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Abstract

Despite rapid advances in the capabilities of Artificial Intelligence (Al), its application
in healthcare faces unique challenges: stringent requirements to prove patient bene-
fit, severe data scarcity, and shifting distributions across clinical environments. These
barriers span the entire Al lifecycle, requiring solutions at each stage. To address this,
we propose a holistic Lifelong Learning framework that systematically addresses these
challenges through three independent metacognitive loops — continuous improvements
of the learning process itself: one to align validation efforts with clinical needs during
the Design phase, another for effective knowledge transfer between tasks in the Develop
phase, and a third to adapt models to changing environments in the Deploy phase.

Adding these loops to a learning system helps to overcome the challenges outlined
above. First, we develop a structured interview process that captures the problem fin-
gerprint of biomedical applications and enables automatic determination of appropriate
performance measures aligned with clinical objectives. Second, we establish a method
for quantifying task similarity and facilitating cross-institutional knowledge transfer
while preserving patient data privacy. Our proposed binned Kullback-Leibler Diver-
gence (bKLD) measure underwent extensive evaluation across heterogeneous biomedical
imaging tasks, setting new standards for task transferability estimation. Third, we com-
prehensively analyze prevalence shifts in deployment environments and propose a novel
five-step workflow for model adaptation using only unlabeled samples from the deploy-
ment environment. Therein we quantify the present class prevalences and post-hoc
re-calibrate a model, carefully considering the impact on decision rules and performance
measures.

The experiments conducted demonstrate significant advancements in each area. Our
recommendation process for aligning model performance metrics with actual clinical
utility, reflects the consensus of an international consortium of 73 experts. Our knowl-
edge transfer methodology allows the system to leverage experience from related tasks,
exceeding previously proposed estimates of knowledge transferability in the most com-
prehensive benchmark we are aware of. Our prevalence shift compensation workflow
prevents performance degradation across diverse biomedical imaging scenarios, enabling
the system to automatically detect and adapt to changing environmental conditions
without requiring new annotations.

This work represents the first comprehensive investigation of Lifelong Learning for
biomedical image analysis, with tens of thousands of models trained and evaluated.
By systematically leveraging metacognitive loops, we lay the groundwork for truly
autonomous Lifelong Learning systems in healthcare that can continuously evolve in
changing healthcare contexts.
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Zusammenfassung

Trotz der rasanten Fortschritte im Bereich der Kinstlichen Intelligenz (KI) steht diese
bei der Ubertragung in medizinische Anwendungen vor einzigartigen Herausforderun-
gen: strenge Anforderungen an den Nachweis des Patientennutzens, unzureichende
Datenverfiigbarkeit und Differenzen in der statistischen Verteilung zwischen verschie-
denen klinischen Umgebungen. Diese Hindernisse erstrecken sich tiber den gesamten
KI-Lebenszyklus und erfordern daher auch Losungen in jeder Phase. Um diesen Heraus-
forderungen zu begegnen, schlagen wir ein ganzheitliches Lifelong Learning System vor,
das durch drei unabhéngige metakognitive Schleifen erganzt wird, welche kontinuierlich
den Lernprozess selbst verbessern: eine fiir die Abstimmung von Validierungsmafien mit
klinischen Bediirfnissen in der Design-Phase, eine fiir den effektiven Wissenstransfer zwi-
schen Datensatzen in der Develop-Phase und eine dritte fiir die Anpassung von Modellen
an veranderte Umgebungen in der Deploy-Phase.

Die Einbindung dieser Schleifen hilft, die oben genannten Herausforderungen zu be-
wiéltigen. Erstens entwerfen wir einen strukturierten Interviewprozess, der den Problem-
Fingerabdruck biomedizinischer Anwendungen erfasst und die automatische Bestimmung
geeigneter, auf klinische Ziele ausgerichteter Leistungsmetriken erméglicht. Zweitens
etablieren wir eine Methode zur Quantifizierung der Ahnlichkeit von Datensitzen und
erleichtern den institutionentibergreifenden Wissenstransfer bei gleichzeitiger Wah-
rung des Datenschutzes fiir Patient*innen. Unser vorgeschlagenes bKLD-Maf} wurde
umfassend an heterogenen biomedizinischen Bilddatensatzen evaluiert und setzt neue
Standards fiir die Abschéatzung der Transferfahigkeit von Wissen. Drittens analysieren
wir umfassend die Auswirkungen von Verschiebungen in der Zielklassenverteilung und
schlagen einen neuen fiinfstufigen Algorithmus zur Anpassung von Modellen vor, der
auf nicht kategorisierten Bildern der Einsatzumgebung basiert. Dabei quantifizieren wir
die neu entstandene Klassenverteilung und rekalibrieren ein Modell unter sorgfaltiger
Beriicksichtigung der Auswirkungen auf Entscheidungsregeln und Leistungsmafle.

Die durchgefiihrten Experimente zeigen signifikante Fortschritte in mehreren Aspekten.
Unser Empfehlungsprozess zur Abstimmung der Leistungsmetriken auf den tatsachlichen
klinischen Nutzen spiegelt den Konsens eines internationalen Konsortiums von 73 Exper-
ten wider. Die Methodik des Wissenstransfers ermdglicht es dem System, Erfahrungen aus
ahnlichen Datensatzen zu nutzen und iibertrifft dabei bisher vorgeschlagene Alternativen
auf unserem umfangreichen Benchmark. Unser Workflow zur Kompensation von Pra-
valenzverschiebungen verhindert Leistungseinbufien in diversen Bildgebungsverfahren
und beféhigt das System, Modelle automatisch an verdnderte Umgebungsbedingungen
anzupassen — ohne dass neue Annotationen erforderlich sind.

Diese Arbeit stellt die erste umfassende Untersuchung des Lifelong Learning in der
biomedizinischen Bildanalyse mit zehntausenden trainierten und evaluierten Modellen
dar. Durch das Hinzufiigen metakognitiver Schleifen schaffen wir die Grundlage fiir
autonome Lifelong Learning Systeme im Gesundheitswesen, die sich in wechselnden
medizinischen Kontexten kontinuierlich weiterentwickeln konnen.
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INTRODUCTION

Any consistent formal system F within which a certain amount of
elementary arithmetic can be carried out is incomplete; i.e., there are
statements of the language of F which can neither be proved nor disproved
inF.

— Kurt Friedrich Gédel

This chapter first motivates the research on Lifelong Machine Learning embedded in a
historical overview of computer science and Artificial Intelligence (Al) in Sec. 1.1. Next,
Sec. 1.2 derives and presents the three research questions at the core of this thesis. Finally,
an outline of the structure of the thesis is provided in Sec. 1.3 to ease navigation for
interested readers.

1.1 Motivation

The history of Al is essentially a story of increasingly sophisticated loops — a trajectory
that traces back to Godel’s transformative insight into the capacity of formal systems
for self-reference. Just as his ‘First Incompleteness Theorem’ [140] demonstrated that
any sufficiently powerful formal system must necessarily contain statements that refer
to themselves, modern Al systems achieve unprecedented skills precisely through their
ability to represent and reason about their own operations. Hofstadter [170] links the self-
referential capabilities of systems directly to the emergence of cognition in his Pulitzer
Prize awarded book Gédel, Escher, Bach: an Eternal Golden Band: “It is an inherent
property of intelligence that it can jump out of the task which it is performing, and survey
what it has done; it is always looking for, and often finding, patterns.”. The evolution of
Al reflects multiple integrations of such self-analyzing loops, often marking a significant
evolutionary step in system capability.

Universal machines The first mechanical devices that performed computations were
designed for very narrow applications, such as the ancient Greek ‘Antikythera mecha-
nism’ [121] to predict astronomical positions, the ‘Pascaline’ [287] to perform arithmetic
calculations, or tide-prediction machines [385] from the late 19th century. Until then,



1 Introduction

only simple loops in the form of interacting gears were possible. A groundbreaking mile-
stone was set by Alan Turing in 1936 [389]. With mathematical precision, he described a
theoretical computer and deduced the existence of “universal machines’ that could be
programmed to perform any possible computation. While his results demonstrated the
limits of computability', on the other hand he had described a fundamental conceptual
loop: Using the same strategy as Gddel, he enabled machines to refer to themselves.?
The first technical realizations of universal computers soon followed.> A key component,
the ‘von Neumann architecture’ [406], which is still common in modern computers,
implements the self-reference loop of machines more practically: Shared memory for
data and instructions allows a machine to interact with its own code. Although it must
be made clear that none of the theoretical or physical machines invented up to this point
would be considered ‘intelligent’, in part because they lacked the ability to ‘learn’.

Learning machines Based on the artificial neuron [246], the Perceptron [325] emerged
in the 1950s as the first (partially) trainable multilayer Neural Network (NN). This ma-
chine attempted to perform a learning loop, as it back-propagated errors [324], allowing
feedback from observed information on ‘weights’ of the model itself. However, its ca-
pabilities were severely limited because the outputs of its neurons were discrete levels,
and its (single-layer) variant was shown to be incapable of learning even the XOR func-
tion [252]. This limitation may have contributed to the first Al winter and a shift to other
approaches.* Thus, it took several decades to develop [229, 417] and popularize [330] the
now common gradient estimation method of backpropagation. For the first time, a system
could systematically modify its own internal representations based on experience and
the ‘backpropagation loop’. Dealing with a different kind of loop, the class of Recurrent
Neural Network (RNN), became popular around the turn of the millennium [169]. While
a feedforward network by design does not store any presented data®, RNNs process data
over multiple time steps, while each recurrent unit maintains a hidden state. Because of
this memory, the insights from previous time steps can be used to process the current
time step. However, limited computational resources and the lack of large datasets have

'In fact, the set of computable numbers in the interval [0, 1] has measure zero, i. e., it is tiny compared to
the uncountable set of potential problems.

?This is closely related to the idea of self-replicating machines [407]. Indeed, an early result by Kleene,
known as his ‘Second Recursion Theorem’ [202], proves the existence of programs that produce their
code as output for any Turing-complete programming language. The name quine for such programs was
coined by Hofstadter [170].

3Noteworthy, the first conceptual universal machine was designed a whole century earlier, but has never
been fully built [46].

*The field of Al has experienced several (major and minor) ‘hype cycles’. Apparently, the topic tends
to create exaggerated expectations in the public, followed by disappointment and criticism, which
ultimately leads to funding cuts.

*Tt is important to distinguish the learning phase from the inference phase of such ‘classical models’.
Indeed, through backpropagation during the learning phase, information is stored through the weight
updates — but when these are fixed in an inference setting, no information is kept ‘alive’ in the system.
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prevented deeper architectures from reaching their full potential. Shallow NN are limited
in their expressiveness and require feature engineering: The transformation of raw data
into a more effective set of inputs — a time-consuming preprocessing step that requires
human expertise.

Deep Learning In the late 2000s and into the 2010s, the ‘advent of Deep Learning (DL)’,
enabled by Graphics Processing Units (GPUs), fueled by the large ImageNet dataset [93],
and ushered in by AlexNet [210], finally overcomes the feature engineering bottleneck.
Modern NNs do not just process pre-engineered features — they discover their own
representations through multiple layers of transformation, effectively learning how to
represent the raw data in a more powerful way. The following years are characterized by
increasing model depth, advances in available computing hardware, and architectural
optimizations. In parallel, the backpropagation loop is improved upon: machines no
longer necessarily rely on external supervision signals. One way to mitigate the need for
paired training data in Supervised Learning is given by the more general perspective of
Reinforcement Learning [189]. There, the setting is vaguely characterized by an ‘agent’
performing ‘actions’ in an ‘environment’. The environment is repeatedly interpreted,
and a state representation as well as a reward is fed back to the agent. The goal of the
agent is to learn a policy that maximizes the (expected) reward. This learning loop of
the agent is much more interactive and allowed Alpha Zero [354] to master the games
of chess, shogi and go solely through ‘self-play’. (Pre-)training via self-supervision is
another approach that facilitated the successful series of Generative Pre-trained Trans-
former (GPT) models [48] in Natural Language Processing (NLP). This ‘task-independent’
learning technique produced the groundbreaking potential of ‘in-context learning’ [48]
— the ability to learn during inference — and drove the materialization of a new class of
models in the late 2010s: Foundation Model (FM) [37]. The remarkable success of Large
Language Model (LLM)s involves a different looping technique compared to ‘classical
models’: context, queries and previously generated predictions are continuously looped
through the model to generate the next prediction. Thus, the model predictions also
depend on previously generated responses from the very same model. Apparently, ex-
ploiting these advanced loops (along with scaling and other improvements) lead to the
emergence of new capabilities of Al. Self-referential loops — the ability of a system to
represent, reason about, and interact with itself — appear to be more than just another
‘feature’ of intelligent systems. Rather, they may be the fundamental mechanism by
which true intelligence emerges from simpler computational processes. This idea bridges
Godel’s mathematical discoveries, Hofstadter’s philosophical observations about strange
loops [170], and the empirical success of modern Al architectures. When a system can
leverage or improve a loop of self-reference — whether through mathematical self-proof,
conscious self-reflection, or algorithmic self-modification - it transcends its original
limits.
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Figure 1.1: Components of (and loops within) a Lifelong Learning system. Given a task,
the Learner trains a model using backpropagation (inner loop, green I). The Meta Learner
controls the behavior of the Learner and may interact with domain experts, e. g., to design the
reward function for the Learner (outer loop, blue I). Accumulated learning experience, e. g.,
successful training pipelines, are persistently stored in the Knowledge Base, which is accessed
by the Meta Learner (outer loop, blue II). Deployed models, that interact with the environment
can generate additional experience that can be used by the system (outer loop, blue III). Inspired
by Fig. 1.2 from Chen and Liu [60].

Lifelong Learning In 1987, Schmidhuber [340] was the first to introduce methods
that nest such loops — perceiving the very own weights of a NN as part of the inputs
and predicting the updates thereof. The concept of ‘learning to learn’ or alternatively
Meta Learning was born. The idea of Transfer Learning [278] as a fundamental part
for such a Lifelong Learning system roots back to the 1990s.° Compared to the models
available at the time, humans were incredibly efficient at learning new tasks from very
few examples, given that they already had experience in a related task. For example,
learning to play an instrument, given that they can already play another one. Without
studying and eventually enabling such behavior in machines, the goal of general Al

®According to Pan et al. [278] a 1995 workshop at the International Conference on Neural Information
Processing Systems (NeurIPS) [53] played an important role. In the political and social sciences ‘Lifelong
Learning’ refers to the continuous, voluntary, and self-motivated pursuit of learning [114]. We will
separate and formally define the different terms Lifelong Learning, Meta Learning and Transfer Learning
in our sense in Sec. 2.8.



1.1 Motivation

seemed unattainable. In an early definition of ‘learning to learn’ by Thrun et al. [386] it
is informally characterized as follows. Given

1. a family of tasks,
2. training experience for each of these tasks, and
3. afamily of performance measures (e. g., one for each task),

an algorithm is said to be ‘learning to learn’ if its performance on each task improves
with experience and with the number of tasks. The key difference from to regular learning
(which is restricted to one task, hence also called isolated learning), is that the algorithm
must improve not only with experience (e. g., training epochs), but also with the number
of tasks available to it. Somehow the experience must be transferred between tasks and
benefit the individual learning processes. A conceptual representation of a Lifelong
Learning system in given in Fig. 1.1.

Queries A revealing perspective on (self-referential) loops may be provided by queries.
A ‘self-aware’ system, may ask queries of itself, e. g., a universal machine, querying parts of
its “source code’ to perform analysis and afterwards modify it with custom optimizations.
More generally, on a broader view of a Lifelong Learning system, queries can also be
directed to other entities — allowing for interactive engagement of the system with its
environment. In Fig. 1.1 the system can interact with domain experts (blue I), a central
Knowledge Base (blue II), and the deployment environment (blue III). In principle, such a
system must decide what information it is interested in, how it can query the information,
and finally, considering a volatile environment and potential costs of queries, the system
must know when it is beneficial to ask its questions and process the response. Necessarily,
a Lifelong Learning system, in contrast to isolated learning, is in constant exchange with
the environment of the system, because of the ‘stream’ of incoming tasks.” It can observe
the consequences of its output (which is also a continuous stream), interact with other
systems (‘agents’) and be confronted with new instructions (‘tasks’). According to the
‘embodiment hypothesis’ [360], enabling a system to take actions within its environment
and to sense the results is a driver for the emergence of intelligence.

Life cycle Another contrast to isolated learning - including RNNs and Reinforcement
Learning — is that the classic ‘Al lifecycle’ is looped over repeatedly: New tasks arrive,
models are generated, and put into action. According to De Silva et al. [89], the Al
lifecycle can be divided into three phases, which we summarize as follows:

(i) Design: Identification and formulation of the problem. Data preparation, explo-
ration, and further acquisition.

"Compared to the informal definition by Thrun et al. [386] given above, in practice there is a temporal
aspect to the appearance of tasks.
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(ii) Develop: Building and executing a model training pipeline. Benchmarking multi-
ple models.

(iii) Deploy: Risk assessment and post-deployment review. Monitoring and perfor-
mance evaluation.

Except for the execution of the model training pipeline, these steps are primarily driven
by human decisions in isolated learning. An autonomous and holistic Lifelong Learning
system must perform most of these steps by itself and should therefore make informed
decisions in all three phases.

Outlook Looking toward the horizon of Al development, we see multiple threads
converging toward the grand challenge of ‘Lifelong Machine Learning’ [60]. Specifically
Meta Learning [172] - the ability to learn how to learn — could emerge as a foundational
self-referential loop in modern Al Current systems already demonstrate some Meta
Learning capabilities as in-context learning [48], but several critical loops remain to be
resolved to achieve true Lifelong Learning capabilities.

I. A reward-learning loop that deals with the ability to refine learning objectives,
e. g., choose appropriate validation metrics.

II. A pipeline-learning loop that allows the system to evolve its own learning
strategies, e. g., a selection mechanism for neural architectures.

III. An environment-learning loop that feeds back experience from environment
interaction and equip the system to adapt to changes in the surrounding, e. g., when
the system is transferred.

Such ‘metacognitive’ loops would likely empower the system to reason about its
learning strategies and dynamically adjust them based on context and experience, while
actively and repeatedly querying the environment. This vision of a system that can truly
learn throughout its operational lifetime, constantly improving and adapting, marks a
leap up the evolutionary ladder of AL

1.2 Research questions

We want to shift the focus to the biomedical imaging domain and put our vision of a
Lifelong Learning system in the context of the current challenges in this application.
Despite the rapid pace of Al research and the recent breakthroughs in DL, there are only
few success stories that translate these advances into patient care in the clinic [193, 239,
280, 348]. The outstanding challenges to achieving transformational benefits are many:

(i) Alignment of performance metrics with the clinical purpose [193, 348],
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(ii) alack of robustness and generalization primarily due to data sparsity [239, 372],
(iii) on-site infrastructure for data management [239, 280],

)
(iv) a cultural shift that includes continuing education for clinicians [116, 239],
(v) interpretability/explainability of predictions [193, 239],
(vi) and many more.

In the remainder of this section, we will outline the specific research questions of this
thesis and show how the metacognitive loops we motivated in Sec. 1.1 might be suited
to address open challenges (i) and (ii) in particular. We will focus our theoretical and
experimental analysis on a single category of image analysis problems: Image-level
Classification (ImLC). ImLC is highly relevant in the diagnostic decision process on
medical images with a variety of applications [231]. This simplification has several
advantages: First, ImLC is a fundamental problem type in image analysis beyond medical
images that has been extensively studied. This allows us to compare ourselves to a large
corpus of previous research, while providing us with a rich toolbox of existing open
source software to use. Second, the comparatively low effort required to annotate images
for this type of problem ensures sufficient availability and variability of data and use
cases to conduct experiments that test the generalizability of our methods. Third, because
pretraining on ImageNet [93] is particularly useful for this type of problem [176, 243], it
generally allows for faster convergence of models [310], making our experiments feasible
on a larger scale.

Research Question 1 (RQ1)

Neglecting the individual context of a medical application by choosing a performance
measure based on popularity can lead to useless models [242]. Consider, for example, the
most common metric, Accuracy (AC), which simply counts the proportion of correctly
mapped instances of a model. Relying on AC in a medical screening scenario with very
few positive cases, say one out of 100, may lead to an overestimation of model applicability,
since consistently predicting the negative class already achieves 99% AC. Furthermore, it
would neglect the potentially different consequences of type I and type II prediction errors
for individual patients. The general need for better evaluation practices in medical image
analysis has also been highlighted in the literature. Maier-Hein et al. [240] conducted a
survey on evaluation issues in international biomedical competitions, which identified
the selection of performance metrics as the most pressing issue. The need for a systematic
understanding of model evaluation was well summarized in the call by Kelly et al. [193],
who emphasized that performance measures should “capture real clinical applicability
and be understandable to intended users”.

Given a particular biomedical image classification application, which family of per-
formance measures (see Sec. 1.1) best reflects the driving medical need? This question
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is critical in the Design phase of Al. It must be answered before any model can be
examined in isolation or any set of models can be compared during the Develop phase.
Otherwise, no conclusions can be drawn about progress toward the application goals.
From a metacognitive perspective, this corresponds to the sketched reward-learning
loop: Can a Meta Learner improve its evaluation mechanisms to produce models of higher
quality from an application perspective? We strive to integrate the metric selection as
a systematic procedure that can be performed by the Meta Learner interactively with
the knowledge of the application domain experts. For example, we need to answer how
intrinsic properties of the data affect specific performance measures. Or, how interests
from the medical domain can be mapped to (or reflected in) the performance evaluation.
In summary, we ask the following question:

Research Question 1

How can clinical objectives be systematically translated into appropriate AI model
validation metrics?

Research Question 2 (RQ2)

Generalizability is a non-negotiable requirement for model applicability in healthcare,
but in contrast, the strict regulations on personal health data and the high cost of data
annotation only allow model training with sparse data [239]. Incorporating experience
from related datasets is an intuitive approach to cope with the very limited samples
provided by each individual task in such a scenario. Based on the informal definition
of ‘learning to learn’ (see Sec. 1.1), this idea is at the heart of Lifelong Learning. Recall
that knowledge must somehow be transferred between individual tasks. The simplified
case of knowledge flowing from a ‘source task’ to a single ‘target task’ is called Transfer
Learning. Pan et al. [278] postulate the following three main research issues in Transfer
Learning:®

1. What to transfer? — what part of the knowledge can be transferred across tasks.

2. How to transfer? — asks what algorithms need to be developed to transfer the

knowledge.

3. When to transfer? - in which situations is transfer beneficial, and in which ones
may it be harmful (‘negative transfer’).

A concrete example of Transfer Learning is fine-tuning®. For an intuitive explanation

8Note the close relationship between the posing of queries and transfer of knowledge: Every cycle of
questions (including some answers) constitutes knowledge transfer.

°Fine-tuning is indeed the most common variant of Transfer Learning, and often the term “Transfer
Learning’ itself is used as an (imprecise) synonym for fine-tuning or, slightly more generally, the transfer
of learned parameters [158]. A more precise definition of fine-tuning is given in Def. 2.87.
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of this technique, let S be the source task and 7 be the target task. Given the data
distribution of T is ‘sufficiently’ covered by S (when), the learning machine first learns
only on S, where the resulting model parameters (what) are then used as initialization
for the learning on 7 (how).

In the Lifelong Learning scenario with multiple potential source tasks, we are primarily
interested in a quantifiable measure of ‘relatedness’ of tasks to answer the when question
in advance. Furthermore, we are interested in which other parts of the learning pipeline
can be optimized based on experience from other tasks (what)? And we will explore
the additional constraint of actual data availability during transfer, motivated by the
limitations of data sharing in the medical domain (how). Is it possible to share knowledge
in a collaborative environment where network participants are not allowed to share
sensitive data of a task?

The second research question follows the line of thought of the pipeline-learning
loop, which improves the individual learning of tasks by adaptation based on other
pipelines and tasks. It is at the core of the Develop phase of any model and determines
the strategies for training pipeline construction. Overall we formulate our second research
question as follows:

Research Question 2

How to enable effective knowledge transfer across biomedical image analysis
tasks?

Research Question 3 (RQ3)

Lastly, we strive to improve the methodology once a model enters the final phase of
Deployment. Panch et al. [280] noted “the inconvenient truth” about Al in healthcare:
algorithms that excel in research are not executable in clinical practice. They attribute
this in part to the fact that healthcare organizations lack the data infrastructure needed
to (i) adapt algorithms to local populations and practice patterns and (ii) validate them
for biases, especially when patient cohorts may have been inadequately represented
during model training. Any model trained and validated on a particular data distribution
will inherently pick up certain biases of that distribution and will face problems if that
underlying distribution shifts in an application setting [372]. This scenario is commonly
known as dataset shift [261]. In the sense of our envisioned environment-learning
loop, a system that detects and corrects such shifts would be of great value. Unfortunately,
these shifts can be of very different types and causes, with some dataset shifts doomed to
be resolved only with tedious intervention [54]. Prevalence shifts are a specific, frequently
encountered type of dataset shifts that may severely impact a model. By restricting
ourselves to this type of dataset shift we can solve the problem elegantly and in line with
the observed limitations of healthcare organizations’ data infrastructure, as mentioned
by Panch et al. [280]. Finally, we formulate our third research question as follows:

11
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Research Question 3

What mechanisms enable biomedical imaging models to detect and compensate
for prevalence shifts in deployment?

1.3 Outline

This dissertation consists of eight chapters. After the thematic introduction in Chap. 1,
Chap. 2 provides the necessary background information on the medical side, specifically
the translational obstacles the field faces and the imaging datasets we use. It continues
with basic concepts their respective notions for this thesis. This is followed by a detailed
presentation of a variety of existing metrics for validating classification models. Next, an
introduction to selected machine learning techniques used for deep neural networks and
formal definitions of the various learning paradigms we mentioned earlier are given.

In Chap. 3, we present the relevant state of the art in the context of this thesis and
conclude with a discussion of prevailing limitations and open challenges. We summarize
related work for validation practices of predictive models in medical image classifica-
tion, compare existing approaches for the training of deep neural networks in sparse
data settings, and provide an overview of deployment considerations under dataset and
prevalence shifts.

The following three chapters are each dedicated to one of our core research questions
and are identically structured into methodological exploration, experimental results, and
a discussion. Our framework for application-oriented validation of image classification
algorithms is presented in Chap. 4, answering (RQ1). Chap. 5 focuses on our solution to
overcome the learning boundaries of individual datasets and to share learning experience
between collaborators in a potentially data-sensitive environment, answering (RQ2).
Next Chap. 6 elaborates on our insights from deploying classification models under
prevalence shifts, answering (RQ3).

In Chap. 7, we bring the different threads back together to an overall discussion of
the results of this thesis, their limitations and implications in a general context. Finally,
Chap. 8 concludes this work by summarizing our contributions to the research questions
and providing an outlook on potential future directions of Lifelong Learning in healthcare.

Tab. 1.1 shows which chapters of the thesis address which of the three research
questions.

12
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Table 1.1: Outline overview table. Relation between our three research questions, the corre-
sponding thesis chapters, Al lifecycle phase and meta-loop. We phrase each of our concepts
as a knowledge transfer, answering what knowledge can be transferred, how a transfer is
enabled and when it is beneficial. For illustration, we formulate sample queries from the Meta
Learner for each loop.

(RQ1) (RQ2) (RQ3)
Chap. Chap. 4 Chap. 5 Chap. 6
Phase Design Develop Deploy
Loop L. reward II. pipeline III. environment

Knowledge transfer

previous training

formalized application model predictions from

what? hyperparameters &
oals & task properties L deployment
& prop additional data POy
interview domain integrate previously quantify class
how? experts & derive successful settings into  prevalences & post-hoc
proper metrics training adjustments
must be done for each : discrepancy from
when? . only if tasks are related serepancy
new task training prevalence
Query
‘Are some class ‘What pipelines .
. o Have class prevalences
example confusions more worked well for similar : o
, , shifted from training?
severe? tasks?
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Disclosure of Contributions

The research presented in this thesis is the product of interdisciplinary work with
contributions from various team members and collaborators. While this thesis
was written independently by me, it uses the ‘we’ form rather than the T’ form to
reflect the collective efforts of all involved. For the sake of transparency, App. A
provides an overview of my personal contributions to the research questions and
the corresponding publications.
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FUNDAMENTALS

This chapter presents the prerequisites of biomedical imaging and the algorithms used
to analyze it. We start with a primarily medical perspective in Sec. 2.1, which assesses
the main open challenges in biomedical imaging, and a collection of concrete medical
applications for this work in Sec. 2.2. We then switch to a predominantly theoretical
perspective, formalizing the problem in a rigorous manner to describe concepts with
mathematical precision (Sec. 2.3). The following sections describe in detail a multitude
of performance measures that play an important role in this thesis. Specifically, we
introduce counting metrics (Sec. 2.4), multi-threshold metrics (Sec. 2.5), and notions
of model calibration (Sec. 2.6). Next, we introduce the main concepts of Deep Neural
Network (DNN) (Sec. 2.7), today’s dominant class of models used to solve image processing
tasks. Finally, Sec. 2.8 zooms out of the isolated training for single tasks and defines a
variety of paradigms around the idea of knowledge transfer and ‘learning to learn’.

2.1 Translational obstacles in biomedical imaging

We begin this section with a brief summary of the history of biomedical imaging and
then discuss the prevailing translational obstacles for the success of Al in this field.

2.1.1 History of biomedical imaging

The foundations of modern optical imaging were laid in the late 19th century by Ernst
Abbe, who revolutionized microscope design through precision lens manufacturing and
theoretical optics [2], enabling unprecedented clarity and magnification. The history of
biomedical imaging then unfolded with Wilhelm Réntgen’s groundbreaking discovery
of X-rays in 1895 [322], which for the first time allowed physicians to visualize internal
body structures without invasive procedures.

The mid-20th century saw transformative advances. In the 1940s, ultrasound was
first used to image the human body, but it was not until the 1960s that ultrasound
became widely available for medical use. In 1972, the first commercially viable Computed
Tomography (CT) scanner was invented by Godfrey Hounsfield [174]. At the same time,
the conceptual foundations of Magnetic Resonance Imaging (MRI) were laid by Paul C.
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Lauterbur, who developed a mechanism for encoding spatial information into a nuclear
magnetic resonance signal using magnetic field gradients [216].

According to Litjens et al. [231], medical image analysis evolved in three phases. The
field began in the 1970 with rudimentary image processing techniques like edge detection
and shape fitting, which were used to construct rule-based systems for specific analytical
tasks. By the late 1990s, medical image analysis transitioned to supervised learning
methodologies, where systems were no longer entirely human-designed but instead
learned from training data. During this period, computers analyzed feature vectors from
sample data to determine optimal classification boundaries. The third major shift occurred
after the groundbreaking DL success by Krizhevsky et al. [210] in 2012, which triggered
a rapid and comprehensive adoption of DL approaches. Soon after DL permeated every
aspect of the field, fundamentally transforming how medical images are analyzed across
all applications.

In 2016, Geoffrey Hinton made the following comment about radiology and DL at the
‘2016 Machine Learning and Market for Intelligence Conference’ in Toronto: “People
should stop training radiologists now — it’s just completely obvious within 5 years deep
learning is going to do better than radiologists. It might be 10 years, but we’ve got plenty of
radiologists already.”' While it is easy to take a Nobel Laureate’s words out of context
and accuse him of making a false prophecy, the more intriguing question is why his
prediction has not (yet) come true. Given the rapid progress and amazing success of
generative DNNs in the fields of NLP [250] and imaging [81], we want to delve deeper
into the challenges of discriminative models in the medical domain.

Failure stories

While the real-world performance degradation of many Al systems remains undisclosed
for commercial reasons, several notable failures have been documented. Breast cancer
detection in mammography, despite being one of the oldest computer-aided medical
imaging applications (first FDA approval in 1998 [221]), continues to underperform: A
2021 review [120] found that 94% (34/36) of Al systems were outperformed by individual
radiologists, and none matched the accuracy of multiple radiologists’ consensus. Commer-
cial Al-based skin cancer detection via smartphones faces significant bias issues across
different skin tones [86]. Google Health’s diabetic retinopathy detection system trial in
Thailand [25] struggled with poor lighting and image quality. The system rejected 21% of
submitted images and showed reduced accuracy for those it did accept. In addition, cloud-
based processing caused delays that reduced daily patient throughput. These anecdotal
examples can be placed into a meta-perspective where evidence is given that the majority
of research findings are false [179] and presented results are not reproducible [23].

1A recording of his words can be found at https://www.youtube.com/watch?v=2HMPRXstSvQ.
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2.1 Translational obstacles in biomedical imaging

Proving health benefits

Medical imaging models will be involved in life-threatening decision-making processes,
which requires clinicians to be trained with the Al system and have a basic understanding
of how Al arrives at diagnostic or prognostic predictions in order to trust and validate the
model reasoning [70]. Since model predictions may trigger a cascade of follow-up treat-
ment, affect long-term well-being, or become critical to survival, they require approval
of safety and efficacy. Randomized controlled trials, the gold standard in medicine, are
challenging: the need to integrate with existing systems and meet stringent regulatory
standards pose significant implementation challenges. On top of that, assessing the long-
term impact of Al interventions on patient health outcomes requires extended periods of
observation and follow-up, which can be resource-intensive and time-consuming — while
the rapid evolution of the technology increases the risk of rapid obsolescence. These
hurdles explain the relatively small number of peer-reviewed randomized controlled
trials [193].

While these considerations may partially explain the ‘gap’ in Al success between the
medical and non-medical domains, within the medical domain these obstacles have ex-
isted for medical devices for years, allowing the industry to build up expertise in handling
such translational efforts. Implementing regulatory compliance and organizing control
trials should therefore not be a roadblock even if it slows down translation. Obviously,
there is a deeper divergence between research claiming ‘superhuman’ performance and
actual patient benefit. One of these divisive factors is, that healthcare Al research occurs
predominantly outside of actual clinical settings, limiting its real-world applicability [196].
Academic measures of success, such as publications and citations, differ from clinical
impact measures, which focus on real-world adoption rates and patient outcomes. True
success in medical Al is determined by the number of hospitals implementing the model
and the quantifiable improvements in patient care, as opposed to the predictive perfor-
mance of an algorithm [399]. This mismatch of incentives and measures of success leads
to the prevalence of ‘wrong and useless models’ [242].

Data scarcity

While massive medical image databases exist in hospital Picture Archiving and Communi-
cation System (PACS) systems, the main challenge is not the existence of the data, but the
data preparation process. For example, systems store many reports as free text, requiring
sophisticated text mining to extract structured labels [231]. Willemink et al. [423] list
eight steps involved in handling medical image data: Ethical approval, access, querying,
de-identification, transfer, quality control, structuring, and labeling. Overall, the data
curation process is costly and time-consuming, limiting access to large, diverse training
datasets with expert annotations. As a result, medical imaging datasets lack behind
the ones from natural image recognition in computer vision by two to three orders of
magnitude [399]. Two other factors come into play, that complicate the use of typical
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medical imaging datasets compared to general computer vision. First, the label noise
introduced by uncertainty about a ground truth reference is much higher, and second, the
classes tend to be much more imbalanced [231]. Compared to a clinician’s perspective,
typical datasets also contain a very small window of information about patients: medical
history and the combination of multiple modalities adds a lot of valuable context to a
given image that current systems are unable to incorporate.

Distribution shifts

Finally, there is a fundamental assumption in the translation of research results into
clinical practice, which can be found in the precise mathematical formulations of error
estimation: data should be i.i.d,, i.e., independent and identically distributed. But the data
used during model development rarely match the local population and/or the local practice
patterns [280]. In fact, to ensure the i.i.d. condition for model validation, the common
practice in Machine Learning (ML) studies is to sample training and test data from the
same data pool [399], which itself may not be representative. In part, this situation can
be attributed to the disparate and heterogeneous data silos that result in few samples and
thus sparse coverage of a ‘general data distribution’. Castro et al. [54] advocate taking the
causal relationships into account when making data selection and annotation decisions.
Such relationships can be visualized using causal diagrams, i. e., directed acyclic graphs
which map the cause-effect relationships of the variables involved [130]. A generic causal
diagram for medical imaging is shown in Fig. 2.1%.

The causal diagram shows four standard prediction tasks based on an image of a specific
patient: Two of them are causal predictions, which follow the causal flow and require
predicting image annotations (e. g., outlines of brain lesions in an MRI) or the referral
(e. g., whether to perform a tumor resection or conduct chemotherapy alone for colorectal
cancer). Contrary anticausal predictions must go against the causal direction and predict
patient characteristics (e. g., gender or age from an X-ray) or diagnosis (e. g., categorization
of cervical lesions in colposcopy based on biopsy). Changes in the environment, such as
moving an Al system to a new hospital, can have downstream effects on the prediction
tasks and are called distribution shifts®>. A different population around the hospital or
a given specialization that leads to selective referral of certain cases leads to different
patient characteristics. In the causal case this scenario is called a population shift, while in
the anticausal case it is called prevalence shift. Another example would be the difference
in image acquisition by a newly introduced imaging device, leading to an acquisition shift.
Each of these changes violates the assumption of identical data distribution and, if not
being taken care of, reduces the performance of a deployed Al model [54].

Precisely the given diagram is a selection diagram [291], that includes the special indicator variables for
the environment and sample selection.
3Formal definitions of the sketched distribution shifts are given in Sec. 6.1.1.
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Environment

Patient , Acquisition Annotation
characteristics ® conditions conditions
Disease ‘o' ’=o Annotation

° observed variable

o) unobserved variable
— causal link
-3 causal prediction

©) —3 anticausal prediction
Selection

Diagnosis Referral

Figure 2.1: General causal diagram for medical imaging prediction tasks. External factors
from the environment (top) can affect all entities in medical imaging: patient, image and
annotation. Four typical prediction tasks are marked as colored arrows, starting from the
medical image (model input) and pointing towards the entity to be predicted. The color
indicates whether these tasks follow the causal direction (red) or not (blue). Ultimately a
subset of samples is selected (bottom) as part of development datasets, which also may cause
distribution shifts to ultimately observed deployment samples. Adapted from Castro et al. [54].
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2.2 Datasets

We continue by giving an overview on the datasets that are used in this thesis. A concise
overview is also provided in Tab. 2.1. We note the high variability in task size (min:170,
q1:1572, q3:40 673, max:122 138), number of classes (min:2, q1:2, q3:5, max:257), Imbalance
Ratio (IR) (min:1, q1:1.34, q3:14.27, max:171.33, see Def. 2.4) and imaging modalities.

Sonography The dataset of breast ultrasound im-
ages [95] contains 780 ultrasound images collected from
600 female patients (aged 25-75) at Baheya Hospital in
Cairo, Egypt during 2018. The dataset is designed to
aid in breast cancer detection and classification, with
images categorized into three groups: normal breast tis-
sue, benign tumors, and malignant tumors, each image
having dimensions of approximately 500 x 500 pixels.

X-ray The MURA dataset [311] contains 40 561 radio-
graphic images taken from multiple angles, representing
Figure 2.2: Sample image from 14863 different medical studies of 12 173 patients. The

MURA [311]. images show seven different types of upper body x-rays:

elbow, finger, forearm, hand, humerus, shoulder, and

wrist. Between 2001 and 2012, board-certified radiolo-
gists at Stanford Hospital reviewed these images during routine diagnostic work and
classified each study as either normal or showing abnormalities. The Zhang Chest X-
Ray Images dataset [195] consists of chest X-ray images used for pneumonia diagnosis,
collected from pediatric patients (ages 1-5) at the Guangzhou Women and Children’s
Medical Center. These anterior-posterior chest X-rays were gathered during routine
clinical care and published with the goal of helping diagnose pneumonia — a serious
lung infection that remains the leading cause of death from infectious disease in children
under 5 years old worldwide. Parts of this dataset were also used in the Kaggle COVID
X-Ray Dataset [164] for Covid-19 classification.

The CheXpert dataset [181] is a large collection of chest radiographs used for auto-
mated chest X-ray interpretation. It consists of 224 316 chest radiographs from 65 240
patients, including both frontal and lateral views. The dataset was collected from Stanford
Hospital between October 2002 and July 2017. Each radiograph is labeled for the presence
of 14 common chest radiographic observations. In this thesis we will treat this dataset
as 13 separate tasks (ignoring the ‘No Finding’ observation). Since some of the attached
labels are indicated as “uncertain’ or ‘unmentioned’ we will ignore corresponding samples
for the respective tasks.

The Shenzen Hospital CXR dataset [185] is a collection of 662 high-resolution chest
X-rays (approximately 3000 x 3000 pixels) captured at Shenzhen No.3 People’s Hospital
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in China during September 2012, using a Philips DR Digital Diagnost system. The dataset
is nearly evenly split between normal cases (326) and cases showing tuberculosis (336),
including both adult and pediatric frontal chest X-rays. Tuberculosis is a potentially deadly
bacterial infection primarily affecting the lungs, caused by Mycobacterium tuberculosis.
Chest X-rays are crucial for tuberculosis screening as they can reveal characteristic signs
like upper lobe infiltrates, lung cavities, miliary patterns (tiny spots throughout the lungs),
and pleural effusions (fluid around the lungs).

MRI Brain tumor detection and classification through
medical imaging is crucial for effective treatment plan-
ning and patient outcomes, with MRI being the gold
standard due to its excellent soft-tissue contrast and lack
of radiation exposure. The Brain Tumor Type Classi-
fication dataset [61] is based on T1-weighted contrast-
enhanced MRI images, collected from 233 patients at
two Chinese hospitals between 2005 and 2010 and con-
tains 3064 image slices showing three types of brain
tumors: meningiomas (708 slices), gliomas (1426 slices),
and pituitary tumors (930 slices). Complementary the
Kaggle Brain Tumor Classification dataset [36] is 2 Fjgure 2.3: Sample image from
derivative from the data of the BRATS2015 challenge CheXpert [181].

and comprises 3762 brain MRIL. The images are catego-

rized into two classes with present or no present brain tumor.

CT The COVID-CT-Dataset [431] is a public medi-
cal imaging collection comprising 746 CT scans, with
349 images showing COVID-19 findings from 216 pa-
tients and 397 images without COVID-19 findings. The
COVID-positive images were meticulously extracted
from 760 COVID-19-related preprints published on
medRxiv and bioRxiv between January 19th and March
25th 2020, using software to preserve image quality
and extract associated clinical information. The neg-
ative cases were gathered from multiple medical imag-
ing databases including MedPix, LUNA (lung cancer
dataset), Radiopaedia, and PubMed Central, ensuring a

Figure 2.4: Sample image from
Cholec80 [390]. diverse representation of non-COVID lung CT scans.

Laparoscopy The Cholec80 dataset [390] is a com-
prehensive collection of laparoscopic cholecystectomy surgery videos created by the
CAMMA (Computational Analysis and Modeling of Medical Activities) research group in
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collaboration with the University Hospital of Strasbourg, IHU Strasbourg, and IRCAD. It
comprises 80 high-quality videos of gallbladder laparoscopic surgeries performed by 13
surgeons. While the original publication comprised annotations for surgical phases and
as well as the instruments present in the scene, multiple additional annotations have been
released on top (e. g., surgical action recognition, critical view of safety, Semantic Segmen-
tation (SemsS), smoke detection). Because of its size and the diversity in annotations, the
Cholec80 dataset has become a popular benchmark for research in computer-assisted in-
terventions. We will leverage the original labels for the presence of 7 surgical instruments
at one frame per second in the way of 7 binary image based tasks.

The LapGyn4 dataset [222] is a comprehensive collec-
tion of laparoscopic gynecological surgery images, de-
signed to support research in automated surgical video
analysis and divided into four specialized subsets: (i)
‘Surgical Actions’ (30 000+ images): Documents gen-
eral surgical activities and instrument usage during
procedures, (ii) ‘Anatomical Structures’ (2700 images):
Shows clear views of various pelvic organs, particu-
larly useful for endometriosis treatment documentation,
(iii) ‘Specific Actions on Anatomy’ (1000+ images): Fo-
cuses on particular surgical techniques (like suturing)
performed on specific organs (uterus, ovary, vagina),

Figure 2.5: Sample image from
and (iv) ‘Instrument Count’ (21 000+ images): Contains LapGyn4 [222].

scenes showing varying numbers of visible surgical in-
struments (zero to three), useful for surgical phase identification. Some images of the
instrument count dataset are taken from Cholec80.

Fundus photography Fundus photography is a spe-
cialized medical imaging technique that captures de-
tailed photographs of the interior surface of the eye,
including the retina, optic disc, macula, and posterior
pole. These images are crucial for documenting eye
conditions, tracking disease progression, and aiding in
the diagnosis of various eye disorders such as diabetic
retinopathy, glaucoma, and age-related macular degen-
eration. The DeepDRiD (Deep Diabetic Retinopathy
Image Dataset) [232] is a comprehensive collection of
retinal images used for diabetic retinopathy research
Figure 2.6: Sample image from and machine learning applications. It is made up of
DeepDRiD [232]. 2000 regular fundus images from 500 patients and has
annotations for diabetic retinopathy grading and image

quality. We leverage five tasks from DeepDRiD: The binary task of overall image quality,
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the 5-class problem of grading diabetic retinopathy, another 5-class problem of image
clarity, yet another 5-class problem of the field definition and the 6-class problem of image
artifact detection. The APTOS2019 dataset [191] was created for a Kaggle competition to
solve the same 5-class diabetic retinopathy grading problem and discussed at the 4th Asia
Pacific Tele-Ophthalmology Society (APTOS) Symposium. We also incorporate another
cataract classification dataset from Kaggle [55] that comprises about 600 images and
distinguishes four categories: (i) normal (ii) cataract (iii) glaucoma (iv) retina disease.

Gastrointestinal endoscopy The AIDA-E Barrett’s esophagus [13] (Analysis of
Images to Detect Abnormalities in Endoscopy) dataset was collected at two Italian cancer
institutes (IEO Milan and IOV Padova) during routine endoscopic surveillance of Barrett’s
Esophagus (BE) patients. The dataset contains 262 high-quality confocal images from 32
patients across 81 biopsy sites, captured using a Pentax confocal laser endoscope that
enables real-time cellular imaging (*virtual histology”) during endoscopy procedures.
It was part of a challenge on Barrett’s Esophagus Diagnosis, a precancerous condition
where normal esophageal tissue is replaced by intestinal-type tissue with goblet cells.
While traditional endoscopy with random biopsies has limited accuracy in detecting early
cancer development, these confocal images were captured using fluorescein dye and have
high resolution. Each image in the dataset is classified into one of three categories based
on histological findings: (i) gastric metaplasia, (ii) proper Barrett’s esophagus/intestinal
metaplasia, or (iii) neoplasia.

The Nerthus dataset [299] contains 5525 annotated
frames from 21 colonoscopy videos, each showing differ-
ent levels of bowel cleanliness as defined by the Boston
Bowel Preparation Scale (BBPS). The dataset was created
at Beerum hospital in Norway to help develop automated
systems for assessing bowel preparation quality, as this
is crucial for successful colonoscopies but currently re-
lies on subjective doctor assessments, with the goal of
standardizing evaluation criteria and improving health-
care resource allocation.

The Hyperkvasir dataset [38] contains 10 662 gas-
trointestinal endoscopy images collected during routine = Figyre 2.7: Sample image from
examinations at the same Norwegian hospital between Hyperkvasir [38].

2008 and 2016. The dataset evolved from an initial col-

lection of 4000 images across 8 classes (called 'Kvasir’), was later doubled to 8000 images,
and finally expanded to its current size covering 23 classes organized into four main
categories: (i) ‘Anatomical Landmarks’ — Notable features in the upper and lower GI tract
that help doctors navigate and confirm complete examination coverage, (ii) ‘Mucosal
View Quality’ — Images showing different levels of mucosal visibility, classified using
the Boston Bowel Preparation Scale (BBPS), (iii) ‘Pathological Findings’ — Documented
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abnormalities and disease-related changes in the intestinal wall mucosa, categorized ac-
cording to World Endoscopy Organization standards, and (iv) “Therapeutic Interventions’
- Images showing various treatment procedures like polyp removal, stenosis dilation,
and bleeding ulcer treatment.

The Kvasir-Capsule dataset [358] consists of 47 238
images collected through video capsule endoscopy, a
technique where patients swallow a small capsule con-
taining a camera and other electronics that records
footage as it travels through their digestive system. The
classes distribute across (i) seen anatomy, (ii)content of
the bowel lumen, and (iii) the aspect of the mucosa and
mucosal lesions (pathological findings). We removed 4
of the classes due to their very small size and split the
dataset into three tasks according to the label clusters.

Figure 2.8: Sample image from Laryngoscopy The Laryngeal Cancerous Tissues

Kvasir-Capsule [358]. dataset [255] comprises 1320 tissue samples taken from

laryngeal regions, including both healthy tissue and

tissue showing early signs of cancer. These samples,

each measuring 100 x 100 pixels, were carefully selected from narrow-band laryngoscopic

examinations of 33 patients who were later diagnosed with laryngeal spinocellular

carcinoma through histopathological testing. The dataset is evenly divided into four

categories, with 330 samples in each: (i) Healthy tissue, (ii) tissue showing hypertrophic

blood vessels, (iii) tissue with leukoplakia and (iv) tissue displaying intrapapillary capillary
loops.

The NBI-InfFrames dataset [256] was developed to help researchers in surgical data
science identify and classify the quality of endoscopic video frames. It contains 720
frames that were manually selected and annotated from narrow-band laryngoscopic
videos. These videos came from 18 different patients who were subsequently diagnosed
with laryngeal spinocellular carcinoma through histopathological testing. The dataset
is equally distributed across four quality categories, with 180 frames in each: (i) ‘Infor-
mative’ — clear, usable frames, (ii) ‘Blurred’ — frames with motion blur or poor focus,
(iii) ‘Saliva/Specular’ - frames obscured by saliva or containing light reflections, and (iv)
‘Underexposed’ — frames that are too dark.

Ophthalmic microscopy Cataract surgery is a common medical intervention that
involves removing the eye’s natural lens that has become cloudy (the cataract) and
replacing it with an artificial intraocular lens. The surgery is typically performed under
local anesthesia on an outpatient basis, takes about 30 minutes to complete, and has a high
success rate in restoring vision clarity and improving quality of life for patients affected
by cataracts. The CatRelComp dataset [127] was created to help train Al systems in
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distinguishing between active surgical moments and idle periods during cataract surgery.
The dataset contains 22 000 annotated video frames drawn from 22 cataract surgery videos
recorded at Klinikum Klagenfurt in Austria (2017-2018), where each video contributed
1000 frames through uniform sampling evenly split between idle and action frames.

Dermatoscopy In the field of medical imaging, der-
matoscopy has emerged as a crucial non-invasive diag-
nostic technique that enhances the visualization of skin
lesions through specialized illumination and magnifica-
tion. Several significant datasets have been developed to
advance research and clinical applications in this field.
Among these, the SKLIN2 [110] dataset provides 376
light fields across eight categories of skin lesions, offer-
ing a broad spectrum of conditions from melanoma to
psoriasis. The MEDNODE [128] dataset, though smaller
with 170 images, focuses specifically on melanoma and
naevus cases, drawing from the University Medical Cen- Figyre 2.9: Sample image from
ter Groningen’s extensive dermatology archives. The CatRelComp [127].
Derm7pt [192] dataset stands out for its fine-grained

classification approach, while the PH2 [247] dataset offers 200 high-quality dermoscopic
images captured under standardized conditions at Hospital Pedro Hispano in Portugal,
complete with detailed medical annotations and dermoscopic criteria assessment. The
ISIC20 [328] dataset represents the most comprehensive collection, featuring images from
over 2000 patients across multiple international institutions, including Hospital Clinic de
Barcelona and Memorial Sloan Kettering Cancer Center. This dataset, which played a
central role in the SIIM-ISIC Melanoma Classification Challenge, provides histopatholog-
ically verified diagnoses for malignant cases and expert-confirmed benign cases, making
it particularly valuable for research and machine learning applications in dermatological
diagnosis.

Non-medical datasets We will also work with some non-medical datasets from general
computer vision that shall be mentioned qickly. MNIST [219] and its more modern
extension EMNIST [73] are large collection of handwritten digits respectively letters.
The two corresponding tasks are to categorize single handwritten digits respectively
letters. SVHN [268] is a collection of digits from house numbers recorded for Google
Street View that also strives to predict digits from those images. CIFAR-10 and CIFAR-
100 [209] are two datasets of natural images comprising 10 respectively 100 classes of
objects. Those images are like the previous ones of rather small resolution (28 x 28 x 1 for
MNIST and 32 = 32 x 3 for SVHN and CIFAR). Severly larger resolutions and number of
classes are within the Caltech101 [112] and its extension the Caltech256 [149] datasets
of natural objects that have been collected through Google Images. ImageNet [93]
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marked a milestone in dataset scale, with the standard ImageNet-1k variant comprising
1000 classes derived from the WordNet database [249] and about 1.3 million training
samples. Stanford Dogs [198] is a curated subset of the larger ImageNet-21k, focussing
on categorizing 120 dog species. Finally, ibean [214] is a small scale dataset to predict
diseases from images of bean plant leaves.

Table 2.1: Task overview. The experiments of this thesis cover a wide range of task sizes,
number of classes, Imbalance Ratio (IR) (Def. 2.4), and imaging modalities.

# # -
task name ID IR imaging domain refer
samples classes ence(s)
Nerthus To1 5525 4 5.40 colonoscopy [299]
HyperKvasir
anatomical-  T02 4104 6 11211 ngrslt;:cf [38]
landmarks Py
HyperKvasir
. tro &
pathological-  T03 2642 12 17133 gastro [38]
FisBirgs colonoscopy
HyperKvasir
quality-of- T04 1925 3 8.76 colonoscopy [38]
mucosal-views
HyperKvasir
therapeutic- TO05 1991 2 1.01 colonoscopy [38]
interventions
LapGyn4
anatomical T06 2728 5 8.42 laparoscopy [222]
structures
LapGyn4
AP yne TO7 30682 8  10.90 laparoscopy [222]
surgical actions
LapGyn4
instrument T08 21424 4 1.12 laparoscopy [222]
count
LapGyn4 [222
anatomical T09 4782 4 2.95 laparoscopy 39 0]’
actions
Cholec80
oee Ti0 89910 2 1.22 laparoscopy [390]

grasper presence

Continued on next page
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Table 2.1: Task overview. The experiments of this thesis cover a wide range of task sizes,
number of classes, Imbalance Ratio (IR) (Def. 2.4), and imaging modalities.

(Continued)
# # fer-
task name ID IR imaging domain reter
samples classes ence(s)
holec80 bipol
Cholec80 bipolar T11 89910 2 22.52 laparoscopy [390]
presence
Cholec80 hook
01ecoT hoo T12 89910 2 1.32 laparoscopy [390]
presence
Cholec80
scissors T13 89910 2 55.16 laparoscopy [390]
presence
hol li
Cholec80 clipper T14 89910 2 30.11 laparoscopy [390]
presence
Cholec80
irrigator T15 89910 2 22.39 laparoscopy [390]
presence
Cholec80
specimenbag T16 89910 2 15.74 laparoscopy [390]
presence
. [93,
Stanford dogs T17 20429 119 1.70 natural images 198]
SVHN T18 73 257 10 2.98 natural images [268]
Caltech101 T19 8677 101 25.81 natural images [112]
Caltech256 T20 30 607 257 10.34 natural images [149]
CIFAR10 T21 50 000 10 1.00 natural images [209]
CIFAR100 T22 50 000 100 1.00 natural images [209]
SKLIN2 T23 280 8 19.40 dermatoscopy [110]
derm7pt T24 616 5 13.69 dermatoscopy [192]
MNIST T25 60000 10 1.24 handwritings [219]
EMNIST T26 112800 47 1.00 handwritings [73]
NBI-InfFrames T27 720 4 1.00 laryngoscopy [256]
Laryngeal T28 1320 4 1.00 laryngoscopy [255]

cancerous tissue

Continued on next page
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Table 2.1: Task overview. The experiments of this thesis cover a wide range of task sizes,
number of classes, Imbalance Ratio (IR) (Def. 2.4), and imaging modalities.

(Continued)
# # fer-
task name ID IR imaging domain reret
samples classes ence(s)
CheXpert
consolidation T29 42 880 2 1.90 X-ray [181]
CheXpert T30 8838 2 2.16 X-ray [181]
pneumonia
CheXpert
atelectasis T31 34704 2 25.13 X-ray [181]
CheXpert T32 75789 2 2.90 X-ray [181]
pneumothorax
CheXpert
T 121 2 2.4 X- 181
pleural effusion 53 °83 5 ray [181]
CheXpert
T34 39 2 111 X- 181
pleural other 3 58 > ray [181]
Cloeien: T35 11552 2 3.60 X-ray [181]
fracture
CheXper’F T36 122138 2 18.90 X-ray [181]
support devices
CheXpert edema  T37 72972 2 2.52 X-ray [181]
CheXpert
enlarged cardio-  T38 32436 2 2.00 X-ray [181]
mediastinum
CheXpert T39 38116 2 2.43 X-ray [181]
cardiomegaly
CheXpertlung 10 115180 2 16.00 X-ray [181]
opacity
CheXpertlung 1), 10456 2 7.23 X-ray [181]
lesion
Zhang Chest ) 5)s9 2 2.88 X-ray [195]

X-Ray Images

Continued on next page
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Table 2.1: Task overview. The experiments of this thesis cover a wide range of task sizes,
number of classes, Imbalance Ratio (IR) (Def. 2.4), and imaging modalities.

(Continued)
# # . . . refer-
task name imaging domain
samples classes ence(s)
Shenzhen
Hospital CXR T43 662 2 1.03 X-ray [185]
Set
kaggle COVID
X-Ray dataset T44 3091 2 1.38 X-ray [164]
MURA wrist ~ T45 9752 2 1.45 X-ray [311]
MURA shoulder  T46 8379 2 1.01 X-ray [311]
MURA humerus  T47 1272 2 1.12 X-ray [311]
MURA hand T48 5543 2 2.74 X-ray [311]
MURA forearm  T49 1825 2 1.76 X-ray [311]
MURA finger T50 5106 2 1.59 X-ray [311]
MURA elbow T51 4931 2 1.46 X-ray [311]
ibean T52 1167 3 1.02 natural images [214]
CatRelComp  T53 18000 2 1.00 ophthalmic [127]
microscopy
AIDA-E Barrett’s Ts4 262 3 = 73 confo.cal laser [13]
esophagus endomicroscopy
Dataset of breast
ultrasound T55 780 3 3.29 sonography [95]
images
kaggle cataract Ts6 601 4 3.00 fundus [55]
dataset photography
kaggle Brain = 10, 47, 2 1.24 MRI [36]
Tumor dataset
brain tumor type o0 50, 3 2.01 MRI [61]
classification
COVID-CT- T59 746 2 1.14 CT [431]
Dataset
MED-NODE T60 170 2 1.43 dermatoscopy [128]

Continued on next page
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Table 2.1: Task overview. The experiments of this thesis cover a wide range of task sizes,
number of classes, Imbalance Ratio (IR) (Def. 2.4), and imaging modalities.

(Continued)
task name ID * * IR imaging domain refer-
samples classes ence(s)
PH2 Té61 200 3 2.00 dermatoscopy [247]
ISIC20 To62 32701 2 55.28 dermatoscopy 3[;;j
DeepDRiD dr T3 1900 5 750 fundus (232]
level photography
DeepDRID T64 1200 2 1.08 fundus [232]
quality photography
DeepDRID Té5 1200 5 1486 TS [232]
clarity photography
DeepDRiD field  T66 1200 5 114.43 fundus [232]
photography
DeepDRID T67 1200 6  16.19 TS [232]
artifact photography
APTOS 2019 fundus
Blindness T68 3662 5 9.35 hotoeranh [191]
Detection photography
Kvasir-Capsule T69 5718 2 2.74  capsule endoscopy  [358]
anatomy
Kvasir-Capsule
T70 38 466 4 76.99  capsule endoscopy  [358]

content

Kvasir-Capsule

riTallogies T71 37156 5 67.86  capsule endoscopy  [358]

2.3 Basic entities in biomedical image classification

Biomedical image classification aims to map medical images to probability distributions
across predetermined categories of biological or medical significance. These categories
may represent pathologies, anatomical structures, cellular phenotypes, tissue types, func-
tional states, or other clinically relevant distinctions. In this section, we establish a formal
framework and notation for addressing this fundamental task. We begin with the core
mechanics - the ‘inner loop’ of a Lifelong Learning system (see Fig. 2.10) - maintaining
a general formulation that accommodates diverse approaches. This foundation allows
us to later specify concrete model implementations in Sec. 2.7 before expanding our
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Figure 2.10: Inner learning loop. Anchoring of this section in the overall Lifelong Learning
system (see Fig. 1.1). Given a task, the Learner trains a model using backpropagation — the
‘inner loop’ — marked in red.

perspective to explore metacognitive concepts in Sec. 2.8. We first define the essential
components of biomedical image classification.

2.3.1 Images and tasks

Definition 2.1. An image 7 is an element of R"***¢, with h,w, ¢ € N named
height, width and number of channels. The set of all images is referred to as

X = U RhX:EXC.

h,w,ceN

The nature of h, w and c can differ substantially between imaging devices, their settings
and the exact procedure. For example, hyperspectral images [234] may have from a
handful to several hundred channels that correspond to different wavelengths [71]. In
3D medical imaging such as MRI or CT the channels correspond to the third spatial
dimension. X-ray imaging produces 2D images with a collapsed ¢ = 1. Whole-slide
images from digital pathology usually have high resolutions along ~ and w reaching
several thousand, while the famous ImageNet [93] dataset consists of natural RGB images
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with dimensions 224 x 224 x 3.

Definition 2.2. A task 7 is a finite set of tuples (x, y), comprising each one image
x € X and a label” y € N. The two projections X7 := {z € X|Jy € N : (x,y) €
T}and Yy :={y € N|3z € X : (z,y) € T} are called the images and labels of 7
respectively.

?As explained in Sec. 1.2, we will only focus on task category of Image-level Classification (ImLC)
within this thesis. Some other task types comprise Semantic Segmentation (SemS), Object
Detection (ObD), or Instance Segmentation (InS).

The cardinality of 7, denoted |7, is also called the size (or equivalently the number
of samples) of 7. The cardinality of Y7, denoted |Y7/|, is also called the number of
classes of 7. Without loss of generality we can assume that the set Y7 of all labels in
T is an initial segment of N, i.e., {1,2,3,...,C} with C' := |Y7|. If C' = 2 the task is
called binary, in case C' > 2 it is called multiclass.* It is important to keep in mind,
that the samples of a given task only show a small excerpt of the underlying problem.
For some of the more theoretical considerations it will be thus helpful to model tasks as
realizations of overarching data distributions.

Definition 2.3. Let 7 be a task with C classes. Then we associate with 7 a
probability space (€2, F,P), on which we have |T| iid. random variable pairs
{(X3,Y)) bicyr with (X, Y;) € X x {1, ..., C'} having the same joint distribution
pr(X,Y). The elements {(z;,y;) }i<7| of T are realizations of {(X;,Y;)}i<7.
The two marginal distributions p7(X) and p7(Y) are called the image distribu-
tion and the class distribution.

Definition 2.4. Given a task 7 and some label k£ € N we call
Pr(k) == [{(z,y) € Tly =k} - IT|™

the prevalence of class k in 7. The fraction IRy := maxy Pr(k)/ min; Pr(k) is
called the Imbalance Ratio (IR) of 7.

If 7 is clear from context we may drop the index and simply write P (k) instead of
Pr(k). In case IR7 = 1 the task is called balanced, otherwise imbalanced.

*The case |Y7| = 0 implies 7 is the empty set. In case |Y7| = 1 the task may be called ‘trivial’. Both
cases are of no further interest in this thesis.
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Proposition 2.5. Let 7 be a task with C classes, then

> P@)=1.

i<C

Proof.

Y P = Ky eTly=k} -7

i<C i<C

=[TI7" Y _H(w.y) € Tly =k}

i<C
=TI {(z,y) € T}
=1 ]

Corollary 2.6. Let T be a balanced task with C' classes, then P (k) = C~! for
all k < C.

Proof. Since T is balanced, 1 = IRy = maxy, Pr(k)/ min;, P7(k), or equivalently
max Pr(k) = mkin Pr(k).

Thus, the prevalences for all classes must be equal and by Prop. 2.5, they sum to 1, which
concludes the corollary. [

2.3.2 Models and their outputs

Definition 2.7. Let 7 be a task with C' classes. A model ¢ for 7 is an algorithm
that computes a mapping ¢ : X — RC. The class of all models for 7 is denoted as
7. With Im(yp) C R we denote the image of  under T, i. e., {po(x;)|(x;, y;) €
T}

J

This definition clearly requires some explanation. For one, we require any model
© to ‘accept’ any image x € X. From the perspective of the model purpose this is to
generalize across imaging specifics of 7. More technically this is usually realized with
some preprocessing, that we interpret as part of the model computations’. Clearly, common
preprocessing pipelines do not accept all kinds of images and may throw exceptions.
Such exceptions may also be caused by models that exceed hardware limitations or

A good argument in favor of this perspective is that during model inference usually preprocessing must
also be performed. We will introduce preprocessing formally in Def. 2.83.
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computations that exceed a given budget. In general, we will treat all those cases as
undefined (or invalid) output. How to treat such cases is discussed as part of Chap. 4.

The next unusual choice is R” as model output space. The most common perspectives
for classification tasks are either to return a single class y € Y7 (a categorical model) or
a C-dimensional probability vector from the simplex Ac_1 := {p € [0,1]°| >, pr. = 1}
(a probabilistic model). In practice though many models, and specifically NN, return
primarily what is called logits®: a C-dimensional real-valued vector without restrictions.
The standard approach to ‘transform’ logits to probabilities is to apply the following
function [33]:

Definition 2.8. The softmax functiono : R® — Aq_; forC € N,C > 1is given
by:

o(v); == —Cvi (2.1)

Zj:l ev

Making the distinction between ‘raw’ model logits and the more interpretable softmax-
transformed will be important later on (see Sec. 4.1, Sec. 6.1). Note that our definition
of a model does not exclude the possibility to output class probabilities directly, neither
is the softmax function o the sole option of transforming a generic output to class
probabilities. We will regularly refer to a model ¢ that computes class-probabilities
(i.e., ¢ : X — Ac_1), which may be interpreted as a softmax post-processed NN but is
not restricted to these specifics.

Afterwards, the probabilities might be processed further to achieve a single class
decision:

Definition 2.9. A decision rule p for C' € N, C' > 1 classes, is a mapping
p:Ac_1 — {1,...,C}. Two important decision rules are:

(i) the argmax operator, which is given by

argmax(p) := min{x € {1,...,C}Vk € {1,....C} : pr. < p.}

(ii) the threshold (also cutoff) operator p,, which for C =2 and 7 € [0, 1] is

given by
1 ,ifpy >71
p-(p) = { '

2, else.

®Unfortunately ‘logit’ is an overloaded term. Originally the term was introduced by Berkson [29] in
1944 for the inverse of the ‘logistic function’ and an abbreviation for “logistic unit”. The purpose of the
function was to map probabilities (0, 1) to (—oo, +00) and perform linear regression in this transformed
domain before transferring the result back to probabilities. In DL people started calling the layer that
feeds into the softmax the logit layer and later the values that feed into softmax the logits.
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probabilistic model
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Figure 2.11: Flow of model outputs. We distinguish three kinds of models (see Def. 2.7):
categorical models already compute decisions on images, probabilistic models provide class
probabilities for all classes of a task and finally models that produce logits (such as most Neural
Networks (NNs)). Via transformation (e. g., softmax (see Def. 2.8)) and decision rule (see Def. 2.9)
it is for all those models possible to derive a confusion matrix (see Def. 2.11).

The different kinds of model outputs (logits, class-probabilities and categorical deci-
sions) allow for different interpretations and reflect different needs that models may be
asked for from individual applications (see Sec. 4.1). On the other hand, intervening
in and modifying the post-processing pipeline by adjusting the decision rule or other
transformations of model logits offers solutions to shifts in data distribution (see Sec. 6.1).

2.3.3 Performance assessment

Model assessment constitutes a critical step in the development and validation pipeline,
requiring robust methodologies to quantify predictive performance and reliability.

Definition 2.10. A performance measure p : &+ — R for task 7 assigns
any model ¢ for T a scalar value. If larger (respectively smaller) values of y are
perceived as better performance we call i positively (respectively negatively)
oriented.

Such performance measures are commonly also named as ‘metrics’; though they are
not related to any of the properties of a metric space. Two things are important to note
here: First, we do not require x to necessarily depend on a prediction of some model
©, i. e., inference runtime in seconds, energy consumption during training in kWh, and
number of learnable parameters are all valid performance measures. Though p may very
much evaluate ¢ on 7, compute predictions ¢ (z) for images x in X7, optionally apply
further transformations like the softmax (or even a decision rule), and finally compare
the result with the corresponding label y of x.

The second important detail is that such evaluation usually requires images not previ-
ously shown to ¢ to avoid biased evaluation, also known as data leakage. Typically, a
task is partitioned into multiple subsets, e. g., Tirain, Tval> Trest that are used for different
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purposes. We will provide more details about this in Sec. 2.7. For now, it suffices to note
that our definition does not break apart as long as any inspected partition of 7 contains
all classes. Because then any model ¢ for 7T is also a model for any such partition and
vice versa, i. e., they all map to R for the same C' € N7

Note that if necessary via a transformation, e. g., the softmax function o (see Def. 2.8),
it is always possible to derive class probabilities from logits. Similarly, by leveraging a
decision rule p, e. g., the argmax operator (see Def. 2.9) class probabilities can always
be turned into categorical decisions (see Fig. 2.11). Hence, metrics that are based on
categorical decisions made by ¢ are the most widely applicable class of performance
measures. All of them are calculated based on the following entity.

Definition 2.11. For a task 7 with C' classes and a model ¢ for 7 that computes
categorical decisions, i.e., ¢ : X — {1,...,C'}, we define the C' x C confusion
matrix

aix Q2 - a1

Ag1 Q22 -+ Q20
A=

ac1 ac2 -+ acco

via a;; == |{(z,y) € Tly =1, o(x) = j}.

The entry a;; may be interpreted as the number of images in 7 that belong to class
¢ and have been classified as class j by the model ¢. Note that A is an integer matrix.
Under mild assumptions we can conclude some simple properties of confusion matrices.

g N

Proposition 2.12. Let A be the confusion matrix for task 7 with C' classes and
the categorical model ¢ for 7. If we assume that ¢ succeeds” in computation for

all images of task 7 then the following hold:

(i) For any k& < C,

> ag; =P(k) - [T].

j<C

> > ay =T

i<Cj<C

(i) Moreover,

"This assumption can be controlled easily in a research setup, but the deployment of an algorithm to
an ‘unknown’ environment can lead to violations. Usually ‘disappearing’ classes do less harm than
‘additional’ ones (see Sec. 6.1). There are approaches to cope with these, e. g., selective classification may
refuse to predict samples [125]. We refer to the literature for the details.
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2.3 Basic entities in biomedical image classification

“Precisely it needs to succeed under the constraints given by the performance measure p. Such
constraints may be, for example, hardware limitations and/or a maximum computation time per
image.

Proof. To prove (i) let k < C, then

Y =D {(wy) € Tly =k, p(x) = 73

j<C j<C
={(z,y) € Tly =k, o(x) <C}|-1
={(z,y) e Tly=k}-|T|"" - |T]

=ZP(k) - |T].

From this (i7) follows straightforward

DD ay & X PG ITI EIT) s

i<Cj<C i<C

Definition 2.13. Let A be a confusion matrix for a task with C classes. For a class

k < C we define
(i) TPy := ag; the True Positive (TP) for class k,
(i) TNy := Eingoy#k’#k a;; the True Negative (TN) for class £,
(iii) FPy := Zigo,z‘ 1, @i the False Positive (FP) for class £,

(iv) ENy := >, ¢ iz, ax; the False Negative (FN) for class k.

Proposition 2.14. Let A be a confusion matrix for a task 7 with C' classes and
k < C, then under the same assumption as Proposition 2.12, it holds that

TP), + TN}, + FP, + FN, = |T.

Proof. Follows immediately from Proposition 2.12 (ii). ]

Definition 2.15. Given a confusion matrix A for task 7 with C classes and the
categorical model ¢ for 7 and k < C, we define the 2 X 2 one-versus-the-rest

confusion matrix
A0 . [TP N
~ |FP, TN,
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This definition requires some elaboration. The special case of binary classification
may arguably be perceived as canonical within the space of classification problems.
Therefore and for its simplicity historically it has been studied the most, which lead to
the development and dissemination of performance measures that are tailored to this
specific use case. The natural extension of such performance measures . to the multiclass
case is through the aggregation® of all C' evaluations of ;1 on the ‘binarized’ problem 7 *)
and model ©*) for k < C. The core idea is to merge all classes Y7 \ {k}. Formally, we
use by, : N — {1, 2} with

1 Jifn==k
h = ’
() {2 , else
to define 7% := {(z, h(y)) : (x,y) € T} and p*) (x) := hy(p(x)). Now the (regular)
confusion matrix A for task 7*) and model ¢*) equals exactly A, If C' = 2 from the
beginning, then A = AW, but A® represents the ‘flipped’ matrix

A® — {@2 Clzl}

Q12 A1l

as a result from changing the ‘order’ of classes.

For the rest of this chapter we will assume 7 to be a task with C' classes and ¢ : X —
R® a model for 7. Recall from the discussion following Def. 2.7, that a model output
may be interpreted as either logits, class-probabilities or categorical decisions. In the
following sections we present a variety of performance measures 1 : &+ — R, adjacent
with insights on their properties and relations. Unless stated otherwise we will assume
that ¢ succeeds on all images of 7 (see Prop. 2.12). Special cases of ‘failed’ computations
will be treated separately in Chap. 4.

2.4 Counting metrics

Counting metrics rely on categorical decisions made by ¢ and by the consideration
prepending Def. 2.11 we can generally assume to be given a confusion matrix A by any
model ¢.

81n case of the arithmetic mean, the resulting performance measures are often called macro average, since
averaging happens on the categorical level in contrast to mirco average, an approach that puts equal
weight to all samples.
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2.4 Counting metrics

2.4.1 The Sensitivity perspective

Definition 2.16. Let &£ < C' be a class, then

(i) the True Positive Rate (TPR) (also Sensitivity, Recall, Hit rate) of class

k is defined as
TP,

TPR, = —F~
T TP, + FN,’

(ii) the False Negative Rate (FNR) (also Miss rate, Type II error) of class k
is defined as

FN
FNR, = — "
TP, + FN,
(iii) the False Positive Rate (FPR) (also Type I error) of class k is defined as

FP;,

FPR, — — "
"7 FP, + TN’

(iv) the True Negative Rate (TNR) (also Specificity, Selectivity) of class £ is
defined as

TNR, —
T FP, + TN,

In terms of popularity these metrics are used frequently in ML literature, with different
domains establishing preferences for different names. We can conclude immediately
that the value range of them is [0, 1], and while TPR;, and TNR, are positively oriented
(see Def. 2.10), their ‘counterparts’ FPR; and FNR;, are negatively oriented. Based on
the considerations following Definition 2.15 we allow the notations TPR := TPR;,
FNR := FNRy, FPR := FPR;, TNR := TNR, as long as C' = 2. For later reference, we
formalize the following relationships:

Remark 2.17. Let k£ < C be a class, then

()
TPR; = 1 — FNR,

(i)
FPR; = 1 — TNR;
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Definition 2.18. The Accuracy (AC) of a categorical model is defined as

AC = |T’_1 : Zau

i<C

Conversely, the Error rate is defined as

ER = |7d|_1 : Z Q5.

1,j<Ci#]

Remark 2.19. Obviously AC =1 — ER.

AC is likely the most widespread classification metric used in biomedical imaging (see
Maier-Hein et al. [240]°) and beyond (e. g., as primary metric for famous computer vision
datasets like ImageNet [93] and MNIST [219]). The reason for this is presumably the
simplicity of the definition, that coveys the message ‘How likely is the model correct?’.
Once more the value ranges of AC and Error Rate (ER) are [0, 1] and while AC is positively
oriented, the ER is negatively oriented. We provide some more relations with previously
introduced performance measures.

( )

Proposition 2.20. (i)
AC=|T|"- > TP,
i<C
(ii)
AC =) P(i)- TPR,.

i<C

\. J

Proof. (i) follows immediately from the definition of TPy, (see Def. 2.13), while (ii) can
be shown via

| | ) TP,
D_PE)TPRZ D TIT ) as g5

i<C i<C j<C
SR X e
<o Qi + D i< Qi
=|T|7'- > TP,
i<C
9 Ac 0

°See also the results of our literature search conducted in Sec. 6.2.1.
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2.4 Counting metrics

Prop. 2.20 gives an alternative interpretation of AC as prevalence weighted sum of
class-wise Sensitivities. If the weights of the TPRs are chosen to be equal instead, a
derivative version of AC emerges.

Definition 2.21. The Balanced Accuracy (BA) [45] of a categorical model is
defined as
BA :=(C'. Z TPR,.

i<C

It follows immediately that BA is positively oriented and takes values in the range
[0, 1]. BA and AC coincide for balanced tasks.

[ Proposition 2.22. For balanced 7 BA and AC are equal. ]
Proof.
ACZ N "P(i) - TPR; 2 ) "C~' - TPR; £ BA 0
i<C i<C

After Prop. 2.20 and Def. 2.21 a natural question would be if further ‘weighted’ Sensi-
tivities could be of particular interest. Indeed, with the following definition we introduce
a metric of such kind that will be of particular importance in Chap. 6.

Definition 2.23. Let {¢;;}; j<c be a C'x C real-valued matrix, called the confusion
costs (also confusion weights). Then the Expected Cost (EC) [113] is defined as

EC := [T| " Z Cij i -

1,j<C

The special case of ¢;; = 0Vi < C' and ¢;; = 1 Vi, j < C, ¢ # is called 0-1-costs.

The values c¢;;, referred to as costs for confusions, can be leveraged to penalize certain
class confusions more severe than others. A simple example for this are classes that have
an ordinal structure, e. g., some severity classes for disease progress. In such a scenario
penalizing confusions that are further off the reference class may be justified. Without
restrictions on ¢;; the value range of EC covers whole R, but usually ¢;; > 0 and hence
EC falls within [0, c0). Expected Cost is negatively oriented.

Proposition 2.24. If {¢;; }; j<c are the 0-1-costs, then EC = ER.
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Proof.
EC = |7d|_1 . Z Cijai]‘
i,j<C
= ‘T|_1 ) Z Qij
1, <C\i#j
= ER ]

Moreover, we can express EC in terms of prevalences and (a generalized form of)
Sensitivities'’(since we cannot treat false predictions equally).

e \

Proposition 2.25. Fori,j < C'let R;; := a;;/ stc a;i, be the fraction of all
samples with reference class i that have been predicted as j. Then

i<C j<cC

Proof.

SN PO iRy =Y ePli) et

i<C j<C ij<C 2 k<c i

i,j<C
-1
=T~ E CijQij
1,j<C
=EC [

As the value of EC depends on the chosen costs and prevalences, it can be difficult
to interpret. As a solution to this limitation, it might be usefule to use the normalized
version of EC.

Definition 2.26. Let {c;;}; j<c be some confusion costs, then the naive classi-
fier is a model that (independently of the input image x) always predicts class

argmin; » 3, ¢i; P ().

The naive classifier may be interpreted as the solution to the question “Which class
should be predicted to minimize the costs, while no information on the sample may be
used?” With only ever predicting a single class it tries to minimize the EC. Entries in the
confusion matrix off the j-th column are all zero. This simplest of all models is now used
to normalize the EC.

'9The fractions R;; introduced by Prop. 2.25 generalize Sensitivity in the sense, that TPR; = R;;.
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2.4 Counting metrics

Definition 2.27. Let {c;; }; j<c be some confusion costs, then the Normalized
Expected Cost (NEC) [113] is given by

EC

NEC := — —.
min; 3, o ¢i;P(4)

While NEC is still negatively oriented and may take any real value, the interesting
property about it is that values above one indicate an EC value that is worse than the
naive classifier — a highly undesirable situation.

Another measure that allows the weighting of individual confusions was given by
Cohen. For ease of notation and because it will be useful later we introduce a notation of
predictive bias.

Definition 2.28. Let A be a confusion matrix and k£ < C, then the frequency of
predicting k is defined as By (k) := |{(x,y) € T|p(z) = k}|-|T|~" and called the
model bias.

Similar to the case of prevalences, we will drop the task index for easier readability as
long as the task is clear from context.

Proposition 2.29. For any k < C,
D _ajk = B(k) - |T.
j<C

Also

> B(k)=1.
<C

Proof. The proof closely follows the proof of Prop. 2.12. Let £ < C, then

> ap =D {(wy) € Tly = j,o(x) = k}|

i< j<C
=NH(z,y) € Tly < C.p(x) = k}| - 1
= H{(z,y) € Tlo(x) =k} - |77 [T]
= Bk) - |T].

The second equation follows as

S BER)ESTI Y an =171 Y ap T T =1 0

k<C k<C j<C kj<C
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With the model bias as tool, we can now define Cohen’s alternative performance
measure for unequal confusion costs.

Definition 2.30. Let {c¢;;}; j<c be some confusion costs. Then the Weighted
Cohen’s Kappa (WCK) [76] is defined as

77t Zz’,jgc CijQij

zi,jgc Cz‘jP(i)B(ﬁ .

The case of 0-1-costs is simply called Cohen’s Kappa (CK) [75].¢

WCK =1 —

“Noteworthy the special case of a binary task and 0-1-costs was already introduced by Myrick
Haskell Doolittle in 1888 and became known as the ‘Heidke skill score’ in Meteorology [163].

The core idea of WCK is closely related to the NEC - in fact the EC can be identified in
the numerator of the WCK formula. The main difference is the assumed baseline classifier
in the denominator. While the naive classifier in NEC is based solely on the prevalences
and costs, the WCK perspective takes additionally the model bias into consideration.
One of the reasons for this is that it was designed as an ‘inter-rater agreement’ — not
as a performance measure for discriminative models. The original perspective expects
independent categorical decisions from two raters on the same data — a setting that
is inherently symmetric (as long as we assume symmetric costs). Hence, what is now
deemed prevalences would be the bias of one rater, while the model bias would be
the bias of the second rater. The denominator now measures the (weighted) expected
agreement by chance - a sensible baseline ‘classifier’ given the original perspective. But
the discriminative and non-symmetric nature of our setting reveals the limitations of
WCK. Although the theoretical value range of WCK has a lower bound of minus one and
for 0-1-costs an upper bound of one, the values remain hard to interpret [92]. One of the
more common WCK use cases have been ordinal categories, which explicitly requires
some sort of confusion costs. The assignment of quadratically growing weights has
though shown to produce ‘paradoxical results’ [414]. WCK is positively oriented. We
prove the coincidence of WCK with other metrics under certain conditions.

Proposition 2.31. Let 7 be balanced and {c;; }; j<¢ the 0-1-costs, then

C-BA-1

WCK =
C-1
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Proof.
WCK 21 — T 2 <o Cijt
>ij<c CiiP(0)B(4)
T ER
>ij<c CiiP(0)B(4)
219 1—AC
Zi,jgc c;; C~1B(j)
222 _ 1-BA
C 3 <z BU)
L 1-BA
O~ (C =1 X0 BO)
229 _ 1 —-BA
~ T (C-)
C
=1-5— (1-BA)
_C—-1-C-(1-BA)
a C—1
C-BA-1
-1 =

We turn our attention to some metrics that are popular as a criterion for the perfor-
mance of diagnostic tests in evidence-based medicine, but rather unused as performance
measures of ML models.

Definition 2.32. For £ < (' we define the Positive Likelihood Ratio (LR+) [376]

as
TPRy

1 —TNR;
Similarly, the Negative Likelihood Ratio (LR-) is defined as

LR—l—k =

1 — TPRy,

LR—; =
k TNR,

The value ranges of both likelihood ratios can be derived from the value ranges of
Sensitivity and Specificity, which are [0, 1]. In both cases the division allows for arbitrary
large values within [0, 00). While LR+, is positively oriented, LR-, is negatively oriented.
The positive (respectively negative) likelihood ratio expresses how many times more
likely the positive (respectively negative) prediction of class k is for images of class k
(TPR) versus than for those of the other classes combined (FPR). A value of 1 corresponds
to a non-beneficial model. For diagnostic applications a value LR+ > 10 (respectively
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LR— < 0.1) is considered ‘good’ [356].
We will now define the last Sensitivity-focused counting metric of this thesis.

Definition 2.33. The Youden’s Index (J) [293, 434] (also (Bookmaker) Infor-
mdness [303]) of a categorical model and class k£ < C'is defined as

J. = TPR;, + TNR;, — 1.

Informdness is positively oriented and its value range is [—1, 1], as both TPR and TNR
have value ranges within [0, 1].!* For the binary case we can link J := J; with another
metric.'?

g 1

Proposition 2.34. Let C' = 2, then

BA:H_l'
2

Equivalently J = 2BA — 1.

. J

Proof.

TPR; + TPR; ;5 TPR; + INR; 235 J + 1
2 a 2 2

BAZ C7'-) TPR, =
i<C
2.4.2 The predictive value perspective

After these variations on metrics from the Sensitivity perspective, we will next present
the perspective of ‘predictive values’.

Definition 2.35. Let &£ < C' be a class, then

(i) the Positive Predictive Value (PPV) (also Precision) of class k is defined
as

TP,
PPV, = — "
TPy + FPy,
(ii) the False Omission Rate (FOR) of class k is defined as

FNj

FOR, = — &
" TN, + FN,’

""Be aware that for a binary task, or a single class, one may invert the value of J by inverting the (ovr)
predictions. Hence a model with J = —1 may be turned into an optimal classifier.

2There is also a multiclass variant for Bookmaker Informdness as defined by Powers [304], which we will
not introduce in this thesis.
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(iii) the False Discovery Rate (FDR) of class k is defined as

FDR, (= — 1Tk
¥ TP,  FP,’

(iv) the Negative Predictive Value (NPV) of class k is defined as

NPV, = Nk
¥ TN, + FN,.’

With respect to popularity these metrics are — except for PPV - used less frequently in
ML literature. The value ranges are all [0, 1], and while PPV}, and NPV, are positively
oriented (see Def. 2.10), once more their ‘counterparts’ FOR; and FDR;, are negatively
oriented. Similar to the notation allowed following Def. 2.16 we introduce the notations
PPV := PPV, FOR := FOR,, FDR := FDR;, NPV := NPV, as long as C' = 2. For
reference, we formalize the following relationships:

r

Remark 2.36. Let £ < C be a class, then

(i)
PPV, = 1 — FDR,

(ii)
FOR, = 1 — NPV,

Instead of ‘row-wise’ relativization as done in TPR, the predictive values relativize
the confusion matrix entries ‘column-wise’. This perspective may be perceived as a
‘dual’ formulation of the performance assessment. Several analogies to previously shown
identities exists for this perspective.

Definition 2.37. Let A be a confusion matrix and k£ < C, then the transposed

matrix A”, with elements aiTj := a;; will be called the dual confusion matrix.

For the ease of readability we will denote E” for any entity that is computed on A”
with the same formula as E is computed on A.

Proposition 2.38. For any k < C, the prevalence P (k) (bias B(k)) of class k in A
equals the bias BT (k) (prevalence P (k)) of class k in A”, i.e., they are switched
under transposition.
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Proof. This follows straightforward

P TS a2 (T Yy 2 BT (k)

j<c j<C

B(k) = PT(k) can be shown the same way. O

It is worth to spare some words on these results. Apparently prevalences P and model
bias B behave as dual entities, but interestingly while prevalences P are an entity that is
solely defined by the task 7 (see Def. 2.4) the model bias B is dependent on the model ¢
(see Def. 2.28) and the task 7. This insight will be important in Chap. 4 as well as Chap. 6.
The next proposition gives some more dual relations.

7~

Proposition 2.39. Let A be a confusion matrix and k£ < C, then

(i) The true positives TP, (resp. true negatives TNy) of A are equal to the true
positives TPL (resp. true negatives TN?) of A, i.e., they are preserved
under transposition.

(ii) The false positives FPj, (resp. false negatives FNj) of A are equal to the
false negatives FN7. (resp. false positives FPT) of A”, i.e., they are switched
under transposition.

(iii) The Sensitivity TPRy, (resp. Specificity TNR) of A are equal to the Precision
PPV? (resp. negative predictive value NPV?) of A”.

(iv) The false negative rate FNR, (resp. false positive rate FPRy) of A are equal
to the false discovery rate FDRY (resp. false omission rate FOR?) of A”.

\

Proof. (i) and (ii) follow straight from Def. 2.13 and Def. 2.37. (iii) and (iv) can be
shown straightforward using these results, as exemplary demonstrated via

2.35

TPR, 2 TP, /(TP;, + FN,) &’ TP /(TP] + FP]) ¥ PPV]. 0

As the trace of a matrix is invariant under transposition, this proposition allows us to
formulate an alternative characterization of AC.

Corollary 2.40.
AC = B(i) - PPV;.

1<C
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Proof.

ACE T ay

i<C
237 | -1 T
= |T| : Qy;

i<C
2.18

= AC”
=Y " PT(i) - TPR]
i<C
PETN " B(i) - PPV, O

i<C

In contrast to AC many other metrics are not invariant under their dual computation.
One example is the following.

Definition 2.41. The Markedness (MK) [303] of a categorical model and class
k < C'is defined as
MK, = PPV, + NPV, — 1.

For C' = 2 we let MK := MK;.

J

This definition might remind of Infordmness (Def. 2.33) and indeed, the relationship
between the two is exactly the dual perspective.

[ Proposition 2.42. Let k < C, then MK} = J; (and JI = MK,,). ]

Proof. Follows immediately from Prop. 2.39. [

We are not aware of widespread usage of ‘duals’ from BA™, EC, LR+ or LR- in the
literature.

2.4.3 Combined perspectives

We will proceed with some metrics that combine the Sensitivity and Predictive value
perspective (as WCK already does). For this we need to balance the two perspectives,
which can be done via the following mean.

3Note that Average Precision as defined in Def. 2.56, is not the dual of Balanced Accuracy, i.e., it is not the
average of class-wise Precision.
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Definition 2.43. Let n € N and z4, .., z,, be real numbers. The weighted har-
monic mean of 1, .., z,, with positive real valued weights w;, .., w, is defined

as
H(z1, .., Tp|wy, .., wy) = Zwi . (Z wiz; )

This immediately allows to define a very common metric in a slightly generalized form.

Definition 2.44. Let £ < C and § > 0 be a real, then the F-beta [396] score for
class k is given by
F.(B) :== H(TPR;, PPV,|3% 1).

On a side note for interested readers the naming of the ‘F-measure’ seems to be caused
by an accident and has no deeper meaning [336]. Further the squaring of 3 can also be
explained in the context as ‘weighting’ TPR /3 times as important as PPV, but we leave
the derivation to be looked up in the literature (see Sasaki [336]). Much more common is
the following formulation of the F-beta measure.

Proposition 2.45. Let £ < (' and 3 > 0 be a real, then we can express the F-beta

score as
(1+6%) - TPy

(1+5?%) - TPy + 5% - FNj + FP,

Fy(8) =

Note we can immediately conclude that the F-beta score has a value range of [0, 1] as
the numerator can not grow larger than the denominator. It also becomes obvious that
F-beta is positively oriented.
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Proof. Assume k and [ as necessary by the proposition. Then

Fi(6) =

2.43

2.16

Corollary 2.46. Let k < C, then the F1-Score (F1) is given by

H(TPR,, PPV, |3? 1)
1

(1+ 5%

1+ 32

B32-PPV,+TPR,,

PPV, -TPR

(1+ %) - PPVy - TPR;,

32 .PPV,, + TPR,

2 TP TP,
(1 + 5 ) ) TPkJrI%Pk ) TPkJr;‘Nk
/62 . TPy TPk

TPy +FP;, TP +FNg

2 TP, TP
(1+5%)- (TPk'f‘FPkl;'(TIka’_FNk)

2 TPy (TP +FNy )+ TPy (TP, +FP;. )
(TP +FPy) (TP +FNy)

(14 5°)-TP;

(14 B8%) - TPy, + 32 - FNj, + FP;

B 2. TP,
~ 2.TP; + FN, + FP,’

' 32.TPR;' + 1- PPV,

The corollary follows immediately from Prop. 2.45. The special case of 5 = 1 is one of
the most frequent metrics in medical imaging and the formula reveals also its self-duality
(see Prop. 2.39). Closely related, though more common in the task of ObD (opposed to

ImLC) is the following metric.

JACk =

Definition 2.47. Let £k < (), then the Jaccard Index (JAC) [183] (also
Intersection over Union (IOU)?) for class & is given by

TP,
TP;, + FN,;, + FP;,

IBM report in 1957.

4According to the wikipedia entry of the Jaccard index it has been independently formulated by
geologist Grove Karl Gilbert in 1884, botanist Paul Jaccard in 1912 and by T.T. Tanimoto in an

The alternative name of IOU originates in a (set) theoretic perspective of measuring the
overlap of two sets. Obviously JAC is positively oriented and has a value range of [0, 1].
It is rather uncommon as a performance measure of classification (one of the reasons is
the following proposition) but more often used as a tool in InS. We can express the close
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relation of JAC and F1 as follows:

Proposition 2.48. Let £ < C, then
2.JAC,
= —— %
1+ JAC,
Vice versa
JAC, — F1,
K9 F1,
Proof. Let k < C, then
2TP
2-JAC, 247 TPk+FN:+FPk _ 2TPy, 246 pq
1+JAC,  IBuAFN4FP, - TP, 9TP; + FN;, + FP; b

TP, +FN,+FP;, | TPr+FN,+FP,

From here we deduce
F1, = % < F1;, + F1;, - JAC, = 2 - JAC,,
1+ JAC,
& F1, = 2-JAC, — F1, - JAC,
< F1;, = JAC,(2 — F1;)
F1,

2F1

=JAC,

[]

While the F1 only considers TPR and PPV for one class, the next metric considers all

classes at once.

(also Phi coefficient [436]) of a categorical model is defined as
AC — EKCP() ) B()

\/1 z<CP \/1_ z<C ) |

MCC =

oldest and most established one.

Definition 2.49. The Matthews Correlation Coefficient (MCC) [146, 244]°

“Matthews original formulation was for the binary case only. There exist multiple different
generalizations to the multiclass case [303, 369]. We chose the one from Gorodkin [146] as the

The MCC is another rather comprehensive performance measure (compare with WCK
or EC) and has a value range of [—1, 1] (though the actual minimum possible value may
vary). MCC is positively oriented and a value of zero is interpreted as the performance
of ‘random guessing’. Although not always easy to interpret in general [450], we want to
derive some intuition on MCC and prove our claim it considers TPRy, and PPV}, for all

classes k. For this we start with a small Lemma.
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Lemma 2.50. Letz € R, then 2z - (1 —z) =1 — 2% — (1 — 2)%

Proof.
-2 —(1—-2)=1-2-1+22—-2"=20—-22" =22 (1 — ) O

The Lemma will help us proof the more common and original binary formulation of
MCC.

Proposition 2.51. Let C' = 2, then

TP - TN — FP - FN

MCC = :
/(TP + FP)(TP + FN)(IN + FP)(TN + FN)

\/1 z<C \/1 z<C

ez |T| (TP+TN 73(1)-3(1)—73(2)-5(2)

V1= - 2. /T=B(1)? - (1-B(1))?
250 [T” |T|*1 : (TP+TN) P(l)-B(l) (2) B(2)
TP 2P) - (1 - ) - /2B(1) B(1))

_|T]- (TP +1TN) —P(1) - ITI B(1) - ITI () |7]-B(2)-|T]
2-/P()-[T1-P2)-[TI-/BQ)-[T]-B(2) - [T]

214 (TP+FP+FN+TN) (TP + TN) — (TP + EN) - (TP + FP) — (FP + TN) - (EN + TN)
2-+/(TP + FP)(TP + FN)(IN + FP) (TN + FN)

B 2.TP-TN — 2-FP-FN

~ 2. /(TP + FP)(TP + FN)(IN + FP)(IN + FN)

B TP - TN — FP - FN

/(TP + FP)(TP + FN)(IN + FP)(IN + FN)’

O

This identity now allows to understand MCC as a summary over J (which itself is a

summary over all TPRs in the binary case) and MK (which is for the same case a summary
over all PPVs).

Corollary 2.52. Let C' = 2, then

IMCC| = /- MK.
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Figure 2.12: Behavior of counting metrics for Ex. 2.53. a) Class prevalences, b) Accuracy (AC),
Balanced Accuracy (BA), Matthews Correlation Coefficient (MCC), Expected Cost (EC) (with
0-1-costs) and Weighted Cohen’s Kappa (WCK) (with 0-1-costs) and ¢) Youden’s Index (J), True
Positive Rate (TPR), True Negative Rate (TNR), Positive Likelihood Ratio (LR+) and Negative
Likelihood Ratio (LR-) for the family of confusion matrices given in Ex. 2.53. The latter per-class
metrics are depicted for class 2.

Proof. To ease readability we will prove the equivalent squared equation

J - MK “*2* (TPR + INR — 1) - (PPV + NPV — 1)

“1.2% (TPR — FPR) - (PPV — FOR)
216235, TP FP TP FN
= GpreNn mrN) TPrEP  EN+IN
TP(FP + TN) — FP(TP + FN) TP(FN + TN) — FN(TP + FP)
(TP + FN)(FP+TN) (TP + FP)(FN + TN)
TP-IN—FP-FN  TP-TN —FN-FP
(TP + FN)(FP + TN) (TP + FP)(FN + TN)
(TP - TN — FP - FN)?
(TP + FN)(FP + TN)(TP + FP)(FN + TN)

2 Mmec? u

We want to close our introduction of counting metrics with some examples, that shed
light on the different behavior of counting metrics.

Example 2.53. Fix C' = 3 and a series of tasks {7, } ,cn, that evaluated by a model
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¢ produces the given family of confusion matrices

T

0 1
Alx) = |1 = 2*
x 22 3

A(z) is symmetric, i. e., self-dual. We depict the behavior of prevalences, multiclass
metrics and per-class counting metrics (for class 2) on this family in Fig. 2.12.

Although the Sensitivity of class 1 remains zero independently of = the overall AC of
A(z) surpasses 80% at x = 9. On the other hand BA approaches 1/3, meanwhile the vast
majority of predictions are correct with increasing x. Because of the symmetry in A(x)
we know MK, = J, (Prop. 2.42), PPV, = TPR, = F1, (Prop. 2.39, Def. 2.44).

2.5 Curves and multi-threshold metrics

After the many counting metrics presented before, we turn our attention to performance
measures /4 that do not require the model ¢ to conduct categorical decisions. We will
assume the model output as class probabilities though, e. g., via the softmax o. Recall
that A® is the one-versus-the-rest confusion matrix merging all classes except for class
k < C (Def. 2.15). Also recall the threshold operator p,, which for C = 2 and 7 € [0, 1]
yields a binary decision. We slightly extend these concept to the multiclass case:

Definition 2.54. Let ¢ be a model that produces probabilities, 7 € [0, 1], 7 be a
task with C classes and & < C, then A™7) shall be the confusion matrix for model
pr © hy o ¢ and binary task 7*). Here the probability merging helper function
hi - [0,1]€ > [0,1]? is defined as

hi(p) := (pr, 1 — pr).-

Given a sequence of thresholds 71, ..., 7, this allows to compute a sequence of perfor-
mances fi1, ..., fin, where ju; is a performance measure for task 7*) on model p,, o hy, o ©,
hence may access A*”. A natural choice for 7, ..., 7, is the (strictly monotonous in-
creasing) sorted list of probabilities {¢(z)x : (z,y) € T} - if necessary prepended by
zero and followed by 1. For very large 7 subsampling from these thresholds might be
appropriate.

Definition 2.55. The Receiver Operating Characteristic (ROC) [156] for class
k < C'is a sequence of pairs {(a;, b;) }i<n, where for a sequence of appropriately
chosen thresholds 74, ..., 7,, the elements are given by a; := FPR,b; := TPR on
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Figure 2.13: Receiver Operating Characteristic (ROC) visualization. Left: Histogram of
model predictions, generated by a skewed beta distribution for 10 000 samples and a prevalence
of 0.6. Center: ROC curve for class 1, the dashed line represents a naive classifier. Right:
Confusion matrix at the specific threshold 7, which is also indicated in the other two subplots.

A™™)_The area under the curve on the interval [0, 1] that results as linear interpo-
lation between consecutive points is called Area under the Receiver Operating
Characteristic Curve (AUROC) (also Area under the curve (AUC)).

The ROC curve originated during World War II for radar signal detection and distin-
guishing enemy objects from noise [241]. It was later adopted in a variety of domains and
nowadays is a common metric in image classification [240]. The AUROC has an elegant
interpretation as the probability of any randomly picked sample from class k to have
a higher predicted probability as a randomly picked sample from any other class [111].
ROC curves also nicely visualize the J of a threshold as the vertical line between the curve
and the diagonal representing an uninformed classifier [339]. The value range of AUROC
is [0, 1], it is positively oriented and a value of 0.5 may be interpreted as random guessing.
The connections between predicted class probabilities, the ROC curve and corresponding
confusion matrices at thresholds is visualized in Fig. 2.13.

Definition 2.56. The Precision-Recall (PR) Curve [228] for class £ < (' is
a sequence of pairs {(a;, b;) };<n, where for a sequence of appropriately chosen
thresholds 74, ..., 7, the elements are given by a; := TPR, b; := PPV on A
The summarization of this curve is achieved as a weighted mean of precisions at
each threshold: AP := ), _._\(a; — a;_1) - b; and called the Average Precision
(AP).
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Prediction histogram PR curve A(k=1—=0.55)
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Figure 2.14: Precision-Recall (PR) visualization. Left: Histogram of model predictions, gen-
erated by a skewed beta distribution for 10 000 samples and a prevalence of 0.6. Center: PR
curve for class 1. Right: Confusion matrix at the specific threshold 7, which is also indicated
in the other two subplots.

For the PR-curve linear interpolation would yield too optimistic results, as the change
in PPV must not be linear along variations in TPR [87]. While PR-curves and ROC-curves
are connected, optimizing one does not necessarily guarantee to optimize the other [87].
Note that the TN of the confusion matrix A*”) are not used during the computation of
the coordinates of the curve. This is one of the reasons AP is commonly used in ObD
tasks, where this entity is actually undefined [108]. Similar to AUROC the value range of
AP is [0, 1] and it is positively oriented, but there is no such fixed value for interpretation
of a random classifier. Fig. 2.14 shows an example PR curve.

Definition 2.57. The Decision Curve [402] for class £k < C'is a sequence of pairs
{(7i, b;) }i<n, where for a sequence of appropriately chosen thresholds 74, ..., 7,
the elements are given by b; := NB(7;) on A*I™). Here the Net Benefit (NB) is
given by

|71 mp. T
NB(r) := |T| (TP ~ FP - ——

).

Decision curves and net benefit are less commonly observed tools in image classification
models. The goal of NB is to combine benefits (e. g., detecting disease) and harms (e. g.,
unnecessary procedures) on a single scale by using an ‘exchange rate’ that reflects clinical
judgment on their relative importance (the odds ratio of the threshold). Decision curve
plots allow clinicians to evaluate whether using a prediction model would provide clinical
value compared to treating all or no patients [403]. This is achieved by incorporating the
(range of) threshold(s) at which a clinician would recommend intervention - effectively
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Figure 2.15: Decision curve visualization. Left: Histogram of model predictions, generated
by a skewed beta distribution for 10 000 samples and a prevalence of 0.6. Center: Decision
curve for class 1. Right: Confusion matrix at the specific threshold 7, which is also indicated
in the other two subplots.

capturing their assessment of the relative costs of false positives versus false negatives
in that specific clinical context. The value range of NB is (—o0, 1], and it is positively
oriented. We conclude this section with a useful note on interpreting NB.

Remark 2.58. For some threshold 7 € (0,1) and k < C it holds that on A*")

NB(r) = P(1) - TPR— P(2) - (1~ TNR) - ——.
-7
Proof.
NB(r) = |T| (TP —FP - —)
-7
B
AT T 1=
_TP+FN TP  FP+TN  FP .
- [Tl TP+EN  |T| FP+IN 1-7
212,216 P(l) . TPR — 73(2) -FPR - 1 !
-7
= P(1) - TPR— P(2) - (1 — TNR) - 1% -
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2.6 Calibration

The performance measures presented so far all focus on the discriminative capabilities of
the model ¢ — investigating how well decisions are done. A someway complementary
question is for the calibration of the model ¢ — how well do the predicted probabilities
perform?

2.6.1 Variants of calibration

To precisely capture the meaning of a calibrated or reliable classifier [393] we need to
slightly dive into probability theory (see Def. 2.3).

Definition 2.59. Let ¢ be a probabilistic model for task 7. We call ¢ [393]

(i) canonically calibrated iff
Vk < C,p € Ac—1 : PIY = klp(X) = p] = pi
(ii) class-wise calibrated (also marginally calibrated) iff
VE < C,q € 0,1]:PY = klo(X)r = ¢l = ¢
(iii) top-label calibrated (also confidence calibrated) iff
Vg € [0,1] : P[Y = argmax p(X)|max p(X) = ¢q] = ¢.
Note that we require equality only as long as the conditional probabilities are

defined (the condition has positive probability). Or phrased with the words of
measure theory, the above equal signs are almost surely equal signs.

There is one important pitfall in the interpretation of model calibration, we want to
stress from the beginning. The conditioning of the probabilities we used in the definitions
of calibrated models (Def. 2.59) is always on ¢(X) — not X itself. So a perfectly calibrated
model may not need to output P[Y = k| X] - the ‘true posterior’ probability, which will
be shown in Ex. 2.63.

Proposition 2.60. Let ¢ be a probabilistic model for task 7. Then

(i) ¢ is canonically calibrated = ¢ is class-wise calibrated,

(ii) ¢ is canonically calibrated = ¢ is top-label calibrated.
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Table 2.2: First counterexample calibration notions. The model ¢ is class-wise calibrated
while not being top-label calibrated. Example from Chen et al. [59].

(X )k PlY = k| X]
k=1 k=2 k=3 k=4|k=1 k=2 k=3 k=4
X=1 0.3 0.25 0.2 0.25 04 0.25 0.1 0.25
X=2 0.3 0.5 0.2 0 0.2 0.5 0.3 0

Table 2.3: Second counterexample calibration notions. The model ¢ is top-label calibrated
while not being class-wise top-label calibrated. Example from Vaicenavicius et al. [393].

P(Xk PY = k|X]
k=1 k=2 k=3 |k=1 k=2 k=3
X=1| 06 01 03 | 07 02 01
X=2| 04 06 0 | 03 05 02

Proofs for Prop. 2.60 (i) and (ii) can be found in Gruber et al. [150]. Vaicenavicius et
al. [393] state furthermore, that if 7 is a binary task, then the three notions of calibration
coincide, but do not provide a proof for this. Importantly the coincidence of calibration
notions is not given in general, as shown by the following examples.

Example 2.61. The examples will only attach mass to finitely many images with

respect to p(X,Y"). For simplicity, we will identify these with an initial segment
of N. Let P[X = 1] = P[X = 2] = 0.5 and ¢ as well as P[Y'| X] be defined as in

(i) Tab. 2.2. We observe ¢ to be class-wise calibrated while not being top-label
calibrated: To show that ¢ is class-wise calibrated, we show for each class
k < C that for all ¢ € Im(py,) holds that P[Y = k|o(X ), = ¢] = q.

k=1: Im(¢p;) = {0.3} and P[Y = 1|p(X); = 0.3] = P[X = 1].0.44+P[X =

2]-0.2=0.3

k=2: Tm(pp) = {0.25,0.5} and P[Y = 2|p(X), = 0.25] = HE=5 —
0.25 as well as P[Y = 2|¢(X), = 0.5] = B5202 — 0.5

k=3: Im(p3) = {0.2} and P[Y = 3|p(X)3 = 0.2] = P[X = 1].0.24P[X =
2]-0.2=0.2

k=4: Im(p4) = {0.25,0} and P[Y = 4|p(X ), = 0.25] = ZEZL025 _ 95

PX=1]
as well as P[Y = 4|¢(X), = 0] = PIF[")[§(:=2]2jO =0
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To prove that ¢ is not top-label calibrated, we can simply show that for
g = 0.3 the necessary equation P[Y = argmax p(X )| max p(X) = q] = ¢
fails, as P[Y = argmax p(X)|maxp(X) =0.3] =PY = 1| X =1] = 0.4

(ii) Tab. 2.3. We observe ¢ to be top-label calibrated while not being class-
wise calibrated: To show that ¢ is top-label calibrated, we show for each
q € Im(max ) holds that P[Y = argmax p(X )| maxp(X) = ¢] = ¢. As
Im(max ¢) = {0.6} we only have ¢ = 0.6 to verify this, which comes
down to P[Y = argmax p(X)|maxp(X) = 0.6] = P[X = 1] - P[Y =
argmax p(X)|X = 1] + P[X = 2] - P[Y = argmax p(X)|X =2] =0.5-
0.740.5-0.5 = 0.6. To prove ¢ is not class-wise calibrated we can inspect
k=1andq=0.6 € Im(p;). Here P[Y = 1|p(X); = 0.6] =P[Y = 1| X =
1] =0.7.

. J

We can immediately conclude that neither class-wise calibration nor top-label cali-
bration imply canonical calibration (otherwise by Prop. 2.60 they would also imply each
other, which has just been shown to be incorrect). An explicit counterexample for this
was also given by Vaicenavicius et al. [393]. This shows that canonical calibration is
the strongest notion. And indeed for a ‘perfect’ model it is necessary to be canonically
calibrated.

Proposition 2.62. Let 7 be a task with C' classes, then the optimal classifier ¢*,
given by Vk < C': p*(z);, := P[Y = k|X = z] is canonically calibrated.

Proof. Letk < C,p € Ac_1, then P[Y = k|o*(X) = p| = P[Y = k|V,P[Y =i]| =p;| =
Dk O

Unfortunately canonical calibration does not imply to be close to the optimal classifier,
as shown by the next example.

Example 2.63. Let 7 be a task with C classes and class prevalences P, then the
constant model ¢ with ¢ : x + P is canonically calibrated; the image of ¢ is a
singleton which perfectly matches the overall distribution of 7. Example from
Chen et al. [59].

The model given in Ex. 2.63 is obviously a very uninformative trivial one (compare to
the naive classifier defined in Def. 2.26) and does not internalize any discriminative value.
As long as X contains any clue about Y (e. g., the image depicts the object associated with
its class label) we would assume that p7(Y'|X) differs from the pure class distribution
p7(Y'). With these considerations in mind we can agree to call calibration complementary
to discrimination. Note that one of the fundamental differences is also the dependence
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on a decision rule (see Def. 2.9).

2.6.2 Measuring miscalibration

So far we only defined how a calibrated model behaves. Unfortunately hardly any model
will perfectly match any of our notions on calibration. The goal of a calibration error
measure is to quantify the level of divergence between the two sides of the equal sign in
the calibration definitions.

Definition 2.64. Let 7 be a task with C classes and ¢ a probabilistic model for 7.
Then 7 : Im(p) — Ac_y with

r(p)x :==PY = k[p(X) = p|

is called the (canonical) (re-)calibration function [393]. Now let d : A¢c_; X
Ac_1 — [0, 00) be a distance function, then the Calibration Error (CE) is defined
as

CE, := E[d(r(¢(X)), o(X))].

This definition may be interpreted from different angles. Assume to be given a ‘fixed’
classifier ¢, then the canonical re-calibration function is the best possible post-processing
function, such that r o ¢ is canonically calibrated (though not necessarily accurate) [281].
If a model is already canonically calibrated, then r collapses to the identity function and
(given d maps pairs with identical entries to zero) the CE thus turns zero. Measuring
miscalibration can thus also be interpreted as measuring the difference between r and
the identity function. Which implies that the computation of CE and the computation of
the canonical re-calibration function are equally hard [281]. Similar formulations can
also be found for class-wise and top-label calibration.

Definition 2.65. Let 7 be a task with C classes and ¢ a probabilistic model for
T Then for k < C' the marginal (re-)calibration function  : Im(¢) — [0, 1] is
given by
r(p) = PY = k[o(X)r = pi]

Now let d : [0, 1] x [0, 1] — [0, c0) be a distance function, the Marginal Calibra-
tion Error (MCE) [213]° for class k is given by

MCE,; := E[d(r((X)), o(X)i)]-
The top-label (re-)calibration function r : Im(¢) — [0, 1] is given by

r(p) := P[Y = argmax p| max ¢(X) = max p|
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Now let d : [0, 1] x [0, 1] — [0, 00) be a distance function, the Top-label Calibra-
tion Error (TCE) [213] is given by

TCE, := Eld(r(p(X)), max p(X))].

“In the literature there is some ambiguity about the generic calibration errors and some approxi-
mations. In this case the MCE is also often referred to as ‘class-wise calibration error’ [150], or
to the calibration error induced by the ‘fixed partition’ [393]. We will use the term class-wise
calibration error for an aggregated estimator of the MCE in Def. 2.68. Also be aware that ‘Maxi-
mum Calibration Error’ [151], which is also abbreviated as MCE is unrelated to our definition
and will not be of further interest in this thesis.

Unfortunately the true distribution pr(X,Y’) is unknown for the most cases and
must be approximated by the available data from 7. Depending on the details of the
approximation a bias (i. e., a degree of over or underestimation) and the convergence
rate (i. e., how much additional samples improve the approximation) may be derived.
Combined with the computational complexity of the estimator (both along the number
of samples and the number of classes) various trade-offs arise. For most models the
predicted probabilities will differ for each image in 7, thus the straight estimation of r
would only be built upon a single realization. One approach to circumvent this, groups
nearby probabilities into bins.

Definition 2.66. Let {B;};<,, be a finite partitioning of [0, 1] (the bins), 7 be
a task with C' classes and ¢ a probabilistic model for 7. Then the Expected
Calibration Error (ECE) [265] of ¢ is given by

ECE := ZP[max ©(X) € Bj]|E[max p(X)| max ¢(X) € Bj]

— P[Y = argmax (X )| max o(X) € Bl|.

The three terms in the sum are also often referred to as bin-frequency, bin-wise mean
confidence and bin-wise accuracy [150]. It has been shown that ECE < TCE [150, 393]**
and an abstract derivation of ECE from the general EC was given by Vaicenavicius et
al. [393]. The ECE was “the first calibration estimator for a continuous one-vs-all multi-
class mode [...] and is still the most commonly used measure to quantify calibration” [150].
Widespread usage may probably be partly due to the work by Guo et al. [151], who
happened to introduce a simple model for the top-label re-calibration function.

“Kumar et al. [213] show in general that any binning scheme underestimates the calibration error.
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Definition 2.67. Let ¢ € R, be a positive real, then the function

fremp(p) := o(p/1)

is called temperature scaling [151]“.

?The original definition already incorporated the maximum of the softmax o, as it would be
required to model the top-label re-calibration function, but to evaluate temperature scaling in a
setup that measures canonical or class-wise calibration sense we neglect it here (see Sec. 6.1).

Fitting the parameter ¢ for the model fi.,, © ¢ such that the CE minimizes then
corresponds to approximating the re-calibration function with f..,,. Apparently this
is a very simple model, though Guo et al. [151] find it sufficient. Note though that
their definition of miscalibration is given by the TCE and as proven by Gruber and
Buettner [150], a minimal TCE implies minimal ECE. Nevertheless, triggered by these
discoveries the topic of calibration in DNN gained popularity, which lead to further
advances.

Definition 2.68. Let {B;};<,, be a finite partitioning of [0, 1] (the bins), 7 be
a task with C classes and ¢ a probabilistic model for 7. Then the Class-wise
Calibration Error (CWCE) [211, 213] of ¢ is given by

CWCE := C™" ) > Plp(X)i € Bi] - [Elp(X)klo(X)x € B

k<Ci<m

—P[Y = klp(X)r € Bl

The equal aggregation across classes is somewhat arbitrary as noted by Panchenko et
al. [281] and weighted versions of the sum over the classes are also found in literature [213].
In both cases of ECE and CWCE we chose the L; norm as distance function, but the general
L,, or specifically Lo are also common [150, 213]. We also note that the probabilities and
expectations in the computation of EC and CWCE are in practice obviously calculated
over the respective task. Both ECE and CWCE are negatively oriented and have a value
range of [0, 1]. But still neither of them captures canonical calibration — and both are
non-differentiable. The latter is a property which is especially useful if a calibration error
is used for the training of NN (see Def. 2.75).

Both of these issues are tackled with the following calibration error. Unfortunately
a lot of the underlying theory which is based upon Reproducing Kernel Hilbert
Space (RKHS) is out of scope for this thesis, thus we only give an abstract estimator and
refer the reader to the details given by Widmann et al. [419].
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Definition 2.69. The Kernel Calibration Error (KCE) [419] is given by

KCE := (Exy p, x'v prley — 0(X)Tk(0(X), o(X")) (eyr — (X)),

with the matrix-valued kernel k£ and the canonical unit vectors e;.

Widmann et al. [419] proofed that if £ is a universal kernel, then KCE = 0 < CE = 0,
i.e., p is canonically calibrated. The interpretation of KCE is difficult though, as the value
range depends on the kernel choice. Furthermore - although non-negative in expectation
— concrete approximations of KCE may even turn negative. It is also possible to use
Kernel Density Estimation [286, 326] to approximate the canonical calibration function.
If the distance function d is chosen to be the L, norm this gives our next calibration
performance measure.

Definition 2.70. Let 7 = {(2;,¥:) }i<n be a task with C' classes and ¢ a prob-
abilistic model for 7. Then the Expected Calibration Error Kernel Density
Estimate (ECEXPF) [302] is given by

KDE .__ l Ziyéj K(gp(xj), o(x:)) - Cy;
BCE™ = 5 2 |55 Klo(y), o(ed)

p

— p(x;)

9

p

where K is the kernel (e. g., a Dirichlet kernel [276]) and e; is the ¢-th canonical
unit vector.

ECEXPE tackles canonical calibration directly and Popordanoska et al. [302] also proved
theoretical guarantees for the convergence, bias and computation complexity (along the
number of samples). The value range of ECEXPF is [0, 2], and it is negatively oriented.
Though these properties may make ECEXPE appear more suitable for miscalibration
estimation than KCE, it must be said that KCE in contrast is an unbiased estimator.
Furthermore, it remains an issue that a canonically calibrated model may still be far from
the optimal model (see Ex. 2.63).

2.6.3 Mixed assessment of calibration and discrimination

It is thus necessary to find an even stronger notion for a calibrated model — which we
will find through the concept of scoring rules. The trade-off is that such scores do not
only measure calibration but jointly incorporate discrimination performance.

Definition 2.71. A scoring rule [44, 150] for task 7 with C' classes is a function
St Aoy x Yr — RU{—00,00}. It measures the disagreement® between
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a probabilistic prediction and some reference class. The corresponding scoring
function s : Ac_; x A1 = RU{—ty, oo} is givenby s(p,q) == > _, .- S(p,k)-
qr and measures the expected disagreement between a probabilistic prediction
and a probabilistic reference. A score is called proper if the divergence d :
Ac_1 X Ac_1 — R U {—00,00}, given by d(p,q) := s(p,q) — s(q,q) is non-
negative, i.e., for all p, ¢ € A¢_; holds that s(p, q¢) > s(q, ¢). The score is called
strictly proper if d(p,q) =0 = p=qforallp,qg € Ac_;.

?The orientation of scoring rules is ambiguous in literature and usually one would expect a ‘score’
to be positively oriented. Following the standard perspective in ML of minimizing a loss function
we will also interpret scoring rules to be negatively oriented. The general conclusions are not
impaired by this, though some signs might change in derived formulas.

Note that the interpretation of the divergence may only be really meaningful for proper
scoring rules, but be aware that in general the divergence of a proper scoring rule is not a
true metric, specifically it must neither be symmetric nor does the triangle inadequately
hold."® It can be shown that every proper scoring rule can be decomposed as follows:

Theorem 2.72. Let S be a strictly proper scoring rule for task 7 with C classes
and ¢ a model for 7. Then

E[S(p(X),Y)] = S(P,P) = E[d(P, P[Y |o(X)])] + E[d((X), P[Y [0 (X)])].

The three summands on the right are called (from left to right) uncertainty, resolution
(also sharpness) and reliability.

J

The theorem was proven by Brocker [44] in general for the multiclass case, while the
decomposition for the binary case has been known for longer [90]. While the uncertainty
is a constant only depending on 7, the resolution measures the divergence of ¢ with
the uninformative naive classifier that only knows the class prevalences (see Ex. 2.63).
Finally, the reliability term is a canonical calibration function (see Def. 2.64), since S is
strictly proper, i.e., d is non-negative.'® After all this theoretical background it is time to
introduce an actual strictly proper scoring rule.

Definition 2.73. The Logarithmic scoring rule [131] (also Ignorance scoring
rule [44]) for task 7 with C' classes is the scoring rule defined by S(p, i) := — Inp;.
The Negative Log Likelihood (NLL) (also Cross Entropy) for some model ¢ on

5We also note that the theory of scoring rules transfers to the continues case [131], opposed to the
categorical domain Y7 we chose.

16Formally we switched the order of arguments from Def. 2.64 to the interpretation in Thm. 2.72, but
defining a dummy cZ(p, q) := d(q, p) resolves the issue.
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T is given by

NLL := ExijTS(QO(X),Y)
=7 Z S(e(xs), ye) = =TI Z Inp(2;)y;-

(xi,yi)€T (zi,y:)ET

The corresponding divergence to S is called Kullback-Leibler Divergence
(KLD) [212] and given by

KLD(p,q) :=s(p,q) —s(¢,q) = > _ S0 k)-qu—»_ S(q.k)-qe =) _ qk.lnz_’;'

k<C k<C k<C

The Logarithmic scoring rule is a strictly proper scoring rule [131] and the KLD is
an important tool in information theory, which we will also use later to compare tasks
(see Def. 5.13). In the literature the notation KLD(p||q) := KLD(g, p) is also common,
which might cause confusion by the switch of arguments. The NLL is very often used as
a loss function in DL (see Def. 2.75). The value range of NLL is [0, 00), and it is negatively
oriented.

Definition 2.74. The Brier scoring rule [43] (also Quadratic scoring rule [131])
for task 7 with C' classes is the scoring rule defined by S(p, i) := Y, (0 — pr)*.
Here 4,; denotes the Kronecker delta (equalling 1 if i = j and 0 otherwise). The
Brier Score (BS) for some mode ¢ on 7 is given by

BS = EX7YN7‘S(Q0(X), Y)
- ’T|_1 Z S(e(xs),ye) =TI Z Z(éyik - 90(9%)1@)2'

(@i,y:)€ET (z4,y:)€T k<C
The Brier Skill Score (BSS) [131, 400] for some model ¢ on 7 is given by

BS
Bsnaive 7

BSS =1 —

where BS,,.ive is the BS of the naive probabilistic model given in Ex. 2.63, which
constantly predicts the prevalences of 7.

The Brier scoring rule is a strictly proper scoring rule [131] and the specific decomposi-
tion along Thm. 2.72 for BS have been shown very early [91, 264]. The value range of BS
is [0, 2] while it is negatively oriented (see the interpretation of the decomposition terms).
One problem of BS is that, as long as BS > 0 we do not know how miscalibration relates
to improper discrimination and in general by the dependence on the prevalences of T
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the interpretation remains difficult. Nevertheless, a result by Gruber and Buettner [150]
shows that the square root of BS, the so-called Root Brier Score (RBS) is a robust upper
bound of the canonical calibration error. To circumvent the interpretability issues of
BS the BSS provides a normalization of BS along a naive classifier (similar to NEC in
Def. 2.27). This makes BSS positively oriented and a value of 0 points towards naive
performance.

2.7 Deep Neural Networks

Deep Learning (DL) is a subdomain of ML. ML is the study of algorithms that improve
automatically through experience [254] and itself a subdomain of Al. The problem to
properly define Al is more of philosophical nature and left to the reader [332]. We will
solely focus on the case of supervised classification in ML, that can be described as follows:

Definition 2.75. Let 7 be a task with C classes, H a subclass of ® (called the
hypothesis space) and £ : Ac_; X Y — R a computable loss function. The
goal of supervised learning is to solve the following optimization problem

argmin,_, [T~ Z L(o(x:), yi)-
(zi,yi) €T

The term following argmin is also referred to as the empirical risk. Note though that
the definition of supervised learning is not standardized in literature and the transitions
to other paradigms, e. g., self-supervised learning are rather blurred [143]. As indicated
before, it is good practice to partition 7 into multiple subsets, commonly 7iain, Tval, and
Trest- The training split Ty, may be used in automatic hypothesis updates, i. e., iterative
modification on the current model. The validation split T, is — automatically or manually
- used in monitoring to prevent a phenomenon called overfitting, the extraction of residual
variation [14]. Lastly, the test split T is kept untouched during the development of a
model and only used in the end to estimate the empirical risk on unseen samples. Keeping
this in mind, we will always assume that the task 7 used by a performance measure p to
assess a model ¢ has not been used during training or validation of .

Returning to the formulation of supervised learning, three questions may arise:

(I) How should one choose the loss function in order to determine a good model?
(I) How exactly should such the optimization be approached computationally?

(IT) How should one design the hypothesis space to allow a good fit, while keeping the
computational optimization feasible?

Of course these questions all have multiple possible answers and the research of
about half a century will now be compressed into a few solutions within a couple of
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paragraphs. We start with the first, question, which will turn out to be simple, because
we already introduced NLL in Def. 2.73 as a strictly proper scoring rule, that through the
decomposition given in Thm. 2.72 guarantees good discrimination as well as calibration.
In practice there is also a weighted version we introduce here for later reference.

Definition 2.76. Let 7 be a task with C classes and {w; };<¢ a set of reals called
the class weights, then the weighted Cross Entropy is the loss function given

by
‘CCE(pa y) = —Wy ll'l(py),

forpe A¢g_1andy < C.

The weights in Def. 2.76 allow us to adjust the focus of learning for the Stochastic
Gradient Descent (SGD) and will be important in Sec. 6.1. We next turn to the second
question: the optimization procedure.

Definition 2.77. Let g be a model for task 7 with some parameters © and initial
values Oy, {7; }ien a sequence of positive reals called the learning rates, £ a loss
function and {B;};cn a sequence of subsets from 7 (called the (mini-)batches).
We define the sequence ©1, O, ... iteratively via

Qi1 =0 —7%Ve Y  Llpe,(:),s:)=0—% D VeoLl(pe,(z:) ),

(z5,y5)€B; (z5,y5)€B;

as long as L(ye, (z), y) is differentiable for all (x, y) in the batch B;. This process
is called Stochastic Gradient Descent (SGD).

SGD was already used by Rosenblatt [325] to train the first NN in the 1950s, while the
gradient descent method was proposed already by Cauchy et al. [56] more than a century
earlier. The popularization of backpropagation [330] took until the late 1980s and was tied
to efficient calculations of the derivatives according to the chain rule. A lot of research
went into appropriate choices of the ingredients for SGD and the ‘convergence guarantees’
under various conditions. Surprisingly, although there are no theoretical guarantees SGD
often works very well on modern NNs and tasks despite them having a non-convex loss
space. This is also due to enhancements like keeping some momentum [143], weight
decay regularization or per-parameter learning rates as given in Adam [200]. The learning
rates {7; }ien, the initialization ©( and the sampling strategy to generate {B, };cy are
examples for hyperparameters — parameters of the overall learning procedure while
not being part of the model itself. Finally, we want to discuss the hypothesis space and
will introduce modern DNN.
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Definition 2.78. A feedforward neural network is a model ¢ composed of
finitely many layers (also blocks or modules) {f"},cp, D € N: o = f(P)o....0
fW). Each layer is a parametrized mapping fl(,}) : R™ — R™ such that m; = n; 41
and the parameters w are called weights. The first layer f() is also called input
layer, while the last layer f(P) is called output layer. All other layers are usually
referred to as hidden layers and their number directly corresponds to the model
depth D. In contrast, the width of a layer corresponds to its output dimension
m,; and the maximum internal dimension max m; is called the model width. The
outputs of a layer are referred to as features or logits.

Such a NN is usually called ‘deep’, i. e., a DNN, if D is sufficiently large, although there
is no common threshold which determines this. AlexNet [210], which was an essential
milestone in image classification, consists of eight layers and is usually perceived as
‘deep’. But there is some ambiguity in determining the depth of a NN; since sometimes
multiple layers are grouped into ‘blocks’, which are by definition layers themselves. It
becomes obvious, that so far we have been rather vague on the nature of the layers of a
feedforward neural network, but we will give some important examples on the following
pages. Noteworthy the design given by Def. 2.78 of a NN corresponds well to the needs
given by the SGD methods as the derivatives for the weights may be derived by the chain
rule. The naming of such models is inspired by biology: The features at a certain layer
in the model translate to the activation level of neurons as found, for example, in the
central nervous system of vertebrates. These signals are forwarded to the next ‘layer’ of
neurons that determine their own activation based on the received signals. We continue
with formally giving the first example of an ‘artificial neural network’.

Definition 2.79. A fully-connected layer (also dense layer or linear layer) is
a mapping f : R® — R™ given by

f(2) == a(Wa +b),

here b € R™ is called the bias, W is an m X n matrix (confusingly also sometimes
called weights, although the bias is also considered a learnable parameter) and
a : R — R (applied element-wise) is an activation function. A Multilayer
Perceptron (MLP) is a feedforward neural network whose layers are all fully-
connected.

As mentioned before the MLP was the earliest kind of NN [325].!7 Various universal
approximation theorems (see for example [297]) guarantee under different constraints for
the width respectively depths of neural networks, that for non-polynomial activation

7The presented MLP by Rosenblatt [325] had a single hidden layer which was initialized with random
values and not trained though.
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functions, (almost) any continuous function may be approximated through a MLP. Bound
by this non-polynomial requirement early activation functions included the hyperbolic
tangent tanh and the logistic function (1 + ¢~*)~!, but the very simple rectified linear
unit (ReLU) max(0, ) became popular in the 2010s [129]"® One of the problems with
fully-connected layers is their density, as they have comparably many learnable parame-
ters ((n + 1) - m), which becomes infeasible for large inputs. A solution to this problem
is given by the next kind of model.

Definition 2.80. A convolutional layer [143] is a mapping f : R">wxe —
R >w'>xe' where given by

f(x) = a(xx K +0b),

where K € R *w"*¢" jq called the kernel, b € R *%'*¢ ig again called bias and
a : R — R (applied element-wise) is an activation function. The operator * is
called convolution and given by

(l’ * K)ij = Z Z Z Li—m,j—n,k—o * Kmno-

m<h* n<w* o<h*

A NN that has at least one convolutional layer is called a Convolutional Neural
Network (CNN).¢

“We omitted some details in the common convolution of NN, like ‘stride’, ‘padding’ and ‘dilation’
that have an influence on the shape of the output (b’ x w’ x ¢).

The core idea of convolutional layers is to leverage the grid structure of images and
make the layer ‘equivariant’ to translation. That means if ¢ is some translation (moving
the pixels of an image by a constant offset in each dimension) then f o g = go f. The
kernel behaves like a small sliding window on the image grid treating perceived inputs
(e.g., a common range of h X w in kernel size is 3 X 3 up to 7 x 7) independent of the
original position in the image. One could say ‘a dog stays a dog, independently of whether
it is placed in the lower right corner or in the upper left corner of an image’. Moreover, the
convolutional operation may be realized with a matrix operation'’ rendering the overall
layer very similar to the fully-connected one — and making it efficient for computation on
modern GPUs. The main difference is that the matrix equivalent of the convolution has
‘sparse weights’ in the sense that many of them are ‘tied together’ — often referred to as
‘shared parameters’ [143]. The true number of learned parameters is thus determined by

¥0bviously ReLU is not differentiable at 2 = 0, but choosing an arbitrary value (e. g., 0 or 1) for the
derivative at this point works well in practice. Multiple soft (i. e., smoothed) variants like GELU [165] or
Mish [253] have also been proposed to circumvent the non-differentiability.

YIn practice most implementations use the related ‘cross-correlation’ operator instead, but call the layer
‘convolutional’ after all (e. g., pytorch [15].)
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the kernel (plus the ones from the bias), which can be several orders of magnitude lower
than the corresponding fully-connected layer. Although the ‘receptive field’ of a feature
— the elements of the inputs that influenced its output - is drastically smaller compared
to a fully connected layers, stacking multiple convolutional layers in a model increases
the overall receptive field of an output logit. Further translational stabilization is usually
achieved by a parameter-free pooling layer which aggregates small windows of an
image, either by averaging or taking the maximum thus neglecting smaller activations,
to increase robustness to noise [41].*° Another noteworthy ingredient are BatchNorm
layers [180], an alternative for dropout layers [366] to regularize the network as
it achieves ‘scale independence’ of parameters and input®!, hence allowing for larger
learning rates. These advances, joint by the progress in computational hardware allowed
the successful training of models up to about 20 to 30 layers, but surprisingly adding more
layers lead to a degradation of model performance. He et al. [161] noted that in theory
adding identity layers should allow deeper models, but the identity function is hard to
learn given the matrix multiplication and non-linear activations from the usual layers
above. Instead, it is easier for a layer f to learn that the ‘residual’, i. e., the difference in
input and output should be zero. So if g is the desired function to learn, the layer only
learns f(z) = g(z) — x and afterwards the output is recast via f(z) + .

Definition 2.81. A residual layer (also skip connection or residual
block) [161] is a mapping f : R® — R™, encapsulating an internal block
f : R* — R™ via .

f(x) == f(x) + W,

and W being an m x n projection matrix. If n = m the default is to use the
identity matrix and the residual layer adds no parameters to the model, otherwise
the elements of W' are learned. A NN that has at least one residual layer is called
a Residual Network.

Surprisingly this ‘simple’ ingredient allowed the authors to successfully train models
with hundreds of layers and the family of resulting ResNets [161] to stay competitive for
many years [422]. One of the important ingredients for this is according to Wightman et
al. [422] an appropriate sampling strategy (see Def. 2.77), for which we want to introduce
some general terminology.

Definition 2.82. Recall the class of all images is denoted by X'. A computable
mapping t : X — X is called an image transformation. An augmentation
policy is an algorithm that samples finite sequences of image transformation.

2And they can also be leveraged to apply models on varying image sizes.
2I'That means if Wx is a computation within a layer, applying BatchNorm BN achieves BN(Wz) =
BN((aW)z) for scalars a, while not affecting the backpropagation.
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The goal of data augmentation is to ‘synthetically’ increase the number of samples in a
task 7. Obviously special care has to be taken, such that the sampled transformation
{ti}i<n ensure that the augmented sample (¢, (...(t1(x))), y) realistically matches to the
underlying distribution p7(X,Y) of the original task?’. A simple example of a transfor-
mation is horizontal flipping, mirroring the image along a vertical central line. Using
this very transformation might produce realistic samples for, e. g., an image of a horse in
the CIFAR10 dataset [208], but would terribly hurt the model in telling apart the letters p
and q in the EMNIST dataset [74], as it would create a ‘corrupted’ sample with a wrong
label. A special sequence of transformations is usually leveraged to unify the images of a
dataset.

Definition 2.83. The preprocessing of a task 7 refers to applying a finite se-
quence of deterministic transformations ¢ := t,, o ... o t; on T such that a new

dataset T := {(¢(x;),v) : (i,y;) € T} is produced.

Preprocessing is used for various purposes, e. g., rescaling, denoising, anonymization,
etc. The resulting task shares the same number of classes as well as number of samples.
Usually the convention is to understand preprocessing as a separate preliminary step
before the actual model is applied®, but formally we can attach a preprocessing layer to
any NN. Such a layer has no trainable parameters, but the choice of the preprocessing
transformations is another example of a hyperparameter. We finally formalize this idea
with the last definition of this section, that naturally brings us to the final section of this
chapter.

Definition 2.84. A Trainer (also Learner) ¥ is an algorithm that tries to solve a
supervised learning problem. Formally it takes a task 7 and some hyperparam-
eters w to compute a model ¢ = T(7,w) that sufficiently solves the supervised
learning problem described by w and . The entirety of hyperparameters w is also
sometimes referred to as the training pipeline and the process of executing the
trainer is called model training.

By design the hyperparameters w must comprise the ingredients given in Def. 2.75,
i.e., a hypothesis space (often referred to as a neural architecture) and a loss function,
furthermore it includes in our case the ingredients from Def. 2.77, i. e., a sampling strategy
(usually comprising also an augmentation policy) and the learning rates (usually through
an algorithm called learning rate scheduler). But as we noted the preprocessing is

ZInterestingly also out-of-distribution samples might help. Interesting examples are CutMix [437] and
MixUp [442], which may act as regularization and reduce overconfidence [52].

2 Although often computed separately and only once for efficiency reasons, preprocessing is usually an
implicit part of the model, as it poses certain formatting constraints to the input samples. The library of
nnU-Net [182], for example, ships with a dedicated preprocessing module.

75



2 Fundamentals

10k Search Term

—— continual learning
——learn to learn

Noo»

%]
c
2 1000
§ 5 meta learning //‘
e , ——transfer learning
2 100 multi-task learning
5 5 lifelong learning
—_
] 2
Q

10
£ 5
> s
c 5 - A =

1 AN VAV

1980 1990 2000 2010 2020

year

Figure 2.16: Publication counts for meta learning and related terms. Y-axis is log-scaled.
Data was extracted through scopus. com and publications were restricted to the domains of
computer science and math and restricted up to year 2023. Accessed on 11/08/24.

also a hyperparameter. The choice of w is crucial for training a successful model ¢ [305].
To measure the success usually a separate 7y is kept aside during training and used to
compute the fitness of ¢ via some performance measure y (see Def. 2.10). The process of
selecting w is called hyperparameter optimization and various techniques like grid
search, random search [28], Bayesian optimization [349, 362] as well as human driven
(‘manual’) search — often in conjunction with cross-validation [31] — are commonly
applied to determine ‘the best’ w. Even if such hyperparameter search methods are
employed, selecting the most important hyperparameters and defining an appropriate
search space is difficult and results in multiple iterations that lead to a slow and resource
intense workflow.

2.8 Lifelong Learning

We are finally prepared to formally differentiate the various terms surrounding ‘Lifelong
Learning’ from Chap. 1. The shared difference compared to our definition of a supervised
classification task (see Def. 2.75) is that there are now other tasks to be learned ‘in parallel’.
Before we dive into the details, it is worth noting that the terms and clear definitions we
will use in the following are not uniformly agreed and used in the literature - especially
the distinction between Lifelong Learning (Def. 2.90) and Continual Learning (Def. 2.88).
We will mention most of the ambiguities and point towards comprehensive review papers
whenever possible. As can be seen in Fig. 2.16 it was the Al hype of the 2010s that
pushed all of these terms above the 100 publications per year mark. The general setting
may thus be view as a comparatively young research domain and no long-term, stable
nomenclature has yet emerged to fully resolve past entanglements. For the remainder of
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this section we will gradually build up our way in the definition of Lifelong Learning and
end with a detailed comparison of each learning paradigm.

Before we start, we want to motivate the idea of ‘combining’ multiple tasks from a
human perspective. Our brains - the learning model - do not treat each of the tasks
we are faced in isolation, but rather decompose complex tasks (e. g., driving a car) into
chunks that we can relate with previously acquired skills (e. g., traffic light detection,
prediction of object motion, interpretation of symbols on the speedometer). In the specific
case of image classification most of the readers would not need any training samples
for a ‘cat versus dog’ classification task, as the concepts of ‘cats’ and ‘dogs’ have been
previously acquired. The Imagenet large scale visual recognition challenge comprises
1000 sometimes rather fine-grained classes and requires some familiarization for human
raters to reduce prediction error. Nevertheless the required ‘training samples’ are orders
of magnitude lower compared to ML models learning from scratch [331]. It takes a
lot of prior knowledge to interpret some imaging modalities in medicine. Detecting
polyps from gastrointestinal endoscopy [38], identifying cancer among skin lesions
in dermoscopy [328] or examining pathologies in chest X-rays [181] requires years of
training for domain experts. But these tasks are also not learned in isolation, and instead
accompanied by learning concepts of physiology and other related, though simpler tasks.
We admit, that the mentioned ‘concepts’, their ‘relatedness’ and ‘difficulty’ are rather
fuzzy in these explanations. The topic of ‘task relatedness’ will be of major interest in
this thesis and treated in Chap. 5. We start with a basic paradigm of combining multiple
tasks.

Definition 2.85. Let m € N and {7;}.<,, be m tasks, 7 a subclass of (., 7,
{L;}i<m a sequence of computable loss function and {w; };<,, a sequence of reals
(called task weights). The task of (supervised) Multitask Learning [80, 435, 447]
is to solve the following optimization problem

argminweHZwiHﬂ_l Z Li(p(z;),y;)-

i<m (z5,9;)€Ti

A strict reading of the definition requires that all tasks 7; must share the same number
of classes, but we interpret the shared hypothesis space in the sense that the model knows
for which tasks it should perform the prediction (it predicts a from an image = and the
task index i, i.e., it should actually be denoted ¢(z,%)). Typically, a multitask model
comprises a ‘shared’ part, which we call backbone, and m task specific parts, which we
call task heads. Each head performs predictions for one specific task, so the implicitly
given task index 7 from the definition above is used to select the appropriate head and
the corresponding prediction in order to compute the loss. This approach is named hard
parameter sharing [329, 397], because the backbone parameters are shared across tasks.
Conversely, in soft parameter sharing [329, 397] each task has its own ‘full’ model,
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Figure 2.17: Hard parameter sharing for Multitask Learning. Images are first fed through
a shared backbone until at some point features traverse individual task heads. Inspired by
Vandenhende et al. [397].

while restrictions are made with the ‘deviation’ of the parameters in the backbones. A
typical NN imposing hard parameter sharing comprises a sequence () o ....o f(1) for the
backbone and m sequences { fi(h’") 0...0 fi(l)}igm. To predict for task ¢ the full ‘forward
pass’ comprises ¢ = fi(hi) 0...0 fl.(l) o f®o ... of®M (seeFig. 2.17). Usually the depths
of the heads (h;) are rather small compared to the depth of the backbone (b).

The task weights {w; };<., allow for a different focus on the tasks. Sometimes there is
an outstanding ‘pivot task’ that should be solved, while the final application does not
require good performance on the other ‘auxiliary tasks’. Then the weights — though
usually being all positive during training — of these tasks might be set to zero during
the evaluation of the model. The other common perspective cares equally about the
performance on all tasks and would set w; = w;V7, j < m. In both cases the intention
is to use the training signal by the other tasks learned in conjunction as a regularizer
for the learning of each individual task. This inductive bias is hoped to lead to models
that generalize better [329]. But great care has to be taken to ensure these tasks will
not ‘interfere’ with each other and lead to a suboptimal overall performance (compared
to solving each classification task separately). Selecting appropriate tasks [367] and
dedicated learning strategies for them [435] are ongoing research questions. The ‘transfer
of knowledge’ between tasks is rather implicit in the formulation of Multitask Learning.
An explicit formulation of knowledge transfer is given by our next definition.

Definition 2.86. Let m € N and {S;}i<,, be m tasks (called source tasks).
Furthermore, there is a classification problem for task 7 (typically called the
target task). Transfer Learning [278, 378, 415, 451] describes the solving of the
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classification problem for 7, while making use of (any knowledge derived from)

{S:i}i<m-

Interestingly the definition of Transfer Learning has been rather stable since the early
survey from Pan et al. [278]. The only difference is that more recent work allows multiple
source ‘domains’, while originally m = 1 [451]. The latter is still the most common
case and transfer learning - if not distinctly called ‘multi-source’ — by default refers
to that scenario. A special subcase of Transfer Learning is the concept of Domain
Adaption [411] that assumes that (the majority of) the data given from the targets task
is ‘unlabeled’, i. e., while images are given, no labels are provided to the learner. The
definition explicitly mentions the transfer of knowledge, but keeps the kind of knowledge
open. This allows Multitask Learning and Transfer Learning to overlap: A Multitask
Learning problem that uses hard parameter sharing and focuses on a pivot task is one
example how to perform Transfer Learning. Conceptually closely related, the most
prominent and widespread technique of Transfer Learning replaces the simultaneous
learning by a sequential one.

Definition 2.87. Assume S and 7T are tasks and a DNN ¢ = f(P®) o ... o f() has
been trained to solve S. Let 1 < d < D, then solving the supervised classification
task for 7 where the d initial layers of all models in the hypothesis space match
the ones from model ¢ and the weights of the SGD are initialized with the ones
from ¢, is called fine-tuning of ¢ to 7.

Typically, d is close to D so a big part of the model (also called backbone in this case)
is transferred. Although fine-tuning is only one form of Transfer Learning, the two terms
are sometimes used interchangeable [199]. We will give more details on the usage and
success of fine-tuning in Sec. 3.2 and continue with defining further learning paradigms
for now - the sequential learning nature of fine-tuning directly leads to the next one.

Definition 2.88. Let m € N and {7;}<,, be a sequence of m tasks, H a subclass
of (;<,, ®7:, {Li}i<m a sequence of computable loss functions. The task of (super-
vised) Continual Learning [88, 410] (also ((Task) Incremental Learning)) is
defined across multiple time steps ¢ < m. At each step ¢ the system is only allowed
access to task 7; for model training and solve the current overall optimization
problem

argmin¢eH Z |7;|_1 Z Ei(QO(ﬁj),yj)-

i<t (z5,9;)€Ti

J

It is assumed that due to hardware limitations the system is not (or only in a very
restrictive sense) allowed to inspect samples from previous tasks. Thus while it may be
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easy to minimize the empirical risk for the current task the main challenge is to further
reduce, or at least not increase the empirical risk for previous tasks. The straightforward
combination of hard parameter sharing and fine-tuning, which adds a task specific head
for each new task and finetunes the head with the backbone from the previous iteration,
will suffer from a phenomenon called catastrophic forgetting [201]. Fine-tuning a
DNN will in most cases reduce the performance of the model on any previous source
task. Related to Continual Learning are also Curriculum Learning [413], which aims
to optimize the order (and composition) of (sub)tasks to be learned in order to solve the
supervised problem of a given target task, and Online Learning [350], which assumes
that the data of each iteration is from the same distribution, or phrased differently all the
{T.}i<m are subsets of a larger overall target task.

Definition 2.89. Let m € N and {7;}.<,, be m tasks and ¥ be a trainer. Meta
Learning [172] refers to the problem of solving

argmin, ) |77 Y Li(S(Tiw)(25), 4)-

ism (5,y5)€Ti

To measure the performance of a Meta Learner the proposed solution w* is usually
applied to previously unseen (target) tasks, in contrast to the standard classification
problem, Multitask Learning and Transfer Learning, where usually held out samples of
the same task are used for evaluation. The trained model T(7, w*) for such a target task 7~
is then evaluated again on its held-out test set. In that sense Meta Learning shares the idea
of Continual Learning that ‘new’ tasks show up and the experience gained from previous
tasks needs to be leveraged in order to solve it. In contrast to Continual Learning (and
Multitask Learning) it is though not a single model that needs to solve all tasks. It is the
learning strategy itself, in form of the hyperparameters that is optimized through a Meta
Learner. Specifically the invention of Model-Agnostic Meta Learning (MAML) by Finn et
al. [117] sparked a lot of interest in Meta Learning and shaped the focus on learning a good
weight initialization. This was particularly in the context of Few-Shot Learning [361],
the special case of Meta Learning that evaluates on tasks with very few samples per class
(mostly 5 or 10). An alternative term used for the setting above is also AutoML [177],
that stems from the desire to ease the process of performing model training. While
some use the terms interchangeable [398] others note that AutoML may also comprise
‘data cleaning’ which is outside the scope of Meta Learning [172]. It may be once more
due to the impact of MAML that ‘bi-level optimization’ is sometimes perceived as a key
ingredient of Meta Learning and, e. g., classic hyperparameter optimization techniques
like random search and Bayesian optimization are not considered Meta Learning by some
researchers [172]. The definition given for Meta Learning limits the information flow
from the source tasks to a target task to the hyperparameters w — a rather abstract form
and limitation that is not unambiguous in literature. Envisioning a ‘true’ Meta Learner
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surely involves task dependent information flow, as well as backward flow from newly
observed tasks to previous ones. We capture this intuition in the long promised definition
of Lifelong Learning.

Definition 2.90. Let {7;};cn be a sequence of tasks, {#H; C ®7, }icn a sequence
of hypothesis spaces and {£; };cn a sequence of computable loss functions. The
task of (supervised) Lifelong Learning [60, 283] is defined across multiple time
steps t € N. At each step ¢ the system faces a new task 7; for model training, gets
feedback from the open environment (e. g., on the behavior of previously deployed
models {; }i<;) and is obliged to solve (respectively improve upon) all the current
overall optimization problems

argmin,, _,, |7;]™ Z Li(pi(z5), y5)

fore < t.

J

Chen et al. [60] elaborate extensively about the requirements for such a system. They
specifically require the system to comprise a Knowledge Base, which accumulates the
insights gained over the lifetime of the running system. In contrast to all previous
definitions Lifelong Learning interacts with the environment. Two kinds of interactions
- one with human experts and one with previously unseen deployment data — will be
the focus of Chap. 4 and Chap. 6. Lifelong Learning builds upon an intrinsic temporal
perspective of knowledge and tasks — closely to Continual Learning and implicitly also
Meta Learning. In contrast, it is though not limited to keep a single model or restrict
knowledge transfer uni-directional. It focuses on multiple tasks at once as Multitask
Learning but less static and more individually per task. A successful Lifelong Learning
system must use Transfer Learning to inform the model training with the experience
from the Knowledge Base. We can directly derive that the individual learning per task is a
necessary baseline to compare any Lifelong Learner against. More details on evaluation
strategies are given in Chap. 4, but for now we note that the system must be tested with
various combinations of previous source tasks and target tasks, as well as a multitude of
environmental feedback.
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STATE-OF-THE-ART PIPELINES FOR IMAGE
CLASSIFICATION

After presenting the basics of biomedical image classification in the previous chapter,
this chapter focuses on current practices, published work, and gaps in the literature with
respect to our three research questions from Sec. 1.2. Here, Sec. 3.1 presents related work
on validation practices of predictive models in medical image classification. Next, Sec. 3.2
compares existing approaches for training DNN in sparse data settings. Then, Sec. 3.3
gives an overview of the literature on distribution shifts during model deployment. We
conclude the chapter with Sec. 3.4, which summarizes the previous sections, compares
the state of the art with our research questions, and highlights gaps in the literature.

3.1 Model validation

The validation of ML models for medical image classification presents unique challenges
that require careful consideration of performance measures and evaluation protocols.
This section reviews current practices and identifies limitations in model validation
approaches.

Challenges in performance measure selection

Selecting appropriate performance measures is critical for meaningful model evaluation
in biomedical imaging. Specifically, reporting every possible metric can overwhelm
analysis and fail to address application-specific needs [408]. Simultaneously, choosing
performance measures based solely on popularity has been shown to be misleading
across multiple medical imaging applications [145, 203, 240, 275, 321, 392]. Thomas
et al. [384] caution against the narrow focus on single target measures, invoking Good-
hart’s law' to highlight how this approach can lead to skewed model development and
suboptimal research resource allocation. Instead, comprehensive evaluation requires
diverse metrics to assess accuracy, robustness, and generalizability, while benchmarking

"'We provide it here in a simplified version: “When a measure becomes a target, it ceases to be a good
measure.” [370]

33



3 State-of-the-art Pipelines for Image Classification

against solid baselines and accounting for data uncertainty. Khan et al. [196] emphasize
that clinical adoption necessitates early involvement of diverse stakeholders to ensure
seamless integration into existing clinical workflows and practices. This collaborative
approach should extend to metric selection, involving domain experts (e. g., physicians,
ML researchers, biostatisticians) and stakeholders (e. g., companies, insurers, regula-
tors) to ensure alignment with real-world medical applications and enhance evaluation
credibility [384].

Comparative literature on performance measures

Several studies have assessed comprehensive suites of performance measures for classifi-
cation tasks in general or specifically medical imaging. Sokolova et al. [363] examined
multiclass counting metrics for various ‘invariances’ — changes in the confusion matrix
that do not alter metric values. By analyzing whether performance measures are affected
by these invariances, they identified similarities between metrics and discussed use cases
where different invariances are desirable. Steyerberg et al. [368] reviewed newly proposed
performance measures, contextualizing them with traditional metrics and emphasizing
the importance of complementary model assessment for both discrimination and cali-
bration. Taha et al. [377] unified definitions for 20 performance measures in semantic
segmentation for 3D medical image analysis, some of which are applicable to 2D image
classification. They focused on theoretical categorization of metrics, extending defini-
tions for probabilistic annotations and providing efficient reference implementations.
Their protocol for recommending performance measures via specific combinations of
metric properties, data properties, and algorithm requirements is particularly valuable.
Hossin et al. [173] discussed various classification metrics in the context of ‘Prototype
Selection’, focusing on model generalizability and important factors to consider when
designing new performance measures. Grandini et al. [147] analyzed multiclass counting
metrics, highlighting their suitability for different use cases in model development while
discussing both advantages and disadvantages. More recently, Varoquaux et al. [400]
presented and discussed a set of performance measures for binary and multiclass image
classification in medical imaging, particularly addressing the prevalence dependency of
some metrics while advocating for calibration measures.

Analyses of individual metrics

Some studies have critically examined particular performance measures. Christen et
al. [69] reviewed the F1, discussing its shortcomings for many classification use cases.
Similarly, Sebastiani [346] demonstrated that F1 fails to meet intuitive expectations when
analyzed against a set of desirable metric properties. Ferrer [113] conducted an in-depth
analysis on the generalizability of EC, comparing it with numerous other metrics. In a
series of publications, Giuseppe Jurman and Davide Chicco have advocated for the MCC
through direct comparisons with various other performance measures [63-68, 188]. How-
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ever, the unrestricted appropriateness of MCC has also faced counterarguments [450].

Universal recommendations

Various recommendations for best practices in benchmarking AI models for medical
image analysis have been formulated [39, 260, 271, 284, 300, 399]. These guidelines
address appropriate data handling, statistical meaningfulness, the preference of com-
plementary performance measures, reporting standards, and baseline selection in the
general sense. However, given the variety of applications in medical imaging (see Sec. 2.2),
these recommendations lack specific instructions or criteria for use-case-specific metric
selection.

Evidence for inappropriate validation

The guidelines also contrast the empirical insights by Maier-Hein et al. [240], who
assessed 150 biomedical image analysis competitions and revealed a concentration on
few performance measures and other prevalent flaws in determining ‘best’ algorithms.
Evidence for incomplete reporting of validation results is also given by Hicks et al. [167],
who recalculate and interpret non-reported performance measures for five exemplary
studies in gastroenterology. In a systematic literature review O’Shea et al. [272] found
only 36% out of 186 studies in radiological cancer diagnosis provided a rationale for
their choice of performance measure(s). An even larger meta analysis of 503 studies
on diagnostic accuracy across multiple imaging domains and applications by Aggarwal
et al. [8] concludes “poor design, conduct and reporting of studies”.

Implementation and aggregation

Beyond metric selection, the implementation and aggregation of performance measures
must be robust to variations in models or data, including handling missing values, sample
inter-dependencies, and algorithmic non-determinism [420]. Although conveniently
available through standardized interfaces in multiple libraries, (e. g., torchmetrics [94]
or scikit-learn [292]) many metrics require configuration, e.g., a cutoff (see Def. 2.9).
Additionally, beyond the aspect of purely ranking models, human perception and in-
terpretation of performance measures play critical roles, requiring a balance between
comprehensive evaluation and interpretability to facilitate model adoption. While multi-
ple metrics are necessary to characterize performance comprehensively, their presentation
must remain accessible to stakeholders with varying levels of technical expertise. This
balance between thoroughness and clarity remains a significant challenge in the field.
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3.2 Training in sparse data settings

Medical image analysis faces persistent challenges due to data scarcity, which stems from
privacy concerns, expensive annotation processes, and the rarity of certain conditions (see
Sec. 2.1). Addressing these limitations has given rise to several methodological approaches
that aim to maximize model performance despite limited labeled data availability.

Overview of approaches

Crowd sourcing [236] leverages collective human intelligence by distributing annotation
tasks across numerous individuals, potentially reducing costs and accelerating data
labeling. However, in medical contexts, this approach often requires specialized domain
knowledge, raising questions about annotation quality and consistency when performed
by non-experts [309].

Data augmentation artificially expands limited datasets through transformations (see
Def. 2.82) that preserve class identity while introducing variation. More advanced ap-
proaches include generative models (e. g., Generative Adversarial Networks (GANs) [144])
that create realistic synthetic medical images, helping models generalize better across
patient populations and acquisition settings.

Active Learning [235] strategically selects the most informative samples for annotation,
optimizing the learning process with minimal labeled data. This approach iteratively
identifies uncertain or boundary cases where model predictions lack confidence, pri-
oritizing them for expert review. By focusing annotation efforts on the most valuable
samples, active learning can significantly reduce annotation costs while maintaining
model performance.

Unsupervised Learning [314] methods extract patterns and representations from data
without relying on explicit labels. In medical imaging, techniques such as autoencoders
and contrastive learning can leverage large unlabeled datasets to learn meaningful repre-
sentations, which can then be fine-tuned for specific diagnostic tasks with limited labeled
data.

Multitask Learning (see Def. 2.85) leverages shared representations to simultaneously
address multiple related objectives, potentially improving performance across all tasks
compared to individual modeling. By combining data from multiple tasks, the system can
develop more robust and generalizable representations, partially mitigating data scarcity
for individual tasks [447].

Federated Learning [225] enables collaborative model training across multiple institu-
tions without centralizing sensitive patient data. This approach distributes the training
process, allowing models to learn from diverse tasks while maintaining data privacy and
regulatory compliance. In medical imaging, federated learning addresses ethical and legal
constraints around data sharing, though it introduces challenges related to harmonizing
heterogeneous data distributions, establishing trust between participating institutions,
and managing computational synchronization across sites [319].
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Self-configuring methods, such as Automated Machine Learning [162] and nnU-Net [182],
automate parts of the model training pipeline for specific applications. These frameworks
analyze dataset properties to automatically determine, e. g., optimal preprocessing steps,
network configurations, and training strategies, without requiring manual tuning. In
biomedical image segmentation, nnU-Net has demonstrated state-of-the-art performance
across diverse tasks by applying a consistent set of heuristics, though its application
remains limited to segmentation problems and relies on predefined rules.

Task Transferability Estimation

The concept of Transfer Learning dates back to the 1970s [42] and involves any knowledge
transfer from a source task to a target task (see Def. 2.86), with its most prominent
application being pretraining on large-scale datasets [310, 451]. While utilizing off-
the-shelf pretrained models is a common practice to speed up model convergence (see
Def. 2.87), the vast number of available architectures, pretraining schemes, and datasets,
makes selecting the most suitable option a time-consuming process. This premise also
holds for the nascent field of FMs [37]. A key challenge in medical imaging Transfer
Learning is the domain gap between general computer vision datasets and medical images.
It has been shown that simply relying on benchmarks for pretrained models, such as
ImageNet [93], does not translate well to the medical domain [310].

These limitations of generic Transfer Learning approaches have fueled research in Task
Transferability Estimation, which aims to quantify the potential of knowledge transfer
between tasks [5]. While the research problem has been known for decades [27] and many
methods have been proposed, challenges with respect to data privacy considerations,
robustness in realistic heterogeneous data settings, and the avoidance of negative transfer
remain [98, 445, 451].

Existing Task Transferability Estimation methods, which attempt to assess model
suitability for a target task, often have only been applied in unrealistically homogeneous
settings [4, 96, 233, 269], lack large-scale validation (12 tasks in [257], 9 tasks in [158],
8 tasks in [381], 7 tasks in [313], 5 tasks in [12]), or are incompatible with data privacy
requirements [433]. Others are not suited for scalability, either because of computational
complexity [62, 115, 270, 294, 381, 388]* or the assumption that tasks share underlying
images [438].

3.3 Dataset shifts in algorithm deployment

Dataset shifts, where training and deployment data distributions differ, pose significant
challenges in ML. In medical image analysis, these shifts are particularly critical due to

2A scheme that is targeted by many publications concerns the search for a matching pretrained model
from a ‘model hub’ and involves infering predictions on the target task for every model in the model
hub. Because of the large file sizes of model weights, we consider this approach not scalable.
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their impact on diagnostic reliability.

Fundamental concepts

The problem of dataset shifts in ML was early summarized by Quinonero-Candela et
al. [306], who categorized six groups of shifts. Among these, two are particularly relevant:
covariate shifts, where the distribution of images p(X) changes but p(Y|X) remains
stable, and prior probability shifts®, where the label distribution p(Y") changes but p(X|Y")
stays consistent. Given a causal model in the form of p(X|Y)P(Y) they present Bayes
rule as a potential solution when target prevalences p(Y") are known.

The inconsistent terminology in dataset shift research was addressed by Moreno-
Torres et al. [261], who clarified definitions and discussed not only covariate and prior
probability shifts but also concept shift, where p(X |Y') respectively p(Y| X) change, while
p(Y') respectively p(X') remain stable. These concept shifts present particular challenges
due to the variety of potential causes, as illustrated by Gama et al. [122]. Despite these
complexities, modeling these causal relationships has gained popularity in healthcare
applications [334].

Dataset shifts in healthcare applications

Zhang et al. [440] provide compelling evidence for the importance of addressing dataset
shifts when deploying ML systems in healthcare. They identify several causes including
“institutional differences (such as local clinical practices, or different instruments and data-
collection workflows), epidemiological shifts, temporal shifts (for example, changes in
physician and patient behaviours over time) and differences in patient demographics (such
as race, gender and age)”. Their work references examples from literature demonstrating
performance deterioration after deployment under these shifts. For instance, Zech et
al. [439] investigated confounding factors of cross-institutional prevalence shifts in
pneumonia detection in X-ray images, finding reduced discriminative performance when
models were applied across institutions.

Subbaswamy et al. [372] advocate focusing on understanding the data generation
process in medical Al. Castro et al. [54] translate this concept more rigorously into
the language of causality for medical imaging, proposing a generic causal diagram for
imaging workflows (see Fig. 2.1). Their categorization of shifts focuses on medical imaging
processes, preferring the term prevalence shifts, which we follow in our work. Moreover,
they provide specific recommendations for each shift type, suggesting Bayes rule or
sample reweighting (see Def. 6.7) strategies for prevalence shift situations. Arjovsky et
al. [18] raise an important point that many approaches for handling covariate shift become
infeasible when prevalence shifts occur simultaneously, highlighting the complexity of
real-world deployment scenarios.

3A synonym for prevalence shifts. For a full list of synonyms used in literature see Def. 6.4.
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Analysis of prevalence shifts

One of the earliest works on handling prevalence shifts is by Saerens et al. [333]. They mo-
tivated sample reweighting and proposed an algorithm to estimate unknown prevalences
in a new environment — a problem later termed quantification [26] (see Def. 6.6).

Zhang et al. [443] assessed this problem more thoroughly, detailing the required
assumptions for their proposed quantification method and demonstrating how sample
reweighting can address prevalence shifts. Similar theoretical derivations were later
provided by Lipton et al. [230] for their approach of estimating prevalences and adjusting
NN post-hoc. Although they validated their approach on image classification, their MLP
and the datasets used (MNIST and CIFAR10) are not representative of medical image
analysis.

Dockes et al. [99] provide an overview of when and how dataset shifts affect predictions
in biomedical tasks, discussing both detection and correction techniques. For prevalence
shifts specifically, they suggest updating probabilities according to Bayes rule but do not
address prevalence estimation.

Ovadia et al. [277] experimentally demonstrated that temperature scaling (see Def. 2.67)
can mitigate increased miscalibration for covariate shifts. However, Alexandari et al. [11]
showed that temperature scaling alone is insufficient in the context of prevalence shifts
and proposed Bias-Corrected Temperature Scaling along with a method for quantifica-
tion. Their evaluation included three imaging tasks (one medical), though they only
reported miscalibration on the non-shifted test set. This solution was later placed within
a theoretical framework and independently verified by Garg et al. [124].

Recent trends

In a systematic benchmark of 24 quantification methods, Schumacher et al. [345] assessed
performance across 40 tabular datasets, providing recommendations while acknowledging
the dynamic nature of the field. Indeed, since their work, additional quantification meth-
ods have been proposed, such as those by Moreo et al. [263], demonstrating the continued
evolution of approaches to address prevalence shifts in deployment environments.

3.4 Summary of open challenges

We briefly summarize the previous sections, before drawing conclusions and putting our
research questions into perspective with literature.

(RQ1) Validation of image classifiers

As revealed by our review on prevailing practices and existing research on performance
measure selection (see Sec. 3.1) there is a strong need for a systematic decision guide
for performance measure selection. Current approaches frequently rely on popular but
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potentially misaligned metrics, leading to disconnects between reported performance
and clinical utility. (RQ1) addresses this gap by seeking methodologies to systematically
translate clinical objectives into appropriate validation metrics. This requires not only
understanding the mathematical properties of various metrics but also establishing
processes for capturing and incorporating domain expertise into validation frameworks.
A driving question is which properties of a dataset and clinical application are most
relevant for decision-making about performance measures.

(RQ2) Enabling knowledge transfer

Measuring task similarity represents a fundamental challenge in establishing effective
knowledge transfer between medical imaging applications. Unlike traditional Transfer
Learning methods that rely on direct access to source data, privacy-preserving task simi-
larity should aim to capture essential characteristics of learning tasks without requiring
raw data exchange. (RQ2) focuses on developing robust mechanisms for knowledge
transfer that respect the unique constraints of biomedical applications. An ideal similarity
measure would predict transfer performance accurately while remaining computationally
efficient and respecting patient confidentiality requirements. Current approaches either
lack validation in heterogeneous medical imaging contexts, fail to scale efficiently, or
cannot operate within privacy constraints — limitations our research aims to address
through a novel transferability estimation method.

(RQ3) Understanding prevalence shifts

The detection and compensation of prevalence shifts in deployment environments has a
critical gap in current research. While theoretical frameworks exist for adjusting predic-
tions under known prevalence changes, the interplay between prevalence quantification,
re-calibration, and downstream decision rules represents a complex optimization problem
that requires careful investigation. (RQ3) seeks to develop a systematic approach for
maintaining model performance under changing class distributions, a common scenario
in clinical practice. Moreover a large-scale evaluation with DNNs on applications of
medical imaging is necessary. By addressing these challenges, we aim to enable robust
model deployment across diverse healthcare settings with varying disease prevalences.

Towards Lifelong Learning systems

The translational struggles of current approaches in biomedical imaging highlight the need
for systems capable of Lifelong Learning (see Def. 2.90) - continuously and automatically
growing knowledge as more data and tasks are incorporated over time. Such systems
would ideally combine the strengths of Transfer Learning, Federated Learning, and
automated optimization while addressing their respective shortcomings. Recent work by
Soltoggio et al. [364] presents a compelling vision for the future of Al where independent
learning units share knowledge throughout their lifetimes, creating a “society of Al
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systems” that collectively holds more knowledge than any single agent. This concept
of Shared Experience Lifelong Learning is particularly relevant for medical applications,
where the constant evolution of illnesses, pathogens, and diagnostic technologies limits
the effectiveness of single-task models in isolation.

A truly effective Lifelong Learning system for medical imaging needs to address the
three fundamental challenges identified in our research questions:

(i) Align technical optimization with clinical utility through systematic translation of
clinical objectives into appropriate validation metrics.

(ii) Quantify relationships between tasks to maximize knowledge reuse without com-
promising patient privacy, with mechanisms that scale efficiently as the Knowledge
Base grows over time.

(iii) Adapt to changing data distributions across clinical environments, particularly
compensating for prevalence shifts over time.

These capabilities could lead to long-term scalability of AI which would reduce energy
consumption and carbon footprint of systems [364], while simultaneously addressing the
unique challenges of biomedical image classification.
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APPLICATION-SPECIFIC VALIDATION OF
IMAGE CLASSIFICATION ALGORITHMS

Parts of the results of this chapter have been published at the Medical Imaging
with Deep Learning (MIDL) conference [316], the Medical Imaging Meets NeurIPS
workshop [315] and in Nature Methods [238]. See App. A for full disclosure.
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Figure 4.1: Reward-learning loop. Anchoring of this chapter in the overall Lifelong Learning
system (see Fig. 1.1). Given a task, the Meta Learner interacts with domain experts to determine
the optimal performance measure for the Learner to train a model. Loop is highlighted in red.
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This chapter addresses the first research question of designing a reward-learning
loop as part of the Design phase in the Al lifecycle (see Fig. 4.1):

Research Question 1

How can clinical objectives be systematically translated into appropriate Al model
validation metrics?

In Sec. 2.1 we elaborated on the issues with clinical alignment of performance evaluation
and the implications for Al models in medical imaging. Sec. 3.4 summarized the gap in
the literature regarding comprehensive guidelines for metric selection. In this chapter we
want to present our approach for such a metric recommendation framework. The vision in
mind is a Lifelong Learning system that, when faced with a new task, iteratively poses
a minimal set of questions to domain experts. The answers are used to compile a set
of performance measures that are used to evaluate the task. Sec. 4.1 will present our
international initiative Metrics Reloaded to provide such recommendations. Next, Sec. 4.2
will present the resulting metric selection process along with some concrete examples.
Finally, Sec. 4.3 concludes the chapter with a discussion of our results.

4.1 Methods

This section presents our methodology for answering (RQ1) by following these steps:
First, we provide background information on the international consortium formed to
better understand and apply metrics in Sec. 4.1.1. After that, Sec. 4.1.2 summarizes all the
ImLC metrics identified by the consortium. We also provide a detailed analysis of the
relationships between the presented metrics, which helps to find complementary sets of
metrics. Next, we present the main characteristics of tasks that determine appropriate
metrics, summarized as the problem fingerprint in Sec. 4.1.3.

4.1.1 The Metrics Reloaded initiative

Our methodology for developing the Metrics Reloaded framework recommendations
involved establishing an international consortium of experts and conducting a structured,
multi-stage Delphi process. The Delphi technique, a systematic method for reaching con-
sensus through iterative questionnaires and feedback [47], is particularly valuable in med-
ical research for developing best practices when evidence is sparse or contradictory [267].
The expert panel initially consisted of 30 specialists from 25 institutions worldwide, drawn
from three key research initiatives: the Biomedical Image Analysis Challenges (BIAS)
initiative, the Medical Open Network for Artificial Intelligence (MONAI) Working Group
for Evaluation, Reproducibility and Benchmarks, and the Medical Image Computing
and Computer Assisted Interventions (MICCAI) Special Interest Group for Challenges
(formerly MICCAI board working group). To enhance domain coverage and breadth of
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expertise, the consortium has expanded over time to include additional experts in biology,
medicine, epidemiology, biomedical image analysis, statistics, mathematics, computer
science, and meta-research topics. The consortium was further strengthened by the
inclusion of key figures from the Enhancing the QUAlity and Transparency Of health
Research (EQUATOR) network [355].

The final expert consortium included a total of 73 researchers, composed of 73% male
and 27% female, working at 65 different institutions. Of these experts, 52% were professors,
followed by 37% who were postdoctoral researchers. The median h-index of the group
was 34, with a mean of 27, a minimum of 6, and a maximum of 113. The median academic
age of the researchers was 18 years, with a mean of 19, a minimum of 3, and a maximum
of 42. The experts originated from 18 countries and covered 5 continents. The geographic
distribution of the expert consortium showed a predominant European representation
(73%), with significant contributions from Germany (35%) and the United Kingdom (12%).
North American experts constituted 21% of the consortium, primarily from the United
States (13%) and Canada (8%). The remaining participants came from South America
(3%), Australia (2%), and Asia (1%). In terms of academic background, 66% of the experts
had technical expertise, 7% were clinical experts, 3% had a biological background, and
24% had mixed expertise. Regarding the institutions, 88% of them provided staff data. Of
these, 58% of the institutions had between 1000 and 10 000 employees, 25% were even
larger, with 10 000 to 100 000 employees, and 16% had fewer than 1000 employees. Only
2% of the institutions exceeded 100 000 employees.

Within this international consortium, we established several distinct working groups:

(1) A three-member core team, took responsibility for the overall coordination of the
project. This included managing the Delphi process, developing the framework
structure based on expert input, designing and analyzing the surveys, and facili-
tating the workshops. To maintain objectivity, the core team generally abstained
from participating in the voting procedures.

(2) An extended core team provided support to the primary coordinators, assisting
with Delphi process administration, survey development, and workshop logistics.

(3) A series of expert groups that worked on specific aspects of the framework in
between the surveys. Each expert group was led by up to two leads, who organized
the communication within the expert group and between the expert group and the
core team. The final expert groups were:

(i) The Image-level Classification (ImLC) expert group, which focused on the
ImLC task as described in this thesis.

(ii) The Semantic Segmentation (SemS) expert group, focused on the task of
SemS of images.

(iii) The Object Detection (ObD) and Instance Segmentation (InS) expert
) g p
group, focused on the two tasks of ObD and InS.
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(iv) The biomedical expert group, consisting of clinicians and other domain
experts, whose purpose was to ensure that the recommendation framework
would meet application-specific needs and to identify scenarios for evaluating
the framework.

(v) The cross-topic expert group, that addressed task-independent metric rec-
ommendations, such as metric aggregation.

(vi) The calibration expert group, established at a later date after calibration was
identified as an additional important topic.

Overall, the process involved six distinct stages, including five workshops and nine
surveys prior to the final Delphi consensus vote. After the surveys were completed, the
core team carefully analyzed the results, discussed them with expert groups or individual
experts as needed, and integrated feedback to iteratively refine the framework. The major
stages of the compilation and consensus-building process are detailed in the following
paragraphs.

1. Initialization The project began with a kick-off workshop aimed at defining the
precise scope of the recommendation framework. We prepared for this workshop by con-
ducting a preliminary survey focused on collecting relevant literature and documenting
both theoretical and practical cases where metrics failed in classification, segmentation,
and detection tasks. Following the workshop discussions, we implemented a three-survey
sequence that yielded four key outcomes: (1) establishment of a unified terminology, (2)
definition of inclusion criteria focusing on classification tasks at both the image/object
and pixel levels, (3) development of a curated list of relevant metrics, the final version of
which is presented in Sec. 4.1.2, and (4) generation of initial problem fingerprints, which
were subsequently refined into the final fingerprints presented in Sec. 4.1.3.

2. Drafting The second Delphi workshop focused on forming specialized expert groups
to lead distinct task forces. We formed five initial groups: three dedicated to specific prob-
lem categories ( ImLC, SemS, and ObD/InS), supplemented by a biomedical expert group
and a cross-topic expert group. Each problem category group was tasked with developing
recommendations to address common evaluation pitfalls in their type of task [317]. The
cross-topic group focused on broader metric-related challenges beyond metric selection,
including aggregation methods, reporting standards, implementation considerations,
statistical analyses, ranking procedures, and bias assessment. The biomedical expert
group ensured the clinical relevance of the framework and identified key biomedical use
cases. To facilitate the work of the task forces, we distributed group-specific surveys.
We adopted a flexible approach, allowing each group autonomy in developing their rec-
ommendations without imposing methodological constraints. Preliminary results were
presented by the expert group leaders to the core team during the third Delphi workshop.
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3. Consolidation After the expert groups completed their initial draft recommen-
dations, the Metrics Reloaded core team undertook a harmonization process, working
closely with each group to integrate and standardize their contributions. The resulting
decision trees encapsulating the core recommendations were presented and reviewed
during the fourth Delphi workshop.

4. Revision The members of the consortium and their respective teams carried out
an internal validation of the decision trees through practical application. The Metrics
Reloaded core team, working closely with the expert groups, integrated the feedback
collected through surveys into the framework. The comprehensive first draft was then
presented and evaluated at the fifth Delphi workshop.

5. Crowdsourcing To ensure broad community input, we launched an extensive
public feedback campaign following the release of the framework on arXiv [237]. The
campaign combined social media outreach, targeted mailings, and an online survey. The
survey, which received responses from 186 researchers, provided options for both quick
feedback and detailed assessments of the framework’s usefulness and comprehensiveness.
Of the respondents, 82 provided written feedback, with 58 opting for detailed responses.
This crowdsourcing effort yielded several significant outcomes: seven substantive con-
tributors were invited to join the consortium, leading to the creation of a new expert
group focused on calibration recommendations. Community feedback also guided the
development of metric cheat sheets and the implementation of the web toolkit [1]. The
survey responses informed our selection of biomedical use cases and led to enhancements
to the framework, including the addition of new classification metrics such as the EC. The
revised framework, incorporating these community-driven improvements, underwent a
final consortium review through another survey, from which the core team compiled the
final recommendations for Delphi-based consensus building.

6. Consensus The finalization of the framework involved an accelerated Delphi process
to reach consensus on its ten core components. The calibration recommendations under-
went two rounds of revisions in response to consortium feedback, ultimately achieving
strong support with only a single dissenting vote. The remaining nine sub-processes
demonstrated robust consensus in their first round, with disagreement rates ranging
from 0% to 7%. Consortium members were given the opportunity to review and veto final
minor changes, primarily formatting and style adjustments. No vetoes were exercised.
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Disclosure

Importantly, while the scope of the Metrics Reloaded framework also comprises
ObD, SemS and InS, we will focus solely on the results for the ImLC parts. The
remainder of this chapter will describe the methodological steps taken by the
ImLC expert group (under my leadership and in close collaboration with the core
team) and the recommendations that were finally generated. This restriction may
sometimes lead to omission of individual elements in the lists presented in this
thesis, but for better reference we will mostly keep the wording and numbering of
the original publication [238].

v

Methodologically the work of the ImLC group can be broken down as depicted in
Fig. 4.2. Therein the following components reside:

Use case The application requesting the recommendation. It comprises the abstract
‘intentions’ of the domain experts, some actual data in the form of a task 7 to be
evaluated, and also the nature of the data distribution pr(X,Y) (see Def. 2.3).

Metrics A selection of potentially suitable performance measures for the use case. The
goal is to recommend a subset of metrics that captures the intent of the use case,
while avoiding pitfalls.

Properties The metric definitions result in certain properties of metrics that deem them
appropriate or inappropriate under various conditions. Desirable properties can
capture the degree of fit with the associated use case intentions, while undesirable
properties can lead to misinterpretation or incorrect conclusions about the fitness
of a model.

Pitfalls A structured collection of ‘incorrect conclusions’ that may be drawn from
performance measures under certain conditions. Any recommendation for a use
case should avoid suggesting metrics that are susceptible to the pitfalls that apply
to the conditions of the use case.

Problem fingerprints The structured responses to a series of binary and multiple choice
questions, that attempt to capture the conditions of the use case and the intentions
of the domain experts. Only a subset of these questions need be answered to obtain
recommendations.

Recommendation interview The actual process of asking the domain experts ques-
tions to obtain metric recommendations.

We will describe the full set of metrics and the summary of relevant properties in
Sec. 4.1.2, and the pitfalls and problem fingerprints in Sec. 4.1.3 as part of the methodology.
The recommendation process will be described as part of the results in Sec. 4.2.1. Some
concrete use cases are also described in Sec. 4.2.3.
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Figure 4.2: Methodological steps for reccommendation generation. Methodologically, it is
necessary to understand metric properties and how they combine with use case characteristics
to create pitfalls in metric suitability. Relevant pitfalls are covered by the problem fingerprint,
which determines the key decisions during the recommendation interview with domain experts.
Since the domain experts know the use case characteristics, it is possible to select appropriate
metrics in the forward pass to avoid pitfalls.

4.1.2 Metric pool

The list of candidate performance measures within the framework evolved through the
iterations described above. Initially, metrics from established international biomedical
competitions [240], complemented by previous studies [147, 363, 377], were considered.
While some metrics were deemed less important by the experts in the surveys, others
were added, e. g., during the crowdsourcing. The final pool of metrics is given in Tab. 4.1
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with references to the precise definitions given in Chap. 2. The categorization' into
counting metrics, which are based on a single confusion matrix, multi-threshold metrics,
which are based on multiple confusion matrices via a sweep over thresholds, and finally
calibration metrics, which are based solely on class probabilities, has already been used
along with the introduction of metrics in Sec. 2.4, Sec. 2.5 and Sec. 2.6.

To understand why a particular metric is susceptible to a particular pitfall, we need
to dissect metrics and identify properties that, in conjunction with the given use case,
are the cause for a particular pitfall. We thus enrich the task pool overview with some
additional properties to better explain their nature.

One of these properties, which is a major pitfall for model assessment in this chapter
(and will also be vital in Chap. 6), is the influence of prevalences P on the performance
measure 4. The chain of thought here is as follows: If ;1 depends on P (which itself
depends only on i), but P is assumed to be not ‘representative’ for the final application
(e. g., because the data collection for 7. was biased, hence the realizations 7. are not
ii.d. from the actual problem distribution p7(X,Y) as given in Def. 2.3), then the value
of 11 on the application data 7, is likely to differ from the value of ;i on 7i.y. Some
metrics avoid or compensate for this influence by weighting classes equally and focussing
mainly on TPR or similar aspects of the confusion matrix. Metrics that incorporate the
predictive perspective as given in Def. 2.35 are prevalence dependent, as discussed after
Prop. 2.38.

Another key property is whether a performance measure is inherently multiclass or
relies on a one-versus-the-rest confusion matrix (Def. 2.15) to be defined for a particular
class. We will refer to the former as multiclass metrics and the latter as per-class
metrics. The ability to weight classes for multiclass metrics and the ability to plug in
individual confusion costs also differentiate metrics.

Table 4.1: Metric pool. The recommended classification metrics along with the reference
of their definition in this thesis, their value range and orientation (1 positively,
| negatively), whether they are applicable to multiclass tasks without ovr
reduction (Def. 2.15), depend on the task prevalence and allow confusion costs.
Table inspired by Table SN 2.1 from Maier-Hein et al. [238].

Multi- Class Prev Confu-
Metric Acr. Def. Value range weight- : sion
class . dep.
ing costs
Counting metrics
Accuracy AC 2.18 [0,1] 1 yes yes
Balanced Accuracy BA 2.21 [0,1] yes equal

Continued on next page

The identification and naming of metric categories for each problem category was also a task of the
expert groups.
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Table 4.1: Metric pool. The recommended classification metrics along with the reference
of their definition in this thesis, their value range and orientation ({ positively,
J negatively), whether they are applicable to multiclass tasks without ovr
reduction (Def. 2.15), depend on the task prevalence and allow confusion costs.
Table inspired by Table SN 2.1 from Maier-Hein et al. [238]. (Continued)

Multi- Class Prev. Confu-
Metric Acr. Def. Value range class we.ight- dep. sion
ing costs
Matthé\g:ﬂ(;éz;etlation McCC 2.49 1,111 yes equal yes
Weighted Cohen’s Kappa WCK 2.30 [-1,1] 1 yes via costs yes yes
Expected Cost EC 2.23 (— inf, inf) | yes via costs yes yes
True Positive Rate TPR 2.16 [0,1]
True Negative Rate TNR 2.16 [0,1]
Positive Likelihood Ratio LR+ 232 [0, inf) 1
Positive Predictive Value PPV 2.35 [0,1] 1 yes
Negative Predictive Value NPV 2.35 [0,1] yes
F-beta F-beta 2.44 [0,1] yes via 3
Net Benefit NB 2.57 (—inf, 1] 1 yes via T
Multi-threshold metrics
Area under the Receiver
Operating Characteristic AUROC 2.55 [0,1]
Curve
Average Precision AP 2.56 [0,1] yes
Calibration metrics
Brier Score BS 2.74 [0,2] | yes yes
Root Brier Score RBS 2.74 [0,v2] { yes yes
Negative Log Likelihood NLL 2.73 [0,inf) | yes yes
Expected Calibration Error ECE 2.66 [0,1] yes yes
Class-wise Calibration Error CWCE 2.68 [0,1] 4 yes equal
Kernel Calibration Error KCE 2.69 [0,inf) | yes yes
Expected Calibration Error ECEKDE 2.70 0,2 4 ves ves

Kernel Density Estimate

As demonstrated in Sec. 2.4, many counting metrics are closely related and hence
do not necessarily provide ‘complementary’ information about the performance of a
categorical classifier. Recommending multiple related metrics may distort the overall
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picture and suppress less represented properties. In addition to the properties from
Tab. 4.1, these relationships were an important criterion for including or recommending
specific metrics. We summarize the relationships in Tab. 4.2. Thereby we distinguish the
following categories of relationships:

1. -: Given one metric the other is computable without any further information
from the confusion matrix.

2. [Orange : This reflects mutual computability under strong assumptions: We fix
[ =1 for the F-beta score, 0-1-costs for WCK and EC and assume 7 is a balanced
binary task.

3. : This relation captures cases where one metric is a generalization (or in-
stantiation) of another. In other words, for some fixed ‘parameters’ of one metric
it coincides with another (parameter-free) metric.

4. Yellow : All other noteworthy relationships are covered in this category. Most of
the time, one metric is an ‘ingredient’ in the calculation of another.

4.1.3 Problem fingerprints

In order to provide tailored metric recommendations, we need to be aware of the pitfalls
that should be avoided for the particular use case. Although published separately [317],
the collection, analysis, and systematic categorization of pitfalls related to performance
measures was a key driver for progress in Metrics Reloaded. Notably, the collected pitfalls
targeted not only the appropriate selection of a performance measure, but also the correct
identification of the problem category, i.e., in our case, whether the formulation of the
medical questions in terms of an ImLC problem is appropriate, and the correct application
of a performance measure, which concerns, e. g., the choice of parameters, appropriate
aggregation, and adequate reporting. For the scope of this thesis, we focus primarily on
the following pitfalls® [317]:

[P2.1] Disregard of the domain interest. These are the aspects of the use case that
relate to the intentions of the domain experts. It comprises:

(i) Importance of confidence awareness e. g., evaluating only counting met-
rics, although the probability estimates of a classifier are required in the
application.

(ii) Importance of comparability across datasets e. g., comparing models that
have been assessed via AC on different tasks with different prevalences.

2We will discuss some other pitfalls in Tab. 4.3.
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Table 4.2: Metric relations. We reference noteworthy relationships between metrics from
Chap. 2 above the diagonal. Below the diagonal we use colors to code the kind of relationship
between metrics. -: mutually computable, Orange : mutually computable with standard

choice of metric parmeters for binary and balanced tasks, : generalization/instantiation,
Yellow : other notable relationship. Table inspired by Fig SN 2.1 from Maier-Hein et al. [238].

AC | BA | CK | EC | ER b:t_a F1 J JAC | LR+ [MCC| MK | NB [ NPV | PPV | TNR | TPR (WCK
AC X 2.22 2.19 2.49 2.40 2.20
BA X 2.34 2.21 | 231
CK X 2.30
EC X 2.24 2.25
ER X
F-
beta X 2.46 2.44 2.44
F1 X 2.48
J !] X 2.52 | 242 2.33 | 2.33
JAC .] X
LR+ X 2.32 | 2.32
McCC X | 252
MK X 241 | 241
NB X 2.58 | 2.58
NPV b'e 2.39
PPV X 2.39
TNR X
TPR X
WCK X
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(iii) Unequal severity of class confusions e. g., treating all confusions equally
for an ordinal or hierarchical structure of classes.

(iv) Importance of cost benefit analysis e. g., ignoring the clinically justifiable
threshold for false positives in relation with true positives.
[P2.3] Disregard of the properties of the dataset. These are the aspects of the use case
that relate to the data of the task. This includes:
(i) High class imbalance e. g., performing evaluation with a metric that does
not reflect the relative performance compared with the naive classifier.
[P2.4] Disregard of the properties of the algorithm output. These are the aspects of
the use case that relate to the model. These are:
(i) Availability of predicted class scores e. g., approximate AP with a single
point on the curve.
[P3.2] Inadequate metric aggregation. These are the aspects of the combination of
metric values into model scores. These are:

(i) Non-independence of test cases e. g., having multiple samples from the
same patient or hospital.

(ii) Possibility of invalid prediction e. g., incorrectly formatted outputs, can-
celed prediction computations due to resource constraints, or failed model
inference by throwing an exception.

Straightly related to these pitfalls are the categories for the problem fingerprints.®

[FP2] Domain interest-related properties. These are the aspects of the use case that
relate to the intentions of the domain experts. It comprises:

[FP2.5] Penalization of errors: addresses [P2.1] (iii) and [P2.3] (i)
[FP2.6] Decision rule strategy: addresses [P2.1] (iv)
[FP2.7] Calibration of predicted class scores: addresses [P2.1] (i)
[FP4] Dataset-related properties. These are the aspects of the use case that relate to
the data of the task. This includes:
[FP4.1] High class imbalance: addresses [P2.3] (i)

[FP4.2] Provided class prevalences reflect the population of interest: addresses
[P2.1] (ii)

[FP4.3] Non-independence of test cases addresses [P3.2] (i)

3The given numbering is an example for selective relevance from the Metrics Reloaded framework: The
fingerprint families FP1 - Problem category and FP3 - Target structure-related properties are left
out as we assume a whole image problem to be given (see Def. 2.2).

106



4.1 Methods

[FP5] Algorithm output-related properties. These are the aspects of the use case that
relate to the model. These are:

[FP5.1] Availability of predicted class scores: addresses [P2.4] (i)
[FP5.3] Possibility of invalid algorithm output: addresses [P3.2] (ii)

A granular overview on the problem fingerprint elements and individual descriptions
are given in Figs. 4.3, 4.4, and 4.5.

We provide more details for some fingerprint items that are not sufficiently self-
explanatory:

FP2.5.5: Compensation for class imbalances

While AC remains the dominant metric for multiclass classification (see Sec. 6.2.1 and
Maier-Hein et al. [240]), it exhibits significant weaknesses when faced with class im-
balances. Consider a binary classification scenario with the following confusion matrix
TP=0, FP=1, FN=1, TN=10 000, which paradoxically yields an AC of approximately 1. This
seemingly perfect score masks three critical methodological pitfalls that fundamentally
undermine the metric’s reliability in imbalanced scenarios:

Misleading metric values due to missing reference value for naive classifier:
In the given example, the near-perfect score hides the fact that the same performance
could have been achieved by a naive classifier that always predicts the dominant class
(see Def. 2.26). In general, in balanced scenarios, the AC of a naive classifier is 1/C
(follows from Prop. 2.22 and Def. 2.21, where the TPRs will necessarily sum to one),
which serves as an important anchor when interpreting the metric scores. However,
when class imbalances are present, no such interpretation can be made, and the naive
reference depends on the class prevalences.

Misleading metric values due to unequal contribution of classes to the metric
score: In the example provided, the near-perfect score masks the fact that all samples of
the positive class (here: one sample) were misclassified. While all classes contribute simi-
larly to the AC metric in balanced scenarios, frequent classes dominate the performance
score in imbalanced settings (see Prop. 2.20). While none of the rare cases are correctly
classified, the metric achieves a near perfect score due to the very good performance on
the dominant class. Prevalence-independent metrics (see Tab. 4.1) are based on the equal
contribution of each class irrespective of prevalence.

Misleading metric values due to missing consideration of predictive values:
In our example, the near-perfect score hides the fact that the PPV of this system is
zero. Generally, in balanced scenarios, high AC scores imply high predictive values
(see Cor. 2.40), which are important indicators of the utility of a classification system in
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IMAGE-LEVEL CLASSIFICATION (ImLC) PART 1

Fingerprint ID and name Fingerprint illustration Fingerprint description
Class 1 Image-level classification (ImLC): assignment of one or multiple category labels to
1.1 Image processing category the entire image.

identified by category mapping

Example: disease screening; deciding on the presence or absence of a certain
condition/pathology without localizing the phenomenon.

Domain interest-related properties (part 1)

2.5 Penalization of errors There may be a preference for certain types of errors from a domain perspective.

Class 2

There is a preference for one or several of the classes. This has implications for
both the metric selection and the metric aggregation. It is important to note that
. this fingerprint only considers “a priori interest” in classes that is irrespective of
2.5.1 Unequal interest across Kl% the class prevalences in the data. This distinction is necessary, because one can
m also think of the importance of a class in terms of how much it contributes to the

final metric score. This latter concept, however, is based on the class prevalence at
hand and thus considered via compensation for class imbalances (FP2.5.5) in our
framework.
Note that class interest in this context can be considered as costs for all cells of a
confusion matrix related to one class as a whole. In contrast, “class confusions”
(FP2.5.2) considers individual cells in the confusion matrix.
Example 1: five-way classification on a heavily imbalanced dataset. One class domi-
nates the other classes in terms of frequency, but the interest lies in the overall error
rate of the system, implying the dominating class should contribute more to the final
metric score.
Example 2: In cell classification scenarios, it may be more important to correctly clas-
sify tumor cells compared to correctly classifying muscle cells or connective tissue.
Example 3: in full surgical scene segmentation for autonomous robotics, critical struc-
tures, such as nerves or vessels, should be localized more accurately compared to
fatty tissue.

classes

Any class can be confused with another, but certain mismatches are more severe
than others, from a domain point of view. This holds especially true (1) in screen-
ing tasks, in which FNs are typically more severe than FP, (2) in retrieval tasks, in
which FP are typically more severe than FN and (3) in tasks with ordinal rating.
Note that class confusions in this context can be considered as costs for individu-
al cells in the confusion matrix, while “interest across classes” (FP2.5.1) would con-
sider all matrix cells related to one class as a whole.

It is important to note that this fingerprint only considers “a priori costs” of a task
that is irrespective of the class prevalences in the data. This distinction is neces-
sary, because one can also tweak the confusion costs in hindsight to compensate
for certain imbalances in the data (not considered here).

Example 1 (multi-class): Depending on the application, confusing different kinds of
immune cells is more problematic compared to confusing an immune cell with a
tumor epithelial cell.

Example 2 (multi-class): lung tumor categorization T1-T5 depends largely on struc-
ture size, implying an ordinal scale of classes. Thus, penalization of class confusions
should reflect this ordinal scale.

2.5.2 Unequal severity of class
confusions

The class prevalences do not reflect the class importance. There are three scenari-
os in which this property should be set to TRUE.
1. Class prevalences are balanced (FP4.1 = FALSE), but there is an unequal interest
— across classes (FP2.5.1 = TRUE).
2.5.3 Mismatch between class ™ e [fR] ™ T m mw  2.Class imbalance is present (FP4.1 = TRUE), but there is an equal interest across
prevalences and class #* = classes (FP2.5.1 = FALSE).
importance 3. Class imbalance is present (FP4.1 = TRUE) and there is an unequal interest
gy across classes (FP2.5.1 = TRUE), but the way in which classes are imbalanced
= does not match the “imbalance of interest”.
Importantly, while scenarios 1 and 2 can be expressed with other fingerprints,
scenario 3 represents a new set of use cases.

™

In the case of an unequal severity of class confusions (FP2.5.2 = TRUE), these un-
equal severities might be explicitly defined in the form of cost values associated
TP FN with each confusion. For example, a cost analysis may lead to the result that FN
2.5.4 Costs for class confusions TP FN | errors are 5 times more costly than FP errors. In case such costs are defined or can
available FP TN | beestimated with adequate accuracy for the use case, it is possible to apply cer-
FP@ TN tain metrics which explicitly consider these costs in validation (e.g., WCK and EC).
If costs are not provided and cannot be estimated, we recommend to proceed
with validation separately for individual classes.

Severe class imbalances might lower interpretability and impede objective as-
sessment of method validation and for example, lead to overly optimistic conclu-
sions. Specifically, we distinguish three pitfalls:
1. Missing reference value for random performance
2.5.5 Compensation for class 2.Neglect of equal importance of classes
imbalances requested m KI% 3. Missing consideration of predictive values

The choice of counting metric(s) depends crucially on which of these pitfalls
should be avoided.

Figure 4.3: Elements of the problem fingerprint with corresponding questions (part
I). The columns display from left to right: fingerprint ID and name, an illustration for the
corresponding property in the blue column (for binary tasks the red column displays a coun-
terexample), and a detailed description in the last column. Originally published in Maier-Hein
et al. [238].

108



4.1 Methods

Domain interest-related properties (part 2)

Modern algorithms output continuous class scores. Making a classification decision requires
identifying a decision rule applied to the scores, which amounts to setting a cutoff value in
binary tasks. A product of this process is the (decision rule-specific) confusion matrix. This

matrix enables the computation of popular single-threshold counting metrics, such as Sensi-
tivity, PPV and F, Score. Depending on domain interest the decision rule can be set in multi-

ple ways:

4 i : The cutoff represents the threshold for which a
specific target metric value (e.g., Sensitivity = 0.95) is achieved. Importantly, this threshold
has to be determined on a separate data split. Other metric values (e.g., Specificity) are then
reported for this specific threshold. We use the notation Metric@(TargetMetric =TargetVal-
ue) (e.g., Specificity@Sensitivity = 0.95) in this case. This cutoff strategy is limited to binary
classification problems.

imization-| : The decision rule is inferred by optimizing a target metric, such as the F,
Score in the binary case, on a separate data split.
Argmax-based: Especially in multi-class scenarios and if no target value is defined, no sepa-
rate data split for optimization is available, or there are concerns w.r.t generalization of da-
ta-based decision rule optimization, a common option is to follow the principle of a Bayes
classifier and pick the class with the highest predicted class score.
Cost-benefit-based: In case the predicted class scores are calibrated (see FP2.7), and there is
either a task related risk-cutoff (only for binary classification tasks, e.g. “only treat patients
with cancer risk >10%"), or explicit costs for misclassification errors provided, one can apply
this decision rule directly to the scores without data-driven optimization. Notably, in binary
classification tasks provided risk cutoffs are often based on a cost ratio of TP versus FP (e.g.,
not more than 10 FPs per 1 TP should be treated). In most cases, no specific risk cutoff can be
determined, thus model performance is plotted over a reasonable range of risk scores (“deci-
sion curve analysis”).

isi ied: Examples for no interest in validating a method at a specific deci-

sion rule are 1) focus on general methodological performance across many tasks and data
sets without application interest, 2) concerns regarding the comparability of results based
on a single decision rule that is fixed across varying study cohorts (see also FP4.2), or 3) focus
on the probabilistic predictions to obtain and communicate personalized risk factors of indi-

2.6 Decision rule applied to
predicted class scores
Options:

- Target value-based

- Optimization-based

- Argmax-based

- Cost-benefit-based

- No decision rule applied

. . . The potential benefit of one or
2.7.2 Comparative calibration more re-calik thods is to be d and compared. The desired validation output
assessment requested is a ranking of re-calibration methods (including the performance of "no re-calibration")
Options: from which the best method can be selected.
- Gemysenen of el Comparison of calibration performance across classifiers: This comparison of classification
5 models potentially includes re-calibration methods applied on their outputs. The desired
methods on the same classifier validation output is a ranking of methods according to calibration quality.
- Comparison of calibration Comparison of overall performance across classifiers: Overall performance refers to the joint
performance across classifiers assessment of discrimination performance and calibration quality. This comparison of classi-
- Comparison of overall fication models potentially includes re-calibration methods applied on their outputs. The
performance across classifiers desired validation output is a single ranking naturally weighting both aspects.
- No comparative assessment i If the interest lies in understanding the reliability of predicted
class scores for one given model, no metrics for ¢ i are required.

Figure 4.4: Elements of the problem fingerprint with corresponding questions (part
II). The columns display from left to right: fingerprint ID and name, an illustration for the
corresponding property in the blue column (for binary tasks the red column displays a coun-
terexample), and a detailed description in the last column. Originally published in Maier-Hein
et al. [238].
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IMAGE-LEVEL CLASSIFICATION (ImLC) PART 3

Data set-related properties

The class prevalences differ substantially.

Example: In a screening application, the positive class (e.g., cancer) may occur ex-
tremely rarely. In this case, prevalence-dependent metrics, such as Accuracy, may be
extremely misleading.

4.1 High class imbalance

The test cases are hierarchically structured, indicating non-independence of test
cases.
Examples: multiple images of the same patient, hospital or video.

4.5 Non-independence of
test cases

> Modern algorithms in biomedical image classification output continuous class
5.1 Availability of predicted scores, which are often interpreted as predicted class probabilities. These scores
B contain relevant information about the performance of a model and are thus
crucial for comprehensive and meaningful validation.
If no predicted class probabilities are available, this property is set to false.

class scores

Figure 4.5: Elements of the problem fingerprint with corresponding questions (part
II). The columns display from left to right: fingerprint ID and name, an illustration for
the corresponding property in the blue column (for binary tasks the red column displays a
counterexample), and a detailed description in the last column. Originally published in Maier-
Hein et al. [238].
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practice. This is not necessarily the case in imbalanced scenarios, as seen in the provided
example, where the PPV is zero despite a high AC. To compensate for this effect, metrics
that combine the Sensitivity and predictive value perspectives (see Sec. 2.4.3) can be
considered, which explicitly assess the predictive performance of a classifier.

FP2.6: Decision rule applied to predicted class scores

The choice of whether to apply a decision rule during validation depends critically on the
research objective: to emphasize either the quality of discrete classification decisions or
the nuanced information contained in continuous probability predictions. While certain
domains, such as cell InS, have standardized decision-rule-based validation [51], contem-
porary clinical research increasingly advocates decision-rule-agnostic approaches [260].
These perspectives argue that fixed decision rules often suffer from critical limitations:
they tend to be over-optimized for specific datasets, produce non-transferable results
across different study cohorts (see Chap. 6), and may not capture the complex cost-benefit
dynamics of different clinical applications [403]. Moreover, continuous class probabilities
are recognized as more informative for patient communication and clinical decision mak-
ing [424]*. Acknowledging this methodological tension, our approach provides flexibility
by making the application of decision rules optional and allowing users to encode their
validation preferences through a configurable problem fingerprint. The fingerprint thus
supports multiple decision rule strategies to accommodate different research needs.

Target-value based (only for binary tasks) Certain clinical or research contexts re-
quire reaching a predefined performance threshold for a particular metric (e. g.,
requiring a sensitivity of 0.95). In such scenarios, we introduce the notation Met-
ric@(TargetMetric = TargetValue), such as ‘Specificity@(Sensitivity = 0.95)’,
which represents the Specificity (=TNR) corresponding to the target Sensitivity
(=TPR). A critical methodological consideration is that this cutoff determination
must be performed using a separate, dedicated data partition to ensure method-
ological rigor and to avoid overfitting.

Optimization-based In the absence of a predefined target value, decision rules can
be derived through data-driven optimization of a primary performance metric
(e.g., F1) utilizing a dedicated configuration dataset. While one-dimensional cutoff
scanning remains straightforward for binary classification tasks, extending this
approach to multiclass scenarios introduces substantial computational and method-
ological complexities. Identifying optimal decision rules across multiple classes
requires more sophisticated optimization strategies that can navigate the increased
dimensionality and interdependencies of the classification space.

“Wynants et al. [424] have provocatively referred to the routine imposition of binary thresholds on
continuous predictions as “dichotomania”
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Argmax-based A common decision rule strategy is based on the argmax decision rule
(see Def. 2.9). This approach is based on the fundamental assumption that the
highest class score corresponds to the most likely true class. While rooted in
Bayesian classification theory, which defines this as a ‘Bayes classifier’, the theo-
retical validity of the method depends on two critical conditions: equal severity of
class confusions (FP2.5.2=False) and well-calibrated class probability scores. These
nuanced requirements are often overlooked in practical implementations. Chap. 6
provides a comprehensive examination of the potential pitfalls and limitations
inherent in this seemingly straightforward decision strategy”.

Cost-benefit-based When probability scores are appropriately calibrated (see FP2.7)
and task-specific confusion costs (see Def. 2.23) or risk thresholds (only for binary
classification tasks, e. g., ‘treat only patients with cancer risk >10%’) are available,
decision rules can be applied directly without additional data-driven optimization.
In binary classification, cost-benefit cutoffs often reflect error asymmetry, such as
tolerating no more than 10 false positives for every true positive (see Def. 2.57).
More sophisticated approaches define explicit costs for both false positives and
false negatives, allowing nuanced quantification of classification consequences (see
DG3.2 in Sec. 4.2.2). While traditionally conceived for binary contexts, these cost-
based decision strategies can be systematically extended to multiclass classification
scenarios [113], providing a flexible framework for integrating domain-specific
risk considerations into predictive modeling.®

No decision rule applied An alternative methodological approach is to omit a prede-
fined decision rule altogether. Instead, this strategy focuses on evaluating discrimi-
native performance through multi-threshold metrics that systematically explore
different classification cutoffs, coupled with proper scoring rules that simultane-
ously assess model calibration and discriminative capacity. This approach provides
a characterization of a classifier’s predictive capabilities beyond the constraints of
a single decision threshold.

FP2.7: Calibration of predicted class scores

The choice of the calibration condition to be validated and the metric to be used de-
pends on the domain interest. The methods to be validated in this context are either
classification models, whose inherent calibration quality is to be assessed, or so-called
re-calibration methods, i. e., transformations on the classifier outputs aimed at improving
the calibration quality (see Def. 2.67). In the most common scenarios, the driving interest
may be either a comparative performance evaluation (FP2.7.2), where methods are ranked

>More specifically, Sec. 6.2.4 shows the consequences of ignoring the necessary precondition of appropriate
model calibration or considering performance measures that do not translate to 0-1-costs.
®We present such a cost-based decision rule in Def. 6.9 and analyze it in Sec. 6.2.4.

112



4.1 Methods

according to calibration quality, or an absolute performance evaluation (FP2.7.3), where
an interpretable and communicable measure of calibration quality is desired. We have
identified four main use cases (U1-U4) that our framework addresses (Fig. 4.6).

1. FP2.7.2 Ranking methods to determine calibration quality: The following
use cases focus on the comparative assessment of the calibration quality of one or
multiple classifiers.

a) Use case 1 (U1): comparing the effect of one or more re-calibration methods
on the same (fixed) classifier. The desired validation output is a ranking of re-
calibration methods (possibly including the performance of 'no re-calibration’)
from which the best method can be selected.

b) Use case 2 (U2): comparing the calibration quality of multiple classifiers
on the same task. The desired output of the validation is a ranking of the
classifiers according to their calibration quality. In practice, such a ranking
should be accompanied by a ranking according to discrimination performance,
as it is not recommended to base model selection on calibration performance
alone.

c) Use case 3 (U3): comparing the ‘overall performance’ of classifiers (option-
ally including potential re-calibration methods), i. e., a joint assessment of
discrimination performance and calibration quality. The desired validation
output is a single ranking that naturally weights both aspects.

2. FP2.7.3 Interpreting model outputs: Of complementary interest may be the
analysis of the CE to assess the reliability of the predicted class scores of one or
more classifiers.

a) Use case 4 (U4): interest in understanding the reliability of predicted class
scores for a given model as a basis for interpreting and communicating results.
The desired validation output is a single score that provides insight into how
well the model is calibrated. The reliability of model outputs is often consid-
ered crucial upon application, such as for clinical prediction models [101, 394,
432]. Importantly, U4 can be used in addition to U1, U2, or U3 as it is based
on an orthogonal interest.

Because some decision rules assume calibrated model outputs, a further potential
interest in calibration validation may be to determine the quality of a decision rule
applied to predicted class scores (see FP2.6), i.e., to answer the question: ‘How much
better could the classifier’s decisions under this rule have been if the predicted class
scores had been calibrated?’. We give some answers to this question in Sec. 6.2.4.
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Comparison of re-calibration methods for one given classifier.

£
U1 a GG An
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u2 ag :GG: A

Comparison of the overall performance (discrimination and calibration) of
multiple classifiers.

P < o
us aa G{'} A ﬁ
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Understanding the reliability of predicted class scores for better
interpretation/communication.

U4

Classifier Re-calibration Ranking/ Interpretation/

: | ]
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(} Communication
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Figure 4.6: Underlying interest related to the assessment of calibration quality. The user
is interested in the comparative calibration assessment (U1-U3) and/or obtaining a reliable
estimate of the Calibration Error (CE) for interpreting and communicating the algorithm output
(U4). The brackets around re-calibration methods denote that their application is optional in

the corresponding use case. Originally published in Maier-Hein et al. [238].
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metric (if any)

Select Select Select multi- S Select Select non-
multi-class per—cl-ass threshold calibration application- reference-
counting coring metric (if any) metric (if any) specific based @
metric (if any)

metric(s) metric(s)
55 (if any) (if any)

Figure 4.7: Selection process overview. The metric selection process is divided into subpro-
cesses that each correspond to a different family of performance measures. Adapted from
Maier-Hein et al. [238].

FP4.2 Class prevalences reflect the population of interest

Class prevalences and their differences between tasks are very important, although this
aspect is often ignored in common validation practice. This is not a problem if the class
prevalences of the provided test set reflect the population of interest, but can lead to
problems otherwise (see Chap. 6). Therefore, this fingerprint should be set to true if either
the validation interest is limited to the current dataset (no future comparison to datasets
with different class prevalences is desired), or no variation in prevalences is expected in
other cohorts and when applying the method.

4.2 Results

This section presents key findings from the Metrics Reloaded initiative previously intro-
duced in Sec. 4.1.1. We first examine the metric selection process in Sec. 4.2.1. Following
this, we provide comprehensive analysis of potential edge cases encountered during
selection in Sec. 4.2.2. We will conclude with representative applications of the selection
framework across specific clinical scenarios in Sec. 4.2.3.

4.2.1 Modelling the selection process

Process overview Fig. 4.7 provides a high-level overview of the metric selection
process. Conceptually, it is divided into subprocesses that focus on different types of
performance measures. The first four subprocesses (S2-S5) focus on common reference-
based metrics. These performance measures all compare model outputs to labels. Next, the
pool of standard metrics can be supplemented with custom metrics to address application-
specific complementary properties. Finally, non-reference-based metrics can be added
to the metric pool(s) to assess, for example, speed, memory consumption, or carbon
footprint.

Subprocesses While the metrics from S2 and S3 rely on categorical decisions made by
the model, the subprocesses 84 and S5 leverage potential probabilistic model outputs.
Furthermore, metrics from S3 and S4 inspect individual classes (through the one-versus-
the-rest mechanism described in Def. 2.15), while metrics in S2 and S5 assess classes
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holistically. The multiclass metrics (see Tab. 4.1) from S2 have the unique advantage that
they capture the performance of an algorithm for all classes in a single score, without
the need for custom class-aggregation schemes. On the other hand, they do now allow
for detailed class-specific analyses. Therefore, we generally recommend performing
an additional per-class validation with the metrics resulting from S3 for all classes.
To obtain a more comprehensive picture of a classifier’s discriminatory performance,
multi-threshold metrics (see Sec. 2.5) as given by S4 work with a dynamic confusion
matrix reflecting a range of possible thresholds applied to the predicted class scores.
This compensates for the loss of information for decisions made by a single decision
rule (see Def. 2.9). Finally, calibration metrics (see Sec. 2.6), such as those given by S5,
operate without a decision rule and can evaluate either model calibration alone or joint
calibration and discrimination by proper scoring rules (see Def. 2.71).

Phrasing of the biomedical task The recommendation framework has been designed
in a way to support the metric selection and application process for one specific driving
biomedical question. In practice, multiple questions are often addressed with one given
data set, where a recommendation needs to be generated separately for each question.
This specifically holds true for multi-label problems, in which multiple labels can simul-
taneously be assigned to the same image (e. g., ‘multiple sclerosis’ and ‘brain tumor’ both
assigned to the same MRI image). In such a case, the problem should be converted to
multiple binary tasks, for which the framework is traversed individually.

Process diagram symbols The notation for our recommendations has been based on
Business Process Model and Notation (BPMN)’. The individual components used in the
recommendation diagrams are explained in Fig. 4.8. Please note that we do not strictly
follow BPMN to improve clarity of presentation.

Decision guides There are a couple of cases, when for a given problem fingerprint
multiple metrics from the same family are feasible. Then a selection is driven by subtle
nuances in the preferences from the domain experts. In our recommendation process
such selection ambiguities are resolved via decision guides (DG) in Sec. 4.2.2, that help
users make an educated decision when multiple options are possible.

S2: Select multiclass counting metric (if any) We recommend the selection of a
multiclass counting metric based on S2 (see Fig. 4.14) if a decision rule should be applied
to the predicted class scores (FP2.6). In some use cases and especially in the presence
of ordinal data, there may be an unequal severity of class confusions (FP2.5.2 = TRUE),
implying that different costs to be applied to different errors reflected by the confusion
matrix must be available (FP2.5.4 = TRUE). In this case, the only viable options are WCK

"https://www.omg.org/spec/BPMN/
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and EC (see Tab. 4.1). While WCK is widely used, it comes with severe drawbacks (see
DG2.1), such as high prevalence dependency and ‘paradoxical results’ [414] for the most
common variant based on quadratic weights. For this reason, the consortium recommends
EC as the default choice for the described scenario. In the case of equal costs, AC is the
most widely used multiclass metric, but we recommend it in only one specific scenario:
when the class prevalences in the data set reflect those in the target population (FP4.2)
and potential class imbalances should not be compensated for. In the more general case,
the decision boils down to either picking one of the prevalence-independent metrics
EC or BA, which is specifically recommended if the class prevalences do not reflect the
target population, or MCC, which has the important property that it requires not only
the class-specific Sensitivities but also the corresponding predictive values to be high
(see Cor. 2.52). Irrespective of the metric choice, we recommend additionally reporting
the whole confusion matrix in the case of a reasonable number of classes.

S3: Select per-class counting metric (if any) As detailed class-specific analyses
are not possible with multiclass counting metrics, which may potentially hide the poor
performance of individual classes, we recommend an additional per-class validation with
metrics selected according to S3 (see Fig. 4.15). To this end, class-specific metric pools
are generated. The choice of metric depends primarily on the decision rule applied to
the predicted class scores (FP2.6; see Sec. 4.1.3). If a target value-based strategy is
preferred, the decision rule applied to the predicted class scores is optimized such that a
specific target value (e. g., Sensitivity = 0.95) is achieved. Complementary metrics, such
as Specificity (see Fig. 4.2), can then be reported for this fixed value of the target metric
(see DG3.1). In this case, the target metric is only reported for the specified target class.
If a cost-benefit-based strategy is chosen (only recommended for binary classification
tasks), we recommend selecting either NB (risk-centric view) or EC (cost-centric view)
(see DG3.2). In contrast, in the case of optimization-based or argmax-based decision
rules, the metric choice should be made between Sensitivity, LR+, and F-beta Score (see
DG3.3 and DG3.4).

S4: Select multi-threshold metric: To obtain a more comprehensive picture of the
discrimination performance of a classifier, we always recommend the selection of a
multi-threshold metric according to S$4 (see Fig. 4.16), irrespective of the decision rule.
Multi-threshold metrics are again applied per class (see Sec. 2.5). A particular strength of
AUROC is the fact that it is well-interpretable, as the value simply reflects the probability
of a sample from the positive class being assigned a higher predicted class score compared
to a sample from the negative class [111]. Furthermore, it is prevalence-independent
and therefore well-suited for comparison of performance across different tasks. AP, on
the other hand, is a prevalence-dependent metric, which comes with the advantage that
predictive values are considered. This may be a crucial property in class-imbalanced
scenarios where the focus is to be put on the rare class while AUROC scores are dominated
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by the frequent class and may lead to overly optimistic interpretation.

S5: Select calibration metric (if any) If the calibration of a method should be assessed
in addition to its discrimination capabilities (FP2.7.1), one or multiple calibration metrics
should be chosen.

1: Select metric for comparative calibration assessment (if any): This step selects
an adequate metric in case a comparative assessment of calibration methods is
desired (FP2.7.2). The fingerprint FP2.7.2 covers the presented use cases U1-U3 (see
Fig. 4.6). For U1 ‘Comparison of re-calibration methods for the same fixed classifier’,
one option is to select a metric that assesses the canonical CE, such as KCE as an
unbiased estimator of a canonical CE based on an alternative distance function, or
ECEKXPE a5 a well-interpretable estimator of canonical calibration. Alternatively, an
overall performance measure such as the BS can be used (see DG5.2), because the
classifier is fixed in this scenario, the conflation of the CE with discrimination errors
is no disturbing factor, and the true CE is exposed for relative comparison of scores.
For U2 ‘Comparison of calibration quality across classifiers on the same task’, we
recommend reporting the CE per class by using an estimator of marginal CE, such
as CWCE, if there is an unequal interest across classes (FP2.5.1). Otherwise the
canonical CE should be assessed, e. g., using KCE or ECE¥PE (see DGS5.1). For U3
‘Comparison of overall performance across classifiers’, we recommend reporting a
Proper Scoring Rule (PSR) (i. e., BS or NLL, see DG5.3) as the joint assessment of
calibration and discrimination is exactly what this category of metrics is designed
for.

2: Select metric for assessing output interpretability (if any): This step selects an
adequate metric for assessing the interpretability of the model output (FP2.7.3),
which corresponds to U4. The first decision to be made in FP2.7.3 is whether to
assess the calibration quality in isolation, as measured by CE estimates, or jointly
with discrimination as measured by proper scoring rules. When deciding for
calibration-only assessment, the core decision to be made is whether to measure
top-label, marginal or canonical CE (see Def. 2.59 and DG5.4). If there is an unequal
interest across classes (FP2.5.3), a well-interpretable estimator of the marginal CE,
such as CWCE, is recommended. Otherwise, the default option is to select a well-
interpretable estimator of the canonical CE (e.g., ECEXPE) and a corresponding
guaranteed upper bound (e. g., RBS), together with a per-class estimator of marginal
CE (e. g., CWCE). Top-label calibration (as measured by ECE) is only recommended
in rare cases (see DG5.4).

Note that the selection of the same metric (e. g., CWCE) in both steps is a potential
outcome of the mapping. Crucially, metrics involving calibration assessment are generally
prevalence-dependent. Thus, comparative studies as described in U2 and U3 are generally
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restricted to one particular task and, if the prevalence of the data does not represent
the population of interest (see FP4.2), the calibration quality of a classifier needs to be
re-validated on each new study cohort (see Sec. 6.2.3).

Application of selected performance measures While metrics application may
seem straightforward, numerous subtle pitfalls can compromise validation results. Tab. 4.3
presents our recommendations for avoiding these issues, organized into categories of
implementation, aggregation, ranking, reporting, and interpretation - following the
taxonomy established in parallel research [317]. Although certain aspects have been
addressed in previous literature (e. g., Wiesenfarth et al. [420]), our work makes two
significant novel contributions: the development of detailed ‘Metric Cheat Sheets’ that
provide metric-specific guidance (accessible at [1]), and the implementation of all Metrics
Reloaded metrics as part of the open-source MONAI framework [373] — making robust
validation practices readily accessible to the broader research community.
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Table 4.3: Recommendations for metric application addressing the pitfalls collected in
Reinke et al. [317]. The first column comprises all sources of pitfalls captured by the published
taxonomy that relate to the application of (already selected) metrics. The second column
provides the Metrics Reloaded recommendation. The notation FPX\Y refers to a fingerprint item
(see Sec. 4.1.3). Adapted from Maier-Hein et al. [238].

Source of Pitfall

Recommendation

Metric implementation

Non-standardized metric defini-
tion and undefined corner cases

Discretization issues (e.g., in
ECE or CWCE)

Metric-specific issues including
sensitivity to hyperparameters

Use reference implementations in the open-source framework MONAI[373].

Use unbiased estimates of properties of interest if possible (e. g., RBS).

Read metric-specific recommendations in the cheat sheets [1].

Aggregation

Hierarchical label/class struc-
ture

Multiclass problem

Non-independence of test cases
(FP4.5)

Risk of bias

Possibility of invalid prediction
(FP5.3)

Address the potential correlation between classes when aggregating [190].

Complement validation with multiclass metrics (subprocess $2); perform weighted class
aggregation if FP2.5.1 Unequal interest across classes holds.

Respect the hierarchical data structure when aggregating metrics [227].

Leverage metadata (e. g., on imaging device/protocol/center) to reveal potential algorithmic
bias [22].

set the corresponding metric value of ‘undefined’ predictions to the worst possible value,
in cases of unbounded metrics (see Tab. 4.1) use the performance of a naive classifier (see
Def. 2.26).

Ranking

Metric relationships

Ranking uncertainties

Avoid combining closely related metrics (see Tab. 4.2) when choosing metrics to be used in
algorithm ranking.

Provide information beyond plain tables that make possible uncertainties in rankings ex-
plicit [420].

Reporting

Non-determinism of algorithms

Uninformative visualization

Consider multiple test set runs to address the variability of results from non-determinism [374].

Include a visualization of the raw metric values [420] and report the full confusion matrix
unless FP2.6 = no decision rule applied holds.

Interpretation

Low resolution

Lack of lower/upper bounds

Insufficient domain relevance
of metric score differences

Read metric-related recommendations to obtain awareness of the pitfall [1].
See Tab. 4.1 and read metric-related recommendations to obtain awareness of the pitfall [1].

Report on the quality of the reference (e. g., intra-rater and inter-rater variability) [207]. Choose
the number of decimal places such that they reflect both relevance and uncertainties of the
reference. More than one decimal number is often not useful given the typically high inter-rater
variability.
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Figure 4.8: Overview of process diagram symbols. Our notation is based on the Business
Process Model and Notation (BPMN) [418] graphical representation for specifying business
processes. Originally published in Maier-Hein et al. [238].
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Figure 4.9: Subprocess S2 for selecting multiclass counting metrics. Decision guides are
provided in Sec. 4.2.2. Originally published in Maier-Hein et al. [238].
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Figure 4.10: Subprocess S3 for selecting per-class counting metrics. Decision guides are
provided in Sec. 4.2.2. Irrelevant paths for ObD and InS have been grayed out. Originally
published in Maier-Hein et al. [238].
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Figure 4.11: Subprocess S4 for selecting multi-threshold metrics. Decision guides are
provided in Sec. 4.2.2. Irrelevant paths for ObD and InS have been grayed out. Originally
published in Maier-Hein et al. [238].
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Figure 4.12: Subprocess S5 for selecting a calibration metric (if any). Decision guides are
provided in Sec. 4.2.2. Further suggested calibration approaches include reliability diagrams [91],
calibration slope [368], and O:E ratio [320]. Originally published in Maier-Hein et al. [238].
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4.2.2 Resolving ambiguous cases

While the problem fingerprint helps exclude common metrics that are not suitable for
the driving problem, the final choice in each subprocess may not be unambiguous. In
these cases, decision guides support the domain experts in making an educated decision
that best matches the domain interest.

DG2.1: Weighted Cohen’s Kappa (WCK) versus Expected Cost (EC)

Table 4.4: Comparison of Weighted Cohen’s Kappa (WCK) to Expected Cost (EC) in the
context of decision guide DG2.1. Context: unequal severity of class confusions (FP2.5.2 =
TRUE), costs for class confusions available (FP2.5.3 = TRUE), and provided class prevalences
reflect the population of interest (FP4.2 = TRUE). Adapted from Maier-Hein et al. [238].

WCK EC
Self-dual (for symmetric costs) Only Sensitivity perspective
Limited interpretability © Good interpretability with NEC

Widely used Not widely gsed in biomedical
image analysis
Lack of framework to identify the ® Optimal decision rule is straight-

optimal decision rule forward

©O 06 0 ©

Possibility of paradoxical results

Both WCK (see Def. 2.30) and EC (see Def. 2.23) are metrics that allow for incorporating
confusion costs. Common use cases for this property are tasks with ordinal classes or
diagnostic decisions with errors of varying clinical severity. When deciding between the
two metrics, the following properties are of relevance.

Symmetry Importantly, historically WCK was originally proposed as ‘interrater agree-
ment score’, i. e., to compare the decisions of two raters, which is a symmetric problem
by nature. In words of the notation introduced in Def. 2.37 this means, that given the
confusion costs are symmetric then WCK = WCK7, i.e., WCK is self-dual. Hence,
unlike EC that relies solely on the Sensitivity perspective (see Prop. 2.25), WCK does not
conceptually distinct reference from prediction.

Interpretability While both metrics can be interpreted as ‘measures of (dis)agreement’,
the main difference is the fact that WCK provides this measure in reference to ‘agreement
by chance’. The equivalent concept for EC is its normalized variant NEC, where the
disagreement measure is divided by a ‘naive performance’ measure (see Def. 2.27). Due
to the conceptual similarity, it is more sensible to compare WCK to NEC. Both metrics
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are prevalence-dependent due to relating model performance to a random performance
reference. Their main difference is the definition of the ‘random reference’: In NEC this
reference is straightforward to interpret as the ‘best possible naive classification system’
which always predicts the most dominant class (see Def. 2.26). The definition in WCK
stems from its symmetric concept to compare the predictions of two raters. The random
reference in this case is the probability of both raters agreeing by chance. Using this
definition in classification tasks results in random reference systems that can be weaker
than the naive system of NEC. Thus, the random reference in WCK is less intuitive and
arguably also less useful in classification tasks [68, 92].

Undesired behavior in practice Using WCK with quadratic weights, often done for
ordinal tasks, has been found to lead to ‘paradoxical results’ [414].

Popularity CKis widely used in the biomedical domain [240], and WCK in particular
whenever customized penalties for class confusion are required. EC, on the other hand, is
currently mostly found either in statistical textbooks [33, 157] or in non-related domains
such as speech recognition [49, 100, 395], with few mentionings in the medical context [19,
206].

Decision rule EC comes with a comprehensive theoretical foundation based on Bayesian
decision theory [113]. As a consequence, it is possible to analytically derive the optimal

decision rule applied to the predicted class scores (see Def. 6.9). This is an important prop-
erty in this context because the standard argmax-based decision rule is even for calibrated

models unlikely to be optimal in scenarios with unequal costs of misclassifications.

Recommendation Due to the favorable properties, we generally recommend the usage
of EC rather than WCK.

DG2.2: Balanced Accuracy (BA) versus Expected Cost (EC)

When deciding between BA and EC in the provided context, two primary scenarios

should be distinguished:

Each class should contribute equally to the metric In this case, compensation for
potential class imbalance is required in order to ensure equal contribution from each
class. Here, we recommend BA as metric because it was designed for exactly this purpose.
Although EC can be configured to be identical to one minus BA (see Tab. 4.1), we favor
BA due to its widespread use.
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Table 4.5: Comparison of Balanced Accuracy (BA) to Expected Cost (EC) in the context
of decision guide DG2.2. Context: Equal severity of class confusions (FP2.5.2 = FALSE),
either (i) unequal interest across classes (FP2.5.1 = TRUE) and no mismatch between class
prevalences and class importance (FP2.5.3 = FALSE), or (ii) equal interest across classes (FP2.5.1
= FALSE) and provided class prevalences do not reflect the population of interest (FP4.2 =
FALSE). Adapted from Maier-Hein et al. [238].

BA EC
Possibility of reflecting expected
Prevalence independence ©  prevalences in the target popula-
tion

Not commonly known in biomed-

@  Widely used 1. .
ical image analysis

Classes should contribute according to prevalence in the target application
Although the user may have an inherently equal interest in all classes (FP2.5.1 = FALSE),
reporting a metric score to which all classes contribute equally may not necessarily be
desired. Instead, the user may simply be interested in the overall performance on a
given task and thus want classes to contribute according to their prevalence in the target
application. This is not straightforward in the provided scenario because the data set at
hand does not match the prevalences of the target population (FP4.2 = FALSE). In this
case, we recommend EC, because it offers to explicit set (expected) class prevalences
directly in the formula®. This strategy allows getting a glimpse of model performance
on the target application while validating on the data at hand. Application of EC in this
way, however, is only possible if the prevalences can be specified upfront. Depending
on the use case one might argue that class priors being known upfront is quite a strong
assumption.

DG2.3: Balanced Accuracy (BA) versus Matthews Correlation Coefficient (MCC)
versus Normalized Expected Cost (NEC)

Three metrics are particularly attractive when class prevalences reflect the population
of interest but compensation for class imbalance is desired (FP4.1 = TRUE and FP2.5.5
= TRUE). These are MCC, BA, and the normalized variant of EC, NEC. As described in
Sec. 4.1.3 (FP2.5.5 Compensation for class imbalance requested), there are three effects of
class imbalance that can be compensated for.

+ Effect 1: Misleading metric values due to missing reference value for naive classifier
« Effect 2: Misleading metric values due to unequal contribution of classes

8This is exactly what we propose in step 3 of our workflow to mitigate prevalence shifts during model
deployment (see Sec. 6.1.3).
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Table 4.6: Comparison of Balanced Accuracy (BA) to Matthews Correlation Coeffi-
cient (MCC) to Normalized Expected Cost (NEC) in the context of decision guide
DG2.3. Context: Equal severity of class confusions (FP2.5.2 = FALSE), either (1) unequal
interest across classes (FP2.5.1 = TRUE) and no mismatch between class prevalences and class
importance (FP2.5.3 = FALSE) or (2) equal interest across classes (FP2.5.1 = FALSE), provided
class prevalences reflect the population of interest (FP4.2 = TRUE), presence of class imbalance
(FP4.1 = TRUE) and compensation for class imbalances requested (FP2.5.5 = TRUE). Adapted

from Maier-Hein et al. [238].

BA

MCC

NEC

Interpretable with

Interpretable with

Interpretable with

@ respect to naive respect to naive respect to naive
classifier classifier classifier
Implication of equal Implication of equal No setting of equal
class contribution class contribution class contribution

" ) High scores ensure .. o
Insensitive to predic- . _— Limited sensitivity
. high predictive val- -
tive values to predictive values
ues
Optimal  decision Lack of framework Optimal  decision

@ rule is straightfor- to identify the opti- rule is straightfor-
ward mal decision rule ward

® Good interpretabil- Limited inter- Good interpretabil-
ity pretability ity

Not widely used in
© Widely used Fairly well-known biomedical image

analysis

+ Effect 3: Misleading metric values due to missing consideration of predictive

values

While the most common multiclass metric, AC, is subject to all three pitfalls when used in
imbalanced settings, this decision guide discusses the three aforementioned alternatives
(BA, MCC, and NEC) that compensate for one or more of these effects. The following
aspects are relevant when deciding between the three:

Compensating for Effect 1 All three metrics establish a fixed score for the perfor-
mance of a naive classifier, i.e., one that always predicts the most frequent class (see
Def. 2.26) — which is a more realistic baseline in class imbalanced scenarios — compared
to an entirely random system. The corresponding scores are 0 for MCC, 1 for NEC, and
1/C for BA, where C is the number of classes. However, the nature of the different
compensation methods is fundamentally different.
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Example 4.1. Consider the following confusion matrix of a binary classification
system:
A {100 1 ]

100 10000

The respective metric values are BA = 0.99, MCC = (.7, and NEC = 1.
Although all metrics feature fixed values for a random classifier, the same system
can be assessed differently, as it is being considered ‘near-perfect’ by BA (both TPR
and TNR are high), ‘fairly good’ by MCC (high TPR, TNR and NPV, only low PPV),
and ‘random’ by NEC (as predicting only class 2 would yield the same number of
101 wrong predictions).

Intuitively, the BA assessment in Ex. 4.2.2 seems overly optimistic, which can be
attributed to the fact that BA does not compensate for Effect 3, as described in more detail
below. On the other hand, the NEC assessment in Ex. 4.2.2 appears overly strict, which
can be attributed to the fact that NEC does not compensate for Effect 2 as described in
more detail below.

Compensating for Effect 2 In balanced scenarios, all classes are weighted equally by
common discrimination metrics. In contrast, in imbalanced scenarios, common metrics
such as AC are dominated by the frequent classes. Equal contribution of classes in this
context would imply that each class can contribute equally to the final metric score,
irrespective of prevalence. This is exactly what BA does by computing the average of
individual class Sensitivities. An alternative way of thinking about this compensation
is tweaking the costs of misclassification errors by assigning higher costs for errors in
rare classes and vice versa. Hence, BA can be thought of as a cost instantiation of EC
if the costs are set proportional to the inverse of class prevalences’. Importantly, the
normalized variant of EC, NEC, does not generally compensate for Effect 2, but merely
rescales metric scores in a way that the value of 1 corresponds to a naive classifier always
predicting the most frequent class (see Effect 1). In other words, the rankings obtained
for a set of test cases would be the same for EC and NEC. Analogously to EC, it is also
possible to tweak the costs to compensate for Effect 2 in NEC, but the resulting metric
would yield no advantages over BA. Importantly, the fact that NEC does not compensate
for Effect 2 implies that if there is an unequal interest across classes (FP2.5.1 = TRUE), then
NEC is the only correct choice. Analogously to BA, MCC establishes equal contribution
of classes by assessing individual class sensitivities.

Compensating for Effect 3 The predictive values (PPV and NPV) are an important
aspect of assessing the quality of a classification system. To showcase this importance,
we give the following example.

°This is indicated in Tab. 4.1, for a full proof see Ferrer [113].
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Example 4.2. Consider the following confusion matrix of a binary classification
system:

100 10000

The respective metric values are BA = 0.95, MCC = 0.29, and NEC = 9.2.

This system is assessed as ‘near-perfect’ by BA (both TPR and TNR are high),
‘better than random, but not really useful’ by MCC (high TPR, TNR and NPV, very
low PPV), and ‘much worse than random’ by NEC (as predicting only class 2 would
yield the much lower number of only 11 wrong predictions).

[l ]

Ex. 4.2.2 shows that BA does not consider predictive values, thus yielding a near-
perfect score despite a low PPV of 0.09. This assessment could be considered a pitfall
in many scenarios, where the classification system would be fairly useless. Consider,
for instance, a breast cancer screening program where, based on the provided system,
FDR = 100/(10 + 100) ~ 90% of all biopsies would be unnecessary.

In contrast, the MCC score could be considered intuitive for many scenarios such as
the screening example. This is due to MCC explicitly considering all four basic rates TPR,
TNR, PPV, and NPV (see Cor. 2.52). Thus, MCC poses further requirements compared
to BA, which focuses only on Sensitivities. NEC also ensures high predictive values
by design. In practice, however, it is not always a good indicator for predictive values
because of the sometimes overly strict penalization of errors, as seen in the above example.
In theory the weights in NEC could be adjusted to simulate the behavior of predictive
value-sensitive metrics like MCC, but this implies a trial-and-error tuning process on
each new task.

Identifying the optimal decision rule The different strategies for identifying a de-
cision rule applied to predicted class scores are described in Sec. 4.1.3 FP2.6. In the
multiclass setting, argmax-based decisions are very common (see Sec. 6.2.1), but make
arguably strong assumptions such as calibrated scores and equal penalization of all mis-
classifications (see Prop. 6.10). Noteworthy, some metrics can be viewed as instantiations
of EC (see Tab. 4.2, in this case BA and NEC), which comes with a theoretical frame-
work on how to choose the decision rule [113]. MCC, on the other hand, lacks such a
framework.

Interpretability Arguably, BA features the most straightforward interpretation as the
average over individual class Sensitivities, with bounded scores [0, 1] and a fixed random
reference at 1/C. NEC scores are also fairly interpretable (‘the EC of the system in
relation to the EC of the naive system’), but scores are not bounded [0, c0). Furthermore,
the random reference could be interpreted as ‘too strict’ for many scenarios such as
in Ex. 4.2.2. As for MCC, a random reference value is provided at 0 and the scores
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are bounded [-1,1], but all intermediate scores are arguably less intuitive. The general
interpretation of MCC would be that it is a metric that depends on individual class
Sensitivities and predictive values, i. e., a high MCC score guarantees all of these being
high and a low MCC score indicates that at least one of them is low [64].

Popularity BA and MCC are fairly well-known (see Tab. 6.1). NEC is used prominently
in the field of speaker verification but has not been introduced to the biomedical imaging
or clinical community yet, although the statistical concepts it is based upon are long-
standing in Bayesian decision theory.

DG3.1: Metric@(TargetMetric = TargetValue)

If a target value for a specific metric (typically TPR) is provided, the decision rule applied
to the predicted class scores is optimized such that the specific target value is reached on
a validation data set (see Sec. 4.1.3 FP2.6). Other metrics, depending on the target appli-
cation, can then be reported for that specific threshold. In some cases, e. g., TNR@(TPR
= 0.95) the corresponding value can directly been read from the ROC-curve. Possible
candidates include TPR, TNR, PPV, and NPV.

DG3.2: Net Benefit (NB) versus Expected Cost (EC)

Table 4.7: Comparison of Net Benefit (NB) to Expected Cost (EC) in the context of de-
cision guide DG3.2. Context: FP2.6 = cost-benefit-based decision rule applied to predicted
class scores requested. Adapted from Maier-Hein et al. [238].

NB EC
Decisions can be defined directly

based on predicted class scores,
interpreted as risks

Decisions based on explicit defi-
nition of misclassification costs

Weighting of True Positive (TP)
against False Positive (FP) in risk
perspective

Lack of framework to validate
the decision rule applied to class
scores

Focus on reflectance of the (e. g.,
clinical) interest in the scores

Popular metric in clinical studies
but not common in image analy-
sis

Weighting of False Positive (FP)
against False Negative (FN) in
cost perspective

Availability of framework to vali-

date the decision rule applied to
class scores

Inherent interpretability with re-
spect to naive classifier

Not commonly known in biomed-
ical image analysis
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This decision guide is embedded in the framework in subprocess $3, which guides the
selection of metrics that are reported separately for each class. In multiclass tasks this
reporting amounts to a one-versus-rest validation scheme (see Def. 2.15). However, this
scheme is not intuitively applicable to a cost-benefit analysis (what are the costs and
benefits of the ‘rest’ class?), which is the concept behind decision rules of both metrics in
this decision guide. Thus, for multiclass tasks we recommend to only proceed with the
metrics selected in subprocess S2 (e. g., EC or WCK) and not select any further metrics
here to be reported in a one-versus-rest fashion, i. e., we recommend skipping the guide.
Since the task is binary, we will work with the threshold operator and a cutoff 7 as
decision rule (see Def. 2.9).

Both NB and EC are linked to cost-benefit analysis [289] and are well-suited when a
cost-benefit-based approach for determining an appropriate decision rule applied to the
predicted class scores is desired (FP2.6 = cost-benefit-based). To this end, both require
the knowledge of task-dependent trade-offs between benefits and costs, as detailed below.
The following aspects are relevant when deciding between EC and NB:

Cost versus risk perspective Cost perspective: For EC, explicit costs for both basic
misclassifications (FP, FN) need to be defined or estimated. The optimal threshold that
minimizes these costs can be analytically determined without data-based optimization.
Risk perspective: In contrast, NB does not require the costs to be defined explicitly. Instead,
predicted class scores are interpreted as probabilities or ‘risks’ of certain model output
scores belonging to the positive class and the cutoff on the scores is defined directly on
this scale based on task interest (e. g., ‘only treat patients with cancer risk >10%’). This
can be interpreted as an implicit cost-benefit analysis resulting in a single intuitive risk
score. However, it is also common for NB to make this cost-benefit analysis more explicit
and define the risk as a relation of the benefit of TPs to the harms caused by FPs. A
diagnostic test, for example, may lead to early identification and treatment of a disease,
but typically the process will also cause some patients without disease being subjected to
unnecessary further interventions. NB allows to consider such trade-offs by putting the
benefits and harms of the test on the same scale so that they can be directly compared.
A physician may, for example, state that 10 FPs, resulting in unnecessary biopsies, are
acceptable to find one more cancer case (TP).

Decision curves In most scenarios it is not possible to precisely define the costs or
risks associated with the task. For example, it is not straightforward to make an exact
decision on how many FPs would be acceptable to obtain one more TP. To compensate
for this uncertainty, it is common practice to plot NB over a ‘reasonable range of risk
thresholds’ resulting in so-called decision curves (see Def. 2.57). This analysis allows
assessing and comparing methods according to their NB scores without relying on a
single cutoff. Although not common practice, one could also generate such curves for
EC when expressing cost ratios as a risk score (i. e., switching from the cost to the risk
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perspective).

Cutoff on predicted class scores In NB, the cutoff is determined directly from pro-
vided knowledge about the task and does not require data-based optimization. In contrast,
EC allows to alternatively determine a data-based cutoff by minimizing EC on a dedicated
data split, if available. A further difference between the two metrics is the way prevalence
dependency is handled: EC isolates the class priors from the predicted class probabilities
and defines them as a parameter of the cutoff itself, such that all application dependent
parameters (costs and class priors) are part of the cutoff (see Def. 6.9). Upon deployment
of a model on a new data set, the threshold can simply be updated analytically. Note
that this process only works under the arguably strong assumption that the class priors
of the new data set are known'’. In contrast, NB considers risk scores that incorporate
the class priors, implying that the threshold depends solely on the cost-benefit trade-off.
As a consequence, when the class priors shift on a new data set, the risk-cutoff in NB
requires predicted class probabilities to be re-calibrated'!. The latter might be a harder
requirement because it requires a labeled validation set for re-calibration as opposed to
requiring merely the class priors of the new data set for a threshold update.

Interpretability EC allows reporting a normalized version (NEC), which makes the
metric scores interpretable with regard to the performance of a random classifier. In
contrast, in NB, the reference to a random classifier is typically done manually (by com-
paring the two scores), because NB itself allows for an interpretation as the ‘proportion
of net-TP’, which would get lost by normalization.

Calibration Both metrics rely on the fact that predicted class probabilities are well-
calibrated with regard to a chosen cutoff. EC allows assessing this requirement by
calculating the extra cost entailed by miscalibration (or the potential for reducing cost
by calibrating scores) [113]. The calibration error here is measured as the increase of
EC with the analytical, i. e., task interest-based, cutoff compared to an empirical cutoff
optimized on the data. Compared to related calibration errors (see Sec. 2.6), this technique
assesses a weaker calibration condition, which is directly targeted to the decision process
at hand. For instance, even when assessing the relatively weak top-label calibration
condition by means of ECE with two bins and the border at the determined cutoff value,
the distribution inside the bins would be considered, while EC only focuses on how many
more cases would have been on the ‘correct side of the cutoff’ if scores were calibrated,
without considering score distributions on either side of the cutoff.

We will present methods to determine such priors dynamically in Sec. 6.1.3.
1See Fig. 6.9 (bottom left) for experimental validation that the EC optimized decision threshold can be
transferred analytically without re-calibration.
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Popularity Neither NB nor EC are widely used in the biomedical image analysis
community. NB is a popular metric in clinical studies, while EC itself is currently not
used, but many of its instantiations (see Tab. 4.2).

DG3.3: Positive Likelihood Ratio (LR+) versus TPR

Table 4.8: Comparison of Positive Likelihood Ratio (LR+) to True Positive Rate (TPR)
in the context of decision guide DG3.3. Context: FP2.6 = optimization- or argmax-based
decision rule applied to predicted class scores requested and provided class prevalences do not
reflect the population of interest (FP4.2 = FALSE). Adapted from Maier-Hein et al. [238].

LR+ TPR
Straightforward application in Challenging application in the
@  thecaseof an optimization-based =~ @  case of an optimization-based de-
decision rule (FP2.6) cision rule (FP2.6)
Interpretation often reflecting in- ® Good interpretability

terest in binary tasks

This decision guide helps deciding between LR+ and TPR in the context of per-class
validation (subprocess 83) with an optimization- or argmax-based decision rule applied
to predicted class scores (FP2.6).

Interpretability In the provided context of this decision guide, where metrics are
reported individually per class, TPR and LR+ convey similar information and there is no
‘incorrect’ choice. Thus, the choice between the two can generally be made as the metric
that is easier to interpret in the given task: In binary classification tasks, LR+ conveys
TPRs of both classes in a single score. Due to its intuitive and meaningful interpretation
(‘How much more likely is the occurrence of a class 1 prediction for a class 1 sample
compared to a class 2 sample?’), it is often reported in clinical studies. In multiclass
settings (which, in this context, amount to a one-versus-rest validation scheme), TPRs
are generally easier to interpret, while the interpretation of LR+ might still be helpful
(class 2 encompasses the ‘rest’).

Decision rule In case the decision rule applied to predicted class probabilities is to be
determined on the basis of optimization on the target class, one additional consideration is
of importance (FP2.6 = optimization-based decision rule). When reporting TPR per class,
the decision rule can not be optimized based solely on the single TPR at hand because
this would always yield a cutoff value of 1. LR+ naturally overcomes this problem. Other
possible workarounds include choosing a different decision rule (FP2.6) or optimizing
a weighted average over TPRs for all classes instead. The latter option should only be
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considered if meaningful weights across classes can be defined (e.g., based on class
importance).

DG3.4: Positive Likelihood Ratio (LR+) versus TPR versus F-beta Score

Table 4.9: Comparison of Positive Likelihood Ratio (LR+) to True Positive Rate (TPR)
to F-beta Score in the context of decision guide DG3.4. Context: FP2.6 = optimization-
or argmax-based decision rule applied to predicted class scores requested and provided class
prevalences reflecting the population of interest (FP4.2 = TRUE). Adapted from Maier-Hein
et al. [238].

LR+ TPR F-beta Score
Meanlp gfu'l ?nter- Generally good in- Limited inter-
@ pretation in binary @ . o
terpretability pretability
tasks
Interpretable with
Interpretable with respect to naive No interpretability
@ respect to naive classifier only when @  with respect to naive
classifier averaging over classifier

classes

High scores ensures

@ Insensitive to PPV © Insensitive to PPV (V) high PPV

In the context of this decision guide, prevalence dependency is not an exclusion crite-
rion (see FP4.2) and thus F-beta Score can be considered as an alternative to Sensitivity-
based metrics (TPR and LR+). Details for the decision between the latter are provided in
DG3.3; the present guide focuses on the pros and cons of opting for F-beta Score.

Per-class validation is commonly performed in a one-versus-rest fashion, naturally
introducing class imbalance into the validation. Exceptions are binary scenarios with
two balanced classes. For this exception, no compensation for class imbalance is needed
(FP2.5.5) and the choice between F-beta Score and Sensitivity-based metrics becomes
less relevant, i. e., there are no obvious incorrect choices. Thus, the decision can be made
on the basis of which metric is easier to interpret in a given task. For all other cases,
the decision should be based on whether compensation for class imbalance is required
(FP2.5.5 = TRUE).

Compensation for class imbalance As described in Sec. 4.1.3 FP2.5.5, there are three
aspects of compensation for class imbalance:

(i) Establishing a reference value for random performance: LR+ provides a fixed
random reference value at LR+ = 1, while for TPR the scores of individual classes
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can vary and only their average is fixed at 1/C (equivalent to BA). F-beta Score
does not provide a reference value for random performance.

(ii) Establishing equal class contribution: In the provided context (S$3), the valida-
tion is performed per class, such that this aspect is irrelevant.

(iii) Establishing consideration of predictive values: This aspect is the main reason
to opt for F-beta Score in this decision guide, because it is the only metric of the
three where high scores ensure a high PPV. In contrast, LR+ and TPR are insensitive
to PPV, which, depending on the task interest, can substantially diminish their
utility. An exemplary pitfall related to this choice is the confusion matrix of a
binary classification task, as given in Ex. 4.2.2. This classification system yields
TPR; ~ 0.91, TPR; ~ 0.99, LR+; ~ 91.82 and LR+, ~ 10.89. While F1, ~ 1,
the low value F1, ~ (.17 indicates a low PPV on class 1. This pitfall may be of
practical relevance in class-imbalanced tasks where FPs shall not be neglected. For
example, in breast cancer screening, the provided classifier would not be useful,
since FDR = 100/(10 4 100) = 90% of all biopsies would be unnecessary.

Interpretability Out of the three, TPR is arguably the easiest-to-interpret metric
(exceptions are binary tasks, where LR+ might be preferable as detailed in DG3.3). F-beta
Score can be interpreted as the harmonic mean of TPR and PPV, which adds a layer
of complexity to the interpretation compared to TPR. Thus, if the aspects discussed in
‘compensation for class imbalance’ are not relevant, F-beta Score might not be the metric
of choice.

DG3.5: How to determine [ in F-beta Score

Table 4.10: Determining the hyperparameter of the F-beta Score in the context of deci-
sion guide DG3.5. Context: FP2.6 = optimization- or argmax-based decision rule applied to
predicted class probabilities requested and provided class prevalences reflecting the population
of interest (FP4.2 = TRUE). Adapted from Maier-Hein et al. [238].

5<1 B=-1 5>1
Higher weighting Harmonic mean of Higher weighting of

of FP penalties (i.e., FN penalties (i.e.,
PPV) PPV and TPR TPR)

The most common choice is to set 8 = 1, resulting in equal weighting of FP and FN
penalties (see Cor. 2.46). If unequal penalization of class confusions is desired (FP2.5.2),
higher values of /3 result in higher weights on FN penalties compared to FP penalties and
thus imply a focus on TPR compared to PPV [336].
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DG4.1: Area under the Receiver Operating Characteristic Curve (AUROC)
versus Average Precision (AP)

Table 4.11: Comparison of Area under the Receiver Operating Characteristic Curve
(AUROC) to Average Precision (AP) in the context of decision guide DG4.1. Context:
availability of predicted class scores (FP5.1 = TRUE) and provided class prevalences reflecting
the population of interest. Adapted from Maier-Hein et al. [238].

AUROC AP
Insensitive to PPV under class im- High scores ensure high PPV in-
V) : :
balance cluding under class imbalance
® Interpretable with respect to Prevalence-dependent reference
naive classifier value for naive classifier
o Straightforward interpretability Limited interpretability

The comparison between the two concepts behind AUROC and AP, i. e., the comparison
between ROC curves and PR curves has been extensively studied [87]. In practice, the
choice between the two metrics boils down to the following aspects (if no clear choice
can be made, we recommend reporting both metrics):

Compensation for class imbalance effects Of relevance in the context of this deci-
sion guide is the third pitfall from FP2.5.5 (see Sec. 4.1.3): Misleading metric values due to
missing consideration of predictive values. AUROC is based on the TPRs of the two classes
and does not consider predictive values. In class-imbalanced scenarios, this may lead
to near-perfect AUROC scores that hide the fact that a system might have limited to no
predictive utility. AP assesses PPV and thus compensates for the undesired effects caused
by class imbalance. A technical explanation is given by the fact that a high number
of TNs dominates and suppresses the FPs in the calculation of the TNR, thus yielding
high scores for AUROC. A practical example for this pitfall might be a breast screening
program, where a high PPV is of great importance to prevent unnecessary biopsies (FPs).
The focus of AP on a particular class further has the effect that the resulting scores differ
depending on which of the two classes is being inspected. This is in contrast to AUROC,
which yields the same scores irrespective of this perspective. The common approach for
AP-based assessment in class-imbalanced scenarios is to define the rare class as the first
class. The fact that AP focuses on this class reflects the task interest of not letting rare
(important) events be dominated by frequent events in the metric score.

Interpretability AUROC is easy to interpret as it simply represents the probability of
a randomly sampled positive case having a higher predicted class score than a randomly
sampled negative case. It further comes with a fixed reference value for the performance
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of a random classifier at 0.5. AP, on the other hand, is harder to interpret and features
no fixed random reference value. Instead, the AP score of a random classifier is the
prevalence of the positive class which varies on each data set.

Implementations The PR curve is more complex to interpolate compared to the ROC
curve [87], which has led to the existence of various implementations of AP, whereas no
such heterogeneity exist for AUROC.

Popularity Although AUROC is the common choice for multi-threshold metrics, AP
is also widely known and used.

DG5.1: Kernel Calibration Error (KCE) versus Expected Calibration Error
Kernel Density Estimate (ECEXPE)

Table 4.12: Comparison of Kernel Calibration Error (KCE) to Expected Calibration Error
Kernel Density Estimate (ECEXPE) in the context of decision guide DG5.1. Context:
FP2.7.2 = U2 - comparison of calibration performance across classifiers on the same task requested
and no mismatch between class prevalences and class importance (F2.5.3 = FALSE). Adapted
from Maier-Hein et al. [238].

KCE

ECEKDE

©

(%)

Capture of isolated calibration
quality

Unbiased estimator of canonical
calibration error based on an al-
ternative distance function

Bad interpretability, also due to
negative output values

Recent proposition, not widely
used

Depends on nontrivial configura-
tion choices of kernels and asso-
ciated hyperparameters

Capture of isolated calibration
quality

Potentially biased estimator of
an /, canonical calibration er-
ror (bias might be rendered ne-
glectable by future de-biasing
schemes)

Straightforward interpretability
of relative improvement

Recent proposition, not widely
used

The context for this decision guide between KCE and ECEXP® is use case U2 in Fig. 4.6:
‘comparing the calibration quality across multiple classifiers on the same task’
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General differences Both KCE and ECEXPF are estimators of a canonical calibration
error, but measure this error based on different divergences, i.e., distance functions:
ECE*"E is based on the L, norm and thus straightforward to interpret and configure. In
contrast, KCE is based on the ‘maximum mean discrepancy’ and thus not interpretable (it
may even take on negative values) and requires nontrivial configuration of kernels as well
as associated hyperparameters. On the other hand, L, norm estimators such as ECEXPE
are inherently biased while KCE is an unbiased estimator. Arguably, in the context of
this decision guide (U2), interpretability of the calibration error estimate is not required,
since only a comparative, or relative assessment is requested rendering the unbiased KCE
the intuitive choice. However, recent research on L, norm estimators presents effective
de-biasing schemes [302], which might render the resulting bias neglectable in the near
future and thus make L, estimators such as ECEXPE a viable alternative for comparative
calibration assessment.

Popularity Calibration error estimates KCE and ECEXPF are both recently proposed
measures that are not widely known in the biomedical community.

DG5.2: Brier Score (BS) versus Kernel Calibration Error (KCE) versus Expected
Calibration Error Kernel Density Estimate (ECEXPF)

The context for this decision guide between BS, ECEXPE and KCFEis use case U1 in Fig. 4.6:
‘comparing the effect of one or more re-calibration methods on the same (fixed) classifier’

General differences BS can be decomposed into discrimination and calibration terms,
where the calibration term exactly resembles the canonical calibration error (see Thm. 2.72).
As the purpose of the metric in the provided context is to assess the performance of differ-
ent re-calibration methods for the same classifier, a higher BS score also implies a better
calibration in the case of accuracy-preserving'? calibration methods. As a major difference
to BS, KCE estimates the canonical calibration error directly. While this estimation is not
biased, the resulting estimates are not interpretable, that is, they only allow for relative
comparison on the same task (equivalently to BS). Further, KCE requires nontrivial con-
figuration of kernels as well as associated hyperparameters. In contrast to KCE, current
estimators of L, calibration error are biased, but are highly interpretable and straight-
forward to configure. Moreover, recent developments in this line of research present
effective de-biasing schemes [302], which might render the resulting bias neglectable in
the near future and thus make L, estimators such as ECE*PF a viable alternative also for
comparative calibration assessment.

12 Although the common terminology is accuracy-preserving [387], the more appropriate formulation is
‘ranking-preserving’ in the sense that the re-calibration does not change the ranking (i. e., descending
order) of logits. Because such a method would lead to the same decisions under the argmax operator it
will ultimately also preserve the same confusion matrix, hence AC.
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Table 4.13: Comparison of Brier Score (BS) to Kernel Calibration Error (KCE) to Expected
Calibration Error Kernel Density Estimate (ECEXPE) in the context of decision guide
DG5.2. Context: U1 - FP2.7.2 = comparison of re-calibration methods for the same classifier
requested. Adapted from Maier-Hein et al. [238].

BS

KCE

ECEXPE

Capture of effects
of (re-) calibration
methods on discrim-
ination performance
in addition to cali-
bration quality

Unbiased measure of
an Lo norm canoni-
cal calibration error

Straightforward in-
terpretability of rel-
ative improvement

Established statis-
tical concept with
long history of ap-
plications in many
fields of research

Capture of isolated
calibration quality

Unbiased estimator
of canonical calibra-
tion error based on
an alternative dis-
tance function

Bad interpretability,
also due to negative
output values

Recent proposition,
not widely used

Depends on non-
trivial configuration
choices of kernels
and associated
hyperparameters

Capture of isolated
calibration quality

Potentially biased
estimator of an
L, canonical cali-
bration error (bias
might be rendered
neglectable by
future  de-biasing
schemes)

Straightforward in-
terpretability of rel-
ative improvement

Recent proposition,
not widely used

Applicability Generally, BS is attractive for ranking re-calibration methods that are
guaranteed to be accuracy-preserving (such as the common temperature scaling (see
Def. 2.67)). Otherwise, the metric must be applied with care, because altered discrimina-
tion performance will dilute the focus on calibration quality in the ranking. Note that it
may also be desirable to capture the effect of (non-accuracy-preserving) re-calibration
methods on the discrimination performance. In such cases of comprehensive assessment
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of re-calibration methods, it is also appropriate to apply BS. In contrast to BS, calibration
error estimators such as KCE and ECEXPF are capable of comparing the calibration error
of re-calibration while being agnostic to potential changes of discrimination performance
caused by the transformations. For the provided use case, this property allows the rank-
ing of non-accuracy-preserving transformations, such as recently proposed techniques
employing spline interpolations [152] or Gaussian processes [416], purely according to
their calibration error while ignoring their effects on the discrimination performance.

Interpretability Defined as the root mean square error between predictions and ref-
erences, BS is bounded by [0, 2] and therefore straightforward to interpret as an overall
measure. However, as the calibration error is not isolated and scores are still conflated
with the (same fixed) discrimination performance, only a relative comparison of cali-
bration errors is possible. KCE is generally hard to interpret, also because it can yield
negative values. ECEXPF as an estimator of L, calibration error is straightforward to
interpret.

Popularity BS is a widely known metric for overall performance measures with a long
history of usage. Calibration error estimates KCE and ECEXPE are both recently proposed
measures and not widely known in the biomedical community.

Reasons to not recommend NLL in this context NLL essentially assesses a weighted
version of the canonical calibration error as the logarithm leads to heavy penalization
of tail probabilities. As the implications of this weighting on calibration assessment
(as opposed to the overall performance measure) are not intuitive, we generally do not
recommend NLL in this use case.

DG5.3: Brier Score (BS) versus Negative Log Likelihood (NLL)

The context for this decision guide between BS and NLL is use case U3 in Fig. 4.6: ‘overall
performance measure requested. Both BS and NLL are overall performance measures,
which capture discrimination and canonical calibration in a single score.

Penalization of errors Like AC, BS penalizes errors of all events equivalently irre-
spective of the class prevalence. This implies that scores may drastically change when
the prevalence changes and thus renders BS a highly prevalence-dependent metric. For
instance, in imbalanced scenarios, a naive system that simply predicts the dominant class
can receive a low BS, similarly to a high AC or low EC. One strategy to cope with this
is to divide the BS by the BS achieved with a naive system, resulting in the normalized
variant BSS. Equivalently to NEC, this transformation is a rescaling of scores to establish
a ‘naive’ baseline and enhance interpretability, but errors are still penalized equivalently
irrespective of class prevalence. In other words, equal importance of classes (FP2.5.1) is
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Table 4.14: Comparison of Brier Score (BS) to Negative Log Likelihood (NLL) in the
context of decision guide DG5.3. Context: FP2.7.2 = U3 - comparison of overall performance
across classifiers requested. Adapted from Maier-Hein et al. [238].

BS

NLL

Bounded penalization of errors
leads to preference of naive sys-
tems in imbalanced settings

Straightforward interpretability
as the mean squared error

Established statistical concept
with long history of applications
in many fields of research

Heavy penalization of extreme
scores (close to 0 or 1), thus abil-
ity to capture missing rare events.
General preference of conserva-
tive models

Difficult interpretability due to
lack of upper bound

Established statistical concept
with long history of applications
in many fields of research

not reflected in the metric, and missing a frequent event is still as heavily penalized as
missing a rare event although missing a rare event has a greater effect on the respective
class TPR. This results in a strict interpretation where the total amount of errors has to be
lower than the number of events in the rare class in order for a system to be considered
‘better than random’.

Compared to squared error penalization in BS, the logarithm introduces a stronger
penalization of tail probabilities [307]. In consequence, overconfident predictions (prob-
abilities close to one) lead to higher losses. For example, predicting probability 0.999
rather than 0.99 on an incorrect class increases BS by ~ 2% and NLL by ~ 230% (for
this single entry). A practical effect of this penalty is a naturally higher penalization
of naive systems in class imbalance scenarios, addressing the pitfall of BS above. NLL
is thus of potential interest in scenarios with high class imbalance, where missing rare
events would be heavily penalized, compared to BS which is prone to favoring naive
systems. Generally, the penalization effect can also be described as NLL favoring more
conservative models that avoid predictions of extreme class scores.

Interpretability BS is relatively straightforward to interpret as the mean squared error
between predictions and the reference. The resulting scores are bounded ([0, 2]). NLL
is arguably harder to interpret featuring logarithmic penalization of errors and thus no
upper bound of the resulting score (bounds: [0, 0o]).

Popularity Both metrics are common statistical concepts and come with a long history
of usage in many fields of research.
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DG5.4: Expected Calibration Error (ECE)/ Root Brier Score (RBS) versus
Class-wise Calibration Error (CWCE) versus Expected Calibration Error Kernel
Density Estimate (ECEXPE)/ Class-wise Calibration Error (CWCE)/ Root Brier
Score (RBS)

The decision between the sets of metrics boils down to determining whether predicted
class probabilities should be tested for top-label calibration (as measured by ECE),
marginal calibration (as measured by CWCE), or canonical calibration (as measured
by ECEXPE) — see Def. 2.59. If there is an unequal interest across classes (FP2.5.1), CWCE
is the natural choice. In this case we recommend both per-class and weighted reporting
(by class importance). Note that only aggregated reporting comes with the pitfall of
unstable results, specifically in the case of few samples or many classes. In the case of
equal interest across classes, the key question is whether the task interest is limited to
the predicted probabilities that lead to the classification decision (top-label) or whether
there are reasons to request all predicted probabilities to be calibrated.
Notably, in binary classification tasks, the two conditions are equivalent [393].

Reasons for and against focusing on top-label calibration (ECE) In case the
underlying biomedical research question has a dedicated focus on the decision process,
top-label error might be the right choice, because it directly reflects this focus. Conflating
the calibration of decisions with other probabilities might be interpreted as washing out
the task focus in this case. Although it is common practice to assess calibration quality
with ECE, this approach comes with various pitfalls. Importantly, it is often ignored that
top-label calibration implies an argmax decision rule based on the predicted class scores,
which is often not an optimal decision rule (see Fig. 6.8). Caution should also be exercised
if there is a mismatch between class prevalences and class importance (FP2.5.3) as the
top-label calibration is highly biased towards the high-prevalence classes. Furthermore,
ECE commonly relies on binning of class scores, which introduces a dependency of
the resulting metric score on the specific binning scheme. The number of bins is a
configuration parameter that should by no means be optimized on the final validation
data. Note in this context that binning has been shown to result in a more biased
estimation compared to density estimation methods [302].

Reasons to extend the focus to all predicted scores (ECEXPF and CWCE) A
common perception is that the canonical calibration condition, which is the strongest
condition considering all predicted class scores, is the appropriate one in many application
scenarios [113, 150, 302]. One reason lies in the limitations of top-label calibration and
associated binning estimators described above. Another reason could be a broad task
interest in all predictions beyond the classification decision. In the clinical context, for
instance, the risk for all potential outcomes might be relevant for further treatment or
shall be communicated to the patient. In such scenarios, calibration of all probabilities
might be of interest. Consider, for instance, a multiclass classification of tumor categories,
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where one category is more aggressive than others. Even though the final prediction of
the system is ‘benign lesion’, it might be of clinical interest to know (and communicate to
the patient) whether the probability for this outcome was 5% or 20%. While the primary
calibration metric for such scenarios should be ECEXP® as an estimate of the canonical
calibration, it might be of interest to additionally report marginal calibration (as measured
by CWCE) separately for each class. Notably, for these scenarios, alternatively splitting
the problem into individual domain questions that result in separate traversals for each
class of interest should be considered.

Additional reporting of RBS as a guaranteed upper bound on the calibration
error In top-label and canonical calibration, we recommend the additional reporting
of RBS as a guaranteed upper bound on the calibration error. As popular methods to
assess calibration quality such as ECE or ECEXPE are known to over- or underestimate the
error [150], this guarantee provides additional information, especially in safety-critical
applications where the calibration error must not be underestimated.

4.2.3 Instantiations

We instantiated the framework for several biological and medical image analysis use cases
that were identified by the biomedical expert group. The resulting metric recommendations
are summarized in Fig. 4.13, while Figs. 4.14-4.17 provide a detailed overview of the
paths the use cases traversed in the recommendation subprocesses S2-S5. Noteworthy,
and similar to the task pool presented in Tab. 2.1, the tasks cover a variety of imaging
modalities (microscopy, dermoscopy, sonography, MRI, and X-ray). The selected scenarios
are:

ImLC-1 Frame-based sperm motility classification from microscopy time-lapse video of
human spermatozoa [160]

ImLC-2 Disease classification in dermoscopic images [72, 391]
ImLC-3 Classification of the overall autophagy stage for a collection of cells [266, 446]
ImLC-4 Diagnostic standard plane classification in ultrasound images [24]

ImLC-5 Identification of new lesions in brain multi-modal MRI images of patients with
multiple sclerosis [78, 204]

ImLC-6 Breast cancer classification in mammography images [218]

ImLC-7 Multiclass cardiac disease classification in MRI images [30]

The choice of use cases was influenced by two particular goals. First, ImLC-1 and
ImLC-2 were chosen such that two scenarios with very different modality and application
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ultimately lead to the same metric recommendations. This was to demonstrate that our
recommendation process abstract the problem fingerprints enough to be broadly applicable.
Second, the remaining scenarios ImLC-3 - ImLC-7 were chosen to cover a diverse set of
applications and modalities, and follow different branches in our recommendation process.
This was to demonstrate the sufficient coverage of use case by our recommendation
process.
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IMAGE-LEVEL CLASSIFICATION

SCENARIO SAMPLE POTENTI
INPUT IMAGE OUPUT

ImLC-1  Frame-based sperm motility clas- D
sification from microscopy
time-lapse video
of human spermatozoa Multi-class counting metric (52): BA
Per-class counting metric (S3): LR+
lindke e Brtzeis cIaﬁsHﬁcatlon n Dermatofibroma: 0.6 Multi-threshold metric (S4): AUROC
dermoscopic images Melanocytic nevus: 0.2
smurli?m;.gimo.o Calibration metric (S5): ECE (top-label) and RBS
Actinic keratosis: 0.0
Benign keratosis: 0.0
Vascular lesion: 0.1
-
ImLC-3  Classification of overall Sequestration: 0.7 Multi-class counting metric (52): MCC
autophagy stage for a Transport to percl 3L
i lysosomes: 0.2 er-class counting metric (S3): LR+
collection of cells B e 9 (53)
] Multi-threshold metric (54): AUROC
products: 0.0
No calibration metric (S5)
ImLC-4 Diagnostic standard plane No multi-class counting metric (S2)
Spine (sag.): 0.65

classification in ultrasound (only per-class validation)

images

Background: 0.165,
Femur 0.01,3VV 0.01,

Spine (cor) 0.05, i- i 8
fh o Multi-threshold metric (S3): AUROC

Per-class counting metric (S4):
Sensitivity@Specificity

Calibration metric (S5) needed if used in interactive
imaging guidance mode: CWCE
ImLC-5 Identification of new lesions in Multi-class counting metric (S2): EC
brain multi-modal MRI images of

patients with MS Lesion: 0.9 Per-class counting metric (S3): Fﬁ Score

No lesion: 0.1
Multi-threshold metric (S4): AP

Calibration metric (S5): BS (for comparative
calibration assessment and assessment of
interpretability of model outputs)

ImLC-6  Breast cancer classification in
mammography images

No multi-class counting metric (S2)
(only per-class validation)

Per-class counting metric (53): NB

Multi-threshold metric (S4): AP

Calibration metric (S5): BS
(for comparative calibration assessment)

ImLC-7 Multi-class cardiac disease

Multi-class counting metric (S2): Accuracy
classification in MRl images

ure
ion: 0.3, Dil

rdiomyopathy:0.0, Per-class counting metric (S3): Sensitivity
Hypertrophic
rdiomyopathy: 0.1, . .
 Abnormal right a Multi-threshold metric (S4): AUROC
| ventricle:

No calibration metric (S5)

ABBREVIATIONS
AP Average Precision

AUROC Area Under the Receiver Operating Characteristic Curve ~ CWCE Class-wise Calibration Error LR+ Positive Likelihood Ratio
BA Balanced Accuracy EC Expected Cost MCC Matthews Correlation Coefficient
BS Brier Score ECE Expected Calibration Error RBS Root Brier Score

Figure 4.13: Metric recommendations for seven concrete biomedical ImLC problems.
The seven use cases (ImLC-1) - (ImLC-7) with example images, example labels and the
resulting metric recommendations after following our proposed process. Originally published
in Maier-Hein et al. [238].
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Figure 4.14: Traversal paths through of subprocess S2 to select multiclass counting met-
rics for seven concrete biomedical problems. The seven use cases (ImLC-1) - (ImLC-7)
cover most branches of the recommendation process. Originally published in Maier-Hein
et al. [238].
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Figure 4.15: Traversal paths through of subprocess S2 to select per-class counting metrics
for seven concrete biomedical problems. The seven use cases (ImLC-1) - (ImLC-7) cover
all branches of the recommendation process. Irrelevant use cases for ObD and InS have been

grayed out. Originally published in Maier-Hein et al. [238].

149



4 Application-specific Validation of Image Classification Algorithms

Multi-threshold @
metric requested e ™ Image-level
] I =3 Object detection (ObD)

Check pyailability of
FP5.1

predicted

No

Check
P11 Problem

z category?

Check Provided class

FP4.2  prevalences reflect
z the population of
interest?

0
I Decision guide 4.2

Select Selectfrom | B Decisi fha] ‘
AUROC AUROC, AP I ecision guide 4. Select from
AP, FROC Score

! | & |

Add selected
metric(s) for each class

31!

END

Multi-threshold metric
selection completed

Return to main process ]

Figure 4.16: Instantiation of subprocess S4 for the selection of multi-threshold metrics
with recommendations for concrete biomedical problems. The seven use cases (ImLC-1)
- (ImLC-7) cover both branches of the recommendation process. Irrelevant use cases for ObD
and InS have been grayed out. Originally published in Maier-Hein et al. [238].
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Figure 4.17: Instantiation of subprocess S5 for the selection of calibration metrics with
recommendations for concrete biomedical problems. The seven use cases (ImLC-1) -
(ImLC-7) cover multiple branches of the recommendation process. Originally published in
Maier-Hein et al. [238].
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4.3 Discussion

Our international Delphi process to answer (RQ1) has yielded several significant results,
most notably the consortium agreed upon:

(i) A systematic workflow that interrogates a few fundamental properties of the
use case (the problem fingerprint) to determine a set of appropriate performance
measures (see Sec. 4.2.1),

(ii) decision guides to resolve some remaining ambiguous situations (see Sec. 4.2.2),

(iii) other general recommendations for the use of performance measures (see Tab. 4.3).

The broad applicability has been demonstrated with seven diverse tasks in Sec. 4.2.3. The
entire interview process has been implemented as a web-based tool that guides the domain
experts through the entire recommendation process. It restricts the interview questions
to the relevant information required in each specific step and is freely available [1].
Reference implementations for all metrics in the metric pool (see Tab. 4.1) are available
within the MONALI open source framework [373].

Interpretation

Metrics Reloaded emerged from a rigorous 2.5-year process involving five workshops, nine
surveys, and numerous expert discussions, balancing established (potentially flawed) and
new (not yet stress-tested) metrics. We addressed the fundamental challenge of validation
— the absence of definitive ‘best metrics’ — through a three-part strategy: leveraging
established consensus-building methods used in guidelines such as CONSORT [344],
TRIPOD [260], and STARD [39, 40], gathering feedback through social media campaigns,
and testing in diverse biomedical use cases (see Sec. 4.2.3). This approach achieved
93% median agreement across the subprocesses, with debates primarily centered on
calibration metrics. For example, some members questioned the value of stand-alone
calibration metrics altogether. The reason for this view is the critical misconception that
the predicted class scores of a well-calibrated model express the true posterior probability
of an input belonging to a particular class [295].

The significance of our framework extends well beyond academic exercise, forming a
critical bridge between scientific innovation and patient benefit in biomedical imaging.
Recent advances in technology readiness assessment and regulatory science emphasize the
pivotal role of metrics that address end-user needs and real-world applicability [217, 223].
By streamlining metric selection, Metrics Reloaded enhances the quality of biomedical
image analysis research while potentially accelerating Al translation into clinical practice.
For Lifelong Learning systems operating in healthcare environments, this framework
provides essential guidance on dynamically selecting appropriate evaluation metrics as
tasks and contexts evolve. This capability is crucial when the system must autonomously
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evaluate its own performance across changing clinical scenarios without constant human
supervision.

Research context

Metrics Reloaded primarily provides guidance for selecting metrics that measure some
notion of the ‘correctness’ of an algorithm’s predictions on a set of test cases. However,
holistic assessment of algorithm performance encompasses additional critical dimensions
that are actively being researched in the biomedical imaging community and beyond.

Robustness represents a fundamental research direction that is particularly relevant
in medical imaging, where continuous changes in the data distribution can be expected
due to manifestation, acquisition, and prevalence shifts, all of which directly affect
the characteristics of the imaging data (see Sec. 6.1). Current approaches to assessing
robustness include stress testing, where performance is monitored under simulated but
realistic perturbations of image characteristics [105]. Notably, recent work shows that
the robustness challenge is prevalent on a large scale beyond medical imaging [85].

Reliability, defined as the ability of an algorithm to communicate its confidence and
raise a flag when uncertainty is high, is another active area of research [343]. For cali-
brated models, this can be achieved via predicted class scores, although other methods
based on dedicated model outputs trained to express confidence or density estimation
techniques are also popular [125]. The research community is increasingly recognizing
that algorithms with reliable uncertainty estimates or increased robustness to distribu-
tional shifts may not always have the best predictive performance [184], suggesting that
safe deployment of classification systems requires careful balancing of robustness and
reliability against accuracy.

Bias detection and mitigation constitute critical components of the research landscape.
Learning-based algorithms rely on historical datasets for training, creating a risk that
existing biases may be replicated or exacerbated — a phenomenon called ‘Shortcut Learn-
ing’ [126]. This concern is particularly acute in healthcare, given the documented scarcity
of representative data from underserved populations and higher error rates in diagnostic
labels for certain subgroups [6, 178, 274]. Current research emphasizes the need for
relevant meta-information, such as patient demographics, to be accessible for test sets to
detect potentially disparate performance across subgroups [245].

While Metrics Reloaded focuses on technical validation, the research community rec-
ognizes that clinical translation requires further validation steps that compare algorithm
performance to conventional care according to patient-related outcome measures, such as
‘overall survival’ [285]. Moreover, there are broader efforts toward responsible research
frameworks that encompass environmental, ethical, economic, social, and societal aspects
of digital technologies [186, 259, 383].
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Limitations

While we believe that our framework covers the vast majority of biomedical image
analysis use cases, suggesting a comprehensive set of metrics for every possible biomedical
problem may be beyond its scope. The focus of our framework is to correct poor practices
related to the selection of common metrics by incorporating use case-specific knowledge
into the decision process. However, for some use cases, our pool of common performance
measures (see Tab. 4.1) may be inappropriate. In fact, in some cases application-specific
metrics may be required. To make our framework applicable to such specific use cases, we
have integrated the step of selecting application-specific metrics into the main workflow
(see Fig. 4.7). Examples of such application-specific metrics can be found in related
work [79, 107].

Note that while Metrics Reloaded focuses on the selection of metrics, proper application
is also important. Detailed failure case analysis [327] and performance evaluation on
relevant subgroups have been highlighted as critical components for better understanding
when and where an algorithm may fail [57, 273].

The generation and handling of fuzzy reference data (e. g., from multiple observers) is
a topic in its own right [377] and was deemed to be beyond the scope of this work. This
limitation should be addressed in future work, especially as fuzzy references are common
in clinical settings where inter-observer variability is significant.

Future work and broader impact

As is common in the development of scientific guidelines and recommendations, it will
be necessary to regularly update our framework to reflect current developments in
the field, such as the inclusion of new metrics or biomedical use cases. It is already
planned to extend the scope of the framework to other problem categories, such as
regression and reconstruction. In order to accommodate future developments in a fast
and efficient manner, we envision our consortium building consensus through accelerated
Delphi rounds organized by the Metric Reloaded core team. Once consensus is reached,
changes will be implemented in both the framework and the online tool and will be
highlighted so that users can easily identify changes from the previous version, ensuring
full transparency and comparability of results. In this way, we envision the Metrics
Reloaded framework and online tool as a dynamic resource that will reliably reflect the
state of the art at any given point in the future, for years to come.

Of note, while the recommendations provided originate from the biomedical image
analysis community, many aspects are generalizable to imaging research as a whole. In
particular, the recommendations derived for individual fingerprints (e. g., implications of
class imbalance) hold across domains, although it is possible that for different domains
the existing fingerprints would need to be complemented by additional features that are
not known to this community.

So far, Metrics Reloaded focuses on common reference-based methods that compare
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model outputs to corresponding reference annotations. We made this design choice
based on our hypothesis that reference-based metrics can be selected in a modality- and
application-agnostic manner using the concept of problem fingerprinting. As indicated
by the step of selecting potential non-reference-based metrics (see Fig. 4.7), validation
and evaluation of algorithms should go far beyond purely technical performance. Recent
efforts specifically devoted to estimating the energy consumption and greenhouse gas
emissions of ML algorithms highlight one such dimension [288, 371]. While tracking
this particular aspect is feasible from the perspective of a Lifelong Learning system [215],
most of the remaining aspects of responsible research — ethical, economical, social, and
societal implications — remain open problems.

For future iterations, incorporating these broader responsibility metrics will be essential
to ensure that autonomous Al systems are not only optimized for clinical performance,
but also consider their broader societal and environmental impacts over their operational
lifetime.

Conclusion

This chapter demonstrates that a systematic approach to metric selection can signifi-
cantly enhance the validation of biomedical image analysis algorithms and achieved high
consensus within the international Delphi consortium. The Metrics Reloaded framework
provides a structured methodology for selecting appropriate metrics based on problem
fingerprints, addressing a critical gap in the validation process.

These findings contribute significantly to the first metacognitive loop of our Lifelong
Learning system: the alignment of model validation during the Design phase. By
autonomously interviewing domain experts, we enable Al systems to learn about the
necessary healthcare contexts, aligning the task-specific goals of the Lifelong Learning
system with guided minimal human interaction. With the capacity for self-directed
metric selection, we lay the groundwork for Al systems that can continue to learn, adapt,
and validate their own performance throughout their operational lifecycle in healthcare
environments.
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KNOWLEDGE TRANSFER FOR TRAINING
IMAGE CLASSIFICATION ALGORITHMS IN
SPARSE DATA SETTINGS

Disclosure

Parts of the results of this chapter have been submitted for publication to Nature
Communications Medicine. Preliminary results have been published at the Medical
Imaging Meets NeurIPS workshop [342] and the Medical Image Computing and
Computer Assisted Interventions (MICCAI) conference [136]. See App. A for full
disclosure.

This chapter addresses the second research question of designing a pipeline-learning
loop as part of the Develop phase in the Al lifecycle (see Fig. 5.1):

Research Question 2

How to enable effective knowledge transfer across biomedical image analysis
tasks?

In Sec. 2.1 we elaborated on data scarcity as a leading roadblock for translational
success of Al models in medical imaging. The essence of a Lifelong Learning system
is to leverage experience from other, previously encountered tasks to improve on each
individual one (see Sec. 2.8). In this chapter we want to present our approach for such
knowledge transfer between tasks and how it could be instantiated in the challenging
medical environment. Sec. 5.1 will formalize the problem more precisely and derive
possible solutions. It will also describe multiple scenarios to leverage knowledge and how
to properly evaluate the success of knowledge transfer. Afterwards, Sec. 5.2 will report
on the experiments we conducted with respect to the described methodology. Finally,
Sec. 5.3 closes the chapter with a discussion of our results.
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Figure 5.1: Pipeline-learning loop. Anchoring of this chapter in the overall Lifelong Learning
system (see Fig. 1.1). Given a task, the Meta Learner leverages previous training experience
from the Knowledge Base to determine the optimal training pipeline for the Learner to train a
model. Loop is highlighted in red.

5.1 Methods

From Fig. 5.1 it is clear that we intend to store and update experience in the Knowledge
Base. In this section we describe our main methodological contributions as well as the
evaluation concept we have developed to assess the value of our approach. With respect
to privacy concerns in the medical domain, we strive to find a solution that allows knowl-
edge to be ‘exchanged’ across institutions for more efficient use of existing experience,
better generalizability of solutions, and reduced overall resource consumption. The sec-
ond crucial step is to identify important knowledge and derive a concrete instruction for
the Meta Learner on how to influence the learning process of the model. Importantly,
hyperparameters (see Def. 2.84) are decoupled from the training data, whose retrans-
mission may be limited by regulatory requirements, and they also constitute concrete
instructions for the Meta Learner. While such hyperparameters, e. g., on successful model
trainings are thus easy to store, they are difficult to match to a new task without any
information on the corresponding source task. For this, we need an associated ‘identifier’
that compresses — while preserving privacy — the task information corresponding to the
hyperparameter. On the other hand, for some datasets that have been encountered before,
the samples are available — for example, previous in-house tasks or publicly available
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datasets from medical or non-medical computer vision research. But even for these tasks,
any Transfer Learning approach (see Def. 2.86) requires task matching.

5.1.1 Task fingerprinting

Our proposed approach to fulfill these roles can be summarized by the following definition.

Definition 5.1. A task fingerprinting method is a tuple (f, d) comprising a
fingerprinting function f that maps any task 7 onto a set of real valued vectors
(called the fingerprint or task embedding) and a distance measure d (not
necessarily symmetric or positive) that maps two fingerprints onto a real value. By
convention, we will interpret such values as ‘the lower, the higher the similarity’.

The challenge of a task fingerprinting method is to efficiently extract relevant task
information into a fingerprint, while managing the trade-off between sufficient detail (for
task matching) and removal of private information (for sharing). We chose the codomain
set of real-valued vectors (an element of the powerset for some R") as the most generic
to capture a variety of existing and newly proposed methods. A diagram of the concept
of task fingerprinting within a network of contributors to the shared Knowledge Base is
given in Fig. 5.2. It is worthwhile to explicitly state the desirable properties of a ‘good’
task fingerprinting method.

(i) encryption: a fingerprint should not reveal any information about a particular
sample to ensure that no sensitive patient data is shared.

(ii) efficiency: a complex computation of a fingerprint may be acceptable since it is
likely to be a one-time event; however, the computation of pair-wise distances must
be highly efficient since as the number of tasks in the Knowledge Base increases,
the number of pairs grows quadratically and is a repetitive operation.

(iii) quality: task matching based on the distance measure between task fingerprints
must result in a beneficial knowledge transfer.

An immediate simple idea for fingerprinting is to use a generically pretrained DNN as
a feature extractor. Typically, the classification head of an ImageNet [93] pretrained DNN
is ‘removed’ and the features from the penultimate layer are used [444].

Example 5.2. Let ¢ : X — R™ be a feature extractor, p € N and ||-||,, the usual L,
norm of vectors. For some integer n let s be a sampling function (see Def. 2.77)
that chooses n samples from a task 7. The mean pairwise distance d, between
two sets of vectors is given by computing L,, for any difference of combinations of
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Figure 5.2: Collective knowledge acquisition through task fingerprinting. (I) A network
of contributors may transmit experience on model training to the joint Knowledge Base by
submitting a shareable task representation (‘fingerprint’), meta information about their training
strategies, and, optionally, their data. (I) To query the Knowledge Base for existing experience,
the fingerprint for the current task is generated. (IIl) Based on the most relevant tasks in the
pool according to fingerprint matching, relevant training strategies and data can be retrieved.
(IV) The retrieved meta information and data are used to compile a training pipeline with
different components of transferred knowledge. In this study, we investigate four scenarios
of knowledge transfer, namely (a) model architecture, (b) pretraining data, (c) augmentation
policy, and (d) co-training data. Published as a preprint in Godau et al. [137].
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vectors from the set and averaging the results:

dp({ti}isns {vi}i<n) =107 Z [ui = vj[p-

B,j<n

Then (¢ o s, d,,) is a task fingerprinting method, called naive fingerprinting.

There are several problems with naive fingerprinting. First, the encryption is inadequate
because deep features of individual samples can be identified from the fingerprint, which
has been shown to potentially reveal sensitive information [153]. Second, the pairwise
computation of vector norms scales quadratically with the number of extracted samples
n and can lead to inefficient fingerprint comparison. Finally, the Euclidean (or any other
L, norm based) distance in feature space may not be a strong indicator of conceptual
similarity due to the high dimensionality [7]. Thus, it may not be surprising that the
naive fingerprinting method does not meet our requirements. But some of its core ideas
have made it into a class of fingerprinting methods in the literature, which we want to
collect and discuss. Since most of them are at least partially based on a ‘sampling plus
feature extraction’ technique, we will fix ¢, n € N and s from ex. 5.2 throughout this
section.

Definition 5.3. The Maximum Mean Discrepancy (MMD) [1438] is the largest
difference in expectations over functions in the unit ball of a RKHS (see Def. 2.69).
It is given by

v ({ts Yins {0i}i<n) =071 (n = 1) 7 Z k(ui, uj) + k(vs, v5)
1,J<n,i#]
—2n2 Z k(u;, vy),
i,j<n

for some kernel £, e. g., the Cauchy kernel k(u,v) = (1 + |Ju — v||*>v72)~! with
hyperparameter v (called bandwidth)®. Then (¢ o s, dyyp) is a task fingerprinting
method, called MMD fingerprinting,.

?Often o is used in literature for the bandwidth (e. g., in Song et al. [365]), but we wanted to avoid
confusion with the softmax function (see Def. 2.8).

J

MMD fingerprinting only partially solves the problems of naive fingerprinting, since it
relies on the same encryption, and MMD computation also scales poorly with the number
of extracted samples n, i. e., it does not qualify our efficiency requirement. Nevertheless,
MMD recently showed some success for distribution comparison in the training of
GANSs [144] and Invertible Neural Networks (INNs) [16, 104].

Another common distance function of feature distributions in ML is named after Leonid
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Vaserstein.

Definition 5.4. Let m € N, p € [1,+00), d be a metric (in the mathematical
sense) on R™, and ¢, ¢’ be two probability measures on R, the p-Wasserstein
distance [401] is defined as:

Wp(q,d) == inf (Eqyeqd(z,y)?), (5.1)
v€l(q,q")

where I'(q, ¢') is the set of all couplings between ¢ and ¢/, i. e., the set of probability
measures on R” x R™ whose marginals are ¢ and ¢’ on the first and second factors
respectively. If p = 1 we call W, the Earth Mover’s distance [35]. In case p = 2
we call W5 the Fréchet distance [119].

The Wasserstein distance quantifies the minimum effort required to transform one
probability distribution into another. It can be conceptualized through the classical mass
transport problem: if we consider each distribution as a mass of unit weight distributed
over a metric space, the Wasserstein distance represents the minimum work required for
this transformation, calculated as the product of the mass transported and the distance

traveled. The simplest example to demonstrate this is to compare two point masses in
R™.

Example 5.5. Let m € N, p € [1, +0o0], d be a metric on R™, z,y € R™ and x,
be the characteristic function for x € R™, i.e., forany y € R™

1 Jifr=y
Xx(y)::{

0 ,else.
Then the point-probability measure y; and ), have p-Wasserstein distance

Wp(Xfca Xﬁ) = d(l’, y)a (5~2)

as the only element in I'(xz, Xg) 1S X(z,9)-

J

Ex. 5.5 shows an interesting difference between W, and the previously introduced
Kullback-Leibler Divergence (KLD) (see Def. 2.73) as an alternative dissimilarity measure
for probability distributions: It compares the distances in the domain of the probability
measures, as opposed to caring only about the probability differences at each point of the
domain (see Fig. 5.3). This emphasizes the aforementioned perspective of W), to quantify
the minimal energy required to move the mass of one distribution to form another. This
transport based interpretation, originally formulated by Monge in 1781 [258], has led
to its alternative designation in the computer science literature as the earth mover’s
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What W, compares
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Figure 5.3: Fundamental difference between p-Wasserstein distance (W) and Kullback-
Leibler Divergence (KLD) to compare probability distributions. While the Wasserstein
distance compares distances along the probability domain direction, KLD only conducts point-
wise comparison of probability density differences.

distance. The metric has found widespread applications in machine learning, particularly
in generative models [17] and optimal transport theory [405], due to its ability to capture
geometric properties of the underlying space.

For our purposes — comparing distributions of extracted features — the probability
measures ¢ and ¢’ will be ‘empirical distributions’ (assigning equal weight to each sample),
and computing W, is equivalent to solving a linear program [279]. For this general case,
the best algorithms scale in worst-case complexity as O(n?logn) given n samples each
for ¢ and ¢’ [279]. This unfortunate scaling hurts our desired property of efficiency for
comparing task distances. Fortunately, there are two special cases where the computation
is drastically simplified. The first is the one-dimensional case, i.e., m = 1, where W), can
be computed in one pass using the quantiles of the distributions [312]. To do this, we need
to examine each feature dimension by itself when comparing empirical distributions.

Definition 5.6. We define

desp({ti Yizns {0iticn) =m0 Y WY Xty D Xou))s

I<m i<n i<n

then (¢ o s, dgmp) is a task fingerprinting method, called Earth Mover’s Distance
(EMD) fingerprinting [136].

While the EMD fingerprinting improves the efficiency problem compared to the multi-
variate W, the encryption in the above version does not differ from the naive fingerprint-
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ing. However, since the empirical distributions of each feature dimension are examined
separately, it is possible to permute entries of each feature dimension individually. Thus,
for large n and m, we can decompose features sufficiently to ensure encryption. Both
efficiency and encryption can be further improved by a ‘binning’ strategy.

Definition 5.7. Let B € N and by < b;... < bp € R, called the edges of B bins.
For a set of n € N scalars {;};<,,, and j < B we define the j-th binning function

{1 ,if2i(5) € [bj-1,b5)

0 ,else.

bin; ({zi}i<n) == )

i<n

Now let by = —o0 and bp = +00, then the normalized histogram function hist
maps the set of n scalars {z; };<, onto p € Ap_;, where p; := n~'bin; ({x; }i<n)
is the relative prevalence of elements in the set falling into the j-th bin. Applied
to a set of feature vectors U = {u;};<, with u; € R™, we let further hist(U) :=
{hist({wi(j) }i<n) }j<m be the set of normalized feature histograms.

Binning trades the ‘resolution’ of feature values for a simpler data structure with only
B quantiles to compute for EMD. For our later experiments, we will fix b; and bg_; per
feature dimension and optimize the resolution hyperparameter 5. We will continue to
refer to the combination of normalized histograms and EMD fingerprinting as VDNA
because it was first introduced by Ramtoula et al. [313].

We now want to return to the second case of simplified W, computations, which is
independent of the dimension m, but fixes p = 2 and makes the strong assumption that
g and ¢’ are both Gaussian distributions.

Definition 5.8. For a set of n € N feature vectors U = {u; };<,, with u; € R™ for
some m € N, we define the empirical Gaussian measure [279] iy = N (m, Y),
with mean / and covariance matrix X given by

m:=n"' g U;

i<n

Y= (n—1)"") (u; — i) (u; — )"

<n

The optimization of W, for two Gaussian measures has a closed-form solution, allowing
efficient computation [102] and motivating our next fingerprinting method.
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Definition 5.9. For formal precision we let /i be a mapping from extracted features
U = {u;}i<y, to the corresponding tuple (1, 3) of empirical mean and covariance®.
We define

A

dFID((mla Z1)7 (m27 ZAlz)) = Wz(/\/(ml, i1),-/\/’(?7A”i2, ZA32))7

then (1 0 v o s, dpp) is a task fingerprinting method, called Fréchet Inception
Distance (FID) fingerprinting [97, 166].

“These still can be represented as an ordered set of m + 1 vectors from R™.

FID elegantly solves both the encryption and the efficiency problem: Instead of image-
level features, only the means and covariance matrices of the features need to be revealed.
Also, the closed-form solution speeds up the computation’.

Before we dive into our own proposed fingerprinting method, we want to quickly note
that task embeddings do not necessarily have to rely on extracted features of task images.

Definition 5.10. Let 7 be a task and ¢,, a probabilistic model for 7 with some
weights w € R* (see Def. 2.78). The Fisher Information Matrix [337] F €
R* x R* is defined as

F = Eg yrpr (X),00(z) [V log @w(x)y(vaDw(x)y)T]-

For a fixed backbone model ¢,, we define the mapping e from the class of all tasks
onto R¥, with e(7); := F; called the Fisher embedding of . Here the Fisher
Information Matrix F' corresponds to a fine-tuned model ¢ to task T (see Def. 2.87),
where we restrict the weights of the SGD to a single attached linear layer (see
Def. 2.79). On the contrary we restrict the weights w in the computation of F' to
those of the backbone ¢,,.

The i-th entry in the Fisher embedding of a task indicates the ‘importance’ of the
backbone model parameter w; for predictions of ¢ on 7 [4]. Intuitively, a convolutional
kernel (see Def. 2.80) that is relevant to the task, e. g., one that ‘detects’ certain shapes
in an image [310] and thus receives a high value in the Fisher embedding, is highly
indicative of the ‘nature’ of the task. Unlike the previous feature extraction approach,
Fisher embeddings also contain information about the labels of 7. This property is
particularly useful for distinguishing between tasks that share the same images (e. g., the
Cholec80 tasks and some CheXpert tasks from Sec. 2.2)2. Note that although the Fisher

10f all actually computed task fingerprinting methods along the experiments for this chapter, FID was,
next to MMD, still among the slowest.

“We would like to briefly point out that there are also a number of approaches that combine feature
extraction with label information [12, 84].
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embedding consists of a single vector, its dimension £ is much larger than the dimension
m of a feature vector (assuming the same backbone model). While m refers to the neuron
activations in the last layer of ¢, k corresponds to the Fisher information for all neurons
of . In the setting of our experiments (see Sec. 5.1.3), k and m - n are in the same order
of magnitude. To use the Fisher embedding for task fingerprinting, we need to choose a
distance method.

Definition 5.11. The cosine similarity [357] for vectors u, v € R is defined as

. D i<k Uili
sim(u, v) 1= —~ :
\/Zz‘gk uy - \/Zzgk v}

As the cosine similarity is positively oriented we further introduce dggp(u, v) :=
1 — sim(u, v) and may call the task fingerprinting method (e, dgp) the Fisher
Embedding Distance (FED) [4, 136].

Since cosine similarity is easy to compute, FED satisfies our efficiency criterion, al-
though the (one-time) cost of generating the fingerprints is higher than for feature
extraction approaches. With respect to encryption FED obfuscates all samples from the
computation of the Fisher embedding jointly per weight. For a sufficiently large number
of samples used in the computation of the Fisher Information Matrix, this can be expected
to preserve individual patient privacy. Note, however, that FED also needs samples from
7T for the fine-tuning step of the backbone model ¢,,. We therefore postulate — without
rigorous proof — that for a fixed total number of samples used in the embedding process,
the encryption quality can be considered worse than for EMD fingerprinting (with the
mentioned random permutations).

Turning our attention back to feature extraction-based approaches, we present a
precursor to our soon-to-be-proposed task fingerprinting method. As shown in Fig. 5.3
one can also use the KLD to compare feature distributions*. Moreover, our definition of
KLD (see Def. 2.73) extends beyond probability measures on the particular label space
to any finite measurable space — and can even be extended to continuous probability
distributions [33]. A simple way to use KLD is on a highly aggregated feature fingerprint.

Definition 5.12. We define an aggregation function a on a set of feature vectors

%In our implementation we made some tweaks to the weights used for F. More specifically, we partially
summarize the parameters of a convolutional kernel by taking the mean and ignore the bias parameters
as well as some early network layers.

*Noteworthy Tan et al. [381] propose a fingerprinting method that combines p-Wasserstein and cross
entropy (i. e., KLD based).
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U = {u;}i<n, with u; € R™ onto R™ for j < m as follows:
Uz(J)
oW =2,

i<n

Note that ||a(U)||; = 1, i.e, a(U) € A,,—1. We call task fingerprinting method
(a o p o s, KLD) P2L fingerprinting [32] (also KLD fingerprinting [136]).

P2L fingerprints are by far the most encrypted fingerprints we have presented so far.
The m dimensional’ fingerprints encapsulate all n samples used for feature extraction,
where usually m < n. The KLD computations are also quite efficient, making P2L a
top fingerprinting method from these perspectives. On the other hand, our prelim-
inary experiments showed that P2L performs qualitatively worse than FED or EMD
fingerprinting [136].

We therefore propose the following new fingerprinting method, which combines the
binning idea from VDNA fingerprinting (see Def. 5.7) with the distance measure concept
from KLD fingerprinting (see Def. 5.12). Note, however, that if there is an empty bin
in the construction of the normalized histogram p, there may be some 7 < B such that
p(i) = 0. If the comparison is with a task whose corresponding bin is not empty, i.e.,
q(i) > 0, then KLD(p, q) is not defined (or set by convention to +o0co [82]). We therefore
add the softmax o to avoid such scenarios. We also add a weighting scheme over the
feature dimension.

Definition 5.13. Let {p,} ;<. and {¢; };<m two sets of normalized feature his-
tograms (see Def. 5.7) and w € A,,_; be a weighting scheme. Now let

diio({ps}i<ms {gj}i<m) = Y w;KLD(a(p;), g;)

Jj<m

Then (hist o ¢ o s, dpxip) is task fingerprinting method, called binned Kullback-
Leibler Divergence (bKLD) fingerprinting.

The weighting scheme in bKLD is - besides the number of bins B - a hyperparameter
that allows to shift the focus to some feature dimensions that are particularly relevant.
Based on our exploratory experiments on the development tasks (see Sec. 5.1.3), we
identified three favorable settings of hyperparameters: bKLD(small,target) a ‘small’
fingerprint with B = 100 bins and weighting by the softened feature average of the target
task w = o(>, ., v;/n), PKLD(large,source) with B = 1000 bins and weighting by the
normalized feature average of the source task w = a({u;};<,) as well as bBKLD(large,un-

From an information content perspective, the fingerprints are only m — 1 dimensional, as we know they
live on the simplex A, 1.
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Figure 5.4: Concrete processing pipeline for our proposed binned Kullback-Leibler Di-
vergence (bKLD) fingerprinting method. To compute a bKLD fingerprint for some task
T, we first sample n = 10000 images from 7 (I) and extract deep features through an Ima-
geNet [93] pretrained ResNet34 [161] backbone, generating m = 512 features per image (II).
We compute normalized histograms with b = 100 bins for each of the m features over the n
samples (III), which comprise the fingerprint. To compare two fingerprints, a weighted sum of
the KLD across all histograms is computed. The softmax operator o is applied to source task
histograms to avoid empty bins. Adapted from Godau et al. [137].

weighted) with B = 1000 and uniform weighting, i.e., w; = m~! forall j < m. An
overview of all computational steps for bKLD(small,target) is given in Fig. 5.4.

With these choices of hyperparameters B, the resulting fingerprints, i. e., normalized
feature histograms {p;};<,, with p, € Ap_; contain B - m scalar values and thus about
one to two orders of magnitude fewer entries than fingerprinting methods that rely on
the full n - m features, such as naive fingerprinting (see Ex. 5.2), MMD fingerprinting
(see Def. 5.3), or EMD fingerprinting (see Def. 5.6). Binning automatically decouples the
features per sample (which could be achieved at least for EMD fingerprinting by the pro-
posed random permutation strategy) and further complicates any reverse reconstruction
by the information loss due to bin-width resolution. From these considerations, and with
our choice of hyperparameters n = 10000, m = 512, the encryption capabilities of the
presented fingerprinting methods could thus be roughly ordered (from least favorable to
most favorable) as follows

naive = MMD < EMD < FED < VDNA = bKLD < FID < KLD

Of course, a much more comprehensive information-theoretic analysis would be
required to validate sufficient privacy, which is beyond the scope of this work. As a final
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remark on this topic, we would like to point out that for a very small number of samples,
obfuscation via bin resolution becomes more relevant than obfuscation via decoupling
(or aggregation), as the extreme case of n = 1 shows.

Regarding efficiency, we already mentioned the inferiority of FID and MMD in our
computations. We also noted that binning speeds up the computation of the 1-Wasserstein
distance, i. e., VDNA is faster than EMD fingerprinting. The computations of the remain-
ing distances are mostly linear in the size of the fingerprints.

Finally, we consider the quality of the fingerprinting methods, which is the primary
focus of this work.

5.1.2 Validation of task fingerprinting

Recall from Def. 2.84 that a trainer T takes a task 7 and some hyperparameters w to
compute a model ¢ = T(7,w). In our Lifelong Learning system the Meta Learner should
provide the Learner, (i.e., the trainer), with favorable hyperparameters w particularly
for a given target task 7. Our proposed strategy is to query the Knowledge Base with a
fingerprinting method ( f, d), by computing f(7) and comparing this fingerprint with all
potential source tasks S in the Knowledge Base via d(f(S), f(7T)) - similar to a retrieval
problem. Suppose the Knowledge Base contains experience from a pool of n source tasks
{S:}i<n. We will denote S = argmin g, d(f(S;), f(T)) for the best matching source
task for (f, d). For each potential source task S we distinguish two cases:

The data of S is not accessible This allows only to use hyperparameters w for S that
are stored in the Knowledge Base.

The data of S is accessible This also allows to integrate S directly into the training
process. Examples are sequential training, i. e., fine-tuning (see Def. 2.87) or parallel
training, i. e., Multitask Learning (see Def. 2.85).

For simplicity, we will only consider a single ‘best’ existing combination of hyperpa-
rameters w for each source task S in the Knowledge Base® The Meta Learner can set up the
training pipeline according to the availability of data from any source task S by adopting
some hyperparameters for model training. We will skip the exact steps of this setup for
now, but in general we will refer to such a S-informed trainer (with potential access to S
data) as Ts and the updated hyperparameters as ws. To evaluate this process, we will
consider a variety of meta metrics.

$Technically, each submitted hyperparameter w on a source task S must be associated with the value of
some performance measure, for example, some validation loss. This would allow a kind of ‘distribution
of good hyperparameters’ to be derived, and subsequently the Meta Learner could propose a family of
hyperparameters drawn from this distribution. However, due to computational constraints, we stick to
the simple procedure of choosing only the best hyperparameters for S.
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Improvement

The first metric tries to quantify the benefit of using an informed trainer compared to
an uninformed one. For this, we assume that the Meta Learner chooses rather well
generalizable hyperparameters w and possibly a small hyperparameter search strategy
on the target task 7. Zamir et al. [438] used a meta metric called gain, which takes
into account (the binary information) whether the informed trainer performs better than
the uninformed one. We extend this metric to be more granular about the performance
difference.

Definition 5.14. Let S, T be tasks and p a performance measure for 7. Given
some strategies from the Meta Learner to determine informed w¢ and uninformed
w hyperparameters, with corresponding trainers T ¢ and ‘¥, we define the improve-
ment as

w(Es(T,ws)) — m(E(T, w)).

Improvement inherits the orientation of the underlying performance measure p. The
value range also shifts from the assumed previous bounds [a, b] to [a — b, b — a] with
the new property that a value of zero indicates no benefit from the experience of S.
While improvement compares the outcome of the S-informed training process with an
uninformed training process, it does not take into account the other potential choices
of source tasks available in the Knowledge Base. Following the pitfall considerations in
Chap. 4, imagine a scenario where the majority of source tasks are beneficial, so that
a ‘random’ source task selection process would — in expectation - lead to a positive
improvement, hiding the fact that no strategy was necessary to achieve it.

Percentile

The quality of a task fingerprinting method should not only relate performance on a
selected source task S to the uninformed training process — as improvement does — but
also to all other potential knowledge transfer sources. We will do this in several ways.
First, we examine the relative ranking of the selected source task among all potential
source tasks.

Definition 5.15. Let {S,};<, be a pool of source tasks, 7 a target task, p a
positively oriented performance measure for 7 and S e {Si}i<n the selected
source task. The percentile for this choice is given by the fraction of source tasks
that perform worse or equal compared to S, or more precisely

n~ - [{Sili < n, (T, (T ws,)) < u(Ts(T,ws))}H.

For negatively oriented y the ‘<’ can be replaced by a *>’. Percentile is positively
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oriented and takes values within [0, 1]. Since a random selection process would naturally
- in expectation — yield a percentile value of 0.5, the metric is overall well interpretable.
On the downside, it requires access to all models that can be trained with each of the
potential source tasks, which is computationally expensive. We also present a pitfall
for this meta metric: Consider a scenario where the pool of source tasks consists of a
number of clusters in the sense that the scores 1(Ts, (7, ws,)) within each cluster are
very close to each other, but the clusters themselves are rather separated. In such a case,
the percentile values for the source tasks selected from within a cluster may be much
more spread out than the actual performances indicate. And the ‘performance jumps’
between clusters would be reflected only by marginal increases in percentile. This is
due to the fact that percentile only considers the relative ranking of the source tasks.
Therefore, we now introduce a metric that includes actual performance differences, but
unlike improvement, takes into account a potentially better selection of source tasks.

Regret

Definition 5.16. Let {S,};<,, be a pool of source tasks, 7 a target task, y a
positively oriented performance measure for 7 with finite upper bound b € R,
and S € {Si}i<n the selected source task. We call the performance resulting from
the best source task o := max{u(%s, (7, ws,))|i < n} the oracle performance.
Then the regret [318] for the choice of Sis given by

0 — pu(Ts(T,wz))
b— w(Tg(T,wg))

For the special case 0 = b = (1(T¢(T,wg)) we set the regret equal zero.

J

Regret is negatively oriented with a value range of [0, 1] and measures how much of the
remaining performance gap (from the performance determined by the chosen source to
the best possible performance value, i. e., the upper bound) could be overcome by making
the optimal choice from the task pool. Here regret, unlike percentile, does not care about
the distribution of the remaining source task performances. This means, in pitfall terms,
that for a fixed selected source task and a fixed optimal source task corresponding to the
oracle performance, we can add an infinite number of either near-optimal source tasks or
source tasks that result in worse performance than the selected one without changing
regret. However, in the former case, a random source selection strategy would be much
better than the evaluated one, and in the latter case, it would be much worse. This makes
regret difficult to interpret.
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Computational budget

The meta metrics presented so far only consider a single source task choice S. In a more
realistic scenario and given sufficient computational resources, the Meta Learner would
be able to test multiple source tasks. Therefore, we will investigate multi-shot evaluation
schemes specifically for improvement and percentile. For some computational budget
k € N, a pool of tasks {S;}:<, (where k < n)” and a fingerprinting method (f, d), the
k source tasks with the smallest distance to the target task are selected, and individual
improvement or percentile values are computed for each of the £ selected source tasks.
Then some aggregation of the values is considered to reflect the result of the optimization
routine. The aggregation by max reflects the ‘optimistic’ result of the final selection
of this best source task during the optimization process. On the contrary, an average
aggregation puts more emphasis on the holistic evaluation of the top-k proposals by
(f,d). We will perform both types of aggregation in our experimental evaluation.

Weightedtau

The multi-shot evaluation approach allows to extend the fingerprint evaluation beyond
a single selection. Our final meta metric will extend this concept and evaluate the
full ranking of the source tasks. The idea is to use statistical correlation measures
and to assess the computed task distances with the actual outcomes. For this purpose,
a variety of correlation measures have been used in the literature, e.g., the Pearson
correlation coefficient [233, 294, 381] and Spearman’s rank correlation coefficient [103,
158]%. Advocated by You et al. [433], however, recent analyses [3, 9, 282] have turned
their attention to a different rank correlation measure.

Definition 5.17. Let {S;};<, be a pool of source tasks, T a target task, 1 a nega-
tively oriented? performance measure for 7, and (f, d) a fingerprinting method.
We call the performance resulting from the sources tasks o; := u(%s, (7T, ws,)) for
i < n the outcomes and shortly note d; := d(f(S;), f(T)) for the estimated
distances. We define a weighted inner product on R", by

<O, d>w = Z sgn(oi — Oj)Sgl’l(di — dj)wi,j,
i<j<n

where w € R™*" is a symmetric and non-negative weight matrix and

1 ,ifxz >0
sgn(z) =<0 ,ifz =0
-1 ,ifz <0

"Taking the multi-shot evaluation approach to the (unfeasible) extreme and setting k = n would yield
the ‘brute force’ method.
8See Schober et al. [341] for a detailed comparison of these two correlation coefficients.
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is the usual sign function. Now let

(0, d)w .
\/<07 0>w ) \/<d7 d)w

The (unweighted) Kendall’s tau [194] for some o, d € R" is then given by 7,,(0, d),
where all w; ; = 1.

For our use cases we define the following weighting: Given some permutation r
on {0, ...,n — 1}, we let the hyperbolic ranking weights be given by w(r), ; :=
(r(z) + )7 + (r(j) + 1)~*. Now let 7, be the 0-indexed decreasing ranking
function of elements in o, i.e., if r,(i) = j there are j elements in o that are
larger than o; (ties are resolved by ranking in decreasing order according to the
respective entries in d). In other words, 7,(7) is the index of element (o;, d;) in
the lexicographically ordering of {(0;,d;)};<,. Vice versa we define 4. The
corresponding hyperbolic weight matrices will be denoted by w(r,) and w(ry).
Finally, the weightedtau [404] is then given by

Tw(0,d) =

Tw(ro) (07 d) + Tw(rq) (07 d)
2

“Positively oriented performance measures may simply be inverted by multiplication with —1.

Originally, Kendall’s tau [194] was proposed without weights. An intuitive inter-
pretation for the unweighted variant is that for a value of 7, the probability that the
fingerprinting method will rank two random source tasks according to their transfer suc-
cess is (T + 1)/2 [433]. A weighted version was later given [351], and recently improved
to break ties [404]. The value range of weightedtau is [—1, 1], where 1 indicates perfect
rank correlation and -1 indicates inverse rank correlation. The ranking scheme and
hyperbolic weights ensure that the ‘mixup’ in the order of the source tasks becomes more
severe if either the source task has a good outcome or a small distance. It can be seen as
a smooth extension of the multi-shot approach to focus both on the top suggestions by a
fingerprinting method and the best possible source tasks. While rank-based correlation
statistics are less sensitive to outliers than those that measure linear correlation (e. g.,
Pearson correlation coefficient), weightedtau still suffers from similar pitfalls as percentile,
since it only examines the ranking of outcomes and task distances, ignoring their concrete
distributions.

Considerable baselines

We have already mentioned two important baselines to consider when evaluating task
fingerprinting methods. First, the “‘uninformed’ training approach described along im-
provement. Second, the ‘random’ selection described along percentile. By design, careful
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evaluation of these two metrics covers these baselines. In addition, we strive to include
a baseline that captures current research practice: Eisenmann et al. [106] surveyed the
strategies of participants in international biomedical imaging competitions.The predomi-
nant approach to model development for a new task was to manually inspect existing
related literature and modify such existing work. Most of the time was spent selecting
existing architectures that fit the task and configuring data augmentation®. Since we
assume that such literature reviews are performed by queries to search engines, the ‘re-
latedness’ of tasks is primarily defined by a high-level semantic description. To simulate
this behavior, we defined the following task fingerprinting method.

Definition 5.18. Let K be a finite set of keywords with m := |K|. Let f be
an embedding function that maps a task 7 to a subset of K, in the sense that
f(T) € {0,1}™ and f(T); = 1 iff the i-th keyword in K is assigned to 7. Further

we define the distance function

Zigm Uy = U

2m — Zifm Ui - Uy

We call the task fingerprinting method (f, dyan) the Manual fingerprinting®.

“The chosen distance function may be interpreted as inverse IOU (see Def. 2.47).

For the tasks described in Sec. 2.2, we extracted keywords from the semantic description
of the tasks, e. g., imaging modality, anatomical regions, and entities of interest. Since the
fingerprinting often resulted in many equally close source tasks, we used task size as a
tiebreaker, favoring larger source tasks — as it would likely be done by many researchers.

Aggregation matters

As we can see, percentile, weightedtau, and (most of the time) regret require training all
possible source-informed models from the pool of source tasks. Since SGD (see Def. 2.77)
is a randomized process, it is also necessary to repeat each model training several times
for a solid assessment. Furthermore, for a robust evaluation of a fingerprinting method,
the Meta Learner should be able to adapt different potential strategies to inform the trainer.
Assuming that each selected source task results in a different choice of hyperparameters
for the trainer given a strategy from the Meta Learner, the total necessary model trainings
(per target task) amount to

number of source tasks X number of strategies X number of repetitions.

The evaluation of each such model can be done with multiple performance measures.
Finally, using a meta metric, we are able to assign a scalar to each fingerprinting method

9We will cover both aspects as scenarios one and three in our experiments (see Sec. 5.1.3).
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and experiment. In other words, for any combination of target task 7, random seed r,
Meta Learner strategy s, performance measure y, and metric v, we will be able to rank a
set of fingerprinting methods. However, previous studies have shown that such rankings
are rather unstable and small deviations in the setup can lead to different results [3, 9,
58]. Agostinelli et al. [9] came up with a quantification for this instability with respect to
each factor in the experimental setup.

Definition 5.19. Let {(f;, d;) }i<, be a set of fingerprinting methods. Consider
the weighted symmetric graph G := (V| E)), where the vertices correspond to
the conducted and evaluated experimental setups (7, 7, s, 4, ) and two nodes are
connected via an edge in case all but one of the describing elements T, r, s, i1, I/ are
equal. The weight of an edge e = (v1, v3) is given by the (unweighted) Kendall’s
tau (see Def. 5.17) between meta metrics scores for all {(f;, d;) };<,, evaluated on
the setup v; and the corresponding scores evaluated with setup vs.

For each component of a setup (7, 7, s, 4, /), the corresponding setup stability [9]
is given by the average weight over the edges in G that correspond to variations
in this component.

For each component, a setup stability of one corresponds to a consistent, i. e., stable
ranking of fingerprinting methods when varying this component. In particular the
setup stability of the randomness factor , measures the intrinsic uncertainty of ranking
fingerprinting methods, just by the nondeterminism during model training. Note that
it is possible to circumvent the randomness component by replacing all repetitions of
p(T4(T,ws)) with the respective mean value.

Agostinelli et al. [9] also propose an overall score per fingerprinting method to sum-
marize all outcomes.

Definition 5.20. For a subgraph G’ C G of the graph described in Def. 5.19
and a set of fingerprinting methods {(f;, d;) }i<, we define the win rate [9] for
method (f,d) € {(fi,d;)}i<n as the fraction of nodes v € G’ where the ranking of
fingerprinting methods according to v results in a (possibly shared) first position

of (f,d).

Note that the sum of the win rates for all fingerprinting methods for a fixed subgraph
G’ may be greater than one due to shared first ranks. Therefore, and because the win
rate considers only the first entry of each setup ranking, we will rather rely on an
aggregation scheme proposed by Wiesenfarth et al. [420] in the context of compiling
uncertainty-aware rankings for international biomedical imaging competitions.
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Definition 5.21. Once more consider the graph GG described in Def. 5.19 and a set
of fingerprinting methods {(f;, d;) };<». We describe two approaches to compute
an overall ranking score of fingerprinting methods {( f;, d;) }:<» on the conducted
experiments GG. For each meta metric v we will inspect the corresponding subgraph
G’ C @ that uses this meta metric.

The rank then mean [420] approach first ranks all fingerprinting methods
{(fiyd;)}i<n on each node of G’. The achieved ranks for each fingerprinting
method are afterwards averaged to compute the final score.

Conversely, mean then rank [420] first averages all meta metric scores individu-
ally for each fingerprinting method achieved on each node of G'. Afterwards the
means for each fingerprinting method are ranked.

For both approaches, applying bootstrapping corresponds to the repeated eval-
uation while randomly re-combining the subgraph G’ via drawing |G’| many
elements from G’ with replacement.

5.1.3 Experimental design

Next, we describe the details for our experimental assessment of task fingerprinting and
our proposed bKLD method.

Task pools

To ensure a broad applicability of bKLD, we chose a very heterogeneous task pool from
publicly available datasets (see Sec. 2.2). Fig. 5.5 gives an overview of all used tasks, which
amount to 71 in total. Inclusion criteria for tasks were (i) public availability, (ii) use of
2D images, and (iii) provided classification labels. An emphasis was placed on medical
datasets (62 tasks) and a wide variety of imaging modalities (see Tab. 2.1).

Each task was divided into train 7Ty, and test 7. sets, ensuring proportions of 80:20
and equal class distributions between splits. All images were preprocessed to a resolution
of 256 x 256 pixels. Grayscale images were further converted to RGB. For tasks that
exceeded 1000 samples, we subsampled a shrunken version 7;5;1)11 of 800 train samples that
served as the target task variant (as previously done by Renggli et al. [318]). Meanwhile,
Trest Was left untouched. This was done to (i) reduce computational resources, (ii) increase
comparability across target tasks, and (iii) allow knowledge transfer to have a significant
impact, as e. g., pretraining is most beneficial in scenarios where the target task 7 is
small [310]. This implies that all task distances are estimated from a ‘complete’ source
task St(r‘?in to a ‘shrunken’ target task 7;(;11

We divided the set of all tasks into a development set Py, (T01-T28) and a validation
set Py, (T29-T71). We made sure that all tasks related to the tasks we used in our
previous study [136] were selected as developmental tasks, so that the final evaluation is
performed on an ‘unseen’ set of validation tasks P,,. Note that there is a strong (imaging)

176



5.1 Methods

Development tasks

T01 Nerthus

T02 HyperKvasir Anatomical Landmarks
T03 HyperKvasir Pathological Findings
T04 HyperKvasir Quality Of Mucosal Views
TO05 HyperKvasir Therapeutic Interventions
T06 LapGyn4 Anatomical Structures

T07 LapGyn4 Surgical Actions

TO8 LapGyn4 Instrument Count

Validation tasks

T53 CatRelComp

T54 AIDA-E Barrett's Esophagus Diagnosis
T55 Dataset of Breast Ultrasound Images
T56 Kaggle Cataract Dataset

T57 Kaggle Brain Tumor Classification
T58 Brain Tumor Type Classification

T59 COVID-CT-Dataset

T60 MED-NODE

TO9 LapGyn4 Anatomical Actions

T10 Cholec80 Grasper Presence

T11 Cholec80 Bipolar Presence

T12 Cholec80 Hook Presence

T13 Cholec80 Scissors Presence

T14 Cholec80 Clipper Presence

T15 Cholec80 Irrigator Presence

T16 Cholec80 Specimenbag Presence

T25 MNIST

T26 EMNIST

T27 NBI-InfFrames

T28 Laryngeal Cancerous Tissues

Number of

classes

samples 28-10% | 37-10%

dimensions 12 4
T69 Kvasir-Capsule Anatomy imbalance ratio| 15 30
T70 Kvasir-Capsule Content .
T71 Kvasir-Capsule Pathologies Domains

Gastroscopy Colonoscopy

Laparoscopy

Miscellaneous

Capsule Endoscopy

Figure 5.5: A set of 71 heterogeneous imaging tasks is the basis for our assessment. For
each of the 28 tasks of the development split as well as 43 tasks of the validation split, we show
a sample image next to the distribution of the following Box-Cox and Z-score transformed
properties: number of classes, number of samples, intrinsic data dimension [301], and Imbalance
Ratio (IR). The imaging domain is encoded as the background color of the dataset name.

Published as a preprint in Godau et al. [137].
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domain shift from development tasks Pge, to validation tasks P,,, which challenges the
generalizability of our task fingerprinting method along with the high variability in task
size, number of classes, and IR. To the best of our knowledge, no task distance measure
has been evaluated this extensively (see Sec. 3.2).

The tasks from the validation split were further masked for the hyperparameter selec-
tion process for bKLD (see Sec. 5.2.1), where we fixed Py, as the pool of both source and
target tasks. For the final evaluation, we set P, as the pool of target tasks and allowed
both development and validation tasks as the pool of available source tasks, i. e., Pgey UPya1.
In every case of image overlap between two tasks S and 7, we excluded S from the
pool of potential source tasks for 7 (e. g., the Cholec80 [390] (T10-T16), CheXpert [181]
(T29-41), and DeepDRiD [232] (T63-T67) tasks). This also ensured that the target task
itself could not be selected as source task, i. e., we assume the target task has not been
encountered before by the Lifelong Learning system.

Model training

The purpose of our experiments was to demonstrate the utility of task fingerprinting
for a variety of Meta Learner strategies. We therefore designed four realistic scenarios,
covering both cases where only source task hyperparameters are available (the scenarios
‘1: Model Architecture’ and ‘3: Augmentation Policy’) and cases where source task data is
available (the scenarios ‘2: Pretraining Data’ and ‘4: Co-Training Data’). For the former,
we created separate Knowledge Bases and conducted initial experiments as described
below. For better disentanglement, the Meta Learner strategies vary only one aspect of
the training pipeline per scenario.

As a baseline, we also trained models on all (shrunken) target tasks 7:5;11 in isolation,
i.e., as an uninformed trainer would process them. Coming up with such a fair and
meaningful training scheme for each task is a major challenge, given the large hetero-
geneity between tasks. Too much individual optimization per task is costly and introduces
another potential source of bias; on the other hand, applying a uniform training scheme
to all tasks might lead to unrealistic performance. We aimed to strike a balance with the
following strategy: For faster convergence and more stable training, we use ImageNet [93]
pretrained models throughout [310]. Based on the recommendations of Wightman et
al. [422], we made slight adjustments to the training pipeline to ensure SGD convergence,
avoid overfitting, and generally improve performance on Pg.,. At the individual task level,
we used the automatic learning rate tuning [359] implemented in Pytorch Lightning [109].
Once we found a solid configuration, we kept it for all subsequent experiments. This
pipeline served as a baseline for calculating gain and improvement (see Def. 5.14).
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Performance measures

The related literature we identified (see Sec. 3.2) consistently used a single performance
measure /i in their evaluation'®. The vast majority chose AC as such a metric, while
we also noticed the use of BA for a study focused on medical imaging [58]. Following
our own recommendations from Chap. 4, we measured model performance with two
complementary metrics (BA and AUROC) for the following reasons:

Since cross-target-task aggregation would suffer from interpretability if we chose
per-task performance measures, we followed the most generally applicable path through
subprocesses S2-S4 (see Sec. 4.2.1), excluding S5 (see Fig. 4.12), as we were primarily
interested in discriminative performance. For S2 (see Fig. 4.9), we assumed no unequal
severity of class confusions (F2.5.2), equal interest across classes (FP2.5.1), and a mismatch
of class prevalences to the population of interest (FP4.2). Following DG2.2 (see Tab: 4.5),
we finally chose BA. In 83 (see Fig. 4.10) we ended up with TPR after choosing argmax as
decision rule (FP2.6) because we wanted to save computational time and also because we
have tasks with very few samples, which complicates any optimization. After considering
DG3.3 (see Tab. 4.8), recognizing the fact that BA is equal to the mean of all TPRs (see
Def. 2.21), and the requirement to combine values into a summarizing performance
measure for all classes, we omitted adding another performance measure in S3. In $4,
the AUROC results from our previous decision to FP4.2. We use the average of AUROC
over all classes in the one-versus-rest setup (see Def. 2.15) (also called ‘macro-average’).

Scenario 1: Model Architecture

The first strategy of the Meta Learner concerns the transfer of the neural architecture
(including its pretrained weights), which has already been proposed in the literature [96,
136]. Given a selected source task S, the entries in the Knowledge Base corresponding
to S are searched for the best associated performance. From this specific entry, the
architecture (and initialization) is transferred to the hyperparameters wg used by the
trainer ‘T ¢.

Note that this scenario is closely related to ‘source-free model transferability estima-
tion’ [98], but differs in some key assumptions. In both cases, the goal is to infer the
optimal model for a given target task, but in our case we are given the fingerprints f(S)
from the source tasks, while in the corresponding setup we are only given access to
the respective models {¢; };<,. Therefore, ‘source-free model transferability estimation’
usually requires passing (some) samples from the target task 7 through each model ¢;
— a process we expect to be less scalable than most of our task fingerprinting methods.
In both cases, we assume that the neural architectures and initialization weights are
freely available. Apart from the availability of these descriptions, ‘source-free model
transferability estimation’ does not rely on (collaborative) knowledge acquisition. While

10An exception is the study by Dias et al. [96], which used AC, TPR, PPV, and F1 in the case of homogeneous
balanced binary tasks. Apparently a set of not necessarily complementary metrics (see Tab. 4.2).
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Table 5.1: Overview on neural architectures used for scenario 1. ImageNet Accuracy has
been provided by the timm library [421]. Train parameters only comprise the shared backbone.

Published as a preprint in Godau et al. [137].

. . ImageNet train
Architecture timm [421] reference AC (%) params
(mio.)
Efﬁcsl:lﬂgftt []?é 6r3018y tf_efficientnet_b2_ns 82.38 7.7
ResNet50 SWSL [428] swsl_resnet50 81.166 23.5
ResNeSt50 [441] resnest50d 80.974 254
ECA ResNet50 [412] ecaresnet50d 80.592 23.5
ResNeXt50 SSL [428] ssl_resnext50_32x4d 80.318 23.0
ifg\f;r;;Ng 2];2 tf efficientnet_b2_ap 80.3 7.7
EfficientNet B2 [379] tf_efficientnet_b2 80.086 7.7
CSP DarkNet53 [34] cspdarknet53 80.058 26.6
CSPResNeXt50 [409] cspresnext50 80.04 18.5
CSPResNet50 [409] cspresnet50 79.574 20.6
VoVNet [220] ese_vovnet39b 79.32 23.5
MixNet-L [380] mixnet ] 78.976 5.8
RegNetY [308] regnety_032 78.886 17.9
RegNetX [308] regnetx_032 78.172 14.3
Res2Net50 [123] res2net50_26w_4s 77.964 23.7
RexNet100 [154] rexnet_100 77.858 3.5
gﬁirféecrgfg ng(]) tf efficientnet_cc_b0_de 77.306 12.0
SK ResNet34 [226] skresnet34 76.912 21.8
HRNetV2-W18 [375] hrnet_w18 76.758 19.3
MobileNetV3-Large [175]  mobilenetv3_large_100 75.766 4.2
ResNet34 [161] resnet34 75.11 21.3
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both approaches attempt to optimize T(7,w) with an architecture induced in w, task
fingerprinting uses d(f(S), f(7)) as a proxy for the outcome. In contrast, ‘source-free
model transferability estimation’ often compares (and evaluates) the generated predictions
{0i(T)}i<n.

To generate the necessary meta information about the best architecture for each
potential source task S, we established a set of 20 candidate architectures based on the
following criteria: (i) availability within the PyTorch Image Models (timm) library [421], (ii)
areported ImageNet [93] AC of over 75% (according to timm), (iii) while using a maximum
of 30 million trainable parameters to allow for (iv) applicability of the architecture with
our compiled training pipeline within the constraints of our hardware (max. GPU VRAM
of 24GB). Finally, we reduced the list to (v) architectures published since 2019 to capture
the current state of the art. For architectures available in different scales, we chose the
single largest variant that met our hardware requirements. The list of resulting 20 neural
architectures is presented in Tab. 5.1. Note that all neural architectures have at least one
source task on which they perform best, demonstrating their competitiveness in contrast
to architecture choices in previous studies [96].

Scenario 2: Pretraining Data

The second strategy of the Meta Learner involves the commonly used concept of fine-
tuning (see Def. 2.87). Given a selected source task S, the trainer % ¢ first performs
a pretraining phase, during which a model ¢ is trained on the task S, followed by
fine-tuning ¢¢ (with a newly added final classification layer) on the target task 7. For
both phases, we keep the hyperparameters w developed for the uninformed trainer. This
setup has been widely used in previous work [9, 32, 438].

Scenario 3: Augmentation Policy

The third strategy of the Meta Learner centers around the data augmentation pipeline (see
Def. 2.82). Optimal data augmentation is an important part of training state-of-the-art
models [422], but remains highly task dependent [353, 430]. Automating this part of
the training pipeline offers potential benefits, especially in the low-data regime when
augmentation is necessary to avoid model overfitting [353]. Nevertheless, the process
of automatically generating augmentation policies is very resource intensive [83], even
with proposed speed improvements [159]. Therefore, the transfer and reuse of learned
policies has been proposed [83]. In our experimental setup, this is modeled as follows:
For each potential source task S, we compute a task-specific augmentation policy using
the Albumentations [50] implementation of ‘FasterAutoAugment’ [159], and attach this
hyperparameter to the source task in the Knowledge Base. The Meta Learner composes
the hyperparameters wg¢ from the selected source task S by replacing the augmentation
policy in the default parameters w with the policy derived from S, which can then be used
by the trainer T¢. We are not aware of any comparable task transferability evaluation
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for augmentation policies.

Scenario 4: Co-Training Data

The fourth strategy of the Meta Learner focuses on the immediate interplay of source and
target tasks during the co-training of neural networks. Research on Multitask Learning
(see Def. 2.85) has provided interesting insights into this interplay: Optimal source tasks
for pretraining may differ from optimal learning partners in Multitask Learning [367].
Thus, we explicitly include this setup as a complementary scenario that has received
only moderate attention in the task similarity literature [115, 448]. Given the selected
source task S and target task 7, the Meta Learner instructs the trainer ‘T4 to attach two
separate classifier heads to the shared backbone of the neural network (so-called ‘hard
parameter sharing’, see Fig. 2.17). Training samples are taken with equal probability
from each of the two tasks S and 7, while only the corresponding samples are used to
compute the respective losses for each of the heads. Both losses are equally weighted
before backpropagation. For the evaluation of T4(7,wg) only the target task 7 (more
precisely 7i.s) is considered.

5.2 Results

This section presents the results of the experiments described in Sec. 5.1.3. We start
with our search for a new fingerprinting method on the development task pool Py, in
Sec. 5.2.1. Then, we thoroughly evaluate the quality of our identified bKLD fingerprinting
approach(es) in Sec. 5.2.2. To do so, we build on the metrics and aggregation strategies
described in Sec. 5.1.2.

5.2.1 The search for an appropriate task fingerprinting method

During the development phase, we started with previously proposed task fingerprinting
methods as described in Sec. 5.1.1. Focusing primarily on feature extraction based
approaches (see Ex. 5.2), we varied the following components within a fingerprinting
method:

The embedding function f: In addition to the full m x n features, we explored the
binning strategy (see Def. 5.7) from coarse B = 5, over medium B = 100 to fine
B = 1000 granularity, and the average feature aggregation (see Def. 5.12).

The distance function d: For all embedding functions, we explored cosine similarity
(see Def. 5.11), KLD (see Def. 5.12), L, norm (for 1 < p < 4), Jensen-Shannon
divergence (a symmetric derivative of KLD), EMD (see Def. 5.6). We explored
several smoothing functions (i. e., normalization, softmax, and symmetric uniform
smoothing) for both source and target embeddings, as well as weighting schemes.
We also explored some variants involving transformations in log and exp spaces.
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Figure 5.6: Histogram of summarized scores for all fingerprinting methods during devel-
opment. The 50-bin histogram shows the distribution of all inspected fingerprinting variants
during method development. The found methods show substantial lead over the majority of
alternative candidates.

In total, we computed a pool of 749 candidates. Some of these were considered ‘degen-
erated’, as they concentrated their preferred source tasks into a very small set, regardless
of varying target tasks. We filtered out all variants that selected less than one fourth of
the development task pool Py, (for comparison, manual fingerprinting (see Def. 5.18)
selects 37% of Py, as source tasks). After filtering, 599 variants remained. We evaluated
these task fingerprinting methods on the 28 target tasks with the four described scenarios
and two chosen performance measures. For robustness, we aggregated the results of the
performance measures over three repetitions before applying the meta metrics. For each
of the meta metrics gain, improvement, percentile, regret, and weightedtau (see Sec. 5.1.2)
and each of the four scenarios, we first computed the mean of each variant and then the
relative position of that mean by rescaling to the achieved best and worst means. That is,
given the best achieved mean value o for a variant in this combination of scenario and
meta metric, the corresponding worst value w, and the actually achieved mean value z,
we assign a relative score of

r—w

0—w

The 20 resulting scores are then summed and ranked. The top three variants are the

ones described next to Def. 5.13. Out of an optimal score of 20, bBKLD(small,target)

scored 14.6, bBKLD(large,unweighted) scored 14.3, and bKLD(large,source) scored
14.2. The full distribution of the scores is shown in Fig. 5.6.
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Table 5.2: Knowledge transfer scenarios require different task distances Mean and stan-
dard deviation of weightedtau on pairwise transfer scenario outcomes over 43 tasks, three
repetitions and two performance measures for the four knowledge transfer scenarios we inves-
tigate: Model Architecture (M. A.), Pretraining Data (P. D.), Augmentation Policy (A. P.) and
Co-Training Data (C. D.). Published as a preprint in Godau et al. [137].

Model Pretraining Augmenta-  Co-Training

Architecture Data tion Policy Data
M. A. 1.000 + 0.000 0.084 + 0.147 0.078 £ 0.141 0.052 £+ 0.137
P. D. 0.084 + 0.147 1.000 = 0.000 0.037 £ 0.164 0.038 + 0.136
A.P. 0.078 £ 0.141 0.037 £ 0.164 1.000 £ 0.000 -0.002 £ 0.140
C.D. 0.052 £ 0.137 0.038 £ 0.136 -0.002 £ 0.140 1.000 = 0.000

5.2.2 Evaluation of binned Kullback Leibler Divergence

We continue with the full evaluation of bKLD in our experiments. Since we repeated each
possible knowledge transfer Ts(7, ws) three times to compensate for non-determinism
during model training, we trained more than 30 000 DNNs just for the evaluation part,
resulting in about 10 000 GPU hours of training'!. Before diving into the individual results,
we note that the weightedtau between the optimal (i. e., ground truth measured results)
source task rankings for the individual knowledge transfer scenarios differ significantly,
as reported in Tab. 5.2. This underscores the challenging nature of the evaluation and
justifies our presentation of multiple variants of bKLD, as a single (non-parametric)
task fingerprinting method may not sufficiently predict knowledge transfer across all
scenarios.

Absolute assessment

Gain Architecture selection recommended by the Meta Learner improved model per-
formance for 67% of validation tasks compared to our uninformed baseline approach.
Similarly, adopting augmentation strategies from the best-matching source task benefited
58% of tasks on first attempt. Knowledge transfer through pretraining and co-training us-
ing image data from the best-matching source task outperformed the baseline in 41% and
57% of validation tasks, respectively. When expanding computational resources and con-
sidering multiple knowledge source candidates (multi shot), performance improvements
reached up to 90% of validation tasks, as illustrated in Fig. 5.7 (top). Importantly, trans-
ferring model architecture (90%) and augmentation policy (83%) required only sharing
the fingerprint identifier, without exchanging actual data samples between institutions.
When task data was available for Transfer Learning, the co-training scenario showed

1Although the development pool of tasks is much smaller, we had numerous redesigns of the training
pipelines, so we estimate the resources expended to be in the same order of magnitude.
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Figure 5.7: Task fingerprinting benefits training pipeline configuration and beats man-
ual knowledge transfer. Top: Fraction of n=43 validation tasks that improve Balanced
Accuracy (BA) through knowledge transfer (gain [438]) in four scenarios. Bottom: Average
improvement in Area under the Receiver Operating Characteristic Curve (AUROC) across n=43
validation tasks. In all subplots X-axis shows the number of shots, translating to the best of
top k suggestions of our framework. Error bars correspond to standard deviation over three
repetitions of all model trainings. Our proposed binned Kullback-Leibler Divergence (bKLD)
fingerprint (here: the small variant) improves training for up to 90% of validation tasks. Pub-
lished as a preprint in Godau et al. [137].

substantial improvement rates (84%) compared to our baseline. The pretraining scenario
demonstrated comparatively lower improvement rates (75%), with higher variability
across repeated experiments.

Improvement The results for the more granular comparison with our uninformed
baseline are shown in Fig. 5.7 (bottom), which also displays the average performance
increase per task for the manual fingerprinting approach (see Def. 5.18). The relative per-
formance increase by bKLD fingerprinting compared to the simulated manual approach
was 12%, 57%, 15%, and 2% larger for the four scenarios respectively (when averaging
across all target tasks, repetitions, and the multi shot range from 1 to 5).
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Figure 5.8: binned Kullback-Leibler Divergence (bKLD) outperforms previously pro-
posed methods for knowledge transfer. Uncertainty-aware ranking of our proposed bKLD
methods for task fingerprinting versus VisualDNA (VDNA) [313], Predict To Learn (P2L) [32],
Fisher Embedding Distance (FED) [4, 136], Fréchet Inception Distance (FID) [97, 166] and
manual task selection. Columns represent four meta metrics to compare task fingerprinting
methods, whilst rows correspond to four knowledge transfer scenarios. We average across the
top three suggestions by each method (multi shot), except for weightedtau. Blob size shows
frequency of rank across 1000 bootstrap samples from 258 setups (two performance measures,
43 validation tasks, three repetitions). X marks the mean rank and whiskers the standard
deviation. Plot is inspired by [420] and follows the mean then rank assessment method (see
Def. 5.21). Published as a preprint in Godau et al. [137].
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Figure 5.9: Aggregated summary of fingerprint method comparison. Uncertainty-aware
ranking of our proposed bKLD methods for task fingerprinting versus VisualDNA (VDNA) [313],
Predict To Learn (P2L) [32], Fisher Embedding Distance (FED) [4, 136], Fréchet Inception
Distance (FID) [97, 166] and manual task selection. This figure is a summary of the 16 subplots in
Fig. 5.8. The marker position refers to the mean rank over each of the 16 individual bootstrapped
mean rankings (X marks) and whiskers indicate standard deviation. Published as a preprint in
Godau et al. [137].

Comparative assessment

To compare our fingerprinting technique to previously proposed task similarity mea-
sures, we computed results for VisualDNA (VDNA) [313] (see Def. 5.7), Predict To Learn
(P2L) [32] (see Def. 5.12), Fisher Embedding Distance (FED) [4, 136] (see Def. 5.11) and
Fréchet Inception Distance (FID) [97, 166] (see Def. 5.9). Furthermore we add the manual
baseline (see Def. 5.18) and compare all of them to the three configurations of our pro-
posed bKLD fingerprinting. Fig. 5.8 shows a detailed analysis of the rankings for all those
methods with respect to meta metris and knowledge transfer scenarios. Here we follow
the bootstrapped mean then rank approach (see Def. 5.21). Within all four knowledge
transfer scenarios, for at least three out of four meta metrics, a single variant of bKLD
performed best. The 16 individual results are summarized in Fig. 5.9, where the three
bKLD variants obtain the top three positions. The bootstrapped alternative aggregation
scheme rank then mean can be found in Fig. 5.10. In addition Tab. 5.3 shows the win rate
(see Def. 5.20) of each fingerprinting method. For our experiments, the setup stability
scores (see Def. 5.19) were 0.61 for the meta metrics, 0.32 for the performance measures,
0.12 for the random seed, 0.02 for the target tasks, and only 0.01 for the knowledge
transfer scenario, confirming the similarities given in Tab. 5.2.
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Figure 5.10: binned Kullback-Leibler Divergence (bKLD) outperforms previously pro-
posed methods for knowledge transfer. In contrast to the evaluation shown in Fig. 5.8,
this figure shows the evaluation according to rank then mean [420], using 258 setups (two
performance measures, 43 validation tasks, three repetitions). The marker position refers to
the mean over 1000 bootstraps, with the whiskers indicating standard deviation. For each
setup, the improvement, percentile, and regret of the top three suggestions are averaged, while
weightedtau is evaluated on the full ranking of suggested knowledge transfer sources. Published
as a preprint in Godau et al. [137].
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Table 5.3: Win rates for task fingerprinting methods. Win rates [9] for task fingerprinting
methods in percent. Shows the fraction of 1032 individual setups (43 tasks, three repetitions,
four meta metrics, two performance measures) that a specific fingerprint method performs
best. Columns may sum above 100 because of ties, to reduce such occurrences we averaged the
meta metrics of top 3 suggestions. Next to the win rates for four knwoledge transfer scenarios
we also provide the average across them. Best value per column is marked boldface. Published
as a preprint in Godau et al. [137].

M. A. P. D. A.P. C.D. mean

FID 15.02 13.86 12.60 10.66 13.03

P2L 15.21 14.92 13.66 10.17 13.49

FED 15.89 15.21 11.14 12.79 13.76

VDNA 13.66 18.41 16.09 12.21 15.09

Manual 20.64 19.86 11.34 16.96 17.20
bKLD(small,target) 14.53 25.58 23.84 17.25 20.30
bKLD(large,unweighted)  14.53 25.39 22.19 20.64 20.69
bKLD(large,source) 34.98 19.86 27.71 32.66 28.80

Computational robustness

We examined the bKLD fingerprint generation process using varied sample sizes, given
its non-deterministic nature and particular relevance for small datasets in situations
of data scarcity. While our previous experiments consistently utilized 10 000 samples
per task for fingerprint embedding computation — noteworthy for all fingerprinting
methods (except manual fingerprinting) — we tested substantially reduced sample sizes
down to just 10 samples. Fig. 5.11 demonstrates the robustness of bKLD computation in
identifying beneficial source tasks in a best-of-three multi shot scenario, where random
selection would yield an expected value of 0.75. Notably, both bKLD(large,unweighted)
and bKLD(small,target) maintained reliable task matching performance even with
fingerprints generated from only 10 samples. Interestingly, knowledge transfer in the
pretraining scenario showed the best relative task matching among the four investigated
scenarios, typically selecting source tasks around the 88th percentile. This contrasts with
the absolute performance improvements shown in Fig. 5.7, where pretraining knowledge
transfer provided the least benefit across all scenarios studied.

5.3 Discussion

Our intensive experiments addressing (RQ2) have yielded valuable insights on the utility
of task fingerprinting for knowledge transfer for medical imaging, particularly through
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Figure 5.11: binned Kullback-Leibler Divergence (bKLD) is robust with respect to dataset
size. Percentile of best 3-shot source task knowledge transfer according to Balanced Accuracy
(BA) averaged over n=43 validation tasks in four scenarios applying three proposed bKLD
variants. X-axis shows the number of samples used from a task to generate its fingerprint in
log scale. Error bars indicate standard deviation over 10 resamplings. Published as a preprint
in Godau et al. [137].

our newly introduced bKLD method. We demonstrated that bKLD:

(i) enables knowledge transfer without sharing sensitive patient data, outperforming
simulated manual knowledge transfer (see Fig. 5.7),

(ii) adapts flexibly to various knowledge transfer strategies from the Meta Learner (see
Fig. 5.8),

(iii) computes robustly with minimal data requirements, making it suitable for scenarios
with limited task data (see Fig. 5.11).

Notably, bKLD outperformed previous approaches in what is, to our knowledge, the
most comprehensive evaluation of task transferability estimation in biomedical imaging
— combining the largest heterogeneous task set with the broadest assessment across
knowledge transfer scenarios.

Interpretation

A fundamental goal of our Lifelong Learning system was to continuously build upon
previous experiences to accelerate and enhance the learning of new tasks (see Def. 2.90).
This characteristic directly counters the isolated learning paradigm dominating current
healthcare Al algorithms. Our work demonstrates that task fingerprinting serves as an
effective tool for Al democratization, addressing the concerning trend of Al expertise
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concentration [10]. The shareable task embeddings we developed enable knowledge
transfer estimation, allowing researchers to collaboratively accumulate and leverage
insights during NN experiments.

Our extensive experiments confirm an emerging insight within Transfer Learning
research: there is no ‘one-size-fits-all” solution for transferability estimation [3, 9, 58, 367].
The low setup stability score (0.01) for knowledge transfer scenarios and the comparison
of optimal source task rankings (Tab. 5.2) reveal the inconsistency across scenarios,
suggesting that no single non-parametrized fingerprinting method can adequately address
all transfer scenarios. The two hyperparameters B (for the number of bins) and w (for
the weighting of feature dimensions) in bKLD resolve this challenge by controlling both
granularity (B) and attention to scenario-relevant features (w).

This adaptability is clearly demonstrated in our comparison with the P2L [32] approach
(see Def. 5.12), which computes KLD on averaged features. The binning plus weighting
strategy in bKLD allows for more granular and controlled comparison of image feature
distributions, resulting in the superior performance of bKLD variants over P2L across our
experiments (see Figs. 5.8 and 5.10). Importantly, we derived hyperparameter variants
for bKLD on a separate pool of target tasks to avoid overfitting — a methodological rigor
often not explicitely stated in related literature.

Scenario-specific insights

Model Architecture Setting weights w according to dominant source task features —
as in bKLD(large,source) — proved especially beneficial for model architecture transfer
(see Fig. 5.8), though this scenario obtained the lowest percentile score, just slightly
above random guessing (see Fig. 5.11). Manual task selection performed better in this
scenario than others, suggesting that granular feature distributions play a subordinate
role in model architecture fitting. This specific scenario, closely related to ‘source-free
model transferability estimation’, remains an open challenge despite numerous proposed
solutions [98].

Pretraining Data For pretraining, bBKLD(small,target) proposed the highest-ranked
source tasks across all scenarios (see Fig. 5.11). Interestingly, while bKLD performed well
in relative task matching (see Fig. 5.11), the absolute performance improvement remained
modest compared to other scenarios (see Fig. 5.7). We interpret this as reflecting a shortage
of suitable pretraining tasks in our experimental pool, as ideal pretraining tasks require
both large size and sufficient sample distribution variety [205, 248]. The consistently
poor performance of bKLD(large,source) in this scenario (see Fig. 5.8) highlights the
importance of feature distribution similarity, particularly regarding dominant features of
the target task.

Augmentation Policy In transferring augmentation strategies, the semantic-based
manual baseline performed worse than all data-driven fingerprinting methods (see
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Fig. 5.8), indicating that granular comparison of visual features is essential for effective
task matching in this context. Similar to pretraining, bBKLD(large,source) performed
worst among our proposed variants, while the target-weighted bBKLD(small,target)
consistently excelled across all meta metrics, reinforcing the necessity of focusing on
dominant target task features.

Co-Training Data For Multitask Learning, the unweighted bKLD variant performed
best, suggesting that focusing primarily on dominant features from one task does not
improve transfer estimation in this scenario. However, the bBKLD(small,target) and
bKLD(large,unweighted) variants showed similar performance across most meta met-
rics (see Figs. 5.8, 5.10, and 5.11).

Research context

In general computer vision, task transferability estimation is an increasingly active field
of research [98] with only few studies that focus on medical imaging in particular [58,
62, 310]. Consistent with our preliminary research [136] the FED fingerprinting method
performs well for the model architecture and pretraining scenarios on certain meta
metrics (see Fig. 5.8). However, it falls short on other meta metrics and knowledge
transfer scenarios. The inconsistency of transferability estimations [9, 58] renders such
studies of smaller scale and with less heterogeneity less meaningful.

Our aggregation across multiple performance measures and meta metrics was designed
to counter the sensitivity of evaluations to specific metrics [317] and increase the as-
sessment robustness [420]. We observed that the weightedtau meta metric provided the
most stable separation of fingerprinting methods (see Figs. 5.8 and 5.10), supporting
the current research trend toward focusing on this metric for evaluating transferability
estimation [3, 9, 282, 433]. However, its interpretability remains challenging and its
hyperbolic weighting scheme circumvents resource limitation-based cutoffs.

The emergence of FM [37] has amplified the importance of Al democratization as
expertise requirements, computational demands, and data volume needs have grown
substantially. While such models may bridge gaps between different medical imaging
modalities through large-scale pretraining [21], they present two fundamental challenges:
selecting the most suitable model and devising effective adaptation strategies for specific
downstream tasks. Task fingerprinting offers promising solutions to both challenges.

Limitations

Despite our comprehensive assessment, several important parameters for knowledge
transfer remain unexplored, for example the size of the source task'?, which plays an

12Bhattacharjee et al. [32] propose a mechanism to combine task similarity and source task features.
Some experiments with such approaches have been conducted by us and can be found in our public
repository [133].
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important role specifically for pretraining [205]. Furthermore, we prioritized using
consistent hyperparameters w in our model training experiments over intense task-
specific hyperparameter tuning, which would better represent real-world practice. While
this decision does not undermine our broader conclusions about improving models for
target tasks, future work should test additional problem categories (e. g., SemS), expand
the number of target tasks, and explore knowledge transfer for other training pipeline
components.

The practical implementation of a ‘Knowledge Cloud’ - a cross-institutional Knowl-
edge Base — remains a future challenge. Existing infrastructure like the ‘Joint Imaging
Platform’ [338], already supporting cross-institutional medical imaging research, offers
an excellent starting point. Additionally, our experiments treated each transfer sce-
nario in isolation; investigating the impact of transferring multiple pipeline components
simultaneously (‘entangled transfer scenarios’) represents a crucial next step.

Conclusion

We consider the broader implications of our research to be significant: widespread
adoption of Knowledge Clouds based on task fingerprinting could democratize Al research
by facilitating collaboration and knowledge sharing. This shared knowledge can reduce
model development times and decrease carbon emissions associated with extensive
training processes. Long-term, the ability to quantify distances between tasks may enable
the full potential of Lifelong Learning systems in biomedical imaging.

Our study provides compelling evidence that task fingerprinting effectively overcomes
knowledge silos and enhances knowledge transfer in medical image analysis. The pro-
posed bKLD method demonstrates clear advantages across various knowledge transfer
scenarios with the flexibility to address a wide range of use cases. Future research will
focus on expanding the framework’s capabilities and exploring its broader impact on
medical Al research.
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DEPLOYMENT OF CLASSIFICATION
ALGORITHMS UNDER PREVALENCE SHIFTS

Parts of the results of this chapter have been published at the Medical Image
Computing and Computer Assisted Interventions (MICCAI) conference [138] and in
Medical Image Analysis [139]. See App. A for full disclosure.
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Figure 6.1: Environment-learning loop. Anchoring of this chapter in the overall Lifelong
Learning system (see Fig. 1.1). Given a task, the Meta Learner leverages the specific experience
from the environment to determine the optimal modifications for the Learner to update a

model. Loop is highlighted in red.
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6 Deployment of Classification Algorithms under Prevalence Shifts

This chapter addresses the third research question of designing an environment-
learning loop as part of the Deploy phase in the Al lifecycle (see Fig. 6.1):

Research Question 3

What mechanisms enable biomedical imaging models to detect and compensate
for prevalence shifts in deployment?

In Sec. 2.1 we elaborated on the issues with distribution shifts faced during model
deployment and the underlying causal reasoning in medical imaging. Sec. 3.4 summa-
rized the gap in literature with respect to comprehensive impact quantification and best
practices for deploying models when prevalence shifts are present. In this chapter we
want to present our analysis of prevalence shift implications and options to mitigate
negative impacts. We aim to enable our Lifelong Learning system to regularly update
models in deployment based on feedback from the environment. More precisely, for
prevalence shifts, it should regularly quantify the prevalences faced in the environment,
re-calibrate the model post-hoc (see Def. 2.67) and re-configure its decision rule (see
Def. 2.9). In Sec. 6.1 we develop synthetic environments of prevalence shifts and present
our proposed workflow. Subsequently, Sec. 6.2 presents our experimental observations
for the concrete impact of prevalence shifts on models and test our workflow. Finally,
Sec. 6.3 closes the chapter with a discussion of our results.

6.1 Methods

As depicted in Fig. 6.1, we want to gain ‘experience’ during the deployment of a model.
However, unlike the Design and subsequent Develop phases, we will not assume that
we will be given labels to accompany the images we see. This is because, although
(i) annotating a dedicated deployment set may be feasible in some cases, and (ii) in
other cases the diagnostic procedures will automatically generate labels in the patient’s
Electronic Health Record (EHR), we expect the former to be severely delayed and the
latter to be particularly noisy. In both cases, additional dependencies of the Lifelong
Learning system would be introduced. To compensate for this lack of information, the
setup provides us with a trained model that can continuously compute predictions on the
seen images - which are then fed back to the Knowledge Base. The first task of the Meta
Learner is to use these predictions in order to detect and quantify potential distribution

shifts.
6.1.1 Prevalence shifts

We continue to define distribution shifts more formally. Recall the associated joint
distribution p7(X,Y") for some task 7 from Def. 2.3.
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Definition 6.1. Let 7;, 75 be two tasks with the same number of classes and
(X, Y), p2(X,Y) their respective joint distributions. If p;(X,Y) # po(X,Y)
we call this scenario a distribution shift [382] (also dataset shift [261, 306]).

Obviously, dataset shifts may affect the predictive performance when a model ¢ is
trained and validated on 77, while it is confronted with 7, data during deployment. To
estimate this impact and determine appropriate mitigation strategies, it is necessary to
identify the causal relationships in the shift. For this we start with a lightweight definition
of causality and refer the interested reader to the literature for more comprehensive
assessment [290, 296].

Definition 6.2. Let X,Y be random variables. We say X causes Y, written
X — Y, if an ‘intervention’ on X, i. e., forcing it to different values, changes the
likelihoods on Y [54].

The perspective of causality exceeds mere probability, due to its reliance on interven-
tions, structural assumptions, and counterfactual reasoning, which go beyond purely
statistical associations. From probability theory the following two decompositions of a
joint probability distribution p(X,Y’) hold equally true:

p(X,Y) =p(Y|X)p(X)
p(X,Y) = p(X[Y)p(Y)

From the causal perspective we are interested whether the mechanisms p(Y'|X) (re-
spectively p(X|Y)) are ‘invariant’, i. e., if it is possible to change p(.X) (respectively p(Y"))
by intervention without changing p(Y'|X) (respectively p(X|Y)) [296]. If Y — X, then
by the principle of ‘independence of cause and mechanism’ [296] this allows to examine
p(Y') (the cause) and p(X|Y') (the mechanism) independently, i. e., after an intervention
on p(Y) we may still decompose p(X,Y) = p(X|Y)p(Y') with the original p(X|Y') and
the modified p(Y"). We distinguish two cases of causal relationships for a task 7.

Definition 6.3. Let 7 be as task and pr(X,Y’) the associated joint distribution.
We call 7 a causal (respectively anticausal) task, if X — Y (respectively Y —
X) [54].

We already hinted at the embedding of such relationships in the context of medical
imaging in Fig. 2.1. Such causal diagrams are acyclic directed graphs, that connect nodes
representing random variables with edges that represent a causal dependency. When
simplifying the generic causal diagram given in Fig. 2.1, one may distinguish several
common types of dataset shifts in medical imaging, as depicted in Fig. 6.2. Therein the
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interventions are caused by the change in environment E.

Population shift (C.) Acquisition shift Annotation shift
E E E
X I X X I

Z >0 < ZO >® < ZO >0 >® Y
(A.) Acquisition shift Manifestation shift Prevalence shift
E E E

Z Z Z
X Ox_—_—_O——SeY X ® 5V X0 O 8Y

° observed variable
o} unobserved variable
——» causal link

-3 causal prediction
—3 anticausal prediction

Figure 6.2: Variants of dataset shifts. Simplified variants of the full causal imaging workflow
from Fig. 2.1. Depending on whether the environmental factor E causally affects the image
X, the label Y, or the unseen anatomy Z, as well as the causal direction of the prediction, we
distinguish the three causal (top row) and anticausal (bottom row) dataset shifts. Adapted from
Castro et al. [54].

In most real-world deployment scenarios, multiple dataset shifts would occur in parallel.
For the remainder of this chapter, we will focus on one specific dataset shift in isolation.

Definition 6.4. Let 7, 75 be two tasks with the same number of classes and
p1(X,Y), p2(X,Y) their respective joint distributions. Assume further 77 and 75
are anticausal, i.e., we may decompose p;(X,Y) = p;(X|Y)p:(Y) for i = 1,2 [54,
261]. We then call a distribution shift between 7; and 75 a prevalence shift [54]
(also prior probability shift [99, 261], label shift [230] or target shift [443]) if

p1(Y) # p2(Y) but pi (X[Y) = po(X|Y).

Common causes of prevalence shifts are institutional differences [439], temporal
changes [440], or sample selection bias [99]. The latter may also be subtly hidden by the
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data sampling strategy (see Def. 2.77), especially since a balanced sampling strategy is
common for highly imbalanced datasets [187].

6.1.2 Common misconceptions in medical image classification

Our study was partly inspired by the anecdotal observation that the impact of prevalence
shifts on deployed models is largely unknown. More specifically, while reviewing papers,
inspecting code repositories, or in professional discussions, we encountered the following
misconceptions along the model output flow (see Fig. 2.11):

Logit transformation ‘Temperature scaling typically corrects for model miscalibration’

Temperature scaling [151] (see Def. 2.67) is amongst the most common re-calibration
methods. While it is well suited for compensating for over- and underconfidence, it
does not solve for miscalibration due to prevalence shift. By design, its single parameter
t € R lacks the power to compensate for a shifted class prevalence P € o¢_;. Since all
logits are uniformly multiplied by ¢~, temperature scaling preserves the ranking of class
probabilities compared to the softmax transformation o.

Decision rule ‘The argmax operator is the optimal decision rule’

While it may seem intuitive to choose the class with the highest score, the argmax
operator does not necessarily yield the desired results. While for a calibrated model
(see Def. 2.59) the argmax operator is the optimal decision rule for AC [33, 113, 157], a
prevalence shift can lead to severe miscalibration of the predicted class scores. In such a
case, or when using a different metric, using argmax may lead to suboptimal decisions.

Performance measure ‘Test set results mirror real-world application performance’

Since data collection is often prone to sample selection bias [54], the prevalences of the
test set may not match the prevalences observed in deployment. Prevalence-dependent
metrics (see Tab. 4.1) are inherently susceptible to prevalence shifts [317] and thus not
well suited for comparative performance analysis across datasets.

The subliminal presence of these misconceptions will be supported by our literature
analysis in Sec. 6.2.1. Thus, in addition to our core research question (RQ3), we are
interested in the consequences of failing to detect or mishandling prevalence shifts.

6.1.3 Prevalence-aware deployment workflow

We propose the following five-step workflow to detect and properly handle prevalence
shifts. First, (I) the deployment prevalences Pqe, are estimated, in a process called

quantification. Next, the estimated prevalences 75dep are used to (II) re-calibrate the model
and (III) configure the performance measure (in our case, EC). Then, (IV) the decision
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rule for making categorical decisions is adjusted accordingly. Finally, (V) an (external)
validation can be performed on the deployment data.

Crucially, the whole process requires only three ingredients for the Lifelong Learning
system: (i) the trained model ¢, (ii) the small labeled calibration task 7.,, and (ii) the
images of the deployment task 74,. No access to the training task 7y, or the deployment
task labels Y7, is required. Note also that in order to ensure that our workflow is
applicable, the preconditions of a prevalence shift must be met (see Def. 6.4), i. e., we rely
on an anticausal task with the assumption that paey(X|Y) = paep(X|Y'). There are two
more mild assumptions we have to make [230, 443]:

(i) The support of pae, (') is a subset of the support of pgey (Y'), 1. €., Vi < C' @ Pyep(k) >
0 = Paey(k) > 0.1

(ii) The 7gep is not ‘degenerated’, i. e., there is a unique p(Y") that explains p(X).?

The first assumption guarantees that no new classes will appear during deployment,
which would cause problems because we would have no information from the develop-
ment phase to transfer to them. The second assumption is more interesting and may
seem confusing at first, but consider the following toy example.

Example 6.5. Let 7 be a task with C' = 3 classes that only contains two types
of images (r = 0 and x = 1 for simplicity) and the underlying anticausal data
generation mechanism Y — X given by

e x=0fory=1,
e x=1fory =3,
« and for y = 2, z is uniformly chosen from {0, 1}.

Now suppose we observe p(X) = (0.5,0.5). There is no way to deduce whether
p(Y) = (0,1,0), or p(Y) = (0.5,0,0.5), or p(Y) = (0.25,0.5,0.25), etc. It is
therefore impossible to deduce P from a series of observed images X

J

Assuming that the original task is well formulated by domain experts, i. e., all relevant
classes of a problem are described (first assumption) and images are indeed indicative
for the corresponding label (second assumption) we describe the individual steps of our
workflow in more detail.

U'This is assumption A.2 in the work from Lipton et al. [230] and assumption A2*" in the work from
Zhang et al. [443].

?This is indirectly formulated as assumption A.3 in the work from Lipton et al. [230] with the help of an
‘informed classifier’ and more formally formulated as assumptions A%%™% and AT in the work from
Zhang et al. [443].
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Step 1: Estimate the deployment prevalences

To detect prevalence shifts, a Lifelong Learning system must monitor the environment
and quantify the class prevalences it encounters. While this estimation can theoretically
be supported by medical records or epidemiological research, in this work we focus on
fully data-driven approaches.

Definition 6.6. Let 7 be a task. The problem of quantification [141] refers to
the estimation of the prevalence P using only the images X7 of 7 but not the
actual labels Y7

Quantification methods can estimate the deployment prevalences based on categorical
model outputs on the training data and unlabeled deployment data [118, 230, 263, 333],
or from the data distributions themselves [142]. Based on our experiments (see Sec. 6.2.2),
we recommend KDEyHD [263], but there are several alternatives (e. g., ACC [118, 171],
HDy [142]).

Step 2: Perform prevalence-aware re-calibration

Suppose the first step detected a change in prevalences P between the development
Taev and deployment 7Tge,. Ignoring potential manifestation and acquisition shifts during
deployment (see Fig. 6.2), and under the mild assumptions discussed previously, there is
a theoretical optimal solution to minimize the expected loss on 74, [352, 443].

Definition 6.7. Let the supervised classification problem of 7 be given with loss
function £ : Ac_1 X Y7 — R (see Def. 2.75). Let 8 : Y7 — R be a reweighting
function. The process of sample reweighting (also importance reweight-
ing [352, 443)) refers to solving the same supervised classification problem with

the slightly modified loss function £*(p,y) := S(y) - L(p,y).

Recall the weighted cross entropy loss Log(p, y) = —w, In(p, ), from Def. 2.76. Follow-
ing Shimodaira [352] we let wy, = ﬁdep(k‘) /Paey(k), where P are the estimated prevalences
from the previous step. Instead of fully retraining the model ¢ we only learn the (C' + 1)
parameters of the following post-hoc transformation on the small subset 7, in order to
re-calibrate ¢.

Definition 6.8. Let t € R, be a positive real, and b € R for some integer C' > 1
then the function f,;; : RY — Ac_y, with

fass(p) = 0o(t™'p +b)
is called affine scaling [113] (also Platt scaling [298] or bias-corrected temper-
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ature scaling [11]).

Step 3: Configure validation metric with deployment prevalences

Prevalence-dependent metrics, such as AC, MCC, or F1, are widely used in image anal-
ysis [240]. However, they reflect the performance of a model only with respect to the
specific, currently given prevalences. For AC we showed the decomposition into preva-
lences and TPR in Prop. 2.20. EC as a generalization of AC had a similar decomposition
as given in Prop. 2.25:

i<C j<C

To use EC as a robust estimator of deployment performance, we propose replacing the
prevalences Pqe, with those previously estimated: Py, [113].

Step 4: Set prevalence-aware decision rule

Different metrics require different optimal decision rules, and the use of the argmax
operator is not recommended in general. When using a counting metric it is often
necessary to tune the decision rule during model development (see Sec. 4.1.3), which is
likely to introduce a dependence of the resulting decision rule on the prevalences Pyey.
Such a rule is therefore unlikely to generalize to the deployment setting. Using EC as the
primary performance measure provides an elegant solution to this problem. Provided
that the class scores are calibrated, one can derive the theoretically optimal decision rule
for EC [33, 157], which can be applied without any tuning (see Def. 2.26):

Definition 6.9. Let C' > 2 and {c¢;;}; j<c be some confusions costs. The optimal
decision rule for EC [113] is defined for any p € A4 by

prc(p) = argmin,, Z CjkDj-
J

Proposition 6.10. The optimal decision rule for EC actually coincides with the
argmax operator if 0-1-costs are used.
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Proof.

pEc(p) = argmin, Z CikDj
J
£ argmin, Z Dj
J#k
= argmin, (1 — py)
= argmax;, py [

Step 5: External validation

Despite the strong theoretical guarantees provided by the previous steps, additional
validation on the data from the deployment environment is critical for monitoring [335].
We recommend that the predictions be validated by clinicians as part of an integrated
feedback loop [116, 197]. In addition, prevalences need to be re-estimated periodically to
compensate for further shifts.

6.1.4 Experimental design

The purpose of our experiments was to

(i) show the prevalence of the misconceptions we observed (see Sec. 6.1.2),
(ii) demonstrate the negative consequences of ignoring prevalence shifts, and

(iii) exhibit the capabilities of the proposed workflow to circumvent these implications
(see Sec. 6.1.3).

The following paragraphs describe the data used and the experiments performed. The
code for our experiments can be found online [134].

Simulating prevalence shifts

For our experiments, we will synthetically generate prevalence shifts. For this we use
the mechanisms of (i) sample selection to compile tasks and (ii) sampling strategy as part
of the training process. For a given task 7, we derive subsets Tiain, Tcat, Tdev, and Tgep, to
simulate training, validation (also to be used for re-calibration), and test data for model
development respectively deployment. These subsets serve the following purposes:

Tirain The train split is used as training data during the model development, i. e., the model
updates its weights by processing these samples as part of SGD (see Def. 2.77). We
also chose balanced sampling [187] to compensate for the class imbalance present
in some of our 7., subsets. In this way we (i) reflect its widespread use as an

203



6 Deployment of Classification Algorithms under Prevalence Shifts

approach to boost performance of typically very important but underrepresented
classes, (ii) ‘align’ all tasks so that we can aggregate across them for different
prevalence shifts, and (iii) capture the common biased data collection scheme that
has balanced classes for design simplicity.

Tear The validation and re-calibration split is also part of the training process. Hold-out
validation splits are commonly used to inform the training process and prevent
overfitting. We used three techniques to do this: (i) a “ReduceLROnPlateau” learn-
ing rate scheduler [15], where the learning rates {; };cn are reduced in case the
validation loss stagnates, (ii) an “EarlyStopping” mechanism [109] to stop the entire
training process if even learning rate reduction does not help to prevent overfitting,
and (iii) to keep only the model with the best validation performance from regular
checkpointing. This split is also used for post-hoc re-calibration of models (see
Def. 2.67).

Taev The development test set is used to estimate the model performance on the task
at the end of the development phase. To be consistent with the assumed sample
selection bias during development, we design this split with balanced classes.

Taep The deployment test set serves as a basis to simulate the samples as they will be
observed during deployment. Good performance on this split is the ultimate goal of
the Lifelong Learning system. In order to densely assess the impact of prevalence
shifts, Tqep is further subject to a sub-sampling strategy to generate subtasks Tge,(7)
with IR r for some 1 < r < 10.

For each original task 7, this design allows examining prevalence shifts from the
balanced 7., to different ’Eep(r). The exact procedure for generating subsets is as
follows:

Assume 7 has C classes, then the first |0.1 - |7T|/C| samples from each class are
randomly drawn from 7 to make up 7g.,. Note that 74, has balanced classes and the
IR 7’ of the remainder T \ 74, does not necessarily match the IR of 7. Next, for each
class, one third of the corresponding samples within 7\ 74, are randomly selected and
assigned to 7gep. This ensures that the IR of T, is again equal to 7. The procedure is
repeated with one-sixth of the remaining samples, resulting in 7,, while the rest of
samples are declared as 7i.in. By design, the IRs of Tyrain, Tea, and Tgep are all equal, since
each class was reduced by the same factor during the process. When subsampling 7ge ()
from 7gep, we distinguish two cases: If r > r’, we subsample all but the majority class,
that is, we randomly select a fraction of 7/ /r cases from them. Otherwise, if r < 1/, we
subsample all but the minority class. More precisely, we linearly interpolate between
the number of cases in the minority class m and the n total available samples of that
class: m + 2= - (n — m). The linear interpolation of all classes ensures a continuous

r'—1

mapping from a given IR r to the prevalences of 74, () and prevents the majority class

204



6.1 Methods

from changing as a consequence of subsampling. These features allow us to align the
tasks in our results.

This procedure makes some demands on the availability of samples in the tasks. There-
fore, we filtered our full task pool (see Tab. 2.1) according to the following criteria: (i) a
total number of at least 1000 samples, and (ii) the smallest class having at least 30% of
the average class size (to avoid introducing a very strong artificial class imbalance in the
training based on our data splitting procedure). Finally, we excluded one task that had
only a few samples (nine) in the minority class of the deployment set for our maximum
considered IR. This resulted in 30 tasks covering the modalities:

« colonoscopy (T01, T05)

« laparoscopy (T07-T10, T12)

« X-ray (T29, T30, T32, T33, T35, T37-T39, T42, T44-T51)
« ophthalmic microscopy (T53)

« MRI (T57, T58)

« fundus photography (T63, T64)

« capsule endoscopy (T69)

Prevalence of observed misconceptions

For our literature analysis, we used the Google Scholar feature to search for terms in all
publications that cite a given paper. Our search was conducted on 07/27/2024. Some of
our tasks share underlying dataset references, and we did not distinguish explicit use of
a given task, only citation of the dataset source. Note that T44 is a derivative of T42 and
thus not listed separately. We used the primary reference given in Tab. 2.1. By design, a
given publication may cite more than one of the datasets — and so do we — so we report
the average of term frequency per dataset.

Model training details

We trained neural networks for all 30 classification tasks. In the interest of better re-
producibility and interpretability, we focused on a homogeneous workflow (e. g., by
fixing hyperparameters across tasks) rather than aiming for the best possible AC for
each individual task. All models used the ResNet34 [161] architecture and were imple-
mented in pytorch [15]. For faster convergence, we used pretrained weights based on
the ImageNet [93] provided by the timm library [421]. We performed an automated
search for the initial learning rate [359] provided by the lightning framework [109] and
reduced the learning rate by a factor of 0.1 when the validation loss plateaued for 5 epochs
(‘ReduceLROnPlateau’). As discussed earlier, we chose balanced sampling [187] for train-
ing. We add lightweight augmentations provided by the albumentations library [50] as
follows: The deterministic series of SmallestMaxSize (256), PadlfNeeded (288x288) and
Resize (256x256) unified all of our image samples (see Def. 2.83). During training, we used
RandomCrop (224x224) and HorizontalFlip (p=0.5) (see Def. 2.82). The batch size was 300.
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Models were updated using the Adam optimizer [200] and (unweighted) Cross Entropy
Loss (see Def. 2.73). Training was stopped either after a maximum of 40 epochs, or an
early termination was signaled by no improvement in validation loss for 7 epochs. While
monitoring validation loss at the end of each epoch, we kept and eventually used the
model weights with the lowest value.

For all experiments, the model was trained on 7y,;, while monitoring performance
on 7T.y. Logits were then generated for 7., (for re-calibration) as well as for 74, and
Taep (for evaluation). To mimic a prevalence shift, we subsampled tasks Tgep (") from the
deployment test sets 7ge, according to IRs 7 € [1, 10] with a step size of 0.5.

Workflow evaluation and implications of ignoring prevalence shifts

To avoid overoptimistic results in the later steps of our workflow, we did not use the
best performing quantification method from Step 1 as the basis for our experiments in
the following steps. Instead, we consistently chose the popular “Adjusted Classify and
Count (ACC)” [118, 171], which estimates the deployment prevalences by performing a
simple adjustment to the prevalences trivially estimated using model predictions on the
deployment set (so called “Classify and Count” [118]). The following experiments were
conducted:

Step 1 (quantification) To assess the ability of different quantification methods to
estimate the deployment prevalences Py (), we computed the L1 distance between

estimated ﬁdep(r) and exact prevalences Py, for varying IR 7. In our experiment, we
tested a broad variety of quantification methods. First, we considered methods based
on aggregation of model outputs. These included “Classify and Count” (CC) [118], its
simple adaptation “Adjusted Classify and Count” (ACC) [118, 171], the similar “Black Box
Shift Estimation” (BBSE) [230], and “Probabilistic Adjusted Classify and Count” (PACC), a
variant based on probabilistic model outputs [26]. Second, we analyzed approaches based
on distribution matching techniques. Namely, the seminal “Expectation Minimanization
Quantification” (EMQ) [333], a method based on minimizing the Hellinger Distance
(HDy) [142], and its recent extensions using kernel density estimation with a Monte Carlo
estimate (KDEyHD), the maximum likelihood framework (KDEyML), and computing a
closed-form solution (KDEyCS) [263]. Implementations for most quantification methods
are provided by the QuaPy library [262].

Step 2 (re-calibration) To assess the effect of prevalence shifts on model calibration,
we measured miscalibration on the deployment test set T4.,(7) as a function of the
increasing IR r. We compared our proposed post-hoc importance reweighted affine
scaling transformation to:

(i) no re-calibration (i. e., applying softmax o),
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(ii) temperature scaling (see Def. 2.67) with and without importance reweighting (see
Def. 6.7),

(iii) affine scaling without importance reweighting (see Def. 6.8),

(iv) and the full retraining of ¢ with importance reweighting.

For any applied importance reweighting we provide results for both the true deploy-
ment prevalences Pge, () and their estimates thereof Py, () from Step 1 (based on ACC).

Step 3 (performance measure) In addition, to assess the impact of prevalence shifts
on the generalizability of validation results, we measured the absolute difference between
the metric scores obtained on the development test data 7., and those obtained on the
deployment test data 74e, () with varying IR 7. We chose popular prevalence-dependent
metrics AC, MCC, and F1 for performance assessment and compared them to our proposed
prevalence-adjusted EC with standard 0-1-costs (see Def. 2.23). The scores were calculated
for the argmax decision rule for both non-re-calibrated and re-calibrated predicted class
scores according to Step 2.

Step 4 (decision rule) We also evaluated the effect of prevalence shifts on the decision
rule for all 24 binary tasks — with and without re-calibration according to Step 2. To do
this, we computed the differences between the metric values on 74e, (1) corresponding to
an optimal decision rule (found by sweeping) and two other decision rules: argmax and
the threshold operator p, (see Def. 2.9) that was tuned on 7, (also found by sweeping).
This difference was computed as a function of the IR. We used the same performance
measures as in the previous step. Note that for the standard 0-1-costs our proposed
adjusted decision rule for EC coincides with the argmax operator.

6.2 Results

This section presents the results of the experiments explained in Sec. 6.1.4. We begin
with our literature analysis to support the misconceptions from Sec. 6.1.2 in Sec. 6.2.1.
Next, we assess the quality of quantification methods to detect and quantify prevalence
shifts in Sec. 6.2.2. We will then first show the impact of prevalence shifts on the optimal
decision rule in Sec. 6.2.4, and conclude with an assessment of performance measures to
adequately reflect deployment performance in Sec. 6.2.5.

6.2.1 Literature analysis on misconceptions

To estimate the susceptibility of research models to the misconceptions of Sec. 6.1.2, we
scanned all publications citing any of the datasets that meet the requirements for this
chapter. Our analysis is based on the average frequency of search terms corresponding
to the topics of calibration, metrics, and decision rules. The results are given in Tab. 6.1.
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Table 6.1: Search term frequency within the literature citing any of the datasets we used for the
experiments of this chapter. Originally published in Godau et al. [139].

Search term

“decision
re-calibration threshold” “Area Under
OR . OR FI"  Mec or Receiver
Dataset recalibration decision Score . Operator «

. thresh- . Accu- Matthews . Balanced
(citation OR old rule” OR rac OR Correlation Characteris- Accuracy”
count) calibration cutoff OR Y “F1 Coefficient” tic” OR Y

OR calibrated “classifica- Score” AUROC OR
OR calibrate tion AUC
threshold”
KTaggle Bcri“n 0.0% 0.0% 0.0% 100.0% 100.0%  0.0% 0.0% 0.0%
umerCls () 0 0 @ @ 0 0 o)
Hyperkvasir 15.8% 35.0% 3.6% 85.7% 45.9% 16.1% 31.6% 4.0%
(329) (52) (115) (12) (282)  (151) (53) (104) (13)
Brain T
rTa;,; - 5.9% 343% 2.7% 95.1%  40.6% 6.3% 22.4% 1.9%
(700) ' (41) (240) (19) (666) (284) (44) (157) (13)
CatRelComp 41.2% 5.9% 82.4% 52.9% 0.0% 0.0% 5.9% 0.0%

(17) () (1) (14) ©) (0) (0) (1 (0)
CheXpert 15.2% 42.3% 5.6% 83.4% 31.6% 2.9% 60.1% 2.2%
(2481) (378) (1050) (140) (2070) (783) (71) (1490) (55)

Zhang Chest
X-Rav Images 9.6% 35.2% 4.9% 91.0% 33.0% 3.3% 45.6% 1.5%
Yy imag (388) (1420) (196) (3670)  (1330) (132) (1840) (59)

(4032)

LapGyn4 11.1% 31.1% 2.2% 71.1% 31.1% 6.7% 15.6% 6.7%

(45) (5) (14) (1) (32) (14) (©) (7) )

DeepDRiD 18.5% 30.4% 4.3% 82.6%  37.0% 1.1% 63.0% 4.3%

(92) 17) (28) (4) (76) (34) (1) (58) (4)
Nerthus 13.1% 39.3% 2.4% 86.9% 51.2% 38.1% 28.6% 1.2%

(84) (11) (33) (2) (73) (43) (32) (29) (1)
MURA 13.4% 49.3% 6.0% 94.0% 26.9% 1.5% 43.3% 32.8%

(67) (©) (33) (4) (63) (18) (1) (29) (22)

Kvasir-Cap. 10.4% 37.5% 4.2% 86.8%  43.8% 16.0% 30.6% 2.1%

(144) (15) (54) (6) (125)  (63) (23) (44) ®)
Cholec80 12.4% 36.3% 2.7% 81.6%  24.1% 1.3% 7.4% 2.2%

(879) (109) (319) (24) (717) (212) (11) (65) (19)

Mean 13.9% 36.3% 3.7% 86.7% 43.2% 7.8% 29.5% 4.9%
Median 12.7% 35.8% 3.9% 86.3% 38.8% 3.1% 29.6% 2.1%
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Logit transformation ‘Temperature scaling typically corrects for model miscalibration’

Only 13.9% of the publications explicitly mentioned the term “calibration” or a synonym
thereof, demonstrating reduced awareness of model miscalibration. While a deeper
analysis of the applied re-calibration techniques would be necessary to fully support
our misconception, temperature scaling and its variants remain among the most cited
re-calibration methods we are aware of.

Decision rule ‘The argmax operator is the optimal decision rule’

Common metric libraries for ML use argmax as the default decision rule (e. g., torch-
metrics [94], scikit-learn [292]), while reporting on specific decision rules only happens
between 3.7% (terms “decision rule”, “classification threshold”, “cutoff” or “decision thresh-
old”) and 36.3% (generic “threshold” search) of cases.

Performance measure ‘Test set results mirror real-world application performance’

Consistent with previous work [240], prevalence-dependent metrics remain the primary
performance estimates, with AC (86.7%) being by far the most commonly used. F1 (43.2%)
and MCC (7.8%) are also reported frequently. On the contrary, metrics that are prevalence-
independent, such as AUROC (29.5%) or BA (4.9%), are less prevalent.

6.2.2 Quality of data-driven prevalence estimation

Our experiments show that deployment prevalences can be estimated well with some
quantification methods. Following the recommendations of Sebastiani [347] we rely on
the ‘Absolute Error’ as the primary evaluation metric (see Fig. 6.3). One of the main
shortcomings of the Absolute Error is the lack of an upper bound, and in turn some
samples will exert a higher influence on the results obtained [347]. Therefore, we also
provide a secondary, somewhat complementary assessment measure to ensure that our
conclusions are also valid from this second perspective.

Definition 6.11. Let p,p € A¢_4, then the Normalized Kullback-Leibler
Divergence (NKLD) [347] is given by
KLD(5.p)

eKLD(Bp) 11 L

NKLD(p, p) = 2

The normalization ensures a value range of [0, 1], with lower values being preferred.
The results are shown in Fig. 6.4. In our experiments the recent Kernel Density Estimation
method KDEyHD [263] gave the closest estimates for both assessment approaches. The
‘outlier’ in the box plot (Fig. 6.3 right) is the task T63 (DeepDRiD dr level), being the
smallest of our selected tasks with 5 classes and a high intrinsic IR, it naturally presents
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Figure 6.3: Prevalences can be accurately and robustly estimated in order to detect
prevalence shifts. The ‘Absolute Error’ (=L1 Distance) of estimated prevalences can be
held constant with an increasing prevalence shift from the development (balanced) to the
deployment test set for a variety of quantification methods. Left: Mean (line) and standard
deviation (shaded area) obtained from n = 30 medical classification tasks. Right: Absolute
Error values for all tasks at imbalance ratio 10 (rightmost point from left figure). Each box
ranges from the first quartile (Q1) to the third quartile (Q3). The second quartile (Q2) is marked
by a line inside the box. The whiskers correspond to the edges of the boxes +/- 1.5 times the
interquartile range (IQR: Q3-Q1). The nine different quantification methods are characterized
in Sec. 6.1.4. Originally published in Godau et al. [139].
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Figure 6.4: Complementary quantification assessment with Normalized Kullback-
Leibler Divergence (NKLD). The NKLD of estimated prevalences can be held constant
as the prevalence shifts from development (balanced) to deployment test set for a variety
of quantification methods. The nine different quantification methods are characterized in
Sec. 6.1.4. Originally published in Godau et al. [139].
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Figure 6.5: Quantification and re-calibration performance improves for larger dataset
sizes. Effect of dataset size on prevalence estimation and re-calibration quality for all 30
datasets at IR=10. For each dataset, we used 15 repetitions with different random seeds for
computations (10) and data partitioning (5). Each bar represents one dataset with the mean as
the center and the standard deviation as range. Multiclass datasets are colored red in contrast
to binary tasks (blue). (a) The Absolute Error of prevalences estimated with KDEyHD as a
function of the size of the 74 split used for prevalence estimation. No normalization was
applied to correct for the different dimensionality of multiclass tasks. (b) The Class-wise
Calibration Error (CWCE) for the re-calibration with importance reweighted affine scaling
using the estimated prevalences relative to the size of the 7, split used for re-calibration.
Originally published in Godau et al. [139].

a challenging case for quantification. Fig. 6.5 (a) further illustrates the Absolute Error for
prevalence estimation using KDEyHD at IR=10 as a function of the size of 7.

6.2.3 Effects of prevalence shifts on model calibration

The CWCE of the raw scores produced by the systems increases as the shift between the
prevalences of the development and the deployment settings increases (Fig. 6.6 top, no
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Figure 6.6: Prevalence shifts have a strong impact on calibration quality. Class-wise
Calibration Error (CWCE) at the top to measure model calibration and BS at the bottom to
measure the overall quality of the predicted class probabilities (lower is better for both) when
shifting from a balanced deployment scenario to an Imbalance Ratio (IR) of 10. Left: Mean (line)
and standard deviation (shaded area) obtained from n = 30 medical classification tasks. Right:
Values for all tasks at IR=10 as box plot. Temperature scaling (blue, see Def. 2.67) as a commonly
used re-calibration method does not address the miscalibration, nor does affine scaling (see
Def. 6.8) without proper reweighting (orange). Retraining with importance reweighting (see
Def. 6.7) largely compensates for the effect (pink & purple). The best results are achieved with
the proposed approach of importance reweighted affine scaling (green). Originally published
in Godau et al. [139].
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Figure 6.7: In the presence of prevalence shifts, the argmax operator may lose its property
as an optimal decision rule for AC. Histogram of log odds for two binary sample tasks on
the (balanced) development test set (second column) and on the imbalanced deployment data
at Imbalance Ratio (IR) 5, without (third column) and with re-calibration (fourth column). The
optimal decision threshold for AC (dashed blue line) is strongly affected by the prevalence shift
and the miscalibration. Originally published in Godau et al. [139].
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Figure 6.8: Optimal decision thresholds depend on the evaluation metrics. Histogram
of predicted class scores for five binary example tasks (from left to right: T10 from Cholec80,
T53 from CatRelComp, T38 from CheXpert, T64 from DeepDRiD, and T46 from MURA) on
the deployment data at Imbalance Ratio (IR) 3 after re-calibration. Dotted lines mark optimal
decision thresholds for several validation metrics: Accuracy (AC), F1-Score (F1), Matthews
Correlation Coefficient (MCC) plus the common argmax threshold (at 0.5 for these binary
tasks). Originally published in Godau et al. [139].
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re-calibration curve). This miscalibration can be corrected by re-calibration. However,
it is important to note that re-calibration is only successful if the transform includes a
bias term (affine) and is trained with loss weights adapted to the deployment prevalences
(est. prev., the prevalences estimated with the ACC method, or dep. prev., the actual
deployment prevalences). Crucially, a simple temperature scaling based method is not
sufficient under prevalence shifts, even if the loss weights are adjusted accordingly.
Completely retraining a classifier with adjusted weights in the loss function mitigates
miscalibration due to prevalence shift. Yet, miscalibration may still be present in these
retrained models due to overfitting. This is the reason why the affine dep. prev. results
are consistently better than the retraining results: Re-calibration with affine scaling
and importance reweighting fixes the miscalibration caused by both prevalence shifts
and overfitting. As an additional advantage, affine scaling requires fitting only a few
parameters, which is much more computationally efficient than retraining.

The CWCE measures only the (marginal) miscalibration of the systems. However, the
overall quality of the predicted class scores includes both calibration and discrimination
components (see Sec. 2.6). Since for most methods not only the calibration but also the
discrimination of the systems change, a better way to compare approaches is through a
metric that reflects the overall performance of the scores, i. e., a proper scoring rule such
as BS (see Def. 2.74). Our results show (Fig. 6.6 bottom) that the BS is minimized, for
each IR, for our proposed re-calibration approaches with both methods for adjusting the
prevalences (dep. or est.). Fig. 6.5 (b) additionally shows the CWCE for the (estimated)
importance reweighted affine re-scaling method at IR=10 as a function of the size of 7,.

6.2.4 Effects of prevalence shifts on the decision rule

To illustrate how a prevalence shift can affect the performance of the argmax decision
rule, we plot the log odds of model predictions along with the argmax decision threshold
and the optimal threshold for AC for two binary tasks in Fig. 6.7. Under a prevalence shift,
argmax is no longer the optimal decision rule, which can be mitigated by re-calibration.
Additionally, it is important to note that the optimal decision threshold depends on the
metric of interest, as illustrated in Fig. 6.8. Fig. 6.9 supports our proposal: An argmax-
based decision made with re-calibrated class scores (top right) and assessed with EC
(identical to the blue AC line in this case, since we use standard 0-1-costs) yields optimal
results regardless of prevalence shifts. In fact, this approach substantially improves the
quality of the decisions when compared to a baseline without re-calibration, as indicated
by an average relative decrease in EC of 1% (IR=1), 18% (IR=4), 32% (IR=7) and 42%
(IR=10), respectively, depending on IR. This is similar for EC using prevalences estimated
with ACC. The results further demonstrate quantitatively what the examples in Fig. 6.8
suggested: argmax is not the best decision rule for F1 and MCC (Fig. 6.9 top). Importantly,
decision rules optimized for AC, F1, or MCC on a developmental dataset do not generalize
to unseen data under prevalence shifts (Fig. 6.9 bottom).
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Figure 6.9: Optimal decision rules do not generalize to datasets with different preva-
lences. The difference between the actual and the optimal metric value on the deployment data
is shown as a function of the Imbalance Ratio (IR) for non-re-calibrated (left) and re-calibrated
(right) models for two decision rule strategies: argmax (top) and threshold operator p; (see
Def. 2.9) optimized on the development test set (bottom). Affine scaling trained with (optimal)
importance reweighting is used for all metrics except EC (est. prev.) for which the weights are
adapted using the estimated prevalences ﬁdep(r) for consistency (right). The optimal metric
value is obtained using the optimal decision rule for the deployment data. Mean (lines) and
standard deviation (transparent area) obtained from n=24 binary tasks. Originally published in
Godau et al. [139].

6.2.5 Effects of prevalence shifts on the generalizability of
validation results

The evaluation of our last experiment yields large deviations of metric values observed
in deployment settings from those obtained on the development test data (Fig. 6.10).
Prevalence-dependent metrics can vary widely, such as AC up to 0.18/0.41, F1 up to
0.46/0.18, and MCC up to 0.32/0.13 in the non-re-calibrated/re-calibrated case. BA as
a prevalence-independent metric deviates only up to 0.08/0.05, as does our proposed
variation of EC, which yields maximum discrepancies of 0.05/0.07 in the case of estimated
prevalences and 0.05/0.02 for exact prevalences. Thus, EC allows for reliable estimation
of performance irrespective of prevalence shifts, even when only estimated prevalences
are available.

6.3 Discussion

Our investigation into (RQ3) has yielded several significant findings, particularly regard-
ing prevalence shifts in biomedical image classification. Through extensive experimenta-
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Figure 6.10: Performance estimates based on development data may become invalid
under prevalence shifts. The absolute difference of the metric score computed on the
deployment data to that computed on the development test set is shown as a function of the IR
for non-re-calibrated (top) and re-calibrated (bottom) models. The scatter and box plots show
the results for all n=30 tasks at a fixed IR of 10. Only metrics that are agnostic to prevalence
— here Expected Cost (EC) configured with target prevalence and Balanced Accuracy (BA) —
allow comparison of conclusions. Originally published in Godau et al. [139].

tion on 30 different image classification tasks, we demonstrated that®:

(i) Class prevalences can be accurately estimated from unlabeled medical imaging data
using previously proposed quantification methods, with KDEyHD [263] performing
the best.

(if) Prevalence shifts can cause severe model miscalibration, rendering the standard
argmax decision rule suboptimal even for straightforward metrics such as AC.

(iii) Re-calibration via importance reweighted affine scaling based on estimated deploy-
ment prevalences effectively compensates for miscalibration caused by prevalence
shifts, surprisingly outperforming retraining with known prevalences.

(iv) EC, when adjusted for prevalences, provides a robust framework for comparative
validation across tasks with different prevalence distributions.

31t should be noted in this context that our findings were confirmed by repeated experiments using
multiple random seeds for dataset splitting and model training. Full results are available in the code
repository [134].
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Interpretation

We have shown that recent advances in quantification have indeed improved prevalence
shift estimation (see Fig. 6.3) and demonstrated that such estimates are sufficient to adapt
models (see Fig. 6.6, 6.9 and 6.10). KDEyHD [263] combines Kernel Density Estimation
(KDE) on the probability simplex Ax_; with a Monte Carlo approach to minimize the
Hellinger Distance (HD), which is computationally more demanding than previous meth-
ods*, but still acceptable in a periodic prevalence shift detection routine of the Lifelong
Learning system. Notably, we used the default values of the few hyperparameters of this
approach (kernel bandwidth, number of Monte Carlo trials, and a numerical stabilizing
epsilon).

In addition to quantification, also the proposed post-hoc re-calibration is also computa-
tionally extremely efficient, outperforming even the much more expensive full retraining
procedure. It should also be noted that other common post-hoc adaptation techniques
in model deployment, in particular ensemble methods [449], e. g., test-time augmenta-
tion [20], are not suitable for resolving prevalence shifts, as all ensemble members are
likely to suffer from the same systematic prior probability bias. The task size stratification
shown in Fig. 6.5 allows cautious conclusions about the number of samples required for
quantification and re-calibration. For binary tasks, in both cases 1000 samples seems to
be a rough order of magnitude to ensure good performance of our workflow. However,
we also observe that multiclass tasks are obviously more challenging.

EC as a generalizing performance measure (see Tab. 4.2) turns out to be well suited
and easily configurable along our workflow. The flexibility in assigning individual class
confusion costs, the theoretically given optimal decision rule (see Def. 6.9), and the
prevalence replacement strategy make it stand out not only against prevalence-dependent
metrics, but also against common prevalence-independent alternatives such as BA. The
magnitude of the performance degradation we observed due to prevalence shifts has
been largely underexplored in the medical image analysis literature. A 0.1 performance
drop in F1 resulting from an inappropriate decision rule (see Fig. 6.9) can significantly
alter the comparison of algorithm results — essentially becoming a ‘game changer’ in
competitive evaluations.

The lack of attention to calibration assessment and decision rule strategies in the
literature is particularly concerning in light of our findings. Our systematic review
in Sec. 6.2.1 suggests that many comparative studies in medical image analysis may
be vulnerable to severe performance deviations under potential prevalence shifts that
naturally occur in clinical environments.

Our results confirm theoretical predictions, but quantify their practical impact in
real-world biomedical imaging tasks. The five-step workflow for detecting and adapting
to prevalence shifts that we propose in Sec. 6.1.3 represents a significant advance over
current practices. While domain adaptation methods have been explored previously,

*Anecdotally speaking, KDEyHD is about an order of magnitude slower than KDEyML and KDEyCS,
which are themselves an order of magnitude slower than most previous approaches.
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many may be ineffective in the presence of prevalence shifts, as noted by Arjovsky
et al. [18]. Our approach differs by specifically targeting prevalence shifts and providing
a mechanism for automatic adaptation without requiring new annotations.

Research context

To our knowledge, the study in this chapter represents the first comprehensive investiga-
tion of prevalence shift effects on biomedical image classification algorithms. Although
EC is promoted by the Metrics Reloaded initiative, our literature analysis revealed that
it appears in less than a dozen papers in our corpus (not yet accounting for synonyms).
Our work provides compelling evidence of its advantages over established metrics in
changing environments. Current practice often relies on prevalence-dependent metrics
such as F1 and MCC, which we show do not provide robust performance estimates under
prevalence shifts. Furthermore, the common practice of using argmax indiscriminately
as a decision rule fails to account for the theoretical underpinnings of optimal decision
making. Our results are consistent with the broader movement toward robust Al in
healthcare, and extend previous work on acquisition shifts by Roschewitz et al. [323],
which can also be used along a simultaneous prevalence shift (given a known deployment
prevalence). However, the authors advise against using it for automatic re-calibration
when the cause of the shift is unknown. Moreover, solving manifestation shifts requires
additional assumptions about the nature of the shift [54] and cannot be solved as generally
as prevalence shifts.

Limitations

Several limitations are worth discussing. First, due to computational complexity, our
decision rule experiments were conducted only for binary classification tasks, although
multiclass problems are common in clinical practice. Second, our experiments validated
the workflow only for tasks with IRs up to 10, whereas larger imbalances may occur in
practice. While our theoretical foundation should generalize to these cases, experimental
validation would strengthen our claims. In addition, our analysis focused on prevalence
shifts occurring in isolation. Real-world deployment often involves multiple simultaneous
shifts (see Fig. 6.2), including acquisition shifts (e. g., changes in technology or imaging
protocols) and manifestation shifts (e. g., changes in population demographics or clinical
settings). The interplay between these different shift types remains an open research
question. Future work should evaluate the performance of our proposed methods when
more complex shifts are present, in comparison to methods specifically designed to
combat such shifts.

Conclusion

This chapter demonstrates that models can indeed detect changing environmental con-
ditions and adapt accordingly during deployment, specifically for prevalence shifts in
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biomedical image classification tasks. Our five-step workflow enables automatic detection
and adaptation to changing class distributions without requiring new annotations, a
critical capability for a Lifelong Learning systems in healthcare. The proposed approach
of quantifying prevalence shifts, adjusting decision rules, and performing re-calibration
provides a practical framework for maintaining model performance in dynamic clinical
environments. EC, with its strong theoretical foundation and flexibility [113], emerges
as a recommended default metric for image classification tasks where deployment condi-
tions may differ from development settings (keeping in mind that prevalence-dependent
metrics may still be necessary to reflect the clinical interest as argued in see Sec. 4.2).
These findings contribute significantly to the third metacognitive loop of our Lifelong
Learning system: adaptation during the deployment phase. By autonomously addressing
the challenge of shifting distributions across clinical environments, we enable Al sys-
tems to continuously evolve in changing healthcare contexts without constant human
intervention.
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DISCUSSION

The three core chapters of this thesis contain individual discussions: One in Sec. 4.3 for
the proposed reward-learning loop on the determination of appropriate performance
measures based on a systematic interview, one in Sec. 5.3 for the presented pipeline-
learning loop on the identification and reuse of relevant prior knowledge, and one in
Sec. 6.3 for the suggested environment-learning loop on the self-adaptation of models
according to detected prevalence shifts during deployment. This chapter serves as an
overarching discussion of the work of this thesis in relation to our vision of a Lifelong
Learning system, and aims to place the achieved results in a broader research context.
Note that a conclusion and outlook are provided in Chap. 8.

Synthesis

The evolution of the research questions presented in this dissertation followed a trajectory
that merits examination. The final research direction diverged severely from initial
hypotheses. The preliminary conceptualization of (RQ2) initially centered on a system,
that learns across the boundaries of datasets, incorporating some concept of Meta Learning
(see Def. 2.89) and primarily solving the data sparsity problems in Surgical Data Science
(SDS). We realized early on that the problem formulation of Continual Learning (see
Def. 2.88) with its strong focus on the development of a single model did not fit this vision.
It also became clear that the dominant approaches to Meta Learning, e. g., MAML [117],
required a very homogeneous set of tasks and might not be well suited to overcome
data scarcity. We were strongly inspired by the work of Achille et al. [4] (referred
to as FED in Sec. 5.1, see Def. 5.11), which was accompanied by interesting theoretical
considerations [5]. This led to a shift in focus to a better understanding of the relationships
between tasks, how to measure them and how they relate to knowledge transferability.
The term task fingerprinting (see Def. 5.1) for this was coined along our first conference
submission [136]. Along the way, there was a recurring pattern that repeatedly caught our
attention, triggered the other research questions, and contributed to the final experimental
design for (RQ2): The theme of ‘pitfalls in validation’.

Anecdotal observations revealed systematic inconsistencies in performance measure
selection for international competitions, manifesting as an implicit adherence to conven-
tional metrics regardless of their appropriateness for specific evaluation contexts. These
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observations led to the Metrics Reloaded initiative described in Sec. 4.1 and, in the context
of this thesis, to our (RQ1). Similarly, for (RQ2) there is a crucial statistical shift in the
evaluation: the sample size ‘n’ moves from the number of samples in the test set of a given
task 7 during the evaluation of isolated learning to the number of tasks evaluated on.
This also implies a shift in the practice of splitting data: while normally each task is split
into a development set, for training models and tuning hyperparameters, and a test set, for
accurately estimating the empirical risk, for scenarios where ‘tasks become the instances
of interest’ it is necessary to perform this split along the set of tasks (as done in Sec. 4.1).
This necessary separation has not been reported for much of the literature in knowledge
transfer estimation. Meanwhile, the inherently challenging research question of robustly
assessing transferability estimates has also been described by Agostinelli et al. [9] and
confirmed for medical imaging by Chaves et al. [58]. These methodological challenges
necessitated a multidimensional expansion of the experimental design across several pa-
rameters (number of tasks, number of knowledge transfer scenarios, number of validation
metrics) and the uncertainty-aware evaluation presented in Sec. 5.2. Lastly, triggered by
the insights generated during Metrics Reloaded, especially the prevalence dependency of
many metrics, we naturally came to the question of understanding ‘further implications’
of prevalence dependency. A significant methodological inconsistency exists wherein
numerous studies employ biased sample selection protocols while nonetheless deriving
application-specific conclusions. The observed disparity between established theoretical
foundations and community implementation practices represents an unexpected finding
(see Sec. 6.2.1). The quantification step (see Def. 6.6) in our proposed methodology, was
actually only added later, but integrates nicely with the goal of an environmental feedback
loop and adds the ‘detection’ of changing environments to (RQ3).

Remarkably, all three of our learning loops can be used independently. They indi-
vidually address complementary issues related to application alignment, data sparsity,
and distribution shifts. Moreover, they are not limited to the Lifelong Learning scenario
alone (see Def. 2.90). The Metrics Reloaded recommendations are universally designed
for (multi-level) image classification tasks and have already been applied in a variety
of scenarios. The task fingerprinting [133] and prevalence-shifts [134] repositories are
independent plugins for the common Medical Meta Learner [132] framework developed
and published in the context of this thesis.

Limitations

We must not ignore the limitations of our methodology. The focus on Image-level Classi-
fication (ImLC) was motivated in Sec. 1.2 for reasons of a well-researched problem type
and the experimental efficiency. However, it is neither the only nor the most prevalent
problem type in medical imaging [240]. Also, our experiments only included tasks that
are based on two-dimensional RGB images — leaving out modalities such as hyperspectral
imaging and three-dimensional MRI volumes. Metrics Reloaded covers the most com-
mon problem types that are both discriminative and image-based. The need to extend
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to generative problem types as well as video-based models has already been recognized
and triggered a subsequent iteration of the recommendation generation process. Our
proposed task similarity measure bKLD does not rely on a specific problem type, although
it has only been evaluated on one. It will be particularly challenging to find a similarity
measure that performs well across problem types, as it has been shown that requirements
of source task differ across problem types [224]. The hierarchical structure from pixels,
to objects, to full images also complicates the handling of prevalence shifts for SemS
and ObD. There, prevalence shifts can occur at multiple levels: e. g., there could be more
objects from all classes per image and a shift in the class distribution.

We mentioned in the synthesis section, that the sample size for Lifelong Learning
systems is measured by the number of tasks. The sample sizes used in this work are not yet
sufficient to draw rock solid conclusions about the applicability of our approaches. The 73
international experts within Metrics Reloaded, including a variety of clinicians, ensure the
coverage of a multitude on use cases. But with the sometimes very specific requirements
for predictions on medical images, there are certainly white spots and open questions.
The 43 heterogeneous validation tasks we used to evaluate bKLD are unprecedented in
combination with the four transfer scenarios. Furthermore, some meta metrics used
consider all possible pairs of tasks, which increases the respective sample size to about
43 x 70 or slightly below 3000 because of the partially overlapping tasks that we excluded
as transfer candidates. Still, these numbers are below the expectations for truly robust
scientific evidence. Fortunately, we have strong theoretical guarantees for the prevalence
shift experiments, which partially compensates for our reduced number of 30 tasks. This
reduction was necessary to ensure that enough samples were available to meaningfully
measure performance after the splitting and subsampling strategy. However, we saw
that our workflow struggled with some smaller multiclass tasks. This limitation requires
further investigation.

There are also practical considerations of a Lifelong Learning system that we have not
yet addressed. Repeatedly retraining models is a resource-intense paradigm that requires
the necessary hardware, has ongoing costs, and increased maintenance requirements
compared to a ‘deploy and forget’ solution. Regulatory demands for reliability and
accountability have also been left untouched, such as how the general lifelong learning
system would be approved by regulators as opposed to a specific medical device. The
integration of such a system into the disparate infrastructures of medical centers will also
require considerable effort. We have not mentioned the dilemma of ‘exploration versus
exploitation’, which in a way deals with the willingness of the system to take risks. The
parameters for such behavior, and many others necessary to configure a large-scale system
to individual needs, have been wiped away in our analysis. Nor have we touched on the
specifics of human-machine interaction, especially issues such as explainability, which
could be crucial for the acceptance of Al in healthcare. It is also worth mentioning that a
continuously evolving system offers different vectors for potential adversarial attacks
compared to standalone solutions. Again, the security aspects for such a centralized and
networked system would place a heavy burden on development and maintenance.
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7 Discussion

Current research directions

DL has become an incredibly fast-paced research environment in recent years, and
filtering out the most important trends has therefore become an increasing challenge in
itself’. Nevertheless, we try to provide some high-level context of advances in computer
vision and potential implications for our work.

Recently, Foundation Models (FMs) — predominantly large-scale transformers - have
dominated research [37]. Key strategies include using self-supervised learning on massive
datasets to develop general visual understanding, integrate speech and other modal-
ities, and reducing the fine-tuning efforts through Parameter-Efficient Fine-Tuning
(PEFT) [155]. FM are also well suited to the concept of ‘knowledge distillation’, where
larger models act as teachers and their predictions are used to train smaller student
models [168]. In particular, generative teacher models can be used to produce specific
synthetic data as the underlying task for students. Knowledge distillation students tend
to predict faster, are cheaper to operate, and often even more accurate than their teach-
ers [427]. Overall, these methods emphasize the construction of strong generalist models
and offer new approaches to knowledge transfer. In the context of our presented contri-
butions, the systematic recommendation of performance measures is challenged by the
evaluation of generative FM. Measuring their fitness for broad applicability, quantifying
the effort required to optimize prompts, and the problem of hallucination are some of
the issues that would need to be addressed. Our second contribution, transferability
estimation via task fingerprinting, is challenged by the additional knowledge transfer
scenarios such as PEFT and knowledge distillation. Remarkably, task fingerprinting does
not have to directly match a FM with a target task, but can rely on similar tasks that have
been solved via FM. The corpus of investigated models of our approach (see Sec. 5.1.3)
needs to be extended to include FMs, although the computational complexity of this
investigation would increase significantly due to their size. Our proposed procedure
for overcoming prevalence shifts is probably the least affected. Although the degree
of miscalibration in FMs seems less severe than in classical CNNs [251], the general
applicability of our workflow is not compromised.

Video understanding has also emerged as a major focus of computer vision research,
going beyond traditional frame-by-frame analysis to comprehend temporal dynamics and
contextual relationships. Videos are particularly relevant for minimally invasive surgery,
but could also prove useful for other medical imaging techniques, such as ultrasound. In
addition to ‘pure’ video models such as three-dimensional CNNs, there are also hybrid
approaches that combine, e. g., CNN backbones with temporal attention mechanisms.
Introducing an additional dimension to the data naturally increases the complexity of
the problem and thus the resource requirements. All three of our contributions need to

!According to my scopus. com search about 17 500 articles matching the “deep learning” query have
been published in 2018, the year prior to the start of my Ph.D.. In 2024, the year prior to the completion
of this dissertation, almost 122 000 articles have been published. On average, this is an increase of about
38% per year.
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be carefully extended in order to capture all facets of this domain.
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CONCLUSION

In this thesis, a vision for a Lifelong Learning system was outlined in Chap. 1. Sub-
sequently, several advances for such a Lifelong Learning system were proposed and
evaluated for biomedical image classification. A systematic process to align applica-
tion needs with performance measures was introduced in Chap. 4. A framework for
cross-institutional knowledge transfer between tasks was presented in Chap. 5. Lastly, a
workflow for automatically mitigating prevalence shifts that occur during model deploy-
ment was proposed in Chap. 6. In total, tens of thousands of models have been trained
and evaluated in biomedical applications.

In Sec. 8.1 of this chapter, we draw conclusions from our results with respect to
our research questions from Sec. 1.2. Next, in Sec. 8.2, we summarize our scientific
contributions and present the new knowledge we have gained. Finally, in Sec. 8.3, we
provide an outlook for future research, touching on open challenges and opportunities.

8.1 Conclusions

Research Question 1

How can clinical objectives be systematically translated into appropriate Artificial
Intelligence (AI) model validation metrics?

Our work has shown that appropriate metric selection for biomedical image classi-
fication requires knowledge from three categories: the abstract domain interest, the
properties of the dataset, and details of the algorithm output. Systematically formalizing
this knowledge as a problem fingerprint, enables automatic recommendation of appro-
priate performance measures, and avoids selection based on subjective preferences. An
international consensus-building process involving 73 experts with 93% final agreement
validated the feasibility of our recommendation workflow. The problem fingerprint allows
domain experts to efficiently communicate relevant context to a Lifelong Learning system
to derive the necessary performance measures for model development. For such systems,
changes in two of the three categories (dataset properties and algorithm output) can be
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updated internally, allowing adaptability to evolving clinical contexts without requiring
continuous human oversight. The combination of complementary metrics ensures a
holistic model evaluation and overcomes the weaknesses of individual metrics. While
comprehensive, standard metric sets cannot address all specialized biomedical imaging ap-
plications, requiring optional integration of application-specific measures. For individual
researchers — outside the context of a Lifelong Learning system - the structured selection
process increases reproducibility and helps to avoid pitfalls without requiring in-depth
metrics expertise. When multiple metrics seem appropriate, our detailed decision guides
systematically resolve these tensions and provide pathways through edge cases.

Research Question 2

How to enable effective knowledge transfer across biomedical image analysis
tasks?

Our proposed concept of task fingerprinting decouples task identifiers from task-
specific experience, which enables collaborative and cross-institutional aggregation
of knowledge. By enabling collaborative accumulation of insights, task fingerprinting
fundamentally democratizes Al development, potentially reducing both development
time and the environmental impact of redundant model training. Our novel proposed task
fingerprinting method binned Kullback-Leibler Divergence (bKLD) meets the requirement
of preventing the disclosure of sensitive patient data, while outperforming both manual
selection and previous automated approaches. The parameterized nature of bKLD, with
adjustable bin count and feature weighting, allows adaptation to specific transfer contexts,
addressing the fundamental challenge that no single non-parameterized fingerprinting
method adequately serves all transfer scenarios. bKLD works robustly with minimal
sample sizes, making it practical for real-world medical imaging scenarios where data
is often scarce. Our methodology bridges the gap between isolated learning paradigms
and equips Lifelong Learning systems with a task-matching capability thatallows for
targeted knowledge transfer between tasks. While the absolute performance improvement
varies by transfer scenario, even modest gains represent meaningful progress toward
Al systems that evolve efficiently in changing healthcare contexts without the need for
human guidance. Our findings support the development of cross-institutional Knowledge
Clouds where institutions can share task fingerprints and transfer experience without
compromising patient privacy.

Research Question 3

What mechanisms enable biomedical imaging models to detect and compensate
for prevalence shifts in deployment?
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8.2 Summary of contributions

Our research demonstrates that biomedical imaging models can effectively detect and
compensate for prevalence shifts in deployment environments through our novel five-
step workflow. Accurate prevalence estimation during deployment is achievable with
quantification methods such as KDEyHD that require only unlabeled samples. Affine
re-calibration based on estimated prevalences outperforms even full model retraining
with known prevalences, providing an efficient adaptation strategy for deployed models.
Ignoring prevalence shifts can lead to severe model miscalibration that renders standard
decision rules suboptimal, with performance degradations having significant clinical
implications. Expected Cost (EC) emerges as a metric with a robust framework for
compensating fot prevalence shifts, allowing for straightforward decision rule adjustments
and reliable performance prediction. For binary classification tasks, approximately
1000 samples are sufficient to ensure both effective quantification and re-calibration,
although multiclass problems require more samples due to their increased complexity.
While prevalence shifts have been studied in the literature, our work directly addresses a
significant gap where their profound impact is empirically underexplored and largely
ignored in medical image analysis practice. Our workflow enables Lifelong Learning
systems to autonomously adapt to changing deployment contexts without additional
annotation effort.

8.2 Summary of contributions

This section list the contributions of new knowledge that this thesis makes.

Model validation

Our research makes several significant contributions to the field of biomedical image
analysis validation: We formulated a comprehensive theoretical overview of performance
measures, analyzing the relationships between common metrics, their mathematical
properties, and corresponding pitfalls, thereby establishing a foundation for informed
metric selection. Building on this theoretical foundation, we formalized the concept of the
problem fingerprint — a systematic description of domain interest, dataset characteristics,
and algorithm output properties that comprehensively determines appropriate validation.
We introduced a novel, systematic workflow for recommending performance metrics that
align with clinical goals, transforming subjective metric selection into a structured process
guided by use case properties through the problem fingerprint. We developed detailed
decision guides that address nuanced metric selection challenges, resolving tensions
between competing metrics for edge cases and complex scenarios. We demonstrated
the broad applicability of our framework across seven diverse biomedical imaging tasks,
validating its effectiveness in translating clinical requirements into appropriate validation
strategies. The results of Metrics Reloaded were published as two separate parts in Nature
Methods, one describing metric pitfalls [317] and one presenting problem fingerprints
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and the recommendation workflow [238].

Training in sparse data settings

Our research makes several important contributions to knowledge transfer in biomedical
image analysis: We formalized the concept of task fingerprinting as a methodology
for decoupling task identifiers from task-specific experience, providing a theoretical
foundation for privacy-preserving knowledge transfer across institutions. We introduced
a novel measure for quantifying task similarity, that provides parameterizable control
over both feature granularity and dimensional weighting to enable scenario-specific
configuration. We created a comprehensive evaluation framework for assessing task
transferability estimation methods, defining a set of meta metrics that capture different
aspects of transfer quality and enable robust method comparison. We conducted the
largest known heterogeneous evaluation of task transferability estimation in biomedical
imaging, spanning 71 tasks across 12 medical imaging modalities and four types of
knowledge transfer, setting a new standard for validation scale in task transferability
research. We empirically demonstrated that different knowledge transfer scenarios
cannot be resolved by a single similarity measure, but require transfer scenario specificity.
We have shown that our bKLD approach can work effectively with as few as 100 samples,
making it viable for real-world medical imaging scenarios with limited data availability.
The presented results are currently under review at Nature Communications Medicine,
while preliminary results have been published at the Medical Imaging Meets NeurIPS
workshop [342] and the MICCAI conference [136].

Prevalence shifts in algorithm deployment

Our research makes several significant contributions to understanding and addressing
prevalence shift in biomedical image classification: We conducted the first comprehensive
empirical analysis of prevalence shift effects on biomedical image classification perfor-
mance, quantifying performance degradation across 30 different tasks and revealing
substantial impacts that have been largely overlooked in the existing literature. We
developed a systematic five-step workflow for detecting and compensating for prevalence
shifts using only unlabeled deployment data, providing a practical framework for main-
taining model performance in dynamic clinical environments. We provided empirical
evidence that post-hoc re-calibration via importance reweighted affine scaling not only
compensates for prevalence shifts, but surprisingly outperforms full model retraining with
known prevalences, challenging common assumptions about adaptation strategies. We
demonstrated that standard decision rules become suboptimal under prevalence shifts and
quantified the substantial performance degradation this causes, providing evidence for
the critical importance of decision rule adjustment in deployment contexts. We validated
EC as an adjustable performance measure for managing prevalence shifts in biomedical
image classification, demonstrated its advantages over traditional metrics, and provided
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practical guidelines for its implementation. We highlighted the limitations of current
practices in medical image analysis regarding prevalence shifts, demonstrating through a
systematic literature analysis that this critical factor is routinely overlooked despite its
significant impact on model performance. Our results were first published at the MICCAI
conference [138] and as an extended version in Medical Image Analysis [139], winning
the Medical Image Analysis MICCAI 2023 Best Paper Award.

8.3 Outlook

This thesis has introduced three metacognitive loops to address fundamental challenges
in biomedical image classification through a Lifelong Learning framework. Each con-
tribution advances the state of the art while opening new research directions at the
intersection of Al and healthcare.

Al validation

The Metrics Reloaded framework provides a critical foundation for aligning Al validation
with clinical goals, but significant challenges remain as the field evolves. The emerg-
ing capabilities of Foundation Models (FMs) require novel validation paradigms that
go beyond traditional performance measures to capture transfer efficiency, determine
generalization limits, and evaluate open-ended questions. Future research must address
temporal validation challenges as Al systems continuously adapt in deployment, requir-
ing dynamic evaluation that can distinguish beneficial adaptation from performance drift.
As regulatory frameworks for Al medical devices mature, our problem fingerprinting
methodology offers a standardized approach that could inform compliance requirements.
Perhaps most importantly, the field must evolve from optimizing technical metrics to
validating tangible clinical impact, requiring evaluation schemes that measure success
through real-world outcomes. The true promise of our validation framework lies in its
potential to ensure that biomedical imaging Al demonstrably improves healthcare rather
than merely advancing technical benchmarks.

Knowledge transfer

The emergence of FMs has demonstrated that building large databases creates powerful
advantages, but task fingerprinting offers a democratizing alternative by enabling collab-
orative knowledge accumulation and overcoming isolated data silos. Three promising
research directions emerge from our work: First, combining task fingerprinting with
Parameter-Efficient Fine-Tuning (PEFT) methods for FM could dramatically reduce com-
putational requirements while leveraging the generalizability of FM. Second, assessing the
configurability of bKLD for problem types other than Image-level Classification (ImLC).
Third, extending task fingerprints to encompass multimodal data and exploring cross-
domain knowledge transfer capabilities. Future research must also address the tension
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between knowledge sharing and competitive advantage by developing incentive mech-
anisms that encourage contributions to shared Knowledge Clouds. Our fingerprinting
methodology has the potential to transform thousands of isolated medical Al experiments
into a coherent, accessible Knowledge Cloud that accelerates progress across healthcare
domains worldwide.

Distribution shifts

As soon as healthcare Al deployment scales globally, the challenge of distribution shifts
will intensify across diverse clinical environments and populations. While our workflow
effectively addresses prevalence shifts, future research must tackle the complex interplay
of multiple simultaneous shifts that characterize real-world deployment scenarios. Our
approach could be extended to a continuous monitoring system for Lifelong Learning
systems, that detects and distinguishes variants of distribution shifts. The integration of
causal reasoning frameworks represents a promising direction for disentangling complex
distribution shifts beyond prevalence alone. In addition, quantifying uncertainty in both
prevalence estimation and adaptation decisions will be critical for maintaining clinical
trust in autonomously adapting systems. Finally, our methodology for adapting EC
provides a foundation for robust model validation under presumed prevalence shifts,
enabling researchers to accurately report model performance in biased research settings,
making potential deployment expectations more realistic.

Lifelong Learning systems

The true potential of the three metacognitive loops described in this thesis lies not
only in their individual contributions, but in their integration within comprehensive
Lifelong Learning systems. Future research should explore how these processes might
interact with each other, with insights from one loop informing adjustments in others.
For example, detected distribution shifts could trigger targeted knowledge transfer from
similar historical contexts, while validation metrics could dynamically adjust to reflect
the uncertainty introduced by environmental changes. As Al continues its evolutionary
trajectory from isolated algorithms to continuous learning systems, the self-referential
loops that have driven previous breakthroughs — from universal computation to FMs -
are likely to become increasingly sophisticated. The methods developed in this thesis
represent meaningful steps toward truly autonomous learning systems that can grow
with the healthcare environments they serve: Ensuring alignment with evolving clinical
goals, leveraging accumulated experience, and adapting to changing environments. By
addressing open issues in medical imaging throughout the entire Al lifecycle, this work
contributes to a future where Al systems no longer represent static capabilities, but
have the ability to continuously interact, learn, and adapt in response to the dynamic
challenges of real-world clinical practice.
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Closing

This brings us to the end of my thesis. To wrap it up, I would like to end it as we began it,
following the self-referencing loops of Douglas Hofstadter through Fig. 8.1, a comic by

Randall Munroe':
...wWHOA,

Figure 8.1: xkcd comic about self-referential statements. The seemingly unfinished sentence
of the second panel is completed by the acronym made up of all the initial letters of the sentence:
‘IS META'. Published by Randall Munroe in June 2011 at xkcd. com/917 under the CC-BY-NC

license version 2.5.

WHATS THIS?
DOUGLAS HOFSTROTERS
SIX-WORD AUTOBIOGRAPHY. | | Tt So Meta, Bven Tris Accovm
AFTER AL THOSE 700~ PrRoE
ToMES, T GUESS HE WANTED
T0 TRY FOR BREVITY,

HUH. LETS SeE... (

\

I THINK HE
NAILED [T,

'Noteworthy I have been proudly presenting xkcd comics to the Intelligent Systems for Surgery and
Endoscopy (ISSE) team every week for more than three years now, so this ending did not come out of

nowhere.
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DISCLOSURE OF PERSONAL
CONTRIBUTIONS

This appendix details my individual involvements for the research projects of this thesis.
By transparently providing the respective context, I would like to acknowledge the
contributions and roles of my colleagues in these projects. Given the opportunity I
would also like to list some scientific contributions and achievements outside the projects
mentioned in this thesis.

Chapter 4

The Metrics Reloaded initiative, which spanned 2.5 years of collaborative work through
workshops, surveys, and expert discussions, culminated in two major publications: one
addressing metric pitfalls [317], and another detailing problem fingerprints and rec-
ommendations [238]. Throughout this process, we shared interim results at various
venues, including the Medical Imaging Meets International Conference on Neural Infor-
mation Processing Systems (NeurIPS) workshop [315] and MIDL conference [316], while
maintaining a regularly updated preprint on arXiv [237].

Metric Reloaded was initiated by Lena Maier-Hein and Annika Reinke, in the scope
of Helmholtz Imaging, the Medical Open Network for Artificial Intelligence (MONAI)
Working Group for Evaluation, Reproducibility and Benchmarks, and the Medical Image
Computing and Computer Assisted Interventions (MICCAI) Special Interest Group for
Challenges (formerly MICCAI board working group). Joined by Paul F. Jager they later
formed the Delphi core team. Together with Minu D. Tizabi, Evangelia Christodoulou, A.
Emre Kavur, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Noétzel, Tim
Rédsch and Annette Kopp-Schneider, I was part of the ‘extended Delphi core team’ (see
Sec. 4.1). Together with Michael A. Riegler, I led the ImLC expert group, coordinating,
summarizing, and reporting on several meetings with the members M. Jorge Cardoso,
Veronika Cheplygina, Michael M. Hoffman, Geert Litjens, Erik Meijering, Henning Miiller,
and Gaél Varoquaux. My main contributions include the systematic analysis of metric
relationships (see Sec. 4.1.2), the identification of problem fingerprints for metric suitabil-
ity (see Sec. 4.1.3), the compilation of the metric selection workflow (see Sec. 4.2.1), and
writing ImLC related parts of the manuscript [238]. Although the scientific outreach was
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predominantly performed by the core team, I had the honor to present the results to an
external review board during the evaluation of the research focus E at the German Cancer
Research Center in 2023. The following year, I presented and discussed the initiative
at a workshop on ‘Benchmarking and Evaluation’ at the Chan Zuckerberg Initiative in
San Francisco, that primarily focused on biological applications, opposed to the medical
focus of this thesis. A white paper on the outcomes of this workshop is currently in
preparation.

Chapter 5

The work on quantifiable task relations was largely my sole research project under the
supervision of Lena Maier-Hein. Notable contributions were made by Akriti Srivastava
and Tim Adler. I presented a first sketch of task fingerprinting as an abstract at the
Medical Imaging Meets NeurIPS workshop in 2020 [342]. The following year, an extended
paper was submitted to MICCAL received a straight acceptance, and I was invited to give
an oral presentation [136]. The year after, the same results were also presented at the
German Conference on Medical Image Computing (BVM) [135]. The greatly extended
results discussed in this thesis are currently under revision at nature Communications
Medicine, but have already been published as a preprint [137]. I have open-sourced the
general framework for knowledge transfer under the name Medical Meta Learner' on
GitHub [132]. It is designed to be highly extensible in terms of problem types (e. g.,
tested for Semantic Segmentation (SemS) and regression tasks), novel learning routines
(so-called ‘schedulers’, e. g., first order Meta Learning), modalities (e. g., bounding boxes
and video clips), model architectures, and more. A set of initial plugins allows easy use of
all the datasets described in Sec. 2.2, automated creation of task derivatives, parallelized
hyperparameter optimization across cluster infrastructure, and more. The source code for
replicating the experiments conducted in Sec. 5.2 has been released separately leveraging
this plugin mechanism [133].

Chapter 6

The prevalence shift analysis was a close collaboration under the joint executive leadership
of my colleague Piotr Kalinowski and myself. The core idea was developed in the context
of Metrics Reloaded by Lena Maier-Hein, Paul Jager and Luciana Ferrer, who initiated our
research and supervised the project. We were joined by Evangelia Christodoulou, Annika
Reinke, and Minu Tizabi in advisory roles. We submitted our results to MICCAI, received
a straight acceptance, were invited to give an oral presentation, and were shortlisted for

! Abbreviated MML, which turned out to be prone for confusions as those two letters are frequently
combined as abbreviations in computer science: Large Language Model (LLM), Linear Mixed Model
(LMM), Masked Language Model (MLM), Multiplicative Linear Logic (MLL), Minimum Message Length
(MML), Local Maximum Likelihood (LML), Metaverse Markup Language (MML), Mathematical Markup
Language (MathML), Mathematics for Machine Learning (MML) or the Multimedia Laboratory (MMLab).
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the best paper award [138]. After the conference we were invited to submit an extension
of our work to a special issue on MICCAI 2023 of the journal Medical Image Analysis.
After extending our experiments to include the quantification of prevalence shifts, this
paper won the Medical Image Analysis MICCAI 2023 Best Paper Award [139]. The source
code to replicate both, the original and the extended version, has been published on
GitHub [133].
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