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INTRODUCTION

1.1 INTRODUCTION TO CANCER THERAPY

Global Incidence and Trends

Recent studies show an increase in cancer incidence worldwide, affecting
people of all ages. Notably, there is an increase in cancer diagnoses among
those under 50. This change is linked to a mix of genetic, lifestyle, and en-
vironmental factors. With a higher incidence in younger patient populations,
improving our diagnostic, preventive, and treatment strategies is imperative
to enhance patient outcomes (Koh et al., 2023).

The rise in cancer among younger individuals challenges current treatment
methods and demands new approaches and innovative treatments. Particle
therapy is especially promising as it targets cancer cells while sparing healthy
tissue. This approach could improve outcomes for younger patients, empha-
sizing the need for therapies that match the changing landscape of cancer
(Pakela et al., 2022).

1.1.1  Overview of Cancer Treatment Modalities

Cancer treatment is inherently multidisciplinary, combining various treat-
ment modalities tailored to the tumor’s type, stage, location, and overall
health. The main treatment options are chemotherapy, surgery, and radio-
therapy, administered either separately or in combination (Zhao et al., 2022).

Chemotherapy

Chemotherapy employs cytotoxic agents to target and destroy cancer cells
and is fundamental in managing widespread and metastatic cancers. Its effi-
cacy depends on the cancer’s molecular and genetic characteristics, determin-
ing its responsiveness to treatment. Chemotherapy is often combined with
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other treatments, either before surgery to reduce tumor size (neoadjuvant
therapy (Pattyn et al., 2022)) or post-surgery to eradicate any residual cancer
cells (adjuvant therapy (Garapati et al., 2017)).

Surgery

Surgery is often the treatment of choice for localized solid tumors (Holcomb,
1999). The surgical procedure aims to completely remove the tumor and
achieve clear margins to ensure no malignant cells are left at the surgical
borders. Surgical techniques vary from minimally invasive procedures to ex-
tensive resections, depending on the tumor’s location and the extent of the
disease.

Radiotherapy

Radiotherapy (RT) utilizes high-energy ionizing radiation to eliminate can-
cer cells (Wood et al., 2022). It is administered as either external beam ra-
diation or internal radiation therapy (brachytherapy). Advances in RT, such
as intensity-modulated radiotherapy (IMRT) and image-guided radiotherapy
(IGRT), have significantly improved the precision of treatments, particularly
for photon-based therapies. The development of Intensity-Modulated Proton
Therapy (IMPT) further enables highly conformal treatments that optimize
radiation to surrounding organs at risk and normal tissues. This capability
is critical for reducing toxicities and improving patient quality of life during
and after treatment. Radiotherapy is indispensable in clinical routine, from
reducing tumor volume as a primary treatment to serving as a palliative
measure in advanced cancer stages.

1.1.2 Radiotherapy Across the Globe

Nearly 50% of cancer patients globally receive RT at some point during their
treatment course (Hack et al., 2019). Therefore, the demand for this treat-
ment modality is expected to rise significantly, driven by demographic shifts
toward an aging population and rising cancer incidence rates.

In Europe, Germany has the highest number of RT centers (n=289) (Rosen-
blatt et al., 2013). As a pioneer in introducing novel treatment modalities
and techniques, Germany continues to set benchmarks, exemplified by the
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recent commissioning and first patient treatment of raster-scanned helium
ions beams at the Heidelberg Ion Therapy (HIT) facility (Tessonnier et al.,
2017; Tessonnier et al., 2023).

In contrast, access to advanced RT options is severely restricted in many
developing regions due to economic constraints, a lack of technological ad-
vancements, and a scarcity of medical facilities equipped with state-of-the-
art technologies. Additionally, there is a critical need for specialized train-
ing programs for medical professionals to implement advanced radiotherapy
techniques effectively.

In Iran, these challenges are aggravated by international sanctions that
severely impact the healthcare sector. The sanctions restrict economic re-
sources and hinder the import of advanced medical equipment and technolo-
gies. This creates significant barriers to integrating state-of-the-art therapy
facilities, such as those required for particle therapy, further deepening dis-
parities in cancer care.

Global health organizations are increasingly focusing on improving RT access
in underserved areas. Such initiatives aim to bridge the treatment gap and
promote equity in cancer care. Their efforts ensure effective treatments are
available globally, irrespective of patients” location.

1.1.3 Particle Therapy: The Frontier in Radiotherapy

Particle therapy represents a major advancement in RT, providing targeted
oncological treatment with potentially minimized damage to surrounding
healthy tissues. This advanced technique is particularly characterized by its
use of charged particles, such as protons and heavier ions like carbon, which
possess unique physical properties. In contrast to conventional photon ther-
apy, which employs X-rays, particle therapy can precisely deliver radiation
doses with minimal out-of-target dose deposition due to the unique Bragg
peak phenomenon of charged particles. This peak allows the maximum en-
ergy to be deposited at a specific depth, with a sharp drop-off beyond that
point, therefore significantly limiting the radiation dose received by healthy
tissue adjacent to the tumor. This precision is crucial when targeting tumors
near critical organs or within the central nervous system, where conventional
RT may pose significant risks. This capability of particle therapy makes it a
favorable option for complex cases.

The benefits of particle therapy are particularly evident when treating
younger patients, who are especially susceptible to long-term radiation-
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induced side effects, such as secondary cancers or growth abnormalities.
Therefore, minimizing radiation exposure is of utmost importance (Mizu-
moto et al., 2021).

The integration of advanced imaging and treatment planning systems, in-
creasingly augmented by artificial intelligence (Al), enhances the capabilities
of particle therapy. These advancements improve dose conformity, thus ad-
vancing clinical use and research.

1.2 INTRODUCTION TO PROTON THERAPY

The discovery of X-rays by Wilhelm Rontgen in 1895 revolutionized medi-
cal diagnostics and treatment, leading to extensive research into their ther-
apeutic applications. X-rays interact with biological matter through photon
absorption and scattering, resulting in ionization and excitation of cellular
molecules, which can result in DNA damage and cell death (Kamada et al,,
2015; Loeffler and Durante, 2013). The core objective of RT is to optimize dose
delivery to the target while minimizing exposure to surrounding healthy tis-
sues. This principle guides the development of advanced techniques that en-
hance treatment efficacy and patient safety. Early clinical observations demon-
strated the effectiveness of X-rays in treating superficial tumors, highlighting
their potential for broader therapeutic applications (Kamada et al., 2015).

Despite decades of advancements, photon RT remains the major modality.
However, the unique properties of proton therapy have positioned it as an
attractive alternative, gaining daily adoption and integration in clinical ap-
plications. Proton therapy, first proposed by physicist Robert Wilson in 1946,
offers significant advantages, such as a lower exit dose due to the finite range
of the proton beam, which minimizes radiation exposure to non-target tis-
sues (Wilson, 1946). The foundations laid down in the early 1960s, following
the first human treatment with proton beams at the University of Califor-
nia in 1954, have established routine clinical applications of proton therapy,
transforming it into a precise and innovative treatment modality (Newhauser,
2009). The subsequent section will detail the unique characteristics of proton
therapy.

1.2.1  Characteristics of Proton Therapy

Protons mainly interact with matter through Multiple Coulomb Scatterings
(MCS), involving both inelastic interactions with atomic electrons and elastic

4
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Depth-Dose Curves for Three Pristine Protons with Distinct Energies

Dose [Gy/10 ®#]

1 1 1 | |
0 10 20 30 40 50 60 70 80 90 100
Depth in water (mm)

Figure 1.1: Depth dose profiles of protons with initial energy Eo in water

interactions with nuclei. While interactions with electrons are more frequent
and lead to a continuous energy loss, they rarely cause significant proton
deflection due to the mass difference between protons and electrons. On the
other hand, less frequent elastic nuclear interactions can significantly alter
the proton’s path, introducing uncertainty in its trajectory. This is crucial for
the establishment of the Bragg peak. At higher energies, above the typical
therapeutic range, protons become likely to induce nuclear reactions, though
this is not a concern in standard proton therapy.

The behavior of protons in media is often described in terms of the mass
stopping power, which is independent of the material’s mass density:

S dE

o pdz’ g

where p represents the mass density, E the energy, and z the distance traveled.

The Bethe-Bloch formula is outlined below:

dE  4mmne e2 \? 2mec?p? 2
T dz mec? B2 <47t€o> {ln<1(1—f32)>_6 }’ B

provides a detailed description of the mean energy loss per unit path length,
emphasizing that the energy loss rate inversely correlates with the square
of the proton’s velocity (n. is the material electron density, 3 is the incident
proton speed relative to the speed of light m, is the electron mass, I is the
mean excitation potential of the target medium and finally € is the vacuum
permittivity). This relationship is evident in the profile of the Bragg curve,
highlighting the increased energy deposition as protons decelerate towards
the end of their range (Fig. 1.1).

5
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1.2.2 Proton Range

The range of a proton, or the total distance it travels through a medium, can
be determined using the Continuous Slowing Down Approximation (CSDA):

Eo 1
R(Es) = | * — g, G)
0 4z

where E represents the initial proton energy. This equation applies to a beam
of protons rather than individual particles.

Due to the stochastic nature of proton interactions with matter, the Range
Straggling phenomenon leads to a variance in proton energies within the
beam, resulting in the widening of the beam. Figure 1.1 contrasts the 1D dose
profiles of PB at low and high energies, demonstrating the range straggling
effect.

1.2.3 Proton Therapy in Clinics

This section discusses the advantages of proton therapy’s superior dose con-
formity and the critical aspects of its clinical implementation. Key factors
facilitating the integration of particle therapy into treatment protocols are ex-
plored, and the prerequisites necessary for executing a successful treatment
plan in clinical settings are discussed.

1.2.4 Patient Data Acquisition

In the context of RT, a computed tomography (CT) scan is performed before
treatment planning. It uses X-ray beams to create cross-sectional images of the
scanned body part by measuring the beams’ attenuations. This attenuation
is then converted into numerical values, known as Hounsfield Units (HU).
The HUs are linearly correlated to the tissue’s electron density, which is a
key parameter for calculating the stopping power of protons as they traverse
through the body. Accurate determination of the electron density is crucial for
proton therapy treatment planning, as protons deposit most of their energy
at the end of their range in the body. The location of the Bragg peak is highly
dependent on the stopping power of the tissues (as outlined in Eq. 2), which
is directly related to the electron density.
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Table 1.1: HU to RSP Conversion of an example look-up table used in this study.
Hounsfield Unit Relative Stopping Power

-1025 0.0001
-1000 0.001
-200 0.8
-100 0.94
-30 0.995
0 1

78 1.075
183 1.11
1385 1.7
1974 1.778
3096 2.077

Relative Stopping Power (RSP) to water quantifies the energy loss rate of a
proton beam in a specific tissue compared to water. RSP calculations utilize
look-up tables based on the electron density derived from Hounsfield Unit
(HU) values. These tables enable physicists to transform CT images into de-
tailed maps of RSP. Utilizing RSP maps, the properties of the proton beam
can be precisely tailored to maximize tumor energy deposition, thereby opti-
mizing therapeutic efficacy and minimizing damage to surrounding healthy
tissues. This approach underscores the critical role of CT in both capturing
anatomical detail and facilitating the complex physics calculations required
for effective proton therapy planning.

1.2.5 Beam Selection and Delivery

The process of selecting appropriate proton beam energies and impinging
angles is crucial for ensuring effective tumor coverage. The Spread-out Bragg
Peak (SOBP) is usually implemented to create a uniform dose distribution
across a tumor by superimposing multiple mono-energetic beams. These
beams are accelerated to the selected energies using a cyclotron or syn-
chrotron at the treatment facility. The beam can be delivered either through
passive scattering or active scanning, with the latter providing more precise
control by manipulating the beam’s path using magnetic fields. These beams,
also known as pencil beams (PB) due to their very narrow full width at half
maximum, are the building blocks of a comprehensive treatment plan (Pa-
ganetti and Bortfeld, 2005).
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Figure 1.2: Principles of active scanning system (Reprint from (Jékel, Kraft, and
Karger, 2022))

Active scanning, also known as pencil beam scanning, directs the proton
beam in a pre-defined pattern across the tumor, adjusting the energy dy-
namically to modify the beam’s range (Fig. 1.2). This technique allows for a
highly conformal dose distribution, which is especially beneficial for irregu-
larly shaped or deep-seated tumors. Equation 4 demonstrates how the dose
at point (x,y, z) can be evaluated:

D(X, UIZ) - Zwi : d(Ei/ X/HIZ)/ (4)

where w; denotes the fluence assigned to each beam, d(E;, x,y, z) represents
the dose delivered by a beam with energy E; at the coordinate (x,y,z). To
calculate the cumulative dose delivered by an active scanning system, it is
essential to assess the dose contribution from each pencil beam. This process,
integral to treatment planning, involves aggregating these contributions to
determine the total therapeutic dose administered to the patient.

1.2.6  Proton Dose Calculation

The precise calculation of proton therapy dose distribution requires a thor-
ough understanding of various factors beyond basic single-particle track in-
teractions. Initial dose calculations focus on energy deposition in each voxel
along the track using stopping power equations, but they are insufficient for
real proton therapy planning. For example, the range in tissue can be depen-
dent on uncertainties governed by the imaging modality, patient setup, beam
delivery, and dose calculation, as listed by (Paganetti, 2012). Basic models
do not encompass machine beam characteristics and how they affect scat-
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tering and nuclear reaction distributions, significantly affecting the ultimate
dose outcome. Therefore, typically, treatment facilities incorporate empirical
beam data measurements into their beam model. The data are based on the
treatment room delivery system and accelerator phase space configuration
upstream to the patient.

With this background, two primary methods are predominantly used in the
tield: Monte Carlo (MC) simulations and analytical dose calculation methods.
Each method offers distinct advantages and limitations in a clinical context,
particularly concerning computation time and accuracy.

Monte Carlo Simulations

MC simulations are widely regarded for their high accuracy in modeling the
transport and interaction of protons with matter. Named after the famous
gambling city in southern France due to their stochastic nature, MC simula-
tions are often considered the gold standard for simulating particle behavior
in matter. One of the primary advantages of MC simulations is their ability
to handle complex geometries and tissue heterogeneities with high accuracy.
This method can accurately simulate dose distributions in regions with vary-
ing densities, such as bone-tissue interfaces, and can account for the effects
of beam modifiers and patient-specific factors.

MC simulations operate by discretizing the path of a proton into small steps
and modeling the process through a series of discrete subprocesses. Each step
in a proton’s trajectory involves a sequence of interactions that are modeled
probabilistically, based on the probability distributions of potential interac-
tions within the matter. These steps include:

1. Distance Sampling: The distance to the next step is determined by sam-
pling from the total cross-section, which quantifies the probability of
interactions per unit distance.

2. Interaction Type Sampling: The specific type of interaction (e.g., scat-
tering event) is randomly determined, followed by the appropriate mod-
eling of the event.

3. Particle Transport: The proton is then transported to the next step, or
a secondary particle process is initiated, based on the results from the
previous interaction sampling.

The accuracy and reliability of MC simulations are highly dependent on the
'history” of each particle, a term used to describe the record of all simulated
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vacuuin

Figure 1.3: Detailed step-by-step discretization of a particle trajectory as it moves
from a vacuum into material 1 and, after several interactions, proceeds
to material 2. Here, r,, denotes the location of the n-th scattering event,
while E,, and d,, represent the energy and the directional cosines of the
movement path, respectively, characterized by the scatter polar angle 6
and the azimuthal scattering angle ¢. A and B indicate the type of in-
teraction occurring at each step. (Salvat, Fernandez-Varea, and Sempau,
2007)

subprocesses and interactions for a particle. Executing these simulations re-
quires a long sequence of uniformly distributed pseudo-random numbers to
perform the stochastic sampling necessary for the simulation. Given the large
number of interactions that protons undergo, this process is time-consuming.
Therefore, the high computational demand of MC simulations poses a signif-
icant challenge, particularly for real-time applications.

Efforts to accelerate MC simulations include parallelizing the algorithms
using GPU technology (Schiavi et al., 2017), streamlining physical models
(Lysakovski et al., 2021), and developing fast MC codes for clinical use. These
advancements aim to reduce computation times while maintaining the accu-
racy of traditional MC methods. By leveraging these approaches, MC simu-
lations can be made more practical for clinical applications, ensuring precise
and efficient dose calculations in proton therapy.

Analytical Dose Calculation

Analytical dose calculation methods, such as the Pencil Beam Algorithm
(PBA) (Hong et al., 1996), provide a computationally efficient alternative to
MC simulations by using mathematical models to approximate dose distri-
butions. These methods segment the proton beam into numerous narrow,
focused beams, known as pencil beams, and calculate the dose for each beam
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separately. The results are then summed to generate the overall dose distribu-
tion for the treatment field.

The PBA is preferred for its computational simplicity and satisfactory accu-
racy. In modeling proton beam transport, including energy loss and scatter.
Developed initially for electron beams, the PBA was adapted in the 1990s for
protons and heavier charged particles. The work by (Hong et al., 1996) pro-
vided the formalism widely adopted in current analytical dose computation
engines.

The core of the PBA involves calculating the dose distribution for each pencil
beam using a combination of central-axis and off-axis dose components. The
central-axis dose quantifies the dose along the proton beam’s path, while the
off-axis component models the lateral spread due to MCS and nuclear inter-
actions. These components are typically modeled using Gaussian functions
to describe the dose distribution around the beam’s central axis.

Despite the computational efficiency, analytical methods like the PBA exhibit
limitations, particularly in heterogeneous tissues (Schaffner, Pedroni, and Lo-
max, 1999). The simplified assumptions may fail to capture the complex inter-
actions and variations in tissue density accurately, leading to potential inac-
curacies in dose calculations. Corrections, such as pencil beam splitting and
convolution superposition algorithms, have been developed to enhance accu-
racy by better modelling the lateral spread and interactions in heterogeneous
media (Soukup, Fippel, and Alber, 2005).

Recent advancements continue to refine analytical dose calculation methods,
integrating improvements in computational speed and accuracy. Hybrid ap-
proaches that synergize elements o5 analytical models with Monte Carlo sim-
ulations are being explored to balance efficiency and precision in clinical ap-
plications.

Need for Speed

Proton dose calculation currently faces a critical challenge in balancing accu-
racy with computational speed. Specifically, for online adaptive radiotherapy,
efficient on-table re-planning is essential due to patient anatomical changes or
tumor movements during therapy. Currently, neither conventional MC sim-
ulations nor standard analytical methods can meet the necessary computa-
tional speeds in particle therapy. This challenge underscores the need for de-
veloping new computational approaches that can deliver both the precision of
MC simulations and the speed necessary for real-time treatment adaptation.

11
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1.3 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Al addresses a wide spectrum of computational challenges, each character-
ized by unique data structures, intended outcomes, and algorithms. A com-
prehensive understanding of these problems is essential to understanding
the evolution and application of advanced deep learning models like LSTM
(Long Short-Term Memory), ConvLSTM (Convolutional LSTM), and Trans-
formers, especially in handling complex three-dimensional (3D) data in spa-
tiotemporal contexts.

1.3.1 Classification of AI Problems

Al challenges can generally be divided into several groups: classification, re-
gression, clustering, and sequence prediction. Each category is characterized
by specific objectives and employs unique data types and modeling tech-
niques.

* Classification: Classification tasks in Al involve assigning data to prede-
fined categories. The output of these systems is discrete and often used
in applications such as image recognition and segmentation.

* Regression: Regression problems deal with predicting a continuous
quantity. This type of Al application is employed in estimating time
series analysis.

* Clustering: Clustering techniques group a set of objects so that objects
in the same group are more similar to each other than those in other
groups.

* Sequence Prediction: This involves predicting the next sequence in a
series of data points. Models like LSTM are particularly suited for this
type of problem, where the order and context of historical data points
play a crucial role in making accurate predictions.

1.3.2 Problem dimensionality

The dimensionality of both input and output data in Al-based models plays a
critical role in defining the complexity and type of model used. For instance,
1D data, such as time series from stock prices or audio signals, is processed
linearly, often using models like recurrent neural networks (RNN) that can

12
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interpret temporal sequences. For two-dimensional (2D) data, including im-
ages or spatial grids, convolutional neural networks (CNNs) are employed
to capture spatial hierarchies and patterns. These models excel in handling
an image’s width and height dimensions, extracting features layer by layer.
In the context of 3D data, such as volumetric images from medical scans
or video sequences, the complexity increases as the data incorporates depth
alongside height and width, or time in the case of videos. Processing 3D data
often requires more advanced Al techniques, such as 3D CNNs or LSTM
networks combined with convolutional layers, to effectively capture the addi-
tional spatial or temporal relationships present. Each increase in dimension-
ality demands more computational power and sophisticated algorithms to
accurately model and interpret the intricate structures inherent in the data.

Additionally, we could incorporate a sequence of the above-mentioned prob-
lems across various dimensions. For instance, stock prices are a sequence of
numerical data, a sentence can be a sequence of 1D integers serving as a
marker for the corresponding word in corpus (i.e., one-hot encoded vector),
and a video can be presented as a sequence of 2D image frames. Such prob-
lems with a sequential nature are observed repeatedly in physics. These chal-
lenges frequently involve handling data sequences, including integer, biolog-
ical, or event sequences. An important area where such sequences are pivotal
is within 3D problem contexts, particularly in medical applications. Medical
imaging utilizes 3D data to provide details about anatomical structures or
diseases, which are critical for precise diagnosis and treatment planning.

Depending on the underlying physics of the task at hand, transforming 3D
inputs into a sequence of 2D inputs can be beneficial for managing the task
effectively. This approach allows for the use of techniques that are better
adapted for processing sequential data. Following the successful performance
of recently developed transformer models in processing sequences of data,
this approach has been extensively adapted across various problem types.

Ultimately, the capability to manipulate 3D data, reformat it into a series
of 2D inputs, and subsequently address sequence-to-sequence challenges
presents new opportunities for employing advanced deep learning models
like LSTM networks. These models are particularly efficient at recognizing
patterns in sequential data and play a crucial role in addressing intricate Al
challenges, especially in fields such as medical imaging and biology.

13
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1.3.3 Sequence-to-sequence learning

In the field of Al, sequence-to-sequence (also known as seq2seq problems)
learning represents an approach that addresses the challenge of mapping
sequences of inputs to an output (many-to-one), an input to a sequence of
outputs (one-to-many), and a sequence of input to sequence of output (many-
to-many). This method is particularly beneficial in tasks where both the input
and output are best expressed as sequences whose lengths are not predeter-
mined, such as speech recognition, text translation, and more complex dy-
namic interactions.

The core mechanism of sequence-to-sequence learning involves two primary
components: an encoder and a decoder, both often implemented using some
variation of RNN-based networks such as LSTM networks. The encoder pro-
cesses the input sequence into a fixed-dimensional vector representation, cap-
turing the encoded representation of the input data in a compressed form.
This vector, which encapsulates the entire input sequence, serves as the con-
text for the decoder. The decoder then interprets this context to produce the
output sequence, one element at a time, effectively translating the encoded
data into a new sequence representing the desired output.

This model architecture allows for the handling of sequences with variable
lengths and supports the learning of dependencies that may span the en-
tire sequence length. The effectiveness of this approach is demonstrated in
its ability to maintain performance even with long input sequences, which
poses a significant challenge in many traditional models due to issues like
the vanishing gradient problem (Pascanu, Mikolov, and Bengio, 2012). Sec-
tion 2.1 provides examples of various neural network architectures that have
been pivotal in advancing Seq2Seq problems.

14
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Feasibility of Recurrent Neural Networks for Seq2Seq problems

The groundwork for the present study was laid during earlier research, which
explored the application of RNN-based networks for sequence-to-sequence
parameterization of the task for single energy pencil beams. This prelimi-
nary investigation, conducted as part of a Master’s thesis, has significantly
informed the current research. The findings presented in section 3 build upon
these initial outcomes.

A key insight extracted from the preliminary work was the identification of
sequence-to-sequence parameterization as a particularly suitable approach
for the learning task at hand. The investigation primarily centered on assess-
ing the capabilities of RNN-based networks, encompassing both simple RNN
structures and more complex configurations. Various preprocessing and post-
processing schemes were examined for feature extraction and dimensionality
reduction. This section provides a concise summary of the results from the
preliminary study that are most relevant to the current research.

Basic RNNs

Recurrent Neural Networks (RNNSs) are the foundation of most seq2seq mod-
els. They are designed to handle sequence data by maintaining a hidden state
that updates as they process each element of an input sequence. The basic
form of an RNN can be described by the equation:

ht = tanh(Whhht_1 + thxt + bh)

where h; is the hidden state at time t, x; is the input at time t, Wy, and W,
are weights, and by, is a bias term.

Long Short-Term Memory (LSTM)

LSTMs are an enhancement over basic RNNs, designed to deal with the van-
ishing gradient problem by introducing a memory cell that can maintain in-
formation and propagate this memory across its recurrence. An LSTM unit
includes three gates: an input gate, a forget gate, and an output gate, which

15
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(a) Internal structure of a basic RNN.
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(b) Internal architecture of an LSTM.

Figure 1.4: lllustrations depicting (a) the internal configuration for a simple RNN,
and (b) for an LSTM, adapted from Christopher Olah’s blog post “Under-
standing LSTM Networks.”

control the flow of information into and out of the cell. The equations for
these gates are:

it = 0(Wiixy + Whihe 1 + bi)

fy = o(Whsxe + Whthe—1 + by)

01 = 0(Wxoxt + Whohi—1 + bo)

gt = tanh(Wygxt + Wighi_1 +byg)

ct =Tt Oc1+1Oge

ht = 01 ® tanh(cy)

where o is the sigmoid function and ® denotes element-wise multiplication.

Data Preparation: Phantom Cases

For an idealized evaluation of the neural network’s performance in
dose calculation, simulations were initially performed on phantom mod-
els. These models were composed of cuboidal inhomogeneities with vary-
ing dimensions (2mm to 14mm on both z' and x' axes) and densities
(0.1 RSP to 2.5 RSP), embedded within a water phantom (0.8 RSP to 1.2 RSP)
as depicted in figure 1.5. 2500 such samples were generated, each paired
with dose distributions computed via TOPAS MC simulations. To augment
the dataset, considering the rotational symmetry about the beam axis, rotated
(20°) CT and dose cubes were included, avoiding interpolation to preserve
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the fidelity of MC simulations, thereby expanding the dataset to 10 000 train-
ing samples. This augmentation exploited the neural network’s sensitivity to
input orientation to enhance training efficiency (Shorten and Khoshgoftaar,
2019). The samples were segregated into 2000 for testing (Experiment 1 - 1),
6000 for training, and 2000 for validation to optimize hyper-parameters. All
simulations were conducted with an average of ~ 1.1 x 10° histories, achiev-
ing statistical uncertainty below 1%. Post-simulation, dose cubes were nor-
malized by their fluence and then by the integral dose®. Dose distributions
from a standard pencil beam algorithm were used for baseline comparisons,
normalized identically.

axial plane z = 160 [mm]

60

60 80 100 120 140 160 180 200 220 240 260
x [mm]

Figure 1.5: Setup for a phantom study; this configuration explores various geometric
challenges by altering the dimensions of the slabs along the y and z axes,
adjusting the slab’s positioning on the x and y axes, and modifying the
densities of both the water and the slabs (Neishabouri et al., 2021b).

Data Preparation: Patient Case

To extend the study to more complex, real-world scenarios, lung patient cases
characterized by significant anatomical heterogeneities, such as variations be-
tween normal and lung tissues and dense structures like the rib cage and
spine, were included. For this purpose, 1000 lung case samples were gener-
ated, each derived from TOPAS MC simulations of the same patient, with
variations in beam orientation in 5° increments from 0° to 355° and isocenter
positions adjusted by 10 mm shifts along the z axis, as shown in figure 1.6.

17
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These samples were simulated with 2.5 x 10° histories to ensure a statistical
uncertainty of 1% to 2%. Augmenting these samples through 90° rotations,
as previously described, increased the total to 4000 samples, which were dis-
tributed among 2400 for training, 800 for validation, and 800 for testing (Ex-
periment 1 - 2). For uniformity, the original CT scans were downsampled to
an isotropic 2 mm resolution

(a) GA=35°, z=174mm (b) GA =100° z = 194mm

(c) GA=170°, z = 244mm (d) GA =295°, z=224mm

Figure 1.6: Setup for the lung case; this involves creating various geometric scenarios
to enrich the training dataset by adjusting the gantry angles (GA) and al-
tering the isocenter’s position along the z axis (Neishabouri et al., 2021b).

The dataset prepared for the water box phantom facilitated the training of
both a simple RNN and an LSTM network. The dosimetric performance of
these networks was evaluated using the prepared test set. Table 1.2 showcases
the results of the y-analysis, which compares the dose estimations from both
networks and PBA, against the ground truth MC calculations.

Both networks demonstrated high dosimetric accuracy in dose calculation,
achieving mean pass rates exceeding 97.57 %. Notably, the LSTM network
surpassed the RNN by a margin of 1.0 percentage point. This enhancement is
particularly pronounced in scenarios with significant heterogeneities, where
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Table 1.2: Comparison of y-index values ([1%, 3 mm]) among two neural network
models and a PB algorithm against the MC simulation in a phantom setup
(Experiment 1 - 1) (Neishabouri et al., 2021b).

Model Mean (%) Std (%) Min (%) Max (%)

RNN 97.57 1.38 21.17 99.31
LSTM 98.57 0.84 92.37 99.81
PB 97.83 0.86 88.53 98.94

the LSTM’s superior performance becomes evident. An exemplary compar-
ison, depicted in Figure 1.7, illustrates the LSTM’s capability to accurately
better predict the bimodal Bragg peak behind a density interface, leading to
an approximate 1.3 percentage point increase in the y-index pass rate. This
figure also compares the performance of the PB algorithm and includes a y-
analysis for a representative test sample. A notable observation is the distinct
cut in the dose profiles behind interfaces (Schaffner, Pedroni, and Lomax,
1999), contrasting with the bimodal Bragg peak observed in both the ground
truth MC and the estimated LSTM dose profile.

Given the comparable mean y-index pass rates across all methods, the MAE
and the MSE for the generated dose cubes relative to the ground truth MC
simulations for the entire test set are also detailed in Table 1.3.

Table 1.3: MAE and MSE between the network models and the MC simulation in the
phantom case (Experiment 1 - 1) (Neishabouri et al., 2021b).

LSTM RNN PB

MAE (Gy) 33x1073 6.1x1073 3.8x 1073
MSE (Gy?) 4.4 %10~ 1.6 x 1073 6.7 x 1074

The LSTM network was further trained using the lung patient dataset. Table
1.4 provides a summary of the dosimetric comparison with the ground truth
MC simulations, detailing the results from the y-analysis, MAE, and MSE for
the designated test set.

Figure 1.8 displays the performance of the trained LSTM network in compar-
ison to the PBA on a selected test sample.
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Figure 1.7: Comparative analysis of the (b) RNN, (c) LSTM, and (d) PB techniques
against the (a) baseline MC calculation for a selected sample. The de-
tails include an energy of 104.25 MeV with a slab width of 6 mm and a

1.9 relative stopping power. The evaluation used a y-analysis criterion of
[1%, 3 mm] (Neishabouri et al., 2021b).

Table 1.4: y-index analysis [1 %, 3 mm]), MAE, and MSE of the LSTM model and PB
algorithm compared to MC calculations for the lung patient case (Experi-
ment 1 - 2) (Neishabouri et al., 2021b).

Mean (%) SD (%) Min (%) Max (%)

LSTM 98.50 1.00 93.93 99.82

PB 99.15 1.26 92.16 99.93
MAE (Gy) MSE (Gy?)

LSTM 6.9 x1073 6.8 x 1074

PB 47 x 1073 15%x 1073
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Figure 1.8: Dose estimation outcomes for a test sample (104.25 MeV) using the LSTM
network (left) and the PB algorithm (right). The sequence starts with the
patient’s CT at the top, followed by the ground truth MC dose distribu-
tion, the LSTM’s and PB’s dose estimates, and their respective y-index
maps ([1%, 3mm]). Given the significant variation in estimated dose
ranges, the reference MC displays in two distinct color scales tailored to
the dose range of each comparison cube. To enhance visibility, the cubes
are truncated along the longitudinal axis, showing 125 voxels (250 mm)
rather than the full 150 voxels (300 mm) (Neishabouri et al., 2021b).
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Figure 1.9: Distribution of voxels failing the y-analysis criteria, segmented by their
position along the longitudinal axis. These regions are evenly divided
into quarters across the pencil beam’s range (Neishabouri et al., 2021b).
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To identify where the y-index criteria violations occur, each pencil beam was

divided into four equidistant quarter regions along their longitudinal range.

The number of failed voxels in each quarter was counted and the distribution
of these failing voxels along the longitudinal axis is presented as a percentage
of the total for the entire test set in Figure 1.9.
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PB scanning in proton therapy is a key method for achieving precise tumor
targeting while reducing radiation exposure to organs at risk. In this context,
a PB is a focused stream of particles, accelerated to a distinct, predefined
energy. A treatment plan typically comprises several thousand of PBs, each
targeted to reach a certain depth within the tumor in the patient. Within each
distinct energy layer, each PB is targeted to the tumor area—i.e. iso-energy
surface (IES)— with fluence determined through inverse planning. Therefore,
the effectiveness of these plans depends on accurately estimating the dose
each constituent pencil beam delivers.

MC simulation, when based on accurate physical models (Tessonnier et al.,
2016; Parodi et al., 2012) and sufficient particle histories, is the gold standard
for dose calculation (Paganetti and Bortfeld, 2005). This high dosimetric pre-
cision results from the algorithm’s capabilities to meticulously simulate each
particle’s trajectory, in a representative subset. However, the computational
demand of MC often surpasses clinical time frames, particularly when mul-
tiple dose calculations are necessary, e.g., in robust optimization (Unkelbach
et al., 2018), radiobiological studies (An et al., 2017), and arc therapy (Mein
et al., 2021). To address this, streamlined analytical dose calculation methods
such as PBA (Hong et al., 1996) have been developed. Despite being less ac-
curate for complex geometries, the low computational costs and quantifiable
uncertainties of these algorithms quickly led to their clinical adoption.

Concurrently, efforts to accelerate MC simulations are making significant
progress. These include initiatives to parallelize the MC algorithm, utilizing
the multi-thread capabilities of GPUs (Jia et al., 2012; Schiavi et al., 2017), and
streamlining physical models (Lysakovski et al., 2021, 2024). However, imple-
menting these advancements necessitates a certain level of simplification in
the algorithm, differentiating them from standard MC simulation codes, e.g.
FLUKA (Bohlen et al., 2014) and Geant4 (Jiang and Paganetti, 2004; Paganetti
et al., 2008). The success of these efforts, however, is leading to the incorpora-
tion of fast-MC algorithms into routine clinical planning (Laboratories, 2017),
particularly due to the proven reliability of MC methods compared to PBA.

Despite these advancements in accelerating MC simulations, and despite im-
provements in real-time imaging modalities, a significant gap remains in per-
forming dose calculations for real-time adaptive proton therapy (APT) (Pa-
ganetti et al., 2021; Keall, Poulsen, and Booth, 2019). Current methods still
struggle to provide the fast and accurate dose calculations necessary for ef-
fective real-time dose adaptation in therapeutic settings.
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The inherently parallelizable nature of Al algorithms shows promise in this
domain. Initial approaches can be categorized into methods that propose
the correction of fast yet inaccurate algorithms (Wu et al., 2021). However,
while these approaches are extremely fast, their performance is constrained
by the underlying computational time of the primary algorithms they en-
hance. Moreover, as these methods estimate the entire proton field simultane-
ously, they fail to provide crucial data necessary for subsequent optimization,
(re-)planning, and assessing radiobiological impacts in PT and personalized
therapy.

This PhD thesis builds upon the previous work where various approaches
were incorporated to investigate the feasibility of ANNSs in estimating the sin-
gle energy pencil beam dose distributions. To this end, a preliminary evalua-
tion of RNN based networks where conducted. Moreover, the main finding of
this previous work was the capability of LSTM networks in preserving infor-
mation along the sequence length. The focus is on evaluating their suitability
for dose estimation in the Beam’s Eye View (BEV) domain or on the dose
grid for full-field dose estimation. Specifically, this research aims to achieve
the following objectives:

1. Develop and Evaluate ANN Models: The formulation of proton dose
estimation as a supervised learning problem where CT input images
are mapped to their respective dose distributions. This task will require
creating different ANN architectures, especially Long Short-Term Mem-
ory (LSTM) networks, that can capture the spatial dependence and het-
erogeneity of patient anatomy. To train these models, a large dataset
containing pre-calculated dose distributions produced through MC sim-
ulations will be used as ground truth. As part of this objective, the
CC-LSTM model will be developed, taking into account the sequential
nature in which doses are deposited while introducing the LSTM-133
model, which employs an innovative feature extraction technique aimed
at enhancing output resolution. The performance evaluation should be
done with thorough cross-validation methods to compare accuracy lev-
els alongside computational efficiency between proposed ANN models
and conventional dose calculation techniques, hence ensuring their tech-
nical validity as well as practicality within clinical settings.

2. Error Quantification and Uncertainty Estimation: To quantify the pre-
diction uncertainties and model errors associated with dose estimations
based on ANNSs. This will be done by using Bayesian LSTM models that
give probabilistic predictions, hence enabling the calculation of confi-
dence intervals as well as identifying possible sources of mistakes. The
research targets making the dose predictions more robust and depend-
able for clinical implementation through the inclusion of uncertainty
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quantification. Techniques like Bayesian inference and statistical error
metrics shall be applied to measure and analyze dose estimation uncer-
tainties therefore enhancing explanation and comprehension of these
estimations by ANNSs.

. Real-time Adaptive Proton Therapy: Investigate the ability of ANNs
in meeting the primary goal of this study which is creating dose distri-
butions with ultrafast execution times necessary for real-time adaptive
proton therapy. This encompasses proposing models, workflows, and
code libraries that will allow fast computation of dose distributions. The
study aims to ensure that dose predictions can be made on a real-time
basis by concentrating on improving the computational efficiency of the
ANNSs while maintaining a comparable accuracy performance relative
to MC simulations.
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MATERIAL AND METHODS

The objectives of this PhD thesis were conducted in three phases. The ini-
tial phase evaluated the feasibility of an Al-based dose calculation approach
in particle therapy for full-field dose estimation. Building on the feasibility
analysis presented in Section 1.4, the established framework was optimized,
and additional data were generated to investigate the generalization of the
proposed method to other therapeutic energies and unforeseen patient sce-
narios.

In the second phase, detailed in section 2.2, model robustness was evaluated
by exploring methods to quantify the inherent uncertainties. This involved
the integration of Bayesian neural networks into our deterministic LSTM-
based framework, allowing for an assessment of prediction confidence levels
across various scenarios. This Bayesian approach enhances the LSTM model
by incorporating model uncertainty, which is essential for clinical decision-
making and quality assurance. The Bayesian LSTM (B-LSTM) models provide
dose predictions and uncertainty quantification, enabling a better informed
evaluation of treatment plans.

The final phase of our study, outlined in section 2.3, focuses on the primary
objective of this work: the development of a fully Al-based dose engine ca-
pable of performing comprehensive full-field dose estimations. Leveraging
insights from the feasibility study and the uncertainty quantifications, this
phase aimed to upscale the mono-energetic simulations” approach to full-
field dose distribution estimations. Furthermore, the challenge of simulating
real-world clinical scenarios involving diverse energies and complex patient
geometries is addressed by leveraging a custom-designed Al model.

The model was meticulously developed to integrate and process a holistic
dataset based on previously delivered treatment plans to meet the strict ac-
curacy and run time requirements essential for real-time APT. This approach
not only ensures the robustness of the simulations but also guarantees that
the dose predictions are both precise and computationally efficient, address-
ing the critical demands of modern RT. The details of this Al-driven model
and its operational capabilities are discussed in section 2.3.

26



2.1 FEASIBILITY OF RNN-BASED MODELS FOR FULL-FILED DOSE ESTIMATION 27

2.1 FEASIBILITY OF RNN-BASED MODELS FOR FULL-FILED DOSE ESTI-
MATION

2.1.1  Problem parameterization

The foundational aspect of our research is the dose calculation for a single
proton pencil beam within IMPT. This focus allows us to examine the in-
herent properties of LSTM-based dose prediction, avoiding the obscuring ef-
fects of averaging that occur in treatment plans utilizing thousands of beams
(Agostinelli, 2003; Perl et al., 2012; Wieser et al., 2017).

MC simulations are regarded as the most accurate, serving as the ground
truth for our model’s training. These simulations were implemented us-
ing the Topas (TOol for PArticle Simulation (Perl et al., 2012)) wrapper for
Geanty, alongside PBA dose calculations performed using the matRad soft-
ware toolkit (Wieser et al., 2017)*.

The 3D dose distribution D of a single pencil beam is influenced by the
particle’s initial phase space P, consisting of position and momentum, and
the patient’s 3D geometry G:

D =f(P,9) (5)

To facilitate neural network training for accurate proton dose calculations, it is
crucial to establish the mapping f from the initial particle phase space P and
the patient geometry G to the resulting dose distribution D. We simplified
this task by limiting the learning to mono-energetic PBs, thereby reducing
the complexity and increasing the data sampling density across potential ge-
ometrical and dosimetric scenarios. Training for additional energies is treated
as a distinct learning task.

Adapting to a beam’s eye view, the dose calculation becomes simpler as the

deposition aligns along the z’-axis (as shown in figure 2.1). This setup allows

for a finite range and lateral extent of the particles, facilitating the clipping of

the region of interest to a manageable size for computational efficiency. The

models use an isotropic resolution of 2mm with m = 15 voxels laterally and
= 150 voxels longitudinally for each patient setup:

1 http://www.matrad.org
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Figure 2.1: (a) Distribution of a dose from a single pencil beam with an initial energy
of 104.25MeV, entering from a gantry angle of 240° and superimposed
on the patient’s CT scan. The highlighted area is outlined in red. (b) The
corresponding CT slice and (c) the dose distribution from the perspective
of the beam’s eye view coordinate system (Neishabouri et al., 2021b).

Si c ]Rl+xm><m N @i c ]Rl+><m><m (6)

Instead of relying solely on HU maps, our approach uses RSP maps, cal-
culated based on the reduction of range in the patient relative to water,
which are standard in conventional PB algorithms for density adjustments
(Schaffner, Pedroni, and Lomax, 1999; Wieser et al., 2017). The RSP values,
ranging from almost 0 (Air) to 2.5 (dense bone), are converted using HU
look-up tables to the corresponding water densities utilized in MC simula-
tions.

2.1.2 Model Architecture: Deterministic LSTM Model

The challenge of particle dose calculation is characterized by a unique ge-
ometrical aspect, motivating the adoption of a specialized neural network
architecture. The deposition of dose in proton therapy occurs in a distinct
upstream-to-downstream sequence. This means that energetic protons generally
move in a forward direction with minimal lateral deviation until they reach
their stopping point. Such directional behavior facilitates the representation
of 3D data as a series of 2D slices, as depicted in figure 2.2.

This directional sequence in dose calculation shares notable similarities with
the spatio-temporal analysis found in video processing, particularly in tasks
like action recognition. In these tasks, models extract spatial details from in-
dividual frames and analyze temporal dynamics to understand object move-
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Figure 2.2: This illustrates the sequential and spatial-temporal approach to solving
the proton dose calculation task. Each m x m segment of the input is
transformed into a one-dimensional input array z<'>. This array feeds
into an RNN/LSTM cell, which produces both a hidden state h=*> and
an output a<*>. The hidden state informs the next slice processing for
a total of 1 slices, and the output connects to a dense neural network
that reconstructs an m x m output segment. This output is then evalu-
ated against the actual ground truth using the mean squared error loss
(Neishabouri et al., 2021b).

ments. Similarly, modeling the movement of protons through patient tissue
involves tracking their trajectory through varying densities, particularly influ-
enced by the initial material they traverse, thereby creating a causal relation-
ship from upstream to downstream in the 3D volume. High-gradient regions
in RSP values, such as transitions at bone interfaces or air cavities, are critical
as they predominantly influence dose delivery at the proton’s stopping point
as shown in figure 2.3. Thus, any model designed for simulating particle dose
deposition must extract these spatio-temporal features and accurately convey
the influence of these heterogeneities along the proton path.

To handle long sequence dependencies effectively, a model capable of trans-
mitting information throughout the sequence is required. RNNs, with their
hidden states, link multiple conventional neural networks in a series, cre-
ating a framework suited for many-input-to-many-output configurations.
LSTM networks are particularly capable of managing long information se-
quences due to their internal gating mechanism. Furthermore, unidirectional
LSTM models are exceptionally well-suited for modeling the upstream-to-
downstream proton propagation, thus avoiding unnecessary dependencies
from downstream to upstream, significantly reducing the model’s parameter
count.
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Figure 2.3: Exploring the impact of heterogeneity on the dose profile of a pencil
beam. This beam comprises 10° protons, each with an initial energy of
104.25 MeV, traversing through (a) water with a RSP of 1.0. (b) The rect-
angular heterogeneity with an RSP of 2.5 measures 10 mm in width along
the 2/ axis and 14 mm along the x’ axis, positioned 1 mm from the center
of the proton beam. This heterogeneity primarily affects the dose profile,
notably producing a dual-peaked Bragg peak within the range of approx-
imately 60 mm to 80 mm, or 20 mm past the heterogeneity (Neishabouri
et al., 2021b).

2.1.3 Model Training

The development of LSTM networks has evolved significantly, driven by sub-
stantial advancements in neural network technologies (Gers, Schmidhuber,
and Cummins, 2000; Gers and Schmidhuber, 2000; Graves and Schmidhuber,
2005). The LSTM model was implemented using the Pytorch framework?.
This framework facilitated the model’s training with an Adam optimizer
(Kingma and Ba, 2014), which is advantageous for its adaptive learning rate
capabilities, crucial in managing the large dataset employed in this study.

The LSTM architecture designed for this study consists of a single layer with
1000 neurons, which feeds into a backend fully connected neural network.
This network comprises a hidden layer of 100 neurons and an output layer

2 https://pytorch.org/docs/stable/generated /torch.nn. LSTM.html
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sized to produce m? neurons, matching the output dimensions required for

our dose slices. Tanh activation functions were employed in the LSTM, with
ReLU functions used in the backend to facilitate non-linear learning pro-
cesses. This design was optimized to normalize the dose cubes between 0
to 1 and to handle RSP input cubes within the range of 0 to 2.5, thus main-
taining the physical properties of the input data within expected thresholds.

The learning rate was set to 10~ throughout the training phase to balance
the training speed and model accuracy. Our observations indicated that the
model reached a plateau in test loss after about 100 epochs, marking the
start of overfitting beyond this point. The training sessions typically lasted
between 3 to 4 hours on a Geforce GTX 970 GPU, emphasizing the compu-
tational demands and efficiency of our model given the complexity of the
data processed. The model’s efficacy was empirically validated through its
performance across multiple test scenarios, where it demonstrated robust-
ness without significant decreases in test loss, indicating stable learning and
generalization capabilities. This operational efficiency is critical, particularly
when considering the application of such models in clinical APT, where both
accuracy and speed have to be optimized.

Patient Cases and Experiment Design

Based on the initial successful results outlined in section 1.4, the LSTM
model’s generalization to new patients was tested by evaluating its perfor-
mance on five different lung cancer patients not included in the training set.
For each patient, 200 pencil beams with varied gantry angles and isocenter
positions were prepared, and their doses were calculated via MC simulations
(Experiment 1 - 1).

Furthermore, to verify the model’s adaptability to different proton ener-
gies within a clinical setting, we created datasets for three distinct en-
ergy levels: low-range (68.33 MeV), mid-range (104.25 MeV), and high-range
(134.22 MeV) proton beams (Experiment 1 - 2). Each energy level consisted
of 1000 randomly chosen samples, handled similarly to the patient cases de-
scribed above. For the high-energy beams, the dose calculation cubes were
extended to | = 200 voxels in the longitudinal direction, culminating in 12 000
samples post-augmentation, split following the same ratio as earlier experi-
ments.
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2.1.4 Incorporated Metrics

To assess the accuracy of 3D dose distributions, we conducted a gamma anal-
ysis (Low et al., 1998) applying a criterion of 1% for dose difference (DD)
and 3mm for distance-to-agreement [1 %, 3 mm]). This was applied across
both phantom and patient case studies. The 1% dose difference threshold
was specifically chosen in light of the MC simulations’ statistical uncertainty,
which is also around 1%. This ensures a rigorous evaluation of the dose
calculations, avoiding the analysis of noise characteristics inherent in MC
simulations. The 3 millimeter distance-to-agreement criterion was selected
to guarantee a search area extending at least one voxel in each direction, con-
sidering the 2 millimeter resolution of our dose cubes.

We visualize performance using gamma index distributions, highlighting
how well the predicted dose distributions conform to those from MC sim-
ulations, particularly in response to variations in tissue density along the
trajectory of the pencil beams. Additionally, we quantify the accuracy of our
dose predictions using the gamma-index pass rate, the Mean Absolute Er-
ror (MAE), and the Mean Squared Error (MSE). These metrics help to con-
dense the comparative analysis of the 3D dose distributions into single val-
ues, greatly simplifying the evaluation process when dealing with thousands
of samples across training, validation, and testing phases.

2.2 UNCERTAINTY QUANTIFICATION: BAYESDOSE

Recent advancements in Al have introduced strategies that either enhance
the accuracy of fast but approximate dose calculation methods or entirely
replace traditional algorithms with Al-driven dose calculation models (Kon-
taxis et al.,, 2020; Martinot et al., 2021; Neishabouri et al., 2021b; Pastor-
Serrano and Perkd, 2022; Pastor-Serrano et al., 2023). These approaches are
generally trained using datasets generated from MC simulations to ensure
high accuracy (as described in section 2.1.3). As it was reported in section
2.1.3, the training phase, while not overly time-restricted, allows for the de-
velopment of tailored models for specific energies or patient categories. Sub-
sequently, these models can perform dose calculations during clinical appli-
cation, potentially outperforming conventional numerical methods in speed
while maintaining accuracy comparable to MC calculations.

A critical aspect of adopting these Al models in clinical practice is their
"explainability," particularly regarding the accuracy of their predictions
(Barragdn-Montero et al., 2022). Unlike systematic errors in pencil-beam calcu-
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lations, which can be traced back to specific assumptions and simplifications,
the interpretability of errors in neural network predictions is less straightfor-
ward.

Bayesian Neural Networks (BNN) offer a robust framework to address these
concerns. In BNNs, the model parameters, such as weights and biases, are
treated as stochastic variables defined by parametric probability distributions
learned during training (Gal, 2016; MacKay, 1992). After training, sampling
from these distributions can produce a variety of neural networks, each pro-
viding different dose predictions for the same input. This capability enables
the derivation of statistical insights into the model’s predictive accuracy, such
as the expected dose and its standard deviation, for individual patient CT
images.

Building on previous research that employed LSTM networks for indi-
vidual proton beamlet dose calculations (described in section 2.1 and in
(Neishabouri et al., 2021b)), this section introduces "BayesDose," a Bayesian
LSTM (BLSTM)-based model. This model demonstrates how BNNs can pro-
duce statistical dose predictions, helping to alleviate concerns regarding the
unclear nature of Al models in clinical settings and supporting quality assur-
ance and decision-making processes in Al-based dose calculation systems.

2.2.1 Dataset

The datasets utilized for the BayesDose model were previously compiled and
are detailed in sections 1.4 and 2.1.3. Utilizing these datasets allows for a
consistent comparison between the BayesDose model and its deterministic
counterpart under equivalent conditions.

The water phantom data is incorporated to study the uncertainty estimation
under extreme, notable scenarios, serving as an intuitive and explainable fea-
sibility check for the developed BayesDose. Furthermore, the patient’s lung
case was incorporated for a real patient scenario, exhibiting notable anatomi-
cal heterogeneity between normal tissue, lung tissue, and bony anatomy.

Since different geometric problems were created by altering the beam orien-
tation, the training data resulted in cases where the gantry angle was oblique
in relation to the CT axis. Consequently, these cubes experience strong waver-
ing behavior due to the occurring interpolation errors (example can be seen
in figure 3.6). However, it was decided to include these samples with high
interpolation artifacts to validate the comparison to the deterministic LSTM
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and to analyze how they interfere with the model uncertainty predicted by
the BayesDose model.

Finally, the generalizability data, which focuses on the model’s ability to gen-
eralize across different energy levels, is incorporated. Additional generaliza-
tion testing involved dose simulations for four more lung patients, enhancing
our understanding of the model’s adaptability to diverse patient anatomies.
Each scenario involved 200 randomly chosen proton beamlets, varying in
RSP values, which provided a robust basis for evaluating the predictive con-
sistency across different patient geometries as shown in Figure 2.4.
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Figure 2.4: Box plot illustrating the variance in RSP values across the tested patient
geometries. Patient 0 represents the initial lung patient detailed in 2.1.3.

2.2.2  BayesDose Implementation

The BayesDose model was developed using Python 3.10.5 and utilizes the
PyTorch 1.12.0 framework, based on the structure from section 2.1.2. The
Bayesian layers within the network are implemented through the Blitz frame-
work 0.2.8 (Esposito, 2020). Enhancements have been introduced to optimize
data handling and training, facilitating the use of larger batch sizes and im-
proving training speed and convergence.

A pivotal aspect of our model is the BLSTM layer, known as BayesianLSTM
in the Blitz framework. This layer transforms each weight and bias in the
conventional LSTM layers into stochastic variables defined by probability dis-
tributions. This transformation introduces stochasticity to the cell in each it-
eration, impacting the dynamics of every iteration in the BLSTM layer. This
structure is depicted in figure 2.5.
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probability distribution probability distribution
for weights for biases

Figure 2.5: Schematic of a BLSTM cell illustrating the distribution-based stochastic
parameters, including weights and biases. Shown are the input x¢, the
hidden state h¢ (also the output y¢), and the cell state ¢, with activation
functions sigmoid (o) and tanh (tanh).

The Bayesian inference process used in our BLSTM layers employs Bayes’ the-
orem to evolve the prior distribution of the weights p(w) toward a posterior
distribution p(w|D), where D represents the observed data:

p(Diw)p(w)

PID) = 1 Bwipw)dw

(7)

The data likelihood p(D|w) and the evidence p(D) are crucial, yet directly
computing p(D) is often impractical.

To circumvent this computational challenge, the Blitz framework adopts vari-
ational inference to estimate the posterior distribution p(w|D) as a variational
posterior qy,(w). This approach converts the complex integration task into an
optimization problem, focusing on minimizing the negative Expected Lower
Bound (ELBO):

ELBO = —Eg, (w{log p(Dw)} + KL{gy (w)[p(w)) , (®)

aiming to balance the model and data fit while managing the regularization
via the Kullback-Leibler (KL) divergence. This dual objective helps balance
the model’s accuracy against the risk of overfitting.
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Training involves updating the probability distributions of the network’s
weights and biases via the Bayes by Backprop method (Blundell et al., 2015),
allowing the network to derive an ensemble of predictions from sampled pa-
rameters:

wi =N(0,1) xlog(1+ pi) + Wi, (9)
bi =N(0,1) x log(1 + pi) + Wi, (10)

which reflects the conversion of stochastic elements into operational parame-
ters for the network’s predictive tasks.

To fine-tune the model parameters, including the stochastic components, a
hyperparameter optimization was conducted using the Optuna Framework
(Akiba et al., 2019), involving 200 trials that determined optimal settings for
the network’s performance characteristics. This optimization focused on the
mixture components and the variance settings essential for the Gaussian prior
scale mixture, resulting in specific values that enhance the predictive capabil-
ity and efficiency of the model.

2.2.3 BayesDose Architecture

The architecture of our BayesDose model closely aligns with the deterministic
model detailed in section 2.1.2. Each 15 x 15 slice from a sequence of lateral
2D dose slices is reshaped into a vector of 225 elements and fed into the
BLSTM cell to process the input data. Both the cell and hidden states within
each BLSTM cell consist of 1000 neurons. These neurons update their states
with each slice processed, sequentially passing on updated information to the
next slice in the sequence. This sequential processing ensures that each image
slice is analyzed in the context of the information processed from previous
slices.

The output from the BLSTM layer comprises a sequence of 1000-element vec-
tors, where each vector corresponds to a processed image slice. Subsequent
fully connected layers convert these vectors back to their original dimension-
ality of 225, which are then reformed into 15 x 15 slices.

Significant modifications are evident in the back-end network of the Bayes-
Dose compared to the deterministic model. Specifically, traditional linear lay-
ers are replaced with BayesianLinear layers, and the ReLU activation func-
tions are substituted with SiLU activation functions (Elfwing, Uchibe, and
Doya, 2018) to facilitate smoother posterior probability distributions for the
weights and biases.
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The redesigned back-end network consists of a Bayesian linear input layer
with 1000 neurons, followed by a hidden layer of 100 neurons, and culminat-
ing in a Bayesian output layer of 225 neurons. SiLU activation functions are
applied between these layers to enhance non-linear processing capabilities.

The BayesDose model samples weights and biases from the optimized varia-
tional posterior distribution to generate predictions and estimate uncertainty.
This sampling produces a series of predictions for the same input sequence,
enabling the computation of statistical measures such as the mean and stan-
dard deviation. These statistics represent the consolidated output of the net-
work and its associated uncertainty.
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Figure 2.6: Illustration detailing the data flow within the BayesDose model. The
depth dimension z is utilized as the time dimension t for the BLSTM.
Each 15 x 15 slice is transformed into a vector x;, which the BLSTM cell
processes to produce cell states c¢, hidden states h{, and the resulting
outputs y¢. These outputs are then input into a fully connected Bayesian
network, which generates the final outputs z;.
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2.2.4 BayesDose Training

The loss function utilized for training BayesDose comprises the ELBO loss
function, which includes the MSE and the KL divergence components (refer
to equation 8). To accommodate the Bayesian characteristics of the model, the
average ELBO loss from three calculations is employed for backpropagation.
Low sample numbers or even a single sample are typically adequate for Bayes
by Backprop, balancing ELBO noise and training duration.

The MSE is approximately a factor of 1-10° smaller than the KL divergence
loss, causing the latter to dominate the loss function. This disparity leads
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to a slow convergence as the optimizer prioritizes minimizing the KL diver-
gence. To ensure both components impact the optimization process equally,
the MSE is scaled up by the aforementioned factor during training, referred
to as scaled MSE (SMSE).

As proposed by (Smith, 2017), a learning rate range test is conducted on the
SMSE and KL divergence loss separately to determine the optimal learning
rates for each component during training. This involves progressively increas-
ing the learning rate while monitoring the losses to identify the point just
before each loss increases, indicating the optimal learning rates for each com-
ponent. The OneCycleLR policy from PyTorch (Smith and Topin, 2019), which
includes a warm-up phase with increasing learning rates followed by an an-
nealing phase with decreasing rates, is implemented to manage the learning
rates effectively.

For the phantom dataset, the starting value of the OneCycleLR scheduler is
set at 1.3- 1073, enabling rapid convergence of the SMSE loss and gradual
convergence of the KL divergence loss. The learning rate increases to a max-
imum of 6.5- 1073, the highest value where the SMSE loss remains stable,
and then reduces to 4.13- 107 in the latter half of the training to facilitate
total loss convergence. For the patient dataset, slightly higher learning rates
are permissible, starting at 3.3 - 1074, reaching a maximum of 1-1073, and
decreasing to a minimum of 3.3 - 107°.

The training regimen employs the Adam optimizer (Kingma and Ba, 2017)
with the OneCycleLR scheduler and a batch size of 32, which is the most
effective in balancing the learning rates between the loss components. The
network undergoes training for 600 epochs for the phantom dataset and 1000
epochs for the patient dataset, after which no substantial improvements in
performance are observed. The training duration for the phantom dataset
approximates 10 hour and for the patient dataset around 11hours on an
NVIDIA RTX A6ooo GPU. The progression of the total loss and its compo-
nents during training is depicted in figure 2.7, illustrating the initial reduction
in SMSE followed by a gradual decrease in KL divergence.

2.2.5 Incorporated Metrics and Experimental Design

Evaluating the BayesDose model’s performance involved generating 100 pre-
diction samples to accurately estimate the mean and standard deviation, en-
suring efficient prediction times. The model’s performance metrics were cat-
egorized into two types: accuracy metrics, based on the ensemble mean, and
uncertainty metrics, derived from the ensemble standard deviation.
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Figure 2.7: Evolution of the loss function across the 1000 epochs during patient train-
ing. It illustrates the training loss, comprising KL-divergence and squared
mean squared error (SMSE) depicted separately. The test loss, evaluated
every 10 epochs and based solely on SMSE, is derived from individual
prediction samples.

For assessing the predictive accuracy, a comprehensive gamma analysis (Low
et al., 1998) using a [1 %, 3 mm] criterion was conducted. To mitigate the issue
of gamma pass-rates clustering at 100 %, doses under 0.1 % of the maximum
were excluded from the analysis, establishing a stricter evaluation criterion
than that used in section 2.1.4. This adjustment addresses the potential for
near-zero values, which could artificially inflate pass rates due to the neu-
ral network’s numerical inaccuracies. In patient-specific cases, the gamma
computation utilized 10 interpolation points, and the results for the original
model were recalculated using this more rigorous standard. In addition to
gamma pass-rates, the model’s performance was quantified by reporting the
MSE and MAE of the DD.

To examine the quality of the uncertainty predictions, the proportion of voxels
inaccurately predicted within their respective no confidence intervals was
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analyzed, with o representing the standard deviation of the predicted dose
ensemble within a voxel, for n values ranging from 1 to 5. Although the
predicted dose does not conform to a Gaussian distribution, comparing the
relative frequency of voxels deviating beyond no with Gaussian expectations
aids in assessing whether the model tends to significantly overestimate or
underestimate its confidence. Similar data preparation methods were applied
as in the gamma analysis, disregarding DDs less than 1% and differences
below 0.1 % of the maximum dose.

For comparative evaluation, the Bayesian LSTM network was benchmarked
against the deterministic LSTM model from the previous section to discern
any performance disparities stemming from architectural differences, such as
using SiLU activation functions or the extended training protocols involved
in transitioning to Bayesian Network layers.

The experimental setup for evaluating the BayesDose model involves five dis-
tinct experiments, where as described earlier, each designed to assess differ-
ent aspects of model performance and robustness. These experiments utilize
the datasets and models described previously.

EXPERIMENT 2 - 1: In this initial experiment, the model is trained, tested,
and evaluated using the phantom dataset as detailed in section 1.4. The
data is divided into a 60-20-20 distribution for training, validation, and
testing, respectively, mirroring the approach in section 2.1.3.

EXPERIMENT 2 - 2: The model undergoes a similar evaluation process on
the dataset for an individual lung patient, as described in section 2.1.3,
with the same 60-20-20 data split applied for training, validation, and
testing phases.

EXPERIMENT 2 - 3: This experiment focuses on assessing model perfor-
mance across different initial energies by training, validating, and test-
ing the model separately on the low-range and high-range energy
datasets as outlined in section 2.2.1.

EXPERIMENT 2 - 4: The generalizability of the model is tested by applying
the trained model from experiment 2 - 2 to four additional patients,
assessing how well the model performs on new, unseen patient data.

EXPERIMENT 2 - 5: This experiment tests the model’s adaptability to new
information by initially training on data from patient o and then fine-
tuning on data from patient 5, who presents a wider range of RSP val-
ues. The model is then re-tested on the remaining patients to compare
results and assess any changes in performance.
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Experiments 2 - 4 and 2 - 5 additionally explore how predicted uncertainty
correlates with various gamma criteria, aiming to establish decision-making
guidelines based on model output and associated uncertainty. Experiment 2
- 5 extends this analysis to examine the effects of re-training the model on
previously unseen data.

2.3 TOWARD REAL-TIME ADAPTIVE PROTON THERAPY

This section thoroughly outlines and compares the development and bench-
marking of the full field dose engine and the core AI model with state-of-
the-art methodologies. Specifically, this section will highlight the advantages
of RNN-based models, which, despite their earlier development, continue to
demonstrate high efficiency in managing complex computational challenges
such as dose calculation in particle therapy. Building on the strengths of
RNN models, the steps that led to the design of the CC-LSTM model will
be described. Additionally, by leveraging the run time efficiency of the pre-
implemented LSTM cell module in PyTorch, LSTM-133 model is introduced,
which formulates the problem efficiently to deliver sub-second run time per-
formance.

2.3.1  CC-LSTM Architecture

As detailed in section 2.1.2, the rationale for representing input and output
as a sequence of 2D slices in the BEV was explained. While physically equiv-
alent, these representations are interpreted differently in the context of Al,
particularly regarding feature extraction and subsequent architectural deci-
sions. The former involves extracting spatial features across all axes, whereas
the latter requires a spatio-temporal feature scheme—spatial in the lateral di-
mensions and temporal in the longitudinal dimension, as illustrated in figure
2.8. A critical distinction is the coherence along these axes; temporal features
involve changes or patterns over time, necessitating an algorithm that can
maintain this information. Spatial features related to object positions in space
suggest the need for algorithms focusing on local receptive fields.

CNNis are utilized to capture physical characteristics such as size, shape, and
orientation of heterogeneities. They can also capture spatial hierarchies. Ad-
vanced forms of RNNs, such as LSTM networks, attention-based Transform-
ers (Vaswani et al., 2023), and Retnets (Sun et al., 2023), are considered for
sequence handling and temporal information retention.

41



2.3 TOWARD REAL-TIME ADAPTIVE PROTON THERAPY

/ y / g ’ /
o / 4

/| Spatial lnput ! / Zemporal ) . Spatial Output |/

Layers o § Lathway y f Layers

-

Figure 2.8: This diagram illustrates the CC-LSTM architecture, unfolded to show its
three main components: the spatial input layers that compress each BEV
slice from 3-to-1 before feature extraction via convolutional layers; the
temporal pathway, which extends the features of each slice along the lon-
gitudinal axis to develop correlations up to time step t; and the spatial
output layer, where outputs from the temporal module for each time step
are transformed into dose distributions for the corresponding time step.
Importantly, the network maintains the spatial integrity of features by
avoiding "flattening’ throughout the progression.

While Retnets have not been explored in this study, the decision to forego
Transformer-based architectures was due to their extensive parameterization
and high resource demands (Sun et al., 2023). Emphasizing the need for an
architecture that balances robust performance with efficient inference speed
is crucial. The dual nature of this task, the availability of data versus the
need for super-fast, full-field dose inference, presents both opportunities and
challenges. Each model modification must be meticulously considered, as
their impacts are significantly magnified by the number of pencil beams in
an IES or the entire field.

Scaling to the HIT required adjustments due to broader proton cross sec-
tions compared to earlier models. Previously, a 30-millimeter clipping was
adequate, but HIT necessitates at least a 45-millimeter lateral clipping. This
adjustment, coupled with the finer resolution scheme of isotropic 1mm, in-
creases input neurons, raising run time and requiring more hidden neurons
to preserve performance. However, the quadratic scaling of LSTM parameters
with the increase in hidden neurons, as shown below, complicates maintain-
ing real-time APT frame rates:

Oistm =4 X ((x+h) x h+h), (11)

where x denotes the number of input neurons, and h is the number of hidden
neurons. This increased parameter count significantly slows the algorithm.
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Additionally, the original algorithm’s capacity to maintain spatial coherence
and effectively propagate temporal features diminishes with the substantial
increase in input size.

The spatiotemporal, physics-informed, mono-energetic model (CC-LSTM)
was introduced to address these challenges. It maintains the efficient sequen-
tial O(1) inference cost characteristic of LSTM models while addressing the
spatial feature coherence loss between BEV slices due to its 2D treatment of
these slices.
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Figure 2.9: Illustration of the CC-LSTM architecture through time step t, segmented
into critical components: a) Spatial Feature Extraction, where each BEV
slice undergoes a 3:1 compression followed by convolutional layers for
feature extraction; b) Output Layers, where the temporal module’s out-
puts at each time step are converted into the forecasted dose distribution;
and c¢) Temporal Pathway, showcasing the propagation of features and
the correlations among slices up to time step t, with details on input and
output dimensions and activation layers for each module.

As depicted in Figure 2.8, the CC-LSTM model incorporates two sets of con-
volutional operations, enhancing its processing capabilities. The initial set
pre-processes each slice before it is introduced to the temporal encoder, as
shown in figure 2.9a. This initial convolutional stage involves two layers of
CNNs, each followed by leaky ReLU activation functions designed to con-
dense the spatial dimensions effectively. The first layer utilizes a 3x3 kernel
with a stride of three in both axes, efficiently reducing the spatial dimensions
and producing a series of lower-dimensional feature maps, denoted as f1.
Subsequent to this non-linearity, a second convolutional layer is applied to
extract high-level, abstract spatial features, outputting a further reduced set
of feature maps, denoted as f2, while preserving the original spatial dimen-
sions.

To maintain the coherence of spatial features—a challenge not adequately met
by previous models that employed flattening layers—we have adopted a vari-
ant of the ConvLSTM architecture. This model is tailored for many-to-many
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sequence modeling and incorporates convolutional mechanisms instead of
the traditional linear gating functions in standard LSTMs. This structural
modification enhances the propagation of spatial features along the temporal
axis, employing strategies initially developed for applications such as precip-
itation nowcasting (Shi et al., 2015). This innovative approach ensures that
spatial relationships are preserved and effectively integrated throughout the
temporal sequence processing, optimizing the model’s performance for com-
plex spatial-temporal tasks.

2.3.2 LSTM-133 Architecture

The LSTM-133 model closely follows the deterministic LSTM model previ-
ously described in Section 2.1.2, with the primary difference being in the in-
put dimensions. The increased input dimensions in the deterministic LSTM
model led to a loss of coherence and a corresponding increase in the number
of parameters, which compromised the learning procedure.

To address this issue, the LSTM-133 model leverages the BEV domain formu-
lation of the problem and the favourable O(1) complexity inference perfor-
mance of LSTM models, allowing superfast run times with an autoregressive
estimation of the dose distributions. The new extraction scheme introduced
in the LSTM-133 model employs a finer resolution longitudinally in the BEV
(1 mm), where dose gradients are highest, and a coarser resolution laterally
(3 mm). This approach maintains the same number of parameters as the de-
terministic LSTM model, thereby preserving learning efficiency.

240 x Imm
Compare with
‘ground truth: 45x 1mm

45 x Imm

Figure 2.10: [llustration of the LSTM-133 architecture. The model follows closely the
parameterization and the information flow described in Figure 2.2.

In this approach, although the input will have an anisotropic resolution of [1
mm, 3 mm, 3 mm], the dose distributions can still be generated in the desired
isotropic 1 mm resolution by increasing the number of neurons in the output
layer. The importance of generating dose distributions at this resolution will
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be discussed in Section 2.3.5. This problem formulation and architecture de-
sign are presented in Figure 2.10.

The benefit of parameterization introduced in the LSTM-133 architecture can
be quantified using equation 11. Assuming an equal number of hidden neu-
rons as the input dimension, which has empirically shown to be necessary,
the deterministic LSTM would require approximately 5 million parameters
for a m = 45 input dimension. In contrast, LSTM-133 will require only 800 000
learnable parameters by delegating the upscaling of dose distributions to the
fully connected output layer outside the LSTM cell, rendering the learning
procedure more efficient.

Specifically, the LSTM-133 model extracts input data with a higher longi-
tudinal resolution to capture detailed variations in dose distribution along
the beam path, while the lateral resolution is reduced to ensure that the
model remains computationally manageable. This balanced approach allows
the LSTM-133 model to effectively manage the increased input dimensions
without compromising performance, thereby improving the overall accuracy
and efficiency of proton dose calculations.

2.3.3 Data Preparation

This study further evaluates the model’s performance using two distinct
datasets, addressing the limitations identified in our previous work described
in earlier sections. The earlier dataset was confined to pencil beams from a
single patient, with randomly selected gantry angles and PB spot locations.
In this study, a clinically relevant dataset was curated, which simulates re-
alistic scenarios by restricting gantry and couch angles to those commonly
used in prior treatment plans. This dataset includes a cohort of go patients
with low-grade gliomas (LGG) in the head region, treated at the HIT center
between 2010 and 2015 using actively scanned beams. The head region, with
its significant tissue variations, provides an adequate challenge to assess the
model’s robustness. Overall statistics of the patient cohort are summarized in
Table 2.1.

HIT offers 255 commissioned energies ranging from 48.12MeV to
221.06 MeV. The total number of energies incorporated in this cohort is 131
unique energies. This means that although the cohort encompasses almost
one million unique pencil beams, a specialized sampling scheme is necessary
to ensure the availability of each energy in terms of the number of PBs and
the variability of patients. To this end, an exploratory statistical overview of
the available data was conducted, depicted in Figure 2.11. In order to sam-
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(a) Number of patients per commissioned energy.
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(b) Number of PBs/spots per commissioned energy.

Statistical overview of the number of patients and pencil beams available
in the cohort. Red dots represent the energies sampled in this study.
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Statistic Value
Number of patients 90
Number of fields 166
Number of unique gantry angles 9
Number of unique couch angles 42

Number of unique energies incorporated 131

Number of unique pencil beam spots 999,146

Table 2.1: Statistics of the patient cohort.

ple a subset of energies that are frequently used across all patients in the
cohort and that collectively allow for a comprehensive dose evaluation for a
select group of test patients, a sampling scheme that satisfies the above cri-
teria while minimizing the number of unique energies required for training
must be devised, ensuring a scalable time frame for the project.

The sampling strategy was adjusted based on the availability of PBs in each
IES across all patients, ensuring a well representation of clinical scenarios.
The result of this sampling scheme is a subset of a total of 35 unique ener-
gies, collectively enabling dose calculations for 7 test patients. As depicted
in Figure 2.11, the selected energies all have at least 4000 unique spots and
20 unique patients per energy, ensuring a wide variance of informative and
challenging data. Seven patients were selected to ensure a challenging test-
ing scenario. Figure 2.12 outlines the unique impinging angles and how the
selected test patients are distributed among those angles.

Finally, in order to have a streamlined model training and evaluations, in this
phase, the study focuses on three distinct energies from the selected 35, repre-
senting short-, mid-, and high-range dose distributions (48.1 MeV, 79.1 MeV,
and 102.6 MeV, respectively). Once again, for the representative energies to
have a wide range of variance, a statistical analysis of unique patients, couch
angles, and gantry angles per energy was carried out and illustrated in Fig-
ure 2.13. This approach tests the model’s adaptability across different energy
ranges and underscores their interchangeable nature through an Al perspec-
tive. The coordinates of PBs and their impinging delivery angles were ran-
domly sampled from clinically delivered treatment plans.

The ground truth for each PB’s dose distribution was simulated using FLUKA
with 10° histories. A representative sample is reported in Figure 2.14, illustrat-
ing the dose distribution of single pencil beams before and after extraction
over the CT grid and post-extraction in the BEV. To minimize interpolation er-
rors and information loss, the doses were scored directly on the CT grid, and
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the cube extractions were carried out with an isotropic resolution of 1mm,
with 1 = 210 voxels longitudinally and m = 45 voxels laterally.

Coronal view input cube

100
output cube

20 80 100 o0 25 50 75 100 125
Sagital view Axial view dose masked overlayed on ct

Figure 2.14: This figure provides a comprehensive view of the dose distribution sim-
ulation for single pencil beams. The coronal view is shown in the top
left, demonstrating the dose distribution within the patient. As well as
the sagittal view (bottom left) and axial view (bottom middle) which
provide additional views on the dose distribution within the patient.
The input RSP cube is displayed in the top right, and the output dose
distribution cube, post-extraction, is shown in the middle right. Finally,
the bottom right panel overlays the dose distribution on the CT grid,
illustrating the 2 stage masking scheme incorporated in this study:.

To compare the performance of the model against the current state-of-the-art
DoTA, the model was also trained using a publicly available dataset previ-
ously employed to train the DoTA model, as documented by Pastor-Serrano
et al. (2022). DoTA employs a parameterized energy model, with its dataset
showing a semi-continuous energy increase in 0.001 MeV steps, spanning
from 70 to 220 MeV. Analysis of DoTA’s dataset revealed an uneven distribu-
tion of training samples, predominantly between 70 and 140 MeV, and less
densely populated from 140 to 220 MeV. To ensure sufficient data for train-
ing, the focus was exclusively on the lower energy segment, selecting three
distinct energy ranges: 70-71 MeV for low-range PB, 105-106 MeV for mid-
range PB, and 139-140 MeV for high-range PBs. This comparative analysis
is pivotal for validating the training feasibility of the model on an external
dataset and benchmarking it against existing architectures.
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2.3.4 Model Evaluation Update

In developing a novel deep-learning model, selecting informative metrics is
crucial. These metrics are necessary for guiding the iterative process of incor-
porating or excluding specific deep learning techniques and during hyper-
parameter tuning. This becomes especially critical in modeling the physics
of proton transport within a data-driven framework, where the objective is
to achieve a model that performs well across diverse scenarios. The medical
physics and artificial intelligence fields provide distinct metrics, each rigor-
ously evaluated to establish a framework guiding our development. Given
our task’s interdisciplinary nature, precisely quantifying each modification’s
impact within the deep learning architecture is challenging. Due to the in-
herent complexity and high-dimensional optimization space, training deep
learning models often resembles a stochastic search for a satisfactory (local)
minimum. This unpredictability contrasts sharply with the deterministic na-
ture of analytical models in proton physics, where minor adjustments can
significantly alter the model’s behavior. Furthermore, during the evaluation
phase, the stochastic nature of trained models can cause the spatial distri-
bution of errors in pencil beam dose distributions to obscure one another,
making the task of condensing these complex outputs into a single, practical
metric notably challenging.

This study incorporated various metrics from both fields to fully monitor our
model’s behavior and visually inspect PB dose distributions in challenging,
heterogeneous scenarios. Our comprehensive assessment strategy involved
evaluating individual metrics and considering the models’ overall perfor-
mance across multiple dimensions. This multi-faceted approach ensured that
the models were thoroughly tested and validated, providing confidence in
their clinical applicability. From the filed of Al, two metrics were utilized for
our regression task: MSE, which also serves as the loss function in our frame-
work, emphasizing larger errors, and MAE, providing a general evaluation
of the average magnitude of errors irrespective of their direction. While MAE
and MSE quantify the average discrepancy between two datasets, they do not
account for the spatial distribution of errors, which is crucial in radiotherapy
dose verification. For this purpose, Gamma analysis (Low et al., 1998) was
used, enabling a quantitative comparison of two dose distributions by con-
sidering both DD and distance-to-agreement criteria, leading to a spatially
resolved evaluation of the conformity between dose distributions.

However, Gamma analysis is typically used to compare two homogeneous
tull-tield dose distributions, so criteria must be adapted for comparing two
PBs with heterogeneous dose distributions. The DD criterion, defined by the
percentage of the prescribed dose, becomes problematic as this value is not
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available when comparing two PBs. To address this, a local’ gamma anal-
ysis is performed where the DD of each voxel is evaluated based on a local
neighborhood around each voxel. To reduce noise in regions with low dose, a
dose cut-off set by a percentage of the maximum dose was applied. To ensure
that our test sets were representative of the entire patient cohort, we metic-
ulously curated diverse samples encompassing a wide range of anatomical
and clinical scenarios. This included selecting test beams that traverse var-
ious tissue densities, anatomical complexities, and regions with significant
heterogeneities. By doing so, we aimed to capture the full spectrum of poten-
tial challenges encountered in clinical practice.

All previous metrics were evaluated within the PB domain, that is, in the BEV.
However, the ultimate goal of this research is to achieve high accuracy when
transforming the PB dose distribution back to the original dose grid. In this
phase, interpolation errors are introduced, and dose distributions are scaled
by the fluence of the corresponding spot of the PB in the treatment plan.
The Peak Deviation Percentage (PDP) has been introduced to address this com-
plex transformation. This metric evaluates the precision of regression models
in estimating the peak values within a dataset and is particularly relevant
when assessing the model’s performance across different domains—PB and
the original dose grid. The PDP is calculated using the following equation:

A

PDP = (’max(y) _max(y)’) % 100% (12)
max(y)

where max({J) represents the maximum predicted value from the model, and
max(y) denotes the maximum actual value observed in the ground truth.

2.3.5 Estimating Full-Field SOBP Dose Distributions

Thus far, the primary focus has been the improvement of accuracy and run
times in the BEV. However, as indicated in the aims of this study, the objective
is to generate dose for an entire proton therapy treatment plan. To this end,
the transition from the BEV domain to the CT grid is necessary. Specifically,
it is essential to estimate the dose of each pencil beam using the trained net-
work, back-project these estimates from the BEV domain to the CT grid, and
accumulate them to form the planned SOBP. Figure 2.15 demonstrates the in-
tegration procedure, from preprocessing to postprocessing and the eventual
dose on CT grid.
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Figure 2.15: The outlook of integration procedure in transition from PB domain to
CT grid

Extraction Resolution: 1 mm vs 2mm vs 3 mm

An important design parameter in this study was the extraction resolution in
the longitudinal axis (in the direction of the beam), which consequently de-
fines the resolution of the generated dose distributions. This is because RNN
models are recursive and autoregressive, generating the dose for each input
slice iteratively and producing the next lateral dose slice using the previous
dose slice and the current CT input slice.

Comparison with the ground truth

# of voxels failing y-analysis: 5675

Ground truth PB dose scored
on CT grid using FLUKA 3mm-resolution extraction - cube size: 80 x 15 x 15

Back interpalation

Assuming 100% accuracy dose estimation

——

1mm-resolution extraction - cube size: 240 x 45 x 45

Figure 2.16: a comparison between 1 mm and 3 mm isotropic extraction schemes.

It is important to note that this is a restriction when adhering to pre-
implemented architectures in deep learning frameworks, specifically PyTorch
in this study. The motivation for using pre-implemented architectures is the
significant run time advantage due to optimized built-in performance com-
pared to custom-designed architectures. The performance superiority of pre-
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implemented architectures stems from the parallel processing of batches. In
contrast, custom architectures, such as the CC-LSTM used in this study, re-
quire different input/output dimensions and must define the cell architecture
manually, leading to increased run times.

In the feasibility study outlined in Section 2.1.1, an isotropic resolution of
2mm resulted in extraction dimensions of 15 voxels laterally and 150 voxels
longitudinally for each patient setup. Subsequently, as described in Section
2.3.3, an isotropic 1 mm resolution was adopted, leading to extraction dimen-
sions of 45 voxels laterally and 210 voxels longitudinally. While the increased
lateral dimension of the model input was addressed in the previous section,
the rationale for choosing a finer 1 mm resolution has not been explained.

The choice of a 1 mm resolution is justified for two primary reasons. First,
it prevents the apparent loss of information. As illustrated in Figures 2.17,
a comparison between 1 mm and 3 mm isotropic extraction schemes shows
that the finer resolution results in significantly fewer failed voxels during
global gamma analysis. In this example involving an oblique impinging pro-
ton beam, the number of failed voxels was nearly three times lower when
opting for the finer 1 mm resolution.

img_83 | 1mm | PR: 99.8 | # unpassed voxels: 356 | error on max: 1.5 % | IES: 19 | pb #: 319 img_83 | 3mm | PR: 99.3 | # unpassed voxels: 1037 | error on max: 20.1 % | IES: 19 | pb #: 319

(a) Tmm resolution (b) 3 mm resolution

Figure 2.17: Comparison between (a) 1 mm and (b) 3 mm resolution extraction and
back-interpolation, assuming 100 % model accuracy.

Second, the T mm resolution facilitates the construction of SOBPs from con-
stituent PBs. Each PB dose in the BEV is estimated using the pre-trained
network corresponding to the incorporated energy, multiplied by the fluence
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of the corresponding spot, and then projected in a predefined cube in the
BEV on the GPU.

This cube in the BEV will recursively add the dose distribution of each PB to
itself until the IES dose distribution is calculated in the BEV. Depending on
the objective of re-calculation, whether to calculate the entire SOBP or only
a single IES, this cube can then be added to other IES dose distributions in
the BEV or transformed on the fly, on the GPU, to the CT grid by a single
interpolation operation.

However, when opting for a 2 mm resolution, the aforementioned projection
of the PB cube in the predefined cube would require an intermediate interpo-
lation step. For instance, at HIT, the lateral spot spacing is 3 mm, and to add
the PBs while maintaining their designated spatial spot would necessitate an
intermediate interpolation step from 2mm to 1mm or 3mm, in order for
them to be aligned and accumulated efficiently.

As described earlier in the problem parameterization of this study, given the
independent nature of each IES dose calculation task, one could assign each
corresponding model and the corresponding data to the designated GPU
based on the GPU infrastructure availability. Figure 2.18 demonstrates this
approach.

GPU 1

GPU 2

GPU n

Figure 2.18: multiple GPU setup for Al-based dose calculation.
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RESULTS

3.1 FEASIBILITY OF RNN-BASED MODELS FOR FULL-FIELD DOSE ESTI-
MATION

The results of two experiments designed to test the generalization of the
trained network to other unseen patients and distinct energies are reported.
Table 3.1 outlines the network’s performance in dose estimation for an un-
seen patient dataset. Table 3.2 summarizes the outcomes for three separate
networks trained specifically for initial energies of 67.85 MeV, 104.25MeV,
and 134.68 MeV. Representative challenging samples from the low-range and
high-range datasets are shown in Figure 3.1, highlighting the model’s robust-
ness across different energy values.

Table 3.1: y-index analysis for five different lung cancer patients [1 %, 3 mm]). The
model was trained on Patient o (Experiment 1 - 1) (Neishabouri et al.,

2021b).
Mean (%) Std (%) Min (%) Max (%)
Patient o 98.50 1.00 93.93 99.82
Patient 1 98.27 0.97 94.66 99.65
Patient 2 98.35 1.30 94.35 99.78
Patient 3 98.45 1.10 94.51 99.60
Patient 4 96.71 3.01 81.66 99.61
Patient 5 97.47 1.87 87.82 99.61

Table 3.3 lists the average run times for estimating the dose for the 5 above-
mentioned patients for a single pencil beam, for MC, PB, and LSTM dose
calculation. The MC simulations were performed with Topas on a calculation
node with 28 virtual CPUs on an Openstack® cluster. For the trained network,
the run times were measured for two systems with different GPUs. Depend-

1 https://www.openstack.org/
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Dose [Gy]

Dose [Gy]

(a) (b)

Figure 3.1: Dose estimation results for representative samples from two energy
ranges: (a) the lower energy set (67.85MeV) and (b) the higher energy
set (134.68 MeV). Each sub-figure follows the layout presented in Figure
1.8. Note the varying longitudinal axis ranges between the sub-figures
(Neishabouri et al., 2021b).

Table 3.2: y-index analysis on datasets with three distinct energies of proton pencil
beams (Experiment 1 - 2) (Neishabouri et al., 2021b).

Energy (MeV) Mean (%) Std (%) Min (%) Max (%)

67.85 98.56 1.30 95-35 99-79
104.25 9774 1.48 92.57 99-74
134.68 94.51 2.99 85.37 99.02




3.2 BAYESDOSE EVALUATIONS OUTCOMES

ing on the facilitated hardware, we measure average run times of 6 ms to
23 ms for the LSTM approach.

The MC simulations had an average run time of 1160s, performed with
~ 2.5 x 10° histories on average. Note that these run times included the time
required to send the input CT cube for each pencil beam from CPU to GPU
and vice versa for the yielded dose cube. However, in applications such as
adaptive RT which requires repetitive online dose estimations, the input CT
cubes can be prepared and sent to the GPU in advance. Consequently, the
only relevant run times would be the network feed forward, i.e., matrix mul-
tiplication operations run times, reported to be 1.5ms to 2.5ms for the two
facilitated hardware stacks.

Table 3.3: Comparative analysis of execution times between MC calculations, LSTM
predictions, and the PB algorithm. Noted times (in parentheses) represent
the direct computational time excluding data transfer between CPU and
GPU (Neishabouri et al., 2021b).

MC® LSTMP LSTM® PB4

Average run time (s) 1159.5 0.023 (0.0025) 0.006 (0.0015) 1.025

Computational node, 28 VCPUs, 64 GB RAM.

Intel Core i7-6700 3.4 GHz - Nvidia GTX 970 - 64 GB RAM.

Intel Xeon W-2135 3.7 GHz - Nvidia Quadro RTX 6000 - 64 GB RAM.
maRad software toolkit: Intel Xeon W-2135 3.7 GHz - 64 GB RAM.

3.2 BAYESDOSE EVALUATIONS OUTCOMES

The initial evaluation of the BayesDose model’s predictive accuracy was con-
ducted using phantom data, similar to the previous section, focusing on indi-
vidual pencil beams within the test set (Table 3.4).

The distribution of voxels outside the no range for the entire test set is tabu-
lated for each sigma level from one to five, as presented in Table 3.5.

Table 3.6 summarizes the comparative performance of BayesDose and its de-
terministic counterpart, using the first lung patient’s data. Both algorithms
demonstrated exceptional performance on the test dataset, achieving average
Y pass-rates exceeding 99.5 %, with only negligible differences in their MSE
and MAE values.

On the other hand, the lowest dosimetric accuracy observed in a test sample
is shown in Figure 3.6, where BayesDose underestimated the extent of dose
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Table 3.4: Comparison of y-index results, MAE, and MSE for different BayesDose
model configurations against MC simulations in a phantom study (Exper-

iment 2 - 1).
Deterministic =~ Bayesian

Mean vy pass-rate [%] 97.81 97.93
SD vy pass-rate [%] 1.90 1.87
Min vy pass-rate [%] 87.65 88.93
Max vy pass-rate [%] 100 100
MAE [Gy] 242x107% 270 x107°
MSE [Gy?] 217 x 10710 231 x 10710

Table 3.5: Proportion of voxels deviating from MC simulation beyond specified con-
tidence intervals in the phantom study.

Confidence bound
+lo +20 30 440 =£50 595% 20-80%

26.4 9.50 4.07 1.89 0.94 14.0 34.0

Table 3.6: y-index analysis [1 %, 3 mm] (top) and MAE and MSE comparisons among
BayesDose and the deterministic LSTM, against the MC simulation (bot-
tom), in the lung patient case study (Experiment 2 - 2)

Deterministic BayesDose

Y analysis LSTM BLSTM
Mean [%] 99.60 99.70
SD [%] 0.62 0.60
Min [%] 95.89 95.02
Max [%] 100 100

MAE [Gy] 1.62e-5 1.46€-5

MSE [Gy?] 3.14€-9 3.70€e-9
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Figure 3.2: Optimal prediction by the Bayesian LSTM network achieving a 100 per-
cent y pass-rate in the phantom case. Displayed sequentially are the input
cube, MC ground truth, averaged BayesDose prediction across the ensem-
ble, the standard deviation of the prediction, y pass-rate, the differential
between the MC dose and the prediction, dose discrepancy relative to
the standard deviation, highlighting voxels with deviations greater than
no. This format is standardized for all subsequent individual prediction
displays.
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Figure 3.3: Least effective prediction by the Bayesian LSTM network, marked by the
lowest y pass-rate at 88.93 percent in the phantom case, coupled with
one of the highest standard deviations observed across predictions. The

layout of this figure mirrors that established in 3.2.
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Figure 3.4: Most significant quantification of uncertainty for the phantom case,
where the highest proportion of voxels exhibited substantial deviations
(31.1% > 30). The layout of this figure is consistent with that of 3.2.
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Figure 3.5: Depiction of the most precise prediction by BayesDose on the lung pa-
tient dataset, achieving a 100 percent y pass-rate. This visualization un-
derscores the model’s effectiveness with actual patient data.

Table 3.7: Percentage of voxels where the average prediction deviates from the MC
simulation outside specified confidence intervals, calculated using both
standard deviations and empirical percentiles, for the patient data.

Confidence bound

lo 20 30 40 50 595% 20-80%

21.3 11.7 6.30 2.97 1.46 15.0 24.5
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Figure 3.6: Least accurate BayesDose prediction for the patient dataset, displaying
the lowest y pass-rate at 88.93 percent and a notably high standard devi-

ation. This figure’s arrangement mirrors that of Figure 3.2.

tial energies (Experiment 2 - 3).

Table 3.8: y-index analysis ([1 %, 3 mm]) for three proton beamlets with varying ini-

E (MeV) Mean(%) SD(%) Min(%) Max(%)

67.85 99.45 0.92 94.16
104.25 99-59 0.78 91.44
134.68 99.00 1.13 92.47

100

100

100
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Figure 3.7: Most substantial quantification of uncertainty in the patient dataset,
showing the largest fraction of voxels exceeding significant deviations

(15.99percent > 30). This figure follows the layout of Figure 3.2.
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Table 3.9: y-index evaluation ([T %, 3 mm]) for five lung cancer patients, showcasing
the performance post-training on Patient o (Experiment 2 - 4).

Mean(%) SD(%) Min(%) Max(%)

Patient o 99.59 0.78 91.44 100

Patient 1 96.33 4.04 73.01 99.98
Patient 2 99.29 1.02 90.21 100

Patient 3 99.12 1.07 94.82 100
Patient 4 99.32 0.87 94.05 100
Patient 5 98.04 2.09 88.27 100

dispersion beyond the Bragg peak. This region is associated with very high
uncertainty, with standard deviations reaching up to 13.1 % of the maximum
dose. The interpolation artifacts significantly influence the incorrect voxel
dose predictions, especially noticeable in the large number of voxels deviating
more than 50.

Across the entire patient dataset, the average percentage of voxels deviating
more than no, detailed in Table 3.7, was consistently higher than in the phan-
tom experiments. This suggests that BayesDose may offer less conservative
uncertainty predictions when applied to patient data. Notably, a considerable
number of voxels deviating beyond 50, as illustrated in the prediction exam-
ple with the maximum amount of voxels showing a dose difference greater
than no, are predominantly due to interpolation artifacts in the training data.

BayesDose was evaluated across two additional proton energy levels. Bayes-
Dose maintained a high level of accuracy across all tested energies. The de-
tails of this performance are captured in Table 3.8, which notes that the mean
Y pass rate for all energies exceeded 99 %.

Additionally, the analysis of BayesDose across five additional lung patients
shows a performance consistency similar to the initial deterministic model.
As outlined in Table 3.9, however, Patient 1 and Patient 5 had notably poorer
performance compared to others.

To address the notably poor performance of Patient 1, both in terms of dosi-
metric results and the quality of uncertainty prediction, the model underwent
retraining on Patient 5. This patient was selected due to having the second
most extensive HU range, just after Patient 1, who had the broadest HU range.
Table 3.10 illustrates significant enhancements in dosimetric accuracy for Pa-
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tient 1, bringing it in line with other patients after retraining for 10 epochs on
Patient 5.

Table 3.10: y-index analysis ([1%, 3 mm]) for lung cancer patients before and after
10 epochs of transfer learning on Patient 5 (Experiment 2 - 5).

Patient 1 Patient 2 Patient 3 Patient 4

Mean(%) before TL  96.33 99.29 99.12 99.32
Mean(%) after TL 97.88 99.13 99.27 99.3
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Figure 3.8: Dose estimation comparison for the worst-case scenario: (a) LSTM model
versus (b) the newly developed CC-LSTM model.

This section examines the CC-LSTM model’s accuracy compared to our pre-
vious model and the current state-of-the-art (Pastor-Serrano and Perkd, 2022),
alongside its performance across three distinct energy ranges. Our analy-
sis utilizes a newly compiled dataset, incorporating patient cases previously
treated at the HIT facility with clinical proton base data.

Table 3.11 presents the results comparing the performance of the CC-LSTM
model against the previously published LSTM-based model for proton pencil
beams at an energy of 79.17 MeV. Figure 3.8 illustrates the previous model’s
loss of spatial coherence over the temporal axis and its difficulty in accu-
rately predicting dose distribution changes in the presence of significant het-
erogeneities within proton trajectories. Figure 3.8 also demonstrates the CC-
LSTM model’s capability in accurately estimating dose distributions in highly
heterogeneous scenarios within the Bragg peak region. Figure 3.9 evaluates
the model’s capability to adapt to immediate heterogeneities within the Bragg
peak region. Figure 3.10 highlights the CC-LSTM’s precise estimation of dose
deformation when faced with significant heterogeneity at the beginning of
the PB trajectory.

;t

Dose [Gy]

Dose [Gy]
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Table 3.11: Evaluative comparison of an established network (LSTM) and an ad-
vanced model (CC-LSTM) against a MC simulation benchmark at an
initial energy of 79.17 MeV.

v-index analysis ([1 %, 2 mm])

Model Mean (%) Std (%) Min (%) Max (%)
LSTM 92.54 4.42 71.69 98.31
CC-LSTM 97.21 0.84 92.37 99.81
Other Metrics
Model MAE (Gy) MSE (Gy?) PDP (%)
LSTM 274 %107 2.02x107* 10.8
CC-LST™M 1.1x1073 241 x107° 3.9

After validating the superior performance of the CC-LSTM model over the
previous LSTM model, Table 3.12 presents the results from training the CC-
LSTM using the same procedures for both low- and high-energy range pro-
tons (49.21 MeV and 108.17 MeV, respectively) across their respective test
sets.

Next, to evaluate and benchmark the performance of CC-LSTM against the
current state-of-the-art Transformers model (DoTA), we trained CC-LSTM
with the publicly available dataset from Pastor-Serrano and Perké (2022).
Training DoTA on our data resulted in unsatisfactory outcomes, underscor-
ing the challenging training procedures associated with self-attention blocks
in Transformers.

Table 3.14 presents the outcome of this comparison using the introduced met-
rics, demonstrating CC-LSTM’s superiority across all specified metrics, even
when trained on its own dataset. This is notable despite the model encoun-
tering an approximate 1cm range uncertainty, a consequence of the semi-
continuous energy variation within a 1 MeV energy span in each training
set (specific to the data prepared by Pastor-Serrano and Perké (2022)). We
highlight a sample where CC-LSTM outperforms DoTA in estimating the PB
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Figure 3.10: Dose estimation results for a representative sample: (a) LSTM model
versus (b) the newly designed CC-LSTM model.
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(b) High-range model dose estimation.

versus (b) the output of the newly designed CC-LSTM model.
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Table 3.12: Local y-index analysis ([1% , 2mm]), MAE, and MSE of the CC-LSTM
model compared to MC calculations for the three representative energies

v-index analysis ([1 %, 2 mm])

Energy mean (%) std (%) min (%) max (%)
low-range 94.28 4.42 71.69 98.31
mid-range 97.21 0.84 92.37 99.81
high-range 97.83 0.91 92.65 98.64
Other Metrics
Model MAE (Gy) MSE (Gy?) PDP (%)
low-range 7.5 x 1074 1.66 x 107 5.19
mid-range 1.1x1073 241 x 107 3.9
high-range 1.8x 1073 446 x 107> 5.8

range, as depicted in Figure 3.15. No instances were identified where DoTA
notably outperformed CC-LSTM.

72



3.3 CC-LSTM: A NEW BENCHMARK

Table 3.13: Evaluation of the CC-LSTM model performance relative to ground truth
data from MC simulations at a low-range initial energy of 79.17 MeV,
employing three unique cube parametrizations along the lateral axis.

v-index analysis ([1 %, 2 mm]) Other Metrics
lateral mean std min max MAE MSE
shape (%) (%) (D) (%) (Gy) (Gy?)

45x45 9406 183 861 968 | 89x107* 24x107°
49 x49 9459 173 876 967 | 83x 107 23 x107°

63x63 9473 158 882 096.9 | 82x107* 14x107°

Table 3.14: Comparison of CC-LSTM (left) against DoTA (right) using
gamma index analysis for three distinct PB energies.

v-index analysis ([1 %, 2 mm])
Energy CC-LSTM (%) DoTA (%) Improvement

mean std mean std (%)
low-range  99.8 0.43 98.8 1.23 +1.0
mid-range 99.75 0.57 98.65 1.5 +0.9
high-range 99.62 0.92 97.58 4.0 +2.08
Other Metrics
MAE (Gy) MSE (Gy?)
Model CC-LSTM  DoTA CC-LSTM DoTA

low-range 13x103 32x10% 50x105 53x1072
mid-range 8.9 x 104 3.6x107%2 143x105 57 x1072
high-range 1.2x103 44 x1072 157x105 470 x 1072
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Figure 3.15: Comparison of dose estimation for a sample case: (a) CC-LSTM model
and (b) DoTA model.

3.4 FULL-FIELD DOSE ESTIMATIONS

In this section, the CC-LSTM’s performance in estimating the dose of a single
IES and eventually the entire SOBP, for realistic patient cases were studied.

3.4.1 Estimating IES Dose Distributions

Here, we perform comparisons within the pencil beam domain and through
realistic patient cases, evaluating IES dose distributions for the chosen energy
ranges. Figure 3.16 compares the IES dose distribution of the three represen-
tative energies with the ground truth MC simulation. For the two mid-range
and high-range energies, the previous IES’s dose distributions were gener-
ated from the ground-truth MC dose distributions, and only the correspond-
ing energy IES were simulated using the trained CC-LSTM. This method
allows gamma analysis to effectively compare the two cubes, enabling us to
focus exclusively on the dose distribution generated by the model for the
current energy.

Dose [Gy] Dose [Gy]

7 value
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Figure 3.16: Comparison of IES dose distributions for low-range, mid-range, and
high-range energies in the BEV. Each energy level’s current IES is sim-
ulated using the CC-LSTM model, while previous IESs are generated
from the ground truth MC dose distributions. This approach allows di-
rect evaluation of the CC-LSTM'’s effectiveness in estimating the current

IES dose distribution.
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3.4 FULL-FIELD DOSE ESTIMATIONS

3.4.2 SOBP Dose Estimations

Finally, having demonstrated the capability of CC-LSTM in accurately esti-
mating an entire IES dose distribution, we began scaling up the designed
architecture to train for all the defined energies in the curated dataset. The
box plot presented in Figure 3.17 summarizes the outcome of performing vy
analysis with the same strict [1 %, 2mm] local criterion used earlier, when
training all the defined energies with the unified parametrization established
previously.

Gamma Index Pass Rate Statistics for Different Energies
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Figure 3.17: v analysis ([1%,2 mm], local) pass rates of all defined energies.

Having prepared specialized models trained for each of the defined 35 ener-
gies, and following the workflow described in Section 2.3 to accumulate the
dose for an entire field, we generated the dose distribution for the 7 unseen
patients. Table 3.15 summarizes the results of the y-analysis performed on all
these test patients.

As reported in Table 3.15, patient Ho3476, shown in Figure 3.18, is the only
case where both networks estimated the overall dose distribution with excep-
tional accuracy, each achieving over 99.5%. Figure 3.19 compares the Dose
Volume Histogram (DVH) comparison from both models against the ground
truth Monte Carlo distribution.

Patient Ho2520 is a case where both CC-LSTM and LSTM-133 achieve one of
their lowest y-index pass rates, as depicted in Figure 3.20, with the DVH com-
parison shown in Figure 3.22. It is also the case where the two models exhibit
the highest performance discrepancy, highlighting CC-LSTM’s capability in
handling challenging scenarios with heterogeneous geometries. Given the ap-
parent discrepancy in the accumulated dose in the left inner ear, as shown in
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(a) Dose estimation by CC-LSTM model.

Reference MC Estimated dose y-analysis map

150
125
100
0.75
0.50
0.25

0.00

2.00
175
150
125
1.00
0.75
0.50
0.25

ﬂ
ﬂ
ﬂ
ﬂ

0.00
2.00

(b) Dose estimation by LSTM-133 model.

Figure 3.18: v analysis comparison ([2%, 2mm]; global) of dose estimation for an
unseen, real-patient (Ho3476) case with 1537 PBs, calculated via (a) CC-
LSTM model (y PR: 99.5) and (b) LSTM-133 model (y PR: 99.7), against
the ground truth MC simulations. The 3D cube views (coronal, sagittal,
and axial) are shown for the regions where the MC dose is maximum.



3.4 FULL-FIELD DOSE ESTIMATIONS

Table 3.15: y-index evaluation ([2 %, 2 mm]; global) of CC-LSTM and LSTM-133 mod-
els on all test patient cases, against the ground truth MC simulations.

Patient ID Pbs (#) IES (#) v index pass rate (%)
CC-LSTM LSTM-133
Ho2651 4131 35 99.4 96.8
Ho2794 4999 28 98.3 96.2
Ho2348 4155 33 99.4 95.9
Ho2593 11135 32 99.7 97.0
Ho3037 92656 35 99.4 97.2
Ho3476 1537 21 99.5 99.7
Hoz2520 8686 33 98.4 95.0

Dose-Volume Histogram Comparison
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Figure 3.19: DVH comparison for patient Ho3476, illustrating the performance of
MC, CC-LSTM, and LSTM-133 models for both the Planning Target Vol-
ume (PTV) and Optimization Ring.
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3.4 FULL-FIELD DOSE ESTIMATIONS

Figure 3.22, we outline the OAR in Figure 3.21 to cross-check the y-analysis
with the discrepancy reported in the DVH analysis.

Finally, the dose distribution for patient Ho2348 is another example where,
similar to the case of patient Ho2520 in Figure 3.20, CC-LSTM demonstrates
exceptional capabilities in estimating dose distributions for highly heteroge-
neous geometry cases. Figure 3.23 illustrates this by showcasing the dose
distribution comparison of CC-LSTM and LSTM-133 against MC in the bony
structures of the face and nose area.

Given its proximity to the bony and heterogeneous structures, Figure 3.24
presents the DVH comparison of the left optical nerve to highlight the dis-
crepancies between the two models” performance. The LSTM-133 model re-
ported a 1.8 % overdose to the OAR, while CC-LSTM closely matched the
ground truth, with only a 0.7 % overdose to the organ.

To avoid the high dosimetric values of the target and other organs overshad-
owing the comparison, we focused on the DVH for the left optic nerve to
better illustrate the differences between the two models. The full DVH re-
ports, along with three view vy index plots of test patients reported in Table
3.15 can be found in Appendix 6.
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(a) Dose estimation by CC-LSTM model.
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(b) Dose estimation by LSTM-133 model.

Figure 3.20: v analysis comparison ([2%, 2mm]; global) of dose estimation for an
unseen, real-patient (Ho2520) case with 8686 PBs, calculated via (a) CC-
LSTM model (y PR: 98.4) and (b) LSTM-133 model (y PR: 95.0), against
the ground truth MC simulations. The 3D cube views (coronal, sagittal,
and axial) are shown for the regions where the MC dose is maximum.
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Reference MC Estimated dose y-analysis map

(a) Dose estimation by CC-LSTM model.

Reference MC Estimated dose y-analysis map

(b) Dose estimation by LSTM-133 model.

Figure 3.21: v analysis comparison ([2%, 2mm]; global) of dose estimation for an
unseen, real-patient (Ho2520) case with 8686 PBs, calculated via (a) CC-
LSTM model (y PR: 98.4) and (b) LSTM-133 model (y PR: 95.0), against
the ground truth MC simulations. The 3D cube views (coronal, sagittal,
and axial) are displayed, with the left inner ear visible and contoured in

blue.
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Dose-Volume Histogram Comparison
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Figure 3.22: DVH comparison for patient Ho2520, illustrating the performance of the
MC, CC-LSTM, and LSTM-133 models for the target PTV, as well as two
OAREs: the left inner ear and the brainstem.

(b) Dose estimation by LSTM-133 model.

Figure 3.23: v analysis comparison ([2 %, 2 mm]; global) of dose estimation for an
unseen, real-patient (Ho2348) case with 4155 PBs, calculated via (a) CC-
LSTM model (y PR: 99.4) and (b) LSTM-133 model (y PR: 95.9), against
the ground truth MC simulations. The presented slice is manually se-
lected to highlight the left optical nerve (contoured in blue).
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Figure 3.24: DVH comparison for patient Ho2348, illustrating the performance of
the CC-LSTM and LSTM-133 models for the OAR in proximity to highly
heterogeneous geometry, specifically the left optical nerve, as shown in
Figure 3.23.

3.5 RUN TIME ANALYSIS

Having demonstrated the superiority of CC-LSTM over the earlier model and
the current state-of-the-art in generating both single PB dose distributions
and full IES dose distributions, as well as its generalizability to unseen test
cases and real patient scenarios, the run times of the CC-LSTM are analyzed.
As previously mentioned, the objective of this study is to estimate the physi-
cal dose appropriate for real-time adaptive APT. In this section, the model’s
run times for representative samples are reported and compared to the earlier
model and the current state-of-the-art. Additionally, it will be demonstrated
how CC-LSTM can be custom-designed for each energy and the run time ad-
vantages gained from such modifications will be highlighted. Finally, it will
be shown how these run times are achievable in real patient case scenarios.

Table 3.16 outlines the run times of CC-LSTM, along with other factors af-
fecting run times, using the default hyperparameters to achieve the results
reported in Table 3.12.

Table 3.13, shows that modifying the data input shape could alleviate failing
voxels at the peripheries to achieve higher accuracy. The mono-energetic ap-
proach not only provides flexibility in tailoring parameterization to optimize
accuracy but also allows customization of the model’s parameterization or
data I/O shapes based on the desired run times or specific energy require-
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Table 3.16: CC-LSTM run times vs its predecessor and DoTA

setup run time
Inference  # of Learn. Data I/O Mean
Model Framework
Batch Size  Parameters Shape (TTIS)

CC-LSTM 48 424353 210 x 45 x 45 PyTorch 5.6

LSTM 64 8072525 210 x 45 x 45 PyTorch 2.6

CC-LSTM 128 162209 150 x 23 x 23 PyTorch 1.6

DoTA 32 12632809 150 x 24 x 24  Keras 5.6*

Table 3.17: CC-LSTM run times when introducing customized parameterization in

the longitudinal axis

setup run time
inference  # of learn. Data I/0 Mean
Model Framework
batch size parameters shape (ms)

CC-LSTM 48 424353 210 x45x 45  PyTorch 5.6
CC-LSTM 48 424353 160 x 45 x 45  PyTorch 4.2

CC-LSTM 64 424353 130 x45x45  PyTorch 3.6




3.5 RUN TIME ANALYSIS

ments. Table 3.17 illustrates this by presenting various configurations of the
default design and their impact on run time improvements.

For low-range energy sets, as Figure 3.11 suggests, a straightforward mod-
ification of the parameterization can be achieved by defining a shorter lon-
gitudinal clipping. Since the 48.12MeV PB won’t have ranges higher than
the extracted ~ 13 cm used in this analysis, this adjustment reports a 35 %
improvement in run times, outlined in Table 3.18.

Table 3.18: CC-LSTM run times to generate the dose distribution of an entire IES
(*: showcased in sub-figures outlined in 3.16)

setup run time
Energy PBsinIES Datal/O batch size per 1IES
(MeV) (#) shape (s)

48.1 MeV* 349 210 x 45 x45 64 (32) 0.93(1.35)
79.1 MeV* 400 210 x 45 x45 64 (32) 1.11 (1.62)

102.6 MeV* 34 210 x 45 x45 64 (32) 0.16 (0.25)

79.1 MeV 400 160 x 45 x45 64 (32) 0.87 (1.27)
48.1 MeV 349 160 x 45 x45 64 (32) 0.73 (1.05)
48.1 MeV 349 130 x45x45 64 (32) 0.6 (0.86)

Having demonstrated the potential of CC-LSTM in delivering dose estima-
tion for real-time IES dose estimations in Table 3.18, and by incorporating the
trained energies reported in Figure 3.17, the run times for carrying out SOBP
dose estimations, with accuracies reported in table 3.15, are outlined in table

3.19.



Table 3.19: Comparison of CC-LSTM and LSTM-133 models on all test patient cases,
highlighting the y-index pass rates ([2 %, 2 mm]; global) and average run

3.5 RUN TIME ANALYSIS

times (mean =+ std) based on 5 measurements.

Patient ID Pbs (#) IES (#)

v index pass rate (%)

run time (s) (mean =+ std)

CC-LSTM LSTM-133 CC-LSTM  LSTM-133
Hoz2651 4131 35 99.4 96.8 41.7 £ 0.4 11.4 £ 0.3
Ho2794 4999 28 98.3 96.2 44.5 = 0.3 13.8 = 0.1
Ho2348 4155 33 99.4 95.9 39.2 £ 0.1 11.8 £ 0.3
Ho2593 11135 32 99.7 97.0 79.7 £0.1 309 *o0.7
Ho3z037 9656 35 99.4 97.2 81.6 + 0.4 26.2 + 0.3
Ho3476 1537 21 99.5 99.8 18.1 £ 0.2 4.5 £ 0.4
Hoz2520 8686 33 98.4 95.0 67.4 £ 0.5 23.9 + 0.4
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DISCUSSION

This study begins by extending the preliminary feasibility work presented in
Section 1.4, followed by an investigation into upscaling the proposed method
for full-field dose estimation. It was demonstrated that RNN-based networks,
specifically LSTM networks, can accurately predict three-dimensional dose
distributions of mono-energetic PBs, showing high agreement with ground
truth MC simulations and generalizing well to unseen patient cases and vary-
ing energies. Furthermore, the runtimes achieved make these models suitable
for incorporation into real-time adaptive frameworks, which is the primary
objective of this research.

However, the crucial aspect of quantifying uncertainty in dose predictions
had not yet been addressed. Therefore, we proposed the B-LSTM based
model (BayesDose). Unlike deterministic models, BayesDose incorporates
probabilistic elements, allowing us to measure uncertainty across different
samples and scenarios. This capability is important for clinical translation,
as it provides insights into the confidence levels of the model’s predictions,
enhancing the robustness and trustworthiness of the dose calculations.

While BayesDose quantifies uncertainty in dose estimation, it was not primar-
ily designed to demonstrate accuracy improvements. However, the insights
gained from uncertainty quantification highlighted the areas where our initial
framework could be enhanced. The original model encountered difficulties in
accurately predicting the wide dose distribution of pencil beams, especially
in complex anatomical regions.

To address these challenges, LSTM-133 and CC-LSTM models were devel-
oped, which were specifically designed to handle the wide lateral range of
dose distributions encountered in previously delivered treatment plans. By
taking into account the underlying physics of proton interactions, the model
sizes were significantly reduced, leading to an increase in their computational
efficiency. These architectural designs improved accuracy and achieved the
computational run time necessary for real-time APT.
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FEASIBILITY STUDY:. LESSONS LEARNED

The proton dose estimation problem was approached as a supervised learn-
ing task, aiming to map input CT cubes (RSP distribution) to their corre-
sponding 3D dose distributions. Various ANN architectures and deep learn-
ing models were investigated, with a particular focus on LSTM networks,
favored for their ability to capture spatial dependencies and handle sequen-
tial data effectively. The training process incorporated an updated dataset
of dose distributions generated through MC simulations, with different ini-
tial energies impinging on random spots across the lung area, serving as the
ground truth.

The feasibility study revealed three additional key findings. Firstly, although
trained on samples extracted from a single patient, the model’s learning gen-
eralized well to other test samples from unforeseen patients. Secondly, when
trained on samples with distinct energies, different from the prior energy,
the performance generalized for both short-range PBs and long-range PBs.
Tables 3.1 and 3.2, as well as Figure 3.1, demonstrate this both in terms of
visual inspection and the devised metrics.

Last but not least, the LSTM model demonstrated superior performance in
computational efficiency for dose estimation, achieving run times faster by
orders of magnitude compared to MC simulations (Table 3.3), as well as
other tested architectures, such as 3D-CNN (Neishabouri et al., 2021a) and
Transformer-based architectures. The millisecond run time performance of
LSTM models highlights their potential to provide real-time dose calcula-
tions, which are essential for adaptive proton therapy.

However, several limitations were identified. First, the dataset incorporated
was not sampled from clinically delivered plans, which could affect the learn-
ing task considerably. Moreover, the LSTM model struggled to accurately
estimate the dose of PBs with a wide lateral range, resulting in a loss of
coherence in the dose predictions (Figure 3.8a).

UNCERTAINTY QUANTIFICATION

Using our proposed approach, the BNNs incorporated in BayesDose facili-
tated uncertainty estimates for dose calculation. Unlike traditional determin-
istic models that when trained, output a single predicted value, BNNs incor-
porate probabilistic elements, allowing the model to produce a distribution of
possible outcomes. This probabilistic approach enabled the quantification of
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uncertainty and provided insights into the confidence of the proposed mod-
els in estimating dose distributions in various scenarios.

By incorporating Bayesian inference, BayesDose evaluates the uncertainty as-
sociated with each dose prediction, offering a range of potential dose distri-
butions rather than a single deterministic estimation. Both BayesDose and its
deterministic variant have demonstrated robust capabilities for dose calcula-
tion, achieving pass-rates greater than 97.81 %. The most accurate predictions
occurred in scenarios where cuboid heterogeneities had minimal impact on
the dose distribution, leading to only slight distortions of the Bragg peak.
The network consistently identified these instances as cases with low output
uncertainty. An instance of such high accuracy from BayesDose, depicted in
Figure 3.2, shows that the maximum standard deviation was only 1.1 % rel-
ative to the maximum dose, with no voxel deviating more than 3o from the
predicted values.

The instance with the lowest y pass-rate in the test set, 88.93 %, is detailed in
Figure 3.3. This example highlights significant discrepancies between the pre-
dicted and the ground truth dose distributions, primarily occurring in high
dose regions coupled with high uncertainty. Notably, the standard deviation
from BayesDose in this scenario reached up to 12.9 % relative to the maxi-
mum dose, marking it as one of the highest observed in the experiment. This
level of deviation underscores a less reliable prediction compared to instances
such as those depicted in Figure 3.2.

This approach highlights areas where the model is confident (Figures 3.2 in
the phantom case study, and 3.5 in the patient case study, both reporting
100 % y-index pass rates) and regions where predictions are less certain (Fig-
ures 3.3 in the phantom case study, and 3.6 in the patient case study, both re-
porting worst dose estimation accuracies). The ability to quantify uncertainty
is particularly valuable in medical physics, where the uncertainty maps pro-
vided by BayesDose allow clinicians to assess the reliability of the dose calcu-
lations and identify potential risks for OARs, leading to informed decisions.
This capability was demonstrated in the Section 3.2, where the model’s un-
certainty estimates correlated with the complexity of the anatomical regions
being treated, indicating areas where further review or alternative planning
might be necessary.

The distribution of voxels outside the no range for the entire test set is pre-
sented in Table 3.5. These values facilitate a comparison with Gaussian as-
sumptions about the probability mass within a confidence interval. These
metrics consistently fall short of expectations for the phantom cases, suggest-
ing an overestimation of uncertainty. Figure 3.4 presents a scenario where
the largest proportion of voxels exceeded the 30 deviation threshold, under-
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scoring significant prediction errors. The elevated percentage of significantly
deviating voxels, as shown in Figure 3.4, stems from a systematic underesti-
mation of the proton path length, which consequently misplaces the Bragg
peak and high dose values distally. This misplacement indicates the model’s
failure to accurately capture the extended downstream dependency induced
by the entrance cavity in this specific instance.

While BayesDose is not yet the primary dose calculation scheme, it can ef-
fectively be used to flag scenarios with large standard deviations and high
uncertainty, e.g. samples illustrated in Figures 3.4 and 3.7 exhibiting signifi-
cant quantification of uncertainty. Regions with high uncertainty can indicate
potential errors or limitations in the model, prompting using models with
lower uncertainty. Section 3.3 outlined a case study where custom parame-
terization was incorporated for low energies, showcasing the favorable char-
acteristics of the proposed mono-energetic approach in tailoring the design
according to the complexity of the samples. Similar analysis can be carried
out using BayesDose, flagging samples with high uncertainty and prompting
the workflow to opt for models with higher confidence in estimating dose
distributions in heterogeneous scenarios. Ultimately, for estimating the dose
distribution of an entire IES (or SOBP), an optimization task can be defined
based on the available models, their uncertainty in estimating dose distribu-
tions, and finally their computational efficiency, aiming to minimize the run
times while maximizing the dosimetric accuracy.

Moreover, BayesDose replicated the generalization behavior of the determin-
istic model when tested via the earlier benchmarking procedure for general-
izability, reporting similar performance to the deterministic LSTM model. A
similar performance discrepancy was observed for two of the test patients
(Patient 1 and 5), which was attributed to the range of input values, i.e. RSP
map values, where in those cases the RSP range of values were beyond those
observed in Patient 0, where the training was performed.

In the regulatory landscape of medical devices and treatment planning sys-
tems, demonstrating robust uncertainty quantification can support compli-
ance with strict safety standards. It provides evidence that the model’s pre-
dictions are accurate and reliable under varying conditions. The uncertainty
maps generated by BayesDose could thus play a critical role in validating
the model for clinical use, ensuring it meets the necessary safety and efficacy
requirements.
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CC-LSTM: THE STATE-OF-THE-ART

Following the proposed approach in Sections 1.4 and 2.1, Pastor-Serrano and
Perké (2022) have implemented a Transformer-based architecture, achieving
state-of-the-art accuracy. Additionally, they employed a parametric input for
particle energy, generating dose distributions across a semi-continuous range
of therapeutic energies. However, we argue that despite their recent popular-
ity and strong performance, Transformers are not ideally suited for this task.
Their prominence is due to training parallelism, enabling handling of large
language corpora. Yet, they suffer from inefficient inference due to their O(N)
complexity per step (Sun et al., 2023), a critical drawback given our study’s
primary aspiration of real-time inference. This issue is further exacerbated in
cases of larger input/output dimensions, as showcased in this study.

Moreover, while acknowledging the scientific value of mixed-input capabil-
ity of these models, we contend against a one-for-all model approach. By
concentrating the learning objectives on mono-energetic pencil beams, the
complexity of the learning task is significantly reduced to mainly involve the
patient’s geometry. The decision to exclude energy parameterization from the
problem formulation is based on several strategic considerations:

1) Within the realm of IMPT, each IES is treated sequentially and distinctly.
This operational characteristic implies that for real-time dose recalculations,
there is no necessity to handle varying energy pencil beams simultaneously.
Thus, introducing energy parameterization into the model would complicate
it unnecessarily and divert from the primary optimization goals.

2) Pencil beams exhibit markedly different characteristics across various en-
ergies due to underlying physical phenomena such as range straggling and
distinct scattering profiles. For instance, beams at lower energy levels are
characterized by pronounced scattering, leading to a broader lateral dose dis-
tribution, while those at higher energies tend to have a narrower focus but
an extended Bragg peak. These significant physical variations justify the need
for tailored machine-learning strategies for each energy level, especially when
considering the application across different types of cancer treatments.

3) In scenarios where the complete field dose distribution needs to be calcu-
lated, the cumulative dose is essentially the sum of the individual IES dose
distributions. This non-overlapping nature of data lends itself well to parallel
processing across multiple GPUs, thereby enhancing computational efficiency
in proportion to the available hardware resources.
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When a clinically justifiable dose cut-off is incorporated, the extent of a mono-
energetic pencil beam’s dose distribution both laterally and longitudinally
can be estimated. Therefore, the learning task employs a restricted represen-
tation instead of the entire CT/Dose grid, focusing on a clipped area that
aligns with the beam’s eye view to encapsulate the complete extent of the
pencil beam’s dose projection. This method is depicted in Figure 2.14 for
initial energy configurations in an LGG patient case, illustrating the energy-
specific clipping dimensions determined by the behavior of the pencil beam
across its operational range.

In contrast to Transformers, RNNSs, particularly in their advanced forms, such
as LSTM networks, handle sequential data with a fixed-cost operation per el-
ement, independent of sequence length. The recent decline in the usage of
these models is primarily attributed to their need to process the entire se-
quence of input data sequentially and condense it into a final hidden state.
This requirement can complicate decoding, especially in natural language
processing, where maintaining the context of lengthy sentences is crucial.
However, the application of RNNs in particle therapy offers unique advan-
tages. Unlike in language processing, where the entire sentence must be pro-
vided to generate the output, the unidirectional high-energy travel of protons
means that to accurately estimate the dose distribution at each time step, only
the input up to and including the current time step needs to be considered.
Consequently, the common drawbacks of RNN-based networks do not hinder
their effectiveness in proton therapy applications.

Building on the foundation set by previous research, the CC-LSTM model
development significantly improves the precision of dose estimation for par-
ticle therapy. The performance of CC-LSTM model against the previously
established LSTM model demonstrated higher accuracy in almost all sam-
ples within the test set as summarized in Table 3.11. For instance, the local
gamma index pass rate ([1%, 2mm]; D < 0.03Dmax —> D = o) has reported an
approximate 5 percentage points increase.

Important to note here is the varying scale of values in y analysis and the out-
come pass rates, given the different dimensions on which the pass rates are
evaluated, compared to full-field y analysis. For a better understanding of the
performance superiority, note CC-LSTM’s worst y-index pass rate of 92.37 %,
which is almost equal to what the prior LSTM model reported on average.
The ability to handle worst-case scenarios effectively proves the robustness
and accuracy of the CC-LSTM model. Finally, given the training was carried
out via an MSE loss function for both models, it is worth noting CC-LSTM’s
MSE decreases by an order of magnitude, on average, when measured against
the prepared test datasets. This performance highlights CC-LSTM’s superior
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capability in avoiding overfitting and thereby it’s improved generalizability
to unseen test cases.

CC-LSTM achieved high performance when tested on the LGG dataset pre-
pared for this study as well. As outlined in Section 2.3.3, prepared specifically
for HIT (simulated via FLUKA MC), this dataset is considerably more com-
plex than the data prepared in the feasibility study (simulated via Topas)
for its wider lateral range, finer extraction resolution, and extreme hetero-
geneities exhibited in the head region. However, given that this dataset is
sampled from previously delivered treatment plans, the desirable outcome
suggests enhanced performance of the model in real patient scenarios.

Moreover, as previously discussed, the shift from low-range energy PB to
high-range energy PB represents a fundamental change in the task from an Al
perspective (Figure 3.11). Similarly, the outcomes of each energy test set may
vary even when trained using the same procedure. Performance differences
across various energies can be related to several factors, including test set
sampling schemes, as each model is tested on a specific test set. However, a
notable decline in performance is observed in the gamma analysis outcomes
for the low-range energy set. This highlights the benefits of the proposed
mono-energetic approach, which allows for unique handling of each energy
based on the overall behavior of that energy range.

Low-range energy PBs exhibit a considerably wider lateral extent compared
to other sets. This is due to the slow speed of these low-range PBs and their
increased scattering in the skull region. Additionally, because of the low fo-
cus of proton beams at HIT, more voxels with a dose greater than zero are
observed at the periphery of the PB cubes (Figure 3.12). When examining the
average lateral distribution of failed voxels across the lateral axis, as shown
in Figure 3.13, failures for low-range energy PBs predominantly occur at the
periphery of the lateral axis of the PB cube. This indicates the model’s dif-
ficulty in accurately estimating the dose distribution in the margins of the
output cube. This observation stems from the fact that the interpolated cubes
encounter interpolation artifacts at the periphery, and since low-energy PBs
have a wider lateral scattering, these artifacts result in higher discrepancies
at the periphery.

To this end, two alternative parameterizations were performed, using 49 vox-
els and 63 voxels in the lateral axis, resulting in both input G; and output
cubes D; of shape R4 and R{*%3* instead of the original RY**%.
Figure 3.14 demonstrates how the wider cube extraction completely allevi-
ates the failures of voxels in the peripheries, with performance enhancements
outlined in Table 3.13, showing improvements in accuracy across all metrics
for the low-range energy set.
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The tailoring of the model outlined earlier can be practiced in different mech-
anisms of the model. For instance, as it was pointed out earlier, the proposed
workflow can store variants of CC-LSTMs, each trained for certain complex
scenarios, and determine what variant to incorporate based on the uncertain-
ties provided by Bayesdose. This is feasible owing to the efficient and reduced
number of learnable parameters in CC-LSTMs (Table 3.16).

Performance Against the State of the Art

The superior performance of the CC-LSTM model extends beyond compar-
isons with previous work, demonstrating significant advantages over the cur-
rent state-of-the-art Transformer-based model, DoTA. In every metric incor-
porated, CC-LSTM consistently outperformed DoTA, with particularly pro-
nounced differences in MSE and MAE, where discrepancies in error magni-
tude were notable (Table 3.14). A direct and fair comparison was conducted
using the publicly available dataset by Pastor-Serrano and Perké (2022). By
training CC-LSTM on the same dataset used for DoTA without any alter-
ations in preprocessing or postprocessing steps, we ensured a fair evaluation,
further substantiating CC-LSTM’s enhanced performance in particle therapy
dose estimation.

Evaluating CC-LSTM Models for Full IES Plan Dose Distribution

Thus far, our accuracy assessments have focused on comparisons between in-
dividual PBs in the BEV, normalized per fluence proton. However, in realistic
clinical scenarios, the dose distributions for a planned treatment are scaled by
the fluence of the corresponding spot, which can amplify or obscure PB errors
when evaluated and accumulated collectively. To address this, the evaluation
was extended to showcase the performance of CC-LSTM models in generat-
ing the dose distribution of an entire IES plan for the representative energy
ranges, as illustrated in Figure 3.16. As shown, CC-LSTM’s performance is
not limited to the PB domain but extends to the realistic scenario of estimat-
ing an entire IES dose distribution. This performance is especially important
for APT, where prompt estimation of IES dose distribution allows for online
APT within the 4 s to 6 s time window available during therapy, as is the case
at HIT.
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Evaluating Proposed Models for Full-Field Dose Distribution

To generate the dose for the seven unseen test patients introduced in Section
2.3.3, CC-LSTM training over all 35 defined energies had to be carried out.
The box plot represented in Figure 3.17 demonstrates the generalizability of
the high accuracy outlined earlier in this study. There is an apparent perfor-
mance decline in the lower energies, attributed to the interpolation artifact
phenomena explained earlier in low-dose PBs.

However, tailoring each energy to its corresponding dataset was not carried
out for this study, and the reported gamma analysis in Figure 3.17 has been
performed using a unified parameterization. Moreover, the performance of
LSTM-133 was not reported due to limited space and to provide a clearer
representation of the CC-LSTM, which is primarily designed to increase ac-
curacy while maintaining superfast run times. Nonetheless, LSTM-133 was
designed primarily for run time advantages, and its accuracy report in the
PB domain was omitted. However, the performance of LSTM-133 is reported
when evaluating the dose for entire field, comparing it with CC-LSTM and
the ground truth MC simulations, as shown in e.g. figure 3.18.

Table 3.15 presents the results of the y-index pass rate analysis for all test
patients. The CC-LSTM model demonstrates robust performance, achiev-
ing over 98% vy-index pass rates under strict criteria ([1%,2mml]), D <
0.01Dmax = D = 0, across all unseen patient cases. While the LSTM-133
model generally shows lower accuracy compared to CC-LSTM, it nonethe-
less exhibits a high level of agreement with the MC dose across all patients.
This discrepancy is less apparent when performing DVH analysis, where
both models show a close matching with the ground truth MC for target and
OARs, across all patients.

Patient Ho3476 is the only case where LSTM-133 marginally outperforms CC-
LSTM in terms of y-index analysis. Upon investigating this case (Figure 3.18),
it becomes evident that Ho3476 is one of the few cases where the isocenter is
located centrally in the brain region, resulting in nominal cases that are less
challenging compared to heterogeneous cases where the dose distribution
profile is significantly distorted. In such cases, LSTM-133 can effectively eval-
uate the dose due to minimal anatomical variations. Furthermore, given the
added computational efficiency of LSTM-133 over CC-LSTM, by incorporat-
ing probabilistic models such as BayesDose, one could perform preliminary
uncertainty quantification and employ LSTM-133 for cases with low uncer-
tainty, thereby benefiting from the runtime savings that LSTM-133 offers. As
a clinically relevant endpoint, the DVH plot for this patient shows a close
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match between the two proposed models and the MC evaluations as well
(Figure 3.19).

It's important to reiterate that these patients were not seen by the trained
models in any capacity. For example, Patient Ho3476, discussed earlier, is one
of three patients whose gantry and couch angles (GA, CA) were not present
in the training set (GA: 50°, CA: 280°; see Figure 2.12). Patient Ho2520 (GA:
90°, CA: 330°), on the other hand, while sharing GA and CA with two other
patient cases in the cohort, posed a significant challenge for both models in
accurately estimating the dose distribution. This is because the tumor’s loca-
tion causes the impinging angles to result in a tangential traversal of the PBs
through the skull, a challenging testing scenario we encountered throughout
this study. However, as depicted in Figure 3.20, CC-LSTM robustly estimates
the dose distribution, closely matching the ground truth MC dose distribu-
tion, while LSTM-133 fails to accurately estimate the dose in the marginal
areas of the plan. In terms of DVH comparison, both models underestimate
the dose to the target PTV, while CC-LSTM shows improved estimation of
the dose for OARs. This outcome is further supported by Figure 3.21, where
it is evident that the OAR is critically located within a heterogeneous geome-
try. LSTM-133 clearly struggles in this region, with a considerable number of
voxels in the corresponding OAR failing the y-analysis test, while CC-LSTM
shows a close match with the ground truth MC.

Patient Ho2348 (GA: 90°, CA: 0°) presents an interesting case. The imping-
ing angle is one of the most common in the cohort, with 22 other patients
sharing the same angle. Additionally, due to the right impinging angles, the
interpolation step minimally affects the final dose distribution. However, sim-
ilar to Patient Ho2520, the tumor’s location significantly compromises the
final dose distribution estimated by the models, with LSTM-133 reporting its
second worst y-index pass rate. Figure 3.24 presents the DVH comparison for
the left optical nerve, where, similar to the case of Ho2520, the OAR shows
discrepancies between the two models when compared to the ground truth
MC. Figure 3.23 illustrates the OAR’s location and how each model estimated
the dose in these regions. Once again, CC-LSTM shows a clear advantage over
the LSTM-133 model.

Finally, the performance of the two proposed models was evaluated for the
remaining patients: Ho2794 (GA: 290°, CA: 0°), Ho3037 (GA: 40°, CA: 290°),
Ho2593 (GA: 90°, CA: 345°), and Ho2651 (GA: 60°, CA: 270°). All patients
exhibited favorable y-index pass rates and DVH comparisons, particularly for
the CC-LSTM model, which consistently demonstrated superior performance
across these cases.
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Given the accuracy reported for these patients, it can be concluded that the
objectives of this study were achieved in terms of accuracy. The next step is
to assess whether such dose estimations can be performed end-to-end within
real-time APT time frames, as will be discussed in the following section.

Real Time Adaptive Dose Calculation

Throughout this study, the development of the CC-LSTM model was primar-
ily governed by run time considerations, ensuring that the model not only
delivers high accuracy but also adheres to super-fast run time constraints. As
detailed earlier, the selection of modules and parameter setups was optimized
to meet these requirements without compromising performance. The results
have demonstrated that CC-LSTM meets these objectives, handling complex
dose calculations with sub-second speed. Given the accuracy reported in sec-
tion 3.3 and figure 3.16, one of the pivotal findings, reported in Table 3.18,
demonstrates that a full IES dose calculation, consisting of 349 PBs, can be ex-
ecuted on a desktop PC computation infrastructure in under one second, with
accuracies that closely match those obtained through the gold-standard MC
simulation. This achievement implies that CC-LSTM can operate within the
stringent real-time adaptive radiotherapy run times and, at a minimum, acts
as an effective safeguard, mitigating the risk of incorrect radiation delivery
during treatment. Table 3.16 contrasts CC-LSTM’s run time and model design
to DoTA, where it is highlighted that CC-LSTM’s superior accuracy reported
in table 3.14 is achieved with approximately 1.3 % number of learnable pa-
rameters, resulting in more than threefold reduction in run time.

The run times mentioned above were achieved while evaluating CC-LSTM
with the default parameter set chosen for this study. However, the adaptations
we have detailed can be employed not only to enhance precision but also to
optimize both the accuracy and speed, tailored to the specific requirements
of the task at hand. This flexibility allows the model to be finely adjusted to
strike the desired balance between performance and computational efficiency
in various clinical scenarios. Table 3.17 demonstrates such adaptation in its
simplest form. Here, the shorter longitudinal range required for low-energy
PBs does not necessitate the same longitudinal shape as higher-energy PBs.
Simply adapting the input/output parameterization of the problem has been
shown to improve run times for low-energy PBs by up to 35 %. This analysis
was also performed for estimating IES dose distribution, were sub-second
run times were reported (Table 3.18).

Finally, the dose distribution for the seven patients was carried out with high
accuracy and low run times, in the scale of seconds, as reported in Table 3.19.
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Considering the strict criteria in choosing the seven patients to set aside as
test patients, which involved selecting cases with unique impinging angles
(Figure 2.12), the reported results highlight the potential of Al-based dose
calculation in both delivering accurate and fast dose distributions. The speed
and accuracy achieved are sufficient to enable incorporation into real-time
adaptive proton therapy, thus fulfilling the key objectives of this study.

Outlook: Multi-GPU setup

We plan to further investigate factors affecting CC-LSTM’s speed and accu-
racy, and examine hardware configurations, including multi-GPU setups, and
their advantageous characteristics for our task, given the inherently paral-
lel nature of this task. Finally, we will explore the feasibility of scaling the
under-one-second dose estimation of a single IES, reported in this study, to a
multi-GPU setup, to achieve sub-second full-field dose estimation run times.
This scaling will include streamlining all necessary processes in the work-
flow, such as preprocessing and cube extractions, interpolations and dose
cube alignments, data I/O, and subsequent post-processing to generate the
dose distribution on the desired dose grid. Our aim is to optimize the en-
tire workflow for both speed and accuracy because in the realm of real-time
adaptive proton therapy, every millisecond counts.
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SUMMARY

This doctoral research investigated the application of Artificial Neural Net-
works (ANNSs) and deep learning techniques for estimating proton dose dis-
tributions in particle therapy. The study focused on evaluating the suitability
of ANNSs as a dose estimation method. The primary objectives were: 1) To
develop and evaluate ANN models, particularly Long Short-Term Memory
(LSTM) networks, capable of capturing the spatial dependence and hetero-
geneity of patient anatomy in mapping CT images to dose distributions. 2)
To quantify dose prediction uncertainties using Bayesian LSTM models. 3) To
investigate the ability of ANNs to meet the goal of real-time adaptive proton
therapy by creating a dose estimation engine and models.

The initial feasibility study demonstrated that LSTM networks could effec-
tively learn the supervised task of proton dose estimation, correlating spatio-
temporal features between input CT images and simulated ground truth
Monte Carlo dose distributions. It was shown, that the LSTM networks out-
performed other variants of Recurrent Neural Networks-based models in
terms of accuracy and computational efficiency and exhibited generalization
capabilities for different energies and patient anatomies. The millisecond run-
time per pencil beam suggested the potential of these models to generate
full-field dose distributions for real-time adaptive proton therapy.

To address the frequently voiced concern of ‘explainability” and to quan-
tify model prediction accuracy for clinical translation, the Bayesian LSTM
model, BayesDose, was developed. By incorporating probabilistic elements,
BayesDose enabled the assessment of prediction uncertainties, providing con-
fidence intervals and identifying potential sources of error.

Based on the lessons learned from the feasibility study, a custom dataset was
created to investigate the deep learning models in a real patient scenario,
with previously delivered treatment plans in the head region exhibiting a full
range of heterogeneities, from air cavities to dense bony structures. Due to the
challenges posed by the new dataset and the wide proton beam in HIT, the
initial LSTM models were unable to correctly learn the spatio-temporal fea-
tures. To address these challenges, two custom-designed, physics-informed
variations of LSTM were proposed: LSTM133 and CC-LSTM. LSTM133 fa-
cilitated the training of higher dimensional inputs and outputs, while CC-
LSTM was designed from scratch, tailored specifically to the characteristics
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of proton interactions, significantly improving accuracy and computational
efficiency. CC-LSTM processed the input in three steps: 1) dimensionality re-
duction of the input using strided convolutions, followed by spatial feature
extraction using two Convolutional Neural Network (CNN) layers 2) spatial
tfeature fed to a ConvLSTM cell, that by updating its cell state and hidden
state, propagates the spatial features temporally, and 3) dose distribution pre-
diction using a three layer CNN backend. This model achieved the compu-
tational speed necessary for real-time adaptive proton therapy (APT) and
outperformed the current state-of-the-art in terms of accuracy and run times,
setting a new benchmark for deep learning-based particle therapy dose cal-
culation. Moreover, this thesis involved a comprehensive development aspect
that allowed forward calculation of an entire field, end-to-end, via only the
treatment plan, and the corresponding patient CT acquisition. This forward
calculation operate in four steps, 1) The RSP cubes are extracted from the
CT based on the treatment plan 2) the BEV dose distributions of all pencil
beams are inferred in one feed forward of the model 3) these dose distribu-
tion are then accumulated based on the plan, on the GPU, in the BEV, and
4) The dose distribution is back-interpolated to the CT grid with the desired
resolution. The design and evaluation of methods, models, workflows, and
code libraries generated in this study have facilitated fast dose calculations
for APT. The proposed dose calculation engine could carry out dose distri-
bution of iso-energy surfaces in under one second on a desktop computational
system, with highly conformal accuracy comparing to the ground truth MC
simulations. Such performance ensures that dose estimations could be per-
formed rapidly enough to adapt to dynamic changes in patient anatomy dur-
ing treatment, given the availability of in-room monitoring systems such as
cone beam CT, vision RT, MRI, and read from the available in-room imaging
systems. This way, the proposed engine can evaluate updated dose distribu-
tions based on discrepancies in dose delivery read from machine’s guiding
systems such as beam application and monitoring system or based on intra-
and inter-fractional changes in the patient anatomy.
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Diese Doktorarbeit untersuchte die Anwendung von Kiinstlichen Neuronalen
Netzwerken (ANNs) und Deep-Learning-Techniken zur Berechnung von
Protonendosisverteilungen in der Partikeltherapie. Die Studie konzentrierte
sich auf die Bewertung der Eignung von ANNSs als Dosisberechnungsmeth-
ode. Die Hauptziele waren: 1) Die Entwicklung und Bewertung von ANN-
Modellen, insbesondere Long Short-Term Memory (LSTM)-Netzwerken, die
in der Lage sind, die rdumliche Abhédngigkeit und Heterogenitdt der Pa-
tientenanatomie bei der Abbildung von CT-Bildern auf Dosisverteilungen
zu erfassen. 2) Die Quantifizierung von Vorhersageunsicherheiten und Mod-
ellfehlern bei ANN-basierten Dosisberechnungen unter Verwendung von
Bayesian LSTM-Modellen. 3) Die Untersuchung der Fihigkeit von ANNSs, das
Ziel der Echtzeit-adaptiven Protonentherapie durch die Erstellung einer Do-
sisberechnungsengine und entsprechender Modelle zu erreichen.

Die erste Machbarkeitsstudie zeigte, dass LSTM-Netzwerke die {iberwachte
Aufgabe der Protonendosisberechnung effektiv erlernen konnten, indem sie
raumlich-zeitliche Merkmale zwischen Eingabe-CT-Bildern und simulierten
Ground-Truth-Monte-Carlo (MC)-Dosisverteilungen korrelierten. Die LSTM-
Netzwerke tibertrafen andere Varianten von Recurrent Neural Network
(RNN)-basierten Modellen in Bezug auf Genauigkeit und Recheneffizienz
und zeigten Generalisierungsfahigkeiten fiir unterschiedliche Energien und
Patientenanatomien. Die Millisekunden-Laufzeit pro Pencil-Beam deutete auf
das Potenzial dieser Modelle hin, Gesamtdosisverteilungen fiir die Echtzeit-
adaptive Protonentherapie zu erzeugen.

Um die Bedenken hinsichtlich der "Erkldrbarkeit" und Quantifizierung der
Vorhersagegenauigkeit von Modellen fiir die klinische Ubersetzung anzuge-
hen, wurde das Bayesian LSTM-Modell BayesDose entwickelt. Durch die Ein-
beziehung probabilistischer Elemente ermoglicht BayesDose die Bewertung
von Vorhersageunsicherheiten, indem es Konfidenzintervalle bereitstellt und
potenzielle Fehlerquellen identifiziert.

Basierend auf den Erkenntnissen aus der Machbarkeitsstudie wurde ein
mafigeschneiderter Datensatz erstellt, um die Deep-Learning-Modelle in
einem realen Patientenszenario mit zuvor durchgefiihrten Behandlungspla-
nen in der Kopfregion zu untersuchen, die eine Vielzahl von Heterogen-
ititen aufwiesen, von Lufthohlrdumen bis hin zu dichten Knochenstruk-
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turen. Aufgrund der Herausforderungen, die sich durch den neuen Daten-
satz und den breiten Protonenstrahl am Heidelberg Ion Therapy Center
(HIT) ergaben, konnten die urspriinglichen LSTM-Modelle die rdumlich-
zeitlichen Merkmale nicht korrekt erlernen. Um diese Herausforderungen
anzugehen, wurden zwei mafigeschneiderte Variationen von LSTM Mod-
ellen vorgeschlagen welche physikalische Informationen enthalten: LSTM133
und Convolutional Conv Long Short-Term Memory (CC-LSTM). LSTM133
erleichterte das Training von hoherdimensionalen Eingaben und Ausgaben,
wihrend CC-LSTM von Grund auf neu entwickelt wurde und speziell auf
die Eigenschaften von Protoneninteraktionen zugeschnitten war, wodurch
die Genauigkeit und Recheneffizienz deutlich verbessert wurde. CC-LSTM
verarbeitete die Eingabe in drei Schritten: 1) Dimensionsreduzierung der
Eingabe mittels gestaffelter Faltungen, gefolgt von rdumlicher Merkmalex-
traktion unter Verwendung von zwei Convolutional Neural Network (CNN)-
Schichten, 2) Raumliche Merkmale werden an eine Convolutional LSTM
(ConvLSTM)-Zelle gefiittert, die durch Aktualisierung ihres Zellzustands
und versteckten Zustands die raumlichen Merkmale zeitlich fortpflanzt, und
3) Vorhersage der Dosisverteilung unter Verwendung eines dreischichtigen
CNN-Backends. Dieses Modell erreichte die fiir die Echtzeit-adaptive Pro-
tonentherapie erforderliche Rechengeschwindigkeit und tiibertraf den ak-
tuellen Stand der Technik in Bezug auf Genauigkeit und Laufzeit, wodurch
ein neuer Mafsstab fiir die Deep-Learning-basierte Dosisberechnung in der
Partikeltherapie gesetzt wurde. Zudem wurde in dieser Arbeit die End-
to-End-Dosisberechnung eines vollstindigen Feldes allein anhand eines Be-
strahlungsplans und eines entsprechenden Patienten-CTs demonstriert. Diese
Dosisberechnung erfolgte in vier Schritten: 1) Die Relative Stopping Power
(RSP)-Wiirfel wurden aus dem CT basierend auf dem Behandlungsplan ex-
trahiert, 2) die Beam’s Eye View (BEV)-Dosisverteilungen aller Pencil-Beams
wurden in einem Vorwdrtsdurchlauf des Modells abgeleitet, 3) diese Do-
sisverteilungen wurden dann basierend auf dem Plan auf der Graphics Pro-
cessing Unit (GPU) im BEV akkumuliert und 4) die Dosisverteilung wurde
mit der gewiinschten Auflosung auf das CT-Gitter zurtiickinterpoliert. Die
Entwicklung und Bewertung von Methoden, Modellen, Workflows und Code-
Bibliotheken, die in dieser Studie erstellt wurden, haben schnelle Dosisberech-
nungen fiir die Adaptive Proton Therapy ermoglicht. Die vorgeschlagene Do-
sisberechnungsengine konnte die Dosisverteilung von Iso-Energieflachen in
unter einer Sekunde auf einem Desktop-Computersystem durchfiihren, mit
einer hochkonformen Genauigkeit im Vergleich zu den Ground-Truth-MC-
Simulationen. Diese Leistung stellt sicher, dass Dosisberechnungen schnell
genug durchgefiihrt werden kénnen, um sich an dynamische Anderungen
der Patientenanatomie wéahrend der Behandlung anzupassen, vorausgesetzt,
es sind In-Raum-Uberwachungssysteme wie Cone-Beam Computed Tomog-
raphy, Vision-RT oder Magnetic Resonance Imaging. Auf diese Weise kann
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die vorgeschlagene Engine aktualisierte Dosisverteilungen basierend auf
Abweichungen bei der Dosisabgabe, die von Maschinenfiihrungssystemen
wie Beam Application and Monitoring System (BAMS) ausgelesen werden,
oder basierend auf intra- und interfraktionellen Anderungen der Patiente-
nanatomie bewerten.
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APPENDIX

In this section, we present the remaining y-analysis comparisons of dose es-
timation for the unseen test patients listed in Table 3.15. Additionally, we
include the DVH comparisons to highlight how closely the outcomes of the
introduced models align with the ground truth MC dose delivery for both
the target and the OARs.
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Figure 6.1: DVH comparison for patient Ho2794, illustrating the performance of MC,
CC-LSTM, and LSTM-133 models.
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(a) Dose estimation by CC-LSTM model.
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(b) Dose estimation by LSTM133 model.

Figure 6.2: v analysis comparison ([2%, 2mm]; global) of dose estimation for an
unseen, real-patient (Ho2794) case with 4999 PBs, calculated via (a) CC-
LSTM model (y PR: 98.3) and (b) LSTM133 model (y PR: 96.2), against
the ground truth MC simulations. The 3D cube views (coronal, sagittal,
and axial) are shown for the regions where the MC dose is maximum.
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(a) Dose estimation by CC-LSTM model.
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(b) Dose estimation by LSTM133 model.

Figure 6.3: v analysis comparison ([2%, 2mm]; global) of dose estimation for an
unseen, real-patient (Ho3037) case with 9656 PBs, calculated via (a) CC-
LSTM model (y PR: 99.4) and (b) LSTM133 model (y PR: 97.2), against
the ground truth MC simulations. The 3D cube views (coronal, sagittal,
and axial) are shown for the regions where the MC dose is maximum.
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(a) Dose estimation by CC-LSTM model.
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(b) Dose estimation by LSTM133 model.

Figure 6.6: v analysis comparison ([2%, 2mm]; global) of dose estimation for an
unseen, real-patient (Ho2593) case with 11135 PBs, calculated via (a) CC-
LSTM model (y PR: 99.7) and (b) LSTM133 model (y PR: 97.0), against
the ground truth MC simulations. The 3D cube views (coronal, sagittal,
and axial) are shown for the regions where the MC dose is maximum.
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(a) Dose estimation by CC-LSTM model.
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(b) Dose estimation by LSTM133 model.

Figure 6.7: v analysis comparison ([2%, 2mm]; global) of dose estimation for an
unseen, real-patient (Ho2651) case with 4131 PBs, calculated via (a) CC-
LSTM model (y PR: 99.4) and (b) LSTM133 model (y PR: 96.8), against
the ground truth MC simulations. The 3D cube views (coronal, sagittal,
and axial) are shown for the regions where the MC dose is maximum.



REFERENCES LIST 118

Dose-Volume Histogram Comparison

— PTV - MC
Lo —— = = PTV-CC-LSTM
r =ss PTV-LSTM-133
h.Saum - MC
3 h.Saum - CC-LSTM

0.8+ h.Saum - LSTM-133
c
L
T o6l
[
£
[
o
£
2
0 0.4
>

0.2

0. 1 1 1 1 1

800 0.25 0.50 0.75 1.00 1.25

Dose (Gy)

Figure 6.8: DVH comparison for patient Ho2651, illustrating the performance of MC,
CC-LSTM, and LSTM-133 models.
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