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Anfangsbedingungen und Kollaps Pr�astellarer Kerne

Pr�astellare Kerne entstehen durh die Interaktion von Gravitation und turbulenten Geshwin-

digkeitsfeldern. Obwohl die Turbulenz auf gro�en Skalen dem gravitativen Kollaps moleku-

larer Wolken entgegenwirkt und ihn signi�kant verz�ogert, k�onnen lokal durh konvergierende

Fl�usse stark verdihtete Strukturen entstehen, die durh ihre Eigengravitation gebunden sind

und in diesem Sinne vom turbulenten Fluss entkoppelt sind. Dieser Mehanismus sha�t somit

die Anfangsbedingungen f�ur die Entwiklung stellarer Objekte. Auf Grund der stohas-tishen

Eigenshaft turbulenter Geshwindigkeitsfelder ist jeder prestellare Kern einzigartig in seiner

Form und internen Dynamik. Dieser individuelle Charakter f�uhrt nah dem Kollaps auh

zu individuellen Ergebnissen: Einzelsterne, Doppelsterne und Multisysteme. Das hei�t, die

statistishen Eigenshaften von Sternpopulationen werden wesentlih durh den individuellen

Charakter der Anfangsbedingungen bestimmt. Es wurde eine Methode ent- wikelt, die die

f�ur Molek�uhlwolken typishen Geshwindigkeitsfelder nutzt um pr�astellare Kerne zu erzeu-

gen. Zur numerishen Simulation des Gases wurde \Smoothed Partile Hydrodynamis" mit

einer idealisierenden Beshreibung der erzeugten Protosterne verwendet. Die durhgef�uhrten

Sternentstehungssimulationen umfassen drei Phasen: Eine Pr�akollapsphase, die die Diht-

estrukturen pr�astellarer Kerne nahbildet sowie deren Dihte- und Geshwindigkeits-Feld in

ein dynamishes Gleihgewiht bringt, so dass eine nat�urlihe und physikalish konsistente

Anfangsbedingung entsteht. In der eigentlihen Kollapsphase wurden Kontraktion und Frag-

mentation bis zum ersten protostellaren Objekt berehnet. In einer Postkollapsphase wurden

Akkretion und Wehselwirkung der protostellaren Objekte untersuht. Ein Ensemble von 22

individuellen Simulationen wurde auf diese Weise erstellt und die resultierende Sternpopula-

tion mit den aktuellen Beobahtungsdaten verglihen.

Initial Conditions and Collapse of Prestellar Cores

Prestellar Cores are reated by the interation of a turbulent veloity �eld and gravity. On

large sales turbulene supports moleular louds against gravity. But on small sales turbu-

lene is able to reate dense strutures by loally onverging ows. Eventually these strutures

may be aptured by their own gravity and deouple from the turbulent ow. This meha-

nism reates the initial onditions for the formation of stellar objets. Due to the stohasti

nature of turbulent veloity �elds every prestellar ore is unique in its shape and internal

dynamis. This peularity in the initial onditions is transformed via the ollapse into an

individuality of the resulting stellar systems: single stars, binaries and multiple systems. As

a result, we expet the statistial features of stellar populations to be ontrolled by this pe-

uliar properties of prestellar ores. I developed a method using the the typial turbulent

veloity �elds of moleular louds to reate prestellar ores. For the numeri simulations a

'Smoothed Partile Hydrodynamis' Code is used inluding a speial simpli�ed treatment

for the reated protostars. The hydrodynamial star formation simulation onsists of three

stages. The pre-ollapse stage forms the prestellar ores and drives the veloity and density

�elds into dynamial equilibrium so that the resulting ores are physially onsistent initial

ondition. During the ollapse phase itself the ontration, fragmentation and heating of the

gas is alulated. In the post-ollapse phase aretion and the impat of interations with

other protostellar objets are analysed. In this way an ensemble of 22 individual simulations

was analysed. The statistial haraterisation of the resulting stellar population is onsistent

with the urrent observational data and yields a natural explanation for the seond peak at

the low mass end of the initial mass funtion.
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Chapter 1

Introdution

Understanding the proesses that lead to the formation of stars is one of the fundamental

hallenges in astronomy. It starts with the formation of moleular loud omplexes in a galaxy.

The moleular louds onsists of moleular gas and dust omposed of tiny grains the size

of smoke partiles. Even though the gas �lls most of the volume of the louds the dust is

what makes them opaque. A small telesope resolves these louds as either blak regions on

the sky where bakground stars are bloked out or as glowing nebula in the ase of those

louds whih had bright stars illuminating the sene e.g. the Coal Sak nebular eastward the

southern ross or the nebular around the star � Carinae, see �gure 1.1. Moleular louds

are the birth plae of stars and the material within is the raw material from whih stars are

made. Sine the louds are mostly hydrogen, with some helium and trae amounts of other

elements, hydrogen is what newly formed stars are prinipally omposed of. The formation

of a star begins with the formation of a self gravitating dense ore out of the turbulent

medium of the moleular loud. It is about 1000 times denser than the surounding gas.

This �rst phase of ompression is mainly due to the supersoni turbulent motions driving

the gas into a state where it an be aptured by its own gravity. These bound strutures

are alled prestellar ores and they are the diret progenitors of stars. Chapter 2 gives an

overview of the star formation proess, about the features of moleular louds and a detailed

observational haraterization of prestellar ores. Chapter 5 then fouses on the transition of

a turbulent, unbound gas region towards a bound struture. It analyses in detail how a self

gravitating enter is reated out of a turbulent moleular gas environment. It is shown that

this early ompression phase is signi�antly di�erent to the standard piture of an isothermal

ollapse phase and worth to be exposed as an additional independent phase of star formation.

One the absolute magnitude of gravitational energy exeeds the sum of thermal, turbulent,

magneti and rotational energy the ollapse starts and proeeds until the entral density and

temperature exeed the threshold for nulear fusion. This new energy soure supports the gas

against gravity and leads to an equilibrium state: a protostar is born. It is still embedded in

a parental gaseous envelope whih ontinues to ollapse into the enter. But onservation of

angular momentum prevents the gas from falling diretly towards the entral objet. Instead,

it forms a rotationally supported disk and matter is able to reah the entral objet only

after the removal of angular momentum through visous transport or disk instabilities. In

Chapter 3, I disuss the speial features of the numerial modelling allowing the simulations

to evolve far beyond the �rst star formation event. In Chapter 6 aretion histories and the

formation mehanisms of single, binary and multiple stars are analysed in detail. Beause

1



2 CHAPTER 1. INTRODUCTION

the formation of individual stars is subjet to highly undeterministi statistial events the

existene of a dedutive theory is highly unlikely. However, we may be able to understand

the star formation proess from a statistial point of view, in terms of the mass spetrum,

binary fration, orbital parameters et. of the resulting stellar systems. Therefore we have

designed an ensemble of individual prestellar ores as initial onditions and performed the full

ollapse alulation for eah realization plus the follow up alulation for the aretion phase

after the �rst stellar objet has formed. A detailed analysis of the resulting stellar systems is

given in Chapter 6 and ompared to the results from observations.
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Figure 1.1: Ative star formation region in the � Carinae nebula. The stellar

winds of a young luster has blown a avity into the surrounding moleular loud.

Above the luster one sees a massive star whih has allready expelled its outer

shell seen as dumbbell shaped nebula. The three zoomed ut outs showing the

dense envelope of young embedded protostars.
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Chapter 2

Observations and Models

2.1 The Di�erent Stages of Star Formation

A theoretial point of view

The theoretial point of view is foused on the physial proesses involved and how they

inuene or ontrol the evolution of the ontrating gas loud. The lassi�ation in di�erent

ollapse phases is motivated by the fat that there is no single self similar solution for the

ollapse from the prestellar ore down to stellar densities. It's rather a asade of distint

ompression phases with a speial type of physis going on ontrolling the sene.

turbulent ompression phase: The formation of a star begins with the formation of self

gravitating prestellar ore out of the unbound turbulent gas of the moleular loud.

This �rst phase of ompression is done by the ubiquitous supersoni turbulent veloity

�eld driving the gas loally into a state where it an be aptured by its own gravity.

Prestellar ores preferently along the intersetion lines of shok fronts, regions with

more extended but still strong veloity gradient or in regions with extended onverging

ows.

isothermal ollapse phase: For densities below � < 5:0 � 10

�13

g=m

3

the mean free

path of photons is muh larger than the size of the prestellar ore. So that the radiative

ooling proess is muh faster than the heating by gravitational ontration. Therefore

the temperature of the loud and its fragments stays roughly onstant.

adiabati moleular ollapse phase: For � > 5:0 � 10

�13

g=m

3

the mean free paths of

photons beomes shorter than the typial size of a fragment. This is alled the 'opaity

limit' due to the fat that at this density a typial fragment beomes opaque or optially

thik resulting in a ooling timesale larger than the loal free fall time. Therefor the

fragment will behaves like adiabati ompressed moleular gas. The gas starts to heats

up and the thermal pressure deelerates the ollapse signi�antly. Resulting in the

formation of slowly ontrating hydrostati ores whih are areeting isothermal low

density gas from its envelope. This works up to the point where the moleules start to

dissoiate.

seond ollapse phase: After the gas has being ompressed adiabatially over �ve orders

of magnitude the entral temperature exeeds about 2000K and the hydrogen moleules

5



6 CHAPTER 2. OBSERVATIONS AND MODELS

start dissoiate. This proess onsumes a huge amount of thermal energy and further

ompression leads only to a weak inrease in temperature. The pressure support an't

ompete with the ever growing gravitational fores. As a result the dissoiation proess

allows for a seond ollapse phase and eventually further fragmentation. Energy is

onsumed now by the dissoiation proess resulting in a dereasing pressure support.

This allows for a seond ollapse phase and eventually further fragmentation. This

seond ollapse phase allows for an additional ompression of the gas of about 4 orders

o magnitude in density.

adiabati atomi ollapse phase: After all moleules were transformed into atomi gas

the density reahes about 1:0� 10

�3

g=m

3

. Now the ore behaves adiabatially again,

but with a signi�antly higher adiabati oeÆient than for the moleular gas. This is

beause all the energy gain from the gravitational �eld is transformed into kineti energy

of the atoms, respetive into thermal pressure. As a result the temperature inreases

again and a seond hydrostati ore forms. As this ore rapidly aretes material from

the seond ollapse phase it's enter is easily pushed towards stellar densities and nulear

fusion an ignite.

An observational point of view

An observer desribes the star formation proess in terms of how the objet will appear on

the sky. So the observational lassi�ation is based on the spetral energy distribution of

the pre- or protostellar objets. A part of the young stellar objets radiation is absorbed

and reproessed depending on how muh matter is hosted in the star's irumstellar disk and

envelope. As a result a part of the stars energy will be shifted towards the infrared, far infrared

and submm range depending on how the matter is distributed around the evolving star .

Therefore the spetral energy distribution beomes an exellent indiator for the evolutionary

state of the objet, see �gure 2.1

prestellar ore: An 0:05 : : : 0:2 p extended region an be deteted by line emission of

moleules, see �gure 2.2. Estimated olumn densities are 100 times larger ompared

to the loal environment and in the order of 10

23

m

�2

. There is no entral objet

detetable.

lass 0: At this stage a entral objet has formed but is still low in mass. This stellar

embryo is only a few ten thousand of years old. Most of the material that will eventually

make up the star is still quite far from the ore and is very ool (10� 20K), produing

emission only at millimeter wavelengths or in the far infrared, see �gure 2.3.

lass I: The protostar beomes visible in infrared, see �gure 2.4 and is about 10

5

years

old. There is still an signi�ant amount of matter in the irumstellar envelope. There-

fore the envelope is opaque to optial light and thus protostars are generally invisible to

ordinary telesopes. Most of what we know about protostars omes from observations

at infrared and millimeter wavelengths. The infrared emission from the disk and the

envelope is dominated by the ooler material in the envelope. A few protostars have

also been observed at X-ray wavelengths. X-ray emission may be an important soure

of ionization, allowing the star, disk and outow to be oupled by magneti �elds. Suh

magneti �elds may also be responsible for squeezing the outow, produing jets.
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lass II: The protostar star beomes visible in the optial (�gure 2.5), and is known as

a Classial T Tauri star. Classial T Tauri stars are about 1-10 million years old and

are easily identi�ed by their strong emission lines produed by the disk/star interation.

The infrared emission is dominated by the disk, sine the envelope has mostly dissipated.

Classial T Tauri stars are strong X-ray emitters and an also produe powerful winds.

lass III: One the irumstallar disk has dissipated enough so that it no longer interats

with the star, the emission lines are no longer present or very weak. Therefore the

objets are alled "Weak-lined" T Tauri stars. Weak-lined T Tauri stars are primarily

found beause they are bright X-ray soures. T Tauri stars produe X-rays in hot plasma

trapped in magneti �elds above the stellar surfae. This is similar to the proess in

whih the Sun produes bright ares but 100-1000 times more powerful. X-ray imaging

satellites, suh as EINSTEIN, ROSAT and ASCA have disovered hundreds of Weak-

lined T Tauri stars.
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Figure 2.1: Di�erent stages of the star formation proess and the expeted spetral

energy distribution as suggested by Andre and Montmerle (1994)
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Figure 2.2: Radio line observations of prestellar ores in CCS J

N

= 3

2

� 2

1

(� =

8:9mm). Done with the Berkeley Illinois Maryland Array by Ohashi (1999)
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Figure 2.3: C

18

O total intensity maps of protostellar envelopes in Taurus. They are

lassi�ed as lass 0 (upper row) and lass I objets (middle and lower row). The

ontour spaing is 2�, starting at �2�. Crosses show the positions of the entral

soures while arrows show the diretions of the assoiated outows. Taken from

Ohashi (1999)
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Figure 2.4: Class I objets: Young Protostars still invisible in the optial as seen

with the Near Infrared Camera Multi Objet Spetrograph (NICMOS) of the

Hubble Spae Telesope. The sensitivity of NICMOS range from 0.8 to 2.5 mi-

rons.
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Figure 2.5: Class II objets: Protostars just beoming visible in the optial. Here,

in the luky ase of a bright bakground nebular also the massive disks around

the Protostars are visible. The image shows the Trapezium Cluster in the Orion

Nebular. The image was taken with the Wide Field Planetary Camera (WFPC)

of the Hubble Spae Telesope. The sensitivity of WFPC range from 0.17 to 0.85

mirons
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2.2 Distribution of Moleular Gas in our Galaxy

All atual star formation takes plae in dense moleular louds and bok globules distributed

along the spiral arms of our galaxy. Moleular louds result from the ompression of atomi

gas entering the spiral arms. Figure 2.6 shows the Milky Way as observed in the 115 GHz line

of arbon monoxide (CO), the best traer of interstellar moleular louds. These louds are

omposed almost entirely of moleular hydrogen and atomi helium, both nearly impossible

to detet.

In the top map the olors, from dark blue (weakest) to white (strongest), represent the CO line

intensity summed up over all radial veloities, a measure of the total amount of moleular gas

along the line of sight. The intense yellow-to-white horizontal strip at the enter of the map

is produed by the large number of moleular louds in the inner spiral arms of the Galaxy,

while elsewhere in the map individual nearby moleular louds are prominent. The map shows

impressively that the dense moleular gas is on�ned to a very narrow plane embedded in

the galati disk. The lower graphi shows a zoom out of a region around Perseus. Here the

olors range from blak (low intensity) to white (strong intensity). The onspiuous white

strutures to the right hand side are typial giant moleular louds.

2.3 Properties of Moleular Clouds

Dense moleular louds with ative star formation are generally self-gravitating, magnetized,

turbulent ompressible uids. They have sizes of about 10 � 30 p, densities of about 100

moleules per m and masses of 10

4

: : : 10

6

M

�

. Typial measured olumndenisties are

in the order of 10

21

: : : 10

22

m

�2

. The louds are opaque for ultra violette radiation and

beome transluent in the far infrared and radio band. So they ool down to temperatures of

10 : : : 20K.

2.3.1 Ingredienes

The hemial omposition is dominated by moleular hydrogen and helium. Beause the

interstellar gas has been extensively reproessed by stars and supernovae it is enrihed whih

heavier elements like arbon, nitrogen, oxygen et. A part of the heavy elements ondenses

into small dust grains. Then there are two main omponents of moleular louds: gas and

dust omposed of tiny grains the size of smoke partiles. The dust to gas mass ratio is of the

order of 1:100. Even though the resulting dust to gas volume �lling fator is 1:100000 the

dust absorption dominates espeially on short wavelengths. As a result moleular louds are

e�etively shielded from ionizing UV photons to a large extend so that the degree of ionization

is very low and in the order of 10

�6

: : : 10

�8

(Bergin et al. (1999))

2.3.2 Struture

Moleular Clouds are built up of an hierarhial selfsimilar fratal like struture from large

fragments to more and more small sub- and subsubfragments. This auses them to have a

very high surfae area whih is important for several exhange proesses with the diluted

atomi or ionized gas in whih they are embedded. At the end of this hain from large to

small sales are the lumps and prestellar ores. Clumps and prestellar ores are the only

gravitationally bound strutures in moleular louds. Clumps are massive (M � 1000M

�

)



14 CHAPTER 2. OBSERVATIONS AND MODELS

Figure 2.6: Upper �gure: The Milky Way as observed in the 115 GHz line of CO.

Colors range from dark blue (weakest) to white (strongest), giving a measure

of the total amount of moleular gas along the line of sight. Prepared by Dr.

Tom Dame, Dr. Dap Hartmann and Prof. Patrik Thaddeus of the Center for

Astrophysis. Lower �gure: CO map of the 'Canadian Galati Plane' survey

overing an area of 40 � 8:5 degrees. Colors rage from blak (low intensity) to

white (strong intensity).
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aumulations of moleular gas about 100 times denser than the mean density of moleular

louds. Star forming lumps form star lusters. Even though lumps are bound strutures

the resulting star lusters are most times unbound at the end.

Figure 2.7 shows the detailed struture of a moleular loud omplex seen lose to the tail of

Sorpion. Inside this moleular loud omplex Motte et al. (1998) has found more that 40

dense prestellar ores.

2.3.3 Veloity Struture and Saling Relations

The highly supersoni linewidths that are observed in moleular louds probably imply turbu-

lent motions. The turbulent motions are naturally expeted to built up the fratal strutures

(Mandelbrot 1982). This means that moleular louds are not stati. Their fratal struture

gets reproessed at every time. This permanent rearrangement of mass eÆiently prevents the

moleular loud from ollapse and ats like an additional pressure. The fat that moleular

louds are supported not only by thermal pressure an also be seen from the observation that

the star formation rate in our galaxy is very low. An order of magnitude estimation for the

star formation rate based on the assumption that all the gas ondensed in moleular louds

would ollapse on their free fall time (� 4 � 10

6

yrs) and transform into stars yields a value

about 100 times larger than what is observed (Salo 1986; Evans 1999). Even if we assume

a more realisti star formation eÆieny of 10 perent the life times of moleular louds are

still an order of magnitude larger than their free fall times. So its lear that the turbulene

signi�antly ontrols the star formation, and it will ome out in hapter 5 that it also plays

a fundamental role in the star formation proess itself. The turbulent veloity �elds were

extensively measured during the last three deades. One of the most interesting features

is the linewidth-size orrelation disovered by Larson (1969). It onnets the turbulent line

broadening to the size of the observed region:

�[km=s℄ = 1:1L[p℄

0:38

(2.1)

As the linewidths approah their thermal values on size sales of about 0:1 p, strutures

depart from self similar desription. This departure may mark the boundary between loud

evolution and star formation. In the entral regions of prestellar ores (as they an be resolved

by radio or submm telesopes/arrays) the turbulent linewidths seem to be onstant and in

the order of � = 0:7 

s

(Goodman et al. (1998)). The linewidth-size relation obeyed by the

giant moleular louds ends with a maximum veloity dispersions of �

l

� 3 : : : 5 km=s.

This exeeds the thermal sound speed by a fator of 20. Suh supersoni turbulene would

dissipate on the rossing timesale of the moleular loud:

t

t

=

R

l

�

l

= 10

7

yrs (2.2)

So there is the need of an eÆient driving mehanism for the turbulene. Possible andidates

are supernovas and stellar winds, the galati sheer and magneti �elds.

2.4 Prestellar Cores

Prestellar ores are the smallest strutures of moleular louds. They are the �nal stage of

loud fragmentation and the soure for intermediate and low mass star formation. Their
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Figure 2.7: 1.3mm mosai of the � Ophiuhus main loud omplex. Indiated are

several dense louds whih are the host for lumps and dense prestellar ores.
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masses range from 0:1M

�

to 10M

�

. The ruial feature, whih let prestellar ores stand

out against the large sale strutures in moleular louds is the fat that they are bound

strutures whih are (most times) not disrupted by the turbulent environment. In this sense

they are deoupled from the surrounding ow.

2.4.1 Geometrial Struture

Prestellar ores were born out of their supersoni turbulent environment. Therefore it's not

surprising that their geometrial struture shows no symmetry at all, neither spherial nor

ylindrial. Due to the statistial nature of the turbulent veloities every prestellar ore is

unique in its shape and internal veloity struture, see �gure 2.2. Typial sizes of prestellar

ores range from 10000 to 30000 AU (0.05 to 0.15 p). Besides their individuality they show a

typial radial density struture. Ward-Thompson et al. demonstrated that prestellar ores do

not have density pro�les whih an be modelled by a single sale free power law. Instead they

have at inner radial density pro�les steepening toward the edges. Modelling submm data

assuming spherial symmetry results in radial density pro�les of �(r) � r

�1:2

if r < 4000AU

and �(r) � r

�2

if 4000 < r < 15000AU.

2.4.2 Rotational Properties

Radio observations of prestellar ores only have aess to a two dimensional projetion of the

density and veloity strutures in a prestellar ore. This means that prestellar ores are seen

in terms of olumn densities and radial veloities along a line of sight. Think of a sphere-like

prestellar ore rotating like a rigid body. In this simpli�ed piture the rotation an be deteted

as a line of sight (LOS) veloity gradient if the rotation axis of the ore is not parallel to the

LOS. Due to the fat that no one knows the inlination between rotation axis and the line

of sight the measured veloity gradient an only yield a lower limit for the real rotation speed.

With this piture in mind a lot of veloity gradient measurements were done to estimate

the rotational properties of prestellar ores (e.g. Goodman et al. (1993), see �gures 2.8, 2.9 ).

In reality things are more omplex. Prestellar ores are not rigid body rotators. They have

internal subsoni turbulent veloity �elds and, in addition, nonsymmetri shapes. One should

keep in mind that rigid rotation is not the only possible way to indue veloity gradients in

projetion. There are several onstellations of a turbulent veloity �eld leading to a LOS

veloity gradients even though there is no rotational motion at all. This was demonstrated

by Burkert and Bodenheimer (2000). They showed, that in general, the line-of-sight veloity

gradient of an individual turbulent ore does not provide a good estimate of its spei� angu-

lar momentum and that in ontext with the 'rigid body rotator model' the intrinsi angular

momentum is overestimated by a fator of 2� 3.
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Figure 2.8: Upper graph: Filled squares of varying size represent the LSR veloity

of the peak of the NH

3

line pro�le at eah position., and ontours map the olumn

density distribution. The small irle with an arrow indiates the diretion of the

veloity gradient. Veloity range (6.78 - 7.43 km/s). Lower Graph: Distribution

of the measured veloity gradients. Taken from Goodman et al. (1993)

Figure 2.9: Distribution of veloity gradients, measured in the sample of Goodman

et al. (1993)



Chapter 3

Physial Conepts and Numerial

Tehniques

3.1 The Hydrodynami Equations

3.1.1 Euler and Lagrange representation

There are two di�erent points of view, how hydrodynami proesses an be desribed. For

the derivation of the total hange of mass, momentum and energy in time it is advantageous

to use the Euler representation. In this piture there is used a onstant ontrol volume V at

a �xed point in spae with a surfae F and a orresponding unit vetor n perpendiular to its

surfae. The variables of interest (mass, momentum, energy) are analysed inside this volume.

The results then refer to points in spae whih are at rest! In pratie, di�erential volume

elements are used, so that the physial variables do not hange inside a volume element.

In ontrast to that the Lagrange piture uses small omoving volume elements of onstant

mass. Let us take f as an arbitrary physial variable of a omoving uid element. To estimate

the hange in f at time t and at the position r(t) of the volume element one has to alulate

the values of f at the positions r(t) and r(t) + Æt along the trajetory of the uid element:

df

dt

:= lim

Æt!0

f(r(t+ Æt); t+ Æt)� f(r(t); t)

Æt

(3.1)

Using the Taylor expansion, the right hand side of (3.1) an be simpli�ed into an expression

whih gives more physial insight:

df

dt

=

�f

�t

+ (v � r)f (3.2)

Where v = dr=dt is the veloity vetor of the uid element. Equation (3.2) de�nes the total

derivative D=Dt and onnets the Lagrange- and the Euler representation. The left hand

side of equation (3.2) desribes the total hange of f in time as it would be seen in a volume

element at rest, resp. the hange of f in the Euler piture. The �rst term on the right hand

side desribes the hange of f in time for a omoving oordinate system, resp. in the Lagrange

piture. So that the seond term on the right hand side an be interpreted as the advetive

hange of f at some �xed position.

19
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3.1.2 Continuity equation

The ontinuity equations desribes the hange of mass in a ontrol volume V or to be more

preise, the hange of density at any point in spae. Due to the onservation of mass, a hange

of mass in the ontrol volume is always aompanied by a mass ux through the volume's

surfae.

�

�t

Z

V

�dV =

I

F

�(v � n)dF (3.3)

The Gaussian law yields the di�erential form in the Euler representation

��

�t

+r(�v) = 0 (3.4)

and with (3.2) this an be transformed into the Lagrange representation

d�

dt

+ �rv = 0 (3.5)

3.1.3 Equation of motion

In analogy to the ontinuity equation one an write down a balane equation for the mo-

mentum. This is done in onsideration of Newton's law and the onservation of momentum.

This means, the momentum inside the ontrol volume an be hanged by momentum in- or

out-ow or by ating fores.

�

�t

Z

V

�vdV =

I

F

�v(vn)dF +

Z

V

�fdV �

I

F

pndF +

I

F

TndF (3.6)

The term on the left hand side of equation (3.6) is the hange of momentum per time. The

�rst term on the right hand side is the onvetive impulse ux through the surfae of the

ontrol volume. The next three terms are the fores ating on the uid. They an be divided

into volume (2

n

d term) and surfae (3

r

d and 4

t

h term) fores. The volume fore is written

in general terms of a fore density �f . In the ontext of star formation gravity is the most

important volume fore whih has to be taken into aount.

f = �r� (3.7)

�� = 4�G� (3.8)

The surfae fores are indued by the uid outside the ontrol volume. There are pressure

fores ating perpendiular to the surfae (3rd term) and fores transmitted due to the vis-

osity of the uid ating tangential to the surfae. These visous tensions are represented

by the stress tensor T (4th term). Using the Gaussian law, (3.6) an be transformed into a

di�erential form

�(�v)

�t

+ [r(�v)℄v + �(v � r)v � �f +rp�rT = 0 (3.9)
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Euler Equation

The Euler equation is the equation of motion for an ideal uid - a uid with zero visosity,

no energy dissipation and no ondution of heat. This means that uid layers of di�erent

veloity an slide upon eah other without resistane and dissipation of kineti energy. The

Euler equation an be dedued from (3.9) merging the �rst two terms on the left hand side

by inserting the ontinuity equation. What results is the Euler equation.

�v

�t

+ (v � r)v = �

1

�

r+ f (3.10)

Using (3.2) this an be transformed into the Lagrange representation

dv

dt

= �

1

�

rp+ f (3.11)

Navier-Stokes Equation

To desribe a real uid we an transform (3.9) using the ontinuity equation (3.5)

��v

�t

+ �(v � r)v = �rp+rT

��

+ �f (3.12)

= rT

0

��

+ �f (3.13)

T

0

��

:= �pÆ

��

+ T

��

represents the stress tensor (Greek indies representing the three spae

oordinates and Æ

��

stands for the Kroneker-Delta). T and T

0

are tensors of seond stage.

Using the angular momentum balane in a ontrol volume and inserting (3.9) and (3.4) yields

the ondition that the stress tensor has to be symmetri, T

��

= T

��

. To dedue the equation

of motion for a real visous uid one has to estimate the general form of T

��

.

Energy dissipation in visous uids an only take plae if there are relative motions between

di�erent uid parels. During this proess momentum is transfered from high veloity regions

to regions of low veloity. In the ase of a homogeneous veloity �eld there will be no

dissipation at all. This means that the stress tensor will not depend on veloities, but on

spatial derivatives of veloities and will be zero if there is a onstant veloity �eld. If one

assumes only small veloity gradients, T an be approximated to depend only on linear

ombinations of �rst derivatives. This means, in terms of the form �v

�

=�x

�

. Fluids that an

be desribed by this approximation are alled 'Newtonian uids'. In addition to that, T has

to vanish if the uid rotates as a whole like a rigid body. Given a veloity �eld v = ! � r,

the only vanishing linear ombinations are of the form (�v

�

=�x

�

+ �v

�

=�x

�

). So a general

ansatz for the stress tensor whih inorporates all onditions required above an be written

in the form

T

��

=

 

�v

�

�x

�

+

�v

�

�x

�

�

2

3

Æ

��

3

X

=1

�v



�x



!

+ �Æ

��

3

X

=1

�v



�x



(3.14)

The term

�

��

=

 

�v

�

�x

�

+

�v

�

�x

�

�

2

3

Æ

��

3

X

=1

�v



�x



!

(3.15)
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is alled shear tensor and �� represents the trae free part of T . The oeÆient of the shear

visosity � and the oeÆient of the volume visosity � are salar variables due to the isotropy

of the uid. They are desribing the individual features of the uid depending on pressure and

temperature. Beause of the seond law of thermodynamis only positive values are possible.

Often, the volume visosity an be negleted against the shear visosity. This is beause for

a gas � is small and for an almost inompressible liquid the term �v is nearly zero. Fluids

with zero volume visosity (� = 0) are alled Maxwell uids. As a result of the kineti gas

theory, a monoatomi ideal gas exatly mathes this ondition.

Inserting (3.14) into (3.12) yields the equation of motion for a visous uid in Euler represen-

tation. This equation is alled the Navier-Stokes equation. Transformed into the Lagrange

piture and with omponent representation:

�

dv

�

dt

= �

�p

�x

�

+

�T

��

�x

�

+ �f

�

(3.16)

Here and in the following equations the summation onvention of Einstein is used.

3.1.4 Energy Equation

The total energy of a moving uid element is the sum of internal energy and kineti energy.

So one an express the total energy in the form

E

tot

=

Z

V

�

 

�+

1

2

v

2

!

dV (3.17)

Here � denotes the spei� internal energy, i.e., the internal energy per unit mass. To derive a

energy balane equation, one an use the �rst law of thermodynamis whih states, that the

sum of all energies is onserved. Therefore a hange in the total energy is always aompanied

by an energy ux through the volume's surfae, by a heat ux, radiative ux or mehanial

work due to fores ating on the volume. Keeping all this in mind, the energy equation an

be written in the form

�

�t

Z

V

�

 

�+

1

2

v

2

!

dV = �

I

F

�

 

�+

1

2

v

2

!

(v � n)dF

+

Z

V

�(f � v)dV �

Z

F

p(n � v)dF +

I

F

((Tn) � v)dF

�

I

F

(q � n)dF +

Z

V

Q

rad

dV (3.18)

The left hand side of equation (3.18) desribes the hange of total energy inside the volume

V . The �rst term on the right hand side stands for the onvetive energy ux through the

volume's surfae F . The next three terms in the seond row of (3.18) represent the energy

exhange due to mehanial work: the outer volume fore (1st term), pressure fore (2nd

term) and visous dissipation (3rd term). The energy exhange by heat ux and radiative

ux is represented in the two terms of the third row of (3.18). Where q is the heat ux vetor

and Q

rad

desribes the absorbed, resp. emitted radiation per volume.

The energy equation (3.18) only holds if the hemial omposition does not hange in spae
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and time (i.e., there are no hemial reations and no di�usive proesses). It an be trans-

formed by the Gaussian law into a di�erential representation:

�

�t

"

�

 

�+

1

2

v

2

!#

+r

"

�

 

�+

1

2

v

2

!#

= �(f � v)� [r(�v)℄v +r(Tv)�rq +Q

rad

(3.19)

The term on the left hand side of (3.19) an be simpli�ed using the ontinuity equation (3.4):

�

�

�t

 

�+

1

2

v

2

!

+ �v � r

 

�+

1

2

v

2

!

= �(f � v)� [r(�v)℄v +r(Tv)�rq +Q

rad

(3.20)

One an use the hange of the internal spei� energy to �nd an expression for the hange of

the spei� entropy. Starting with the thermodynamial relation

dE = TdS � pdV (3.21)

resp.

d� = Tds� pd

�

1

�

�

= Tds+

p

�

2

d� (3.22)

From (3.22) it is straightforward to get an expression for the spei� entropy:

T

ds

dt

=

d�

dt

+

p

�

rv (3.23)

Energy Equation for an ideal uid

As de�ned above, in an ideal uid there exists neither dissipation nor heat ux. So the stress

tensor T and the heat ux vetor q vanish. If we require in addition no absorption and

emission of radiation (Q

rad

= 0) then equation (3.20) an be simpli�ed as follows:

�

�

�t

 

�+

1

2

v

2

!

+ �v � r

 

�+

1

2

v

2

!

= �(f � v)�r(�v) (3.24)

Using (3.2) and the Euler equation in Lagrange representation we get

�

�

�t

 

1

2

v

2

!

+ �v � r

 

1

2

v

2

!

= �

d

dt

 

1

2

v

2

!

= �v �

dv

dt

= �v � rp+ �(v � f) (3.25)

(3.24) an be simpli�ed further resulting in an equation for the spei� energy in Lagrange

representation:

�

��

�t

+ �v � r� = �prv (3.26)

d�

dt

= �

p

�

rv (3.27)
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Energy Equation for a visous uid

In the ase of a visous uid (3.20) already represents the general form of the energy equation.

In analogy to (3.25), using (3.2) and the Navier-Stokes equation (3.16) one gets

�

�

�t

 

1

2

v

2

!

+ �v � r

 

1

2

v

2

!

= �v � rp+ v � (rT ) + �(v � f) (3.28)

Inserting (3.20) yields the equation for the spei� energy for a visous uid:

�

��

�t

+ �v � r� = �prv + T

��

�v

�

�x

�

�rq +Q

rad

(3.29)

��

�t

= �

p

�

rv +

1

�

T

��

�v

�

�x

�

�

1

�

rq +

Q

rad

�

(3.30)

In a �rst approximation, the heat ux vetor q an be replaed using Fourier's law, whih

states that the heat ux is proportional to the temperature gradient in the uid:

q = ��rT (3.31)

Here � denotes the heat ondution oeÆient. The negative sign keeps trak of the fat that

the heat ux it direted from warm to the old regions. Inserting the energy equation (3.30)

into the entropy equation (3.23) yields

T

ds

dt

=

1

�

T

��

�v

�

�x

�

�

1

�

rq +

Q

rad

�

(3.32)

The term T

��

�v

�

=�x

�

desribing the fration of dissipated energy an be transformed using

the stress tensor in the representation (3.14). Beause the shear tensor �

��

is symmetri and

traeless (see de�nition (3.15)) one an write

T

��

�v

�

�x

�

=

1

2

T

��

 

�v

�

�x

�

+

�v

�

�x

�

!

=

1

2

(��

��

+ �Æ

��

rv)(�

��

+

2

3

Æ

��

rv)

=

1

2

��

��

�

��

+

1

2

(� +

2

3

�)Æ

��

�

��

rv) +

1

3

�Æ

��

Æ

��

(rv)

2

=

1

2

��

��

�

��

+ �(rv)

2

� 0 (3.33)

Using this we an write down the hange in the spei� entropy:

�T

ds

dt

=

1

2

��

��

�

��

+ �(rv)

2

�rq +Q

rad

(3.34)

One sees, taking into aount equation (3.33) that the visosity indued frition evokes always

an inrease of internal energy resp. of the entropy. This fat an also be depited in another

way: With the assistane of the ontinuity equation (3.4) we an onvert (3.28)

�

�t

 

1

2

�v

2

!

= �r

" 

1

2

�v

2

+ p� T

!

v

#

+ prv + �(v � f)� T

��

�v

�

�x

�

(3.35)
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This is an expression for the hange of the energy density per time. Integrating over the

whole uid volume, applying Gauss's theorem and negleting surfae terms at in�nity yields

an equation for the evolution of the total kineti energy:

�E

kin

�t

=

Z

prvdV +

Z

�(v � f)dV �

Z

T

��

�v

�

�x

�

dV (3.36)

The �rst volume integral on the right hand side denotes the hange in kineti energy due to

the ompressibility of the uid. The seond one onsiders the external volume fore resp. the

orresponding potential energy. And the last integral represents the visosity of the uid.

Beause of (3.33), the last term is always negative, i.e. the kineti energy an only deline

with time. That means, the visosity dissipates kineti energy, resp. transforms it into heat.

3.1.5 The Equation of state

The system of equations built up so far (ontinuity equation, equation of motion and energy

equation) is not losed regarding the variables in use. In addition one needs to speify, besides

the oeÆients for the visosity, the properties of the matter. To lose this system of equations

one needs an equation of state whih onnets pressure p, density � and temperature T . This

equation will provide the missing relations of e.g. p = p(�; �) and T = T (�; �)

3.1.6 The ideal gas

In the ontext of star formation the ideal gas equation plays a fundamental role, beause it is

simple and valid for a large range in density and temperature. One has to be areful to not

onfuse the terms 'ideal gas' and 'ideal uid' beause visous uids (like moleular hydrogen

gas) an behave like an ideal gas.

The ideal gas equation is of the form

p =

k

b

T

�m

u

� (3.37)

where k

b

is the Boltzmann onstant, � is the moleular weight andm

u

= 1=N

A

= 1:66�10

�

24g

is the atomi mass unit. To have some numbers, � = 1:24 for the solar gas omposition,

� = 2:36 for the gas in old moleular louds and � = 0:5 for ompletely ionized hydrogen

gas.

In the ase of an ideal gas the spei� internal energy is onneted to the temperature as

follows:

� =

1

( � 1)

k

b

T

�m

u

= 

v

T (3.38)

 is known as the polytropi index or adiabati exponent. It is onatenated to the degrees

of freedom

 =

2

f

+ 1 (3.39)

The most ommon ase during the early and still old phase of star formation is a mixture

of diatomi moleular gas: f = 5 �!  = 7=5. Or, in a later phase, when all moleules have
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already dissoiated into a omposition of atoms: f = 3 �!  = 5=3. Using the heat apaity

oeÆients for onstant volume 

v

and onstant pressure 

p

we an write

 =



p



v

=)

k

b

�m

u

= 

p

� 

v

(3.40)

There is also the possibility to express the spei� internal energy in terms of pressure and

density. By doing so one an eliminate the temperature from the system of equations (The

only temperature dependene then remains in the visosity oeÆients � and �).

� =

1

 � 1

p

�

(3.41)

In general it is assumed that the uid is in a loal equilibrium. This means that �(�; p) is

loally of the same form as in the ase of thermodynami equilibrium.

3.2 Stability of Self-Gravitating Fluids

The �rst and usually suÆient approah to determine the stability properties of physial uids

is to analyze the linearized set of equations. In general, an equilibrium system is desribed

by a time independent solution of the Boltzmann equation

df

dt

=

�f

�t

+ _qr

q

f + _pr

p

f (3.42)

=

�f

�t

+ pr

q

f + Fr

p

f (3.43)

a distribution funtion f

0

(q; p) with df

0

=dt = 0. Small perturbations to this equilibrium state

an be written as

f(q; p; t) = f

0

(q; p) + �f

1

(q; p; t) (3.44)

with � � 1. This an be substituted into the Boltzmann equation (3.42). The terms inde-

pendent of � sum to zero beause they are the equilibrium solution. In a �rst order approah,

terms of order �

2

and higher are negleted sine � � 1. What remains is a linearized set of

equations governing the time evolution of the perturbation. Deriving a dispersion relation,

the properties of growing and deaying modes an be studied. The linearized set of equations

for an isothermal, selfgravitating uid are

��

1

�t

+ �

0

r � v

1

= 0 (3.45)

�v

1

�t

= �r

2

s

�

1

�

0

�r�

1

(3.46)

4�

1

= 4�G�

1

(3.47)

Here the visosity e�ets are negleted (� = � = 0). The equilibrium state is haraterized

by �

0

= onst and v

0

= 0. From the de�nition of the isothermal sound speed p = 

2

s

� it

follows that p

1

= 

2

s

�

1

Furthermore, we make the ad ho assumption that Poisson's equation

desribes only the relation between the perturbed potential and the perturbed density. In

this ase, �

0

= 0 an be hosen. This is, what is alled the Jeans swindle (Binney, Tremaine
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1987). By taking the time derivative of equation (3.46) and the divergene of (3.47) and by

eliminating v

i

and �

1

, the equations an be ombined into a wave equation for the density

perturbation �

1

,

�

2

�

1

�t

2

� 

2

s

r

2

�

1

� 4�G�

0

�

1

= 0 (3.48)

Sine the equilibrium state is homogeneous, the oeÆients of the partial derivatives in (3.48)

are independent of position and time. The solution of this type of partial di�erential equation

is known to be a superposition of plane waves,

�

1

(r; t) =

Z

d

3

kA(ke

i[kr�!(k)t℄

(3.49)

The waves follow the dispersion relation

!

2

= 

2

s

k

2

� 4�G�

0

(3.50)

If the density �

0

or the wave length � = 2�=k are small, the dispersion relation (3.50) redues

to that of a sound wave, !

2

= 

2

s

k

2

. With inreasing wave length or density, the frequeny

dereases and will eventually beome negative. When !

2

< 0, say !

2

= ��

2

, the time

dependene of the solution is proportional to exp(��t), orresponding to exponential growth

or deay. The existene of a growing solution implies that the system is unstable. Hene,

from equation (3.50) it follows that modes will ollapse for wave numbers

k

2

< k

2

J

=

4�G�

0



2

s

(3.51)

The ritial wave number k

J

is alled the Jeans wave number. In terms of the wave length, a

perturbation is unstable if the wave length exeeds the Jeans length �

J

= 2�=k

J

, that is, if

�

2

> �

2

J

=

�

2

s

G�

0

�

T

�

0

(3.52)

Assuming the perturbation is spherial with diameter �

J

, this orresponds to a ritial mass

ontained inside the perturbed volume. So the well known Jeans mass is

M

J

=

4�

3

�

0

�

1

2

�

J

�

3

=

1

6

��

0

 

�

2

s

G�

0

!

3

2

(3.53)

For isothermal gases substituting the sound speed by its dependene on the temperature,



2

s

= RT , the ritial mass an be expressed in terms of density and temperature:

M

J

=

�

5

2

6

�

R

G

�

3

2

� �

�

1

2

T

3

2

�

s

T

3

�

0

(3.54)

Using the ideal gas equation and plugging it in 3.54 the Jeans mass an be expressed in terms

of the number density of the hydrogen moleules n(H

2

), the temperature T and the moleular

weight �,

M

J

[M

�

℄ = 49:5M

�

�

1

�

2

�

s

T

3

n(H

2

)

(3.55)
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Inserting the typial mean moleular weight � = 2:36g m

�3

one gets

M

J

[M

�

℄ = 8:9M

�

�

s

T

3

n(H

2

)

(3.56)

The following table gives an overview of ritial Jeans masses ourring in moleular louds

and prestellar ores:

T=5K T=10K T=20K T=50K T=100K

n(H

2

) = 10

1

m

�3

31.5M

�

89.0M

�

251.7M

�

995.1M

�

2814.4M

�

n(H

2

) = 10

2

m

�3

10.0M

�

28.1M

�

79.6M

�

314.7M

�

890.0M

�

n(H

2

) = 10

3

m

�3

3.1 M

�

8.9M

�

25.2M

�

99.5M

�

281.4M

�

n(H

2

) = 10

4

m

�3

1.0 M

�

2.8M

�

8.0 M

�

31.5M

�

89.0M

�

n(H

2

) = 10

5

m

�3

0.3 M

�

0.9M

�

2.5 M

�

10.0M

�

28.1M

�

n(H

2

) = 10

6

m

�3

0.1 M

�

0.3M

�

0.8 M

�

3.1M

�

8.9M

�

n(H

2

) = 10

10

m

�3

0.001M

�

0.003M

�

0.008M

�

0.03M

�

0.089M

�

The ritial mass for a perturbation to ollapse, sales as M

J

� T

3=2

�

1=2

0

, i.e., it dereases

with inreasing density and dereasing temperature. The Jeans instability has a simple phys-

ial interpretation. The energy density of a sound wave is positive. However, its gravitational

energy is negative, beause the enhaned attration in the ompressed regions outweighs the

redued attration in the diluted regions. The instability sets in at the wavelength �

J

where

the net energy density beomes negative. The perturbation will grow allowing the energy to

derease even further. In isothermal gas, there is no mehanism that prevents the a omplete

ollapse.

In reality, during the ollapse of a moleular gas lump, the opaity inreases and at densities

of n(H

2

) > 10

10

m

�3

, the equation of state for the ollapsing gas beomes adiabati. So the

ollapse is deelerated, the Jeans mass remains roughly onstant even though the ontration

still goes on. When the temperature exeeds 3000K at densities of n(H

2

) > 10

16

m

�3

ther-

mal energy is used up by dissoiation of the hydrogen moleules and the ollapse aelerates

again. Finally at a entral density of n(H) � 10

24

m

�3

, � � 1g=m

3

the fusion proess

sets in. This energy soure stops the ollapse proess and leads to a new equilibrium (e.g.

Tohline (1982))

density temperature moleular weight Jeans mass

10

�13

g=m

3

10K 2:36 g=mol 1:8� 10

�3

M

�

10

�8

g=m

3

2500K 2:36 g=mol 2:2� 10

�2

M

�

10

�2

g=m

3

10000K 1:18 g=mol 7:1� 10

�4

M

�

10

0

g=m

3

60000K 0:57 g=mol 4:5� 10

�3

M

�
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3.3 The Role of Turbulene

Almost all known star formation takes plae in moleular louds. Compared to the stability

analysis of self gravitating gaseous systems (setion 3.2) moleular louds exeed vastly the

ritial mass for gravitational ollapse. One would therefore expet that they form stars on

their free fall timesale

t

ff

=

s

3�

32G�

0

= 1:4 � 10

6

yrs

q

n[10

3

m

�3

℄ (3.57)

For a typial moleular loud with a mean density of 10

2

m

�3

this is about 4�10

6

yrs. Taking

into aount the mass of gas ondensed in moleular louds (2 � 10

9

M

�

) this would imply

a star formation rate of about 500M

�

=yr. This exeeds the urrently observed rate by a

fator of � 100 (Salo (1986), Evans (1999)). Even if the star formation eÆieny is only less

than 10 perent the life time of moleular louds should be an order of magnitude larger than

their free fall time sale to be onsistent with the observed star formation rates. It should

be mentioned that this is subjet to a ontroverse disussion. Another hint, that moleular

louds do not simply ollapse on their free fall timesale is the fat that star formation is not

aompanied by the ollapse of the whole moleular loud. Instead, stars form in very loalized

regions distributed in an apparently stable loud (Williams et al. (2000)). But what prevents

moleular louds from global ollapse? One good andidate are the supersoni turbulent

motions that are present almost everywhere in moleular louds (Larson (1981)). Turbulene

is a ruial ommon feature of moleular louds and provides an additional support against

gravitational ollapse. But numerial simulations of turbulent self gravitating media (Ma

Low et al. (1998a), Klessen et al. (2000)) have shown that turbulene deays on timesales

of the free fall time. So to prevent moleular louds from ollapse turbulene has to be

driven. There are several potential driving mehanisms for turbulene: galati sheer motions,

supernova events, solar winds, bipolar outfrows and jets et. It is worth noting the ambivalent

ation of turbulene on the gas. On the one hand it ats like an additional pressure but on

the other hand it is the soure of density utuations. So it is the large sale turbulent motion

whih builds up the seeds for prestellar ollapse and star formation by loally ompressing

the gas into a Jeans unstable state.

3.4 Smoothed Partile Hydrodynamis (SPH)

The aim of the SPHmethod is to solve numerially the hydrodynamial equations. Tehnially

this is a system of oupled partial di�erential equations. The ore of the SPH method is the

transformation of the oupled partial di�erential equations with ontinuous �eld variables

into a system of oupled normal (ommon) di�erential equations with variables at disrete

mesh points in spae. In ontrast to the lassial grid methods the SPH ode uses mesh points

neither �xed in spae nor ordered in a grid. The SPH method is a Lagrangian method. So

one an think of the mesh points as buoys drifting with the ow and measuring the state

of the uid at these positions. The formalism by whih this transformation is done an be

divided in two steps:

1. Kernel smoothing. Here all spae dependent funtions are onvolved by a kernel funtion

2. Monte-Carlo-Integration of the onvolution integrals and disertization
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In a last step it is now possible to numerially solve the system of ommon di�erential equa-

tions and integrate it forward in time. For a spae dependent funtion f(r) its value at

position r an be approximated by the onvolution with an appropriate kernel funtion:

hf(r)i =

Z

V (h)

f(r + r

0

)W (r

0

; h)dV

0

(3.58)

The onvolution of f with the kernel funtion W results in a weighted mean for the values

of f around the position r. The kernel length h ontrols the spatial extent from whih the

weighted mean is taken. It de�nes the sale over whih fores and physial uid properties

are smoothed out. Independent of h the kernel funtion has to be normalized:

Z

V

W (r

0

; h)dV

0

= 4�

1

Z

0

W (r

0

; h)r

02

dr

0

= 1 (3.59)

It follows for the limit h! 0 that

hf(r)i �! f(r) (3.60)

For h beoming in�nitely small, the kernel W (r; h) approahes the Dira delta funtion Æ(r).

For simpliity, most authors use spherial symmetry in the smoothing and averaging proess,

i.e. the kernel redues to an isotropi funtion of the interpartile distanes. This on-

straints the ahievable resolution, espeially when dealing with huge density gradients along

a preferred axis like in shoks, �lamentary and sheet like strutures or aretion disks. To

irumvent this disadvantage one an introdue a tensor desription of the smoothing method

and use anisotropi kernels to aount for anisotropies in the partile distribution. Although

this approah has onsiderable advantages over spherial averaging, it is more ompliated

and expansive in omputing time so that we preferred here the fast spherial kernel. For

onsisteny, we use the spherial averaging proedure throughout the entire omputational

sheme.

The prevalent spherial kernel funtion used in most SPH odes is the spline kernel of Lat-

tanzio et al. (1985). This is also the kernel used for the simulations presented here. It is

de�ned on a ompat support, and therefore only a small number of neighbouring partiles

have to be summed over to alulate the SPH quantities.

W (r; h) =

�

h

�

8

>

<

>

:

1�

3

2

v

2

+

3

4

v

3

if 0 � v < 1

1

4

(2� v)

3

if 1 � v < 2

0 otherwise

(3.61)

Here v := r

i

� r

j

represents the distane between two SPH partiles.

In the following I want to present a short olletion of useful mathematial identities for the

SPH quantities. Aording to equation (3.60) the kernel funtion an be interpretated as an

approximation to the delta funtion for �nite h. Hene, the averaged funtion hf(r)i an be

expanded into a Taylor series for the smoothing length h. If the kernel is an even funtion

the �rst order term vanishes and the errors up to seond order are given by,

hf(r)i = f(r) +O(h

2

) (3.62)
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For the spherial kernel used in the SPH ode here, equation 3.62 reads

hf(r)i = f(r) +K

h

2

6

r

2

f(r) +O(h

3

) (3.63)

with the onstant K being independent of h. The approximation of f(r) by hf(r)i is therefore

of seond order in h. Sine the term in h

2

is multiplied by the gradient of f , this implies

perfet equality for onstant or linear funtions. Furthermore, for the term in h

2

to be small,

the funtion f should not be disontinuous or have too large gradients over the size of the

kernel. This auses problems in the treatment of strong shok fronts, see hapter 3.5.1.

The smoothing proess itself is linear with respet to summation and multipliation,

hf(r) + g(r)i = hf(r)i+ hg(r)i (3.64)

hf(r) � g(r)i = hf(r)i � hg(r)i (3.65)

The �rst equation is an identity following from the linearity of integration with respet to

summation, and the seond one is true to seond order in h. It furthermore follows for the

time derivative and the gradient

d

dt

hf(r)i =

�

d

dt

f(r)

�

(3.66)

rhf(r)i = hrf(r)i (3.67)

Beause the state of the uid is evaluated only at disrete points (the positions of the SPH

partiles) the onvolution integral of (3.58) redues to a sum over the N neighbouring SPH

partiles r

j

inside 2h around the partile r

i

:

hf(r

i

)i =

N

X

j=1

m

j

�(r

j

)

f(r

j

)W (r

i

� r

j

; h) (3.68)

The termm

j

=�(r

j

) simply results from the normalization of the kernel funtion and represents

an expansion of the number density:

hn(r

j

)i =

�(r

j

)

m

j

(3.69)

Equation (3.68) is the fundamental equation for the SPH method, as it allows one to �nd

smoothed approximations to the physial quantities of the uid.

The smoothing mehanism also provides a very advantageous way to ompute gradients of

uid properties. By de�nition

hrf(r)i =

Z

V (h)

rf(r

0

)W (r � r

0

; h)dV

0

(3.70)

Integrating by parts yields

hrf(r)i =

Z

S(h)

f(r

0

)W (r � r

0

; h)nda+

Z

V (h)

f(r

0

)rW (r � r

0

; h)dV

0

(3.71)
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The surfae term an be negleted due to the fat that the kernel funtion vanishes beyond

2h. Negleting the surfae terms the integral equation an be transformed into a summation

for a disrete number of points, as done before:

hrf(r

i

)i =

N

X

j=1

m

j

�(r

j

)

f(r

j

)rW (r

i

� r

j

; h) (3.72)

Using this and the SPH base equation (3.68) any uid property and its loal gradient an be

evaluated as long as rW does not vanish (whih is the ase inside a radius of 2h).

Note that the Nabla operator now ats only on the a priori known kernel funtion. In pratie

the kernel and its gradients are tabulated so that they an be aessed every time whih saves

a ruial amount of omputing time.

3.4.1 The Hydrodynami Equations in SPH notation

Armed with base equation (3.68) and equation (3.72) desribing the handling of the gradients

it is now possible to transform the set of hydrodynami equations into the SPH representation.

First one an �nd an expression for the density at partile position r

i

by simply replaing the

arbitrary funtion f(r

i

) by the density �(r

i

) :

h�(r

i

)i =

N

X

j=1

m

j

W (r

i

� r

j

; h) (3.73)

Continuity Equation

Now the ontinuity equation is exemplarily transformed into the SPH representation to sketh

how the SPH method is applied to a di�erential equation. First the ontinuity equation is

expanded

d�

dt

= �r(�v) + (v � r)� (3.74)

Now the kernel softening is applied providing the approximated values:

h

d�

dt

i = h�r(�v) + (v � r)�i (3.75)

Using the algebrai rules inherent to the SPH method one gets

dh�i

dt

= �hr(�v)i + hvi � hr�i (3.76)

For further details all around SPH I want to reommend the dotor thesis of Roland Speith

(http://www.tat.physik.uni-tuebingen.de/ speith/lopubl.html) whih gives a omprehensive

desription of the SPH method. Disretization of (3.76) and subsequent appliation of the

SPH representation for gradients (3.72) yields

dh�

i

i

dt

= �

N

X

j=1

m

j

�

j

�

j

v

j

� rW (r

i

� r

j

; h) + v

i

0

�

N

X

j=1

m

j

�

j

�

j

rW (r

i

� r

j

; h)

1

A

(3.77)
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so that the ontinuity equation in the SPH notation an be written in the form

d�

i

dt

=

N

X

j=1

m

j

(v

i

� v

j

) � r

i

W (r

i

� r

j

; h) (3.78)

The essential alternative to the SPH ontinuity equation is to estimate the density diretly

by equation (3.73). This is exatly what is done in the SPH ode used here.

Euler Equation

dv

i

dt

=

N

X

j=1

m

j

 

p

i

�

2

i

+

p

j

�

2

j

!

r

i

W (r

i

� r

j

; h) (3.79)

Navier-Stokes Equation plus Gravity

dv

i

dt

=

N

X

j=1

m

j

 

p

i

�

2

i

+

p

j

�

2

j

+�

ij

!

r

i

W (r

i

� r

j

; h)�G

m

j

r

2

ij

�

r

ij

jr

ij

j

(3.80)

Arti�ial Visosity

There are two main reasons to implement visosity into the SPH method. The �rst is simply

to solve the general Navier-Stokes equation of a real uid. The seond has to do with the

fat that in most astrophysial problems the moleular visosity is very small and dissipation

of kineti energy should our only in shoked regions. Therefore, one is able to neglet the

expliit treatment of physial visosity. Nevertheless, there is the need to introdue at least an

arti�ial visosity to treat shok fronts orretly beause the proess of energy dissipation an

not be desribed by an ideal uid. Besides the e�ets of numerial di�usivity and dissipation

inherent to every disretization of the hydrodynamial equations, in the SPH method one

needs to prevent partile interpenetration in strong shoks. The only way to enfore this is

to espeially smear out the shok interfae and introdue terms to allow dissipation of kineti

energy in regions with strong veloity divergene. The standard formulation for the arti�ial

visous pressure is

p

�

= �

�

�

2

= ���l

s

(r � v) bulk visosity (3.81)

p

�

= �

�

�

2

= ���l

2

(r � v)

2

Neumann-Rihtmyer visosity (3.82)

The free parameters � and � ontrol the strength of the visous terms, and l is the sale

over whih the shok is smeared out, typial values are l � 3h. Equation (3.81) is a bulk

visosity. Its primary purpose is to dampen post-shok osillations. Equation (3.82) is a

seond order von Neumann-Rihmyer visosity needed to avoid partile interpenetration in

high Mah number shoks. Typial values for the free parameters are � � 1 and � � 2 whih

guarantee adequate treatment of shoks up to Mah numbers of 10 (Bate 1995 PhD thesis).

Implemented into the SPH formalism the visous fore ating on partile i is then

hF (r

i

)

vis

i =

N

X

j=1

m

j

�

ij

W (r

i

� r

j

; h

ij

) (3.83)
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Where �

ij

is the visosity tensor:
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with

�

ij

=

h(v

i

� v

j

) � (r

i

� r

j

)

(r

i

� r

j

)

2

+ �h

2

(3.85)

if a onstant smoothing length is used. In the ase of a time dependent individual smoothing

length for eah partile, the onstant variable h of equation (3.85) has to be replaed by

1

2

(h

i

+ h

j

). Beause the arti�ial visosity should be ative only in shoks and otherwise

the gas should behave like an ideal uid �

ij

is zero for positive divergene of the veloities

r

i

v

i

� 0.

Energy Equation

Ideal uid:
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Real uid: In the ase of a real uid energy is transformed by visous dissipation into heat

and so there has to be added another 'soure term' in the energy equation:
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Now the energy equation for a real uid an be written
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=
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3.4.2 Adaptive Smoothing Length

Using a grid ode, the spatial resolution of its alulations are proportional to the distane

of the grid points. The same holds for the SPH method with the ruial di�erene that the

SPH points (SPH partiles) are moving with the ow. Here roots the big advantage of SPH

for astrophysial purposes. If there is a onverging ow, also the SPH partiles will onverge

resulting in a SPH partile density proportional to the uid density. So the SPH method

intrinsially adapts its resolution guided by the density distribution of the uid.

On the other hand the resolution is limited in prinipal by the smoothing length h, beause

physial uid properties are smoothed out on its length sale. Thus, if the ability of SPH

to vary its resolution is to be used to its greatest advantage, it is important to vary the

smoothing length in spae and time. But there are several points to onsider. The �rst is the
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error introdued by spatially varying smoothing lengths. The same proess used to obtain

the errors inherent in the SPH method an be applied to the equation 3.58

hf(r)i =

Z

V

f(r + r

0

)W (r

0

; h)dV

0

(3.89)

where h now varies depending on the density of the SPH partiles. It is found by several

authors (Lattanzio et al. (1985), Hernquist and Katz (1989)) that the errors introdued by a

varying smoothing length are again of seond order in h, and hene of the same order as the

errors inherent in the SPH method. An important onsideration when introduing a variable

smoothing length is the e�et on fores between partiles. Beause gradient alulations are

a�eted by the smoothing length, one ruial point is that the smoothing length be used in

the alulation of the fore on partile i from partile j is the same as in the alulation of

the opposite fore. If this is not done, momentum is not onserved. The method for this

symmetrization used here (Evrard (1988), Benz (1990)) is simply to replae h in all SPH

equations by

h

ij

=

h

i

+ h

j

2

(3.90)

Thus, the use of variable smoothing lengths, allows the advantages of the Lagrangian nature

of SPH and the lak of a �xed grid to be used to resolve high and low-density regions simulta-

neously to their fullest extent. To ahieve an optimum adapted smoothing length it has to be

evolved in time for eah SPH partile individually aording to the partile's density evolution

so that the number of neighbours is approximatelly onstant. But what is the appropriate

number of neighbours? A large number of neighbours results in a low statistial error for

the smoothed quantities but auses a large omputing time and low resolution beause the

smoothing length has to be inreased. On the other side, a low number of neigbour partiles

auses large statistial errors but the omputation is fast and the spatial resolution is high.

It turns out, that (in three dimensions) a minimum of 50 neighbours is required to aurately

alulate SPH quantities (Bate and Burkert (1997)) The SPH ode used here tries to maintain

the number of neighbours for eah partile to between 5-10, 20-35, and 30-70 for one, two and

three dimensions respetively. The saling law to �nd the new smoothing length h required

to keep the number of partiles onstant originally is

h = h

0

�

�

0

�

�

1

�

(3.91)

where �

0

and h

0

are the densities and smoothing lengths at the initialization, and � is the

number of dimensions. The problem with this saling law is that one needs the new smoothing

length to determine �. This dilemma an be avoided by taking the derivative of equation (3.91)

to obtain

dh

dt

= �

1

3

h

�

d�

dt

(3.92)

Replaing the time derivative of � by the ontinuity equation yields

dh

i

dt

=

1

3

hr � v

i

(3.93)

This equation for the hange of the smoothing length an then be evolved in time as all the

other physial quantities.
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3.4.3 SPH Resolution Limit for selfgravitating uids

The resolvable mass of an SPH alulation is of the order of the mass inside one smoothing

length. In order to follow the fragmentation proess of a ollapsing loud ore properly, the

loal Jeans mass at every timestep and at every point of the simulation area has to be larger

than twie the mass inside one smoothing length (Bate and Burkert (1997)). This ondition

an be used together with the formula for the Jeans mass

M

J

=

�

5

2

6

�

R

G

�

3

2

 

T

3

�

!

1

2

(3.94)

to dedue a formula for the maximum allowed density:
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32�
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M

!

2

(3.95)

Here, N is the number of SPH partiles used in the simulation, N

neigh

is the number of

neighbouring partiles inside the smoothing length and M is the total mass. In the ase of

an isothermal equation of state one an follow the ollapse evolution up to density ontrasts

of r�=� = 10

9

if 10

5

SPH partiles are used. It is worth noting, that in the ase of an

adiabati ompression the Jeans mass is roughly onstant. Here the SPH method is able to

handle even larger density ontrasts beause the only limiting fator is to resolve the loal

Jeans mass. This is ruial for star formation alulations beause the ontrating gas loud

evolves through extended phases of adiabati ompression. Exhausting this advantageous

feature of SPH one an follow up the ollapse of a prestellar loud with initial densities of

10

�18

g=m

3

over 17 orders of magnitude in density down to stellar densities of 0:01g=m

3

as

it was demonstrated by Bate (1998a).

3.5 Speial features and extensions to SPH

3.5.1 Supersoni motions and Shoks

The SPH method is able to give good reprodution of shoks. The quality of the shok

reprodution does not depend on the dimension of the alulation, nor is there a signi�ant

dependene on the partile distribution, as long as the partiles are equally distributed along

eah dimension and partile interpenetration does no our. Instead the reprodution of

the shok depends mainly upon the smoothing length h of the partiles, and hene in the

ase of variable smoothing lengths, on the partile density, as this ontrols the smoothing

length. For values of � = 1 and � = 2 the shok is spread over about 3h. This spread

grows further if the visosity is inreased. If the smoothing length beomes large ompared

to the real physial shok width, the shok is smoothed out to muh and does not attain the

orret onditions. As expeted from how the arti�ial visosity is designed, the �-visosity

is the bulk visosity in shoks, whih redues partile veloity osillations in the shoked

gas, and hene the related osillations in density and thermal energy. In general, to provide

aeptable bulk visosity for three dimensional simulation in whih shoks an our � � 1

should be used. This results in suppressed partile veloity osillations of no more than

a few perent of the sound speed in shoks up to Mah 10. In ontrast the �-visosity is

ine�etive in reduing this osillations. It beomes important at the edges of shoks where
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relative partile veloities are lose to the sound speed or greater and partile penetration

an our. In ases of partile interpenetration, there is a signi�ant veloity dispersion

of partiles in the shok and density alulations are inorret. All together, if partiles

penetrate right through the shok, the shok reprodution breaks down ompletely. So it is a

fundamental step to adjust the �-visosity in suh a way that partile interpenetrations are

suppressed suÆiently. In three dimensions a value of � � 2 is suÆient to stop most partile

interpenetrations in adiabati and isothermal shoks up to Mah 10. The treatment of shoks

by the SPH method depending on � (bulk visosity), � (Neumann-Rihtmyer visosity) and

the dimensionality of the simulation was extensively tested by Bate1995. The tests where

performed on a preursor of the ode used here whih is equivalent to a test of the ode used

here beause the hydrodynamial part is idential to that of the preursor.

3.5.2 Sink partiles

The opaity limit results in the formation of pressure-supported roughly spherial areting

hydrostati ores. As these ores arete, their entral density inreases, and it beomes

omputationally impratial to follow their internal evolution until they undergo the seond

ollapse to form stellar ores beause of the short dynamial time-sales involved. Therefore,

when the entral density of a pressure-supported fragment exeeds �

s

= 10

�11

g=m

3

, a sink

partile is inserted into the alulation Bate et al. (1995).

In the alulation presented here, a sink partile is formed by replaing the SPH gas partiles

ontained within r

a

= 14AU of the densest gas partile in a pressure-supported fragment

by a point mass with the same mass and momentum. Any gas that later falls within this

radius is areted by the point mass if it is bound and its spei� angular momentum is less

than that required to form a irular orbit at radius r

a

from the sink partile. Thus, gaseous

diss around sink partiles an only be resolved if they have radii � 15AU. Sink partiles

interat with the gas only via gravity and aretion.

Sine all sink partiles are reated from pressure-supported fragments, their initial masses are

� 10M

J

, as given by the loal Jeans mass at the opaity limit for fragmentation. Subsequently,

they may arete large amounts of material to beome higher-mass brown dwarfs (� 75M

J

)

or stars (� 75M

J

), but all the stars and brown dwarfs begin as these low-mass pressure-

supported fragments.

The gravitational interation between two sink partiles is Newtonian for radii r � 4AU and

is softened within this radius using spline softening. In the simulations presented here sink

partiles are not allowed to merge.

Replaing the pressure-supported fragments with sink partiles is neessary in order to evolve

the alulations far beyond the initial free fall time. However, it is not without an element

of risk. If the fragments are followed up all the way down to stellar densities (as it was done

by Bate (1998a)) we might �nd that a few of the objets that we have replaed with sink

partiles fragment further in the seond ollapse phase or merge together or are disrupted via

dynamial interations. We have tried to exlude suh events by insisting that the entral.

density of the pressure-supported fragments exeeds �

s

before a sink partile is reated. This

is two orders of magnitude higher than the density at whih the gas is heated and ensures

that the fragment is self-gravitating, entrally-ondensed and, in pratie, roughly spherial

before it is replaed by a sink partile. This ensures that the fragment has evolved into a

self-gravitating, entrally-ondensed, roughly spherial and pressure supported ore before it

is replaed by a sink partile.
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In theory, it would be possible for a long ollapsing �lament to exeed this density over a large

distane, thus making the reation of one or more sink partiles ambiguous. However, the

struture of the ollapsing gas that results from the turbulene prohibits this from ourring;

no long, roughly uniform-density �laments with densities � �

s

form during the alulation.

Furthermore, eah pressure-supported fragment must undergo a period of aretion before its

entral density exeeds �

s

and it is replaed by a sink partile. For example, it is ommon in

the alulation to be able to follow a pressure-supported fragment that forms via gravitational

instability in a dis for roughly half an orbital period before it is replaed. Thus, the fragments

do have some time in whih they may merge or be disrupted.

3.5.3 Variable Equations of State

In SPH simulations a density dependent adiabati oeÆient (�) an be used to mimi

the e�ets of radiative transfer and hemial reations (Bate 1998). For densities below

� < �

1

= 5:0� 10

�13

g=m

3

the mean free path of photons is muh larger than the size of the

ore. In that ase radiative ooling is muh faster than heating by gravitational ontration

and so we an use  = 1 (isothermal equation of state).

For � > �

1

the mean free paths of photons beomes shorter than the typial size of a frag-

ment. This is alled the 'opaity limit' due to the fat that at this density a typial fragment

beomes opaque or optially thik resulting in a ooling timesale larger than the loal free

fall time. Therefor the fragment will behaves like adiabati ompressed moleular gas,  = 1:4.

This works up to the point where the moleules start to dissoiate: � > �

2

= 6:0�10

�8

g=m

3

.

Thermal energy now is onsumed by the dissoiation proess resulting in a dereasing pres-

sure support. This allows for a seond ollapse phase and eventually further fragmentation.

Laboratory experiments suggest an adiabati oeÆient of  = 1:15 in the dissoiation regime.

After all moleules are transformed in atomi gas (� > �

3

= 1:0 � 10

�3

g=m

3

) the ore

behaves adiabatially again, but now with the adiabati oeÆient for atomi gas,  = 1:15.

Its worth noting that this approximation assumes impliitly a unique T (�) dependene. In

reality T (�) depends also on the size and shape of the ore but there is good oinidene with

one dimensional frqueny dependent radiative transfer alulations (�gure 3.1).
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Figure 3.1: Comparison of our variable equation of state (dotted line) with the

temperature-density relation resulting from a spheri symmetri ollapse alu-

lation with frequeny dependent radiative transfer (solid line; Masunaga and

Inutsuka (2000). Beause Masunaga and Inutsuka (2000) start with a gas sphere

intially at 5K the urved di�er for densities less than 10

�14

g=m

3

. However, in

the range of 10

�13

g=m

3

the parametrization �ts the radiative transfer result very

well. The seond ollapse phase ours if the density exeeds 5� 10

�8

g=m

3

.
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Chapter 4

Selfonsistent Initial Conditions for

prestellar ores

4.1 Arti�ial initial onditions

In most ollapse simulations done so far arti�ial initial ondition are used, arti�ial in the

sense that some kind of analytial desription is used to set up an initial density or veloity

distribution whih then diretly starts to ollapse. Examples are Gaussian density distribu-

tions, isothermal spheres, various polytropes, Bonnor-Ebert spheres et. In almost all ollapse

alulations spherial or ylindrial symmetry is introdued at least in the initial onditions.

A symmetry whih is not seen in nature, see e.g. Barrano and Goodman (1998), Bamann

et al. (1998).

Even for the same density distribution and total angular momentum a di�erent setup for the

initial veloities an drive the system into a ompletely di�erent ollapse history. For example

a superritial Bonnor-Ebert sphere built up with stati non moving gas ollapses from inside

out (Shu (1977)). If one adds a spherial veloity �eld direted inward the ollapse evolves

from outside in (Hennebelle et al. (2002)).

So if one wants to understand how prestellar ores evolve through the ollapse phase, one has

to keep in mind the large variety of prestellar ore realizations in nature. The aim should be

to take over nature's way of reating initial onditions as far as we known from observations

(Setion 2.4). One ruial feature of natural initial onditions are that they are individual ! In

the following setions I want to present a method for building up appropriate initial onditions

whih math typial ommon features of prestellar ores, but also have its individual shape

and internal dynami.

4.2 Two methods to built up Initial Conditions

We have developed and investigated two independent methods to built up initial onditions

whih math the observed properties of prestellar ores. The main ingredient for both methods

is a veloity �eld whih shows the typial features of turbulent ows around and in prestellar

ores. This veloity �eld is used to built up an individual density struture out of an initially

homogeneous gas distribution.

The ruial point is to inhibit the ollapse long enough so that the system is able to reah

a dynamial equilibrium between the evolving density and veloity strutures. Both, density

41
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and veloity struture are then onsistent with eah other and it is in this sense that we all

this state a 'selfonsistent initial ondition'. This an be reahed in two ways:

� Swith of gravity, and evolve the pure hydrodynami equations forward in time. This

is easy beause we only have to wait up to the point when dynamial equilibrium has

been reahed and the system resembles hopefully the appropriate density distribution.

Unfortunately there is introdued an unphysial disontinuity when gravity swithed on

for the subsequent ollapse alulation .

� Evolve the hydrodynami equations with gravity, but use the turbulent veloity �eld

itself to prevent the system from ollapse for the �rst time. This is more advaned

beause here the setup has to be �netuned in a way that the ollapse is inhibited at

least long enough for the system to reah its dynamial equilibrium and eventually

longer to adjust the resulting initial ondition in a optimum way before the ollapse

sets in.

We have tested both methods with several random realizations for the initial veloity �eld

but idential setup onditions. Even though the �rst method seem to be attrative beause

its easy to apply it is found to be improper. By swithing on gravity in a later stage destroys

the dynamial equilibrium of density and veloity �eld. This is simply beause strutures

evolve essentially di�erent with and without gravity. The seond method omes out to be

the more promising. Besides the big advantage of the seond method that no unphysial

intervention is needed to initiate the ollapse it omes out that the seond method reprodues

the typial features of prestellar ores muh better. To apply this seond approah one needs

a quantitative measure of turbulent support against gravity.

4.3 Appropriate Setup Conditions

The following requirements have to be ful�lled by the initial turbulent veloity �eld:

� the ollapse does not set in before a dynamial equilibrium between density struture

and veloity �eld has been reahed

� it is onsistent to the non thermal veloity dispersions and linewidth size relations

observed in the viinity of prestellar ores

� the density strutures emerging during the pre ollapse phase are onsistent with the

observed strutures of prestellar ores

The �ne tuning an be done by using an extended Jeans stability riteria. Following the

lassial jeans riteria (see setion 3.2) a homogeneous density sphere of radius r and mass

m is stable against small density perturbations as long as m

tot

� m

J

. But a turbulent

veloity �eld yields an additional support against gravitational ollapse. So one an de�ne a

turbulent Jeans mass by adding geometrially mirosopi thermal and marosopi turbulent

veloities:

v

2

all

= v

2

therm

+ v

2

turb

= v

2

therm

(1 +M

2

) (4.1)
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The Mah number M is the root mean square veloity of the turbulent motions in units of

the sound speed. Interpreted as an additional internal energy

T

e�

= T (1 +M

2

) (4.2)

we an rewrite the lassial equation for the jeans mass:

m

J;turb

= 2:74

s

4

3

�r

3

T

3

m

tot

(1 +M

2

)

3

2

(4.3)

Here r is the radius of the initial setup sphere and T the thermal gas temperature. The sphere

beomes superritial if m

J;turb

� m

tot

. Solving equation (4.3) for m

J;turb

= m

tot

= x yields:

x = 3:16rT (1 +M

2

) (4.4)

Inserting typial values for prestellar ores , M = 0:7 (Goodman et al., 1998), r = 0:06 p

(Bamann et al., 1998) and T = 10K (Barrano and Goodman, 1998) one gets x = 3M

�

. Or

the other way around:

A gas sphere of x = 3M

�

, r = 0:06 p and T = 10K beomes unstable if the Mah number

of its turbulent veloity �eld drops below M = 0:7.

The features of our initial ondition resulting from this analysis are summarized in the fol-

lowing table:

radius r = 0:06 p

mass m = 3M

�

temperature T = 10K

Mah number

at the onset of ollapse M = 0:7

thermal Jeans mass m

J;therm

= 1:2M

�

turbulent Jeans mass

at the onset of ollapse m

J;turb

= 3:0M

�

This resembles the sale, mean density, mass and veloity struture of a typial low mass star

forming ore, see Setion 2.4. This analysis gives us the possibility to ontrol the physial

parameters of our initial onditions. But it is still unlear how muh turbulent energy we

need at the beginning to inhibit the ollapse long enough. Therefore we need a method to

hek for the dynamial equilibrium between density and veloity �eld. This is desribed

in detail in setion 4.4. But �rst I want to fous on the prinipal features of turbulent

veloity �elds beause they are one of the essential ingredients of our initial onditions. Ob-

servations of moleular louds and prestellar ores (Larson (1969), Ma Low and Ossenkopf

(2000), Ossenkopf and Ma Low (2002)) and the analysis of turbulent phenomena in general

(Kolmogorov (1941)) providing strong restritions on the struture of this veloity �eld.

4.3.1 The Kolmogorov Law

Think of a uid in the limit of a very large Reynolds number or, equivalently near zero visos-

ity. In the ase of isotropi stationary turbulene fored at a rate � in a spetral range around
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the wave number k

i

, the energy ux from large to small sales is independent of k and equal

to � for k > k

i

. As a result � being also the visous dissipation rate. This shows that � is

an important parameter whih ontrols the energy ux from the large sales (small k) where

the energy it is injeted to the small sales where it is dissipated by visosity. This sheme

of progressive energy asade from large to smaller and smaller sized veloity strutures are

niely desribed by a little poem of Rihardson in 1922:

Big whirls have little whirls,

whih feed on their veloity,

and little whirls have lesser whirls,

and so on down to visosity.

Kolmogorov's theory assumes that the energy at wave numbers greater than k

i

depends

only on � and k. Due to this selfsimilar feature of the turbulent veloity �eld one expets the

energy spetrum E(k) to be a power law depending on �

�

and k

�

:

E

k

=

X

�;�

�

�

k

�

(4.5)

A dimensional analysis an be used to �nd the values for the exponents � and �. One looks

for exponents � and � suh that the produt �

�

k

�

has the dimension of a kineti energy

spetrum:

k = [L℄

�1

;E(k) = [L℄

3

[T ℄

�2

; � = [L℄

2

[T ℄

�3

�

�

k

�

= [L℄

2���

[t℄

�3�

= [L℄

3

[T ℄

�2

(4.6)

[L℄ and [T℄ are dimensions of spae and time respetively. There is only one possible solution

for the pair (�; �):

� =

2

3

; � = �

5

3

(4.7)

With equation 4.11, this indues a power spetrum P (k) � k

�

11

3

de�ning the distribution of

the amplitudes of the veloity utuations on di�erent wavelengths. This is on�rmed by a

wide range of turbulent phenomena on earth (e.g. Gargett et al., 1984) and in spae. Myers

and Gammie (1999a) suggest that most observed line width-size relations of moleular louds

and prestellar ores an be reprodued by a spetral energy law E(k) � k

�2

orresponding

to a power spetrum P (k) � k

�4

. Burkert and Bodenheimer (2000) also show that suh a

power law an reprodue the observed projeted rotational properties of moleular loud ores.

These results guide the way on how we reate the initial veloity �elds for our alulations.

4.3.2 Gaussian Random Fields

We realize the initial turbulent veloity �eld of the prestellar ore using Gaussian random

�elds. Gaussian random �elds an be �xed by their mean value, in our ase the root mean

square (rms) veloity

p

v

2

, and the power spetrum P (

~

k) with respet to the wave number

k. The power is de�ned as the absolute value of the Fourier oeÆients in k-spae and

thus determines the distribution of the amplitudes among the di�erent wavelengths of the

turbulent perturbations in ~r-spae. In the following, we will assume that the power spetrum

is isotropi and follows a power law, see setion 4.3.1.
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Eah veloity omponent v

j

(~r) an be desribed using the Fourier expansion

v

j

(~r) =

1

(2�)

3

Z

v̂

j

(

~

k) e

i

~

k~r

d

3

k (4.8)

For v

j

(~r) to be real, v

j

(~r) = v

�

j

(~r), the omplex onjugate must obey v̂

�

j

(

~

k) = v̂

j

(�

~

k). The

onvolution theorem for Fourier transformations gives the onnetion between the autoorre-

lation funtion and the power spetrum P (

~

k) = jv̂

j

(

~

k)j

2

:

Z

v

j

(~r

0

) v

j

(~r

0

+ ~r) d

3

r

0

=

1

(2�)

3

Z

P (

~

k) e

�i

~

k~r

d

3

k (4.9)

A measurable quantity for moleular louds is the veloity dispersion, whih is diretly on-

neted to the mean kineti energy per mass

E

kin

=

1

2V

Z

v

j

(~r

0

) v

j

(~r

0

)d

3

r

0

(4.10)

Using the above onvolution theorem with ~r = 0 and assuming an isotropi power spetrum

P (

~

k) = P (j

~

kj), we get

E

kin

=

1

2V

1

(2�)

3

Z

4� k

2

P (k) dk (4.11)

If one measures the spetral energy, that is the energy of all the modes in the spherial shell

in k-spae between k and k + dk, the onnetion to the power spetrum will be given by

^

E(k) � k

2

P (k).

For a realization of a Gaussian random �eld, we use the disretized Fourier transformation

(see Equation 4.8)

v

j

(~r) =

L

3

(2�)

3

X

~

k

v̂

j;

~

k

e

i

~

k~r

(4.12)

and assume that real and imaginary part of the Fourier oeÆients v̂

j;

~

k

= u

j;

~

k

+ i v

j;

~

k

are

Gaussian distributed with variane �

2

= P (k):

P(u; v) =

1

2�P (k)

e

� (u

2

+v

2

)=2P (k)

(4.13)

Variable transformation to spherial oordinates gives a uniform probability density funtion

for the phase �

P(�) =

1

2�

(4.14)

and the Rayleigh distribution for the amplitudes w of the Fourier oeÆients v̂

j;

~

k

= w(os �+

i sin�):

P(w) =

w

P (k)

e

� w

2

=2P (k)

(4.15)

This leads to the probability funtion P(X < w) =

w

R

�1

P(w) or

P(X < w) = e

� w

2

=2P (k)

(4.16)
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with maximum at w =

p

P (k). While � is equally distributed between [0; : : : ; 2�℄, the

disrete values for w an be derived by throwing a die to get random numbers P(X < w)

with 0 < P(X < w) < 1 and using

w =

q

�2 ln(P(X < w))P (k) (4.17)

4.3.3 Boundary Conditions

We have tested two di�erent types of boundary onditions in ombination with our homoge-

neous density sphere setup ondition:

� Reetive onstant volume boundaries with ghost partiles

� Constant pressure boundaries. Beyond the margins of the initial gas sphere there is

added a virtual pressure, equivalent to the thermal pressure inside the homogeneous

sphere. To esape from the original sphere the SPH partiles have to overome this

virtual pressure potential.

To apply the stability riteria desribed in setion 4.3 it is neessary that the the mass is

restrited to some well known area. This is not the ase when we use onstant pressure

boundaries. The setup mean kineti energy is at least twie as large as at the onset of the

ollapse. So that a part of the gas (about 20 perent) is splattered out of the initial sphere.

This auses an additional stabilisation of the loud and it is not possible any more to de�ne

a global stability parameter. So its hard in ombination with onstant pressure boundaries

to predit if and when the ollapse sets in. Therefore it omes out, that the onstant volume

boundaries are the appropriate boundary ondition for our purposes beause they allow a

easy way to ontrol the stability onditions.

4.4 A Test for Selfonsisteny

As already mentioned in setion 4.3 we have to hek for the dynamial equilibrium between

density and veloity �eld. If we start our alulations with a setup ondition as desribed in

setion 4.3 then in the beginning density utuations are built up by the turbulent veloity

�eld, see �gure 4.1. This orresponds to a ow of kineti energy into potential energy. After

some time the system reahes a dynamial equilibrium between the energy stored in density

utuations and the energy stored in the turbulent veloities. Here the density utuations

��=� reah a loal maximum.

At this point a onsisteny between energy and veloity �eld has been reahed so that they

are naturally onneted to eah other. It is in this sense that we all this onstellation self-

onsistent. As a result the deay of the veloities deelerates signi�antly beause now the

veloity �eld looses energy only by dissipation so that density utuations and veloities de-

ay simultaneously. After some time the deay of density utuations stops, indiating that

the evolved struture beomes unstable and start to ollapse. In �gure 4.1 the wavelength of

the largest mode of the turbulent veloity �eld is one �fth (0:24 p) of the spheres diameter.

This results in a shorter timesale for the visous dissipation. One an easily see the 'built up

phase' and 'selfonsistent dissipation phase' separated by a maximum in ��=�. For a more

realisti run the largest mode should have the same size as the setup sphere. In this ase
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the visous timesale is muh larger and there will be no maximum in ��=�. What remains

is a plateau like phase between the gain of dynamial equilibrium and the onset of ollapse,

ompare �gure 5.1. So that it is still possible to hek for the selfonsisteny.

Figures 4.2 and 4.3 showing the evolution of ��=� for initial Mah numbers 1.0, 1.5, 2.0,

2.5, 3.0 and 4.0. One sees that there is only a weak depenene of the loal maximum of

��=� on the initial Mah number. This implies that the dynamial equilibrium is reahed

always routhly at the same time. In ontrast to that the onset of ollapse is signi�antly

delayed from 130000yrs for an initial Mah number of M

0

= 1:0 to 165000yrs for M

0

= 4:0.

But there is an additional interesting feature in the time evolution of ��=� onerning its

loal minimum. This loal minimum is reahed when the ��=� ampli�ation by gravity start

to overbalane the damping by visosity. By looking arefully on the minimum values of ��=�

for the six panels in �gure 4.2 and 4.3 one sees that it is growing from ��=� = 0:6 when an

initial Mah number of M

0

= 1:0 is used to ��=� = 0:95 for M

0

= 4:0. This is surprising

beause our initial ondition was designed to beome instable only when M(t) < 0:7. In

addition density and veloity �elds were heked to be in an dynamial equilibrium.

To solve this puzzle we looked for the atual Mah numbers M(t = t

��=�j

min

) when the

minimum in ��=� is reahed. It omes out that also the Mah numbers M(t = t

��=�j

min

)

tend to be larger if the initial Mah number M(t = 0) is inreased. This means that the

amplitudes of the density utuations from whih the ore evolves into the ollapse phase

must be larger if the initial Mah number is inreased. In prinziple, there is a large variety of

marginaly stable onstelations. Strong density ondensations need more turbulent pressure

to be supported. As a result they ollapse earlier. This implies, that in the ase of high initial

Mah numbers more kineti energy is onveyed into the isothermal ollapse proess. This

inreases the probability for fragmentation events and a higher frequeny of multiple systems

is expeted.
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Figure 4.1: Time evolution of the density utuations ��=� (rosses) and the Mah

number M (stars) for an initial Mah number of M

0

= 1:5. The wavelength of

the largest mode of the turbulent veloity �eld is one �fth (0:24 p) of the spheres

diameter.

� t < 0:7 � 10

5

yrs : density utuations are built up by the turbulent veloity �eld

� t = 0:7 � 10

5

yrs : selfonsisteny has been reahed

� t < 1:5 � 10

5

yrs : turbulene and density utuations are deaying simultaneously

� t = 1:5 � 10

5

yrs : the ore beomes superritial (M = 0:85)

� t > 1:5 � 10

5

yrs : the ore runs into an isothermal ollapse
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Figure 4.2: Time evolution of ��=� for initial Mah numbers of M

0

= 1:0 (top

panel),M

0

= 1:5 (middle panel) and M

0

= 2:0 (lower panel). The wavelength of

the largest mode of the turbulent veloity �eld is one �fth (0:24 p) of the spheres

diameter.



50CHAPTER 4. SELFCONSISTENT INITIAL CONDITIONS FOR PRESTELLARCORES

Figure 4.3: Time evolution of ��=� for initial Mah numbers of M

0

= 2:5 (top

panel),M

0

= 3:0 (middle panel) and M

0

= 4:0 (lower panel). The wavelength of

the largest mode of the turbulent veloity �eld is one �fth (0:24 p) of the spheres

diameter.



Chapter 5

How Turbulene Creates a

Gravitating Center

We have studied in detail how a gravitationally bound struture emerges in a turbulent media.

In the �rst 40000-60000 yrs density utuations are built up until a dynamial equilibrium is

reahed between the turbulent energy on the one side and the potential energy of the density

utuations on the other side (setion 4.3). In this sense, a selfonsistent state is reahed in

whih density and veloity �eld are naturally related to eah other. After this �rst growth

phase the value for the maximum density stays roughly onstant over 80000-100000 yrs.

Whereas the amount of mass aumulated in over-dense regions inreases rapidly. Roughly

150000 yrs after the initialization the maximum density starts to inrease rapidly and the

ore evolves into a runaway ollapse.

5.1 Evolving Strutures: Global Features

To get a �rst global impression on how turbulene and gravity distributes matter one an

look up the SPH partiles density distribution. Therefore the standard deviation �� in units

of the mean density h�i is used:

��

�

=

p

h�

2

i � h�i

2

h�i

(5.1)

To get an impression on how gravity hange things in the regime where turbulene supports

the gas against ollapse the evolution of two idential setups were ompared (�gure 5.1). The

�rst (upper panel) was evolved with gravity, the seond (lower panel) without gravity. One

sees, that during the �rst 40000 yrs the evolution of ��=� is nearly the same for both runs. If

gravity is present ��=� is always growing but with a lear and extended plateau phase of only

weakly growing density maxima. Without gravity density utuations start to deay when

the dynamial equilibrium is reahed. In ontrast to the simulations shown in setion 4.4 the

largest mode of the initial turbulent veloity �eld has the same size as the setup sphere.

Figure 5.3 gives a diret impression how muh mass is aumulated in over-dense regions.

Shown is the number of SPH partiles exeeding some ertain density threshold as a funtion

of time for run410. The uppermost line orresponds to a density threshold of 20. For the next

lower line the threshold is inreased by 10 units and so on for the other lines. Thik lines mark

density thresholds of 50,100 and 150. The initial mean density is �

0

= 3 whih orresponds to

51
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Figure 5.1: Time evolution of

��

�

. Upper panel: density utuations as a funtion

of time for an individual run with gravity and an initial Mah number M = 2.

Lower panel: the same alulation as in the upper panel but without gravity.
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2� 10

�19

g=m

3

resp. 5� 10

4

moleules=m

3

. For omparison the same analysis is shown for

the alulation without gravity. In this referene simulation the mass sited in 10:1 over-dense

regions reahes a maximum 40000 yrs after initialization. At this time only about 0:03M

�

(1 perent of the total mass) is hosted in this ondensations. The orresponding loal Jeans

mass for an 10 �

0

ondensation is about 0:4M

�

whih is at least one order of magnitude more

than the available high density gas. In other words, the turbulent veloity �eld at its own

is not able to drive the system into a superritial state. This means, even if the system is

strong subritial, gravity must inuene signi�antly the growth of density strutures. Oth-

erwise it would be impossible to evolve the low mass ondensation into a superritial ore

ollapsing on its free fall time sale. After 100000 yrs almost all 10:1 utuations are gone.

The dissipation results in a loss of mass for all shown density thresholds. Not surprising, high

density ontrasts vanish faster than the others.

Gravity a�ets also the veloity �eld. This an be seen in �gure 5.5. Again there is ompared

run410 and the referene simulation without gravity. It shows the evolution of the Mah

number in time. The Mah number onerning all SPH partiles of a simulation is given by

the (+) signs. The Mah number of a loal subsample of SPH partiles less than 1000AU

around the density maximum is indiated by the thin line (upper panel). Note that in this

ase the veloity of the density maximum is subtrated form the partiles individual veloities

beause this veloity omponent an't ontribute to a turbulent pressure on this loal sale.

After 1:6�10

5

yrs the aeleration of the SPH partiles is learly visible. For the total sample

of partiles this e�et is already seen after 100000 yrs.

Comparing the global Mah numbers for the upper and lower panel, one sees that the ki-

neti energy deays faster in the simulation without gravity, at least 40000 yrs after the

initialization the e�et is obvious. In the regime t < 60000 yrs density utuations ��=�

are a bit larger for the run without gravity. One may argue that in this ase more kineti

energy is used up to built up the density utuations. But the opposite is the ase when the

dynamial equilibrium has been reahen. In the regime t > 60000 yrs density utuations and

Mah numbers are larger if gravity is present. This an be understand by looking on how we

have designed the setup onditions of the runs (setion 4.3). The thermal Jeans mass of our

set up is 1:2M

�

- only about 40 perent of the total mass so that this state is Jeans unstable

and would immediately ollapse without turbulent pressure support. This means that every

deviation from the homogeneous distribution of matter is aompanied by a derease in po-

tential energy. Density utuations are in this ase a soure of kineti energy even though

the system is still supported against gravity!

Beause the over-dense regions are for the �rst time signi�antly less massive than the loal

Jeans mass they are supported against gravity by thermal pressure and further ompression

is suppressed for the �rst time. This an be seen in �gure 5.2 where we have plotted the

time evolution of the density maximum of an individual ondensation and the total density

maximum of the whole simulation area. One sees that the total density maximum inreases

only about a fator of two in the epoh between 30000 yrs and 150000 yrs after the initializa-

tion. While the ondensations are supported by thermal pressure on small sales the large

sale struture is already Jeans unstable and only supported by the turbulent pressure. This

ooperation of thermal pressure support on small sales and turbulent support on the large

sales results in a slow aumulation of mass onto the initial low mass ondensations. This
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behavior is in some sense similar to the adiabati ollapse phase beyond the opaity limit. In

both ases there is a pressure supported ore like struture on small sales whih inreases

only slowly its density while signi�antly growing in mass.

In addition there is another signi�ant di�erene ompared to the lassial isothermal ol-

lapse phase. During the isothermal ollapse phase the Jeans mass dereases and a single initial

objet eventually fragments into two ore more objets. During the turbulene dominated on-

tration phase things are vie versa. The initially separated low mass ondensations grow in

mass, merge and form an extended over-dense objet (�gure 5.4). This yields a naturally

explanation for the at inner parts of prestellar ores as they are observed in turbulent star

forming regions (setion 2.4.1).

Altogether the turbulene dominated ontration phase has to be established as an important

additional ollapse phase where things are essentially di�erent than in the isothermal ollapse

phase.

The turbulent kineti energy results in a turbulent pressure inreasing the amount of mass

supported against gravity (setion 4.3):

m

J;turb

= 2:74

s

T

3

�

(1 +M

2

)

3

2

(5.2)

Here the density is given in units of 1M

�

=p

3

and a mean moleular weight � = 2:36 is as-

sumed. So we an expet that mass aumulations would not fragment below m

J;turb

. Given

a minimum Mah number of M = 1:5 (�gure 5.5) and a density enhanement of 10, m

J;turb

omes out to be 2:2M

�

whih is a bit less then the total mass but still enough to prevent

fragmentation during the turbulene dominated ontration phase. One an extended over-

dense region has formed the turbulent energy is dissipated on the loal dynamial timesale

whih is about 50000 yrs and signi�antly shorter than in the surrounding low density regions.

The turbulent pressure support breaks down and the over-dense region evolves into a rapid

isothermal ollapse.

To be sure, that this behavior is not a feature of an individual run we have alulated an evo-

lutionary mean for 10 independent runs with individual initial onditions (�gure 5.6). The

physial parameters of the initial onditions are idential. Only the random seeds for the

veloity �elds were haned. When the dynamial equilibrium is reahed (roughly 40000 yr

after the initialization) only less than 1 perent of the total mass is aumulated in regions

with densities of more than 10 �

0

. About 10

5

yrs (0:6 t�) later the amount of mass in the

over-dense regions is at least 10 times larger and in the range of 10 to 20 perent of the total

mass. At the same time the amplitude of the utuations stays roughly onstant or inreases

weakly but always less than a fator of two.

The ation of the turbulent pressure support results in the fat, that the Jeans instability

evolves from outside in. This is shown in �gures 5.7, 5.8, 5.9, 5.10. There was ompared the

aumulated mass inside a sphere of radius r around the density maximum (thik line) with

the orresponding loal Jeans mass as alulated from the mean density inside this sphere

(thin line). All this is shown as a funtion of time. The aumulated mass inside the sphere

starts to exeed the loal Jeans mass when the thik line rosses the thin line. This happened

�rst for the largest sphere and last for the smallest sphere.



5.1. EVOLVING STRUCTURES: GLOBAL FEATURES 55

The times at whih the di�erent sized spheres beomes Jeans unstable are plotted as a fun-

tion of the radius r in �gure 5.10. This learly shows that the Jeans instability is reated for

the �rst time on a size sale equivalent to the size of the whole over-dense region and then

evolves inward. In this sense one an say that during the turbulene dominated ontration

phase the matter ollapses from outside in resulting in a density distribution with a at inner

part.

This interpretation is on�rmed by the radial net aeleration of the gas - the di�erene

between the inward direted gravitational fore and the outward direted pressure gradient

fore. Both fores were alulated in shells around the density maximum. this is shown in

�gures 5.11 and 5.12. One sees that there is a net outward aeleration for t � 120000 yrs for

the innermost 0:004 p. This outward aeleration beomes overbalaned by the rampressure

of inward streaming gas (setion 5.3) so that the enter is slowly inreased in density. The

region of the strongest inward aeleration evolves from outside in (�gure 5.12). At the onset

of the isothermal ollapse phase it reahes the enter.
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Figure 5.2: Time evolution of the density maximum of an individual ondensation

evolving into ollapse (upper panel) and the total density maximum in the whole

simulation area. 10

5

yrs after the initialization both urves are idential.
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Figure 5.3: Upper panel: Time evolution of the number of SPH partiles exeed-

ing some ertain density threshold for an individual run. The uppermost line

orresponds to a density threshold of 20. For the next lower line the threshold

is inreased by 10 units and so on for the next lines. Thik lines mark density

thresholds of 50,100 and 150. The initial mean density is 3 whih orresponds to

2 � 10

�19

g=m

3

resp. 5 � 10

4

moleules=m

3

. Lower panel: Comparative alulation

without gravity. The initial onditions are idential to that of run410 in the upper

panel.
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Figure 5.4: Spatial distribution of the SPH partiles exeeding a density threshold

of 20 respetive 1:3� 10

�18

g=m

3

, ompare with �gure 5.3 uppermost line. Time

inreases from left to right and from top to bottom. During the epoh from

50000 yrs to 150000 yrs the maximum density inreases only by a fator of two

while the number of partiles exeeding the threshold inreases by a fator of at

least 10.
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Figure 5.5: Upper panel: Evolution with gravity. Mah number based on all

partiles of the simulation (+), Mah number of all SPH partiles inside a sphere

of 1000AU around the density maximum (thin line) and density utuations ��=�

(�). Lower panel: Evolution without gravity. Mah number based on all partiles

of the simulation(+) and density utuations ��=� (�).
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Figure 5.6: Time evolution of the number of SPH partiles exeeding some ertain

density threshold. Plotted is the evolutionary mean value of 10 independent runs

with individual turbulent veloity �eld but idential physial parameters. The

uppermost line orresponds to a density threshold of 20. For the next lower line

the threshold is inreased by 10 units and so on for the next lines. Thik lines

mark density thresholds of 50,100 and 150. The initial mean density is 3 whih

orresponds to 2� 10

�19

g=m

3

resp. 5� 10

4

moleules=m

3

.
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Figure 5.7: Aumulated mass inside a sphere of radius r around the density max-

imum (thik line) and the orresponding loal Jeans mass alulated from the

mean density inside this sphere (thin line) as a funtion of time. Radius data is

given in units of 0:1 p.
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Figure 5.8: Aumulated mass inside a sphere of radius r around the density max-

imum (thik line) and the orresponding loal Jeans mass alulated from the

mean density inside this sphere (thin line) as a funtion of time. Radius data is

given in units of 0:1 p.
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Figure 5.9: Aumulated mass inside a sphere of radius r around the density max-

imum (thik line) and the orresponding loal Jeans mass alulated from the

mean density inside this sphere (thin line) as a funtion of time. Radius data is

given in units of 0:1 p.
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Figure 5.10: For every sphere of radius r there is plotted the time at whih the

aumulated mass inside the sphere exeeds the loal Jeans mass. The points are

taken from the intersetion points in the graphs of �gure (5.7), (5.8) and (5.9).

The Jeans instability evolves from outside in and is a result of the at radial

density distribution of the generated prestellar ore.
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Figure 5.11: Di�erene between the outward direted pressure gradient fore and

the inward direted gravitational fore. Positive values orrespond to an outward

net aeleration. The horizontal line marks the zero point. 1st row: t=45000 yrs,

2nd row: t=60000 yrs, 3rd row: t=75000 yrs, 4th row: t=90000 yrs, 5th row:

105000 yrs after the initialization.
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Figure 5.12: Di�erene between the outward direted pressure gradient fore and

the inward direted gravitational fore. Positive values orrespond to an outward

net aeleration. The horizontal line marks the zero point. 1st row: t=120000

yrs, 2nd row: t=135000 yrs, 3rd row: t=150000 yrs, 4th row: t=165000 yrs, 5th

row: 180000 yrs after the initialization.
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5.2 Bonnor Ebert Spheres

In 1956 Bonnor analysed the stability of gaseous spheres against gravity. (Bonnor (1956)). In

this setion there is given a short introdution onerning the main idea standing behind the

Bonnor-Ebert spheres and a summary of Bonnors results. In the seond part we ompare the

density distributions of our prestellar ore realizations to that of the Bonner-Ebert solutions.

Think of a stati isothermal spheri symmetri gas distribution ompressed by its own gravity.

At every distane r from the enter the gas has to be in hydrostati equilibrium. This means

the pressure gradient fore has to balane the fore of gravity:

�

dp

dr

=

4�G�

r

2

Z

r

0

�r

02

dr

0

(5.3)

or

1

r

2

d

dr

=

�

r

2

�

dp

dr

�

= �4�G� (5.4)

In addition at every point P the gas obeys the ideal equation of state

p =

1

m

k�T (5.5)

where p, � and T are the pressure, density and temperature, and m is the moleular weight.

Equation 5.4 and 5.5 an be ombined to get an equation for the radial density distribution

for an isothermal gas sphere:

1

r

2

d

dr

=

�

r

2

�

d�

dr

�

= �

4�Gm�

kT

(5.6)

This is the well known Lane-Emden equation. It an be transformed into a dimensionless

representation by using the following substitutions:

� = �e

�	

; r = �

1=2

�

�1=2

� (5.7)

where � is up to now an arbitrary onstant and in � all the physial onstants and variables

independent of � and r are olleted:

� =

kT

4�Gm

(5.8)

Equation 5.6 then beomes

�

�2

d

d�

�

�

2

d	

d�

�

= e

�	

(5.9)

We expet the density to reah a maximum at the enter of the sphere whih also implies a

zero density gradient at this position. Therefore we an de�ne the boundary onditions to be

� = �



;

d�

dr

= 0 (5.10)

where �



is the entral density of the sphere. In the following we the entral density is assumed

as a given parameter. If we hoose now � = �



then the boundary ondition looks in the new

variables:

	 = 0 ;

d	

d�

= 0 at � = 0 (5.11)
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This boundary ondition ompletely �x the solution of the dimensionless Lane-Emden equa-

tion. All possible solutions given by the entral density, temperature and moleular weight

are alled Bonnor-Ebert spheres. A stability analysis for Bonnor-Ebert spheres results in the

fat that stability against gravitational ollapse only depends on the density ontrast between

the enter and the outer boundary respetive the bakground density. If the density ontrast

exeeds a value of 13.5 the Bonnor-Ebert sphere solution beomes unstable and will ollapse

(�gure 5.13). Transformed bak to to the physial variables r and �



this means that Bonnor-

Ebert spheres with a ritial density ontrast are ompat and light objets if the entral

density �



is large and extended heavy objets if the entral density is low. This is in diret

analogy to the Jeans stability riterion, see setion 3.2. This beomes lear if one ompares

the ritial radius of a Bonnor-Ebert sphere with the Jeans length:

R

BE;rit

= 0:49

s

kT

mG�



= 0:76

s

kT

mG�

mean

; R

Jeans

= 0:89

s

kT

mG�

0

(5.12)

where �

mean

is the mean density of the mass inside the ritial radius and �

0

is the onstant

gas density used in Jeans's analysis. One sees there is besides the slightly di�erent onstants

the same dependene on � and T . The same holds for the enlosed mass inside r

BE;rit

and

the Jeans mass.

There are exist a lot of ollapse alulations started with a Bonnor-Ebert sphere density dis-

tribution as initial ondition. Beause of that we looked, if our setups evolving through a

Bonnor-Ebert sphere (BE sphere) like density distribution into the ollapse. To do that we

used 8 runs with setup Mah numbers 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 6.0, 10.0. For every run we

tried to �t a BE sphere solution around the upoming density maxima. This is done for the

�rst 40 time steps of every run. One time step orresponds to 0:033t

ff

= 5000yrs. The algo-

rithm works as follows. There is assumed a spherial symmetri density distribution around

a density maximum. Then the gas density is estimated in n 'equal volume shells' around a

density maximum. There is also one entral sphere with the same volume as the shells. The

estimated density of the entral sphere is used as the entral density for the BE solution.

The free input parameter of the algorithm is the radius r of the BE sphere to be �tted. The

appropriate number n of shells depends on the number of SPH-partiles inside the radius r.

The more SPH partiles are found in one shell, the smaller is the satter in the radial density

urve. We use two riteria to deide if a SPH partile distribution is equivalent with a BE

sphere. First we ompare the density ontrast between the outer shell and the entral sphere

with that of the BE solution. Seond, we ompare the aumulated mass inside the radius r

with the mass of the BE sphere of same size. Altogether we looked up 2240 onstellations in

a 3 dimensional parameter ube:

� 8 runs with di�erent initial Mah numbers

� the �rst 40 time steps of every run

� radii between 0.01 and 0.04 p in steps of 0.005 p.

First, there are no BE spheres with a ritial density ontrast of 13.5. We �nd BE like den-

sity distributions only with low density ontrasts in the range of 1.5 ... 6. We don't �nd BE

solutions before the dynamial equilibrium of density and veloity �eld is reahed. After this

point there is an epoh where we �nd stable subritial BE solutions with density ontrasts
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Figure 5.13: Stability of the Bonnor-Ebert sphere solutions. All spheres extending

beyond the dotted vertial line at � = 6:5 exeed the ritial density ontrast of

13.5 and are gravitational unstable. Plotted is the density in units of the entral

density against the dimensionless variable � whih is proportional to r. In this

dimensionless representation all Bonnor-Ebert sphere solutions look the same.
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Figure 5.14: Radius of the BE sphere like density distributions found in the ollapse

simulations.
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Figure 5.15: Density ontrasts of the BE sphere like density distributions found in

the ollapse simulations.
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less than 6 (�gure 5.15). This epoh ends when the gas distribution starts to ollapse. This is

not surprising beause the BE solution is based on a hydrostati equilibrium. One sees, that

in the ase of a high Mah number this epoh is more extended beause the system needs

more time to dissipate enough kineti energy to beome unstable.

Altogether this means, that density strutures built up primarily by turbulent veloities or

primarily by gravity do not math the BE solution. It seems that it is a well balaned inter-

play of gravity and turbulene whih yields the right onditions to evolve a BE sphere. There

is a lear orrelation between the initial Mah number and the density ontrast of the BE

solutions. The higher the initial Mah number the more pronouned is the density ontrast of

the BE like density distributions. Independent of the initial Mah number the BE solutions

are wide and shallow at early times and beome lighter and more ompat at later times.

Even though the prestellar ore is still supported by the turbulene the entral density is

slowly growing. When the isothermal ollapse phase starts dense regions will ollapse faster

than the others so that there evolves a density struture with a steep inner part whih an't

be mathed by a BE sphere solution.

This analysis show, that marginal- or superritial BE spheres as they are used as initial

onditions do not evolve in a turbulent medium with Mah numbers not greater than 10.

This result is supported by observations beause the only ritial BE sphere like density dis-

tributions found in nature are hosted in Bok globules. Bok globules are alm environments

where the assumption of an equilibrium between thermal pressure and gravity approximately

holds. Superritial BE spheres may be reated in extremely turbulent environments with

Mah numbers far beyond 10. This is indiated by the inreasing density ontrast for large

initial Mah numbers. We an't prove this yet, beause in the ase of extremely supersoni

turbulene (Mah numbers greater than 10) our SPH algorithm start to smear out the shoks.

A nie example is Barnard-68, where Alves et al. (2001) showed that it niely �ts to a Bonnor-

Ebert sphere. After all one should keep in mind that prestellar ores and even Barnard-68 are

not spheri symmetri. So the results presented here are not in ontradition to the previous

setions.
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5.3 Detailed veloity Struture

This setion gives a detailed analysis on how density and veloity �eld interat with eah

other and how the �rst ondensations are reated by turbulene. Therefore we avoid any

spherial symmetry in our analysis to take into aount the spatial omplexity of the evolving

strutures. Exemplary we present the whole analysis for run425, one of our 22 ollapse

simulations (setion 6.5).

As an overview �gure 5.16 shows the evolution of the density struture as seen from the z-axis.

Plotted are the logarithmi density distributions at t=50000 yrs, t=75000 yrs, t=100000 yrs,

125000 yrs, t=150000 yrs and t=175000 yrs after the initialization. Densities range from 0.3

resp. 2� 10

�20

g=m

3

(blak) to 600 4� 10

�17

g=m

3

(white).

In the �gures 5.17, 5.18, 5.19, 5.20 and 5.21 we present a omprehensive visualisation for

the spatial on�guration of the mass ows. Therefore the veloity and density struture in

0:005 p (1000AU) thik slies through the density maximum is plotted. The diretion of

the ow is given by the arrows, their size indiates the absolute value of the veloities. The

veloities are rest frame veloities in respet to the density maximum. The density distribu-

tion is indiated by small dots showing the distribution of the SPH partiles inside a slie.

Cirles enlose a 1000AU region around the density maximum. To get an optimum insight in

the three dimensional ow pattern uts along the y-z plane (upper row), along the x-z plane

(middle row), and along the x-y plane (lower row) are shown.

At the �rst time shok fronts and strong subsoni veloity gradients reate a network of dif-

ferently extended �laments and sheets. The gas density is highest along this �laments and in

partiular at the intersetion points of this �laments. These are the loations where prestellar

ores predominantly form. In addition these intersetion points are the preferential regions

of onverging ows (�gure 5.17).

The visualization of the spatial veloity struture learly shows that the reation of a star

is far from being a spherial symmetri event. Even in the late stages (t > 150000 yrs) the

ation of the residual turbulene is visible. Nevertheless gravity starts to dominate the sene.

To get more information about the ation of the veloity �eld we alulated the loal three

dimensional veloity dispersion �

tot

, the veloity dispersion tangential to the gravitational

fore vetor �

tan

and the ram pressure, see �gures 5.22, 5.23, 5.24 and 5.25. The values are

loal mean values and where alulated as follows. A probe ylinder was separated in a stak

of disks. Every disk has a thikness of 0:006 p (1200AU) and a diameter of 0:012 p. Inside

the volume of these disks there was alulated a mean value of the physial variable of interest

based on all SPH partiles found inside the disks volume. This results in a spatial resolution

of the plots of 600AU.

Figure 5.22 (left olumn) shows that there is at all times a large negative veloity gradi-

ent around the position of the density maximum. A negative veloity gradient orresponds to

a ompression of the gas along the z-axis while positive slopes indiate a dilution of the gas.

The maximum veloity gradient of �40 km=s � p

�1

is seen about 75000 yrs after initialization

and extends over 0.02 p. The density maximum emerges at the edge of a more extended

over-dense region to the left (right olumn). Even though the region of negative veloity gra-

dient is ited symmetri around the peak, the ondensation gains mass predominantly from

the left due to the larger densities there.

The inward moving gas streams are deelerated near the enter and so the onveyed (ad-

veted) momentum is a soure of ram pressure ating as an additional fore ompressing the
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region around the density peak:

P

ram

= (�v) � v = �v

2

(5.13)

The term (�v) is the amount of gas streaming through a unit area per unit time. If this is

multiplied by the veloity of the gas one gets the momentum ow per unit time whih an

be interpreted as a fore ating per unit area if the ow is deelerated down to zero veloity.

In the �gures 5.23, 5.23 and 5.23 the ram pressure is shown along the x, y and z axis. The

unsymmetri density distribution in z diretion around the density peak indues a strong

unsymmetri rampressure pro�le. There is a strong 12� 14 nPa rampressure peak left to the

density peak for t < 130000 yrs while right to the peak there is only negligible rampressure

due to the very low gas densities in this region.
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Figure 5.16: Logarithmi density distribution (olor oded) for run425 at t=50000

yrs, t=75000 yrs, t=100000 yrs, 125000 yrs, t=150000 yrs and t=175000 yrs

after the initialization. Densities range from 0.3 resp. 2 � 10

�20

g=m

3

(blak) to

600 4 � 10

�17

g=m

3

(white). Size sales are given in units of 0:1 p.

.
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Figure 5.17: Detailed veloity struture 70000 yrs (timestep 14, left olumn) and

75000 yrs (timestep 15, right olumn) after the initialization. The plots show

the veloity and density struture in 0:005 p (1000AU) thik slies through the

density maximum. The diretion of the ow is given by the arrows, their size

indiates the absolute value of the veloities. Small dots showing the distribution

of the SPH partiles. Upper row: ut along the y-z plane. Middle row: ut along

the x-z plane. Lower row: ut along the x-y plane.
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Figure 5.18: Detailed veloity struture 100000 yrs (timestep 20, left olumn) and

105000 yrs (timestep 21, right olumn) after the initialization. The plots show

the veloity and density struture in 0:005 p (1000AU) thik slies through the

density maximum. The diretion of the ow is given by the arrows, their size

indiates the absolute value of the veloities. Small dots showing the distribution

of the SPH partiles. Upper row: ut along the y-z plane. Middle row: ut along

the x-z plane. Lower row: ut along the x-y plane.
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Figure 5.19: Detailed veloity struture 120000 yrs (timestep 24, left olumn) and

125000 yrs (timestep 25, right olumn) after the initialization. The plots show

the veloity and density struture in 0:005 p (1000AU) thik slies through the

density maximum. The diretion of the ow is given by the arrows, their size

indiates the absolute value of the veloities. Small dots showing the distribution

of the SPH partiles. Upper row: ut along the y-z plane. Middle row: ut along

the x-z plane. Lower row: ut along the x-y plane.
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Figure 5.20: Detailed veloity struture 150000 yrs (timestep 30, left olumn) and

155000 yrs (timestep 31, right olumn) after the initialization. The plots show

the veloity and density struture in 0:005 p (1000AU) thik slies through the

density maximum. The diretion of the ow is given by the arrows, their size

indiates the absolute value of the veloities. Small dots showing the distribution

of the SPH partiles. Upper row: ut along the y-z plane. Middle row: ut along

the x-z plane. Lower row: ut along the x-y plane.
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Figure 5.21: Detailed veloity struture 170000 yrs (timestep 34, left olumn) and

175000 yrs (timestep 35, right olumn) after the initialization. The plots show

the veloity and density struture in 0:005 p (1000AU) thik slies through the

density maximum. The diretion of the ow is given by the arrows, their size

indiates the absolute value of the veloities. Small dots showing the distribu-

tion of the SPH partiles. Cirles enlose the 1000AU region around the density

maximum. Upper row: ut along the y-z plane. Middle row: ut along the x-z

plane. Lower row: ut along the x-y plane.
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Figure 5.22: z omponent of the veloity (left olumn) and density (right olumn)

along a 2400AU diameter probe ylinder through the density maximum. The

ylinder axis is aligned parallel to the z-axis. The initial mean density is 2 �

10

�19

g=m

3

.
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Figure 5.23: Total veloity dispersion �

tot

(left olumn), veloity dispersion of the

tangential veloity omponents �

tan

(middle olumn) and the resulting ram pres-

sure p

ram

along a 2000AU diameter probe ylinder through the density maximum

(right olumn). The ylinder axis is aligned parallel to the x-axis. The ram

pressure is based on the relative veloities in respet to the density maximum.
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Figure 5.24: Total veloity dispersion �

tot

(left olumn), veloity dispersion of the

tangential veloity omponents �

tan

(middle olumn) and the resulting ram pres-

sure p

ram

along a 2000AU diameter probe ylinder through the density maximum

(right olumn). The ylinder axis is aligned parallel to the y-axis. The ram

pressure is based on the relative veloities in respet to the density maximum.
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Figure 5.25: Total veloity dispersion �

tot

(left olumn), veloity dispersion of the

tangential veloity omponents �

tan

(middle olumn) and the resulting ram pres-

sure p

ram

along a 2000AU diameter probe ylinder through the density maximum

(right olumn). The ylinder axis is aligned parallel to the z-axis. The ram pres-

sure is based on the the relative veloities in respet to the density maximum.
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5.4 Veloity dispersion

The veloity dispersion is de�ned as the standard deviation around the mean veloity hvi:

� =

q

hv

2

i � hvi

2

(5.14)

In nature it is the the veloity dispersion of the individual gas moleules whih auses the

observed line broadening. As a result an observer always get an superposition of thermal line

width and turbulent line width.

The kineti energy stored in turbulent motions deays as a power law of the form

E

kin

= E

0

� t

�

(5.15)

where � is shown to be in the range of � = �1:3 : : : � 1:6 (Ma Low et al. (1998b), Stone

et al. (1998), Smith et al. (2000), Pavlovski et al. (2002)) and E

0

is the amount of kineti

energy at the initialization of the run. The dissipation timesale for turbulene is of the order

of a wave rossing time. In the ase of non supersoni motions it is in the same order as the

free fall time and sales as �

�1=2

.

The onset of the isothermal ollapse phase depends on the temperature, the density dis-

tribution and the amount of turbulent energy. The ore need not to ollapse exatly at

M=0.7 as predited by the extended Jeans riteria (setion 4.3) beause there we have im-

pliitly assumed that matter is equally distributed. This is indeed not the ase at the onset of

the isothermal ollapse phase. If there is by hane a single strong ondensation, then it will

ollapse, even though the Mah number M(t) still exeeds our ritial value of M

rit

= 0:7.

If there are lots of small sale ondensations, then the ollapse is delayed longer. In the

entral regions of prestellar ores (as far as they an be resolved) the turbulent line widths

seem to be onstant and in the order of � = 0:7

s

(Goodman et al. (1998)). To ompare

this observational result with our simulations we alulated the veloity dispersion in shells

of radius r around the density maximum. The exemplary result for run425 is given in �gure

5.26. Shown is the veloity dispersion as a funtion of the distane r from the density maxi-

mum at t=100000 yrs (upper panel), t=150000 yrs (middle panel) and t=175000 yrs (lower

panel) after the initialization. For r > 0:01 p � stays roughly onstant around a value

of 0:6 : : : 0:7 

s

= 0:1 : : : 0:13 km=s whih is in good agreement with observations (Goodman

et al. (1998)). At the enter � drops down. At this point it is not lear if its a real or an

arti�ial e�et beause one expets � to drop down signi�antly when the size of the shells

reah the size sale of the SPH partiles' smoothing length. The mean smoothing length at

the initialization of our runs is h

0

' 0:003 p. The smoothing length sales as h � �

�1=3

.

Before the isothermal ollapse phase sets in density ontrasts range from 10:1 ... 50:1 resulting

in a smoothing length of the order of 0:001 p. A blind test has shown that for � = �

0

results

for r � 0:003 p are signi�antly a�eted by the smoothing. We an onlude that the drop in

� in the range 0:003 < r < 0:01 km=s (middle and lower panel of �gure 5.26) is real. This is

onsistent with the fat that turbulent motions are dissipated �rst in the densest regions. On

the other hand the overall ontration inrease the veloity dispersion. This e�et beomes

important espeially during the rapid ollapse phase and is most prominent in the innermost

parts of the ore.
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Figure 5.26: Veloity dispersion in shells around the density maximum (run425)

at t=100000 yrs (upper panel), t=150000 yrs (middle panel) and t=175000 yrs

(lower panel) after the initialization. The horizontal line at � = 0:75 

s

gives a

typial observational value for the innermost parts of prestellar ores.



Chapter 6

Collapse Calulations

6.1 The Opaity Limit

When a moleular loud ore begins to ollapse from densities � 2 � 10

�19

g=m

3

the gravi-

tational potential energy that is released an easily be radiated away so that the ollapsing

gas is approximately isothermal (e.g.Larson (1969)). Thus, the thermal pressure varies with

density � as p / �

�

with the polytropi exponent

� � d log(p)=d log(�) � 1 (6.1)

This allows subsequent fragmentation beause the Jeans mass dereases with inreasing den-

sity as long as � < 4=3.

The opaity limit for fragmentation ours when the timesale on whih energy is released

by the ollapse exeeds the one at whih energy is radiated away (Rees (1976); Low and

Lynden-Bell (1976); Masunaga and Inutsuka (1999)). The gas then heats up with � > 4=3

and the Jeans mass inreases. As a result, a Jeans unstable ollapsing lump transforms into

a Jeans stable one and a pressure supported fragment is formed. The density at whih this

ours depends on the opaity of the gas, hene the term 'opaity limit for fragmentation' and

on the geometrial struture and size of the fragments. Via the opaity there are introdued

further dependenies like the initial temperature and the gas to dust mass ratio (Masunaga

and Inutsuka (1999)). For moleular gas at an initial temperature of about 10 K a typial

sized fragment begins to heat signi�antly at a density of � � 10

�13

g=m

3

(Larson (1969);

Masunaga and Inutsuka (2000)).

A fragment reahing the opaity limit beomes pressure supported and initially ontains

several Jupiter-masses (M

J

). It's size sale is � 5AU (Larson (1969)). This results from a

Jeans analysis for the gas density at the opaity limit. Beause the fragment is embedded

in a ollapsing envelope it is expeted to grow further in mass and density. The fragment

transforms into a optially thik hydrostati ore and as a diret onsequene the entral

temperature inreases. When its entral temperature reahes 2000 K, moleular hydrogen

begins to dissoiate. This provides a way to release gravitational energy without signi�antly

inreasing the temperature of the gas. Even though the temperature is roughly onstant

additional pressure emerges from the fat that the number of gas partiles is inreased. As

a result, a seond ollapse ours within the fragment (with a polytropi index of � = 1:15)

that ultimately results in the formation of a stellar ore with radius of approximately 1R

�

Larson (1969).

87
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Several studies have investigated the possibility of fragmentation during this seond ollapse

(Boss (1989); Bonnell and Bate (1994b); Bate (1998b)). Boss (1989) found that fragmentation

was possible during this seond ollapse, but that the objets spiraled together and merged

due to gravitational torques from a non-axisymmetri struture. Bate (1998b) performed

the �rst three-dimensional alulations to follow up the entire ollapse evolution starting

from a moleular loud ore through fragmentation, the formation of the pressure supported

fragment, the seond ollapse phase, and the formation of the stellar ore and its surrounding

dis. In these alulations he found that the seond ollapse is not a regime of further sub-

fragmentation.

The existene of the opaity limit suppresses the fragmentation proess if the density exeeds

� 10

�13

g=m

3

. This results in a a minimum `stellar' mass of � 10 Jupiter-masses (M

J

)

(Low and Lynden-Bell 1976; Silk 1977a, Boss 1988) and a minimum protobinary separation

separation of � 10AU due to the sizes of the pressure-supported fragments. The exat value

of the minimum mass is unertain with theoretial values ranging from 1 � 10M

J

(Low and

Lynden-Bell 1976; Silk 1977a; Boss 1988; Masunaga and Inutsuka 1999; Boss 2001). Surveys

of young star lusters are beginning to probe masses down to this theoretial minimum mass

(Zapatero Osorio et al. 1999; Luas and Rohe 2000; B�ejar et al. 2001; Mart

�

in et al. 2001b;

Luas et al. 2001), with the masses of some objets estimated to be as low as 3M

J

(Zapatero

Osorio et al. 2002a; MCaughrean 2003). Up to now observational unertainties are too large

so that the predited uto� in the mass funtion is still no deteted.

6.2 Variable Equation of State

To model the opaity limit (see setion 3.5.3) without taking into aount radiative transfer

, we use a variable equation of state for the thermal pressure of the gas:

p = K�

�

(6.2)

The value of K is de�ned suh that when the gas is isothermal K = 

2

s

. The resulting sound

speed is then 

s

= 1:84 � 10

4

m=s. The value of the polytropi exponent �, is varied with

density:

� =

(

1; � � 10

�13

g m

�3

;

1:4; � > 10

�13

g m

�3

:

(6.3)

Note, that the funtion p(�) is still ontinuous in spite of the abrupt hange in � .

This equation of state has been hosen to math losely the relationship between temperature

and density during the spherially-symmetri ollapse of moleular loud ores as alulated

with frequeny-dependent radiative transfer (Masunaga, Miyama, & Inutsuka 1998; Masunaga

& Inutsuka 2000). A omparison of our simple parameterization with Masunaga and Inut-

suka's temperature-density relation is given in �gure 3.1. Our parameterization reprodues the

temperature-density relation to an auray of better than 20% in the non-isothermal regime

up to densities of 10

�8

g=m

3

. Test alulations of the spherially-symmetri ollapse of a

moleular loud ore using this equation of state have been performed (Bate 1998, 2002) and

give exellent agreement with the results of Larson (1969) and Winkler Newman (1980a,b) for

the mass and size of the pressure-supported fragment that forms. Thus, our equation of state

should model ollapsing regions well, but may not model the equation of state in protostellar

diss partiularly aurately due to the departure from spherial symmetry.
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6.3 Sink Partiles

The opaity limit for fragmentation results in a hange of the pressure support of the frag-

ments. Further fragmentation is suppressed and an aretion proess sets in inreasing the

total mass and the entral density of a fragment. At this stage it beomes omputationally

impratial and very time onsuming to follow up the internal evolution. This is due to the

short dynamial time-sales in the high density opaque regions. In addition, these regions

(due to the adiabati heating) evolve into roughly spherial objets with no interesting sub-

struture worth to be resolved. Therefore, when the entral density of a pressure supported

fragment exeeds �

s

= 10

�11

g=m

3

, we insert a sink partile into the alulation (Bate et al.

(1995)). More tehnially a sink partile is reated if the density threshold is exeeded by at

least 50 SPH partiles. It is plaed at the position of the densest gas partile of the pressure-

supported fragment. It swallows all SPH partiles ontained within r

a

= 14AU around it

and adopts their mass and momentum. Any gas that later falls within this radius is areted

by the point mass if it is bound and its spei� angular momentum is less than that required

to form a irular orbit at radius r

a

from the sink partile. Thus, gaseous diss around sink

partiles an only be resolved if they have radii of at least � 20AU. Sink partiles interat

with the gas only via gravity and aretion.

Sine all sink partiles are reated from pressure-supported fragments, their initial masses are

� 10M

J

, as given by the opaity limit for fragmentation (setion 6.1). Subsequently, they

may arete large amounts of material to beome higher-mass brown dwarfs (m � 75M

J

)

or stars (m � 75M

J

), but all the stars and brown dwarfs begin as these low-mass pressure-

supported fragments. Sink partiles are not permitted to merge in this alulation.

The high density ontrasts ourring in our simulations result in a wide range of integration

timesteps for the individual SPH partiles. If a large fration of the SPH partiles are au-

mulated in high density regions the global integration speed breaks down. This is the ase

when hydrostati ores start to form. But the hydrostati ores are not expeted to host

interesting substruture due to their pressure supported nature and are in this sense 'boring,

roughly spherial objets' not worth to be resolved in detail. Therefore, the reation of sink

partiles is a skillful method to avoid the extremely time onsuming alulation of the detailed

dynamis in the hydrostati ores.

This is not without an element of risk. If it were possible to follow the fragments all the

way to stellar densities (as done by Bate 1998) while ontinuing to follow the evolution of the

large-sale loud over its dynamial time-sale, we might �nd that a few of the objets that we

replae with sink partiles merge together or are disrupted by dynamial interations. We have

tried to minimize the degree to whih this might our by insisting that the entral density of

the pressure-supported fragments is at least two orders of magnitude higher than the opaity

limit before a sink partile is reated. This ensures that the fragment is adiabatially heated

up to 60K, self-gravitating, entrally-ondensed and roughly spherial before it is replaed

by a sink partile. Furthermore, eah pressure-supported fragment must undergo a period of

aretion before its entral density exeeds �

s

and it is replaed by a sink partile. In prinipal

there is the possibility for a very �lamentary ollapsing fragment to exeed this density over

a large distane, thus making the reation of one or more sink partiles ambiguous. However,

the struture of the ollapsing fragments resulting from our turbulent initial ondition does

not evolve into long, roughly uniform-density �laments with � � �

s

.
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6.4 Resolution

The loal Jeans mass must be resolved throughout the alulation to model fragmentation

orretly (Bate & Burkert 1997; Truelove et al. 1997; Whitworth 1998; Boss et al. 2000). Bate

and Burkert (1997) found that this requires at least � 2N

neigh

SPH partiles per Jeans mass.

Bate found in more detailed tests with alulations using di�erent numbers of partiles that

1:5N

neigh

= 75 partiles are also suÆient to resolve the loal Jeans mass, see setion 3.4.2

The minimum Jeans mass in our alulations ours at the maximum density during the

isothermal ollapse phase (� = 10

�13

g=m

3

), and is M

Jeans;min

� 0:003M

�

. Thus 0:75� 10

5

partiles are needed to model the ollapse of 3M

�

prestellar ores down to the opaity limit.

6.5 Ensemble Runs

We have performed an ensemble of 22 independent ollapse simulations. Besides the struture

of the initial veloity �eld the setup onditions are idential for all runs:

geometry homogeneous density sphere

mass m = 3M

�

size R = 0:0616 p

density 2:1� 10

�19

g=m

3

(5:3 � 10

4

1=m

3

)

mean moleular weight � = 2:36 g=mol

temperature T = 10K

initial Mah number M

0

= 2:0

The veloities of the SPH partiles are generated by the method of Gaussian Random Fields

as desribed in detail in hapter 4.3.2. A power spetrum P (k) � k

�4

is used whih is onsis-

tent with most of the observed line width-size relations, see setion 4.3.1. The largest mode

has the same size as the setup spheres' diameter (k

min

= 1). The smalest resolvable mode for

the veloity utuations is 1=21 of the spheres' diameter (k

max

= 21).

Due to the individual density strutures and ows the time of the �rst formation of a sink

partile varies signi�antly. The earliest formation takes plae 1:16 t

�

(run595), the latest

one 1:84 t

�

. The following table gives a summary of all 22 runs. Shown is the time step at

whih the �rst sink partile is formed (seond olumn), the �nal time step of the alulation

(third olumn), how many sink partiles where reated up to the end of the alulation

(fourth olumn) and the total amound of mass areted by all sink partiles at the end of the

alulation (�fth olumn). One free fall time orresponds to 31 timesteps.
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run �rst last �nal number of areted mass

sink partile timestep sink partiles

run310 37 150 13 2.45 (81.6%)

run315 57 103 9 1.56 (52.1%)

run320 49 56 9 1.11 (36.9%)

run325 35 454 9 1.58 (52.8%)

run360 42 137 8 2.24 (74.6%)

run365 50 467 15 1.77 (58.9%)

run370 39 70 9 1.59 (53.1%)

run375 40 191 9 1.96 (65.3%)

run410 40 96 1 1.87 (62.5%)

run415 40 301 12 2.32 (77.3%)

run420 39 54 7 1.47 (49.0%)

run425 38 65 11 1.73 (57.8%)

run475 48 99 9 2.27 (75.8%)

run510 38 177 18 1.82 (60.8%)

run580 37 67 10 1.73 (57.6%)

run585 37 78 11 1.61 (53.7%)

run590 49 72 3 1.29 (43.0%)

run595 36 66 10 1.29 (43.0%)

run610 51 64 9 2.00 (66.8%)

run615 34 42 1 1.60 (53.4%)

run620 36 44 10 1.66 (55.4%)

run625 44 51 1 0.43 (14.3%)

As expeted due to the large fration of binary and multiple systems seen in observations

there is a large satter in the number of objets reated from the individual prestellar ores

of our simulations. It omes out, that there are two distint formation mehanisms forming

primarily stars respetive brown dwarfs:

� The formation of objets diretly from ollapsing fragments ontrating beyond the

opaity limit. In our simulations these objets nearly always exeed the hydrogen burn-

ing limit and beome stars. The mean mass of these stars is 0:47M

�

.

� The formation of objets from a massive aretion disk as it evolves into an instability.

These objets are on average signi�antly smaller in mass than the ones formed diretly

from fragments. About 60 perent of these objets do not exeed the hydrogen burning

limit. So that we an predit that this formation senario is typial for the formation

of brown dwarfs. The mean mass of the objets formed by this mehanism is 0:1M

�

.

The most simple example for the �rst formation mehanism is the reation of a single star.

This is shown in �gure 6.1. In run410 (upper panel) a single star aretes mass from a

stable disk. The aretion phase has been followed over one free fall time (150000 yrs). The

single objet is formed 200000 yrs after the initialization. During the �rst 50000 yrs after

its reation it aretes rapidly about 80 perent of its �nal mass. Later on the gas reservoir

beomes exhausted and the aretion rate dereases. One should keep in mind, that our
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simulations do not take into aount feedbak mehanisms like outows and heating of the

surrounding disk and envelope. So that our aretion rates and �nal masses have to be

interpreted as upper limits. In our ensemble the �rst senario is dominated by the formation

of single stars. However, the majority of objets formed by this senario is initially in binary

or multiple systems. The following table shows the number of stars formed diretly from

ollapsing fragments:

one single star 12 runs

two stars 6 runs 4 binaries

2 unbound systems

multiple systems 4 runs

If two objets are formed by ollapsing fragments they are often lose together in spae and

time. In this ase the seond omponent forms not more than 5000 years after the �rst one.

Figure (6.3) shows a ompetitive areting binary system. Over 70000 yrs the binary system

is not perturbed by formation of other objets or interation with other objets. In this ase

the orbital parameters onverging towards an elliptial orbit with a semi-mayor axis of 21AU

and an eentriity of 0.64. During the �rst 20000 yrs the stars migrate together and their

orbit is irularized. Aretion rates are in the order of 10

�5

M

�

=yr, see �gure (6.3). Later on

the inward migration stops and the orbital parameters are roughly onstant besides a slowly

inreasing eentriity. During the whole aretion phase the binary masses are equalized

(lower panel of �gure 6.3). At the end of the alulation the aretion rate has deayed down

to 5�10

�7

M

�

=yr. The total areted mass end up with 1:05M

�

and a mass ratio of 1.5. The

period has onverged against 120 yrs whih is typial for binaries and just at the maximum

of the observed period distribution (Duquennoy and Mayor (1991)).

A more typial star formation senario of our ensemble is shown in �gure 6.5. It onsists

of both, the formation of one or more objets from ollapsing fragments and the subsequent

formation of objets from an unstable massive aretion disk. About 2500 yrs before the disk

instability ours the aretion rate starts to inrease again reahing values of 10

�4

M

�

=yr.

One the small objets have formed in the disk the aretion on the massive objet dereases

signi�antly and is omparable to the aretion rates of the other new born objets in the

disk. Two of the disk born objets are ejeted out of the dense gas regions soon after there

reation and do not arete any more.
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Figure 6.1: Two example runs showing an extended alm aretion phase after the

reation of a single sink partile. Plotted is the mass areted by the sink partile

in units of M

�

as a funtion of time. The dashed horizontal marks the hydrogen

burning limit of 0:08M

�

. Objets above the dashed line are stars, objets below

are brown dwarfs. The time axis is saled in ode units: 0:31CU = t

ff

= 150000 yrs.
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Figure 6.2: Logarithmi density distribution (olor oded) for a stable irumstellar

disk (run410) from 200000 yrs (upper left) to 225000 yrs (lower right) after the

initialization (upper left) in steps of 5000 yrs. Densities range from 0.3 resp.

2 � 10

�20

g=m

3

(blak) to 2:5 � 10

7

resp. 1:6 � 10

�12

g=m

3

(white). Size sales are

given in units of 0:1 p.

.
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Figure 6.3: Competitive aretion in a binary system (upper panel), distane of

the binary objets (middle panel) and the mass ratio of the objets (lower panel).

The time axis is saled in ode units: t

�

= 0:31CU = 150000 yrs.
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Figure 6.4: Logarithmi density distribution (olor oded) of a irumbinary disk

(run510) 200000 yrs (upper left) to 225000 yrs (lower right) after the initialization

in steps of 5000 yrs. The binary is loated in the low density hole at the disk's

enter. Densities range from 0.3 resp. 2 � 10

�20

g=m

3

(blak) to 2:5 � 10

7

resp.

1:6� 10

�12

g=m

3

(white). Size sales are given in units of 0:1 p.
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Figure 6.5: Fast aretion of a single objet from a massive disk. A disk instability

ours at t = 0:51 resulting in a star formation burst 10000 yrs after the formation

of the �rst stellar objet. The time axis is saled in ode units: 0:31CU = t

ff

=

150000 yrs.
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Figure 6.6: Logarithmi density distribution (olor oded) for an irumstellar disk

evolving into an instability whih results in the reation of 4 low mass stars and

4 brown dwarfs. The time sequene range from 200000 yrs (upper left) to 225000

yrs (lower right) after the initialization in steps of 5000 yrs. Densities range from

0.3 resp. 2 � 10

�20

g=m

3

(blak) to 2:5 � 10

7

resp. 1:6 � 10

�12

g=m

3

(white). Size

sales are given in units of 0:1 p.

.
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6.6 Binary Stars

The majority of stars are binary or multiple systems, but yet multiple star formation is only

partly understood. Multiple star formation is a fundamental feature of the star formation

proess itself. Duquennoy and Mayor (1991) have presented a survey with all known F7-G9

stars within a 22 p sphere around the sun. This survey provides a relatively unbiased sample

of main-sequene stars.

� Frequeny: In the sample of Duquennoy and Mayor (1991) the ratio of the number of

single:binary:triple:quadruple systems is 57:38:4:1. That applies for ompanions with

a mass ratio q = M

2

=M

1

> 0:1. This means that only about 40 perent of the stars

are single stars. The binary frequeny among pre-main-sequene stars is about twie as

large as for the main-sequene stars of the Duquennoy and Mayor (1991) sample.

� Period Distribution The period distribution of the sample of Duquennoy and Mayor

(1991) is Gaussian like as a funtion of logP with a median of P � 6 � 10

4

days. The

periods range from less than a day to 10

9

days. Multiple systems are ordered hierarhi-

ally. Short period systems are part of larger long period system et. Mathieu (1994)

showed the periods to be similar distributed for pre-main-sequene stars.

� Mass Ratios: The Duquennoy and Mayor (1991) sample shows a Gaussian distribution

of the mass ratios with a maximum at q = 0:23. A similar distribution was found by a

survey of �eld stars Kroupa et al. (1990).

� Orbital Eentriities: Binaries with periods P < 11 days have irular orbits. Orbits

with periods 10 < P < 1000 days show eentriities essentially below e = 0:6. Orbits

with periods P > 1000 days eentriities are sattered between e � 0:1 and e � 0:9.

These results are taken again from the Duquennoy and Mayor (1991) sample. A sample

of pre-main-sequene stars Mathieu (1994) shows that the eentriity distribution (as a

funtion of P ) is similar to that of main-sequene stars exept for short periods. Cirular

orbits are only seen for periods below P = 5days.
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6.6.1 Formation Theories for Binary Systems

There are essentially four general models for the formation of binary star systems.

� Caption: The mehanism of aption was suggested for the �rst time by Stoney (see

Aitken 1935). Two independently formed and initially unbound stars form a binary

system due to some dissipative proess e.g. tidal dissipation during a lose enounter.

Another possibility is the formation of a binary system in the presene of a third objet

whih absorbs the exess energy.

� Fission: Binary formation by �ssion ours when a hydrostati ore or protostar

during its quasi-stati ontration phase run into an rotational instability and disrupts

into two distint objets. In suh a proess spin angular momentum is onverted into

orbital angular momentum. If this proess will our after the seond ollapse phase

it will be a soure of lose binaries. There are numerous objetions against this theory

(e.g. Tassoul (1978), Bodenheimer et al. 1993). Numerial simulations do not show

binary formation by this proess.

� Fragmentation during Protostellar Collapse: Originally proposed by Hoyle (1953) frag-

mentation during the protostellar ollapse phase an produe binaries with a wide range

of periods. The fragmentation mehanism was tested in a large number of numerial

simulation. A wide variety of initial onditions has been employed.

� Disk Fragmentation Disk fragmentation an our in an equilibrium irumstellar disk

if the minimum value for the Toomre Parameter Q approahes 1.

In our ensemble we have found 17 binary stars and 6 hierarhial triple systems onsisting

of a lose binary system with distant ompanion star. Two of the binary systems are brown

dwarf binaries. The following table gives a summary of all bound objets found in our sample.
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run major minor major minor period

omponent [M

�

℄ ompanion [M

�

℄ axis[AU℄ axis [AU℄ [yrs℄

run310

run315 m

1

= 0:4122 m

2

= 0:1790 29 14 70.53 p

m

1

+m

2

= 0:5910 m

0

= 0:5798 295 260 2978 p

run320 m

0

= 0:4209 m

1

= 0:1733 25 10 78 im

run325 m

0

= 0:7270 m

2

= 0:2624 66 37 256.5 p

m

1

= 0:1748 m

6

= 0:1016 1540 30 26450 v

m

0

+m

2

= 0:9894 m

5

= 0:05364 1100 800 19749 v

run360

run365 m

11

= 0:2444 m

13

= 0:1007 80 10 352.7 p

m

0

= 0:4606 m

1

= 0:1277 550...1200 25...30 4702...14106 o

run370 m

0

= 0:6373 m

1

= 0:2064 29...38 6...12 56.4...78.4 v

m

0

= 0:6373 m

2

= 0:2195 41 17 110 p

m

0

+m

2

= 0:8567 m

1

= 0:2064 400...600 100 2821 d

run375 m

0

= 0:4819 m

1

= 0:3424 49 17 145.5 d

m

0

+m

1

= 0:8243 m

5

= 0:3770 400...600 175 3582 i

run410

run415 m

4

= 0:1440 m

7

= 0:0654 550...800 10...15 8041...11400 v

run420 m

0

= 0:8324 m

1

= 0:3067 33...35 11...15 70 p

run425 m

0

= 0:6922 m

2

= 0:1978 28...30 10...12 65 v

m

1

= 0:2572 m

5

= 0:4307 120...150 8...15 562 d

m

0

+m

2

= 0:89 m

5

= 0:4307 270...325 80...105 1840 v

run475 m

8

= 0:6812 m

12

= 0:2441 19...23 8...10 437 i

m

0

= 0:3276 m

2

= 0:0933 170...200 8...10 1051 i

run510 m

0

= 0:6220 m

1

= 0:4245 42 15 120 p

run580

run585 m

3

= 0:3106 m

1

= 0:2003 105...125 15...45 526 v

m

7

= 0:2424 m

6

= 0:2330 128...135 30...40 728 i

run590

run595 m

3

= 0:07824 m

7

= 0:03248 95 35 111 i

m

6

= 0:0342 m

8

= 0:0271 950 100 35477 p

run610 m

0

= 0:6133 m

1

= 0:4136 63...70 20...45 208 v

m

6

= 0:0884 m

7

= 0:0514 15...25 5...10 368 

run615

run620 m

2

= 0:2144 m

1

= 0:1094 20...24 10...17 195 mt,

m

0

= 0:409 m

1

+m

2

= 0:3238 130...170 80...90 1242 mt,

run625

The small letters behind the period numbers indiate the evolutionary harater of the orbit:

(p)=periodi ; ()=haoti ; (i)=inward migration ; (o)=outward migration ; (d)=deaying

orbit ; (im)=intermiteny=binary jumps between periodi and haoti epohs
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6.6.2 Period Distribution

The period distribution resulting from our ensemble alulations is onsistent with distribu-

tions measured among solar type stars ( e.g. Duquennoy and Mayor (1991)). If one looks at

the distribution for the pre-main sequene stars (�gure 6.8) the onordane is even better

exept for periods < 10

3

days.

On the low end of the period distribution we are restrited by the aretion radii of our

sink partiles. This introdues a minimum initial distane for the binaries of 2r

a

= 28AU.

If we assume an initial mass for both objets of 0:25M

�

we get a lower limit of 200 yrs for

the initial period. On the other hand there is a minimum size for fragments at the opaity

limit of about 10AU. This introdues a physial minimum initial distane of roughly 20AU.

This is niely on�rmed by high resolution simulations of Bate et al. (2002b) and referenes

there. One reated sink partiles are able to migrate together whih is a ommon senario

during the aretion phase so that we �nd about 30% of the periods to be below 200 yrs at

the end of the alulation. Nevertheless we have to keep in mind that we an't expet orret

number ounts for the period distribution far below 100 yrs beause the aretion disks are

not resolved beyond 20AU. On the high end of the period distribution we are naturally

restrited by the size of our simulation area. We an't expet a binary system to be reated

with an initial distane of more than 0:06 p. This results in period of the order of 10

8

days.

But this restrition also holds in nature beause stellar objets an only form inside prestellar

ores and these have sizes in the order of our simulation area. Even though our sink parti-

les are not restrited to the simulation area of the SPH partiles and a signi�ant part has

left this area at the end of the alulation the longest period we found in our alulations is

1:3� 10

7

days.
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Figure 6.7: Period distribution for 17 binary and 6 hierarhial triple systems

(ounted double) resulting from our ensemble alulation. The maximum �ts

well the period distribution of solar neigbourhood stars, ompare with �gure 6.8
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Figure 6.8: Comparison of the period distributions of Main Sequene stars (grey),

Pre-Main-Sequene stars (blue) and lass 0 binary objets observed in submm

(red and yellow dots). The �gure was provided by Ralf Launhardt.
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6.6.3 Eentriities

Observations show that main-sequene binaries with periods P < 11 days have irular orbits.

In the period range 10 < P < 1000 days eentriities are measured to be below e = 0:6 and

there is a signi�ant orrelation between revolution period and eentriity. For orbits with

periods P > 1000 days eentriities are independent of P and sattered between e � 0:1 and

e � 0:9 (Duquennoy and Mayor (1991)).

In samples of pre-main-sequene binaries eentriities tend to be larger ompared to main-

sequene samples for periods P < 1000 days . In partiular the period range in whih orbits

are found to be irular is muh smaller and extends not beyond P = 5days (Mathieu (1994)).

The fat that old binary systems have statistially more irular orbits than young systems

an be explained by tidal interations. In the ourse of time rotational angular momentum of

the stars is transfered to the orbital angular momentum resulting in a irularisation of the

orresponding orbits.

The amount of transfered angular momentum per time depends on the strength of the tidal

interation, the rotation periods of the stars and the period of revolution. The timsale on

whih orbits are irularized is shortest for lose binaries beause of strong tidal interations

and short revolution periods. For periods beyond 10

5

days respetive distanes d > 50AU the

e�et of irularization is not seen any more in the sample of Duquennoy and Mayor (1991)

(�gure 6.9 , lower panel). For this systems the timesale for irularisation is in the order

of 5 � 10

9

yrs or more and/or the amount of rotational angular momentum of the stars is

insuÆient to irularize the stellar orbits signi�antly.

In our ensemble eentriities beome independent of the revolution period for periods P >

1000 days. As expeted we don't �nd ompletely irularised orbits beause the shortest pe-

riod of our sample (P = 70days) is far beyond the regime where orbits are expeted to be

irularized.
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Figure 6.9: Comparison of the Eentriity Distribution resulting from our ensem-

ble runs with the Eentriity Distribution of solar neigbourhood stars, taken

from Duquennoy and Mayor (1991)
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Figure 6.10: Comparison of the Eentriity-Period relation resulting from our

ensemble runs (upper panel) with the Eentriity-Period relation of solar neig-

bourhood stars (lower panel), taken from Duquennoy and Mayor (1991). Crosses

and blak disks are binary systems, triangles are triple systems and Squares are

quadruple systems. Note the di�erent ranges on the horizontal axis. Due to our

resolution limits we have no binary periods below 100 days.
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6.7 Brown Dwarfs

The existene of brown dwarfs was onviningly demonstrated the �rst time in 1995 by the

disovery of Gliese 229 whih is the ompanion of a M dwarf star (Nakajima et al. (1995).

Later on also free oating and binary brown dwarf were observed (Rebolo et al. (1995)). More

urrent observations tend to show that brown dwarfs are as ommon as stars even though

their mass fration is very low ompared to the stars (Reid et al. (1999). Muh more diÆult

is the estimation of the binary frequeny among brown dwarfs. Reid et al. (2001) found

that about 20 perent of the brown dwarf primaries have a ompanion star in a sample of

20 objets. None of these binary systems have projeted separations of more than 10AU.

One should keep in mind that this sample is magnitude-limited rather than volume-limited.

Therefore its likely that the binary fration is overestimated.

Brown dwarfs form in high ondensed gas regions as normal stars. But they are ejeted out of

the dens region before they have areted enough mass to beome stars. Or the dens gas region

itself is disrupted by an interation or instability. In our ensemble 80 perent of the brown

dwarfs form in gravitationally unstable irumstellar disks and 20 perent form diretly in

ollapsing fragments in good agreement with results from Bate et al. (2002a). Disks have been

shown to beome unstable due to rapid aretion(Bonnell (1994), Bonnell and Bate (1994a),

Whitworth et al. (1995), Burkert et al. (1997)) and/or tidal perturbations or interation in the

ase of stellar enounters (BoÆn et al. (1998), Watkins et al. (1998b), Watkins et al. (1998a)).

Our simulations learly show that an dynamially unstable multi objet environment is an

essential ondition for the formation of brown dwarfs. All 63 substellar objets resulting from

our ensemble alulation have formed in suh haoti multi systems. This is not surprising

beause this instability avoids eÆiently an extended stable aretion phase whih is neessary

for the formation of stellar mass objets.
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6.8 The Initial Mass Funtion (IMF)

The initial stellar mass funtion (IMF) is one of the most important features of the star

formation proess. A detailed knowledge about this distribution of the resulting stellar masses

is a neessary ingredient for understanding many proesses involved in star formation. It is

ontrolled by the struture and turbulent dynami of the interstellar medium, the feedbak

of new born stars itself and the hemial evolution of the galaxy a whole. Unfortunately,

the urrent theory of star formation remains unable to derive the IMF from �rst priniples.

Beause the formation of stars is a highly haoti and indeterministi proess it is very

unlikely that an analytial formula for the IMF exists. Realisti models need to be found in

the framework of a probabilisti theory of the star formation proess.

6.8.1 The Observed Initial Mass Funtion

Gravitationally bound gas spheres as onsidered to be stars in a lassial sense exist only

in a �nite mass range. Objets with masses less than 0:08M

�

annot produe the entral

temperature and density onditions needed for the fusion of hydrogen. These objets are

alled Brown Dwarfs. A sub fration of these objets with masses m > 0:013M

�

is able to

burn deuterium for a short time. For an objet exeeding the hydrogen burning limit the

luminosity inreases rapidly with its mass:

L � m

a

(6.4)

where L is the luminosity of the star, m its mass and the exponent a ranges from 3 : : : 3:5.

Due to the inreasing radiation pressure stars with masses greater than about 100M

�

are

unstable (Howarth (1994)). Hene, stars are on�ned to the mass range

0:08M

�

< m < 100M

�

(6.5)

The �rst trial to determine the IMF was done by Salpeter (1955). He showed that the number

f(m) of stars in the mass range m to m+ dm an be approximated by a power-law relation

f(m)dm � m

��

dm (6.6)

with the index � � 2:35 for stars in the mass range 0:4M

�

< m < 10M

�

. However, the

approximation of the IMF with one single power-law was over simpli�ed. Miller and Salo

(1979) found for the �rst time a maximum around m � 0:3M

�

and tried to �t the IMF with

a log-normal distribution:

log

10

f(log

10

m) = A�

1

2(log

10

�)

2

h

log

10

�

m

m

0

�i

2

(6.7)

Their work has been reinvestigated and improved in a variety of aspets by many authors as

desribed in the review of Salo (1998). Negleting the e�ets of binary and multiple systems,

Kroupa et al. (1990) derive the following parameters for the log-normal �t:

m

0

= 0:23

� = 0:42 (6.8)

A = 0:1

(6.9)
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Studies before the mid 1990's have not taken into aount the ontamination of star ounts

by binary and multiple systems. Binary stars are falsely ounted as single stars if they are

not resolved by the telesope.

Lada & Lada 2003 extended their survey into the brown dwarf regime down to masses of

m � 0:01M

�

and found a seond peak in the IMF around m = 0:02M

�

(�gure 6.11).

In most of our ensemble runs we evolved the system about 150000 yrs (roughly one free

fall time) beyond the formation of the �rst stellar objet respetive the �rst sink partile. In

this time 50 : : : 60 perent of the total mass has been areted onto the sink partiles. After

this epoh the aretion rate signi�antly fades away and the loal mass distribution beomes

dominated by the sink partiles. In total our 22 ollapsing prestellar ores form 127 sink

partiles. 64 of these objets form stars and 63 do not exeed the hydrogen burning limit

ending up as brown dwarfs. 52 objets are bound in binary or multiple systems while only

7 of these bound objets are brown dwarfs. We �nd a bimodal initial mass distribution with

maxima at m � 0:03M

�

and m � 0:3M

�

(�gure 6.11). The two maxima are the diret

onsequene of the fat that objets are formed by two distint mehanisms:

� The formation of objets diretly from ollapsing fragments ontrating beyond the

opaity limit. In our simulations these objets nearly always form stars. The mean

mass of these objets is 0:47M

�

.

� The formation of objets from a massive aretion disk evolving into an instability.

These objets are on average signi�antly smaller in mass. About 60 perent of these

objets do not exeed the hydrogen burning limit. So that we an predit that this

formation senario is typial for the formation of brown dwarfs. The mean mass of

these objets is 0:1M

�

. In the ensemble simulations presented here the majority of

objets is reated by this mehanism.

The initial mass distributions are plotted separately in , �gure 6.12 for objets resulting

diretly from fragments (upper panel) and for objets resulting from disk fragmentation (lower

panel). It omes out that the median of this two initial mass distributions di�ers about one

order of magnitude in mass.
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Figure 6.11: Upper panel: Initial Mass Funtion (IMF) onsisting of all 127 objets

reated in our ensemble. The low mass end is on the left hand side. Lower panel:

IMF taken from Lada & Lada 2003. Be areful with the horizontal axis - the low

mass end is to the right!
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Figure 6.12: Comparison of the IMF for objets reated diretly from fragments

(upper panel) and objets reated from disk instabilities (lower panel). The

majority of the objets emerging from disk instabilities are brown dwarfs



Chapter 7

Summary and Future Prospets

In this dissertation we disussed the reation of prestellar ores out of turbulent moleu-

lar loud environment, their ollapse and fragmentation down to the reation of protostellar

objets and the subsequent aretion and interation history of these objets. We studied

the interplay between gravity, thermal pressure and turbulene and showed that a turbulent

veloity �eld an be used in an isothermal model of selfgravitating gas to build up objets

whih math many of the observed features of prestellar ores. For the subsequent ollapse

alulations a variable equation of state was used to model the e�ets of radiative transfer,

in partiular the heating of the gas beyond the opaity limit. Hydrostati ores reahing a

threshold density were replaed by sink partiles taking over the gas and its angular momen-

tum and were able to arete gas later on. Within the framework of this model we have

identi�ed two distint formation proesses of hydrostati ores. One results in intermediate

mass stellar objets, the other leads to low mass stars and brown dwarfs. We sumarize our

results in setion 7.1 and, starting from the urrent paradigm, in setion 7.2 we suggest further

steps to deepen our knowledge of the star formation proess.

7.1 Summary

Our simulations show that, in general, the formation of a prestellar ore is extremely omplex

and show a large variety of realizations. The dynamial evolution of a prestellar ore into

ollapse is determined by the interplay between selfgravity, thermal pressure and turbulene.

First, turbulene reates several low mass Jeans stable ondensations. Even though the

ondensations are strongly subritial gravity inuenes signi�antly their evolution. They

are growing essentially in mass but only weakly in density. Initially separated ondensations

merge together. At the end a large massive and Jeans unstable ondensation has formed.

This proess of ontration is signi�antly slower than the isothermal ollapse. In some sense

it is similar to an adiabati ompression. In both ases there is a pressure supported ore like

struture on small sales whih inreases only slowly its density while signi�antly growing in

mass.

� I have developed a method to built up selfonsistent initial onditions for ollapse al-

ulations whih math most of the ommon features of prestellar ores. Unlike in

the ommonly used ase of a symmetri initial ondition, every ore produed by this

method is unique in its shape and veloity struture.

113
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� It was shown that the turbulent veloity �eld at its own is not be able to drive the

system into a superritial state. This means, even if the system is strongly subritial,

gravity inuenes signi�antly the growth of density strutures.

� During the subritial phase, overdense regions grow strongly in mass and size whereas

the density maximum is only weakly enhaned. This explains the extended at inner

part of prestellar ores.

� The ollapse starting from a alm Bonnor-Ebert sphere as often used as an initial on-

dition is very unlikely our in a turbulent moleular loud. However we �nd subritial

Bonnor-Ebert spheres with density ontrasts ranging from 2 to 6 depending on the

initial Mah number but far below the ritial density ontrast of 13:5.

� The seond peak of the initial mass funtion at the low mass end (e.g. Lada and Lada

2003) an be naturally explained by the two distint formation mehanisms for hydro-

stati ores we have found in our simulations. They an form diretly from ollapsing

fragments resulting in predominantly intermediate mass stellar objets or they form

during a disk instability resulting in predominantly low mass stars and brown dwarfs.

The seond mehanism is responsible for the seond peak in the initial mass funtion

around 0:02M

�

� The period distribution of the resulting binary and triple systems oinides well with the

distribution of pre main sequene stars even though we an't resolve the short period

end of the distribution.

� The eentriities of the resulting binary and triple systems are onsistent with the

distribution found in the solar neighbourhood population.

7.2 Outlook

7.2.1 Memory E�ets

Even though our prestellar ores were designed to beome superritial only if the turbulent

pressure drops below some ritial value, there seems to exist a memory of the initial ondition

due to the density strutures built up before. This an be seen e.g. in the di�erent Bonnor-

Ebert sphere density ontrasts whih depend on the initial Mah number M

0

. The history of

the turbulent energy ontent seems to play a role even in the subritial phase. It would be

interesting to analyse how (at the onset of ollapse) the spei� angular momentum and the

density ontrast of prestellar ores are a�eted by the initial amount of turbulent energy and

how the turbulent energy is distributed on di�erent sales.

7.2.2 Introdution of Stellar Feedbak

As disussed extensively in this dissertation, our selfgravitating gas model in ombination

with a variable equation of state and the reation of sink partiles is able to treat the most

dominant physial phenomena of the formation of protostars orretly. However, in the late

stages of aretion, feedbak proesses from the young stellar objets beome important, sine

bipolar outows, stellar winds and radiation �nally will blow away parts of the protostellar
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envelope as the star evolves towards the main sequene. This is an important e�et deter-

mining the star formation eÆieny. Famous and well-studied examples of star formation

regions in whih these e�ets are important are the Trapezium Cluster in Orion (see e.g.

http://antwrp.gsf.nasa.gov/apod/ap030302.html) and the region around the star �-Carinae,

see �gure 1.1. Therefore, to improve the urrent model of the star formation proess feedbak

e�ets and energy input from young stars need to be taken into aount.

7.2.3 Radiative Transfer

At the opaity limit the fragmentation starts to be sensitive to radiative transfer. Our vari-

able equation of state is adjusted to the results of a one dimensional radiative transfer model

(Masunaga and Inutsuka (2000)). But it is questionable if this holds also in three dimen-

sions. In three dimensions the ooling proess will also depend signi�antly on the degree of

fragmentation and the shape of the fragments. Filamentary strutures will ool muh faster

than ompat ones. As a result there will be no unique relation between � and T as it was

assumed in our alulations. So the implementation of a simple blakbody radiative trans-

fer model in the SPH ode would be a great step to hek for the variability of the opaity

limit. The point at whih the ollapsing fragments beome opaque �xes the initial mass of

the hydrostati ores and may also inuene the number of objets whih are reated.
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