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ABSTRACT

Experimental and computer simulation studies have revealed the presence of a transition in the

dynamics of hydrated proteins around 220 K. This transition has been compared with that of a glass

phase transition. It manifests itself by a nonlinear behavior in the temperature dependence of the

average atomic mean-square displacements and involves an increase of the amplitude of protein

dynamics. This increase in flexibility has been correlated with the onset of protein activity. In

this thesis, the mechanisms behind the protein dynamical transition are explored using molecular

dynamics simulations and neutron scattering experiments.

The driving force behind the protein transition is investigated by performing simulations of

myoglobin surrounded by a shell of water. A dual heatbath simulation method is used in which

the protein and solvent are held at different temperatures, and sets of simulations are performed

varying the temperature of the two components. The results show that the protein transition is

driven by a dynamical transition in the hydration water that induces increased fluctuations primar-

ily in side-chains in the external regions of the protein. The water dynamical transition involves

activation of translational, but not rotational, diffusion and occurs even in simulations where the

protein atoms are held fixed.

In order to determine the protein motions involved in the transition, longer molecular dy-

namics trajectories are decomposed using principal component analysis. The results indicate that

the nonlinearity in mean-square displacement arises from only a very small number of principal

components. These components, activated by the solvent:surface interaction, describe collective

dynamics propagated through to the interior of the protein. The onset of the transition at∼180 K

is characterized by the appearance of a single double-well mode involving a global relative motion

of two rigid-body groups of helices. As the temperature is raised a few more multiminimum and

quasiharmonic principal components successively appear.

Finally, experimental results from neutron scattering on xylanase in solution at varying

methanol concentrations reveal that the protein dynamics is strongly influenced by the dynam-

ics of its surrounding solvent on short timescales. On longer timescales the results indicate the

presence of a collaborative effect between the protein surface and the solvent which lowers the

freezing temperature of the protein hydration layer. All together, the results indicate that the pro-

tein hydration shell plays a central role in the appearance of the transition in the temperature

dependence of protein dynamics.
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ZUSAMMENFASSUNG

Experimentelle Untersuchungen, wie auch Computersimulationen, zeigen markanteÄnderungen des dy-

namischen Verhaltens hydratisierter Proteine bei einer Temperatur von∼ 200 K. Die experimentellen

Beobachtungen zeigen charakteristische Gemeinsamkeiten mit dem Glasübergang komplexer Systeme und

in Analogie spricht man vom Protein-Glasübergang. Kennzeichnend für diesenÜbergang ist der nicht-

lineare Temperaturverlauf der mittleren quadratischen Auslenkung des Proteins. Bei Temperaturenüber

200 K ist ein deutliches Ansteigen der Amplituden zu beobachten. In der vorliegenden Arbeit werden die

Mechanismen dieses̈Ubergangs mittels Molekulardynamik Simulationen und Neutronenstreuexperimenten

untersucht.

Die Ursachen und Charakteristika des Protein-Glasübergangs werden anhand des Proteins Myo-

globin untersucht. Mit Hilfe einer Doppeltenwärmebad-Simulation k̈onnen Protein und die umgebende

Wasserḧulle auf unterschiedlichen Temperaturen gehalten werden. Dies ermöglicht, den Temperaturverlauf

dynamischer Prozesse in Wasserhülle und Protein unab̈angig voneinander zu kontrollieren und gegenseitige

Wechselwirkungen zu untersuchen. Die Ergebnisse der Simulationen zeigen, dass der Protein Glasübergang

durchÄnderungen im dynamischen Verhalten der Wassermoleküle verursacht wird. Dies betrifft vor allem

die Translationsbewegung der Wassermoleküle, während Rotationen durchgehend normales Temperaturver-

halten zeigen. Das Einsetzen der Translationsbewegungen führt zu erḧohten Fluktuation vor allem der

Seitenketten und oberflächennahen Bereiche des Proteins.

Die Simulationen werden mit Hilfe einer Hauptkomponentenanalyse in charakteristische Bewe-

gungsmoden zerlegt. Diese Analyse zeigt, dass die beobachtete Nichtliniarität der mittleren quadratis-

chen Auslenkung von einer sehr geringen Anzahl an Moden verursacht wird. Diese Moden werden durch

Wechselwirkungen zwischen Proteinoberfläche und Wasserhülle aktiviert und beschreiben kollektive Be-

wegungen, die sich bis ins innere des Proteins ausbreiten. Der beobachteteÜbergang bei∼ 180 K ist

gekennzeichnet durch die qualitativeÄnderung einer einzigen Mode von einem quasi-harmonischen zu

einem anharmonischen doppelminimum Verlauf. Mit steigender Temperatur zeigen weitere Moden diesen

Übergang zu anharmonischem Profil.

Anhand von L̈osungen des Proteins Xylanase in unterschiedlichen Methanolkonzentrationen, wurde die

Abhängigkeit der Proteindynamik vom umgebenden Lösungsmittel mittels Neutronenstreuung untersucht.

Auf kurzen Zeitskalen (< 100 ps) kann eine deutliche Abhängigkeit der Proteindynamik vom umgebenden

Lösungsmittel beobachtet werden. Langsamere Prozesse (∼ 1 ns) deuten auf Wechselwirkungen zwischen

Proteinoberfl̈ache und L̈osungsmittel hin, die das Gefrieren des Lösungsmittels in unmittelbarer Nähe der

Proteinoberfl̈ache verhindern.

Die Ergebnisse dieser Arbeit verdeutlichen die Bedeutung der Wasserhülle für ein Versẗandnis dy-

namischer Prozesse in biologischen Makromolekülen.
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4 Nośe-Hoover Dual Heatbath Simulations 69
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1 Principle of the multiple heatbath method .. . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Simulation protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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INTRODUCTION

A BRIEF INTRODUCTION

Higher forms of life rely nearly entirely on the intricate palette of functions proteins can

fulfill to perform the many task essential to cell survival. Proteins can be classified ac-

cording to their biological activity as: enzymes or transport, storage, motile, structure,

defense and regulatory proteins. Insight into how these proteins function leads to an un-

derstanding of the molecular basis of life. Hence, they have been the focus of intense

research ever since they were first isolated at the end of the19th century.

In the last decades the picture of a fixed, rigid protein structure inherited from crystal-

lographic studies has given way to a more flexible and dynamical view of the way proteins

operate. Very specific motions are now seen to be essential to protein function. Although

proteins have been the subject of intense research for decades in biology, chemistry and

physics, understanding internal proteins dynamics remains a challenge.

An interesting physical property of proteins was first noticed in the 1970’s when ex-

periments showed that proteins undergo a change in their dynamical properties between

180 K to 220 K. The origin of this transition in dynamics has aroused much attention ever

since and different theories have emerged to explain it. In particular, the striking analogy

with the transition present in glass-forming materials has been the subject of much debate.

This dynamical transition has since then been studied through numerous experiments

as well as through computer simulations which the extraordinary progress in computer

power has made possible. Simulations of proteins offer the advantage of giving access to

atomistic details and short timescales.

This dynamical transition was first observed in myoglobin, a globular oxygen trans-

port protein. Such globular proteins in their natural state are surrounded by water in which

they are able to fold and function correctly. The role of the solvation shell around proteins

has, since then, been shown to play an essential role in the dynamical transition.

The study of the dynamical transition in hydrated proteins is the subject of the present

thesis. In doing this, a lot of importance will be drawn to the essential role played by

protein solvation. Another important aspect of the present study is the characterization

of the protein dynamics involved in this dynamical transition. In order to achieve this,

molecular dynamics techniques as well as neutron scattering experiments were employed.

The next section in this introductory chapter will present in more detail the exper-

iments which revealed the dynamical transition in proteins. The molecular dynamics

approach to the problem will then be presented, followed by an overview of the protein-

glass analogy. The influence of the dynamical transition on protein function will then be

discussed. This will be followed by a review of the role played by the solvent in proteins

in general, and in the protein dynamical transition in particular. Finally the specific ques-

20



INTRODUCTION

tions this thesis aims to answer will be presented along with an general outlook of this

study.

1.1 EXPERIMENTAL EVIDENCE OF THE DYNAMICAL

TRANSITION IN PROTEINS

Allosteric proteins such as hemoglobin show a conformational change upon ligand bind-

ing (eg: oxygen). The discovery of such allosteric proteins promoted the idea that confor-

mational changes are an essential part of the way protein function.1, 2 The study of protein

dynamics thus reveals important aspects of the way proteins function.

1.1.1 FIRST DISCOVERY: MÖSSBAUER SPECTROSCOPY

Several techniques have appeared in order to investigate protein dynamics, one of the first

such techniques is M̈ossbauer spectroscopy. Mössbauer obtained the 1961 Nobel prize in

physics for his work on the nuclear effect that bears his name. This effect builds upon the

fact that nuclei in atoms undergo a variety of energy level transitions which are associated

with absorption and emission of gamma rays. Changes in the environment, electronic

or magnetic, will have an influence on the energy levels which can be measured. The

energy lines corresponding to the transition are very fine and a variety of methods use

this effect to study the interaction of the nuclei with its environment. In proteins the

very sharp nuclear transitions allied with the reasonable absorption cross-section of57Fe

is used in investigating the dynamics of iron atoms. Measurements of the mean square

displacement of the iron nuclei can be obtained by measuring the spread of the spectral

line due to Doppler shift. Due to the energy resolution of the apparatus, the technique is

sensitive to motions on timescales slower than∼4 ps.

In 1971, using M̈ossbauer spectroscopy, Fritz Parak first reported a transition in the

Mean-Square Deviation (MSD) of the iron site of myoglobin at around 200 K.3 It took

about 10 years for the study to be repeated and the effect investigated.4–7 A sharp tran-

sition was seen in the MSD of the iron-containing proteins under investigation at tem-

peratures ranging from 180 K to 220 K. A characteristic plot of the data obtained from

Mössbauer can be seen in figure 1.1, the MSD is seen to increase linearly from 0 K up

to ∼200 K at which point a break occurs and the MSD continues to rise with a much

steeper slope. Such behavior is characteristic of the protein dynamical transition. Inves-

tigations of non iron-containing protein was made possible using neutron scattering, also

the dynamics under scrutiny were not restricted to the neighborhood of the iron atoms.
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Figure 1.1: Mean square displace-
ment from incoherent neutron scat-
tering (Doster and Settles 199810);
◦ : time resolution 80 ps; �
: time resolution 12 ps. • :
Mean square displacements from
Mössbauer absorption spectroscopy
on Myoglobin crystals (from Parak
200311)

1.1.2 NEUTRON SCATTERING

In the 1980s, with the construction of the high flux reactor at the Institut Laue-Langevin in

Grenoble, neutron scattering experiments were able to study the dynamics of proteins and

were in an ideal position to investigate the temperature dependence of protein dynam-

ics.8, 9 Incoherent neutron scattering is a very versatile technique which enables many

interesting experiments to be undertaken. Incoherent neutron scattering takes advantage

of the fact that hydrogen has a very large incoherent scattering cross section compared to

all other elements (by a factor 10 or more). Hydrogen being very abundant in biological

systems the scattering originating from hydrogens dominates the signal. In this way se-

lective deuteration enables the investigation of the part of the system left undeuterated.

Incoherent neutron scattering uses thermal neutrons which are scattered by the atoms in

the system thus carrying information about the dynamics of the atoms in the system. The

neutron in such experiments being of thermal energies are particularly sensitive to thermal

motions in the sample. This makes neutron scattering a particularly interesting technique

to study protein dynamics. In particular this technique allows the calculation of the atomic

mean-square fluctuation over a whole protein. A more in depth presentation of the theory

behind incoherent neutron scattering is made in the methods chapter.

In 1989, Doster and Cusack were the first to report the dynamical transition in pro-

tein using incoherent neutron scattering.12 The presence of the dynamical transition was

reported for bacterioohodopsin at∼230 K in 1993,13 and in 1997.14 It was also reported

to be present inα-Amylase around 200 K in 1999.15 The presence of a dynamical tran-

sition at∼220 K was reported for the enzyme Xylanase in 2000.16 Figure 1.1 shows the

dynamical transition reported using neutron scattering experiments. A transition between

two linear regimes is seen, below and above the transition temperature of∼200 K. This

transition is very similar to that seen using Mössbauer spectroscopy. The data from both
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Mössbauer spectroscopy and neutron scattering show a linear temperature dependence be-

low ∼200K followed by sharp transition at∼200 K and a linear regime of much increased

slope above∼200 K.

Figure 1.2: Mean square dis-
placement from incoherent neu-
tron scattering obtained on IN6
and IN16 detectors at the ILL
in grenoble. IN6 is sensitive
to motions on time-scales of
∼100ps whereas IN16 is sensi-
tive to motions on time-scales up
to ∼5ns.(Adapted from Daniel
et al 199917)

An interesting effect has been reported using different instruments with different en-

ergy resolution and therefore able to perceive motions on different timescales.17 The study

compares the results from two neutron scattering spectrometers: IN6 and IN16 at the In-

stitut Laue-Langevin reactor in Grenoble. Whereas IN6 probes motion on time scales

faster than∼100ps, those detected by IN16 extend to∼5ns. As can be seen in figure 1.2,

the IN6 data is very similar to that presented in Figure 1.1, the data from IN16, however,

is very different and presents an early transition to increased dynamics at 160-170K and

then plateaus between 180K to 280K to increase thereafter. The meaning of this timescale

dependence is not completely elucidated and is the subject of research at the present time.

1.1.3 COMPLEMENTARY RESULTS FROMX-RAY DIFFRACTION AND

FTIR

Dynamics of proteins were first studied using X-ray diffraction by Frauenfelderet al in

1979.18 X-ray crystallographic refinement yields the Debye-Waller factors of individual

atoms which in turn can be used to calculate the mean square fluctuation of individual

atoms. Using this effect the presence of a dynamical transition in Ribonuclease A was

reported at 180-200K in 1992.19

Proteins show a certain degree of flexibility around their average structure as revealed

by X-ray crystallographic refinement.18 Protein do not remain in a unique state of mini-

mum free state but fluctuate around it through a large number of conformational substates

which are nearly isoenergetic.20, 21 These conformational substates are separated by free
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energy barriers which have to be overcome during conformational changes. An illustra-

tion of such a free energy landscape is presented in figure 1.3.

Figure 1.3: Simplified view of the
multidimensional energy landscape of
a protein. The protein fluctuates
from substate to substate in the re-
gion around the global minimum of the
energy (adapted from Frauenfelderet
al22).

More recent studies performed in the group led by U. Nienhaus have combined X-ray

crystallographic refinement with Fourier Transform Infra Red (FTIR) to study ligand re-

binding kinetics in myoglobin.23, 24 Looking at the IR bands associated with the bound

CO, FTIR can follow the CO as it rebinds after photodissociation. X-ray gives infor-

mation as to where the CO goes upon photodissociation. Using these techniques it was

shown that below 180 K photodissociated ligands migrate to specific sites within an in-

ternal cavity of an essentially immobilized, frozen protein, from which they subsequently

rebind by thermally activated barrier crossing. On photodissociation above 180 K, ligands

can escape from the distal pocket, aided by protein fluctuations that transiently open exit

channels.

1.2 MOLECULAR DYNAMICS SIMULATIONS

1.2.1 MOLECULAR DYNAMICS: A BRIEF HISTORY

With the advent of modern powerful computer came the idea of simulating interacting

atoms from first principles. Molecular dynamics (MD) simulation consists in the inte-

gration of newtonian equations of motions for a system of interacting atoms, such as a

protein, under a particular set of forces (van der Waals, electrostatic, etc ...). The outcome

of the simulation consists in the trajectory of all the atoms during the time covered by

the simulation. This trajectory can then be analyzed to reach a new understanding of the

system based on the atomistic description of the system offered by MD. The trajectory

also enables the calculation of observables which can then be compared to experimental

values, such as neutron scattering spectra.

Adler and Wainwright in 1957† were the first to report the results of an MD simulation.

They simulated a hard sphere system where particles only interact via instantaneous

†Reprints of early papers on MD and work in the area of computer simulation of liquids and solids
published up to 1986 can be found in the book edited by Ciccottiet al25
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collisions. In 1964, MD simulations enabled the study of liquid argon†. McCammonet

al were the first to use MD to simulate a protein in 1977, using it for the study the protein

BPTI (Bovine Pancreatic Trypsin Inhibitor).26

Figure 1.4: PC clusters are now com-
monly used to perform molecular dy-
namics simulations. Current software
such as CHARMM scale well on 8 or
even 16 processors in parallel, effec-
tively dividing computation times by a
factor of 6 or better.

1.2.2 VALIDATION OF MD: COMPARISON WITH EXPERIMENT

Molecular modelling relies extensively on the accuracy of the model orforce field used

to approximate the forces between the atoms in the system. Different force fields have

been developed over the years, one such, which is widely used, and used in this work, is

the CHARMM22 force field which describes forces acting between atoms in proteins.27

Mathematical details of this force field will be presented in the chapter 2.

In order to validate the force field used in our modelling and simulations comparisons

with experiment were made, in particular neutron scattering experiments which give a

lot of information about the dynamics. To this effect quantities extracted from neutron

scattering were compared to ones obtained from computations.

The simplest calculations are performed using normal modes. Normal modes describe

the essential modes of motion of a protein and gives their respective frequencies. From

such calculation one can obtain quantities such as neutron scattering factor and density

of states which can then be compared to those obtained directly from experiment (for a

review see Smithet al 1991).28

Neutron scattering factors are calculated more precisely from MD simulations. In this

way it was shown that most of the scattering data could be accounted for solely from

liquid-like rigid-body motion of the protein side-chains.29 Other studies have shown the

importance of correct sampling,i.e., sufficiently long simulation times for the correct

reproduction of experimental results.30 Sufficient hydration of the protein (a hydration

shell consisting of∼350 water molecules in the case of myoglobin) has been shown to

be necessary in order to reproduce experimental results for proteins in solution.31–33 The
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way the surroundings of the protein are simulated was shown to significantly influence

the dynamics of the protein. The environment most appropriate for in-solution protein

simulations was shown to be a hydrated crystal or powder environment with periodic

boundary conditions.34, 35

The validity of certain approximations made in deriving properties such as mean-

square-fluctuations from experimental data has been investigated using MD. By simulat-

ing the process by which experimental results are obtained it is possible to estimate the

errors made in calculating them. Recent work has shown that errors of as much as 30%

are made in deriving mean-square-fluctuations from experimental data when using the

current approximations.36

1.2.3 THE DYNAMICAL TRANSITION FROM MD SIMULATIONS

The increase in computer power has made it possible to run whole sets of simulations at

different temperatures in order investigate the temperature dependence of protein dynam-

ics. In 1989, Wonget al were thus the first to reproduce the dynamical transition using

MD.37 They performed simulations of ferrocytochrome c and found the dynamical tran-

sition feature to be present at∼220 K. Subsequent results performed using MD showed

the presence of a dynamical transition in myoglobin at temperatures of∼245 K and∼210

K.38, 39 The dynamical transition was also reported in superoxide dismutase simulations

at∼200 K.34 Since then many simulations have been performed and have confirmed the

presence of a dynamical transition in myoglobin at∼220 K using MD.33, 36, 40–43

1.3 THE PROTEIN-GLASS ANALOGY

The experimental evidence presented in the previous sections suggests that hydrated pro-

teins, as single molecules, may possess the complexity necessary to exhibit cooperative

dynamics comparable with those of simpler glass-forming systems.44 In glasses the tran-

sition occurs when the system does not have enough thermal free energy to overcome

the energy barrier between local minima of the energy landscape and becomes suddenly

locked in a local minima which is generally not the global minima: a glass is a ’liquid

that has lost its ability to flow’45 and appears as a ’structurally disordered solid’.46 This

behavior is now well understood in terms of Mode Coupling Theory (MCT).47 In proteins

a similar phenomenon is thought to occur in which proteins are locked in a harmonic local

minima below the transition and are then able to explore surrounding local minimas above

the transition temperature.44–46, 48, 49 As the temperature goes down, the protein motions

are confined to subregions of the energy landscape until finally they reach a state where

they are trapped in a local minimum of the energy landscape.
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Standard glass forming material are classified according to their sensitivity to temper-

ature changes. So-called ”strong” liquids have a built-in resistance to structural change

and they show little reorganization despite wide temperature changes. So-called ”fragile”

liquids have glassy structures that teeter on the brink of collapse at their glass transition

temperature,Tg, and which, with little provocation from thermal excitation, reorganize to

structures that fluctuate over a wide variety of different particle orientations and coordi-

nations states.45, 48

Mode Coupling Theory distinguishes between two types of motions in glass forming

liquids: α andβ relaxations. Secondary,β, relaxations are very fast processes due to local

rearrangements involving low energy barriers. They lack the cooperative character of the

primary,α, relaxations corresponding to slow diffuse processes.45, 47, 48, 50

Theβ processes follow a standard Arrhenius temperature dependence:

k(T ) = A0 exp(−E/kBT) (1.1)

wherekB is the Boltzmann constant andT the temperature. On the other hand, theα

processes, such as diffusion, are strongly hindered below the transition temperature. Their

relaxation function,φr(t) follows a stretched exponential, Kohlrausch-Williams-Watts

(KWW) behavior with respect to time:44, 51

φr(t) = e−(t/τ)β

, 0 < β < 1 (1.2)

The temperature dependence of their viscosity (as well as diffusivity and relaxation times)

can correctly be modelled by the Vogel-Fulcher-Tamman-Hesse (VFTH) equation:

η(T ) = η0 exp[
1

Kf

T0

T − T0

] (1.3)

whereKf is a measure of the kinetic fragility of the material: more fragile liquids have

largerKf values.46, 52

A key characteristic of standard glass-forming systems, which is not seen in proteins,

is their well defined glass transition temperature,Tg, as defined by a marked jump in

heat capacity,Cp.44 This common jump in heat capacity,Cp, is absent in proteins. This

usually only happens in the case of very strong glass-forming liquids such as SiO2, in

which case the jump is much reduced. However, proteins have been shown to conform

to mode coupling theory53 usually a sign of a fragile glass-former. In proteins the jump

in Cp seems to be much more spread over a range of temperatures. This in turn could be

explained by considering that proteins possess not one but severalα relaxation processes

possibly activated at different temperatures which would make the transition much more
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gradual than in standard glass forming materials.46, 54

1.4 THE DYNAMICAL TRANSITION vs PROTEIN FUNCTION

The transitions between conformational substates are generally considered to be essential

to the function of proteins. According to this view, proteins would stop functioning below

the dynamical transition temperature where the protein is locked in a single conforma-

tional substate. For this reason, the link between the presence of the dynamical transition

in protein and their function has been the focus of attention.

In 1980, Paraket al showed that the chromatophores inRhodospirillum rubrum mem-

brane ceases to function below the dynamical transition at 180 K.4 Subsequent work using

X-ray crystallography showed that Ribonuclease A loses function below the dynamical

transition at 220 K.55 Such an effect has also been reported for crambin using X-ray scat-

tering.56 However, more recent studies indicate that the dynamical transition might not

signify the loss of function below the transition temperature. Parallel measurements of

activity and dynamics of glutamate dehydrogenase and xylanase showed that the function

of these enzymes was not affected by the dynamical transition.57, 58 Figure 1.5 shows data

from Dunnet al 2000, a transition is clearly seen in the dynamics of xylanase∼-60 K

(213 K) whereas no such transition is seen in the activity measurements. The reason why

some protein are sensitive to the dynamical transition while some seem not to be is not yet

clear. A possible explanation has been put forward according to which some functional

motions would be ’slaved’ to the solvent dynamics and sensitive to the dynamical tran-

sition and some other insensitive to the solvent dynamics and thereby unaffected by the

dynamical transition.49 This aspect relating to the role of the solvent will now be explored

in greater detail.

Figure 1.5: a) Effect of temperature on the activity of xylanase in 70% aqueous
methanol; b) Effect of temperature on the dynamics of xylanase in fully deuterated
70% aqueous methanol, as measured by neutron scattering (from Dunnet al 200058).
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1.5 SOLVENT/COSOLVENT PROPERTIES AND EFFECTS ON

PROTEIN STRUCTURE AND DYNAMICS

The presence of solvent is essential for proteins to fold and function properly. For this

reason, the intricate interactions of proteins with their surrounding solvent has been and

remains the focus of much attention. Apart from water, a number of cosolvents such

as ions also play a role in protein folding and function.59 In recent years a number of

cosolvents, not usually present in nature, have found a wide range of uses in Biology: as

cryosolvent, protein denaturant, protein fold stabilizer, protein function modulators, and

more.60 The interesting properties of these cosolvents will now be reviewed. Finally,

in order to simulate protein hydration correctly, a number of water models have been

proposed over the years. The present work focuses on the TIP3P model for which the

CHARMM parameters have been optimized.61

1.5.1 HYDRATION EFFECTS ON PROTEIN STRUCTURE AND

DYNAMICS

STRUCTURAL EFFECTS OF HYDRATION

A number of studies have shown the effect on protein structure and dynamics as hydration

levels increase from the anhydrous state to solution (see Ref. 62 and references therein).

Studies on lysozyme have shown four stages of hydration. In the first stage, from 0 to 0.07

h (g/g), proton redistribution occurs, mediated by the presence of mobile water molecules.

This represents less then 55 waters molecules per protein molecule. In stage two (0.07

to 0.30 h,i.e.less than 250 water molecules per protein molecule) water binds to charged

and polar sites. In stage three (0.30 to 0.50 h) the protein surface is gradually covered by a

water monolayer. In stage four, above 0.50 h ( more than 400 water molecules per protein

molecules), the hydration shell builds further, the protein displays dynamical properties

of a fully hydrated proteins.33

DYNAMICAL EFFECTS OF HYDRATION

Dry proteins are, at physiological temperatures, relatively rigid compared to hydrated

proteins. The increase in flexibility due to hydration is generally thought to be impor-

tant for function.62 Neutron scattering experiments have shown that dry protein exhibits

little motion at 300 K over that expected from a rigid body.16, 63 Further Neutron scatter-

ing experiments on lysozyme, parvalbumine and bovine pancreatic trypsin inhibitor have

shown protein dynamics to increase gradually upon hydration.64–66 Using MD simula-
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tions, the protein hydration shell has been shown to soften diffusive motions in proteins

as one gradually moves away from the protein core.67 In the absence of water protein

sidechains form tight hydrogen bonds between them thus turning the protein into a rigid

body. Upon hydration these hydrogen bonds are transferred to water molecules and the

sidechains diffuse freely in the solvent.60, 68, 69

STRUCTURE OF WATER AT PROTEIN INTERFACES

The protein hydration layer has been studied using experimental techniques such as X-

rays and neutron scattering68, 70–76 as well as MD simulations.42, 77–80 The protein first

hydration shell has been shown to be more dense than bulk water by as much as 10%.70, 78

This surface effect was studied in detail using MD simulations, and was found to be less

important than previously thought due to the way densities are calculated close to surfaces.

In this study the increase in density was then estimated at∼5% around the protein.80 The

water orientation in this hydration layer was shown to be strongly correlated to the local

topology of the protein surface and the electrostatic field present at that surface. Water dif-

fusion was shown to be increased at the protein surface (up to 6Å away), this effect being

most important over hydrophobic patches and in protein cavities.78 No correlation was

found between diffusion properties and the neighboring atom or residue types.74 Water

has been found to form large-scale networks over charged and polar regions of the pro-

tein.60, 76 However, these structures were shown to be uncorrelated with water residence

times.81 The presence of the protein has been shown to affect solvent properties as far as

15Å away from the protein surface.74, 78, 79 Other water structures called clathrates have

been found over hydrophobic areas of protein surface, in these structures water molecules

form cage like structures such as the one shown in figure 1.6 around a methane molecule.

1.5.2 EFFECTS OF COSOLVENTS ON PROTEIN STRUCTURE DYNAMICS

AND FUNCTION

STRUCTURAL, DYNAMICAL AND FUNCTIONAL EFFECTS OF COSOLVENTS

In living organisms, ion concentrations and pH levels are closely monitored as they have

a big impact on the folding and function of proteins (for example Calmodulin is very sen-

sitive to Calcium concentration and will take a different fold in the presence of Calcium).

Apart from these naturally present cosolvents, a number of different cosolvents are used

in biology. For example urea is a protein denaturant and is thought to act by destroying

the natural tetrahedral arrangements of water, thus removing the entropic effect neces-

sary for the hydrophobic effect which stabilizes proteins.59 Trifluoroethanol (TFE) also
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Figure 1.6: Typical clathrate water for-
mation, in this case around a methane
molecule

a protein denaturant has been found to unfold complex secondary structures such as beta

strands and to stabilize and induce helical content. Dimethyl sulfoxide (DMSO) is a good

hydrogen bond acceptor as well as having a more hydrophobic part is a good cryosolvent

down to∼235 K and does not seem to affect protein structure.73 Organic solvents have

also been used, such as ethanol which acts as a denaturant by dehydrating the protein

surface,i.e. removing essential, stabilizing water molecules from the protein surface. It is

also found to promote helical content.72 Glycerol is also widely used as a cryosolvent.63

Highly viscous cosolvents such as the sugar trehalose have been found to be very effec-

tive in preserving protein structure at low hydration and high temperatures.82, 83 At high

concentrations, the presence of organic solvents has also been found to modulate enzyme

activity, altering substrate specificity and increasing thermostability. Catalysis of reaction

not possible in water has been shown to be possible in organic solvents.69 In the present

work methanol was used as cryosolvent, the freezing point of 40% CD3OD/ 60% D2O be-

ing at∼233 K. Methanol preserves protein structure at moderate concentration although

at higher concentration it tends to denature protein structure, promoting helical content.60

STRUCTURE OF COSOLVENTS AT PROTEIN INTERFACES

Cosolvents have been show to interact with the protein surfaces in very specific

ways.60, 68, 72, 73, 75 Using neutron scattering techniques it has been possible to find the

position of different cosolvent molecules on the protein surface. Ethanol was found to

interact mostly with the hydrophobic parts of the protein,72 whereas DMSO showed more

H-bond interactions with the protein.73 Different studies showed that different cosolvent

molecules occupy similar positions on the protein surface.72, 73, 75 Three categories of

structural water molecules were found on protein surfaces: those that were present in all
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structures, those that were present in some, and those too mobile to ever be resolved by

diffraction measurements.60, 84 The slightly disordered - category two - water molecules

are thought to indicate potential ligand binding sites. In these areas the waters are not too

tightly bound and not so loose that there is no entropic gain in removing them. This effect

has been used to probe for possible binding sites on proteins surfaces.60, 84

PROPERTIES OF METHANOL/WATER MIXTURES

Water/cosolvent mixtures have been the focus of research using neutron scattering and

small angle X-ray scattering. Water/methanol mixtures have been extensively studied at

different relative concentrations.85–88 These mixtures show excess properties: excess heat

of mixing, excess partial molar volumes, excess heat capacity maximal at molar fraction

of Xm = 0.25. These excess properties have been attributed to the inverse tendencies of

water and methanol, water being dominated by hydrophilic behavior while the other is

governed by hydrophobic interactions.86 The different studies show that the hydrophobic

groups of the methanol molecules tend to cluster together forming methanol clusters of

2 or more molecules. The hydrophilic group of the methanol molecules is left exposed

to the solvent, forming hydrogen bonds with the water molecules and taking part in the

water tetrahydral formations.86, 88

1.5.3 MODELLING WATER: THE TIP3PMODEL

In order to obtain accurate simulations in hydrated environment, the properties of the wa-

ter must be adequately reproduced. In the present work the water molecule is modelled

using to the TIP3P model.89 Many different models exist for simulating water with dif-

ferent levels of accuracy and different computational costs. A general review of the water

simulation field from simple empirical models to full ab-initio approaches can be found

in Ref. 90.

In the TIP3P model the water molecule is simulated using three atoms: two hydrogens

covalently bonded to a oxygen. The OH distance, HOH angle, van der Waals parameters

and charges on the atom center of mass are parametrized so as to reproduce as closely

as possible experimental results.89 The TIP3P model reproduces satisfactorily the liq-

uid phase properties of water such as average density and heat of vaporization.91 The

tetrahedrality of the model is considered somewhat too weak and the diffusion constant

somewhat too high.61, 91 The CHARMM22 force field was parametrized using the TIP3P

model for water. The TIP3P model is therefore the preferred model for simulating water

when using the CHARMM package.61

Other empirical water models exist such as the single point charge (SPC) model which
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is identical to the TIP3P model but with different values for the parameters. The SPC

model fits better the second peak in the O-O autocorrelation function (gOO) of liquid

water.89 Other models such as the TIP4P model better the oxygen lone pair by moving

the oxygen partial charge a parametrized distance along the monomer axis, away from

the hydrogens. An extensions of the TIP4P model, the TIP5P model, places two negative

charges symmetrically along the lone-pair direction. Another model extended from the

SPCE model, the SPC/E model introduces polarizability into the model. These models

reproduce more closely the thermodynamical properties of liquid water, however they also

come at a computational cost and do not bring a significant improvement to the simulation

of hydrated proteins.

1.6 ROLE OF SOLVENT IN THE DYNAMICAL TRANSITION

1.6.1 IMPORTANCE OF THE PRESENCE OF A HYDRATION SHELL FOR

THE PROTEIN DYNAMICAL TRANSITION

MD simulations36, 38 and neutron scattering experiments92 have shown that isolated or

dehydrated proteins also show dynamical transition behavior. However MD studies on

dehydrated systems have placed the dynamical transition at widely differing tempera-

ture ranging from 110 K36 to 240-250 K.33, 38, 40 Neutron experiments showed that dry

lysozyme shows no transition.16, 63 This contrasts with the relative homogeneity of the

transition temperature reported in the literature at 200-230 K for proteins in hydrated

powders12 and in cryosolvent solutions.13, 14, 16, 19

As early as 1989 the possible importance of the protein hydration shell in the pro-

tein dynamical transition was discussed.12, 37 A number of experiments and simulations

have indicated that when a protein is solvated the dynamical transition at∼220 K is

strongly coupled to the solvent. Neutron experiments found hydration to be essential

to the presence of the dynamical transition feature in bacteriorhodopsin.13, 93 MD simu-

lations showed the dynamical transition feature in myoglobin to be much reduced in the

absence of solvation.33

1.6.2 EFFECT OF HYDRATION ON THE PROTEIN DYNAMICAL TRAN-

SITION

A number of studies have looked at the effect of solvation on the protein dynamical tran-

sition. Solution studies require the use of cryosolvents in order to prevent the freezing

of the sample (see study by Réatet al16). Protein dynamics have been shown not to be
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affected by the use of cryosolvents.16, 94 Most experiments have been performed either

on hydrated powders which do not suffer from the freezing problem or in glycerol:water

mixtures. The effect of commonly used cryosolvents has been studied at different con-

centration levels and found not to influence the dynamical transition temperature as long

as the glass transition temperature of the cryosolvent was below∼230 K.16

Studies on pure glycerol have shown that glycerol stabilizes the protein and increases

its dynamical transition temperature.63 The dynamical transition of Lysozyme in pure

glycerol was shown to be∼240 K and to lower down to 210-200 K upon mixing with wa-

ter.92 It was also shown that in pure glycerol protein dynamics followed that of glycerol,

the protein being slave to its glycerol environment. On the other hand, highly viscous

solvents, such as trehalose, have been shown to completely suppress dynamical transition

behavior.82, 83, 95

1.6.3 GLASS TRANSITION IN THE PROTEIN HYDRATION SHELL

The central role played by the solvent in the dynamical transition hints at a possible phase

transition in the protein hydration shell which would induce the dynamical transition fea-

ture in the protein dynamics. Wonget al in their 1989 comparison of pure water and hy-

drated protein simulations were the first to indicate the presence of a dynamical transition

in pure water simulations at∼220 K.37 A study using infrared spectroscopy on myoglobin

has shown that the hydrogen bonding network in the solvent around a protein undergoes a

transition∼180 K, the H-bond network was seen to freeze-in protein motions below that

temperature. Similar behavior was recently reported using neutron scattering.96 Previous

work performed using neutron scattering also showed that at low temperatures, protein

motion were reduced in hydrated systems as compared to dry systems, thus demonstrat-

ing that the solvent had a caging effect on the protein motions.97

In 2000, Vitkupet al performed dual heatbath MD simulations in which the solvent

and protein are held at different temperatures.98 They were thus able to demonstrate

that cold solvent strongly inhibits internal protein fluctuations while hot solvent slightly

increases them. MD simulations have also shown that the water hydrogen bond network

structure is rigid below∼180 K while at the same temperature the water molecules are

still able to rotate freely in their confined space.41 This is a strong indication that the

protein hydration layer undergoes a glass transition at that temperature.

By comparing rate coefficients of certain protein processes with those of solvent di-

electric relaxation rate, recent work by Fenimoreet al shows the presence of two types of

processes:slaved andnonslaved.49 Nonslaved processes are, according to their definition,

all processes which are independent of the solvent dynamics, whereas slaved processes

depend critically on solvent dynamics. Enzymatic activity such as bond formation would
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be a typical nonslaved process whereas opening and closing of channels would be a slaved

process.

OUTLOOK

The central questions this thesis work aims to address are:

- Is the dynamical transition observed in hydrated protein controlled by the sol-

vent or do the intrinsic anharmonicity of the protein dynamics also plays a

role?

- What are the characteristics of the protein motions involved in the dynamical

transition?

- What is the role played by cosolvents, in particular cryosolvents, in the protein

dynamical transition.

In order to investigate the role of the solvent, dual heatbath MD simulations were

performed, in which the solvent and protein are held at different temperatures. Varying the

temperature of one component (protein or solvent) while keeping the other temperature

constant dissociates changes with temperature of features of the protein energy landscape

from those inherent to the solvent. This enables the driving force behind the protein

transition to be identified. MD dual-heatbath simulations of myoglobin were performed,

the results show that the solvent effectively drives the dynamical transition in protein

by caging protein motions below∼220 K. This hypotheses was further strengthened by

investigating the dynamical properties the solvation layer. These show clearly that the

solvent undergoes a glass transition at the dynamical transition temperature∼220 K.

The origin of the protein dynamical transition is hypothesized to be a transition in the

protein dynamics from harmonic motions below the transition temperature to anharmonic,

more diffusive motions above. In order to analyze the protein motions over the dynami-

cal transition temperature range, Principal Component Analysis (PCA) was used. PCA is

a powerful way of analyzing MD trajectories. Using PCA one is in a unique position to

appreciate the anharmonicity of modes as a function of temperature, and thereby to appre-

ciate whether a transition in harmonicity behavior appears∼220 K. The results indicate

that anharmonic motions occur well below the transition point, at temperatures as low as

120 K. They also indicate that the dynamical transition at 220 K does not correlate to any

change in harmonicity of the protein motions. The results show that the low-frequency

modes of motions contribute overwhelmingly to the total MSD. In themselves the non-

harmonic motions are seen to be responsible for the transition feature seen in the MSD of
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the protein. Further calculations of the damping experienced by the protein show that the

solvent induces a transition in the damping experienced by the protein at∼220 K.

Finally, experimental results from neutron scattering experiments performed at the

ILL in Grenoble are presented. The dynamical transition in xylanase was measured in

methanol/water mixtures of different concentration. The dynamical transition was seen

at 0 C in pure water. The dynamical transition temperature was lowered to∼240 K for

methanol concentrations> 10% on the 100 ps timescale and to∼170 K for methanol

concentrations> 30% on the ns timescale. The results indicate that in the presence of

the methanol the protein solvation layer freezes at much lower temperature than expected

from bulk solvent properties of methanol/water mixtures.

The next chapters can be outlined in the following way:

• Methods: This chapter will present the general theory behind molecular dynamics

simulation along with their analysis. It will also present the theory behind neutron

scattering.

• System Used in molecular dynamics Simulations:This chapter will present the

system used in the MD simulations.

• Nośe-HooverDual Heatbath Simulations: This chapter will present the theory

behind dual heatbath simulations along with the initial results obtained using it.

• Multiple Heatbath Simulations: In this chapter the dual heatbath simulation

method will be extended and the ensuing results presented. The properties of the

solvent surrounding a protein are investigated.

• Principal Component Analysis: This chapter presents a PCA analysis of the pro-

tein motions over the dynamical transition temperature range. Different measures

of protein anharmonicity are presented, enabling the characterization of protein mo-

tions in the dynamical transition.

• Results from Neutron Scattering Experiments: This chapter presents neutron

scattering results obtained on protein solution of varying methanol concentrations

over the temperature range of the dynamical transition.
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INTRODUCTION

This chapter presents the theoretical foundations of the present work. Molecular dynam-

ics simulation techniques are presented followed by a general description of the way MD

trajectories can be analyzed. Principal component analysis is presented and a brief intro-

duction to neutron scattering is given.
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CHAPTER 2: METHODS

Force Field Equations of motion

Integration scheme

Integrator

Figure 2.1: General scheme showing how a force-field combines with equations of
motion in an integration scheme to achieve an integrator ready to perform molecular
dynamics simulations.

2.1 MOLECULAR DYNAMICS SIMULATIONS

This section covers the theoretical background to Molecular Dynamics pertinent to the

present work. For an in depth introduction to molecular dynamics the reader is referred

to the book by A. Leach.1

2.1.1 GENERAL PRINCIPLES OF MOLECULAR DYNAMICS SIMULA-

TIONS

Different elements are required to come together in order to perform molecular dynam-

ics simulations. These different elements are schematized in Figure 2.1. First of all, a

description of the interaction between the atoms in the system is required. The best avail-

able description of the system is at the quantum level, however performing simulations of

a quantum system are at the present time unfeasible for systems larger than a few tens of

atoms. Luckily interatomic interactions can be well approximated by empirical functions,

these come together to form a description of the forces acting on the atoms called the

force field. The force field used in the present work will be described in the next section.

The laws according to which the atoms are going to move also need to be clarified.

The simplest set of equations of motion is Newton’s equations of motion. More evolved

sets of equations can take care of such things as temperature control of the system and

pressure control for confined systems. These sets of equations will be discussed shortly.

Finally, the equations of motion need to be integrated,i.e., recast into discreet
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timesteps which a computer can calculate. For perfect precision one would need infinitely

small timesteps which would also mean infinitely long simulation times. So in order to

perform meaningful simulations in a reasonable amount of time, one has to find an inte-

gration scheme which gives a good approximation of the correct trajectory taken by the

system. In practice, the effect of this approximation is negligible since the interesting

equilibrium properties of the system are not affected by the exact trajectory of each atom

in the system. Several integration schemes exist such as the Verlet algorithm, the velocity

Verlet algorithm, and a number of others. These integrators will be presented along with

a more recent integration scheme: the Liouville Operator approach.

2.1.2 FORCE FIELD DESCRIPTION

The force field description of the interatomic forces is split into two categories: the bonded

terms and the non-bonded terms. The bonded terms regroup simple covalent binding as

well as the more complex hybridization andπ-orbital effects, these are the bonds, angles

and dihedrals terms. These terms are schematically drawn in figure 2.2. The non-bonded

terms describe the van der Waals forces and the electrostatic interactions between the

atoms. The different terms will now be presented in more detail.
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Figure 2.2: Schematic representation of the bonded interaction terms contributing to
the force field: bond stretching, angle bending, proper and improper dihedrals.
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BOND STRETCHING

The bond stretching term describes the forces acting between two covalently bonded

atoms. The potential is assumed to be approximately harmonic:

Vb = kb(b− b0)
2 (2.1)

whereb is the distance between the two atoms. Two parameters characterize each bonded

interaction:b0 the average distance between them and a force constantkb.

ANGLE BENDING

The angle bending terms describes the force originating from the deformation of the va-

lence angles between three covalently bonded atoms. The angle bending term is described

using a harmonic potential:

Vθ = kθ(θ − θ0)
2 (2.2)

whereθ is the angle between three atoms. There again two parameters characterize each

angle in the system: the reference angleθ0 and a force constantkθ.

TORSIONAL TERMS

The torsional terms are weaker than the bond stretching and angle bending terms. They

describe the barriers to rotation existing between four bonded atoms. There are two type

of torsional terms: proper and improper dihedrals. Proper torsional potentials are de-

scribed by a cosine function:

Vφ = kφ[1 + cos(nφ− δ)], n = 1, 2, 3, 4, 6 (2.3)

whereφ is the angle between the planes formed by the first and the last three of the four

atoms. Three parameters characterize this interaction:δ sets the minimum energy angle,

kφ is a force constant andn is the periodicity.

The improper dihedral term is designed both to maintain chirality about a tetrahedral

heavy atom and to maintain planarity about certain atoms. The potential is described by

a harmonic function:

Vω = kω(ω − ω0)
2 (2.4)

whereω is the angle between the plane formed by the central atom and two peripheral

atoms and the plane formed by the peripheral atoms (see figure 2.2).
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VAN DER WAALS INTERATIONS

Van der Waals interactions and electrostatic interactions are non-bonded interactions,i.e.,

they act between atoms which are not covalently bonded together.

The van der Waals force acts on atoms in close proximity. It is strongly repulsive

at short range and weakly attractive at medium range. The interaction is described by a

Lennard-Jones potential:

VV dW = 4ε

[(σ

r

)12

−
(σ

r

)6
]

(2.5)

wherer is the distance between two atoms. It is parameterized byσ: the collision pa-

rameter (the separation for which the energy is zero) andε the depth of the potential well.

The Lennard-Jones potential is represented in figure 2.3.
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Figure 2.3: The Lennard-Jones poten-
tial. The collision parameter,σ, is
shown along with the well depth,ε.

ELECTROSTATIC INTERACTIONS

Finally, the long distance electrostatic interaction between two atoms is described by

Coulomb’s law:

VElec =
q1q2

4πε0r12

(2.6)

whereq1 andq2 are the charges of both atoms andr12 the distance between them.ε0

is the electric susceptibility of vacuum.
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So finally, the equation for the potential energy describing the force field can be writ-

ten:

V =
∑
bonds

kB(b− b0)
2 +

∑
angles

kθ(θ − θ0)
2

+
∑

proper
dihedrals

kφ[1 + cos(nφ− δ)] +
∑

improper
dihedrals

kω(ω − ω0)
2 (2.7)

+
∑

i,j
i<j

4εij

[(
σij

rij

)12

−
(

σij

rij

)6
]

+
∑

i,j
i<j

qiqj

4πε0rij

2.1.3 EQUATIONS OF MOTION

NEWTONIAN EQUATIONS OF MOTION

The simplest set of equations of motion are the Newtonian equations:

ṙ i =
pi

mi

ṗi = Fi(r 1, ..., rN , t) (2.8)

wherer i andPi are the position and momentum of atomi at a timet. Fi is the force acting

on atomi: Fi = ∇iV

Newtonian equations are the physically exact equations describing the motion of

atoms in the system. However, they have the disadvantage for molecular dynamics sim-

ulations that the temperature of the system has to be periodically reset so as to mimic

biological conditions. To avoid this problem different sets of equations have been devel-

oped which take care of the temperature as well as the pressure control of the system.2

NOSÉ-HOOVER CONSTANT TEMPERATURE ALGORITHM

The equations of motion for constant temperature or Nosé-Hoover thermostat equations

are the following:3

ṙ i =
pi

mi

ṗi = Fi − pη

Q
pi

η̇ =
pη

Q

ṗη =
∑

i

p2
i

mi

− dNkT (2.9)
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whereη andpη are the thermostat position and momentum andT is the temperature at

which the system is to be regulated.N being the number of atoms in the system,k

Boltzmann’s constant andd the number of spatial dimensions. The parameterQ, given

by Q = dNkTτ 2, determines the time scale of the thermostat motion via the time scale

parameterτ , which should be chosen corresponding to a characteristic time scale of the

system,e.g., a vibrational period.

The Nośe-Hoover scheme has the advantageous feature that it approximates the

canonical distribution of temperature present in physical temperatures,i.e. the tempera-

ture of the system is not fixed at a given temperature but oscillates about it, as expected

for small systems. An extension of this algorithm, theNosé-Hoover-Chain algorithm,

has the advantage over the simple Nosé-Hoover algorithm that it reproduces the exact

canonical distribution of temperature. This algorithm was used in the present work and

will be presented in section 4.1. It also has the advantage of being more stable as will be

shown in Chapter 4.

CONSTANT TEMPERATURE AND PRESSURE

Simultaneous regulation of temperature and pressure can also be taken care of through

the equations of motions: the isothermal-isobaric equations of motion:2

ṙ i =
pi

mi

+
pε

W
r i

ṗi = Fi −
(

1 +
1

N

)
Pε

W
pi −

Pη

Q
pi

V̇ =
dV pε

W

ṗε = dV (Pint − Pext) +
1

N

∑
i

p2
i

mi

− pη

Q
pε

η̇ =
Pη

Q

ṗη =
∑

i

p2
i

mi

+
p2

ε

W
− (dN + 1)kT (2.10)

wherepε is a momentum conjugate to the logarithm of the volume,W is its associated

mass parameter,ε = ln(V/v0), Pext is the externally applied pressure, andPint is the

instantaneous internal pressure of the system given by:

Pint =
1

dV

[∑
i

p2
i

mi

+
∑

i

r iFi − (dV )
∂U

∂V

]
(2.11)
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Thus, the variablepε acts as a ’barostat’ which drives the system to the steady state

〈Pint〉 = Pext. In this way, both temperature and pressure are regulated so as to reproduce

exact canonical distributions.

Having gained an overview of the force field and of the equations of motion let us now

turn to the methods by which these equations can be integrated over time.

2.1.4 METHODS FOR INTEGRATING THE EQUATIONS OF MOTION

SIMPLE INTEGRATION ALGORITHMS

Numeric integration of equations of motion is done step by step using Finite Difference

methods. These methods are explicit and use the information available at timet to predict

the system’s coordinates and velocities at a timet+∆t, where∆t is a short time interval.

These integration schemes are based on a Taylor expansion of the position at time

t + ∆t, represented by then + 1 subscript:

rn+1 = rn + ∆t vn +
∆t2

2
an + ... (2.12)

wherevn is the first derivative of the positionrn, an is the second derivative of the position

etc. For Newtonian equations this simply yields:

rn+1 = rn + ∆t vn + ∆t2
Fn

2m
+ ... (2.13)

The different simple integration algorithms vary in the way they implement this basic

expansion.

The most basic and most common integration algorithm is theVerlet Integrator. This

integrator is based on two Taylor expansions, one forward and one backward:

rn+1 = rn + ∆t vn + ∆t2
Fn

2m
+ ...

rn−1 = rn −∆t vn + ∆t2
Fn

2m
− ... (2.14)

These two expansions are then added to give the basic Verlet integration formalism:

rn+1 = 2rn − rn−1 + ∆t2
Fn

m
+O(∆t4)... (2.15)

The simple Verlet approach has the advantage that it does not require the velocities,

needs a single force calculation per cycle and is naturally reversible in time. It generates,

however, rather large errors.

50



CHAPTER 2: METHODS

TheLeap Frog Integrator is a variation of the Verlet algorithm designed to improve

the velocity evaluations. Its name comes from the fact that the velocities are evaluated at

the mid-point of the position evaluation and vice versa. The algorithm is as follows:

vn+1/2 = vn−1/2 + ∆t
Fn

m
rn+1 = rn + ∆t vn+1/2 (2.16)

This scheme has the advantage of providing a direct handle on the velocities which

can be useful for temperature regulation. It has less error that the simple Verlet scheme.

A further improvement is theVelocity Verlet algorithm:

rn+1 = rn + ∆t v(t) + ∆t2
Fn

2m

vn+1 = vn +
∆t

2m
[Fn + Fn+1] (2.17)

This has the best evaluation of velocities and is the most widely used algorithm. It

works very satisfactorily for Hamiltonian systems of equations such as Newtons equa-

tions. However for non-Hamiltonian systems such as temperature thermostating and

temperature-pressure regulation the scheme has to be revised: the Velocity step is taken

and then corrected for the non-Hamiltonian† contribution in an implicit iterative proce-

dure. To illustrate this procedure, consider Milne’s simple method for first-order equa-

tions of the form:

ṙn = f (rn, t) (2.18)

then the next step is given by:

rn+1 = rn +

∫ tn+1

tn

f (r , t) dt (2.19)

Expandingf (r , t) to third order in time, an expression for the next step in time can then

be written:

rn+1 = rn−1 + ∆t/3(ṙn−1 + 4ṙn + ṙn+1) +O(∆t5) (2.20)

Sinceṙn+1 = f (rn+1), the above expression is acorrector equation is an implicit equa-

tion for rn+1. If ∆t is sufficiently small and a first approximation forrn+1 can be found,

the equation is solved through successive iterations. To provide the first approximation

for rn+1, an explicitpredictor formula is needed for which a simple step can be used such
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as the ones presented previously.

The drawbacks of the schemes presented above are that the time reversal symmetry

of the equations is not preserved and that they do not preserve the invariant phase space

measure.2 An elegant solution to this problem is the Liouville operator approach.

LIOUVILLE OPERATOR APPROACH

In this section a new approach to the integration problem is presented. This approach

leads to time reversible methods that preserve the phase space metric. It has also the

advantage of being directly useable on many systems. For an extended discussion of this

topic the reader is referred to Tuckermannet al 2000 and references therein.2

The equations of motion of a Hamiltonian or non-Hamiltonian system can be recast

in the general form:

ẋ = iLx (2.22)

wherex is the phase space vector andiL is theLiouville operator. For a Hamiltonian

system, the Liouville operator is given by:

iL ≡
N∑

i=1

[
pi

mi

∂

∂r i

+ Fi
∂

∂pi

]
(2.23)

Equation 2.22 has the formal solution:

x(t) = eiLtx(0) (2.24)

The unitary operator,exp(iLt), is theclassical propagator. Its solution can not be

determined analytically except for very simple cases. However an approximation can be

introduced which enables the construction of numerical integrators. Consider that the

Liouville operator can be written as a sum:iL = iL1 + iL2. The classical propagator can

then be rewritten using theTrotter Theorem:

eiLt = e(iL1+iL2)t = lim
P→∞

[
e

iL2t/2P e
iL1t/P e

iL2t/2P
]P

(2.25)

†Non-Hamiltonian systems are dynamical systems which cannot be expressed in the form:

ṙ i =
∂H

∂pi

=
pi

mi

ṗi = −∂H

∂r i
= −∂U

∂r i
= Fi( r1, ..., rN ) (2.21)

whereU is the potential energy of the system.
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Defining t/P = ∆t for finite P , the following approximation can be made:

eiL∆t ≈ e
iL2∆t/2 eiL1∆t e

iL2∆t/2 +O(∆t3) (2.26)

For long times:

eiLP∆t ≈
P∏

k=1

e
iL2∆t/2 eiL1∆t e

iL2∆t/2 +O(t∆t2) (2.27)

which yields a numerical integration procedure accurate to the second order in the time

step.

For the Hamiltonian system of equation 2.23 the Liouville operator can be split into:

iL1 =
N∑

i=1

pi

mi

∂

∂r i

iL2 =
N∑

i=1

Fi
∂

∂pi

(2.28)

The operatorexp (iL2∆t/2) then becomes a translation operator on the momenta:

pi → pi + ∆t/2Fi(r). Similarly, eiL1∆t becomes a translation operator on the position:

r i → r i + ∆tpi/mi. Combining these two actions allows the action of equation 2.26 to be

expressed as the action ofexp (iL2∆t/2) followed by the action ofeiL1∆t finally followed

by that ofexp (iL2∆t/2). For the simple Hamiltonian case, this procedure actually yields

the Velocity Verlet algorithm presented in equation 2.17.

This procedure of translating each operator into an update step, which then can be di-

rectly turned into instructions for a computer, is called thedirect translation technique.4

Although seemingly trivial in the case of Hamiltonian systems it becomes very powerful

when facing non-Hamiltonian systems such as constant temperature or constant tempera-

ture/pressure algorithms. An important property of this technique is that it preserves the

invariant phase space measure. This property is known as thesimplectic property. The

significance of this property is that the error is bounded,i.e., there will be no secular

growth in the energy conservation error, provided the time step is not too large.

Another advantage of the present approach is that it can easily be extended to treat

systems with multiple time scale motions. The Liouville operator for such a system can

be split up into two parts:Lf containing either fast motions or motions which are unstable

and require careful integration andLs containing a relatively slow varying contribution to

the motion. Consideringn substeps for the motions inLf , Lf can be rewritten:

eiLf∆t =
(
eiLf ∆t/n

)n
(2.29)
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which combined with equation 2.26 gives a complete expression for the propagation op-

erator which can be written in two ways:

eiL∆t = eiLs∆t/2
(
eiLf ∆t/n

)n
eiLs∆t/2 (2.30)

eiL∆t =
(
eiLf ∆t/2n

)n
eiLs∆t

(
eiLf ∆t/2n

)n
(2.31)

In order to increase the accuracy of the algorithm higher order approximations of the

evolution operator can be used.5, 6 Instead of the Trotter approximation the following

approximation can be used:

eiL∆t =
n∏

i=1

eiL
wi∆t

n (2.32)

where thewi are a precise set of numbers depending on the order of the approximation

n. The values ofwi for n = 3 arew1 = w3 = 1

2−21/3 , w2 = 1 − 2w1. And for n = 5

thewi values are given by:w1 = w2 = w4 = w5 = 1

4−41/3 , w3 = 1 − 4w1. Using these

approximations the error goes asO(∆t/n
5).

This Liouville operator approach was used to integrate the equations of motion of the

Nośe-Hoover-Chain algorithm for the multiple heatbath approach, as will be presented in

chapter 4.

2.2 ANALYSIS OF MOLECULAR DYNAMICS TRAJECTO-

RIES

2.2.1 MEAN-SQUARE FLUCTUATIONS

There are many different possible ways of analyzing MD trajectories. Different quantities

can be calculated directly from the trajectories of the atoms in the system. Experimental

observables can be calculated and then compared to the values obtained experimentally.

Alternatively, it is also possible to calculate quantities inaccessible to experiments which

enable new ways of understanding the system under scrutiny. Experimental methods will

call on a whole range of observables specific to the technique: particular rates, scattering

patterns, dynamical properties...

One such quantity commonly used is the atomic Mean-Square Deviation (MSD). It

can be compared to results obtained using neutron scattering and give general information

about the amount of motion present in the system. The MSD is defined as:

MSD =
1

N

N∑
i=1

〈(r i − r 0
i

)2〉 (2.33)
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wherer i is the position of atomi, r 0
i the starting position of atomi, N the number of

atoms and an average is made over a time interval∆t (for neutron scattering one might

choose∆t = 200 ps as a meaningful value). Closely related to the MSD is the mass

weighted MSD which will be used in this thesis when performing principal component

analysis. The mass weighted MSD is defined as:

MSD =
1

N

N∑
i=1

mi

(
r i − r 0

i

)2〉 (2.34)

wheremi is the mass of atomi.

Another closely related quantity is the Mean-Square Fluctuations (MSF). The MSF is

defined as:

MSF =
1

N

N∑
i=1

〈(r i − rm
i )2〉 (2.35)

whererm
i is the mean position of atomi and the average is again taken over a time interval

∆t. In practice MSD and MSF are identical since when calculating the MSD several

starting valuesr 0
i will be taken in order to obtain better statistics, this, in effect, amounts

to using the average positionrm
i , i.e., calculating the MSF. In this work the terms MSD

and MSF will therefore be used interchangeably.

2.2.2 COMPARISON WITH EXPERIMENTAL DATA FROM NEUTRON

SCATTERING

In order to compare MD trajectories with neutron scattering experiments more elaborate

calculations can be performed. From the atomic trajectories it is possible to calculate

the scattering intensity of the sample were the neutron experiment to be performed. This

calculation uses information about the way the individual atoms scatter neutrons and av-

erages it out over the time period of the simulation and the different atoms present in

the system (although hydrogen atoms dominate the signal). Section 2.3 will present the

equations which describe neutron scattering.

In calculating neutron scattering intensities one is in a unique position to validate the

model used to perform the simulation. Neutron scattering yields critical information about

the frequencies of the motion present in the system which gives a good measure of the

accuracy of the model.
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2.2.3 PRINCIPAL COMPONENT ANALYSIS AND NORMAL MODES

ANALYSIS OF THE DYNAMICAL TRANSITION

Another powerful way of analyzing MD trajectories is Principal Component Analysis.

PCA is a convenient method for representing the conformational space explored in an

MD trajectory and has no experimental counterpart. PCA determines the essential mo-

tions present in the simulation: the principal component modes. The set of principal com-

ponents is defined as the solution to the eigenvalue problem of the second-moment matrix,

A, of the mass-weighted internal atomic displacements. The diagonalization ofA yields

the eigenvectorsWk, i.e., the principal components and their associated eigenvalues,ζk.

The mathematical details are given in chapter 6

Normal modes are closely related to principal component modes, and are calculated

by diagonalizing the Hessian matrix: the second derivative matrix of the potential energy

function. Normal Mode Analysis is widely used to investigate domain motions in pro-

tein.7 It has been used to look at low-frequency motions in proteins.8 It has also been

used in X-ray refinement9–11 and NMR refinement12 and in combination with PCA to

investigate protein motions.13–17

Normal modes analysis relies on the assumption that the protein energy landscape can

be considered harmonic, this assumption has been shown to be good enough for many

purposes. However, it is known that hydration damps the low frequency modes, thereby

introducing diffusive motions. In this regime the harmonic assumption does not hold.

Principal Component Analysis does not suffer from this limitations. PCA has been used

to investigated diffusive motions in proteins,18–20 and interdomain motions.21, 22 PCA is

also useful in studying the conformational space explored by a protein23 and the shape

of this conformational space.24 Current research is being performed to analyze the way

energy propagates between protein dynamical modes of motion.25–28

2.3 NEUTRON SCATTERING EXPERIMENTS

2.3.1 NEUTRON SCATTERING THEORY BACKGROUND

Neutron scattering is a very valuable experimental method for studying protein dynamics.

Thermal neutrons have the interesting property that they are especially sensitive to slow,

thermal motions. Another advantage of neutron scattering is that neutron, being electro-

statically neutral, only interact with the nuclei of the system and electrostatics need not

be take into consideration. Neutrons are especially sensitive to hydrogen nuclei (a single

proton) for which they have a very large scattering cross section, 10 times greater than for
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any other nuclei. Using selective deuteration thus allows to focus on the interesting parts

of the system, for example the protein.

Neutrons can be used in either of two ways: for spectroscopic measurements, using

elastic and inelastic scattering to give dynamical information. They can also be used in

crystallographic measurements, using elastic scattering on protein crystals to get struc-

tural information. In the present work, the experiment performed aimed at gaining insight

into the dynamics of the system. Therefore the crystallographic methods will not be cov-

ered here.

DERIVATION OF THE SCATTERING EQUATIONS

This section presents a simple way of deriving the neutron scattering equations. For a

more elaborate and in depth discussion, the reader is referred to the standard textbooks by

M. Bée29 and W.Marshall & S.W. Lovesey.30

Let us start from the probability per unit time of a change in the total system from the

initial state|kn〉|ks〉 to the final state|k′
n〉|k′

s〉:

Wknk′
nksk′

s
=

2π

�
|〈ks|〈kn|Hc|k′

n〉k′
s〉|2 δ(∆Es −∆En) (2.36)

where the subscriptss andn stands for the sample and the neutron respectively. The

probability of change in the state of the neutron is then given by:

Wknk′
n

=
1

Z

∑
ks,k′

s

Wknk′
nksk′

s
e−βE′

s (2.37)

The dependence on the initial and final state of the neutron can be removed by using the

operator:

Hc = 〈kn|Hc|k′
n〉 (2.38)

which acts on the states of the sample only. Equation 2.36 can then be rewritten:

Wknk′
n

=
2π

�2Z

∑
ksk′

s

e−βE′
s |〈ks|Hc|k′

s〉|2 δ(ωs − ω) (2.39)

where

�ω = E ′
n − En

and

�ωs = E ′
s − Es

57



CHAPTER 2: METHODS

The Kröniker delta can be written as an integral:

δ(ωa − ω)→ 1

2π

∫ ∞

−∞
ei(ωa−ω)t dt (2.40)

In the Heisenberg representation the Hamiltonian operator can be expressed as:

Hc(t) = eiωst Hc(0) eiω′
at (2.41)

So that part of equation 2.39 can be rewritten:

∑
ksk′

s

e−βE′
s|〈ks|Hc|k′

s〉|2 =
∑
ka

e−βE′
s〈ks|Hc(0)Hc(t)|ka〉

= 〈Hc(0)Hc(t)〉 (2.42)

which is simply the self correlation function of the Hamiltonian operator. The probability

Wknk′
n

of equation 2.39 is then:

Wknk′
n

=
1

�2

∫ ∞

−∞
〈Hc(0)Hc(t)〉eiωt dt (2.43)

At this stage, a simple ’collision’ energy function is introduced for the interaction poten-

tial in the Hamiltonian:

Hc =
2π�

2

m

∑
i

biδ(r − r i) (2.44)

where the summation is over the different atoms typesi, at positionsr i , each with scat-

tering lengthsbi, r being the position of the neutron. The scattering lengths,bi depend on

the spin states of the nucleii and also takes into account the different nuclear isotopes.

For a given nuclear species the scattering lengths and cross section are defined as†:

Scattering lengths Scattering cross sections

bcoh = 〈bs〉 σcoh = 4π〈bs〉2
binc = (〈b2

s〉 − 〈bs〉2)1/2
σinc = 4π (〈b2

s〉 − 〈bs〉2)

where the subscripts spans the possible spin states and isotopes of a given atomic species.

†Assuming a current ofI0 neutrons per second and per square centimetre incident on the sample,Is and
Ia, the number of scattering and absorption event occurring each second is defined in terms of the scattering
and absorption cross sectionsσs andσa by:

Is = I0σs

Ia = I0σa

σs andσa have dimension of surfaces. Their usual unit is the barn: 1 barn =10−24 cm2, and at low energies
are roughly proportional to the neutron incident wavelength.
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For a change in the neutron statekn → k′
n, the Hamiltonian is then written:

Hc = 〈kn|Hc|k′
n〉

=
2π�

2

m

∑
i

bi exp(iq · r i) (2.45)

where the neutron-wavevector transfer has been introduced:

q = k′
n − kn

Therefore:

〈Hc(0)Hc(t)〉 =

(
2π�

2

m

)2 ∑
i,j

〈bibj exp(iq · r i(t)) exp(−iq · r j(0))〉 (2.46)

Finally the probability that a neutron leaves the sample in a solid angledΩ and with

an energy exchangedω can be written:

∂2σ

∂Ω∂ω
=

k′
n

kn

1

2π

∑
i,j

bibj

∫ ∞

−∞
〈exp(iq · r i(t)) exp(−iq · r j(0))〉 e−iωt dt (2.47)

2.3.2 SCATTERING FROM HYDROGENOUS COMPOUNDS

The intensity expressed in equation 2.47 can be split into two parts as:

∂2σ

∂Ω∂ω
=

(
∂2σ

∂Ω∂ω

)
coh

+

(
∂2σ

∂Ω∂ω

)
inc

(2.48)

the two parts on the r.h.s corresponding to the coherent and incoherent scattering re-

spectively. Equation 2.47 describes the scattering from a sample with different types of

atoms. Actually we are only concerned with scattering from hydrogenous compounds

where the most common isotope is hydrogen. Hydrogen has a scattering cross section

σ = 81.66 barns more than 10 times greater than any other scattering cross section

among organic compounds. The incoherent scattering cross section of hydrogen being

σinc = 79.9 barns compared toσcoh = 1.75 barns for the coherent scattering cross sec-

tion, such that the overwhelming majority comes from hydrogen incoherent scattering.

With only one isotope the equations become much more tractable:

∂2σ

∂Ω∂ω
=

1

4πN

k′
n

kn

[σcohScoh(q, ω) + σincSinc(q, ω)] (2.49)
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The scattering functions (or scattering laws),Scoh(q, ω), and,Sinc(q, ω), are time-Fourier

transforms of the intermediate scattering functions:

Scoh(q, ω) =
1

2π

∫ ∞

−∞
Icoh(q, ω)eiωt dt (2.50)

and

Sinc(q, ω) =
1

2π

∫ ∞

−∞
Iinc(q, ω)eiωt dt (2.51)

with the intermediate functions themselves being inverse space-Fourier transforms of a

pair-correlation and self-correlation function respectively:

Icoh(q, t) =
1

N

∑
i

∑
j

〈exp(iq · r i(t)) exp(−iq · r j(0))〉 (2.52)

Gpair(q, t) =
1

(2π)3

∫
Icoh(q, t) exp(−iq · r)dq (2.53)

and

Iinc(q, t) =
1

N

∑
i

〈exp(iq · r i(t)) exp(−iq · r i(0))〉 (2.54)

Gself (q, t) =
1

(2π)3

∫
Iinc(q, t) exp(−iq · r)dq (2.55)

where:

Gpair(r , t) =
1

N

∑
i

∑
j

∫
〈δ(r − r ′ + r i(0))δ(r ′ − r j(t))〉dr ′ (2.56)

and

Gself (r , t) =
1

N

∑
i

∫
〈δ(r − r ′ + r i(0))δ(r ′ − r i(t))〉dr ′ (2.57)

The entire scheme can be summarized the following way:

Scoh(q, ω)
time
FT⇐= Icoh(q, t)

space
FT=⇒ Gpair(r , t) (2.58)

Sinc(q, ω)
time
FT⇐= Iinc(q, t)

space
FT=⇒ Gself (r , t) (2.59)

2.3.3 GAUSSIAN APPROXIMATION: OBTAINING MEAN -SQUARE

FLUCTUATIONS

Neutron scattering data yields useful information about the dynamics of the system. The

mean-square fluctuation,〈u2〉 of the protein atoms can be extracted from neutron scatter-

ing data through the so-called gaussian approximation which will now be presented. For
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a more complete discussion of the way the MSF is calculated and of the approximation

being made, the reader is referred to the study by J. Haywardet al 200231 and references

therein.

The mean-square displacement of an atomi, 〈u2
i 〉 is defined as:

〈u2
i 〉 = 〈(r i − rm

i )2〉 (2.60)

wherer i is the position of atomi andrm
i its mean position, and the average is taken over

time.

To obtain a value for the MSF,〈u2〉 of the whole protein one starts from the incoherent

intermediate scattering functionIinc(q, t) of equation 2.54 and make use of the cumulant

expansion:

Iinc(q, t) =
1

N

∑
i

b2
i 〈exp(iq · r i(t)) exp(−iq · r i(0))〉 (2.61)

=
1

N

∑
i

b2
i exp

(
−1

2
〈[q · (r i(t)− r i(0))]2〉 ± ...

)
(2.62)

Neglecting higher order terms, and integrating over allq directions,Iinc(q, t), can be

rewritten:

Iinc(q, t) =
1

N

∑
i

b2
i exp

(
−q2

6
〈(r i(t)− r i(0))2〉

)
(2.63)

For harmonic motions and restricted motion such as those found in proteins, the long time

limit is taken and the incoherent scattering function,Sinc, can be expressed as:

Sinc(q, ω = 0) =
1

N

∑
i

b2
i exp

(
−q2

6
〈u2

i 〉
)

(2.64)

Assuming all atoms appearing in the summation of equation?? to be identical hydrogen

atoms undergoing similar harmonic motions, the gaussians in equation??can be approx-

imated by a single gaussian.Sinc(q, ω = 0) can be then rewritten:

Sinc(q, ω = 0) = b2 exp

(
−q2

6
〈u2〉

)
(2.65)

such that the protein MSF,〈u2〉 can be obtained from neutron scattering data using the

following equation:

ln Sinc(q, ω = 0) = −q2

6
〈u2〉+ C (2.66)

whereC is a constant independent ofq.

The above calculations of the mean-square fluctuations rely on a number of non trivial
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assumptions:

- Low q values: The approximations made in order to obtain equation 2.66 are only

valid for smallq values. However owing to the sparsity of the data, one often has

to resort to using values ofq2 up to∼ 1.4 Å2 which is the limit of validity of the

approximation.

- Long time limit : in going from equation 2.63 to equation 2.64 the long time limit is

taken. In practice the instruments have a finite energy resolution which mean they

are sensitive to only a certain time range (∼200 ps for IN6,∼5 ns for IN16)32 so

that the values obtained are instrument dependent as was seen in the introduction,

section:1.1.2.

- Similarity of motion : all contributions are considered to be coming from hydrogen

atoms, and these hydrogens are considered to have identical motions. This assumed

similarity of motion has been put under question.31

To summarize, the procedure to obtain mean square fluctuations using equation 2.66

is subject to many limitations. However, it does give us a useful measure of the dynamics

in the protein system. The different approximations made have been shown to result in

〈u2〉 being under-estimate by as much as 30%.31

Another of obtaining is the mean-square fluctuations of the protein,〈u2〉 is directly

from the integrated peak intensity. This approach has the advantage that it does not rely

on fitting low q region of the scattering the data this being often a difficult task owing to

the noise in the data. This simpler approach uses the statistically stronger integrated peak

intensities to calculate the〈u2〉. These are calculated in the following way:

Sinc(q) = b2 exp

(
−q2

6
〈u2〉

)
(2.67)

Integration over the lowq region is performed via a simple summation over the

Sinc(qi)’s:

∑
i

Sinc(qi) =
∑

i

b2 exp

(
−q2

i

6
〈u2〉

)
(2.68)

= C −
∑

i

b2 q2
i

6
〈u2〉+ (2.69)

such that:

〈u2〉 = C − 6

b2
∑

i q
2
i

∑
i

Sinc(q
2
i ) (2.70)
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Setting〈u2〉 = 0 at low temperature,〈u2〉 is obtained directly from the integrated elastic

peak intensities.

〈u2〉 = 1− 6

b2
∑

i q
2
i

∑
i

Sinc(q
2
i ) (2.71)

This procedure was used to determined the〈u2〉 from the neutron experiments in chap-

ter 7.
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INTRODUCTION

This chapter describes the protein myoglobin which was used for the Nosé-Hoover, Nośe-

Hoover-Chain simulations, as well as for performing the principal component analysis.

The way the system was setup and relaxed is described.

3.1 MYOGLOBIN

The simulations were performed on the protein Myoglobin. Myoglobin is a monomeric

heme protein found mainly in muscle tissue where it serves as an intracellular storage

site for oxygen. During periods of oxygen deprivation oxymyoglobin releases its bound

oxygen which is then used for metabolic purposes. The tertiary structure of myoglobin is

that of a typical water soluble globular protein. Its secondary structure is unusual in that

it contains a very high proportion (75%) ofα-helical secondary structure. A myoglobin

polypeptide is comprised of 8 separate right handed a-helices, designated A through H,

that are connected by short non helical regions. Each myoglobin molecule contains one

heme group inserted into a hydrophobic cleft in the protein. Each heme residue contains
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Figure 3.1: The protein myoglobin in a ’cartoon’ representation showing the 8 he-
lices, the heme group and the carbon-monoxide bound to it.

one central coordinately bound iron atom that is normally in the Fe2+, or ferrous, oxi-

dation state. The oxygen carried by hemeproteins is bound directly to the ferrous iron

atom of the heme prosthetic group. Oxidation of the iron to the Fe3+, ferric, oxidation

state renders the molecule incapable of normal oxygen binding. Carbon monoxide also

binds to heme iron atoms in a manner similar to that of oxygen, but the binding of carbon

monoxide to the heme group is much stronger than that of oxygen. The preferential bind-

ing of carbon monoxide to the heme iron is largely responsible for the asphyxiation that

results from carbon monoxide poisoning.

3.2 SIMULATION SYSTEM AND PARAMETERS

†The myoglobin structure used is actually that of carbonmonoxide-myoglobin or CO-Mb. The presence
of carbon monoxide in the heme pocket is not thought to influence the system’s dynamics to any degree.
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The model consists of one myoglobin molecule† surrounded by a shell of water molecules,

constructed by placing the protein in a box of water and retaining those 492 waters closest

to the protein.† The model system mimics the hydrated powder sample used in neutron

scattering experiments in Dosteret al 1989.2 The myoglobin coordinates were taken from

the Protein Data Bank3 (from the RCSB site: www.rscb.org) structure 1A6G,4 solved at

1.15Å resolution using X-ray crystallography.

The CHARMM package version 27b2 was used to perform the simulations.5 The

TIP3P potential function was used to represent the water molecules.6 The all-atom pa-

rameter set 22 was used throughout the simulations.7 A shift function with a 12Å cutoff

was used to truncate the electrostatic interactions and a switch function was used to trun-

cate the van der Waals contributions over 10-12Å‡. A relative dielectric constant of 1

was used. A time step of 1 fs was used.

3.3 SYSTEM RELAXATION

In order to relax the system the following calculations were sequentially performed:

- 200 steps of minimization using Steepest Descent (SD) with harmonic constraints on the

protein of10 kcal mol−1Å−2.

- 200 steps of minimization (SD) with harmonic constraints on the protein of

1 kcal mol−1Å−2.

- 5 ps heating phase up to 180 K by increments of 5 K every 50 steps, fixing the protein

atoms.

- 5 ps equilibration at 180 K with harmonic constraints on the protein of1 kcal mol−1Å−2.

- 5 ps equilibration at 180 K without constraints.

†The model system constructed and the potential function used were that of Vitkupet al 2000, as much
as was made possible from the detail published and personal communications.1

‡Van der Waals and electrostatic interactions exist between every pair of atoms in the system, the number
of interaction to be calculated thus goes asN2, N being the number of atoms in the system. However, this
might include pairs of atoms so far away from each other that their interaction is negligible. To save
computation time, apair list is determined of pairs of atoms in sufficiently close proximity that their
interaction is significant (the maximum distance is usually of the order of15Å). The interaction energies are
then only calculated for the pairs of atoms present in the list, thereby gaining considerable computation time.
The list is periodically updated during the simulation so as to make sure all atom-pairs whose interactions
should be taken into account are indeed present in the list.

Using such a list in effect introduces a cutoff in the electrostatics. The abruptness of this cutoff can lead to
spurious results when a charged atoms is at the limit of the cutoff. To avoid this, two schemes can be used:
theshift cutoff in which the electrostatic potential is shifted so as to equal to zero at the cutoff distance. The
second is theswitch scheme, it introduces a switching region in which the electrostatic potential is replaced
by a switch function (sigmoidal function) which links the non interacting region with the interacting region
in a continuous way.
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- 200 steps of minimization using Steepest Descent (SD).

- 100 steps of minimization Adopted Basis Newton-Raphson (ABNR).5

After relaxation the system was considered ready for simulations. The relaxed system

was then used as starting point for the MD simulations presented in the next chapters.
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4.3 Instabilities in Nośe-Hoover algorithm: the Toda demon . . . . . . . 72

4.3.1 Initial results . .. . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 The Toda demon oscillations .. . . . . . . . . . . . . . . . . . 72

4.4 New implementation of the algorithm . . . . . . . . . . . . . . . . . 75
4.5 Reproduction of previous results . .. . . . . . . . . . . . . . . . . . 75
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

INTRODUCTION

In this chapter the simulations performed by Vitkupet al 20001 are reproduced. In at-

tempting to do so problems occured in the simulations, these problems took the form of

unphysical temperature oscillations in the system. In order to overcome this problem a

different implementation of the algorithm was made. The results thus obtained are com-

pared to the previous results. Some previous conclusions made from the results of Vitkup

et al 20001 are shown to be incorrect.

4.1 PRINCIPLE OF THE MULTIPLE HEATBATH METHOD

The idea of the multiple heatbath approach is in essence very simple: one part of the sim-

ulation system, the protein say, is set to a temperatureTp while another part, the solvent
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say, is set at another temperatureTs. Relatively modest modifications to the temperature

regulation algorithms allow this type of simulations to be performed. Of course such a

scheme is unphysical and no pretence as to its physicality is made.

The motivation behind such a scheme is to be able to investigate the motions of one

part of the system, here the protein, and show the influence the other part, here the solvent,

has on it. The dynamics of the two parts usually remain very much interconnected and

it is very difficult to determine the origin of certain measured properties. The multiple

heatbath scheme offers the possibility of dissociating the contribution to the dynamics

of the system coming from both parts of the system. Figure 4.1 illustrates the way the

Nośe-Hoover algorithm functions.

Protein Solvent

Heatbath 1 Heatbath 2

TsTp

Figure 4.1: Schematic representation of the way the Nosé-Hoover algorithm func-
tions. Two parts of the system (in this case the protein and its solvent) are each
connected to a different heatbath so as to be regulated at their different temperatures:
Tp andTs.

4.2 SIMULATION PROTOCOL

The multiple heatbath approach was first used by Vitkupet al in 2000.1 Following their

study, a coupling constant of200 kcal mol−1ps−2 was used for the Nosé-Hoover algo-

rithm, together with a tolerance of10−10 kcal mol−1 and a maximum of 10 cycles for

convergence of the predictor-corrector method.

Following the procedure used in the previous study, temperatures of 180 K and 300 K

were used in different combinations: Protein Cold / Solvent Cold (PC/SC), Protein Cold

/ Solvent Hot (PC/SH), Protein Hot / Solvent Cold (PH/SC) and Protein Hot / Solvent
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Hot (PH/SH). Two simulation protocols were used (Methods 1 and 2). The simulation

protocols are divided into three sequential stages:

1. System relaxation

2. System preparation

3. Nośe-Hoover simulation

The system relaxation and Nosé-Hoover simulation stages were the same for both meth-

ods. The two methods differ in the system preparation stage of the simulation protocol.

The system relaxation was performed as described in the previous chapter.

METHOD 1

Method 1 resembles as closely as was practically possible the protocol used in Ref. 1.

Personal communication established that in the work in Ref.1 a 3 ps to 5 psheating

phase to 300 K in 5 K increments was used. This was therefore adopted in Method 1.

METHOD 2

Method 2 avoids the instantaneous temperature reduction of the protein from 300 K to

180 K present in the protein cold simulations at the beginning of the third (i.e., Nosé-

Hoover simulation) stage of Method 1. The system was heated during 3 ps to the tem-

perature the protein was to have during the Nosé-Hoover run,i.e., 180 K for PC/SC,

PC/SH and 300 K for PH/SC and PH/SH. The system was subsequently equilibrated at

that temperature during 50 ps.

The Nośe-Hoover simulation stage was the same for all simulations and follows the

protocol used in Ref. 1. The Nosé-Hoover thermostat was turned on, setting the protein

and the solvent at their respective chosen temperatures. In all methods 50 ps of equilibra-

tion were performed followed by 100 ps for the production run.

The simulation model and force field used in the present work (Methods 1 and 2) and

in Ref. 1 are the same. Consequently, any differences in the results depend on the method

of system preparation. The question therefore arises as to which preparation method

is most suitable. Methods that equilibrate the system at the temperature at which the

protein will be fixed during the Nosé-Hoover run (e.g. Method 2, here) may be the least

perturbative. These methods avoid the instantaneous reduction of the protein temperature

from 300 K to 180 K that was present in Ref. 1 and in the closely analogous Method 1

simulation here.
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The mean-square fluctuations of the protein,〈u2〉, were calculated from the 100 ps

production runs and compared with each other. Errors in〈u2〉 were estimated by calcu-

lating the standard error for the〈u2〉 in 10 bins along the 100 ps of the production runs.

4.3 INSTABILITIES IN NOSÉ-HOOVER ALGORITHM: THE

TODA DEMON

4.3.1 INITIAL RESULTS

When first trying out the Nośe-Hoover algorithm present in the CHARMM package,2

great difficulty was encountered in getting the system to behave in a stable enough man-

ner, fit for subsequent analysis. Figure 4.2 shows typical runs obtained when running the

algorithm making best use of the available information. The PC/SC run is clearly unstable

and would often simply break down due to overflow problems in the CHARMM internal

variables. Other runs such as PC/SH and PH/SH although less prone to instability still

showed intermittent signs of undesirable instabilities.

4.3.2 THE TODA DEMON OSCILLATIONS

On the way towards finding a solution to these instabilities it was discovered that the

Nośe-Hoover algorithm is known to be subject to instability.3 These instabilities known

as Toda demon appear in the form of unphysical oscillations in the temperature of the

system (see for example figure 4.2-PC/SC).

An initial analysis of the trajectory through Fourier Transform showed the frequency

of the oscillations to be well defined, thus the presence of the Toda demon problem was

considered a definite possibility.
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The Toda oscillations appear in the following way (from Holain 19953). The rate of

change of the internal energy of the atoms in the system can be related to the heat flow

into the system from the thermal bath in the following way (cf equation 2.9):

E =
∑

i

1

2
miv2

i + V (r)

Ė =
∑

i

mivi · v̇i +
∑

i

∂V

∂r i

· vi

=
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i

vi · (Fi −mi
pη

Q
vi −

∑
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Fi · vi

= −pη

Q

∑
i

miv2
i

= −pη

Q
dNkT (4.1)

Now, suppose that the average be taken over the high-frequency oscillations in the

system; then, the internal energy can be decomposed into the zero-temperature potential

energy,V0, and the thermal part, given by the heat capacity times the temperature:

E0 = V0 + CvT

Ė0 = CvṪ (4.2)

where the bar over the symbols indicates coarse grained averaging over roughly on vibra-

tional period. Now considering that the temperature is not stable atT0 but can oscillate

around it, and using the fact that in most condensed-phase systems,Cv ≈ dNk, equations

4.1 and 4.2 can be combined as:

CvṪ = −pη

Q
dNkT =⇒ Ṫ

T
=

pη

Q
(4.3)

At this stage a collective variable,q for the system, is introduced:

q = − ln
T

T0

=⇒ T

T0

= e−q

ṙ = − Ṫ

T
=

pη

Q
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1

Q
ṗη
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such that, to first order approximation:
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Figure 4.2: Typical temperature trajectories during production runs obtained using
the Nośe-Hoover algorithm, as found in the previous implementation. The protein
temperature is represented in black, the solvent temperature in red.

q̈ = −ω2q (4.4)

where the fundamental harmonic frequency of oscillation of this pseudoparticle is given

by:

ω =

√
dNkT0

Q
(4.5)
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The best way to prevent this type of unwanted oscillation is to chooseQ in a way such

that the fundamental frequency of oscillationω matches a fundamental frequency of the

system. For condensed phase systems such as the present one, a suitable frequency is

∼2 ps.

These oscillations are due to temperature oscillations building up between the system

and its heatbath. A more robust way out of this problem is to use a heatbath chain, in

this setup an extra heatbath is added which regulates the first heatbath thus preventing any

oscillations from building up between the system and the first heatbath. This scheme will

be introduced in greater detail in the next chapter along with the results obtained using it.

4.4 NEW IMPLEMENTATION OF THE ALGORITHM

Having discovered this possible solution to the Toda problem, it was decided to implement

the Nośe-Hoover-Chain algorithm in the CHARMM package. A detailed description of

this algorithm is given in chapter 5.

Having implemented the Nosé-Hoover-Chain the presence of some residual unwanted

oscillations in the temperature was still noticed. The presence of these oscillations was

found to be dependent on the timestep used. In an attempt to remedy this, multiple

timesteps and Yoshida-Suzuki steps where implemented thereby increasing the accuracy

of the algorithm (cf. section 2.1.4). However some unwanted oscillation and instabili-

ties remaind nevertheless. After a wild and epic hunt through the code, a few mistakes

were found in the previous implementation, in particular the keyword ’NTRFRQ’ which

is commonly used to remove any drift or rotation of the system about its axis was found

to also perform a full reset of the NH/NHC internal variables thereby creating unwanted

oscillations. This was fixed and the multiple timesteps and Yoshida-Suzuki steps were

found to be very effective in stabilizing the system. The temperature trajectories where

then suitably stable, as can be seen in figure 4.3

4.5 REPRODUCTION OF PREVIOUS RESULTS

In order to compare with the previous results obtained using the Nosé-Hoover algorithm,

the Nośe-Hoover-Chain was reduced to chains with only one heatbath thereby effectively

reducing it to the Nośe-Hoover algorithm.

The protein〈u2〉 results for Methods 1 and 2, described in the previous chapter, are

presented in Table 4.1. Comparison of the〈u2〉 obtained for PC/SC and PH/SC with

those obtained for the hot solvent simulations indicate that the cold solvent has a distinct

caging effect on the protein atoms. This effect is significantly stronger using Method 2, as
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Figure 4.3: Typical temperature trajectories during production runs obtained using
the Nośe-Hoover newly implemented algorithm. The protein temperature is repre-
sented in black, the solvent temperature in red.

can be deduced from the fact that the ratio of the backbone (and, in brackets, side-chain)

atom fluctuations of PH/SC to those of PC/SC is 1.49 (1.5) in Method 1 and 1.28 (1.18)

in Method 2, and that the ratio of the backbone atom fluctuations of PH/SH to those of

PC/SC is 2.68 (3.0) in Method 1 and 3.28 (3.45) in Method 2. Comparing PC/SH with

PC/SC shows that in both Methods 1 and 2 an effect of hot solvent is to double the protein

〈u2〉. This remarkable result agrees with that found in Ref. 1.

Of particular interest is the question as to what fraction of the PH/SH fluctuations can

be obtained by heating only the solvent (i.e. in PC/SH). The data obtained using both

76
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methods (Method 1 and Method 2) shows the〈u2〉 from PC/SH to lie between PC/SC

and the PH/SH. One measure of the effect of the solvent on the high temperature protein

fluctuations is given by:

S =
〈u2〉PC/SH − 〈u2〉PC/SC

〈u2〉PH/SH − 〈u2〉PC/SC

(4.6)

If solvent were to drive the high temperature protein fluctuations S should approach 1.0.

For the backbone (and, in brackets, side-chain) atoms S is 0.55 (0.50) for Method 1 and

0.37 (0.37) for Method 2. These compare with higher values of 0.64 (0.65) obtained in

Ref. 1. For comparison, table 4.2 presents the results obtained using the Nosé-Hoover-

Table 4.1: Comparison of the〈u2〉 results obtained using Methods 1 and 2

PC/SC PC/SH PH/SC PH/SH
Meth 1 Meth 2 Meth 1 Meth 2 Meth 1 Meth 2 Meth 1 Meth 2

〈u2〉 backbone 0.067 0.07 0.13 0.13 0.10 0.09 0.18 0.23
atoms (̊A2) ±0 .003 ±0 .007 ±0 .01 ±0 .012 ±0 .005 ±0 .007 ±0 .01 ±0 .03
〈u2〉 non-H 0.10 0.11 0.20 0.21 0.15 0.13 0.30 0.38
atoms (̊A2) ±0 .005 ±0 .009 ±0 .019 ±0 .018 ±0 .009 ±0 .012 ±0 .03 ±0 .05

Chain dual heatbath algorithm (results taken from the Nosé-Hoover-Chain simulation

presented in the next chapter). The results are very similar to the ones obtained using

methods 1 & 2. The corresponding S value is 0.35 (0.31), which is even lower than the

values obtained for methods 1 & 2, thereby showing again that the increase in protein

fluctuations is not dominated by the solvent.

Table 4.2: Comparison of the〈u2〉 results obtained using the Nosé-Hoover-
Chainalgorithm

PC/SC PC/SH PH/SC PH/SH
〈u2〉 backbone 0.077 0.13 0.10 0.23
atoms (̊A2) ±0 .007 ±0 .013 ±0 .01 ±0 .02
〈u2〉 non-H 0.11 0.20 0.16 0.40
atoms (̊A2) ±0 .010 ±0 .024 ±0 .019 ±0 .03

CONCLUSION

Nośe-Hoover dual heatbath molecular dynamics simulations were performed to investi-

gate solvent effects on fast (picosecond timescale) internal protein dynamics. Two main

results are seen

(i) Low temperature solvent cages the protein fluctuations.
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(ii) Heating the solvent while keeping the protein cold drives the protein fluctuations to

values intermediate between those in the fully cold and fully hot systems.

The present Nośe-Hoover results thus confirm, in accord with Refs 4 and 1, that solvent

strongly influences the dynamical transition in proteins. However, there is no clear evi-

dence from the present work that, in the hydrated myoglobin system, the high-temperature

protein fluctuations are dominated by the solvent - rather, both the protein and the solvent

contribute.

The results presented in this chapter have been published inFaraday Discussions.5

REFERENCES

[1] V ITKUP, D., RINGE, D., PETSKO, G. A., AND KARPLUS, M. Solvent mobility and the protein ’glass’
transition.Nat. Struct. Biol., 2000,7(1), 34–8.

[2] BROOKS, B. R., BRUCCOLERI, R. E., OLAFSON, B. D., STATES, D. J., SWAMINATHAN , S., AND

KARPLUS, M. Charmm: A program for macromolecular energy, minimization and dynamics calcula-
tions. J. Comput. Biol., 1983,4(2), 187–217.

[3] HOLIAN , B. L., VOTER, A. F., AND RAVELO, R. Thermostatted molecular dynamics: How to avoid
the toda demon hidden in nose-hoover dynamics.Phys. Rev. E. Stat. Phys., 1995,52(3), 2338–2347.

[4] REAT, V., DUNN, R., FERRAND, M., FINNEY, J. L., DANIEL , R. M., AND SMITH , J. C. Solvent
dependence of dynamic transitions in protein solutions.Proc. Natl. Acad. Sci. U. S. A., 2000,97(18),
9961–6.

[5] TOURNIER, A. L., HUANG, D., SCHWARZL, S. M., FISCHER, S.,AND SMITH , J. C. Time-resolved
computational protein biochemistry: solvent effects on interactions, conformational transitions and
equilibrium fluctuations.Faraday Discuss, 2003,122, 243–51.

78



CHAPTER 5

MULTIPLE HEATBATH SIMULATIONS

CONTENTS
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
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INTRODUCTION

This chapter presents the results obtained from dual heatbath simulations performed using

the Nośe-Hoover-Chain thermostat. The Nosé-Hoover-Chain dual heatbath method is

described along with the simulation protocol used. The protein or the solvent were held

at 80 K, 180 K and 300 K while the temperature of the other component was varied from

80 K to 300 K. The effect of solvent on the protein dynamics is analyzed in detail through

comparison of the protein dynamics in the different setups. The diffusion properties of the

hydration layer are examined and compared with the dynamical properties of the protein.

The solvent is shown to undergo a glass transition at∼220 K which induces the protein

dynamical transition.
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5.1 PRINCIPLE OF THENOSÉ-HOOVER-CHAIN METHOD

The equations of motion for the Nosé-Hoover-chain temperature thermostating algorithm

are the following:1

ṙ i =
pi

mi

ṗi = Fi − pη1

Q1

pi

η̇k =
pηk

Qk

k = 1, ...M

ṗηk
= Gk −

pηk+1

Qηk+1

pηk
k = 1, ...M − 1

ṗηM
= GM (5.1)

with the thermostat forcesGk given by:

G1 =
∑

i

p2
i

mi

− dNkT

Gk =
p2

ηk−1

Qηk−1

− kT k = 2, ...,M (5.2)

η andpη are the thermostat position and momentum andT is the temperature at which

the given part of the system is to be regulated.N is the number of atoms in the system,

k Boltzmann’s constant andd the number of spatial dimensions. The parameterQk,

given byQk = dNkTτ 2
k , determines the time scale of the thermostat motion via the time

scale parameterτk, which should be chosen corresponding to a characteristic time scale

of the system.M is the number of thermostat in the chain, in the case whereM = 1,

the equations reduce to the Nosé-Hoover equations of equation 2.9. However, for these

equations of motion to reproduce the exact canonical distribution of temperature requires

M ≥ 2. For this reason and for reasons of computer efficiencyM was set to its minimal

value ofM = 2 in the present work.
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Figure 5.1: Schematic representation of the way the Nosé-Hoover-Chain algorithm
functions. Two parts of the system are each connected to a different heatbath chain
so as to be regulated at their different temperatures:Tp andTs.

For the multiple heatbath scheme, each part of the system is regulated by one such set

of equations and the total set of equations becomes:

ṙ i =
pi

mi

ṗi = Fi − pη1

Q1

pi

η̇k =
pηk

Qk

k = 1, 2

ṗη1 =
∑

i

p2
i

mi

− dNkT − pη2

Qη2

pη1

ṗη2 =
p2

η1

Qη1

− kT (5.3)

One such a set of equations is set for each part of the system: protein part, solvent

part and possibly more parts. Each part can thus be set at a particular temperature

Tprotein, Tsolvent.... The Nośe-Hoover-Chain method functions in that a first heatbath,pη1

regulates the systems while it is itself regulated bypη2 . Figure 5.1 shows a schematic

representation of how the Nosé-Hoover-Chain algorithm operates.

81



CHAPTER 5: MULTIPLE HEATBATH SIMULATIONS

The Nośe-Hoover-Chain algorithm with the extensions for multiple heatbath was im-

plemented into the CHARMM package. Extra features improving the stability of the

algorithm such as multiple timesteps and Yoshida-Suzuki steps were also implemented.

Details of the implementation are presented in Appendix II.

5.2 SIMULATION PROTOCOL

All Nosé-Hoover-Chain simulations were performed with the same protocol. The system

was heated to 180 K over 5 ps and in a further phase of heating the protein and solvent

were brought to their desired temperatures in 5 K increments every 200 fs and the system

was equilibrated for 20 ps. The subsequent production phase was 200 ps long for each

simulation and the data from this phase was used for the analysis.

Eight sets of simulations were performed. In six of these the protein or the solvent

temperature was held at 80, 180 or 300 K while varying the temperature of the other

component from 80 K to 300 K in 20 K steps below 140 K and 10 K steps above 140K.

In a seventh set of simulations the protein atoms were fixed and the solvent temperature

varied from 80 to 300 K. Finally, a ’control’ set of simulations was also performed with

the solvent and protein held at the same temperature. Each simulation required 8 hours

on 4 processors (800MHz) in a Linux cluster. The 100 simulations performed required

3200 hours of CPU.

NHC has the advantages over the original Nosé-Hoover algorithm2 that exact canon-

ical behavior is reproduced and the simulations are not prone to unphysical temperature

oscillations.3 The characteristic time for the thermostat motion adopted wasτ = 0.2 ps,

a value commonly used for condensed phase molecular systems. With the above method

the variation of the protein surface temperature was found not to exceed 10 degrees in

all simulations except those in which the solvent was held at 300K. For the solvent 300K

simulations it was found at low temperatures that there was a temperature gradient lead-

ing to significant heating of the protein surface, the most extreme case being a surface

heating of 40 degrees in the protein 80 K/solvent 300 K simulation. Although this surface

heating was found to not significantly alter the average fluctuation properties examined

here, an additional set of solvent 300 K simulations was performed with improved surface

temperature properties (see section 5.3.2).

5.3 MULTIPLE HEATBATH RESULTS

A control set of simulations was first performed where protein and solvent were set at the

same temperature in each simulation. The results are presented in figure 5.2, a clear transi-
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Figure 5.2: Mean-square fluctuations,〈u2〉, of the protein non-hydrogen atoms for
different sets of simulations.�, control set with protein and solvent at same temper-
ature,�, protein held at 80 K;•, solvent held at 80 K;�, protein held at 180 K;�,
solvent held at 180 K.

tion in mean-square deviation is visible at∼220 K. The dynamical transition in myoglobin

is well reproduced which then allows for comparison with other sets of simulations.

No instabilities were present in the simulations and the maximum root-mean-square

deviation of backbone heavy-atoms with respect to the crystallographic structure was

1.15Å, indicating that the protein structure remained stable.

5.3.1 SOLVENT CAGING OF PROTEIN DYNAMICS AT LOW TEMPERA-

TURES

In figure 5.2 are presented the protein fluctuations calculated from the control set of sim-

ulations together with those obtained by fixing the temperature of one component at a

temperature below the dynamical transition while varying the temperature of the other.

Fixing the solvent temperature at 80 K or 180 K suppresses the dynamical transition, the

protein〈u2〉 increasing linearly with temperature up to 300 K. Therefore, low temperature

solvent is seen to cage the protein dynamics, as has been previously seen.4

Figure 5.2 also shows that holding the protein temperature constant at 80 K or 180 K

and varying the solvent temperature also abolishes the dynamical transition behavior in
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the protein. This contrasts with the previous study by Vitkupet al 20004 in which it

was concluded that when the protein is held at 180 K but the solvent at 300 K then the

protein fluctuations are almost identical to those at 300 K.4 In summary, then, figure 5.2

demonstrates that holding either component at a low temperature suppresses the protein

dynamical transition.

5.3.2 ABSENCE OF DYNAMICAL TRANSITION FEATURE IN THE PRO-

TEIN ENERGY LANDSCAPE

Figure 5.3 shows the effect of holding the solvent above the transition temperature, at

300 K, while varying the temperature of the protein. Here due to increased instability

in the temperature regulation a third heatbath chain was introduced. Three shells were

used: the solvent, the protein surface (protein atoms less than2.5Å from any water atom)

and the rest of the protein. This led to a temperature stability of the surface residues of 2

degrees. Figure 5.3 presents the results from both sets of simulations.

The fluctuations in the improved set of simulations are reduced at low temperatures

compared to the previous set of simulations. Both sets show clearly that holding the

solvent temperature at 300 K leads to increased protein fluctuations at most temperatures

relative to the other simulation sets. However, neither set show a clear deviation from

linearity, i.e., no dynamical transition behavior is present when the solvent is hot.

5.3.3 PRESENCE OF A DYNAMICAL TRANSITION WHEN THE PROTEIN

IS HELD HOT

Figure 5.4 shows the results when holding the protein at 300 K and changing the solvent

temperature. Fixing the protein temperature at 300 K and varying the solvent temperature

recovers the dynamical transition behavior although at a slightly lower temperature than

in the control set at∼200 K.

Holding the solvent at 300 K removes the influence of the solvent on the dynamical

changes present in the protein as its temperature is changed. If the dynamical transition

feature is a intrinsic property of the protein energy landscape,i.e., a property of proteins as

biopolymers, one would expect it to persist when the solvent is held at a constant temper-

ature of 300 K. However, when the protein is held at 300 K, variations with temperature

in the sampled solvent landscape trigger the protein transition. These results indicate the

central role played by the solvent in the dynamical transition feature seen in hydrated

proteins.
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Figure 5.3: Mean-square fluctuations,〈u2〉, of the protein non-hydrogen atoms with
solvent held at 300 K. Two sets of simulation: in blue, the preliminary set with 2
heatbath chains and in green, the improved set with 3 heatbath chains.

Figure 5.4: Mean-square fluctuations,〈u2〉, of the protein non-hydrogen atoms with
the protein held at 300 K.
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Figure 5.5: Mean-square fluctuations,〈u2〉, of the protein side-chain heavy atoms for
5 different shells, each 4̊A thick (except for the inner shell (8̊A) and the outer shell
(6 Å)). The inset shows the difference in slope of line fitted below and above 220 K
as a function of distance from the protein centre of mass.

5.4 PROTEIN PARTS AFFECTED BY THE DYNAMICAL

TRANSITION

The above findings leads to the question of which part of the protein is activated during

the dynamical transition. Additional work performed by Jiancong Xu investigated the

different parts of the protein to find out which ones are affected by the dynamical tran-

sition. The dynamical transition feature of the following different classes of atoms from

the control set of simulations was analyzed:

- Hydrophobicvs hydrophilic.

- Secondary structure elements,i.e. the 8 helices.

- Side-chainsvs backbone atoms.

- 5 concentric shells centered around the protein center of mass.

Hydrophillic/hydrophobic parts of the protein did not show any difference in the way

they underwent the dynamical transition. Similarly no difference was found between the

different helical secondary structure elements. The side-chains and the back bone showed
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the same dynamical transition feature to be present at∼220 K, however the fluctuations

of the side-chains atoms were found to be∼2 times greater than those of the backbone

atoms.

Distance to the protein core proved to be a crucial factor it the dynamical transition

feature. In figure 5.5 are shown the side-chain fluctuations in the control simulations as a

function of distance from the protein center of mass. The dynamical transition is seen to

be most pronounced in the outer parts of the protein,i.e., those close to the solvent shell -

above the transition the outer shells exhibit both stronger fluctuations and a larger change

in gradient (inset to figure 5.5) than the inner atoms.

5.5 SOLVENT TRANSLATIONAL DIFFUSION AND

ROTATIONAL AUTOCORRELATION TIME

The previous results raise the question of which properties of the solvent are responsible

for the protein dynamical transition. To examine this the translational diffusion constant

and dipole rotational correlation times were calculated for the water molecules.

Figure 5.6 presents the solvent translational diffusion,Dtrans, as a function of tem-

perature†. A qualitative transition is present in the temperature dependence of the water

translational diffusion constant at the dynamical transition. If the diffusion behaves as an

activated process,i.e., follows an Arrhenius behavior:Dtrans ∝ e−α/T , then straight line

behavior in the inset figure 5.6 would be expected. What is seen is two regimes of linear

behavior, below and above the transition, involving a lowering of the effective activation

energy for water translational diffusion above the transition. This is true even when the

protein atoms are fixed, showing that this water transition is inherent to the solvent shell

and is independent of the protein dynamics. The linearDtrans versusT scale on fig-

ure 5.6 makes clear that above the transition the translational diffusion increases rapidly

with temperature.

Figure 5.7 compares the excess water translational diffusion constant,i.e., that over

and above the effective diffusion constant for harmonic motion with the excess mean-

square fluctuation of the protein (again, the excess over the harmonic part). The two

quantities vary nearly identically with temperature. Thus, water translational diffusion is

†Dtrans is calculated in the following way:

Dtrans = lim
∆t→∞

〈|r (∆t+t0)−r (t0)|2/6∆t〉t0 (5.4)

wherer(t) is the position of a water molecule oxygen atom at time interval∆t after an initial timet0. For
practical reasons∆t was set to 20 ps.Dtrans was calculated as the mean over 10 time intervals each 20 ps
long. The errors were estimated using the standard deviation over the 10 intervals.
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Figure 5.6: Translational diffusion constant,Dtrans, for different sets of simulations.
�, protein and solvent at the same temperature (control);�, protein fixed.Inset:the
same data plotted aslog Dtrans versus1/T . Straight line fits below and above 220 K
are also shown.

Figure 5.7: Excess mean-square fluctuations,〈u2〉E and excess water translational
diffusion constant,DE versus temperature,〈u2〉E is defined as〈u2〉 − 〈u2〉H where
〈u2〉H is the linear part of〈u2〉 obtained by fitting to the data below 220 K.DE

is calculated fromDtrans − DH whereDH is the linear part ofDtrans obtained
by fitting to the data below 220 K. All data calculated from the control simulations
(protein and solvent at the same temperature).
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Figure 5.8: Dipole rotational autocorrelation time on a logarithmic scale versus1/T .
�, protein and solvent at the same temperature (control);�, protein fixed;•, protein
held at 300 K.

seen to drive the protein dynamical transition.

Figure 5.8 presents the water dipole rotational autocorrelation time for the control set

of simulations as well as for the sets of simulation with the protein atoms held fixed and

the protein temperature held at 300 K‡. Figure 5.8 shows that the water dipole rotational

autocorrelation time undergoes no qualitative change through the dynamical transition -

this was also found when holding the protein fixed and holding the protein temperature

at 300 K. Thus the water rotational reorientation is completely decoupled from the tran-

sition in the translational diffusion seen in this simulation. In the control simulations

a small change in slope is seen suggesting a change in the rotational properties. How-

ever, this change is much smaller and less sharp than that seen for translational diffusion.

This decoupling of translational motion from reorientational properties is indicative of the

presence of a glass transition in the solvent.5

‡The dipole rotational autocorrelation time was calculated by fitting to the correlation function
〈cos(θ(t))〉 wherecos(θ(t)) denotes the scalar product of the corresponding dipole vectors of unit length
separated by a timet. The correlation time were calculated by fitting the correlation curves between 1.5
and 20ps with a stretched exponential function.
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CONCLUSION

The multiple heatbath technique is seen to be a very valuable simulation technique capa-

ble of discerning between dynamics inherent to the protein and dynamics induced by the

solvent. Using this technique the cold solvent,i.e., below the dynamical transition temper-

ature, was shown to cage protein dynamics, thereby preventing the dynamical transition

feature from appearing. Holding the protein cold was also seen to abolish dynamical

transition behavior. On the other hand myoglobin was shown not undergo any dynamical

transition in hot solvent demonstrating that the dynamical transition feature is not inher-

ent to the protein energy landscape. The hot protein does undergo a dynamical transition

when the temperature of the solvent is changed, showing the central role the solvent plays

in the protein dynamical transition.

The dynamical transition was shown to affect only the outer parts of the protein. The

surrounding solvent was shown to undergo a transition in its translational diffusion prop-

erties which strongly parallels the transition seen in the protein dynamics. The transition

in the solvent diffusion is decoupled from the rotational properties, indicating that the

solvent undergoes a glass transition at the protein dynamical transition. In conclusion,

the solvent transition from a glass to a liquid∼220 K is seen to be responsible for the

presence of the dynamical transition measured in protein dynamics at that temperature.

The results presented in this chapter have been published inBiophysical Journal.6 Pre-

liminary results from this chapter were published in the online journalPhysChemComm.7
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INTRODUCTION

This chapter presents the results obtained using principal component analysis on 1 ns

molecular dynamics trajectories of Mb-CO simulated over a range of temperatures from

80 K to 300 K. The free energy profiles along the principal modes were first calculated

and the anharmonicity of these modes then measured using theAnharmonicity factor and

theGaussian fit scores. The protein mean-square fluctuations were analyzed in terms of

the contributions from individual principal modes and their anharmonicity score. Finally

the role played by solvent in the protein dynamical transition was further investigated
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by looking at the dynamical transition behavior along individual principal modes. The

damping exerted by the solvent along the principal modes was also analyzed, confirming

the central role of the solvent in the protein dynamical transition.

6.1 PRINCIPAL COMPONENT ANALYSIS

6.1.1 PRINCIPAL COMPONENTS

PCA is a powerful method for analyzing the conformational space explored in an MD

trajectory.1–5 Principal mode analysis has found uses in X-ray refinement,6, 7 NMR re-

finement8 as well as many different types of simulation analysis.9–12 PCA determines the

essential motions present in the simulation: the principal component modes. The set of

principal components is the solution to the eigenvalue problem of the second-moment

matrix, A, of the mass-weighted internal atomic displacements. The elements of the

mass-weighted second moment matrix,Aij, are given by:

Aij =
√

mimj〈(r i(t)− rm
i )

(
r j(t)− rm

j

)〉 (6.1)

wherer i(t) is the position of atomi andrm
i its mean position and the average is taken over

the different time frames of the trajectory. The diagonalization ofA yields the eigenvec-

tors,wk, i.e., the principal components and their associated eigenvalues,ζk. ζk, which is

referred to as the variance along modewk, is the mass-weighted mean-square fluctuations

along modewk .

The mass-weighted fluctuations,ζk, can be used to calculate the averaged mass-

weighted atomic fluctuation in the protein in the following way:

ζprot
w ≡ 1

N

N∑
i=1

〈mi (r i(t)− rm
i )2〉 (6.2)

=
1

N

3N∑
i=1

ζk (6.3)

wheremi is the mass of atomi andN is the number of atoms in the protein and the average

is taken over the different time frames of the trajectory. For comparison the standard, non

mass-weighted atomic fluctuation or mean square fluctuation is given by:

ζprot
st = 〈(r i(t)− rm

i )2〉 (6.4)

where the mean· is taken over all the atoms in the protein.
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æ1 1w

æ2w2

Figure 6.1: Schematic representation of the way Principal Component Analysis de-
termines the most important directions of motion within a data set. Here, the most
important axis of motion is alongw1 which therefore has a correspondingly large
value forζ1. w1 andw2 are orthonormal vectors.

The trajectory,qk(t), of a principal modek is given by the projection of the MD

trajectory onto thekth principal component vectorwk
†:

qk(t) = (r(t)− rm) · wk (6.5)

where herer(t) is the protein position vector in the 3N conformational space at timet,

andrm the mean vector.

FREE ENERGY LANDSCAPE

Let Pk(q) be the probability of finding the protein at positionq along modek. The effec-

tive free energy along theith mode, is then defined as:

µk(q) = −kBT ln Pk(q) (6.6)

wherekB is Boltzmann’s constant andT is the temperature. If the motions are assumed

to be harmonic, using equipartition of thermal energy, the effective angular frequency,ωk,

†Another, more rigorous, expression forqk(t) takes account of the mass weighting:

qk(t) =
N∑

i=1

√
mi (r i(t)− rm

i ) · wk,i

wherer i is the position of atomi, rm
i the mean position of atomi, wk,i the coordinate vector corresponding

to the motion of atomi along the principal component vectorwk.
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Figure 6.2: Typical free energy landscape obtained from equation 6.6. In red and blue
are represented the gaussian approximations obtained through principal component
analysis and normal modes respectively.

associated with the motion along a mode is defined as follows:

ω2
k =

kBT

ζk

(6.7)

6.1.2 MODE CLASSIFICATION

Normal modes were used for comparison with the Principal Modes. The normal modes

were calculated in the standard way from the minimized conformation of the model sys-

tem.13 Normal modes are obtained through diagonalization of the Hessian matrixH, the

second order derivative of the potential energy function:

Hmn =
∂2 V (x)

∂xm∂xn

(6.8)

whereV (x) is the potential energy at positionx and thexn are the coordinates of the

system in conformational space. Normal modes, like principal component modes, give

a representation of the main modes of motion present in the system. However, normal

modes considers only one minima of the potential energy function. From this, considering

the protein motions to be harmonic, it extrapolates the protein conformational space. PCA

on the other hand uses a MD trajectory to explore conformational space. The deviation of

PC modes from normal modes gives information about the harmonicity of the modes.
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ANHARMONICITY FACTOR

The anharmonicity factor,ρk, is a measure the deviation of a modek from harmonicity.5

To determine this a coefficient projecting the normal mode vector space onto that of the

principal components is calculated:

ckl =
(
wk · wNM

l

)2
(6.9)

The harmonic variance along theith mode due to harmonic motions,ζH
k , is then given by:

ζH
k =

∑
l

cklζ
NM
l (6.10)

The anharmonicity factor is then defined as:

ρk =

√
ζk

ζH
k

(6.11)

ρ is a number greater than 1. Modes withρ close to 1 are considered harmonic. Figure 6.2

exemplifies how different the mean-square fluctuations obtained through normal modes

and principal component analysis can be.

THE GAUSSIAN FIT

When the energy surface is harmonic, the probability distribution,Pk, along modek,

follows a Gaussian distribution with varianceζk:

Pk(q) = (2πζk)
−1/2e−q2

k/2ζk (6.12)

Deviation from a gaussian distribution is an indication of anharmonicity in the effective

potential. The standard error,σ, of a Gaussian fit to the probability distribution therefore

gives an alternative measure of the degree of harmonicity of this mode. Figure 6.3 illus-

trates how big the error between the free harmonic fit (gaussian probability distribution)

and the actual probability distribution can be.

The error was defined asσ2 ≡ 1000·(P (q)−G(q))2, taken over 3 standard deviations

of the probability distribution, whereG(q) is the Gaussian fit. The threshold for this

measure is arbitrary as denotes the presence of the factor 1000 in the definition ofσ. Upon

visual inspection, the definition ofσ given above was found to appropriately describe the

harmonicity of the modes.
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Figure 6.3: Probability distribution along principal mode number 1 at 260 K and 140
K with their corresponding gaussian fits.

MODE CLASSIFICATION

(i) Harmonic modes are those which exhibit approximately Gaussian probability dis-

tributions (defined here asσ < 1) and for which the anharmonicity is low(ρ < 2).

(ii) Quasiharmonic modes exhibit approximately Gaussian probability distributions

(σ < 1) but possess considerable anharmonicity(ρ > 2).

(iii) Multiminimum modes cannot be well fitted by a Gaussian(σ > 1) and are also

anharmonic(ρ > 2)

6.1.3 DAMPING COEFFICIENTS ALONG PRINCIPAL COMPONENT

MODES

Frictional damping gives a measure of the effect of solvent on the motions of the protein.

For this, the individual principal component modes can be considered as independent

one-dimensional oscillators described by the Langevin equation:11, 14

dvk

dt
+ Γvk + ω2

0qk = A(t) (6.13)

whereqk is the coordinate along the principal component modek, vk its corresponding

velocity,Γ the damping coefficient,ω0 the frequency of the undamped oscillator, andA(t)

a random force term. From this the velocity time-correlation-function,Cvk
for modek is
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given by:

Cvk
(t) =

〈vk(0)vk(t)〉
〈vk(0)vk(0)〉 (6.14)

=
−Γ + ω

2ω
e(−Γ+ω)t/2 +

Γ + ω

2ω
e(−Γ−ω)t/2 (6.15)

where:

ω =
√

Γ2 − 4ω2
0 (6.16)

If Γ > 2ω0, then the motion is overdamped, and ifΓ < 2ω0, the motion is underdamped.

The damping coefficient for each mode can thus be calculated using the following

equation:

Γ = − d

dt
Cvi

(t)
∣∣∣
t=0

(6.17)

6.2 PRINCIPAL COMPONENT ANALYSIS PROTOCOL

In the simulations the system underwent an initial relaxation stage as described in chap-

ter 3, followed by a heating phase where the protein and solvent were brought to their

desired temperatures in 5 K increments every 200 fs. The system was equilibrated for 20

ps with velocity rescaling every 100 steps and for a further 40 ps without velocity rescal-

ing. The subsequent production phase was 1 ns long for each simulation and the data from

this phase was used for the analysis. The model system was simulated at 80 K, 140 K,

180 K, 200 K, 210 K, 220 K, 230 K, 240 K, 260 K and 300 K. The Nose-Hoover-Chains

algorithm15, 16 was used to thermostat the system. The simulations were performed on a

Linux cluster (4 processors). Each simulation required 8 hours representing a total of 640

hours of CPU time. The analysis took 14 hours per run on a single processor machine,

i.e., a further 140 hours of CPU.

Previous PCA studies have demonstrated the importance of having sufficient simu-

lation time so as to correctly sample the conformational space of the protein.10, 17 A

simulation time of the order of nanoseconds is recommended. The present 1 ns produc-

tion are not sufficient to explore the protein energy landscape in detail, they are, however,

long enough to give a precise indication of the protein motions over the experimental

timescales of∼200 ps.

In order to perform the damping coefficient calculations, runs of 100 ps were made,

saving velocities every 5 fs so as to obtain precise velocity autocorrelation functions.

The fit of autocorrelation data was made over only the first 45 fs of the autocorrelation

function. Calculating damping coefficient over such short timescales means that only the

damping due to the elasticity of the immediate environment is taken into account. These
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damping coefficients cannot be compared to classical friction coefficients, they reflect the

degree of energy loss due to dissipative collisional encounters in the system.

6.3 FREE ENERGY LANDSCAPES

The effective free energy landscapes of low frequency principal components was calcu-

lated using equation 6.6 for the first few modes at the different temperatures. In what

follows the mode numbering ascends with the effective frequency,ωk , with the lowest

mode labelled number 1. Figure 6.4 and 6.5 show the free energy profiles of modes 1, 2

and 5.

For Mode 1 the profile is approximately quadratic below 180 K. The onset of the

dynamical transition is characterized by the appearance at 180 K in Mode 1 of double-well

behavior with a free-energy barrier of∼kBT . Above∼240 K the Mode 1 profile is highly

rugged. Mode 2 is approximately harmonic for T∼200 K, above which multiple minima

again appear. Mode 5 is an example of a mode that is harmonic at low temperatures (here

T<200 K) and becomes quasiharmonic above.

Figure 6.4: Free energy profile
of the lowest principal component
mode

Graphical examination of Modes 1-5 over the temperature range 180-300 K shows

that these principal components all involve collective dynamics distributed over most of
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Figure 6.5: Free energy profile of the2nd, and5th-lowest principal component modes

the myoglobin molecule. In Mode 1 the transition between the free energy minima at

200 K comprises the relative motion of two large rigid-body blocks of∼900 atoms. One

of these blocks contains helices A, H and F and the other B,C,D and G. The relative

motion involves helices G and H rotating in opposite directions around the axis of the

stationary helix E. Figures 6.6(a) and (b) illustrate the myoglobin structures in the two

free energy minima of Mode 1. Rigid-body helix translations and rotations are apparent.

Due to rotations around the helix axes the side-chain displacements are generally larger

than those of the main-chain atoms, as illustrated by Asp126 on Helix H in Figure 6.6(a).

6.4 MEASURES OF THE HARMONICITY

6.4.1 ANHARMONICITY FACTOR

The anharmonicity factor,ρk, is a measure of the deviation of modek from harmonic-

ity. Figure 6.7 showsρk calculated for the first 30 modes at the different temperatures

investigated. A value higher than 2 indicates a deviation from purely harmonic behav-

ior, such modes are considered non-harmonic. There is no abrupt, qualitative change in

the harmonicity of the principal components at the onset of the transition∼180-210 K.
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Figure 6.6: Motion of myoglobin along the first principal mode calculated at 200 K.
The structure of myoglobin are shown in two minima (red and blue) of the mode. The
helices are represented as cylinders. For ease of viewing the amplitude of the motion
is multiplied by a factor of 6. Part (a) also shows the sidechain of ASP126.
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Figure 6.7: Anharmonicity factor,ρ for the first 30 principal component modes. For
each principal component the temperature at whichρ = 2 is reached is indicated with
a black bar.

Rather, the temperature dependence of the anharmonicity is highly mode dependent. As a

guide to the eye, for each mode the temperature at whichρ = 2 is shown with a bar. The

lowest two modes are anharmonic at temperatures as low as 80 K but no other principal

components reachρ = 2 below 190 K. At higher temperatures a few other low modes suc-

cessively become anharmonic. However, at 300 K still only 20 of the 6536 components

have reachedρ = 2 .

6.4.2 GAUSSIAN FIT

The standard error,σk, of a Gaussian fit to the probability distribution along a mode,

Pk(qk), is zero for harmonic modes and low for modes with close-to-quadratic effec-

tive potentials,quasiharmonic modes.σk is higher for multiminimum modes with non-

harmonic free energy profiles. Figure 6.8 showsσk for the lowest 15 modes. The temper-

ature at whichσ = 1 is indicated with a bar. Here again very few principal components

become non-Gaussian in the temperature range examined. Significant deviation is seen in

Modes 1 and 2 at low temperatures - these two modes reachσk = 1 at 140 K and 170 K,

respectively. Only 5 further modes reachσk = 1 by T = 300 K, all other modes being

close to Gaussian at all temperatures examined.
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Figure 6.8: Standard deviation,σ of the Gaussian fit to the probability distribution
of the first 15 principal component modes. For each principal component mode the
temperature at whichσ = 1 is reached, is indicated.

6.5 DECOMPOSITION OF THE TOTAL PROTEINMSF

6.5.1 INDIVIDUAL MODE CONTRIBUTIONS TO THE TOTAL MSF

The protein mean-square displacement,〈u2〉 can be decomposed in terms of the contribu-

tions made by the principal component modes. This was done in two ways: according to

their effective frequency and according to their harmonic classification.

Figure 6.9 shows their contribution to the total〈u2〉 according to their effective fre-

quency. All contributions show a transition around 220 K, relatively constant below 220 K

and increasing steadily above. The first mode has the single greatest contribution to the

total 〈u2〉. The first mode accounts for 3.7% of the〈u2〉 at 80 K increasing up to 14.5% of

the total MSF at 300 K. The first 5 modes account for 11% of〈u2〉 at 80 K increasing up

to 40% at 300 K. The first 50 modes (only 0.6% of the total number of modes) account for

44% of〈u2〉 at 80 K increasing up to 74% of at 300 K. In contrast the contribution from

the remaining 99.4% of the modes is 41.2% at 80 K, dropping down to only 17.8% at

300 K. Thus 0.6% of the modes (50 modes) control most of the protein〈u2〉 temperature

dependence.
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Figure 6.9: Decomposition of the total protein〈u2〉 in terms of the principal com-
ponent modes. The contribution of the1st mode, first 10 modes, and of the first 50
modes are indicated.

6.5.2 HARMONIC, QUASI-HARMONIC AND MULTIMINIMA MODES

CONTRIBUTIONS

The contributions made to the mean-square displacement,〈u2〉 by the three types of

principal components (Harmonic, Quasi-harmonic, or Multiminima) are shown in Fig-

ure 6.10. The increase in〈u2〉, signalling the incipient phase of the transition∼180-210

K, is seen to arise from a very small number of principal components. By 210 K, only

four PCA modes are not harmonic - three of these are multiminimum and one is quasi-

harmonic. At 210 K, 75% of the increase over the linear〈u2〉 (the ”excess”〈u2〉) is

due to multiminimum dynamics. As the temperature increases more multiminimum and

quasiharmonic components appear. However, at 300 K still only 20 modes deviate from

harmonic behavior,i.e., only 0.3% of the total number of modes in the protein. 70% of

the excess〈u2〉 at 300 K arises from 7 multiminimum modes, with the remaining 30%

originating from 13 quasiharmonic principal components. Figure 6.10 also shows that the

normal mode analysis and theharmonic principal modes concur in that their contribution

to 〈u2〉 is ∼1.6Å at 300 K.
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Figure 6.10: Decomposition of the mass-weighted protein,〈u2〉 into contributions
arising from the harmonic, quasi-harmonic and multiminimum classes of principal
component. Vertical arrows indicate number of multiminimum modes and italics
the number of quasiharmonic modes at certain temperatures. The〈u2〉 calculated at
300 K from the normal mode analysis using the same model system and potential
function is indicated.

6.6 DYNAMICAL TRANSITION IN THE MSF ALONG INDI -

VIDUAL MODES

The way each mode undergoes the dynamical transition,i.e., the transition in〈u2〉 along

each mode was also investigated. Figure 6.11 shows the individual normalized contri-

butions〈u2〉N of the first 4000 modes to the total〈u2〉†. The normalization procedure

makes it possible to follow the dynamical transition in all the modes although the am-

plitude of the〈u2〉 along the different modes varies greatly in amplitude. A transition

is seen to occur in all modes around∼220 K independently of the mode numbers. This

result seems surprising at first since the high frequency modes are harmonic in nature and

therefore should show a linear increase in MSF. Higher frequency modes describe simple

dynamics such as hydrogens bond stretching motions for example. However PCA does

†The normalized mean-square fluctuation,〈u2〉N , is defined as:

〈u2〉N (T ) =
〈u2〉(T )− 〈u2〉80K

〈u2〉300K
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Figure 6.11: Normalized mean-square deviation,〈u2〉N along the lowest 4000 prin-
cipal modes.The〈u2〉 values at 80 K are set to0 and the〈u2〉 is normalized to 300 K
so as to show the transition in each mode.

not see the dynamics of the hydrogens in isolation but as attached to the rest of the protein

which undergoes the dynamical transition. This induces a dynamical transition feature

in the 〈u2〉 of the hydrogen modes of motion since the rest of the protein to which it is

attached shows increased motion due to the dynamical transition. For the low frequency

modes one might expect the mode to have different transition temperature reflecting their

marked differences inρ andσ scores. This however is seen not to be the case and indicates

that the dynamical transition feature is decoupled from the harmonicity of the modes.

6.7 CHANGE IN DAMPING COEFFICIENTS

In the previous chapters it was shown that the surrounding hydration layer plays a crucial

role in the dynamical transition feature. To further investigate the effect of solvent on the

protein dynamics, the damping experienced by the protein in the presence and absence of

solvent was calculated.

Figure 6.12 shows the damping coefficient calculated at each temperature for the sol-

vated and dry protein. As would be expected, the presence of solvent is seen to increase
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Figure 6.12: Damping coefficients for dry protein and hydrated myoglobin over the
range 80 K to 300 K. The damping coefficient was defined as the average of the
damping along the first 50 principal component modes. For details of calculations
see section 6.1

the damping experienced by the protein. A transition around 220 K appears in the damp-

ing coefficient of the hydrated protein whereas no such transition is to be seen in the data

for the dry protein. The fact that the damping experienced by the hydrated protein actu-

ally increases with temperature is explained by the fact that in ice (at low temperatures)

the experienced damping is less (motions being more harmonic) than that experienced at

higher temperatures were the solvent is more viscous. In effect the damping experienced

by the protein due to the solvent undergoes a transition∼220 K thus showing in a different

way how essential the solvent is to the dynamical transition feature.

CONCLUSION

In this chapter the harmonicity of the motions involved in the dynamical transition were

investigated using principal component analysis. The different modes of motion are seen

to become anharmonic at different temperatures in a manner uncorrelated with the dy-

namical transition feature. The free energy profile along the first few modes is seen to

be harmonic or quasiharmonic at low temperature. With increasing temperature anhar-
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monicities appear and modes with multiple minimas appear. The protein motion along

the lowest modes involves simple motions such as rotations and translations of different

part of the protein. The whole protein motion being dominated by as few as 20 modes

(0.3% of the total number of modes). The increase in the protein〈u2〉 at the dynami-

cal transition temperature correlates with the anharmonic (quasiharmonic + multimima)

contributions to the〈u2〉. The presence of the solvent is shown to induce a transition in

the damping experienced by the protein at the dynamical transition temperature∼220 K

which confirms the central role played by the solvent in the protein dynamical transition.
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INTRODUCTION

This chapter presents the results obtained from the neutron scattering experiments performed on

the IN6 spectrometer at the Institut-Laue-Langevin in Grenoble. Neutron scattering was measured

on solutions of Xylanase with 0%, 3.5%, 7%, 15%, 20%, 25% and 40% methanol:water volume

ratios (see methods section 7.1 for details). Previous results obtained by V. Réat on the IN16 spec-

trometer are also presented. In that experiment the neutron scattering measurement was performed

on Xylanase solutions with 0%, 15%, 40% and 70% methanol/water concentration (v/v). The in-

tegrated elastic peak scattering intensities and protein mean-square fluctuations were determined

and compared (cf: theory in section 2.3). The results are also compared with the properties of

methanol/water solution properties.
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7.1 NEUTRON SCATTERING EXPERIMENTAL PROTOCOL

7.1.1 EXPERIMENTAL APPARATUS

Neutrons can be obtained either from a spallation source or from a nuclear reactor. A spallation

source consists of particles coming out of an accelerator hitting a heavy metal target (Tantalum

for example) thereby extracting neutrons from the heavy nuclei. Another method for obtaining

neutrons is from a nuclear reactor which emits neutron as a byproduct of the fission reaction. The

present experiments where performed at the nuclear reactor facilities of the Institut Laue Langevin

(ILL) in Grenoble.

In the case of the IN6 spectrometer, the neutrons are slowed down by passing through Hydro-

gen atoms (water for example). As can be seen in figure 7.1 a series of graphite mono-chromater

are used to select the neutrons of the correct energy. These are then passed through a beryllium

filter to make sure only the right (low energy) neutron are selected, finally a Fermi chopper per-

form the time-focusing so that the elastically scattered neutrons all arrive at the same time at the

spectrometer. IN6 is a time-of-flight instrument,i.e. the excess / deficit in the time taken by a

neutron to travel the distance from the sample to the detector bank is used to calculate the energy

of the scattered neutron.

Figure 7.1: The IN6 detector at the Laue-Langevin Institut in Grenoble.

Réatet al previously performed experiments using the same system on the IN16 instrument.

The IN16 instrument is a back-scattering spectrometer with a better energy resolution than IN6,

and is therefore capable of resolving motions on the nanosecond timescale whereas IN6 is limited

to timescales of∼100 ps. A schematic representation of the IN16 spectrometer is presented in

figure 7.2. In this configuration a moving monochromator reflects highly monochromated neutrons

in such a way that the energy of the incoming neutrons on the sample will fluctuate with time due
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to doppler shifting. These neutrons are then scattered by the sample and reach the analyzer bank.

The analyzers (Si (111) crystals) will only reflect those neutron with a very well defined energy, so

that only the neutrons that have lost or gained the required amount of energy in the sample will be

backscattered onto the detectors. Knowledge of the movement of the monochromator then enables

to determine the scattering intensity around the elastic peak with high precision.

Figure 7.2: The IN16 detector at the Laue-Langevin Institut in Grenoble.

7.1.2 EXPERIMENTAL SYSTEM: XYLANASE

The present experiment were performed on a thermophilic xylanase enzyme. Xylanase is found

in many microorganisms, it is involved in the hydrolysis of xylan polymers. Xylans are highly

branched polysaccharides usually found in tight association with other biopolymers. Xylans be-

long to the major constituents of plant cell walls. As the most abundant hemicellulose, they ac-

count for more than 30% of the dry weight of terrestrial plants.

Xylanase is composed of a simple subunit with a centralβ-barrel motif (with 8 beta sheets)

surrounded by 15 stabilizingα-helices. Figure 7.3 gives representation of xylanase in a ’cartoon’

representation.

The stability of structure of xylanase has been studied at various temperatures and methanol

concentrations. The structure of xylanase has been shown to be stable over the range of tempera-

tures (100 K to 300 K) and methanol concentrations (0% to 70%) used in this experiment over the

time of the experiment (∼8 hours per sample).1
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Figure 7.3: The protein xylanase in a ’cartoon’ representation.

7.1.3 EXPERIMENTAL PROTOCOL

Dynamic neutron scattering measurements were performed on the IN6 time-of-flight spectrometer

at the Insitut-Laue-Lagevin in Grenoble. The incident wavelength used was5.12 Å. The energy

resolution of the apparatus was50 µeV . All data were collected with the sample holder oriented

135 relative to the incident beam. The samples were contained in aluminium flat-plat cells of

0.5 mm thickness.

Neutron scattering measurements were performed on the enzyme xylanase at different

CD3OD/D2O concentrations. Neutron scattering intensities were recorded on the following sam-

ples (with their measured transmissions in parentheses and the data gathering time used for each

temperature):

1. 70 mg/ml Xylanase in 3.5% CD3OD/ 96.5% D2O (0.91, 21min)

2. 72 mg/ml Xylanase in 7% CD3OD/ 93% D2O (0.88, 20min)

3. 68 mg/ml Xylanase in 15% CD3OD/ 85% D2O (0.91, 13min)

4. 71 mg/ml Xylanase in 20% CD3OD/ 80% D2O (0.89, 24min)

5. 76 mg/ml Xylanase in 25% CD3OD/ 75% D2O (0.92, 22min)

6. 66 mg/ml Xylanase in 40% CD3OD/ 60% D2O (0.90, 23min)

7. 63 mg/ml in D2O (0.91, 15min)
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Data was gathered over the temperature range from 100 K to 300 K for each methanol con-

centration. The samples were first cooled to∼100 K and then slowly reheated back to 300 K over

a period∼6 hours, the data being gathered during the whole reheating process.

Data had previously been gathered on the IN16 spectrometer by V. Réatet al. Neutron scat-

tering measurements were performed on the enzyme Xylanase at different CD3OD/D2O concen-

trations. The following protein samples were run:

1. Xylanase in 15% CD3OD/ 85% D2O

2. Xylanase in 27% CD3OD/ 73% D2O

3. Xylanase in 40% CD3OD/ 60% D2O

4. Xylanase in 70% CD3OD/ 30% D2O

The data gathering on IN16 used a similar ’temperature ramping’ data collection technique as in

IN6.

7.1.4 DATA ANALYSIS

The scattering functionS(q, ω) was extracted from the IN6 experimental data using the INX data

reduction software. Detectors were grouped 4 at a time (Angle grouping). The detectors were

calibrated by normalizing with respect to a standard vanadium sample. INX also performed a

number of corrections to take account of: sample holder scattering, sample size and geometry,

detector efficiency, relative efficiency of the different detectors, and also removed the background

intensity.

The incoherent scattering originating from hydrogen scattering dominates the scattering sig-

nal. Because hydrogens are evenly distributed in a protein, the protein scattering gives a global

view of the protein motions. In order to maximize the contribution from the protein motions, the

present experiments were performed using fully deuterated solvents and hydrogen/deuterium ex-

changed proteins (twice dissolved in D2O and freeze-dried). This deuteration procedure serves to

ensure that the solvent is fully deuterated (and not partially hydrogenated by exchange of hydrogen

from the enzyme) and that no change in the deuteration of the enzyme or solvent occurs during

the experiment. The consequent partial deuteration of the enzyme is limited to the exchangeable

hydrogens, which means that the hydrogens left are essentially all in the protein.

Having obtained the scattering function,S(q, ω), the elastic peak intensity,S(q, ω = 0), was

obtained by fitting the data around the peak with a gaussian. For this 5 energy channels were used:

from −0.035 meV to0.035 meV, which covers most of the elastic intensity peak.S(q, ω = 0)

was then normalized to 115 K to remove coherent contributions (a linear interpolation was used to

get data at 115 K).

The integrated elastic peak,SINT (T ), intensities were determined by summing

S(q, ω = 0, T ) from q = 0.35 Å to q = 1.05 Å. SINT (T ) provides a qualitative guide of

dynamic transition behavior, with good counting statistical accuracy. The improved statistics
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are obtained by integrating over a range ofq chosen to lie in the dynamic scattering region

(0.35 < q < 1.05 Å
−1

).

The 〈u2〉 were then determined directly from the integrated elastic peak intensities using the

approximation outlined in section 2.3.3:

〈u2〉 = 1− 6
b2

∑
i q

2
i

∑
i

Sinc(q2
i ) (7.1)

In the present work the〈u2〉 thus determined is equal to〈u2〉T −〈u2〉115K , where〈u2〉115K is

the absolute mean-square displacement at 115 K.

The data analysis for IN6 followed as much as possible the methods used for the IN16 data

analysis.

7.2 RESULTS AND DISCUSSION

7.2.1 INTEGRATED ELASTIC PEAK INTENSITIES

The integrated elastic peak intensities,SINT (T ), for the different samples on IN6 are presented

in figure 7.4. The pure D2O data shows a slow decrease with temperature down to 275 K, with

no marked transition but a gradual increase in curvature toward 275 K. Between 275 K and 280 K

there is a sharp transition occurring at the solvent melting point (at 277 K in D2O). This strongly

nonlinear increase of〈u2〉 with T is consistent with the activation of anharmonic dynamics on the

∼100 ps timescale of the experiment.

The general form ofSINT (T ) for xylanase in the different methanol/water solutions is similar

to that of xylanase in pure D2O. The decrease with temperature from 120 K to∼240 K is larger

than in pure D2O, indicating that the presence of methanol - even in small concentrations - allows

more motion than does pure D2O. The onset of the transition moves to lower temperatures with

increasing methanol concentrations: 275K at 0% CD3OD; 270 K at 3.5% CD3OD; 267 K at 7%

CD3OD; 270 K at 15% CD3OD; 260 K at 20% CD3OD; 255 K at 25% CD3OD; 241 K at 40%

CD3OD(cf: figure 7.11).

The transition also becomes smoother with increasing methanol concentration. The 0%

CD3OD plot presents a very sharp transition between two states: below 270K and above 280 K.

Whereas this feature is still visible in the 3.5% CD3OD data set, it disappears at higher con-

centrations. This is consistent with a gradual release of the motion in the presence of methanol

qualitatively different from the sharp melting of D2O in the 0% CD3OD case.

Figure 7.4 also shows that the maximum motion at high temperature reduces with increas-

ing concentrations of methanol. This is consistent with the decrease in protein diffusion motions

following the increase in viscosity in the solvent due to the presence of methanol.2 Another pos-

sibility is that the solvent contributes largely to the elastic peak intensity at high methanol con-

centrations. The role of the background scattering due to presence of the solvent is discussed in
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Figure 7.4: Normalized integrated elastic intensity from IN6. Theq integration range
is 0.35 < q < 1.05 Å−1. The data for the following samples are presented: pure
D2O; 3.5% CD3OD/ 96.5% D2O; 7% CD3OD/ 93% D2O; 15% CD3OD/ 85% D2O;
20% CD3OD/ 80% D2O; 25% CD3OD/ 75% D2O; 40% CD3OD/ 60% D2O.

section 7.2.3.

The 40% methanol data shows an increase inSINT (T ) around 230 K. This feature is not

consistent with the data from samples with other methanol concentrations, some amount of con-

tamination by small angle scattering may have occurred in the 40% CD3OD sample around 230

K, creating an increase inSINT (T ).

The corresponding data obtained from IN16 is shown in figure 7.5. The 0% methanol data

shows a slow increase in dynamics until∼260 K at which point a marked transition appears at

277 K coinciding with the melting of the D2O solution. At 15% methanol concentration dynamics

start increasing above∼195 K and show a marked transition at 270 K. At the other concentrations

the onset of the dynamics appears∼175 K constituting a sharp change in dynamical behavior from

the linear regime below 175 K to a steeper linear increase in dynamics above 175 K. The elastic

peak intensity then reaches a plateau at lower and lower temperatures with increasing temperature
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Figure 7.5: Normalized integrated elastic intensity from IN16. Theq integration
range is0.43 < q < 1.06 Å−1. The data for the following samples are presented:
pure D2O; 15% CD3OD/ 85% D2O; 27% CD3OD/ 73% D2O; 40% CD3OD/ 60%
D2O; 70% CD3OD/ 30% D2O;

starting at temperatures as low as 240 K for 70% methanol. Also the amount of dynamics at high

temperatures diminishes with increasing methanol concentration.

7.2.2 MEAN-SQUARE-FLUCTUATION MEASUREMENTS

The〈u2〉s are calculated directly from the integrated elastic peak intensities as described in section

2.3.3. The〈u2〉s obtained from IN6 and IN16 data are presented in figures 7.6 and 7.7 respectively.

In the IN6 data, the 0% CD3OD case shows a sharp transition in dynamics at 277 K between a

low dynamics regime below∼275 K and a high dynamics regime above∼280 K. In the presence

of methanol, the transition is not as sharp and shows a more gradual increase in dynamics. The

3.5% methanol case shows a pronounced increase in dynamics over the range from 270 to 275 K.

The onset of the dynamical transition is seen at∼265 K in 7% CD3OD, 270 K in 15% CD3OD,

116



CHAPTER 7: RESULTS FROMNEUTRON SCATTERING EXPERIMENTS

Figure 7.6: Mean-square displacementvs temperature for pure D2O; 3.5% CD3OD/
96.5% D2O; 7% CD3OD/ 93% D2O; 15% CD3OD/ 85% D2O; 20% CD3OD/ 80%
D2O; 25% CD3OD/ 75% D2O; 40% CD3OD/ 60% D2O. The maximum slope of the
〈u2〉 data for the different methanol concentrations is presented as an insert.

260 K in 20% CD3OD, 255 K in 25% CD3OD and 240 K in 40% CD3OD. In the 3.5%, 7%, 15%

and 20% CD3OD cases the dynamics tend to level off above∼275 K (cf: figure 7.11). Overall the

amount of motion above 275 K tends to decrease with increasing methanol concentrations. The

’sharpness’ of the dynamical transition can be measured by looking at the maximum slope of the

different curves as shown in the inserts of figures 7.4 and 7.5. The transition is seen to become

much smoother for concentrations above∼10% CD3OD.

The IN16 data is presented in figure 7.5, there again a sharp dynamical transition in the 0%

methanol data is present between the low dynamics, linear regime below 270 K and the high

dynamics regime above 280 K. When methanol is present, the dynamics show the onset of the

dynamical transition at∼170 K independently of the methanol concentration in the sample. The

transition becomes less steep with increasing methanol concentration as can be seen from the

insert in figure 7.5. The transition levels off at different temperatures, depending on the methanol

concentration: levelling of at∼270 K for 15% methanol, 260 K for 27%, 250 K for 40% and

240 K for 70% methanol concentration.

Figures 7.6 and 7.7 also present the value of the maximum slope along the〈u2〉 data for the dif-

ferent methanol concentration. They show the same qualitative increase in slope with decreasing

methanol concentration.

Figures 7.8 and 7.9 presents the〈u2〉 data for IN6 and IN16 in the form of contour plots,

giving 〈u2〉 as a function of temperature and methanol concentration. The IN6 data presented in
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Figure 7.7: Mean-square displacementvs temperature for pure D2O; 15% CD3OD/
85% D2O; 27% CD3OD/ 73% D2O; 40% CD3OD/ 60% D2O; 70% CD3OD/ 30%
D2O. The maximum slope of the〈u2〉 data for the different methanol concentrations
is presented as an insert.

Figure 7.8: Contour plot presenting the protein〈u2〉 as a function of temperature and
methanol concentration (only the temperature range of interest is shown: 200 K to
300 K ).

118



CHAPTER 7: RESULTS FROMNEUTRON SCATTERING EXPERIMENTS

Figure 7.9: Contour plot presenting the protein〈u2〉 as a function of temperature and
methanol concentration (only the temperature range of interest is shown: 140 K to
300 K ).

figure 7.8 shows that the transition temperature stabilizes between 230 K and 240 K for concentra-

tion greater than∼10%. The effect of viscosity of the solution at higher methanol concentrations

is clearly seen as a general broadening of the transition and decrease of the amount of motion for

concentrations greater than 15% and 30% on IN6. The IN16 data shown in figure 7.9 shows a sim-

ilar trend with a stabilization of the transition temperature between 180 and 200 K for methanol

concentrations above∼30%. Overall the dynamical transition becomes broader with increasing

methanol concentration and the amount of motion at higher temperatures goes down with increas-

ing methanol concentrations.

Comparison of the contour plots for IN6 and IN16 show similar trends: sharp transition at

277 K for 0% methanol, stabilization of the transition temperature above a certain methanol con-

centration and overall broadening of the transition with increasing methanol concentration.

The sharp transition at 277 K seen in both the IN6 and IN16 data for 0% methanol coincides

with the freezing point of D2O. This suggests that pure D2O completely determines the motions

available to the protein. Below 277 K the protein is caged in ice and cannot move hence the very

low dynamics.

The stabilization of the onset of the transition in〈u2〉 for methanol concentration>10% ob-

served in IN6 and for>30% methanol IN16 data is an indication that above a relatively low

methanol concentration the protein environment remains unfrozen and therefore independent of

the methanol concentration. This independence relative to the methanol concentration was also

observed in previous neutron scattering results published by Réat et al on Xylanase on IN6 in

methanol and DMSO.1 This effect will be discussed further in comparison with the freezing prop-
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erties of methanol/water mixtures in section 7.2.4.

Another common feature between the IN6 and IN16 data: that the amount of motion present at

high temperatures (>280 K) decreases with increasing methanol concentration, could be explained

by the reduction in the amount of diffusion in the sample due to the increase in viscosity of the so-

lution with increasing methanol concentration.2 However this hypothesis would not explain why

the broadening continues beyond 40% where the viscosity actually starts to go down with increas-

ing viscosity as can be seen in figure 7.10. Another hypothesis is that the methanol molecule being

bigger and having a larger scattering cross section than water molecules, contributes largely to the

scattering at high methanol concentrations. The effect of this is that the elastic peak intensity has

a stronger solvent contribution which does not vanish at high temperatures thereby lowering the

〈u2〉 observed.3, 4 This effect is discussed in more detail in the next section.

There are two main differences between the IN6 data and the IN16 data: firstly the dynamical

transition temperature is generally lowered in the IN16 data by∼40 K, only the 0% data maintains

its transition at∼0 C. On explanation for this effect is found in the time scales of the dynamics

observed in both apparatuses.5 IN6 is sensitive to motions on the∼100ps time scale whereas IN16

can observe motion on the ns time scale. IN16 is then able to observe motions on time scales much

longer than IN6 such that motions which appear on the ns time scale of IN16 would only appear

at higher temperatures in the∼100 ps time scale of IN6.

Another important distinction between the IN6 and IN16 data is the fact that the〈u2〉 stabilizes

for methanol concentrations above∼10 % on IN6 but only stabilizes above∼30% methanol on

IN16. A possible explanation for this effect is that IN16, having a better energy resolution, is able

to resolve motions in the more viscous solutions with higher methanol concentrations.

7.2.3 SOLVENT BACKGROUND SCATTERING

Knowledge of the isotopic scattering cross sections and isotopic compositions of the samples in-

dicates that, for the protein solutions, about 50% of the scattering is incoherent and 50% coherent.

70% of the incoherent scattering originates from the protein, because of the strong hydrogen con-

tribution.1 30% originates from the solvent atoms and influences the observed scattering profile

in a manner dependent on the solvent dynamics and the region ofq, ω space examined. The

isotopic coherent scattering cross sections and protein solution sample composition indicate that

most of the coherent scattering originates from the solvent. The self-coherent contribution to

this, which is strongest in the lowq regime considered here (below∼ 1 Å−1), is dynamic and

identical in form to the incoherent scattering from the same atom (the amplitude is not identical

because it is weighted by the coherent cross section). In addition, there is a contribution originat-

ing from cross-correlations (i.e., distance distributions). The intramolecular ’Bragg’ part of this

contribution lies atq values higher than those considered here. However, a structural ’small-angle’

scattering contribution can also exist in the sameq-range as the self-coherent and incoherent scat-

tering. The small-angle scattering can be distinguished from the dynamic self-coherent scattering

by itsq-dependence. To remove the temperature independent small-angle scattering, the scattering

120



CHAPTER 7: RESULTS FROMNEUTRON SCATTERING EXPERIMENTS

Figure 7.10: Viscosity of methanol/water mixtures as a function of methanol concen-
tration (v/v). Data from the CRD Handbook of Chemistry and Physics.2

profiles were normalized with respect to the intensities at 115 K.

However the remaining 30% background scattering due to the solvent has been shown to con-

tribute significantly to the amount of motion calculated from neutron scattering data.3 The solvent

is expected to contribute a constant background to the elastic peak intensity until the solution

reaches its melting temperature, at this point the contribution from the solvent diminishes sharply

as the motions of the solvent move out of the time windows of the instrument. This produces

the saturation feature seen in the integrated peak intensities in IN6 and IN16 above∼280 K. The

protein contribution to the measured〈u2〉 adds to the solvent contribution as a steady increase

with temperature of the〈u2〉 above the protein dynamical transition temperature.3 In the present

experiments it is difficult to dissociate the contributions coming from the protein from those com-

ing from the solvent as the maximum slope in the transition is seen to coincide with the solvent

melting point.

The general lowering of the transition with increasing methanol concentration could be due to

the contribution of the solvent. Methanol is a bigger molecule than water and is less mobile. Scat-

tering from methanol contributes 65% of the total solvent background scattering at 70% methanol

concentration. This slow component to scattering would make a contribution to the elastic peak

intensity which would not vanish at high temperatures, artificially inducing a lower value to the

average〈u2〉 at high temperatures.
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7.2.4 COMPARISON WITH PROPERTIES OF METHANOL/WATER MIX -

TURES

Figure 7.11 presents the methanol/water freezing point as a function of temperature and

methanol/water concentration (in volume per volume ratio) taken from the litterature.2, 6 For

comparison the point of maximum slope of〈u2〉 from the IN6 and IN16 experimental results

are presented on the same plot. The〈u2〉 from both experiments follow the methanol/water freez-

ing point closely. The IN6 results present a shift to higher temperature compared to the IN16

results due to the shorter time scales under investigation in IN6 as compared to IN16. On IN16

all results apart from the 40% methanol/water concentration are at higher temperatures than the

methanol/water freezing point indicating the relatively short timescale sampled on IN16.

Figure 7.11 also presents the temperatures corresponding to the onset of the dynamical tran-

sition for the different methanol concentrations. A qualitatively different picture emerges for IN6

and IN16 results: whereas IN6 results follow the curve of methanol/water freezing point, the IN16

results do not. The IN16 data shows that the onset of the dynamical transition appears at temper-

atures much lower than the melting point of the solution. This means either the protein prevents

glass formation in its vicinity or that the protein has preferential methanol solvation. The second

hypothesis has been mostly invalidated by experiments which show that in the presence of cosol-

vents the concentration of these around a protein tended to be lower than in the bulk.7 Cosolvents

have been shown to solvate proteins by displacing some of the looser water molecule on protein

surface.7–9 This leads to the conclusion that in the methanol/water nixtures the protein disturbs the

solvent around it in such a way that it freezes at much lower temperatures than the bulk. Another

possible explanation would be that the solvent is frozen but that the experiments are observing

only internal motion in the protein. However protein have been shown not to present any dynam-

ical transition when trapped in a glassy environment.10–13 This points towards the existence of a

collaborative effect between the protein and methanol which produces a non-freezing hydration

shell around the protein.

A corollary of this results is that - the bulk of the solvent being frozen - the neutron data ob-

tained between the onset of the dynamical transition (∼170 K in IN16) and the point of maximum

slope (which corresponds to the solvent melting point) actually corresponds solely to the dynamics

of the protein in the sample. The absence of this effect in the IN6 data would tend to indicate that

the collaborative effect between the protein and methanol which prevents the hydration shell from

freezing happens on long timescales and is therefore not picked up by IN6.

CONCLUSION

In this chapter the results obtained from neutron scattering experiments on xylanase in

methanol:water solutions at different concentrations have been presented. The results obtained

from the IN6 and IN16 spectrometers at the ILL in Grenoble indicate that pure solvent completely
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Figure 7.11: Methanol/water mixture freezing point as a function of methanol/water
concentration (v/v). For comparison the plot presents the temperature of the onset of
the transition as well as temperature of steepest slope of the MSD plots for IN6 and
IN16.

dictates the motions of the protein, dynamics only being activated at 277 K corresponding to the

solvent melting temperature. The presence of methanol at concentrations as low as 3.5% con-

siderably loosens protein dynamics compared to pure solvent. The onset of the transition in the

integrated peak intensity is seen to go down with increasing methanol concentrations: going from

270 K for pure water down to 240 K for 10% methanol on IN6 and down to 170 K for 30%

methanol on IN16. The difference in temperature at which the transition stabilizes in IN6 and

IN16 is shown to be due to the different timescales probed by the two instruments.

At high temperatures (>280 K) the amplitude of the motions lower with increasing methanol

concentration, this effect seems linked to the increase in viscosity of the solution, but could also

be due to the strong scattering background this viscous solution makes at high temperatures.

Comparison of the protein dynamics at different methanol concentrations with the bulk prop-

erties of methanol/water mixtures strongly suggests a collaborative effect between the protein

surface and methanol molecules which induces a non-freezing solvation shell around the protein

at temperatures where the bulk of the solvent is frozen.
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Experimental and simulation studies have revealed the presence of a transition in the dynamics

of proteins around 220 K. Previous studies have demonstrated that the dehydrated proteins also

present a glasslike dynamical transition behavior. However, the present thesis deals with the more

biologically relevant case of hydrated proteins. This thesis aimed at answering three main ques-

tions: does the solvent control this dynamical transition in proteins? What types of motions do

proteins have at the dynamical transition? And, what is the role played by cosolvents in the protein

dynamical transition? In order to find answers to these questions molecular dynamics simulations

and neutron scattering experiments were performed.

The first question addressed was that of the role of the solvent in the protein dynamical tran-

sition. Previous MD work had shown that solvent fluctuations strongly influence internal protein

dynamics.1 In the present work, the dual heatbath simulation method was used in which the pro-

tein and its surrounding solvent are set at different temperatures during the simulations. The results

thus obtained demonstrate that the dynamical transition in hydrated proteins is driven by changes

with temperature in the solvent dynamics. Two main results are seen from these MD simulations:

(i) low temperature solvent cages the protein fluctuations. (ii) Heating the solvent while keeping

the protein cold drives the protein fluctuations to values intermediate between those in the fully

cold and fully hot systems. Further, more detailed, simulations showed that holding the solvent

at high or low temperatures abolishes the protein dynamical transition, while varying the solvent

temperature with the protein held at 300 K was shown to recover the dynamical transition.

The dynamics specific to the surrounding water shell was subsequently analyzed. The hydra-

tion shell was found to undergo itself a glasslike dynamical transition at∼220K, leading to the

conclusion that the driving force for the protein transition is a qualitative change in the hydration

water shell dynamics. This transition has been seen previously, in MD simulation2 and in neutron

scattering experiments.3, 4 The solvent transition is found here to be independent of the protein

dynamics in that it is present even in simulations in which the protein atoms are fixed. This sol-

vent dynamical transition involves activation of translational solvent diffusion without qualitative

change in the water reorientational dynamics. Below the transition the absence of water trans-

lational diffusion cages the protein atoms, preventing anharmonic protein dynamics. This is in

accord with MD work on ribonuclease, which showed that complete structural relaxation of the

protein at 300 K requires relaxation of the water hydrogen-bond network and that the short time-
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scale water H-bond lifetime is not affected by the dynamical transition.5 Decoupling of ’rattling’

motions from more global translational diffusion is a characteristic of the glass transition,6 indi-

cating that the water transition is also glasslike. The solvent transition drives dynamical transition

behavior primarily in the side-chain atoms of the external protein regions,i.e., those closest to the

solvent. Recent MD results have reported similar results showing that the amount of diffusive mo-

tions in proteins at room temperature gradually increases with increasing distance from the protein

core.7 Hydration water interacts principally with the surface atoms, which correspondingly have

been shown to exhibit the largest change at the dynamical transition.8

The second aim of the present thesis was to investigate the characteristics of protein motion

at the dynamical transition. Principal component analysis was used to analyze protein motions

over the dynamical transition temperature range. The results provide a description of the sub-

nanosecond protein dynamics activated at the transition. The present PCA results indicate that the

solvent:surface interaction propagates to the interior of the protein via collective dynamics that

can be described by a very small number of principal components. At 210 K only two quasi-

harmonic modes and two multiminimum modes are found to deviate substantially from harmonic

behavior. The modes initiating the transition are global and distributed over the protein. The

largest displacements arise from the activation of barrier-crossing, multiminimum components.

In the mode with the largest contribution to the onset of the transition in the present system the

barrier crossing involves blocks of supersecondary structural elements moving relative to each

other. This rigid-body motion qualitatively resembles structural changes seen in proteins in dif-

ferent functional states.9 However, it is unclear to what extent motions activated in the dynamical

transition describe functional protein dynamics. Additional calculations of the effective damping

experienced by the protein along principal modes indicates a solvent induced transition, thereby

again illustrating the central role played by the solvent in the protein dynamical transition feature.

The third aim of this thesis was to elucidate the role played by cosolvents used in experiments

observing the dynamical transition in hydrated proteins. Previous investigations have suggested

that solvation condition influence the intrinsic anharmonicity of the protein potential energy sur-

face.3, 10–15 Previous results showed the dynamical transition feature to be largely independent of

the cryosolvent used.16 Here the protein dynamical transition feature was investigated at different

methanol concentrations levels and on different timescales using neutron scattering experiments.

The results indicate that dynamical transition temperature depends on methanol concentration. A

sharp transition is seen at 277 K in pure water marking the phase transition of the solvent. The

dynamical transition temperature is then seen to go down in temperature with increasing methanol

concentration, stabilizing to∼240 K for methanol concentrations greater than∼10% on the 100 ps

timescale and stabilizing at∼170 K for methanol concentrations greater than 30% on the nanosec-

ond timescale. Comparison with the bulk properties of methanol/water mixtures indicate that, on

short timescales, the dynamical properties of the protein closely follow that of the solvent. On

the nanosecond timescale however, the protein dynamics do not follow that of the solvent, rather

they show increased dynamics at low temperature where the bulk of the solvent is frozen. These

results would indicate that the presence of the protein disturbs the solvent around it. This effect
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is thought to be due to a collaborative effect between the protein surface and methanol molecules

in such a way that the hydration layer freezes at much lower temperatures than the bulk. The

structure of the solvent shell surrounding the protein in the presence of cosolvents is known to be

independent of the specific cosolvent used.17–19 This may explain why the dynamical transition

feature is independent of the actual cryosolvent used.16

The nonlinear increase in〈u2〉 is much more gradual for concentration greater than 15%. This

behavior is consistent with the presence of a distribution of energy barriers, with successively

higher barriers being crossed.16 This is contrasted by the abruptness of the transition in pure

water associated with the D2O melting point. The protein mean-square-fluctuations temperature

at 300 K are seen to decrease with increasing methanol concentration. This is consistent with

the existence of a damping effect exerted on protein dynamics by the presence of methanol in the

solution.20 However this does not explain all the data and it is thought that the solvent background

scattering may play an important role in this effect.

In conclusion, the present work shows firstly that the observed dynamical transition in pro-

tein mean-square-displacements is inseparable from the effect of solvent. The water shell phase

transition at∼220 K dictates the behavior of the protein surface and thereby controls the whole

of the protein dynamics. Secondly, the protein motions are seen to be of a simple nature over the

dynamical transition temperature range, anharmonic motions being present well below the protein

dynamical transition. Thirdly, on the 100 ps timescale protein dynamics follow closely that of the

solvent in the presence of cosolvents such as methanol, confirming the central role of the solva-

tion layer in the protein dynamical transition. Interactions between the cosolvent and the protein

surface take place on the nanosecond timescale that allow the protein to undergo large motions at

low temperatures where the bulk of the solvent is frozen.

The present thesis illustrates the complex interactions at work between proteins and their sur-

rounding solvent. These interactions are crucial for the proper folding and function of proteins. In

future the correct understanding of these interactions will benefit the efforts made to predict the

correct fold of the numerous proteins sequences made available by the genome project. Knowledge

of protein solvation will also contribute to making betterin silico predictions of protein/protein in-

teractions. It will thus assist in the current efforts to map out the complex network of reactions

that regulate cellular activity. It is hoped that the work presented in this thesis will have achieved

a significant - if small - step towards that goal.
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The present work has explored some of the many aspects of the intricate interactions proteins

make with their surrounding solvation layer. Through the study of the protein dynamical tran-

sition important aspects of these interactions such as the protein dependence on its environment

for the appearance of diffusive motions important for function, have been brought to light. The

harmonic characteristics of protein motions have been explored using PCA and have brought new

light on the diffusive nature of important functional modes. There remains, however, much to be

investigated and understood. Further inquiries could be envisaged which would enlarge the present

understanding of protein motion and function.

PROTEIN-CRYOSOLVENT INTERACTIONS

Although many aspects of the dynamical transition are presently understood, it is not yet clear how

proteins interact with cryosolvents at low temperature. An MD study would be well suited to the

investigation of such a question along with ever more elaborate neutron scattering experiments.

Such a study would look at the structure and dynamics of the solvent/cosolvent at the protein

interface. Factors such as concentration and temperature dependence should also be explored.

TIMESCALE PROBLEM

Recent publications have raised the issues of the timescale in the context of the protein dynamical

transition.1–3 The dynamics of both solvent and protein appear to be qualitatively different on

different timescales, therefore a proper understanding of the mechanisms involved would be very

useful. A study could use MD simulations to probe different timescales, the present computer

power now makes it possible to probe efficiently timescales up to tens of nanoseconds in hydrated

systems.

PROTEIN MODES OF MOTION

Another aspect of hydrated protein dynamics which requires further investigation is the charac-

terization and prediction of protein modes of motion. A clear appreciation of protein motion is

essential to the understanding of protein function. The techniques currently used include normal

129



FUTURE PERSPECTIVES

modes analysis and principal component analysis. Normal mode analysis suffers from the assump-

tion that modes are harmonic while many functional modes involve diffusive motions. Principal

component analysis on the other hand suffers from the assumption that motions follow simple

cartesian vectors thereby being quite inappropriate for describing rotational motions. Performing

PCA on the protein internal coordinates instead of normal cartesian coordinate appear as an ele-

gant solution to this problem. Although such analysis have been performed on simple chemical

compounds, it has as yet not been performed on proteins. PCA requires long trajectories in order

to obtain meaningful results and will therefore greatly benefit from the ongoing increase in com-

puter power which is making long, nanoseconds, trajectories more and more accessible, thereby

eliminating the sampling problem.4

SOLVENT MODELS

Finally, another interesting focus of research would concentrate on improving of the existing con-

tinuum solvent models so as to take into account the existing knowledge of the protein hydration

layer. The presence of the first hydration layer has been shown to be the most important in re-

producing solution dynamics. Therefore, hybrid solutions could be envisaged in which the more

stable/bound water molecules would be simulated implicitly while the bulk of the solvent would

be simulated using a continuum approximation. In this way computational power would be con-

centrated on simulating the protein atoms while at the same time accurately taking into account

the effect of solvent. Thus longer simulation times could be reached.

These aspects only represent the ’next step’ viewed from the perspective of the present thesis

and are in no way exhaustive. There are undoubtedly many more aspects of protein hydration

and motion that need to be and will be addressed in the future than the few listed above. Fully

understanding proteins, their folding, dynamics and interactions with solvent, ligand and other

proteins remains the final goal towards which this thesis work and many of the present efforts in

Biology and Biophysics are dedicated.
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APPENDIX I: PREVIOUS NOSÉ-HOOVER

IMPLEMENTATION

This is the main loop of the algorithm as found when looking into the CHARMM code of the

previous Nośe Hoover implementation†

v′
η ← vη +

∆t/2

Q Fη

η ← η + ∆t/2 v′
η

vi ← vi − ∆t/2 vηvi

vi ← vi + ∆t
2mi

Fi

r i ← r i + ∆t vi

get new forces,Fi (Energy call)

vi ← vi + ∆t
2mi

Fi

This is the standard Velocity Verlet algorithm

vi ← vi − ∆t/2 vηvi Predictor

E′ ← E

E update

F ′
η ← E −NKT

vη ← v′
η +

∆t/2

Q F ′
η

IF E′ andE converged then continue

IF Ncycle not reached then loop.

Correction loop

E update

Fη ← E −NKT

vη ← v′
η +

∆t/2

Q Fη

†The following variables are used in the previous implementation, there meaning and there translation
in a more understandable format is given here:
SNHF, SNHF1: thermostat force,Fη andF ′

η

SNHV, SNHV1 : thermostat velocity,vη andv′η
SNH : thermostat position,η
EPTKX, EPTKE1 : Kinetic energies of the atoms,E andE′
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To summarize this algorithm:
- Half a step is taken alongvη

- A Velocity Verlet step is taken

- Half a step is taken alongvη again

- Looking aroundv′η, vη is corrected in an iterative way so thatFη, E andvi be consistent

with the equation of motion at that instant

A few things are not quite clear with this algorithm:

- Why is the first step taken alongvη and notv′η which has been updated at that point?

- Why is the guess taken alongvη and not alongv′η when at this point it would clearly make sense?

- The last three items of the algorithm are actually redundant.

- In the correction loop a step along an updatedvη is taken, a step along the samevη is then taken in

the first part of the next step. Which mean two half steps are taken along the samevη.

Such an implementation works. It is however not a very precise nor very efficient implementation. It

owes a lot to the correction step, without which it wouldn’t work at all. Formally, it is not time symmetric.

n n+1/2 n+1 n+3/2

v

t

pç

pç

pç

pç

Figure 7.12: Schematic presentation of the time steps taken by the previous imple-
mentation of the Nośe-Hoover algorithm. The green lines indicate estimates which
of pη which are then refined in the correction loop.
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IMPLEMENTATION

This appendix presents the implementation made of the Nosé-Hoover-Chain algorithm which the author

added to the CHARMM package. It basically follows that of G. Martyna, M. Tuckerman, D. Tobias and

M. Klein.1 Their algorithm was adapted for multiple heatbaths, parallel processing, heating procedure, and

constant heatflux procedure.

Following thedirect translation technique described in chapter 2 the evolution operator can be written:

eiL∆t = eiLNHC∆t/2 eiL1∆t/2 eiL2∆t eiL1∆t/2 eiLNHC∆t/2

whereiL1 andiL2 are the same as in equation 2.28. The Nosé-Hoover-Chain part (NHC) is then be broken

down to use multiple time steps and Yoshida-Suzuki steps following equations 2.30 and 2.32. The Liouville

operator can be written:

iL = iLNewton + iLNHC

with:

iLNHC = −
N∑

i=1

vηi
vi · ∇vi +

2∑
k=1

vηk

∂

∂ηk
+ (G1 − vη2vη1)

∂

∂vη1

+ G2
∂

∂vη2

and:

iLNewton =
∑

vi · ∇r i
+

∑
i

(
Fi(r)
mi

)
· ∇vi

The NHC operator can then be split up into:

iLNHC
1 = −

N∑
i=1

vηi
vi∇vi

iLNHC
2 =

2∑
k=1

vηk

∂

∂ηk

iLNHC
3 = (G1 − vη2vη1)

∂

∂vη1

iLNHC
4 = G2

∂

∂vη2

andiL3 is further split up as:

iLNHC
3.1 = G1

∂

∂vη1
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iLNHC
3.2 = vη2vη1

∂

∂vη1

iL1 andiL2 are completely independent from each other so that the full evolution operator can be expressed

as:

eiLNHC∆t = eiLNHC
4

∆t/2 eiLNHC
3.2

∆t/4 eiLNHC
3.1

∆t/2 eiLNHC
3.2

∆t/4

eiLNHC
1

∆t/2 eiLNHC
2

∆t/2

eiLNHC
3.2

∆t/4 eiLNHC
3.1

∆t/2 eiLNHC
3.2

∆t/4 eiLNHC
4

∆t/2

such that:

eiL∆t = eiLNHC∆t/2 eiLNewton∆t eiLNHC∆t/2

i.e. half a step of NHC followed by a step of Newton and an another step of NHC. The NHC half step can

be translated into a computer algorithm, the algorithm for each chain translates into:

scale← 1.0
CALL GETKE

G2 ← (KE − kT )/Q2

vη2 ← vη2 + G2
∆t/4

G1 ← (KE −NkT )/Q1

vη1 ← vη1 · exp(−vη2
∆t/8)

vη1 ← vη1 + G1
∆t/4

vη1 ← vη1 · exp(−vη2
∆t/8)

scale← scale · exp(−vη1
∆t/2)

KE ← KE · scale2

η1 ← η1 + vη1
∆t/2

η2 ← η2 + vη2
∆t/2

G1 ← (KE −NkT )/Q1

vη1 ← vη1 · exp(−vη2
∆t/8)

vη1 ← vη1 + G1
∆t/4

vη1 ← vη1 · exp(−vη2
∆t/8)

G2 ← (KE − kT )/Q2

vη2 ← vη2 + G2
∆t/4

V ← V · scale

The subroutine NHCINT is also presented, it is used before and after each Velocity Verlet step in the

algorithm†:

SUBROUTINE NHCINT

C Variable used are:

C NOBL : Number of parts in the system / heatbath chains

C EPTKX : Kinetic Energie of the different part of the system

C NHX1,NHX2 : Position of the two heatbaths in the chain

C NHV1,NHV2 : Velocity of the two heatbaths in the chain

C NHG1, NHG2: Forces on the two heatbaths in the chain

C RTMPR : Reference temperature

†CHARMM specific commands and non essential parts have been removed.

134



APPENDIX II: N OSÉ-HOOVER-CHAIN IMPLEMENTATION

C SQM1, SQM2 : Thermal mass of the thermostat

C NHCAPR : Number of Yoshida-Suzuki step = 1, 3 or 5

C NHCW : Yoshida-Suzuki parameters

C NHCMTS : Number of time step per cycle: Multiple time steps

C Update Kinetic Energies

CALL NHKE

DO I=1,NOBL

DO J=1,NHCMTS

DO K=1,NHCAPR

DT = SA2X*NHCW(K)/NHCMTS

NHSCAL(I) = 1.

NHV2(I) = NHV2(I) + DT/2*NHG2(I)

AA = exp(-DT/4*NHV2(I))

NHG1(I) = (EPTKX(I)- NDGN(I)*KBOLTZ*PTMPR(I))/SQM1(I)

NHV1(I) = NHV1(I)*AA*AA + DT/2*NHG1(I)

NHSCAL(I) = NHSCAL(I) * exp(-DT*NHV1(I))

EPTKX(I) = EPTKX(I)*NHSCAL(I) *NHSCAL(I)

NHX1(I)=NHX1(I)+DT*NHV1(I)

NHX2(I)=NHX2(I)+DT*NHV2(I)

NHG1(I) = (EPTKX(I)- NDGN(I)*KBOLTZ*PTMPR(I))/SQM1(I)

AA = exp(-DT/4*NHV2(I))

NHV1(I) = NHV1(I)*AA*AA+ DT/2*NHG1(I)

NHG2(I)=(SQM1(I)*NHV1(I)*NHV1(I)-KBOLTZ*PTMPR(I))/SQM2(I)

NHV2(I) = NHV2(I) + DT/2*NHG2(I)

ENDDO

ENDDO

DO J=ATFRST,ATLAST

VX(J) = VX(J)*NHSCAL(I)

VY(J) = VY(J)*NHSCAL(I)

VZ(J) = VZ(J)*NHSCAL(I)

ENDDO

ENDDO

RETURN

END
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