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born in Stuttgart

Oral examination: 22nd July 2003





Analysis of Flow and Transport in Refractive Index Matched
Porous Media

Referees: Prof. Dr. Kurt Roth
Prof. Dr. Bernd Jähne





1

Zusammenfassung

In der vorliegenden Arbeit wurde eine neuartige Methode zur Messung von Strömung und
Transport in porösen Medien entwickelt. Durch die Verwendung von speziell geeigneten Fest-
stoffen, Flüssigkeiten und fluoreszierenden Farbstoffen sowie die Anwendung eines hochge-
nauen Verfahrens zur Anpassung der Brechungsindizes konnte die Dynamik der Farbstoff-
verteilung in einem dreidimensionalen porösen Medium mittels planarer laser-induzierter
Fluoreszenz mit einer sehr hohen zeitlichen und räumlichen Auflösung bestimmt werden.
Für die Auswertung der Daten wurden speziell angepasste Algorithmen zur Bildvorverar-
beitung entwickelt sowie ein Verfahren zur lokalen Parameterschätzung auf die vorliegende
Anwendung übertragen und entscheidend erweitert. Die durchgeführten Messungen stellen
die erste gleichzeitige Bestimmung des longitudinalen sowie der beiden transversalen hydrody-
namischen Dispersionskoeffizienten dar. Während für die longitudinale Dispersion ein bereits
bekanntes Potenzgesetz bestätigt wurde, konnte für die transversale Dispersion erstmals ein
deutlich unterschiedliches Verhalten in vertikaler und horizontaler Richtung nachgewiesen
werden. Weiterhin konnte mit dem entwickelten Verfahren erstmals der direkte Nachweis
für die Existenz nicht konvektiver Zonen, die einen wichtigen Teil zur Dispersion beitragen
und eine mögliche Erklärung für das Verhalten gemäß eines Potenzgesetzes bieten, erbracht
werden. Schließlich wurde mit dem Verfahren erstmals die Strömung zweier nicht mischbarer
Flüssigkeiten in einem dreidimensionalen porösen Medium hochaufgelöst visualisiert.

Abstract

In the present work a novel method for the measurement of flow and transport in porous me-
dia has been developped. Through the employment of particularly applicative solids, liquids
and fluorescent dyes and the application of a method for the highly precise matching of refrac-
tive indices, the dynamics of the dye distribution inside a threedimensional porous medium
could be determined with a high temporal and spatial resolution using planar laser-induced
fluorescence. For the data analysis specifically adapted algorithms for image preprocessing
have been developed and a method for local parameter estimation has been adapted and
significantly enhanced for the present application. The performed measurements represent
the first simultaneous estimation of the longitudinal and both transversal hydrodynamic dis-
persion coefficients. Whereas for the longitudinal dispersion a previously known power-law
could be confirmed, the significantly different behavior of the transversal dispersion in vertical
and horizontal direction has been observed for the first time. Furthermore the measurements
provide the first direct evidence for the existence of stagnant zones in the liquid phase, which
have an important effect on the dispersion and are a potential explanation for the power-law
behavior. Finally the described technique was used for the first highly resolved visualization
of the flow of two immiscible liquids in a threedimensional porous medium.





Contents

1 Introduction 7

2 Theory of Hydrodynamic dispersion 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 From kinetic theory to molecular diffusion . . . . . . . . . . . . . . . . . . . . 9
2.3 From molecular diffusion to hydrodynamic dispersion . . . . . . . . . . . . . . 12

2.3.1 Taylor dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Hydrodynamic dispersion in a homogeneous porous medium . . . . . . 16
2.3.3 Theoretical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Heterogeneous porous media . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Method of measurement 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Refractive index matching methods . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Imaging devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Light source and optics . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Personal computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.4 Translation stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.5 Flow cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Solid properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Liquid properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Dye properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Method for precise index matching 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Light propagation in transparent porous media . . . . . . . . . . . . . . . . . 41
4.3 Experimental technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Image Preprocessing 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Geometric calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Brightness correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Correction of spatial inhomogeneity . . . . . . . . . . . . . . . . . . . 52
5.3.2 Correction of temporal variations . . . . . . . . . . . . . . . . . . . . . 53

3



CONTENTS

5.4 Correction of scanning time shift . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Radiometric camera calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6 Analysis of statistical errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.7 Verification of the linearity between laser intensity and fluorescence emission 62
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Global parameter estimation 65
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Direct estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 Fitting of model functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.5 Confidence bounds for estimated parameters . . . . . . . . . . . . . . . . . . . 69

7 Local parameter estimation 71
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Total least squares parameter estimation . . . . . . . . . . . . . . . . . . . . . 72

7.2.1 Ordinary least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2.2 Total least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.3 Equilibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3 Parameter estimation for linear dynamic processes . . . . . . . . . . . . . . . 76
7.3.1 Motion estimation in image sequences . . . . . . . . . . . . . . . . . . 78
7.3.2 Tensor approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3.3 Aperture problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3.4 Extension to linear models . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3.5 Minimum norm solution . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3.6 Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.4 Application to simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.4.1 Choice of filter masks . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.4.2 Noise sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.4.3 Choice of equilibration weight matrix . . . . . . . . . . . . . . . . . . 100
7.4.4 Confidence measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4.5 Physically based minimum norm solution . . . . . . . . . . . . . . . . 106

7.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8 Single-phase flow in saturated porous media 115
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2 Molecular diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.2.1 Nile Red . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.2.2 Alexa Fluor 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.3 Hydrodynamic dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.3.1 Correlation functions of porous media . . . . . . . . . . . . . . . . . . 121
8.3.2 Longitudinal and transverse dispersion coefficients . . . . . . . . . . . 126
8.3.3 Temporal evolution of mean and variance . . . . . . . . . . . . . . . . 135
8.3.4 Reversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.3.5 Holdup dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.3.6 Adsorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4



CONTENTS

8.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9 Flow of two immiscible liquids in a porous medium 149
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.2 Immiscible displacement of oil by water . . . . . . . . . . . . . . . . . . . . . 149
9.3 Compensation of spectral overlap . . . . . . . . . . . . . . . . . . . . . . . . . 150
9.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

10 Summary and conclusions 159

A Cubic smoothing splines 161
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.2 Roughness penalty approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.3 Estimation of the smoothing parameter λ . . . . . . . . . . . . . . . . . . . . 162

B Concentration Profiles 165

5



CONTENTS

6



Chapter 1

Introduction

The study of flow and transport in porous media is an active field of research, which has
applications in many disciplines such as

• forecast of transport and fate of water, dissolved contaminants and non-aqueous phase
liquids in hydrology

• heterogeneous catalysis in chemical engineering

• oil recovery in petroleum engineering

• flow of blood and other body tissues in biochemistry and medicine.

The scientific challenge in all these fields is the development of appropriate models for flow
and transport, which can then be used e.g. to predict the spreading of a contaminant in an
aquifer or to optimize the reaction rate in a packed bed. There is a general agreement among
scientists and engineers across the disciplines that further progress in the modeling of these
phenomena can only be achieved through the development of enhanced and new experimental
techniques.

Earlier studies mostly treated the porous medium as an effectively homogeneous system
and neglected the complexity and variability of the local flow processes within the porous
medium. It is not surprising that the predictions of models which are based on such simple
approaches often proved false. The restriction to the employment of these simple models,
mainly caused by the lack of experimental methods for the visualization and quantification
of local structure and dynamic processes, could lately be relaxed by the emergence of capable
new measurement instrumentation. As a consequence, the models become more sophisticated
making use of the contemporaneously growing power of the computers used for their solution.

The spread and fate of water, dissolved contaminants and non-aqueous phase liquids
in hydrology is governed by dynamic processes acting on many different scales. From this
follows the demand for a variety of experimental methods in order to measure each of these
processes on its characteristic scale. Currently progress is made by the development of X-
ray tomography, nuclear magnetic resonance (NMR) imaging and refractive index matching
techniques on the laboratory scale, ground penetrating radar (GPR) on the field scale and
remote sensing with aircrafts and satellites on the global scale.

The objective of this work is the development and application of a planar laser induced
fluorescence (PLIF) technique for the spatially and temporally highly resolved measurement
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CHAPTER 1. INTRODUCTION

of flow and transport in refractive index matched porous media. Being part of the gradu-
ate program ’Modelling and Scientific Computing in Mathematics and Natural Sciences’ at
the Interdisciplinary Center for Scientific Computing (Interdisziplinäres Zentrum für Wis-
senschaftliches Rechnen, IWR) of the University of Heidelberg, it benefited from the parallel
affiliations to both the soil physics group at the Institute of Environmental Physics and the
digital image processing group at the IWR. Followingly it was performed in view of the impli-
cations mainly for hydrological models and with the claim to develop sophisticated methods
for the processing of the measured data and parameter estimation.
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Chapter 2

Theory of Hydrodynamic dispersion

2.1 Introduction

The basic approach to the description of flow and transport in porous media is the introduction
of appropriate scales and the derivation of adequate physical models for each scale. This
concept is illustrated in figure 2.1: On each scale the respective physical model has a set of
intrinsic parameters, which contain structural and material properties. The determination of
the correct physical models (like e.g. kinetic theory or Navier-Stokes-equation) for each scale
is accomplished through the intuition of (a) scientist(s) from the analysis of experimental
observations. Furthermore it is sometimes possible to relate the parameters at a given scale
to the model and the parameters at the next smaller scale, a procedure usually referred to
as upscaling. Such a relation can be an analytical equation obtained from intuition or an
empirical law obtained from the analysis of experimental data.

In this sense the theory of hydrodynamic dispersion will be presented in the following
sections as a sequence of transitions from the scale of a single molecule to the scale of an
aquifer as illustrated in figure 2.1. The first transition presented in section 2.2 goes from
kinetic theory to the continous formulation of molecular diffusion, which was accomplished
by Albert Einstein in 1905. The phenomenon of hydrodynamic dispersion is then introduced
in section 2.3 as a transition from the transport model for a pure stagnant liquid to a model for
the transport in a liquid flowing through a porous medium. This transition is characterized
by a strong enhancement of the transport efficiency (typically orders of magnitude), which
is caused by a combination of several microscopic physical processes, which are addressed in
detail in section

2.2 From kinetic theory to molecular diffusion

The phenomenon of molecular diffusion sketched in figure 2.2a-c is well-known from everyday
life: a small pulse of dye (e.g ink) injected into a box of water changes its shape with time
towards a broader distribution without any active external stimulation. The first successful
explanation of this phenomenon was provided by the kinetic theory developed in the middle
of the 19th century by Rudolf Clausius, James Clerk Maxwell, Ludwig Boltzmann and others.
At this time a similar phenomenon was known under the name brownian motion after the
Scottish botanist Robert Brown (1773-1858). In 1827 he observed the zig-zag motion of pollen
grains suspended in water under a microscope (Brown, 1828).

9



CHAPTER 2. THEORY OF HYDRODYNAMIC DISPERSION

Scale

Molecular
Scale

Continuum scale
of hydrodynamics
and molecular
diffusion

Continuum scale
of hydrodynamic
dispersion in a
homogeneous
porous medium

Physical model

Kinetic Theory
(Newton's laws +
Probabilistic
theory)

Navier-Stokes-
equation (Flow)
Fick's laws
(Transport)

Darcy's law (Flow)
Convection-dispersion-
equation(Transport)

Parameters

Molecule Radius R

Viscosity η

Hydraulic
conductivity K
Dispersion tensor D

Diffusion
coefficient D

Molecule mass m{
{Stokes-Einstein-relation

D(D   , d, η, ...)

m

m

Porosity φ

Figure 2.1: Concept of the description of physical processes on different scales. On each scale,
the processes are described by an adequate physical model and a set of intrinsic parameters.
The major scientific challenge, besides the determination of the correct physical models, is
the derivation of the relations between the models and parameters for different scales. The
purpose of this illustration is not to provide any complete description (which would have to
include temperature dependence, compressibility etc.), but rather to present the conceptual
idea of scale transitions.
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2.2. FROM KINETIC THEORY TO MOLECULAR DIFFUSION

t t t1 2 3

Figure 2.2: Diffusion of a dyed solute pulse in a transparent solvent: the diffusion coefficient
Dm for the description of the physical process on the continuum scale (a-c) can be related to
the properties of the molecular scale (d) through the Stokes-Einstein-equation 2.8.

Kinetic theory, which is based on the main assumptions

• All matter is composed of small particles.

• The particles are in constant motion according to Newton’s law.

• The collisions between the particles are perfectly elastic.

correctly explains these phenomena by the equipartition of thermal energy resulting in a
permanent process of movement and collisions of the particles.

During the same time, the young Adolf Fick (1831-1879), a physiologist at the University
of Zürich wrote a work entitled ”Über Diffusion” (On Diffusion, Fick (1855)). Starting from
his interest in diffusion through organic membranes, he addressed himself to the study of
diffusion of a solute in its solvent as the elementary physical process. Therefore he performed
a series of quantitative measurements of the diffusion of sodium chloride aqueous solutions
contained in cylindrical jars together with pure water.

In contrast to kinetic theory, he came up with a phenomenological description based on
the empirically obtained assumption that the current �j is proportional to the concentration
gradient,

�j = −Dm
�∇c, (2.1)

an equation now known as Fick’s first law. Here c denotes the concentration and Dm is the
coefficient of molecular diffusion. The additional assumption that the particles are neither
created nor destroyed leads to the continuity equation

∂c

∂t
= −�∇ ·�j. (2.2)

The combination of Fick’s first law and continuity equation leads to Fick’s second law

∂c

∂t
= Dm∆c. (2.3)

Although Fick was aware of the results of kinetic theory, it took about one half of a century
to combine the probabilistic, microscopic description of kinetic theory with the macroscopic

11



CHAPTER 2. THEORY OF HYDRODYNAMIC DISPERSION

phenomenological description introduced by Fick. In 1905 it was Albert Einstein (1879-1955)
who derived the diffusion equation 2.3 from the postulates of kinetic theory by realizing that
the particle concentration c(�x, t) is proportional to the probability p(�x, t) of finding a particle
at (�x, t) (Einstein, 1905). The temporal evolution of p(�x, t) for a particle initially released
at the origin of a d-dimensional space can then be obtained as the normalized solution of
equation 2.3,

p(�x, t) =
1

(4πDmt)d/2
e−

r2

4Dmt , r2 = ‖�x‖2, (2.4)

and thus the mean squared displacement of the particle grows linearly with time:

〈r2(t)〉 =
∫

r2p(�x, t)d3r = 2dDmt. (2.5)

Furthermore Einstein has shown that the diffusion coefficient Dm for a solute is the ratio
of the mean thermal energy of the medium kT and the friction f between the solute and the
solvent,

Dm =
kT

f
. (2.6)

Stokes has shown that the friction of a spherically shaped particle of radius R in a solvent
with viscosity η is given by

f = 6πηR. (2.7)

From this relation Einstein calculated the diffusion coefficient Dm as

Dm =
kT

6πηR
, (2.8)

which is today called Stokes-Einstein-relation. Einstein used this relation to estimate the size
of molecules (Einstein, 1906), while at this time the atomistic structure of matter was still a
controversial issue (Renn, 1997). In the present work the Stokes-Einstein-relation 2.8 is used
to estimate the diffusion coefficients and Schmidt numbers for different silicone oil mixtures
as described in section 8.2.

In the context of the concept of scale transitions introduced in the previous section and
illustrated in figure 2.1, the Stokes-Einstein-relation provides an essential link between the
description on the molecular scale given by kinetic theory (figure 2.2d), and the description
on the continuum scale given by Fick’s laws (figure 2.2a-c).

2.3 From molecular diffusion to hydrodynamic dispersion in a
homogeneous porous medium

In this section a formalism will be presented for the description of the transport of a solute
dissolved in a liquid flowing through a homogeneous porous medium. This is accomplished
through an adequate upscaling of the continous description for the diffusive transport in
a pure stagnant liquid given by Fick’s laws to an effective description of transport on a
properly chosen macroscale. The transport on this macroscale, which is typically caused by a
combination of several physical processes, like e.g. diffusion, convection, adsorption or holdup
in stagnant zones, is usually referred to as hydrodynamic dispersion.

12



2.3. FROM MOLECULAR DIFFUSION TO HYDRODYNAMIC DISPERSION

In principle, the temporal evolution of the solute concentration distribution c(�x, t) in a
liquid flowing through a porous medium can be obtained from the velocity field �v(�x) given
by the solution of the Navier-Stokes-equation (see e.g. Tritton (1988))

ρ(
∂�v

∂t
+ �v · �∇�v) = −�∇p + η∆�v + �fexternal. (2.9)

For numerical studies of flow in porous media, which is mostly in the range of low Reynolds
numbers Re<1, this equation is often approximated by the linear, and therefore computa-
tionally more convenient Stokes-equation

ρ
∂�v

∂t
= −�∇p + η∆�v + �fexternal. (2.10)

Subsequently c(�x, t) is calculated as the solution of the so-called convection-diffusion-equation

∂c

∂t
+ �∇ · (�vc) − Dm∆c = 0, (2.11)

which is a generalization of Fick’s second law 2.3 with the additional term �∇ · (�vc) for the
convective transport in a flowing liquid.

There are at least two reasons why this approach is not feasible:

• The complex geometry of a porous medium, like e.g. a column filled with sand or an
aquifer, can generally not be obtained. Therefore no solution of the Stokes-equation
2.10 can be calculated due to the lack of boundary conditions.

• Even if the boundary conditions were available, no analytical solution of equations 2.10
and 2.11 would be possible, and the computational requirements for a numerical solution
would exceed every imaginable dimension.

However, in many cases the exact solution of equations 2.10 and 2.11 is not necessary,
and the complex geometry of the porous medium can be represented by a set of few so-called
effective parameters. In the following this approach will at first be exemplarily introduced
for the flow in a capillary tube and then extended to the hydrodynamic dispersion in a
homogeneous porous medium.

2.3.1 Taylor dispersion

The description of flow and transport in a capillary tube is an illustrative example for the
scale transition from molecular diffusion to hydrodynamic dispersion. Due to its simplicity
an exact analytical solution for the velocity field �v(�x) is available, and it is further possible
to derive exact analytical relations between the microscopic and the effective macroscopic
parameters.

The laminar flow field in a capillary tube of length L is given by the solution of the
Navier-Stokes-equation 2.9 (the so-called Hagen-Poisseuille’s law) as

v(r) =
∆p

L

R2

4η
(1 − r2

R2
)

v0=∆pR2

4ηL= v0(1 − r2

R2
), (2.12)

where R denotes the tube radius, r =
√

y2 + z2 the distance from the central axis of the
tube, ∆p the pressure difference between the tube ends, η the viscosity of the liquid and v0

13



CHAPTER 2. THEORY OF HYDRODYNAMIC DISPERSION

the velocity in the center (r = 0) of the tube. The temporal evolution of the concentration
distribution c(�x, t) for a dissolved solute with the molecular diffusion coefficient Dm is then
described by the convection-diffusion-equation 2.11.

Figure 2.3 shows the evolution of c(�x, t) for a solute pulse which was initially uniformly
distributed at x = 0 (c(�x, 0) = c0δ(x)). In this numerical simulation the concentration c
is represented by the density of the tracer particles, which are translated by an additive
superposition of convective and diffusive transport according to

�xt+1 = �xt + �v(�xt) + ε with 〈ε〉 = 0, 〈ε2〉 = 2Dm. (2.13)

From the examination of the images in figure 2.3b-g and the analysis of the governing
equations 2.12 and 2.11, the qualitative behavior of solute transport can be separated into
two different regimes. The transition between these two regimes is characterized by the time
τ a particle needs to diffuse a distance equal to the tube diameter d = 2R:

τ =
d2

2Dm
=

2R2

Dm
. (2.14)

For the simulation shown in figure 2.3 the value of this characteristic time is τ = 40000. For
t < τ , the initial transverse positions of the particles have moved less than the tube diameter,
and thus the shape of the parabolic flow profile v(r) is still more or less identifiable from the
particle distribution. For t > τ molecular diffusion has led to a complete transverse mixing of
the tracer particles and consequently the particle distribution is independent of the transverse
position.

Another qualitative change between the behaviors for t < τ and t > τ can be recognized
from the temporal evolution of the particle distributions in flow direction, which are repre-
sented by the gray lines in figure 2.3b-g: the transition from t < τ to t > τ is accompanied by
a transition of the particle distribution in flow direction towards a gaussian distribution. This
important finding is a direct consequence of the so-called central limit theorem (CLT). It essen-
tially states that the sum Ω of n statistically independent random variables εi characterized
by their means µi and variances σ2

i

µi = 〈εi〉 and σ2
i = 〈(εi − µi)2〉 (2.15)

is a random variable whose probability distribution converges for n → ∞ to a gaussian
distribution with mean µΩ and variance σ2

Ω:

Ω =
n∑

i=1

εi
n→∞→ µΩ =

n∑
i=1

µi, σ2
Ω =

n∑
i=1

σ2
i . (2.16)

For a detailed discussion and a proof of this theorem see Grimmett & Stirzaker (2001).
Consequently the 3D microscopic convection-diffusion-equation 2.11 converges for t > τ

to the 1D macroscopic, so-called convection-dispersion-equation

∂c

∂t
+ v

∂c

∂x
− D∆c = 0. (2.17)

The parameters v and D of this macroscopic equation can be directly related to the micro-
scopic flow field v(r) and diffusion coefficient Dm:

v =
v0

2
, D = Dm +

R2v2
0

48Dm
. (2.18)
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Figure 2.3: Dispersion of a solute pulse in the flow field of a capillary tube: for t > τ = 40000
the particle distribution in flow direction (indicated by the gray lines) approaches a gaussian
distribution according to the central limit theorem. The images represent the 2D projections
of the 3D particle distributions.
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Figure 2.4: Steady flow field in an array of spheres obtained from the solution of the Stokes-
equation 2.10 using a finite difference method (reprinted from Rage (1996)).

In recognition of Sir Geoffrey Taylor, who found these relations in 1953 (Taylor, 1953), the
dispersion of a solute in a capillary tube is today usually referred to as Taylor-dispersion.

The transport on the macroscale , which is caused by a combination of microscopic con-
vection and diffusion, is quantified by the dispersion coefficient D. According to equation
2.18, the value of D is typically significantly higher than Dm. At first view it is surprising
that D decreases with increasing Dm. This is a result of the effect that a high value of Dm

increases transverse mixing and therefore reduces the broadening of the particle distribution
in flow direction due to convection.

Although the flow in a capillary tube is mostly not an adequate model for the flow in
a porous medium, the observed mechanisms and the resulting description by a macroscopic
convection-dispersion-equation provide the conceptual basis for the following description of
flow and transport in a porous medium.

2.3.2 Hydrodynamic dispersion in a homogeneous porous medium

In contrast to the flow in a capillary tube, the exact flow field in a porous medium is typically
not known. Numerical solutions like that shown in figure 2.4 are only feasible for small do-
mains and only under the condition that the boundary conditions, i.e. the shape of the solid
surfaces, are known. However, even if these conditions are not fulfilled and the detailed veloc-
ity profile is not available, the central limit theorem, which was applied for the macroscopic
description of transport in a capillary tube, is in principle similarly applicable to the flow in
a porous medium.

The transition from the microscopic description based on the Navier-Stokes-equation 2.9
and the convection-diffusion-equation 2.11 to the macroscopic description of flow and trans-
port in homogeneous porous medium based on the central limit theorem then leads to the 3D
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convection-dispersion-equation

∂c

∂t
+ �∇ · (�vc) − �∇ · (D�∇c) = 0. (2.19)

Here �v denotes the macroscopic averaged velocity in the liquid phase and

D =


 Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz


 (2.20)

denotes the symmetric so-called dispersion tensor. For the flow in x-direction (�v = (vx, 0, 0)T )
in an isotropic porous medium, D is given by

D =


 DL 0 0

0 DT 0
0 0 DT


 , (2.21)

where DL and DT are the so-called longitudinal and transversal dispersion coefficients. The
value of �v can be obtained from the solution of the Darcy equation

�v = −K

η
�∇p, (2.22)

where η denotes the liquid viscosity and K is the hydraulic conductivity of the porous medium.
For many practical applications of flow and transport in porous media (like e.g. the spread

and fate of contaminants in an aquifer) the values of DL, DT and K are an essential informa-
tion. However, unlike the above discussed flow in a capillary tube, no analytical relations are
available here due to the complexity of the porous medium. Whereas K is only a function of
the porous structure, the dispersion coefficients DL and DT potentially depend on many dif-
ferent parameters of the porous matrix, the solvent and the solute, like e.g. the macroscopic
velocity �v, the particle diameter d (as a first-order representation the pore geometry), the
density ρ and viscosity η of the solvent and the diffusion coefficient Dm:

DL/T = DL/T(�v, d, ρ, η, Dm, . . .) (2.23)

The analysis of the geometrical and dynamical similarity of the functional dependence
2.23 according to the Buckingham-Pi-theorem (Buckingham, 1914) leads to the conclusion
that the dimensionless dispersion coefficients DL

Dm
and DT

Dm
can be written as a function of two

dimensionless variables:

DL/T

Dm
=

DL/T

Dm
(

�vd

Dm
,

η

ρDm
, . . .) =

DL/T

Dm
(Pe, Sc, . . .) (2.24)

Although in principle other dimensionless variables could be chosen, the above used Peclet
number Pe and Schmidt number Sc are the by far most common. Intuitively the Peclet number
represents the relative magnitudes of convective and diffusive transport over the typical length
d of the porous medium, and the Schmidt number represents the ratio of the coefficents of
momentum diffusion and mass diffusion:

Peclet number Pe =
�vd

Dm
=

”convective transport”
”diffusive transport”

. (2.25)
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a b

Figure 2.5: Dependence of the dimensionless longitudinal dispersion coefficient DL
Dm

on the
Peclet number Pe represented by a compilation of measurements from several authors
reprinted from a Dullien (1992) and b Sahimi (1993) including a classification of different
Pe ranges.

Schmidt number Sc =
η

ρDm
=

”momentum diffusion”
”molecular diffusion”

. (2.26)

The transformation of constitutive equations into a dimensionless form is a commonly used
method to reduce a physical process to its intrinsic complexity, especially in hydrodynamics.
A more detailed discussion of this concept is given in Tritton (1988).

For several decades it is the objective of both theoretical and experimental scientists to
determine the dependencies of the dispersion coefficients on the Peclet number and Schmidt
number. For the experimental studies substantial use is made of the dimensionless formu-
lation 2.24: the existence of this formulation provides the opportunity to study the (Pe,
Sc)-dependence of the dispersion coefficients through comparatively inexpensive laboratory
experiments. The values of the dispersion coefficients can then in principle be transformed
to any other scale, like e.g. the field scale in hydrology.

Figure 2.5 shows two compilations of experimentally determined longitudinal dispersion
coefficients plotted versus the Peclet number Pe. According to Sahimi (1993) the dependence
of DL

Dm
on Pe can be broken down into five different regimes as indicated in figure 2.5b:

Pe < 0.3

In this regime convection is so slow that dispersion is controlled almost completely by diffusion.
Consequently the dispersion is isotropic with the dispersion coefficients given by

DL

Dm
=

DT

Dm
=

1
Fφ

, (2.27)

where F is the so-called formation factor and φ the porosity of the porous medium. The
value of 1

Fφ , which is determined by the pore structure, is typically in the range between 0.15
and 0.7.
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0.3 < Pe < 5

This regime is characterized by the transition from the diffusion-dominated regime to a regime
mostly controlled by convection. In this transition zone, where both diffusion and convection
contribute significantly to the dispersion, the dispersion coefficients start to increase with
increasing Pe. However, no universally valid formula for DL/T

Dm
(Pe) has yet been obtained for

this transitional regime.

5 < Pe < 300

In this range of Peclet numbers, the so-called power-law regime, the measured dispersion
coefficients are best described by the empirical relations

DL

Dm
= αLPenL and (2.28)

DT

Dm
= αTPenT . (2.29)

A comparison of experimentally obtained values for αL, αT, nL and nT is given in section
8.3.2. A theoretical consideration of this behavior is presented in section 2.3.3.

300 < Pe < 105

For a porous medium without any stagnant zones, like e.g. dead-end pores (see section 2.3.3),
the transport in this Pe range is completely dominated by convection (usually referred to as
mechanical dispersion) and thus the dependence on the Peclet number must be linear:

DL

Dm
= αLPe and (2.30)

DT

Dm
= αTPe. (2.31)

However, there are strong indications that stagnant zones are much more prevalent in porous
media than intuitively expected (see section 8.3.5). This leads to an extension of the power-
law relations 2.28 and 2.29 into the present Pe range, which is confirmed by the results of
several authors given in section 8.3.2.

Pe > 105

Whereas for the previous Pe regimes a laminar flow field was assumed, in this regime turbu-
lence starts to contribute to the dispersion process. Consequently the dispersion coefficients
are supposed to depend not only on the Peclet number Pe, but also on the Reynolds number
Re = ρ�vd

η .
The plot of the longitudinal dispersion coefficients versus the Peclet number in figure

2.5a, which is compiled from measurements using a large variety of porous media, solvents
and solutes and therefore covering a large range of values for d, ρ, η and Dm, suggests that
the dispersion coefficients depend solely on the Peclet number, and the dependence on the
Schmidt number can be neglected. In one of the few quantitative studies of the Schmidt
number dependence of dispersion coefficients, Delgado & Guedes de Carvalho (2001) have
found that DT

Dm
shows a dependence on Sc only for Sc< 550.
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2.3.3 Theoretical models

The following paragraphs are designed to provide a more detailed analysis of the microscopic
physical processes that lead to the empirical laws for the respective Pe ranges which have been
discussed above. Koch & Brady (1985) have developped a quantitative theory which states
that the dispersion coefficients are resulting from a combination of the following physical
phenomena:

• In the absence of convection, the dispersion coefficients are given by the tortuosity τ of
the porous medium, which is defined as the ratio of DL/T at Pe= 0 and the diffusion
coefficient in the pure solvent Dm.

• Pure convection results in a contribution to DL/T which scales linearly with Pe. This
so-called mechanical dispersion comes from the velocity fluctuations in the liquid phase
of the porous medium as illustrated in figure 2.4.

• The diffusive boundary-layers near the solid surface lead to the so-called boundary-layer
dispersion which scales as Pe ln Pe.

• Regions in the liquid phase with zero velocity (so-called stagnant zones), where the
solute can enter or exit solely through diffusion, lead to a contribution which grows
quadratically with Pe. This effect is called holdup dispersion.

Finally the dispersion coefficients are given by the linear superposition

DL/T

Dm
= τ + αPe + βPe ln Pe + γPe2. (2.32)

According to Koch & Brady (1985), boundary-layer dispersion and holdup dispersion can be
neglected for the transverse dispersion coefficients, so that β = 0 and γ = 0 for DT. The
individual contributions are specified in the next paragraphs.

Tortuosity

As discussed above, the tortuosity τ determines the dispersion D0 = DL/T(Pe = 0) of a solute
in the absence of convection, and consequently itself is determined by the structure of the
pore space. Millington & Quirk (1960) (cited by Roth (1996a)) have found different empirical
models for the dependence of D0 on the volumetric content of the liquid phase θ and the
porosity φ (θ = φ for saturated porous media). According to Jin & Jury (1996) (cited by
Roth (1996a)), Millington-Quirk’s first model

τ =
D0(θ)
Dm

=
θ

φ2/3
(2.33)

agrees best with experimental data.

Mechanical dispersion

Mechanical dispersion is the result of the velocity fluctuations in the liquid phase. If the
velocity profile �v(�x) in the porous medium is described statistically by its mean �v and its
velocity autocorrelation function (VACF)

Cvv(t) = 〈(�v(0) − �v)(�v(t) − �v)T 〉, (2.34)
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a b

Figure 2.6: Different types of regions in the liquid phase which are accessible solely by diffu-
sion: a dead-end pore and b circulation pattern.

the time-dependent dispersion tensor D can be calculated as

D(t) =
∫ t

0
Cvv(t′)dt′. (2.35)

Obviously the asymptotic dispersion tensor D(t → ∞) only exists if the integral in equation
2.35 converges, i.e. if the VACF decays at least with 1/t. Lowe & Frenkel (1996) have found
from numerical simulations using a lattice boltzmann method that at high Peclet numbers
the dispersion coefficient is diverging. However, the results of the comparative study of Maier
et al. (2000) was contrary to this finding, and the statement was relinquished by Capuani
et al. (2003).

Holdup dispersion

The effect of holdup dispersion results from stagnant zones in the liquid phase of the porous
medium, which are accessible from the convective part of the flow field only by diffusion. Since
its contribution to the dispersion coefficient grows quadratically with Pe, holdup dispersion
is an important mechanism for high Peclet numbers. Intuitively it seems that such stagnant
zones like e.g. so-called dead-end pores (figure 2.6a) should hardly occur in unconsolidated
bead packings, which are commonly used for laboratory experiments. There are however
several studies (including this work) which indicate that holdup dispersion plays an important
role in solute transport. A detailed discussion of this issue is given in section 8.3.5.

A possible explanation for the unexpectedly strong influence of holdup dispersion might
be the existence of closed loops in the convective flow field. Figure 2.6b shows a potential
constellation for the formation of such closed loops. Furthermore Azzam & Dullien (1977)
have shown that closed loops can emerge also in rectangular pockets as shown in figure 2.7a.
Dentz et al. (2003) showed analytically that in any incompressible Gaussian random field
there is finite probability for closed streamlines (see figure 2.7b).

Boundary-layer dispersion

The following description of boundary-layer dispersion is adopted from Koch & Brady (1985):
”Saffman (1959) modelled the microstructure of a porous medium as a network of capillary
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a b

Figure 2.7: a Formation of closed streamlines in a rectangular pocket adjacent to a capillary
tube (reprinted from Azzam & Dullien (1977)). b Closed streamlines obtained by Dentz et al.
(2003) from a linearized solution of the Darcy equation for a 2D Gaussian-distributed velocity
field.

tubes of random orientation. At high Peclet number and at very long time, Saffman found that
the dispersion never becomes truly mechanical, the effective diffusivity growing as Pe ln Pe.
The logarithmic dependence results from the zero velocity of the fluid at the capillary walls.
The time required for a tracer particle to leave a capillary would become infinite as its distance
from the walls goes to zero, if molecular diffusion did not allow the tracer to escape the region
of low velocity near the wall. This phenomenon is similar to the ’holdup’ dispersion mentioned
above, although in this case there is no finite region of zero velocity.”

Boundary wall effects

The presence of the boundary walls of the laboratory columns used for the measurements of
dispersion coefficients leads to inhomogeneities of the pore structure near the walls. Maier
et al. (2002) found that these inhomogeneities lead to a significant increase of the effective
longitudinal dispersion coefficient compared to the bulk. Consequently this effect is a possible
explanation for deviations between the measured dispersion coefficients from different exper-
iments. Furthermore the adequate consideration of this effect is mandatory for the correct
upscaling of the laboratory measurements to the field scale.

2.4 Heterogeneous porous media

The homogeneity of the porous medium was a stringent requirement for the description of flow
and transport given in the previous section. This requirement is fulfilled if there exists a finite
representative elementary volume (REV) for which the average of the relevant microscopic
quantities, like e.g. the velocity �v = 1

V

∫
�v(�x)dV or the porosity φ = 1

V

∫
φ(�x)dV , becomes

independent of the position �x in the porous medium. While the assumption of homogeneity
is approximately justified for most unconsolidated bead packings used for laboratory experi-
ments (for a fundamental discussion of this issue see Torquato et al. (2000)), natural porous
media like soil are typically heterogeneous on every scale.
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Figure 2.8: Scaling of the longitudinal dispersivity αL with the length-scale of the solute
plume according to Beims (1983) (reprinted from Paus (1997)).

For such porous media no asymptotic dispersion tensor can be found since the integral in
equation 2.35 for t → ∞ does not converge. Since with increasing plume size more large-scale
heterogenities contribute to the dispersion, the dispersion coefficients increase with the plume
size, or equivalently with time. Consequently the dispersion is described by a convection-
dispersion-equation with a time-dependent dispersion tensor D(t). The scaling behavior of
D(t) strongly depends on the type of the heterogeneites. Figure 2.8 shows the scaling of
the longitudinal dispersivity αL with the length-scale of the solute plume for the dispersion
in aquifers according to Beims (1983). While at the scale of 1 meter only stones or small
clay lenses contribute to dispersion, the large-scale geological morphology leads to a strong
increase of αL. Even though the double-logarithmic plot suggests a power-law relation, the
confidence bounds are very large.
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Chapter 3

Method of measurement

3.1 Introduction

This chapter describes the setup of an experimental apparatus for the non-invasive optical
measurement of 3D pore-scale flow and transport in porous media. The method uses a pla-
nar laser-induced fluorescence (PLIF) technique in combination with a system of transparent
solids and liquids with highly precise matched refractive indices. In PLIF a fluorescent sub-
stance is excited by a planar laser sheet with its wavelength tuned to the absorption band
of the substance. The light is absorbed by the substance and re-emitted at characteristic
wavelengths. A 2D image of the concentration distribution can be obtained by a CCD cam-
era mounted with its optical axis perpendicular to the laser sheet. Due to the fact that the
absorption and emission bands of the fluorescent dye have no or only little overlap, the dye
distribution between the laser sheet and the camera does not affect the measurement. There-
fore a consecutive displacement of the laser plane in the out-of-plane direction results in a set
of 2D images representing the 3D concentration distribution. This technique gives access to
3D information without any challenging tomographic reconstruction. The main features of
the method, i.e. its high spatial and temporal resolution and the simultaneous visualisation of
two immiscible liquids, are attained by the employment of capable illumination and imaging
devices and the composition of a proper combination of solids, liquids and fluorescent dyes.

At first the next section gives a short overview of previously employed refractive index
matching methods. Then section 3.3 describes the general arrangement of the setup and
the technical specifications of the single components used in this work. The physical and
chemical properties of the utilised solids, liquids and dyes are specified in section 3.4, 3.5 and
3.6 respectively. Finally a summary and conclusions are given in section 3.7

3.2 Refractive index matching methods

The difficulties of many experimental methods to probe flow and transport on the pore scale
of a porous medium, stemming from the opaqueness of the medium, can be overcome by the
application of a transparent porous matrix and liquids with their refractive index matched to
that of the matrix. Refractive index matching methods are used for some decades to gain 3D
optical access to liquid flow phenomena (for an overview see Budwig (1994)). The application
of these methods to porous media has been accomplished by Burdett et al. (1981) using a
light absorption technique, Montemagno & Gray (1995) and Rashidi et al. (1996) using PLIF
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Figure 3.1: Layout of the experimental setup for the PLIF method.

and Peurrung et al. (1995) and Moroni & Cushman (2001) using particle tracking velocimetry
(PTV). In contrast to these previous works, the PLIF technique presented in the following
sections has a much higher spatial and temporal resolution and is the first to simultaneously
visualize the dynamics of two immiscible liquids.

3.3 Experimental setup

The layout of the setup components, which are detailed in the following subsections, is shown
in figure 3.1, and a corresponding photograph is pictured in figure 3.2. The imaging devices
(CCD camera and optical bandpass filters) are mounted on a plate together with the optical
devices for illumination (fiber, focus lens and galvanometer scanner). During the experiments,
the mounting plate is shifted consecutively in z-direction by a motorized translation stage in
order to scan the volume of the flow cell, which stands at a fixed position. A personal computer
(PC) controls the translation stage, filter wheel and CCD camera and receives and stores the
image data to a hard disk.

3.3.1 Imaging devices

A high resolution progressive scan camera (Basler A113P, Basler (1998)) is used to record
the images. It employs a CCD sensor chip with a resolution of 1300 × 1030 pixels providing
features like electronic exposure time control and partial scan, which can be controlled by
the connected PC. Thereby the exposure time is adjusted continously in steps of 20 ms (the
scanning duration of the laser beam) to obtain maximum signal-to-noise ratio and the scan
area on the CCD chip is adapted to the geometry of the flow cell. In horizontal flow, a partial
scan area of 1300 × 600 pixels is used, resulting in a resolution of circa 70 µm in x- and
y-direction. Optical bandpass filters (550 ± 20 nm and/or 600 ± 20 nm, the transmittance
curves are shown in figure 3.11) are used to limit the imaging to these emission wavelengths
of the fluorescent dye, where the refractive indices are closely matched (see chapter 4), and
also to screen scattered light e.g. from imbedded air bubbles. In two-phase flow, where two
dyes with different emission wavelengths are used, a PC-controlled filter wheel (see figures 3.1
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Figure 3.2: Photograph of the experimental setup corresponding to figure 3.1.

and 3.2) is deployed to change between the two filters. The switch is done after each complete
volume scan.

3.3.2 Light source and optics

The light source for illumination is an argon ion laser (Spectra-Physics Stabilite 2017) oper-
ating at 488 nm with an output of 1.5 W. The beam is coupled to an optical fiber and then
focused on the flow cell to a diameter between 0.5 and 1 mm. It is expanded to a vertical
sheet by reflection on the mirror of a galvanometer scanner oscillating at 50 Hz.

3.3.3 Personal computer

The personal computer, equipped with a 500 MHz Intel pentium 3 processor and 1GB RAM,
is the central control unit of the measurement setup. It drives the translation stage and the
filter wheel via a ISA stepper motor card (Owis SM30). Synchronously it sets the camera
parameters (exposure time, partial scan area, gain and offset) and triggers the readout of the
CCD via the RS 232 interface. The camera transfers an 8 bit video data stream to a FPGA
framegrabber (Silicon Software microenable equipped with a Xilinx XC4085XLA), which is
received by the PC at its PCI interface and stored to a hard disk. For a representative
experiment (90 images à 1300 × 600 pixel every 30 s) the averaged data rate is circa 2.3
MB/s.
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Figure 3.3: Flow cells for a horizontal and b vertical flow.

3.3.4 Translation stage

For the displacement of the mounting plate and the devices mounted on it a motorized
translation stage (Owis VTM 80) was employed. Its 2-phase stepping motor performs at a
maximum traverse speed of 8 mm/s over a maximum distance of 300 mm. The resolution is
specified as 2.5 µm and the repeatability as 10 µm, which is adequate for increments of 400
µm used in the experiments. In a typical experiment 90 parallel planes have been recorded
every 30 seconds. During the first 14 seconds the actual scanning and data aquisition take
place whereas the remaining 16 seconds are used to drive back the translation stage and store
the data to the harddisk.

3.3.5 Flow cells

The flow cells are rectangular parallelepipeds made of plexiglass. The solid granulate material
is clamped between two metal grids which adjoin to liquid-filled inlet and outlet areas. A
tubing pump conveys the fluids through a tube from the outlet to the inlet with adjustable
flow rate and direction. Two versions of the flow cells for horizontal and vertical flow direction
are sketched in figure 3.3.

The vertical flow cell is mainly used for two-phase flow experiments, like imbibition or
drainage processes, where the two liquids have significantly different densities. Its volume for
the porous matrix, which is penetrated by a laterally entering laser sheet, has a size of 5 ×
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10 × 5 cm3. The tubing pump is directly connected to the lower liquid area, so that its flow
rate is directly coupled to the average liquid velocity in the porous medium. A sketch of the
vertical flow cell is shown in figure 3.3b and a photograph is shown in figure 3.4.

The horizontal flow cell is employed for single-phase flow experiments, where the liquid
density throughout the medium is approximately constant. The volume of the porous matrix
is sized 8 × 4 × 4 cm3. Here the liquid is not pumped directly through the porous medium but
from and into two containers mounted above the outlet and inlet area, so that the hydraulic
heads in these containers reach an equilibrium according to the flow rate given by the pump.
The hydraulic heads can be calculated from the heights of the liquid levels in the containers
in order to determine the hydraulic conductivity of the porous medium. The upper coverage
of the cell has a hole with a set-in piece of rubber, through which an injection containing
dyed liquid is introduced at the beginning of an experiment and the desired quantity of dye is
injected. Since the cell is not laterally accessible for the laser sheet, it is placed upon a mirror
mounted at 45◦ so that the laser sheet enters the cell from the bottom. The layout of the
horizontal flow cell is shown in figure 3.3a and figure 3.5 shows a corresponding photograph.

3.4 Solid properties

For the solid constituting the porous matrix, a transparent, rigid and inert material is re-
quired. Because the number of suitable liquids decreases rapidly with increasing refractive
index, the refractive index of the solid should be as low as possible. The two classes of appli-
cable materials are plastics and glasses. Since the refractive index should not depend on the
orientation of the grains, which would be the case for birefringent materials, no crystalline but
only amorphous materials can come into consideration. The refractive indices of plastics are
in a range from 1.49 (acrylic, e.g. Plexiglass or Perspex) to 1.58 (polycarbonate, e.g. Lexan
or Makrolon), those of optical glasses from 1.46 (fused silica) to 1.87 (Schott LaSFN9). Since
one aim of the present work was to investigate the influence of different surface properties
(e.g. contact angle or adsorption rate), one material of each class was used, Plexiglass and
fused silica. The refractive index of a solid is a function of temperature and wavelength,
which is quantified for the two materials in table 3.1 and figure 3.6. The dependence on the
wavelength is used for the precise matching of the refractive indices of solids and liquids as
described in chapter 4. The two solids further differ significantly regarding their densities and
water/air contact angles as specified in table 3.1. Whereas plexiglass is only moderately acid
resistant, fused silica is extremely resistant owing to the very strong silicon-oxygen bonds.

The fused silica was delivered by the manufacturer (Schott Lithotec) as blocks with di-
ameters of a few centimeters. They were crushed making use of a jaw crusher which allowed
the adjustment of the gap size that the crushed material must pass before leaving. However,
the resulting size distribution proved to be very broad and therefore the outcome was further
sieved to sizes of 0.6 - 1 mm. The result is shown in figure 3.7b.

The plexiglass was obtained from the manufacturer (Goodfellow GmbH) in a granulation
of 0.6 mm mean diameter. Unfortunately, a big portion of the grains had air bubbles included,
which make them unusable for the present application. The separation of the pure grains was
performed by immersing them into a NaCl solution with density hardly smaller than that of
plexiglass, where the pure grains accumulated at the bottom.

The shape of the grains differs significantly for the two materials. Whereas the fused silica
grains have many sharp edges, the shape of the plexiglass is close to spherical as shown in
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Figure 3.4: Photograph of the vertical flow cell sketched in figure 3.3b. In the present ex-
periment the oil (marked with an orange fluoresceing dye) in the upper part is displaced by
water (marked with a green fluoresceing dye) which is injected from the bottom of the cell.
The distribution of the two liquids is visible in the section illuminated by the laser sheet.
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Figure 3.5: Photograph of the horizontal flow cell sketched in figure 3.3a. The volume with
the porous matrix and the liquid containers are filled with silicone oil, and the injection with
the dyed, orange fluoresceing oil is introduced from the top.
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refractive dn/dT density water/air mean porositySolid
index n [◦C−1] ρ [g/cm3] contact angle diameter d̄ φ [cm3/cm3]

Fused silica 1.46a 9.8 · 10−6a 2.2a ≈ 0b 0.8 mm 0.48
Plexiglass 1.495c −105 · 10−6c 1.19d 59.3b 0.6 mm 0.37

Table 3.1: Properties of solids for use as the porous matrix.
afrom Schott (2001) at T = 20◦C and λ = 588nm
bfrom Adamson (1997)
cfrom Waxler et al. (1979) at λ = 589nm
dfrom Goodfellow (1999)
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Figure 3.6: Refractive index as a function of wavelength for fused silica (from Schott (2001)),
plexiglass (from Waxler et al. (1979)), silicone oil (from Cargille (1999)) and sodium iodide
aqueous solution (from Narrow et al. (2000)).

figure 3.7a. In contrast to the plexiglass grains, the fused silica grains are considerably oblate,
which is hardly visible from figure 3.7b since they are mostly lying on the flat side. These
differences in grain morphology and size distribution effectuate the different porosity values
given in table 3.1. They were calculated from the weight of a predefined volume V filled with
the porous media and their respective densities:

φ = 1 − msolid

ρsolidV
. (3.1)

3.5 Liquid properties

For the present technique two immiscible and transparent liquids matching the refractive index
of the solids are required. Additionally they are demanded to be inert, nontoxic, nonvolatile
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a

b

Figure 3.7: Granular materials for use as transparent porous matrix: a plexiglass b fused
silica. The numbers on the ruler denote centimeter.
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refractive dn/dT density viscosity surface tensionLiquid
index n [◦C−1] ρ [g/cm3] ν [mm2/s] σ [mN/m]

DC 200 1.375a - 0.761a 0.65a 15.9a

DC 550 1.4935b −3.97 · 10−4c 1.068b 125b 24.5b

DC 556 1.46d - 0.98d 22.5d -
DC 710 1.533e - 1.11e 500e 28.5e

water 1.333f −0.9 · 10−4f 0.998f 1.004f 73f

a from Dow Corning (1999d) at T = 25◦C
b from Dow Corning (1996a) at T = 25◦C
cvalue taken from Cargille (1999) for a silicone oil similar to DC 550
d from Dow Corning (1998b) at T = 25◦C
e from Dow Corning (1996c) at T = 25◦C
ffrom Weast (1974) at T = 20◦C and λ = 589 nm

Table 3.2: Properties of pure liquids for different Dow Corning silicone oils and water.

and nonflammable. Although in general there can exist more than two immiscible liquids in
contact with each other, there are mainly two classes that can be divided by the polarity of
their molecules. The first class are liquids on the basis of water as a solvent and additional
water soluble substances (e.g. salts), where the molecules of both solvent and solute are polar.
The other class of liquids typically consist of unpolar organic molecules (e.g. hydrocarbons)
which have no or only a small solubility in water. In the terminology of hydrology these
classes are called aqueous phase liquids (APL) and non-aqueous phase liquids (NAPL).

As a NAPL a group of Dow Corning silicone oils was used, whose properties are given in
table 3.2. They are all miscible with each other so that the refractive index of the mixture
can be adjusted between 1.375 (DC 200) and 1.533 (DC 710). For the determination of the
ratio of two liquids so that their mixture has a desired refractive index the following formula
given by Kerr (1977) can be used:

V1n1 + V2n2 = Vmixnmix, (3.2)

where V1, V2 and Vmix denote the volumes and n1, n2 and nmix denote the refractive indices
of the two liquids and their mixture. The values obtained by this formula served as starting
values for the more precise method described in chapter 4, which matches the index at a
certain wavelength. The mixing behaviour for the viscosity of a mixture of two silicone oils
is specified in a data sheet which was supplied by the manufacturer (Dow Corning (1999d)).
The according specification is reprinted and translated in figure 3.8. Under the assumption
that the volume Vmix of a mixture of two liquids is the sum of their volumes (Vmix = V1 +V2),
the density of the mixture is given by

ρmix =
m1 + m2
m1
ρ1

+ m2
ρ2

. (3.3)

Mixtures of silicone oils have been prepared for use with both plexiglass and fused silica, and
the resulting properties are given in table 3.3.

For the aqueous phase, a zinc chloride solution was taken. Due to deprotonation of the
hydrated zinc ions the pH of a solution with refractive index 1.46 is around 2.0. It is there-
fore not compatible with plexiglass and with many fluorescent dyes. Though sodium iodide
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3.5. LIQUID PROPERTIES

Figure 3.8: Viscosity of a mixture of two Dow Corning silicone oils (from Dow Corning
(1999d)). The left and right vertical axes denote the viscosities of the higher and lower
viscous fluid respectively. The upper and lower horizontal axes denote the weight percent of
the higher and lower viscous fluid. The viscosity of the mixture is obtained by connecting the
points on the left and right vertical axis by a straight line and then reading off the viscosity
at the desired mixing ratio.

solutions as a possible alternative have a significantly higher pH, the number of compatible
dyes is even lower due to reaction with iodide. The properties of the 58 wt.% solution for use
with fused silica are shown in table 3.3. The values for density and viscosity plotted in figure
3.9 are taken from a product sheet of an industrial manufacturer (Madison (1999)).

As noted in section 3.4 for the solids, the refractive index of the liquids also depends
on temperature and wavelength. As a consequence, the indices of solids and liquids can be
matched only for one certain wavelength, which is described in chapter 4. The temperature
and wavelength dependences of silicone oils shown in table 3.2 and figure 3.6 are taken from
a data sheet for a silicone oil similar to DC 550 (Cargille (1999)). Due to the lack of data for
zinc chloride solutions, its wavelength dependence is exemplified in figure 3.6 by the model for
sodium iodide solutions given in Narrow et al. (2000). The modification of the mixing ratio of
the silicone oils and the weight percentage of zinc chloride solution approximately leads to a
up- or down-shift of the corresponding dispersion curves in figure 3.6, so that the curves of the
solid and liquid intersect at a certain wavelength. The differences in temperature dependence
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Figure 3.9: Density and viscosity of a ZnCl2 aqueous solution as a function of ZnCl2 weight
percent (from Madison (1999)).

of the solids and liquids results in the necessity to keep the temperature constant during an
experiment. Although no active temperature control was performed, no effects from changes
of temperature were found as described in chapter 4.

3.6 Dye properties

For the measurement of flow and transport and the visualization of two-phase displacement
processes two fluorescent dyes have to be found that fulfil the following requirements:

• in order to allow for the distinction between solid, non-aqueous and aqueous phase in
an immiscible displacement experiment, both dyes must be soluble exclusively in one of
the liquid phases.

• a high quantum efficiency and high absorption rate at the laser excitation wavelength
(488 nm) are necessary for a high intensity of the emitted light.

• for a clear separation of the two liquid phases the dyes must have a significantly different
stokes shift, i.e. the overlap of the emission spectra must be minimal.

• the dye for the zinc chloride aqueous solution must be compatible with a pH-value of
2.0.

The fluorescein substitute Alexa Fluor 488 (Molecular Probes) was found to satisfy these
requirements as a dye for the zinc chloride aqueous solution. It exhibits high absorbance,
quantum yields and photostability as well as low sensitivity to pH. Table 3.4 shows its molec-
ular weight and structure. Its fluorescence spectra shown in figures 3.10 and 3.11 are almost
identical to those of fluorescein.
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84 wt.% DC 550 98 wt.% DC 556 58 wt.% ZnCl2Liquid
+ 16 wt.% DC 556 + 2 wt.% DC 200 solution

Refractive
index n

1.49 1.46 1.46

Density
ρ [g/cm3]

1.05a 0.97a 1.70b

Kinematic viscosity
ν [mm2/s]

95c 21c 4b

Dynamic viscosity
η = νρ [g/(cm · s)]

1.00 0.20 0.07

molecular diffusivity 1.96 · 10−5 9.58 · 10−5 5.36 · 10−5

Dm [mm2/s] (Nile red) (Nile red) (Alexa Fluor 488)
Schmidt number 5 · 106 2 · 105 7 · 104

Sc = ν/Dm (Nile red) (Nile red) (Alexa Fluor 488)

Table 3.3: Properties of liquid mixtures and solutions with their refractive index
matched to fused silica and plexiglass. The properties of the corresponding dyes in
these liquids have been determined as described in section 8.2.

acalculated with equation 3.3
bfrom Madison (1999)
cdetermined with the specification shown in figure 3.8

For the silicone oils the phenoxazine dye Nile Red proved to be well applicative. It features
a sufficient absorbance at the laser wavelength and a considerably higher stokes shift than
the Alexa Fluor 488. Its molecular weight and structure are given in table 3.4.

In figures 3.10 the absorption spectra of these dyes given in Haugland (2001) are plotted
together with the laser excitation wavelength. The corresponding emission spectra and the
transmittance curves of the optical bandpass filters (550±20 nm and 600±20 nm) are shown
in figure 3.11. The filters were chosen to be each selective to one dye and to obtain maximal
signal amplitude and optimal spatial accuracy. The spatial accuracy is optimal if the trans-
mission bands are narrow and close together (see chapter 4), whereas the signal amplitude is
maximal for broad transmission bands centered at the maxima of the emission curves. The
chosen transmission bands shown in figure 3.11 are a compromise between these two opposi-
tional demands. As noted in Haugland (2001), the emission spectrum of Nile Red shown in
figure 3.11 undergoes blue shifts in nonpolar environments. This explains that the maximum
fluorescence in the present case was found to be around 600 nm. Figures 3.10 and 3.11 also
show that the emission spectrum of Alexa Fluor 488 and the absorption spectrum of Nile Red
overlap. This will increase the fluorescence intensity of a Nile Red solution in the vicinity of
a fluorescent Alexa Fluor 488 solution.

The coefficients of molecular diffusion Dm and Schmidt numbers Sc for the dyes in the
index matched liquids are given in table 3.3. They were estimated from the dispersion of the
dyes in the porous medium with the fluid at rest as described in section 8.2.
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Figure 3.10: Normalized absorption spectra of Alexa Fluor 488 and Nile Red (from Haugland
(2001)) and laser excitation line.
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Figure 3.11: Normalized emission spectra of Alexa Fluor 488 and Nile Red (from Haugland
(2001)) and transmittance curves of optical bandpass filters. In the present application the
maximal emission of Nile Red was found to be shifted to around 600 nm in accordance with
Haugland (2001).
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Alexa Fluor 488 Nile Red
Molecular Formula C21H15N4NaO10S2 C20H18N2O2

Molecular Weight 570.48 318.37

Structure

Table 3.4: Molecular properties of fluorescent dyes (from Haugland (2001)).

3.7 Summary and conclusions

In the present chapter the configuration and functionality of an experimental method for the
measurement of flow and transport in porous media has been described. The high performance
of this method has been accomplished by the following two major achievements:

• The composition of capable devices for the spatially and temporally highly resolved
measurement of the local dye concentrations in a 3D flow cell using laser-induced fluo-
rescence. The system is able to measure 1300 × 600 × 100 local concentrations every
30 s.

• The selection of an appropriate set of solids, liquids and fluorescent dyes for the for-
mation of a transparent and optically homogeneous porous medium. The availability
of two immiscible liquids with the same refractive index, and two corresponding fluo-
rescent dyes which are each soluble in only one of these liquid phases, allows for the
investigation of two-phase flow in porous media. Due to the availability of two different
solid materials it is possible to study the influence of solid-liquid interactions on the dye
transport.

Together with the method for the precise matching of refractive indices described in chap-
ter 4, these capabilities result in the high qualification of the presented technique for the
investigation of flow and transport in porous media on different scales.
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Chapter 4

Method for precise index matching

4.1 Introduction

The spatial precision of the measured data is mainly determined by the amount of refraction
caused by mismatched refractive indices of solid and liquid(s), and it is therefore necessary to
match these indices as close as possible. Due to the differences in optical dispersion of each
phase, the refractive indices can be matched at only one wavelength. This chapter describes
a method which was used for the highly precise matching of the refractive indices at a given
wavelength. The method has already been used for a long time in materials science for the
characterization of the homogeneity of glass and was successfully adopted for the present
application. In the next section the fundamental principles of light propagation in a porous
medium with transparent solid and liquid phases are described, including some historical notes
based on the comprehensive review Hense (1987). Section 4.3 then presents the experimental
technique used in this work. The chapter is finished by a summary and conclusions given in
section 4.4.

4.2 Light propagation in transparent porous media

In 1884 the danish physicist Christian Christiansen published a paper (Christiansen (1884)
cited by Hense (1987)) where he demonstrated the behaviour of immersed plate glass grains
in a benzene-CS2 mixture of the same refractive index as the glass. He correctly explained
the effect that the powder became indistinguishable from the mixture and simultaneously the
whole system became coloured by the different dependence of the refractive indices of the
liquid and the glass on wavelength.

The same effect occurs in the index-matched porous media used in this work: The disper-
sion curves of the liquids shown in figure 3.6 are changed by variation of mixing ratio or solute
weight percentage so that the refractive indices match at one certain wavelength. Light with
a different wavelength is refracted at the solid-liquid interfaces, with the angle of refraction
growing with distance from the matching wavelength. The qualitative behaviour of a white
light beam passing through a porous medium is illustrated in figure 4.1. The refractive indices
are matched for green light. The multiplied effect of a single sphere sketched in figure 4.1a
leads to a wavelength dependent broadening of a light beam in porous media. In figure 4.1b
the qualitative behaviour of a white light beam passing through a porous medium is outlined.
A photograph of a porous medium corresponding to this situation, consisting of plexiglass
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Figure 4.1: Qualitative behaviour of a white light beam passing through a a sphere and b
a porous medium with the refractive indices of the solid and liquid matched for the green
portion of the light.

and silicone oil matched at 550 nm, was taken with this setup and is shown in figure 4.2a.
The broadening of the red and blue portion of the light beam is obvious. The porous medium
shown in figure 4.2b contained plexiglass and silicone oil matched at 500 nm, so that the
broadening occurs mainly in the red portion of the spectrum.

Christiansen suggested that this behaviour of light propagation in such systems makes
them applicable as a band-pass filter or monochromator. He further made several other sug-
gestions for the application of this phenomenon, which all became realized in practice, like
e.g. the use as a thermometer or as a polarizer / depolarizer (using birefringent powders).
He also studied the dependence of this effect on grain size, noticing that it only occurs for
relatively large grains (120 µm - 600 µm), whereas a system with fine grains (10 µm - 30 µm)
behaves as an optically homogeneous medium for almost the whole visible spectrum, with the
refractive index given by n = qsolidnsolid+qliquidnliquid (qsolid and qliquid denoting the respective
volume fractions). Today the Christiansen filter has been replaced by others (e.g. interfer-
ence filters) in the ultraviolet and visible range, but is still used in the infrared. The main
application today is the only one that Christiansen did not anticipate - the characterization
of glass homogeneity.

Many efforts have been made for the theoretical description of the transmittance of a
Christiansen filter as a function of wavelength, starting with a work of Strutt (later Lord
Rayleigh) in 1899 (Strutt (1899) cited by Hense (1987)). Until now no formula has been
derived that is valid over the whole range of the spectrum, but there is a large number of
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a b

Figure 4.2: Photographs taken with the configuration shown in figure 4.1b and a porous
medium consisting of plexiglass and a mixture of silicone oils whose refractive indices were
matched at a 550 nm and b 500 nm. The colours of the broadened light depict the variation
of light propagation for different wavelengths.

equations which are valid in a certain range of wavelengths. While the effects of wave optics
(phase change and interference) become important for small sized dispersed particles and
small ∆n = |nsolid − nliquid|, geometrical optics is applicable for d · ∆n > λ (d denoting the
particle size). The theories reviewed in Hense (1987) mainly differ by the use of one or a
combination of these approaches. For the present application, i.e. the determination of the
wavelength where the refractive indices of solid and liquid are matched, only the maximum
and not the detailed shape of the transmittance curve is of interest. All theories predict the
intuitively expected behaviour that the transmittance is maximal at the matched wavelength.

4.3 Experimental technique

As described in the last section, only light with one certain wavelength, where the refractive
indices of solid and liquid are matched, can propagate through the medium without interfer-
ence. For all other wavelengths, the propagation is modified and thus the recorded image is
corrupt. This problem is addressed by the use of optical bandpass filters, which restrict the
imaging to a range of approximately 40 nm (see chapter 3). In order to obtain optimal spatial
accuracy for the images, the matched wavelength must coincide with the center wavelength
of the bandpass filter. Therefore a HP 8453 spectrophotometer was used as shown in figure
4.3. As the broadening of the light beam increases, the screening effect of the slit leads to a
decrease of light intensity on the photodiode array. Thus, the phenomena described in the
last section result in transmittance curves with a maximum at the matched wavelength. As
an example, the curve for two different porous media are shown in figure 4.4 together with the
curve for the corresponding optical filter. For the present application this method offers the
possibility to easily match the refractive indices with an accuracy of 1 nm. This corresponds
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Tungsten lamp
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Figure 4.3: Optical system of the HP 8453 spectrophotometer used for the determination of
the matched wavelength.
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Figure 4.4: a Transmittance curves obtained with the setup shown in figure 4.3 for two
porous media (plexiglass+silicone oil and fused silica+zinc chloride solution) matched at
approximately 550 nm and for a bandpass filter with a transmittance range of 550±20 nm.
b Magnified area of maximum transmittance.
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to a difference in the refractive index of the liquid phase of about 5 · 10−5.
Due to the different dn

dT of the liquids (table 3.2) and solids (table 3.1), changes in temper-
ature during the experiment must be avoided. Therefore the refractive index matching was
done directly before the experiments, with all components of the flow cell being in equilibrium
with room temperature (T ≈ 25◦C). Although no temperature control was performed, no
significant changes in the transmittance curve were found after the experiments.

4.4 Summary and conclusions

In section 4.2 the principles of light propagation in transparent porous media have been pre-
sented and their applicability to the media used in this work has been qualitatively validated.
Consequently these principles have been employed in section 4.3 for the development of a
method for the precise matching of the refractive indices of the solids and liquids used in the
PLIF method described in chapter 3 at a certain wavelength. This easily applicable method is
the basis for the high spatial resolution of the flow and transport measurements presented in
this work. Furthermore the method provides the opportunity to accurately detect a possible
mismatch of the refractive indices due to temperature changes.
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Chapter 5

Image Preprocessing

5.1 Introduction

This chapter describes the processing of the acquired data, i.e. the digital images, in order
to remove systematic and statistical errors. The first outcome of the flow measurements is
a time series of 3D image stacks with 8 bits per pixel. The aim of image preprocessing is
to transform this information back into a corresponding set of dye concentration values at
well-defined positions inside the flow cell, which is then the basis for further evaluations. The
quality of these transformations is the decisive factor for the accuracy of the final results.

The purpose of this chapter is to provide an accurate and complete presentation of the
methods that lead to the results in later chapters. Its content may not be mandatory for the
understanding of the final results, but for the exact traceability of the data flow in order to
allow for a comparison of the results with other work in the future.

Measurement data is always subject to statistical error, caused e.g. by quantum fluctu-
ations, which results in an uncertainty of the data characterised by its variance. Often the
data is additionally modified by systematic errors, i.e. a shift between the mean value and
the true value.

Both types of errors can in principle be corrected. The first approach should always be
to optimise the experimental setup in terms of error minimization. Statistical errors can
be reduced by repeating the measurement or by applying statistical models which exploit
correlations in the data. Systematic errors can be corrected by performing a calibration
before or after the measurement, or sometimes also directly out of the data.

Since the correction of systematic errors is a possible source for the introduction of arte-
facts, it is obligatory to quantitatively unterstand the physical process that leads to the error
in order to find the proper correction. In particular it is not allowed to simply fit the data to
any expected values. Thus any discrepancies in the results which lack explanation must not
be removed.

In the following sections the individual sources of error are described followed by the
method for their correction. Then the statistical errors are analysed and quantified in section
5.6. A verification of the linearity of the measurements is performed in section 5.7. In the last
section the whole proceeding of image preprocessing is put together out of these individual
methods.
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Figure 5.1: Definition of world coordinates (X, Y, Z)T inside the horizontal flow cell.

5.2 Geometric calibration

The purpose of the geometric calibration is to give a relation between the 3D world coordinates
�X = (X, Y, Z)T (see figure 5.1) of the measured object and their corresponding 2D image
coordinates �x = (x, y)T . (

x
y

)
= �f(X, Y, Z) (5.1)

The transformation �f from world to image coordinates typically consists of a linear projec-
tion plus additional aberrations and distorsions caused e.g. by lens impairments or refractions
at interfaces between media with different refractive indices. According to the experimental
setup an appropriate model is chosen and the models parameters are estimated from a cali-
bration procedure. Normally one is interested in the inverse of the transformation which is
in general not availible because the problem is under-determined, so additional efforts have
to be made like e.g. the use of a stereo camera system.

In the present application only the part of the 3D world is visible that is illuminated by
the laser sheet, which is a plane perpendicular to the optical axis (see figure 5.2). Thus the
transformation �fZ for a given Z position of the laser sheet goes from 2D world to 2D image
coordinates: (

x
y

)
= �fZ(X, Y ) (5.2)

It is composed of a refraction at the glass-air interface of the flow cell and a projection by
the camera optics. For small angels θ the snellius law nair sin θair = nglass sin θglass can be
approximated by nairθair = nglassθglass (see figure 5.2). For common camera lenses aberrations
can be neglected so the resulting transformation is linear(

x
y

)
=

(
axx(Z) 0

0 ayy(Z)

) (
X
Y

)
+

(
bx(Z)
by(Z)

)
(5.3)
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Figure 5.2: Image distorsion for two different Z caused by the glass-air interface.

and thus the requested inverse transformation is given by:
(

X
Y

)
=

(
1

axx(Z) 0
0 1

ayy(Z)

) (
x − bx(Z)
y − by(Z)

)
(5.4)

The matrix elements axy(Z) and ayx(Z) have been set to zero since the camera is mounted
so that the (x y) and (X Y ) axes are orthogonal. The third world coordinate Z is given by
the position of the translation stage z:

Z = (z − 1)∆Z, z = 1 . . . nz, (5.5)

with nz and ∆Z denoting the number of steps and the stepwidth.
Consequently the task of geometric camera calibration is to find the parameters �p(z) =

(axx(z), ayy(z), bx(z), by(z))T for every position z. Even though the Z-distance d between the
laser sheet and principal plane of the camera optics is constant, the optical paths change with
the distance between the laser sheet and the air-glass interface (see figure 5.2) and for this
reason also the parameters �p(z) depend on Z.

Since it is not practicable to introduce any calibration target into the flow cell, for the
determination of the parameters �p(z) advantage was taken of the finding that the area between
the grids appears slightly brighter than the areas outside (mostly due to small concentrations
of uniformly distributed dye or scattering at impurities). In order to enhance the contrast
between the inner and outer area the volume images for all times of a sequence were summed
up. Then for every Z the left, right, lower and upper boundaries (xl(z), xr(z), yu(z) and yl(z))
of the inner area were chosen at the position of maximum gradient. This is exemplified in
figure 5.3. To further reduce noise, the boundary positions xl(z), xr(z), yu(z) and yl(z) were
approximated by a straight line as shown in figure 5.4. Subsequently the images for z > 1
were stretched so that the lines are parallel to the Z axis and the parameters �p(z) = �p(1) are
constant over Z. Finally the parameters axx, ayy, bx and by can be evaluated to associate these
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Figure 5.3: Determination of the flow volume boundaries xl, xr, yu and yl for a single z-image.

lines to their corresponding world coordinates X=0cm, X=8cm, Y=0cm and Y=4cm:

axx =
xr(1) − xl(1)

8cm
, bx = xl(1), ayy =

yl(1) − yu(1)
4cm

, by = yu(1). (5.6)

5.3 Brightness correction

This section deals with the relation between the emitted light intensity I(X, Y, Z, t) and the
dye concentration c(X, Y, Z, t). For sufficiently low excitation light intensities (below satura-
tion) s(X, Y, Z, t) these quantities are related linearly through a constant of proportionality
k:

I(X, Y, Z, t) = k · s(X, Y, Z, t) · c(X, Y, Z, t) (5.7)

Thus for a correct determination of c(X, Y, Z, t) from measured I(X, Y, Z, t) it is necessary
to know the spatial distribution of s(X, Y, Z, t). The constant k is mainly a function of
the sampling volume and the quantum efficiency. As we do not aim at measuring absolute
concentrations, we set k = 1. The objective of the experimental design is to make the
illumination s(X, Y, Z, t) as uniformly distributed as possible. Nevertheless there are some
effects that can hardly be avoided:

• the laser light intensity is unequally distributed in X-direction because the waveform of
the galvanometer scanner is not perfectly triangular

• the light intensity decreases while passing through the medium due to scattering at
small bubbles or impurities
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Figure 5.4: Variation of xl and xr for different z (solid lines), after fitting a straight line
(dotted lines) and after image stretching (dashed lines).

• while the illumination itself is constant for different Z, two phenomena provoke a de-
crease of the measured intensity with increasing Z.

Firstly, with increasing Z an increasing amount of emitted light is reflected at the air-
glass interface (see figure 5.5a). This is due to the fact that, for a given X1, θair and θglass

are decreasing with increasing Z. As a result, also the angular-dependent transmittance
T = Itrans(θglass,θair)

Iinc
for the respective polarisation

T‖ = Itrans‖
Iinc‖

=
2nglass cos θglass

nglass cos θair + nair cos θglass
(5.8)

T⊥ = Itrans⊥
Iinc⊥ =

2nglass cos θglass

nglass cos θglass + nair cos θair
(5.9)

is decreasing with increasing Z.

Secondly, the element of solid angle subtended by the camera optics Ω(Z) is decreasing
with increasing Z as illustrated in figure 5.5b. Since the measured intensity is propor-
tional to Ω, it decreases in the same manner.

A numerical computation of these phenomena considering the geometrical proportions
of the setup and integrating over the (X, Y )-plane resulted in an approximately linear
decrease for the normalised nonpolarised light transmittance ftrans = T (z)

T (1) as well as for

the normalised solid angle fΩ = Ω(z)
Ω(1) . As shown in figure 5.6, the effect due to the solid

angle exceeds the effect of transmissivity by far.

• the temporal behaviour of the laser light intensity is characterised by short-time fluc-
tuations as well as slow shifts of the mean intensity (e.g. due to temperature changes).

As these effects apparently dont have any interactions, they can be separated:

s(X, Y, Z, t) = sX(X) · sY (Y ) · sZ(Z) · st(t) (5.10)
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solid angle Ω(Z).

In the following subsections the correction for the spatial distribution and the temporal be-
haviour, and a check of the linearity assumed in equation refeqillumlin are described.

5.3.1 Correction of spatial inhomogeneity

For the determination of the spatial distribution advantage was taken of the presence of small
bubbles and impurities inherent in the bead packing. Under the assumption that they are
uniformly distributed inside the flow cell, which is legitimated by the extensive mixing of
the grains before filling, the amount of scattered light is a measure of the local illumination.
Therefore a volume image of the flow domain was recorded without using a bandpass filter
(which would screen the scattered light) before every flow measurement. An example of such
an image is shown in figure 5.7a. The volume image is then calibrated and geometrically
transformed as described in section 5.2 (the geometrical calibration is particularly applicable
here since it makes use of the scattered light). From the geometrically calibrated volume image
the spatial distribution functions can then be obtained by averaging over the corresponding
areas:

sX(X) =
1

Itot

∑
Y Z

I(X, Y, Z) (5.11)

sY (Y ) =
1

Itot

∑
XZ

I(X, Y, Z) (5.12)

sZ(Z) =
1

Itot

∑
XY

I(X, Y, Z) (5.13)

Itot =
∑

XY Z

I(X, Y, Z). (5.14)

However, these averaged distributions are still characterised by individual peaks at the po-
sitions of the scattering particles and therefore deserve further smoothing. The x- and y-
distributions were smoothed using cubic smoothing splines (see Green & Silverman (1994)
and appendix A) as shown in figure 5.7b,c. As described above, a linear decrease of sz(z) is
expected, and consequently the z-distribution was fitted with a straight line. This is shown
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Figure 5.6: Computational results of the decrease in measured light intensity caused by the
effects shown in figure 5.5: a variation of transmittance and b variation of solid angle.

in figure 5.7d together with the above explained numerically simulated result sz,sim(z) =
ftrans(z)fΩ(z) from figure 5.6, showing a very good consistency. Finally the correction is done
by the division

c′′(X, Y, Z, t) =
I(X, Y, Z, t)

sX(X)sY (Y )sZ(Z)
, (5.15)

where c′′(X, Y, Z, t) = c(X, Y, Z, t)st(t) still has to be corrected for the temporal variations,
which is described in the next section.

5.3.2 Correction of temporal variations

The laser was found to exhibit temporal light intensity variations. These variations appeared
on all timescales from µs to hours. Typically the long-time variations after activation of the
laser are characterised by a rapid rise of the light intensity followed by a slow decay. In figure
5.8 the grayvalue timesequences of different pixels in an image where a static object was
illuminated with laser light. The transition from rise to decay after about 1 hour and also
additional short-time variations are evident. Furthermore, intensity variations can be caused
by manual changes of the laser intensity. In the experimental setup employed a volume
image was taken every 30 seconds. Thus, every variation taking longer than 30 seconds was
considered as a long-time variation st(ti), and the faster variations as short-time variations
or noise εs:

st(ti) = st(ti) + εs, i = 1..nt (5.16)

with 〈εs〉 = 0.

Correction of long-time variations

The value of the long-time variation st(ti) can then be calculated out of the data with use of the
assumption that the total amount of concentration inside the flow cell remains constant over
time, what can be expected since the dyes are photostable and inert. Then we can attribute
every change of the volumetric concentration sum to a change of laser light intensity and thus
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with an argon ion laser (for four different pixel), indicating a change of laser light intensity.

calculate st(ti) by spatial averaging over the flow cell volume (which is actually a temporal
averaging over the 30s volume acquisition time due to the sequential acquisition):

st(t1) = 1, st(ti) =
∑

klm c′′(Xk, Yl, Zm, ti)∑
klm c′′(Xk, Yl, Zm, t1)

, k = 1..nx, l = 1..ny, m = 1..nz, i = 2..nt (5.17)

For normalisation st(t1) = 1 was chosen. Figure 5.9a shows st(t) for an experiment without
any manual intensity changes, indicating a similar behaviour as the static object in figure 5.8.
Figure 5.9b shows an experiment with a manual change of laser light intensity at t = 248
min. The normalised concentration c′(X, Y, Z, t) after correction for the long-time variations
is given by

c′(X, Y, Z, t) =
c′′(X, Y, Z, t)

st(t)
. (5.18)

The effect of this correction is exemplified for both experiments in figure 5.9c,d.

Correction of short-time variations

After the correction for the long-time variations, the signal c′(X, Y, Z, t) is still contaminated
with short-time fluctuations and also camera noise (see section 5.5). In order to remove them,
an appropriate smoothing filter has to be selected. Since we don’t want to make any restrictive
a priori assumption of an explicit parametric model here, a nonparametric model known as
cubic smoothing splines was applied. The details of this filter are described in appendix A.
Then the concentration c(X, Y, Z, t) is given by

c(X, Y, Z, t) = h(c′(X, Y, Z, t)), (5.19)

where h denotes the smoothing filter. The effect of smoothing is depicted in figure 5.9e,f.

5.4 Correction of scanning time shift

In PLIF a volume image is not recorded simultaneously, but by a consecutive displacement of
the laser plane in the Z-direction. Thus the parts of the volume with different Z are recorded
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Figure 5.9: Correction of the temporal variation of concentration c(X, Y, Z, t) at fixed posi-
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Figure 5.10: Effect of scanning time shift.

later with growing Z, as shown in figure 5.10. The relation between the scanning time tZ at
a position Z > 0 and the scanning time t0 at Z = 0 is given by

tZ = t0 +
Z

vscan
, (5.20)

where vscan is the scanning velocity of the translation stage. In order to relate all measure-
ments for different Z to the same time t0, the respective timeseries have to be shifted by

∆t(Z) = − Z

vscan
. (5.21)

vscan is typically 4 cm
14 s ≈ 0.29 cm

s . Since the timeseries c(X, Y, Z, t) are availible as continous
spline functions (see appendix A), this is simply done by a resampling at the shifted times.
Figure 5.11a shows an example of this correction for a point at (X0, Y0, Z = 24 mm) and
∆t = 24 mm · 14 s

40 mm = 8.4 s. Whereas ∆t(Z) is constant for experiments with different flow
rates, the resulting shift in X-direction

∆X(Z) = uX∆t(Z) (5.22)

is proportional to the mean X-velocity in the liquid phase uX . In figure 5.11b the resulting X-
shift for the experiment in figure 5.11a with uX = 0.032mm

s , ∆X = 0.032mm
s ·8.4 s = 0.27 mm

is shown in form of Y -Sum at Z = 24 mm and t = 1020 s,
∑

i c(X, Yi, 24 mm, 1020 s).

5.5 Radiometric camera calibration

In this section the relation between incident light intensity I(x, y) and grayvalue output
g(x, y) of the CCD camera is investigated and the origin and correction of systematic errors
are described. The camera electronics consists of three major components as described in
Basler: sensor, amplifier and ADC (Analog Digital Converter). The sensor output provides a
voltage signal which is then amplified and converted to a digital output signal. By adjusting
gain and offset of the amplifier, the CCD sensor signal can be shaped to optimally match the
ADC input voltage range for a given application as shown in figure 5.12. The characteristic
curve is guaranteed to be linear for a certain range of light intensity and gain. Then, the
relation between grayvalue g and light intensity I can be described by:

g = g0 + αητexpI, (5.23)
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Figure 5.11: Correction of scanning time shift in a t-direction and b X-direction.

with η denoting the quantum efficiency, α the amplification factor, τexp the exposure time and
g0 a constant offset. However, there are some effects resulting in statistical and systematic
errors:

• The grayvalue is contaminated with additive CCD chip noise, stemming from mainly
these sources: thermal noise (can be avoided by cooling the chip), photon noise and
electronics noise (e.g. amplifier). Therefore the variance of g is the sum of a constant σ2

0

(mainly due to thermal noise) and a contribution due to photon and electronics noise
which grows linearly with I and quadratically with α (see e.g. Jähne (2002)):

σ2
g = σ2

0 + α2ητexpI (5.24)

• CCD chips typically exhibit blooming effects, i.e. charges spilling out into surrounding
pixels. Even though the employed CCD chip features special anti-blooming circuits
which reduce this effect by a factor of at least 100 (Basler), the effect was still found to
be considerable. As an example, figure 5.13 shows the average of 460 images of a LED
in a dark environment. The effect of blooming is appearing evidently in the right image
with the zoomed grayvalue range in the form of a horizontal bar beneath the LED.

• The grayvalue offset g0 in equation 5.23, mainly caused by the generation of thermal
electrons, is found to be a non-uniform distribution g0(x, y). The shape of this dark
signal non-uniformity is shown in figure 5.14a. As can be seen from figure 5.13b, its
amplitude is approximately comparable to that of the blooming. Figure 5.14b shows
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Figure 5.12: Effect of the amplifier: offset and gain (from Basler (1998)).

that the mean amplitude of the dark signal is increasing with time, probably due to a
rise of temperature.

For the correction of these effects, the following methods were used:

• At first, the images were corrected for non-uniform dark signal g0(x, y) by the subtrac-
tion of an averaged dark image g0(x, y):

g(x, y) → g(x, y) − g0(x, y) (5.25)

This dark image was obtained as the mean of a sequence of typically 500 dark images
which were recorded before the experiments. Figure 5.14a shows an example of an
averaged dark image, and figure 5.15a shows the LED image from figure 5.13 after the
dark signal correction. From now on, the image data is no more represented as 8-bit
values but as double-precision floating-point numbers.

• Next the effect of blooming is corrected. To this end the image area of the camera
was chosen to be slightly larger than the flow cell, with the left part of the image
(approximately 50 pixel) recording a dark background. Then, the blooming correction
is done by the subtraction of the mean of left 50 pixels:

g(x, y) → g(x, y) − 1
50

50∑
i=1

g(xi, y) (5.26)

Figure 5.15b shows this correction for the LED image in figures 5.15a and 5.13.

• Finally the image data is still contaminated with additive noise. This statistical error is
carried through the following geometric calibration and is then corrected together with
other statistical errors as described in section 5.3.2.
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Figure 5.13: Blooming in the image of a LED on a dark background: a full grayvalue range
and b zoomed grayvalue range exhibiting the dark signal and blooming.
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Figure 5.15: Correction of the LED image in figure 5.13: a for dark signal and b for blooming.

5.6 Analysis of statistical errors

There are two sources which induce statistical uncertainty to the measured concentrations.
The first, the short-time fluctuations of laser light intensity described in section 5.3, result
in a quadratic increase of the variance σ2

c with the normalised concentration c due to the
linearity of the measurement shown in section 5.7:

σ2
c,laser = klaserc

2 (5.27)

The second source, the noise of the camera electronics (see section 5.5), results in a constant
plus a linear increase of σ2

c :

σ2
c,CCD = σ2

0 + kCCDc (5.28)

Then, the resulting variance σ2
c is given by the sum

σ2
c = σ2

0 + kCCDc + klaserc
2, (5.29)

with the constant σ2
0 dominating for low and the laser light fluctuations dominating for high

concentrations. In order to determine the sought parameters σ2
0, kCCD and klaser, the statis-

tical errors have been calculated from the differences between the normalised concentrations
c′(X, Y, Z, t) before and c(X, Y, Z, t) after the noise removal (see section 5.3.2) and plotted
against c. Figure 5.16a shows the result for a sequence of 1000 images with 1000 x 500 pixel.
The curve exhibits the expected quadratic progression, and the constant σ2

0 can be read off
from the limit c → 0 to σ2

0 ≈ 2 · 10−4. Figure 5.16b shows the same data plotted as the
signal-to-noise ratio SNR = c

σc
. From this curve the constant klaser can be read off from

the limit c → 1 as 1/
√

klaser ≈ 22.5 → klaser ≈ 0.002. The relative error σc
c is lower than

1/20 = 5% for c > 0.4.
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5.7 Verification of the linearity between laser intensity and
fluorescence emission

With the present technique the result of a measurement of the local concentration c(X, Y, Z, t)
is an 8-bit grayvalue g(x, y, z, t). In the previous sections the inverse transform from g(x, y, z, t)
to c(X, Y, Z, t) (except for a constant of proportionality) was described. For this transforma-
tion the following assumptions of linearity were made:

• The intensity of emitted light I(X, Y, Z, t) is proportional to the dye concentration
c(X, Y, Z, t) and the laser light intensity s(X, Y, Z, t):

I(X, Y, Z, t) ∝ c(X, Y, Z, t) · s(X, Y, Z, t) (5.30)

The linearity between I and s is only valid below a certain light intensity, where satura-
tion effects are negligible, i.e. where the major fraction of the dye molecules is not in an
excited state. Since the degree of saturation depends strongly on the relative magnitude
of the rates of excitation and deexcitation, this intensity varies significantly for different
dyes (Ghauharali et al., 1997).

• The grayvalue output of the CCD camera is proportional to the incident light intensity:

g(x, y, z, t) ∝ I(x, y, z, t) (5.31)

This linearity is guaranteed by the camera manufacturer within a certain range of I as
described in section 5.5.

In this section a verification of these two linearities is performed through a check of the
linearity between g and s, which follows from equations 5.30 and 5.31:

g(x, y, z, t) ∝ s(x, y, z, t) (5.32)
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Figure 5.17: Grayvalues of a volume image before (g(x, y, z, t)) and after (g(x, y, z, t + ∆t))
abrupt increase of laser intensity. The linearity of the curve confirms the linearity of the
measurement.

Any nonlinear deviation from the relations 5.30 and 5.31 would result in a corresponding
nonlinear deviation in equation 5.32 and thus a validation of the linearity 5.32 will confirm
the assumptions. The validation was performed by abruptly changing the laser light intensity
during an experiment:

s(x, y, z, t + ∆t) = ks(x, y, z, t). (5.33)

Then, the grayvalues must show the same abrupt change:

g(x, y, z, t + ∆t) = kg(x, y, z, t). (5.34)

Figure 5.17 shows the result of this validation, with the grayvalues corrected for dark signal
and blooming (see section 5.5). The curve is linear over the whole range and passing through
the origin and thus confirms the linearity of the measurement.

5.8 Summary

In this chapter the transformation from the grayvalue output of the camera g(x, y, z, t) (in im-
age coordinates (x, y, z)) to normalized concentration values c(X, Y, Z, t) (in world coordinates
(X, Y, Z)), which are the basis for further analysis was described. The transformation consists
of several steps which are summarized in figure 5.18. The accuracy of these transformations
is of essential importance for the further analysis. Through the employment of appropriate
smoothing filters statistical errors could be largely reduced, leading to a higher signal-to-noise
ratio. Furthermore two basic requirements for the measurement process, the linearity between
incident laser light and emitted fluorescence intensity and the linearity between incident light
intensity and grayvalue output of the CCD camera have been validated.
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Chapter 6

Global parameter estimation

6.1 Introduction

This chapter is a description of the methods used for the estimation of the parameters of
different transport models from the measured data. Even though the experimental method
used in this work (see chapter 3) provides data with a high spatial resolution, in this chap-
ter the sought parameters are assumed to be global, i.e. independent of the position in the
porous medium. If this assumption is relaxed, the methods for local parameter estimation
described in chapter 7 are employed. As explained in section 2.4, the respective parameters
potentially depend on the scale, i.e. the size of the averaging REV which is used for their
estimation. This is especially important for the comparison of results from different experi-
mental methods. Since many techniques for the investigation of hydrodynamic dispersion are
so-called breakthrough experiments where concentrations are measured only at the outlet of
a flow cell, the global parameter estimation methods described in this chapter are used for
the comparison with their results.

The parameters regarded in this chapter are the mean velocity ūx and the dispersion
coefficients Dxx, Dyy and Dzz in the 3D convection dispersion equation (CDE)

∂c̄

∂t
+ ūx

∂c̄

∂x
+ ūy

∂c̄

∂y
+ ūz

∂c̄

∂z
− Dxx

∂2c̄

∂x2
− Dyy

∂2c̄

∂y2
− Dzz

∂2c̄

∂z2
= 0 (6.1)

and the mobile pore space fraction f and the rate constant K in the 1D differential capacitance
model according to Coats & Smith (1964)

f
∂c̄

∂t
+ (1 − f)

∂c̄∗

∂t
+ ūx

∂c̄

∂x
− Dxx

∂2c̄

∂x2
= 0 (6.2)

(1 − f)
∂c̄∗

∂t
= K(c̄ − c̄∗). (6.3)

This model is used to describe dispersion in case of the presence of stagnant zones in the
liquid phase of the porous medium (see section 2.3.3). Since the flow direction is parallel to
the x-axis the off-diagonal dispersion coefficients Dxy, Dxz and Dyz are set to zero.

In the next section the process of upscaling the measured microscopic concentration
c(x, y, z, t) to the macroscopic concentration c̄(x, y, z, t) by averaging over an appropriate
REV is described. Then different methods for the parameter estimation are presented and
their performances on synthetic data are compared in section 6.3 and 6.4. Finally section 6.5
deals with the calculation of confidence bounds for the estimated parameters.
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6.2 Averaging

The initial data for the parameter estimation is a time series of volume images of normalized
microscopic concentration values c(x, y, z, t), which has been corrected for different systematic
and statistical errors as described in chapter 5. The task of averaging then is to transform
this data to macroscopic concentrations c̄(x, y, z, t) for which the macroscopic equations 6.1-
6.3 provide a valid description. Certainly this task is ambiguous, and the parameters of the
equation will depend on the size of the REV used for averaging as dicussed in section 2.4. Here
we use the full xy-, xz- and yz-planes as an REV for the respective parameter estimation:
equation 6.1 then separates into the 3 components

∂c̄(x, t)
∂t

+ ūx
∂c̄(x, t)

∂x
− Dxx

∂2c̄(x, t)
∂x2

= 0 with c̄(x, t) =
∑
yz

c(x, y, z, t) (6.4)

∂c̄(y, t)
∂t

+ ūy
∂c̄(y, t)

∂y
− Dyy

∂2c̄(y, t)
∂y2

= 0 with c̄(y, t) =
∑
xz

c(x, y, z, t) (6.5)

∂c̄(z, t)
∂t

+ ūz
∂c̄(z, t)

∂z
− Dzz

∂2c̄(z, t)
∂z2

= 0 with c̄(z, t) =
∑
xy

c(x, y, z, t). (6.6)

Analogously the averages over the yz-plane c̄(x, t) =
∑

yz c(x, y, z, t) and c̄∗(x, t) =
∑

yz c∗(x, y, z, t)
are used for the 1D differential capacitance model 6.2-6.3.

The effect of averaging performed in such a manner is exemplified for an initial microscopic
data set shown in figure 6.1a together with the macroscopic functions c̄(x, t), c̄(y, t) and c̄(z, t)
in figure 6.1b-d.

6.3 Direct estimation

A first approach for the estimation of the mean velocity ūx and the dispersion coefficient Dxx

is their relation to the first and second moment of the concentration distribution:

ūx =
dx̄

dt
with x̄ = 〈x〉 =

∑
xyz xc(x, y, z, t)∑
xyz c(x, y, z, t)

(6.7)

Dxx =
1
2

dσ2

dt
with σ2 = 〈(x − x̄)2〉 =

∑
xyz(x − x̄)2c(x, y, z, t)∑

xyz c(x, y, z, t)
(6.8)

However, these estimates, especially that for Dxx are very sensitive to additive constants or
noise. To demonstrate this, estimates have been performed on a simulated test sequence with
Dxx = 50 and ūx = 18 shown in figure 6.2a and two variants, one with a small additional
constant ∆c̄ = 1 and the second with additional noise η (〈η〉 = 0.5 and 〈(η − 〈η〉)2〉 = 1/12).
Figure 6.2b shows σ2(t) for these three test sequences, indicating the huge impact of small
additions on the estimation of σ2. This huge sensitivity can be overcome to some degree by
using a more robust estimator for the variance, the median absolute deviation (mad):

mad = 1.4826 median(|x − median(x)|) (6.9)

As can be seen from figure 6.2c, this provides significantly better results, but still exhibits
considerable deviations from the correct results. As a conclusion, these direct estimates can
be used only in the complete absence of any additive constants or noise.
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Figure 6.1: Effect of averaging: a microscopic dye concentration c(x, y, z) in a 250 × 250
× 50 voxel volume subset and the corresponding averaged macroscopic concentrations in b
x-direction, c y-direction and d z-direction.
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Figure 6.2: Parameter estimation for a simulated test sequence: a concentration distribution
for three different times; temporal evolution of b variance, c squared median absolute devia-
tion (mad) and d variance from a fitted gaussian for the original data, additive constant and
additive noise respectively.
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6.4 Fitting of model functions

A possible solution to the problem of additive constants and noise is the use of parameterized
models, whose parameters are estimated by the minimization of the sum of squared differences
between the model function and the data. If the solutions of the model are assumed to be
gaussians, an additive constant c̄0 can be explicitly included in the solution of the model given
by equation 6.4:

c̄mod(x; c̄0, a, x̄, σ2) = a
1√

2πσ2
e−

(x−x̄)2

2σ2 + c̄0 (6.10)

For the case that the observed macroscopic concentrations c̄(xi) are contaminated with inde-
pendent and normally distributed noise

c̄(xi) = c̄true(xi) + η(xi) with 〈η(xi)〉 = 0, 〈η(xi)η(xj)〉 = δijσ
2
i , (6.11)

the maximum likelihood estimation �pest of the parameter set �p = (c̄0, a, x̄, σ2) is given by

min
c̄0,a,x̄,σ2

χ2 =
N∑

i=1

(c̄(xi) − c̄mod(xi; c̄0, a, x̄, σ2))2

σ2
i

. (6.12)

The standard algorithm for such nonlinear minimization problems is the Levenberg-Marquardt-
method (Press et al., 1992). The results of this method for σ2 shown in figure 6.2d are in
excellent agreement with the analytic values. This approach has become the standard method
for the estimation of dispersion coefficients. For the present work, the transport analysis
package (Roth, 1996b) was employed. It features the availability of different initial conditions
(dirac pulse, step, finite pulse) as well as different interaction models (equilibrium adsorption
and rate-limited adsorption), and therefore allows to additionally estimate the mobile pore
space fraction f and the rate constant K for the 1D differential capacitance model.

However, this method is only applicable if the initial condition c̄(x, t0) is known exactly
and the sought parameters are constant throughout the medium. Furthermore this method
is relying on an informed guess about the starting values of the minimization. In chapter
7 a method is presented which allows the estimation of local, and therefore heterogeneous
parameters ūx and Dxx for arbitrary initial conditions and with no starting values necessary.

6.5 Confidence bounds for estimated parameters

The estimated parameters are worthless without information about their statistical signifi-
cance. This information is given by the probability distribution of the difference between the
estimated and true parameters ∆�p = �pest − �ptrue. For the case of independent and normally
distributed noise as in equation 6.11, and if the model is linear or can be linearized near the
minimum of χ2, the errors in the parameters are also normally distributed and the probability
distribution is defined by its covariance matrix cov�p = 〈(∆�p)2〉:

p(∆�p) =
∣∣cov�p

∣∣−1/2

(2π)n/2
e
− 1

2
∆�pT cov−1

�p
∆�p (6.13)

The value of cov�p is the inverse of the half of the hessian matrix D, which is typically returned
by the Levenberg-Marquardt-algorithm together with �pest:

cov�p =
(

1
2
D

)−1

with Dij =
∂2χ2

∂pi∂pj
. (6.14)

69



CHAPTER 6. GLOBAL PARAMETER ESTIMATION

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

t

go
od

ne
ss

-o
f-

fit

Figure 6.3: Goodness-of-fit calculated with equation 6.17 for the simulated test sequence with
additive noise shown in figure 6.2a.

As an example the results of the estimation of �p = (c̄0, a, x̄, σ2) for the simulated test sequence
with additive noise at t = 25 shown in figure 6.2a are given:

�pest =




0.4857
55.5207
490.0112

2.5976 · 103


 , cov�p =




0.0014 −0.0011 −0.0000 −0.1715
−0.0011 0.0170 −0.0000 −0.8558
−0.0000 −0.0000 0.0187 0.0007
−0.1715 −0.8558 0.0007 209.0147


 (6.15)

The covariance matrix cov�p provides information about the accuracy and correlations of the
estimated parameters. The latter are more obvious from the matrix of correlation coefficients

corrij =
covij√coviicovjj

⇒ corr�p =




1.0000 −0.2206 −0.0002 −0.3221
−0.2206 1.0000 −0.0006 −0.4537
−0.0002 −0.0006 1.0000 0.0004
−0.3221 −0.4537 0.0004 1.0000


 . (6.16)

However, these quantities give no information if the model fitting was successful, i.e. if
the model chosen is correct to describe the data. Usually this so-called goodness-of-fit is
measured by the value of χ2 at the minimum and the number of degrees of freedom (the
difference between the number of data points N and the number of parameters n) ν = N −n.
The goodness-of-fit is then given by the value of the incomplete gamma function

P (
ν

2
,
χ2

min

2
) =

1
Γ(χ2

min/2)

∫ ν/2

0
e−ttχ

2
min/2−1dt. (6.17)

Typically the goodness-of-fit is believable for values larger than 0.1 (Press et al., 1992). This is
supported by the results from the estimations with the simulated test sequence with additive
noise shown in figure 6.2a+d, whose goodnesses-of-fit (calculated with ν = 1000 − 4 = 996)
are shown in figure 6.3. In the range between 0.1 and 0.001 the fit may be acceptable if the
model omits small effects in the data or the errors have been slightly underestimated. For
values less than 0.001, the assumptions about the model and/or the errors must be flawed
and therefore have to be reconsidered.
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Chapter 7

Local parameter estimation

7.1 Introduction

The following chapter presents a method for the local parameter estimation of linear dynamic
processes. The aim is to overcome a number of disadvantages occurring with the methods
used for the global parameter estimation as described in chapter 6, namely:

• the estimated parameters are assumed to be constant throughout the medium, and
there is no direct way to allow for heterogeneity in the estimation. Since a main feature
of the experimental technique developped in this work is its high spatial and temporal
resolution, the detailed information about the local variability of flow and transport
contained in the measured data can only be retrieved with an adequate local parameter
estimation.

• an explicit assumption on the initial distribution c̄(x, t0) (typically a dirac pulse or a
step function) is needed and has to be accurately realized in the experiment.

• an informed guess about the initial values is necessary for the estimation in order to
avoid running into local minima.

• the results become instable if there are significant linear dependencies between the
parameters.

Towards this end, a total least squares (TLS) parameter estimation method is presented
and further developped in the following sections. At first the framework of the subsequent
estimations, the method of total least squares is introduced in section 7.2. The application
of this framework to the parameter estimation for dynamic processes which can be modeled
by linear differential equations is then presented in section 7.3. While sections 7.2 and 7.3
are mainly a survey and adaption of established methods, further analysis was performed
in order to enhance the accuracy of the estimated parameters and to identify a suitable
confidence measure. Therefore the method is first applied to different simulated test data
sets, as described in section 7.4. This allows to evaluate the performance of the method
under different conditions and to optimize its accuracy through the variation of certain free
parameters. The findings of these investigations are then used in the application of the
method to the experimental data obtained with the technique presented in chapter 3. Finally,
a summary is given and conclusions are made in section 7.5.
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7.2 Total least squares parameter estimation

The technique for the local parameter estimation presented in this chapter belongs to the class
of so-called subspace methods (Mühlich & Mester, 1999). These methods, which have several
applications in digital signal processing and computer vision (see Mühlich & Mester (1999) for
an overview) achieve the separation of data and noise from a measurement through dividing
the vector space of an overdetermined set of measurements into a data space and an error
space. In other words the rank of the measurement matrix (which typically has full rank due
to noise) is reduced to that of the lower dimensional data space. One of these methods, the
so-called total least squares method has gained growing interest in computer vision over the
last decade (Mühlich & Mester, 1999) and will be used in the present application. Therefore
its basic theory will be introduced below for the example of a straight line fit.

7.2.1 Ordinary least squares

Suppose you want to fit a straight line

y = ax + b (7.1)

to a set of noisy measurements

yi = yi0 + εi with i = 1..n, (7.2)

where the yi0 denote the undisturbed values which are contaminated by independent and
normally distributed additive noise εi with zero mean (〈εi〉 = 0) and variance σ2 (〈ε2

i 〉 = σ2).
An example of this situation is illustrated in figure 7.1 for n = 50, a = 3/2, b = 10 and σ = 5.

Together with the given xi this results for n > 2 in an overdetermined set of equations

yi = axi + b with i = 1..n. (7.3)

The maximum likelihood solution for the sought parameters a and b is then given by those
parameters that yield the minimum sum of squared differences

n∑
i=1

(axi + b − yi)2
!= min. (7.4)

With

A =




x1 1
x2 1
...

...
xn 1


 , �p =

(
a
b

)
, �b =




y1

y2
...

yn


 (7.5)

the set of equations 7.3 can be written as

A�p = �b (7.6)

and the least sum of squared differences 7.4 is defined as

‖A�p −�b‖2 != min. (7.7)
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Figure 7.1: Least squares solution for a straight line fit: The data (•) was calculated from
equation 7.1 with a = 3/2 and b = 10 (- -)-- and contaminated with additive white gaussian
noise according to equation 7.2 with n = 50 and σ = 5. The least squares estimation (- -)
was obtained using equation 7.10 (a = 1.46 and b = 9.5).

The minimum can then be found by setting the partial derivatives to zero:

∂

∂a
‖A�p −�b‖2 = 0

∂

∂b
‖A�p −�b‖2 = 0 (7.8)

⇔ AT (A�p −�b) = 0 (7.9)
⇔ �p = (AT A)−1AT�b (7.10)

(AT A)−1AT is the so-called Pseudoinverse. For white gaussian noise εi this solution for a
and b is the estimator with minimal quadratic error and maximum likelihood. The result of
equation 7.10 for the example given above is shown in figure 7.1.

7.2.2 Total least squares

The ordinary least squares estimation presented above is based on the assumption that the xi

are error-free and only the yi contain noise. What if both the xi and the yi are contaminated
with errors?

xi = xi0 + ηi 〈ηi〉 = 0 〈η2
i 〉 = σ2

x (7.11)
yi = yi0 + εi 〈εi〉 = 0 〈ε2

i 〉 = σ2
y (7.12)

This situation is exemplified in figure 7.2 for n = 50, a = 3/2, b = 10, σx = 2 and σy = 4.
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Figure 7.2: Different Least squares solutions for a straight line fit: The data (•) was calculated
from equation 7.1 with a = 3/2 and b = 10 (- -)-- and then both the xi and yi were contaminated
with additive white gaussian noise according to equations 7.11 and 7.12 (σx = 2 and σy = 4).
The ordinary least squares estimation aOLS = 1.42 and bOLS = 12.5 (- -) was obtained using
equation 7.10. The total least squares estimation without equilibration aTLS = 1.11 and
bTLS = 23.0 (- -) is considerably worse than OLS. The maximum likelihood estimator for this
problem, the equilibrated TLS estimation aeq TLS = 1.46 and beq TLS = 11.6 (- -)-- is slightly
better than OLS.

Again, the maximum likelihood solution is given by the minimal quadratic error:
n∑

i=1

(axi + b − yi)2
!= min. (7.13)

With

A =




−y1 x1 1
−y2 x2 1

...
...

...
−yn xn 1


 �p =


 1

a
b


 (7.14)

the set of equations 7.3 can be written as

A�p = 0 (7.15)

and the least sum of squared differences 7.13 is defined as

‖A�p‖2 != min. (7.16)
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In order to avoid the trivial solution �p = 0, the additional constraint

‖�p‖2 = 1 (7.17)

is required. Here, the difference between this so-called total least squares (TLS) approach and
the ordinary least squares (OLS) estimation described above becomes obvious: In OLS the
minimum is found in the 2D vector space of the 2D vector �p, while in TLS �p is a 3D vector
and the minimum is lying on the unit sphere of the according 3D vector space. The TLS
minimization 7.16 with the constraint 7.17 is then carried out with the method of Lagrange
multipliers:

‖A�p‖2 + λ(1 − ‖�p‖2) != min (7.18)

or with J = AT A
�pT J�p + λ(1 − �pT �p) != min. (7.19)

The minimum is found by setting the partial derivatives with respect to the elements of �p to
zero, which leads to the eigenvalue equation

J�p = λ�p. (7.20)

From the properties of J:

• symmetric → real eigenvalues

• non-negative definite → non-negative eigenvalues

follows that the minimum is given by the eigenvector to the smallest eigenvalue λmin of J :

J�pmin = λmin�pmin. (7.21)

The values for a and b are then obtained by scaling �pmin to satisfy p1 = 1 in equation 7.14:

a =
pmin2

pmin1
, b =

pmin3

pmin1
. (7.22)

The result for the above given example is shown in figure 7.2.

7.2.3 Equilibration

It can be shown (Van Huffel & Vandewalle, 1991) that �pmin given by equation 7.21 is the
maximum likelihood estimator if the errors of the elements of A are independent random
variables with zero mean and equal standard deviation σA:

A = A0 + ∆A 〈∆Aij〉 = 0 〈∆A2
ij〉 = σ2

A (7.23)

Typically this is not the case and each column of A has a different error variance:

A =




−y1 x1 1
−y2 x2 1

...
...

...
−yn xn 1


 (7.24)

↑ ↑ ↑
σ2

y σ2
x σ2

1
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In the example shown in figure 7.2 for instance these values are σx = 2, σy = 4 and σ1 =
0. Therefore the requirement 7.23 is violated which is the reason for the erroneous TLS
estimation in figure 7.2.

To fulfil the requirement 7.23 the columns of A have to be scaled with a weight matrix
WR:

AWRW−1
R �p = 0 (7.25)

WR =


 1/σy 0 0

0 1/σx 0
0 0 1/σ1


 (7.26)

⇒ Aeq�peq = 0 Aeq = AWR �peq = W−1
R �p (7.27)

with Aeq fulfilling the condition 7.23. This transformation towards a matrix Aeq with equal
standard deviations of the elements is called equilibration.

For the final optimal solution �pmin the eigenvector �peqmin to the smallest eigenvalue λeqmin

of Jeq = AT
eqAeq has then to be rescaled:

�pmin = WR�peqmin ⇒ a = pmin2
pmin1

b =
pmin3

pmin1
. (7.28)

As expected the result for the example shown in figure 7.2 proves to be better than OLS and
non-equilibrated TLS.

If one column of A is assumed to be error-free, like in the present example σ1 = 0, the
corresponding element in WR becomes infinite and therefore Aeq is undefined. This problem
can be circumvented by approximating σ1 by the smallest possible value according to the
machine precision or by using the mixed OLS-TLS method given in Van Huffel & Vandewalle
(1991).

7.2.4 Concluding remarks

The presented total least squares method is a generalization of the commonly used (ordinary)
least squares method. Its application is mandatory for the case that several variables are
contaminated with errors. The knowledge of the correct variances for the equilibration is
necessary to obtain the optimal, i.e. maximum likelihood solution. For the demonstrated
example of a straight line fit an instructive geometric interpretation is given in figure 7.3.

7.3 Parameter estimation for linear dynamic processes

The total least squares estimation procedure introduced in the last section has gained much in-
terest in the field of computer vision over the last decade (Mühlich & Mester (1999), Haußecker
et al. (1999)). After describing how the method of TLS can be applied to one of the classical
challenges of computer vision, i.e. the estimation of motion, the framework is extended to the
analysis of any dynamic process that can be modeled by a linear partial differential equation.
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Figure 7.3: Geometric interpretation of different least squares estimators used for a straight
line fit to data with errors in x and y (σx = 2 and σy = 4): a OLS minimizes the deviations
in y-direction to the estimated line, while b TLS minimizes the Euclidean distances. This is
only correct for σx = σy, which is achieved by an equilibration, i.e. scaling of y with a factor
1/2 (c). The so obtained solution has then to be rescaled for the correct result (d).
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Figure 7.4: Example of a time-series t = 1..64 of 2D images (nx = 256, ny = 128) with a
gaussian distribution moving with �u = (4.7, -1.7)T shown for six different times.

7.3.1 Motion estimation in image sequences

Suppose you want to estimate the motion of an object from a discrete set of intensity values
g(x, y, t) of a time-series t = 1, 2, ...nt of 2D image arrays g(1..nx, 1..ny, t), as illustrated in
figure 7.4. If the two assumptions

• the object is moving with constant velocity

• the brightness of the object is constant

are fulfilled, the temporal evolution of g(x, y, t) can be described by the so-called brightness
constancy constraint equation (BCCE)

dg

dt
=

∂g

∂t
+

∂g

∂x

∂x

∂t
+

∂g

∂y

∂y

∂t
= 0 (7.29)

=
∂g

∂t
+ �u�∇g = 0 (7.30)

with �u =

(
ux

uy

)
=




∂x

∂t
∂y

∂t


 and �∇g =




∂g

∂x
∂g

∂y


 . (7.31)

Since the BCCE gives only one constraint for the two unknown velocities ux and uy

for every pixel, additional assumptions have to be made. A commonly used solution for
this problem is the extension to a local neighborhood, assuming that �u is constant in this
neighborhood. This can be formulated as the following minimization problem:

E =
∫ ∞

−∞
w(x − x′, y − y′, t − t′) (

∂g

∂t
+ �u�∇g)2 dx′dy′dt′ != min. (7.32)
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The shape of the local neighborhood is defined by the weighting function w(x−x′, y−y′, t−t′).
Then the local velocities ux and uy can be found by setting the partial derivates to zero:

∂E

∂ux
= 2

∫ ∞

−∞
w(x − x′, y − y′, t − t′)

∂g

∂x
(
∂g

∂t
+ �u�∇g) dx′dy′dt′ = 0 (7.33)

∂E

∂uy
= 2

∫ ∞

−∞
w(x − x′, y − y′, t − t′)

∂g

∂y
(
∂g

∂t
+ �u�∇g) dx′dy′dt′ = 0 (7.34)

With the notation g =
∫ ∞
−∞ w(x − x′, y − y′, t − t′) g dx′dy′dt′ for the weighted averaging this

leads to the set of equations



∂g

∂x

∂g

∂x

∂g

∂x

∂g

∂y

∂g

∂y

∂g

∂x

∂g

∂y

∂g

∂y




(
ux

uy

)
= −




∂g

∂x

∂g

∂t
∂g

∂y

∂g

∂t


 (7.35)

⇔ A�u = �b ⇒ �u = A−1�b. (7.36)

This differential method can be used in principle to estimate �u, it has however two drawbacks:

• the solution for �u becomes undefined or instable for detA equal or close to zero.

• the estimate of �u takes only errors in ∂g
∂t into account, but not in ∂g

∂x and ∂g
∂y .

These issues will be adressed in the following paragraph.

7.3.2 Tensor approach

The example of a time-series of 2D images shown in figure 7.4 can be represented alternatively
as a 3D intensity distribution with the third axis denoting time as illustrated in figure 7.5.
From this point of view the motion of an object in a 2D image can be understood as a 3D
orientation in the corresponding 3D spatiotemporal intensity distribution. As shown in figure
7.5 the velocities can then be calculated as

ux = tan ϕx =
∆x

∆t
and uy = tan ϕy =

∆y

∆t
(7.37)

or from the normalized vector of 3D orientation

�p =


 px

py

pt


 with �pT �p = 1 (7.38)

⇒ ux =
px

pt
and uy =

py

pt
(7.39)

The orientation �p in the neighborhood of the spatiotemporal position �x = (x, y, t)T is
defined as the direction of minimal intensity changes and is therefore given by the solution of
the minimization problem

E =
∫ ∞

−∞
w(x − x′, y − y′, t − t′) (�∇gT �p)2 dx′dy′dt′ != min, (7.40)
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Figure 7.5: 3D representation of the time-series of 2D images with a moving gaussian distri-
bution shown in figure 7.4. The velocities ux and uy can be estimated from the orientation
of the 3D spatiotemporal intensity distribution according to equation 7.39.

where �∇g =




∂g

∂x
∂g

∂y

∂g

∂t




(7.41)

denotes the 3D spatiotemporal gradient vector. The average over the local neighborhood
defined by w is made under the assumption that (ux, uy)T =const. within the neighborhood.
With

J =
∫ ∞

−∞
w(x − x′, y − y′, t − t′) (�∇gT �∇g) dx′dy′dt′ =




∂g

∂x

∂g

∂x

∂g

∂x

∂g

∂y

∂g

∂x

∂g

∂t

∂g

∂y

∂g

∂x

∂g

∂y

∂g

∂y

∂g

∂y

∂g

∂t

∂g

∂z

∂g

∂x

∂g

∂z

∂g

∂y

∂g

∂z

∂g

∂t




(7.42)

this can be written as
E = �pT J�p

!= min. (7.43)

With the additional constraint �pT �p = 1 the minimization problem can then be solved analo-
gously to equation 7.19 with the method of Lagrange multipliers:

�pT J�p + λ(1 − �pT �p) != min. (7.44)
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Again this results in an eigenvalue problem for J

J �p = λ �p (7.45)

and the optimal solution �pmin is given by the eigenvector to the smallest eigenvalue λmin:

J �pmin = λmin �pmin (7.46)

and the local velocity �u at the spatiotemporal position �x = (x, y, t)T can be calculated as

�umin =

(
ux

uy

)
=




px

pt

py

pt


 . (7.47)

In contrast to the OLS motion estimation 7.36, this TLS estimation allows for errors in all
variables ∂g

∂t ,
∂g
∂x and ∂g

∂y . In the case of independent errors with zero mean and equal variance
this is the maximum likelihood solution. If the variables have different errors, the tensor J
must be equilibrated in analogy to section 7.2.3 using a weight matrix WR:

Jeq =
∫ ∞

−∞
w(x − x′, y − y′, t − t′) (W T

R
�∇gT �∇g WR) dx′dy′dt′ (7.48)

and the solution of the eigenvalue problem then has to be rescaled according to �pmin =
WR�pmin eq. For the proper choice of the elements of WR see section 7.3.6.

7.3.3 Aperture problem

In practical applications it is often the case that a moving 2D object has structure only in
one direction, e.g. a moving edge. This situation is illustrated in figure 7.6. Now the solution
of the minimization problem 7.40 is not a single orientation vector, but a 2D vector space
corresponding to the planes of constant intensity spanned by the vectors �p1 and �p2 shown in
the 3D representation figure 7.7. In the eigenvalue problem 7.45 there will be two eigenvalues
λ1 and λ2 equal or close to zero and the 2D space of possible solutions is spanned by the
corresponding eigenvectors �e1 and �e2:

�p = a1�e1 + a2�e2. (7.49)

The problem that the solution of equation 7.46 is no longer unique if a 2D object has structure
in only one direction is known as the aperture problem.

It is important to realize that the ambiguity of the solution is not a deficiency but a feature
of the estimation method. Whereas the OLS solution 7.36 would simply become divergent,
the eigenvalue spectrum of the TLS estimator directly reveals the problem and a numerically
stable solution can be calculated as described in section 7.3.5. The different cases of the
eigenvalue spectrum of J can be classified as follows:

• λ1 = λ2 = λ3 = 0: constant grayvalue → no further analysis.

• λ1 > 0, λ2 = λ3 = 0: spatial orientation and constant motion → only one velocity
component can be estimated.
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Figure 7.6: Example of a time-series t = 1..64 of 2D images (nx = 256, ny = 128) with
an object moving in x-direction with ux = 5 shown for six different times. Since the object
has structure only in x-direction, no information about its movement in y-direction can be
obtained from this image sequence.

• λ1, λ2 > 0, λ3 = 0: distributed spatial structure and constant motion → both velocity
components can be estimated.

• λ1, λ2, λ3 > 0: distributed spatial structure and non-constant motion → no further
analysis.

This possibility to directly recognize what kind of information can be obtained from the data
is a very attractive feature of the TLS estimation technique.

7.3.4 Extension to linear models

Until now it was assumed that the temporal change of intensity ∂g
∂t was caused only by move-

ment. This led to the BCCE 7.30 and to the further conclusion that movement corresponds
to the direction of minimal intensity changes defined by equation 7.40. However this as-
sumption if often violated by additional dynamic processes causing intensity changes, like e.g.
diffusion, exponential decay or changes of illumination. For the case of isotropic diffusion this
is exemplified in figures 7.8 and 7.9.

The presence of such processes must then be included in the BCCE. For the above exam-
ples the resulting extended BCCE’s are as follows.

Isotropic diffusion As presented in section 2.2 the process of isotropic diffusion can be
described by the differential equation

dg

dt
= D ∆g = D (

∂2g

∂x2
+

∂2g

∂y2
). (7.50)

with D denoting the diffusion coefficient. Together with constant movement the BCCE
extends to

dg

dt
=

∂g

∂t
+ ux

∂g

∂x
+ uy

∂g

∂y
− D (

∂2g

∂x2
+

∂2g

∂y2
) = 0. (7.51)
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Figure 7.7: 3D representation of the image sequence shown in figure 7.6. Contrary to the
situation shown in figure 7.5, where a unique local orientation could be estimated, this situ-
ation is characterized by the so-called aperture problem: The directions of minimal intensity
changes are lying in a plane spanned by �p1 and �p2 and consequently the velocity uy cannot be
estimated. The velocity in x-direction ux can be estimated from the minimum norm solution
7.67.

Anisotropic diffusion Anisotropic diffusion is a generalization of isotropic diffusion which
can be used e.g. to model dispersion in a porous medium. It is described by the differ-
ential equation

dg

dt
= �∇ (D �∇g) =




∂

∂x
∂

∂y




(
Dxx Dxy

Dxy Dyy

) 


∂g

∂x
∂g

∂y




= Dxx
∂2g

∂x2
+ 2Dxy

∂2g

∂x∂y
+ Dyy

∂2g

∂y2
= 0. (7.52)

Here D denotes the symmetric 2 × 2 diffusion tensor. The resulting extended BCCE is
then given by:

dg

dt
=

∂g

∂t
+ ux

∂g

∂x
+ uy

∂g

∂y
− Dxx

∂2g

∂x2
− 2Dxy

∂2g

∂x∂y
− Dyy

∂2g

∂y2
= 0. (7.53)

Exponential decay A process, where the probability for the decay within the time dt of a
substance is constant, like e.g. for radioactive substances, follows the law of exponential
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Figure 7.8: Example of a time-series t = 1..64 of 2D images (nx = 256, ny = 128) showing a
gaussian distribution moving with �u = (4.7, -1.7)T , which is additionally subject to diffusion,
for six different times. In contrast to the situation in figure 7.4, brightness changes are caused
by a combination of movement and diffusion, and therefore the BCCE must be extended
according to equation 7.51.

decay which is described by the differential equation

dg

dt
= −κ g (7.54)

with κ denoting the decay constant. Here the resulting extended BCCE is given by

dg

dt
=

∂g

∂t
+ ux

∂g

∂x
+ uy

∂g

∂y
+ κ g = 0. (7.55)

Linear changes of intensity The process of a linear change of intensity, caused e.g. by a
change of illumination or by external sources or sinks, can be described by the differential
equation

dg

dt
= q, (7.56)

where q denotes the source strength. Then the BCCE extends to

dg

dt
=

∂g

∂t
+ ux

∂g

∂x
+ uy

∂g

∂y
− q = 0. (7.57)

3D anisotropic diffusion Although the above examples are all formulated for 2D image
sequences, the presented formalism can be applied in any dimension. As an example
the differential equation for a 3D anisotropic diffusion process is given by

dg

dt
= �∇ (D �∇g) =




∂

∂x
∂

∂y

∂

∂z





 Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz







∂g

∂x
∂g

∂y

∂g

∂z




=
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t
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Figure 7.9: 3D representation of the image sequence shown in figure 7.8. In opposition to
the situation shown in figure 7.5, the velocity of the object cannot be estimated from the
direction of minimal intensity changes. Here the velocities are part of a 4D parameter vector
�p which is estimated from an extended tensor J given by equation 7.61, with �p and �d given
by the 2D isotropic diffusion model in table 7.1.

= Dxx
∂2g

∂x2
+ Dyy

∂2g

∂y2
+ Dzz

∂2g

∂z2
+ 2Dxy

∂2g

∂x∂y
+ 2Dxz

∂2g

∂x∂z
+ 2Dyz

∂2g

∂y∂z
, (7.58)

where D now denotes the symmetric 3 × 3 diffusion tensor. This results in the extended
BCCE

dg

dt
=

∂g

∂t
+ ux

∂g

∂x
+ uy

∂g

∂y
+ uz

∂g

∂z
− Dxx

∂2g

∂x2
− Dyy

∂2g

∂y2
− Dzz

∂2g

∂z2

−2Dxy
∂2g

∂x∂y
− 2Dxz

∂2g

∂x∂z
− 2Dyz

∂2g

∂y∂z
= 0. (7.59)

In principle, for every process that can be described by a linear differential equation, and
for any combination of these, a corresponding differential equation for optical flow, i.e. an
extended BCCE, can be formulated and its parameters can be estimated. For that purpose
the minimization problem 7.40 is reformulated in the generalized form

E =
∫ ∞

−∞
w(x − x′, y − y′, t − t′) (�dT �p)2 dx′dy′dt′ != min. (7.60)

The corresponding pairs of data vector �d and parameter vector �p are given in table 7.1.
Analogous to equation 7.40 it is assumed that the parameters �p are constant within the local
neighborhood defined by w. With the extended tensor J defined by

J =
∫ ∞

−∞
w(x − x′, y − y′, t − t′) (�d �dT ) dx′dy′dt′ (7.61)
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model �d �p

2D translation
(

∂g

∂x
,
∂g

∂y
,
∂g

∂t

)T

(ux, uy, 1)T

2D translation
+ isotropic diffusion

(
∂g

∂x
,
∂g

∂y
,
∂2g

∂x2
+

∂2g

∂y2
,
∂g

∂t

)T

(ux, uy,−D, 1)T

2D translation
+ anisotropic diffusion

(
∂g

∂x
,
∂g

∂y
,
∂2g

∂x2
,

∂2g

∂x∂y
,
∂2g

∂y2
,
∂g

∂t

)T

(ux, uy,−Dxx,−2Dxy,−Dyy, 1)T

2D translation
+ exponential decay

(
∂g

∂x
,
∂g

∂y
, g,

∂g

∂t

)T

(ux, uy, κ, 1)T

2D translation
+ linear change

(
∂g

∂x
,
∂g

∂y
, 1,

∂g

∂t

)T

(ux, uy,−q, 1)T

3D translation

(
∂g

∂x
,
∂g

∂y
,
∂g

∂z
,
∂2g

∂x2
,
∂2g

∂y2
,
∂2g

∂z2
(ux, uy, uz,−Dxx,−Dyy,−Dzz

+ anisotropic diffusion ∂2g

∂x∂y
,

∂2g

∂x∂z
,

∂2g

∂y∂z
,
∂g

∂t

)T

−2Dxy,−2Dxz,−2Dyz, 1)T

Table 7.1: Associated pairs of data vector �d and parameter vector �p for the TLS parameter
estimation with different extended linear models. The n elements of �p are always ordered so
that pn = 1.

this leads to the analogous eigenvalue problem

J�p = λ�p. (7.62)

The application of particular models then differs only in the choice of the corresponding
vectors �d and �p, which are given for the above models in table 7.1. For simplicity the following
formulations are often restricted to 2D models.

With the extension of the BCCE also the classification of the eigenvalue spectrum of J
has to be extended. In general the TLS estimation divides the n dimensional vector space of
�p into a p dimensional data space and a n − p dimensional nullspace or error space (in the
presence of noise). The nullspace is spanned by the eigenvectors to the eigenvalues equal or
(in the presence of noise) close to zero. Every vector in the nullspace is a possible solution. As
a consequence, only p parameters can be estimated. For a reasonable solution the nullspace
must have at least dimension 1. If the dimension is equal to 1, the parameters p1, p2, ...,
pn−1 have a unique solution due to the additional constraint pn = 1 (see table 7.1). If no
eigenvalue is close to zero, either a wrong model was chosen or the level of noise is too high.

If the elements of �d are contaminated with errors of different variance, �d has to be properly
equilibrated in analogy to sections 7.3.2 and 7.2.3

�deq = �dWR with WR =




1/σ1 0 · · · 0

0 1/σ2
...

...
. . . 0

0 · · · 0 1/σ4


 (7.63)
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and the solution �pmin eq of the following eigenvalue problem Jeq�peq = λeq�peq then must be
rescaled according to �pmin = WR�pmin eq.

7.3.5 Minimum norm solution

As stated above, any vector in the nullspace is a possible solution of the minimization problem
7.60. If its dimension is higher than 1, the most reasonable choice is often that with minimal
(euclidean) norm. In the example of a moving edge shown in figure 7.6 for instance, the
minimum norm solution would give the velocity vector perpendicular to the edge.

If the eigenvalues are arranged in descending order, λ1 > ... > λp > λp+1 ≈ ... ≈ λn ≈ 0,
the nullspace is spanned by the eigenvectors �ei with i > p, and every linear combination

�p =
n∑

i=p+1

ri�ei = E�r with E = (�ep+1 · · ·�en) =




e(p+1)1 · · · en1
...

. . .
...

e(p+1)n · · · enn


 (7.64)

is a possible solution to the minimization problem 7.60. The minimum norm solution �pmin is
then given by

‖�p‖2 = �rT ET E�r = �rT�r =
n∑

i=p+1

r2
i

!= min (7.65)

and the additional constraint pn = 1 can be written as

pn =
n∑

i=p+1

riein = �vT E�r = 1 with �v = (0, · · · 0, 1)T . (7.66)

The solution of this constrained minimization problem is given by

�pmin =
EET�v

�vT EET�v
. (7.67)

For a complete derivation of the solution see Spies (2001). It is noted that the demand for
the minimal norm 7.65 is not always justified. As an alternative, a variational method using
a smoothness constraint presented in Spies (2001) can be used. In section 7.4.5, a modified
minimization criterion based on physical constraints is introduced which is adapted for the
parameter estimation in a 2D anisotropic diffusion process.

7.3.6 Computational aspects

Nothing has yet been said about some important aspects of the computational implementation
of the TLS parameter estimation. While the formalism presented until here was given in its
continous form, a suitable discretization is needed to account for the discrete form of the
image data.

Calculation of derivatives

The estimation of the derivatives ∂g
∂t ,

∂g
∂x , ∂g

∂y , ∂2g
∂x2 , ∂2g

∂x∂y etc. from the given image data
set g(x1..xnx , y1..yny , t1..tnt) at discrete times tk and positions (xi, yj)T is implemented as
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a discrete convolution with an appropriate filter mask h(−Rx..Rx,−Ry..Ry,−Rt..Rt)T (see
Jähne (2002)):

g′(xi, yj , tk) = h ∗ g =
Rx∑

xl=−Rx

Ry∑
ym=−Ry

Rt∑
tn=−Rt

h(xl, ym, tn)g(xi − xl, yj − ym, tk − tn). (7.68)

Scharr (2000) has compared different choices for the filter mask h with regard to systematic
errors, i.e. deviations from the corresponding analytical derivative, and to their stability in
the presence of noise. It was found that the choice of the filter mask has appreciable influence
on the accuracy of a subsequent TLS parameter estimation. A comprehensive analysis and
discussion of this issue is given in section 7.4.1.

Averaging over a local neighborhood

For the calculation of the n × n tensor J the values of �d �dT have to be averaged over a local
neighborhood according to equation 7.61. This is necessary to increase the rank of J and
therefore decrease the ambiguity of the resulting solution. Uniqueness of the result is reached
if the rank of J is equal to n − 1. Therefore the size of the local neighborhood must be
chosen carefully: It must be large enough to avoid ambiguity and to reduce the uncertainty
of the estimated parameters, resulting from noise in the image data, to an acceptable level.
On the other hand it also must be small enough to fulfill the assumption of locally constant
parameters made with equation 7.60. The extensions of the neighborhood in x-, y- and t-
direction can be chosen separately. For the analysis of a stationary flow field for instance
it is reasonable to extend the neighborhood over the whole temporal range and use a small
spatial neighborhood. For a discrete set of image data, the integral describing the average
in equation 7.61 is replaced by a convolution with an appropriate (mostly binomial or box
shaped) averaging filter mask B according to equation 7.68. The elements of J are then
calculated as

Jpq = B ∗ (Dp ∗ g · Dq ∗ g), p, q = 1..n, (7.69)

where Dp and Dq denote the respective derivative filters and · denotes the pointwise multi-
plication.

Equilibration weight matrix

As noted in section 7.3.4, for the correct solution the elements of �d must be scaled with a
weight matrix WR in order to equilibrate their error variances σ2

i as expressed by equation
7.63. Consequently the relative magnitudes of the errors for the elements of �d must be known
a priori. Under the assumption that the image data g is contaminated with independent
and identically distributed gaussian noise with variance σ2

d = 〈(g − g)2〉, the variances σ2
i =

〈(di − di)2〉 constituting the elements of WR can be calculated as

σ2
i = var(Di ∗ g) = σ2

d

Rx∑
xj=−Rx

Ry∑
yk=−Ry

Rt∑
tl=−Rt

D2
i (xj , yk, tl) (7.70)

from the elements of the filter mask Di. As an example, the variance for a derivative obtained
with the 1D filter mask D = (−1/8 6/8 0 − 6/8 1/8) is σ2

D = 74
64σ2

d. A numerical validation
of this relation is presented in section 7.4.3. The knowledge of σ2

d is not necessary for the
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equilibration and can be set to σ2
d = 1 because only the relative magnitudes are needed. It is

however necessary for the classification of the eigenvalue spectrum as described below. For a
characterization of noise in the image data obtained with the experimental technique used in
this work see section 5.6.

Classification of eigenvalue spectra and confidence measures

In an ideal situation there would be one eigenvalue of J exactly zero and the sought parameters
could be readily obtained from the corresponding eigenvector. However, since image data
always contains noise (at least the quantization noise), the smallest eigenvalue will hardly
become exactly zero. If aperture problems occur, more eigenvalues will be close to zero. From
this the question arises how the term close to zero can be quantified, i.e. which eigenvectors
belong to the nullspace and which to the data space.

After the equilibration according to equation 7.63 the errors of the elements of �deq are
assumed to be independent with zero mean and same variance σ2

d:

〈di dj〉 = σ2
dδij . (7.71)

Then noise simply results in an additive diagonal matrix J ′
eq = Jeq + kBσ2

d, where kB =√∑NB
i=1 B2

i is given by the elements Bi of the averaging filter B and consequently the eigen-
values of Jeq are shifted according to

λ′
i = λi + kBσ2

d (7.72)

(Spies, 2001). On this basis, an eigenvector can be attributed to the nullspace if its eigenvalue
is smaller than a threshold τ1 of about τ1 ≈ kB(3σd)2. The value of σ2

d can be evaluated by
trial and error or by a separate analysis as described in section 5.6. If the smallest eigenvalue
is higher than τ1, either the noise is higher than assumed, or the model is not compatibel with
the data, and the parameters estimated from the associated eigenvector should be handled
with care.

Apart from the smallest eigenvalue as a measure of noise the trace of J can be used to
determine the amount of structure in the data. Often the parameters can only be estimated
reliably if the amount of structure is above a certain level. Therefore it makes sense to check
if the trace of J is above a certain threshold τ2 before the following eigenvalue problem 7.62
is solved. Again the value of τ2 is preferably found by trial and error. Spies (2001) found a
value of τ2 ≈ 15 if a normalized averaging filter B is used.

For the remaining estimates that have passed the thresholds τ1 and τ2 it is often desirable
to quantify their reliability by an appropriate confidence measure, like e.g. the goodness-of-fit
6.17 for the global parameter estimation in chapter 6. The determination of suitable confi-
dence measures is an object of ongoing research (Nestares et al., 2000), which is complicated
by the nonlinearity of the eigenvalue problem. Spies (2001) suggests a quantity that measures
how close the smallest eigenvalue λn came to the threshold τ1:

ωc =




0 if λn > τ1or tr(J) < τ2(
τ1−λn
τ1+λn

)2
else

(7.73)

For λn = 0 the confidence is one and for λn → τ1 the confidence goes to zero. Another
confidence measure used in this work, which will be introduced in section 7.4.4, is the ratio
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of λn to the product of the trace of J and the size NB of the averaging filter B, which can be
interpreted as an noise-to-signal ratio:

ωNSR =
λn

NBtr(J)
, (7.74)

The performances of different confidence measures are evaluated and compared in section
7.4.4.

7.4 Application to simulated data

As explained in section 7.3.6, the presented technique has several critical issues which can
have strong influences on the accuracy of the results and therefore have to be chosen carefully.
In detail these are

• the choice of the filters D for the calculation of the elements of the tensor J with
equation 7.69.

• the shape of the averaging filter mask B used in equation 7.69.

• the weight matrix WR used to equilibrate the elements of �d according to equation 7.63.

• the choice of appropriate thresholds τ1 and τ2 for λn (see section 7.3.6) or the use of
other methods to estimate the dimension of the nullspace of J .

• a suitable confidence measure for the quantification of the accuracy of the estimated
parameters.

With simulated test data it is possible to study their influences on the accuracy of the es-
timated parameters making use of the a priori known results (the so-called ground truth),
which have been used to generate the data. The optimal choice of the parameters listed above
depends on properties of the data (amplitudes of signal and noise) and the model that is fit-
ted to the data. In the following subsections the impact and optimal choice is investigated
separately for each of the above listed parameters.

7.4.1 Choice of filter masks

It is obvious that the accuracy of the parameters estimated from the tensor J depends strongly
on the accuracy of its elements Jpq, which are obtained from the image data through the
application of appropriate linear filters D according to equation 7.69. Since the eigenvalue
analysis is a highly nonlinear operation, no analytical relation between errors of the elements
Jpq and errors of the estimated parameters �p can be given, and therefore a numerical analysis
is employed. This subsection deals with the choice of optimal, i.e. most accurate, linear filters
D for the estimation of the corresponding derivatives. In the case of a 2D CDE described
by the BCCE 7.53 for example, these are the first order derivatives ∂g

∂t ,
∂g
∂x and ∂g

∂y and the

second order derivatives ∂2g
∂x2 , ∂2g

∂x∂y and ∂2g
∂y2 .

The accuracy of linear filters can be defined with respect to two different criteria. The
first is the amount of systematic errors, which can be defined by the deviations between the
responses of the examined filter and an ideal filter. The second criterium is the statistical
error of the filter response if the signal, i.e. the image data, is contaminated with noise.
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At first an analysis of systematic errors of different filters will be given in the following.
Therefore the response of a discrete linear shift-invariant 1D filter hx (x=0..N-1) is charac-
terized by its so-called transfer function, i.e. its discrete fourier transform

h̃k =
1√
N

N−1∑
x=0

hx exp
(
−2πikx

N

)
, k = 1..N − 1. (7.75)

The inverse discrete fourier transform is given by

hx =
1√
N

N−1∑
k=0

h̃k exp
(

2πikx

N

)
, x = 1..N − 1. (7.76)

The importance of this fourier space representation comes from the fact that the convolu-
tion of a 1D signal gx (x=0..N-1) with the filter hx, g′ = h ∗ g, corresponds to a pointwise
multiplication in fourier space:

g′x =
N−1∑
x′=0

hx′gx−x′ ⇔ g̃′k = h̃k · g̃k (7.77)

Furthermore, also the partial derivatives ∂/∂x, ∂2/∂x2 etc. can be written as a multiplication
in fourier space:

g′x = ∂g/∂x ⇔ g̃′k = 2πikg̃k (7.78)
g′x = ∂2g/∂x2 ⇔ g̃′k = −4π2k2g̃k (7.79)
g′x = ∂ng/∂xn ⇔ g̃′k = (2πik)ng̃k (7.80)

This formalism can easily be extended to analogous formulations in higher dimensions (see
Jähne (2002)). From this it is now possible to evaluate the systematic errors of different first
and second order derivative filters by comparing their transfer functions with the reference
functions 7.78 and 7.79. Table 7.2 shows the definitions of the first order derivative filters hx1,
hx2, hx3 and hxcutoff and of the corresponding second order derivative filters hxx1, hxx2, hxx3

and hxxcutoff . hx1 and hx3 are the 3- and 5-element filters that have been optimized by Scharr
(2000) with respect to minimum deviation from the reference function. hx2 is a 5-element
filter which is damped at high frequencies. hxcutoff is defined by its fourier transform h̃xcutoff ,
and therefore it is applied to the fourier transform of a signal by pointwise multiplication
according to equation 7.77. It is equal to the reference function 7.78 for k < kcutoff and zero
for k ≥ kcutoff . The corresponding second order filters hxx1, hxx2, hxx3 and hxxcutoff are defined
analogously (see table 7.2). Figure 7.10a shows the absolute value of the transfer functions of
the first order derivative filters together with the reference function, and figure 7.10c shows
the deviations from the reference function. The same is shown for the second order filters
in figure 7.10b+d. Obviously all filters are close to the reference for low frequencies. For
higher frequencies, the optimized 5-/9-element filters hx3/hxx3 are the best, followed by the
optimized 3-/5-element filters hx1/hxx1. The filters hx2/hxx2 show the highest damping at
high frequencies. For further analysis a test signal ggauss was generated as

ggauss(x) = 250 · e−
(x−x0)2

2σ2 , x0 = 100, σ = 12, x = 1..256. (7.81)

The signal and the absolute value of its fourier transform are shown in figure 7.10e+f. The
filters were then used to estimate the derivatives from the data. Figure 7.10g+h show the
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First order derivative filters
Notation Definition Comments
hxref h̃xref(k) = ik Reference function.
hx1 hx1 = [ −1 0 1 ]/2 Optimal 3-element filter (Scharr, 2000).

hx2 hx2 = [ −2 −1 0 1 2 ]/10
5-element filter with damping for
high frequencies.

hx3 hx3 = [ 1 −6 0 6 −1 ]/8 Optimal 5-element filter (Scharr, 2000).

hxcutoff h̃xcutoff =

{
ik k < kcutoff

0 k ≥ kcutoff

Reference function with cut-off
at k = kcutoff .

hxWiener see equation 7.83
Wiener filter calculated with equation 7.83
using the spectral density ‖g̃gauss(k)‖2 and
assuming white noise with σ2 = 1.

Second order derivative filters
Notation Definition Comments
hxxref h̃xxref = −k2 Reference function.

hxx1
hxx1 = hx1 ∗ hx1

= [ 1 0 −2 0 1 ]/4
Optimal 5-element filter.

hxx2
hxx2 = hx2 ∗ hx2

= [ 4 4 1 −4 −10 −4 1 4 4 ]/100
9-element filter with damping for
high frequencies.

hxx3
hxx3 = hx3 ∗ hx3

= [ 1 −12 36 12 −74 12 36 −12 1 ]/64
Optimal 9-element filter.

hxxcutoff h̃xxcutoff =

{
−k2 k < kcutoff

0 k ≥ kcutoff

Reference function with cut-off
at k = kcutoff .

hxxWiener see equation 7.83
Wiener filter calculated with equation 7.83
using the spectral density ‖g̃gauss(k)‖2 and
assuming white noise with σ2 = 1.

Table 7.2: Definitions of first and second order derivative filters.

results together with the analytical solution, and figure 7.10i+j show the deviations from the
analytical solution. Since the signal is restricted to low frequencies (see figure 7.10f), it is no
surprise that hxcutoff and hxxcutoff coincide with the analytical solution, and also the other
filters perform reasonably well. As expected, hx3/hxx3 show the smallest deviations, followed
by hx1/hxx1 and hx2/hxx2.

In the following now the statistical error of the derivative filters, i.e. the statistical error of
the estimated derivatives if the data is contaminated with noise, will be examined. Typically
image data is always affected by noise from various sources, at least from quantization noise
due to the restriction to 8-bit integer values, and further e.g. from thermal CCD noise or
electronics noise (see section 5.5). Typically it is assumed as a first approximation that the
noise n(x) of adjacent pixels x and x+1 is not correlated, which leads to a constant so-called
white noise spectrum

‖ñ‖2(k) = σ2
n, with σ2

n = 〈n2〉. (7.82)

For the following examinations the test signal ggauss (equation 7.81) was contaminated firstly
with quantization noise, i.e. rounded to integer values and secondly with white gaussian noise
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Figure 7.10: Comparison of 1D derivative filters with respect to systematic error: Transfer
functions of a first order and b second order filters. Deviations from reference for c first
order and d second order filters. e Test signal (gaussian curve) and f corresponding fourier
spectrum. Estimation of g first order and h second order derivative and i+j deviations from
reference.
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with σ2
n = 1 as shown in figure 7.11c+d. The corresponding logarithmized absolute values

of the fourier spectra are given in figure 7.11e+f, showing that for high k the spectra are
fully dominated by noise close to the analytical values log(‖ñ‖quant) = log( 1√

12
) = −1.24 and

log(‖ñ‖white) = log(σ) = 1. The problem of finding an optimal filter in the presence of noise
was firstly solved independently by Wiener (1942) and Kolmogoroff (1941). If the spectra of
the unperturbed signal g and the noise n are known, the filter hWiener which is optimal in the
sense of minimum squared deviations from the unperturbed result h ∗ g is given by (see e.g.
Hänsler (2001)):

h̃Wiener(k) = h̃(k)
‖g̃(k)‖2

‖g̃(k)‖2 + ‖ñ(k)‖2
. (7.83)

This relation was used to calculate hxWiener and hxxWiener for h̃(k) = h̃xref (k)/h̃xxref (k),
‖g̃(k)‖2 = ‖g̃gauss(k)‖2 and ‖ñ(k)‖2 = 1. The results are shown together with the reference
functions and hxcutoff/hxxcutoff in figure 7.11a+b. As expected the Wiener filters are close
to the reference function where the signal is stronger than noise and otherwise close to zero.
Then the estimated first order derivatives of the signal with white noise (σ2

n = 1), obtained
by the filters hx2, hx3, hxcutoff and hxWiener are compared to the analytical reference function
as shown in figure 7.11g+i. As expected the Wiener filter shows the smallest deviations from
the reference. The deviations of the cutoff filter are only little higher. Both hx2 and hx3

show considerable deviations, but those of hx3 are significantly higher. Similar results were
obtained for the corresponding second order derivatives shown in figure 7.11h+j. Here the
deviations of hxx2 and most notably those of hxx3 are even higher.

The results discussed above lead to some important conclusions concerning the prospective
choice of optimal filters for the TLS parameter estimation technique described in section 7.2.
The results have shown that already a small amount of noise (σ2 = 1, see figure 7.11c+d)
can have large impact on the estimation of the first order, and even more on the second order
derivative. The filters that were optimized for minimal systematic error, hx3 and hxx3, proved
to be most susceptible to noise. Thus the optimization with respect to statistical errors is much
more important than to systematic error in practical applications. It is therefore necessary
to take into account the spectral properties of the signal and noise for suitable choice of
derivative filters. Often the spectrum of the signal is not a priori known, so that the optimal
Wiener filter given by equation 7.83 cannot be used. However, if the spectrum is known to be
restricted to a range k < kcutoff , a corresponding cutoff filter can be used which gives results
that are comparabel to those of the Wiener filter as shown in figure 7.11i+j. Since the example
of the gaussian signal ggauss used above is quite similar to the data measured in this work
(i.e. solutions of a convection-dispersion equation), the employment of cutoff filters seems
reasonable. For other applications, were the spectrum of the data is not bandlimited, other
methods are availible to reduce noise before estimating the derivatives, like e.g. anisotropic
diffusion (Scharr, 2000), cubic smoothing splines (Green & Silverman (1994) and appendix
A), wavelets or simulated annealing.

Until now only 1D filters were considered. If the data has two or more dimensions, the
derivative filters discussed above can be extended accordingly. This offers the possibility to
further reduce noise by the application of a smoothing filter perpendicular to the direction of
the derivative. As an example the 2D so-called Sobel operator

hxSobel =
1
2

(
1 0 −1

)
∗ 1

4


 1

2
1


 =

1
8


 1 0 −1

2 0 −2
1 0 −1


 (7.84)
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Figure 7.11: Comparison of 1D derivative filters with respect to statistical error: Transfer
functions of a first order and b second order filters. c+d Test signal (gaussian curve) with
quantization noise and white noise (σ2 = 1). e+f Corresponding fourier spectra. Estimation
of g first order and h second order derivatives from the test signal with white noise and i+j
deviations from reference.
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1D first order3D filter set
derivative (i ∈ {x, y, t})

h2 h2i 1D = [ −2 −1 0 1 2 ]/10
h3 h3i 1D = [ 1 −6 0 6 −1 ]/8

hcutoff h̃cutoffi 1D =

{
ik k < kcutoff

0 k ≥ kcutoff

1D second order3D filter set
derivative (i ∈ {xx, yy})

h2 h2i1D = [ 4 4 1 −4 −10 −4 1 4 4 ]/100
h3 h3i1D = [ 1 −12 36 12 −74 12 36 −12 1 ]/64

hcutoff h̃cutoffi 1D =

{
−k2 k < kcutoff

0 k ≥ kcutoff

3D filter set 1D smoothing (i ∈ {x, y, t})
h2 h2 smoothi = [ 1 4 6 4 1 ]/16
h3 h3 smoothi = [ 1 4 6 4 1 ]/16

hcutoff h̃cutoff smoothi =

{
1 k < kcutoff

0 k ≥ kcutoff

Table 7.3: 3D derivative filter sets used for the TLS parameter estimation. Each set is
composed of 1D first and second order derivatives and perpendicular 1D smoothing filters in
x-, y-, and t-direction respectively.

uses the filter [1, 0, −1]/2 for the horizontal derivative and the [1, 2, 1]/4 filter mask for smooth-
ing in the vertical direction. For the selection of the filters for perpendicular smoothing the
above considerations apply correspondingly. For data with bandlimited spectra for instance
cutoff filters can be used.

In the following now the above discussed sets of derivative filters will be applied in a
TLS parameter estimation in order to investigate the influence of the filter accuracy on the
accuracy of the TLS parameters. Therefore a synthetic image sequence of a simulated 2D
convection-dispersion process according to equation 7.53 was generated as shown in figure
7.12. The parameters used for the simulation,

�v =

(
vx

vy

)
=

(
4.70
−1.71

)
⇔ ‖�v‖ = 5, (7.85)

D =

(
Dxx Dxy

Dxy Dyy

)
=

(
7.03 −1.29
−1.29 3.97

)
⇔ DL = 7.5, DT = 3.5, (7.86)

were constant over space and time, resulting in a constant true parameter vector (see table
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Figure 7.12: Synthetic test data set of a simulated 2D convection-dispersion process used for
the performance analysis of TLS parameter estimation. The data set, which consists of 50 2D
images (x = 1..256, y = 1..128, t = 1..50), is shown for t =10, 20, 30 and 40. The parameters
vx = 4.70, vy = −1.71 (plotted as vectors), Dxx = 7.03, Dxy = −1.29 and Dyy = 3.97
(represented as ellipses) used for the simulation are constant in space and time. For better
visibility the velocity vectors in the illustration are scaled with a factor 2.
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7.1)

�ptrue =




4.70
−1.71
−7.03
2.57
−3.97

1




. (7.87)

Three different sets of derivative filters, based on the 1D filter sets h2, h3 and hcutoff given
in table 7.2 were chosen for a comparison. The 1D derivative filters were extended to 3D
filters using appropriate perpendicular 1D smoothing filters, in analogy to equation 7.84 for
the 2D sobel operator. The utilized 1D filters for the three filter sets are given in table 7.3.
As an example, the resulting 3D first derivative in y-direction for the filter set h2 is given by

h2y3D = h2y1D ∗ h2 smooth x ∗ h2 smooth t. (7.88)

For the comparison of the different filter sets the simulated test data shown in figure 7.12
was contaminated with additive white gaussian noise with variance σ2 = 1. For the following
TLS parameter estimation the equilibration weight matrix WR was calculated according to
equation 7.70, and a box shaped averaging filter mask B with a window size of (15 15 21) in x-,
y-, and t-direction was applied according to equation 7.69. Figure 7.13 shows the estimated
parameters �pest and the logarithmic relative error given by

log
(‖∆�p‖

‖�p‖
)

= log
(‖�pest − �ptrue‖

‖�pest‖
)

(7.89)

for each filter set at t = 20 and x = 8, 24, 40, .., 248/y = 8, 24, 40, .., 120. The vectors and
ellipses representing the velocities and dispersivities and only plotted for log(‖∆�p‖

‖�p‖ ) < 1. As
expected from the above discussed noise sensitivities of the corresponding 1D filters (see figure
7.11), the filter set hcutoff leads to the best results, while h2 gives only few and h3 gives no
results within the given error range. The following conclusions can be drawn from these
results:

• the choice of filters for the estimation of the derivatives has an immense, i.e. orders of
magnitude, influence on the accuracy of the estimated parameters. If filters are not
chosen carefully, a big part of the information contained in the data is not accessible!

• the differences in accuracy for the three filter sets mostly come from their different
susceptibilities to noise, which can be directly seen from their transfer functions in
figures 7.10 and 7.11. The systematic errors of the filter sets in contrast have only
minor influences here. It is therefore absolutely necessary that the chosen filters are
optimized with respect to statistical error!

• obviously the errors in dispersivity are significantly higher than those for the velocities.
This can be readily explained by the higher uncertainties of the second order derivatives
as shown in figure 7.11g+h.

Finally it is noted that the choice of optimal filters strongly depends on the properties of
the data. If the images e.g. contain sharp edges or discontinuous motion, the systematic
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Figure 7.13: Velocities and dispersion tensors estimated from the simulated test data (shown
in figure 7.12) contaminated with white noise of variance σ2 = 1. Each row shows the results
for one of the derivative filter sets given in table 7.3. The right column shows the logarithmic
relative error as defined in equation 7.89.
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error at high frequencies will become significant, and a cutoff filter will not be a good solu-
tion. However, there are other methods to reduce noise in these situations, like the above
mentioned anisotropic diffusion (Scharr, 2000), wavelets, simulated annealing or smoothing
splines (Green & Silverman (1994) and appendix A).

7.4.2 Noise sensitivity

Whereas for parameter estimation problems solved with OLS methods the error in the esti-
mated parameters can be directly related to the error in the data through a covariance matrix
as defined in equations 6.13 and 6.14, no such direct relation exists for the TLS parameter es-
timation. As stated in Mühlich & Mester (1999), subspace methods are relatively insensitive
against low noise levels, whereas higher noise levels can change the order of the eigenvalues
and the associated eigenvectors. If this happens, the impairment of the result is very severe,
since the eigenvectors are pairwise orthogonal.

The simulated test data shown in figure 7.12 offers the opportunity to numerically evaluate
the relation between errors in the data and the estimated parameters. In figure 7.14, the
parameters (estimated with the cutoff derivative filters at t = 20) and their relative error
are shown for different noise levels σ2

d. As discussed in section 7.4.1, the accuracy of the
estimated parameters strongly depends on the choice of the derivative filters. Therefore the
relative error of the estimated parameters at the position x = 104, y = 72 has been computed
with the three filter sets given in table 7.3 for different noise levels, as shown in figure 7.15.
For σ2

d < 0.01 all filter sets have relative errors smaller than one, with those of h2 and h3

proving to be very insensitive to the noise level. At σ2
d ≈ 0.02, the relative errors of h2 and

h3 abruptly increase to significantly higher values. h2 shows a second transition at σ2
d ≈ 1.

For hcutoff , the relative errors are smaller than one for σ2
d < 100, and then a transition occurs

to a rather common level with h2 and h3.

7.4.3 Choice of equilibration weight matrix

As mentioned in section 7.3.6 the different magnitudes of statistical error σ2
i for the elements

di of the data �d must be taken into account for the correct estimation of the parameters �p
through the application of an equilibration matrix WR. Therefore the elements 1/σi of WR

must be known prior to the estimation. Under the assumption that the data is contamined
with additive white noise, the σ2

i can be calculated from a given filter mask according to
equation 7.70. If the filter is defined by its transfer function h̃i(k) (like a Wiener filter or the
cutoff filters in table 7.3), the σ2

i can be determined from the noise spectrum of the image
data ñ(k) (ñ(k) = σd for white noise) through the use of the inverse discrete fourier transform
7.76:

σ2
i =

1
N

N−1∑
k=0

‖h̃i(k)ñ(k)‖2 ñ(k)=σd=
1
N

σ2
d

N−1∑
k=0

‖h̃i(k)‖2 (7.90)

In order to validate the weight matrices WR used for the TLS estimation, the values of σ2
i

calculated analytically from equations 7.70 and 7.90 were compared to the effective values
obtained numerically from the differences ∆�d = �d − �dtrue between the estimated derivatives
�d and the a priori known analytical derivatives �dtrue. Table 7.4 compares the analytically
calculated covariance matrices Cij = σ2

i δij with the numerically obtained covariance matrices
C = 〈(�d − �dtrue)(�d − �dtrue)T 〉 for each of the three filter sets. For the filter sets hcutoff and

100



7.4. APPLICATION TO SIMULATED DATA

D

x

y
0 50 100

0

50

100

150

200

250

v
x
 / v

y

x

y
0 50 100

0

50

100

150

200

250 -1. 5

-1

-0. 5

0

0.5

1

1.5

2

y

x

log( |∆p| / |p| )

0 50 100

0

50

100

150

200

250

D

x

y
0 50 100

0

50

100

150

200

250

v
x
 / v

y

x

y
0 50 100

0

50

100

150

200

250  -1.5

 -1

 -0.5

0

0.5

1

1.5

2

y

x

log( |∆p| / |p| )

0 50 100

0

50

100

150

200

250

D

x

y
0 50 100

0

50

100

150

200

250

v
x
 / v

y

x

y
0 50 100

0

50

100

150

200

250  -1.5

 -1

 -0.5

0

0.5

1

1.5

2

y

x

log( |∆p| / |p| )

0 50 100

0

50

100

150

200

250

σd
2 =0.01

σd
2 =5

σd
2 =100

Figure 7.14: Estimated velocities and dispersion tensors calculated from the simulated test
data shown in figure 7.12 contaminated with different noise levels σ2

d = 0.01, 5 and 100, using
the filter set hcutoff . The results for σ2

d = 1 are given in figure 7.13.
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Figure 7.15: Accuracy of estimated parameters as a function of noise level in the data. The
parameters have been estimated from the simulated test data shown in figure 7.12 using three
different sets of derivative filters given in table 7.3.

h3 the comparison shows a satisfactory agreement between analytical and numerical values.
For the filter set h2, some of the numerically obtained errors are higher than the analytically
predicted values. This is caused by systematic errors: whereas hcutoff and h3 are close to the
reference function and therefore systematic errors are low (see figure 7.10), the systematic
errors become significant for h2. Here now the question arises if the accuracy can be further
enhanced by including the systematic errors into the equilibration matrix WR. Therefore
the estimation for the filter set h2 was recalculated using the numerically obtained variances
shown in table 7.4, which include systematic errors. The result shown in figure 7.16 indicates
primarily an enhancement of accuracy, although few values slightly lost accuracy. However,
it is generally not possible to directly quantify the error caused by the systematic deviations
of the transfer function. But even if there is only some rough estimate availible, it may be
reasonable to take it into account. Finally the importance of a careful choice of WR is further
emphasized by the loss of accuracy in the results obtained for WR = 1l shown in figure 7.16.

7.4.4 Confidence measure

The presented TLS parameter estimation technique still lacks a measure of confidence for the
estimated parameters. The values of the estimated parameters are of no use if no information
about their uncertainty is availible. It would therefore be desirable to have a quantity which
correlates as strong as possible with the relative error ‖∆�p‖

‖�p‖ of the estimation. Obviously the
quality of the estimation will depend both on the noise and on the amount of structure in the
data. In section 7.3.6 two relevant quantities, the smallest eigenvalue λn and the trace tr(J)
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Figure 7.16: TLS parameter estimation with the filter set h2 using different equilibration
weight matrices: The results obtained with the analytical WR (upper row) can be further
enhanced by using a numerically estimated WR which contains all types of error (middle row).
The TLS estimation without equilibration (WR = 1l, lower row) strongly reduces accuracy.
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filter set Canalytical Cnumerical

hcutoff

[·10−3
]




0.9799 0 0 0 0 0

0 0.0600 0 0 0 0

0 0 0.1821 0 0 0

0 0 0 0.0021 0 0

0 0 0 0 0.0190 0

0 0 0 0 0 0.0035







0.9338 0.0025 0.0454 −0.0018 0.0088 −0.0068

0.0025 0.0741 0.0091 −0.0019 −0.0067 −0.0002

0.0454 0.0091 0.2089 0.0021 0.0010 −0.0002

−0.0018 −0.0019 0.0021 0.0027 0.0047 0.0001

0.0088 −0.0067 0.0010 0.0047 0.0223 0.0004

−0.0068 −0.0002 −0.0002 0.0001 0.0004 0.0037




h2




0.0075 0 0 0 0 0

0 0.0075 0 0 0 0

0 0 0.0075 0 0 0

0 0 0 0.0015 0 0

0 0 0 0 0.0015 0

0 0 0 0 0 0.0027







0.2160 −0.0332 0.0117 0.0008 0.0001 −0.0003

−0.0332 0.0136 −0.0020 −0.0000 0.0002 0.0001

0.0117 −0.0020 0.0092 −0.0001 0.0000 −0.0001

0.0008 −0.0000 −0.0001 0.0017 0.0010 −0.0001

0.0001 0.0002 0.0000 0.0010 0.0016 −0.0001

−0.0003 0.0001 −0.0001 −0.0001 −0.0001 0.0030




h3




0.0865 0 0 0 0 0

0 0.0865 0 0 0 0

0 0 0.0865 0 0 0

0 0 0 0.1578 0 0

0 0 0 0 0.1578 0

0 0 0 0 0 0.3656







0.0856 0.0011 −0.0009 −0.0009 −0.0007 −0.0005

0.0011 0.0933 −0.0019 0.0008 −0.0007 −0.0003

−0.0009 −0.0019 0.0799 −0.0018 0.0003 −0.0008

−0.0009 0.0008 −0.0018 0.1623 0.0187 −0.0007

−0.0007 −0.0007 0.0003 0.0187 0.1542 −0.0017

−0.0005 −0.0003 −0.0008 −0.0007 −0.0017 0.3359




Table 7.4: Comparison of analytically calculated covariance matrices C used for the TLS
equilibration with the corresponding covariances obtained numerically from the differences
between data and analytical solution. The numerical values are taken from the estimations
shown in figure 7.13 at the position x = 104, y = 72.

of the tensor J have already been introduced. The value of λn is an indicator for the noise in
the data �d, λn ≈ σ2

d, whereas tr(J) indicates the amount of structure in the data.
The problem with these two quantities is that they are typically not invariant under a

scaling of the data with a factor k:

�d′ = k �d ⇒ λ′
n = k λn, tr(J)′ = k tr(J). (7.91)

Since this scaling does not change the estimated parameters, it is clear that a suitable measure
of confidence also must be invariant under this scaling. The reason for the scale dependence
is that the value of σd for the calculation of the equilibration weight matrix WR according to
equations 7.70 and 7.90 is typically not a priori known, and is then set to an arbitrary value,
e.g. σd = 1. The lacking knowledge of σd does not affect the estimated parameters, since
these are scale invariant, but the values of λn and tr(J) are scaled according to equation 7.91.

From this discussion, the ratio λn

tr(J)
seems to be an appropriate measure of confidence:

It fulfils the requirement of scale invariance, and can easily be interpreted as a ratio of noise
to signal strength. However, it does not take into account the shape of the window for the
averaging over a local neighborhood, which is defined by the shape of the averaging filter
mask B in equation 7.69. As shown below, the shape of B has an effect on the noise-to-signal
ratio. The correct confidence measure which can be interpreted as the ratio of signal to noise
is then given by

ωNSR =
λn

NBtr(J)
, (7.92)

104



7.4. APPLICATION TO SIMULATED DATA

where NB denotes the size of the normalized, box-shaped averaging filter B. In the next
paragraphs the choice of this confidence measure will be motivated theoretically and validated
by numerical results.

The following derivation is based on the assumption that the relative error ‖∆�p‖
‖�p‖ of the

estimated parameters is correlated with the relative error of the tensor elements Jij . For a
box shaped averaging filter mask with NB elements the tensor elements are given by

Jij =
1

NB

NB∑
k=1

dikdjk (7.93)

=
1

NB

NB∑
k=1

(dik0 + εik)(djk0 + εjk), (7.94)

where the dik0 denote the true data elements, which are contaminated with noise εik (〈εik〉 = 0,
〈εikεjl〉 = σ2

dδijδkl). The expectation of Jij then becomes

〈Jij〉 =
1

NB

NB∑
k=1

dik0djk0 + σ2
dδij . (7.95)

The variance of Jij is then given by

〈(Jij − 〈Jij〉)2〉 = 〈( 1
NB

NB∑
k=1

dik0εjk + djk0εik + εikεjk − σ2
dδij)2〉 (7.96)

=
1

N2
B

〈
NB∑
k=1

d2
ik0ε

2
jk + d2

jk0ε
2
ik + ε2

ikε
2
jk + σ4

dδij〉 (7.97)

σ2
d	d2

ik0≈ 1
N2

B

σ2
d

NB∑
k=1

d2
ik0d

2
jk0 (7.98)

For the diagonal elements (i = j) this transforms into

〈(Jii − 〈Jii〉)2〉 ≈ 1
N2

B

σ2
d2

NB∑
k=1

d2
ik0 (7.99)

and the squared relative error is given by

σ2
Jii

J2
ii

=
1

N2
B

σ2
d2

∑NB
k=1 d2

ik0

( 1
NB

∑NB
k=1 d2

ik0)2
=

1
NB

2λn

Jii
. (7.100)

In order to equally account for all elements of tr(J), the value of Jii is replaced by the mean
of the diagonal elements

Jii =
1
n

n∑
i=1

Jii =
1
n

tr(J), (7.101)

so that the squared relative error of the mean diagonal element is given by

σ2
Jii

Jii
2 =

2nλn

NBtr(J)
. (7.102)
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If the above assumption, that the relative error of the estimated parameters is correlated
with the relative error of the tensor elements Jij is correct, this result leads to the confidence
measure ωNSR given by equation 7.92 (the value of n is treated as a constant in the present
application).

In order to validate the significance of ωNSR, its correlation with the relative error ‖∆�p‖
‖�p‖

of the estimated parameters is evaluated for the simulated test data set shown in figure 7.12.
Five sets of parameters have been estimated at the positions t = 20, x = 8, 24, 40, .., 248 and
y = 8, 24, 40, .., 120 using the cutoff derivative filters. Four sets have been calculated with an
averaging window size of 15 × 15 × 21 in x-, y-, and t-direction (NB = 15 ·15 ·21 = 4725) and
different noise levels in the data of σ2

d = 1, σ2
d = 5 and σ2

d = 0.01. The last set is calulated
with a window size of 5 × 5 × 7 (NB = 175) and a noise level of σ2

d = 0.01. In figure 7.17a
the logarithmic relative error is plotted against the smallest eigenvalue λn. It is obvious that
λn correlates with the noise level, but as expected it does not correlate with the relative
error. The relative error plotted against tr(J) in figure 7.17b in contrast shows correlations
within each data set, with the relative error decreasing with increasing tr(J). However the
correlations of the particular data sets do not coincide, so that no global relation between
tr(J) and relative error can be given. If instead the relative error is plotted against the ratio

λn

tr(J)
as shown in figure 7.17c, the first four data sets with the 15 × 15 × 21 averaging window

show a satisfactory coincidation. The data set with the 5 × 5 × 7 averaging window however
is significantly shiftet to lower λn

tr(J)
. In figure 7.17d finally all data sets show an acceptable

coincidence when the relative error is plotted against ωNSR = λn

NBtr(J)
. A rough threshold for

ωNSR can be read off to τNSR ≈ 10−8 for a relative error ‖∆�p‖
‖�p‖ < 1. The spatial distributions of

λn, tr(J), λn

NBtr(J)
and log(‖∆�p‖

‖�p‖ ) are depicted in figure 7.18. The apparent correlation between

ωNSR and log(‖∆�p‖
‖�p‖ ) further confirms the applicability of ωNSR as a measure of confidence.

Finally the following concluding remarks can be made from the above results:

• the quantity ωNSR = λn

NBtr(J)
has proven to be a suitable confidence measure for the

present TLS parameter estimation.

• In agreement with theoretical considerations, it is invariant under scaling of the data,
different noise levels and different averaging window sizes.

• A value of τNSR ≈ 10−8 has been found for ‖∆�p‖
‖�p‖ < 1.

• from this analysis the applicability is limited to the parameter estimation of a 2D
convection dispersion model. Further analysis is necessary for an extension to other
models given e.g. in table 7.1.

7.4.5 Physically based minimum norm solution

As already discussed previously in sections 7.3.3 and 7.3.5, in certain situations, usually
referred to as aperture problems, it is in principle not possible to estimate the entire parameter
set, but only a particular subset of the parameters. In the example of the moving edge shown
in figure 7.6 for instance, only the velocity perpendicular to the edge can be estimated. These
situations can be identified from the eigenvalue spectrum of J , λ1 > λ2 > ... > λn, through
the number n−p of eigenvalues close to zero: λi ≈ 0 for i = p+1..n. Any vector in the (n−p)-
dimensional nullspace spanned by the corresponding eigenvectors �ei is then a possible solution.

106



7.4. APPLICATION TO SIMULATED DATA

10
-6

10
-4

10
-2

10
0

10
2

10
4

10

5

0

5

10

λ
n

lo
g 

( 
| ∆

 p
| /

 |p
| ) σd

2=1, N
B
=15*15*21

σd
2=5, N

B
=15*15*21

σd
2=10, N

B
=15*15*21

σd
2=0.01, N

B
=15*15*21

σd
2=0.01, N

B
=5*5*7

10
-4

10
-2

10
0

10
2

10
4

10
6

10

5

0

5

10

tr(J)

lo
g 

( 
| ∆

 p
| /

 |p
| )

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10

5

0

5

10

λ
n
 / tr(J)

lo
g 

( 
| ∆

 p
| /

 |p
| )

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10

5

0

5

10

λ
n
 / ( N

B
 tr(J) )

lo
g 

( 
| ∆

 p
| /

 |p
| )

a

b

c

d

Figure 7.17: Dependence of the logarithmic relative error ‖∆�p‖
‖�p‖ < 1 on a the smallest eigen-

value λn, b the trace tr(J), c the ratio λn
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and d the confidence measure ωNSR = λn
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Figure 7.18: Spatial distributions of the smallest eigenvalue λn, trace tr(J), confidence mea-
sure ωNSR = λn

NBtr(J)
and logarithmic relative error ‖∆�p‖

‖�p‖ < 1 for the TLS parameter estimation
with the simulated test data shown in figure 7.12. The results are shown for four data sets
with different noise levels σ2

d and different averaging window size NB.
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A unique solution to this ill-posed problem can then only be found through regularization
with one or more additional constraints. Often the solution with minimal euclidean norm
defined by equation 7.65 gives reasonable results: in the example of the moving edge, the
result would be the velocity perpendicular to the edge.

In the following it will be shown that the minimum norm solution 7.65 does not lead
to reasonable results for aperture problems in the parameter estimation of a 2D convection
dispersion model. This problem will then be overcome by the introduction and application
of a specially adapted minimization criterion.

An example of an aperture problem for a 2D convection dispersion process is presented in
figure 7.19. Additional to the movement, the image sequence indicates dispersion of the edge
in the direction of movement. Due to the lack of gradients parallel to the edge, neither the
velocity nor the dispersion in the parallel direction can be estimated. Since apparently only
two parameters, namely the velocity and the dispersion perpendicular to the edge, can be
estimated, a four-dimensional nullspace indicated by four eigenvalues close to zero is expected.
The following paragraphs will now describe the separation of nullspace and data space and
the appropriate determination of velocity and dispersion tensor from the manifold of possible
solutions. For the calculation of the derivatives the filter set h2 (see table 7.3) is used, since
the cutoff filters are not applicable here due to the sharp edges at the image boundaries. A
box shaped filter mask B of size (15 15 21) in x-, y- and t-direction is used for the local
averaging according to equation 7.69. The image sequence was contaminated with gaussian
white noise with variance σ2

d = 1.
The first step is the determination of the nullspace dimension at each position from the

according eigenvalue spectra. In figure 7.20a the eigenvalue spectrum at the position x = 104 /
y = 72 / t = 20 is plotted exemplarily. For each eigenvalue then the corresponding confidence
measure ωNSR given by equation 7.92 can be calculated as shown in figure 7.20b. The gray
line indicates the threshold τNSR ≈ 10−8 which was found in section 7.4.4. Consequently the
estimated number of nullspace dimensions at this position is four. Figure 7.20c shows the
such estimated nullspace dimensions for all x/y-positions. As expected, the dimension is four
in the area marked by the edge and zero in the areas without structure as e.g. x > 200. The
fact that the border between these two areas is characterized by a stepwise transition from
zero to four instead of a sharp transition is caused by the noise which leads to uncertainties
of the eigenvalues.

The expectation that the parameters estimated exclusively from the smallest eigenvalue
will not give useful results is confirmed by figure 7.21, where all results have relative errors
higher than 100 %. The first candidate for a reasonable solution is that with the minimal
euclidean norm as described in section 7.3.5. The results calculated with the nullspace di-
mensions from figure 7.20c are shown in figure 7.21. Although the logarithmic relative error
in the area of the edge of circa -0.5 could in principle be accepted, the constancy of the errors
already indicates that the results are systematically biased.

This motivates a closer look at the minimization criterion which was applied here. For a
2D convection dispersion model equation the minimum norm criterion 7.65 can be written as

v2
x + v2

y + D2
xx + (2Dxy)2 + D2

yy
!= min. (7.103)

From this formulation the problem becomes apparent: whereas the minimization of the norm

of the velocity vector �v =

(
vx

vy

)
is physically reasonable, the minimization of the sum of
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Figure 7.19: Synthetic test data set of a simulated 2D convection-dispersion process used for
the performance analysis of TLS parameter estimation in the presence of aperture problems.
Due to the lack of gradients parallel to the moving edge, no velocity or dispersion in the parallel
direction can be estimated. The data set consisting of 50 2D images (x = 1..256, y = 1..128,
t = 1..50) is shown for t =10, 20, 30 and 40. The velocities (vx = 4.70, vy = −1.71) plotted
as vectors and dispersion tensors (Dxx = 6.62, Dxy = −2.41 and Dyy = 0.88) represented as
ellipses are constant in space and time and directed perpendicular to the edge. For better
visibility the velocity vectors in the illustration are scaled with a factor 2.
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Figure 7.20: Determination of the nullspace dimension from the eigenvalue spectrum: a
eigenvalue spectrum at the position x = 104 / y = 72 / t = 20 b values of the corresponding
confidence measure ωNSR and threshold τNSR (represented by the gray line) defined in section
7.4.4. The nullspace dimension is estimated from the number of ωNSR < τNSR. c spatial
distribution of such estimated nullspace dimensions for t = 20.

the squared elements of the dispersion tensor D =

(
Dxx Dxy

Dxy Dyy

)
has no physical reason.

This can be readily recognized from the lack of rotational invariance of the term D2
xx +

(2Dxy)2 + D2
yy, whereas the norm of �v is rotationally invariant. A measure which quantifies

the total amount of dispersion and which is in addition rotationally invariant is the trace of
D, tr(D) = Dxx + Dyy. This leads to the following modified minimization criterion

v2
x + v2

y + (Dxx + Dyy)2
!= min. (7.104)

A second physical requirement is the non-negative definiteness of D, which is necessary to
fulfil the second thermodynamic law. This requirement can be formulated by the additional,
rotationally invariant constraint

det D = DxxDyy − D2
xy

!≥ 0. (7.105)

The minimization of 7.104 subject to 7.105 can be carried out using standard iterative opti-
mization techniques (see e.g. Coleman & Li (1996)) with the solution of equation 7.65 used
as an initial value.

The results of this physically based regularization approach are shown in figure 7.21.
The increase of accuracy compared to the non-physically motivated approach is significant.
The facts that the accuracies are comparable to those of the corresponding direct estimation
shown in figure 7.13, and that no systematic bias is identifiable confirm the hypothesis that
the presented criterion is optimal for aperture problems in 2D convection dispersion models.
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Figure 7.21: Velocities, dispersion tensors and logarithmic relative errors estimated from
the image sequence shown in figure 7.19. The parameters were estimated from the smallest
eigenvalue (upper row), as a standard minimum norm solution (middle row) and a minimum
norm solution based on physical constraints (lower row). The vectors and ellipses representing
the velocities and dispersivities are only plotted for log(‖∆�p‖

‖�p‖ ) < 1.
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7.5. SUMMARY AND CONCLUSIONS

At last the results of this section lead to the following concluding remarks:

• the confidence measure ωNSR introduced in section 7.4.4 can be used in combination
with an appropriate threshold τNSR to estimate the dimension of the nullspace.

• if this dimension is higher than one, a unique, physically reasonable solution can be
obtained by the application of one or more additional criteria.

• the standard minimum norm solution presented in section 7.3.5 does not generally
lead to physically reasonable results. It is therefore necessary to verify the applied
minimization criteria with respect to physical constraints like e.g. rotation invariance.

7.5 Summary and conclusions

In this chapter a method was presented for the local parameter estimation of linear dynamic
processes. At first an outline was given of the basic theory of the underlying TLS parameter
estimation framework and its application to linear dynamic processes. The following features
lead to the conclusion that the method is an excellent tool for the analysis of flow and transport
in porous media:

• the dynamic process which is to be estimated can be directly integrated into the esti-
mation procedure in the form of a differential equation. A solution to this equation is
not necessary.

• the formalism allows for a direct specification of the location and size of the estimate
in space and time. Any assumption about heterogeneities, as defined e.g. by an REV,
can easily be incorporated into the estimation.

• the method yields a direct non-iterative maximum likelihood estimate with no need of
any initial values.

• the cause of a failure of the estimation, like e.g. a low signal-to-noise ratio or an aper-
ture problem, can be readily detected from an eigenvalue spectrum and potentially be
corrected by adapted additional constraints.

Thereafter the performance and accuracy of the method was evaluated in detail through appli-
cation to synthetic image data sets of a 2D convection-dispersion process. These investigations
resulted in a number of important insights:

• typically the noise in the image data is the limiting factor for the accuracy of the esti-
mated parameters. There the noise susceptibility of the filters used for the computation
of derivatives has a tremendous impact on the resulting accuracy and consequently the
filters must be chosen very carefully.

• the resulting accuracy can be significantly reduced if the relative magnitudes of errors
in the data are not correctly taken into account and equilibrated with a proper weight
matrix.

• for a suitable measure of confidence, it is necessary to correctly take into account the
smallest eigenvalue λn and the trace of J as well as the size NB of the local aver-
gaging volume. The resulting measure ωNSR = λn

NBtr(J)
proved reliable in the present

application.
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• aperture problems can be detected from the eigenvalue spectrum via the corresponding
spectrum of ωNSR and a proper threshold τNSR.

• for processes other than pure translation the standard minimum norm solution in case of
an aperture problem does typically not lead to reasonable results and has to be replaced
by a physically based solution.

Although these results are obtained exclusively from the analysis of a 2D convection-dispersion
process, no qualitative changes of the drawn conclusions are expected for the application to
higher dimensions or other models given in table 7.1. However, values of quantities like the
threshold τNSR or the choice of proper constraints for the case of aperture problems may have
to be reconsidered. A quantitative generalization of the obtained results is subject to further
research.
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Chapter 8

Single-phase flow in saturated
porous media

8.1 Introduction

This chapter is devoted to the study of different physical processes which all lead to the phe-
nomenon usually denoted as hydrodynamic dispersion, i.e. the broadening of the concentration
distribution of a solute in a liquid. As described in detail in chapter 2, several microscopic
physical processes, like e.g. molecular diffusion, adsorption, holdup or microscopic velocity
fluctuations can generate the macroscopic phenomenon of hydrodynamic dispersion. The
scientific challenge is to get a quantitative understanding of the relations between the ma-
terial properties and parameters of processes on the microscale and the effective parameters
of macroscopic phenomena. The experimental technique presented in chapter 3 provides the
opportunity to simultaneously measure 3D microscopic and macroscopic transport of a tracer
dye in a porous medium, and therefore offers the prospect of gaining rewarding insights into
the processes on different scales.

At first the technique is used in section 8.2 to measure the coefficients of molecular diffu-
sion from the dispersion of the tracer dyes in porous medium with stagnant liquids. Section
8.3 then presents the measurement and interpretation of time-dependent longitudinal and
transverse dispersion coefficients for different flow rates, solids and liquids. Then the avail-
ability of spatially and temporally highly resolved data is utilized to study the relation of the
macroscopic dispersion coefficients to the porous structure and physical processes like holdup
and adsorption on the microscale. Finally a summary and conclusions are given in section
8.4.

As already mentioned in chapter 5, the measurements do not provide any absolute con-
centration values. Consequently the concentrations given in this chapter are denoted by
dimensionless numbers that have no physical relevance.

8.2 Molecular diffusion

For the evaluation of the results obtained in the following sections and for their comparison
with literature values the knowledge of the respective coefficients of molecular diffusion Dm

is indispensable. The diffusion coefficient is part of several dimensionless parameters like e.g.
Peclet number Pe = vd

Dm
, Schmidt number Sc = ν

Dm
and the ratios DL

Dm
and DT

Dm
(see chapter
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2). Since for the solvent-solute combinations used in this work no data could be found in
the literature, an appropriate method for their estimation had to be found. As described
in section 2.3.3, the dispersion of the solute in a porous medium with stagnant liquid phase
D(Pe = 0) can be related to the diffusion in the pure liquid Dm via equation 2.33. Further
use is made of the dependence of the diffusion coefficient on the viscosity as explicated in
section 2.2: therefore the diffusion coefficient has to be measured only once for each dye, the
values for other weight percentages or mixing ratios of the solvents are then calculated using
the Stokes-Einstein-equation 2.8.

For each dye a cuvette made of plexiglass with a volume of 25 × 40 × 25 mm3 was
filled with refractive index matched solid and liquid and a small pulse of dyed liquid was
injected. Then the 3D (relative) concentration distributions were measured each after ∆t =0,
23, 121 and 143.5 hours with the setup described in chapter 3. For each 3D distribution
the variances in x-, y- and z-direction σ2

x, σ2
y and σ2

z were determined by a least squares
fit of a gaussian distribution to the macroscopic 1D distributions c̄(x, t) =

∑
yz c(x, y, z, t),

c̄(y, t) =
∑

xz c(x, y, z, t) and c̄(z, t) =
∑

xy c(x, y, z, t) as described in section 6.4. From the
variances σ2

i (t) the dispersion coefficients Di for Pe= 0 are calculated as

Di(Pe = 0) =
1
2

dσ2
i (t)
dt

with i = x, y, z, (8.1)

where the derivative is calculated from a least squares straight line fit of the σ2
i (t). Finally

the coefficient of molecular diffusion Dm is calculated as the geometric mean

Dm =
1
τ
(DxDyDz)1/3, (8.2)

with the tortuosity τ defined in section 2.3.3. It should be noted that the relations 2.33, refe-
qstokeseinstein and 8.2 can not be regarded as exact but serve as approximations. Therefore
the results obtained with these equations are considered as estimates and no uncertainties are
given.

8.2.1 Nile Red

Figure 8.1 shows the dye distributions of Nile Red in a porous medium of silicone oil and
plexiglass at four different times. From this data the temporal evolutions of the variances in
x-, y- and z-direction were calculated as described above and plotted in figure 8.2. The slopes
of the straight line fits are comparable and thus indicate isotropic diffusion. The vertical
shifts stem from an anisotropic initial distribution. Table 8.1 shows the values for Dx, Dy

and Dz calculated with equation 8.1, the tortuosity τ calculated with equation 2.33 and Dm

calculated with equation 8.2. The Schmidt number Sc = ν
Dm

is then calculated with the value
for the kinematic viscosity from table 3.3. With the relation for the dependence of molecular
diffusion from dynamic viscosity (values taken from table 3.3) given by the Stokes-Einstein-
equation 2.8 the values for Dm and Sc are then converted for the silicone oil mixture used
in combination with fused silica. As will be shown in section 8.3.6, Nile Red adsorbs on the
surface of fused silica, and therefore the experimental determination of molecular diffusivity
for this combination with the present method becomes rather unfeasible because it would
have to quantitatively account for the effect of adsorption.
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8.2. MOLECULAR DIFFUSION

Figure 8.1: Dispersion of Nile Red in a porous medium of plexiglass and a stagnant silicone
oil mixture. The images on the left show the 2D distributions at z =10 mm for ∆t =0, 23,
121 and 143.5 hours. The corresponding 3D distributions are shown on the right. The trace
of the cannula pulled out after dye injection is visible in the images for ∆t =0.
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Figure 8.2: Temporal evolution of the variance in x-, y- and z-direction for the Nile Red
distributions shown in figure 8.1.

8.2.2 Alexa Fluor 488

The dispersion of Alexa Fluor 488 in a porous medium of zinc chloride aqueous solution and
fused silica is depicted in figure 8.3. It is cognizable from these images that the diffusion
is anisotropic. This is further quantified by the temporal evolutions of the variances in x-,
y- and z-direction plotted in figure 8.4 and the corresponding dispersion coefficients given
in table 8.1. Since the dispersion coefficients in the horizontal directions, Dx and Dz, are
significantly higher than the vertical coefficient Dy, this can be readily explained by density
fluctuations and / or layered structures. Again the tortuosity τ is calculated with equation
2.33 for the estimation of Dm with equation 8.2 and Sc = ν

Dm
is calculated with the value for

the viscosity from table 3.3.

8.3 Hydrodynamic dispersion

The measurements of hydrodynamic dispersion presented in this section have been made using
the 8 × 4 × 4 cm3 horizontal flow cell sketched and pictured in figures 3.3 and 3.5. After the
application of the desired flow rate and the injection of a pulse of dyed liquid, a 3D volume
scan of the dye concentration was performed every 30 seconds as described in section 3.3. The
spatial resolution of the measurements was 70 µm × 70 µm parallel to the laser plane and
0.4 mm, as defined by the increments of the translation stage, in the out-of-plane direction.
The effective resolution in the out-of-plane direction is however rather given by the width of
the laser sheet of ca. 0.5-1 mm. The so obtained 4D image set consisting of 1300 × 600 × 90
×nt (nt denoting the number of successive volume scans) 8-bit intensity values was then at
first geometrically and radiometrically calibrated and corrected for systematic and statistical
errors using the methods described in chapter 5. The corrected 4D data set, representing
the relative dye concentrations at the real world coordinates (x, y, z) and times t, was then
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8.3. HYDRODYNAMIC DISPERSION

Figure 8.3: Dispersion of Alexa Fluor 488 in a porous medium of fused silica and a stagnant
ZnCl2 aqueous solution. The images on the left show the 2D distributions at z =14 mm for
∆t =0, 23, 121 and 143.5 hours. The corresponding 3D distributions are shown on the right.
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Figure 8.4: Temporal evolution of the variance in x-, y- and z-direction for the Alexa Fluor
488 distributions shown in figure 8.3. For the straight line fit of σz(t) only the first three times
were taken into account because then the dye reached the border of the cuvette in z-direction
and the distribution strongly differed from a gaussian.

Nile Red Nile Red Alexa Fluor 488
+ silicone oil + silicone oil + ZnCl2 solution
+ plexiglass + fused silica + fused silica

Dx [mm2/s] 1.35 · 10−5 - 6.00 · 10−5

Dy [mm2/s] 1.31 · 10−5 - 1.52 · 10−5

Dz [mm2/s] 1.57 · 10−5 - 8.10 · 10−5

τ 0.72 0.78 0.78
Dm [mm2/s] 1.96 · 10−5 9.58 · 10−5 5.36 · 10−5

Sc 5 · 106 2 · 105 7 · 104

Table 8.1: Results for the dispersion coefficients in a stagnant liquid Dx, Dy and Dz, tor-
tuosity τ , coefficients of molecular diffusion Dm and Schmidt number Sc for the solid-liquid
combinations used in this work.
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Figure 8.5: 2D dye concentration distribution at t=16470 s and z=20 mm taken from the
experiment A2 (see table 8.3) with plexiglass and silicone oils. The temporal evolution in the
area indicated by the white square is shown in figure 8.6.

the basis for the evaluations presented below in this section. Figures 8.5, 8.6, 8.7 and 8.8
exemplarily show different visualizations of a typical suchlike data set.

Four series of dye transport measurements using different combinations of solids and
liquids as specified in table 8.2 have been performed. Series A aimed at the coverage of
a large Peclet number range, while in series B the same solid-liquid combination was used
to study the reversibility of transport phenomena through so-called echo experiments, i.e.
experiments with a reversal of the flow direction after a certain mean transport distance.
Series C and D were then measured in order to investigate the effect of the variation of solid,
liquid and fluorescent dye. A combination of plexiglass and ZnCl2 aqueous solution was not
feasible due to the low acid resistance of plexiglass.

8.3.1 Correlation functions of porous media

In this section it will be shown how the dye transport measurements can be used to estimate
geometrical properties of the employed porous media. A commonly used approach for the
estimation of geometrical properties in porous media is the application of correlation functions,
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Figure 8.6: Temporal evolution of the dye concentration in an area of 100 × 100 pixel à 70 ×
70 µm2 corresponding to the 7 × 7 mm2 square shown in figure 8.5. The time between two
consecutive images is 300 s corresponding to 10 3D volume scans.
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8.3. HYDRODYNAMIC DISPERSION

Series Solid Liquid Pe Comment
84 wt.% DC 550A Plexiglass

+ 16 wt.% DC 556
33 < Pe < 6680

84 wt.% DC 550 with reversal ofB Plexiglass
+ 16 wt.% DC 556

316 < Pe < 1116
flow direction

58 wt.% ZnCl2C Fused silica
aqueous solution

Pe = 52, 194

98 wt.% DC 556D Fused silica
+ 2 wt.% DC 200

Pe = 180 Adsorption

Table 8.2: Specification of solids, liquids and Peclet number ranges used for the four series of
dye transport measurements. The properties of solids, liquids and associated dyes are detailed
in chapter 3.

t=270s
t=10770s

t=21270s

Figure 8.7: Isoconcentration surface plot of the experiment A2 (see table 8.3) for three times
t=270 s, t=10770 s and t=21270 s. The isoconcentrations are 40% of the respective maximum
concentrations. Figure 8.8 shows an alternative visualization of the same data.
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Figure 8.8: 3D dye concentration distributions of the experiment A2 (see table 8.3) at t=270
s, t=10770 s and t=21270 s corresponding to the isosurface visualization in figure 8.7.
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mainly the two-point correlation functions

Cff (�x1, �x2) = 〈(f(�x1) − 〈f(�x1)〉)(f(�x2) − 〈f(�x2)〉)〉 (8.3)

and

Rff (�x1, �x2) =
Cff (�x1, �x2)√

Cff (�x1, �x1)Cff (�x2, �x2)
. (8.4)

Cff and Rff are called the autocovariance and autocorrelation of the random function f(�x),
and 〈f(�x)〉 denotes the ensemble average of f at the position �x. Since usually only one
realization of the porous medium is available, the random function f is assumed to be ergodic
and consequently the ensemble average 〈f(�x)〉 is replaced by the spatial average f̄ . If f is
further assumed to be stationary, the correlation functions depend only on the difference
vector �r = �x1 − �x2 and can then be written as

Cff (�r) = ¯(f(�x) − f̄)(f(�x + �r) − f̄), (8.5)

Rff (�r) =
Cff (�r)
Cff (0)

. (8.6)

As described in Berryman & Blair (1986), the shape of the 1D isotropic autocorrelation Cφφ(r)
can be used to estimate the average particle size d (from the position of ∂Cφφ(r)

∂r = 0), the

porosity φ = Cφφ(0) and the internal surface area per unit volume s = −4 ∂Cφφ(r)
∂r

∣∣∣
r=0

from
the porosity function φ(�x) ∈ {0, 1}. While for the suchlike estimation of φ and s the relation
φ2 != φ must be valid and therefore an adequate threshold for binarization of the measured
porosity function 0 < φ(�x)meas < 1 has to be found, the estimation of d from Cφφ(r) is rather
uncritical as described below.

For the estimation of φ(�x) from the measured dye concentrations c(�x, t), the temporal
average of the unchanged concentrations is divided by the temporal average of the spatially
smoothed concentrations:

φ(�x) ∝
1
nt

∑nt
i=1 c(�x, ti)

1
nt

∑nt
i=1 h(�x) ∗ c(�x, ti)

(8.7)

where h(�x) denotes a smoothing filter mask for averaging over an appropriate REV. The effect
of smoothing is shown in figure 8.9a,b for an experiment with plexiglass (A2 from table 8.3)
and a REV size of circa (1.5 mm)2. After the temporal averaging and the division according
to equation 8.7 the estimate of φ(�x) shown in figure 8.9c is obtained. Figure 8.9d shows φ(�x)
obtained from an experiment with fused silica (C1 from table 8.3). Here the pore and particle
sizes are apparently larger. If the denominator of equation 8.7 becomes small, i.e. when the
temporal average of the intensity in the data at the position �x is too low, the result for φ(�x)
becomes instable, which can be seen at the corners and edges of figures 8.9c,d. The estimation
of φ(�x) is therefore restricted to the areas where a significant amount of tracer dye passed
through.

From the so obtained estimates of φ(�x) now the autocorrelation Rφφ(�r) is calculated
according to equations 8.5 and 8.6. Figures 8.10a,c show the results for plexiglass and fused
silica, respectively. The corresponding 1D autocorrelations in x- and y-direction, Rφφ(x) and
Rφφ(y), are shown in figures 8.10b,d. From these curves the mean particle sizes of the two
materials, dPG and dFS are estimated from the location of the first maxima to dPG ≈ 0.7 mm
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Figure 8.9: Estimation of the porosity φ(�x) of packed plexiglass grains from the ratio of a
the original image (taken from the experiment A2 at t = 16470 s and z = 20 mm) and b a
smoothed version of the same image. The resulting distribution of φ(�x) in c is obtained with
the temporal averages according to equation 8.7. d The corresponding result for fused silica
grains (taken from the experiment C1 at z = 20 mm) indicates larger pore and particle sizes.

and dFS ≈ 1.15 mm. In the following these values are used for the calculation of the Peclet
number. For both materials the locations of the maxima in x- and y-direction are in good
agreement, which indicates that no significant anisotropies are inherent in the pore structures.

8.3.2 Longitudinal and transverse dispersion coefficients

In the following now the estimation of the longitudinal and transverse dispersion coefficients
from the measured 4D data sets c(x, y, z, t) will be described. The first step towards the
estimation of these effective macroscopic parameters is an appropriate averaging of the data
over an adequate REV. As explained in section 6.2, the averaging over the yz-, xz- and xy-
planes according to equations 6.4-6.6 leads to the macroscopic concentrations c̄(x, t), c̄(y, t)
and c̄(z, t) which can each be modeled by a 1D convection-dispersion equation. From these
averaged concentrations the temporal evolutions of x̄(t), ȳ(t), z̄(t), σ2

x(t), σ2
y(t) and σ2

z(t) can
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Figure 8.10: Autocorrelation Rφφ(�r) for a packed plexiglass grains and c packed fused silica
grains calculated from φ(�x) in figure 8.9c+d using equations 8.5 and 8.6. From the first
maxima of the corresponding 1D autocorrelations Rφφ(x) and Rφφ(y) in b and d the mean
particle sizes are estimated to dPG ≈ 0.7 mm and dFS ≈ 1.15 mm.

then be computed by a least-squares fit of a solution of the 1D CDE as described in section
6.4. The spatial distributions of c̄(x, t), c̄(y, t) and c̄(z, t) at five different times are plotted in
appendix B for all measurements of series A-C (see table 8.3). For the measurements of series
B, the times before and after the reversal of flow direction, denoted as B1a / B2a and B1r
/ B2r respectively, have been evaluated individually. Additionally the accordingly obtained
temporal evolutions of x̄(t), ȳ(t), z̄(t), σ2

x(t), σ2
y(t) and σ2

z(t) are plotted over the complete
measurement times.

Finally, the macroscopic velocities v̄x, v̄y and v̄z are estimated as

v̄x =
dx̄(t)

dt
, v̄y =

dȳ(t)
dt

, v̄z =
dz̄(t)
dt

, (8.8)

and the longitudinal and transverse dispersion coefficients DL, DTy and DTz as

DL =
1
2

dσ2
x(t)
dt

, DTy =
1
2

dσ2
y(t)
dt

, DTz =
1
2

dσ2
z(t)
dt

. (8.9)

127



CHAPTER 8. SINGLE-PHASE FLOW IN SATURATED POROUS MEDIA

For the measurements shown in appendix B, the values of v̄x, v̄y, v̄z, DL, DTy, DTz are
calculated from a least squares fit of a straight line to the corresponding temporal evolution,
like for e.g. for v̄x:

χ2 =
b∑

i=a

(x̄(ti) − (x0 + v̄xti))2
!= min. (8.10)

The temporal range for these fits, ta < t < tb was chosen in the way that for all measurements
the same range in x-direction is covered, i.e. x̄(ta) ≈ 24 mm and x̄(tb) ≈ 67 mm. These
temporal ranges and the resulting straight lines are illustrated by the gray lines. A more
detailed discussion of the temporal evolutions of x̄(t), ȳ(t), z̄(t), σ2

x(t), σ2
y(t) and σ2

z(t) is
given in section 8.3.3.

The so obtained results for v̄x, v̄y, v̄z, DL, DTy, DTz and Pe= v̄xd
Dm

, using d from section
8.3.1 and Dm from section 8.2 are listed in table 8.3. The results of series D are addressed
separately in section 8.3.6, since here adsorption contributes significantly to the dye transport,
which therefore cannot be described by a usual 1D CDE. The provided errors were calculated
from the mean residual χ2 and the inverse of the hessian matrix D as described in section
6.5. For the least squares fit 8.10 of v̄x for instance this leads to:

cov�p = χ2

(
1
2
D

)−1

with �p =

(
x0

v̄x

)
, χ2 =

1
b − a + 1

χ2 and Dij =
∂2χ2

∂pi∂pj
.

(8.11)
As expected, the relative errors increase if the temporal evolution deviates from a linear
progression, if the statistical fluctuations become significant or if the number of time steps
nt = b − a + 1 decreases like in the experiments with high flow rates.

Longitudinal dispersion

Figure 8.11a shows the dependence of the measured coefficients of longitudinal dispersion
on the Peclet number. In order to compare experiments with different Dm, the longitudinal
dispersion is quantified, as is customary in the literature, by the dimensionless ratio of DL

to Dm. Many efforts have been made during the last decades in order to find an analytical
expression for a functional dependence DL(Pe) (see Koch & Brady (1985) and the reviews
in Sahimi (1993) and Fried & Combarnous (1971)). In the recent literature mainly the two
relations discussed below are used.

As described in section 2.3.3, the asymptotic value of DL can be related to the contribu-
tions from molecular diffusion, mechanical dispersion, boundary-layer dispersion and holdup
dispersion through the equation

DL

Dm
= τ + αPe + βPe ln Pe + γPe2. (8.12)

The magnitude of 0 < τ < 1 can be neglected for Pe > 10 and is therefore set to τ = 2
3

in the following. The values of α, β and γ have then been obtained from a least squares fit
to the data shown in figure 8.11a. The result, denoted as Model 1, apparently provides a
good approximation of the data. Table 8.4 compares the obtained values to results from the
literature. The obtained value for α has a high uncertainty because the term αPe is mainly
important for low Pe, where no data for DL is available. Maier et al. (2000) have obtained
their results from lattice boltzmann simulations, which did not consider holdup dispersion,
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v̄x v̄y v̄z ∆h
[mm/s] [mm/s] [mm/s]

Pe
[cm]

A1 (9.332 ± 1) · 10−4 (2.02 ± 2) · 10−5 (1.29 ± 1) · 10−5 33.327 ± 5
A2 (1.7067 ± 3) · 10−3 (2.16 ± 4) · 10−5 (1.23 ± 4) · 10−5 60.95 ± 1
A3 (2.0542 ± 3) · 10−3 (3.72 ± 5) · 10−5 (2.81 ± 3) · 10−5 73.36 ± 1
A4 (4.496 ± 2) · 10−3 (8.1 ± 3) · 10−5 (1.6 ± 3) · 10−5 160.56 ± 6
A5 (7.976 ± 2) · 10−3 (1.19 ± 3) · 10−4 (1.25 ± 6) · 10−4 284.84 ± 6 1.2
A6 (8.433 ± 7) · 10−3 (1.42 ± 5) · 10−4 (1.04 ± 2) · 10−4 301.2 ± 3
A7 (1.736 ± 2) · 10−2 (3.1 ± 2) · 10−4 (4 ± 2) · 10−5 620.0 ± 5 2.7
A8 (3.319 ± 3) · 10−2 (3.1 ± 4) · 10−4 (6 ± 5) · 10−5 1185 ± 1 5.6
A9 (6.98 ± 1) · 10−2 (1.4 ± 2) · 10−3 (−1 ± 1) · 10−4 2494 ± 3 9.8
A10 (9.22 ± 2) · 10−2 (2.1 ± 3) · 10−3 (−1 ± 2) · 10−4 3293 ± 7 13.8
A11 (1.322 ± 9) · 10−1 (2.4 ± 3) · 10−3 (−1.7 ± 3) · 10−3 (472 ± 3) · 101 20.7
A12 (1.381 ± 9) · 10−1 (2.2 ± 3) · 10−3 (−1.3 ± 6) · 10−3 (493 ± 3) · 101 20.7
A13 (1.839 ± 7) · 10−1 (2.3 ± 5) · 10−3 (−2 ± 5) · 10−4 (657 ± 2) · 101 27.8
A14 (1.870 ± 4) · 10−1 (1.3 ± 2) · 10−3 (−2 ± 1) · 10−3 (668 ± 2) · 101 27.8
B1a (8.841 ± 6) · 10−3 (1.53 ± 5) · 10−4 (1.3 ± 2) · 10−4 315.7 ± 2 1.2
B1r (−8.28 ± 2) · 10−3 (−1.07 ± 5) · 10−4 (−1.8 ± 2) · 10−4 295.6 ± 6
B2a (3.104 ± 2) · 10−2 (6.0 ± 4) · 10−4 (5.7 ± 8) · 10−4 1108.5 ± 7 5.6
B2r (−3.13 ± 2) · 10−2 (−6.24 ± 3) · 10−4 (−6.4 ± 6) · 10−4 1116 ± 7
C1 (2.421 ± 1) · 10−3 (−2.34 ± 1) · 10−4 (7.18 ± 5) · 10−5 51.93 ± 2
C2 (9.04 ± 3) · 10−3 (9.3 ± 1) · 10−4 (2.03 ± 8) · 10−4 194.0 ± 7

DL DTy DTz

[mm2/s] [mm2/s] [mm2/s]
A1 (7.81 ± 2) · 10−4 (2.119 ± 5) · 10−4 (4.55 ± 2) · 10−4

A2 (2.184 ± 3) · 10−3 (−7.6 ± 5) · 10−6 (4.587 ± 9) · 10−4

A3 (2.135 ± 4) · 10−3 (1.58 ± 3) · 10−4 (6.60 ± 1) · 10−4

A4 (6.42 ± 1) · 10−3 (−6 ± 1) · 10−5 (1.214 ± 5) · 10−3

A5 (1.128 ± 5) · 10−2 (5.44 ± 5) · 10−4 (1.53 ± 2) · 10−3

A6 (1.29 ± 1) · 10−2 (5.1 ± 3) · 10−4 (1.64 ± 5) · 10−3

A7 (2.87 ± 2) · 10−2 (−6 ± 1) · 10−4 (3.1 ± 1) · 10−3

A8 (6.23 ± 6) · 10−2 (7 ± 2) · 10−4 (7.3 ± 2) · 10−3

A9 (1.59 ± 1) · 10−1 (−3.9 ± 4) · 10−3 (1.21 ± 6) · 10−2

A10 (2.14 ± 3) · 10−1 (−4.6 ± 7) · 10−3 (1.4 ± 1) · 10−2

A11 (3.3 ± 2) · 10−1 (−9 ± 7) · 10−4 (2.2 ± 1) · 10−2

A12 (2.9 ± 2) · 10−1 (−2 ± 1) · 10−3 (3.0 ± 4) · 10−2

A13 (4.7 ± 1) · 10−1 (2.3 ± 2) · 10−2 (2.7 ± 4) · 10−2

A14 (4.56 ± 7) · 10−1 (3 ± 3) · 10−3 (2.5 ± 3) · 10−2

B1a (1.286 ± 2) · 10−2 (1.0 ± 3) · 10−4 (2.3 ± 2) · 10−3

B1r (1.132 ± 6) · 10−2 (2.12 ± 4) · 10−3 (−1.5 ± 2) · 10−3

B2a (5.68 ± 4) · 10−2 (2 ± 3) · 10−4 (2.0 ± 1) · 10−2

B2r (5.40 ± 8) · 10−2 (5.2 ± 2) · 10−3 (−1.5 ± 1) · 10−2

C1 (4.5 ± 1) · 10−3 (2.121 ± 7) · 10−3 (1.74 ± 1) · 10−3

C2 (3.5 ± 2) · 10−3 (3 ± 1) · 10−5 (4.33 ± 6) · 10−3

Table 8.3: Results for mean velocities and longitudinal and transverse dispersion coefficients
from the experiments of series A, B and C. The digits after ± denote the error related to the
last digit of the result.
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Figure 8.11: a Coefficients of longitudinal dispersion obtained from measurements of series A,
B and C. The solid lines represent the least squares approximations of the models for DL(Pe)
given by equations 8.12 and 8.13. b Comparison with results from NMR measurements (Manz
et al. (1999) and Kandhai et al. (2002)) and classical breakthrough experiments (Pfannkuch
(1963), Charlaix et al. (1987), Rigord et al. (1990) and Hulin & Plona (1989)).
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Reference α β γ Pe range
Maier et al. (2000) 0.25 0.03 0 1 < Pe < 5000
Kandhai et al. (2002) 0.153 ± 9 0.080 ± 5 (1.7 ± 2) · 10−3 0.1 < Pe < 100
This work 0.0 ± 2 0.37 ± 4 (3 ± 1) · 10−5 33 < Pe < 6680

Table 8.4: Parameters of the functional dependence DL(Pe) given by equation 8.12 for un-
consolidated bead packings obtained from lattice-boltzmann simulations (Maier et al., 2000),
NMR measurements (Kandhai et al., 2002) and the experimental data given in table 8.3. The
digits after ± denote the error related to the last digit of the result.

and therefore γ was set to zero. From the comparison of the results for α and β it is obvious
that these simulations do not agree with the measurements of this work. The results of
Kandhai et al. (2002), which were found from NMR measurements, also differ strongly from
the results of this work. There is a general trend that the values for DL obtained from NMR
measurements are about one order of magnitude lower than the values from other methods, a
finding which has been reported by several authors (see e.g. Kandhai et al. (2002), Maier et al.
(2000), Manz et al. (1999) and Seymour & Callaghan (1997)). This disagreement is confirmed
by the results of this work. The results for α, β and γ obtained from the measurements of
this work agree with theoretical considerations predicting that the major contribution to DL

in this regime comes from boundary-layer dispersion, which is quantified by the parameter β
(Koch & Brady (1985), Sahimi (1993)). A further discussion about the possible influence of
holdup dispersion is given in section 8.3.5.

Another model which is commonly used to describe DL(Pe) for Pe> 5 is the power-law
relationship

DL

Dm
= αPen (8.13)

Although there is no direct physical motivation for this relation, it has been found to provide a
good approximation of experimental results. The consistence of this model, denoted as Model
2 in figure 8.11a, with the data of this work is apparently well. Table 8.5 lists the values of
α and n found from the data of this work and by other authors. n compares reasonably with
the result of Manz et al. (1999) obtained with NMR and agrees well with the result of Dullien
(1992), which was calculated from a compilation of measured dispersion coefficients from
several authors. It also agrees with the compilation of α’s and n’s in Gist et al. (1990), where
most results for n are in the range 1.1 < n < 1.22. A distinctly higher value of n = 1.29 was
found by Coelho et al. (1997) from numerical studies. Whereas n seems to be consistent for a
large range of flow rates and grain size distributions, the results of Gist et al. (1990) indicate
that α is much more sensitive to the pore structure and the amount of heterogeneities of the
unconsolidated bead packing. This finding is confirmed by the below discussed comparison
of data from the literature shown in figure 8.11b.

If one assumes that a functional relationship for DL(Pe) like equation 8.12 or 8.13 must
be valid, the errors for DL and Pe given in table 8.3 do not suffice to explain the deviations
of the experimental data from the fitted curves DL(Pe) (the errors are so small that they
cannot be identified from the logorithmic diagram 8.11a). However, these errors only account
for the uncertainties of the respective individual measurements. The possible variance of DL

due to heterogeneities in the porous medium, which will be induced by the varying initial
distributions used in the experiments (see appendix B), is not contained in the given errors

131



CHAPTER 8. SINGLE-PHASE FLOW IN SATURATED POROUS MEDIA

Reference α n
Manz et al. (1999) - 1.12 ± 2
Coelho et al. (1997) 0.26 1.29
Gist et al. (1990) 0.46-3.9 0.93-1.22
Dullien (1992) - 1.2
This work 0.77 ± 8 1.18 ± 2

Table 8.5: Parameters of the power-law dependence for DL(Pe) given by equation 8.13 ob-
tained for unconsolidated bead packings reported by various authors and found from the
experimental data given in table 8.3. The digits after ± denote the error related to the last
digit of the result.

and may serve as an explanation for the aforementioned deviations.
Finally a comparison of experimental results for DL from different authors is given in

figure 8.11b. The values of Manz et al. (1999) and Kandhai et al. (2002) are obtained with
NMR techniques, whereas the others were found from breakthrough curve measurements.
Obviously the results of this work compare best with those of Pfannkuch (1963), which cover
a similar range of Peclet numbers. A possible reason for the comparatively low values of other
experiments could be that the transport distance is too short to reach the asymptotic value
as discussed in Han et al. (1985).

Transverse dispersion

Only few measurements of transverse dispersion coefficients have been reported in the lit-
erature until now. Figure 8.12 shows two compilations of results for unconsolidated bead
packings reprinted from Han et al. (1985) and Delgado & Guedes de Carvalho (2001). None
of these works, mostly performed in the 1960’s using conductivity probes to measure the
transverse breakthrough distribution, has made a distinction between transverse dispersions
in the vertical and horizontal direction. To the authors knowledge the PLIF measurements
performed in this work are the first to simultaneously measure transverse dispersion in the
vertical and horizontal direction. Additionally the present technique allows for highly resolved
measurements of the temporal evolutions of σ2

y(t) and σ2
z(t) which are discussed in section

8.3.3.
Figures 8.13a,b show the semilogarithmic plots of the measured transverse dispersion

coefficients in the vertical (DTy) and horizontal (DTz) direction given in table 8.3. The com-
parison of these two plots reveals a significantly different behavior of vertical and horizontal
transverse dispersion: whereas DTz shows a considerable increase with Pe, which becomes
even more evident from the double-logarithmic plot shown in figure 8.13c, DTy remains es-
sentially constant near zero over the whole range of Pe, with the variance of DTy growing
with Pe.

Two possible reasons have to be considered for an explanation of this anisotropic behavior:

• Anisotropy in the structure of the porous medium.

• Anisotropic external forces like gravity, which is directed in vertical direction and could
therefore lead to a decrease of DTy via a density gradient in the fluid.

132



8.3. HYDRODYNAMIC DISPERSION

a b

Figure 8.12: Compilations of measured transverse dispersion coefficients in unconsolidated
bead packings reprinted from a Han et al. (1985) and b Delgado & Guedes de Carvalho
(2001).

A first argument against the first hypothesis are the results about the pore structure obtained
in section 8.3.1: no anisotropies between vertical and horizontal direction are identifiable from
figures 8.9c+d, and the vertical and horizontal correlation lengths found from figures 8.10b+d
show no appreciable differences. A second argument in favor of the second hypothesis are the
findings presented in section 8.3.4.

In figure 8.13c the measured values of DTz are fitted to a power-law analog to equation
8.13:

DTz

Dm
= αPen. (8.14)

The parameters are estimated to α = 0.7 ± 2 and n = 0.87 ± 3. The value of n agrees
well with the value of n = 0.9 obtained by Sahimi (1993) from a compilation of results from
several authors. Harleman & Rumer (1963) have found a value of n = 0.7 from experimental
observations, and the numerical studies of Coelho et al. (1997) yielded a value of n = 0.72.

Finally figure 8.14 compares the measured values to the recent results of Manz et al.
(1999) obtained with a NMR technique and Delgado & Guedes de Carvalho (2001) using
mass transfer measurements from a buried flat wall aligned with the flow. The latter found
the following relationship for Sc≥550 and Pe<1400:

DT

Dm
= 0.71 + 0.0425Pe − 1.48 · 10−5Pe2. (8.15)

Both cited works agree reasonably with the vertical transverse dispersions coefficients of this
work.

Hydraulic conductivity

For the experiments of series A and C, using plexiglass grains for the porous matrix and a
silicone oil mixture as a fluid, the estimated velocities vx and the measured differences ∆h
of the liquid heights at the inlet and outlet of the horizontal flow cell, given in table 8.3 and
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Figure 8.13: Semilogarithmic plot of measured transverse dispersion coefficients in a vertical
and b horizontal direction. c double-logarithmic plot of horizontal transverse dispersion
coefficients with least squares fit of the power-law relation 8.14.
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Figure 8.14: Comparison of the measured coefficients of transverse dispersion with literature
data.

plotted in figure 8.15, can be used to estimate the hydraulic conductivity K, defined by the
relation between the volumetric flux jx and the hydraulic gradient dψ

dx

jx = −K
dψ

dx
. (8.16)

From the slope of the least squares straight line fit shown in figure 8.15, estimated to ∆vx
∆(∆h) =

(6.62 ± 6) · 10−4 1
s , the hydraulic conductivity K can then be calculated as:

K =
∆vx

∆(∆h)
φplexiglass∆x

gρsiliconeoil
= (6.62±6) ·10−4 1

s
0.37 · 80 mm

9.81 ms−2 · 1.05 gcm−3
= (1.90±2) ·10−9 m3 s

kg
.

(8.17)
The value of the alternatively defined hydraulic conductivity K∗ = ρgK (see e.g. Roth
(1996a)) is given by

K∗ = ρsiliconeoilgK = (1.96 ± 2) · 10−5 m
s

. (8.18)

8.3.3 Temporal evolution of mean and variance

Until now a linear temporal increase of the mean positions x̄(t), ȳ(t), z̄(t) and variances
σ2

x(t), σ2
y(t), σ2

z(t) was assumed in order to estimate the velocities v̄x, v̄y, v̄z and dispersion
coefficients DL, DTy, DTz. In the following a closer look will be taken at the temporal
evolutions of mean and variance which are plotted in appendix B and whose availability is
one of the main features of the present experimental technique.

The comparative study of the characteristic temporal behaviors of the respective mean
positions and variances shown in appendix B leads to the following observations:
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• As expected the increase of the mean positions x̄(t) in flow direction is strictly linear.

• Apart from some small fluctuations at the beginning, the increase of σ2
x(t) is generally

strictly linear. This indicates that the longitudinal dispersion has reached an asymptotic
regime.

• The mean positions in vertical direction ȳ(t) show significant variations. A possible
explanation is discussed below.

• The vertical variances σ2
y(t) typically exhibit a strong increase at the beginning followed

by a pronounced fluctuating behavior, indicating that no asymptotic regime has been
reached over the length of the flow cell.

• The mean positions in z-direction z̄(t) are characterized by low fluctuations and small
linear trends.

• The variances in z-direction σ2
z(t) typically show a strong increase at the beginning

followed by a linear increase, indicating an asymptotic regime.

An intuitive approach to explain the fluctuations of ȳ(t) and σ2
y(t) is the presence of

heterogeneities, which can hardly be avoided in the construction of an unconsolidated bead
packing. To confirm this hypothesis, the deviations between ȳ and σ2

y and their corresponding
straight line fits, ∆y = ȳ − ȳlinefit and ∆σ2

y = σ2
y − σ2

ylinefit have been plotted over the mean
position in x-direction. The uniform behavior of the curves for series A and B shown in figure
8.16a,b strongly indicates that the deviations are mainly caused by the spatial structure of
the porous medium. However, there are few exceptions which are shown in figure 8.16c,d: for
x̄ < 40 mm, the shape of ∆σ2

y of the experiments A1, A2 and A5 shows some deviant behavior,
which might be caused by their deviant initial distributions. As expected the curves for the
experiments C1 and C2 have a differing shape since they were measured in a completely
different porous medium.

The possible reasons for the different behaviors of transverse dispersion in vertical and
horizontal direction, like the stronger vertical fluctuations and the higher horizontal dispersion
coefficients DTz are discussed in sections 8.3.2 and 8.3.4.

8.3.4 Reversibility

The idea behind echo dispersion experiments is the visualization of the effects of hetero-
geneities inherent in the porous medium through a reversal of flow direction after a certain
travel distance. Whereas heterogeneities smaller than the size of the tracer plume lead to
an irreversible broadening of the concentration distribution, structures larger than the plume
size result in a reversible contribution to the temporal evolution of the mean position and
variance.

Two echo dispersion experiments, denoted as B1 and B2, have been made using different
flow rates. For both experiments, a heterogeneous initial distribution has been realized by the
application of two adjacent tracer pulses. For this reason the dye distributions will not reach
their asymptotic gaussian shape during the experiments, and the effect of heterogeneities
will be more pronounced. The temporal evolutions of the 1D concentration distributions
are shown separately for the times before and after the reversal of flow direction in figures
B.15-B.18.
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Figure 8.17: Isosurface plots from different angles of the 3D dye concentration distribution of
the echo dispersion experiment B1 at t = 0 s.
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Figure 8.18: Isosurface plots from different angles of the 3D dye concentration distribution of
the echo dispersion experiment B1 at t = 10470 s.
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Figure 8.19: Temporal evolutions of mean and variance in x-, y- and z-direction for the echo
dispersion experiments B1 (a-f) and B2 (g-l).
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Figures 8.17 and 8.18 show visualizations of the 3D dye concentration distribution at
the start and at the end of the experiment B1, respectively. From a comparison of these
distributions, the effect of the irreversible part of the dispersion, mainly the broadening of the
distribution in x-direction, is obvious. For a more detailed study of the dispersion mechanisms,
the temporal evolutions of the mean positions and variances in x-, y- and z-direction have
been plotted for both experiments in figure 8.19. From the respective evolutions of the mean
position in flow direction, shown in figure 8.19a,g, the time of the reversal of flow direction is
readily identifiable. Bearing in mind this point of time, the examination of the evolutions of
x̄(t), ȳ(t), z̄(t), σ2

x(t), σ2
y(t) and σ2

z(t) leads to the following observations:

• The evolutions of the mean positions x̄(t), ȳ(t) and z̄(t) are nearly fully reversibile. This
is a strong indication for the hypothesis that the occurred displacements in y- and z-
direction are caused by heterogeneities inherent in the porous medium. The evolutions
of ȳ(t) are superimposed by an additional increasing trend, which indicates the presence
of additional forces in the vertical direction.

• The variances in flow direction σ2
x(t) show a linear increase both before and after the flow

reversal. Consequently the longitudinal dispersion is mostly dominated by irreversible
mechanisms. However, the dispersion coefficients for the receding flow are somewhat
lower than those for the advancing flow (see table 8.3), which is a further indication for
a reversible effect from larger heterogeneities.

• The transverse dispersion in horizontal direction σ2
z(t) is nearly completely reversible,

with the corresponding dispersion coefficients for the receding flow becoming negative.
Again this indicates the presence of heterogeneities.

• The evolutions of the vertical transverse variance σ2
y(t) are characterized by some low

fluctuations and an additional significant increase during the receding flow. While the
fluctuations can be explained by heterogeneities, the significant increase can only be
explained by additional forces acting in the vertical direction, as for instance a density
gradient in the fluid.

As a conclusion, the echo dispersion experiments provided a beneficial opportunity to
study and separate the effects of reversible and irreversible processes on macroscopic disper-
sion. Additionally, the presence of an additional process, which cannot be related to the
structure of the porous medium, could be identified. This finding confirms the hypothesis
that the asymmetry between vertical and horizontal dispersion found in sections 8.3.2 and
8.3.3 is caused by an external force as discussed at the end of section 8.3.2.

8.3.5 Holdup dispersion

The scaling of the coefficient of longitudinal dispersion DL(Pe) with the Peclet number in the
range 50 < Pe < 7000 according to a power-law DL ∝ Pen with n ≈ 1.2, which was found
from the experiments of this work in agreement with previous results as described in section
8.3.2, still lacks a physical explanation. Koch & Brady (1985) have provided a quantitative
theory describing the effects of boundary-layer dispersion and holdup dispersion, which can
explain the observed power-law behavior over a certain Pe range. However, they deplore that
”this holdup dispersion is not detectable from the presently available experimental data”.
Over the last decade the upcoming techniques of NMR and MRI have revealed some detailed
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insights into the flow processes in unconsolidated bead packings: Sederman et al. (1997) have
found significant variations of the local flow rate within the pore space of packed beds, and
Kandhai et al. (2002) have used permeable spheres to study the influence of stagnant zones on
the dispersion in a packed bed, finding ”that holdup dispersion in porous media may be more
important than assumed in many cases”. The numerical studies of Reynolds et al. (2000)
using a Lattice-Boltzmann formulation yielded a power-law distribution for the normalized
local kinetic energy of the steady flow field for low Reynolds numbers Re<14. They conclude
that ”this indicates that the stagnant zones play a significant role in transport through the
packed bed”.

With its high spatial and temporal resolution, the present technique is the first to provide
the opportunity for a direct quantitative observation of holdup dispersion processes. This is
accomplished by the analysis of the spatio-temporal concentration distributions as exemplified
for the experiment A6 in figure 8.20. In figure 8.20a the y-t concentration distribution is shown
at the position x = 27.9 mm / z = 32 mm for 15.9 mm < y < 28.7 mm and 600 s < t < 8100 s.
From this illustration the existence of so-called dead end pores or stagnant zones can be directly
recognized. The fact that the tracer dye can enter and leave these pores only by diffusion but
not through convection leads to a significantly slower decay of the dye concentration after the
major tracer plume has passed, than in pores with convective transport. This behavior can
be identified at the four locations indicated by arrows. The process of holdup dispersion in a
stagnant zone can analyzed in more detail from the comparison of the temporal evolutions at
two adjacent locations as shown in figure 8.20b. Whereas for t < 3000 s both pores show a
similar behavior as it would be expected from convective-diffusive transport, the concentration
at y = 23.6 mm exhibits a significantly slower decay. Consequently the pore structure at this
location consists of both a zone with convective-diffusive transport and a zone with solely
diffusive transport.

Figure 8.20c shows 1D concentration distribution in x-direction c̄(x) (see equation 6.4) for
the same experiment at t = 3000 s together with the least squares fit of a gaussian distribution.
As indicated the measured distribution is characterized by a slight tail, i.e. a decay of c̄(x)
for x → 0 which is slower than that of a gaussian. Such tails are obtained from practically
all breakthrough experiments measuring c̄(xoutlet, t) at the outlet of a flow cell. However,
such experiments cannot make any statement about the physical process which is the origin
of the tail. Possible origins are heterogeneities of any scale, boundary effects caused by the
container walls (see Maier et al. (2002)), adsorption on the surface of the solid and holdup in
stagnant zones. With the present experimental technique, which can simultaneously measure
the microscopic transport processes as shown in figure 8.20a,b as well as the macroscopic
transport from the averaged distributions c̄(x, t) shown in figure 8.20c, the physical origin of
the macroscopic tail in figure 8.20c can be directly attributed to microscopic holdup dispersion
processes.

In section 8.3.2 it was found that the longitudinal dispersion coefficient DL(Pe) scales
with the Peclet number Pe according to a power-law given by equation 8.13 with an exponent
n ≈ 1.2. The physical origin of this power-law behavior is still under discussion (Manz et al.
(1999)). The above findings seem to indicate that a major contribution to the power-law
behavior comes from holdup dispersion. However, a model which considers only a combination
of mechanical dispersion and holdup dispersion,

DL

Dm
= τ + αPe + γPe2, (8.19)
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Figure 8.20: a Temporal evolution of dye concentrations at x = 27.9 mm / z = 32 mm for
15.9 mm < y < 28.7 mm and 600 s < t < 8100 s in experiment A6. The stagnant can be
recognized by their long tails. b Comparison of the temporal evolutions at y = 23.6 mm and
y = 23.9 mm. c Macroscopic averaged distribution c̄(x) at t = 3000 s.
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Figure 8.21: Least squares fit of the holdup dispersion model 8.19 to the measured longitudinal
dispersion coefficients given in table 8.3. A comparison with figure 8.11a indicates that this
model doesn’t suffice to describe the observed data.

cannot describe the measured behavior as sufficiently as the models 8.12 and 8.13, as it can
be seen from a comparison of figure 8.11a and figure 8.21. A possible explanation of this
inconsistence is that the stagnant zones found from the data shown in figure 8.20a,b are not
strictly separated from the zones with convective transport. If there is some kind of transition
between these two zones, the behavior could be described by a contribution βPe ln Pe which
is analog to that from boundary-layer dispersion. This would then agree with the finding in
section 8.3.2 that a major contribution comes from boundary-layer dispersion. This hypothesis
is confirmed by the power-law distribution of the local kinetic energy for the steady flow field
in a close-packed fixed bed of spheres found by Reynolds et al. (2000) from numerical studies.
Further research is necessary to reveal these mechanisms.

8.3.6 Adsorption

In the experiment of series D a combination of fused silica grains and silicone oil together
with Nile Red as a fluorescent dye was used as specified in table 8.2. The 2D dye concen-
tration distributions obtained in this experiment are shown for three different times in figure
8.22. The strong tails that are visible in these images can also be found in the correspond-
ing macroscopic concentration distributions c̄(x, t) shown in figure 8.23a. Apparently these
distributions cannot be described by a classical convection-dispersion equation since there
must an additional physical process that leads to these significant tails. As already discussed
in section 8.3.5 this microscopic physical process cannot be identified from the macroscopic
concentrations c̄(x, t). However, the analysis of the microscopic spatio-temporal distribution
shown in figure 8.23b provides the opportunity for a characterization of the underlying phys-
ical process. In contrast to the distribution shown in figure 8.20a, where longer tails could
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only be observed at few isolated locations, which were then identified as stagnant zones, the
y-t-distribution in figure 8.23a exhibits these long tails over the whole y-range. This finding,
which can also be seen from the x-y-distributions in figure 8.22, indicates that the process
that causes the immobility of a fraction of the dye molecules is uniformly active everywhere
in the medium. Therefore the tails in the macroscopic distributions c̄(x, t) can be attributed
neither to holdup dispersion nor to heterogeneities or boundary wall effects, and the only
remaining reasonable explanation is the adsorption of the dye on the solid surface.

In principle the measured macroscopic 1D distributions c̄(x, t) can be described by a
mobile-immobile model according to equations 6.2-6.3, where the immobile fraction of the
liquid phase is represented by the dye molecules adsorbed on the solid surface. Numerical
solutions of this set of coupled partial differential equations are available for the case that the
initial distribution c̄(x, t = 0 s) is given by a δ-distribution δ(x). The parameters of the model
can then be obtained from a least-squares minimization of the differences between model and
data as described in section 6.4.

For an accurate representation of the data however the exact knowledge of the initial
concentration distribution is necessary. This is demonstrated in figure 8.23c for t = 1470 s,
where the fit of the mobile-immobile model was made using two different initial distributions.
Whereas the fit with the assumed δ-distribution is not able to describe c̄(x) for x < 25 mm, an
alternative fit with an adapted initial distribution provides a satisfactory description. Since
the actual initial distribution of the experiment wasn’t available because the measurement was
started shortly after the injection of the tracer pulse, a slightly shifted and squeezed version
of c̄(x, t = 0 s) shown in figure 8.23a was used as an initial distribution for this fit. The
consistence with the data is obvious and indicates the applicability of the employed model.

8.4 Summary and conclusions

In this chapter the PLIF method described in chapter 3 was used to study the dispersion of
fluorescent dyes in refractive index matched porous media. With this method the temporal
evolution of the 3D dye concentration distribution inside the flow cell could be measured with
a high spatial and temporal resolution. Through the analysis of this highly resolved data the
following major achievements have been made:

• The longitudinal and transversal dispersion coefficients have been precisely measured
over a large range of Peclet numbers. These are the first simultaneous measurements
of longitudinal and transverse dispersion of a 3D dye pulse in an unconsolidated bead
packing. Furthermore, the method provides the measurement of the temporal evolu-
tion of the dye concentration distribution with an unprecedented spatial and temporal
resolution.

• The observed dependence of the coefficients of longitudinal dispersion on the Peclet
number obeys a power-law with an estimated exponent n = 1.18 ± 0.02, which is in
agreement with previous studies.

• The measurements provide the first simultaneous separate determination of the trans-
verse dispersion coefficients in vertical and horizontal direction. A significantly deviant
behavior between these two directions was found. The analysis of the corresponding
temporal evolutions of the means and variances, and the characterization of the sepa-
rately obtained porous structure, provided an indication that this phenomenon is not
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Figure 8.22: 2D dye concentration distributions c̄(x, y) =
∑

z c(x, y, z) for experiment D at a
t = 1470 s, b t = 2220 s and c t = 2970 s. The tails indicate the adsorption of the dye on the
solid surface.
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Figure 8.23: a Macroscopic averaged dye concentration distributions c̄(x) for the experiment
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caused by anisotropies in the pore structure but induced by gravity through a den-
sity gradient in the liquid. This hypothesis is further confirmed by the analysis of the
reversible and irreversible portion of the dispersion in echo dispersion experiments.

• The analysis of the microscopic spatio-temporal concentration distributions provided
the first direct evidence for the presence of stagnant zones in unconsolidated bead pack-
ings. These stagnant zones lead to observable tails in the corresponding macroscopic
concentration distributions and are a likely candidate for the explanation of the power-
law behavior of the longitudinal dispersion coefficients.

• The transport of Nile Red as a tracer dye in a porous medium made up of fused silica
grains and silicone oil as a solvent, resulted in macroscopic distributions with large tails.
Through the analysis of the corresponding microscopic concentrations these tails could
be related to the effect of the adsorption of the tracer dye on the solid surface of the
porous medium.
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Chapter 9

Flow of two immiscible liquids in a
porous medium

9.1 Introduction

In this chapter the PLIF technique described in chapter 3 is used to simultaneously visualize
the flow of two immiscible liquids in a refractive index matched porous medium. The realiza-
tion and the obtained results of such an experiment are presented in section 9.2. As described
already in section 3.6, the absorption and emission spectra of the two fluorescent dyes used
to visualize the respective liquid phases show a certain overlap, which leads to a correlation
in the measured intensities representing the two liquids. Therefore in section 9.3 a method
is presented for the compensation of this undesirable effect, followed by a presentation of the
data corrected in this way. Finally a summary and conclusions are given in section 9.4.

9.2 Immiscible displacement of oil by water

In the following the usage of the PLIF method presented in chapter 3 for the visualization
of a displacement process of two immiscible liquids will be demonstrated. The two liquids
employed here are the DC 550 / DC 556 silicone oil mixture and the ZnCl2 aqueous solution,
which are specified in section 3.5. Since in this experiment the desired information was not
the concentration of the dyes but the respective liquid phase saturations, both liquids were
uniformly dyed with Nile Red and Alexa Fluor 488 (see section 3.6), respectively. The porous
medium was made up of the fused silica grains specified in section 3.4, which were embedded
in the vertical flow cell shown in figures 3.3b and 3.4. The volume scans of the respective
fluorescent light intensities were accomplished alternately, with the filter wheel switching
between the two optical bandpass filters (550 ± 20 nm and 600 ± 20 nm) after each volume
scan. The time for a volume scan of both fluorescence intensity distributions was 60 s.

At the beginning of the experiment the porous medium was completely saturated with the
dyed silicone oil mixture. Then the zinc chloride aqueous solution, which has a significantly
higher density than the silicone oil (see table 3.3), was injected from the bottom of the flow
cell with a mean velocity in the liquid phase of 0.0023 mm/s. The displacement of the silicone
oil by the aqueous solution was then recorded with a temporal resolution of one volume scan
per minute during the following 90 minutes. The spatial resolution of the measurement was
approximately 80 µm × 80 µm parallel to the laser plane and 0.4 mm, as defined by the
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increments of the translation stage, in the out-of-plane direction. The effective resolution in
the out-of-plane direction is however rather given by the width of the laser sheet of ca. 0.5-1
mm.

The measured light intensities of Nile Red and Alexa Fluor 488, respectively, are shown in
figure 9.1 for three different times. Each plot represents a volume subset of 20 × 20 × 20 mm3.
Due to the uniform dye concentrations in each liquid, the image data represents the volumetric
contents of the silicone oil (figure 9.1a, c and e) and the aqueous phase (figure 9.1b, d and f).
In figure 9.1b, d and f the separation between the lower region, where the aqueous phase has
nearly completely displaced the oil and the upper region, which is still completely filled with,
is visible. Figure 9.1a, c and e firstly show the residual oil saturation, which consists of little
disconnected ’blobs’ that have been trapped during the inflow of the aqueous solution in the
lower regions. Secondly the parts of the oil-filled regions which adjoin water-filled areas are
visible, whereas the oil at the top of the volume is only weakly fluorescing. This is an effect
of the overlapping absorption and emission spectra of the two dyes, as mentioned above. A
method for the correction of this effect is presented in the next section.

9.3 Compensation of spectral overlap

In this section a method for the compensation of the undesirable effects stemming from the
spectral overlap of the emission spectrum of Alexa Fluor 488 and the absorption spectrum of
Nile Red is presented. As discussed in the previous section, this effect leads to the phenomenon
that the distribution of the silicone oil is clearly visible in the regions which are in the vicinity
of water-filled areas, where the Nile Red is excitated by the Alexa Fluor 488, whereas the
silicone oil is nearly invisible in regions far from the aqueous solution.

The assumption that the Nile Red is excitated both by the laser and by fluorescing Alexa
Fluor 488 in the vicinity of the silicone oil can be described by the following set of equations:
the measured light intensities INileRed(x, y, z) and IAlexaFluor(x, y, z), quantifying the fluores-
cence emission of Nile Red and Alexa Fluor 488 in the 3D volume element at the position (x,
y, z)T are related to the laser light intensity sLaser(x, y, z) through

IAlexaFluor(x, y, z) = kAlexaFluor · sLaser(x, y, z) · cAlexaFluor(x, y, z) and (9.1)

INileRed(x, y, z) = kNileRed · sLaser(x, y, z) · cNileRed(x, y, z)
+ (h ∗ IAlexaFluor(x, y, z)) · cNileRed(x, y, z). (9.2)

cAlexaFluor(x, y, z) and cNileRed(x, y, z) denote the respective dye concentrations related to the
volume element at the position (x, y, z)T , and the constants kAlexaFluor and kNileRed represent
the effects of measurement geometry and quantum efficiency. While equation 9.1 and the first
term of equation 9.2 describe the excitation of the dyes by the laser light, the second term of
equation 9.2 describes the excitation of Nile Red by the fluorescence emission of neighboring
Alexa Fluor 488. The shape of the neighborhood is defined by the convolution kernel h. If, as
a first approximation, the laser intensity sLaser(x, y, z) is assumed to be constant throughout
the medium, the desired concentration cNileRed(x, y, z) is given by

cNileRed(x, y, z) =
INileRed(x, y, z)

kNileRedsLaser + h ∗ IAlexaFluor(x, y, z)
. (9.3)
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Figure 9.1: Volume subsets of 20 × 20 × 20 mm3 showing the fluorescence emission intensities
of Nile Red (a, c, e) and Alexa Fluor 488 (b, d, f) measured at three different times during
the displacement of oil by water.
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Figure 9.2: Correction of the measured intensities of Nile Red according to equation 9.3. a
Originally measured fluorescent light intensities of Alexa Fluor 488 and b Nile Red in a region
of 25 × 25 mm2 at z = 33 mm and t = 58 min. c Alexa Fluor 488 distribution convoluted
with a gaussian filter. d Corrected Nile Red distribution showing a homogeneous saturation
in the upper region compared to the original distribution in b. All results are normalized to
0 < c < 1.
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The application of this equation for the correction of the spectral overlap is illustrated in
figure 9.2. The normalized measured light intensities of Alexa Fluor 488 and Nile Red in a
region of 25 × 25 mm2 are shown in figure 9.2a,b. As discussed above, the spectral overlap
leads to the phenomenon that the distribution of silicone oil shown in figure 9.2b is only visible
in the vicinity of the aqueous solution entering from the bottom of the flow cell, and not in
upper regions (y < 80 mm). Figure 9.2c shows the convoluted intensity h ∗ IAlexaFluor(x, y, z)
with the convolution kernel h chosen as a gaussian filter with variance σ = 0.8 mm. This
corresponds to the intuitive assumption that the excitation of Nile Red by the fluorescence
emission of Alexa Fluor 488 decreases with distance, and the range of this interaction is
characterized by σ. Finally, the corrected distribution of Nile Red, calculated according to
equation 9.3, is shown in figure 9.2d. The additive constant kNileRedsLaser in equation 9.3 has
been chosen to 0.07. Both the shape of h and the value of kNileRedsLaser have been found by
trial and error with the objective of a preferably homogeneous Nile Red distribution in the
upper regions (y < 80 mm). Both parameters turned out to be not very critical, in the sense
that their variation causes only slight changes in the resulting Nile Red distribution. The
improvement over the original data in figure 9.2b is obvious.

Although the so obtained corrected Nile Red distribution appears quite reasonable, it is
not presumed that these results allow for any exact evaluation of physical quantities. Even
though the approach for the correction according to equation 9.3 is physically motivated, the
parameters h and kNileRedsLaser lack a physical justification. Furthermore all data presented
in this chapter are relative concentrations, and consequently all illustrations show normalized
concentration distributions 0 < c(x, y, z, t) < 1.

However, the corrected results give an insightful visualization and allow for a qualitative
study of the 3D microscopic processes during the imbibition of an aqueous phase into an oil
saturated porous medium. Figure 9.3 shows the corrected version of the data shown in the 3D
visualization of figure 9.1, which can now be regarded as the respective relative saturations
of the wetting and nonwetting phase. A more detailed visualization of the imbibition process
in a 2D subset of approximately 12 × 12 mm2 is shown in figures 9.4 and 9.5. The formation
and shape of the residual oil saturation in the form of so-called blobs can be readily observed.
Interestingly the oil saturation often decreases in regions which are apparently disconnected
from the major fraction of the oil, as indicated by the errors at t = 51 min, t = 55 min
and t = 56 min. Possible explanations are connections in the out-of-plane direction or the
displacement of the blobs due to buoyant forces. The latter microscopic effect is responsible for
typically observed macroscopic phenomena like the hysteresic behaviour of so-called capillary
pressure-saturation relations.

9.4 Summary and conclusions

In the previous sections the measurement and analysis of the flow of two immiscible liquids
during an imbibition process has been described. From the thereby obtained results the
following conclusions can be drawn:

• Through the employment of appropriate solids, liquids and fluorescent dyes, the PLIF
technique described in chapter 3 is the first high-resolution matching-index method for
the simultaneous visualization of the 3D pore-scale flow of two immiscible liquids in a
porous medium.
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Figure 9.3: Volume subsets of 20 × 20 × 20 mm3 representing the relative saturations of
silicone oil (a, c, e) and zinc chloride aqueous solution (b, d, f) at three different times
during the imbibition of the aqueous solution. This data has been obtained from the original
data shown in figure 9.1 through the correction according to equation 9.3.
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Figure 9.4: Temporal evolution of the silicone oil distribution during the imbibition of the
aqueous phase from the bottom in an area of 12 × 12 mm2 at z = 33 mm. The continuation
is shown in figure 9.5.
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Figure 9.5: Continuation of the time series of silicone oil distributions shown in figure 9.4.
The arrows at t = 51 min, t = 55 min and t = 56 min indicate displacements of apparently
disconnected blobs.
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9.4. SUMMARY AND CONCLUSIONS

• The effects caused by the spectral overlap of the absorption and emission spectra of the
two fluorescent dyes could be qualitatively corrected through a physically motivated
inverse transformation.

• The analysis of the corrected results provides detailed insights into the microscopic
3D flow processes during the displacement of a nonwetting phase by an invading wet-
ting phase liquid. The formation of disconnected areas of residual oil, a microscopic
process which has strong impact on macroscopic phenomena like the hysteresis of capil-
lary pressure-saturation relations, can be investigated with a high spatial and temporal
resolution.
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Chapter 10

Summary and conclusions

In the present work valuable new insights have been gained into the flow and transport in
porous media. The highly accurate measurements have been accomplished by the development
of both novel experimental techniques as well as new numerical methods for data processing
and parameter estimation.

The following major achievements have provided the basis for the capability of the exper-
imental method:

• The acquisition of an appropriate combination of solids, liquids and fluorescent dyes for
the composition of transparent and optically homogeneous porous media.

• The employment of capable imaging hardware, light source and optical components.

• The adoption and application of a method for the highly precise matching of refractive
indices.

These developments led to the following unique features of the present technique:

• The capability of measuring dye concentrations in an array of 1300 × 600 × 100 volume
elements every 30 seconds.

• The availability of two immiscible liquids in order to study two-phase flow.

• The availability of two different solid materials in order to study the influence of solid-
liquid interactions.

A further basis for the quality of the obtained results are the following achievements in
the field of image processing:

• A detailed analysis of possible systematic and statistical errors has led to a sophisticated
combination of algorithms for image preprocessing.

• A method for the local parameter estimation has been applied for the first time to the
estimation of temporally and spatially resolved dispersion tensors.

• Based on a detailed analysis of accuracy using synthetic data sets, a new confidence
measure has been found for the local parameter estimation method.
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• The commonly used approach for the parameter regularization in case of an aperture
problem has been extended by an additional physically based constraint, so that the
obtained results are unbiased and physically reasonable.

The accomplished measurements and subsequent data analysis have led to the following
major results:

• The measurements represent the first simultaneous estimation of the longitudinal as
well as both transversal dispersion coefficients over a large range of Peclet numbers.

• For the longitudinal dispersion coefficients, a dependence on the Peclet number accord-
ing to a power-law with an exponent n ≈ 1.2 has been found.

• The values of the horizontal transversal dispersion coefficients are significantly higher
than those in vertical direction. A detailed analysis of the influence of the porous
structure leads to the conclusion that the porous structure cannot be solely responsible
for this behavior.

• The analysis of the temporal evolution of microscopic dye concentration patterns pro-
vided the first direct evidence for the existence of stagnant zones in the liquid phase,
which have an important effect on the dispersion and are a potential explanation for
the power-law behavior of longitudinal dispersion.

• The phenomenon of adsorption could be clearly identified and visualized from the mi-
croscopic spatio-temporal dye patterns.

• The method has been used for the first simultaneous visualization of 3D pore-scale flow
of two immiscible liquids in a porous medium.
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Appendix A

Cubic smoothing splines

A.1 Introduction

Suppose a series of data values yi, i = 1..n is measured at discrete times ti and we want to
describe this timeseries by a regression model f(t) under the assumption of additive noise ei:

yi = f(ti) + ei, 〈ei〉 = 0, 〈eiej〉 = δijσ
2. (A.1)

The problem then is to find f(t) from the data yi.
If there are any prior assumptions on the process generating f , one can in some cases

find a parametric functional form f(t; �p), whose parameters �p = (p1, p2, ..pm)T can then be
estimated by a least squares method. If the underlying process is too complex or is not
known, e.g. when the intention of the analysis is to learn about the process, f(t; �p) cannot be
determined. This is the case in the analysis of the timeseries of concentrations c(X, Y, Z, ti)
at a position (X, Y, Z) (see chapters 5 and 8 and figure A.1), where processes like convection,
diffusion, dispersion, adsorption and also the initial distribution play a role. In these situations
non-parametric approaches are used, where no prior specification of a parametric functional
form of f is required. Here we use an approach known as cubic smoothing splines, which is
described in the following sections.

A.2 Roughness penalty approach

One method for non-parametric regression is the so-called roughness penalty approach (for a
complete description see Green & Silverman (1994)). The idea is that the roughness of the
sought function should be minimal. The roughness of a twice-differtiable curve g(t) can be
measured by its integrated squared second derivative

∫
(∂2g

∂t2
)2 dt. On the other hand also the

goodness-of-fit, i.e. the residual sum of squares
∑n

i=1(yi − g(ti))2 should be minimal.
The roughness penalty approach to estimate f(t) in equation A.1 from given yi can then

be stated as follows:
Given any twice-differentiable function g(t) defined on [a, b], and a smoothing parameter
λ > 0, define the penalty functional

S(g) =
n∑

i=1

(yi − g(ti))2 + λ

∫ b

a
(
∂2g

∂t2
)2 dt. (A.2)
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The function ĝ is defined as the minimizer of S(g) over all twice-differentiable functions g.
Whereas the first term in S(g) measures the difference between g(ti) and yi, the second is
proportional to the roughness of g. In other words, the function ĝ is the smoothest function
that achieves a certain given degree of fidelity (determined by the smoothing parameter λ)
to the data yi.

Now it can be shown (Green & Silverman, 1994) that the function ĝ which minimizes
S(g) is a cubic spline with knots at the times ti. A cubic spline is piecewise polynomial of
third degree in each of the intervals between adjacent ti with the polynomial pieces grafted
together so that the first two derivatives of the are continous. For a given λ, fast algorithms
for the calculation of ĝ are availible (for a description see Green & Silverman (1994)).

A.3 Estimation of the smoothing parameter λ

The smoothing parameter λ controls the relative importance of the roughness of g and the
difference between g(ti) and yi. For λ → 0, ĝ tends to an exact interpolation of the data yi,
whereas for λ → ∞, ĝ converges to a straight line fit. In other words, the degrees of freedom
of ĝ are (continously!) decreasing with growing λ.

In figure A.1 the measured time-series of concentrations yi = c(X, Y, Z, ti) at two fixed
positions (X1, Y1, Z1) and (X2, Y2, Z2) are shown together with the estimates of ĝ for different
values of λ. The noise in the two time-series has the same level whereas the signal strength
and thus the signal-to-noise ratio is higher by a factor of about 6 for the left time-series. It is
obvious that for both time-series the estimate ĝ changes from a nearly exact interpolation for
λ = 1 to an approximately second-order (λ = 107) and first order (λ = 109) polynomial, as
discussed above. Furthermore it is visible that the apparently optimal value for λ is different
for the two time-series. Whereas for the left time series the fit for λ = 100 seems optimal, for
the right time series the fit for λ = 5000 is best. This is due to their different signal strength
and thereby different integral of the squared second derivative.

There are several procedures availible to choose the smoothing parameter λ from the
data, mainly based on cross-validation methods (for descriptions see Craven & Wahba (1979),
Wecker & Ansley (1983) and Green & Silverman (1994)). Here we use a direct approach which
is based on the assumption that the time-series c(X, Y, Z, ti) for different (X, Y, Z) differ
mainly in amplitude and little in shape. Then the integral of the squared second derivative
is approximately proportional to the squared maximum of g:

∫ b

a
(
∂2g

∂t2
)2 dt ≈ c1(max(g))2 (A.3)

and the residual sum of squares is constant:

n∑
i=1

(yi − g(ti))2 = c2. (A.4)

The value of λ is then determined by

λ

1
=

c2

c1(max(g))2
(A.5)

λ =
c2

c1(max(g))2
=

λ∗
(max(g))2

, (A.6)
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Figure A.1: Cubic smoothing splines for two time-series of concentrations calculated with
different smoothing parameters λ.
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Figure A.2: Cubic smoothing splines for two time-series of concentrations calculated with
adaptive smoothing parameters for λ∗ = 150.

where λ∗ is constant for all (X, Y, Z) and is chosen manually. The results for the two time-
series from figure A.1 calculated with λ∗ = 150 are shown in figure A.2.
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Appendix B

Concentration Profiles

The following diagrams provide a detailed graphical representation of the temporal evolution
of the tracer dye concentration profiles for the experiments of series A-D. The specifications of
the individual experiments are given in table 8.2 and 8.3. For each experiment, the respective
normalized 1D concentration distributions in x-, y- and z-direction are plotted for five differ-
ent times. Additionally for the distributions in x-direction the corresponding least squares
approximations of a gaussian distribution are plotted. For the echo dispersion experiments of
series B, the temporal evolutions of the 1D concentration distributions are shown separately
for the times before and after the reversal of flow direction, denoted as B1a / B2a and B1r /
B2r.

Subsequently the temporal evolutions of the mean and the variance of the concentration
distributions in x-, y- and z-direction, x̄(t), ȳ(t), z̄(t), σ2

x(t), σ2
y(t) and σ2

z(t), are plotted with
the maximal temporal resolution, i.e. 30 s per volume scan. The least squares fits of a straight
line, which have been used to estimate the velocities v̄x, v̄y, v̄z and dispersion coefficients DL,
DTy, DTz as described in section 8.3.2, are indicated by the gray lines.

165



APPENDIX B. CONCENTRATION PROFILES

10 20 30 40 50 60 70
0

0.5

1

x [mm]

c

A1

gaussian

5 10 15 20 25 30 35
0

0.5

1

y [mm]

c

10 15 20 25 30 35
0

0.5

1

z [mm]

c

t=0 s
t=15420 s
t=30870 s
t=46320 s
t=61770 s

0 2 4 6

20

30

40

50

60

x 
[m

m
]

line fit

0 2 4 6

20

40

60

σ x2  [m
m

2 ]

0 2 4 6

23

24

25

y 
[m

m
]

0 2 4 6

25

30

35

40

σ y2  [m
m

2 ]

0 2 4 6

22.8
23

23.2
23.4
23.6
23.8

t [104 s]

z 
[m

m
]

1 2 3 4 5 6

20

30

40

50

t [104 s]

σ z2  [m
m

2 ]

Figure B.1: Experiment A1.
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Figure B.3: Experiment A3.
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Figure B.5: Experiment A5.
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Figure B.7: Experiment A7.
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Figure B.10: Experiment A10.
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Figure B.11: Experiment A11.
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