reversed-phase

and normal-phase HPLC (Plaga et al., 1998). It is a branched aliphatic hydroxy ketone,

2,5,8-trimethyl-8-hidroxy-nonan-4-one, named stigmolone (Hull et al., 1998).

Stigmolone is a new type of a pheromone molecule in prokaryotes since elucidation of

its chemical structure showed that it does not belong to any known class of pheromones

up to now. It acts in concentrations of about 1 nM to shorten the time of aggregation on

the beginning of development in a bioassay (Plaga et al., 1998). Addition of purified

stigmolone accelerated the rate of aggregation when added to 5x107 cells. The

aggregation rate was comparable to that observed in a population of 2x108 cells as
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control without addition of the pheromone (Plaga, et al., 1998). Stigmolone activity

correlates with the number of cells. Therefore, stigmolone may have a role in “quorum

sensing” at the beginning of the developmental cycle. Species-specifity is indicated by

the fact that M. xanthus does not respond to stigmolone by accelerating fruiting body

formation in a bioassay (Plaga et al., 1998).

Cells have to be in contact with each other or with a solid surface to secrete

stigmolone. The stigmolone biosynthetic pathway and the putative pheromone receptor

are still unknown. The structure of the stigmolone suggests the involvement of some

metabolites from the catabolism of leucine or from a biosynthetic pathway leading to

terpentoids, fatty acids or polyketides (Plaga et al., 1998).

1.3.2. Artificially induced sporulation

Sporulation can be induced independently from fruiting body formation by addition

of various chemicals. In S. aurantiaca indol and some indol derivates are the most

potent inducers of sporulation (Dworkin, 1994; Gerth and Reichenbach, 1978).

The starvation dependent and starvation independent sporulation follows a time scale

and has different nutritional requirements and different inducers. There are also

structural differences between the two types of spores. The starvation-independent

spores of M. xanthus lack the fruiting body spore protein S (Komano et al., 1980), the

coat is thinner (Zusman, 1980) and they contain more ribosomes. Both kinds of spores

contain protein U (Komano et al., 1980) and both pathways of sporulation induce a

beta-lactamase activity (O´Connor and Zusman, 1997).

1.3.3. Genes involved in S. aurantiaca fruiting body formation

To identify developmentally regulated genes in S. aurantiaca Tn5lacZ transposon

mutagenesis was performed (Pospiech et al., 1993). Three different classes of mutants

impaired in fruiting body formation were detected. Members of the first class form

abnormal fruiting bodies, those of the second-class aggregate into clumps, and those of

the third class of mutants are not able to aggregate at all (Pospiech et al., 1993).
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Further analysis of the transposon induced mutant AP182 led to the identification of

the fbfB gene involved in fruiting. Analysis of the upstream and downstream regions of

fbfB showed the existence of further fbf genes, fbfA, fbfC, fbfD (Müller, 2002;

Silakowski et al., 1996) that are arranged in the same orientation. fbfC and fbfD form an

operon and more or less, the whole fbfA sequence is needed for the correct expression

of fbfCD. The gene fbfB is located upstream of fbfA in a divergent orientation

(Silakowski et al., 1998). The gene product of fbfA shows a homology of about 30% to

the N-acetylglucoseamine transferase (NodC) of Rhizobium meliloti and the chitin

synthase of Saccharomyces cerevisiae. These enzymes are involved in the synthesis of

extracellular polysaccharides. FbfA therefore might be an enzyme catalying the

synthesis of extracellular polysacharides that are involved in signalling. FbfB encodes a

putative protein that shows homology to the galactose oxidase of Dactylium dendroides

(Silakowski et al., 1998). A putative function of FbfB could be the oxidation of primary

alcohols to aldehydes (Silakowski et al., 1998). The putative FbfC polypeptide has no

homology to known proteins. FbfD shows homology to an ORF with unknown function

of M. xanthus (Müller, 2002). Insertion of the neo gene into each of the fbf genes led to

mutants that form just clumps during starvation. Mixing of fbfA mutant cells with the

nonagreggating transposon mutant AP191 led to a partial phenotypic complementation,

the formation of a morel-like structure (Silakowski et al., 1996). Mixing of the fbfB

mutant cells with AP191 led to the formation of a champignon-like structure.

Analysis of the fbf gene expression in merodiploid strains containing various large

upstream regions of the analysed fbf gene 3'truncated and fused to the DtrpA-lacZ

reporter gene revealed that each gene from the cluster is expressed during development.

The fbfA gene is transcribed about 8 h after the start of development, fbfB is expressed

about 14 h after induction of the fruiting body formation. The genes fbfC and fbfD are

both expressed about 8 h after induction of starvation. Downstream of the fbfB gene the

mta gene cluster was detected encoding  polyketide synthases and nonribosomal peptide

synthetases. These two mta cluster products are involved in the synthesis and

modification of the secondary metabolite myxothiazol and not in fruiting body

formation (Silakowski et al., 1998; Silakowski et al., 1999).



I. Introduction 11

1.4. Intercellular signalling and communication in bacteria

Bacteria use sophisticated chemical communication systems in order to coordinate

the behaviour of their populations. This capability is important to improve access to

different nutrient sources, to achieve rapid colonisation of a new ecological niche.

Bacterial communication also allows survival of the population by differentiation into

morphologically more resistant forms or defence against competitive microorganisms or

the eukaryotic immune system (Shapiro, 1988). Bacterial cells are able to respond to

different molecules produced by bacteria but also by plants or animals cells, and the

other way round. Cell density dependent conjugal transfer of Ti plasmids between

Agrobacterium tumefaciens cells is triggered by opines produced by the plant host

(Zhang et al., 1993). The homoserine lactone which is the density sensing molecule in

Pseudomonas aeruginosa can also influence the host immune response (Telford et al.,

1998). Some pathogenic bacterial species produce molecules that can bind to hormone

receptors and in this way bacteria may manipulate eukaryotic host cell signal

transduction pathways.

Information transfer between cells determines differentiation and morphogenesis in a

wide variety of bacterial systems: induction of luminescence in Vibrio by homoserine

lactones, sporulation in Bacillus, erection of aerial hyphae by Streptomyces, fruiting

body formation in myxobacteria.

Signalling molecules can be small diffusible molecules and secreted polypeptides as

well as surface associated macromolecules. They are also called bacterial "hormones",

"pheromones" or "autoinducers" (Wirth et al., 1996). Bacteria use signalling molecules

to monitor the state of other cells in the population. The so-called "quorum sensing", a

cell density sensing mechanism, enables bacteria to function as multicellular organisms.

This cell density sensing mechanism depends on the activation of a response regulator

by a self-generated diffusible signal molecule.



I. Introduction 12

1.4.1. Intercellular signalling in Gram-negative bacteria

Gram-negative bacteria use homoserine lactones as small signalling molecules that

diffuse across the outer and inner membrane to reach their target protein in the

cytoplasma. One of the first described autoinducers was the N-acyl-homoserine-lactone

autoinducer (AHL) from the marine bacterium Vibrio fisheri involved in the control of

bioluminiscence. Luminescence operons consist of several genes (Engebrecht et al.,

1983). The luxR gene encodes an autoinducer dependent transcriptional activator of the

luxI-G operon. LuxI is an autoinducer synthase. LuxC, D and E form a complex that

generates long-chain fatty aldehyde, actual substrates of the luciferase reaction. LuxA

and B are two subunits of the luciferase. The function of LuxG is unknown. Cellular

and enviromental concentration of this signal molecule (AHL) is identical, since it

diffuses freely through membrane (Kaplan and Greenberg, 1985). At high cell densities

the concentration of the autoinducer increases and reaches a sufficient high

concentration to bind to LuxR. LuxR in turn activates the transcription of the lux

operon.

Beside the homoserine lactone mediated "quorum sensing" other molecules with

signalling function have been identified. The gama-butyrolactones in Streptomyces are

involved in the control of antibiotic biosynthesis, resistance and differentiation

(Horinouchi and Beppu, 1992). Butyrolactones have antifungal activity in Pseudomonas

aureofaciens (Gamard et al., 1997) and the 3-hydroxypalmitic acid methyl ester is

involved in regulation of virulence in the plant pathogen Ralstonia solanacearum

(Flavier et al., 1997).

1.4.2. Intercellular signalling in Gram-positive bacteria

Gram-positive bacteria, use small modified peptides as signalling molecules that can

interact with two-component histidine kinase signal trasduction systems (Wirth et al.,

1996). Small octapeptides act as signalling molecules to regulate cell density dependent

virulence gene expression in Staphylococcus aureus (Ji et al., 1995). Extracellular

signal peptides are involved in the initiation of sporulation in Bacillus subtilis.
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Heptadecapeptides are necessary for the regulation of genetic competence in

Streptococcus pneumoniae (Pestova et al., 1996).

1.4.3. Intercellular signalling in M. xanthus

Myxobacterial development strictly depends on signalling between cells. These

signals coordinate temporal gene expression in the course of development. The cell-cell

signal mutants are unable to complete development by themselves, but they can

overcome this developmental block when they are mixed with wild type cells. The

result of the complementation studies indicate that cell-cell signalling mutants can be

placed into several different classes. Mutants from the same class fail to complement

each other. Mutant cells are defective in producing a signal but they retain the ability to

respond to the signal (Hagen et al., 1978; Janssen and Dworkin, 1985; LaRossa et al.,

1983; Shimkets and Dworkin, 1981). At least five different signalling pathways have

been identified in M. xanthus.

1.4.3.1. A signalling

Mutants defective in producing the A signal arrest at about 1 to 2 hours after

initiation of development in the preaggregation stage as a flat film of cells. Five genes

known as asgA, asgB, asgC (Kuspa and Kaiser, 1989; Plamann et al., 1994; Plamann et

al., 1995; Shimkets, 1999), asgD (Cho and Zusman, 1999) and asgE (Garrza et al.,

2000) have been identified to function together in order to produce the active A signal.

The A signal is proposed to be a mixture of amino acids and peptides generated in

amounts proportional to the cell density by extracellular proteolysis (Kuspa et al, 1992;

Plamann et al., 1992).

1.4.3.2. B signalling

The B signal acts early in development. All of the bsg mutations fall into one single

gene named bsgA (Gill and Cull, 1986). Mutants fail to aggregate, sporulate, and are

unable to express developmentally regulated genes. The bsgA gene product is an ATP-

dependent protease with homology to the Lon protease of E. coli (Gill et al., 1993). The
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suggested role of the BsgA protease is that it is involved in the regulation of the

initiation of the developmental phase.

1.4.3.3. C signalling

The C signalling pathway is the most intensively studied in M. xanthus. The C signal

acts about 6 h after the beginning of development. All csg mutations fall into a single

genetic locus named csgA, formerly known as spoC (Shimkets et al., 1983). Mutants

unable to synthesized CsgA fail to ripple, aggregation and sporulation are severely

impaired and expression of developmental genes that is normally induced 6 hours after

the beginning of starvation is reduced or abolished (Shimkets et al., 1983; Kroos and

Kaiser, 1987). Overproduction of CsgA leads to premature aggregation and sporulation

as well to the formation of small fruiting bodies (Kruse et al., 2001). In contrast,

reduced synthesis of CsgA causes a delay in aggregation, reduces the ability to

sporulate and causes the formation of large fruiting bodies (Kruse et al., 2001). csgA

expression slowly increases during development and reaches a peak at the sporulation

stage (Hagen and Shimkets, 1990).

The csgA mutant phenotype can be restored by adding the purified CsgA from

immature wild type fruiting bodies or the MalE-CsgA fusion protein produced in E. coli

(Kim and Kaiser, 1990; Lee et al., 1995).

The predicted amino acid sequence of CsgA shows homology to the members of the

short-chain alcohol dehydrogenases family. These enzymes use NAD(H) or NADP(H)

to catalyze the interconversion of secondary alcohols and ketones or mediate

decarboxylation (Persson et al, 1991). The CsgA protein with a single mutation at the N

terminus was unable to bind radiolabeled NAD+ in vitro and to rescue the csgA mutant

phenotype (Lee et al., 1995). A single amino acid substitution in the putative substrate

binding domain of the CsgA protein leads to a mutant unable to develop (Lee, et al.,

1995).

The CsgA is an extracellular protein associated with cell surface (Kim and Kaiser,

1990; Shimkets and Rafiee, 1990). It is still unclear if CsgA has an extracellular
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enzymatic function to convert some substrates into the chemically active C signal or

whether CsgA acts as a signal itself.

The reported importance of the putative coenzyme binding site and the putative

substrate binding site for CsgA function support the first model (Lee, et al., 1995).

Additionally, overproduction of SocE, another member of the short-chain alcohol

dehydrogenase family, rescues the developmental phenotype in the csgA mutant

(Crawford and Shimkets, 2000). The putative CsgA substrate is unknown and it is hard

to predict the structure of the substrate since members of the short alcohol

dehydrogenase family have a large spectrum of substrates. The second model is based

on the findings that the 17 kDa protein isolated from wild type cells during development

can restore the csgA mutant phenotype (Kim and Kaiser, 1990). Two forms of the CsgA

protein have been identified in extracts of developmental cells. A large form of 25 kDa

that corresponds to the full-length protein encoded by the csgA gene and a smaller form

of 17 kDa (Kruse et al., 2001). The large form might represent a precursor protein that

becomes proteolytically cleaved to a polypeptide of 17 kDa that has C signalling

activity.

Despite unclear nature of the C signal, the cellular responses to C signalling are

known. As mentioned above it induces rippling, aggregation, sporulation and expression

of many genes including csgA itself. It was shown by addition of the purifed 17 kDa

protein to csgA mutant cells (Kim and Kaiser, 1990) and by reducing the transcription

of csgA in vivo by nested deletions of the upstream region (Li et al., 1992) that a low

concentration of the C signal is required for rippling and aggregation. A higher

concentration induces sporulation and C signal dependent gene expression including

csgA itself. Therefore the model of the C signalling pathway indicates two branches.

One branch leads to the regulation of the movement responds of cells and the other

branch controls sporulation and expression of the late developmental genes (Fig.1.2.).
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Fig. 1.2. A model for the C-signal transduction pathway (Gronewold and Kaiser, 2001).

Upstream in the C signalling pathway, the act operon controls the level and the time

course of CsgA production (Gronewold and Kaiser, 2001). The CsgA activates FruA,

which is a transcriptional regulator protein with a putative helix-turn-helix DNA

binding domain (Ellehauge et al., 1998). Synthesis of FruA is regulated on the

transcriptional level and does not depend on C signal (Ellehauge et al., 1998). More

likely C signal transmission induces activation of FruA presumably by phosphorylation

(Ellehauge et al., 1998). Downstream from FruA the C signal pathway branches. One

branch leads to the regulation of rippling and aggregation. Active FruA induces

methylation of FrzCD protein, a homolog to bacterial chemotaxis proteins. Frz proteins

are important for rippling and aggregation and control of specific gliding parameters in

response to the C signal (Zusman 1982; Jelsbak and Sogaard-Andersen, 1999).

Increased methylation of the FrzCD correlates with a decreased reversal frequency,

allowing the cells to move in chains into the aggregation center. When cells aggregate,

the level of C-signal increases. In the presence of high level of a C signal and active

FruA, the dev operon and other late developmental genes are expressed which are

required for sporulation (Thöny-Meyer and Kaiser, 1993).

1.4.3.4. D signalling

The D signal acts between 1 and 2 h after beginning of development. Only one gene

is identified, designated as dsgA (Chang and Kaiser, 1989). Mutations in dsgA delay

aggregation and reduce the sporulation efficiency. The dsgA gene encodes a protein

with 50 % similarity to the translation initiation factor IF3 of E. coli (Chang and

Dworkin, 1994).
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1.4.3.5. E signalling

The E signal acts about 3-5 h after the beginning of development. The E signal

mutant fails to aggregate or sporulate normally. Two genes were identified esgA and

esgB that encode the E1a  and E1 b  subunits of the branched-chain a-keto acid

dehydrogenases involved in amino acid and fatty acid metabolism (Downard and Toal,

1995; Toal et al., 1995). Downard and Toal (1995) assumed that long branched-chain

keto acids are incorporated into the phospholipid membrane during vegetative growth.

During development they are released and act as the actual E signal.

1.4.4. Intercellular signalling in S. aurantiaca

S. aurantiaca forms morphologically more complex fruiting bodies in comparison to

M. xanthus and therefore represents a better prokaryotic model to study genetic

determination of morphogenesis. Formation of the complex fruiting bodies of

S. aurantiaca consist of a branched stalk with sporangioles requires specific

communication between the cells in order to coordinate their behaviour. One type of the

signalling molecule was isolated from S. aurantiaca cells (Plaga et al., 1998). As

mentioned above it is a novel type of pheromone, which acts to help cells to stay

together in the aggregation phase.

Another gene product involved in intercellular signalling was identifed in

S. aurantiaca, the csgA homolog of M. xanthus. Inactivation of the csgA gene in

S. aurantiaca was reported to affect fruiting body formation (Butterfass, 1992).

1.5. The aims of this work

As mentioned above S. aurantiaca is a social prokaryote. Cells communicate with

each other by direct contact or by exchanging various signal molecules. Isolation and

characterization of these signalling molecules would contribute to the understanding of

the complex life cycle of S. aurantiaca.
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The M. xanthus csgA gene homolog was identified in S. aurantiaca. Inactivation of

the gene was shown to impaire fruiting body formation. Because of the strong evidences

supporting the role of the CsgA protein in intracellular signalling in M. xanthus, an

initial characterisation of the csgA gene in S. aurantiaca was undertaken.

The work of this thesis includes cloning of a DNA fragment harbouring the csgA

gene flanked by its upstream and downstream sequences; a detailed sequence analysis

of the csgA upstream region; elucidation of the CsgA function in vivo by disrupting the

csgA gene and observation of the mutant phenotype during starvation; investigation of

csgA transcription in a merodiploid strain that contains the upstream region of csgA

fused to a lacZ reporter gene; immunological identification of the CsgA protein during

S. aurantiaca growth and development.
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2.1. Molecular cloning and sequence analysis of the csgA locus from

S. aurantiaca

In M. xanthus the csgA encoded polypeptide is a molecular timer for the

developmental program. It constitutes the C signalling pathway that is required for

regulation of the correct temporal order of the three morphological stages known as

rippling, aggregation and sporulation during development. It is also involved in the

regulation of the expression of developmental genes that are expressed about 6 h after

the beginning of starvation. According to the important role of CsgA in the M. xanthus

development and because of the close phylogenetic relation to S. aurantiaca, the

question arised if there is a similar C signalling pathway in S. aurantiaca involved in

intercellular signalling during fruiting body formation.

To address this question it was first necessary to identify the homologous gene in

S. aurantiaca. Previously the S. aurantiaca csgA homolog was identified by Southern

blot analysis using a M. xanthus csgA gene probe. An EcoRI fragment (12 kbp)

harbouring the csgA gene was subcloned from a S. aurantiaca lambda gene library into

the plasmid pUC18. Sequence analysis revealed that an EcoRI fragment contained the

coding part of the csgA gene flanked by a 148 bp upstream sequence. The S. aurantiaca

csgA gene sequence was added into the EMBL/GenBank data base, accession number

M95300 (Butterfass, 1992). The csgA gene encodes a protein of 173 amino acids with a

predicted molecular mass of about 19 kDa. The gene sequence shows about 70 %

homology to the M. xanthus csgA  gene. The deduced amino acid sequence of the

S. aurantiaca csgA revealed an identity of about 54% to the M. xanthus CsgA.

A csgA S. aurantiaca mutant phenotype was reported previously (Butterfass, 1992).

A merodiploid mutant strain was constructed in which 2 truncated copies of the gene

were present, separated by vector sequences. One csgA allele was lacking the 3´part and

another csgA allele was disrupted by the insertion of a kanamycin cassette, so that the

merodiploid mutant did not contain a functional csgA gene. Under starvation conditions

this mutant formed a bulk of sporangioles without a differentiated stalk and a delay of

12 hours in the time course of the mutant development as compared to the wild type

was reported  (Butterfass, 1992).
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2.1.1. Cloning of the csgA locus from S. aurantiaca

On the basis of this data, the putative role of the csgA gene product during

S. aurantiaca development should be analysed in detail. To characterize csgA

expression during development and to construct a csgA insertional mutant strain

(double recombination) it was first necessary to isolate a larger DNA fragment

harbouring the csgA coding region flanked by the whole upstream and by long

downstream sequences.

A 465 bp internal fragment of the csgA gene was amplified by PCR using the

chromosomal DNA of the S. aurantiaca wild type as a template and the primers csgA

7/csgA 8. The purified PCR product was biotin labelled and used as a probe in a

Southern analysis of S. aurantiaca wild type DNA digested with various restriction

enzymes. The SalI-, XbaI-, NotI-, HindIII-, SacI- chromosomal DNA fragments which

hybridized with the probe were too large (more than 7,7 kbp) for subcloning in standard

cloning vectors (Fig.2.1.). Restriction with BamHI resulted in a fragment of about 1,7

kbp which was not large enough to contain the upstream and downstream regions of the

csgA gene. A 3 kbp XhoI fragment that hybridized with the probe had a suitable size for

further cloning.

Fig.2.1.  Southern analysis of restricted chromosomal DNA of the S.aurantiaca wild type
using the biotin labelled S. aurantiaca csgA gene as a probe. 10 mg of DNA (lanes: 2-8) were
digested with SalI, BamHI, XbaI, NotI, HindIII, SacI, XhoI and separated on a 0,9 % agarose
gel. The size of the fragments were estimated using the DNA Molecular Weight Marker IV
(Roche Diagnostics)-lane 1.
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2.1.1.1. Preparation and screening of a S. aurantiaca genomic library

In order to facilitate cloning of S. aurantiaca csgA gene locus, a genomic library was

constructed. The bacteriophage vector Lambda DASH II (Stratagene) predigested with

restriction enzyme BamHI, which accomodates inserts ranging from 9 to 23 kbp, was

used as the vector to construct the genomic library of S. aurantiaca. To obtaine a truly

random library, high molecular weight chromosomal DNA from S. aurantiaca was

fractionated by partial digestion with the restriction endonuclease Sau3AI which

produces BamHI-compatible cohesive ends. Serial dilutions of Sau3AI were prepared to

determine the optimal concentration of the enzyme necessary for generating DNA

fragments with a size of 9 to 23 kbp. Partial digestion was accomplished using 0,025 U

of Sau3AI per microgram of chromosomal DNA in a reaction incubated at 37°C for 40

min. Obtained DNA fragments were cut out from the gel and purified with the gel

extraction kit (Qiagen). Library construction was performed following the instruction

manual of lambda DASH II/ BamHI vector kit (Stratagene) and the detailed steps are

described in Materials and Methods. The size of the constructed genomic library was

determined to be 1x105 plaque forming unit (pfu)/mg of genomic DNA, which offers

more than 99% probability of isolating a particular gene from a bacterial genome.

The 465 bp csgA PCR fragment from the S. aurantiaca wild type (see 2.1.1) was

used as biotin labbeled probe to screen the S. aurantiaca phage library. Six independent

plaques that hybridized with the probe were detected. The DNA of the positive phages

was isolated and Southern analysis was performed using the same probe as for the

screening of the library. One positive clone designated  l11, respectively, was chosen

for further work. In the Southern analysis (Fig.2.2.) of XhoI digested l11 DNA one

fragment of about 3 kbp was detected. Double digestion with XhoI/EcoRI revealed one

fragment of about 1,5 kbp which hybridized with the csgA probe. According to previous

data, l11 probably harboures about 1,5 kbp of the upstream region of csgA. Digestion

of lambda 11 with SalI revealed a fragment of about 11 kbp that hybridized with the

probe.
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Fig.2.2. Southern analysis of restricted l11 phage DNA using the csgA gene as a probe. Lane 1-
2: l11 DNA (2 mg) digested with XhoI; XhoI/EcoRI and SalI separated on 0,9 % agarose gel.
The size of the fragments was estimated using DNA Molecular Weight Marker IV (Roche
Diagnostics).

2.1.1.2. Subcloning of the 3 kbp XhoI fragment harbouring the S. aurantiaca csgA

gene

The 3 kbp XhoI fragment harbouring the csgA gene was purified from l11 phage

DNA, restricted with XhoI and separated on a 0,8 % low-melting agarose gel using the

gel extraction kit (Qiagen). Isolated csgA fragment was used in subsequent ligation

reactions with different vectors: Litmus 28, pBSSK-, pBCSK- and pUC18, pre-digested

with XhoI. Ligation reactions were used for the transformation of E. coli DH5a. After

white-blue screening and restrictions analysis positive transformants were not

identified.

 Since subcloning of the XhoI fragment in the previously described vectors did not

leads to sucess when the E. coli DH5a host strain was used, therefore special restriction

minus E. coli competent cells, XL1 - Blue MRF´, which make possible the cloning of

the highly methylated DNA were used in subsequent transformation reactions. Clones
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obtained after the transformations were restricted with XhoI but only religated plasmids

were detected.

Another special E. coli strains ABLE C and ABLE K (Stratagene) in which the copy

number of cloning vectors per cell, is reduced thus increasing the probability to clone

DNA encoding toxic proteins, were used as host cells. Again no positive transformants

were detected by restriction analysis.

In total, more than three hundred different clones were screened by restriction

analysis. Therefore it was concluded that cloning of the XhoI csgA fragment from

S. aurantiaca was not possible in high or medium -copy number plasmids.

2.1.1.3. Subcloning of the XhoI csgA fragment from l11 into the plasmid

pACYC 177

Final approach for subcloning of the XhoI fragment from l11 the low copy number

vector pACYC 177 (New England Biolabs) was used. The 3 kbp csgA fragment from l

11 was purified as previously described and inserted into pACYC 177 digested with

XhoI. The recombinant plasmid was used to transform E. coli XL1-Blue MRF`. The

insertion of DNA fragment into the XhoI site of the plasmid pACYC 177 leads to a

disruption of the neo gene. This was used for screening of positive clones by replica

plating. A total of 192 clones were transferred after growth in LB medium

supplemented with tetracycline and ampicillin on LB plates containing additionally

kanamycin. Only clones which were not able to grow on LB plates with kanamycin

were further analysed. One plasmid designated pAM5 showed a correct restriction

pattern after digestion with XhoI. Southern analysis of the XhoI digested pAM5 with

biotin labelled PCR product of the csgA gene of S. aurantiaca revealed a fragment of

about 3 kbp.

2.1.2. Sequence analysis of the csgA locus from S. aurantiaca

The nucleotide sequences of both strands of the 3 kbp XhoI fragment were

determined and analysed further. The sequence data confirmed that the XhoI fragment
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harbours the complete sequence of the csgA gene and additionally the upstream and

downstream region with approximately the same size. Sequences data were compared

with those already published (Butterfass, 1992) and no differences were found.

As previously reported (Butterfass, 1992) a 840 bp fragment harbouring csgA gene

was sequenced. Sequence analysis revealed a GTG codon at position 148 as the putative

start codon and a TAG codon at position 679 as stop codon of the csgA gene. No Shine-

Dalgarno sequence was found in front of the putative start codon. The gene encodes a

protein of about 173 amino acids with a calculated molecular mass of about 19 kDa.

 Isolation and sequencing of the much larger fragment of 3 kbp harbouring the csgA

gene made it possible to further analyse 1,5 kbp of the csgA upstream sequence.

Upstream from the proposed csgA start codon GTG (located at position 1533 on the

3 kbp XhoI fragment) two additional putative start codons were found in the correct

reading frame (Fig.2.3.). The first ATG codon (located at position 1185) is precedes by

a Shine-Dalgarno sequence (GGAGG) in an unfavourable distance from the start codon

(2 bp from ATG). The second ATG codon (located at position 1344) has no Shine-

Dalgarno sequence. The size of the csgA gene starting with a ATG (bp 1185) is 870 bp

and encodes a putative polypeptide of 289 amino acids with a calculated molecular

mass of about 32 kDa. The size of the gene starting with the second ATG (bp 1344) is

711 bp long and encodes a putative polypeptide of 236 amino acids with predicted

molecular mass of about 26 kDa. Those two putative start codons located upstream of

the first proposed GTG start codon cannot be excluded as initiation sites of the csgA-

encoded protein.
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Fig.2.3. Nucleotide sequence of the csgA locus (part of the 3kbp sequence from 1120 bp to
2080 bp is shown). Putative start codons ATG (1185 bp), ATG (1344 bp) and GTG (1533) of
the csgA gene (are underlined) and deduced amino acid sequences of CsgA protein. The serine,
tyrosine and lysine residues in the putative catalitic site of CsgA protein are underlined.

The alignment of the S. aurantiaca csgA gene with M. xanthus csgA is shown in Fig.

2.4. All three putative start codons of the S. aurantiaca csgA were indicated on the

alignment report. The comparation of the three possible S. aurantiaca csgA genes with

the csgA sequence of M. xanthus was performed using the program Multiple Sequence

Alignment of the Lasergene program package. The alignment revealed a homology of

about 63% when S. aurantiaca csgA translation start codon is ATG  located at position
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1185 or  at position 1344. The homology between the previously proposed csgA coding

sequence of S. aurantiaca (Butterfass, 1992) and M. xanthus is about 61%.

Fig.2.4. Alignment of the S. aurantiaca csgA gene that of M. xanthus. The putative start codons
of the S. aurantiaca csgA are shown in coloured boxes: potential start codon ATG (bp 1185) is
shown in a blue box; potential start codon ATG (bp 1344) is shown in a red box; proposed start
codon GTG (bp 1534) is shown in a green box. The start codon of the M. xanthus csgA gene is
shown in a red box.

The alignment of the deduced amino acid sequence of the S. aurantiaca csgA coding

region and the amino acid sequence of the CsgA from M. xanthus is shown in Fig.2.5.
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The homology between the putative CsgA polypeptide of 289 amino acids with that of

M. xanthus is about 56%. The same homology was found between the S. aurantiaca

putative CsgA of 236 amino acids and CsgA from M. xanthus. The smallest CsgA form

from S. aurantiaca  (173 amino acids) showed a homology of about 52% to CsgA of

M. xanthus.

Fig.2.5. Alignment of the amino acid residues of the CsgA from S. aurantiaca with CsgA from
M. xanthus.The amino acid residues are numbered as indicated. Identical amino acid residues
are boxed. The starts of the three different predicted CsgA versions from S. aurantiaca are
shown in colored boxes: Largest size of the putativ CsgA in a blue box; medium size of the
putativ CsgA in a red box; small size of the putative CsgA in a green box. First amino acid
residue of the M. xanthus CsgA is shown in a red box.

A search for conserved domains in CsgA revealed that the protein contains the

putative conserved domain of the short chain dehydrogenase family. The CsgA has the

conserved motif YXXXK in the putative catalytic site (Fig.2.3.). Additionally CsgA has

also a serine residue positioned near this consensus motif (Fig.2.3.). The tyrosine, serine

and lysine residues are supposed to be the catalytic triad. The similarity between CsgA

and many members of the family is about 50%, respectively. Similarity between CsgA

and an oxidoreductase from Vibrio parahaemolyticus is about 57%. CsgA shows about

58% similarity with an oxidoreductase from Coxiella burnetii. The CsgA is about 52%

similar to the 3-oxo-acyl-carrier protein reductase involved in the fatty-acid

biosynthesis in Leptospira interrogans.
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2.1.2.1. Analysis of the upstream and downstream sequences of csgA

Analysis of the sequences flanking csgA revealed three putative ORFs. The analysis

was performed by setting up the minimal number of amino acids for the ORFs to 170.

Two of these ORFs were identified upstream and one downstream of csgA (Fig.2.6.). A

part of the ORF1 (bp 1-1102) with a putative start codon ATG and no Shine-Dalgarno

sequence is located upstream of csgA in a divergent orientation. The stop codon of

ORF1 could not be identified on the XhoI fragment. The nucleotide sequence shows a

homology of about 60% to a gene that codes for a protoporphyrinogen oxidase in

M. xanthus. Due to the high similarity ORF1 was designated as protoporphyrinogen

oxidase gene. ORF2 (bp 350-1093) overlaps with the 5` part of the protoporphyrinogen

oxidase and encodes a putative polypeptide of 247 amino acids (ca 27 kDa). No suitable

Shine-Dalgarno sequence was found in front of the putative start codon ATG. However,

no sequence has been found to be homologous to the deduced amino acid sequence of

ORF2. The third open reading frame, ORF3, (bp 1996-2667) is located downstream

from csgA in a divergent orientation. It codes for a polypeptide of 223 amino acids (ca

25 kDa). The 3`part of ORF3 (55 bp) overlaps with the 3`terminus of csgA. The

nucleotide sequence of ORF3 shows homology of about 48% to fprA of M. xanthus.

The deduced amino acid sequence of ORF3 showed homology of about 43% to FprA,

flavin associated protein, from M. xanthus. Due to the similarity between ORF3 and the

fprA gene of M. xanthus ORF3 was designated as fprA.

Fig. 2.6. Map of the putative ORFs located on the 3 kbp XhoI fragment of S. aurantiaca
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2.2. Investigation of the physiological function of CsgA in vivo;

Disruption of the csgA gene in S. aurantiaca

To analyse the role of CsgA in S. aurantiaca development, the csgA gene was

disrupted by insertional mutagenesis. An internal fragment of the csgA gene was

replaced by a tetracycline resistance cassette resulting in a CsgA null mutant strain. This

csgA insertion mutant strain, along with its isogenic parent, was assayed for the ability

to form fruiting bodies in response to amino acid starvation.

2.2.1. Construction of plasmid pAM8

In order to inactivate the wild type csgA gene in the chromosome of S. aurantiaca,

plasmid pAM8, harbouring the disrupted csgA allele was constructed. Plasmid pAM8

was generated by digesting pAM5 (plasmid that contains the csgA locus) with the

restriction enzymes SacI and SphI in order to remove the internal part (340 bp) of the

csgA gene. After the separation of the restriction mixture by electrophoresis the plasmid

fragment of about 6,6 kbp was isolated and purified. Both restriction enzymes generated

5’-overhanging ends that were filled using T4 DNA polymerase to be able to clone the

tetracycline resistance cassette into the plasmid. The tetracycline resistance gene from

pBR322 was amplified by PCR with the primer pair TcfwXba and TcrvXba. Deep Vent

Polymerase was used in order to produce blunt ends. Insertion of the tetracycline

resistance gene into the 6,6 kbp vector was done according to the standard protocol and

E. coli strain DH5a was used for transformation. After selection on LB plates

containing tetracycline several colonies were selected, plasmid DNA was purified and

used for a restriction analysis. Digestion with the enzymes XhoI, or XbaI, or XhoI/SalI

revealed one correct construct. This recombinant plasmid designated pAM8 carried the

disrupted csgA gene with the tetracycline resistance cassette in the opposite

transcriptional orientation of csgA. This was verified by sequencing of pAM8 using an

internal primer.
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2.2.2. Construction of the csgA insertion mutant AM8

To construct a csgA insertion mutant plasmid pAM8 was linearized with ScaI to

enhance a double recombination event and transferred into S. aurantiaca wild type by

electroporation. Tryptone plates containing oxytetracycline were used for selection.

There were two possibilities of integration of the disrupted csgA allele from pAM8

into the chromosome of S. aurantiaca. The disrupted csgA gene may replace the wild

type allele by a double recombination event leading to a null CsgA strain. Another

possibility is the single homologous crossover between pAM8, carrying disrupted csgA

allele, and the chromosomal csgA locus leading to the integration of the entire plasmid

into the genome. Single crossover may occur at the 3`or 5` part of the csgA gene

resulting in two different merodiploid strains. In both cases two copies of the csgA gene

are present in tandem separated by the plasmid sequence. One copy of the gene is intact,

another one is truncated (Fig 2.7.).
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Fig 2.7. Construction of the csgA insertion mutant (AM8) a) pAM8 plasmid map; b)
S. aurantiaca wild type csgA locus; c) double recombinant – AM8, csgA insertion mutant; d)
single recombination event at the 5`end of the gene – merodiploid strain; e) single
recombination event at the 3`end of the gene – merodiploid strain.

To distinguish between this two recombination events, Southern hybridisation was

performed using different probes. After selection on oxytetracyline six recombinants

were obtained and used for further analysis. The biotin labelled plasmid pACYC 177

was used for hybridisation. In the case of a double recombination event no signal should

be visible. Chromosomal DNA from the recombinant clones was digested with XhoI.

Five recombinants showed a positive signal with pACYC 177 leading to the conclusion

that all of them were merodiploid mutants with the plasmid pAM8 integrated into the

genome. One recombinant clone gave no positive signal with pACYC 177, indicating a

double recombination event.
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To further investigate the genotype of this putative csgA insertional mutant, Southern

hybridisation was preformed using XhoI digested DNA and the biotin labelled

tetracyline resistance gene. A 4,1 kbp fragment was detected confirming the integration

of the tetracycline resistance cassette into the genome of this recombinant mutant.

Using the 3 kpb XhoI fragment (isolated from pAM5, containing the csgA gene) as a

probe for hybridisation with XhoI digested chromosomal DNA of this putative double

recombination mutant, a unique 4,1 kbp fragment was detected. This result verified the

assumption that csgA is indeed inactivated by the tetracycline resistance gene in the

strain designated as AM8 (Fig.2.8.).

Fig 2.8. Southern hybridisation of Xho I digested chromosomal DNA of S. aurantiaca wild type
and AM8. The 3 kbp Xho I fragment from pAM5 was used as a probe.
Lane 1- DNA Molecular Weight Marker IV (Roche Diagnostics).
Lane 2- S. aurantiaca wild type DNA
Lane 3- AM8 (csgA insertional mutant strain) DNA.
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2.2.3. Developmental phenotype of the csgA insertion mutant strain

In order to investigate the developmental phenotype of the csgA insertion mutant

strain fruiting body assay was performed. The same number of the mutant and wild type

cells were placed on water agar plates and additionally also on filter papers. Images

were taken at different time points after the beginning of starvation (Fig.2.9.).

After 8 hours of development no differences between mutant and wild type cell

behaviour were detectable. The spots of mutant and wild type cells had the same size,

cell density and the edges of the spots were similar. With progression of the

development from 8 to 12 h the first differences between the two strains could be

observed. During the indicated time period mutant cells migrated to the outer part of the

spot forming a circle with high cell density. Unlike mutant cells, wild type cells

concentrated mostly in the inner part of the spot and the edge of the spot was

transparent as at the beginning of the development. From 12 to 20 h after the beginning

of starvation mutant cells continued to accumulate in an outer circle. They formed

aggregation centres very close to each other in the outer ring. Importantly specific

rippling trails were not observed with the mutant cells during this time period. Wild

type cells forme many aggregation centres between 12 and 20 h after the beginning of

development from which fruiting bodies will arise in later stages of the development.

Aggregation of the wild type cells was also visible in the inner part of the spot. This is

not the case during aggregation of the mutant cells. The rippling that precedes

aggregation and overlaps with the early stages of aggregation was well visible when

analysing development of wild type cells. After 20 to 26 h mutant as well as wild type

cells formed fruiting bodies. No changes in the appearance of the fruiting bodies was

observed after 48 h. The mutant fruiting bodies were located in the outer ring of the

circle whereas the wild type ones were also present in the inner part of the circle.
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Fig.2.9. Developmental phenotype of csgA insertional mutant versus wild type. Cells were
exposed to starvation on water agar plates for indicated period of time. Spots were viewed from
above.
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Fruiting body assay performed on filter papers placed on water agar showed even

more clear differences in the behaviour of the mutant cells versus the wild type ones

during development. Wild type cells preferentially stayed in the centre of the circle so

that mature wild type fruiting bodies were located in the circle. The mutant cells

migrated from the centre of the spot to the outer part during development so that mature

fruiting bodies were located more dispersed around the circle (Fig.2.10.).

Fig.2.10. Developmental phenotype of csgA insertional mutant versus wild type. Cells were
placed on filter paper located on water agar plates. Spots were viewed from above after 48 h.

The phenotype of the mature mutant fruiting body was the same as the wild type one.

Mutant AM8 formed wild type fruiting bodies consisting of a branched stalk bearing

several sporangioles (Fig.2.11.).

Fig.2.11. Side-view of the representative fruiting body formed by the csgA insertional mutant
(AM8) and the wild type.
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2.2.4. The ability of AM8 myxospores to germinate

The germination assay was performed as described in Materials and Methods.

Swarming cells of AM8 or wild type were visible after few days of incubation. This

result clearly indicates that myxospores formed by the csgA insertional mutant are able

to germinate but efficiency of germination is not known.

2.2.5. Ability of the wild type to restore developmental phenotype of mutant AM8

The csgA insertional mutant cells do not ripple and show a different migration and

aggregation pattern as compared with the wild type cells during development. At that

point the question rises if it is possible to restore the developmental phenotype of the

mutant by mixing it with the wild type. The experiment was performed by mixing equal

amounts of the wild type cells with mutant cells prior to starvation.

Rippling that precedes fruiting body formation was detected in the mixed cell

population. Also the aggregation pattern of the mixed population was more or less

similar to the wild type when the test was performed on the agar surface. The fruiting

body formation testing of the mixed population on filter papers showed different

patterns of organisation of the mature fruiting bodies in comparison to the wild type.

Wild type as shown previously formed fruits mostly concentrated in the inner part of the

circle. The mixed population of the cells formed fruiting bodies concentrated in the

circle with additionally some fruits that were dispersed around the circle (Fig.2.12).

Further, rippling waves are detectable in mixed population of the cells and some of

the fruits are dispersed around in a mutant like manner.
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Fig. 2.12. Developmental phenotype of the mixed cells population. Cells were placed on filter
paper. Spot viewed from above 48 h after beginning of starvation.

2.2.6. Interaction between WP120 and AM8 mutant cells

Previous results indicated that some fruiting bodies were dispersed around the main

circle in the mutant like manner when the mixed population of cells was starved on

filter papers. This could be due to the inability of mutant cells to interact with the wild

type cells. In this case the fruiting bodies dispersed around would be build up only by

the mutant cells. If the mutant cells were able to interact with wild type cells than the

fruiting bodies would be build up from a mixture of mutant and wild type cells. This

would indicate that the concentration of the signal molecules was very low and not

sufficient for all of the cells in the mixed population. The signal molecules could be

CsgA per se or some product of the CsgA enzymatic activity.

To test this hypothesis WP120 mutant cells were mixed in equal amounts with AM8

and placed on the starvation agar and additionally on the filter papers. The mutant strain

WP120 (kindly provided by Wulf Plaga) contains a gfp cassette under the control of a

strong constitutive cspA promoter. The cspA gene encodes a small protein belonging to

the cold-shock-like protein family. Importantly the mutant cells develop normally and

form wild-type fruiting bodies. As a control fruiting body formation was tested with the

wild type and WP120 in parallel. After 48 h of development video images of the

fruiting bodies were recorded (Fig.2.13.).
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Fig. 2.13. a) Wild type fruiting bodies; b) WP120 fruiting bodies; c) fruiting bodies from the
inner part of the circle: mixing experiments of WP120 and AM8 cells; d) fruiting bodies from
the ring; mixing experiment of WP120 and AM8 cells.

Mutant WP120 formed in contrast to the wild type (orange colour) green fruiting

bodies on starvation medium because it produced green fluorescence protein. The

mixture of the AM8 with WP120 formed fruiting bodies of a more intermediate colour.

The fruiting bodies from the parts of the ring as well as from the inner part were

examined. Clear separation between WP120 and AM8 fruiting bodies were not

detectable.

This indicates that mutant cells interact with the wild type cells. The mutant cells

have a disrupted csgA gene but they retained the ability to respond to CsgA.
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2.3. Transcription of csgA in S. aurantiaca

2.3.1. Determination of the csgA expression in the merodiploid mutant AM14

To study the level of the csgA gene expression during fruiting body formation, indol

induced sporulation or under heat shock conditions, the merodiploid mutant strain

AM14 was constructed. The strain contained the wild type csgA allele and a csgA-

DtrpA-lacZ-neo fusion allele in tandem. The inrease of b-galactosidase activity in the

merodiploid mutant is an indication of the transcriptional level of csgA in S. aurantiaca.

2.3.1.1.Construction of plasmid pAM14

In order to produce a csgA merodiploid mutant strain, a plasmid harbouring the

functional csgA promoter fused to a reporter gene was constructed and integrated into

the S. aurantiaca wild type csgA locus via homologous recombination. As reporter the

promoterless DtrpA-lacZ gene from the plasmid Tn5 lacZ1 was used. It contains the

whole lacZ gene and about 150 bp of the trpA gene fused to the 5`end of lacZ. The

trpA gene has stop codons in all three reading frames to prevent a translational fusion.

A 0,9 kbp fragment harbouring 0,6 kbp of the csgA promoter, upstream and 0,3 kbp

downstream of putative ATG start codon, was amplified by PCR with the primer pair

NotI csgA 21 and csgA 20 XbaI using the previously described plasmid pAM5 (plasmid

that contains the csgA locus) as a template. The primers contained additional restriction

sites for NotI and XbaI for directional cloning of the PCR product in plasmid pSM62

(kindly provided by S. Müller). Plasmid pSM62 (derivative of pBSSK-) harbours the

promoterless DtrpAlacZ gene fused to a neo cassette for selection of recombinants after

transformation. Insertion of the csgA promoter sequences to DtrpAlacZ-neo gene led to

the plasmid pAM14. The plasmid sequence was reconfirmed by restrictional analysis

and sequencing.
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2.3.1.2.Constructions of the merodiploid mutant strain AM14

Plasmid pAM14 was integrated into the S. aurantiaca chromosome via a single

recombinational event leading to a merodiploid mutant strain (AM14) with the wild

type csgA allele and a csgA promoter-DtrpAlacZ-neo fusion allele in tandem (Fig.

2.14.).

Fig. 2.14. Construction of the merodiploid strain AM14; a) pAM14 plasmid map; b)
S. aurantiaca wild type csgA locus; c) single recombination - csgA-DtrpA-lacZ-neo fusion
strain (AM14).

After electroporation recombinants were selected on tryptone plates containing

kanamycin sulfate. Several colonies were obtained and analysed further.

To prove the correct integration of the plasmid pAM14 into the csgA locus,

chromosomal DNA isolated from the recombinants was restricted with XhoI and used in

a Southern blot analysis with the biotin labelled neo gene as a probe. In case of a corect
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plasmid integration into the csgA chromosomal locus restriction of the DNA of the

recombinants DNA with XhoI should lead to one band of about 6,2 kbp that hybridises

with the probe. One merodiploid mutant strain, AM14, was shown to have the correct

genotype as shown by Southern blot analysis (Fig.2.15.).

Fig.2.15. Southern hybridisation of Xho I digested chromosomal DNA of AM14  with neo gene
as a probe.
Lane 1- DNA Molecular Weight Marker IV (Roche Diagnostics).
Lane 2- AM14 merodiploid mutan strain DNA

2.3.1.3. Determination of the b-galactosidase activity in AM14

For analysing csgA expression during development, fruiting body assays were

performed with the merodiploid mutant strain AM14 and the wild type. Cells were

scraped off the water agar at different time points from the beginning of starvation. Cell

extracts were assayed for a b-galactosidase activity with the fluorescence substrate 4-

MUG. As control the protein extracts isolated from wild type cells were used in the

assay in order to evaluate the background signal.

No significant b-galactosidase activity was detected in the vegetative state of the

merodiploid mutant in the fluorometric assay (10 mg of the total protein extract was

used). Only a very low increase of the b-galactosidase activity was detected about 8 h

after the beginning of starvation (Fig.2.16). No significant b-galactosidase activity was

detected during indol induced sporulation or under heat shock conditions.
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Fig. 2.16. Determination of the b-galactosidase activity of strain AM14 during fruiting body
formation (10 mg). The level of the b-galactosidase activity is indicated as black squares. The
level of the background signal is indicated as black dots.

The fluorometric assay was repeated under the same experimental conditions but

with five times more total protein. b-galactosidase activity was detected during

development under this experimental condition (Fig.2.17). The merodiploid mutant

(vegetative state) showed a very low level of b-galactosidase activity. The activity

slightly increased with the progression of starvation. The maximum activity was

detected about 8 h after the beginning of development. The level of the background

signal was estimated by a control experiment with 50 mg of total protein isolated from

wild type cells at the same time points after initiation of starvation. A low level of the b-

galactosidase activity was also detected 30 min after indol or heat shock treatment.
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Fig. 2.17. Determination of the b-galactosidase activity of strain AM14 during fruiting body
formation (50 mg). The level of the b-galactosidase activity is indicated as black squares. The
level of the background signal is indicated as black dots.

2.3.1.4. Detection of the b-galactosidase activity in situ

The merodiploid mutant was placed on starvation agar supplemented with 25 mg of

X-gal per ml. Starvation of the merodiploid mutant under these conditions resulted in

fruiting bodies whose stems were stained in blue in the course of about 3 days after the

beginning of development (Fig.2.18.).

Fig.2.18. Fruiting body of the merodiploid strain AM14 on
starvation agar containing X-gal.
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2.3.1.5. Developmental phenotype of AM14

To examine the phenotype of the merodiploid mutant strain AM14 containing the

wild type csgA allele with 0,6 kbp of the upstream sequence from the putative ATG

start codon, fruiting body assay was performed. The same number of mutant and wild

type cells were exposed to starvation on water agar and filter papers. The fruiting assay

showed no difference in the developmental behaviour of the merodiploid mutant cells

AM14 as compared to wild type cells. During the first hours of starvation the mutant

cells showed no difference in the migration pattern. The mutant cells preferentially

stayed in the inner part of the circle as it is also observed for the wild type. After 20 h of

starvation, AM14 cells had formed aggregation centres and the cells were rippling in the

same way as well as wild type cells. The aggregation pattern of the mutant was also

similar to that of wild type cells. Aggregation centres of AM14 cells formed into normal

fruiting bodies containing a stalk with several sporangioles in the same time course as

observed for the wild type (Fig.2.19.).

Spores formed by the merodiploid strain AM14 were able to germinate again after

incubation under suitable nutrient conditions comparable to wild type spores.

Fig. 2.19. Side-view of representative fruiting bodies formed by AM14 and wild type after 48h
of starvation on water agar.

Mutant AM14 displayed the same behaviour during development and formed wild

type fruiting bodies enclosing viable spores. This led to the conclusion that the upstream

region of 0,6 kbp used to construct the merodiploid mutant is sufficient for expression

of the csgA gene.
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2.3.2. Detection of csgA expression by RT-PCR

Additionally the transcription of the csgA gene in S. aurantiaca during vegetative

growth, development, or artificially induced sporulation was determined by qualitative

RT-PCR. Total RNA isolated from cells under different conditions was transcribed with

AMV reverse transcriptase and cDNA was amplified with primer pair csgA7/csgA8 as

described in the method part. The primers hybridize downstream from the GTG start.

The transcription of csgA was detected during vegetative growth as well as during

development (Fig.2.20). The csgA expression was detected after 8, 20, 30 h of

development. Additionally expression was also detected during artificially induced

sporulation with indol after 10, 30, 60 and 120 min.

                            

Fig.2.20. Expression of csgA detected by RT-PCR. The RT-PCR reactions were carried out
using the same amounts of total RNA. Lane 1: 100 bp DNA Ladder (New England BioLabs);
lane 2: control provided by kit (Promega); lane 3: vegetative cells; lane 4: indol induced
sporulation after 10 min; lane 5: indol induced sporulation 30 min; lane 6: indol induced
sporulation 60 min; lane 7: indol induced sporulation 120 min, lane 8: cells after 8h of
development; lane 9: cells after 20h of development, lane 10: cells after 30h of development.

2.4. Production of CsgA in S. aurantiaca

For immunological identification of the csgA encoded protein during S. aurantiaca

growth and development, polyclonal antisera were raised against a fusion protein

containing a specific part of CsgA and two CsgA peptide sequences.
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2.4.1. Heterologous expression of the fragment encoding antigenic determinants of

CsgA

A recombinant protein containing part of CsgA fused to 6xHis-DHFR was purified

and used for immunisation of two rabbits. The production of the CsgA protein in

S. aurantiaca was monitored by Western blot analysis with polyclonal antisera.

2.4.1.1. Cloning the DNA fragment encoding the CsgA antigens into the pQE42

expression vector

The central part of the csgA gene (465 bp) encoding a putative polypeptide of 155

amino acids was chosen for the immunisation of rabbits as this region shows a high

antigenicity index (Fig.2.22.a).

The 465 bp csgA fragment was generated by PCR using chromosomal DNA from

S. aurantiaca wild type as a template with the primer pair BglII csgA7 and csgA8. The

obtained PCR product was digested with BglII and cloned into the polylinker site of the

pQE42 vector (Qiagen) predigested with BglII/SmaI. Upstream of the pQE42 polylinker

site there are six histidine codons and a gene that encodes the mice dehydrofolate

reductase (DHFR). The integration of the csgA sequence in frame into the polylinker

leads to a hybrid gene that encodes a fusion protein designated 6xHis-DHFR-CsgA,

respectively. The expression of the fusion protein was under the control of the T5

promoter fused to the lac operator sequence. Parts of the ligation reaction were used for

the transformation of E. coli M15(pREP4). The helper plasmid pREP4 encodes the lac

repressor which binds to the lac operator sequence and represses transcription initiated

at the T5 promoter. The addition of IPTG induces expression of the recombinant protein

since IPTG binds to the lac repressor protein and inactivates it.

Various transformants were screened by preparing small scale expression cultures.

Protein extracts were separated on a 12,5% SDS polyacrylamide gel. The 6xHis-DHFR-

CsgA fusion protein was expected to migrate at about 43 kDa on the SDS gel since

DHFR migrates at about 26 kDa and the calculated molecular weight of the CsgA

fragment is about 17 kDa. Protein extracts isolated from some transformants contained
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one protein at about 43 kDa matching the size of the fusion protein. The identity of the

fusion protein was verified by western analysis using anti-DHFR-antibody (Fig.2.21.).

Fig.2.21. Immunoblot analysis of protein extracts isolated from four different transformants
reacted with anti-DHFR antibodies. The protein sizes were estimated with a broad range protein
marker (BioRad). Lane 1-purifed DHFR –26 kDa; lane 2-4 total proteins isolated from three
positive transformants; lane 5-protein isolated from a transformant containing religated plasmid
pQE42.

From positive transformants, plasmids were isolated and sequenced to verify the

fusion construct. Plasmid pAM3 contains the internal part of the csgA gene cloned in

frame into the expression vector pQE42 (Fig.2.22.b).

Fig.2.22. a) Antigenic index (Jameson-Wolf) of 155 amino acids encoded by csgA

calculated by using the program Protean from the Macintosh Lasergene package.

        b) part of the pAM3 plasmid.
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Heterologous expression of CsgA in the E coli strain M15(pREP4) resulted in a very

low concentration of the fusion protein. In order to increase the level of recombinant

protein, pAM3 was transferred into the E. coli strain SG13009 (Qiagen). No significant

increase in the concentration of the recombinant protein was detected after induction

with IPTG.

2.4.1.2. Purification of the recombinant protein, 6xHis-DHFR-CsgA, under

denaturing conditions

The fusion protein was partially purified from M15 (pREP4) E. coli cells containing

the plasmid pAM3 by FPLC on a Ni-NTA column under denaturing conditions (6 M

GuHCl and 8 M Urea). Elution of the 6xHis-DHFR-CsgA from the column was

achieved with 200 mM imidazol. The eluted fraction contained the fusion protein as the

major component and also same proteins from E. coli that bind to the Ni-NTA column.

The fusion protein was further purified by preparative SDS-PAGE. Recombinant

protein eluted from the Ni-NTA column was visualised by staining the SDS gel with

Coomassie blue and its identity was confirmed by Western blot analysis using an anti-

DHFR antiserum (Fig.2.23).

 After purification on a Ni-NTA column protein fractions were concentrated by

extraction of the solvent with Sephadex 50 and further purified on preparative SDS-

PAGE. The gel slice containing the recombinant protein was cut out from the gel and

was used directly without removing the DHRF part to produce antisera in rabbits.
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Fig.2.23.a) Synthesis of 6xHis-DHFR-CsgA in E. coli M15 (pREP4). Fractions were visualized
by Coomassie blue staining after separation on a 12,5% SDS PAGE. 1-lane cell lysates of a
noninduced control; 2-lane lysates of IPTG (1mM) induced cells. The arrow indicates the
predicted recombinant protein band. The protein sizes were estimated with a broad range
protein marker (BioRad).
b) Purification of 6xHis-DHFR-CsgA on a Ni-NTA column. The polypeptides of the fraction
were visualized by Coomassie blue staining after separation on a 12,5% SDS PAGE gel. 1-lane
broad range protein marker (BioRad); 2-lane protein fraction after purification on a Ni-NTA
column. The arrow indicates the predicted recombinant protein band
c) Verification of the 6xHis-DHFR-CsgA in purified protein fraction by Western blot analysis
with anti-DHFR-antibodies. 1-lane protein fraction eluted from the Ni-NTA column. The arrow
indicates the predicted recombinant protein band.

2.4.1.3. Production of CsgA in S aurantiaca

In order to determine the production of CsgA in S. aurantiaca immunoblot analysis

was performed with total protein extracts using anti-6xHis-DHFR-CsgA antibodies.

Proteins were isolated from the wild type or a csgA insertion mutant cells after different

periods of development.

Fig.2.24. shows the western analysis of proteins from the wild type and the csgA

mutant isolated from vegetative cells and after 16 h of development. The CsgA protein

was not detectable in total protein extracts from the wild type (vegetative state) and

during development (16 h). One cross-reacting polypeptide with apparent molecular

mass of about 14 kDa was detected in the protein extracts from the wild type and the
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csgA mutant. A cross-reacting polypeptide of about 14 kDa was detected also in wild

type and csgA mutant cells in western blot analysis using preimmune sera.

Fig.2.24. Immunoblot analysis of total protein extracts from the wild type and the csgA knock
out mutant a) anti-6xHis-DHFR-CsgA-antibody and b) preimmune serum. Total protein added
per lane was 10 mg (corresponding to about 1x108 cells). Protein migration was estimated with a
broad range protein marker (BioRad). The proteins were electroblotted onto a PVDF membrane.
The goat anti-rabbit antiserum conjugated with alkaline phosphatase was used as the second
antibody.
Lane 1 and 2- total protein from wild type (vegetative state) and 16 h after the beginning of
development. Lane 3 and 4- total protein from csgA mutant (vegetative state) and 16 h after the
beginning of development.

Bands that correspond to the calculated molecular weight of the three possible CsgA

polypeptides of a various sizes were not detected in wild type cells, using the anti-

6xHis-DHFR-CsgA antibodies, even with more sensitive detection method (ECL)

(Fig.2.25.). Similar proteins from the wild type or the csgA insertional mutant cells

(vegetative state or after 20 h of development) cross-reacted with these antibodies. The

same cross-reacting polypeptides were detected in the protein extracts from the wild

type and csgA mutant cells after 30 min induction with indol. The sensitivity of the

antiserum was tested with the fusion protein (6xHis-DHFR-CsgA). The 10 pg of the

fusion protein was not detected by the antiserum. Additionally total protein extract from

M. xanthus cells in the lane 4 (Fig.2.25.) was used as a control in the western analysis

using S. aurantiaca anti-6xHis-DHFR-CsgA serum. Predicted protein bands

corresponding to M. xanthus CsgA (24 and 17 kDa) were not detectable.
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Fig 2.25. Immunoblot analysis of total proteins from S. aurantiaca wild type or csgA knock out
mutant cells and M. xanthus vegetative cells reacted with anti-6xHis-CsgA-antibody. Total
proteins added per line were 10 mg (correspond to about 1x108 cells). The proteins were
electroblotted onto a PVDF membrane. The peroxidase-cojugated goat anti-rabbit secondary
antibody was used. Protein migration was estimated with a prestained protein marker (BioRad);
lanes 1 and 2: total protein isolated from wild type cells vegetative state or 20 h after the
beginning of starvation; lane 3- protein isolated from wild type cells 30 min after addition of
indol; lane 4- protein isolated from vegetative M. xanthus cells; lane 5- fusion protein 6xHis-
DHFR-CsgA 10 pg; lane 6- protein isolated from csgA mutant cells 20 h after beginning of
development; lane 7- protein isolated from csgA mutant cells 30 min after addition of indol.

2.4.1.5. Production of anti-peptide antibodies

Two peptides were synthesised in order to produce anti-peptide antibodies against

the CsgA protein. The generated peptides were termed CsgA-1 and CsgA-2,

respectively. Peptides were both 21 amino acids long and included a cystein residue at

the C terminus. The cystein residue was added as an extra amino acid to allow simple,

one site coupling via the free sulfhydryl group to the carrier keyhole limpet hemacyanin

(KLH). Peptides were coupled to the carrier protein in order to be exposed at the surface

of the protein and therefore to be recognised as epitopes from the animal immune

system.

The peptide sequences displayed a high antigenic (Jameson-Wolf) index and high

hydrophilicity (Kyte and Doolittle, 1982) index (Fig.2.26.). A proline residue was
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enclosed in both peptides since the presence of proline residues in synthetic peptides

originally was suggested. It was suggested that peptides containing hydrophilic amino

acids and proline residues were more likely to be exposed on the surface of the native

protein than other sequences (Kyte and Doolittle, 1982). Hydrophilic peptides are more

soluble and thus can be coupled more easily.

The mixture containing equal amounts of CsgA-1 and CsgA-2 peptides were used for

the immunisation of two different rabbits.

Fig. 2.26. Antigenic index and hydrophilicity plot of the CsgA -pep1 (box 1) and CsgA-pep2
(box 2). Amino acid sequences of a CsgA-1: MDYEDMTKVMETNSVGPMRLC and a CsgA-
2: VRTEMGGKLAPMRPEDAVRG.

Anti-peptide antibodies were used in a western blot analysis of total protein isolated

from the wild type and the csgA mutant cells. The cells were scraped from starvation

agar after different time points after the beginning of development and total protein was

isolated.

Total protein from the wild type and the csgA mutant isolated from vegetative cells

and after 20 h of development. These protein preparations were used for Western blot

analysis reacted with the antiserum raised against the mixture of the peptides CsgA-1

and CsgA-2. Protein extracts from wild type and csgA mutant cells contained mainly

three cross-reacting polypeptides with apparent molecular masses of about 70 kDa, 50

kDa and 10 kDa. Cross-reacting polypeptides, that have a calculated molecular mass of

CsgA protein, were not detected in the wild type cells (Fig.2.27).
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Fig.2.27. a) and b) Immunoblot analysis of total protein extracts from wild type and csgA
knock-out mutant. a) anti-peptide-sera and b) preimmune sera. 10 mg of total protein added per
lane. The size of the polypeptides was estimated with the prestained protein marker (BioRad).
Lane 1 and 2- total protein from vegetative wild type and 20 h after the beginning of
development. Lane 3 and 4- total protein from vegetative csgA mutant cells and 20 h after the
beginning of development.

As control the western blot was performed with the total protein extracts isolated

from the wild type and the csgA mutant cells, vegetative state and after 20 h of

development, using the preimmune sera. Four cross-reacting polypeptides with an

apparent molecular mass of about 70 kDa, 30 kDa, 25 kDa and 10 kDa were detected

(Fig.2.27.).

In order to avoid cross-reactions with the polyclonal serum affinity purified anti-

peptide antibodies were used. The serum was purified on affinity columns, which

enclosed one of the peptide, CsgA-1 or CsgA-2. Purified anti-CsgA1 antibodies and

anti-CsgA2 antibodies were used in western blot analysis of the total protein from wild

type and csgA mutant cells, isolated after different time periods from the beginning of

starvation, 30 min after the indol induced sporulation or 30 min after the heat-shock

treatment. Only one cross-reacting protein with an apparent molecular mass of about 80

kDa was detected with the anti-CsgA-1-antibodies in total proteins extracts of wild type

and mutant cells (Fig.2.28.a) There is little if any reaction with the anti-CsgA-2-

antibodies indicating that the antibodies are specific (Fig.2.28.b).
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Fig.2.28. Immunoblot analysis of total protein isolated from wild type and csgA mutant cells
reacted with a) anti-CsgA-1- antibody. 100 mg of protein was added per each lane. Protein
migration was estimated with the prestained protein marker (BioRad). Total protein isolated
from lane 1: vegetative wild type cells; lane 2: wild type cells after 8 h of development; lane 3:
wild type cells at 14 h of development; lane 4: wild type cells at 20 h of development; lane 5:
wild type cells 30 min after heat shock at 37 °C, lane 6: wild type cells 30 min after addition of
indol; lane 7: vegetative csgA mutant cells.
b) anti-CsgA-2- antibody. Lane 1: total protein isolated from lane vegetative wild type cells;
lane 2, 3 and 4: extracts of wild type cells after 8, 14 and 20 h of development, respectively;
lanes 5 and 6: protein extracts of wild type cells after heat shock (30 min 37°C) and after indole
treatment for 30 min, respectively; lane 7: vegetative csgA mutant cells; lane 8: csgA mutant
cells at 20 h of development, lanes 9-13: fusion protein (6xHis-DHFR-CsgA) 1ng; 2 ng; 3ng; 5
ng and 10 ng.

The CsgA protein was not detected in protein extracts of vegetative cells and after

different time of development, under these experimental conditions.

The CsgA is expected to be a minor fraction of S. aurantiaca total proteins. Fig.2.29.

shows total proteins of S. aurantiaca cells isolated after different time periods of

development.
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Additionally, in order to test the representation of the isolated protein extracts from

S. aurantiaca, immunoblot analysis was performed with anti-CspA-antibodies (kindly

provided by Wulf Plaga). The serum recognised a protein of the expected size of 5,5

kDa in total protein extracts isolated from wild type and csgA cells (Fig.2.30.).

Fig.2.29. lane 1- broad range protein marker IV,
lanes 2-5- 10 mg of total protein isolated from wild
type cells: vegetative, 8 h, 14 h and 20 h after the
beginning of development, respectively.

Fig. 2.30. Production of CspA in S. aurantiaca wild
type (lane 1) and csgA mutant (lane 2) during
vegetative growth. The sizes of a protein were
estimated with a broad range protein marker
(BioRad).
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S. aurantiaca is a social living bacterium, highly communicative, and represents

therefore an excellent model organism to study intercellular signalling in prokaryotes.

Its complex life cycle strongly depends on different signals exchanged between the cells

during development as well as during vegetative growth.

Identification of these signal molecules and their corresponding signalling pathways

would contribute to the understanding of the complex life cycle of these bacteria. Thus,

it would also give some more answers to the question how genes can control

development. Differential gene expression in the time course of development is tightly

regulated by a sophisticated communication network in these bacteria.

In contrast to the other well-studied myxobacterium M. xanthus research on

intercellular signalling in S. aurantiaca is just at the beginning. Additionally f o r

S. aurantiaca less bacterial genetic methods are available for manipulation (Schairer,

1993). Stigmolone, a pheromone, is the only isolated and characterized signal molecule

of S. aurantiaca. In addition, several genes were identified whose products might have a

role in cell-cell communication.

One of the previously identified genes, homolog to the M. xanthus csgA, was further

characterized in this work. The function of the S. aurantiaca CsgA protein in

intercellular communication was elucidated by inactivation of its encoding gene. The

detectable phenotype that was observed as a consequence of csgA inactivation by

insertional mutagenesis suggests an involvement of CsgA in intercellular

communication of S. aurantiaca.

3.1. S. aurantiaca csgA gene locus

In S. aurantiaca the csgA locus was localized on a 3 kbp XhoI DNA fargment. It

contains the csgA gene and three putative ORFs localized upstream and downstream of

the gene.

A detailed sequence analysis of the csgA upstream region revealed two additional

putative start codons (ATG). They are located in frame upstream of the previously
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proposed GTG start of the gene. It was suggested that csgA starts with a GTG codon,

without Shine-Dalgarno sequence, and ends with a TAG stop codon. Thus, the proposed

gene encodes a protein of 173 amino acids with the predicted molecular mass of about

19 kDa (Butterfass, 1992).

Alignment studies with the M. xanthus csgA gene revealed the best matching when

the S. aurantiaca csgA gene starts with an ATG codon located 189 bp upstream of the

GTG codon. If this ATG is used as a real translational start, CsgA would be 236 amino

acids long with a calculated molecular mass of about 26 kDa. No Shine-Dalgarno

sequence could be identified in front of the ATG start codon. Consensus translation

sequences in S. aurantiaca were not determined up to now because just a small number

of genes are identified. Additionally most of the genes start with an ATG codon (hspA,

sigA, mtaA, mtaB, fbfA, fbfB, fbfC) (Heidelbach et al., 1993, Müller, 2002; Silakowski

et al., 1996; Silakowski et al., 1998; Silakowski et al., 1999; Skladny et al., 1994).

The C+G content at the third position of codons used in the csgA gene is high (about

89%) which agrees well with the codon usage in myxobacteria. The C+G content in the

second position is 46% and 65% at the first position. The myxobacteria have a genome

with extremely high C+G content of 62-72% (Chen et al, 1990). The genes from an

organism with a C+G content greater than 54 % have a pattern in which the C+G

content of the third codon position is greater than the C+G content of the first position,

which is in turn greater than C+G content of the second position (Bibb, et al., 1984).

The C+G content of myxobacteria is significantly higher than that of the E. coli genome

50,5 %. Terefore standard rules for finding Shine-Dalgarno sequences optimised for the

E. coli cannot be applied for myxobacteria.

Another ATG codon is located 348 bp upstream from the first reported GTG start. It

is preceded by a Shine-Dalgarno sequence but in an unfavourable context (only 2 bp

from ATG). If this codon is used as a translational start site, the csgA gene would

encode a protein of 289 amino acids with a calculated molecular mass of about 32 kDa.

These others possible start codons cannot be excluded as putative translational starts

of the csgA coding region. They could also serve as second inititation site for the csgA
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encoded protein. To investigate the real initiation site of csgA it is necessary to perform

further experiments. Insertional mutagenesis in the upstream region of the putative start

codons or site-direct mutagenesis of all three putative start codons are necessary for the

determination of the real translation start of csgA in S. aurantiaca.

Upstream of the csgA gene an ORF that is arranged in a divergent orientation was

identified. The gene has a homology of about 60 % to the protoporphyrinogene oxidase

gene of M. xanthus. Protoporphyrinogen oxidase catalyses the six electron oxidation of

protoporhyrinogen IX to protoporphyrin IX during the heme biosynthesis pathway

(Dailey and Dailey 1996). The enzyme is oxygen dependent and contains flavin as a

cofactor. The gene product is not involved in development. Purified M. xanthus

protoporphyrinogen oxidase shows similarity to the mammalian enzyme and the

enzyme from B. subtilis. The function of the putative gene product of S. aurantiaca

remains to be investigated.

The other putative ORF identified upstream of the csgA gene did not show homology

to known proteins up to now.

Another putative gene was identified downstream of csgA arranged in a divergent

orientation, that shows homology of about 48% to the fprA gene from M. xanthus. The

fprA gene encodes a flavin associated protein A with a vital function in M. xanthus

(Shimkets, 1990). Efforts to replace the wild type allele with a mutant allele was not

successfull. This suggest that fprA is important for vegetative growth. Overproduction

of FprA in E. coli resulted in an accumulation of a yellow pigment with the same redox

potential and spectral characteristics as flavin (Shimkets, 1990). It seems that FprA is

not involved in the flavin biosynthesis pathway. It is more likely that the overproduction

of FprA deepresses flavin synthesis. The function of the putative gene product in

S. aurantiaca is not known up to now and remains to be investigated.

Some proteins encoded by the gene of the csgA locus might have a toxic effect to

E. coli. Thus, subcloning of the DNA fragment harbouring the csgA locus from the

lambda phage DNA into the high copy number vector seemed not to be possible. This

would be one explanation for the fact that the fragment harbouring csgA could be



III. Discussion 61

subcloned only in a low copy number vector. Or else, csgA DNA might bind a factor

that is vital for E. coli growth and thus inhibits cell growth.

3.2. CsgA protein and similarity with members of the SRD family

The predicted CsgA protein sequence from S. aurantiaca contains conserved

domains of the short-chain dehydrogenase/reductase (SRD) family. These enzymes

share a common function to add or to remove hydrogen from specific substrates using

NAD/NADP as a cofactor. Proteins of this family have about 250 amino acids and form

usually tetramers. They have a conserved YXXXK motif in the catalytic domain (Ensor

and Tai, 1991; Obeid and White, 1992; White et al., 1994). The predicted catalytic

triade and its position Ser139, Tyr152 and Lys156 is also more or less conserved upon

members of this family (Presson et al., 1991). In the N- terminal part of SRD proteins

three glycine residues are highly conserved (Gly14, Gly17, Gly19, the numbering of the

Drosophila alchohol dehydrogenase) regarding the putative coenzyme binding domain

(Persson., et al., 1991).

The predicted CsgA protein in S. aurantiaca shows the conserved amino acid

sequence in the putative catalytic site (AYAYRMSK) at the carboxyl terminus of the

protein. The putative protein containes an AY repeat in this domain as also reported for

CsgA of M. xanthus (AYAYRMSK) (Lee et al., 1995). The amino acid residues Ser139,

Tyr158 and Lys162 of the S. aurantiaca CsgA protein seem to form the putative

catalytic site. This putative catalytic triad is conserved in the 26 kDa form of CsgA.

Also in this case the three glycin residues (Gly7, Gly11, Gly13) would be conserved in

the putative coenzyme binding domain of the protein. Thus, the predicted length of 236

amino acids is fits well into the reported average length of about 250 amino acids and

position of the conserved domains of this family.

As mentioned above CsgA has a remarkable similarity (about 50%) to many

prokaryotic enzymes of this family, including FabG proteins closely related to the SRD

family. This family is very large and is involved in a variety of processes like secondary

metabolite biosynthesis, transport and catabolism. The FabG protein is highly conserved

between bacterial species and is the only known isozyme to catalyze reduction of the b-
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keto group. The FabG is a beta-ketoacyl carrier protein reductase involved in fatty acid

biosynthesis together with other Fab (fatty acid biosynthesis) enzymes. In P. aeruginosa

in vitro and in vivo evidences indicate that the modulation of FabG activity may

determine the acyl chain lengths of the homoserine lactones (Hoang et al., 2002). In

P. aeruginosa two acyl homserine lactones N-(butyryl)-L-homoserine lactone (C4-HSL)

and N-[3-oxododecanoyl]-L-HSL (3-oxo-C12-HSL) are required for quorum sensing but

bacteria produce also other ALHs with differences in the acyl chain length. Their

physiological role is unknown up to know.

3.3. Physiological function of CsgA

In M. xanthus CsgA protein is involved in intercellular communication during

development. It constitutes intercellular C signalling pathways in which CsgA protein

per se is the C signal or CsgA protein has enzymatic function to convert some substrate

into an actual C signal (Kim and Kaiser, 1990; Kruse et al., 2001; Lee et al., 1994). C

signal is necessary for regulation of the cells movement behaviour that results in the

formation of rippling waves and aggregation of the cells. Whereas rippling is

completely abolished in the csgA mutant, aggregation is impaired under certain

conditions. Unlike wild type cells, which aggregate into compact translucent mounds

after 12 h of starvation on the agar surface, csgA mutants aggregate only after 18 h into

larger, less compact mounds and ridges (Hagen et al., 1990; Kim and Kaiser, 1990;

Shimkets et al., 1983). In a submerged culture the csgA mutant cells fail to form any

stabile multicellular structures (Shimkets et al., 1983). Cells with a mutation in the csgA

gene are also impaired in sporulation. Moreover, expression of developmental genes

that are normally induced after 6 h of starvation is reduced or abolished in csgA mutants

(Kroos and Kaiser, 1987). Thus, C signalling plays a control role in the regulation of the

differential gene expression during M. xanthus development.

According to the high homology of about 56 % between S. aurantiaca CsgA protein

and CsgA of M. xanthus and the close phylogenetic relation between these two

myxobacteria, it was suggested that CsgA might play a role in the intercellular

communication during S. aurantiaca development.
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The physiological function of CsgA in S. aurantiaca was elucidated by inactivation

of its encoding gene. The csgA gene was disrupted by the insertion of a tetracycline

resistance cassette leading to the CsgA knock-out mutant. The mutant exhibits a

detectable phenotype during development as a consequence of this inactivation.

Inactivation of csgA in S. aurantiaca impaired rippling. Mutant cells showed

somehow altered migration and aggregation patterns during development, whereas the

shape of the fruiting body showed no obvious differences as compared to the wild type.

Additionally, mutant cells were differentiated into viable myxospores enclosed in the

fruiting bodies. Sporulation seems to be not impaired by the csgA inactivation, but the

efficiency of sporulation is unknown.

In the wild type S. aurantiaca rippling is evident in the early stage of development

that precedes aggregation, and it very often accompanies the aggregation stage.

Inactivation of the csgA gene in S. aurantiaca completely abolished rippling of the cells

during development. This implies that CsgA protein is required for formation of

rippling wave pattern during S. aurantiaca development. The role of CsgA protein in

the rippling wave pattern formation remains to be investigated. According to the role of

the CsgA protein in the regulation of the cells motility behaviour during M. xanthus

development one may expect more or less similar regulatory pathways in S. aurantiaca.

In M. xanthus rippling is completely dependent on intercellular C-signalling

(Shimkets and Kaiser, 1982). One model proposed that direct end-to-end cell contact

initiates C-signalling, which in turn increase the probability that individual cells reverse

their direction of gliding maintaining the traveling waves (ripples) (Sager and Kaiser,

1994). Therefore, during rippling cells move about one wavelength and than reverse

their gliding direction. The C signal modulates movement pattern of the cells by

activation of cytoplasmic Frz proteins by methylation of FrzCD, a methyl-accepting

chemotaxis protein (Jelsbak and Sogaard-Andersen 1999; Sogaard-Andersen and

Kaiser, 1996; Ward and Zusman, 1997). The Frz proteins regulate the reversal

frequency of gliding. Increased methylation of FrzCD is correlated with an increased

reversal frequency.
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To analyse the effects of the CsgA protein on the motility behaviour of the individual

cell during S. aurantiaca development it is necessary to perform further experiments.

Time laps video microscopy of a single motile wild type and csgA mutant cell would

reveal effects of CsgA on different motility parameters during development. It would be

also necessary to identify the Frz homologous proteins in S. aurantiaca. Thus, to

investigate the possibility that CsgA protein produces signals that might give an initial

imput required for activations of Frz proteins whose in turn might regulate reversal

gliding frequency of the cells during S aurantiaca development and formation of

ripples. To better understand the CsgA dependent modulation of cell behaviour it will

be also necessary to analyse the effect of the C-signal in the context of the other cell-

cell interactions in S. aurantiaca.

Another consequence of the csgA inactivation in S. aurantiaca was that unlike wild

type cells that stay more together in the early stage of development, mutant cells were

unable to stay together. Thus, a signal or signals produced by the CsgA protein might

contribute in sensing the density of the cells prior to the aggregation stage. Additionally,

the csgA mutant cells did not respond to stigmolone in a bioassay performed on agar

(personal communication with Wulf Plaga). The increase of the aggregation rate was

not observed with csgA mutant cells in the stigmolone bioassay in contrast to

acceleration of the aggregation rate in an assay performed with the wild type cells. As

previously mentioned, stigmolone is a novel type of a pheromone substance involved in

cell-cell communication in S. aurantiaca. It acts in an 1nM range, possibly contributing

to cell density sensing (Plaga et al., 1998). Therefore one possibility might be that

stigmolone is a substrate for CsgA in S aurantiaca. In that case the reduction of the keto

group in stigmolone by CsgA might lead to a real signal molecule, stigmolol, that is

exchanged between the cells during development. To investigate this possibility it

would be necessary to purify the putative stigmolol from wild type cells. The csgA

mutant cells would not have stigmolol but the mutant phenotype could be rescued by

adding this substance.

However, S. aurantiaca csgA mutant cells were able to form fruiting bodies but the

localisation of the mature fruiting bodies was altered when compared with the

localization of the wild type fruits. Different localisation pattern of the mature mutant
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and wild type fruiting bodies was a consequence of an altered cell migration pattern

prior to aggregation and formation of the multicellular fruits. The different organisation

pattern of the mutant and wild type fruiting bodies was even more serve in the assay

performed on filter papers. This might be due to the fact that cells move with different

velocities on agar and paper surface because of the different interplays between gliding

and adhesion of cells on these two surfaces.

S. aurantiaca forms complex fruiting bodies that consist of a branched stalk bearing

several sporangioles, whereas M. xanthus forms only mounds filled with spores. Thus,

complexity of S. aurantiaca fruiting bodies implicates requirements for a more subtile

communication network in S. aurantiaca. Fruiting body formation process in

S. aurantiaca probably requires inputs from several independent signalling systems.

Therefore, C signalling might not have such an important role in S. aurantiaca

development as in M. xanthus. Moreover, the discovery of SdeK, a histidine kinase,

required for expression of some C-signal dependent developmental genes in M. xanthus

implies that C-signal input is required but it might not be sufficient for M. xanthus

development (Pollack and Singer, 2001). M. xanthus sdeK mutants produce C signal but

they are blocked in aggregation and have strong defects in sporulation (Pollack and

Singer, 2001).

It is also possible that there is a way to bypass the csgA mutational block in

S. aurantiaca since the pressure to survive under nutrient limitation is high. It might be

that mutant cells adopt some suppressor mutations that allow them to bypass the csgA

block. It is known that overproduction of SocE in M. xanthus csgA mutant cells

bypasses the csgA mutation and cells are able to aggregate and to produce fruiting

bodies in the absence of C signalling (Crawford and Shimkets, 2000; Rhie and

Shimkets, 1989). However, many compounds may bypass the csgA mutational block in

M. xanthus (Shimkets, et al., 1990). These compounds are normally produced in the

csgA mutant cells like peptidoglycan (Shimkets and Kaiser, 1982) or glucosamine

(Janssen and Dworkin, 1985).

S. aurantiaca mutant cells do not produce CsgA but they are able to respond to it

when they are mixed with the wild type cells. Mixed population of cells formed more or
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less a wild type localization pattern of mature fruiting bodies on the agar surface.

Additionally, when an assay was performed with the mixed population of cells on filter

papers some fruiting bodies were still localized in a disperse fashion around the

concentrated fruiting bodies in the middle. This organisation pattern can be explained

by different ways. It might be that the CsgA protein is anchored in the outer membrane

and maybe activated by dimerisation. This can be achieved by direct cell-to-cell contact

so that CsgA of one cell interacts with CsgA of another cell and forms an active dimer.

Mutant cells do not have CsgA at the cell surface so that no active dimers might be

formed by getting in contact to the wild type cells. In this case mutant cells would retain

the mutant phenotype when mixed with the wild type cell. Fruiting bodies dispersed

around would be build only from mutant cells and fruiting bodies in the middle would

be build up from the wild type cells. The rippling waves may be explained as ripples of

wild type cells.

Another possibility is that CsgA is an enzyme that produces signal molecules by

converting specific substrates into the active signals. Signal molecules induce C signal

responses in the recipient cells. In this case mutant cells do not produce but are able to

respond to signal molecules. According to this hypothesis fruiting bodies would be

build up from wild type and mutant cells together. An indication for this hypothesis was

obtained by mixing cells of the S. aurantiaca csgA mutant with cells of a wild type

strain that expresse the green fluorescence protein. The observed phenotype resulting

form this experiment was a wild type fruiting body with an intermediate colour. This

suggests that the mutant cells were able to respond to signals produced by wild type

cells.

The altered localization of some fruiting bodies of the mixed population is still

unclear and requires further investigation. However, it is known that in M. xanthus

different concentration of CsgA is required for different cellular responses (Kim and

Kaiser, 1990; Li et al., 1992). The lowest concentration is rescuing the rippling of the

csgA mutant cells. Threshold concentrations of CsgA protein in S. aurantiaca nesessary

to initiate different cell responses are not known.
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The product of the csgA gene is somehow necessary to help the cells to stay tighter

together during development and also regulate motility of the cells. It is essential for

rippling, a motility behaviour in which cells move in rhythmic oscillations during

development. The role of the CsgA protein in these processes is unknown and requires

further investigation. According to the remarkable similarity to the members of the SRD

family it is possible that CsgA in S. aurantiaca has an enzymatic function to produce a

signal or signals that act during development.

3.4. Expression of the csgA gene in S. aurantiaca

The expression of the csgA gene in S. aurantiaca was determined by qualitative RT-

PCR. The csgA mRNA was detected in vegetative cells and also during development.

Additionally, expression of the csgA gene was detected after indol induction in the wild

type cells (10, 30, 60 min after adding of the indol).

To estimate the level of csgA transcription, a merodiploid mutant containing the

csgA promoter fused to the lacZ reporter gene was constructed. This mutant also

contains the wild type csgA allele (ATG start of the gene) under the control of about 0,6

kbp of the putative promoter region.

Starvation of the merodipolid cells on water agar resulted in fruiting bodies, which

had the same form as the wild type. The mutant was able to ripple and the observed

migration and aggregation pattern was the same as in to the wild type. Thus, the 0,6 kbp

putative promoter region is sufficient for expression of the csgA gene in S. aurantiaca.

In M. xanthus a promoter region of about 0,4 kbp is necessary for optimal csgA

expression under extreme starvation conditions. A larger upstream region of about 0.9

kbp is necessary for an optimal csgA expression in presence of low nutrient levels (Li et

al., 1992).

For the determination of csgA expression during development b-galactosidase

activity was assayed. Further, b-galactosidase activity was determined under stress

conditions induced by indol or heat-shock. The quantification of the b-galactosidase



III. Discussion 68

concentration transcribed from the csgA promoter was done in an enzymatic assay

using a MUG.

No significant b-galactosidase activity was detected in protein extracts (10 mg) of the

vegetative merodiploid mutant. Neither longer starvation, nor indol or heat shock stress

induced b-galactosidase activity in the merodiploid strain. A low level of b-

galactosidase activity was detected at about 8 h after the beginning of development.

Protein extracts from the wild type after the same time course of development were

used to estimate the background level in the fluorometric assay.

In the fluorometric assay with five times more protein low levels of the b-

galactosidase activity was detected in the vegetative cells and at the different stages of

development in merodiploid mutant. The level of the b-galactosidase activity slightly

increased at the beginning of development, and reached its maximum at about 8 h after

the beginning of starvation.  A low level of the b–galactosidase activity was detected 30

min after indol and heat-shock treatment. As control of the background signal the

protein extract (50mg) from wild type cells after the same time course of development

was used.

Since no significant b-galactosidase activity was detectable in developing cells when

10 mg of protein extract was used and low level of the b-galacosidase activity was

observed when five times more total protein was used it is suggested that csgA is

expressed at very a low level during development. The, low level of b-galactosidase

activity might be due to a low strength of the csgA promoter.

Additionally, b-galactosidase is a cytoplasmatic protein and CsgA of S. aurantiaca is

supposed to be an extracellular protein. The degree to which the reporter protein

concentration mimics the concentration of CsgA in S. aurantiaca is unknown.

b-galactosidase was detected in an in situ assay. The stems of the fruiting bodies of

the merodipliod mutant were stained blue when X-gal was added to the starvation agar.
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Under this conditions wild type fruiting bodies were orange. Since this assay is not

quantitative, the level of b-galactosidase expression cannot be elucidated.

Determination of the in situ beta galactosidase activity indicates that the csgA gene is

expressed during development in S. aurantiaca. This result is consistent with the results

of the RT-PCR. Since the level of the csgA expression appears to be low it would be

necessary to use some more sensitive techniques like real-time PCR or a

chemiluminescence assay that has a much higher sensitivity than the conventional

fluorometric assay.

3.5. Immunological identification of CsgA in S. aurantiaca

To study the production of CsgA protein in the course of S. aurantiaca development,

antisera against two peptides derived from CsgA and against a recombinant protein

containing a part of CsgA were raised. Both peptide sequences are enclosed in the

sequence of the recombinant protein (6xHis-CsgA-DHFR). Purified recombinant

protein was used as a positive control in Western blot analysis using the anti-peptide-

antisera or anti-6xHis-CsgA-DHFR antibodies. Both antisera recognized the purified

recombinant protein, but CsgA protein was not detected in crude protein extracts

isolated from S. aurantiaca cells during vegetative growth or development. Total

protein was extracted from the cells by boiling in SDS, or by lysis of the cells with urea

and CHAPS for solubilisation.

The sensitivity of both sera was tested by titration of various concentrations of the

recombinant protein. The sensitivity was in the nanogram range. The anti-peptide-

antibodies had higher sensitivity (3 ng) than anti-6xHis-CsgA-DHFR-antibodies.

According to these results the amount of CsgA protein in total protein extracts

isolated from 1x108 or 1x109 cells is expected to be less than 1 ng if the molecular mass

is assumed to be 26 kDa.  Thus, expected number of CsgA protein molecules per cell is

less than 100. This indicates that csgA transcription is low. This is consistent with the
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results of quantification of the csgA transcription. A further possibility could be that

S. aurantiaca CsgA may be very unstable protein.

In M.!xanthus a full-length CsgA form of about 25 kDa was detected in vegetative

cells and during development. The smaller form of about 17 kDa was detected during
development starting 3 h after the beginning of starvation (Kruse et al., 2001). In

M.!xanthus the zwitterionic detergent CHAPS was found to solubilize CsgA (17 kDa)

(Kim and Kaiser, 1990). CsgA (17 kDa) appears to be bound to the cell envelope
because it sediments with the membrane fraction of wild type cells and must be

extracted from the membrane fraction with a detergent (CHAPS) (Kim and Kaiser,
1990). M.!xanthus CsgA is found near the cell surface in the extracellular matrix as

detected by localization of the immuno-gold labelled antibody against CsgA (Rafiee and

Shimkets, 1990). Additionally, in M.!xanthus was estimated that the number of CsgA
molecules per developing cell is between 1,100 to 2, 200 (Shimkets and Rafiee, 1990).

3.6. Perspectives

The understanding of intercellular communication in S. aurantiaca is just at the

beginning. To better understand the physiological role of CsgA protein in intercellular

signalling the following investigation should be carried out.

Identification of the real translational start of the gene by insertional mutagenesis

upstream of the putative start codons or site-direct mutagenesis of all three putative start

codons. Examination of the mutant phenotype during development would reveal the real

start of the gene.

Identification of the transcriptional start of the csgA gene by primer extension that

should be carried out with the total RNA isolated from cells after 8 h of development.

Quantification of the csgA transcription during development with a highly sensitive

method such as real-time PCR.
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To investigate cellular localization of the native CsgA protein it would be necessary

to perform immuno-gold labeling with anti-CsgA-antibodies followed by transmission

electron microscopy.

To investigate the possibility that CsgA has an enzymatic function to convert some

substrate into actual signal molecule or molecules it would be necessary to identify the

putative substrate. Additionally, importance of the proposed catalytic triad for CsgA

function should be analysed by performing single amino acids substitution.

In order to understand transmission of CsgA generated signals isolation and

characterization of the putative receptor protein should be performed.

Time laps video microscopy of a single motile wild type and csgA mutant cells to

reveal effects of CsgA protein on different motility parameters during development.

To fully understand the CsgA dependent modulation of cell behaviour it will be also

necessary to analyse the effect of the C-signal in the context of other cell-cell

interactions in S. aurantiaca during the complex developmental process.    
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4.1. Materials

4.1.1. Specified chemicals, consumables and equipments

Bulk chemicals and laboratory articles were obtained from the following companies:

Becton, Dickinson & Co., Sparks, USA
Carl Roth Gmbh & Co., Darmstadt
Mallinckrodt Baker B. V., Deventer, Holland
Merck, Darmstadt
NeoLab, Heidelberg
Roche Diagnostics Gmbh, Mannheim
Serva Feinbiochemika Gmbh, Heidelberg

4.1.1.1. Chemicals

Agarose Sigma
Bacto Agar Difco
Bacto Trypton Difco
Bacto Agar Becton
Bacto Trypton Becton
Bovine Serum Albumin (BSA) Serva
5-Brom-4-Chlor-3-Indolyl-ß-D-Galaktopyranosid (X-Gal) Biomol
Bromphenol-blue Chroma
Casiton Difco
CompleteTM Roche
Diagnostics
Diethylpyrocarbonat (DEPC) Sigma
Dinatrium 3-(4-methoxyspiro {1,2-dioxetan-3,2'-(5'-chloro)
Tricyclo [3.3.1.13,7 ]decan} -4-yl) phenylphosphat (CSPD) Roche
Diagnostics
Dithiothreitol (DTT) Serva
Etylenedinitrilo tetraacetic acid (EDTA) Serva
Guanidine hydrochloride (GuHCl) Gerbu
Indole Sigma
Isopropanol Merck
Isopropyl thiogalactoside (IPTG) Sigma
Low melting point agarose Sigma
4-Methylumbelliferyl ß-D-galactoside (4-MUG) Sigma
Nitro blue tetrazolium (NBT) Sigma
N-2-Hydroxyethylpiperazin-N'-2 ethanesufonic acid (HEPES) Roth
N, N, N’, N’-Tetramethyl ethylerendiamine (TEMED) Serva
Phenylmethlsulfonyl fluoride (PMSF) Sigma
Xylene cyanol FF Serva
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4.1.1.2. Consumables

Biodyne A, B blotting membranes Pall
Glass beads (0,1 mm) Serva
Immobilon- P (PVDF membrane) Millipore
Nitrocellulose membrane Appligene
Hyperfilm-ECL (RPN 2103)
X-ray film Kodak/Fuji

4.1.1.3. Equipment

ÄKTATM Pharmacia Biotech
Digitale Kamera Olympus DP10 Olympus
GenePulser (Pulse Controller) Bio-Rad
Micromicroscope M 420  Leica
Semi-dry protein blotter apparatus Pegasus
Sonifier B15 Branson
Thermocycler T3-thermoblock Biometra
Ultracentrifuge L8-70M Beckman
UV-crosslinker Stratagene
Vac-Man® laboratory vacuum manifold Promega
Vacuum blotter Appligen
Speed-vac-concentrator Savant Bachofen
Spectrofluophotometer RF 500 Shimadza
Spectrophotometer Kontron

4.1.2. Protein

4.1.2.1. Antibodies

Anti Dehydrofolate reductase Prof.Dr. Herrmann,
ZMBH
Anti rabbit IgG, alakline phosphate-conjugated   Dianova
Anti rabbit IgG, peroxidase-conjugated Dianova

4.1.2.2. Protein weight standards

SDS-PAGE Molecular Weight Srandards, Broad Range Bio-Rad
Precision plus proteinTM standards, all blue Bio-Rad
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4.1.3. Reagent kits for methods in molecular biology and enzymes

4.1.3.1. Reagent kits for methods in molecular biology

Access RT-PCR system Promega
Bio Rad Protein Assay Bio Rad
Biotin Luminescent Detection Kit Roche Diagnostics
DNA-freeTM Kit Ambion
Gigapack®III gold packaging extract Stratagene
Lamda DASH®II/BamHI Vector kit Stratagene
Minelute PCR purification kit Qiagen
Nucleospin plasmid purification kit Macherey & Nagel
Nucleobond plasmid purification kit Macherey & Nagel
QIAquick PCR Purification kit Qiagen
QIAquick Gel Extractions kit Qiagen
Wizard lambda preps DNA purification system Promega

4.1.3.2. Enzymes

AMV Reverse Transcriptase Promega
Alcaline phosphatase, calf intestinal New England Biolabs
Ampli Taq DNA polymerase Perkin Elmer
Biotin High Prime Roche Diagnostics
Deep Vent DNA polymerase New England Biolabs
Proteinase K Roche Diagnostics
Restriction endonucleases New England Biolabs

Roche Diagnostic
Shrimp alkaline phosphatase Roche Diagnostic
Taq DNA polymerase Promega
T4 DNA ligase Roche Diagnostics

4.1.4. Nucleic acids

4.1.4.1. Plasmid

litmus 28 Biolabs
mini Tn5 lacZ1 (de Lorenzo et al., 1990)
pACYC177 Biolabs
pBC SK+/- Stratagene
pBS SK+/- Stratagene
pBS II SK+/- Stratagene
pBR 322 Biolabs
pQE42 Qiagen
pUC4 KIXX (Barany, 1985)
pUC18 (Yanish-Perron et al., 1985)

4.1.4.2. Primers

All the primers were synthetized by MWG-Botech AG.
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pACYC177s CCATATTCAACGGGAAAC
pACYC177as CCATATAAATCAGCATCC
csgA7 CTGGATGTGCTCATCAAC
csgA7/Bgl II GAAGATCTTCCTGGATGTGCTCATCAAC
csgA8 CTGGAAGTCGAGGAACATG
csgA12 CTGGTTGGTGATGTCGAGC
csgA13 CAGCTTCCTTGACAGAGAAC
csgA14 CTTTCTTCACAACCTCAC
csgA15 CATCCGTTCTGGCTTCGC
csgA16 CTGCTCCTTGGTGATGTC
csgA17 CTGGTTGGTGATGTCGAGCC
csgA20 CATGAAGGAGCACCACTTGC
csgA20XbaI GCTCTAGACATGAAGGAGCACCACTTGC
NotI csgA21 ATAAGAATGCGGCCGCCAGCTGCTTCAGCGTGGG
pQE42 forward CAGGAGGAAAAAGGCATC
pQE42 reverse CTAGCTTGGATTCTCACC
TcfwXba GCTCTAGACTCATGTTTGACAGCTTAT
TcrvXba GCTCTAGAAGTTCTCCGCAAGAATTGATTGGC

4.1.4.3. Oligonucleotides

Set of dATP, dCTP,dGTP, dTTP Roche Diagnostic

4.1.4.4. DNA and RNA molecular weight markers

100 pb DNA ladder New England Biolabs
DNA molecular weight marker IV Roche Diagnostic
RNA marker I Roche Diagnostic

4.1.5. Bacterial strains

4.1.5.1. Escherichia coli

ABLE C lac(LacZw-)[ Kanr Mcr – McrCB- McrF- Mrr- HsdR(rk-mk-)] 
[F´proAB lacIqZDM15 Tn10(TetR)]

ABLE K lac(LacZw-)[ Kanr Mcr – McrCB- McrF- Mrr- HsdR(rk-mk-)] 
[F´proAB lacIqZDM15 Tn10(TetR)]

DH5a F´/endA1 hsdR17(rk- mk+)glnV44thi-1recA1gyrA(Nalr)
relA1D(lacIZYAargF)U169deoR(f 80 dlacD (lacZ)M15)

XL1-Blue MRA (P2) D(mcrA)183 D(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1
gyrA96 relA1 lac(P2 lysogen)

XL1-Blue MRF´ D(mcrA)183 D(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1
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recA1 gyrA96 relA1 lac[F´proAB lacIqZDM15 Tn10

(TetR)]

M15 (pREP4) Nals, Strs, Rifs, lac-, ara-, gal-, mtl-, F-, recA+, uvr+.
(Qiagen)

4.1.5.2. S. aurantiaca strain

DW4/3-1 Wild type, Strr (Qualls et al., 1978)

4.1.6. Media and stocks solutions

4.1.6.1. Media

LB medium (pH 7.2) 1% Bacto tryptone; 0,5% Bacto yeast extract,1% NaCl
SOC (pH 7.0) 2% Bacto tryptone; 0,36% Glucose; 0,5% Bacto yeast extract

0,019% KCl; 0,2% MgCl2; 0,25% MgSO4;0,059% NaCl
CY (pH 7.2) 0,3% Casitone; 0,1% Bacto yeast extract; 0,1% CaCl2 x 2 H2O
Tryptone medium (pH 7.2) 1% Bacto tryptone; 0,2% MgSO4 x 7H2O
Water agar medium 0.1% CaCl2; 1,5% Bacto agar

4.1.6.2. Buffers and stock solutions

Antibiotics stock solutions

Ampicillin sodium salt 100 mg/ml in H2O
Kanamycin sulphate 50 mg/ml in H2O
Oxi- tetracylin 7,5 mg/ml in DMSO
Tetracycline hydrochloride 10 mg/ml in 100% Ethanol
Streptomycin sulphate 125 mg/ml in H2O

Ethidium bromide solution (20,000 x) 10 mg/ml in H2O
IPTG stock solution 100 mM in H2O
X-gal stock solution 20 mg/ml in dimethylformamid
Enzyme buffer: 10xA, B, H, L, M buffer Roche Diagnostics

10xNEB 1, 2, 3, 4 buffer New England Biolabs
5xAMV buffer Promega
10 x Ligase buffer Roche Diagnostics
10xRNase buffer Roche Diagnostics

Hepes buffer (pH 7.2) 100 mM Hepes, 10 mM CaCl2

SM ( phage suspending buffer ) 0,58 (w/v) NaC; 0,2 (w/v) MgSO4x7H2O
50 mM Tris-HCl (pH 7,5); 2 % gelatin solution



IV. Materials and Methods 78

20xSSC (pH 7.0) 3 M NaCl; 0.3M Sodium citrate

TE buffer 10 mM Tris-HCl, pH 8.0; 1 mM EDTA

50 xTAE buffer (pH 8) 2 M Tris-acetate; 0.05 M EDTA

4.2. Methods

4.2.1. Microbiologic techniques

4.2.1.1. Growth of E. coli

E. coli strains were grown in liquid LB or SOC medium at 37°C with vigorous shaking
at 170 rpm. Growth on solid LB medium (1,5 % agar) was performed over night at
37°C. Appropriate antibiotics were added using the concentrations described above.
Storage of the LB plates was possible at 4°C for about 14 days.

4.2.1.2. Growth of S. aurantiaca

S. aurantiaca strains were grown in liquid Tryptone medium (with appropriate
antibiotics) at 32°C with vigorous shaking (130 rpm). For inoculation of new cultures a
minimum of 106 cells/ml is necessary otherwise the culture does not start to grow.
After transformation the selected clones were inoculated first in a small volume (about 3
ml) to make them grow and latter transferred into larger cultures. The doubling time in
the logarithmic phase is about 7 hours. After the cells reach the stationary phase they
die quickly.
It is not possible to store S. aurantiaca cultures at 4°C.

4.2.1.3. Indol induced sporulation of S. aurantiaca (Gerth and Reichenbach, 1994)

S. aurantiaca spore formation can be separately induced from the fruiting body
formation by addition of 0,5 mM indol in the logarithmic cultures (2x108 cells/ml).
Incubation followed at 32°C with vigorous shaking (130 rpm).

4.2.1.4. Heat shock of S. aurantiaca

S. aurantiaca strains were grown in liquid Tryptone medium at 28°C until logarithmic
phase was reached (2x108 cells/ml). Then the culture was shifted to 37°C and aliquots
were taken after different times for further analysis.
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4.2.1.5. S. aurantiaca fruiting body formation assay

To initiate fruiting body formation S. aurantiaca strains were grown in liquid Tryptone
medium at 32°C until logarithmic phase was reached (2x108 cells/ml). Cells were
sedimented by centrifugation at 5000 rpm for 15 min at 4°C. The cell pellet was washed
twice in 100 mM HEPES buffer. The cells were resuspended in washing buffer to a
concentration of 4 x 108 cells/ml. Portions of 5 ml (2 x 108 cells/ml) were spotted on the
surface of starvation agar plates that were dried before. Plates were dried about 5 min
and incubated at 32°C. After different times the fruiting body formation was controlled
under the microscope. The development of the wild type takes about 24 hours.
Additionally the described fruiting body formation can be performed on filter papers
that were placed on the surface of the starvation agar. These filter papers can be dried
after an inoculation of about 10 days in a desiccator (duration about one week). Long-
term storage (years) of the filter papers is possible in sterile glass tubes.

4.2.1.6. Germination of S. aurantiaca spores

To test the germination ability of spores from various S. aurantiaca strains, prepared
filter papers (4.2.1.5.) were placed upside down onto a CY agar plate and incubated two
days at 32°C. Then a two-day incubation of the turned filter paper followed. The ability
to germinate can be observed under the microscope as swarming vegetative cells
become visible.

4.2.1.7. Preservation of E. coli cultures

E. coli strains were growth in liquid LB medium until logarithmic phase was reached.
Sterile glycerol was added to a final concentration of 20 %. Storation is possible at
–80°C.

4.2.1.8. Preservation of S. aurantiaca cultures

S. aurantiaca was grown in liquid Tryptone medium at 32°C until logarithmic phase
was reached. About 1,5 ml of culture was sedimented by centrifugation at 5000 rpm for
15 min at 4°C. The pellet was resuspended in 0,5 ml Tryptone medium and sterile
glycerol was added to a final concentration of 20%. The storage of Stigmatella is only
possible at –80°C or in liquid nitrogen. Long tome storage on filter papers is possible
for years (4.2.1.5.).

4.2.1.9. Electroporation

This transformation technique is a highly efficient (about 1010 recombinant clones/mg
plasmid DNA) and fast method to transform prokaryotic cells as first described by
Shigekawa and Dower, 1988. Short induced high voltage causes the reversible
formation of pores in the cell membrane where the DNA can pass through.
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4.2.1.9.1. Electroporation of E. coli

The E. coli strain for transformation was grown in 250 ml SOC medium at 37°C with
vigorous shaking until the culture reached the OD of about 0.6 at 600 nm. After chilling
down on ice for 30 min, cells were sedimented by centrifugation at 5000 rpm for 15 min
at 4°C. The cell pellet was washed twice with 125 ml cold sterile water followed by
centrifugation at 5000 rpm for 15 min at 4°C. The cell pellet was resuspended in 10%
ice-cold sterile glycerol to a final volume of 2-3 ml. Aliquots of 50 ml were frozen in
liquid nitrogen and stored at -80°C.
For electroporation about 50 ng of plasmid DNA was added to 50 m l of the
electroporation prepared E. coli cells and placed on ice. The mixture was transferred
into a cold electroporation cuvette (Gap distance 1 mm). The cuvette was placed in the
BioRad Gene Pulser with following conditions: field strength 12,5 kV/cm, electric
capacity 25 mF, resistance 200 W. Immediately after electroporation 1 ml of SOC
medium was added in the cuvette to resuspend the cells. The cell suspension was
transferred into an Eppendorf tube and incubated at 37°C for one or two hours
depending on the antibiotic resistance of the transformed plasmid. After incubation
various aliquots of cells were plated onto LB agar plates with appropriate antibiotics.

4.2.1.9.2. Electroporation of S. aurantiaca (Stamm et al., 1999)

S. aurantiaca cells were grown in liquid Tryptone medium at 32°C until logarithmic
phase was reached (2x108 cells/ml). The culture was sedimented by centrifugation at
5000 rpm for 15 min at 20°C. The cell pellet was washed twice in 5 mM HEPES and
centrifuged at 5000 rpm for 15 min at 20°C. Finally the cell pellet was resuspended in
the same buffer to a final concentration of 4x1010 cells/ml. The S. aurantiaca cells were
placed on ice. A portion of 40 ml of cells was mixed with about 0,5 mg of plasmid DNA.
Electroporation was performed in electroporation cuvette (Gap distance 1mm) in the
BioRad Gene Pulser with following conditions: field strength 0,85 kV/cm, electric
capacity 25 mF, resistance 200 W. Immediately after electroporation 1 ml of Tryptone
medium was added in the cuvette to resuspend the cells. The cells were transferred into
50 ml Tryptone medium supplement with streptomycin sulphate and incubated
overnight at 32°C. The cells were sedimented by centrifugation at 5000 rpm for 15 min
at 4°C and resuspended in 2 ml 100 mM HEPES buffer. Different portions of cells were
mixed with 3 ml (42°C) soft agar (Tryptone medium with 0.75% agar) and plated onto
Tryptone agar plates. Appropriate antibiotics were added to the soft agar and to the agar
plates. The incubation was performed at 32°C and the time of incubation strongly
depends on the antibiotic resistance.

4.2.1.10. Blue white colony screening selection of E. coli

Many of the plasmid vectors contain an E. coli DNA fragment with the regulatory
sequence and the coding part of the lacZ gene. This DNA fragment encodes the amino
terminal part of the enzyme b-galactosidase. This type of the plasmid is propagated in
host cells that express the carboxy terminal part of b-galactosidase. The active enzyme
hydrolyses X-gal producing an insoluble blue colour.
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The polylinker fragment of these kinds of plasmids is inserted in-frame to the beginning
of the coding region of the lacZ gene. Insertion of foreign DNA into the polylinker
inactivates the gene and abolishes b-galactosidase activity. Bacteria caring recombinant
plasmid DNA form white colonies in presence of X-gal.
To identify E. coli clones with the recombinant plasmid DNA specific selection plates
were used. Selection plates were prepared by spreading the chromogenic substrate X-
gal (2%) mixed with IPTG (20%) on the surface of the LB agar. After transformation,
several aliquots were put on the surface of these plates and the plates were incubated at
37°C over night. To develop the blue colour incubation at 4°C for several hours follows.

4.2.1.11. Preparation of bacteriophage host E. coli cells

As a host strain for lambda phage infection XL1 Blue MRA (P2) strain was used. XL1
Blue MRA (P2) is a P2 lysogen of XL1 Blue MRA strain, that allows only grow of
recombinant phages. In recombinant phages red and gam genes are replaced with the
insert DNA and therefore they can grow in the (P2) lysogenic strain. LB medium
supplemented with 10 mM MgSO4 and 0,2% maltose was inoculated with 1/100
volume of a fresh over night culture of E. coli strain XL1 Blue MRA (P2) and incubated
at 37°C with vigorous shaking until the culture reached the OD 1,0 at 600 nm. The cells
were sedimented by centrifugation at 5000 rpm, for 10 min at 4°C. The pellet was
resuspended in sterile 10 mM MgSO4 to a final OD of 0.5 at 600 nm. Prepared host
cells were used immediately for infection with the lambda phage.

4.2.1.12. Infection of E. coli with the bacteriophages

A portion of 600 ml of the E. coli cells (preparation 4.2.1.11.) was mixed with the
different dilutions (1:10; 1:100; 1:1000) of lambda phages in the SM buffer. The
mixture was incubated at 37°C for 15 min to allow phages to attach to the host cells.
After incubation, infected host cells were mixed with 7 ml LB top agar (0,7% agar,
48°C) and plated on the LB agar plates (1.5% agar, 150 mm diameter). The plates were
incubated at 37°C for about 9h until the phage plaques reached a size of about 1 mm.

4.2.1.13. Tittering of the phage library

To estimate the number of phages in the constructed phage library a tittering reaction
was preformed. Host cells were prepared as described (4.2.1.11.) and portions of 200 ml
of cells were infected with the different dilutions of phages in SM buffer (1:10; 1:100;
1:1000). The mixtures were incubated at 37°C for 15 min. About 3 ml pre-warmed LB
top agar (48°C) was added in the mixture and plated immediately on LB agar plates (7,5
mm diameter). After incubation at 37°C for about 9 h the plaques were counted and the
phage titter - plaque forming units per millilitre (pfu/ml) was determined.
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4.2.1.14. Amplification of the S. aurantiaca genomic phage library

S. aurantiaca genomic library was amplified in odder to make a stable high titter stock
for long time storage at -80°C. E. coli XL1-Blue MRA (P2) host cells were prepared as
described (4.2.1.11.). A portion of 600 ml of cells was mixed with aliquots of the SM
buffer containing about 5x104 pfu/ml. The mixture was incubated at 37°C, for 15 min.
After incubation the infected host cells were mixed with 7 ml (48°C) LB top agar and
plated on the LB agar plates (150 mm diameter). The plates were incubated at 37°C for
about 9h. The plates were covered with 8 ml SM buffer and shake gently over night at
4°C. SM buffer with bacteriophages were transferred into a Falcon tube. The
bacteriophage suspension was mixed with chloroform to a final volume of 5% (v/v) and
incubated at room temperature for 15 min. After a centrifugation at 5000 rpm for 10
min the supernatant was transferred into a new Falcon tube and mixed with chloroform
to a final concentration of 0,3% (v/v). Storation at 4°C is possible for about one month.
For long time storage DMSO (7% v/v) was added to the amplified library and aliquots
were stored at –80°C.

4.2.1.15. Plaque lifts

Fresh host cells were prepared (4.2.1.11.), infected with phages and plated on large LB
plates (150 mm diameter) to obtained 50 000 pfu/plate. After incubation at 37°C, about
9 h, plates were pre-cooled at 4°C for several hours. A nylon membrane (Byodine A 1,2
mm) was put on the surface of the LB agar plates for about two min. The orientation of
the nylon membrane should be fixed. Membranes were placed on the surface of filter
paper that is saturated with a denaturation solution (1,5 M NaCl, 0,5 M NaOH). After
two min the membranes were neutralized for 5 min (on filter paper saturated with 1,5 M
NaCl, 0,5 M Tris- HCl pH 8), washed (filter paper with 0,2 M Tris-HCl pH 7,5) and
transferred to 2xSSC. After drying of the membranes on Whatman paper the DNA was
crosslinked 2 times in a UV crosslinker.

4.2.1.16. Purification of bacteriophage clones

After the screening procedure several rounds of purification of positive recombinant
phage was preformed. Positive phage clones were picked from the plate transferred in
1ml SM buffer and incubate at room temperature for 1h. The phage titter was estimated
and several rounds off host cells infection, plating and hybridisations were performed
until each plaque on the plate correspond to the dark spot on X-ray film. Purified phages
were dissolved in SM buffer with 7% DMSO and stored at -80°C for long time.
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4.2.2. Isolation and manipulation of DNA

4.2.2.1. Isolation of plasmid DNA from E. coli

4.2.2.1.1. Isolation of plasmid DNA from E. coli cells with alkaline lyses

Isolation of plasmid DNA was performed by lysis of E. coli cells with NaOH and SDS
(Birnboim, 1979). This treatment opens the bacterial cell wall, denaturates
chromosomal DNA and proteins and releases plasmid DNA into the supernatant.
The E. coli cells were grown over night in SOC medium with appropriate antibiotics.
Bacterial cultures were harvested by centrifugation at 13 000 rpm, 1-2 min, at room
temperature. The supernatant was removed by aspiration. The pellet was resuspended in
100ml GTE buffer and incubated at room temperature for 10-20 min. The alkaline lysis
solution (0,2N NaOH/1% SDS) was added and incubate on ice for 5 min. Denatured
chromosomal DNA and other cellular components were precipitated with 150 ml 3M
potassium acetate (pH 4,8) on ice for 5 min and centrifugation followed at 13 000 rpm
for 20 min at 4°C. Plasmid DNA from the supernatant was recovered by precipitation
with 2 volumes of 98% cold ethanol and washed once with 70% ethanol. Plasmid DNA
was dried under vacuum (speed vac) for 5 min and dissolved in an appropriate volume
of TE buffer. Plasmids DNA was stored at -20°C.
GTE buffer 50 mM glucose, 25 mM Tris/HCl (pH 8), 10 mM EDTA,

100 mg/ml RNase

4.2.2.1.2. Isolation of plasmid DNA from E. coli cells with anion exchange columns

The plasmid DNA was isolated via plasmid DNA purification kits Nucleospin (mini
prep.) or Nucleobond (maxi prep.) according to the protocols of the manufacturers.
This purification procedure is a modification of the above described alkaline lysis
method where after alkaline lysis of bacteria plasmid DNA is purified with anion
exchange columns.

4.2.2.2. Isolation of chromosomal DNA from S. aurantiaca (Neumann et al., 1992)

The method described by Neumann and co-workers was used for the isolation of total
DNA from S. aurantiaca. Cells from a log phase culture (about 50 ml) were sedimented
by centrifugation at 5000 rpm for 20 min at 4°C. The cell pellet was resuspended in 5ml
SET buffer with 1/10 (v/v) 10 % SDS, 1 mg/ml Proteinase K and incubated over night
at 55°C (gentle agitation). A 1/4 (v/v) of prewarm 5M NaCl (55°C) was added to the
suspension and mixed. To separate the DNA from proteins an equal volume of
chloroform was added and incubated at 4°C for 1 hour with slow over-head turning
(Polymax-shaker). After centrifugation at 4000 rpm, for 20 min, at 4°C the
chromosomal DNA is present in the aqueous phase (chloroform extraction might be
repeated several times if necessary). The chromosomal DNA from the aqueous phase
was precipitated with 2 volumes of isopropanol for about 30 min. DNA washed once
with 70% ethanol and once with 98% ethanol. The chromosomal DNA was briefly dried
(about 5min) and dissolved in a TE buffer for further manipulations (storage -20 °C).
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4.2.2.3. Isolation of lambda DNA

The Wizard Lambda Preps DNA Purification System (Promega) was used for
purification of lambda DNA from plate culture lysates. Bacteriophages are propagated
in bacteria grown on soft agarose instead of soft agar to avoid polyanionic contaminants
that can inhibit subsequent enzymatic reactions. The isolation procedure was
accomplished following the protocol supplied by manufacturers. The lambda DNA was
eluted from the purification resin with the TE buffer and stored at -20°C.

4.2.2.4. Phenol/chloroform extraction of DNA (Sambrook et al., 1989)

A standard procedure was used to remove proteins from DNA solutions. An equal
volume of TE saturated phenol (pH 7) was added to the DNA solution. After mixing of
the solution and centrifugation at 13 000 rpm for 15 min at room temperature, the upper
aqueous phase containing the DNA was carefully transferred into a new tube. Extraction
was repeated once with an equal volume of phenol/chloroform/isoamylalcohol (25:24:1)
and once with an equal volume of chloroform/isoamylalcohol (24:1). DNA was
precipitated with isopropanol or ethanol, dried and dissolved in TE buffer.

4.2.2.5. Alcohol precipitation of DNA

DNA was precipitated from solutions using various combinations of salt and alcohol.
This is the most common method used to concentrate DNA or to precipitate DNA from
the aqueous phase after phenol/chloroform extraction. A 0,1 volume of 3M sodium
acetate (pH 5,2) or 0,1 volume of 8 M lithium chloride was added to the DNA sample
followed by the addition of 2,5 volumes of 98% ethanol (at -80°C, 1-2 h) or equal
volume of isopropanol (at room temperature, for 30 min). DNA forms complexes with
the salt that reduces the solubility in alcohol. Further, DNA was washed with 0,7
volume 70% ethanol, dried and dissolved in TE buffer.

4.2.2.6. Quantitation of DNA

To estimate the concentration and purity of DNA samples a spectrophotometric method
was used. Concentration of DNA was calculated by the OD value at 260 nm:
DNA concentration mg/ml = absorbance at 260 nm x dilution factor x extinction
coefficient  (extinction coefficient of DNA is 50)
Information about purity of the sample is estimated by calculating a so-called
OD260:OD280 ratio. A pure sample of DNA has a OD260: OD280 ratio of about 1,8.

4.2.2.7. DNA restriction

DNA restrictions were performed according to standard protocols (Sambrook, et al.,
1989). The restriction conditions were chosen depending on the used enzyme as
recommended by the manufacturer. To inactivate the enzyme reaction several methods
were used: heat inactivation, phenol extraction or adding of EDTA (20 mM final
concentration).
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4.2.2.8. Partial digestion of DNA

To obtain partial cleavage of genomic DNA, a set of serial dilutions of enzyme were
used as set up in the following way. 70 ml of a DNA solution (70 mg) in 1x appropriate
enzyme buffer was divided so that each Ependorff tube contained 10 ml of the DNA
solution except the first one that contained 20 ml. The appropriate restriction enzyme
was added in first tube followed by careful mixing. Then portions of 10 ml were
transferred from one tube to the next. Last tube was used as a negative control so diluted
enzyme was not added in it. All tubes were incubated for a defined time at the
appropriate temperature. The enzymatic reactions were stopped by heating and checked
by agarose electrophoresis.

4.2.2.9. DNA ligation

Ligation of double-stranded DNA was performed using T4 DNA ligase. This enzyme
catalyses the formation of phosphodiester bonds between 3`hydroxyl and 5`phosphate
ends in double stranded DNA using ATP. 1 U of T4 DNA ligase was used to ligate
insert and vector DNA (molar ratio 3:1) in a 20 ml reaction containing 1x ligation buffer
at 15°C over night. T4 DNA ligase was inactivated by incubation at 65°C for 10 min or
by addition of 2ml 0,5 M EDTA (pH 8). After inactivation 28ml sterile water was added
and 5ml of the ligation reaction was used for electroporation of E. coli strains.

4.2.2.10. Construction of the S. aurantiaca phage library

The ligation reaction was performed using about 0,4 mg of the chromosomal DNA of
S.aurantiaca (9-23 kbp) and 1 mg of the Lambda DASH II (predigested with BamHI)
vector arms. The reaction mix was supplemented with 10 mM rATP (pH 7,5), 2U of T4
DNA ligase (Stratagene) and incubated overnight at 4 °C. Portions of 2 ml or 3 ml of the
ligation reaction were packed into bacteriophage particles BamHI/Gigapack III Gold
(Stratagene). The titter of both libraries was estimated as described in the method part
and appeared to be about 1x105 pfu/ml before and about 1x108 pfu/ml after the
amplification of the phage libraries.

4.2.2.11. Filling of 5` overhanging ends of DNA

For many cloning experiments, it is necessary to convert 5` overhanging ends generated
by restriction with some enzymes into blunt ends. For this purpose Klenow enzyme was
used. Klenow enzyme is the large fragment of DNA polymerase I with a 5`-
3`polymerase activity but lacks the 5`-3`exonuclease activity. The enzyme catalyses the
addition of mononucleotides from desoxynucleoside-5`-triphosphates to the 3-hydroxyl
terminus of the template DNA.
A 10ml reaction contained 0,1 mM of each of the dNTPs, 0,1-4 mg DNA and 1 U of the
Klenow enzyme per mg DNA. Incubation was performed at 37°C for 30 min. The
enzyme was inactivated by heating the reaction mix up to 75°C, for10 min or by adding
1 ml of 0,5 M EDTA. DNA was extracted by the phenol methode or purified on column.
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4.2.2.12. Removing of 3` overhanging ends of DNA

For many cloning experiments, it is necessary to remove 3`overhanging ends of DNA
fragments. Removing of 3`extensions is carried out using the 3`-5`exonuclease activity
of the T4 DNA polymerase. In the presence of high concentrations of all four dNTPs the
enzyme  removes 3` extensions and generates blunt ends.
In a 25 ml reaction 1x buffer A (Roche Diagnostics) supplement with 0,05 mM of each
of the dNTPs, 2,5 mg BSA, 2 mg DNA and 10 U of T4 DNA polymerase were mixed.
Reaction was carried out at 11°C for 15 min. T4 DNA polymerase was inactivated by
heating at 75°C for 10 min or by adding 1 ml of 0,5 M EDTA. DNA was extracted by
phenol or purified on column.

4.2.2.13. Dephosphorylation of DNA fragments

In order to prevent self-ligation of vector DNA during cloning reactions it is necessary
to remove the phosphate residue from the 5`end of the DNA using alkaline phosphatase.
Phosphorylated insert DNA can be ligated to the vector DNA more efficiently. In a 10
ml reaction 1 x dephosphorylation buffer, 100 ng of DNA and 1 U of shrimp alkaline
phosphatase were added. Incubated followed at 37°C for 60 min in the case of blunt end
DNA fragments or at 37°C for 10 min in case of sticky end DNA fragments. In order to
inactivate the enzyme activity the reaction mix was heated up to 65°C for 15 min.

4.2.2.14. Amplification of DNA fragments via PCR (polymerase chain reaction)

The polymerase chain reaction (PCR) is a method for rapid amplification of DNA
molecules in vitro with a thermostable DNA polymerase. As enzymes for amplification
Taq DNA polymerase was used that has no proofreading or Deep Vent Polymerase that
has proofreading function. The primers (20-30 bp) were constructed in a way so that
they form no internal loop structures. If the primers were used for amplification of
fragments for directional cloning then specific restriction site were added at the 5`end of
the primers.
In a 100 ml PCR reaction 1x polymerase buffer, 2,5 mM of each dNTP, 500 ng of
chromosomal DNA or 100 ng plasmid DNA, 50 pmol of each primer and 1-2 U DNA
polymerase were mixed. In general 25-30 PCR cycles were performed:
Initiation denaturation was performed at 95 °C for 10 min.
Following denaturations steps at 95°C for 1 min.
Annealing was performed for 1 min at temperatures between 50 - 68 °C according
previously calculated value for each primer pair, used for PCR.
Extension step was carried out at 72 °C for 1 min and 30 seconds. Amplified DNA was
purified on PCR purification column. As controls PCR reactions without template DNA
or without primers were performed in parallel.

4.2.2.15. Purification of PCR products

In order to purified DNA fragments amplified by PCR the QIAquick PCR Purification
Kit (Qiagen) was used. DNA fragments ranging from 100 bp to 10 kbp were purified
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from primers, nucleotides, polymerases and salt on a special silica gel membrane. The
protocol recommended by the manufacturer was used for purification.

4.2.2.16. DNA sequencing

Sequencing of the DNA was performed with ABI Prism tm 377 Sequence System
(Perkin-Elmer Corporation) in the sequence facilities of the ZMBH. For sequencing the
standard method described by Sanger (Sanger et al., 1977) was used.

4.2.3. Electrophoresis of DNA

4.2.3.1. Agarose gel electrophoresis of DNA

The electrophoresis was accomplished by horizontal gel system. Between 0,8-1,5 %
agarose in 1 x TAE buffer was used as gel matrix depending of the fragment sizes that
were separated. The DNA sample was mixed with 1/5 volume of 5xGLB buffer and
loaded on the gel. Gel electrophoreses was performed at 1-5 V/cm in 1x TAE buffer.
After electrophoresis the gel was stained with 0,5 mg/ml ethidium bromide for 5 min
and the DNA bands were visualized on a transilluminator with UV (254 nm) and
recorded with a video copy processor (Mitsubishi).

4.2.3.2. Recovery of DNA fragments from low-melting agarose gel

To recover fragments range from 500 pb to 10 kbp from low-melting agarose gel the
Gene Clean II kit was used. The agarose gel slice containing the desired DNA fragment
was cut out of the agarose gel and transferred into a Falcon tube. 3 volumes of a 3M NaJ
solution was added and incubate at 55°C until the agarose is completely dissolved. To
extract DNA from the solution column was used as described in 4.2.2.13.

4.2.4. DNA hybridisation

DNA hybridisation, a process first described by Marmur and Doty (1961), includes the
hybridisation of the DNA probe that usually carries some type of labeling that permits
localization and quantitation of the other target strand DNA. The standard hybridisation
protocol consists of three parts: prehybridization, hybridisation and post hybridisation
washing.

4.2.4.1. Dot blot analysis

The application of DNA in solution directly on a hydrophilic cationic nylon membrane
is termed a dot blot. This method was used to detect recombinant plasmid DNA after a
cloning reaction or to detect recombinant DNA isolated from strains of S. aurantiaca
after transformation. 5-10 mg chromosomal DNA or 0,5 mg plasmid DNA was dissolved
in 2 ml denaturation solution (1M NaOH/50 mM EDTA) followed by denaturation at
98°C for 10 min. DNA samples were spotted on pre-wet nylon membrane and dried at
room temperature. The membrane was placed on filter paper saturated with 2xSSC for 5
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min, dried and the DNA was fixed by UV irradiation. The membrane was stored at 4°C
or directly used for hybridisation.

4.2.4.2. Southern blot analysis (Southern, 1975)

This method is used to transfer restricted DNA from agarose gels to a nylon membrane.
Restricted chromosomal or plasmid DNA was separated by agarose gel electrophoresis.
It is necessary to reduce the size of the DNA fragments in the gel after electrophoresis
to facilitate their transfer to the membrane. Depurination of DNA was accomplished by
incubating the gel in 0,25 M HCl for 15 min. Followed by denaturation in high salt
buffer 0,5 M NaOH/1,5 M NaCl for 30 min. The gel was neutralized in 1 M Tris/HCl
(pH 7, 5)/1,5 M NaCl solution for 30 min. To transfer the DNA from the gel to the
nylon membrane vacuum-blotting procedure was used. Transfer was accomplished in
transfer buffer (10xSSC) for less than one hour with applied vacuum of 60 mbar using a
Vacuum Blotter (Appligene). After transfer DNA was fixed to the membrane by UV
irradiation and stored at 4°C or proceed directly to hybridisation.

4.2.4.3. Hybrisation and detection with biotin-labelled probes

Biotin-labelled DNA probes were used for hybridisation with target DNA. Biotin is
detected in an immunoassay with streptavidin coupled to alkaline phosphatase (AP).
Detection is facilitated using chemiluminiscent AP-substrate CSPD. Enzymatic
dephosphorylation of CSPD by AP leads to a light emission at a wavelength of 477 nm
which can be recorded on X-ray film.
Prehybridisation of the membrane was performed with 2-4 ml hybridisation solution per
100 cm2 of the membrane at 42°C for one hour. Hybridisation solution contains
formamide to denaturate DNA. Hybridisation was carried out at 42°C over night with
an appropriate volume of hybridisation solution containing the denaturated biotin
labelled probe. To remove incorrectly bound probe the membrane was washed once
with 2xSSC/0,1%SDS (high stringency) for 30 min and once (low stringency) with
0,1xSSC/0,1SDS for 30 min, at 42 °C with agitation. Detection was performed with the
Biotin Detection Kit at the room temperature (Roche Diagnostics). The membrane was
rinsed in washing buffer for 5 min and was then incubate in 5xblocking reagent for 30
min. An incubation in 5xblocking solution with 1:5000 streptavidin-AP followed for 30
min. The membrane was rinsed 2x15 min in washing buffer and equilibrated for 5 min
in detection buffer. AP substrate CSPD was spread over the membrane and detection of
light emission was recorded on a X-ray film.
Hybridisation solution 5xSSC, 5xblocking reagent, 50% formamid,

0,02% SDS, 0,1% N-lauroylsarkosin
10 x Blocking reagent 25 g blocking reagent in 250 ml

0,1 M maleic acid/0,15 M NaCl (pH 7,5)
Washing buffer maleic acid buffer (0,1 M maleic acid/0,15 M NaCl,

pH 7,5), 0,3 % Tween 20 (v/v)
Detection buffer 1 mM Tris/HCl, pH 9,5/1 M NaCl



IV. Materials and Methods 89

4.2.4.4. Nonradioactive labelling of DNA probes

Nonradioactive labelling of DNA probes was performed with biotin using the Biotin-
High Prime kit (Roche). The method is based on the random primed DNA labelling
procedure. Hybridisation of oligonucleotides of all possible sequences (random primers)
to the denaturated DNA that should be labelled is the first step. The complementary
DNA strands is synthesised by Klenow enzyme using the 3`OH termini of the random
oligonucleotides as a primer. Modified deoxyribonucleoside-triphosphates labelled with
biotin are incorporated into the newly synthesized complementary DNA strand. Biotin-
labelled DNA is detected by streptavidin conjugated to the enzyme alkaline
phosphatase.
About 1mg template DNA was denaturated by heating for 10 min to 98°C. 4ml Biotin-
High mixture containing Klenow enzyme, labelling grade, biotin-16-dUTP, dATP,
dCTP, dGTP, dTTp in an optimised reaction buffer was added and incubated at 37°C
over night. The labelling reaction was stopped by heating at 65°C for 10 min. Long time
storage of the labelled probes is possible at -20°C.

4.2.5. Isolation and manipulation of RNA

4.2.5.1. Isolation of RNA from S. aurantiaca cells

Cells from a log phase culture (about 50 ml) were sedimented by centrifugation at 5000
rpm for 20 min at 4°C. The cell pellet was resuspened in 250 ml of cold sucrose buffer.
125 ml of lysis buffer was added and incubated at 65°C for 90 sec. 250 ml of H20-
saturated phenol was added and incubated at 65°C for 3 min, followed by incubation at
–80°C for 1 min. After centrifugation at 13 000 rpm for 10 min at room temperature, the
supernatant was extracted with acidic phenol for twice. RNA was precipitated in 1 ml of
ethanol containing 40 ml of 3 M NaAc (pH 4,5) at –20 °C for 2,5 h. The RNA pellet was
washed once with 70% ethanol, air-dried and resuspended in 180 ml of RNA storage
buffer. 20 ml of 10xDNase buffer and 10 units of DNase (RNase free) were added to the
RNA solution to digest the DNA. The mixture was incubated at room temperature for
30 min. 20 ml of 0,2 M EDTA (pH 7) was added to stop the reaction. The solution was
extracted twice with Tris-saturated phenol, once with phenol/chloroform, and once with
chloroform. RNA was precipitated again in 1 ml of ethanol containing 25 ml of 3 M
NaAc (pH 7) at –20°C for 3 h. After centrifugation at 13 000 rpm for 15 min at 4°C, the
RNA pellet was washed once with 70% ethanol, air dried, and dissolved in 40 ml of
RNA storage buffer. The concentration of RNA was determined by spectrometry. For
pure RNA, the ratio of OD 260/ OD 280 should be 2,0 (1 OD 260 = 40 ml/ml RNA).
sucrose buffer 0,3 M sucrose, 10 mM NaAc (pH 4,5)
lysis buffer 2% SDS, 10 mM NaAc (pH 4,5)
RNA storage buffer 20 mM Na-phosphate buffer (pH 6,5), 1 mM
EDTA
10xDNase buffer 0,2 mM NaAc (pH 4,5), 0,1 M MgCl2, 0,1 M NaC
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4.2.5.2. RNA electrophoresis

RNA electrophoresis was performed on a 1% agarose-formaldehyde gel. One gram of
agarose was melted in 72 ml DEPC-treated H20 and than incubated in 60°C water bath.
18 ml of formaldehyde (37%) and 10 ml of 10xMOPS buffer were added to the agarose
suspension. The gel was poured in a hood one hour before electrophoresis. 5 mg RNA
was mixed with 3 volumes of denatureting buffer. The sample was incubated in a 60°C
water bath for 10 min, and then chilled down immediately on ice. 1/10 volume of RNA
loading buffer was mixed with the sample before it was loaded on the gel.
Electrophoresis was performed in 1 xMOPS buffer at 120 V for 10 min, and then 25 V
for about 12 h. The gel was stained with 0,5 mg/ml ethidium bromide solution for 30
min and destained in H20 for one hour.
10xMOPS buffer 0,2 M MOPS, 80 mM NaAc, 10 mM EDTA (pH 7)
denaturating buffer 20 mM Na-phosphate buffer (pH 6,5), 1 mM
EDTA
10xDNase buffer 0,2 M NaAc (pH 4,5), 0,1 M MgCl2, 0,1 M NaCl

4.2.5.3. RT-PCR

The Access RT-PCR kit (Promega), which offers reverse transcription and PCR
amplification in a single reaction, was used to detect mRNA expression. First strand
cDNA synthesis was performed by incubation at 48°C for 45 min, thereafter the
reaction was incubated at 94°C for 2 min to inactivate AMV reverse transcriptase and to
denature the RNA/cDNA/primer mixture. Second strand cDNA synthesis and the
amplification followed directly throught 40 thermal cycle (30 sec at 94°C, 1 min at
54°C and 1 min at 68°C). This was followed by a final extension for 7 min at 68°C.
After electrophoresis on an agarose gel, the cDNA was stained with the ethidium
bromide for 30 min, and analysed by UV illumination.

4.2.6. Protein purification and analysis

4.2.6.1. Isolation of total protein extract from S. aurantiaca

Vegetative S. aurantiaca cells (about 15 ml with 2x108 cells/ml) or fruiting bodies that
were scratched off the surface of water agar plates after different time of development
were sedimented by centrifugation at 5000 rpm for 15 min at 4°C. The pellet was
washed in PBS containing 1 mM PMSF. The pellet was stored at -80°C or used
immediately for protein purification.
a) Sediments were resuspended in lysis buffer and sonicated in short bursts (8 x 15 sec)
at 4°C with 50 % duty cycle in Branson Sonifier cell disruptor B 15. To remove cells
debris ultracentrifugation at 30 000 rpm at 15 °C for 30 min was performed. The
supernatant was transfered in new tube and the protein concentration was estimated
using the Bradford assay. Protein solutions were aliquoted and stored at -80°C. Before
electrophoresis 1 volume of the protein solution was mixed with 1 volume of 2xprotein
loading buffer
Lysis solution Urea 7M

Thiourea 2M
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CHAPS 4%
DTT 1%
Tris base 40 mM
Complete (Protease Inhibitor Cocktail, Roche Diagnostics)

b) Sediments were resuspended in 100 ml of H20 and mixed with 100 ml of 2xprotein
loading buffer and heated up to 95°C for 5 min.  Followed by sonification in short
bursts (8x15 sec) at 4°C with 50% duty cycle. To remove cells derbits centrifugation at
13 000 rpm at 4°C for 15 min was performed.

4.2.6.2. Determination of protein concentration (Bradford, 1976)

The protein assay kit (BioRad) was used for the determination of 1-20 mg protein
(concentration less 10 mg/ml) using BSA as a standard protein.
50 ml of the protein solution was mixed with 1 ml of working reagent Bio-Rad protein
assay.The absorbance of the protein solution was measured at 595 nm. Measuring a
BSA solution of 0.1- 1 mg/ml at 595 nm was used to set up the standard curve. The
concentration of the unknown protein was calculated according to the standard curve.

4.2.6.3. SDS-Polyacrilamide gel electrophoresis (Laemmli, 1970)

Sodium dodecyl sulfate-polyacrilamide gel electrophoresis (SDS-PAGE) is a fast
method for quantifying, comparing and characterising proteins. This method separates
proteins by their molecular weight. Proteins samples prepared as previously described
were separated on 12,5-15% polyacrilamide gels with a 4,5% stacking gel.
Electrophoresis was done in 1 x SDS-Tris-Glycine buffer at 25mA.
Stacking gel: Tris-HCl (pH 6,8) 125 mM; Acrylamide:bis-acrylamide (30:0,8) 4,5%;
SDS 0,1%; APS 0,4%; TEMED 0,4%.
Separating gel: Tris-HCl (pH 8,8) 375 mM; Acrylamide:bis-acrylamide (30:0,8) 8-15%;
SDS 0,1%; APS 0,4%; TEMED 0,25%.
2xProtein loading buffer: 125 mM Tris-HCl (pH 6,8); 4% SDS; 10%
b-mercaptoethanol; 10% glycerol; 0,02% Bromophenol blue;
10xSDS-Tris-Glycin buffer 330 mM Tris-HCl (pH 6,8); 1,90 M glycine; 1% SDS

4.2.6.4. Coomassie blue staining of gels

After electrophoresis the polyacrylamide gel was stained with Coomassie Briliant Blue
R250 for about 30 min at room temperature with gentle shaking. Then the gel was
destained for 1-2 hours at room temperature with gentle shaking in destaining solution.
The destaining solution was changed at least twice. Using the gel for immunoblotting
the transfer was performed immediately without staining.
Staining solution 45% methanol; 10% acetic acid; 0,2% Coomassie brilliant blue
R250.
Destaining solution 5% methanol; 4,2% glacial acetic acid
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4.2.6.5. Immunobloting

Immunoblotting procedure can be divided in two steps: transfer of the protein from the
gel to the membrane and detection of protein with specific antibody.

4.2.6.5.1. Protein transfer from the gel to the membrane

After electrophoresis proteins were transferred from the gel to a nitrocellulose or PVDF
membrane in a semi-dry blotter apparatus (Pegasus). If the nitrocellulose membrane
was used it was preincubated in transfer buffer for 15 min. PVDF membrane was
soaked in methanol for 15 sec followed by an incubation in transfer buffer for 15 min.
The gel and membranes were placed between six sheets of Transfer- buffer saturated
Whatman papers (Sambrook at al., 1989). The transfer was performed at 0,8 mA/cm2

for 50 min at room temperature. The transferred protein on the membrane were
visualised with 0,2% PonceauS. Destaining was performed with water and the
membrane was stored at 4°C or used directly for detection.
Transfer buffer (Schafer-Nielson) 48 mM Tris base; 20% methanol; 10% SDS

4.2.6.5.2. Immunodetection

Once the proteins have been transferred from the gel to the membrane specific protein
can be detected by using antibodies that were produced against these proteins. Prior to
the addition of antibodies the membrane was incubated in blocking solution (TBS-T
buffer with 5% non-fat dried milk powder) at room temperature for 1 hour to prevent
unspecific binding of the antibodies. The membrane was than incubated with the
primary antibody diluted in 20 ml TBS-T with 1% milk powder at room temperature for
1 hour with gentle shaking. The optimal dilution of the primary antibody varies and was
determined for each antibody used. After washing with TBS-T two times for 10 min at
room temperature the membrane was incubated with the secondary antibody diluted
1:20000 in TBS-T with 1% milk powder at room temperature for 1 hour with gentle
shaking. After washing two times in TBS-T for 10 min the membrane was developed.
Since two kinds of secondary antibodies were used one coupled with alkaline
phosphatase (AP) and another coupled to horseradish peroxidase (HRP) different
detection procedure were performed.
TBS-T  (10 mM Tris-HCl (pH 8); 150 mM NaCl; 0,05 % Tween 20)

4.2.6.5.2.1. Detection of the HRP conjugated secondary antibody-ECL

The ECL method is based on the detection of light emission from a secondary antibody
linked to horseradish peroxidase which catalyses the oxidation of luminol.
After incubation with HRP-labelled secondary antibodythe signal on the membrane was
generated by incubated the membrane in detection solution for 1 min at room
temperature. Light emission was recorded on X-ray film.
Detection solution stock A: p-coumaric acid 6,8 mM in DMSO

stock B: luminol 1,25 mM in 0,1 M Tris-HCl (pH 8,5)
stock C: 30% hydrogen peroxide

Detection solution is a mix of 0,1 ml stock A, 10 ml stock B and 3 ml stock C.
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4.2.6.5.2.2. Detection of the AP conjugated secondary antibody

After incubation with AP-labelled secondary antibody the membrane was incubated in
AP detection buffer with 0,67% NBT solution and 0,33% BCIP solution until the
desired signals were obtained. The reaction was stopped by transferring the membrane
into a 50 mM EDTA solution (pH 8).
AP buffer 0,1M Tris-HCl (pH 9,5); 5 mM EDTA; 5 mM MgCl2

4.2.6.6. Anti-peptide antibodies

4.2.6.6.1. Synthesis of the peptides

In order to produce a serum raised against specific epitops of a certain  protein two
peptides were synthesised using the solid-phase techniques (Merrifield, 1963) in the
Peptide Specialty Laboratories GmbH. Synthetic peptides were purified by HPLC and
stored at -20°C.

4.2.6.6.2. Coupling of the peptides to a carrier protein

Small molecules like peptides, although able to interact with products of an immune
response, cannot stimulate a response. Peptides can be immunogenic only when they are
exposed on the surface of a larger carrier protein. A keyhole limpet hemocyanin (KLH)
was used as carrier protein due to its large molecular mass, strong immunogenicity and
many available lysines.
KLH was preactivated with a heterobifunctional cross-linker (sulfo-SMCC).
Conjugation of the peptide sulfhydril group of last Cys and maleimide activated KLH
was performed using the kit Inject Maleimide Activated Carrier Proteins (Pierce).

4.2.6.6.3. Immunisation

Peptide mixture was used for immunisation of two rabbits following the standard
immunisation protocol for three months (Peptide Specialty Laboratories GmbH). Elsa
test using the peptides coupled to OVA as controls evaluated the serum titer.
The final serum was divided into smaller fractions and stored at -80°C for long time
storage. An aliquot used frequently was stored at 4°C.

4.2.6.6.4. Purification of serum on peptide columns

Each peptide was coupled to the Sulfo-Link coupling gel necessary for further serum
purification. The columns were made in Peptide Specialty Laboratories GmbH.
Before purification 1 ml of the column matrix was equilibrated with PBS buffer.  5 ml
of serum was diluted with an equal volume of PBS buffer, mixed with 1 ml of the
column matrix and incubated over night at 4°C with slowly rotation. The suspension
was transfered to the column. The matrix settled in the column and the flow through
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was collected. The column was washed twice with 5 ml PBS buffer and then again three
times with 5 ml 10 mM Na-phosphate (pH 6,8). All washing steps were performed at
4°C. Antibodies were eluted from the column with 10x0,5 ml 0,1 M glycin-buffer (pH
2,82) in Eppendorf tubes containing 50 m l 1 M Tris HCl (pH 8). The protein
concentration of each eluted fraction was estimated by Bradford assay. Purified serum
was divided into 100 ml aliquots and the equal volume of 98% glycerol and 0,05% (v/v)
Na-azide was added. The aliquots were stored at -80°C.
The column was regenerated by washing with 10 ml 10 mM Na-phosphate buffer (pH
6,8), then two times with 10 ml PBS containing 1 M NaCl and finally two times with 10
ml PBS containing 0,05% Na-azide. The column can be stored at 4 °C.

4.2.6.7. Antibody against fusion protein

4.2.6.7.1. Preparation of E. coli cell lysate

1 litre of the induced bacterial cultures was centrifuged and the pellet was
resuspended in lysis buffer A, 5 ml per gram wet weight (6M guanidine hydrochloride;
0,1 M NaH2PO4; 0,01 M Tris-HCl (pH 8)). The cell suspension was stirred over night at
4°C and centrifuged at 16 000 rpm for 20-40 min at 4 °C to remove the cells debris.
Supernatant was sonicated 8 x 15 sec with duty cycle 50% and centrifuged at 16000
rpm for 40 min at 4 °C. Then the supernatant was filtrated through a 0,45 mm sterile
filter and once through a 0,22 mm filter. The protein solution was stored for several days
at 4°C or used immediately for purification.

4.2.6.7.2. Purification of fusion protein on Ni-column

HiTrap chelating HP 5 ml column (Amersham pharmacia) packed with Chelating
Sepharose High Performance was used for purification. The separation was achieved in
a ÄKTA liquid chromatography system. The column was charged with 0,1 M NiSO4

solution and washed with about 15 ml distilled water. After column preparation an
equilibration with 5-10 column volumes buffer B with a flow rate of 5ml/min followed.
The sample was loaded on the column with a flow rate of 1 ml/min and washed with 5-
10 column volumes of buffer B until absorbance at 280 nm was below 0,01. Washing
with 5-10 column volumes of buffer C was performed to remove proteins that bind non-
specifically to the resin. Fusion protein was eluted with buffer D using the imidasole
linear gradient.
After purification the metal ions were stripped from resin by washing with 5 column
volumes buffer containing 0,05 M EDTA. This was followed by washing with 5-10
column volumes of distilled water. The column was stored in 20% ethanol.
All buffers were filtrated through a 0,45 mm filter before use.

Lysis buffer B 8M urea; 0,1 M NaH2PO4; 0,01 M Tris-HCl (pH 8).
Washing buffer C 8 M urea; 0,1 M NaH2PO4 ; 0,01 M Tris-HCl (pH 6,3)
Elution buffer D 8M urea; 0,1 M NaH2PO4 ; 1 M imidazol; 0,01 M Tris-HCl (pH
6,3)
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4.2.6.7.3. Immunisation with fusion protein

Two rabits were immunised with the fusion protein following standard three months
procedure in the laboratories of SEQ -Lab (Göttingen).

4.2.6.7.4.  Concentrating protein solutions

The protein solutions were concentrated via dialyses. Dialysis is typically used for
changing the buffer solution of a protein but is also a method for concentrating protein
solutions by dialysing against a hygroscopic environment (Sephadex). The protein
solution is within a membrane whose pore size prevents the proteins from escaping.
Dialysing tubes were cleaned from chemical contaminants from the manufacturing
process by boiling for 30 min in 10 mM NaHCO3/1 mM EDTA. After that the tubes
were washed extensively in distilled water and stored at 4°C in 20% ethanol to prevent
microbial contamination.
The protein solution was placed in dialysing tubes and embedded in the Sephadex G-25
resin at room temperature. The resin was changed every half hour to achieve
concentration of the protein sample in a shorter period of time.

4.2.6.8. Determination of b-galactosidase activity (Ruan et al., 1993)

Protein was isolated from vegetative cells or from fruiting bodies/aggregates after
different times after inducing starvation. Cells were pelleted by centrifugation at 5000
rpm for 20 min at 4°C. Pellets were washed once in MOPS buffer and resuspended in
150 ml of the same buffer. A small spoon of glass beads (0,1 mm) was added to each
sample and cells were broken by sonification at 4°C with the Branson sonifier B-15
with shorts bursts (15 sec), 50 % duty cycle. After centrifugation at 13 000 rpm to
remove glass beads the protein solution was centrifugated at 45 000 rpm for 1 h at 4 °C.
The protein concentration was determined as previously escribed. The protein extracts
were stored at -80°C.
10 mg of the protein sample was diluted in 100 ml degassed MOPS buffer and mixed
with 300 ml buffer A. Following incubation at 37°C for 30 min the reaction was stopped
by addition of 3 ml 0,1 M degassed Glycin buffer. Buffer A contains the fluorescent
substrate 4-MUG (4-Methylumbelliferyl-b-D-Galaktopyransid) The substrate can be
cleaved by b-galactosidase releasing the fluorescent methylumbelliferon that can be
measuredat an excitation wavelength of 360 nm and an emission wavelength of 450 nm
using a Shimadzu RF 5000 fluorescence spectrophotometer.
Buffer A 10 mM (pH 7) Na-phosphate; 0,1 M NaCl; 1 mM MgCl2; 10 mg/300 ml 

4-MUG; 0,1% BSA
MOPS buffer 50 mM MOPS; 0,01 M MgCl2
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4.3. Software

Platform Software Task

Apple Macintosh DNA Strider Sequence editor
Laser gene Sequence editor

Mapping of restriction enzyme sites
Multipe alignments of sequences
Protein analysis

Adobe Photoshop Image processing

www BLAST Protein and nucleotide similarity
searches

Protein second structure analysis
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V. Summary

Cell-cell interaction is a prerequisite for multi-cellular development and cellular

differentiation of the Gram-negative bacterium Stigmatella aurantiaca. For the

elucidation of the temporal and spatial coordination of the physiology and motility of

the cells during development, isolation and characterization of molecules involved in

cell-cell signalling is needed.

The best studied intercellular signal of Myxococcus xanthus is the C signal, which is the

gene product of the csgA gene. Using the M. xanthus csgA gene as probe a homologous

gene was previously isolated from S. aurantiaca (Butterfass, 1992). Inactivation of the

gene by insertional mutagenesis caused alterations in S. aurantiaca fruiting.

A XhoI fragment harbouring the csgA gene and flanking regions was isolated. Sequence

analysis revealed additional putative start codons located upstream of the proposed

csgA GTG translational start. Based on the homology data of the M. xanthus csgA gene

the best reading frame indicates that the csgA translational start ATG codon is located

189 bp upstream of GTG. It specifies a protein of 236 amino acids with an estimated

molecular mass of 26 kDa. The CsgA protein appears to be a member of the SRD

family. The putative catalytic site (Ser139, Tyr158 and Lys162) is highly conserved in

CsgA, as well as the putative coenzyme binding domain of the protein. Further, a new

ORF, the protoporphyrinogene oxidase gene, was found upstream of csgA in the

opposite orientation, 242 bp apart from csgA. The deduced amino acid sequence of this

ORF has significant similarity with protoporphyrinogene oxidase from M. xanthus. An

unknown ORF, orf2, was found upstream of csgA in same orientation and 251 bp apart
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from csgA, which encodes a polypeptide of 247 amino acids. No similarity was found

between the deduced amino acid sequence of orf2 product and known proteins. An

ORF, fprA, was found downstream of csgA in the opposite orientation. It overlaps with

csgA (55 bp). The fprA gene specifies a protein of 223 amino acids with significant

similarity to the flavin associated protein from M. xanthus.

Due to the strong evidences supporting the role of CsgA in M. xanthus intercellular

signalling and the close phylogenetic relationship between Stigmatella and Myxococcus

it was speculated that the CsgA protein plays a role in communication between

S. aurantiaca cells during development. A S. aurantiaca csgA insertion-mutant was

constructed. CsgA mutant cells show an altered developmental behaviour as compared

with wild type cells. The motility behaviour of the cells during development was

changed and their ability to stay more closely together in the early stages of

development. Inactivation of the csgA gene completely abolished rippling of the cells.

This indicates the crucial role of the CsgA protein in regulating this rhythmic behaviour.

S. aurantiaca csgA mutant cells do not produce CsgA but they are able to respond to it

when mixed with wild type cells. Mixing the cells of the S.aurantiaca csgA mutant with

those of a mutant that expresses the green fluorescence protein, resulted in wild-type

fruiting body with an intermediate colour (orange / green).

The csgA promoter seems to be very weak. Promoter activity of csgA was studied using

a promoterless DtrpA-lacZ gene as reporter gene. b-galactosidase activity was very low

and increased weakly at the beginning of the starvation induced development. A 0.6 kbp

putative promoter region is sufficient for csgA expression.
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The concentration of the CsgA protein is low. This is a consequence of weak expression

of the csgA gene. CsgA probably acts in the pM range as a signal per se or has an

enzymatic function to convert a substrate into the signal molecule.
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VII. Appendices

Appendix 1. Abbrevations

B. subtilis Bacillus subtilis
D. discoideum Dictyostelium discoideum
S. aurantiaca Stigmatella aurantiaca
M. xanthus Myxococcus xanthus
P. aeruginosa Pseudomonas aeruginosa
V. fisheri Vibrio fisheri
E. coli Escherichia coli

ampr ampicillin resistance
ATP adenosine 5`-triphosphate
bp base pair
BSA bovine serum albumin
DEPC diethyl pyrocarbonate
DNA deoxyribonucleic acid
dNTP deoxynucleoside triphosphate
DTT dithiothreitol
EDTA ethylenediaminetetraacetic acid
Fig. figure
ß-gal. ß-galactosidase
HPLC high performance liquid chromatography
hr hour
IgG immunoglobulin G
kmr kanamycin resistance
kbp kilobasepair
kDa kilodalton
M molar
mg miligram
min minute
mM milimolar
mRNA messenger ribonucleic acid
nts nucleotides
OD optical density
ORF open reading frame
PAGE poly-acrylamide gel electrophoresis
RBS ribosome binding site
PCR polymerase chain reaction
RNA ribonucleic acid
RNase ribonuclease
RT room temperature
strr streptomycin resistance
tetr tetracyclin resistance
mg microgram
ml microlitre
nM nanomolar
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v/v volume to volume
w/v weight to volume
°C degree Celsius
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Appendix 2. XhoI DNA fragment – ORFs
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