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Abstract 
 
During the characterization of lipid-enriched microdomains at the Golgi (GICs) 

(Gkantiragas, I. et al. 2001), a protein with an apparent molecular mass of 17 

kDa was identified. Cloning and preliminary biochemical characterization 

identified a novel protein, GAPR-1, belonging to the superfamily of PR proteins. 

Based on the primary amino acidic sequence of this protein, some potentially 

interesting characteristics were identified. It contains a consensus sequence for 

myristoylation, a putative caveolin-binding domain, a coiled-coil structure, and an 

isolelectric point (pI) of 9.4, suggesting that GAPR-1 is a highly hydrophilic 

protein (Eberle, H. B. et al. 2002).  

In this thesis, this structural information, was used to i) study the interaction of 

GAPR-1 with membranes, ii) to obtain structural information on the protein, and 

iii) to identify proteins that interact with GAPR-1.GAPR-1 was shown to be 

myristoylated and to interact with Caveolin-1. Myristoylation, together with 

protein-protein or electrostatic interactions at physiological pH could explain its 

strong membrane association. The crystal structure of GAPR-1 showed strong 

structural similarities to other plant pathogenesis-related proteins. Substitution of 

the most conserved amino acids in GAPR-1 (His54, Glu65, Glu86 and His103) in 

the putative active center changed the protein behavior in solution. Size 

exclusion chromatography revealed that the major population of GAPR-1 mutant 

migrated as a dimer, whereas GAPR-1 wild type behaves predominantly as a 

monomer. The tendency of GAPR-1 to form dimers was confirmed by crosslink 

experiments and by the yeast two hybrid system. By affinity chromatography, 

GAPR-1 was shown to interact with three proteins: Nucleolin, Template activating 

factor α (TAFIα) and HSAPRIL. In the yeast two hybrid system, the interaction of 

GARP-1 with Nucleolin was confirmed and shown to be dependent on the most 

conserved amino acid residues in GAPR-1. The interaction between GAPR-1 

and Nucleolin may represent a new mechanism of regulation of innate immunity 

in mammalian cells. 

 



 

2 

 Introduction 

Cell membranes are dynamic and fluid structures and their molecules are able 

to move in the plane of the membrane. A membrane provides a two-

dimensional fluid support for proteins as well as a hydrophobic barrier to 

separate compartments. It is believed that a cell or plasma membrane similar 

to those of today's cells defined the boundary of the first cell nearly 4 billion 

years ago. Since then, cells have evolved in such a way that the plasma 

membrane and intracellular membranes now perform many functions: as a 

barrier to keep the contents of the cell together, allowing nutrients to pass in 

but keeping out many harmful substances; as a signaling platform to relay 

information about the surroundings of the cell to the inside and vice versa; as 

a scaffold to provide places where enzymes can be arranged in an assembly-

line fashion; and as a compartmentalizing structure to separate different parts 

of the cell with different functions.   
 

1 Microdomains in biological membranes 
 
Progress in identifying and characterizing the constituents of membrane 

bound compartments has revealed a distinct level of cellular and sub-cellular 

compartmentation. Proteins and lipids are not uniformly distributed in the 

membrane of a given organelle as domains are formed by a combination of 

hierarchical assembly processes and protein and lipid segregation. This 

implies that membranes should not be considered as a random ocean of lipids 

(Singer, S. J. Nicolson, G. L. 1972), but rather the existence of domain 

structures in the bilayer is acknowledged that impose an organization on the 

distribution of proteins. One of the important features of these domains is that 

the composition and physical properties differ from the overall properties of 

the membrane (Brown, D. 2002). Lipid-based structures within the 

membranes have been designated as lipid microdomains or lipid rafts. These 

heterogeneous structures in membranes were postulated by Simons and van 

Meer (1988). The first experimental evidence for the existence of lipid-

enriched microdomains was obtained by the finding that in non-ionic 

detergents (i.e. Triton X-100) in the cold, certain lipids such as cholesterol and 

sphingolipids are detergent-insoluble. In addition, due to the enrichment of 
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lipids, these detergent-insoluble complexes have a low density as observed 

by flotation experiments in 5-30% linear sucrose gradients (Brown, D. A. 

Rose, J. K. 1992). Thus, the term raft refers to a domain in intact membranes, 

whereas the term detergent-resistant membrane (DRM) refers to the structure 

isolated by detergent insolubility. Due to their presence in the DRMs, many 

proteins are believed to be associated with lipid rafts, e.g. GPI-anchored 

proteins, transmembrane proteins, and dual acylated proteins such as 

tyrosine kinases (Src family) (reviewed in Simons, K. Ikonen, E. 1997). A wide 

variety of detergents other than Triton X-100 have been used to isolate low 

density detergent-insoluble membrane fractions, such as NP40, 

octylglucoside, CHAPs, lubrol and Brij96 (Ilangumaran, S. et al. 1999; Roper, 

K. et al. 2000; Bagnat, M. Simons, K. 2002; Drevot, P. et al. 2002). Detergent-

free preparations of lipid microdomains and microdomain preparations in the 

presence of low TX-100 concentrations have also been reported (Song, K. S. 

et al. 1996).  

 
Lipid rafts or lipid-enriched microdomains can be defined as subdomains of 

the plasma membrane, containing high concentrations of cholesterol and 

sphingolipids (sphingomyelin and glycosphingolipids). In these domains, 

cholesterol condenses the packing of sphingolipid molecules by occupying the 

spaces between the saturated chains. Thus, a separate liquid-ordered phase 

(lo) is formed, which is dispersed in the liquid disordered phase (lc), the latter 

representing a freely packed fluid matrix of the membrane (Fig. 1). How the 

exoplasmic arrangement of sphingolipids and cholesterol is linked to the 

underlying cytoplasmic leaflet is currently not known. Lipid rafts incorporate 

distinct classes of proteins (Brown, D. A. London, E. 1998), such as 

glycosylphosphatidylinositol (GPI)-anchored proteins, dual acylated peripheral 

membrane proteins, cholesterol-linked proteins (Caveolin), and selected 

transmembrane proteins (Fig.1). Little is known about the targeting of proteins 

to lipid-enriched microdomains. A number of these proteins containing a 

combination of covalently attached fatty acids (myristate and palmitate) at 

their N-termini (Galbiati, F. et al. 1999b; Melkonian, K. et al. 1999; van’t Hof, 

W. Resh, M. 1997). This suggests that two saturated acyl chain can cause 

partitioning of proteins into lipid microdomains. Other reports show that a 

single prenyl group or myristate group alone can be sufficient to target a 
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protein to lipid microdomains (Song, K. S. et al. 1996). In these cases, N-

terminal acylation, coupled with protein-protein interactions or protein-lipid 

interactions, can cause partitioning of a protein to DRMs (McCabe, J. B. 

Berthiaume, L. G. 2001).  

 
While there is abundant evidence that such microdomains exist and that they 

perform important functions, it has proven very difficult to obtain experimental 

evidence for their existence in vivo, including a description of their properties 

in terms of size, composition and dynamics. As mentioned above, the 

existence of different types of membrane (micro)domains adds to the difficulty 

in understanding their properties. For instance, Caveolae are one type of 

microdomain at the plasma membrane (Fig. 1). They are small (50-70nm in 

diameter) flask-shaped invaginations with an abundant membrane protein, 

Caveolin, associated with their structures (Kurzchalia, T. V. Parton, R. G. 

1999). Caveolae can also be flat within the plane of the membrane, or be 

present as vesicles.  These structures are cholesterol-rich, and when cells are 

treated in the cold with non-ionic detergents (i.e. Triton X-100), caveolae 

resist detergent-solubilization and can be recovered in low-density fractions 

on density gradients. Caveolae are enriched in molecules that play crucial 

roles in intracellular signal transduction. These molecules include the 

heterotrimeric G proteins, receptor tyrosine kinases, components of the MAP 

kinases pathway, and nitric oxide synthase (reviewed in Smart, E. et al. 

1999). As a consequence, caveolae function as preassembled signaling 

complexes or chemical relays for integrating signal transduction. Interestingly, 

caveolae are only a minor fraction within DRMs (Kurzchalia, T. V. Parton, R. 

G. 1999) and the existence of large amounts of non-caveolar 

(glycosphingolipids(GSL)-enriched) domains in the plane of the  membrane 

(Iwabuchi, K. et al. 1998) adds to the complexity of lateral organizations in the 

plasma membrane for complex activities such as signal transduction 

(Anderson, R. 1998)  (Vincent, J. 2003). 
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Figure 1. Model of a lipid-enriched domain at the plasma membrane. (a). A GPI-
anchored protein is attached to the exoplasmic leaflet, and a doubly acylated Src-kinase to 
the cytoplasmic leaflet or a transmembrane protein (HA). Lipids in the raft are shown as red 
and green, and the lipids in the liquid disordered phase as blue. (b) The lipid bilayer in rafts is 
asymmetric with sphingomyelin (red) and glycosphiongolipid (red) enriched in the exoplasmic 
leaflet and phospholipids (green) e.g phophatidylserine and phosphatidylethanolamine. 
Cholesterol (grey) is present in both faces of the membrane filling the space under the head 
groups of sphingolipids (c) Caveolae formed by caveolin molecules making a hairpin lop in 
the membrane, and the interaction with rafts may be mediated by binding of cholesterol and 
acylation of C-terminal cysteines. (Picture taken from Simons, K. and Ikonen, E. 1997). 
 

1.1 Lipid microdomains and signal transduction 

Experimental evidence suggests that there are several different mechanisms 

through which lipid microdomains may control cell signaling. Lipid rafts may 

contain complete signaling pathways that are activated when a receptor or 

other required molecule is recruited into the raft. In this view, rafts serve to co-

localize the prerequisite components, facilitating their interaction and 

supporting signaling. Thus, receptors, coupling factors, effector enzymes and 

substrates would all be co-localized in a single microdomain, and specificity of 

signaling could be enhanced by restricting receptor localization to a particular 

class of microdomains that contains a specific subset of signaling components 

(Cary, L. Cooper, J. 2000). This restriction would limit access of the receptor 

to components of other signaling pathways and prevent non-specific signaling 
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(Langlet, C. et al. 2000 (Oh, P. Schnitzer, J. E. 2001;Prior, I. A. et al. 2001). In 

this model, microdomains could also contain a nearly complete signaling 

pathway that would be activated when a receptor or other require molecule, 

that is normally localized in the non-raft portion of the membranes, is recruited 

to the rafts (Roy, S. et al. 1999). As an alternative how rafts may control cell 

signaling, rafts could also limit signaling, either by physical sequestration of 

signaling components to block non-specific interactions or by suppressing the 

intrinsic activity of signaling proteins present within rafts (Mueller, G. Frick, W. 

1999; Mettouchi, A. et al. 2001). In these scenarios, microdomains may 

provide regulation via compartmentalization of proteins that could otherwise 

interact, leading to unregulated activation of a pathway. Many receptor 

tyrosine kinases including the EGF receptor, the PDGF receptor, and the 

insulin receptor have been reported to control cell signaling by modulating 

their intrinsic activities due to lipid microdomain localization (Mineo, C. et al. 

1996, Anderson, G. 1998). The involvement of lipid rafts in the function of 

proteins has been studied by different approaches such as depleting cells of 

cholesterol. Lipid rafts are held together via interactions between cholesterol 

and sphingolipids and the integrity can be disrupted by treatment with methyl-

β-cyclodextrin that removes cholesterol (Kilsdonk, E. et al. 1995; Pike, L.  

Miller, J. 1998). Cholesterol depletion e.g. impairs the ability of receptor 

tyrosine kinase to signal, diminishes insulin-stimulated phosphorylation of its 

receptor, or affects insulin-stimulated glucose uptake and oxidation (Vainio, S. 

et al. 2002; Parpal, S. et al. 2001).  

1.1.1 Lipid microdomains and their potential role in immune cell 
activation 

 
One of the best described examples on the involvement of lipid rafts in cellular 

signaling processes are T cells. Cells of both the innate and adaptive immune 

systems express a variety of receptors that allow them to respond to the 

presence of foreign macromolecules in a highly discriminating and sensitive 

fashion. Multichain immune recognition receptors (MIRRs) in lymphocytes, for 

instance, are surface receptors formed by the association of immunoglobulin-

like subunits (recognition subunits) and transducing subunits. The TCR, BCR 

and FcεRI are among the best studied MIRRS in terms of signal transduction 

mechanisms (Dykstra, M. et al. 2003). These molecules are activated through 
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phosphorylation by the Src family protein tyrosine kinases such as LcK, Fyn 

or Lyn. Membranes lipid microdomains are enriched in Src proteins (Resh, M. 

D. 1999) and upon activation of Lyn and Lck, engagement of FcεRI (Field, K. 

et al. 1995)  and TCR (Horejsi, V. et al. 1999) in membrane rafts is observed. 

This implies that microdomain location is crucial for downstream signaling 

events. In the case of the TCR, upon ligand engagement, the microdomain-

associated receptor complexes are highly enriched in hyperphosphorylated 

p23 ζ chains (Montixi, C. et al. 1998) and TCR-CD3 associated complexes. 

This supports the idea that MIRRs directly transmit information via membrane 

rafts upon ligation. MIRR signaling in a restricted area of the membrane 

therefore permits a quick and efficient connection to signaling cascades upon 

receptor engagement. Still the implications of protein sequestering into lipid 

rafts are not completely clear. Membrane proteins in the lipid rafts could favor 

the formation and stabilization of supramolecular complexes by e.g. 

sequestering some proteins away from the endocytic pathway. This could 

promote sustained signaling, a mechanism considered of vital importance 

during immune response (Langlet, C. et al. 2000). During the adaptive and 

innate immune response, microdomains could also be involved to establish 

functionally distinct signaling domains during antigen recognition.  

1.2 Membrane domains in the secretory pathway  
 
The primary function of the Golgi apparatus is the stepwise modification and 

sorting of cargo synthesized in the endoplasmic reticulum (ER) and destined 

for different cellular and extracellular locations (Rothman, J., Wieland, F. 

1996). Many hypotheses have been proposed to understand the general 

concept of transport. Golgi anterograde transport may require vesicles, 

tubules and cisternal-mediated transport (reviewed in Marsh, B., and Howell, 

K. 2002). In the case of vesicular transport, a heptameric cytosolic protein 

complex called COPI (coatomer), in conjunction with the GTP binding protein 

ARF1, forms an electron-dense coat on Golgi membranes, facilitating 

membrane budding and fission events associated with Golgi membrane traffic 

(Nickel, W., Wieland, F. 1998). Recruitment of COPI onto Golgi membranes 

requires ARF1, which, like all GTPases, cycles between a GDP-bound, 

inactive, and a GTP-bound, active form. ARF-1-GTP assembles COPI onto 
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Golgi membranes, whereas GTP hydrolysis is thought to trigger membrane 

release of COPI into the cytosol (Donaldson, J. et al. 1992). This makes COPI 

available for repeated cycles of coat assembly and disassembly. ARF1 thus 

operates as a switch to control COPI assembly onto membranes and 

therefore to regulate its function (Rothman, J., Wieland, F. 1996; Helms, J. 

and Rothman, J. 1992; Donaldson, J. G. et al. 1992). The binding of ARF and 

coatomer onto membranes creates a local domain, involved in sorting of 

cargo and budding of vesicles. Coatomer binds to the C-terminal KKXX motif 

of transmembrane proteins that cycle between the Golgi and ER interface 

(Sohn, K. et al. 1996). This carboxyl-terminal peptide functions as ER retrieval 

sequence (Nilsson, T. et al. 1989). By interaction of COPI-subunits with 

cytoplasmic tails of cargo proteins, resident proteins displaying the K(X)KXX-

like sequence are recognized directly by the coat, and sorted into budding 

vesicles which then returns the resident proteins to earlier compartments in 

the pathway. COPI-coats therefore collect cargo into transport vesicles and 

mediate cargo sorting (Cosson, P. Letourneur, F. 1994). In addition to the 

KKXX sequence, many lumenal ER resident proteins contain a carboxyl 

terminal peptide with a KDEL-sequence, which functions also as retrieval 

signal returning lost ER proteins from as far away as the trans-Golgi network. 

Both motifs are capable to retain certain molecules in the ER through constant 

retrieval from post ER compartments.  

 
Many of the proteins going through the Golgi complex become modified by 

the action of enzymes present within the Golgi, followed by the sorting of the 

final product to its final destination. In mammalian cells, the Golgi is 

comprised of a ribbon of flattened stacks of cisternae that are interspersed by 

opening of various sizes, through which tubules project and vesicles can 

move (Ladinsky, M. S. et al. 1999). Proteins enter the stack at one face, the 

cis-Golgi network and eventually exit the stack at the other face, the trans-

Golgi network. It has been recognized that individual cisternae include 

different set of proteins and that the lipid composition changes from one side 

of the Golgi stack to the other. For instance, the cis-Golgi contains the O-

linked oligosaccharide-modification enzyme, N-acetylgalactosamine 

transferase; the medial Golgi contains N-aceylglucosamine transferase I; 

whereas the TGN contains sialyl-transferase. In addition to the segregation of 
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enzyme activities between cisternae, each individual cisterna is segregated 

into domains by the assembly of transport vesicles: vesicles form exclusively 

at the cisternal rims and not in the middle of cisternal structures. The Golgi 

must retain resident proteins in one domain and catalyze vesicle formation in 

another (Warren, G. Malhotra, V. 1998; Shorter, J. Warren, G. 2002). Thus, 

as is postulated for the ER (see below), vesicle formation may represent a 

mechanism by which membrane domains are generated. When an ER 

retention signal is attached onto one of two medial Golgi enzymes, it was 

found that ER retention of one medial Golgi enzyme led to ER accumulation 

of the other untagged  (Nilsson, T. Warren, G. 1994). In contrast, ER retention 

of a trans Golgi enzyme had no effect on the distribution of the medial Golgi 

enzymes (reviewed in Ward, T. H. et al. 2001). This suggests that the two 

medial Golgi enzymes are in domains as well, possibly a Golgi matrix. 

 
A detergent-insoluble Golgi matrix was identified that binds specifically to 

medial-Golgi enzymes and contains the protein GM130  (Shorter, J. Warren, 

G. 2002). GRASP65, a cis-Golgi surface protein required for stacking of Golgi 

cisternae in vitro (Barr, F.  et al. 1997) binds to GM130, and GM130 binds to 

the vesicle docking protein p115 and to Rab1, a GTPases needed for ER to 

Golgi transport. P115 also interact with Rab1 (Nakamura, N. et al. 1997). 

Thus a cis-Golgi matrix, comprised minimally of GRASP65 and GM130, exists 

as an independent unit that can be recognized by vesicle docking and 

tethering machinery constituents (Rab1 and p115). Therefore, these proteins 

represent a mechanism in which the Golgi matrix could play a role for 

incoming vesicles recognizing the compartment at the Golgi and delivering the 

secretory cargoes.   

 
The Golgi apparatus is also the major site of sphingolipid biosynthesis within 

the cell and acts as a buffer between the glycerolipid-rich ER and the 

sterol/sphingolipid-rich plasma membrane (van Meer, G. 1989). In the Golgi a 

gradient of cholesterol exists across the cisternae, with higher levels in the 

trans side (Pagano, R. E. et al. 2000). To explain this gradient, it was 

proposed that cholesterol-rich membrane domains are selectively transported 

forward through the Golgi toward the plasma membrane (Bretscher, M., 

Munro, S. 1993). Lipid rafts could also be involved in maintenance of the 
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distinct lipid compositions of the plasma membrane and organelles of the 

secretory pathway that are maintained in the face of membrane traffic in both 

directions (Mukherjee, S. Maxfield, F. 2000).  
 
The importance of membrane microdomains in trafficking (Simons, K. Ikonen, 

E. 1997; Pfeffer, S. 2003) was shown at late stages of the secretory pathway 

and in the endocytic pathway. Membranes of the Golgi, TGN, and endocytic 

pathway can contain significant amounts of cholesterol and sphingolipid that 

may partition in microdomains as observed at the plasma membrane (Brown, 

D. A. London, E. 1998).Sorting of cargo proteins can be coupled to lipid 

sorting if proteins partition preferentially into lipid rafts (Simons, K. Ikonen, E. 

1997). ER to Golgi transport of GPI-anchored proteins, for instance, is 

selectively retarded when sphingolipid synthesis is inhibited (Skrzypek, M. et 

al. 1997), suggesting that lipid microdomains form in the ER and that GPI-

anchored proteins must partition into these domains for efficient transport 

(Sϋtterlin, C. et al. 1997). However, GPI-anchored proteins are detergent-

soluble when present in the ER and only become detergent-insoluble in the 

medial-Golgi during biosynthetic transport (Brown, D. A. London, E. 2000). 

Maybe microdomains in the ER are only held together by weak interactions 

that are disrupted by addition of Triton X-100.  

1.3 Golgi apparatus as a signaling platform 
 
Coatomer and Cdc42 interact at the Golgi apparatus and this interaction 

affects both secretory traffic and cellular growth control. This raises the 

possibility that the Golgi functions as a scaffold for cell signaling (reviewed in 

Donaldson, J. Lippincott-Schwartz, J. 2000). It is likely that mammalian cells 

have exploited Golgi membranes and their unique cellular setting to regulate 

several key cellular processes during evolution. The Golgi is situated between 

the ER and the plasma membrane (PM), at the intersection of a variety of 

membrane trafficking pathways. A variety of signaling molecules associate 

with Golgi membranes, including heterotrimeric G proteins, PI(3)kinase, 

eNOS and Cdc42 (McCalllum, S. et al. 1998; Garcia-Cardena, G. et al. 1997); 

Godi, A. et al. 1999). Golgi membranes also interact with a variety of motor 

and cytoskeletal proteins, including p200/myosin II, myosin I, V, and VI, 

dynein, spectrin, and ankyrin (De Matteis, M. A. Morrow, J. S. 1998) that 
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facilitate the Golgi’s spatial control of membrane traffic but also might help to 

coordinate signaling pathways. 

 
Signaling cascades at the Golgi complex may be regulated by lipid-enriched 

microdomains as well. The presence of such domains at this organelle is 

supported by several lines of evidence. 

 
First, Lipid microdomains have been identified at several organelles along the 

late secretory pathway and endocytic pathway (including endosomes 

(Nichols, B. et al. 2001)), caveosomes (Pelkmans, L. et al. 2001) and  

phagosomes (Dermine, J. F. et al. 2001). Via membrane trafficking pathways, 

the Golgi complex is connected to these organelles and evidence exists that 

also raft components travel between the Golgi and these compartments. 

Proteins such as TGN38 and STxB travel from the plasma membrane to the 

Golgi complex. They are taken up via clathrin-coated pits into transferrin-

positive recycling endosomes and sorted for subsequent delivery to the Golgi 

complex (Gosh, R. et al. 1998; Mallard, F. et al. 1998). The folate receptor, a 

GPI-anchored protein, also recycles via this pathway and the recycling 

efficiency appears to depend on raft partitioning (Mayor, S. et al. 1998). Other 

rafts markers en route to the Golgi are, however, separated from the pathway 

followed by transferrin (Nichols, B. et al. 2001), implying that certain lipid 

microdomains continuously circulate between plasma membrane and Golgi 

pools, possibly via caveosomes.  

 
Second, it has been observed that cholesterol is essential for the biogenesis 

of secretory vesicles from the TGN, suggesting that this process requires the 

formation of lipid rafts (Wang, Y. et al. 2001). At the TGN, assembly of 

glycosphingolipids together with cholesterol into lipid microdomains suggests 

a means of packaging glycosphingolipids into the curved lumenal membrane 

side of secretory vesicles. In this model, lipid rafts coincide with secretory 

vesicle formation, and this has been suggested for the formation of 

constitutive secretory vesicles to the apical membrane (Röper, K. et al. 2000). 

Lipid rafts in the TGN may contribute to the driving force for the formation of 

secretory vesicles.  
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Third, microdomains have been isolated from early Golgi compartments  

(Gkantiragas, I. et al. 2001). These microdomains contain a unique subset of 

proteins and lipids as compared to other membrane rafts. These detergent- 

insoluble complexes in the Golgi have been denominated as GICs (Golgi-

derived detergent-insoluble complexes). Similar to other types of DRMs, it 

reveals an enrichment of sphingolipids and cholesterol. This lipid-scaffold 

seems to be required for GICs integrity (Gkantiragas, I. et al. 2001). 

Interestingly, GIC proteins and lipids are segregated for COPI vesicles, 

suggesting that they are not involved in the budding of COPI-vesicles at the 

early Golgi complex. Since the core complex travels through the early 

secretory pathway, an as yet unknown and distinct mechanism must exist by 

which GICs are transported. The presence in GICs of heterotrimeric G 

proteins (α and β subunits) opens the possibility that these microdomains are 

involved in signal transduction at the Golgi complex.  GICs are composed of 

ten major proteins (Fig. 2): 1) Caveolin-1, which has been implied in 

regulating the function of heterotrimeric G proteins (Okamoto, T. et al. 1998) 

and which localizes predominantly to detergent-resistant complexes at the 

plasma membrane; 2-3) α and β subunits of heterotrimeric G proteins, 

implicated in signal transduction (Moffet, S. B., Deborah; Linder, Maurine. 

2000), membrane fusion (Helms, J.B. et al. 1998) and maintenance of Golgi 

structure (Jamora, C. et al. 1997; Yamaguchi, T. et al. 2000); 4-7) 4 subunits 

of the V1 domain of the vacuolar H+ -ATPase, possibly involved in luminal pH 

regulation by association/dissociation of V1 and V0 subunits and in 

membrane fusion (reviewed in Gkantiragas, I. et al. 2001); 8) Flotillin-1, 

described as a component of DRMs (Volonte, D. et al. 1999) and as a 

component involved in insulin signaling by association with CAP-Cbl complex, 

directing the complex to the plasma membrane microdomain (Christian A. 

Baumann, V. R., Makoto Kanzaki, et al. 2000); 9) GREG (referred to as p45 in 

Gkantiragas, I. et al. 2001), a GPI-anchored protein at the Golgi (Xueyi Li 

unpublished data), and involved in maintenance of the Golgi structure. GREG 

may also be responsible for the structural organization of GICs, and 10) 

GAPR-1. Cloning of GAPR-1 (Eberle, H. B. et al. 2002) allowed its 

classification as a mammalian homologue of plant pathogenesis-related 

proteins (PR proteins). Biochemical characterization revealed some unique 

features not seen for any other family member, such as intracellular 
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localization, myristoylation, membrane localization, and microdomain 

association. Its association to the microdomains and relationship to the 

immune response could help to understand and clarify its role in the cell as 

well as to understand the function of GICs in the Golgi apparatus.   

 

 
Figure 2. Comparison of the protein components of DRM and GICs. GICs and total-DRM 
were isolated from CHO Golgi membranes and total cell lysates, respectively, as described in 
MATERIALS AND METHODS. Proteins were analyzed by SDS-PAGE (12%) gel and stained 
with Coomassie blue. Proteins identified in GICs are shown on  the right (Gkantiragas, I. et al. 
2001). 
 
 

2 Plant pathogens and integrated defence responses to infection 
 
The homology of GAPR-1 to the superfamily of PR proteins, group 1, 

suggests a possible role of GAPR-1 in the immune system. In plants, PR 

proteins have been implied in the immune system, which is reminiscent of the 

innate immune system in mammals. Innate immunity is an ancient form of 

defense against microbial infection that is shared by plants, insects and 

vertebrates. The discrimination of many potential pathogens from self is a 

formidable task for the innate immune system. Many plants respond to local 

attack by pathogens with a production of compounds reducing or inhibiting 
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further attack. Responses occur at the site attacked but also at distal parts. At 

the site of attack, the responses include an oxidative burst, leading to cell 

death. In this way the pathogen is killed and is prevented from spreading from 

the site of initial infection. Further local responses in the surrounding cells 

include changes in cell wall composition, de novo synthesis of phytoalexins 

and pathogenesis-related proteins (PR). PR proteins were detected and 

defined as being absent in healthy plants but accumulating in large amount 

after infection (Heil, M. Bostock, R. M. 2002). More than 17 protein families 

have been assigned to this superfamily of proteins 

(http://www.bio.uu.nl/~fytopath/PR-families.htm). PR-1 proteins play a central 

role in the defense system in plants during the manifestation of systemic 

acquired resistance (SAR). Fig. 3 shows the NMR structure of one member of 

the PR-1 group, p14a tomato, which exhibits a 35% amino acid sequence 

identity with the human glioma pathogenesis-related protein (GliPR). 

Comparison of both proteins led to the identification of a common, partially 

solvent-exposed cluster of four amino acid residues in GLiPR-1 (His69, 

Glu88, Glu110, and His127) that is well conserved in all known plant PR 

proteins group 1 (Szyperski, T. et al. 1998). This could indicate the existence 

of a common active site for these proteins. In P14a, due to the arrangement of 

the amino acid residues at the potential active cluster, a possible role as a Zn 

protease has been suggested. However, a  Zn2+ ion did not localize to the 

pocket of p14a when crystals were grown in presence of Zn+2 (Szyperski, T. et 

al. 1998). It has also been suggested that the arrangement of the two 

histidines at the active center represents the active site of a ribonuclease, but 

biochemical assays to detect such activity could not confirm this (Szyperski, 

T. et al. 1998). Interestingly, the same cluster of amino acid residues is 

observed in GAPR-1, which is the object of study in this experimental work. 
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Figure 3. P14a tomato drawing based on NMR information. Left view. Representation of 
structural elements in p14a, containing four α-helices, and four β-strands. Ribbon structure of 
p14a obtained by Dr. Matthew Groves using MolScript® (Kraulis, P. 1991), Raster3D® 
(Bacon, D. Anderson, W. 1988). A similar structure has been described for Ves v5 from 
Vespula vulgaris (PDB 1QNX) and GAPR-1 isolated from GICs microdomains (see 
Discussion). Right view. Space-filling representation of P14a, showing the putative active site 
with histidinyl and glutamyl residues depicted in blue and red, respectively (Szyperski, T. et al. 
1998). 
 

2.1 Systemic acquired resistance (SAR) 
 
Secondary to the responses at the site of infection, long range responses are 

induced to protect distal parts of the plants. These responses are described 

as systemic resistance of plants against pathogens (Hammerschmidt, R. 

1999) or systemic acquired resistance (SAR). Many components associated 

with SAR, e.g. PR proteins, are expressed in response to a first infection, but 

the mechanisms of this response are not fully understood (Conrath, U. et al. 

2002).  For instance, salicylic acid (SA) in plants is a critical signaling 

molecule in the pathway(s) leading to local and systemic resistance  and SA 

is synthesized in response to infection both locally and systematically 

(Thomma, B. et al. 1998). Thus, the actual sites of de novo production of SA 

in non-infected plant might therefore contribute to induction of SAR (Meuwly, 

P. et al. 1995). NO has been implicated in the activation of plant defenses as 

well. The immune response of plants also depends on reactive oxygen 

intermediaries (ROI) and reactive nitrogen intermediaries (RNI) for signaling 

and apoptosis, and possibly for necrosis and direct antimicrobial actions 

(Klessig, D. F. et al. 2000).  

 
In mammalian cells, salicylates are potent scavengers of NO and its 

derivatives, and salicylates inhibit the activity and transcription of iNOS 
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(Farivar, R. S. Brecher, P. 1996). NO has previously been shown to serve as 

a key redox-active signal for the activation of various mammalian defense 

responses, including the inflammatory and innate immune responses 

(Schmidt, H. H. Walter, U. 1994;Mannick, J. B. et al. 1994; Stamler, J. S. 

1994). Infections, microbial products, and cytokines readily induce expression 

of NO synthase in tissue macrophages from rodents. Reactive nitrogen 

intermediaries (RNI) are critical in host defense not only because they can 

damage pathogens but also because they are immunoregulatory (Bogdan, C. 

et al. 2000). For instance, RNI can inhibit G proteins, activate or inhibit 

kinases, caspases, metalloproteases, transcription factors, and DNA 

methyltransferase, inhibit lymphocytes proliferation, alter cytokine and 

postaglanding production, and either cause or prevent apoptosis of the host 

cells (reviewed in Nathan, C. Shiloh, M. U. 2000).  

 
Resistant plants often develop a hypersensitive response (HR), in which 

necrotic lesions form at the site(s) of pathogen entry (reviewed in Klessig, D. 

F. et al. 2000). This localized cell death associated with the HR may help 

prevent the pathogen from spreading to uninfected tissues. Just before or 

concomitant with the appearance of a HR, an increased synthesis of several 

families of pathogenesis-related (PR) proteins is observed (Schneider, D. S. 

2002). It has been proposed that the HR response by activation of R 

(resistance) genes is responsible for controlling the entire intracellular 

environment such as guarding the secretory apparatus (Schneider, D. S. 

2002).  

 
The function of PR proteins in both SAR and HR is not known. By looking for 

similarities between the immune responses in plant and animal cells, likely the 

innate immune system in mammals is the one that resembles HR-producing 

infections in plants. The similarities are not only based on molecular 

mechanisms of action, but also on other levels such as monitoring endosomal 

traffic and activation of programmed cell death if traffic is disrupted. These 

considerations may be important for defining a role for PR proteins in general 

and for GAPR-1 specifically. GAPR-1 as potential regulator in the innate 

immune response may monitor the integrity of the Golgi apparatus due to its 

location at this organelle. 
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2.2 Mammalian PR-1 family members 
 
Since the identification plant PR-1 proteins, secretory proteins with a 

significant sequence homology have been identified in various other 

organisms including fruiting body proteins in fungi that are expressed during 

infection (Schuren, F. H. et al. 1993), insect allergens (Lu, G. et al. 1993; 

Schreiber, M. C. et al. 1997), mammalian CRISP proteins possibly involved in 

sperm maturation or sperm-egg fusion (Kratzschmar, J. et al. 1996), human 

GliPR/RTVP-1, specifically expressed in glial tumors (Murphy, E. V. et al. 

1995; Rich, T. et al. 1996), and in snake or lizard venoms, reported to block 

ryanodine receptors or cyclic nucleotide-gated ion channels (Morrissette, J. et 

al. 1995; Brown, R. L. et al. 1999). Together with plant PR-1 proteins, these 

proteins constitute a large PR-1 protein superfamily. Despite the diversity 

within this superfamily, very little is known about the function of the individual 

members and the plant PR proteins, described above, remain the most 

intensely studied family members. 
 

3 Purpose of this thesis 
 
During the characterization of lipid microdomains at the Golgi (GICs) 

(Gkantiragas, I. et al. 2001), a protein with an apparent molecular mass of 17 

kDa was identified. Cloning and preliminary biochemical characterization 

identified a novel protein, GAPR-1, belonging to the superfamily of PR 

proteins. Based on the primary amino acidic sequence of this protein, some 

potentially interesting characteristics were identified (Fig. 4). It contains i) a 

consensus sequence for myristoylation (grey box); ii) a putative caveolin-

binding domain (red box); iii) a coiled-coil structure (green box) and iv) an 

isolelectric point (pI) of 9.4, suggesting that GAPR-1 is a highly hydrophilic 

protein. Further characterization of GAPR-1 showed that the protein is 

differentially expressed  in various tissues (Eberle, H. B. et al. 2002). For 

instance, GAPR-1 is highly expressed in immunocompetent organs and cells 

such as in lungs, spleen, and lymphocytes, but is absent in e.g. liver, heart, 

and brain. Here, this basic information was used to study the interaction of 

GAPR-1 with membranes (Section 1), to obtain structural information on the 

protein (in collaboration with Prof. Dr. Irmgard Sinning at the EMBL/BZH- 
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Heidelberg) (Section 2), and to identify proteins that interact with GAPR-1 

(Section 2.4). 

 

 

 
 

 

Figure 4. cDNA-derived sequence of GAPR-1. The consensus sequence for N-
myristoylation is indicated by the grey box. The potential protein-protein interacting sites, i.e. a 
coiled-coil region and a caveolin-interacting region are indicated in green and red, 
respectively. 
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Results  

1 Membrane association of GAPR-1 

1.1 N-myristoylation of GAPR-1 in Escherichia coli 

The enzymology of the myristoylation reaction is well understood. Proteins that 

are destined to become myristoylated contain the N-terminal sequence: Met-Gly-

X-X-X-Ser/Thr (for a review see Resh, M. 1999). The initiating methionine is 

removed co-translationally by methionine amino-peptidase, and myristate is 

linked to Gly-2 via an amide bond by an N-myristoyl transferase. To investigate 

whether the consensus sequence for N-myristoylation  in GAPR-1 (Fig. 4) is a 

substrate of myristoyl-CoA:protein N-myristoyl-transferase (NMT1), an E .coli 

strain was used that contained two plasmids for simultaneous expression of 

GAPR-1 (expression vector pQE60, Eberle, H. B. et al. 2002) and  yeast NMT1 

(in expression vector pBB131 Duronio, R. J. et al. 1990) (Fig. 5 panel A). The 

vectors were designed so that they could be simultaneously maintained as stable 

episomal plasmids and that independent induction of transcription of their 

heterologous DNA sequences was possible. The expression of NMT was placed 

under the control of the isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible tac 

promoter, and GAPR-1 under the control of the T5 promoter. The various 

plasmid combinations were compared for the efficiency of GAPR-1 myristoylation 

during expression of proteins upon induction with IPTG. To determine 

myristoylation efficiency of GAPR-1, [3H]-myristic acid was added during the 

overexpression. Subsequently, lysates were prepared from the E. coli cultures, 

and subjected to SDS-PAGE (Fig. 5, middle panel B). Autoradiography showed 

that in the presence of NMT1 and GAPR-1, a labeled band of 17 kDa was 

observed and indicated that the radiolabel is readily incorporated into GAPR-1 

(Fig. 5, lane 1, bottom panel C). Labeling of GAPR-1 was absolutely dependent 

on the presence of NMT1. E. coli that expressed NMT1 but lacked GAPR-1, or E. 

coli that lacked NMT1 but expressed GAPR-1, failed to label the 17 KDa protein 

with the tritiated fatty acid (Fig. 5, panel B and C, lanes 5 and 3, respectively). 
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Figure 5. [3H]-Myristate-labeled GAPR-1 in E. coli. (A) Schematic presentation of plasmid 
constructs used to express NMT1 and GAPR-1 in E. coli. KANR, gene for kanamycin resistance; 
AMPR, gene for ampicilin resistance. (B) The radiolabeling conditions were compared for induced 
(IPTG) and non-induced bacteria, containing distinct plasmid combinations: transformed bacteria 
with GAPR-1 and NMT1 (lanes 1 and 2) were induced (lane 1) or not induced (lane 2) with IPTG 
(1mM) in the presence of [3H] myristic acid (50µCi/ml culture). Cells were lysed in SDS-gel loading 
buffer 1, heated for 5 min at 95o C, and after centrifugation (5 min, 14000 rpm), an aliquot of the 
supernatant (lysate) (20µl) was mixed with (5µl) SDS-gel loading buffer 2 (5X), and analyzed by 
SDS-PAGE (14% acrylamide). After staining with Coomassie Blue, the dried gel was exposed to a 
film. Lysates from bacteria containing only pQE60 (GAPR-1) (lanes 3 and 4) or pBB131 (NMT1) 
(lanes 5 and 6) were induced or not induced with IPTG (as indicated in figure) and analyzed as 
described above. 
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1.2 N-myristoylation of GAPR-1 in vivo 

To determine whether the consensus sequence for N-myristoylation also results in 

myristoylation of GAPR-1 in vivo, proteins from a large-scale preparation of Golgi-

derived detergent-insoluble complexes (GICs) were separated by SDS-PAGE. 

After staining the gel with Coomassie Blue, the protein band at 17 kDa was excised 

from the gel and digested with trypsin. The resulting peptides were analyzed by 

electrospray ionization mass spectrometry (ESI-MS) (Fig. 6). Trypsinization of the 

GAPR-1 band generated 21 major peptides (Fig. 6A, upper panel). If native GAPR-

1 is myristoylated, then a myristoylated dipeptide [myrGK] with a theoretical 

[M+H]+ signal at m/z 414.33 is expected to be present. The survey spectrum of the 

tryptic digest of GAPR-1 showed a signal at m/z 414.327 (Fig. 6A, lower panel), 

consistent with the calculated m/z value for the myristoylated fragment. Also the 

isotopic 13C-peak at m/z 415.33 could be detected. The ion at m/z 414.327 was 

further analyzed by ESI tandem mass spectrometry, and the products obtained 

from this ion by fragmentation are displayed in Fig. 6B. All major fragment ions in 

this spectrum can be assigned to the myrGK sequence, as indicated in Fig. 6B 

(insert) and Table 1.  In particular the fragment ion triplet at 211, 240 and 268 is 

indicative of the myrG structure. In summary, mass spectroscopic data show that 

native GAPR-1 is myristoylated at the N-terminus. All the ESI-MS data were 

obtained and analyzed in collaboration with Dr. Andreas Schlosser and Dr. Wolf 

Lehmann at the Cancer Center Heidelberg (DKFZ). 

 
Table 1. Summary of positive nanoESI product ion spectrum of expected and calculated MS/MS 
signals for myrGK fragment of GAPR-1.  
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 Figure 6. In vivo myristoylation of GAPR-1. (A) Positive nanoESI spectrum of peptides derived 
from an in-gel digest of native GAPR-1. The top panel shows the complete survey spectrum, and 
the lower panel the expanded view from m/z 413 to 417, showing the singly protonated molecular 
ion of the T1 fragment including the 13C isotope peak. (B) Positive nanoESI product ion spectrum of 
m/z 414.33. The spectrum shows the key fragments for the myrG structure at m/z 211, 240 and 268 
and sequence–specific fragment ions, which identify the peptide as T1 fragment myrGK of GAPR-1. 
Data obtained and analyzed by Dr. Andreas Schlösser and Dr. Wolf Lehmann (DKFZ-Heidelberg). 
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1.3 Association of GAPR-1 with Golgi membranes 

 Myristoylation is necessary but not sufficient for membrane binding of 

myristoylated proteins (Peitzsch, R. M. McLaughlin, S. 1993). A second signal for 

stable membrane binding of N-myristoylated proteins has been defined as either a 

polybasic cluster of amino acids or a palmitate moiety (Resh, M. D. 1999). GAPR-1 

is tightly associated with Golgi membranes, which is reflected by the absence of 

GAPR-1 from the cytosolic fraction: GAPR-1 could not be detected by 

immunoprecipitation from large amounts of cytosol (Fig. 7A). When the Golgi 

structure is disrupted with Brefeldin A and GAPR-1 is dispersed in the cell (Eberle, 

H. B. et al. 2002), GAPR-1 remains associated with the membrane fraction of 

these cells as determined by efficient immunoprecipitation the total membrane 

fraction. This indicates that GAPR-1 is absent from the cytosol (see, however 

section 1.6). The characteristics of this tight membrane association of GAPR-1 

were further investigated by incubation of isolated Golgi membranes under various 

conditions. As shown in Fig. 7B, treatment of Golgi membranes with 1 M KCl did 

not strip GAPR-1 off the membranes, whereas NSF, a peripheral Golgi membrane 

protein (Block, M. R. et al. 1988) is affected by this treatment. Alkaline treatment of 

the membranes, which causes the dissociation of most peripheral membrane 

proteins, did affect the membrane binding of NSF and GAPR-1 (Fig. 7B). As a 

control, p23, a type I transmembrane protein of the Golgi complex (Sohn, K. et al. 

1996), remains present in salt or alkaline-treated membranes (Fig. 7B). Biophysical 

studies have established that the binding energy provided by myristate is relatively 

low (with a Kd of 10-4 M ) (Peitzsch, R. M. McLaughlin, S. 1993) and not sufficient to 

stably anchor a protein to a lipid membrane (Moffet, S. B. et al. 2000). To 

determine whether the myristoyl moiety of GAPR-1 contributes to the salt-resistant 

membrane binding, purified non-myristoylated GAPR-1 was bound to isolated 

Golgi membranes (Fig. 7C). Upon salt treatment of the membranes, most of the 

non-myristoylated GAPR-1 is stripped again from the membranes. These data 

indicate that native GAPR-1 is bound to Golgi membranes not only by ionic 

interactions, but also through the myristoyl moiety, which affects membrane 

anchoring of the protein. The primary structure of GAPR-1 shows the presence of 
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basic residues in the N-terminal region. An amino-acidic stretch at the N-terminus 

(21 amino acids) has a theoretical pI 9.8, containing five positively charged amino 

acids [Arg-Lys]. The 151LPKK154 sequence at the C-terminus represents another 

potential positive structure that may play a role on membrane interaction. The high 

overall pI of GAPR-1 suggests that a contribution of several positively charged 

regions together with the myristoyl moiety allows the protein to bind strongly to the 

membrane.  

1.4 GAPR-1 interaction with Caveolin-1 

A number of studies support the hypothesis that caveolin provides a direct mean 

for proteins to be sequestered within lipid-enriched microdomains (Oh, P. 

Schnitzer, J. E. 2001). Many proteins that interact with caveolin, including G-

protein α subunits, Ha-Ras, Src family tyrosine kinases, endothelial NOS, 1 EGF-R 

and related receptor tyrosine kinases, and protein kinase C isoforms (Okamoto, T. 

et al. 1998) do so via an interaction with a common putative caveolin-binding motif 

(Fig. 4, ΦXΦXXXXΦ, where Φ is aromatic amino acid Trp, Phe, or Tyr). GAPR-1 

also contains this putative caveolin-binding motif (YnFqqpgF), which might 

contribute to its strong membrane-binding. To determine a direct interaction 

between caveolin-1 and GAPR-1, co-immunoprecipitation studies were carried out. 

Under native conditions using various detergents caveolin could not be co-

immunoprecipitated with GAPR-1 or vice versa (data not shown). For that reason, 

co-immunoprecipitation studies were performed after chemical crosslinking of 

proteins in Golgi membranes. As shown in Fig. 7D, crosslinking with N-

Hydroxylsulfosuccinimidyl-4-azidobenzoate resulted in an irradiation-dependent 

crosslink product of caveolin-1 at 40-45kDa (Fig. 7D left panel). 

When GAPR-1 was immunoprecipitated from similar incubations (10 fold upscale 

of incubations), caveolin-1 was found to co-immunoprecipitate with GAPR-1 in a 

crosslink product of 40-45kDa (Fig. 7D, lane 3). Co-immunoprecipitation of 

crosslinked Golgi membranes with Caveolin-1 antibody produced a similar result. 

GAPR-1 was co-immunoprecipitated in a crosslinked product that runs at 40-

45kDa (Fig. 7D, lane 6), corresponding to a similar product observed for co-
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immunoprecipitation with GAPR-1. These results indicate a direct interaction of 

GAPR-1 with caveolin-1. The crosslink products at high molecular weights (HMW) 

(Fig. 7D, lane 6) appeared only when immunoprecipitations were performed with 

caveolin-1 antibodies and western-blotting was performed with a GAPR-1 antibody. 

This indicates that GAPR-1 can interact with caveolin-oligomers. 
 

 
 
 
Figure 7.  Interaction of GAPR-1 with 
Golgi membranes. The incubations were 
analyzed by SDS-PAGE and western 
blotting for the presence of the indicated 
proteins. (A) CHO cells were incubated for 
30 minutes in the absence (lane 2 and 3) or 
presence of 5 µM Brefeldin A (lane 4 and 5). 
After homogenization, the homogenate was 
centrifuged for 1 hour at 100,000 g to yield a 
total membrane (lanes 2 and 4) and a 
cytosolic fraction (lanes 3 and 5). GAPR-1 
was immunoprecipitated from the membrane 

fraction (2mg) or from the cytosolic fraction 
(2mg). As a control, GAPR-1 was 
immunoprecipitated from isolated CHO 
Golgi membranes (50µg) (lane 1). (B) 50µg 
of CHO Golgi membranes (lanes1-3) were 
incubated for 30 minutes on ice in the 
absence (lane 1) or presence of 1 M KCl 
(lane 2) or with 0.1 M Na2CO3, pH 11 (lane 
3). After centrifugation through a 15% (w/v) 
sucrose cushion, equal amounts of 
membranes (29 nmol phospholipid) were 
analyzed. (C) CHO Golgi membranes (25 
µg) were incubated for 30 minutes at 4oC in 
the absence (lane 1) or presence (lanes 2 
and 3) of 3µl of bacterial expressed and 
purified, non-myristoylated GAPR-1 (5.3 
mg/ml) in 25 mM Hepes/KOH, pH 7.2, 20 
mM KCl, 2.5 mM magnesium acetate, 0.1 M 
sucrose, 1 mg/ml ovalbumine and 10 mM 
DTT. Subsequently, KCl (1 M final 
concentration) was added to one incubation 
(lane 3) and incubated further for 30 min at 
4oC. Golgi membranes were re-isolated by 
centrifugation through a 15% (w/v) sucrose 
cushion. (D) CHO Golgi membranes (50µg) 
were incubated with N-
Hydroxylsulfosuccinimidyl-4-azidobenzoate 
(5mM) in PBS for 30 minutes at RT and left 
on ice (lane1, and 4) or irradiated for 10 
minutes at 254 nm (lane 2 and 5) and 
analyzed for crosslinked products. For 
immunoprecipitation (lane 3, and 6), 500 µg 
of Golgi membranes each were used for 
immunoprecipitation of GAPR-1 or Caveolin-
1. After western blotting, the PVDF 
membrane (left, immunoprecipitation using 
α-GAPR-1) was incubated first with α-
Caveolin-1, followed by α-GAPR-1, or the 
PVDF membrane (right, immunoprecipitation 
using α-Caveolin-1) was incubated first with 
α-GAPR-1, followed by α-Caveolin-1
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1.5 Phosphorylation of GAPR-1 in vivo.  

The partitioning of myristoylated proteins to cellular membranes can be sensitive to 

additional factors that affect the binding of these proteins to membranes. These 

factors can control the reversible translocation of myristoylated proteins onto 

membranes. The primary structure of GAPR-1 shows several predicted 

phosphorylation sites (NETPHOS 2.0 http://www.cbs.dtu.dk/services/NetPhos/) 

(Table 2). This program calculates a score based on the confidence of the 

prediction and similarity to known phosphorylation sites. To investigate whether 

GAPR-1 can be phosphorylated in vivo, CHO cells were incubated 4 hrs with 

radiolabeled inorganic phosphate (32Pi). Cells were lysed, and cytosol and total 

membranes were isolated by centrifugation. The membrane fraction was 

solubilized in 1% SDS, quenched to 0.1% SDS with PEN buffer containing 1% 

Triton X-100, and subjected to immunoprecipitation with an antibody against 

GAPR-1 (α-1852). Fig. 8 (lane 2) shows that the immunoprecipitated protein 

GAPR-1 (western blot) is radioactively labeled due to incorporation of 32P in the 

protein.  These data indicate that GAPR-1 is phosphorylated in vivo. The extent of 

GAPR-1 phosphorylation seems not to be affected by treatment with phosphatase 

inhibitors (lane 2 and 3).  

 
 

Figure 8. In vivo phosphorylation of 
GAPR-1. Confluent CHO wt cells were 
incubated for 4 hrs in DMEM medium 
(phosphate and serum free) at 37oC in the 
absence (lane 1) or presence (lanes 2 and 
3) of [32P] 0.25mCi/ml. Cells were incubated 
in the absence (lanes 1 and 2) or the 
presence (lane 3) of phosphatase inhibitors. 

Phophatase inhibitors were added during 
homogenization and IP. Cells were washed, 
harvested and lysed. The homogenate was 
centrifuged 1hr at 100,000 xg to isolate a 
total membrane fraction (pellet). The total 
membrane fraction was dissolved in 1% 
SDS and incubated 5 min at 95oC. After 
incubation, the fraction was quenched to 
0.1% SDS by 10-fold dilution in PEN buffer 
containing 1% Triton X-100. GAPR-1 was 
immunoprecipitated using α-GAPR-1 (α-
1852) antibody. Immunoprecipitated proteins 
were separated by SDS-PAGE and 
analyzed by western-blotting (upper panel) 
and autoradiography by exposure of the 
western blot to X-ray film (lower panel).  
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Table 2. Predicted phosphorylation sites present on GAPR-1. The program NETPHOS (2.0) 
was used to predict phosphorylation of amino acids in GAPR-1. Phosphorylation sites are sorted by 
their score. *Score indicates the likeliness of phosphorylation. Threshold score: 0.500.  
 

 

1.6 Effect of phosphorylation on the partitioning of GAPR-1 to lipid-
enriched microdomains. 

 
Triton X-100 treatment of Golgi membranes or plasma membranes in the cold 

allows isolation of a detergent-insoluble fraction. The partitioning of proteins to the 

detergent-resistant fraction can depend on post-translational modifications (Moffet, 

S. B. et al.  2000). Phosphorylation therefore may have an effect on the partitioning 

of GAPR-1 into Golgi-derived microdomain complexes (GICs) as well.  To analyze 

this possibility, total cell membranes, obtained from 32P-treated CHO cells, were 

resuspended in cold PEN buffer containing 1% Triton X-100 and detergent-soluble 

and insoluble fractions were analyzed for the presence of phosphorylated GAPR-1. 

A major pool of GAPR-1 is insoluble in Triton X-100 (Fig. 9A, lane 1, upper panel), 

and this fraction is highly phosphorylated (Fig. 9A, lane 1, bottom panel); a minor 

pool of GAPR-1 is soluble in Triton X-100 (Fig. 9A, lane2, upper panel). This 

soluble fraction shows a low level of phosphorylation (Fig. 9A, lane 2, bottom 

panel). Interestingly, CHO cytosol of treated cells shows a barely detectable 

fraction of GARP-1 by western blot analysis (Fig. 9A, lane 3, upper panel), but a 

relatively high level of phosphorylation (radioactivity/amount of protein) is observed 

in this sample (Fig. 9, lane 3, bottom panel). The radioactive signals were 
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quantified using the program Quantity One® (BioRad™). Fig. 9B shows that 

approximately 32.5% (calculated as percentage of total radioactive signal) of the 

incorporated Phosphate in GAPR-1 has a cytosolic localization. The soluble 

fraction in Triton X-100 represents approximately 11.6%. These data suggest that 

GAPR-1 can be phosphorylated in vivo and that phosphorylation of GAPR-1 can 

play a role on the dynamics of GAPR-1 association with Golgi membranes.  
  

 

 
 
 
 
Figure 9.  Phosphorylation of GAPR-1 and partitioning into lipid rafts. A) Confluent CHO wt 
cells were incubated for 4 hrs in DMEM medium (phosphate and serum free) at 37oC in the 
presence of [32P] 0,25mCi/ml.  Cells were washed, harvested and lysed. The homogenate was 
centrifuged 1hr at 100,000 xg to isolate a total membrane fraction (pellet) and a cytosol fraction 
(supernatant). The total membrane fraction was dissolved in 1% TX-100/PEN buffer and incubated 
for 30 min in the cold. After incubation, the fraction was centrifuged 1 hr at 100,000 xg to yield 
soluble (lane 2) and insoluble (lane 1) fractions. GAPR-1 was immunoprecipitated from both 
fractions as well as from cytosol of lysated cells (lane 3). Proteins in the immunoprecipitates were 
separated by SDS-PAGE and analyzed for the presence of GAPR-1 by western-blotting (upper 
panel) and for phosphorylation of GAPR-1 by autoradiography (lower panel). B) Quantification of 
the radioactive signals by Quantity One® (Biorad). 
  
 
 



Results 

 29

2 Structural Characteristics of GAPR-1 

2.1 Large Scale Purification of GAPR-1  
 
Structure determination of proteins is important in several ways. The function of a 

protein is linked to its three dimensional structure, and highly resolved structures 

can lead to a clear understanding of the possible function of a protein. Structures 

can also discriminate between evolutionary changes in the primary structure of 

related or non-related species. To obtain a crystal structure of GAPR-1, it was 

necessary to obtain protein crystals of suitable size and diffraction quality for X-

ray analysis. GAPR-1 has several biochemical characteristics that can be used to 

obtain a highly purified protein fraction: an isoelectric point (pI) of 9.4, and a 

molecular weight of 17,2 KDa, useful in ion exchange and gel filtration 

chromatography, respectively. 

The cDNA encoding GAPR-1 was cloned in the vector pQE60, and after 

transformation, GAPR-1 was overexpressed in M15/REP4 bacteria. 

Recombinant wtGAPR-1 was purified from overexpression in 12 liters of LB-

medium (Fig. 10). Diluted lysates were applied on to a DEAE-sepharose (anion 

exchange support) to remove most of the bacterial proteins in the lysate, followed 

by a High S-support column (cation exchange). GAPR-1 has a high pI (9.4), and 

the overexpressed protein was bound to the High S-support (Fig. 10A, lane 5). 

After washing, proteins were eluted from the cation exchange column by a salt 

gradient. The chromatogram and corresponding gels (Fig. 10B (Ieft part), panel A 

and B) indicate that GAPR-1 eluted at a salt concentration of 250-300mM, 

corresponding to fractions 18 to 22. These fractions were pooled and loaded onto 

a Superdex 200 gel filtration column. Separation of proteins by gel filtration 

produced several fractions (46-53) (Fig. 10B (right part), panel B) with GAPR-1, 

purified to apparent homogeneity. These fractions were used for further studies, 

including the generation of GAPR-1 crystals by Dr. Matthew Groves.   
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Figure 10A. Overexpression of GAPR-1 in bacteria (M15/REP4). Figure shows distinct steps 
during induction of GAPR-1 expression. Cells collected prior to induction (lane 1) by 1mM IPTG, 
and after 3 hrs of induction (lane 2). Cells were collected and lysed by French press. The 
homogenate (lane 3) was cleared after 100000 xg centrifugation, and diluted 1:6 with buffer Tris-
HCl 50mM; pH 7.5; 50mM. 1.2 L of Lysate was loaded onto a DEAE column  at a flow rate of 0.5 
ml/min and the flow through (lane 4) was applied to a cation exchange column (High S-support), 
and washed Tris-HCl 50mM pH7.5; 50mM NaCl (lane 5, flow through). Proteins were eluted from 
the column with a NaCl gradient (50mM to 1000mM). 
 
 
 

 
 
 
 
Figure 10B. Large scale purification of GAPR-1. Left panel: Cation exchange chromatography 
(High S-support cation exchange column). Panel A shows the chromatogram profile (amount of 
protein and conductivity versus fractions) obtained during elution of proteins from the High S 
column by a sodium chloride (NaCl) gradient (in 50 mM to 1M in Tris 50 mM, pH 7.5). Proteins 
eluted between 250 to 300mM NaCl were analyzed by SDS-PAGE (14%), and coomassie blue 
staining. Right panel: Gel filtration (Superdex 200). Upper panel (C) shows the chromatogram profile 
(µg protein vs fractions) of eluting proteins (Tris 50 mM, pH 7.5, 50 mM NaCl), and the bottom panel 
(D) shows the analysis of selected fractions by SDS-PAGE (14%) and coomassie blue staining. 
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2.2 Crystal structure of GAPR-1 

Two conditions from the initial screen produced micro crystals from which further 

screens were designed. Lens-shape crystals large enough for X-ray analysis were 

obtained in 20% (v/v) PEG 8K, 100mM Bis-Tris-HCl pH 7.0, 200mM magnesium 

acetate. These crystals appeared after 3-4 days and were suitable for analysis 

after 6-7 days (0.4 x 0.2 x 0.2mm). Diffraction from these crystals was measured 

in-house to 3.0Å. Hexagonal crystals were obtained in 30% PEG 4K, 100mM Tris-

HCl ph 8.0, 140mM magnesium chloride. These crystals appeared after 7-8 days 

and were suitable for analysis after 10-12 days (0.4 x 0.4 x 0.4mm). The hexagonal 

crystals had similar cell parameters to the lens-shaped crystals and shared the 

same point group, but diffracted in-house to 2.1Å. A complete data set to 1.5Å was 

collected on a MarCCD detector at beamline ID14 EH-2 at the ESRF (Table 3). A 

low resolution pass was made using a crystal-to-detector distance of 200mm and 

an oscillation range of 100o in 1o steps. A high resolution pass was made at a 

crystal-to-detector distance of 110mm and an oscillation range of 130o in 0.5o 

steps. Auto-indexing yielded unit-cell parameters of a=b=73.5, c=63.2Å, 

α=β=90oγ=120o in the trigonal point group P32l. The 00l axial reflections are 

markedly stronger for l=3n (n integer) indicating that the space group is either 

P3121 or P3221. Data completeness and I/σ(I) were 97.2% and 3.6, respectively, 

overall and 90.4% and 2.8, respectively, for the 1.56-1.49Å highest resolution shell. 

Using a molecular weight of 17kDa for the monomer, the predicted Matthews 

coefficient (VM) for a single molecule in the asymmetric unit is 2.81, within the usual 

range for a protein crystal, whereas the Matthews coefficient for two molecules in 

the asymmetric unit is 1.3. Similarly, the predicted solvent content for a single 

molecule in the asymmetric unit is 56% and for two molecules the predicted solvent 

content is 11%. Crystal structure solved by single isomorphous  replacement (SIR). 

All crystal structure data were obtained and analyzed by Dr. Matthew Groves at the 

European Molecular Biology Laboratory (EMBL)/ Biochemistry Center Heidelberg 

(BZH). 
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Table 3. X-Ray diffraction data. 

 
 

Our data indicate that GAPR-1 is a Golgi localized peripheral membrane protein, 

with a cytosolic orientation (Eberle, H. B. et al. 2002). To investigate further the 

implications for its orientation, a working model was proposed for the topological 

positioning of GAPR-1 at the Golgi membrane.  GAPR-1 has a positive cluster at 

the N-terminus (Fig. 11), and C-terminus, both of which are proposed to interact to 

the membrane cytosolic leaflet. The interaction proposed is via positive residues 

(Lys-Arg), and a myristic acid. Fig. 11 depicts these positive elements, and 

suggests a geometric representation of the interaction. However, it is possible to 

separate GAPR-1 in several structural features or regions, and representing each 

one of them in the model. Region I can be assigned from amino acid 2 (Gly) to 21, 

which includes the N-myristoylation and five positive residues. Region II assigned 

to the amino acids 25 to 55, representing a “hepta repeat”. This structure has been 

suggested as protein-protein interacting motif.  Region III assigned to the putative 

caveolin-binding motif and the C-terminus. The folding of the “caveolin binding 

motif” in region III seems to result in a highly strained conformation for each amino 

acid residue in the structure that is exposed on the surface (Fig. 11). The cleft 

region is formed between region II and III. A Similar conformation has shown to be 

present in p14a, and suggested to be a conserved active site (Szyperski, T. et al. 

1998). The shape of the cleft is like a left-hand hollow in which region I form the 

palm, region II the fingers and domain III casts the thumb. The cleft runs across the 

protein, and opens up towards the cytosol and has a α-β-α sandwich core 
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structure- (Fig. 11).  Four amino acids that locate to the cleft (His 54, Glu65, Glu86 

and His 103) are conserved throughout the family members of plant-pathogenesis-

related proteins (group1) and could represent an active site. 

 

 

 
 

Figure 11.  Representation of GAPR-1 attachment to the membrane. Overall structure of 
GAPR-1 showing distinct regions. Region I, positive stretch of amino acids within the C- and N-
terminus, and myristate. Region II, assigned to the coiled-coil structure. Region III, represents the 
Caveolin-binding motif. Between Region II and III runs a cleft through the protein, and possibly 
represents an active center in GAPR-1. Ribbon representation of GAPR-1 obtained by Dr. Matthew 
Goves using Raster3D® (Bacon, D. Anderson, W. 1988); and MolScript® (Kraulis, P. 1991) 
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2.3 Role of conserved amino-acids in GAPR-1 

To evaluate the possibility that the potential active site (His54, Glu65, Glu86, and 

His103) has any implication in the function of GAPR-1, a mutant of GAPR-1 was 

produced in which His54, His103, Glu65, and Glu86 were replaced with alanines 

(Fig. 12).  

 

 
 

Figure 12. Site-directed mutagenesis of GAPR-1. Primary sequence of GAPR-1 wild type 
showing the amino acid changed during site-directed mutagenesis. His54, Glu65, Glu86 and 
His103 were replaced by alanine in the same position to yield a mutant protein (GAPR-1 mut), 
bearing Ala54, Ala65, Ala86 and Ala103. The changes in GAPR-1 wild type were confirmed by DNA 
sequencing. Site-directed mutagenesis was performed as described by QIAGEN site-directed 
mutagenesis kit. 
 

The protein lacking the “conserved cluster” (GAPR-1mut) was overexpressed and 

purified using similar procedures as described for the wt protein (see above). To 

determine possible interacting partners of GAPR-1, both GAPR-1wt and GAPR-

1mut (as a negative control) were covalently linked to CNBr-Sepharose 4B for 

affinity chromatography. To analyze whether this mutation has an impact on the 

possible interaction of GAPR-1 to unknown cytosolic components, the affinity 

columns both GAPR-1wt and GAPR-1mut were loaded with equal amounts of CHO 

cytosol. After washing the columns, bound proteins were eluted from the column by 

use of a salt gradient. Fig. 13 shows the chromatographic profiles and 

corresponding analyses by SDS-PAGE of fractions collected during the elution. 
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SDS-PAGE analysis of proteins interacting with GAPR-1wt shows a complex 

protein mixture binding to the column, which eluted at 330 mM NaCl approximately 

(Fig. 13A, upper panel, peak at fraction 14). For GAPR-1mut, a somewhat broader 

peak eluted from the column (Fig. 13B, upper panel, peak ranging from 200 mM to 

740 mM NaCl), and the amount of protein was approximately two fold less as 

compared to the GAPR-1wt chromatographic profile at 280nm. The protein profiles 

eluted from GAPR-1wt and GAPR-1mut column show a similar protein pattern, 

indicating that the same proteins bind, with different degrees of affinity (Fig. 13A 

and B, bottom panels). 

 

 
 

Figure 13. Affinity chromatography of CHO cytosolic proteins to Sepharose-bound GAPR-1.  
(A) 5 mg of GAPR-1 wt were bound to 1ml of swelled-gel CnBr-Sepharose 4B fast flow. CHO 
cytosol was prepared according to the protocol described in Materials and Methods. 200 ml of 
cytosol (1mg/ml) was applied onto the GAPR-1 wt column at a flow rate of 0,5ml/min, washed with 
100 volumes of buffer Tris-HCl 50mM, NaCl 50mM, pH7.4, until an optical density of 0,01 (or lower) 
at 280 nm was reached. After washing, a NaCl gradient (50mM to 1M) in buffer (50mM Tris-HCl, 
pH7.4) was applied at a flow rate of 50µl//min, and fractions were collected. Fractions 11 to 24, 
corresponding to the peak fractions observed on the protein profile were analyzed by SDS-PAGE 
and coomassie blue staining. (B) 5 mg of GAPR-1 mut were bound to 1ml to CnBr-Sepharose 4B 
fast flow. Determination of proteins from cytosol that interact with GAPR-1mut was exactly as 
described for GAPR-1wt. Note: The coupling efficiency was determined by BCA protein 
quantification and indicated that the coupling efficiency was similar for both GAPR-1wt and for 
GAPR-1mut (98% coupling efficiency of protein binding to beads).  
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2.4 Identification of proteins that bind to the GAPR-1 affinity column 

2.4.1 Identification of proteins in CHO cytosol that bind GAPR-1 
 
 To pursue the identification of the interacting partners of GAPR-1, a mass 

spectrometric (MALDI-TOF) analysis was performed on the major protein bands, 

eluting from the GAPR-1wt affinity column (Fig. 14). Eluted proteins were resolved 

on two different types of gels:  a 4-12% SDS-PAGE gel for identification of proteins 

above 31kDa (Fig. 14, panel A), and a 12% SDS-PAGE for proteins below 31kDa 

(Fig. 14, panel B). By peptide mass fingerprinting, 17 proteins  were identified in 20 

selected bands (Table 4). When these proteins were analyzed for functional motifs, 

the most interesting common feature was the presence of an RNA binding motif in 

9 of the 17 proteins identified (Burd, C. G., Dreyfuss, G 1994). The identified RNA-

binding proteins fall into three major functional groups: 1) t-RNA synthetases such 

as Tyrosyl and Threonyl -tRNA synthetases and bifunctional aminoacyl-tRNA 

synthetase (Weiner, A. M. Maizels, N. 1999) (Wakasugi, K. Schimmel, P. 1999); 2) 

proteins involved in RNA modificiation or stabilization, such as hnRNPs; and 3) 

regulators of cell cycle and apoptosis such as Nucleolin, NS1-associated protein 1  

(Hresko, R. C. Mueckler, M. 2002; Mizutani, A. et al. 2000). Mass spec analysis (by 

fingerprinting) of the bound CHO proteins was limited due to the fact that not the 

entire genome of this species is known.  Most of the proteins identified are not 

exact matches but have homologs in Homo sapiens. Only for two bands a 

Cricetulus griseus protein was found: Nucleolin (Bugler, B. et al. 1982), and 

thioredoxin peroxidase (Hofmann, B. et al. 2002).    
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Figure 14. Identification of CHO cytosolic proteins binding to GAPR-1wt. Panel A shows 
peptide mass fingerprinting of major protein bands above 31kDa, separated by SDS PAGE (4-12%) 
and stained by coomassie blue. Panel B shows peptide mass fingerprinting of major protein bands 
below 31kDa, separated by SDS-PAGE (12%) and stained by coomassie blue. 
 
 

2.4.2 Identification of proteins present in complex pull down by GAPR-1 
affinity column in HeLa cells  

 
Due to the lack of a comprehensive database for Chinese Hamster (Cricetulus 

griseus), the experiments were repeated with cytosol from HeLa cells (Homo 

sapiens derived) cytosol as a source for the identification of interacting partners. In 

fact, GAPR-1, employed in these experiments, was cloned from a human fetal 

brain library (Eberle, H. B. et al. 2002). Fig. 15 shows the components in HeLa cell 

cytosol that bound to the GAPR-1wt column and which were identified by MALDI-

TOF. Of the 42 proteins identified, 7 are ribosomal proteins: 3 are part of the large 

ribosomal subunit, and 4 are part of the small ribosomal subunit. Among the non- 
 



Results 

 38

Table 4. CHO proteins identified to bind GAPR-1wt. Protein identification was performed by a 
combination of in-gel digestion, MALDI-TOF and database searching 
(http://129.206.154.159/mascot/). 
 

 
A summary of proteins identified after separation by 4-12% and 12% SDS-PAGE. a. Represents the 
theoretical molecular weight. MS analysis of all proteins listed were found to be in good agreement 
with the theoretical molecular weight. b. Isoelectric point (pI) determined by ProParamTool 
(http://www.expasy.org/tools/protparam.html), a web based software for computation of various 
physical and chemical properties of a given protein.  
 
ribosomal proteins identified are: Alternative Splicing Factor 1, 2 and 3; Casein 

kinase 2, aminoacyl-tRNA synthetases (Asparagine, Histidine, Isoleucine, 

Tyrosine), Template activating factor 1 (α,β), DNA helicase 2, and RNA helicase A 

(Table 5). GAPR-1 bound  proteins from Hela cell cytosol can be grouped by 

functional features as well: several proteins are involved in: 1) ribosome biogenesis 

(Ginisty, H. et al. 1999), RNA binding, and processing; and 2) cell cycle, 

proliferation and apoptosis (Burd, C. G., Dreyfuss, G 1994; Yanagida, M. et al. 

2001) Zhu, D. et al. 2002; (Wakasugi, K. Schimmel, P. 1999). This classification 

overlaps significantly with that for proteins from CHO cytosol and several of these 

cytosolic HeLa cell proteins interacting to GAPR-1 have been identified in CHO 

cytosol as well such as bifunctional aminoacyl-tRNA synthetase, 60S ribosomal 

protein L22, U2 sn- RNP protein A, ribosomal protein L5, and nucleolin (table 4 and 

5). 
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Figure 15. Identification of Hela cell cytosolic proteins binding to GAPR-1wt. Panel A shows 
peptide mass fingerprinting of major protein bands above 31kDa, separated by SDS PAGE (4-
12%) and stained by coomassie blue. Panel B shows peptide mass fingerprinting of major protein 
bands below 31kDa, separated by SDS-PAGE (12%) and stained by coomassie blue. 
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Table 5. Hela cell proteins identified to bind GAPR-1wt. Protein identification was performed by a 
combination of in-gel digestion, MALDI-TOF and database searching 
(http://129.206.154.159/mascot/). 
 
 

 
 
 
A summary of proteins identified after separated by 4-12% and 12% SDS-PAGE. a Represents 
the theoretical molecular weight. MS analysis of all proteins listed were found to be in good 
agreement with the theoretical molecular weight. b Isoelectric point (pI) determined by 
ProParamTool (http://www.expasy.org/tools/protparam.html), a web based software for 
computation of various physical and chemical properties of a given protein.  
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2.4.3 Identification of a potential GAPR- High Molecular Weight complex 
that binds GAPR-1 

 
It seemed unlikely that so many different proteins could all bind directly to GAPR-

1. Rather, we explored the possibility that several of these proteins belong to a 

large complex that binds the column due to an interaction of one (or more) of its 

protein components with GAPR-1. To analyze this possibility, 10ml of CHO 

cytosol (20mg/ml) were separated into two pools by gel filtration. By use of a pre-

calibrated Superdex 200 column (26mm x 70cm), a pool containing proteins with 

a molecular mass higher than 100kDa (HMW), and another pool with proteins 

lower than 100kDa (LMW) were obtained (Fig 16, panel A). These two pools 

were loaded separately onto a GAPR-1wt affinity column, and after extensive 

washing, a sodium chloride gradient was applied. SDS-PAGE analysis of the 

eluted proteins (Fig. 16, panel (B)) showed that several proteins in the HMW 

fraction bound to the column. In contrast, only a very weak band is observed to 

bind from the LMW fraction.  

 
These results indicate that proteins binding to GAPR-1 affinity column are at 

least partially present in a large complex in the cytosol. In addition, this result 

shows a protein pattern similar to that observed for total cytosol (Fig. 13), 

suggesting that the same complex binds in both cases. Of note, the intensity of 

the bands eluted from the column loaded with HMW cytosol is lower as 

compared to the intensity of bands eluted after loading with whole cytosol (Fig. 

13). This is probably due to dilution of the cytosolic components in the gel 

filtration.  
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Figure 16. GAPR-1 association to a 
cytosolic complex. Panel (A) shows 
separation of 10 ml CHO cytosol (20 mg/ml) 
in buffer (50 mM Tris-HCl, pH 7.5; 50 mM 
NaCl) on a pre-calibrated Superdex 200 gel 
filtration column (see Material and Methods). 
Collected fractions were combined in two 
different pools: a pool containing proteins 
above 100kDa (HMW pool), and a pool 
containing proteins below 100kDa (LMW 
pool). Panel (B) shows a SDS-PAGE 
analysis of peak fractions eluting from 
GAPR-1wt affinity column, after loading with 
different cytosolic pools:  Lane 2, Fraction 
14 (peak fraction Fig. 10, panel A); Lane 3, 
Peak fraction eluting from GAPR-1wt affinity 
column loaded with HMW pool; Lane 4, 
Peak fraction eluting from GAPR-1wt affinity 
column loaded with LMW pool.

 

2.4.4 GAPR-1 interacting partner in vitro 
 
The above described results suggest that GAPR-1 interacts with a protein complex 

present in the cytosol. To investigate which protein(s) in the complex interact 

directly with GAPR-1, HeLa cytosol was incubated at 95oC in buffer (50 mM Tris-

HCl, 50 mM NaCl, pH 7,5) containing 1% SDS, followed by quenching with 

1%Triton X-100 to decrease the sodium dodecyl-sulphate concentration to 0,1%. 

The solution was loaded onto a GAPR-1wt affinity column at a flow rate of 

0,5ml/min, washed and bound proteins were eluted by a sodium chloride gradient. 

As a result of this treatment, the protein complex dissociated, and only 3 major 

components eluted from the column (fig. 17, lane 1). The 3 proteins were identified 

by MALDI-TOF as Nucleolin (NCL), Template Activating factor I (TAFI) and 

HSPAHPI2B. Nucleolin seems to be the major component present in the 

preparation, and its identity was confirmed by western blot analysis (Fig. 14, lane 
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3).  A similar preparation was loaded onto the GAPR-1mut column, and only a faint 

band was observed at 115kDa in the peak fraction eluting from the column (Fig. 

17, lane 2). This minor component was identified by western blot as NCL as well 

(data not shown). This result suggests that NCL, TAF1 and HSPAHP12B are 

potentially interacting partners of GAPR-1, and that the amino acids mutated in 

GAPR-1mut are essential for the interaction. Nucleolin runs around 97 to 110 on a 

12% SDS-PAGE (Gilchrist, J. S. et al. 2002), even though Nucleolin is a 76,5 kDa 

protein (Lischwe, M. A. et al. 1985). This behavior has been explained by 

phosphorylation at the N-terminus region of the protein, which might function as a 

post-translational modification mechanism for the regulation of protein function 

(Rao, S. V. et al. 1982; Peter, M. et al. 1990). Fig. 17 (Lane 1) shows a similar 

behavior for Nucleolin, both in SDS-PAGE and western blot analysis (Lane 3). 

   

 
 
Figure 17. Identification of primary interacting partners of GAPR-1. 200 ml of HELA cytosol 
(1mg/ml) were incubated at 95oC for 15 min in buffer (50 mM Tris-HCl; 50 mM NaCl) containing 
1%SDS, followed by quenching with 1,8L of buffer (50 mM Tris-HCl; 50 mM NaCl) containing 1% 
Triton X-100. The sample (2L) was loaded onto GAPR-1wt affinity column. A similar preparation 
was loaded onto GAPR-1mut affinity column. Lane 1 shows the peak fraction after elution by a 
sodium chloride gradient. Lane 3 represents a western blot analysis performed on the peak fraction 
after elution, using a Nucleolin antibody. Lane 2 shows the peak fraction after elution by sodium 
chloride gradient on a GAPR-1mut affinity column. Lane 4 shows the identity of the proteins, 
determined by MALDI-TOF. 
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3 Structural Characterization of GAPR-1 

3.1 Characterization of Recombinant GAPR-1wt  and GAPR-1 mut 
 
The mutations in GAPR-1 could have an effect on the overall structure of the 

protein. To analyze this, GAPR-1wt and GAPRmut were compared by different 

methods. Both forms of GAPR-1 (wild type and mutant) were purified to 

homogeneity. The two proteins behaved similar on cation exchange 

chromatography, and both proteins showed the same reactivity to the GAPR-1 C-

terminal antibody (α-1852). The molecular masses of the folded wt and mutant 

proteins were analyzed by size exclusion chromatography light scattering (SEC-

LS) using a pre-calibrated Superdex 200 gel filtration column. GAPR-1 has a slight 

tendency to form dimmers in solution (Fig. 18): the major peak eluting between 

17.9 and 18.2ml represents the monomeric form of GAPR-1. A small peak eluting 

between 16.8 and 17.2ml contains the homodimer form of GAPR-1wt. GAPR-1mut 

behaves different in solution and the majority of this protein elutes between 16.2 

and 16.7ml, indicative of a predominantly homodimeric form of GAPR-1mut (Fig. 

18, Inset). The second and smaller peak observed in the profile for GAPR-1mut 

represents the monomeric form of the protein. These data suggest that the 

equilibrium between monomeric and dimeric forms of the protein in solution has 

been altered by the mutation, creating conditions for GAPR-1mut to be present 

mostly as a homodimer in solution. This might explain that the conditions used so 

far for crystal formation of GAPR-1wt were not suitable for GAPR-1mut and that 

dimerization of the protein may effect crystal formation of GAPR-1mut. 

3.2 GAPR-1/GAPR-1 interaction in vivo 

To determine whether GAPR-1 can form dimers on Golgi membranes, isolated 

CHO Golgi membranes were crosslinked with N-Hydroxylsulfonsuccinumydyl-4-

azidobemzoate, similar as described in section 1.4. Upon immunoprecipitation of 

lysates using antibodies against GAPR-1, an irradiation-dependent cross-link 

product appears at 34kD when the immunoprecipitates were analyzed for the 

presence of GAPR-1 (Fig. 19). These data suggest that GAPR-1 is present as a 



Results 

 45

dimer on the Golgi membrane (Fig. 19). However, it does not exclude the 

possibility GAPR-1 interacts with an unknown protein of similar molecular mass.  

 

 

 
 

 
Figure 18. Size-exclusion chromatography (SEC-LS) of GAPR-1wt and GAPR-1mut. 200µl 
samples of pure GAPR-1wt or GAPR-1mut (100µg/ml) were subjected to size-exclusion 
chromatography at 8oC in a buffer containing 50mM Tris-HCl, pH 8.0 and 300mM NaCl. The 
concentration of GAPR-1wt and GAPR-1mut in sample loaded on the column was 0.3mM. Elution 
profile of GAPR-1wt (black line): the peak of absorbance at 280 nm eluted between 17.9 and 
18.2ml for GAPR-1wt (monomer). The peak eluted between 16.8 and 17.2ml represents a 
homodimer form of GAPR-1wt.  Elution profile of GAPR-1mut (red line): The peak of absorbance 
at 280 nm eluted between 16.2 and 16.7ml for GAPR-1mut (homodimer), and the peak eluted 
between 17.3 and 17.6ml for the monomer form of GAPR-1mut. Inset shows the calculated molar 
masses of the proteins eluting from the pre-calibrated Superdex200.  
 
 
 



Results 

 46

 
 

 
Figure 19. GAPR-1 dimerization on Golgi membranes. CHO Golgi membranes (50µg) were 
incubated with N-Hydroxylsulfosuccinimidyl-4-azidobenzoate (5mM) in PBS for 30 minutes at RT 
and left on ice (lane1, and 4) or irradiated for 10 minutes at 254 nm (lane 2 and 5) and analyzed 
for crosslinked products. For immunoprecipitation (lane 3, and 6), 500 µg of Golgi membranes 
were used, and GAPR-1 was immunoprecipitated using an α-GAPR-1 (α1852) antibody). After 
western blotting, the PVDF membrane was incubated first with α-Caveolin-1, and subsequently 
blotted with α-GAPR-1. 
 

3.3 Circular Dichroism analysis of GAPR-1 
 
Circular dichroism (CD) spectroscopy is an important method, complementary to 

crystallography in studies of protein structure, stability and folding (Kelly, S. M. 

Price, N. C. 2000). CD spectra of proteins are usually quite complex, as they 

represent the sum of positive and negative sign contributions of backbone 

peptide groups in different conformations and aromatic side chains. Circular 

dichroism provides a possibility for defining the contribution of those residues of 

GAPR-1wt, and of replaced residues in GAPR-1mut. 

 
Fig. 20A shows far-UV (190-250nm) CD spectra of GAPR-1wt and GAPR-1mut 

in solution. Far-UV CD spectra analyses secondary structures in proteins and the 

CD spectrum of GAPR-1wt shows a negative trough in the 202-240nm region, 
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whereas GAPR-1mut shows a negative depression in the 200-240nm. Both 

curves show a similar behavior in term of secondary structural elements (α-helix, 

β-sheet): GAPR-1wt has a minimum intensity absorption in the far-UV at 208nm, 

and GAPR-1mut has a minimum at 207-208nm, whereas a positive signal is 

observed for both proteins in the range from 190-200nm. The weak negative 

signals for GAPR-1wt at 211 and 218-219nm are indicative of β-sheet forms. The 

negative signals at 208 and 224 can be assigned to α-helix structures (Kelly, S. 

M. Price, N. C. 2000). The spectrum of the GAPR-1mut, as compared to GAPR-

1wt, evidences differences in the relative amplitude of the 208nm and 224nm 

minima, probably related to slight changes in the β-sheet content. Nevertheless, 

there appears to be no major differences between GAPR-1wt and GAPR-1mut in 

α-helix, and β-sheet content.  

 
Changes in the tertiary structure can be highlighted by examining the near CD 

spectra. Fig. 20B shows near-UV CD spectra of wild-type and mutant GAPR-1. 

Differences in shape and intensity of the near-UV signals correlate with the 

different contents of aromatic amino acid residues. Analysis of amino acid 

sequence revealed that GAPR-1 contains  five tyrosine (Tyr-20, Tyr-42, Tyr-72, 

Tyr-84, Tyr-90), three tryptophan (Trp-69, Trp-83, Trp-109), eight phenylalanine 

(Phe-9, Phe-92, Phe-97, Phe-104, Phe-128; Phe-134, Phe-144, Phe-145), and 

five histidine residues (His-10, His-17, His-24, His-54, His-103). Signals in the 

region from 250-270nm are attributable to phenylalanine residues, and they 

seem to be the major determinants of the near-UV spectra. It appears that their 

positioning is altered due to the mutation in GAPR-1 (Fig. 20B). Based on the 

crystal structure, Phe-134 and Phe-144 seem to be most exposed to solvent, and 

have the fewest inter-residue contacts of all aromatic amino acids in GAPR-1. 

The presence of significant near-UV signals is a good indication that the protein 

is folded into a well-defined structure (Kelly, S. M. Price, N. C. 2000). Changes in 

the near-UV spectrum of GAPR-1mut (Fig. 20B) could be explained by the 

formation of GAPR-1mut homodimers in solution, which represents the major 

component as shown by SEC-LS. Therefore it is reasonable to assume that the 
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tertiary structure is retained. The differences of intensity in the near-UV spectra 

between 270 -290nm (Fig. 20B) suggest the presence of a Tyr residue in the 

monomer that has been perturbed by dimer formation. The major changes in 

intensity of near-UV spectrum for GAPR-1mut (between 270-290 nm) suggest 

that the tyrosine environment at the interface in the homodimer has been altered 

(Fig. 20B). 

 

 
 
Figure 20. Circular dichroism spectra for GAPR-1wt and GAPR-1mut. Far UV-spectra (CD) 
of GAPR-1wt in 5mM Phosphate buffer, pH 8.0 (black line), and GAPR-1mut in the same buffer 
(red line) in the far-UV (A) and the near-UV (B). Graphs obtained by Dr. Valerie Paneels using 
Sigma Plot®. 
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4 Interaction Trap or two hybrid system 

4.1 Nucleolin- GAPR-1 interaction.  

To extend the results of the in vitro interaction assays, studies were carried out 

using the yeast two-hybrid system to determine whether Nucleolin and GAPR-1 

can interact under in vivo conditions and also to confirm the interaction by an 

independent method. For this purpose, Nucleolin was fused to the Escherichia 

coli B42 activation domain of the prey plasmid pJG4.5 to produce pJGNCL. 

GAPR-1 (wild-type or mutant) was fused to the lexA DNA-binding domain 

sequence of the bait plasmid pEG202 to produce pEGGAPR-1wt and 

pEGGAPR-1mut. Vice versa, Nucleolin and GAPR-1 were also cloned in 

pEG202 and pJG4.5, respectively to yield pEGNCL, and pJGGAPR-1wt -or 

pJGGAPR-1mut. In the pJG4.5 construct, expression of the B42 fusion construct 

is repressed by glucose and induced by galactose. The two plasmids were 

introduced into Saccharomyces cerevisiae strain EGY48 containing the reporter 

plasmid pSH18-34. Thus, the plasmid expressing the LexA-fused bait protein 

activates a reporter system responsive to transcriptional activation through the 

LexA operator (Fig. 21). Transformants were tested for the production of β-

galactosidase as a phenotype indicative of interaction between the two fusion 

proteins. Strains harboring both plasmids grew on medium lacking leucine, uracil, 

and triptophane (Fig. 21B). Discrimination based on color is achieved when yeast 

is grown on medium containing X-gal (Fig. 21A). Expression of either fusion 

protein in combination with empty complementing plasmid resulted in a non-

interactive phenotype (data not shown). GAPR-1wt strongly induced transcription 

of the β-galactosidase reporter gene when tested against Nucleolin (Fig 22A, 

panel 1 and 2). GAPR-1mut (mutations in His54, Ala; Glu65, Ala; Glu86, Ala; 

His103) showed a decreased level of interaction (Fig. 22A, panel 3 and 4), 

implying these amino acid residues contribute to the interaction of GAPR-1 and 

Nucleolin. The reverse combination, Nucleolin (LexA) induced transcription of the 

reporter gene was somewhat less efficient when tested against GAPR-1 (B42) 

(Fig. 22A, panel 1 versus 2 respectively), and a similar effect is observed for 

GAPR-1mut (Fig. 22A, panel 3 versus 4, respectively).  In agreement with the 



Results 

 50

tendency of GAPR-1 to form dimers, GAPR-1wt activated the β-galactosidase 

reporter gene when tested against GAPR-1wt or GAPR-1mut. Any combination 

of GAPR-1 (wild type or mutant) in the prey and bait plasmid showed an 

interaction in the two hybrid system (Fig. 22A, panels 5-8). These results suggest 

that the mutation does not have a significant effect on GAPR-1/GAPR-1 

interaction, consistent with the results observed by size exclusion 

chromatography.  

 

 

 

 

Figure 21. Schematic representation of the two hybrid system assay. (A) An EGY48 yeast 
cell containing the LexA operator-responsive reporter, and the plasmid bearing the GAL1 
promoter-lacZ fusion gene (causing yeast to turn blue on medium containing Xgal). (B) A positive 
interaction is shown between GAPR-1 and Nucleolin, fused to the B42 acid blob (domain) in 
pJG4.5, resulting in the activation of the operator by the reporter LexA fused to GAPR-1, thus 
causing a blue color on medium containing X-gal. Symbols: blue rectangle, LexA operator 
sequence; green circle, LexA protein; open pentagon, GAPR-1; open bent rectangle, Nucleolin; 
red box, activator protein B42 (acid blob). 
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Figure 22. Interactions between GAPR-1 (wild-type and mutant) and Nucleolin.  Strains of 
Saccharomyces cerevisiae EGY48 harboring interaction constructs of the bait plasmid pEG202 
and the prey plasmid pJG4-5, containing GAPR-1wt, GAPR-1mut or Nucleolin as indicated, were 
tested for growth (panel B) on medium containing: glucose, without leucine, tryptophan and uracil, 
and X-gal (panel A). Positions represent the growth patterns of strains expressing: 1) GAPR-1wt 
(pGEGAPR-1wt) + Nucleolin (pJGNCL); 2) GAPR-1wt (pJGGAPR-1wt + Nucleolin (pEGNCL); 3) 
GAPR-1mut (pEGGAPR-1mut) + Nucleolin (pJGNCL); 4) GAPR-1mut (pJGGAPR-1mut) + 
Nucleolin (pEGNCL); 5) GAPR-1wt (pGEGAPR-1wt) + GAPR-1wt (pJGGAPR-1wt); 6) GAPR-
1mut (pEGGAPR-1mut) + GAPR-1wt (pJGGAPR-1wt); 7)  GAPR-1mut (pEGGAPR-1mut)  +  
GAPR-1mut (pJGGAPR-1mut); 8) Nucleolin (pEGNCL) + Nucleolin (pJGNCL). C. Quantitation of 
Nucleolin / GAPR-1 interactions and GAPR-1/GAPR-1 in EGY48 bearing plasmids as indicated in 
panel a,b. Relative intensities were determine (intensity/mm2 arbitrary units) for each colony on X-
gal versus controls bearing empty plasmids.  
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5 Regulation of GAPR-1 expression  

5.1 Effect of serum starvation on GAPR-1 expression in CHO cells 
 
GAPR-1 is not expressed in cells tissues terminally differentiated in G0 (e.g. brain 

and skeletal muscle) (Eberle, H. B. et al. 2002), and highly expressed in tissues 

with higher turnover rate. It is known that serum starvation also induces cells to 

arrest in the G0/G1 phase of the cell cycle in cell cultures (Cooper, S. 2003). To 

investigate a possible effect of serum starvation on GAPR-1 expression, CHO 

cells at 70-80% confluence were transferred to serum free medium and grown for 

various periods of time (0, 3, 9 and 48 hrs). After each incubation period, the 

cells were lysed and a total membrane fraction was obtained. Western Blot 

analysis (Fig. 23 upper panel A) shows the effect of serum starvation on GAPR-1 

expression and indicates that the protein is completely down-regulated after 

48hrs when cells have entered the G0/G1 phase. This observation suggests that 

expression of GAPR-1 may be induced at a specific stage of the cell cycle and 

that the down regulation of GAPR-1 could be associated with the entry of cells 

into G0. A different type of regulation occurs for Caveolin-1 (Fig. 23 panel A). It is 

known that caveolin is up-regulated in G0/G1 (Volonte, D. et al. 2002) (Galbiati, F. 

et al. 2001), and as expected, increased expression of this protein was observed 

after 48 hrs under serum deprivation conditions.   

5.2 Localization of Nucleolin to Golgi membranes 
 
Nucleolin has been reported as a nucleolar protein in eukaryotic cells (Ginisty, H. 

et al. 1999), but is has also been found in the cytoplasm (Srivastava, M. Pollard, 

H. B. 1999) and at the cell surface (Hovanessian, A. G. et al. 2000). In order to 

investigate whether Nucleolin can localize to the Golgi apparatus, sub-cellular 

fractionation of HeLa cells and rat liver was performed to obtain Golgi 

membranes and a cytosolic fraction. The presence of Nucleolin was determined 

by immunoblotting using a commercially available antibody against Nucleolin 

(Fig. 24). This antibody cross-reacts with human and rat Nucleolin. Interestingly, 

this Nucleolin antibody is able to recognize a band at 110kDa, which represents 
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Nucleolin in the HeLa Golgi (Fig. 24, lane 2), as well as in the cytosol (Fig. 24, 

lane1). In rat liver Golgi, Nucleolin could not be detected (Fig. 24, lane 4), 

although Nucleolin is present in rat liver cytosol (Fig. 24, lane 3). These blots 

were analyzed for GAPR-1 to confirm its localization to the same compartments. 

As shown in Fig. 24 (lane 2 and 4), GAPR-1 is present in the Hela Golgi (Fig. 24, 

lane 2), but absent from rat liver Golgi (Fig. 24 lane 4). This result confirms 

previous findings (Eberle, H. B. et al. 2002) (Eisenberg, I. et al. 2002), where 

GAPR-1 could not be detected in liver membranes, both by immunoblotting and 

by mRNA detection (Eisenberg, I. et al. 2002). Unfortunately, it was not possible 

to use CHO Golgi membranes in these experiments, since the Nucleolin antibody 

does not react with the hamster version of the protein.  
 

 
 
 
Figure 23. Effect of serum starvation on GAPR-1 expression in CHO cells. A. CHO cells at 
70-80% confluence were incubated in serum-free α-DMEM  for different time periods (0, 3, 9 and 
48 hrs). Cells were harvested and lysed in Tris-HCl pH 7.5; 200mM Sucrose (as described in 
Materials and Methods). Total membranes were obtained from the post nuclear supernatant by 
centrifugation at 100,000 xg, 1hr. 25µg of total protein were separated by SDS-PAGE (14%), and 
analyzed by western blotting. PVDF membranes were first incubated with α-GAPR-1 (α-1852), 
followed by α-Actin, and α-Caveolin-1. B.  Relative intensities of GAPR-1 expression were 
determined (intensity/mm2 arbitrary units) for each band using the software Quantity One® 
(Biorad) and plotted versus incubation times.  
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Figure 24. Nucleolin localization on Golgi membranes. Golgi membranes and cytosol were 
obtained from HeLa cells as indicated in Materials and Methods. 20µg of total Golgi membranes 
or 20µg cytosolic proteins were separated by SDS-PAGE, and analyzed by western blot for the 
presence of Nucleolin and GAPR-1 using specific antibodies against these proteins (C23 
(Nucleolin) and α-1852, respectively). 
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Discussion 
GAPR-1 is a novel human protein that belongs to Group 1 of the plant 

pathogenesis-related proteins, a superfamily of proteins sharing structural 

similarities (Murphy, E. V. et al. 1995; Yamakawa, T. et al. 1998). Although an 

antifungal activity has been described for plant members of the superfamily 

(Antoniw, J et al., 1980), little is known about their function. Recent evidence 

suggests, however, a more general role in signaling during host-pathogen 

interactions in plants. This may suggest a role in the (innate) immune system 

for mammalian family members, which is reminiscent of the plant immune 

system. 

1  Binding of GAPR-1 to Golgi membranes 

GAPR-1 was originally identified in a low-density detergent-insoluble fraction 

(GICs) from a Golgi-enriched fraction  (Gkantiragas, I. et al. 2001). The 

presence of GAPR-1 in these lipid-enriched microdomains implies a strong 

membrane association of the protein, and  several lines of evidence suggest 

that GAPR-1 is tightly bound to membranes (Fig. 7) (Eberle, H. B. et al. 2002). 

Here, several characteristics of GAPR-1 were investigated, which may be 

involved in the membrane binding of GAPR-1.  

1.1 GAPR-1 binding to membranes 

GAPR-1 contains the consensus sequence for N-myristoylation, which is the 

substrate for N-myristoyl- transferase, as has been shown in vitro (E. coli) 

(Fig. 5). Native GAPR-1 was found to be myristoylated by mass spectroscopic 

analysis (Fig. 6). For many proteins, the myristate chain is required for 

membrane binding, which in turn is required for proper cellular function 

(Zheng, J. et al. 1993). It has been suggested that fatty acylation –

myristoylation and/or palmitoylation- may represent a common mechanism for 

targeting cytoplasmic molecules to caveolae or other membrane domains 

(Lisanti, M. P. et al. 1994). However, it is unlikely that N-myristoylation is the 

only motif for membrane binding in GAPR-1, since the binding energy of 

myristate to membranes is not sufficient to stably anchor a protein to a 

membrane (Peitzsch, R. M. McLaughlin, S. 1993). In support of this, several 
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myristoylated proteins do not show exclusive membrane localization 

(McCabe, J. B. Berthiaume, L. G. 2001). Therefore, a second interaction is 

required for efficient membrane-binding of myristoylated proteins (reviewed in 

Resh, M. 1999). The two-signal model for membrane binding of N-

myristoylated proteins -defined as either a polybasic cluster of amino acids  or 

a palmitate moiety- (Resh, M. D. 1999) (Fig. 25) could explain the binding of 

GAPR-1 to membranes. As GAPR-1 is expected to be highly charged at 

physiological pH (pI=9.4), electrostatic interactions could provide an additional 

anchoring signal as it has been shown for MARCKS proteins (McLaughlin, S. 

Aderem, A. 1995). GAPR-1 has positive clusters of amino acids both at the N- 

and C-terminus which could be involved in binding to Golgi membranes. Thus, 

the interaction of GAPR-1 with membranes is proposed to occur via positive 

residues (Lys-Arg) (Kim, J. et al. 1991), and a myristate group. Non-

myristoylated recombinant GAPR-1 is able to interact with many types of 

membranes such as liver Golgi membranes and peroxisomes that do not 

contain endogenous GAPR-1 (data not shown); these interactions are likely 

due to electrostatic interactions properties of the protein with membranes.  

 

 

Figure 25. The two-signal model for membrane binding of myristoylated proteins. 
Myristoylated proteins require a second membrane binding signal. A cluster of basic residues 
can provide electrostatic interactions with acidic phospholipid head groups at the inner leaflet 
of the bilayer (myristate + basic). One or two palmitate moieties can provide additional 
hydrophobic interactions with the bilayer (myristate + palmitate). Alternatively, membrane 
interaction of singly acylated proteins can be enhanced by protein-protein interactions with 
other membrane-bound proteins (Resh, M. D. 1999).  
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According to the two-signal model for membrane-binding, protein-protein 

interactions could be involved in membrane-binding of GAPR-1 as well. 

Proteins belonging to the GICs such as B subunit of the vATPase, flotillin-1, 

caveolin and GAPR-1 interact with each other after disruption of the 

microdomain scaffold (Gkantiragas, I. et al. 2001). These results suggest that 

the lipid scaffold may not be absolutely necessary for membrane-binding of 

GAPR-1. In this work it is reported that GAPR-1 interacts directly with 

caveolin-1 (Fig. 7, and Eberle, H. B. et al. 2002). This interaction is possibly 

mediated via a potential caveolin-binding motif (Okamoto, T. et al. 1998), 

although this remains to be addressed. However, the interaction of GAPR-1 

with Caveolin does not clarify the lipid raft localization of GAPR-1: in contrast 

to caveolin-1, GAPR-1 has not been detected at the plasma membrane, which 

is the major site of caveolin localization. Nonetheless, Caveolin-1 does exist 

at the trans-Golgi network and earlier compartments (Gkantiragas, I. et al. 

2001; Fielding, C. J. Fielding, P. E. 2003). 

Alternative to the two-signal model it is possible that an N-myristoyl group 

plays a structural role to stabilize a protein conformation on the membrane 

(Zheng, J. et al. 1993), In this case, GAPR-1 binds the membrane by its 

electrostatic and protein-protein characteristics, and the myristate-group 

would determine its conformation on the membrane. It is also possible that 

GAPR-1 is subject to a “myristoyl switch”, triggered by electrostatic and 

protein-protein interactions, which can affect the membrane binding (reviewed 

in Resh, M. D. 1999). The myristoyl-switch can be activated by ligand binding 

(ADP-ribosylation factor), by electrostatic interactions (MARKCS) 

(McLaughlin, S. Aderem, A. 1995) or by proteolysis (Zhou, W. et al. 1994).  

1.2 A possible role of phosphorylation in membrane partitioning of 
GAPR-1? 

 
Dynamic partitioning of selected proteins to lipid microdomain appears 

necessary to provide rapid, efficient, and specific propagation of stimuli to 

targets (Oh, P. Schnitzer, J. E. 2001) (Prior, I. A. Hancock, J. F. 2001). 

Phosphorylation of proteins can e.g. control their interaction to other proteins, 
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their location in the cell, and their propensity for degradation by proteases. 

Sawai, T. et al., (1993) have shown that phosphorylation of MARCKS – an N-

myristoylated protein- moves it reversibly off the membranes, implying a 

mechanism to control the reversible binding of myristoylated proteins to 

membranes. For MARCKS the mechanism is understood to some extent, 

since phosphorylation occurs to the calmodulin-binding domain of MARKCS, 

a basic cluster that also binds to acidic lipids in membranes. GAPR-1 does 

not have the same positive cluster arrangement as MARCKS, but 

phosphorylation of GAPR-1 may change its partitioning to membranes (Fig. 

26). Phosphorylation experiments show that highly phosphorylated GAPR-1 is 

present in cytosol. Phosphorylation of GAPR-1 is, however, not restricted to 

the cytosolic pool and the largest pool of phosphorylated GAPR-1 is found in 

lipid microdomains. Given the high amounts of GAPR-1 molecules in 

microdomains, the degree of phosphorylation per molecule of GAPR-1 seems 

however, lower. Since the level of phosphorylation seems dissimilar between 

different pools, phosphorylation might allow GAPR-1 to distribute between 

different compartments within the cell i.e. the raft fraction, the non-raft fraction, 

and cytosol. Phosphorylation of GAPR-1 could effect the electrostatic 

interactions with membranes, similar as for the MARCKS proteins 

(McLaughlin, S. Aderem, A. 1995; Resh, M. D. 1999).  Phosphorylation could 

also affect the conformation of GAPR-1, thus affecting its partitioning to 

different pools. A conformation-dependent microdomain localization has been 

described for H-ras (Prior, I. A. et al. 2001). GTP loading shifts this equilibrium 

to the fluid phase membrane. The exact mechanism is unknown, but it is 

believed that GTP loading causes a conformational change, which is 

transmitted through to the membrane anchor to reduce lipid microdomain 

affinity.  

1.3 Alternative roles of phosphorylation of GAPR-1 
 
Many proteins are degraded upon phosphorylation (Johnson, G. L. Lapadat, 

R. 2002). Serum starvation conditions -used to treat CHO cells for different 

periods of time (3, 6, 9, 24 and 48 hrs) - cause a proliferative arrest in G0/G1 

(Cooper, S. 1998; Cooper, S. 2003) (Fig. 23). During this process, GAPR-1 is 
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down-regulated. This is in agreement with the differential expression of 

GAPR-1 in various tissues. GAPR-1 is absent in tissues terminally 

differentiated (brain and skeletal muscle) (Eberle, H. B. et al. 2002). In other 

types of cells, including some lymphocytes, GAPR-1 is highly expressed. The 

experimental conditions used for phosphorylation induces arrest in G0/G1. It 

has been proposed that cells are able to enter the G0 phase at the instant of 

starvation (Zetterberg, A. Larsson, O. 1985). Thus, GAPR-1 phosphorylation 

may result in release from the membrane and subsequent degradation. 

 

 
 

Figure 26. Schematic view of the GAPR-1 partitioning to Golgi membranes and 
phosphorylation. GAPR-1, located to Golgi microdomains, may distribute differentially upon 
phosphorylation. Highly phosphorylated GAPR-1 localizes to the lipid rafts and cytosol, 
whereas a low phosphorylated fraction seems to be membrane bound but non-raft 
associated. The scheme also depicts GAPR-1 interaction with Caveolin-1. Symbols: red 
hairpin shape, Caveolin-1; blue nudge shape, GAPR-1; red circles, phosphate-groups 
(phosphorylation).   
 
 
 Phosphorylation could also regulate GAPR-1 interaction with Caveolin-1. This 

might affect GAPR-1 activity, as has been proposed for other caveolin 

interacting proteins (Smart, E. J. et al. 1999): Caveolin-1 can suppress 

GTPase activity of heterotrimeric G proteins and it inhibits kinase activity of 

Src family tyrosine kinases.  Inhibition occurs via the caveolin-binding domain, 

which is also present in GAPR-1.  In all cases, the caveolin-binding motif is 

located within the enzymatically active catalytic domain of a given signaling 

molecule (Smart, E. J. et al. 1999). In GAPR-1 the caveolin-binding domain is 
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not located within the cleft suggested to be a potential active center, but rather 

exposed to the exterior of the molecule (Fig. 11). This implies a distinct 

mechanism of regulation.  

 
Preliminary studies show an inverse correlation between the expression of 

GAPR-1 and Caveolin-1 in CHO cells. As shown before, GAPR-1 expression 

is up-regulated in cell lines and tissues with a high turnover (Eberle, H. B. et 

al. 2002). On the other hand, Caveolin-1 expression is down regulated in 

human tumors, in cell lines derived from human tumors, and in cell lines 

transformed by oncogenes (reviewed in Volonte, D. et al. 2002). It is been 

suggested that Caveolin represents a candidate protein in mediating cellular 

senescence, and it is known that overexpression of Caveolin-1 in mouse 

embryonic fibroblast is sufficient to lock these cells in the G0/G1 phase of the 

cell cycle (Galbiati, F. et al. 2001). This implies that Caveolin-1 mediates cell 

cycle arrest.  The cell cycle arrest has a differential impact on the expression 

of both proteins: GAPR-1 is down-regulated, whereas Caveolin-1 is up-

regulated (Fig. 23). If GAPR-1 is a signaling molecule, then Caveolin may 

function as a negative regulator to inhibit its activity, as has been suggested 

for other signaling molecules with Caveolin-binding motif (Okamoto, T. et al. 

1998). 

2 Structure function-relationship of GAPR-1 

2.1 GAPR-1and the superfamily of the plant pathogenesis-related 
proteins 

 
Sequence alignment of GAPR-1 (Fig. 27) shows significant homology and 

identity with members of the plant pathogenesis-related proteins (group 1). 

These proteins share typical characteristics present in most family members: 

among them are the absolutely conserved histidines (His54 and His103 in 

GAPR-1) and glutamates (Glu65 and Glu86), and the highly conserved motifs 

GENL(A) and gHyTQvVW (amino acids 64-68 and 102-109 respectively, in 

GAPR-1) (Eberle, H. B. et al. 2002). For plant pathogenesis-related protein 

(PR-1) many hypotheses have been proposed to understand the role of the 

conserved amino acid residues in family members (Fernandez, C. et al. 1997; 
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Szyperski, T. et al. 1998; Henriksen, A. et al. 2001). Szypersky, T et al. (1998) 

show that His-69 and His-127 are “solvent exposed and strictly conserved” in 

p14a (a plant PR-1 protein), and suggested that these residues are 

candidates for a role in the active site. Moreover, they stated that the two 

histidines are in close spatial proximity to the conserved glutamates 88 and 

113 concluding that these amino acids seem not to have a structural role in 

both P14a and/or GliPR. The same authors calculated that the pocket 

containing the “conserved active site” residues is the largest cleft on both 

protein surfaces (Szyperski, T. et al. 1998), suggesting that GliPR and P14a 

proteins might function as enzymes. GAPR-1 contains similar conserved 

residues (His54, His103, Glu65, and Glu86) in its structure and shows similar 

features for the cleft region together with the two other member proteins of 

this superfamily that have been studied in terms of their structures (P14a and 

Ves-v 5) (Szyperski, T. et al. 1998; Henriksen, A. et al. 2001) (Fig. 28). In 

GAPR-1 (Fig. 29), the cleft contains highly (blue) and absolutely (red) 

conserved residues found throughout the PR-1 family of proteins, which 

suggests that this region is of extreme importance for the role of this group of 

proteins.  

 
What is known about possible functions of family members? In plants, PR-1 

proteins are synthesized upon interaction with pathogens. Mammalian family 

members are present in e.g. snake venom (Morrissette, J. et al. 1995; 

Yamazaki, Y. et al. 2002) or produced in reproductive organs and cells 

(Kasahara, M. et al. 1989). The only indication for a biological function of the 

mammalian family members has been i) the weak trypsin-inhibiting effect of 

GliPR, ii and iii) the blocking by the toxin helothermine of the ryanodine 

receptors and of the high K+-induced contraction of the artery. So far GAPR-1 

is the only intracellular member of the PR-1 family with a tight membrane 

association. It lacks the signal sequence present in other PR-1 family 

members, resulting in an intracellular localization of the protein (Eberle, H. B. 

et al. 2002). The plant pathogenesis-related proteins have been implicated in 

a mechanism of defense against pathogen attacks of plants (Heil, M. Bostock, 

R. M. 2002) (Van Loon, L; Van Strien, E. 1999). Interestingly, GAPR-1 not 
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only localizes to the Golgi, but also to other membrane structures within the 

cell, such as phagosomes that are also involved host-pathogen interactions 

(Dora Kaloyanova unpublished data).  
 

GAPR-1    1 --MGKSAS--KQFHN--------------------------------------------- 
CG2337    1 --MGYLSAPIKHAHNKSSSRAQIDILQPKTRNQSHAEDKVSSTSPCSSCFFAPAAAAVSK 
PR1       1 MKVIYCSRLLLILAALVG------------------------------------------ 
PRY1      1 MKLSKLSILTSALATSALAAPAVVTVTEHAHEAAVVTVQGVVYVENGQTRTTYETLAPAS 
AG5       1 NNYCKIKCLKGGVHTACKYESLKPNCAN-------------------------------- 
TPX1      1 MALLPVLFLVTVLLPSLPAEGKDP------------------------------------ 
GliPR     1 --MRVTLATIAWMVSFVSNYSHTAN----------------------------------- 
 
GAPR-1   12 ------------------------------------------------------------ 
CG2337   59 ATDIVVNDDGPRHQPHVWEPELVPPQSALAHGWQSQTFIATAPWSNSENLISGWGVAPLE 
PR1      19 ---------------------------ALVHPSRAQ------------------------ 
PRY1     61 TATPTSTATALVAPPVAPSSASSNSDVVLSALKNLASVWG-------------------- 
AG5      29 -----------------------KKVVAYGLTKQEK------------------------ 
TPX1     25 -----------------------AFTALLTTQLQVQR----------------------- 
GliPR    24 ---------------------------ILPDIENED------------------------ 
 
GAPR-1   12 ------------------------------------------------------------ 
CG2337  119 LVRCCWRSELIALSFGLCLCEVICQYPNAKSMKPQASCQHNKQIAAEASVLRQLDFFDME 
PR1      28 -----------------N------------------------------------------ 
PRY1    101 ----------KTTDSTTTLTSSESTSQSLAQATTTSTPAAASTTSTPAATTTTSQAAATS 
AG5      42 ------------------------------------------------------------ 
TPX1     39 ------------------------------------------------------------ 
GliPR    33 ------------------------------------------------------------ 
 
GAPR-1   12 --------------EVLKAHNEYRQKHG-----------VPPLKLCKNLNR--EAQQYSE 
CG2337  179 KPLSLVLVIADLQEDHLNEHNRLREKHG-----------SPPLTLDDELTK--GCEEYAK 
PR1      29 ---SP--------QDYVNAHNQARQAVG-----------VGPVQWDGTLAA--FAQSYAD 
PRY1    151 SASSSDSDLSDFASSVLAEHNKKRALHKD----------TPALSWSDTLAS--YAQDYAD 
AG5      42 -------------QDILKEHNDFRQKIARGLETRGNPGPQPPAKNMKNLVWSDELAYIAQ 
TPX1     39 --------------EIVNKHNELRKAVS------------PPASNMLKMEWSREVTTNAQ 
GliPR    33 -----------FIKDCVRIHNKFRSEVK------------PTASDMLYMTWDPALAQIAK 
 
GAPR-1   45 ALASTRILKHSPE---SSRGQ-----CGENLAWASY----DQTGKEVADRWYSEIKNYNF 
CG2337  226 VLANNEKLEHSSS---AGQN------YGENLCMRS------QTPLQCVQDWYDEIADYDF 
PR1      65 RLRGDCRLVHS-------GGP-----YGENLAWSSA----DFSGVSAVNLWVNEKANYNY 
PRY1    199 NYDCSGTLTHS-------GGP-----YGENLALGY-------DGPAAVDAWYNEISNYDF 
AG5      89 VWANQCQYGHDTCRD-VAKYP-----VGQNVALTGSTAAKYDNPVKLVKMWEDEVKDYNP 
TPX1     73 RWANKCTLQHSDPEDRKTSTR-----CGENLYMSSD----PTSWSSAIQSWYDEILDFVY 
GliPR    70 AWASNCQFSHNTRLKPPHKLHPNFTSLGENIWTGSVP---IFSVSSAITNWYDEIQDYDF 
 
GAPR-1   93 QQPGFTSGTG---HFTAMVWKNTKKMGVGKASAS--------DGSSFVVARYFPAGNVVN 
CG2337  271 EKPQFAMSTG---HFTALVWKNAKKMGIGQAKDK--------KGYYWVVARYYPPVNVN- 
PR1     109 ASNTCINGECR--HYTQVVWRKSVRIGCGKARCN--------NGGTIISCNYDPRGNYVN 
PRY1    240 SNPGFSSNTG---HFTQVVWKSTTQVGCGIKTCGG-------AWGDYVICSYDPAGNYEG 
AG5     143 KKKFSENNFLKIGHYTQMVWANTKEVGCGSIKYIQDK-----WHKHYLVCNYGPSGNFGN 
TPX1    124 GVGPKSPNAVVG-HYTQLVWYSTYQVGCGIAYCPNQD-----SLKYYYVCQYCPAGNNMN 
GliPR   127 KTRICKKVCG---HYTQVVWADSYKVGCAVQFCPKVSGFDALSNGAHFICNYGPGGNYPT 
 
GAPR-1  142 EG--FFEENVLPPKK--------------------------------------------- 
CG2337  319 -G--QFEENVLPPIKGEGDENGQGNLNRFQVDNIPIIVMLWLCWQFTN------------ 
PR1     159 EK--PY------------------------------------------------------ 
PRY1    290 ----EYADNVEPLA---------------------------------------------- 
AG5     198 EE--LYQTK--------------------------------------------------- 
TPX1    178 RKNTPYQQGTPCAGCPDDCDKGLCTNSCQYQDLLSNCDSLKNTAGCEHELLKEKCKATCL 
GliPR   184 WP---YKRGATCSACPNNDKCLDNLCVNRQRDQVKRYYSVVYPGWPIYPRNRYTSLFLIV 
 
GAPR-1      -------------------------- 
CG2337      -------------------------- 
PR1         -------------------------- 
PRY1        -------------------------- 
AG5         -------------------------- 
TPX1    238 CENKIY-------------------- 
GliPR   241 NSVILILSVIITILVQLKYPNLVLLD 
 

 
Figure 27. Amino acid sequence alignment of GAPR-1 with relatives of the superfamily 
of plant pathogenesis-related proteins (PR-1). For each of the subfamilies, including human 
GliPR, CRISPs, plant PR-1 proteins, allergens of insect venom and snake or lizard venoms, 
the protein sequence of the member with the highest homology to GAPR-1 is aligned to GAPR-
1. Identical amino acid residues in family members are highlighted in black. Conservative 
amino acid exchanges are highlighted in grey. 
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Figure 28. Comparison of the three-dimensional structure of GAPR-1, p14a (PDB entry 
1CFE) and Ves v 5 (PDB entry 1QNXA), members of the plant pathogenesis-related 
group 1 (PR-1).  a, The overall structure of P14a tomato (left) is closely related to the 
structure of GAPR-1 (center) and Ves V 5 (right). Figures prepared by Dr. Matthew Groves, 
using MolScript® software (Kraulis, P. 1991). 
 

In plants, interaction with viruses, bacteria or fungi will elicit a set of localized 

responses in and around the infected host cells. These responses include an 

oxidative burst (Heil, M. Bostock, R. M. 2002) that leads to a hypersensitive 

response (HR), and a concomitant increase in the synthesis of PR proteins 

(Klessig, D. F. et al. 2000). The oxidative response is another line of defense 

in the innate immunity, where the production of reactive oxygen intermediates 

(ROI) and reactive nitrogen intermediates (RNI) can lead to cell death 

(Kombrink, E., Schmelzer, E. 2001). High output production of reactive 

oxygen intermediaries (ROI) is the specialty of mammalian phagocytes. 

Phagocytes assemble an NAPDH oxidase complex on phagosomal 

membranes that catalyzes the production of a series of highly toxic oxygen 

derived compounds, i.e. (O2
-) or nitric oxide (NO). Production of NO induces 

cell cycle arrest and cytostasis in mammalian cells (Pervin, S. et al. 2001), In 

plants, the NO and ROS production correlates with the up-regulation of the 

expression of PR proteins (Klessig, D. F. et al. 2000). This raises the question 

whether similar mechanisms may apply to GAPR-1 during the production of 

ROS and NO in mammalian cells. 

2.2 Effect of mutations on GAPR-1 structure 
 
To study the role of the most conserved amino acids present in GAPR-1, site-

directed mutagenesis was carried out to study their effect on protein 

interactions to potential cytosolic partners, as well as on the structure of 
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GAPR-1. The mutation on GAPR-1 did not significantly affect its behavior 

during purification, including GAPR-1mut purification by cation exchange 

chromatography, suggesting that the electrostatic properties were not 

changed. However, GAPR-1mut crystals did not grow when the same 

screening methods for crystallization were used. 

 
The Far-UV spectra obtained by circular dichroism revealed no major 

differences between GAPR-1wt and GAPR-1mut in their content of α-helixes 

and β-sheets. The minor changes observed in the CD spectrum (Far-UV) of 

GAPR-1mut protein (Fig. 20A) may originate from an altered content in amino 

acids residues rather than from alterations in the conformation of the 

polypeptide backbone. In Near-UV (Fig. 20B), the complex spectrum reflects 

the sum of proportion and position of the combined aromatic residues in the 

protein. As mentioned before (see Results), GAPR-1 contains several 

aromatic residues that contribute to the near-UV spectrum. It is possible that 

changes in the 250-290nm region of the spectrum are due to phenylalanines 

exposed to solvent and to tyrosines (Tyr20, Tyr72, Tyr84, and Tyr90) at the 

contact interface (Fig. 29 and 30). The distribution or positioning of these 

amino acids may have been altered by the formation of dimers. This would be 

in agreement with the CD spectra, showing equal amounts of α-helixes, and 

β-sheets. In addition, these spectra for GAPR-1 (wt and mut) reflect the 

behavior observed in size-exclusion chromatography. The tendency of GAPR-

1 to form dimers was confirmed by independent experiments. Crosslink 

experiments revealed a crosslink product at 34kDa, strongly suggesting that 

GAPR-1 is present as a dimer at the membrane. The existence of a dimer 

may have implications for GAPR-1 function. It was not possible to determine 

whether Caveolin-1 interacts with the dimer or monomer form of GAPR-1, due 

to experimental limitations of the chemical crosslinking method. 

 
The crystal structure predicts the area of interaction between the two GAPR-1 

molecules in the homo-dimer. This area (Fig. 29, right view, in blue and light-

grey) overlaps partially with the area where the highly conserved amino acid 

residues are located (Fig. 29, left view). Therefore, mutations in the highly  
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Figure 29. Structure of the GAPR-1 monomer. Left view: molecular surface representation 
of a GAPR-1 monomer with highly (blue) and absolutely (red) conserved amino acids. His54, 
His103, Glu64 and Glu86 are located in the absolutely conserved area (red); Right view: 
region of GAPR-1 potentially responsible for the interaction during dimer formation or contact 
interface (blue). Dark blue depicts region of contact during dimer formation; light blue-white 
represents regions of closer contact; red represent regions in GAPR-1 distant from the 
contact interface. The aromatic residues (Tyr20, Tyr20, Tyr84 and Tyr90) located in the 
contact interface in dimer are pointed out. Contact region in GAPR-1 includes the highly and 
absolutely conserved amino acids. Similar amino acid residues have been pointed out in 
P14a and Ves v 5 to be conserved and involved in the potential function of these proteins. 
Space-filling representations of GAPR-1 were prepared by Dr. Matthew Groves using Grasp® 
(Nicholls, A. et al. 1993). 
 
 

 
Figure 30. GAPR-1 dimer structure. GAPR-1dimer, showing the aromatic amino acids at 
the interface between the two molecules. Emphasis has been put on Tyrosine residues, 
whose contribution in circular dichroism (near-UV spectrum) may have changed in GAPR-
1mut (see Results, Fig. 17, panel B). Figure depicts Tyr20, Tyr72, Tyr84 and Tyr90, and their 
position in the dimer structure. Ribbon structure representation of GAPR-1 dimmer obtained 
by Dr. Matthew Groves using MolScript® (Kraulis, P. 1991), Raster3D® (Bacon, D. Anderson, 
W. 1988). 
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conserved amino acids may affect the binding forces in the contact area. 

Thus, the conserved amino acids may not only play a role in the function of 

the protein, but also in GAPR-1/GAPR-1 interactions and therefore its 

interaction with other proteins. 

 
The crystal structure of GAPR-1 shows that the active center is buried 

between the two molecules forming the dimer, since this area forms part of 

the contact interface of the protein (Fig. 30). Thus, in the dimmer the active 

center of GAPR-1 is not accessible for interaction. It is tempting to speculate 

that there is a dynamic equilibrium on the membrane between the monomer 

and dimer, where the monomer represents an “active state” (Fig. 11), and the 

dimer represents an “inactive state”. 

3 Interaction of GAPR-1 with cytosolic proteins 
 
The GAPR-1 mutant was a useful tool for identification and determination of 

potential interacting partners. The affinity chromatography elution profile of 

CHO cytosol –from both the GAPR-1 wild type and mutant columns- shows 

similar patterns in terms of proteins eluted from the columns. To increase the 

specificity of binding to the column, elutions were also performed in presence 

of 1% Triton X-100. The protein pattern obtained in those conditions was, 

however, similar to elutions without detergent treatment (data not shown). 

More protein, however bound to the wild type column and the amount seems 

to correlate with the ratio of dimer and monomer in GAPR-1wt and GAPR-

1mut (as observed by size exclusion chromatography). Since a fraction of 

GAPR-1 exists as dimer on Golgi membranes, protein-protein interactions 

occurring in the column (GAPR-1mut) could resemble the protein-protein 

interactions in vivo, where dimerization may imply a mechanism of negative 

regulation for protein interactions with GAPR-1 on the Golgi membrane. 

Peptide mass fingerprinting of proteins eluted from GAPR-1wt affinity column 

revealed an interaction with a cytosolic complex. The protein pattern appears 

similar when CHO and HELA cytosols were applied to the column (see 

Results, Table 4 and 5). Independent of the source of cytosol or pre-treatment 
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of cytosol with SDS, the major component eluting from the column is NCL 

(Fig.17). 

Nucleolin is a ubiquitous, nonhistone nuclear phospho-protein of 

exponentially growing eukaryotic cells, which runs between 100 to 115kDa 

(calculated molecular mass of 76 kD) on a 12% gel (SDS-PAGE) (Lischwe, 

M. A. et al. 1985; Ginisty, H. et al. 1999). It has been implicated in many 

cellular processes, including transcription, packing and transport of ribosomal 

RNA, replication and recombination of DNA, cell cycle progression, and 

apoptosis.(Yang, T. H. et al. 1994; Thiede, B. et al. 2001; Mi, Y. et al. 2003). 

Although generally considered a predominantly nucleolar protein, Nucleolin is 

also found in the nucleoplasm, cytoplasm, and at the cell surface (Dumler, I. 

et al. 1999; Daniely, Y. Borowiec, J. A. 2000; Wang, Y. et al. 2001). Yanagida 

and colleagues (Yanigida, M. et al. 2001) isolated and characterized the 

major NCL binding proteins in a ribonucleoprotein complex. NCL in known to 

interact to 7 ribosomal proteins that were also found in the HeLa preparation 

eluted from GAPR-1 column, and is also known to bind to the identified 

nonribosomal proteins like casein kinase 2, eIF, DNA and RNA helicases, 

and NS-1 associated protein (Yanagida, M. et al. 2001).  NCL can interact 

with about half of ribosomal proteins present in the large and small subunits 

(Yanagida, M. et al. 2001). The complex identified to bind GAPR-1 resembles 

that reported by Yanagida, M. (2001), except for a reduced amount of 

ribosomal proteins. Because NCL was reported not to bind the mature 

ribosomal particles found in the cytoplasm (Ghisolfi-Nieto, L. et al. 1996), the 

ribosomal proteins found to bind GAPR-1 are unlike to belong to mature 

cytoplasmic ribosomes and polysomes. 

 
The in vitro interaction between GAPR-1 and NCL was also observed in the 

yeast two hybrid system (Fig. 22). In addition, it was possible to determine 

that the conserved amino acids residues in the cleft of GAPR-1 play an 

important role in the interaction, since GAPR-1mut showed less activity in the 

yeast two hybrid system (Fig. 22).  Nucleolin consists of three functional 

domains, i.e. an amino (N)-terminal domain, and RNA binding domain (RBD), 
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and a carboxyl-terminal domain (RGG)  (Ginisty, H. et al. 1999). At this point it 

is unknown to which domain GAPR-1 interacts with (see also below), but the 

two hybrid system would be a suitable method to determine which Nucleolin 

domain interacts with GAPR-1.  

 
Ribonuclease activity has been suggested for P14a due to the arrangement of 

the two histidines in the putative active center (Szyperski, T. et al. 1998) and 

such an activity for GAPR-1 could make sense in the context of a large 

ribonucleoprotein complex . Preliminary experiments, however, did not show 

any evidence for such activity (data not shown). Could GAPR-1 have a RNA 

binding activity? Sequence alignment of GAPR-1 with known RNA binding 

motif (Burd, C. G., Dreyfuss, G 1994) does not show any specific similarity or 

identity.  

 
Nucleolin (NCL) expression is regulated during the cell cycle (Belenguer, P. et 

al. 1989)Derenzini, M. et al. 1995; Srivastava, M. Pollard, H. 1999). During 

G0/G1 NCL is down-regulated and localizes entirely to the nucleus. 

Concomitantly -but not necessarily related- GAPR-1 shows down-regulation at 

G0 of the cell cycle; thus, the interaction could take place when both proteins 

are simultaneously expressed. So far, NCL has not been shown to be present 

at the Golgi. Preliminary experiments show Nucleolin localization to an 

isolated, Golgi-enriched fraction (Fig. 24).This Nucleolin localization could be 

due to the presence of GAPR-1 on the same membranes, as indicated in the 

same experiment, where both Nucleolin and GAPR-1 are not present on the 

rat liver Golgi. This result opens the possibility that GAPR-1 and Nucleolin 

interact at the Golgi. Alternatively, the cytosolic pool of GAPR-1 could interact 

with cytosolic or even nuclear Nucleolin, but these experiments must be 

conducted. 

 
In addition to NCL, Template-Activating Factor I α (TAFI α) (accession no 

I59377), and an unknown protein, designated HSPHAPIB or HSAPRIL 

(accession no CAA69265) were found in the GAPR-1 affinity column after 

dissociation of cytosolic protein complex. TAFI has been identified as a 

chromatin remodeling factor in HeLa cells (Kawase, H. et al. 1996), and levels  
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HSAPRIL      1 ------------MKRRIHLELRNRTPAAVRELVLDNCKSNDGKIEGLTAEFVN------- 
Nucleolin    1 -----MVKLAKAGKNQGDPKKMAPPPKEVEEDSEDEEMSEDEEDDSSGEEVVIPQKKGKK 
TAFI         1 MAPKRQSPLPPQKKKPRPPPALGPEETSASAGLPKKGEKEQQEAIEHIDEVQNEIDRLNE 
 
HSAPRIL     42 LEFLSLINVGLISVSNLPKLPKLKKLELSENRIFGGLDMLAEKLPN--LTHLNLSGNKLK 
Nucleolin   56 AAATSAKKVVVSPTKKVAVATPAKKAAVTPGKKAAATPAKKTVTPAKAVTTPGKKGATPG 
TAFI        61 QASEEILKVEQKYNKLRQPFFQKRSELIAKIPNFWVTTFVNHPQVSALLGEEDEEALHYL 
 
HSAPRIL     97 DISTLEPLKKLECLKSLDLFNCEVTNLNDYRESVFKLLPQLTYLDGYDREDQE--APDSD 
Nucleolin  113 KALVATPGKKGAAIPAKGAKNGKNAKKEDSDEEEDDDSEEDEEDDEDEDEDEDEIEPAAM 
TAFI       118 TRVEVTEFEDIKSGYRIDFYFDENPYFENKVLSKEFHLNESGDPSSKSTEIKWKSGKDLT 
 
HSAPRIL    153 AEVDGVDEEEEDEEGEDEED------EDDEDGEEEEFDE--------------------- 
Nucleolin  169 KAAAAAPASEDEDDEDDEDD------EDDDDDEEDDSEEEAMETTPAKGKKAAKVVPVKA 
TAFI       174 KRSSQTQNKASRKRQHEEPESFFTWFTDHSDAGADELGEVIKDDIWPN---------PLQ 
 
HSAPRIL    191 ----EDDEDEDVEGDEDDDEVSEEEEEFGLDEEDEDEDEDEEEEEGGKGEKRKRETDDEG 
Nucleolin  219 KNVAEDEDEEEDDEDEDDDDDEDDEDDDDEDDEEEEEEEEEEPVKEAPGKRKKEMAKQKA 
TAFI       229 YYLVPDMDDEEGEGEEDDDDDEEEEGLEDIDEEGDEDEGEEDEDDDEGEEGEEDEGEDD- 
 
HSAPRIL    233 EDD 
Nucleolin  275 APEAKKQKVEGTEPTTAFNLFVGNLNFNKSAPELKTGISDVFAKNDLAVVDVRIGMTRKF 
TAFI        
 
  

 

Figure 31. Sequence alignment of the potential interacting partners of GAPR-1 from 
HeLa cell cytosol. Nucleolin (accession no A35804, alignment from amino acid 1 to 345), 
Template activating factor I α (TAFI α) (accession no I59377) and HSAPRIL (accession no 
CAA69265) were identified by MALDI-TOF after elution from GAPR-1 affinity columns. 
Cytosolic complexes were dissociated by 1% SDS prior to loading on the columns (see 
Results 2.4.4). The C-terminus region of TAFI α and HSAPRIL shows the highest homology 
to the Nucleolin N-terminal domain (Yanagida, M. et al. 2001). 
 
of TAF-I protein are regulated through the cell cycle in which the chromatin 

structure is dynamically changed (reviewed in (Nagata, K. et al. 1998; 

Okuwaki, M. Nagata, K. 1998). TAFI α and β proteins differ by only a short 

amino terminal regions, but in both proteins a long acidic tail in the carboxyl-

terminal region is present (Nagata, K. et al. 1995). The acidic region is critical 

for TAF-1 activity, and the level of TAF-I activity is dependent on the length of 

the acidic region.  This C-terminal region in TAFIα shares homology with N-

terminus of Nucleolin  and is also present in HSPHAPIB/HSAPRIL (Fig. 31) 

The N-terminal domain in Nucleolin and C-terminal domain in TAFI have been 

implied as nuclear localization signals (Schmidt-Zachmann, M. S. Nigg, E. A. 

1993; Nagata, K. et al. 1998), and these regions contain multiple 

phosphorylation sites, which are regulated during the cell cycle. Little is known 

about HSAPRIL function, although it is potentially involved in Leukemia 

(Mencinger, M. et al. 1998), as it has been pointed out for TAFI (Seo, S. B. et 

al. 2001). Mouse TAFI β is ubiquitously expressed in contrast to TAFIα (i.e. 

Jurkat), which is not present in the mouse liver or brain, but is expressed in 
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spleen and lung, resembling to some extent the differential expression of 

GAPR-1 (Eberle, H. B. et al. 2002). TAFI α and TAFI β show a nuclear and 

cytoplasmic localization in HeLa cells. The function of TAFI α seem to be less 

clear as for TAFI β ((Seo, S. B. et al. 2001; Cervoni, N. et al. 2002), but there 

are some similarities with functions reported for Nucleolin.  
  

4 Perspectives of GAPR-1 function: Rafts and Nucleolin 
 
The function of GAPR-1 remains to be determined. Its potential regulation 

during the cell cycle, its interaction with other proteins such as Caveolin-1 and 

Nucleolin, as well as its presence on other membranes within the cell (i.e. 

phagosomes) can help to understand its role. 

  
The presence of GAPR-1 in phagosomes supports the premise of its potential 

involvement in the innate immunity, since phagocytosis is one of the initial 

lines of defense in animals. GAPR-1 is associated with lipid microdomains at 

the phagosomes (Dora Koloyanova unpublished data), and these 

microdomains may act as a platform to concert a specific response during 

bacterial infection. Interestingly, many other proteins found in GICs 

(Gkantiragas, I. et al. 2001) seem to be associated with phagosomes 

(Dermine, J. F. et al. 2001) as well, suggesting a possible pathway between 

the Golgi and other membrane structures within the cell. Microdomains at 

phagosomal membranes may have a role in phagosome maturation (Vieira, 

O. V. et al. 2002).  

 
There have been reports of a variety of signaling pathways associated with 

lipid rafts at the plasma membrane and other organelles (Brown, D., London, 

E. 1998). These include several signaling proteins, such as heterotrimeric G 

proteins, Ras, Src, endothelial nitric oxide synthase (eNOS), and protein 

kinase C. Many of these proteins have been reported to interact with the 

caveolin-1 scaffolding domain (Okamoto, T. et al. 1998), although it is still 

matter of debate whether this scaffolding domain in Caveolin-1 has functional 

significance. GAPR-1 is present in microdomains at the Golgi apparatus, 

along with some proteins described to interact with Caveolin-1, such as the 
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heterotrimeric G proteins (Gα subunits) (Gkantiragas, I. et al. 2001). 

Additionally, Caveolin-1 is down-regulated in transformed cells (Volonte, D. et 

al. 1999), whereas GAPR-1 seems to be up-regulated (i.e. in NRK  and AT3 

cells, data not shown). If any negative effect on GAPR-1 activity results from 

an interaction with Caveolin-1, then this may be modulated by the expression 

levels of both proteins in the cell. In phagosomes, Caveolin-1 is absent 

(Dermine, J. et al. 2001; Dora Koloyanova unpublished data), whereas 

GAPR-1 is present on the phagosomes and associated with lipid 

microdomains. In conclusion, a specific combination of proteins in protein 

complexes likely determines the final outcome of signaling pathways. Specific 

combinations of proteins in protein complexes can be regulated in several 

ways, for example by the expression levels of proteins, by containment is 

similar or different sub-cellular membranes, or even within a membrane by 

containment with lipid rafts. Based on these considerations, GAPR-1 could 

have a different function at the Golgi complex as compared to phagosomes. 

 
A GAPR-1 interaction with Nucleolin has been identified during these studies, 

but what are the implications of this interaction? Nucleolin has been 

suggested to play a role in innate immunity in mammals (Garcia, R. et al 

2000). This suggestion comes from the observation that phosphorylation of 

Nucleolin in macrophages-like cells upon infection with Mycobacterium avium. 

These studies imply that infection impaired phosphorylation of Nucleolin, and 

showed that only cytosolic Nucleolin seems to be affected. The authors 

suggested that these phosphorylation events are related to cellular apoptosis, 

and prevention of programmed cell death could result in the possibility of a 

prolonged intracellular survival of mycobacteria. It is known that the N-

terminus of Nucleolin is highly phosphorylated during the cell cycle, and 

phosphorylation affects the distribution of the Nucleolin within the cell (Ginisty, 

H. et al. 1999). If GAPR-1 interacts with the N-terminal domain in Nucleolin, 

this could imply a way to regulate phosphorylation during pathogen attack. 

The interaction between Nucleolin and GAPR-1 could occur at Golgi 

membranes (Fig. 24) and this interaction may regulate the amount of cytosolic 

Nucleolin available for phosphorylation. Nucleolin has been shown to 
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associate to lipid raft components at the cell surface (Nisole, S. et al. 2002; 

Said, E. A. et al. 2002) and was implicated in a mechanism of early events in 

the HIV entry process. Interestingly, Nucleolin localization to lipid 

microdomains seems to be dependent on infection, since Nucleolin in 

uninfected cells is not detergent-insoluble associated (Nisole, S. et al. 2002). 

The interaction between GAPR-1 and Nucleolin may represent a new 

mechanism of regulation of innate immunity in mammalian cells. 
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Materials and Methods 
 
Materials 

1 Chemicals 

All commonly used chemicals were purchased from either Merck (Darmstadt), 
Sigma (Deisenhofen), Roth (Karlsruhe), Fluka (Taufkirchen), Qiagen (Hilden), 

Amersham-Biotech (Freiburg), BioRad (Mϋnchen) or Boehringer (Mannheim). 

The reagents were ordered directly at the company or via the chemical centre 
Heidelberg (Theoretikum der Universität Hiedelberg).  

 

1.1 Detergents 

Triton X-100, Tween-20 and NP-40 were obtained from Merck, Sigma and 

Calbiochem, respectively.  
 

1.2 Inhibitors 
Brefeldin A was purchased from Sigma, stored in aliquots of 7.5 mM in 

methanol. The working concentration of Brefeldin A was 5 µM. Mixtures of 

protease inhibitors were obtained from Roche as tablets. Each tablet was 

sufficient for a 50 ml solution. 

 

1.3 Buffers 

A List of most commonly used buffers during this experimental work is shown 
below. All buffers were prepared as aqueous solutions. 

 

PBS buffer 
10X PBS: 1.36 M NaCl, 357 mM Na2HPO4, 143 mM KH2PO4 and 30 mM 

KCl.  PBST was obtained by mixing PBS buffer supplemented with Tween-20 

to 0.05% final concentration.  PBS was adjusted to pH 7.4. 
 

PEN buffer 
PEN buffer was prepared as a 5X stock solution, containing 125 mM PIPES, 
10 mM EDTA and 1.5 M NaCl, and adjusted to pH 6.5 with NaOH. 
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TAE buffer 
50X TAE contained 242 g Tris base, 57.1 ml of glacial acetic acid and 18.61 g 

of EDTA, and adjusted to 1 L solution with MiliQ H2O. 
 

Running buffer for electrophoresis 
10X SDS-PAGE running buffer contained 30.2 g Tris base, 188 g of glycine 

and 10 g of SDS, and adjusted to 1 L solution with MiliQ H2O.  
 

Blotting buffers for semi-dry transfer 
Anode I: 300 mM Tris and 20% (v/v) methanol. 

Anode II: 25 mM Tris and 20% methanol.  

Cathode buffer: 25 mM Tris, 40 mM aminocaproic acid and 20% methanol. 
 

Sample cocktail buffers 
Sample buffer for DNA: 6X stock solution contained 0.25% bromophenol 
blue, 40% sucrose, 60 mM Tris-HCl, pH7.4 and 6 mM EDTA.  
Sample cocktail I (SCI): 50 mM Tris-HCl pH 6.8 and 4% SDS  

Sample cocktail II (SCII): A 3X stock solution contained 187.5 mM Tris-HCl 
pH6.8, 15% β-mercatoethanol, 6% SDS, 30% glycerol and 0.0675% 
bromophenol blue. 

 

Staining Solution for SDS-PAGE 
Staining buffer: 40% ethanol, 10% glacial acetic acid and 0.25% coomassie 

blue R-250. 

Destaining buffer: 20% ethanol and 5% acetic acid. 
Ponseau S solution: prepared by adding 0.8g of the dye dissolved in 4% 

(w/v) TCA. 
 

1.4 Media 

Mammalian cells culture media 
α-MEM and DMEM were purchased from Gibco BRL (Invitrogen), 
reconstituted into water, sterilized by passing through 0.2µM filters and 
supplemented with 10% of fetal calf serum and 10 mg/ml of penicillin and 
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streptomycin.  L-Glutamine was added to both media. Non-essential amino 
acids were added to DMEM only. 

 

Bacteria and yeast culture media 
 
Luria-Bertani broth (LB) was prepared according to guidelines of Molecular 

Cloning (3rd Edition). 1 L of medium contained 10 g of sodium chloride, 10 g 
of Bacto-Trypton and 5 g of yeast extract. pH was adjusted to 7.4. For plates, 

15 g/L agar was added to the preparation. 
YPD medium was prepared as follows: 10 g of BactoYeast extract, 20 g of 

BactoPeptone and Dextrose were dissolved in 1 L of MilliQ water and 

autoclaved. 

 
SDC-URA plates 
For preparation of plates, 3,375 g of yeast nitrogen base were added to 500 
ml of MilliQ, complemented with 1 g of glucose and 0.275 g of complete 
supplement mixture (CSM) without Leucine, Triptophan, Histidine and Uracil, 

and 5 g of agar. The medium was autoclaved and poured into the plates.  
 

Xgal plates for Two Hybrid Assay  
These plates were used with the yeast strain EGY48 bearing the plasmids 

pSH18-34, pJG4.5 and pEG202. In 800 ml of MilliQ water 6.7 g of Yeast 
nitrogen base (without amino acids), 0.54 g CMS-all, and 20 g of agar were 

added. The mix was autoclaved.  Before preparing the plates, the mix was 

adjusted with a solution containing: 10 ml of 10 g/L leucine, 100 ml of 20% 
Galactose, and 10% Rafinose (preheated at 50oC), 100 ml 10X BU salts 

(preheated at 50oC), and 4 ml of 20 mg/ml X-Gal dissolved in 
Dimethylformamide.  

BU salts 10X (1 L): 261 mM Na2HPO4.2H2O; 250 mM NaH2PO4.H2O. 

The pH was adjusted to 7.0 with NaOH. pH must be controlled carefully, since 
some interactions in the two hybrid system can be affected by variations of 

0.2 pH units of the plate.  
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2 Antibodies 

2.1 Primary Antibodies 
 
For the immunochemical studies the following antibodies were used: 

• Caveolin-1 antibody (N-20) (rabbit). Santa Cruz Biotechnology Inc. 

(USA); 

• GAPR-1 antibody (α-1852) (rabbit). (Eberle, H. PhD Thesis); 

• Nucleolin antibody (mouse). Santa Cruz Biotechnology Inc. (USA); 

• Actin antibody (rabbit). Sigma Co. Saint Louis, MO. (USA); 

• p23 antibody against luminal domain of p23 (KAI2/3) (Sohn, K. et al. 

1996). 

2.2 Secondary Antibodies 
 
HRP-conjugated goat anti-rabbit IgG(H+L) and HRP-conjugated goat anti-

mouse IgG(H+L) were obtained from BioRad. HRP-conjugated Protein G 

Sepharose Beads was purchase from BioRad. 

3 Plasmids 
 
The following plasmids were used during this work various purposes as 

indicated below:  

pQE60  (Qiagen). GAPR-1 overexpression 

pbb131 (Duronio, R. J. et al. 1990). Expression of N-myristoyl 

transferase in E. Coli to acylate GAPR-1. 

pCDNA3.1(-/+)  (Invitrogen). GAPR-1 expression in mammalian cells. 

pEG202 (Kindly provided by Dr. Maribel Geli) Two Hybrid System. Fusion 

of GAPR-1 or Nucleolin to lexA (Bait plasmid) 

pJG4.5 (Kindly provided by Dr. Maribel Geli). Two Hybrid System. 

Fusion of GAPR-1 or Nucleolin to B42 (Prey plasmid) 

pEGFP-N1 (Invitrogen). GAPR-1 fusion with Green fluorescence Protein 

(GFP) or Nucleolin fused to GFP (Dr. J. A. Borowiec, NYU, 

School of medicine, New York, USA) 

pIRES2-EGFP (BD Biosciences). Bicistronic plasmid for simultaneous 

expression of GAPR-1 and GFP. 
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pKG-NUC (Kindly provided by Dr. Ahamed Saleem and Dr. Eric Rubin 

(Haluska, P. et al. 1998) containing full length Nucleolin fused to 

GST. 

4 Oligonucleotides 

The oligonucleotides used in this thesis were synthesized by NAPS 

(Goettingen) (HPLC grade). All oligonucleotides were solubilized in sterilized 

water to a final concentration of 100µM. All sequences are presented in table 
6. 
 

Designation Sequence ( 5’-3’) Purpose 

p17-2-hy1 AAACCAGAATTCATGGGCAAGTCAGCTTCCA 

p17-2-hy2 AAACCACTCGAGTTACTTCTTCGGCGGCAG 

NCL-2-hy1 AAACCAGAATTCATGGTGAAGCTCGCGAAG 

NCL-2-hy2 CCACCGCTCGAGCTATTCAAACTTCGTCTTCTTTCCTT 

Two Hybrid 

system 

(THS) 

PEG1 CGTCAGCAGAGCTTCACCATTG 

PJG1 CTGAGTGGAGATGCCTCC 

Sequencing 

of  THS 

constructs 

MUT1 AAGCACAGCCCGGAGTCCAGCCGTGGCCAGTGTGGGGCTAAC 

MUT2 GTTAGCCCCACACTGGCCACGGCTGGACTCCGGGCTGTGCTT 

Mutation: 

substitution 

GLU65 to 

ALA65 

MUT3 ACGAGGATCCTCAAGGCTAGCCCGGAGTCCAGCCGTGGC 

MUT4 GCCACGGCTGGACTCCGGGCTAGCCTTGAGGATCCTCGT 

Mutation: 

substitution 

HIS54 to 

ALA54 

MUT5 GAGGTGGCTGATAGATGGTACAGTGCTATCAAGAACTATACCTTCCAG 

MUT6 CTGGAAGTTATAGTTCTTGATAGCACTGTACCATCTATCAGCCACCTC 

Mutation: 

Substitution 

GLU86 to 

ALA86 

MUT7 GGCTTCACCTCGGGGACTGGAGCTTTCACGGCGATGGTATGG 

MUT8 CCATACCATCGCCGTGAAAGCTCCAGTCCCCGAGGTGAAGCC 

Mutation: 

Substitution 

HIS103 to 

ALA103 

52169N(1) GGGCTTCTTCGAAGAAAACGTCCTGCCGAAGAAGTAAAGATCTC 

52170N(2) GAGATCTTTACTTCTTCCGCGGGACGTTTTCTTCGAAGAAGCCC 

cutting site 

for SacII at 

GAPR-1 

C-terminus

 
Table 6. Oligonucleotides used to prepared constructs for the two hybrid system, site-directed 
mutagenesis of GAPR-1, and for GAPR-1 fusion to GFP. 
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5 Equipments 
 
PCR cycler was from ThermoHybaid, ultra-centrifuges were from either 

Beckman or Kontron Instruments (Watford, UK). Other centrifuges were from 

either Eppendorf or Heraeus. All rotors, including SW28, SW41, SW50, 

SW60, JA12.500, and TLA45 were from Beckman. Electrophoresis system, 

including plates, spacers and combs, and blot systems, including semi-dry 

trans-blot and wet blot were from Bio-Rad (Munich, Germany) or Invitrogen 

(Karlsruhe). Cell incubators were from Heraeus.  

 

Methods  

6 Methods in Cell Biology and Immunology  

6.1 Cell culture 
 
Chinese Hamster Ovary Cell (CHO) wild type, either adherent (monolayer) or 

in suspension, were grown in α-MEM medium supplemented with 10% Fetus 

Bovine Serum, L-glutamine and 10 mg/ml of penicillin and streptomycin and 

maintained at 37°C, 95% relative humidity in a 5% CO2 incubator (Heraeus). 

Rat Kidney fibroblast (NRK) as well as cervical carcinoma (HeLa) cells were 

maintained in DMEM medium, supplemented as indicated above for α-MEM. 

To check for viability in the spinner culture, the cells were counted using a 

Neubauer chamber, after treatment with a solution of Trypan blue to a final 

concentration of 0.3%.  

 

6.1.1 Passing of cells 
 
Cells growing as a monolayer (CHO, NRK, and HeLa) were split after 

reaching confluency. 10 ml of media were used to resuspend cells from a 10 

cm plate (around 5 x107 cells), and 1 ml of cells were transferred into a new 

10 cm plate containing 9 ml of fresh growth media. Cells were incubated at 

37°C in an incubator, as described above. 
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6.1.2 Culture of CHO and HeLa cell in suspension 
 
Four plates (10 cm) of confluent CHO or HeLa cells were washed once with 

PBS, followed by trypzination. The cells were resuspended in medium and 

transferred to a 1.5 L Spinner bottle containing 500 ml of α-MEM (CHO) or 

DMEM (HeLa). The bottles were placed into the incubator, and the medium 

was continuously swirled until cells reached 5-6 x105 cells/ml. Additional 

medium was added to dilute the cells 3 to 4 times and the cultures were 

incubated until they reached confluency. Cells were centrifuged at 500 xg 

using a preparative centrifuge (Heraeus).  

6.1.3 Transfection of cells 
 
Transfection procedures were conducted according to manufacturer’s guide 

(Invitrogen) with minor modifications. In each transfection, 1.5 µl of 

Lipofectamine™ 2000 and 1 µg of plasmid DNA were used for one well of a 6-

well plate (5 µl and 5 µg for a 5 cm dish, respectively).  One day before 

transfection, cells were plated in normal growth media so that they were 60% 

confluent at the time of transfection. For transfection, in different tubes the 

appropriate amount of plasmid and Lipofectamine™ 2000 were diluted in 100 

µl of Opti-MEM® reduced medium. After incubation at room temperature for 5 

min, the two diluates were combined (200 µl in total) and mixed gently by 

pipetting or shaking. The mix was incubated for 30 min at room temperature, 

followed by the addition of 0.8 ml of Opti-MEM® I reduced medium and gentle 

mixing. All mixtures were applied to cells pre-washed first with PBS, and Opti-

MEM® I reduced medium respectively. The solution was spread evenly over 

the plate by gently shaking or by rocking back and forth. The plates were 

incubated at 37°C in a CO2 incubator for 3 – 5 hrs. After incubation, 2 

volumes of normal growth media were added and cells were placed in the 

incubator. Cells were analyzed by immunoflourescence. 

6.1.4 Isolation of Primary Hepatocytes 
 
The isolated liver was preperfused in a non-recirculating manner with about 

250-300 ml of a Ca2+ -free Krebs-Henseleit bicarbonate medium (NaCl 119  

mM; KCl 4.7 mM; MgSO4 1.2 mM; KH2PO4 1.2 mM; NaHCO3 25 mM, pH 7.4 
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at 37o C when equilibrated with 95% O2 : 5% CO2 and glucose 11 mM. The 

buffer was equilibrated with 95% O2:5%CO2 before adding NaHCO3), and 

then perfused by recirculating 100 ml of the medium to which 2.5 mM CaCl2 

and 0.05% collagenase were added. Preperfusion and collagenase 

recirculation both lasted for about 10 min after which time tissue dissociation 

was normally completed. The softened tissue was resuspended in 50 ml of 

recirculation medium, cut into about 10 pieces and incubated in a 250 ml 

siliconized round bottom flask for 10 min at 37oC in a shaking water bath. The 

cells were successively sieved through three layers of Nylon of 250, 100, and 

60 µm pore size and were washed and isolated by centrifugation at 20 xg for 

3 min in a refrigerated centrifuge (Heraeus). The cell preparation was finished 

normally within 1 h. As tested by their ability to exclude trypan blue (0.3% final 

concentration) the viability of the hepatocytes obtained by this technique was 

95%. After 2 days, the cells were transfected with appropriated plasmid.  

  

6.2 Synchronization of mammalian cells 

6.2.1 Synchronization of mammalian cells by serum starvation 

CHO cells were grown in α-MEM supplemented with fetal bovine serum until 

they reached 80-90% confluency in 10 cm plates. At this point, the medium 

was removed, and plates were washed 2 times with sterile PBS. The medium 

was replaced by serum free α-MEM, and the cells were incubated for 3 hrs, 6 

hrs, 9 hrs, 24 hrs or 48 hrs in a CO2 incubator at 37oC. After incubation, the 

cells were harvested after homogenized (as indicated in part 6.4 of Material 

and Methods) to obtain total membranes. A protein determination (Lowry) was 

carried out for all the samples, and 25 µg of protein were loaded on a 14% 

gel. After separation of proteins by SDS-PAGE, and transfer to a PDVF 

membrane by western blot, the blots were analyzed for the presence of 

Caveolin-1, GAPR-1 and Actin by use of α-Caveolin-1 (Santa Cruz 

Biotechnology Inc.), GAPR-1 (α-1852) and α-Actin (Sigma Co.) antibodies, 

respectively. The signal on X-ray films of detected proteins were determined 

by Quantity One® software (BioRad).  
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6.2.2 Synchronization of mammalian cells by drugs  

CHO cells grown on 10cm plates with 80-90% of confluency were incubated 

in serum-free α-MEM medium for 48hrs to enrich the culture in cells 

predominantly in the G1 phase of the cell cycle. Alternatively, cells in G1 were 

enriched after treatment with 50 µM Lovastatin (Sigma Co.) for 24 hrs or 48 

hrs. CHO cells were enriched in the S phase by incubation with serum-free α-

MEM medium for 24 hrs, followed by addition of aphidicolin (Sigma Co.) (2 

µg/ml). After incubation for 20 hrs in the presence of aphidicolin, cells were 

incubated for 3 hrs in complete medium in the absence of aphidicolin. CHO 

cells were arrested in G2/M phase of the cell cycle by incubation in complete 

α-MEM medium containing 0.8µg/ml of nocodazole (Sigma Co.) for 16-20 hrs. 

 

6.2.2.1 Propidium Iodide Staining and Flow Cytometry 

Propidium iodide (PI) staining together with flow cytometry was used to 

determine the degree of cell synchronization in CHO cells. Treated cells (at a 

density of 1x106 cells) were washed with 2 ml of PBS and then digested with 

1ml of trypsin solution at 37oC for 5min. Cells were harvested by spinning 

down at 1200 rpm for 5min, followed by washing twice with 1ml of cold PBS 

(1ml). The pellet cells were resuspended in 1 ml fridge-cold 70% ethanol while 

vortexing the cell pellet gently, and then kept on ice for 30 min. Once in 

ethanol, samples could be kept for up to two weeks. Fixed cells were spun 

down at 2000 rpm for 5 min to remove ethanol and washed twice with 1ml 

PBS. The pellet was resuspended in 1ml PBS containing RNAse (100 µg/ml), 

and incubated for 5 min at room temperature. 400µl of propidium iodide (50 

µg/ml in PBS) were added to the cell suspension. Cells were stored in the 

dark for 30 min at room temperature and analyzed by flow cytometry. 

6.3 Immunofluorescence microscopy 

Indirect immunofluorescence was carried out according to standard 

procedures. Cells on cover-slips were washed twice in cold PBS and fixed 

with methanol at -20°C for 30 seconds. Cells were subsequently blocked in 

PBS containing 2% bovine serum albumin for 1 hr at room temperature or 
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overnight at 4°C. Permeabilization was achieved during the methanol fixation. 

For double labeling, cells were incubated with rabbit antibodies against 

GAPR-1 (1:2000) and mouse antibodies against GM130 (1:500). Primary 

antibody labeling was then visualized by incubation with Alexa Fluor® 488 

anti-rabbit IgG (1:1, 000) and/or Alexa Fluor® 568 anti-mouse IgG antibodies 

(1:1000). A Zeiss LSM510 flourescence microscope with appropriate filters 

was used. Images were collected and processed with LSM510 software. 

6.4 Phosphorylation of GAPR-1 in vivo 

CHO cells were cultured in 10 cm plates until they reached 80-90% 

confluency. After washing using HEPES buffer 50 mM pH7.5, the culture 

medium was replaced by 4 ml of phosphate free α-MEM or DMEM (Sigma 

Co.), containing HEPES at a final concentration of 20 mM (This allowed the 

cells to be incubated outside a CO2 incubator).1 mCi final concentration of 

H3PO4 (ortho-phosphate 32P) was added to the plates, and incubated for 4 hrs 

at 37oC. The medium was carefully removed from the plates, and the cells 

were washed twice by using cold PBS, and then harvested by using a rubber 

policeman (Cell Scraper). The cells were collected by centrifugation at 500 xg 

for 10 min. Lysis of cells was carried out by passing them through a 27G 

needle. 90% or more of the cells were broken as determined by trypan blue 

staining. The lysate was centrifuged at 500 xg for 10min, and the post-nuclear 

supernatant (PNS) was collected.  PNS, containing cytosol and total 

membranes, was centrifuged 1hr at 100000 xg. The sample was separated in 

pellet (total membranes) and supernatant (cytosol). The pellet (total 

membranes) was resuspended in 0.1 ml of 1% SDS, Tris-HCl 50 mM, pH 6.8, 

and heated to 95oC for 5 min. SDS was quenched by diluting with 0.9 ml of 

immunoprecipitation (IP) buffer (PEN buffer, containing 1% Triton X-100). The 

solubilized total membranes and cytosol were used for subsequent 

immunoprecipitation. Immunoprecipitation was carried out using a α-GAPR-1 

antibody (α-1852 R2), coupled to Sepharose 4B beads (see below). The 

antibody-beads were incubated with either the solubilized membranes or 

cytosol overnight at 4oC. After incubation, the beads were washed twice with 

PEN buffer containing 1% TX-100, and 4 times wash with PEN buffer, 
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respectively. The washed beads were resuspended in 15 µl of SCI and 15 µl 

SCII, incubated for 2 min at 95o C, and centrifuged at 14000 rpm for 30 

seconds. The supernatant was loaded onto a 14% gel, and proteins were 

analyzed by SDS-PAGE and western blotting. To analyze for the presence of 

GAPR-1 in the immunoprecipitate, the membranes were incubated with α-

GAPR-1 as primary antibody (same used for IP) and HRP-Protein G 

conjugated as a secondary antibody. After analysis, the membrane was 

washed several times in PBS-T buffer. To analyze the presence of 

phosphorylated GARP-1, the dried membrane was exposed to an X-ray film 

for autoradiography. 

6.5 Immunoprecipitation 
 
10µl of polyclonal serum against the C-terminus of GAPR-1 (α-1852) or 10 µl 

of Caveolin-1 antibody (Santa Cruz Biotechnology Inc. USA) were incubated 

with 50 µl of protein A Sepharose (Fast Flow, Amersham Pharmacia Biotech, 

Freiburg, Germany) and 50µl of PBS containing 0.5% milk for 90 minutes at 

RT. The beads were washed twice with PBS and twice with IP buffer (PEN 

buffer containing 1% TX-100) before use. Golgi membranes (500 mg) were 

centrifuged (100,000 g for 30 minutes at 4°C), and the pellet was 

resuspended in 100 µl 1%SDS and incubated for 5 minutes at 95°C. The 

sample containing denatured proteins was diluted with 900 µl of PEN 

containing 1% TX-100 and used for immunoprecipitation of GAPR-1 or 

Caveolin-1 by incubation overnight at 4°C with the protein-A beads. 

Subsequently the beads were washed twice in PEN buffer containing 1% TX-

100 and four times in PEN before analysis. For western blot analysis, a HRP-

protein G conjugate (BioRad) was used that does not recognize the denatured 

IgGs on the blot that were eluted from the beads used in immunoprecipitation. 
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7 Methods in Molecular Biology 

7.1 Polymerase Chain Reaction (PCR)   

7.1.1 Polymerase chain reaction (PCR) for site-directed 
mutagenesis 
 
All reactions were carried out according to the manufacturer’s guidelines. The 

reaction volumes were 50 µl, using the PfuTurbo polymerase (Stratagene). 

The reaction mix contains the following components: 5 µl of 10 X reaction 

buffer (Stratagene), 2 µl (10ng) of pQE60 plasmid carrying GAPR-1, 1.25 µl of 

each oligonucleotide (100 ng/µl), 1 µl of dNTPs (0.2mM), 1 µl of PfuTurbo (2.5  

U/µl), and MilliQ water to adjust the total volume to 50 µl. The PCR reaction 

was initiated with 1 cycle at 95°C for 30 sec, followed by 18 cycles starting at 

95oC for 30 sec, 55oC for 1 min, and 68oC for 11 min. 

7.1.2 Polymerase chain reaction (PCR) for Two Hybrid System  
 
Similar as mentioned above, the reaction volumes were 50 µl, using the 

polymerase PfuTurbo (Stratagene). The PCR reaction was initiated from 

denaturation at 95°C for 2 min, followed by denaturation at 94°C for 30 – 60 

sec. The annealing reaction was performed at appropriate temperatures 

(based on different primer pairs designed for the two hybrid assay (Table 6, 

section 4), in principle 10 - 15°C lower than the Tm of 55oC for 30 – 60 sec. 

Elongation was performed at 68°C for 3 min for Nucleolin (Nucleolin fragment 

is 2.1 kB) and for 1 min for GAPR-1 (GAPR-1 fragment is 0.5kb) (PfuTurbo 

amplified at 2 min/kb) and stopped at 68oC for 10 min for both Nucleolin and 

GAPR-1. In all cases, the reactions were performed for 30 cycles in the 

conditions indicated above. 5µl of PCR products were analyzed by agarose 

gel electrophoresis to ensure efficient amplification. Then, the PCR amplified 

fragments were purified from agarose gel slices with the use of Nucleobond 

extract kit (QIAGEN). Doubly digested plasmid vectors were also purified with 

this kit. Purified PCR products were either directly used for cloning into 

pJG4.5 or pEG202 after digestion with restriction enzymes (double enzyme 

digestion) or treated with DpnI in the case of site-directed mutagenesis 

products (in oder to digest the methylated, nonmutated parental DNA 

template). If the two used enzymes could not work in the same buffer, the 
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digestion mixtures were purified from gel, and the digestion repeated for the 

second enzyme.  

 

7.1.3 Subcloning 
 
All ligation reactions were carried out in 10 µl at either 4°C. The reaction mix 

contains 1 X ligation buffer (MBI Fermentas), 50 ng of DNA fragment, 25 ng of 

vector pJG4.5 or PEG202, and 2U of T4 DNA ligase (MBI). 5 µl of ligation 

mixtures were used to transform competent cells, either XL-1 Blue 

(Stratagene) for site-directed mutagenesis, or SURE super-competent cells 

(Stratagene) for the Two Hybrid assay, by heat-shock. Briefly, 50 µl of 

competent cells were mixed gently with 5 µl of ligation mixtures and incubate 

on ice for 30 min. The cells were heat-shocked at 42°C (XL-1 Blue and SURE 

super-competent cells) for 30 sec, followed by incubation on ice again for 2 

min. 1ml of pre-warmed medium was added to the transformation mixtures 

and incubated at 37°C for 1 hr with shaking. Cells were plated on LB agar 

plate containing appropriate antibiotics and incubated at 37°C overnight. 

Several colonies were randomly picked and inoculated into 4 ml of LB media 

supplemented with appropriate antibiotics. The cultures were incubated at 

37°C for 16-18 hrs. Plasmid DNA extraction was done using QIAgen miniprep 

kit or Machery-Nigel nucleospin kit. The protocol of these two kits is basically 

the same (modified alkaline lysis). Briefly, cells were pelleted by centrifugation 

at 4000 rpm 4°C for 10 min, and resuspended in 0.2 ml of solution I containing 

RNase. Cells were lysed by adding 250 µl of solution II, followed by mixing 

carefully the solution (upside-down movement for several times. The lysates 

were neutralized by the addition of 300 µl of solution III. The solution was 

cleared by centrifugation, and supernatants were loaded onto the binding 

column and spun down. The flow-through was discarded, and the columns 

washed with buffer PB and PE as indicated by the manufacturer. In the last 

wash, centrifugation was performed for 2 min to remove traces of ethanol. 

The plasmids were eluted with 50 µl MilliQ water sterile. All recombinant 

plasmids were identified by digestion with appropriated enzymes and 

confirmed by commercial DNA sequencing (Medigenomix GmbH). 
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7.1.4 Lithium acetate transformation of EGY48-pSH18-34 
 
To carry out the two hybrid assay, it was necessary to transform the yeast 

strain EGY48-pSG18-34, containing the galactosidase reporter, with the bait 

plasmid pEG202 and the prey plasmid pJG4.5.  The yeast was grown in 100 

ml SDC-URA medium to an optical density (OD) at 600nm of 0.4 - 0.8 units, 

equivalent to 1-2 x107 cells/ml, followed by harvesting the cells in a 50 ml 

tube. The cells were washed twice, by centrifugation at 4000 rpm for 10 min, 

with 15 ml of Li-TE buffer containing 10 mM Tris-HCl pH7.5, 1 mM EDTA, and 

100 mM lithium acetate (Li) adjusted to pH7.5 with acetic acid. The pellet was 

resuspended in 0.5 ml of Li-TE, and left at room temperature while preparing 

the DNA. For each transformation, 3-5 µl of carrier DNA 10 mg/ml (Herring 

Sperm DNA, Clontech) were mixed with 1 to 2 µg of plasmid DNA, 50 µl of 

cells and 150 µl of a 50% (w/v) polyethyleneglycol (PEG) solution (50g of 

PEG3500 dissolved in 100ml of TE buffer). The mix was vortexed by 5 pulses 

at full speed. The suspension was incubated for 30 min at room temperature, 

followed by incubation at 42oC for 15 min, and then 200 µl of TE were added 

to the incubation.  The samples were plated on the appropriate minimal 

media.   

 
Table 7. List of transformations carried out in EGY48-pSH18-34 to determine a GAPR-1 
interaction with Nucleolin or GAPR-1 
 

GAPR-1wt-pEG202 (pEGGAPR-1wt) Nucleolin-pJG4.5 (pJGNCL) 

GAPR-1wt-pJG4.5 (pJGGAPR-1wt) Nucleolin-pEG202(pEGNCL) 

GAPR-1mut-pJG4.5(pJGGAPR-1mut) Nucleolin-pEG202(pEGNCL) 

GAPR-1mut-pEG202 (pEGGAPR-1mut) Nucleolin-pJG4.5 (pJGNCL) 

GAPR-1wt-pEG202 (pEGGAPR-1wt) Nucleolin-pEG202(pEGNCL) 

GAPR-1wt-pJG4.5 (pJGGAPR-1wt) Nucleolin-pJG4.5 (pJGNCL) 

GAPR-1mut-pEG202 (pEGGAPR-1mut) Nucleolin-pEG202(pEGNCL) 

GAPR-1mut-pJG4.5(pJGGAPR-1mut) Nucleolin-pJG4.5 (pJGNCL) 

GAPR-1wt-pEG202 (pEGGAPR-1wt) GAPR-1wt-pJG4.5 (pJGGAPR-1wt) 

GAPR-1wt-pEG202 (pEGGAPR-1wt) GAPR-1mut-pJG4.5(pJGGAPR-1mut) 

GAPR-1mut-pEG202 (pEGGAPR-1mut) GAPR-1mut-pJG4.5(pJGGAPR-1mut) 

GAPR-1wt-pJG4.5 (pJGGAPR-1wt GAPR-1mut-pEG202 (pEGGAPR-1mut) 

Possible 

interactions 

analyzed by 

the two 

hybrid 

system 

assay. 

GAPR-1wt-pJG4.5 (pJGGAPR-1wt) GAPR-1wt-pJG4.5 (pJGGAPR-1wt) 
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GAPR-1wt-pEG202 (pEGGAPR-1wt) GAPR-1wt-pEG202 (pEGGAPR-1wt) 

Nucleolin-pEG202(pEGNCL) Nucleolin-pJG4.5 (pJGNCL) 

Nucleolin-pJG4.5 (pJGNCL) Nucleolin-pJG4.5 (pJGNCL) 

Nucleolin-pEG202(pEGNCL) Nucleolin-pEG202(pEGNCL) 

GAPR-1wt-pEG202 (pEGGAPR-1wt) empty vector pJG4.5 

empty vector pEG202 GAPR-1wt-pJG4.5 (pJGGAPR-1wt) 

GAPR-1mut-pEG202 (pEGGAPR-1mut) empty vector pJG4.5 

GAPR-1mut-pJG4.5(pJGGAPR-1mut) empty vector pEG202 

empty vector pEG202 empty vector pJG4.5 

Controls 

designed for 

the two 

hybrid 

system 

assay. 

 

8 Methods in Biochemistry 

8.1  Isolation of Golgi membranes 

8.1.1 Golgi membranes  from CHO cells 
 
Solutions: 

EDTA stock solution 100 mM EDTA/KOH pH7.1 

Homogenization buffer 250 mM Sucrose 

       10 mM Tris-HCl pH7.4 

Sucrose Solutions    29%(w/w) Sucrose in 10 mM Tris-HCL pH7.4 

      35%(w/w) Sucrose in 10 mM Tris-HCL pH7.4 

      62%(w/w) Sucrose in 10 mM  Tris-HCl pH7.4 

 

Golgi membranes were prepared as described previously (Balch, W. et al. 

1984; Malhotra, V. et al. 1989; Serafini, T. et al. 1991). One preparation of 

Golgi membranes from CHO requires 10 L of cultured cell with a density of 

7x105cells/ml approximately. CHO cells were harvested at 500 xg and washed 

twice in cold PBS. The pellet was further washed with cold homogenization 

buffer. The wash steps were conducted at 1,500 xg for 10 min. The pellet was 

resuspended in 5 volumes of cold homogenization buffer, followed by 

breaking of the cells with the Balch homogenizer. 50-60 strokes were needed 

to disrupt more than 90% of the cells. To 12 ml of homogenate, 11 ml of 62% 

(w/w) sucrose solution was added and 250 µl of 100 mM EDTA (pH7.1). The 

sucrose concentration was determined by refractometer. If the sucrose was 

out of the range of 36.5-37.5% (w/w), it was adjusted by adding either 10 mM 
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Tris-HCL buffer (pH7.4) or sucrose solution. This adjustment was achieved by 

using the following formula: 

If more sucrose was needed, the volume of 2 M sucrose solution in 10 mM 

Tris-HCl pH7.4 necessary was calculated: 

 

Voriginal X (Cwanted – Coriginal)   = Vto add 

(Cstock solution – Cwanted) 
 

If less sucrose was needed, the volume of 10 mM Tris-HCl pH7.4 was 
calculated: 
 

Voriginal X (Cwanted – Coriginal)   = Vto add 

(Cwanted) 
 
 

Voriginal = Volume of homogenate solution after adding 62% (w/w) 
sucrose; 

Vto add = Volume to add of either 2M sucrose solution or 10 mM 
Tris-HCL    buffer. 

Coriginal = Sucrose concentration of homogenate solution after 
adding 62% (w/w) sucrose. 

Cwanted = Desire concentration of sucrose (i.e. 37% (w/w)) 
Cstock solution = Stock solution of Sucrose at 2 M 

 
 

After adjustment, the homogenate was transferred to a tube SW28 tube, and 

the following sucrose gradient was made: 12 – 14 ml of 37% (w/w) sucrose-

homogenates at the bottom, followed by 15 ml of 35% (w/w) overlaid carefully 

on the homogenate, and 9 ml of 29% (w/w) sucrose on the top. The gradient 

was centrifuged at 4°C 25,000 rpm for 2.5 hrs. The Golgi membranes floated 

as an opalescent band at the interface between 29% and 35% while ER 

fraction at the interface between 35% and 37%. Golgi fractions were collected 

as much as 2 – 3 ml for each gradient and all the fractions were combined. 

Separated aliquots of 200 µl to 500 µl were stored at 4°C for protein 

determination. The rest of the aliquots were frozen in liquid nitrogen and 

stored at -80°C. 
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8.1.2 Isolation of Golgi membranes from rat liver 
 
Solution Buffers I  10 mM Tris-HCL pH7.4 0.5 M Sucrose 

    100 mM EDTA pH7.4 

Sucrose Solutions:  30.5% (w/w) Sucrose in 10 mM Tris-HCl pH7.4 

    35% (w/w) Sucrose in 10 mM tris-HCl pH7.4 

    37% (w/w) Sucrose in 10 mM Tris-HCl pH7.4 

 

The liver from a rat was removed and based on its weight 4 times in buffer I 

was added, and the EDTA concentration was adjusted to 5mM final 

concentration. The tissue was minced using scissors and then homogenized 

on ice with a Dounce homogenizer. The homogenate was centrifuged at 2500 

rpm for 10min, and the post nuclear supernatant (PNS) was filtered through 4 

layers of cheesecloth. In a SW28 rotor tube, 30 ml of PNS were added and 

overlaid on 8 ml of 37% (w/w) sucrose solution. The sample was centrifuged 

at 25000 rpm (83000 xg) for 1.5 hrs.  A band was collected at the interface 

37% - 16% (w/w) of sucrose, and 4 ml were collected per sample. The 

sucrose concentration was adjusted to 37% (w/w) using either a 55% (w/w) 

sucrose solution or 10 mM Tris-HCl pH7.4 (see formula on section 9.1.1). 14 

ml of membranes adjusted to 37% (w/w) sucrose were poured into a SW28 

tube, and overlaid with 10 ml of 35% (w/w) sucrose, followed by a 10 ml layer 

of 30.5% (w/w) sucrose, and 5 ml of 25% (w/w) sucrose. The gradient was 

centrifuged at 25000 rpm (100.000 xg) for 2.5 hrs, and the Golgi membranes 

collected at the interface 25% - 30% (w/w) sucrose. The membranes were 

fractionated in aliquots and frozen at -80oC.  

  

8.1.3 Preparation of Golgi-derived detergent insoluble complexes 
(GICs) 
 
Golgi-derived microdomains were prepared as described by Gkantiragas, I. et 

al. (2001). 7 mg of Golgi membranes were collected by centrifugation at 4°C 

100,000 xg for 1 hr after dilution with 4 volumes of PEN buffer. The pellet 

(Golgi membranes) was resuspended in 2 ml of ice-cold PEN buffer 

containing 1% TX-100, followed by incubation on ice for 30 min.  2 ml of 80% 
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(w/v) sucrose in PEN buffer (without Triton X-100) were added to the 

resuspended membranes to obtain a 40% solution. The mixture was 

transferred into a SW41 tube and sequentially overlaid with 1.3 ml of the 

following sucrose solutions: 30%, 25%, 20%, 15%, 10% and 5% sucrose 

(w/v). The gradient was centrifuged for 22 hrs at 4°C 39,000 rpm, and the 

opalescent band at the interface between 10% and 15% was collected. An 

aliquot was used for protein and lipid quantification and the other aliquots 

were at -80°C. 

9 Cytosol preparation from Mammalian Cells 

9.1 Cytosol preparation from CHO and Hela Cells 
 
CHO or HeLa cells were cultured in suspension as indicated in section 8.1.1. 

1.2 L of suspension cultures were spun down at 500 xg for 10min. The pellet 

was washed twice with PBS, and then washed twice with breaking buffer 

containing 10 mM Tris-HCl, pH7.5, 0.25 M sucrose, followed by dilution 1:5 in 

breaking buffer (1.2 L of suspension culture yields approximately 5ml of cell 

pellet). The suspension was homogenized as described in section 8.1.1., and 

the homogenate was adjusted to a concentration of 0.5 M KCl, and incubated 

for 1 hr on ice for 30 min. After incubation, the homogenate was centrifuged 1 

hr at 55000 rpm (TFT rotor 55.38). The supernatant was dialyzed once 

against 5 L of PBS, and twice against 50 mM Tris-HCl pH7.5, 50 mM NaCl. 

The dialyzed cytosol was centrifuged at 100000 xg for 2 hrs. 

 

9.2   Cytosol preparation from Rat liver 
 
Solution buffer H:  165 mM KOH 

       50 mM HEPES pH7.55 (Acetic acid) 

         2 mM MgCH3CO2 

Additional components:      1 mM DTT 

(protease inhibitors Solution)  1 µM Leupetin 

       10 µM Antipain 

      100 µM PMSF 
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9 g of rat liver from 1.5 months old rats were blended following 

homogenization by a Dounce homogenizer in buffer H and addition the 

protease inhibitor solution. The homogenate was centrifuge at 9000 rpm for 

10 min. The pellet was discarded and the supernatant was subjected to 

another round of centrifugation using a TFT rotor (55.38) in a Kontron 

centrifuge at 33000 rpm (100000 xg) for 1 hr. The supernatant was collected 

and centrifuged again in TFT rotor (55.38) at 44000 rpm (160000 xg) for 1.5 

hrs. The supernatant was divided in aliquots and frozen at -80oC.  

9.3 Cytosol fractionation 
 
A 320 ml Superdex200 prep grade (Amersham Biotech) column was 

calibrated by loading proteins with known molecular masses, such as 

Thyroglobulin (669kDa) Alcohol Dehydrogenase (150kDa), Bovine Serum 

Albumine (66kDa), Carbonic Anhydrase (29kDa) and lysozyme (14kDa) and 

determination of the elutions pattern and fraction locations in a Biologic 

workstation (BioRad). To fractionate cytosol of either CHO or HeLa, 10 ml of 

cytosol containing 20 mg/ml protein were loaded on the pre-equilibrated 

Superdex200 column. The eluted fractions were separated in a low molecular 

weight fraction containing proteins below 100kDa (LMW) and a high molecular 

weight fraction containing proteins above 100kDa (HMW). Both fractions were 

about 200 ml, and were separately loaded onto a GAPR-1 affinity column to 

determine whether GAPR-1 binds to a complex of proteins in the cytosol 

bigger than 100kDa or smaller than 100kDa.   

 

9.4  Cytosolic Protein complex denaturation 
 
200 ml of HeLa cytosol at 1mg/ml were subjected to denaturation by adding 

1% SDS followed by incubation at 95oC for 20min.  The denaturated solution 

was quenched by adding 1,8 L of buffer containing Tris-HCl 50 mM pH7.5, 50 

mM NaCl, 1% Triton X-100.  The solution was then loaded onto a GAPR-1 

affinity column, containing either GAPR-1 wild type or GAPR-1 mutant. 
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10 Large scale purification of GAPR-1  
 
GAPR-1 was over-expressed in M15[RP4] bacteria, containing a GAPR-1-

pQE60 vector.  An overnight culture was prepared in LB medium containing 

100 µg/ml ampicilin (AMP) and 50 µg/ml kanamycin (KAN). 12 L of LB 

medium, containing AMP and KAN, were inoculated with 30 ml of overnight 

culture, and incubated until an optical density at 620nm of 0.5 was reached. 

The overexpression was induced by the addition of 12 ml of 1M IPTG, and the 

incubation was continued for 3 hrs at 37oC. The 12 L suspension were 

centrifuged at 7000 rpm for 10 min (preparative centrifuge, Hereaus), and the 

pellet resuspended in DEAE buffer containing 50 mM Tris-HCl pH7.5 and 50 

mM NaCl. The pellet was washed once in DEAE buffer and resuspended in 

300 ml of DEAE buffer containing a mix of protease inhibitors (tablets, 

Boehringer, Mannheim). The suspension was passed 5 times through a cell 

disruptor (Emulsiflex®, Avestin), or passed 3 times through a French press, 

and the homogenate was centrifuged at 4000 rpm for 15 min to remove 

unbroken cells. The supernatant was centrifuged at 100000 xg for 1hr (TFT 

rotor 55.38, Kontron Instruments). After centrifugation, supernatant was 

diluted ~1:6 in DEAE buffer, giving a total sample volume of approximately 1.8 

L. The 1.8 L sample was passed over a DEAE column (Amersham Biotech) 

(1ml/min) was equilibrated with 50 mM Tris-HCl pH7.5; 50 mM NaCl. The flow 

through was collected and applied onto a 25 ml cation exchange column 

(Macroprep High S support, BioRad), pre-equilibrated with DEAE buffer. The 

column was washed with DEAE buffer until the optical density at 280 nm was 

below 0.1. To elute the bound proteins from the column, a liner gradient from 

50 to 1000 mM NaCl was applied, and fractions of 1 ml were collected, after a 

dead volume of approximately 16 ml. Fractions containing highest and purest 

amount of GAPR-1 were combined (4 ml) and applied onto a Superdex200 

column 26 mm x 76 cm (Amersham Biotech) for further purification, collecting 

fraction of 2ml. The peak fractions were analyzed by SDS-PAGE (14% gel). 

For every step during the purification, samples were collected for analysis, 

and quality control of the purification process. For large a scale purification of 

GAPR-1 mutant, the same protocol was followed. GAPR-1 wild type, and 

mutant proteins purified by this protocol were used for further studies. 
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10.1 Size exclusion chromatography light scattering (SEC-LS) 
 
The molecular masses of GAPR-1 wild type and mutant proteins were 

determined using SEC-LS. 200 µl of GAPR-1 (200 µg/ml) was applied to a 

Superdex200 HR 10/30 (Amersham Biotech) upstream of DAWN DSP LS 

(Wyatt QELS). The column was equilibrated in Tris-HCl 50 mM pH8.0, 300 

mM NaCl at a flow rate of 0.5 ml/min. The average molecular masses (Mw) of 

GAPR-1 were calculated at peak maxima using three independent analyses, 

i.e. the two and three-detector method, and the ASTRA analysis. The Mw was 

estimated throughout the entire eluting peak at 50 µl intervals using ASTRA 

software. 

10.2 Crystal structure determination 
 
The following protocols were used by Dr. Matthew Groves and Audrey Kühn 

(EMBL) to obtain GAPR-1 crystal. Briefly, the protein products obtained from 

overexpression were checked by dynamic light scattering, mass spectrometry 

and equilibrium centrifugation for homogenity and oligomerisation state prior 

to crystallization.  The protein was concentrated using Amicon Centricon 

10kDa filters to a concentration of 12.6 mg/ml as estimated by Bradford 

reagent (BioRad).  Initial screening was performed at room temperature 

(295.5K) by hanging drop vapour diffusion (McPherson, 1982) using the 

sparse matrix kits from Hampton Research (Hampton Research, Laguna 

Niguel, CA).  Drops were prepared on siliconized cover slips and equilibrated 

against 1ml reservoir solution.  Screens were prepared by combining equal 

volumes of reservoir solution with protein solution.  Conditions producing 

crystals from the initial screens were refined to produce crystals suitable for X-

ray diffraction analysis. 

10.2.1 Data Collection 
 
After transferring to a cryoprotectant solution (reservoir solution with an 

additional 15% v/v glycerol), crystals were picked up using a fiber loop and 

flash frozen in a stream of nitrogen gas at 100K.  In-house diffraction data 

were collected from a single crystal on a Mar345 (Mar Research) image-plate 

detector using Cu Kα radiation from a rotating-anode X-ray generator 
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operating at 50kV and 100mA.  A higher resolution data set was collected at 

the ID14 EH-2 ESRF beamline on a MarCCD detector.  The programs 

MOSFLM (Leslie, A 1992), SCALA (Evans, P. 1997), SHARP (Fortelle, E. de 

la,. Bricogne, G. 1997), O (Jones, T. et al. 1991) and CNS (Brünger. A. et al. 

1998) were used for data processing and analysis. 

10.3 Circular Dichroism of GAPR-1 
 
CD spectra were recorded on a Jasco J720 spectrophotometer.  The 

instrument was calibrated with 10 mM sodium phosphate buffer. Cell path 

lengths 1 mm and 2 mm were used.  GAPR-1 wild type and mutant were 

dialyzed twice against 10 mM sodium phosphate buffer prior to measurement. 

Spectra were acquired at a scan speed of 100 nm/min with a 1-nm slit and 1-

second response time, averaging 20 scans, and corrected by subtraction of 

the solvent spectrum obtained under identical conditions. To carry out the Far 

U.V spectra measurements 5.8 µM of protein was used both GAPR-1 wild 

type and mutant, and for the Near-UV spectra measurements 588 µM were 

used, respectively.  

10.4 Coupling of GAPR-1 to CNBr-activated Sepharose 4B 
 
Swelling Buffer  HCl 1 mM cold 

Coupling buffer  NaHCO3 0.1 M, pH8.3; NaCl 0.5 M 

Blocking buffer  Ethanolamine 1 M pH8.0 

Washing buffer  Acetate buffer 0.1 M, pH4.0 

 

0.5g of CNBr-activated Sepharose 4B (Amersham Biotech) were washed and 

swelled 5 min in 300ml of cold HCl 1mM by centrifuging 5 times with 50 ml at 

1000 rpm. 5 mg of purified GAPR-1 (wild type or mutant) were dialyzed in 

coupling buffer prior to mixing with the swelled resin. The mix was incubated 

overnight at 4oC with gentle agitation, followed by centrifugation at 1000 rpm 

for 5 min. The supernatant was concentrated using amicon concentration 

units to 1 ml, and a protein determination was carried out to estimate the 

coupling efficiency.  The gel was transferred to a solution of ethanolamine (1 

M) to block the remaining active groups for 16 hrs at 4oC. The gel was 
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washed with coupling buffer followed by acetate buffer, and again coupling 

buffer to wash away excess adsorbed protein. The protein-coupled-agarose 

beads were ready to use at this point. 

11 GAPR-1 affinity Chromatography 
 
200 ml of CHO cytosol (1 mg/ml) were prepared (section 9.1) and loaded onto 

1ml GAPR-1 affinity columns, either GAPR-1wt or GAPR-1mut columns, at a 

flow rate of 0.5 ml/min. After loading, the columns were washed with wash 

buffer (Tris-HCl 50 mM pH7.5, 50 mM NaCl), and coupled to a SMART® 

FPLC system (Amersham Biotech). When the optical density at 280nm 

reached 0.05, a NaCl gradient 50-1000 mM was applied (0.5 ml/min) to elute 

the proteins bound to GAPR-1. The system collected 48 samples of 250 µl 

each. The fractions were analyzed by SDS-PAGE (Novex®, Invitrogen), and 

the protein composition of the samples was identified by mass spectrometry 

fingerprinting (MALDI-TOF). The columns were also used with HeLa cytosol 

and Rat liver cytosol. 

12 GAPR-1 Ligand Overlay 
 
50 µg of proteins from cytosol were separated by 12% SDS-PAGE (Novex® 

Invitrogen) and transferred to a nitrocellulose membrane (BA 85, Schleicher 

and Schuell). The proteins transferred to the membrane were renaturated by 

incubation at 4oC for 1 to 2 days in renaturation buffer containing 50mM 

HEPES/KOH pH7.2, 5 mM magnesium acetate, 100 mM potassium acetate, 3 

mM DTT, 10mg/ml BSA, 0.1% (w/v) triton X-100, and 0.3% (w/v) Tween 20. 

After renaturation, the membrane was incubated at room temperature for 1hr 

in binding buffer containing 12.5 mM HEPES/KOH, pH7.4, 1.5 mM 

magnesium acetate, 75 mM potassium acetate, 10 mM ZnSO4, 1 mM DTT, 2 

mg/ml BSA, 0.005% (w/v) triton X-100, 4 mM n-octylglycopyranoside, and 0.5 

µM of GAPR-1. The filter was then washed several times with washing buffer 

composed of 20 mM Tris-HCl pH7.4, 100 mM NaCl, 20 mM MgCl2, and 

0.005% Triton X-100. 
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After washing, the membrane was incubated with antibody against GAPR-1 

(α-1852) and developed using secondary antibody anti-rabbit HRP-

conjugated. 

13 SDS-PAGE and Western Blot analysis 

13.1 SDS-PAGE for separation of proteins 

Gels for SDS-PAGE were prepared according to the guidelines of Molecular 

Cloning (3rd ed.). 12% and 14% separation gels were used in this 

experimental work or 12% and 4-12% pre-cast separation gels commercially 

available from Invitrogen. After electrophoresis, the gels were stained in 

coomassie blue solution and destained. For radioactive gels, after staining, 

the gels were dried and exposed to a film. Other gels were used for western 

blot analysis of the proteins of interest. 

13.2 Transfer proteins from SDS-PAGE to a PVDF membrane or 
Nitrocellulose  
 
After performing SDS-PAGE, the proteins were electro-transferred to PVDF 

membranes (Immobilon-P® Milipore). The PVDF-membrane was submerged 

in methanol prior to soaking in the Anode buffer II. In semi-dry blotting 

discontinuous buffer system is used, composed of two anode buffers and one 

cathode buffer. The SDS-PAGE gel and PVDF membrane were arranged as 

follows: 2 sheets of Whatman 3MM filter paper pre-soaked in Anode buffer I 

were placed on the platinum anode, followed by 2 sheets of Whatman paper 

pre-soaked in Anode buffer II, the PVDF-membrane, the gel, and firmly 3  

sheets of Whatman paper pre-soaked in Cathode buffer on top. The air was 

removed carefully by rolling out the air bubbles either by using a pipette or a 

50ml tube. The cathode was placed on the stack and the blotting was 

executed at 24V for 1.5 hrs. 

13.3 Incubation of PVDF membranes with antibodies 
 
Once the transfer was completed, the PDVF membrane was rinsed in water 

and stained with a Ponseau S solution. Excess of Ponseau S dye was 

washed away with water until protein marker bands appeared on the 

membrane and their positions could be marked on the membrane. The 
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markers used throughout most of the thesis were broad range protein marker 

from Bio-Rad™. The size of the protein markers is outlined in Table 8. 

 
Table 8. Protein standards (Broad Range) 

Protein Molecular mass (kD) 

Myosin 200 

β-galactosidase 116 

Phosphorylase-b 97 

Serum albumin 66 

Ovalbumin 45 

Carbonic anhydrase 31 

Trypsin inhibitor 21 

Lysozyme 14 

Aprotinin 6.5 

 

 

The PVDF membrane was blocked with 50 ml of 5% BSA in PBS for 1 hr at 

room temperature or overnight at 4°C. The blot was rinsed for 1min in PBS to 

remove BSA and incubated with the diluted primary antibodies (in 1% BSA 

PBS-T) for 1 hr at room temperature, followed by washing  3 times with  PBST 

for 15 min. The blot was incubated with the HRP-conjugated secondary 

antibodies (1/1000 dilution) or HRP-conjugated Protein-G (1/1000 dilution) in 

50 ml 1% BSA in PBST for 1 hr at room temperature. The blot was washed 3 

times with PBST for 15 min and developed using ECL® western blotting 

detection system (Amersham-Biotech). 

14 Protein Determination 

14.1 Protein Determination by BCA 
 
For soluble protein determination the BCA protein assay was employed 

(Pierce). All samples, including a set of standards (BSA: 2.5 µg, 5.0 µg, 10 µg, 

15 µg, 20 µg, 25 µg, 30 µg and 35 µg), were prepared in aqueous solution.  

For 10 µl of each sample 200 µl of working reagent was added. The solution 

was prepared by mixing 50 parts of Reagent A with 1 part of Reagent B. The 
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samples, including standards and blanks, were incubated at 37°C for 30 min, 

followed by measurement of absorbance at 562nm on a plate reader. 

14.2 Protein determination by Lowry 
 
Lowry Solution A: 2 g Na2-tartrate Dissolved in 500 ml 1N NaOH,   

   100 g N2CO3   adjusted to 1 L with MiliQ water 

Lowry Solution B: 2 g Na2-tartrate Dissolved in 90 ml H2O, 10ml NaOH 

   1 g CuSO4x 5H2O adjusted to 500 ml with MiliQ water 

Lowry Solution C: Folin-Cicocalteus. Reagent prepared prior to use by  

      diluting 1/10 with MiliQ water 

 

Protein determination for membrane protein was performed according to 

Lowry. The protein standards were prepared with BSA (2.5 µg, 5.0 µg, 10 µg, 

15 µg, 20 µg, 25 µg, 30 µg and 35 µg) dissolved in water. The samples and 

standards were prepared by adding 10 µl of deoxycholate stock solution 

(Stock solution: Sodium deoxycholate 2 mg/ml) to 50 ul of sample. 150 µl of 

TCA (10%) (TriChloroacetic acid) were added to the sample, vortexed and 

centrifuged for 10 min at 14000 rpm. The supernatant was removed, and 10 µl 

of SDS were added, followed by 50 µl of Lowry solution A. The sample was 

incubated at 50oC for 10min, and cooled down for 3min to room temperature. 

10 µl of Lowry solution B was added, and the sample incubated for 15min at 

room temperature. 150 µl of Lowry solution C were added, and the sample 

was placed at 50oC for 10 min. Once the sample was at room temperature 

again, the absorbance was measured at 620nm on a plate reader. 

 

15 Protein Precipitation  

15.1 Chloroform-Methanol Precipitation 
 
Chloroform-Methanol Solution 1:2  20 ml CHCl3: 40 ml CH3OH 

 

One volume of sample was mixed with 3 volumes of Chloroform-Methanol 

solution. The mix was vortexed until the solution was clear (1 or 2 drops of 

methanol were added when the solution did not become clear). The sample 
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was centrifuged 14000 rpm for 15min at 15oC. The supernatant was discarded 

and the pellet was dried for 1hr at 37oC or overnight at room temperature. The 

pellet was dissolved by adding Sample cocktail I. Once dissolved, the sample 

was suitable for protein determination and/or protein electrophoresis. 

15.2 TCA precipitation  
 

TCA solution 72% (w/v) 72 g of trichloacetic acid dissolved in 100 ml H2O 

Sodium deoxycholate 2% 2 g of Sodium deoxycholate in 100 ml H2O 

Acetone   kept at -20oC 

 

The protein sample was diluted to a final volume of 1ml with MilliQ water, 

followed by addition of 16.7 µl of 2% sodium deoxycholate. The sample was 

vortexed and incubated for 15min at room temperature. 100 µl of TCA solution 

72% was added to the sample and vortexed, and then centrifuged for 7 min at 

14000 rpm. The supernatant was aspirated and 1ml of acetone at -20 added 

to wash the pellet. The sample was centrifuged as described above, and the 

pellet was allowed to dry. 
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