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Zusammenfassung

In dem Hamiltonischen Lichtkegelzugang zur QCD wird eine effektive Ein-Teilchen-
gleichung zur Beschreibung von Mesonen mit verschiedenen Quark- und Antiquark-
flavor auf ein stark vereinfachtes Modell heruntergebrochen. Dieses Modell dient als
Ausgangspunkt, eine explizite Renormierung in einem nicht-perturbativen Rahmen zu
studieren. In numerischer, sowie in konzeptioneller Hinsicht, wird dies anhand von
zwei grundverschiedenen Renormierungsverfahren demonstriert, die beide letztendlich
dieselben physikalischen Ergebnisse liefern. Das entsprechende renormierte Quarkpo-
tential kann fir kleine relative Distanzen dahingehend beliebig gewahlt werden, dass
eine gewisse Freiheit in der Auswahl der Regulierungsfunktion fiir grosse Impulse ex-
istiert. Fernab dieses Bereiches zeigt das Potential ein universelles Coulombverhalten.
Benutzt man diese Freiheit bei kleinen Distanzen in dem man fordert, dass es zum
Beispiel wie ein harmonisches Potential beginnen soll, so bleibt ihm keine andere Wahl,
als eine Barriere in der Streuregion zu formen, um dem asymptotischen Coulombteil des
Quarkpotentials folgen zu konnen. Dieser Mechanismus ermdoglicht es Confinement zu
sehen. Das renormierte Modell wird anschliessend im Impulsraum gelost. Das dadurch
berechnete Massenspektrum der Mesonen wird dann mit den experimentell gemessenen
Werten verglichen.

Ein grosser Teil dieser Arbeit befasst sich mit der Berechnung von Resonanzen im sta-
tiondren Bild, sowie der Coulombstreuung im Impulsraum. Diese Problematik wird als
eigenstandiges Kapitel im Anhang dargestellt.

Abstract

In the Hamiltonian light-cone approach to QCD an effective one-body equation for
describing mesons with different quark and anti-quark flavor is broken down to an
oversimplified model. This model serves as a platform to study explicit renormalization
in a non-perturbative context. Two numerically and conceptually totally different
renormalization schemes are used to demonstrate this, where at the end, both yield the
same physical results. The corresponding renormalized quark potential is arbitrary for
small relative distances, in the sense that there is a freedom in choosing the regulating
functions for large momenta. Far beyond this region the potential is showing a universal
Coulomb behaviour. Using the arbitrariness at small distances, by requiring it for
example to start off as a pure harmonic oscillator potential, it inevitably forms a barrier
in the scattering region in order to catch up with the asymptotic Coulomb part of the
quark potential. This mechanism allows to see confinement. The renormalized model
is then solved in momentum space by calculating its mass spectrum. These are then
compared with the experimental measured values.

A large part of this thesis is dedicated to the calculation of resonances in the stationary
picture, as well as Coulomb scattering in the troublesome representation of momentum
space. This difficulty is represented as a stand-alone section in the appendix.
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1. Introduction

1 Introduction

The nature of elementary particles calls for a synthesis of relativity and quantum me-
chanics. The necessity of a quantum treatment is quite evident in view of the micro-
scopic scales involved which are several orders of magnitude smaller than in atomic
physics. These very scales, however, also require a relativistic formulation. A typical
hadronic scale of 1fm, for instance, corresponds to momenta of p ~ fic/1fm ~ 200MeV.
For particles with masses M < 1GeV, this implies sizeable velocities v ~ p/M > 0.2c.
It turns out that the task of unifying the principles of quantum mechanics and relativity
is not a straightforward one (Appendix A). A natural solution is provided by covariant
quantum field theory.

As we well know, there are two distinct ways of how to approach a quantum field the-
ory. On the one hand, there is Feynmans action based path-integral method which
is a manifestly covariant formulation. On the other hand, we have the Hamiltonian
method, which obviously from the outset is not a manifestly covariant formulation, as
it singles out a time t or an energy F, respectively. The concept of relativistic Hamilto-
nian dynamics needs to be properly defined. This leads to the famous paper by Dirac
[1], where he introduced three distinct forms of Hamiltonian dynamics. Later two more
forms of dynamics were described by Leutwyler and Stern [2], bringing the total num-
ber to five. So, there is a fivefold ambiguity to relativistic Hamiltonian dynamics.
Hamiltonian formulations of field theory are not immediately recognized as equivalent
to the Feynman way. They rather have to be seen as complementary approaches. Af-
ter more than a half century of development it is clear that the Feynman approach
has many advantages if one deals with problems that may be solved by perturbative
methods, while the Hamiltonian formulation represents a more natural approach to-
wards bound-states, which need to be described in a non-perturbative context. Also,
the questions concerning the regulation of divergent integrals appearing in the naive
application of the Feynman rules have been answered in various ways and the program
of renormalization was successfully carried out for almost all interesting field theories,
while non-perturbative problems that are to be solved by diagonalization of the Hamil-
tonian, make the renormalization program a very hard issue to deal with.

The main question we face in the Hamiltonian approach is, which of the five forms
of dynamics mentioned above is more suited to describe the problem of bound-states.
One consideration comes to mind immediately: the Fock-state expansion is in principle
different for the various forms of dynamics, as its terms are not invariant. Therefore
the investigation of an expansion in Fock space must be an issue. The ones mostly
used in practice is the usual instant form and the front form. The latter is argued to
be the most suitable as the vacuum is particularly simple in this form. (Section 2) will
investigate further details, in order see the advantages and disadvantages of each form
respectively.

This thesis will deal with the fundamental gauge field theory of QCD, the theory of
strong interactions, which has the hadrons as its physical degrees of freedom.

Like its older relative QED, QCD is a renormalizable relativistic quantum field theory.
Any infinities arising from the point-like (local) nature of the interaction can therefore
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be consistently absorbed into a redefinition of the physical parameters like masses and
couplings. As a result, the strong coupling parameter a; is not a constant but is run-
ning with the typical momentum scale of the physical process under consideration. The
microscopic reason for this are vacuum polarization effects: quarks screen and there-
fore weaken the color charge (analogous to QED), whereas the self-interacting gluons
anti-screen the color charge which is the dominating effect. Unlike QED, therefore,
the running coupling a,(Q) of QCD is weak for high momentum transfer @) (small dis-
tances). This is the realm of ‘asymptotic freedom’ where perturbative methods work.
For small momentum transfer @) (large distances), the coupling is large, perturbation
theory breaks down, and one has to utilize non-perturbative methods. A typical and
well-established value [3] for as is

as(Mz) = as(91.2GeV) = 0.118, (1.1)

where My is the mass of the Z-Boson. The non-perturbative domain is generally
accepted at a maximum momentum scale of approximately 1GeV. In some loose sense
one can therefore speak of two relevant phases of QCD, the weak coupling phase or
perturbative QCD at @@ > 1GeV, and the strong coupling phase or non-perturbative
QCD at Q < 1GeV.

Let us now focus on the hadrons. In principle, it is quite clear, what a hadron is in
QCD: it is an eigenstate of the QCD Hamiltonian,

Hgcp|Hadron) = M|Hadron), (1.2)

where M denotes the hadron mass. The question, of course, is, whether this ‘QCD
Schrédinger equation’ can be solved. If we consider a typical hadronic scale like the
nucleon radius of 1fm, the associated energy is of about 200MeV. This number tells us
that we are in the low-energy regime which implies that the binding of the quarks into
hadrons is a non-perturbative phenomenon. In other words, a perturbative solution of
the ‘QCD Schrédinger equation’ will make no sense in general.

There are two main routes out of this dilemma. Firstly, one can try to perform brute-
force calculations which involve sophisticated computer simulations on the largest ma-
chines available. Technically, one can make use of a space-time discretization leading
to lattice gauge theory in the Hamiltonian instant form, or of 3-momentum discretiza-
tion leading to DLCQ (Discretized Light Cone Quantization) in the Hamiltonian front
form. Secondly, one can rely on a reputable tradition of physics, namely model build-
ing. There is an abundance of hadron models on the market, the most popular one
being the constituent quark model of [4] and variants thereof. There one mostly starts
with a non-relativistic phenomenological Hamiltonian of the form

H = Hy + Veont, (13)

with an ad-hoc confining potential V.q,s which typically is proportional to the inter-
quark distance r or sometimes even to 2. The Hamiltonian describes the dynamics of
two or three constituent quarks with their effective masses being treated as parameters.
The main virtue of the model consists in its rather accurate reproduction of the hadron
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masses (‘spectroscopy’). However, the model has severe shortcomings. Firstly, nearly
all hadrons are relativistic bound-states and therefore a non-relativistic treatment is
not appropriate. Secondly, the relation of the model with QCD is rather unclear. In
other words, it is unclear how a constituent picture can arise in a relativistic quantum
field theory such as QCD. There one expects a bound state, like for example the pion,
to be of the form

|7} ~ 1]qq) + P2lqqg) + ¥3lqaqq) + - - - (1.4)

This means that hadrons are states containing an infinite number of quarks and glu-
ons, which is consistent with the results of DIS (Deep Inelastic Scattering) experiments
where, with growing resolution Q?, an increasing number of partons is observed. This
confirms that there are non-vanishing amplitudes 1,9, ... to find two quarks, two
quarks and a gluon, in general to find an arbitrary number of quarks and gluons in a
hadron.

Our basic motivation is to do better, to construct a model which can avoid these short-
comings. In this thesis it leads us to the Singlet-Triplet (ST)-model [5] or to the more
simplified 1/-model [6] of (Section 3). They are designed to describe only flavor off-
diagonal mesons — mesons with different flavor for quark and anti-quark. Its derivation
in (Appendix B) can be summarized as follows: Outgoing from the QCD-Lagrangian
in light-cone coordinates, it is possible to construct a frame-independent bound-state
equation for the invariant mass-squared M? of a meson. To solve this equation, one is
confronted, as already mentioned, with the primer difficulties of every field theory, the
many-body problem and the divergencies to be regulated and then to be renormalized.
The first problem is attacked by constructing an effective bound-state equation having
the same eigenvalue spectrum as its original equation — the simplest one is an effective
one-body equation, where its Hamiltonian is acting only in the lowest Fock-space com-
ponent, that between one quark and one anti-quark via an effective one gluon exchange.
The technique used for the derivation is called iterated resolvents [7], which does not
truncate the relevant Fock space but rather is a compact notation for resumming per-
turbative diagrams to all orders without double counting, and thus maintaining all
symmetries of the QCD-Lagrangian. The effect is a projection of higher Fock-space
sectors to lower ones, where at the end all sectors can be systematically retrieved by
iteration from the lowest one. The second problem is solved by multiplying each matrix
element of the Hamiltonian with a convergence enforcing vertex function, which has
to drop faster than 1/Q2. This will regulate the ultraviolet divergencies caused by the
transverse momenta. Light front dynamics contain additional singularities, so called
‘longitudinal’ ones, caused by longitudinal momenta close to zero. These infrared sin-
gularities are controlled by giving the gauge boson a small regulator mass. The result is
a regulated effective one-body equation [7] carrying unphysical parameters. As usual,
these have to be renormalized.

The renormalization program is one of the main topics of this thesis (Section 4). Break-
ing this effective one-body equation down to the 1]-model, by simplifying the spin-
interaction as well as by making a non-relativistic simplification, it is, to our knowledge,
for the first time possible to explicitly see how renormalization works in a Hamiltonian
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formulation. This will be done by comparing two drastically different renormalization
schemes, both conceptually and numerically, and verify that they agree. This strong
statement stands at the very basis of renormalization ideas, that no matter the in-
termediate steps one performs to mathematically define the initial undefined theory,
after renormalization all of them produce the same physics. Since both renormalization
schemes have been implemented in momentum space, the generalization to the full rel-
ativistic case can be easily performed. Also going from the 1/-model to the ST-model
is a trivial task.

Subject of (Section 5) is now to solve this renormalized ST-model in momentum space.
The corresponding equation has the structure of a local non-relativistic Schrodinger
equation. With the appropriate tools at hand, it is possible to solve this equation nu-
merically and to fit the data according to the experimental mass spectrum of flavor-off
diagonal mesons. No other good reason than simplicity we will only focus on spherical
s-wave solutions. Since the solutions are calculated in momentum space, the generaliza-
tion to get the full relativistic solutions is not accompanied with conceptual problems,
except maybe for some numerical difficulties.

If we look more closely at the renormalized quark potential of the ST-model, it is pos-
sible to see confinement. It came as a big surprise to us, that not the renormalized
coupling constant @s(Q) accounts for confinement, but rather the arbitrariness of the
external vertex regulator. Since the potential is of local nature we can make us a pic-
ture in coordinate space by Fourier transformation. The arbitrariness of the potential
then only lies within small distances r, while asymptotically it always behaves as —1/r.
This behaviour is universal and applies to all possible regulators. It is fully in accord
with the regularization scheme given in momentum space: the arbitrariness of regular-
izing a systems high momenta or energies leads to an arbitrariness in the behaviour at
small distances. Inspired by [8], which again was inspired by the work of [9], we use
this arbitrariness in the potential for small r, by requiring it to behave as a pure har-
monic oscillator potential. The connection between the oscillator behaviour for small
r and the Coulomb behaviour for large r is accomplished by a barrier as it is known
from nuclear physics. The potential is thus able not only to create pure bound-states
but also resonances. When fixing the parameters to a physical example, the quark
potential develops a barrier of such an extraordinary height and width, that possible
resonances can be well treated as bound-states. This justifies to see the barrier as part
of a confining potential.

A rather large part of this thesis is dedicated to Coulomb scattering and the calcula-
tion of resonances in the stationary picture. The motivation was to solve the scattering
region and with it the resonance part of the above ST-potential. Furthermore, the aim
was to solve the scattering problem in momentum space, in order to establish an easy
generalization to the full relativistic case. But this inevitably leads to the problem of
having Coulomb scattering in momentum space, which is far more difficult to realize
than in coordinate space. There one knows how to treat the logarithmic divergent
phase-shift: one consistently changes the boundary conditions from pure plain waves
to distorted waves, leading then to a well defined space independent phase-shift. In
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momentum space such a construction is not straightforward, or even impossible to im-
plement. Also a simple Fourier transformation from coordinate space to momentum
space does not do the work, since the Coulomb scattering wave functions in momen-
tum space are not functions in the usual sense, they behave more like distributions
[10]. Furthermore, the Coulomb T-matrix in momentum space is not well defined, it
can lead to anomalies [11].

To solve the full problem, one has to search for alternatives, which still is a subject
of research [10]. On the other hand, I can show within s-wave scattering, that if the
Coulomb part of any potential is changed to a more well defined scattering potential
in the asymptotic region, with the rest of the potential being kept unchanged, it only
has an effect on the global background but not on the local resonance structure in the
cross-section of a scattering experiment. And since we are at first only interested in the
calculation of resonances and since asymptotical Coulomb shielding is easy tractable
in momentum space, this technique serves as a partial solution to the full Coulomb
scattering problem in momentum space.

Regrettably, these ideas could not be studied at a physical example of the ST-model.
As already mentioned, the corresponding potential produces resonances of an extreme
small width, making it impossible to resolve them in a numerical scattering calculation.
One thus has to content oneself with more or less academic potentials. Nevertheless,
since these potentials allow for an analytical calculation of all relevant scattering quan-
tities, they serve as test potentials for investigating the correctness and the stability of
our numerical codes, which have been worked out in momentum space. These examples
were also chosen such, that they resemble the basic structures of any potential like that
of the ST-potential.

All this is represented consistently and apart from the main text in (Appendix D).
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2 Basics

The usual way to describe a physical system is to take a snapshot at a certain time
t = to and see how the system evolves as time goes by. Quite in general we have seen in
(Appendix A) that the Hamiltonian or energy operator H = Py is the operator which
propagates the system in time

.0
HIW (1)) = i W (1)) (2.1)
Requiring a trivial time dependence
| (t)) = e FHD), (2.2)

is asking for a stationary state
H|Y) = B|v), (2.3)

which is the solution of an eigenvalue problem to the energy eigenvalue E, which again
is a number. Thus, the Hamiltonian method seems to be a promising method for cal-
culating bound states within a quantum field theory, having infinitely many degrees of
freedom. From a covariant point of view, where the four space-time coordinates are
treated on an equal footing, it seems a little bit artificial to choose the time axis as
the zeroth component ¢t = z° from the four space-time dimensions as the axis which
defines the direction of evolution. One could as well choose one of the three space
axes to play this role, or even some other direction. In general one can define ‘space’
as that hypersphere in four-space on which one chooses the initial conditions. The
remaining fourth coordinate can be understood as ‘time’. These concepts of space-time
parametrizations can be grasped more formally by introducing some general coordi-
nate transformation Z(z). However, one should exclude those which are accessible
through Poincaré transformations, that means pure Lorentz boosts, spatial rotations
and translations. Since any coordinate transformation conserves the geometrical arc-
length ds? = gudxhdx” = GradT®dT, the metric tensors for two parametrizations are

then related by
~ oxt ox”
9\ = <85"“> Guv (85)\) . (24)

Three things are important to note. First, the physical content of a theory can not
depend on such re-parametrizations of space-time, after all we are just dealing with
different coordinate systems. Second, in generalized coordinates the covariant and
contravariant indices can have rather different interpretations, and one has to be careful
with the lowering and rising of Lorentz indices. Third, following Dirac [1] and Leutwyler
[2] there are no more than five different parametrizations of space-time. Each of them
thus have different ‘times’ and different ‘Hamiltonians’. Interesting for us are only
the following two forms of Hamiltonian dynamics: the usual instant form, with its
hypersphere given by ¢ = 0, and the front form, where the hypersphere is a tangent
plane to the light cone.
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2.1 Instant frame

If the Hamiltonian H = Py was derived from a covariant quantum field theory, as we
now always want to assume, it must represent a constant of motion in that system.
Not only the Hamiltonian, but all 10 independent Poincaré generators (Appendix A)
must be constants of motion:

0 —-Ky —-Ky; —Kj
|k, 0 -3 L |, (H
M/v”’ - Ko J3 0 —Ji ) PM - (_15’) ) (25)
Ky —-Jy J; 0

where P; are momentum, K; the pure Lorentz boost and .J; the spatial rotation op-
erators. All these operators satisfy the Poincaré algebra. Since the Hamiltonian for-
mulation of a quantum field theory fixes its description on the energy operator H, a
special role will be played by those operators which commute with H. Such operators
are said to be kinematical operators. They are conserved in the sense that they map
the initial condition hypersurface onto itself, that means the system stays in its initial
state. The other operators which do not commute with the Hamiltonian will map a
given hypersurface into another hypersurface, meaning that the initial state of a system
is changed and thus are said to be dynamical operators. The commutation relations
between the Hamiltonian H = Py and the remaining Poincaré operators are

[H,P] =0, [H, J1] =0, [H, K] =1iP,
[H, P] =0, [H, J2] =0, [H, Ko] = iP,,
[H, Py =0, H, Js] = 0, H, K] = iPs. (2.6)

We see that six operators, the spatial translation and rotation operators are kinematic
operators. While the Lorentz boosts are of dynamical nature. They are part of the
interaction. Since P¥P, = M 2 is a Casimir operator commuting with all generators of
the Poincaré group, the stationary state condition (2.3) in the instant form can also be

written as
H|T) = \/M2+P2|\I/>, (2.7)

where M? is the invariant mass of the system. Lets say the stationary state was fixed
by some initial condition |¥) = |¥(#y)) and has been determined in its rest system
(13 = 0). Translating or rotating this eigensolution would not have any effect on the
previous fixed initial condition of the state, it still represents the same stationary state.
But if we try to boost the eigensolution into a frame where P # 0, the state is changed
in the sense that it now represents a different stationary state corresponding to a new
initial condition |¥’) = |¥(¢;)). Thus determining the boosted wavefunction is as
complicated as diagonalizing H itself. This is also the reason, why we do not denote

quantum states in the instant from by the eigenvalues of boost operators.

10
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2.2 Light-cone frame

In the light-cone frame we use the new time t = 27 = 2% 4+ 22 in the Lepage-Brodsky
(LB) convention [12] as the coordinate which evolves the physical system to the future.
The other coordinates are chosen to ensure orthogonality. The transformation from the
instant to the light-cone coordinates

(22,2t 2%, 2%) — (27,21, 27), (2.8)
is then given by
et =2"+2% # = (a2?), 27 =2%—2 (2.9)

This transformation can also be written as

100 1
~ oxH 010 O
o OH gV i [ =
ot =CF,2¥, with CV_(&CV)_ 00 1 0 (2.10)
10 0 -1
The metric tensor (2.4) then becomes
o 0 o0 1
~ o -1 0 0| . iw .
Gw=g o _1 o|=C"g-C, (2.11)
1
L o 0 0
with its inverse given by
0 0 0 2
~ 0 -1 0 O T
Hr — .q-
7 0 0 1 o|=Cecm (2.12)
2 0 0 O

The covariant components of any light-cone 4-vector are then defined by z, = g, 2".
The entries 1/2 in the off-diagonal part of the metric tensor imply a slightly unusual
scalar product

a-b=gua'b’ =1aThb” + 2a7b" —a'b'. (2.13)

The contravariant Poincaré generators on the light-cone can be determined as
(15“) =C - (PH"), (M“”) =C-(M*).cT, (2.14)
which give the covariant ones as
(P)=G-(P") (M) =5 (M")-G" (2.15)
=(C7)" - (P, =(C7)" My, -C7 (2.16)

Since all relevant quantities on the light-cone have been determined, we can suppress
the tilde-symbol and simply refer to them as light-cone objects.

11
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In this sense the covariant Poincaré generators on the light-cone are explicitly given as

0 —-Bi —By K3 L(p0 — p?)
By 0 —J3 S =
My, = ; P,= —-Py , (2.17)
—1K3 -5 —S2 0 2

where we defined
By = 3(Ki+Js), Ba=3i(Ko—J1), Si=3(Ki—J2), and S»=3(Ks+J1).

In analogy to the definition of the Hamiltonian H in the instant frame we define the

Hamiltonian H in the light-cone frame as that operator whose action on the state |¥(¢))

has the same effect as taking the partial derivative with respect to the light-cone time
t=at 5

H|¥(z ")) =i——|T(zT)). 2.18

() = i () (218)

Therefore in the light-cone frame the Hamiltonian is given by
H=P, =1iP". (2.19)

Using the Poincaré algebra (Appendix A), we can derive the commutation relations
between this Hamiltonian and the remaining generators

[H, Pi] =0, [H,S$1] =iP, [H, B1] =0,
[H,P,] =0, [H, S2] = iPs, [H,Bs] =0,
(H,P_] =0, [H, J] = 0, H, K] = iH. (2.20)

The obvious kinematical operators are the three light-cone momenta P;,P»,P_, the
longitudinal rotation J3 and the light-cone boosts Bi,Bs. However, although K3 does
not commute with the Hamiltonian, its behaviour is special because the commutator
[H, K3] is proportional to H. This has consequences. Suppose we boost the Hamiltonian
H in the longitudinal direction

H — B fre—mKs (2.21)
then the Baker-Campbell-Hausdorff relation can be used to derive

e ge ks — | 4 in[K3, H] + 3 (in)*[Ks, [K3, H]] + - --
H+77H+%772H+"‘:enH- (2.22)

Obviously, application of the operator K3 changes H only by a factor. Or, in other
words, if we boost the system in the longitudinal direction, the energy eigenvalues are
just multiplied by a constant scaling factor e”. Because of this special behaviour, K3 is
usually called kinematical instead of dynamical. As a result the light-cone frame offers
7 out of 10 kinematical Poincaré generators, compared to 6 kinematical generators in
the instant frame. The only dynamical operators besides the Hamiltonian are the two
transverse rotations S; and So. Therefore, by going from the instant to the light-cone
frame, the problem of dynamical operators is shifted from boost to transverse rotation.

12
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2.2.1 Boost transformations

Two of the most important kinematic symmetries in light-front field theory are the
longitudinal and transverse boost symmetries. For this, we want to have a closer look
into the boost transformation properties of the longitudinal P and transverse B,
momenta. As we will show, the longitudinal boost corresponds to a rescaling on the
light-front whereas the transverse boosts simply are Galilean boosts in two dimensions
in non-relativistic dynamics. The relevant commutation relations are given by

[B!, P/ = —is" Pt ; [K3 PT]=—iP™. (2.23)
If we boost as follows
Pt K pre—imK® . B, ¢imB' o—iniB' (2.24)
and use the relation as in (2.22), we obtain the fundamental result
Pt s empt . P, — P+ Pt (2.25)

We see that a general boost B, = 1 B! 4+ 19B? in the transverse plane acts just like a
two dimensional Galilean boost in non-relativistic dynamics. P+ can be interpreted as
a variable Galilei mass.

One thus expects that light-cone kinematics will partly show a non-relativistic be-
haviour. This expectation is indeed realized and leads, for instance, to a separation of
center-of-mass and relative dynamics as in non-relativistic many-body systems. This
is important for constructing a proper scattering theory within a quantum field theory,
which is impossible to do in the instant frame. But also for the calculation of bound
states, this decoupling of center-of-mass and internal motion is of tremendous help.
We can now ask the question how to boost from one momentum set (13 'L, PT) to another
set (Q 1,Q"). This can be done by fixing the boost parameters n3 and 77, as

Lt QL —-P
m=In—— ; fL=—FF

BT (2.26)

Obviously, this is only possible for P™ # 0. We emphasize that in this construction
there is no dynamics involved. This means that we can build states of arbitrary light-
cone momenta with very little effort. All we have to do is applying some kinematical
boost operators. The simple behavior of light-cone momenta under boosts will be im-
portant for the discussion of bound states. For instance they lead to frame independence
in the Fock state wave functions.
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2.2.2 Vacuum

Here is another advantage of light-front dynamics: the simplicity of the vacuum. The
physical vacuum is defined as that Hilbert space state |0) which is invariant under
Poincaré transformations (Appendix A)

U(A, a)|0) = |0), (2.27)

implying
PH0) =0 and MH¥|0) =0. (2.28)

In other words |0) is that state for which the eigenvalues of the conserved operators
P* and M* are zero. Focusing only on positive energy states, that means on massive
physical systems with (P2, P~) > 0 the above fixing of the physical vacuum turns into

PT0)=0 ; P.0)=0 and M*"*|0)=0. (2.29)

Since the Hamiltonian H ~ P~ > 0 is chosen to be a positive operator of having only
positive eigenvalues, it immediately follows from the invariant mass condition M? = P2,
which on the light cone can be written as P~ Pt = M? + ﬁf, that the longitudinal
momentum PT > 0 must be a positive operator too. Furthermore, this positivity is
guaranteed for all times, since P™ represents a conserved quantity. Then if we exclude
Pt =0, the above condition P*|0) = 0 forces the physical vacuum to be trivial because
it is the only state with P™ = 0. In this case the physical vacuum is identical with
the free Fock-space vacuum. But if include the so called zero modes with P™ = 0,
which can only exist if the system allows for M = 0, the light-cone vacuum starts to
get complicated again.

Nevertheless, the overall dynamical behaviour of the physical light-cone vacuum is far
more simpler then its counter part in the instant form. Only particles with mass zero
can be created from the light-cone vacuum, unlike the instant-form vacuum that can
create particles with non-vanishing masses, if their momenta sum up to zero. The
vacuum in light-front interferes with the dynamic structure to a much lesser extent
than in the instant form. In this form, there will exist zero total momentum states
with arbitrary constituents which will mix with zero-constituent states to build up the
ground state, the physical vacuum in the instant-frame.

So, if we are able to eliminate possible zero modes from a given system, we can say that
the physical vacuum state in the light-cone representation is the simple Fock vacuum
without any constituents. This is a tremendous simplification. For example, it allows
a Fock expansion on this vacuum state which can be used as a basis for representing
a general physical state as that of the bound state |¥). In other words it immediately
allows for a constituent picture in a field theory with infinitely many degrees of freedom.
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2.2.3 Bound states and Light-cone wave functions

Since the invariant operator M? = PHP,, on the light-cone is given as M 2= p-pt —15?_
the stationary state condition (2.3) can be written as

M?+P?

A1) = =55+

|W). (2.30)
Furthermore, since the boost on the light-front only depends on kinematics, we can
consider the bound state in the rest frame (P, PT) = (0., M). Thus, the eigenstate
equation simply becomes

H|¥) = E|7), (2.31)

which is the familiar Schrédinger equation in ordinary quantum mechanics with the
eigenvalues E = M /2. On the light-front, boosting a bound state from the rest frame
to any other frame is dynamically independent and quite simple, as we have shown in
(Section 2.2.1). Thus, once we find the bound state in the rest frame, we can completely
understand it in any frame. The eigensolutions of the Hamiltonian thus describe bound
states of arbitrary four-momentum, allowing the computation of possible scattering
amplitudes and other dynamical quantities. As we know, this does not hold in the
instant form. Although the bound state equation in the instant rest frame has the
same form, the solutions in the rest frame are not easily boosted to other Lorentz
frames due to the dynamical dependence of the boost transformations. Therefore, in
each different Lorentz frame one needs to solve the bound state equation of P to
obtain the corresponding wave functions. This is the reason why one can not establish
a reliable approach to construct relativistic wave functions in instant field theory in
terms of the Schrodinger picture. This obstacle is obviously removed on the light-front.

As already mentioned in (Appendix A), in both the instant and the front-form the
eigenfunctions can be labeled by the eigenvalues of all commuting observables given
from space-time symmetry. These are the systems invariant mass M, the three space-
like momenta P, P |, the total spin-squared S? and its longitudinal projection S, or
alternatively its helicity A:

@) = |M,P*, P, S% A, ). (2.32)

In addition, the eigenfunctions can be labeled by quantum numbers a which are not
related to any space-time symmetry, like charge or baryon number of the system. In the
following we will only maintain the momentum labels and suppress all other quantum
numbers. We already know that if possible zero modes can be excluded from the
system, the bare Fock vacuum is an eigenstate of the full interacting Hamiltonian. It
thus serves as an appropriate ground state on top of which we can build a reasonable
Fock expansion. One constructs the complete basis of Fock states |uy,) in the usual way
by applying products of all possible free field creation operators to the vacuum state
|0). All these created particles of the system are on-shell (p“p,); = m2.
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The number of particles is denoted by the index ¢, while the various Fock-space classes
are conveniently labeled with a running index n. Each Fock-state |u,) = |n : p, 7 1;)
is an eigenstate of P, P, and the free part of the energy P; , with eigenvalues

P =gt Bi=Y 5, By =Y ML 2.33
_szv L_ZpLia 0 _274, ( : )
To set the stage for the definition of light-cone wave functions, we first introduce some
relevant kinematical variables, the relative momentum coordinates x; and k| ; via

pf == Pt, pli=xP + ki (2.34)

Thus x; is the fraction of the total longitudinal momentum that the i-th constituent
carries, and k| ; is its relative transverse momentum with respect to the center-of-mass
frame. Comparing with (2.33) we note that these variables have to obey the constraints

Y zi=1 and Y ki;=0. (2.35)

A particularly important property of the relative momenta is their boost invariance.
Using (2.25) we easily see that z; is invariant towards a boost in the longitudinal

direction
x; = en3p;‘_/en3p+ = x;, (236)

while & 1; is invariant towards a general boost in the transverse plane
Ky =p" —oPly =P+ ip) —xi(PL+7.P") =k, (2.37)

which indeed proves the frame independence of x; and k i
Let us now calculate the total free light-cone energy in terms of the relative coordinates.
Making use of the constraints (2.35), we obtain

2 2 5] )2 2
- - le‘i‘ml . (xZPJ_‘i_kJ_l) + m:
P s
i i b i i
1 2 kii+m? — (D— -
= o7 PJ_+ZT = (P )em + (Py): - (2.38)
(2

This is another important result: the free light-cone Hamiltonian P, separates into a

center-of-mass term,
(Py )em = P /P, (2.39)

and a term containing only the relative coordinates,

~ 1 k3, +m? M
(Py)r = 57 (Z et ) = > (2.40)

- 3
(2
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The last identity, which states that (P; ) is essentially the free invariant mass squared,
follows upon multiplying (2.38) by P*. This decoupling of center-of-mass and internal
motion is associated with the transverse dimensions, and is an indirect consequence of
the non-relativistic transformation behaviour of the transverse boosts. These results are
in complete contrast to instant form kinematics, where the appearance of the notorious
square root in the energy prohibits a similar separation of variables.

Since the Fock states |u,) form a complete set in the sense that
Z/d[un]lun><un| =1, (2.41)
n

every general state |¥) with momentum P = (P, P 1) can be calculated in terms of
these Fock states via the expansion

|\P(ﬁ)> = Z/d[un] lﬁn(fm, EJJ) n: SE,’P+,£E¢P_L + EL1> . (2.42)

Up to a normalization constant the phase-space differential is given as

dljun] = [] deid’k L, 5(1 -3 xj)52 ( > EL) (2.43)

J
The most important quantities in (2.42) are the light-cone wave functions
Yn(@is k1i) i= (n: 2 PY @i PL+ kuly(P)), (2.44)

which are the amplitudes to find bare constituents with momenta (x; PT, a:ll-:" |+ k 14)
in the state |¥(P*t, P,)). They are only functions of the frame-independent variables
x; and k 1; and therefore can not depend on the total momentum P of the system.
Thus light-cone quantization offers the special feature of specifying wave functions
simultaneously in any frame. This property makes light-cone wave functions ideal for
probing the internal structure of a system [12].

To simplify things even more, we will in this thesis always go to the ‘transverse rest
frame’ where P, = 0, implying a vanishing free center-of-mass Hamiltonian (Py )cm-
In this frame the helicity of the system is given as the total spin along the longitudinal
direction. The transformation to an arbitrary frame with finite transverse momenta
P, is then trivially performed.
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3 The QCD-inspired Model
We address to the following effective one-body equation

-

mi(A) + k2 Tn(A) + k2
ml( )+ J__i_mz( )+ 1 ¢>\1/\2($Jﬂ)

T 1—=x

+ /dx,d2EILU)\1)\2;)\’1)\’2($7EL;mlagi;A)d})\’l)\g(x,aEIL)a (3.1)
ALA

M2y, (x, k1) =

being an integral equation with the kernel

5,\1,\2;>JI>J2 (z, Ebwl, El)
Vr(l—z)z' (1 —a')

We will now summarize the basic ingredients of this equation, for more background
information one has to refer to (Appendix B).

First of all, its an effective light-cone equation acting only in the lowest ¢G Fock space
sector via a simple one gluon exchange between effective vertices. Its designed to
describe flavor off-diagonal mesons, that means for mesons having a different flavor for
quark and anti-quark — we don’t have to deal with any annihilation amplitudes. By
construction this effective equation has the same eigenvalue spectrum as the full light-
cone Hamiltonian. The eigenvalue is the invariant mass squared M?2. The associated
eigenfunction ¢ = (z, R X2| W) is the probability amplitude for finding a quark
with longitudinal momentum fraction x, relative transversal momentum k 1 and helicity
A1, and correspondingly the anti-quark with 1 — x, k 1 and Ao. It is convenient to see
Q? = Q*(x, k i, I;’L) as the mean Feynman-momentum transfer of the quarks

1 a(@,A)
UnidasNn, = _yTR(Q’ )

(3.2)

Q* = =5 [(k1 — K1)* + (k2 — K3)?] . (33)
The spinor factor S = S(z, ko, E’L) is the usual current-current coupling

Sainanpyg = @k, M)y ulky, X)][o(kg, Xo)vuv(k2, A2)], (3.4)

which will account for all fine and hyperfine interactions. Its defined in terms of Lepage-
Brodsky spinors [12] with the matrix elements tabulated explicitly in (Appendix C).
Due to these helicity indices the above one-body equation is a set of four coupled integral
equations in the three momentum components x and k L. Finally the parameters of
the equation are the physical effective quark masses m; and ms, and the physical
effective coupling constant @. They implicitly depend on some unphysical cut-off scale
A which in turn demands a renormalization of these parameters. The same holds for
the regulating function R(Q,A) which gives the equation an explicit dependence on
the mass scale A for having a well-defined integral equation, since the kernel is not
vanishing sufficiently fast enough for k 1L — oo.

Important to note is that (3.1) is a fully relativistic and frame-independent bound-state
equation and we will consider it as the ‘master equation’. The equation was derived
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in an non-perturbative way from the QCD-Lagrangian Lqocp by making a few but
well specified assumptions. It was derived by the method of iterated resolvents [7],
that is by systematically projecting the higher Fock-space wave functions onto lower
ones. In doing so the Fock-space was not truncated and all Lagrangian symmetries
were preserved. If the gg-projection + in (3.1) is known, all higher Fock-space wave
functions can be retrieved from it automatically.

The main task of this thesis is not to solve equation (3.1). This was done in full glory
by Trittmann et al. [13], who showed how the equation can be solved numerically with
high precision. We rather want to address the problem of renormalization. To attack
this problem in a more or less analytical way, we will simplify the ‘master equation’
(3.1) down to a workable model equation, the 1|-model [6]. This model is very impor-
tant in understanding how renormalization works in a non-perturbative context.
Before we start constructing the model, we first look again at the unphysical A-
dependence of equation (3.1). We see that its effective Hamiltonian depends on this
regulator scale through three quantities. First, it implicitly depends on A through the
physical quark masses My = ms(A). Second, it also implicitly depends on A through
the physical effective coupling @(Q) = @(Q,A). Third, the Hamiltonian ezplicitly de-
pends on A through the unphysical regularization function R(Q,A). The dependence
on the parameter A must be removed

d eff [— —

d—AHLC [m(A),@(A), R(A)] =0, (3.5)
as required by renormalization theory, but how? The above condition can be rewritten
as a functional variation

SHEf om  SHfE 6o SHEL R _
om OA oa OA SR SA

(3.6)

It is not in conflict with renormalization theory to vary the three terms independently

sm i@ R

_0, 5_A_

A=0 5= 0. (3.7)

The independent renormalization of 7 ¢(A) can be achieved by interpreting the m as
parameters of the theory to be determined by experiment. The independent renor-
malization of @(@,A) has been performed in [7] or recently in [14], in terms of the
QCD-scale k, to be determined by experiment. Since there the renormalized effective
coupling @(Q) varies only little for relatively small momentum transfers, like in a typi-
cal bound system, the scale k will be replaced by the dimensionless and Q-independent
number @. Without avoiding to much confusion, we will from now on drop the ‘bar’-
notation on the renormalized physical coupling constant @ — «, as well as on all
renormalized physical quark masses m; — my. So, the full problem of renormalization
can essentially be reduced to the problem of removing the explicit dependence of A
from the bound-state equation (3.1). This will be attacked in detail in the next section.
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The next stage towards the 1]-model is the simplification of the spinor factor S. Two
constituents are at relative rest when &, = 0 and # = T = m, /(11 +ms). An inspection
of the spinor matrix elements (Appendix C) reveals that if the relative motion between
the quarks are of a small deviation from these equilibrium values, the spinor matrix is
proportional to the unit matrix

<)\1,)\2|S|)\’1,)\,2> ~ 4m1m2 5>\1>\’15>\2>\’2- (3.8)

The values of the helicity indices A; will be denoted by (4, —) or by (1,]). For large
deviations in the transverse plane kf > ki all matrix elements are vanishingly small
compared to the only surviving element of

(1L IS| 1)) ~ 2K (3.9)

Since in this far-off equilibrium state the momentum transfer behaves as Q2 ~ Ef, its
possible to combine these two extremes in the Singlet-Triplet (ST)-model:

(A1s A2l SIN, Ag) = dx, a1 0xgny, (A1, A2 S|AL, Aa),

with )
mi1ms .
<)\1, >\2|S|>\1, )\2> 7 +2 for Ay = —X (Slnglet),
Q? = dmumg _ (3.10)
Q2 for A\; = Ao (triplet).

For singlets the model interpolates between two extremes: for small momentum trans-
fer Q% the ‘2’ is unimportant and the dominantly Coulomb aspects of the first term
prevail. For large momentum transfers the Coulomb aspects become unimportant and
the hyperfine interaction is dominant. The ‘2’ carries the singlet triplet mass difference.
For the triplets the model reduces to the plain Coulomb kernel. The big advantage of
this model is its simplicity in dropping the helicity summations, which technically sim-
plifies the problem enormously.
The model we will focus on, is the T]-model of [6] which reduces the kernel even further
<)\1, )\2|S|)\1, )\2> 4m1m2 4m1m2
Q? Q? Q?
This model emphasizes the point that the ‘2’, or any other constant in the kernel of
an integral equation, leads to numerically undefined equations and thus singularities.
Certainly this model can not be justified in the sense of an approximation. It over
emphasizes many aspects of the original interaction. Nevertheless, its remarkable how
the 1]-model is able to predict the mass spectrum for pseudoscalar and vector mesons
within less than 5% error [6]. In this sense it serves as a reliable model to do fast
calculations. As we will see, this model offers a nice platform for solving the explicit
renormalization problem.
Next, a rather dramatic technical simplification is achieved by a transformation of
the longitudinal integration variable in (3.1) — if done correctly, such a step is no
approximation but exact. After all we are just substituting the integration variable
x € [0,1] by an other integration variable k, € (—oo, 00) which, as will be shown below,
can be interpreted as the z-component of a usual 3-momentum vector k= (Ig 1,k2).

R(Q,A) = ( + 2> R(Q,A) — +2R(Q,A). (3.11)
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The integration variables are changed from x to k., by the following Sawicki transfor-

mation [15]
Ey + k. . =
z(ks) = B+ By with  Eyp = \/mi2+ k3 + k2. (3.12)

dx 1 dk,

The Jacobian is

= . , 3.13
z(1 — ) A(kz,kJ_) my ( )
with the dimensionless function
- 1 FE1Ey
Ak, k)= ————. 3.14
( L) my E1 + Eg ( )

If we define a new wave function ¢ which is related by the original frame-independent
light-cone wave function ¥ by

z(1—1z) -

bk, k1) = Atk ;;;)1”(5””“)’ (3.15)

the ‘master equation’ (3.1) within the 1/-model can be converted into the following
integral equation

- - 1 o a3k dmima -
M? —m? — C(k)E*| p(k) = —— — [ +2R ,A] K,
[ WF] 6F) =~ | e | ar -+ 2R@ M) 6(F)
(3.16)
with the dimensionless kinematical function
C(k)=(E1+ + Fo + )( ! + ! ) (3.17)
= m m , .
! ! 2 Y\Ei+mi | Eatmy
and finally with the mass parameters
1 1 1
— = — 4+ —, mg=mq+my, (3.18)

my mq me9

being the reduced mass and the sum mass respectively. Important to note is that the
above variable transformation (z <+ k) has a physical meaning. Since the transfor-
mation from front form to instant form is given by pj = p? + p? with p;r = PTz; the
longitudinal momentum fractions for the two constituents can be written as

b PP Pl Ei + ki (3.19)
Pt pi4pf Bithat Btk '

which immediately yields the transformation rule (3.12), if we choose a special frame in
which the total momentum of the z-component vanishes: P, = k,1 + k,2 = 0. Since we
are already in a frame where the total transversal momentum P | is zero, the integral
equation as written in (3.16) can be interpreted as an instant form equation in the
center-of-mass frame.
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Furthermore, this justifies that the transformation variable k, can be seen as the z-
component of a usual 3-momentum vector. Although there is not a single trace of
light-cone variables in equation (3.16), its still a genuine front form equation designed to
calculate frame-independent light-cone wave functions (3.15). After all, a substitution
of integration variables does not change physics.

We continue to simplify the integral equation (3.16) by constructing a more or less
non-relativistic situation with l_c? < m?, thus

C(k) ~ms/me, Ak)~1, Q*~ (k—k)2 (3.20)

To substitute A(k’) ~ 1 in the kernel is certainly not justified, since the integration
variable has k' — oo at the upper limit. But if one does it anyway in the sense of a
non-relativistic simplification, one gets

2 2 Mg
M* —m; —

2] () = -~ /d3k’ [%+2R(Q,A) S(F),  (3.21)

mp 312 m,

with the connection to the light-cone wave function given as

Yz, kL) = % (3.22)

The only reason why we apply the non-relativistic simplification is that (3.21) has a
local Fourier transform, which allows us to have a simple picture of the underlying
interaction potential. Defining the new energy variable E = (M? — m?2)/2m,, which
will behave as the conventional non-relativistic binding energy, turns equation (3.21)
into the usual momentum space Schrédinger equation

.2

Ep(k) = Qk + /d?’k’U(qQ,A)qﬁ(E')

my

with U(¢*,A) =

1 « dmsm,
672 mem,

2 + 2R(q%, A)] . (3.23)

Fourier transforming gives

-,

B = |+ V)]0
with V(r,A) = /d3qe—i‘TFU(q2,A), (3.24)

the local Schrodinger equation in coordinate space. On the other hand, the Fourier
transform of (3.16) is non-local and mathematically difficult.
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4 Explicit Renormalization

In this section we are going to address solely to the 1|-model equation (3.21). We first
look at it in the limit of A — oo

- - 4 « 2m? -
M? —am? —4k?| p(k) = —— — [Pk | =———— + 1| (). 4.1
M2 — 4m o) =55 it KIS

It is a robust physical equation to model flavor off-diagonal mesons with equal quark
and anti-quark masses, as for example the pion (m, ~ mg). This is done by fixing the
parameters a and m to the experimentally available mass spectrum M. The general-
ization to different quark and anti-quark masses is performed trivially. We deliberately
wrote equation (3.21) in the form of (4.1) to suggest the reader that, due to its pure
physical content, the equation is ready to be solved for and to be fitted to experiment.
But unfortunately this is not possible, since equation (4.1) is mathematically not de-
fined. It is the number ‘1’ in the kernel, which generates all the well known trouble.
The aim of this section is to give (4.1) a physical meaning by renormalization. This
will be done by comparing two drastically different renormalization schemes, both con-
ceptually and numerically, and verify that they agree. This strong statement stands
at the very basis of renormalization ideas, that no matter the intermediate steps one
performs to mathematically define the initial equation (4.1), after renormalization all
of them produce the same physics.

One scheme is to renormalize directly at the basis of the Schrodinger equation (4.1)
by the method of using counter terms in a regularized interaction kernel. The other
scheme is to renormalize at the basis of the complementary Lippmann-Schwinger equa-
tion (Appendix D), by applying a well specified subtraction method to the equivalent
T-matrix equation. It was first developed by the authors of [16] to handle singular
interactions in non-relativistic quantum mechanics. But before going there, we first
want to investigate the former renormalization scheme.

4.1 Renormalization by a counterterm

If one Fourier transforms the Schrédinger equation (4.1) to coordinate space, the in-
teraction potential consists of a long-ranged Coulomb interaction and a short-ranged
Dirac-delta interaction. It is this latter part which generates trouble. In order to get
reasonable solutions one has to regulate the short-range region, which implies the regu-
larization of high momentum transfers Q? = (E —K )2. As expected, we have to restore
(4.1) to its original well-defined integral equation (3.21) by substituting the number 1
by a regulating function 1 — R(Q, A), for which the soft cut-off (B.57) is chosen

- - 4 , 2m? A? 7
[M2—4m2—4k:2 o(k) = —— 2 [Bk [(E m +A2+(E—E')2 H(K). (4.2)

In coordinate space the short-ranged delta is now smeared out to a Yukawa interaction.
Since the regulator A is an additional but unphysical parameter, one has to renormalize
the equation in order to restore the original problem in the limit A — oco.
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Here is a general but abstract procedure how the explicit A-dependence can be removed:
suppose we have solved equation (4.2) for a fixed value of the parameters a = ap and
m = mg, and for a fixed value of A = Ag. Suppose further that these parameters
are chosen such, that the calculated eigenvalues Mi2 agree with experiment. Next, we
change the unphysical cut-off A = Ay + JA by a small amount éA. Then all calculated
eigenvalues will change by a small amount (5Mi2.
Renormalization theory is then the attempt to reformulate the underlying theory, in our
case equation (4.2), such, that all these changes vanishes identically. The fundamental
renormalization group equation is thus

d . o . .

d_AMi (A) =0, for all eigenstates 1. (4.3)
No other reason than simplicity we will restrict the solutions of (4.2) to those of s-waves:
#(k) = ¢(|k|) and fix the mass parameter at the value of m = 406 MeV. Being only a
function of « and A the spectrum of the bound-state mass squares Mf(a, A) are then
calculated numerically — on numerical details see (Section 4.3) and (Appendix E). For
the ground state (i=0) this is displayed as a contour plot in (Figla). A similar graph
could have also be given for the first excited state (i=1) or for any other eigenstate.
It goes without saying that such plots can be generated easily only for a sufficiently
simple model, such as the 1]-model.

According to the general outline mentioned above, one must make sure that the mass
squared spectrum stays invariant, §M?(a, A) = 0 for infinitesimal variations JA. This
can be achieved by the following construction, by introducing a new function

R(Q,A) = R(Q, A) + C(Q, A). (4.4)

We extend the model interaction by adding to the regulator function R a counter term
C. We choose this counter term according to three criteria. First, the new function R
must again be a regulator in the sense of (Appendix B.2). Second, we require that a
zero is added for a particular value of A, say for A = Ag. Thus adding a counter term
at A = Ay will not change the original interaction at that point. Third, we require the
first A-derivative of R to vanish at A = Ag. Because a vanishing derivative of R at
A = Ag implies vanishing derivatives of the eigenvalues M? with respect to A at this
very same point. The argument is based on the Hellmann-Feynman theorem, which
states that an external parameter variation in the Hamiltonian has no effect on the
corresponding wavefunctions but only on its eigenvalue spectrum. All three conditions
are met by
OR(Q,A\?)
OAZ
where the derivative is to be taken at A = Ag. The numerical results in (Figlb) illustrate
this very convincingly that the Hamiltonian is partially renormalized 5Mi2(a, A)=0in
the vicinity of A ~ Ag for all a.

C(Q,A%) = —(A? - A) (4.5)
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Figure 1: Nine contours 0.4 < a,(A) < 1.0 are plotted versus 1.0 < A/A < 7.0 from bottom
to top with n = 4,3,...,—3, —4. The contours are obtained by plotting the ground state of the
invariant mass-squared MZ(A,«) = nA? + M2. The thick contour n = 0 describes the pion
with MZ = M2. Masses are given in units of A = 350 MeV.
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One can carry on the procedure to the next higher order

5 OR(Q,A) _ (A% — A§)? O°R(Q, AD)
A) = A) — (A% — Ag 0 0 0 4,
with the result that the contours as shown in (Figlc) become broader. And so on. In

the limit of large order the contours become flat, since the renormalized regulator

R(Q,A) = R(Q,A) — [R(Q.A) — R(Q,Ao)] = R(Q, Ao), (4.7)

is manifestly independent of A. One has realized the fundamental renormalization group
equation: dMiZ(A) = 0 for all eigenstates, since the choice of the above counter terms
are universal and apply for every i. The above results represent thus a beautiful and

pedagogic example for how renormalization group works.
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4. Explicit Renormalization

The result sounds incredible: invent a regulator function R(Q,A) to be a function of
the cut-off scale A. The same function but for A = Ag is the renormalized regulator,
and the parameter Ag is to be determined from experiment. Important to note is that
this result is only valid for regulating functions which have well defined derivatives
with respect to A. The sharp cut-off (B.57), however, is a step function with ill defined
derivatives.

With Ag we thus have one more parameter than the 7 bare parameters of the QCD-
Lagrangian: 6 flavor quark masses and the coupling constant. This is in full accord
with renormalization theory, since whatever the model is, one has a scale at which one
experiments.

4.2 T-matrix renormalization

For the purpose of presenting the subtraction method of [16], its convenient to convert
the Schrodinger equation (4.1) into the abstract Dirac-notation of quantum mechanics:

(Mg +V°+V0)|g) = M?|¢), (4.8)

where the matrix elements in momentum space of the free mass operator MOQ, the
Coulomb potential V¢ and the Dirac-delta interaction V? are identified as

— -

(R|M2|E'Y = (4m? + 4K?) - §(k — k'),
_ &m a

s TS S E 61_(,:, :)\ 4
sy EVE = (49)

(kIVIR) =

where ) is to be seen as an additional independent parameter of equation (4.1), repre-
senting the bare strength of the Dirac-delta interaction. Its inverse carries the dimension
of energy, as it was the case of A in the previous subsection. The drastic difference
between these two additional parameters is that A served as a regulating parameter,
while here, A will simulate arbitrary strenghts of the trouble making delta interaction.

Next, we briefly want to supply the essence of the subtraction method, which is per-
formed in the complementary scattering picture of the Lippmann-Schwinger equation.
For this, let us solve equation (4.8) only with a pure delta interaction, i.e. V¢ = 0,
which, as said, makes (4.1) not well defined.

The relevant self-consistent T-matrix equation for a scattering state of mass M is given
by

T(M?) =V + VoG (M) T (M?), (4.10)

with 1
M= 4.11
G (M?) ME A § i (4.11)

as the Green function of the free mass operator equation with a outgoing wave boundary
condition. The solution of the operator equation (4.10) in this simple case is determined
by iteration and the subsequent summation of the corresponding geometrical series.
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4. Explicit Renormalization

As a result, the solution in the form of the matrix elements (k|T'(M2)|k') only depend
on the invariant mass squared M?2:

1

(kIT(M)|) = Py ve))

= 7(M?), (4.12)

with the function )

M? — 4m? — 4k? + i€’
which diverges linearly! From a different perspective we see again that this is the
mathematical problem in (4.1) of having a delta interaction in the kernel. How to give
meaning to 7(M?2)? We use the renormalization idea. Suppose 7(u?) is known from
experiment, then we rewrite 7(M?) using this piece of data:

I(M?% = [d3k

(4.13)

T(M?) = [r L (i) + I(u?) — I(M?)] 7, (4.14)

and now the subtraction of the divergence appears! A closer look to

1
(u2 — 4m?2 — 4k2 + i) (M2 — 4m?2 — 4k2 + ie)’

I =10M) = (M7 —12) [ (4.15)

shows that it is finite with p being the subtraction point. Substituting (4.14) into (4.12)
the bare strength A can be written as a function

1 B 1
W)+ () 1+ (u?)I (1)
in which the physical input and the counter terms that subtract all the infinities in the

scattering matrix at the mass scale u are present. This is the essence of the subtraction
method: the renormalized delta interaction which formally can be written as

A(W?) = (1), (4.16)

VAGW2) = T(2) 1+ 65 ()T()] (4.17)

with its matrix elements <I;|V7‘%(u2)|lz:" ) = A(1?) results in a finite T-matrix obtained by
solving the corresponding renormalized equation

Tr(M?, 1?) = VR (1®) + VR(1?)Gy (M?)Tr(M?, 1i?). (4.18)

Next, the physical input 7(u2) = (k|T(u2)|k’) can be interpreted as a renormalized
Dirac-delta strength Az (u?). To see this, we rewrite the above renormalized T-matrix
equation as

TR(M?,i%) = VAG2) 1+ G (M) Tr(M2, )]
= [Tr(M2 52 (M) + 1] VA(2). (4.19)

Substituting (4.17) into the last equation, we now obtain the renormalized T-matrix
equation in the form of

Tr(M?,u%) = T(u?) + T(4*) [Gg (M?) — Go(®)] Tr(M?, 1i?). (4.20)
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4. Explicit Renormalization

We observe that this equation has the same operatorial form as the original renormal-
ized T-matrix equation (4.18), with the interaction V;% replaced by the physical input
at the mass scale p, and the original propagator replaced by a propagator which has
a subtraction at such mass scale. The former allows to see the physical input as a
renormalized Dirac-delta strength (k|T(u2)|k') = Ag(12), while the latter manifestly
shows how the scattering equation (4.18) with the renormalized interaction appears in
a subtracted form, in which all divergent momentum integrals are explicitly removed.
Important to note is that, instead of working formally with the operator Vf%, one could
have also used an ultraviolet momentum cutoff A by defining in this way a regularized
interaction. However, after the construction of the regularized T-matrix equation one
can perform the limit A — oo, arriving at the same results as the ones obtained directly
with the use of the renormalized interaction.
To complete the renormalization scheme we have to think about the renormalization
point itself, which in this context is given by a subtraction point u. As we know, the
subtraction point is the scale at which the scattering amplitude is known. But this point
is arbitrary in the definition of the renormalized interaction and in principle it can be
moved. On the other hand, a sensible theory of a singular interaction, as here for the
delta interaction exists only if the subtraction point slides without affecting the physics
of the renormalized theory. That means a Hamiltonian should have the property to
be stationary in the parametric space of the subtraction point. The renormalization
group method can be used to realize the invariance of physics under dislocations of the
subtraction point. This condition demands the renormalized potential V;% to be inde-
pendent on the subtraction point. When applied on (4.17) the renormalization group
equation can be written as
d s, _ d — T2\ (1,2\ 27,2

72 RW) =0 = 5 T(W)=-T(W)Go (W) T(), (4.21)

v dp
and is a prescription how the renormalized coupling constant Ag(1?) has to change as
the subtraction point u moves. As long as the first order differential equation (4.21) is
satisfied, it automatically follows from (4.18) that the renormalized T-matrix also does
not dependent on the subtraction point T (M?2, u?) = Tr(M?).

The subtraction method as exemplified above for the pure delta interaction, is now
applied to the effective model defined by the full mass operator of equation (4.8). The
corresponding scattering matrix comes from the solution of the scattering equation

Tr(M?) = Vg + VrGY (M?)Tr(M?), (4.22)

with the renormalized potential Vi = V¢ + V,,g, where the Coulomb interaction is a
regular interaction which need not to be renormalized. In finding the solution, we will
make use of the 2-potential formula as given in (D.126), where Tk (M?) becomes

Tr(M?) = T¢(M?) + [1+ T°(M?) Gy (M?)] - VS - [GF (M*)Tr(M?) +1].  (4.23)

The regular Coulomb T-matrix T¢(M?) is the solution of the scattering equation (4.22)
for the pure Coulomb potential V¢. Important to note is that the Coulomb T-matrix
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4. Explicit Renormalization

only shows its anomalous behaviour [11] in the calculation of scattering quantities, as
for example in the scattering amplitude or phase-shift, but not in its bound state region,
as we are interested in. We will see that the general procedure of identifying bound
states as poles of a T-matrix leads here to well-defined results.

We manipulate (4.23) further by multiplying on both sides with G§ (M?) and solving
it we get

G¢ (MH)Te(M?) + GH(MH)VE

Gy (M*)Tr(M?) = : 4.24
with the interacting Green function defined as
Gt (M?) = Gf (M?) + G§ (M*)T(M*)Gg (M?). (4.25)

Substituting (4.24) back into (4.23) one finally finds the formal solution of the renor-
malized T-matrix as

Tr(M?) = T°(M?) + [1+ T¢(M?)G{(M?)] - tr(M?) - [GF (M*)T*(M?) + 1], (4.26)
with the reduced matrix elements
(kltx (M?)|K') = (BI(VR) ™' — GH(MP)|K') = Mg (u®) + (k|G (u*) — GT(MP)|F'),

where in the last identity (4.17) has been used. Instead of using A" (1:?) as the physical
input, its convenient to introduce a new input variable

——1 _ — c —
M (1) = AR (1?) — (kIGF (W) T(1*)Gg (1)), (4.27)
which leads to the more symmetrical expression of
- - — -1 — -
(Bltz (M?)|K') = Ag (1?) — (RIG* (M?) — G* (u®)|K'). (4.28)

The physical input is constructed as follows: if for example we take the pion mass at
M = m, ~ 140 MeV the T-matrix (4.26) should have a bound-state pole; consequently

txt(m2) =0, (4.29)

e

and choosing the subtraction point for convenience as p = m,, implies

e (m2) = 0. (4.30)

™

Finally, the invariance of the renormalized T-matrix (4.26) under dislocation of the
subtraction point just reads as

d 2 By 2 d - 2\ (70
d—MQtR(M )=0 = =iz (W)= d—Mg<k|G+(:UJ )IE"). (4.31)

The solution of this differential equation gives the dependence of the physical input Ag
on the subtraction point x, which must run as

M (W?) =g (42) + (K|GH () — GH () |K). (4.32)
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4.3 Numerical evaluation

To find all s-wave bound-states M, of the counter-term renormalized Schrodinger equa-
tion (4.2), we have to solve the following s-wave projected integral equation

(M7 — 4m? — 4k?] ¢ (k) = 27 - / dk' kU (k') - (K, (4.33)
0
with the attractive kernel
4 1 ) 2 A2
Uk, k') = —o—5— [ deosd | ———— + U (4.34)
3n2m |, (k—k)2 A2+ (k— k)2

The unique fixing of the three unknown parameters to experiment will be done in the
next section. For further numerical details on how an equation as above is solved
correctly, especially how the trouble making momentum space Coulomb singularity at
k =K' in (4.34) is properly treated, one should consult (Appendix E).

On the other hand, in order to find all s-wave bound-states M, of the subtraction
renormalized Lippmann-Schwinger equation, we have to determine the zeros of (4.28)

0=GH(M?) - GT(M?), (4.35)

where M represents the physical input, which will be fixed in the next section as well.
According to (4.25) this equation explicitly reads as

oo 1 1
0 = dk k* - -
/0 [Mﬁ — Mg(k) M2 —M&(k)]

0o o] Tc(k k}I‘M2)
+/ dk/ dk’k2k’2-[ T _n
0 0 (M2 — M§(k)) - (M3 — Mg(k'))

Te(k, k'; M2)
(M2 = ME(K)) - (M2 — Mg(k"))] (4.36)

The free invariant mass for the two quark system of equal masses is My(k) = 4mA4-4k2,
whereas the s-wave projected T-matrix of the pure Coulomb potential in (4.36) is the
solution of the integral equation

TC(k,k’;M2)ZVC(k,k’)+/ dq ¢*Ve(k,q) T¢(q, k'; M?), (4.37)

1
0 M? — MZ(q)

with V¢(k, k') as the s-wave projected Coulomb potential

1 - - 16ma [! 1
kK = 2m- dcos? (K'|VElk) = — d . (4.
Velk, k) T /_1 cosd (K[V[k) 3 /_1xk2+k’2—2kk’-x (4.38)

The angle integration above is evaluated numerically. Using Gaussian quadrature this
ensures us not to run into the logarithmic momentum space singularity of the Coulomb
potential at k£ = k’. The numerical results of the above equations turn out to be stable,
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when using about 250 integration points, in stark contrast to a stable integration of
only about 16 points for the counter-term renormalized integral equation (4.33). There
we perform the angle integration (4.34) analytically and then making use of so-called
numerical counter terms as shown in (Appendix E), which unfortunately can not be
applied to an integral equation like (4.37). The drastic difference in the convergence of
finding a bound-state can also be understood from a more fundamental level: equation
(4.33) is a pure bound-state equation, while (4.36) is a scattering equation designed to
determine bound-states, thus being from beginning at a disadvantage.

Nevertheless, the numerical stability of finding bound-states within the renormalized T-
matrix equation, explicitly shows that the pure Coulomb T°-matrix (4.37) will produce
no anomalies if we focus only on its bound-state part, which is embedded into equation
(4.36). We can conclude, that we do not really need the exact trouble making diagonal
terms T°(k, k), in order to evaluate the zeros of (4.36) properly. This certainly does not
hold for the scattering region of T, since here the diagonal elements must be exactly
available for calculating relevant scattering quantities, like a phase shift in (E.35).

4.4 Comparing renormalization schemes

Here we compare the results obtained with the counter-term renormalization, and the
T-matrix renormalization. In other words, we compare the numerical results of (4.33)
and (4.36) respectively.

Both renormalization methods will make use of the same physical input, namely that
of the pion My = M, ~ 140 MeV as the lowest bound-state (ground state), and that
of the rho M; = M, ~ 768 MeV as the second lowest bound-state (first excited state).
To ensure that our equations produce the pion and rho as true bound-states, we have
to choose a relatively large quark mass. For no good reason other than convenience,
we will fix for the rest of this section the quark mass at m = 406 MeV, as it was used
in the calculations of [6]. The scattering threshold is thus at M = 812 MeV.

In one set of calculations, o will be varied, with fixed M = My = 140 MeV. In the
other set of calculations, M = M; = 768 MeV will be kept fixed. For equation (4.33)
the value of Ay will be fitted to that of My or M; for a given a.

In (Fig2a), the results of M; as a function of o and fixed My = 140 MeV for the two
renormalization methods are shown. The agreement between these two is within few
percent, which we relate to their rather drastic conceptual difference. As can be seen in
(Figla), the values of A for a going to zero increase towards infinity, to keep the ground
state at the pion mass M; = 140 MeV, while M; tends to the scattering threshold at
812MeV, as we observe in (Fig2a). For increasing a the value of Ay decreases to
keep My = 140 MeV fixed, implying a Coulomb dominated Mj, which therefore has to
decrease as well.

The results for My as a function of « for fixed M; = 768 MeV, are presented in (Fig2b).
The threshold for zero pion mass occurs for a at a value of about 0.75. The value of My
increases with «, corresponding to a decreasing binding energy, which means that the
intensity of the short-range interaction, that dominates the ground state, diminishes.
In fact, to keep constant M; = 768 MeV as the effective Coulomb interaction increases,
demands a weaker short-range interaction. The calculation of My with the counter-
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Figure 2:
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(a) The first excited state mass M;(MeV)
is plotted versus « for a fixed ground
state mass of My = 140 MeV. The dashed
curve gives the results from the counter-
term renormalized equation (4.33), the
empty boxes from the T-matrix renormal-
ized equation (4.36).
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(b) The ground state mass My(MeV) is
plotted versus « for a fixed first excited
state mass of M; = 768 MeV. The solid
curve gives the results from the counter-
term renormalized equation (4.33), while
the empty circles give the results from
the T-matrix renormalized equation (4.36).

The upper curve with its empty boxes is
the one of (Fig2a).

term renormalized equation (4.33) does not go beyond a = 0.97 because Ay vanishes
and the mass of 768 MeV of the excited state is reproduced with the effective Coulomb
interaction. The T-matrix renormalized equation (4.36) does not present the same
limitation.

Conclusion: We have shown that two drastically different renormalization schemes, or
even two complementary renormalization schemes, both conceptually and numerically,
agree. Here we provide a simple example, that the physics of a renormalized theory
does not recognize the intermediate steps one performs to mathematically define the
initial undefined theory.
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5. The Renormalized Singlet-Triplet (ST)-model

5 The Renormalized Singlet-Triplet (ST)-model

The explicit renormalization of the 1/-model (4.2) can be easily applied to the more
general ST-model (3.10), which in the form of the ‘non-relativistic’ Schrédinger equation
then simply reads

k2 ~ -
E— k) = a3k’ 2 \) (k'
B e = -5 [ERvieIRe ),
1 1 for singlet
r singlet,
with V(¢ = — +§& and §=q 2mimp & (5.1)
q 0 for triplet.

As was derived in the previous section, the renormalized regulator R(q%,Ag = ) is
arbitrary in the sense that we only demand an asymptotical drop faster than 1/¢* and
the behaviour R — 1 in the opposite limit of g2 — 0. Up to now, the parameters to be
determined by experiment is the renormalization scale A, the six effective quark masses
my and the effective color coupling constant o, = 4/3a.

On how good the above equation simulates the mass spectrum of flavor off-diagonal
pseudo-scalar and vector mesons, one has to calculate a concrete example by choosing
a specific regulator function. One possible choice would be the soft cut-off

)\2

R(@A) = Ro(@’ ) = 5575

(5.2)

which immediately implies the usage of a more general cut-off, first introduced in [5]

R(q’ 1+Z )" s A" W Ro(q*,A) = DY Ro(4*, ), (5.3)

fulfilling the requirements of a regulator as well. The arbitrary coefficients s1,...,sn
are dimesionless and thus renormalization group invariants. Unsatisfactory is that
they are additional parameters, which also need to be fitted to experiment. But by
looking more closely at the potential in coordinate space, as well as using the fact that
lower meson states show a reasonable agreement between theory and experiment if a
pure harmonic oscillator potential is used [8], the number of parameters given by the
coefficients s,, can then be reduced from N down to 2. Following the line of [5], this
will be shown next.

The potential in coordinate space is given by the Fourier transform

Vir,\) = 2 d3ge™ T TV( HR(¢2)N). (5.4)
2
It splits up into the triplet potential
Q e 1aT
Vi) = -5 DY [d o Ro(ah )

% DYS(r, ), with S(r,)\):—g/ dq #Ro(qz,)\), (5.5)
m™Jo
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and into its singlet potential

e —ig 1
Vi) = g DY [ (G ae)  Rale )
o% N ac € N62S(ra A)
= T 'D}\ S(T, )\) — r 'D}\ 87"2
§ 0
= Vil A) =2 g5l Van A (5.6)

We clearly see that the singlet potential is fully determined by the triplet potential. In
this sense we will investigate only the triplet potential in more detail, since a fixing of
Vi(r, \) automatically determines Vs(r, \) according to the above relation.

5.1 Triplet potential

It is convenient to work with a dimensionless radius R = Ar and a dimensionless triplet
potential by defining

Vi(r, A)
W(r,A) = . 5.7
(r,2) 1= = (57)
Performing the integration and the relevant derivatives one obtains
1 1 al
Wi(R) = - ( 14 Dge*R) == ( 14 R [1 n n§_1j snR"D. (5.8)

Since the exponential decays faster than any power at large R, the asymptotic behavior
is always like Wy ~ —1/R independent of the numerical value of the coefficients s,.
Thus the arbitrariness of the potential only lies within small R. This behaviour is
universal and applies to all possible regulators Rg(q?, \) one puts into (5.1). It is fully
in accord with the regularization scheme given in momentum space: the arbitrariness
of regularizing a systems high momenta or energies leads to an arbitrariness in the
behaviour at small distances.

Inspired by [8] we use this arbitrariness for small R of Wy, by requiring it to be an
oscillator potential up to N-th order

Wx(R) =a+b-R*+ O(RY). (5.9)

The coeflicients s, are determined by a series expansion of Wy around its regular
origin. Thus the number of parameters given by the coefficients s,, is now reduced to
only two coefficients a and b to be fixed by experiment: s, = sp(a,b) being

s1 = 1l4+a, so==+a,

and s, = —+ + for n>3. (5.10)
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In the oscillator model of [8] there are two universal parameters in the triplet potential
Vho.(r) = ¢t + %ft -r2. Comparing with the conventions above,

Vi(r, A) = ae) - [a+b - R¥|pexr, (5.11)

we find
e = acha, fi = 2a\%b. (5.12)

In addition to the two oscillator parameters, the quark masses have to be fixed as well.
In our calculations we will exclude the top-quark, since for such mesons no reliable data
is available up to now [3]. Furthermore, we put the mass of the up-quark equal the mass
of the down-quark. And since the triplet potential should describe flavor off-diagonal
vector mesons, we can fix these six unknowns: m,,ms,me,mp and ¢, fi by using the
following six experimentally inspired (Appendix F) invariant masses in GeV

M, ;=0.775, Mys = 0.891, M,z = 2.010, M,; = 5.325,

U u

M*;=1450,  M}; =1.569, (5.13)

where the star represents its first excited state from the ground state of the relevant
flavor sector. The fixing itself is now done by using the simple binding energy formula
for the harmonic oscillator, which on the light-cone has the form

M2 = m2+42m, E,
= m2+42m,- [ce+(2n+3) - w]

mi+m
= (m1+m2)® +2(my +ma) - [ct +(2n+ 3, 2. \/ﬁ] , (5.14)

mimsa
where in the last line w = \/ f;/m, has been used. For the ground state the index n = 0,
while for the first excited state n = 1 must be taken. As a result we have to deal with
6 non-linear equations, which can be split up into 4 coupled equations for m,,,ms,ct, ft
to be solved first, and then 2 uncoupled equations for m.,m;. For the values as in

(5.13) the above equations have indeed a unique solution, which numerically can be
determined as

My = mg = 0.426, m, = 0.596, m, = 1.811, my = 5.153 [GeV]
¢ = —0.735 GeV, f; = 0.0414 GeV?. (5.15)

Up to the N-th order, the triplet potential (5.11) is now uniquely determined, while the
asymptotical and mid-range structure of the complete potential (5.7) is still ambiguous.
There are infinite many ways how to choose the parameters a, b, A and «. to satisfy the
conditions (5.12) with the values of (5.15). A great part of this ambiguity is removed
by the recent renormalization procedure found for the effective coupling constant [14].
For given effective quark masses as above, and choosing A = 0.2 GeV (corresponding
roughly to an experimental scale of r = 1fm), the effective coupling constant for a
typical bound-state calculation (Feynman 4-momentum transfer Q> ~ 0) takes on the
value

a = a,(0) = 0.1716. (5.16)
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Figure 3:
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(a) The triplet potential V;(r, N) is plotted (b) The singlet potential V(r, N) for ud-
versus v for N = 8,7,6,5,4 (top to bot- mesons is plotted versus r for the values of
tom). All of them have the same harmonic N =8,7,6,5,4 (top to bottom) and their
approximation (dashed) with the first five harmonic approximation (dashed) with the
eigenvalues for ud-mesons. first five eigenvalues.

Together with a. = 4/3a, the parameters a and b can now be nailed down unambigu-

ously to the values
a=—16.053 and b=11.298 (5.17)

With these values (Fig3a) shows V; for several N together with their harmonic approx-
imation. The Figure demonstrates the harmonicity of the functions, which grows with
increasing N. The functions also have a barrier which grows with increasing N, after
which they tend to their asymptotic values —1/r. The latter can almost not be seen on
the big scales of (Fig3a). The last constraint on the barrier height is fixed, by varying
N until we have a satisfying agreement with experiment. As we will see later on,

N =38, (5.18)

is a reasonable choice. For N < 8 the harmonic approximation is so bad that the
lowest states which were used to fix the parameters are to far off. And for N > 8 we
are already nearly back to the pure oscillator model [8].

Now all parameters of the triplet potential are fixed, but before we turn to solving
the bound and scattering region of the full ST-potential, we first want to illustrate the
structure of the singlet potential.
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5.2 Singlet potential

According to (5.6) the singlet potential is fully determined by the knowledge of the
triplet potential, which again was fixed uniquely in the previous section. In other
words, we absolutely have no freedom of varying the structure of the singlet potential
independently from that of the triplet potential. The only pure singlet parameter
& = 1/2mymsy is already fixed by the mass parameters of the previous section. Looking
at its expansion in 7 up to N-th order in the triplet potential

£

Vs(r) = Vi(r) - o2

[ Va(r)]

1 2 N £ 0 1 3 N4+1
= Ct+§ft'7' +O(7' )}—;‘W[Ct'r‘i‘ﬁft'r +O(7’ )]
= cs+ %ft 24 (’)(rN*2), with ¢y = ¢ — 3¢ - fi, (5.19)

also leads to an harmonic approximation in the singlet potential, but only up to the
order of N-2. Furthermore, it has the same frequency w? = f;/m, as the harmonic
triplet approximation, but starts with a deeper lying off-set ¢; < ¢;. (Fig3b) shows the
singlet potential for ud-mesons with the same parameters as used in (Fig3a).

5.3 Numerical solution

For calculating the bound states of the complete ST-potential with the parameters given
above, we see in (Fig3) that the attractive Coulomb part on these scales is so weak that
its nearly of no interest for us. In this sense we can asymptotically change the Coulomb
interaction by using a shielded one of a Yukawa-type. This really is a help to reduce
the amount of numerical work, since it guarantees us not to run into the numerical
Coulomb singularity (Appendix E). The same argument also holds for the scattering
region of the potential. As we have shown in (Appendix D), the asymptotical part of
an attractive Coulomb-like potential does not contribute to the pure resonant part of
a cross-section. Changing the troublesome Coulomb interaction in the asymptotical
region to a more well-defined interaction like a Yukawa interaction, will only have an
effect on background scattering but not on the determination of resonances, as we are
interested in.

The problem we face, is thus to change the potential only asymptotically and not to
effect the rest, in other words only the pure Coulomb part of the potential should
be changed. Since we originally work in momentum space the change is arranged as
follows:

V(¢*) R(*N) = (qinrf)-DivRo(qQ,A)

Vi(¢?) - R(¢%\) + € - DY Ro(a, A). (5.20)
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5. The Renormalized Singlet-Triplet (ST)-model

We clearly see that the entire Coulomb part of the potential can be changed within the
pure triplet section

1
Vi@)- R(¢*\A) = 5 DYRo(q", )
_ 11 N 2
= ?—?[1—DARO(Q ,/\)]
1 1 ~ 7t
Sl S e [1 — DY Ro(¢, )\)], up to N'-th order, (5.21)
M q q

where the last requirement for N’ > N in coordinate space

1 _ ! ]_ o ~n!
E(—1+Dge R)ZE(_e nR+DgeR), (5.22)
in the sense of a Taylor expansion up to N'-th order with n = pu/), fixes the new

coefficients t, = t,(n)

1
th, = 1—77+CI,, 752:5(1_77)2"‘@7
t 1(1 )"+ T 4 b for3<n<N
= —(1- or n
n P R P Y By P T ==
-1
and t, = (_")n+nZ(—1)"+i STl e N<n< N andsioy =0.  (5.23)
"o n! — (n—4)!’ - - >N ’
1=

for the n-dependent differential operator 5% =1+ Zi\ll(—l)”tanaﬁ. Since the
Coulomb shielding parameter n is dimesionless, it acts as a renormalization invariant.
Furthermore, the smaller 7 is chosen the less correction terms one needs. In the follow-

ing we will fix = 0.1, in which case it is sufficient to add four more correction terms,
that means N’ = 12 if N = 8.

If we now start a s-wave bound-state calculation of the Coulomb-shielded ST-potential,
it gives us a finite set of possible states. By construction it is not able to create the
infinite number of Coulomb-like bound-states. Due to their nearly vanishing energy, as
can be seen in (Fig3), we were allowed to adjust the Coulomb tail by a Yukawa shield.
On the other hand, for the calculation of possible resonance states, we have prepared
the theory in (Appendix D) to do a scattering experiment in momentum space, in
other words by calculating the relevant scattering quantities like phase-shift and cross-
section in momentum space. Unfortunately, when performing these calculations we
can not resolve the resonance spectrum. Due to its very broad and high barrier, the
ST-potential as in (Fig3) creates so long-lived resonances as compared to the hadronic
interaction times of about 107?*sec, that they nearly can be treated as bound-states.
The width and the corresponding lifetime of possible resonances we can easily estimate
by using the semi-classical WKB-method [32] for the tunneling probability, given as

T2
T(E)~e®, with §= 2/ dr/2m,|V(r) — E|. (5.24)

1
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Figure 4:
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(a) The triplet phase shift for ud-mesons (b) The triplet cross section for ud-mesons
with the same parameter set as given in with the same parameter set as given in
the previous section, is plotted in the mo- the previous section, is plotted in the mo-
mentum region of 1.2 < k < 1.8, corre- mentum region of 1.2 < k£ < 1.8, corre-
sponding to the scattering energy of about sponding to the scattering energy of about
3.5 < E < 7.5. Units are given in GeV. 3.5 < E < 7.5. Units are given in GeV.

S will be the action integral in units of A = ¢ = 1, while £ > 0 is the energy of
the scattering particle and r1 > ro its classical turning points. In order to establish
a connection between the tunneling probability and the lifetime of the particle, we
imagine in a more classical sense that the particle bounces back and forth within the
potentials barrier between r; and ry and that with every bounce the particle has the
probability T(E) to penetrate through the barrier. The time between two bounces is
b= 22 =) (5.25)
v
with v = \/m being the velocity of the particle. Since the particle needs in the
mean 1/7T bounces to penetrate the barrier, it makes sense to define

to

T~ (5.26)
as the lifetime of the particle, giving finally the energy width of a resonance asT' = 1/7.
For the width in momentum plane we use (D.84) to get v = I'/2v. A numerical
evaluation of (5.24) shows that for a possible resonance located at £ = 7GeV in
(Fig3a), the width is Ty = 6 - 1076GeV (77 ~ 3 - 10! sec), while for E = 6 GeV it
already shrinks down to I's = 1-10712GeV (14 ~ 2 - 107%sec). In order to resolve
a resonance between these to two energy values in a diagram like a cross-section one
needs at least a grid size of I'g. But this requires a huge amount of computational time,
making here the scattering method for calculating resonances useless. (Fig4) shows the
phase-shift and the cross-section for a grid size of 107% GeV, and as expected the only
structure present is background scattering.
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5. The Renormalized Singlet-Triplet (ST)-model

Conclusion: To find these resonances one should not use scattering techniques. More
promising would be to use bound-state techniques.

Unfortunately the bound-state method described in (Appendix E) does not lead to any
success. First of all, we are not able to determine the resonance via reading off the
structure of a wavefunction, since we do not know what specific feature a wavefunction
in momentum space must show in order to be a resonant wavefunction. Second, we can
not read it off on the positive continuum eigenvalues, by looking at stable eigenvalues
when varying the dimension of the diagonalization space, since an increase in space is
directly linked to an increase in integration points and thus will show no other effect
than having a better agreement on the relationship F = k2/2m,.. Looking for stable
eigenvalues in the continuum can only work if the space within one solves the bound-
state equation can be varied independently from the the number of integration points.
All in all one has to use alternative momentum space bound-state techniques. Inspired
by the calculations of [17], a promising technique is the basis function method. We
shall use the simplest momentum space Schrédinger equation, the s-state equation to
illustrate the principles of this method. The momentum space Schrédinger equation is
related to an integral equation of the form

/0 TP K, p)() = B (p), (5.27)

where the kernel K (p/,p) is symmetric under exchange of p and p’. The idea is now to
expand the wave function in a suitable set of basis function {g;} which of course has
to be truncated at finite N/

N
= Z cigi(p), (5.28)

where ¢; are constant coefficients. Substituting this expansion into (5.27)

Zcz/ dp'p?K (v, p)gi(p Ezczgz (5.29)

and symmetrizing over 4 and j by multiplying with p?g;(p) and integrating over p

Zcz / / dp’dpp'2p2K (v',p)9i(p)g;(p) = E Zcz / dpp®g;(p gg(p) (5.30)

yields the matrix equation
N N
> Ajjei=EY By, (5.31)
i=1 i=1

which is symmetric under the exchange of ¢ and j. Then instead of solving for the wave
functions, one solves for its expansion coefficients.
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5. The Renormalized Singlet-Triplet (ST)-model

According to [18] this matrix equation is a generalized eigenproblem
A.-¢c=FEB-c, (5.32)

where c is the eigenvector and E the same eigenvalue as the original equation (5.27).
In addition to the symmetry condition of the matrices A and B, the latter must also
be positive definite to ensure that the eigenvalues are all real. For more details on this
and how to solve the equation via a symmetric diagonalization one can consult [18].
The matrix equation can be simplified drastically if its possible to choose such a set of
basis functions that B becomes the unity matrix: B;; = §;;. We then have an ordinary
symmetrical eigenvalue equation that can be solved as usual.

Clearly, the big advantage of this basis function method is that diagonalization and
integration represent two different spaces which can be varied independently in their
dimension, thus as already told, making it ideal for searching at stable eigenvalues in
the continuous spectrum of an system. Furthermore, the accuracy of this technique
depends very much on the choice of the expansion functions g;(p). Obviously, one will
be inclined to choose functions suitable to the physical problem being studied. In our
case the best choice is certainly to take the radial s-wave harmonic oscillator functions
9i(p) = R;i(p), which in momentum space

1
Ri(p) = Z; - e 27°P" . L§2)(02p2), with 1/0% = m,w, (5.33)

for (i=0,1,2,...) are of identical structure as in coordinate space, namely correlated to
the generalized Laguerre functions

ug”)(w) _ Ni(u) gV el2 Lg”)(:v), with Ni(u) _ F(E(ij_i)y)’ (5.34)
which form an orthonormal
/Ooodﬂﬁ ul)(z) u§-”) (z) = dij, (5.35)
and complete set
iuﬁ” (2) - uf(a') = 6(z — '), (5.36)
=0

of functions. The harmonic oscillator functions in momentum space are given by the
special case v = % and z = o2p?. With these values the orthonormal condition can be

written as
1 1 o0 1 1
61’]’ — N1(2) X N](2) /0 d(o_2p2) op - e—a2p2 X L§2)(0,2p2) X L;Q)(O'2p2),
R v > 2 —o2p2,(3), 2 2 (3), 2 2
= N;-N;- ; dpp”-e 7P L;* (o7°p”) - L;* (07p), (5.37)

~ 1
meaning that with the normalization choice of Z; = N; = ov/20 - Ni(2) in the basis

functions of (5.33) will lead to the simplifying result of B;; = d;; in (5.30).
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5. The Renormalized Singlet-Triplet (ST)-model

When testing the Basis-Function-code, numerical stability within 5 digits of precision
for the first 4 eigenvalues is already achieved by using eight basis functions /' = 8 and
128 gaussian integration points.

5.4 Comparing with experiment

At last we can represent the calculated energy eigenvalues and the corresponding in-
variant mass eigenvalues of the complete renormalized ST-potential (5.1).

The following tables show a typical output in GeV for every flavor combination. The
second and third line of each table are the numerical calculations for the first eigen-
values, while the fourth line is an attempt to identify the relevant mesons with our
ST-model. Their precise experimental values are listed in (Appendix F). The lower
part of each table shows the analytical eigenvalues of the pure harmonic oscillator. The
singlet data is given on the left, triplet data on the right of each sector.

Table 1: ud-mesons [GeV]

n25tL; 1150]1138; 21851238, 31801335, 418011438,
E, —0.414|| —0.074 |  0.470]]0.803 1.351]|1.671 | 2.221]|2.523
M, 0.140 || 0.774 1.236 || 1.447 1.7401()1.890 | 2.124]|2.242

Exp. 7 || p(770) | 7(1300) || p(1450) | 7(1800) || p(1900) | — || —
MHO 0.134]0.775 1.233 ] 1.450 1.738(/1.898 | 2.127]|2.260

Table 2: us-mesons [GeV]

n25+TIL; 1150]1138; 21801238, 3180113351 | 4150|1438
E, —0.366 || —0.123 0.451 | 0.690 1.264 || 1.495 | 2.069 || 2.289
M, 0.544 ] 0.891 1.402 | 1.567 1.905 || 2.025 | 2.296 || 2.392
Exp. K*||K*(892) | K(1460) || K*(1680) | K(1830)| — | — || —
MO 0.543 | 0.891 1.401 || 1.569 1.905 || 2.032 | 2.302]|2.408

44



5. The Renormalized Singlet-Triplet (ST)-model

Table 3: This is an illustrative presentation of the Tables 1&2. The dotted lines are the
calculated mass values which are shown next to the experimental measured mass values. The
three vector mesons p(1700), p(2150) and K*(1410) (labeled with an empty circle) might be
D-wave mesons [3], while the scalar meson K (1630) (labeled with an empty triangle) might not
be a pseudo-scalar, since the value of J¥ is still unknown [3].
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Table 4: uc-mesons [GeV]
n 25+, 1150]1138; 2181238, 3180|335,
E, —0.296 || —0.215 0.396 || 0.476 1.0851|1.163
M, 1.919|2.010 2.603]]2.671 3.140|3.195
Exp. D* || D*(2010) — || D*(2640) | — || —
MO 1.919|2.010 2.604]2.672 3.143 ]| 3.200
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Table 5: sc-mesons [GeV]

n25+IL; 11501138 21851235, 31801335,
E, —0.337| —0.279 0.270]0.327 0.875/0.931
M, 2.043 || 2.109 2.664 || 2.714 3.163 ]| 3.205
Exp. Dy || D; Dy(2573)|| — — Il —
MO 2.043(|2.110 2.664|2.716 3.166| 3.209

Table 6: This is an illustrative presentation of the Tables 4&5. The dotted lines are the
calculated mass values which are shown next to the experimental measured mass values.
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Table 7: ub-mesons [GeV]
n2TL; 0 115,138 | 2180|235,
E, —0.2771] —0.248 | 0.371]] 0.399
M, 5.295 || 5.325 5.938 || 5.964
Exp. B*||B* — || —
MHO 5.295(|5.325 | 5.939|5.966
Table 8: sb-mesons [GeV]
n25+IL; 1150]11381 | 218|238,
E, —0.337]| —0.317 | 0.218]] 0.238
M, 5.401(/5.422 | 5.963||5.983
Exp. B; || B — Il =
MJ© 5.401(5.423 | 5.964]|5.983
Table 9: cb-mesons [GeV]

n 25+1L; 1180|138, 2151235,
E, —0.478|| —0.471 | —0.125]| —0.119
M, 6.469 || 6.476 6.838 || 6.844

Exp. B|| — — |l —
MHO 6.469 | 6.476 6.836| 6.843
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Table 10: This is an illustrative presentation of the Tables 7, 8 and 9. The dotted lines are
the calculated mass values which are shown next to the experimental measured mass values.
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Discussion: We were able to calculate 22 mesons, which could be identified to experi-
ment with an error less than 5%, except for some us-mesons in (Table 2) with an error
of about 10%.

For a crude model like the ST-model with its 8 parameters (if m, = mg4 and if m;
is excluded) this is quite remarkable. The calculated masses are very sensitive to the
initial choice of how the parameters are fixed. It might be just possible that the error
can still be reduced by using a different fixing set than that given in (5.13).

The intention of this section was not to present the best fit, it rather wanted to show
how the ST-model is able to quantitatively reproduce the mass-spectrum of flavor off-
diagonal mesons. Furthermore, looking for a best fit one should also compare the
mass-spectrum for different regulating functions Ro(g?, ). Their is no argument why
the soft regulator (5.2) is predestinated to be the ideal regulator.

When comparing the first three analytical eigenvalues of the pure harmonic oscillator
(given in the last row of the relevant tables) with the calculated ones, we see, that
its almost unnecessary to go onto the computer, especially for the heavy mesons. For
those, the calculated values are nearly identical with the harmonic ones. This certainly
has to do with the rather large value of the parameter N, which controls the harmonic-
ity of the ST-potential. The biggest difference of about 4% can be seen for the lightest
meson, the pion.
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5. The Renormalized Singlet-Triplet (ST)-model

The comparison between the ST-model and the oscillator model [8] certainly becomes
more interesting when choosing N < 8, but with the parameter set (5.15) and (5.16),
which can be chosen independently from IV, the deviations to experiment are starting
to get worse the more IV is decreased.

More interesting would be to keep the harmonicity as that of N = 8, but to reduce
the barrier width — in other words: keeping the same overall structure as shown in
(Fig3), except with a smaller width. This can be achieved when choosing for example
a gaussian function Ro(q%,\) = e 7/** as a generating regulator in (5.3). The result is
a width reduction of a factor 2. This statement should only emphasize that there are
maybe many regulators out there, which on the level of the ST-model could improve
the oscillator model of [8] in a promising way.

49






6. Summary and Discussion

6 Summary and Discussion

The novel aspect of this thesis, was to show how renormalization works in a non-
perturbative context within a Hamiltonian approach. It was exemplified by means
of the oversimplified ST-model. Two complementary renormalization schemes were
used, one more illustratively and the other in a more abstract way, to show how the
renormalization program is performed and at the end leading to the same physics.
Since both renormalization schemes have been implemented in momentum space, the
generalization to the full relativistic case can be easily performed. Even more, these
renormalization schemes are not restricted to any certain Hamiltonian model but can be
applied to any Hamiltonian eigenvalue equation, for example as to our master equation
given in (3.1) or to a even more general equation.

We then tested the ST-model by trying to quantitatively reproduce the mass spectrum
of flavor off-diagonal mesons. Nearly all experimentally available mesons, from the light
7 to the heavy B, could be calculated by the simple 8-parametrical ST-model within an
error less than 5%, except for some strange pseudo-scalar mesons in (Table 2) having
an error of about 10%. Its not impossible that the error can still be reduced by using
better fitting techniques or different regulators.

The mass spectrum was calculated in momentum space by using the bound-state tech-
nique of orthogonal basis functions. From our diploma student Harun Omer I have
learned that this technique is indeed successful in finding resonances as stable eigen-
values in the continuous part of the spectrum, who calculated the mass spectrum with
a different parameter set in coordinate space [17]. Unfortunately, the determination
of resonances did not lead to any success when doing a scattering calculation. In any
physical parameter set for mesons, the ST-potential produces resonances of such an
extreme small width that they nearly can be treated as bound-states (compared to
typical hadronic interaction times). A quark scattering calculation is thus condemned
to fail. This justifies to see the ST-potential as a quark-confining potential. A recom-
bination of quarks into new mesons is enormously much faster (hadronic interaction
time ~ 10~24sec) than the process of separation (ST-resonance lifetime ~ 107 sec).

For the first time, the simple ST-model let us understand how explicit renormalization
works in a Hamiltonian formulation. Furthermore, it is able to show the essential mass
splitting between the pseudo-scalar mesons and the vector mesons by the hyperfine
interaction in the triplet part of the potential. Finally, it gives us confinement, in the
sense that a forever rising potential is not necessary. But at foremost, the ST-model
has the great advantage of showing a well-defined relation to QCD. Certainly, the ST-
model is an oversimplified model, but there are no conceptual problems to relax the
relevant simplifications in order to create a more general model. Restoring the full
relativistic case and in the next step including the full spinor structure are well defined
prescriptions.

First attempts were made by our postdoctorate Shan-Gui Zhou who started to calculate
the relativistic ST-model. Great progress was made in the work of [19], where the
authors showed how in general the singlet part can be decoupled from the triplet part
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within the full spinor interaction, by making use of unitary transformations. The last
important step to complete the meson model would be to include the annihilation
graph. This allows us to determine the mass spectrum for mesons of equal flavor in
quark and anti-quark. This big project is now under the hand of our diploma student
Christian Krahl.

Certainly, in order to have a serious meson model it must go beyond a simple mass
spectrum fitting. It must also be able to probe the internal structure of mesons as
well. For this the corresponding wave functions have to be investigated. Since we
are in possession of the frame-independent light-cone wave functions, we are able to
predict hadronic properties like form factors and distribution amplitudes [20]. We are
lucky to compare our results with the experiments of [21]. To fit the ST-model wave
function according to Asherys experimentally measured pion wave function over a large
momentum range, is the present work of Harun Omer.

We see that there is still a lot of work to be done in the future. Up to now, we can say
that we understand better the process of how to start from a quantum field theory like
QCD, deriving an effective constituent quark model having the shape of a Schrédinger
equation, performing a non-perturbative renormalization scheme and finally to compare
it with the experimentally available hadron world.
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A Relativistic Dynamics

According to the principle of relativity there are certain frames of reference, called
inertial frames, which are equivalent. This means that coordinates x* in one inertial
frame and z’# in another inertial frame must leave the scalar product invariant by
satisfying the condition

gudztdz” = g da'tdz’”, (A.1)

where g, = g"” is the metric tensor. A coordinate transformation z* — z'#* between
inertial frames can only be of a linear form

o't = A 2V + at, (A.2)

where a* is a constant four-vector and A} is a constant 4 x 4-matrix, which according
to (A.1) must satisfy the following pseudo-orthogonality relation

gWA”pA”U = gps O ATgA =g, (A.3)
which in turn implies the following structure for its inverse
(A", = gual®3g"" = A - (A.4)

The linear transformations (A, a) form a group, known as the Poincaré group. An
important subgroup is the Lorentz group with no space-time translations a = 0. In
the following we will only consider proper (detA = 1) and orthochronous (AJ > 1)
Lorentz transformations, that means we exclude space and time reflections. From the
16 matrix elements A only 6 are independent, due to the symmetric condition (A.3). So,
every Poincaré transformation is specified by 10 real parameters which can be varied
independently: 4 translations a,, 3 Euler angles 6, and 3 boosts or rapidity angles 7y,
which define relative to the speed of light, the velocity ¥ = tanh 7 between the inertial
frames.

Furthermore, the transformations (A, a) induce unitary operators U~(A,a) = UT(A, a)
in a Hilbert space, where its vectors and operators transform as

1) = U(A,a)|®) ; O =U(Aa)OUN(A,a). (A.5)
The operators U satisfy a composition rule for two successive transformations
U, dU(Aa) =UNA ANa+d), (A.6)

which easily follows from (A.2). Using the identical transformation U(1,0) the inverse
of U(A,a) can be expressed as

U N A,a) =UA, —A"a). (A7)
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U(A,a) is a local operator which transforms functions and coordinates simultaneously
about a fixed point in space-time. Since a state vector ® in the Schrodinger picture
transforms in the same way as an operator O in the Heisenberg picture [22],[23], we
will collectively call them fields ¥. In the coordinate representation they transform
according to the following covariant rule

¥'(z') = D(A)-¥(x)=D(A) - T (A (2" — a))

passive
U(z) = DAY T(Az+a), (A.8)
active

where we have collected the fields in a column vector on which the matrix D(A) can
act, which again is a finite dimensional matrix representation of the Lorentz group.
Translations can be excluded for pure field transformations, since all fields will behave
as a scalar. There are many such representations, including the scalar D(A) = 1, the 4-
vector D(A) = A, the Dirac-spinor D(A) = S(A) or the 2-rank tensor D(A) = A®A, just
to name a few. Furthermore, this covariant transformation for fields is not restricted
to coordinate space (z*) only. For example, doing a covariant Fourier transformation
one immediately gets the corresponding rules for the conjugate energy-momentum rep-
resentation (p#).
Under a passive transformation rule we in general understand, that one physical sys-
tem is being described from two different frames which are separated by a Poincaré
transformation. Thus ¥’ and ¥ represent the same field only evaluated in two different
frames. While under an active transformation rule we look at two physical systems,
which are also separated by a Poincaré transformation, but only from one frame. This
transformation is thus ideal for investigating the property of invariance on fields, since
here ¥’ and ¥ in general represent different fields. We can talk of an Poincaré-invariant
field ¥ if its actively transformed field stays invariant ¥/ = 0.

We now return to the coordinate transformation (A.2) by looking at the transformation
near the identity

A, =68+ Wk, 5 at =€t (A.9)
where w",, and e* are 20 sufficiently small real parameters. Plugging this transformation
into (A.3) we get up to linear order in w the antisymmetry condition w”, = —w” W

leaving again as already known, all together 10 transformation parameters independent.
Since U(1,0) is the identity operator and since the parameters w and e can be varied
independently, the unitary operator U(1 + w, €) near its identity up to first order can
be written as

U(l4+w,e) =1+i-Gw,€) =1+ Jiwu M +ie, P, (A.10)

This expansion defines 10 parameter independent operators M* = — M"* and P*, also
known as the generators of the Poincaré group, which are of fundamental importance
in any relativistic theory. They are Hermitian operators in all indices and represent
observable physical quantities.
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Due to its correlation with the 4 translation parameters, P* can be identified as
the total energy-momentum 4-vector of the field system. The pure spatial 3-vector
J= (M23, M3, M12), being correlated with the 3 spatial rotation parameters, can be
identified as the total angular momentum of the field, while the remaining space-time
generators K= (MIO, M?0, M30), form what is called the Boost 3-vector.

By working out the product U(A,a)U(1 + w,e)U~L(A,a) via (A.6),(A.7) and (A.10),
where (A, a) are the parameters of a new full transformation, will give after a compar-
ison of the independent coefficients w and € up to first order the following result

UA,a)M*U Y (Aa) = AJFAY(MP +a”P° — a’ PP)
U(A,a)P*UT (Aa) = A PP, (A.11)

For pure Lorentz transformations with a* = 0, these transformation rules simply say
that M is a tensor and P* is a vector. For pure translations with A¥, = 6, they tell
us that P* is translation-invariant, but M*” not.

Next, lets apply the rules (A.11) to a transformation that is itself infinitesimal, that
means A¥, = 60 + w", and a* = €, with infinitesimals w", and €* unrelated to the
previous w and €. Keeping only terms of first order in these independent parameters
and then equating their coeflicients on both sides, we find the following commutations

QMM MPT) = gYPMHMT — gHP MY — gTRMPY + g7 MPH
i[P*, MP°] = gtPPo — ghopP
[P*, P"] = 0. (A.12)

This is the Lie algebra of the Poincaré group, which is shortly called Poincaré algebra.

The Poincaré algebra alone does not tell us anything about covariance. For this, we
look again at the transformation rules (A.8) to study in which way the generators G
have to act on the fields ¥, in order to guarantee covariance.

a): First we look at the state-vectors |®) in the Schrédinger picture, for which according
to (A.5), we can define the following total infinitesimal variation around a fixed space-
time point

5|B) = |B') — |B) = iG(w, ) - |D), (A.13)

where G(w, €) = 1wy, M* +¢€,P*. Since w and € can be varied independently the total
variation within a passive transformation in coordinate space will read

8 (2) = D(1+4w)ps®s(z+w 'z —e) = ()
= (6rs + Yiwu [Srs]™) - Bzt 4+ w fa” — ) — p ()
= %iwu,,[Ers]””@S(x) + %wm, (xH0” — x"0") By (x) — €,0M P, (x).  (A.14)

Comparing (A.14) with (A.13), will give the covariant identities

iMPY O, (x) = i[Ss]" Ps(x) + (20 — 2V 0*) D, ()
Pt (x) = —0"®,(z). (A.15)
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In coordinate space P* has the well known operator representation ¢0¥, while the
representation of M can be split up into two parts: M’ = S* + L*”. Acting only
on the coordinates of a field, the operator L* = —i(zH9” — x¥0*) depends explicitly
on the choice of the origin of the coordinate system. Furthermore, it vanishes if ®(z)
is spherically symmetric in its space-time dependence. For these reasons, we identify
this term with the orbital angular momentum. In contrast, the other term being a
finite dimensional matrix representation acting only on discrete components of the
field, does not depend on the origin of the coordinate frame and is determined solely
by the transformation properties of the field functions. Hence, we identify it with the
spin angular momentum S*¥ = X#* of the field system. The explicit structure of the
spin part certainly depends on the field representation one uses, for example

[Sapl™ = —3i[", 7 ]ag or [Spel = —ilghgy — gkgs], (A.16)

depending on whether ®(z) refers to a spinor or to vector field, respectively. We
observe here that a separate decomposition of angular momentum into orbital and
spin part is, of course, not a covariant procedure. Also, if M* represents a conserved
quantity, neither of its decomposed parts are conserved separately. Furthermore, all
these coordinate space representations must certainly satisfy the same commutation
relations as their general operators in (A.12) do.

b): Now we look at Hilbert space operators O in the Heisenberg picture. The total
variation as given in (A.13) must now be adjusted accordingly to the transformation
property of operators

50 :=0' -0 =i[G, 0], (A.17)

which immediately yields the following covariant identities in coordinate space

iM™, 0, ()] = i[Sr]O4(z) + (20 — 2¥ M) O, ()
i[P*, 0, ()] = -0, (x). (A.18)

Summary: A correct relativistic treatment of a any physical system is only given, if
the corresponding Poincaré generators are not only consistent with the commutation
relations (A.12), but also respect the covariant relations (A.15) and (A.18). A realiza-
tion of the Poincaré algebra alone is not sufficient, as for certain systems it can happen
that their Poincaré generators fulfill the commutation relations but spoil covariance.
According to [2] ”covariance is an additional requirement, which in contrast to the
Poincaré algebra strongly restricts possible relativistic dynamics”. It is not surprising
that covariance imposes so severe restrictions, because on top of the general group prop-
erties (A.6), (A.10), which suffices to derive the Poincaré algebra, covariance requires
an additional transformation rule (A.8) which includes a finite representation of the
Lorentz group.

But we observe that nothing up to this point gives us any indication as to how these
fundamental operators (M*”, P*) can be explicitly constructed. Indeed, this construc-
tion will depend entirely on the dynamical characteristics of the system we want to
impose, which we have so far not even considered. Once constructed and satisfying
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all requirements discussed above, the relations (A.15) and (A.18) turn into generalized
covariant Schrodinger and Heisenberg equations, respectively.

We will now address this problem of constructing the generators (M*”, P*), by firstly
considering the most simplest case, namely that of a free one-particle state |®¢) in the
Heisenberg picture, being totally independent of any dynamical development. If the
particle is a scalar, we can identify

Pt =pt  M* =L =zgtp” — z"pH, (A.19)

where z* is the usual space-time point, with p# = d(maz*)/dr as its conjugate momen-
tum; d7 being the proper time increment and m the rest mass of the particle. Since
they must satisfy the quantization condition [z¥, p”] = igh”, it is easily confirmed that
this identification of the generators lead to the correct requirements for a relativistic
quantum mechanical system as stated above. This is certainly also true, if we include a
spin operator M* = SH + L* where S*¥ satisfies the Poincaré algebra and for which
a finite dimensional matrix representation of the Lorentz group exists. Furthermore,
the 10 independent generators P*, J = § + L and K must be constants of motion.
Since they are Hermitean operators with real eigenvalues, it is advantageous to con-
struct representations in which the constants of motion are diagonal. This allows a
labeling of the state vectors with quantum numbers. But one cannot diagonalize all
ten constants of motion simultaneously because they do not commute. One has to
make a choice.
Since P? and P* commute, we shall use energy and momentum eigenvalues as labels,
and thus select the energy-momentum representation, which in this context is a more
natural one than the coordinate space representation. As momentum and angular
momentum do not commute, it is convenient to introduce the Pauli-Lubanski vector,
defined as

WH = 1P P,Myy = — """ P,S g, (A.20)

where €., is the totally antisymmetric symbol in four dimensions. W* is orthogonal
to the generalized momenta, W#P, = 0, and obeys the algebra

[P WY] = 0
(We,M*] = i(g"PWH — g W)
WHWY] = i W,P,. (A.21)

As a further label we can use the eigenvalue of one component of the Pauli-Lubanski
vector, but only one component, since [W,, W,] # 0. The components of W have a
simple interpretation; the zeroth component is proportional to helicity W° = P.S and
the spatial components are proportional to the intrinsic spin W = P%.S. This explains
why, even in a relativistic theory, it makes sense to talk about a spin component,
although it is neither conserved nor covariantly defined. Next we note that

PrP,=m? ; WHW, = —m>5> (A.22)

are invariant (Casimir) operators, commuting with all 10 generators (M**, P*).
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If we choose a field representation where m? # 0, the spatial matrix 52 is a represen-
tation of the SO(3) rotation group, with eigenvalues s(s + 1), where s is any positive
integer or half-integer including zero. These eigenvalues can be used to characterize a
massive particle by two fixed properties, its rest mass m and its spin s. If the mass is
determined as the square root of the eigenvalue of P2, then the spin can be calculated
by dividing the eigenvalue of —W?2 by m?.

For massless particles the situation is completely different. The property spin for mass-
less particles is not what it is for massive ones. This can be immediately seen by putting
in the above expressions m? = 0, leading to P2 = 0 and W? = 0. Since W and P are
orthogonal P - W = 0, it can only mean that they must be proportional W = kP in
all components. Thus & can be calculated as k = W%/PY being proportional to the
helicity A = W°/|P|. Instead of two invariant numbers (m,s), a massless particle is
characterized by only one number . The values which « can take, is beyond the scope
of this section and will not be discussed here.

Finally, we can include observables into our labeling scheme that are not related to
space-time symmetries, like the charge ¢ of a particle. Its corresponding operator Q
canonically commutes with all generators of the Poincaré group.

Hence, the free one-particle Heisenberg state can be labeled as

[®o) = |, A\sm, 8, q), (A.23)

where the energy eigenvalue p° is not included, since it can be determined from the
2

on-shell condition p,p! = m*=.
Up to now, we considered only the simplest covariant realization of the Poincaré alge-
bra, that of a free elementary particle, being a state of definite mass and spin. Next
one may consider a collection of non-interacting particles of different masses and spins
and construct covariant realizations for them. This task is almost trivial as the gener-
ators are simply the sum of the single particle generators. Much more difficult is the
construction of representations in the case of a fized number of interacting particles.
This is actually the topic of relativistic dynamics proper.

In non-relativistic dynamics only one unique way is allowed: the interaction must be
included in the Hamiltonian. The evolution of a non-relativistic system is governed
fully by the Hamiltonian. AIll other generators, in this case of the Galilei group are
independent of the interaction, and are said to be kinematic.

For systems that are governed by Einstein relativity, more possibilities are open as how
to include interactions. One expects that certain Poincaré generators will differ from
their free counterpart by some ‘potential’ term V. But how does one construct these
generators in a covariant way? This problem has already been partially pointed out
by Dirac [1], who stated that finding potentials which are consistent with the commu-
tation relations of the Poincaré algebra ”provide the real difficulty in the problem of
constructing a theory of a relativistic dynamical system” with a fized number of par-
ticles. The difficulty is even increased if we require on top of that the covariance for
wavefunctions. The physical reason for these problems is that potentials imply an in-
stantaneous interaction which is in conflict with the existence of a limiting velocity and
retardation effects. Relativistic causality is thus violated. Furthermore, a fized number
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of particles is in conflict with the necessity of particle creation and annihilation and
the appearance of antiparticles. Nevertheless, with considerable effort, it is possible to
construct dynamical quantum systems with a fized number of constituents which are
consistent with the requirements of the Poincaré algebra and relativistic covariance [2],
with the reason to improve or to have proper theory-based alternatives for the rather
successful phenomelogical constituent quark model.

A natural solution to all these problems stated above is the framework of a local co-
variant quantum field theory, with infinitely many degrees of freedom. These theories
are usually specified by demanding a relativistically invariant Lagrangian.

For the construction of the Poincaré generators we naively can let us guide by classical
field theory using Noethers Theorem. The Poincaré generators, all being constants of
motion, are then expressed in terms of integrals of the energy-momentum tensor. The
transition to quantum field theory is then imposed by the correct canonical quantization
conditions onto the classical fields which will turn them into operators. Unfortunately
such a construction does not allow for a simple verification of the requirements (A.12).
Furthermore, for an arbitrary Lagrangian one cannot prove that its manifestly covari-
ant Lagrangian equation of motion for a field operator will give identical results as the
covariant Heisenberg equations (A.18). For every new case they have to be verified
from scratch, which certainly is not straightforward. A bad way out is to simply postu-
late that a relativistically invariant Lagrangian fulfills all requirements of a relativistic
system.

But there are better ways to see this correspondence manifestly. Probably the easiest
way is provided by Schwingers variational action principle [24]. First, it is an action
principle for a quantized field. It is thus the quantum-mechanical analogue of the corre-
sponding classical variational principle. Second, it goes beyond this classical principle
by including variations at the boundary which can be interpreted as the generator of
field transformations. By this extension we obtain additional information regarding
the dynamical characteristics of the field, which in the classical correspondence prin-
ciple had to be postulated separately. This is a considerable simplification, since now
the Lagrangian equations of motion, the form of the rules of quantization, the con-
servation laws, the Poincaré algebra with its covariant conditions, all that will follow
manifestly from a relativistically invariant Lagrangian. This finally proves that a co-
variant quantum field theory offers a natural description for relativistic systems on a
quantum-mechanical scale.

For a quantum field theory we adopt the Heisenberg picture as the framework of de-
scription. By this we mean that we specify a state vector as the simultaneous eigenket
of all commuting observables at some fixed point in space-time, and express all dynam-
ical developments of the system as the change of observables as we proceed in space
and time. The natural Hilbert space of quantized fields, also called Fock space consists
of subspaces, each having a basis of one-particle states |®y) = |p, \;m, s,q) as already
discussed above, where for each subspace the eigenvalues of the Casimir operators are

fixed.
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B Light-front QCD

* The SU(3) gauge invariant Lagrangian density for QCD is
L= ITe(F*Fu)+ 3 [¥(iv"D, —m)¥ +hc], (B.1)
where the color-electro-magnetic fields and the covariant derivative are given as

Fr = gFrAY — 9V AF 4 ig[AF, AY],

DY, = 600" +igAl,, with AF, =Tg AL (B.2)
TZ, are the 8 generators of the SU(3) group. Thus the gluon index a runs from 1 to 8.
The physical 3 x 3-matrix representation will let the color index run from 1 to 3. No
distinction will be made between lower and upper gluon and color indices.
Independent variation of the gluon fields A* will yield the color-Maxwell equations

0 FM = gJ¥, with J¥ = TyYToUT — i[F¥", A,], (B.3)

and the variation with respect to the quark fields give correspondingly the color-Dirac
equations

(iv*Dy —m)¥ = 0. (B.4)

Since the manifestly covariant QCD-Lagrangian shows no explicit space-time depen-
dence, the Poincaré generators will be constants of motion. We are only interested in
the 4-momentum operator, which can be determined as manifestly gauge invariant [12]

P, = / B (Ff“FgV YQFAFS + LT T DA + h.c.]) . (B.5)

In the transition from instant- to front-form all 4-vectors including v* are treated in
the same way as the space-time coordinates z#. According to [12] the corresponding
covariant expression in the light-front formalism reads

P, = / dr d*z, (F;“Fgu YgS FFA RS + iUy T T*DeT + h.c.]) : (B.6)

which still maintains manifest gauge invariance.

The Hamiltonian H = P, as well as the other components of the energy-momentum
4-vector are highly non-trivial operators. Nevertheless, its possible to reduce them into
workable expressions, since they contain time-derivatives and other constraint field
components which can be eliminated by using the above equations of motion. The goal
is to express P, in terms of free fields AM and ¥ and to isolate the dependence on the
coupling constant. For this, the natural light-cone gauge A" = 0 is chosen, in which
the gluons only have the two physical transverse degrees of freedom. The result for the
Hamiltonian can be written as a sum of five terms [12]

H=T+V+W;+ W+ Ws. (B.7)

*This complete section is a compact summary from the work of [7],[12],[25].
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Only the first term survives the limit ¢ — 0, and therefore is called the free part of the
Hamiltonian, or its ’kinetic energy’

1 2o (G V) S o 2 e
T = 5 /d$+d T | (‘I]'Y+ T\If +Ag(7,VL) 14‘u . (BS)

The vertex interaction
V=g / do,dc, JPAS, with JY=TToF 4 foeordyAc, (BY)

is linear in the coupling constant and is the light-cone analogue of the conventional
JuAF-structures in the instant form. Note that the current jf; has contributions from
both quarks and gluons, with f%¢ being the structure constants of the SU(3) group.
The interaction term

2 ~ ~ ~ ~ ~
W) = gz/dx+d2xJ_Bg”BZl,, with B = f“bCAgA‘c’, (B.10)
describes the four-point gluon-vertices which is quadratic in g. The remaining are
the ‘instantaneous interactions’. The instantaneous gluon interaction arises from the
Coulomb equation 8, Fi" = gJi,

2

W, = % /dm+d2xjj

1

(W)Qf;, (B.11)

and is the light-cone analogue of the Coulomb energy. The instantaneous fermion
interaction originates from the light-cone specific decomposition of Dirac’s equation

2 ~ +
g 2 afa Y vrb 1b T,

It has no analogue in the instant form.

Most remarkable is that the fully relativistic Hamiltonian is additive in the ‘kinetic’
and the ‘potential’ energy, very much like a non-relativistic Hamiltonian H =T + U.
The symbolic notation (i0%)~! and (i*)~2 in the above expressions represent Green
functions. Since they depend only on x—, they are comparatively simple, much simpler
than in the instant form where A~! depends on all three space-like coordinates. Using
this notation one has to be careful, there are many subtleties involved. For example
looking at the Green function G(z~) = (07)~! defined via

0TG(z™) =d(z7), (B.13)
is clearly only determined up to a homogeneous solution Z satisfying
0tZ =0, (B.14)

that means up to a zero mode Z = Z(x~) of the operator d*. Thus, in order to
uniquely specify the Green function (01)~!, we have to provide additional information
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in terms of boundary conditions. To see the physical impact of such zero modes, we
briefly go to momentum space where we can replace 81 by ip". The equation for the
Green function (B.13) becomes ip™G(p*) = 1, which has the general solution

G(p*) = —i/p™ + Z(pT)é(p™). (B.15)

Thus the zero modes will only contribute if p™ = 0, that means if all particles in the
system have zero longitudinal momentum. But as we know from (Section 2.2.2) these
are exactly the momenta that will give rise to a complicated light-cone vacuum. No
other reasons than simplicity we will put such zero modes equal to zero Z = 0, and
therefore neglect possible boundary conditions. This will lead to a trivial light-cone
QCD-vacuum being identical to the free Fock-space vacuum.

The next task is to bring the Hamiltonian (B.7) into its natural field theory repre-
sentation, the momentum space representation. As usual we do a covariant Fourier
transformation of the free quark and gluon fields, which in the front form are given as

_ + 72 . .
Bw = Y [TEEE (sl Ve ™ + @) . (B.10
A

{Iv/acf(gg) - Z/ dp+d2pL <b(q)ua(p, )\)eiipx—FdT(q)va(p, )\)eJripx),
A

V2pT(2m)3

The properties of the Dirac spinors uq, v, and of the polarization vectors €, are given
in [12]. The single particle states are specified by string of quantum numbers ¢q. A quark
is characterized in general by 6 quantum numbers ¢ = (p™, 71, A, ¢, f), the three spatial
momenta, the helicity A, the color index ¢ and the flavor index f. The knowledge of
(pT, L) fixes the energy p~ = (m? + p2)/p*. A gluon is characterized by 5 quantum
numbers ¢ = (p™,p1,\,a) with a as the glue index. Since they are massless, their
energy is p~ = ﬁJQ_ /p*. Furthermore, since a quark is a fermion and the gluon a gauge
boson, their creation and destruction operators are subject to the usual relations

[a(q),a’ ()] = {b(q),b"(¢")} = {d(q),d'(¢)}
= (2m)* - 2p* - 6(p* — p )L — )Y Y oS8T, (BT

which carry the operator structure and statistics of the theory.

When inserting the free fields (B.16) into the Hamiltonian (B.7) its possible to integrate
over z*, producing essentially delta functions in the single particle momenta, which
reflect momentum conservation. To note is that terms consisting only of creation or
only of destruction operators as for example in

b (a1)d' (a2)a%(43)8(p1 + 23 +p3), (B.18)

have a vanishing contribution, since the light-cone longitudinal momenta p* are all
positive (Section 2.2.2) and can not add to zero. As a consequence, all energy diagrams
which generate the vacuum fluctuations in the usual formulation of quantum field theory
are absent in the front form.
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The final result of this evaluation will give a Hamiltonian which purely acts as a Fock-
space operator H =T + (V + F +5), explicitly given in [12]. The kinetic energy T" is a
sum of 3 diagonal operators. The interaction terms are distinguished according to the
number of particles changed. The vertex interaction V' is a sum of four operators, which
connects Fock states whose particle number differ by 1. The four-point interactions are
separated into fork F and seagull S interactions, depending on whether they have
an odd or even number of creation operators. The fork interaction F' is a sum of 6
operators, which change the particle number by 2. And the seagull interaction S can
be written as a sum of 7 operators, which act only between Fock states with the same
particle number. The remaining space-like components (P+,13 1) of the momentum
operator (B.6) are according to their kinematical behaviour diagonal operators in Fock-
space.

We now aim at solving the Hamiltonian eigenvalue problem

M? +P?

A1) = =55+

|¥), (B.19)
which is for several reasons, as discussed in (Section 2.2.3) easier to handle than its
counter part equation in instant-form. If one disregards possible zero modes, the
light-cone QCD-vacuum becomes trivial which has the consequence that the light-front
bound states |¥) for various hadrons can be expanded in terms of the free Fock states.
As usual, the Fock basis is constructed by applying products of the free field creation
operators to the vacuum state |0):

n=0: |0),
n=1: |q7:p}, 51 N) =b(q1)d (¢2)]0),

199 : pi, PLis Ai) = al(a1)a’(g2)]0),
n=3: |qdg:p} P Ni) = bl (a1)d!(g2)a(43)]0),

(B.20)

where all discrete quantum numbers were suppressed except the helicities. We now
specialize to the hadronic state of a meson (Figh), which in a condensed notation can
be described by the following expansion in Fock-space

[Wineson) = 2 ag (i, K13 M) @)
+ Zi:%g(mia’;m)\i)lgw
+ Xi:%tjg (zi, k14, M) |adg)
Zi: Yagaz (Ti, k14, \i)|qdqq)

.. (B.21)

_l’_
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Figure 5: The Hamiltonian matrix for a meson, taken from [12]. The matrix elements are
represented by energy diagrams. Within each block they are all of the same type: either vertex,
fork or seagull diagrams. Zero matrices are denoted by a dot (-). The singlet gluon is absent
since it cannot be color neutral.
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The generalized sum in (B.21) also includes the phase-space integrations of the relative
frame independent coordinates z; and k| ; respecting the constraints

in =1 and ZEJJ = 0. (B.22)

The light-cone wavefunctions v, do not depend on the total momentum (P*,Pl_)
carried by the meson, since z; is the longitudinal momentum fraction carried by the i-th
constituent and & 1; 1s its relative transverse momentum with respect to the center-of-
mass frame; both of these are frame-independent quantities. They are the probability
amplitudes to find a Fock state of bare particles in the physical meson. If all wave
functions are available, one can analyze any hadronic structure in terms of quarks and
gluons [12].

In this Fock basis the eigenvalue equation (B.19) stands for an infinite set of coupled
integral equations

M?*+ P?

2P+ Qibn(xi)ELiaAi)‘

3 / (il Yz, B Al H s By ML) b R D) =
m=1
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Since P* and P, are diagonal operators in momentum space one can equivalently
rewrite this equation as

> / (gl ] (ns s, By M| P~ P =B [msaly B, ALY o (@ B iy M) = D24 (0, B s, M)
m=1

(B.23)

It is therefore possible to define a ‘light-cone Hamiltonian’ as the operator
Hpyc = P P* - P? = P*pP,, (B.24)

so that its eigenvalues correspond to the invariant mass-squared spectrum M?2. On the
light-cone its therefore possible to formulate the bound-state problem frame indepen-
dently, in the sense that the operator Hic is Lorentz invariant and the wavefunctions
boost invariant. This reflects the fact that the boost operators on the light-cone are
kinematical. To simplify things one can boost the system to an ‘intrinsic frame’ in
which the transversal momentum P | vanishes, thus Hy,c = P~ P'. The transforma-
tion to an arbitrary frame with finite values of P, is then trivially performed.

In addressing to solve equation (B.23) by diagonalization one faces two major difficul-
ties as in every field theory. First, we are dealing with a many body problem with an
infinite number of constituents. There is no other choice than to construct an effective
equation. The reliability of an effective interaction certainly depends on how strong
the higher Fock states contribute. If a constituent picture for the meson were true, the
valence state would dominate,

[ol? > |ynl*, n>2, (B.25)

and, in the extreme case, the meson wave function would be entirely given by the projec-
tion (qq|¥meson) Onto the valence state. Second, we are facing all kinds of divergencies
which have to be regularized and then renormalized.

B.1 Effective Hamiltonian

The eigenvalue equation (B.19) stands for an infinite set of coupled integral equations
which are extremely difficult to handle. It is useful to convert it to the much more
transparent case of a finite set of coupled matrix equations, namely by the technical
trick of putting the system Lqcp into a finite box of size L and imposing periodic
boundary conditions on the vector fields A* and anti-periodic boundary conditions on
the spinor fields ¥, because Lqcp is bilinear in the latter. The boundary conditions are
satisfied by discretizing the momenta in the plane wave expansion of the corresponding
free fields (B.16). This formalism is also known as Discretized Light-Cone Quantization
(DLCQ) [12],[25]. Why is this set finite? The longitudinal light-cone momentum p*
is a positive number. For periodic boundary conditions the lowest possible value is
(p")min = /L — zero modes with p* = 0 are disregarded here, as already mentioned.
Consequently, any total momentum PT = K7 /L (K € N) can be distributed over
at most K bosons, or over K fermion pairs since these are subjected to anti-periodic
boundary conditions.
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Figure 6: The Hamiltonian matrix for a meson, taken from [25]. The matrix elements are
represented by the letters S, V, and F, corresponding to seagull, vertex, and fork-interactions,
respectively. For better orientation, the diagonal blocs are marked by D=T+S and the zero
matrices by (+).

K N,| Sector nf1]2 3 4|5 6 7 8|9 10 11 12 13]
1 2 qq 1|/Dpls v F F
2 2 g9 21S|D V F F
2 3 qq g 3|v|v D V|S vV ¥ .| . F
2 4 4347 4| F V D S V F F
3 3 ggg 5 vV S D V V F
3 4 aqd g 9 6 |F|F V S|V D V S F
3 5 q9qq 9 7 F V D V S F
3 6 9999 qq 8 F vV D S V F
4 4 ggg9g 9 F vV S D V
4 5 qqg9gg 10| -|- F - |F V S V D V
4 6 q4qg gg 114 -|- - F| .- F V S V D V
4 7 |\ qgyg4dqg g 124 -} - |- - F V|. - V. DV
4 8 |lgg9qqqqq 13 - (- - |- - - F V. D

As illustrated in (Fig6) for the Fock space of a meson, the harmonic resolution K
governs the number of Fock space sectors. The lowest possible value K = 1 allows only
for one Fock-space sector with a single ¢g-pair — a single gluon can not be in a color
singlet and thus its excluded. For K = 2, the Fock space contains two gluons, a gg-pair
plus a gluon, and two ¢g-pairs. For K = 4 the Fock space contains at most 8 particles.
One can label the Fock space sectors according to the quark-gluon content, or one can
enumerate them, which is less transparent but more simple. In (Fig6) the Fock-space
sectors for K < 4 are enumerated n = 1,...,13. With increasing K more Fock-space
sectors are added. Their total number grows like N(K) = (K + 1)(K + 2)/2 — 2.
Introducing a box size L as a finite and additional length parameter, however, can be
at most an intermediate step. Latest at the end of the calculations, it must be removed
by a limiting procedure like L — 0o, K — oo, but K /L finite, since only the continuum
can be the full covariant theory. The classification scheme of the Fock space sectors as
used in the continuum appears in the discrete formalism in the most natural way. In
this sense we will keep on working in the continuum by dividing the Fock space into
its natural subspaces

) N(K)
Ei(n|¥;) = (n|H|m) (m|®;) = lim_ > (n]H|m)(m|¥,). (B.26)
m=1 m=1
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In the sense of the DLCQ prescription one can solve the above eigenvalue equation by
realizing the limit K — oo as a process which solves the eigenvalue equation in each
harmonic subspace of dimension N(K). One selects a particular value of the harmonic
resolution K and diagonalizes the corresponding finite dimensional Hamiltonian matrix.
But as one has to increase K in order to get closer to the original eigenvalue equation,
the dimension of the Hamiltonian matrix grows quadratically with K, with the result
that one has to diagonalize finite matrices of inconceivable large dimensions. What one
needs is an effective Hamiltonian which acts in smaller matrix spaces and which has
a well defined relation to the full interaction. The requirements for such an effective
interaction is to preserve all Lagrangian symmetries and not to truncate the Fock
space. Furthermore, it should make use of the fact that due to the nature of the
Hamiltonian, more than half of the matrix elements are zero. Such a construction is
given by the method of iterated resolvents [7], inspired by the well known Tamm-Dancoff
[26] approach in many-body physics. For a fixed harmonic resolution K the dimension
N(K) of the Hamiltonian matrix is reduced step by step until it the dimension 1 is
reached. This effective Hamiltonian then only acts in the lowest sector of the theory,
here in the Fock space of one quark and one anti-quark. Furthermore, it has the same
eigenvalue spectrum as the full problem. The whole procedure is summarized in a
recursion relation, which describes all intermediate steps. Because of this recursive
character any higher sector wave function (n|¥) with n < N(K) can be systematically
retrieved by matrix multiplication from the wave function (1|¥) in the lowest sector.
No additional matrix diagonalization or inversions are required.

For gaining more insight into the method of iterated resolvents we want to study it
explicitly at the example of K = 2. The Hamiltonian matrix is then given by a 4 x 4-
matrix acting in the following subspace

AT+SI) (Usl)  avs)  F
iy — | 2SI @IS v 0 527
GVIY @V @IT+S) GV
(FIL) 0 (@VIs) @I+ S|4)

As we know, the instantaneous interactions F' and S arise as a consequence of working
in the light-cone gauge AT = 0. They are gauge artefacts. We shall now use a trick
which will simplify the construction of an effective Hamiltonian enormously. Practi-
tioners in Light-Cone Time-Ordered Perturbation Theory know that they can omit
the instantaneous interactions until they actually compute a particular diagram. Then,
every intrinsic line in a graph must be combined with the instantaneous partner line
associated with the gauge artefacts. Only then, the sum of all time ordered diagrams
becomes manifestly identical with the gauge invariant Feynman scattering amplitudes.
There is no exception known to this rule, thus far, in all graphs computed explicitly. In
the sequel, this ‘gauge trick’ [25] will be adopted to method of iterated resolvents, since
as we will see is nothing else than a compact notation for resumming all perturbative
diagrams without double counting.
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First, we will violate gauge invariance by setting all instantaneous matrix elements to
zero. Then at the end of calculations we restore gauge invariance by the rule: replace
every internal line in a graph by the sum of a dynamic and an instantaneous line. One
then gets a Hamiltonian block matrix of extreme sparseness. For the above case K = 2
we will have the workable matrix of

iy o AV o
0 21T2) (2|V]3 0
ol Hm) @ITI2) (2AV]3) | (5.2
@BIVILY)  @vI2) GIT[3) @[V]4)
0 0 @V[3) (4|T4)
which is subject to 4-space diagonalization
4
> (n|H|m)(m|¥;) = Ei(n|T;), n=1,2,34. (B.29)
m=1

Our aim is firstly to construct an effective matrix which only acts in 3-space. For this
the above eigenvalue equation is equivalently split up into two parts

3
Zn|H|m (m|¥;) + (n|H|[4)(4]¥;) = Ei{n|¥;), n=12,3 (B.30)
m=1
3
(41H m) (m| ) + 4 HIA) = E(4]T). (B.31)
m=1
Rewriting the second equation as
3
(4B — H|4)A[T;) =~ (4|H|m)(m|T;), (B.32)
m=1

and observe that the quadratic matrix E; — H could be inverted to express the 4-
space wavefunction (4|¥;) in terms of the 3-space wavefunctions (n|¥;), with n < 3.
But here is a problem: the eigenvalues E; are unknown at this point. One therefore
solves first another problem: one introduces the starting point energy w as redundant
parameter at disposal, and defines the 4-space resolvent as the inverse of the matrix
element (4|w — H|4) ,

(4w — H|4)

which in the continuum limit K — oo turn into well-defined propagators. Inserting the
solution (4|¥;) into (B.30) gives an eigenvalue equation which is completely defined in
3-space

Gy(w) = (B.33)

3
> (n|Hs(w)|m)(m|¥;) = Ei(w){n|¥;), n=1,23 (B.34)

m=1
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with the following effective Hamiltonian acting only in 3-space
H3(w) = H + H|4)G4(w)(4|H (B.35)

In addition to the original Hamiltonian in 3-space, the effective Hamiltonian acquires a
piece where the system is scattered virtually into the higher 4-space sector, propagating
there via G4 by impact of the true interaction, and scattered back into 3-space. Every
value of w defines a different Hamiltonian and a different spectrum. Varying w one
generates a set of energy functions F;(w), by solving the eigenvalue equation (B.34).
Whenever one finds a solution to the fix-point equation

Ei(w) = w, (B.36)

one has found one of the true eigenvalues and eigenfunctions of H, by construction. It
should be emphasized that one can find all eigen-solutions of the full Hamiltonian H.
The effective 3-space matrix to diagonalize is given as

Ty o (1V]3)
(n|Hs(w)lm) =1 0 (2]T|2) 2IV[3) : (B.37)
@IV @IVI2) BHT +V[4)Ga(w)(4|V}[3)

What do we have achieved so far? It looks as if one has mapped a more difficult
problem, the diagonalization of a 4-dimensional matrix onto a more simpler problem,
the diagonalization of a 3-dimensional matrix. But this is certainly only true in a
restricted sense. Since one has to vary w one has to diagonalize several 3-dimensional
matrices and not only one. The numerical work is thus rather larger than smaller as
compared to a direct diagonalization in 4-space. The advantage of working with an
effective interaction is of analytical nature, as we will see if we keep on reducing the
dimensions up to an effective matrix acting solely in 1-space.

It is easy to see that the effective Hamiltonians acting in different spaces are generated
by the recursion relation

H, 1(w) = Hy(w) + Hp(w)|n)Gr(w)(n|Hy(w), n <4, (B.38)

where Hy(w) is defined to be the original Hamiltonian H. The wavefunctions in each
sector can be calculated as

n—1
(n]Ti(w)) = Y Gu(w)(n|Ha(w)|m)(m|T;(w)), n<4. (B.39)

m=1

The effective Hamiltonian acting in the lowest sector can thus be calculated as
Hi =T+ VGV +VGE3VG VG35V, (B.40)

where we have dropped the Dirac-bracket-notation between and the w-notation in the
propagators for more transparency.
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Figure 7: The dressed propagators [27]
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The eigenvalues of the original Hamiltonian H are now determined by computing the
matrix element (1|H;(w)|1l) = Ej(w) for different w in order to find a solution of the
fix-point equation E;(w) = w. The wave functions in all sectors can be systematically
retrieved from the lowest one (1|0;) explicitly given as

2[¥;) = (2VG3V[1)(1]¥y),
B]T) = (3|GsV + GsVGaV GV [1)(1]T,),
A7) = (AG4VGsV + G4V GV GV GsV|1)(1]T,). (B.41)

All the above calculations refer to the case of K = 2. To get the effective Hamiltonians
for harmonic resolutions K = 3,4,... is not repeated here explicitly. Important is
the general feature that the effective sector Hamiltonians are separable in the kinetic
energies T' and the effective interactions U (w)

Hy(w) =T + U(w). (B.42)

Important is also that the effective Hamiltonians in the lower sectors become indepen-
dent of K — the Hamiltonian H; as given in (B.40) stays completely unchanged [7].
The transition to the continuum K — oo is then rather trivial for the lower sectors and
will hence forward be assumed.

The most important result of this section is that QCD has only two structurally differ-
ent contributions to the effective interaction in the lowest qg-space. The first term in
(B.40) is the effective one-gluon exchange

Uy = VGsV, (B.43)

which conserves the flavor along the quark line and describes all fine and hyperfine
interactions. As illustrated in the first line of (Fig7) the vertex interaction V' creates
a gluon and scatters the system virtually into the ggg-space. As indicated by the box
(3, the three particles propagate there under the impact of the full Hamiltonian before
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the gluon is absorbed. The gluon can be absorbed either by the antiquark or by the
quark. If it is absorbed by the quark, it contributes to the effective quark mass 7. The
second term in (B.40), the effective two-gluon-annihilation interaction

Uy = VG5V G2V GsY, (B.44)

shown in the second line of (Fig7), can generate an interaction between different quark
flavors.

This completes the derivation for an effective Hamiltonian acting in the lowest Fock
space sector qq. Its effective one-body eigenvalue equation

HfL|w,) = M2|®;), with HfY =2P"Hy, (B.45)

becomes an integral equation, but a very simple one in only three continuous variables
(z,k1). The structure is rather transparent

—2 | 1.2 —2 | 1.2
mq+kJ_+mq—|—kJ_

M2 (z, k1, Mg, Ag|®) = . I

(z, EJ-? Ags >‘17|\I’i>

+> /da:’d2ki<x,I§L,)\q,)\q|VG3V
AL

HVG3VGaV GV 2! k' Ny AY (! B N, N[ @5, (B.46)
The eigenvalues refer to the invariant mass M; of a physical state. The wavefunction
(z, kL, Ag> Ag|¥i) gives the probability amplitude for finding in the gg-state a flavored
quark with momentum fraction x, intrinsic transverse momentum k 1 and helicity Aq,
and correspondingly an anti-quark with 1 — z, —k 1 and A\z. Both the mass and the
wavefunctions are boost-invariant.

For solving the above eigenvalue equation one has to know the propagators G3 and
Gs2. For that one needs the relevant matrix elements (3|H3|3) and (2|H2|2) which are
explicitly [7] given as

(2|H2|2) = (2|T+VG3V +VG5V]2)
<3|H3|3> = <3|T + VG4V + VGV + VG6VG5VG6V|3>, (B.47)

which again requires the knowledge of G4, G5 and Gg, and so on. Having such dressed
propagators is certainly the consequence of the iterated resolvents method used, which
resums perturbative diagrams to all orders without double counting. In order to make
explicit calculations one certainly has to break the propagator hierarchy somewhere.
But before thinking of any approximation in the dressed propagators we first want to
look at the propagator G'3 more closely, which in a certain sense turns out to be special.
As already mentioned above, the relevant matrix element to be calculated is (3|Hs|3).
Its corresponding diagrams can be grouped into two topologically different classes.
Some of them are displayed in (Fig8). In (Fig8a) the gluon does not change quantum
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Figure 8: Taken from [25]
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(a) Three possible graphs of the spectator (b) Some six graphs of the participant in-
interaction in the ggg-space. Note the role teraction in the qgg-space.

of the gluon as a spectator

numbers under the impact of the interaction and acts as a spectator. Therefore, these
graphs will be referred to as the ‘spectator interaction’ Usz. In the graphs of (Fig8b)
the gluons are scattered by the interaction, and correspondingly these graphs will be
referred to as the ‘participant interaction’ (73. We thus have a unique separation into
spectators and participants in the quark-pair-gluon sector

Hy3=T+Us=T+Us+ Us, (B.48)

with
Us =VGeV +VGsVGsVGeV, and Us = VG4V + VGV, (B.49)

Since the Hamiltonian is additive in spectator and participant interactions, the dressed
3-space propagator can be written as

G — 1 _ 1 _ 1
° w— H3 w—T—Ug—ﬁ:; — [73
w-—T-—-U;s
— 1 — — ~ — o~ o~
= Gy3-————=G3+G3U3G3+G3U3G3U3G3 + - -+ (B.50)
1-U;-G3

The above series looks like as if one would do plain perturbation theory in the coupling
constant. This is only partially true, since G3 is not a free propagator but which
contains an interaction in the well defined form of U3. The effective sector Hamiltonian
H3 = T + Uz describes a bound state of one gg-pair which is accompanied by one
free gluon. One therefore deals here with a perturbation theory in medium [7]. The
advantage of formulating such a series, it that the system is not scattered into other
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Figure 9: The free propagators with effective vertices [27]

sectors, it stays in sector 3. The above series can be identically rearranged to
Gs = |:1+%é3ﬁ3+%63[736363+"'] Gs |:1+%L~7363+%ﬁ36363é3+“']
= RyGy R, (B.51)

which can be verified order by order. The operator Rs can now be sandwiched between
the quark-pair-gluon propagator G3 and two vertex interactions V', for which reason it
is convenient to introduce V' as an abbreviation, defined by

VGV =VG VI =VRGRIVI =V GV =V G, 7. (B.52)

One can show that Rj3 is essentially diagonal and independent of the spin [7], such
that each vertex element is multiplied with a number, actually with a number which
depends on the momentum transfer ) across the vertex. Thus a very natural and
physical interpretation is given to the operator R3, as being the vertex function. The
transition V' — V is realized by defining an effective coupling constant §

g — 9(Q) = gR3(Q). (B.53)

The effective one-body eigenvalue equation can now be written as

—2 | 72 —2 | 7.2
mq—l—kl_i_mq—l—kj_

M2 (z, k1, Mg, Ag| ) = p .

(z, EL? Ag> )‘17|\I/i>

+ > /d:c'd2ki(:v,l_cl,)\q,)\q|vagv
Xy Ny
+V G5V GV GaV e/, B, A, ALY (! B, A ML), (B.54)

Up to now all results are exact. We have seen how the method of iterated resolvents
offers a compact notation of systematically resuming all perturbative diagrams with-
out double counting. But when coming down to practical calculations one has to make
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Figure 10: Taken from [25]. The vertical lines denote the free propagators. The coupling
function at the vertices is symbolized by graphs as they would appear in a perturbative analysis.

approximations by breaking the propagator hierarchy. The reason for have written
the effective equation (B.46) as (B.54) is that latter offers a better platform for do-
ing approximations in propagators. Compared to the full dressed propagator G3, the
propagator G3 is only partially dressed with the rest of its impact being shifted to
the vertices. Thus approximating Gz by a free propagator in the ggg-space would be
certainly less crude than it would be for G3. Unfortunately we do not have a similar
construction for the full dressed propagator Ga. To be consistent we are forced to
approximate it by a free propagator in gg-space. As a net result, all what now has to
be done is to update (Fig7) by replacing the dressed propagator G and the partially
dressed propagator G3 by free propagators and each point-like vertex by an effective
vertex, indicated by little round circles as in (Fig9) or (Figl0).
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B.2 Regularization

Before proceeding to solve the eigenvalue equation (B.54) the regularization of the
theory need to be specified. As in every quantum field theory we are confronted with
all kind of divergencies. In general the calculation of light-cone vertex matrix elements
is seriously complicated by ultraviolet singularities occuring at very large values of the
transverse momenta, and infrared singularities caused by longitudinal momenta close
zero. If at each vertex a particle with four-momentum p* = (p™,p,p ) is scattered
into the momenta p'* = (2p™, 2p| + ll,p'_) and ¢* = ((1 - 2)p*, (1 — 2)pL — ll,q_)
of a second particle, the corresponding vertex matrix elements [12] are proportional
to l?_/z They tend to diverge for [; — oo and/or z — 0. Those difficulties demand
the introduction of unphysical cut-off scales to regulate the theory, which in turn have
to be removed by a renormalization scheme. Experience has shown [7] that a reliable
method for treating the ultraviolet divergencies is to use the local vertez regularization
scheme. Each matrix element is multiplied with a convergence enforcing form factor

(lVIp', ) = @IVIP, o) R(A;p, P, @) (B.55)

There are three ways how to perform the regularization

RQ(A7papl)a
R(A;p,p',q) = § Ry (A0, 9), (B.56)
Ro(A;p,p')Rary (A5 ', q),

either by regulating the Feynman four-momentum transfer Q? = —(p — p')? across the
vertex, or by regulating the free invariant mass Mg = (p’ + q)? after each vertex inter-
action, or if necessary both of them can be used. The regularization will be controlled
by some scale parameter A. Since theory does not give us any hint on how to choose
the regulating function R there will be an infinite number of such choices. The only
requirement is that they have to drop at least quadratically for large values of Q or My,
while for small values the regulating function should tend to R — 1, leaving the theory
in this region unchanged. If not mentioned otherwise, we will focus on the following
two structurally totally different functions

sharp cut-off: ©(Q? — A?%), or O(MZ — A?),

R(A) = f eut-off A? A? (B.57)
SOIT Cut-oIr: or .
A2 + Q% A2+ M

On the other hand the infrared singularities are taken care of by endorsing the gluon
with a small regulator mass m,. Both scale parameters A and m, regulate then all
divergencies on the light-cone.

Now everything is settled for calculating the relevant vertex matrix elements in equation
(B.54). But before starting the calculations one first has to restore gauge invariance
by resubstituting the instantaneous interactions W, which were omitted so far. As
mentioned in the previous section one now makes use of the ‘gauge-trick’, where every
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internal line has to be replaced by a dynamical and an instantaneous line. Having all
this in mind and focusing only on the flavor conserving part of the interaction, the
effective one-body equation takes on the form [12], [7]

m2(A) + k3 . m2(A) + k2
xz

MZ'2<.’17,EJ_,)\q7>‘(7|\IIi> = 1—=z

(z, EJ-? Ag> )‘17|\Iji>

da' 2K/, (!, K|, AL A 83) @ (Q, A)

3%22/ \/wl—a: (1—2a') Q?

NG

x R*(Q, A) - [u(kq, M)y ulky, o) |[0(kg, \g)vuv(kg, Ag)],  (B.58)

9 °q a7'q

where it is convenient to see Q? as the mean Feynman 4-momentum transfer along the
quark and the anti-quark line respectively

QX Frsa! R) = —4 [(hy — ) + (kg — k)?] (B.59)

The effective masses and the effective coupling constant @ = g2 /4r have been calculated
via the sharp cut-off ©(MZ — A?):

4o A2
o miA)=m? (1 + 3:1 m}) : (B.60)
. (O, A) = 127

1/a— (33 —2Ny)In(A2?/K2) + b(Q)

with 5(Q) = 331n ((4m§ + Q2)//<52> 9 Zln ((4m} + Q%/ﬁ), (B.61)

=1
Ny 9
—2 2 C 2 A
f=1

As mentioned, a kinematical gluon mass my is introduced to control the infrared sin-
gularities. This is not in conflict with gauge theory: only the physical gluon mass must
vanish due to gauge invariance. Thus my = 0, which will express mg in terms of the
quark masses my. The arbitrary but fixed mass scale x can be identified as the so
called QCD-scale Aqcp which has to be determined by experiment.

All arguments and explicit calculations to get the above results are listed in detail in
[28] and [7] and will be not repeated here.
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C Spinor Matrix
The Lorentz invariant spinor factor
S = [a(kr, M)y uky, A1)] [0k, Ag)yuv(ka, A2)] (C.1)

is calculated explicitly [29]. In helicity space it can be understood as a 4 X 4 matrix
(A1, A2|S|A], Ay) whose matrix elements are functions of z,k; and z',k|. For conve-
nience, S is calculated here as S = 27\/z(1 — z)z'(1 — 2'), i.e.

[@ k1, M)y u(ky, M) [O(ka, A)vev(ke, A2)]

1
Aoy Aa| TN ALY = = C.2
< q fI| | q q> 9 oz (l—a:)(l—a:’) ( )
It is often useful to arrange S or T as a matrix in helicity space,
(A N A
N (T T2 Tz Tia
Ty Toy Thy T
)\ ’)\_ T )\I , )\C — \LT 21 22 23 24 C3
o AalT1Ag: Ag) M| T31 T3z T33 T34 (C.3)
W\Ty T Tz Tu
With y = 1 — x the diagonal elements are
o, 59 o o &> o N o5 o
m?2 mi k2 K k -k +ik AE kK — ik AK
Ty = —L 424 b L A TR R R
xx/ yy/ wy x/y/ xx/ yy/
Tee = 1Tn,
m% m% EL‘EL‘I‘iEL/\Ei
Ty3 = ol ot I
zx'  yy zyx'y
T44 = T33, (04)

where £y k| = kiok|, + ki k], and KIAK] = ki k], —kiyk] . The off-diagonal matrix
elements become

T — 2 Tz — 2
Ty = —m1m2¥a In = _m1m2( / /)
TYyr'y TYyxr'y
mo [k K ()] m k k!
T, — _2/ . () L(,T) ’ Ty = _2/ 4 [ () L(Ii)] ’
vy L X X ] Yy xr xr
my [k E ()] m k K|
mo= g[G-SR s (B
mi [k(1) K@ mi Tk K
Ty — x_xl’y J_;)_J_y(l) ’ T32_x_$11y, J_;)_J_y(,) ,
mo [k k! m k k'
Ty — _2/ . () kL Ii) ’ Ty = _2/ 4 [ (1) L(IT)] ’
vy | = x| T x
Ty = 0, T3 =0, (C.5)

where k| (1) = —ki; —ikiy and k| (|) = ki, — ik y.
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D Potential Scattering

The theory of stationary scattering in coordinate space, especially for potentials of fi-
nite range as well as for Coulomb potentials has been well studied and can be found in
nearly any standard text book about quantum mechanics [31],[32],[33].

This is certainly not the case in momentum space. It is often advantageous to solve the
scattering problem also in momentum space, because from a field-theoretical point of
view momentum space represents a more natural description of physics. Unfortunately
the momentum space representation suffers more on fundamental problems than its
counter part representation. Especially the scattering problem for Coulomb-like poten-
tials is far from being well understood — the scattering boundary conditions, namely
to have an incoming and an outgoing scattered wave, are in momentum space far more
difficult to implement than in coordinate space. But exactly these are necessary to
formulate well defined quantities within Coulomb scattering. Up to now the general
problem of repulsive Coulomb-like potentials can be regarded as solved [10]. But the
scattering on attractive Coulomb-like potentials still seems to be terra incognita. The
main problem, compared to its repulsive counter part lies in the fact that every attrac-
tive Coulomb-like potential has besides the scattering region also a bound-state region
with an infinite range, which makes it nearly impossible to work with it numerically
in momentum space. In our case of the ST-model we are confronted with this prob-
lem of having an attractive Coulomb-like potential in momentum space. At the very
end of this section, a partial solution to this problem is proposed. Furthermore, our
ST-potential will give rise to so called resonances. The word resonance is given many
meanings in the literature, which leads to much confusion. I shall try to avoid this
confusion by being as specific and illustrative as possible, and show how a resonance
state can be completely described in the stationary picture, by approaching it from
three different perspectives.

To attack all this, it is useful to give a brief but complete overview on stationary
scattering in order to have a unique notation and to clarify still existing problems. Fur-
thermore, it is helpful not to use a specific representation of the stationary Schrodinger
equation, but rather look for a formal solution in the scattering region, which will lead
us to the Lippmann-Schwinger equation.

This whole section will only deal with elastic non-relativistic one-particle scattering.
Scattering of a physical particle is a dynamical process, and is treated correctly when
solving the time-dependent Schrodinger equation using localized wave packets as an
initial condition. A scattering experiment consists of an incident and a scattered beam,
which are well separated in time. The accessible quantity for the experiment is the
concept of the cross-section, which in differential form is defined as

i number of events in df) per time unit fs -dF
o= =

_dst D.1
incident particle flux |70] (B-1)

where we assumed that the detector, located in the asymptotic scatterlng reglon opens
a cone of a solid angle df2 from the origin of the target. The quantity j; dF is then
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the measured flux of the scattered particles within the area dF = r2dQ - é, covered by
the detector. Clearly, do has the dimension of an area.

The big disadvantage of the time-dependent picture using wave packets is its mathe-
matical inaccessibility. But since our main interest in scattering processes lies in the
determination of (D.1), it is not necessary to work all the way in the time-dependent
picture. Probability current densities as js and fo are also well defined expressions in
the time-independent picture. Although this stationary picture offers a mathematically
much easier approach for calculating the cross-section (D.1), general calculations and
physical interpretations have to be done with great care. As we know, functions in the
stationary picture are energy eigenstates, and according to the uncertainty principle
the incident and the scattered state are totally unlocalized and begin to coincide in
time. Furthermore, since we are focusing only on elastic scattering, the incident and
the scattered state must have the same energy, thus they are both solutions of the same
stationary Schrodinger equation. For this, its of utmost importance in this picture, to
always have a strict separation of what is the incident and what is the scattered part
of the stationary wave, in order to avoid unphysical interferences.

D.1 Potentials of finite range
This case will restrict potentials to have a limited range, or more precisely, the potentials
have to fall off faster than a Coulomb potential does. Coulomb scattering is thus
excluded in this section and has to be treated separately.
D.1.1 Formal stationary scattering solution
Our problem consists in finding the scattering solution of

H|¥) = E|7), (D.2)
where the Hamiltonian is given by

H = Hy+ H;. (D.3)

Hj should represent that part of H, for which the eigenvalue problem is solved

Holp) = Eplp), (D.4)

and we call the auxiliary system with energy eigenvalues Fy; and its corresponding
orthonormal state vectors | ;) the reference system — the index ¢ represents a collection
of all relevant quantum numbers characterizing this energy state.

We now must make certain assumptions as to the structure of the H- and Hy-spectrum:

e We allow that Hy can have, besides the continuum part of its spectrum, a discrete
bound state part. The property that the eigenstates of Hy form a complete set
has the general form

L= Sleel+ [dileel. (05)

82



D. Potential Scattering

e As is always possible, we shall adjust the energy scale in Hy in such a way that
the continuum starts at Ey = 0 and all states in the continuous spectrum have
Ey > 0. On the other hand if discrete bound states exists, they are supposed to
lie lower than any state in the continuum.

e Furthermore we make the nontrivial assumption, namely, that the energies of the
continuum states of Hy are not changed by switching on H;. In other words, we
assume that the continuum of both Hy and H starts at £ = Ey = 0 and that to
each state |p) in the continuous part of the Hy spectrum, which has an energy
E)p, there belongs a corresponding state |¥) in the continuum of the H-spectrum,
which has the same energy E = Ej.

Thus, so long as we consider only states in the continuum one can write (D.4) as
(E — Ho)le) = 0, (D.6)
and see it as a homogeneous solution of the complete equation (D.2)
(E— Ho)|¥) = H|¥). (D.7)
Solving for |¥) will give the formal self-consistent solution
[OF) = o)+ Gy - Hi-[T%), (D.8)
where Gﬁ stands for the Greens-function of the reference operator Hy

1
Gt = ——— D.9
0 E—Hyti-¢€ (D-9)

which according to (D.5) has the bilinear expansion

+ |on) {n] /°° r lem){er|
= ACALAL B 2T D.1
Go ;E—En—i_ 0 d E—FE+i-¢ (D-10)

Equation (D.8) is a mathematically well defined equation for |¥*) as long Hy as well as
H; only contain short-ranged potentials. It is called the Lippmann-Schwinger equation
and is a complementary description of the Schrodinger equation in the scattering re-
gion. As one can regard the Schrodinger equation as a local description of the system,
the Lippmann-Schwinger equation serves more as a global description, since the need
for implementing boundary conditions appears automatically.

The solution |¥T) is properly called an outgoing eigenstate of the full Hamiltonian,
while the other linear independent solution |¥ ™) has the meaning of an incoming eigen-
state of H. Both the out-states and the in-states have a physical content — both contain
incoming and outgoing wave components, which have to be matched to given boundary
conditions.
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The ultimate goal of scattering theory is the connection to experiment. A central
concept is the scattering or S-matrix, which is defined as

[Tty = S|). (D.11)

Normalization or probability conservation immediately yields the unitarity condition
for the scattering matrix

sTs = 1. (D.12)

Other postulates on S involve invariance properties and analyticity requirements, but
I will not discuss it here in further detail.

According to our previous made assumptions, the in- and out-states can be expanded
in terms of eigenfunctions of the reference operator Hy

[Ty = calea) 5 [TF) =D crlop). (D.13)
a f

The sum has to be seen as a generalized sum, which turns into an integral if the quantum
numbers lie in a continuum. Substituting the expansion into the definition (D.11) and
inserting on the right-hand side the completeness relation 3, |¢f)(pf| = 1, yields

cp = anSfa , where Sro = (¢¢]S|@a)- (D.14)

[e3

Since our potential in H; is of finite range, it is possible to prepare the in-state into a
definite state of the reference system |¥.") = |¢;), that means if ¢, = 0a; then ¢ = Sy;
and the general out-state |[¥) turns into a prepared out-state with quantum numbers i

W5 = Spiles). (D.15)
7

The coefficient ¢f of the expansion (D.13) describes the probability of finding the system
in that state having the quantum numbers f. Thus the scattering matrix c; = Sy; is
the probability amplitude for a process in which the system makes a transition from an
initial state |p;) to a final state |pf) under the influence of an interaction. As follows
from the unitary condition (D.12) for the scattering matrix,

SIS = 1, (D.16)
f

the sum of all probabilities is equal to one. This makes the scattering matrix accessible
for experiments. However, the squared magnitude of the amplitude Sy; is not a mean-
ingful quantity in the functional sense. Since strict energy conservation is certainly
guaranteed between initial and final states, we have to split off an energy-conservation
factor, which is a delta function. For this we want to rewrite the scattering matrix by
defining a new operator, the transition or 7-matrix.
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To get there, we first look at the adjuncated form of the definition (D.11)
(T = (@ |ST = (T |=(T|S. (D.17)

For the bra-kets an analog expansion (D.13) can be done, which results in
(| = Z Sti(epil, (D.18)
i

where we prepared the out-state to a specific state of the reference system (\I»';H = (pg|.
The amplitude of such a prepared in-state with quantum numbers f with the previously
prepared out-state with quantum numbers 7, will give

(T 1T7) =) StnSmilenleom) = Si- (D.19)

n,m

Thus the elements of the S-matrix between initial and final states of the reference
system can also be expressed simply as the amplitude of the correspondingly specified
in- and out-states, which are solutions of the Lippmann-Schwinger equation (D.8).
We now return to these solutions by doing one complete iteration

[O%) = |p) + Gy Hilp) + Gy HiGy Hy|T). (D.20)
Multiplying with the inverse of G(f

(E— Ho+ie)|U%) = (E— Hy+ie)|g) + Hilg) + HiG§ H[TF)
= tie|p) + Hy |TF), (D.21)

the Lippmann-Schwinger solutions can be written in an alternative way as

+ie
‘I’i
™) E—Ho—HliiJ@
= |p)+ G Hilp), (D.22)

where G* stands for the Greens-function of the full Hamiltonian H. This new form
helps us to write the scattering matrix (D.19) as

(TAT) = {pfl¥]) + (o[ H1GT])
1

= N HoHy ———

(@ |¥;") + (or|Hy Z>Ef_EH_Z.E
= &+ = = (pf|HLT)
= N \E —Ei+ie E;—Ei—ie) I

—21€

= & H\ U

fz+€2+(Ef_EZ)2<(‘pf| 1 z>
= §p —2mi-8(Ey — E)(pf| H1T]). (D.23)
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By defining the new transition or T-matrix as
H|Tf) = Tlei), (D.24)
the scattering matrix takes the form
Sti = 67 —2mi-0(Ey — E;)Tys, (D.25)

where Sy; = (pf|S|ei) and Ty; = (¢¢|T|pi). It should be clearly visualized that there
is a significant difference between the roles of §¢; and 6(Ey — E;) — the symbol E; for
example represents the continuum scattering energy E which is characterized through
the quantum numbers f.

With the above identity, the determination of the S-matrix is now reduced to the
problem of calculating the T-matrix. By defining a more general transition operator

T*|p) = Hi|¥™), (D.26)
it is possible to write the Lippmann-Schwinger equation as a pure operator equation
T = H,+H -Gf T* (D.27)

A challenging task is not to find approximate solutions through iteration but to calculate
the full solution

T = (1-H,-G3)™' Hi. (D.28)

In the case where GOjE is the free-particle Greens-function this can easily be achieved
numerically, as in (Appendix E).

Although the S-matrix is related to the T-matrix by means of the identity (D.25),
scattering theory can be viewed from two different perspectives when working either
with the T-operator or the S-operator. As the definition (D.26) reveals, the transition
matrix is a connection between the full system and the reference system — in other
words in (D.24) it connects an incident state with the correspondingly prepared out-
state. In contrary to that, the scattering matrix (D.11) closes the system on itself: an
incoming state is scattered to an outgoing state — it serves as a relation between the
initial and final eigenstates of the full system.

If Hy is chosen to be the free-particle Hamiltonian and H; to be a rotational invariant
potential, the S- and T-matrix can be easily simplified into workable expressions, still
without being restricted to any specific representation. The set of eigenvectors of Hy
are plane waves, or more precisely, they are momentum eigenstates characterized by
the quantum number k. In this case the S-matrix (D.25) is given as

Sez = (R|S|F) = 6K — k) — 2mi - 6(Ex — Ex) Ty
L
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Since the total interaction is rotation invariant, the scattering matrix will be the same
before and after a rotation Ug

(URK'|S|URE) = (K'|S|E). (D.30)

Hence, the scattering matrix cannot depend on the absolute orientation of the vectors
k and k'. Tt can be only a function of the energy and the angle between the initial and
final momenta. Thus the scattering matrix can be expanded into Legendre polynomials

8

Spik = (K'|S|k) = 4 R Z (21 + 1)Si(k)Pi(cos 9). (D.31)
1=0
The delta function has been included as a separate factor, because we already know

that the S-matrix has nonvanishing elements only on the energy shell. The unknown
coefficients S;(k) can be determined by invoking the unitarity of the scattering matrix

-,

/d3k"<12'|5|12"><E”|ST|E> = (- R). (D.32)

Substituting here (D.31) and carrying out the integration, we obtain

4 k2 Zzl+1 1S1(k)|2Py(cos®) = b(K — k) (D.33)
=0

From the completeness relation of the Legendre polynomials, the above equation will
only be fulfilled if |Sj(k)|? = 1, that means if S;(k) = €*%(*) where the &;(k) are real
functions of the momentum. An analog expansion of the T-matrix

— '
T = (K'|T|k) = 47T — ZO (20 + 1)Ty(K', k) Py(cos D), (D.34)

together with (D.29), will yield Tj(k, k) = €*®(¥) sin §;(k). The interpretation and im-
portance of the functions §;(k) will be discussed next.

D.1.2 Stationary scattering in the coordinate space picture

To give scattering theory a more illustrative meaning, we will now translate the previous
results to coordinate space. For that, the choice of the reference system will be the
free-particle Hamiltonian Hy = k2 /2m, while for the potential H; = V we only want
to demand locality. The eigenstates of Hy are normalized to (k|k') = §(k — k'), while
for the coordinate eigenstates we require (7|7') = (7 — 7).

We start off with the Lippmann-Schwinger solution (D.8)

FIEE) = (Flep+ [ FIGEIE VI )
= (Flog) + /d3r’(F|G0i|F’> V) - (7). (D.35)
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Inserting the complete set of eigenstates of Hy

FIGE) = /dgk'd?’k"(ﬂ%;:)(wgf|Goi|<P;;~><<P,z~|F'>

1 Lik! (F—7")
(27T) E - 2m + 7€
o, - eii|1€|-|ﬂf’\
A |7 — 7' (D.36)
equation (D.35) can be written as
— 1 ik m eii|E|"rir1‘ SNyt (2!
W= (7) = (27_(_)3/26 o T F—im (7 )\IIE (7")
1 il e:tzkr
reo (2m)2 [6 T Sl 9) - — ] : (D.37)

where f,g(go,ﬁ) is called the scattering amplitude, depending only on the momentum
parameter k and the direction of 7

f,g(go,ﬁ):—%(2w)3/2/d3r'ﬁil’3lw’V(F')\pg(w) O F = |Frl=1 (D.38)

The last step in equation (D.37) is allowed for all potentials V' falling off faster than
a Coulomb potential. So the scattering amplitude as given in (D.38) is a well defined
expression only for short-ranged potentials.

The asymptotic solution in (D.37) is a superposition of a plane wave and a spherical
wave. To adjust this solution to the boundary conditions of a scattering problem,
namely having an incident beam and an outgoing scattered beam, the only reasonable
solution is \I/g(f’) This solution is called the physical solution and will simply be
denoted by W(). Its asymptotic structure makes it possible to strictly separate the
incident flux from the scattered flux, necessary for calculating the cross-section (D.1).
For this calculation, the precise value of the overall asymptotic normalization constant,
here N = (27)~3/2 is unimportant. The wave function ¥(F) can also be normalized to
unit incident flux by choosing N = (|k|/m)~/2, or by requiring fd3r\lfz~,\lflg = §(K' — k).
But certainly the simplest normalization is that where the incident amplitude is of unity.
Performing the calculation (D.1), the differential cross-section per unit angle is

do

0 ‘f;}(%ﬁ)‘z' (D-39)

For knowing the cross-section one has to know the scattering amplitude, which again
is determined from the asymptotic behaviour of the full wavefunction.
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From (D.38) and the definition of the T-matrix (D.24), the scattering amplitude can
also be written as

file,®) = —dmr (o V) k=[k|-7
= —4m7r2<<p]z,|T|g0E> o kP = k2 (D.40)

Due to its representation independence the above relationship between the scattering
amplitude and the T-matrix is of great importance, since it opens the possibility to
calculate scattering amplitudes and with it cross-sections in a representation different
than that of coordinate space, as for example in momentum space.

The asymptotic wavefunction in (D.37) can be simplified tremendously, if we restrict
ourselves on incident beams that propagate in the z-direction with momentum k and
potentials that are spherically symmetric V(7) = V(|]). The whole scattering prob-
lem becomes symmetric around the z-axis and thus independent of the polar angle ¢.
Choosing the overall normalization for the amplitude of the incident beam as unity, the
physical axial-symmetric solution reads

. etkr
Ui(r,0) = e + fi(9) - o
with  fi(9) = —% /d3r’eikr"cosaV(r')\I/k(r',ﬁ'), (D.41)

where « is the angle between 7 and 7'. The underlying symmetry now allows for a
partial wave analysis in coordinate space

Up(r,9) = Zal,kul%(r)ﬂ(cosﬁ), (D.42)
1=0

where the wavefunction u; (r) can be related to the solutions of the radial Schrodinger
equation
d2

k() + <k2 —2mV(r) — W%”) wpr) = 0. (D.43)

For large r, terms of the order smaller than 1/r can be neglected and the general
asymptotic solution for finite range potentials is

ULk (7') = Bl,k: Sin(kT) + Cl,k: COS(kT)
r—00
= Al,k sin(kr - %r + 5l,k)- (D.44)
When fixing the normalization constant of u;  in the asymptotic region as A;; = etk

it is possible to make an identical comparison between the wavefunctions (D.41) and
(D.42).
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This can be seen when using the following identity
ePOLk sin(kr — %r +60,) = sin(kr— %r) + ek sin ok - eilkr=3), (D.45)

For large r this will force the expansion (D.42) to have the structure

sin(kr — &
Uy (r, ) = Zal k¥PI(cos )
1=0
0 ) ikr
Z(—i)lal’kewl”“ sin &; ;. P;(cos ) (D.46)

=0

The above expression has to be equal to the right hand side of (D.41), and together
with the next identity

eikz — eik:rcosﬂ — Zil(2l+1)jl(kr)Pl(COS19)
=0

sin(kr — 1)

)
20+ 1
r@+1) kr

[M]8

Py(cos), (D.47)

L

r—00

l

Il
=)

where j; stand for the at the origin regular spherical Bessel-functions, will fix the
coefficients a;; = /(2] + 1)/k and the scattering amplitude can be identified as

| =

k Z (20 +1 “5““ sin &; ;P (cos19). (D.48)
1=0

As we clearly can see, all the information of the scattering process within spherical
symmetric potentials is hidden in the asymptotic parameter d;;, which is called the
phase-shift. This is the well known result fi(9) = —4mn2(k'|T|k) w—p of (D.34), and
was to be expected. The total cross-section of (D.39) can be calculated as

d 00 00
o = /dQ% = /dﬂ|fk = —7; Z 2l + 1 Sll’l 6lk ZZO’UC. (D49)
=0 =0

The more important point is, the way how we manipulated the radial Schrédinger
solution, by using the freedom of the normalization constant to get the asymptotic
form

wr(r) = sin(kr — ) £ Ty(k) - G, (D.50)
00

with Tjp = 0Lk gin 01x. As stated before in the abstract formalism, we clearly see
here how the T-matrix, or more precise the diagonal elements of the T-matrix connects
two different wave-types. The first term represents the incident beam, having here
the properties of a standing wave, while the second term is the scattered outgoing
wave. The scattering process adds to the free-particle plane wave function an outgoing
spherical wave whose amplitude is 7;. This representation is thus also called the T-
matrix solution of the radial Schrédinger equation.
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On the other hand, the identity (D.45) may also be written as
ek sin(kr — o) = % [eii(krf%r) — 2k -ei(k”*%)] . (D.51)

The same is true for the incident beam in (D.47), which can be split up into incoming
and outgoing wave components. Since the choice of our boundary condition only allows
for incoming waves for the incident beam, the scattering amplitude can again be iden-
tified as in (D.48), as expected. But now the asymptotic radial Schrédinger solution
has the structure

walr) = 5 e — (k) - ) (D.52)

’ r—oo 2

with the S-matrix S ) = ek or more precise the diagonal elements of the S-matrix
which connects two similar wave-types. Here we can see that the incoming spherical
wave is unaffected by the scattering process, while the outgoing wave is multiplied by
the quantity S;. Only the phase, and not the amplitude of the outgoing spherical wave
is affected by the presence of the potential. This solution is called the S-matrix solution
of the radial Schrédinger equation, and from now on we simply call S;(k) the scattering
function.

The S-matrix representation in general is very convenient for investigating certain
structures, like minima, maxima or sharp peaks in the cross-section.

The reason of a vanishing cross-section for a particular energy can immediately be
understood, if one looks at (D.52). For all momenta k where the scattering func-

tion Sj(k) = 1, the outgoing wave ¢ikr=%) and the incoming wave e~ **r=%) can be
combined to give the standing wave sin(kr — 1), which looks like a component of an

incident plane wave with no scattered portion. Classically speaking, there is zero scat-
tering when the final trajectory is in the same direction as the initial one.

The effects which cause sharp peaks in the scattering cross-section, are called reso-
nances, and are not so easy to understand. They are linked to particular properties of
the scattering function S;(k). For this we rewrite (D.52) as follows

. i . i

uplr) = 3S) |gme H —eD). (D.53)
According to Gamow [34] we obtain a resonance, if we postulate that the above asymp-
totic solution consists of outgoing waves only. This is equivalent to the condition
1/S;(k) = 0. But the resulting equation e=2(k) = () has no solution for real k. Thus
our only choice is to go into the complex momentum plane k — ¢ = k+1in, with k£ > 0,
and study the effects of the complex zeros of 1/S;(q) upon its behaviour on the real
k-axis — because all the above results on a scattering wave function strictly apply only
for real momenta. It can be shown that the closer the complex zero g lies toward the
real k-axis, the more it becomes to a physically observed effect in the cross-section.
Before going into the complex momentum plane g, it is helpful to rewrite the scattering
function Sj(k) as

Fi(k)

Sy(k) = e20k) = —,
© 7 (k)

with &;(k) = arg[Fj(k)] and k€ RR, (D.54)
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where Fj(k) is a complex function of a real argument, which is called the Jost-function.
Now for finding the zeros of 1/5;(k), or equivalently the poles of the scattering function
S;(k), we have to do an analytical continuation into the complex momentum plane for
the Jost-function F'(k) — F(q). For the analytic properties of the Jost-function one can
refer to [33] — just important to note is that its analytical continuation in the complex
momentum plane is different from that being done in the complex energy plane, due of
having the problem of double mapping E ~ k2.

The reason why this postulate of having only outgoing waves causes sharp peaks or rapid
changes in the cross-section and what the physical interpretations and implications of
complex momenta and energies are, will be discussed in detail in the next section under
the more simplified condition of s-wave scattering on potentials with a strict range R.
Before ending this first discussion on resonances, it is interesting to see how bound
states and resonances are embedded in the stationary formalism. Bound states are
obtained when requiring in the energy region E < 0 the boundary condition of having
a vanishing wave in the asymptotic region. Since this boundary condition is real, it
will only allow for certain discrete real and negative energy eigenvalues, which are
characterized by one parameter, namely the energy value itself. On the other hand,
resonances are obtained when requiring in the scattering region £ > 0 the boundary
condition of having a pure outgoing wave in the asymptotic region. As in the case of the
bound state condition, this resonance condition will also only allow for certain discrete
values, but since the boundary condition is complex, these discrete energy eigenvalues
are also expected to be complex, and thus must be characterized by two parameters,
their energy and width (Eg,I') — in the scattering region it is justified to talk of an
energy width, since the relevant energy spectrum is lying in a continuum.

An interesting application of the analytical continued Jost-function Fj(gq) is the so called
Levinson Theorem. It connects the real scattering phase-shift to existing bound states
in that system. I state it here without proof [33]

(NP +4)r for 1 =0if Fy(0) =0,

y , (D.55)
Nfrm for all [ if Fy(0) # 0,

51(0)—51(00) = {

where NlB stands for the number of bound states in the relevant [-wave sector. An
important requirement for the above relation, is that the real phase-shift §;(k) has to
be a continuous function. This can always be achieved, since the phase-shift is no
physical quantity and therefore not unique. It can be changed into any desired form,
as long as the cross-section via oy ~ sin25lvk stays unchanged — it is invariant under
the substitution & (k) — & (k) = & (k) + 7 - n(k), n(k) € Z.

Only for those potentials which create a phase shift §(k) that is changing monotonic
over the whole range of k, the Levinson Theorem helps to understand the last important
structure in a cross section, the maxima. Every time when an additional bound state
appears, the phase goes through 7/2 and increases by m. At 7/2 the cross-section
oLk ~ sin25l,k takes on a maximum value. So under the assumption of a monotonous
phase shift, the number of maxima in a [-wave cross-section is directly linked to the
number of bound states in that system. We will see that this is realized by potentials
which cannot create resonances.
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D.1.3 S-wave scattering on potentials with a strict range R

Before starting, we first want to focus on the probability interpretation of a wave
function which lies in a continuous energy spectrum. The reason is, if we have a proper
probability interpretation in the continuum part of the spectrum, it is possible to fully
understand and interpret resonances in the stationary picture — there is no need to
go into the to time-dependent picture. For this we have to take a closer look at the
procedure of normalization in the continuum.

The full energy eigensolutions ¥ g(7) of the stationary Schrédinger equation, as we well
know, form an orthonormal set

SEE if E discrete
Brut (T _ ’ D.56
/ T8 (F) ¥ p(F) { 0(E — E') if E continuous. ( )

Thus it is always possible to normalize a wavefunction in the bound state region to
[d3r|¥E(7)|? = 1, implying that the probability of finding a particle somewhere in
space must be unity. The quantity |¥g(7)|2d®r is then the probability of finding the
particle with a discrete energy F in its volume element d3r. The squared wave function
itself |¥ g ()|? has therefore the meaning of a position probability density.

Looking at the continuous part of the spectrum, a wavefunction in the scattering region
can always be normalized to [dE [d®r|¥g(7)|* = 1. Since a probability interpretation
must be also valid within a scattering region, the quantity |¥g(7)?d®*rdE must be
the probability of finding the particle in its volume element d3r within the continuous
energy interval dE. Due to the smeared energy distribution, the squared scattering wave
function |¥g(7)|? can not represent an absolute position probability density, as in the
case of the bound-state wave function. But the ratio of |¥g()|? in two different points
of space determines a unique relative position probability density. In the scattering
region it is not possible to have an absolute position probability interpretation, one
rather has to work with relative probabilities, since a scattering particle is not bound
to a certain region in space.

For spherically symmetric potentials V' (r) and axial symmetric boundary conditions,
the general scattering wave function ¥g(7) is given by (D.42). Focusing only on s-wave
scattering, the radial wave function ug(r) satisfies the radial Schrédinger equation

uf(r) + [k —=2mV(r)] = 0, with k? = 2mE > 0. (D.57)

Since this is a real equation, the general solution can be given in a real form. For a
potential of a strict range R, the general radial s-wave solution is given by

us (r for 0 < r < R with «(0) =0,
) = { c(r) <r< £ (0)

_ (D.58)
A(k)sinlkr +6(k)] for r > R.

First we want to normalize this s-wave function to unity, in the sense
SE-FE) = / B L, () 5 (7)
o0

= /d?’r\I!z,(r,go)\I/k(r,go) = 47r/0 dr ug, (r)ug(r). (D.59)

axialsym s-wave
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The unity normalization for the real radial wave function (D.58) is thus given by

1m

[e.e]
/0 drun(ryus(r) = =5k~ K). (D.60)
Without having any specific knowledge on u,f (r) the above condition can be used to fix
the asymptotic normalization constant A(k) in (D.58). The procedure goes as follows:
multiplying the radial s-wave Schrodinger equation for wj with ug and vice versa,
subtracting these two equations and then integrating over the range [0; L] with L > R,
will result in the equation

1 L

L
/0 dr g (rups (r) = s |k (ryuns (r) — ui(r)uge ()|
_ A(k)A(K") [sin [(E— KL+ (6 — Ox)] n sin[(k+ k' )L + (6k + Ox)]

2 k— k' k+ k'
(D.61)
For the limit L — oo, we make use of the following functional identities
lim sin(az) =né(z) ; lim cos(az) =0. (D.62)
a— o0 x a— 00 xXr
With these we have
L
lim dr ug(r)ug (1)
L—oo 0
_ A(R)A(K) . sin[(k —K)L] . sin[(k+k')L]
=—5 cos(0 — Op) Lh_r)r;o — + cos(dg + dpr) nggo —
A(k)A(K
= W% [cos(0k — k') - 6(k — k') + cos(dy, + 6kr) - 6(k + K)]
A2
= 2(k)5(k — k"), because k, k' > 0. (D.63)

When identifying the above equation with (D.60) the normalization constant must take

on the value
1 m

22 k-
Since the normalization constant A(k) can be fixed as being positive or negative for any
value k, the phase shift function d(k) in (D.58) can therefore be chosen as a function
which is only unique within modulo 7, without changing the wave function. As we
already know, this ambiguity in the phase shift within modulo 7 can also be seen
when looking at the cross-section (D.49) — the cross-section as given in (D.49) is also
valid for the normalization given here, since every general cross-section (D.39), being
determined from the asymptotical behaviour of the wave function, is independent of
an overall asymptotic normalization constant. The differential and total s-wave cross-
section, which are isotropic in their angular distribution are given as

dosp 1 47

a0 k2 sin? 6(k) 5 o5k = %2 sin” 6(k). (D.65)

A?(k) (D.64)
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Now our aim is to determine the phase shift (k) in (D.58) from the continuity require-
ments of ug(r) and its first derivative at » = R. For this we define the dimensionless
logarithmic derivative of the inner region r < R

_ R-up'(R)
r=R ulj (R) ,

which must be equal to the logarithmic derivative of the outer region r > R

B(k) = [ri In u,j(r)] (D.66)

dr

kR
B(k) = kR -cot [kR + (k)] < (k) = —kR + arctan (W) +m-n(k), (D.67)
where the integer values n(k) € Z for every k, are chosen such that the phase shift §(k)
is a continuous function. Before calculating the cross-section we first want to look at
will happen to the phase shift §(k) if the potential V' (r) turns into the following two
extremes:

e if the potential goes to zero, or equivalently if the incident energy of the particle
is far more larger compared to the energy range of the potential, the particle will
behave as a free particle, that means uy (r) — sin(kr) or §(k) — 0 (mod ).

e if the potential turns into an infinitely hard-sphere potential at »r = R, there
will be no penetration of the particle into the inside region r < R, that means
ug (r) = 0 for all 0 < 7 < R. Furthermore the outside wave function must take on
the form ug (r) = A(k) sin(kr —kR) in order to satisfy the continuity requirement
ug (R) = ug (R). This gives the hard-sphere phase shift denoted by n(k) = —kR.
So for having pure full range hard-sphere scattering, the corresponding potential
must imply the behaviour |3(k)| — oo for all k.

The phase shift function d(k) in (D.67) can thus be written as

d(k) = n(k) + arctan <—w) + 7 - n(k), (D.68)
B(k)

where the hard-sphere phase shift 7(k) can be seen as a background scattering term,
while B(k) carrying all the information of the potential acts as the actual potential
scattering term. As already mentioned, if 5(k) changes constantly over a wide range
where |5(k)| > 1, the overall scattering behaviour will be that of a hard-sphere. On
the other hand, if it tends to the opposite extreme by going rapidly through a region
where (k) ~ 0, the overall scattering behaviour must be certainly different than that
of a hard-sphere. This will be studied next.
Let the function (k) change rapidly |8'(k)| > 1 within a sufficiently small region
|Ak| = |k — ko| < 1 around ko, where (ko) = 0. Making a Taylor-expansion up to
first order in Ak

B(k) = (k — ko) - B'(ko), (D.69)
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and assuming furthermore that the change of 5(k) over this region Ak is so drastic, that
when compared to the linear change of the pure background phase shift n(k) it would
be justified to approximate it by the constant n(k) — n9 = —koR, the corresponding
continuous phase shift function has the approximation

"o
d(k) = no + arctan ( Flho) - (h = ko)) + 7 - n(k). (D.70)
That the approximation of §(k) by the approximation of B(k) is reasonable, one has
to be sure that the arctan-function is a slow varying function, so that §(k) is more
or less insensitive in a variation of (k). In the above approximation this is certainly
guaranteed, since the approximation region is where (k) ~ 0, that means in the asymp-
totic region of the arctan-function where it shows a very slow or nearly no variation
at all. Defining the parameter y9 = 19/8’(ko) the phase shift and the corresponding
cross-section have the following 3-parameter structure in the region Ak around kg

d(k) = mno+ arctan <— ol )—|—7r-n(k),

k — ko
2 ’Yg 2
(k) ~sin“d(k) = ——— +5sin
U() () (k—k0)2+’y§ o
’73 2 — Ko
-~ |2sin + sin 2 . D.71
(k—ko>2+73{ " (o R

The first term in the above cross-section is the pure potential term, also called the
Breit-Wigner resonance term. The second term is the pure hard-sphere or background
term, being totally independent of the scattering potential, while the last term is the
complicated interference term.

(Figll) on the next page shows two characteristic plots of the phase shift and the cross-
section for a fixed parameter set (ko, o) but with a different background parameter 7.
The plots show that when the scattering particle has a momentum close to kg, its
wave function phase shift changes rapidly, in the ideal case even by the amount of 7
and implies a sharp peak in the corresponding cross-section. In every case a sharp
change of the phase shift §(k) by 7 causes a sharp structure in the cross-section o5(k).
Experimentally, resonances are usually associated with a sharp variation of the cross-
section as a function of energy. We therefore want to take as the preliminary definition
of a resonance at the energy Ey ~ k that 6(E) changes rapidly by approximately
when E passes through Eg causing manifestly a sharp structure change in the cross-
section relative to a slow varying background. A resonance is characterized by the two
parameters (ko, v0), where o can be seen as the width of the resonance.

To summarize, there are two striking behaviours in a scattering process, which can be
well separated, if the following conditions on the inner logarithmic derivative (k) are
fulfilled: S'(k) ~ 0 and |B(k)| > 1 over a wide momentum range leads to hard-sphere
or background scattering, while |3'(kg)| > 1 where B(kg) ~ 0 leads to the contrary
resonant scattering around kg. If these conditions are not met, there will be subtle
interplay between hard-sphere and resonance scattering, which then is no longer so
easy to disentangle as before.
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Figure 11: Resonance profiles for the phase shift and cross-section

To study the feature resonance more thoroughly, we now want to go beyond the cross-
section and look at the next physical quantity, the relative position probability density
of the radial scattering wave function (D.58) in the inside and outside region of a
potential with strict range R

Jur(r1)[?
Jug(r2)?’

We will gain more insight if we only focus on average values of the wave function
squared in the inside and outside region respectively

_ R
B - [Tl” _ & Jo drlug ()

Py(ri,re) = with 0 <r; <R and ry > R. (D.72)

P(k) = = D.73
W= = 1) (7
According to (D.61) the above integral can be determined as
1w (R (R) — u(Ryuy (R)
_/ driuc @)l = F m, K2 — k2
A%(k) [dé(k) sin [2(ER + 6;)]
SR | dk +R— 2% ; (D.74)

without knowing the precise wave function in the inner region. Since the left-hand
side of the above relation is a positive quantity, we get as an intermediate result the

following striking inequality
sin [2(kR + 5k)] 1

ds (k)
N s R - — .
~— > ~R+ = R— . (D.75)
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It states that the phase shift cannot decrease faster than at a certain rate. Thus if the
phase changes rapidly, then it must be increasing. This relation was first calculated
by Wigner [35] in the more complicated time-dependent picture and is called Wigner’s
causality principle. The principle of causality states, that a scattered wave cannot
leave the scatterer before the incident wave has reached it. Wigner connects the above
energy derivative of the scattering phase shift with the time delay, that an incident wave
experiences inside the range of the potential before it is being scattered. Furthermore
Wigner gives the following simple physical interpretation: when dé/dk assumes large
positive values, the incident particle is in fact captured and retained for some time by
the scattering center and is therefore in a state of resonance; on the other hand if dd/dk
will be close to (—R) or its minimum (—R — 1/2k) the incident particle hardly enters
the scatterer.

For the moment we acknowledge Wigner’s time-dependent result and keep on working
in the stationary picture, by inserting the phase shift function (D.67) into (D.74). After
some calculations we get

R ol
%/0 driug (r)? = %AQ(k)-k-%. (D.76)

Since again the left-hand side is a positive quantity, 8'(k) < 0 for all values k, that
means the inner logarithmic derivative (k) is a monotonic decreasing function. In-
serting the above relation into (D.73) we finally have the average relative position
probability for the inside and outside region

= —B8'k) _k _T

PR =k w7 (B-77)
where k~ = k is the incident momentum given in the outside region, while % can be
seen as an average momentum in the inside region. If we define 7 = 2Rm/k as the time
a particle stays within the region of 2R without any potential, then 7 = 2Rm/E< can
be seen as the average time the particle would spend in this region in the presence of a
potential of strict range R. Thus the average relative position probability P not only
gives a spacial particle profile but also represents a profile in time.
When now applying the well defined conditions for hard-sphere and resonance scatter-
ing we come to the same physical conclusions in the stationary picture as Wigner [35]
does in the time-dependent picture, due of having a proper probability interpretation
in the scattering region. The hard-sphere condition 8’ ~ 0 and |3] > 1 over a wide mo-
mentum range implies d§/dk ~ —R and P ~ 0, meaning that the probability of finding
the particle inside the potential region relative to the outside region is zero. This is
consistent with the fact, that during hard-sphere scattering there is no penetration into
the inside region. For the resonance condition |5’| > 1 where 8 ~ 0 around some kg, we
have dd/dk ~ —f' > 1. If now a very narrow energy region |Ak| = |k — ko| < 1 around
such a special value kg is taken, we can perform the same Taylor expansion for the log-
arithmic derivative as in (D.69), and obtain the following 3-parametric approximation
for P around ko:
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B — —f'(ko) _ 1 g0
P = e+ [8' (ko) (k — ko)]> — R 75 + (k — ko)?’

where the amplitude of P scales with 1/R. The parameter vy = 19/’ (ko) > 0 is the
very same as defined in (D.71). For a particle with momentum k ~ ko we will have
P(kg) > 1. Physically this implies that the particle at this certain energy accumulates
in the inside region of the potential, or equivalently when the particle enters this region,
it remains there for some time before being allowed to escape again to the outside —
the particle is thus in a resonance state and is characterized by the very same two
independent parameters (ko,7o) which imply a rapid structure change in the cross-
section. This certainly only holds if the resonance condition is fulfilled. If not, a subtle
interplay between background and resonance scattering will emerge again, resulting in
a complicated structure of maxima and minima in P, which no longer can be correlated
so easily to significant structures in a cross-section.

(D.78)

The last perspective to understand the feature resonance, is to look at it from the
scattering function S(k), being the diagonal elements of the S-matrix as discussed in
the previous sections.

Besides the solution (D.58), the general solution of the radial s-wave Schrodinger equa-
tion (D.57) can also be given in the form

5 for 0 <r < R with u; (0) =0
w(r) = {uk(r) or 0 <r < R with u (0) ©(D.79)

| B(k)e " + C(k)et*r for r > R.

If we choose uj (r) to be a real function, the complex amplitudes A(k) and B(k) with
k € R, can be determined by the continuity requirements of uy(r) and its first derivative
at r =R as ) '
B(k) = C* (k) = 3¢ |ujf (R) + % ul'(R)|. (D.80)
When comparing (D.79) with (D.52) irrespective of some overall asymptotic normal-
ization constant, the scattering function is given by
C(k) e *ER[3(k)+ikR] _ F(k)

S(k) = TB(k) ~ eRR[B(k) —ikR]  Fr(k) e, (D-81)

with the same notations as used in (D.54). Within this special condition of s-wave
scattering in a potential with strict range R, it is easy to verify and understand Gamow’s
more general statement [34], that a resonance structure in a cross-section is directly
linked to the pole structure of the S-matrix. For finding the poles of S(k) one has to do
an analytical continuation into the complex momentum ¢-plane. It can be shown that
S(q) is a meromorphic function and that its poles are either located on the positive
imaginary axis (bound state region) or in the lower half-plane (scattering region) [33].
In the following we are only interested in finding the scattering poles of S(k), and for
that one has to determine the complex zeros of the equation G(k) —ikR = 0. Lets say
the complex momentum gy = ko — iyo (0 > 0) is such a solution.
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Next, we will focus only on a special class of complex zeros, namely on those for which
the real part of gp satisfies the real condition B(ko) = 0. If we now assume that the
complex zero qp is lying very close to the real axis, that means vy < 1, then £(qp) can
be expressed by the first order Taylor expansion around the real point kg

B(q0) = (g0 — ko)B'(ko), with |go — ko| = 70 < 1. (D.82)

In the region k ~ ko where |gop — ko] < 1 one can thus approximate the scattering
function (D.81) by

S(k) = ¢20(0) _ g=2ikok, (k — ko)B'(ko) +ikoR _ oin, k —[ko +7-1m0/5'(ko)]
(k — ko)ﬁ’(ko) — ’ikoR k — [k)o —7- 770/,8,(]90)],

and the imaginary part of the scattering pole gy = ko — i7p can be identified as the
positive quantity vo = no/' (ko) with the condition 9 < 1. When solving for d(k) we
get the very same resonance phase shift function as in (D.71) with the same conditions
and parameters, meaning that only if a scattering pole is sufficiently close to the real
k-axis, the pole turns into a physically observed resonance-effect in the cross-section.

A scattering pole at the point ¢ = k — iy (y > 0) is associated with the complex energy

(D.83)

E = ¢/2m=(1/2m)(k* —v* — 2iky)
= E—i(l/2), with T > 0. (D.84)

Manifest physically meaningless scattering poles are those which are located in the
region of the complex g-plane where the real part E of the complex energy £ is negative,
that means in the region where k < 7.

We now may well ask what is the physical meaning of a complex energy. Doing an
analytic continuation of the Schrodinger equation to complex energies £, the time
dependence of the scattering solution will be

Ue(t) = Tg(0)e ™, (D.85)
which gives a time dependence for the probability density of
[We(t)[? = [We(0)[Pe M, (D.86)

This steady decrease of probability means that the state is continually decaying away
with a lifetime 1/T". This exponential decrease of probability with time is a direct
consequence of our assumption in the previous section of having outgoing waves only.
A pole in the S-function is equivalent to the condition B = 0 in (D.79). When looking
more closely at the outside wavefunction (r > R)

ug(r) = C(q) - e, (D.87)

it certainly represents a pure outgoing wave but with an exponentially growing am-
plitude. This increase is an expression of the fact that the parts of the wave function
farther away from the potential well correspond to emissions at a time when the inten-
sity inside the well was stronger.
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The problem with such waves are, that they cannot be normalized at all. This difficulty
is usually circumvented by saying that the requirement of only outgoing waves does
not correspond precisely to any physically realizable situation [36]. Before the state
can decay by emitting outgoing waves, it must first be formed. During the period
of formation of the state, incoming waves must be present, whereas our requirement
B = 0 excludes incoming waves altogether at all times. However, we can obtain an
approximate physical realization of a decaying state, B = 0, by considering a system
formed a very long time T before we start observation. The wave function wug(r) for
r > R is then a purely outgoing wave for values of r < vT and is zero for r > vT', where
v = k/m is the speed of the particle in the outside region. This new wave function
differs from the wave function of a pure decaying state only for very large values of
r > vT, where it is zero and thus normalizable.

Summary: If a potential with a strict range R allows for a resonance, we have seen that
there are three ways to determine the resonance parameters (kg,yo) within a stationary
scattering picture. All three methods are comparable and give the same results, if and
only if the resonance condition |3'(ko)| > 1 with (ko) ~ 0 is fulfilled. But for a
scattering problem which can not be approached in an analytical sense, the verification
of the resonance condition will be very difficult or sometimes even not possible. The
problem then of establishing the best method to determine the resonance parameters
by fitting is a rather academic one. In practice, at a sharp peak in a cross-section
all three methods give an energy inside the width of the peak. Only for very broad
peaks the methods can give different energies. When this occurs, it is a warning that
the interpretation in terms of a resonance is then not a suitable one. It still is very
difficult to give a precise and general formulation of the scattering problem in the case
of short-lived decaying states.

The remaining part of this section will be devoted to the scattering problem on specific
examples. These are selected in such a way, that they can be treated not only numer-
ically but also analytically. This is necessary for checking the stability of numerics,
as well as having a reliable interpretation of possible resonances. Furthermore, these
examples can be seen as little building blocks for constructing at the end a simplified fi-
nite range potential, having the same basic structures as our model-potential in (Fig3).
The main task is to calculate phase-shifts. For the numerical calculation the T-matrix
relationship (D.40) in momentum space is used (Appendix E), while for the analytical
calculation the corresponding radial Schrodinger equation in coordinate space is solved.
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D.1.3.1 Square-well potential

v(r)

(D.883)

r
Vo for0<r<R Vy>0
V(T‘) 0 orvsrxsini, Vg2V,

0 for r > R.

_V0

According to (D.58) the radial s-wave scattering solution for the above potential is

0<r<R: u(r)=Nsin(Kr) ; K=+vk%>+2mVp
r>R:  ug(r) =Asin(kr +9), (D.89)
where A is given by (D.64). By requiring the continuity of u(r) and its first derivative
at r = R will fix the remaining two parameters
sin[kR + §(k)]

Nk) = Alk) sin(K R)

d(k) = —kR+ arctan (%) +7-n(k), with F(k)=KRcot(KR). (D.90)

When trying to plot the phase shift function §(k) for different depths and widths
of the potential V(r), it is reasonable to combine these parameters and introduce the
following dimensionless scale ( = R+v/2mVj. The phase shift then takes on the following
one parametrical form

d(z) = —x + arctan {%} +m-n(z), Blx)=+22+(2cot/a2+¢2, (D.91)

where x = kR. Then other relevant functions as the scattering function and the relative

probability, which here can be well approximated as the ratio N/A due to a constant
amplitude in the inner region, are also dimensionless one parametrical functions

?(x):_év.ﬁ/(m) N N2(m) ) o2 B(w)-I—ZCE
22+ 642 A%(z) B(z) — iz
(Figl2a) shows the phase-shift function for various values of ¢. All functions are mono-
tonic decreasing and show no rapid structure change over a wide energy range. One
striking effect although is that all functions converge towards a multiple of 7 and for
certain ( they even jump asymptotically about 7. This effect is a pure realization of the
Levinson Theorem (D.55). For example if { = 7 the phase-shift converges towards 27,
meaning that the system must have two bound states. If the scale ( is then increased
to ¢ = 8 the phase-shift jumps by 7, which now can only mean that the scale has a
sufficient size to allow for another bound state. Since the phase-shifts are monotonic,
the number of maxima in the corresponding cross-sections are directly linked to the
number of bound states in that system, which can seen in (Figl2c).

S(k) = (D.92)
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Figure 12: Square-well potential
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(a) The phase-shift function ¢ is plotted
versus = kR for different . From bot-
tom to top the solid lines are showing
¢ = 2,3,4, the long-dashed lines ( = 5,6,7
and the dashed line displays ¢ = 8. All
lines are converging towards mod 7.
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(c) The cross-section o4(z) ~ sin’(z) is
plotted for { = 7. The solid line represents
the analytical calculation, while the single
points were calculated numerically via the
T-matrix in momentum space. For = > 20
the cross-section is steadily decreasing, go-
ing to zero for x — oo.
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(d) The top part of the figure shows the
phase-shift function §(z) for ¢ = 7. The
solid line represents the analytical calcu-
lation, while the single points were calcu-
lated numerically via the T-matrix in mo-
mentum space. The bottom part of the
figure shows the average relative position

probability P(z) for ¢ = 7. The thin verti-
cal lines go through the maxima of P(x).
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When looking more closely at one representative phase-shift in (Figl2d), we see that
for small = the phase-shift starts off as that of a hard-sphere, since its slope is more or
less a constant. Then as x increases up to x ~ 4, we see how the phase-shift changes its
behaviour in the sense that it turns away from the hard-sphere behaviour by gaining
a less steeper slope. And as x grows beyond x ~ 4 it reacts contrary to its previous
behaviour by turning again towards a hard-sphere slope. But as x increases more and
more there is no chance for the phase-shift to restore its structure as to that of a hard
sphere. The phase-shift deviates more and more from a hard-sphere as = grows.

This behaviour can be compared in the bottom part of (Figl2d), where the maxima
P ~ 1, representing a transparent potential, coincide with the region of scattering
which is different than that of a hard-sphere. For large x the square well potential
becomes more and more transparent, since P — 1. This is consistent with the fact,
that for very large incident energy values, where the energy range of the potential is
negligible, the particle behaves as a free particle.

In summary we see in (Figl2d) and even in the cross-section (Figl2c) the subtle in-
terplay between background scattering and resonance scattering. We clearly see the
attempt of forming a resonance out of the background scattering. But the attractive
square-well potential is to weak to produce proper resonances, it can not fulfill the
condition |3'(xp)| > 1 with B(z¢) ~ 0 in order to produce rapid structure changes in
the scattering functions J, o, and P.

This can also be seen if we calculate the poles of scattering function (D.81), for which
we have to solve the complex equation

V22 +cot\/224+ (%2 —iz=0. (D.93)

A very nice and thorough treatment on the general behaviour of the above solutions
z = xy — 1Yo, To,Yo > 0 can be found in the paper [37]. The result is that for all
scales ¢ the imaginary part yp of the solution is always larger than 1. The condition
for observing a proper resonance is that a scattering pole must be sufficiently close to
the real z-axis, but for a square-well scattering pole this is not possible. Up to two
significant digits the first three scattering poles for ( = 7 are

(zo,y0) = (3.38,—1.07); (8.36,—1.32); (12.18,—1.52). (D.94)

The next examples will not be investigated in such detail, since all the above discussed
properties are very similar to those of the square well potential. Important results will
still be the plots of the functions B(x), §(z) and P(x).
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D.1.3.2 Oscillator-well potential

V()
R
~Vo+ smwt? for0<r<R
r V(r) = 0 + 3mwr or 0 <r <R, (D.95)
0 for r > R,
with wR = 1/2Vp/m and Vj > 0.
_V0
The general real scattering solution of the oscillator well is
0<r<R: uk(r):N.Kr.e_%ﬂlFl[%—%;%;mmﬂ]
r>R:  ug(r) = Asin(kr + 6), (D.96)

where A is given by (D.64), K = Vk? + 2ma and 1F} is the Kummer-function or the
confluent hypergeometric function which is regular at the origin [30].

Continuity requirements of ux(r) and its first derivative at » = R, will fix the two
parameters 6 and N. When doing plots, it is also possible to reduce the above functions
down to one parametrical ones with the same dimensionless scale { = Ry/2mV, as
used in the case of the square-well potential. (Figl3) shows a plot of S(x) and the
corresponding functions §(x) and P(z) versus x = kR for the same scale ( = 7 as
in (Figl2). One clearly sees that the structures in (Figl3b) for the oscillator-well are
much weaker than in the square-well potential. Otherwise (Figl2b,d) and (Figl3) are
nearly of similar structure. This also holds for the cross-section which is not plotted
here.
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D.1.3.3 Coulomb-well potential

V()
R
r
- for0<r<R, a>0
V(= { /7 fr0sr<Raz0, (D.97)
0 for r > R.
The general real scattering solution of the Coulomb-well is
0<r<R: u(r)=N- F(—ma/k;kr)
r>R: ug(r) = Asin(kr + 9), (D.98)

where A is given by (D.64) and F' the dimensionless at the origin regular s-wave
Coulomb function [30]. After requiring continuity at » = R, and introducing the
dimensionless scale (. = R-ma the resulting one parametrical functions 3(z), é(z) and
P(x) can be plotted versus * = kR, and are shown in (Figl4) for the scale (., = 7.
What surprises is that the Coulomb singularity at r ~ 0 apparently does not effect the
scattering behaviour to much, since 3(z) which carries all information of the scattering
potential, is nearly alike with that of the square-well potential.
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D.1.3.4 Step-well potential

V(r)
Vo
R Vi for0<r<ry, V4 >0,
r fo=
: — V(r)=<{ Vo forr <r <y, Va2>0, (D.99)
0 for r > ro, ro > 1.
-V,

The general real scattering solution of the step well is divided into two separate energy
regions. The first region is 0 < F < V5 with its corresponding solution

0<r<r;: ug(r) = Nsin(Kir) ; Ki=+Vk>+2mW;
r<r<ry: ug(r) = Befer e Ker . K, = vV —(k? —2ml;) e R

r>ry:  ug(r) = Asin(kr + 9), (D.100)
while the solution of the second region E > V5 is given by

0<r<ri: up(r) = Nsin(Kir) ; Ki=Vk%>+2mW;
r<r<ry: ug(r) = Bsin(Kar) + Ccos(Kar) ; Ko=+VkZ2—2mlh e R
r>ry:  ug(r) = Asin(kr + 6). (D.101)

The step-well scattering problem can be characterized by three dimensionless scales:
the depth scale {1 = Rv/2mVi, the height scale (o = Rv/2mV> and the relative width
scale @ = R/rl > 1. All relevant functions for this problem are plotted in (Figlh)
versus * = kR. First of all, we see that in all figures the step-well potential, under
certain scale configurations is capable of producing resonances, as expected, due to
rapid structure changes over a small region.

Starting with (Figl5a), it shows a representable phase-shift with fixed height and width
scales but for different depth scales. The thin vertical line displays the energy threshold
of the step-well potential. As the depth of the potential increases the more the resonance
moves towards lower energies. At a certain depth the resonance disappears and the
phase-shift jumps asymptotically about w, which according to the Levinson Theorem
can only imply that the resonance switched into a bound-state.

(Figl5b) shows the phase-shift at fixed depth and width but for different heights. The
thin vertical lines show the corresponding energy thresholds. As the height increases
the structure of the resonance becomes sharper until it makes the ideal jump of .
Furthermore, the higher the barrier of the potential the more resonances can prevail.
We see how a second resonance is created as the height scale tends to the value (o = 10.
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Figure 15: Step-well potential
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(Figlhc) shows the phase-shift at fixed depth and height but for different widths. We
start with the top solid line a = 1 which represents the phase-shift for the pure square-
well potential with no barrier. As the width increases from the bottom solid line to
the top dashed line, we clearly see how a resonance is formed from the region above
the energy threshold given by the thin vertical line. During this process the phase-
shift made an asymptotical jump about 7 to zero, implying that the system looses
its last bound-state. As the width increases even more, it will become impossible for
the system to prevail or create a resonance. That the system looses its bound- and
resonance-states for a = R/r; > 1 is reasonable, since the barrier width relative to
the attractive square-well width is so large, that the total potential acts effectively as
a pure repulsive square-well of strength (o with no bound- and resonance-states.
(Figl5d) shows in solid the inner logarithmic derivative 3(z) and in dashed its first
derivative §'(z) for a fixed parameter set. This set is also used for the cross-section
os(z) ~ sin?§(x) in (Figlbe) and for the relative probability function P(z) in the
bottom part of (Figl5f).

Finally we want to determine the dimensionless resonance parameters (xo,yo), where
zo = Rko and yo = Ryo with the set ((1,(2,a) = (4,4,2) as used in (Figlbd,e,f).
Compared to the previous examples we see in (Figlhd) that the resonance condition
|8'(z0)| > 1 with B(zg) ~ 0 is more or less fulfilled at z ~ 2. Thus yy can be
calculated as yo = —zo/8'(z0). Up to two significant digits the resonant parameters
are (zg,yo) = (1.90,0.08).

Although everything is settled we still want to compare these resonance parameters by
those when calculating the exact scattering poles of the scattering function S(z) and
doing a fit in a small region around = ~ 2 to the exact functions given in (Figlhf). The
fits of the phase-shift (D.71) as well as the relative probability function (D.78), are in
the dimensionless formalism 2-parametric functions

d(z) = —zp+ arctan (— Yo ) +7-n(x)
T — X0

— 1 ye
Plz) = — —-—"F—F——. D.102
(@) Yo Y2+ (z — x0)2 ( )

The resulting resonance parameters up to two significant digits are
(z0,y0) = S-pole: (1.93,0.07) ; 6-fit: (1.90,0.08) ; P-fit: (1.93,0.07). (D.103)

These results convince us, that for the parameter set ({1, (2,a) = (4,4, 2) we really have
a resonance-state at x ~ 2 with a width y ~ 0.1.
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D.1.3.5 Step+Coulomb-well potential

v(r)
Va
- for0<r<ry, V1 >0,
ry | V fi <r <rg, Vo >0,
1 2 R r V() = 2 orry <r<rg, Vo> (D.104)
V‘l —a/r forra<r<R, a>0,
0 forr >R, R>ry >1q.
-V

The scattering solution of this potential is the same as in the previous case, except in
ro<r<R: ug(r)=Di-F(k,p)+ Dy G(k,p); k =—ma/k,p=kr, (D.105)

where F' is the regular and G the linear independent irregular s-wave Coulomb wave-
function [32],[30]. In this problem we want to fix the step parameters (Vi,Va,r1,72)
and tune the Coulomb parameters (o, R), in order to study the pure influence of a
Coulomb interaction on possible resonance-states in the step-well. For this we turn
away from the dimensionless formalism of the previous examples and transform the
step parameters (1, (2,a) = (4,4,2) as used in (Figl5d,e,f) into the following physical
example: m = 0.5MeV, V; = Vo = 1MeV and r; = 2/MeV, ro = 4/MeV.

(Figl6) then shows the phase-shift versus the incident scattering momentum k, for
fixed o and different Coulomb ranges R. The range R = 4/MeV, which represents the
pure step-well part, serves as a reference and is displayed at the top of each subfig-
ure. For the corresponding resonance parameters, we get up to two significant digits
(ko,v0) = (0.48,0.02)MeV for R = 4/MeV as already known from the previous exam-
ple. If the Coulomb interaction is now switched on, we get (0.49,0.02)MeV for (Figl6a)
and (0.52,0.03)MeV for (Figl6b). All these results I will leave without comments until
we deal with the problem of full range Coulomb interaction.

Figure 16:
/2 T T T /2 T T T
°\J\/\~ I \p—
-m/2 E -m/2
0.0 1j0 2.0 3j0 4.0 0.0 1j0 2.0 3j0 4.0
k [MeV] k [MeV]
(a) a=1; R/MeV=4,8 (b) @ =2; R/MeV=4,6
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D.1.4 S-wave scattering on potentials with an effective range R

In order to have an illustrative picture of stationary scattering theory and to keep
mathematics as simple as possible, we focused in the previous section on potentials with
a strict range R. Unfortunately such potentials do not exist in nature. In the worst
case, if they can not be used even for modeling, they are rather artificial constructs.
More physical potentials are those of a Yukawa-type

V(r)=-a- , (D.106)

where « is the strength and where Reg ~ 1/u can be seen as the effective range of the
potential. The special case y = 0 gives the Coulomb potential, and is still excluded in
this section, since no effective range can be defined. Otherwise all previous definitions
and results of scattering on potentials with a strict range R can be transferred to
Yukawa-like potentials by working with the approximation R ~ R.g. A more precise
treatment on this is given in [38]. There it is also shown how Reg can be determined
from the low-energy scattering phase-shift, even for potentials different than Yukawa.
For the rest of this section we focus on the following Step+ Yukawa-potential:

V()
Va
ool r - for0<r<r;, V1 >0,
/ V(r)=4q Va forry <r <, V»>0,  (D.107)
—a-e P /r forr >ry,ro >11, 0 > 0.
-V

Up to now there exists no analytical scattering solution for any kind of potential which
contains a Yukawa-potential. So the above scattering problem is accessible only by
numerical means. Since our numerical methods (Appendix E) are constructed for
calculating phase-shifts and not the full scattering wavefunctions, the only way to
calculate possible resonance parameters is to fit the numerical phase-shift function by

d(k) = no + arctan <_k 70k ) + 7 -n(k), (D.108)
— ko

as given in (D.71), but where now 79 has to be seen as an effective background parameter
which can be well approximated by 7n9 ~ —kgReg. The corresponding cross-section is
given as usual os(k) ~ sin® §(k).

For the same reason as in the case of the Step+Coulomb-well (D.1.3.5) we again want
to fix the step parameters (Vi, Va,r1,72) and only tune the Yukawa parameters (a, ).
To have comparable results we take the same step parameters as before: m = 0.5MeV
and V] = V5 = 1MeV, r;1 = 2/MeV, ry = 4/MeV.
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Figure 17: Step+Yukawa potential
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(Figl7a,c) show in the top part of each subfigure the phase-shift and in the bottom
part the cross-section versus the incident scattering momentum k for different Yukawa
parameters (o, ). (Figl7b,d) are the corresponding zoomed figures where the thin lines
show the best fit around the resonance region. The resulting resonance parameters up
to two significant digits are (ko, o) = (0.49,0.02)MeV for (Figl7b) and (0.50, 0.03)MeV
for (Figl7d). The interpretation of these results I also want to postpone until we treat
the problem of full range scattering via a Coulomb potential.

We clearly see that the fit for Reg ~ 12/MeV is rather poor compared to the one of
Reg ~ 6/MeV. This is more or less a fundamental problem and has to do with the
background approximation in (D.71). Its approximation by a constant is only justified
if the background change is sufficiently weak within a resonance region — an important
condition in approximating the phase-shift (D.68) to the 3-parametric function (D.71),
otherwise the parameters 7y and vy must be treated as k-dependent functions. So, the
larger Reg gets, the less is (D.108) suited to fit the phase-shift near a resonance. The
problem of finding a better fitting function is beyond the scope of this section.
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D.2 Coulomb scattering

The problem of having potentials which behave asymptotically as a Coulomb potential,
i.e. which are of infinite range, is that general abstract scattering equations and defi-
nitions, like (D.8) and (D.24), are not well defined expressions anymore [11]. Coulomb
scattering can not be treated in an abstract way. KEvery representation has its own
problems and must be interpreted differently. For example in coordinate space the
problem of scattering by Coulomb-like potentials is theoretically well understood [32],
while the same problem in momentum space still seems to be inaccessible. It may
appear strange that a problem which has a well defined solution in coordinate space
should occasion difficulty in momentum space. The fact is twofold [10], as we will see
in more detail later on. Firstly, the logarithmic singularity in the scattering phase,
which can be treated easily in coordinate space, is far more intractable in momentum
space. Secondly, Coulomb-like wavefunctions in momentum space are ill-defined. Both
prevent a numerical calculation in momentum space.

For the moment we look at the pure Coulomb potential in coordinate space, where the
scattering solution can be calculated analytically [32]. From this we will see that the
asymptotical behaviour of the Coulomb wavefunction is a totally different one than
(D.41) for potentials of finite range. But it is still possible to define a r-independent
phase shift parameter, at the expense that the incident waves can no longer be repre-
sented by pure plane waves, one rather has to work with distorted waves. Since the
Coulomb potential is of infinite range, the particles will always feel scattering even if
they are infinitely far away from the core of the potential — in a Coulomb potential
there is no region where free particles can exists.

D.2.1 Pure Coulomb potential

The pure scattering Coulomb Schrodinger equation with the Hamiltonian H = Hy+V,
Ho = k%/2m and V = —a/r, in coordinate space

(A+EDTL(F) = UE)T(R) 5 Ur)=2mV(r), (D.109)

can be solved analytically in two different ways, either by solving it in spherical co-
ordinates, as usual, or by using parabolic coordinates [32]. The latter one being a
representation which is independent of angular momenta.

Treating the above Schrédinger equation in parabolic coordinates is very useful, since
these coordinates prefer a certain direction in space and thus suits the scattering prob-
lem perfectly. We know that a unique scattering solution only exists if certain boundary
conditions have been implemented before. The most simplest boundary condition is to
put the basis of Hy, that means plane waves, along the infinite negative z-axis, which
then move along the positive direction with momentum k.

When using parabolic coordinates, the general physical axial-symmetric solution is
given by

Ui(r,z) = C(r)-e* F[—ik;1;ik(r—2)] ; k=-ma/k, (D.110)

where 1 F is the at the origin regular confluent hypergeometric function [30]. In the
above solution the sign of « is not fixed. If @ > 0 it is the general physical solution for
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an attractive Coulomb potential, otherwise for a repulsive Coulomb potential. When
calculating cross sections, only the asymptotic behaviour of the wavefunction (D.110)
is relevant. Following the asymptotic behaviour of the hypergeometric function [30]

1F1(asb;2) oo %(—z)_a+%ezza—b, (D.111)
will give
Wi ( = e i[kztrinlk(r—2)]] | e e [kr—rn(2kr)]
k(7 2) i C(k) T ) +fE9) i

: c _ T(1+ik) ke nl(1-cosd)/2 B
with fp(9) = - (1 i) . 0 cosd) i z=rcosd. (D.112)

We see that both the incident and outgoing scattered waves are modified from there
usual form (D.41) by logarithmic phase distortion factors. The overall normalization
constant C' can be fixed such that the incident beam has an amplitude of one. It can
now be shown that when calculating the ratio of the outgoing flux and the flux of the
incident beam, which will give the differential cross section, these r-dependent phase
factors do not contribute. This allows us to identify the coefficient fi of the outgoing
wave as the scattering amplitude with the same relation as given in (D.39).

This gives us the Rutherford formula for the differential elastic scattering cross section

in a Coulomb field

Ii2

T 4kZsint(9/2)

As is well known, the total Coulomb cross section diverges.

do®
5= ‘flg(,g)f (D.113)

Now we try to solve the pure Coulomb problem in spherical coordinates, or equivalently
we try to make a partial wave analysis. Using the same boundary condition as before,
our scattering problem is axial-symmetric and therefore allows the following expansion
in Legendre polynomials

Uy(r,9) = Zalyk#Pl(cosﬂ), (D.114)
=0

where the wave function v, satisfies the radial Schrodinger equation with the general
solution [32]

upp(r) = Ay pe P L+ 1tk 20+ 25 —2ip] = BpF(k, p), (D.115)

where F(k, p) is the regular Coulomb wave function [32],(30] and x = —ma/k, p = kr.
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Using again (D.111), the asymptotic radial wave function reads
(20 + 2)e/2

LETOIT (1 + 1+ in))|

= le,k -sin(p — In/2 + 01, — k1n2p), (D.116)

u () -sin(p — In/2 + 01, — kIn2p)

where 0y, = argl'(l+1+ik) is the pure Coulomb phase-shift. Fixing the normalization

constant as A;; = ei+ and using the identity (D.45), the full wave function will have
the following asymptotic structure

> sin(kr —In/2 — k1n2kr
Uy(r,9) = Zal,k ( /r )Pl(cosﬁ)
1=0
s etlkr—rIn2kr]
+ | (=) aik sin oy g Pi(cos V) —— (b7
=0

The above expression must be equal to (D.112). Furthermore, they must also coincide
when the Coulomb potential is absent, that means if « = k = 0. When fixing the
normalization constant C' such that the incident wave has an amplitude of one, the
coefficients a;, can be identified as a;p = i'(21 4 1)/k, which are independent of a.
Thus the identification is also valid for o # 0 and makes it possible to identify the
Coulomb scattering amplitude as follows
1 ;
fx@) = Z Z(2l + 1)e'?b* sin 0y . Py(cos 9). (D.118)
1=0

All the information of a Coulomb scattering process is also hidden here in an asymptotic
phase-shift parameter o7 ;. Although we can now calculate cross sections in the same
manner as before by adjusting the scattering boundary condition in the above way from
plane waves to distorted waves, it is, as already stated in the beginning of this section,
not possible to construct an abstract relationship between the scattering amplitude and
the T-matrix as in (D.40). Rakishly speaking it is not clear how to adjust the boundary
condition in an abstract space, in order to have well-defined scattering objects. In
the next section it will be shown how at least under certain conditions, the abstract
formalism in Coulomb scattering can be maintained.

But before going there, we quickly want to look again at the s-wave Coulomb-well
solution (D.98) in the limit R — oo. Since the asymptotical regular s-wave Coulomb
function is given by [32],[30]

F(r,p) e sin(p + o — k1n2p), (D.119)

the correct asymptotical behaviour of (D.98) in the limit R — oo can only be achieved if
(D.98) coincides with (D.116), i.e. if the continuity requirements at » = R are organized
such that it fixes the parameters as follows: N = A = ¢’ and § = 0 — kIn2kR, where
o = argl'(1 4 ik) is the partial s-wave Coulomb phase shift. We clearly see that its
numerically impossible to calculate the Coulomb-well phase-shift § in the limit R — oo
within the scattering boundary condition of incident plane waves.

115



D. Potential Scattering

D.2.2 Coulomb-like potentials

This section wants to show a possible way, how the problem of Coulomb scattering in
momentum space can be attacked, at least in a numerical sense. At the end, only a
solution for repulsive Coulomb-like potentials is given. The basic ideas of this section
are taken from [10].

Lets say our Hamiltonian is given as follows: H = K 4+ V', where K is the kinetic part,
or free Hamiltonian and V is an arbitrary spherical symmetric Coulomb-like potential.
When adding and subtracting the pure Coulomb potential, our Hamiltonian can be
written as

H=FK+V = K+V+V-V° = H;+V*, (D.120)

where V? is now a short ranged potential and H§ is the Coulomb reference system, for
which the eigenvalue problem H{|x¢) = Ej|x°) is already known.

The first guess how to solve the corresponding scattering problem would be to write
down the Lippmann-Schwinger equation as in (D.8). Although the potential V* is of
finite range, one has to be careful when working with this abstract equation, since the
Coulomb Greens-function G of the reference system is not a well defined operator
in this abstract notation. For example if one chooses momentum representation, the
eigenfunctions (k|x°) of G§, which must be Fourier transforms of the coordinate space
Coulomb functions (7]x¢), do not exist in a functional sense [10].

Since our numerical calculations are done in momentum space and since we have some
analytical information in coordinate space, it is essential to work out a way, such that
Coulomb scattering can be treated in a formal manner. The easiest possible way would
be to construct a reference Hamiltonian of finite range, either by introducing a Coulomb
shielding parameter, or by cutting the Coulomb potential at some distance. By intro-
ducing these cut-off parameters, everything is of finite range and therefore well-defined.
Thus the scattering problem can be solved as usual. But when restoring the original
problem by letting the cut-offs go into their corresponding limits, we run again into
problems. On the one hand, this restoring is numerically very inefficient, in the worst
case even numerically unstable. On the other hand, if it is possible to work analyti-
cally, this limiting process can sometimes not be accomplished, or leads to the same
ill-defined expressions as before. So this procedure alone is not necessarily successful,
but together with the following 2- potentlal formula we are in a better situation [10].
As a regularized reference Hamiltonian Ho K + V° we will choose V¢ to be the
Coulomb-well potential, with the finite range of 0 < r < R. The full Hamiltonian
H = K + V¢ + V* is then also of finite range and we can write down the well defined
formal outgoing Lippmann-Schwinger equation in two equivalent ways

AC S 1 —_ 1
[P + Go- (VE+V?) - W) with Go =m0
I o { (D.121)
Y+ GE-VE | wit = =
Xl o : T E—Hg+ic

where |p;) are the eigenfunctions of K = k2/2m and |§<\%> the eigenfunctions of the

Coulomb-well Hamiltonian H, G-
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The 2-potential formula can be derived very easily, if one changes to the equivalent
T-operator equation

T = (Ve V) +(Ve+V)-Gy-T. (D.122)
This equation can be rewritten as
T = (1-V°-Go) '\(Ve+V* +V*-Gy-T). (D.123)

When writing down the T-operator equation for the single potential Ve
T = VeqVe.-Go T, (D.124)
and studying the expression
(1-V Go) (14T Go) = 1+ (T°—V =V Gy-T)-Go = 1, (D.125)
then (D.123) is equivalent to
T = (14+T°-Go)(VE+VE+V*.Gy-T)
= T4 (1+T°-Go)-VP-(1+Gy-T). (D.126)

If two operators are multiplied to give unity, then the order of multiplication is irrele-
vant. Thus (D.125) gives the identity V- Gy - T =T - Gy - V¢, and (D.126) can be
written as

T = Te4Te- (Vo) L.ve. (Ve ve) 1. T (D.127)
Using the definition (D.24), the above equation takes the final form
(pplTler) = (eplTlep) + (REIVETE) 5 K =k (D.128)
or equivalently in the form of (D.40)
file9) = File,0) —amm*(Rg Vo [¥g) 5 K =k (D.129)

where f; is the scattering amplitude of the full problem, while fg is the scattering
amplitude of the Coulomb-well.

The above formula is the celebrated 2-potential formula. Although the full Hamiltonian
is additive in V¢ and V¢, the full scattering amplitude f; is not simply the sum of the
scattering amplitude due to V¢ in the absence of V* and the scattering amplitude due
to V¢ in the absence of V¢ but, instead, involves the scattering amplitude due to V? in
the presence of Ve,

The problem of calculating the full scattering amplitude is reduced to the determination
of the matrix element (x°|V*|¥). We know that the eigenfunctions of the Coulomb-
well Hamiltonian flg form a complete set. For numerical calculations it is now essential
if the pure Coulomb-well potential Ve is attractive or repulsive. The completeness
relation of an attractive Coulomb potential is nasty due to its additional bound state
part and therefore makes it impossible to work with it numerically.

Z|5<\%> (X7l + /d3k|)?%> Xzl if Ve is attractive,
D (D.130)
/d3k|>/(\c,;> <>/(\CE| if V¢ is repulsive.
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For a repulsive Coulomb potential it is easy to evaluate the above matrix element. In-
serting the second form of the Lippmann-Schwinger equation (D.121) and sandwiching
the relevant completeness relation between Gf will give

XplVolg) = (@lVeIxR)

3 1.1 1~C S| AC s . I _
+/dk (%, IV2IR5) RV 5 K =k

E — Eg + 1€
(D.131)

The structures of (D.129) and (D.131) allow us now to take the limit R — oo from the
pure Coulomb-well to full Coulomb potential in an analytical way. If the limit is taken
in coordinate space as in (D.119), it is a well defined procedure, since we know how the
wavefunction and the scattering amplitude for a pure Coulomb potential are defined in
coordinate space. For the axial symmetric boundary condition, they are

% 10, kr
(71X%) = (r,9|x%) = lz_:zl (21 4 1)e*71k (k )Pl(cosﬁ)

8

(21 + 1)e't* sin oy 1, Py(cos ¥), (D.132)
=0

=
—~
SN—
Il
=3
—~
SN—r
e

where 07, = argl'(l + 1 + ix) is the Coulomb phase shift and k = —ma/k the charge
parameter. Consequently in the coordinate space limit the hat-symbol in (D.129) and
(D.131) may be removed, and the final solution for the full scattering amplitude of a
Coulomb-like potential V' with the short range part V=V — V¢ is

filp9) = file,9)+ (xplVoITp) 5 K =k (D.133)

If V¢ is local and if the pure Coulomb potential V¢ is repulsive, then the matrix element
VI =[SOV

S
s [@n [t VE”+ X6 (7) - (X5 V9] Zy),  (D.134)
is of an form that is numerically easy accessible. Even if V* is non-local, the numerical
evaluation of this self consistent equation works as usual (Appendix E), except that
now Coulomb basis functions has to be used instead of plane waves as in former calcu-
lations. This integration is numerically stable because the coordinate space Coulomb
wavefunctions are well defined and the relevant potential V* is short ranged. If V¥ is
known initially in momentum space, the above prescription for calculating the matrix
element involves another step, that is we must first find V*® in coordinate space by
Fourier-transforming V*® from momentum space into coordinate space. Those Fourier
transforms do exist because of the finite range of V°.

This completes the proof. It shows that a considerable amount of numerical effort is
necessary in order to treat Coulomb scattering in momentum space properly. To note
again, this overall procedure only holds for repulsive Coulomb-like potentials, which do
not have a discrete spectrum.
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D.2.3 Step-well plus attractive Coulomb potential

In the previous section we have seen that attractive Coulomb-like potentials are still
numerically inaccessible. But since we are confronted with this problem in our ST-
model and no numerical techniques are at hand, we have to work analytically. For this,
the ST-potential as in (Fig3) is broken down to the following over-simplified potential:

v(r)
Vs
- for0<r<ry, V1 >0,
r r.
— : V(ir)=% Vo forr <r<r, Vo >0, (D.135)
/
—a/r forr >ry, re>1r1, a >0,
-V, —

The general real s-wave scattering solution of the above potential is the same as given
in (D.100) and (D.101), except in the region r > 73 where now the free solution has to
be exchanged by the general Coulomb wavefunctions

r>ry:  ug(r)=D1-F(k,p)+D2-G(k,p) ; k=-ma/k, p==Fkr, (D.136)
with their asymptotic behaviour [32]
F(k,p) = sin(p+o0—kln2p)

G(k,p) = cos(p+ o0 — kln2p), (D.137)

where o = argl'(1 +ik) is the s-wave Coulomb phase shift. To calculate the phase shift
d of the full problem, we will rewrite the asymptotic wavefunction (D.136) as follows

ug(r) = sin(p — kln2p) - [D1 coso — Dasin o]

+cos(p — kIn2p) - [Dysino + Dacoso]. (D.138)

If we now put X := Djcoso — Dysino and Y := Dysino + Dy coso, then because of
X2 +Y?% = D? + D3, the parameters X and Y can be represented as

X = y/D}+ D3cosé = 1/D?+ D3cos(o +7)

Y = y/D3}+ D3siné = (/D? + D3sin(o + ), (D.139)

with tany = Dy/D;. Then (D.138) takes the form

ug(r) S \/D? + D3 -sin(p + § — k1n 2p). (D.140)
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This confirms, according to (D.116) that ¢ is the full phase shift function that com-
pletely characterizes this s-wave scattering problem. Consequently the scattering am-
plitude and the cross-section for the s-wave component are given by

FB) = 7 @ sina(h) ; |f(R)P ~ sin? 5(R)

with (k) = o(k) + arctan(D2/D1) + 7 - n(k). (D.141)

This phase-shift reminds us strongly at the one given in (D.68). We can draw the
following analog, and see o(k), since it carries only the information of the pure Coulomb
potential as the background phase-shift, while the last term carrying all the information
of the complete potential can be seen as the actual potential scattering term which give
rise to possible resonances. The decisive difference between the background o (k) and
the background n(k) in (D.68) is that the latter is changing constantly over the whole
momentum range k, while the behaviour of o(k) can be divided into two separate
regions: strong oscillations for sufficiently small momenta while relatively slow changes
and a convergence towards zero for sufficiently large momenta. So, only if a resonance
(ko,vp) is embedded into region of a slow varying background o(k), it is justified to
approximate the complete phase-shift §(k) similar as in (D.71), by

)
k—ko

Otherwise the parameters g and vy must be treated as k-dependent functions within
a small region around the resonance point kg.

To study this problem, we will take up the same physical step-parameters as in sections
(D.1.3.4/5) and (D.1.4), where the results still need to be interpreted. Then (Figl8a,c)
show the cross-section versus the incident scattering momentum k for different Coulomb
strenghts «. For this parameter set we see that up to @ < 1 the resonance at k ~ 0.5
lies well outside the rapid changing background region, for & = 0.5 even better than
for o = 1. This allows us to fit the resonance by the 3-parametric function (D.142).
(Fig 18b,d) are the corresponding zoomed graphs where the thin lines show again the
best fit around the resonance region. As expected, the fit for a = 0.5 is better than
that for the stronger a = 1. The resulting resonance parameters up to two significant
digits are the same (ko,1p) = (0.49,0.02)MeV for both (Figl8b,d). These values are
identical with those for a pure step-potential, where o = 0 as in section (D.1.3.4).
This is a surprising effect, since it tells us that for a fixed step potential the Coulomb
potential can be switched on or off, in both cases we get the same resonance — the
global structure of the cross-section is certainly a complete different one in each case.
Now, one has to be very careful to conclude such a behaviour for all Coulomb strengths
a, since we have only shown it for « < 1. For stronger « the background scattering gets
predominant and our technique for calculating the resonance width vy via (D.142) fails.
On the other hand the parameter kg is certainly independent of background scattering,
which explicitly can be seen in (Figl8e), where only the pure resonant term in the
cross-section ~sin? v(k) with (k) = arctan(Dy/Dy) is plotted for various strenghts o,
all giving the same result ky ~ 0.5 over a wide range. The solid line displays a = 1,
the long-dashed o = 5 while the dashed line shows a = 25.

5(k) = oo + arctan (- ) + (k). (D.142)
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D. Potential Scattering

Is it maybe true that background scattering behaves in such a complicated way that it
leaves the width vy, and therefore the complete resonance state (ko,vp) invariant, but
can not be detected by the methods we use up to now? For moderate backgrounds
this is true as I have shown in a numerical sense not only for the pure full range
Coulomb potential but also when using instead of it a Coulomb-well (D.1.3.5) or a
Yukawa potential (D.1.4). All of them yield the same resonance whether the potential
is rescaled or even turned on or off.

If its possible to prove this effect in general, there would be immediately a reasonable
explanation at hand: since all potentials which have no overshoot into the positive
energy region show no resonance structure, they will also show no influence on possible
resonance states. This statement would be extremely helpful, when we have to deal
with more general attractive Coulomb-like potentials. If we only look at the resonant
part in a s-wave cross-section, its irrelevant whether we work in the asymptotic region
with the full attractive Coulomb potential or with any other short-range potential,
having only contributions in the negative energy region. All of them give the same
resonance values (ko,p).

Certainly a clear-cut proof of this general statement still needs to be worked out. But
anyhow, for moderate Coulomb strenghts «, I have shown that this statement can
be verified. After all this implies an important result for this section, namely that
this technique offers an easy implementation in momentum space, since asymptotical
Coulomb shielding in coordinate space can be easily transferred to momentum space
and vice versa. This technique is certainly only to be seen as a first step towards solving
the full problem of Coulomb scattering in momentum space.
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E. Numerics in Momentum Space

E Numerics in Momentum Space

The theory and equations of quantum mechanics are represented equally well in co-
ordinate and momentum space. Bound state problems, which by definition deal with
normalizable wavefunctions, can actually be solved without any conceptual problems
in either space, while scattering problems, which deal with non-normalizable states,
are more of a challenge in momentum space. This challenge arises, as we have seen
in (Appendix D), in part, because boundary conditions are more naturally imposed in
coordinate space, and in part, because non-normalizable states in general cannot be
Fourier transformed.

In spite of these difficulties, there is a considerable interest in momentum space meth-
ods. First of all momentum space offers a more natural description of many-body and
field theories. Dealing with nonlocal potentials or the extension to relativistic equations
can be handled more easily in momentum space than in coordinate space.

In coordinate space the equations of motion are mostly differential equations, while in
momentum space they are mostly integral equations. These integral equations can be
represented as matrix equations, where the problem of solving the equation is either
reduced to a diagonalization (bound state problem) or to the determination of an in-
verse matrix (scattering problem). In both cases one has to be careful of the so called
fundamental singularities in momentum space. In the bound state region for example,
the Coulomb potential is showing a ¢ (single-pole) and the linear potential even a ¢*
(double-pole) singularity. We will show that the Coulomb singularity can be completely
controlled by using the numerical technique of counter terms, while the linear singu-
larity can only be reduced to a single-pole singularity. The scattering region will not
suffer from these singularities if the potentials are restricted to have a finite range, but
rather shows its fundamental singularity only once in the free-particle Greens function,
which also can be controlled by a numerical counter term.

For showing the basic structures of a numerical code in momentum space, it is sufficient
to restrict ourselves to the simplest case, namely working non-relativistic and with local
spherical symmetric potentials.

E.1 Bound state domain

To treat as a many potentials simultaneously, we will study the following compact
potential focusing on three parameter sets

Yukawa potential if n=—1, u >0,
V(r)=—apn - e " =< Coulomb potential if n=—1, u =0, (E.1)
Linear potential ifn=1,u=0.
The advantage of introducing an exponential function or screening function for the
Coulomb and Linear potential is twofold. First of all it serves as a converging factor

in the relevant Fourier transformations and secondly it makes it possible to treat the
fundamental singularities of the Coulomb and Linear potential in the very same way.
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E. Numerics in Momentum Space

The Schrodinger equation in coordinate space is given as

) + V() = (). (B2)

By Fourier transforming the coordinate wavefunctions, we get the Schrodinger equation
in momentum space

p2
To@)+ [E9V@sF) = Eo(p), (53

with the same eigenvalues E as in coordinate space and ¢ = p— p’. The momentum
space potential V(g) is the Fourier transform of the coordinate space potential (E.1)

V(@) = (271T)3 Jareinviry
= (—pn.2n ot { ! 2] = i-D"“[ 21 2]. (EA4)

272 Ountl | p2 +q 2 M | p+g

This representation gives well defined momentum space potentials for the three param-
eter sets given in (E.1). If T rakishly speak of putting u = 0, we have to understand
the following process: first the derivatives after which the limit g — 0 has to be taken.
We see that V() = V(|q]), and because |q] = p? +p'? —2pp’ cos §, the momentum space
potential can therefore only depend on the magnitudes p, p’ and the relative angle 0
between the momentum vectors p'and p’. This allows us to expand the potential into
the complete set of Legendre polynomials

Vig) =V(p,p,0) = Z 2l4—7t 1Vl(p,p')Pl(cos 6). (E.5)
1=0

The expansion coefficients can be determined by integrating over the above equation
by weighting the integral with a Legendre polynomial in the range of cosf € [—1,1].
Using then the orthogonality relation of Legendre polynomials will give

Vi(p,p) = 27r/_1V(q)Pl(cosﬁ)dcose. (E.6)

With the potential (E.4) the above integral is not one of the easiest to calculate. Now
that we have decomposed the potential into its partial waves, the corresponding l-wave
Schrédinger equation should be found. For this we expand the momentum wavefunc-
tions into the complete set of spherical harmonics

(17) ¢p’<)05 Z Z ¢lm }/lm 90’ )

=0 m=-1
¢(ﬁl) p 30 19, Z Z ¢lm YYIm 90 19,) (E7)
=0 m=—1
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E. Numerics in Momentum Space

Inserting (E.5) and (E.7) into the Schrédinger equation (E.3) and using the identity

47

l
Pcost) = 5= > Yim(p,)YVi(¢,9), (E.8)

m=—

and keeping the orthogonality and completeness relations of the spherical harmonics in
mind, will finally give the one dimensional radial Schrodinger equation in momentum
space

p2 [
o)+ | PV )nrl) = Bont), (E9)

which is now subject to numerical investigations. Since we restricted ourselves to
spherical symmetric potentials, the wavefunctions will show no dependence on the
quantum number m.

For solving the eigenvalue equation (E.9) numerically, we need to know the l-wave
component of the momentum space potential (E.6). This integral can be calculated
numerically — the only problem is to have possible fundamental singularities at the
end-points of the integrand. When using Gaussian integration methods these points
are never reached within a discrete space, but at the expense of having extremely bad
convergences. Anyhow our special potential (E.4) allows for an analytical treatment
of this integral, which offers a lot of insight into these fundamental momentum space
singularities. Since the Rodrigues formula, which writes all Legendre polynomials into
one compact notation, can also be written as

1 l
A = g @ = 0= 5 (1) (1) - v (B.10)

the integral (E.6) is of the form

l 1 k

LI\ [l+Ek a1 (z—1)

Vilp,p') = §,2_k<k>< L >-Du+/1da:7a2_b2'x, (E.11)
k=0 B

where the constants in the integrand are given by a? = p? + p? + p'? and b = 2pp’.
Doing the following manipulation in the integrand

(z-1~ (z - 1" _ 1[ y* (z - 1)F —y*
(

a2—0-z  -(z—-1)—-(2-0) lz-1)—y (x—1)—y

(E.12)

where y = a?/b? — 1, the first term can be integrated easily and the second term has
no contribution for k£ = 0, so (E.11) can be written as

/ L nt1 2 2y, @0 — b
Vilp,p) = _b_2D“ Pi(a /b)lnm
1 ! i(l)<l+k)-D”+1/1da;(x_1)k_yk
b2k:12’C k k FoJy (=1 —y
]' / /
= —b—2[Iz(p,p)+Rz(p,p)]- (E.13)
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E. Numerics in Momentum Space

In the last form we can clearly see that when p = p’ in the limit © — 0, i.e. a = b
and y = 0, this special potential consists of two parts. The first term I; is the irregular
term, which will give singularities due to a logarithmic behaviour of the integral. This
holds for all angular momenta, since P;(1) = 1. The second term R; is the regular term,
since the integral gives well defined (z — 1)-polynomials with coefficients proportional
to y, which can be calculated explicitly by doing a polynomial division.

Before implementing the radial Schrodinger equation (E.9) numerically, we have to
treat the singularity of Ij, i.e. we need to control the logarithmic singularity and its
derivatives at p = p’ in the limit g — 0. The procedure which now follows is called the
Nystrom method. Its main task is to convert the integral equation into an equivalent
one which cancels the singularity through a subtraction. The first step is to think about
which power in the integration variable p’ makes the integral over the logarithmic part
convergent. A possible candidate is for example

[eS) 2 ! 2
/ dp'ilnw — or-arctanl = —n? (E.14)
o P W+ +p)? pops0t

In comparison with other possible integrals, the above integral is privileged, since it
has the big advantage of being independent of any further parameters. To note is that
for higher powers in 1/p’ the integral is divergent because the singularity at the origin
p' = 0 becomes to strong. Putting this relation as a zero into the singular part I; of
(E.13), the Schrédinger equation (E.9) can be written as

En(p) = %qsl(p)wpqsl(p)-Dﬁ*l[mc?)-arctan%} - [Tay D) g )

0 2pp’

1 n+1 dp w’+(p' —p)? 232\ 12 4 () 2y .2
O G R 26~ R P
(E.15)

where ¢? = 1+ u2/4p?. To note again, for parameter values p # 0 it is not necessary to
include these numerical counter terms, since all integrands in the above equation are
well defined for all p and p’. They are only relevant in the limiting process p — 0.
With this new form (E.15), it seems that when p = p/, i.e. a?/b? = c?, the integrand of
the logarithmic singular part I; is identically zero irrespective of the value u, even in
the limit 4 — 0, and therefore not contributing to the integral. For p # 0 this certainly
is true, but for p — 0 its only true for the Coulomb potential, while for the Linear
potential this argumentation is no longer valid. To see this, we will discuss for the sake
of simplicity only the s-wave equation — for higher l-waves the arguments are identical.
For the Coulomb potential, where no derivatives need to be taken, the relevant part of
the singular integrand in the limit © — 0 can be written as

/ 2 / 2 12 2
e R I e e T
(¥’ +p) ¥ +p) p?—p
where F' is proportional to the wavefunction ¢. In this case we clearly see how the
above integrand in the limit p’ — p goes to zero, since the term in the square bracket
is proportional to the derivative of the wavefunction, which must be a well defined
expression for all momenta.

In
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E. Numerics in Momentum Space

However, for the Linear potential, where second order derivatives must be taken, the
same integrand in the limit y — 0 has the structure

1 2 2 _ 1 F(p?) — F(p*)
@ETFFF@)_F@ﬂ _zﬂ—ﬁ[ e y (E.17)

which makes it impossible to take the limit p’ — p. Therefore the p’ = p term can not
be neglected, it will give a contribution which is proportional to the derivative of the
function F' ~ ¢. To calculate this contribution, we have to know the wavefunction ¢, but
our original aim was to solve for ¢. Thus for the Linear potential the subtraction method
(E.15) does not work. The subtraction zero is to weak for the double-pole singularity of
the Linear potential — even after the subtraction a single-pole singularity is still left. It
is not wrong to start implementing the Linear potential for u # 0, where the p’ = p term
certainly is a zero contribution, and then taking the limit x4 — 0 numerically, but the
result is an extremely slow converging code and therefore numerically inefficient. For
a proper numerical calculation of the Linear potential in momentum space, we have to
seek for alternative ways than the Nystrom method. In this sense we continue treating
the Linear potential with the Nystrom method, but we will see it as an approximation.

Every integral equation of the type

M) = Gla)f(z)+ /dx'K(ac,:c')f(:c'), (E.18)

when embedding into a discrete space z,x’ — x;,x;, with ¢, j = 1...N, can be approxi-
mated by a matrix equation

N N
Afi = Z |:5ijGj +A33jKij:|fj = ZAijfj = A-f=), (E.19)
=1 i=1

which now represents a finite dimensional eigenvalue problem.

As a discretization process for equation (E.15) we will choose the Gaussian integration
method via Legendre polynomials. As an intermediate step the infinite interval [0, o]
must be mapped into the Legendre interval of [—1,1]. There are several mapping
functions, each of which will give a different distribution of the integration points. The
most commonly used are

1-xz/2

—1_ —z/z . —_ =
yl(x) 1 2e ) y2(x) 1+.’I)/2’ )

y3(x) = %arctan(a:/z) -1, (E.20)
where the parameter z is used as numerical stability factor within a special mapping
function, i.e. it can be chosen in such a way until the distribution of the integration
points perfectly suits the problem. Whereas if one wants to work with a fixed z ~ 1,
the mapping function ys3 is a good choice. Its distribution of integration points has a
wide range, being dense in the inner region and more sparse in the asymptotic region.
This makes it ideal even for integrands with a relatively slow asymptotic fall-off.
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E. Numerics in Momentum Space

Writing (E.15) in a discretized form, and keeping in mind that neglecting the p = p/
term in the singular part I; is exact for the Coulomb while approximative for the Linear
potential, will give

Wy 2,5
Ry(pi, pj)p;d
pipj ( (3] ]) 771

2 N
. 2 . : 1
Bgj = ol + gl DiF|Fi(ed) arctan ] - o ;

N
1 w;j u2+(pi— i)? j ;
Lo 1y [Pa ) - 5207 - PueD) - P

© o, ’LJ %1 I\C; ) "DP; Py
2 =1, £ DiPj /J’ + (pz +p])

(E.21)

where w; and p; are the already transformed weights and abscissas of the Gauss-
Legendre integration in the ordered interval [—1,1]. Since our numerical diagonal-
ization code can only treat symmetrical matrices, it is important to have symmetrical
off-diagonal matrix elements. Although Rl , a;; and b;; are symmetrical in 4 <> j, the
above matrix equation still needs to be symmetrized in the off-diagonal terms, due of
not having symmetrical Weightings If multiplying the whole equation with /w; - p;,
and defining new eigenvectors u; = \/w; - p; - gbl, as well as using the notation of (E.19),

the diagonal and symmetric off-diagonal matrix elements are given as

p n Di Wi
Ai = o5 DY [Pl(c?)-arctan; — S Ri(pi, i)

2 )2
Dn+1 Z o, szl ) In u2+(pz pg)2
©? + (pi + pj)

J=1#4
1 w2+ (pi —p))’°
= - R .. n+1 2 /12 »oTm P T Py)
A = —2,/wle [Rl(pl,pj) + Dy, Pl(aij/bij)ln 4 (i 4 1)) (E.22)

For calculating the matrix elements for small y or even for y — 0 it is helpful to make
use of the following behaviour of the Legendre polynomials up to first order, which can
be derived from (E.10)

2
P(c2) = P(1+p2/2p?) = 1+1(1+ 1)L E.23
() = PO+ i 00) = 10+ 1) 1 (B.23)
For calculating the explicit matrix elements for the Yukawa, Coulomb and Linear poten-
tial, we have to proceed as given in (E.1). Being reasonable only the s-wave components,
i.e. with no contributions of the regular term R; will be determined explicitly for all
three potentials.
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E. Numerics in Momentum Space

The simplest one is certainly the Yukawa potential for which no numerical counter
terms and no derivatives need to be taken. The s-wave matrix elements are

2
Y p;

2 2
a p” + (pi — pj)
AY, = —Y,/ww'ln—J. E.24
Y 2r VU + (pi + 1)) (24

The s-wave Coulomb matrix elements are exactly given as

p; acw pi, (pi—pi)?
* 2m J 127;?52 7 pj (pt +pJ)
(67%9] (pi —p')
AS = —< Jww;ln I E.25
1) 21 ] (pi +pj)2 ( )

Finally the s-wave Linear matrix elements, with «;, < 0 have the Nystrom approxima-
tion of

N
P o pi_ 8pip;

AL~ — W) —
. _ 2
2m 2w 4= ;v —p))
o} 8pip;
AL~ R it (E.26)
o 2wV - )

E.2 Scattering domain

A scattering problem is regarded as solved if the phase shift and the corresponding
scattering wavefunction have been determined. This section will not investigate the
wavefunction itself, but will rather work out a numerical method for calculating scat-
tering phases, which are directly linked to cross sections. The basic ideas given here are
based on the original paper of Haftel & Tabakin on Nucleon-Nucleon potentials [39]. If
we only focus on potentials V' which have a finite range in coordinate space, then the
T-operator equation (D.27) is a well defined equation in momentum space. If Gy is the
kinetic Greens function, which is diagonal in the momentum eigenstates, the outgoing
T-matrix equation turns into the following integral equation

1

T|k E.27
E —Kk"/2m + ie k), (B-27)

(K'|TIk) = <’5’|V|’5>+/d3k”<13'lV|E”><’5”l

where E = k2/2m and (K'|V|k) is the momentum space potential, which is also given
as a Fourier transformation of the coordinate space potential

(K|VIE) = V(K — k) = V(g = (271T)3 /df”reiq‘?-V(r). (E.28)
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According to the partial wave analysis of (K'|T|k) in (D.34) and of (¥'|V|k) in (E.5), and
when using the identity (E.8) as well as the orthogonality and completeness relations
of the spherical harmonics, the integration over the angles will give for every angular
momentum [ the one dimensional integral equation

*° 1
j—vl(kl’k) — ‘/I(kl, k) +/ dkllkll2‘/l(kl k”)

Ti(k", k E.29
0 ’ E—k”2/2m—|—ie l( ) )a ( )

where a redefinition of 7; has been performed: —Tj(k', k)/mmk — T;(k', k). Thus the
diagonal element of 7; is given as
1 .
Ty(k, k) = ————€® sin g (). E.30
1k, k) = = — e sin (k) (E-30)
In order to calculate the phase shift function we need to know the diagonal element
of equation (E.29). Since the momentum space potentials are well defined, the only
numerical difficulty that we will encounter is the singularity of the Greens function.
But before dealing with this singularity, we notice that the slight imaginary shift will
force (E.29) into a complex equation. But using the following relation helps to separate
real and imaginary parts:

which follows from the residue theorem and some contour distortions, if f can be
continued analytically into a complex half-plane, is everywhere regular and vanishes
asymptotically in that half-plane. The symbol P stands for the Cauchy principal-value
prescription. Making a change of variables will give the equivalent relation

“  pw) _F(e)
/0 d$62_$2+26 = 73/ _$2 —ir— (E.32)

This allows us now to define a real R-matrix, which satisfies the relation

Ri(K k) = V(K k)+P / dk"E"V (K k") Ri(K" k). (E.33)
0

E—k"/2m

A short calculation shows that the complex T-matrix can be determined from the real
R-matrix as

Ry(K' k)

Ty(K k) = .
Lk k) 1+ inmkRy(K', k)

(E.34)

Thus the scattering phase can now be determined directly from the diagonal elements
of the R-matrix

&i(k) = —arctan [rmkRy(k, k)] + 7 - n(k). (E.35)

To solve (E.33) numerically we have to do a numerical principal value limit, which is
impossible to take in a stable way due to the limited precision of computers.
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A better prescription for computers follows by introducing again a numerical counter
term, which has its origin in the definition of P itself

P/ dz :0<:>73/
C—X 0

Adding this zero to (E.33) the singularity can be removed explicitly

(E.36)

R(K k) = Vi(k',k)+ / dk”m[k”w(k’ K" Ry(K", k)—k2Vl(k:’,k)Rl(k,k)].
0
(E.37)

Important to note, is that the k = k" term in the above integrand gives a contribution,
which is proportional to derivative of the function in the square bracket, and thus can
not be neglected. The integral equation is now ready to be calculated numerically
by using finite dimensional matrix methods. As a discretization process we will again
choose the Gaussian integration method via Legendre polynomials

Ri(K k) = Vi(K.,k +an [kQV,(k’ k) Ry (K, k) —kQV,(k',k)R,(k,k)],
(E.38)

where w, and k, are the already transformed weights and abscissas of the Gauss-
Legendre integration in the ordered interval [—1, 1]. The above equation represents one
linear equation with N+1 unknowns: Rj(kn,k) for n = 1...N, and R;(k, k).

To get a workable equation, we continue the discretization process by turning this one
equation into N+l simultaneously linear equations by evaluating it for N+1 momentum
values on a grid consisting of the observable and integration points

. {quadrature points k; for i = 1...IN (F.39)

observable point k for i = N+1.

The momentum variable k, which fixes the energy of the scattering system, is not
discretized, since it serves as an observable parameter and must be given from the
outset. This fact allows us now to circumvent the unknown but finite contribution of
the singularity, since the continuous k£ can always be chosen such that k # k,.

There are now N+1 unknowns R;(k;, k) = f, and N+ linear equations which now can
be solved uniquely

N

i Z 2m. o i ipN 12 2m o .

Rl = ‘/l + UJJ k;? k2k] VYZJR{ — ‘/l Rl + wnmk N 1= 1N+1
Jj=1 n=1 n

(E.40)
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If we now combine the denominators and weights into a single vector u;

2m 2 .
wj k2 kaJ for j=1..N

an k2 k? for j = N+1,

equation (E.40) can be expressed as the following matrix equation

N+1
R =V/+> uwV’Rl < A-R=V,
j=1

(E.41)

(E.42)

where the matrix elements of A are given as A;; = d;; — u]-Vlij , and the partial wave

components of the potential Vlij are calculated by (E.6). The unknown vector R can
now be solved by the usual inverse matrix routines. The last element of this vector will

then give the scattering phase (E.35) at the energy E ~ k2.
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F Meson Summary Tables

The following table serves as a reminder for the physical nomenclature of mesons.
Pseudo-scalar mesons are given on the left, vector mesons on the right of each sector.

d U 5 C b £

d | 2 mnlwe  wllo” K°K* D-||D*~ BY|B® T-|[T*-
wll et Al w.e KY|ET DYDY BY|B T[TV

—0,,55*0 o o _ _ _ _
s KK K||K* nllw, ¢ Dy||D: BYB® T, ||T:
c| DDt D°||D* DHID:T  n|lJ/¥ BBt To|[T

—0,,5*0 _ . —0,,5*0 _ . _ *—
t T+||T*+ 0| |7+ THIT:  TOT Ty o

Next we want to look closer into flavor off-diagonal mesons, since only they are subject
of this thesis. It is sufficient to sort these mesons as follows: if the orbital angular mo-
mentum of a ¢g system is L, the parity P of its wave function is (—1)%*!. Furthermore,
it also is an eigenstate of charge conjugation, with C' = (—1)**9 where the spin S can
be 0 or 1. Finally we will make use of the total angular momentum J, which can take
on the values J = |L—S|,...,|L+ S|

States with S = 0 and J¥ = 0~ are called the pseudo-scalars, while S = 1 and J¥ =1~
are the vectors. Important to note is that pseudo-scalar mesons can only have L = 0,
in other words all pseudo-scalars are singlet s-wave mesons. On the other hand, the
vectors can be triplet s-wave or triplet d-wave mesons. Every possible quark model that
is able to describe mesons should decide on its own, whether a specific vector meson is
to be seen as an L =0 or an L = 2 state.

Sector JPC =+ JPC =1

wt: 139.6 p(770): 775+ 1
w(1300): 1300 £ 100 | p(1450): 1465 + 25
w(1800): 1812+ 14 | p(1700): 1700 + 20
p(1900)T: 1900 =+ 40

p(2150)%: 2149 + 17
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Sector JP=0" JP =1-
K*: 493.7 K*(892): 891.6
K (1460)t: 1460 +£60 | K*(1410): 1414 + 15
(u,d;s)
K (1630)t: 162947 | K*(1680): 1717 +27
K (1830)f: 1830
D*: 1869+ 1 D*(2010): 2010 + 1
(u,dsc)
D*(2640)'t: 2637 +6
DF: 1968+ 1 Dt 2112+ 1
(sic)
D,(2573)11: 2572 + 2
(u,d;b) BE: 5279+ 1 B*: 5325 + 1
(s;b) Bg: 5370 £3 B;: 5417 +£4
(c;b) B, : 6400 4 400

The above table collects all pseudo-scalar and vector mesons that have been experi-
mentally measured up to now, taken from the Particle Data Group [3]. The value next
to the meson represents its mass given in MeV.

The particles assigned with the symbol § are regarded as not yet being established.
The symbol 11 indicates that the value of J¥ is still unknown.
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