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Zusammenfassung

In dem Hamiltonis
hen Li
htkegelzugang zur QCD wird eine e�ektive Ein-Teil
hen-

glei
hung zur Bes
hreibung von Mesonen mit vers
hiedenen Quark- und Antiquark-


avor auf ein stark vereinfa
htes Modell heruntergebro
hen. Dieses Modell dient als

Ausgangspunkt, eine explizite Renormierung in einem ni
ht-perturbativen Rahmen zu

studieren. In numeris
her, sowie in konzeptioneller Hinsi
ht, wird dies anhand von

zwei grundvers
hiedenen Renormierungsverfahren demonstriert, die beide letztendli
h

dieselben physikalis
hen Ergebnisse liefern. Das entspre
hende renormierte Quarkpo-

tential kann f�ur kleine relative Distanzen dahingehend beliebig gew�ahlt werden, dass

eine gewisse Freiheit in der Auswahl der Regulierungsfunktion f�ur grosse Impulse ex-

istiert. Fernab dieses Berei
hes zeigt das Potential ein universelles Coulombverhalten.

Benutzt man diese Freiheit bei kleinen Distanzen in dem man fordert, dass es zum

Beispiel wie ein harmonis
hes Potential beginnen soll, so bleibt ihm keine andere Wahl,

als eine Barriere in der Streuregion zu formen, um dem asymptotis
hen Coulombteil des

Quarkpotentials folgen zu k�onnen. Dieser Me
hanismus erm�ogli
ht es Con�nement zu

sehen. Das renormierte Modell wird ans
hliessend im Impulsraum gel�ost. Das dadur
h

bere
hnete Massenspektrum der Mesonen wird dann mit den experimentell gemessenen

Werten vergli
hen.

Ein grosser Teil dieser Arbeit befasst si
h mit der Bere
hnung von Resonanzen im sta-

tion�aren Bild, sowie der Coulombstreuung im Impulsraum. Diese Problematik wird als

eigenst�andiges Kapitel im Anhang dargestellt.

Abstra
t

In the Hamiltonian light-
one approa
h to QCD an e�e
tive one-body equation for

des
ribing mesons with di�erent quark and anti-quark 
avor is broken down to an

oversimpli�ed model. This model serves as a platform to study expli
it renormalization

in a non-perturbative 
ontext. Two numeri
ally and 
on
eptually totally di�erent

renormalization s
hemes are used to demonstrate this, where at the end, both yield the

same physi
al results. The 
orresponding renormalized quark potential is arbitrary for

small relative distan
es, in the sense that there is a freedom in 
hoosing the regulating

fun
tions for large momenta. Far beyond this region the potential is showing a universal

Coulomb behaviour. Using the arbitrariness at small distan
es, by requiring it for

example to start o� as a pure harmoni
 os
illator potential, it inevitably forms a barrier

in the s
attering region in order to 
at
h up with the asymptoti
 Coulomb part of the

quark potential. This me
hanism allows to see 
on�nement. The renormalized model

is then solved in momentum spa
e by 
al
ulating its mass spe
trum. These are then


ompared with the experimental measured values.

A large part of this thesis is dedi
ated to the 
al
ulation of resonan
es in the stationary

pi
ture, as well as Coulomb s
attering in the troublesome representation of momentum

spa
e. This diÆ
ulty is represented as a stand-alone se
tion in the appendix.
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1. Introdu
tion

1 Introdu
tion

The nature of elementary parti
les 
alls for a synthesis of relativity and quantum me-


hani
s. The ne
essity of a quantum treatment is quite evident in view of the mi
ro-

s
opi
 s
ales involved whi
h are several orders of magnitude smaller than in atomi


physi
s. These very s
ales, however, also require a relativisti
 formulation. A typi
al

hadroni
 s
ale of 1fm, for instan
e, 
orresponds to momenta of p � �h
=1fm � 200MeV.

For parti
les with masses M < 1GeV, this implies sizeable velo
ities v � p=M > 0:2
.

It turns out that the task of unifying the prin
iples of quantum me
hani
s and relativity

is not a straightforward one (Appendix A). A natural solution is provided by 
ovariant

quantum �eld theory.

As we well know, there are two distin
t ways of how to approa
h a quantum �eld the-

ory. On the one hand, there is Feynmans a
tion based path-integral method whi
h

is a manifestly 
ovariant formulation. On the other hand, we have the Hamiltonian

method, whi
h obviously from the outset is not a manifestly 
ovariant formulation, as

it singles out a time t or an energy E, respe
tively. The 
on
ept of relativisti
 Hamilto-

nian dynami
s needs to be properly de�ned. This leads to the famous paper by Dira


[1℄, where he introdu
ed three distin
t forms of Hamiltonian dynami
s. Later two more

forms of dynami
s were des
ribed by Leutwyler and Stern [2℄, bringing the total num-

ber to �ve. So, there is a �vefold ambiguity to relativisti
 Hamiltonian dynami
s.

Hamiltonian formulations of �eld theory are not immediately re
ognized as equivalent

to the Feynman way. They rather have to be seen as 
omplementary approa
hes. Af-

ter more than a half 
entury of development it is 
lear that the Feynman approa
h

has many advantages if one deals with problems that may be solved by perturbative

methods, while the Hamiltonian formulation represents a more natural approa
h to-

wards bound-states, whi
h need to be des
ribed in a non-perturbative 
ontext. Also,

the questions 
on
erning the regulation of divergent integrals appearing in the naive

appli
ation of the Feynman rules have been answered in various ways and the program

of renormalization was su

essfully 
arried out for almost all interesting �eld theories,

while non-perturbative problems that are to be solved by diagonalization of the Hamil-

tonian, make the renormalization program a very hard issue to deal with.

The main question we fa
e in the Hamiltonian approa
h is, whi
h of the �ve forms

of dynami
s mentioned above is more suited to des
ribe the problem of bound-states.

One 
onsideration 
omes to mind immediately: the Fo
k-state expansion is in prin
iple

di�erent for the various forms of dynami
s, as its terms are not invariant. Therefore

the investigation of an expansion in Fo
k spa
e must be an issue. The ones mostly

used in pra
ti
e is the usual instant form and the front form. The latter is argued to

be the most suitable as the va
uum is parti
ularly simple in this form. (Se
tion 2) will

investigate further details, in order see the advantages and disadvantages of ea
h form

respe
tively.

This thesis will deal with the fundamental gauge �eld theory of QCD, the theory of

strong intera
tions, whi
h has the hadrons as its physi
al degrees of freedom.

Like its older relative QED, QCD is a renormalizable relativisti
 quantum �eld theory.

Any in�nities arising from the point-like (lo
al) nature of the intera
tion 
an therefore

3



1. Introdu
tion

be 
onsistently absorbed into a rede�nition of the physi
al parameters like masses and


ouplings. As a result, the strong 
oupling parameter �

s

is not a 
onstant but is run-

ning with the typi
al momentum s
ale of the physi
al pro
ess under 
onsideration. The

mi
ros
opi
 reason for this are va
uum polarization e�e
ts: quarks s
reen and there-

fore weaken the 
olor 
harge (analogous to QED), whereas the self-intera
ting gluons

anti-s
reen the 
olor 
harge whi
h is the dominating e�e
t. Unlike QED, therefore,

the running 
oupling �

s

(Q) of QCD is weak for high momentum transfer Q (small dis-

tan
es). This is the realm of `asymptoti
 freedom' where perturbative methods work.

For small momentum transfer Q (large distan
es), the 
oupling is large, perturbation

theory breaks down, and one has to utilize non-perturbative methods. A typi
al and

well-established value [3℄ for �

s

is

�

s

(M

Z

) = �

s

(91:2GeV) = 0:118; (1.1)

where M

Z

is the mass of the Z-Boson. The non-perturbative domain is generally

a

epted at a maximum momentum s
ale of approximately 1GeV. In some loose sense

one 
an therefore speak of two relevant phases of QCD, the weak 
oupling phase or

perturbative QCD at Q > 1GeV, and the strong 
oupling phase or non-perturbative

QCD at Q < 1GeV.

Let us now fo
us on the hadrons. In prin
iple, it is quite 
lear, what a hadron is in

QCD: it is an eigenstate of the QCD Hamiltonian,

H

QCD

jHadroni =M jHadroni; (1.2)

where M denotes the hadron mass. The question, of 
ourse, is, whether this `QCD

S
hr�odinger equation' 
an be solved. If we 
onsider a typi
al hadroni
 s
ale like the

nu
leon radius of 1fm, the asso
iated energy is of about 200MeV. This number tells us

that we are in the low-energy regime whi
h implies that the binding of the quarks into

hadrons is a non-perturbative phenomenon. In other words, a perturbative solution of

the `QCD S
hr�odinger equation' will make no sense in general.

There are two main routes out of this dilemma. Firstly, one 
an try to perform brute-

for
e 
al
ulations whi
h involve sophisti
ated 
omputer simulations on the largest ma-


hines available. Te
hni
ally, one 
an make use of a spa
e-time dis
retization leading

to latti
e gauge theory in the Hamiltonian instant form, or of 3-momentum dis
retiza-

tion leading to DLCQ (Dis
retized Light Cone Quantization) in the Hamiltonian front

form. Se
ondly, one 
an rely on a reputable tradition of physi
s, namely model build-

ing. There is an abundan
e of hadron models on the market, the most popular one

being the 
onstituent quark model of [4℄ and variants thereof. There one mostly starts

with a non-relativisti
 phenomenologi
al Hamiltonian of the form

H = H

0

+ V


onf

; (1.3)

with an ad-ho
 
on�ning potential V


onf

whi
h typi
ally is proportional to the inter-

quark distan
e r or sometimes even to r

2

. The Hamiltonian des
ribes the dynami
s of

two or three 
onstituent quarks with their e�e
tive masses being treated as parameters.

The main virtue of the model 
onsists in its rather a

urate reprodu
tion of the hadron

4



1. Introdu
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masses (`spe
tros
opy'). However, the model has severe short
omings. Firstly, nearly

all hadrons are relativisti
 bound-states and therefore a non-relativisti
 treatment is

not appropriate. Se
ondly, the relation of the model with QCD is rather un
lear. In

other words, it is un
lear how a 
onstituent pi
ture 
an arise in a relativisti
 quantum

�eld theory su
h as QCD. There one expe
ts a bound state, like for example the pion,

to be of the form

j�i �  

1

jqqi+  

2

jqqgi+  

3

jqqqqi+ � � � : (1.4)

This means that hadrons are states 
ontaining an in�nite number of quarks and glu-

ons, whi
h is 
onsistent with the results of DIS (Deep Inelasti
 S
attering) experiments

where, with growing resolution Q

2

, an in
reasing number of partons is observed. This


on�rms that there are non-vanishing amplitudes  

1

;  

2

; : : : to �nd two quarks, two

quarks and a gluon, in general to �nd an arbitrary number of quarks and gluons in a

hadron.

Our basi
 motivation is to do better, to 
onstru
t a model whi
h 
an avoid these short-


omings. In this thesis it leads us to the Singlet-Triplet (ST)-model [5℄ or to the more

simpli�ed "#-model [6℄ of (Se
tion 3). They are designed to des
ribe only 
avor o�-

diagonal mesons | mesons with di�erent 
avor for quark and anti-quark. Its derivation

in (Appendix B) 
an be summarized as follows: Outgoing from the QCD-Lagrangian

in light-
one 
oordinates, it is possible to 
onstru
t a frame-independent bound-state

equation for the invariant mass-squared M

2

of a meson. To solve this equation, one is


onfronted, as already mentioned, with the primer diÆ
ulties of every �eld theory, the

many-body problem and the divergen
ies to be regulated and then to be renormalized.

The �rst problem is atta
ked by 
onstru
ting an e�e
tive bound-state equation having

the same eigenvalue spe
trum as its original equation | the simplest one is an e�e
tive

one-body equation, where its Hamiltonian is a
ting only in the lowest Fo
k-spa
e 
om-

ponent, that between one quark and one anti-quark via an e�e
tive one gluon ex
hange.

The te
hnique used for the derivation is 
alled iterated resolvents [7℄, whi
h does not

trun
ate the relevant Fo
k spa
e but rather is a 
ompa
t notation for resumming per-

turbative diagrams to all orders without double 
ounting, and thus maintaining all

symmetries of the QCD-Lagrangian. The e�e
t is a proje
tion of higher Fo
k-spa
e

se
tors to lower ones, where at the end all se
tors 
an be systemati
ally retrieved by

iteration from the lowest one. The se
ond problem is solved by multiplying ea
h matrix

element of the Hamiltonian with a 
onvergen
e enfor
ing vertex fun
tion, whi
h has

to drop faster than 1=Q

2

. This will regulate the ultraviolet divergen
ies 
aused by the

transverse momenta. Light front dynami
s 
ontain additional singularities, so 
alled

`longitudinal' ones, 
aused by longitudinal momenta 
lose to zero. These infrared sin-

gularities are 
ontrolled by giving the gauge boson a small regulator mass. The result is

a regulated e�e
tive one-body equation [7℄ 
arrying unphysi
al parameters. As usual,

these have to be renormalized.

The renormalization program is one of the main topi
s of this thesis (Se
tion 4). Break-

ing this e�e
tive one-body equation down to the "#-model, by simplifying the spin-

intera
tion as well as by making a non-relativisti
 simpli�
ation, it is, to our knowledge,

for the �rst time possible to expli
itly see how renormalization works in a Hamiltonian

5



1. Introdu
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formulation. This will be done by 
omparing two drasti
ally di�erent renormalization

s
hemes, both 
on
eptually and numeri
ally, and verify that they agree. This strong

statement stands at the very basis of renormalization ideas, that no matter the in-

termediate steps one performs to mathemati
ally de�ne the initial unde�ned theory,

after renormalization all of them produ
e the same physi
s. Sin
e both renormalization

s
hemes have been implemented in momentum spa
e, the generalization to the full rel-

ativisti
 
ase 
an be easily performed. Also going from the "#-model to the ST-model

is a trivial task.

Subje
t of (Se
tion 5) is now to solve this renormalized ST-model in momentum spa
e.

The 
orresponding equation has the stru
ture of a lo
al non-relativisti
 S
hr�odinger

equation. With the appropriate tools at hand, it is possible to solve this equation nu-

meri
ally and to �t the data a

ording to the experimental mass spe
trum of 
avor-o�

diagonal mesons. No other good reason than simpli
ity we will only fo
us on spheri
al

s-wave solutions. Sin
e the solutions are 
al
ulated in momentum spa
e, the generaliza-

tion to get the full relativisti
 solutions is not a

ompanied with 
on
eptual problems,

ex
ept maybe for some numeri
al diÆ
ulties.

If we look more 
losely at the renormalized quark potential of the ST-model, it is pos-

sible to see 
on�nement. It 
ame as a big surprise to us, that not the renormalized


oupling 
onstant �

s

(Q) a

ounts for 
on�nement, but rather the arbitrariness of the

external vertex regulator. Sin
e the potential is of lo
al nature we 
an make us a pi
-

ture in 
oordinate spa
e by Fourier transformation. The arbitrariness of the potential

then only lies within small distan
es r, while asymptoti
ally it always behaves as �1=r.

This behaviour is universal and applies to all possible regulators. It is fully in a

ord

with the regularization s
heme given in momentum spa
e: the arbitrariness of regular-

izing a systems high momenta or energies leads to an arbitrariness in the behaviour at

small distan
es. Inspired by [8℄, whi
h again was inspired by the work of [9℄, we use

this arbitrariness in the potential for small r, by requiring it to behave as a pure har-

moni
 os
illator potential. The 
onne
tion between the os
illator behaviour for small

r and the Coulomb behaviour for large r is a

omplished by a barrier as it is known

from nu
lear physi
s. The potential is thus able not only to 
reate pure bound-states

but also resonan
es. When �xing the parameters to a physi
al example, the quark

potential develops a barrier of su
h an extraordinary height and width, that possible

resonan
es 
an be well treated as bound-states. This justi�es to see the barrier as part

of a 
on�ning potential.

A rather large part of this thesis is dedi
ated to Coulomb s
attering and the 
al
ula-

tion of resonan
es in the stationary pi
ture. The motivation was to solve the s
attering

region and with it the resonan
e part of the above ST-potential. Furthermore, the aim

was to solve the s
attering problem in momentum spa
e, in order to establish an easy

generalization to the full relativisti
 
ase. But this inevitably leads to the problem of

having Coulomb s
attering in momentum spa
e, whi
h is far more diÆ
ult to realize

than in 
oordinate spa
e. There one knows how to treat the logarithmi
 divergent

phase-shift: one 
onsistently 
hanges the boundary 
onditions from pure plain waves

to distorted waves, leading then to a well de�ned spa
e independent phase-shift. In

6



1. Introdu
tion

momentum spa
e su
h a 
onstru
tion is not straightforward, or even impossible to im-

plement. Also a simple Fourier transformation from 
oordinate spa
e to momentum

spa
e does not do the work, sin
e the Coulomb s
attering wave fun
tions in momen-

tum spa
e are not fun
tions in the usual sense, they behave more like distributions

[10℄. Furthermore, the Coulomb T-matrix in momentum spa
e is not well de�ned, it


an lead to anomalies [11℄.

To solve the full problem, one has to sear
h for alternatives, whi
h still is a subje
t

of resear
h [10℄. On the other hand, I 
an show within s-wave s
attering, that if the

Coulomb part of any potential is 
hanged to a more well de�ned s
attering potential

in the asymptoti
 region, with the rest of the potential being kept un
hanged, it only

has an e�e
t on the global ba
kground but not on the lo
al resonan
e stru
ture in the


ross-se
tion of a s
attering experiment. And sin
e we are at �rst only interested in the


al
ulation of resonan
es and sin
e asymptoti
al Coulomb shielding is easy tra
table

in momentum spa
e, this te
hnique serves as a partial solution to the full Coulomb

s
attering problem in momentum spa
e.

Regrettably, these ideas 
ould not be studied at a physi
al example of the ST-model.

As already mentioned, the 
orresponding potential produ
es resonan
es of an extreme

small width, making it impossible to resolve them in a numeri
al s
attering 
al
ulation.

One thus has to 
ontent oneself with more or less a
ademi
 potentials. Nevertheless,

sin
e these potentials allow for an analyti
al 
al
ulation of all relevant s
attering quan-

tities, they serve as test potentials for investigating the 
orre
tness and the stability of

our numeri
al 
odes, whi
h have been worked out in momentum spa
e. These examples

were also 
hosen su
h, that they resemble the basi
 stru
tures of any potential like that

of the ST-potential.

All this is represented 
onsistently and apart from the main text in (Appendix D).

7





2. Basi
s

2 Basi
s

The usual way to des
ribe a physi
al system is to take a snapshot at a 
ertain time

t = t

0

and see how the system evolves as time goes by. Quite in general we have seen in

(Appendix A) that the Hamiltonian or energy operator H = P

0

is the operator whi
h

propagates the system in time

Hj	(t)i = i

�

�t

j	(t)i: (2.1)

Requiring a trivial time dependen
e

j	(t)i = e

�iEt

j	i; (2.2)

is asking for a stationary state

Hj	i = Ej	i; (2.3)

whi
h is the solution of an eigenvalue problem to the energy eigenvalue E, whi
h again

is a number. Thus, the Hamiltonian method seems to be a promising method for 
al-


ulating bound states within a quantum �eld theory, having in�nitely many degrees of

freedom. From a 
ovariant point of view, where the four spa
e-time 
oordinates are

treated on an equal footing, it seems a little bit arti�
ial to 
hoose the time axis as

the zeroth 
omponent t = x

0

from the four spa
e-time dimensions as the axis whi
h

de�nes the dire
tion of evolution. One 
ould as well 
hoose one of the three spa
e

axes to play this role, or even some other dire
tion. In general one 
an de�ne `spa
e'

as that hypersphere in four-spa
e on whi
h one 
hooses the initial 
onditions. The

remaining fourth 
oordinate 
an be understood as `time'. These 
on
epts of spa
e-time

parametrizations 
an be grasped more formally by introdu
ing some general 
oordi-

nate transformation ex(x). However, one should ex
lude those whi
h are a

essible

through Poin
ar�e transformations, that means pure Lorentz boosts, spatial rotations

and translations. Sin
e any 
oordinate transformation 
onserves the geometri
al ar
-

length ds

2

= g

��

dx

�

dx

�

= eg

��

dex

�

dex

�

, the metri
 tensors for two parametrizations are

then related by

eg

��

=

�

�x

�

�ex

�

�

g

��

�

�x

�

�ex

�

�

: (2.4)

Three things are important to note. First, the physi
al 
ontent of a theory 
an not

depend on su
h re-parametrizations of spa
e-time, after all we are just dealing with

di�erent 
oordinate systems. Se
ond, in generalized 
oordinates the 
ovariant and


ontravariant indi
es 
an have rather di�erent interpretations, and one has to be 
areful

with the lowering and rising of Lorentz indi
es. Third, following Dira
 [1℄ and Leutwyler

[2℄ there are no more than �ve di�erent parametrizations of spa
e-time. Ea
h of them

thus have di�erent `times' and di�erent `Hamiltonians'. Interesting for us are only

the following two forms of Hamiltonian dynami
s: the usual instant form, with its

hypersphere given by t = 0, and the front form, where the hypersphere is a tangent

plane to the light 
one.
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2. Basi
s

2.1 Instant frame

If the Hamiltonian H = P

0

was derived from a 
ovariant quantum �eld theory, as we

now always want to assume, it must represent a 
onstant of motion in that system.

Not only the Hamiltonian, but all 10 independent Poin
ar�e generators (Appendix A)

must be 
onstants of motion:

M

��

=

0

B

B

�

0 �K

1

�K

2

�K

3

K

1

0 �J

3

J

2

K

2

J

3

0 �J

1

K

3

�J

2

J

1

0

1

C

C

A

; P

�

=

�

H

�

~

P

�

; (2.5)

where P

i

are momentum, K

i

the pure Lorentz boost and J

i

the spatial rotation op-

erators. All these operators satisfy the Poin
ar�e algebra. Sin
e the Hamiltonian for-

mulation of a quantum �eld theory �xes its des
ription on the energy operator H, a

spe
ial role will be played by those operators whi
h 
ommute with H. Su
h operators

are said to be kinemati
al operators. They are 
onserved in the sense that they map

the initial 
ondition hypersurfa
e onto itself, that means the system stays in its initial

state. The other operators whi
h do not 
ommute with the Hamiltonian will map a

given hypersurfa
e into another hypersurfa
e, meaning that the initial state of a system

is 
hanged and thus are said to be dynami
al operators. The 
ommutation relations

between the Hamiltonian H = P

0

and the remaining Poin
ar�e operators are

[H;P

1

℄ = 0; [H;J

1

℄ = 0; [H;K

1

℄ = iP

1

;

[H;P

2

℄ = 0; [H;J

2

℄ = 0; [H;K

2

℄ = iP

2

;

[H;P

3

℄ = 0; [H;J

3

℄ = 0; [H;K

3

℄ = iP

3

: (2.6)

We see that six operators, the spatial translation and rotation operators are kinemati


operators. While the Lorentz boosts are of dynami
al nature. They are part of the

intera
tion. Sin
e P

�

P

�

=M

2

is a Casimir operator 
ommuting with all generators of

the Poin
ar�e group, the stationary state 
ondition (2.3) in the instant form 
an also be

written as

Hj	i =

p

M

2

+

~

P

2

j	i; (2.7)

where M

2

is the invariant mass of the system. Lets say the stationary state was �xed

by some initial 
ondition j	i = j	(t

0

)i and has been determined in its rest system

(

~

P = 0). Translating or rotating this eigensolution would not have any e�e
t on the

previous �xed initial 
ondition of the state, it still represents the same stationary state.

But if we try to boost the eigensolution into a frame where

~

P 6= 0, the state is 
hanged

in the sense that it now represents a di�erent stationary state 
orresponding to a new

initial 
ondition j	

0

i = j	(t

1

)i. Thus determining the boosted wavefun
tion is as


ompli
ated as diagonalizing H itself. This is also the reason, why we do not denote

quantum states in the instant from by the eigenvalues of boost operators.

10
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2.2 Light-
one frame

In the light-
one frame we use the new time t = x

+

= x

0

+ x

3

in the Lepage-Brodsky

(LB) 
onvention [12℄ as the 
oordinate whi
h evolves the physi
al system to the future.

The other 
oordinates are 
hosen to ensure orthogonality. The transformation from the

instant to the light-
one 
oordinates

(x

0

; x

1

; x

2

; x

3

) �! (x

+

; ~x

?

; x

�

); (2.8)

is then given by

x

+

= x

0

+ x

3

; ~x

?

= (x

1

; x

2

); x

�

= x

0

� x

3

: (2.9)

This transformation 
an also be written as

ex

�

= C

�

�

x

�

; with C

�

�

=

�

�ex

�

�x

�

�

=

0

B

B

�

1 0 0 1

0 1 0 0

0 0 1 0

1 0 0 �1

1

C

C

A

: (2.10)

The metri
 tensor (2.4) then be
omes

eg

��

=

0

B

B

�

0 0 0

1

2

0 �1 0 0

0 0 �1 0

1

2

0 0 0

1

C

C

A

= (C

�1

)

T

� g � C

�1

; (2.11)

with its inverse given by

eg

��

=

0

B

B

�

0 0 0 2

0 �1 0 0

0 0 �1 0

2 0 0 0

1

C

C

A

= C � g � C

T

: (2.12)

The 
ovariant 
omponents of any light-
one 4-ve
tor are then de�ned by ex

�

= eg

��

ex

�

.

The entries 1=2 in the o�-diagonal part of the metri
 tensor imply a slightly unusual

s
alar produ
t

a � b = eg

��

a

�

b

�

=

1

2

a

+

b

�

+

1

2

a

�

b

+

� a

i

b

i

: (2.13)

The 
ontravariant Poin
ar�e generators on the light-
one 
an be determined as

(

e

P

�

) = C � (P

�

); (

f

M

��

) = C � (M

��

) � C

T

; (2.14)

whi
h give the 
ovariant ones as

(

e

P

�

) = eg � (

e

P

�

) (

f

M

��

) = eg � (

f

M

��

) � eg

T

(2.15)

= (C

�1

)

T

� (P

�

); = (C

�1

)

T

�M

��

� C

�1

: (2.16)

Sin
e all relevant quantities on the light-
one have been determined, we 
an suppress

the tilde-symbol and simply refer to them as light-
one obje
ts.

11
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In this sense the 
ovariant Poin
ar�e generators on the light-
one are expli
itly given as

M

��

=

0

B

B

�

0 �B

1

�B

2

1

2

K

3

B

1

0 �J

3

S

1

B

2

J

3

0 S

2

�

1

2

K

3

�S

1

�S

2

0

1

C

C

A

; P

�

=

0

�

1

2

(P

0

� P

3

)

�

~

P

?

1

2

(P

0

+ P

3

)

1

A

; (2.17)

where we de�ned

B

1

=

1

2

(K

1

+ J

2

); B

2

=

1

2

(K

2

� J

1

); S

1

=

1

2

(K

1

� J

2

); and S

2

=

1

2

(K

2

+ J

1

):

In analogy to the de�nition of the Hamiltonian H in the instant frame we de�ne the

Hamiltonian H in the light-
one frame as that operator whose a
tion on the state j	(t)i

has the same e�e
t as taking the partial derivative with respe
t to the light-
one time

t = x

+

Hj	(x

+

)i = i

�

�x

+

j	(x

+

)i: (2.18)

Therefore in the light-
one frame the Hamiltonian is given by

H = P

+

=

1

2

P

�

: (2.19)

Using the Poin
ar�e algebra (Appendix A), we 
an derive the 
ommutation relations

between this Hamiltonian and the remaining generators

[H;P

1

℄ = 0; [H;S

1

℄ = iP

1

; [H;B

1

℄ = 0;

[H;P

2

℄ = 0; [H;S

2

℄ = iP

2

; [H;B

2

℄ = 0;

[H;P

�

℄ = 0; [H;J

3

℄ = 0; [H;K

3

℄ = iH: (2.20)

The obvious kinemati
al operators are the three light-
one momenta P

1

,P

2

,P

�

, the

longitudinal rotation J

3

and the light-
one boosts B

1

,B

2

. However, although K

3

does

not 
ommute with the Hamiltonian, its behaviour is spe
ial be
ause the 
ommutator

[H;K

3

℄ is proportional toH. This has 
onsequen
es. Suppose we boost the Hamiltonian

H in the longitudinal dire
tion

H �! e

i�K

3

He

�i�K

3

; (2.21)

then the Baker-Campbell-Hausdor� relation 
an be used to derive

e

i�K

3

He

�i�K

3

= H + i�[K

3

;H℄ +

1

2

(i�)

2

[K

3

; [K

3

;H℄℄ + � � �

= H + �H +

1

2

�

2

H + � � � = e

�

H: (2.22)

Obviously, appli
ation of the operator K

3


hanges H only by a fa
tor. Or, in other

words, if we boost the system in the longitudinal dire
tion, the energy eigenvalues are

just multiplied by a 
onstant s
aling fa
tor e

�

. Be
ause of this spe
ial behaviour, K

3

is

usually 
alled kinemati
al instead of dynami
al. As a result the light-
one frame o�ers

7 out of 10 kinemati
al Poin
ar�e generators, 
ompared to 6 kinemati
al generators in

the instant frame. The only dynami
al operators besides the Hamiltonian are the two

transverse rotations S

1

and S

2

. Therefore, by going from the instant to the light-
one

frame, the problem of dynami
al operators is shifted from boost to transverse rotation.
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2.2.1 Boost transformations

Two of the most important kinemati
 symmetries in light-front �eld theory are the

longitudinal and transverse boost symmetries. For this, we want to have a 
loser look

into the boost transformation properties of the longitudinal P

+

and transverse

~

P

?

momenta. As we will show, the longitudinal boost 
orresponds to a res
aling on the

light-front whereas the transverse boosts simply are Galilean boosts in two dimensions

in non-relativisti
 dynami
s. The relevant 
ommutation relations are given by

[B

i

; P

j

℄ = �iÆ

ij

P

+

; [K

3

; P

+

℄ = �iP

+

: (2.23)

If we boost as follows

P

+

! e

i�

3

K

3

P

+

e

�i�

3

K

3

;

~

P

?

! e

i�

i

B

i

~

P

?

e

�i�

i

B

i

; (2.24)

and use the relation as in (2.22), we obtain the fundamental result

P

+

! e

�

3

P

+

;

~

P

?

!

~

P

?

+ ~�

?

P

+

: (2.25)

We see that a general boost B

?

= �

1

B

1

+ �

2

B

2

in the transverse plane a
ts just like a

two dimensional Galilean boost in non-relativisti
 dynami
s. P

+


an be interpreted as

a variable Galilei mass.

One thus expe
ts that light-
one kinemati
s will partly show a non-relativisti
 be-

haviour. This expe
tation is indeed realized and leads, for instan
e, to a separation of


enter-of-mass and relative dynami
s as in non-relativisti
 many-body systems. This

is important for 
onstru
ting a proper s
attering theory within a quantum �eld theory,

whi
h is impossible to do in the instant frame. But also for the 
al
ulation of bound

states, this de
oupling of 
enter-of-mass and internal motion is of tremendous help.

We 
an now ask the question how to boost from one momentum set (

~

P

?

; P

+

) to another

set (

~

Q

?

; Q

+

). This 
an be done by �xing the boost parameters �

3

and ~�

?

as

�

3

= ln

Q

+

P

+

; ~�

?

=

~

Q

?

�

~

P

?

P

+

: (2.26)

Obviously, this is only possible for P

+

6= 0. We emphasize that in this 
onstru
tion

there is no dynami
s involved. This means that we 
an build states of arbitrary light-


one momenta with very little e�ort. All we have to do is applying some kinemati
al

boost operators. The simple behavior of light-
one momenta under boosts will be im-

portant for the dis
ussion of bound states. For instan
e they lead to frame independen
e

in the Fo
k state wave fun
tions.
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2.2.2 Va
uum

Here is another advantage of light-front dynami
s: the simpli
ity of the va
uum. The

physi
al va
uum is de�ned as that Hilbert spa
e state j0i whi
h is invariant under

Poin
ar�e transformations (Appendix A)

U(�; a)j0i = j0i; (2.27)

implying

P

�

j0i = 0 and M

��

j0i = 0: (2.28)

In other words j0i is that state for whi
h the eigenvalues of the 
onserved operators

P

�

and M

��

are zero. Fo
using only on positive energy states, that means on massive

physi
al systems with (P

2

; P

�

) > 0 the above �xing of the physi
al va
uum turns into

P

+

j0i = 0 ;

~

P

?

j0i = 0 and M

��

j0i = 0: (2.29)

Sin
e the Hamiltonian H � P

�

> 0 is 
hosen to be a positive operator of having only

positive eigenvalues, it immediately follows from the invariant mass 
onditionM

2

= P

2

,

whi
h on the light 
one 
an be written as P

�

P

+

= M

2

+

~

P

2

?

, that the longitudinal

momentum P

+

> 0 must be a positive operator too. Furthermore, this positivity is

guaranteed for all times, sin
e P

+

represents a 
onserved quantity. Then if we ex
lude

P

+

= 0, the above 
ondition P

+

j0i = 0 for
es the physi
al va
uum to be trivial be
ause

it is the only state with P

+

= 0. In this 
ase the physi
al va
uum is identi
al with

the free Fo
k-spa
e va
uum. But if in
lude the so 
alled zero modes with P

+

= 0,

whi
h 
an only exist if the system allows for M = 0, the light-
one va
uum starts to

get 
ompli
ated again.

Nevertheless, the overall dynami
al behaviour of the physi
al light-
one va
uum is far

more simpler then its 
ounter part in the instant form. Only parti
les with mass zero


an be 
reated from the light-
one va
uum, unlike the instant-form va
uum that 
an


reate parti
les with non-vanishing masses, if their momenta sum up to zero. The

va
uum in light-front interferes with the dynami
 stru
ture to a mu
h lesser extent

than in the instant form. In this form, there will exist zero total momentum states

with arbitrary 
onstituents whi
h will mix with zero-
onstituent states to build up the

ground state, the physi
al va
uum in the instant-frame.

So, if we are able to eliminate possible zero modes from a given system, we 
an say that

the physi
al va
uum state in the light-
one representation is the simple Fo
k va
uum

without any 
onstituents. This is a tremendous simpli�
ation. For example, it allows

a Fo
k expansion on this va
uum state whi
h 
an be used as a basis for representing

a general physi
al state as that of the bound state j	i. In other words it immediately

allows for a 
onstituent pi
ture in a �eld theory with in�nitely many degrees of freedom.
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2.2.3 Bound states and Light-
one wave fun
tions

Sin
e the invariant operatorM

2

= P

�

P

�

on the light-
one is given asM

2

= P

�

P

+

�

~

P

2

?

the stationary state 
ondition (2.3) 
an be written as

Hj	i =

M

2

+

~

P

2

?

2P

+

j	i: (2.30)

Furthermore, sin
e the boost on the light-front only depends on kinemati
s, we 
an


onsider the bound state in the rest frame (

~

P

?

; P

+

) = (

~

0

?

;M). Thus, the eigenstate

equation simply be
omes

Hj	i = Ej	i; (2.31)

whi
h is the familiar S
hr�odinger equation in ordinary quantum me
hani
s with the

eigenvalues E = M=2. On the light-front, boosting a bound state from the rest frame

to any other frame is dynami
ally independent and quite simple, as we have shown in

(Se
tion 2.2.1). Thus, on
e we �nd the bound state in the rest frame, we 
an 
ompletely

understand it in any frame. The eigensolutions of the Hamiltonian thus des
ribe bound

states of arbitrary four-momentum, allowing the 
omputation of possible s
attering

amplitudes and other dynami
al quantities. As we know, this does not hold in the

instant form. Although the bound state equation in the instant rest frame has the

same form, the solutions in the rest frame are not easily boosted to other Lorentz

frames due to the dynami
al dependen
e of the boost transformations. Therefore, in

ea
h di�erent Lorentz frame one needs to solve the bound state equation of P

0

to

obtain the 
orresponding wave fun
tions. This is the reason why one 
an not establish

a reliable approa
h to 
onstru
t relativisti
 wave fun
tions in instant �eld theory in

terms of the S
hr�odinger pi
ture. This obsta
le is obviously removed on the light-front.

As already mentioned in (Appendix A), in both the instant and the front-form the

eigenfun
tions 
an be labeled by the eigenvalues of all 
ommuting observables given

from spa
e-time symmetry. These are the systems invariant mass M , the three spa
e-

like momenta P

+

,

~

P

?

, the total spin-squared S

2

and its longitudinal proje
tion S

z

or

alternatively its heli
ity �:

j	i = jM;P

+

;

~

P

?

; S

2

;�; �i: (2.32)

In addition, the eigenfun
tions 
an be labeled by quantum numbers � whi
h are not

related to any spa
e-time symmetry, like 
harge or baryon number of the system. In the

following we will only maintain the momentum labels and suppress all other quantum

numbers. We already know that if possible zero modes 
an be ex
luded from the

system, the bare Fo
k va
uum is an eigenstate of the full intera
ting Hamiltonian. It

thus serves as an appropriate ground state on top of whi
h we 
an build a reasonable

Fo
k expansion. One 
onstru
ts the 
omplete basis of Fo
k states j�

n

i in the usual way

by applying produ
ts of all possible free �eld 
reation operators to the va
uum state

j0i. All these 
reated parti
les of the system are on-shell (p

�

p

�

)

i

= m

2

i

.
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The number of parti
les is denoted by the index i, while the various Fo
k-spa
e 
lasses

are 
onveniently labeled with a running index n. Ea
h Fo
k-state j�

n

i = jn : p

+

i

; ~p

?i

i

is an eigenstate of P

+

,

~

P

?

and the free part of the energy P

�

0

, with eigenvalues

P

+

=

X

i

p

+

i

;

~

P

?

=

X

i

~p

?i

; P

�

0

=

X

i

m

2

i

+ p

2

?i

p

+

i

: (2.33)

To set the stage for the de�nition of light-
one wave fun
tions, we �rst introdu
e some

relevant kinemati
al variables, the relative momentum 
oordinates x

i

and

~

k

?i

via

p

+

i

� x

i

P

+

; ~p

?i

� x

i

~

P

?

+

~

k

?i

: (2.34)

Thus x

i

is the fra
tion of the total longitudinal momentum that the i-th 
onstituent


arries, and k

?i

is its relative transverse momentum with respe
t to the 
enter-of-mass

frame. Comparing with (2.33) we note that these variables have to obey the 
onstraints

X

i

x

i

= 1 and

X

i

~

k

?i

= 0: (2.35)

A parti
ularly important property of the relative momenta is their boost invarian
e.

Using (2.25) we easily see that x

i

is invariant towards a boost in the longitudinal

dire
tion

x

0

i

= e

�

3

p

+

i

=e

�

3

P

+

= x

i

; (2.36)

while

~

k

?i

is invariant towards a general boost in the transverse plane

~

k

0

?i

= ~p

0

?i

� x

i

~

P

0

?i

= ~p

?i

+ ~�

?

p

+

i

� x

i

(

~

P

?

+ ~�

?

P

+

) =

~

k

?i

; (2.37)

whi
h indeed proves the frame independen
e of x

i

and

~

k

?i

.

Let us now 
al
ulate the total free light-
one energy in terms of the relative 
oordinates.

Making use of the 
onstraints (2.35), we obtain

P

�

0

=

X

i

p

�

i

=

X

i

p

2

?i

+m

2

i

p

+

i

=

X

i

(x

i

~

P

?

+

~

k

?i

)

2

+m

2

i

x

i

P

+

=

1

P

+

 

P

2

?

+

X

i

k

2

?i

+m

2

i

x

i

!

� (P

�

0

)


m

+ (P

�

0

)

r

: (2.38)

This is another important result: the free light-
one Hamiltonian P

�

0

separates into a


enter-of-mass term,

(P

�

0

)


m

= P

2

?

=P

+

; (2.39)

and a term 
ontaining only the relative 
oordinates,

(P

�

0

)

r

=

1

P

+

 

X

i

k

2

?i

+m

2

i

x

i

!

=

M

2

0

P

+

: (2.40)
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The last identity, whi
h states that (P

�

0

)

r

is essentially the free invariant mass squared,

follows upon multiplying (2.38) by P

+

. This de
oupling of 
enter-of-mass and internal

motion is asso
iated with the transverse dimensions, and is an indire
t 
onsequen
e of

the non-relativisti
 transformation behaviour of the transverse boosts. These results are

in 
omplete 
ontrast to instant form kinemati
s, where the appearan
e of the notorious

square root in the energy prohibits a similar separation of variables.

Sin
e the Fo
k states j�

n

i form a 
omplete set in the sense that

X

n

Z

d[�

n

℄j�

n

ih�

n

j = 1; (2.41)

every general state j	i with momentum

~

P = (P

+

;

~

P

?

) 
an be 
al
ulated in terms of

these Fo
k states via the expansion

j	(

~

P )i =

X

n

Z

d[�

n

℄  

n

(x

i

;

~

k

?i

)

�

�

�

n : x

i

P

+

; x

i

~

P

?

+

~

k

?i

E

: (2.42)

Up to a normalization 
onstant the phase-spa
e di�erential is given as

d[�

n

℄ =

Y

i

dx

i

d

2

k

?i

Æ

�

1�

X

j

x

j

�

Æ

2

�

X

j

~

k

?i

�

: (2.43)

The most important quantities in (2.42) are the light-
one wave fun
tions

 

n

(x

i

;

~

k

?i

) := hn : x

i

P

+

; x

i

~

P

?

+

~

k

?i

j (

~

P )i; (2.44)

whi
h are the amplitudes to �nd bare 
onstituents with momenta (x

i

P

+

; x

i

~

P

?

+

~

k

?i

)

in the state j	(P

+

;

~

P

?

)i. They are only fun
tions of the frame-independent variables

x

i

and

~

k

?i

and therefore 
an not depend on the total momentum

~

P of the system.

Thus light-
one quantization o�ers the spe
ial feature of spe
ifying wave fun
tions

simultaneously in any frame. This property makes light-
one wave fun
tions ideal for

probing the internal stru
ture of a system [12℄.

To simplify things even more, we will in this thesis always go to the `transverse rest

frame' where

~

P

?

= 0, implying a vanishing free 
enter-of-mass Hamiltonian (P

�

0

)


m

.

In this frame the heli
ity of the system is given as the total spin along the longitudinal

dire
tion. The transformation to an arbitrary frame with �nite transverse momenta

~

P

?

is then trivially performed.
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3 The QCD-inspired Model

We address to the following e�e
tive one-body equation

M

2

 

�

1

�

2

(x;

~

k

?

) =

"

m

1

(�) +

~

k

2

?

x

+

m

2

(�) +

~

k

2

?

1� x

#

 

�

1

�

2

(x;

~

k

?

)

+

X

�

0

1

;�

0

2

Z

dx

0

d

2

~

k

0

?

U

�

1

�

2

;�

0

1

�

0

2

(x;

~

k

?

;x

0

;

~

k

0

?

; �) 

�

0

1

�

0

2

(x

0

;

~

k

0

?

); (3.1)

being an integral equation with the kernel

U

�

1

�

2

;�

0

1

�

0

2

= �

1

3�

2

�(Q;�)

Q

2

R(Q;�)

S

�

1

�

2

;�

0

1

�

0

2

(x;

~

k

?

;x

0

;

~

k

0

?

)

p

x(1� x)x

0

(1� x

0

)

: (3.2)

We will now summarize the basi
 ingredients of this equation, for more ba
kground

information one has to refer to (Appendix B).

First of all, its an e�e
tive light-
one equation a
ting only in the lowest q�q Fo
k spa
e

se
tor via a simple one gluon ex
hange between e�e
tive verti
es. Its designed to

des
ribe 
avor o�-diagonal mesons, that means for mesons having a di�erent 
avor for

quark and anti-quark | we don't have to deal with any annihilation amplitudes. By


onstru
tion this e�e
tive equation has the same eigenvalue spe
trum as the full light-


one Hamiltonian. The eigenvalue is the invariant mass squared M

2

. The asso
iated

eigenfun
tion  = hx;

~

k

?

;�

1

; �

2

j	

q�q

i is the probability amplitude for �nding a quark

with longitudinal momentum fra
tion x, relative transversal momentum

~

k

?

and heli
ity

�

1

, and 
orrespondingly the anti-quark with 1� x,

~

k

?

and �

2

. It is 
onvenient to see

Q

2

= Q

2

(x;

~

k

?

;x

0

;

~

k

0

?

) as the mean Feynman-momentum transfer of the quarks

Q

2

= �

1

2

�

(k

1

� k

0

1

)

2

+ (k

2

� k

0

2

)

2

�

: (3.3)

The spinor fa
tor S = S(x;

~

k

?

;x

0

;

~

k

0

?

) is the usual 
urrent-
urrent 
oupling

S

�

1

�

2

;�

0

1

�

0

2

= [u(k

1

; �

1

)


�

u(k

0

1

; �

0

1

)℄[v(k

0

2

; �

0

2

)


�

v(k

2

; �

2

)℄; (3.4)

whi
h will a

ount for all �ne and hyper�ne intera
tions. Its de�ned in terms of Lepage-

Brodsky spinors [12℄ with the matrix elements tabulated expli
itly in (Appendix C).

Due to these heli
ity indi
es the above one-body equation is a set of four 
oupled integral

equations in the three momentum 
omponents x and

~

k

?

. Finally the parameters of

the equation are the physi
al e�e
tive quark masses m

1

and m

2

, and the physi
al

e�e
tive 
oupling 
onstant �. They impli
itly depend on some unphysi
al 
ut-o� s
ale

� whi
h in turn demands a renormalization of these parameters. The same holds for

the regulating fun
tion R(Q;�) whi
h gives the equation an expli
it dependen
e on

the mass s
ale � for having a well-de�ned integral equation, sin
e the kernel is not

vanishing suÆ
iently fast enough for

~

k

?

!1.

Important to note is that (3.1) is a fully relativisti
 and frame-independent bound-state

equation and we will 
onsider it as the `master equation'. The equation was derived
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3. The QCD-inspired Model

in an non-perturbative way from the QCD-Lagrangian L

QCD

by making a few but

well spe
i�ed assumptions. It was derived by the method of iterated resolvents [7℄,

that is by systemati
ally proje
ting the higher Fo
k-spa
e wave fun
tions onto lower

ones. In doing so the Fo
k-spa
e was not trun
ated and all Lagrangian symmetries

were preserved. If the q�q-proje
tion  in (3.1) is known, all higher Fo
k-spa
e wave

fun
tions 
an be retrieved from it automati
ally.

The main task of this thesis is not to solve equation (3.1). This was done in full glory

by Trittmann et al. [13℄, who showed how the equation 
an be solved numeri
ally with

high pre
ision. We rather want to address the problem of renormalization. To atta
k

this problem in a more or less analyti
al way, we will simplify the `master equation'

(3.1) down to a workable model equation, the "#-model [6℄. This model is very impor-

tant in understanding how renormalization works in a non-perturbative 
ontext.

Before we start 
onstru
ting the model, we �rst look again at the unphysi
al �-

dependen
e of equation (3.1). We see that its e�e
tive Hamiltonian depends on this

regulator s
ale through three quantities. First, it impli
itly depends on � through the

physi
al quark masses m

f

= m

f

(�). Se
ond, it also impli
itly depends on � through

the physi
al e�e
tive 
oupling �(Q) = �(Q;�). Third, the Hamiltonian expli
itly de-

pends on � through the unphysi
al regularization fun
tion R(Q;�). The dependen
e

on the parameter � must be removed

d

d�

H

e�

LC

�

m(�); �(�); R(�)

�

= 0; (3.5)

as required by renormalization theory, but how? The above 
ondition 
an be rewritten

as a fun
tional variation

ÆH

e�

LC

Æm

Æm

Æ�

+

ÆH

e�

LC

Æ�

Æ�

Æ�

+

ÆH

e�

LC

ÆR

ÆR

Æ�

= 0: (3.6)

It is not in 
on
i
t with renormalization theory to vary the three terms independently

Æm

Æ�

= 0;

Æ�

Æ�

= 0;

ÆR

Æ�

= 0: (3.7)

The independent renormalization of m

f

(�) 
an be a
hieved by interpreting the m

f

as

parameters of the theory to be determined by experiment. The independent renor-

malization of �(Q;�) has been performed in [7℄ or re
ently in [14℄, in terms of the

QCD-s
ale �, to be determined by experiment. Sin
e there the renormalized e�e
tive


oupling �(Q) varies only little for relatively small momentum transfers, like in a typi-


al bound system, the s
ale � will be repla
ed by the dimensionless and Q-independent

number �. Without avoiding to mu
h 
onfusion, we will from now on drop the `bar'-

notation on the renormalized physi
al 
oupling 
onstant � ! �, as well as on all

renormalized physi
al quark masses m

f

! m

f

. So, the full problem of renormalization


an essentially be redu
ed to the problem of removing the expli
it dependen
e of �

from the bound-state equation (3.1). This will be atta
ked in detail in the next se
tion.
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3. The QCD-inspired Model

The next stage towards the "#-model is the simpli�
ation of the spinor fa
tor S. Two


onstituents are at relative rest when

~

k

?

= 0 and x = x = m

1

=(m

1

+m

2

). An inspe
tion

of the spinor matrix elements (Appendix C) reveals that if the relative motion between

the quarks are of a small deviation from these equilibrium values, the spinor matrix is

proportional to the unit matrix

h�

1

; �

2

jSj�

0

1

; �

0

2

i � 4m

1

m

2

Æ

�

1

�

0

1

Æ

�

2

�

0

2

: (3.8)

The values of the heli
ity indi
es �

i

will be denoted by (+;�) or by ("; #). For large

deviations in the transverse plane

~

k

02

?

�

~

k

2

?

all matrix elements are vanishingly small


ompared to the only surviving element of

h"# jSj "#i � 2

~

k

02

?

: (3.9)

Sin
e in this far-o� equilibrium state the momentum transfer behaves as Q

2

�

~

k

02

?

, its

possible to 
ombine these two extremes in the Singlet-Triplet (ST)-model:

h�

1

; �

2

jSj�

0

1

; �

0

2

i = Æ

�

1

�

0

1

Æ

�

2

�

0

2

h�

1

; �

2

jSj�

1

; �

2

i;

with

h�

1

; �

2

jSj�

1

; �

2

i

Q

2

=

8

>

<

>

:

4m

1

m

2

Q

2

+ 2 for �

1

= ��

2

(singlet);

4m

1

m

2

Q

2

for �

1

= �

2

(triplet):

(3.10)

For singlets the model interpolates between two extremes: for small momentum trans-

fer Q

2

the `2' is unimportant and the dominantly Coulomb aspe
ts of the �rst term

prevail. For large momentum transfers the Coulomb aspe
ts be
ome unimportant and

the hyper�ne intera
tion is dominant. The `2' 
arries the singlet triplet mass di�eren
e.

For the triplets the model redu
es to the plain Coulomb kernel. The big advantage of

this model is its simpli
ity in dropping the heli
ity summations, whi
h te
hni
ally sim-

pli�es the problem enormously.

The model we will fo
us on, is the "#-model of [6℄ whi
h redu
es the kernel even further

h�

1

; �

2

jSj�

1

; �

2

i

Q

2

R(Q;�) =

�

4m

1

m

2

Q

2

+ 2

�

R(Q;�) �!

4m

1

m

2

Q

2

+ 2R(Q;�): (3.11)

This model emphasizes the point that the `2', or any other 
onstant in the kernel of

an integral equation, leads to numeri
ally unde�ned equations and thus singularities.

Certainly this model 
an not be justi�ed in the sense of an approximation. It over

emphasizes many aspe
ts of the original intera
tion. Nevertheless, its remarkable how

the "#-model is able to predi
t the mass spe
trum for pseudos
alar and ve
tor mesons

within less than 5% error [6℄. In this sense it serves as a reliable model to do fast


al
ulations. As we will see, this model o�ers a ni
e platform for solving the expli
it

renormalization problem.

Next, a rather dramati
 te
hni
al simpli�
ation is a
hieved by a transformation of

the longitudinal integration variable in (3.1) | if done 
orre
tly, su
h a step is no

approximation but exa
t. After all we are just substituting the integration variable

x 2 [0; 1℄ by an other integration variable k

z

2 (�1;1) whi
h, as will be shown below,


an be interpreted as the z-
omponent of a usual 3-momentum ve
tor

~

k = (

~

k

?

; k

z

).
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The integration variables are 
hanged from x to k

z

by the following Sawi
ki transfor-

mation [15℄

x(k

z

) =

E

1

+ k

z

E

1

+E

2

; with E

1;2

=

q

m

1;2

+

~

k

2

?

+ k

2

z

: (3.12)

The Ja
obian is

dx

x(1� x)

=

1

A(k

z

;

~

k

?

)

dk

z

m

r

; (3.13)

with the dimensionless fun
tion

A(k

z

;

~

k

?

) =

1

m

r

E

1

E

2

E

1

+E

2

: (3.14)

If we de�ne a new wave fun
tion � whi
h is related by the original frame-independent

light-
one wave fun
tion  by

�(k

z

;

~

k

?

) =

s

x(1� x)

A(k

z

;

~

k

?

)

 (x;

~

k

?

); (3.15)

the `master equation' (3.1) within the "#-model 
an be 
onverted into the following

integral equation

h

M

2

�m

2

s

� C(k)

~

k

2

i

�(

~

k) = �

1

3�

2

�

m

r

Z

d

3

k

0

p

A(k)A(k

0

)

�

4m

1

m

2

Q

2

+ 2R(Q;�)

�

�(

~

k

0

);

(3.16)

with the dimensionless kinemati
al fun
tion

C(k) = (E

1

+m

1

+E

2

+m

2

)

�

1

E

1

+m

1

+

1

E

2

+m

2

�

; (3.17)

and �nally with the mass parameters

1

m

r

=

1

m

1

+

1

m

2

; m

s

= m

1

+m

2

; (3.18)

being the redu
ed mass and the sum mass respe
tively. Important to note is that the

above variable transformation (x $ k

z

) has a physi
al meaning. Sin
e the transfor-

mation from front form to instant form is given by p

+

i

= p

0

i

+ p

3

i

with p

+

i

= P

+

x

i

the

longitudinal momentum fra
tions for the two 
onstituents 
an be written as

x

i

=

p

0

i

+ p

3

i

P

+

=

p

0

i

+ p

3

i

p

+

1

+ p

+

2

=

E

i

+ k

zi

E

1

+ k

z1

+E

2

+ k

z2

; (3.19)

whi
h immediately yields the transformation rule (3.12), if we 
hoose a spe
ial frame in

whi
h the total momentum of the z-
omponent vanishes: P

z

= k

z1

+ k

z2

= 0. Sin
e we

are already in a frame where the total transversal momentum

~

P

?

is zero, the integral

equation as written in (3.16) 
an be interpreted as an instant form equation in the


enter-of-mass frame.
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Furthermore, this justi�es that the transformation variable k

z


an be seen as the z-


omponent of a usual 3-momentum ve
tor. Although there is not a single tra
e of

light-
one variables in equation (3.16), its still a genuine front form equation designed to


al
ulate frame-independent light-
one wave fun
tions (3.15). After all, a substitution

of integration variables does not 
hange physi
s.

We 
ontinue to simplify the integral equation (3.16) by 
onstru
ting a more or less

non-relativisti
 situation with

~

k

2

i

� m

2

i

, thus

C(k) � m

s

=m

r

; A(k) � 1; Q

2

� (

~

k �

~

k

0

)

2

: (3.20)

To substitute A(k

0

) � 1 in the kernel is 
ertainly not justi�ed, sin
e the integration

variable has

~

k

0

! 1 at the upper limit. But if one does it anyway in the sense of a

non-relativisti
 simpli�
ation, one gets

�

M

2

�m

2

s

�

m

s

m

r

~

k

2

�

�(

~

k) = �

1

3�

2

�

m

r

Z

d

3

k

0

"

4m

s

m

r

(

~

k �

~

k

0

)

2

+ 2R(Q;�)

#

�(

~

k

0

); (3.21)

with the 
onne
tion to the light-
one wave fun
tion given as

 (x;

~

k

?

) =

�(k

z

;

~

k

?

)

p

x(1� x)

: (3.22)

The only reason why we apply the non-relativisti
 simpli�
ation is that (3.21) has a

lo
al Fourier transform, whi
h allows us to have a simple pi
ture of the underlying

intera
tion potential. De�ning the new energy variable E = (M

2

�m

2

s

)=2m

s

, whi
h

will behave as the 
onventional non-relativisti
 binding energy, turns equation (3.21)

into the usual momentum spa
e S
hr�odinger equation

E�(

~

k) =

~

k

2

2m

r

+

Z

d

3

k

0

U(q

2

;�)�(

~

k

0

)

with U(q

2

;�) = �

1

6�

2

�

m

s

m

r

�

4m

s

m

r

q

2

+ 2R(q

2

;�)

�

: (3.23)

Fourier transforming gives

E (~r) =

�

~

k

2

2m

r

+ V (r;�)

�

 (~r)

with V (r;�) =

Z

d

3

q e

�i~q�~r

U(q

2

;�); (3.24)

the lo
al S
hr�odinger equation in 
oordinate spa
e. On the other hand, the Fourier

transform of (3.16) is non-lo
al and mathemati
ally diÆ
ult.
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4 Expli
it Renormalization

In this se
tion we are going to address solely to the "#-model equation (3.21). We �rst

look at it in the limit of �!1

h

M

2

� 4m

2

� 4

~

k

2

i

�(

~

k) = �

4

3�

2

�

m

Z

d

3

k

0

"

2m

2

(

~

k �

~

k

0

)

2

+ 1

#

�(

~

k

0

): (4.1)

It is a robust physi
al equation to model 
avor o�-diagonal mesons with equal quark

and anti-quark masses, as for example the pion (m

u

� m

d

). This is done by �xing the

parameters � and m to the experimentally available mass spe
trum M . The general-

ization to di�erent quark and anti-quark masses is performed trivially. We deliberately

wrote equation (3.21) in the form of (4.1) to suggest the reader that, due to its pure

physi
al 
ontent, the equation is ready to be solved for and to be �tted to experiment.

But unfortunately this is not possible, sin
e equation (4.1) is mathemati
ally not de-

�ned. It is the number `1' in the kernel, whi
h generates all the well known trouble.

The aim of this se
tion is to give (4.1) a physi
al meaning by renormalization. This

will be done by 
omparing two drasti
ally di�erent renormalization s
hemes, both 
on-


eptually and numeri
ally, and verify that they agree. This strong statement stands

at the very basis of renormalization ideas, that no matter the intermediate steps one

performs to mathemati
ally de�ne the initial equation (4.1), after renormalization all

of them produ
e the same physi
s.

One s
heme is to renormalize dire
tly at the basis of the S
hr�odinger equation (4.1)

by the method of using 
ounter terms in a regularized intera
tion kernel. The other

s
heme is to renormalize at the basis of the 
omplementary Lippmann-S
hwinger equa-

tion (Appendix D), by applying a well spe
i�ed subtra
tion method to the equivalent

T -matrix equation. It was �rst developed by the authors of [16℄ to handle singular

intera
tions in non-relativisti
 quantum me
hani
s. But before going there, we �rst

want to investigate the former renormalization s
heme.

4.1 Renormalization by a 
ounterterm

If one Fourier transforms the S
hr�odinger equation (4.1) to 
oordinate spa
e, the in-

tera
tion potential 
onsists of a long-ranged Coulomb intera
tion and a short-ranged

Dira
-delta intera
tion. It is this latter part whi
h generates trouble. In order to get

reasonable solutions one has to regulate the short-range region, whi
h implies the regu-

larization of high momentum transfers Q

2

= (

~

k�

~

k

0

)

2

. As expe
ted, we have to restore

(4.1) to its original well-de�ned integral equation (3.21) by substituting the number 1

by a regulating fun
tion 1! R(Q;�), for whi
h the soft 
ut-o� (B.57) is 
hosen

h

M

2

� 4m

2

� 4

~

k

2

i

�(

~

k) = �

4

3�

2

�

m

Z

d

3

k

0

"

2m

2

(

~

k �

~

k

0

)

2

+

�

2

�

2

+ (

~

k �

~

k

0

)

2

#

�(

~

k

0

): (4.2)

In 
oordinate spa
e the short-ranged delta is now smeared out to a Yukawa intera
tion.

Sin
e the regulator � is an additional but unphysi
al parameter, one has to renormalize

the equation in order to restore the original problem in the limit �!1.
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Here is a general but abstra
t pro
edure how the expli
it �-dependen
e 
an be removed:

suppose we have solved equation (4.2) for a �xed value of the parameters � = �

0

and

m = m

0

, and for a �xed value of � = �

0

. Suppose further that these parameters

are 
hosen su
h, that the 
al
ulated eigenvalues M

2

i

agree with experiment. Next, we


hange the unphysi
al 
ut-o� � = �

0

+ Æ� by a small amount Æ�. Then all 
al
ulated

eigenvalues will 
hange by a small amount ÆM

2

i

.

Renormalization theory is then the attempt to reformulate the underlying theory, in our


ase equation (4.2), su
h, that all these 
hanges vanishes identi
ally. The fundamental

renormalization group equation is thus

d

d�

M

2

i

(�) = 0; for all eigenstates i: (4.3)

No other reason than simpli
ity we will restri
t the solutions of (4.2) to those of s-waves:

�(

~

k) = �(j

~

kj) and �x the mass parameter at the value of m = 406MeV. Being only a

fun
tion of � and � the spe
trum of the bound-state mass squares M

2

i

(�;�) are then


al
ulated numeri
ally | on numeri
al details see (Se
tion 4.3) and (Appendix E). For

the ground state (i=0) this is displayed as a 
ontour plot in (Fig1a). A similar graph


ould have also be given for the �rst ex
ited state (i=1) or for any other eigenstate.

It goes without saying that su
h plots 
an be generated easily only for a suÆ
iently

simple model, su
h as the "#-model.

A

ording to the general outline mentioned above, one must make sure that the mass

squared spe
trum stays invariant, ÆM

2

i

(�;�) = 0 for in�nitesimal variations Æ�. This


an be a
hieved by the following 
onstru
tion, by introdu
ing a new fun
tion

R(Q;�) = R(Q;�) + C(Q;�): (4.4)

We extend the model intera
tion by adding to the regulator fun
tion R a 
ounter term

C. We 
hoose this 
ounter term a

ording to three 
riteria. First, the new fun
tion R

must again be a regulator in the sense of (Appendix B.2). Se
ond, we require that a

zero is added for a parti
ular value of �, say for � = �

0

. Thus adding a 
ounter term

at � = �

0

will not 
hange the original intera
tion at that point. Third, we require the

�rst �-derivative of R to vanish at � = �

0

. Be
ause a vanishing derivative of R at

� = �

0

implies vanishing derivatives of the eigenvalues M

2

i

with respe
t to � at this

very same point. The argument is based on the Hellmann-Feynman theorem, whi
h

states that an external parameter variation in the Hamiltonian has no e�e
t on the


orresponding wavefun
tions but only on its eigenvalue spe
trum. All three 
onditions

are met by

C(Q;�

2

) = �(�

2

� �

2

0

)

�R(Q;�

2

)

��

2

; (4.5)

where the derivative is to be taken at � = �

0

. The numeri
al results in (Fig1b) illustrate

this very 
onvin
ingly that the Hamiltonian is partially renormalized ÆM

2

i

(�;�) = 0 in

the vi
inity of � � �

0

for all �.
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Figure 1: Nine 
ontours 0:4 � �

n

(�) � 1:0 are plotted versus 1:0 � �=� � 7:0 from bottom

to top with n = 4; 3; : : : ;�3;�4. The 
ontours are obtained by plotting the ground state of the

invariant mass-squared M

2

0

(�; �) = n�

2

+M

2

�

. The thi
k 
ontour n = 0 des
ribes the pion

with M

2

0

=M

2

�

. Masses are given in units of � = 350MeV.
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(a) The original (�; �)-
ontours before a

renormalization at �

0

=� = 3:8
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(b) The (�; �)-
ontours after a �rst order

renormalization at �

0

=� = 3:8
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(
) The (�; �)-
ontours after a se
ond or-

der renormalization at �

0

=� = 3:8
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(d) The (�; �)-
ontours after a fourth or-

der renormalization at �

0

=� = 3:8

One 
an 
arry on the pro
edure to the next higher order

R(Q;�) = R(Q;�)� (�

2

� �

2

0

)

�R(Q;�

2

0

)

��

2

�

(�

2

� �

2

0

)

2

2!

�

2

R(Q;�

2

0

)

��

4

; (4.6)

with the result that the 
ontours as shown in (Fig1
) be
ome broader. And so on. In

the limit of large order the 
ontours be
ome 
at, sin
e the renormalized regulator

R(Q;�) = R(Q;�)�

�

R(Q;�)�R(Q;�

0

)

�

= R(Q;�

0

); (4.7)

ismanifestly independent of �. One has realized the fundamental renormalization group

equation: dM

2

i

(�) = 0 for all eigenstates, sin
e the 
hoi
e of the above 
ounter terms

are universal and apply for every i. The above results represent thus a beautiful and

pedagogi
 example for how renormalization group works.
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The result sounds in
redible: invent a regulator fun
tion R(Q;�) to be a fun
tion of

the 
ut-o� s
ale �. The same fun
tion but for � = �

0

is the renormalized regulator,

and the parameter �

0

is to be determined from experiment. Important to note is that

this result is only valid for regulating fun
tions whi
h have well de�ned derivatives

with respe
t to �. The sharp 
ut-o� (B.57), however, is a step fun
tion with ill de�ned

derivatives.

With �

0

we thus have one more parameter than the 7 bare parameters of the QCD-

Lagrangian: 6 
avor quark masses and the 
oupling 
onstant. This is in full a

ord

with renormalization theory, sin
e whatever the model is, one has a s
ale at whi
h one

experiments.

4.2 T-matrix renormalization

For the purpose of presenting the subtra
tion method of [16℄, its 
onvenient to 
onvert

the S
hr�odinger equation (4.1) into the abstra
t Dira
-notation of quantum me
hani
s:

(M

2

0

+ V




+ V

Æ

)j�i =M

2

j�i; (4.8)

where the matrix elements in momentum spa
e of the free mass operator M

2

0

, the

Coulomb potential V




and the Dira
-delta intera
tion V

Æ

are identi�ed as

h

~

kjM

2

0

j

~

k

0

i = (4m

2

+ 4

~

k

2

) � Æ(

~

k �

~

k

0

);

h

~

kjV




j

~

k

0

i = �

8m

3�

2

�

(

~

k �

~

k

0

)

2

; h

~

kjV

Æ

j

~

k

0

i = �; (4.9)

where � is to be seen as an additional independent parameter of equation (4.1), repre-

senting the bare strength of the Dira
-delta intera
tion. Its inverse 
arries the dimension

of energy, as it was the 
ase of � in the previous subse
tion. The drasti
 di�eren
e

between these two additional parameters is that � served as a regulating parameter,

while here, � will simulate arbitrary strenghts of the trouble making delta intera
tion.

Next, we brie
y want to supply the essen
e of the subtra
tion method, whi
h is per-

formed in the 
omplementary s
attering pi
ture of the Lippmann-S
hwinger equation.

For this, let us solve equation (4.8) only with a pure delta intera
tion, i.e. V




= 0,

whi
h, as said, makes (4.1) not well de�ned.

The relevant self-
onsistent T -matrix equation for a s
attering state of massM is given

by

T (M

2

) = V

Æ

+ V

Æ

G

+

0

(M

2

)T (M

2

); (4.10)

with

G

+

0

(M

2

) =

1

M

2

�M

2

0

+ i�

; (4.11)

as the Green fun
tion of the free mass operator equation with a outgoing wave boundary


ondition. The solution of the operator equation (4.10) in this simple 
ase is determined

by iteration and the subsequent summation of the 
orresponding geometri
al series.
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As a result, the solution in the form of the matrix elements h

~

kjT (M

2

)j

~

k

0

i only depend

on the invariant mass squared M

2

:

h

~

kjT (M

2

)j

~

k

0

i =

1

�

�1

� I(M

2

)

� �(M

2

); (4.12)

with the fun
tion

I(M

2

) =

Z

d

3

k

1

M

2

� 4m

2

� 4k

2

+ i�

; (4.13)

whi
h diverges linearly! From a di�erent perspe
tive we see again that this is the

mathemati
al problem in (4.1) of having a delta intera
tion in the kernel. How to give

meaning to �(M

2

)? We use the renormalization idea. Suppose �(�

2

) is known from

experiment, then we rewrite �(M

2

) using this pie
e of data:

�(M

2

) =

�

�

�1

(�

2

) + I(�

2

)� I(M

2

)

�

�1

; (4.14)

and now the subtra
tion of the divergen
e appears! A 
loser look to

I(�

2

)�I(M

2

) = (M

2

��

2

)

Z

d

3

k

1

(�

2

� 4m

2

� 4k

2

+ i�)(M

2

� 4m

2

� 4k

2

+ i�)

; (4.15)

shows that it is �nite with � being the subtra
tion point. Substituting (4.14) into (4.12)

the bare strength � 
an be written as a fun
tion

�(�

2

) =

1

�

�1

(�

2

) + I(�

2

)

=

1

1 + �(�

2

)I(�

2

)

�(�

2

); (4.16)

in whi
h the physi
al input and the 
ounter terms that subtra
t all the in�nities in the

s
attering matrix at the mass s
ale � are present. This is the essen
e of the subtra
tion

method: the renormalized delta intera
tion whi
h formally 
an be written as

V

Æ

R

(�

2

) = T (�

2

)

h

1 +G

+

0

(�

2

)T (�

2

)

i

�1

; (4.17)

with its matrix elements h

~

kjV

Æ

R

(�

2

)j

~

k

0

i = �(�

2

) results in a �nite T-matrix obtained by

solving the 
orresponding renormalized equation

T

R

(M

2

; �

2

) = V

Æ

R

(�

2

) + V

Æ

R

(�

2

)G

+

0

(M

2

)T

R

(M

2

; �

2

): (4.18)

Next, the physi
al input �(�

2

) = h

~

kjT (�

2

)j

~

k

0

i 
an be interpreted as a renormalized

Dira
-delta strength �

R

(�

2

). To see this, we rewrite the above renormalized T-matrix

equation as

T

R

(M

2

; �

2

) = V

Æ

R

(�

2

)

�

1 +G

+

0

(M

2

)T

R

(M

2

; �

2

)

�

=

�

T

R

(M

2

; �

2

)G

+

0

(M

2

) + 1

�

V

Æ

R

(�

2

): (4.19)

Substituting (4.17) into the last equation, we now obtain the renormalized T-matrix

equation in the form of

T

R

(M

2

; �

2

) = T (�

2

) + T (�

2

)

�

G

+

0

(M

2

)�G

0

(�

2

)

�

T

R

(M

2

; �

2

): (4.20)
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We observe that this equation has the same operatorial form as the original renormal-

ized T-matrix equation (4.18), with the intera
tion V

Æ

R

repla
ed by the physi
al input

at the mass s
ale �, and the original propagator repla
ed by a propagator whi
h has

a subtra
tion at su
h mass s
ale. The former allows to see the physi
al input as a

renormalized Dira
-delta strength h

~

kjT (�

2

)j

~

k

0

i = �

R

(�

2

), while the latter manifestly

shows how the s
attering equation (4.18) with the renormalized intera
tion appears in

a subtra
ted form, in whi
h all divergent momentum integrals are expli
itly removed.

Important to note is that, instead of working formally with the operator V

Æ

R

, one 
ould

have also used an ultraviolet momentum 
uto� � by de�ning in this way a regularized

intera
tion. However, after the 
onstru
tion of the regularized T-matrix equation one


an perform the limit �!1, arriving at the same results as the ones obtained dire
tly

with the use of the renormalized intera
tion.

To 
omplete the renormalization s
heme we have to think about the renormalization

point itself, whi
h in this 
ontext is given by a subtra
tion point �. As we know, the

subtra
tion point is the s
ale at whi
h the s
attering amplitude is known. But this point

is arbitrary in the de�nition of the renormalized intera
tion and in prin
iple it 
an be

moved. On the other hand, a sensible theory of a singular intera
tion, as here for the

delta intera
tion exists only if the subtra
tion point slides without a�e
ting the physi
s

of the renormalized theory. That means a Hamiltonian should have the property to

be stationary in the parametri
 spa
e of the subtra
tion point. The renormalization

group method 
an be used to realize the invarian
e of physi
s under dislo
ations of the

subtra
tion point. This 
ondition demands the renormalized potential V

Æ

R

to be inde-

pendent on the subtra
tion point. When applied on (4.17) the renormalization group

equation 
an be written as

d

d�

2

V

Æ

R

(�

2

) = 0 ()

d

d�

2

T (�

2

) = �T (�

2

)G

+

0

(�

2

)

2

T (�

2

); (4.21)

and is a pres
ription how the renormalized 
oupling 
onstant �

R

(�

2

) has to 
hange as

the subtra
tion point � moves. As long as the �rst order di�erential equation (4.21) is

satis�ed, it automati
ally follows from (4.18) that the renormalized T-matrix also does

not dependent on the subtra
tion point T

R

(M

2

; �

2

) � T

R

(M

2

).

The subtra
tion method as exempli�ed above for the pure delta intera
tion, is now

applied to the e�e
tive model de�ned by the full mass operator of equation (4.8). The


orresponding s
attering matrix 
omes from the solution of the s
attering equation

T

R

(M

2

) = V

R

+ V

R

G

+

0

(M

2

)T

R

(M

2

); (4.22)

with the renormalized potential V

R

= V




+ V

Æ

R

, where the Coulomb intera
tion is a

regular intera
tion whi
h need not to be renormalized. In �nding the solution, we will

make use of the 2-potential formula as given in (D.126), where T

R

(M

2

) be
omes

T

R

(M

2

) = T




(M

2

) +

�

1 + T




(M

2

)G

+

0

(M

2

)

�

� V

Æ

R

�

�

G

+

0

(M

2

)T

R

(M

2

) + 1

�

: (4.23)

The regular Coulomb T-matrix T




(M

2

) is the solution of the s
attering equation (4.22)

for the pure Coulomb potential V




. Important to note is that the Coulomb T-matrix
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only shows its anomalous behaviour [11℄ in the 
al
ulation of s
attering quantities, as

for example in the s
attering amplitude or phase-shift, but not in its bound state region,

as we are interested in. We will see that the general pro
edure of identifying bound

states as poles of a T-matrix leads here to well-de�ned results.

We manipulate (4.23) further by multiplying on both sides with G

+

0

(M

2

) and solving

it we get

G

+

0

(M

2

)T

R

(M

2

) =

G

+

0

(M

2

)T




(M

2

) +G

+

(M

2

)V

Æ

R

1�G

+

(M

2

)V

Æ

R

; (4.24)

with the intera
ting Green fun
tion de�ned as

G

+

(M

2

) = G

+

0

(M

2

) +G

+

0

(M

2

)T




(M

2

)G

+

0

(M

2

): (4.25)

Substituting (4.24) ba
k into (4.23) one �nally �nds the formal solution of the renor-

malized T-matrix as

T

R

(M

2

) = T




(M

2

) +

�

1 + T




(M

2

)G

+

0

(M

2

)

�

� t

R

(M

2

) �

�

G

+

0

(M

2

)T




(M

2

) + 1

�

; (4.26)

with the redu
ed matrix elements

h

~

kjt

�1

R

(M

2

)j

~

k

0

i = h

~

kj(V

Æ

R

)

�1

�G

+

(M

2

)j

~

k

0

i � �

�1

R

(�

2

) + h

~

kjG

+

0

(�

2

)�G

+

(M

2

)j

~

k

0

i;

where in the last identity (4.17) has been used. Instead of using �

�1

R

(�

2

) as the physi
al

input, its 
onvenient to introdu
e a new input variable

�

�1

R

(�

2

) = �

�1

R

(�

2

)� h

~

kjG

+

0

(�

2

)T




(�

2

)G

+

0

(�

2

)j

~

k

0

i; (4.27)

whi
h leads to the more symmetri
al expression of

h

~

kjt

�1

R

(M

2

)j

~

k

0

i = �

�1

R

(�

2

)� h

~

kjG

+

(M

2

)�G

+

(�

2

)j

~

k

0

i: (4.28)

The physi
al input is 
onstru
ted as follows: if for example we take the pion mass at

M = m

�

� 140MeV the T-matrix (4.26) should have a bound-state pole; 
onsequently

t

�1

R

(m

2

�

) = 0; (4.29)

and 
hoosing the subtra
tion point for 
onvenien
e as � = m

�

, implies

�

�1

R

(m

2

�

) = 0: (4.30)

Finally, the invarian
e of the renormalized T-matrix (4.26) under dislo
ation of the

subtra
tion point just reads as

d

d�

2

t

R

(M

2

) = 0 ()

d

d�

2

�

�1

R

(�

2

) =

d

d�

2

h

~

kjG

+

(�

2

)j

~

k

0

i: (4.31)

The solution of this di�erential equation gives the dependen
e of the physi
al input �

R

on the subtra
tion point �, whi
h must run as

�

�1

R

(�

02

) = �

�1

R

(�

2

) + h

~

kjG

+

(�

02

)�G

+

(�

2

)j

~

k

0

i: (4.32)
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4.3 Numeri
al evaluation

To �nd all s-wave bound-statesM

n

of the 
ounter-term renormalized S
hr�odinger equa-

tion (4.2), we have to solve the following s-wave proje
ted integral equation

�

M

2

n

� 4m

2

� 4k

2

�

�

n

(k) = 2� �

Z

1

0

dk

0

k

02

� U(k; k

0

) � �

n

(k

0

); (4.33)

with the attra
tive kernel

U(k; k

0

) = �

4

3�

2

�

m

Z

1

�1

d
os#

 

2m

2

(

~

k �

~

k

0

)

2

+

�

2

0

�

2

0

+ (

~

k �

~

k

0

)

2

!

: (4.34)

The unique �xing of the three unknown parameters to experiment will be done in the

next se
tion. For further numeri
al details on how an equation as above is solved


orre
tly, espe
ially how the trouble making momentum spa
e Coulomb singularity at

k = k

0

in (4.34) is properly treated, one should 
onsult (Appendix E).

On the other hand, in order to �nd all s-wave bound-states M

n

of the subtra
tion

renormalized Lippmann-S
hwinger equation, we have to determine the zeros of (4.28)

0 = G

+

(M

2

n

)�G

+

(M

2

); (4.35)

whereM represents the physi
al input, whi
h will be �xed in the next se
tion as well.

A

ording to (4.25) this equation expli
itly reads as

0 =

Z

1

0

dk k

2

�

�

1

M

2

n

�M

2

0

(k)

�

1

M

2

�M

2

0

(k)

�

+

Z

1

0

dk

Z

1

0

dk

0

k

2

k

02

�

�

T




(k; k

0

;M

2

n

)

(M

2

n

�M

2

0

(k)) � (M

2

n

�M

2

0

(k

0

))

�

T




(k; k

0

;M

2

)

(M

2

�M

2

0

(k)) � (M

2

�M

2

0

(k

0

))

�

: (4.36)

The free invariant mass for the two quark system of equal masses isM

0

(k) = 4m

4

+4k

2

,

whereas the s-wave proje
ted T-matrix of the pure Coulomb potential in (4.36) is the

solution of the integral equation

T




(k; k

0

;M

2

) = V




(k; k

0

) +

Z

1

0

dq q

2

V




(k; q)

1

M

2

�M

2

0

(q)

T




(q; k

0

;M

2

); (4.37)

with V




(k; k

0

) as the s-wave proje
ted Coulomb potential

V




(k; k

0

) = 2� �

Z

1

�1

d
os# h

~

k

0

jV




j

~

ki = �

16m�

3�

Z

1

�1

dx

1

k

2

+ k

02

� 2kk

0

� x

: (4.38)

The angle integration above is evaluated numeri
ally. Using Gaussian quadrature this

ensures us not to run into the logarithmi
 momentum spa
e singularity of the Coulomb

potential at k = k

0

. The numeri
al results of the above equations turn out to be stable,

32



4. Expli
it Renormalization

when using about 250 integration points, in stark 
ontrast to a stable integration of

only about 16 points for the 
ounter-term renormalized integral equation (4.33). There

we perform the angle integration (4.34) analyti
ally and then making use of so-
alled

numeri
al 
ounter terms as shown in (Appendix E), whi
h unfortunately 
an not be

applied to an integral equation like (4.37). The drasti
 di�eren
e in the 
onvergen
e of

�nding a bound-state 
an also be understood from a more fundamental level: equation

(4.33) is a pure bound-state equation, while (4.36) is a s
attering equation designed to

determine bound-states, thus being from beginning at a disadvantage.

Nevertheless, the numeri
al stability of �nding bound-states within the renormalized T-

matrix equation, expli
itly shows that the pure Coulomb T




-matrix (4.37) will produ
e

no anomalies if we fo
us only on its bound-state part, whi
h is embedded into equation

(4.36). We 
an 
on
lude, that we do not really need the exa
t trouble making diagonal

terms T




(k; k), in order to evaluate the zeros of (4.36) properly. This 
ertainly does not

hold for the s
attering region of T




, sin
e here the diagonal elements must be exa
tly

available for 
al
ulating relevant s
attering quantities, like a phase shift in (E.35).

4.4 Comparing renormalization s
hemes

Here we 
ompare the results obtained with the 
ounter-term renormalization, and the

T-matrix renormalization. In other words, we 
ompare the numeri
al results of (4.33)

and (4.36) respe
tively.

Both renormalization methods will make use of the same physi
al input, namely that

of the pion M

0

= M

�

� 140MeV as the lowest bound-state (ground state), and that

of the rho M

1

=M

�

� 768MeV as the se
ond lowest bound-state (�rst ex
ited state).

To ensure that our equations produ
e the pion and rho as true bound-states, we have

to 
hoose a relatively large quark mass. For no good reason other than 
onvenien
e,

we will �x for the rest of this se
tion the quark mass at m = 406MeV, as it was used

in the 
al
ulations of [6℄. The s
attering threshold is thus at M = 812MeV.

In one set of 
al
ulations, � will be varied, with �xed M = M

0

= 140MeV. In the

other set of 
al
ulations, M = M

1

= 768MeV will be kept �xed. For equation (4.33)

the value of �

0

will be �tted to that of M

0

or M

1

for a given �.

In (Fig2a), the results of M

1

as a fun
tion of � and �xed M

0

= 140MeV for the two

renormalization methods are shown. The agreement between these two is within few

per
ent, whi
h we relate to their rather drasti
 
on
eptual di�eren
e. As 
an be seen in

(Fig1a), the values of �

0

for � going to zero in
rease towards in�nity, to keep the ground

state at the pion mass M

1

= 140MeV, while M

1

tends to the s
attering threshold at

812MeV, as we observe in (Fig2a). For in
reasing � the value of �

0

de
reases to

keep M

0

= 140MeV �xed, implying a Coulomb dominated M

1

, whi
h therefore has to

de
rease as well.

The results forM

0

as a fun
tion of � for �xedM

1

= 768MeV, are presented in (Fig2b).

The threshold for zero pion mass o

urs for � at a value of about 0:75. The value ofM

0

in
reases with �, 
orresponding to a de
reasing binding energy, whi
h means that the

intensity of the short-range intera
tion, that dominates the ground state, diminishes.

In fa
t, to keep 
onstantM

1

= 768MeV as the e�e
tive Coulomb intera
tion in
reases,

demands a weaker short-range intera
tion. The 
al
ulation of M

0

with the 
ounter-
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Figure 2:

0.0 0.5 1.0 1.5
700
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(a) The �rst ex
ited state mass M

1

(MeV)

is plotted versus � for a �xed ground

state mass of M

0

= 140MeV. The dashed


urve gives the results from the 
ounter-

term renormalized equation (4.33), the

empty boxes from the T-matrix renormal-

ized equation (4.36).
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200
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(b) The ground state mass M

0

(MeV) is

plotted versus � for a �xed �rst ex
ited

state mass of M

1

= 768MeV. The solid


urve gives the results from the 
ounter-

term renormalized equation (4.33), while

the empty 
ir
les give the results from

the T-matrix renormalized equation (4.36).

The upper 
urve with its empty boxes is

the one of (Fig2a).

term renormalized equation (4.33) does not go beyond � = 0:97 be
ause �

0

vanishes

and the mass of 768MeV of the ex
ited state is reprodu
ed with the e�e
tive Coulomb

intera
tion. The T-matrix renormalized equation (4.36) does not present the same

limitation.

Con
lusion: We have shown that two drasti
ally di�erent renormalization s
hemes, or

even two 
omplementary renormalization s
hemes, both 
on
eptually and numeri
ally,

agree. Here we provide a simple example, that the physi
s of a renormalized theory

does not re
ognize the intermediate steps one performs to mathemati
ally de�ne the

initial unde�ned theory.
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5. The Renormalized Singlet-Triplet (ST)-model

5 The Renormalized Singlet-Triplet (ST)-model

The expli
it renormalization of the "#-model (4.2) 
an be easily applied to the more

general ST-model (3.10), whi
h in the form of the `non-relativisti
' S
hr�odinger equation

then simply reads

�

E �

k

2

2m

r

�

�(

~

k) = �

�




2�

2

Z

d

3

k

0

V (q

2

)R(q

2

; �)�(

~

k

0

);

with V (q

2

) =

1

q

2

+ �; and � =

8

<

:

1

2m

1

m

2

for singlet;

0 for triplet:

(5.1)

As was derived in the previous se
tion, the renormalized regulator R(q

2

;�

0

= �) is

arbitrary in the sense that we only demand an asymptoti
al drop faster than 1=q

2

and

the behaviour R! 1 in the opposite limit of q

2

! 0. Up to now, the parameters to be

determined by experiment is the renormalization s
ale �, the six e�e
tive quark masses

m

f

and the e�e
tive 
olor 
oupling 
onstant �




= 4=3�.

On how good the above equation simulates the mass spe
trum of 
avor o�-diagonal

pseudo-s
alar and ve
tor mesons, one has to 
al
ulate a 
on
rete example by 
hoosing

a spe
i�
 regulator fun
tion. One possible 
hoi
e would be the soft 
ut-o�

R(q

2

; �) = R

0

(q

2

; �) =

�

2

�

2

+ q

2

; (5.2)

whi
h immediately implies the usage of a more general 
ut-o�, �rst introdu
ed in [5℄

R(q

2

; �) =

"

1 +

N

X

n=1

(�1)

n

s

n

�

n

�

n

��

n

#

R

0

(q

2

; �) � D

N

�

R

0

(q

2

; �); (5.3)

ful�lling the requirements of a regulator as well. The arbitrary 
oeÆ
ients s

1

; : : : ; s

N

are dimesionless and thus renormalization group invariants. Unsatisfa
tory is that

they are additional parameters, whi
h also need to be �tted to experiment. But by

looking more 
losely at the potential in 
oordinate spa
e, as well as using the fa
t that

lower meson states show a reasonable agreement between theory and experiment if a

pure harmoni
 os
illator potential is used [8℄, the number of parameters given by the


oeÆ
ients s

n

, 
an then be redu
ed from N down to 2. Following the line of [5℄, this

will be shown next.

The potential in 
oordinate spa
e is given by the Fourier transform

V (r; �) = �

�




2�

2

Z

d

3

qe

�i~q�~r

V (q

2

)R(q

2

; �): (5.4)

It splits up into the triplet potential

V

t

(r; �) = �

�




2�

2

� D

N

�

Z

d

3

q

e

�i~q�~r

q

2

R

0

(q

2

; �)

�

�




r

� D

N

�

S(r; �); with S(r; �) = �

2

�

Z

1

0

dq

sin(qr)

q

R

0

(q

2

; �); (5.5)
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and into its singlet potential

V

s

(r; �) = �

�




2�

2

� D

N

�

Z

d

3

q e

�i~q�~r

�

�

1

q

2

+ �

�

�R

0

(q

2

; �)

=

�




r

� D

N

�

S(r; �)�

�




�

r

� D

N

�

�

2

S(r; �)

�r

2

= V

t

(r; �)�

�

r

�

�

2

�r

2

[r � V

t

(r; �)℄ : (5.6)

We 
learly see that the singlet potential is fully determined by the triplet potential. In

this sense we will investigate only the triplet potential in more detail, sin
e a �xing of

V

t

(r; �) automati
ally determines V

s

(r; �) a

ording to the above relation.

5.1 Triplet potential

It is 
onvenient to work with a dimensionless radius R = �r and a dimensionless triplet

potential by de�ning

W (r; �) :=

V

t

(r; �)

��




: (5.7)

Performing the integration and the relevant derivatives one obtains

W

N

(R) =

1

R

�

� 1 +D

N

R

e

�R

�

=

1

R

�

� 1 + e

�R

h

1 +

N

X

n=1

s

n

R

n

i�

: (5.8)

Sin
e the exponential de
ays faster than any power at large R, the asymptoti
 behavior

is always like W

N

� �1=R independent of the numeri
al value of the 
oeÆ
ients s

n

.

Thus the arbitrariness of the potential only lies within small R. This behaviour is

universal and applies to all possible regulators R

0

(q

2

; �) one puts into (5.1). It is fully

in a

ord with the regularization s
heme given in momentum spa
e: the arbitrariness

of regularizing a systems high momenta or energies leads to an arbitrariness in the

behaviour at small distan
es.

Inspired by [8℄ we use this arbitrariness for small R of W

N

, by requiring it to be an

os
illator potential up to N -th order

W

N

(R) = a+ b �R

2

+O(R

N

): (5.9)

The 
oeÆ
ients s

n

are determined by a series expansion of W

N

around its regular

origin. Thus the number of parameters given by the 
oeÆ
ients s

n

is now redu
ed to

only two 
oeÆ
ients a and b to be �xed by experiment: s

n

= s

n

(a; b) being

s

1

= 1 + a; s

2

=

1

2

+ a;

and s

n

=

1

n!

+

a

(n� 1)!

+

b

(n� 3)!

; for n � 3: (5.10)
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In the os
illator model of [8℄ there are two universal parameters in the triplet potential

V

h.o.

(r) = 


t

+

1

2

f

t

� r

2

. Comparing with the 
onventions above,

V

t

(r; �) = �




� � [a+ b �R

2

℄

R=�r

; (5.11)

we �nd




t

= �




�a; f

t

= 2�




�

3

b: (5.12)

In addition to the two os
illator parameters, the quark masses have to be �xed as well.

In our 
al
ulations we will ex
lude the top-quark, sin
e for su
h mesons no reliable data

is available up to now [3℄. Furthermore, we put the mass of the up-quark equal the mass

of the down-quark. And sin
e the triplet potential should des
ribe 
avor o�-diagonal

ve
tor mesons, we 
an �x these six unknowns: m

u

,m

s

,m




,m

b

and 


t

,f

t

by using the

following six experimentally inspired (Appendix F) invariant masses in GeV

M

u

�

d

= 0:775; M

u�s

= 0:891; M

u�


= 2:010; M

u

�

b

= 5:325;

M

�

u

�

d

= 1:450; M

�

u�s

= 1:569; (5.13)

where the star represents its �rst ex
ited state from the ground state of the relevant


avor se
tor. The �xing itself is now done by using the simple binding energy formula

for the harmoni
 os
illator, whi
h on the light-
one has the form

M

2

n

= m

2

s

+ 2m

s

�E

n

= m

2

s

+ 2m

s

�

�




t

+ (2n+

3

2

) � !

�

= (m

1

+m

2

)

2

+ 2(m

1

+m

2

) �

�




t

+ (2n+

3

2

)

r

m

1

+m

2

m

1

m

2

�

p

f

t

�

; (5.14)

where in the last line ! =

p

f

t

=m

r

has been used. For the ground state the index n = 0,

while for the �rst ex
ited state n = 1 must be taken. As a result we have to deal with

6 non-linear equations, whi
h 
an be split up into 4 
oupled equations for m

u

,m

s

,


t

,f

t

to be solved �rst, and then 2 un
oupled equations for m




,m

b

. For the values as in

(5.13) the above equations have indeed a unique solution, whi
h numeri
ally 
an be

determined as

m

u

= m

d

= 0:426; m

s

= 0:596; m




= 1:811; m

b

= 5:153 [GeV℄




t

= �0:735 GeV; f

t

= 0:0414 GeV

3

: (5.15)

Up to the N -th order, the triplet potential (5.11) is now uniquely determined, while the

asymptoti
al and mid-range stru
ture of the 
omplete potential (5.7) is still ambiguous.

There are in�nite many ways how to 
hoose the parameters a, b, � and �




to satisfy the


onditions (5.12) with the values of (5.15). A great part of this ambiguity is removed

by the re
ent renormalization pro
edure found for the e�e
tive 
oupling 
onstant [14℄.

For given e�e
tive quark masses as above, and 
hoosing � = 0:2GeV (
orresponding

roughly to an experimental s
ale of r = 1fm), the e�e
tive 
oupling 
onstant for a

typi
al bound-state 
al
ulation (Feynman 4-momentum transfer Q

2

� 0) takes on the

value

� � �

s

(0) = 0:1716: (5.16)
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Figure 3:
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(a) The triplet potential V

t

(r;N) is plotted

versus r for N = 8; 7; 6; 5; 4 (top to bot-

tom). All of them have the same harmoni


approximation (dashed) with the �rst �ve

eigenvalues for ud-mesons.
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(b) The singlet potential V

s

(r;N) for ud-

mesons is plotted versus r for the values of

N = 8; 7; 6; 5; 4 (top to bottom) and their

harmoni
 approximation (dashed) with the

�rst �ve eigenvalues.

Together with �




= 4=3�, the parameters a and b 
an now be nailed down unambigu-

ously to the values

a = �16:053 and b = 11:298 (5.17)

With these values (Fig3a) shows V

t

for several N together with their harmoni
 approx-

imation. The Figure demonstrates the harmoni
ity of the fun
tions, whi
h grows with

in
reasing N . The fun
tions also have a barrier whi
h grows with in
reasing N , after

whi
h they tend to their asymptoti
 values �1=r. The latter 
an almost not be seen on

the big s
ales of (Fig3a). The last 
onstraint on the barrier height is �xed, by varying

N until we have a satisfying agreement with experiment. As we will see later on,

N = 8; (5.18)

is a reasonable 
hoi
e. For N < 8 the harmoni
 approximation is so bad that the

lowest states whi
h were used to �x the parameters are to far o�. And for N > 8 we

are already nearly ba
k to the pure os
illator model [8℄.

Now all parameters of the triplet potential are �xed, but before we turn to solving

the bound and s
attering region of the full ST-potential, we �rst want to illustrate the

stru
ture of the singlet potential.
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5.2 Singlet potential

A

ording to (5.6) the singlet potential is fully determined by the knowledge of the

triplet potential, whi
h again was �xed uniquely in the previous se
tion. In other

words, we absolutely have no freedom of varying the stru
ture of the singlet potential

independently from that of the triplet potential. The only pure singlet parameter

� = 1=2m

1

m

2

is already �xed by the mass parameters of the previous se
tion. Looking

at its expansion in r up to N -th order in the triplet potential

V

s

(r) = V

t

(r)�

�

r

�

�

2

�r

2

[r � V

t

(r)℄

=

h




t

+

1

2

f

t

� r

2

+O(r

N

)

i

�

�

r

�

�

2

�r

2

h




t

� r +

1

2

f

t

� r

3

+O(r

N+1

)

i

� 


s

+

1

2

f

t

� r

2

+O(r

N�2

); with 


s

= 


t

� 3� � f

t

; (5.19)

also leads to an harmoni
 approximation in the singlet potential, but only up to the

order of N -2. Furthermore, it has the same frequen
y !

2

= f

t

=m

r

as the harmoni


triplet approximation, but starts with a deeper lying o�-set 


s

< 


t

. (Fig3b) shows the

singlet potential for ud-mesons with the same parameters as used in (Fig3a).

5.3 Numeri
al solution

For 
al
ulating the bound states of the 
omplete ST-potential with the parameters given

above, we see in (Fig3) that the attra
tive Coulomb part on these s
ales is so weak that

its nearly of no interest for us. In this sense we 
an asymptoti
ally 
hange the Coulomb

intera
tion by using a shielded one of a Yukawa-type. This really is a help to redu
e

the amount of numeri
al work, sin
e it guarantees us not to run into the numeri
al

Coulomb singularity (Appendix E). The same argument also holds for the s
attering

region of the potential. As we have shown in (Appendix D), the asymptoti
al part of

an attra
tive Coulomb-like potential does not 
ontribute to the pure resonant part of

a 
ross-se
tion. Changing the troublesome Coulomb intera
tion in the asymptoti
al

region to a more well-de�ned intera
tion like a Yukawa intera
tion, will only have an

e�e
t on ba
kground s
attering but not on the determination of resonan
es, as we are

interested in.

The problem we fa
e, is thus to 
hange the potential only asymptoti
ally and not to

e�e
t the rest, in other words only the pure Coulomb part of the potential should

be 
hanged. Sin
e we originally work in momentum spa
e the 
hange is arranged as

follows:

V (q

2

) �R(q

2

; �) =

�

1

q

2

+ �

�

� D

N

�

R

0

(q

2

; �)

� V

t

(q

2

) �R(q

2

; �) + � � D

N

�

R

0

(q

2

; �): (5.20)
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5. The Renormalized Singlet-Triplet (ST)-model

We 
learly see that the entire Coulomb part of the potential 
an be 
hanged within the

pure triplet se
tion

V

t

(q

2

) �R(q

2

; �) =

1

q

2

� D

N

�

R

0

(q

2

; �)

�

1

q

2

�

1

q

2

h

1�D

N

�

R

0

(q

2

; �)

i

'

1

�

2

+ q

2

�

1

q

2

h

1�

e

D

N

0

�

R

0

(q

2

; �)

i

; up to N

0

-th order; (5.21)

where the last requirement for N

0

� N in 
oordinate spa
e

1

R

�

� 1 +D

N

R

e

�R

�

!

=

1

R

�

� e

��R

+

e

D

N

0

R

e

�R

�

; (5.22)

in the sense of a Taylor expansion up to N

0

-th order with � = �=�, �xes the new


oeÆ
ients t

n

= t

n

(�)

t

1

= 1� � + a; t

2

=

1

2

(1� �)

2

+ a;

t

n

=

1

n!

(1� �)

n

+

a

(n� 1)!

+

b

(n� 3)!

; for 3 � n � N;

and t

n

=

(��)

n

n!

+

n�1

X

i=1

(�1)

n+i

s

i

� t

i

(n� i)!

; for N � n � N

0

and s

i >N

= 0: (5.23)

for the �-dependent di�erential operator

e

D

N

0

R

:= 1 +

P

N

0

n=1

(�1)

n

t

n

R

n

�

n

R

. Sin
e the

Coulomb shielding parameter � is dimesionless, it a
ts as a renormalization invariant.

Furthermore, the smaller � is 
hosen the less 
orre
tion terms one needs. In the follow-

ing we will �x � = 0:1, in whi
h 
ase it is suÆ
ient to add four more 
orre
tion terms,

that means N

0

= 12 if N = 8.

If we now start a s-wave bound-state 
al
ulation of the Coulomb-shielded ST-potential,

it gives us a �nite set of possible states. By 
onstru
tion it is not able to 
reate the

in�nite number of Coulomb-like bound-states. Due to their nearly vanishing energy, as


an be seen in (Fig3), we were allowed to adjust the Coulomb tail by a Yukawa shield.

On the other hand, for the 
al
ulation of possible resonan
e states, we have prepared

the theory in (Appendix D) to do a s
attering experiment in momentum spa
e, in

other words by 
al
ulating the relevant s
attering quantities like phase-shift and 
ross-

se
tion in momentum spa
e. Unfortunately, when performing these 
al
ulations we


an not resolve the resonan
e spe
trum. Due to its very broad and high barrier, the

ST-potential as in (Fig3) 
reates so long-lived resonan
es as 
ompared to the hadroni


intera
tion times of about 10

�24

se
, that they nearly 
an be treated as bound-states.

The width and the 
orresponding lifetime of possible resonan
es we 
an easily estimate

by using the semi-
lassi
al WKB-method [32℄ for the tunneling probability, given as

T (E) � e

�S

; with S = 2

Z

r

2

r

1

dr

p

2m

r

jV (r)�Ej: (5.24)
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5. The Renormalized Singlet-Triplet (ST)-model

Figure 4:

1.2 1.4 1.6 1.8

k [GeV]

-50.0

-40.0
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-10.0

δ
t(
k
)

(a) The triplet phase shift for ud-mesons

with the same parameter set as given in

the previous se
tion, is plotted in the mo-

mentum region of 1:2 � k � 1:8, 
orre-

sponding to the s
attering energy of about

3:5 � E � 7:5. Units are given in GeV.

1.2 1.4 1.6 1.8

k [GeV]

0.0
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0.4

0.6

0.8
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s
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(b) The triplet 
ross se
tion for ud-mesons

with the same parameter set as given in

the previous se
tion, is plotted in the mo-

mentum region of 1:2 � k � 1:8, 
orre-

sponding to the s
attering energy of about

3:5 � E � 7:5. Units are given in GeV.

S will be the a
tion integral in units of �h = 
 = 1, while E � 0 is the energy of

the s
attering parti
le and r

1

� r

2

its 
lassi
al turning points. In order to establish

a 
onne
tion between the tunneling probability and the lifetime of the parti
le, we

imagine in a more 
lassi
al sense that the parti
le boun
es ba
k and forth within the

potentials barrier between r

1

and r

2

and that with every boun
e the parti
le has the

probability T (E) to penetrate through the barrier. The time between two boun
es is

t

0

=

2(r

2

� r

1

)

v

; (5.25)

with v =

p

2E=m

r

being the velo
ity of the parti
le. Sin
e the parti
le needs in the

mean 1=T boun
es to penetrate the barrier, it makes sense to de�ne

� �

t

0

T

; (5.26)

as the lifetime of the parti
le, giving �nally the energy width of a resonan
e as � = 1=� .

For the width in momentum plane we use (D.84) to get 
 = �=2v. A numeri
al

evaluation of (5.24) shows that for a possible resonan
e lo
ated at E = 7GeV in

(Fig3a), the width is �

7

= 6 � 10

�6

GeV (�

7

� 3 � 10

�11

se
), while for E = 6GeV it

already shrinks down to �

6

= 1 � 10

�12

GeV (�

6

� 2 � 10

�4

se
). In order to resolve

a resonan
e between these to two energy values in a diagram like a 
ross-se
tion one

needs at least a grid size of �

6

. But this requires a huge amount of 
omputational time,

making here the s
attering method for 
al
ulating resonan
es useless. (Fig4) shows the

phase-shift and the 
ross-se
tion for a grid size of 10

�4

GeV, and as expe
ted the only

stru
ture present is ba
kground s
attering.

41



5. The Renormalized Singlet-Triplet (ST)-model

Con
lusion: To �nd these resonan
es one should not use s
attering te
hniques. More

promising would be to use bound-state te
hniques.

Unfortunately the bound-state method des
ribed in (Appendix E) does not lead to any

su

ess. First of all, we are not able to determine the resonan
e via reading o� the

stru
ture of a wavefun
tion, sin
e we do not know what spe
i�
 feature a wavefun
tion

in momentum spa
e must show in order to be a resonant wavefun
tion. Se
ond, we 
an

not read it o� on the positive 
ontinuum eigenvalues, by looking at stable eigenvalues

when varying the dimension of the diagonalization spa
e, sin
e an in
rease in spa
e is

dire
tly linked to an in
rease in integration points and thus will show no other e�e
t

than having a better agreement on the relationship E = k

2

=2m

r

. Looking for stable

eigenvalues in the 
ontinuum 
an only work if the spa
e within one solves the bound-

state equation 
an be varied independently from the the number of integration points.

All in all one has to use alternative momentum spa
e bound-state te
hniques. Inspired

by the 
al
ulations of [17℄, a promising te
hnique is the basis fun
tion method. We

shall use the simplest momentum spa
e S
hr�odinger equation, the s-state equation to

illustrate the prin
iples of this method. The momentum spa
e S
hr�odinger equation is

related to an integral equation of the form

Z

1

0

dp

0

p

02

K(p

0

; p)�(p

0

) = E�(p); (5.27)

where the kernel K(p

0

; p) is symmetri
 under ex
hange of p and p

0

. The idea is now to

expand the wave fun
tion in a suitable set of basis fun
tion fg

i

g whi
h of 
ourse has

to be trun
ated at �nite N

�(p) =

N

X

i=1




i

g

i

(p); (5.28)

where 


i

are 
onstant 
oeÆ
ients. Substituting this expansion into (5.27)

N

X

i=1




i

Z

1

0

dp

0

p

02

K(p

0

; p)g

i

(p

0

) = E

N

X

i=1




i

g

i

(p); (5.29)

and symmetrizing over i and j by multiplying with p

2

g

i

(p) and integrating over p

N

X

i=1




i

Z

1

0

Z

1

0

dp

0

dp p

02

p

2

K(p

0

; p)g

i

(p

0

)g

j

(p)

| {z }

A

ij

= E

N

X

i=1




i

Z

1

0

dp p

2

g

i

(p)g

j

(p)

| {z }

B

ij

; (5.30)

yields the matrix equation

N

X

i=1

A

ij




i

= E

N

X

i=1

B

ij




i

; (5.31)

whi
h is symmetri
 under the ex
hange of i and j. Then instead of solving for the wave

fun
tions, one solves for its expansion 
oeÆ
ients.
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5. The Renormalized Singlet-Triplet (ST)-model

A

ording to [18℄ this matrix equation is a generalized eigenproblem

A � 
 = EB � 
; (5.32)

where 
 is the eigenve
tor and E the same eigenvalue as the original equation (5.27).

In addition to the symmetry 
ondition of the matri
es A and B, the latter must also

be positive de�nite to ensure that the eigenvalues are all real. For more details on this

and how to solve the equation via a symmetri
 diagonalization one 
an 
onsult [18℄.

The matrix equation 
an be simpli�ed drasti
ally if its possible to 
hoose su
h a set of

basis fun
tions that B be
omes the unity matrix: B

ij

= Æ

ij

. We then have an ordinary

symmetri
al eigenvalue equation that 
an be solved as usual.

Clearly, the big advantage of this basis fun
tion method is that diagonalization and

integration represent two di�erent spa
es whi
h 
an be varied independently in their

dimension, thus as already told, making it ideal for sear
hing at stable eigenvalues in

the 
ontinuous spe
trum of an system. Furthermore, the a

ura
y of this te
hnique

depends very mu
h on the 
hoi
e of the expansion fun
tions g

i

(p). Obviously, one will

be in
lined to 
hoose fun
tions suitable to the physi
al problem being studied. In our


ase the best 
hoi
e is 
ertainly to take the radial s-wave harmoni
 os
illator fun
tions

g

i

(p) = R

i

(p), whi
h in momentum spa
e

R

i

(p) = Z

i

� e

�

1

2

�

2

p

2

� L

(

1

2

)

i

(�

2

p

2

); with 1=�

2

= m

r

!; (5.33)

for (i=0,1,2,. . . ) are of identi
al stru
ture as in 
oordinate spa
e, namely 
orrelated to

the generalized Laguerre fun
tions

u

(�)

i

(x) = N

(�)

i

� x

�=2

� e

�x=2

� L

(�)

i

(x); with N

(�)

i

=

s

�(1 + i)

�(1 + i+ �)

; (5.34)

whi
h form an orthonormal

Z

1

0

dxu

(�)

i

(x) � u

(�)

j

(x) = Æ

ij

; (5.35)

and 
omplete set

1

X

i=0

u

(�)

i

(x) � u

(�)

i

(x

0

) = Æ(x� x

0

); (5.36)

of fun
tions. The harmoni
 os
illator fun
tions in momentum spa
e are given by the

spe
ial 
ase � =

1

2

and x = �

2

p

2

. With these values the orthonormal 
ondition 
an be

written as

Æ

ij

= N

(

1

2

)

i

�N

(

1

2

)

j

�

Z

1

0

d(�

2

p

2

) �p � e

��

2

p

2

� L

(

1

2

)

i

(�

2

p

2

) � L

(

1

2

)

j

(�

2

p

2

);

=

e

N

i

�

e

N

j

�

Z

1

0

dp p

2

� e

��

2

p

2

L

(

1

2

)

i

(�

2

p

2

) � L

(

1

2

)

j

(�

2

p

2

); (5.37)

meaning that with the normalization 
hoi
e of Z

i

=

e

N

i

= �

p

2� � N

(

1

2

)

i

in the basis

fun
tions of (5.33) will lead to the simplifying result of B

ij

= Æ

ij

in (5.30).
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5. The Renormalized Singlet-Triplet (ST)-model

When testing the Basis-Fun
tion-
ode, numeri
al stability within 5 digits of pre
ision

for the �rst 4 eigenvalues is already a
hieved by using eight basis fun
tions N = 8 and

128 gaussian integration points.

5.4 Comparing with experiment

At last we 
an represent the 
al
ulated energy eigenvalues and the 
orresponding in-

variant mass eigenvalues of the 
omplete renormalized ST-potential (5.1).

The following tables show a typi
al output in GeV for every 
avor 
ombination. The

se
ond and third line of ea
h table are the numeri
al 
al
ulations for the �rst eigen-

values, while the fourth line is an attempt to identify the relevant mesons with our

ST-model. Their pre
ise experimental values are listed in (Appendix F). The lower

part of ea
h table shows the analyti
al eigenvalues of the pure harmoni
 os
illator. The

singlet data is given on the left, triplet data on the right of ea
h se
tor.

Table 1: ud-mesons [GeV℄

n

2S+1

L

J

1

1

S

0

jj 1

3

S

1

2

1

S

0

jj 2

3

S

1

3

1

S

0

jj 3

3

S

1

4

1

S

0

jj 4

3

S

1

E

n

�0:414 jj �0:074 0:470 jj 0:803 1:351 jj 1:671 2:221 jj 2:523

M

n

0:140 jj 0:774 1:236 jj 1:447 1:740 jj 1:890 2:124 jj 2:242

Exp. �

�

jj �(770) �(1300) jj �(1450) �(1800) jj �(1900) | jj |

M

HO

n

0:134 jj 0:775 1:233 jj 1:450 1:738 jj 1:898 2:127 jj 2:260

Table 2: us-mesons [GeV℄

n

2S+1

L

J

1

1

S

0

jj 1

3

S

1

2

1

S

0

jj 2

3

S

1

3

1

S

0

jj 3

3

S

1

4

1

S

0

jj 4

3

S

1

E

n

�0:366 jj �0:123 0:451 jj 0:690 1:264 jj 1:495 2:069 jj 2:289

M

n

0:544 jj 0:891 1:402 jj 1:567 1:905 jj 2:025 2:296 jj 2:392

Exp. K

�

jjK

�

(892) K(1460) jjK

�

(1680) K(1830) jj | | jj |

M

HO

n

0:543 jj 0:891 1:401 jj 1:569 1:905 jj 2:032 2:302 jj 2:408
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5. The Renormalized Singlet-Triplet (ST)-model

Table 3: This is an illustrative presentation of the Tables 1&2. The dotted lines are the


al
ulated mass values whi
h are shown next to the experimental measured mass values. The

three ve
tor mesons �(1700), �(2150) and K

�

(1410) (labeled with an empty 
ir
le) might be

D-wave mesons [3℄, while the s
alar meson K(1630) (labeled with an empty triangle) might not

be a pseudo-s
alar, sin
e the value of J

P

is still unknown [3℄.

π ρ K K*
0

400

800

1200

1600

2000

M
 [

M
e
V

]

Table 4: u
-mesons [GeV℄

n

2S+1

L

J

1

1

S

0

jj 1

3

S

1

2

1

S

0

jj 2

3

S

1

3

1

S

0

jj 3

3

S

1

E

n

�0:296 jj �0:215 0:396 jj 0:476 1:085 jj 1:163

M

n

1:919 jj 2:010 2:603 jj 2:671 3:140 jj 3:195

Exp. D

�

jjD

�

(2010) | jjD

�

(2640) | jj |

M

HO

n

1:919 jj 2:010 2:604 jj 2:672 3:143 jj 3:200
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Table 5: s
-mesons [GeV℄

n

2S+1

L

J

1

1

S

0

jj 1

3

S

1

2

1

S

0

jj 2

3

S

1

3

1

S

0

jj 3

3

S

1

E

n

�0:337 jj �0:279 0:270 jj 0:327 0:875 jj 0:931

M

n

2:043 jj 2:109 2:664 jj 2:714 3:163 jj 3:205

Exp. D

�

s

jjD

�

s

D

s

(2573)jj | | jj |

M

HO

n

2:043 jj 2:110 2:664 jj 2:716 3:166 jj 3:209

Table 6: This is an illustrative presentation of the Tables 4&5. The dotted lines are the


al
ulated mass values whi
h are shown next to the experimental measured mass values.

D D* D
s

D
s
*

1500

1800

2100

2400

2700

3000

M
 [
M

e
V

]
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Table 7: ub-mesons [GeV℄

n

2S+1

L

J

1

1

S

0

jj 1

3

S

1

2

1

S

0

jj 2

3

S

1

E

n

�0:277 jj �0:248 0:371 jj 0:399

M

n

5:295 jj 5:325 5:938 jj 5:964

Exp. B

�

jjB

�

| jj |

M

HO

n

5:295 jj 5:325 5:939 jj 5:966

Table 8: sb-mesons [GeV℄

n

2S+1

L

J

1

1

S

0

jj 1

3

S

1

2

1

S

0

jj 2

3

S

1

E

n

�0:337 jj �0:317 0:218 jj 0:238

M

n

5:401 jj 5:422 5:963 jj 5:983

Exp. B

s

jjB

�

s

| jj |

M

HO

n

5:401 jj 5:423 5:964 jj 5:983

Table 9: 
b-mesons [GeV℄

n

2S+1

L

J

1

1

S

0

jj 1

3

S

1

2

1

S

0

jj 2

3

S

1

E

n

�0:478 jj �0:471 �0:125 jj �0:119

M

n

6:469 jj 6:476 6:838 jj 6:844

Exp. B




jj | | jj |

M

HO

n

6:469 jj 6:476 6:836 jj 6:843
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Table 10: This is an illustrative presentation of the Tables 7, 8 and 9. The dotted lines are

the 
al
ulated mass values whi
h are shown next to the experimental measured mass values.

B B* B
s

B
s
* B

c

5000

5400

5800

6200

6600

7000

M
 [
M

e
V

]

Dis
ussion: We were able to 
al
ulate 22 mesons, whi
h 
ould be identi�ed to experi-

ment with an error less than 5%, ex
ept for some us-mesons in (Table 2) with an error

of about 10%.

For a 
rude model like the ST-model with its 8 parameters (if m

u

= m

d

and if m

t

is ex
luded) this is quite remarkable. The 
al
ulated masses are very sensitive to the

initial 
hoi
e of how the parameters are �xed. It might be just possible that the error


an still be redu
ed by using a di�erent �xing set than that given in (5.13).

The intention of this se
tion was not to present the best �t, it rather wanted to show

how the ST-model is able to quantitatively reprodu
e the mass-spe
trum of 
avor o�-

diagonal mesons. Furthermore, looking for a best �t one should also 
ompare the

mass-spe
trum for di�erent regulating fun
tions R

0

(q

2

; �). Their is no argument why

the soft regulator (5.2) is predestinated to be the ideal regulator.

When 
omparing the �rst three analyti
al eigenvalues of the pure harmoni
 os
illator

(given in the last row of the relevant tables) with the 
al
ulated ones, we see, that

its almost unne
essary to go onto the 
omputer, espe
ially for the heavy mesons. For

those, the 
al
ulated values are nearly identi
al with the harmoni
 ones. This 
ertainly

has to do with the rather large value of the parameter N , whi
h 
ontrols the harmoni
-

ity of the ST-potential. The biggest di�eren
e of about 4% 
an be seen for the lightest

meson, the pion.
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5. The Renormalized Singlet-Triplet (ST)-model

The 
omparison between the ST-model and the os
illator model [8℄ 
ertainly be
omes

more interesting when 
hoosing N � 8, but with the parameter set (5.15) and (5.16),

whi
h 
an be 
hosen independently from N , the deviations to experiment are starting

to get worse the more N is de
reased.

More interesting would be to keep the harmoni
ity as that of N = 8, but to redu
e

the barrier width | in other words: keeping the same overall stru
ture as shown in

(Fig3), ex
ept with a smaller width. This 
an be a
hieved when 
hoosing for example

a gaussian fun
tion R

0

(q

2

; �) = e

�q

2

=�

2

as a generating regulator in (5.3). The result is

a width redu
tion of a fa
tor 2. This statement should only emphasize that there are

maybe many regulators out there, whi
h on the level of the ST-model 
ould improve

the os
illator model of [8℄ in a promising way.
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6 Summary and Dis
ussion

The novel aspe
t of this thesis, was to show how renormalization works in a non-

perturbative 
ontext within a Hamiltonian approa
h. It was exempli�ed by means

of the oversimpli�ed ST-model. Two 
omplementary renormalization s
hemes were

used, one more illustratively and the other in a more abstra
t way, to show how the

renormalization program is performed and at the end leading to the same physi
s.

Sin
e both renormalization s
hemes have been implemented in momentum spa
e, the

generalization to the full relativisti
 
ase 
an be easily performed. Even more, these

renormalization s
hemes are not restri
ted to any 
ertain Hamiltonian model but 
an be

applied to any Hamiltonian eigenvalue equation, for example as to our master equation

given in (3.1) or to a even more general equation.

We then tested the ST-model by trying to quantitatively reprodu
e the mass spe
trum

of 
avor o�-diagonal mesons. Nearly all experimentally available mesons, from the light

� to the heavy B, 
ould be 
al
ulated by the simple 8-parametri
al ST-model within an

error less than 5%, ex
ept for some strange pseudo-s
alar mesons in (Table 2) having

an error of about 10%. Its not impossible that the error 
an still be redu
ed by using

better �tting te
hniques or di�erent regulators.

The mass spe
trum was 
al
ulated in momentum spa
e by using the bound-state te
h-

nique of orthogonal basis fun
tions. From our diploma student Harun Omer I have

learned that this te
hnique is indeed su

essful in �nding resonan
es as stable eigen-

values in the 
ontinuous part of the spe
trum, who 
al
ulated the mass spe
trum with

a di�erent parameter set in 
oordinate spa
e [17℄. Unfortunately, the determination

of resonan
es did not lead to any su

ess when doing a s
attering 
al
ulation. In any

physi
al parameter set for mesons, the ST-potential produ
es resonan
es of su
h an

extreme small width that they nearly 
an be treated as bound-states (
ompared to

typi
al hadroni
 intera
tion times). A quark s
attering 
al
ulation is thus 
ondemned

to fail. This justi�es to see the ST-potential as a quark-
on�ning potential. A re
om-

bination of quarks into new mesons is enormously mu
h faster (hadroni
 intera
tion

time � 10

�24

se
) than the pro
ess of separation (ST-resonan
e lifetime � 10

�6

se
).

For the �rst time, the simple ST-model let us understand how expli
it renormalization

works in a Hamiltonian formulation. Furthermore, it is able to show the essential mass

splitting between the pseudo-s
alar mesons and the ve
tor mesons by the hyper�ne

intera
tion in the triplet part of the potential. Finally, it gives us 
on�nement, in the

sense that a forever rising potential is not ne
essary. But at foremost, the ST-model

has the great advantage of showing a well-de�ned relation to QCD. Certainly, the ST-

model is an oversimpli�ed model, but there are no 
on
eptual problems to relax the

relevant simpli�
ations in order to 
reate a more general model. Restoring the full

relativisti
 
ase and in the next step in
luding the full spinor stru
ture are well de�ned

pres
riptions.

First attempts were made by our postdo
torate Shan-Gui Zhou who started to 
al
ulate

the relativisti
 ST-model. Great progress was made in the work of [19℄, where the

authors showed how in general the singlet part 
an be de
oupled from the triplet part
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within the full spinor intera
tion, by making use of unitary transformations. The last

important step to 
omplete the meson model would be to in
lude the annihilation

graph. This allows us to determine the mass spe
trum for mesons of equal 
avor in

quark and anti-quark. This big proje
t is now under the hand of our diploma student

Christian Krahl.

Certainly, in order to have a serious meson model it must go beyond a simple mass

spe
trum �tting. It must also be able to probe the internal stru
ture of mesons as

well. For this the 
orresponding wave fun
tions have to be investigated. Sin
e we

are in possession of the frame-independent light-
one wave fun
tions, we are able to

predi
t hadroni
 properties like form fa
tors and distribution amplitudes [20℄. We are

lu
ky to 
ompare our results with the experiments of [21℄. To �t the ST-model wave

fun
tion a

ording to Asherys experimentally measured pion wave fun
tion over a large

momentum range, is the present work of Harun Omer.

We see that there is still a lot of work to be done in the future. Up to now, we 
an say

that we understand better the pro
ess of how to start from a quantum �eld theory like

QCD, deriving an e�e
tive 
onstituent quark model having the shape of a S
hr�odinger

equation, performing a non-perturbative renormalization s
heme and �nally to 
ompare

it with the experimentally available hadron world.
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A

ording to the prin
iple of relativity there are 
ertain frames of referen
e, 
alled

inertial frames, whi
h are equivalent. This means that 
oordinates x

�

in one inertial

frame and x

0�

in another inertial frame must leave the s
alar produ
t invariant by

satisfying the 
ondition

g

��

dx

�

dx

�

= g

��

dx

0�

dx

0�

; (A.1)

where g

��

= g

��

is the metri
 tensor. A 
oordinate transformation x

�

! x

0�

between

inertial frames 
an only be of a linear form

x

0�

= �

�

�

x

�

+ a

�

; (A.2)

where a

�

is a 
onstant four-ve
tor and �

�

�

is a 
onstant 4� 4-matrix, whi
h a

ording

to (A.1) must satisfy the following pseudo-orthogonality relation

g

��

�

�

�

�

�

�

= g

��

or �

T

g� = g; (A.3)

whi
h in turn implies the following stru
ture for its inverse

(�

�1

)

�

�

= g

��

�

�

�

g

��

� �

�

�

: (A.4)

The linear transformations (�; a) form a group, known as the Poin
ar�e group. An

important subgroup is the Lorentz group with no spa
e-time translations a = 0. In

the following we will only 
onsider proper (det� = 1) and ortho
hronous (�

0

0

� 1)

Lorentz transformations, that means we ex
lude spa
e and time re
e
tions. From the

16 matrix elements � only 6 are independent, due to the symmetri
 
ondition (A.3). So,

every Poin
ar�e transformation is spe
i�ed by 10 real parameters whi
h 
an be varied

independently: 4 translations a

�

, 3 Euler angles �

k

, and 3 boosts or rapidity angles �

k

,

whi
h de�ne relative to the speed of light, the velo
ity ~v = tanh ~� between the inertial

frames.

Furthermore, the transformations (�; a) indu
e unitary operators U

�1

(�; a) = U

y

(�; a)

in a Hilbert spa
e, where its ve
tors and operators transform as

j�

0

i = U(�; a)j�i ; O

0

= U(�; a)OU

y

(�; a): (A.5)

The operators U satisfy a 
omposition rule for two su

essive transformations

U(�

0

; a

0

)U(�; a) = U(�

0

�;�

0

a+ a

0

); (A.6)

whi
h easily follows from (A.2). Using the identi
al transformation U(1; 0) the inverse

of U(�; a) 
an be expressed as

U

�1

(�; a) = U(�

�1

;��

�1

a): (A.7)
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U(�; a) is a lo
al operator whi
h transforms fun
tions and 
oordinates simultaneously

about a �xed point in spa
e-time. Sin
e a state ve
tor � in the S
hr�odinger pi
ture

transforms in the same way as an operator O in the Heisenberg pi
ture [22℄,[23℄, we

will 
olle
tively 
all them �elds 	. In the 
oordinate representation they transform

a

ording to the following 
ovariant rule

	

0

(x

0

) =

passive

D(�) �	(x) = D(�) �	(�

�1

(x

0

� a))

	

0

(x) =

a
tive

D(�

�1

) �	(�x+ a); (A.8)

where we have 
olle
ted the �elds in a 
olumn ve
tor on whi
h the matrix D(�) 
an

a
t, whi
h again is a �nite dimensional matrix representation of the Lorentz group.

Translations 
an be ex
luded for pure �eld transformations, sin
e all �elds will behave

as a s
alar. There are many su
h representations, in
luding the s
alar D(�) = 1, the 4-

ve
torD(�) = �, the Dira
-spinorD(�) = S(�) or the 2-rank tensorD(�) = �
�, just

to name a few. Furthermore, this 
ovariant transformation for �elds is not restri
ted

to 
oordinate spa
e (x

�

) only. For example, doing a 
ovariant Fourier transformation

one immediately gets the 
orresponding rules for the 
onjugate energy-momentum rep-

resentation (p

�

).

Under a passive transformation rule we in general understand, that one physi
al sys-

tem is being des
ribed from two di�erent frames whi
h are separated by a Poin
ar�e

transformation. Thus 	

0

and 	 represent the same �eld only evaluated in two di�erent

frames. While under an a
tive transformation rule we look at two physi
al systems,

whi
h are also separated by a Poin
ar�e transformation, but only from one frame. This

transformation is thus ideal for investigating the property of invarian
e on �elds, sin
e

here 	

0

and 	 in general represent di�erent �elds. We 
an talk of an Poin
ar�e-invariant

�eld 	 if its a
tively transformed �eld stays invariant 	

0

= 	.

We now return to the 
oordinate transformation (A.2) by looking at the transformation

near the identity

�

�

�

= Æ

�

�

+ !

�

�

; a

�

= �

�

(A.9)

where !

�

�

and �

�

are 20 suÆ
iently small real parameters. Plugging this transformation

into (A.3) we get up to linear order in ! the antisymmetry 
ondition !

�

�

= �!

�

�

,

leaving again as already known, all together 10 transformation parameters independent.

Sin
e U(1; 0) is the identity operator and sin
e the parameters ! and � 
an be varied

independently, the unitary operator U(1 + !; �) near its identity up to �rst order 
an

be written as

U(1 + !; �) = 1 + i �G(!; �) = 1 +

1

2

i!

��

M

��

+ i�

�

P

�

; (A.10)

This expansion de�nes 10 parameter independent operatorsM

��

= �M

��

and P

�

, also

known as the generators of the Poin
ar�e group, whi
h are of fundamental importan
e

in any relativisti
 theory. They are Hermitian operators in all indi
es and represent

observable physi
al quantities.
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Due to its 
orrelation with the 4 translation parameters, P

�


an be identi�ed as

the total energy-momentum 4-ve
tor of the �eld system. The pure spatial 3-ve
tor

~

J = (M

23

;M

31

;M

12

), being 
orrelated with the 3 spatial rotation parameters, 
an be

identi�ed as the total angular momentum of the �eld, while the remaining spa
e-time

generators

~

K = (M

10

;M

20

;M

30

), form what is 
alled the Boost 3-ve
tor.

By working out the produ
t U(�; a)U(1 + !; �)U

�1

(�; a) via (A.6),(A.7) and (A.10),

where (�; a) are the parameters of a new full transformation, will give after a 
ompar-

ison of the independent 
oeÆ
ients ! and � up to �rst order the following result

U(�; a)M

��

U

�1

(�; a) = �

�

�

�

�

�

(M

��

+ a

�

P

�

� a

�

P

�

)

U(�; a)P

�

U

�1

(�; a) = �

�

�

P

�

: (A.11)

For pure Lorentz transformations with a

�

= 0, these transformation rules simply say

that M

��

is a tensor and P

�

is a ve
tor. For pure translations with �

�

�

= Æ

�

�

, they tell

us that P

�

is translation-invariant, but M

��

not.

Next, lets apply the rules (A.11) to a transformation that is itself in�nitesimal, that

means �

�

�

= Æ

�

�

+ !

�

�

and a

�

= �

�

, with in�nitesimals !

�

�

and �

�

unrelated to the

previous ! and �. Keeping only terms of �rst order in these independent parameters

and then equating their 
oeÆ
ients on both sides, we �nd the following 
ommutations

i[M

��

;M

��

℄ = g

��

M

��

� g

��

M

��

� g

��

M

��

+ g

��

M

��

i[P

�

;M

��

℄ = g

��

P

�

� g

��

P

�

[P

�

; P

�

℄ = 0: (A.12)

This is the Lie algebra of the Poin
ar�e group, whi
h is shortly 
alled Poin
ar�e algebra.

The Poin
ar�e algebra alone does not tell us anything about 
ovarian
e. For this, we

look again at the transformation rules (A.8) to study in whi
h way the generators G

have to a
t on the �elds 	, in order to guarantee 
ovarian
e.

a): First we look at the state-ve
tors j�i in the S
hr�odinger pi
ture, for whi
h a

ording

to (A.5), we 
an de�ne the following total in�nitesimal variation around a �xed spa
e-

time point

Æj�i := j�

0

i � j�i = iG(!; �) � j�i; (A.13)

where G(!; �) =

1

2

!

��

M

��

+ �

�

P

�

. Sin
e ! and � 
an be varied independently the total

variation within a passive transformation in 
oordinate spa
e will read

Æ�

r

(x) = D(1 + !)

rs

�

s

(x+ !

�1

x� �)� �

r

(x)

=

�

Æ

rs

+

1

2

i!

��

[�

rs

℄

��

�

� �

s

(x

�

+ !

�

�

x

�

� �

�

)� �

r

(x)

=

1

2

i!

��

[�

rs

℄

��

�

s

(x) +

1

2

!

��

(x

�

�

�

� x

�

�

�

)�

r

(x)� �

�

�

�

�

r

(x): (A.14)

Comparing (A.14) with (A.13), will give the 
ovariant identities

iM

��

�

r

(x) = i[�

rs

℄

��

�

s

(x) + (x

�

�

�

� x

�

�

�

)�

r

(x)

iP

�

�

r

(x) = ��

�

�

r

(x): (A.15)
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In 
oordinate spa
e P

�

has the well known operator representation i�

�

, while the

representation of M

��


an be split up into two parts: M

��

= S

��

+ L

��

. A
ting only

on the 
oordinates of a �eld, the operator L

��

= �i(x

�

�

�

� x

�

�

�

) depends expli
itly

on the 
hoi
e of the origin of the 
oordinate system. Furthermore, it vanishes if �(x)

is spheri
ally symmetri
 in its spa
e-time dependen
e. For these reasons, we identify

this term with the orbital angular momentum. In 
ontrast, the other term being a

�nite dimensional matrix representation a
ting only on dis
rete 
omponents of the

�eld, does not depend on the origin of the 
oordinate frame and is determined solely

by the transformation properties of the �eld fun
tions. Hen
e, we identify it with the

spin angular momentum S

��

= �

��

of the �eld system. The expli
it stru
ture of the

spin part 
ertainly depends on the �eld representation one uses, for example

[S

��

℄

��

= �

1

4

i[


�

; 


�

℄

��

or [S

��

℄

��

= �i[g

�

�

g

�

�

� g

�

�

g

�

�

℄; (A.16)

depending on whether �(x) refers to a spinor or to ve
tor �eld, respe
tively. We

observe here that a separate de
omposition of angular momentum into orbital and

spin part is, of 
ourse, not a 
ovariant pro
edure. Also, if M

��

represents a 
onserved

quantity, neither of its de
omposed parts are 
onserved separately. Furthermore, all

these 
oordinate spa
e representations must 
ertainly satisfy the same 
ommutation

relations as their general operators in (A.12) do.

b): Now we look at Hilbert spa
e operators O in the Heisenberg pi
ture. The total

variation as given in (A.13) must now be adjusted a

ordingly to the transformation

property of operators

ÆO := O

0

�O = i[G;O℄; (A.17)

whi
h immediately yields the following 
ovariant identities in 
oordinate spa
e

i[M

��

;O

r

(x)℄ = i[�

rs

℄

��

O

s

(x) + (x

�

�

�

� x

�

�

�

)O

r

(x)

i[P

�

;O

r

(x)℄ = ��

�

O

r

(x): (A.18)

Summary: A 
orre
t relativisti
 treatment of a any physi
al system is only given, if

the 
orresponding Poin
ar�e generators are not only 
onsistent with the 
ommutation

relations (A.12), but also respe
t the 
ovariant relations (A.15) and (A.18). A realiza-

tion of the Poin
ar�e algebra alone is not suÆ
ient, as for 
ertain systems it 
an happen

that their Poin
ar�e generators ful�ll the 
ommutation relations but spoil 
ovarian
e.

A

ording to [2℄ "
ovarian
e is an additional requirement, whi
h in 
ontrast to the

Poin
ar�e algebra strongly restri
ts possible relativisti
 dynami
s". It is not surprising

that 
ovarian
e imposes so severe restri
tions, be
ause on top of the general group prop-

erties (A.6), (A.10), whi
h suÆ
es to derive the Poin
ar�e algebra, 
ovarian
e requires

an additional transformation rule (A.8) whi
h in
ludes a �nite representation of the

Lorentz group.

But we observe that nothing up to this point gives us any indi
ation as to how these

fundamental operators (M

��

; P

�

) 
an be expli
itly 
onstru
ted. Indeed, this 
onstru
-

tion will depend entirely on the dynami
al 
hara
teristi
s of the system we want to

impose, whi
h we have so far not even 
onsidered. On
e 
onstru
ted and satisfying
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all requirements dis
ussed above, the relations (A.15) and (A.18) turn into generalized


ovariant S
hr�odinger and Heisenberg equations, respe
tively.

We will now address this problem of 
onstru
ting the generators (M

��

; P

�

), by �rstly


onsidering the most simplest 
ase, namely that of a free one-parti
le state j�

0

i in the

Heisenberg pi
ture, being totally independent of any dynami
al development. If the

parti
le is a s
alar, we 
an identify

P

�

= p

�

; M

��

= L

��

= x

�

p

�

� x

�

p

�

; (A.19)

where x

�

is the usual spa
e-time point, with p

�

= d(mx

�

)=d� as its 
onjugate momen-

tum; d� being the proper time in
rement and m the rest mass of the parti
le. Sin
e

they must satisfy the quantization 
ondition [x

�

; p

�

℄ = ig

��

, it is easily 
on�rmed that

this identi�
ation of the generators lead to the 
orre
t requirements for a relativisti


quantum me
hani
al system as stated above. This is 
ertainly also true, if we in
lude a

spin operatorM

��

= S

��

+L

��

, where S

��

satis�es the Poin
ar�e algebra and for whi
h

a �nite dimensional matrix representation of the Lorentz group exists. Furthermore,

the 10 independent generators P

�

,

~

J =

~

S +

~

L and

~

K must be 
onstants of motion.

Sin
e they are Hermitean operators with real eigenvalues, it is advantageous to 
on-

stru
t representations in whi
h the 
onstants of motion are diagonal. This allows a

labeling of the state ve
tors with quantum numbers. But one 
annot diagonalize all

ten 
onstants of motion simultaneously be
ause they do not 
ommute. One has to

make a 
hoi
e.

Sin
e P

0

and P

k


ommute, we shall use energy and momentum eigenvalues as labels,

and thus sele
t the energy-momentum representation, whi
h in this 
ontext is a more

natural one than the 
oordinate spa
e representation. As momentum and angular

momentum do not 
ommute, it is 
onvenient to introdu
e the Pauli-Lubanski ve
tor,

de�ned as

W

�

= �

1

2

�

����

P

�

M

��

= �

1

2

�

����

P

�

S

��

; (A.20)

where �

����

is the totally antisymmetri
 symbol in four dimensions. W

�

is orthogonal

to the generalized momenta, W

�

P

�

= 0, and obeys the algebra

[P

�

;W

�

℄ = 0

[W

�

;M

��

℄ = i(g

��

W

�

� g

��

W

�

)

[W

�

;W

�

℄ = i�

����

W

�

P

�

: (A.21)

As a further label we 
an use the eigenvalue of one 
omponent of the Pauli-Lubanski

ve
tor, but only one 
omponent, sin
e [W

�

;W

�

℄ 6= 0. The 
omponents of W have a

simple interpretation; the zeroth 
omponent is proportional to heli
ity W

0

=

~

P �

~

S and

the spatial 
omponents are proportional to the intrinsi
 spin

~

W = P

0

�

~

S. This explains

why, even in a relativisti
 theory, it makes sense to talk about a spin 
omponent,

although it is neither 
onserved nor 
ovariantly de�ned. Next we note that

P

�

P

�

= m

2

; W

�

W

�

= �m

2

~

S

2

(A.22)

are invariant (Casimir) operators, 
ommuting with all 10 generators (M

��

; P

�

).
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If we 
hoose a �eld representation where m

2

6= 0, the spatial matrix

~

S

2

is a represen-

tation of the SO(3) rotation group, with eigenvalues s(s + 1), where s is any positive

integer or half-integer in
luding zero. These eigenvalues 
an be used to 
hara
terize a

massive parti
le by two �xed properties, its rest mass m and its spin s. If the mass is

determined as the square root of the eigenvalue of P

2

, then the spin 
an be 
al
ulated

by dividing the eigenvalue of �W

2

by m

2

.

For massless parti
les the situation is 
ompletely di�erent. The property spin for mass-

less parti
les is not what it is for massive ones. This 
an be immediately seen by putting

in the above expressions m

2

= 0, leading to P

2

= 0 and W

2

= 0. Sin
e W and P are

orthogonal P �W = 0, it 
an only mean that they must be proportional W = �P in

all 
omponents. Thus � 
an be 
al
ulated as � = W

0

=P

0

, being proportional to the

heli
ity � = W

0

=j

~

P j. Instead of two invariant numbers (m; s), a massless parti
le is


hara
terized by only one number �. The values whi
h � 
an take, is beyond the s
ope

of this se
tion and will not be dis
ussed here.

Finally, we 
an in
lude observables into our labeling s
heme that are not related to

spa
e-time symmetries, like the 
harge q of a parti
le. Its 
orresponding operator Q


anoni
ally 
ommutes with all generators of the Poin
ar�e group.

Hen
e, the free one-parti
le Heisenberg state 
an be labeled as

j�

0

i = j~p; �;m; s; qi; (A.23)

where the energy eigenvalue p

0

is not in
luded, sin
e it 
an be determined from the

on-shell 
ondition p

�

p

�

= m

2

.

Up to now, we 
onsidered only the simplest 
ovariant realization of the Poin
ar�e alge-

bra, that of a free elementary parti
le, being a state of de�nite mass and spin. Next

one may 
onsider a 
olle
tion of non-intera
ting parti
les of di�erent masses and spins

and 
onstru
t 
ovariant realizations for them. This task is almost trivial as the gener-

ators are simply the sum of the single parti
le generators. Mu
h more diÆ
ult is the


onstru
tion of representations in the 
ase of a �xed number of intera
ting parti
les.

This is a
tually the topi
 of relativisti
 dynami
s proper.

In non-relativisti
 dynami
s only one unique way is allowed: the intera
tion must be

in
luded in the Hamiltonian. The evolution of a non-relativisti
 system is governed

fully by the Hamiltonian. All other generators, in this 
ase of the Galilei group are

independent of the intera
tion, and are said to be kinemati
.

For systems that are governed by Einstein relativity, more possibilities are open as how

to in
lude intera
tions. One expe
ts that 
ertain Poin
ar�e generators will di�er from

their free 
ounterpart by some `potential' term V . But how does one 
onstru
t these

generators in a 
ovariant way? This problem has already been partially pointed out

by Dira
 [1℄, who stated that �nding potentials whi
h are 
onsistent with the 
ommu-

tation relations of the Poin
ar�e algebra "provide the real diÆ
ulty in the problem of


onstru
ting a theory of a relativisti
 dynami
al system" with a �xed number of par-

ti
les. The diÆ
ulty is even in
reased if we require on top of that the 
ovarian
e for

wavefun
tions. The physi
al reason for these problems is that potentials imply an in-

stantaneous intera
tion whi
h is in 
on
i
t with the existen
e of a limiting velo
ity and

retardation e�e
ts. Relativisti
 
ausality is thus violated. Furthermore, a �xed number
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of parti
les is in 
on
i
t with the ne
essity of parti
le 
reation and annihilation and

the appearan
e of antiparti
les. Nevertheless, with 
onsiderable e�ort, it is possible to


onstru
t dynami
al quantum systems with a �xed number of 
onstituents whi
h are


onsistent with the requirements of the Poin
ar�e algebra and relativisti
 
ovarian
e [2℄,

with the reason to improve or to have proper theory-based alternatives for the rather

su

essful phenomelogi
al 
onstituent quark model.

A natural solution to all these problems stated above is the framework of a lo
al 
o-

variant quantum �eld theory, with in�nitely many degrees of freedom. These theories

are usually spe
i�ed by demanding a relativisti
ally invariant Lagrangian.

For the 
onstru
tion of the Poin
ar�e generators we naively 
an let us guide by 
lassi
al

�eld theory using Noethers Theorem. The Poin
ar�e generators, all being 
onstants of

motion, are then expressed in terms of integrals of the energy-momentum tensor. The

transition to quantum �eld theory is then imposed by the 
orre
t 
anoni
al quantization


onditions onto the 
lassi
al �elds whi
h will turn them into operators. Unfortunately

su
h a 
onstru
tion does not allow for a simple veri�
ation of the requirements (A.12).

Furthermore, for an arbitrary Lagrangian one 
annot prove that its manifestly 
ovari-

ant Lagrangian equation of motion for a �eld operator will give identi
al results as the


ovariant Heisenberg equations (A.18). For every new 
ase they have to be veri�ed

from s
rat
h, whi
h 
ertainly is not straightforward. A bad way out is to simply postu-

late that a relativisti
ally invariant Lagrangian ful�lls all requirements of a relativisti


system.

But there are better ways to see this 
orresponden
e manifestly. Probably the easiest

way is provided by S
hwingers variational a
tion prin
iple [24℄. First, it is an a
tion

prin
iple for a quantized �eld. It is thus the quantum-me
hani
al analogue of the 
orre-

sponding 
lassi
al variational prin
iple. Se
ond, it goes beyond this 
lassi
al prin
iple

by in
luding variations at the boundary whi
h 
an be interpreted as the generator of

�eld transformations. By this extension we obtain additional information regarding

the dynami
al 
hara
teristi
s of the �eld, whi
h in the 
lassi
al 
orresponden
e prin-


iple had to be postulated separately. This is a 
onsiderable simpli�
ation, sin
e now

the Lagrangian equations of motion, the form of the rules of quantization, the 
on-

servation laws, the Poin
ar�e algebra with its 
ovariant 
onditions, all that will follow

manifestly from a relativisti
ally invariant Lagrangian. This �nally proves that a 
o-

variant quantum �eld theory o�ers a natural des
ription for relativisti
 systems on a

quantum-me
hani
al s
ale.

For a quantum �eld theory we adopt the Heisenberg pi
ture as the framework of de-

s
ription. By this we mean that we spe
ify a state ve
tor as the simultaneous eigenket

of all 
ommuting observables at some �xed point in spa
e-time, and express all dynam-

i
al developments of the system as the 
hange of observables as we pro
eed in spa
e

and time. The natural Hilbert spa
e of quantized �elds, also 
alled Fo
k spa
e 
onsists

of subspa
es, ea
h having a basis of one-parti
le states j�

0

i = j~p; �;m; s; qi as already

dis
ussed above, where for ea
h subspa
e the eigenvalues of the Casimir operators are

�xed.
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B Light-front QCD

�

The SU(3) gauge invariant Lagrangian density for QCD is

L =

1

2

Tr(F

��

F

��

) +

1

2

�

	(i


�

D

�

�m)	 + h.
.

�

; (B.1)

where the 
olor-ele
tro-magneti
 �elds and the 
ovariant derivative are given as

F

��

= �

�

A

�

� �

�

A

�

+ ig[A

�

; A

�

℄;

D

�





0

= Æ





0

�

�

+ igA

�





0

; with A

�





0

= T

a





0

A

�

a

: (B.2)

T

a





0

are the 8 generators of the SU(3) group. Thus the gluon index a runs from 1 to 8.

The physi
al 3 � 3-matrix representation will let the 
olor index run from 1 to 3. No

distin
tion will be made between lower and upper gluon and 
olor indi
es.

Independent variation of the gluon �elds A

�

will yield the 
olor-Maxwell equations

�

�

F

��

= gJ

�

; with J

�

= 	


�

T

a

	T

a

� i[F

��

; A

�

℄; (B.3)

and the variation with respe
t to the quark �elds give 
orrespondingly the 
olor-Dira


equations

(i


�

D

�

�m)	 = 0: (B.4)

Sin
e the manifestly 
ovariant QCD-Lagrangian shows no expli
it spa
e-time depen-

den
e, the Poin
ar�e generators will be 
onstants of motion. We are only interested in

the 4-momentum operator, whi
h 
an be determined as manifestly gauge invariant [12℄

P

�

=

Z

d

3

x

�

F

0�

a

F

a

��

+

1

4

g

0

�

F

��

a

F

a

��

+

1

2

[i	


0

T

a

D

a

�

	+ h:
:℄

�

: (B.5)

In the transition from instant- to front-form all 4-ve
tors in
luding 


�

are treated in

the same way as the spa
e-time 
oordinates x

�

. A

ording to [12℄ the 
orresponding


ovariant expression in the light-front formalism reads

P

�

=

Z

dx

+

d

2

x

?

�

F

+�

a

F

a

��

+

1

4

g

+

�

F

��

a

F

a

��

+

1

2

[i	


+

T

a

D

a

�

	+ h:
:℄

�

; (B.6)

whi
h still maintains manifest gauge invarian
e.

The Hamiltonian H = P

+

as well as the other 
omponents of the energy-momentum

4-ve
tor are highly non-trivial operators. Nevertheless, its possible to redu
e them into

workable expressions, sin
e they 
ontain time-derivatives and other 
onstraint �eld


omponents whi
h 
an be eliminated by using the above equations of motion. The goal

is to express P

�

in terms of free �elds

e

A

�

and

e

	 and to isolate the dependen
e on the


oupling 
onstant. For this, the natural light-
one gauge A

+

= 0 is 
hosen, in whi
h

the gluons only have the two physi
al transverse degrees of freedom. The result for the

Hamiltonian 
an be written as a sum of �ve terms [12℄

H = T + V +W

1

+W

2

+W

3

: (B.7)

�

This 
omplete se
tion is a 
ompa
t summary from the work of [7℄,[12℄,[25℄.
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Only the �rst term survives the limit g ! 0, and therefore is 
alled the free part of the

Hamiltonian, or its 'kineti
 energy'

T =

1

2

Z

dx

+

d

2

x

?

�

e

	


+

m

2

+ (ir

?

)

2

i�

+

e

	+

e

A

�

a

(ir

?

)

2

e

A

a

�

�

: (B.8)

The vertex intera
tion

V = g

Z

dx

+

d

2

x

?

e

J

�

a

e

A

a

�

; with

e

J

�

a

=

e

	


�

T

a

e

	+ f

ab


�

�

e

A

�

b

e

A




�

; (B.9)

is linear in the 
oupling 
onstant and is the light-
one analogue of the 
onventional

J

�

A

�

-stru
tures in the instant form. Note that the 
urrent

e

J

�

a

has 
ontributions from

both quarks and gluons, with f

ab


being the stru
ture 
onstants of the SU(3) group.

The intera
tion term

W

1

=

g

2

4

Z

dx

+

d

2

x

?

e

B

��

a

e

B

a

��

; with

e

B

��

a

= f

ab


e

A

�

b

e

A

�




; (B.10)

des
ribes the four-point gluon-verti
es whi
h is quadrati
 in g. The remaining are

the `instantaneous intera
tions'. The instantaneous gluon intera
tion arises from the

Coulomb equation �

�

F

�+

a

= gJ

+

a

,

W

2

=

g

2

2

Z

dx

+

d

2

x

?

e

J

+

a

1

(i�

+

)

2

e

J

+

a

; (B.11)

and is the light-
one analogue of the Coulomb energy. The instantaneous fermion

intera
tion originates from the light-
one spe
i�
 de
omposition of Dira
's equation

W

3

=

g

2

2

Z

dx

+

d

2

x

?

e

	


�

T

a

e

A

a

�




+

i�

+

�




�

T

b

e

A

b

�

e

	

�

: (B.12)

It has no analogue in the instant form.

Most remarkable is that the fully relativisti
 Hamiltonian is additive in the `kineti
'

and the `potential' energy, very mu
h like a non-relativisti
 Hamiltonian H = T + U .

The symboli
 notation (i�

+

)

�1

and (i�

+

)

�2

in the above expressions represent Green

fun
tions. Sin
e they depend only on x

�

, they are 
omparatively simple, mu
h simpler

than in the instant form where �

�1

depends on all three spa
e-like 
oordinates. Using

this notation one has to be 
areful, there are many subtleties involved. For example

looking at the Green fun
tion G(x

�

) = (�

+

)

�1

de�ned via

�

+

G(x

�

) = Æ(x

�

); (B.13)

is 
learly only determined up to a homogeneous solution Z satisfying

�

+

Z = 0; (B.14)

that means up to a zero mode Z = Z(x

�

) of the operator �

+

. Thus, in order to

uniquely spe
ify the Green fun
tion (�

+

)

�1

, we have to provide additional information
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in terms of boundary 
onditions. To see the physi
al impa
t of su
h zero modes, we

brie
y go to momentum spa
e where we 
an repla
e �

+

by ip

+

. The equation for the

Green fun
tion (B.13) be
omes ip

+

G(p

+

) = 1, whi
h has the general solution

G(p

+

) = �i=p

+

+ Z(p

+

)Æ(p

+

): (B.15)

Thus the zero modes will only 
ontribute if p

+

= 0, that means if all parti
les in the

system have zero longitudinal momentum. But as we know from (Se
tion 2.2.2) these

are exa
tly the momenta that will give rise to a 
ompli
ated light-
one va
uum. No

other reasons than simpli
ity we will put su
h zero modes equal to zero Z = 0, and

therefore negle
t possible boundary 
onditions. This will lead to a trivial light-
one

QCD-va
uum being identi
al to the free Fo
k-spa
e va
uum.

The next task is to bring the Hamiltonian (B.7) into its natural �eld theory repre-

sentation, the momentum spa
e representation. As usual we do a 
ovariant Fourier

transformation of the free quark and gluon �elds, whi
h in the front form are given as

e

	

�
f

(x) =

X

�

Z

dp

+

d

2

p

?

p

2p

+

(2�)

3

�

b(q)u

�

(p; �)e

�ipx

+ d

y

(q)v

�

(p; �)e

+ipx

�

;

e

A

a

�

(x) =

X

�

Z

dp

+

d

2

p

?

p

2p

+

(2�)

3

�

a(q)�

�

(p; �)e

�ipx

+ a

y

(q)�

�

�

(p; �)e

+ipx

�

: (B.16)

The properties of the Dira
 spinors u

�

, v

�

, and of the polarization ve
tors �

�

are given

in [12℄. The single parti
le states are spe
i�ed by string of quantum numbers q. A quark

is 
hara
terized in general by 6 quantum numbers q = (p

+

; ~p

?

; �; 
; f), the three spatial

momenta, the heli
ity �, the 
olor index 
 and the 
avor index f . The knowledge of

(p

+

; ~p

?

) �xes the energy p

�

= (m

2

+ ~p

2

?

)=p

+

. A gluon is 
hara
terized by 5 quantum

numbers q = (p

+

; ~p

?

; �; a) with a as the glue index. Sin
e they are massless, their

energy is p

�

= ~p

2

?

=p

+

. Furthermore, sin
e a quark is a fermion and the gluon a gauge

boson, their 
reation and destru
tion operators are subje
t to the usual relations

�

a(q); a

y

(q

0

)

�

=

�

b(q); b

y

(q

0

)

	

=

�

d(q); d

y

(q

0

)

	

= (2�)

3

� 2p

+

� Æ(p

+

� p

0+

)Æ

2

(~p

?

� ~p

0

?

)Æ

a

0

a

Æ

�

0

�

Æ




0




Æ

f

0

f

; (B.17)

whi
h 
arry the operator stru
ture and statisti
s of the theory.

When inserting the free �elds (B.16) into the Hamiltonian (B.7) its possible to integrate

over x

�

, produ
ing essentially delta fun
tions in the single parti
le momenta, whi
h

re
e
t momentum 
onservation. To note is that terms 
onsisting only of 
reation or

only of destru
tion operators as for example in

b

y

(q

1

)d

y

(q

2

)a

y

(q

3

)Æ(p

+

1

+ p

+

2

+ p

+

3

); (B.18)

have a vanishing 
ontribution, sin
e the light-
one longitudinal momenta p

+

are all

positive (Se
tion 2.2.2) and 
an not add to zero. As a 
onsequen
e, all energy diagrams

whi
h generate the va
uum 
u
tuations in the usual formulation of quantum �eld theory

are absent in the front form.

63



B. Light-front QCD

The �nal result of this evaluation will give a Hamiltonian whi
h purely a
ts as a Fo
k-

spa
e operator H = T +(V +F +S), expli
itly given in [12℄. The kineti
 energy T is a

sum of 3 diagonal operators. The intera
tion terms are distinguished a

ording to the

number of parti
les 
hanged. The vertex intera
tion V is a sum of four operators, whi
h


onne
ts Fo
k states whose parti
le number di�er by 1. The four-point intera
tions are

separated into fork F and seagull S intera
tions, depending on whether they have

an odd or even number of 
reation operators. The fork intera
tion F is a sum of 6

operators, whi
h 
hange the parti
le number by 2. And the seagull intera
tion S 
an

be written as a sum of 7 operators, whi
h a
t only between Fo
k states with the same

parti
le number. The remaining spa
e-like 
omponents (P

+

;

~

P

?

) of the momentum

operator (B.6) are a

ording to their kinemati
al behaviour diagonal operators in Fo
k-

spa
e.

We now aim at solving the Hamiltonian eigenvalue problem

Hj	i =

M

2

+

~

P

2

?

2P

+

j	i; (B.19)

whi
h is for several reasons, as dis
ussed in (Se
tion 2.2.3) easier to handle than its


ounter part equation in instant-form. If one disregards possible zero modes, the

light-
one QCD-va
uum be
omes trivial whi
h has the 
onsequen
e that the light-front

bound states j	i for various hadrons 
an be expanded in terms of the free Fo
k states.

As usual, the Fo
k basis is 
onstru
ted by applying produ
ts of the free �eld 
reation

operators to the va
uum state j0i:

n = 0 : j0i;

n = 1 : jq�q : p

+

i

; ~p

?i

; �

i

i = b

y

(q

1

)d

y

(q

2

)j0i;

n = 2 : jgg : p

+

i

; ~p

?i

; �

i

i = a

y

(q

1

)a

y

(q

2

)j0i;

n = 3 : jq�qg : p

+

i

; ~p

?i

; �

i

i = b

y

(q

1

)d

y

(q

2

)a

y

(q

3

)j0i;

.

.

. (B.20)

where all dis
rete quantum numbers were suppressed ex
ept the heli
ities. We now

spe
ialize to the hadroni
 state of a meson (Fig5), whi
h in a 
ondensed notation 
an

be des
ribed by the following expansion in Fo
k-spa
e

j	

meson

i =

P

i

 

q�q

(x

i

;

~

k

?i

; �

i

)jq�qi

+

P

i

 

gg

(x

i

;

~

k

?i

; �

i

)jggi

+

P

i

 

q�qg

(x

i

;

~

k

?i

; �

i

)jq�qgi

+

P

i

 

q�qq�q

(x

i

;

~

k

?i

; �

i

)jq�qq�qi

+ � � � (B.21)
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Figure 5: The Hamiltonian matrix for a meson, taken from [12℄. The matrix elements are

represented by energy diagrams. Within ea
h blo
k they are all of the same type: either vertex,

fork or seagull diagrams. Zero matri
es are denoted by a dot (�). The singlet gluon is absent

sin
e it 
annot be 
olor neutral.

The generalized sum in (B.21) also in
ludes the phase-spa
e integrations of the relative

frame independent 
oordinates x

i

and

~

k

?i

respe
ting the 
onstraints

P

i

x

i

= 1 and

P

i

~

k

?i

= 0: (B.22)

The light-
one wavefun
tions  

n

do not depend on the total momentum (P

+

;

~

P

?

)


arried by the meson, sin
e x

i

is the longitudinal momentum fra
tion 
arried by the i-th


onstituent and

~

k

?i

is its relative transverse momentum with respe
t to the 
enter-of-

mass frame; both of these are frame-independent quantities. They are the probability

amplitudes to �nd a Fo
k state of bare parti
les in the physi
al meson. If all wave

fun
tions are available, one 
an analyze any hadroni
 stru
ture in terms of quarks and

gluons [12℄.

In this Fo
k basis the eigenvalue equation (B.19) stands for an in�nite set of 
oupled

integral equations

1

X

m=1

Z

[d�

0

m

℄hn :x

i

;

~

k

?i

; �

i

jHjm :x
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i

;

~

k

0
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; �

0

i

i 

m

(x

0

i

;

~

k

0

?i

; �

0

i

) =

M

2

+

~

P

2

?

2P

+

 

n

(x

i

;

~

k

?i

; �

i

):

65



B. Light-front QCD

Sin
e P

+

and

~

P

?

are diagonal operators in momentum spa
e one 
an equivalently

rewrite this equation as

1

X

m=1

Z

[d�

0

m

℄hn :x

i

;

~

k

?i

; �

i

jP

�

P

+

�

~

P

2

?

jm :x

0

i

;

~

k

0

?i

; �

0

i

i 

m

(x

0

i

;

~

k

0

?i

; �

0

i

) =M

2

 

n

(x

i

;

~

k

?i

; �

i

):

(B.23)

It is therefore possible to de�ne a `light-
one Hamiltonian' as the operator

H

LC

= P

�

P

+

�

~

P

2

?

= P

�

P

�

; (B.24)

so that its eigenvalues 
orrespond to the invariant mass-squared spe
trumM

2

. On the

light-
one its therefore possible to formulate the bound-state problem frame indepen-

dently, in the sense that the operator H

LC

is Lorentz invariant and the wavefun
tions

boost invariant. This re
e
ts the fa
t that the boost operators on the light-
one are

kinemati
al. To simplify things one 
an boost the system to an `intrinsi
 frame' in

whi
h the transversal momentum

~

P

?

vanishes, thus H

LC

= P

�

P

+

. The transforma-

tion to an arbitrary frame with �nite values of

~

P

?

is then trivially performed.

In addressing to solve equation (B.23) by diagonalization one fa
es two major diÆ
ul-

ties as in every �eld theory. First, we are dealing with a many body problem with an

in�nite number of 
onstituents. There is no other 
hoi
e than to 
onstru
t an e�e
tive

equation. The reliability of an e�e
tive intera
tion 
ertainly depends on how strong

the higher Fo
k states 
ontribute. If a 
onstituent pi
ture for the meson were true, the

valen
e state would dominate,

j 

2

j

2

� j 

n

j

2

; n > 2; (B.25)

and, in the extreme 
ase, the meson wave fun
tion would be entirely given by the proje
-

tion hq�qj	

meson

i onto the valen
e state. Se
ond, we are fa
ing all kinds of divergen
ies

whi
h have to be regularized and then renormalized.

B.1 E�e
tive Hamiltonian

The eigenvalue equation (B.19) stands for an in�nite set of 
oupled integral equations

whi
h are extremely diÆ
ult to handle. It is useful to 
onvert it to the mu
h more

transparent 
ase of a �nite set of 
oupled matrix equations, namely by the te
hni
al

tri
k of putting the system L

QCD

into a �nite box of size L and imposing periodi


boundary 
onditions on the ve
tor �elds A

�

and anti-periodi
 boundary 
onditions on

the spinor �elds 	

�

be
ause L

QCD

is bilinear in the latter. The boundary 
onditions are

satis�ed by dis
retizing the momenta in the plane wave expansion of the 
orresponding

free �elds (B.16). This formalism is also known as Dis
retized Light-Cone Quantization

(DLCQ) [12℄,[25℄. Why is this set �nite? The longitudinal light-
one momentum p

+

is a positive number. For periodi
 boundary 
onditions the lowest possible value is

(p

+

)

min

= �=L | zero modes with p

+

= 0 are disregarded here, as already mentioned.

Consequently, any total momentum P

+

= K�=L (K 2 N) 
an be distributed over

at most K bosons, or over K fermion pairs sin
e these are subje
ted to anti-periodi


boundary 
onditions.
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Figure 6: The Hamiltonian matrix for a meson, taken from [25℄. The matrix elements are

represented by the letters S, V, and F, 
orresponding to seagull, vertex, and fork-intera
tions,

respe
tively. For better orientation, the diagonal blo
s are marked by D=T+S and the zero

matri
es by (�).

K N

p

Se
tor n 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 q�q 1 D S V F � F � � � � � � �

2 2 g g 2 S D V � V F � � F � � � �

2 3 q�q g 3 V V D V S V F � � F � � �

2 4 q�q q�q 4 F � V D � S V F � � F � �

3 3 g g g 5 � V S � D V � � V F � � �

3 4 q�q g g 6 F F V S V D V � S V F � �

3 5 q�q q�q g 7 � � F V � V D V � S V F �

3 6 q�q q�q q�q 8 � � � F � � V D � � S V F

4 4 g g g g 9 � F � � V S � � D V � � �

4 5 q�q g g g 10 � � F � F V S � V D V � �

4 6 q�q q�q g g 11 � � � F � F V S � V D V �

4 7 q�q q�q q�q g 12 � � � � � � F V � � V D V

4 8 q�q q�q q�q q�q 13 � � � � � � � F � � � V D

As illustrated in (Fig6) for the Fo
k spa
e of a meson, the harmoni
 resolution K

governs the number of Fo
k spa
e se
tors. The lowest possible value K = 1 allows only

for one Fo
k-spa
e se
tor with a single q�q-pair | a single gluon 
an not be in a 
olor

singlet and thus its ex
luded. For K = 2, the Fo
k spa
e 
ontains two gluons, a q�q-pair

plus a gluon, and two q�q-pairs. For K = 4 the Fo
k spa
e 
ontains at most 8 parti
les.

One 
an label the Fo
k spa
e se
tors a

ording to the quark-gluon 
ontent, or one 
an

enumerate them, whi
h is less transparent but more simple. In (Fig6) the Fo
k-spa
e

se
tors for K � 4 are enumerated n = 1; :::; 13. With in
reasing K more Fo
k-spa
e

se
tors are added. Their total number grows like N(K) = (K + 1)(K + 2)=2� 2.

Introdu
ing a box size L as a �nite and additional length parameter, however, 
an be

at most an intermediate step. Latest at the end of the 
al
ulations, it must be removed

by a limiting pro
edure like L!1, K !1, but K=L �nite, sin
e only the 
ontinuum


an be the full 
ovariant theory. The 
lassi�
ation s
heme of the Fo
k spa
e se
tors as

used in the 
ontinuum appears in the dis
rete formalism in the most natural way. In

this sense we will keep on working in the 
ontinuum by dividing the Fo
k spa
e into

its natural subspa
es

E

i

hnj	

i

i =

1

X

m=1

hnjHjmihmj	

i

i = lim

K!1

N(K)

X

m=1

hnjHjmihmj	

i

i: (B.26)
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In the sense of the DLCQ pres
ription one 
an solve the above eigenvalue equation by

realizing the limit K ! 1 as a pro
ess whi
h solves the eigenvalue equation in ea
h

harmoni
 subspa
e of dimension N(K). One sele
ts a parti
ular value of the harmoni


resolutionK and diagonalizes the 
orresponding �nite dimensional Hamiltonian matrix.

But as one has to in
rease K in order to get 
loser to the original eigenvalue equation,

the dimension of the Hamiltonian matrix grows quadrati
ally with K, with the result

that one has to diagonalize �nite matri
es of in
on
eivable large dimensions. What one

needs is an e�e
tive Hamiltonian whi
h a
ts in smaller matrix spa
es and whi
h has

a well de�ned relation to the full intera
tion. The requirements for su
h an e�e
tive

intera
tion is to preserve all Lagrangian symmetries and not to trun
ate the Fo
k

spa
e. Furthermore, it should make use of the fa
t that due to the nature of the

Hamiltonian, more than half of the matrix elements are zero. Su
h a 
onstru
tion is

given by the method of iterated resolvents [7℄, inspired by the well known Tamm-Dan
o�

[26℄ approa
h in many-body physi
s. For a �xed harmoni
 resolution K the dimension

N(K) of the Hamiltonian matrix is redu
ed step by step until it the dimension 1 is

rea
hed. This e�e
tive Hamiltonian then only a
ts in the lowest se
tor of the theory,

here in the Fo
k spa
e of one quark and one anti-quark. Furthermore, it has the same

eigenvalue spe
trum as the full problem. The whole pro
edure is summarized in a

re
ursion relation, whi
h des
ribes all intermediate steps. Be
ause of this re
ursive


hara
ter any higher se
tor wave fun
tion hnj	i with n � N(K) 
an be systemati
ally

retrieved by matrix multipli
ation from the wave fun
tion h1j	i in the lowest se
tor.

No additional matrix diagonalization or inversions are required.

For gaining more insight into the method of iterated resolvents we want to study it

expli
itly at the example of K = 2. The Hamiltonian matrix is then given by a 4� 4-

matrix a
ting in the following subspa
e

hnjHjmi =

0

B

B

B

B

�

h1jT + Sj1i h1jSj2i h1jV j3i h1jF j4i

h2jSj1i h2jT + Sj2i h2jV j3i 0

h3jV j1i h3jV j2i h3jT + Sj3i h3jV j4i

h4jF j1i 0 h4jV j3i h4jT + Sj4i

1

C

C

C

C

A

: (B.27)

As we know, the instantaneous intera
tions F and S arise as a 
onsequen
e of working

in the light-
one gauge A

+

= 0. They are gauge artefa
ts. We shall now use a tri
k

whi
h will simplify the 
onstru
tion of an e�e
tive Hamiltonian enormously. Pra
ti-

tioners in Light-Cone Time-Ordered Perturbation Theory know that they 
an omit

the instantaneous intera
tions until they a
tually 
ompute a parti
ular diagram. Then,

every intrinsi
 line in a graph must be 
ombined with the instantaneous partner line

asso
iated with the gauge artefa
ts. Only then, the sum of all time ordered diagrams

be
omes manifestly identi
al with the gauge invariant Feynman s
attering amplitudes.

There is no ex
eption known to this rule, thus far, in all graphs 
omputed expli
itly. In

the sequel, this `gauge tri
k' [25℄ will be adopted to method of iterated resolvents, sin
e

as we will see is nothing else than a 
ompa
t notation for resumming all perturbative

diagrams without double 
ounting.
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First, we will violate gauge invarian
e by setting all instantaneous matrix elements to

zero. Then at the end of 
al
ulations we restore gauge invarian
e by the rule: repla
e

every internal line in a graph by the sum of a dynami
 and an instantaneous line. One

then gets a Hamiltonian blo
k matrix of extreme sparseness. For the above 
ase K = 2

we will have the workable matrix of

hnjHjmi =

0

B

B

B

B

�

h1jT j1i 0 h1jV j3i 0

0 h2jT j2i h2jV j3i 0

h3jV j1i h3jV j2i h3jT j3i h3jV j4i

0 0 h4jV j3i h4jT j4i

1

C

C

C

C

A

; (B.28)

whi
h is subje
t to 4-spa
e diagonalization

4

X

m=1

hnjHjmihmj	

i

i = E

i

hnj	

i

i; n = 1; 2; 3; 4: (B.29)

Our aim is �rstly to 
onstru
t an e�e
tive matrix whi
h only a
ts in 3-spa
e. For this

the above eigenvalue equation is equivalently split up into two parts

3

X

m=1

hnjHjmihmj	

i

i+ hnjHj4ih4j	

i

i = E

i

hnj	

i

i; n = 1; 2; 3 (B.30)

3

X

m=1

h4jHjmihmj	

i

i+ h4jHj4ih4j	

i

i = E

i

h4j	

i

i: (B.31)

Rewriting the se
ond equation as

h4jE

i

�Hj4ih4j	

i

i =

3

X

m=1

h4jHjmihmj	

i

i; (B.32)

and observe that the quadrati
 matrix E

i

� H 
ould be inverted to express the 4-

spa
e wavefun
tion h4j	

i

i in terms of the 3-spa
e wavefun
tions hnj	

i

i, with n � 3.

But here is a problem: the eigenvalues E

i

are unknown at this point. One therefore

solves �rst another problem: one introdu
es the starting point energy ! as redundant

parameter at disposal, and de�nes the 4-spa
e resolvent as the inverse of the matrix

element h4j! �Hj4i

G

4

(!) =

1

h4j! �Hj4i

; (B.33)

whi
h in the 
ontinuum limit K !1 turn into well-de�ned propagators. Inserting the

solution h4j	

i

i into (B.30) gives an eigenvalue equation whi
h is 
ompletely de�ned in

3-spa
e

3

X

m=1

hnjH

3

(!)jmihmj	

i

i = E

i

(!)hnj	

i

i; n = 1; 2; 3 (B.34)
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with the following e�e
tive Hamiltonian a
ting only in 3-spa
e

H

3

(!) = H +Hj4iG

4

(!)h4jH (B.35)

In addition to the original Hamiltonian in 3-spa
e, the e�e
tive Hamiltonian a
quires a

pie
e where the system is s
attered virtually into the higher 4-spa
e se
tor, propagating

there via G

4

by impa
t of the true intera
tion, and s
attered ba
k into 3-spa
e. Every

value of ! de�nes a di�erent Hamiltonian and a di�erent spe
trum. Varying ! one

generates a set of energy fun
tions E

i

(!), by solving the eigenvalue equation (B.34).

Whenever one �nds a solution to the �x-point equation

E

i

(!) = !; (B.36)

one has found one of the true eigenvalues and eigenfun
tions of H, by 
onstru
tion. It

should be emphasized that one 
an �nd all eigen-solutions of the full Hamiltonian H.

The e�e
tive 3-spa
e matrix to diagonalize is given as

hnjH

3

(!)jmi =

0

B

B

�

h1jT j1i 0 h1jV j3i

0 h2jT j2i h2jV j3i

h3jV j1i h3jV j2i h3jfT + V j4iG

4

(!)h4jV gj3i

1

C

C

A

; (B.37)

What do we have a
hieved so far? It looks as if one has mapped a more diÆ
ult

problem, the diagonalization of a 4-dimensional matrix onto a more simpler problem,

the diagonalization of a 3-dimensional matrix. But this is 
ertainly only true in a

restri
ted sense. Sin
e one has to vary ! one has to diagonalize several 3-dimensional

matri
es and not only one. The numeri
al work is thus rather larger than smaller as


ompared to a dire
t diagonalization in 4-spa
e. The advantage of working with an

e�e
tive intera
tion is of analyti
al nature, as we will see if we keep on redu
ing the

dimensions up to an e�e
tive matrix a
ting solely in 1-spa
e.

It is easy to see that the e�e
tive Hamiltonians a
ting in di�erent spa
es are generated

by the re
ursion relation

H

n�1

(!) = H

n

(!) +H

n

(!)jniG

n

(!)hnjH

n

(!); n � 4; (B.38)

where H

4

(!) is de�ned to be the original Hamiltonian H. The wavefun
tions in ea
h

se
tor 
an be 
al
ulated as

hnj	

i

(!)i =

n�1

X

m=1

G

n

(!)hnjH

n

(!)jmihmj	

i

(!)i; n � 4: (B.39)

The e�e
tive Hamiltonian a
ting in the lowest se
tor 
an thus be 
al
ulated as

H

1

= T + V G

3

V + V G

3

V G

2

V G

3

V; (B.40)

where we have dropped the Dira
-bra
ket-notation between and the !-notation in the

propagators for more transparen
y.
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Figure 7: The dressed propagators [27℄

The eigenvalues of the original Hamiltonian H are now determined by 
omputing the

matrix element h1jH

1

(!)j1i = E

i

(!) for di�erent ! in order to �nd a solution of the

�x-point equation E

i

(!) = !. The wave fun
tions in all se
tors 
an be systemati
ally

retrieved from the lowest one h1j	

i

i expli
itly given as

h2j	

i

i = h2jV G

3

V j1ih1j	

i

i;

h3j	

i

i = h3jG

3

V +G

3

V G

2

V G

3

V j1ih1j	

i

i;

h4j	

i

i = h4jG

4

V G

3

V +G

4

V G

3

V G

2

V G

3

V j1ih1j	

i

i: (B.41)

All the above 
al
ulations refer to the 
ase of K = 2. To get the e�e
tive Hamiltonians

for harmoni
 resolutions K = 3; 4; ::: is not repeated here expli
itly. Important is

the general feature that the e�e
tive se
tor Hamiltonians are separable in the kineti


energies T and the e�e
tive intera
tions U(!)

H

n

(!) = T + U(!): (B.42)

Important is also that the e�e
tive Hamiltonians in the lower se
tors be
ome indepen-

dent of K | the Hamiltonian H

1

as given in (B.40) stays 
ompletely un
hanged [7℄.

The transition to the 
ontinuum K !1 is then rather trivial for the lower se
tors and

will hen
e forward be assumed.

The most important result of this se
tion is that QCD has only two stru
turally di�er-

ent 
ontributions to the e�e
tive intera
tion in the lowest q�q-spa
e. The �rst term in

(B.40) is the e�e
tive one-gluon ex
hange

U

1

= V G

3

V; (B.43)

whi
h 
onserves the 
avor along the quark line and des
ribes all �ne and hyper�ne

intera
tions. As illustrated in the �rst line of (Fig7) the vertex intera
tion V 
reates

a gluon and s
atters the system virtually into the q�qg-spa
e. As indi
ated by the box

G

3

, the three parti
les propagate there under the impa
t of the full Hamiltonian before
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the gluon is absorbed. The gluon 
an be absorbed either by the antiquark or by the

quark. If it is absorbed by the quark, it 
ontributes to the e�e
tive quark mass m. The

se
ond term in (B.40), the e�e
tive two-gluon-annihilation intera
tion

U

2

= V G

3

V G

2

V G

3

V; (B.44)

shown in the se
ond line of (Fig7), 
an generate an intera
tion between di�erent quark


avors.

This 
ompletes the derivation for an e�e
tive Hamiltonian a
ting in the lowest Fo
k

spa
e se
tor q�q. Its e�e
tive one-body eigenvalue equation

H

e�

LC

j	

i

i =M

2

i

j	

i

i; with H

e�

LC

= 2P

+

H

1

; (B.45)

be
omes an integral equation, but a very simple one in only three 
ontinuous variables

(x;

~

k

?

). The stru
ture is rather transparent

M

2

i

hx;

~

k

?

; �

q

; �

�q

j	

i

i =

"

m

2

q

+

~

k

2

?

x

+

m

2

�q

+

~

k

2

?

1� x

#

hx;

~

k

?

; �

q

; �

�q

j	

i

i

+

X

�

0

q

;�

0

�q

Z

dx

0

d

2

k

0

?

hx;

~

k

?

; �

q

; �

�q

jV G

3

V

+V G

3

V G

2

V G

3

V jx

0

;

~

k

0

?

; �

0

q

; �

0

�q

ihx

0

;

~

k

0

?

; �

0

q

; �

0

�q

j	

i

i: (B.46)

The eigenvalues refer to the invariant mass M

i

of a physi
al state. The wavefun
tion

hx;

~

k

?

; �

q

; �

�q

j	

i

i gives the probability amplitude for �nding in the q�q-state a 
avored

quark with momentum fra
tion x, intrinsi
 transverse momentum

~

k

?

and heli
ity �

q

,

and 
orrespondingly an anti-quark with 1 � x, �

~

k

?

and �

�q

. Both the mass and the

wavefun
tions are boost-invariant.

For solving the above eigenvalue equation one has to know the propagators G

3

and

G

2

. For that one needs the relevant matrix elements h3jH

3

j3i and h2jH

2

j2i whi
h are

expli
itly [7℄ given as

h2jH

2

j2i = h2jT + V G

3

V + V G

5

V j2i

h3jH

3

j3i = h3jT + V G

4

V + V G

6

V + V G

6

V G

5

V G

6

V j3i; (B.47)

whi
h again requires the knowledge of G

4

, G

5

and G

6

, and so on. Having su
h dressed

propagators is 
ertainly the 
onsequen
e of the iterated resolvents method used, whi
h

resums perturbative diagrams to all orders without double 
ounting. In order to make

expli
it 
al
ulations one 
ertainly has to break the propagator hierar
hy somewhere.

But before thinking of any approximation in the dressed propagators we �rst want to

look at the propagator G

3

more 
losely, whi
h in a 
ertain sense turns out to be spe
ial.

As already mentioned above, the relevant matrix element to be 
al
ulated is h3jH

3

j3i.

Its 
orresponding diagrams 
an be grouped into two topologi
ally di�erent 
lasses.

Some of them are displayed in (Fig8). In (Fig8a) the gluon does not 
hange quantum
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Figure 8: Taken from [25℄

(a) Three possible graphs of the spe
tator

intera
tion in the q�qg-spa
e. Note the role

of the gluon as a spe
tator

(b) Some six graphs of the parti
ipant in-

tera
tion in the q�qg-spa
e.

numbers under the impa
t of the intera
tion and a
ts as a spe
tator. Therefore, these

graphs will be referred to as the `spe
tator intera
tion' U

3

. In the graphs of (Fig8b)

the gluons are s
attered by the intera
tion, and 
orrespondingly these graphs will be

referred to as the `parti
ipant intera
tion'

e

U

3

. We thus have a unique separation into

spe
tators and parti
ipants in the quark-pair-gluon se
tor

H

3

= T + U

3

= T + U

3

+

e

U

3

; (B.48)

with

U

3

= V G

6

V + V G

6

V G

5

V G

6

V; and

e

U

3

= V G

4

V + V G

6

V: (B.49)

Sin
e the Hamiltonian is additive in spe
tator and parti
ipant intera
tions, the dressed

3-spa
e propagator 
an be written as

G

3

=

1

! �H

3

=

1

! � T � U

3

�

e

U

3

=

1

(! � T � U

3

) �

 

1�

e

U

3

! � T � U

3

!

� G

3

�

1

1�

e

U

3

�G

3

= G

3

+G

3

e

U

3

G

3

+G

3

e

U

3

G

3

e

U

3

G

3

+ � � � (B.50)

The above series looks like as if one would do plain perturbation theory in the 
oupling


onstant. This is only partially true, sin
e G

3

is not a free propagator but whi
h


ontains an intera
tion in the well de�ned form of U

3

. The e�e
tive se
tor Hamiltonian

H

3

= T + U

3

des
ribes a bound state of one q�q-pair whi
h is a

ompanied by one

free gluon. One therefore deals here with a perturbation theory in medium [7℄. The

advantage of formulating su
h a series, it that the system is not s
attered into other
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Figure 9: The free propagators with e�e
tive verti
es [27℄

se
tors, it stays in se
tor 3. The above series 
an be identi
ally rearranged to

G

3

=

h

1 +

1

2

G

3

e

U

3

+

3

8

G

3

e

U

3

G

3

e

U

3

+ � � �

i

G

3

h

1 +

1

2

e

U

3

G

3

+

3

8

e

U

3

G

3

e

U

3

G

3

+ � � �

i

� R

3

G

3

R

y

3

; (B.51)

whi
h 
an be veri�ed order by order. The operator R

3


an now be sandwi
hed between

the quark-pair-gluon propagator G

3

and two vertex intera
tions V , for whi
h reason it

is 
onvenient to introdu
e V as an abbreviation, de�ned by

V G

3

V = V G

3

V

y

= V R

3

G

3

R

y

3

V

y

= V G

3

V

y

= V G

3

V : (B.52)

One 
an show that R

3

is essentially diagonal and independent of the spin [7℄, su
h

that ea
h vertex element is multiplied with a number, a
tually with a number whi
h

depends on the momentum transfer Q a
ross the vertex. Thus a very natural and

physi
al interpretation is given to the operator R

3

, as being the vertex fun
tion. The

transition V ! V is realized by de�ning an e�e
tive 
oupling 
onstant g

g �! g(Q) = gR

3

(Q): (B.53)

The e�e
tive one-body eigenvalue equation 
an now be written as

M

2

i

hx;

~

k

?

; �

q

; �

�q

j	

i

i =

"

m

2

q

+

~
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2

?

x

+

m

2
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+

~

k

2
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1� x

#

hx;

~

k
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; �

q

; �

�q

j	

i

i

+

X

�

0

q

;�

0

�q

Z

dx

0

d
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k

0

?

hx;

~

k

?

; �

q

; �

�q

jV G

3

V

+V G

3

V G

2

V G

3

V jx

0

;

~

k

0

?

; �

0

q

; �

0

�q

ihx

0

;

~

k

0

?

; �

0

q

; �

0

�q

j	

i

i: (B.54)

Up to now all results are exa
t. We have seen how the method of iterated resolvents

o�ers a 
ompa
t notation of systemati
ally resuming all perturbative diagrams with-

out double 
ounting. But when 
oming down to pra
ti
al 
al
ulations one has to make
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Figure 10: Taken from [25℄. The verti
al lines denote the free propagators. The 
oupling

fun
tion at the verti
es is symbolized by graphs as they would appear in a perturbative analysis.

approximations by breaking the propagator hierar
hy. The reason for have written

the e�e
tive equation (B.46) as (B.54) is that latter o�ers a better platform for do-

ing approximations in propagators. Compared to the full dressed propagator G

3

, the

propagator G

3

is only partially dressed with the rest of its impa
t being shifted to

the verti
es. Thus approximating G

3

by a free propagator in the q�qg-spa
e would be


ertainly less 
rude than it would be for G

3

. Unfortunately we do not have a similar


onstru
tion for the full dressed propagator G

2

. To be 
onsistent we are for
ed to

approximate it by a free propagator in gg-spa
e. As a net result, all what now has to

be done is to update (Fig7) by repla
ing the dressed propagator G

2

and the partially

dressed propagator G

3

by free propagators and ea
h point-like vertex by an e�e
tive

vertex, indi
ated by little round 
ir
les as in (Fig9) or (Fig10).
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B.2 Regularization

Before pro
eeding to solve the eigenvalue equation (B.54) the regularization of the

theory need to be spe
i�ed. As in every quantum �eld theory we are 
onfronted with

all kind of divergen
ies. In general the 
al
ulation of light-
one vertex matrix elements

is seriously 
ompli
ated by ultraviolet singularities o

uring at very large values of the

transverse momenta, and infrared singularities 
aused by longitudinal momenta 
lose

zero. If at ea
h vertex a parti
le with four-momentum p

�

= (p

+

; ~p

?

; p

�

) is s
attered

into the momenta p

0�

= (zp

+

; z~p

?

+

~

l

?

; p

0�

) and q

�

= ((1 � z)p

+

; (1 � z)~p

?

�

~

l

?

; q

�

)

of a se
ond parti
le, the 
orresponding vertex matrix elements [12℄ are proportional

to

~

l

2

?

=z. They tend to diverge for l

?

! 1 and/or z ! 0. Those diÆ
ulties demand

the introdu
tion of unphysi
al 
ut-o� s
ales to regulate the theory, whi
h in turn have

to be removed by a renormalization s
heme. Experien
e has shown [7℄ that a reliable

method for treating the ultraviolet divergen
ies is to use the lo
al vertex regularization

s
heme. Ea
h matrix element is multiplied with a 
onvergen
e enfor
ing form fa
tor

hpjV jp

0

; qi ! hpjV jp

0

; qiR(�; p; p

0

; q): (B.55)

There are three ways how to perform the regularization

R(�; p; p

0

; q) =

8

>

<

>

:

R

Q

(�; p; p

0

);

R

M

0

(�; p

0

; q);

R

Q

(�; p; p

0

)R

M

0

(�; p

0

; q);

(B.56)

either by regulating the Feynman four-momentum transfer Q

2

= �(p� p

0

)

2

a
ross the

vertex, or by regulating the free invariant mass M

2

0

= (p

0

+ q)

2

after ea
h vertex inter-

a
tion, or if ne
essary both of them 
an be used. The regularization will be 
ontrolled

by some s
ale parameter �. Sin
e theory does not give us any hint on how to 
hoose

the regulating fun
tion R there will be an in�nite number of su
h 
hoi
es. The only

requirement is that they have to drop at least quadrati
ally for large values of Q orM

0

,

while for small values the regulating fun
tion should tend to R! 1, leaving the theory

in this region un
hanged. If not mentioned otherwise, we will fo
us on the following

two stru
turally totally di�erent fun
tions

R(�) =

8

<

:

sharp 
ut-o�: �(Q

2

� �

2

); or �(M

2

0

� �

2

);

soft 
ut-o�:

�

2

�

2

+Q

2

; or

�

2

�

2

+M

2

0

:

(B.57)

On the other hand the infrared singularities are taken 
are of by endorsing the gluon

with a small regulator mass m

g

. Both s
ale parameters � and m

g

regulate then all

divergen
ies on the light-
one.

Now everything is settled for 
al
ulating the relevant vertex matrix elements in equation

(B.54). But before starting the 
al
ulations one �rst has to restore gauge invarian
e

by resubstituting the instantaneous intera
tions W , whi
h were omitted so far. As

mentioned in the previous se
tion one now makes use of the `gauge-tri
k', where every
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internal line has to be repla
ed by a dynami
al and an instantaneous line. Having all

this in mind and fo
using only on the 
avor 
onserving part of the intera
tion, the

e�e
tive one-body equation takes on the form [12℄, [7℄
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)℄; (B.58)

where it is 
onvenient to see Q

2

as the mean Feynman 4-momentum transfer along the

quark and the anti-quark line respe
tively

Q

2

(x;
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;x

0

;
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k

0
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) = �
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)
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�

: (B.59)

The e�e
tive masses and the e�e
tive 
oupling 
onstant � = g

2

=4� have been 
al
ulated

via the sharp 
ut-o� �(M

2

0

� �

2

):

� m

2

f

(�) = m

2

f

 

1 +
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; (B.60)

� �(Q;�) =

12�

1=�� (33� 2N
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;

with b(Q) = 33 ln
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(�) = m
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�
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f

X

f=1
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2

f

ln

�

2

4m

2

f

: (B.62)

As mentioned, a kinemati
al gluon mass m

g

is introdu
ed to 
ontrol the infrared sin-

gularities. This is not in 
on
i
t with gauge theory: only the physi
al gluon mass must

vanish due to gauge invarian
e. Thus m

g

= 0, whi
h will express m

g

in terms of the

quark masses m

f

. The arbitrary but �xed mass s
ale � 
an be identi�ed as the so


alled QCD-s
ale �

QCD

whi
h has to be determined by experiment.

All arguments and expli
it 
al
ulations to get the above results are listed in detail in

[28℄ and [7℄ and will be not repeated here.
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C Spinor Matrix

The Lorentz invariant spinor fa
tor

S =

�

u(k

1

; �
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(C.1)

is 
al
ulated expli
itly [29℄. In heli
ity spa
e it 
an be understood as a 4 � 4 matrix
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It is often useful to arrange S or T as a matrix in heli
ity spa
e,
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With y � 1� x the diagonal elements are

T

11

=

m

2

1

xx

0

+

m

2

2

yy

0

+

~

k

2

?

xy

+

~

k

0

2

?

x

0

y

0

+

~

k

?

�

~

k

0

?

+ i

~

k

?

^

~

k

0

?

xx

0

+

~

k

?

�

~

k

0

?

� i

~

k

?

^

~

k

0

?

yy

0

;

T

22

= T

11

;

T

33

=

m

2

1

xx

0

+

m

2

2

yy

0

+

~

k

?

�

~

k

0

?

+ i

~

k

?

^

~

k

0

?

xyx

0

y

0

;

T

44

= T

33

; (C.4)

where
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where k

?

(") = �k

?x

� ik

?y

and k

?

(#) = k

?x

� ik

?y

.
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D Potential S
attering

The theory of stationary s
attering in 
oordinate spa
e, espe
ially for potentials of �-

nite range as well as for Coulomb potentials has been well studied and 
an be found in

nearly any standard text book about quantum me
hani
s [31℄,[32℄,[33℄.

This is 
ertainly not the 
ase in momentum spa
e. It is often advantageous to solve the

s
attering problem also in momentum spa
e, be
ause from a �eld-theoreti
al point of

view momentum spa
e represents a more natural des
ription of physi
s. Unfortunately

the momentum spa
e representation su�ers more on fundamental problems than its


ounter part representation. Espe
ially the s
attering problem for Coulomb-like poten-

tials is far from being well understood | the s
attering boundary 
onditions, namely

to have an in
oming and an outgoing s
attered wave, are in momentum spa
e far more

diÆ
ult to implement than in 
oordinate spa
e. But exa
tly these are ne
essary to

formulate well de�ned quantities within Coulomb s
attering. Up to now the general

problem of repulsive Coulomb-like potentials 
an be regarded as solved [10℄. But the

s
attering on attra
tive Coulomb-like potentials still seems to be terra in
ognita. The

main problem, 
ompared to its repulsive 
ounter part lies in the fa
t that every attra
-

tive Coulomb-like potential has besides the s
attering region also a bound-state region

with an in�nite range, whi
h makes it nearly impossible to work with it numeri
ally

in momentum spa
e. In our 
ase of the ST-model we are 
onfronted with this prob-

lem of having an attra
tive Coulomb-like potential in momentum spa
e. At the very

end of this se
tion, a partial solution to this problem is proposed. Furthermore, our

ST-potential will give rise to so 
alled resonan
es. The word resonan
e is given many

meanings in the literature, whi
h leads to mu
h 
onfusion. I shall try to avoid this


onfusion by being as spe
i�
 and illustrative as possible, and show how a resonan
e

state 
an be 
ompletely des
ribed in the stationary pi
ture, by approa
hing it from

three di�erent perspe
tives.

To atta
k all this, it is useful to give a brief but 
omplete overview on stationary

s
attering in order to have a unique notation and to 
larify still existing problems. Fur-

thermore, it is helpful not to use a spe
i�
 representation of the stationary S
hr�odinger

equation, but rather look for a formal solution in the s
attering region, whi
h will lead

us to the Lippmann-S
hwinger equation.

This whole se
tion will only deal with elasti
 non-relativisti
 one-parti
le s
attering.

S
attering of a physi
al parti
le is a dynami
al pro
ess, and is treated 
orre
tly when

solving the time-dependent S
hr�odinger equation using lo
alized wave pa
kets as an

initial 
ondition. A s
attering experiment 
onsists of an in
ident and a s
attered beam,

whi
h are well separated in time. The a

essible quantity for the experiment is the


on
ept of the 
ross-se
tion, whi
h in di�erential form is de�ned as

d� =

number of events in d
 per time unit

in
ident parti
le 
ux

=

~

j

s

� d

~

F

j

~

j

0

j

; (D.1)

where we assumed that the dete
tor, lo
ated in the asymptoti
 s
attering region, opens

a 
one of a solid angle d
 from the origin of the target. The quantity

~

j

s

� d

~

F is then
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the measured 
ux of the s
attered parti
les within the area d

~

F = r

2

d
 � ê

r


overed by

the dete
tor. Clearly, d� has the dimension of an area.

The big disadvantage of the time-dependent pi
ture using wave pa
kets is its mathe-

mati
al ina

essibility. But sin
e our main interest in s
attering pro
esses lies in the

determination of (D.1), it is not ne
essary to work all the way in the time-dependent

pi
ture. Probability 
urrent densities as

~

j

s

and

~

j

0

are also well de�ned expressions in

the time-independent pi
ture. Although this stationary pi
ture o�ers a mathemati
ally

mu
h easier approa
h for 
al
ulating the 
ross-se
tion (D.1), general 
al
ulations and

physi
al interpretations have to be done with great 
are. As we know, fun
tions in the

stationary pi
ture are energy eigenstates, and a

ording to the un
ertainty prin
iple

the in
ident and the s
attered state are totally unlo
alized and begin to 
oin
ide in

time. Furthermore, sin
e we are fo
using only on elasti
 s
attering, the in
ident and

the s
attered state must have the same energy, thus they are both solutions of the same

stationary S
hr�odinger equation. For this, its of utmost importan
e in this pi
ture, to

always have a stri
t separation of what is the in
ident and what is the s
attered part

of the stationary wave, in order to avoid unphysi
al interferen
es.

D.1 Potentials of �nite range

This 
ase will restri
t potentials to have a limited range, or more pre
isely, the potentials

have to fall o� faster than a Coulomb potential does. Coulomb s
attering is thus

ex
luded in this se
tion and has to be treated separately.

D.1.1 Formal stationary s
attering solution

Our problem 
onsists in �nding the s
attering solution of

Hj	i = Ej	i; (D.2)

where the Hamiltonian is given by

H = H

0

+H

1

: (D.3)

H

0

should represent that part of H, for whi
h the eigenvalue problem is solved

H

0

j'i = E

0

j'i; (D.4)

and we 
all the auxiliary system with energy eigenvalues E

0i

and its 
orresponding

orthonormal state ve
tors j '

i

i the referen
e system| the index i represents a 
olle
tion

of all relevant quantum numbers 
hara
terizing this energy state.

We now must make 
ertain assumptions as to the stru
ture of the H- and H

0

-spe
trum:

� We allow that H

0


an have, besides the 
ontinuum part of its spe
trum, a dis
rete

bound state part. The property that the eigenstates of H

0

form a 
omplete set

has the general form

1 =

X

i

j'

i

ih'

i

j+

Z

dj j'

j

ih'

j

j: (D.5)

82



D. Potential S
attering

� As is always possible, we shall adjust the energy s
ale in H

0

in su
h a way that

the 
ontinuum starts at E

0

= 0 and all states in the 
ontinuous spe
trum have

E

0

� 0. On the other hand if dis
rete bound states exists, they are supposed to

lie lower than any state in the 
ontinuum.

� Furthermore we make the nontrivial assumption, namely, that the energies of the


ontinuum states of H

0

are not 
hanged by swit
hing on H

1

. In other words, we

assume that the 
ontinuum of both H

0

and H starts at E = E

0

= 0 and that to

ea
h state j'i in the 
ontinuous part of the H

0

spe
trum, whi
h has an energy

E

0

, there belongs a 
orresponding state j	i in the 
ontinuum of the H-spe
trum,

whi
h has the same energy E = E

0

.

Thus, so long as we 
onsider only states in the 
ontinuum one 
an write (D.4) as

(E �H

0

)j'i = 0; (D.6)

and see it as a homogeneous solution of the 
omplete equation (D.2)

(E �H

0

)j	i = H

1

j	i: (D.7)

Solving for j	i will give the formal self-
onsistent solution

j	

�

i = j'i+G

�

0

�H

1

� j	

�

i; (D.8)

where G

�

0

stands for the Greens-fun
tion of the referen
e operator H

0

G

�

0

=

1

E �H

0

� i � �

; (D.9)

whi
h a

ording to (D.5) has the bilinear expansion

G

�

0

=

X

n

j'

n

ih'

n

j

E �E

n

+

Z

1

0

dE

0

j'

E

0

ih'

E

0

j

E �E

0

� i � �

: (D.10)

Equation (D.8) is a mathemati
ally well de�ned equation for j	

�

i as long H

0

as well as

H

1

only 
ontain short-ranged potentials. It is 
alled the Lippmann-S
hwinger equation

and is a 
omplementary des
ription of the S
hr�odinger equation in the s
attering re-

gion. As one 
an regard the S
hr�odinger equation as a lo
al des
ription of the system,

the Lippmann-S
hwinger equation serves more as a global des
ription, sin
e the need

for implementing boundary 
onditions appears automati
ally.

The solution j	

+

i is properly 
alled an outgoing eigenstate of the full Hamiltonian,

while the other linear independent solution j	

�

i has the meaning of an in
oming eigen-

state ofH. Both the out-states and the in-states have a physi
al 
ontent | both 
ontain

in
oming and outgoing wave 
omponents, whi
h have to be mat
hed to given boundary


onditions.
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The ultimate goal of s
attering theory is the 
onne
tion to experiment. A 
entral


on
ept is the s
attering or S-matrix, whi
h is de�ned as

j	

+

i = Sj	

�

i: (D.11)

Normalization or probability 
onservation immediately yields the unitarity 
ondition

for the s
attering matrix

S

y

S = 1: (D.12)

Other postulates on S involve invarian
e properties and analyti
ity requirements, but

I will not dis
uss it here in further detail.

A

ording to our previous made assumptions, the in- and out-states 
an be expanded

in terms of eigenfun
tions of the referen
e operator H

0

j	

�

i =

X

�




�

j'

�

i ; j	

+

i =

X

f




f

j'

f

i: (D.13)

The sum has to be seen as a generalized sum, whi
h turns into an integral if the quantum

numbers lie in a 
ontinuum. Substituting the expansion into the de�nition (D.11) and

inserting on the right-hand side the 
ompleteness relation

P

f

j'

f

ih'

f

j = 1, yields




f

=

X

�




�

S

f�

; where S

f�

= h'

f

jSj'

�

i: (D.14)

Sin
e our potential in H

1

is of �nite range, it is possible to prepare the in-state into a

de�nite state of the referen
e system j	

�

i

i = j'

i

i, that means if 


�

= Æ

�i

then 


f

= S

fi

and the general out-state j	

+

i turns into a prepared out-state with quantum numbers i

j	

+

i

i =

X

f

S

fi

j'

f

i: (D.15)

The 
oeÆ
ient 


f

of the expansion (D.13) des
ribes the probability of �nding the system

in that state having the quantum numbers f . Thus the s
attering matrix 


f

= S

fi

is

the probability amplitude for a pro
ess in whi
h the system makes a transition from an

initial state j'

i

i to a �nal state j'

f

i under the in
uen
e of an intera
tion. As follows

from the unitary 
ondition (D.12) for the s
attering matrix,

X

f

jS

fi

j

2

= 1; (D.16)

the sum of all probabilities is equal to one. This makes the s
attering matrix a

essible

for experiments. However, the squared magnitude of the amplitude S

fi

is not a mean-

ingful quantity in the fun
tional sense. Sin
e stri
t energy 
onservation is 
ertainly

guaranteed between initial and �nal states, we have to split o� an energy-
onservation

fa
tor, whi
h is a delta fun
tion. For this we want to rewrite the s
attering matrix by

de�ning a new operator, the transition or T -matrix.
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To get there, we �rst look at the adjun
ated form of the de�nition (D.11)

h	

+

j = h	

�

jS

y

() h	

�

j = h	

+

jS: (D.17)

For the bra-kets an analog expansion (D.13) 
an be done, whi
h results in

h	

�

f

j =

X

i

S

fi

h'

i

j; (D.18)

where we prepared the out-state to a spe
i�
 state of the referen
e system h	

+

f

j = h'

f

j.

The amplitude of su
h a prepared in-state with quantum numbers f with the previously

prepared out-state with quantum numbers i, will give

h	

�

f

j	

+

i

i =

X

n;m

S

fn

S

mi

h'

n

j'

m

i = S

fi

: (D.19)

Thus the elements of the S-matrix between initial and �nal states of the referen
e

system 
an also be expressed simply as the amplitude of the 
orrespondingly spe
i�ed

in- and out-states, whi
h are solutions of the Lippmann-S
hwinger equation (D.8).

We now return to these solutions by doing one 
omplete iteration

j	

�

i = j'i+G

�

0

H

1

j'i+G

�

0

H

1

G

�

0

H

1

j	

�

i: (D.20)

Multiplying with the inverse of G

�

0

(E �H

0

� i�)j	

�

i = (E �H

0

� i�)j'i+H

1

j'i+H

1

G

�

0

H

1

j	

�

i

= �i�j'i+H

1

j	

�

i; (D.21)

the Lippmann-S
hwinger solutions 
an be written in an alternative way as

j	

�

i =

�i�

E �H

0

�H

1

� i�

j'i

� j'i+G

�

H

1

j'i; (D.22)

where G

�

stands for the Greens-fun
tion of the full Hamiltonian H. This new form

helps us to write the s
attering matrix (D.19) as

h	

�

f

j	

+

i

i = h'

f

j	

+

i

i+ h'

f

jH

1

G

+

f

	

+

i

i

= h'

f

j	

+

i

i+ h'

f

jH

1

	

+

i

i

1

E

f

�E

i

+ i�

= Æ

fi

+

�

1

E

f

�E

i

+ i�

�

1

E

f

�E

i

� i�

�

h'

f

jH

1

	

+

i

i

= Æ

fi

+

�2i�

�

2

+ (E

f

�E

i

)

2

h'

f

jH

1

	

+

i

i

=

�!0

Æ

fi

� 2�i � Æ(E

f

�E

i

)h'

f

jH

1

	

+

i

i: (D.23)

85



D. Potential S
attering

By de�ning the new transition or T -matrix as

H

1

j	

+

i

i = T j'

i

i; (D.24)

the s
attering matrix takes the form

S

fi

= Æ

fi

� 2�i � Æ(E

f

�E

i

)T

fi

; (D.25)

where S

fi

= h'

f

jSj'

i

i and T

fi

= h'

f

jT j'

i

i. It should be 
learly visualized that there

is a signi�
ant di�eren
e between the roles of Æ

fi

and Æ(E

f

�E

i

) | the symbol E

f

for

example represents the 
ontinuum s
attering energy E whi
h is 
hara
terized through

the quantum numbers f .

With the above identity, the determination of the S-matrix is now redu
ed to the

problem of 
al
ulating the T -matrix. By de�ning a more general transition operator

T

�

j'i = H

1

j	

�

i; (D.26)

it is possible to write the Lippmann-S
hwinger equation as a pure operator equation

T

�

= H

1

+H

1

�G

�

0

� T

�

: (D.27)

A 
hallenging task is not to �nd approximate solutions through iteration but to 
al
ulate

the full solution

T

�

= (1�H

1

�G

�

0

)

�1

�H

1

: (D.28)

In the 
ase where G

�

0

is the free-parti
le Greens-fun
tion this 
an easily be a
hieved

numeri
ally, as in (Appendix E).

Although the S-matrix is related to the T -matrix by means of the identity (D.25),

s
attering theory 
an be viewed from two di�erent perspe
tives when working either

with the T -operator or the S-operator. As the de�nition (D.26) reveals, the transition

matrix is a 
onne
tion between the full system and the referen
e system | in other

words in (D.24) it 
onne
ts an in
ident state with the 
orrespondingly prepared out-

state. In 
ontrary to that, the s
attering matrix (D.11) 
loses the system on itself: an

in
oming state is s
attered to an outgoing state | it serves as a relation between the

initial and �nal eigenstates of the full system.

If H

0

is 
hosen to be the free-parti
le Hamiltonian and H

1

to be a rotational invariant

potential, the S- and T -matrix 
an be easily simpli�ed into workable expressions, still

without being restri
ted to any spe
i�
 representation. The set of eigenve
tors of H

0

are plane waves, or more pre
isely, they are momentum eigenstates 
hara
terized by

the quantum number

~

k. In this 
ase the S-matrix (D.25) is given as

S

~

k

0

~

k

= h

~

k

0

jSj

~

ki = Æ(

~

k

0

�

~

k)� 2�i � Æ(E

k

0

�E

k

)T

~

k

0

~

k

= Æ(

~

k

0

�

~

k)� 2�i �

m

k

� Æ(k

0

� k)T

~

k

0

~

k

: (D.29)
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Sin
e the total intera
tion is rotation invariant, the s
attering matrix will be the same

before and after a rotation U

R

hU

R

~

k

0

jSjU

R

~

ki = h

~

k

0

jSj

~

ki: (D.30)

Hen
e, the s
attering matrix 
annot depend on the absolute orientation of the ve
tors

~

k and

~

k

0

. It 
an be only a fun
tion of the energy and the angle between the initial and

�nal momenta. Thus the s
attering matrix 
an be expanded into Legendre polynomials

S

~

k

0

~

k

= h

~

k

0

jSj

~

ki =

Æ(k

0

� k)

4�k

2

1

X

l=0

(2l + 1)S

l

(k)P

l

(
os#): (D.31)

The delta fun
tion has been in
luded as a separate fa
tor, be
ause we already know

that the S-matrix has nonvanishing elements only on the energy shell. The unknown


oeÆ
ients S

l

(k) 
an be determined by invoking the unitarity of the s
attering matrix

Z

d

3

k

00

h

~

k

0

jSj

~

k

00

ih

~

k

00

jS

y

j

~

ki = Æ(

~

k

0

�

~

k): (D.32)

Substituting here (D.31) and 
arrying out the integration, we obtain

Æ(k

0

� k)

4�k

2

1

X

l=0

(2l + 1)jS

l

(k)j

2

P

l

(
os#) = Æ(

~

k

0

�

~

k) (D.33)

From the 
ompleteness relation of the Legendre polynomials, the above equation will

only be ful�lled if jS

l

(k)j

2

= 1, that means if S

l

(k) = e

2iÆ

l

(k)

, where the Æ

l

(k) are real

fun
tions of the momentum. An analog expansion of the T -matrix

T

~

k

0

~

k

= h

~

k

0

jT j

~

ki = �

1

4�

2

mk

1

X

l=0

(2l + 1)T

l

(k

0

; k)P

l

(
os#); (D.34)

together with (D.29), will yield T

l

(k; k) = e

iÆ

l

(k)

sin Æ

l

(k). The interpretation and im-

portan
e of the fun
tions Æ

l

(k) will be dis
ussed next.

D.1.2 Stationary s
attering in the 
oordinate spa
e pi
ture

To give s
attering theory a more illustrative meaning, we will now translate the previous

results to 
oordinate spa
e. For that, the 
hoi
e of the referen
e system will be the

free-parti
le Hamiltonian H

0

=

~

k

2

=2m, while for the potential H

1

= V we only want

to demand lo
ality. The eigenstates of H

0

are normalized to h

~

kj

~

k

0

i = Æ(

~

k �

~

k

0

), while

for the 
oordinate eigenstates we require h~r j~r

0

i = Æ(~r � ~r

0

).

We start o� with the Lippmann-S
hwinger solution (D.8)

h~r j	

�

~

k

i = h~r j'

~

k

i+

Z

d

3

r

0

d

3

r

00

h~r jG

�

0

j~r

0

ih~r

0

jV j~r

00

ih~r

00

j	

�

~

k

i

= h~r j'

~

k

i+

Z

d

3

r

0

h~r jG

�

0

j~r

0

i � V (~r

0

) � h~r

0

j	

�

~

k

i: (D.35)
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Inserting the 
omplete set of eigenstates of H

0

h~r jG

�

0

j~r

0

i =

Z

d

3

k

0

d

3

k

00

h~r j'

~

k

0

ih'

~

k

0

jG

�

0

j'

~

k

00

ih'

~

k

00

j~r

0

i

=

1

(2�)

3

Z

d

3

k

0

e

�i

~

k

0

(~r�~r

0

)

E �

k

02

2m

� i�

; E = k

2

=2m

= �

2m � e

�i

j

~

k

j

�j~r�~r

0

j

4� j~r � ~r

0

j

; (D.36)

equation (D.35) 
an be written as

	

�

~

k

(~r) =

1

(2�)

3=2

e

�i

~

k�~r

�

m

2�

Z

d

3

r

0

e

�i

j

~

k

j

�j~r�~r

0

j

j~r � ~r

0

j

V (~r

0

)	

�

~

k

(~r

0

)

=

r!1

1

(2�)

3=2

�

e

�i

~

k�~r

+ f

~

k

('; #) �

e

�ikr

r

�

; (D.37)

where f

~

k

('; #) is 
alled the s
attering amplitude, depending only on the momentum

parameter

~

k and the dire
tion of ~r

f

~

k

('; #) = �

m

2�

(2�)

3=2

Z

d

3

r

0

e

�i

j

~

k

j

r̂�~r

0

V (~r

0

)	

�

~

k

(~r

0

) ; jr̂j = j~r=rj = 1: (D.38)

The last step in equation (D.37) is allowed for all potentials V falling o� faster than

a Coulomb potential. So the s
attering amplitude as given in (D.38) is a well de�ned

expression only for short-ranged potentials.

The asymptoti
 solution in (D.37) is a superposition of a plane wave and a spheri
al

wave. To adjust this solution to the boundary 
onditions of a s
attering problem,

namely having an in
ident beam and an outgoing s
attered beam, the only reasonable

solution is 	

+

~

k

(~r). This solution is 
alled the physi
al solution and will simply be

denoted by 	

~

k

(~r). Its asymptoti
 stru
ture makes it possible to stri
tly separate the

in
ident 
ux from the s
attered 
ux, ne
essary for 
al
ulating the 
ross-se
tion (D.1).

For this 
al
ulation, the pre
ise value of the overall asymptoti
 normalization 
onstant,

here N = (2�)

�3=2

is unimportant. The wave fun
tion 	

~

k

(~r) 
an also be normalized to

unit in
ident 
ux by 
hoosing N = (j

~

kj=m)

�1=2

, or by requiring

R

d

3

r	

�

~

k

0

	

~

k

= Æ(

~

k

0

�

~

k).

But 
ertainly the simplest normalization is that where the in
ident amplitude is of unity.

Performing the 
al
ulation (D.1), the di�erential 
ross-se
tion per unit angle is

d�

d


=

�

�

f

~

k

('; #)

�

�

2

: (D.39)

For knowing the 
ross-se
tion one has to know the s
attering amplitude, whi
h again

is determined from the asymptoti
 behaviour of the full wavefun
tion.

88



D. Potential S
attering

From (D.38) and the de�nition of the T -matrix (D.24), the s
attering amplitude 
an

also be written as

f

~

k

('; #) = �4m�

2

h'

^

k

jV j	

~

k

i ;

^

k = j

~

kj � r̂

� �4m�

2

h'

~

k

0

jT j'

~

k

i ; k

02

= k

2

: (D.40)

Due to its representation independen
e the above relationship between the s
attering

amplitude and the T -matrix is of great importan
e, sin
e it opens the possibility to


al
ulate s
attering amplitudes and with it 
ross-se
tions in a representation di�erent

than that of 
oordinate spa
e, as for example in momentum spa
e.

The asymptoti
 wavefun
tion in (D.37) 
an be simpli�ed tremendously, if we restri
t

ourselves on in
ident beams that propagate in the z-dire
tion with momentum k and

potentials that are spheri
ally symmetri
 V (~r) = V (j~rj). The whole s
attering prob-

lem be
omes symmetri
 around the z-axis and thus independent of the polar angle '.

Choosing the overall normalization for the amplitude of the in
ident beam as unity, the

physi
al axial-symmetri
 solution reads

	

k

(r; #) =

r!1

e

ikz

+ f

k

(#) �

e

ikr

r

;

with f

k

(#) = �

m

2�

Z

d

3

r

0

e

�ikr

0

�
os�

V (r

0

)	

k

(r

0

; #

0

); (D.41)

where � is the angle between ~r and ~r

0

. The underlying symmetry now allows for a

partial wave analysis in 
oordinate spa
e

	

k

(r; #) =

1

X

l=0

a

l;k

u

l;k

(r)

r

P

l

(
os#); (D.42)

where the wavefun
tion u

l;k

(r) 
an be related to the solutions of the radial S
hr�odinger

equation

d

2

dr

2

u

l;k

(r) +

�

k

2

� 2mV (r)�

l(l + 1)

r

2

�

u

l;k

(r) = 0: (D.43)

For large r, terms of the order smaller than 1=r 
an be negle
ted and the general

asymptoti
 solution for �nite range potentials is

u

l;k

(r) =

r!1

B

l;k

sin(kr) + C

l;k


os(kr)

� A

l;k

sin(kr �

l�

2

+ Æ

l;k

): (D.44)

When �xing the normalization 
onstant of u

l;k

in the asymptoti
 region as A

l;k

= e

iÆ

l;k

,

it is possible to make an identi
al 
omparison between the wavefun
tions (D.41) and

(D.42).
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This 
an be seen when using the following identity

e

iÆ

l;k

sin(kr �

l�

2

+ Æ

l;k

) � sin(kr �

l�

2

) + e

iÆ

l;k

sin Æ

l;k

� e

i(kr�

l�

2

)

: (D.45)

For large r this will for
e the expansion (D.42) to have the stru
ture

	

k

(r; #) =

r!1

1

X

l=0

a

l;k

sin(kr �

l�

2

)

r

P

l

(
os#)

+

"

1

X

l=0

(�i)

l

a

l;k

e

iÆ

l;k

sin Æ

l;k

P

l

(
os#)

#

e

ikr

r

: (D.46)

The above expression has to be equal to the right hand side of (D.41), and together

with the next identity

e

ikz

= e

ikr 
os#

=

1

X

l=0

i

l

(2l + 1)j

l

(kr)P

l

(
os#)

=

r!1

1

X

l=0

i

l

(2l + 1)

sin(kr �

l�

2

)

kr

P

l

(
os#); (D.47)

where j

l

stand for the at the origin regular spheri
al Bessel-fun
tions, will �x the


oeÆ
ients a

l;k

= i

l

(2l + 1)=k and the s
attering amplitude 
an be identi�ed as

f

k

(#) =

1

k

1

X

l=0

(2l + 1)e

iÆ

l;k

sin Æ

l;k

P

l

(
os#): (D.48)

As we 
learly 
an see, all the information of the s
attering pro
ess within spheri
al

symmetri
 potentials is hidden in the asymptoti
 parameter Æ

l;k

, whi
h is 
alled the

phase-shift. This is the well known result f

k

(#) = �4m�

2

h

~

k

0

jT j

~

ki

�

�

k

0

=k

of (D.34), and

was to be expe
ted. The total 
ross-se
tion of (D.39) 
an be 
al
ulated as

�

k

=

Z

d


d�

k

d


=

Z

d
jf

k

(#)j

2

=

4�

k

2

1

X

l=0

(2l + 1) sin

2

Æ

l;k

�

4�

k

2

1

X

l=0

�

l;k

: (D.49)

The more important point is, the way how we manipulated the radial S
hr�odinger

solution, by using the freedom of the normalization 
onstant to get the asymptoti


form

u

l;k

(r) =

r!1

sin(kr �

l�

2

) + T

l

(k) � e

i(kr�

l�

2

)

; (D.50)

with T

l;k

= e

iÆ

l;k

sin Æ

l;k

. As stated before in the abstra
t formalism, we 
learly see

here how the T -matrix, or more pre
ise the diagonal elements of the T -matrix 
onne
ts

two di�erent wave-types. The �rst term represents the in
ident beam, having here

the properties of a standing wave, while the se
ond term is the s
attered outgoing

wave. The s
attering pro
ess adds to the free-parti
le plane wave fun
tion an outgoing

spheri
al wave whose amplitude is T

l

. This representation is thus also 
alled the T -

matrix solution of the radial S
hr�odinger equation.
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On the other hand, the identity (D.45) may also be written as

e

iÆ

l;k

sin(kr �

l�

2

+ Æ

l;k

) �

i

2

h

e

�i(kr�

l�

2

)

� e

2iÆ

l;k

� e

i(kr�

l�

2

)

i

: (D.51)

The same is true for the in
ident beam in (D.47), whi
h 
an be split up into in
oming

and outgoing wave 
omponents. Sin
e the 
hoi
e of our boundary 
ondition only allows

for in
oming waves for the in
ident beam, the s
attering amplitude 
an again be iden-

ti�ed as in (D.48), as expe
ted. But now the asymptoti
 radial S
hr�odinger solution

has the stru
ture

u

l;k

(r) =

r!1

i

2

h

e

�i(kr�

l�

2

)

� S

l

(k) � e

i(kr�

l�

2

)

i

; (D.52)

with the S-matrix S

l;k

= e

2iÆ

l;k

, or more pre
ise the diagonal elements of the S-matrix

whi
h 
onne
ts two similar wave-types. Here we 
an see that the in
oming spheri
al

wave is una�e
ted by the s
attering pro
ess, while the outgoing wave is multiplied by

the quantity S

l

. Only the phase, and not the amplitude of the outgoing spheri
al wave

is a�e
ted by the presen
e of the potential. This solution is 
alled the S-matrix solution

of the radial S
hr�odinger equation, and from now on we simply 
all S

l

(k) the s
attering

fun
tion.

The S-matrix representation in general is very 
onvenient for investigating 
ertain

stru
tures, like minima, maxima or sharp peaks in the 
ross-se
tion.

The reason of a vanishing 
ross-se
tion for a parti
ular energy 
an immediately be

understood, if one looks at (D.52). For all momenta k where the s
attering fun
-

tion S

l

(k) = 1, the outgoing wave e

i(kr�

l�

2

)

and the in
oming wave e

�i(kr�

l�

2

)


an be


ombined to give the standing wave sin(kr �

l�

2

), whi
h looks like a 
omponent of an

in
ident plane wave with no s
attered portion. Classi
ally speaking, there is zero s
at-

tering when the �nal traje
tory is in the same dire
tion as the initial one.

The e�e
ts whi
h 
ause sharp peaks in the s
attering 
ross-se
tion, are 
alled reso-

nan
es, and are not so easy to understand. They are linked to parti
ular properties of

the s
attering fun
tion S

l

(k). For this we rewrite (D.52) as follows

u

l;k

(r) =

r!1

i

2

S

l

(k)

�

1

S

l

(k)

e

�i(kr�

l�

2

)

� e

i(kr�

l�

2

)

�

: (D.53)

A

ording to Gamow [34℄ we obtain a resonan
e, if we postulate that the above asymp-

toti
 solution 
onsists of outgoing waves only. This is equivalent to the 
ondition

1=S

l

(k) = 0. But the resulting equation e

�2iÆ

l

(k)

= 0 has no solution for real k. Thus

our only 
hoi
e is to go into the 
omplex momentum plane k ! q = k+ i�, with k � 0,

and study the e�e
ts of the 
omplex zeros of 1=S

l

(q) upon its behaviour on the real

k-axis | be
ause all the above results on a s
attering wave fun
tion stri
tly apply only

for real momenta. It 
an be shown that the 
loser the 
omplex zero q lies toward the

real k-axis, the more it be
omes to a physi
ally observed e�e
t in the 
ross-se
tion.

Before going into the 
omplex momentum plane q, it is helpful to rewrite the s
attering

fun
tion S

l

(k) as

S

l

(k) = e

2iÆ

l

(k)

�

F

l

(k)

F

�

l

(k)

; with Æ

l

(k) = arg[F

l

(k)℄ and k 2 R; (D.54)
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where F

l

(k) is a 
omplex fun
tion of a real argument, whi
h is 
alled the Jost-fun
tion.

Now for �nding the zeros of 1=S

l

(k), or equivalently the poles of the s
attering fun
tion

S

l

(k), we have to do an analyti
al 
ontinuation into the 
omplex momentum plane for

the Jost-fun
tion F (k)! F (q). For the analyti
 properties of the Jost-fun
tion one 
an

refer to [33℄ | just important to note is that its analyti
al 
ontinuation in the 
omplex

momentum plane is di�erent from that being done in the 
omplex energy plane, due of

having the problem of double mapping E � k

2

.

The reason why this postulate of having only outgoing waves 
auses sharp peaks or rapid


hanges in the 
ross-se
tion and what the physi
al interpretations and impli
ations of


omplex momenta and energies are, will be dis
ussed in detail in the next se
tion under

the more simpli�ed 
ondition of s-wave s
attering on potentials with a stri
t range R.

Before ending this �rst dis
ussion on resonan
es, it is interesting to see how bound

states and resonan
es are embedded in the stationary formalism. Bound states are

obtained when requiring in the energy region E < 0 the boundary 
ondition of having

a vanishing wave in the asymptoti
 region. Sin
e this boundary 
ondition is real, it

will only allow for 
ertain dis
rete real and negative energy eigenvalues, whi
h are


hara
terized by one parameter, namely the energy value itself. On the other hand,

resonan
es are obtained when requiring in the s
attering region E > 0 the boundary


ondition of having a pure outgoing wave in the asymptoti
 region. As in the 
ase of the

bound state 
ondition, this resonan
e 
ondition will also only allow for 
ertain dis
rete

values, but sin
e the boundary 
ondition is 
omplex, these dis
rete energy eigenvalues

are also expe
ted to be 
omplex, and thus must be 
hara
terized by two parameters,

their energy and width (E

R

;�) | in the s
attering region it is justi�ed to talk of an

energy width, sin
e the relevant energy spe
trum is lying in a 
ontinuum.

An interesting appli
ation of the analyti
al 
ontinued Jost-fun
tion F

l

(q) is the so 
alled

Levinson Theorem. It 
onne
ts the real s
attering phase-shift to existing bound states

in that system. I state it here without proof [33℄

Æ

l

(0)� Æ

l

(1) =

(

(N

B

l

+

1

2

)� for l = 0 if F

0

(0) = 0;

N

B

l

� for all l if F

0

(0) 6= 0;

(D.55)

where N

B

l

stands for the number of bound states in the relevant l-wave se
tor. An

important requirement for the above relation, is that the real phase-shift Æ

l

(k) has to

be a 
ontinuous fun
tion. This 
an always be a
hieved, sin
e the phase-shift is no

physi
al quantity and therefore not unique. It 
an be 
hanged into any desired form,

as long as the 
ross-se
tion via �

l;k

� sin

2

Æ

l;k

stays un
hanged | it is invariant under

the substitution Æ

l

(k)!

e

Æ

l

(k) = Æ

l

(k) + � � n(k); n(k) 2 Z.

Only for those potentials whi
h 
reate a phase shift Æ(k) that is 
hanging monotoni


over the whole range of k, the Levinson Theorem helps to understand the last important

stru
ture in a 
ross se
tion, the maxima. Every time when an additional bound state

appears, the phase goes through �=2 and in
reases by �. At �=2 the 
ross-se
tion

�

l;k

� sin

2

Æ

l;k

takes on a maximum value. So under the assumption of a monotonous

phase shift, the number of maxima in a l-wave 
ross-se
tion is dire
tly linked to the

number of bound states in that system. We will see that this is realized by potentials

whi
h 
annot 
reate resonan
es.
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D.1.3 S-wave s
attering on potentials with a stri
t range R

Before starting, we �rst want to fo
us on the probability interpretation of a wave

fun
tion whi
h lies in a 
ontinuous energy spe
trum. The reason is, if we have a proper

probability interpretation in the 
ontinuum part of the spe
trum, it is possible to fully

understand and interpret resonan
es in the stationary pi
ture | there is no need to

go into the to time-dependent pi
ture. For this we have to take a 
loser look at the

pro
edure of normalization in the 
ontinuum.

The full energy eigensolutions 	

E

(~r) of the stationary S
hr�odinger equation, as we well

know, form an orthonormal set

Z

d

3

r	

�

E

0

(~r)	

E

(~r) =

(

Æ

EE

0

if E dis
rete;

Æ(E �E

0

) if E 
ontinuous:

(D.56)

Thus it is always possible to normalize a wavefun
tion in the bound state region to

R

d

3

rj	

E

(~r)j

2

= 1, implying that the probability of �nding a parti
le somewhere in

spa
e must be unity. The quantity j	

E

(~r)j

2

d

3

r is then the probability of �nding the

parti
le with a dis
rete energy E in its volume element d

3

r. The squared wave fun
tion

itself j	

E

(~r)j

2

has therefore the meaning of a position probability density.

Looking at the 
ontinuous part of the spe
trum, a wavefun
tion in the s
attering region


an always be normalized to

R

dE

R

d

3

rj	

E

(~r)j

2

= 1. Sin
e a probability interpretation

must be also valid within a s
attering region, the quantity j	

E

(~r)j

2

d

3

rdE must be

the probability of �nding the parti
le in its volume element d

3

r within the 
ontinuous

energy interval dE. Due to the smeared energy distribution, the squared s
attering wave

fun
tion j	

E

(~r)j

2


an not represent an absolute position probability density, as in the


ase of the bound-state wave fun
tion. But the ratio of j	

E

(~r)j

2

in two di�erent points

of spa
e determines a unique relative position probability density. In the s
attering

region it is not possible to have an absolute position probability interpretation, one

rather has to work with relative probabilities, sin
e a s
attering parti
le is not bound

to a 
ertain region in spa
e.

For spheri
ally symmetri
 potentials V (r) and axial symmetri
 boundary 
onditions,

the general s
attering wave fun
tion 	

E

(~r) is given by (D.42). Fo
using only on s-wave

s
attering, the radial wave fun
tion u

k

(r) satis�es the radial S
hr�odinger equation

u

00

k

(r) + [k

2

� 2mV (r)℄ = 0; with k

2

= 2mE � 0: (D.57)

Sin
e this is a real equation, the general solution 
an be given in a real form. For a

potential of a stri
t range R, the general radial s-wave solution is given by

u

k

(r) =

(

u

<

k

(r) for 0 � r � R with u

<

k

(0) = 0;

A(k) sin[kr + Æ(k)℄ for r � R:

(D.58)

First we want to normalize this s-wave fun
tion to unity, in the sense

Æ(E �E

0

) =

Z

d

3

r	

�

E

0

(~r)	

E

(~r)

=

axialsym

Z

d

3

r	

�

k

0

(r; ')	

k

(r; ') =

s-wave

4�

Z

1

0

dr u

�

k

0

(r)u

k

(r): (D.59)
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The unity normalization for the real radial wave fun
tion (D.58) is thus given by

Z

1

0

dr u

k

(r)u

k

0

(r) =

1

4�

m

k

Æ(k � k

0

): (D.60)

Without having any spe
i�
 knowledge on u

<

k

(r) the above 
ondition 
an be used to �x

the asymptoti
 normalization 
onstant A(k) in (D.58). The pro
edure goes as follows:

multiplying the radial s-wave S
hr�odinger equation for u

k

with u

k

0

and vi
e versa,

subtra
ting these two equations and then integrating over the range [0;L℄ with L � R,

will result in the equation

Z

L

0

dr u

k

(r)u

k

0

(r) =

1

k

02

� k

2

h

u

0

k

(r)u

k

0

(r)� u

k

(r)u

0

k

0

(r)

i

L

0

=

A(k)A(k

0

)

2

�

sin [(k � k

0

)L+ (Æ

k

� Æ

k

0

)℄

k � k

0

+

sin [(k + k

0

)L+ (Æ

k

+ Æ

k

0

)℄

k + k

0

�

:

(D.61)

For the limit L!1, we make use of the following fun
tional identities

lim

a!1

sin(ax)

x

= �Æ(x) ; lim

a!1


os(ax)

x

= 0: (D.62)

With these we have

lim

L!1

Z

L

0

dr u

k

(r)u

k

0

(r)

=

A(k)A(k

0

)

2

�


os(Æ

k

� Æ

k

0

) lim

L!1

sin [(k � k

0

)L℄

k � k

0

+ 
os(Æ

k

+ Æ

k

0

) lim

L!1

sin [(k + k

0

)L℄

k + k

0

�

= �

A(k)A(k

0

)

2

�


os(Æ

k

� Æ

k

0

) � Æ(k � k

0

) + 
os(Æ

k

+ Æ

k

0

) � Æ(k + k

0

)

�

= �

A

2

(k)

2

Æ(k � k

0

); be
ause k; k

0

> 0: (D.63)

When identifying the above equation with (D.60) the normalization 
onstant must take

on the value

A

2

(k) =

1

2�

2

m

k

: (D.64)

Sin
e the normalization 
onstant A(k) 
an be �xed as being positive or negative for any

value k, the phase shift fun
tion Æ(k) in (D.58) 
an therefore be 
hosen as a fun
tion

whi
h is only unique within modulo �, without 
hanging the wave fun
tion. As we

already know, this ambiguity in the phase shift within modulo � 
an also be seen

when looking at the 
ross-se
tion (D.49) | the 
ross-se
tion as given in (D.49) is also

valid for the normalization given here, sin
e every general 
ross-se
tion (D.39), being

determined from the asymptoti
al behaviour of the wave fun
tion, is independent of

an overall asymptoti
 normalization 
onstant. The di�erential and total s-wave 
ross-

se
tion, whi
h are isotropi
 in their angular distribution are given as

d�

s;k

d


=

1

k

2

sin

2

Æ(k) ; �

s;k

=

4�

k

2

sin

2

Æ(k): (D.65)
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Now our aim is to determine the phase shift Æ(k) in (D.58) from the 
ontinuity require-

ments of u

k

(r) and its �rst derivative at r = R. For this we de�ne the dimensionless

logarithmi
 derivative of the inner region r < R

�(k) =

�

r

d

dr

lnu

<

k

(r)

�

r=R

=

R � u

< 0

k

(R)

u

<

k

(R)

; (D.66)

whi
h must be equal to the logarithmi
 derivative of the outer region r > R

�(k) = kR � 
ot [kR+ Æ(k)℄ () Æ(k) = �kR+ ar
tan

�

kR

�(k)

�

+ � � n(k); (D.67)

where the integer values n(k) 2 Z for every k, are 
hosen su
h that the phase shift Æ(k)

is a 
ontinuous fun
tion. Before 
al
ulating the 
ross-se
tion we �rst want to look at

will happen to the phase shift Æ(k) if the potential V (r) turns into the following two

extremes:

� if the potential goes to zero, or equivalently if the in
ident energy of the parti
le

is far more larger 
ompared to the energy range of the potential, the parti
le will

behave as a free parti
le, that means u

<

k

(r)! sin(kr) or Æ(k)! 0 (mod�).

� if the potential turns into an in�nitely hard-sphere potential at r = R, there

will be no penetration of the parti
le into the inside region r < R, that means

u

<

k

(r) = 0 for all 0 � r � R. Furthermore the outside wave fun
tion must take on

the form u

>

k

(r) = A(k) sin(kr�kR) in order to satisfy the 
ontinuity requirement

u

<

k

(R) = u

>

k

(R). This gives the hard-sphere phase shift denoted by �(k) = �kR.

So for having pure full range hard-sphere s
attering, the 
orresponding potential

must imply the behaviour j�(k)j ! 1 for all k.

The phase shift fun
tion Æ(k) in (D.67) 
an thus be written as

Æ(k) = �(k) + ar
tan

�

�

�(k)

�(k)

�

+ � � n(k); (D.68)

where the hard-sphere phase shift �(k) 
an be seen as a ba
kground s
attering term,

while �(k) 
arrying all the information of the potential a
ts as the a
tual potential

s
attering term. As already mentioned, if �(k) 
hanges 
onstantly over a wide range

where j�(k)j � 1, the overall s
attering behaviour will be that of a hard-sphere. On

the other hand, if it tends to the opposite extreme by going rapidly through a region

where �(k) � 0, the overall s
attering behaviour must be 
ertainly di�erent than that

of a hard-sphere. This will be studied next.

Let the fun
tion �(k) 
hange rapidly j�

0

(k)j � 1 within a suÆ
iently small region

j�kj = jk � k

0

j � 1 around k

0

, where �(k

0

) = 0. Making a Taylor-expansion up to

�rst order in �k

�(k) = (k � k

0

) � �

0

(k

0

); (D.69)
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and assuming furthermore that the 
hange of �(k) over this region �k is so drasti
, that

when 
ompared to the linear 
hange of the pure ba
kground phase shift �(k) it would

be justi�ed to approximate it by the 
onstant �(k) ! �

0

= �k

0

R, the 
orresponding


ontinuous phase shift fun
tion has the approximation

Æ(k) = �

0

+ ar
tan

�

�

�

0

�

0

(k

0

) � (k � k

0

)

�

+ � � n(k): (D.70)

That the approximation of Æ(k) by the approximation of �(k) is reasonable, one has

to be sure that the ar
tan-fun
tion is a slow varying fun
tion, so that Æ(k) is more

or less insensitive in a variation of �(k). In the above approximation this is 
ertainly

guaranteed, sin
e the approximation region is where �(k) � 0, that means in the asymp-

toti
 region of the ar
tan-fun
tion where it shows a very slow or nearly no variation

at all. De�ning the parameter 


0

= �

0

=�

0

(k

0

) the phase shift and the 
orresponding


ross-se
tion have the following 3-parameter stru
ture in the region �k around k

0

Æ(k) = �

0

+ ar
tan

�

�




0

k � k

0

�

+ � � n(k);

�

s

(k) � sin

2

Æ(k) =




2

0

(k � k

0

)

2

+ 


2

0

+ sin

2

�

0

�




2

0

(k � k

0

)

2

+ 


2

0

�

2 sin

2

�

0

+

k � k

0




0

sin 2�

0

�

: (D.71)

The �rst term in the above 
ross-se
tion is the pure potential term, also 
alled the

Breit-Wigner resonan
e term. The se
ond term is the pure hard-sphere or ba
kground

term, being totally independent of the s
attering potential, while the last term is the


ompli
ated interferen
e term.

(Fig11) on the next page shows two 
hara
teristi
 plots of the phase shift and the 
ross-

se
tion for a �xed parameter set (k

0

; 


0

) but with a di�erent ba
kground parameter �

0

.

The plots show that when the s
attering parti
le has a momentum 
lose to k

0

, its

wave fun
tion phase shift 
hanges rapidly, in the ideal 
ase even by the amount of �

and implies a sharp peak in the 
orresponding 
ross-se
tion. In every 
ase a sharp


hange of the phase shift Æ(k) by � 
auses a sharp stru
ture in the 
ross-se
tion �

s

(k).

Experimentally, resonan
es are usually asso
iated with a sharp variation of the 
ross-

se
tion as a fun
tion of energy. We therefore want to take as the preliminary de�nition

of a resonan
e at the energy E

0

� k

2

0

that Æ(E) 
hanges rapidly by approximately �

when E passes through E

0


ausing manifestly a sharp stru
ture 
hange in the 
ross-

se
tion relative to a slow varying ba
kground. A resonan
e is 
hara
terized by the two

parameters (k

0

; 


0

), where 


0


an be seen as the width of the resonan
e.

To summarize, there are two striking behaviours in a s
attering pro
ess, whi
h 
an be

well separated, if the following 
onditions on the inner logarithmi
 derivative �(k) are

ful�lled: �

0

(k) � 0 and j�(k)j � 1 over a wide momentum range leads to hard-sphere

or ba
kground s
attering, while j�

0

(k

0

)j � 1 where �(k

0

) � 0 leads to the 
ontrary

resonant s
attering around k

0

. If these 
onditions are not met, there will be subtle

interplay between hard-sphere and resonan
e s
attering, whi
h then is no longer so

easy to disentangle as before.
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k
0

sin
2
δ(k)

nπ-π/2

nπ

δ(k)

k
0

sin
2
δ’(k)

n’π

n’π+π/2

δ’(k)

Figure 11: Resonan
e pro�les for the phase shift and 
ross-se
tion

To study the feature resonan
e more thoroughly, we now want to go beyond the 
ross-

se
tion and look at the next physi
al quantity, the relative position probability density

of the radial s
attering wave fun
tion (D.58) in the inside and outside region of a

potential with stri
t range R

P

k

(r

1

; r

2

) =

ju

k

(r

1

)j

2

ju

k

(r

2

)j

2

; with 0 � r

1

� R and r

2

� R: (D.72)

We will gain more insight if we only fo
us on average values of the wave fun
tion

squared in the inside and outside region respe
tively

P (k) =

j�u

<

k

j

2

j�u

>

k

j

2

=

1

R

R

R

0

drju

<

k

(r)j

2

1

2

A

2

(k)

: (D.73)

A

ording to (D.61) the above integral 
an be determined as

1

R

Z

R

0

drju

<

k

(r)j

2

=

1

R

lim

k

0

!k

u

0

k

(R)u

k

0

(R)� u

k

(R)u

0

k

0

(R)

k

02

� k

2

=

A

2

(k)

2R

�

dÆ(k)

dk

+R�

sin [2(kR+ Æ

k

)℄

2k

�

; (D.74)

without knowing the pre
ise wave fun
tion in the inner region. Sin
e the left-hand

side of the above relation is a positive quantity, we get as an intermediate result the

following striking inequality

dÆ(k)

dk

� �R+

sin [2(kR+ Æ

k

)℄

2k

� �R�

1

2k

: (D.75)
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It states that the phase shift 
annot de
rease faster than at a 
ertain rate. Thus if the

phase 
hanges rapidly, then it must be in
reasing. This relation was �rst 
al
ulated

by Wigner [35℄ in the more 
ompli
ated time-dependent pi
ture and is 
alled Wigner's


ausality prin
iple. The prin
iple of 
ausality states, that a s
attered wave 
annot

leave the s
atterer before the in
ident wave has rea
hed it. Wigner 
onne
ts the above

energy derivative of the s
attering phase shift with the time delay, that an in
ident wave

experien
es inside the range of the potential before it is being s
attered. Furthermore

Wigner gives the following simple physi
al interpretation: when dÆ=dk assumes large

positive values, the in
ident parti
le is in fa
t 
aptured and retained for some time by

the s
attering 
enter and is therefore in a state of resonan
e; on the other hand if dÆ=dk

will be 
lose to (�R) or its minimum (�R � 1=2k) the in
ident parti
le hardly enters

the s
atterer.

For the moment we a
knowledge Wigner's time-dependent result and keep on working

in the stationary pi
ture, by inserting the phase shift fun
tion (D.67) into (D.74). After

some 
al
ulations we get

1

R

Z

R

0

drju

<

k

(r)j

2

=

1

2

A

2

(k) � k �

��

0

(k)

(kR)

2

+ �

2

(k)

: (D.76)

Sin
e again the left-hand side is a positive quantity, �

0

(k) � 0 for all values k, that

means the inner logarithmi
 derivative �(k) is a monotoni
 de
reasing fun
tion. In-

serting the above relation into (D.73) we �nally have the average relative position

probability for the inside and outside region

P (k) = k �

��

0

(k)

�

2

(k) + �

2

(k)

�

k

>

k

<

�

�

�

; (D.77)

where k

>

= k is the in
ident momentum given in the outside region, while k

<


an be

seen as an average momentum in the inside region. If we de�ne � = 2Rm=k as the time

a parti
le stays within the region of 2R without any potential, then � = 2Rm=k

<


an

be seen as the average time the parti
le would spend in this region in the presen
e of a

potential of stri
t range R. Thus the average relative position probability P not only

gives a spa
ial parti
le pro�le but also represents a pro�le in time.

When now applying the well de�ned 
onditions for hard-sphere and resonan
e s
atter-

ing we 
ome to the same physi
al 
on
lusions in the stationary pi
ture as Wigner [35℄

does in the time-dependent pi
ture, due of having a proper probability interpretation

in the s
attering region. The hard-sphere 
ondition �

0

� 0 and j�j � 1 over a wide mo-

mentum range implies dÆ=dk � �R and P � 0, meaning that the probability of �nding

the parti
le inside the potential region relative to the outside region is zero. This is


onsistent with the fa
t, that during hard-sphere s
attering there is no penetration into

the inside region. For the resonan
e 
ondition j�

0

j � 1 where � � 0 around some k

0

, we

have dÆ=dk � ��

0

� 1. If now a very narrow energy region j�kj = jk�k

0

j � 1 around

su
h a spe
ial value k

0

is taken, we 
an perform the same Taylor expansion for the log-

arithmi
 derivative as in (D.69), and obtain the following 3-parametri
 approximation

for P around k

0

:
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P (k) = k

0

�

��

0

(k

0

)

�

2

0

+ [�

0

(k

0

)(k � k

0

)℄

2

�

1




0

R

�




2

0




2

0

+ (k � k

0

)

2

; (D.78)

where the amplitude of P s
ales with 1=R. The parameter 


0

= �

0

=�

0

(k

0

) > 0 is the

very same as de�ned in (D.71). For a parti
le with momentum k � k

0

we will have

P (k

0

)� 1. Physi
ally this implies that the parti
le at this 
ertain energy a

umulates

in the inside region of the potential, or equivalently when the parti
le enters this region,

it remains there for some time before being allowed to es
ape again to the outside |

the parti
le is thus in a resonan
e state and is 
hara
terized by the very same two

independent parameters (k

0

; 


0

) whi
h imply a rapid stru
ture 
hange in the 
ross-

se
tion. This 
ertainly only holds if the resonan
e 
ondition is ful�lled. If not, a subtle

interplay between ba
kground and resonan
e s
attering will emerge again, resulting in

a 
ompli
ated stru
ture of maxima and minima in P , whi
h no longer 
an be 
orrelated

so easily to signi�
ant stru
tures in a 
ross-se
tion.

The last perspe
tive to understand the feature resonan
e, is to look at it from the

s
attering fun
tion S(k), being the diagonal elements of the S-matrix as dis
ussed in

the previous se
tions.

Besides the solution (D.58), the general solution of the radial s-wave S
hr�odinger equa-

tion (D.57) 
an also be given in the form

u

k

(r) =

(

u

<

k

(r) for 0 � r � R with u

<

k

(0) = 0;

B(k)e

�ikr

+ C(k)e

ikr

for r � R:

(D.79)

If we 
hoose u

<

k

(r) to be a real fun
tion, the 
omplex amplitudes A(k) and B(k) with

k 2 R, 
an be determined by the 
ontinuity requirements of u

k

(r) and its �rst derivative

at r = R as

B(k) = C

�

(k) =

1

2

e

ikR

�

u

<

k

(R) +

i

k

� u

< 0

k

(R)

�

: (D.80)

When 
omparing (D.79) with (D.52) irrespe
tive of some overall asymptoti
 normal-

ization 
onstant, the s
attering fun
tion is given by

S(k) = �

C(k)

B(k)

=

e

�ikR

[�(k) + ikR℄

e

ikR

[�(k)� ikR℄

�

F (k)

F

�

(k)

= e

2iÆ(k)

; (D.81)

with the same notations as used in (D.54). Within this spe
ial 
ondition of s-wave

s
attering in a potential with stri
t rangeR, it is easy to verify and understand Gamow's

more general statement [34℄, that a resonan
e stru
ture in a 
ross-se
tion is dire
tly

linked to the pole stru
ture of the S-matrix. For �nding the poles of S(k) one has to do

an analyti
al 
ontinuation into the 
omplex momentum q-plane. It 
an be shown that

S(q) is a meromorphi
 fun
tion and that its poles are either lo
ated on the positive

imaginary axis (bound state region) or in the lower half-plane (s
attering region) [33℄.

In the following we are only interested in �nding the s
attering poles of S(k), and for

that one has to determine the 
omplex zeros of the equation �(k)� ikR = 0. Lets say

the 
omplex momentum q

0

= k

0

� i


0

(


0

> 0) is su
h a solution.
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Next, we will fo
us only on a spe
ial 
lass of 
omplex zeros, namely on those for whi
h

the real part of q

0

satis�es the real 
ondition �(k

0

) = 0. If we now assume that the


omplex zero q

0

is lying very 
lose to the real axis, that means 


0

� 1, then �(q

0

) 
an

be expressed by the �rst order Taylor expansion around the real point k

0

�(q

0

) = (q

0

� k

0

)�

0

(k

0

); with jq

0

� k

0

j = 


0

� 1: (D.82)

In the region k � k

0

where jq

0

� k

0

j � 1 one 
an thus approximate the s
attering

fun
tion (D.81) by

S(k) = e

2iÆ(k)

= e

�2ik

0

R

�

(k � k

0

)�

0

(k

0

) + ik

0

R

(k � k

0

)�

0

(k

0

)� ik

0

R

= e

2i�

0

�

k � [k

0

+ i � �

0

=�

0

(k

0

)℄

k � [k

0

� i � �

0

=�

0

(k

0

)℄

; (D.83)

and the imaginary part of the s
attering pole q

0

= k

0

� i


0


an be identi�ed as the

positive quantity 


0

= �

0

=�

0

(k

0

) with the 
ondition 


0

� 1. When solving for Æ(k) we

get the very same resonan
e phase shift fun
tion as in (D.71) with the same 
onditions

and parameters, meaning that only if a s
attering pole is suÆ
iently 
lose to the real

k-axis, the pole turns into a physi
ally observed resonan
e-e�e
t in the 
ross-se
tion.

A s
attering pole at the point q = k� i
 (
 > 0) is asso
iated with the 
omplex energy

E = q

2

=2m = (1=2m)(k

2

� 


2

� 2ik
)

� E � i(�=2); with � > 0: (D.84)

Manifest physi
ally meaningless s
attering poles are those whi
h are lo
ated in the

region of the 
omplex q-plane where the real part E of the 
omplex energy E is negative,

that means in the region where k < 
.

We now may well ask what is the physi
al meaning of a 
omplex energy. Doing an

analyti
 
ontinuation of the S
hr�odinger equation to 
omplex energies E , the time

dependen
e of the s
attering solution will be

	

E

(t) = 	

E

(0)e

�iEt

; (D.85)

whi
h gives a time dependen
e for the probability density of

j	

E

(t)j

2

= j	

E

(0)j

2

e

��t

: (D.86)

This steady de
rease of probability means that the state is 
ontinually de
aying away

with a lifetime 1=�. This exponential de
rease of probability with time is a dire
t


onsequen
e of our assumption in the previous se
tion of having outgoing waves only.

A pole in the S-fun
tion is equivalent to the 
ondition B = 0 in (D.79). When looking

more 
losely at the outside wavefun
tion (r > R)

u

q

(r) = C(q) � e

ikr

e


r

; (D.87)

it 
ertainly represents a pure outgoing wave but with an exponentially growing am-

plitude. This in
rease is an expression of the fa
t that the parts of the wave fun
tion

farther away from the potential well 
orrespond to emissions at a time when the inten-

sity inside the well was stronger.
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The problem with su
h waves are, that they 
annot be normalized at all. This diÆ
ulty

is usually 
ir
umvented by saying that the requirement of only outgoing waves does

not 
orrespond pre
isely to any physi
ally realizable situation [36℄. Before the state


an de
ay by emitting outgoing waves, it must �rst be formed. During the period

of formation of the state, in
oming waves must be present, whereas our requirement

B = 0 ex
ludes in
oming waves altogether at all times. However, we 
an obtain an

approximate physi
al realization of a de
aying state, B = 0, by 
onsidering a system

formed a very long time T before we start observation. The wave fun
tion u

k

(r) for

r > R is then a purely outgoing wave for values of r � vT and is zero for r > vT , where

v = k=m is the speed of the parti
le in the outside region. This new wave fun
tion

di�ers from the wave fun
tion of a pure de
aying state only for very large values of

r > vT , where it is zero and thus normalizable.

Summary: If a potential with a stri
t range R allows for a resonan
e, we have seen that

there are three ways to determine the resonan
e parameters (k

0

; 


0

) within a stationary

s
attering pi
ture. All three methods are 
omparable and give the same results, if and

only if the resonan
e 
ondition j�

0

(k

0

)j � 1 with �(k

0

) � 0 is ful�lled. But for a

s
attering problem whi
h 
an not be approa
hed in an analyti
al sense, the veri�
ation

of the resonan
e 
ondition will be very diÆ
ult or sometimes even not possible. The

problem then of establishing the best method to determine the resonan
e parameters

by �tting is a rather a
ademi
 one. In pra
ti
e, at a sharp peak in a 
ross-se
tion

all three methods give an energy inside the width of the peak. Only for very broad

peaks the methods 
an give di�erent energies. When this o

urs, it is a warning that

the interpretation in terms of a resonan
e is then not a suitable one. It still is very

diÆ
ult to give a pre
ise and general formulation of the s
attering problem in the 
ase

of short-lived de
aying states.

The remaining part of this se
tion will be devoted to the s
attering problem on spe
i�


examples. These are sele
ted in su
h a way, that they 
an be treated not only numer-

i
ally but also analyti
ally. This is ne
essary for 
he
king the stability of numeri
s,

as well as having a reliable interpretation of possible resonan
es. Furthermore, these

examples 
an be seen as little building blo
ks for 
onstru
ting at the end a simpli�ed �-

nite range potential, having the same basi
 stru
tures as our model-potential in (Fig3).

The main task is to 
al
ulate phase-shifts. For the numeri
al 
al
ulation the T -matrix

relationship (D.40) in momentum spa
e is used (Appendix E), while for the analyti
al


al
ulation the 
orresponding radial S
hr�odinger equation in 
oordinate spa
e is solved.
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D.1.3.1 Square-well potential

r

V(r)

R

-V0

V (r) =

(

�V

0

for 0 � r � R, V

0

� 0;

0 for r > R:

(D.88)

A

ording to (D.58) the radial s-wave s
attering solution for the above potential is

0 � r � R : u

k

(r) = N sin(Kr) ; K =

p

k

2

+ 2mV

0

r > R : u

k

(r) = A sin(kr + Æ); (D.89)

where A is given by (D.64). By requiring the 
ontinuity of u

k

(r) and its �rst derivative

at r = R will �x the remaining two parameters

N(k) = A(k)

sin[kR+ Æ(k)℄

sin(KR)

Æ(k) = �kR+ ar
tan

�

kR

�(k)

�

+ � � n(k); with �(k) = KR 
ot(KR) : (D.90)

When trying to plot the phase shift fun
tion Æ(k) for di�erent depths and widths

of the potential V (r), it is reasonable to 
ombine these parameters and introdu
e the

following dimensionless s
ale � = R

p

2mV

0

. The phase shift then takes on the following

one parametri
al form

Æ(x) = �x+ ar
tan

�

x

�(x)

�

+ � � n(x); �(x) =

p

x

2

+ �

2


ot

p

x

2

+ �

2

; (D.91)

where x = kR. Then other relevant fun
tions as the s
attering fun
tion and the relative

probability, whi
h here 
an be well approximated as the ratio N=A due to a 
onstant

amplitude in the inner region, are also dimensionless one parametri
al fun
tions

P (x) = �

x � �

0

(x)

x

2

+ �

2

�

N

2

(x)

A

2

(x)

; S(k) = e

�2ix

�

�(x) + ix

�(x)� ix

: (D.92)

(Fig12a) shows the phase-shift fun
tion for various values of �. All fun
tions are mono-

toni
 de
reasing and show no rapid stru
ture 
hange over a wide energy range. One

striking e�e
t although is that all fun
tions 
onverge towards a multiple of � and for


ertain � they even jump asymptoti
ally about �. This e�e
t is a pure realization of the

Levinson Theorem (D.55). For example if � = 7 the phase-shift 
onverges towards 2�,

meaning that the system must have two bound states. If the s
ale � is then in
reased

to � = 8 the phase-shift jumps by �, whi
h now 
an only mean that the s
ale has a

suÆ
ient size to allow for another bound state. Sin
e the phase-shifts are monotoni
,

the number of maxima in the 
orresponding 
ross-se
tions are dire
tly linked to the

number of bound states in that system, whi
h 
an seen in (Fig12
).
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Figure 12: Square-well potential

0.0 4.0 8.0 12.0 16.0 20.0

0

-π

-2π

-3π

(a) The phase-shift fun
tion Æ is plotted

versus x = kR for di�erent �. From bot-

tom to top the solid lines are showing

� = 2; 3; 4, the long-dashed lines � = 5; 6; 7

and the dashed line displays � = 8. All

lines are 
onverging towards mod�.

0.0 4.0 8.0 12.0 16.0 20.0
-30.0

-15.0

0.0

15.0

(b) This �gure shows in solid the inner

logarithmi
 derivative �(x) and in long-

dashed its �rst derivative �

0

(x) for � = 7.

The thin verti
al lines go through the poles

of �(x).

0.0 4.0 8.0 12.0 16.0 20.0

0.2

0.4

0.6

0.8

1.0

(
) The 
ross-se
tion �

s

(x) � sin

2

(x) is

plotted for � = 7. The solid line represents

the analyti
al 
al
ulation, while the single

points were 
al
ulated numeri
ally via the

T-matrix in momentum spa
e. For x > 20

the 
ross-se
tion is steadily de
reasing, go-

ing to zero for x!1.

0.0 4.0 8.0 12.0 16.0 20.0

0.2
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1.0

0
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(d) The top part of the �gure shows the

phase-shift fun
tion Æ(x) for � = 7. The

solid line represents the analyti
al 
al
u-

lation, while the single points were 
al
u-

lated numeri
ally via the T-matrix in mo-

mentum spa
e. The bottom part of the

�gure shows the average relative position

probability P (x) for � = 7. The thin verti-


al lines go through the maxima of P (x).

103



D. Potential S
attering

When looking more 
losely at one representative phase-shift in (Fig12d), we see that

for small x the phase-shift starts o� as that of a hard-sphere, sin
e its slope is more or

less a 
onstant. Then as x in
reases up to x � 4, we see how the phase-shift 
hanges its

behaviour in the sense that it turns away from the hard-sphere behaviour by gaining

a less steeper slope. And as x grows beyond x � 4 it rea
ts 
ontrary to its previous

behaviour by turning again towards a hard-sphere slope. But as x in
reases more and

more there is no 
han
e for the phase-shift to restore its stru
ture as to that of a hard

sphere. The phase-shift deviates more and more from a hard-sphere as x grows.

This behaviour 
an be 
ompared in the bottom part of (Fig12d), where the maxima

P � 1, representing a transparent potential, 
oin
ide with the region of s
attering

whi
h is di�erent than that of a hard-sphere. For large x the square well potential

be
omes more and more transparent, sin
e P ! 1. This is 
onsistent with the fa
t,

that for very large in
ident energy values, where the energy range of the potential is

negligible, the parti
le behaves as a free parti
le.

In summary we see in (Fig12d) and even in the 
ross-se
tion (Fig12
) the subtle in-

terplay between ba
kground s
attering and resonan
e s
attering. We 
learly see the

attempt of forming a resonan
e out of the ba
kground s
attering. But the attra
tive

square-well potential is to weak to produ
e proper resonan
es, it 
an not ful�ll the


ondition j�

0

(x

0

)j � 1 with �(x

0

) � 0 in order to produ
e rapid stru
ture 
hanges in

the s
attering fun
tions Æ; �

s

and P .

This 
an also be seen if we 
al
ulate the poles of s
attering fun
tion (D.81), for whi
h

we have to solve the 
omplex equation

p

z

2

+ �

2


ot

p

z

2

+ �

2

� iz = 0: (D.93)

A very ni
e and thorough treatment on the general behaviour of the above solutions

z = x

0

� iy

0

, x

0

; y

0

� 0 
an be found in the paper [37℄. The result is that for all

s
ales � the imaginary part y

0

of the solution is always larger than 1. The 
ondition

for observing a proper resonan
e is that a s
attering pole must be suÆ
iently 
lose to

the real x-axis, but for a square-well s
attering pole this is not possible. Up to two

signi�
ant digits the �rst three s
attering poles for � = 7 are

(x

0

; y

0

) = (3:38;�1:07) ; (8:36;�1:32) ; (12:18;�1:52): (D.94)

The next examples will not be investigated in su
h detail, sin
e all the above dis
ussed

properties are very similar to those of the square well potential. Important results will

still be the plots of the fun
tions �(x), Æ(x) and P (x).
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D.1.3.2 Os
illator-well potential

r

V(r)

R

-V0

V (r) =

(

�V

0

+

1

2

m!

2

r

2

for 0 � r � R;

0 for r > R;

(D.95)

with !R =

p

2V

0

=m and V

0

� 0:

The general real s
attering solution of the os
illator well is

0 � r � R : u

k

(r) = N �Kr � e

�

m!

2

r

2

F

1 1

h

3

4

�

K

2

4m!

;

3

2

;m!r

2

i

r > R : u

k

(r) = A sin(kr + Æ); (D.96)

where A is given by (D.64), K =

p

k

2

+ 2m� and F

1 1

is the Kummer-fun
tion or the


on
uent hypergeometri
 fun
tion whi
h is regular at the origin [30℄.

Continuity requirements of u

k

(r) and its �rst derivative at r = R, will �x the two

parameters Æ and N . When doing plots, it is also possible to redu
e the above fun
tions

down to one parametri
al ones with the same dimensionless s
ale � = R

p

2mV

0

as

used in the 
ase of the square-well potential. (Fig13) shows a plot of �(x) and the


orresponding fun
tions Æ(x) and P (x) versus x = kR for the same s
ale � = 7 as

in (Fig12). One 
learly sees that the stru
tures in (Fig13b) for the os
illator-well are

mu
h weaker than in the square-well potential. Otherwise (Fig12b,d) and (Fig13) are

nearly of similar stru
ture. This also holds for the 
ross-se
tion whi
h is not plotted

here.

Figure 13: � = 7
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0.0 4.0 8.0 12.0 16.0 20.0
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0.6
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-2π

(b)
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D.1.3.3 Coulomb-well potential

r

V(r)

R

V (r) =

(

��=r for 0 � r � R, � � 0;

0 for r > R:

(D.97)

The general real s
attering solution of the Coulomb-well is

0 � r � R : u

k

(r) = N � F (�m�=k; kr)

r > R : u

k

(r) = A sin(kr + Æ); (D.98)

where A is given by (D.64) and F the dimensionless at the origin regular s-wave

Coulomb fun
tion [30℄. After requiring 
ontinuity at r = R, and introdu
ing the

dimensionless s
ale �




= R �m� the resulting one parametri
al fun
tions �(x), Æ(x) and

P (x) 
an be plotted versus x = kR, and are shown in (Fig14) for the s
ale �




= 7.

What surprises is that the Coulomb singularity at r � 0 apparently does not e�e
t the

s
attering behaviour to mu
h, sin
e �(x) whi
h 
arries all information of the s
attering

potential, is nearly alike with that of the square-well potential.

Figure 14: �




= 7
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(b)
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D.1.3.4 Step-well potential

r

V(r)

-V1

V2

r1 r2=R
V (r) =

8

>

<

>

:

�V

1

for 0 � r � r

1

, V

1

� 0;

V

2

for r

1

< r � r

2

, V

2

� 0;

0 for r > r

2

, r

2

� r

1

:

(D.99)

The general real s
attering solution of the step well is divided into two separate energy

regions. The �rst region is 0 � E � V

2

with its 
orresponding solution

0 � r � r

1

: u

k

(r) = N sin(K

1

r) ; K

1

=

p

k

2

+ 2mV

1

r

1

< r � r

2

: u

k

(r) = Be

K

2

r

+ Ce

�K

2

r

; K

2

=

p

�(k

2

� 2mV

2

) 2 R

r > r

2

: u

k

(r) = A sin(kr + Æ); (D.100)

while the solution of the se
ond region E � V

2

is given by

0 � r � r

1

: u

k

(r) = N sin(K

1

r) ; K

1

=

p

k

2

+ 2mV

1

r

1

< r � r

2

: u

k

(r) = B sin(K

2

r) + C 
os(K

2

r) ; K

2

=

p

k

2

� 2mV

2

2 R

r > r

2

: u

k

(r) = A sin(kr + Æ): (D.101)

The step-well s
attering problem 
an be 
hara
terized by three dimensionless s
ales:

the depth s
ale �

1

= R

p

2mV

1

, the height s
ale �

2

= R

p

2mV

2

and the relative width

s
ale a = R=r1 � 1. All relevant fun
tions for this problem are plotted in (Fig15)

versus x = kR. First of all, we see that in all �gures the step-well potential, under


ertain s
ale 
on�gurations is 
apable of produ
ing resonan
es, as expe
ted, due to

rapid stru
ture 
hanges over a small region.

Starting with (Fig15a), it shows a representable phase-shift with �xed height and width

s
ales but for di�erent depth s
ales. The thin verti
al line displays the energy threshold

of the step-well potential. As the depth of the potential in
reases the more the resonan
e

moves towards lower energies. At a 
ertain depth the resonan
e disappears and the

phase-shift jumps asymptoti
ally about �, whi
h a

ording to the Levinson Theorem


an only imply that the resonan
e swit
hed into a bound-state.

(Fig15b) shows the phase-shift at �xed depth and width but for di�erent heights. The

thin verti
al lines show the 
orresponding energy thresholds. As the height in
reases

the stru
ture of the resonan
e be
omes sharper until it makes the ideal jump of �.

Furthermore, the higher the barrier of the potential the more resonan
es 
an prevail.

We see how a se
ond resonan
e is 
reated as the height s
ale tends to the value �

2

= 10.
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Figure 15: Step-well potential
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(Fig15
) shows the phase-shift at �xed depth and height but for di�erent widths. We

start with the top solid line a = 1 whi
h represents the phase-shift for the pure square-

well potential with no barrier. As the width in
reases from the bottom solid line to

the top dashed line, we 
learly see how a resonan
e is formed from the region above

the energy threshold given by the thin verti
al line. During this pro
ess the phase-

shift made an asymptoti
al jump about � to zero, implying that the system looses

its last bound-state. As the width in
reases even more, it will be
ome impossible for

the system to prevail or 
reate a resonan
e. That the system looses its bound- and

resonan
e-states for a = R=r

1

� 1 is reasonable, sin
e the barrier width relative to

the attra
tive square-well width is so large, that the total potential a
ts e�e
tively as

a pure repulsive square-well of strength �

2

with no bound- and resonan
e-states.

(Fig15d) shows in solid the inner logarithmi
 derivative �(x) and in dashed its �rst

derivative �

0

(x) for a �xed parameter set. This set is also used for the 
ross-se
tion

�

s

(x) � sin

2

Æ(x) in (Fig15e) and for the relative probability fun
tion P (x) in the

bottom part of (Fig15f).

Finally we want to determine the dimensionless resonan
e parameters (x

0

; y

0

), where

x

0

= Rk

0

and y

0

= R


0

with the set (�

1

; �

2

; a) = (4; 4; 2) as used in (Fig15d,e,f).

Compared to the previous examples we see in (Fig15d) that the resonan
e 
ondition

j�

0

(x

0

)j � 1 with �(x

0

) � 0 is more or less ful�lled at x � 2. Thus y

0


an be


al
ulated as y

0

= �x

0

=�

0

(x

0

). Up to two signi�
ant digits the resonant parameters

are (x

0

; y

0

) = (1:90; 0:08).

Although everything is settled we still want to 
ompare these resonan
e parameters by

those when 
al
ulating the exa
t s
attering poles of the s
attering fun
tion S(x) and

doing a �t in a small region around x � 2 to the exa
t fun
tions given in (Fig15f). The

�ts of the phase-shift (D.71) as well as the relative probability fun
tion (D.78), are in

the dimensionless formalism 2-parametri
 fun
tions

Æ(x) = �x

0

+ ar
tan

�

�

y

0

x� x

0

�

+ � � n(x)

P (x) =

1

y

0

�

y

2

0

y

2

0

+ (x� x

0

)

2

: (D.102)

The resulting resonan
e parameters up to two signi�
ant digits are

(x

0

; y

0

) = S-pole: (1:93; 0:07) ; Æ-�t: (1:90; 0:08) ; P -�t: (1:93; 0:07): (D.103)

These results 
onvin
e us, that for the parameter set (�

1

; �

2

; a) = (4; 4; 2) we really have

a resonan
e-state at x � 2 with a width y � 0:1.
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D.1.3.5 Step+Coulomb-well potential

r

V(r)

-V1

V2

r1 r2 R
V (r) =

8

>

>

>

>

<

>

>

>

>

:

�V

1

for 0 � r � r

1

, V

1

� 0;

V

2

for r

1

< r � r

2

, V

2

� 0;

��=r for r

2

< r � R, � � 0;

0 for r > R, R � r

2

� r

1

:

(D.104)

The s
attering solution of this potential is the same as in the previous 
ase, ex
ept in

r

2

< r � R : u

k

(r) = D

1

� F (�; �) +D

2

�G(�; �) ; � = �m�=k; � = kr; (D.105)

where F is the regular and G the linear independent irregular s-wave Coulomb wave-

fun
tion [32℄,[30℄. In this problem we want to �x the step parameters (V

1

; V

2

; r

1

; r

2

)

and tune the Coulomb parameters (�;R), in order to study the pure in
uen
e of a

Coulomb intera
tion on possible resonan
e-states in the step-well. For this we turn

away from the dimensionless formalism of the previous examples and transform the

step parameters (�

1

; �

2

; a) = (4; 4; 2) as used in (Fig15d,e,f) into the following physi
al

example: m = 0:5MeV, V

1

= V

2

= 1MeV and r

1

= 2=MeV, r

2

= 4=MeV.

(Fig16) then shows the phase-shift versus the in
ident s
attering momentum k, for

�xed � and di�erent Coulomb ranges R. The range R = 4=MeV, whi
h represents the

pure step-well part, serves as a referen
e and is displayed at the top of ea
h sub�g-

ure. For the 
orresponding resonan
e parameters, we get up to two signi�
ant digits

(k

0

; 


0

) = (0:48; 0:02)MeV for R = 4=MeV as already known from the previous exam-

ple. If the Coulomb intera
tion is now swit
hed on, we get (0:49; 0:02)MeV for (Fig16a)

and (0:52; 0:03)MeV for (Fig16b). All these results I will leave without 
omments until

we deal with the problem of full range Coulomb intera
tion.

Figure 16:
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(b) � = 2 ; R=MeV= 4; 6
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D.1.4 S-wave s
attering on potentials with an e�e
tive range R

e�

In order to have an illustrative pi
ture of stationary s
attering theory and to keep

mathemati
s as simple as possible, we fo
used in the previous se
tion on potentials with

a stri
t range R. Unfortunately su
h potentials do not exist in nature. In the worst


ase, if they 
an not be used even for modeling, they are rather arti�
ial 
onstru
ts.

More physi
al potentials are those of a Yukawa-type

V (r) = �� �

e

��r

r

; (D.106)

where � is the strength and where R

e�

� 1=� 
an be seen as the e�e
tive range of the

potential. The spe
ial 
ase � = 0 gives the Coulomb potential, and is still ex
luded in

this se
tion, sin
e no e�e
tive range 
an be de�ned. Otherwise all previous de�nitions

and results of s
attering on potentials with a stri
t range R 
an be transferred to

Yukawa-like potentials by working with the approximation R � R

e�

. A more pre
ise

treatment on this is given in [38℄. There it is also shown how R

e�


an be determined

from the low-energy s
attering phase-shift, even for potentials di�erent than Yukawa.

For the rest of this se
tion we fo
us on the following Step+Yukawa-potential:

r

V(r)

-V1

V2

r1 r2

V (r) =

8

>

<

>

:

�V

1

for 0 � r � r

1

, V

1

� 0;

V

2

for r

1

< r � r

2

, V

2

� 0;

�� � e

��r

=r for r > r

2

, r

2

� r

1

, � � 0:

(D.107)

Up to now there exists no analyti
al s
attering solution for any kind of potential whi
h


ontains a Yukawa-potential. So the above s
attering problem is a

essible only by

numeri
al means. Sin
e our numeri
al methods (Appendix E) are 
onstru
ted for


al
ulating phase-shifts and not the full s
attering wavefun
tions, the only way to


al
ulate possible resonan
e parameters is to �t the numeri
al phase-shift fun
tion by

Æ(k) = �

0

+ ar
tan

�

�




0

k � k

0

�

+ � � n(k); (D.108)

as given in (D.71), but where now �

0

has to be seen as an e�e
tive ba
kground parameter

whi
h 
an be well approximated by �

0

� �k

0

R

e�

. The 
orresponding 
ross-se
tion is

given as usual �

s

(k) � sin

2

Æ(k).

For the same reason as in the 
ase of the Step+Coulomb-well (D.1.3.5) we again want

to �x the step parameters (V

1

; V

2

; r

1

; r

2

) and only tune the Yukawa parameters (�; �).

To have 
omparable results we take the same step parameters as before: m = 0:5MeV

and V

1

= V

2

= 1MeV, r

1

= 2=MeV, r

2

= 4=MeV.
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Figure 17: Step+Yukawa potential
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(Fig17a,
) show in the top part of ea
h sub�gure the phase-shift and in the bottom

part the 
ross-se
tion versus the in
ident s
attering momentum k for di�erent Yukawa

parameters (�; �). (Fig17b,d) are the 
orresponding zoomed �gures where the thin lines

show the best �t around the resonan
e region. The resulting resonan
e parameters up

to two signi�
ant digits are (k

0

; 


0

) = (0:49; 0:02)MeV for (Fig17b) and (0:50; 0:03)MeV

for (Fig17d). The interpretation of these results I also want to postpone until we treat

the problem of full range s
attering via a Coulomb potential.

We 
learly see that the �t for R

e�

� 12=MeV is rather poor 
ompared to the one of

R

e�

� 6=MeV. This is more or less a fundamental problem and has to do with the

ba
kground approximation in (D.71). Its approximation by a 
onstant is only justi�ed

if the ba
kground 
hange is suÆ
iently weak within a resonan
e region | an important


ondition in approximating the phase-shift (D.68) to the 3-parametri
 fun
tion (D.71),

otherwise the parameters �

0

and 


0

must be treated as k-dependent fun
tions. So, the

larger R

e�

gets, the less is (D.108) suited to �t the phase-shift near a resonan
e. The

problem of �nding a better �tting fun
tion is beyond the s
ope of this se
tion.
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D.2 Coulomb s
attering

The problem of having potentials whi
h behave asymptoti
ally as a Coulomb potential,

i.e. whi
h are of in�nite range, is that general abstra
t s
attering equations and de�-

nitions, like (D.8) and (D.24), are not well de�ned expressions anymore [11℄. Coulomb

s
attering 
an not be treated in an abstra
t way. Every representation has its own

problems and must be interpreted di�erently. For example in 
oordinate spa
e the

problem of s
attering by Coulomb-like potentials is theoreti
ally well understood [32℄,

while the same problem in momentum spa
e still seems to be ina

essible. It may

appear strange that a problem whi
h has a well de�ned solution in 
oordinate spa
e

should o

asion diÆ
ulty in momentum spa
e. The fa
t is twofold [10℄, as we will see

in more detail later on. Firstly, the logarithmi
 singularity in the s
attering phase,

whi
h 
an be treated easily in 
oordinate spa
e, is far more intra
table in momentum

spa
e. Se
ondly, Coulomb-like wavefun
tions in momentum spa
e are ill-de�ned. Both

prevent a numeri
al 
al
ulation in momentum spa
e.

For the moment we look at the pure Coulomb potential in 
oordinate spa
e, where the

s
attering solution 
an be 
al
ulated analyti
ally [32℄. From this we will see that the

asymptoti
al behaviour of the Coulomb wavefun
tion is a totally di�erent one than

(D.41) for potentials of �nite range. But it is still possible to de�ne a r-independent

phase shift parameter, at the expense that the in
ident waves 
an no longer be repre-

sented by pure plane waves, one rather has to work with distorted waves. Sin
e the

Coulomb potential is of in�nite range, the parti
les will always feel s
attering even if

they are in�nitely far away from the 
ore of the potential | in a Coulomb potential

there is no region where free parti
les 
an exists.

D.2.1 Pure Coulomb potential

The pure s
attering Coulomb S
hr�odinger equation with the Hamiltonian H = H

0

+V ,

H

0

= k

2

=2m and V = ��=r, in 
oordinate spa
e

(� +

~

k

2

)	

~

k

(~r) = U(r)	

~

k

(~r) ; U(r) = 2mV (r); (D.109)


an be solved analyti
ally in two di�erent ways, either by solving it in spheri
al 
o-

ordinates, as usual, or by using paraboli
 
oordinates [32℄. The latter one being a

representation whi
h is independent of angular momenta.

Treating the above S
hr�odinger equation in paraboli
 
oordinates is very useful, sin
e

these 
oordinates prefer a 
ertain dire
tion in spa
e and thus suits the s
attering prob-

lem perfe
tly. We know that a unique s
attering solution only exists if 
ertain boundary


onditions have been implemented before. The most simplest boundary 
ondition is to

put the basis of H

0

, that means plane waves, along the in�nite negative z-axis, whi
h

then move along the positive dire
tion with momentum k.

When using paraboli
 
oordinates, the general physi
al axial-symmetri
 solution is

given by

	

k

(r; z) = C(�) � e

ikz

F

1 1

[�i� ; 1 ; ik(r � z)℄ ; � = �m�=k; (D.110)

where F

1 1

is the at the origin regular 
on
uent hypergeometri
 fun
tion [30℄. In the

above solution the sign of � is not �xed. If � � 0 it is the general physi
al solution for
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an attra
tive Coulomb potential, otherwise for a repulsive Coulomb potential. When


al
ulating 
ross se
tions, only the asymptoti
 behaviour of the wavefun
tion (D.110)

is relevant. Following the asymptoti
 behaviour of the hypergeometri
 fun
tion [30℄

F

1 1

(a ; b ; z) =

jzj!1

�(b)

�(b� a)

(�z)

�a

+

�(b)

�(a)

e

z

z

a�b

; (D.111)

will give

	

k

(r; z) =

jr�zj!1

C(�) �

e

��=2

�(1 + i�)

8

<

:

e

i

�

kz+� ln[k(r�z)℄

�

+ f




k

(#) �

e

i

�

kr�� ln(2kr)

�

r

9

=

;

with f




k

(#) = �

�(1 + i�)

�(1� i�)

�

�e

�i� ln[(1�
os#)=2℄

k(1� 
os#)

; z = r 
os#: (D.112)

We see that both the in
ident and outgoing s
attered waves are modi�ed from there

usual form (D.41) by logarithmi
 phase distortion fa
tors. The overall normalization


onstant C 
an be �xed su
h that the in
ident beam has an amplitude of one. It 
an

now be shown that when 
al
ulating the ratio of the outgoing 
ux and the 
ux of the

in
ident beam, whi
h will give the di�erential 
ross se
tion, these r-dependent phase

fa
tors do not 
ontribute. This allows us to identify the 
oeÆ
ient f




k

of the outgoing

wave as the s
attering amplitude with the same relation as given in (D.39).

This gives us the Rutherford formula for the di�erential elasti
 s
attering 
ross se
tion

in a Coulomb �eld

d�




d


=

�

�

f




k

(#)

�

�

2

=

�

2

4k

2

sin

4

(#=2)

: (D.113)

As is well known, the total Coulomb 
ross se
tion diverges.

Now we try to solve the pure Coulomb problem in spheri
al 
oordinates, or equivalently

we try to make a partial wave analysis. Using the same boundary 
ondition as before,

our s
attering problem is axial-symmetri
 and therefore allows the following expansion

in Legendre polynomials

	

k

(r; #) =

1

X

l=0

a

l;k

u

l;k

r

P

l

(
os#); (D.114)

where the wave fun
tion u

l;k

satis�es the radial S
hr�odinger equation with the general

solution [32℄

u

l;k

(r) = A

l;k

�

l+1

e

i�

F

1 1

[l + 1 + i� ; 2l + 2 ; �2i�℄ � B

l;k

F (�; �); (D.115)

where F (�; �) is the regular Coulomb wave fun
tion [32℄,[30℄ and � = �m�=k, � = kr.
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Using again (D.111), the asymptoti
 radial wave fun
tion reads

u

l;k

(r) =

r!1

A

l;k

�

�(2l + 2)e

��=2

2

l

j�(l + 1 + i�)j

� sin(�� l�=2 + �

l;k

� � ln 2�)

�

e

A

l;k

� sin(�� l�=2 + �

l;k

� � ln 2�); (D.116)

where �

l;k

= arg�(l+1+ i�) is the pure Coulomb phase-shift. Fixing the normalization


onstant as

e

A

l;k

= e

i�

l;k

and using the identity (D.45), the full wave fun
tion will have

the following asymptoti
 stru
ture

	

k

(r; #) =

r!1

1

X

l=0

a

l;k

sin(kr � l�=2� � ln 2kr)

r

P

l

(
os#)

+

"

1

X

l=0

(�i)

l

a

l;k

sin�

l;k

P

l

(
os#)

#

e

i[kr�� ln 2kr℄

r

: (D.117)

The above expression must be equal to (D.112). Furthermore, they must also 
oin
ide

when the Coulomb potential is absent, that means if � = � = 0. When �xing the

normalization 
onstant C su
h that the in
ident wave has an amplitude of one, the


oeÆ
ients a

l;k


an be identi�ed as a

l;k

= i

l

(2l + 1)=k, whi
h are independent of �.

Thus the identi�
ation is also valid for � 6= 0 and makes it possible to identify the

Coulomb s
attering amplitude as follows

f




k

(#) =

1

k

1

X

l=0

(2l + 1)e

i�

l;k

sin�

l;k

P

l

(
os#): (D.118)

All the information of a Coulomb s
attering pro
ess is also hidden here in an asymptoti


phase-shift parameter �

l;k

. Although we 
an now 
al
ulate 
ross se
tions in the same

manner as before by adjusting the s
attering boundary 
ondition in the above way from

plane waves to distorted waves, it is, as already stated in the beginning of this se
tion,

not possible to 
onstru
t an abstra
t relationship between the s
attering amplitude and

the T -matrix as in (D.40). Rakishly speaking it is not 
lear how to adjust the boundary


ondition in an abstra
t spa
e, in order to have well-de�ned s
attering obje
ts. In

the next se
tion it will be shown how at least under 
ertain 
onditions, the abstra
t

formalism in Coulomb s
attering 
an be maintained.

But before going there, we qui
kly want to look again at the s-wave Coulomb-well

solution (D.98) in the limit R ! 1. Sin
e the asymptoti
al regular s-wave Coulomb

fun
tion is given by [32℄,[30℄

F (�; �) =

�!1

sin(�+ � � � ln 2�); (D.119)

the 
orre
t asymptoti
al behaviour of (D.98) in the limit R!1 
an only be a
hieved if

(D.98) 
oin
ides with (D.116), i.e. if the 
ontinuity requirements at r = R are organized

su
h that it �xes the parameters as follows: N = A = e

i�

and Æ = � � � ln 2kR, where

� = arg�(1 + i�) is the partial s-wave Coulomb phase shift. We 
learly see that its

numeri
ally impossible to 
al
ulate the Coulomb-well phase-shift Æ in the limit R!1

within the s
attering boundary 
ondition of in
ident plane waves.
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D.2.2 Coulomb-like potentials

This se
tion wants to show a possible way, how the problem of Coulomb s
attering in

momentum spa
e 
an be atta
ked, at least in a numeri
al sense. At the end, only a

solution for repulsive Coulomb-like potentials is given. The basi
 ideas of this se
tion

are taken from [10℄.

Lets say our Hamiltonian is given as follows: H = K + V , where K is the kineti
 part,

or free Hamiltonian and V is an arbitrary spheri
al symmetri
 Coulomb-like potential.

When adding and subtra
ting the pure Coulomb potential, our Hamiltonian 
an be

written as

H = K + V = K + V




+ V � V




� H




0

+ V

s

; (D.120)

where V

s

is now a short ranged potential and H




0

is the Coulomb referen
e system, for

whi
h the eigenvalue problem H




0

j�




i = E




0

j�




i is already known.

The �rst guess how to solve the 
orresponding s
attering problem would be to write

down the Lippmann-S
hwinger equation as in (D.8). Although the potential V

s

is of

�nite range, one has to be 
areful when working with this abstra
t equation, sin
e the

Coulomb Greens-fun
tion G




0

of the referen
e system is not a well de�ned operator

in this abstra
t notation. For example if one 
hooses momentum representation, the

eigenfun
tions h

~

kj�




i of G




0

, whi
h must be Fourier transforms of the 
oordinate spa
e

Coulomb fun
tions h~rj�




i, do not exist in a fun
tional sense [10℄.

Sin
e our numeri
al 
al
ulations are done in momentum spa
e and sin
e we have some

analyti
al information in 
oordinate spa
e, it is essential to work out a way, su
h that

Coulomb s
attering 
an be treated in a formal manner. The easiest possible way would

be to 
onstru
t a referen
e Hamiltonian of �nite range, either by introdu
ing a Coulomb

shielding parameter, or by 
utting the Coulomb potential at some distan
e. By intro-

du
ing these 
ut-o� parameters, everything is of �nite range and therefore well-de�ned.

Thus the s
attering problem 
an be solved as usual. But when restoring the original

problem by letting the 
ut-o�s go into their 
orresponding limits, we run again into

problems. On the one hand, this restoring is numeri
ally very ineÆ
ient, in the worst


ase even numeri
ally unstable. On the other hand, if it is possible to work analyti-


ally, this limiting pro
ess 
an sometimes not be a

omplished, or leads to the same

ill-de�ned expressions as before. So this pro
edure alone is not ne
essarily su

essful,

but together with the following 2-potential formula we are in a better situation [10℄.

As a regularized referen
e Hamiltonian

b

H




0

= K +

b

V




we will 
hoose

b

V




to be the

Coulomb-well potential, with the �nite range of 0 � r � R. The full Hamiltonian

b

H = K +

b

V




+ V

s

is then also of �nite range and we 
an write down the well de�ned

formal outgoing Lippmann-S
hwinger equation in two equivalent ways

j	

~

k

i =

8

>

<

>

:

j'

~

k

i+G

0

� (

b

V




+ V

s

) � j	

~

k

i with G

0

=

1

E �K + i�

;

jb�




~

k

i+

b

G




0

� V

s

� j	

~

k

i with

b

G




0

=

1

E �

b

H




0

+ i�

;

(D.121)

where j'

~

k

i are the eigenfun
tions of K =

~

k

2

=2m and jb�




~

k

i the eigenfun
tions of the

Coulomb-well Hamiltonian

b

H




0

.
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The 2-potential formula 
an be derived very easily, if one 
hanges to the equivalent

T-operator equation

T = (

b

V




+ V

s

) + (

b

V




+ V

s

) �G

0

� T: (D.122)

This equation 
an be rewritten as

T = (1�

b

V




�G

0

)

�1

(

b

V




+ V

s

+ V

s

�G

0

� T ): (D.123)

When writing down the T-operator equation for the single potential

b

V




b

T




=

b

V




+

b

V




�G

0

�

b

T




; (D.124)

and studying the expression

(1�

b

V




�G

0

)(1+

b

T




�G

0

) = 1+ (

b

T




�

b

V




�

b

V




�G

0

�

b

T




) �G

0

� 1; (D.125)

then (D.123) is equivalent to

T = (1+

b

T




�G

0

)(

b

V




+ V

s

+ V

s

�G

0

� T )

�

b

T




+ (1+

b

T




�G

0

) � V

s

� (1+G

0

� T ): (D.126)

If two operators are multiplied to give unity, then the order of multipli
ation is irrele-

vant. Thus (D.125) gives the identity

b

V




� G

0

�

b

T




=

b

T




� G

0

�

b

V




, and (D.126) 
an be

written as

T =

b

T




+

b

T




�

�

(

b

V




)

�1

� V

s

� (

b

V




+ V

s

)

�1

�

� T: (D.127)

Using the de�nition (D.24), the above equation takes the �nal form

h'

~

k

0

jT j'

~

k

i = h'

~

k

0

j

b

T




j'

~

k

i+ hb�




~

k

0

jV

s

j	

~

k

i ; k

0

= k: (D.128)

or equivalently in the form of (D.40)

f

~

k

('; #) =

b

f




~

k

('; #)� 4m�

2

hb�




~

k

0

jV

s

j	

~

k

i ; k

0

= k (D.129)

where f

~

k

is the s
attering amplitude of the full problem, while

b

f




~

k

is the s
attering

amplitude of the Coulomb-well.

The above formula is the 
elebrated 2-potential formula. Although the full Hamiltonian

is additive in

b

V




and V

s

, the full s
attering amplitude f

~

k

is not simply the sum of the

s
attering amplitude due to

b

V




in the absen
e of V

s

and the s
attering amplitude due

to V

s

in the absen
e of

b

V




but, instead, involves the s
attering amplitude due to V

s

in

the presen
e of

b

V




.

The problem of 
al
ulating the full s
attering amplitude is redu
ed to the determination

of the matrix element hb�




jV

s

j	i. We know that the eigenfun
tions of the Coulomb-

well Hamiltonian

b

H




0

form a 
omplete set. For numeri
al 
al
ulations it is now essential

if the pure Coulomb-well potential

b

V




is attra
tive or repulsive. The 
ompleteness

relation of an attra
tive Coulomb potential is nasty due to its additional bound state

part and therefore makes it impossible to work with it numeri
ally.

1 =

8

>

>

<

>

>

:

X

E�0

jb�




~

k

ihb�




~

k

j+

Z

d

3

kjb�




~

k

ihb�




~

k

j if

b

V




is attra
tive;

Z

d

3

kjb�




~

k

ihb�




~

k

j if

b

V




is repulsive:

(D.130)
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For a repulsive Coulomb potential it is easy to evaluate the above matrix element. In-

serting the se
ond form of the Lippmann-S
hwinger equation (D.121) and sandwi
hing

the relevant 
ompleteness relation between

b

G




0

will give

hb�




~

k

0

jV

s

j	

~

k

i = hb�




~

k

0

jV

s

jb�




~

k

i

+

Z

d

3

k

00

hb�




~

k

0

jV

s

jb�




~

k

00

i

1

E �

b

E




0

+ i�

hb�




~

k

00

jV

s

j	

~

k

i ; k

0

= k:

(D.131)

The stru
tures of (D.129) and (D.131) allow us now to take the limit R!1 from the

pure Coulomb-well to full Coulomb potential in an analyti
al way. If the limit is taken

in 
oordinate spa
e as in (D.119), it is a well de�ned pro
edure, sin
e we know how the

wavefun
tion and the s
attering amplitude for a pure Coulomb potential are de�ned in


oordinate spa
e. For the axial symmetri
 boundary 
ondition, they are

h~rjb�




~

k

i =

R!1

hr; #j�




k

i =

1

X

l=0

i

l

(2l + 1)e

i�

l;k

F (�; kr)

kr

P

l

(
os#);

b

f




k

(#) =

R!1

f




k

(#) =

1

k

1

X

l=0

(2l + 1)e

i�

l;k

sin�

l;k

P

l

(
os#); (D.132)

where �

l;k

= arg�(l + 1 + i�) is the Coulomb phase shift and � = �m�=k the 
harge

parameter. Consequently in the 
oordinate spa
e limit the hat-symbol in (D.129) and

(D.131) may be removed, and the �nal solution for the full s
attering amplitude of a

Coulomb-like potential V with the short range part V

s

= V � V




is

f

~

k

('; #) = f




~

k

('; #) + h�

~

k

0

jV

s

j	

~

k

i ; k

0

= k: (D.133)

If V

s

is lo
al and if the pure Coulomb potential V




is repulsive, then the matrix element

h�




~

k

0

jV

s

j	

k

i =

Z

d

3

r�




~

k

0

(~r)V

s

(r)�




~

k

(~r)

+

Z

d

3

k

00

Z

d

3

r�




~

k

0

(~r)

V

s

(r)

E �E




0

+ i�

�




~

k

00

(~r) � h�




~

k

00

jV

s

j	

k

i; (D.134)

is of an form that is numeri
ally easy a

essible. Even if V

s

is non-lo
al, the numeri
al

evaluation of this self 
onsistent equation works as usual (Appendix E), ex
ept that

now Coulomb basis fun
tions has to be used instead of plane waves as in former 
al
u-

lations. This integration is numeri
ally stable be
ause the 
oordinate spa
e Coulomb

wavefun
tions are well de�ned and the relevant potential V

s

is short ranged. If V

s

is

known initially in momentum spa
e, the above pres
ription for 
al
ulating the matrix

element involves another step, that is we must �rst �nd V

s

in 
oordinate spa
e by

Fourier-transforming V

s

from momentum spa
e into 
oordinate spa
e. Those Fourier

transforms do exist be
ause of the �nite range of V

s

.

This 
ompletes the proof. It shows that a 
onsiderable amount of numeri
al e�ort is

ne
essary in order to treat Coulomb s
attering in momentum spa
e properly. To note

again, this overall pro
edure only holds for repulsive Coulomb-like potentials, whi
h do

not have a dis
rete spe
trum.

118



D. Potential S
attering

D.2.3 Step-well plus attra
tive Coulomb potential

In the previous se
tion we have seen that attra
tive Coulomb-like potentials are still

numeri
ally ina

essible. But sin
e we are 
onfronted with this problem in our ST-

model and no numeri
al te
hniques are at hand, we have to work analyti
ally. For this,

the ST-potential as in (Fig3) is broken down to the following over-simpli�ed potential:

r

V(r)

-V1

V2

r1 r2
V (r) =

8

>

<

>

:

�V

1

for 0 � r � r

1

, V

1

� 0;

V

2

for r

1

< r � r

2

, V

2

� 0;

��=r for r > r

2

, r

2

� r

1

, � � 0;

(D.135)

The general real s-wave s
attering solution of the above potential is the same as given

in (D.100) and (D.101), ex
ept in the region r > r

2

where now the free solution has to

be ex
hanged by the general Coulomb wavefun
tions

r > r

2

: u

k

(r) = D

1

� F (�; �) +D

2

�G(�; �) ; � = �m�=k; � = kr; (D.136)

with their asymptoti
 behaviour [32℄

F (�; �) =

�!1

sin(�+ � � � ln 2�)

G(�; �) =

�!1


os(�+ � � � ln 2�); (D.137)

where � = arg�(1+ i�) is the s-wave Coulomb phase shift. To 
al
ulate the phase shift

Æ of the full problem, we will rewrite the asymptoti
 wavefun
tion (D.136) as follows

u

k

(r) =

r!1

sin(�� � ln 2�) � [D

1


os� �D

2

sin�℄

+ 
os(�� � ln 2�) � [D

1

sin� +D

2


os�℄: (D.138)

If we now put X := D

1


os� �D

2

sin� and Y := D

1

sin� +D

2


os�, then be
ause of

X

2

+ Y

2

= D

2

1

+D

2

2

, the parameters X and Y 
an be represented as

X =

q

D

2

1

+D

2

2


os Æ �

q

D

2

1

+D

2

2


os(� + 
)

Y =

q

D

2

1

+D

2

2

sin Æ �

q

D

2

1

+D

2

2

sin(� + 
); (D.139)

with tan 
 = D

2

=D

1

. Then (D.138) takes the form

u

k

(r) =

r!1

q

D

2

1

+D

2

2

� sin(�+ Æ � � ln 2�): (D.140)
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This 
on�rms, a

ording to (D.116) that Æ is the full phase shift fun
tion that 
om-

pletely 
hara
terizes this s-wave s
attering problem. Consequently the s
attering am-

plitude and the 
ross-se
tion for the s-wave 
omponent are given by

f(k) =

1

k

e

iÆ(k)

sin Æ(k) ; jf(k)j

2

� sin

2

Æ(k)

with Æ(k) = �(k) + ar
tan(D

2

=D

1

) + � � n(k): (D.141)

This phase-shift reminds us strongly at the one given in (D.68). We 
an draw the

following analog, and see �(k), sin
e it 
arries only the information of the pure Coulomb

potential as the ba
kground phase-shift, while the last term 
arrying all the information

of the 
omplete potential 
an be seen as the a
tual potential s
attering term whi
h give

rise to possible resonan
es. The de
isive di�eren
e between the ba
kground �(k) and

the ba
kground �(k) in (D.68) is that the latter is 
hanging 
onstantly over the whole

momentum range k, while the behaviour of �(k) 
an be divided into two separate

regions: strong os
illations for suÆ
iently small momenta while relatively slow 
hanges

and a 
onvergen
e towards zero for suÆ
iently large momenta. So, only if a resonan
e

(k

0

; �

0

) is embedded into region of a slow varying ba
kground �(k), it is justi�ed to

approximate the 
omplete phase-shift Æ(k) similar as in (D.71), by

Æ(k) = �

0

+ ar
tan

�

�

�

0

k � k

0

�

+ � � n(k): (D.142)

Otherwise the parameters �

0

and �

0

must be treated as k-dependent fun
tions within

a small region around the resonan
e point k

0

.

To study this problem, we will take up the same physi
al step-parameters as in se
tions

(D.1.3.4/5) and (D.1.4), where the results still need to be interpreted. Then (Fig18a,
)

show the 
ross-se
tion versus the in
ident s
attering momentum k for di�erent Coulomb

strenghts �. For this parameter set we see that up to � � 1 the resonan
e at k � 0:5

lies well outside the rapid 
hanging ba
kground region, for � = 0:5 even better than

for � = 1. This allows us to �t the resonan
e by the 3-parametri
 fun
tion (D.142).

(Fig 18b,d) are the 
orresponding zoomed graphs where the thin lines show again the

best �t around the resonan
e region. As expe
ted, the �t for � = 0:5 is better than

that for the stronger � = 1. The resulting resonan
e parameters up to two signi�
ant

digits are the same (k

0

; �

0

) = (0:49; 0:02)MeV for both (Fig18b,d). These values are

identi
al with those for a pure step-potential, where � = 0 as in se
tion (D.1.3.4).

This is a surprising e�e
t, sin
e it tells us that for a �xed step potential the Coulomb

potential 
an be swit
hed on or o�, in both 
ases we get the same resonan
e | the

global stru
ture of the 
ross-se
tion is 
ertainly a 
omplete di�erent one in ea
h 
ase.

Now, one has to be very 
areful to 
on
lude su
h a behaviour for all Coulomb strengths

�, sin
e we have only shown it for � � 1. For stronger � the ba
kground s
attering gets

predominant and our te
hnique for 
al
ulating the resonan
e width �

0

via (D.142) fails.

On the other hand the parameter k

0

is 
ertainly independent of ba
kground s
attering,

whi
h expli
itly 
an be seen in (Fig18e), where only the pure resonant term in the


ross-se
tion� sin

2


(k) with 
(k) = ar
tan(D

2

=D

1

) is plotted for various strenghts �,

all giving the same result k

0

� 0:5 over a wide range. The solid line displays � = 1,

the long-dashed � = 5 while the dashed line shows � = 25.
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Figure 18: Step+(attra
tive)Coulomb potential
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Is it maybe true that ba
kground s
attering behaves in su
h a 
ompli
ated way that it

leaves the width �

0

, and therefore the 
omplete resonan
e state (k

0

; �

0

) invariant, but


an not be dete
ted by the methods we use up to now? For moderate ba
kgrounds

this is true as I have shown in a numeri
al sense not only for the pure full range

Coulomb potential but also when using instead of it a Coulomb-well (D.1.3.5) or a

Yukawa potential (D.1.4). All of them yield the same resonan
e whether the potential

is res
aled or even turned on or o�.

If its possible to prove this e�e
t in general, there would be immediately a reasonable

explanation at hand: sin
e all potentials whi
h have no overshoot into the positive

energy region show no resonan
e stru
ture, they will also show no in
uen
e on possible

resonan
e states. This statement would be extremely helpful, when we have to deal

with more general attra
tive Coulomb-like potentials. If we only look at the resonant

part in a s-wave 
ross-se
tion, its irrelevant whether we work in the asymptoti
 region

with the full attra
tive Coulomb potential or with any other short-range potential,

having only 
ontributions in the negative energy region. All of them give the same

resonan
e values (k

0

; �

0

).

Certainly a 
lear-
ut proof of this general statement still needs to be worked out. But

anyhow, for moderate Coulomb strenghts �, I have shown that this statement 
an

be veri�ed. After all this implies an important result for this se
tion, namely that

this te
hnique o�ers an easy implementation in momentum spa
e, sin
e asymptoti
al

Coulomb shielding in 
oordinate spa
e 
an be easily transferred to momentum spa
e

and vi
e versa. This te
hnique is 
ertainly only to be seen as a �rst step towards solving

the full problem of Coulomb s
attering in momentum spa
e.
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E Numeri
s in Momentum Spa
e

The theory and equations of quantum me
hani
s are represented equally well in 
o-

ordinate and momentum spa
e. Bound state problems, whi
h by de�nition deal with

normalizable wavefun
tions, 
an a
tually be solved without any 
on
eptual problems

in either spa
e, while s
attering problems, whi
h deal with non-normalizable states,

are more of a 
hallenge in momentum spa
e. This 
hallenge arises, as we have seen

in (Appendix D), in part, be
ause boundary 
onditions are more naturally imposed in


oordinate spa
e, and in part, be
ause non-normalizable states in general 
annot be

Fourier transformed.

In spite of these diÆ
ulties, there is a 
onsiderable interest in momentum spa
e meth-

ods. First of all momentum spa
e o�ers a more natural des
ription of many-body and

�eld theories. Dealing with nonlo
al potentials or the extension to relativisti
 equations


an be handled more easily in momentum spa
e than in 
oordinate spa
e.

In 
oordinate spa
e the equations of motion are mostly di�erential equations, while in

momentum spa
e they are mostly integral equations. These integral equations 
an be

represented as matrix equations, where the problem of solving the equation is either

redu
ed to a diagonalization (bound state problem) or to the determination of an in-

verse matrix (s
attering problem). In both 
ases one has to be 
areful of the so 
alled

fundamental singularities in momentum spa
e. In the bound state region for example,

the Coulomb potential is showing a q

2

(single-pole) and the linear potential even a q

4

(double-pole) singularity. We will show that the Coulomb singularity 
an be 
ompletely


ontrolled by using the numeri
al te
hnique of 
ounter terms, while the linear singu-

larity 
an only be redu
ed to a single-pole singularity. The s
attering region will not

su�er from these singularities if the potentials are restri
ted to have a �nite range, but

rather shows its fundamental singularity only on
e in the free-parti
le Greens fun
tion,

whi
h also 
an be 
ontrolled by a numeri
al 
ounter term.

For showing the basi
 stru
tures of a numeri
al 
ode in momentum spa
e, it is suÆ
ient

to restri
t ourselves to the simplest 
ase, namely working non-relativisti
 and with lo
al

spheri
al symmetri
 potentials.

E.1 Bound state domain

To treat as a many potentials simultaneously, we will study the following 
ompa
t

potential fo
using on three parameter sets

V (r) = ��

n

� r

n

� e

��r

=

8

>

<

>

:

Yukawa potential if n = �1, � > 0;

Coulomb potential if n = �1, � = 0;

Linear potential if n = 1, � = 0:

(E.1)

The advantage of introdu
ing an exponential fun
tion or s
reening fun
tion for the

Coulomb and Linear potential is twofold. First of all it serves as a 
onverging fa
tor

in the relevant Fourier transformations and se
ondly it makes it possible to treat the

fundamental singularities of the Coulomb and Linear potential in the very same way.
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The S
hr�odinger equation in 
oordinate spa
e is given as

�

�

2m

 (~r) + V (r) (~r) = E (~r): (E.2)

By Fourier transforming the 
oordinate wavefun
tions, we get the S
hr�odinger equation

in momentum spa
e

p

2

2m

�(~p) +

Z

d

3

p

0

V (~q)�(~p

0

) = E�(~p); (E.3)

with the same eigenvalues E as in 
oordinate spa
e and ~q = ~p � ~p

0

. The momentum

spa
e potential V (~q) is the Fourier transform of the 
oordinate spa
e potential (E.1)

V (~q) =

1

(2�)

3

Z

d

3

r e

i~q�~r

� V (r)

= (�1)

n

�

�

n

2�

2

�

�

n+1

��

n+1

�

1

�

2

+ q

2

�

�

1

2�

� D

n+1

�

�

1

�

2

+ q

2

�

: (E.4)

This representation gives well de�ned momentum spa
e potentials for the three param-

eter sets given in (E.1). If I rakishly speak of putting � = 0, we have to understand

the following pro
ess: �rst the derivatives after whi
h the limit �! 0 has to be taken.

We see that V (~q) � V (j~qj), and be
ause j~qj = p

2

+p

02

�2pp

0


os �, the momentum spa
e

potential 
an therefore only depend on the magnitudes p, p

0

and the relative angle �

between the momentum ve
tors ~p and ~p

0

. This allows us to expand the potential into

the 
omplete set of Legendre polynomials

V (q) = V (p; p

0

; �) =

1

X

l=0

2l + 1

4�

V

l

(p; p

0

)P

l

(
os �): (E.5)

The expansion 
oeÆ
ients 
an be determined by integrating over the above equation

by weighting the integral with a Legendre polynomial in the range of 
os � 2 [�1; 1℄.

Using then the orthogonality relation of Legendre polynomials will give

V

l

(p; p

0

) = 2�

Z

1

�1

V (q)P

l

(
os �)d 
os �: (E.6)

With the potential (E.4) the above integral is not one of the easiest to 
al
ulate. Now

that we have de
omposed the potential into its partial waves, the 
orresponding l-wave

S
hr�odinger equation should be found. For this we expand the momentum wavefun
-

tions into the 
omplete set of spheri
al harmoni
s

�(~p) = �(p; '; #) =

1

X

l=0

l

X

m=�l

�

lm

(p)Y

lm

('; #)

�(~p

0

) = �(p

0

; '

0

; #

0

) =

1

X

l=0

l

X

m=�l

�

lm

(p

0

)Y

lm

('

0

; #

0

): (E.7)
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Inserting (E.5) and (E.7) into the S
hr�odinger equation (E.3) and using the identity

P

l

(
os �) =

4�

2l + 1

l

X

m=�l

Y

lm

('; #)Y

�

lm

('

0

; #

0

); (E.8)

and keeping the orthogonality and 
ompleteness relations of the spheri
al harmoni
s in

mind, will �nally give the one dimensional radial S
hr�odinger equation in momentum

spa
e

p

2

2m

�

l

(p) +

Z

1

0

dp

0

p

02

V

l

(p; p

0

)�

l

(p

0

) = E�

l

(p); (E.9)

whi
h is now subje
t to numeri
al investigations. Sin
e we restri
ted ourselves to

spheri
al symmetri
 potentials, the wavefun
tions will show no dependen
e on the

quantum number m.

For solving the eigenvalue equation (E.9) numeri
ally, we need to know the l-wave


omponent of the momentum spa
e potential (E.6). This integral 
an be 
al
ulated

numeri
ally | the only problem is to have possible fundamental singularities at the

end-points of the integrand. When using Gaussian integration methods these points

are never rea
hed within a dis
rete spa
e, but at the expense of having extremely bad


onvergen
es. Anyhow our spe
ial potential (E.4) allows for an analyti
al treatment

of this integral, whi
h o�ers a lot of insight into these fundamental momentum spa
e

singularities. Sin
e the Rodrigues formula, whi
h writes all Legendre polynomials into

one 
ompa
t notation, 
an also be written as

P

l

(x) =

1

2

l

l!

d

l

dx

l

(x

2

� 1)

l

�

l

X

k=0

1

2

k

�

l

k

��

l + k

k

�

(x� 1)

k

; (E.10)

the integral (E.6) is of the form

V

l

(p; p

0

) =

l

X

k=0

1

2

k

�

l

k

��

l + k

k

�

� D

n+1

�

Z

1

�1

dx

(x� 1)

k

a

2

� b

2

� x

; (E.11)

where the 
onstants in the integrand are given by a

2

= �

2

+ p

2

+ p

02

and b

2

= 2pp

0

.

Doing the following manipulation in the integrand

(x� 1)

k

a

2

� b

2

� x

= �

(x� 1)

k

b

2

� (x� 1)� (a

2

� b

2

)

� �

1

b

2

�

y

k

(x� 1)� y

+

(x� 1)

k

� y

k

(x� 1)� y

�

(E.12)

where y = a

2

=b

2

� 1, the �rst term 
an be integrated easily and the se
ond term has

no 
ontribution for k = 0, so (E.11) 
an be written as

V

l

(p; p

0

) = �

1

b

2

D

n+1

�

P

l

(a

2

=b

2

) ln

a

2

� b

2

a

2

+ b

2

�

1

b

2

l

X

k=1

1

2

k

�

l

k

��

l + k

k

�

� D

n+1

�

Z

1

�1

dx

(x� 1)

k

� y

k

(x� 1)� y

� �

1

b

2

h

I

l

(p; p

0

) +R

l

(p; p

0

)

i

: (E.13)
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In the last form we 
an 
learly see that when p = p

0

in the limit � ! 0, i.e. a = b

and y = 0, this spe
ial potential 
onsists of two parts. The �rst term I

l

is the irregular

term, whi
h will give singularities due to a logarithmi
 behaviour of the integral. This

holds for all angular momenta, sin
e P

l

(1) = 1. The se
ond term R

l

is the regular term,

sin
e the integral gives well de�ned (x � 1)-polynomials with 
oeÆ
ients proportional

to y, whi
h 
an be 
al
ulated expli
itly by doing a polynomial division.

Before implementing the radial S
hr�odinger equation (E.9) numeri
ally, we have to

treat the singularity of I

l

, i.e. we need to 
ontrol the logarithmi
 singularity and its

derivatives at p = p

0

in the limit �! 0. The pro
edure whi
h now follows is 
alled the

Nystrom method. Its main task is to 
onvert the integral equation into an equivalent

one whi
h 
an
els the singularity through a subtra
tion. The �rst step is to think about

whi
h power in the integration variable p

0

makes the integral over the logarithmi
 part


onvergent. A possible 
andidate is for example

Z

1

0

dp

0

1

p

0

ln

�

2

+ (p

0

� p)

2

�

2

+ (p

0

+ p)

2

= �2� � ar
tan

p

�

=

�!0

+

��

2

(E.14)

In 
omparison with other possible integrals, the above integral is privileged, sin
e it

has the big advantage of being independent of any further parameters. To note is that

for higher powers in 1=p

0

the integral is divergent be
ause the singularity at the origin

p

0

= 0 be
omes to strong. Putting this relation as a zero into the singular part I

l

of

(E.13), the S
hr�odinger equation (E.9) 
an be written as

E�

l

(p) =

p

2

2m

�

l

(p) + �p�

l

(p) � D

n+1

�

h

P

l

(


2

) � ar
tan

p

�

i

�

Z

1

0

dp

0

R

l

(p; p

0

)

2pp

0

p

02

�

l

(p

0

)

�

1

2p

� D

n+1

�

Z

1

0

dp

0

p

0

ln

�

2

+ (p

0

� p)

2

�

2

+ (p

0

+ p)

2

h

P

l

(a

2

=b

2

) � p

02

�

l

(p

0

)� P

l

(


2

) � p

2

�

l

(p)

i

(E.15)

where 


2

= 1+�

2

=4p

2

. To note again, for parameter values � 6= 0 it is not ne
essary to

in
lude these numeri
al 
ounter terms, sin
e all integrands in the above equation are

well de�ned for all p and p

0

. They are only relevant in the limiting pro
ess �! 0.

With this new form (E.15), it seems that when p = p

0

, i.e. a

2

=b

2

= 


2

, the integrand of

the logarithmi
 singular part I

l

is identi
ally zero irrespe
tive of the value �, even in

the limit �! 0, and therefore not 
ontributing to the integral. For � 6= 0 this 
ertainly

is true, but for � ! 0 its only true for the Coulomb potential, while for the Linear

potential this argumentation is no longer valid. To see this, we will dis
uss for the sake

of simpli
ity only the s-wave equation | for higher l-waves the arguments are identi
al.

For the Coulomb potential, where no derivatives need to be taken, the relevant part of

the singular integrand in the limit �! 0 
an be written as

ln

(p

0

� p)

2

(p

0

+ p)

2

h

F (p

02

)� F (p

2

)

i

= (p

02

� p

2

) ln

(p

0

� p)

2

(p

0

+ p)

2

�

F (p

02

)� F (p

2

)

p

02

� p

2

�

; (E.16)

where F is proportional to the wavefun
tion �. In this 
ase we 
learly see how the

above integrand in the limit p

0

! p goes to zero, sin
e the term in the square bra
ket

is proportional to the derivative of the wavefun
tion, whi
h must be a well de�ned

expression for all momenta.
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However, for the Linear potential, where se
ond order derivatives must be taken, the

same integrand in the limit �! 0 has the stru
ture

1

(p

02

� p

2

)

2

h

F (p

02

)� F (p

2

)

i

=

1

p

02

� p

2

�

F (p

02

)� F (p

2

)

p

02

� p

2

�

; (E.17)

whi
h makes it impossible to take the limit p

0

! p. Therefore the p

0

= p term 
an not

be negle
ted, it will give a 
ontribution whi
h is proportional to the derivative of the

fun
tion F � �. To 
al
ulate this 
ontribution, we have to know the wavefun
tion �, but

our original aim was to solve for �. Thus for the Linear potential the subtra
tion method

(E.15) does not work. The subtra
tion zero is to weak for the double-pole singularity of

the Linear potential | even after the subtra
tion a single-pole singularity is still left. It

is not wrong to start implementing the Linear potential for � 6= 0, where the p

0

= p term


ertainly is a zero 
ontribution, and then taking the limit � ! 0 numeri
ally, but the

result is an extremely slow 
onverging 
ode and therefore numeri
ally ineÆ
ient. For

a proper numeri
al 
al
ulation of the Linear potential in momentum spa
e, we have to

seek for alternative ways than the Nystrom method. In this sense we 
ontinue treating

the Linear potential with the Nystrom method, but we will see it as an approximation.

Every integral equation of the type

�f(x) = G(x)f(x) +

Z

dx

0

K(x; x

0

)f(x

0

); (E.18)

when embedding into a dis
rete spa
e x; x

0

! x

i

; x

j

, with i; j = 1:::N , 
an be approxi-

mated by a matrix equation

�f

i

=

N

X

j=1

h

Æ

ij

G

j

+�x

j

K

ij

i

f

j

�

N

X

j=1

A

ij

f

j

() A � f = �f ; (E.19)

whi
h now represents a �nite dimensional eigenvalue problem.

As a dis
retization pro
ess for equation (E.15) we will 
hoose the Gaussian integration

method via Legendre polynomials. As an intermediate step the in�nite interval [0;1[

must be mapped into the Legendre interval of [�1; 1℄. There are several mapping

fun
tions, ea
h of whi
h will give a di�erent distribution of the integration points. The

most 
ommonly used are

y

1

(x) = 1� 2e

�x=z

; y

2

(x) = �

1� x=z

1 + x=z

; y

3

(x) =

4

�

ar
tan(x=z)� 1; (E.20)

where the parameter z is used as numeri
al stability fa
tor within a spe
ial mapping

fun
tion, i.e. it 
an be 
hosen in su
h a way until the distribution of the integration

points perfe
tly suits the problem. Whereas if one wants to work with a �xed z � 1,

the mapping fun
tion y

3

is a good 
hoi
e. Its distribution of integration points has a

wide range, being dense in the inner region and more sparse in the asymptoti
 region.

This makes it ideal even for integrands with a relatively slow asymptoti
 fall-o�.
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Writing (E.15) in a dis
retized form, and keeping in mind that negle
ting the p = p

0

term in the singular part I

l

is exa
t for the Coulomb while approximative for the Linear

potential, will give

E�

i

l
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p

2

i

2m
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i

l

+ �p

i

�

i

l

� D

n+1

�

h

P

l

(


2

i

) � ar
tan

p

i

�

i

�

1

2

N

X

j=1

!

j

p

i

p

j

R

l

(p
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�
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�
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i

+ p
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)

2
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P
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(a

2
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� P
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2
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�
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(E.21)

where !

i

and p

i

are the already transformed weights and abs
issas of the Gauss-

Legendre integration in the ordered interval [�1; 1℄. Sin
e our numeri
al diagonal-

ization 
ode 
an only treat symmetri
al matri
es, it is important to have symmetri
al

o�-diagonal matrix elements. Although R

ij

l

, a

ij

and b

ij

are symmetri
al in i $ j, the

above matrix equation still needs to be symmetrized in the o�-diagonal terms, due of

not having symmetri
al weightings. If multiplying the whole equation with

p

!

i

� p

i

,

and de�ning new eigenve
tors u

i

l

=

p

!

i

� p

i

��

i

l

, as well as using the notation of (E.19),

the diagonal and symmetri
 o�-diagonal matrix elements are given as

A

ii

=

p

2

i

2m

+ �p

i

� D

n+1

�

h

P
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+

1

2

D

n+1

�

N

X

j=1; j 6=i
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P
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�
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�
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j

)

2

�

: (E.22)

For 
al
ulating the matrix elements for small � or even for �! 0 it is helpful to make

use of the following behaviour of the Legendre polynomials up to �rst order, whi
h 
an

be derived from (E.10)

P

l

(


2

i

) = P

l

(1 + �

2

=2p

2

i

) =

�!0

1 + l(l + 1)

�

2

4p

2

i

: (E.23)

For 
al
ulating the expli
it matrix elements for the Yukawa, Coulomb and Linear poten-

tial, we have to pro
eed as given in (E.1). Being reasonable only the s-wave 
omponents,

i.e. with no 
ontributions of the regular term R

l

will be determined expli
itly for all

three potentials.
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The simplest one is 
ertainly the Yukawa potential for whi
h no numeri
al 
ounter

terms and no derivatives need to be taken. The s-wave matrix elements are

A

Y

ii

=

p

2

i

2m

A

Y
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=
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�
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: (E.24)

The s-wave Coulomb matrix elements are exa
tly given as

A

C

ii

=
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2

i
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(p
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: (E.25)

Finally the s-wave Linear matrix elements, with �

L

� 0 have the Nystrom approxima-

tion of

A

L
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�
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2

i

2m
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: (E.26)

E.2 S
attering domain

A s
attering problem is regarded as solved if the phase shift and the 
orresponding

s
attering wavefun
tion have been determined. This se
tion will not investigate the

wavefun
tion itself, but will rather work out a numeri
al method for 
al
ulating s
at-

tering phases, whi
h are dire
tly linked to 
ross se
tions. The basi
 ideas given here are

based on the original paper of Haftel & Tabakin on Nu
leon-Nu
leon potentials [39℄. If

we only fo
us on potentials V whi
h have a �nite range in 
oordinate spa
e, then the

T -operator equation (D.27) is a well de�ned equation in momentum spa
e. If G

0

is the

kineti
 Greens fun
tion, whi
h is diagonal in the momentum eigenstates, the outgoing

T -matrix equation turns into the following integral equation

h

~

k

0

jT j

~

ki = h

~

k

0

jV j

~

ki+

Z

d

3

k

00

h

~

k

0

jV j

~

k

00

ih

~

k

00

j

1

E � k

002

=2m+ i�

T j

~

ki; (E.27)

where E = k

2

=2m and h

~

k

0

jV j

~

ki is the momentum spa
e potential, whi
h is also given

as a Fourier transformation of the 
oordinate spa
e potential

h

~

k

0

jV j

~

ki � V (j

~

k

0

�

~

kj) = V (q) =

1

(2�)

3

Z

d

3

re

i~q�~r

� V (r): (E.28)
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A

ording to the partial wave analysis of h

~

k

0

jT j

~

ki in (D.34) and of h

~

k

0

jV j

~

ki in (E.5), and

when using the identity (E.8) as well as the orthogonality and 
ompleteness relations

of the spheri
al harmoni
s, the integration over the angles will give for every angular

momentum l the one dimensional integral equation

T

l

(k

0

; k) = V

l

(k

0

; k) +

Z

1

0

dk

00

k

002

V

l

(k

0

; k

00

)

1

E � k

002

=2m+ i�

T

l

(k

00

; k); (E.29)

where a rede�nition of T

l

has been performed: �T

l

(k

0

; k)=�mk ! T

l

(k

0

; k). Thus the

diagonal element of T

l

is given as

T

l

(k; k) = �

1

�mk

e

iÆ

l

(k)

sin Æ

l

(k): (E.30)

In order to 
al
ulate the phase shift fun
tion we need to know the diagonal element

of equation (E.29). Sin
e the momentum spa
e potentials are well de�ned, the only

numeri
al diÆ
ulty that we will en
ounter is the singularity of the Greens fun
tion.

But before dealing with this singularity, we noti
e that the slight imaginary shift will

for
e (E.29) into a 
omplex equation. But using the following relation helps to separate

real and imaginary parts:

Z

1

0

dx

f(x)


+ i�� x

= P

Z

1

0

dx

f(x)


� x

� i�f(
) ; 
 � 0; (E.31)

whi
h follows from the residue theorem and some 
ontour distortions, if f 
an be


ontinued analyti
ally into a 
omplex half-plane, is everywhere regular and vanishes

asymptoti
ally in that half-plane. The symbol P stands for the Cau
hy prin
ipal-value

pres
ription. Making a 
hange of variables will give the equivalent relation

Z

1

0

dx

F (x)




2

� x

2

+ i�

= P

Z

1

0

dx

F (x)




2

� x

2

� i�

F (
)

2


: (E.32)

This allows us now to de�ne a real R-matrix, whi
h satis�es the relation

R

l

(k

0

; k) = V

l

(k

0

; k) + P

Z

1

0

dk

00

k

002

V

l

(k
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; k

00

)

1

E � k

002

=2m

R

l

(k

00

; k): (E.33)

A short 
al
ulation shows that the 
omplex T -matrix 
an be determined from the real

R-matrix as

T

l

(k

0

; k) =

R

l

(k

0

; k)

1 + i�mkR

l

(k

0

; k)

: (E.34)

Thus the s
attering phase 
an now be determined dire
tly from the diagonal elements

of the R-matrix

Æ

l

(k) = � ar
tan

�

�mkR

l

(k; k)

�

+ � � n(k): (E.35)

To solve (E.33) numeri
ally we have to do a numeri
al prin
ipal value limit, whi
h is

impossible to take in a stable way due to the limited pre
ision of 
omputers.
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A better pres
ription for 
omputers follows by introdu
ing again a numeri
al 
ounter

term, whi
h has its origin in the de�nition of P itself

P

Z

1

�1

dx


� x

= 0 () P

Z

1

0

dx




2

� x

2

= 0: (E.36)

Adding this zero to (E.33) the singularity 
an be removed expli
itly
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(E.37)

Important to note, is that the k = k

00

term in the above integrand gives a 
ontribution,

whi
h is proportional to derivative of the fun
tion in the square bra
ket, and thus 
an

not be negle
ted. The integral equation is now ready to be 
al
ulated numeri
ally

by using �nite dimensional matrix methods. As a dis
retization pro
ess we will again


hoose the Gaussian integration method via Legendre polynomials
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(E.38)

where !

n

and k

n

are the already transformed weights and abs
issas of the Gauss-

Legendre integration in the ordered interval [�1; 1℄. The above equation represents one

linear equation with N+1 unknowns: R

l

(k

n

; k) for n = 1:::N , and R

l

(k; k).

To get a workable equation, we 
ontinue the dis
retization pro
ess by turning this one

equation into N+1 simultaneously linear equations by evaluating it for N+1 momentum

values on a grid 
onsisting of the observable and integration points

k

0

= k

i

=

(

quadrature points k

i

for i = 1:::N

observable point k for i = N+1.

(E.39)

The momentum variable k, whi
h �xes the energy of the s
attering system, is not

dis
retized, sin
e it serves as an observable parameter and must be given from the

outset. This fa
t allows us now to 
ir
umvent the unknown but �nite 
ontribution of

the singularity, sin
e the 
ontinuous k 
an always be 
hosen su
h that k 6= k

n

.

There are now N+1 unknowns R

l

(k

i

; k) = R

i

l

, and N+1 linear equations whi
h now 
an

be solved uniquely
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(E.40)
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If we now 
ombine the denominators and weights into a single ve
tor u

j

u

j

=

8

>

>

>
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>

>

>

:

!

j

2m
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2

for j = N+1;

(E.41)

equation (E.40) 
an be expressed as the following matrix equation

R

i

l

= V

i

l

+

N+1

X

j=1

u

j

V

ij

l

R

j

l

() A �R = V; (E.42)

where the matrix elements of A are given as A

ij

= Æ

ij

� u

j

V

ij

l

, and the partial wave


omponents of the potential V

ij

l

are 
al
ulated by (E.6). The unknown ve
tor R 
an

now be solved by the usual inverse matrix routines. The last element of this ve
tor will

then give the s
attering phase (E.35) at the energy E � k

2

.
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F Meson Summary Tables

The following table serves as a reminder for the physi
al nomen
lature of mesons.

Pseudo-s
alar mesons are given on the left, ve
tor mesons on the right of ea
h se
tor.

d u s 
 b t

d �
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jjT
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T
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jjT

�+
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jj�

Next we want to look 
loser into 
avor o�-diagonal mesons, sin
e only they are subje
t

of this thesis. It is suÆ
ient to sort these mesons as follows: if the orbital angular mo-

mentum of a qq system is L, the parity P of its wave fun
tion is (�1)

L+1

. Furthermore,

it also is an eigenstate of 
harge 
onjugation, with C = (�1)

L+S

, where the spin S 
an

be 0 or 1. Finally we will make use of the total angular momentum J , whi
h 
an take

on the values J = jL� Sj; : : : ; jL+ Sj.

States with S = 0 and J

P

= 0

�

are 
alled the pseudo-s
alars, while S = 1 and J

P

= 1

�

are the ve
tors. Important to note is that pseudo-s
alar mesons 
an only have L = 0,

in other words all pseudo-s
alars are singlet s-wave mesons. On the other hand, the

ve
tors 
an be triplet s-wave or triplet d-wave mesons. Every possible quark model that

is able to des
ribe mesons should de
ide on its own, whether a spe
i�
 ve
tor meson is

to be seen as an L = 0 or an L = 2 state.

Se
tor J

PC

= 0

�+

J

PC

= 1

��

�

�

: 139:6 �(770): 775� 1

�(1300): 1300� 100 �(1450): 1465� 25

�(1800): 1812� 14 �(1700): 1700� 20

�(1900)

y

: 1900� 40

(u;d)

�(2150)

y

: 2149� 17
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Se
tor J

P

= 0

�

J

P

= 1

�

K

�

: 493:7 K

�

(892): 891:6

K(1460)

y

: 1460� 60 K

�

(1410): 1414� 15

K(1630)

yy

: 1629� 7 K

�

(1680): 1717� 27

(u,d;s)

K(1830)

y

: 1830

D

�

: 1869� 1 D

�

(2010): 2010� 1

(u,d;
)

D

�

(2640)

yy

: 2637� 6

D

�

s

: 1968� 1 D

�yy

s

: 2112� 1

(s;
)

D

s

(2573)

yy

: 2572� 2

(u,d;b) B

�

: 5279� 1 B

�

: 5325� 1

(s;b) B

s

: 5370� 3 B

�

s

: 5417� 4

(
;b) B




: 6400� 400

The above table 
olle
ts all pseudo-s
alar and ve
tor mesons that have been experi-

mentally measured up to now, taken from the Parti
le Data Group [3℄. The value next

to the meson represents its mass given in MeV.

The parti
les assigned with the symbol y are regarded as not yet being established.

The symbol yy indi
ates that the value of J

P

is still unknown.

134



REFERENCES

Referen
es

[1℄ P.A.M. Dira
, Forms of Relativisti
 Dynami
s,

Rev.Mod.Phys. 21 392, 1949.

[2℄ H. Leutwyler, J. Stern, Relativisti
 Dynami
s on a Null Plane,

Ann.Phys. 112 94, 1978.

[3℄ H. Hagiwara et.al., Parti
le Data Group | 2003 update,

Phys.Rev. D66 010001, 2002.

[4℄ S. Godfrey, N. Isgur,

Mesons in a relativized quark model with 
hromodynami
s,

Phys.Rev. D32 189, 1985.

[5℄ H.C. Pauli, Su

essful renormalization of a QCD-inspired Hamiltonian,

Internal Reports, November 2002 - September 2003.

[6℄ H.C. Pauli, On the e�e
tive light-
one QCD-Hamiltonian:

Appli
ation to the pion and other mesons,

Nu
l.Phys.B. (Pro
.Suppl.) 90 154, 2000.

[7℄ H.C. Pauli, On 
on�nement in a light-
one Hamiltonian for QCD,

Eur.Phys.J. C7 289, 1998.

[8℄ T. Frederi
o, H.C. Pauli, and S.G. Zhou,

Universal des
ription of S-wave meson spe
tra in a renormalized

light-
one QCD-inspired model,

Phys.Rev. D66 116011-8, 2002.

[9℄ A.V. Anisovi
h, V.V. Anisovi
h, and A.V. Sarantsev,

Systemati
s of qq-states in the (n;M

2

) and (J;M

2

) planes,

Phys.Rev. D62 051502-4, 2000.

[10℄ C. Elster, L.C. Liu, and R.M. Thaler,

A pra
ti
al 
al
ulational method for treating Coulomb s
attering

in momentum spa
e,

J.Phys.G: Nu
l.Part.Phys. 19 2123, 1993.

[11℄ W.F. Ford, Anomalous Behaviour of the Coulomb T Matrix,

Phys.Rev. 133 1616, 1963.

[12℄ S.J. Brodsky, H.C. Pauli, and S.S. Pinsky

Quantum Chromodynami
s and other Field Theories on the Light Cone,

Phys.Rep. 301 299, 1998.

[13℄ U. Trittmann, H.C. Pauli, On rotations in front-form dynami
s,

Nu
l.Phys.B. (Pro
.Suppl.) 90 161, 2000.

135



REFERENCES

[14℄ H.C. Pauli, Mass and Coupling 
onstant,

Internal Report, July 2003.

[15℄ M. Sawi
ki, Solution of the light-
one equation for the relativisti
 bound state,

Phys.Rev. D32 2666, 1985.

[16℄ T. Frederi
o, A. Del�no, and L. Tomio,

Renormalization group invarian
e of quantum me
hani
s,

Phys.Lett. B481 143, 2000.

[17℄ H. Omer, Cal
ulation of resonant states of � and � from

a 
on�ning e�e
tive potential, Internal Report, August 2003.

[18℄ W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,

Numeri
al Re
ipes in C (2nd edition),

Cambridge University Press, 1992.

[19℄ A. Krassnigg, H.C. Pauli,

On heli
ity and spin on the light-
one,

Nu
l.Phys.B. (Pro
.Suppl.) 108 251, 2002.

[20℄ H.C. Pauli, On the form fa
tor of physi
al mesons and

their distribution fun
tion, Nu
l.Phys.A. 705 73, 2002.

[21℄ D. Ashery, H.C. Pauli,

Non-Perturbative Pion Wave Fun
tions

Eur.Phys.J. C28 329, 2003.

[22℄ S. Weinberg, The Quantum Theory of Fields I,

Cambridge University Press, 1995.

[23℄ R.U. Sexl, H.K. Urbantke, Relativit�at, Gruppen, Teil
hen,

Springer Verlag, 1982.

[24℄ J. S
hwinger, The Theory of Quantized Fields Phys.Rev. 82 914, 1951.

[25℄ H.C. Pauli, Dis
retized light-
one quantization and

the e�e
tive intera
tion in hadrons, AIP Conf.Pro
. 494 80, 1999.

[26℄ S.M. Dan
o�, Non-Adiabati
 Meson Theory of Nu
lear For
es,

Phys.Rev. 78 382, 1950.

[27℄ H.C. Pauli, On the e�e
tive Hamiltonian for QCD:

An overview and status report, Nu
l.Phys.B. (Pro
.Suppl.) 108 273, 2002.

[28℄ J. Raufeisen, Die Ein-S
hleifen-Korrekturen zum Quark-Gluon-Vertex

in Hamiltonis
her St�orungstheorie, Diplomarbeit Heidelberg, 1997.

[29℄ H.C. Pauli, A Compendium of Light-Cone Quantization,

Nu
l.Phys.B. (Pro
.Suppl.) 90 259, 2000.

136



REFERENCES

[30℄ M. Abramowitz, I. Stegun, Handbook of Mathemati
al Fun
tions,

Dover Publi
ations, 1970.

[31℄ P. Roman, Advan
ed Quantum Theory, Addison-Wesley, 1965.

[32℄ A. Messiah, Quantum Me
hani
s, North Holland Publishing, 1970.

[33℄ A.G. Sitenko, S
attering Theory, Springer-Verlag, 1990.

[34℄ G. Gamow, C.L. Crit
h�eld,

Theory of the Atomi
 Nu
leus and Nu
lear Energy Sour
es,

Clarendon Press Oxford, 1950.

[35℄ E.P. Wigner,

Lower Limit for the Energy Derivative of the S
attering Phase Shift,

Phys.Rev. 98 145, 1955.

[36℄ V.F. Weisskopf, J.M. Blatt, Theoreti
al Nu
lear Physi
s,

John Wiley and Sons, 1952.

[37℄ H.M. Nussenzveig,

The Poles of the S-Matrix of a Re
tangular Potential Well or Barrier,

Nu
l.Phys. 11 499, 1959.

[38℄ H.A. Bethe,

Theory of the E�e
tive Range in Nu
lear S
attering,

Phys.Rev. 76 38, 1949.

[39℄ M.I. Haftel, F. Tabakin,

Nu
lear Saturation and Smoothness of Nu
leon-Nu
leon Potentials,

Nu
l.Phys. A158 1, 1970.

137


