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Die Orbitale Struktur von Galaxien und Dunkle Materie Halos in N-Korper Simulatio-
nen

In dieser Arbeit werden zwei Entstehungmechanismen fiir Galaxien in N-Korper Rechnungen unter-
sucht. Unter der Annahme, dass die Teilchen in einem sphérischen dunkle Materie Halo sich auf
Kreisbahnen bewegen, macht die adiabatische Ndherung genaue Voraussagen iiber das Maf3 der Kon-
traktion des Halos wéihrend der langsamen Scheibenbildung. Wir finden in N-K6rper Rechnungen,
dass die adiabatische Naherung fiir alle realistischen Massenverhiltnisse zwischen Scheibe und Halo
gilt, und Abweichungen von Kreisbahnen keine grossere Rolle spielen.

Im zweiten Teil beschéftigen wir uns mit der Entstehung von elliptischen Galaxien durch Verschmelzung
von Scheibengalaxien. In einem Sample von 150 solcher Kollisionen klassifizieren wir die komplexe
orbitale Struktur des Endergebnisses jeder Kollisionsrechnung. Die Klassifikation wird mit der Tri-
axialitdt und der Linge der Haupttrigheitsachsen verkniipft, mit denen die Gestalt einer elliptischen
Galaxie parametrisiert wird. Wir leiten daraus eine globale Besetzungswahrscheinlichkeit fiir selb-
stkonsistente triaxiale Galaxien ab, die mit theoretischen Erwartungen iibereinstimmt.

Weiterhin finden wir, dass die Isophotenstruktur in den N-Korperrechnungen nicht von einer Orbitgat-
tung, sondern von einer ["Jberlagerung verschiedener Gattungen herriihrt. Die Dichotomie zwischen el-
liptischen Galaxien mit boxférmigen und scheibenférmigen Isophoten kann deswegen nicht vollstandig
auf eine Dominanz von box- bzw. scheibenférmigen Orbits zurlickgefiihrt werden. Bisherige Sim-
ulationen konnen nicht beobachtete Korrelationen zwischen dem hs Parameter und der mittleren
Geschwindigkeit reproduzieren. Als Ursache dieser Diskrepanz werden die box Orbits identifiziert,
die in dissipationslosen Simulationen iiberproduziert werden. Z-tube Orbits erfiillen diese Korrelation
jedoch sehr gut. Ebenso zeigt diese Komponente dieselbe Korrelation zwischen dem hz Parameter und
v/og, wie beobachtete elliptische Galaxien. Wir schlielen daraus, dass nur eine dynamische Kompo-
nente, ndmlich eine sehr dicke Scheibe mit hoher Geschwindigkeitsdispersion ausreicht, um beobachtete
Korrelationen zu erklaren.

The Orbital Structure of Galaxies and Dark Matter Halos in N-Body Simulations

We examine in this work two different formation mechanism of galaxies in N-body simulations. Under
the assumption that particles in a spherical dark matter halo move on circular orbits we can predict
the amount of contraction of the dark matter halo during the slow formation of the disk with an
adiabatic approximation. We find in N-body simulations that the adiabatic approximation is valid for
all realistic mass ratios between dark matter halos and disk galaxies and that deviations from circular
orbits cannot play a decisive role. In the second part we focus on the formation of ellipticals through
mergers of disk galaxies. We classify the complex orbital structure in a sample of 150 collisions. The
classification is correlated with shape parameters of an elliptical galaxy, such as its triaxiality or the
ratios of its principal axes. We are deriving a global occupation probability for self-consistent triaxial
galaxies which are in agreement with theoretical expectations. Furthermore we find that the isophotal
structure of the merger remnants cannot be explained by one orbit class alone, but by a superposition
of classes. The dichotomy of observed isophotal shape in boxy and disky elliptical galaxies, cannot
be completely explained by the dominance of box-like, respectivley disk-like orbits in those galaxies.
Current simulations cannot reproduce observed correlation between the hs parameter and the mean
velocity. We identify a central box orbit component as the reason for this discrepancy, which are
overproduce in dissipationless simulations. The z-tube component follows the correlation very well. It
follows also the observed correlation between the hg parameter and v/og. We conclude that only one
dynamical component is necessary to explain the observed correlations, which looks like a puffy disk
with high velocity dispersion.
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Chapter 1

Slow (Galaxy Formation - The
Adiabatic Approximation

1.1 Introduction

The hierarchical clustering model is the paradigm for galaxy formation today. In this cosmological
scenario, structure forms around peaks of primordial dark matter density fluctuations. The baryonic
matter, which can dissipate energy through radiation, cools and falls into the center of its surrounding
dark halo. The question of how a spherical mass distribution, e.g. a galactic bulge, will respond to
the growth of mass in its center has been adressed by Barnes & White (1984), hereafter BW84. They
devised a simple recipe for predicting the density profile of a contracted spherical density distribution.
This recipe was used by Blumenthal et al. (1986) to examine contracted dark halos, assuming that the
baryonic disk forms in the center so slowly that the time for the increase of mass inside an orbit of a
dark particle is long compared to its orbital period. In a slowly varying potential the action integral
ji = [ pidg; is a conserved property of the particle orbit, called an adiabatic invariant (Binney &
Tremaine, 1987). Here, j is the action, p and q are the phase space coordinates of the dark particle. As
a first approximation, BW84 assumed a spherical density distribution with particles moving on circular
orbits. In this case, the radial action integral simplifies to the conservation of angular momentum.
With L = mour and the circular velocity v2(r) = GM (r)/r we get the adiabatic invariant M (r)r.
Given that we know the final baryonic matter distribution, e.g. an exponential disk-like profile Mj(r)
and the initial dark halo distribution M;(r), we can construct the final dark matter distribution M¢(r)
according to

ri[Mp(ry) + My (r)] = rMi(r), (L.1)

where 7y is the final radius of a dark particle. This approximation is strictly valid only if the initial mass
distribution is spherically symmetric. The mapping between initial and final radius is unique, because
the dark particles are dissipationless and their circular orbits do not cross. The adiabatic compression
has been used widely in estimating rotation curves in semi-analytical galaxy models (Ryden & Gunn,
1987; Ryden, 1988, 1991; Flores et al., 1993; Mo et al., 1998), in investigating the origin of the Tully-
Fisher relation (Courteau & Rix, 1999), in analysing the core structure of dark matter halos (van den
Bosch & Swaters, 2001; Marchesini et al., 2002) and in the formation of gaseous disks in cosmological
N-body halos (M. Steinmetz 2001, private communication). The adiabatic contraction assumption has
been tested qualitatively in a low-resolution study by Blumenthal et al. (1986).

It is surprising that equation (1.1) should hold in realistic situations, where a non-spherical galactic
disk is added to a halo of particles which move on eccentric or chaotic orbits (Valluri & Merritt, 2000).
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Table 1.1: Model runs

‘ Model ‘ Mg/rq ‘ Particle Number ‘ € ‘ timestep ‘ total time ‘
1 0.05/0.14 10000 | 0.03 6.25e-3 adiabatic
2 0.05/0.14 80000 | 0.01 6.25e-3 adiabatic
3 0.05/0.14 200000 | 0.007 | 6.25e-3 adiabatic
4 0.2/0.14 10000 | 0.03 1.57e-3 adiabatic
5 0.2/0.14 80000 | 0.01 | 1.57e-3 adiabatic
6 0.2/0.14 200000 | 0.007 1.57e-3 adiabatic
7 0.05/0.14 200000 | 0.007 | 6.25e-3 violent
8 0.2/0.14 200000 | 0.007 1.57e-3 violent
9 0.2 10000 | 0.03 1.57e-3 point grow
10 0.2 10000 | 0.03 1.57e-3 | point contract

1.2 The Simulations

The N-body halo is set up according to the distribution function devised by Hernquist (1990, 1993).
Its density distribution is p(r) = Myry /[27r(r 4+ 14)3], where M), is the total mass and ry, is the scale
length. The Hernquist halo has the same p oc 7~! dependence in the center as the universal dark
matter profile found by Navarro et al. (1996b), however with a finite total mass as the density in the
outermost regions decreases as p oc 7—4. The baryonic component is represented by analytic external
potentials of a disk and a central point mass. We used the potential of an exponentially thin disk
according to Dehnen & Binney (1998). Its strength depends on the ratio of the disk mass My to the
disk scale length r4. Following Navarro et al. (1996a), we started with a very large disk scale length
and kept the disk mass constant throughout the simulation. The disk scale length is contracted linearly
with time, where the contraction rate is a free parameter. Large contraction time scales compared to
the dynamical time scales correspond to the adiabatic limit. In the limit of zero contraction time the
halo will go through a phase of violent relaxation. The halo-disk system was allowed to relax after the
contraction phase for several dynamical time scales. We applied a massive and a low-mass disk model
with 20 % (MD) and 5 % (LD) of the total dark halo mass, and with a typical final scale length of
0.14 Th-

In order to test the dependence on the concentration of the potential we used a softened point mass
potential following

_ GMjarctan(r/ry)

Py (r) . : (1.2)

Similar to the disk case we kept its mass M, constant and shrank the smoothing length to a final
value of 7, = 0.03 (test case PC). We also tested the case where r, was kept constant and M, was
allowed to grow (PG). For all calculations we chose G = M}, = r;, = 1, where G is the gravitational
constant. Simulations were performed with halos represented by N = 1 x 10%, 8 x 10%, 2 x 10® and
1 x 108 particles in order to test the dependence of the results on the numerical resolution. All
model parameters are listed in Table 1.1. The gravitational softening length € was chosen according
to the criterium of Merritt (1996). We used a time step at least a hundred times smaller than the
dynamical time scale we would expect at the half mass radius for each model. The timestep, adequate
for the runs with the highest number of particles, was not enlarged for lower particle number runs.
We used a newly developed tree code VINE (Wetzstein et al., in preparation) in combination with
special purpose hardware GRAPE-5 (Kawai et al., 2000) at the MPIA, Heidelberg. The refined force
accuracy criterium of Salmon & Warren (1994) guarantees that the absolute force error stays below
the precision of the GRAPE hardware.
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1.3 Results

The four top panels in Fig. 1.1 show the final density profiles of the contracted halos for two resolutions
for the massive and the light disk, respectively (models LD1, LD2 and MD1, MD2). The error bars
show the Poissonian error. The softening length is indicated with an arrow on each plot. In the
innermost parts of the halo, i.e. r < 2¢, the density is influenced by at least two effects: The softening
length and fluctuations in the density due to small particle numbers. To show the effect of the
fluctuations we plot the density profile of four consecutive dumps taken shortly after the contraction
has been completed. This is important as the fluctuations sometimes exceed the 1 ¢ Poissonian error.
At radii larger than two softening lengths the analytical approximation of BW84 gives a very good
account of the matter distribution of the halo for every disk model. The two panels at the bottom of
Fig. 1.1 show the point mass case which is also in very good agreement with the theoretical profile,
independent of the way we grow the external potential. However, the density is somewhat lower than
theoretically predicted inside the scale radius 7.

Fig. 1.2 illustrates for the LD case that the agreement between numerical simulation and theoretical
profile improves with increasing particle number, as we are able to probe deeper into the center of the
dark matter halo.

In Fig. 1.3 we examine the response of the halo to an abrupt addition of the external potentials
(models MDV, LDV and PV). The profile with the light disk (top left) still matches the theoretical
curve. Even in the case of the massive disk (bottom left), the predicted density distribution agrees well
with the numerical model although we find a somewhat lower density inside a radius of one disk scale
length. Adding the point mass potential instantaneously (bottom right) leads to a density distribution
that deviates strongly from the adiabatic prediction. The top right panel in Fig. 1.3 shows the time
evolution of the 1% mass shell radius in each case. For the LD models the mass shells stabilize at
more or less the same radius, though the detailed path of contraction is very different for LD2 and
LDV. For the more centrally concentrated potential (PV) this is not the case. It stabilizes at radii
further outside than in the adiabatic case. Consequently these density profiles are less concentrated
in the center than in the adiabatic case.

1.4 Discussion

We showed that the adiabatic contraction approximation is valid at least in the case of a spherical
dark matter halo and an axisymmetric disk. Let us stress that on a particle to particle basis even if we
would have superposed a spherical perturbing potential, M(r)r is not conserved (apart from circular
orbits of course). We demonstrate this in Fig. 1.4. We compare the conservation of the time averaged
mean radius of a general orbit in a spherical potential and the conservation of the eccentricity of the
same orbit, which is defined as r, * 7,/(rq + 7p), Where r, and r, stand for apoapse and periapse.
The form of the orbit is a planar rossette and it fills an annullus in configuration space. So rather
than a certain radius, the eccentricity is conserved well. This is a very old result of Jeans (1924)
who examined the influence of mass loss on the orbit of a binary star system and derived that the
eccentricity is an adiabatic invariant.

The theoretical solution for the fact that the ensemble of rossette orbits form a system with a M(r)
as predicted by the formula of BW84 lies probaly in casting the form of the distribution function in
dependence of pericenter and apocenter of the orbits, as has been done by Baes & Dejonghe (2002).
However, this is not alleviating general concerns, as e.g. are dark matter halos sufficiently spherical.
If they are very triaxial (Dubinski & Carlberg, 1991) or axisymmetric (Dubinski, 1994) other orbit
classes (see following chapters) will appear which will not be spherically symmetric in configuration
space. Adiabatic contraction of such orbits might even cause them to change their class Binney &
Spergel (1984a). Resonant interaction between a rotating disk and the dark matter might cause the
orbits change their actions (see Weinberg, 1994 and companion papers). It is an open question if due
to dynamical friction infalling dense gas clumps can destroy the central cusp of NFW dark matter halo.
Recently it some researchers pointed out that adiabatically contracted NFW halos predict to steep
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Figure 1.1: Final density profiles of contracted dark halos. The top two panels show the
results for models LD1 and LD2, and the middle two for models MD1 and MD2. The bottom
two panels show the results for the point mass. In the left panel the contracting scale length
case and in the right panel the growing mass case is shown. Arrows indicate the used softening
length.

rotation curves in the center even for HSB galaxies (de Jong et al., 2003). Future work should target
aforementioned problems for the adiabatic approximation which we did not test with the addition of
a mere analytical potential.
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Figure 1.2: Final density profiles of LD1, LD2, and LD3 are shown to examine the effects of
numerical resolution.
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of the 1models LD and P is shown.
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Chapter 2

Introduction to Orbit Classification
in Merger Remnants

At the root of a collisionless stellar system lies its orbital content. It was not initially clear if this
content consisted of regular orbits, regular meaning the orbit obeys as many isolating integrals as it
has degrees of freedom. Indeed Contopoulos (1958) was the first to calculate numerically the orbits
in the potential of an axisymmetric galaxy and expected them to be ergodic, but found them to be
Lissajou figures which did not fill the whole phase space energetically accesible to them. This was
because of the existence of a so called third integral, which needs to be calculated numerically in many
models for a galactic potential.

This work is mainly concerned with the dynamics of elliptical galaxies, which are clearly three-
dimensional objects and not axisymmetric thin disks like spiral galaxies. Initially they were also
believed to be objects flattened by rotation, but it became clear that they are dynamically hot sys-
tems, which are pressure supported rather than rotationally supported.

Binney found that such systems could be either axisymmetric or triaxial. It was at first not known
which orbital structure could be expected in triaxial mass configurations, until Schwarzschild (1979)
calculated solutions for triaxial galactic model. He used a novel technique, which fitted numerically a
set of orbits, also termed orbit library, to a given mass distribution. His findings implied that many
potentials existed, also in the triaxial case, that were integrable. This important result means that
we can use the theory of orbits rather than statistical mechanics for the examination of kinematical
features in elliptical galaxies.

In the following years this method was applied to many different models to examine their orbital
content. Stickel potentials proved to be especially instructive for triaxial configurations, because all
integrals of motion are analytic expressions in ellipsoidal coordinates as was shown by de Zeeuw (1985).
He found that four major orbit families should dominate the content of elliptical galaxies: Box orbits,
inner major axis tube, outer major axis tubes and short axis tubes. Subsequently many galactic mod-
els with Stéckel potentials were constructed by Statler (1987), Bishop (1987), Merritt & Hernquist
(1991), Hunter & de Zeeuw (1992), Arnold et al. (1994) and others. It became clear that the solutions
found for one model with Schwarzschild’s method are not unique (de Zeeuw et al., 1987, Statler, 1987,
Hunter, 1995). Many solutions are possible and it is unclear which orbit population would be preferred
by nature for a given potential.

Many researchers took advantage of Schwarzschild’s method and improved it to fit not only the mass
distribution, but also the kinematical data of a galaxy (Richstone & Tremaine, 1984, Richstone &
Tremaine, 1985, Richstone & Tremaine, 1988, Levison & Richstone, 1985), e.g. using the velocity
dispersion as a constraint. But there is not enough information either in the deprojected surface
brightness or the velocity dispersion to find a unique mass-to-light ratio for an observed galaxy (Bin-
ney & Mamon, 1982). If an elliptical galaxy is a fully relaxed object, we would expect that the
distribution of stellar velocities follows a Maxwellian distribution and the line-of-sight-velocity profiles
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are approximately Gaussian. With the advent of high resolution kinematic data more sophisticated
analyzation methods showed that higher moments of the line of sight velocity distribution are impor-
tant in elliptical galaxies (e.g. Rix & White, 1992, van der Marel & Franx, 1993, Kuijken & Merrifield,
1993). Following work attained better results in fitting distribution functions of different types to
kinematical data (Gerhard, 1993, Qian et al., 1995, Rix et al., 1997, van der Marel et al., 1998). The
constraints on the presence of dark matter in elliptical galaxies or of a black hole were further im-
proved.

Elliptical galaxies were also found to exhibit distinct photometric features, as their isophotal shape.
Bender (1988) and Bender et al. (1988) found that elliptical galaxies divide up in objects with boxy
isophotal and disky isophotal shape. Interestingly galaxies with boxy isophotes have extensive X-ray
halos of hot gas, rotate slowly, and have higher luminosity while disky galaxies are fast rotators, with
low luminosity and have no X-ray halos. Apart from the isophotal shape disparity Bender et al. (1994)
found correlations between the observable kinematical features of ellipticals like the third moment of
the LOSVD and the isophotal shape parameter, for which there is no theoretical explanation.
Toomre & Toomre (1972) were the first to propose that ellipticals could origin from the mergers of two
disk galaxies. Further N-body simulations of collisions of disk galaxies showed that they can mimick
important features of elliptical galaxies, like kinematic misalignments, kinematically decoupled cores
and isophotal twists (Barnes, 1992, Weil & Hernquist, 1996). In detail dissipationless mergers do not
fit real ellipticals as reported by Cretton et al. (2001), who tried to fit the dynamics of 3:1 merger
remnants to a sample of observed low luminosity elliptical galaxies. But a non-negligible amount of
gas is found in the arms of spiral galaxies and has to be taken into account. Mergers with a dissipa-
tive component alleviate some of the problems of gas-free mergers (Barnes & Hernquist, 1996). The
remnants tend to be more axisymmetric and less triaxial. They form disk-like components which were
also found in elliptical galaxies. But Barnes (1998) proposed a solution for the isophotal shape of
elliptical galaxies independent of a gaseous component by assuming that an unequal mass fraction of
a major merger will result in a remnant with disky isophotal shapes. Naab et al. (1999) explored this
hypothesis in detail and found that indeed equal mass and unequal mass mergers can account for the
isophotal dichotomy of elliptical galaxies.

Several workers, most notably Bendo & Barnes (2000), examined the orbital content of merger rem-
nants. They found that the center of the remnants is dominated by box orbits, while short axis tubes
dominate at larger radii. Also in agreement with theory they found that x-tubes dominate in prolate
remants. They also extracted higher moments of the LOSVD for selected remnants and showed a
richness of features, but did not connect their results with a statistical analysis.

We find it striking that while the knowledge of the orbital content of analytical potentials and their
fits to observational data has improved greatly, but we know very little about the orbital content of an
important self-consistent formation mechanism of elliptical galaxies: mergers of disk galaxies. The aim
of this work is not to improve agreement with features of real ellipticals, the solution to this problem
would rather need more realistic simulations, e.g. the addition of gas, star formation or a black hole.
We want to know what the orbital origin of the observed and the intrinsic features of the remnants are.
A long-term goal then would be to connect the fine structure of an elliptical galaxy with its detailed
formation history.

The first and foremost ingredient to such an analysis is a statistical relevant sample of mergers in two
regards: merger symmetry and mass ratios between mergers. Such a sample was produced recently
by Naab & Burkert, which includes 112 dissipationless merger remnants with mass ratios of 1:1, 2:1,
3:1 and 4:1 for close encounters and 48 1:1 and 3:1 merger remnants of wide encounters.

We will classify a representative sample of orbits in each merger remnant. The classification will be
linked to triaxiality, isophotal shape, mean rotational velocities, velocity dispersion and higher mo-
ments of the LOSVD which we extract from the remnants by applying observational techniques. We
will compare our orbital abundances with orbital fractions found in general triaxial potentials by the
Schwarzschild method. The models which are represented by the merger remnants are at least as (if
not more) realistic as e.g. Stdckel potentials. Global correlations are built to see if one orbit class or
a combination of orbit classes can be accounted for certain structural and/or kinematical features.
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In chapter 3 we will introduce the merger remnant sample. The classification technique and first
tests are outlined in chapter 4 We will examine the correlation between shape and orbit classification
in chapter 5. Basic kinematic features of classified orbits are checked in chapter 6. The connection
between the isophotal shape and the orbital stucture and global correlations of the third moment of
the line of sight velocity distribution are examined in chapter 7 and 8, respectively.
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Chapter 3

The Merger Sample

3.1 Physical Setup

We follow the description of the sample as reported by Naab & Burkert. The merging spiral galaxies
were constructed in dynamical equilibrium using the method described by Hernquist (1993). In all
calculations used in this work the units are G = My = rq = 1, where M, is the mass of the more
massive disk, r4 the scale length of the more massive disk and G is the gravitational constant. The
disks are following an exponential law. At the center of each disk a spherical, non-rotating bulge with
mass M, = 1/3, a Hernquist density profile (Hernquist, 1990) with a scale length r, = 0.2r4 is added.
The disk system is embedded in a live pseudo-isothermal halo with a mass M} = 5.8, cut-off radius
r. = 10r4 and core radius v = rq.

Merger mass ratios of 1:1, 2:1, 3:1 and 4:1 were calculated. The equal mass mergers have 80000
particles in each galaxy, 60000 in the disk and 20000 in the bulge. They decided to use twice as many
halo particles than disk particles to reduce heating and instability effects in the disk components
(Naab et al., 1999), i.e 120000 dark halo particles for each galaxy. This amounts to a total of 400000
particles. For the mergers with mass ratios sy = 2,3,4 the number of particles for the less massive
collision partner are scaled down accordingly. The particle numbers of each simulation are summarized
in Table 3.1. They assigned a disk scale length of h = 1/1/n for the low mass companion as expected
from the Tully-Fisher relation (Pierce & Tully, 1992).

3.2 Software and Hardware

The N-body simulations for the equal-mass mergers were performed by direct summation of the forces
using the special purpose hardware GRAPE6. One force calculation for 400000 particles takes 6t ~
.11 seconds. The unequal mass mergers were simulated using the newly developed treecode VINE
(Wetzstein et al., 2003) in combination with the GRAPES (Kawai et al., 2000) hardware. VINE uses
a binary tree in combination with the refined multipole acceptance criterion proposed by Salmon &
Warren (1994). This criterion enables the user to control the absolute force error which is introduced
by the tree construction. We chose a value of 0.001 which guarantees that the error resulting from the
tree is smaller than the intrinsic force error of the GRAPE5 hardware which is of the order of 0.1%.
One force calculation with VINE and GRAPES for 400000 particles takes approx. 12 seconds.

They used a gravitational Plummer-softening of € = 0.05 and a fixed leap-frog integration time step
of At = 0.04. For the equal-mass mergers simulated with direct summation on GRAPEG6 the total
energy is conserved, VINE in combination with GRAPES5 conserves the total energy up to 0.5%.

13
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Table 3.1: Number of particles of different components in the merger simulation for different
mass ratios

Mass N Nwm | Ndaark | Naisk Nyuige | Naark | Naisk | Noutge | Ndark
Ratio | total total total | massive | massive | massive | light | light light
1:1 400000 | 160000 | 240000 | 60000 20000 120000 | 60000 | 20000 | 120000
2:1 300000 | 120000 | 180000 | 60000 20000 120000 | 30000 | 10000 | 60000
3:1 266666 | 106666 | 160000 | 60000 20000 120000 | 20000 | 6666 | 40000
4:1 250000 | 100000 | 150000 | 60000 20000 120000 | 15000 | 5000 30000

3.3 Orbital Geometry

The merging galaxies in the simulations approach each other on nearly parabolic orbits. A study of
orbits of merging dark matter halos in cosmological large scale simulations by Khochfar & Burkert
has shown that most of the merging halos are indeed on parabolic orbits. The first sample is started
with an initial separation of rs., = 30 length units and a pericenter distance of r, = 2 length units
(same parameters as e.g. Hernquist (1992). These are termed close encounters. The second sample
has a pericenter distance of r, = 6 length units termed distant encounters. The rest of the procedure
of setting up the initial conditions is identical for both samples.

The inclinations of the two disks relative to the orbit plane were 41 and i with arguments of pericenter
w1 and ws (see Fig. 3.1).

Orbit

Spin
Plane

Figure 3.1: Tllustration of the angles used to specify a certain merger symmetry.

In selecting unbiased initial parameters for the disk inclinations Naab & Burkert followed the procedure
described by Barnes (1998). For the spin vector of each disk we defined four different orientations
pointing to every vertex of a regular tetrahedron. The initial orientations we used translate to the
following set of angles: For the first galaxy i; = (0,—109,-109,—109),w; = (0,—60,180,60). The
second galaxy has i, = (180,71,71,71),ws = (0,—30,30,90). These parameters result in 16 initial
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Table 3.2: For unequal-mass mergers the first number indicates the orientation of the more
massive galaxy as ¢; and w1, the second number indicates the orientation of the more massive
galaxy as i and wo.

‘ Geometry ‘ 11 ‘ w1 ‘ 19 ‘ wo ‘ Tp ‘ Tsep ‘
1/17 0 O | 180 | 0 |20r6 | 30
2/18 0 0 | 71 |30 |20r6| 30
3/19 0 0 71 | -30 | 2o0r6 | 30
4/20 0 0 | 71 |90 |20r6| 30
5/21 -109 |1 -60 | 180 | O [20r6 | 30
6/22 -109 | 60 | 71 | 30 | 20r6 | 30
7/23 -109 | -60 | 71 | -30 | 2o0r6 | 30
8/24 -109 | 60| 71 | 90 |2o0r6 | 30
9/25 -109 | 0 |18 | 0 [20r6 | 30
10/26 109 O | 71 | 30 |20r6 | 30
11/27 109 0 | 71 |-30 | 20r6 | 30
12/28 -109 | O 71 |1 90 | 20r6 | 30
13/29 -109 | 60 [ 180 | O |2o0r6 | 30
14/30 -109 1 60 | 71 | 30 | 20r6 | 30
15/31 -109 | 60 | 71 |-30 | 2o0r6 | 30
16/32 -109 1 60 | 71 | 90 | 20r6 | 30

configurations for equal-mass mergers and 16 more for every mass ratio n = 2,3,4 where the initial
orientations are interchanged. Following the simple hypothesis that the orientations of the merging
disks are independent of each other and independent of their mutual orbital plane, every merger
geometry has an equal probability to be realized (Barnes, 1998). The orbital parameters are listed
in Table 3.2. In total 112 mergers of close encounters and 48 mergers of distant encounters were
simulated, because only 1:1 and 3:1 mergers were calculated for distant encounter symmetries. For
all simulations the merger remnants were allowed to settle into equilibrium approximately 8 to 10
dynamical times after the merger was complete. Then their equilibrium state was analyzed.
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Chapter 4

Orbit Classification in Merger
Remnants

The realm of orbits can be divided between the regular and the chaotic orbits. An orbit is called reg-
ular, when it conserves at least as many isolating integrals as it has degrees of freedom Each integral
confines the regular orbit to a certain shape in configuration space. The four major orbit families in
triaxial potentials are widely known and named according to their shape box orbits, inner major axis
tubes, outer major axis tubes and short axis tubes. For chaotic orbits (sometimes called irregular, not
to be confused with irregular families) this is not true. As the chaotic orbit only obeys one integral of
the motion, the energy integral, it will visit the whole phase space allowed to it. After a long enough
time it will fill a spherical volume. The relative importance of both types of motion in stellar dynamics
is not yet clear. Dynamical studies (Gerhard & Binney, 1985) showed that the addition of cusp and/or
a black hole to a galactic potential can introduce chaos into the center of a galaxy. It is even argued
that stochasticity (Merritt & Fridman, 1996) drives most elliptical galaxies towards axisymmetry and
that it limits the shape parameters accessible to self-consistent models (Merritt, 1997). On the other
hand there are triaxial elliptical galaxies which have preserved their shape for many dynamical times
(see Statler & SAURON Team (2003) for a recent observational result and Hunter (2001) for a recent
theoretical review). Chaos must not have played a major role in those galaxies. The merger remnants
devoid of any black holes do keep their shape. In our analysis we concentrate on regular orbits as the
main building blocks of galaxies.

If one is convinced that regular orbits play an important role in stellar dynamics a few classification
methods are open for choice. One of the oldest methods to classify orbits was envisioned by Henri
Poincare, the so called surface of section. In principle it is possible to classify orbits in 2 dimensions
with this method. At a given cut through the trajectory, normally at the 0-surface of one coordinate,
the value of the other coordinate and its corresponding velocity are recorded. In other words a surface
of section is a cut through the phase space torus of the orbit. While visually beautiful it is tiresome
to classify orbits by inspection only. A practical impossibility is that SOS of 3-dimensional orbits are
4 dimensional (the phase space coordinates of the other two coordinates) and cannot be visualized
in a simple way. Binney & Spergel (1984b) pioneered an alternative way to reconstruct the phase
space torus of a regular orbit, which they termed spectral analysis. We will outline why we chose this
method and how the results relate to other methods of choice.

The problem at hand is that we want to classify the orbits of an N-body object much coarser grained
than real galaxies in nature. It would be desirable to analyse the orbits ’on the fly’ while conducting the
N-Body simulation. But this is out of the question for practical reasons. The dump frequency would
be too high to be useful for a powerful classification algorithm. We chose to extract the potential and
forces by an Self Consistent Field code (SCF hereafter, see e.g. Hernquist & Ostriker, 1992, hereafter
HO92) and integrate the orbits with a high order, high accuracy Runge-Kutta Integrator. We will
introduce shortly the major orbit families existing in triaxial potentials, explain the numerical methods
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to classify the orbits in a merger remnant and test the results with an alternative classification method.

4.1 Numerical Methods

4.1.1 Spectral Dynamics

The quasi-periodicity of a regular orbit allows to expand the motion in a Fourier series

.'L'(t) = Z X(l,m,n)cos(wz(l,m,n)t + X(l,m,n)) (41)
lLym,mn

y(t) = Z Yv(l,m,n)cos(wy(l,m,n)t + ";[)(l,m,n)) (42)
lLym,n

Z(t) = Z Z(l,m,n)cos(wz(l,m,n)t + ¢(l,m,n)) (43)
l,m,n

in three dimensions, where 1, m and n are integers and Y, 1 and ¢ are constant phases. The ws are
linear combinations of the base frequencies.

Wa,y,2,(L,m,n) = lw1 +mws +nws, (4.4)

where wy, we and w3 are the base frequencies also sometimes termed fundamental frequencies in the
literature. The shape and family of the orbits are determined by two factors.

e 1. The resonance (or lack of resonance) between the quasiperiodic motion in x, y and z
e 2. The number of independent base frequencies

An orbit is resonant when there is a non-trivial choice for p and q such that

PWg + quy = 0, (4-5)

or w, and w, are said to be commensurabel. The resonance determines the main family of an orbit.
A tube orbit will always have a 1:1 resonance, which will give this orbit a definite sense of rotation
around the minor or the major axis of the potential. If an orbit has a 1:1 resonance in the motion in
y and z direction it will be termed x-tube (or minor axis tube). Analogously if it has a 1:1 resonance
in the motion in x and y direction it is called a z-tube (minor axis tube). Y-tubes are instable in
general triaxial potentials (Heiligman & Schwarzschild, 1979) except in the special case of a spherical
potential. An orbit can have either no resonance, one resonance or three resonances. Of course, there
can not be two resonances because by transitivity if w, is resonant with w, and w, is in resonance
with w, then w, is also resonant with w,.

The second point is not so easily understood. The base frequencies determine what we could call the
topology of an orbit. If all spectral lines of an orbit (in all three degrees of freedom) can be represented
by one frequency, it will be a closed orbit, regardless if its resonance determines the orbit as a box
or a tube. If three frequencies are needed, the orbit will be termed open. The rossette orbits is a
2D analogue of such an orbit. In general spherical potentials, the rossete will not close on itself to
form an elliptical orbit, but will precess. The test star will densely fill a ringlike structure. For two
base frequencies there is no real 2D analogue. These orbits will move on thin two-dimensional ’walls’
in configuration space, which can take complex forms. If now there is a line in the Fourier spectrum
which is not commensurabel with three base frequencies it must be the fourth base frequency. The
orbit is termed irregular, or chaotic. The extra frequency causes the orbit to diffuse in phase space,
i.e. it is not bound on a phase space torus.

Carpintero & Aguilar (1998) (henceforth CA98) devised a code which automatically calculates the
Fourier spectrum of an orbit and classifies it according to the scheme outlined in Table 4.1. The input
consists of the positions and corresponding times. The input must be equally spaced in time. The
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spectra is calculated by a fast Fourier transform. FFT work only with time series which are a power
of 2, in our case 4096 dumps. The five most prominent lines are extracted and the orbit classified. We
refer the reader for mathematical details of the line extraction to CA98. See also Hunter (2002) for a
detailed discussion on harmonic analysis.

The code was tested on the singular, triaxial logarithmic potential first analysed by Miralda-Escude &
Schwarzschild (1989) and found a very good agreement. There are several features of the code which
makes it attractive for use on N-Body objects.

e Although we correct the particle positions and velocities by finding the center of mass for an
ever smaller shell of particles, this correction may not be completely correct. For certain orbits
the spectral code can find a non-zero amplitude in the 0-frequency slot, which is non-physical,
of course. It automatically translates the orbit until the O-frequency slot is nullified. This works
because the rest of the spectrum is unaffected in such a translation.

e The code assumes that the x-axis is aligned to the major axis of the system. However, merger
remnants are known to have twists. Especially tube orbits need to be aligned with the correct
axis to classify them correctly. But the code can compensate for small to intermediate twists
as long as the axis fits through the hole of the tube orbit (i.e. with large angular momentum).
Orbits with small holes are lost more quickly (Carpintero, private communication). Those will
not be very frequent though as the z-tubes are left over of one of one the disks and did not come
near to the center. We tested this by purposefully inclining a disk by 30 degrees. The algorithm
still classified 80 % of the orbits as z-tubes. We will discuss it in more detail below, because it
explains the robustness of our results. Note, that if x and z-axis are exchanged the algorithm
breaks down. X-tubes are classified as z-tubes and vice versa. 90 degree twists are (luckily) not
observed in the remnants.

e If the potential is oriented wrongly this does not matter for loop orbits, but box orbits are not
rotationally invariant. The code tests this by rotating the orbit, when the classification indicated
a box orbit. If the spectra changes and it was initially classified as tube, it reclassifies the orbit
according to the maximum amplitude found.

e The accuracy of the extraction of the Fourier lines is given one part in 10~%. We are aware that

there are algorithms which extract the base frequencies with higher accuracy (see e.g. Laskar,
1993, Hunter, 2001), such as Hanning filters. But the accuracy of the extraction should not
be overestimated in the context of N-body merger remnants. The potential itself is coarsely
sampled. These extraction methods are best applied to analytical potentials, which are resolved
to the machine limit.
CA9S8 restrict themselves to the extraction of the five most prominent lines in each coordinate
and take only lines into account which have at least an amplitude 0.02 of the most prominent in
the respective coordinate. When the code extract two neighbouring lines it must decide if they
are the same line to within the desired accuracy.

< €A, (4.6)

where a and b are the frequencies in question, A is the difference in frequency space and € is
the parameter to fix. CA98 found a value € = 0.25 as a good compromise, which we adopted.
The code therefore gives a healthy balance between sophisticated extraction of lines and overly
exagerrated accuracy, which will render most orbits to be (spuriously) chaotic.

e Automatism. We are planning to classify between 40000 and 64000 orbits in each merger
remnant. The sample contains 150 mergers. In the course of this work an approximate amount
of 7,5 million orbits will have been classified. Any classification scheme has to be fully automatic
and well tested. The code of CA98 is the only public available code, which we know of, suitable
for this task.
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Table 4.1: Classification scheme. We follow the nomenclature of CA98. The topology is
determined by the number of base frequencies. A 1:1 designates the resonance responsible
for a rotation around the x or z-axis. n,l,m designate other resonances for each degree of
freedom. 7 stands for irrational divisor, or simpler, no resonance in one coordinate direction.

topology | n:l:m name Independent | Resonances
frequencies

open m:m:n | resonant box 3 1
open m:1:1 z-tube 3 1
open m:1:1 outer x-tube 3 1
open m:1:1 inner x-tube 3 1
open Ilm:n | resonant box 3 3
open I:1:1 z-tube 3 3
open I:1:1 outer x-tube 3 3
open I:1:1 inner x-tube 3 3
thin m:m:n | resonant box 2 1
thin m:l:1 z-tube 2 1
thin m:1:1 outer x-tube 2 1
thin m:1:1 inner x-tube 2 1
thin I:lm:n | resonant box 2 3
thin I:1:1 z-tube 2 3
thin I:1:1 outer x-tube 2 3
thin I:1:1 inner x-tube 2 3
closed I:lm:n | resonant box 1 3
closed I:1:1 z-tube 1 3
closed I:1:1 outer x-tube 1 3
closed I:1:1 inner x-tube 1 3
- T T box 3 0
- - irregular >3

4.1.2 Self Consistent Field Methods

The self-consistent field approach (SCF hereafter) stems from the fast multipole algorithms developed
in quantum mechanics, also known as Hatree-Fock methods. The method is also applicable on the
gravitational N-Body problem. The aim is to solve Poisson’s equation by expanding the density and
the potential in a bi-orthogonal basis set. Poisson’s equation reads as

V2(I>nlm(7') = 477Gpnlm(7') (47)
and the basis set
p(T) = ZAnlmpnlm(r) (48)
nlm
<I)(7“) = ZAnlmq)nlm(’r)a (49)
nlm

where n, 1 and m are the ’'quantum’ numbers or the spherical harmonics. Analogously n is the number
of radial expansion terms, 1 and m are the number of angular expansion terms, with m=-1..4+1. The
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coefficients can be calculated from these formula when the position and the masses of the particles are
known (for a detailed description of the calculation of the expansion coefficients see HO92). When the
coefficients are known the acceleration can be calculated as following

a(r) = - Z Anlqu)nlm(r); (410)

nlm

where V®,,;,,,(r) must be calculated analytically in advance. This implies that we have to make a
choice of the lowest order term of potential expansion, i.e. ®ggg, which should resemble the overall
structure of the N-body object. Rather than particles interacting directly the gravity is represented in
a mean-field sense. Direct collisions which are inhibited in traditional N-body codes by the smoothing
length are not possible in a SCF code. It is truely collisionless. Although the concept of a smoothing
length is not needed, the finite number of expansion coeflicients introduces some noise. SCF codes
scale with O(NlogN), but as we are treating the remnant as a static potential it just scales with N.
A code to calculate the coefficients for a given particle distribution was kindly provided by Shunsuke
Hozumi.

4.1.3 Integration

We use an explicit Runge-Kutta-Integrator of 8th order developed by Hairer et al. (1987), called
DOP853. It produces a dense output, dense meaning it interpolates the coordinates and velocities
at given equal distant time intervals, although it is an adaptive time-step scheme. As discussed
above the FFT needs an input at equal-distant time steps. An adaptive scheme is necessary because
the dynamical times become rather large in the outer parts of the remnant. The CPU time of the
integration is proportional to the tolerance allowed on the energy conservation of the orbit. We
restricted the energy conservation to smaller than one part in 10~® and still achieved an integration
CPU time of less than a second for approximately 200 dynamical times. We can effectively reduce
small scale noise (due to the finite number expansions coefficients, as we have no particle noise any
more) which could otherwise wreak havoc on the line extraction.

4.2 Tests on Merger Remnants

We introduced the numerical ingredients of our codes. How they play out when they are applied to
merger remnants is another question. We had to test rather extensively to make sure that the orbits
are classified correctly. The test (and the production) runs needed to be reduced in an effective. The
procedure is explained step by step in the following:

1. The merger remnant is translated to its center of mass and rotated such that the major axis is
aligned with the x-coordinate axis, the intermediate axis is aligned with the y-coordinate axis
and the short axis is aligned to the z-coordinate axis calculated close to the half mass radius of
the merger remnant.

The initial velocities and positions are taken from the last dump of the merger remnant
The expansion coefficients are calculated and saved to a file

The main code reads the coefficients only once, as the potential is static

AR

The trajectory is evolved for a fixed time (3.25 Gy). Accelerations are taken from the SCF part
of the code. Exactly 4096 equal distant points in time of the trajectory are saved

o

The spectral code Fourier transforms the time series and classifies the orbit

7. The rotation numbers, i.e. w,/w, and w,/w, , the classification and the number of completed
periods are saved. Go to step 2. for the next orbit.
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4.2.1 Choice of Basis Set

There are two commonly used basis sets in the literature: the Clutton-Brock basis set (Clutton-Brock
(1973) from here on CB) and the Hernquist-Ostriker basis set (H092). As mentioned, the lowest order
expansion term should be able to fit the overall structure of the object in question. The CB basis set
is the well known Plummer sphere

3 1

==__ - 4.11

Pooo ir (1 +r2)572 (4.11)
1

Qo0 = D) (4.12)

and the HO basis set is the Hernquist sphere
11 1
- - = 4.1

Pooo =53 (1+7)3 (4.13)
1

Pogo = —+——- 4.14

000 ) ( )

These two models show very different behaviour in the center. While the Plummer sphere has a
shallow core, the Hernquist sphere is cuspy with p oc r~!. Normally the HO basis set should be the
choice for dense objects like the merger remnant, although they have a small core because relaxations
and smoothing length affect the center mostly. We apply both basis sets to the same merger remnant:
1:1 with symmetry 10. It is a very prolate merger remnant and should show a significant amount of
x-tubes. We use the same number of expansion terms n=6 and 1=4. The result is surprising. While
the results attained with the CB basis set are showing a variety orbits, tubes and boxes alike, the HO
calculations just show box orbits (mainly resonant boxes). Such a configuration cannot be stable After
eliminating possible trivial mistakes, we tentatively conclude that there is a incompatibility between
the spectral code and the HO basis set. The reason might be that the forces of the Hernquist sphere do
not go to zero in the center. There is a residual radial force of f.(0)=-1. The spectral code explicitly
assumes that the potential minimum is centered at the coordinate center. The radial force of the
Plummer sphere does smoothly go to zero. Hozumi (1997) examined the phase space structure of the
core violently relaxed uniform density sphere. He finds significant differences between a direct phase
space code and results obtained with the HO basis set and good agreement with the CB basis set.
We will use the CB basis set throughout this work. In the future the results should be tested against
more sophisticated methods like numerical basis sets introduced by Weinberg (1999).

4.2.2 Dependence on Number of Expansion Terms

A good balance between representing the remnant and on the other hand not adding too much small
scale noise to the orbit integration has to be found. We will use more radial than angular expansion
terms. A high number of 1 is suitable for very flattened systems like disks, but our remnants have
triaxial shapes. We adopt the cases (n=6, 1=4), (n=8, |1=6) and (n=10, 1=8). Table 4.2 shows that as
expected the number of chaotic orbits increase with the number of expansion coefficients. The z-tubes
seem to be unaffected, while the outer x-tubes gain and inner x-tubes loose in numbers. The increase
in chaotic and in not classified orbits is compensated by a drop of the box orbit fraction.

We have to bring back to mind that all orbits of N-Body calculations are chaotic. The SCF extraction
is precisely used for smoothing the potential to assign an orbit to a class it would most likely belong,
if it would not be chaotic. Increasing the number of expansions terms would be counterproductive,
because it reintroduces small scale noise. It is understandable that a normal box orbit, which has no
resonances, will be more prone to spurious frequencies, which will render it chaotic. Also they are
more closer to the dense center (of course they form the center, this is an ambiguous formulation), in
which the potential gradient is steeper and causes scattering. Similarly the inner x-tubes are closer to
the center then their sister family of outer tubes and lose proportionally more family members.
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Do we gain any knowledge from increasing the number of expansion terms? Not really, only that orbits
which belong to the center are more chaotic than orbits which live further outside. With this in mind

the family proportions are not changing dramatically.

We will therefore choose the lowest number of expansion terms n=6 and 1=4. On the practical side
this is a convenient choice, as the computation time of the accelerations increases with the number of

expansion terms.

Table 4.2: Classification results for different choices of expansion coefficients

Figure 4.1: Comparison of classification results from different basis sets. Top Graph: Calcu-
lations with CB basis set. Bottom Graph: Calculations with the HO basis set. Left panel
each graph: Cumulative distributions of orbit classes with binding energy. Righ Panel both
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graphs: radial distribution of orbit classes normalized for each radial density bin.
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Table 4.3: Classification results for different choices of alignment

Particle | Resonant | Z-Tube | Inner Outer | Box | Irregular Not
Fraction Box X-Tube | X-Tube Classified
0.2 0.063 0.051 0.145 0.253 | 0.340 0.069 0.079
0.3 0.061 0.051 0.149 0.252 | 0.355 0.057 0.075
0.4 0.061 0.052 0.151 0.256 | 0.358 0.050 0.071
0.5 0.064 0.051 0.147 0.251 | 0.343 0.064 0.081
0.6 0.065 0.059 0.164 0.229 | 0.317 0.076 0.094

4.2.3 Alignment of Major Axis

We discussed already that the code is capable to compensate significant twists and inclinations of the
analysed N-Body object. Table 4.3 quantifies this for the merger remnants. The merger remnant used
in the tests is very prolate in the center (T' ~ 1.0), but becomes more triaxial outwards(T = 0.5).
We calculate the inertial axis of the remnant for the 0.2, 0.3, 0.4 ,0.5 and 0.6 fraction of the most
bound particles. The remnant is rotated on these axis and the classification started. The agreement is
impeccable. The scatter of the results is very small. However, beyond the 60% fraction the alingment
is lost and the number of not classified orbit rises exponentially. The remnant has no clear shape
anymore, and leftovers of the tidal arms are ruining the alignment.

4.2.4 Sign Change of Angular Momentum

It is desirable to test our classification method against another classification method. Following Barnes
(1992) we record each instance when the sign of one component of the angular momentum changes at a
time dump. The simple idea is that a tube orbit never changes its sense of rotation in a static potential.
X-Tubes should not change the sign of their L, component, z-tubes do not change the sign of the L,-
component, all other orbits are boxes. The short-comings of this scheme are obvious. Neither can we
distinguish between inner and outer major axis tubes, nor can we detect any resonances. This is the
most trivial method by far, however, it offers a good sanity check when one of the more sophisticated
methods might go astray. In Figure 4.2 the statistics for the test remnant are shown (64000 orbits in
total).

e Both types of box orbits change the sign of the angular momentum of all components, as
expected. There is a difference in the histogramms of the L, which is peaked for the resonant
orbits.

e The majority of the ztubes do not change the sign of their L, component. About 10% do
change their sign. As the potential is not perfectly aligned to the principal axes, the z-tube
might rotate slightly around the coordinate z-axis. Such an inclination will cause the orbit to
change its sign only for the particular coordinate sytem we chose, when we rotated the merger
remnant.

e The inner and the outer x-tubes also show the desired behaviour and do not change the sign of
the L, component. Interestingly the L, and the L, component histograms show a double peak
for the inner x-tubes and an exponential drop off for the outer x-tubes. Maybe this fact can be
exploited for a circumvention of the spectral code.

e The irregular orbits show a low contamination of x-tubes and z-tubes (few hundreds)

e The ’'not classified’ category shows a significant contamination of x-tubes and a low contam-
ination of z-tubes. For statistical reasons it would be worrisome if one type of orbit is more
often misclassified than another. But if we calculate the relative fractions between misclassified
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tubes and correctly classified tubes, we see that 6,8 % of the x-tubes would have been recovered
by a simple angular momentum change code and 6,1 % of the z-tubes. The conclusion is that
orbits which are intrinsically more abundant in a merger remnant are proportionally also more
often misclassified. We will show in the following chapter that the not classified category shows
no correlation with fundamental properites of a merger remnant and is treated as background
noise.

4.2.5 Orbit Envelopes

We have talked now in detail about abstract poperties of classified orbits in merger remnants, but
sometimes seeing is believing. The location of a ’star’ in a galaxy depends on which orbit family it
belongs to. We will expect box orbits to be concentrated towards the center and z-tubes will circulate
in the x-y plane. An individual orbit will fill a negligible volume, but the entire population of z-tubes
can make up a disk. The isodensity lines of a sample of orbits will not be shapeless but reflect the shape
of the orbit family or in other words the family forms an envelope. Such envelopes have been plotted by
Statler (1987), who examined the orbital content of triaxial potentials (see next chapter). The initial
positions are known from simulations and as we know the assigned classification for each particle,
we can visualize these subsets of particles for better understanding. We do not produce 3D plots, as
configuration space is still too coarsely sampled to render a smooth 3D plot. Instead we project the
densities onto the three principal planes. We will take them from different merger remnants this time,
because a single merger remnant has not enough particles belonging to all four major orbit families
to give a smooth picture. The projections of the samples of the major orbit families are compared to
the envelopes produced by Statler in the following figures.

e The resonant box orbits show a strong dent towards the center in their x-y and and x-z projec-
tions. This reflects their steep approach towards the center of the potential. The normal boxes
show this behaviour only vaguely. As the orbits do not follow any resonances there is also no
clear shape that they could support.

e The z-tubes can be recognized by the projection on the x-y plane. It is round and has a hole
in the center. This reflects their centrophobic nature. Because they have significant angular
momentum they will not approach close. The other two projections show that the ’disk’ is rather
puffy and extends to high latitudes.

e Also the inner and outer x-tubes divide up nicely. Both exhibit a hole in their y-z projection, but
inner x-tubes wind along the major axis and have an elongated shape, while the outer x-tubes
extend very little in x-direction.

4.3 Conclusions

We have shown that orbit classification in merger remnants is possible with a spectral classification
method and an SCF method for the reconstruction of the N-Body potential. The agreement with
results from a simple classification based on the sign change of angular momentum has an error mar-
gin between 5% to 8%. Additionally we can distinguish resonant orbits, both families of the x-tubes
and different orbit topologies. The sensitivity on the choice of the alignment of the remnant is negli-
gible (if the axis are not measured in the very outer parts), an increase of the number of expansion
terms (both radial and angular) increases the amount of noise and hence the amount of chaotic orbits.
An low number of expansion terms is chosen n=6 and 1=4. Finally the form of the envelope formed
by the configuration space of an orbit family agrees well with the envelope shapes as expected by theory.
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Figure 4.2: Histograms of the number of angular momentum sign changes of each classification
category as attained by the spectral code. From top to bottom: Resonant Boxes, Box Orbits,
Z-Tubes, Inner X-Tubes, Outer X-Tubes, Irregular Orbits and Not Classified.
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28 CHAPTER 4. ORBIT CLASSIFICATION IN MERGER REMNANTS

<R
YY) '.\ sl
-1.0 -05 0.0 05 1.0 -1.0 -05 0.0 05 1.0 -1.0 -0.5 0.0 05 1.0
x x y

Figure 4.4: Top:Envelope of z-tubes Bottom: Projections of z-tubes in merger remnants
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Figure 4.6: Top: Envelope of outer major axis tubes. Bottom: Projections of outer major
axis tubes



Chapter 5

The Orbital Structure and the
Shape Parameters

The intrinsic shape of elliptical galaxies is an outstanding problem since Hubble’s times. It is an ill-
determined problem as by the projection on the sky the information of the true shape is lost. Hubble
(1926) classified the ’elliptical nebulae’ according to the ratio of their apparent minor and major
axis, defining the ellipticity (a-b)/a. As long as elliptical galaxies were assumed to form an oblate
spheroidal population originated from a monolithic collapse of a gas cloud, there was not a big interest
in their true shape. When it was shown that elliptical galaxies rotate too slowly to account for their
flattening (Bertola & Capaccioli, 1975), the question rose again. They are rather dynamically hot
systems. Binney (1978) suggested that the flattening is produced by the anisotropy of their velocity
distributions. This would be entirely possible in a triaxial or an axis-symmetric potential. Statistical
methods (Binggeli, 1980) show that the shape distribution of elliptical galaxies is inconsistent with a
pure population of oblate spheroids.

Whatever form galaxies intrinsically have it must origin from a superposition of orbit families. The
triaxial models which are ’explored’ by our merger remnants will result in a self-consistent distribution
function naturally. It is therefore interesting to ask what fraction of which type of orbit is found in
which merger remnant. We will analyse the orbital content of the remnants and confront our results
to the theoretical work of self-consistent models of triaxial potentials.

5.1 Shape parameters

The shape of a triaxial mass distribution is determined by ratio of its three main inertial axis. We
find the inertial axis through diagonalising the inertial tensor of each merger remnant. We bin the
particles according to binding energy such that they follow the structure of the remnant naturally
(Weil & Hernquist, 1996). The triaxiality is defined

_1-(b/a)?
T = oy (5.1)

where a, b, and c are the long, intermediate and minor axis respectively. Alle spheroidal shapes
accesible for a triaxial configuration are illustrated in Fig. 5.1. Two sides of the triangle are formed
by the axis ratios b/a and c¢/a. The diagonal line forms the T=1 division, beyond which the roles of
major and minor axis would be reversed. That is the reason of course why the axis ratio space forms a
triangle. At the three corners we find the limiting cases of triaxial spheroids: the sphere, the needle and
and Kuzmins disk. In case of the sphere all inertial axis have the same length (a = b = ¢). All orbits
are planar rossettes. Many physicaly viable distribution functions are known, e.g Hernquist sphere.
The orbital content of Kuzmin’s disk is also planar rossetes, albeit just in one plane (a = b,c = 0).
The needle (b = ¢ = 0) does have a self-consistent configuration (Tremaine & de Zeeuw, 1987), but

31
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it is only one-dimensional. The prolate spheroids (b/a = ¢/a) are supported by the x-tube which are
rather elongated. The oblate spheroids (b = 0,0 < ¢/a < 1) just allow z-tubes. To the middle of the
diagramm box orbits become more important. As both tube families are depopulated and actually
oppose the shape of the figure, the box orbits have to be populated to sustain a triaxial form.
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Figure 5.1: Overview of models in axis-ratio space. Figure reproduced from Statler (1987).
Numbers inside the triangle denote models explored by Statler. We compare our results to
the first ten.

5.2 The Shape of Merger Remnants

We can now place the remnants in such an axis ratio diagramm. It is especially illustrative to examine
the merger remants inside out. We are plotting the results for the particle fractions of 0.1, 0.2, 0.3 and
0.4. Remember that each following plot includes the particles of the former. Therefore the expression
shell is not accurate and we should speak of subsets of particles. The different merger ratios have been
run with different number of particles. We list the real number of orbits for each subset and merger
fraction in Table 5.1.

In Fig. 5.2 it is apparent how the shape of the remnant changes. The color coding in the plot subdi-
vides the different mass fractions of the mergers. The 0.1 % subset is for all merger remnants rather
prolate. More than 50 % have a triaxiality of more than 0.7. There is a very tight relation between the
axis ratios. The mass fractions are occupying different stretches of this relation. Beginning with 0.2
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Table 5.1: Number of orbits classified in merger remnants with different mass ratios
Mass | Num | Naarr | 40% of | 30% of | 20% of | 10% of
Ratio Nium Nium Nium Nium
1:1 160000 | 240000 | 64000 | 48000 | 32000 | 16000
2:1 120000 | 180000 | 48000 | 36000 | 24000 | 12000
3:1 106666 | 160000 | 42666 | 32000 | 21333 | 10666
4:1 100000 | 150000 | 40000 | 30000 | 20000 | 10000

% subset the shapes are dispersing. Already here we can see that in the center one or only few orbit
families determine the shape while further outside the shape is more complex and more families come
into play. In the final panel the different merger ratios occupy overlapping regions in axis ratio space.
But it is evident that 1:1 mergers are the most prolate remnants. Some 2:1 mergers interestingly have
a high c/a, while being moderately oblate. The 3:1 and 4:1 mergers are the most oblate spheroids
with a low c¢/a. However not few of them have maximum triaxiality of T=0.5. No merger remnant is
found below a minor to major axis ratios of 0.5, although this would be theoretically possible.

It is instructive to list the mean orbit fractions for all plots shown, averaged over a mass fraction
sample like Table 5.2. For a visual overview the reader is refered to the bar charts of appendix A.
We can see that innermost particles are mostly box orbits, most of them non-resonant. Resonant
orbits seem to play a minor role in all merger remnants. From 1:1 to 4:1 z-tube becomes gradually
more important. x-tubes, especially inner x-tubes only appear in numbers in 1:1 mergers. The trends
described visually are confirmed for the box and z-tube orbits. It is interesting that the mean values
for the box orbits of the complete orbit sample is not very different for 1:1 to 4:1 mergers. Rather the
amount of z-tubes is increasing. Where do the z-tubes go in the equal mass mergers? Mainly into the
x-tubes. Very prolate remants, as seen before, are only shaped by 1:1 mergers.

The absolute numbers of the various orbit classes can be deceiving. The reader, e.g. could get the
impression that our not classified orbits play a more important role in forming the shape of the remnant
than the inner x-tubes. This is not true as the scatter of the x-tubes is much higher than of non-
classified orbits. Irregular and non-classified orbits form a uniform background never amounting to
more than to 15 % to 20 % of all the orbits in one given remnant. Remnants resulting from special
orbital geometries can have up to 40 % of x-tubes (both types summed).

If the shape is decisive we should be able to build correlations between the main parameters, triaxiality,
b/a and c/a and the orbital fraction. The triaxiality correlations are shown in Fig. 5.3. In detail the
results are:

e Z-Tubes show a tight correlation of exponential form towards the oblate end T=0.

e X-Tubes show a good correlation towards the prolate end T=1. Although the correlation is
clearly seen the orbital fractions a low.

¢ Box orbits peak at T=0.5, i.e. maximal triaxiality.

¢ Resonant Box orbits show the same qualitative behaviour like non resonant box orbits, but on
a much lower level of abundance.

e Irregular and not classified orbits show no correlation at all with triaxiality. They form a uniform
background with almost constant abundance and will be neglected in further analysis.

All results are in very good agreement with the theoretical discussion in the previous section.

Even more structure is visible when we look at the two-dimensional correlation in axis ratio space (Fig.
5.9). The same triaxiality can be achieved by a different combination of ¢/a and b/a as the the lines
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Table 5.2: Classification results for different particle fractions of the remnants. The numbers
are averaged over one mass ratio sample.

Merger | Resonant | Box | Z-Tube | Outer | Inner | Irregular Not
Ratio Box X-tube | X-tube Classified
Statistics of the 10 % most bound particles
1:1 0.0759 | 0.7666 | 0.0149 | 0.0174 | 0.0853 | 0.0324 0.0072
2:1 0.0722 | 0.7689 | 0.0484 | 0.0164 | 0.0333 | 0.0513 0.0095
3:1 0.0720 | 0.7361 | 0.1001 | 0.0073 | 0.0159 | 0.0587 0.0100
4:1 0.0669 | 0.7106 | 0.1256 | 0.0057 | 0.0092 | 0.0705 0.0115
Statistics of the 20 % most bound particles
1:1 0.0984 | 0.5650 | 0.0748 | 0.0529 | 0.0793 | 0.0723 0.0574
2:1 0.0835 | 0.5848 | 0.1191 | 0.0390 | 0.0350 | 0.0939 0.0444
3:1 0.0854 | 0.5569 | 0.1617 | 0.0262 | 0.0216 | 0.0978 0.0508
4:1 0.0753 | 0.5270 | 0.2119 | 0.0221 | 0.0132 | 0.1020 0.0487
Statistics of the 30 % most bound particles
1:1 0.1073 | 0.4512 | 0.1390 | 0.0818 | 0.0627 | 0.0642 0.0938
2:1 0.0956 | 0.4633 | 0.1976 | 0.0532 | 0.0262 | 0.0816 0.0823
3:1 0.0982 | 0.4422 | 0.2331 | 0.0363 | 0.0158 | 0.0832 0.0912
4:1 0.0848 | 0.4120 | 0.2954 | 0.0298 | 0.0098 | 0.0847 0.0835
Statistics of the 40 % most bound particles
1:1 0.1169 | 0.3701 | 0.2040 | 0.0954 | 0.0544 | 0.0526 0.1064
2:1 0.1044 | 0.3798 | 0.2696 | 0.0585 | 0.0214 | 0.0662 0.1002
3:1 0.1046 | 0.3597 | 0.3102 | 0.0392 | 0.0127 | 0.0664 0.1072
4:1 0.0876 | 0.3318 | 0.3763 | 0.0320 | 0.0078 | 0.0678 0.0965

of equal triaxiality illustrate. The orbital abundance is not parallel to lines of equal triaxiality, but
also changes with different c/a-b/a. This is seen in the panel which shows the box orbit abundance.
The peak is located at T=0.5, but it is not a ridge that follows this value, but has also a gradient
along the triaxiality line. The spread in the one dimensional triaxiality diagrams (Fig. 5.3) can be
explained that way.

The z-tubes show a more clear cut behaviour than the boxes. They are confined to very oblate rem-
nants and depopulate very quickly for other shapes. There is a notable exception at ¢/a=x0.65 which
shows an abnormal overabundance of z-tubes, extending to lower values of b/a. By closer inspection
we find that three remnants show a spherical component in the center, which classifies as z-tubes.
They origin from the same merger geometry. This symmetry seems to leave the bulge of the more
massive galaxy unscathed. The bulges are Hernquist spheres and consist of planar z-tubes.

The box orbits and z-tubes show antagonistic behaviour. The isoabundance lines of the z-tubes at
high abundance are identical with the lines of box orbit at low abundance. Those two families are the
most dominant families in most of the remnants. This suggests that many kinematical features might
depend on the ratio of the population of those two orbit families. We will exploit this finding in the
folowing chapters.

Outer x-tubes and inner x-tubes are not occupying exactly the same positions in the diagrams. Inner
x-tubes are abundant in more prolate models, while the outer x-tubes are also common in remnant
which tend to the spherical limit. If we remember the shape of the orbits this is understandable. The
inner x-tube are far more elongated along the major axis while outer x-tubes support a round and
thick shape.
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Figure 5.2: Axis ratios of the merger remnants for different particle fractions. Top Left: 10 %
most bound particles. Top Right: 20 % most bound. Bottom Left: 30% most bound. Bottom
Right: 40% most bound. Lines of equal Triaxiality are overplotted. From left to right T= 1,
0.7, 0.5, 0.3, 0.1.

5.3 Distant Encounter

The correlations between the shape of the remnant and its orbital content are by themselves interesting
results. But are these results under all circumstances pathological? Even if we restrict ourselves
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Figure 5.3: Dependence of the fraction of different types of orbit families on the triaxiality of
the merger remnant calculated from 40% of the particles sorted according to binding energy.

to dissipationless mergers, we do not know if the merger symmetries we used are representative in
a cosmological context. Recently Khochfar & Burkert (2003) examined the distribution of merger
symmetries of dark matter halos in a cosmological simulation of the VIRGO CONSORTIUM. The
results which are relevant for us are summarized in Fig. 5.4. Most of the encounters found at low
pericenter distances are parabolic orbits. This is in agreement with the orbital parameters used in
this study. The pericenter distances of the first sample corresponds to approximately 5% of the virial
radius of the dark halo of the remnant. However, the bulk of the mergers have rather bigger encounter
distances and additionally the eccentricities start to scatter from the parabolic value of e=1. The
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Figure 5.4: Orbital parameters of merging dark matter halos found cosmological simulations.
Figure kindly provided by S. Khochfar
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Figure 5.5: Fit to correlations between triaxiality and orbit occupation number. Left: Z-

tubes. Right: Box orbits.

paramater space is too big to be surveyed, hence we first test how the results differ when we enlarge
the pericenter distance to 6 disk scale lengths which corresponds to roughly 15% of the virial radius.
As explained in the previous chapter the distant encounter sample just contains 1:1 and 3:1 mergers.

We will therefore compare only to the 1:1 and 3:1 mergers of the close encounter sample.

48 mergers are too few to interpolate them on a regular grid in two dimensions. Instead we will
perform a x2-fit on the simple correlations we found for the triaxiality (see Fig 5.5). As we have the
best statistics for boxes and z-tubes we restrict ourselves to these orbit families. For the box orbits of
the reduced (just 1:1 and 3:1) close encounter sample we fit a quadratic function to reproduce the two
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falling wings to the prolate and the oblate end. We find the correlation

froz = 0.061 + 1.45T — 1.44T? (5.2)
and for the distant encounter sample

foow = 0.201 + 0.89T — 0.9072. (5.3)

Already here we can see that the distant encounters follow a shallower correlation. Ideally the constant
of the correlation should be 0, meaning at the extreme triaxiality limits the number of box orbits drops
to zero. This is not the case, the correlation for distant encounter crosses the y-axis at 0.2. One could
argue that more 2:1 and 4:1 encounters could alleviate the situation, but when we look at the relation
of the full sample of the close encounters

Froe = 0.09 4 1.44T — 1.50T2, (54)

we see that the relation changes only slightly. Firstly this means we could have predicted the orbital
content of the 2:1 and 4:1 remnants if we would have known the triaxiality. Secondly also the dis-
tant encounter correlation probably will not change much if we would simulate 2:1 and 4:1 mergers.
Similarly for the z-tubes we find

1
B _ 5.5
Fe—twbe = {596 50T (5:5)
for the distant encounter sample
Fovue = —— (5.6)
Ftube = 104 + 8.41T '
for the reduced close encounter sample and
Fotube = (5.7)
#tube ™ 109 + 8.31T ‘

for the total close encounter sample. Note that we would expect 1 for the constant in the denominator
such that the fraction of z-tubes would be one for T=0.

The population process which operates in close and distant mergers seems to be different. The de-
pendence on triaxiality seems to be less obvious in the distant encounter sample. The correlations are
flatter and do not go to 0, respectively 1. We want to shed some light on the triaxiality distribution
of the two samples, which can be seen in Fig. 5.6. The distant encounter sample is less peaked, but
also has less extreme triaxialities than the close encounter sample. The peak from the close encounters
and the distant encounters moves from prolate to oblate, while the scatter of shapes is bigger for the
close encounter sample. Interestingly the decrease of diversity in the shapes of the distant encounters
alleviates another problem of dissipationless mergers found by Naab & Burkert. They found merger
remnants which have projections with very high ellipticity, although they are not rotating significantly.
Such ellipticals are not observed. These merger remnants are however located at the prolate end of the
triaxiality correlation. If we would exclude them, we would still have a significant difference between
close and distant encounters.

5.4 Schwarzschild Method vs Merger Remnants

The results of the previous sections give a good insight into the shape evolution of the individual
mergers, respectively on the influence of the mass fraction on the orbit population. General properties
(see previous chapter) of the orbits are in agreement with expectations of orbit theory. What we really
want to know is if the occupation number of orbits for a given shape agrees with what theoriticians
and observers use in constructing self-consistent models or fitting orbit libraries to kinematical data



5.4. SCHWARZSCHILD METHOD VS MERGER REMNANTS 39

2 T T T 2 T T T

— 10 % most bound particles — 10 % most bound particles

— 20 % most bound particles

% most bound particles

Triaxiality Triaxiality

— 30 % most bound particles

0.6 04 0.6
Triaxiality Triaxiality

— 40 % most bound particles — 40 % most bound particles

204 — 204 —

04 06 04 06
Triaxiality Triaxiality

Figure 5.6: Statistics of triaxialities at different particle fractions of the mergers. Compared
are the 1:1 and 3:1 sample of the close encounters (left) and of the distant encounters (right).

of elliptical galaxies. For both tasks variants of the Schwarzschild method are applied.
For observations, however, almost only axis-symmetric models either with two-integrals or with three
integrals have been used. Kronawitter et al. (2000) examined the orbital structure of a sample of E0/1
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galaxies and could restrain themselves to spherical models. Cretton et al. (2000) determine the orbital
anisotropy of the giant elliptical NGC2320 with an axisymmetric model. They briefly discuss that
orbit fractions found in triaxial merger remnants cannot be compared with their results, because box
orbits do not exist in axisymmetric models. Mathieu & Dejonghe (1999) construct a triaxial Stickel
model which they fitted to data of Centaurus A, but gave no explicit orbit fractions. If triaxial models
are in general to be preferred to axisymmetric or spherical models is another question. At least in some
galaxies it seems to be feasible. Matthias & Gerhard (1999) examined the boxy elliptical NGC 1600.
They had to put a lot of mass on radial z-tube orbits, i.e. z-tubes with very low angular momentum,
and speculated if NGC 1600 is in truth triaxial the mass could be better assigned to box orbits. For
a comparison with our merger remnants there are no usable orbit fractions from observations which
tried to fit a triaxial model in the literature.

There are two theoretical works which give explicit numbers of orbit fraction in models of triaxial
galaxies. Statler (1987) constructed several models for the perfect ellipsoid (de Zeeuw & Lynden-Bell,
1985) which has a smooth core. He finds mathematically allowed solution for all possible axis ratios.
There is not only one model for each axis ratio but a solution space constrained by the extreme angular
momenta of the orbits. He terms the solutions xmax, for weight on maximum L., zmax for weight
on maximum L, and min, for a minimum weight on any angular momentum. As can be guessed the
minimum solutions prefer models which populate more box orbits. The xmax solution prefers x-tubes
and the zmax prefers z-tubes. He also uses a different numerical method, called Lucy’s method, which
converges on a solution in the middle of the angular momentum solution space and therefore does not
prefer any type of orbit. In Fig. 5.7 Statler’s results are contrasted to our results. We only compare
models ¢/a greater or equal to 0.375 (see Fig. 5.1 models 1-10), because no merger remnant falls below
this value (in truth they do not even fall below 0.45 or so, but there are not enough models to compare
to). Note that we are plotting both x-tube families in one plot for better comparison.

The xmax solution comes quite close in absolute numbers as well as in tendency towards the relations we
extract from the merger sample. The zmax and Lucy’s solution show an increase in box orbit fraction
with triaxiality beyond T=0.5, which we do not observe. The min solution shows no dependence on
triaxiality for z-tubes, which we also do not find. It is open to debate if the xmax solution has any
bearing on the processes which populate the orbits. Maximum L, should prefer x-tube over z-tubes
in general, which is not the case in mergers as they are results of the collision of two disks which are
purely composed of z-tubes. Consequently we find that z-tubes are more prominent in the mergers
than x-tubes.

A related study by Terzic (2003) highlights the stability of triaxial scale-free potentials (see also
Merritt, 1997). He uses a combination of Schwarzschild method and spectral analysis to build self-
consistent models. He uses a Schwarzschild code to match the scale-free triaxial density distribution,
but also finds the base frequencies of the orbits. The classification of the orbits is analogous to CA98.
Additionally he computes the diffusion time of the orbits. A chaotic orbit does not keep his base
frequency. The integration of an orbit from say t=0 to t=100, and from t=100 to t=200 will not
give the same result if the orbit is chaotic. The rate of diffusion according to this definition is simply
dw = “0 where T is one integration interval. The more chaotic the orbit is the higher the rate
of diffusion. For a regular orbit dw will be exactly zero. The scale-free models in his calculations are
variable in the steepness of their central density cusps. He finds that the parameter space of allowed
shapes diminishes with increasing steepness of the cusp. This is so because an ever greater amount
of orbits becomes stochastic and cannot retain a very triaxial shape. In very steep cusps only the
extreme models with T=1 (prolate limit) and T=0 (oblate limit) can survive. Balsa Terzic kindly
provided us with the detailed data for the weak cusp p oc r =95, At this steepness he finds the biggest
number of feasible models which lie between ¢/a=1 to ¢/a=0.5, which is in good agreement with the
merger remnants. We can now overplot his results to the merger sample, additionally to Statler’s
results we can compare the resonant box orbits as well. Again the tendencies are the same, except for
the resonant orbits. The explanation might be that the higher resonances are not taken into account
but added to the normal box orbits for pragmatic reasons (Terzic, private communication). The box
orbit fractions also drops towards the prolate and the oblate ends in the final model, In contrast the
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Figure 5.7: Comparison of the merger sample orbit
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top-most row of models shows an inverse behaviour. These are extreme models with ¢/a=0.9 which we
do not observe in the merger remnants. It is possible that these models are feasible, but can result only
from an unlikely merger symmetry. The scatter in his results for a given result show that a different
combination of ¢/a and b/a will result in a slightly different orbit fraction although the triaxiality
parameter has the same value.
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5.5 Discussion

We analyzed the orbital content of a large sample of dissipationless mergers and correlated the number
fraction of different orbit classes with the shape. We achieve a suprisingly concise picture for the close
encounter sample. Correlations with triaxiality (one-dimensional) and axis ratios (two-dimensional)
are tight and homogeneous over a large range of triaxialities. Trends in the occupation numbers of
the different orbit classes are in agreement with general considerations of triaxial models and with
detailed studies of self-consistent triaxial configurations constructed with the Schwarzschild method.
Orbit fractions in merger remnants and fraction obtained from Schwarzschild methods do not coincide
in absolute numbers and find trends which we do not observe. We list what we think are the main
reasons for the discrepancy.

e The integration of our orbits is noisy. The algorithm does not classify about 10 % of the orbits.
Schwarzschild methods have infinite resolution in the integration of the orbits. (Not in the
resolution of fitting the library to a mass model, of course)

e The potentials have not the same central density structure. The perfect ellipsoid has a smooth
core and is expected have more tubes in general. Terzic explores a variety of cusps, but un-
fortunately there was no data for p oc r~! available, which would be more suitable for our
remnants.

e The mergers are not self-similar, but change shape with radius. We simplified the picture by
assigning a typical triaxiality close to the half-mass radius. We tested the impact of these twists
and found them to affect the classification neglibly, however there are no Schwarzschild models
for such a case to test our classification more rigorously.

e The population process in the Schwarzschild models has to be chosen in a certain way. Statler
weighted different orbit classes according to their angular momentum, while Terzic chose to use
the start space method devised by Schwarschild to explore the orbital content of the logarithmic
potential. The mergers populate in a natural way. The phase space is rearranged through the
violent relaxation process during the tidal disruption of the galaxies. In other words there is no
non-uniqueness problem for the merger remnants.

This nice picture fails for the distant encounter sample, though. The orbit fraction seem to ’decouple’
from the triaxiality of the merger remnant, as the correlation flattens out. We could argue that the
distant encounters leave more of the original disk intact, but this is not the case. Indeed the opposite
is the problem, we can produce more oblate models with close 3:1 encounters. This can be seen by the
fact that the correlation for z-tubes approaches rapidly 1 for T=0, not so for the distant encounters.
Another problem might be that the triaxiality value we choose does not describe the remnant well.
Instead of sorting the particles according to binding energy, we will have to determine the triaxialities
from the density structure directly. Streaming motions might also prove to be a powerful tool to
cross-check intrinsic shapes more reliably (Statler et al., 2001).

In a long term perspective this point should be settled, because the distant encounters are more
relevant from the viewpoint of hierarchical galaxy formation in CDM, than the close encounters.
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Figure 5.9: Abundance of different types of orbit families in merger remnants with different
shapes. The sample of 112 mergers is linearly interpolated on a regular grid to get a smooth
picture. We examine here the orbital content of the 40% most bound particles. Lines (dashed)
of equal triaxiality are overplotted: T= 1, 0.7, 0.5, 0.3, 0.1.



Chapter 6

General Kinematical Features

We want to show in this chapter that our orbit classification also fulfills expectations of general
kinematical features. We must expect that x-tubes are responsible for apparent minor axis rotation
and z-tubes for major axis rotation. Box orbits should have in general a higher velocity dispersion,
because of the lack of a coherent rotation. We will try to find correlations between the relevant
parameters.

6.1 Major Axis Rotation

Z-tubes rotate as the name indicates about the minor axis of the system, hence we would measure
significant velocities along the major axis. Like in spiral galaxies it is better to extract the rotation
curve, when they are seen edge on, rather than face on. We will plot the mean velocities along the
major axis of the z-tube component of two 1:1 remnants. For better comparison we also plot the
mean velocities of the same orbits along the minor axis. For better understanding we want to stress,
when we are saying, we are plotting the velocity of an ’orbit’ it means we are always examining the
coordinates and velocities of the particles of the last dump of the merger simulation and not of a
subsequent integration that we are performing. This is a really hard test, as we select the particles we
examine only according to our classification scheme. In Fig. 6.1 we see that the particles we selected
indeed have a significant rotation velocity along the major axis with respect to the rotation of the
whole remnant. They show a significantly lower velocity along the minor axis. We could have shown
mean velocities of the z-tube component 3:1 or a 4:1 remnant, which rotate much faster. But those
remnants rotate much more in total (see also Fig. 6.2) than a typical 1:1 remnant, and the signature
would not stand out so much.

Globally the z-tube fraction correlates with the mean of the absolute value of major axis rotation
(Fig.6.2). We average here over 50 projections. For z-tube fractions around 20 % there is no clear
correlation. The picture is more complicated for the 1:1 remnants as they can produce large amounts of
counterrotating populations of tube orbits. The mean rotational velocity can be significantly reduced
or neutralized. There is one extreme case of a 1:1 remnant, where the z-tube fraction amounts to 40
%, but there is almost no rotation. This is no surprise, because the merger symmetry is a frontal
collision, while the disks have anti-parellel spin vectors.

6.2 Minor Axis Rotation

We extract like in the example before the rotation curve of orbits, this time classified as x-tubes.
Because they rotate about the major axis, observers would see the rotation along the minor axis. We
have not so much choice this time. X-Tubes are prevalent only in 50 % of 1:1 mergers and in only 10%
of 2:1 mergers. We cannot use the 3:1 and 4:1 remnants in this section.

45
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Figure 6.1: Left Column: Mean Velocities along major and minor axis for particles classified
as z-tubes in two different 1:1 remnants. Right Column: Same measurements but this time

the complete remnant

T
o 8 *
r * =% o *7
D oo
0.5 o D*DD o o 1
B o %'*@ o ¢
* E *
o *
04 o BT N -
’ ’0’ *
O * * *
kol

L * *e o i

= o d* s

E ®e o
203 o e _

= AR 2
L o i
02+ o [ ] —
°
L ®e o 1:1 R
° ° e 2:1
0.1+ * 31 —
o ° o 41
L ° ° i
0 \ \ \
0 0.2 0.4 0.6 0.8

Z-Tube Fraction

Figure 6.2: Correlation of the absolute value of rotation along the major axis with the z-tube
fraction

Observers often use the parameter y to measure the amount of minor axis rotation. It is defined as

Umin

M =
/ .2 2
Umin® + Umaj

6.1)
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Figure 6.3: Left Column: Mean Velocities along major and minor axis for particles classified
as x-tubes. Right Column: Same measurements but this time the complete remnant

A high value of p in combination with isophotal twists is used as an indicator for triaxiality (Binney,
1985). We can ask if this property is really a good indicator for triaxiality. Again the illustration in
2D can help us. If we look at Fig. 6.4 we see that u peaks at almost exactly T=0.7. While this is
a significant amount of triaxiality, models which lie between the triaxiality maximum and the oblate
limit would not be recognized. Even mergers at T=0.5, but with a low value of ¢/a cannot be detected
by this parameter.

It is a good indicator for minor axis rotation though. Fig. 6.5 shows the correlation between the
x-tube abundance and the true minor axis rotation value, respectively p. Both correlations are in
good agreement. The correlation for the absolut value of the rotation is smoother than with the
1 parameter, as could be expected. However, even for the true minor axis rotation there are some
outliers, which again might be explained with counter rotating populations of x-tubes.

6.3 Box orbits and Central Velocity Dispersion

Box orbits which have a negligible mean angular momentum should not rotate at all. This time we
examine two 3:1 remnants, because the whole remnant rotates significantly, we must make sure that
we extract the orbits which do not contribute to the rotation. The results can be seen in Fig. 6.6. We
plot this time the rotation along the major and the intermediate axis. We do not expect a significant
number of x-tubes in the remnant and hence no misclassification. The results are unambigous. These
orbits really do not rotate, while the remnant shows a clear rotation curve.

Eskridge et al. (1995) found interesting correlations between structural parameters, such as a4 or a/b
and properites of the ISM in elliptical galaxies and S0s. og, the central velocity dispersion is often
taken as an indicator of the depth of the potential well of an early type galaxy. They found strong
correlations with the B-band luminosity of the ellipticals in their sample, which they assume to be a
good tracer for the mass of the galaxy. They do not find a good global correlation between the central
velocity dispersion and the shape of the galaxy though. However, for constant L there is a significant
correlation. They speculate that at a given luminosity (or to say mass) there is a higher support of
rotation in flatter systems.
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When we plot the correlations between the central velocity dispersion and box to z-tube ratio in the
remnants, we indeed find that the correlation divide up into the different mass ratio samples. Of
course, we know that in each sample the mass (or so to speak luminosity) is identical. We also know
that the fraction of box and z-tube orbits is a very good indicator of the shape of the remnant (at
least in the close encounter sample). But, of course, if we would observe these remnants without
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Figure 6.6: Left Column: Mean Velocities along major and intermediate axis for particles
classified as boxes in two different 3:1 remnants. Right Column: Same measurements but this
time the complete remnant

the background knowledge we have we would find no correlation between the velocity dispersion and
the shape, because the same amount of velocity dispersion can appear in a 2:1 or 4:1 remnant, but
corresponds to a different box to z-tube ratio (different shape). Albeit inside a sample a higher o value
would mean more box orbits, which also means less flattening and could be perceived as a rounder
galaxy in projection.

It is too far fetched to explain the findings of Eskridge and co-workers with dissipationless mergers.
There are stronger correlations between o¢g and Mgy, which are determined by the evolution of the
gas inside these galaxies. We cannot make any statement of absolute masses, because the merger
simulations are scale-free. Also there will be other mergers in nature like 1:1.5 or 1:2.5, which will
further wash out any dependence on the shape. But at least it is a simple procees which can explain
a similar structural dependence on o¢. We list the correlations for completeness.

oo = 0.69+0.027f,._4 (6.2)
is the correlation found for the 1:1 sample

o0 =0.6+0.039f,. ¢ (6.3)
for the 2:1 sample

o0 =0.54+0.049f5 /.4 (6.4)
for the 3:1 sample

o9 = 0.53+0.043f/._u (6.5)

and for 4:1 sample.

6.4 Discussion

Our orbit classification passes elementary kinematical test and gives us confidence that we have indeed
extracted the correct orbit classes. We can proceed now to more complex features of remnants like
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isophotal shape and higher moments of the line of sight velocity distribution which have no clear

theoretical connection with the orbital content.



Chapter 7

Orbit Classification and the
Isophotal Shape of the Remnants

Observations have shown that a large fraction of ellipticals exhibit small deviations from purely ellip-
tical isophotes (see e.g. Bender et al., 1988). By expanding the radial deviations Ar; = r(¢t;) — rg(t;)
between the radius of an isophote r(¢;) and the best fitting elliptical isophote rg(t;) in a Fourier series
can th isophotal shape be found. Here the t; are the equidistant polar angles from the origin to N
isophote points. With Ar; = Ar(t;), r; = r(t;) and r; g = rg(t;) the expansion read as

Pl 2mij 2mij
Ari=ri—riE = Z a; cos (T) + bjsin (T) : (7.1)

=0

In nearly all elliptical galaxies the fourth-order cosine coefficient a4 dominates the Fourier spectrum.
Figure 7.1 shows the effect of a non-zero as-coefficient. A positive value of a4 corresponds to an
elongated, pointed or disk-like shape (hereafter called disky) while a negative value of a4 corresponds
to an isophote with a box-like shape (hereafter called bozy). To get a scale free parameter for the
isophotal shape it is convenient to measure isophote shapes by a4 = a4/a where a is the semi-major
axis of the best fitting ellipse.

Heyl et al. (1994) investigated the disky and boxy shapes of simulated merger remnants of disk- disk
coliisions and came to the conclausion that each remnant could be made boxy or disky depending
on the viewing angle. Lima-Neto & Combes (1995) reach a similar conclusion, but they are also
analysing collapsed structures. Their point is the reverse that initially the collapsed objects are boxy.
The big collapsed objects (giant ellipticals) are not disturbed by mergers and retain their boxyness.
While smaller ellipticals get more disky with continuing merging. Bekki & Shioya (1997) argued that
isophotal shapes are a sign for a different history of star formation. Rapid star formation can produce
more likely boxy isophotes and slow star formation disky isophotes. Barnes (1998) argued that the
difference of isophotal deviations in observed galaxies could be explained without dissipation, only
by different mass fraction of the merging disks. Unequal mass-fractions would lead to disky merger
remnants and equal mass mergers are progenitors of boxy ellipticals. This hypothesis was tested and
confirmed by Naab et al. (1999), who found that a sample of 3:1 mergers and 1:1 form two distinct
groups of objects with preferably disky, respectively boxy isophotes.

7.1 Extraction of the Isophotes

We use a software package programmed by T. Naab to reduce the observable quantities of the rem-
nants. For determination of two dimensional properties this the merger remnant is binned in a 128x128
pixel grid. The picture is smoothed (Gaussian) to account for seeing in a real observation. It is beyond
the scope of this thesis to describe the extraction of the observable properties in detail. We refer the
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Boxy with [a,/a]x100 = —0.1 Disky with [a,/a]x100 = 0.1

Figure 7.1: Illustration of a boxy (a4 x 100 = —0.1) and a disky (a4 x 100 = —0.1) isophotal
shape compared to the corresponding ellipse (dashed). @ and b is the long and short axis,
respectively. Figure kindly provided by T. Naab
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7.2 Isophotal Shape of the Remnants

It is natural to assume that, taking projections effects into account, boxy isophotes origin from box
orbits and disky isophotes from z-tube orbits, which are building up the disk.

If we examine the distribution of the a4 parameter in axis-ratio space, which is independent of the
orbit classification, we already see that this simple picture is probably not true. If a4 would reflect
the true orbital content than a4 should follow the traxiality lines smoothly. On the other hand a4
does not lead us too far from the truth, because the peak for negative (boxy) is located T=0.5, where
the box orbits are most common and the positive peak is also located where we would expect it at
T=0. The space in between however is a mess. We can now plot the Box orbit to Z-Tube ratio in each
remnant with respect to the a4 values. The results are shown in Fig. 7.3. While we could argue that
a correlation for the 1:1 and 2:1 mergers is visible the 3:1 and 4:1 have become indifferent to their box
orbit content, which can amount to a significant number. It is true however that the fraction z-tubes
to the total fraction has increased in the 3:1 and 4:1 mergers, because the x-tubes become less and less
important. We do not find any significant correlation between isophotal shape and x-tube content,
though.

Disky isophotes are supposed to come from disk-like components in elliptical galaxies, but do these
components really look like a disk. We compare the density shapes in Fig. 7.4. We plot the density
projections of an exponential disk, an exponential disk plus a bulge and three remnants from 1:1, 3:1
and 4:1 simulation respectively. It is consistent with the simple assertion that the higher the mass
ratio between the merger partners, the more does the disk of the more massive partner stay intact.
The z-tube distribution of the 1:1 merger is much more dispersed than the one of the 4:1 merger. Also
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Table 7.1: Mean values for the isophotal shape parameter for different orbit population ex-
tracted from three test remnants.

Test Z-Tubes Non All boxes | Boxes + | Complete
Case admean, | Resonant Box Z-Tube | Remnant
exp disk 0.537694

exp. disk + bulge | 1.03698

1:1 -4.256 0.005 0.0006 -0.021 -0.556
3:1 -3.576 0.059 0.075 0.460 0.809
4:1 -1.594 -0.064 -0.057 0.289 0.526

consistently the hole in the center of the disk-like component is bigger for the equal mass merger. The
center is filled with box orbits, which we plotted in Fig. 7.5.

It is instructive to look at the isophotal shape of the presented subsets of particles. The results are
summarized in Fig. 7.6. As has been reported before the exponential disk appears boxy under ~ 20%
of the projections. If we add the bulge almost all disky projections vanish. However, the projection
of our puffy ’disks’ extracted from the remnants are almost all boxy. It is therefore not correct to say
that, at least in the numerical remnants, disky isophotes originate from disky components. It is also
true, that the average value for a4.s; is increasing with mass ratio, but in absolute values even the
4:1 disk is still boxy. The distribution of the isophotal shape parameter for the boxes are displayed in
Fig. . The surprising result is that their isophotal shape is rather neutral and not boxy. In the 3:1
remnant they are even biased to the disky side. When we add the resonant box orbits to non resonant
population, we see that the isophotes are not affected significantly in the 1:1 and 4:1 remnant, but
appear even more disky in the 3:1 remnant (7.7). Interestingly when we superpose the box orbits and
the z-tubes hte isophotes become disky and become close to what we see for the complete remnant.
The average values for th a4 parameter are summarized in Table 7.1.

7.3 Discussion

We can conclude from this simple analysis, that there is no one component which can attribute for
a disky isophotal shape. If the disk-like components present in the remnants would resemble an
exponential disk only one-fifth of the projections would appear boxy. But we find that 80 % of the
projections of the disk-like features have actually boxy projections. When the disks are superposed
with centrally concentrated populations, in the case of the remnant the box orbits, and in the case of
the exponential disk, the bulge, the projections become much more disky. Indeed when we compare
the average values of a4, we have already obtained the right ranking in isophotal shape. The 3:1
remnant is more disky than the 4:1 remnant and the 1:1 remnant is a boxy remnant. We could not
have deduced this from the disk-like compenent alone, though. The z-tube isophotal shape for the 4:1
remnant is more disky than the one of the 3:1 remnant. Strangely the box content of the 3:1 remnant
already appears disky. We can now reveal that the z-tube fraction of the examined 4:1 remnant is 45
% while it is only 31 % in the 3:1 remnant. In part this demonstrates at least for our test remnants the
insensitivity of a4 on box/z-tube ratio. We checked if the box orbits in the center of the 3:1 remnant
are misclassified z-tubes or x-tubes, but they do not show any kind of rotation, hence we must believe
that they are some kind of radial orbits.

But our test case, the exponential disk plus a bulge, clearly demonstrates that a disk component can
be made more disky by adding a spherical component to its center. Again we have to stress that the
equation box orbits boxy isophotes is not completely true for the remnants. We cannot make a final
verdict on the isophotal problem, because for we chose to classify only 40 % of the remnant and the
outer parts of the remnant can not be neglected.
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Figure 7.4: Projected density distribution of particles classified as z-tubes. From top to
bottom: exponential disk, exponential disk plus bulge, z-tube component of a 1:1 merger,
z-tube component of a 3:1 merger, z-tube component of a 4:1 merger.
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Chapter 8

Measurements of h3 in merger
remnants

The light which reaches from external galaxies is a superposition of the unresolved spectra of their
individual stars. The individual stars, however, will have different line of sight velocities vj,s. Their
spectra will therefore be shifted. The composite spectra will appear broadened. We can quantify the
contribution of each star by defining the line-of-sight-velocity distribution, in short LOSVD, F(vj,s)-
The analysis for the extraction of the LOSVD are beyond the scope of this thesis and we refer the
reader to binney Merrifield for an introduction.

We are concerned with the moments of the LOSVD. The first moment is just the mean velocity

Ujos = /dvlosvlosF(Ulos)- (81)

The second moment is the velocity dispersion

alzos = /dvlos(vlos - Ulos)2F(Ulos)- (82)

The simplest approach is to assume that LOSVD is of Gaussian form. To determine now v;,; and o5
we would need to fit the Fourier transformed functional form of F(v;,s) to the Fourier transformed
spectral data. However, these are only the first two moments. We fully parametrize F(v,5) by the
moment equation

He = /dvlos(vlos - ’l_}los)kF(’Ulos) (83)
The shape parameters of the LOSVD are defined as

&k = /0], (8.4)

The division by the velociy dispersion makes them dimensionless. Most important four our purposes
are &3 and &4, which are called skewness and kurtosis of the LOSVD. The skewness measures the
asymmetric deviation of the LOSVD from a Gaussian, while the kurtosis measures the symmetric
deviation from a Gaussian. The measurements of true moments are prone to large errors coming from
Vjos, Which are far from the mean value. Therefore the best way to determine the higher moments of
Eq. 8.3 is by fitting a truncated Gauss-Hermite series of the form

Frem(vies) o< e 3¢ [1+ Y hyHy (w)] (8.5)
k=3
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Figure 8.1: Comparison of h3 correlations as found by Bender et al. (1994) to the full sample
of close encounters.

pioneered by Gerhard (1993) and van der Marel & Franx (1993). Normally the truncation is already
set at n=4. The hj are constant coefficients. Note that the hy and the & are not identical, but they
contain similar information and are used synonimously in most cases.

In observed elliptical galaxies only significant correlations for hs have been found. We will therefore
neglect h4 in the following discussion.

8.1 Global Correlations

Bender et al. (1994) were the first to point out that in the sample of elliptcial galaxies they surveyed
< h3 > and the isophotal shape parameter a4 on one hand and < hz > and v/, on the other hand
show a strong correlation. They obtained a rough fit

< hy >~ —0.120/0,,. (8.6)

In general they did not find significant measurements over the 1o level for < hg >> 0. They point
out that not only disky ellipticals follow this relation, but also the boxy ellipticals. An explanation
for a mean hs < 0 is easily found by a two component system of a rotational system, like a disk
and a not rotational, like a bulge. The mean motion of the 'bulge’ will skew the Gaussian towards
velocities, which are less than the mean and result in a negative hs. As has been reported before the
merger remants do not follow theses relations. We show the relations in the remnants averaged over
50 projections. The tendency is that too positive values of hg are found in the remnant for a given
v/o, as can be seen from Fig. 8.1.

Our 1:1 mergers show a richer variety of orbital classes than the 3:1 or 4:1 mergers, but the unequal
mass mergers fail to lie on the correlation as much as the 1:1 mergers. Although the observed cor-
relation is not reproduced by the remants, there is a tight correlation between < hs > and the box
to z-tube ratio in the remnants. It is a true global correlation in the sense that no merger ratio
forms an isolated correlation, like e.g. for gg. As can be seen in Fig. 8.2 negative values appear
foremost in oblate remnants which are z-tube dominated, but they are never reaching oberved values
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Figure 8.2: Left: Distribution of hs values for merger remnants with different axis ratios.
Right: hg coefficient in remnants with different ratios between box orbits and z-tubes

of < hg >~ —0.1. Although the tendency agrees with theoretical expectations which are found for
distribution functions of axisymmetric rotating models (Dehnen & Gerhard, 1993,Dehnen & Gerhard,
1994 Evans & de Zeeuw, 1994), the rotating component seems not to be strong enough in the remnants
compared to what is found in ellipticals (see Scorza & Bender (1995) for a thorough discussion of disky
structures and their kinematical features in elliptical galaxies). If this problem can be alleviated by
primordial disks or mergers with dissipation is possible and must be tested.

What can we learn if we are dissecting a 3:1 merger into different dynamical constituents? We are
comparing the results of the observed correlations with the values we extract from the z-tube com-
ponent, the box component, box and z-tube component superposed, all orbits which run through our
classification scheme (for a 3:1 remnant this amounts to 42666 particles) and the complete remnant
(106666 particles). We immediately see from Fig. 8.3 that the full solution to our problem lies outside
the classified domain. Significant positive values for < hg > appear in the total remnant rather than in
the classified sample. However, we know now that we have to look into the outer parts of the remnants
to explain the exact amount of discrepancies with what is found in the observations.

Still there are some poins to note. The box orbits have an < hs >= 0 for all projections which we
expect for a component with no preferred rotationial direction. Again we observe that disky isophotes
appear when we superpose box orbits and z-tubes. Consistently we find significant negative < hs > for
the z-tube component, which shows significant rotation for almost all projections. Strangely however
it follows rather well the observed correlations for < hs > and v/o. We checked if this is a coincidental
isolated find. It is not. Actually all z-tube components of 3:1 and 4:1 mergers follow the correlation.
They do not only follow the correlation, but also produce < hz > values in the exact range, where
they are found in observations (0.02 < hg < —0.15). Some examples are given in Fig. 8.4. They do
not simultaneously fit the correlation for a4 and therefore cannot account for the observations alone.
But as seen before, as soon as another component is superposed the correlation vanishes. We can
tentatively make two conclusions from this finding: 1. the correlation is a projection effect. 2. we
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need only one component to get significant negative < hg >. This component looks like a puffy disk.
We need to investigate further if a general process is populating the z-tubes in such a way the that it
fits the v/o correlation.

8.2 hz and the mean velocity

There is a notorious discrepancy between merger remnants and observed elliptical galaxies: h3 and the
mean velocity have opposite signs. This is not found in merger remnants in general. Only retrograde
mergers seem to produce such a correlation, but they can only account for 50 % of the elliptical
population. We will study this problem in the merger remnants and exploit the fact that there seems
to be a global correlation between box to z-tube ratio and hs in the merger remnants. We are extracting
as before just the z-tubes and instead of examining many projections, we are focussing on the major
axis projection. We plot the radial profiles of the mean velocities and hs for a couple of remnants.
We see that in contrast with the total remnant the anti-correlation of signs is conserved for the z-tube
orbits (see Fig. 8.5). We can quantify this in a simple way: for each radial bin we multiply the value of
hs and the mean velocity. If the product is less than zero, we have a valid correlation, if it is positive
then hz and vgeqn have the same sign. The results are shown in two histogramms 8.6. Clearly the
z-tubes peak at one or two wrong correlations and can therefore be said to correlate very well. For the
whole remnant the picture is more complicated, almost every amount of wrong correlation along the
major axis is found. Now we correlate the number of wrong correlations in the rotation curve with
the box to z-tube ratio (Fig. 8.7).

The trend is clearly seen. The more box orbits are found in the center of the remnant, the more hs
and Upeqn are decoupling. The 1:1 remnants are spoiling this relation a little bit. Probably other
types of orbits, most notably the x-tubes will also introduce a diversification in the hg profile. Indeed
as presumed the dissipationless merger have too many peculiar kinematical features to coinincide with
observations of elliptical galaxies.

8.3 Discussion

We have highlighted two current problems in merger simulations concerning the disagreement with
observations of hs in real elliptical galaxies. Both problems seem to be related. While we can not
completely account for the high positive value of a complete remnant, because our classification does
not reach out that far, we can resolve the disagreement concerning the anti-correlation of the signs
of hs and the mean velocity. The central component of box orbits is clearly destroying this relation,
which for the z-tube component of the remnants alone is conserved. The amount of anti-correlation
is proportional to the amount of box orbits present in the center of the remnant. Interestingly the
z-tube component has the correct anti-correlation of the signs, but follows also the global correlations
of ellipticals found by Bender et al. (1994) for v/oy, albeit not for ad. The dense central component,
which originates from the bulges of the progenitors seems to pose a problem for a simple merging
picture as it introduces too peculiar features in the center of the remnant. However, the bulge is
needed to fulfill phase space constraints of the central density of ellipticals as found in nature. The
resolution of this conflict is not clear, but needs to be addressed in the future.
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Figure 8.3: Comparison of hg correlations as found by Bender et al. (1994) to various con-
stituents of the same 3:1 remnant as found by our orbital classification. From top to bottom:
Complete remnant , all orbits classified, all box orbits and z-tubes superposed, non resonant

box orbits, z-tubes.
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Figure 8.4: Comparison of h3 correlations as found by Bender et al. (1994) to z-tube popula-
tions found in two 3:1 remnants (first two rows) and three 4:1 remnants.
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Figure 8.5:

Left column: particles classified as z-tubes. Right column: complete remnant
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Figure 8.6: Histogram of wrong correlations in one radial profile between < v > and hj3 at
the same radial bin. Left plot: z-tube component. Right plot: complete remnants
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Chapter 9

Conclusions and Outlook

9.1 Conclusions

We have examined a large set of dissipationless merger remnants of disk-disk encounters to relate
observational features to their detailed orbital content. We tested our extraction method which is a
combination of spectral analysis and a self-consistent field method and find that the particles extracted
exhibit the kinematical tell-tale features we would expect theoretically of the assigned orbit class.

In a statistical analysis we tried to relate the orbital content of a given merger remnant with its in-
trinsic shape. Again our findings are in very good agreement with theoretical expectations. Trends
of orbital occupation numbers found in analytical potentials with the Schwarzschild method are in
agreement for most orbit classes, but detailed discrepancies exist, which would be expected, because
the analytical form of the potentials does not coincide with the N-body potential of the merger remants.

The pathology of orbital content seems to change when the encounters are calculated with a wider
pericenter distance, which is more likely to occur in cosmological CDM simulations. As the sample of
the wide encounters is smaller, we do not know yet the statistical significance of this trend.

The isophotal shape of a merger remnant is connected to its orbital content, but not in a one-to-one
correspondence in the sense that box orbits are causing boxy isophotes and z-tube orbits are the
reason for disky isophotes. We showed and confirm an earlier conjecture that this even not true for
an exponential disk, which appears boxy under certain projections. If a dense central component
is added, like a bulge, the boxy projections are vanishing. Analogously if the box orbit content is
superposed over the disk-like component more disky projections are the result. This seems to explain
the insensitivity of the isophotal shape on orbit fraction in 3:1 and 4:1 remnants, where the z-tube
component is overpowering the boxes. In 1:1 and 2:1 remnants the detailed ratio of both type of orbits
matters and a correlation is visible.

Measurements of h3 in merger remants pose a severe problem for the merger hypothesis of galaxy
formation. Normally the sign of h3 and the mean velocity are anti-correlated. We could trace the
problem to presence of too many box orbits in the center of the remnants, which are destroying this
anti-correlation. The disk-like component follows the anti-correlation nicely. Additionaly the z-tube
population fits the observed correlations between h3 and vy by projection. We conclude that ellipti-
cals have the same features as puffy disks found in our remnants. Bulges in the progenitors of merger
events are problematic from the perspective that they produce too many box orbits in the center of
the remnant.
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9.2 Outlook

There is more to merger remnants than meets the eye. But this is not only true for merger remnants.
With the advent of higher and higher resolution in simulations of collisionless systems the analysis of
their orbital content becomes more and more feasible. If we can believe that the orbital structure of a
galaxy is a fossil record of its formation history, than we have to assume that N-body simulations of
galaxy formation, cosmological or in isolation, reproduce this structure. Whenever they fail, we know
that our understanding of galaxy formation is not complete.

The simulations presented are not yet at the stage where we could exclude or confirm a certain forma-
tion mechanism, like the merger hypothesis. Firstly, not all important physical processes are included
in simulations, like dissipation and star formation. One of the biggest challenges would be to include
a black hole into the center of the merging spiral galaxies, which is known to change the trajectory of
a star in the center considerably. This is such a challenge, because a large range of dynamical times
(approximately six orders of magnitude) has to be crossed. Secondly the initial encounter parameters
need to be adjusted to the ones found in large scale cosmological simulations. Good enough statistics
then will give an answer, if we found the right formation mechanism.

N-body simulations are of course only one side of the understanding of orbital structure of galaxies.
They are worthless if we can not compare them to orbital content of real galaxies. This knowledge
has been mainly improved by the Scharzschild method. In the future the SAURON project will give
us a new wealth of detailed orbital information of elliptical galaxies, against which various formation
scenarios can be tested. Maybe we will be able to distinguish ellipticals formed by monolithic collapse,
disk-disk mergers, elliptical-disk mergers or multiple mergers. Apart from this zoological ordering, it
might even be possible to distinguish between cosmological models by comparing the merger fractions
as found in semi-analytical modelling and statistics we deduce from the fine-structure of the ellipticals.

There is also the point of comparing our classification method or further developments thereof with
the Schwarzschild method. It should be very instructive if our remnants could be classified with a
Schwarzschild code with or without using the kinematics of the remnant in a least-squares fit. Some of
our remnants exhibit figure rotation. It is not yet clear, how exactly this will change the classification
and if Schwarzschild codes can be adopted to such a case. N-body remnants would be ideal test cases.

We did not discuss chaotic dynamics, but they will have probably an impact on our results. When we
will form merger remants in the future with higher central densities (possibly with gas) or black holes,
we can not neglect this feature anymore. The shape of the remnant (or galaxy) determines the orbital
structure which in turn influences the feeding of the black hole, more box orbit will more likely end in
the black hole than tubes. Is there a lot of chaotic diffusion of the orbits which will in turn influence
the shape of the galaxy, making it more axisymmetric or round? Diffusion times can be calculated by
a spectral code, but as soon as we enter the realm of collision dominated system it is unclear how to
extract these features out of N-body calculations.

We did not examine the evolution of the dark matter of the mergers more closely. If the orbital ge-
ometry is decisive in determining the orbital structure of the remnant will there be a correlation with
the halo? Does the halo take up a significant amount of angular momentum and does it influence its
spin paramter? There is a host of open questions.

We hope to have highlightened the importance of orbital structure as found in N-body simulations for
the theory of galaxy formation or the evolution of collisionless systems in general. The application of
orbit classification to various problems in theoretical astronomy should be able to identify the reason
behind problems of formation mechanisms like mergers of spiral galaxies.
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Figure A.1: Orbital statistics of individual merger remnants. Close encounters inner 10%
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Figure A.2: Like before, but inner 20 %
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Figure A.3: Like before but inner 30 %
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Figure A.4: Like before but inner 40 %
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And Death Shall Have No Dominion

And death shall have no dominion.

Dead men naked they shall be one

With the man in the wind and the west moon;

When their bones are picked clean and the clean bones gone,
They shall have stars at elbow and foot;

Though they go mad they shall be sane,

Though they sink through the sea they shall rise again;
Though lovers be lost love shall not;

And death shall have no dominion.

And death shall have no dominion.

Under the windings of the sea

They lying long shall not die windily;
Twisting on racks when sinews give way,
Strapped to a wheel, yet they shall not break;
Faith in their hands shall snap in two,

And the unicorn evils run them through;
Split all ends up they shan’t crack;

And death shall have no dominion.

And death shall have no dominion.

No more may gulls cry at their ears

Or waves break loud on the seashores;

Where blew a flower may a flower no more

Lift its head to the blows of the rain;

Though they be mad and dead as nails,

Heads of the characters hammer through daisies;
Break in the sun till the sun breaks down,

And death shall have no dominion.

Dylan Thomas



