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Anfangsbedingungen und Kollaps Pr�astellarer Kerne

Pr�astellare Kerne entstehen dur
h die Interaktion von Gravitation und turbulenten Ges
hwin-

digkeitsfeldern. Obwohl die Turbulenz auf gro�en Skalen dem gravitativen Kollaps moleku-

larer Wolken entgegenwirkt und ihn signi�kant verz�ogert, k�onnen lokal dur
h konvergierende

Fl�usse stark verdi
htete Strukturen entstehen, die dur
h ihre Eigengravitation gebunden sind

und in diesem Sinne vom turbulenten Fluss entkoppelt sind. Dieser Me
hanismus s
ha�t somit

die Anfangsbedingungen f�ur die Entwi
klung stellarer Objekte. Auf Grund der sto
has-tis
hen

Eigens
haft turbulenter Ges
hwindigkeitsfelder ist jeder prestellare Kern einzigartig in seiner

Form und internen Dynamik. Dieser individuelle Charakter f�uhrt na
h dem Kollaps au
h

zu individuellen Ergebnissen: Einzelsterne, Doppelsterne und Multisysteme. Das hei�t, die

statistis
hen Eigens
haften von Sternpopulationen werden wesentli
h dur
h den individuellen

Charakter der Anfangsbedingungen bestimmt. Es wurde eine Methode ent- wi
kelt, die die

f�ur Molek�uhlwolken typis
hen Ges
hwindigkeitsfelder nutzt um pr�astellare Kerne zu erzeu-

gen. Zur numeris
hen Simulation des Gases wurde \Smoothed Parti
le Hydrodynami
s" mit

einer idealisierenden Bes
hreibung der erzeugten Protosterne verwendet. Die dur
hgef�uhrten

Sternentstehungssimulationen umfassen drei Phasen: Eine Pr�akollapsphase, die die Di
ht-

estrukturen pr�astellarer Kerne na
hbildet sowie deren Di
hte- und Ges
hwindigkeits-Feld in

ein dynamis
hes Glei
hgewi
ht bringt, so dass eine nat�urli
he und physikalis
h konsistente

Anfangsbedingung entsteht. In der eigentli
hen Kollapsphase wurden Kontraktion und Frag-

mentation bis zum ersten protostellaren Objekt bere
hnet. In einer Postkollapsphase wurden

Akkretion und We
hselwirkung der protostellaren Objekte untersu
ht. Ein Ensemble von 22

individuellen Simulationen wurde auf diese Weise erstellt und die resultierende Sternpopula-

tion mit den aktuellen Beoba
htungsdaten vergli
hen.

Initial Conditions and Collapse of Prestellar Cores

Prestellar Cores are 
reated by the intera
tion of a turbulent velo
ity �eld and gravity. On

large s
ales turbulen
e supports mole
ular 
louds against gravity. But on small s
ales turbu-

len
e is able to 
reate dense stru
tures by lo
ally 
onverging 
ows. Eventually these stru
tures

may be 
aptured by their own gravity and de
ouple from the turbulent 
ow. This me
ha-

nism 
reates the initial 
onditions for the formation of stellar obje
ts. Due to the sto
hasti


nature of turbulent velo
ity �elds every prestellar 
ore is unique in its shape and internal

dynami
s. This pe
ularity in the initial 
onditions is transformed via the 
ollapse into an

individuality of the resulting stellar systems: single stars, binaries and multiple systems. As

a result, we expe
t the statisti
al features of stellar populations to be 
ontrolled by this pe-


uliar properties of prestellar 
ores. I developed a method using the the typi
al turbulent

velo
ity �elds of mole
ular 
louds to 
reate prestellar 
ores. For the numeri
 simulations a

'Smoothed Parti
le Hydrodynami
s' Code is used in
luding a spe
ial simpli�ed treatment

for the 
reated protostars. The hydrodynami
al star formation simulation 
onsists of three

stages. The pre-
ollapse stage forms the prestellar 
ores and drives the velo
ity and density

�elds into dynami
al equilibrium so that the resulting 
ores are physi
ally 
onsistent initial


ondition. During the 
ollapse phase itself the 
ontra
tion, fragmentation and heating of the

gas is 
al
ulated. In the post-
ollapse phase a

retion and the impa
t of intera
tions with

other protostellar obje
ts are analysed. In this way an ensemble of 22 individual simulations

was analysed. The statisti
al 
hara
terisation of the resulting stellar population is 
onsistent

with the 
urrent observational data and yields a natural explanation for the se
ond peak at

the low mass end of the initial mass fun
tion.
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Chapter 1

Introdu
tion

Understanding the pro
esses that lead to the formation of stars is one of the fundamental


hallenges in astronomy. It starts with the formation of mole
ular 
loud 
omplexes in a galaxy.

The mole
ular 
louds 
onsists of mole
ular gas and dust 
omposed of tiny grains the size

of smoke parti
les. Even though the gas �lls most of the volume of the 
louds the dust is

what makes them opaque. A small teles
ope resolves these 
louds as either bla
k regions on

the sky where ba
kground stars are blo
ked out or as glowing nebula in the 
ase of those


louds whi
h had bright stars illuminating the s
ene e.g. the Coal Sa
k nebular eastward the

southern 
ross or the nebular around the star � Carinae, see �gure 1.1. Mole
ular 
louds

are the birth pla
e of stars and the material within is the raw material from whi
h stars are

made. Sin
e the 
louds are mostly hydrogen, with some helium and tra
e amounts of other

elements, hydrogen is what newly formed stars are prin
ipally 
omposed of. The formation

of a star begins with the formation of a self gravitating dense 
ore out of the turbulent

medium of the mole
ular 
loud. It is about 1000 times denser than the surounding gas.

This �rst phase of 
ompression is mainly due to the supersoni
 turbulent motions driving

the gas into a state where it 
an be 
aptured by its own gravity. These bound stru
tures

are 
alled prestellar 
ores and they are the dire
t progenitors of stars. Chapter 2 gives an

overview of the star formation pro
ess, about the features of mole
ular 
louds and a detailed

observational 
hara
terization of prestellar 
ores. Chapter 5 then fo
uses on the transition of

a turbulent, unbound gas region towards a bound stru
ture. It analyses in detail how a self

gravitating 
enter is 
reated out of a turbulent mole
ular gas environment. It is shown that

this early 
ompression phase is signi�
antly di�erent to the standard pi
ture of an isothermal


ollapse phase and worth to be exposed as an additional independent phase of star formation.

On
e the absolute magnitude of gravitational energy ex
eeds the sum of thermal, turbulent,

magneti
 and rotational energy the 
ollapse starts and pro
eeds until the 
entral density and

temperature ex
eed the threshold for nu
lear fusion. This new energy sour
e supports the gas

against gravity and leads to an equilibrium state: a protostar is born. It is still embedded in

a parental gaseous envelope whi
h 
ontinues to 
ollapse into the 
enter. But 
onservation of

angular momentum prevents the gas from falling dire
tly towards the 
entral obje
t. Instead,

it forms a rotationally supported disk and matter is able to rea
h the 
entral obje
t only

after the removal of angular momentum through vis
ous transport or disk instabilities. In

Chapter 3, I dis
uss the spe
ial features of the numeri
al modelling allowing the simulations

to evolve far beyond the �rst star formation event. In Chapter 6 a

retion histories and the

formation me
hanisms of single, binary and multiple stars are analysed in detail. Be
ause

1



2 CHAPTER 1. INTRODUCTION

the formation of individual stars is subje
t to highly undeterministi
 statisti
al events the

existen
e of a dedu
tive theory is highly unlikely. However, we may be able to understand

the star formation pro
ess from a statisti
al point of view, in terms of the mass spe
trum,

binary fra
tion, orbital parameters et
. of the resulting stellar systems. Therefore we have

designed an ensemble of individual prestellar 
ores as initial 
onditions and performed the full


ollapse 
al
ulation for ea
h realization plus the follow up 
al
ulation for the a

retion phase

after the �rst stellar obje
t has formed. A detailed analysis of the resulting stellar systems is

given in Chapter 6 and 
ompared to the results from observations.



3

Figure 1.1: A
tive star formation region in the � Carinae nebula. The stellar

winds of a young 
luster has blown a 
avity into the surrounding mole
ular 
loud.

Above the 
luster one sees a massive star whi
h has allready expelled its outer

shell seen as dumbbell shaped nebula. The three zoomed 
ut outs showing the

dense envelope of young embedded protostars.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Observations and Models

2.1 The Di�erent Stages of Star Formation

A theoreti
al point of view

The theoreti
al point of view is fo
used on the physi
al pro
esses involved and how they

in
uen
e or 
ontrol the evolution of the 
ontra
ting gas 
loud. The 
lassi�
ation in di�erent


ollapse phases is motivated by the fa
t that there is no single self similar solution for the


ollapse from the prestellar 
ore down to stellar densities. It's rather a 
as
ade of distin
t


ompression phases with a spe
ial type of physi
s going on 
ontrolling the s
ene.

turbulent 
ompression phase: The formation of a star begins with the formation of self

gravitating prestellar 
ore out of the unbound turbulent gas of the mole
ular 
loud.

This �rst phase of 
ompression is done by the ubiquitous supersoni
 turbulent velo
ity

�eld driving the gas lo
ally into a state where it 
an be 
aptured by its own gravity.

Prestellar 
ores preferently along the interse
tion lines of sho
k fronts, regions with

more extended but still strong velo
ity gradient or in regions with extended 
onverging


ows.

isothermal 
ollapse phase: For densities below � < 5:0 � 10

�13

g=
m

3

the mean free

path of photons is mu
h larger than the size of the prestellar 
ore. So that the radiative


ooling pro
ess is mu
h faster than the heating by gravitational 
ontra
tion. Therefore

the temperature of the 
loud and its fragments stays roughly 
onstant.

adiabati
 mole
ular 
ollapse phase: For � > 5:0 � 10

�13

g=
m

3

the mean free paths of

photons be
omes shorter than the typi
al size of a fragment. This is 
alled the 'opa
ity

limit' due to the fa
t that at this density a typi
al fragment be
omes opaque or opti
ally

thi
k resulting in a 
ooling times
ale larger than the lo
al free fall time. Therefor the

fragment will behaves like adiabati
 
ompressed mole
ular gas. The gas starts to heats

up and the thermal pressure de
elerates the 
ollapse signi�
antly. Resulting in the

formation of slowly 
ontra
ting hydrostati
 
ores whi
h are a

reeting isothermal low

density gas from its envelope. This works up to the point where the mole
ules start to

disso
iate.

se
ond 
ollapse phase: After the gas has being 
ompressed adiabati
ally over �ve orders

of magnitude the 
entral temperature ex
eeds about 2000K and the hydrogen mole
ules

5



6 CHAPTER 2. OBSERVATIONS AND MODELS

start disso
iate. This pro
ess 
onsumes a huge amount of thermal energy and further


ompression leads only to a weak in
rease in temperature. The pressure support 
an't


ompete with the ever growing gravitational for
es. As a result the disso
iation pro
ess

allows for a se
ond 
ollapse phase and eventually further fragmentation. Energy is


onsumed now by the disso
iation pro
ess resulting in a de
reasing pressure support.

This allows for a se
ond 
ollapse phase and eventually further fragmentation. This

se
ond 
ollapse phase allows for an additional 
ompression of the gas of about 4 orders

o magnitude in density.

adiabati
 atomi
 
ollapse phase: After all mole
ules were transformed into atomi
 gas

the density rea
hes about 1:0� 10

�3

g=
m

3

. Now the 
ore behaves adiabati
ally again,

but with a signi�
antly higher adiabati
 
oeÆ
ient than for the mole
ular gas. This is

be
ause all the energy gain from the gravitational �eld is transformed into kineti
 energy

of the atoms, respe
tive into thermal pressure. As a result the temperature in
reases

again and a se
ond hydrostati
 
ore forms. As this 
ore rapidly a

retes material from

the se
ond 
ollapse phase it's 
enter is easily pushed towards stellar densities and nu
lear

fusion 
an ignite.

An observational point of view

An observer des
ribes the star formation pro
ess in terms of how the obje
t will appear on

the sky. So the observational 
lassi�
ation is based on the spe
tral energy distribution of

the pre- or protostellar obje
ts. A part of the young stellar obje
ts radiation is absorbed

and repro
essed depending on how mu
h matter is hosted in the star's 
ir
umstellar disk and

envelope. As a result a part of the stars energy will be shifted towards the infrared, far infrared

and submm range depending on how the matter is distributed around the evolving star .

Therefore the spe
tral energy distribution be
omes an ex
ellent indi
ator for the evolutionary

state of the obje
t, see �gure 2.1

prestellar 
ore: An 0:05 : : : 0:2 p
 extended region 
an be dete
ted by line emission of

mole
ules, see �gure 2.2. Estimated 
olumn densities are 100 times larger 
ompared

to the lo
al environment and in the order of 10

23


m

�2

. There is no 
entral obje
t

dete
table.


lass 0: At this stage a 
entral obje
t has formed but is still low in mass. This stellar

embryo is only a few ten thousand of years old. Most of the material that will eventually

make up the star is still quite far from the 
ore and is very 
ool (10� 20K), produ
ing

emission only at millimeter wavelengths or in the far infrared, see �gure 2.3.


lass I: The protostar be
omes visible in infrared, see �gure 2.4 and is about 10

5

years

old. There is still an signi�
ant amount of matter in the 
ir
umstellar envelope. There-

fore the envelope is opaque to opti
al light and thus protostars are generally invisible to

ordinary teles
opes. Most of what we know about protostars 
omes from observations

at infrared and millimeter wavelengths. The infrared emission from the disk and the

envelope is dominated by the 
ooler material in the envelope. A few protostars have

also been observed at X-ray wavelengths. X-ray emission may be an important sour
e

of ionization, allowing the star, disk and out
ow to be 
oupled by magneti
 �elds. Su
h

magneti
 �elds may also be responsible for squeezing the out
ow, produ
ing jets.
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lass II: The protostar star be
omes visible in the opti
al (�gure 2.5), and is known as

a Classi
al T Tauri star. Classi
al T Tauri stars are about 1-10 million years old and

are easily identi�ed by their strong emission lines produ
ed by the disk/star intera
tion.

The infrared emission is dominated by the disk, sin
e the envelope has mostly dissipated.

Classi
al T Tauri stars are strong X-ray emitters and 
an also produ
e powerful winds.


lass III: On
e the 
ir
umstallar disk has dissipated enough so that it no longer intera
ts

with the star, the emission lines are no longer present or very weak. Therefore the

obje
ts are 
alled "Weak-lined" T Tauri stars. Weak-lined T Tauri stars are primarily

found be
ause they are bright X-ray sour
es. T Tauri stars produ
e X-rays in hot plasma

trapped in magneti
 �elds above the stellar surfa
e. This is similar to the pro
ess in

whi
h the Sun produ
es bright 
ares but 100-1000 times more powerful. X-ray imaging

satellites, su
h as EINSTEIN, ROSAT and ASCA have dis
overed hundreds of Weak-

lined T Tauri stars.
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Figure 2.1: Di�erent stages of the star formation pro
ess and the expe
ted spe
tral

energy distribution as suggested by Andre and Montmerle (1994)
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Figure 2.2: Radio line observations of prestellar 
ores in CCS J

N

= 3

2

� 2

1

(� =

8:9mm). Done with the Berkeley Illinois Maryland Array by Ohashi (1999)
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Figure 2.3: C

18

O total intensity maps of protostellar envelopes in Taurus. They are


lassi�ed as 
lass 0 (upper row) and 
lass I obje
ts (middle and lower row). The


ontour spa
ing is 2�, starting at �2�. Crosses show the positions of the 
entral

sour
es while arrows show the dire
tions of the asso
iated out
ows. Taken from

Ohashi (1999)
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Figure 2.4: Class I obje
ts: Young Protostars still invisible in the opti
al as seen

with the Near Infrared Camera Multi Obje
t Spe
trograph (NICMOS) of the

Hubble Spa
e Teles
ope. The sensitivity of NICMOS range from 0.8 to 2.5 mi-


rons.
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Figure 2.5: Class II obje
ts: Protostars just be
oming visible in the opti
al. Here,

in the lu
ky 
ase of a bright ba
kground nebular also the massive disks around

the Protostars are visible. The image shows the Trapezium Cluster in the Orion

Nebular. The image was taken with the Wide Field Planetary Camera (WFPC)

of the Hubble Spa
e Teles
ope. The sensitivity of WFPC range from 0.17 to 0.85

mi
rons
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2.2 Distribution of Mole
ular Gas in our Galaxy

All a
tual star formation takes pla
e in dense mole
ular 
louds and bok globules distributed

along the spiral arms of our galaxy. Mole
ular 
louds result from the 
ompression of atomi


gas entering the spiral arms. Figure 2.6 shows the Milky Way as observed in the 115 GHz line

of 
arbon monoxide (CO), the best tra
er of interstellar mole
ular 
louds. These 
louds are


omposed almost entirely of mole
ular hydrogen and atomi
 helium, both nearly impossible

to dete
t.

In the top map the 
olors, from dark blue (weakest) to white (strongest), represent the CO line

intensity summed up over all radial velo
ities, a measure of the total amount of mole
ular gas

along the line of sight. The intense yellow-to-white horizontal strip at the 
enter of the map

is produ
ed by the large number of mole
ular 
louds in the inner spiral arms of the Galaxy,

while elsewhere in the map individual nearby mole
ular 
louds are prominent. The map shows

impressively that the dense mole
ular gas is 
on�ned to a very narrow plane embedded in

the gala
ti
 disk. The lower graphi
 shows a zoom out of a region around Perseus. Here the


olors range from bla
k (low intensity) to white (strong intensity). The 
onspi
uous white

stru
tures to the right hand side are typi
al giant mole
ular 
louds.

2.3 Properties of Mole
ular Clouds

Dense mole
ular 
louds with a
tive star formation are generally self-gravitating, magnetized,

turbulent 
ompressible 
uids. They have sizes of about 10 � 30 p
, densities of about 100

mole
ules per 

m and masses of 10

4

: : : 10

6

M

�

. Typi
al measured 
olumndenisties are

in the order of 10

21

: : : 10

22


m

�2

. The 
louds are opaque for ultra violette radiation and

be
ome translu
ent in the far infrared and radio band. So they 
ool down to temperatures of

10 : : : 20K.

2.3.1 Ingredien
es

The 
hemi
al 
omposition is dominated by mole
ular hydrogen and helium. Be
ause the

interstellar gas has been extensively repro
essed by stars and supernovae it is enri
hed whi
h

heavier elements like 
arbon, nitrogen, oxygen et
. A part of the heavy elements 
ondenses

into small dust grains. Then there are two main 
omponents of mole
ular 
louds: gas and

dust 
omposed of tiny grains the size of smoke parti
les. The dust to gas mass ratio is of the

order of 1:100. Even though the resulting dust to gas volume �lling fa
tor is 1:100000 the

dust absorption dominates espe
ially on short wavelengths. As a result mole
ular 
louds are

e�e
tively shielded from ionizing UV photons to a large extend so that the degree of ionization

is very low and in the order of 10

�6

: : : 10

�8

(Bergin et al. (1999))

2.3.2 Stru
ture

Mole
ular Clouds are built up of an hierar
hi
al selfsimilar fra
tal like stru
ture from large

fragments to more and more small sub- and subsubfragments. This 
auses them to have a

very high surfa
e area whi
h is important for several ex
hange pro
esses with the diluted

atomi
 or ionized gas in whi
h they are embedded. At the end of this 
hain from large to

small s
ales are the 
lumps and prestellar 
ores. Clumps and prestellar 
ores are the only

gravitationally bound stru
tures in mole
ular 
louds. Clumps are massive (M � 1000M

�

)
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Figure 2.6: Upper �gure: The Milky Way as observed in the 115 GHz line of CO.

Colors range from dark blue (weakest) to white (strongest), giving a measure

of the total amount of mole
ular gas along the line of sight. Prepared by Dr.

Tom Dame, Dr. Dap Hartmann and Prof. Patri
k Thaddeus of the Center for

Astrophysi
s. Lower �gure: CO map of the 'Canadian Gala
ti
 Plane' survey


overing an area of 40 � 8:5 degrees. Colors rage from bla
k (low intensity) to

white (strong intensity).
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a

umulations of mole
ular gas about 100 times denser than the mean density of mole
ular


louds. Star forming 
lumps form star 
lusters. Even though 
lumps are bound stru
tures

the resulting star 
lusters are most times unbound at the end.

Figure 2.7 shows the detailed stru
ture of a mole
ular 
loud 
omplex seen 
lose to the tail of

S
orpion. Inside this mole
ular 
loud 
omplex Motte et al. (1998) has found more that 40

dense prestellar 
ores.

2.3.3 Velo
ity Stru
ture and S
aling Relations

The highly supersoni
 linewidths that are observed in mole
ular 
louds probably imply turbu-

lent motions. The turbulent motions are naturally expe
ted to built up the fra
tal stru
tures

(Mandelbrot 1982). This means that mole
ular 
louds are not stati
. Their fra
tal stru
ture

gets repro
essed at every time. This permanent rearrangement of mass eÆ
iently prevents the

mole
ular 
loud from 
ollapse and a
ts like an additional pressure. The fa
t that mole
ular


louds are supported not only by thermal pressure 
an also be seen from the observation that

the star formation rate in our galaxy is very low. An order of magnitude estimation for the

star formation rate based on the assumption that all the gas 
ondensed in mole
ular 
louds

would 
ollapse on their free fall time (� 4 � 10

6

yrs) and transform into stars yields a value

about 100 times larger than what is observed (S
alo 1986; Evans 1999). Even if we assume

a more realisti
 star formation eÆ
ien
y of 10 per
ent the life times of mole
ular 
louds are

still an order of magnitude larger than their free fall times. So its 
lear that the turbulen
e

signi�
antly 
ontrols the star formation, and it will 
ome out in 
hapter 5 that it also plays

a fundamental role in the star formation pro
ess itself. The turbulent velo
ity �elds were

extensively measured during the last three de
ades. One of the most interesting features

is the linewidth-size 
orrelation dis
overed by Larson (1969). It 
onne
ts the turbulent line

broadening to the size of the observed region:

�[km=s℄ = 1:1L[p
℄

0:38

(2.1)

As the linewidths approa
h their thermal values on size s
ales of about 0:1 p
, stru
tures

depart from self similar des
ription. This departure may mark the boundary between 
loud

evolution and star formation. In the 
entral regions of prestellar 
ores (as they 
an be resolved

by radio or submm teles
opes/arrays) the turbulent linewidths seem to be 
onstant and in

the order of � = 0:7 


s

(Goodman et al. (1998)). The linewidth-size relation obeyed by the

giant mole
ular 
louds ends with a maximum velo
ity dispersions of �


l

� 3 : : : 5 km=s.

This ex
eeds the thermal sound speed by a fa
tor of 20. Su
h supersoni
 turbulen
e would

dissipate on the 
rossing times
ale of the mole
ular 
loud:

t

t


=

R


l

�


l

= 10

7

yrs (2.2)

So there is the need of an eÆ
ient driving me
hanism for the turbulen
e. Possible 
andidates

are supernovas and stellar winds, the gala
ti
 sheer and magneti
 �elds.

2.4 Prestellar Cores

Prestellar 
ores are the smallest stru
tures of mole
ular 
louds. They are the �nal stage of


loud fragmentation and the sour
e for intermediate and low mass star formation. Their
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Figure 2.7: 1.3mm mosai
 of the � Ophiu
hus main 
loud 
omplex. Indi
ated are

several dense 
louds whi
h are the host for 
lumps and dense prestellar 
ores.
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masses range from 0:1M

�

to 10M

�

. The 
ru
ial feature, whi
h let prestellar 
ores stand

out against the large s
ale stru
tures in mole
ular 
louds is the fa
t that they are bound

stru
tures whi
h are (most times) not disrupted by the turbulent environment. In this sense

they are de
oupled from the surrounding 
ow.

2.4.1 Geometri
al Stru
ture

Prestellar 
ores were born out of their supersoni
 turbulent environment. Therefore it's not

surprising that their geometri
al stru
ture shows no symmetry at all, neither spheri
al nor


ylindri
al. Due to the statisti
al nature of the turbulent velo
ities every prestellar 
ore is

unique in its shape and internal velo
ity stru
ture, see �gure 2.2. Typi
al sizes of prestellar


ores range from 10000 to 30000 AU (0.05 to 0.15 p
). Besides their individuality they show a

typi
al radial density stru
ture. Ward-Thompson et al. demonstrated that prestellar 
ores do

not have density pro�les whi
h 
an be modelled by a single s
ale free power law. Instead they

have 
at inner radial density pro�les steepening toward the edges. Modelling submm data

assuming spheri
al symmetry results in radial density pro�les of �(r) � r

�1:2

if r < 4000AU

and �(r) � r

�2

if 4000 < r < 15000AU.

2.4.2 Rotational Properties

Radio observations of prestellar 
ores only have a

ess to a two dimensional proje
tion of the

density and velo
ity stru
tures in a prestellar 
ore. This means that prestellar 
ores are seen

in terms of 
olumn densities and radial velo
ities along a line of sight. Think of a sphere-like

prestellar 
ore rotating like a rigid body. In this simpli�ed pi
ture the rotation 
an be dete
ted

as a line of sight (LOS) velo
ity gradient if the rotation axis of the 
ore is not parallel to the

LOS. Due to the fa
t that no one knows the in
lination between rotation axis and the line

of sight the measured velo
ity gradient 
an only yield a lower limit for the real rotation speed.

With this pi
ture in mind a lot of velo
ity gradient measurements were done to estimate

the rotational properties of prestellar 
ores (e.g. Goodman et al. (1993), see �gures 2.8, 2.9 ).

In reality things are more 
omplex. Prestellar 
ores are not rigid body rotators. They have

internal subsoni
 turbulent velo
ity �elds and, in addition, nonsymmetri
 shapes. One should

keep in mind that rigid rotation is not the only possible way to indu
e velo
ity gradients in

proje
tion. There are several 
onstellations of a turbulent velo
ity �eld leading to a LOS

velo
ity gradients even though there is no rotational motion at all. This was demonstrated

by Burkert and Bodenheimer (2000). They showed, that in general, the line-of-sight velo
ity

gradient of an individual turbulent 
ore does not provide a good estimate of its spe
i�
 angu-

lar momentum and that in 
ontext with the 'rigid body rotator model' the intrinsi
 angular

momentum is overestimated by a fa
tor of 2� 3.
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Figure 2.8: Upper graph: Filled squares of varying size represent the LSR velo
ity

of the peak of the NH

3

line pro�le at ea
h position., and 
ontours map the 
olumn

density distribution. The small 
ir
le with an arrow indi
ates the dire
tion of the

velo
ity gradient. Velo
ity range (6.78 - 7.43 km/s). Lower Graph: Distribution

of the measured velo
ity gradients. Taken from Goodman et al. (1993)

Figure 2.9: Distribution of velo
ity gradients, measured in the sample of Goodman

et al. (1993)



Chapter 3

Physi
al Con
epts and Numeri
al

Te
hniques

3.1 The Hydrodynami
 Equations

3.1.1 Euler and Lagrange representation

There are two di�erent points of view, how hydrodynami
 pro
esses 
an be des
ribed. For

the derivation of the total 
hange of mass, momentum and energy in time it is advantageous

to use the Euler representation. In this pi
ture there is used a 
onstant 
ontrol volume V at

a �xed point in spa
e with a surfa
e F and a 
orresponding unit ve
tor n perpendi
ular to its

surfa
e. The variables of interest (mass, momentum, energy) are analysed inside this volume.

The results then refer to points in spa
e whi
h are at rest! In pra
ti
e, di�erential volume

elements are used, so that the physi
al variables do not 
hange inside a volume element.

In 
ontrast to that the Lagrange pi
ture uses small 
omoving volume elements of 
onstant

mass. Let us take f as an arbitrary physi
al variable of a 
omoving 
uid element. To estimate

the 
hange in f at time t and at the position r(t) of the volume element one has to 
al
ulate

the values of f at the positions r(t) and r(t) + Æt along the traje
tory of the 
uid element:

df

dt

:= lim

Æt!0

f(r(t+ Æt); t+ Æt)� f(r(t); t)

Æt

(3.1)

Using the Taylor expansion, the right hand side of (3.1) 
an be simpli�ed into an expression

whi
h gives more physi
al insight:

df

dt

=

�f

�t

+ (v � r)f (3.2)

Where v = dr=dt is the velo
ity ve
tor of the 
uid element. Equation (3.2) de�nes the total

derivative D=Dt and 
onne
ts the Lagrange- and the Euler representation. The left hand

side of equation (3.2) des
ribes the total 
hange of f in time as it would be seen in a volume

element at rest, resp. the 
hange of f in the Euler pi
ture. The �rst term on the right hand

side des
ribes the 
hange of f in time for a 
omoving 
oordinate system, resp. in the Lagrange

pi
ture. So that the se
ond term on the right hand side 
an be interpreted as the adve
tive


hange of f at some �xed position.

19
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3.1.2 Continuity equation

The 
ontinuity equations des
ribes the 
hange of mass in a 
ontrol volume V or to be more

pre
ise, the 
hange of density at any point in spa
e. Due to the 
onservation of mass, a 
hange

of mass in the 
ontrol volume is always a

ompanied by a mass 
ux through the volume's

surfa
e.

�

�t

Z

V

�dV =

I

F

�(v � n)dF (3.3)

The Gaussian law yields the di�erential form in the Euler representation

��

�t

+r(�v) = 0 (3.4)

and with (3.2) this 
an be transformed into the Lagrange representation

d�

dt

+ �rv = 0 (3.5)

3.1.3 Equation of motion

In analogy to the 
ontinuity equation one 
an write down a balan
e equation for the mo-

mentum. This is done in 
onsideration of Newton's law and the 
onservation of momentum.

This means, the momentum inside the 
ontrol volume 
an be 
hanged by momentum in- or

out-
ow or by a
ting for
es.

�

�t

Z

V

�vdV =

I

F

�v(vn)dF +

Z

V

�fdV �

I

F

pndF +

I

F

TndF (3.6)

The term on the left hand side of equation (3.6) is the 
hange of momentum per time. The

�rst term on the right hand side is the 
onve
tive impulse 
ux through the surfa
e of the


ontrol volume. The next three terms are the for
es a
ting on the 
uid. They 
an be divided

into volume (2

n

d term) and surfa
e (3

r

d and 4

t

h term) for
es. The volume for
e is written

in general terms of a for
e density �f . In the 
ontext of star formation gravity is the most

important volume for
e whi
h has to be taken into a

ount.

f = �r� (3.7)

�� = 4�G� (3.8)

The surfa
e for
es are indu
ed by the 
uid outside the 
ontrol volume. There are pressure

for
es a
ting perpendi
ular to the surfa
e (3rd term) and for
es transmitted due to the vis-


osity of the 
uid a
ting tangential to the surfa
e. These vis
ous tensions are represented

by the stress tensor T (4th term). Using the Gaussian law, (3.6) 
an be transformed into a

di�erential form

�(�v)

�t

+ [r(�v)℄v + �(v � r)v � �f +rp�rT = 0 (3.9)
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Euler Equation

The Euler equation is the equation of motion for an ideal 
uid - a 
uid with zero vis
osity,

no energy dissipation and no 
ondu
tion of heat. This means that 
uid layers of di�erent

velo
ity 
an slide upon ea
h other without resistan
e and dissipation of kineti
 energy. The

Euler equation 
an be dedu
ed from (3.9) merging the �rst two terms on the left hand side

by inserting the 
ontinuity equation. What results is the Euler equation.

�v

�t

+ (v � r)v = �

1

�

r+ f (3.10)

Using (3.2) this 
an be transformed into the Lagrange representation

dv

dt

= �

1

�

rp+ f (3.11)

Navier-Stokes Equation

To des
ribe a real 
uid we 
an transform (3.9) using the 
ontinuity equation (3.5)

��v

�t

+ �(v � r)v = �rp+rT

��

+ �f (3.12)

= rT

0

��

+ �f (3.13)

T

0

��

:= �pÆ

��

+ T

��

represents the stress tensor (Greek indi
es representing the three spa
e


oordinates and Æ

��

stands for the Krone
ker-Delta). T and T

0

are tensors of se
ond stage.

Using the angular momentum balan
e in a 
ontrol volume and inserting (3.9) and (3.4) yields

the 
ondition that the stress tensor has to be symmetri
, T

��

= T

��

. To dedu
e the equation

of motion for a real vis
ous 
uid one has to estimate the general form of T

��

.

Energy dissipation in vis
ous 
uids 
an only take pla
e if there are relative motions between

di�erent 
uid par
els. During this pro
ess momentum is transfered from high velo
ity regions

to regions of low velo
ity. In the 
ase of a homogeneous velo
ity �eld there will be no

dissipation at all. This means that the stress tensor will not depend on velo
ities, but on

spatial derivatives of velo
ities and will be zero if there is a 
onstant velo
ity �eld. If one

assumes only small velo
ity gradients, T 
an be approximated to depend only on linear


ombinations of �rst derivatives. This means, in terms of the form �v

�

=�x

�

. Fluids that 
an

be des
ribed by this approximation are 
alled 'Newtonian 
uids'. In addition to that, T has

to vanish if the 
uid rotates as a whole like a rigid body. Given a velo
ity �eld v = ! � r,

the only vanishing linear 
ombinations are of the form (�v

�

=�x

�

+ �v

�

=�x

�

). So a general

ansatz for the stress tensor whi
h in
orporates all 
onditions required above 
an be written

in the form

T

��

=

 

�v

�

�x

�

+

�v

�

�x

�

�

2

3

Æ

��

3

X


=1

�v




�x




!

+ �Æ

��

3

X


=1

�v




�x




(3.14)

The term

�

��

=

 

�v

�

�x

�

+

�v

�

�x

�

�

2

3

Æ

��

3

X


=1

�v




�x




!

(3.15)
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is 
alled shear tensor and �� represents the tra
e free part of T . The 
oeÆ
ient of the shear

vis
osity � and the 
oeÆ
ient of the volume vis
osity � are s
alar variables due to the isotropy

of the 
uid. They are des
ribing the individual features of the 
uid depending on pressure and

temperature. Be
ause of the se
ond law of thermodynami
s only positive values are possible.

Often, the volume vis
osity 
an be negle
ted against the shear vis
osity. This is be
ause for

a gas � is small and for an almost in
ompressible liquid the term �v is nearly zero. Fluids

with zero volume vis
osity (� = 0) are 
alled Maxwell 
uids. As a result of the kineti
 gas

theory, a monoatomi
 ideal gas exa
tly mat
hes this 
ondition.

Inserting (3.14) into (3.12) yields the equation of motion for a vis
ous 
uid in Euler represen-

tation. This equation is 
alled the Navier-Stokes equation. Transformed into the Lagrange

pi
ture and with 
omponent representation:

�

dv

�

dt

= �

�p

�x

�

+

�T

��

�x

�

+ �f

�

(3.16)

Here and in the following equations the summation 
onvention of Einstein is used.

3.1.4 Energy Equation

The total energy of a moving 
uid element is the sum of internal energy and kineti
 energy.

So one 
an express the total energy in the form

E

tot

=

Z

V

�

 

�+

1

2

v

2

!

dV (3.17)

Here � denotes the spe
i�
 internal energy, i.e., the internal energy per unit mass. To derive a

energy balan
e equation, one 
an use the �rst law of thermodynami
s whi
h states, that the

sum of all energies is 
onserved. Therefore a 
hange in the total energy is always a

ompanied

by an energy 
ux through the volume's surfa
e, by a heat 
ux, radiative 
ux or me
hani
al

work due to for
es a
ting on the volume. Keeping all this in mind, the energy equation 
an

be written in the form

�

�t

Z

V

�

 

�+

1

2

v

2

!

dV = �

I

F

�

 

�+

1

2

v

2

!

(v � n)dF

+

Z

V

�(f � v)dV �

Z

F

p(n � v)dF +

I

F

((Tn) � v)dF

�

I

F

(q � n)dF +

Z

V

Q

rad

dV (3.18)

The left hand side of equation (3.18) des
ribes the 
hange of total energy inside the volume

V . The �rst term on the right hand side stands for the 
onve
tive energy 
ux through the

volume's surfa
e F . The next three terms in the se
ond row of (3.18) represent the energy

ex
hange due to me
hani
al work: the outer volume for
e (1st term), pressure for
e (2nd

term) and vis
ous dissipation (3rd term). The energy ex
hange by heat 
ux and radiative


ux is represented in the two terms of the third row of (3.18). Where q is the heat 
ux ve
tor

and Q

rad

des
ribes the absorbed, resp. emitted radiation per volume.

The energy equation (3.18) only holds if the 
hemi
al 
omposition does not 
hange in spa
e
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and time (i.e., there are no 
hemi
al rea
tions and no di�usive pro
esses). It 
an be trans-

formed by the Gaussian law into a di�erential representation:

�

�t

"

�

 

�+

1

2

v

2

!#

+r

"

�

 

�+

1

2

v

2

!#

= �(f � v)� [r(�v)℄v +r(Tv)�rq +Q

rad

(3.19)

The term on the left hand side of (3.19) 
an be simpli�ed using the 
ontinuity equation (3.4):

�

�

�t

 

�+

1

2

v

2

!

+ �v � r

 

�+

1

2

v

2

!

= �(f � v)� [r(�v)℄v +r(Tv)�rq +Q

rad

(3.20)

One 
an use the 
hange of the internal spe
i�
 energy to �nd an expression for the 
hange of

the spe
i�
 entropy. Starting with the thermodynami
al relation

dE = TdS � pdV (3.21)

resp.

d� = Tds� pd

�

1

�

�

= Tds+

p

�

2

d� (3.22)

From (3.22) it is straightforward to get an expression for the spe
i�
 entropy:

T

ds

dt

=

d�

dt

+

p

�

rv (3.23)

Energy Equation for an ideal 
uid

As de�ned above, in an ideal 
uid there exists neither dissipation nor heat 
ux. So the stress

tensor T and the heat 
ux ve
tor q vanish. If we require in addition no absorption and

emission of radiation (Q

rad

= 0) then equation (3.20) 
an be simpli�ed as follows:

�

�

�t

 

�+

1

2

v

2

!

+ �v � r

 

�+

1

2

v

2

!

= �(f � v)�r(�v) (3.24)

Using (3.2) and the Euler equation in Lagrange representation we get

�

�

�t

 

1

2

v

2

!

+ �v � r

 

1

2

v

2

!

= �

d

dt

 

1

2

v

2

!

= �v �

dv

dt

= �v � rp+ �(v � f) (3.25)

(3.24) 
an be simpli�ed further resulting in an equation for the spe
i�
 energy in Lagrange

representation:

�

��

�t

+ �v � r� = �prv (3.26)

d�

dt

= �

p

�

rv (3.27)
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Energy Equation for a vis
ous 
uid

In the 
ase of a vis
ous 
uid (3.20) already represents the general form of the energy equation.

In analogy to (3.25), using (3.2) and the Navier-Stokes equation (3.16) one gets

�

�

�t

 

1

2

v

2

!

+ �v � r

 

1

2

v

2

!

= �v � rp+ v � (rT ) + �(v � f) (3.28)

Inserting (3.20) yields the equation for the spe
i�
 energy for a vis
ous 
uid:

�

��

�t

+ �v � r� = �prv + T

��

�v

�

�x

�

�rq +Q

rad

(3.29)

��

�t

= �

p

�

rv +

1

�

T

��

�v

�

�x

�

�

1

�

rq +

Q

rad

�

(3.30)

In a �rst approximation, the heat 
ux ve
tor q 
an be repla
ed using Fourier's law, whi
h

states that the heat 
ux is proportional to the temperature gradient in the 
uid:

q = ��rT (3.31)

Here � denotes the heat 
ondu
tion 
oeÆ
ient. The negative sign keeps tra
k of the fa
t that

the heat 
ux it dire
ted from warm to the 
old regions. Inserting the energy equation (3.30)

into the entropy equation (3.23) yields

T

ds

dt

=

1

�

T

��

�v

�

�x

�

�

1

�

rq +

Q

rad

�

(3.32)

The term T

��

�v

�

=�x

�

des
ribing the fra
tion of dissipated energy 
an be transformed using

the stress tensor in the representation (3.14). Be
ause the shear tensor �

��

is symmetri
 and

tra
eless (see de�nition (3.15)) one 
an write

T

��

�v

�

�x

�

=

1

2

T

��

 

�v

�

�x

�

+

�v

�

�x

�

!

=

1

2

(��

��

+ �Æ

��

rv)(�

��

+

2

3

Æ

��

rv)

=

1

2

��

��

�

��

+

1

2

(� +

2

3

�)Æ

��

�

��

rv) +

1

3

�Æ

��

Æ

��

(rv)

2

=

1

2

��

��

�

��

+ �(rv)

2

� 0 (3.33)

Using this we 
an write down the 
hange in the spe
i�
 entropy:

�T

ds

dt

=

1

2

��

��

�

��

+ �(rv)

2

�rq +Q

rad

(3.34)

One sees, taking into a

ount equation (3.33) that the vis
osity indu
ed fri
tion evokes always

an in
rease of internal energy resp. of the entropy. This fa
t 
an also be depi
ted in another

way: With the assistan
e of the 
ontinuity equation (3.4) we 
an 
onvert (3.28)

�

�t

 

1

2

�v

2

!

= �r

" 

1

2

�v

2

+ p� T

!

v

#

+ prv + �(v � f)� T

��

�v

�

�x

�

(3.35)
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This is an expression for the 
hange of the energy density per time. Integrating over the

whole 
uid volume, applying Gauss's theorem and negle
ting surfa
e terms at in�nity yields

an equation for the evolution of the total kineti
 energy:

�E

kin

�t

=

Z

prvdV +

Z

�(v � f)dV �

Z

T

��

�v

�

�x

�

dV (3.36)

The �rst volume integral on the right hand side denotes the 
hange in kineti
 energy due to

the 
ompressibility of the 
uid. The se
ond one 
onsiders the external volume for
e resp. the


orresponding potential energy. And the last integral represents the vis
osity of the 
uid.

Be
ause of (3.33), the last term is always negative, i.e. the kineti
 energy 
an only de
line

with time. That means, the vis
osity dissipates kineti
 energy, resp. transforms it into heat.

3.1.5 The Equation of state

The system of equations built up so far (
ontinuity equation, equation of motion and energy

equation) is not 
losed regarding the variables in use. In addition one needs to spe
ify, besides

the 
oeÆ
ients for the vis
osity, the properties of the matter. To 
lose this system of equations

one needs an equation of state whi
h 
onne
ts pressure p, density � and temperature T . This

equation will provide the missing relations of e.g. p = p(�; �) and T = T (�; �)

3.1.6 The ideal gas

In the 
ontext of star formation the ideal gas equation plays a fundamental role, be
ause it is

simple and valid for a large range in density and temperature. One has to be 
areful to not


onfuse the terms 'ideal gas' and 'ideal 
uid' be
ause vis
ous 
uids (like mole
ular hydrogen

gas) 
an behave like an ideal gas.

The ideal gas equation is of the form

p =

k

b

T

�m

u

� (3.37)

where k

b

is the Boltzmann 
onstant, � is the mole
ular weight andm

u

= 1=N

A

= 1:66�10

�

24g

is the atomi
 mass unit. To have some numbers, � = 1:24 for the solar gas 
omposition,

� = 2:36 for the gas in 
old mole
ular 
louds and � = 0:5 for 
ompletely ionized hydrogen

gas.

In the 
ase of an ideal gas the spe
i�
 internal energy is 
onne
ted to the temperature as

follows:

� =

1

(
 � 1)

k

b

T

�m

u

= 


v

T (3.38)


 is known as the polytropi
 index or adiabati
 exponent. It is 
on
atenated to the degrees

of freedom


 =

2

f

+ 1 (3.39)

The most 
ommon 
ase during the early and still 
old phase of star formation is a mixture

of diatomi
 mole
ular gas: f = 5 �! 
 = 7=5. Or, in a later phase, when all mole
ules have
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already disso
iated into a 
omposition of atoms: f = 3 �! 
 = 5=3. Using the heat 
apa
ity


oeÆ
ients for 
onstant volume 


v

and 
onstant pressure 


p

we 
an write


 =




p




v

=)

k

b

�m

u

= 


p

� 


v

(3.40)

There is also the possibility to express the spe
i�
 internal energy in terms of pressure and

density. By doing so one 
an eliminate the temperature from the system of equations (The

only temperature dependen
e then remains in the vis
osity 
oeÆ
ients � and �).

� =

1


 � 1

p

�

(3.41)

In general it is assumed that the 
uid is in a lo
al equilibrium. This means that �(�; p) is

lo
ally of the same form as in the 
ase of thermodynami
 equilibrium.

3.2 Stability of Self-Gravitating Fluids

The �rst and usually suÆ
ient approa
h to determine the stability properties of physi
al 
uids

is to analyze the linearized set of equations. In general, an equilibrium system is des
ribed

by a time independent solution of the Boltzmann equation

df

dt

=

�f

�t

+ _qr

q

f + _pr

p

f (3.42)

=

�f

�t

+ pr

q

f + Fr

p

f (3.43)

a distribution fun
tion f

0

(q; p) with df

0

=dt = 0. Small perturbations to this equilibrium state


an be written as

f(q; p; t) = f

0

(q; p) + �f

1

(q; p; t) (3.44)

with � � 1. This 
an be substituted into the Boltzmann equation (3.42). The terms inde-

pendent of � sum to zero be
ause they are the equilibrium solution. In a �rst order approa
h,

terms of order �

2

and higher are negle
ted sin
e � � 1. What remains is a linearized set of

equations governing the time evolution of the perturbation. Deriving a dispersion relation,

the properties of growing and de
aying modes 
an be studied. The linearized set of equations

for an isothermal, selfgravitating 
uid are

��

1

�t

+ �

0

r � v

1

= 0 (3.45)

�v

1

�t

= �r


2

s

�

1

�

0

�r�

1

(3.46)

4�

1

= 4�G�

1

(3.47)

Here the vis
osity e�e
ts are negle
ted (� = � = 0). The equilibrium state is 
hara
terized

by �

0

= 
onst and v

0

= 0. From the de�nition of the isothermal sound speed p = 


2

s

� it

follows that p

1

= 


2

s

�

1

Furthermore, we make the ad ho
 assumption that Poisson's equation

des
ribes only the relation between the perturbed potential and the perturbed density. In

this 
ase, �

0

= 0 
an be 
hosen. This is, what is 
alled the Jeans swindle (Binney, Tremaine
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1987). By taking the time derivative of equation (3.46) and the divergen
e of (3.47) and by

eliminating v

i

and �

1

, the equations 
an be 
ombined into a wave equation for the density

perturbation �

1

,

�

2

�

1

�t

2

� 


2

s

r

2

�

1

� 4�G�

0

�

1

= 0 (3.48)

Sin
e the equilibrium state is homogeneous, the 
oeÆ
ients of the partial derivatives in (3.48)

are independent of position and time. The solution of this type of partial di�erential equation

is known to be a superposition of plane waves,

�

1

(r; t) =

Z

d

3

kA(ke

i[kr�!(k)t℄

(3.49)

The waves follow the dispersion relation

!

2

= 


2

s

k

2

� 4�G�

0

(3.50)

If the density �

0

or the wave length � = 2�=k are small, the dispersion relation (3.50) redu
es

to that of a sound wave, !

2

= 


2

s

k

2

. With in
reasing wave length or density, the frequen
y

de
reases and will eventually be
ome negative. When !

2

< 0, say !

2

= ��

2

, the time

dependen
e of the solution is proportional to exp(��t), 
orresponding to exponential growth

or de
ay. The existen
e of a growing solution implies that the system is unstable. Hen
e,

from equation (3.50) it follows that modes will 
ollapse for wave numbers

k

2

< k

2

J

=

4�G�

0




2

s

(3.51)

The 
riti
al wave number k

J

is 
alled the Jeans wave number. In terms of the wave length, a

perturbation is unstable if the wave length ex
eeds the Jeans length �

J

= 2�=k

J

, that is, if

�

2

> �

2

J

=

�


2

s

G�

0

�

T

�

0

(3.52)

Assuming the perturbation is spheri
al with diameter �

J

, this 
orresponds to a 
riti
al mass


ontained inside the perturbed volume. So the well known Jeans mass is

M

J

=

4�

3

�

0

�

1

2

�

J

�

3

=

1

6

��

0

 

�


2

s

G�

0

!

3

2

(3.53)

For isothermal gases substituting the sound speed by its dependen
e on the temperature,




2

s

= RT , the 
riti
al mass 
an be expressed in terms of density and temperature:

M

J

=

�

5

2

6

�

R

G

�

3

2

� �

�

1

2

T

3

2

�

s

T

3

�

0

(3.54)

Using the ideal gas equation and plugging it in 3.54 the Jeans mass 
an be expressed in terms

of the number density of the hydrogen mole
ules n(H

2

), the temperature T and the mole
ular

weight �,

M

J

[M

�

℄ = 49:5M

�

�

1

�

2

�

s

T

3

n(H

2

)

(3.55)
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Inserting the typi
al mean mole
ular weight � = 2:36g 
m

�3

one gets

M

J

[M

�

℄ = 8:9M

�

�

s

T

3

n(H

2

)

(3.56)

The following table gives an overview of 
riti
al Jeans masses o

urring in mole
ular 
louds

and prestellar 
ores:

T=5K T=10K T=20K T=50K T=100K

n(H

2

) = 10

1


m

�3

31.5M

�

89.0M

�

251.7M

�

995.1M

�

2814.4M

�

n(H

2

) = 10

2


m

�3

10.0M

�

28.1M

�

79.6M

�

314.7M

�

890.0M

�

n(H

2

) = 10

3


m

�3

3.1 M

�

8.9M

�

25.2M

�

99.5M

�

281.4M

�

n(H

2

) = 10

4


m

�3

1.0 M

�

2.8M

�

8.0 M

�

31.5M

�

89.0M

�

n(H

2

) = 10

5


m

�3

0.3 M

�

0.9M

�

2.5 M

�

10.0M

�

28.1M

�

n(H

2

) = 10

6


m

�3

0.1 M

�

0.3M

�

0.8 M

�

3.1M

�

8.9M

�

n(H

2

) = 10

10


m

�3

0.001M

�

0.003M

�

0.008M

�

0.03M

�

0.089M

�

The 
riti
al mass for a perturbation to 
ollapse, s
ales as M

J

� T

3=2

�

1=2

0

, i.e., it de
reases

with in
reasing density and de
reasing temperature. The Jeans instability has a simple phys-

i
al interpretation. The energy density of a sound wave is positive. However, its gravitational

energy is negative, be
ause the enhan
ed attra
tion in the 
ompressed regions outweighs the

redu
ed attra
tion in the diluted regions. The instability sets in at the wavelength �

J

where

the net energy density be
omes negative. The perturbation will grow allowing the energy to

de
rease even further. In isothermal gas, there is no me
hanism that prevents the a 
omplete


ollapse.

In reality, during the 
ollapse of a mole
ular gas 
lump, the opa
ity in
reases and at densities

of n(H

2

) > 10

10


m

�3

, the equation of state for the 
ollapsing gas be
omes adiabati
. So the


ollapse is de
elerated, the Jeans mass remains roughly 
onstant even though the 
ontra
tion

still goes on. When the temperature ex
eeds 3000K at densities of n(H

2

) > 10

16


m

�3

ther-

mal energy is used up by disso
iation of the hydrogen mole
ules and the 
ollapse a

elerates

again. Finally at a 
entral density of n(H) � 10

24


m

�3

, � � 1g=
m

3

the fusion pro
ess

sets in. This energy sour
e stops the 
ollapse pro
ess and leads to a new equilibrium (e.g.

Tohline (1982))

density temperature mole
ular weight Jeans mass

10

�13

g=
m

3

10K 2:36 g=mol 1:8� 10

�3

M

�

10

�8

g=
m

3

2500K 2:36 g=mol 2:2� 10

�2

M

�

10

�2

g=
m

3

10000K 1:18 g=mol 7:1� 10

�4

M

�

10

0

g=
m

3

60000K 0:57 g=mol 4:5� 10

�3

M

�
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3.3 The Role of Turbulen
e

Almost all known star formation takes pla
e in mole
ular 
louds. Compared to the stability

analysis of self gravitating gaseous systems (se
tion 3.2) mole
ular 
louds ex
eed vastly the


riti
al mass for gravitational 
ollapse. One would therefore expe
t that they form stars on

their free fall times
ale

t

ff

=

s

3�

32G�

0

= 1:4 � 10

6

yrs

q

n[10

3


m

�3

℄ (3.57)

For a typi
al mole
ular 
loud with a mean density of 10

2


m

�3

this is about 4�10

6

yrs. Taking

into a

ount the mass of gas 
ondensed in mole
ular 
louds (2 � 10

9

M

�

) this would imply

a star formation rate of about 500M

�

=yr. This ex
eeds the 
urrently observed rate by a

fa
tor of � 100 (S
alo (1986), Evans (1999)). Even if the star formation eÆ
ien
y is only less

than 10 per
ent the life time of mole
ular 
louds should be an order of magnitude larger than

their free fall time s
ale to be 
onsistent with the observed star formation rates. It should

be mentioned that this is subje
t to a 
ontroverse dis
ussion. Another hint, that mole
ular


louds do not simply 
ollapse on their free fall times
ale is the fa
t that star formation is not

a

ompanied by the 
ollapse of the whole mole
ular 
loud. Instead, stars form in very lo
alized

regions distributed in an apparently stable 
loud (Williams et al. (2000)). But what prevents

mole
ular 
louds from global 
ollapse? One good 
andidate are the supersoni
 turbulent

motions that are present almost everywhere in mole
ular 
louds (Larson (1981)). Turbulen
e

is a 
ru
ial 
ommon feature of mole
ular 
louds and provides an additional support against

gravitational 
ollapse. But numeri
al simulations of turbulent self gravitating media (Ma


Low et al. (1998a), Klessen et al. (2000)) have shown that turbulen
e de
ays on times
ales

of the free fall time. So to prevent mole
ular 
louds from 
ollapse turbulen
e has to be

driven. There are several potential driving me
hanisms for turbulen
e: gala
ti
 sheer motions,

supernova events, solar winds, bipolar outfrows and jets et
. It is worth noting the ambivalent

a
tion of turbulen
e on the gas. On the one hand it a
ts like an additional pressure but on

the other hand it is the sour
e of density 
u
tuations. So it is the large s
ale turbulent motion

whi
h builds up the seeds for prestellar 
ollapse and star formation by lo
ally 
ompressing

the gas into a Jeans unstable state.

3.4 Smoothed Parti
le Hydrodynami
s (SPH)

The aim of the SPHmethod is to solve numeri
ally the hydrodynami
al equations. Te
hni
ally

this is a system of 
oupled partial di�erential equations. The 
ore of the SPH method is the

transformation of the 
oupled partial di�erential equations with 
ontinuous �eld variables

into a system of 
oupled normal (
ommon) di�erential equations with variables at dis
rete

mesh points in spa
e. In 
ontrast to the 
lassi
al grid methods the SPH 
ode uses mesh points

neither �xed in spa
e nor ordered in a grid. The SPH method is a Lagrangian method. So

one 
an think of the mesh points as buoys drifting with the 
ow and measuring the state

of the 
uid at these positions. The formalism by whi
h this transformation is done 
an be

divided in two steps:

1. Kernel smoothing. Here all spa
e dependent fun
tions are 
onvolved by a kernel fun
tion

2. Monte-Carlo-Integration of the 
onvolution integrals and dis
ertization
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In a last step it is now possible to numeri
ally solve the system of 
ommon di�erential equa-

tions and integrate it forward in time. For a spa
e dependent fun
tion f(r) its value at

position r 
an be approximated by the 
onvolution with an appropriate kernel fun
tion:

hf(r)i =

Z

V (h)

f(r + r

0

)W (r

0

; h)dV

0

(3.58)

The 
onvolution of f with the kernel fun
tion W results in a weighted mean for the values

of f around the position r. The kernel length h 
ontrols the spatial extent from whi
h the

weighted mean is taken. It de�nes the s
ale over whi
h for
es and physi
al 
uid properties

are smoothed out. Independent of h the kernel fun
tion has to be normalized:

Z

V

W (r

0

; h)dV

0

= 4�

1

Z

0

W (r

0

; h)r

02

dr

0

= 1 (3.59)

It follows for the limit h! 0 that

hf(r)i �! f(r) (3.60)

For h be
oming in�nitely small, the kernel W (r; h) approa
hes the Dira
 delta fun
tion Æ(r).

For simpli
ity, most authors use spheri
al symmetry in the smoothing and averaging pro
ess,

i.e. the kernel redu
es to an isotropi
 fun
tion of the interparti
le distan
es. This 
on-

straints the a
hievable resolution, espe
ially when dealing with huge density gradients along

a preferred axis like in sho
ks, �lamentary and sheet like stru
tures or a

retion disks. To


ir
umvent this disadvantage one 
an introdu
e a tensor des
ription of the smoothing method

and use anisotropi
 kernels to a

ount for anisotropies in the parti
le distribution. Although

this approa
h has 
onsiderable advantages over spheri
al averaging, it is more 
ompli
ated

and expansive in 
omputing time so that we preferred here the fast spheri
al kernel. For


onsisten
y, we use the spheri
al averaging pro
edure throughout the entire 
omputational

s
heme.

The prevalent spheri
al kernel fun
tion used in most SPH 
odes is the spline kernel of Lat-

tanzio et al. (1985). This is also the kernel used for the simulations presented here. It is

de�ned on a 
ompa
t support, and therefore only a small number of neighbouring parti
les

have to be summed over to 
al
ulate the SPH quantities.

W (r; h) =

�

h

�

8

>

<

>

:

1�

3

2

v

2

+

3

4

v

3

if 0 � v < 1

1

4

(2� v)

3

if 1 � v < 2

0 otherwise

(3.61)

Here v := r

i

� r

j

represents the distan
e between two SPH parti
les.

In the following I want to present a short 
olle
tion of useful mathemati
al identities for the

SPH quantities. A

ording to equation (3.60) the kernel fun
tion 
an be interpretated as an

approximation to the delta fun
tion for �nite h. Hen
e, the averaged fun
tion hf(r)i 
an be

expanded into a Taylor series for the smoothing length h. If the kernel is an even fun
tion

the �rst order term vanishes and the errors up to se
ond order are given by,

hf(r)i = f(r) +O(h

2

) (3.62)
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For the spheri
al kernel used in the SPH 
ode here, equation 3.62 reads

hf(r)i = f(r) +K

h

2

6

r

2

f(r) +O(h

3

) (3.63)

with the 
onstant K being independent of h. The approximation of f(r) by hf(r)i is therefore

of se
ond order in h. Sin
e the term in h

2

is multiplied by the gradient of f , this implies

perfe
t equality for 
onstant or linear fun
tions. Furthermore, for the term in h

2

to be small,

the fun
tion f should not be dis
ontinuous or have too large gradients over the size of the

kernel. This 
auses problems in the treatment of strong sho
k fronts, see 
hapter 3.5.1.

The smoothing pro
ess itself is linear with respe
t to summation and multipli
ation,

hf(r) + g(r)i = hf(r)i+ hg(r)i (3.64)

hf(r) � g(r)i = hf(r)i � hg(r)i (3.65)

The �rst equation is an identity following from the linearity of integration with respe
t to

summation, and the se
ond one is true to se
ond order in h. It furthermore follows for the

time derivative and the gradient

d

dt

hf(r)i =

�

d

dt

f(r)

�

(3.66)

rhf(r)i = hrf(r)i (3.67)

Be
ause the state of the 
uid is evaluated only at dis
rete points (the positions of the SPH

parti
les) the 
onvolution integral of (3.58) redu
es to a sum over the N neighbouring SPH

parti
les r

j

inside 2h around the parti
le r

i

:

hf(r

i

)i =

N

X

j=1

m

j

�(r

j

)

f(r

j

)W (r

i

� r

j

; h) (3.68)

The termm

j

=�(r

j

) simply results from the normalization of the kernel fun
tion and represents

an expansion of the number density:

hn(r

j

)i =

�(r

j

)

m

j

(3.69)

Equation (3.68) is the fundamental equation for the SPH method, as it allows one to �nd

smoothed approximations to the physi
al quantities of the 
uid.

The smoothing me
hanism also provides a very advantageous way to 
ompute gradients of


uid properties. By de�nition

hrf(r)i =

Z

V (h)

rf(r

0

)W (r � r

0

; h)dV

0

(3.70)

Integrating by parts yields

hrf(r)i =

Z

S(h)

f(r

0

)W (r � r

0

; h)nda+

Z

V (h)

f(r

0

)rW (r � r

0

; h)dV

0

(3.71)
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The surfa
e term 
an be negle
ted due to the fa
t that the kernel fun
tion vanishes beyond

2h. Negle
ting the surfa
e terms the integral equation 
an be transformed into a summation

for a dis
rete number of points, as done before:

hrf(r

i

)i =

N

X

j=1

m

j

�(r

j

)

f(r

j

)rW (r

i

� r

j

; h) (3.72)

Using this and the SPH base equation (3.68) any 
uid property and its lo
al gradient 
an be

evaluated as long as rW does not vanish (whi
h is the 
ase inside a radius of 2h).

Note that the Nabla operator now a
ts only on the a priori known kernel fun
tion. In pra
ti
e

the kernel and its gradients are tabulated so that they 
an be a

essed every time whi
h saves

a 
ru
ial amount of 
omputing time.

3.4.1 The Hydrodynami
 Equations in SPH notation

Armed with base equation (3.68) and equation (3.72) des
ribing the handling of the gradients

it is now possible to transform the set of hydrodynami
 equations into the SPH representation.

First one 
an �nd an expression for the density at parti
le position r

i

by simply repla
ing the

arbitrary fun
tion f(r

i

) by the density �(r

i

) :

h�(r

i

)i =

N

X

j=1

m

j

W (r

i

� r

j

; h) (3.73)

Continuity Equation

Now the 
ontinuity equation is exemplarily transformed into the SPH representation to sket
h

how the SPH method is applied to a di�erential equation. First the 
ontinuity equation is

expanded

d�

dt

= �r(�v) + (v � r)� (3.74)

Now the kernel softening is applied providing the approximated values:

h

d�

dt

i = h�r(�v) + (v � r)�i (3.75)

Using the algebrai
 rules inherent to the SPH method one gets

dh�i

dt

= �hr(�v)i + hvi � hr�i (3.76)

For further details all around SPH I want to re
ommend the do
tor thesis of Roland Speith

(http://www.tat.physik.uni-tuebingen.de/ speith/lopubl.html) whi
h gives a 
omprehensive

des
ription of the SPH method. Dis
retization of (3.76) and subsequent appli
ation of the

SPH representation for gradients (3.72) yields

dh�

i

i

dt

= �

N

X

j=1

m

j

�

j

�

j

v

j

� rW (r

i

� r

j

; h) + v

i

0

�

N

X

j=1

m

j

�

j

�

j

rW (r

i

� r

j

; h)

1

A

(3.77)
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so that the 
ontinuity equation in the SPH notation 
an be written in the form

d�

i

dt

=

N

X

j=1

m

j

(v

i

� v

j

) � r

i

W (r

i

� r

j

; h) (3.78)

The essential alternative to the SPH 
ontinuity equation is to estimate the density dire
tly

by equation (3.73). This is exa
tly what is done in the SPH 
ode used here.

Euler Equation

dv

i

dt

=

N

X

j=1

m

j

 

p

i

�

2

i

+

p

j

�

2

j

!

r

i

W (r

i

� r

j

; h) (3.79)

Navier-Stokes Equation plus Gravity

dv

i

dt

=

N

X

j=1

m

j

 

p

i

�

2

i

+

p

j

�

2

j

+�

ij

!

r

i

W (r

i

� r

j

; h)�G

m

j

r

2

ij

�

r

ij

jr

ij

j

(3.80)

Arti�
ial Vis
osity

There are two main reasons to implement vis
osity into the SPH method. The �rst is simply

to solve the general Navier-Stokes equation of a real 
uid. The se
ond has to do with the

fa
t that in most astrophysi
al problems the mole
ular vis
osity is very small and dissipation

of kineti
 energy should o

ur only in sho
ked regions. Therefore, one is able to negle
t the

expli
it treatment of physi
al vis
osity. Nevertheless, there is the need to introdu
e at least an

arti�
ial vis
osity to treat sho
k fronts 
orre
tly be
ause the pro
ess of energy dissipation 
an

not be des
ribed by an ideal 
uid. Besides the e�e
ts of numeri
al di�usivity and dissipation

inherent to every dis
retization of the hydrodynami
al equations, in the SPH method one

needs to prevent parti
le interpenetration in strong sho
ks. The only way to enfor
e this is

to espe
ially smear out the sho
k interfa
e and introdu
e terms to allow dissipation of kineti


energy in regions with strong velo
ity divergen
e. The standard formulation for the arti�
ial

vis
ous pressure is

p

�

= �

�

�

2

= ���l


s

(r � v) bulk vis
osity (3.81)

p

�

= �

�

�

2

= ���l

2

(r � v)

2

Neumann-Ri
htmyer vis
osity (3.82)

The free parameters � and � 
ontrol the strength of the vis
ous terms, and l is the s
ale

over whi
h the sho
k is smeared out, typi
al values are l � 3h. Equation (3.81) is a bulk

vis
osity. Its primary purpose is to dampen post-sho
k os
illations. Equation (3.82) is a

se
ond order von Neumann-Ri
hmyer vis
osity needed to avoid parti
le interpenetration in

high Ma
h number sho
ks. Typi
al values for the free parameters are � � 1 and � � 2 whi
h

guarantee adequate treatment of sho
ks up to Ma
h numbers of 10 (Bate 1995 PhD thesis).

Implemented into the SPH formalism the vis
ous for
e a
ting on parti
le i is then

hF (r

i

)

vis


i =

N

X

j=1

m

j

�

ij

W (r

i

� r

j

; h

ij

) (3.83)
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Where �

ij

is the vis
osity tensor:

�

ij

=

8

<

:

��

1

2

(


s;i

+


s;j

)�

ij

+��

2

ij

1

2

(�

i

+�

j

)

if (v

i

� v

j

)(r

i

� r

j

) < 0

0 if (v

i

� v

j

)(r

i

� r

j

) > 0

(3.84)

with

�

ij

=

h(v

i

� v

j

) � (r

i

� r

j

)

(r

i

� r

j

)

2

+ �h

2

(3.85)

if a 
onstant smoothing length is used. In the 
ase of a time dependent individual smoothing

length for ea
h parti
le, the 
onstant variable h of equation (3.85) has to be repla
ed by

1

2

(h

i

+ h

j

). Be
ause the arti�
ial vis
osity should be a
tive only in sho
ks and otherwise

the gas should behave like an ideal 
uid �

ij

is zero for positive divergen
e of the velo
ities

r

i

v

i

� 0.

Energy Equation

Ideal 
uid:

d�

i

dt

=

N

X

j=1

m

j

 

p

i

�

2

i

+

p

j

�

2

j

!

(v

i

� v

j

)r

i

W (r

i

� r

j

; h) (3.86)

Real 
uid: In the 
ase of a real 
uid energy is transformed by vis
ous dissipation into heat

and so there has to be added another 'sour
e term' in the energy equation:

1

2

N

X

j=1

m

j

�

ij

(v

i

� v

j

) � r

i

W (r

i

� r

j

; h) (3.87)

Now the energy equation for a real 
uid 
an be written

d�

i

dt

=

N

X

j=1

m

j

 

p

i

�

2

i

+

p

j

�

2

j

+�

ij

!

(v

i

� v

j

)r

i

W (r

i

� r

j

; h) (3.88)

3.4.2 Adaptive Smoothing Length

Using a grid 
ode, the spatial resolution of its 
al
ulations are proportional to the distan
e

of the grid points. The same holds for the SPH method with the 
ru
ial di�eren
e that the

SPH points (SPH parti
les) are moving with the 
ow. Here roots the big advantage of SPH

for astrophysi
al purposes. If there is a 
onverging 
ow, also the SPH parti
les will 
onverge

resulting in a SPH parti
le density proportional to the 
uid density. So the SPH method

intrinsi
ally adapts its resolution guided by the density distribution of the 
uid.

On the other hand the resolution is limited in prin
ipal by the smoothing length h, be
ause

physi
al 
uid properties are smoothed out on its length s
ale. Thus, if the ability of SPH

to vary its resolution is to be used to its greatest advantage, it is important to vary the

smoothing length in spa
e and time. But there are several points to 
onsider. The �rst is the
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error introdu
ed by spatially varying smoothing lengths. The same pro
ess used to obtain

the errors inherent in the SPH method 
an be applied to the equation 3.58

hf(r)i =

Z

V

f(r + r

0

)W (r

0

; h)dV

0

(3.89)

where h now varies depending on the density of the SPH parti
les. It is found by several

authors (Lattanzio et al. (1985), Hernquist and Katz (1989)) that the errors introdu
ed by a

varying smoothing length are again of se
ond order in h, and hen
e of the same order as the

errors inherent in the SPH method. An important 
onsideration when introdu
ing a variable

smoothing length is the e�e
t on for
es between parti
les. Be
ause gradient 
al
ulations are

a�e
ted by the smoothing length, one 
ru
ial point is that the smoothing length be used in

the 
al
ulation of the for
e on parti
le i from parti
le j is the same as in the 
al
ulation of

the opposite for
e. If this is not done, momentum is not 
onserved. The method for this

symmetrization used here (Evrard (1988), Benz (1990)) is simply to repla
e h in all SPH

equations by

h

ij

=

h

i

+ h

j

2

(3.90)

Thus, the use of variable smoothing lengths, allows the advantages of the Lagrangian nature

of SPH and the la
k of a �xed grid to be used to resolve high and low-density regions simulta-

neously to their fullest extent. To a
hieve an optimum adapted smoothing length it has to be

evolved in time for ea
h SPH parti
le individually a

ording to the parti
le's density evolution

so that the number of neighbours is approximatelly 
onstant. But what is the appropriate

number of neighbours? A large number of neighbours results in a low statisti
al error for

the smoothed quantities but 
auses a large 
omputing time and low resolution be
ause the

smoothing length has to be in
reased. On the other side, a low number of neigbour parti
les


auses large statisti
al errors but the 
omputation is fast and the spatial resolution is high.

It turns out, that (in three dimensions) a minimum of 50 neighbours is required to a

urately


al
ulate SPH quantities (Bate and Burkert (1997)) The SPH 
ode used here tries to maintain

the number of neighbours for ea
h parti
le to between 5-10, 20-35, and 30-70 for one, two and

three dimensions respe
tively. The s
aling law to �nd the new smoothing length h required

to keep the number of parti
les 
onstant originally is

h = h

0

�

�

0

�

�

1

�

(3.91)

where �

0

and h

0

are the densities and smoothing lengths at the initialization, and � is the

number of dimensions. The problem with this s
aling law is that one needs the new smoothing

length to determine �. This dilemma 
an be avoided by taking the derivative of equation (3.91)

to obtain

dh

dt

= �

1

3

h

�

d�

dt

(3.92)

Repla
ing the time derivative of � by the 
ontinuity equation yields

dh

i

dt

=

1

3

hr � v

i

(3.93)

This equation for the 
hange of the smoothing length 
an then be evolved in time as all the

other physi
al quantities.
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3.4.3 SPH Resolution Limit for selfgravitating 
uids

The resolvable mass of an SPH 
al
ulation is of the order of the mass inside one smoothing

length. In order to follow the fragmentation pro
ess of a 
ollapsing 
loud 
ore properly, the

lo
al Jeans mass at every timestep and at every point of the simulation area has to be larger

than twi
e the mass inside one smoothing length (Bate and Burkert (1997)). This 
ondition


an be used together with the formula for the Jeans mass

M

J

=

�

5

2

6

�

R

G

�

3

2

 

T

3

�

!

1

2

(3.94)

to dedu
e a formula for the maximum allowed density:

�


rit

=

15

32�

�

RT

�G

�

3

 

N

N

neigh

M

!

2

(3.95)

Here, N is the number of SPH parti
les used in the simulation, N

neigh

is the number of

neighbouring parti
les inside the smoothing length and M is the total mass. In the 
ase of

an isothermal equation of state one 
an follow the 
ollapse evolution up to density 
ontrasts

of r�=� = 10

9

if 10

5

SPH parti
les are used. It is worth noting, that in the 
ase of an

adiabati
 
ompression the Jeans mass is roughly 
onstant. Here the SPH method is able to

handle even larger density 
ontrasts be
ause the only limiting fa
tor is to resolve the lo
al

Jeans mass. This is 
ru
ial for star formation 
al
ulations be
ause the 
ontra
ting gas 
loud

evolves through extended phases of adiabati
 
ompression. Exhausting this advantageous

feature of SPH one 
an follow up the 
ollapse of a prestellar 
loud with initial densities of

10

�18

g=
m

3

over 17 orders of magnitude in density down to stellar densities of 0:01g=
m

3

as

it was demonstrated by Bate (1998a).

3.5 Spe
ial features and extensions to SPH

3.5.1 Supersoni
 motions and Sho
ks

The SPH method is able to give good reprodu
tion of sho
ks. The quality of the sho
k

reprodu
tion does not depend on the dimension of the 
al
ulation, nor is there a signi�
ant

dependen
e on the parti
le distribution, as long as the parti
les are equally distributed along

ea
h dimension and parti
le interpenetration does no o

ur. Instead the reprodu
tion of

the sho
k depends mainly upon the smoothing length h of the parti
les, and hen
e in the


ase of variable smoothing lengths, on the parti
le density, as this 
ontrols the smoothing

length. For values of � = 1 and � = 2 the sho
k is spread over about 3h. This spread

grows further if the vis
osity is in
reased. If the smoothing length be
omes large 
ompared

to the real physi
al sho
k width, the sho
k is smoothed out to mu
h and does not attain the


orre
t 
onditions. As expe
ted from how the arti�
ial vis
osity is designed, the �-vis
osity

is the bulk vis
osity in sho
ks, whi
h redu
es parti
le velo
ity os
illations in the sho
ked

gas, and hen
e the related os
illations in density and thermal energy. In general, to provide

a

eptable bulk vis
osity for three dimensional simulation in whi
h sho
ks 
an o

ur � � 1

should be used. This results in suppressed parti
le velo
ity os
illations of no more than

a few per
ent of the sound speed in sho
ks up to Ma
h 10. In 
ontrast the �-vis
osity is

ine�e
tive in redu
ing this os
illations. It be
omes important at the edges of sho
ks where
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relative parti
le velo
ities are 
lose to the sound speed or greater and parti
le penetration


an o

ur. In 
ases of parti
le interpenetration, there is a signi�
ant velo
ity dispersion

of parti
les in the sho
k and density 
al
ulations are in
orre
t. All together, if parti
les

penetrate right through the sho
k, the sho
k reprodu
tion breaks down 
ompletely. So it is a

fundamental step to adjust the �-vis
osity in su
h a way that parti
le interpenetrations are

suppressed suÆ
iently. In three dimensions a value of � � 2 is suÆ
ient to stop most parti
le

interpenetrations in adiabati
 and isothermal sho
ks up to Ma
h 10. The treatment of sho
ks

by the SPH method depending on � (bulk vis
osity), � (Neumann-Ri
htmyer vis
osity) and

the dimensionality of the simulation was extensively tested by Bate1995. The tests where

performed on a pre
ursor of the 
ode used here whi
h is equivalent to a test of the 
ode used

here be
ause the hydrodynami
al part is identi
al to that of the pre
ursor.

3.5.2 Sink parti
les

The opa
ity limit results in the formation of pressure-supported roughly spheri
al a

reting

hydrostati
 
ores. As these 
ores a

rete, their 
entral density in
reases, and it be
omes


omputationally impra
ti
al to follow their internal evolution until they undergo the se
ond


ollapse to form stellar 
ores be
ause of the short dynami
al time-s
ales involved. Therefore,

when the 
entral density of a pressure-supported fragment ex
eeds �

s

= 10

�11

g=
m

3

, a sink

parti
le is inserted into the 
al
ulation Bate et al. (1995).

In the 
al
ulation presented here, a sink parti
le is formed by repla
ing the SPH gas parti
les


ontained within r

a



= 14AU of the densest gas parti
le in a pressure-supported fragment

by a point mass with the same mass and momentum. Any gas that later falls within this

radius is a

reted by the point mass if it is bound and its spe
i�
 angular momentum is less

than that required to form a 
ir
ular orbit at radius r

a



from the sink parti
le. Thus, gaseous

dis
s around sink parti
les 
an only be resolved if they have radii � 15AU. Sink parti
les

intera
t with the gas only via gravity and a

retion.

Sin
e all sink parti
les are 
reated from pressure-supported fragments, their initial masses are

� 10M

J

, as given by the lo
al Jeans mass at the opa
ity limit for fragmentation. Subsequently,

they may a

rete large amounts of material to be
ome higher-mass brown dwarfs (� 75M

J

)

or stars (� 75M

J

), but all the stars and brown dwarfs begin as these low-mass pressure-

supported fragments.

The gravitational intera
tion between two sink parti
les is Newtonian for radii r � 4AU and

is softened within this radius using spline softening. In the simulations presented here sink

parti
les are not allowed to merge.

Repla
ing the pressure-supported fragments with sink parti
les is ne
essary in order to evolve

the 
al
ulations far beyond the initial free fall time. However, it is not without an element

of risk. If the fragments are followed up all the way down to stellar densities (as it was done

by Bate (1998a)) we might �nd that a few of the obje
ts that we have repla
ed with sink

parti
les fragment further in the se
ond 
ollapse phase or merge together or are disrupted via

dynami
al intera
tions. We have tried to ex
lude su
h events by insisting that the 
entral.

density of the pressure-supported fragments ex
eeds �

s

before a sink parti
le is 
reated. This

is two orders of magnitude higher than the density at whi
h the gas is heated and ensures

that the fragment is self-gravitating, 
entrally-
ondensed and, in pra
ti
e, roughly spheri
al

before it is repla
ed by a sink parti
le. This ensures that the fragment has evolved into a

self-gravitating, 
entrally-
ondensed, roughly spheri
al and pressure supported 
ore before it

is repla
ed by a sink parti
le.
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In theory, it would be possible for a long 
ollapsing �lament to ex
eed this density over a large

distan
e, thus making the 
reation of one or more sink parti
les ambiguous. However, the

stru
ture of the 
ollapsing gas that results from the turbulen
e prohibits this from o

urring;

no long, roughly uniform-density �laments with densities � �

s

form during the 
al
ulation.

Furthermore, ea
h pressure-supported fragment must undergo a period of a

retion before its


entral density ex
eeds �

s

and it is repla
ed by a sink parti
le. For example, it is 
ommon in

the 
al
ulation to be able to follow a pressure-supported fragment that forms via gravitational

instability in a dis
 for roughly half an orbital period before it is repla
ed. Thus, the fragments

do have some time in whi
h they may merge or be disrupted.

3.5.3 Variable Equations of State

In SPH simulations a density dependent adiabati
 
oeÆ
ient 
(�) 
an be used to mimi


the e�e
ts of radiative transfer and 
hemi
al rea
tions (Bate 1998). For densities below

� < �

1

= 5:0� 10

�13

g=
m

3

the mean free path of photons is mu
h larger than the size of the


ore. In that 
ase radiative 
ooling is mu
h faster than heating by gravitational 
ontra
tion

and so we 
an use 
 = 1 (isothermal equation of state).

For � > �

1

the mean free paths of photons be
omes shorter than the typi
al size of a frag-

ment. This is 
alled the 'opa
ity limit' due to the fa
t that at this density a typi
al fragment

be
omes opaque or opti
ally thi
k resulting in a 
ooling times
ale larger than the lo
al free

fall time. Therefor the fragment will behaves like adiabati
 
ompressed mole
ular gas, 
 = 1:4.

This works up to the point where the mole
ules start to disso
iate: � > �

2

= 6:0�10

�8

g=
m

3

.

Thermal energy now is 
onsumed by the disso
iation pro
ess resulting in a de
reasing pres-

sure support. This allows for a se
ond 
ollapse phase and eventually further fragmentation.

Laboratory experiments suggest an adiabati
 
oeÆ
ient of 
 = 1:15 in the disso
iation regime.

After all mole
ules are transformed in atomi
 gas (� > �

3

= 1:0 � 10

�3

g=
m

3

) the 
ore

behaves adiabati
ally again, but now with the adiabati
 
oeÆ
ient for atomi
 gas, 
 = 1:15.

Its worth noting that this approximation assumes impli
itly a unique T (�) dependen
e. In

reality T (�) depends also on the size and shape of the 
ore but there is good 
oin
iden
e with

one dimensional frquen
y dependent radiative transfer 
al
ulations (�gure 3.1).
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Figure 3.1: Comparison of our variable equation of state (dotted line) with the

temperature-density relation resulting from a spheri
 symmetri
 
ollapse 
al
u-

lation with frequen
y dependent radiative transfer (solid line; Masunaga and

Inutsuka (2000). Be
ause Masunaga and Inutsuka (2000) start with a gas sphere

intially at 5K the 
urved di�er for densities less than 10

�14

g=
m

3

. However, in

the range of 10

�13

g=
m

3

the parametrization �ts the radiative transfer result very

well. The se
ond 
ollapse phase o

urs if the density ex
eeds 5� 10

�8

g=
m

3

.
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Chapter 4

Self
onsistent Initial Conditions for

prestellar 
ores

4.1 Arti�
ial initial 
onditions

In most 
ollapse simulations done so far arti�
ial initial 
ondition are used, arti�
ial in the

sense that some kind of analyti
al des
ription is used to set up an initial density or velo
ity

distribution whi
h then dire
tly starts to 
ollapse. Examples are Gaussian density distribu-

tions, isothermal spheres, various polytropes, Bonnor-Ebert spheres et
. In almost all 
ollapse


al
ulations spheri
al or 
ylindri
al symmetry is introdu
ed at least in the initial 
onditions.

A symmetry whi
h is not seen in nature, see e.g. Barran
o and Goodman (1998), Ba
mann

et al. (1998).

Even for the same density distribution and total angular momentum a di�erent setup for the

initial velo
ities 
an drive the system into a 
ompletely di�erent 
ollapse history. For example

a super
riti
al Bonnor-Ebert sphere built up with stati
 non moving gas 
ollapses from inside

out (Shu (1977)). If one adds a spheri
al velo
ity �eld dire
ted inward the 
ollapse evolves

from outside in (Hennebelle et al. (2002)).

So if one wants to understand how prestellar 
ores evolve through the 
ollapse phase, one has

to keep in mind the large variety of prestellar 
ore realizations in nature. The aim should be

to take over nature's way of 
reating initial 
onditions as far as we known from observations

(Se
tion 2.4). One 
ru
ial feature of natural initial 
onditions are that they are individual ! In

the following se
tions I want to present a method for building up appropriate initial 
onditions

whi
h mat
h typi
al 
ommon features of prestellar 
ores, but also have its individual shape

and internal dynami
.

4.2 Two methods to built up Initial Conditions

We have developed and investigated two independent methods to built up initial 
onditions

whi
h mat
h the observed properties of prestellar 
ores. The main ingredient for both methods

is a velo
ity �eld whi
h shows the typi
al features of turbulent 
ows around and in prestellar


ores. This velo
ity �eld is used to built up an individual density stru
ture out of an initially

homogeneous gas distribution.

The 
ru
ial point is to inhibit the 
ollapse long enough so that the system is able to rea
h

a dynami
al equilibrium between the evolving density and velo
ity stru
tures. Both, density

41
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and velo
ity stru
ture are then 
onsistent with ea
h other and it is in this sense that we 
all

this state a 'self
onsistent initial 
ondition'. This 
an be rea
hed in two ways:

� Swit
h of gravity, and evolve the pure hydrodynami
 equations forward in time. This

is easy be
ause we only have to wait up to the point when dynami
al equilibrium has

been rea
hed and the system resembles hopefully the appropriate density distribution.

Unfortunately there is introdu
ed an unphysi
al dis
ontinuity when gravity swit
hed on

for the subsequent 
ollapse 
al
ulation .

� Evolve the hydrodynami
 equations with gravity, but use the turbulent velo
ity �eld

itself to prevent the system from 
ollapse for the �rst time. This is more advan
ed

be
ause here the setup has to be �netuned in a way that the 
ollapse is inhibited at

least long enough for the system to rea
h its dynami
al equilibrium and eventually

longer to adjust the resulting initial 
ondition in a optimum way before the 
ollapse

sets in.

We have tested both methods with several random realizations for the initial velo
ity �eld

but identi
al setup 
onditions. Even though the �rst method seem to be attra
tive be
ause

its easy to apply it is found to be improper. By swit
hing on gravity in a later stage destroys

the dynami
al equilibrium of density and velo
ity �eld. This is simply be
ause stru
tures

evolve essentially di�erent with and without gravity. The se
ond method 
omes out to be

the more promising. Besides the big advantage of the se
ond method that no unphysi
al

intervention is needed to initiate the 
ollapse it 
omes out that the se
ond method reprodu
es

the typi
al features of prestellar 
ores mu
h better. To apply this se
ond approa
h one needs

a quantitative measure of turbulent support against gravity.

4.3 Appropriate Setup Conditions

The following requirements have to be ful�lled by the initial turbulent velo
ity �eld:

� the 
ollapse does not set in before a dynami
al equilibrium between density stru
ture

and velo
ity �eld has been rea
hed

� it is 
onsistent to the non thermal velo
ity dispersions and linewidth size relations

observed in the vi
inity of prestellar 
ores

� the density stru
tures emerging during the pre 
ollapse phase are 
onsistent with the

observed stru
tures of prestellar 
ores

The �ne tuning 
an be done by using an extended Jeans stability 
riteria. Following the


lassi
al jeans 
riteria (see se
tion 3.2) a homogeneous density sphere of radius r and mass

m is stable against small density perturbations as long as m

tot

� m

J

. But a turbulent

velo
ity �eld yields an additional support against gravitational 
ollapse. So one 
an de�ne a

turbulent Jeans mass by adding geometri
ally mi
ros
opi
 thermal and ma
ros
opi
 turbulent

velo
ities:

v

2

all

= v

2

therm

+ v

2

turb

= v

2

therm

(1 +M

2

) (4.1)
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The Ma
h number M is the root mean square velo
ity of the turbulent motions in units of

the sound speed. Interpreted as an additional internal energy

T

e�

= T (1 +M

2

) (4.2)

we 
an rewrite the 
lassi
al equation for the jeans mass:

m

J;turb

= 2:74

s

4

3

�r

3

T

3

m

tot

(1 +M

2

)

3

2

(4.3)

Here r is the radius of the initial setup sphere and T the thermal gas temperature. The sphere

be
omes super
riti
al if m

J;turb

� m

tot

. Solving equation (4.3) for m

J;turb

= m

tot

= x yields:

x = 3:16rT (1 +M

2

) (4.4)

Inserting typi
al values for prestellar 
ores , M = 0:7 (Goodman et al., 1998), r = 0:06 p


(Ba
mann et al., 1998) and T = 10K (Barran
o and Goodman, 1998) one gets x = 3M

�

. Or

the other way around:

A gas sphere of x = 3M

�

, r = 0:06 p
 and T = 10K be
omes unstable if the Ma
h number

of its turbulent velo
ity �eld drops below M = 0:7.

The features of our initial 
ondition resulting from this analysis are summarized in the fol-

lowing table:

radius r = 0:06 p


mass m = 3M

�

temperature T = 10K

Ma
h number

at the onset of 
ollapse M = 0:7

thermal Jeans mass m

J;therm

= 1:2M

�

turbulent Jeans mass

at the onset of 
ollapse m

J;turb

= 3:0M

�

This resembles the s
ale, mean density, mass and velo
ity stru
ture of a typi
al low mass star

forming 
ore, see Se
tion 2.4. This analysis gives us the possibility to 
ontrol the physi
al

parameters of our initial 
onditions. But it is still un
lear how mu
h turbulent energy we

need at the beginning to inhibit the 
ollapse long enough. Therefore we need a method to


he
k for the dynami
al equilibrium between density and velo
ity �eld. This is des
ribed

in detail in se
tion 4.4. But �rst I want to fo
us on the prin
ipal features of turbulent

velo
ity �elds be
ause they are one of the essential ingredients of our initial 
onditions. Ob-

servations of mole
ular 
louds and prestellar 
ores (Larson (1969), Ma
 Low and Ossenkopf

(2000), Ossenkopf and Ma
 Low (2002)) and the analysis of turbulent phenomena in general

(Kolmogorov (1941)) providing strong restri
tions on the stru
ture of this velo
ity �eld.

4.3.1 The Kolmogorov Law

Think of a 
uid in the limit of a very large Reynolds number or, equivalently near zero vis
os-

ity. In the 
ase of isotropi
 stationary turbulen
e for
ed at a rate � in a spe
tral range around
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the wave number k

i

, the energy 
ux from large to small s
ales is independent of k and equal

to � for k > k

i

. As a result � being also the vis
ous dissipation rate. This shows that � is

an important parameter whi
h 
ontrols the energy 
ux from the large s
ales (small k) where

the energy it is inje
ted to the small s
ales where it is dissipated by vis
osity. This s
heme

of progressive energy 
as
ade from large to smaller and smaller sized velo
ity stru
tures are

ni
ely des
ribed by a little poem of Ri
hardson in 1922:

Big whirls have little whirls,

whi
h feed on their velo
ity,

and little whirls have lesser whirls,

and so on down to vis
osity.

Kolmogorov's theory assumes that the energy at wave numbers greater than k

i

depends

only on � and k. Due to this selfsimilar feature of the turbulent velo
ity �eld one expe
ts the

energy spe
trum E(k) to be a power law depending on �

�

and k

�

:

E

k

=

X

�;�

�

�

k

�

(4.5)

A dimensional analysis 
an be used to �nd the values for the exponents � and �. One looks

for exponents � and � su
h that the produ
t �

�

k

�

has the dimension of a kineti
 energy

spe
trum:

k = [L℄

�1

;E(k) = [L℄

3

[T ℄

�2

; � = [L℄

2

[T ℄

�3

�

�

k

�

= [L℄

2���

[t℄

�3�

= [L℄

3

[T ℄

�2

(4.6)

[L℄ and [T℄ are dimensions of spa
e and time respe
tively. There is only one possible solution

for the pair (�; �):

� =

2

3

; � = �

5

3

(4.7)

With equation 4.11, this indu
es a power spe
trum P (k) � k

�

11

3

de�ning the distribution of

the amplitudes of the velo
ity 
u
tuations on di�erent wavelengths. This is 
on�rmed by a

wide range of turbulent phenomena on earth (e.g. Gargett et al., 1984) and in spa
e. Myers

and Gammie (1999a) suggest that most observed line width-size relations of mole
ular 
louds

and prestellar 
ores 
an be reprodu
ed by a spe
tral energy law E(k) � k

�2


orresponding

to a power spe
trum P (k) � k

�4

. Burkert and Bodenheimer (2000) also show that su
h a

power law 
an reprodu
e the observed proje
ted rotational properties of mole
ular 
loud 
ores.

These results guide the way on how we 
reate the initial velo
ity �elds for our 
al
ulations.

4.3.2 Gaussian Random Fields

We realize the initial turbulent velo
ity �eld of the prestellar 
ore using Gaussian random

�elds. Gaussian random �elds 
an be �xed by their mean value, in our 
ase the root mean

square (rms) velo
ity

p

v

2

, and the power spe
trum P (

~

k) with respe
t to the wave number

k. The power is de�ned as the absolute value of the Fourier 
oeÆ
ients in k-spa
e and

thus determines the distribution of the amplitudes among the di�erent wavelengths of the

turbulent perturbations in ~r-spa
e. In the following, we will assume that the power spe
trum

is isotropi
 and follows a power law, see se
tion 4.3.1.
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Ea
h velo
ity 
omponent v

j

(~r) 
an be des
ribed using the Fourier expansion

v

j

(~r) =

1

(2�)

3

Z

v̂

j

(

~

k) e

i

~

k~r

d

3

k (4.8)

For v

j

(~r) to be real, v

j

(~r) = v

�

j

(~r), the 
omplex 
onjugate must obey v̂

�

j

(

~

k) = v̂

j

(�

~

k). The


onvolution theorem for Fourier transformations gives the 
onne
tion between the auto
orre-

lation fun
tion and the power spe
trum P (

~

k) = jv̂

j

(

~

k)j

2

:

Z

v

j

(~r

0

) v

j

(~r

0

+ ~r) d

3

r

0

=

1

(2�)

3

Z

P (

~

k) e

�i

~

k~r

d

3

k (4.9)

A measurable quantity for mole
ular 
louds is the velo
ity dispersion, whi
h is dire
tly 
on-

ne
ted to the mean kineti
 energy per mass

E

kin

=

1

2V

Z

v

j

(~r

0

) v

j

(~r

0

)d

3

r

0

(4.10)

Using the above 
onvolution theorem with ~r = 0 and assuming an isotropi
 power spe
trum

P (

~

k) = P (j

~

kj), we get

E

kin

=

1

2V

1

(2�)

3

Z

4� k

2

P (k) dk (4.11)

If one measures the spe
tral energy, that is the energy of all the modes in the spheri
al shell

in k-spa
e between k and k + dk, the 
onne
tion to the power spe
trum will be given by

^

E(k) � k

2

P (k).

For a realization of a Gaussian random �eld, we use the dis
retized Fourier transformation

(see Equation 4.8)

v

j

(~r) =

L

3

(2�)

3

X

~

k

v̂

j;

~

k

e

i

~

k~r

(4.12)

and assume that real and imaginary part of the Fourier 
oeÆ
ients v̂

j;

~

k

= u

j;

~

k

+ i v

j;

~

k

are

Gaussian distributed with varian
e �

2

= P (k):

P(u; v) =

1

2�P (k)

e

� (u

2

+v

2

)=2P (k)

(4.13)

Variable transformation to spheri
al 
oordinates gives a uniform probability density fun
tion

for the phase �

P(�) =

1

2�

(4.14)

and the Rayleigh distribution for the amplitudes w of the Fourier 
oeÆ
ients v̂

j;

~

k

= w(
os �+

i sin�):

P(w) =

w

P (k)

e

� w

2

=2P (k)

(4.15)

This leads to the probability fun
tion P(X < w) =

w

R

�1

P(w) or

P(X < w) = e

� w

2

=2P (k)

(4.16)
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with maximum at w =

p

P (k). While � is equally distributed between [0; : : : ; 2�℄, the

dis
rete values for w 
an be derived by throwing a di
e to get random numbers P(X < w)

with 0 < P(X < w) < 1 and using

w =

q

�2 ln(P(X < w))P (k) (4.17)

4.3.3 Boundary Conditions

We have tested two di�erent types of boundary 
onditions in 
ombination with our homoge-

neous density sphere setup 
ondition:

� Re
e
tive 
onstant volume boundaries with ghost parti
les

� Constant pressure boundaries. Beyond the margins of the initial gas sphere there is

added a virtual pressure, equivalent to the thermal pressure inside the homogeneous

sphere. To es
ape from the original sphere the SPH parti
les have to over
ome this

virtual pressure potential.

To apply the stability 
riteria des
ribed in se
tion 4.3 it is ne
essary that the the mass is

restri
ted to some well known area. This is not the 
ase when we use 
onstant pressure

boundaries. The setup mean kineti
 energy is at least twi
e as large as at the onset of the


ollapse. So that a part of the gas (about 20 per
ent) is splattered out of the initial sphere.

This 
auses an additional stabilisation of the 
loud and it is not possible any more to de�ne

a global stability parameter. So its hard in 
ombination with 
onstant pressure boundaries

to predi
t if and when the 
ollapse sets in. Therefore it 
omes out, that the 
onstant volume

boundaries are the appropriate boundary 
ondition for our purposes be
ause they allow a

easy way to 
ontrol the stability 
onditions.

4.4 A Test for Self
onsisten
y

As already mentioned in se
tion 4.3 we have to 
he
k for the dynami
al equilibrium between

density and velo
ity �eld. If we start our 
al
ulations with a setup 
ondition as des
ribed in

se
tion 4.3 then in the beginning density 
u
tuations are built up by the turbulent velo
ity

�eld, see �gure 4.1. This 
orresponds to a 
ow of kineti
 energy into potential energy. After

some time the system rea
hes a dynami
al equilibrium between the energy stored in density


u
tuations and the energy stored in the turbulent velo
ities. Here the density 
u
tuations

��=� rea
h a lo
al maximum.

At this point a 
onsisten
y between energy and velo
ity �eld has been rea
hed so that they

are naturally 
onne
ted to ea
h other. It is in this sense that we 
all this 
onstellation self-


onsistent. As a result the de
ay of the velo
ities de
elerates signi�
antly be
ause now the

velo
ity �eld looses energy only by dissipation so that density 
u
tuations and velo
ities de-


ay simultaneously. After some time the de
ay of density 
u
tuations stops, indi
ating that

the evolved stru
ture be
omes unstable and start to 
ollapse. In �gure 4.1 the wavelength of

the largest mode of the turbulent velo
ity �eld is one �fth (0:24 p
) of the spheres diameter.

This results in a shorter times
ale for the vis
ous dissipation. One 
an easily see the 'built up

phase' and 'self
onsistent dissipation phase' separated by a maximum in ��=�. For a more

realisti
 run the largest mode should have the same size as the setup sphere. In this 
ase
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the vis
ous times
ale is mu
h larger and there will be no maximum in ��=�. What remains

is a plateau like phase between the gain of dynami
al equilibrium and the onset of 
ollapse,


ompare �gure 5.1. So that it is still possible to 
he
k for the self
onsisten
y.

Figures 4.2 and 4.3 showing the evolution of ��=� for initial Ma
h numbers 1.0, 1.5, 2.0,

2.5, 3.0 and 4.0. One sees that there is only a weak depen
en
e of the lo
al maximum of

��=� on the initial Ma
h number. This implies that the dynami
al equilibrium is rea
hed

always routhly at the same time. In 
ontrast to that the onset of 
ollapse is signi�
antly

delayed from 130000yrs for an initial Ma
h number of M

0

= 1:0 to 165000yrs for M

0

= 4:0.

But there is an additional interesting feature in the time evolution of ��=� 
on
erning its

lo
al minimum. This lo
al minimum is rea
hed when the ��=� ampli�
ation by gravity start

to overbalan
e the damping by vis
osity. By looking 
arefully on the minimum values of ��=�

for the six panels in �gure 4.2 and 4.3 one sees that it is growing from ��=� = 0:6 when an

initial Ma
h number of M

0

= 1:0 is used to ��=� = 0:95 for M

0

= 4:0. This is surprising

be
ause our initial 
ondition was designed to be
ome instable only when M(t) < 0:7. In

addition density and velo
ity �elds were 
he
ked to be in an dynami
al equilibrium.

To solve this puzzle we looked for the a
tual Ma
h numbers M(t = t

��=�j

min

) when the

minimum in ��=� is rea
hed. It 
omes out that also the Ma
h numbers M(t = t

��=�j

min

)

tend to be larger if the initial Ma
h number M(t = 0) is in
reased. This means that the

amplitudes of the density 
u
tuations from whi
h the 
ore evolves into the 
ollapse phase

must be larger if the initial Ma
h number is in
reased. In prinziple, there is a large variety of

marginaly stable 
onstelations. Strong density 
ondensations need more turbulent pressure

to be supported. As a result they 
ollapse earlier. This implies, that in the 
ase of high initial

Ma
h numbers more kineti
 energy is 
onveyed into the isothermal 
ollapse pro
ess. This

in
reases the probability for fragmentation events and a higher frequen
y of multiple systems

is expe
ted.
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Figure 4.1: Time evolution of the density 
u
tuations ��=� (
rosses) and the Ma
h

number M (stars) for an initial Ma
h number of M

0

= 1:5. The wavelength of

the largest mode of the turbulent velo
ity �eld is one �fth (0:24 p
) of the spheres

diameter.

� t < 0:7 � 10

5

yrs : density 
u
tuations are built up by the turbulent velo
ity �eld

� t = 0:7 � 10

5

yrs : self
onsisten
y has been rea
hed

� t < 1:5 � 10

5

yrs : turbulen
e and density 
u
tuations are de
aying simultaneously

� t = 1:5 � 10

5

yrs : the 
ore be
omes super
riti
al (M = 0:85)

� t > 1:5 � 10

5

yrs : the 
ore runs into an isothermal 
ollapse
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Figure 4.2: Time evolution of ��=� for initial Ma
h numbers of M

0

= 1:0 (top

panel),M

0

= 1:5 (middle panel) and M

0

= 2:0 (lower panel). The wavelength of

the largest mode of the turbulent velo
ity �eld is one �fth (0:24 p
) of the spheres

diameter.
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Figure 4.3: Time evolution of ��=� for initial Ma
h numbers of M

0

= 2:5 (top

panel),M

0

= 3:0 (middle panel) and M

0

= 4:0 (lower panel). The wavelength of

the largest mode of the turbulent velo
ity �eld is one �fth (0:24 p
) of the spheres

diameter.



Chapter 5

How Turbulen
e Creates a

Gravitating Center

We have studied in detail how a gravitationally bound stru
ture emerges in a turbulent media.

In the �rst 40000-60000 yrs density 
u
tuations are built up until a dynami
al equilibrium is

rea
hed between the turbulent energy on the one side and the potential energy of the density


u
tuations on the other side (se
tion 4.3). In this sense, a self
onsistent state is rea
hed in

whi
h density and velo
ity �eld are naturally related to ea
h other. After this �rst growth

phase the value for the maximum density stays roughly 
onstant over 80000-100000 yrs.

Whereas the amount of mass a

umulated in over-dense regions in
reases rapidly. Roughly

150000 yrs after the initialization the maximum density starts to in
rease rapidly and the


ore evolves into a runaway 
ollapse.

5.1 Evolving Stru
tures: Global Features

To get a �rst global impression on how turbulen
e and gravity distributes matter one 
an

look up the SPH parti
les density distribution. Therefore the standard deviation �� in units

of the mean density h�i is used:

��

�

=

p

h�

2

i � h�i

2

h�i

(5.1)

To get an impression on how gravity 
hange things in the regime where turbulen
e supports

the gas against 
ollapse the evolution of two identi
al setups were 
ompared (�gure 5.1). The

�rst (upper panel) was evolved with gravity, the se
ond (lower panel) without gravity. One

sees, that during the �rst 40000 yrs the evolution of ��=� is nearly the same for both runs. If

gravity is present ��=� is always growing but with a 
lear and extended plateau phase of only

weakly growing density maxima. Without gravity density 
u
tuations start to de
ay when

the dynami
al equilibrium is rea
hed. In 
ontrast to the simulations shown in se
tion 4.4 the

largest mode of the initial turbulent velo
ity �eld has the same size as the setup sphere.

Figure 5.3 gives a dire
t impression how mu
h mass is a

umulated in over-dense regions.

Shown is the number of SPH parti
les ex
eeding some 
ertain density threshold as a fun
tion

of time for run410. The uppermost line 
orresponds to a density threshold of 20. For the next

lower line the threshold is in
reased by 10 units and so on for the other lines. Thi
k lines mark

density thresholds of 50,100 and 150. The initial mean density is �

0

= 3 whi
h 
orresponds to

51



52 CHAPTER 5. HOW TURBULENCE CREATES A GRAVITATING CENTER

Figure 5.1: Time evolution of

��

�

. Upper panel: density 
u
tuations as a fun
tion

of time for an individual run with gravity and an initial Ma
h number M = 2.

Lower panel: the same 
al
ulation as in the upper panel but without gravity.
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2� 10

�19

g=
m

3

resp. 5� 10

4

mole
ules=
m

3

. For 
omparison the same analysis is shown for

the 
al
ulation without gravity. In this referen
e simulation the mass sited in 10:1 over-dense

regions rea
hes a maximum 40000 yrs after initialization. At this time only about 0:03M

�

(1 per
ent of the total mass) is hosted in this 
ondensations. The 
orresponding lo
al Jeans

mass for an 10 �

0


ondensation is about 0:4M

�

whi
h is at least one order of magnitude more

than the available high density gas. In other words, the turbulent velo
ity �eld at its own

is not able to drive the system into a super
riti
al state. This means, even if the system is

strong sub
riti
al, gravity must in
uen
e signi�
antly the growth of density stru
tures. Oth-

erwise it would be impossible to evolve the low mass 
ondensation into a super
riti
al 
ore


ollapsing on its free fall time s
ale. After 100000 yrs almost all 10:1 
u
tuations are gone.

The dissipation results in a loss of mass for all shown density thresholds. Not surprising, high

density 
ontrasts vanish faster than the others.

Gravity a�e
ts also the velo
ity �eld. This 
an be seen in �gure 5.5. Again there is 
ompared

run410 and the referen
e simulation without gravity. It shows the evolution of the Ma
h

number in time. The Ma
h number 
on
erning all SPH parti
les of a simulation is given by

the (+) signs. The Ma
h number of a lo
al subsample of SPH parti
les less than 1000AU

around the density maximum is indi
ated by the thin line (upper panel). Note that in this


ase the velo
ity of the density maximum is subtra
ted form the parti
les individual velo
ities

be
ause this velo
ity 
omponent 
an't 
ontribute to a turbulent pressure on this lo
al s
ale.

After 1:6�10

5

yrs the a

eleration of the SPH parti
les is 
learly visible. For the total sample

of parti
les this e�e
t is already seen after 100000 yrs.

Comparing the global Ma
h numbers for the upper and lower panel, one sees that the ki-

neti
 energy de
ays faster in the simulation without gravity, at least 40000 yrs after the

initialization the e�e
t is obvious. In the regime t < 60000 yrs density 
u
tuations ��=�

are a bit larger for the run without gravity. One may argue that in this 
ase more kineti


energy is used up to built up the density 
u
tuations. But the opposite is the 
ase when the

dynami
al equilibrium has been rea
hen. In the regime t > 60000 yrs density 
u
tuations and

Ma
h numbers are larger if gravity is present. This 
an be understand by looking on how we

have designed the setup 
onditions of the runs (se
tion 4.3). The thermal Jeans mass of our

set up is 1:2M

�

- only about 40 per
ent of the total mass so that this state is Jeans unstable

and would immediately 
ollapse without turbulent pressure support. This means that every

deviation from the homogeneous distribution of matter is a

ompanied by a de
rease in po-

tential energy. Density 
u
tuations are in this 
ase a sour
e of kineti
 energy even though

the system is still supported against gravity!

Be
ause the over-dense regions are for the �rst time signi�
antly less massive than the lo
al

Jeans mass they are supported against gravity by thermal pressure and further 
ompression

is suppressed for the �rst time. This 
an be seen in �gure 5.2 where we have plotted the

time evolution of the density maximum of an individual 
ondensation and the total density

maximum of the whole simulation area. One sees that the total density maximum in
reases

only about a fa
tor of two in the epo
h between 30000 yrs and 150000 yrs after the initializa-

tion. While the 
ondensations are supported by thermal pressure on small s
ales the large

s
ale stru
ture is already Jeans unstable and only supported by the turbulent pressure. This


ooperation of thermal pressure support on small s
ales and turbulent support on the large

s
ales results in a slow a

umulation of mass onto the initial low mass 
ondensations. This



54 CHAPTER 5. HOW TURBULENCE CREATES A GRAVITATING CENTER

behavior is in some sense similar to the adiabati
 
ollapse phase beyond the opa
ity limit. In

both 
ases there is a pressure supported 
ore like stru
ture on small s
ales whi
h in
reases

only slowly its density while signi�
antly growing in mass.

In addition there is another signi�
ant di�eren
e 
ompared to the 
lassi
al isothermal 
ol-

lapse phase. During the isothermal 
ollapse phase the Jeans mass de
reases and a single initial

obje
t eventually fragments into two ore more obje
ts. During the turbulen
e dominated 
on-

tra
tion phase things are vi
e versa. The initially separated low mass 
ondensations grow in

mass, merge and form an extended over-dense obje
t (�gure 5.4). This yields a naturally

explanation for the 
at inner parts of prestellar 
ores as they are observed in turbulent star

forming regions (se
tion 2.4.1).

Altogether the turbulen
e dominated 
ontra
tion phase has to be established as an important

additional 
ollapse phase where things are essentially di�erent than in the isothermal 
ollapse

phase.

The turbulent kineti
 energy results in a turbulent pressure in
reasing the amount of mass

supported against gravity (se
tion 4.3):

m

J;turb

= 2:74

s

T

3

�

(1 +M

2

)

3

2

(5.2)

Here the density is given in units of 1M

�

=p


3

and a mean mole
ular weight � = 2:36 is as-

sumed. So we 
an expe
t that mass a

umulations would not fragment below m

J;turb

. Given

a minimum Ma
h number of M = 1:5 (�gure 5.5) and a density enhan
ement of 10, m

J;turb


omes out to be 2:2M

�

whi
h is a bit less then the total mass but still enough to prevent

fragmentation during the turbulen
e dominated 
ontra
tion phase. On
e an extended over-

dense region has formed the turbulent energy is dissipated on the lo
al dynami
al times
ale

whi
h is about 50000 yrs and signi�
antly shorter than in the surrounding low density regions.

The turbulent pressure support breaks down and the over-dense region evolves into a rapid

isothermal 
ollapse.

To be sure, that this behavior is not a feature of an individual run we have 
al
ulated an evo-

lutionary mean for 10 independent runs with individual initial 
onditions (�gure 5.6). The

physi
al parameters of the initial 
onditions are identi
al. Only the random seeds for the

velo
ity �elds were 
han
ed. When the dynami
al equilibrium is rea
hed (roughly 40000 yr

after the initialization) only less than 1 per
ent of the total mass is a

umulated in regions

with densities of more than 10 �

0

. About 10

5

yrs (0:6 t�) later the amount of mass in the

over-dense regions is at least 10 times larger and in the range of 10 to 20 per
ent of the total

mass. At the same time the amplitude of the 
u
tuations stays roughly 
onstant or in
reases

weakly but always less than a fa
tor of two.

The a
tion of the turbulent pressure support results in the fa
t, that the Jeans instability

evolves from outside in. This is shown in �gures 5.7, 5.8, 5.9, 5.10. There was 
ompared the

a

umulated mass inside a sphere of radius r around the density maximum (thi
k line) with

the 
orresponding lo
al Jeans mass as 
al
ulated from the mean density inside this sphere

(thin line). All this is shown as a fun
tion of time. The a

umulated mass inside the sphere

starts to ex
eed the lo
al Jeans mass when the thi
k line 
rosses the thin line. This happened

�rst for the largest sphere and last for the smallest sphere.
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The times at whi
h the di�erent sized spheres be
omes Jeans unstable are plotted as a fun
-

tion of the radius r in �gure 5.10. This 
learly shows that the Jeans instability is 
reated for

the �rst time on a size s
ale equivalent to the size of the whole over-dense region and then

evolves inward. In this sense one 
an say that during the turbulen
e dominated 
ontra
tion

phase the matter 
ollapses from outside in resulting in a density distribution with a 
at inner

part.

This interpretation is 
on�rmed by the radial net a

eleration of the gas - the di�eren
e

between the inward dire
ted gravitational for
e and the outward dire
ted pressure gradient

for
e. Both for
es were 
al
ulated in shells around the density maximum. this is shown in

�gures 5.11 and 5.12. One sees that there is a net outward a

eleration for t � 120000 yrs for

the innermost 0:004 p
. This outward a

eleration be
omes overbalan
ed by the rampressure

of inward streaming gas (se
tion 5.3) so that the 
enter is slowly in
reased in density. The

region of the strongest inward a

eleration evolves from outside in (�gure 5.12). At the onset

of the isothermal 
ollapse phase it rea
hes the 
enter.
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Figure 5.2: Time evolution of the density maximum of an individual 
ondensation

evolving into 
ollapse (upper panel) and the total density maximum in the whole

simulation area. 10

5

yrs after the initialization both 
urves are identi
al.
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Figure 5.3: Upper panel: Time evolution of the number of SPH parti
les ex
eed-

ing some 
ertain density threshold for an individual run. The uppermost line


orresponds to a density threshold of 20. For the next lower line the threshold

is in
reased by 10 units and so on for the next lines. Thi
k lines mark density

thresholds of 50,100 and 150. The initial mean density is 3 whi
h 
orresponds to

2 � 10

�19

g=
m

3

resp. 5 � 10

4

mole
ules=
m

3

. Lower panel: Comparative 
al
ulation

without gravity. The initial 
onditions are identi
al to that of run410 in the upper

panel.
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Figure 5.4: Spatial distribution of the SPH parti
les ex
eeding a density threshold

of 20 respe
tive 1:3� 10

�18

g=
m

3

, 
ompare with �gure 5.3 uppermost line. Time

in
reases from left to right and from top to bottom. During the epo
h from

50000 yrs to 150000 yrs the maximum density in
reases only by a fa
tor of two

while the number of parti
les ex
eeding the threshold in
reases by a fa
tor of at

least 10.
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Figure 5.5: Upper panel: Evolution with gravity. Ma
h number based on all

parti
les of the simulation (+), Ma
h number of all SPH parti
les inside a sphere

of 1000AU around the density maximum (thin line) and density 
u
tuations ��=�

(�). Lower panel: Evolution without gravity. Ma
h number based on all parti
les

of the simulation(+) and density 
u
tuations ��=� (�).
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Figure 5.6: Time evolution of the number of SPH parti
les ex
eeding some 
ertain

density threshold. Plotted is the evolutionary mean value of 10 independent runs

with individual turbulent velo
ity �eld but identi
al physi
al parameters. The

uppermost line 
orresponds to a density threshold of 20. For the next lower line

the threshold is in
reased by 10 units and so on for the next lines. Thi
k lines

mark density thresholds of 50,100 and 150. The initial mean density is 3 whi
h


orresponds to 2� 10

�19

g=
m

3

resp. 5� 10

4

mole
ules=
m

3

.
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Figure 5.7: A

umulated mass inside a sphere of radius r around the density max-

imum (thi
k line) and the 
orresponding lo
al Jeans mass 
al
ulated from the

mean density inside this sphere (thin line) as a fun
tion of time. Radius data is

given in units of 0:1 p
.
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Figure 5.8: A

umulated mass inside a sphere of radius r around the density max-

imum (thi
k line) and the 
orresponding lo
al Jeans mass 
al
ulated from the

mean density inside this sphere (thin line) as a fun
tion of time. Radius data is

given in units of 0:1 p
.
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Figure 5.9: A

umulated mass inside a sphere of radius r around the density max-

imum (thi
k line) and the 
orresponding lo
al Jeans mass 
al
ulated from the

mean density inside this sphere (thin line) as a fun
tion of time. Radius data is

given in units of 0:1 p
.
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Figure 5.10: For every sphere of radius r there is plotted the time at whi
h the

a

umulated mass inside the sphere ex
eeds the lo
al Jeans mass. The points are

taken from the interse
tion points in the graphs of �gure (5.7), (5.8) and (5.9).

The Jeans instability evolves from outside in and is a result of the 
at radial

density distribution of the generated prestellar 
ore.



5.1. EVOLVING STRUCTURES: GLOBAL FEATURES 65

Figure 5.11: Di�eren
e between the outward dire
ted pressure gradient for
e and

the inward dire
ted gravitational for
e. Positive values 
orrespond to an outward

net a

eleration. The horizontal line marks the zero point. 1st row: t=45000 yrs,

2nd row: t=60000 yrs, 3rd row: t=75000 yrs, 4th row: t=90000 yrs, 5th row:

105000 yrs after the initialization.
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Figure 5.12: Di�eren
e between the outward dire
ted pressure gradient for
e and

the inward dire
ted gravitational for
e. Positive values 
orrespond to an outward

net a

eleration. The horizontal line marks the zero point. 1st row: t=120000

yrs, 2nd row: t=135000 yrs, 3rd row: t=150000 yrs, 4th row: t=165000 yrs, 5th

row: 180000 yrs after the initialization.
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5.2 Bonnor Ebert Spheres

In 1956 Bonnor analysed the stability of gaseous spheres against gravity. (Bonnor (1956)). In

this se
tion there is given a short introdu
tion 
on
erning the main idea standing behind the

Bonnor-Ebert spheres and a summary of Bonnors results. In the se
ond part we 
ompare the

density distributions of our prestellar 
ore realizations to that of the Bonner-Ebert solutions.

Think of a stati
 isothermal spheri
 symmetri
 gas distribution 
ompressed by its own gravity.

At every distan
e r from the 
enter the gas has to be in hydrostati
 equilibrium. This means

the pressure gradient for
e has to balan
e the for
e of gravity:

�

dp

dr

=

4�G�

r

2

Z

r

0

�r

02

dr

0

(5.3)

or

1

r

2

d

dr

=

�

r

2

�

dp

dr

�

= �4�G� (5.4)

In addition at every point P the gas obeys the ideal equation of state

p =

1

m

k�T (5.5)

where p, � and T are the pressure, density and temperature, and m is the mole
ular weight.

Equation 5.4 and 5.5 
an be 
ombined to get an equation for the radial density distribution

for an isothermal gas sphere:

1

r

2

d

dr

=

�

r

2

�

d�

dr

�

= �

4�Gm�

kT

(5.6)

This is the well known Lane-Emden equation. It 
an be transformed into a dimensionless

representation by using the following substitutions:

� = �e

�	

; r = �

1=2

�

�1=2

� (5.7)

where � is up to now an arbitrary 
onstant and in � all the physi
al 
onstants and variables

independent of � and r are 
olle
ted:

� =

kT

4�Gm

(5.8)

Equation 5.6 then be
omes

�

�2

d

d�

�

�

2

d	

d�

�

= e

�	

(5.9)

We expe
t the density to rea
h a maximum at the 
enter of the sphere whi
h also implies a

zero density gradient at this position. Therefore we 
an de�ne the boundary 
onditions to be

� = �




;

d�

dr

= 0 (5.10)

where �




is the 
entral density of the sphere. In the following we the 
entral density is assumed

as a given parameter. If we 
hoose now � = �




then the boundary 
ondition looks in the new

variables:

	 = 0 ;

d	

d�

= 0 at � = 0 (5.11)



68 CHAPTER 5. HOW TURBULENCE CREATES A GRAVITATING CENTER

This boundary 
ondition 
ompletely �x the solution of the dimensionless Lane-Emden equa-

tion. All possible solutions given by the 
entral density, temperature and mole
ular weight

are 
alled Bonnor-Ebert spheres. A stability analysis for Bonnor-Ebert spheres results in the

fa
t that stability against gravitational 
ollapse only depends on the density 
ontrast between

the 
enter and the outer boundary respe
tive the ba
kground density. If the density 
ontrast

ex
eeds a value of 13.5 the Bonnor-Ebert sphere solution be
omes unstable and will 
ollapse

(�gure 5.13). Transformed ba
k to to the physi
al variables r and �




this means that Bonnor-

Ebert spheres with a 
riti
al density 
ontrast are 
ompa
t and light obje
ts if the 
entral

density �




is large and extended heavy obje
ts if the 
entral density is low. This is in dire
t

analogy to the Jeans stability 
riterion, see se
tion 3.2. This be
omes 
lear if one 
ompares

the 
riti
al radius of a Bonnor-Ebert sphere with the Jeans length:

R

BE;
rit

= 0:49

s

kT

mG�




= 0:76

s

kT

mG�

mean

; R

Jeans

= 0:89

s

kT

mG�

0

(5.12)

where �

mean

is the mean density of the mass inside the 
riti
al radius and �

0

is the 
onstant

gas density used in Jeans's analysis. One sees there is besides the slightly di�erent 
onstants

the same dependen
e on � and T . The same holds for the en
losed mass inside r

BE;
rit

and

the Jeans mass.

There are exist a lot of 
ollapse 
al
ulations started with a Bonnor-Ebert sphere density dis-

tribution as initial 
ondition. Be
ause of that we looked, if our setups evolving through a

Bonnor-Ebert sphere (BE sphere) like density distribution into the 
ollapse. To do that we

used 8 runs with setup Ma
h numbers 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 6.0, 10.0. For every run we

tried to �t a BE sphere solution around the up
oming density maxima. This is done for the

�rst 40 time steps of every run. One time step 
orresponds to 0:033t

ff

= 5000yrs. The algo-

rithm works as follows. There is assumed a spheri
al symmetri
 density distribution around

a density maximum. Then the gas density is estimated in n 'equal volume shells' around a

density maximum. There is also one 
entral sphere with the same volume as the shells. The

estimated density of the 
entral sphere is used as the 
entral density for the BE solution.

The free input parameter of the algorithm is the radius r of the BE sphere to be �tted. The

appropriate number n of shells depends on the number of SPH-parti
les inside the radius r.

The more SPH parti
les are found in one shell, the smaller is the s
atter in the radial density


urve. We use two 
riteria to de
ide if a SPH parti
le distribution is equivalent with a BE

sphere. First we 
ompare the density 
ontrast between the outer shell and the 
entral sphere

with that of the BE solution. Se
ond, we 
ompare the a

umulated mass inside the radius r

with the mass of the BE sphere of same size. Altogether we looked up 2240 
onstellations in

a 3 dimensional parameter 
ube:

� 8 runs with di�erent initial Ma
h numbers

� the �rst 40 time steps of every run

� radii between 0.01 and 0.04 p
 in steps of 0.005 p
.

First, there are no BE spheres with a 
riti
al density 
ontrast of 13.5. We �nd BE like den-

sity distributions only with low density 
ontrasts in the range of 1.5 ... 6. We don't �nd BE

solutions before the dynami
al equilibrium of density and velo
ity �eld is rea
hed. After this

point there is an epo
h where we �nd stable sub
riti
al BE solutions with density 
ontrasts
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Figure 5.13: Stability of the Bonnor-Ebert sphere solutions. All spheres extending

beyond the dotted verti
al line at � = 6:5 ex
eed the 
riti
al density 
ontrast of

13.5 and are gravitational unstable. Plotted is the density in units of the 
entral

density against the dimensionless variable � whi
h is proportional to r. In this

dimensionless representation all Bonnor-Ebert sphere solutions look the same.
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Figure 5.14: Radius of the BE sphere like density distributions found in the 
ollapse

simulations.
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Figure 5.15: Density 
ontrasts of the BE sphere like density distributions found in

the 
ollapse simulations.
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less than 6 (�gure 5.15). This epo
h ends when the gas distribution starts to 
ollapse. This is

not surprising be
ause the BE solution is based on a hydrostati
 equilibrium. One sees, that

in the 
ase of a high Ma
h number this epo
h is more extended be
ause the system needs

more time to dissipate enough kineti
 energy to be
ome unstable.

Altogether this means, that density stru
tures built up primarily by turbulent velo
ities or

primarily by gravity do not mat
h the BE solution. It seems that it is a well balan
ed inter-

play of gravity and turbulen
e whi
h yields the right 
onditions to evolve a BE sphere. There

is a 
lear 
orrelation between the initial Ma
h number and the density 
ontrast of the BE

solutions. The higher the initial Ma
h number the more pronoun
ed is the density 
ontrast of

the BE like density distributions. Independent of the initial Ma
h number the BE solutions

are wide and shallow at early times and be
ome lighter and more 
ompa
t at later times.

Even though the prestellar 
ore is still supported by the turbulen
e the 
entral density is

slowly growing. When the isothermal 
ollapse phase starts dense regions will 
ollapse faster

than the others so that there evolves a density stru
ture with a steep inner part whi
h 
an't

be mat
hed by a BE sphere solution.

This analysis show, that marginal- or super
riti
al BE spheres as they are used as initial


onditions do not evolve in a turbulent medium with Ma
h numbers not greater than 10.

This result is supported by observations be
ause the only 
riti
al BE sphere like density dis-

tributions found in nature are hosted in Bok globules. Bok globules are 
alm environments

where the assumption of an equilibrium between thermal pressure and gravity approximately

holds. Super
riti
al BE spheres may be 
reated in extremely turbulent environments with

Ma
h numbers far beyond 10. This is indi
ated by the in
reasing density 
ontrast for large

initial Ma
h numbers. We 
an't prove this yet, be
ause in the 
ase of extremely supersoni


turbulen
e (Ma
h numbers greater than 10) our SPH algorithm start to smear out the sho
ks.

A ni
e example is Barnard-68, where Alves et al. (2001) showed that it ni
ely �ts to a Bonnor-

Ebert sphere. After all one should keep in mind that prestellar 
ores and even Barnard-68 are

not spheri
 symmetri
. So the results presented here are not in 
ontradi
tion to the previous

se
tions.
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5.3 Detailed velo
ity Stru
ture

This se
tion gives a detailed analysis on how density and velo
ity �eld intera
t with ea
h

other and how the �rst 
ondensations are 
reated by turbulen
e. Therefore we avoid any

spheri
al symmetry in our analysis to take into a

ount the spatial 
omplexity of the evolving

stru
tures. Exemplary we present the whole analysis for run425, one of our 22 
ollapse

simulations (se
tion 6.5).

As an overview �gure 5.16 shows the evolution of the density stru
ture as seen from the z-axis.

Plotted are the logarithmi
 density distributions at t=50000 yrs, t=75000 yrs, t=100000 yrs,

125000 yrs, t=150000 yrs and t=175000 yrs after the initialization. Densities range from 0.3

resp. 2� 10

�20

g=
m

3

(bla
k) to 600 4� 10

�17

g=
m

3

(white).

In the �gures 5.17, 5.18, 5.19, 5.20 and 5.21 we present a 
omprehensive visualisation for

the spatial 
on�guration of the mass 
ows. Therefore the velo
ity and density stru
ture in

0:005 p
 (1000AU) thi
k sli
es through the density maximum is plotted. The dire
tion of

the 
ow is given by the arrows, their size indi
ates the absolute value of the velo
ities. The

velo
ities are rest frame velo
ities in respe
t to the density maximum. The density distribu-

tion is indi
ated by small dots showing the distribution of the SPH parti
les inside a sli
e.

Cir
les en
lose a 1000AU region around the density maximum. To get an optimum insight in

the three dimensional 
ow pattern 
uts along the y-z plane (upper row), along the x-z plane

(middle row), and along the x-y plane (lower row) are shown.

At the �rst time sho
k fronts and strong subsoni
 velo
ity gradients 
reate a network of dif-

ferently extended �laments and sheets. The gas density is highest along this �laments and in

parti
ular at the interse
tion points of this �laments. These are the lo
ations where prestellar


ores predominantly form. In addition these interse
tion points are the preferential regions

of 
onverging 
ows (�gure 5.17).

The visualization of the spatial velo
ity stru
ture 
learly shows that the 
reation of a star

is far from being a spheri
al symmetri
 event. Even in the late stages (t > 150000 yrs) the

a
tion of the residual turbulen
e is visible. Nevertheless gravity starts to dominate the s
ene.

To get more information about the a
tion of the velo
ity �eld we 
al
ulated the lo
al three

dimensional velo
ity dispersion �

tot

, the velo
ity dispersion tangential to the gravitational

for
e ve
tor �

tan

and the ram pressure, see �gures 5.22, 5.23, 5.24 and 5.25. The values are

lo
al mean values and where 
al
ulated as follows. A probe 
ylinder was separated in a sta
k

of disks. Every disk has a thi
kness of 0:006 p
 (1200AU) and a diameter of 0:012 p
. Inside

the volume of these disks there was 
al
ulated a mean value of the physi
al variable of interest

based on all SPH parti
les found inside the disks volume. This results in a spatial resolution

of the plots of 600AU.

Figure 5.22 (left 
olumn) shows that there is at all times a large negative velo
ity gradi-

ent around the position of the density maximum. A negative velo
ity gradient 
orresponds to

a 
ompression of the gas along the z-axis while positive slopes indi
ate a dilution of the gas.

The maximum velo
ity gradient of �40 km=s � p


�1

is seen about 75000 yrs after initialization

and extends over 0.02 p
. The density maximum emerges at the edge of a more extended

over-dense region to the left (right 
olumn). Even though the region of negative velo
ity gra-

dient is 
ited symmetri
 around the peak, the 
ondensation gains mass predominantly from

the left due to the larger densities there.

The inward moving gas streams are de
elerated near the 
enter and so the 
onveyed (ad-

ve
ted) momentum is a sour
e of ram pressure a
ting as an additional for
e 
ompressing the
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region around the density peak:

P

ram

= (�v) � v = �v

2

(5.13)

The term (�v) is the amount of gas streaming through a unit area per unit time. If this is

multiplied by the velo
ity of the gas one gets the momentum 
ow per unit time whi
h 
an

be interpreted as a for
e a
ting per unit area if the 
ow is de
elerated down to zero velo
ity.

In the �gures 5.23, 5.23 and 5.23 the ram pressure is shown along the x, y and z axis. The

unsymmetri
 density distribution in z dire
tion around the density peak indu
es a strong

unsymmetri
 rampressure pro�le. There is a strong 12� 14 nPa rampressure peak left to the

density peak for t < 130000 yrs while right to the peak there is only negligible rampressure

due to the very low gas densities in this region.
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Figure 5.16: Logarithmi
 density distribution (
olor 
oded) for run425 at t=50000

yrs, t=75000 yrs, t=100000 yrs, 125000 yrs, t=150000 yrs and t=175000 yrs

after the initialization. Densities range from 0.3 resp. 2 � 10

�20

g=
m

3

(bla
k) to

600 4 � 10

�17

g=
m

3

(white). Size s
ales are given in units of 0:1 p
.

.
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Figure 5.17: Detailed velo
ity stru
ture 70000 yrs (timestep 14, left 
olumn) and

75000 yrs (timestep 15, right 
olumn) after the initialization. The plots show

the velo
ity and density stru
ture in 0:005 p
 (1000AU) thi
k sli
es through the

density maximum. The dire
tion of the 
ow is given by the arrows, their size

indi
ates the absolute value of the velo
ities. Small dots showing the distribution

of the SPH parti
les. Upper row: 
ut along the y-z plane. Middle row: 
ut along

the x-z plane. Lower row: 
ut along the x-y plane.
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Figure 5.18: Detailed velo
ity stru
ture 100000 yrs (timestep 20, left 
olumn) and

105000 yrs (timestep 21, right 
olumn) after the initialization. The plots show

the velo
ity and density stru
ture in 0:005 p
 (1000AU) thi
k sli
es through the

density maximum. The dire
tion of the 
ow is given by the arrows, their size

indi
ates the absolute value of the velo
ities. Small dots showing the distribution

of the SPH parti
les. Upper row: 
ut along the y-z plane. Middle row: 
ut along

the x-z plane. Lower row: 
ut along the x-y plane.
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Figure 5.19: Detailed velo
ity stru
ture 120000 yrs (timestep 24, left 
olumn) and

125000 yrs (timestep 25, right 
olumn) after the initialization. The plots show

the velo
ity and density stru
ture in 0:005 p
 (1000AU) thi
k sli
es through the

density maximum. The dire
tion of the 
ow is given by the arrows, their size

indi
ates the absolute value of the velo
ities. Small dots showing the distribution

of the SPH parti
les. Upper row: 
ut along the y-z plane. Middle row: 
ut along

the x-z plane. Lower row: 
ut along the x-y plane.
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Figure 5.20: Detailed velo
ity stru
ture 150000 yrs (timestep 30, left 
olumn) and

155000 yrs (timestep 31, right 
olumn) after the initialization. The plots show

the velo
ity and density stru
ture in 0:005 p
 (1000AU) thi
k sli
es through the

density maximum. The dire
tion of the 
ow is given by the arrows, their size

indi
ates the absolute value of the velo
ities. Small dots showing the distribution

of the SPH parti
les. Upper row: 
ut along the y-z plane. Middle row: 
ut along

the x-z plane. Lower row: 
ut along the x-y plane.
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Figure 5.21: Detailed velo
ity stru
ture 170000 yrs (timestep 34, left 
olumn) and

175000 yrs (timestep 35, right 
olumn) after the initialization. The plots show

the velo
ity and density stru
ture in 0:005 p
 (1000AU) thi
k sli
es through the

density maximum. The dire
tion of the 
ow is given by the arrows, their size

indi
ates the absolute value of the velo
ities. Small dots showing the distribu-

tion of the SPH parti
les. Cir
les en
lose the 1000AU region around the density

maximum. Upper row: 
ut along the y-z plane. Middle row: 
ut along the x-z

plane. Lower row: 
ut along the x-y plane.
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Figure 5.22: z 
omponent of the velo
ity (left 
olumn) and density (right 
olumn)

along a 2400AU diameter probe 
ylinder through the density maximum. The


ylinder axis is aligned parallel to the z-axis. The initial mean density is 2 �

10

�19

g=
m

3

.
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Figure 5.23: Total velo
ity dispersion �

tot

(left 
olumn), velo
ity dispersion of the

tangential velo
ity 
omponents �

tan

(middle 
olumn) and the resulting ram pres-

sure p

ram

along a 2000AU diameter probe 
ylinder through the density maximum

(right 
olumn). The 
ylinder axis is aligned parallel to the x-axis. The ram

pressure is based on the relative velo
ities in respe
t to the density maximum.
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Figure 5.24: Total velo
ity dispersion �

tot

(left 
olumn), velo
ity dispersion of the

tangential velo
ity 
omponents �

tan

(middle 
olumn) and the resulting ram pres-

sure p

ram

along a 2000AU diameter probe 
ylinder through the density maximum

(right 
olumn). The 
ylinder axis is aligned parallel to the y-axis. The ram

pressure is based on the relative velo
ities in respe
t to the density maximum.
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Figure 5.25: Total velo
ity dispersion �

tot

(left 
olumn), velo
ity dispersion of the

tangential velo
ity 
omponents �

tan

(middle 
olumn) and the resulting ram pres-

sure p

ram

along a 2000AU diameter probe 
ylinder through the density maximum

(right 
olumn). The 
ylinder axis is aligned parallel to the z-axis. The ram pres-

sure is based on the the relative velo
ities in respe
t to the density maximum.
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5.4 Velo
ity dispersion

The velo
ity dispersion is de�ned as the standard deviation around the mean velo
ity hvi:

� =

q

hv

2

i � hvi

2

(5.14)

In nature it is the the velo
ity dispersion of the individual gas mole
ules whi
h 
auses the

observed line broadening. As a result an observer always get an superposition of thermal line

width and turbulent line width.

The kineti
 energy stored in turbulent motions de
ays as a power law of the form

E

kin

= E

0

� t

�

(5.15)

where � is shown to be in the range of � = �1:3 : : : � 1:6 (Ma
 Low et al. (1998b), Stone

et al. (1998), Smith et al. (2000), Pavlovski et al. (2002)) and E

0

is the amount of kineti


energy at the initialization of the run. The dissipation times
ale for turbulen
e is of the order

of a wave 
rossing time. In the 
ase of non supersoni
 motions it is in the same order as the

free fall time and s
ales as �

�1=2

.

The onset of the isothermal 
ollapse phase depends on the temperature, the density dis-

tribution and the amount of turbulent energy. The 
ore need not to 
ollapse exa
tly at

M=0.7 as predi
ted by the extended Jeans 
riteria (se
tion 4.3) be
ause there we have im-

pli
itly assumed that matter is equally distributed. This is indeed not the 
ase at the onset of

the isothermal 
ollapse phase. If there is by 
han
e a single strong 
ondensation, then it will


ollapse, even though the Ma
h number M(t) still ex
eeds our 
riti
al value of M


rit

= 0:7.

If there are lots of small s
ale 
ondensations, then the 
ollapse is delayed longer. In the


entral regions of prestellar 
ores (as far as they 
an be resolved) the turbulent line widths

seem to be 
onstant and in the order of � = 0:7


s

(Goodman et al. (1998)). To 
ompare

this observational result with our simulations we 
al
ulated the velo
ity dispersion in shells

of radius r around the density maximum. The exemplary result for run425 is given in �gure

5.26. Shown is the velo
ity dispersion as a fun
tion of the distan
e r from the density maxi-

mum at t=100000 yrs (upper panel), t=150000 yrs (middle panel) and t=175000 yrs (lower

panel) after the initialization. For r > 0:01 p
 � stays roughly 
onstant around a value

of 0:6 : : : 0:7 


s

= 0:1 : : : 0:13 km=s whi
h is in good agreement with observations (Goodman

et al. (1998)). At the 
enter � drops down. At this point it is not 
lear if its a real or an

arti�
ial e�e
t be
ause one expe
ts � to drop down signi�
antly when the size of the shells

rea
h the size s
ale of the SPH parti
les' smoothing length. The mean smoothing length at

the initialization of our runs is h

0

' 0:003 p
. The smoothing length s
ales as h � �

�1=3

.

Before the isothermal 
ollapse phase sets in density 
ontrasts range from 10:1 ... 50:1 resulting

in a smoothing length of the order of 0:001 p
. A blind test has shown that for � = �

0

results

for r � 0:003 p
 are signi�
antly a�e
ted by the smoothing. We 
an 
on
lude that the drop in

� in the range 0:003 < r < 0:01 km=s (middle and lower panel of �gure 5.26) is real. This is


onsistent with the fa
t that turbulent motions are dissipated �rst in the densest regions. On

the other hand the overall 
ontra
tion in
rease the velo
ity dispersion. This e�e
t be
omes

important espe
ially during the rapid 
ollapse phase and is most prominent in the innermost

parts of the 
ore.
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Figure 5.26: Velo
ity dispersion in shells around the density maximum (run425)

at t=100000 yrs (upper panel), t=150000 yrs (middle panel) and t=175000 yrs

(lower panel) after the initialization. The horizontal line at � = 0:75 


s

gives a

typi
al observational value for the innermost parts of prestellar 
ores.



Chapter 6

Collapse Cal
ulations

6.1 The Opa
ity Limit

When a mole
ular 
loud 
ore begins to 
ollapse from densities � 2 � 10

�19

g=
m

3

the gravi-

tational potential energy that is released 
an easily be radiated away so that the 
ollapsing

gas is approximately isothermal (e.g.Larson (1969)). Thus, the thermal pressure varies with

density � as p / �

�

with the polytropi
 exponent

� � d log(p)=d log(�) � 1 (6.1)

This allows subsequent fragmentation be
ause the Jeans mass de
reases with in
reasing den-

sity as long as � < 4=3.

The opa
ity limit for fragmentation o

urs when the times
ale on whi
h energy is released

by the 
ollapse ex
eeds the one at whi
h energy is radiated away (Rees (1976); Low and

Lynden-Bell (1976); Masunaga and Inutsuka (1999)). The gas then heats up with � > 4=3

and the Jeans mass in
reases. As a result, a Jeans unstable 
ollapsing 
lump transforms into

a Jeans stable one and a pressure supported fragment is formed. The density at whi
h this

o

urs depends on the opa
ity of the gas, hen
e the term 'opa
ity limit for fragmentation' and

on the geometri
al stru
ture and size of the fragments. Via the opa
ity there are introdu
ed

further dependen
ies like the initial temperature and the gas to dust mass ratio (Masunaga

and Inutsuka (1999)). For mole
ular gas at an initial temperature of about 10 K a typi
al

sized fragment begins to heat signi�
antly at a density of � � 10

�13

g=
m

3

(Larson (1969);

Masunaga and Inutsuka (2000)).

A fragment rea
hing the opa
ity limit be
omes pressure supported and initially 
ontains

several Jupiter-masses (M

J

). It's size s
ale is � 5AU (Larson (1969)). This results from a

Jeans analysis for the gas density at the opa
ity limit. Be
ause the fragment is embedded

in a 
ollapsing envelope it is expe
ted to grow further in mass and density. The fragment

transforms into a opti
ally thi
k hydrostati
 
ore and as a dire
t 
onsequen
e the 
entral

temperature in
reases. When its 
entral temperature rea
hes 2000 K, mole
ular hydrogen

begins to disso
iate. This provides a way to release gravitational energy without signi�
antly

in
reasing the temperature of the gas. Even though the temperature is roughly 
onstant

additional pressure emerges from the fa
t that the number of gas parti
les is in
reased. As

a result, a se
ond 
ollapse o

urs within the fragment (with a polytropi
 index of � = 1:15)

that ultimately results in the formation of a stellar 
ore with radius of approximately 1R

�

Larson (1969).

87
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Several studies have investigated the possibility of fragmentation during this se
ond 
ollapse

(Boss (1989); Bonnell and Bate (1994b); Bate (1998b)). Boss (1989) found that fragmentation

was possible during this se
ond 
ollapse, but that the obje
ts spiraled together and merged

due to gravitational torques from a non-axisymmetri
 stru
ture. Bate (1998b) performed

the �rst three-dimensional 
al
ulations to follow up the entire 
ollapse evolution starting

from a mole
ular 
loud 
ore through fragmentation, the formation of the pressure supported

fragment, the se
ond 
ollapse phase, and the formation of the stellar 
ore and its surrounding

dis
. In these 
al
ulations he found that the se
ond 
ollapse is not a regime of further sub-

fragmentation.

The existen
e of the opa
ity limit suppresses the fragmentation pro
ess if the density ex
eeds

� 10

�13

g=
m

3

. This results in a a minimum `stellar' mass of � 10 Jupiter-masses (M

J

)

(Low and Lynden-Bell 1976; Silk 1977a, Boss 1988) and a minimum protobinary separation

separation of � 10AU due to the sizes of the pressure-supported fragments. The exa
t value

of the minimum mass is un
ertain with theoreti
al values ranging from 1 � 10M

J

(Low and

Lynden-Bell 1976; Silk 1977a; Boss 1988; Masunaga and Inutsuka 1999; Boss 2001). Surveys

of young star 
lusters are beginning to probe masses down to this theoreti
al minimum mass

(Zapatero Osorio et al. 1999; Lu
as and Ro
he 2000; B�ejar et al. 2001; Mart

�

in et al. 2001b;

Lu
as et al. 2001), with the masses of some obje
ts estimated to be as low as 3M

J

(Zapatero

Osorio et al. 2002a; M
Caughrean 2003). Up to now observational un
ertainties are too large

so that the predi
ted 
uto� in the mass fun
tion is still no dete
ted.

6.2 Variable Equation of State

To model the opa
ity limit (see se
tion 3.5.3) without taking into a

ount radiative transfer

, we use a variable equation of state for the thermal pressure of the gas:

p = K�

�

(6.2)

The value of K is de�ned su
h that when the gas is isothermal K = 


2

s

. The resulting sound

speed is then 


s

= 1:84 � 10

4


m=s. The value of the polytropi
 exponent �, is varied with

density:

� =

(

1; � � 10

�13

g 
m

�3

;

1:4; � > 10

�13

g 
m

�3

:

(6.3)

Note, that the fun
tion p(�) is still 
ontinuous in spite of the abrupt 
hange in � .

This equation of state has been 
hosen to mat
h 
losely the relationship between temperature

and density during the spheri
ally-symmetri
 
ollapse of mole
ular 
loud 
ores as 
al
ulated

with frequen
y-dependent radiative transfer (Masunaga, Miyama, & Inutsuka 1998; Masunaga

& Inutsuka 2000). A 
omparison of our simple parameterization with Masunaga and Inut-

suka's temperature-density relation is given in �gure 3.1. Our parameterization reprodu
es the

temperature-density relation to an a

ura
y of better than 20% in the non-isothermal regime

up to densities of 10

�8

g=
m

3

. Test 
al
ulations of the spheri
ally-symmetri
 
ollapse of a

mole
ular 
loud 
ore using this equation of state have been performed (Bate 1998, 2002) and

give ex
ellent agreement with the results of Larson (1969) and Winkler Newman (1980a,b) for

the mass and size of the pressure-supported fragment that forms. Thus, our equation of state

should model 
ollapsing regions well, but may not model the equation of state in protostellar

dis
s parti
ularly a

urately due to the departure from spheri
al symmetry.
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6.3 Sink Parti
les

The opa
ity limit for fragmentation results in a 
hange of the pressure support of the frag-

ments. Further fragmentation is suppressed and an a

retion pro
ess sets in in
reasing the

total mass and the 
entral density of a fragment. At this stage it be
omes 
omputationally

impra
ti
al and very time 
onsuming to follow up the internal evolution. This is due to the

short dynami
al time-s
ales in the high density opaque regions. In addition, these regions

(due to the adiabati
 heating) evolve into roughly spheri
al obje
ts with no interesting sub-

stru
ture worth to be resolved. Therefore, when the 
entral density of a pressure supported

fragment ex
eeds �

s

= 10

�11

g=
m

3

, we insert a sink parti
le into the 
al
ulation (Bate et al.

(1995)). More te
hni
ally a sink parti
le is 
reated if the density threshold is ex
eeded by at

least 50 SPH parti
les. It is pla
ed at the position of the densest gas parti
le of the pressure-

supported fragment. It swallows all SPH parti
les 
ontained within r

a



= 14AU around it

and adopts their mass and momentum. Any gas that later falls within this radius is a

reted

by the point mass if it is bound and its spe
i�
 angular momentum is less than that required

to form a 
ir
ular orbit at radius r

a



from the sink parti
le. Thus, gaseous dis
s around sink

parti
les 
an only be resolved if they have radii of at least � 20AU. Sink parti
les intera
t

with the gas only via gravity and a

retion.

Sin
e all sink parti
les are 
reated from pressure-supported fragments, their initial masses are

� 10M

J

, as given by the opa
ity limit for fragmentation (se
tion 6.1). Subsequently, they

may a

rete large amounts of material to be
ome higher-mass brown dwarfs (m � 75M

J

)

or stars (m � 75M

J

), but all the stars and brown dwarfs begin as these low-mass pressure-

supported fragments. Sink parti
les are not permitted to merge in this 
al
ulation.

The high density 
ontrasts o

urring in our simulations result in a wide range of integration

timesteps for the individual SPH parti
les. If a large fra
tion of the SPH parti
les are a

u-

mulated in high density regions the global integration speed breaks down. This is the 
ase

when hydrostati
 
ores start to form. But the hydrostati
 
ores are not expe
ted to host

interesting substru
ture due to their pressure supported nature and are in this sense 'boring,

roughly spheri
al obje
ts' not worth to be resolved in detail. Therefore, the 
reation of sink

parti
les is a skillful method to avoid the extremely time 
onsuming 
al
ulation of the detailed

dynami
s in the hydrostati
 
ores.

This is not without an element of risk. If it were possible to follow the fragments all the

way to stellar densities (as done by Bate 1998) while 
ontinuing to follow the evolution of the

large-s
ale 
loud over its dynami
al time-s
ale, we might �nd that a few of the obje
ts that we

repla
e with sink parti
les merge together or are disrupted by dynami
al intera
tions. We have

tried to minimize the degree to whi
h this might o

ur by insisting that the 
entral density of

the pressure-supported fragments is at least two orders of magnitude higher than the opa
ity

limit before a sink parti
le is 
reated. This ensures that the fragment is adiabati
ally heated

up to 60K, self-gravitating, 
entrally-
ondensed and roughly spheri
al before it is repla
ed

by a sink parti
le. Furthermore, ea
h pressure-supported fragment must undergo a period of

a

retion before its 
entral density ex
eeds �

s

and it is repla
ed by a sink parti
le. In prin
ipal

there is the possibility for a very �lamentary 
ollapsing fragment to ex
eed this density over

a large distan
e, thus making the 
reation of one or more sink parti
les ambiguous. However,

the stru
ture of the 
ollapsing fragments resulting from our turbulent initial 
ondition does

not evolve into long, roughly uniform-density �laments with � � �

s

.
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6.4 Resolution

The lo
al Jeans mass must be resolved throughout the 
al
ulation to model fragmentation


orre
tly (Bate & Burkert 1997; Truelove et al. 1997; Whitworth 1998; Boss et al. 2000). Bate

and Burkert (1997) found that this requires at least � 2N

neigh

SPH parti
les per Jeans mass.

Bate found in more detailed tests with 
al
ulations using di�erent numbers of parti
les that

1:5N

neigh

= 75 parti
les are also suÆ
ient to resolve the lo
al Jeans mass, see se
tion 3.4.2

The minimum Jeans mass in our 
al
ulations o

urs at the maximum density during the

isothermal 
ollapse phase (� = 10

�13

g=
m

3

), and is M

Jeans;min

� 0:003M

�

. Thus 0:75� 10

5

parti
les are needed to model the 
ollapse of 3M

�

prestellar 
ores down to the opa
ity limit.

6.5 Ensemble Runs

We have performed an ensemble of 22 independent 
ollapse simulations. Besides the stru
ture

of the initial velo
ity �eld the setup 
onditions are identi
al for all runs:

geometry homogeneous density sphere

mass m = 3M

�

size R = 0:0616 p


density 2:1� 10

�19

g=
m

3

(5:3 � 10

4

1=
m

3

)

mean mole
ular weight � = 2:36 g=mol

temperature T = 10K

initial Ma
h number M

0

= 2:0

The velo
ities of the SPH parti
les are generated by the method of Gaussian Random Fields

as des
ribed in detail in 
hapter 4.3.2. A power spe
trum P (k) � k

�4

is used whi
h is 
onsis-

tent with most of the observed line width-size relations, see se
tion 4.3.1. The largest mode

has the same size as the setup spheres' diameter (k

min

= 1). The smalest resolvable mode for

the velo
ity 
u
tuations is 1=21 of the spheres' diameter (k

max

= 21).

Due to the individual density stru
tures and 
ows the time of the �rst formation of a sink

parti
le varies signi�
antly. The earliest formation takes pla
e 1:16 t

�

(run595), the latest

one 1:84 t

�

. The following table gives a summary of all 22 runs. Shown is the time step at

whi
h the �rst sink parti
le is formed (se
ond 
olumn), the �nal time step of the 
al
ulation

(third 
olumn), how many sink parti
les where 
reated up to the end of the 
al
ulation

(fourth 
olumn) and the total amound of mass a

reted by all sink parti
les at the end of the


al
ulation (�fth 
olumn). One free fall time 
orresponds to 31 timesteps.
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run �rst last �nal number of a

reted mass

sink parti
le timestep sink parti
les

run310 37 150 13 2.45 (81.6%)

run315 57 103 9 1.56 (52.1%)

run320 49 56 9 1.11 (36.9%)

run325 35 454 9 1.58 (52.8%)

run360 42 137 8 2.24 (74.6%)

run365 50 467 15 1.77 (58.9%)

run370 39 70 9 1.59 (53.1%)

run375 40 191 9 1.96 (65.3%)

run410 40 96 1 1.87 (62.5%)

run415 40 301 12 2.32 (77.3%)

run420 39 54 7 1.47 (49.0%)

run425 38 65 11 1.73 (57.8%)

run475 48 99 9 2.27 (75.8%)

run510 38 177 18 1.82 (60.8%)

run580 37 67 10 1.73 (57.6%)

run585 37 78 11 1.61 (53.7%)

run590 49 72 3 1.29 (43.0%)

run595 36 66 10 1.29 (43.0%)

run610 51 64 9 2.00 (66.8%)

run615 34 42 1 1.60 (53.4%)

run620 36 44 10 1.66 (55.4%)

run625 44 51 1 0.43 (14.3%)

As expe
ted due to the large fra
tion of binary and multiple systems seen in observations

there is a large s
atter in the number of obje
ts 
reated from the individual prestellar 
ores

of our simulations. It 
omes out, that there are two distin
t formation me
hanisms forming

primarily stars respe
tive brown dwarfs:

� The formation of obje
ts dire
tly from 
ollapsing fragments 
ontra
ting beyond the

opa
ity limit. In our simulations these obje
ts nearly always ex
eed the hydrogen burn-

ing limit and be
ome stars. The mean mass of these stars is 0:47M

�

.

� The formation of obje
ts from a massive a

retion disk as it evolves into an instability.

These obje
ts are on average signi�
antly smaller in mass than the ones formed dire
tly

from fragments. About 60 per
ent of these obje
ts do not ex
eed the hydrogen burning

limit. So that we 
an predi
t that this formation s
enario is typi
al for the formation

of brown dwarfs. The mean mass of the obje
ts formed by this me
hanism is 0:1M

�

.

The most simple example for the �rst formation me
hanism is the 
reation of a single star.

This is shown in �gure 6.1. In run410 (upper panel) a single star a

retes mass from a

stable disk. The a

retion phase has been followed over one free fall time (150000 yrs). The

single obje
t is formed 200000 yrs after the initialization. During the �rst 50000 yrs after

its 
reation it a

retes rapidly about 80 per
ent of its �nal mass. Later on the gas reservoir

be
omes exhausted and the a

retion rate de
reases. One should keep in mind, that our
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simulations do not take into a

ount feedba
k me
hanisms like out
ows and heating of the

surrounding disk and envelope. So that our a

retion rates and �nal masses have to be

interpreted as upper limits. In our ensemble the �rst s
enario is dominated by the formation

of single stars. However, the majority of obje
ts formed by this s
enario is initially in binary

or multiple systems. The following table shows the number of stars formed dire
tly from


ollapsing fragments:

one single star 12 runs

two stars 6 runs 4 binaries

2 unbound systems

multiple systems 4 runs

If two obje
ts are formed by 
ollapsing fragments they are often 
lose together in spa
e and

time. In this 
ase the se
ond 
omponent forms not more than 5000 years after the �rst one.

Figure (6.3) shows a 
ompetitive a

reting binary system. Over 70000 yrs the binary system

is not perturbed by formation of other obje
ts or intera
tion with other obje
ts. In this 
ase

the orbital parameters 
onverging towards an ellipti
al orbit with a semi-mayor axis of 21AU

and an e

entri
ity of 0.64. During the �rst 20000 yrs the stars migrate together and their

orbit is 
ir
ularized. A

retion rates are in the order of 10

�5

M

�

=yr, see �gure (6.3). Later on

the inward migration stops and the orbital parameters are roughly 
onstant besides a slowly

in
reasing e

entri
ity. During the whole a

retion phase the binary masses are equalized

(lower panel of �gure 6.3). At the end of the 
al
ulation the a

retion rate has de
ayed down

to 5�10

�7

M

�

=yr. The total a

reted mass end up with 1:05M

�

and a mass ratio of 1.5. The

period has 
onverged against 120 yrs whi
h is typi
al for binaries and just at the maximum

of the observed period distribution (Duquennoy and Mayor (1991)).

A more typi
al star formation s
enario of our ensemble is shown in �gure 6.5. It 
onsists

of both, the formation of one or more obje
ts from 
ollapsing fragments and the subsequent

formation of obje
ts from an unstable massive a

retion disk. About 2500 yrs before the disk

instability o

urs the a

retion rate starts to in
rease again rea
hing values of 10

�4

M

�

=yr.

On
e the small obje
ts have formed in the disk the a

retion on the massive obje
t de
reases

signi�
antly and is 
omparable to the a

retion rates of the other new born obje
ts in the

disk. Two of the disk born obje
ts are eje
ted out of the dense gas regions soon after there


reation and do not a

rete any more.
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Figure 6.1: Two example runs showing an extended 
alm a

retion phase after the


reation of a single sink parti
le. Plotted is the mass a

reted by the sink parti
le

in units of M

�

as a fun
tion of time. The dashed horizontal marks the hydrogen

burning limit of 0:08M

�

. Obje
ts above the dashed line are stars, obje
ts below

are brown dwarfs. The time axis is s
aled in 
ode units: 0:31CU = t

ff

= 150000 yrs.
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Figure 6.2: Logarithmi
 density distribution (
olor 
oded) for a stable 
ir
umstellar

disk (run410) from 200000 yrs (upper left) to 225000 yrs (lower right) after the

initialization (upper left) in steps of 5000 yrs. Densities range from 0.3 resp.

2 � 10

�20

g=
m

3

(bla
k) to 2:5 � 10

7

resp. 1:6 � 10

�12

g=
m

3

(white). Size s
ales are

given in units of 0:1 p
.

.



6.5. ENSEMBLE RUNS 95

Figure 6.3: Competitive a

retion in a binary system (upper panel), distan
e of

the binary obje
ts (middle panel) and the mass ratio of the obje
ts (lower panel).

The time axis is s
aled in 
ode units: t

�

= 0:31CU = 150000 yrs.
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Figure 6.4: Logarithmi
 density distribution (
olor 
oded) of a 
ir
umbinary disk

(run510) 200000 yrs (upper left) to 225000 yrs (lower right) after the initialization

in steps of 5000 yrs. The binary is lo
ated in the low density hole at the disk's


enter. Densities range from 0.3 resp. 2 � 10

�20

g=
m

3

(bla
k) to 2:5 � 10

7

resp.

1:6� 10

�12

g=
m

3

(white). Size s
ales are given in units of 0:1 p
.
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Figure 6.5: Fast a

retion of a single obje
t from a massive disk. A disk instability

o

urs at t = 0:51 resulting in a star formation burst 10000 yrs after the formation

of the �rst stellar obje
t. The time axis is s
aled in 
ode units: 0:31CU = t

ff

=

150000 yrs.
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Figure 6.6: Logarithmi
 density distribution (
olor 
oded) for an 
ir
umstellar disk

evolving into an instability whi
h results in the 
reation of 4 low mass stars and

4 brown dwarfs. The time sequen
e range from 200000 yrs (upper left) to 225000

yrs (lower right) after the initialization in steps of 5000 yrs. Densities range from

0.3 resp. 2 � 10

�20

g=
m

3

(bla
k) to 2:5 � 10

7

resp. 1:6 � 10

�12

g=
m

3

(white). Size

s
ales are given in units of 0:1 p
.

.
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6.6 Binary Stars

The majority of stars are binary or multiple systems, but yet multiple star formation is only

partly understood. Multiple star formation is a fundamental feature of the star formation

pro
ess itself. Duquennoy and Mayor (1991) have presented a survey with all known F7-G9

stars within a 22 p
 sphere around the sun. This survey provides a relatively unbiased sample

of main-sequen
e stars.

� Frequen
y: In the sample of Duquennoy and Mayor (1991) the ratio of the number of

single:binary:triple:quadruple systems is 57:38:4:1. That applies for 
ompanions with

a mass ratio q = M

2

=M

1

> 0:1. This means that only about 40 per
ent of the stars

are single stars. The binary frequen
y among pre-main-sequen
e stars is about twi
e as

large as for the main-sequen
e stars of the Duquennoy and Mayor (1991) sample.

� Period Distribution The period distribution of the sample of Duquennoy and Mayor

(1991) is Gaussian like as a fun
tion of logP with a median of P � 6 � 10

4

days. The

periods range from less than a day to 10

9

days. Multiple systems are ordered hierar
hi-


ally. Short period systems are part of larger long period system et
. Mathieu (1994)

showed the periods to be similar distributed for pre-main-sequen
e stars.

� Mass Ratios: The Duquennoy and Mayor (1991) sample shows a Gaussian distribution

of the mass ratios with a maximum at q = 0:23. A similar distribution was found by a

survey of �eld stars Kroupa et al. (1990).

� Orbital E

entri
ities: Binaries with periods P < 11 days have 
ir
ular orbits. Orbits

with periods 10 < P < 1000 days show e

entri
ities essentially below e = 0:6. Orbits

with periods P > 1000 days e

entri
ities are s
attered between e � 0:1 and e � 0:9.

These results are taken again from the Duquennoy and Mayor (1991) sample. A sample

of pre-main-sequen
e stars Mathieu (1994) shows that the e

entri
ity distribution (as a

fun
tion of P ) is similar to that of main-sequen
e stars ex
ept for short periods. Cir
ular

orbits are only seen for periods below P = 5days.
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6.6.1 Formation Theories for Binary Systems

There are essentially four general models for the formation of binary star systems.

� Caption: The me
hanism of 
aption was suggested for the �rst time by Stoney (see

Aitken 1935). Two independently formed and initially unbound stars form a binary

system due to some dissipative pro
ess e.g. tidal dissipation during a 
lose en
ounter.

Another possibility is the formation of a binary system in the presen
e of a third obje
t

whi
h absorbs the ex
ess energy.

� Fission: Binary formation by �ssion o

urs when a hydrostati
 
ore or protostar

during its quasi-stati
 
ontra
tion phase run into an rotational instability and disrupts

into two distin
t obje
ts. In su
h a pro
ess spin angular momentum is 
onverted into

orbital angular momentum. If this pro
ess will o

ur after the se
ond 
ollapse phase

it will be a sour
e of 
lose binaries. There are numerous obje
tions against this theory

(e.g. Tassoul (1978), Bodenheimer et al. 1993). Numeri
al simulations do not show

binary formation by this pro
ess.

� Fragmentation during Protostellar Collapse: Originally proposed by Hoyle (1953) frag-

mentation during the protostellar 
ollapse phase 
an produ
e binaries with a wide range

of periods. The fragmentation me
hanism was tested in a large number of numeri
al

simulation. A wide variety of initial 
onditions has been employed.

� Disk Fragmentation Disk fragmentation 
an o

ur in an equilibrium 
ir
umstellar disk

if the minimum value for the Toomre Parameter Q approa
hes 1.

In our ensemble we have found 17 binary stars and 6 hierar
hi
al triple systems 
onsisting

of a 
lose binary system with distant 
ompanion star. Two of the binary systems are brown

dwarf binaries. The following table gives a summary of all bound obje
ts found in our sample.
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run major minor major minor period


omponent [M

�

℄ 
ompanion [M

�

℄ axis[AU℄ axis [AU℄ [yrs℄

run310

run315 m

1

= 0:4122 m

2

= 0:1790 29 14 70.53 p

m

1

+m

2

= 0:5910 m

0

= 0:5798 295 260 2978 p

run320 m

0

= 0:4209 m

1

= 0:1733 25 10 78 im

run325 m

0

= 0:7270 m

2

= 0:2624 66 37 256.5 p

m

1

= 0:1748 m

6

= 0:1016 1540 30 26450 v

m

0

+m

2

= 0:9894 m

5

= 0:05364 1100 800 19749 v

run360

run365 m

11

= 0:2444 m

13

= 0:1007 80 10 352.7 p

m

0

= 0:4606 m

1

= 0:1277 550...1200 25...30 4702...14106 o

run370 m

0

= 0:6373 m

1

= 0:2064 29...38 6...12 56.4...78.4 v

m

0

= 0:6373 m

2

= 0:2195 41 17 110 p

m

0

+m

2

= 0:8567 m

1

= 0:2064 400...600 100 2821 d

run375 m

0

= 0:4819 m

1

= 0:3424 49 17 145.5 d

m

0

+m

1

= 0:8243 m

5

= 0:3770 400...600 175 3582 i

run410

run415 m

4

= 0:1440 m

7

= 0:0654 550...800 10...15 8041...11400 v

run420 m

0

= 0:8324 m

1

= 0:3067 33...35 11...15 70 p

run425 m

0

= 0:6922 m

2

= 0:1978 28...30 10...12 65 v

m

1

= 0:2572 m

5

= 0:4307 120...150 8...15 562 d

m

0

+m

2

= 0:89 m

5

= 0:4307 270...325 80...105 1840 v

run475 m

8

= 0:6812 m

12

= 0:2441 19...23 8...10 437 i

m

0

= 0:3276 m

2

= 0:0933 170...200 8...10 1051 i

run510 m

0

= 0:6220 m

1

= 0:4245 42 15 120 p

run580

run585 m

3

= 0:3106 m

1

= 0:2003 105...125 15...45 526 v

m

7

= 0:2424 m

6

= 0:2330 128...135 30...40 728 i

run590

run595 m

3

= 0:07824 m

7

= 0:03248 95 35 111 i

m

6

= 0:0342 m

8

= 0:0271 950 100 35477 p

run610 m

0

= 0:6133 m

1

= 0:4136 63...70 20...45 208 v

m

6

= 0:0884 m

7

= 0:0514 15...25 5...10 368 


run615

run620 m

2

= 0:2144 m

1

= 0:1094 20...24 10...17 195 mt,


m

0

= 0:409 m

1

+m

2

= 0:3238 130...170 80...90 1242 mt,


run625

The small letters behind the period numbers indi
ate the evolutionary 
hara
ter of the orbit:

(p)=periodi
 ; (
)=
haoti
 ; (i)=inward migration ; (o)=outward migration ; (d)=de
aying

orbit ; (im)=intermiten
y=binary jumps between periodi
 and 
haoti
 epo
hs
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6.6.2 Period Distribution

The period distribution resulting from our ensemble 
al
ulations is 
onsistent with distribu-

tions measured among solar type stars ( e.g. Duquennoy and Mayor (1991)). If one looks at

the distribution for the pre-main sequen
e stars (�gure 6.8) the 
on
ordan
e is even better

ex
ept for periods < 10

3

days.

On the low end of the period distribution we are restri
ted by the a

retion radii of our

sink parti
les. This introdu
es a minimum initial distan
e for the binaries of 2r

a



= 28AU.

If we assume an initial mass for both obje
ts of 0:25M

�

we get a lower limit of 200 yrs for

the initial period. On the other hand there is a minimum size for fragments at the opa
ity

limit of about 10AU. This introdu
es a physi
al minimum initial distan
e of roughly 20AU.

This is ni
ely 
on�rmed by high resolution simulations of Bate et al. (2002b) and referen
es

there. On
e 
reated sink parti
les are able to migrate together whi
h is a 
ommon s
enario

during the a

retion phase so that we �nd about 30% of the periods to be below 200 yrs at

the end of the 
al
ulation. Nevertheless we have to keep in mind that we 
an't expe
t 
orre
t

number 
ounts for the period distribution far below 100 yrs be
ause the a

retion disks are

not resolved beyond 20AU. On the high end of the period distribution we are naturally

restri
ted by the size of our simulation area. We 
an't expe
t a binary system to be 
reated

with an initial distan
e of more than 0:06 p
. This results in period of the order of 10

8

days.

But this restri
tion also holds in nature be
ause stellar obje
ts 
an only form inside prestellar


ores and these have sizes in the order of our simulation area. Even though our sink parti-


les are not restri
ted to the simulation area of the SPH parti
les and a signi�
ant part has

left this area at the end of the 
al
ulation the longest period we found in our 
al
ulations is

1:3� 10

7

days.
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Figure 6.7: Period distribution for 17 binary and 6 hierar
hi
al triple systems

(
ounted double) resulting from our ensemble 
al
ulation. The maximum �ts

well the period distribution of solar neigbourhood stars, 
ompare with �gure 6.8
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Figure 6.8: Comparison of the period distributions of Main Sequen
e stars (grey),

Pre-Main-Sequen
e stars (blue) and 
lass 0 binary obje
ts observed in submm

(red and yellow dots). The �gure was provided by Ralf Launhardt.
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6.6.3 E

entri
ities

Observations show that main-sequen
e binaries with periods P < 11 days have 
ir
ular orbits.

In the period range 10 < P < 1000 days e

entri
ities are measured to be below e = 0:6 and

there is a signi�
ant 
orrelation between revolution period and e

entri
ity. For orbits with

periods P > 1000 days e

entri
ities are independent of P and s
attered between e � 0:1 and

e � 0:9 (Duquennoy and Mayor (1991)).

In samples of pre-main-sequen
e binaries e

entri
ities tend to be larger 
ompared to main-

sequen
e samples for periods P < 1000 days . In parti
ular the period range in whi
h orbits

are found to be 
ir
ular is mu
h smaller and extends not beyond P = 5days (Mathieu (1994)).

The fa
t that old binary systems have statisti
ally more 
ir
ular orbits than young systems


an be explained by tidal intera
tions. In the 
ourse of time rotational angular momentum of

the stars is transfered to the orbital angular momentum resulting in a 
ir
ularisation of the


orresponding orbits.

The amount of transfered angular momentum per time depends on the strength of the tidal

intera
tion, the rotation periods of the stars and the period of revolution. The tims
ale on

whi
h orbits are 
ir
ularized is shortest for 
lose binaries be
ause of strong tidal intera
tions

and short revolution periods. For periods beyond 10

5

days respe
tive distan
es d > 50AU the

e�e
t of 
ir
ularization is not seen any more in the sample of Duquennoy and Mayor (1991)

(�gure 6.9 , lower panel). For this systems the times
ale for 
ir
ularisation is in the order

of 5 � 10

9

yrs or more and/or the amount of rotational angular momentum of the stars is

insuÆ
ient to 
ir
ularize the stellar orbits signi�
antly.

In our ensemble e

entri
ities be
ome independent of the revolution period for periods P >

1000 days. As expe
ted we don't �nd 
ompletely 
ir
ularised orbits be
ause the shortest pe-

riod of our sample (P = 70days) is far beyond the regime where orbits are expe
ted to be


ir
ularized.
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Figure 6.9: Comparison of the E

entri
ity Distribution resulting from our ensem-

ble runs with the E

entri
ity Distribution of solar neigbourhood stars, taken

from Duquennoy and Mayor (1991)
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Figure 6.10: Comparison of the E

entri
ity-Period relation resulting from our

ensemble runs (upper panel) with the E

entri
ity-Period relation of solar neig-

bourhood stars (lower panel), taken from Duquennoy and Mayor (1991). Crosses

and bla
k disks are binary systems, triangles are triple systems and Squares are

quadruple systems. Note the di�erent ranges on the horizontal axis. Due to our

resolution limits we have no binary periods below 100 days.
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6.7 Brown Dwarfs

The existen
e of brown dwarfs was 
onvin
ingly demonstrated the �rst time in 1995 by the

dis
overy of Gliese 229 whi
h is the 
ompanion of a M dwarf star (Nakajima et al. (1995).

Later on also free 
oating and binary brown dwarf were observed (Rebolo et al. (1995)). More


urrent observations tend to show that brown dwarfs are as 
ommon as stars even though

their mass fra
tion is very low 
ompared to the stars (Reid et al. (1999). Mu
h more diÆ
ult

is the estimation of the binary frequen
y among brown dwarfs. Reid et al. (2001) found

that about 20 per
ent of the brown dwarf primaries have a 
ompanion star in a sample of

20 obje
ts. None of these binary systems have proje
ted separations of more than 10AU.

One should keep in mind that this sample is magnitude-limited rather than volume-limited.

Therefore its likely that the binary fra
tion is overestimated.

Brown dwarfs form in high 
ondensed gas regions as normal stars. But they are eje
ted out of

the dens region before they have a

reted enough mass to be
ome stars. Or the dens gas region

itself is disrupted by an intera
tion or instability. In our ensemble 80 per
ent of the brown

dwarfs form in gravitationally unstable 
ir
umstellar disks and 20 per
ent form dire
tly in


ollapsing fragments in good agreement with results from Bate et al. (2002a). Disks have been

shown to be
ome unstable due to rapid a

retion(Bonnell (1994), Bonnell and Bate (1994a),

Whitworth et al. (1995), Burkert et al. (1997)) and/or tidal perturbations or intera
tion in the


ase of stellar en
ounters (BoÆn et al. (1998), Watkins et al. (1998b), Watkins et al. (1998a)).

Our simulations 
learly show that an dynami
ally unstable multi obje
t environment is an

essential 
ondition for the formation of brown dwarfs. All 63 substellar obje
ts resulting from

our ensemble 
al
ulation have formed in su
h 
haoti
 multi systems. This is not surprising

be
ause this instability avoids eÆ
iently an extended stable a

retion phase whi
h is ne
essary

for the formation of stellar mass obje
ts.
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6.8 The Initial Mass Fun
tion (IMF)

The initial stellar mass fun
tion (IMF) is one of the most important features of the star

formation pro
ess. A detailed knowledge about this distribution of the resulting stellar masses

is a ne
essary ingredient for understanding many pro
esses involved in star formation. It is


ontrolled by the stru
ture and turbulent dynami
 of the interstellar medium, the feedba
k

of new born stars itself and the 
hemi
al evolution of the galaxy a whole. Unfortunately,

the 
urrent theory of star formation remains unable to derive the IMF from �rst prin
iples.

Be
ause the formation of stars is a highly 
haoti
 and indeterministi
 pro
ess it is very

unlikely that an analyti
al formula for the IMF exists. Realisti
 models need to be found in

the framework of a probabilisti
 theory of the star formation pro
ess.

6.8.1 The Observed Initial Mass Fun
tion

Gravitationally bound gas spheres as 
onsidered to be stars in a 
lassi
al sense exist only

in a �nite mass range. Obje
ts with masses less than 0:08M

�


annot produ
e the 
entral

temperature and density 
onditions needed for the fusion of hydrogen. These obje
ts are


alled Brown Dwarfs. A sub fra
tion of these obje
ts with masses m > 0:013M

�

is able to

burn deuterium for a short time. For an obje
t ex
eeding the hydrogen burning limit the

luminosity in
reases rapidly with its mass:

L � m

a

(6.4)

where L is the luminosity of the star, m its mass and the exponent a ranges from 3 : : : 3:5.

Due to the in
reasing radiation pressure stars with masses greater than about 100M

�

are

unstable (Howarth (1994)). Hen
e, stars are 
on�ned to the mass range

0:08M

�

< m < 100M

�

(6.5)

The �rst trial to determine the IMF was done by Salpeter (1955). He showed that the number

f(m) of stars in the mass range m to m+ dm 
an be approximated by a power-law relation

f(m)dm � m

��

dm (6.6)

with the index � � 2:35 for stars in the mass range 0:4M

�

< m < 10M

�

. However, the

approximation of the IMF with one single power-law was over simpli�ed. Miller and S
alo

(1979) found for the �rst time a maximum around m � 0:3M

�

and tried to �t the IMF with

a log-normal distribution:

log

10

f(log

10

m) = A�

1

2(log

10

�)

2

h

log

10

�

m

m

0

�i

2

(6.7)

Their work has been reinvestigated and improved in a variety of aspe
ts by many authors as

des
ribed in the review of S
alo (1998). Negle
ting the e�e
ts of binary and multiple systems,

Kroupa et al. (1990) derive the following parameters for the log-normal �t:

m

0

= 0:23

� = 0:42 (6.8)

A = 0:1

(6.9)
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Studies before the mid 1990's have not taken into a

ount the 
ontamination of star 
ounts

by binary and multiple systems. Binary stars are falsely 
ounted as single stars if they are

not resolved by the teles
ope.

Lada & Lada 2003 extended their survey into the brown dwarf regime down to masses of

m � 0:01M

�

and found a se
ond peak in the IMF around m = 0:02M

�

(�gure 6.11).

In most of our ensemble runs we evolved the system about 150000 yrs (roughly one free

fall time) beyond the formation of the �rst stellar obje
t respe
tive the �rst sink parti
le. In

this time 50 : : : 60 per
ent of the total mass has been a

reted onto the sink parti
les. After

this epo
h the a

retion rate signi�
antly fades away and the lo
al mass distribution be
omes

dominated by the sink parti
les. In total our 22 
ollapsing prestellar 
ores form 127 sink

parti
les. 64 of these obje
ts form stars and 63 do not ex
eed the hydrogen burning limit

ending up as brown dwarfs. 52 obje
ts are bound in binary or multiple systems while only

7 of these bound obje
ts are brown dwarfs. We �nd a bimodal initial mass distribution with

maxima at m � 0:03M

�

and m � 0:3M

�

(�gure 6.11). The two maxima are the dire
t


onsequen
e of the fa
t that obje
ts are formed by two distin
t me
hanisms:

� The formation of obje
ts dire
tly from 
ollapsing fragments 
ontra
ting beyond the

opa
ity limit. In our simulations these obje
ts nearly always form stars. The mean

mass of these obje
ts is 0:47M

�

.

� The formation of obje
ts from a massive a

retion disk evolving into an instability.

These obje
ts are on average signi�
antly smaller in mass. About 60 per
ent of these

obje
ts do not ex
eed the hydrogen burning limit. So that we 
an predi
t that this

formation s
enario is typi
al for the formation of brown dwarfs. The mean mass of

these obje
ts is 0:1M

�

. In the ensemble simulations presented here the majority of

obje
ts is 
reated by this me
hanism.

The initial mass distributions are plotted separately in , �gure 6.12 for obje
ts resulting

dire
tly from fragments (upper panel) and for obje
ts resulting from disk fragmentation (lower

panel). It 
omes out that the median of this two initial mass distributions di�ers about one

order of magnitude in mass.
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Figure 6.11: Upper panel: Initial Mass Fun
tion (IMF) 
onsisting of all 127 obje
ts


reated in our ensemble. The low mass end is on the left hand side. Lower panel:

IMF taken from Lada & Lada 2003. Be 
areful with the horizontal axis - the low

mass end is to the right!
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Figure 6.12: Comparison of the IMF for obje
ts 
reated dire
tly from fragments

(upper panel) and obje
ts 
reated from disk instabilities (lower panel). The

majority of the obje
ts emerging from disk instabilities are brown dwarfs



Chapter 7

Summary and Future Prospe
ts

In this dissertation we dis
ussed the 
reation of prestellar 
ores out of turbulent mole
u-

lar 
loud environment, their 
ollapse and fragmentation down to the 
reation of protostellar

obje
ts and the subsequent a

retion and intera
tion history of these obje
ts. We studied

the interplay between gravity, thermal pressure and turbulen
e and showed that a turbulent

velo
ity �eld 
an be used in an isothermal model of selfgravitating gas to build up obje
ts

whi
h mat
h many of the observed features of prestellar 
ores. For the subsequent 
ollapse


al
ulations a variable equation of state was used to model the e�e
ts of radiative transfer,

in parti
ular the heating of the gas beyond the opa
ity limit. Hydrostati
 
ores rea
hing a

threshold density were repla
ed by sink parti
les taking over the gas and its angular momen-

tum and were able to a

rete gas later on. Within the framework of this model we have

identi�ed two distin
t formation pro
esses of hydrostati
 
ores. One results in intermediate

mass stellar obje
ts, the other leads to low mass stars and brown dwarfs. We sumarize our

results in se
tion 7.1 and, starting from the 
urrent paradigm, in se
tion 7.2 we suggest further

steps to deepen our knowledge of the star formation pro
ess.

7.1 Summary

Our simulations show that, in general, the formation of a prestellar 
ore is extremely 
omplex

and show a large variety of realizations. The dynami
al evolution of a prestellar 
ore into


ollapse is determined by the interplay between selfgravity, thermal pressure and turbulen
e.

First, turbulen
e 
reates several low mass Jeans stable 
ondensations. Even though the


ondensations are strongly sub
riti
al gravity in
uen
es signi�
antly their evolution. They

are growing essentially in mass but only weakly in density. Initially separated 
ondensations

merge together. At the end a large massive and Jeans unstable 
ondensation has formed.

This pro
ess of 
ontra
tion is signi�
antly slower than the isothermal 
ollapse. In some sense

it is similar to an adiabati
 
ompression. In both 
ases there is a pressure supported 
ore like

stru
ture on small s
ales whi
h in
reases only slowly its density while signi�
antly growing in

mass.

� I have developed a method to built up self
onsistent initial 
onditions for 
ollapse 
al-


ulations whi
h mat
h most of the 
ommon features of prestellar 
ores. Unlike in

the 
ommonly used 
ase of a symmetri
 initial 
ondition, every 
ore produ
ed by this

method is unique in its shape and velo
ity stru
ture.

113
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� It was shown that the turbulent velo
ity �eld at its own is not be able to drive the

system into a super
riti
al state. This means, even if the system is strongly sub
riti
al,

gravity in
uen
es signi�
antly the growth of density stru
tures.

� During the sub
riti
al phase, overdense regions grow strongly in mass and size whereas

the density maximum is only weakly enhan
ed. This explains the extended 
at inner

part of prestellar 
ores.

� The 
ollapse starting from a 
alm Bonnor-Ebert sphere as often used as an initial 
on-

dition is very unlikely o

ur in a turbulent mole
ular 
loud. However we �nd sub
riti
al

Bonnor-Ebert spheres with density 
ontrasts ranging from 2 to 6 depending on the

initial Ma
h number but far below the 
riti
al density 
ontrast of 13:5.

� The se
ond peak of the initial mass fun
tion at the low mass end (e.g. Lada and Lada

2003) 
an be naturally explained by the two distin
t formation me
hanisms for hydro-

stati
 
ores we have found in our simulations. They 
an form dire
tly from 
ollapsing

fragments resulting in predominantly intermediate mass stellar obje
ts or they form

during a disk instability resulting in predominantly low mass stars and brown dwarfs.

The se
ond me
hanism is responsible for the se
ond peak in the initial mass fun
tion

around 0:02M

�

� The period distribution of the resulting binary and triple systems 
oin
ides well with the

distribution of pre main sequen
e stars even though we 
an't resolve the short period

end of the distribution.

� The e

entri
ities of the resulting binary and triple systems are 
onsistent with the

distribution found in the solar neighbourhood population.

7.2 Outlook

7.2.1 Memory E�e
ts

Even though our prestellar 
ores were designed to be
ome super
riti
al only if the turbulent

pressure drops below some 
riti
al value, there seems to exist a memory of the initial 
ondition

due to the density stru
tures built up before. This 
an be seen e.g. in the di�erent Bonnor-

Ebert sphere density 
ontrasts whi
h depend on the initial Ma
h number M

0

. The history of

the turbulent energy 
ontent seems to play a role even in the sub
riti
al phase. It would be

interesting to analyse how (at the onset of 
ollapse) the spe
i�
 angular momentum and the

density 
ontrast of prestellar 
ores are a�e
ted by the initial amount of turbulent energy and

how the turbulent energy is distributed on di�erent s
ales.

7.2.2 Introdu
tion of Stellar Feedba
k

As dis
ussed extensively in this dissertation, our selfgravitating gas model in 
ombination

with a variable equation of state and the 
reation of sink parti
les is able to treat the most

dominant physi
al phenomena of the formation of protostars 
orre
tly. However, in the late

stages of a

retion, feedba
k pro
esses from the young stellar obje
ts be
ome important, sin
e

bipolar out
ows, stellar winds and radiation �nally will blow away parts of the protostellar
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envelope as the star evolves towards the main sequen
e. This is an important e�e
t deter-

mining the star formation eÆ
ien
y. Famous and well-studied examples of star formation

regions in whi
h these e�e
ts are important are the Trapezium Cluster in Orion (see e.g.

http://antwrp.gsf
.nasa.gov/apod/ap030302.html) and the region around the star �-Carinae,

see �gure 1.1. Therefore, to improve the 
urrent model of the star formation pro
ess feedba
k

e�e
ts and energy input from young stars need to be taken into a

ount.

7.2.3 Radiative Transfer

At the opa
ity limit the fragmentation starts to be sensitive to radiative transfer. Our vari-

able equation of state is adjusted to the results of a one dimensional radiative transfer model

(Masunaga and Inutsuka (2000)). But it is questionable if this holds also in three dimen-

sions. In three dimensions the 
ooling pro
ess will also depend signi�
antly on the degree of

fragmentation and the shape of the fragments. Filamentary stru
tures will 
ool mu
h faster

than 
ompa
t ones. As a result there will be no unique relation between � and T as it was

assumed in our 
al
ulations. So the implementation of a simple bla
kbody radiative trans-

fer model in the SPH 
ode would be a great step to 
he
k for the variability of the opa
ity

limit. The point at whi
h the 
ollapsing fragments be
ome opaque �xes the initial mass of

the hydrostati
 
ores and may also in
uen
e the number of obje
ts whi
h are 
reated.
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