
INAUGURAL - DISSERTATION

zur

Erlangung der Doktorwürde

der

Naturwissenschaftlich-Mathematischen Gesamtfakultät

der

Ruprecht - Karls - Universität

Heidelberg

vorgelegt von

Diplom-Physiker Ulrich Brandt-Pollmann

aus Lahn-Gießen

Tag der mündlichen Prüfung: 21.09.2004

Numerical solution of optimal control problems

with implicitly defined discontinuities with

applications in engineering

Gutachter: Prof. Dr. Dr. h.c. Hans Georg Bock

Gutachter: Prof. Dr. Dr. h.c. Jürgen Warnatz

Abstract

In the thesis on hand we treat optimal control problems for implicitly discontinuous

dynamical processes.

We give a general model formulation which includes implicitly given state depen-

dent discontinuities in the right hand sides of the DAE system. The formulation is

adapted to real-world applications from chemical and biotechnological engineering.

The resulting problems are large scale constrained problems of optimal control with

implicitly given discontinuities of a priori unknown chronology and number.

Our solution approach builds on the direct multiple shooting approach which allows

the combination of appropriate DAE solvers with modern simultaneous optimization

strategies. To solve the underlying optimization problem we apply SQP methods.

We explain our strategy to provide sensitivity information at the presence of implic-

itly given discontinuities for large scale models. Efficient techniques for the derivative

generation of the right hand sides particularly adapted to structural sparsity pattern

changes of the adjacent Jacobians are presented.

We formulate an algorithm to treat the optimization problem which depends on

the chronology and number of discontinuities occuring in a digraph given by the

successive trajectories of the SQP steps.

We explain our modeling of a complex rack-in process of a distillation column and

present the models of two biotechnological processes. Each of the models is equipped

with characteristical implicit state dependent discontinuities of a priori unknown

chronology.

In numerical experiments we show the efficient applicability of our algorithms to

the presented chemical process and to the two biotechnological applications. We

apply our approach to optimal feedback control of a biotechnological application

with implicit discontinuities.

Zusammenfassung

In dieser Arbeit werden implizit zustandsabhängig unstetige dynamische Prozesse

behandelt.

Es wird eine allgemeine mathematische Modellformulierung angegeben, die implizit

gegebene zustandsabhängige Unstetigkeiten in den rechten Seiten des DAE-Systems

einschließt. Anschließend wird die Formulierung an konkrete chemische und biotech-

nologische Prozesse angepaßt, woraus große nicht-lineare optimale Kontrollprob-

leme mit implizit gegebenen Unstetigkeiten von a priori unbekannter Anzahl und

Chronologie resultieren.

Unser Lösungsansatz basiert auf dem direkten Mehrzielverfahren, welches die Kom-

bination eine problemangepaßten DAE Lösers mit modernen simultanen Verfahren

der Optimierung ermöglicht. Zur Lösung des Optimierungsproblems verwenden wir

SQP Verfahren.

Wir erklären unsere Strategie zur Bereitstellung von Sensitivitätsinformation bei im-

plizit gegebenen Unstetigkeiten für large scale Modelle. Effiziente Techniken für die

Ableitungsgenerierung der rechten Seiten, die speziell an Dünnbesetztheitsmuster-

wechsel der entsprechenden Jacobi-Matrizen angepaßt sind, werden präsentiert.

Wir formulieren einen Algorithmus zur Behandlung des Optimierungsproblems, das

von der Chronologie sowie der Anzahl der Unstetigkeiten abhängt, die im durch

die Trajektorien in den einzelnen SQP Schritten gegebenen gerichteten Graphen

auftreten.

Unsere Modellierung eines komplexen Anfahrprozesses einer Destillationskolonne wir

eingehend erläutert. Außerdem gehen wir auf die Modelle zweier biotechnologischer

Prozesse detaillierter ein. Alle diese Modelle weisen charakteristische implizit zus-

tandsabhängige Unstetigkeiten a priori unbekannter Chronologie auf.

In numerischen Experimenten zeigen wir die effiziente Anwendbarkeit unserer Al-

gorithmen auf die präsentierten chemischen und biotechnologischen Anwendungen.

Wir wenden unseren Ansatz zur Feedback Steuerung biotechnologischen Anwendung

mit impliziten Unstetigkeiten an.

Acknowledgements

Above all, I owe thanks to my advisors Prof. Dr. Dr. h.c. Hans Georg Bock and

Dr. Johannes P. Schlöder for their excellent support during the last years. It is

a pleasure to acknowledge the immense benefit of their deep knowledge and their

impressive overview for my work. I thank them just as much for the cordial and

productive atmosphere they create in our research group.

Further, I heartily thank my office mate Dr. Katja Mombaur for discussions, numer-

ous joint scientific activities and her positive attitude toward whatever comes.

Let me extend my thanks to my colleague Andreas Alexis Sigurt Schäfer for his

patience concerning uncounted MUSCOD-II questions and for his highly structured

style of implementation. I am obliged to Dr. Moritz Diehl, especially for helping me

to get into contact with NMPC, and to Christian Kraus for valuable mathematical

and nonmathematical conversations.

Thomas Klöpfer always had an open ear for all kinds of questions and trouble

concerning our computers, even on weekends and holidays.

Throughout the time of my thesis research, I have been accompanied and supported

in many ways by members of our research group and by other people at the IWR. I

would like to address thanks to all of them, especially to Dr. Stefan Körkel, Dr. Eka-

terina Kostina, and Sebastian Sager.

I am indebted to Dr. Dirk Lebiedz for several interesting joint projects and publi-

cations, and for private volleyball lessons.

Let me also thankfully mention my industrial project partner Dr. Jens Köhler

(BASF) who contributed to this work by posing the right questions, and who was

always available for a scientific discussion.

I am deeply grateful to Margret Rothfuss for her patience, her clarity, and her ability

to get things off the ground.

I leave a special note to Ted for offering encouragement and consolation whenever

needed.

Finally, I want to thank my fiancée Dr. Julia Hartmann for her love and for her

unconfined support.

i

The financial support by the Bundesministerium für Bildung und Forschung within

the context of the project Nicht-Standard Probleme der Optimalen Steuerung is

gratefully acknowledged.

ii

Contents

Acknowledgements i

Table of contents iii

Introduction 1

1 The optimal control problem - Multiple shooting discretization 7

1.1 The optimal control problem - continuous form 7

1.2 The optimal control problem - general treatment 10

1.3 The optimal control problem - parameterized form 11

1.3.1 Discretization of controls . 11

1.3.2 Multiple shooting discretization of the state variables 12

1.3.3 Path and control constraint discretization 14

1.3.4 Parallelization . 14

1.4 The NLP problem . 15

2 Characterization of optimality and SQP method 17

2.1 Local optimality conditions . 17

2.1.1 Optimality conditions for the classical NLP problem 17

2.2 The SQP method . 20

2.2.1 Quasi-Newton methods . 23

2.2.1.1 Unconstrained case 24

2.2.1.2 Constrained case . 26

3 Numerical solution of Index I DAEs 33

3.1 Solving the IVP . 33

3.1.1 Stiffness . 34

3.2 A BDF method for the solution of large scale DAE systems 35

3.2.1 Stability . 36

3.2.2 Storing trajectory information 43

iv CONTENTS

3.3 Implicitly defined discontinuities for DAEs 43

3.3.1 Qualification of discontinuities 45

3.3.2 Detecting switching points . 47

3.3.3 Continuous representation of the trajectories 48

3.3.4 Updating sensitivity information at discontinuities 49

3.3.5 Algorithmic treatment of implicit discontinuities 51

3.3.5.1 Decoupling of the surveillance of the switching vector

from the main integration process 52

3.3.6 Discontinuity treatment -

Two introductory applications 52

3.3.7 Inconsistent switching . 55

3.3.7.1 A biotechnological example 58

4 Derivative Generation 61

4.1 Derivatives in the SQP algorithm . 61

4.2 Automatic Differentiation (AD) . 62

4.2.1 Theoretical background of AD 62

4.2.1.1 Advantages of AD for ill-conditioned systems 67

4.3 Generating sensitivity information . 67

4.3.1 External numerical differentiation 67

4.3.2 Internal numerical differentiation 68

4.4 Exploiting sparsity structures . 70

4.4.1 Compression techniques . 70

4.4.2 Conserving sparsity pattern information 76

4.4.3 AD Application . 77

4.4.4 Exploitation of model characteristics 77

5 Solution strategy for the implicitly discontinuous DAE constraint... 79

5.1 Problem formulation . 80

5.2 Monitoring the accessed area . 80

5.2.1 Switching points at multiple shooting points 82

5.3 Updating consistency conditions . 84

5.4 Controlling trajectories with differing switching structures 89

6 Applications 95

6.1 Optimization of a distillation process 96

6.1.1 Modeling . 97

6.1.1.1 Implicit discontinuities in the model 99

v

6.1.2 Rack-in process of an instationary distillation process 100

6.2 Optimization of a biotechnological batch process 106

6.2.1 Optimization of a simple batch fermentation process 106

6.2.2 Optimization of a biotechnological batch process 109

6.3 Real-time optimization of discontinuous processes 113

7 Conclusion and Outlook 117

7.1 Conclusion . 117

7.2 Outlook . 118

A Distillation column 121

A.1 Problem formulation . 121

A.1.1 Differential variables . 121

A.1.2 Algebraic variables . 122

A.1.3 Parameters and Controls . 125

A.1.3.1 Switching functions 126

A.1.4 Differential equations . 127

A.1.5 Algebraic equations . 127

B Practical usage of the automatic differentiation

in C/C++ in MUSCOD-II 135

B.1 Usage of Automatic differentiation in MUSCOD-II 135

B.1.1 A tool for the generation of derivative files 136

B.1.1.1 Using the script . 136

List of figures 139

Bibliographie 141

Introduction

In the last years optimal control of complex chemical and biotechnological processes

has attracted increasing interest. Due to the competition on globalized markets be-

coming more and more severe, the availability of highly efficient methods for process

control turns out to be crucial. The need for model-based optimization to reduce

energy and resource expenses and for ameliorated product quality increases.

Distillation processes play an eminent role in chemical engineering. To accurately

describe complex distillation processes rigorous highly nonlinear models are often

needed. In order to precisely represent the complex instationary states of distilla-

tion processes e.g. phase transitions and the dynamics of the vapor-gas mixture

have to be taken into account explicitely. This precise modeling especially becomes

crucial for the representation of start-up processes. In contrast to the optimization

of processes which operate not too far from steady-state, qualitative changes in the

system dynamics, i.e., model changes, which are implicitly given, due to e.g. phase

transitions may arise in an a priori unknown chronology and number.

Some years ago the modeling of biotechnological processes, e.g., the modeling of

the generation of antibiotics was brought into focus. Those models (e.g. [Küh02],

[Kin94]) show a characteristical behavior in the sense that due to locally vanishing

substrate concentrations implicitly given qualitative model changes arise. Numeri-

cally these discontinuities show a different behavior than the discontinuities normally

arising in rack-in processes of distillation columns.

The focus of this thesis is to adequately model the complex system dynamics and

develop algorithms which can cope with the nonlinear implicit state dependent dis-

continuous dynamical models where neither the number nor the chronology of arising

switching points can be a priori determined. Until now it was possible for compara-

tatively small numbers of switching point to formulate transition phases and thus

avoiding the explicit treatment of discontinuities (see e.g. [Mom02]). This strat-

2 Introduction

egy requires the a priori knowledge of number and chronology of the switching

points. Furthermore, since the additional phases significantly increase the size of

the quadratic program (QP) this technique can only be applied for comparatetively

small numbers of switching points.

It is a highly challenging task to provide optimal solutions for the above mentioned

problems.

For the development of adequate algorithms and their implementation in efficient

tools we were able to build on the deep knowledge on optimal control available in

the research group of Bock and Schlöder at the Interdisciplinary Center for Scientific

Computing, University of Heidelberg.

The development of an integrator which can treat highly stiff implicitly discontinuous

dynamical processes was performed on the basis of the existing BDF code DAESOL.

In combination with our approach to provide sensitivity information which is partic-

ularly adapted to large scale rigorous models of distillation columns with implicitly

given discontinuities, the integrator represents the state-of-the-art for this class of

tasks.

Recently eminent progress has been achieved in the context of optimal control of

complex processes. Based on ideas of Bock and Plitt ([Pli81], [BP84], [Boc87])

who invented the powerful direct multiple shooting approach for optimal control,

Leineweber and coworkers ([Lei99]) developed the modern optimal control package

MUSCOD-II forming the basis for the optimization part of the work on hand.

Our strategy represents the first optimal control strategy which can deal with large

scale models of differential algebraic equations with implicitly defined state depen-

dent discontinuities which arise in a priori unknown chronology and number.

The goal of this interdisciplinary thesis is to develop and implement

• accurate models for the complex rack-in distillation process,

• a highly efficient DAE integrator for severely stiff implicitly discontinuous

processes,

• an optimization algorithm which can cope with qualitative changes in the

differential algebraic equations.

We thus provide an algorithm which can treat implicitly discontinuous optimal con-

trol problems where neither number nor chronology of the switching events are a

3

priori known.

This for the first time allows in the context of chemical industry the optimization

of general rack-in and rack-out processes where e.g. phase transitions may appear

in varying chronology. For biotechnological applications we pave the way for the

optimization of processes where substances may temporarily vanish in arbitrary

chronology.

Outline of the thesis

Since we don not expect every reader to be interested in every single chapter of the

thesis we tried to keep the chapters as independent as possible. Apart from Chapter 5

which requires the previous chapters the chapters should be independently readable.

In Chapter 1 we formulate the class of optimal control problems we treat with our

algorithms. Afterwards, we review in short a broader class of algorithms which

have been proposed as a solution ansatz and briefly discuss their advantages and

disadvantages.

We subsequently present the discretization which transforms the originally infinite

dimensional optimal control problem to a finite dimensional one. The underlying

differential algebraic equation (DAE) is given in a relaxed formulation, which allows

an inconsistent solving of the associated initial value problem (IVP).

The parameterized form of the optimal control problem gives rise to a particularly

structured nonlinear program (NLP). The chapter ends with an illustrative example.

Chapter 2 is divided into two sections.

In the first of these sections we focus on the local optimality conditions for the NLP

problem arising from the parameterization given in the first chapter. In the second

section the SQP method is introduced. Since for sequential solving of a quadratic

program (QP) second derivative information is needed, we discuss the generation of

Hessian approximation based on curvature information.

The third chapter deals with the solution algorithm for the underlying differential al-

gebraic equation (DAE). In the first section, we give a brief survey of existing initial

value problem (IVP) solvers. The succeeding section is devoted to the BDF (back-

ward differentiation formula) method which is appropriate for our requirements. We

briefly explain our trajectory memory technique for storing trajectory information,

4 Introduction

paving the way for an efficient treatment of implicitly defined discontinuities both

within the integrator and in the optimization techniques, presented in the later

chapters. In the third section of Chapter 3, we explain the efficient treatment of

implicitly defined discontinuities - either discontinuities in the states themselves or

discontinuities in the state-derivatives - of the DAE. Moreover, the solution strategy

for the variational DAE in order to provide derivative information of the solution

with respect to initial values and controls at the presence of discontinuities is shown.

Thereafter, we present two applications which show the characteristic behavior of

instationary implicit discontinuous chemical processes and biotechnological batch

processes, respectively.

The topic of Chapter 4 is the derivative generation. In the first section we list the

derivatives needed in the SQP algorithm, the generation of sensitivity information

is dealt with in the second. The third section briefly reviews the techniques of auto-

matic differentiation which are necessary for the solution of our problems. Finally we

show how the sparsity structures in derivative matrices can be exploited efficiently.

We also analyze the special properties of the sparsity patterns of the Jacobians of

the right hand sides of the DAE at the presence of implicit discontinuities in the

state variables.

In Chapter 5 we give a solution strategy for optimal control problems with implicit

discontinuities. We first formulate the modified optimal control problem, explicitely

allowing implicitly given discontinuities in the state vectors which may lead to qual-

itative changes of the cost function. The second section treats the monitoring of

the areas accessed by the possibly infeasible trajectory. In the subsequent section

the updating of the consistency conditions of the multiple shooting discretization is

presented. At last, the monitor for the - due to differing area digraphs - qualitatively

different trajectories is explained.

The final chapter concentrates on applications. We first discuss our modeling of the

distillation process. The model precisely describes the dynamics of the liquid-vapor

mixture and explicitely allows vanishing liquid holdup. Subsequently, we present

optimization results of the rack-in process of the distillation column. Afterwards

the optimization of two biotechnological processes is presented. Finally we explain

the feedback optimization of a batch fermentation process.

In the first Appendix (Appendix A) we explain the modeling of the distillation pro-

5

cess.

In Appendix B we demonstrate the usage of algorithmic differentiation for differen-

tial algebraic equations with implicitly defined discontinuities in our optimal control

package.

6 Introduction

Chapter 1

The optimal control problem -

Multiple shooting discretization

In this chapter we give a general formulation of the class of optimal control prob-

lems we treat with our algorithms with focus on the applications to be presented

later. We first state the problem and give a brief overview of existing approaches to

motivate our choice of the direct multiple shooting method. Afterwards we present

the arising nonlinear program (NLP). In this chapter we do not focus on implicit

discontinuities in the states or their derivatives of the states when paving the way

for the solution strategy but defer this to later chapters.

The following optimal control problem formulation covers a wide range of practical

problems, e.g. optimization of dynamical processes in chemical [LBS97], [BP02] or

biotechnological engineering [KWB+95], [BP03] with implicitly given discontinuities.

Beyond these examples optimal spatiotemporal control problems in bio-mathematics

[LBP03], [LBP04b], chemistry [LBP04c], biochemistry [LBP04a] or financial sciences

[WBPMS03] can be treated in the context of this formulation.

1.1 The optimal control problem - continuous form

The systems treated in the following can be described by a differential algebraic

equation with implicit discontinuities in the state variables

A(t, z(t), u(t), p) · ẋ(t) = f(t, z(t), u(t), p, sgn(σ(t)))

0 = g(t, z(t), u(t), p, sgn(σ(t)))

z(t+s) = z(t−s) + ∆̂z(ts, z(ts), p)







t, ts ∈ [ti, tf]. (1.1)

8 The optimal control problem - Multiple shooting discretization

The time interval [tinitial , tfinal] (short [ti, tf]) is of length T . We require the matrix

A to be of full rank. The vector x(t) ∈ � nx denotes the differential, y(t) ∈ � ny the

algebraic variables. They are combined to the state variable vector z(t) ∈ � nz , nz =

nx + ny. u(t) ∈
� nu describes the vector of control functions, p ∈ � np the constant

parameters. σ(t) ∈ � nσ is the vector of switching functions. The right hand sides f

and g do not directly depend on the values of the switching functions σ(t) but just

on the individual signs of the switching vector. We define

sgn(v) :
� nv 7→ {−1, 1}nv

which maps a vector v ∈ � nv to its sign vector of dimension nv. For the sign function

we define

sgn(x) =

{

−1 for x < 0

+1 for x ≥ 0

for a scalar value. The function ∆z(ts, z(ts), p) gives the jump height of the state

vector z at the switching point ts. Multiple switching points ts are allowed in the

interval [ti, tf]. The function ∆̂z(t, z(t), p) describes the sufficiently smooth jump

function which describes the jump in the state variables at the switching point ts,

if existing.

z(t−s) = lim
ε→0

z(ts − ε)

is the left hand limit of the state vector z(t). For a more detailed discussion of

implicitly given discontinuities refer to Chapter 3.

Since A is invertible, the total time-differentiation of the algebraic equation of (1.1)

leads to
∂g

∂y
ẏ = −∂g

∂t
− ∂g

∂x
A−1f.

The Jacobian ∂g
∂y

is required to be of full rank. We then speak of a DAE system of

differential index I (see e.g. [Gea88]) of semi-explicit type. The name index I comes

from the fact that exactly one differentiation is necessary to transfer the DAE into

an ordinary differential equation. DAEs of higher index are treated e.g. in [Sch99b].

The quasi-linear semi-explicit formulation (1.1) of the DAE is not the most general

form. Certain applications require a fully implicit formulation (see e.g. [Han94]

(linear case) or [Min04])

0 = F (z(t), ż(t), u(t), p) (1.2)

which we will not discuss in this thesis.

1.1 The optimal control problem - continuous form 9

The objective function is in general of Bolza type and consists of the Mayer and the

Lagrange term

Θ(tf , z(tf), p)
︸ ︷︷ ︸

Mayer term

+

tf∫

ti

Φ(t, z(t), u(t), p) dt

︸ ︷︷ ︸

Lagrange term

. (1.3)

A different class of objective functions is given by Least Square terms motivating

other algorithms in the context of minimization of the objective function, see e.g.

Körkel [Kör02].

We claim certain equality constraints

r(z(tf), p) = 0

at the end point tf to be fulfilled. They may arise from specific configurations at

initial values or may fix final states the process is driven into, e.g. a certain compo-

sition of substances in the outflow stream.

The terminal inequality constraints are of the form

r(z(tf), p) ≥ 0.

The vector r ∈ � nre+nri combines the terminal equality and inequality conditions.

The first nre components are treated as equality the last nri
as inequality conditions.

Additionally, path constraints

h(t, z(t), u(t), p) ≥ 0, t ∈ [ti, tf].

can arise, e.g. due to safety restrictions.

Since Mayer and Lagrange terms can easily be transformed into one another we

restrict ourselves to the treatment of Mayer terms without loss of generality.

We can formulate the optimal control problem in the following form

min
tf ,z,u,p

Ξ(tf , z(tf), p) (1.4a)

10 The optimal control problem - Multiple shooting discretization

subject to

A(t, z(t), u(t), p) · ẋ(t) = f(t, z(t), u(t), p, sgn(σ(t))), t ∈ [ti, tf] (1.4b)

0 = g(t, z(t), u(t), p, sgn(σ(t))), t ∈ [ti, tf] (1.4c)

z(t+s) = z(t−s) + ∆̂z(ts, z(ts), p) (1.4d)

0 ≤ h(t, z(t), u(t), p), t ∈ [ti, tf] (1.4e)

0 = r(z(tf), p) (1.4f)

0 ≤ r(z(tf), p) . (1.4g)

1.2 The optimal control problem - general treat-

ment

In this section we will briefly introduce indirect methods for optimal conrol problems.

These methods originate in the calculus of variations. For a detailed descussion refer

e.g. to [Boc78].

Indirect methods prove to be appropriate for some applications where high accuracy

is needed.

Due to the often high sensitivity of the single shooting method to variations in the

initial values of the Lagrange-multipliers, it is in many cases necessary to apply

multiple shooting methods ([Osb69], [Bul71]). Application of indirect methods to

optimal control problems of larger dimension is hardly possible (see e.g. Feeherey

[Fee99]).

In contrast to indirect ones, direct optimal control methods do not explicitely oper-

ate on the optimality conditions.

Direct methods evaluate the objective function directly on the basis of some initial

values for the discretized controls which are subsequently improved in an iterative

manner to fulfill equality and inequality constraints and minimize the objective func-

tion. The original continuous optimization problem is transformed to a parameter

optimization problem.

Differerent approaches to treat the subjacent system of differential equations have

been proposed. One is the complete discretization where the complete time horizon

1.3 The optimal control problem - parameterized form 11

is transfered into a system of algebraic equations e.g. via collocation. Optimization

parameters are the independent control variables and parameters and the dependent

variables, say the state variables at the discrete time points (see e.g. Schulz [SBS98],

Steinbach [Ste95]). The possible drawback of extraordinarily large parameter opti-

mization problems becoming to large for contemporary optimization methods can

be circumvented by keeping the dependent state variables out of the parameter

optimization process. This can be done by solving the time discretized system of

differential equations using a nonlinear equation solver. This method was first pro-

posed by Nilchan [Nil97] and Li et al. [LW97].

Instead of explicitely parameterizing the time domain our approach relies on initial

value problem solvers. As a consequence, the underlying NLP problem only contains

the independent optimization variables and the boundary conditions. The required

sensitivities can be calculated when integrating the model equations by solving the

variational differential equation (4.8).

1.3 The optimal control problem - parameterized

form

All direct optimization approaches transform the infinite dimensional optimization

problem to a finite dimensional one. The direct multiple shooting method (see Plitt

[Pli81], Bock and Plitt [BP84], [BES88], [LBBS03]) achieves this by a state and con-

trol discretization. The for large scale models expensive integration and sensitivity

generation processes on different multiple shooting intervals are totally decoupled

and can be performed in parallel ([LSBS03], [GB94], [BPDLP04]).

Despite the fact that we can in principle treat multi stage problems (e.g. [Lei96]), we

restrict our attention to single stage formulations in the following. Nevertheless the

application of the complex distillation process is composed of several model stages

(see chapter 6).

1.3.1 Discretization of controls

We transform arbitrary time lengths T to the unit-interval τ ∈ [0, 1] by use of the

linear time transformation

τ : [ti, tf] 7→ [0, 1]

12 The optimal control problem - Multiple shooting discretization

with the process time t = τT + ti. With this transformation it suffices to consider

optimization problems on the fixed time interval [0, 1]. Free end times are handled

by treating the end time as a free parameter.

A priori we discretize the time domain by introducing a multiple shooting grid

0 = τ0 < τ1 < . . . < τnms
= 1. (1.5)

On every multiple shooting interval we define a piecewise approximation to the

controls u(τ) by

u(τ) = φj(τ, qj), τ ∈ [τj, τj+1]

with locally elementary functions φj(τ, qj) with local control parameters qj. In our

case they are chosen to be piecewise constant leading to

φj(τ, qj) = qj.

In principle other possibly higher order representations can be used (see [Pli81]).

Continuity conditions at the multiple shooting points can be realized via equality

conditions.

1.3.2 Multiple shooting discretization of the state variables

We introduce 2(nms + 1) parameters sx
j ∈ � nx and sy

j ∈ � ny as differential and

algebraic states at the multiple shooting nodes with

xj(τj) = sx
j , yj(τj) = sy

j . (1.6)

We solve the initial value problems on the multiple shooting intervals

A(·)ẋj(τ) = f(zj(τ), φj(τ, qj), p, sgn(σ)j)T

0 = g(zj(τ), φj(τ, qj), p, sgn(σ)j)

−αj(τ)gj(s
z
j , φj(τj, qj), p, sgn(σ)j),

zj(τ
+
s) = zj(τ

−
s) + ∆̂z

j(τs, zj(τs), p)

(1.7)

on the multiple shooting intervals.

Again, we combine the differential and algebraic variables x ∈ � nx and y ∈ � ny to

the state variable vector z ∈ � nz with nx + ny = nz. Similarly, the optimization

parameters sx
j ∈ � nx and sy

j ∈ � ny are combined to sz
j ∈ � nz . The scalar damping

1.3 The optimal control problem - parameterized form 13

factor αj(τ) has to be chosen to satisfy αj(τj) = 1 and to be non-increasing and

non-negative on the corresponding interval. We apply

αj(τ) = exp

(

−β τ − τj
τj+1 − τj

)

(1.8)

with β ≥ 0∗. The damping factor αj(τ) causes the solution to successively ap-

proach the nominal solution manifold. The relaxed formulation transforms the pos-

sibly inconsistent initial value DAE problem to a consistent one, the initial values

(sz
j ∈ � nz , φj(τ), qj) by definition make the relaxed DAE consistent. This multiple

shooting variant was originally proposed by Bock et al. [BES88]. A generalized

variant goes back to Schulz et al. [SBS98] and Leineweber [LBBS03].

The supplementary matching conditions

xj(τj+1; s
z
j , qj) = sx

j+1, i = 0, 1, . . . , nms − 1 (1.9)

ensure that the state vector at the end of the interval j coincides with the initial

state vector of the following multiple shooting interval j+1. Additionally we impose

the consistency conditions

g(sz
j , φj(τ), qj, p, sgn(σ)j) = 0, i = 0, 1, . . . , nms (1.10)

to demand for the vanishing of the inconsistencies in the solution. The conditions

(1.10) and (1.9) eliminate the additional degrees of freedom we introduced by the

supplementary optimization parameters sz
j ∈ � nz . For fixed initial values we ob-

tain the additional constraint s0 = x0. At intermediate iterates, the constraints are

generally violated, which makes the path to the solution infeasible. Simulation and

optimization proceed simultaneously.

The feature of the direct multiple shooting method to allow inconsistent start values

at the multiple shooting points circumvents the potentially very expensive consistent

initialization at intermediate points. For stability and efficiency reasons multiple

shooting for the solution of optimization boundary value problems has proved to be

superior to single shooting methods (see [Boc83], [Boc87]).

∗In the thesis on hand we apply β ∈ [2, 10] which has proven to be appropriate.

14 The optimal control problem - Multiple shooting discretization

Figure 1.1: First SQP step in solving the classical hang glider range maximization problem

([BNPS91]). In the left picture the piecewise cubic control and in the right picture the

still inconsistent trajectory for the vertical velocity is shown.

1.3.3 Path and control constraint discretization

To transform the infinite dimensional path constraints we discretize them on the a

priori chosen multiple shooting grid (1.5), which leads to

h(sz
j , φj(τ), qj, p) ≥ 0, i = 0, . . . , nms. (1.11)

1.3.4 Parallelization

The multiple shooting time discretization allows for parallelization. The integration

processes of state and sensitivity generation are decoupled and can be performed

simultaneously on a parallel computer ([LSBS03], [BPDLP04]) which significantly

reduces the running time. To equally charge the processors we, approximately charge

every processor with the same number of multiple shooting intervals if no initial guess

of the computational costs for the sensitivity generation on the multiple shooting

intervals is available, . In the second SQP step we redistribute exploiting the indi-

vidual run-times of each processor.

1.4 The NLP problem 15

Figure 1.2: Third SQP step: With still violated consistency conditions at the multiple

shooting nodes.

Figure 1.3: Last SQP step, consistency is obtained.

1.4 The NLP problem

The direct multiple shooting discretization of the optimal control problem presented

in the last section results in the finite dimensional nonlinear programming problem

(NLP)

min
sz
j ,qj ,p

nms−1∑

j=0

Ξj(s
z
j , φj(τ, qj), p) (1.12a)

16 The optimal control problem - Multiple shooting discretization

subject to

xj(τj+1; s
z
j , qj, p, sgn(σ)j) =sx

j+1, i = 0, . . . , nms − 1 (1.12b)

g(sx
j , φ(τj), qj, p, sgn(σ)j) = 0, i = 0, . . . , nms (1.12c)

h(sz
j , φj(τ), qj, p) ≥ 0, i = 0, . . . , nms (1.12d)

r(sz
nms
, p) = 0, (1.12e)

r(sz
nms
, p) ≥ 0, (1.12f)

where (1.12b) and (1.12c) describe the continuity and consistency conditions, (1.12d)

gives the path constraints and the vector r(sz
nms
, p) ((1.12e) and (1.12f)) combines the

equality and inequality terminal boundary conditions. For various reasons coupled

multi-point constraints may be necessary. For performance reasons MUSCOD-II

only allows of linearly coupled constraints. The formulation (see section 1.3.2) can

also be used to treat time delays in the controls by reformulating the problem ad-

equately ([WBPMS03]). In our implementation we explicitely distinguish between

coupled and uncoupled path constraints.

For all NLP variables constraints may be specified individually. This turns out to be

crucial because it prevents the model from being evaluated in areas where it lacks

validity.

Chapter 2

Characterization of optimality and

SQP method

In the following chapter we review some characterization theorems, which allow

to rate points with respect to optimality and feasibility. In the second section we

explain the SQP (sequential quadratic programming) method. We also expound the

usage of Quasi-Newton methods as we apply them in our applications.

2.1 Local optimality conditions

This section gives optimality conditions for locally smooth NLP problems. In the

first part we review those conditions and discuss their limits. The second part

explicitly discusses structural changes in the hypersurface given by the objective due

to implicitly defined discontinuities in the state variables of the dynamic process.

2.1.1 Optimality conditions for the classical NLP problem

We set

w = (q0, . . . , qnq−1, s0, . . . , sns−1, p0, . . . , pnp−1) ∈
� nw (2.1)

with nq to be the number of the control parameters, np the number of the parameters

and ns = nz(nms +1) the number of variables representing initial values, differential

and algebraic variables and the multiple shooting points and

F (w) := min
sz
i ,qi,p

nms−1∑

i=0

Ξi(s
z
i , φi(τ, qi), p) (2.2)

18 Characterization of optimality and SQP method

for the objective, and thereby convert the NLP problem (1.12) to the classical NLP

problem to be discussed in the following.

Let F :
� nw 7→ �

be a C2 function. The classical NLP is given by

min
w∈ � nw

F (w) s.t.

{

G(w) = 0

H(w) ≥ 0,
(2.3)

where the equality constraint functions G :
� nw 7→ � nG and the inequality con-

straint functions H :
� nw 7→ � nH are also assumed twice continuously differentiable.

We subsume the gradients of the components of the vector valued functions G and

H in the generalized gradients

∇wG :=

(
∂G

∂w

)T

, ∇wH :=

(
∂H

∂w

)T

.

The transposes of these generalized gradients are obviously the Jacobians of G and

H.

Definition 2.4 (Feasibility)

The feasible area of the NLP (2.3) is the set of points w

Ω = {w ∈ � nw |G(w) = 0 ∧ H(w) ≥ 0} .

Points w ∈ � nw \ Ω are called infeasible.

The constraint Hi(w) ≥ 0 is said to be active, if Hi(w) = 0 holds. Let G be the index

set of the equality constraints and H the index set of the inequality constraints.

Definition 2.5 (Active set)

The index set

A(w) = G ∪ {i ∈ H | Hi(w) = 0}
of active inequalities for a point w ∈ Ω is called the active set.

Definition 2.6 (Local minimizer)

A point w∗ ∈ � nw is called a local minimizer of the NLP problem if w∗ is feasible

w.r.t. all constraints and there exists a neighborhood Uε(w
∗) with

F (w∗) ≤ F (w) for all w ∈ Uε(w
∗).

Introducing the Lagrange function

L(w, λ, µ) = F (w) − λTG(w) − µTH(w) (2.7)

with the Lagrange multipliers λ ∈ � nG and µ ∈ � nH allows for investigations con-

cerning local optimality (2.6) in the presence of equality and inequality constraints.

2.1 Local optimality conditions 19

Definition 2.8 (Linear independence constraint qualification (LICQ))

If the set of active constraint gradients

{∇wG,∇wHi, i ∈ A(w∗)}

is linearly independent at a point w∗ and a given active set A(w) we say that the

linear independence constraint qualification (LICQ) is fulfilled at w∗.

Based on the definition (2.8) we can formulate the Karush-Kuhn-Tucker conditions

Theorem 1 (Karush-Kuhn-Tucker conditions)

Let w∗ be a local minimizer (2.6) of (2.3) for which LICQ (2.8) holds. Then there

exist unique Lagrange multipliers λ∗ ∈ � nG and µ∗ ∈ � nH such that the following

conditions are satisfied at (w∗, λ∗, µ∗):

∇wL(w∗, λ∗, µ∗) = 0, (2.9a)

G(w∗) = 0, (2.9b)

H(w∗) ≥ 0, (2.9c)

µ∗ ≥ 0, (2.9d)

µ∗
iHi(w

∗) = 0, i ∈ H. (2.9e)

The point (w∗, λ∗, µ∗) is called a Karush-Kuhn-Tucker (KKT) point. The KKT

conditions were originally derived by Karush [Kar39] in 1939. In 1951 Kuhn and

Tucker [KT51] rediscovered the conditions. At active constraints the corresponding

Lagrange multipliers may become zero. The active constraints with vanishing mul-

tipliers are often called weakly active whereas those active constraints with strictly

positive multipliers are said to be strongly active. The complementary condition

(2.9e) requires multipliers belonging to inactive constraints to be zero. A proof of

the above theorem can e.g. be found in the book of Fletcher ([Fle87]). For a given

NLP and a solution point w∗ the uniqueness of the triple (w∗, λ∗, µ∗) is guaranteed

by the LICQ (2.8).

Theorem 2 (Second order necessary conditions)

Let w∗ be a local solution of (2.3) and the LICQ holds. Furthermore let the Lagrange

multipliers satisfy the KKT conditions (Theorem 1). For every vector δ ∈ � nw which

satisfies

∇wGi(w
∗)T δ = 0, i ∈ G

∇wHi(w
∗)T δ = 0, i ∈ H

20 Characterization of optimality and SQP method

it follows that

δT ∆wL(w∗, λ∗, µ∗)δ ≥ 0, (2.10)

where

∆wL(w∗, λ∗, µ∗) =
∂2L
∂w2

(w∗, λ∗, µ∗)

denotes the Hessian matrix of the Lagrangian function L.

A proof of the above theorem can be found e.g. in the book of Nocedal and Wright

[NW99].

Theorem 3 (Second order sufficient conditions)

Let w∗ be a KKT point with the multipliers λ∗ and µ∗. For every non-zero vector

δ ∈ � nw which satisfies the condition (2.10) and

∇wHi(w
∗)T δ = 0, for all i ∈ A(w∗) ∩H with µ∗

i > 0, (2.11)

∇wHi(w
∗)T δ ≥ 0, for all i ∈ A(w∗) ∩H with µ∗

i = 0, (2.12)

w∗ is a strict local minimizer if

δT ∆wL(w∗, λ∗, µ∗)δ > 0. (2.13)

To pass from the second order necessary conditions (Theorem 2) to the second order

sufficient conditions just the condition (2.10) has to be strictly fulfilled, in addition,

the active inequality constraints with vanishing Lagrange multipliers have to be

treated separately.

2.2 The SQP method

The sequential quadratic programming approach (SQP) is well adapted to problems

with non-linearities. In order to find a KKT point y∗ = (w∗, λ∗, µ∗) of the general

NLP (2.3)

min
w∈ � nw

F (w) s.t.

{

G(w) = 0

H(w) ≥ 0,

we replace the original problem by a sequence of easier subproblems. To this end

we locally replace the Lagrangian by a quadratic approximation.

To find the local minimizer w∗ with the Lagrange multipliers λ∗ and µ∗ we introduce

the sequence

yk+1 = yk + αkδk (2.14)

2.2 The SQP method 21

again using the abbreviation yk = (wk, λk, µk). δk describes the step direction,

αk ∈]0, 1] the strictly positive relaxation factor. We intend to generate a sequence

of approximations yk = (wk, λk, µk) to both the local solution vector w∗ itself and

to the Lagrange multipliers λ∗ and µ∗.

The solution of the sequentially solved problem is the local minimizer of the quadratic

function
1

2
δT∇2

wL(wk, λk, µk)δ + ∇wF (wk)δ.

Referring to the Taylor series expansion of the Lagrangian around wk, we skipped

the constant term Lk and used the equivalence

∇wL(w∗, λ, µ)T δ ≡ ∇F (w∗)T δ.

This holds if δ is orthogonal to the gradients of both the equality constraints and

the active inequality constraints, and if the Lagrange multipliers of the inactive

inequality constraints vanish.

We of course require the solution w∗ to be feasible whereas intermediate points need

not be. Hence we can linearly approximate the equality and inequality conditions

G(wk) + ∇wG(wk)
T δ = 0

H(wk) + ∇wH(wk)
T δ ≥ 0

forcing the violation of the constraint to vanish in the linear approximation in every

step.

Combining the above equations, we can formulate the resulting quadratic program

(QP)

min
δ∈ � nw

1

2
δT∇2

wL(w, λ, µ)δ + ∇wF (w)δ

subject to

{

G(wk) + ∇wG(wk)
T δ = 0

H(wk) + ∇wH(wk)
T δ ≥ 0.

Replacing the second derivative of the Lagrangian by a more general matrix W and

allowing δ ∈ q we obtain the subproblem

min
δ∈q

Qk(δ) subject to

{

G(wk) + ∇wG(wk)
T δ = 0

H(wk) + ∇wH(wk)
T δ ≥ 0

(2.15)

with

Qk(δ) :=
1

2
δT∇2

wWkδ + ∇wF (w)T δ.

SQP methods mainly differ in the choice of the step length αk used for the glob-

alization, the choice of the matrix W and in the choice of the domain q. The

22 Characterization of optimality and SQP method

first sequential quadratic programming algorithm was proposed by Wilson in 1963

[Wil63].

Focusing on the quadratic subproblem (2.15) we directly see that, due to the linear

constraints the constraint qualification conditions, Theorem 1 forces the existence

of a KKT point for the subproblem.

In the subsequent part we focus on a special SQP method leading us to some theo-

retical insight.

For the choice αk ≡ 1, W an exact Hessian of the Lagrangian, and q =
� nw we

obtain the Newton iteration scheme
(

∇2
wL(yk) −∇wG(wk)

−∇wG(wk) 0

)

· δk +

(

∇wL(yk)

G(wk)

)

= 0

with yk = (wk, λk) and

δk =

(

wk+1 − wk

λk

)

excluding the inequality constraints for the moment.

Theorem 4 (Convergence of the SQP method)

If the initial guess y0 = (w0, λ0) is sufficiently close to y∗ = (w∗, λ∗) satisfying the

second order sufficient conditions (Theorem 3) and if the matrix

(

∇2
wL(y0) −∇wG(w0)

−∇wG(w0) 0

)

has full rank, then the sequence of iterates yk converges of second order to y∗, i.e.,

there exists a constant c > 0 with

‖yk+1 − y∗‖ ≤ c‖yk − y∗‖2.

A proof of Theorem 4 can be found in Fletcher [Fle87].

The initial choice of y0 is crucial for the convergence of the SQP algorithm. It is

more important to have an accurate guess for w0 than for the Lagrange multipliers.

The classical SQP algorithm has excellent local convergence properties. and clear

Nevertheless it suffers from several severe drawbacks.

2.2 The SQP method 23

At points far from the solution, the QP (2.15) may been unbounded or may not even

exist. In order to cope with this drawback, a trust-region approach has been pro-

posed. Introducing an upper bound 0 < uk for the step length ‖δk‖ ≤ uk in (2.15)

removes the possibility of unbounded correction steps but the restriction might cause

the problem to become infeasible. Another idea is to add a Levenberg-Marquardt

term to the Hessian ∇2
wL+α � . This may help to preserve the problem from becom-

ing unbounded but leads to the classical Levenberg-Marquardt algorithm drawbacks

like degenerate solutions etc. (see e.g. [Cha79]). Other ways to circumvent the men-

tioned problems are proposed in Fletcher [Fle71].

In addition it turns out that the second derivatives ∇2
wL(yk) of the Lagrangian re-

quired for the classical SQP approach might be difficult to obtain. Especially before

the development of automatic differentiation it was hard if not sometimes even im-

possible to reliably obtain second derivative information. The calculation of the

exact Hessian remains expensive (e.g. [Sch99a]). In the following we give a brief

motivation for classical Quasi-Newton methods and then turn to the constrained

optimization case. For a more detailed discussion refer e.g. to Davidon ([Dav91]) or

to Fletcher and Powell ([Fle95], [Pow78b], [Pow85]).

2.2.1 Quasi-Newton methods

Changes in the gradients of the Lagrangian can be measured and used to find an

approximate to the Hessian. Exploiting those information leads to significant im-

provement over steepest descent, under some little restrictive assumptions two-step

superlinear convergence can be proved.

Since we do not provide any second derivative information by the integrator (see

Chapter 3) but curvature information of the sensitivities is required for the SQP

algorithm we provide this approximation to the Lagrangian Hessian ∇2L by usage

of Quasi-Newton methods.

In the following section we will first give an introduction to the unconstrained case

of quasi-Newton methods and then concentrate on the constrained case.

24 Characterization of optimality and SQP method

2.2.1.1 Unconstrained case

Quasi-Newton methods do not directly use any second derivative information. On

each iterate they only require knowledge of the gradient of the objective. Let us

introduce the quadratic model

Mk(δ) :=
1

2
δTBkδ + ∇wF (wk)

T δ + F (wk) (2.16)

at the current iterate wk, with Bk :
� nw 7→ � nw symmetric and positive definite.

The matrix Bk intended to be an approximation to the exact Hessian ∇2
wL will be

updated or revised in every iteration.

The step δ̂k towards the minimizer of (2.16) can be calculated by solving the linear

system

Bkδ̂k = ∇wF (wk).

Davidon’s idea was to avoid the explicit calculation of the Hessian and instead simply

update it and account for the curvature measured in the last step. With the step

sequence

wk+1 = wk + αkδk

in complete analogy to the sequence (2.14) we obtain the secant equation

Bk+1αkδk = ∇wF (wk+1) −∇wF (wk) (2.17)

demanding the curvature condition

αkδk · (∇wF (wk+1) −∇wF (wk)) > 0 (2.18)

to be accomplished. For non-convex functions this condition will not automatically

hold. The line-search parameter αk has to be chosen to satisfy the Wolfe conditions.

Since the secant condition (2.17) imposes only nw conditions, the symmetric matrix

Bk remains under-determined for nw > 1. One way is to allow only a rank one

update

Bk+1 = Bk +
((∇wF (wk+1) −∇wF (wk)) − Bkδk) δ

T
k

δT
k δk

. (2.19)

This update formula is often called least change secant update since the Hessian ap-

proximation Bk changes minimally in every iteration satisfying the secant equation

(2.17) (e.g. [Bro67],[Dav68],[FM90]).

2.2 The SQP method 25

Another way to uniquely determine Bk+1 is to ask for minimal changes from Bk to

Bk+1 with respect to a certain norm

min
B

‖B − Bk‖ s.t.

{

B = BT

Bαkδk = ∇wF (wk+1) −∇wF (wk).
(2.20)

A common choice for the norm is the weighted Frobenius norm leading to the

Davidon-Fletcher-Powell (DFP) update formula for the Hessian approximation. When

substituting

Dk = B−1
k

with the abbreviation

Υk = ∇wF (wk+1) −∇wF (wk)

we obtain the DFP-formula

Dk+1 = Dk −
DkΥkΥ

T
k Dk

ΥT
k DkΥT

k

+
αkδkδ

T
k

ΥT
k δk

(2.21)

for the inverse of the approximation to the Hessian. The last two terms on the right

hand side of the formula are of rank one, and thus the complete modification of Dk

is of rank two.

An alternative to the DFP update formula is the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) formula. It is obtained in a similar fashion like the DFP-formula with

the main difference that the conditions (2.20) are forced for the inverse Dk of the

Hessian approximation instead of forcing them for the approximation of the Hessian

Bk itself. Under these modified conditions we uniquely obtain Dk+1 via the BFGS

update formula

Dk+1 =

(

� − αkδkδ
T
k

ΥT
k δk

)

· Dk ·
(

� − αkδkδ
T
k

ΥT
k δk

)

+
αkδkδ

T
k

ΥT
k δk

. (2.22)

Applying the Sherman-Morrison formula to (2.22), we obtain an update formula for

the approximation of the Hessian itself rather than for the approximation of the

inverse:

Bk+1 = Bk −
Bkδkδ

T
k Bk

δT
k Bkδk

+
ΥkΥ

T
k

αkΥT
k δk

. (2.23)

The costs per iteration are of order of magnitude O(n2
w). It can also be shown that

the algorithm converges q-superlinearly.

The DFP- and the BFGS-formula are duals of one another. One can be obtained

from the other by interchanging αkδk = wk+1−wk with Υk and Bk with Dk in (2.21)

26 Characterization of optimality and SQP method

and (2.23) respectively. Both rank two update formulas are members of the Broyden

class ([Bro67]). The self-correction ability of the update formulas concerning bad

approximations of the Hessian matrices via Dk in the kth step is very effective for

the BFGS update formula (detailed discussions can be found in [Noc92]). The self-

correction performance of the DFP update formulas is in general less effective. This

property is believed to be the reason for the generally poorer practical performance

of the DFP update compared to the BFGS method. One has to keep in mind

that the self-correction ability of BFGS only holds when an adequate line search is

performed, i.e., when the Wolfe line search conditions ensure that the appropriate

curvature information can be exploited.

Global convergence of the BFGS method can not be proven for general nonlinear

objectives, although the method is remarkably robust in practice. A general discus-

sion can be found e.g. in Ge and Powell ([GP83]). A discussion of the restrictions

necessary to guarantee global convergence for the BFGS-method can be found in

[Pow76].

2.2.1.2 Constrained case

Since quasi-Newton approximations have proved very efficient in the unconstrained

case, it seems reasonable to transfer the ideas to the approximation of the La-

grangian Hessian ∇2
wL(yk). Several SQP-algorithms have been proposed based on

varying update strategies. Due to the practical performance of the BFGS update

we focus on this algorithm.

We use the abbreviation

Υk = ∇wL(wk+1) −∇wL(wk). (2.24)

Powell suggested the usage of a modified BFGS update ([Pow77]) keeping the ap-

proximation of the Hessian positive definite even if ∇2
wL(wk) is not positive. For

the constrained case the curvature condition from the unconstrained case (2.18) has

to be modified to

αkδk · (∇wL(wk+1) −∇wL(wk)) = αkδk · Υk > 0.

It can happen that this curvature condition can not be satisfied for any αk > 0. To

ensure that the update is always well-defined we update the Hessian approximation

via the BFGS update formula (2.23) we replace Υk by

Υ̂k := ηkΥk + αk(1 − ηk)Dkδk, ηk ∈]0, 1] (2.25)

2.2 The SQP method 27

with the scalar ηk given by

ηk =







1 if δT
k Υ̂k ≥ εηαkδ

T
k Dkδk

(1−εη)αkδT
k Dkδk

αkδT
k Dkδk−δT

k Υ̂k
if δT

k Υ̂k < (1 − εη)αkδ
T
k Dkδk.

(2.26)

The parameter εη ∈ [10−1, 2 · 10−1] is an empirical parameter chosen so that Υ̂k is

closest to Υk under the condition

δkΥ̂k ≥ εηαkδ
T
k Dkδk > 0.

A detailed discussion can be found in [Pow85]. We obtain the modified update BFGS

formula with the slight modification that Υk in equation (2.23) is replaced by Υ̂k

from equation (2.24). The modified update BFGS formula guarantees the positive

definiteness of the Hessian approximation. For vanishing ηk the approximation of

the Hessian remains unchanged from step k to step k+ 1. ηk ≡ 1 leaves the original

unmodified BFGS update formula unchanged (2.23). The value ηk is responsible for

producing a positive definite matrix interpolation between the unmodified matrix

obtained via the unchanged BFGS update formula and the current iterate Dk.

We use the modified l1 penalty function

Ψ(w,$, τ) = F (w) +

nG∑

i=1

$i|Gi(w)| +
nH∑

j=1

τj|min(0, Hj(w))| (2.27)

with the weights $0,k = |λq
0,k| and τk,j = |µq

k,j| chosen for the first iterate. Later on

the weights are updated by the formulas

$k,i = max

(

|λq
k,i|,

1

2

(
$k−1,i + |λq

k,i|
)
)

and

τk,j = max

(

µq
k,j,

1

2

(
τk−1,j + |µq

k,j|
)
)

where λq and µq again denote the Lagrange multipliers for the quadratic subprob-

lem (2.15). The choice of $k,i and τk,j allows a stepwise adaptation of the penalty

term. This prevents that too much effort is invested in the reduction of constraint

infeasibilities causing significantly shorter steps. This heuristic strategy was first

proposed by Powell.

Diverse line-search strategies have been proposed by Powell himself [Pow78a] or in-

exact line-search strategies by Dennis et al. [DS89]. A comprehensive overview over

28 Characterization of optimality and SQP method

line-search strategies can be found in [NW99].

As first shown by Maratos in [Mar78] the usage of non-smooth merit-functions like

(2.27) may cause the algorithm to refuse full steps even very close to the solution (e.g.

[Pow84]) reducing the local convergence rate to be q-linear. In order to avoid this

potential inefficiency we employ a non-monotone strategy. The watchdog technique

(Chamberlain et al. [CLPP82]) introduces a two level criterion for the acceptance

of new steps. On one level we require the classical descent condition

Mk(α) ≤ Mk(0) + αkc (∂αMk(α))α=0 (2.28)

with

M(α) = Ψ(w + αδ,$, τ)

but allow - on the second level - this condition to be violated for at most n subsequent

steps. If a sufficient reduction of the merit function is not obtained after m ≤ n

steps on the second level - so with temporary violation of the descent criterion (2.28)

- we return to the last step before the violation and perform the step with possibly

smaller step-length but conform to the descent condition.

The value c is in general chosen quite small: we usually apply c = 10−4 like Nocedal

[NW99] or Dennis [DS83] propose. The so-called Armijo condition enforces a suffi-

cient decrease of the function M(α).

Despite the fact that we would be interested in at least a local minimizer of the

function M(α) we restrict ourselves to an inexact line-search, significantly reduc-

ing the number of function evaluations in every step by only fulfilling Condition

(2.28). We choose the step length parameter αk to be as large as possible by not

minimizing the quadratic approximation of the penalty function (2.27) but trying

to estimate the largest possible step length allowed by the Armijo condition every

nth step (watchdog).

Other strategies to circumvent the Maratos effect are to introduce a merit function

that does not suffer from the Maratos effect or second order correction strategies

(e.g. [CC82]). The latter is also available in the software package MUSCOD-II, see

[Lei99].

We use the KKT-tolerance

∣
∣∇wF (wk)

T
∣
∣+
∑

|λk,iGi(wk)| +
∑

|µk,jHj(wk)| ≤ ς (2.29)

2.2 The SQP method 29

where ς signifies the accuracy intended to obtain as a convergence criterion whether

a KKT-point y∗ is reached with sufficiently high accuracy.

An overview over implementatory details on modern SQP-methods can be found in

Lalee et al. [LNP98].

Reduced-Hessian Approximations

In the beginning of this chapter we presented the classical SQP method. In the fol-

lowing we will briefly explain the special reduced SQP approach originally proposed

by Schulz ([Sch96]) and Leineweber ([LBBS03]) allowing of an efficient exploitation

of the highly structured optimization problem. The idea is to decompose the search

space from which the correction step δk in (2.14) is computed into two subspaces

ΩR
k and ΩN

k spanning the full space

Ωk = (ΩR
k ,Ω

N
k), ΩR

k ∈ � n×nR , ΩN
k ∈ � n×nN (2.30)

with nR + nN = n. We partition the NLP variables w = (w1, w2) in such a manner

that ∇w1
GT

1,k is of full rank. The linearized constraints of G1 are used to set up the

respective coordinate basis.

The correction step δk can then be written as

δk =

(

�
0

)

︸ ︷︷ ︸

ΩR
k

zRk −
(

∇w1
GT

1,k
−1∇w2

GT
1,k

− �

)

︸ ︷︷ ︸

ΩN
k

zNk . (2.31)

The Null space component zNk is the solution of the QP

min
zN

(

∇F T
k ΩN

k z
N
k

+
1

2
zNk

T
ΩN

k

T∇2
wk
LkΩ

N
k

︸ ︷︷ ︸

BN
k

zNk + zR
T
ΩR

k

T∇2
wk
LkΩ

N
k z

N

︸ ︷︷ ︸

cross term

) (2.32a)

subject to
{

G2,k + ∇GT
2,kΩ

N
k z

N
k + ∇GT

2,kΩ
R
k z

R
k = 0

Hk + ∇HT
k ΩN

k z
N
k + ∇HT

k ΩR
k z

R
k ≥ 0

(2.32b)

30 Characterization of optimality and SQP method

with the range space component zR given by

Gk +
(
∇GT

k ΩR
k

)
zRk = 0

for the NLP

min
w∈ � nw

F (w) s.t.







G1(w) = 0

G2(w) = 0

H(w) ≥ 0

. (2.33)

For the restriction of (2.3) to equality constraints in RSQP methods, ΩN
k is chosen

to be a basis of the Null space of the constraint Jacobian. As the working sets

changes in inequality constraint cases, the classical RSQP approach can hardly be

transferred to this set of problems. A more promising approach is the partially re-

duced SQP method which only uses a subset of the equality constraints to reduce

the problem ([Sch96]).

Exploiting the problem structure of the QP arising from the direct mul-

tiple shooting method

We define Hk to contain the path constraints (1.12d), the discretized control con-

straints and the multi-point inequality constraints. G1,k contains the consistency

conditions and G2,k the continuity, multi-point equality conditions∗. This choice

causes the individual intervals to be decoupled allowing of parallel computation of

the multiple shooting intervals. BN
k is an approximation to the partially reduced

Hessian

BN
k = ΩN

k

T∇2
wk
LkΩ

N
k

calculated in the thesis at hand via BFGS-updates (2.23). In order to obtain the cur-

vature information the difference of the two reduced Lagrange gradients ΩN
k+1

T∇Lk+1

and ΩN
k

T∇Lk and the Null space step zNk are needed.

Alternatively the continuity and initial conditions could be shifted to G1,k causing

the Hessian to loose its block-diagonal structure. In addition the reduced Jacobians

∇GT
2,kΩ

N
k and ∇HT

k ΩN
k receive entries corresponding to variables on nodes before

the constraints are defined. This approach originally proposed by Schlöder ([Sch88])

causes the reduced QP (2.32) for fixed initial values for the differential state variables

∗For multi-stage formulations G2,k also contains the equality stage transition conditions.

2.2 The SQP method 31

to become independent of the dimension nx of the differential state vector x ∈ � nx .

For a more detailed discussion refer to ([SBPD+03] , [Sch04]).

32 Characterization of optimality and SQP method

Chapter 3

Numerical solution of Index I

DAEs

Various methods for the solution of Index I DAEs are available in numerous im-

plementations. The most common are onestep methods like Runge-Kutta methods

(e.g. [Hin80]) and extrapolation methods ([DHZ87]), Rosenbrock methods ([Mic76],

[Roc88]) and multistep methods (e.g. [CH52], [Gea71]).

This chapter is organized as follows. We first briefly motivate the choice of a BDF

(backward differentiation formulas) method and then explain the BDF algorithm

used in our approach. The stability of the method is also shown. In the first two

sections we restrict ourselves to DAEs without implicitly given discontinuities.

In the third section we introduce implicitly discontinuous models and show how they

can be handled using our BDF method. Finally we give some applications.

3.1 Solving the IVP

In process engineering the extrapolation code LIMEX (Deuflhard et al. [DHZ87]

and Ehrig et al. [EN00]) is widely used.

For stiff systems (see 3.1.1) implicit integration algorithms are necessary due to sta-

bility demands. In case of stiff systems explicit methods would force the step size

to be small for stability reasons and undermine the goal to choose step lengths only

bounded by local error restrictions.

A very common solver for DAEs of the form (1.2) is the Code DASSL ([Pet82],

[Pet91]). We built on the fast BDF DAE Code DAESOL ([BES88], [BBS99]) devel-

34 Numerical solution of Index I DAEs

oped in the research group of Bock.

3.1.1 Stiffness

Often dynamical models describing chemical processes show a specific behavior

called stiffness. The time scales on which the different species change vary sig-

nificantly, often by many orders of magnitude. This phenomenon was first observed

by Curtiss and Hirschfelder (see [CH52]):

stiff equations are equations where certain implicit methods, in particular BDF,

perform better, usually tremendously better, than explicit ones.

In 1963 Dahlquist ([Dah63]) showed that the failure of explicit Runge-Kutta methods

is caused by the lack of stability of these methods. Stiff problems can be character-

ized as follows:

• Slowly changing solutions of the initial value problem (IVP) exist and

• solutions in the direct neighborhood of the slowly changing solutions approach

these very quickly

In the literature no standard definition of stiffness is available, quite helpful versions

can be found in Shampine et al. ([SG75]) or in the book of Dekker and Vermer

([DV84]). Characteristic of stiffness are the eigenvalues of the Jacobian ∂f
∂y

of the

right hand side of a differential equation. Often problems satisfying

∥
∥
∥
∥

∂f

∂y
(t, y)

∥
∥
∥
∥

(tf − ti) � 1

or L(tf − ti) � 1 with Lipschitz constant L are called stiff, when eigenvalues λ of

the Jacobian ∂f
∂y

exist with

<(λ) � 0

(for a similar definition see [SW95]).

Beyond models describing chemical systems, stiff ordinary differential equations also

arise from the semi-discretization of parabolic partial differential equations∗ (e.g. in

Lebiedz and Brandt-Pollmann [LBP03]).

∗Despite of the fact that it is common to speak about stiff differential equations it is more

precisely an IVP for this differential equation which may be stiff in some regions.

3.2 A BDF method for the solution of large scale DAE systems 35

3.2 A BDF method for the solution of large scale

DAE systems

In this section we briefly mention the central aspects on multistep methods. Nev-

ertheless, the main goal of the section is to discuss the main features of the BDF

method. After a treatment of ordinary differential equations we move to DAEs in

the second part of this section.

Definition 3.1 (Linear multistep method (LMM))

A linear multistep method with k steps for determining a grid function ŷh(t) for the

solution y(t) of the initial value problem

ẏ = f(t, y)

y(ti) = yi

(3.2)

on a grid

Ih = {t ∈ [ti, tf] : t = tn, n = 0, 1, . . . , N, tn = ti + nh}
with the k initial values

ŷh(tn) = y(tn), n = 0, 1, . . . , k − 1

is given by the difference equation

k∑

l=0

αlŷn+l = h
k∑

l=0

βlf(tn+l, ŷn+l) (3.3)

with αl, βl ∈
�

, αk 6= 0 and |α0| + |β0| 6= 0.

The condition |α0|+ |β0| 6= 0 guarantees that the step number k is defined uniquely,

whereas the condition αk 6= 0 ensures that the implicit equation (3.3) can be solved

with respect to ŷn+k at least for sufficiently small stepsizes h.

In order to qualify linear multistep methods we introduce the linear difference op-

erator

L[y(t), h] =
k∑

l=0

(αly(t+ lh) − hβlẏ(t+ lh)) (3.4)

with y(t) ∈ Cp+1 and t ∈ [ti, tf].

Definition 3.5 (Local error of a LMM)

The local error of a LMM of the from (3.1) is defined by the difference

y(tk) − ŷk

36 Numerical solution of Index I DAEs

where y(tk) is the exact solution of the IVP ẏ = f(t, y), y(ti) = yi and ŷk the

numerical solution obtained by the LMM (3.1) with the k starting values to be exact.

Theorem 5 (Local error)

The local error len+k is in linear approximation given by

len+k
.
= α−1

k L[y(tn), h]. (3.6)

A proof can be found in Hairer et al. [HNW93].

Definition 3.7 (Order of consistency)

A linear multistep method of the form (3.3) is consistent of order p if

L[y(t), h] = O(hp+1) (3.8)

for y(t) ∈ Cp+1[ti, tf] and h→ 0.

3.2.1 Stability

Dahlquist in 1956 [Dah56] introduced the generating polynomials

ρ(ξ) ≡ αkξ
k + αk−1ξ

k−1 + · · · + α0 (3.9)

and

σ(ξ) ≡ βkξ
k + βk−1ξ

k−1 + · · · + β0. (3.10)

The linear difference equation (3.3) in its homogeneous form (h → 0 with n · h =

const) is solved by the trivial solution ŷn ≡ 0 and by ŷn = C · ξn, C 6= 0, ξ 6= 0 if

ψ(ξ) = 0. (3.11)

To assess stability we introduce Dahlquists stability test equation

ẏ = λy.

Using the generating equations (3.9) and (3.10), we obtain the characteristic equa-

tion

ρ(ξ) = zσ(ξ) (3.12)

where z = hλ and ŷn = ξm.

Definition 3.13 (Root condition)

The multistep method 3.3 is called stable, if the generating polynomial ψ(ξ) (3.9)

satisfies the root condition, i.e.

3.2 A BDF method for the solution of large scale DAE systems 37

1. the roots of the generating polynomial ψ(ξ) lie within or on the unit circle,

2. the roots on the unit circle are simple.

We define the stability domain S.

Definition 3.14 (Stability domain of the linear multistep method)

The area

S =

{

z ∈ � :
|ξl| ≤ 1, if ξl simple root in 3.12,

|ξl| < 1, if ξl multiple root in 3.12.

}

(3.15)

is called the stability domain of the linear multistep method (3.3).

A linear multistep method of the form (3.3) is convergent of order p if and only if it

is consistent of order p and satisfies the root condition (Dahlquist [Dah56]).

Let z ∈ � . Then follows z ∈ � − iff <(z) ≤ 0.

Definition 3.16 (A- and A(α)-stability)

A linear multistep method is called A-stable, if

� − ⊂ S,

and it is called A(α)-stable, if

S ⊃ {z ∈ � − : | arg(z) − π| ≤ α}.

Dahlquist’s second barrier limits the maximal order of an A-stable linear multistep

method to 2. For very stiff systems L-stability is crucial (e.g. [HNW96]). The

L-stability is equivalent to the requirement that all roots ξl of the characteristical

equation (3.12) for all k tend to zero for |z| → ∞, leading to the claim

βi = 0, 0 ≤ i ≤ k − 1.

With the choice βk = 1 this leads to a multistep method of the form

k∑

l=0

αlŷn+l = hf(tn+k, ŷn+k). (3.17)

With the requirement

Ṗ(tn+k) − f(tn+k, ŷn+k) = 0

for the interpolation polynomial P(t) which interpolates the support values ŷn, ŷn+1,

. . ., ŷn+k−1 at tn, tn+1, . . ., tn+k−1 and the a priori unknown point (tn+k, ŷn+k) we

obtain the following BDF method.

38 Numerical solution of Index I DAEs

−12 −10 −8 −6 −4 −2 0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

15

20

k=1

k=2

k=3
k=4

k=5k=6

Figure 3.1: The graphics shows the stability domains for BDF methods of orders k =

1, 2, . . . , 6. Obviously, the method is only A-stable for k = 1 and k = 2. A(α)-stability

arises for values k = 1, 2, . . . , 6.

Definition 3.18 (BDF method)

Multistep formulas of the form

k∑

l=1

1

l
∇lŷn+k = hfn+k (3.19)

are called backward differentiation formulas (BDF-methods) with the divided differ-

ences

∇0ŷn+k = ŷn+k

∇lŷn+k =
∇l−1ŷn+k −∇l−1ŷn+k−1

tn+k − tn+k−1

.

We replace the divided differences ∇iŷn+k in (3.19) by modified divided differences

([Kro79]) reducing the computational costs for updating from one integrator step to

the next.

Theorem 6 (Stability of BDF)

The BDF method is A(α)-stable for orders k ≤ 6 and unstable for k > 6.

The proof was originally given by Cryer [Cry72].

3.2 A BDF method for the solution of large scale DAE systems 39

This guarantees the convergence of BDF methods up to order k = 6 if the k initial

values are accurate of order O(hk).

Due to the particular shape of the stability domains (fig.3.1), classical BDF meth-

ods are adequate for problems showing large negative real parts of the eigenvalues

but not too large imaginary parts. For problems with highly oscillatory modes (e.g.

problem B5 of STIFF DETEST [EHL75]), A-BDF methods (e.g. Fredebeul [Fre98])

proved to be efficient.

Until now our consistency and convergence propositions are restricted to equidistant

grids. For practical applications an adaptive choice of the step lengths is crucial.

We briefly extend our statements to this scenario. For a more detailed description

refer to Bauer ([Bau99]).

In the definition (3.1) we allow of a variable grid

Ih = {t ∈ [ti, tf] : t = tn, n = 0, 1, . . . , N, tn = ti + nhi, hi = ti − ti−1, ti > ti−1}
(3.20)

and replace αl, βl ∈
�

by αl,n+1, βl,n+1 ∈ �
under the same conditions as in (3.1)

depending on the quotients hi

hi−1
.

Definition 3.21 (Consistency order)

The k step BDF method on a variable grid has the consistency order p if

k∑

l=0

αl,n+1P(tn+l) = hn+1Ṗ(tn+k) (3.22)

for all polynomials P(t) of order at most p and all grids Ih (3.20).

For variable but finite step sizes the local discretization error of the BDF method

with finite coefficients αl,n+1 is of order O(hp+1
max) where hmax denotes the maximal

step size hi for functions f(t, y) ∈ Cp.

Crouzeix et al. ([CL84]) regarded varying step lengths as perturbations of equidis-

tant grids built by time steps of constant length.

Theorem 7 (Stability of the BDF method on variable grids)

The BDF method of the consistency order p satisfies the following conditions:

• The coefficients αl,n+1

(
hn+1

hn
, hn

hn−1
, . . . , hn+1−k

hn−k

)

are continuous in a neighbor-

hood of (1, 1, . . . , 1).

• The roots of the generating polynomial (3.9) lie strictly within the unit circle

with the exception of one root ξ = 1.

40 Numerical solution of Index I DAEs

There exist bounds ql, qu ∈ �
with

ql ≤
hn+1

hn

≤ qu, for all n.

A proof can be found in Crouzeix et al. ([CL84]). Grigorieff ([Gri83]) gave some

quite restrictive values for the lower and upper bounds ql and qu. In general one can

say that uniform changes in the step sizes allow more drastic changes in the relation

hn/hn−1. We do not stick to Grigorieffs restrictive boundaries.

Theorem 8

Consider a stable BDF method on a variable grid with bounded coefficients αl,n+1

with

• ‖y(tl) − yl‖ = O(hp), l = 0, 1, . . . , p− 1 for initial values,

• hn

hn−1
≤ qu for the step sizes.

Then for all differential equations

ẏ(t) = f(t, y), y(ti) = yi

and f sufficiently smooth the global discretization error is given by

‖y(tn+1) − ŷn+1‖ ≤ α · hp
max, tn+1 ∈ [ti, tf].

For efficiency reasons we apply a Newton representation of the BDF formulas. The

polynomial Pn+1 interpolates the past k known values. This demand fixes k of the

k + 1 degrees of freedom of the polynomial of order k. Additionally we require the

time derivative of the polynomial at tn+1 to coincide with the right hand side of the

differential equation

Ṗn+1(tn+1) = f(tn+1,Pn+1(tn+1)). (3.23)

This uniquely determines the polynomial Pn+1(t). The implicit equation (3.23) is

solved by usage of a modified Newton method. For the start value we use the value

we obtain when evaluating the interpolation polynomial (predictor polynomial) at

the point tn+1. The Newton matrices are kept constant (frozen) for several steps until

certain convergence criteria for the generalized Newton method given in [Bau99] are

violated. The criteria build on Bock’s local contraction theorem [Boc87] measuring

the nonlinearity of the Jacobian J and the quality of the approximation to the

inverse of the Jacobian matrix Ĵ −1.

3.2 A BDF method for the solution of large scale DAE systems 41

The Monitor-Strategy we apply only reevaluates the expensive derivatives of the

right hand side of the differential equation w.r.t. to state variables if the reevalua-

tion of the approximative Jacobian Ĵ does not show satisfying convergence behavior

[Eic87].

Our main focus - due to the specific structure of the presented applications in the

next sections - is on explicit differential algebraic equations of the form

ẋ = f(t, z) (3.24a)

0 = g(t, z) (3.24b)

x(ti) = xi (3.24c)

where x ∈ � nx denotes the differential, y ∈ � ny the algebraic variables. We subsume

differential and algebraic variables in the state vector z = (x, y) ∈ � nx+ny .

DAESOL can treat linear implicit DAEs of the form

A(t, z) · ẋ = f(t, z) (3.25a)

0 = g(t, z) (3.25b)

x(ti) = xi. (3.25c)

with A(t, z) of full rank. The DAE has to be of index one. Dynamical systems

originating in chemical and biotechnological process engineering, respectively, are

usually of index I. In two applications shown later in the thesis on hand, we present

biotechnological systems which, due to vanishing substances locally become systems

of index II. Nevertheless, as a result of nonclassical continuation ([Fil64]), the system

can be transformed to a system of index I.

Mechanical systems (e.g. [Mom02], [Sch99b], [Kra04]) are usually of differential in-

dex III.

In general it is a non-trivial task to find an algebraic state vector satisfying the

algebraic equation in the DAE system (1.1). We apply a relaxed formulation of the

DAE system (1.7) allowing of an infeasible start. Consistent initial values can in

many cases be obtained using homotopy methods [Bau99].

Error estimation and step size and order strategies

The global error at T = tn is given by the difference

en = ẑn − z(tn), (3.26)

42 Numerical solution of Index I DAEs

where ẑn denotes the numerically obtained approximative solution and z(tn) the

exact solution of the initial value problem (3.24). With A = � in (3.25a) and the

approximation for hn+1ẏ(tn+1) obtained by the solution of the implicit corrector

equation (3.23), we obtain an approximation to the global error composed of the

discretization error len+1 and the error n arising from interpolating an approximative

solution instead of the correct one
(

αl,n+1
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)

· en ≈ n −
(

len+1

0

)

.

The classical interpolation error arising from interpolating an arbitrary function by

polynomials can be shown to be smaller than the discretization error in the limit

case of equidistant time grids. n is supposed to play a minor role in the global error.

If we assume that past states are calculated sufficiently accurate, we can restrict

the error estimation as basis for step size and order control to an estimation on the

local error and discard n in further considerations. The error estimation strategy is

similar to the one proposed by Lötstedt’s [LP86]. We accept new step sizes iff

l̃e
k

n+1 := hn+1

k∏

i=1

(tn+1 − tn+1−i) · ‖∇k+1ŷn+1‖

≤ TOL

(3.27)

with a predefined error tolerance TOL.

To determine the order and step size for step n + 2, we predict the error which

will be made in the next step based on the information on hand in step n + 1 and

we assume an equidistant grid (maximal uniform step size see e.g. [Ble86]). If the

predicted step size causes the predicted error (analogous to (3.27)) to satisfy the

requirement

l̃e
k

n+2 ≤ TOL, (3.28)

the step size is accepted. If the requirement (3.28) is violated, the step size is reduced

using the strategy described in [BBS99].

The order control of our algorithm determines step sizes for the lasts steps order

and by one augmented and diminished order with respect to the lasts steps order.

The order with the largest step size is chosen ([Eic92]).

Scaling

Since the estimation of the local error (3.27) strongly depends on the chosen norm

‖ · ‖, an appropriate scaling is of utmost importance. In the distillation column

3.3 Implicitly defined discontinuities for DAEs 43

application (6.1) concentrations of components vary by orders of magnitude. We

apply the scaling

z̆n+1(i) = |zn+1(i)|
atoli
eps

(3.29)

proposed by Petzold ([Pet91]) in the norm

‖zn+1‖ =

√
n∑

i=1

(
zn+1(i)
z̆n+1(i)

)2

n
. (3.30)

The value eps is a user defined relative error tolerance, atoli is a componentwise

defined absolute error tolerance.

Alternatively, the scaling

z̆n+1(i) = max(|zn+1(i)|, z̆n(i), atoli) (3.31)

proposed by Deuflhard [Deu83] can be applied as we do in the context of our biotech-

nological application processes (6.2).

3.2.2 Storing trajectory information

As a preparation for the optimization of the discontinuous processes but also for per-

formance reasons of the switching point algorithms, we apply a multilevel strategy

to save trajectory information in every SQP-step (2.2).

In the context of the solution of the initial value problem historical trajectory in-

formation is necessary when evaluation of the switching vector and the classical

integration process ought to be decoupled (see section 3.3.5.1). The BDF method

(3.18) provides an error controlled continuous solution by the local interpolation

polynomial (3.22). This representation is called natural since the error estimation

asymptotically correct controls the error of all interim values ([BS81]).

In order to compare trajectories of different switching chronology a unique charac-

terization of certain back dated trajectories is necessary. We apply a multi-level

strategy storing grid and sensitivity information.

3.3 Implicitly defined discontinuities for DAEs

In many practical applications implicitely defined discontinuities occur. They may

be due to tabulated material laws, e.g. temperature dependent enthalpies can cause

implicit discontinuities. In the distillation column (see Chapter 6 and Appendix A)

44 Numerical solution of Index I DAEs

switching points arise due to weir overflows, out-streams of vapor phases at switching

valves or phase transitions but also - as presented in two biotechnological application

in Chapter 6 and at the end of this chapter - due to simplified modeling.

Before starting the rack-in of distillation processes the columns are usually floated

with an inert gas (often nitrogen). So they are thermodynamically in mono-phase

states on every tray. Feeding liquid feed a coexistence of liquid and vapor appears af-

ter a mono-bi-phase transition, implicitly given by the thermodynamical equations.

This phase transition causes the first partial derivate of the chemical potential with

respect to time at constant pressure to jump. This signifies a phase transition of

first order based on Ehrenfest’s definition †.

Modern DAE IVP solvers require the existence of high order derivatives for order-

control, step-size-control and error-control. Despite of ignoring the implicit disconti-

nuities the integrator might produce a reasonable solution but sensitivity information

provided by the discretization is in general completely wrong.

Often a smoothing strategy is applied in order to avoid the discontinuities. But for

an approximation using a ramp with is very close to the discontinuity the numerical

problems remain unchanged. Stronger smoothings - so to say smoother ramps -

cause a likely serious change of the original problem.

Several approaches to implicitly detect and treat implicit discontinuities have been

proposed in the last decades. E.g. Gear et al. ([GO84]) exploit the fact that the

error estimates in general increase significantly at switching points. A transition

step length is then calculated to keep the local error bounded.

Numerically adapted is the explicit discontinuity treatment [Boc87].

In this section the term discontinuities includes discontinuities in the state variables

themselves but also discontinuities in the derivatives if not specified in more detail.

In the following we concentrate on initial value problems of the relaxed DAE of the

†The newer definition of phase transitions via order parameters is compatible to Ehrenfest’s

classification in this special case.

3.3 Implicitly defined discontinuities for DAEs 45

form

ẋ(t) = f(t, z(t), p, sgn(σ(t, z(t), p)))

0 = g(t, z(t), p, sgn(σ(t, z(t), p)))

−α(t)g(ti, z(ti), p, sgn(σ(ti, z(ti), p)))

z(t+s) = z(t−s) + ∆̂z(ts, z(ts), p)







t, ts ∈ [ti, tf] (3.32a)

with the initial conditions

x(ti) = xi. (3.32b)

The sign structure (see Chapter 1) of the switching function

σ(t, z(t), p) ∈ � nσ (3.33)

describes the individual areas in which the right hand sides are sufficiently smooth.

The zero-crossings of the components of the sufficiently smooth switching vector

σ(t, z(t), p) in (3.33) describe the area boundaries. The function vector ∆̂z(t, z(t), p)

(3.32a) is the sufficiently smooth jump function which gives a rule to calculate z(t+s)

(see Chapter 1) based on the left hand limit z(t−s) for those switches which do not

only cause discontinuous changes in the derivatives of the states by in the states

themselves.

3.3.1 Qualification of discontinuities

We assume for the moment that in a surrounding of a switching point ts just one

switching function σj(t, z(t), p), j ∈ {0, 1, . . . , nσ} of the switching vector shows

zero-crossing.

The right hands sides of the IVP in the surrounding of the switching point ts thus

can be divided into three areas

Σ+
j ={(t, z, p)| σj(t, z(t), p) > 0} , (3.34a)

Σj ={(t, z, p)| σj(t, z(t), p) = 0} , (3.34b)

Σ−
j ={(t, z, p)| σj(t, z(t), p) < 0} . (3.34c)

We introduce the functions

Dσj(t, z(t), p)
+ := (σj)t(t, z(t), p) + (σj)z(t, z(t), p) · (f, g)(t, z(t), p)+, (3.35a)

Dσj(t, z(t), p)
− := (σj)t(t, z(t), p) + (σj)z(t, z(t), p) · (f, g)(t, z(t), p)− (3.35b)

46 Numerical solution of Index I DAEs

which help to qualify the actual discontinuity. (f, g)(t, z(t), p)+ and (f, g)(t, z(t), p)−

are the right hand sides of the differential-algebraic equation in right and left hand

limit to the switching point ts.

The dependencies of the derivatives of the switching functions are given in (3.35a)

and (3.35b). For readibility arguments we skip them in the following.

For vanishing derivatives Dσj additional derivatives of the switching functions are

necessary. In this case we stop our algorithm with a corresponding error message.

In the case of Dσ+
j · Dσ−

j > 0, a classical continuation of the solution exists if no

jump in states appears at the zero-crossing of the switching function. The trajectory

passes through the discontinuity hypersurface given by (3.34b).

In case of a jump in the state vector the situation is slightly different since even for

differing signs of Dσ+
j and Dσ−

j the switching surface might have been left. The

regularity assumption than transforms to Dσ·
jσj > 0.

For Dσ+
j · Dσ−

j < 0 we distinguish between to fundamentally different cases:

• (Dσ+
j > 0) ∧ (Dσ−

j < 0) :

The discontinuity manifold can not be left → leads to inconsistent switching

(refer to Section 3.3.7).

• (Dσ+
j < 0) ∧ (Dσ−

j > 0) :

The discontinuity manifold can be left in both directions → Bifurcation.

The differentiability of a DAE of the form (1.1) with respect to initial conditions and

control variables at the presence of switching points is fundamental for the treatment

of implicit discontinuous processes. In 1987, Bock gave the following theorem based

on the embedding theorem for multipoint boundary value problems ([Boc87]).

Theorem 9

Let I = [ti, tf] be an interval containing (without loss of generality) exactly one

switching-point at ts ∈ I, which bipartitions the interval into I− = [ti, ts] and I+ =

(ts, tf]. Let z(t) be a solution of the initial value problem (3.32). The right hand

sides f(t, z(t), p, sgn(σj(t, z(t), p))) and g(t, z(t), p, sgn(σj(t, z(t), p))), the function

∆̂z for the jump height and the switching functions are assumed to be sufficiently

often continuously differentiable.

Let the regularity conditions

Dσ+
j · Dσ−

j > 0

3.3 Implicitly defined discontinuities for DAEs 47

if no jump is given and

Dσ+
j · σj(ts, z(ts), u) > 0

for ∆̂z
j 6= 0 be satisfied.

Then exists an area A ⊃ {(ts, z(ts; ti, z(ti), p), p)} with z(ts; ti, z(ti), p) sufficiently

smooth and all solutions of the IVP in the area A have exactly one switching point.

A proof for the ODE case can be found in [Boc87].

3.3.2 Detecting switching points

To explicitely handle discontinuities the switching point ts ∈ [ti, ti+1] given by

0 = σj(ts, z(ts), p), j ∈ {0, 1, . . . , nσ} (3.36)

with σ ∈ � nσ has to be detected with sufficient accuracy. Below we briefly describe

the strategy implemented. Nothing but the sign of the switching functions charac-

terizes the active area. We only require precise values of the switching functions in

the neighborhood of the points ts since merely the signs of the switching functions

are crucial for the model. This makes it possible to decouple the evaluation of the

switching functions from the evaluations of the right hand sides of the model (see

3.3.5.1) and replace it by a cheaper evaluation of an interpolation polynomial (3.37)

approximating the actual values of the switching functions. This switching function

monitor will be presented in the following.

If a switching function signalizes a transition into another area the first strategy we

present requires the model with the old switching structure to be evaluable beyond

the area boundary. This can be regarded as an overlap of the areas characterized

by the switching vector (3.33).

For areas that can be extended beyond the boundaries we implemented a hierar-

chical multilevel switching point search. In the following we briefly describe the

algorithm for detecting the switching points for the evaluation of the switching vec-

tor in every integrator step. In 3.3.5.1 we generalize this switching point search to

the case when the integration process and the determination of the actual switching

vector configuration are decoupled.

Whenever we detect a sign change of σj we apply an iterative strategy to precisely

localize the switching point ts:

48 Numerical solution of Index I DAEs

Applying linear interpolation using the fact that the switching point is in the interval

[tl, tl+1] leads to an approximation of the switching point. We assume the switching

function to be locally invertible.

For the switching point search we do not reevaluate the right hand sides since we

can evaluate the natural interpolation polynomial (3.37). To solve

σj(ts,P(ts), p) = 0

we first apply inverse quadratic interpolation (see e.g. [Boc74]).

Due to the implicit function theorem σj(t,P(t), p) is locally invertible. Assume

that this inverse exists in the interval [tl, tl+1]
‡. The idea is to approximate the local

inverse by a quadratic polynomial σ†
j(t) with σ†

j(0) = ts. As starting values the values

of the switching function at tl and tl+1 are applied. Approximating linearly instead

of quadratically would lead to the classical secant method of a local convergence

order of at least 0.5(1 +
√

5).

If the quadratic interpolation does not shrink the search interval satisfactorily we

first restrict to linear interpolation and the secant method and if this still does not

lead to amelioration we apply a bi-section step of the interval which guarantees

global convergence.

In the strategy described above we assume overlapping areas Rj. For e.g. concen-

trations of chemical substances this assumption does not need to hold. In these

cases the right hand sides of the DAE are possibly inevaluable. Internally, we apply

as polynomial representation the continuous solution representation of the last k

values and use it as an extrapolation polynomial in these cases.

After switching points the integrator has to be restarted. Due to initially small and

subsequently increasing step sizes and low orders, numerous re-decompositions of

the Jacobians for the Newton iteration scheme are required. These starting phases

therefore turn out to be time consuming.

In the starting phase we apply Runge-Kutta-Starters of higher order as proposed in

[BGS88] providing back dated values for the BDF method.

3.3.3 Continuous representation of the trajectories

One major advantage of the BDF multistep methods compared to Deuflhards com-

mon one step solver LIMEX is the well accessible continuous solution trajectory

‡Since we do not evaluate the switching vector in every integrator step for performance reasons,

the interval does not have to fall together with the interval given by the last two integrator step.

3.3 Implicitly defined discontinuities for DAEs 49

representation. This continuous representation is pivotal for the efficient localiza-

tion of switching points at non-grid points. The self-evident choice is the polynomial

Pn+1(t) =
k∑

l=0

l−1∏

i=0

(t− tn+1−i)∇lŷn+1 (3.37)

solving the implicit equation (3.23) in the respective interval [tk+n+1, tn+1].

3.3.4 Updating sensitivity information at discontinuities

In the following we will derive the update formulas for the sensitivity matrices at a

switching point ts for equation (3.32).

Each switching point ts ∈ (tj, tj+1) is implicitly defined by Condition (3.36).

Bock showed in [Boc87] for ODEs how sensitivity information w.r.t. initial values

and parameters can be calculated in the presence of discontinuities. The extension

for index I DAEs is straightforward.

In the following we will distinguish between discontinuities in the derivatives of the

state variables

lim
ε→0

ż(ts + ε) − lim
ε→0

ż(ts − ε) (3.38)

with we will in the following abbreviate with κ and discontinuities in the state vari-

ables themselves giving by the jump vector ∆̂z (3.32a).

The sensitivity matrix describing the sensitivity of the states zj+1 at the time ti+1

with respect to zj at tj is given by

Sz(tj+1, tj) =
∂zj+1

∂zj

. (3.39)

The sensitivity matrix Sz(tj+1, tj) is a composition of the three matrices

lim
ε→0

Sz(ts + ε, tj),

the update matrix Az (3.45) and

lim
ε→0

Sz(tj+1, ts + ε). (3.40)

Using the implicit function theorem we obtain with the left hand side derivative of

σj (3.36) the scalar valued function

σ̇j = lim
ε→0

(σj)t(ts − ε) +
(

lim
ε→0

(σj)t(ts − ε)
)

·
(

lim
ε→0

ż(ts − ε)
)

.

50 Numerical solution of Index I DAEs

∆̂z

ts

t

Figure 3.2: Jump height ∆̂z = ∆̂z(ts, z(ts), p) at the switching point ts

For (3.40) we find

lim
ε→0

Sz(ts + ε, tj) = lim
ε→0

Sz(ts − ε, tj) +

(

lim
ε→0

∂z(ts − ε)

∂ts
+ ∆̂z

ts

)
∂ts
∂zj

+ ∆̂z
z

(

lim
ε→0

Sz(ts − ε, tj) + lim
ε→0

ż(ts − ε)
∂ts
∂zj

)

.

(3.41)

The sensitivity part for the right hand limit at the switching point is

∂zj+1

∂ts
= − lim

ε→0
Sz(tj+1, ts + ε)ż(ts + ε) (3.42)

and so with (3.40) we obtain

0 = (σj)z

(
∂z(ts)

∂ts

∂ts
∂zj

+ lim
ε→0

Sz(ts, tj − ε)

)

+ (σj)ts

∂ts
∂zj

(3.43)

and

0 = (σj)z

(
∂z(ts)

∂ts

∂ts
∂p

+ lim
ε→0

Sp(ts, tj − ε)

)

+ (σj)ts

∂ts
∂p

+ (σj)p. (3.44)

With the abbreviations

Az = (κ− γ)
(σj)z

(̇σj)
+ � +

∂∆̂z

∂z
(3.45)

and

Ap = (κ− γ)
(σj)p

(̇σj)
+
∂∆̂z

∂p
(3.46)

3.3 Implicitly defined discontinuities for DAEs 51

we finally obtain the sensitivity matrices

Sz(tj+1, tj) = lim
ε→0

Sz(tj+1, ts + ε)AzSz(ts − ε, tj) (3.47)

and

Sp(tj+1, tj) = lim
ε→0

Sz(tj+1, ts + ε)(AzSp(ts − ε, tj) + Ap)

+ Sp(tj+1, ts + ε).
(3.48)

For vanishing discontinuity in the derivatives κ(ts, z(ts), p) (3.38) and no jumps in

the state variables ∆̂z(ts, z(ts), p) (3.32a) themselves the matrix Az (3.45) appears

as identity matrix.

If κ(ts, z(ts), p) (3.38) vanishes and ∆̂z(ts, z(ts), p) (3.32a) no jumps occur at ts the

matrix Ap (3.46) vanishes.

To sum up, the differentiability of the solution with respect to initial values and

parameters can be guaranteed for a switching point ts ∈ (τi, τf) for implicit dis-

continuous models of the form (see Theorem 9). The formulas (3.47) and (3.48)

explicitely give the updates for the sensitivity information at the switching points.

3.3.5 Algorithmic treatment of implicit discontinuities

Every particular area is characterized by the signs of the switching vector sgn(σ). As

long as the signs remain unchanged, the integrator can work in its normal manner,

since the right hand sides of the DAE are sufficiently smooth. Area transitions are

characterized by sign changes in this switching vector.

The algorithmic realization

1. Determine the sign structure for the switching vector.

2. Start the integration process.

3. Check the switching vector for sign changes during the integration process.

(a) If after an integrator step a sign change took place, determine the switch-

ing point ts.

• If no jump took place: Go to 2. with the new start point ts

• If a jump function is given: Go to 1. with the new start point ts

52 Numerical solution of Index I DAEs

3.3.5.1 Decoupling of the surveillance of the switching vector from the

main integration process

In practice the number of arising zero-crossings of switching functions is rare com-

pared to the number of integrator steps. therefore it is little efficient to reevaluate

the switching vector in every integrator step. Much can be gained by decoupling

the evaluation of the right hand sides from the evaluation of the switching vector.

Since we store trajectory information including we are able to decouple the evalu-

ation of the switching functions and the time discretization given by the step size

control. Switchings in general occur rarely compared to the number of integrator

steps. Hence we introduce a coarser equidistant time grid

ti = τσ
0 < τσ

1 < . . . < τσ
N = tf

and determine the sign structure of the switching vector by evaluating the switching

function vector at the grid points τ σ
i by usage of the natural interpolation polynomial

(3.37)

σ(τσ
i ,P(τσ

i)).

Obviously, the evaluation process has to be accomplished retarded with respect to

the integration process itself, since the interpolation polynomial has to be available.

In our implementation we allow of a computation of the switching vector in parallel.

It is possible to explicitely use the SSE 2 vector unit of Intels Pentium IV processor

[Int04]. This can be interpreted as an on board parallelity.

If a switching point ts is detected, the integration process is stopped and - after a

precise localization of the switching point (3.3.2 - 3.3.5) - restarted.

3.3.6 Discontinuity treatment -

Two introductory applications

As introductory examples we present two obviously state dependent implicit discon-

tinuous models.

In (6.1.1) a rigorous model of a multi tray distillation column is treated. In the

following we virtually extract the feed tray from the column in order to point out

the occurrence of implicit discontinuities and give an idea of the complexity of the

thermodynamical model. Usually the standard modeling assumption that the vapor

3.3 Implicitly defined discontinuities for DAEs 53

on each tray is negligible is made. Due to the fact that we later focus on rack-

in processes of distillation processes we need an approach which does not use this

assumption.

We assume an ideal tray meaning that vapor and liquid streams leaving the tray are

in equilibrium.

Picking just one tray three state dependent discontinuities occur:

• Change from one-phase state (only gas) to bi-phase state (coexistence of liquid

and vapor),

• Gas outflow due to overpressure (opening of a valve at a certain barrier),

• Weir overflow.

F out
v

F in
l

F in
vF out

l

∆weir
h

Figure 3.3: Model of a single tray

Initially the columns are usually floated with an inert gas. The model for this single

tray consists of 5 differential (molar and energy balances) and 81 algebraic variables

arising from the thermodynamic (or thermostatic) description of the system.

The component molar balances in the tray can be described as

d (MXi)

dt
= LinXi,in − LXi − V Yi

54 Numerical solution of Index I DAEs

n2(t)n1(t)n0(t)

ψtherm∆weir
hn3(t)

time[h]time[h]time[h]

time[h]time[h]time[h]

6 6

Figure 3.4: Simulation of a rack-in of a single tray: Implicit discontinuity due to weir

overflow and later stop of the overflow (vertical arrows). Additionally an implicit discon-

tinuity arises from the transition of an overheated mono-phase state (ψtherm > 1) to the

bi-phase state (0 < ψtherm < 1) where a liquid and a vapor phase coexist.

where i represents one of the nC components in the mixture given into the tray. M

stands for the mass of the substances, H describes the enthalpies for the complete

holdup, the liquid phase and the vapor phase, respectively. L and V are liquid and

vapor stream, Q stands for the added energy. X and Y describe the liquid and

vapor molar fractions, k gives the k-values§. In our case we regard four components.

d (MHges)

dt
= LinH

L
in − LHL − V HV +Q

describes the total enthalpy balance. The phase equilibrium conditions are given by

Yi = Xi · ki (T, P,X1, . . . , Y1, . . .)
nC∑

i=1

Yi = 1.

§For a detailed description refer to Appendix A.

3.3 Implicitly defined discontinuities for DAEs 55

Starting from an initial state where the tray is floated with an inert gas, the feed

stream lets the liquid holdup level transcend the weir at t ≈ 0.35h starting a liquid

outflow (first arrow in bottom middle plot in Figure 3.4). An implicit model discon-

tinuity of the right hand side is reached.

The switching functions in this example are

• Thermodynamic vapor fraction: σ0 = ψtherm

• Overpressure: σ1 = p− 1

• Weir overflow: σ2 = ∆weir
h

For a constant feed-stream into the tray the heat supply is increased by 30% at t = 1.

This causes more liquid holdup to vaporize and consequently the thermodynamic

vapor fraction ψtherm to increase (right plot, lower row). The level of the liquid

holdup falls under the weir height, a second switching event occurs at t ≈ 1.05h

(second arrow in bottom right plot in Figure 3.4). Already before t ≈ 0.01h the

system state changes from a mono-phase state with a vapor phase exclusively to a

bi-phase state with a coexistence of gas and vapor induced by the feed-stream into

the tray. This transition can be seen in the very left of the bottom right plot in

Figure 3.4. For a complete description of the model, see 6.1.1 and Appendix A.

3.3.7 Inconsistent switching

In the following subsection we focus on the case

Dσ+
j > 0 ∧ Dσ−

j < 0. (3.49)

At the point ts we obtain the vanishing component of the switching vector σj(ts, z(ts), p) =

0 and

Dσ−
j · Dσ+

j < 0 (3.50)

which would not cause the switching function to change its sign. So the initial value

problem has no classical solution in this case. Filippov [Fil64] in 1964 introduced

the convex hull

F = {f ε| f ε = εf−(t, z, p) + (1 − ε)f+(t, z, p), ε ∈ [0, 1]
}

(3.51)

of f− and f+ for ordinary differential equations.

56 Numerical solution of Index I DAEs

For DAEs Filippov’s Ansatz also holds, where only the differential equations have

to be transformed. The algebraic equations remain unchanged.

Allowing all values of the convex hull (3.51) for the right hand side of the DAE, we

obtain an extended solution. Bock [Boc87] proposes to choose

ε =
Dσ+

Dσ+ −Dσ−

motivated by the fact that the solution must remain on the manifold (3.34b). Hence

if the case (3.50) occurs the differential algebraic equation is replaced by

Qẋ = (f ε, g)

as long as (3.50) remains valid with

Q =

(

� nxd
0

0 0

)

.

Meanwhile the switching function σ is replaced by the switches Dσ− and Dσ+.

Along the convex hull the DAE system can be interpreted as a system of index II

(see section 1.1)

ẋ = f(t, z(t), p, sgn(σ(t, z(t), p)))

0 = g(t, z(t), p, sgn(σ(t, z(t), p)))

0 = σj(t, z(t), p)

(3.52)

since the derivative (σj)z · ż + (σj)t = 0 also vanishes (see Chapter 1).

Whenever one of the switches Dσ−
j and Dσ+

j changes its sign, the non classical

manifold (3.34b) can in general be left, transforming the right hand side back to

(f, g)− or (f, g)+ respectively. For the convex hull this is tantamount to setting ε in

(3.51) to a value of zero or one.

We thus obtain a three-valued treatment of the switching functions instead of the

classical two-valued.

Under certain conditions so called inconsistent switching may appear¶, e.g. in many

cases for vanishing substrates in the description of bio-processes via differential al-

gebraic equations. This phenomenon is characterized as follows. At the switching

point ts we obtain

¶Models describing e.g. static friction (coulomb friction) also show this phenomenon.

3.3 Implicitly defined discontinuities for DAEs 57

δ

t

(f, g)+

(f, g)−

Figure 3.5: The graphics schematically shows the vector field for one concentration in

the biotechnological application presented in 3.3.7.1. Numerically we treat a band of the

small width δ to fulfill σj ≡ 0. In this band the convex combination of the right hand

sides (3.51), replaces the classical right hand side of the differential algebraic equation.

σj(ts, z(ts), p) = 0 : lim
ε→0

(
Dσj|ts+ε,z(ts+ε),p · Dσj|ts−ε,z(ts−ε),p

)
.

for the switching function σj.

Thus the initial value problem does not have a classical solution. With the convex

combination

Qẋ = ε(f, g)+ + (1 − ε)(f, g)−

=
1

Dσ+
j −Dσ−

j

(
Dσ+

j (f, g)− −Dσ−
j (f, g)+

)

we obtain a DAE system of index I. For inconsistent cases the classical two-valued

treatment of the switching functions has to be extended to a three-valued treatment.

To sum up we obtain the classical switching point treatment for Dσ−
j · Dσ+

j > 0. In

case of (3.49) the switching vector itself can be regarded to be frozen until Dσ−
j and

Dσ+
j turn to have the same sign.

If both derivatives Dσ−
j and Dσ+

j change sign this leads to bifurcations Dσ−
j <

0 ∧ Dσ+
j > 0 we (see 3.3.1). From this point it would be possible to integrate two

different trajectories. We stop our algorithm and error-message this event in this

case.

58 Numerical solution of Index I DAEs

3.3.7.1 A biotechnological example

A quite simple but even so interesting problem showing inconsistent switching is

the biotechnological process model described by Kühn et al. [Küh02]. The model-

ing of substrate masses with Heaviside functions in order to meet the requirement

of model changes at vanishing concentrations is characteristic for the modeling of

biotechnological processes.

?

Figure 3.6: At t ≈ 4.9 time units the substrate 1 vanishes turning the index I system

locally into a system of index II. The switching function can be interpreted as algebraic

conditions.

In the following we restrict to give the equations and briefly name the variables. A

more detailed specification is given in subsection (6.2.1). The model equations are

f0 = Ẋ = rXX − X

V
V̇ (3.53a)

f1 = Ṗ = rPX − P

V
V̇ (3.53b)

f2 = Ṡ1 = −
(

1

YX/S1

rXX +
1

YP/S1

rPX

)

· Θ(S1) (3.53c)

−S1

V
V̇ +

1

V
(FASFA

+ FBSFB
)

f3 = Ṡ2 = −
(

1

YX/S1

rXX

)

· Θ(S2) −
S2

V
V̇ (3.53d)

f4 = V̇ = FA + FB (3.53e)

3.3 Implicitly defined discontinuities for DAEs 59

where X denotes the biomass, P the product. The substrates are described by the

variables S1 and S2.

The reaction rates rX and rP are given in (6.14) and (6.15). A brief description

of the parameters can as well be found in Subsection (6.2.1), for a more detailed

discussion refer e.g. to Kühn ([Küh02]).

Two implicit discontinuities occur due to the model change caused by the Heaviside

functions

Θ(x) =

{

0, for x ≤ 0,

1, for x > 0.
(3.54)

In the following we first concentrate on the case of a vanishing substrate S1 and a

strictly positive concentration of the substrate S2. For vanishing substrate S1 we

obtain a vanishing switching function σ1 = S1. In addition the different signs of the

directional derivatives of the switching functions Dσ+
1 and Dσ−

1 indicate inconsistent

switching according to the definition in Section 3.3.1. We obtain

Dσ+
1 = f+

2

Dσ−
1 = f−

2

and hence choose

ε =
Dσ+

1

Dσ+
1 −Dσ−

1

=
−
(

1
YX/S1

rXX + 1
YP/S1

rPX
)

− S1

V
V̇ + 1

V
(FASFA

+ FBSFB
)

−
(

1
YX/S1

rXX + 1
YP/S1

rPX
) .

(3.55)

In the right hand side of (6.13) we therefore replace the equation (6.13d) for the

first substrate by

Ṡ1 = − (1 − ε)

{(
1

YX/S1

rXX +
1

YP/S1

rPX

)

− S1

V
V̇ +

1

V
(FASFA

+ FBSFB
)

}

+ ε

{

−S1

V
V̇ +

1

V
(FASFA

+ FBSFB
)

}

which obviously vanishes for all times with (3.55). This represents the simplest pos-

sible case where the convex combination leads to a vanishing time derivative as long

as ε /∈ {0, 1} or equivalently as long as Dσ+
1 < 0 ∧ Dσ−

1 > 0.

For a priori determined feed rates in the simulatory context we obtain a vanishing

concentration of substrate 1, causing the derivative of the right hand side of the

differential equation to behave in the above described manner. The simulation result

60 Numerical solution of Index I DAEs

for the first substrate is shown in Figure 3.6. One can interpret the combination

of Dσ+
1 < 0 and Dσ−

1 > 0 as already mentioned in equation (3.52) to cause the

additional algebraic constraint σ1 = 0 to arise locally. A more detailed description

of the model is given in 6.2.1.

Chapter 4

Derivative Generation

One crucial point for the efficiency of optimal control algorithms is the efficient

generation of derivatives. For the solution of optimal control problems of the form

(1.4) as presented in Chapter 1, we apply the derivative based SQP algorithm as

explained in Section 2.2.

This chapter is organized as follows: In the first section the derivatives needed

for the SQP algorithm are briefly specified. In Section 4.2 we give a compendious

introduction to the theory of automatic differentiation. We subsequently explain

forward and reverse mode and how they are applied in our implementation.

The third section deals with efficient techniques for the generation of sensitivity

information.

The approximation of the Hessian matrix which is also needed for the SQP algorithm

has already been presented in Subsection 2.2.1.

Since the repeated generation of the Jacobian of the right hand sides is one of the

most CPU time consuming parts of the optimal control algorithm, we concentrate

in the fourth section on the efficient generation of these Jacobians by exploiting the

respective sparsity. Some implementory information is given.

4.1 Derivatives in the SQP algorithm

The SQP algorithm for solving the general optimal control problem of the form (1.4)

in every step requires the solution of the QP (2.15), which requires beyond function

and constraint evaluations the gradients of the objective function ∇wF (w) and the

gradients of the equality and inequality constraints ∇wG(wk)
T and ∇wH(wk)

T .

62 Derivative Generation

4.2 Automatic Differentiation (AD)

In the first part of this section we motivate the usage of automatic differentiation.

Therefore we briefly introduce into the generation of derivatives by finite differences

and via symbolic differentiation.

Subsequently we briefly explain how automatic differentiation works. The second

part of this section focuses on the implementation of automatic differentiation in

the context of this thesis, including the presentation of several applications.

4.2.1 Theoretical background of AD

In principle four different approaches for the generation of derivative information

are available

• Differentiating by hand

• Numerical differentiation

• Symbolic differentiation

• Automatic differentiation∗

The differentiation by hand can only be reliably performed for simple function eval-

uations. This technique is error prone and time-consuming.

The most common way to generate numerical derivative information is the classical

numerical differentiation. In most methods derivatives are approximated by one

sided divided differences.

Let the vector w ∈ � nw and the direction δw ∈ � nw be given. The derivative of

z(t; τj,w) w.r.t. the direction δw can then be approximated by using finite differences

of the form

∂z

∂w
(t; τj,w) =

z(t; τj,w + hδw) − z(t; τj,w)

h
+ O(h). (4.1)

Here z(t; τj,w) can e.g. represent the solution of an initial value problem of the form

(1.7) and w can e.g. represent the vector of initial values and control parameters

(2.1).

We need to keep in mind that the accuracy of the divided differences strongly de-

pends on the choice of h:

∗Some authors speak of algorithmic or computational differentiation instead of automatic dif-

ferentiation.

4.2 Automatic Differentiation (AD) 63

• If h is chosen small, the cancellation error reduces the number of significant

digits.

• If h is chosen too large, the terms O(h2) for the unsymmetric divided difference

become significant.

Even if h is optimally chosen one looses almost half of the significant digits in every

step for general functions.

Symbolic differentiation techniques are implemented in computer algebra packages

like Mathematica [WR03], Maple [Map04], Derive [Ins04], etc.. Character strings

describing the function itself are used to generate character strings describing the

derivatives. This can lead to a consumption of resources making the technique

hardly efficiently applicable for numerical practice, since the arising expressions may

become complicated.

A quite famous example is the calculation of the gradient of Speelpenning’s function

[Spe80]

f(x) =
n∏

i=1

xi.

The corresponding gradient has the symbolic form

∇f(x) =














n∏

j=2

xj

n∏

j=1,j 6=2

xj

...
n−1∏

j=1

xj














. (4.2)

Symbolic differentiation does not incur truncation errors.

Taking a closer look at (4.2) one can easily see that there are a lot of common subex-

pressions, which can be used repeatedly for evaluating the gradient. AD exploits this

directly by treating these repeatedly occurring expressions as intermediate values or

functions but does not look for an explicit expression!

Like symbolic differentiation, automatic differentiation operates by systematic ap-

plication of the chain rule but instead of applying it to symbolic expressions it is

applied to numerical values. In the following we briefly demonstrate the basic auto-

matic differentiation approach with focus on the requirements arising in the context

of this thesis.

64 Derivative Generation

We want to differentiate a vector valued function

F : R ⊂ � n 7→ � m.

mapping the independent variables x to the dependent variables y = F (x) and require

the Jacobian

F ′ : R ⊂ � n 7→ � m×n

to be a well-defined matrix valued function on R. Let the function F be factoriz-

able, i.e., the algorithm to calculate F consists of a finite (possibly long) sequence

elemental operations (like summation, multiplication, etc.) and elemental function

calls (like sin, exp, etc.) which are sufficiently smooth.

The algorithm for calculating F is a composition of the elemental operations ϕi.

Thus all quantities vi calculated during the evaluation of a function at a particular

argument can be numbered

[v1−n, . . . , v0
︸ ︷︷ ︸

x

, v1, . . . , vl−m, vl−m+1, . . . , vl
︸ ︷︷ ︸

y

].

The values v1−n, . . . , v0 are copies of the values of the independent variables, whereas

the vi, 1 ≤ i ≤ l −m, are obtained by applying the elemental functions ϕi to some

of the arguments vj with j < i

vi = ϕi(vj≺i). (4.3)

The relation i ≺ j means that vi directly depends on vj
†. The values vl−m+1, . . . , vl

contain the values of the dependent variables.

The elemental operations can be differentiated. Repeatedly applying the chain rule

directly leads to the truncation error free derivative of F . The evaluation of the

derivative is closely related to the evaluation of the function itself. We distinguish

between the two different strategies of forward and reverse mode.

In the forward mode derivatives of the intermediate results with respect to the

independent variables are calculated. This mode is typically used for the generation

of directional derivatives

ȳ = F ′x̄ = F̄ (x, x̄),

where x̄ ∈ � n contains the following directions

vi−n ≡ xi, v̄i−n ≡ x̄i, 1 ≤ i ≤ n

vi ≡ ϕi(vj≺i), v̄i ≡ ∑

j≺i
∂ϕi

∂vj
v̄j, 1 ≤ i ≤ l

ym−i := vl−i, ȳm−i := v̄l−i, i = m− 1, . . . , 0

(4.4)

†In general i ≺ i can also mean iterative evaluation of elemental functions.

4.2 Automatic Differentiation (AD) 65

and F̄ (x, x̄) :
� 2n 7→ � m.

Before the elemental partial derivatives ∂ϕi

∂vj
enter into any multiplication they can

be evaluated to real numbers at the current point. This is a key distinction from

the general symbolic derivative treatment. With the algebraic representation of the

gradient of Speelpenning’s function (4.2) in mind one directly can see the profit.

Evaluating the derivatives by propagating them using forward mode through the

evaluation procedure will produce costs growing linearly with the number of direc-

tions x̄.

Crucial for a priori run-time estimations for the derivative generation is a complexity

estimation of the floating point operations required for the evaluation of directional

derivatives using automatic differentiation.

One can show that for (4.4) we obtain

OPS (F ′(x)x̄) ≤ const · OPS (F (x)) (4.5)

with a constant const ∈ [3, 5] and a complexity measure OPS [Gri00]. The lower

bound for the worst case estimate holds for the classical measure ignoring memory

access costs and costs for additions, and focusing on multiplication costs instead.

The upper bound explicitely takes the former costs into account. For practical appli-

cations automatic differentiation often outperforms the usage of divided differences

(see e.g. [BCKM96], [HBSC97]).

The reverse mode propagates derivatives of the evaluation result y with respect

to intermediate quantities reverse to the original evaluation procedure. It can be

regarded as a reverse application of the chain rule.

x̄∗ ≡ ȳ∗F ′ = F̄ ∗(x, ȳ∗)

is evaluated as a function of x and ȳ∗ (F̄ ∗ :
� n+m 7→ � n).

In order to be able to propagate values reversely through the evaluation process we

first require a forward evaluation run

vi−n ≡ xi 1 ≤ i ≤ n

vi ≡ ϕi(vj≺i) 1 ≤ i ≤ l

ym−i := vl−1, i = m− 1, . . . , 0

66 Derivative Generation

in which we save the intermediate results. In the reverse run, the derivatives are

calculated

v̄∗l−i ≡ ȳ∗m−i 0 ≤ i ≤ m− 1

v̄∗i ≡ 0 1 − n ≤ i ≤ l −m

v̄∗j ≡ v̄∗j + v̄∗i
∂ϕi

∂vj
∀j ≺ i, , l ≥ i ≥ 1

x̄∗i ≡ v̄∗i−n n ≥ i ≥ 1.

The costs for the derivative generation by reverse mode grow linearly with the num-

ber of independent variables.

For symmetry reasons the complexity of the reverse propagation of gradients

OPS (ȳ∗F ′(x)) ≤ const r · OPS (F (x)) (4.6)

is also bounded above by a constant const r ∈ [3, 5].

Geometrically spoken the function F̄ maps the tangent x̄ to the tangent ȳ, whereas

the function F̂ ∗ maps the normal vector x̄∗ to the normal vector ȳ∗. The fundamental

relation

x̄∗x̄ = [ȳ∗F ′]x̄ = ȳ∗[F ′x̄] = ȳ∗ȳ

shows the symmetry between the two strategies. For a more detailed description,

refer to [Gri00].

Two fundamentally different implementations of automatic differentiation algorithms

are widely used. One is based on source-code transformation [TPS00], the other one

on operator overloading techniques. In general the forward mode is used in the con-

text of source code transformation. Due to linguistical complexity, C/C++ models

can until today not be derived using source code transformation techniques. Source

code transformation codes like ADIFOR ([BCKM94], [BCC+92]) usually restrict to

the forward mode‡.

Operator overloading strategies can be applied efficiently to models of almost ev-

ery language whereas the automatic differentiation software itself has to build on a

language allowing operator overloading. A famous example is ADOL-C [GJM+99],

which we apply in our work.

A complete overview of the available tools can be found at [Bis04].

‡An exception is the commercial code TAF.

4.3 Generating sensitivity information 67

4.2.1.1 Advantages of AD for ill-conditioned systems

Due to the stiffness of the systems we require implicit integrators. A linear equation

Jx = b , which will be presented in the next section, has to be solved. The condition

number of the model Jacobian κ(J) = ‖J‖‖J−1‖ of a specific model discriminates

well-conditioned from ill-conditioned problems. For invertible J and b 6= 0 we obtain

with the perturbation J̃x̃ = b̃ of the linear system Jx = b the error bound

‖x̃− x‖
‖x‖ ≤ κ(J)

(

‖J − J̃‖
‖J‖ +

‖b̃− b‖
‖b‖

)

1

1 − κ(J)‖J̃−J‖
‖J‖

. (4.7)

Thus the relative error due to a small perturbation of relative size ε is of size

O(κ(J)ε). If we calculate the Jacobian J via finite differences we can expect loosing

approximately half of the significant digits. For condition numbers of approximately

1/
√
eps the resulting error is of order one.

4.3 Generating sensitivity information

In this section we study the generation of the derivatives of the solution of the

initial value problem z(t; τj, s
z
j , q, p) (1.7) with respect to initial values sz

j , control

parameters q and parameters p.

4.3.1 External numerical differentiation

Let w = (sz
j , q, p) consist of the initial values sz

j ∈ � nz of the relaxed differential

algebraic equation (1.7), the vector of control values q ∈ � nu and the parameter

vector p ∈ � np .

The classical approach for obtaining derivative information of the solution z(t; τj,w)

with respect to initial values, control values and parameters is to calculate a nomi-

nal trajectory and in addition a trajectory with expediently perturbed initial values,

control values and parameters. Adding a perturbation term δw to w and calculat-

ing a perturbed trajectory allows us to compute an approximation to ∂z
∂w

(t; τj,w)

by the unsymmetric difference quotient (Equation 4.1). In general already small

perturbations of the initial values lead to different grids and orders of the BDF-

integrator using step size and order control. Gear and Vu ([GV83]) chose a BDF

method of fixed step size and fixed order to obtain reliable derivative information.

The approach to simply increase accuracy of nominal and varied trajectory leads

68 Derivative Generation

to dramatically rising computation costs§ especially for stiff systems. The prob-

lems become even more severe when treating problems with implicit discontinuities.

For perturbed initial conditions (and possibly perturbed controls and parameters)

additional switching point searches have to be performed.

This method for obtaining sensitivity information is called external numerical dif-

ferentiation (END) because of the fact that the differentiation is performed outside

the discretization scheme.

One can regard the discretization of the nominal trajectory as a sequence of maps.

Perturbing initial values, parameters and control values will likely, as mentioned

before, lead to different step sizes. This sequence of maps does not always dif-

ferentiably depend on initial values, parameters and control values. The internal

numerical differentiation (IND) avoids this effect.

4.3.2 Internal numerical differentiation

The internal numerical differentiation [Boc81] of the discretization scheme in combi-

nation with accurate derivatives of the model functions provides sufficiently precise

sensitivity information. The central idea behind the internal numerical differen-

tiation is to differentiate the adaptively generated sequence of maps but not the

adaptive components like order and step size control or error control. This also in-

cludes Newton’s method for solving the implicit corrector equation, like freezing the

number of Newton steps for the solution of the implicit equation (3.23), approxima-

tion of the Jacobian and its decomposition. The reutilization of the linear algebra

components makes the IND extraordinarily advantageous concerning computational

effort.

The name internal differentiation is explained by the fact that the differentiation is

carried out within the discretization scheme.

§As a rule of thumb one can assume that half of the significant digits of the accuracy of nominal

and varied trajectory remain valid in the derivative approximation of the sensitivity.

4.3 Generating sensitivity information 69

For the variational DAE we obtain the system

A(z, u, p) · Ẇx =








−Axẋ+ fx

−Ayẋ+ fy

−Aqẋ+ fq

−Apẋ+ fp








T

×






Wz
sz
j

Wz
q Wz

p

�
�






0 =






gz

gq

gp






T

×






Wz
sz
j

Wz
q Wz

p

�
�




− α(t)






gz(τj)

gq(τj)

gp(τj)






T

,

(4.8)

where α(t) is the relaxation factor (3.25). In general we only require nd directions

which can be accumulated in a matrix D = (DT
z ,D

T
q ,D

T
p)T ∈ � (nz+nu+np)×nd . The

Wronskian matrices Wq
r are given by the matrices

Wq
r =

∂q

∂r
(t; τj)

with q ∈ {x, z} and r ∈ {sz
j , q, p}. W denotes the Wronskian

(
∂z

∂sz
j ,q,p

)

. With (4.8)

we obtain the new variational DAE with only nd directions

A(z, u, p) · D · Ẇx =








−Axẋ+ fx

−Ayẋ+ fy

−Aqż + fq

−Apż + fp








T

×






D · W
Dq

Dp






0 =






gz

gq

gp






T

×






D · W
Dq

Dp






−α(t)






gz(τj)

gq(τj)

gp(τj)






T

×






D · W
Dq

Dp




 .

(4.9)

At the presence of discontinuities the update matrices explained in Section 3.3 have

to be taken into account.

IND is also stable for low integration accuracies [Boc87]. The nominal and the per-

turbed solution are very similar which makes it possible to reuse iteration matrices

for the perturbed trajectory from the nominal one.

For the sensitivity calculation by usage of IND two fundamentally different ap-

proaches can be applied. One is to calculated the Wronskians via finite differences,

70 Derivative Generation

the other one is to directly solve the variational differential equation. In the first

approach we solve an IVP (3.25) for the nominal trajectory and the varied trajec-

tories with perturbation w. Because of the drawback that an appropriate choice of

the perturbation to set up the differential quotient can hardly be given we do not

use this method. For a detailed discussion of this approach refer to [Bau99].

In order to calculate the sensitivities, we directly treat the variational differential

equation along with the nominal system when using automatic differentiation to cal-

culate the sensitivity matrices. Bock [Boc83] also calls this approach the analytical

limit of the IND.

To simplify presentation, we set A = � in what follows.

For the solution of the discretized equations for the variational DAEs (4.9) we have

to solve the linear system
(

α0 � + h∂f
∂x

h∂f
∂y

∂g
∂x

∂g
∂y

)

· ∂z
∂w

∣
∣
∣
∣
n+1

=

(

−h∂f
∂q

Dq − h∂f
∂p

Dp − � c(Ww)

− ∂g
∂w

+ α(tn+1)
∂g
∂w

(τj)D

)

(4.10)

where c(Ww) represents the constant part of the derivative of the corrector polyno-

mial, n is the active integrator step (see Chapter 3). For large scale systems as we

treat them in the thesis on hand the efficient calculation of the derivative matrices

is crucial. In the following section we develop techniques particularly adapted to

large scale sparse systems as they usually arise in chemical engineering.

4.4 Exploiting sparsity structures

In practice the models describing application processes are mostly sparse. Conse-

quently substantial savings can be expected by exploiting the model sparsity struc-

ture. In the first part we concentrate on compression techniques for forward mode,

i.e., compression from the right side. We later extend these techniques to reverse

mode.

When speaking about model functions, we refer to the right hand sides of the DAE

as f and g. F stands for either the differential or the algebraic functions.

4.4.1 Compression techniques

As seen in the previous section the forward mode allows the computation of a product

J · S ∈ � m×ι (4.11)

in running time proportional to eval(F) · ι, where eval(F) is the cost for evaluating

the vector function F , m and ι are the numbers of rows and columns of the system

4.4 Exploiting sparsity structures 71

(4.11). The question is how to find a matrix S for a given sparsity structure of

the model Jacobians J, i.e., the derivative matrices in (4.10) in such a way that

the resulting system (4.11) contains as few columns as possible. If we speak about

model Jacobians in the following, we speak about these derivative matrices. The

sparsity structure of the model is obtained by a bit pattern propagation.

Coleman and Moré in 1984 ([CM84]) proposed an approach for easy computation of

the matrix S, Averick et al. in 1993 ([AMB93]) combined these ideas with automatic

differentiation techniques.

In the following we will focus on a sparsity structure exploitation of the model

Jacobians by compression techniques.

Let ≺ describe the dependency relation, i.e., l ≺ m means that vm depends on vl

with the arguments v described in Subsection 4.2.1. Let ≺∗ denote the transitive

closure of ≺ which is a partial ordering of all indices i = 1 − n, . . . , l. The index

set Xk ≡ {j ≤ n : j − n ≺∗ k}, k = 1 − n, . . . , l signifies which elemental relations

vk (see 4.3) depend nontrivially on the independent variable xj. The index domains

can be obtained by

Xk =
⋃

j≺k

Xj for j ≤ n, (4.12)

starting from Xj−n = {j}. Analogously the index ranges

Y = {i ≤ m : k ≺∗ (l −m+ i)} for k = l, . . . , n− 1

contain the indices of all dependent variables yi non-trivially influenced by the inter-

mediate vk. They can be computed in complete analogy to Equation 4.12 according

to their backward recurrence. We call

w = max
1−n≤i≤l

|Xi|

the width of the Jacobian matrix J and

ŵ = max
1−n≤i≤l

|Yj|

the width of JT .

Choosing a so-called seed matrix S consisting of ns directions s ∈ � ι, we obtain the

matrix equation

Jcomp = J · S ∈ � m×ι. (4.13)

The ith row of the compressed matrix Jcomp is given by

j
compT

i = Ji · S ∈ � m (4.14)

72 Derivative Generation

and thus

j
compT

i = jTi Si (4.15)

with

Si = (eT
j S)j∈Xl−m+1

∈ � ιi×ι. (4.16)

jTi is given by the gradient of the ith model function Fi. The entries of ji can

be retrieved if the number of computed values ι is not smaller than the number

pιi = |Xl−m+i|, 1 ≤ i ≤ m of unknown non-zero entries in the ith row. Since we

need all rows of Jcomp, we require the number of rows of the seed matrix S to be

greater than or equal to the matrix width of the Jacobian J:

p ≥ max
1≤i≤m

pi = w.

The compression relation (4.13) can be illustrated as follows

m





















Jcomp

× × × . . . ×















︸ ︷︷ ︸

p

≡















J

0×00. . .00××0















︸ ︷︷ ︸

n















S

×××. . .×















︸ ︷︷ ︸

p







n

where n denotes the number of independent variables. The sparsity structure of the

ith row of the Jacobian J is given by the index set Xl−m+i.

Regarding the columns ji as vertices V = {j1, j2, . . . , jn} of the Jacobian J and

(i, j) ∈ E as edges for Yi−n ∩ Yj−n 6= ∅ we obtain the graph G(J). The task of

coloring the column incidence graph G(J)

φ : V 7→ {1, 2, . . . , p}

with the least possible number of colors such that adjacing edges do not have the

same color is the famous graph coloring problem known to be NP-hard (see [Pot88],

[BT00]). The minimum number of colors required for the coloring of G(J) is called

the chromatic number χ(G(J)). In short the coloring instances arise from a matrix

partitioning problem [HS02].

Several heuristical approaches leading to approximations of the chromatic number

- and thus heuristics for the choice of S - have been proposed in the last decades.

4.4 Exploiting sparsity structures 73

In the following we will present two of them and adapt them to our requirements.

Crucial for the performance of these approaches is, aside from the remaining number

of columns in the compressed Jacobian, also the computational expense for reob-

taining the original Jacobian J. The methods for setting up the seed-matrix S can

be divided into groups given by the operations necessary to reobtain the original

Jacobian. Powell and Toint [PT79] distinguished between

• direct

• substitution

• elimination

methods for approximating Jacobians. In direct methods the m ιi× ιi square matri-

ces S2

i (first ιi rows of Si) are permutation matrices (� pi×pi). Substitution methods

allow S2

i to be a unitary 0−1-matrix, in case of elimination methods S2

i is a general

non-singular ιi × ιi square matrix. These classes inherently differ in the algorithms

needed for the reconstruction of the full Jacobian. For direct methods no arith-

metic operations are necessary, substitution methods possibly need subtractions,

elimination methods in general need all arithmetic operations.

Curtis-Powell-Reid seeding (CPR)

One very famous heuristical approach we implemented in the thesis at hand is the

so called Curtis-Powell-Reid strategy [CPR74] with

S =
[
eT

φ(j)

]

j=1,...,n
∈ � n×ι

and Cartesian basic vectors ei ∈
� p. The submatrices

[
eT

φ(j)

]

j∈Xl−m+i
∈ � ιi×ι (4.17)

of S build up the seed matrix S itself. To sum up:

• Each column contains no more than one 1.

• Each row contains exactly one 1.

Jcomp can be interpreted as a sparse data structure of the original Jacobian J. No

arithmetic operations are needed in this direct method for approximating the Jaco-

bian J, when building it from the compressed form Jcomp.

74 Derivative Generation

Obviously a lower bound for the number of colors in the column incidence graph is

the maximal number of non-zero entries per row. For left hand side compression

of the Jacobian J in combination with the reverse mode, the lower bound is the

maximal number of non-zero entries per column.

The chromatic number χ(G(J)) is of course independent of the ordering of the

columns but the coloring and thus the approximation obtained by a sequential algo-

rithm to the chromatic number does depend on the ordering! The resulting width

w of the matrix is bounded below by the chromatic number χ(G(J)) of the column

incidence graph.

Newsam-Ramsdell seeding (NR)

Another approach to efficiently compute sparse Jacobians is the method of Newsam-

Ramsdell [NR83].

Often the algorithm proposed by Newsam and Ramsdell provides a more efficient

way to calculate the sparse Jacobian matrix. For at most p non-zero elements per

row of the Jacobian J we construct a seed matrix SNR ∈ � n×p such that J can be

reconstructed from

Jcomp = J · SNR, Jcomp ∈ � m×p

by row-wise solution of

j
comp
i = ji · SNR ∈ � 1×p, i = 1, . . . ,m.

The seed matrix SNR is chosen to be composed of Vandermonde matrices, which

guarantees a full rank for every pi × pi submatrix

SNR2

i =
[
λk−1

j

]k=1,...,pi

j∈Xl−m+1

∈ � pi×pi .

The Vandermonde matrix choice enables us to solve the arising linear systems in

O(p2) floating point operations [BP70] or [GL96] compared to the costs for the

classical LU decomposition being of the order O(p3). For a more detailed discussion

of the algorithm see [GUG96].

Unfortunately the condition number increases exponentially with the dimension p of

the Vandermonde matrix. This drawback is less severe for automatic differentiation

than for derivatives provided by finite differences, but makes it sometimes favorable

to prefer the Curtis-Powell-Reid method to Newsam-Ramsdell’s algorithm. The

possibility of circumventing this drawback by constructing the seed matrix based on

Chebychev polynomials rises the floating point operation costs for solving the linear

systems to O(p3).

4.4 Exploiting sparsity structures 75

Until now we restricted our attention to a compression of the model Jacobian in the

context of the automatic differentiation forward mode. Nevertheless, a compression

of the original matrix multiplying from the left side in combination with the adjoint

mode of AD may additionally reduce the actual number of derivative evaluations.

Considering the submatrix of the distillation column model given in Section 6.1

(and in some detail in the Appendix A) we see that we obtain a substructure for

the Jacobian concerning the molar fractions of the liquid phase of the structure

Jsubsys =










∗ ∗ ∗ ∗
∗

∗
∗

∗










∈ � 4×5, (4.18)

where the first row represents the molar balance on the specific tray and the other

rows give the equilibrium conditions with the vapor phase of the individual compo-

nent. Neither of the two previously explained compression strategies would compress

the sub-Jacobian using a seed-matrix from the right side in forward AD mode. The

costs for evaluating the derivative of the submatrix would be proportional to the

product of the matrix’ column width and the costs for evaluating the model function

(4.5). Since w ≤ χ(G(J)), the Newsam-Ramsdell algorithm in general produces a

smaller width of Jcomp.

Nevertheless, we observed that for our applications with significant high condition

numbers of the Jacobians themselves, the Curtis-Powell-Reid algorithm performs

better, despite the fact that the Newsam-Ramsdell algorithm guarantees the width

of Jcomp to be equal to w.

This especially becomes valid for row and column compression, discussed in the fol-

lowing.

Since we do not restrict ourselves to forward mode of AD it is by no means necessary

to restrict matrix compression techniques to column compressions. The matrix

Jsubsys (4.18) cannot be compressed by any of the presented compression techniques

in combination with forward mode of AD, i.e., with the above presented techniques

it is impossible to compute a derivative matrix J
comp
subsys = Jsubsys · Ssubsys with fewer

columns. Finding a seed-matrix Srev to compress the original Jacobian from below

reduces the derivative evaluation costs from m × eval(F) to possibly χ(G(JT)) ×
eval(F). In the case of the matrix Jsubsys (4.18) derivative evaluation costs reduce

from 5 × eval(F) to 2 × eval(F). In many situations it is advantageous to split

76 Derivative Generation

matrices into submatrices since matrices of the form

Jsubsys =










∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗










can not directly be compressed using the compression techniques of the antecedent

section. Based on the ideas of Coleman and Verma [CV98] and [HS02] we apply

a bipartitioning strategy on the CPU time intensive generation of the derivative

matrices, with a priori giving a column respectively row splitting.

4.4.2 Conserving sparsity pattern information

In the following we focus on the use of automatic differentiation in the context of

the thesis on hand.

On every subdomain Ri (see Chapter 5) uniquely given by the actual switching vec-

tor σ the sparsity pattern X (σi) remains unchanged. Traversing one area boundary

may change the sparsity pattern, nevertheless, in real-world applications mostly only

few rows of the Jacobian change. In view of the exploitation of sparsity structures

we therefore a priori divide the model equations into those which remain unchanged

after potential changing in the signs of the switching vectors, and those that may

change:

J =





















∗ . . . ∗ . . . ∗ . . . ∗
...

...
...

...

∗ . . . ∗ . . . ∗ . . . ∗
4 . . . 4 . . . 4 . . . 4
∗ . . . ∗ . . . ∗ . . . ∗
4 . . . 4 . . . 4 . . . 4
∗ . . . ∗ . . . ∗ . . . ∗
...

...
...

...

∗ . . . ∗ . . . ∗ . . . ∗





















. (4.19)

The triangles signify the columns with changing sparsity structure due to transition

to other areas in space (see 5).

We apply a hierarchical storing and exploitation strategy:

4.4 Exploiting sparsity structures 77

1. Calculation of the bit patterns X i for the area i (see (5.5)) for the Jacobian

submatrices in this area, i.e., derivatives of differential and algebraic equations

with respect to differential and algebraic variables, controls/parameters (see

Equation 4.10).

2. After transition of an area boundary the new patterns X j for the area j are

obtained by calculation of the new columns arising from the implicit model

change.

4.4.3 AD Application

For the differential algebraic equation (1.1) we obtain the model Jacobians needed

to solve the linear system (4.10).

In the complex distillation process application, an intermediate tray (neither reboiler

nor condenser) is described dynamically by usage of 5 differential and 81 algebraic

variables and equations. Since to ny � nx the effective computation of

∂g

∂y
∈ � ny×ny

turns out to be crucial. To calculate the submatrix ∂g
∂x

∈ � ny×nx we apply forward

AD in combination with CPR respectively NR compression (∂g
∂x

comp
= J ·S), for the

submatrix ∂f
∂y

∈ � nx×ny reverse AD to calculate the derivatives ∂f
∂y

comp
= Srev · J,

with Srev obtained via CPR and NR, respectively. Since the number of control

functions nu and parameters np is small at least with respect to ny (but also w.r.t.

nx if we focus on the complete column), the pairs
(

∂(f,g)
∂u

,Su

)

and
(

∂(f,g)
∂p

,Sp

)

are

computed using forward AD with Su ∈ � nu×nz and Sp ∈
� nu×nz .

4.4.4 Exploitation of model characteristics

Rigorous models of distillation processes are composed of comparatatively precise

descriptions of the individual trays via e.g. thermodynamical models. In our case

every individual tray (see Appendix A) is built up by a complex model, nevertheless

the trays are interacting only via out- and in-streams, making the blocks loosely

coupled. Discarding the switches in the trays would except for reboiler and condenser

give a common sparsity pattern for every individual tray. For the Jacobian J = ∂g
∂y

78 Derivative Generation

we obtain the following structure



































p · · · · · · q 0 N 0 · · · · · · 0
...

... 0 · · · · · · 0
...

... 0 · · · · · · 0

x · · · · · · y 0 · · · · · · 0

0 0 � 0 p · · · · · · q 0 N 0 · · · · · · 0
...

... 0 · · · · · · 0
...

... 0 · · · · · · 0

0 · · · · · · 0 x · · · · · · y 0 · · · · · · 0

0 · · · · · · 0 � 0 p · · · · · · q

0 · · · · · · 0
...

...

0 · · · · · · 0
...

...

0 · · · · · · 0 x · · · · · · y



































.

(4.20)

The zeros in matrix (4.20) represent vanishing submatrices. � and N give the cou-

pling between the individual trays in the algebraic equations. In our context they

only consist of liquid and vapor outflow. The blocks signify tray specific patterns

which are still sparse themselves.

Since for implicit discontinuities the sparsity patterns may change (see 4.19) it is

not directly possible to restrict the pattern determination to one tray, augment

by the interconnecting patterns, and reuse the pattern for the rest of the trays.

Nevertheless in practice only few equations change. This allows for an a priori

bit pattern determination of those parts which remain unchanged in case of zero

crossings of switching functions. The varying parts are calculated after the first

evaluation of the switching vector and so determine the valid area R (see Chapter 5).

Chapter 5

Solution strategy for the implicitly

discontinuous DAE constrained

optimization problem

In the last years much effort has been spent to cope with implicit discontinuous

dynamical models in the context of optimal control of mechanical and mechatron-

ical systems (see e.g. [MBSL03]). In so called hybrid models [EFS02] in addition

to continuous variables discrete variables occur. At time points where the discrete

variables change their value, switching events may occur. In contrast to switching

points in our models, these points are either explicitely given or their chronology

and number can a priori be uniquely determined and thus can be taken into account

by combining discrete and continuous optimization methods.

In the following we present an algorithm we developed to find local optima of op-

timization problems with underlying differential algebraic equations (DAE) with

implicitly defined discontinuities. Our strategy builds on the multiple shooting dis-

cretization of the dynamic model ([Pli81] and [BP84]). With an adequate control

parameterization this leads to the highly structured NLP which can be solved by

and adapted SQP method (see Chapter 2).

As shown in Chapter 3 switching events in the right hand sides of the DAE can be

hidden in the integrator as long as they neither vanish nor change their chronology

(see Theorem 9) due to changing control profiles or changing initial values for the

differential equation in consecutive SQP steps. For comparatatively few discontinu-

ities it is also possible to introduce additional switching phases. Since the size of

the quadratic program (QP) is significantly increased by this approach it can not

80 Solution strategy for the implicitly discontinuous DAE constraint...

be applied in processes with large numbers of switches. Nevertheless this approach

allows of the usage of integrators which can not treat state dependent discontinu-

ities. We compare local optima on digraphs C given by the switching chronology of

the active trajectory.

This chapter is organized as follows: In the first section we recall the formulation

of the optimization problem with implicitly defined discontinuities; the second sec-

tion describes our trajectory monitor surveying the area chronology which we will

interpret as a digraph in the fourth section. The third section explains our strategy

for updating matching conditions if the ending point of a trajectory in one multiple

shooting interval and the initial values of the trajectory of the succeeding interval do

not have the same sign structure of the switching vector and thus do not lie in the

same area R. The fourth section explains our strategy for controlling trajectories

with differing digraphs C.

5.1 Problem formulation

The problem already introduced in Chapter 1 is of the form

min
tf ,z,u,p

Ξ(tf , z(tf), p) (5.1a)

subject to

A(t, z(t), u(t), p) · ẋ(t) = f(t, z(t), u(t), p, sgn(σ(t))), t ∈ [ti, tf] (5.1b)

0 = g(t, z(t), u(t), p, sgn(σ(t))), t ∈ [ti, tf] (5.1c)

z(t+s) = z(t−s) + ∆̂z(ts, z(ts), p) (5.1d)

0 ≤ h(t, z(t), u(t), p), t ∈ [ti, tf] (5.1e)

0 = r(z(tf), p) (5.1f)

0 ≤ r(z(tf), p) (5.1g)

where several switching points ts may appear in [ti, tf].

5.2 Monitoring the accessed area

In Figure 5.1 we schematically show a two dimensional cut through the phase space

of a discontinuous dynamical model (5.1) fragmented into areas Rm where the right

5.2 Monitoring the accessed area 81

R1

R2
R3

R4

R5

R6 R7 R8

R9

R10

R11

R12

Figure 5.1: Two-dimensional schematic cut through the phase space. The Rm symbolize

the areas characterized by a unique sign structure of the switching vector σ(t) (the area

identification is given by the global monitor Mglobal).

hand sides of the DAE are sufficiently smooth. Each area Rm is uniquely defined

by the sign structure of the switching vector sgn σ(t).

Since by using multiple shooting the integration on the individual multiple shoot-

ing intervals is a priori decoupled we apply a two level discontinuity monitor. We

introduce

• local monitors Mn̂
local, n̂ = 1, . . . , nshoot,

• a global monitor Mglobal,

where nshoot is the number of multiple shooting intervals.

The local monitors Mn̂
local assign a temporary area descriptor R̂n̂ to the individual

sign structures of the switching vector σ(t), which occur while integrating in the

multiple shooting interval n̂.

After integration of each of the nshoot intervals, the global monitor Mglobal syn-

chronizes the area numbering and stores the trajectory information as explained in

Chapter 3.

Sparsity patterns X of the Jacobians J (see Section 4.4) in general vary from area

Rm to another area Rk, k 6= m. Hence, we apply the following strategy

82 Solution strategy for the implicitly discontinuous DAE constraint...

• Preparation phase: Distinguish between invariant and variant model parts

with respect to bit pattern changes of the Jacobians of the right hand sides of

the DAE.

• Initialization phase: Initialize the global monitor with the sign structure of the

switching vector σ(t) and the sparsity structure based on the valid bit pattern

and calculation of the seeding matrix S.

• Integration phase: Perform the integration in the individual multiple shooting

intervals and update the local monitor Mn̂
local .

• Post-integration phase: Synchronize area information.

Remark 5.2. The sufficiently accurate detection of switching points requires a

multi-level detection scheme (see section 3.3.2).

Freezing the adaptive components instead of the application of varied trajectories is

strongly advisable since no additional zero searches of the switching vector σ(t) are

needed. The usage of Bock’s IND (see section 4.3.2) directly builds on this freezing

strategy to obtain sensitivity information.

Rm+1

Rm

������������*

σm,m+1

sz
m

�
�

�
�	

sz
m+1�

�
�

�
�

��	

Figure 5.2: Schematical representation of the situation explained in Example 5.3. The

end point of the trajectory in the first multiple shooting interval ends in a different area

than the starting point of the following multiple shooting interval lies in.

5.2.1 Switching points at multiple shooting points

As long as discontinuities only appear within multiple shooting intervals and nei-

ther the chronology nor the number of accessed areas changes, the discontinuity

events can in principle be hidden in the integrator which makes them invisible for

5.2 Monitoring the accessed area 83

the optimization algorithm. For the above mentioned efficiency reasons, e.g. with

respect to reoccuring sparsity patterns of the Jacobians, this internal handling (see

e.g. [Sch99b]) can not be recommended. Moreover discontinuity events may be - a

priori unknown∗ - situated on multiple shooting nodes.

Example 5.3. : In the context of the distillation column application, let the column

(see Section 6.1.1 or Appendix A) initially be floated with inert gas in an overheated

state. Assume that due to reduced feed stream by the optimization the state remains

overheated when the end of the multiple shooting interval n̂ = 0 is reached. This

leads to

ψtherm
n̂=0 > 0, t ∈ [ti, t1].

Nevertheless let the new start value s1 of the following multiple shooting interval

contain a configuration with

ψtherm
n̂=1 < 0, t = t1.

The situation is schematically shown in Figure 5.2. Let this implicit discontinuity

be described by the component j of the switching function vector. In this case the

zero-crossing of the switching function σj = ψtherm describing this event occurs at

the multiple shooting node since

σj(t1, z(t1), p)
− > 0

σj(t1, z(t1), p)
+ < 0.

Two fundamentally different cases for switching events which appear on multiple

shooting nodes (between interval n̂ and interval n̂+ 1) have to distinguished:

In the first case the switching event lies on the end point of the interval n̂ or

on the start point of the subsequent interval n̂ + 1. Theorem 9 is not valid in

this case since the assumption that ts lies in an interval ts ∈ (tn̂i , t
n̂
f) is violated

(ts = tn̂+1
i /∈ (tn̂+1

i , tn̂+1
f) or ts = tn̂f /∈ (tn̂i , t

n̂
f)). This is indicated by a zero-crossing

of a switching function σj at the end point t = ts. In the integrator we always

calculate the trajectory until we reach a final point t̂ > tn̂f . Thus Bock’s Theorem 9

becomes valid for ts = tn̂f and guarantees differentiability of the solution with respect

to initial values and control parameters. For ts = tn̂+1
i one could in principle reverse

integrate for a short time step. Instead we assume that the surrounding interval

∗A priori knowledge of the time point of a switching point allows e.g. to introduce a stage

transition phase of zero time length and therefore to adapt the consistency conditions.

84 Solution strategy for the implicitly discontinuous DAE constraint...

exists to prove differentiability. Since in the final SQP step consistency is obtained

differentiability can be guaranteed in the solution of the algorithm.

In the second case the switching event has to take place at the multiple shooting

node since start point of interval n̂+ 1, i.e., point tn̂+1
i , and end point tn̂f of interval

n̂ do not lie in the same areas but treated independently neither at tn̂f nor at tn̂+1
i

any of the switching function in the switching vector shows zero-crossing. In this

case the matching condition at the multiple shooting nodes have to be modified as

described in the next section.

5.3 Updating consistency conditions

In this section we present our strategy for updating matching conditions if the sign

structure of the switching vector sgn(σ) ∈ {−1, 1}nσ at the state vector at the end of

multiple shooting interval n̂ deviates from the sign structure of the switching vector

sgn(σ) at the state vector at the start point of the succeeding interval n̂+ 1.

To simplify presentation we assume for the moment that the discontinuities due to

changes of controls and initial values change multiple shooting intervals but preserve

their chronology and number. Nevertheless, this restriction is by no means necessary

for our approach.

As pointed out in the preliminary example (Example 5.3), zero-crossings in the

switching vector may be situated on multiple shooting nodes.

In Chapter 3 we gave the embedding theorem (Theorem 9). Under little restrictive

assumptions it guarantees the differentiability of the solution of the IVP

Q · ż =

{

(f, g)−(t, z, u, p) t ∈ [ti, ts]

(f, g)+(t, z, u, p) t ∈ (ts, tf]

with

Q =

(

� nx 0

0 0

)

∈ � (nx+ny)×(nx+ny)

and

x(ti) = sx
i

5.3 Updating consistency conditions 85

with respect to initial values and parameters.

The sensitivities Sz(tf , ti) and Sp(tf , ti) are given by the equations (3.47) and (3.48),

respectively.

For the switching points

ts,0 < ts,1 < . . . < ts,nms

detected in the first integration run we obtain a sequence of entered areas. The

global monitor Mglobal labels these areas and detects points where modified match-

ing conditions have to be applied.

The continuity conditions (1.12b) in explicit vector form without implicit disconti-

nuity updates at the multiple shooting points but allowing explicit transition for-

mulations can be written in the form









x(t1; s
z
0, q̂0) − sx

1

x(t2; s
z
1, q̂1) − sx

2

...

x(tnms
; sz

nms−1, q̂nms−1) − sx
nms










∈ � nms . (5.4)

For the corresponding Jacobian with additionally introduced conditions arising from

the algebraic conditions

g(sz
n̂, q̂n̂, τn̂) = 0

in (1.12b), we obtain



















Xx
0 Xy

0 Xu
0 − �

Gx
0 Gy

0 Gu
0

Xx
1 Xy

1 Xu
1 − �

Gx
1 Gy

1 Gu
1

. . .

Xx
nms

Xy
nms

Xu
nms

− �
Gx

nms
Gy

nms
Gu

nms



















, (5.5)

where nms is the number of multiple shooting intervals. For a multistage formu-

lation of nsta model stages the matrix structure reappears on every stage with the

86 Solution strategy for the implicitly discontinuous DAE constraint...

dedicated number of multiple shooting intervals. For simplicity of presentation we

consider one model stage in the following. The generalization to more model stages

is straightforward, and has been implemented.

Xx
n̂ , Xy

n̂ and Xu
n̂ are the Jacobian matrices of xn̂(tn̂+1; sz

n̂, qn̂) with respect to sx
n̂, sy

n̂

and su
n̂, respectively, i.e.,

Xx
n̂ =

∂x(tn̂+1; sz
n̂, q̂n̂)

∂sx
n̂

,

Xy
n̂ =

∂x(tn̂+1; sz
n̂, q̂n̂)

∂sy
n̂

,

Xu
n̂ =

∂x(tn̂+1; sz
n̂, q̂n̂)

∂su
n̂

.

The consistency condition Jacobians are given by

Gx
n̂ =

∂g(tn̂+1; sz
n̂, q̂n̂)

∂sx
ij

,

Gy
n̂ =

∂g(tn̂+1; sz
n̂, q̂n̂)

∂sy
ij

,

Gu
n̂ =

∂g(tn̂+1; sz
n̂, q̂n̂)

∂su
ij

.

For discontinuities a priori known to appear, an additional model stage of zero

duration can be introduced by using generalized continuity conditions of the form

ĉ(q̂n̂) + sn̂ − sn̂+1 = 0, tn̂+1 = (tn̂)+. (5.6)

However, the appearance of the discontinuities is implicitly given and thus a modi-

fication of the consistency conditions is merely necessary if the sign structure of the

switching vector σj changes from the final point of the preceding interval n̂ to the

following interval indexed n̂+1. At the price of a significantly growing QP we could

a priori introduce additional generalized continuity conditions (5.6) at every mul-

tiple shooting point and control its actual entries by the global switching monitor

Mglobal which would change the matrix of the Jacobian of the matching conditions

(5.5) in the above described form.

If the area Rk given by the switching vector at the ending point x(tn̂+1; sn̂, q̂n̂) and

the area Rl given by start vector in the preceding multiple shooting interval are not

the same or in short if

sgn(σ(tn̂+1)−) 6= sgn(σ(tn̂+1)+),

5.3 Updating consistency conditions 87

the consistency conditions have to be modified. Here σ(tn̂+1)− denotes the switching

vector corresponding to z(tn̂+1; sn̂, q̂n̂), σ(tn̂+1)+ is the switching vector at

z(tn̂+1; sn̂+1, q̂n̂+1) and 6= describes a componentwise comparison.

We replace (5.4) by
















x(t1; s
z
0, q̂0) − sx

1

x(t2; s
z
1, q̂1) − sx

2

...

xT n̂+1x(tn̂+1; sz
n̂, q̂n̂) − sx

n̂+1
...

x(tnms
; sz

nms−1, q̂nms
) − sx

nms
















∈ � nms (5.7)

where the operator xT n̂

xT n̂+1x(tn̂+1; sz
n̂, q̂n̂)− = x(tn̂+1; sz

n̂, q̂n̂)+

maps the left hand limit of the state to the right.

The limits are given by

x(tn̂+1; sz
n̂, q̂n̂)± = lim

ε7→0
x(tn̂+1 ± ε; sz

n̂, q̂n̂).

The discontinuity update is of the form

(
∂x(tn̂+1; sn̂, qn̂)+

∂sn̂

)T

=

(
∂x(tn̂+1; sn̂, qn̂)+

∂x(tn̂+1; sn̂, qn̂)−
· ∂x(t

n̂+1; sn̂, qn̂)−

∂sn̂

)T

︸ ︷︷ ︸

Xs
n̂+1

with

Xz
n̂+1 = ∇sz

n̂+1

xT n̂+1x(tn̂+1; sz
n̂, q̂n̂) ∈ � nx×nz .

The matrix
∂x(tn̂+1; sn̂, qn̂)+

∂x(tn̂+1; sn̂, qn̂)−
(5.8)

describes an approximation to a discontinuity update.

In complete analogy we replace Gz
n̂+1 in the consistency conditions by Gz

n̂+1, again

using the update operator

zT n̂+1y(tn̂+1; sz
n̂, q̂n̂)− = y(tn̂+1; sz

n̂, q̂n̂)+

88 Solution strategy for the implicitly discontinuous DAE constraint...

at the end point of the interval n̂, i.e.,

Gz
n̂+1 = ∇z

sn̂+1

yT n̂+1y(tn̂+1; sz
n̂, q̂n̂) ∈ � ny×nz .

Assumption 5.9. We make the assumption of sufficiently wide overlapping areas

Rm and Rk in the sense that the right hand sides remain evaluable in an area beyond

their core validity since discontinuity updates are performed at the point tn̂+1 which

does not have to coincide with the zero-crossing of the switching function (see Figure

5.3).

Rm+1

Rm

������������*

σm,m+1

sz
n̂

�
�

�
�	

sz
n̂+1�

�
�

�
�

��	

Figure 5.3: In addition to Figure 5.2 the shaded part signifies the overlap region of the

two areas.

Remark 5.10. For vanishing discontinuities in states and derivatives, the operator
xT n̂ is the identity mapping and the matrix (5.8) transforms into the identity matrix.

Remark 5.11. For a zero-crossing of the respective switching function at ts = tn̂+1,

the update turns out to be equivalent to the additional introduction of an interval

of zero length with merely giving the jump-conditions.

One of the main advantages of the multiple shooting method is the possibility to a

priori feed process information to the integrator via intermediate start values. Since

the Assumption 5.9 turns out to be almost always valid in practice, for carefully

chosen initial values, the right hand sides of the DAE system in general remain

evaluable.

Nevertheless, if Assumption 5.9 does not hold, i.e., if the execution of the switching

causes the right hand side to be inevaluable, we locally choose the initial values of

the following interval via integration, i.e., interrupt the SQP process and reintegrate

5.4 Controlling trajectories with differing switching structures 89

the multiple shooting interval n̂ + 1 starting from the end point of the preceding

interval.

This can be interpreted as a temporary reduction of the number of multiple shooting

intervals. In this case the inherent parallelity of multiple shooting is broken at the

interval where the new start values are obtained via integration.

Since the updates do not destroy the specific structure of the problem, the search

space decomposition (see 2.30) and thus the decomposition of the NLP especially

adapted to DAE optimization can be transferred to Leineweber’s approach (see

[Lei99]).

5.4 Controlling trajectories with differing switch-

ing structures

The local discontinuity monitor M
l,n̂
local in the l-th SQP step of multiple shooting

interval n̂ provides a local area chronology Cl,n̂ which can be interpreted as a digraph

(V l, E l) with the vertices

V l = {1, 2, . . . , nCl,n̂},
where nCl,n̂ gives the number of the locally entered areas in interval n̂ and E l,n̂ de-

scribes the edges given by transitions to other areas discarding self-loops†.

Since Theorem 9 does not hold if new switching points arise or existing switching

points vanish - briefly if the digraph C changes - the sensitivities

∂z(tn̂f)

∂z(tn̂i)
(Cl,n̂)

in the area Rm need not change continuously for Cl,n̂ 6= Cl+1,n̂.

Example 5.12. Let the single tray equipped with a heating (3.3.6) be fed with

feed stream F . Due to the objective an increased heat supply may cause the bi-

phase state to turn temporarily to an overheated mono-phase state (see Example

5.3, schematically in the right picture of Figure 5.4).

†In principle every integrator run leaving the switching vector unchanged could be interpreted

as a self-loop.

90 Solution strategy for the implicitly discontinuous DAE constraint...

l − 1

?

l

�
�

�
��

l + 1

�
�

�
��	

l + 1

l

l − 1

Figure 5.4: Schematic 2D illustration of changes in the digraph C in consecutive steps l.

The dashed lines symbolize 2D projections of the trajectories in the phase space. In the

right graphics step l + 1 leads to two newly arising switchings. The left picture shows a

vanishing switching point in step l + 1.

The local digraphs Cl,n̂ of the individual multiple shooting intervals n̂ in SQP step

l are coupled to a global digraph Cl
global .

Starting from the initial in general infeasible trajectory the optimization procedure

is performed as long as the digraph Cl
global does not change in successive steps. If

the monitor Mglobal reports a change from the digraph Cl
global to Cl+1

global , a feasible

trajectory with respect to the validity of Cl
global is searched while still keeping the

trajectory information for the trajectory with the digraph Cl+1
global if possible.

Feasibility search with active Cl
global if Cl+1

global 6= Cl
global :

1. Start.

Restart SQP-step l with the old Hessian approximation.

2. Search.

Locally weight the Lagrange and/or Mayer term

F (w) → βkF (w)

and correspondingly the l1 penalty function (2.27)

Ψk(w,$, τ) =βkF (w)

+

nG∑

i=1

$i|Gi(w)| +
nH∑

j=1

τj|min(0, Hj(w))|. (5.13)

Perform line search for the current factor βk.

5.4 Controlling trajectories with differing switching structures 91

R1

R2

R3
R4

R5

R6

R7

R8

R9

R10

R11

R12

?

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQs

σ6,7
σ7,10

σ1,6

σ6,10

σ10,11

Figure 5.5: Schematic representation of a trajectory (dashed) in a 2D cut through the

phase space. The components of the switching vector σ, the switching functions σi,j , show

zero-crossings at the area boundaries.

3. Convergence check.

(a) Convergence: Save upper bound on the solution.

When feasibility is obtained the local solution represents an upper bound

on the solution.

Start a line search with β = 1 allowing steps violating the digraph Cl
global .

Go to 4..

(b) No Convergence: Go back to SQP step l+1. Restart with digraph Cl+1
global .

If no convergence can be obtained within the active switching structure

given by the digraph Cl
global , the algorithm continues with SQP-step l+1.

4. Termination.

If a local optimum (KKT-point) (2.29) is obtained, the local solution is com-

92 Solution strategy for the implicitly discontinuous DAE constraint...

pared with the active upper bound if available (see 3.(a)). The lower of these

is a local solution.

If no local optimum (KKT-point) (2.29) is obtained, restart with trajectory

adjacent to the graph Cl+1
global .

If a feasible trajectory can be found in such a way that it represents an upper bound

for the local optimum search, the trajectory corresponding to the digraph Cl+1
global

is used as a new starting point for the SQP-algorithm. Local solutions are valued

with respect to the stored feasible solution corresponding to digraph Cl
global . The

algorithm ends when a local solution is found without modification of the objective.

Either this solution is regarded as a local optimum or if the preceding local solution

stored as an upper bound on the solution is better with respect to the objective,

this upper bound is regarded to be the solution, respectively.

The factor β is chosen to decrease in consecutive feasibility search steps according

to

βk+1 =
βk

4
,

and we restrict to a search depth k = kmax.

After digraph changes we reinitialize the Hessian approximation (2.2.1.2) which in

this step leads to a steepest descent step ([Bau01]).

In Figure 5.5 we schematically present a trajectory by the 2D cut through the phase

space. If jumps occur, i.e., if a jump function ∆̂j is given for one switching function,

the start point after the switch does not coincide with the point before the switch.

The schematic trajectory shown symbolizes a situation as it is typically obtained as

a local feasible solution with a small βk.

The algorithm has proven to be applicable to large scale optimal control problems.

It builds on the a priori intelligent choice of initial values for the intermediate start-

ing points at the multiple shooting nodes. In this case only few subsequent line

searches have to be performed for differing βk within the respective digraphs Cglobal .

The local search for feasible trajectories is crucial in the sense that consecutively

diminished upper bounds for the objective are calculated.

Since the quasi-Newton approximation has to be reinitialized with the identity ma-

trix for changing digraphs Cglobal in consecutive SQP steps a superlinear convergence

5.4 Controlling trajectories with differing switching structures 93

rate can in general not be expected. Looking towards real-time applications it could

be interesting to extend our integrator in such a way, that it provides second deriva-

tive information.

94 Solution strategy for the implicitly discontinuous DAE constraint...

Chapter 6

Applications

In this chapter we present several applications of the algorithms introduced in the

preceeding chapters. In the first section we focus on a multi-tray distillation process

described by a rigorous model which was developed in cooperation with BASF AG,

Ludwigshafen.

A more detailed description of the equation can be found in the appendix (see Chap-

ter A).

Due to the ill-condition of the Jacobian of the right hand sides w.r.t. the state vector

(see Equation (4.10) of the rigorous model of this multi-phase process the treatment

requires accurate derivative information.

Since it is hardly possible to exploit sparsity structures in right hand side Jaco-

bians via symbolic differentiation, automatic differentiation techniques (see Chapter

4) have to be used. The implicitly defined discontinuities in the states require an

appropriate discontinuity treatment both in the integrator and the optimization al-

gorithm.

The second section deals with on the optimization of biotechnological models. The

development of these models was also accomplished in cooperation with BASF AG,

Ludwigshafen, based on existing processes. We first present a comparatively easy

biotechnological model which was in its original form presented by Kühn ([Küh02]).

In this thesis, it is for the first time treated with a derivative based algorithm which

allows pointwise non-smooth trajectories.

Afterwards, we present a more complex biotechnological process. It was originally

modeled by King ([Kin94]). Schäfer in his diploma thesis ([Sch99a]) smoothed

96 Applications

the discontinuities an treated and used a classical SQP optimal control algorithm.

We compare our optimization results with those obtained via optimization of the

smoothed model Schäfer proposed for this process.

Finally we apply our algorithms in the feed back context. The optimization of the

second biotechnological process which we present in the last section is performed

using feed back on shrinking horizons. We take model deficiencies into account by

characteristically perturbing model states after certain a priori given sampling times.

6.1 Optimization of a distillation process

The distillation process [Kis92] physically separates a mixture into two or more

products that have different boiling points. If a liquid mixture of two volatile mate-

rials is heated, the vapor coming out has a higher concentration of the more volatile

material than the liquid from which it was evolved. Nowadays many distillation

columns are composed of multiple trays which are vertically arranged above each

other.

Distillation processes play a crucial role in chemical engineering. Since about 80% of

the overall energy consumed in chemical industry is in fact consumed in distillation

processes, optimization is both ecologically and economically of utmost importance.

To mention another number, the US portion of the world’s annual energy consume

amounts to one fourth, 7% of this is spent in the chemical industry.

The system as a whole (see Figure 6.1) can for very high numbers of trays be regarded

as a discretization of a partial differential equation where the spatial discretization is

naturally given by the individual trays∗. We exploit this observation in [BPSB+04]

to generate start values for the rigorous model. Another approach are the so called

Wave models (Kienle et al. [Kie98]) which can be interpreted as homogenization

of the complete distillation column and thus are restricted in their applicability to

columns with very many trays or to porous media columns.

Due to its complex dynamics the rack-in of the overall process is usually not taken

into account when modeling distillation processes. For this task homogenization

∗Some modern distillation columns do not show the classical tray structure, but are filled up

with porous media given the column a continuous structure.

6.1 Optimization of a distillation process 97

techniques can hardly be applied due to complex physical phase equilibria on the

individual trays. Rigorous models of the processes are required. In the following we

propose a distillation column model which explicitely treats the complex dynamics

of the liquid vapor mixture on the individual trays.

6.1.1 Modeling

Let us describe the modeling of the multi-tray distillation column. We propose a

thermostatic model which can be used to simulate and optimize rack-in processes.

Nevertheless we restrict to ideal trays in that sense, that equilibria in the individ-

ual trays are reached instantaneously. We assume ideal mixtures and perfect gases.

Spatial fluctuations or variations in the concentrations etc. one the individual trays

are discarded, which allows us to work with a differential algebraic equation (DAE)

instead of a partial differential equation. A tabulated overview of the model can be

found in the appendix (see Appendix A). In Figure (6.1) a scheme of a distillation

column is shown.

The component molar balances are described by nC differential equations per tray

dni,j

dt
=LinX in

i δj,nfeed
− Lout

j Xout
i,j − V out

j Y out
i,j

+ Lout
j+1X

out
i,j+1Θ(ntray − j − 1)

+ V out
j−1Y

out
i,j−1Θ(j − 1).

(6.1)

Here Θ(·) is the Heaviside function (3.54) which gives the equations for reboiler and

condenser a special structure. The Kronecker δ distinguishes the feed tray from the

others. The indices i = 1, . . . , nC stand for the components in the mixture in the

respective tray and j = 1, . . . , ntray describe the different trays starting from the

reboiler j = 1 and ending with the condenser j = ntray. The ni,j are the molar

masses, the vectors Yi describe the molar fraction of components i in the gas-phase

and xi describe the molar fraction of components i in the liquid phase. Lout
j and

V out
j are the liquid and vapor outstreams off the j-th tray, respectively. The energy

balance on the trays is given by

98 Applications

dEj

dt
=LinhL,inδj,nfeed

− Lout
j hL,out

j − V out
j hV,out

j

+ Lout
j+1h

L,out
j+1 Θ(ntray − j − 1)

+ V out
j−1h

V,out
j−1 Θ(j − 1)

+Qδj,n1

−Qcoolδj,NTray ,

(6.2)

where the h
L/V
j denotes the individual enthalpy on the tray j, hL,in stands for the

feed enthalpy on the feed tray. Q and Qcool stand for the heating and cooling and

the reboiler and condenser, respectively.

The liquid feed is usually added in the middle of the column, i.e., fed to the tray

(NTray +1)/2 (for NTray odd). This is due to the fact that we want the composition

of the feed to be closest to the composition of the mixture at the respective tray

since this leads to the least possible entropy growth. This is assumed to be the case

in the feed tray†.

We explicitely take heat capacities of the column into account (see Appendix A).

Based on Dalton’s law stating that the overall pressure of a gas is composed of the

individual pressures of the components, we transform Henry’s law (see e.g. [AdP02])

to

Yi,j = ki,jXi,j , i = 1, . . . , nC , j = 1, . . . , ntray (6.3)

which we use as equilibrium conditions subject to

∑

i

Yi,j = 1. (6.4)

The k-values are determined by

ki,jpj = psat
j,i , i = 1, . . . , nC , j = 1, . . . , ntray , (6.5)

where pj are the pressures on the individual trays (see Appendix A).

In our application we focus on a mixture of four components. The inert gas (i = 4)

is assumed to be thousand times as volatile as component i = 1

k4,j = 1000 · k1,j (6.6)

†For other compositions of the feed stream it can for energy conservation reasons be advanta-

geous to feed in other tray instead.

6.1 Optimization of a distillation process 99

instead of (6.5). The thermodynamic vapor fraction ψj is calculated via

ψj · (hV,sat
j − hL,satj) = (hj − hL,sat), (6.7)

allowing of overheated vapor causing an implicit model change and a jump in the

first derivative of the state functions.

Additionally, overpressure valves at the top of each tray let the vapor stream out

when the ambient pressure is exceeded. These valves are technically realized by a

porous medium. These implicit changes on every tray also cause implicit discontin-

uous changes of the right hand sides. The third group of implicit discontinuities are

due to the weir functions. These functions signify, whether the current fluid level in

the respective tray reaches the weir height.

To describe the dependency of the vapor pressure of each of the components on the

temperature T , we use the modified Antoine equations of the form

log pi = Ai +

(
Bi

Ci + T

)

+Di log T + EiT
2 (6.8)

with parameters Ai, Bi, Ci, Di and Ei (i = 1, 2, 3).

The specific density is given by the equation

log

(

ρliq
i

Fi

)

= −
(

1 +

∣
∣
∣
∣
1 − T

Hi

∣
∣
∣
∣

Ji

)

· logGi, (6.9)

where Fi, Gi, Hi and Ji again denote parameters for i = 1, 2, 3. For the inert gas

we assume

ρliq
4 ≡ 1. (6.10)

Since the term 1 − T
Hi

in (6.9) remains positive the argument’s direct evaluation

via the formula (6.9) is uncritical despite of Ji being of order of magnitude of 10−1.

Nevertheless, as can be seen in e.g. (6.8) and (6.9), the model describing the distil-

lation process is of very high nonlinearity.

6.1.1.1 Implicit discontinuities in the model

Our modeling leads to three implicitly given discontinuities on every tray arising

from

• changes from a mono-phase state of uniquely vapor flooded trays to the coex-

istence of a liquid and a vapor phase, i.e., we obtain the switching function

ψj − 1 = 0,

100 Applications

• weir-overflows of the liquid phase to lower trays, i.e., we obtain the switching

function

∆hweir
j = 0,

• on- and off-switching of outstream of vapor phase to above lying trays due to

overpressure, i.e., we obtain the switching function

pj − pref = 0

with a system parameter pref .

6.1.2 Rack-in process of an instationary distillation process

Distillation columns are often flooded with the inert gas nitrogen N2 before new

start-up.

The aim of the optimization under consideration is to find an energy optimal way of

running the process from the initial mono-phase state of the column being flooded

with inert gas to an operation state, given by a certain purity of the mixture in

reboiler and condenser under diverse constraints.

The algebraic equations (6.6) which describe the property of the inert gas on the

respective tray of being highly volatile compared to the other substances strongly

contributes to the high condition number

κ(Jg) = ‖Jg‖ · ‖J −1
g ‖

of the model Jacobian Jg = ∂g
∂y

∈ � ny×ny of the algebraic equations. Thus condition

numbers

κ(Jg) ≈ 2 · 109 (6.11)

with respect to the Hilbert norm for the described configuration arise.

Due to the bad condition (6.11) of the right hand side Jacobian, the simulation

of the process briefly described in the last section is only possible, when accurate

derivative information of the right hand side of the DAE is provided. This is done

by using the strategies presented in Chapter 4.

The classical way of starting a distillation process is to completely flood the column

initially flooded with the inert gas with liquid feed and to set the distillate stream

6.1 Optimization of a distillation process 101

FC

FC

PC

TC

FC

FC
LC

TC

SG

�
��

SG
HHHHY

SG
HHHY

SG

6

SG
����

SG���

T
ra

y
s

o
f
th

e
d
is

ti
ll
a
ti
o
n

co
lu

m
n

Feed

Cooling

Heating

Condenser

Product Batch

Product
Distillate

Vapor
outstream

Reboiler

Condenser
reflux

-

Reboiler
reflux

-

Figure 6.1: Schema of the modeled distillation column. TC, PC, LC and FC stand for the

controllers, SG for the control functions

102 Applications

D (see Appendix A) to almost zero. We use this as an initial trajectory leading to a

digraph C (see Chapter 5) which gives the actually valid switching chronology and

thereby obtain initial guesses for the states at the multiple shooting nodes.

For an objective of the form‡

min
tf ,z,u

Ξ(tf , z(tf), p)= λ1

tf∫

0

(

Xcond
0 −Xcondref

0

)2

dt (6.12a)

+ λ2

tf∫

0

(

Xreb
0 −Xrebref

0

)2

dt (6.12b)

+ λ3

tf∫

0

Qdt (6.12c)

+ λ4

tf∫

0

Qcool dt (6.12d)

−λ5

tf∫

0

DF l,out
cond dt

tf∫

0

Fin dt

(6.12e)

+ λ6

tf∫

0

(
3∑

j=1

Xv,out
j,reb

)

F v,out
reb dt (6.12f)

+λT tf , (6.12g)

with the control vector u subsuming the added energy Q in the reboiler, the cooling

Qcool , the feed control Fin and the controls not explicitly involved in the objective,

the reflux ratio in the condenser Rcond and the reboiler Rreb and the outflow control

in the condenser, we obtain the optimal control profiles shown in the upper two

rows in Figure 6.2. The first part of the objective (6.12a) guarantees the purity of

the condenser product, Xcondref
0 stands for a reference purity of component indexed

0 in the condenser. The second part of the objective (6.12b) penalizes the integral

quadratic deviation from the advised purity X rebref
0 , which is chosen to be small

since we want the fraction of the most volatile component in the liquid holdup to

be sufficiently small. The variables Xcond
0 and Xreb

0 stand for the liquid molar frac-

tion of component indexed 0 in reboiler and condenser, respectively. The weighted

‡motivated by our project partner BASF AG, Ludwigshafen

6.1 Optimization of a distillation process 103

rate of yield is described by (6.12e). The term (6.12f) penalizes vapor outflow from

the condenser. The term (6.12f) weighted with λ6 measures the lost vapor outflow.

Since the inert gas has to be stripped off it is weighted with the sum of the partial

sums of the non-inert gas components so that for pure inert gas in the condenser this

term does not contribute to the penalty function. The last term (6.12g) penalizes

the overall time needed.

Inequality constraints are given with respect to temperatures and pressures on the

trays. The initial configuration is fixed to the state of a inert gas flooded column.

As one end point constraint we require an amount

M =

tf∫

0

DF l,out
cond dt

of distillate. We demand a sufficiently high purity of the separated substance in

the condenser and a sufficiently low concentration in the reboiler which is obtained

because of the formulation of the objective (6.12).

The optimization of the above (and in Appendix A) described process leads to a re-

duction of the objective function (6.12) of 21.6% compared to the classical strategy

of flooding the column completely with the liquid feed. The comparative result is

obtained by performing a simulation with hand chosen control values after flooding

the column and letting the inert gas stream out. The strategy in conform to the

classical way to rack-in such a process.

In Figure 6.2 we present the optimal control profiles for piecewise constant controls

and six characteristic state profiles of the solution trajectory. The feed (first row,

first column, Figure 6.2) is not piped in a constant profile. First a comparatively

little amount of feed is fed into the column; just enough (see the plot of ∆weir
reb , third

row third column, Figure 6.2) for a sufficient amount of liquid holdup to flow to

the reboiler. After the start phase of the rack-in process the heating is kept almost

constant (first row, second column, Figure 6.2). This - in combination with the

profiles of the feed and the reflux in the reboiler leads to a wave like profile in the

liquid holdups as can be seen in the plot of the liquid holdup in the reboiler (∆hweir
reb)

and in the plot of the liquid holdup in the tray above the feed tray (third row, first

column). The thermodynamic vapor fraction in the condenser ψtherm
cond (third row,

second column) shows that the condenser after an initial phase condenses almost

104 Applications

the whole vapor holdup. This can also be seen in the integral over the vapor out-

stream (fourth row, second column) which remains constant after the initial period

where especially the inert gas is drawn off. The plot of the vapor holdup of the inert

gas in the reboiler (fourth row, third column) shows that the total condensing phase

and the vanishing of the vapor holdup of the inert gas coincide. k3
0 gives the k-value

of the inert gas (fourth row, first column) in the reboiler varying by several orders

of magnitude.

Crucial for the optimization is that trajectories with differing digraphs can be com-

pared (see Chapter 5). The digraph of the starting step, described in the beginning

of this chapter, strongly differs from the digraph valid in our solution.

All plots, variables and parameters in the context of the distillation process are given

in arbitrary units, since the precise process control underlies nondisclosure in the

context of the BMBF project 03-BOM1HD §.

Every tray the column is composed of contains 81 algebraic and 5 differential vari-

ables. Additional inequality constraints are formulated with respect to pressures

and temperatures on the trays. Also the levels of the liquid phase in reboiler and

condenser are restricted by inequality constraints. Additional constraints arise for

the volumes in the individual trays.

We used 28 multiple shooting intervals of equal length, and piecewise constant con-

trols. We need 76 SQP steps to obtain the solution of an accuracy of 1.0 · 10−4 with

an integrator tolerance of 1.0 · 10−6. The CPU time was 2709.6 seconds on a Linux

machine (Intel Pentium IV, 2.53 GHz with a cache of 512 KB). For the solution

trajectory we obtain 109 switching events.

§German ministry for education and science (in german ”Bundesministerium für Bildung und

Forschung”)

6.1 Optimization of a distillation process 105

Feed Heating Reflux
ratio
(Cond)

Reflux
ratio (Reb)

Cooling

Outflow control

Int. vap. out

∆hweir
reb

∆hweir
feed +1

nvap
3,cond

k0
3

ψtherm
cond

0 0.5 1 0 0.5 10 0.5 1

0 0.5 1 0 0.5 10 0.5 1

0 0.5 1 0 0.5 10 0.5 1

0 0.5 1 0 0.5 10 0.5 1

Figure 6.2: First two rows: Plots of optimal control profiles w.r.t. the objective (6.12)

(Cond and Reb stand for condenser and reboiler). The lower two rows show plots of six

states. For nondisclosure reasons the plots are not labeled on the ordinate.

106 Applications

Feed stream

Figure 6.3: Diagram of a batch fermenter

6.2 Optimization of a biotechnological batch pro-

cess

Due to their inherent complexity biotechnological processes were rarely modeled in

the last years, in that sense that bio-mathematical models were developed. Often

neural networks are applied to circumvent the in general highly complex modeling

process.

In this section we first present a smaller application describing a fermentation pro-

cess used for the production of antibiotics. The second subsection focuses on a more

complex biotechnological process describing the fed-batch fermentation with Strep-

tomyces tendae.

6.2.1 Optimization of a simple batch fermentation process

The results given in this subsection are rescaled due to disclosure obligation with

BASF AG Ludwigshafen. The plots in Figures (6.4, 6.5) are labeled in arbitrary

units.

In 3.3.7.1 we gave the equations for the small biotechnological fermentation (6.13)

6.2 Optimization of a biotechnological batch process 107

which we repeat here

f0 = Ẋ = rXX − X

V
V̇ (6.13a)

f1 = Ṗ = rPX − P

V
V̇ (6.13b)

f2 = Ṡ1 = −
(

1

YX/S1

rXX +
1

YP/S1

rPX

)

· Θ(S1) (6.13c)

−S1

V
V̇ +

1

V
(FASFA

+ FBSFB
)

f3 = Ṡ2 = −
(

1

YX/S1

rXX

)

· Θ(S2) −
S2

V
V̇ (6.13d)

f4 = V̇ = FA + FB. (6.13e)

where X denotes the biomass, P the product. The substrates are described by the

variables S1 and S2 with the reaction rates

rX = µmax

(
S1

S1 +KS1

+
S2

S2 +KS2

)

(6.14)

and

rP = αµmax

(
S1

S1 +KS1

+
S2

S2 +KS2

)

X + βX. (6.15)

This empirical Monod approach assumes a maximum growth rate µmax. Yi
¶ are

the rate of yield coefficients. The coefficients α and β stand for the growth and

non-growth associated product building. Kj
‖ are the product limitation coefficients

([Köh02]). The model parameters are obtained by a heuristical parameter estimation

process based on measurement data obtained at BASF AG ([Küh02]).

Objective in the presented process is to maximize the product yield. Penalized is

the integral over the feed stream

max

(

Φ = cp(tf) − λ

∫ tf

ti

F1 + F2 dt

)

(6.16)

where λ is a weighting factor. We apply a piecewise constant control parameteriza-

tion. Köhler sets the coefficients SFA
and SFB

describing the relative contribution

of the feed streams FA and FB to one, only substrate S1 is fed to the process.

¶Yi = YX/S1
, YX/S2

and YX/P
‖j = S1, S2

108 Applications

time[h]time[h]

Substrate 1Feed stream

? ? ??

Figure 6.4: In the left plot the optimal feeding strategy with respect to the penalty term

(6.16) is plotted for the Kühn model (6.13). The right plot shows the evolution of substrate

1. The ordinate of the plots is unlabeled for nondisclosure reasons. The arrows point to

the time points where implicit discontinuities and thus model changes arise.

time[h]time[h]time[h]

ProductVolumeSubstrate 2

?

Figure 6.5: Solution trajectories for the Kühn model (6.13). The ordinate of the plots is

unlabeled for nondisclosure reasons. The arrows point to the time points where implicit

discontinuities and thus model changes arise.

6.2 Optimization of a biotechnological batch process 109

Bounds on controls

0 ≤ u(t) ≤ umax, t ∈ [ti, tf] (6.17)

are given by the maximum throughput that can be fed into the batch fermenter.

The state constraints arise from the fact that each of the masses is required to be

positive

{S1,2, P, V,X}(t) ≥ 0, for all t ∈ [ti, tf].

In the left plot in Figure 6.4 we show the optimal feeding strategy and the resulting

trajectory for substrate 1 in the right. In Figure 6.5 we present the trajectories of

substrate 2, the overall volume and the product.

As already explained in the context of our implementation of the BDF integrator

in Chapter 3, implicit discontinuities occur at points of vanishing substrates. As

discussed the non classical continuation leads to a three valued switching structure.

The initial trajectory for substrate 1 is of the form as plotted in Figure 3.6. As local

solution we obtain, as can easily be seen a trajectory containing for substrate 1 four

instead of one switches.

We used 20 multiple shooting intervals of equal length, and piecewise constant con-

trols. The running time is 17.3 seconds on a Linux machine (Intel Pentium IV, 2.53

GHz with a cache of 512 KB).

6.2.2 Optimization of a biotechnological batch process

In this part we present the optimization of a biotechnological batch fermentation

process of similar characteristics to the preceding one but equipped with three con-

trol functions and three implicit discontinuities.

The quite well studied process model describes the fed-batch fermentation with

Streptomyces tendae for the antibiotics production (e.g. [Kin94], [KWB+95]). We

restrict ourselves to giving the equations with implicit discontinuities and discussing

the results. For a detailed model description refer to [Kin94].

The growth rate of amino acids is given by

µAs =

(

µAs1m

cA
cA +KAs1

+ µAs2m
KAs2

KAs2 + cA

)

· Θ(cA)

· cC
cC +KAsC

· ρ(gNu)gPr

(6.18)

110 Applications

and the formation of nucleotides by

µNu =

(

µNu1m

cPh

cPh +KNu1

+ µNu2m

KNu2

KNu2 + cPh

)

· Θ(cPh)

· gAs

gAs +KNuAs

· ρ(gNu)gPr ,
(6.19)

where Θ is the Heaviside function 3.54. Values for the constants KX (KAs1 , KAs2 ,

KAsC , KNu1 , KNu2 , KNuAs) and for the constants µAs1m , µAs2m and µNu1m , µAs2m

are taken from [Kin94]. cA stands for the ammonia concentration, cC for the glucose

concentration and cPh for the phosphate concentration. The gX stand for relative

concentrations (gx = mX

VX
).

Again we observe, that locally no classical solution exists (see Chapter 3). Therefore

we choose

ε =
Dσ+

1

Dσ+
1 −Dσ−

1

=
−
(

1
YX/S1

rXX + 1
YP/S1

rPX
)

− S1

V
V̇ + 1

V
(FASFA

+ FBSFB
)

−
(

1
YX/S1

rXX + 1
YP/S1

rPX
) .

(6.20)

and calculate the continuation for the solution. Again we obtain, as is characteristic

for switchings due to vanishing concentration (see Figure 3.5) in the model on hand

(see Figure 6.6), that the convex combination leads to locally vanishing right hand

sides for the corresponding component. Termination criterion is an a priori fixed

broth volume.

In the upper part (upper six plots) of Figure (6.6) optimization results of the batch

fermentation process are shown, which we obtained using a smoothing of the dis-

continuities with functions of the form

c4X
const +c4X

arising from model changes when concentrations cX - modeled by usage of the heav-

iside functions - vanish with an adequately chosen constant const for each of the

three components.

The lower part (lower six plots) of Figure (6.6) shows the optimization result ob-

tained upon explicitly taking discontinuities into account.

The intention is to maximize the amount of product in the optimization process.

With our algorithm, we obtain an amount of 75.961g compared to 72.600g as found

6.2 Optimization of a biotechnological batch process 111

in Schäfer ([Sch99a]), which amounts to an increase of 4.63%.

The gain coming from explicitely allowing implicit discontinuities can be explained

in the sense that parts which contribute to the objective are shrunk when applying

the smoothing. Nevertheless it can not be asserted in general that leaving the model

unchanged (in the sense that discontinuities are taken into account) causes better

optimization results.

However, assuming that the biotechnological model with implicit discontinuities cor-

rectly describes the system, then smoothings of the system inherent discontinuities

always changes the model qualitatively and so may change the optimization results

and even cause them to be incorrect. Our approach thus broadens the applicability

of derivative based optimization methods.

We used 15 multiple shooting intervals of equal length, and piecewise constant con-

trols for the three control variables. The running time is 97.1 seconds on a Linux

machine (Intel Pentium IV, 2.53 GHz with a cache of 512 KB).

112 Applications

time[h]time[h]time[h]
0 50 100 150 0 50 100 150 0 50 100 150

0 50 100 150 0 50 100 150 0 50 100 150

0

0.2

0.4

0.02

0.04

0.06

0.02

0.04

0.06

0

1

2

3

2
4
6

2

4

6

0

2

4

5

12

5

10

15

0

0.2

0.4

0.02

0.04

0.02

0.04

time[h]time[h]time[h]

FGl FPh FA

mNu mPh mA

FGl FPh FA

mNu mPh mA

Figure 6.6: Find plotted above the optimal feed profiles (row one and row three) and

the three optimal state profiles for the biotechnological process with respect to the maxi-

mization of the product mass at the end time. In the upper two rows the results for the

smoothed version without implicit discontinuities are presented, the lower two rows show

the results for the model explicitely taking implicit discontinuities into account. FGl , FPh

and FA stand for the glucose, phosphate and ammonia feeds, respectively. mNu, mPh and

mA represent the masses of the nucleotid mass, the phosphate mass and the ammonia

mass.

6.3 Real-time optimization of discontinuous processes 113

6.3 Real-time optimization of discontinuous pro-

cesses

Since real world processes rarely completely coincide with the mathematical model

used for its description, a priori off-line optimization of the processes has limited

applicability. Real-time optimization techniques have recently attracted increasing

interest ([AZ00]). Bock et al. [BDS+00] and [BDLS00] proposed a new approach to

deal we real-time processes based on an efficient initial value embedding strategy,

that exploits solution information in subsequent optimization problems. Instead of

applying a fast off-line algorithm successively solving the arising problems [BBB+01]

completely and returning the converged solution to the real-time process they di-

rectly send back the first QP solution of a full step exact Hessian SQP algorithm.

Under some restriction Diehl in 2002 ([Die02]) was able to give a proof for contrac-

tivity of the real-time iterations.

Due to the extraordinary complexity of biotechnological processes the models avail-

able are often subject to severe simplifications. Feedback methods like the ones

proposed by Diehl et al. ([DBS04]) in real-time can react to deviation between the

model proposed states and the measurements.

We again focus on the model of King [Kin94] explained in the last section in some

detail.

We simulate perturbation to the process in the following form: After every sampling

time step we add a normally distributed error weighted by a factor weight = 0.04

with mean 0, variance 1 and deviation 1 to the actual state vector. Additionally,

we simulate a model shortcoming by subjoining a drift to a larger concentration in

every sampling step. We regard this assumption to be proximate since despite of

the stirring (see Figure 6.3) local inhomogeneities are likely to appear.

Every state is assumed to be measurable so that we can perform a measurement

after every single sampling interval.

We combined the approach of Diehl et al. ([Die02]) with our BDF integrator for

implicit discontinuities. Since the trajectory memory techniques proposed in the

thesis on hand can not directly be transferred to real-time applications, we choose

an embedded strategy. Because the process model is a priori known we perform

an off-line optimization of the process to determine accurate initial values and a

114 Applications

time[h]time[h]time[h]

time[h]time[h]time[h]
0 50 100 150 0 50 100 150 0 50 100 150

0 50 100 150 0 50 100 150 0 50 100 150

0

0.1

0.2

0.3

0.4

0

2

4

6

8

×10−3

0

2

4

×10−3

0

5

10

0

5

10

0

5

10

FGl FA FPh

mNu mA mPh

Figure 6.7: In the first row the feed profiles for the feedback optimization on shrinking

horizons with implicit discontinuities are presented. The second row shows the adjacent

state profiles for the process.

chronology graph C. For the drift assumption mentioned above we obtain optimal

offline trajectories significantly differing from those obtained under the assumption

that the model correctly describes the process. Based on these offline trajectories we

start the feedback algorithm on shrinking horizons within the digraph C, which in

contrary to the results in the preceding section only shows vanishing ammonia mass.

The controls and three state variables are plotted in Figure 6.7. The introduced

perturbation as a normal distributed error and the drift significantly shift the tra-

jectories in comparison to the off-line optimization of the unperturbed case to higher

substrate concentrations. Qualitatively the trajectory of the phosphate mass re-

mains almost unchanged.

Since feedback optimization techniques become increasingly important for industrial

applications and the accurate modeling of real-world processes often includes im-

plicitly defined discontinuities the combination of our approach comparing different

6.3 Real-time optimization of discontinuous processes 115

digraphs with the above mentioned feedback techniques. One possibility would be

to perform the feedback optimization in parallel on different digraphs.

116 Applications

Chapter 7

Conclusion and Outlook

In this last chapter we give a brief summary of the methods developed in this thesis

for optimal control of implicitly discontinuous processes.

Moreover, we indicate possible extensions and how they can be built on our methods

and results, including the presentation of concrete ideas and perspectives.

7.1 Conclusion

In the thesis on hand we presented strategies for the efficient treatment of large scale

optimal control problems with implicit discontinuities. The main achievements are:

• We implemented a state-of-the-art BDF integrator based on the code DAESOL

which can efficiently treat implicit discontinuities in derivatives and states in

the model and provides the sensitivity information (see Chapter 3) needed for

the application of the solver in direct optimization.

• Since bi-phase dynamic process models are often severely ill-conditioned highly

accurate derivate information is needed. Because of the large scale of the mod-

els of often more than thousand state variables, efficient derivative generation

becomes crucial. We have presented a highly efficient strategy to generate

derivatives needed for the sensitivity generation (see Chapter 4) specifically

adapted to rigorous multi-tray distillation models (see 6.1) with implicit dis-

continuities. The sparsity patterns of the right hand sides of the differential

algebraic equation are partitioned into those which are invariant with respect

to area changes indicated by sign changes of the switching vector and those

118 Conclusion and Outlook

which vary. Additionally, the similarity of patterns of the right hand side Jaco-

bians in the model parts arising from different trays is exploited (see Chapter

4).

• We have developed an algorithm to survey and treat implicit discontinuities

beyond the integrator since implicit discontinuities can only be hidden in the

integrator if the digraph Cl (see Chapter 5) remains unchanged within the

SQP step. We give strategies for the treatment of switching points which

coincide with multiple shooting points and of digraph changes due to changing

chronology, newly appearing or vanishing switching points.

• Chapter 6 is devoted to applications. We here presented the modeling of

a highly complex multi-phase distillation column as well as results for the

optimization of the complex distillation process. Moreover, we here applied

our algorithms to two biotechnological processes showing the characteristic of

inconsistent switching. We also give optimization results and compare them

with a smoothed treatment.

7.2 Outlook

The techniques presented to exploit the sparsity patterns in the derivative matrices

have shown to be highly efficient for differential algebraic equation (DAE) models.

They explicitely take account of the special structure arising from rigorous models

of distillation columns.

Since bio-mathematical systems - often described by partial differential equations -

attract increasing attention the special adaptation of the linear algebra involved in

the DAE solver seems obvious.

In our implementation partitionings of the Jacobians of the right hand sides are

performed in advance, what requires an a priori adequate ordering of the model

equations. For a wider applicability it can be interesting to perform the graph par-

titioning automatically.

For systems with a high number of differential variables but comparatively few

degrees of freedom in the controls, Schlöder ([Sch88]) proposed a highly efficient

approach originally developed for parameter estimation problems transferred to op-

timal control by Schäfer ([Sch04]). For future use it seems auspicious - with regard

7.2 Outlook 119

to state discritized partial differential equation - to combine this technique with our

treatment of implicit discontinuities.

For the DAE system (1.1) it is - based on the trajectory memory implemented in

this thesis - possible to exploit the stored trajectory information to evaluate adjoint

derivative information for the BDF method using again Bock’s Internal Numerical

Differentiation (IND). We obtain as recursion formula which can be easily evaluated

based on the stored trajectory information (see Chapter 3 and 5). This strategy

seems to be promising for applications from process engineering for which compara-

tatively few components have to differentiated in the solution point.

Our hierarchical memory technique for storing trajectory information can be em-

ployed to reuse this information in multiple successive SQP steps (ad hoc implemen-

tation available). This idea can be regarded as a natural extension of Bock’s IND

(see Chapter 3) from the classical sensitivity generation within the integrator to the

SQP algorithm. Steps generated on the basis of this freezing technique are available

extraordinarily fast since the expensive sensitivity generation is dramatically accel-

erated at the price of a temporary switch off of the error control.

We presented (see Chapter 5) an algorithm which explicitely takes switching events

into account of the optimization algorithm. In the approach we proposed an opti-

mum search is performed within a digraph uniquely given by the active switching

structure. For future implementations it will be interesting to fix the active digraph

by usage of temporarily active inequality constraints - at the cost of breaking the

complete QP structure.

In Chapter 6 we presented the Feedback optimization on shrinking horizons of a

batch fermentation process. Since the process itself is comparatatively slow, af-

ter every time step the entire offline algorithm could be restarted. For the model

describing the rack-in process of the distillation column this surely can’t be accom-

plished. Nevertheless it should be possible to allow several digraphs within which

the optimization could be in parallel be performed.

120 Conclusion and Outlook

Appendix A

Distillation column

In this Chapter we present the modeling details of the distillation column treated

in Chapter 6 (see Figure 6.1). The parameters are subject to nondisclosure, we

therefore do not give parameter values for the parameters P1, P2, . . . , P45.

In the following we suppress the index i from all variables of the dimension NTray

for clarity reasons. Index j stands for one of the NComp components of the mixture.

A.1 Problem formulation

In the following we briefly describe the components of the distillation column model

of Chapter 6 in a tabulated form. Math. stands for the mathematical symbol,

Program gives the in the code used variable name, Dimension gives the dimension

of the anent variable.

A.1.1 Differential variables

The overall number of differential variables NXD in the distillation column is given

by

NXD = (NComp +1) ∗ NTray +Σ1

where Σ1 stands for the additional variables arising in reboiler and condenser.

The M additional variables in reboiler and condenser describe the integrals over the

control expenses like integrated feed, heating and cooling energy etc..

122 Distillation column

Description Math. Program Dimension

Component mol nj n[j] NTray ∗NComp

Energy per tray E Energy NTray

Table A.1: (NComp +1) ∗ NTray differential variables which occur on every tray.

A.1.2 Algebraic variables

We collect the algebraic variables in groups as follows

• In- and out-streams (see Table A.2)

• Vapor-liquid equilibrium and miscellaneous (see Table A.3)

• Material variables (see Table A.4)

• Volume constraints (see Table A.5)

• Thermal variables (see Table A.6)

• Geometric variables (see Table A.7)

• Energy variables (see Table A.8)

Description Math. Program Dimension

Liquid product Lout F l out NTray

Temperature liquid product tl,out t l out NTray

Pressure liquid product pl,out p l out NTray

Molar enthalpy liquid product hl,out h l out NTray

Vapor product V out F v out NTray

Temperature vapor product tv,out t v out NTray

Pressure vapor product pv,out p v out NTray

Molar enthalpy vapor product hv,out h v out NTray

Mole fraction liquid product X l,out
j x l out[j] NTray ∗NComp

Mole fraction vapor product Xv,out
j x v out[j] NTray ∗NComp

Table A.2: In- and out-streams

A.1 Problem formulation 123

Description Math. Program Dimension

Temperature T temp NTray

Dew temperature T dew TDew NTray

Saturated temperature T sat TSat NTray

Pressure p press NTray

Saturated pressure component psat
j psat i[j] NTray ∗3

k-value kj k[j] NTray ∗NComp

Vapor fraction ψ vap frac NTray

Thermodynamic vapor fraction ψtherm vap frac therm NTray

Table A.3: Vapor-liquid equilibrium and miscellaneous

Description Math. Program Dimension

Holdup mol ntot n tot NTray

Holdup mol liq nliq n liq NTray

Holdup mol vap nvap n vap NTray

Mole fraction liquid Xj x[j] NTray ∗NComp

Mole fraction liquid dew Xdew
j x dew[j] NTray ∗NComp

Mole fraction vapor Yj y[j] NTray ∗NComp

Mole fraction mixture zj z[j] NTray ∗NComp

Table A.4: Material variables

Description Math. Program Dimension

Component molar enthalpy ρliq rho liq NTray

Component molar enthalpy ρvap rho vap NTray

Component molar enthalpy compo-

nent

ρliq
j rho liq i[j] NTray ∗NComp

Table A.5: Volume constraints

124 Distillation column

Description Math. Program Dimension

Molar enthalpy h h NTray

Molar enthalpy liquid hl hl NTray

Molar enthalpy liquid saturated hl,sat hl sat NTray

Molar enthalpy vapor hv hv NTray

Molar enthalpy vapor saturated hv,sat hv sat NTray

Molar enthalpy liquid component hl
j hl i[j] NTray ∗NComp

” saturated hL,sat
j hl i sat[j] NTray ∗NComp

Molar enthalpy vapor component hV
j hv i[j] NTray ∗NComp

” saturated hV,sat
j hv i sat[j] NTray ∗NComp

Table A.6: Thermal variables

Description Math. Program Dimension

Liquid volume V liq V liq NTray

Vapor volume V vap V vap NTray

Height above weir ∆hweir delta h weir NTray

Liquid level level level NTray

Table A.7: Geometric variables

Description Math. Program Dimension

Energy of the content Efluid E fluid NTray

Energy of the vessel Evessel E vessel NTray

Table A.8: Energy variables

A.1 Problem formulation 125

A.1.3 Parameters and Controls

The number of design parameters is given by

NP = 4NTray +NComp +Σ2

where Σ2 subsumes parameters specific for condenser and reboiler.

Description Math. Program Dimension

Mole fraction liquid feed X in
j X in[j] NComp

Molar enthalpy liquid feed hin h in 1

Volume V V NTray

Area A A NTray

Height of weir hweir h weir NTray

Valve parameter Y valve Y valve NTray

Heat capacity for p = const Csteel
p cp steel 1

Mass of the tray msteel m steel 1

Outside temperature T ref T referenz 1

Table A.9: Parameters

Description Math. Program Dimension

Heating in reboiler Q Q 1

Cooling in condenser Qcool Q cool 1

Reflux ratio R ratio 1

In-Feed control ufeed feed control 1

Reboiler reflux ratio Rreboil ratio reb 1

Vapor outflow control Y cont
cond Y cont 1

Table A.10: Control functions

The outstream of the condenser

L̂ = L+D

is composed of the reflux L and the distillate D.

The reflux ratio is given by

R =
L

D
.

126 Distillation column

and thus

L = RD = R
R + 1

R + 1
D =

R

R + 1
L̂. (A.1)

The reflux L is piped to tray NTray −1. The obtained condenser product is D > 0.

A respective relationship holds for the reboiler (see Figure 6.1).

A.1.3.1 Switching functions

Three switching function σ(t) are associated to every tray so that the overall number

of switching functions is

NSWT = 3 ∗ NTray .

The switching functions arise from

• Mono-phase bi-phase transition

ψtherm
i − 1

{

>

≤

}

0

where ψtherm
i denotes the thermodynamic vapor fraction,

• the outstream of vapor due to overpressure

pi

{

>

≤

}

1,

with the pressure pi on tray i and

• weir overflows

∆hweir
i

{

>

≤

}

0

caused be the amount of liquid holdup which exceeds the weir height on the

respective tray.

A.1 Problem formulation 127

A.1.4 Differential equations

In the following subsection we list the differential equations of the DAE process

model.

Component balance:

The NTray ∗ NComp component balances are given by

ṅij = −X l,out
i,j Lout

j − Y out
i,j V out

j

+X l,out
j+1,jL

out
j+1Θ(ntray − j − 1)

+ Y out
j−1,jV

v,out
j−1 Θ(j − 1)

+ δj,NFeed X
in
i L

in.

(A.2)

Energy balance:

We use for the NTray energy balances

Ėj = − hL,out
j Lout

j − hV,out
j V out

j

+ hV,out
j−1 V

out
j−1 + hL,out

j+1 Lout
j+1

+ δj,NFeed h
L,inLin

+ δj,NTray Q
cool

+ δj,1 Q.

(A.3)

A.1.5 Algebraic equations

To adequately model the dynamics of the liquid-vapor mixture which explicitely

allows a vanishing liquid phase we formulated the following algebraic equations:

Mass balance:

The NTray + NComp ∗NTray + NTray + (NComp +3) ∗ NTray equations have

the following form (depending on the valid sign structure of the switching vector)

ntot
j =

∑

i

ni,j (A.4)

ni,j = Yi,jn
vap
j +Xi,jn

liq
j (A.5)

ntot
j hj = nvap

j hv
j + nliq

j h
l
j. (A.6)

128 Distillation column

For ψtherm
j < 1 we obtain:

nvap
j = ψj · ntot

j , (A.7)

∑

i

Xi,j = 1 , (A.8)

Yi,j = ki,jXi,j , (A.9)
∑

i

Yi,j = 1 . (A.10)

For overheated gas ψtherm
i ≥ 1 we instead assume:

nvap
j = ntot

j , (A.11)

nliq
j = 0 , (A.12)

Xi,j = Xdew
i,j , (A.13)

ψj = 1 . (A.14)

Energy balance:

The 3 ∗NTray have the form:

Ej = Evessel
j + Efluid

j (A.15)

Evessel
j = Csteel

p msteel(Tj − T referenz) (A.16)

Efluid
j = ntot

j hj − 10−4pjVj. (A.17)

Thermodynamic vapor fraction:

On every tray the thermodynamic vapor fraction is given by:

ψtherm
j · (hv,sat

j − hl,sat
j) = hj − hl,sat

j (A.18)

Liquid product:

The 5 ∗ NTray + NComp ∗NTray + NTray liquid product equations are of the

A.1 Problem formulation 129

following form:

A levelj = V liq
j (A.19)

∆hweir
j = levelj − hweir

j (A.20)

tl,out
j = Tj (A.21)

pl,out
j = pj (A.22)

X l,out
i,j = Xi,j (A.23)

hl,out
j = hl

j. (A.24)

For ∆hweir
j > 0:

Lout
j = 103|∆hweir

j | 32 , (A.25)

For ∆hweir
j ≤ 0:

Lout
j = 0. (A.26)

Vapor product:

The 3 ∗ NTray +NComp ∗NTray + NTray equations are of the form

tv,out
j = Tj, (A.27)

pv,out
j = pj, (A.28)

hv,out
j = hv

j , (A.29)

Xv,out
i,j = Yi,j . (A.30)

For overpressure pj > 1 in tray i we obtain

V out
j = 10Y valve

j (pj − 1), (A.31)

otherwise, for pressure pj ≤ 1

V out
j = 0. (A.32)

and for the condenser:

For overpressure pcond > 1 in the condenser we obtain

V out
cond = Y cont

cond (pcond − 1), (A.33)

130 Distillation column

otherwise, for pressure pcond ≤ 1:

V out
cond = 0. (A.34)

Specific enthalpy liquid:

The NTray + NComp ∗NTray equations are of the form

hl
j =

∑

j

Xi,jh
l
i,j (A.35)

and for ψtherm
j < 1:

hl
i,1 = P1 − P2 + P3(Tj − 25) (A.36)

hl
i,2 = P4 − P5 + P6(Tj − 25) (A.37)

hl
i,3 = P7 − P8 + P9(Tj − 25) (A.38)

hl
i,4 = P10 − P8 + P9(Tj − 25) (A.39)

otherwise for ψtherm
j ≥ 1:

hl
i,1 = P1 − P2 + P3(T

dew
j − 25) (A.40)

hl
i,2 = P4 − P5 + P6(T

dew
j − 25) (A.41)

hl
i,3 = P7 − P8 + P9(T

dew
j − 25) (A.42)

hl
i,4 = P10 − P8 + P9(T

dew
j − 25) (A.43)

with the parameters P1, P2, . . . , P10.

Specific enthalpy vapor:

The NTray + NComp ∗NTray equations for the vapor enthalpies are given by

hv
j =

∑

j

Yi,jh
v
i,j , (A.44)

hv
i,1 = P1 + P11(Tj − 25), (A.45)

hv
i,2 = P4 + P12(Tj − 25), (A.46)

hv
i,3 = P7 + P13(Tj − 25), (A.47)

hv
i,4 = P14(Tj − 25), (A.48)

with process parameters Pk.

A.1 Problem formulation 131

k-values:

For the NComp ∗NTray + 3 ∗NTray k-value equations, we obtain

ki,1 pj = psat
i,1 , (A.49)

ki,2 pj = psat
i,2 , (A.50)

ki,3 pj = psat
i,3 , (A.51)

ki,4 = 1000 ki,1 (A.52)

and

psat
i,1 =

(

exp(P15 +
P16

T̂j + 273.15
+ (P17) log |T̂j + 273.15|

+ P18(T̂j + 273.15)210−6)
)

10−5 (A.53)

psat
i,2 =

(

exp(P19 +
P20

T̂j + 273.15
+ (P21) ∗ log(|273.15 + T̂j|)

+ (P22) ∗ (T̂j + 273.15)1)
)

10−5 (A.54)

psat
i,3 =

(

exp(P23 +
P24

T̂j + 273.15
+ (P25) ∗ log(|273.15 + T̂j|)

+ P26 ∗ (T̂j + 273.15)210−6)
)

10−5 (A.55)

with

T̂j =

{

Tj ψtherm
j > 1

T dew
j ψtherm

j ≤ 1
(A.56)

and the parameters Pk.

Specific density liquid phase:

The NTray + NComp ∗NTray equations are given by

ρliq
j =

∑

j

ρliq
ij (A.57)

132 Distillation column

ρliq
i,1 = P27/



P
1+

∣
∣
∣
∣

(

1−
T̂j+273.15

P29

)∣
∣
∣
∣

P30

28



 , (A.58)

ρliq
i,2 = P31/



P
1+

∣
∣
∣
∣

(

1−
T̂j+273.15

P33

)∣
∣
∣
∣

P34

32



 , (A.59)

ρliq
i,3 = P35/



P
1+

∣
∣
∣
∣

(

1−
T̂j+273.15

P37

)∣
∣
∣
∣

P38

36



 , (A.60)

ρliq
i,4 = 1.0 (A.61)

with

T̂j =

{

Tj ψtherm
j > 1

T dew
j ψtherm

j ≤ 1.
(A.62)

Specific density vapor phase:

For the NTray equation we formulate

ρvap
j (P39 (Tj + 273.15)) = 100 pj. (A.63)

Bubble temperature liquid:

The relation between the NTray boiling point temperatures and the individual

pressures on the trays is as follows

pj =(zi,1 + 1000 zi,4)
(

exp(P15 −
P40

T sat
j + 273.15

− P41 log |T sat
j + 273.15| + (P18 10−6) (T sat

j + 273.15)2)
)

10−5

+ zi,2

(

exp(P19 −
P42

T sat
j + 273.15

− P44 log |T sat
j + 273.15| + (P22) (T sat

j + 273.15))
)

10−5

+ zi,3

(

exp(P23 −
P43

T sat
j + 273.15

− P45 log |T sat
j + 273.15| + (P26 10−6) (T sat

j + 273.15)2)
)

10−5.

(A.64)

A.1 Problem formulation 133

Dew point temperature vapor:

For the NComp ∗NTray +NTray dew point relationships we obtain

pj zi,1 = Xdew
i,1

(

exp(P15 −
P40

T dew
j + 273.15

− P41 log(|T dew
j + 273.15|)

+ P18 10−6(T dew
j + 273.15)2)

)

10−5, (A.65)

pj zi,2 = Xdew
i,2

(

exp(P19 −
P42

T dew
j + 273.15

− P44 log(|T dew
j + 273.15|)

+ P22(T
dew
j + 273.15))

)

10−5, (A.66)

pj zi,3 = Xdew
i,3

(

exp(P23 −
P43

T dew
j + 273.15

− P45 log(|T dew
j + 273.15|)

+ P26 10−6(T dew
j + 273.15)2)

)

10−5, (A.67)

pj zi,4 = Xdew
i,4

(

exp(P15 −
P40

T dew
j + 273.15

− P41 log(|T dew
j + 273.15|)

+ P18 10−6(T dew
j + 273.15)2)

)

10−5, (A.68)

and
∑

j

Xdew
i,j = 1. (A.69)

Specific enthalpy saturated vapor:

The NComp ∗NTray + NTray equations for specific enthalpies in the saturated

vapor are

hv,sat
i,1 = P1 + P11 (T dew

j − 25), (A.70)

hv,sat
i,2 = P4 + P12 (T dew

j − 25), (A.71)

hv,sat
i,3 = P7 + P13 (T dew

j − 25), (A.72)

hv,sat
i,4 = P14 (T dew

j − 25), (A.73)

hv,sat
j =

∑

j

zi,j h
v,sat
i,j . (A.74)

Specific enthalpy saturated liquid:

The NComp ∗NTray + NTray equations for specific enthalpies in the saturated

liquid are

hl,sat
i,1 = P1 − P2 + P3 (T sat

j − 25), (A.75)

hl,sat
i,2 = P4 − P5 + P6 (T sat

j − 25), (A.76)

hl,sat
i,3 = P7 − P8 + P9 (T sat

j − 25), (A.77)

hl,sat
i,4 = P10 − P8 + P9 (T sat

j − 25), (A.78)

hl,sat
j =

∑

j

zi,j h
l,sat
i,j . (A.79)

Appendix B

Practical usage of the automatic

differentiation in C/C++ in

MUSCOD-II

In this appendix we briefly explain how automatic differentiation can be used in our

tools.

For the generation of derivatives we rely on Griewank’s tool ADOL-C ([GJM+99]),

the sparsity compression techniques (see Chapter 4) are automatically applied based

on the bit patterns obtained from the right hand side of the differential algebraic

equation. It is possible to choose between the different sparsity pattern exploitation

techniques presented in Chapter 4.

B.1 Usage of Automatic differentiation in

MUSCOD-II

To provide derivative information of the compressed Jacobian or to calculated di-

rectional derivatives we use the the package ADOL-C ([GJM+99]).

The package utilizes operator overloading in C++ (even if the source files are im-

plemented in C). Overloading does not generate intermediate source code and only

requires minor changes to the users evaluation program. The key ingredient of AD

by overloading is the concept of an active variable. All variables that are considered

differentiable quantities must be declared as active types called adouble in ADOL-

C. All calculations involving active variables must occur between the void function

calls trace_on(tag,keep) and trace_off(file) marking the active section of

136
Practical usage of the automatic differentiation

in C/C++ in MUSCOD-II

the code.

B.1.1 A tool for the generation of derivative files

We provide a Perl script that takes care of the creation of the derivative functions

which ADOL-C needs.

The script uses the model source file as input. It looks for the three model functions

of which derivatives are needed - usually named iffcn, igfcn, iswitch - and writes

them to temporary files. These files are then altered to create the required derivative

files function_variable.cc, where function stands for iffcn, igfcn or iswitch

and variable for the type of variables with respect to which we are differentiating.

B.1.1.1 Using the script

Opon each call of extract.pl, you have to tell the script which file you want to

process. You can either do this by passing the name as a command line argument,

e.g. extract.pl, mymodel.c, or by changing the line

FILENAME_defines = "mymodel.c";

inside the script. Experienced users may modify the behavior, too. For example

you may suppress the creation of derivatives for the function describing the algebraic

equations by setting the value of gfcn_create to zero at the top of the script. For

detailed information, please read the comments in the script.

In this context we to some extent stick to the general XML-Standard by using

tags indicating the beginning and the ending of certain passages. These tags are C

comments with certain keywords. In detail:

• You may want to use preprocessor directives like includes or defines in your C

source code which are needed by the model functions (usually iffcn, igfcn,

iswitch) and so also in the appropriate derivative files. Everything in between

the tags

/* begin_preprocessor */ ... /* end_preprocessor */

will be copied to the derivative files headers. Make sure all directives are

between these tags, otherwise you may obtain errors when compiling or linking

the code.

• Every function (iffcn, igfcn, iswitch) of the problem has to be encapsu-

lated by

/* begin_ffcn */ ... /* end_ffcn */

/* begin_gfcn */ ... /* end_gfcn */

/* begin_switch */ ... /* end_switch */ ,

respectively.

• The block of equations in each of these model functions has to be encapsulated

by

/* begin_equations */ ... /* end_equations */

• You may want to use your own names for the variables you use, to keep the

code in a readable and understandable form. For example you may define and

set the local variable

double temperature;

temperature = xd[0];

and use temperature instead of xd[0] later on in the code. To handle this im-

plicit formulation the user has to indicate which local variables are differential

variables, derivative of a differential variables, algebraic variables, a parame-

ters or a controls by writing the definitions of the variables between the fitting

tags:

/* begin_differential */ ... /* end_differential */

/* begin_diffdiff */ ... /* end_diffdiff */

/* begin_algebraic */ ... /* end_algebraic */

/* begin_parameters */ ... /* end_parameters */

/* begin_controls */ ... /* end_controls */

This has to be done inside each of the three model functions.

138
Practical usage of the automatic differentiation

in C/C++ in MUSCOD-II

List of Figures

1.1 Hang glider - Trajectory after first SQP step 14

1.2 Hang glider - Trajectory after third SQP step 15

1.3 Hang glider - Trajectory after last SQP step 15

3.1 Stability domains for the BDF-method 38

3.2 Illustration of jump in states at implicit discontinuity 50

3.3 Model of a single tray . 53

3.4 Simulation results of a single tray . 54

3.5 Schematic representation of the vector field for a substrate in biotech-

nological process . 57

3.6 Trajectory for a biotechnological process 58

5.1 Two-dimensional schematic cut through the phase space 81

5.2 Switching point on multiple shooting node 82

5.3 Switching point on multiple shooting node - overlapping areas 88

5.4 Changes in the digraph C . 90

5.5 Schematic representation of a trajectory (dashed) in a 2D cut through

the phase space. The components of the switching vector σ, the

switching functions σi,j , show zero-crossings at the area boundaries. . 91

6.1 Schema of a distillation column . 101

6.2 Optimal trajectories for the rack-in process of the distillation process 105

6.3 Diagram of a batch fermenter . 106

6.4 Optimal trajectories for the Kühn batch fermentation process - Part I 108

6.5 Optimal trajectories for the Kühn batch fermentation process - Part II108

6.6 Optimal trajectories for the King batch fermentation process 112

6.7 Optimal trajectories for the King batch fermentation process - feed-

back optimization . 114

Bibliography

[AdP02] P. W. Atkins and J. de Paula. Atkins’ Physical Chemistry. Oxford

University Press, Oxford, 2002.

[AMB93] B.M. Averick, J.J. Moré, and C.H. Bischof. Computing large sparse Ja-

cobian matrices using automatic differentiation. Preprint MCS-P348-

0193, Mathematics and Computer Science Division, 1993.

[AZ00] F. Allgöwer and A. Zheng, editors. Nonlinear Predictive Control, vol-

ume 26 of Progress in Systems Theory. Birkhäuser, Basel, 2000.

[Bau99] I. Bauer. Numerische Verfahren zur Lösung von Anfangswertauf-

gaben und zur Generierung von ersten und zweiten Ableitungen mit

Anwendungen bei Optimierungsaufgaben in Chemie und Verfahrens-

technik. PhD thesis, University of Heidelberg, 1999. Download at:

http://www.ub.uni-heidelberg.de/archiv/1513.

[Bau00] J. Bausa. Dynamische Optimierung energie- und verfahrenstechni-

scher Prozesse, volume 667 of Fortschr.-Ber. VDI Reihe 3, Verfahrens-

technik. VDI Verlag, Düsseldorf, 2000.

[Bau01] A. Baud. Mont Blanc et Aiguilles Rouges à ski. Nevicata, 2001.

[BBB+01] T. Binder, L. Blank, H.G. Bock, R. Bulirsch, W. Dahmen, M. Diehl,

T. Kronseder, W. Marquardt, J.P. Schlöder, and O.v. Stryk. Intro-

duction to model based optimization of chemical processes on mov-

ing horizons. In M. Grötschel, S.O. Krumke, and J. Rambau, edi-

tors, Online Optimization of Large Scale Systems: State of the Art,

pages 295–340. Springer, 2001. download at: http://www.zib.de/dfg-

echtzeit/Publikationen/Preprints/Preprint-01-15.html.

142 BIBLIOGRAPHY

[BBS99] I. Bauer, H.G. Bock, and J.P. Schlöder. DAESOL – a BDF-code for the

numerical solution of differential algebraic equations. Internal report,

IWR, SFB 359, University of Heidelberg, 1999.

[BCC+92] C.H. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland. AD-

IFOR generating derivative codes from Fortran programs. Scientific

Programming, 1:11–29, 1992.

[BCKM94] C.H. Bischof, A. Carle, P.M. Khademi, and A. Mauer. The ADIFOR

2.0 system for the automatic differentiation of Fortran 77 programs.

Preprint MCS–P481–1194, Mathematics and Computer Science Divi-

sion, Argonne National Laboratory, Argonne, Ill., 1994. To appear in

IEEE Computational Science & Engineering.

[BCKM96] C.H. Bishof, A. Carle, P. Khademi, and A. Mauer. Adifor 2.0: Au-

tomatic differentiation of Fortran 77 programs. IEEE Computational

Science & Engineering, 18(3):18–32, 1996.

[BDLS00] H.G. Bock, M. Diehl, D.B. Leineweber, and J.P. Schlöder. A direct

multiple shooting method for real-time optimization of nonlinear DAE

processes. In F. Allgöwer and A. Zheng, editors, Nonlinear Predictive

Control, volume 26 of Progress in Systems Theory, pages 246–267,

Basel, 2000. Birkhäuser.

[BDS+00] H.G. Bock, M. Diehl, J.P. Schlöder, F. Allgöwer, R. Findeisen, and

Z. Nagy. Real-time optimization and nonlinear model predictive con-

trol of processes governed by differential-algebraic equations. In AD-

CHEM2000 - International Symposium on Advanced Control of Chem-

ical Processes, volume 2, pages 695–703, Pisa, 2000.

[BES88] H.G. Bock, E. Eich, and J.P. Schlöder. Numerical solution of con-

strained least squares boundary value problems in differential-algebraic

equations. In K. Strehmel, editor, Numerical Treatment of Differential

Equations. Teubner, Leipzig, 1988.

[BGS88] R.W. Brankin, I. Gladwell, and L.F. Shampine. Starting BDF and

Adams codes at optimal order. J. Comput. Appl. Math., 21(3):357–

368, 1988.

[BHS02] M. Buss, M. Hardt, and O.v. Stryck. Numerical solution of hybrid

optimal control problems with applications in robotics. In Proc. 15th

BIBLIOGRAPHY 143

IFAC World Congress on Automatic Control, Barcelona, 2002. Else-

vier Science.

[Bie84] L.T. Biegler. Solution of dynamic optimization problems by successive

quadratic programming and orthogonal collocation. Comput. Chem.

Engng., 8:243–248, 1984.

[Bis04] C.H. Bischof. www.autodiff.org, 2004.

[Ble86] G. Bleser. Eine effiziente Ordnungs- und Schrittweitensteuerung unter

Verwendung von Fehlerformeln für variable Gitter und ihre Real-

isierung in Mehrschrittverfahren vom BDF-Typ. Master’s thesis, Uni-

versity of Bonn, Bonn, 1986.

[BNPS91] R. Bulirsch, E. Nerz, H.J. Pesch, and O.v. Stryk. Combining direct

and indirect methods in nonlinear optimal control: Range maximiza-

tion of a hang glider. Technical Report 313, Schwerpunktprogramm

der Deutschen Forschungsgemeinschaft, Technical University Munich,

1991.

[Boc74] H.G. Bock. Numerische Optimierung zustandsbeschränkter para-

meterabhängiger Prozesse. Master’s thesis, University of Cologne,

Cologne, 1974.

[Boc77] H.G. Bock. Zur numerischen Behandlung zustandsbeschränkter

Steuerungsprobleme mit Mehrzielmethode und Homotopieverfahren.

Z. Angew. Math. Mech., 57:T266–T268, 1977.

[Boc78] H.G. Bock. Numerische Berechnung zustandsbeschränkter optimaler

Steuerungen mit der Mehrzielmethode. Technical report, Carl-Cranz-

Gesellschaft, Report, 1978.

[Boc81] H.G. Bock. Numerical treatment of inverse problems in chemical re-

action kinetics. In K. H. Ebert, P. Deuflhard, and W. Jäger, editors,

Modelling of Chemical Reaction Systems, volume 18 of Springer Series

in Chemical Physics. Springer, Heidelberg, 1981.

[Boc83] H.G. Bock. Recent advances in parameter identification techniques for

ODE. In P. Deuflhard and E. Hairer, editors, Numerical Treatment of

Inverse Problems in Differential and Integral Equations. Birkhäuser,

Boston, 1983.

144 BIBLIOGRAPHY

[Boc87] H.G. Bock. Randwertproblemmethoden zur Parameteridentifizierung

in Systemen nichtlinearer Differentialgleichungen, volume 183 of Bon-

ner Mathematische Schriften. University of Bonn, Bonn, 1987.

[BP70] A. Bjørk and V. Pereyra. Solutions of Vandermonde systems of equa-

tions. Math. Comp., 24:893–903, 1970.

[BP84] H.G. Bock and K.J. Plitt. A multiple shooting algorithm for direct so-

lution of optimal control problems. In Proc. 9th IFAC World Congress

Budapest. Pergamon Press, 1984.

[BP02] U. Brandt-Pollmann. Optimization of discontinuous dynamical mod-

els. Technical report, First International Conference on Optimization

and Software, Hangzhou, China, December 2002.

[BP03] U. Brandt-Pollmann. Nicht-Standard Probleme der optimalen

Steuerung in Chemie und Biotechnologie. Technical report,

DECHEMA Jahrestagung der Biotechnologen, München, April 2003.

[BPDL+03] U. Brandt-Pollmann, M. Diehl, D. Leineweber, S. Sager, and

A. Schäfer. MUSCOD-II users’ manual, 2nd ed. 2003.

[BPDLP04] U. Brandt-Pollmann, M. Diehl, D. Lebiedz, and A. Potschka. A par-

allel optimal control algorithm based on direct multiple shooting for

differential algebraic equations. 2004.

[BPSB+04] U. Brandt-Pollmann, S. Sager, H. G. Bock, M. Diehl, D. Lebiedz,

and J. P. Schlöder. Generating start values for chemical engineering

optimal control problems by polynomial interpolation. submitted to

AIChE, 2004.

[BPSDL04] U. Brandt-Pollmann, S. Sager, M. Diehl, and D. Lebiedz. A fast

method for optimal control using automatic differentiation for sen-

sitivity generation. submitted to Opt. Meth. and Software, 2004.

[Bro67] C.G. Broyden. Quasi-Newton methods and their application to func-

tion minimization. Maths. Comp., 21:368–381, 1967.

[BS81] H.G. Bock and J.P. Schlöder. Numerical solution of retarded differ-

ential equations with state-dependent time lags, volume 61. Z. angew.

Math. Mech., 1981.

BIBLIOGRAPHY 145

[BT00] M. Benzi and M. Tuma. Orderings for factorized sparse approxi-

mate inverse preconditioners. SIAM Journal on Scientific Computing,

21(5):1851–1868, 2000.

[Bul71] R. Bulirsch. Die Mehrzielmethode zur numerischen Lösung von nicht-

linearen Randwertproblemen und Aufgaben der optimalen Steuerung.

Technical report, Carl-Cranz-Gesellschaft, Report, 1971.

[CC82] T.F. Coleman and A.R. Conn. Mathematical programming. Non-

linear programming via an exact penalty function: Asymptotic Analy-

sis, 24:123–136, 1982.

[CH52] C.F. Curtiss and J.O. Hirschfelder. Integration of stiff equations. Proc.

Nat. Acad. Sci., 38:235–243, 1952.

[Cha79] R. M. Chamberlain. Some examples of cycling in variable metric meth-

ods for constrained minimization. Math. Prog., 16:378–383, 1979.

[CL84] M. Crouzeix and F.J. Lisbona. The convergence of variable-

stepsize, variable-formula, multistep methods. SIAM J. Numer. Anal.,

21(3):512–534, 1984.

[CLPP82] R.M. Chamberlain, C. Lemaréchal, H.C. Pedersen, and M.J.D. Pow-

ell. The watchdog technique for forcing convergence in algorithms for

constrained optimization. Math. Prog. Study, 16:1–17, 1982.

[CM84] T.F. Coleman and J.J. Moré. Estimation of sparse Jacobian matrices

and graph coloring problems. SIAM J. Numer. Anal., 20:187–209,

1984.

[CPR74] A.R. Curtis, M.J.D. Powell, and J.K. Reid. On the estimation of sparse

Jacobian matrices. J. Inst. Math. Appl., 13:117–119, 1974.

[Cry72] C.W. Cryer. On the instability of high order backward-difference mul-

tistep methods. BIT, 12:17–25, 1972.

[CV98] T.F. Coleman and A. Verma. The efficient computation of sparse

Jacobian matrices. SIAM J. Sci. Comput., 19(4):1210–1233, 1998.

[Dah56] G. Dahlquist. Convergence and stability in numerical integration of

ordinary differential equations. Math. Scand., 4:33–53, 1956.

146 BIBLIOGRAPHY

[Dah63] G. Dahlquist. A special stability problem for linear multistep methods.

Bit, 3:27–43, 1963.

[Dav68] W.C. Davidon. Variance algorithms for minimization. Computer J.,

10:406–410, 1968.

[Dav91] W.C. Davidon. Variable metric method for minimization. SIAM J.

Optim., 1:1–17, 1991.

[DBS04] M. Diehl, H.G. Bock, and J.P. Schlöder. A real-time iteration scheme

for nonlinear optimization in optimal feedback control. SIAM J. Contr.

Optim., accepted, 2004.

[Deu83] P. Deuflhard. Order and stepsize control in extrapolation methods.

Numer. Math., 41:399–422, 1983.

[DHZ87] P. Deuflhard, E. Hairer, and J. Zugck. One step and extrapolation

methods for differential-algebraic systems. Numer. Math., 51:501–516,

1987.

[Die02] M. Diehl. Real-Time Optimization for Large Scale Nonlinear Pro-

cesses, volume 920 of Fortschr.-Ber. VDI Reihe 8, Meß-, Steuerungs

und Regelungstechnik. VDI Verlag, Düsseldorf, 2002.

[DS83] J.E. Dennis and R.B. Schnabel. Numerical Methods for Unconstrained

Optimization and Nonlinear Equations. Computational Mathematics.

Prentice Hall, 1983.

[DS89] J.E. Dennis and R.B. Schnabel. A view of unconstrained optimization.

In G. L. Nemhauser, A. H. G. Rinnooy, and M. J. Todd, editors,

Handbooks in Operations Research and Management Science, volume

1 (Optimization), Amsterdam, 1989. Elsevier.

[DV84] K. Dekker and J.G. Verwer. Stability of Runge-Kutta methods for stiff

non-linear differential equations. North Holland Publ. Co., Amster-

dam, 1984.

[EFS02] S. Engell, G. Frehse, and E. Schnieder, editors. Modeling, Analysis and

Design of Hybrid Systems. Number 279 in Lecture Notes in Control

and Information Sciences (LNCIS). Springer, 2002.

[EHL75] W.H. Enright, T.E. Hull, and B. Lindberg. Comparing numerical

methods of stiff systems of ODEs. BIT, 15:10–48, 1975.

BIBLIOGRAPHY 147

[Eic87] E. Eich. Numerische Behandlung semi-expliziter differentiell-alge-

braischer Gleichungssysteme vom Index I mit BDF Verfahren. Mas-

ter’s thesis, University of Bonn, Bonn, 1987.

[Eic92] E. Eich. Projizierte Mehrschrittverfahren zur numerischen Lösung von

Bewegungsgleichungen technischer Mehrkörpersysteme mit Zwangsbe-

dingungen und Unstetigkeiten, volume 109 of Fortschr.-Ber. VDI Reihe

18, Mechanik/Bruchmechanik. VDI Verlag, Düsseldorf, 1992.

[EN00] R. Ehrig and U. Nowak. Limex.

http://elib.zib.de/pub/elib/codelib/limex/, 2000.

[Fee99] W. F. Feehery. Dynamic optimization with path constraints. Ind. Eng.

Chem. Res., 38:2350–2363, 1999.

[Fil64] A.F. Filippov. Differential equations with discontinuous right hand

side. AMS Transl., 42:199–231, 1964.

[Fle71] R. Fletcher. A general quadratic programming algorithm. J. Inst.

Math. Appl., 7:76–91, 1971.

[Fle87] R. Fletcher. Practical Methods of Optimization. Wiley, Chichester,

2nd edition, 1987.

[Fle95] R. Fletcher. An optimal positive definite update for sparse Hessian

matrices. SIAM J. Optim., 5:192–218, 1995.

[FM90] A.V. Fiacco and G.P. McCormick. Nonlinear programming: Sequential

unconstrained minimization techniques. SIAM publications, 1990.

[Fre98] C. Freddebeul. A-BDF: A generalization of the backward differentia-

tion formula. SIAM J. Numer. Anal., 35(5):1917–1938, 1998.

[GB94] J.V. Gallitzendörfer and H.G. Bock. Parallel algorithms for optimiza-

tion boundary value problems in DAE. In H. Langendörfer, editor,

Praxisorientierte Parallelverarbeitung. Hanser, München, 1994.

[Gea71] C.W. Gear. Numerical initial value problems in ordinary differential

equations. Prentice Hall, 1971.

[Gea88] C.W. Gear. Differential-algebraic index transformations. SIAM J. Sci.

Stat. Comp., 9:39–47, 1988.

148 BIBLIOGRAPHY

[GJM+99] A. Griewank, D. Juedes, H. Mitev, J. Utke, O. Vogel, and A. Walther.

ADOL-C: A package for the automatic differentiation of algorithms

written in C/C++. Technical report, Technical University of Dresden,

Institute of Scientific Computing and Institute of Geometry, 1999. Up-

dated version of the paper published in ACM Trans. Math. Software

22, 1996, 131–167.

[GL96] G. Golub and C. van Loan, editors. Matrix computations. The Johns

Hopkins University Press, London, 3rd edition, 1996.

[GO84] C.W. Gear and O. Osterby. Solving ordinary differential equations

with discontinuities. ACM Trans. Math. Softw., 10(1):23–44, 1984.

[GP83] R.-P. Ge and M.J.D. Powell. The convergence of variable metric

matrices in unconstrained optimization. Mathematical Programming,

27:123–143, 1983.

[Gri83] R.D. Grigorieff. Stability of multistep-methods on variable grids. Nu-

mer. Math., 42:359–377, 1983.

[Gri00] A. Griewank. Evaluating Derivatives. Frontiers in applied mathemat-

ics. Society for Industrial and Applied Mathematics (SIAM), 2000.

[GUG96] U. Geitner, J. Utke, and A. Griewank. Automatic computation of

sparse Jacobians by applying the method of Newsam and Ramsdell. In

M. Berz et al. eds., editor, Computational Differentiation, Proceedings

of the Second International Workshop, pages 161–172, Philadelphia,

1996. SIAM.

[GV83] C.W. Gear and T. Vu. Smooth numerical solutions of ordinary dif-

ferential equations. In P. Deuflhard and E. Hairer, editors, Numerical

Treatment of Inverse Problems in Differential and Integral Equations.

Birkhäuser, Boston, 1983.

[Han94] M. Hanke. Asymptotic expansions for regularization methods of linear

fully implicit differential-algebraic equations, 1994.

[HBSC97] P. Hovland, C. Bishof, D. Spiegelman, and M. Casella. Efficient deriva-

tive codes through automatic differentation and interface contraction:

An application in biostatistics. SIAM J. Sci. Comp., 18(4):1056–1066,

1997.

BIBLIOGRAPHY 149

[Hin80] A.C. Hindmarsh. LSODE and LSODI, two new initial value ordi-

nary differential equation solvers. ACM-SIGNUM Newsletter, 15:10–

11, 1980.

[HNW93] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential

Equations, volume I of Springer Series in Computational Mathematics.

Springer, Berlin, 2nd edition, 1993.

[HNW96] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential

Equations, volume II of Springer Series in Computational Mathemat-

ics. Springer, Berlin, 2nd edition, 1996.

[HS02] S. Hossain and T. Steihaug. Graph coloring in the estimation of math-

ematical derivatives, 2002.

[Ins04] Texas Instruments. Derive. Texas Instruments, Inc., Housten, Texas,

6.0 edition, 2004.

[Int04] Intel. Ia-32 Intel Architecture Software Developer’s Manual, 2004.

[Kar39] W. Karush. Minima of functions of several variables with inequali-

ties as side conditions. Master’s thesis, Department of Mathematics,

University of Chicago, 1939.

[Kie98] A. Kienle. Reduced models for multicomponent separation pro-

cesses using nonlinear wave propagation theory. In 13th International

Congress of Chemical and Process Engineering, Praha, Czech Repub-

lic, 1998.

[Kin94] R. King. Mathematische Modelle mycelförmig wachsender Mikroorga-

nismen, volume 103 of Fortschrittberichte VDI, Reihe 17. VDI-Verlag,

Düsseldorf, 1994.

[Kis92] H. Z. Kister. Distillation Design. McGraw-Hill, New York, 1992.

[Köh02] J. Köhler. Optimierung biokinetischer Systeme. Technical report,

BASF AG, 2002.

[Kör02] S. Körkel. Numerische Methoden für Optimale Versuchsplanungsprob-

leme bei nichtlinearen DAE-Modellen. PhD thesis, University of Hei-

delberg, Heidelberg, 2002.

150 BIBLIOGRAPHY

[Kra04] Ch. Kraus. Efficient Object–Oriented Modelling, Simulation and Pa-

rameter Estimation for Biomechanical Problems. PhD thesis, Univer-

sity of Heidelberg, Heidelberg, 2004.

[Kro79] F.T. Krogh. Recurrence relations for computing with modified divided

differences. Math. Comp., 33(148):1265–1271, 1979.

[KT51] H.W. Kuhn and A.W. Tucker. Nonlinear programming. In J. Neyman,

editor, Proceedings of the Second Berkeley Symposium on Mathemati-

cal Statistics and Probability, Berkeley, 1951. University of California

Press.

[Küh02] A. Kühn. Modellierung und Optimierung einer Aminosäurefermenta-

tion. Master’s thesis, University of Freiberg, 2002.

[KWB+95] Th. Kendlbacher, W. Waldraff, G. Breuel, R. Biener, R. King, and

E. D. Gilles. Application of model-predictive control to fermentations

with streptomyces. In R. D. Schmid, editor, Biochemical Engineering

3 - Stuttgart, Stuttgart, 1995. E. Kurz & Co.

[LBBS03] D.B. Leineweber, I. Bauer, H.G. Bock, and J.P. Schlöder. An efficient

multiple shooting based reduced SQP strategy for large-scale dynamic

process optimization. Part I: Theoretical aspects. Comp. & Chem.

Eng., 27:157–166, 2003.

[LBP03] D. Lebiedz and U. Brandt-Pollmann. Manipulation of Self-Aggregation

Patterns and Waves in a Reaction-Diffusion System by Optimal

Boundary Control Strategies. Phys. Rev. Lett., 91(20), 2003.

[LBP04a] D. Lebiedz and U. Brandt-Pollmann. Dynamic control and information

processing in chemical reaction systems by tuning self-organization

behavior. Chaos, (to appear), 2004.

[LBP04b] D. Lebiedz and U. Brandt-Pollmann. Manipulation of surface reaction

dynamics by global pressure and local temperature control - a model

study. Chaos, 2004.

[LBP04c] D. Lebiedz and U. Brandt-Pollmann. Nonlinear feedback control of

pattern formation in bacterial chemotoxis. 2004.

[LBS97] D.B. Leineweber, H.G. Bock, and J.P. Schlöder. Fast direct methods

for real-time optimization of chemical processes. In Proc. 15th IMACS

BIBLIOGRAPHY 151

World Congress on Scientific Computation, Modelling and Applied

Mathematics Berlin, Berlin, 1997. Wissenschaft- und Technik-Verlag.

[Lei96] D.B. Leineweber. The theory of MUSCOD in a nutshell. IWR-Preprint

96-19, University of Heidelberg, 1996.

[Lei99] D.B. Leineweber. Efficient reduced SQP methods for the optimization

of chemical processes described by large sparse DAE models, volume

613 of Fortschr.-Ber. VDI Reihe 3, Verfahrenstechnik. VDI Verlag,

Düsseldorf, 1999.

[LNP98] M. Lalee, J. Nocedal, and T. Plantenga. On the implementation of an

algorithm for large-scale equality constrained optimization. SIAM J.

Optim., 8(3):682–706, 1998.

[LP86] P. Lötstedt and L.R. Petzold. Numerical solution of nonlinear dif-

ferential equations with algebraic constraints I: Convergence results

for backward differentiation formulas. Math. Comp., 46(174):491–516,

1986.

[LSBS03] D.B. Leineweber, A. Schäfer, H.G. Bock, and J.P. Schlöder. An ef-

ficient multiple shooting based reduced SQP strategy for large-scale

dynamic process optimization. Part II: Software aspects and applica-

tions. Comp. & Chem. Eng., 27:167–174, 2003.

[LW97] P. Li and G. Wozny. Dynamische Optimierung großer chemischer

Prozesse mit Kollokationsverfahren am Beispiel Batch-Destillation.

Automatisierungstechnik, 45(3):136–143, 1997.

[Map04] Maplesoft. Maple. Maple Inc., Waterloo, 9.0 edition, 2004.

[Mar78] N. Maratos. Exact penaly function algorithms for finite-dimensional

and control optimization problems. PhD thesis, IMperial College, Lon-

don, 1978.

[MBSL03] K.D. Mombaur, H.G. Bock, J.P. Schlöder, and R.W. Longman. Open-

loop stable solution of periodic optimal control problems in robotics.

submitted to Zeitschrift für Angewandte Mathematik und Mechanik

(ZAMM), 2003.

152 BIBLIOGRAPHY

[Mic76] M.L. Michelsen. Semi-implicit Runge-Kutta methods for stiff systems,

program description and application examples. Inst. f. Kemiteknik,

Danmarks tekniske Højskole, Lynby, 1976.

[Min04] Hoang Duc Minh. Modeling, simulation and optimization of complex

processes in catalytic monoliths, in preparation. PhD thesis, University

of Heidelberg, 2004.

[Mom02] K.D. Mombaur. Stability Optimization of Open-Loop Controlled

Walking Robots. VDI Verlag, Düsseldorf, 2002. Download at:

http://www.ub.uni-heidelberg.de/archiv/1796/.

[Nil97] S. Nilchan. The Optimisation of Periodic Absorption Processes. PhD

thesis, Department of Chemical Engineering and Chemical Technology,

Imperial College of Science, London, 1997.

[Noc92] J. Nocedal. Theory of algorithms for unconstrained optimization. Acta

Numerica, 1:199–242, 1992.

[NR83] G.N. Newsam and J.D. Ramsdell. Estimation of sparse Jacobian ma-

trices. SIAM J. Alg. Disc. Meth., 4(3):404–417, 1983.

[NW99] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 1999.

[Osb69] M.R. Osborne. On shooting methods for boundary value problems. J.

Math. Anal. Appl., 27:417–433, 1969.

[PB93] C.C. Pantelides and P.I. Barton. Equation oriented dynamic simu-

lation: Current status and future perspectives. Comp. Chem. Eng.,

pages 263–285, 1993.

[Pet82] L.R. Petzold. A Description of DASSL: A Differential-Algebraic Sys-

tem Solver. In Proc. 10th IMACS World Congress, Montreal, 1982.

[Pet91] L.R. Petzold. Dassl.

http://www.engineering.ucsb.edi/~cse/ddassl.tar.gz, June

1991.

[Pli81] K.J. Plitt. Ein superlinear konvergentes Mehrzielverfahren zur direk-

ten Berechnung beschränkter optimaler Steuerungen. Master’s thesis,

University of Bonn, 1981.

BIBLIOGRAPHY 153

[Pot88] A. Pothen. The complexity of optimal elimination trees. Technical

Report CS-88-13, Pennsylvania State University, 1988.

[Pow76] M.J.D. Powell. Some global convergence properties of a variable metric

algorithm for minimization without exact line searches. In R. W. Cot-

tle and C. E. eds. Lemke, editors, SIAM-AMS Proceedings, volume IX

of SIAM publications, pages 53–72, 1976.

[Pow77] M.J.D. Powell. A fast algorithm for nonlinearly constrained optimiza-

tion calculations. In G.A. ed. Watson, editor, Numerical Analysis

Dundee, volume 3 of Springer Verlag, pages 144–157, Berlin, 1977.

[Pow78a] M.J.D. Powell. Algorithms for nonlinear constraints that use La-

grangian functions. Math. Prog, 14(3):224–248, 1978.

[Pow78b] M.J.D. Powell. A fast algorithm for nonlinearly constrained opti-

mization calculations. In G. A. Watson, editor, Numerical Analysis,

Dundee 1977, volume 630 of Lecture Notes in Mathematics, Berlin,

1978. Springer.

[Pow84] M.J.D. Powell. Convergence properties of algorithms for nonlinear

optimization. SIAM Review, 28:487–500, 1984.

[Pow85] M.J.D. Powell. On the quadratic programming algorithm of Goldfarb

and Idnani. Math. Progr. Study, 25:46–61, 1985.

[PT79] M.J.D. Powell and Ph.-L. Toint. On the estimation of sparse Hessian

matrices. SIAM J. Numer. Anal., 16:1060–1074, 1979.

[Roc88] M. Roche. Rosenbrock methods for differential algebraic equations.

Numer. Math., 52:46–63, 1988.

[SBPD+03] A.A.S. Schäfer, U. Brandt-Pollmann, M. Diehl, H.G. Bock, and J.P.

Schlöder. Fast optimal control algorithms with application to chem-

ical engineering. In D. Ahr, R. Fahrion, M. Oswald, and G. Reinelt,

editors, Operations Research Proceedings, pages 300–307, Heidelberg,

2003. Springer.

[SBS98] V.H. Schulz, H.G. Bock, and M.C. Steinbach. Exploiting invariants

in the numerical solution of multipoint boundary value problems for

DAEs. SIAM J. Sci. Comp., 19:440–467, 1998.

154 BIBLIOGRAPHY

[Sch88] J.P. Schlöder. Numerische Methoden zur Behandlung hochdimension-

aler Aufgaben der Parameteridentifizierung, volume 187 of Bonner

Mathematische Schriften. University of Bonn, Bonn, 1988.

[Sch96] V.H. Schulz. Reduced SQP methods for large-scale optimal control

problems in DAE with application to path planning problems for satel-

lite mounted robots. IWR-Preprint 96-12, University of Heidelberg,

1996. Ph.D. thesis.

[Sch99a] A.A.S. Schäfer. Numerische Verfahren für große nichtlineare

beschränkte Optimierungsprobleme und ihr Einsatz bei Optimals-

teuerungsproblemen. Master’s thesis, University of Heidelberg, 1999.

[Sch99b] R. von Schwerin. MultiBody System SIMulation. Numerical Methods,

Algorithms, and Software. Lecture Notes in Computational Science

and Engineering Vol. 7. Springer, 1999.

[Sch04] A.A.S. Schäfer. Ein effizientes reduziertes SQP-Verfahren zur Pa-

rameterschätzung und Optimalen Steuerung von (bio-)chemischen

Prozessen mit wenigen Freiheitsgraden. PhD thesis, University of Hei-

delberg, 2004.

[SG75] L.F. Shampine and M.K. Gordon. Computer Solution of Ordinary

Differential Equations. W.H. Freeman and Co., San Francisco, CA,

1975.

[Spe80] B. Speelpenning. Compiling fast partial derivatives of functions given

by algorithms. PhD thesis, University of Illinois at Urbana-Champaign,

1980.

[Ste95] M.C. Steinbach. Fast recursive SQP methods for large-scale optimal

control problems. PhD thesis, University of Heidelberg, 1995.

[SW95] K. Strehmel and R. Weiner. Numerik gewöhnlicher Differential-

gleichungen. Teubner, 1995.

[TB96] P. Tanartkit and L.T. Biegler. A nested, simultaneous approach for dy-

namic optimization problems – I. Comput. Chem. Engng, 20(6/7):735–

741, 1996.

BIBLIOGRAPHY 155

[TPS00] M. Tadjouddine, J.D. Pryce, and A.F. Shaun. On the implementation

of AD using elimination methods via source transformation. AMOR

Report, 8, November 2000.

[WBPMS03] R. Winkler, U. Brandt-Pollmann, U. Moslener, and J.P. Schlöder.

Time-lags in capital accumulation. In D. Ahr, R. Fahrion, M. Os-

wald, and G. Reinelt, editors, Operations Research Proceedings, pages

451–458, Heidelberg, 2003. Springer.

[Wil63] R.B. Wilson. A simplicial algorithm for concave programming. PhD

thesis, Harvard University, 1963.

[WR03] Inc. Wolfram Research. Mathematica. Wolfram Research, Inc., Cham-

paign, Illinois, 5.0 edition, 2003.

156 BIBLIOGRAPHY

