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Chapter 1. Introduction

The case-based decision theory has been recently proposed by Gilboa and Schmeidler (1995) as

analternative theory for decision-making under uncertainty. Differently from the expectedutility

theory, the case-based decision theory models decisions in situations of structural ignorance,

in which neither states of the world, nor their probabilities can be naturally derived from the

description of the problem. It is assumed that a decision-maker can only learn from experience,

by evaluating an act based on its past performance in similar circumstances. An aspiration level

is used as a bench-mark in the evaluation process. It distinguishes results considered satisfactory

(those exceeding the aspiration level), which make the alternative more attractive, from the

unsatisfactory ones, which influence negatively the evaluation of the alternative.

Similarity considerations play an important role in case-based reasoning. The evaluation of an

alternative depends not only on its own performance, but also on the utility realizations achieved

from similar alternatives in similar circumstances.

Although the case-based decision theory has been applied in several economic contexts1, it has

not been used to model decision-making in financial markets up to now. Still, a model of fi-

nancial markets, in which expected utility maximization is replaced by case-based reasoning is

of interest for several reasons. First, it allows to gain a deeper understanding of the case-based

decision theory itself. In such a model the operationalization of theoretical concepts such as

the aspiration level, the past experience of the decision-maker, as well as his similarity percep-

tions becomes necessary. It is therefore possible to examine the inf luence of these concepts on

individual behavior. The results achieved further allow to interpret these concepts in an eco-

nomically meaningful way.

Second, the application of the case-based decision theory to financial markets contributes to

the literature on behavioral finance, by describing the dynamics of portfolio holdings and asset

prices in a market with case-based investors. The analysis of the behavior implied by case-based

reasoning allows for comparisons to the predictions of the standard financial theory, as well as

to the results obtained from alternative decision theories2.

1 This literature is reviewed in section 2 of the introduction.
2 The implications of an abstract decision theory can only be understood by applying it to a specific economic
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Introducing case-based decisions into a model of financial markets further allows to compare the

qualitative results on price dynamics and portfolio holdings to empirical findings. Hence, the

case-based decision theory might allow to explain empirical observations which are inconsistent

with standard asset pricing theories.

Last, but not least, in an asset market the performance of case-based reasoning can be com-

pared to the performance of alternative decision rules, especially to those of expected utility

maximization. This comparison is useful, especially for the analysis of competitive environ-

ments in which the inf luence of a given decision rule on market prices is determined by its past

performance. If the case-based decision-makers consistently lose money compared to rational

individuals, then their influence on the market processes will vanish in the limit. If, on the other

hand, individuals using case-based reasoning are not driven out of the market, then the inf luence

of their behavior on prices and returns cannot be neglected.

It follows that the application of the case-based decision theory to models of asset markets can

lead to interesting results both in the field of decision theory and of financial markets. However,

before turning to the construction of formal models, the place of the case-based reasoning in the

field of decision theory has to be discussed and its applicability to financial markets examined.

The decision theory has developed rapidly during the last sixty years. The expected utility the-

ory, axiomatized by von Neumann and Morgenstern (1947) and Savage (1954), was proposed

both as a normative and a descriptive theory. Experimental findings, however, attack its em-

pirical validity, whereas alternative models criticize its normative foundations. The case-based

decision theory proposed by Gilboa and Schmeidler (1995) also emerges from this discourse, by

criticizing fundamental concepts of the expected utility theory and proposing a new framework

for decision-making under uncertainty. In order to understand its place among the numerous

decision theories proposed in the literature, the development of this field will be sketched in

section 1 of this introduction, before presenting the framework of Gilboa and Schmeidler (1995,

1997 (a)) in section 2 and reviewing the literature on case-based decisions.

Since it is found that the expected utility theory combined with rational expectations cannot ex-

problem. A decision theory is evaluated according to its ability to explain empirical findings and to produce qual-
itatively new predictions, not obtained before. Financial markets represent a perfect ’’testing’’ field for decision
theories, first, because the implications of expected utility maximizations are very well studied in this context, and
second, because of the vast quantity of empirical data available.
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plaina range of phenomena observed in the market data, alternative theories for decision-making

under uncertainty have been applied to the analysis of financial markets in the literature. In sec-

tion 3, I shortly review two major approaches: the noise trader approach, which assumes ex-

pected utility maximization with biased beliefs, and the assumption of alternative preferences,

such as ambiguity-aversion or loss aversion, which criticize the conceptual foundations of the

expected utility maximization. Since the case-based decision theory questions the mere possibil-

ity of reasoning about states of nature and forming beliefs about their probabilities, it represents

a new framework for modelling decisions in financial markets, which substantially differs from

the two approaches discussed.

The applicability of the case-based decision theory to financial markets is further discussed. In

section 4, I argue that the structural ignorance of the decision-maker assumed in the case-based

decision theory might well describe the complex structure of financial markets.

Since the case-based decision theory was only recently developed, not much is known about its

behavioral implications. I, therefore, discuss how case-based decisions can incorporate some of

the psychological biases observed in experimental and real financial markets. I further compare

the type of learning modelled by the expected utility theory to those implied by the case-based

decision theory.

Section 5 presents an overview of the thesis.

1.1 Developments in the Theory of Decision-Making under
Uncertainty

The expected utility theory as proposed by von Neumann and Morgenstern (1947) and Savage

(1954) is the most prominent theory for decision under uncertainty. According to this theory

uncertainty is represented as a set of states of the world. It is either assumed that the probability

of the occurrence of these states is objectively given (as in the case of betting on an outcome

of throwing a fair coin) or that the decision-maker is able to ascribe subjective probabilities

to each of the states (as in the case of betting on an outcome of a horse race). The decision

under uncertainty is then regarded as a choice among a set of acts, each of which represents a

probability distribution over state-contingent outcomes. The expected utility theory proposes a

representation of the preferences over such acts: the utility of an act is computed as the weighted
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sum of the utility of the state-contingent outcomes, the weights being the state probabilities. Von

Neumann and Morgenstern (1947), Anscombe and Aumann (1963) and Savage (1954) each

propose a system of axioms imposed on preferences which are equivalent to an expected utility

representation.

It seemed at the time that these results have put an end to a long discussion in which the existence

of objective probabilities has been opposed to the thesis that all probabilities are subjective.

Keynes (1921, p. 4), who holds the objectivistic view, writes ’’[...] in the sense important to

logic probability is not subjective. It is not that’s to say, subject to human caprice. A proposition

is not probable because we think it so. When once the facts are given which determine our

knowledge, what is probable or improbable in these circumstances has been fixed objectively,

and is independent of our opinion’’. Keynes suggests that the reasoning about probabilities

should obey the laws of logic, and, hence, be rational in the following sense: given individual’s

knowledge3 about some propositions h and the knowledge of propositions ascertaining some

probability relation between h and p, the individual will rationally entertain a probabilistic belief

in p, Keynes (1921 p. 16). Nevertheless, the notion of rationality and hence also of probability

is relative to the knowledge h a person has, Keynes (1921, p. 32).

A person who behaves boundedly rational might however fail to use his knowledge to establish

these logical connections. He will, therefore, either have no or a wrong notion of the probability

he is trying to estimate. Moreover, although Keynes derives the probabilistic beliefs from logic

conclusions, he argues that these beliefs do not always exist and are not always measurable

and comparable to one another, Keynes (1921, p. 33), a statement which seems to oppose his

objectivistic view.

De Finetti (1937) and Ramsey (1926), on the other hand, represent the subjectivistic view. Ram-

sey (1926, p. 67-68) criticizes the relativity view of Keynes. He himself proposes a behavioristic

view of probability beliefs: ’’the degree of belief is a casual property of it, which we can express

vaguely as the extent to which we are prepared to act on it’’, Ramsey (1926, p. 71). Hence, the

method to measure beliefs consists in asking the person how he would act for different payoffs.

This idea is later used by Savage (1954) to elicit subjective probabilities.

3 Keynes (1921, p. 12) differentiates between direct (obtained by experience) and indirect (obtained by argument)
knowledge. He only permits the derivation of the probability of p, given the knowledge of h (which may be direct
or indirect) by indirect knowledge, hence by logical argument.
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De Finetti (1937) supports the thesis that all probabilistic beliefs are subjective. Even in the

case of games of chance, such as roulette and throwing a fair coin, does he criticize the view

that the readily agreed upon equal possibility of all outcomes should be seen as a demonstration

of the existence of objective probability distributions. De Finetti (1937, p. 112) argues that this

’’objectivity’’ might have its reason in a common psychological perception of symmetry, which

has nothing to do with objective considerations. ’’[...] any event whatever can only happen or

not happen, and neither in one case nor in the other can one decide what would be the degree

of doubt with which it would be ’’reasonable’’ or ’’right’’ to expect the event before knowing

whether it has occurred or not’’, De Finetti (1937, p. 113).

The work of von Neumann and Morgenstern (1947), Anscombe and Aumann (1963) and Sav-

age (1954) shows that both views, the objectivistic and the subjectivistic, lead to the same rep-

resentation of preferences. The expected utility theory further establishes a connection between

rationality and probabilistic reasoning: every rational person should have a system of prefer-

ences, which lead him to make decisions as if he had some subjective probabilities in mind.

Moreover, it allows to establish a link between the knowledge of a person and her probability

perceptions. Starting with a prior and updating it in a Bayesian way, the decision-maker can

learn the ’’true’’ objective probability distribution in the limit. Hence, the expected utility theory

provides a theoretical support for the ideas expressed by Keynes.

The expected utility theory has turned out to be a very useful and easily applicable instrument

for modelling decision-making under uncertainty. In the mean time the applications to financial

markets, insurance, contingent contracts, bargaining, to mention only a few, are so numerous

that it would be impossible even to try to list them here. This shows that the expected utility

theory has become a valuable and indispensable part of the economic methodology.

However, no sooner was this theory developed that the first criticisms began to emerge. Ellsberg

(1961) constructed a thought experiment which questioned the intuition ofP 2, the axiom, called

’’the sure-thing principle’’ in the theory of Savage. His experiment showed that in making de-

cisions people do not necessarily behave as if they ascribed subjective probabilities to states of

the nature. The idea that people evaluate situations in which they have information about prob-

ability distributions differently from situations in which such information is (partially) missing

made the economists aware of a phenomenon called ’’ambiguity-aversion’’ and gave rise to a
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new branch of the literature on decision-making. By relaxing4 the sure-thing principle and the

independence axiom the axiomatizations of preferences proposed by Schmeidler (1989), Gilboa

and Schmeidler (1989), Gilboa (1987), Wakker (1989) and Sarin and Wakker (1992) are able to

describe decision-making in situations, in which the decision-maker considers multiple priors,

(i.e. he considers more than one probability distribution as possible) or in which the perception

of probabilities is described by a capacity5 . In the first case, the decision-maker uses different

probability distributions to evaluate acts, which are not comonotonic.. Nevertheless, his beliefs

can be described by a set of probability distributions. In the second case, in which the beliefs are

described by a capacity, a probability distribution consistent with the capacity might not even

exist. Hence, the question of the existence of probabilities posed by Keynes (1921) is raised

again.

The non-expected utility theories allow to capture the idea that people might value information

about state probabilities and underestimate utility realizations in states the probabilities of which

are not known. Ambiguity-aversion does not only allow to explain the typical behavior observed

in the Ellsberg paradox. It can also account for paradoxes observed in financial markets, which

are based on the assumption that decision-makers assign additive probabilities to the possible

states of nature.

Objective probabilities also do not stand the test of experiments. Allais (1953) constructs the

first experiment violating the ’’independence axiom’’ of von Neumann and Morgenstern (1947).

It is found that the perception of probabilities is a non-linear one, people underweight large

probabilities and overweight small ones, Gonzalez and Wu (1999). The rank-dependent theo-

ries (called so, because the evaluation of a payoff and the assignment of probabilities depend

on the rank of the payoff under the act considered), such as Quiggin’s (1982) rank-dependent

utility, Yaari’s (1987) dual theory of choice under risk, Tversky and Kahneman’s (1992) cumu-

4 For instance, by assuming that the independence axiom or the sure-thing principle only hold for comonotonic
acts (acts which rank states according to their consequences in the same way), as in Schmeidler (1989) and Gilboa
(1987) or only for mixtures with constant acts, as in Gilboa and Schmeidler (1989). Wakker (1989) uses a version
of his, Wakker (1984), ’’cardinal coordinate independence’’ axiom, also restricted to comonotonic acts. Sarin and
Wakker (1992) propose an axiom, which is similar to stochastic dominance in the context of additive probabilities,
see Camerer and Weber (1992, p. 351).
5 A capacity is a function, which assigns to each event a number between 0 and 1. It satisfies the monotonicity
property, i.e. the number assigned to a union of two events should weakly exceed the number assigned to each of
these events. In contrast to probability, a capacity need not be additive.
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lative prospect theory6 allow for representations of such weighting functions. It turns out that

it is impossible to distinguish empirically, whether the utility function is non-linear and the per-

ception of probabilities is non-biased or whether the probabilities are biased and the individual

is risk-neutral.

An interesting feature of the model of Tversky and Kahneman (1992), not present in the other

decision theories, is the introduction of a reference point, representing the status quo. Payoffs are

treated as gains and losses relative to this reference point and evaluated differently according to

this distinction. Losses are weighted stronger thangains and the individual exhibits risk-aversion

for gains and is risk-loving for losses. In this sense, the prospect theory is similar to the case-

based decision theory, in which payoffs are also evaluated with respect to an aspiration level.

Nevertheless, the development of the case-based decision theory represents a completely new

approach to decision-making under uncertainty.

1.2 The Case-Based Decision Theory

Although the discussion about multiple priors and rank-dependent utility raises the old question

of whether probabilities are well-defined and exist, the main concepts of the theory of Savage

remain unchanged. The probability distribution is replaced by the more general concept of a

capacity or by a probability weighting function, but the description of the world by means of

states of nature and the representation of acts as vectors of state-contingent outcomes persists.

In 1995 Gilboa and Schmeidler propose a new theory for decision-making under uncertainty

which criticizes these concepts per se — the case-based decision theory. They argue that the

theory of Savage can describe well only situations, in which the states of nature and their proba-

bilities are well known or can easily be inferred7 . In contrast, decision problems in which either

the states of the world are not clearly stated, or they are so numerous and complex that prob-

abilities could hardly be attributed to them in a sensible way, are not captured by the expected

utility theory.

6 An axiomatization of the cumulative prospect theory is provided by Wakker and Tversky (1993).
7 An alternative theory for decision making under uncertainty, which criticizes the same issues is formulated by
Easley and Rustichini (1999). The idea and the framework are very similar to those of Gilboa and Schmeidler, but
similarity considerations are not introduced and it is assumed that the decision maker can observe the realizations
of all available acts, independently of his actual choice.
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Gilboa and Schmeidler (1995) handle this problem by proposing a new framework: the descrip-

tion of the decision situation is called a problem. To ’’solve’’ the problem the decision-maker

has to choose an act out of a given set of available acts, known to him. The decision-maker

does not have any knowledge of states of the world, state-contingent outcomes and their dis-

tributions. Nor does he try to infer them from the statement of the problem he faces. Instead,

he uses his memory, in which information about past cases is collected. A case is defined as

a triple consisting of a problem encountered, an act chosen to solve this problem and a utility

realization consequently experienced. The utility realizations are evaluated according to an as-

piration level. A utility realization which exceeds the aspiration level is considered satisfactory

and increases the evaluation of the act which has lead to it and vice versa. The sum of the net

utility realizations (utility realization less the aspiration level) observed when choosing a cer-

tain act determines its cumulative utility. It is postulated that the decision-maker chooses the act

with maximal cumulative utility.

This simple way to make decisions might however turn out to be impractical, should an act

have never been chosen before, or should the problem a decision-maker faces differ from those

encountered in the past. Therefore, Gilboa and Schmeidler (1995, 1997 (a)) introduce the notion

of similarity, which plays an important role in the case-based decision-making. Problems, acts

and utility realizations can be perceived as similar. The evaluation of an act is then affected by

its similarity to the acts chosen in the past and by the similarity of past problems to the current

one. For instance, buying an asset at a price of 10 might be considered similar to buying the

same asset at a price of 9,50. If an investor has achieved a satisfactory (unsatisfactory) return

by buying this asset at a price of 10 in the past, then this result will positively (negatively) affect

his evaluation of the act to buy the asset at a price of 9,508.

Differently from the similarity concept defined by Rubinstein (1988), which is a binomial rela-

tion (two objects are either similar or dissimilar), in the case-based decision theory the similarity

is a trinomial relation (object ® is more similar to ®0 than to ®00 ). Therefore, it can be repre-

sented by a similarity function. This similarity function serves to determine the weights with

8 At the moment I am vague about the distinction between acts and problems. In this example it might be that the
act is defined as ’’buy asset X at a price of 10’’ or that the act is specified simply as ’’buy asset X’’ and the price
enters the description of the decision problem encountered. Indeed, in the case-based decision theory this does not
create a problem, since the similarity function is specified for problem-act pairs. I will be more explicit about this
issue in chapter 2. See also Gilboa and Schmeidler (2001 (a), p. 51).
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which each of the past net utility realizations enters the evaluation of an act9.

To illustrate the main concepts of the case-based decision theory suppose that the set of avail-

able acts is given by A with ® denoting a representative act. T past experience is captured by

the memory, which consists of cases encountered in the past. A case is a triple of a problem en-

countered, ½¿ , an act actually chosen to solve this problem, ®¿ and a utility realization actually

observed as a consequence10, u¿ . Hence, the memory at time t has the form:

Mt = ((½¿ ;®¿ ;u¿))¿=1:::t¡1 . (1.1)

The proposed representation of preferences is of the form: for each ® and ®0 2 A

® º ®0, iff

Ut (®) ¸ Ut (®0) , with

Ut (®) =
t¡1X

¿=1

s ((½;®) ; (½¿ ;®¿)) [u¿ ¡ ¹ut] , (1.2)

where s ((½;®) ; (½¿ ;®¿)) denotes the similarity between the problem-act pair encountered at

time ¿ and the problem-act pair to be evaluated and ¹ut stays for the aspiration level of the

decision-maker at time t11 . Ut (®) is called the cumulative utility of act ® at time t. Note that

satisfactory results enter the cumulative utility of an act with a positive sign, whereas unsatis-

factory realizations have a negative impact. Moreover, since in general the similarity function

depends in a non-degenerate way on the act considered, different aspiration levels lead to dif-

ferent evaluations of the acts available, even if the memory of two decision-makers is identical.

1.2.1 Axiomatic Representation

Gilboa and Schmeidler (1997 (a)) show that the representation (1.2) with ¹ut = 0 is equivalent

to axioms imposed on the preferences of a decision-maker over acts, given a set of observed

cases, i.e. for a given memory. Assume that the utility function, associated with the payoffs of

the acts, is given12, so thatu¿ indeed denotes a utility realization experienced at time ¿. Suppose

9 Of course, it might be that the similarity between certain acts and/ or problems is considered to be 0. The
respective utility realizations will then have no effect on the evaluation of the acts in the current situation.

10 The case-based decision theory also allows teh consideration of hypothetical cases. I neglect this issue at the
moment and discuss this aspect in chapter 3, section 7 and in chapter 5, section 5. Note that the time index can also
be interpreted just as the number of cases present in the memory. Hence, hypothetical reasoning is also captured
by this representation.

11 The indexation by t allows for updating of the aspiration level depending on the past problems encountered and
realizations observed.

12 Gilboa, Schmeidler and Wakker (2002) propose an axiomatization which derives the utility function u (¢), the
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that the memory is of length (t ¡ 1) and is given by (1.1). The set of acts is given by A and the

problem at hand is ½. The similarity function of the decision-maker over the set of acts A can

be elicited by changing the utility realizations of the different problem - act pairs in the memory

and by asking the decision-maker about his preferences over the acts for different utility vectors

u 2 Rt¡1. Denote this preference relation by %u for a given u. Following axioms are required,

see Gilboa and Schmeidler (1997 (a), p. 51-52):

A1: Preorder: %u is complete and transitive;

A2: Continuity: f%ugu2Rt¡1 is continuous in u, i.e. for each sequence (uk)1k=1 ! u, such that

® Âuk ®0 for all k

® Âu ®0

holds.

A3: Additivity: for all u and v 2 Rt¡1 and for all ®, ®0 2 A,

® Âu ®0 and ® %v ®0

imply ® Âu+v ®0.

A4: Neutrality: for u = (0:::0)

® » ®0 holds for all ®, ®0 2 A.

A5: Diversity: for all distinct acts ®, ®0, ®00, ®000 2 A there exists a vector u 2 Rt¡1, so that:

® Âu ®0 Âu ®00 Âu ®000.

The five axioms imply the existence of s ((½;®) ; (½¿ ;®¿)), such that

® º ®0, iff
t¡1X

¿=1

s ((½;®) ; (½;®¿)) u¿ ¸
t¡1X

¿=1

s ((½;®0) ; (½;®¿)) u¿ .

Moreover, if there are more than four acts available, the similarity function is unique in the

following sense: if s ((½;®) ; (½¿ ;®¿)) represents the preference relation º, then so does each

s0, such that:

s0 ((½;®) ; (½¿ ;®¿)) = ¯s ((½;®) ; (½¿ ;®¿)) + w¿
with ¯ > 0 and (w¿)t¡1¿=1 2 Rt¡1, Gilboa and Schmeidler (1997 (a), p.52-53).

The first axiom, which defines the preference order, is standard in decision theory and without it

cumulative utility representation and the similarity function directly from preferences.

18



a functional representation is virtually impossible. The second axiom requires that preferences

do not change discontinuously when small changes in the utility realizations are observed. It

insures the continuity of the functional representation. The additivity-axiom is central for the

additive representation of the preferences by the cumulative utility as given in (1.2). It requires

that if two vectors of utility realizations u and v both support the choice of an act ®, then so

should their sum do. In a similar manner, in which the additivity in expected utility theory is

violated by behavior typical for the Ellsberg paradox, A3 would be violated by a decision-maker

whose similarity function is not independent of the utility realizations observed, see Gilboa and

Schmeidler (1993, p. 15) for an example.

The neutrality axiom defines the aspiration level as ¹u = 0. Achieving 0 as a utility realization

from all acts chosen does not allow to differentiate among them, since 0 is a ’’neutral’’ result

— it makes the decision-maker ’’neither sad, nor happy’’, see Gilboa and Schmeidler (1997

(a), p.52). Note that since A4 defines the aspiration level to be 0, the utility realizations u

and v in A3 are understood as ’’net’’ utility realizations, i.e. utility minus the aspiration level.

Indeed, the representation proposed would not be valid, should in A3 u and v represent utility

realizations and the aspiration level be different from 0. However, it is easily seen that each

utility function u0 = u + b in combination with an aspiration level ¹u0 = b would satisfy the

axioms for a constant b 2 R, as long as the utility realizations u are replaced by the ’’net’’

utility realizations u0¡ ¹u0 everywhere in the axioms. Hence, differently from the von Neumann

Morgenstern representation, the utility function in the case-based decision theory can only be

subjected to linear affine transformations together with the aspiration level, so as to leave the

behavior of the decision-maker unchanged.

The diversity axiom A5 is only a technical one, it is not implied by the representation (1.2). It

precludes the case in which one act is always ranked between other two, independently of the

utility realizations observed. Gilboa and Schmeidler (1997 (a), p. 52) give an example of the

acts ’’sell 100 shares’’, ’’sell 200 shares’’ and ’’sell 300 shares’’ and argue that for this particular

acts A5 might seem controversial. Still, it is not needed for settings in which less than 4 acts

are considered, since then it is trivially satisfied. Moreover, Gilboa and Schmeidler (1997 (a),

p. 60-61) demonstrate that indeed, without this axiom a representation of preferences by (1.2)

is not guaranteed.
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Note that the definition of similarity is ’’context’’-dependent13, i.e. the perception of similarity

is determined relative to the memory Mt. Gilboa and Schmeidler (1997 (a), p. 54) indicate

conditions for a memory-independent similarity relation. However, since the similarity should

be independent of the vector of utility realizations observed, the description of acts and problems

present in the memory is essential for the elicitation of similarity perceptions. For instance, the

act ’’buy 10 shares of Telecom’’ might be represented in different contexts as ’’buy an asset’’,

’’buy a risky asset’’, ’’buy shares of a telecommunication branch’’, etc. and these representations

will induce possibly different notions of similarity on the set of problem-act pairs.

One would like to associate the definition of similarity with behavior remaining constant under

certain circumstances. To simplify matters, consider a setting, in which all problems are consid-

ered identical and similarity among acts only has to be determined. Suppose that s (®;®0) = 1,

hence, ® and ®0 are completely similar. However, this does not mean that the decision-maker will

be indifferent between ® and ® 0 in all contexts. Indeed, this will be the case only for contexts,

containing cases in which either ® or ®0, but no other act has been chosen, i.e. for memories:

Mt =
³
(½;®;u¿)¿2S½f1:::t¡1g ; (½;®

0;u¿)¿2f1:::t¡1gnS
´

.

Since s (®;®0) = 1, the decision-maker will indeed be indifferent between ® and ®0 for all

vectors u 2 Rt¡1. If, on the other hand, the memory also contains cases in which a different

act ® 00 has been chosen and if s (®;®00) 6= s (®0;®00), the indifference between ® and ®0 will no

longer hold14 , since their cumulative utilities will be influenced differently by the realizations

of ®00.

I have presented only one possible axiomatization of the case-based decision theory, which, I

think, provides useful insights into the assumptions needed to derive the preference representa-

tion and summarizes the cases which will be used in this thesis. Apart from the axiomatization

presented above several axiomatizations have been proposed in the literature. The first of them

goes back to Gilboa and Schmeidler (1995), who only consider similarity among problems, but

not among acts. Hence, the similarity function takes the form s (½; ½0). On the other hand, sim-

ilarity on the set of utility realizations can also be included, so as to embed the notion that from

13 Gilboa and Schmeidler (1997 (a)) call the set ((½¿ ; ®¿ ))t¡1
¿=1 a context.

14 In a similar manner, in expected utility theory, we connect equal likelihood of states s and s0 to equal willingness
to engage in a lotterie which delivers x (x0), if s (s 0) occurs and y (y0), if not s (not s0) occurs, as long as x Â y
implies x0 Â y0 . Still, we do not expect this willingness to remain identical for both states, if the signs of the
inequalities are different. I thank Uzi Seagal for pointing out this analogy to me.
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similar acts chosen in similar situations similar (and not identical ) results are expected, see

Gilboa and Schmeidler (2001 (a), p.52). The axiomatization, which generalizes these three ap-

proaches and is based on similarity among cases is derived in Gilboa and Schmeidler (2001 (a),

pp. 62-90). In all these works the utility function u (¢) is assumed to be given. Gilboa, Schmei-

dler and Wakker (2002) present an axiomatic representation in which the utility function is also

derived from the preferences.

The axiomatic foundation of the case-based decision theory serves several purposes. First, it

avoids postulating the existence of such constructs as similarity or aspiration level. Instead, they

are derived from observed behavior and therefore gain ’’cognitive significance’’, see Gilboa and

Schmeidler (1993, p. 9). Furthermore, in an experimental setting, results about the typical form

of the similarity function and typical rules for adapting the aspiration level can be elicited by

simply observing the choices made. Artifactual results arising from different interpretations of

these concepts by subjects and experimenters can be avoided in this way.

Second, the formulation of the axioms in terms of observable characteristics, such as binary

choices, allow to test the theory in an experimental setting. By presenting the subject a set of

past cases and by eliciting his preferences for multiple vectors of utility realizations, one can

examine whether the exhibited behavior violates the axioms imposed. Since the axiomatization

precludes some types of behavior, the case-base decision theory can be subject to falsification

in the sense of Popper (1966).

Third, the axioms allow to judge the reasonability of a theory, since they present the assump-

tions on the preferences (behavior) of a decision-maker that are necessary for a given functional

representation to hold. Apart from their descriptive power (do people behave according to the

prescriptions of the theory?) their normative power (would people wish to behave according to

the axioms of the theory, if they knew and understood them?15) can be analyzed.

1.2.2 Applications of the Case-Based Decision Theory

Since the case-based decision theory is a relatively new concept, there are still few applications

of it to economic problems. The case-based decision theory has been applied in the consumer

15 Gilboa and Schmeidler (2001, pp. 9-12) view a normative theory as a theory describing ’’second-order reality’’,
i.e. describing decisions with respect to preferences a decision maker would wish to have.
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theory, Gilboa and Schmeidler (1997 (b), 2001 (b)), Gilboa and Pazgal (2001), theory of voting,

Aragones (1997), production theory, Jahnke, Chwolka and Simons (2001), social learning, Blon-

ski (1999), cooperation in games, Pazgal (1997), herding behavior, Krause (2003) and choices

among lotteries, Gayer (2003).

Gilboa and Schmeidler (1997 (b), 2001 (b)) and Gilboa and Pazgal (2001) analyze a repeated

consumer problem, consisting in choosing one of the available goods (or consumption bundles).

Gilboa and Schmeidler (1997 (b)) and Gilboa and Pazgal (2001) assume a constant aspiration

level and a memory, consisting of all past cases encountered. Gilboa and Schmeidler (1997

(b)) consider the case of deterministic utility realizations connected with the choice of a con-

sumption good. They discuss the influence of similarity between acts on the decisions made.

They demonstrate that positive similarity can be associated with complementarity among goods,

whereas negative similarity is connected with substitutability between goods. Gilboa and Pazgal

(2001) are interested in the inf luence of the position of the aspiration level on choices among

goods with random utility realizations. They show that high aspiration levels lead to ’’brand

switching’’ behavior, an effect observed in empirical market data.

In contrast to these works, the setting of Gilboa and Schmeidler (2001 (b)) allows for adaptation

of the aspiration level towards the consumer surplus experienced. Assuming constant utility

realizations of each commodity chosen, the impact of a price increase on consumer’s behavior

is analyzed. Since a price increase lowers the experienced utility realization, it initially leads to

switching behavior. Since, however, the aspiration level is subsequently adapteddownwards, the

decision-maker becomes eventually satisfiedwithone of theacts and his choice remains constant

afterwards. It is further shown that the reaction of a consumer may be different, depending on

whether a price increase occurs suddenly or in a gradual manner.

Aragones (1997) studies a model of voting, in which voters assign negative net utilities to the

policies adopted by the parties. He models an interaction between parties adopting a specific

policy and voters choosing a party depending on their policy. He shows that, with two parties,

the dynamic process of interaction forces the parties to adopt distinct policies, which they do not

alter over time. The voters are endogenously divided into three categories, depending on their

aspiration level. One category always opts for the first party, another one always chooses the

second party, whereas a third category exhibits switching behavior.
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Pazgal (1997) examines the behavior of case-based decision-makers, who engage in a game,

but are not even informed about the strategic nature of the situation. He shows that the usage

of the ’’ambitious-realistic’’ rule for adaptation of aspiration levels, proposed by Gilboa and

Schmeidler (1996), allows the players to learn to coordinate on a Pareto-optimal equilibrium in

a coordination game.

Blonski (1999) introduces case-based decisions into a model of social learning. Similarity is

used to describe the structure of the society. He examines the effects of social structures on the

optimality of choices. The results show that different similarity functions imply different stable

states and may positively or negatively inf luence the learning process in the society.

Jahnke, Chwolka and Simons (2001) analyze the adaptation process of a firm, who faces a

kinked demand function, but does not know its exact form. The firm can choose the price of the

product, as well as the capacity in each period of time. The capacity chosen determines, which

part of the demand function is relevant for the decision of the consumers. The decision process

of the firm is modelled using the case-baseddecision theory. It is assumed that the information of

the firm (or the problem it faces) at each time consists of its optimization problem, the decision

made in the last period and the parameters estimated from previous choice. The possibility to

engage in hypothetical reasoning, as well as the (de facto16) deterministic utility realizations

of the available acts allow the firm to learn and choose the optimal combination of price and

capacity despite its short memory.

Krause (2003) models social learning in financial markets. In the tradition of herding behavior

models, he assumes that the investors sequentially decide on one of the two available alterna-

tives with independent random utility realizations. No market is modelled. The memory of an

investor consists of cases experienced by investors who have made their decisions prior to him.

A problem is defined by the identity of the investor who made a particular choice and by the time

passed since the decision was made. These two dimensions determine the similarity between a

problem present in the memory and the problem at hand, more recent problems being attached

higher similarity. Krause (2003) conducts some simulations of the dynamic of choices in such

an economy. He identifies herding behavior. However, since he assumes that both alternatives

are equally good, it is not possible to judge the optimality of choice arising from case-based
16 The demand is distributed according to a Poisson process, but Jahnke, Chwolka and Simons (2001) assume that
the period between two subsequent decisions is sufficiently long, so that the Law of Large Numbers is applicable.
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decisions in his model.

Gayer (2003) analyzes the impact of similarity considerations in a lottery choice problem. She

argues that the notion of a probability distribution can be sharpened only with experience. So,

people might know how to interpret a probability of 1
3, but not be able to work with probabil-

ities such as 0; 34526. Hence, instead of computing the expected utility of a lottery using the

real probability, they use a notion of similarity between the known probability 1
3 and 0; 34526

to evaluate a lottery, in which the latter probability is assigned to an outcome. She shows that if

the similarity function evolves with time, making the distinction of probabilities more and more

precise, the decision-maker learns to work with the real probability distributions. However, she

conducts some simulations which demonstrate that overweighting of small and underweighting

of large probabilities can occur in the model. Hence, this particular form of a probability weight-

ing function can be explained by assuming such kind of case-based learning about probability

distributions.

Although few, these applications demonstrate the potential of the case-based decision theory to

describe human behavior in complex economic environments, in which the states of nature and

the respectiveprobability distributions are not naturally defined and in which, therefore, learning

from experience plays an essential role. Nevertheless, up to now the case-based decision theory

has not been applied to model decision-making in financial markets17.

1.3 Decision Theory and Financial Markets

The expected utility theory combined with the assumption of correct or rational expectations

is still most commonly used to describe behavior in financial markets. A range of observed

phenomena, however, seem to be inconsistent with the theoretical results and to question the

predictive power of this approach.

The standard theory of asset pricing is based on the condition of no-arbitrage. Two securities,

which bear the same payoffs in each state of nature should have the same price, Eichberger

and Harper (1997, p. 118). However, violations of this condition are observed in real, as well

as in experimental markets. Rosenthal and Young (1990) find that shares issued by the same

17 The model of Krause (2003) is more in the spirit of the literature on social learning and herding behavior, in
which an act can have two realizations, which are exogenously given. Markets and prices are not modeled.
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company, but traded in different markets have significantly different prices over long periods.

Similar findings are reportedby Lamont and Thaler (2002): they present a case, in which holders

of a share of companyA are expected to receive x shares of company B, but the share of A costs

less than x times a share of B.

Whereas in real markets arbitrage might be hampered by transaction costs and short-sale con-

straints, in experimental settings it is possible to imitateperfect markets. Rietz (1998) and Oliven

and Rietz (1995), however, demonstrate that violations of arbitrage freedom occur in experi-

ments as well. The efforts taken by experimenters to indicate profit opportunities to the subjects

involved and to teach them what trading strategies to use to eliminate arbitrage did not help to re-

move the violations of the no-arbitrage condition. A professional arbitrageur had to be inserted

into the market to insure that the law of one price holds.

The capital asset pricing model (CAPM), Sharp (1964), Lintner (1965), predicts that, given as-

sets with normally distributed payoffs, the investors in the economy should choose efficient

portfolios, i.e. portfolios with minimal variance for a given mean. Moreover, given that there

is a riskless asset in the market, each investor should invest one part of his endowment into the

market portfolio and the rest into the riskless asset, implying the two-fund-separation theorem.

Both implications are violated in the experiments of Kroll, Levy and Rappoport (1988). More-

over, low rates of diversification are often observed in real markets, Kang and Stulz (1997),

Coval and Moskowitz (1999), Tesar and Werner (1995). Instead of holding the market portfolio,

investors seem to exhibit preferences for national or even local assets, the so-called home bias.

Asset market models imply that expected returns of the assets in the market can differ only to

account for the risk-aversion of the investors. Hence, a risky asset will in general exhibit higher

expected returns than a riskless one, if investors are risk-averse. Mehra and Prescott (1985) find

that the mean returns of securities exceed significantly those of bonds over the whole period, for

which returns have been registered. They estimate the risk-aversion, which would be consistent

with such behavior on the side of investors and find values which seem to be extremely high.

This paradox has entered the literature under the name of ’’equity premium puzzle’’.

The efficient market hypothesis, formulated by Fama (1970), states that price movements should

be unpredictable. Hence, trade on information available in the market should not be prof-

itable, since such information is already taken into account by the market participants. Es-
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pecially, past prices should not entail any information about future price movements. The em-

pirical evidence, however, demonstrates that information is often priced incorrectly. DeBondt

and Thaler (1985), Chopra, Lakonishok and Ritter (1992) find overreacting to information,

whereas Bernard (1992), Bernard and Thomas (1989,1990), Loughran and Ritter (1995), Iken-

berry, Lakonishock and Vermaellen (1995) and Womack (1996) find that investors react too

slowly to news. Since prices adapt with time, so as to reflect the information correctly, price

movements become predictable, violating the implications of the efficient market hypothesis.

The efficient market hypothesis further suggests that ’’buy and hold’’ is the best strategy to

follow. Since prices follow a random walk, winnings and losses are due merely to incoming

new information, hence to chance and not to the proficiency of a trader. Therefore, no active

trading can make an investor better-off. Nevertheless, Odean (1999) finds that investors trade

too often. Not only are these trades not justified by new information, but traders engaging in

them lose money even if transaction costs are not taken into account. Similar results are obtained

by Barber and Odean (2001 (a), 2001 (b)).

The financial theory predicts that prices should reflect information about fundamentals. Hence,

pricesshould only changewhen new information becomes available. It is however found that ob-

served asset price volatility cannot be explained by changes in dividend payments (which would

ref lect changes in fundamentals) or by new information, Roll (1984), Shiller (1981, 1999).

One of the approaches taken to explain the phenomena observed in financial markets consists in

assuming that some of the investors in the market have biasedbeliefs, while keeping the assump-

tion of expected utility maximization. For instance, DeLong, Shleifer, Summers and Waldmann

(1990 (a)), as well as Shleifer and Vishny (1997) show how noise traders, who misperceive

the variance of a risky asset, can generate arbitrage possibilities in a market where the ratio-

nal arbitrageurs are fully invested. The presence of positive feedback traders, who mistakenly

believe that asset price movements are positively correlated, can lead to price bubbles, as De-

Long, Shleifer, Summers and Waldmann (1990 (b)) demonstrate. The representativeness bias,

(i.e. the usage of short time-series as if they were representative of the population) is used by

Barberis, Shleifer and Vishny (1998) to explain under- and overreaction in financial markets.

The assumption about the existence of chartists (positive feedback traders) and fundamentalists

(who ignore prices and trade only on signals about future returns) in the market generates pos-
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itive autocorrelation in the short-run and negative autocorrelation in the long-run, see Cutler,

Poterba and Summers (1990). The excessive rate of trades is explained by the overconfidence

of traders who overestimate the precision of the signals they receive, as in Odean (1998), or, in a

dynamic set-up, by the self-attribution bias, as in Daniel, Hirshleifer and Subrahmanyam (1998)

and Gervais and Odean (2001).

Another class of models assumes that investors have alternative preferences, different from ex-

pected utility maximization. For instance the presence of ambiguity-averse investors in the

market can lead to results, which are inconsistent with the results obtained under expected util-

ity maximizations and can explain some of the anomalies observed empirically. One of the first

observations made by Dow and Werlang (1992) is that the optimal portfolio chosen by a Cho-

quet expected utility maximizer is not sensitive to price changes at points of complete insurance

for a non-degenerate interval of prices. This observation contradicts the result of Arrow (1965),

who shows that such intervals consist only of single points for an expected utility maximizer.

Moreover, Mukerji and Tallon (2003) demonstrate that such ’’portfolio inertia’’ characterizes

the perception of ambiguity.

Epstein and Wang (1994) construct an infinite horizon equilibrium model with a representative

agent in which beliefs are represented by a multiple prior. They show that the result of Dow

and Werlang (1992) remains valid, in that price is undetermined in an equilibrium. They con-

clude that high price volatility can result out of this indeterminacy. Nevertheless, as Epstein

and Wang (1994, p. 310) themselves note, these results do not necessarily imply price inde-

terminacy in a model with heterogenous agents. Even in a representative agent model, price

indeterminacy requires the presence of non-diversifiable risk18. In a model with heterogenous

agents with identical multiple priors Chateauneuf, Dana and Tallon (2000) demonstrate that

equilibrium allocations are comonotonic (hence, satisfy the sure-thing principle) and the equi-

librium price supporting the allocation is unique. Similar to the representative agent setting,

aggregate uncertainty is required to induce price indeterminacy in an equilibrium, as shown by

Dana (2000).

Whereas willingness to diversify is equivalent to a concave von Neumann Morgenstern utility

function in the context of expected utility maximization, Chateauneuf and Tallon (2002) show

18 Figures 6 and 7 in Rigotti and Shannon (2001, p. 41-42) provide an illustration of this fact.
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that with Choquet expected utility different notions of preference for diversification are sup-

ported by different characteristics of the decision problem — concave utility index is in general

neither necessary, nor sufficient for such preferences to emerge. An important role plays the

specific perception of ambiguity, i.e. the specific capacity of the decision-maker. Therefore,

non-additive priors and ambiguity-aversion can also explain phenomena, such as underdiver-

sification, see Uppal and Wang (2003) and the ’’home bias’’, i.e. the fact that investors hold

undiversified portfolios, in which foreign securities are underrepresented, see Epstein and Miao

(2003). The results are based on the assumption that some of the assets (e.g. the foreign ones)

are ambiguous. Ambiguity-averse investors, hence, choose to hold a lower share of ambiguous

assets in their portfolio compared to a portfolio of an ambiguity-neutral investor. Excessive re-

turns, as compared to the prediction of the CAPM, can also be explained by the fact that individ-

uals are ambiguity-averse and require an ’’uncertainty’’ premium, see Kogan and Wang (2002).

In a similar way, Chateauneuf, Eichberger and Grant (2002) show that pessimistic investors,

who overestimate the probability of low returns of a risky asset, prefer a riskless investments

and can, therefore, provide an explanation for the equity premium puzzle.

The cumulative prospect theory also offers explanations of financial market paradoxes, see

Camerer (1998). Thaler and Johnson (1990) provide evidence that people are more willing

to choose risky acts, after they have gained money, than after having made losses. Benartzi and

Thaler (1995) model an individual portfolio choice problem and show that loss aversion can

make an investor reluctant to invest in risky assets. Hence, they suggest that the prospect theory

might help to explain the equity premium puzzle. Barberis, Huang and Santos (2001) construct a

market model, in which investors are interested not only in maximizing expected utility, but also

in their financial wealth in each period of time. The utility derived from financial wealth in a

given period is computed using concepts from the prospect theory, losses being weighted higher

than gains. Both gains and losses are measured relative to a reference level (e.g. a past price).

The model explains the equity premium puzzle, high volatility of stock prices and predictability

of returns.

The higher sensitivity for losses than for gains in the prospect theory can account for investors

holding too long stocks losing value and selling quickly stocks that have gained in value recently,

see Shefrin and Statman (1985). This prediction is consistent with empirical studies: Odean
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(1998 (b)) finds that investors indeed sell winners quickly, but hold losers too long. Experiments

conducted by Weber and Camerer (1998) show similar effects.

Like the expected utility theory, the prospect theory and the Choquet expected utility the case-

based decision theory is derived from a set of axioms, which translate the set of preferences

consistent with the theory into observable patterns of behavior and allow to test the theory in

an experimental setting. The new approach of Gilboa and Schmeidler however deviates signif-

icantly from another theories for decision-making under uncertainty discussed up to this point,

since it replaces the framework of the expected utility theory by a new one. The description of

financial markets in terms of states of nature and state-contingent outcomes has persisted in the

literature for more than thirty years. The non-expected utility theories, like Choquet expected

utility and the prospect theory question the existence (or the uniqueness) of probability distrib-

utions over the outcomes, but do not criticize the main concepts per se. It is therefore necessary

to ask the question whether the new framework introduced by the case-based decision theory

is appropriate in the context of financial markets. Furthermore, I will analyze whether the kind

of behavior described by the case-based decision theory can capture some of the psychologic

phenomena observed in financial markets. This will be the topic of the next section.

1.4 Case-Based Reasoning in Models of Financial Markets

Gilboa and Schmeidler (1995) find that the theory they propose should be regarded more as a

complement to the expected utility theory, than as an alternative to it. They suggest that the

case-based decision-making may be appropriate in situations in which decision-makers have

little information about the problem and are unable to form beliefs about the possible outcomes

and their probabilities. It seems that the decision problems in financial markets hardly meet this

criterion. Financial economists regard it as natural to think in terms of states of nature (leading

to contingent payoffs) and state probabilities. Since the works of Arrow (1970, p. 98) it has been

assumed that the expected utility framework naturally fits the description of an asset in terms of

a probability distribution over state-contingent outcomes.

A thorough consideration of this framework, however, shows that it is in no way natural to

formulate the states of nature in a financial market. Indeed, besides the problem of deciding,

which payoffs of a security should be considered possible, the question of correlation among the
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payoffs of different assets arises. Hence, it is not a solution of the problem to identify the states

of the world with the payoffs an asset renders19.

Moreover, in a market environment payoffs are determined not only by the dividends paid by an

asset, but also by the capital gains and therefore, by the equilibrium prices, which themselves

depend on the expectations of the market participants. The well known beauty contest used

by Keynes (1936) to describe the expectation formation in asset markets illustrates this point.

As Arthur (1995, p. 23) notes ’’[w]here forming expectations means predicting an aggregate

outcomethat is formed in part from others’ expectations, expectation formation can become self-

referential. Theproblem of logically forming expectations then becomesill-defined, and rational

deduction finds itself with no bottom ground to stand upon’’. Moreover, in economies with

heterogenous investors the computational problems connected with determining the equilibrium

with rational expectations are still not solved by the economic science.

Heterogeneity of beliefs is a natural characteristic of real markets. Furthermore, beliefs tend

to change with time and these changes are not necessarily consistent with Bayesian updating.

The rules used to make decisions given some beliefs often violate the expected utility maxi-

mization. But then it is questionable whether states of the world, which would have to include

changing beliefs as well, can be naturally formulated and asset payoffs assigned to them. In

such an environment it might be much more natural for a decision-maker to evaluate portfo-

lios of assets according to their past performance. As a consequence of his critique of rational

expectations Arthur (1995) proposes an inductive approach to modelling decisions in financial

markets. Similarly to the approaches of Sargent (1993) and of Evans and Honkapohja (2001),

the idea of Arthur is based on adaptive expectations, which presupposes that investors know the

model of the economy, except for its parameters, which they can estimate as statisticians from

market data.

The case-based decision theory also provides a model of inductive learning. However, differ-

ently from the approaches cited above, it does not presuppose knowledge of the structure of the

economy and of possible models which can explain the data. Instead, a situation of ’’structural

ignorance’’ is modelled and the decision-maker uses inductive reasoning based on his experi-

ence, his aspiration level and his perception of similarity to evaluate the available alternatives.
19 See Bossert, Pattanaik and Xu (2000, p.296) for a discussion of the problems connected with the construction
of states.
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The case-based decision theory relies on the concepts of memory, aspiration level and similarity.

Although these concepts seem very natural, they need not reflect the way in which people per-

ceive a decision problem. Some situations might be well described in the standard framework

of states and state-contingent payoffs and it might be quite counterintuitive to try to represent

the information available as cases. If an investor is experienced and well acquainted with the

market situation, if he expects to be able to make correct forecasts about the future, based on the

data he possesses, then he will possibly find the Savage framework to be the appropriate deci-

sion rule to follow. Such an investor might be confused, if asked to formulate his experience in

terms of a memory containing past cases and similarity among problems. In contrast, if the situ-

ation is new, or considered unpredictable, if the investor does not have enough knowledge about

the structure of the market or about the behavior of other market participants, he might prefer

to base his behavior on his own or on other’s experience. In short, if an investor already knows

the structure of payoffs and can compute the optimal act, an aspiration level becomes useless to

him. On the other hand, if he is not aware of possible payoffs and their correlation, then an as-

piration level used to distinguish ’’good’’ from ’’bad’’ results, a perception of similarity between

assets, as well as memory reflecting knowledge of past cases may compensate for this lack of

more general information and be useful concepts to base one’s decisions upon.

The difference between the expected utility maximization and the case-based decision theory

consists not only in the information and structural knowledge they presuppose, but also in the

processing and usage of this information. The question therefore arises, whether it is possible

to indicate case-based reasoning in financial markets. Up to now, experiments designed to test

the case-based decision theory have not been constructed. Nevertheless, it is possible to analyze

whether the case-based decision theory allows to capture some of the psychologic biases com-

monly observed. The next paragraphs will therefore deal with the question of how the kind of

behavior, described by the case-based decision theory is connected to the behavior observed in

financial markets and how the main elements of the model can be interpreted in this context20.

1.4.1 Anchoring

Case-based decision-makers learn from information contained in past cases. Hence, a case-

20 I consider only those phenomena, which seem to be captured by the case-based decision-theory. For complete
reviews on psychological phenomena in financial markets see Rabin (1998), Shiller (1999) and Hirshleifer (2001).
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based investor uses past prices and dividends to draw conclusions about the future performance

of a portfolio in the future. This behavior is regarded as irrational from the point of view of the

efficient market hypotheses, which states, see Fama (1970), that asset prices should move as a

random walk and therefore past prices could not be used to predict future returns21. However,

empirical evidence shows that usage of information which seems to be irrelevant for the decision

at hand is often observed.

When asked to make quantitative predictions, subjects in experiments use available pieces of

information as a bench-mark. Moreover, they tend to do so even if the information available is

of little or even no relevance to the problem stated, see Tversky and Kahneman (1974). This

phenomenon is called anchoring.

Shiller (1999) suggests that the same phenomenonmight be observed in financial markets, where

investors, lacking a better rule for predicting returns or future prices, use the current values as

a bench-mark for their assessments. ’’Values in speculative markets, like the stock market, are

inherently ambiguous. Who would know what the value of Dow Jones Industrial Average should

be? [...] There is no agreement upon economic theory that would answer these questions. In the

absence of any better information, past prices (or asking prices or similar objects or other simple

comparisons) are likely to be important determinants of prices today’’, Shiller (1999, p. 1315)

writes. But this is exactly the way in which a case-based investor uses information of similar

past cases to make forecasts about future prices and returns.

Effects of anchoring are indeed found in financial markets. Shiller, Kon Ya and Tsutsui (1996)

analyze the price crash of the Nikkei between 1989 and 1992. When asked to assess whether

the stock prices in Japan were too high, American and Japanese investors gave significantly

different answers on average. Shiller (1999, p. 1316) suggests that this effect may be due to

anchoring: whereas American investors used the American stock prices (which were relatively

low at the time) as a bench-mark and concluded that Nikkei was overvalued, Japanese investors

were used to high price-earning ratios and claimed that the stock prices ref lected correctly the

fundamental values. Further evidence of anchoring in financial markets is provided by Shiller

21 Should the expected direction of the next price movement be different from 0, there would be risk-neutral
investors who would use this information to buy (for an upward movement) or to sell the asset (for a downward
movement). Hence, the price would rise or fall and the excess returns present in the market would disappear. See
Samuelson (1965) and Mandelbrot (1966) for analytical proofs of the efficient market hypothesis.
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(1984).

Shiller (1990) further finds that the models used by investors to predict future prices are ’’ex-

tremely simple’’, e.g. ’’notion that large price drops should be followed shortly by a reversal’’

and the usage of ’’more established theories’’ is ’’rare’’, (Shiller 1990, p. 57). The case-based

decision theory allows to incorporate such learning from past price patterns in a formal model.

1.4.2 Reference Levels

Case-based decisions require a specification of an aspiration level, which has two functions:

it determines the ex-ante expectations of the investors about the performance of the available

acts and it defines which utility realizations are considered satisfactory. Whereas the usage of

an aspiration level in the framework of expected utility maximization would not inf luence the

behavior of a decision-maker22, case-based decisions are sensitive to changes of the aspiration

level, since they alter the evaluation of results already experienced. Although not modelled in

the standard decision theory, reference and aspiration levels seem to inf luence decision-making

in experimental and real markets.

Northcraft and Neale (1987) find that anchoring might distort the evaluation of a result already

achieved. Rabin (1998, p. 13) states: ’’Instead of utility at time t depending solely of present

consumption [...], it may also depend on a ’’reference level’’[...] determined by factors like past

consumption or expectation of future consumption’’.

Empirical studies show that such kind of behavior is not atypical for financial markets. DeGe-

orge, Patel and Zeckhauser (1999) find that managers adjust earnings to meet threshold levels

such as zero, past levels and level forecast by analysts, suggesting that investors are sensitive

not only to the level of actual earnings, but also to deviations from a certain reference level.

Richardson, Teoh and Wysocki (1999) note that a similar phenomenon exists in the analysts’

forecasts, which are pessimistic in the short run, so that prices are likely to exceed the forecast

level. Lewellen, Lease and Schlarbaum (1977, p. 308) report that 42% of the investors they

interview choose major public indices as a criteria to evaluate portfolio performance, whereas

’’another 45% report[...] that they had internalized instead a personal standard of return as an

22 The introduction of an aspiration level is equivalent to a linear-affine transformation of the von Neumann Mor-
genstern utility function, which does not influence the preferences of an expected utility maximizer.
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amalgam of experience, evidence and concepts of ’’fair’’ yields’’.

The empirical findings show that a reference or aspiration level can inf luence decisions in fi-

nancial markets in two ways: first, it may change evaluation of an outcome already experienced

and second, it provides a bench-mark for forming expectations. Both roles of aspirations are

captured by the case-based decision theory.

Both passages cited above suggest that the aspiration level depends on past evidence observed.

The case-based decision theory allows for such updating of the aspiration level. Although, the

aspirations have to be chosen arbitrary at first (since no information about possible utility real-

ization is available), the case-based investors will in general update it in a way that ref lects their

past experience. However, since there is little evidence on how reference levels are determined,

see Rabin (1998, p. 15) and since there are few works trying to describe economic behavior,

when reference levels are updated over the time23, we must be careful when interpreting results,

achieved by assuming some kind of updating of the aspiration level.

1.4.3 Representativeness Heuristic

The case-based decision theory further implies that in the initial periods the decision-maker re-

lies on a relatively small series of data he possesses and acts as if it were representative of the

population from which it is drawn. Thus at earlier periods a case-based decision-maker behaves

as if he were chasing a trend in the price movements. This phenomenon is called representa-

tiveness heuristic: Tversky and Kahneman (1974) find that people try to categorize events and

infer probabilities from this categorization. A typical error resulting from this kind of behav-

ior is to assume that small samples accurately represent the population, Tversky and Kahneman

(1971). People tend to see patterns in short random sequences and rely on these patterns when

making decisions. ’’Because we underestimate the frequency of a mediocre financial analyst

making lucky guesses three times in a row, we exaggerate the likelihood that an analyst is good,

if she is right three times in a row’’, Rabin (1998, p. 25). Although a case-based decision-maker

does not think in terms of probabilities, with little experience his behavior can initially exhibit

the representativeness heuristic.

23 See for instance Ryder and Heal (1973), who assume a first-order autocorrelation process for the reference level
and Duesenberry (1949), who assumes, that the aspiration level at a given period is set to be the highest utility level
achieved up to this period.
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Kroll, Levy and Rappoport (1988) report an experiment consisting in choosing an optimal port-

folio of three risky assets with known means, variances and covariances, whose returns were not

serially correlated. The participants in the experiment were students, who had taken a one-year

course in statistics. However, the students seemed not to rely on the statistical information pre-

sented to them. Instead, they used the time series available, trying to infer some patterns and

trends from past returns.

Such kind of behavior is similar to the one suggested by the theory of Gilboa and Schmeidler

(1995). Since a case-based decision-maker has no model of the structure of the economy, knowl-

edge of parameters is of little use for him. Hence, it is possible that his predictions about future

returns and, therefore, his behavior depend on information which is not representative for the

process of asset returns.

Shiller (1990, p. 59) finds this kind of behavior in the housing markets of three major cities

in the USA, in which housing prices have recently risen significantly: ’’It is peculiar, then that

there is so little apparent interest in quantitative data about fundamentals. There is instead a

feeling in most cities that housing prices cannot decline’’. But the representativeness heuristic

seems to be common in financial markets, as well. Shiller (1990, p. 63) reports that 47% of

the individual investors and 28% of the institutional investors he interviewed find that a 15%

jump in the price of a share recommended by a broker is a ’’strong’’ or ’’positive’’ evidence for

the broker’s ability to choose profitable investments. Further evidence is provided by DeBondt

(1993), who finds that small investors’ sentiments follow price movements. Bange (2000) finds

that small investors tend to use feedback strategies, i.e. buy shares which have performed well

in the near past. Ippolito (1992) and Sirri and Tuffano (1998) present evidence that investors

extrapolate the performance of mutual funds. By assuming that the decision-maker bases his

decisions on small (possibly not representative) samples in the initial periods, the case-based

decision theory is able to capture such effects.

1.4.4 Belief Perseverance and Confirmatory Bias

The similarity function of a decision-maker states which cases are considered to be relevant for

the problem at hand and determines the weights of the past utility realizations for the evaluation

of each act available. If some of these weights are 0, the decision-maker might neglect available
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information, which objectively seen could improve his decision, see chapter 3. If some of these

weights are even negative, then positive past evidence may be interpreted as negative. This can

lead to phenomena such as belief perseverance, i.e. refusal to process information, which may

oppose one’s views, and confirmatory bias, which describes the fact that people tend to interpret

additional evidence as supporting their beliefs.

The phenomena of belief perseverance and confirmatory bias have been observed in the experi-

ments of Lord, Ross and Lepper (1979), who provide evidence that identical information given

to people who already differ in their opinion leads to even more severe polarization. Similar

results are documented by Plous (1991) and Darley and Gross (1983). The more complex the

problem and the more ambiguous the evidence that subjects receive, the more pronounced are

the effects, Lord, Ross and Lepper (1979, p. 2099).

Applied to case-based decisions, belief perseverance means that an investor, who has already

come to the conclusion that a portfolio ® is a ’’good’’ choice, may just ignore information about

assets yielding higher returns than his portfolio, for instance by assigning these cases a similarity

weight of 0. Alternatively, subject to the confirmatory bias, he may apply negative similarity

weights to these cases and therefore interpret this information as justifying his actual choice.

Odean (1999, p. 1295) finds that investors ’’do not [...] routinely look up the performance of

a security they sold several months ago and compare it to the performance of a security they

bought in its stead’’. Hence, a decision-maker may persist in following an unprofitable strategy,

despite the fact that contrary evidence is easily available to him.

1.4.5 Learning

The next point to be made concerns learning. Economists usually argue that biases, found in

experiments are eliminated, once subjects become more experienced in solving the particular

kind of problems, or once their mistakes are explained to them. Hence, (at least) in the long run

economic agents should be expected to behave rationally. For a case-based decision-maker this

need not be the case, as subsequent analysis will show. Is it plausible to assume that learning

could lead to suboptimal decisions?

Experiments show that learning does not necessarily lead to application of the principles learned.

Kahneman and Tversky (1982), as well as the experimental results of Kroll, Levy and Rappoport
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(1988) find that statistical knowledge does not help subjects to perform better in experiments.

Wilson and LaFleur (1995) demonstrate that even a conscious reasoning process per se does not

necessarily lead to better decisions.

’’Learning can even sometimes tend to exacerbate errors’’, notes Rabin (1998, p. 32), for in-

stance, by making the decision-makers overconfident. ’’Additional information can lead to an

illusion of knowledge and foster overconfidence, which leads to biased judgements’’, write Bar-

ber and Odean (2001 (b), p. 6). This is confirmed by several studies, see for instance, Hoge

(1970), Slovic (1973), Peterson and Pitz (1988). Barber and Odean (2001 (a), 2001 (b)) find

that certain classes of investors, to whom large data bases are available, tend to become over-

confident and to lower their profits significantly.

Hence, especially in complex systems, such as financial markets, which, according to Odean

(1999, p. 1295), are ’’a noisy place to learn’’, it cannot be expected that decision-makers behave

fully rationally even if they have been making similar decisions for a long time. The case-based

decision theory allows to examine the influence of parameters, such as aspiration level, similar-

ity function and memory, on learning and indicate conditions under which optimal learning is

possible in the limit. On the other hand, it also allows for patterns which are inconsistent with

rational learning and might therefore better describe empirical evidence from financial markets.

1.4.6 Learning through Induction

A different issue I would like to address concerns the type of learning modelled by the case-

based decision theory. It has already been mentioned that a case-based decision-maker learns

from his experience about possible utility realizations and their frequencies. Instead of starting

with a predefined set of models of the environment and trying to learn which of these models is

correct, the case-based decision-maker reasons inductively using a subjective similarity relation.

This kind of implicit induction dating back to Hume (1748) is based on his claim that ’’from sim-

ilar causes we expect similar effects’’ and represents a starting point for the case-based decision

theory, Gilboa and Schmeidler (2001 (a), p. 184). Differently from the so called explicit induc-

tion introduced by Wittgenstein (1922, 6.363), which consists in ’’accepting as true the simplest

law that can be reconciled with our experience’’, it does not define rules or laws. Although

rules can be implicitly present in the case-based reasoning, for instance as a summary of multi-
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ple cases or as an indicator of similarity between cases, see Gilboa and Schmeidler (2001 (a), p.

107-108), rule-based reasoning is considered less flexible than the case-based decision theory,

since it does not give any recipe for behavior in case a rule is contradicted by experience2425.

It is well known that induction does not give a satisfactory answer to the question of how knowl-

edge is acquired from the point of view of the philosophy of science, see Musgrave (1993). Nev-

ertheless, for the purpose of economic theory it creates a new possibility to model knowledge

acquisition. Instead of learning being purely deductive, as in the expected utility theory, where

the set of consistent models is constrained more and more with incoming information, but in

which no new models outside the initial set can be learned, an inductive method is proposed,

which does not rely on prior structural knowledge.

Poincare, see Keynes (1921, p. 285), distinguishes two notions of ignorance. Probability it-

self represents ignorance, but this ignorance concerns only the outcome of a stochastic process.

Poincare compares this kind of ignorance to the ignorance about the laws governing processes,

which are considered deterministic per se. It seems that whereas the standard decision theories

take the nomologic knowledge of laws for granted and allow learning only about facts or prob-

abilities by means of logic conclusions, (ontologic knowledge), the case-based decision theory

models exactly the acquisition of nomologic knowledge26 . In fact, the expected utility theory

treats these two types of knowledge identically. The same framework is used to model learn-

ing about a realization of a random variable and learning a probability distribution or learning

a model of an economy. The conceptual problem that the expected utility theory faces in this

respect is that new structural meta-knowledge is required each time a new meta-law has to be

learned.

I am far away from concluding that the case-based decision theory is superior to the standard

decision theories and especially to expected utility maximization. In order to draw a similar

conclusion, one should ask the question whether the case-based decision theory itself allows

for differentiating between nomological and ontological knowledge. The inductive learning

24 In this sense rule-based reasoning is similar to Bayesian updating, which also does not specify the behavior in
case an unforeseen event (with a prior probability of 0) occurs.

25 Gilboa, Lieberman and Schmeidler (2004) provide a comparison of the performance of case-based and rule-
based reasoning based on the housing market in Tel Aviv. They demontsrate that case-based reasoning outperforms
rule-based reasoning for relatively small and for relatively large data sets. In contrast, rule-based reasoning is
superior for data sets of intermediate size.

26 This classification of knowledge is to be found in Keynes (1921, p. 288).
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modeled by the case-based decision theory is constrained by the fact that similarity perceptions

are used to make decisions, but similarity relations only become known with experience27. But

then it follows that the case-based decision theory does not conceptually differentiate between

learning about facts and learning about laws, either. Hence, the case-based decision theory

allows for an alternative wayof learning, which cannot replace but only complement themethods

of the expected utility theory. Applying this theory in a specific economic model can, therefore,

provide new insights into the functioning of economic systems and lead to a better understanding

of the case-based decision theory itself.

1.5 Overview of the Thesis

It has been shown that the case-based decision theory can incorporate some important psycho-

logical biases, which human behavior exhibits. Furthermore, the case-based decision theory

allows to model decisions which are not based on a definition of states of nature and on the

knowledge of state-contingent payoffs. Hence, it offers an alternative framework for modelling

decisions in complex systems, such as financial markets. This thesis applies the case-based de-

cision theory to financial markets, the first aim being to describe the behavior of case-based

investors. This is done in the context of an individual portfolio choice problem, as well as in a

market environment with endogenous prices. The thesis studies the question of how the choices

of case-based investors differ from those of expected utility maximizers with correct beliefs.

Further, the dynamic of asset prices and portfolio choices is analyzed.

The second aim of this thesis is an explanative one. The qualitative implications of case-based

decision-making in financial markets are compared to the empirically observed phenomena, in

order to study whether the presence of case-based investors could explain some of the empirical

findings.

Afterwards, the somewhat normative issue of performance of case-based decisions relative to

expected utility maximization is discussed. The analysis addresses the question of whether case-

based investors can survive and inf luence market prices in the presence of expected utility max-

imizers.

In order to answer these questions, the thesis is organized as follows. Chapter 2 addresses some
27 Gilboa and Schmeidler (1993) call this effect second-order induction.
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conceptual issues connected with the application of the case-based decision theory to financial

markets. It first discusses the description andoperationalizationof the exogenous characteristics

of the decision situation, suchas the decisionproblem, the set of available acts and thememoryof

a decision-maker. It is found that case-based decisions are sensitive to the particular description

of problems and acts, since it might inf luence the perception of similarity. I discuss whether

the case of endogenous memory (i.e. memory that contains only cases actually experienced by

the investor) as opposed to exogenous memory (i.e. cases in memory are independent of the

decision made by the investor) is more interesting and appropriate in the context of financial

markets. I further address the evolution of memory in the context of an economy with financial

markets populated by case-based decision-makers.

Further, the concepts derived by means of axioms are considered. The literature on aspiration

levels and their adaptation in economic environment is sparse and few adaptation rules have

been formulated and studied. I, therefore, decide to concentrate on constant aspiration levels

throughout most of the thesis and to analyze the inf luence of aspiration levels by means of com-

parative statics. Adaptation of aspirations is used only in the context of an individual portfolio

choice problem in order to test the robustness of the results achieved and to explore whether the

results of Gilboa and Schmeidler (1996) can be transferred to a decision problem with similarity

considerations.

The similarity function is the last issue discussed in this chapter. I suggest to use the Euclidean

distance between portfolios or alternatively between price-portfolio pairs to measure similarity.

In aportfolio choice problem with exogenous prices I suggest to consider only similaritybetween

acts (portfolios), whereas problems are considered identical. In a market environment, similarity

between problem-act / price-portfolio pairs is introduced. The similarity function is assumed to

decrease in the Euclidean distance, take on values between 0 and 1 and assign a similarity of 1

to identical objects. No other assumptions on the similarity function seem to be justified either

by the case-based decision theory, or by the analysis of the decision situation.

Chapter 3 concentrates on the analysis of a portfolio choice problem with case-based decisions.

In a first instance the results derived by Gilboa and Schmeidler (1996) and Gilboa and Pazgal

(2001) are presented and interpreted in the context of a portfolio choice problem. Gilboa and

Schmeidler (1996) find an adaptation rule which guarantees that a case-based decision-maker
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who acts in a stationary environment learns to choose the optimal (from the point of view of

expected utility maximization) portfolio in the limit. Gilboa and Pazgal (2001) analyze the

inf luence of a constant aspiration level on repeated choice in a stationary environment. They

show that high aspiration levels lead to constant switching among available acts. In chapter

3, these results are reinterpreted in the context of portfolio choice. Investors who update their

aspiration level in the ’’ambitious-realistic’’ way proposed by Gilboa and Schmeidler (1996)

eventually learn to make correct decisions. Investors with high constant aspiration levels switch

constantly among the available portfolios, never learning to choose the optimal one. Hence, they

trade too much and, by failing to hold the optimal portfolio all the time, they loose money in

general. Case-based investors with high aspiration levels, therefore, exhibit behavior similar to

those of ’’overconfident’’ investors in the sense of Odean (1998). However, differently from the

overconfident investors, who overestimate the meaning of incoming information, the behavior

of case-based decision-makers is predetermined by the negative evaluation of the past returns

achieved..

Investors with low constant aspiration level in general exhibit a constant but suboptimal behav-

ior. Since they find the returns of their portfolio satisfactory, they do not have an incentive to try

another one. Low aspiration levels can therefore explain such effects as holding underdiversified

portfolios and especially the home-bias, as well as unused arbitrage possibilities.

Similar results are achieved by assuming that the investor sets his aspiration level equal to the

maximal or to the minimal utility realization achieved, or to a linear combination of both. If the

weight put on the maximal utility realization is sufficiently high, the investor behaves as if he

has a relatively high aspiration level in the limit and vice versa. Hence, the results are robust for

this kind of aspiration level updating.

Further analysisshows how theresults change, if the investors are able to observe the realizations

of all portfolios at each time and not only of the portfolio actually chosen. If the investor is

allowed to make observations for an infinitely long time, he learns (given the i.i.d. structure

of returns) to choose the best portfolio in the limit. However, if the investor is only allowed to

observe all realizations for a finite number of periods, this helps him to act optimally only if his

aspiration level is relatively low. If his aspiration level is chosen sufficiently high, learning for

a finite period of time does not improve his performance.
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This analysis is carried through with a very special form of similarity function — it is assumed

that all problems are identical and all acts are completely different from each other. Hence,

the utility realization, given that a portfolio is chosen does not contain any information used to

evaluate the performance of other portfolios. This assumption is relaxed in section 8 of chapter

3 in order to analyze the inf luence of similarity considerations on portfolio choice. It is again

assumed that problems are identical, but the similarity between portfolios / acts is modelled

by a function which is decreasing in the Euclidean distance between portfolios situated on a

simplex. It is assumed that the similarity function is concave in the Euclidean distance. First,

the case of constant aspiration level is considered. It is shown that a case-based investor chooses

a diversified portfolio in each period only if his aspiration level is sufficiently low. For high

aspiration levels the investor switches to one of the undiversified portfolios in finite time and

never diversifies again afterwards.

Next, the issue of learning is analyzed. For the ’’ambitious-realistic’’ rule proposed by Gilboa

and Schmeidler (1996), it is shown that the decision-maker learns to choose the best non-

diversified portfolio, but his choice is not globally optimal in the limit. Crucial for this result

is the assumption of a concave similarity function. Allowing for convexity regions in the sim-

ilarity function makes the investor experiment among more portfolios and improves his limit

choice. Nevertheless, the learning is not optimal but in the limit case, in which the similarity

function collapses to the identity indicator function, as in the model of Gilboa and Schmeidler

(1996).

The results of this chapter show that although investors making case-based decisions can learn

to make optimal choices if their aspiration level is updated in a special way, they in general act

suboptimally. Moreover, their behavior can help explain some of the phenomena observed in

real and experimental asset markets.

The next step is, therefore, to model a market with case-based decision-makers, the first aim

being to describe how prices and portfolio holdings evolve in such a market. In a second step,

it will be interesting to know whether the presence of case-based decision-makers in the market

can explain empirical phenomena, which are inconsistent with expected utility maximization.

The analysis of a market presupposes a definition of a competitive market equilibrium in an

economy populated by case-based decision-makers. In chapter 4, an asset market equilibrium
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in the context of an overlapping generations (OLG) economy populated by case-based decision-

makers is introduced. It is shown that the equilibrium exists under mild conditions imposed on

the utility function and the initial endowments of the old investors in period 1. The uniqueness of

the equilibrium is, however, not guaranteed. Moreover, it is demonstrated that the demand of the

case-based decision-makers can be very insensitive to price changes when prices are low. This

leads to the existence of degenerate equilibria, in which the prices of some of the assets are 0. In

equilibrium, these assets are not demanded. It is possible to state conditions which exclude the

existence of such equilibria, or at least insure that a non-degenerate equilibrium exists, but these

conditions are not always economically meaningful, since they require the existence of investors

with very low aspiration levels. Furthermore, the existence of such degenerate equilibria might

help model and explain phenomena such as arising and bursting of bubbles or the persistence of

arbitrage possibilities in the market.

Chapter 5 studies the asset price dynamics in an OLG model with case-based decision-makers.

At first, it is assumed that the decision-makers can only choose between two undiversified port-

folios — one completely riskless, the other consisting only of risky assets. The memory of an

investor contains only cases actually experienced by his predecessors with the same aspiration

level. It turns out that the memory and the highest aspiration level in the economy are the ma-

jor factors which determine the dynamic of prices and portfolio holdings in equilibrium. With

one-period memory the economy remains in a stationary state with constant asset prices and

constant portfolio choices over the time, as long as the aspiration levels are relatively low. The

portfolio holdings are not necessarily optimal at the equilibrium prices and the price of the risky

asset in general differs from the price under rational expectations. Higher aspiration levels lead

to two-state-cycles, which can be stochastic (for intermediate aspiration levels) or determinis-

tic (for high aspiration levels). The price dynamic exhibits small bubbles: a one-period price

rise, which does not depend on the value of the dividend realization, is followed by a (one-

period) price fall, caused by a low dividend realization. Predictability of asset returns obtains

in the model, since the price rise does not depend on the dividend realizations. The case-based

decision-makers with high aspiration levels, who constantly switch among the available port-

folios, cause excess price volatility. Moreover, arbitrage possibilities can persist in a market

with case-based investors. It is found that high aspiration levels have the same effects on prices

as overconfidence: they increase the trading volume and the price volatility. Furthermore, the
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traders with high aspiration levels incur losses, since they tend to buy at high prices and sell at

low prices.

The analysis is then carried out for the case, in which the memory of the investors encompasses

all past cases in the economy from period 0 on. The price dynamic and the portfolio holdings in

equilibrium are determined. The results for different aspiration levels are similar to those derived

with one period memory: whereas low aspiration levels lead to satisficing behavior and constant

prices, high aspirations imply stochastic cycles. If, however, the highest aspiration level in the

economy is chosen appropriately, the investors with this aspiration level learn to choose the op-

timal portfolio as the time evolves. Hence, although the economy exhibits two-state cycles, with

time the cycles vanish and the investors with high aspirations behave optimally at the equilib-

rium asset prices. Nevertheless, it is not guaranteed that the asset price coincides with the price

under rational expectations. Indeed, the investors with lower aspiration levels in general fail to

learn to behave optimally. Hence, in the stationary state of the economy the expected returns of

the risky asset might be too high, compared with the returns of the riskless bond and still a pos-

itive share of the investors would be holding bonds in each period of time. This result, which

is independent of the curvature of the utility function of the case-based decision-makers, might

help to explain the equity premium puzzle. The analysis of an asset market with case-based in-

vestors further allows to generalize the theorem of Gilboa and Pazgal (2001), formulated for an

individual choice problem, to a market environment..

In a next step, the assumption that the memory of the investors can contain only cases actually

experienced by their predecessors with the same aspiration level is relaxed. I construct an ex-

ample, in which investors can choose between the two undiversified portfolios and the market

portfolio. The market portfolio dominates weakly the two other available portfolios. Allowing

the investors to observe the utility realization of the market portfolio in each period of time, in

addition to the cases actually experienced, leads to the choice of the market portfolio in the limit,

but only if the aspiration level is chosen sufficiently low. For relatively high aspiration levels,

the non-diversified portfolios are almost surely chosen with strictly positive frequencies. Hence,

hypothetical reasoning need not lead to optimal choices in general, especially, if no dominance

relationship is present among the acts available.

The assumption that the investors can only choose between the two undiversified portfolios
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seems to be too severe. Therefore, section 6 of chapter 5 considers the case in which diversifi-

cation is allowed and a similarity function is used to evaluate portfolios not chosen before. In

contrast to chapter 3, the similarity function is now assumed to depend not only on the portfo-

lio chosen, but also on the problem encountered, where a problem is associated with the price

of the risky asset in the economy28. The results do not change qualitatively, as long as the simi-

larity function is concave29. However, with similarity considerations a bubble on the risky asset

can endogenously emerge and persist for a number of periods. The price of the asset rises in

periods, in which the dividend realization is low, which can explain phenomena such as the in-

ternet bubble, during which no dividend payments occurred. The bubble bursts with probability

1 in finite time and never reappears.

Having described the price dynamic in an economy populated solely by case-based decision-

makers, a somewhat normative approach is adopted next in order to discuss the issue of survival

of case-based decision-makers in the market. This issue is crucial for the understanding and

interpretation of the descriptive results obtained. Indeed, the influence of case-based investors

on prices can be persistent over time only if they are able to survive in a financial market in the

presence of expected utility maximizers (or even of expected utility maximizers with rational

expectations). Only in this case would it be meaningful to explain the emergence of empirically

observed phenomena by the presence of case-based investors. Should, on the other hand, the

case-based decision-makers vanish with time, then they could only have temporary inf luence

on the market. In chapter 6, therefore, I model an economy populated by case-based decision-

makers and expected utility maximizers. Whereas the share of wealth invested into the risky

asset by the case-based decision-makers is increasing in its price, this share is falling in the

price of the asset for the expected utility maximizers. A replicator dynamic is introduced, which

selects for the type of investors performing better than the average of the society. The state in

which only expected utility maximizers are present in the market is stationary for all values of

the parameters. For relatively low aspiration levels, there are also stationary states in which

the case-based decision-makers and the expected utility maximizers coexist in the market (in

arbitrary proportions), hold identical portfolios and achieve identical returns in each period of

time. However, these stationary states are empirically indistinguishable from an economy with
28 This assumption seems appropriate, since all other parameters describing the portfolio choice problem of an
investor remain constant over time.

29 This assumption is only needed in the case of long memory.
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expected utility maximizers with rational expectations.

I, therefore, study the dynamic of the system for higher aspiration levels and analyze the stability

of the stationary state, in which only expected utility maximizers are present in the market.

Under the assumption of a linear utility function it is possible to identify cases in which the

proportion of the expected utility maximizers decreases in expectation in some surrounding of

the stationary state. Hence, the stationary state is not stable and the case-based decision-makers

survive almost surely in a positive proportion. This is due to the fact that near the stationary state

the expected returns of both types of investors are equal, whereas the portfolio of the case-based

decision-makers is less risky. Since the replicator dynamic is concave, it selects for the strategy

of the case-based decision-makers.

If the aspiration level of the case-based decision-makers is relatively high, then they can cause

excessive volatility, bubbles and predictability of returns in a market in which the share of the

expected utility maximizers is not too large. For relatively low aspiration levels, the case-based

decision-makers can drive the expected utility maximizers out of the market for a finite number

of periods. In these periods a risky asset with positive fundamental value is traded at a price of

0. Hence, arbitrage possibilities are present in the market, which can be used by the expected

utility maximizers, even though their wealth share is 0. In the first period in which the risky asset

pays a high dividend the share of the expected utility maximizers recovers to a strictly positive

level.

The assumption of a linear utility function is next relaxed. It is found that for any coefficient of

relative risk-aversion between [0; 1), there are values of the parameters, for which the case-based

decision-makers survive almost surely in the market. Only expected utility maximizers with a

logarithmic utility function are able to drive the case-based decision-makers to extinction for all

values of the parameters.

Chapter 7 summarizes the results of the thesis and outlines directions for future research.
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Chapter 2. Conceptual Issues

The case-based decision theory has been mainly discussed in the literature as an axiomatic the-

ory for decision-making under structural ignorance, see Gilboa and Schmeidler (2001 (a)) . It

has been applied to economic problems in several contexts, but not to financial markets. The

application of the case-based decision theory, especially in a market environment and in the

context of financial markets poses some conceptual issues, which have to be discussed before

constructing a formal model.

The axioms which support this theory and were presented in the introduction show that the

elicitation of preferences and similarity perceptions from the choices of the decision-maker are

dependent on several elements, which are assumed to be given in the derivation of the theory.

Such elements are the set of available acts and the problems which the decision-maker faces and

their exact description, as well as the composition of the memory. In a model, in which the case-

based decision theory is applied to an economic problem, the specification of these elements has

to be done in advance and will play an important role for the results derived.

A second issue concerns thecharacteristics of a case-based decision-maker, which can be elicited

by the means of the axioms, i.e. his aspiration level and his similarity function. Up to my knowl-

edge, there are few empirical results on aspiration level adaptation and similarity perceptions in

economic environment, see Lant (1992) for a study on aspiration adaptations and Zizzo (2002),

Buschena and Zilberman (1995, 1999) and Rubinstein (2003) for experiments on similarity per-

ceptions30 . None of these works discusses the problems in the context of asset markets. Since

empirical evidence is missing, the question of how aspiration levels are chosen, what rules for

adapting the aspiration level are modeled and how similarity considerations can be implemented

into a model of a financial market will have to be discussed.

Up to now the case-based decision theory has only been applied to individual choice problems.

Embedding case-based decisions into a market environment requires establishing a connection

between prices and decisions, which will enable defining a market equilibrium. Such a defi-

nition will especially concern the specification of the memory of an investor and its possible

30 There is, of course, a vast experimental work done by psychologists on similarity perceptions. I will not make
an attempt to review this literature here, but see Tversky (1977) for references.



dependence on prices and individual choices in the economy.

2.1 Problems and Acts

The case-based decision theory describes a decision situation in terms of two components —

the problem faced and the set of available acts. The memory of a case-based decision-maker,

which determines his preferences, is also formulated in terms of problems and acts. Therefore,

the description of these two components will play a major role for the decision to be made.

The problem is identified with the description of the decision situation. However, this descrip-

tion does not consist of states of nature, as in the expected utility theory. Nor does it include the

possible realizations of an act, as is usually assumed. Hence, in contrast to the set of states of

nature in the expected utility theory, a problem cannot be a complete description of the situation,

’’leaving no relevant aspect undescribed’’, Savage (1954, p. 9). The problem can be possibly

seen as a formulation of the aims of the decision-maker, combined with the description of rele-

vant characteristics of the situation, about which the decision-maker is informed. Consider for

instance the problem faced by an investor in a financial market. It could be described as: ’’invest

a certain amount of wealth today, so as to enable future consumption’’. Note that maximization

of expected payoffs or utility cannot be embedded as an aim in this problem, since the investor

wouldn’t have the knowledge to solve such a problem. True, he will be searching for an ’’opti-

mal act’’, but this evaluation will not take place based on the prospects of the act, about which

he has no information, but on the basis of cases present in his memory, i.e. on past realizations.

This problem formulation stated above is quite vague and does not allow to distinguish between

situations in which an investment has to be made. It can be used if all problems encountered are

regarded as identical, as for instance in Gilboa and Schmeidler (1996, 1997 (b), 2001 (b)) and

Pazgal (1997). However, it clearly does not capture important characteristics of the decision

situation, which could help the investor make a decision. A problem could be, for instance,

characterized by the time at which the decision is made, the wealth to be invested, the prices for

consumption goods in the economy, as well as the asset prices, the investor engaged in solving

the problem31 , in short, by any feature which is independent of the actions taken by the decision-

31 This becomes relevant, if the decision maker has to rely on the experience of other investors.
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maker32 . So, for instance, Blonski (1999, p. 63) and Krause (2003) define a decision problem

by the period in which the decision is made and the agent involved in the decision-making

process. Jahnke, Chwolka and Simons (2001) represent a problem by the aim of the firm (its

optimization problem) combined with the past information available about choices and inferred

parameter values.

In this thesis, a problem will in general be characterized by the (rather vague) aim of the investor

to obtain future consumption by making investments today. The period in which the decision is

made, the personality of the investor (captured by his aspiration level), as well as asset prices

will be used to differentiate among problems in some of the models. The dependence on the time

period might account for the fact that investors have limited memory and can, therefore, only

remember a certain number of recent cases. Alternatively, it might capture the idea that investors

regard the environment as changing and rely only on relatively recent cases to make decisions.

The personality of an investor involved in a certain case might determine the relevance of his

experience for the choice of another investor or the credibility ascribed to this evidence. Asset

prices represent an important part of the description of the market situation. Buying an asset in a

booming market might be quite different from buying the same asset when the prices decrease.

Therefore, it seems to me that prices should also enter the description of a problem in the context

of a financial market model.

Once included into the description of a problem, the features listed above will influence the

similarity perceptions of an investor. Since I assume that the similarity with respect to investors’

personality and with respect to the period of time at which the problem is encountered is either 0

or 1 it is more convenient to capture these factors by the contents of the memory of an investors.

Hence, the memory contains only cases in which problems assigned a similarity of 1 to the

current problem are encountered. In contrast, asset prices enter explicitly the definition of a

problem in the context of an asset market model and, therefore, appear as an argument of the

similarity function.

The description of acts is not less problematic than the description of the problem. Nevertheless,

the question of how acts can be ascribed toa givendecision situation, as well as which acts should

be considered relevant, is a question, which poses itself in the applications of any decision theory.
32 Like the states in the expected utility theory, the problem is seen as exogenously given and independent of the
act chosen by the decision maker.
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Therefore, it is solved in the same way as in the applications of the expected utility theory to

financial markets. I identify acts with portfolios to be chosen. Restrictions, such as short sales

or diversification constraints, are introduced in some of the models and the inf luence of such

restrictions is discussed.

Notice, however, the difference between the case-based decision theory and the expected utility

representation of acts. In the latter, a portfolio can always be identified by a vector of state-

contingent outcomes. In the case-based decision theory, on the contrary, a portfolio is only

characterized by its composition, by its perceived similarity to other portfolios and by its past

returns contained in the memory. Hence, differently from the expected utility theory, the case-

based decision theory is much more sensitive to effects of labelling. Since the similarity function

is elicited in a given context (with formulated past problems and acts chosen), which does not

comprise the utility achieved, the decisions might be very sensitive in regard to changing the

’’nicknames’’ of the acts. The expected utility theory does not allow for such frame-dependency:

all acts have to be evaluated based only on their state-contingent outcomes, labels are irrelevant

for the decision. Similarly, the model of Easley and Rustichini (1999), which is close in spirit to

the case-based decision theory, explicitly prevents labelling effects by introducing the require-

ment that each act is evaluated solely by its past utility realizations. On the one hand, since

framing of decisions is observed in experiments, see Tversky and Kahneman (1981), it might

be seen as an advantage of the case-based decision theory to be able to accept framing in ab-

sence of more structured information about the acts, than their ’’nicknames’’. On the other hand,

however, the dependence on labels makes a formal model much less rigorous and the results ob-

tained become unequivocal if multiple act descriptions appear natural in the context of a model

discussed.

2.2 Memory

The memory of the decision-maker represents the information he uses when solving the decision

problem at hand. The memory contains past problems, choices made and utility realizations ob-

tained. In deriving the preference relation from the set of axioms the memory is assumed to be

exogenously given. In real situations, however, the memory will not be exogenous, but will be

determined by the previous choices of the decision-makers. In this case, I will speak of endoge-
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nous memory. The analysis of decisions with exogenous memory is relatively straightforward

in the case-based decision theory and is described by maximization of the cumulative utility. In

an individual choice problem, learning the random realizations of all available acts at each pe-

riod of time, leads to optimal choices in the limit, as long as the environment is stationary, see

proposition 3.8, chapter 3. Exogenous memory is used by Gayer (2003), who assumes that all

possible lotteries are present in the memory in such a way that the observed frequencies of their

realizations ref lect the actual probability distributions. However, most of the work concentrates

on decision-making with endogenous memory. So, for instance, Gilboa and Schmeidler (1996,

1997 (b), 2001 (b)), Pazgal (1997), Gilboa and Pazgal (2001) all use the cases actually encoun-

tered by a decision-maker to construct his memory. On might argue that this assumption requires

a decision-maker to start with absolutely no information in period 1. An alternative interpreta-

tion could be, however, that the experience possessed by the decision-maker does not allow him

to differentiate between the available acts (i.e. he is indifferent among them). In both cases, this

assumption seems to be close in spirit to the Laplace principle of insufficient reason. Never-

theless, the assumption of endogenous memory has the advantage that no ad hoc assumptions

about the constitution of the memory are required and experience can be modelled as a natural

product of repeated decision-making. I will, therefore, assume through most of the text that only

choices actually made and utility realizations actually obtained are present in the memory.

This assumption prevents investors from using hypothetical cases of the type ’’if I had invested

in asset ®0 (instead of ®) I would have received a utility realization of u0 (instead of u)’’. Such

hypothetical reasoning is used by Jahnke, Chwolka and Simons (2001) to model the adjustment

process of a firm which faces incomplete information about the demand function and has to

choose optimal capacity and price. In their model, such hypothetical reasoning is possible only

for certain capacity - price constellations and is justified by the fact that the decision of the

consumers can be predicted, if only one of the quantities (price or capacity) is changed, whereas

the other one is kept constant.

Although the case-based decision theory allows for such hypothetical reasoning, see Gilboa and

Schmeidler (2001 (a), pp. 93-95), excluding it can be justified by limited memory and limited

capacity required to process the whole information about prices and dividends in the market.

Moreover, an investor might feel that his actual experience is more important for his decision
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than hypothetical cases and ignore them, by assigning asimilarityof 0 between such hypothetical

cases and the problem at hand.

Of course, the case of completely endogenous memory is an extreme case, which can be used

rather as a bench-mark, than as a sensible description of reality. Therefore, where appropriate,

I will allow for partial hypothetical reasoning and discuss the differences in results. It turns out

that partial hypothetical reasoning helps the investor to make better decisions only in the case,

in which the aspiration level is relatively low. In general, the behavior of decision-makers with

high aspiration levels does not change qualitatively by introducing hypothetical reasoning.

The fact that the behavior of an individual depends on his memory and his memory on his

behavior, makes his decisions path- and history- dependent. Moreover, since the number of cases

present in the memory grows as more decisions are made, experience and hence information

accumulates over the time. Starting with little or no information initially, the individual has to

choose at random in the initial periods. Therefore, results on limit behavior seem to be more

appropriate, than analysis of few periods only.

In an individual portfolio choice, the memory naturally contains cases encountered by this par-

ticular investor. In a market environment matters are different. Since I consider an overlapping

generations model, in which each investor makes a single investment decision, it is not possible

to assume that an investor learns from his own past decisions. Therefore, I introduce learning

from past generations. This approach is similar to the one adopted by Krause (2003), who allows

the decision-makers to learn not only from their own past decisions, but also from those made

by other market participants. He then introduces a similarity function on the set of investors to

account for different evaluation of personal and indirect experience.

In my model each investor is identified by his aspiration level. Therefore, I assume that each in-

vestor’s memory contains only cases encountered by his predecessors with the same aspiration

level. Of course, this assumption is rather arbitrary. However, it may be argued that an investor

might perceive similarity among problem/act pairs based on the aspiration level of the investor

from whom he receives the information about the particular case. Assuming a similarity func-

tion, which assigns a similarity of 1 to two cases, in which investors with identical aspiration

levels are involved and 0 otherwise, leads to identical results. A more general approach is pro-

posed by Blonski (1999), who is interested in learning by the means of social communication.
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He models the social structure of the society using a similarity function on the set of individ-

uals, which assumes only values 0 and 1 and which describes the set of those members of the

society, whose experience an individual takes into account, when making his decision. Since,

however, the problems of social learning lie outside the scope of this work, I neglect this kind

of dependence in this thesis.

Independently of the length of the memory m, i.e. of the number of cases contained in it, I

assume that the investors learn the most recent m cases. This assumption implies that investors

assign more weight to recent experience than to cases lying far away in the past. However, I

do not assume a gradual discounting of the past, as Krause (2003) and Gilboa and Schmeidler

(2001 (b)) do. Instead, it is assumed that the capacity of the memory is restricted tom and all

cases remembered are considered equally relevant to the problem at hand33 .

Remembering the last case in an overlapping generations model leads to the following phenom-

enon: since the young consumers learn the utility realization derived by their direct predecessor,

and since this utility realization is increasing in the price of the portfolio held, the young in-

vestors are more willing to choose the same portfolio as their predecessors, the higher the price

of this portfolio is. Hence, their demand for an asset is in general non-monotonic in its price, in-

creasing at low prices and decreasing at high prices. Learning from the direct predecessor thus

makes preferences for assets price-dependent and can lead to 0-asset prices in equilibrium. It

seems that this paradox can be resolved by excluding the last case from the memory of the young

investors. However, this assumption only leads to a globally decreasing demand for assets, but

does not prevent equilibrium prices from falling to 0.

In the individual portfolio choice problem I concentrate only on the case of long memory, i.e. the

investor remembers all past cases, in order to compare my findings to the results obtained in the

literature, where long memory is commonly used, see Gilboa and Schmeidler (1996, 1997 (b),

2001 (b)), Gilboa and Pazgal (2001), Pazgal (1997). In the case of an asset market I distinguish

between the two extreme cases of long memory and one-period memory. Theassumption of one-

period memory is made by Blonski (1999), as well as by Jahnke, Chwolka and Simons (2001),

who assume that the memory contains only (hypothetical) cases from the last period. Again,

these two extremes are not to be seen as a good description of real investors, but they provide
33 In other words, the similarity of the last m cases to the problem at hand is 1, whereas the similarity of cases
lying more than t ¡ m periods back in the past to the investment problem at time t is 0 .
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an intuition of how learning, investors’ behavior and asset prices are inf luenced by the length of

memory34 . In the evolutionary model discussed later I assume that the memory of the case-based

investors is short. On the one hand, this assumption makes the computations tractable. On the

other hand, the fact that case-based decision-makers survive even if their memory contains one

case only, means that they would also be able to survive, if the length of their memory grows

and hence the available information increases.

After discussing the concepts of problems, acts and memory, which are assumed as exogenous in

the axiomatic derivation of the case-based decision theory, I now turn to the twocharacteristics of

the decision-maker, aspiration level and similarity function which are derived from the axioms.

2.3 Aspiration Level

The aspiration level is one of the main concepts of the case-based decision theory. Its existence

is embedded in A4 Neutrality and its value can be derived from observed choices. In fact, the

aspiration level is the utility realization ¹u, which, if observed in each of the cases present in the

memory, would make the decision-maker indifferent among all acts.

2.3.1 The Concept of Aspiration Level in Psychology

The concept of ’’aspiration level’’ goes back to Dembo (1931) and is used in social psychology

to describe a personal standard applied to evaluate achievements or situations. The aspiration

level determines the envisaged proficiency of an individual at a given task and is influenced by

past experience and comparison to others, see Festinger (1942) and Frey, Daunenheimer, Parge

and Haisch (1993, p. 82). The aspiration level has two main functions: it sets a ’’level of future

performance in a familiar task which an individual [...] explicitly undertakes to reach’’, Frank

(1935, p. 119), hence, it defines the motives of behavior, Gebert and Rosenstiel (1992, p. 51)

and is used for selfevaluation, Heckhausen (1989, p. 172).

The evolution of the aspiration level over time is mainly due to observed sequences of successes

and failures while performing a task. Here, success and failure refer to situations, in which

34 In his talk at the RUD conference in Evanston (IL) in June 2004, Itzhak Gilboa expressed the idea that rela-
tively long, as well as relatively short memory provide the most natural environments for the usage of case-based
reasoning. Whereas with short memory, rules cannot yet be formulated, with long memory, rules are not needed
anymore.
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the actual performance exceeds, respectively falls below, the aspiration level, Lewin, Dembo,

Festinger and Sears (1944, p. 334). The difference between the aspiration level and the actual

performance, called attainment discrepancy, explains best the adaptation of aspiration levels

observed in the data. So, Jucknat (1937) and Festinger (1942) find that aspirations are adapted

upwards, when the attainment discrepancy is positive and vice versa.

This, so called ’’typical’’ reaction is also found by McClelland (1958) and Atkinson and Litwin

(1960). Moreover, they demonstrate that persons motivated by the wish to succeed choose aspi-

ration levels which are relatively high, but realistic. On the other hand, persons, whose motiva-

tion is to avoid failure are found to choose either extremely high or extremely low aspirations.

Heckhausen (1963) and Moulton (1965) show that this group can be subdivided into subjects

with high general motivation, who usually choose very high aspiration levels and subjects with

low general motivation, who tend to set their goals relatively low.

Hence, the experimental evidence shows that realistic aspiration levels are often observed, but

extremely high or extremely low values are typical for subjects trying to avoid failure.

The tendency to adapt the aspiration level and the speed of the adaptation are related to its initial

level. Sears (1940) and Irwin and Mintzer (1942) find that subjects with low aspiration levels

adapt their aspirations more strongly in the direction of the discrepancy, than do subjects with

relatively high aspiration levels. These findings can be interpreted in terms of realism of the

goals set, where realism corresponds to aspirations being attainable and closely related to actual

performance, seeLewin, Dembo, Festinger and Sears (1944, p. 345). Preston and Bayton (1941)

further show that even if subjects are pressed to distinguish between their hopes and their actual

goals35, the actual goals tend to be biased upwards, suggesting that even objective statements

exhibit some irrealism.

The aspiration level is further inf luenced by factors, such as socio-economic background, sim-

ilarity between decision situations and group standards. A more favorable socio-economic sit-

uation tends to reduce the aspiration level, see Gould (1941). The more similar two decision

situations are, the more relevant is the performance and hence the aspiration level adopted for

the earlier experienced one for the setting of goals in the second situation, Jucknat (1937). The

35 This distinction is made necessary by the fact, that the question about the aspiration level might be interpreted
in different ways, for instance, as a minimum to overrich, as an expectation of the actual achievement or as the
performance hoped for, see Lewin, Dembo, Festinger and Sears (1944, p. 344).
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inf luence of performance of others on the aspiration level is exactly opposite to the inf luence

of one’s own performance: if an individual significantly outperforms a group, he will in general

tend to decrease his aspiration level, see Frey, Daunenheimer, Parge and Haisch (1993, p. 82)

and vice versa.

Two main differences have to be mentioned in the understanding of the concept of aspiration

level in the social psychology and in economics, represented by the case-based decision theory.

First, in social psychology it is understood that the task is familiar and therefore the individ-

ual can sensibly decide what aspirations he might associate with it. In experiments, subjects

are usually presented the possible outcomes and even the estimated probability to obtain a cer-

tain level of proficiency. In case-based decision theory on the opposite, it is assumed that the

decision-maker has no or little structural knowledge about the situation. Hence, the choice of

an aspiration level cannot be based on the description of the task alone.

The second difference refers to the elicitation of aspiration levels in experiments. Whereas in

social psychology the notion of aspiration level in experimental settings is defined as the goal

of the subject with respect to a known task, as reported to the experimenter, see Heckhausen

(1989, p. 172), the theory of Gilboa and Schmeidler (1997 (a)) relies on revealed preferences in

order to elicit cognitive constructs.

2.3.2 Aspiration Levels in the Economic Literature

The concept of aspiration level in economics is first proposed by Simon (1957) and March and

Simon (1958) with the introduction of the term satisficing behavior. The main idea behind this

concept is that a decision-maker who acts in a complex system and whose cognitive abilities are

constrained might search for an alternative whose performance is good enough (in the sense that

it exceeds a predefined level) rather than optimal.

Concerning the adaptation of aspirations, March (1994, p. 22) writes: ’’The history is important

because aspiration levels – the dividing line between good enough and not good enough – are

not stable. In particular, individuals adapt their aspirations [...] to their experience.’’ March

further suggests that aspirations adapt more rapidly upwards, which gives the individuals stimuli

to search for better alternatives. Not satisfaction, but the dissatisfaction should be seen as the

driving force of the economy, see March and Simon (1958, p. 71).
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Empirical investigations on adaptation rules in economic environment are rare. Lant (1992)

examines the adaptation of aspirations in organizations. She finds that adaptation into the di-

rection of the discrepancy between the aspirations and the realized payoff can better explain the

evidence than rational and adaptive expectations do. Her aim is, however, to test different con-

cepts of expectations formation rather than different rules for adaptation of the aspiration level

against each other. The findings of Lant are verified by Mezias, Chen and Murphy (2002) in the

context of financial services organizations. They also find that aspirations are adapted towards a

combination of the past aspiration level and the performance achieved. They further record a de-

pendence of aspiration levels on the performance of other companies. Shapira (2001) examines

the effects of aspirations on the risk taking behavior of government bond traders. He finds that

bond traders are more willing to trade when they haven’t achieved their aspirations and prefer

to keep their positions unchanged, once the aspiration level has been reached. Here, the aspira-

tions are identified with the targets set. Hence, the results provide insights into a behavior of an

individual with a constant aspiration level.

Rainwatter (1994) and Easterlin (2003) examine the change of aspirations with respect to in-

come and living standards. They find that increased income and growing consumption lead to

an increase of aspirations. Moreover, the magnitudes of growth in aspirations corresponds to

the magnitude of consumption growth. Hence, instead of becoming satisfied with their achieve-

ments, households become more demanding over time, at least with respect to income and con-

sumption36.

The economic literature has not presented many models incorporating adaptation of aspiration

levels. It is usually assumed that aspirations are adapted in the direction of the current consump-

tion level. Most of the models combine rational expectations and expected utility maximization

with aspiration adaptation. In these models, consumers take into account that increasing con-

sumption first and decreasing it thereafter will decrease their utility, because of increased as-

piration levels. These models propose or implicitly assume certain models for adaptation of

aspiration levels, e.g. Ryder and Heal (1973) suggest to use the formula

¹ut = ¯ut¡1 + (1¡ ¯) ¹ut¡1,
where ¯ 2 (0; 1) denotes the speed of adaptation in the direction of the attainment discrepancy37.

36 Easterlin (2003) finds that in the family domain, aspirations do not increase over time.
37 Gilboa and Schmeidler (2001 (b)) use an adaptation rule, which is similar to the one proposed by Ryder and
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Duesenberry (1949), on the other hand, implicitly assumes that the rule is given by:

¹ut = max
¿<t
u¿ ,

i.e. the aspirations are set at the highest utility realization observed. There are also empirical

findings that people prefer not to get accustomed to a level of consumption they know they

cannot maintain, see Rabin (1998, p. 15, footnote 8 and the literature cited there). However,

this literature presupposes that individuals are conscious of the process of adaptation of their

aspiration level and that they are informed about the future consumption stream. In contrast, the

case-based decision theory makes none of these assumptions.

Sauermann and Selten (1962) and Selten (1996) propose an aspiration adaptation theory. The

source of bounded rationality in their model is the presence of multiple goals, which are in-

comparable and cannot be represented by a functional subject to optimization. It is therefore

suggested that an aspiration level is used with respect to each goal. Starting with a vector of

such aspiration levels, the decision-maker searches for alternatives which perform better than

the preset aspiration level with respect to at least one of the goals. The aspiration level is then

adapted upwards with respect to this particular goal. The (mental) search continues, until an

increase of any of the aspiration levels is impossible. This process leads to a choice of an un-

dominated alternative, but in general, different initial aspiration levels lead to distinct results.

Differently from the case-based decision theory, the theory of Sauermann and Selten presup-

poses the knowledge of the payoffs of each alternative with respect to each of the goals.

Aspiration levels are used in most similar manner to the one proposed by the case-based deci-

sion theory in the literature on reinforcement learning in games. Three approaches can be dis-

tinguished in this literature, see Bendor, Mookherjee and Ray (2001): constant aspiration levels,

which are, however, consistent with the long-run average payoffs of the players38 , as in Bendor,

Mookherjee and Ray (1992, 1995); adaptation of aspiration levels in the direction of attainment

discrepancy, as suggested by Ryder and Heal (1973), but with rare permutations, see Karandikar,

Mookherjee, Ray and Vega-Redondo (1998); aspirations based on observations of other market

participants, as in Dixon (2000), where firms engaging in Cournot competition adapt their as-

pirations towards the average profits in the market and in Palomino and Vega-Redondo (1999),

Heal (1973). They assume however, that the adaptation towards the last encountered utility realization takes place,
only if this realization exceeds a certain level.

38 To insure consistency of actual play and aspiration levels, a new equilibrium concept has to be defined and its
existence shown. This is done in Bendor, Mookherjee and Ray (1992, 1995).
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where the players participating in a Prisoners’ Dilemma game adapt their aspiration levels to-

wards the average payoff of the population. Most of the results indicate convergence towards a

cooperative outcome of the game, even if this outcome is not a Nash equilibrium.

The sparse literature on aspiration levels in economics shows that the concept is relatively new

and that more research is needed in order to understand its implications on economic behavior.

Some of the problems, might be connected with the different interpretations of the concept used

and with the necessity of elicitation of the aspiration level using self-reports and the difficulties

arising from it. The case-based decision theory avoids these problems by deriving the aspira-

tion level directly from the axioms and thus relating a cognitive concept directly to exhibited

behavior.

2.3.3 The Operationalization of the Concept of Aspiration Level in the
Applications of the Case-Based Decision Theory

The aspiration level in the case-based decision theory can be seen as a bench-mark which helps

the decision-maker separate ’’good’’ from ’’bad’’ performance. Since he only observes the utility

realizations of some of the acts for a given problem, it is impossible for him to know what the

best solution of the problem would have been, either in an ex-ante, or in an ex-post sense39 . It is,

therefore, the aspiration level that indicates that an observed utility realization is satisfactory (if it

exceeds the aspiration level) or unsatisfactory (if it lies below it). Satisfactory utility realizations

enter the evaluation of an act positively and vice versa.

The aspiration level has also another function — if an act cannot be evaluated by its own past

performance, or by the performance of similar acts in similar problems, the decision-maker

assumes that its cumulative utility is 0, hence this act is evaluated as if it would result in utility

exactly equal to the aspiration level. Hence, apart from discriminating between good and bad

outcomes, the aspiration level determines the prior expectations of the decision-maker about

acts he has no information about. Indeed, with an empty memory, the cumulative utility of all

acts is 0 and therefore all acts are assigned utility realizations equal to the aspiration level.

Of course, the aspiration level needn’t remain constant over the time, but can be updated, so

as to take into account the experience of the decision-maker. However, neither the value of the

39 Observing the realizations of all acts would enable a verification of an ex-post, but not of an ex-ante optimality.
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aspiration level, nor the updating rule are determined by the theory and have therefore to be

specified in the context of the model40 .

The works of Gilboa and Schmeidler (1997 (b)), Gilboa and Pazgal (2001), Blonski (1999)

and Krause (2003) use a constant aspiration level to derive their results. Whereas the case of a

constant aspiration level seems quite irrealistic on empirical grounds, it has its theoretical advan-

tages, since no ad hoc assumption about adaptation rules are needed. Moreover, the possibility to

do comparative statics varying the aspiration level can provide us with useful insights into how

the aspiration level influences the results. Therefore, constant aspiration level will be assumed

in most parts of this thesis.

In the context of individual portfolio choice, this assumption will be relaxed. This seems appro-

priate for two reasons: first, in a partial model the analysis of updating rules is simplified by the

fact that prices and income are assumed exogenous and fixed over the time. Hence, apart from

the case of constant aspiration level, the formula proposed by Duesenberry (1949), as well as a

version of it, in which the aspiration level at t is set equal to a linear combination of the best and

the worst results achieved till time t is examined. Second, the work of Gilboa and Schmeidler

(1996), later applied to cooperation games by Pazgal (1997), has identified an adaptation rule,

which applied in a stationary environment leads to an optimal choice from the point of view

of expected utility maximization. Hence, this case can be used as a bench-mark to evaluate al-

ternative adaptation rules. Furthermore, the validity of this rule will be tested in a model with

similarity considerations, a case not analyzed in the literature.

Whereas I keep the aspiration level of the investors constant in an asset market model with case-

based investors, I allow for heterogenous aspiration levels across the economy. It is, therefore,

not only possible to examine the influence of an overall increase in aspiration levels through-

out the economy, but also to compare the behavior and performance of investors with different

aspiration levels under identical conditions.

In the last part on the evolutionary fitness of case-based decisions I assume that all case-based

decision-makers have identical and constant aspiration levels over the time, an assumption made

to simplify calculations and to make results tractable. Again, comparative statics allows to

40 The axiomatization of the case-based decision theory, proposed by Gilboa and Schmeidler (1997, p.53) allows
for adaptation of the aspiration level towards a linear combination of the utility realizations observed.
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analyze the inf luence of an increase or decrease of the aspiration level on the dynamics of the

economy.

2.4 Similarity

The theory of case-based decisions allows to incorporate similarity considerations into a formal

model. However, similarity is a relatively new concept in economics, hence, it is not a priori

clear how similarity should be operationalized in different contexts. Therefore, the first question

to ask is what does ’’similar’’ mean in the context of financial markets.

The case-based decision theory works with similarity functions, which allow a numerical repre-

sentation of perceived similarity. Up to now, there has been little research regarding the form and

the characteristics of similarity functions. This is the next issue to be discussed in this section.

2.4.1 Similarity — A Philosophical View

Similarity, without doubt, affects our judgements and therefore influences our decisions. Nev-

ertheless, although ’’there is nothing more basic to thought and language than our sense of simi-

larity’’, Quine (1969, p. 6), it seems to be very difficult to give a precise definition of similarity,

which could be used in a formal model. Philosophical thought has been dwelling on this question

for a long time and still, the problem does not seem to have a straightforward solution.

The problem is that similarity can be neither defined by means of sets, nor by means of logical

structures. Indeed, suppose that one could divide the objects into sets, such that all objects,

which are similar to each other are in one such set. One easily sees that as long as objects are

compared with respect to all possible criteria, each object should either be placed into a separate

set, or all objects will be considered similar in some sense and will build a unique set, thus

leading the notion of similarity ad absurdum.

A representation of similarity by means of a logical structure is also problematic. Suppose you

want to evaluate alternative ®. If you know that alternative ®0 has performed well and you

consider ® and ®0 to be similar, you will probably think that ® will also perform well. Now

suppose that you also know that alternative ®00 has performed badly and you consider ®00 to

be dissimilar to ®. Will this make your believe that ® will perform well stronger? Probably
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yes, if you feel that this confirms the (perceived) law that alternatives that perform poorly are

not similar to ®, therefore that alternatives which are similar to ® cannot perform poorly. It is

however paradoxical that an alternative, which is considered to be dissimilar to ® should be used

to predict the performance of ®41 .

The main problem is, of course, that since mathematical concepts obey the laws of logic, one

necessarily embeds this paradox into each mathematical model of similarity. And indeed, the

theory of Gilboa and Schmeidler (1997 (a)) also bears this paradox in itself.

Although a philosophical definition of similarity is problematic, it still does not mean that simi-

larity is a concept that couldn’t be implemented in an economic model. In fact, as long as we are

interested only in individual perception of similarity, it is enough to elicit the similarity function

of an individual (by asking him questions of the type ’’is ® similar to ®0?’’ or ’’is ® more similar

to ®0 than to ®00?’’), in order to model his behavior. However this behavioristic modelling does

not give any clues up to which similarity perceptions are sensible or what should be understood

under similarity in economics.

2.4.2 Similarity in Economics

Similarity does not belong to the standard concepts of economic theory. Rubinstein (1988) sug-

gests a theory of decision-making based on similarities between lotteries. The concept of sim-

ilarity he uses is a binomial one. Two objects are either similar or not similar. Similarity is

defined on intervals of real numbers and two numbers are considered similar, if and only if

the difference between these two numbers is less than a given number s, and dissimilar else.

This definition of similarity can be used to explain some of the experimentally observed behav-

ior of choices between lotteries, Buschena and Zilberman (1995, 1999), as well as hyperbolic

discounting, Rubinstein (2003). Since however the similarity relation is not transitive, it leads

to preferences with intransitive indifference relations42 . Of course, this intransitivity of prefer-

ences is due to the assumption of binomial similarity relation and can be avoided by introducing

a ’’more similar than’’ relation.

41 This argument is known as the Hempel’s puzzle. Its original version is that since ’’each black raven tends to
confirm the law, that all ravens are black, so each green leave, being a non-black non-raven, should tend to confirm
the law that all non-black things are non-ravens, that is, again, that al ravens are black’’, Quine (1969, p. 5).

42 Kajii (1996) provides a characterization of preferences consistent with the similarity concept of Rubinstein.
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Such a relation is proposed by Tversky (1977), who derives a similarity function from a set of

axioms. Similarity is seen as possession of common attributes, still symmetry is not implied by

the axioms and is generally violated empirically. The approach of Nehring and Puppe (2003)

is similar to that of Tversky (1977). Their similarity concept is a trinomial relation, interpreted

as ’’® is more similar to ®00 than is ®0’’. It satisfies reflexivity, symmetry and transitivity and

expresses the idea that ® and ®00 have more common attributes than ®0 and ®00. Moreover, this

trinomial relation is representable by a similarity function. However, the similarity relation is

not complete, i.e. it is not defined for all triples of acts and therefore similarity judgements are

not always possible.

An alternative theory is the case-based decision theory proposed by Gilboa and Schmeidler

(1997 (a)). They assume a similarity function defined on problem – act pairs, which is also

based on a ’’more similar than’’ relation. They suggest that the cumulative utility of an act

depends not only on the utility realizations observed when the same act was chosen in the past,

but also on utility realizations of similar acts chosen in similar decision problems. An axiomatic

representation of this functional form is provided. Nevertheless, the axiomatization does not

give any clue about the characteristics a similarity function should have and their impact on the

decisions made43.

Few models have used this concept of similarity up to now. Gilboa and Schmeidler (1997 (b))

show how similarity between goods can be interpreted in terms of complementarity and sub-

stitutability in a consumer choice problem. Blonski (1999) models social learning and repre-

sents social structures by similarity considerations. He shows that different similarity functions,

associated with ’’star’’-communication structures, ¢-neighborhood structures and complete in-

formation, imply different stable states of the dynamical learning process. Gayer (2003) shows

how similarity considerations may affect the perception of lotteries and lead to overestimation

of low probabilities and underestimation of high probabilities. She proposes to measure the sim-

ilarity between lotteries in terms of distance. In contrast to the models presented in this thesis,

she assumes an endogenous similarity function, which becomes finer, as the memory grows.

She shows that if the similarity function depends on the distance, its concavity insures that the

43 Billot, Gilboa and Schmeidler (2004) provide an axiomatization of a similarity function which is an exponential
function of the Euclidean distance. However, they do not provide any reasons for the choice of this particular form
of the similarity function. Nor are there applications of this similarity function in the litearture providing insights
into how its form inf luences decisions.
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decision-maker will be able to learn the correct distribution.

This research shows that the results obtained are very sensitive to the form of the similarity

function assumed. It will turn out that the form of the similarity function plays a major role for

the behavior of case-based investors in financial markets, as well.

2.4.3 Similarity in Financial Markets

Suppose that you ask an investor, who has lost a reasonable amount of money on dot.com assets,

whether he would be ready to invest in a dot.com company now. You would probably receive

a firm no, even, if the company you are proposing is a sound one. Not necessarily because the

unlucky investor has looked up the performance of the company and has analyzed the pro and

contras, but because his experience has taught him that dot.com assets can lead to significant

losses and he obviously finds the investment you are proposing to be quite similar to the bad

choice he has made last time. Similarity can, therefore, play major role in asset choice decisions.

The most natural concept of similarity (from the point of view of standard financial economics)

is the concept of covariance. However, since the case-based decision theory presupposes no

knowledge about state-contingent outcomes and their distribution, it does not seem appropriate

to use the concept of covariance to model similarity in case-based decision-making44.

Since the information available to a case-based decision-maker consists of a problem and a set

of acts, it is reasonable to use the description of acts to elicit a notion of similarity. In this sense

similarity may refer to the fact that assets of firms in the same industry are regarded as similar,

as contrasted to firms from different industries. For instance, an investor may consider shares

of BMW and Renault to be more similar to each other, than the shares of Renault and Telecom.

Similarity perceptions might also include the nationality of an asset. Thus, an investor might find

that Telecom is more similar to BMW than to Renault. Other characteristics, such as maturity

or being derivatives of the same underlying asset can also inf luence similarity perceptions in

financial markets.

The above discussed characteristics allow only for a comparison of individual assets, but not

44 There seems to exist a certain connection between the notions of similarity and correlation, as observed by
Matsui (2000). Still, since his states of nature do not necessarilly correspond to the states of nature as considered
in the standard financial economics, the interpretation of his result is ambiguous.
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of portfolios. However, it is easy to imagine, how similarity might refer to the comparison of

the structure of two portfolios. For instance, an investor may consider a portfolio, consisting of

20% risky assets and 80% bonds to be more similar to a riskless portfolio, consisting of 100%

bonds, than a portfolio, consisting only of risky assets.

To formalize these ideas, note that each portfolio, consisting of at most K assets can be repre-

sented as a point in aK-dimensional simplex ¢K¡1. Now, similarity between portfolios can be

modelled as a continuous decreasing function of the Euclidean distance between the points in

this simplex:

s (®;®0) = f (k® ¡®0k) with

f 0 (k®¡ ®0k) < 0.

In order to include similarity considerations between assets (such as maturity, or belonging to

the same industry), it is enough to modify the simplex, allowing the distance between its vertices

to vary with the degree of similarity. Figure 1 illustrates this.

Such a similarity function applies, of course, only to situations which are considered to be iden-

tical and in which only similarity between acts matter.

Still, the market situation might also inf luence the evaluation of different acts. Buying an asset

in a market boom might be quite different from buying the same asset, when prices fall. The

characteristics of a given decision situation are captured in the notion of a problem. In a financial

market, asset prices seem to bear the most important information about the decision situation

and will, therefore, inf luence similarity perceptions.

In a model of case-based decision-making in financial markets, these two aspects of similarity

— similarity between problems and between acts — are captured in a single similarity function:

s ((½;®) ; (½0;®0)) ,

which is to be interpreted as the degree of similarity of choosing act ® in problem ½ to choosing

act ®0 in problem ½0. It has already been shown that the acts ® can be situated on a metric

space, depending on how similar they are perceived to one another. Since it seems to me that the

major characteristic of a portfolio choice problem is represented by the prices in the economy, I

propose to identify the problem with a price vector (p1:::pK) and to represent a problem - act pair

in ¢K¡1 £ ¢K¡1. Again, taking the Euclidean distance as measure of similarity, the similarity
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function can be written as:

s ((p;®) ; (p0;® 0)) = f (k(®; p) ¡ (®0; p0)k) ,

where f (¢) is continuous and decreasing.

The axiomatization of Gilboa and Schmeidler (1997 (a)) implies that the similarity function is

unique up to an affine-linear transformation, and therefore the similarity function can be normal-

ized, so that it takes on only values between 0 and 1 where a value of 1 means that two objects

are ’’identical’’ or ’’completely similar’’:

s ((p;®) ; (p;®)) = 1,

whereas 0 can be interpreted as ’’having nothing in common’’, or being ’’completely different’’,

depending on the context.

Of course, the notion of similarity, as well as the specific similarity function used by an investor
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will inf luence his behavior in a financial market, since they will determine his evaluation of

acts. Moreover, the similarity function may (as well as the aspiration level) evolve with the

time, ref lecting the fact that the decision-maker learns about (dis)similarities among alternatives,

which he was not aware of, see Gilboa and Schmeidler (2001 (a), Chapter 19) and Gayer (2003).

In this thesis, I will assume that the similarity function remains constant over the time and will

explore the inf luence of the form of the similarity function on investors’ behavior.

2.5 Conclusion

This chapter has discussed theconceptual issues connectedwith the application of thecase-based

decision theory to financial markets. Most of the concepts are relatively new in economics and

therefore the literature discussing them is sparse. The freedom connected with the possibility

to vary the parameters and the specification of the model has both its advantages and disadvan-

tages. On the one hand, the possibility to use arbitrary methods for aspiration adaptations and to

introduce memory, containing arbitrary cases, allows for a very rich model. On the other hand,

it bears the risk of losing any explanatory power, if the specifications used have no economi-

cally meaningful interpretations. In the models presented in the next chapters of this thesis I will

therefore try to control for the assumptions made about aspiration levels, contents of the mem-

ory and similarity perceptions by varying them, so as to test the robustness of results. This will

also allow to examine the inf luence of these concepts on the behavior of economic subjects, as

well as to give them an interpretation in the context of the model used.
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Chapter 3. Portfolio Choice and Case-
Based Reasoning

Having analyzed the issues of operationalization of the concepts of the case-based decision the-

ory in the context of financial markets, it is now possible to construct a specific model in which

the meaning and the influence of the memory, the aspiration level and the similarity function

of an investor on his decisions can be studied. In this chapter, I apply the case-based decision

theory to a standard portfolio-choice problem. I assume that the process of returns is i.i.d. and

model the behavior of the investor in the limit. Standard portfolio choice theory predicts that

the investor would choose the portfolio that maximizes his expected utility, provided he knows

the correct distribution of returns. Should the decision-maker have imprecise knowledge of the

distribution, expected utility theory assumes that he will use Bayesian learning and will be able

to learn the correct distribution with time. In contrast, a case-based decision-maker neither has

the correct probability distribution in mind, nor does he like a Bayesian have a prior, which he

updates, as more information becomes revealed. Instead, he learns from past observations, ac-

cumulating information about what is possible, as opposed to using the incoming information

to exclude some possibilities (as a Bayesian would). The value of the aspiration level, as well

as the way it is updated determine his behavior. I concentrate on limit behavior for two reasons:

first, the initial decisions of the case-based decision-makers depend crucially on the random re-

alizations of the return process and second, I am interested in studying the possibility of learning

to choose the optimal portfolio over time.

I first use the results derived by Gilboa and Schmeidler (1996) and Gilboa and Pazgal (2001) for

general decision problems by applying them to a portfolio-choice problem. Gilboa and Schmei-

dler (1996) construct a method for updating the aspiration level that leads to optimal behavior

in the limit, as long as the utility realizations are i.i.d. In Gilboa and Pazgal (2001), the case of a

constant aspiration level is considered in a model of consumer choice. An aspiration level, ex-

ceeding the highest mean utility realization of an act makes the decision-maker switch infinitely

often among the available acts. For low values of the aspiration level, the choice of the decision-

maker remains constant over time, but is in general suboptimal, since being satisfied with the

utility realizations obtained, he does not have an incentive to try another, possibly superior, acts.
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In a next step, I analyze alternative rules for updating the aspiration level. The max (min) -rule

sets theaspiration level in each period equal to themaximal (minimal) achieved utility realization

up to this period. A linear combination of these two rules attaches a weight ¯ to the minimal

realization and a weight (1¡ ¯) to the maximal one. It can be shown that if ¯ is relatively low,

then the decision-maker behaves as if he had a relatively high aspiration level in the limit, i.e.

he switches constantly among the portfolios available to him. If ¯ is relatively high, he behaves

in a satisficing manner. However, there is an interval of values of ¯ for which the results are

path-dependent.

The derived results can then be interpreted in light of the empirical evidence from financial

markets. Satisficing behavior can help explain unused arbitrage possibilities, low diversifica-

tion and the home-bias, whereas updating the aspiration level upwards can be associated with

overconfidence and lead to frequent, but unprofitable trades.

Up to this point, I assume that the investor’s information consists only of the utility realizations

of the portfolios he has actually chosen. In the stringent analysis, I relax this assumption in two

ways. First, I consider the case in which all portfolio realizations are observed and included in

the evaluation in each period of time. In this case, the aspiration level becomes irrelevant for

the behavior of an investor, he learns the correct distribution of returns and chooses the optimal

portfolio in the limit. Restricting the ability of the investor to learn all returns for only a finite

number of periods improves his choice (compared to the situation of endogenous memory) if

his aspiration level is relatively low, but does not lead to optimal decisions if his aspiration level

is relatively high.

Another possibility to relax the assumption that the investor learns only about the utility real-

izations of the acts actually chosen consists in introducing a similarity function among acts. I

define similarity between two portfolios as a decreasing function in the Euclidean distance be-

tween these two portfolios (assuming that portfolios are situated on a simplex). Once a portfolio

is chosen and its utility realization observed, the investor assigns the same utility realization

to every other available portfolio, but weighted by the similarity between the portfolio actually

chosen and the portfolio evaluated.

I examine again the model of repeated portfolio-choice, assuming first that the similarity func-

tion is concave in the distance between portfolios. It turns out that when the decision-maker
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starts with a diversified portfolio, he diversifies only for a finite number of periods, if his as-

piration level is relatively high. Afterwards, he chooses one of the undiversified acts in each

period of time. Moreover, if his aspiration level exceeds the mean returns of both undiversified

portfolios, then he switches infinitely often between them in the limit. Hence, similarity con-

siderations in combination with high aspiration level lead to a combination of the two effects —

underdiversification and frequent trading.

Next, I analyze the issue of learning in this setup. I apply the ’’ambitious-realistic’’ adaptation

rule, introduced by Gilboa and Schmeidler (1996), to the portfolio-choice problem with similar-

ity. With a concave similarity function, this rule allows the decision-maker to learn to choose the

optimal non-diversified portfolio. Convexities in the similarity function improve learning, by

increasing the number of portfolios from which the optimal one is selected. Nevertheless, global

optimality can be achieved only in the limit, in which no similarity between distinct portfolios

is present and the number of available acts is finite, as in the model of Gilboa and Schmeidler

(1996).

The rest of the chapter is organized as follows. I start by presenting the general setting of Gilboa

and Schmeidler (1996) in section 1. In section 2, the model of Gilboa and Schmeidler is ap-

plied to a portfolio-choice problem. Section 3 describes the sufficient conditions, under which

a case-based decision-maker behaves like an expected utility maximizer, as stated by Gilboa

and Schmeidler (1996). Section 4 presents the implications of a constant aspiration level on the

behavior of a decision-maker, derived by Gilboa and Pazgal (2001), while section 5 examines

max-min adaptation rules. In section 6, possible interpretations of the results in the context of

the portfolio-selection problem are proposed. In section 7, the model is adapted in order to allow

the decision-maker to acquire additional information. Section 8 analyzes the portfolio-choice

problem with similarity considerations, assuming a concave similarity function and a constant

aspiration level. The adaptation rule of Gilboa and Schmeidler (1996) is applied to the portfolio-

choice problem with similarity. Section 9 concludes. The proofs of all results are stated in the

appendix.

3.1 Case-Based Decision-Making

Consider a decision-maker who faces an identical problem ½ in each time period t = 1; 2; :::.
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LetA be a finite set of possible acts, among which the decision-maker can choose in each period

of time. The utility resulting from the choice of an act ® 2 A is a random variable U® with a

distribution function (¦®)®2A, which can be interpreted as a conditional distribution of utility,

given that act® is chosen. It is assumed that thesedistributions have finite expectations¹®, finite

variance ¾® and bounded supports ¤®. One can think about the acts in terms of the theory of

Savage (1954): the decision-maker chooses an act and thus, indirectly, a probability distribution

over results.

The main difference between the model of Savage (1954) and the one of Gilboa and Schmei-

dler (1996) concerns the information available to the decision-maker. Whereas in the setting of

Savage the (subjective) probability distributions (¦®)®2A are known to the decision-maker, in

the model of Gilboa and Schmeidler (1996) the individual is not even aware of the possible re-

alizations he can expect from a given act. To be precise, the decision-maker’s information at the

beginning of period t = 1 consists only of the problem ½ to be solved and the set of possible acts

A. After an act ®t has been chosen at time t, the decision-maker learns the utility realization ut

of this act. Thus, at the beginning of period (t+ 1) he has information, consisting of triples of a

problem to be solved, act chosen and a utility realization achieved by choosing the act for each

of the previous periods:

Mt+1 = f(½1;®1;u1) ::: (½t;®t;ut)g .

Mt+1 represents the memory of the decision-maker at time (t+ 1). Since, however, all problems

are identical (½¿ = ½ for each ¿ ), only the tuples (®¿ ;u¿) are used to make decisions.

Now suppose that the decision-maker has an aspiration level, which is used as a bench-mark (in

a way to be specified below) to assess the utility realizations of the different acts. This aspiration

level need not remain constant over time, but may be updated in some way depending on the

history observed. Call the aspiration level of the decision-maker at time t— ¹ut. Then the behav-

ior of a decision-maker can be characterized by an infinite vector of triples ((¹ut;®t;ut))t=1;2;:::,

defining the aspiration level, the act chosen and the utility achieved from this act for each pe-

riod of time t. Call the set of such vectors S0 and let ! be a typical element. Then S0 can be

written as:

S0 =
n
! = ((¹ut;®t;ut))t=1;2:::

o
½ (R £ A £ ¤)N

where ¹ut is a real number, ®t is one of the possible acts from A, the realizations ut are drawn
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from the set ¤ = [®2A¤® of all possible realizations, and N is the set of natural numbers. Thus,

S0 represents the set of all possible decision-paths an analyst may expect to observe.

Of course, if a decision rule is specified, then the set of possible paths will reduce to paths

consistent with this particular rule. For instance, the behavior of an expected utility maximizer,

who knows, that the act ®¤ 2 A yields the maximal expected utility, can be represented by:

SEU =
n
! = ((¹ut;®t;ut))t=1;2::: = ((¹ut;®t = ®¤;ut))t=1;2:::

o
= (R £ f®¤g £ ¤®¤ )N

The set of chosen acts is thus reduced to f®¤g and the set of possible realizations to ¤®¤.

Alternatively, if the decision-maker has no information about the distributions (¦®)®2A, he can

only condition his behavior (i.e. the choice of anact andof an aspiration level) on the information

healready possesses. Thecase-based decision theoryproposedby Gilboa and Schmeidler (1995)

states that the decision-maker chooses in each period that act which has the maximal cumulative

utility up to the current period. I will write ¹ut , ®t, ut45 for the projections of S0 on R, A and ¤

(for a specific !), respectively, and will denote by Ut (®) the cumulative utility (to be specified

below) of an act ® at the beginning of period t. Then the set of possible decision-paths for a

decision-maker, acting in accordance with the case-based decision theory, reduces to:

S1 =
½
! 2 S0 j ®t 2 arg max

®2A
Ut (®) 8t ¸ 1

¾
.

Given that all problems are identical, the concept of cumulative utility of an act is specified as

follows:

Ut (®) =
t¡1X

¿=1

s (®;®¿) (u¿ ¡ ¹ut) ,

where s (®;®¿) denotes the perceived similarity between the acts ® and ®¿ . In sections 3–

7, I will assume that no similarity considerations influence the decision. Two acts are only

considered similar, if they are identical:

s (®;®¿) =
½

1, if ® = ®¿
0, if ® 6= ®¿

¾
.

In this case, it is convenient to formulate the cumulative utility of an act is the following way:

define by Ct (®) the set of all periods up to period t, in which act ® has been chosen, i.e.:

Ct (®) = f¿ < t j ®¿ = ®g

45 All the variables introduced in the model depend of course on the chosen path !. I suppress this dependence in
the notation for convenience. All probabilities are defined with respect to the distribution of !.
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Denote by

Ut (®) =
X

¿2Ct(®)
(u¿ ¡ ¹ut)

the cumulative utility of an act ® at time t, given that the aspiration level at time t is ¹ut. The

interpretation of the cumulative utility is simple: the decision-maker sums up the ’’net’’ utility

realizations of an act (utility achieved at some period, less the aspiration level at time t) over all

the periods at which the act has been chosen up to the present. Then he compares the cumulative

utilities over the set A and chooses the act with the maximal cumulative utility.

In the next section, I present a possible application of this model in financial markets.

3.2 The Portfolio-Choice Problem

Consider an investor facing the problem ½ of investing a single unit of wealth46 in each period

t = 1; 2:::. He can choose among portfolios consisting of two assets47 denoted by a and b, with

random returns ±a distributed on an interval
£
±a; ¹±a

¤
and ±b distributed on an interval

£
±b; ¹±b

¤
,

respectively.

Assume that the distributions of returns are identical and independent in each period t, although

±a and ±b might becorrelated in a single period. Suppose that the assets are not perfectly divisible

and that short-sales are not allowed, or allowed only up to a certain limit only so that only a set,

consisting of a finite number of portfolios A = f®1:::®ng is available, with ®i denoting the

share of asset a in the portfolio48. Thus, if the decision-maker chooses a portfolio ® and the

realizations of the random returns are ±a and ±b, he will achieve a return of

®±a + (1 ¡ ®)±b
Denote the utility function of the investor by u (¢). Then the distributions of ±a and ±b determine

the distribution functions (¦®)®2A of the utility realizations of all possible acts ®. If u is well-

46 We can assume, that the decision-maker has an exogenous income and that he uses the returns of his investment
for consumption. However, it is also possible to think of a decision-maker, desiring to choose the alternative with
the highest return per amount of wealth invested.

47 The arguments stated do not depend on the number of assets. The introduction of more assets would only change
the type of the variable ® defined below from scalar to vector, but would leave all the results unchanged.

48 The setof portfolios should also entail the budget restriction of the portfolio-choice problem. Since the portfolios
are defined by the share of wealth the decision maker invests into asset a, assuming that the rest of the budget is
invested in b, the budget restriction is satisfied for each of the available portfolios.
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defined, bounded and continuous on
£
®±a + (1¡ ®) ±b;®¹±a + (1¡ ®) ¹±b

¤

for all ® 2 A, then the distribution ¦® of u (¢) for a given ® is characterized by a finite mean

¹® and finite variance ¾®, i.e. they have the same properties as in the model of Gilboa and

Schmeidler (1996). Moreover, differently from the setting of Gilboa and Schmeidler (1996)

the distributions (¦®)®2A have bounded and closed supports ¤®. As in the classic theory of

portfolio-choice, Markowitz (1952, 1959), one would like to determine the portfolio chosen by

the decision-maker.

It is clear that in the initial periods the behavior of the decision-maker is guided by chance, as

he has no or little information about possible payoffs and their distributions. However, as time

evolves, his behavior is determined by his memory which, on its turn, depends on the choices

made. It is reasonable to ask whether the behavior of the decision-maker will exhibit some

constant patterns in the limit. Hence, the limit frequencies with which each of the acts is chosen

as the number of periods becomes large are of particular interest.

Consider an individual facing the portfolio-choice problem formulated above, who acts accord-

ing to the case-based decision theory, so that ! 2 S1. For a given path ! 2 S1 denote by

jCt (®)j = jf¿ < t j ®¿ = ®gj
the number of times the act ® has been chosen up to period t. Dividing by the number of periods,

we obtain the relative frequency of an act ® up to period t:
jCt (®)j
t

The behavior of the decision-maker in the long run can be characterized by the limit of the

relative frequencies for each ® 2 A as t! 1. If such a limit exists, it will be denoted by

¼ (®) = lim
t!1

jCt (®)j
t

and referred to as the relative frequency of ® on !. Of course, the existence and the values of

¼ (®)will depend on the way the decision-maker changes his aspiration level ¹ut with time. The

effect of using particular updating rules is analyzed in sections 3, 4 and 5.
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3.3 Case-based Decision Theory and Expected-Utility
Maximization

In this and the subsequent two sections, the limit behavior of a decision-maker acting in ac-

cordance with case-based decision theory will be explored for different rules of updating the

aspiration level. The behavior of an expected utility maximizer, who, in the same set-up, would

choose the act with the maximal expected utility at each period of time, can be used as a bench-

mark. I first state two theorems by Gilboa and Schmeidler (1996), which identify conditions

under which the case-based decision-making approaches expected utility maximization in the

limit. Next, I analyze the behavior of a decision-maker who does not satisfy these conditions.

It is intuitively clear (see also proposition 3.4) that a relatively low aspiration level can lead

to a path, on which a sole suboptimal act is chosen forever. Therefore, a special adaptation

rule is necessary to guarantee that a case-based decision-maker behaves like an expected utility

maximizer. It consists in making the aspiration level convergent towards max®2A ¹®.

The first result of Gilboa and Schmeidler (1996) states that starting from a sufficiently high

aspiration level and gradually updating it in the direction of the highest average utility achieved,

leads with a probability close to one to a path on which the case-base decision-maker imitates

the behavior of an expected utility maximizer in the limit. Formally, let

Xt (®) =

X
¿2Ct(®)

u¿

jCt (®)j
denote the average utility of an act ® up to period t, if this act has been chosen at least once (i.e.

jCt (®)j 6= 0) and write

Xt = max
®2A

fXt (®) j jCt (®)j > 0g
for the maximal achieved average utility among all the acts chosen at least once. The idea of

Gilboa and Schmeidler (1996) consists in assuming that, starting from an initial aspiration level

¹u1, the aspiration level is updated in the following manner:
¹u1 = ¹u1
¹ut = ¯¹ut¡1 + (1¡ ¯)Xt for t ¸ 2, (3.3)

i.e., given the initial aspiration level, the level for the next period is determined as a linear com-

bination of the aspiration level of the previous period and the highest average utility achieved,

76



for a chosen parameter ¯ 2 (0; 1). In this case, the set of possible decision paths reduces to:

© = © (¯; ¹u1) =
½
! 2 S1 j ¹u1 = ¹u1 and

¹ut = ¯¹ut¡1+ (1 ¡¯)Xt for t ¸ 2

¾
;

so that only paths on which both the decision is made according to the case-based decision theory

and the aspiration level is updated according to (3.3) are considered.

Gilboa and Schmeidler (1996, p.11) define a probability distribution on © in the following way:

define a ¾-algebra on S0, i.e. the algebra generated by the Borel ¾-algebra on each copy of R
and of ¤ and by the algebra 2A on each copy of A. Let § = § (¯; ¹u1) be the induced ¾-algebra

on ©. A probability measure P on § is called consistent with (¦®)®2A if for every t ¸ 1 and

® 2 A, the conditional distribution of ut, given that ®t = ® is ¦® and ut (®) is independent of

((¹u¿ ;®¿ ;u¿))¿<t

Theorem 3.1 Gilboa and Schmeidler (1996, p. 11). Let there be given a set A = f®1:::®ng,
probability distributions (¦®)®2A and a parameter ¯ 2 (0; 1) as above. Then, for each " >
0, there exists a ¹u0 2 R, such that for each ¹u1 ¸ ¹u0 and each probability measure P on
(© (¯; ¹u1) ; § (¯; ¹u1)), consistent with (¦®)®2A :

P
½
! 2 © j 9¼

µ
arg max

®2A
¹®

¶
= 1

¾
¸ 1 ¡ "

This result can be made even stronger49. Suppose that the decision-maker still follows the rule

given by (3.3), but in some periods he becomes ambitious and sets his aspiration level to a

number exceeding the highest average by a constant h > 0. Then, independently of the initial

aspiration level, he will behave in the limit like an expected utility maximizer with probability

1. Formally, let N ½ N be the set of periods, in which the decision-maker is ambitious. Then

the rule he applies to update his aspiration level can be stated as follows:
¹u1 = ¹u1
¹ut = ¯¹ut¡1 + (1¡ ¯)Xt for t ¸ 2, t =2 N
¹ut = Xt + h for t ¸ 2, t 2 N

(3.4)

In this case, the set of possible decision paths becomes:

©1 = ©1 (¯; ¹u1;N ;h) =

8
<
:! 2 S1 j

¹u1 = ¹u1 and
¹ut = ¯¹ut¡1 + (1¡ ¯)Xt for t ¸ 2, t =2 N
¹ut = Xt + h for t ¸ 2, t 2 N

9
=
;

Theorem 3.2 Gilboaand Schmeidler (1996, p.12). Let therebe givenA = f®1:::®ng, (¦®)®2A,
¯ 2 (0; 1) as above, N ½ N, h > 0 and ¹u1 2 R. IfN is infinite but sparse, then for each prob-

49 The necessary conditions, which insure that expected utility maximizing obtains in the limit, are: (i) the con-
vergence of the aspiration level to the maximal mean; (ii) a relatively slow convergence, Gilboa and Schmeidler
(1996, p. 14).
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ability measure P on (©1 (¯; ¹u1;N ;h) ; § (¯; ¹u1;N ;h)), consistent with (¦®)®2A

P
½
! 2 ©1 j 9¼

µ
argmax

®2A
¹®

¶
= 1

¾
= 1

Hence, Gilboa and Schmeidler (1996) state two possible updating rules, for which the behavior

of a case-based decision-maker withhigh probability conforms to the expected utility hypothesis

in the limit. An investor, faced with the portfolio-choice problem from above, will behave with

high probability (or even almost surely) as if he weremaximizingexpected utility with frequency

1 in the limit, as long as he is following (3.3) or (3.4). The relatively high initial aspiration

level or the adaptation of the initial aspiration level upwards insure that all acts will be tried a

sufficient number of times, so that the utility realizations observed by the decision-maker are

representative of the underlying stochastic process. Hence, by starting with no information at

all, the investor will, in the end, have the same (or almost the same) information as an informed

expected utility maximizer, but in a somewhat different form — instead of a distribution, he will

have a set of raw data, with almost the same distribution as the one perceived by the expected

utility maximizer. Note that the case-based decision-maker need know nothing about objective

(or subjective) distributions, nor have any knowledge in statistics. He does not concern himself

with the existence of objective probabilities or the fact, whether or not they vary over the time.

Neither does he pay any attention to possible autocorrelation in his set of data. However, given

that the probability distributions (¦®)®2A have the properties given above, he will act as if he

were informed about them.

The two updating rules (3.3) and (3.4) are interpreted by Gilboa and Schmeidler (1996, p. 2-3)

as both ’’realistic’’ and ’’ambitious’’. In this context, ’’realism’’ means that the decision-maker

adapts his aspiration level towards the average of the already observed utility realizations. Thus,

he increases or decreases his aspiration level depending on whether the observed realizations ex-

ceed or fall short of his expectations. The term ’’ambitiousness’’ refers either to the fact that the

initial aspiration level is set high, or to the idea that in some periods the aspiration level is in-

creased by a constant. This ambitiousness insures that the decision-maker will not choose a

suboptimal act forever, without trying a better one. The combination of ’’realism’’ and ’’ambi-

tiousness’’ guarantees that the aspiration level eventually converges to max®2A ¹®. Therefore,

since only the act with maximal mean utility is perceived satisfactory in the limit, the decision-

maker chooses it with frequency 1.

78



Now, I turn to explore the limit behavior of a decision-maker, who applies different rules for

updating his aspiration level.

3.4 The Case of Constant Aspiration Level

In this section, the case of a constant aspiration level is analyzed. The results concerning the

case of a relatively high aspiration level, stated in propositions 3.1 and 3.2, are special cases

of the more general theorem, proved in Gilboa and Pazgal (2001, p. 125). Since, however, the

argument of the proof seems to be important for understanding and interpreting other results

as well, I state these as separate propositions and deliver a proof which differs from the one in

Gilboa and Pazgal (2001).

Consider a decision-maker acting in accordance with the case-based decision theory, whose

aspiration level remains constant over time. In this case, the space of possible decision paths

reduces from S1 to:

©2 = ©2 (¹u1) =
©
! 2 S1 j ¹ut = ¹u1 for all t 2 N

ª

for some ¹u1 2 R.

Define a probability distributionP on ©2 to be consistent with (¦®)®2A as a distribution, which

induces the same probability on ut as ¦® given that ®t = ® is chosen, in such a way that ut is

independent of the memory up to time t. The next propositions state that it the relative position

of ¹u1 to the maximal mean utility max®2A ¹® determines the relative frequencies of choices,

implied by this distribution.

In the first proposition, ¹u1 is set sufficiently high, so that all possible returns achieved when

choosing an act are negative. This is possible, because of the assumption that the supports of

the returns are bounded. Denote by

©0
2 = ©02 (¹u1) =

©
! 2 S1 j ¹ut = ¹u1 > u for all u 2 ¤ and all t 2 N

ª

the set of possible decision paths.

Proposition 3.1 Let the constant aspiration level ¹u1 of a decision-maker exceed all possible
utility realizations of the available acts, i.e. u < ¹u1 for all u 2 ¤. Then, each probability
distribution P on ©02 consistent with (¦®)®2A satisfies:

P
½
! 2 ©02 j 8®; ~® 2 A 9¼ (®) and ¼ (~®) , s.t.

¼ (®)
¼ (~®)

=
¹u1 ¡ ¹~®
¹u1 ¡ ¹®

¾
= 1.
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Next, it is shown that the same result also holds if the mean utilities of the acts do not exceed

the aspiration level. Let ©00
2 be the corresponding set of possible decision-paths:

©00
2 = ©002 (¹u1) =

©
! 2 S1 j ¹ut = ¹u1 > ¹® for all ® 2 A and all t 2 N

ª
.

Proposition 3.2 Let the constant aspiration level ¹u1 of the decision-maker exceed the mean
utilities of all the acts available, i.e. ¹® < ¹u1 for all ® 2 A. Then each probability distribution
P on ©002, consistent with (¦®)®2A satisfies:

P
½
! 2 ©002 j 8®; ~® 2 A 9¼ (®) and ¼ (~®) , s.t.

¼ (®)
¼ (~®)

=
¹u1 ¡ ¹~®
¹u1 ¡ ¹®

¾
= 1.

A decision-maker with a constant, but relatively high aspiration level will not be satisfied with

any of the acts available to him. Hence, (as long as the act of doing nothing is not considered),

in the limit all available acts are chosen with positive frequency. Although the decision-maker

eventually acquires enough observations from each act, so as to be able to infer their distribu-

tions, he uses this information in a different manner than an expected utility maximizer. Instead

of choosing the act with the highest mean utility, he chooses all acts with a frequency inversely

proportional to their ’’net’’-mean utility, i.e. the difference between the mean utility and the

aspiration level. In the portfolio choice problem, this means that the investor most frequently

chooses the portfolio which yields the highest mean utility, but, at times, he also chooses inferior

portfolios (or even portfolios dominated in the sense of zero-order stochastic dominance).

Now suppose that the aspiration level becomes even lower, so that at least one act has a mean

utility exceeding the aspiration level. Again, define the corresponding set of decision paths as:

©0002 = ©0002 (¹u1) =
©
! 2 S1 j ¹ut = ¹u1 < ¹® for some ® 2 A and all t 2 N

ª
.

Then the following result applies:

Proposition 3.3 Let the constant aspiration level ¹u1 lie below the mean utility ¹® of at least
one of the acts ®. Write ~A for the set of acts, for which this condition is satisfied. Suppose as
well that ¹®¡ ¹u1 6= 0 holds for each ® 2 A. Then, on almost all paths !, one of the acts from
~A is chosen with frequency 1 in the limit :

P
n
! 2 ©000

2 j 9 ® (!) 2 ~A such that ¼ (® (!)) = 1 on !
o

= 1.

For completeness, the obvious result for the case when all realizations of all possible acts exceed

the aspiration level is also stated:

©IV2 = ©IV2 (¹u1) =
©
! 2 S1 j ¹ut = ¹u1 < u for all u 2 ¤ and all t 2 N

ª

denotes the corresponding set of decision paths.
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Proposition 3.4 Let the constant aspiration level ¹u1 lie below all possible realizations of the
available acts, i.e. ¹u1 < u for all u 2 ¤. Then, on almost all paths ! , one of the acts ® 2 A is
chosen with frequency 1 in the limit:

P
©
! 2 ©IV2 j 9 ® (!) 2 A such that ¼ (® (!)) = 1 on !

ª
= 1.

Given that the initial aspiration level is sufficiently low, on almost every path ! one of the acts

will be chosen with frequency 1 in the limit. However, it is not necessarily the act with the

highest mean utility. Moreover, on two different paths of return realizations, the limit choices

of the decision-maker may differ. Indeed, the acts with mean utility below the aspiration level

are chosen with frequency 0, but this does not guarantee optimality in the long run, as there

is a positive probability that the act with the highest mean utility might never be chosen. In

the context of portfolio-selection this means that the investor may be constantly choosing an

inefficient portfolio, or even a dominated portfolio, thus leaving arbitrage possibilities unused.

3.5 Max-Min Updating Rules

Suppose now that instead of keeping his aspiration level constant over time, the investor updates

it in accordance with the utility realizations he observes. If the investor is optimistic, he may,

for instance, believe that in the future he will continue to achieve the best result he has observed

up to the present. One could alternatively interpret this kind of adaptation of the aspiration level

as a self-attribution bias, the tendency of people to ascribe their failures to bad luck and their

successes to their personal abilities50. An investor acting in this way will then think that the high

returns he has observed are due to his ability to pick the right assets at the right time, whereas

the low returns are due to chance. High payoffs, therefore, increase the expectations of such an

investor (as captured by his aspiration level) and lower his evaluation of future returns. The rule

capturing this phenomenon is given by:

¹ut =
½

¹u1 <maxu2¤ u, for t = 1
max f¹u1; max¿<t u¿g, for t > 1,

¾
, (3.5)

i.e. the decision-maker sets his aspiration level equal to the maximal utility achieved up to period

t51. Write

©3 =
½
! 2 S1 j ¹ut =

½
¹u1 <maxu2¤ u, for t = 1
max f¹u1; max¿<t u¿g, for t > 1,

¾¾

50 See Miller and Ross (1975) and Langer and Roth (1975) for a description and analysis of the self-attribution
bias.

51 If ¹u1 exceeds the upper boundary of ¤, no updating of the aspiration level takes place and, consequently, the
result of proposition 3.1 holds.
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for the set of possible decision paths consistent with this updating rule. Then (again defining a

probability measure P on ©3, consistent with (¦®)®2A) the following result applies:

Proposition 3.5 Consider a decision-maker who updates hisaspiration level according to (3.5).
Assume that ¾® > 0 for all ® 2 A. Then, each probability distribution P on ©3 consistent with
(¦®)®2A satisfies:

P
½
! 2 ©3 j 8®; ~® 2 A 9¼ (®) and ¼ (~®) , s.t.

¼ (®)
¼ (~®)

= maxu2¤ u ¡ ¹~®
maxu2¤ u ¡ ¹®

¾
= 1:

Alternatively, one can consider a pessimistic investor, who sets his aspiration level at the lowest

possible level of utility achieved until the current period. Unlike the self-confident investors,

this investor believes that his own mistakes are the reason for low profits, whereas the high

returns are only due to chance52. His adaptation rule is captured by:

¹ut =
½

¹u1, for t = 1
min f¹u1; min¿<t u¿g, for t > 1,

¾
. (3.6)

No matter how high the initial aspiration level of such an investor might be, he will always end

up choosing one act with frequency one in the limit. Let

©4 =
½
! 2 S1 j ¹ut =

½
¹u1 > minu2¤ u, for t = 1
minf¹u1; min¿<t u¿g ; for t > 1,

¾¾

denote the set of consistent decision paths53.

Proposition 3.6 Consider a decision-maker, who updates his aspiration level according to
(3.6). Then, each probability distribution P on ©4, consistent with (¦®)®2A satisfies:

P f! 2 ©4 j 9 ® (!) 2 A , such that ¼ (® (!)) = 1 on !g = 1

The updating rules (3.5) and (3.6) represent extreme cases of veryoptimistic and very pessimistic

decision-makers. It is also of interest to consider an intermediatecase, in which the investor takes

into account the minimum, as well as the maximum achieved. His pessimism is captured by the

weight ¯ he assigns to the minimal realization achieved and his optimism by the weight (1 ¡ ¯)
of the best realization. The cases ¯ = 0 and ¯ = 1 correspond then to the updating rules (3.5)

and (3.6), respectively. Then for sufficiently low values of ¯, the decision-maker chooses all

acts with positive frequency in the limit, whereas for ¯ near 1, satisficing behavior emerges.

52 Sociologists have found that men and women explain their misfortunes differently. Whereas men tend to explain
their mistakes by bad luck and their successes by their own abilities, womenseem todo the contrary. This is probably
also the reason why most of the overconfident investors are men, as Barber and Odean (2001 (b)) find.

53 If ¹u1 lies below the lower boundary of ¤, then no updating of the aspiration level takes place and, consequently,
the result of proposition 3.4 holds.
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Proposition 3.7 Let ¾® > 0 for all ® 2 A. Consider the adaptation rule

¹u1 = ¹u1 2
·
min
u2¤
u; max
u2¤
u
¸

¹ut = ¯min
n
¹u1; min

¿<t
u¿

o
+ (1 ¡ ¯) max

n
¹u1; max

¿<t
u¿

o
for 8t ¸ 2

. (3.7)

and denote by ©5 the set of consistent decision paths. Then for all values of ¯ 2 [0; 1] such that:

¯ <
max
u2¤®

u¡ ¹®
max
u2¤®

u¡ min
®2A

min
u2¤®
u

for each ® 2 A, (3.8)

each probability distribution P on ©5 consistent with (¦®)®2A satisfies:

P

8
<
:! 2 ©5 j ¼ (®

0)
¼ (®00)

=
¯ min
®2A

min
u2¤®

u + (1 ¡ ¯) max
®2A

max
u2¤®
u ¡ ¹®0

¯min
®2A

min
u2¤®

u+ (1¡ ¯) max
®2A

max
u2¤®

u¡ ¹®00

9
=
; = 1.

Thus, if thedecision-maker is relatively optimistic, his aspiration level becomes sufficiently high

in the limit and he switches infinitely often among all possible acts, with a frequency inversely

proportional to the net mean utility of the act in the limit. It is however not true that for all values

of ¯ higher than those in (3.8), one act will be chosen with frequency 1on almost each path !.

In fact, this will be the case only if

¯ >
max
®2A

max
u2¤®

u¡ ¹®
max
®2A

max
u2¤®

u¡ min
®2A

min
u2¤®
u

for some ® 2 A. (3.9)

For values of ¯ between (3.8) and (3.9), however, the frequencies with which the acts are chosen

are path-dependent. For instance, even if ¯ does not satisfy (3.9), it is possible that the act

chosen in the first period yields a low utility realization, and, as a result, the aspiration level is

updated downwards. The next act chosen may then turn out to be satisfactory (relative to the

low aspiration level) and, thus, will be chosen forever. If, however, the first act chosen has a

relatively high realization, then the aspiration level is updated upwards, possibly rendering all

of the acts unsatisfactory, and causing permanent switching among them.

To summarize, the results of this and the preceding section show that high (or increasing over

time) aspiration levels lead to permanent switching among the acts, whereas low (or decreasing

over time) aspiration levels induce satisficing behavior in the limit.

3.6 Interpretation of the Results

In this section, the results derived above are compared to the empirical evidence from finan-

cial markets. It will be shown that some of the observed phenomena are consistent with the
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theoretical results obtained.

3.6.1 Choosing an Efficient Portfolio

The CAPM, suggested by Sharpe (1964) and Lintner (1965) generates strong predictions not

only with respect to portfolio holdings but also with respect to asset prices in equilibrium. The

early empirical studies in this area have been sharply criticized by Roll (1977), who argued that

only the mean-variance-efficiency of the chosen portfolios, and not their optimality could be

tested. Kroll, Levy and Rappoport (1988), thus conduct an experiment which is designed to test

whether subjects choose mean-variance-efficient portfolios if mean, variance and covariances

of the available risky assets are known. The experiment is designed in a way which excludes

any serial correlation between the returns of the assets. This makes the comparison between the

experimental and the theoretical results particularly simple. Kroll, Levy and Rappoport (1988,

p. 509) refute the following three hypothesis:

(a) Changes in the covariance structure affect the choice of a portfolio;

(b) Allowing subjects to borrow and lend at the same rate leads to a movement in the direction of a

common, optimal risky portfolio;

(c) The chosen portfolios become more efficient, as subjects gain more experience and obtain feed-

back.

Hence, the behavior observed is inconsistent with the predictions of the portfolio-choice theory,

as formulated by Markowitz (1952, 1959) and Tobin (1958) and, therefore, ultimately with the

CAPM on which it is based. The results observed in the experiment are however consistent with

the behavior of case-based decision-makers with constant low aspiration level.

First, the proofs of propositions 3.3 and 3.4 show that the covariance between the assets does

not play any role for the limit behavior of the decision-maker. This is due to the fact that the

result of the portfolio chosen in a certain period is evaluated independently of the realizations

of the portfolios which were not chosen in this period.

Note also that for different subjects with the same aspiration level, the choice of portfolio in the

limit need not be the same, even if borrowing and lending at the same rate is allowed. As has

already been mentioned, the limit behavior in the case of low aspiration level depends strongly
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on the first periods, in which the behavior of the investors is guided by chance. Thus, even

identical subjects may end up with different (suboptimal) portfolios of risky assets in the limit.

As stated above, a case-based investor with a relatively low aspiration level will not choose an

optimal portfolio in general, even if he is allowed to repeat his choice infinitely often. This result

is due to the fact that the feedback obtained is interpreted as positive, relative to the aspiration

level and is consistent with the falsification of hypothesis (c).

3.6.2 Arbitrage Restrictions

A rather ’’strange’’ feature of the case-based decision-makers with relatively low aspiration level

is that they may choose a portfolio which is strictly dominated by another portfolio in the set of

the possible acts with frequency 1 in the limit. Thus, a market in which case-based investors op-

erate would not be safe from arbitrage. Empirical data show, see, for instance, Figlewski (1989)

that unpredictable volatility, indivisibility of assets, transaction costs and imperfect financial

markets can render arbitrage strategies too costly. However, neither of these elements drives the

results in the model above. Nevertheless, some experimental studies demonstrate that arbitrage

opportunities may occur even in perfect financial markets.

Rietz (1998) constructs an experimental market with two states of the world and no aggregate

uncertainty. He finds, see Rietz (1998, p. 2), that ’’[a]arbitrage opportunities were prevalent

and extremely robust. Exactly why traders did not exploit the opportunities remains a mystery.

They simply did not take advantage of profitable opportunities even when they had been shown

how, when they had considerable experience, when they could also engage in direct portfolio

trading and when they could sell short.’’ Even though the set-up is quite simple and the subjects

are literally taught how to exploit arbitrage possibilities, a professional arbitrageur is needed to

draw the prices to their arbitrage-free values.

In another empirical study by Oliven and Rietz (1995), the non-arbitrage conditions on prices

are tested in the context of a futures-market. Again, the result is that investors fail to use even

the simplest possibilities for arbitrage. The highest number of violations — 37,7%, Oliven and

Rietz (1995, p. 2) — is observed in the behavior of the so-called price-takers (investors who

accept an outstanding offer or bid), whereas the price-makers (those who set offers or bids) fail

to use an arbitrage possibility in only 5,39% of the time.
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Whereas the observed behavior is inconsistent with expected utility maximization, case-based

investors with relatively low aspiration levels might indeed fail to use arbitrage possibilities.

As long as they consider the profits achieved in the past satisfactory, they do not consider it

necessary to experiment with different portfolios and engage in arbitrage activities.

An interesting result is that in the experiment of Olivenand Rietz (1995) the number of violations

of the non-arbitrage condition increases with the income class reported. This might be explained

by the findings of Gould (1941), who examines the dependence of aspiration level on socio-

economic factors. His results show that aspiration levels decrease with more favorable social

and economic position. Hence, high-income investors might have less incentives to experiment

and might therefore be more viable to violations of non-arbitrage conditions.

The reason for not using arbitrage possibilities in this case is due to the fact that the decision-

maker is not informed about the existence of better acts. In section 7 it will be shown that

supplying the decision-maker with additional information can lead to optimal behavior.

3.6.3 Diversification and Familiarity Effects

Even after asset markets have been largely globalized, investors seem not to understand and use

the advantages of diversification. Tesar and Werner (1995) analyze aggregate trade with assets in

several countries (USA, Canada, Great Britain) and show that the percentage of domestic assets

held is higher than the optimal one. Coval and Moskowitz (1999) find a similar bias in the USA,

where investors seem to prefer local firms to firms operating in other states and regions. Several

possible explanations have been proposed in the literature, see Coval and Moskowitz (1999) and

Lewis (1999). Transaction costs and cross-border frictions are the first to be considered, as in

Black (1974) and Stulz (1981). However, Tesar and Werner (1995) show that taking them into

account does not remove the effect completely. Lewis (1999) claims that insuring against home-

risks (e.g. inflation-risk) cannot explain the home-bias, either. There is some evidence that the

informational structure of the economy might be connected with the preferences to invest in

home or foreign companies, see Grinblatt and Keloharju (2001), Kang and Stulz (1997) and

Coval and Moskowitz (1999). They argue that since investors are better informed about local

than foreign companies, it is rational for them to invest more in local companies54. It is, however,

54 For models on assymetric information in this context see Brennan and Cao (1997) and Coval (1999).
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unclear why information per se should lead to a buy-and-hold decision. Analyzing Japanese

companies, Kang and Stulz (1997) find that those preferred by foreign investors are not only

large (and thus better known and communicating more information), but also well-performing

and low-risk.

Suppose then that before choosing a portfolio for the first time, the investor receives information

about past returns of some of the assets available. Assuming that he is better informed about

domestic and large foreign companies, he is more likely to receive information about the returns

on their assets. As long as he considers the information to be equivalent to real experience

(see section 7) and provided that his aspiration level is relatively low, he will prefer buying

the portfolio consisting of the shares of those companies he has been informed about. For low

values of the aspiration level (or, alternatively, relatively high returns), the cumulative utility of

the portfolio chosen remains positive over the time. The investor will, therefore, continue to

choose this particular asset forever, without considering others, especially if he has no (or only

vague) information about their utility realizations.

Another explanation stated in the literature, e.g. Huberman (1998), is that investors exhibit some

kind of preferences for local assets. It is well known that people prefer acts which are familiar to

them. However, provided that the investor believes that one of the acts yields a higher profit, it is

not quite clear why he should choose the more familiar and the more unprofitable one (ignoring

patriotic feelings and wishes to invest in the domestic industry to support it). Thus, familiarity

effects can be taken into account in those cases in which the acts are equally evaluated from

the point of view of expected returns. Suppose, therefore, that a case-based decision-maker still

evaluates the acts according to their cumulative utility in each period. If, however, two acts have

the same cumulative utility, he chooses the one containing more familiar assets. Suppose as well

that the decision-maker has no initial information about the returns of the assets. In this case, the

cumulative utility of all the acts is 0 in period t = 1. The first choices will be therefore based on

familiarity preferences. If, furthermore, the aspiration level of the investor is relatively low, this

kind of behavior may lead him to choose an underdiversified portfolio containing a high share

of (familiar) domestic assets.

To summarize, the assumptions of case-based decisions combined with a relatively low constant

aspiration level can help explain, why investors fail to choose an efficient portfolio in the long
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run. These assumptions also imply that unexploited arbitrage possibilities might be present in the

market and can describe situations in which investors neglect foreign assets and fail to diversify

their portfolios optimally.

3.6.4 Excessive Trading

Up to this point, the implications of the case-based decision theory in the case of low aspiration

level have been analyzed. Now consider the case of high aspiration level. Propositions 3.1 and

3.2 show that investors with a relatively high aspiration level switch among the acts in the long

run, choosing all of them with positive probability. They violate optimality by trading more

often than it would be rational, given correct beliefs. Odean (1999) finds that the frequency of

trades is extremely high in financial markets. He shows that excessive trading is not eliminated

even after controlling for liquidity demands, tax-loss selling and portfolio-rebalancing. It leads

to lower returns for the investors engaging in it, which do not disappear, even if transaction costs

are ignored. Odean calls such investors overconfident.

Case-based investors with high aspiration level also choose to trade more frequently than ra-

tional, thus lowering their returns. Whereas ’’overconfident’’ investors are usually modelled

as decision-makers, who believe that the signals they receive about future returns are more pre-

cise, than they actually are, as in Hirshleifer, Subrahmanyam and Titman (1994), Hong and Stein

(1999), Daniel, Hirshleifer and Subrahmanyam (1998, 2001), Odean (1998 (a)), the behavior of

case-based decision-makers is only influenced by information about past returns. Their subop-

timal behavior is not due to the fact that they lack information. In fact, choosing each act for

an infinite number of times, they receive enough information in order to learn the distribution

and the mean utility of each portfolio. The evaluation of the experienced payoffs as dissatisfic-

ing relative to the unrealistically high expectations captured by the aspiration level causes the

excessive trading in this model.

As proposition 3.3 shows, the ’’optimal’’ constant aspiration level in the model should fulfill:

max
®2A
¹® > ¹u1 > max

®2Anfargmax¹®g
¹®

Once it becomes larger than max®2A ¹®, the investor engages into excessive trading and lowers

their utility from trade compared to the optimum. Note as well that the higher the aspiration

level of the decision-maker, the lower his average utility in the long run becomes. As one can
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easily verify from propositions 3.1 and 3.2, it follows that, if ¹u1 ! 1, then the limit frequencies

of all the acts are equal, since for all ® and ~® 2 A:

lim
¹u1!1

¼ (®)
¼ (~®)

= lim
¹u1!1

¹~®¡ ¹u1
¹®¡ ¹u1

= 1

holds. Hence, the acts with high mean utility will be chosen more frequently for smaller values

of ¹u1 than for higher aspiration levels, implying that increasing the aspiration level leads to lower

mean utility.

Barber and Odean (2001 (b)) show that investors who have previously experienced superior

performance tend to switch to on-line-trading and trade more actively, thus decreasing their

profits. One of the possible reasons suggested by Barber and Odean (2001 (b), p. 6) is the

self-attribution bias, the tendency of people to ascribe their failures to luck and their successes

to their personal abilities. Propositions 3.5 and 3.7 show that the empirical findings of Barber

and Odean (2001 (b)) can be reproduced by the behavior of case-based decision-makers with a

linear utility function, who update their aspiration levels towards the highest utilities they have

achieved in the past. The aspiration level becomes higher as the time passes and in the limit the

investors trade too much, achieving lower mean profits, than would be optimal55.

Shapira (2001) analyzes the observed behavior of government bond traders. He finds that bond

traders who have achieved the goals set to them tend to trade less in order to take less risk.

Traders who fail to fulfill the targets become more aggressive and trade more taking greater

risks. Shapira explains his findings by the prospect theory of Kahneman and Tversky (1979).

Propositions 3.5 and 3.7 provide an alternative explanation: if the trader perceives the acts he

has tried as unsatisfactory with respect to his aspiration level (alias set goals), he will switch

between the acts, until he finds a satisfactory one, or infinitely often, if no act can satisfy him.

Having achieved his targets, he will then settle on the successful act and stop trading.

3.7 Collecting Additional Information

Up to this point, it has been assumed that the decision-maker receives no other information

apart from the utility realizations of the acts he chooses. This assumption seems quite restrictive

55 In this model prices and returns are exogenously given and therefore needn’t coincide with their equilibrium
values. Nevertheless, it can be shown, (see chapter 5) that traders with relatively high aspiration levels trade too
much and achieve lower profits in a market environment with endogenous prices and returns as well. I thank
Michael Waldman for this comment.
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in the context of financial markets, where abundant information about past returns of assets is

available. In this section, the case in which the decision-maker acquires additional information

about the acts from the set A is considered. Two assumptions are made: first, the information

collected regards only past utility realizations; second, the decision-maker treats the information

he receives as absolutely reliable and uses it when calculating the cumulative utility of an act as

if he had chosen this act in some previous period and achieved the utility realization he has been

informed about56.

Consider a decision-maker who receives information about the realizations of all possible acts in

each period of time t = 1; 2; :::. Some additional notation is necessary in order to discriminate

between the knowledge of the decision-maker and his actual behavior. Let kt (®) denote the

information of the decision-maker about the realization of the act ® in period t 2 N and denote

by

kt = (kt (®1) :::kt (®n))

the information of the decision-maker about the realizations in period t (note that the realization

of the act actually chosen in period t is also contained in the information about period t). Then

the set of possible paths can be defined as:

SI0 =
n
! = ((¹ut;®t;ut; kt))t=1;2:::

o
½ (R £ A £ ¤£ (£®2A¤®))N

In this context, the cumulative utility of an act ® in period t is defined as:

UIt (®) =
t¡1X

¿=1

[k¿ (®) ¡ ¹ut]

The decision-maker chooses in each period the act with maximal cumulative utility so that the

set of possible paths reduces to:

SI1 =
½
! 2 SI0 j ®t 2 argmax

®2A
UIt (®) 8t ¸ 1

¾
:

Define a ¾-algebra on SI0, i.e. the algebra generated by the Borel ¾-algebra on each copy of R
of ¤ and of (£®2A¤®) and by the algebra 2A on each copy of A. Let§ be the induced ¾-algebra

on SI1. Let the probability distribution P on SI1 be consistent with (¦®)®2A. Again, the behavior

of the decision-maker can be characterized by the frequencies with which the acts are chosen

56 The case-based decision theory of Gilboa and Schmeidler (1997 (a), 2001 (a)) allows for a more general treat-
ment of the assessment of information. It is, for instance, possible to value personal experience more than the
indirect, acquired by the information available, or vice versa. This would require the introduction of a similarity
function between information and experience. The analysis of sections 3 – 5 has been carried through with the im-
plicit assumption that the similarity between direct and indirect experience is 0. In the current section, it is assumed
that this similarity is 1.
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when the number of periods becomes infinitely large.

Proposition 3.8 Consider a decision-maker who in each period of time receives the informa-
tion about the utility realizations of all acts ® 2 A in this period. Then, independently of his
aspiration level (¹ut)t=1;2;:::, on almost all paths of return realizations he will choose the act with
the highest mean utility with frequency 1:

P
½
! 2 SI1 j 9¼

µ
arg max

®2A
¹®

¶
= 1

¾
= 1.

The result of the proposition states that a case-based decision-maker who possesses and is able to

process the whole past information about the problem he is facing behaves as an expected utility

maximizer in the limit. Moreover, this result depends neither on the value of the aspiration level,

nor on the way it is updated.

Note that although the case-based decision-maker eventually learns to choose the optimal port-

folio, his learning differs from the Bayesian one. It is possible to elicit the ’’beliefs’’ of the

case-based decision-maker in the following way: since the cumulative utility of an act ® is

given by

UIt (®) =
t¡1X

¿=1

[k¿ (®) ¡ ¹ut] ,

the decision-maker obviously acts in a frequentist way, ascribing to each act those possible re-

alizations which he has actually observed and weighting them by the frequency with which

they have occurred.. The difference of this approach from the Bayesian learning is two-fold.

First, instead of starting with a prior on the set of possible outcomes and updating it to elim-

inate outcomes which never occur, the case-based decision-maker starts with the ’’prior’’ that

each act yields a utility realization equal to his aspiration level ¹u1. After the first period, the

decision-maker observes the utility realizations of all portfolios and ’’updates’’ his beliefs in a

non-Bayesian manner, since now he adds to his ’’prior beliefs’’ the possibility that an act® yields

the utility realization k1 (®). He assigns this realization a probability of 1 in the evaluation of

the act. Note that in this period he assigns a probability of 0 to any realization different from

k1 (®), which cannot happen to a Bayesian who starts with a correct prior and, therefore, never

assigns a 0 probability to a set with a positive objective probability.

The assumption of proposition 3.8 suggests that the decision-maker is able to process and ac-

quire unlimited amount of information without incurring costs. While it is not quite realistic to

imagine that a decision-maker collects the whole information available in every single period of
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time, collecting information for few periods may be a very realistic assumption, if one consid-

ers an investor who has not faced the problem before. Before choosing a portfolio for the first

time, he may try to gather information about the realizations single portfolios had in the near

past. However, once he becomes more familiar with the problem, he might begin to rely on his

experience and stop collecting further information.

In the next two propositions, the case of an investor who receives information about all real-

izations only for a finite number of periods K is analyzed. After period K, the decision-maker

receives only information about the utility realizations of the acts he actually chooses. Assume,

as above that information and direct experience are treated equally when evaluating the acts.

Using the notation from above define the new set of possible decision paths as:

SK0 =
n
! =

³
((¹ut;®t;ut; kt))t=1;:::K ; ((¹ut;®t;ut))t=K+1;K+2:::

´o
½

½ (R £ A £ ¤£ (£®2A¤®))K £ (R £ A £ ¤)N=f1:::Kg

In this case the cumulative utility is defined as:

UKt (®) =

( Pt¡1
¿=1 [k¿ (®) ¡ ¹ut] for t · KPK
¿=1 [k¿ (®) ¡ ¹ut] +

X
¿2CKt (®)

u¿ for t > K

)

with CKt (®) denoting the set of periods between period K and period t, in which the act ® has

been chosen:

CKt (®) = fK < ¿ < t j ®¿ = ®g .

Consider first the case of constant aspiration level, i.e. ¹ut = ¹u1 for all t = 1; 2; :::. The set of

possible decision paths then reduces to:

SK1 (K; ¹u1) =
½
! 2 SK0 j ®t 2 arg max®2AUKt (®) 8t ¸ 1

¹ut = ¹u1 8t ¸ 1

¾
:

Define a probability measure P on SK1 , consistent with (¦®)®2A. The first result shows that if

a decision-maker with a relatively low aspiration level receives information for a sufficiently

large number of periods K, then he will be rational with probability arbitrarily close to 1.

Proposition 3.9 Consider a decision-maker with a constant aspiration level ¹u1 such that the
’’net’’ mean utility of all acts in some subset of A — ~A is positive, i.e.:

¹® ¡ ¹u1 > 0, if ® 2 ~A.
Let the decision-maker receive information about the utility realizations of all acts for T periods.
Then, for each " > 0, there exists an integer K, such that

P
½
! 2 SK1 (T ; ¹u1) j 9¼

µ
arg max

®2A
¹®

¶
= 1

¾
¸ 1¡ "

for all T ¸ K.
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Arbitragepossibilities and underdiversificationareeliminatedwitha high probability in amarket

in which investors with relatively low aspiration level are allowed to learn. This is, however,

not true when investors with high aspiration levels are considered.

Proposition 3.10 Consider a decision-maker with a constant aspiration level ¹u1, such that the
’’net’’ mean utility of all acts ® 2 A is negative, i.e.:

¹®¡ ¹u1 < 0, for all ® 2 A.
Let the decision-maker receive information about all the realizations of the acts for K periods.
Then for all finite K

P
½
! 2 SK1 (K; ¹u1) j 8®; ~® 2 A 9¼ (®) and ¼ (~®) , s.t.

¼ (®)
¼ (~®) =

¹u1 ¡ ¹~®
¹u1 ¡ ¹®

¾
= 1

holds.

The result of the proposition is not due to the fact that the investor has not enough information

about the possible realizations and their distributions. Indeed, if K is sufficiently large, then at

period K the decision-maker chooses the optimal act with probability is close to 1. However,

since even the best act seems to him unsatisfactory, after period K, the investor will switch

among all available acts as in the case in which he cannot gather additional information. Thus,

we should not expect that investors with high aspiration levels learn to behave optimally, unless

they are able to proceed the whole past information available in the market.

In an analogous way it is possible to describe the behavior of a decision-maker who updates his

aspiration level to the maximal utility achieved in the past.

Proposition 3.11 Consider a decision-maker with an aspiration level updated according to57

¹ut =

8
>><
>>:

¹u1 < maxu2¤ u, for t = 1

max
½
max
®2A
kt¡1 (®) ; ¹ut¡1

¾
, for 1 < t · K +1

max fut¡1; ¹ut¡1g , for t > K + 1

9
>>=
>>;
: (3.10)

Denote the set of decision-paths consistent with this updating-rule by SK2 (K). Then each prob-
ability distribution P on SK2 (K), which is consistent with (¦®)®2A, satisfies:

P
½
! 2 SK2 (K) j 8®; ~® 2 A 9¼ (®) and ¼ (~®) , s.t.

¼ (®)
¼ (~®)

= maxu2¤ u ¡¹~®
maxu2¤ u ¡¹®

¾
= 1.

If we think of investors using the updating rule (3.10) as being subjected to the self-attribution

bias, we again reach the conclusion that investors who increase their expectations to unrealisti-

cally high levels switch more often between the acts than it would be optimal and lose money in
57 The initial value of the aspiration level ¹u1 does not influence the behavior of the investor in the limit, as long
as it is below the upper boundary of ¤. If it exceeds this upper boundary, then no updating of the aspiration level
takes place and the result is as in proposition 3.10.
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general. Hence, even in the case in which information about long return sequences is available,

the behavior of these investors is similar to the behavior of ’’overconfident’’ investors described

by Odean (1999). Barber and Odean (2001 (b), p. 7) relate the overconfidence of online in-

vestors to the fact that ’’[o]nline investors have access to vast quantities of investment data’’.

The abundant information makes the traders believe that they have better skills than the aver-

age investor and trade more than it would be rational. The last proposition shows that if a trader

suffers from the self-attribution bias, (in the sense that he ascribes his success to his own ability,

and losses to chance), additional information will not help him to learn to behave rationally.

3.8 Portfolio Choice with Similarity Considerations

Up to now, I have assumed that the utility yielded by a portfolio does not influence the evaluation

of the portfolios not chosen in the given period. It is, however, possible that the utility achieved

by choosing one portfolio affects the evaluationof another one because of similarity perceptions.

In chapter 2, the issue of introducing similarity perceptions into a model of financial markets

has been discussed. I now present a model of individual portfolio choice in which similarity

considerations are integrated. By using this model, the impact of the form of the similarity

function on the individual decision-making can be examined. The results are then compared to

those obtained without similarity considerations and to the results of the standard theory, which

assumes a fully informed expected utility maximizer.

Differently from the analysis above, the introduction of a similarity function allows to consider

an infinite number of available acts. Suppose, therefore, that A = [0; 1]. Hence, diversification

is allowed, but short-sales are forbidden.. Assume that the similarity function satisfies58

s (®;®) = 1

s (®;®0) = s (®0;®)

s (0; 1) 2 [0; 1)

for all ®, ®0 2 [0; 1]. Let s further depend only on the distance between ® and ®0 and assume

that it is strictly decreasing and concave in k® ¡ ®0k. Figure 2 provides an example of such a

58 Gilboa and Schmeidler (2001 (a), p.144) comment that the second characteristic of the similarity function re-
quired in the model, symmetry, is not natural in some applications. Moreover, they define a different notion of
symmetry in the context of their model. However, since in this model the distance between the portfolios deter-
mines the similarity, the similarity function is assumed to by symmetric.
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similarity function.

6

-
®®0

s(a; a0)

1 ....................................................................................
1

.....................................

s(®;®0)

Figure 2

Recall that the memory of the investor at time t is represented by the set of cases encountered

until period t:

Mt = ((½¿ ;®¿ ;u¿))¿=1;2:::t¡1 .

Mt is assumed to be endogenously determined at each time t, i.e. Mt contains only cases with

portfolios actually chosen and utility realizations actually observed by the investor.

3.8.1 The Case of Constant Aspiration Level

Assume first that the aspiration level ¹u of the investor is constant over the time. Given a problem

½ anda memory of length t, the decision rule of a case-baseddecision-maker consists in choosing

the act with maximal cumulative utility Ut (®) with:

Ut (®) =
t¡1X

¿=1

s (®;®¿) [u¿ ¡ ¹u] .
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Let ®1 = ¹® denote the act chosen in the first period and assume that ¹® is a strictly diversified

portfolio, i.e. ¹® 2 (0; 1). ©6 describes the set of possible paths:

©6 =
½
! 2 S1 j ¹ut = ¹u for all t = 1; 2; :::

®1 = ¹®

¾
.

Let P denote a probability measure consistent with (¦®)®2[0;1] as described in section 3. It is

easily seen that:

Lemma 3.1 If ¹u < ¹¹®, then the expected time, for which the investor will hold ¹® is infinite. If
¹u > ¹¹®, then the investor will almost surely switch in finite time to a different act ® with ® = 0
for ¹® > 1

2 and ® = 1 for ¹® < 1
2.

The next proposition shows how an investor will behave if his aspiration level is higher than the

mean utility of the initially chosen portfolio.

Proposition 3.12 Let the similarity function s (®;®0) of an investor be concave in k® ¡ ®0k
with s (1; 0) 2 [0; 1) and the memory of the investor be endogenous and contain all past cases
up to the current period. If ¹u > ¹¹® and

² ¹u > max f¹0;¹1g, then

P
½
! 2 ©6 j 9¼ (®) : [0; 1] ! [0; 1] and

¼ (0)
¼ (1)

=
¹1 ¡ ¹u
¹0 ¡ ¹u

, ¼ (®) = 0for ® =2 f0; 1g
¾

= 1;

² ¹0 > ¹u > ¹1, then

P f! 2 ©6 j 9¼ (®) : [0; 1] ! [0; 1] and ¼ (0) = 1, ¼ (®) = 0for ® 6= 0g = 1;

² ¹1 > ¹u > ¹0, then

P f! 2 ©6 j 9¼ (®) : [0; 1] ! [0; 1] and ¼ (1) = 1, ¼ (®) = 0for ® 6= 1g = 1;

² ¹1 > ¹u and ¹0 > ¹u, then

P

8
<
:! 2 ©6 j 9¼ (®) : [0; 1] ! [0; 1] and

¼ (1) = 1, ¼ (®) = 0 for ® 6= 1
or

¼ (0) = 1, ¼ (®) = 0 for ® 6= 0

9
=
; = 1.

An investor whose aspiration level exceeds the mean utility of the initially chosen portfolio

will only diversify for a finite number of periods. Afterwards he will either choose one of the

undiversified portfolios forever or switch between them, depending on whether he finds their

mean utility satisficing or not. Note that the result that an investor will diversify only for a finite

number of periods, provided that his aspiration level is relatively high, does not depend on the

assumption that the investor can remember all past cases. The statement remains true, even if
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the investor can remember the last m cases, where m is finite. It is essential, however, that the

investor remembers only cases that really occurred, i.e. that his memory is endogenous.

With two assets only, similarity between the two undiversified portfolios can be normalized to 0.

Hence, only similarity perceptions with respect to the portfolio structure pay a role for the limit

behavior. This feature is due to the indeterminacy of similarity function with respect to affine-

linear transformations. To discuss the role of similarity between assets, the introduction of a third

asset is necessary. Hence, suppose that apart from assets a and b, a third asset â is present in the

economy. Its dividend payments are denoted by ± â and are distributed on an interval
£
±â; ¹±â

¤
.

A portfolio consisting of the three assets a, b and â is now described by two variables (®; ®̂) 2
A = [0; 1]2, denoting the proportion of a and of â in the portfolio. Thus, choosing a portfolio

(®; ®̂) results in a utility realization of

u (®±a + ®̂±â + (1¡ ® ¡ ®̂) ±b)
If u is well-defined, bounded and continuous on

£
®±a + ®̂±â + (1¡ ® ¡ ®̂) ±b;®¹±a + ®̂¹± â + (1¡ ®¡ ®̂) ¹±b

¤

for all (®; ®̂) 2 A, then the distribution ¦® of u (¢) for a given ® is characterized by a finite

mean, ¹®;®̂, finite variance and bounded supports.

One can imagine the portfolios consisting of a, b and â situated on a triangle. The similarity be-

tween portfolios is then represented by the distance between the corresponding points. Because

of the uniqueness of the similarity function with respect to linear affine transformations, it is

possible to normalize the distance between a and â so that s ((1; 0) ; (0; 1)) = 0. I assume as

above that s depends only on the Euclidean distance between two points:

s ((®; ®̂) ; (®0; ®̂ 0)) = f (k(®; ®̂)¡ (®0; ®̂0)k) ,

where f is strictly decreasing and s is concave59.

59 Since s = f
¡°°(®; ®̂) ¡

¡
®0; ®̂0¢°°¢

, for s to be concave, it is necessary that the decreasing function f is not too
convex. To see this, denote the Euclidean distance functional by e and note that

s00 = f 00 (e0)2 + e00f 0 .
Since e00 > 0 and f 0 < 0,

¡ e00f 0

(e0)2
> 0

and s0 0 < 0 holds, as long as

f 00 < ¡ e00f 0

(e0)2
.

.
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Suppose that the initially chosen portfolio is strictly diversified with (®1; ®̂1) 2 (0; 1)2 and note

that in analogy to lemma 3.1 the strict monotonicity of the similarity function in the Euclid-

ean distance implies that if ¹®1;®̂1 < ¹u (where ¹u denotes the constant aspiration level), then

(®1; ®̂1) is abandoned almost surely in finite time and one of the undiversified portfolios (0; 1),

(1; 0) or (0; 0) is chosen. The concavity of the similarity function further implies that one of the

undiversified portfolios will be chosen in each period of time afterwards. In order to focus on

the inf luence of similarity between the corner portfolios on limit behavior, I will concentrate on

the choices between the three corner portfolios and neglect the diversified ones. Hence, it is con-

venient to denote the undiversified portfolios (1; 0), (0; 1) and (0; 0) by a, â and b, respectively.

Write sab and sâb for the similarity between a and b and â and b.

Denote, as above, the set of all possible paths on which case-based decision are made by S1. Let

©06 denote a subset of S1, on which the first chosen portfolios is an undiversified one and the

aspiration level is constant and exceeds the maximal mean utility of an undiversified portfolio:

©06 = f! 2 S1 j ¹ut = ¹u > maxf¹a;¹â;¹bg for all t = 1; 2; ::: and (®1; ®̂1) 2 fa; â; bgg .

Let P again denote a probability distribution on ©06 which is consistent with
¡
¦(®;®̂)

¢
(®;®̂)2[0;1]2.

Proposition 3.13 ² If

sab + sâb ¸ 1,

then on ©06, the frequencies with which the portfolios are chosen in the limit satisfy almost

surely with respect to P :
¼ (a)
¼ (â)

=
¹a ¡ ¹u
¹â ¡ ¹u

¼ (®; ®̂) = 0, else.

² If

sab + sâb < 1,

then on ©06, the frequencies with which the corner portfolios are chosen in the limit satisfy

almost surely with respect to P :
¼ (a)
¼ (â)

=
(1¡ sâb) (¹â ¡ ¹u)
(1¡ sab) (¹a ¡ ¹u)

¼ (b)
¼ (â)

=
(¹â ¡ ¹u)

(1¡ sâb) (¹b ¡ ¹u)
¼ (b)
¼ (a)

=
(¹a ¡ ¹u)

(1¡ sab) (¹b ¡ ¹u)
,
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¼ (®; ®̂) = 0, else.

The proposition shows that depending on the relationship between sab and sâb, similarity be-

tween the corner portfolios can have different effects on the limit choice of the investor. As long

as the sum of sab and sâb is larger than 1, the negative impact exhibited by portfolios a and â on

the cumulative utility of b is so large that b is never chosen after some finite period ¹t. If, how-

ever, their sum is lower than 1, b is still an optimal choice during a positive fraction of time. The

frequencies with which a and â are chosen depend on how similar they are to b. Especially, the

portfolio which is more similar to b is chosen less frequently, since its cumulative utility suffers

more from the negative net utility realizations of b. Clearly, for sâb = sab, this effect disappears.

Still, as long as 0 < sâb = sab holds, the utility realizations of b negatively affect the cumula-

tive utilities of a and â and their frequencies are therefore lower than in the case in which no

similarity between a and b and â and b is perceived.

3.8.2 Learning with Similarity

The model of Gilboa and Schmeidler (1996) poses the question whether a case-based decision-

maker is able to learn to choose the optimal (expected utility maximizing) act if the sameproblem

is repeated an infinite number of times. They find a rule for adapting the aspiration level that

indeed implies optimal behavior in the limit, see section 3. The combination of realism and

ambitiousness leads to optimal choice, formally, for each " > 0, the probability of choosing one

of the acts ® 2 argmax f¹® j ® 2 [0; 1]g with frequency 1 is at least (1¡ "), provided that the

initial aspiration level is chosen to be sufficiently high. Especially, to prove that optimal learning

is possible, Gilboa and Schmeidler (1996) select the initial aspiration level ¹u1 in such a way that

it remains above

R = 2 max
®2[0;1]

u
¡¹±a®+ ¹±b (1¡ ®)

¢
¡ min
®2[0;1]

u (±a®+ ±b (1¡ ®))
during the first T0 periods. T0 is chosen so as to assure that during the first T0 periods all acts

(out of the finite set A) are chosen at least C times each. At the same time, C is sufficiently

large to guarantee that after C choices the average utility of each act a is close to its mean utility

¹a. The choice of the initial aspiration level, therefore, precludes the possibility that a decision

maker becomes satisfied with a suboptimal act and never chooses an alternative one.

99



The theorem assumes a very specific similarity function, for which

s (®;®0) = 1, if ® = ®0

s (®;®0) = 0, if ® 6= ®0.
In other words, two acts are only considered similar, if they are identical.

It is interesting to know whether this adaptation rule also works for more general similarity

functions. Suppose as above that the similarity function is concave. Suppose as well that the

first act chosen is ®1 = ¹® 2 (0; 1). As above, © denotes the set of paths on which a case-based

decision-maker adapts his aspiration level according to (3.3):

© =
½
! 2 S1 (¯; ¹u1) j ¹u1 = ¹u1

¹ut = ¯¹ut¡1+ (1 ¡ ¯)Xt for t ¸ 2

¾
. (3.11)

Let P be a probability measure on ©, which is consistent with (¦®)®2[0;1], as in Gilboa and

Schmeidler (1996, p.11). It is clear that for sufficiently high initial aspiration level an investor

following updating rule (3.3) will switch at some time to act 1 or 0. Moreover, to enable optimal

learning, the initial aspiration level has to be set higher than R, which exceeds the maximal

possible realization of the initially chosen portfolio ¹®. This implies that the investor switches to

0 or 1 at t = 2. Let u1 (¹®) denote the utility realization of portfolio ¹® in period 1.

Proposition 3.14 Suppose that s is concave and strict monotonically decreasing in the Euclid-
ean distance between acts. Define ~© as

~© = f! 2 © j u1 (¹®) · maxf¹0;¹1gg .
For each " > 0 there exists a ¹u0 such that for any ¹u1 > ¹u0:

P
½
! 2 © j 9¼

µ
arg max

®2f0;1g
¹®

¶
= 1

¾
¸ (1 ¡ ")P

³
~©
´

P

8
<
:! 2 © j

for each ® 2 A 9¼ (®) such that
¼0
¼1

= ¹1¡u1(¹®)
¹0¡u1(¹®)

and
¼ (®) = 0 for ® =2 f0; 1g

9
=
; ¸ (1¡ ")

h
1¡ P

³
~©
´i

,

holds.

A similar result obtains if the second rule (3.4) proposed by Gilboa and Schmeidler (1996) is

applied and the initial aspiration level is selected to exceed the maximal possible realization

of the initially chosen act, or if the aspiration level is updated in an ambitious way in the first

period:

¹u2 =X2 + h.
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As above, denote by

©1 = ©1 (¯; ¹u1;N ;h) =

8
<
:! 2 S1 j

¹u1 = ¹u1 and
¹ut = ¯¹ut¡1 + (1¡ ¯)Xt for t ¸ 2, t =2 N
¹ut = Xt + h for t ¸ 2, t 2 N

9
=
;

the set of decision paths and letP denote the probability measure on©1 consistent with (¦®)®2[0;1].

Proposition 3.15 Suppose that s is concave and strict monotonically decreasing in the Euclid-
ean distance between acts. Assume that either

¹u1 > u
¡
¹®¹±a + (1 ¡ ¹®)¹±b

¢

or 1 2 N . Define ~©1 as
~©1 = f! 2 ©1 j u1 (¹®) · max f¹0;¹1gg .

Then:
P

½
! 2 ©1 j 9¼

µ
arg max

®2f0;1g
¹®

¶
= 1

¾
= P

³
~©1

´

P

8
<
:! 2 ©1 j

for each ® 2 A 9¼ (®) such that
¼0
¼1

= ¹1¡u1(¹®)
¹0¡u1(¹®) and

¼ (®) = 0 for ® =2 f0; 1g

9
=
; = 1 ¡P

³
~©1

´
,

holds.

Two effects combine to prevent efficient learning. First, the concavity and the strict monotonic-

ity of the similarity function and the initially high aspiration level imply that the diversified

portfolio ¹® is abandoned in the second period. As long as the average utility of both undiversi-

fied portfolios lies below the aspiration level, the concavity of the similarity function forces the

investor to overvalue the negative impact on diversified portfolios. Hence, only non-diversified

portfolios are selected after t = 2.

Second, although ¹® is never chosen again, its initial realization inf luences the evolution of the

aspiration level. Especially, if it exceeds the maximal mean of the undiversified portfolios, the

aspiration level converges towards u1 (¹®) and both ® = 0 and ® = 1 seem unsatisfactory in the

limit.

Since the proofs of propositions 3.14 and 3.15 heavily rely on the concavity of the similarity

function, I now explore how results change if the similarity function is convex over some range60.

I make the following assumptions:

Assumption 1: Suppose that s (®;®0) is concave in k® ¡ ®0k for k®¡ ®0k 2
¡
¡1
l ;

1
l

¢
for some

l 2 N, l > 1 and all ®0 2 [0; 1] and s (®;® 0) = 0 outside this interval. Moreover, assume that

s (®;®0) is continuous, so that s
¡
® 0 ¡ 1

l ;®
0¢ = s

¡
®0 + 1

l ;®
0¢ = 0 for all ®0.

60 Note, that a continuous similarity function that has a maximum at s (a; a) = 1 cannot be convex everywhere.
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Assumption 2: Let ®1 = 0 and let the investor choose the act which is next to the act he chose

last, if indifferent:

®t = arg min
®2argmaxUt(a)

½°°°°arg max
®2[0;1]

fUt (®)g ¡ ®t¡1
°°°°
¾

(In other words, suppose he chose ®1 = 0 last and the cumulative utility of ®1 has fallen below

0. Since the similarity between 0 and ® ¸ 1
l is 0, the investor is indifferent among all ® ¸ 1

l

and by the above assumption he should choose ® = 1
l , the act next to 0.)

6

-

................................................................................

6

-

1

1®1 ®2 ®3

.....................................

.....................................

®

®

s(®;®0)

s(®;®0)

.....................................

®0
®0 ¡ 1

l ®0 + 1
l

1

1

0 ®4

.....................................

.....................................

.....................................
Figure 3

Figure 3 illustrates these two assumptions.

Now consider an investor who updates his aspiration level according to (3.4) and satisfies as-

sumptions 1 and 2. Denote the corresponding set of paths by ©7:

©7 =
½
! 2 ©1 j ®1 = 0

®t = arg min®2argmaxUt(a)
©°°argmax®2[0;1] fUt (®)g ¡ ®t¡1

°°ª
¾

.

Proposition 3.16 61Suppose that Assumptions 1 and 2 hold. For all ¹u1 2 R and all ¯ 2 (0; 1),

61 An analogous result, ascertaining that for a sufficiently high initial aspiration level the best of the acts
©
0; 1

l ;
2
l :::1

ª
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on almost all possible paths in ©7 (with respect to a probability distribution on ©7 consistent
with (¦®)®2[0;1]), an investor who updates his aspiration level according to (3.4) will choose the
act

arg max
®

½
¹® j ® 2

½
0;

1
l
;
2
l
:::
l ¡ 1
l

; 1
¾¾

with frequency 1.

The result shows that convexities of the similarity function improve the learning process. Instead

of just learning the better one of the two corner acts 0 and 1, the investor can now learn to

choose the best of the l + 1 acts (including 0 and 1). Therefore, he can do better, the more

intervals l he distinguishes. As l! 1, the intervals on which the similarity function is positive,

shrink to single points and the similarity function approximates the special degenerate case used

by Gilboa and Schmeidler (1996): s (®;®0) = 1, if ® = ®0 and s (®;®0) = 0, else. Note,

however that although the act chosen with frequency 1 converges towards the optimal one, in

the limit, learning becomes impossible, since with an uncountable number of acts, choosing

each act for infinitely many periods becomes impossible. However, choosing l to be sufficiently

large, allows the investor’s limit choice to approximate expected utility maximization with an

arbitrary degree of accuracy.

3.9 Conclusion

I suggest to use the case-based decision theory of Gilboa and Schmeidler (1995, 1996) to model

investors’ behavior in financial markets. This could be reasonable, since the case-based decision

theory generalizes the expected utility theory by von Neumann and Morgenstern (1947) and

Savage (1954), while capturing some of the psychological biases, observed in real financial

markets. Gilboa and Schmeidler (1996) propose sufficient conditions, under which the long run

behavior predicted by the case-based decision theory coincides with the optimal behavior of an

expected utility maximizer. Removing these conditions and assuming constant aspiration level

can lead to a suboptimal limit behavior. A relatively low aspiration level induces a satisficing

behavior, whereas an excessively high aspiration level forces the investor to trade too often.

Similar results are achieved by allowing the decision-maker to update his aspiration level in an

optimistic (towards the best achieved utility realization) or in a pessimistic (towards the worst

achieved utility realization) way.

is chosen with frequency 1 with arbitrarily high probability, can be derived for the decision rule (3.11).
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If the information about the utility realizations of all acts is available to the decision-maker in

each period of time, then he is able to learn to behave optimally in a stationary environment. If,

however, receiving information is restricted to a finite number of periods, optimal behavior can

only be achieved for relatively low aspiration levels. This means that phenomena like failing to

use arbitrage opportunities, to diversify optimally or to choose an efficient portfolio result from

lack of information, rather than from suboptimal behavior. Information, however, cannot help

resolve the problem of excessive trading as long as the number of information periods remains

finite. Nevertheless, the case-based decision theory allows for optimal learning even in the case

of constant aspiration level: there is a range of values of the aspiration level for which the case-

based decision-maker behaves optimally in the long run, choosing the act with the highest mean

utility.

Introducing a similarity function on the set of portfolios does not change the results qualitatively.

Whereas for investors with constant low aspiration level there is a positive probability that they

would hold the initially chosen (and possibly suboptimal) diversified portfolio forever, investors

with relatively high aspiration levels exhibit switching behavior. Especially, with a concave

similarity function a decision-maker with an aspiration level exceeding the mean utility of the

initially chosen portfolio chooses one of the undiversified portfolios from some period on. If

his aspiration level also exceeds the mean utilities of both undiversified portfolios, he chooses

these portfolios with positive frequencies in the limit. Moreover, a concave similarity function

prevents learning the optimal portfolio in the setting of Gilboa and Schmeidler (1996) for a

decision-maker with a concave utility function. By allowing for convexities, the quality of

learning is improved and the limit choice can become arbitrary close to the expected utility

maximizing act.

This is a first attempt to apply the case-based decision theory to model human-behavior in fi-

nancial markets, which leaves a large number of questions open. First, the assumption that the

distributions (¦®)®2A remain constant over the time should be relaxed. This will allow to con-

sider a market consisting of case-based decision-makers whose behavior will make the prices of

the assets correlated over the time. Second, it would be interesting to look at the implications

which the existence of case-based investors in the market may have on other market participants.

These two questions will be discussed in the next chapters of this thesis.
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Appendix

Proof of proposition 3.1:

First it is shown that if all utility realizations are below the aspiration level, all available acts

must be chosen infinitely many times. Since the number of acts is finite, at least one act must

be chosen for an infinite number of periods. Let this be the act ®. Consider an act ~® which

is chosen L times. As all possible realizations lead to a negative ’’net’’-utility, the cumulative

utility of ®will become infinitely low in the limit. At the same time, the cumulative utility of ~®

will not fall below

L
·
min
u2¤~®
u ¡ ¹u1

¸
.

Hence, there is a time T > L, such that for each t > T

Ut (®) < Ut (~®)

and still act ® is chosen. This contradicts the case-based decision theory, which states that in

each period the act with the highest cumulative utility has to be chosen. Therefore, since ~® was

chosen arbitrarily, each act will be chosen infinitely often.

Next, it is stated that the quotient of the cumulative utilities of each two acts converges to 1.

Indeed, let ® and ~® be two distinct acts. Denote by "t (®; ~®) the difference of the cumulative

utilities of ® and ~® at time t:

"t (®; ~®) = Ut (®)¡ Ut (~®)
Hence:,

lim
t!1
Ut (®)
Ut (~®)

= lim
t!1
Ut (~®) + "t (®; ~®)

Ut (~®)
Consider the difference "t (®; ~®). Obviously, this difference remains constant at times at which

neither ®, nor ~® is chosen. Consider, therefore, the case in which ® is chosen. Note that the

minimal difference between the cumulative utilities in a period in which ® is chosen must exceed

0, since else the maximization of cumulative utility would be violated. Moreover, since the least

possible utility realization of ~® is minu2¤~® u¡ ¹u1, it follows that the maximal possible difference

between the cumulative utilities of ® and ~® at a time at which ® is chosen is

¡ min
u2¤~®

u+ ¹u1.

But since the net-utility realizations of ® are always negative, this (maximal) difference is neu-

105



tralized by the choice of ® in at most»
(minu2¤~® u ¡ ¹u1)
(maxu2¤~® u¡ ¹u1)

¼

periods. An analogous argument shows that ~® can also be chosen for only a finite number of

periods in a row. It follows that the difference between the cumulative utilities of arbitrary two

acts is bounded on every possible path ! (since the possible utility realizations are finite) and,

therefore,

lim
t!1
Ut (®)
Ut (~®)

= lim
t!1
Ut (~®) + "t (®; ~®)

Ut (~®)
= 1 (3.12)

holds on each path. Hence, from the definition of cumulative utility it follows that on each path

! 2 ©02:

lim
t!1
Ut (®)
Ut (~®)

= lim
t!1

jCt (®)j
jCt (~®)j

[Xt (®)¡ ¹u1]
[Xt (~®)¡ ¹u1]

= 1 (3.13)

Since (3.13) holds on each path of utility realizations, for any such path it can be written as:

lim
t!1

jCt (®)j
jCt (~®)j

lim
t!1

[Xt (®)¡ ¹u1]
[Xt (~®)¡ ¹u1]

= 1.

According to the Strong Law of Large Numbers it follows that:
¼ (®)
¼ (~®)

= lim
t!1

jCt (®)j
jCt (~®)j

= lim
t!1

[Xt (~®) ¡ ¹u1]
[Xt (®) ¡ ¹u1]

=
[¹~®¡ ¹u1]
[¹®¡ ¹u1]

with probability 1.¥

Proof of proposition 3.2:

If the decision-maker has an infinite time-horizon, then at least one act ® must be chosen infi-

nitely often. Let ® be such an act. Then, according to the Strong Law of Large Numbers, its

cumulative utility satisfies:

P
n
lim
t!1
Ut (®) = ¡1 j lim

t!1
jCt (®)j = 1

o
=

P
½
lim
t!1

jCt (®)j
·
Xt (®)
jCt (®)j

¡ ¹u1
¸
= ¡1 j lim

t!1
jCt (®)j = 1

¾
=

P
n
[¹®¡ ¹u1] lim

t!1
jCt (®)j = ¡1 j lim

t!1
jCt (®)j = 1

o
= 1

In contrast, if an act ~® is chosen a finite number of periods, sayL times, its cumulative utility is

limited from below:

lim
t!1
Ut (~®) ¸ L

·
min
u2¤~®

u¡ ¹u1
¸

.

Hence, on almost every path ! 2 ©002 there exists a period T (!) > L after which the cumulative

utility of ~® will always exceed that of ®. But this means that the decision-maker does not obey

the case-based decision theory, since he does not choose the act with maximal cumulative utility.

Thus, a case-based decision-maker will choose each of the acts in A for an infinite number of
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periods.

Now, consider the difference between the cumulative utilities of arbitrary two acts ® and ~®,

"t (®; ~®). As long as act ® is chosen, this difference represents a random walk on the half line

with negative expected increment. Define ~"t (®; ~®) as

~"t (®; ~®) = "t (®; ~®) if "t (®; ~®) ¸ 0

~"t (®; ~®) = 0, else:

Such a random walk has an accessible atom at 062 . Moreover, each set of the type [0; c] is

regular, see Meyn and Tweedie (1996, p. 278). This means that the state 0 is reached in fi-

nite expected time, starting from each set of the type [0; c] and especially, starting from the set

[0; ¹u1 ¡ minu2¤~® u]. Denote the supremum of these expected times by N and observe that it is

finite according to the definition of regular sets. Note that ¹u1 ¡ minu2¤~® u equals the maximal

possible value of "t (®; ~®) in a period, in which the decision-maker switches from an arbitrary

®0 to ®. Observe as well that since the probability that "t (®; ~®) = 0 is 0 (for atomless distri-

butions of ±a and ±b), it follows that ~"t (®; ~®) = 0 coincides with "t (®; ~®) < 0. Hence, the

decision-maker switches away from ® when ~"t (®; ~®) = 0 is reached63. It follows that the ex-

pected time for which an arbitrary act ® is held in a row is finite and uniformly bounded from

above.

It remains to show that "t (®; ~®) is bounded on almost each path of dividend realizations. At

times at which ® is chosen "t (®; ~®) never falls below 0, since this would contradict choosing the

act with highest cumulative utility in each period. Suppose, therefore that there is a sequence of

periods t0, t00..., such that "t0 (®; ~®), "t00 (®; ~®)... grows to infinity. In other words, suppose that

for each M > 0 there is a k, such that "tn (®; ~®) >M for all n > k. Since Ut (®) has negative

expected increments, it follows (as shown above) that each other act and especially ~® is chosen

infinitely many times on almost each path of dividend realizations. But each time that the act ~®

is chosen, the difference "t (®; ~®) falls below 0. If "tn (®; ~®) >M, the time needed to return to

the origin is at least M
¹u1¡minu2¤® u

, which grows to infinity, as "tn and, hence, M becomes very

large. However, as has been explained above, the expected time for return to the origin 0 of

62 See Meyn and Tweedie (1996, p. 105) for a definition of an accessible atom.
63 Of course, the decision-maker might switch away from ® in an earlier period if for some ®0 6= ~®, " (®; ®0) < 0
obtains. In this case, the expected time during which ® is held is also bounded from above and is obviously less
than N .
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~"t (®; ~®) is finite and uniformly bounded above by N . The Law of Large Numbers then implies

that for each · > 0 on almost each path of dividend realizations there is a period K (!), such

that Pn
i=1 ¿ i
n

· N + ·

for all n ¸ K (!), where ¿ i denotes the time needed for ~"t (®; ~®) to reach the origin, once

® has been chosen. On the other hand, the assumption that "tn (®; ~®) ! 1 implies that the

stopping times ¿ i become infinitely large as the time grows — a contradiction. Hence, almost

each sequence "t0 (®; ~®), "t00 (®; ~®)... (where t0, t00... denote periods at which ® is chosen) is

bounded from above. A symmetric argument for ~® shows that "t (®; ~®) is bounded from below.

It follows that on almost each path ! 2 ©002

lim
t!1
Ut (®)
Ut (~®)

= lim
t!1
Ut (~®) + "t (®; ~®)

Ut (~®)
= 1

holds. The remaining part of the proof is as in proposition 3.1.¥

Proof of proposition 3.3:

In the proof of proposition 3.2, it has been shown that it is impossible that only acts from the set

An ~A are chosen infinitely often. This means that at least one act ® 2 ~Awill be chosen infinitely

often. Suppose to the contrary of the statement of the proposition that there are two acts from
~A, ® and ~®, which are chosen with positive frequency. It is easy to show that this leads to a

contradiction.

Indeed, consider the periods z1®, z2®,...2 N at which the decision-maker switches to act ® and

denote by z1~®, z2~®,...2 N the times, at which the decision-maker switches to act ~®. Then ac-

cording to the case-based decision theory it must be that:

Uz1® (®) ¸ Uz1® (~®) ¸ Uz1~® (®) ¸ Uz2® (~®) ¸ Uz2~® (®) ¸ :::
But these inequalities imply that Ut (®), which is a random walk with positive expected incre-

ment ¹®¡ ¹u1 > 0, crosses each of the infinitely many boundaries Uzk® (~®) from above. Since,

however, there is a positive probability that a random walk with positive expected increment

starting from a given point, never crosses a boundary lying below this point, see Grimmet and

Stirzaker (1994, p. 144), and since the stopping times are independently distributed, it follows

that the probability of infinitely many switches between ® and ~® is 0. Hence, only one of these

two acts can be chosen with positive frequency in the limit.
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Alternatively, suppose that an act ~® from the set An ~A is chosen infinitely often with an act from
~A. Then, with probability 1, the cumulative utility of ®will become infinitely high, whereas the

cumulative utility of ~® will become infinitely low, as the number of periods grows to infinity.

Hence, choosing act ~® infinitely often will contradict the case-based decision theory, as well.¥

Proof of proposition 3.4:

Let ® be the first act chosen, i.e. ®1 = ®. As its cumulative utility Ut (®) remains positive for

all t 2 N, whereas the cumulative utility of all the other acts stays at 0, ®will be the only act

chosen forever.¥

Proof of proposition 3.5:

It will be shown that under this updating rule the aspiration level converges to ¹u.

First, note that all available acts will be chosen infinitely often. Indeed, imagine that only one

act is chosen infinitely often, call it ®. Then either64

P
½

lim
Ct(®)!1

½
max
¿2Ct(®)

u¿
¾

= max
u2¤®
u
¾

= 1

or

¹u1 > max
u2¤®
u > ¹®.

Then, on almost each path ! 2 ©3, there is some finite T (!), such that ¹ut > ¹® holds on ! for

all t > T (!) . But in this case the Strong Law of Large Numbers implies that the cumulative

utility of ®will converge to ¡1 on almost each path. Hence, since ® was chosen arbitrarily, it

follows from proposition 3.2 that all available acts must be chosen infinitely often. Then, the

aspiration level will converge to maxu2¤ uwith probability 1, implying that on almost each path

! 2 ©3, there is a period T 0 (!), such that ¹ut > ¹® holds on ! for all t > T 0 (!) and all ® 2 A .

Now apply the proof of proposition 3.2 to obtain the claim stated in the proposition.¥

Proof of proposition 3.6:

Suppose, contrary to the statement of the proposition, that two acts ® and ~® are chosen with

positive frequencies in the limit. Then either

P
½
lim
t!1

fminutg = min
u2¤®[¤~®

u
¾

= 1

64 Suppose that the aspiration level has already reached some inner point of the support ¢®, say ¹uT . Suppose
that ¦® (¹uT ) = ². Then the probability of the event that ¹uT remains the maximal utility realization experienced as
Ct (®) ! 1 is limCt(®)!1 ²Ct(®) = 0.
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and ¹ut ! min f¤®; ¤~®g on almost each path ! 2 ©4 or

¹u1 < min
u2¤®[¤~®

u < minf¹®;¹~®g .

In both cases, on almost each path ! 2 ©4, there is some finite T (!), such that ¹ut <minf¹®;¹~®g
holds on ! for all t > T (!). From the proof of proposition 3.3, it follows that the investor will

switch only for a finite number of times between ® and ~®. Hence, in the limit, one of the acts ®

and ~® is chosen with frequency 1.¥

Proof of proposition 3.7:

Suppose, to the contrary of what the propositionstates that an act® 2 A is chosen with frequency

one in the limit on some set of paths ©̂5 ½ ©5, assigned a positive probability by P on ©5.

Consider two cases:

1. If ® is the first act to be chosen, then the aspiration level in the limit satisfies

lim
t!1

¹ut = (1¡ ¯) max
u2¤®
u + ¯ min

u2¤®
u

with probability 1 on ©̂5. Since

¯ < maxu2¤® u¡ ¹®
maxu2¤® u ¡ min

®2A
minu2¤® u

for all ® 2 A,

it follows that

¯ < maxu2¤® u ¡ ¹®
maxu2¤® u ¡ minu2¤® u

, or

¹® < (1 ¡ ¯) max
u2¤®

u+ ¯ min
u2¤®

u

Then, on almost each path ! 2 ©̂5, there is some finite T (!), such that ¹ut > ¹® holds

on ! for all t > T (!) . But in this case the Strong Law of Large Numbers implies that

the cumulative utility of ®will converge to ¡1, whereas the cumulative utility of the

unchosen acts remains 0 almost surely on ©̂5. Hence, on ©̂5, the case-based decision rule is

almost surely violated and therefore, P
³
©̂5

´
= 0, a contradiction.

2. If some other acts have been chosen on ! 2 ©̂5 before choosing ®, then it can happen that

minu2¤® u > min
t<T
ut, where T is the first period in which ® is chosen. Note that if min

t<T
ut

is very low, the aspiration level may remain sufficiently low so that act ® really becomes

satisfactory in the limit. Suppose that

min
t<T
ut · min

u2¤®
u,
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and that

max
t<T
ut · max

u2¤®
u,

i.e. the aspiration level at T is sufficiently low and cannot become higher than

(1 ¡ ¯) maxu2¤® u + ¯min
t<T
ut, as long, as only act ® is chosen. However, the assumption

made insures that

¯ < maxu2¤® u ¡ ¹®
maxu2¤® u ¡ min

®2A
minu2¤® u

, or

¹® < (1¡ ¯)max
u2¤®

u + ¯ min
®2A

min
u2¤®

u · (1¡ ¯) max
u2¤®

u+ ¯min
t<T
ut,

which contradicts the assumption that P
³
©̂5

´
> 0, as shown above.

If,

min
t<T
ut · min

u2¤®
u

max
t<T
ut > max

u2¤®
u,

then the condition

¹® < (1¡ ¯)max
u2¤®

u+ ¯ min
®2A

min
u2¤®

u · (1¡ ¯) max
t<T
ut + ¯ min

t<T
ut

contradicts the assumption that P
³
©̂5

´
> 0.

Analogous reasoning shows that for

min
t<T
ut > min

u2¤®
u

max
t<T
ut · max

u2¤®
u,

¹® < (1¡ ¯) max
u2¤®
u + ¯ min

®2A
min
u2¤®

u · (1 ¡ ¯) max
u2¤®

u+ ¯ min
u2¤®

u

and for

min
t<T
ut > min

u2¤®
u

max
t<T
ut > max

u2¤®
u,

¹® < (1 ¡ ¯) max
u2¤®

u+ ¯min
®2A

min
u2¤®

u

< (1 ¡ ¯) max
t<T
ut + ¯ min

u2¤®
u

P
³
©̂5

´
= 0 must hold.

Since® and ©̂5 have been chosen arbitrarily, this shows that no act will be chosen with frequency

one in the limit on a set of paths with positive probability. Since the cumulative utility of an act

becomes infinitely negative, if the act is chosen infinitely many times and stays finite, else, it
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follows that all acts, including

argmax
®2A

½
max
u2¤®

u
¾

and

arg min
®2A

½
min
u2¤®

u
¾

,

have to be chosen infinitely often in the limit. In this case, the limit aspiration level becomes:

lim
t!1

¹ut = (1¡ ¯)max
®2A

max
u2¤®

u+ ¯min
®2A

min
u2¤®

u

and the result of the proposition follows by arguments, similar to the proof of proposition 3.2.

Proof of proposition 3.8:

First, note that the aspiration level plays no role, when evaluating the available acts, since for

each t:

UIt (~®) =
tX

¿=1

[k¿ (~®)¡ ¹ut] =
tX

¿=1

k¿ (~®) ¡ t¹ut

and

UIt (®) =
tX

¿=1

[k¿ (®)¡ ¹ut] =
tX

¿=1

k¿ (®) ¡ t¹ut;

thus

UIt (~®) ¸ UIt (®)

m
tX

¿=1

k¿ (~®) ¸
tX

¿=1

k¿ (®)

Let

®¤ 2 arg max
®2A
¹®

be one of the acts with the maximal mean utility. Consider the difference
tX

¿=1

[k¿ (®¤) ¡ k¿ (®)] .

For an arbitrary act ® with ¹®¤ > ¹®, it is a sequence of independent and identically distributed

random variables with mean ¹®¤¡¹® > 0. Then, according to the StrongLaw of Large Numbers

P

(
lim
t!1

1
t

tX

¿=1

[k¿ (®¤) ¡ k¿ (®)] = ¹®¤ ¡ ¹®
)

= 1,

and thus:

P

(
lim
t!1

tX

¿=1

[k¿ (®¤) ¡ k¿ (®)] = (¹®¤ ¡ ¹®) limt!1 t = 1
)

= 1:
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Hence, on almost each path ! 2 SI1, there exists a T® (!) 2 N such that for each t > T® (!)
tX

¿=1

[k¿ (®¤)¡ k¿ (®)] > 0

holds on this path. Denote by T (!) = max®2A T® (!) so that for each t > T (!), the above

inequality is valid on ! for each ® 2 A with ¹®¤ ¡ ¹® > 0. Thus, after period T (!) the

cumulative utility of act ®¤ will exceed that of all acts with mean utility less than ¹®¤. Hence,

on almost all paths, none of the acts ® =2 arg max®2A ¹® will be chosen after time T (!).¥

Proof of proposition 3.9:

Consider the i.i.d. random variables ut (®1) :::ut (®n). According to the Law of Large Numbers,

for each " > 0 and each · > 0 there exists a number K®, such that

P
½Pt

¿=1 ut (®)
t

2 (¹®¡ ·;¹® + ·)
¾

¸
³
1 ¡ "
n

´
(3.14)

holds for each t ¸ K®. Now set K = max®2A K®. Note that the utility realizations of ®1:::®n
are correlated, because they all depend on ±a and ±b. The exact form of correlation depends

on the correlation between ±a and ±b, which is not specified. Consider therefore the ’’worst’’

possible case, in which the sets of paths of dividend realizations on which (3.14) does not hold

after time K are distinct for all ® 2 A. Hence, the probability that (3.14) does not hold for some

® 2 A is at most ". It follows that with probability of at least (1 ¡ ") (3.14) holds for all ® 2 A.

Now, if · is chosen in such a way that

· <
¹®¤¡¹~®

2
for each ~® with ¹®¤¡¹~® > 0 and

· <
¹®¤¡¹u

2
,

then with probability of at least (1 ¡ ")
UKK (®¤) = K [XK (®¤)¡ ¹u] ¸ K [¹®¤ ¡ ·¡ ¹u] >

> K [¹~®+ · ¡ ¹u] ¸ K [XK (~®) ¡ ¹u] = UKK (~®)

holds for all ~® with ¹®¤¡¹~® > 0 and moreover,

UKt (®¤) > UKt (~®) = UKK (~®) ;

at each t > K. Hence, act ®¤ is chosen in each period after time K with probability of at least

(1¡ ").¥
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Proof of proposition 3.10:

Suppose that after K periods of information acquisition, act ® has the highest cumulative utility

UK (®). It is clear that it cannot be the only act to be chosen forever after period K, since in this

case its cumulative utility would become ¡1 on almost all paths ! , whereas the cumulative

utility of all the other acts would remain finite. Thus, all the acts must be chosen infinitely often

after period K. Since the cumulative utility of each act in period K + 1 is finite (because of

the bounded supports ¤®), it will not have any influence on the limit in (3.12). Therefore, the

conclusions of propositions 3.1 and 3.2 hold.¥

Proof of proposition 3.11:

The proof is easily obtained by combining the results of propositions 3.5 and 3.10.¥

Proof of lemma 3.1

Suppose first that ¹u < ¹¹®. The cumulative utility of ¹®, as long as the investor holds it, is then a

random walk with differences

¹®±a + (1¡ ¹®) ±b ¡ ¹u.

Since the expected value of the difference is ¹¹®¡ ¹u > 0 and the process starts at 0, the expected

time until the first period in which the process reaches 0 is 1. But, as long as Ut (¹®) > 0,

Ut (®) = s (®; ¹®)Ut (¹®) ¸ Ut (¹®), since s (®; ¹®) 2 [0; 1] and, therefore, ¹® is chosen.

Now suppose that ¹u > ¹¹®. Then, the expected increments of U (¹®) are negative. Therefore,

when the process starts at 0, it will cross any finite barrier below 0 in finite time. Let t be the

first period, at which Ut (¹®) < 0. Then Ut (®) = s (®; ¹®)Ut (¹®) < 0. Since s = (®;®0) is

strictly decreasing in the distance between the acts, Ut (®) has a maximum either at 0 or at 1.

Moreover, s (1; ¹®) > s (0; ¹®), iff ¹® > 1
2 and sinceUt (¹®) < 0, the act lest similar to ¹® is chosen.

It follows that

®t+1 =
½

1, if ¹® < 1
2

0, if ¹® > 1
2.

¾
¥

Proof of proposition 3.12

It has already been shown that for ¹¹® ¡ ¹u < 0, the investor switches in finite time to ® = 1 or

to ® = 0. Suppose, without loss of generality that ¹® > 1
2 and, therefore, ® = 0 is chosen at

some time ¹t, such that ¹t = minft j Ut (¹®) < 0g. Two cases are possible: either ¹0 ¡ ¹u < 0 or
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¹0 ¡ ¹u > 0. Define Vt (®) as:

Vt (®) =
X

¿2Ct(®)
[u¿ (®)¡ ¹ut] .

Then at time t > ¹t such that ®¿¡1 = 0 for all ¹t ¡ 1 · ¿ < t, the cumulative utility of an act ®

can be written as:

Ut (®) = V¹t (¹®) s (®; ¹®) + Vt (0)s (®; 0) .

As long as Vt (0) > 0,

Ut (0) = V¹t (¹®) s (0; ¹®) + Vt (0) > V¹t (¹®) s (®; ¹®) + Vt (0)s (®; 0) = Ut (®)

holds for each ® 2 [0; 1], where the inequality stems from the fact that

V¹t (¹®) s (0; ¹®) · V¹t (¹®) s (®; ¹®) · V¹t (¹®) < 0

and

0 · Vt (0) s (®; 0) · Vt (0) .

If¹0¡ ¹u > 0holds, then Vt (0) > 0 holds infinitely long in expectation. If, however, ¹0¡ ¹u < 0,

then

Vt (0) <
V¹t (¹®) (s (1; ¹®) ¡ s (0; ¹®))

1 ¡ s (0; 1) < 0

obtains in finite time. Let now ¹t0 denote

¹t0 = min
½
t j Vt (0) <

V¹t (¹®) (s (1; ¹®) ¡ s (0; ¹®))
1 ¡ s (0; 1)

¾
.

Note that at ¹t0 the cumulative utility of ® = 1 is:

U¹t0 (1) = V¹t (¹®) s (1; ¹®) + V¹t0 (0) s (1; 0) .

Moreover, since now V¹t (¹®) < 0, V¹t0 (0) < 0 and s is concave, it follows that at ¹t0 U¹t0 (®) is

convex for every ® 2 [0; 1]. Therefore, the optimal act is either 1 or 0. Moreover:

U¹t0 (1) = V¹t (¹®)s (1; ¹®) + V¹t0 (0)s (1; 0) > V¹t (¹®)s (0; ¹®) + V¹t0 (0) = U¹t0 (0) ,

so that ®¹t0 = 1 is chosen.

Again, if¹1¡¹u > 0, then ® = 1will beheld infinitely long inexpectation, whereas if¹1¡¹u < 0,

then the cumulative utility of ® = 1 becomes lower than the cumulative utility of® = 0 in finite

time.

To argue by induction, suppose that an act ® is only abandoned in periods ~t such that V~t (®) < 0.

Suppose that this condition holds up to some time t ¡ 1.
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Now consider a period t such that ®t¡1 = 1. At t, the cumulative utility of an act ® is given by:

Ut (®) = Vt (¹®)s (0; ¹®) + Vt (0) s (®; 0) + Vt (1) s (®; 1) .

If Vt (1) < 0, then all three terms are negative and, since the similarity function is concave,

Ut (®) becomes convex and can only have a corner maximum. Hence, ®t 2 f0; 1g. If, on the

other hand, Vt (1) > 0, it follows that

Ut (1) = Vt (¹®) s (1; ¹®) + Vt (0) s (0; 1) + Vt (1) = V¹t00 (¹®)s (1; ¹®) + V¹t00 (0) s (0; 1) + Vt (1)

> V¹t00 (¹®) s (1; ¹®) + V¹t00 (0) s (0; 1) ¸ V¹t00 (¹®) s (1; ¹®) + V¹t00 (0) s (0; 1) + V¹t00 (1)
= U¹t00 (1) ,

where ¹t00 denotes the period in which the investor last switched from an arbitrary act to ® = 1.

The second inequality follows from the fact that either ® = 1 is chosen for the first time at ¹t00

and, hence, V¹t00 = 0, or® = 1 has been abandoned at some time ¹t000 < ¹t00, which could have only

happened for V¹t000 (1) = V¹t00 (1) < 0. Cumulative utility maximization in ¹t00 implies:

U¹t00 (1) ¸ U¹t00 (®)
for each ® 2 [0; 1]. Hence,

Ut (1)¡ Ut (®)

= Vt (¹®) [s (1; ¹®) ¡ s (®; ¹®)] + Vt (0) [s (1; 0)¡ s (®; 0)] + Vt (1) [1 ¡ s (®; 1)]

= V¹t00 (¹®) [s (1; ¹®) ¡ s (®; ¹®)] + V¹t00 (0) [s (1; 0)¡ s (®; 0)] + Vt (1) [1 ¡ s (®; 1)]

> V¹t00 (¹®) [s (1; ¹®) ¡ s (®; ¹®)] + V¹t00 (0) [s (1; 0)¡ s (®; 0)] + V¹t00 (1) [1¡ s (®; 1)]

= U¹t00 (1) ¡ U¹t00 (®) ¸ 0.

Hence, ®t = 1 obtains. It follows that act 1 can only be abandoned in a period such thatVt (1) <

0.

Now consider a period t such that ®t¡1 = 0. The cumulative utility of an act ® is given by:

Ut (®) = Vt (¹®)s (0; ¹®) + Vt (0) s (®; 0) + Vt (1) s (®; 1) .

If Vt (0) < 0, then all three terms are negative and, since the similarity function is concave,

Ut (®) becomes convex and can only have a corner maximum. Hence, ®t 2 f0; 1g. If, on the

other hand, Vt (0) > 0, it follows that

Ut (0) = Vt (¹®) s (0; ¹®) + Vt (0) + Vt (1) s (0; 1) = V¹t00 (¹®)s (0; ¹®) + Vt (0) + V¹t00 (1) s (0; 1)

> V¹t00 (¹®) s (0; ¹®) + V¹t00 (1) s (0; 1) ¸ V¹t00 (¹®) s (0; ¹®) + V¹t00 (1) s (0; 1) + V¹t00 (0)
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= U¹t00 (0) ,

where ¹t00 denotes the period in which the investor last switched from an arbitrary act to ® = 0.

The second inequality follows from the fact that either ® = 0 is chosen for the first time at ¹t00

and, hence, V¹t00 = 0, or® = 0 has been abandoned at some time ¹t000 < ¹t00, which could have only

happened for V¹t000 (1) = V¹t00 (1) < 0. Cumulative utility maximization in ¹t00 implies:

U¹t00 (0) ¸ U¹t00 (®)
for each ® 2 [0; 1]. Hence,

Ut (0)¡ Ut (®)

= Vt (¹®) [s (0; ¹®) ¡ s (®; ¹®)] + Vt (0) [1¡ s (®; 0)] + Vt (1) [s (1; 0) ¡ s (®; 1)]

= V¹t00 (¹®) [s (0; ¹®) ¡ s (®; ¹®)] + V¹t00 (0) [1¡ s (®; 0)] + Vt (1) [s (1; 0) ¡ s (®; 1)]

> V¹t00 (¹®) [s (0; ¹®) ¡ s (®; ¹®)] + V¹t00 (0) [1¡ s (®; 0)] + V¹t00 (1) [s (1; 0)¡ s (®; 1)]

= U¹t00 (0) ¡ U¹t00 (®) ¸ 0.

Therefore, act ® = 0 is abandoned only if Vt (0) < 0 holds. Moreover, the argument shows that

only acts 0 and 1 are chosen after period ¹t in which the initially chosen portfolio is abandoned.

Now, consider the following process:

"¹t (1; 0) = V¹t (¹®)
[s (1; ¹®)¡ s (0; ¹®)]

1 ¡ s
"t+1 (1; 0) = "t + u

¡
±at+1

¢
¡ ¹u, if "t ¸ 0

"t + u
¡
±bt+1

¢
¡ ¹u, if "t < 0 .

(1¡ s) "t (1; 0) represents the difference between the cumulative utilities of the acts a = 1 and

a = 0 after period ¹t. To see this note that

Ut (1) ¡ Ut (0)

= [Vt (1) + sVt (0) + V¹t (¹®) s (1; ¹®)] ¡ [sVt (1) + V¹t00 (0) + V¹t (¹®)s (0; ¹®)] =

= (1 ¡ s) [Vt (1) ¡ Vt (0)] + V¹t (¹®) [s (1; ¹®)¡ s (0; ¹®)]
and

"t (1; 0) = Vt (1)¡ Vt (0) + V¹t (¹®)
[s (1; ¹®) ¡ s (0; ¹®)]

1 ¡ s .

If at least one of the two mean utilities ¹1 and ¹2 exceeds ¹u, then the frequencies ¼0 and ¼1 are

obtained from proposition 3.3.

Suppose now that both ¹1 and ¹2 lie below ¹u. Note that if one of the two acts, say a = 0 were

chosen only for a finite number of times, the cumulative utility of the other act, a = 1, would
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converge almost surely to ¡1, since ¹1¡ ¹u < 0. Let ¹t00 denote the last period in which a = 0 is

chosen (depending on the path of dividend realizations). Then, it would be possible to find a

period t > ¹t00 such that

Vt (1) < V¹t00 (0) + V¹t (¹®)
[s (0; ¹®)¡ s (1; ¹®)]

1 ¡ s
holds and, therefore,

Ut (1) = Vt (1) + sV¹t00 (0) + V¹t (¹®)s (1; ¹®) < sVt (1) + V¹t00 (0) + V¹t (¹®) s (0; ¹®) = Ut (0) .

Hence, the assumption that act 0 is chosen only for a finite number of times contradicts the case-

based decision rule on almost all possible paths of dividend realizations. Analogous reasoning

shows that (because of the assumption ¹2 ¡ ¹u < 0), act a = 1 cannot be chosen for a finite

number of times on a set of paths with a positive probability measure.

As long as act a = 1 is chosen, the difference "t (1; 0) represents a random walk on the half

line with negative expected increment. An argument analogous to the one used in the proof of

proposition 3.2 shows that "t (1; 0) remains bounded on almost all paths in ©6. It follows that

lim
t!1
Ut (1)
Ut (0)

= lim
t!1
Ut (0) + (1 ¡ s) "t (1; 0)

Ut (0)
= 1

with probability 1. Hence,

lim
t!1

[Vt (1) + sVt (0) + V¹t (¹®) s (1; ¹®)]
[Vt (0) + sVt (1) + V¹t (¹®) s (0; ¹®)]

= 1

lim
t!1

h
jCt (1)j

P
¿2Ct(1)

[u¿¡¹u]
jCt(1)j + s jCt (0)j

P
¿2Ct(0)

[u¿¡¹u]
jCt(0)j + V¹t (¹®) s (1; ¹®)

i

h
s jCt (1)j

P
¿2Ct(1)

[u¿¡¹u]
jCt(1)j + jCt (0)j

P
¿2Ct(0)

[u¿¡¹u]
jCt(0)j + V¹t (¹®) s (0; ¹®)

i = 1.

Since jCt (1)j ! 1 and jCt (0)j ! 1 on almost each path, it follows according to the Law of

Large Numbers that

lim
t!1

P
¿2Ct(1) [u¿ ¡ ¹u]

jCt (1)j
= ¹1 ¡ ¹u

lim
t!1

P
¿2Ct(0) [u¿ ¡ ¹u]

jCt (0)j
= ¹0 ¡ ¹u

obtain almost surely in the limit. Hence,

lim
t!1

[jCt (1)j (¹1 ¡ ¹u) + s jCt (0)j (¹0 ¡ ¹u) + V¹t (¹®) s (1; ¹®)]
[s jCt (1)j (¹1 ¡ ¹u) + jCt (0)j (¹0 ¡ ¹u) + V¹t (¹®) s (0; ¹®)]

= 1:

lim
t!1

[jCt (1)j (¹1 ¡ ¹u) + s jCt (0)j (¹0 ¡ ¹u) + V¹t (¹®) s (1; ¹®)]
[s jCt (1)j (¹1 ¡ ¹u) + jCt (0)j (¹0 ¡ ¹u) + V¹t (¹®) s (0; ¹®)]

= lim
t!1

h
jCt(1)j
jCt(0)j (¹1 ¡ ¹u) + s (¹0 ¡ ¹u) + V¹t(¹®)s(1;¹®)

jCt(0)j

i

h
s jCt(1)jjCt(0)j (¹1 ¡ ¹u) + (¹0 ¡ ¹u) + V¹t(¹®)s(0;¹®)

jCt(0)j

i =
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= lim
t!1

jCt(1)j
jCt(0)j (¹1 ¡ ¹u) + s (¹0 ¡ ¹u)

sjCt(1)jjCt(0)j (¹1 ¡ ¹u) + (¹0 ¡ ¹u)
= 1

almost surely holds (since V¹t (¹®) is finite on almost all paths, it does not inf luence the limit

behavior). Therefore, the limit frequencies ¼1 and ¼0 satisfy
¼1
¼0

= lim
t!1

jCt (1)j
jCt (0)j

=
¹0 ¡ ¹u
¹1 ¡ ¹u

.¥

Proof of proposition 3.13

First, I show that a diversified portfolio is never chosen. Indeed, suppose that up to time ¹t, only

undiversified portfolios have been chosen. Then the cumulative utility of any portfolio (®; ®̂) is

given by

U¹t (®; ®̂) = V¹t (a)s ((a) ; (®; ®̂)) + V¹t (â) s ((â) ; (®; ®̂)) + V¹t (b) s ((b) ; (®; ®̂)) .

Note that if an act has been chosen in the past at least once and is not chosen at time (¹t ¡ 1),

then its V¹t must be negative, else it would not have been abandoned for another act. Indeed, if

(®0; ®̂0) 6= (®t¡1; ®̂t¡1) is chosen at time ~t, then

U~t (®; ®̂) · U~t (®0; ®̂0)
for all (®; ®̂) 2 [0; 1]2 must hold at this time. As long as Vt (®; ®̂)¡ V~t (®; ®̂) is positive,

Ut (®; ®̂) · Ut (®0; ®̂0)
still holds for all (®; ®̂) 2 [0; 1]2. The investor can switch to a different act, only if Vt (®; ®̂) ¡
V~t (®; ®̂) < 0holds. Hence, the first switch away from (® 0; ®̂0) occurs at Vt (®0; ®̂0) < 0. When

at time ~t0, (®0; ®̂0) is chosen again, V~t0 (®0; ®̂0) < 0 and, therefore, the next switch away from

(®0; ®̂0) occurs at t such that

Vt (®; ®̂) < Vt (®; ®̂) ¡ V~t0 (®; ®̂) < 0:

Hence, at ¹t, V¹t (®0; ®̂0) · 0 must hold. Therefore, at ¹t, at most one of the corner acts can have a

positive V¹t, namely the one chosen at time (¹t ¡ 1). If V¹t (®t; ®̂t) > 0, then

(®¹t; ®̂¹t) = arg max
(®;®̂)2[0;1]2

U¹t (®; ®̂) = (®¹t¡1; ®̂¹t¡1)

and, therefore, an undiversified act is chosen again. If, on the other hand, V¹t (®t; ®̂t) < 0, then

the functionU¹t (®; ®̂) is a sum of convex functions and has, therefore, a corner optimum. Hence,

again an undiversified act is chosen. It follows that starting with an undiversified portfolio, the

investor never diversifies and, hence,

¼ (®; ®̂) = 0 for all (®; ®̂) =2 fa; â; bg .
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Suppose now that

sab + sâb ¸ 1

holds and assume that the investor has chosen to hold the undiversified portfolio consisting only

of asset b in the first period,

(®1; ®̂1) = b.

Without loss of generality, assume

sab < sâb.

Since ¹b < ¹u,

U¹t (b) = V¹t (b) < 0

obtains almost surely in finite time. Hence, at ¹t, (®; ®̂) = a is chosen, since

U¹t (a) = sabV¹t (b) > sâbV¹t (b) = U¹t (â) > V¹t (b) = U¹t (b) .

As long as a is chosen, the cumulative utility of the portfolios consisting only of b and only of

â is given by:

Ut (b) = V¹t (b) + sabVt (a)

Ut (â) = sâbV¹t (b) ,

since the similarity between â and a is 0. Hence,

Ut (â) > Ut (b)

at each such t and, especially, in the first period ¹t0 such that

U¹t0 (a) < U¹t0 (b) or

U¹t0 (a) < U¹t0 (â)

holds. Clearly, ¹t0 is almost surely finite, since

Ut (a)¡ Ut (b) = (sab ¡ 1) (V¹t (b) ¡ Vt (a))

Ut (a) ¡ Ut (â) = (sab ¡ sâb) V¹t (b) + Vt (a)
and Vt (a) has negative expected increments ¹a ¡ ¹u < 0. Hence, in period ¹t0, act â is chosen.

As long as the investor holds portfolio â, the cumulative utilities of the three undiversified port-

folios satisfy:

Ut (b) = V¹t (b) + sabV¹t0 (a) + sâbVt (â)

Ut (â) = sâbV¹t (b) + Vt (â)

Ut (a) = sabV¹t (b) + V¹t0 (a)
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Note that as long as Vt (â) > 0holds, act â is chosen, since V¹t (b) < 0 and V¹t0 (a) < 0hold.

Once, however, Vt (â) < 0obtains,

sab + sâb ¸ 1

implies that

sabV¹t0 (a) + sâbVt (â) <max fVt (â) ;V¹t0 (a)g .

To see this, assume without loss of generality65 , Vt (â) ¸ V¹t0 (a) and note that

(sab + sâb) Vt (â) + sab [V¹t0 (a)¡ Vt (â)]

< Vt (â) + sab [V¹t0 (a) ¡ Vt (â)] · Vt (â)
holds since both Vt (â) < 0 and V¹t0 (a) · Vt (â) are negative. Hence,

Ut (b) < max fUt (â) ;Ut (a)g
and, therefore, act b is not chosen.

If portfolio a or portfolio â is the first one chosen, then the term V¹t0 (b) = 0 and the above

argument applies as well.

Hence, at period ¹t00 when the next switch occurs, the investor chooses again a. Applying this

argument inductively and noting that in each period of time, Vt (®; ®̂) > 0 can hold for at

most one portfolio at a time implies that b is never chosen again after period ¹t. Hence, its limit

frequency is almost surely 0.

In contrast, a and â must be chosen for an infinite number of periods each by an argument

analogous to that in the proof of proposition 3.12. Moreover, since the similarity between these

two assets is 0 and since the finite V¹t0 (a) does not influence the limit behavior, it follows that the

frequencies with which âand a are chosen aredetermined analogously to the proof of proposition

3.2 and are given by
¼ (a)
¼ (â)

= ¹â ¡ ¹u
¹a ¡ ¹u

.

Suppose now that

sab + sâb < 1

holds. Assume that portfolio b is chosen only for a finite number of times. Denote the last

period in which b is chosen by ¹t. As in the first case, it can be shown that a and â must be chosen

infinitely often almost surely and that the difference of their cumulative utilities is almost surely

65 A symmetric argument holds for Vt (â) · V¹t0 (a).
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bounded above and below. Now consider the difference between the cumulative utilities of b

and â:

Ut (â)¡ Ut (b) = [Vt (â)¡ V¹t (b)] (1¡ sâb)¡ Vt (a) sab =

= [Vt (â)¡ Vt (a)] sab ¡ V¹t (b) (1¡ sâb)
+Vt (â) (1 ¡ sâb ¡ sab) .

Whereas [Vt (â) ¡Vt (a)] has the same limit properties as Ut (â) ¡ Ut (a) and is, therefore,

bounded above and below, V¹t (b) is finite and

Vt (â) ! ¡1
almost surely since â is chosen infinitely often and the expected increments of Vt (â)are nega-

tive, ¹â ¡ ¹u < 0. Combined with

sab + sâb < 1,

this implies that

Ut (â)¡ Ut (b) ! ¡1
almost surely. In the same way, it can be shown that

Ut (a)¡ Ut (b) ! ¡1
But then, on almost each path, it would be possible to find a period ~t, such that

U~t (a) < U~t (b)

U~t (â) < U~t (b)

and still act b is not chosen. This, obviously, contradicts the case-based decision rule. Hence,

act b must be chosen infinitely often on almost all paths.

Assuming that act â is chosen for only a finite number of times with ¹t0 being the last period in

which â is chosen, whereas the other two portfolios are chosen infinitely often, would imply

Ut (â) ¡Ut (b) = [V¹t0 (â)¡ Vt (b)] (1¡ sâb)¡ Vt (a) sab =

= [Vt (b)¡ Vt (a)] sab + V¹t0 (â) (1¡ sâb)

¡Vt (b) (1 ¡ sâb + sab) .

Hence,

Ut (â)¡ Ut (b) ! 1;
which is in contradiction with the case-based decision rule. The same argument applies to the

case when act a is chosen for a finite number of times, whereas acts b and a are chosen infinitely
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often.

Now suppose that two acts are chosen for a finite number of periods each. Obviously, these

cannot be acts b and â, since then

Ut (a) ! ¡1,

whereas Ut (â) remains finite, implying a contradiction to the case-based decision rule. In the

same way, it cannot be the acts b and a. Hence, suppose that a and â are chosen for a finite

number of times each. Then

Ut (â) ¡ Ut (b) = [Vt (â) ¡ Vt (b)] (1 ¡ sâb)¡ Vt (a) sab
and since Vt (â) and Vt (a) are finite, whereas V (b)has negative expected increments, it follows

that

Ut (â)¡ Ut (b) ! 1
and still act b is always chosen after some period ¹t00, which again contradicts the case-based

decision rule. Hence, each of the three acts must be chosen for an infinite number of times on

almost each path.

Now write the differences between the cumulative utilities as:

"t (a; â) = Vt (a) ¡ Vt (â) + Vt (b) [sab ¡ sâb]
"t (b; â) = (1 ¡ sâb) [Vt (b)¡ Vt (â)] + sabVt (a)

"t (a; b) = (1 ¡ sab) [Vt (a) ¡ Vt (b)] + sâbVt (â) .

At time t, at which the investor switches from â to a,

0 · "t (a; â) · ¹u ¡ u (± â)
holds. From t on, "t (a; â) behaves as a random walk on the half line with negative expected

increments, as long as a is chosen. Hence, the expected time until its return to 0 is almost surely

finite and uniformly bounded above for all initial values on the interval [0; ¹u ¡u (± â)]. In the

same way, if the investor switches from â to b,

0 · "t (b; â) · (1¡ sâb) [¹u¡ u (±â)]
and "t (b; â) behaves as a random walk on the half line with negative expected increments, as

long as b is chosen. Hence, the expected time until its return to 0 is almost surely finite and

uniformly bounded above for initial values on the interval

[0; (1 ¡ sâb) [¹u¡ u (±â)]] .
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Analogous arguments apply for the other two portfolios b and a. Hence, the argument of the

proof of proposition 3.2 can be used to show that the differences "t are bounded above and

below almost surely. It follows that

lim
t!1
Ut (a)
Ut (b)

= 1 (3.15)

lim
t!1
Ut (â)
Ut (b)

= 1

lim
t!1
Ut (a)
Ut (â)

= 1

holds on almost each path.

Because of jCt (®; ®̂)j ! 1 on almost all paths for all (®; ®̂) 2 fâ; a; bg, it follows that

lim
t!1

P
¿2Ct(®;®̂) [u¿ (®; ®̂) ¡ ¹u]

jCt (®; ®̂)j
= ¹®;®̂ ¡ ¹u

holds with probability 1 for all non-diversified portfolios. Hence, (3.15) can be rewritten as

lim
t!1

jCt (a)j (¹a ¡ ¹u) + sab jCt (b)j (¹b ¡ ¹u)
sab jCt (a)j (¹a ¡ ¹u) + jCt (b)j (¹b ¡ ¹u) + sâb jCt (â)j (¹â ¡ ¹u)

= 1

lim
t!1

jCt (â)j (¹â ¡ ¹u) + sâb jCt (b)j (¹b ¡ ¹u)
sab jCt (a)j (¹a ¡ ¹u) + jCt (b)j (¹b ¡ ¹u) + sâb jCt (â)j (¹â ¡ ¹u)

= 1

lim
t!1

jCt (a)j (¹a ¡ ¹u) + sab jCt (b)j (¹b ¡ ¹u)
sâb jCt (b)j (¹b ¡ ¹u) + jCt (â)j (¹â ¡ ¹u)

= 1.

Since ¼(®;®̂)
¼(®0 ;®̂0) = limt!1

jCt(®;®̂)j
jCt(®0 ;®̂0)j by definition, it follows that
¼ (a) (¹a ¡ ¹u) + sab¼ (b) (¹b ¡ ¹u)

sab¼ (a) (¹a ¡ ¹u) + ¼ (b) (¹b ¡ ¹u) + sâb¼ (â) (¹â ¡ ¹u)
= 1

¼ (â) (¹â ¡ ¹u) + sâb¼ (b) (¹b ¡ ¹u)
sab¼ (a) (¹a ¡ ¹u) + ¼ (b) (¹b ¡ ¹u) + sâb¼ (â) (¹â ¡ ¹u)

= 1

¼ (a) (¹a ¡ ¹u) + sab¼ (b) (¹b ¡ ¹u)
sâb¼ (b) (¹b ¡ ¹u) + ¼ (â) (¹â ¡ ¹u)

= 1.

After simplifying and solving for ¼(b)¼(a) ,
¼(b)
¼(â) and ¼(a)¼(â) , the relationships stated in the proposition

obtains.¥

Proof of proposition 3.14

First note that the similarity between 0 and 1 can be normalized to 0 without loss of generality,

see Gilboa and Schmeidler (1997 (a)). To see this perform the following linear transformation

of the similarity function:

s0 (®;®0) =
s (®;®0) ¡ s (0; 1)

max®;®02[0;1] fs (®;®0) ¡ s (0; 1)g .

It is clear that the new similarity function s0 takes on only non-negative values between 0 and 1
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and ascribes a similarity of 0 to the pair (0; 1).

Since Ut (®) ¸ Ut (®0), iff
tX

¿=1

s (®;®00) [u¿ (®00) ¡ ¹ut] ¸
tX

¿=1

s (®0;®00) [u¿ (®00)¡ ¹ut]

it follows that a linear transformation of the similarity function does not change the preferences

of an investor. Hence, using s0 instead of s does not influence the behavior of the investor.

Hence, it is assumed that

s (0; 1) = 0

holds.

I first show that if the aspiration level is updated according to (3.3), only non-diversified port-

folios are chosen from period t = 2 on. Indeed, in period t = 2

U2 (¹®) = V2 (¹®) = u1 (¹®) ¡ ¯¹u1 ¡ (1 ¡ ¯) u1 (¹®) = ¯ [u1 (¹®)¡ ¹u1]< 0

according to the assumption made. Hence, ¹u2 > X2 (¹®). Moreover, (3.3) implies ¹ut ¸ X2 (¹®)

as long as ¹® is not chosen again. To see this, note that the aspiration level is updated towards

Xt ¸ X2 (¹®) = u1 (¹®). Hence, starting with ¹u2 > X2 (¹®), the aspiration level remains above

X2 (¹®) as long as ¹® is not chosen again. Therefore, Vt (¹®) · 0 as long as ®¿ 6= ¹® for all

t > ¿ > 2.

In period t = 2, the cumulative utility of an arbitrary act ® is given by:

U2 (®) = V2 (¹®) s (®; ¹®) < 0,

and since s (®; ¹®) is strictly decreasing,

arg max
®2[0;1]

U2 (®) 2 f0; 1g .

Assume without loss of generality that ®2 = 0, hence that

min
®2[0;1]

s (®; ¹®) = 0

As long as ®¿ = 0 is chosen for all t > ¿ ¸ 2

Ut (®) = s (®; ¹®) Vt (¹®) + s (®; 0) Vt (0)

holds. If Vt (0) > 0, ® = 0 is chosen, since

Ut (®) = s (®; ¹®) Vt (¹®) + s (®; 0) Vt (0) ·
· s (0; ¹®) Vt (¹®) + Vt (0) = Ut (0) .
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If Vt (0) < 0 obtains, the function

Ut (®) = s (®; ¹®) Vt (¹®) + s (®; 0) Vt (0)

becomes convex (since now Vt (¹®) < 0 and Vt (0) < 0 hold and s is concave). Therefore,

arg max
®2[0;1]

Ut (®) 2 f0; 1g :

Suppose that ® = 1 is chosen at some time ¹t0. As long as ®¿ 6= ¹® for all t > ¿ ¸ ¹t0,

Ut (®) = s (®; ¹®) Vt (¹®) + s (®; 0) Vt (0) + s (®; 1)Vt (1) .

V¹t0 (0) < 0, is implied by the usage of the case-based decision rule at ¹t0. Applying the same

argument as above, Vt (0) < 0 as long as ® = 0 is not chosen again.

IfVt (1) · 0 holds at t, the cumulative utility functionbecomes convex and obtains its maximum

at 0 or 1.

Consider, therefore, the case Vt (1) > 0. Since Vt (1) ¸ 0 > maxfVt (¹®) ;Vt (0)g, it follows

thatXt =Xt (1). Denote by ~t the last period between ¹t0 and the current period t at which V (1)

was non-positive and still ® = 1was selected:

~t = max f¹t0; ¿ < t j V¿ (1) · 0, ®¿ = 1, V¿+1 (1) > 0g :
Since V~t (1) · 0, it follows thatX~t (1) ¡ ¹u~t · 0 holds. On the other hand, since V~t+1 (1) > 0,

X~t+1 (1)¡ ¹u~t+1 > 0 >max fX~t+1 (0) ¡ ¹u~t+1;X~t+1 (¹®) ¡ ¹u~t+1g .

Hence, X~t+1 =X~t+1 (1) and, therefore,

¹u~t+1 = ¯¹u~t + (1 ¡ ¯)X~t+1 (1) .

SinceX~t+1 (1)¡ ¹u~t+1 > 0,

¹u~t+1 > ¹u~t
follows.

At time ~t+ 2, V~t+2 (1) > 0 holds and, therefore, again X~t+2 =X~t+2 (1) > ¹u~t+2 and

¹u~t+2 = ¯¹u~t+1 + (1¡ ¯)X~t+2 (1) .

Hence,

¹u~t+2 > ¹u~t+1
obtains. Reasoning inductively, we obtain that ¹ut > ¹u~t.

At time t, the cumulative utility of act ® = 1 is given by

Ut (1) = s (1; ¹®) Vt (¹®) + Vt (1) .
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Hence, ® = 1 is chosen if

s (1; ¹®)Vt (¹®) + Vt (1) ¸ s (®; ¹®) Vt (¹®) + s (®; 0)Vt (0) + s (®; 1) Vt (1) (3.16)

holds for all ® 2 [0; 1]. Rewrite (3.16) as

Vt (1) (1 ¡ s (®; 1)) ¡ s (®; 0) Vt (0) + [s (1; ¹®)¡ s (®; ¹®)]Vt (¹®) ¸ 0

Vt (1) (1 ¡ s (®; 1)) ¡ s (®; 0) (¹t0 ¡ 2) [X~t (0)¡ ¹u~t] + [s (1; ¹®)¡ s (®; ¹®)] [u1 (¹®)¡ ¹u~t]

+ [¹ut ¡ ¹u~t] [s (®; 0) (¹t0 ¡ 2)¡ s (1; ¹®) + s (®; ¹®)] ¸ 0.

Consider the function s (®; 0) (¹t0 ¡ 2) + s (®; ¹®) and note that since s (¢; ¢) is concave, it has a

minimum at 0 or at 1. For ® = 1,

s (®; 0) (¹t0 ¡ 2) + s (®; ¹®) = s (1; ¹®) ,

whereas for ® = 0,

(¹t0 ¡ 2) + s (0; ¹®) > 1 + s (0; ¹®) > s (1; ¹®) .

It follows that:

min
®2[0;1]

[¹ut ¡ ¹u~t] [s (®; 0) (¹t0 ¡ 2)¡ s (1; ¹®) + s (®; ¹®)] = 0.

Therefore,

Ut (1) ¡ Ut (®) ¸ Vt (1) (1 ¡ s (1;®))¡ s (®; 0) V~t (0) + [s (1; ¹®)¡ s (®; ¹®)]V~t (¹®)

> V~t (1) (1 ¡ s (®; 1))¡ s (®; 0) V~t (0) + [s (1; ¹®)¡ s (®; ¹®)]V~t (¹®)
= U~t (1) ¡ U~t (®) ¸ 0

for each ® 2 [0; 1], since at time ~t, V~t (1) · 0 holds and ®~t = 1. Hence, ®t = 1 is chosen.

Analogously, if ®t¡1 = 0 and Vt (0) < 0, the optimum is a corner solution, whereas if Vt (0) ¸
0holds, the difference between the cumulative utilities of 0 and arbitrary act ® becomes:

Ut (0) ¡ Ut (®) = Vt (0) (1¡ s (®; 0)) ¡ s (®; 1) Vt (1) + [s (0; ¹®) ¡ s (®; ¹®)]Vt (¹®) ¸ 0,

since Vt (0) (1 ¡ s (®; 0)) ¸ 0, Vt (1) < 0, Vt (¹®) < 0 and s (0; ¹®) ¡ s (®; ¹®) < 0 for all

® 2 [0; 1] holds. Hence, for Vt (0) ¸ 0, 0 is the optimal choice.

Reasoning by induction shows that

P f! 2 © j ®t 2 f0; 1g for each t > 1g = 1.

Given an " > 0define ¹C1 and ¹C0 to be the number of observations of utility realizations of

portfolios ® = 0 and ® = 1, respectively, such that the average utilities of both portfolios are
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sufficiently close to their mean utilities with probability (1¡ ")
1
2 . Especially, for ¹0 6= ¹166 , let

» =
max f¹0;¹1g ¡ minff¹0;¹1;u1 (¹®)gnmaxf¹0;¹1gg

3
and

P

(¯̄
¯̄
¯
1
C1

C1X

l=1

ul (1) ¡ ¹1

¯̄
¯̄
¯ · »

)
¸ (1¡ ")12

P

(¯̄
¯̄
¯
1
C0

C0X

l=1

ul (0) ¡ ¹0
¯̄
¯̄
¯ · »

)
¸ (1¡ ")

1
2

for any C1 ¸ ¹C1 and any C0 ¸ ¹C0 and denote by C the maximum of ¹C1 and ¹C0. Let T0 = 4C

and set the initial aspiration level ¹u1 so that:

¹u1 ¸ ¹u0 = minfu (±a) ;u (±b)g+ 2
µ
1
¯

¶T0 ¡
max

©
u

¡¹±a
¢
;u

¡¹±b
¢ª

¡ minfu (±a) ;u (±b)g
¢

.

Claims 7.1, 7.2. and 7.3 in Gilboa and Schmeidler (2001 (a), pp. 164-166) can then be used to

establish that after T0 periods, both acts a = 1 and a = 0 will be chosen at least C times each.

It follows that with probability of at least (1¡ ") the average utilities of both portfolios 0 and

1 are »-close to their mean utilities67. Let B denote the set of paths on which this is satisfied,

P fBg ¸ (1 ¡ "). Obviously, the events B and ~© are independent.

If the initial realization of ¹® does not exceed max f¹1;¹0g, then claims 7.4-7.7 in Gilboa and

Schmeidler (2001 (a), pp. 166-171) can be used to show that the better of the two acts 0 and 1

is chosen with frequency 1 on the set B, hence

P
½
! 2 © j 9¼

µ
arg max

®2f0;1g
¹®

¶
= 1

¾
¸ (1¡ ")P

³
~©
´

.

If, however u1 (¹®) > max f¹1;¹0g, then the aspiration level ¹ut converges almost surely to

u1 (¹®) on the set B. Hence, on almost each path in B, there is a period T such that

¹ut > max f¹1;¹0g + »

for each t > T . It follows that both acts a = 0 and a = 1 are chosen infinitely often on each

such path. An argument similar to the one applied in the proof of proposition 3.2 shows that

¼ (0) and ¼ (1) satisfy
¼ (0)
¼ (1)

= ¹1 ¡ u1 (¹®)
¹0 ¡ u1 (¹®)

66 For ¹0 = ¹1, the proof is trivial.
67 Although it is not assumed that the variables ±a and ±b are independent in a single period of time, they are
independent accross time. Since the two sequences ul (1) and um (0) observed by the decision maker have entries
only for distinct time periods (l 6= m), it follows that the two events (the average utility of 1 being »-close to ¹1
and the average utility of 0 being »-close to ¹0) are independent.
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on B \ ©n~©. As has been shown above, all other acts are chosen with frequency 0. Since

P
³
B \ ©n~©

´
¸ (1¡ ")

h
1 ¡ P

³
~©
´i

,

the result of the proposition obtains.¥

Proof of proposition 3.15

At t = 2, either

U2 (¹®) = V2 (¹®) = u1 (¹®) ¡ ¯¹u1 ¡ (1 ¡ ¯) u1 (¹®) = ¯ [u1 (¹®)¡ ¹u1]< 0

or

U2 (¹®) = V2 (¹®) = u1 (¹®)¡X2 ¡ h = ¡h < 0

holds. Hence, ¹u2 > X2 (¹®). Moreover, analogous to the proof of proposition 3.14, it can be

shown that (3.4) implies ¹ut ¸ X2 (¹®) as long as ¹® is not chosen again. To see this, note that

the aspiration level is updated towards Xt ¸ X2 (¹®) = u1 (¹®) and is increased by h in some

periods. Hence, starting with ¹u2 > X2 (¹®), the aspiration level remains aboveX2 (¹®) as long as

¹® is not chosen again. Therefore, Vt (¹®) · 0 as long as ®¿ 6= ¹® for all t > ¿ ¸ 2.

At t = 2

U2 (®) = V2 (¹®) s (®; ¹®) < 0,

and since s (®; ¹®) is strictly decreasing,

arg max
®2[0;1]

U2 (®) 2 f0; 1g :

Assume, without loss of generality that ®2 = 0, hence that

min
®2[0;1]

s (®; ¹®) = 0

As long as ®¿ = 0 is chosen for all t > ¿ ¸ 2

Ut (®) = s (®; ¹®) Vt (¹®) + s (®; 0) Vt (0)

holds. If Vt (0) > 0, ® = 0 is chosen, since:

Ut (®) = s (®; ¹®) Vt (¹®) + s (®; 0) Vt (0) ·

· s (0; ¹®) Vt (¹®) + Vt (0) = Ut (0) .

If Vt (0) < 0 obtains, the function

Ut (®) = s (®; ¹®) V¹t (¹®) + s (®; 0) Vt (0)
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becomes convex (since now Vt (¹®) < 0 and Vt (0) < 0 hold and s is concave). Therefore,

arg max
®2[0;1]

Ut (®) 2 f0; 1g :

Suppose that ® = 1 is chosen at some time ¹t0. As long as ®¿ 6= ¹® for all t > ¿ ¸ ¹t0,

Ut (®) = s (®; ¹®) Vt (¹®) + s (®; 0) Vt (0) + s (®; 1)Vt (1) .

V¹t0 (0) < 0, is implied by the usage of the case-based decision rule at ¹t0. Applying the same

argument as above, Vt (0) < 0 as long as ® = 0 is not chosen again.

If Vt (1) · 0 holds at t, the cumulative utility function becomes convex and obtains it maximum

at 0 or 1.

Consider, therefore, the case Vt (1) > 0. Since Vt (1) > 0 > maxfVt (¹®) ;Vt (0)g, it follows

that Xt =Xt (1). Hence, ¹ut ¸ ¹u~t must hold, where

~t = max f¹t0; ¿ < t j V¿ (1) · 0, ®¿ = 1, V¿+1 (1) > 0g :
by the argument stated in the proof of proposition 3.14. Note that the argument applies for the

updating rule (3.4) as well, since the definition of ~t implies that

~t+ 1; :::¹t0 =2 N .

To see this note that if t 2 N , then Vt (®t¡1) < 0 must hold and, hence, t =2
©~t+1; :::¹t0

ª
.

At time t, the cumulative utility of act ® = 1 is given by

Ut (1) = s (1; ¹®) Vt (¹®) + Vt (1) .

Hence, ® = 1 is chosen if

s (1; ¹®)Vt (¹®) + Vt (1) ¸ s (®; ¹®) Vt (¹®) + s (®; 0)Vt (0) + s (®; 1) Vt (1) (3.17)

holds for all ® 2 [0; 1]. Rewrite (3.17) as

Vt (1) (1 ¡ s (®; 1)) ¡ s (®; 0) Vt (0) + [s (1; ¹®)¡ s (®; ¹®)]Vt (¹®) ¸ 0

Vt (1) (1 ¡ s (®; 1)) ¡ s (®; 0) (¹t0 ¡ 2) [X~t (0)¡ ¹u~t] + [s (1; ¹®)¡ s (®; ¹®)] [u1 (¹®)¡ ¹u~t]

+ [¹ut ¡ ¹u~t] [s (®; 0) (¹t0 ¡ 2)¡ s (1; ¹®) + s (®; ¹®)] ¸ 0.

Consider the function s (®; 0) (¹t0 ¡ 2) + s (®; ¹®) and note that since s is concave, it has a mini-

mum at 0 or at 1. For ® = 1,

s (®; 0) (¹t0 ¡ 2) + s (®; ¹®) = s (1; ¹®) ,

whereas for ® = 0,

(¹t0 ¡ 2) + s (0; ¹®) > 1 + s (0; ¹®) > s (1; ¹®) .
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It follows that:

min
®2[0;1]

[¹ut ¡ ¹u~t] [s (®; 0) (¹t0 ¡ 2)¡ s (1; ¹®) + s (®; ¹®)] = 0.

Hence,

Ut (1)¡ Ut (®) ¸ Vt (1) (1¡ s (®; 1)) ¡ s (®; 0) V~t (0) + [s (1; ¹®) ¡ s (®; ¹®)]V~t (¹®)

> V~t (1) (1¡ s (®; 1)) ¡ s (®; 0)Vt (0) + [s (1; ¹®) ¡ s (®; ¹®)]Vt (¹®)

= U~t (1)¡ U~t (®) ¸ 0

for each ® 2 [0; 1], since at time ~t, V~t (1) · 0 holds. Hence, ®t = 1 is chosen.

Analogously, if 0 is chosen at some time and Vt (0) < 0, the optimum is a corner solution,

whereas if Vt (0) ¸ 0holds, the difference between the cumulative utilities of 0 and an arbitrary

act ® becomes:

Vt (0) (1¡ s (®; 0)) ¡ s (®; 1)Vt (1) + [s (0; ¹®) ¡ s (®; ¹®)]Vt (¹®) ¸ 0,

since Vt (0) (1 ¡ s (®; 0)) > 0, Vt (1) < 0, Vt (¹®) < 0 and s (0; ¹®) ¡ s (®; ¹®) < 0 for all

® 2 [0; 1] holds. Hence, for Vt (0) ¸ 0, 0 is the optimal choice.

Reasoning by induction shows that

P f! 2 ©1 j ®t 2 f0; 1g for each t > 1g = 1.

Suppose that both ® = 0 and ® = 1 are chosen infinitely often. Then claim 7.8 of Gilboa and

Schmeidler (2001, p. 172-173) shows that for almost each ! 2 S2,

lim
t!1

(¹ut ¡Xt) = 0

and

lim
t!1
Xt (®) ¡ ¹= 0

for each ®chosen infinitely often. Therefore, if X¹t (¹®) = u1 (¹®) · max f¹0;¹1g, then there is

a period T (depending on the path !) such that for all but a sparse set of periods after T

j¹ut ¡ max f¹0;¹1gj < ³
for any initially chosen ³ on ! 2 ~©1. According to claim 7.9 in Gilboa and Schmeidler (2001, p.

173), acts 0 and 1 are indeed chosen in an infinite number of periods. Therefore, Xt (0) ! ¹0
and Xt (1) ! ¹1. Claims 7.4-7.7 in Gilboa and Schmeidler (2001, p. 166-170) then show that

on paths ! such that

lim
t!1

(¹ut ¡Xt) = 0,
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¼
µ
arg max

®2[0;1]
¹®

¶
= 1

almost surely obtains.

If, however, u1 (¹®) > max f¹0;¹1g, then ¹ut ! u1 (¹®). Hence, there is a period T (depending

on the path !) such that

j¹ut ¡ u1 (¹®)j < ³
for each t > T on ! 2 ©1n~©1 except on a sparse set of periods for an arbitrary chosen ³. Again,

claim 7.9 of Gilboa and Schmeidler (2001, p. 173) assures that each the acts 0 and 1 are chosen

an infinite number of times in the limit. But since now

lim
t!1

¹ut = u1 (¹®) >max f¹0;¹1g ,

¼ (0) > 0 and ¼ (1) > 0 obtain. ¼ (0) and ¼ (1) satisfy
¼ (0)
¼ (1)

= ¹1 ¡ u1 (¹®)
¹0 ¡ u1 (¹®)

,

as shown in Gilboa and Pazgal (2001).¥

Proof of proposition 3.16

Since ®1 = 0 and the aspiration level is raised by h in some periods,

U¹t (0) = V¹t (0) < 0

for some finite ¹t > 0. Since s (0;®) > 0 only for ® 2
¡
0; 1l

¢
, it follows that

U¹t (®) = 0 > U¹t (®0) for all ® ¸ 1
l

and ®0 <
1
l
.

Therefore, ®¹t+1 = 1
l is chosen by assumption 2. Note that

Ut (0) = Vt (0) < 0

for all t ¸ ¹t, such that ®¿ 6= 0 for all ¹t · ¿ < t by the argument in the proof of proposition 3.14.

Since

Ut̂

µ
1
l

¶
< 0

obtains for a finite t̂ > ¹t,

Ut̂ (®) = 0 > Ut̂ (®
0) for all ® ¸ 2

l
and ®0 <

2
l
.

Hence ®t̂+1 = 2
l , etc.

Once each of the acts
©
0; 1l ;

2
l :::
l¡1
l ; 1

ª
has been chosen at least once,

Ut (®) =
lX

i=0

Vt
µ
i
l

¶
s
µ
®;
i
l

¶
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= Vt
µ
k
l

¶
s
µ
®; k
l

¶
+ Vt

µ
k ¡ 1
l

¶
s
µ
®; k ¡ 1

l

¶
,

for ® 2
£
k¡1
l ; kl

¤
, since s (®;®0) > 0 only for ®0 = k

l and ®0 = k¡1
l out of

©
0; 1l ;

2
l :::
l¡1
l ; 1

ª
.

By an argument analogous to the one used in the proof of proposition 3.15, Vt
¡
k
l

¢
¸ 0 can hold

only for one k 2 f0; :::lg. If

Vt
µ
k
l

¶
> 0,

then ®t = ®t¡1 = k
l , since

Vt
µ
k
l

¶
> Vt

µ
k
l

¶
s
µ
®;
k
l

¶
+ Vt

µ
k ¡ 1
l

¶
s
µ
®;
k ¡ 1
l

¶

for all ® 2
£
k¡1
l ; kl

¤
and

Vt
µ
k
l

¶
> 0 ¸ Vt

µ
k0

l

¶
s
µ
®;
k0

l

¶
+ Vt

µ
k0 ¡ 1
l

¶
s
µ
®;
k0 ¡ 1
l

¶

for all k0 6= k and all ® 2 [0; 1] hold. If

max
½
Vt

µ
k
l

¶
;Vt

µ
k ¡ 1
l

¶¾
< 0,

then Ut (®) is convex, because s (®; ¢) is concave. Hence,

arg max
®2[ k¡1

l ; kl ]
Ut (®) 2

½
k
l
;
k ¡ 1
l

¾

and

arg max
®2[0;1]

Ut (®) 2
½
0;

1
l
; :::
k
l
; :::1

¾
for every t.

Therefore,

lim
t!1

¹ut = max
®

½
¹® j ® 2

½
0; 1
l
; 2
l
::: l¡ 1
l

; 1
¾¾

obtains almost surely, see claims 7.4 – 7.7 in Gilboa and Schmeidler (2001, p. 166-170). Hence,

only

arg max
®2f0; 1l ; 2l :::1g

¹®

is satisficing in the limit and

¼

Ã
arg max

®2f0;1l ;2l :::1g
¹®

!
= 1

almost surely obtains on ©7, as shown in claim 7.8 and 7.9 in Gilboa and Schmeidler (2001, p.

172-174).¥
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Chapter 4. On the Definition and Ex-
istence of an Equilibrium in an OLG Econ-
omy with Case-Based Decisions

In the last chapter, the individual portfolio choice problem with case-based decisions was con-

sidered. It was found that investors acting in accordance with the case-based decision theory in

general violate the predictions of the expected utility theory by holding undiversified portfolios,

trading too much and not using arbitrage possibilities present in the market. However, these re-

sults were achieved by assuming that asset prices (and therefore returns) are exogenously given

and identically distributed over time. In this chapter, this assumption is dropped and an asset

market populated by case-based decision-makers is constructed.

The construction of a market populated by case-based decision-makers makes necessary the

discussion of somemethodological issues first, the aim being to define a notion of an equilibrium

for a market populated by case-based investors and to guarantee that such an equilibrium exists,

hence that the definition is meaningful.

The case-based decision theory has been applied in multiple settings, as for instance, in the con-

sumer theory, Gilboa and Pazgal (2001), theory of voting, Aragones (1997), production theory,

Jahnke, Chwolka and Simons (2001), social learning Blonski (1999), cooperation in games Paz-

gal (1997) and portfolio choice, see chapter 3 of this thesis. Still, up to now the applications of

the case-based decision theory have been restricted to individual decisions, neglecting equilib-

rium considerations. Especially in financial markets, the assumption of an exogenously given

and stable price process is very difficult to defend, both on an empirical and theoretical level.

In a financial market populated with case-based decision-makers, past prices inf luence the port-

folio choices and, therefore, future prices. Investigating the price process of such an economy

might help us gain new insights about the way financial markets function when (some of) the

investors make decisions based on their own or on other investors’ experience. That is why a

notion of an equilibrium of an economy populatedwith case-based decision-makers is necessary.

I make a first attempt to formulate such an equilibrium for a financial market with an exoge-
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nously fixed asset supply. Whereas the dividend payments of the assets are exogenously given,

their prices are determined endogenously according to a market clearing condition. I consider an

overlapping-generations economy in order to capture the insight that decision-makers who live

only for one period are not able to learn much about the structure of the economy as a whole. It

is only natural that in an overlapping generations economy, the knowledge about the profitabil-

ity of assets is based on the experience of past generations. In the model suggested below, the

investors are distributed on a continuum and differ only with respect to their aspiration levels. I,

therefore, assume that each investor learns from his predecessors with the same aspiration level

as his own. This provides an intuitive interpretation of a memory of a decision-maker in this

context as experience of previous generations.

At the same time, the assumption about learning from previous generations makes the evaluation

of an asset by the young investors (which is based on the consumption possibilities it bears for the

old) implicitly dependent on its current price. This dependence determines the demand function

for assets on an individual and on aggregate level. It is possible to show that an equilibrium

point exists under quite general conditions on the utility function of the investors and the initial

asset holdings in t = 1.

Since the old investors consume the returns of the asset, a higher price of an asset implies a

higher utility realization observedby the oldconsumers and, therefore, a higher evaluationby the

young investors. Hence, the demand for assets is in general increasing for relatively low prices

and decreasing for high prices. Moreover, the demand for an asset of an individual investor may

be very insensitive to price changes at low prices. If this feature is also present at the aggregate

level, it is not possible to exclude equilibria with 0-asset prices. However, conditions can be

identified for which degenerate equilibria cannot occur, or for which at least one non-degenerate

equilibrium exists.

Since the evaluation of an asset by a young investor depends on its current price, price-dependent

preferences emerge in the model. This kind of preferences is first introduced into the economic

literature by Veblen (1899) for ’’snob’’ goods, whose demand increases in price. A different inter-

pretation of such preferences is given by Pollak (1977) and Martin (1986), who argue that price

dependent preferences might be a sensible assumption in cases in which the quality of a prod-

uct is not public knowledge, but only known to some of the consumers. Martin (1986) suggests
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to speak of price dependent expectations, instead. In this case, prices convey information about

the quality of the product. Samuelson (1966) notes that price-dependent preferences are natural

in monetary economies, in which the demand for money should depend on the price level. In the

context of financial markets, price-dependent preferences are introduced into a portfolio choice

problem by Allingham and Morishima (1973). They derive comparative statics results for the

inf luence of a price change on the optimal portfolio.

Equilibrium results for economies with price dependent preferences are derived by Arrow and

Hahn (1971, p. 129-131) for the caseof finitenumber of consumers and by Greenberg, Shitowitz

and Wieczorek (1979) for an economy with a continuum of consumers. The main assumption,

which insures the existence (apart from the standard assumptions of Debreu (1959)) is the con-

tinuity of the utility function with respect to consumption and prices. The main features of such

economies do not differ substantially from those of standard Arrow-Debreu economies, see Bal-

asko (2003 (a)).

Financial economies with temporary equilibria, in which beliefs of investors depend on prices

naturally exhibit price-dependent preferences. Grandmont (1982, p. 892) derives necessary con-

ditions for the existence of a temporary equilibrium. In an economy with heterogenous agents,

existence requires that their beliefs about future prices are not too different. Whereas Grand-

mont imposes an expected utility representation of preferences, Balasko (2003 (b)) constructs a

temporary equilibrium with arbitrary preferences. He shows that a temporary equilibrium in his

economy is equivalent to an equilibrium with price-dependent preferences in an Arrow-Debreu

economy and shows existence. Nevertheless, he also has to impose a certain agreement on prob-

abilities. Especially, in the case of von Neumann Morgenstern expected utility representation,

the beliefs of each investor should assign positive probability to each state of nature, Balasko

(2003 (b), p. 3). Page and Wooders (1999) derive existence results in financial markets with

price-dependent preferences by imposing non-arbitrage conditions. Their assumptions on ex-

pectations are similar to those made by Grandmont (1982) and Balasko (2003 (b)).

The fact that all of the cited models are constructed in the Arrow-Debreu setting with assets

representing vectors of state-contingent outcomes, as well as the restrictions imposed on the

beliefs of consumers over the states of nature does not allow the direct application of these

results to an economy populated by case-based decision-makers, even once the (implicit) price-
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dependence of preferences is demonstrated. Since beliefs and state-contingent outcomes are

not well defined in such a model, different factors, such as the aspiration level of the investors

and their memory play an important role for the existence of an equilibrium. Nevertheless, it is

possible to draw a parallel between the findings in the literature and the existence result derived

here.

The rest of the chapter is organized as follows: section 1 presents the model of an overlapping-

generations economy populatedby case-based decision-makers. Section2 describes the decision-

making process, whereas section 3 derives the individual demand for assets. In section 4, it is

shown that the Walras’ Law holds for the economy. Section 5 gives a definition of a temporary

equilibrium. In section 6, the existence of an equilibrium is shown under quite general condi-

tions. Section 7 provides an example of an economy with two assets, one of which is in fixed

supply, the other one — in perfectly elastic supply. The conditions for existence of an equilib-

rium are then discussed for this example. Section 8 analyzes conditions under which equilibria

with 0-prices can be excluded. A discussion of the results is provided in section 9. Section 10

concludes.

4.1 The Economy

I consider an economy evolving in discrete time and consisting of a continuum of investors

uniformly distributed on the interval [0;n]. For each i 2 [0;n] and some constant ¹u0 2 R denote

by ¹ui = ¹u0+ i the aspiration level of investor i. Hence, the mapping from investors to aspiration

levels is one-to-one and one can identify the continuum of investors with the continuum of

aspiration levels [¹u0; ¹un]. The aspiration level of the investors is then also uniformly distributed

on [¹u0; ¹un].

Each investor lives for two periods. The preferences of the investors are assumed to be such

that they wish to consume only in the second period of their life. The preferences about the

consumption in the second period are represented by a utility function u (¢), which is identical

for all consumers and independent of their aspiration level. I assume, as usual that u is strictly

increasing and continuous in consumption in period two.

There is one consumption good in the economy. The initial endowment of the investors consists
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of one unit of the consumption good in the first period and is 0 in the second period.

There areK assets in the economy, which allow to transfer consumption over time. The supply

of the risky asset k 2 f1:::Kg is fixed at Ak > 0. The payoff of one unit of the asset k in period

t is a random variable ±kt , which is identically and independently distributed in every period on

a closed and bounded set. min
©
±k

ª
¸ 0 for all k is assumed.

4.2 Investment Decision of the Young Investors

The decision situation is described as a problem68 to be solved, by choosing an act out of a given

set. In the present context the problem can be formulated as: ’’Choose a portfolio of assets today

to enable consumption tomorrow’’.

The decision of a young investor now consists in choosing a portfolio of k assets — 1:::K.

For simplicity, I consider only the case, in which there are only k portfolios available for a

single investor: he can invest his whole initial endowment in one asset only. Short sales are

prohibited69. Denote by ®it¡1 the act, chosen by a young investor with an aspiration level ¹ui in

period t ¡ 1. Then the values of ®i —

A = f1:::Kg
represent the set of acts available to the investors, when solving the problem formulated above.

The portfolio, chosen in period (t¡ 1) is held until t, when the old investors sell the risky asset

they own to the young investors and consume the dividends of the asset and the revenues from

the asset sales. Normalizing the price of the consumption good to 1, the indirect utility70 from

68 I assume here implicitly that the price vector does not characterize the decision problem. This assumption is
dropped in section 6 of chapter 5, where a problem is identified with the price vector in the economy.

69 Since the investors in the economy are infinitesimally small, it is plausible, that short sales are impossible for a
single investor, because of high transaction costs and legal requirements. The assumption of no diversification can
be justified partially by the results of the previous chapter, which show that among the investors with a concave
similarity functions, only those with relatively low aspiration levels will be willing to hold diversified portfolios
infinitely long. This assumption will be dropped in section 6 of the chapter 5, in which similarity considerations
in a market environment will be discussed.

70 I.e. conditioned on the alternative chosen at (t ¡ 1).
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consumption of an old investor in period t can be written, as71:

vt
¡
®it¡1

¢
= u

³
pkt
pkt¡1

+ ±kt
pkt¡1

´
, if ®it¡1 = k ,

where pkt denotes the price of asset k at time t. In terms of the case-based decision theory

vt
¡
®it¡1

¢
denotes the utility realization of act ®it¡1.

In the spirit of the case-based decision theory, I assume that the decision-makers have almost no

information about the problem they are facing. They do not know the structure of the economy,

nor the process of price formation. They have no information about possible prices and returns

of the assets and their distribution. Their information consists of the problem formulation, the

set of possible acts and their memory. Hence, they can only learn from experience of subjects,

who have lived before them.

The memory is a vector of cases72:

(®¿¡1; v¿ (®¿¡1))

of previous choices and achieved utilities. I assume that the memory of a young investor i at

time t consists only of the (m +1) last cases, realized by investors from previous generations

with the same aspiration level73 i:

M it =
¡¡
®it¡1; vt

¡
®it¡1

¢¢
; :::

¡
®it¡m¡1; vt¡m

¡
®it¡m¡1

¢¢¢

Hence,m 2 f0; 1:::t¡ 1g parameterizes the length of the memory (which is assumed to be equal

for all investors). If m = t ¡ 1, the young investors remember all past cases from t = 0on, if

m = 0, the memory contains only the last case.

Note that since the memory of each investor at time t contains the last case
¡
®it¡1; vt

¡
®it¡1

¢¢
, it

in general depends on the price vector pt.

Based on his memory at time t, the young investor i constructs the cumulative utility of each of

71 If an investor has chosen k at t ¡ 1, he holds 1
pk

t¡1
units of the risky asset in period t, from the sale of which he

receives pk
t

pk
t¡1

. Since the dividends are distributed proportionally to the number of assets held, the investor receives
1

pk
t¡1

of the dividend ±k
t paid per unit.

72 Since the problem formulated here is considered to remain unchanged in each period, a case consists only of an
act chosen and utility obtained.

73 This means that the investors do not observe all past choices and realizations, but only those of a given cohort
of their predecessors. One possibility to relax this assumption is by introducing social learning, the possibility to
learn from investors with different characteristics, as in Blonski (1999) and Krause (2003).

140



the acts:

U it (k) =
X

¿2Cit(k)

£
v¿ (k) ¡ ¹ui

¤
,

where

Cit (k) =
©
t¡m¡ 1 · ¿ < t j ®i¿ = k

ª

denotes the set of cases in the memory of investor i in which act k has been chosen. The sum

over an empty set is assumed to be 0. Note that the cumulative utility of the same act in general

differs among the investors, depending on the memory they have (past cases observed by them),

but also on their aspiration level.

After determining the cumulative utilities of all acts, the decision-maker compares them and

chooses the act with the highest cumulative utility, i.e.:

®it = arg max
k2f1:::Kg

©
U it (k)

ª
.

Note that the case-based decision theory does not require the knowledge of past prices and div-

idend payments74. The decision of an investor is only influenced by past cases and not directly

by prices or by the probability distribution of returns. The influence of past and current prices

is only indirect, through the observed utility realizations vt (¢). Nevertheless, it is obvious that

current prices influence the choice of an investor through his evaluation of an act and not only

through the budget constraint. Hence, price-dependent preferences emerge.

4.3 Individual Demand for Assets

Before proceeding to define a temporary equilibrium, I analyze the individual behavior in this

economy. Consider a young investor i in period twhose memory is given byM it . Suppose, first

that the old investor i holds asset k in period t. This means that the cumulative utility of k for

the young investor i can be written as:

U it (k) =
X

¿2Cit¡1(k)

£
v¿ (k) ¡ ¹ui

¤
+ u

µ
pkt
pkt¡1

+ ±kt
pkt¡1

¶
¡ ¹ui,

74 Although the cumulative utility of act k can be written as:

U i
t (k) =

X

¿2Ci
t¡1(k)

£
v¿ (k) ¡ ¹ui¤ + u

Ã
pk

t

pk
t¡1

+
±k

t

pk
t¡1

!
¡ ¹ui,

the investor need not know pk
t¡1, pk

t and ±k
t . It is sufficient for him to know the values of u

³
pk

t
pk

t¡1
+ ±k

t
pk

t¡1

´
and

v¿ (k) in order to make a decision.
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whereas the cumulative utility of an asset ~k 6= k is:

U it
³
~k
´
=

X

¿2Cit¡1(~k)

h
v¿

³
~k
´

¡ ¹ui
i

.

Note that only the cumulative utility of the asset chosen by the direct predecessor of the young

investor i depends on the price vector at t, whereas the cumulative utilities of the other acts are

independent of current prices. Therefore, it is possible to identify a subset of acts K 0 ½ A,

which have the highest cumulative utility among the acts not chosen by the investor i at time

(t¡ 1):

K0 =

8
>>>><
>>>>:
arg max8

<
:

~k 2 1:::K
~k 6= k

9
=
;

U it
³
~k
´

9
>>>>=
>>>>;

. (4.18)

It is then obvious that the young investor will either choose asset k or some of the assets k0 2 K 0.

Take one such k0. Suppose that there exists a price of asset k, pk¤t (i) ¸ 0 such that75

U it (k)
¡
pk¤t (i)

¢
=

X

¿2Cit¡1(k)

£
v¿ (k) ¡ ¹ui

¤
+ u

µ
pk¤t (i)
pkt¡1

+
±kt
pkt¡1

¶
¡ ¹ui = U it (k0) . (4.19)

Then three cases are possible:

1. If pkt > pk¤t (i), then investor i chooses asset k (®it = k).

2. If pkt < pk¤t (i), then investor i chooses one of the assets k0 2 K0 (®it 2 K 0).

3. If pkt = pk¤t (i), then investor i is indifferent between holding k and some of the assets of

the setK 0 (®it 2 K 0 [ fkg).

Therefore, the demand for k of investor i at time t is given by the correspondence:

xit (k) =

8
><
>:

0, if 0 · pkt < pk¤t (i)n
1

pk¤t (i) ; 0
o

, if pkt = pk¤t (i)
1
pkt

, if pkt > pk¤t (i)

9
>=
>;

. (4.20)

Of course, it is possible that no such price pk¤t (i) ¸ 0 exists. This is the case if
X

¿2Cit¡1(k)

£
v¿ (k)¡ ¹ui

¤
+ u

µ
±kt
pkt¡1

¶
¡ ¹ui > U it (k

0)

75 If pk¤
t (i) exists, then it will be unique, since u (¢) and, thus, U i

t (k) are strictly increasing in pk
t , whereas U i

t (k 0)
is a constant.
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for the given realization of ±kt and for each k0 2 K 0. Then

U it (k) > U
i
t (k

0)

for each pkt ¸ 0 and all k0 2 K0, hence ®it = k.

In this case, the demand of i for k is a function of pkt and is given by:

xit (k) =
½ 1
pkt

for all pkt > 0
1 for pkt = 0

¾
. (4.21)

The demand xit (k) for asset k of an investor whose predecessor holds k at time t is illustrated in

figures 4 and 5 for the two cases described above.

The opposite case, in which k0 is the act chosen for any price, cannot occur if the utility function

u (¢) and the range of possible prices pkt are unbounded above. If, however, (as it will be shown

to be in an equilibrium), pkt is bounded above, say by ¹pk, and if pk¤t (i) > ¹pk, i.e.:
X

¿2Cit¡1(k)

£
v¿ (k) ¡ ¹ui

¤
+ u

µ
¹pk

pkt¡1
+
±kt
pkt¡1

¶
¡ ¹ui < U it (k

0)

for k0 2 K 0, then ®it 2 K0 for each price pkt 2
£
0; ¹pk

¤
and the demand for k is 0.

Few comments are in place. First, note that the demand of an investor for an asset depends

only on the relative prices. Increasing all prices by a certain factor ¸ (including, of course, the

price of the consumption good in every period) leaves the consumption of the old investors and,

therefore, the portfolio choice of the young investors unchanged. Furthermore, the proportion

of the endowment which an investor whose predecessor holds k invests in k is 0 if pkt is suffi-

ciently low and jumps to 1, once pkt exceeds the critical level pk¤t (i). Hence, the proportion of

the endowment invested in k is monotonically increasing in the price of k. It is, therefore, only

possible to induce the investor to substitute k by k0 by reducing the price of k and not by in-

creasing it. If the investor is ready to hold k, even at pkt = 0, or if he is not ready to buy k even

if the price rises to ¹pk, then his portfolio choice is absolutely insensitive to price changes. At

the same time, the investment decision of an investor, whose predecessor holds k, is indepen-

dent of the prices of the other assets
¡
p1t :::pk¡1t ; pk+1:::pKt

¢
. Hence, no substitution effects can

be induced by changing these prices. Therefore, the investment decision of case-based investors

is relatively insensitive to price changes. The absence of substitution effects will subsequently

turn out to be the reason for the existence of equilibria with 0-asset prices.
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Figure 4

4.4 Walras’ Law for an Economy with Case-Based
Decision-Makers

It is possible to show that the Walras’ Law holds for the economy populated by case-based

decision-makers. In order to guarantee its validity it is, however, necessary to specify the prop-

erty rights on assets which are not traded in some period and have an equilibrium price of 0,

because else positive dividend payments might get lost for the economy as a whole. Suppose

that an old investor i holds asset k in period t and the equilibrium price of this asset satisfies

pkt = 0. Since the old investor i will not live at (t+ 1) and will not be able to sell the asset (since

at a price of 0 the demand for the asset must be 0 in an equilibrium), I assume that the young

consumer i (with the same aspiration level as the old one who owns k) inherits the asset from

him. The inheritance does not influence the budget constraint of the young consumer and, there-
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-
pkt

xit(k)
Demand for k of a single investor i if pk¤t (i) does not exist

Figure 5

fore, he chooses an act from the setK0 defined above. Since the investor has received the asset

by chance and not by an explicit choice, I assume for simplicity of exposition that the returns of

the inheritance are considered to be irrelevant for the computation of the cumulative utilities in

the next period. It is not difficult to show that the characteristics of the value of demand func-

tion dt (pt), which is defined and analyzed in section 6 remain unchanged and the existence of

an equilibrium is still guaranteed, if these returns are also taken into account.

To prove the validity of the Walras’ Law, write the budget constraints of the individual in the

economy as follows:
KX

k=1

xit (k) pkt · 1, for the young investors (4.22)
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with xit (k) > 0, iff ®it = k, and
KX

k=1

¡
xit¡1 (k) + g

i
t¡1 (k)

¢ ¡
pkt + ±

k
t
¢

¸ cit, for the old investors (4.23)

where cit denotes the consumption derived by the old investor i at time t and git¡1 (k) denotes

the inherited number of shares of asset k at (t¡ 1)76. Both (4.22) and (4.23) hold with equality,

since the whole initial endowment of the young consumers is invested and because of the strict

monotonicity of u (¢).

Now integrate the budget constraints over the continuum of investors and note that the assump-

tion that all assets which are not demanded at (t¡ 1) are inherited implies that:
nZ

i=0

Ã
KX

k=1

¡
xit¡1 (k) + g

i
t¡1 (k)

¢
pkt

!
di =

KX

k=1

Akpkt .

Combining this with (4.22) and (4.23), one obtains:
nZ

i=0

KX

k=1

xit (k)pkt di + ct = n +
KX

k=1

Ak
¡
pkt + ±

k
t
¢

, (4.24)

where ct =
nR
i=0
citdi denotes the consumption of the old investors at time t. Since the l.h.s. of

(4.24) represents the value of the demand, whereas the r.h.s. is the value of supply (including

the dividend payments), it follows that the value of the excess demand is 0 for all possible price

vectors pt =
¡
p1t :::pKt

¢
¸ 0.

Note, however that for some investors non-satiation might be violated at a price of 0. Especially,

xit (k)
¡
pkt = 0

¢
= 0 might obtain as has been shown in the derivation of the individual demand

for assets. If this holds for all i 2 [0;n], then the aggregate supply of k exceeds the aggregate

demand for k at the price pkt = 0. Hence, asset k is not desirable, see Varian (1992, p. 318).

Therefore, its equilibrium price would be 0.

4.5 Definition of a Temporary Equilibrium

Having described the individual decision-making process in the economy, the notion of a market

equilibrium at time t is now introduced. The property which allows to find a price vector pt =¡
p1t :::pKt

¢
such that the markets are equilibrated is, of course, the (indirect) dependence ofU it (k)

on pkt for all investors i, whose predecessors have chosen k in t¡ 1. This property makes the
76 Of course, xi

t¡1 (k) > 0, iff ®i
t¡1 = k and gi

t¡1 (k) > 0, iff pk
t = 0;... pk

t¡h = 0; pk
t¡h¡1 6= 0 and ®i

t¡h¡1 = k
for some h > 1 must hold.
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demand of the young investors at least partially dependent on the price vector pt, so that an

equilibrium exists under quite general conditions. However, the fact that the demand function

is not always sufficiently elastic with respect to prices leads to equilibria in which some of the

assets are not demanded and their price is 0.

A temporary equilibrium at time t is defined by:

² portfolio choices of the young investors — ®it 2 A for each i 2 [0;n];

² utility of consumption obtained by the old investors — vt
¡
®it¡1

¢
for each i 2 [0;n];

² a price vector — pt =
¡
p1t :::pKt

¢

such that following conditions are fulfilled:

1. Case-based decision-making of the young consumers:

®it 2 arg max
k2f1:::Kg

©
U it (k)

ª

for all i 2 [0;n] at the equilibrium price vector pt.

2. Indirect utility of the old consumers, derived from ®it¡1

vt
¡
®it¡1

¢
=

n
u

³
pkt
pkt¡1

+ ±kt
pkt¡1

´
, if ®it¡1 = k

o

for all i 2 [0;n] at the equilibrium price vector pt.

3. The excess demand in each of the markets is 0 or negative. If the excess demand in one of

the markets is strictly negative, then the price in the market is 0.

Ak =
Z n

i=1
xit (k) di, if pkt 6= 0 (4.25)

Z n

i=1
xit (k) di = 0 < Ak, if pkt = 0

for all k 2 f1:::Kg and

n =
KX

k=1

µ
pkt

Z n

i=1
xit (k) di

¶
. (4.26)

Remark 4.1 (4.25) can be formulated as:

Akpkt =
Z

fi:®it=kg
di =: dkt for 8k 2 f1:::Kg

where dkt denotes the mass of the young investors, who choose to hold k in period t. In other
words, dkt represents the value of demand for k at time t, whenever

R n
i=1x

i
t (k) di 6= 1at pkt = 0.
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Note, however, that pkt = 0 cannot be an equilibrium price if
R n
i=1 x

i
t (k) di = 1 at 0, since

then the excess demand is positive. Therefore, for the purpose of showing the existence of an
equilibrium it is enough to analyze the characteristics of the value of demand dkt and show that
it crosses the value of supply at least once.

Remark 4.2 Since the price of the consumption good is normalized to 1, (4.26) represents the
clearing condition for the market for the consumption good. Note that n represents the initial
supply of consumption good (apart from dividend payments). It is obtained by noting that (4.22)
holds with equality and integrating the budget constraint (4.22) with respect to i. According to
remark (4.25), (4.26) can be rewritten as:

KX

k=1

dkt = n.

4.6 Existence of a Temporary Equilibrium

It can be shown that under mild conditions on the utility function and the initial holdings of the

old consumers in t = 1, an equilibrium exists.

Following assumptions are made:

(A1) The utility function u (¢) is strictly increasing and continuous.

(A2) At t = 1, the population of the old investors can be partitioned into a finite number of intervals

such that all investors of the same interval hold the same asset.

(A3) Suppose that at some time t, an interval of investors with identical memories is indifferent be-

tween two or more acts. Then the interval is partitioned into a finite number of subintervals such

that the investors of the same interval choose the same act.

Note that (A3) is not in contradiction to the assumptions of the case-based decision theory, but

just specifies how decisions are made in case of indifference.

The idea of the proof is relatively simple. First, it can be shown (proposition 4.1) that condition

(A2) imposed on the initial holdings of the old investors at t = 1 also holds in all subsequent

periods, as long as (A1) and (A3)are fulfilled. This allows to partition the young investors in

each period into intervals such that all young investors in the same interval have identical mem-

ories. This structure allows to integrate the individual demand for assets on one such interval

of young investors with identical memories to obtain the aggregate demand of the interval. Fur-

ther, remark (4.25) states that it is not necessary to analyze the demand correspondence, but only
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the value of demand correspondence dt =
¡
d1t :::dKt

¢
. The properties of the utility function, as

well as the interval structure described above imply that the value of demand for assets dt is an

upper hemicontinuous, non-empty, convex-valued correspondence, which maps the convex and

closed set ·
0;
n
A1

¸
£ :::£

·
0;
n
AK

¸

into [0;n]K for all possible memories (corollaries 4.1, 4.2, 4.3, 4.4, proposition 4.4). The value

of supply st =
¡
A1p1t :::AKpKt

¢
is a continuous function of the price vector, which also maps·

0;
n
A1

¸
£ :::

·
0;
n
AK

¸

into [0;n]K. A common point of dt and st is an equilibrium at time t. With the help of Kakutani’s

fixed point theorem, it is shown that such a common point exists.

The following proposition follows from (A1), (A2) and (A3) and will be proved in the course

of the discussion.

Proposition 4.1 Assume (A1), (A2) and (A3). Then, for each t ¸ 1, the population of the old
investors can be partitioned into a finite number of intervals such that all the investors of the
same interval hold the same asset.

First, note that if in period t = 1 the initial asset holdings satisfy (A2), then in the next period the

population will again be (sub)divided into such intervals. Indeed, consider an interval
£
¹uj; ¹ul

¤ ½
[¹u0; ¹un] such that ®i0 = k for all i with ¹ui 2

£
¹uj; ¹ul

¤
. Fix a price77 pk0 > 0. Then in period t = 1,

all individuals in this interval have the same memory and asses the cumulative utility of k as:

U i1 (k) = u
µ
pk1
pk0

+
±k1
pk0

¶
¡ ¹ui for all ¹ui 2

£
¹uj; ¹ul

¤
.

Since u (¢) is continuous and increasing in pk1, it follows that three cases are possible78 :

1. Let p̂k1 be such that79:

u
µ
p̂k1
pk0

+
±1
pk0

¶
¡ ¹ul = 0,

If pk1 > p̂k1 holds, all investors in this interval choose k:

u
µ
pk1
pk0

+
±k1
pk0

¶
¡ ¹ui > 0 for all ¹ui 2

£
¹uj; ¹ul

¤

77 If pk
0 = 0 was an equilibrium price in t = 0, then the demand for k must have been 0 in t = 0, hence none of

the old investors considers the returns of k to be relevant for his decision in t = 1.
78 Note that since the memory of the investors is empty at t = 0, the cumulative utilities of the assets other than
k are 0.

79 Of course, p̂k
1 depends on the interval

£
¹uj ; ¹ul ¤. I neglect this dependence in the notation for convenience.
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i.e. ®i1 = k for all i 2 [j; l].

2. Let ·pk1 be such that80:

u
µ
·pk1
pk0

+
±k1
pk0

¶
¡ ¹uj = 0.

If pk1 < ·pk1 holds, none of the investors chooses k:

u
µ
pk1
pk0

+
±k1
pk0

¶
¡ ¹ui < 0 for all ¹ui 2

£
¹uj; ¹ul

¤
,

i.e. ®i1 2 K0 = f1:::Kg nfkg for all i 2 [j; l].

3. If pk1 2
£
·pk1; p̂k1

¤
, then there is an aspiration level ¹u¤ 2

£
¹uj; ¹ul

¤
,

¹u¤ = u
µ
pk1
pk0

+
±1
pk0

¶

such that the investors with an aspiration level higher than ¹u¤ choose an asset from the set

K 0, whereas those with a lower aspiration level continue to choose k:

®i1 2 K0, if ¹ui > ¹u¤

®i1 = k, if ¹ui < ¹u¤.

Of course, which of these cases will occur (or which are relevant), depends on the range of

possible prices, as well as on the range of aspiration levels in the interval considered (e.g. if

¹ul is relatively low, all investors may want to hold k, even for pk1 = 0, hence ®i1 = k obtains

independently of the price). Nevertheless, (A3) implies that the interval
£
¹uj; ¹ul

¤
, consisting of

investors with identical memories, is divided into at most two K intervals, which also consist

of investors with identical past choices and identical memory.

A similar argument holds also for any period t, by induction. Let pkt¡1 > 0. Consider an interval

of investors
£
¹ub; ¹uc

¤
with identical memory, such that®it¡1 = k for all i in this interval. Consider

the acts different from k. Note that the cumulative utility for investor i of each such act is given

by:

U it (k0) =
X

¿2Cit¡1(k0)
v¿ (k0) ¡

¯̄
C it¡1 (k0)

¯̄
¹ui,

or is 0, (if
¯̄
C it¡1 (k0)

¯̄
= 0) and is thus linear and continuous in ¹ui. Therefore, the investors,

for whom k0 is in the setK 0 of the assets with highest cumulative utility build a sub-interval of
£
¹ub; ¹uc

¤
. Consider one such (open) subinterval

¡
¹uj; ¹ul

¢
µ

£
¹ub; ¹uc

¤
of investors with identical sets

K0. jK 0j> 1 can occur in two cases only: first, ifK0 consists only of acts k0, with
¯̄
Cit¡1 (k0)

¯̄
=

80 Of course, ·pk
1 depends on the interval

£
¹uj ; ¹ul ¤. I neglect this dependence in the notation for convenience.
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0, second, if
X

¿2Cit¡1(k0)
v¿ (k0) =

X

¿2Cit¡1(k
00)

v¿ (k00)

and
¯̄
C it¡1 (k

0)
¯̄
=

¯̄
C it¡1 (k

00)
¯̄

for all k0 and k00 in K 0. In the second case, obviously
¡
¹uj; ¹ul

¢
´

¡
¹ub; ¹uc

¢
81. The analysis of

the first case is analogous to the analysis for t = 1, discussed above. As for the second case,

(A3) insures that showing the result of proposition 1 for the case jK0j = 1 will allow to extend

it to the case jK0j > 1, as well. The different cases for an arbitrary period t and jK 0j = 1 are

summarized in the following propositions 4.2 and 4.3:

Proposition 4.2 Consider an interval of investors with aspiration levels
£
¹uj; ¹ul

¤
½ [¹u0; ¹un]

with identical memories and identical sets K0 such thatK 0 = fk0g. Let ®it¡1 = k and suppose
that ¡¯̄

C it¡1 (k)
¯̄
+ 1

¢
¡

¯̄
Cit¡1 (k

0)
¯̄
6= 0

holds for all i 2 [j; l]. Define p̂kt by:

p̂kt = min

8
>><
>>:

pkt 2 R+
0 j P
¿2Cit¡1(k)

v¿ (k) + u
³
pkt
pkt¡1

+ ±kt
pkt¡1

´
¡

¡¯̄
C it¡1 (k)

¯̄
+ 1

¢
¹ui

¸ P
¿2Cit¡1(k0)

v¿ (k0) ¡ ¹ui
¯̄
C it¡1 (k0)

¯̄
for every ¹ui 2

£
¹uj; ¹ul

¤

9
>>=
>>;

and ·pkt by:

·pkt = max

8
>><
>>:

pkt 2 R+
0 j P
¿2Cit¡1(k)

v¿ (k) + u
³
pkt
pkt¡1

+ ±kt
pkt¡1

´
¡

¡¯̄
Cit¡1 (k)

¯̄
+ 1

¢
¹ui

· P
¿2Cit¡1(k

0)
v¿ (k0)¡ ¹ui

¯̄
Cit¡1 (k0)

¯̄
for every ¹ui 2

£
¹uj; ¹ul

¤

9
>>=
>>;

if a maximum exists and set ·pkt = 0, else. Then the individual choices of the young investors in
this interval are given by:

² ®it = k0 for all i 2 [j; l] if pkt · ·pkt ;

² ®it = k for all i 2 [j ; l] if pkt ¸ p̂kt ;

² if p̂kt > 0 and pkt 2
£
·pkt ; p̂kt

¤
, then there exists a critical aspiration level ¹u¤ 2

£
¹uj; ¹ul

¤
such

that

¹u¤ =

P
¿2Cit¡1(k)

v¿ (k) + u
³
pkt
pkt¡1

+ ±kt
pkt¡1

´
¡ P
¿2Cit¡1(k0)

v¿ (k0)

¡¯̄
Cit¡1 (k)

¯̄
+1

¢
¡

¯̄
C it¡1 (k0)

¯̄ (4.27)

81 Of course, jK 0j > 1 can occur for a single investor, even if these two conditions are not satisfied. Since,
however, a single investor has a mass 0, his decision (in case of indifference) does not inf luence the prices and the
equilibrium allocation.
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and

®it = k
0, if ¹ui

¸
(·)

¹u¤

®it = k, if ¹ui
·
(¸)

¹u¤,

if
¡¯̄
C it¡1 (k)

¯̄
+ 1

¢
¡

¯̄
C it¡1 (k0)

¯̄ >
(<)

0. (4.28)

If (4.28) does not hold, then the denominator in (4.27) is 0 and u¤ is not well defined. This case

is considered in proposition 4.3.

The following corollary obtains:

Corollary 4.1 Consider an interval of investors with aspiration levels
£
¹uj; ¹ul

¤
½ [¹u0; ¹un] and

identical memories. Let ®it¡1 = k and the sets K0 = fk0g be identical for all investors in this
interval. Suppose that ¡¯̄

C it¡1 (k)
¯̄
+ 1

¢
¡

¯̄
Cit¡1 (k

0)
¯̄
6= 0

holds for all i 2 [j ; l]. The value of demand for k (or the mass of investors, who wish to hold k)
of this interval, dkt

¡£
¹uj; ¹ul

¤¢
, is an increasing, continuous function of the price pkt . The function

consists of at most three segments:

² for pkt > p̂kt ,

dkt
¡£
¹uj; ¹ul

¤¢
= ¹ul ¡ ¹uj = const,

² for pkt < ·pkt ,

dkt
¡£
¹uj; ¹ul

¤¢
= 0 = const,

² for pkt 2
£
·pkt ; p̂kt

¤
, dkt is strictly increasing in pkt and convex, concave or linear, if u (¢) is

convex, concave or linear, respectively. dkt
¡£
¹uj; ¹ul

¤¢
is bounded above82 by

£
¹ul¡ ¹uj

¤
and

below by 0.

The result of the corollary is illustrated in figure 6 for a concave utility function u (¢):

It is also possible to derive the demand for k0 of these investors:

Corollary 4.2 Consider an interval of investors with aspiration levels
£
¹uj; ¹ul

¤
½ [¹u0; ¹un] and

identical memories. Let ®it¡1 = k and the setsK0 = fk0g be identical for all investors. Suppose
that ¡¯̄

C it¡1 (k)
¯̄
+ 1

¢ ¡
¯̄
Cit¡1 (k0)

¯̄
6= 0

82 The upper boundary results from the budget constraint of each investor.
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-
pkt

dkt
¡£
¹uj; ¹ul

¤¢

p̂kt·pkt

.....................................¹ul ¡ ¹uj

Figure 6

holds for all i 2 [j ; l]. The value of demand for k0 (or the mass of investors, who wish to hold
k0) of this interval, dk0t

¡£
¹uj; ¹ul

¤¢
, is a decreasing, continuous function of the price pkt , bounded

between
£
0;

¡
¹ul¡ ¹uj

¢¤
.

Assume now that
¡¯̄
Cit¡1 (k)

¯̄
+1

¢
¡

¯̄
C it¡1 (k0)

¯̄
= 0.

Proposition 4.3 Consider an interval of investors with aspiration levels
£
¹uj; ¹ul

¤
½ [¹u0; ¹un]

and identical memories. Let ®it¡1 = k and the sets K0 = fk0g be identical for all investors.
Suppose that ¡¯̄

Cit¡1 (k)
¯̄
+ 1

¢
¡

¯̄
Cit¡1 (k

0)
¯̄
= 0 (4.29)

holds for all i 2 [j; l]. Define ~pkt as

~pkt = max

8
<
:

8
<
:p
k
t j

X

¿2Cit¡1(k)

v¿ (k) + u
µ
pkt
pkt¡1

+ ±kt
pkt¡1

¶
=

X

¿2Cit¡1(k0)

v¿ (k0)

9
=
; ; 0

9
=
; .

Then the individual choices of the young investors in this interval are given by:

² if pkt < ~pkt , then ®it = k0 for all i 2 [j; l];

² if pkt > ~pkt , then ®it = k for all i 2 [j; l];

² if pkt = ~pkt , then ®it 2 fk; k0g for all i 2 [j; l].
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Note that in order to insure that proposition 4.1 holds, it must be that at pkt = ~pkt the interval

of investors is divided into two intervals (one of which possibly empty), one of the intervals

choosing k, and the other one k0, which is guaranteed by (A3).

Propositions 4.2 and 4.3 complete the proof of proposition 4.1.

The following corollary is obtained directly from proposition 4.3:

Corollary 4.3 Consider an interval of investors with aspiration levels
£
¹uj; ¹ul

¤ ½ [¹u0; ¹un] and
identical memories. Let ®it¡1 = k and the setsK0 = fk0g be identical for all investors. Suppose
that ¡¯̄

C it¡1 (k)
¯̄
+ 1

¢
¡

¯̄
Cit¡1 (k0)

¯̄
= 0

for all i 2 [j; l]. The value of demand for k of this interval, dkt
¡£
¹uj; ¹ul

¤¢
, is an upper hemicon-

tinuous correspondence, which is non-empty closed- and convex-valued for each pkt ¸ 0. It has
the form:

² dkt
¡£
¹uj; ¹ul

¤¢
= 0 for pkt < ~pkt ,

² dkt
¡£
¹uj; ¹ul

¤¢
2

£
0;

¡
¹ul ¡ ¹uj

¢¤
for pkt = ~pkt

² dkt
¡£
¹uj; ¹ul

¤¢
= ¹ul ¡ ¹uj for pkt > ~pkt .

The value of demand is bounded above by
¡
¹ul¡ ¹uj

¢
and below by 0.

Corollary 4.3 is illustrated in figure 7.

The value of demand for k0 of the interval
£
¹uj; ¹ul

¤
then has the following properties:

Corollary 4.4 Consider an interval of investors with aspiration levels
£
¹uj; ¹ul

¤
½ [¹u0; ¹un] and

identical memories. Let ®it¡1 = k and the setsK0 = fk0g be identical for all investors. Suppose
that ¡¯̄

C it¡1 (k)
¯̄
+ 1

¢
¡

¯̄
Cit¡1 (k

0)
¯̄
= 0

for all i 2 [j; l]. The value of demand for k0 of this interval, dk0t
¡£
¹uj; ¹ul

¤¢
, is an upper hemicon-

tinuous correspondence, which is non-empty, closed- and convex-valued for each pkt ¸ 0. The
value of demand is bounded above by

¡
¹ul¡ ¹uj

¢
and below by 0.

Since the investors whose predecessors do not hold k do not observe the returns of k, their

decision does not depend on pkt . The value of demand of these investors for k is derived in the

same way, as the value of demand for k0 of the investors, whose predecessors hold k, hence it

has the same properties, as stated in corollaries 4.2 and 4.4.

Corollaries 4.1, 4.2, 4.3 and 4.4 clarify how the value of demand correspondence for asset k at
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time t can be constructed for the whole population of investors in the economy. Suppose that at

time t, the population of old investors can be partitioned into L intervals such that the investors

in the same interval have identical memories and identical setsK0. Denote the value of demand

for an asset k of one such interval by dklt (pt)83 for l = 1:::L. Then the value of demand for asset

k is given by:

dkt (pt) =
LX

l=1

dklt (pt) . (4.30)

Proposition 4.4 The value of demand for asset k, dkt (pt), is a correspondence, which maps the
range of non-negative price vectors pt 2 [0;1]K into the range of possible values of demand
[0;n]. It is upper hemicontinuous, non-empty, closed- and convex-valued for every price vector
pt. The value of demand for assets dt (pt) =

¡
d1t (pt) :::dKt (pt)

¢
is, therefore, also an upper

hemicontinuous correspondence, which is non-empty, closed- and convex-valued for every price
vector pt and maps the non-negative price vectors pt 2 [0;1]K into the range of possible values
of demand [0;n]K.

Now consider the value of supply function. By definition, it is a continuous function of pt.

83 Note that the value of demand dkl
t (pt) depends only on one of the components of the price vector and is constant

in its other components. Therefore, the characteristics of dkl
t (pt) are identical with those found in corollaries 4.1,

4.2, 4.3 and 4.4.
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According to remarks 4.1 and 4.2, the equilibrium price vector pt must satisfy:

dkt = Akp
k
t

for all k 2 f1:::Kg and
KX

k=1

dkt = n,

hence
KX

k=1

Akpkt = n, or

pkt · n
Ak

8k = 1:::K ,

since the prohibition of short sales implies dkt ¸ 0. Hence, the value of demand and the value

of supply functions need only be considered for a range of prices pkt 2
£
0; nAk

¤
for k = 1:::K .

Proposition 4.5 The correspondence

~dt (pt) =
µ
d1t
A1
:::
dKt
AK

¶
,

which maps
h
0; nA1

i
£ :::£

h
0; nAK

i
!

h
0; nA1

i
£ :::£

h
0; nAK

i
has a fixed point.

Corollary 4.5 The correspondence ~dt (pt) has at least one common point with ~st (pt) = pt on
the set

h
0; nA1

i
£ :::£

h
0; nAK

i
. Hence dt (pt) has at least one common point with st (pt) for pt 2h

0; nA1
i

£ :::£
h
0; nAK

i
.

Any common point of st and dt is a temporary equilibrium of theeconomy. Indeed, if at this point

the price is strictly positive, the usual equilibrium condition (demand equals supply) obtains by

dividing both the value of demand and the value of supply for asset k by the price pkt :

Ak =
dkt
pkt

for each k = 1:::K,

If, however, pkt = 0, the intersection point represents a degenerate equilibrium, at which the

excess demand for k is ¡A < 0. Hence, a temporary equilibrium exists at any time t ¸ 1 and

for any length of memory.

The results are summarized in the following proposition:

Proposition 4.6 Let (A1), (A2) and (A3) hold. Then for each length of memorym 2 f0:::t¡ 1g,
a temporary equilibrium of the economy exists in every period t ¸ 1.
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4.7 The Case of Two Assets

It might be useful to look at an example in order to clarify the intuition of the proof. Suppose

that there are two assets in the economy: a risky asset, denoted by a and a riskless asset b. The

risky asset has a fixed supply A and is characterized by a dividend process ±t, identically and

independently distributed according to:

±t =
½
±D with probability q
0 with probability 1¡ q

¾
.

Denote the price of the risky asset by pt. The riskless asset is available in perfectly elastic supply

at a price of 1 and has a return of (1 + r) per unit.

Note that in case of two assets assumption (A3), which specifies how decisions are made in

case of indifference, is not needed, since only one alternative is available, i.e. the setK 0 always

consists of one act only.

The demand for the risky asset a of an investor whose predecessor holds a is described by

(4.20) and (4.21) and illustrated in figures 4 and 5. The value of demand for a of an interval

of such investors is an upper hemicontinuous correspondence, as illustrated in figures 6 and 7.

Moreover, since the only investment alternative is b, the demand for b of each of these investors

is 1, if their demand for a is 0 and vice versa.

Since the price of b remains constant over the time, the indirect utility achieved by holding

b is (1 + r) in each period of time in which b is chosen. Consider a young investor i whose

predecessor holds b at time t. Such an investor compares the cumulative utilities of a and b,

given by:

U it (a) =
X

¿2Cit(a)

£
v¿ (a) ¡ ¹ui

¤
=

X

¿2Cit¡1(a)

£
v¿ (a) ¡ ¹ui

¤
,

U it (b) =
X

¿2Cit(b)

£
u (1 + r) ¡ ¹ui

¤
.

Since both terms do not depend on pt, the decision of the young investor amounts to comparing

two constants:

1. If U it (a) > U it (b), then investor i chooses asset a (®it = a).

2. If U it (a) < U it (b), then investor i chooses asset b (®it = b).
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3. If U it (a) = U it (b), then investor i is indifferent between holding a and b (®it 2 fa; bg).

Hence, the demand of such an investor does not depend on the price of the risky asset pt and is

constant. The following two propositions illustrate the demand for a of an interval of investors,

whose predecessors hold b:

Proposition 4.7 Consider an interval of investors with aspiration levels
£
¹uj; ¹ul

¤
½ [¹u0; ¹un]

and identical memories. Let ®it¡1 = b and suppose that¯̄
C it¡1 (a)

¯̄
¡

¯̄
Cit¡1 (b)

¯̄
¡ 1 6= 0

for all i 2 [j ; l]. Then

² if
X

¿2Cit¡1(a)

£
v¿ (a)¡ ¹ui

¤ · ¡¯̄
Cit¡1 (b)

¯̄
+1

¢ ¡
1 + r ¡ ¹ui

¢
for each ¹ui 2 £

¹uj; ¹ul
¤

, (4.31)

then ®it = b for every i 2 [j; l].

² if
X

¿2Cit¡1(a)

£
v¿ (a)¡ ¹ui

¤
¸

¡¯̄
Cit¡1 (b)

¯̄
+1

¢ ¡
1 + r ¡ ¹ui

¢
for each ¹ui 2

£
¹uj; ¹ul

¤
, (4.32)

then ®it = a for every i 2 [j; l].

² if neither (4.31), nor (4.32) are satisfied, then there is a critical aspiration level û 2
¡
¹uj; ¹ul

¢
,

such that:

û =

P
¿2Cit¡1(a)

[v¿ (a)] ¡
¡¯̄
Cit¡1 (b)

¯̄
+1

¢
(1 + r)

¡¯̄
Cit¡1 (a)

¯̄
¡

¯̄
C it¡1 (b)

¯̄
¡ 1

¢ .

In this case:

®it = a, if ¹ui
¸
(·)
û

®it = b, if ¹ui ·
(¸)
û,

if
¯̄
C it¡1 (a)

¯̄
¡

¯̄
Cit¡1 (b)

¯̄
¡ 1

<
(>)

0.

The following corollary characterizes the value of demand of these investors:

Corollary 4.6 Consider an interval of investors with aspiration levels
£
¹uj; ¹ul

¤
½ [¹u0; ¹un] with

identical memories. Let ®it¡1 = b and suppose that¯̄
Cit¡1 (a)

¯̄
¡

¯̄
C it¡1 (b)

¯̄
¡ 1 6= 0 (4.33)
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for all i 2 [j; l]. Then the value of demand for a of the interval
£
¹uj; ¹ul

¤
, dt

¡£
¹uj; ¹ul

¤¢
, is aconstant

function of pt and can obtain (depending on the memory and the aspiration levels
£
¹uj; ¹ul

¤
) only

values between 0 and
¡
¹ul ¡ ¹uj

¢
.

Figure 8 a) illustrates the value of demand for the three possible cases described in proposition

4.7.

6

-

6

-

6

-
pt pt pt

dt([¹uj; ¹ul]) dt([¹uj; ¹ul]) dt([¹uj; ¹ul])

¹ul ¡ ¹uj ¹ul¡ ¹uj

6

-

6

-

6

-
pt pt pt

dt([¹uj; ¹ul]) dt([¹uj; ¹ul])

¹ul ¡ ¹uj

û¡ ¹uj

dt([¹uj; ¹ul])

¡¡¡¡¡
¡
¡

¡
¡
¡

¡
¡
¡
¡

¡
¡
¡
¡¡
¡

¡
¡

¡
¡

¡
¡
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¡
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¡

¡
¡

¡
¡
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¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡
¡

¡¡¡

a)

b)

Figure 8

Now consider the case of the investors whose predecessors hold b and whose memory is such that

(4.33) does not hold. It is evident (and therefore not proved) that the following result obtains:

Proposition 4.8 Consider an interval of investors with aspiration levels
£
¹uj; ¹ul

¤ ½ [¹u0; ¹un]
and identical memories. Let ®it¡1 = b and suppose that¯̄

C it¡1 (a)
¯̄
¡

¯̄
Cit¡1 (b)

¯̄
¡ 1 = 0

for all i 2 [j ; l]. Then

² if
X

¿2Cit¡1(a)

[v¿ (a)] >
¡¯̄
C it¡1 (b)

¯̄
+ 1

¢
(1 + r) ,

then ®it = a for every i 2 [j; l];
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² if
X

¿2Cit¡1(a)

[v¿ (a)] <
¡¯̄
C it¡1 (b)

¯̄
+ 1

¢
(1 + r) ,

then ®it = b for every i 2 [j; l];

² if X

¿2Cit¡1(a)

[v¿ (a)] =
¡¯̄
C it¡1 (b)

¯̄
+ 1

¢
(1 + r) ,

then ®it 2 fa; bg for every i 2 [j; l].

Figure 8 b) illustrates the value of demand for these three cases. Its properties are characterized

in the following corollary.

Corollary 4.7 Consider an interval of investors with aspiration levels
£
¹uj; ¹ul

¤
½ [¹u0; ¹un] with

identical memories. Let ®it¡1 = b and suppose that¯̄
C it¡1 (a)

¯̄
¡

¯̄
Cit¡1 (b)

¯̄
¡ 1 = 0

for all i 2 [j ; l]. Then the value of demand for a of the interval
£
¹uj; ¹ul

¤
, dt

¡£
¹uj; ¹ul

¤¢
, is (in

general) an upper hemicontinuous correspondence, which is independent of the price pt, non-
empty, closed- and convex-valued and can obtain values in the range

£
0; ¹ul ¡ ¹uj

¤
.

In analogy to the case with K assets, (A2) implies that each of the intervals into which the

population is partitioned at time (t¡ 1) is divided into at most two new intervals at time t such

that the investors in the same intervals have identical memories and make identical choices. In

analogy to the case of K assets, it can be shown that pt · n
A must hold in equilibrium. Since

the value of demand for a of each such interval is an upper hemicontinuous non-empty, closed-

and convex-valued correspondence, the following proposition obtains:

Proposition 4.9 The value of demand for asset a, dt (pt), is a correspondence, which maps the
range of non-negative prices pt 2

£
0; nA

¤
into the range of possible values of demand [0;n]. It

is upper hemicontinuous, non-empty and closed- and convex-valued for every price pt. Hence,
for each length of memorym 2 f0; :::t¡ 1g, a temporary equilibrium exists for each t ¸ 1.

The proposition is proved by applying the Kakutani fixed-point theorem and insures the exis-

tence of an equilibrium. The argument for two assets can be illustrated in a diagram, see figure

9.

Note that the uniqueness of the equilibrium is not guaranteed (similarly to the case ofK assets)

and that equilibria with pt = 0 cannot be excluded in general. Moreover, the model allows for
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n
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A

q

Figure 9

an equilibrium, in which the price of the risky asset is pt = n
A and the demand for the riskless

asset is 0.

4.8 Conditions for a Non-Degenerate Equilibrium

The argument above makes clear that it is not possible to rule out equilibria in which the price

of an asset is 0 and the demand for it is 0.

Nevertheless, it is possible to indicate conditions which guarantee that the equilibrium prices

are strictly positive. Figure 10 captures the idea for the case of two assets.

The sufficient condition is that some positive mass of investors is ready to choose act k, even

if the price of the asset falls from its highest possible value to 0 and the dividend of k is the

lowest possible, i.e. min
©
±k

ª
in the period under consideration. To guarantee this, it is neces-

sary that there is a positive mass of investors in the market, whose aspiration levels are below

u
µ
Akminf±kg

n

¶
, i.e. ¹u0 < u

µ
Akminf±kg

n

¶
, where n

Ak
is the highest possible equilibrium price

of k. This is, however, not sufficient. To insure that the price pkt is positive at each time t, a pos-
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qdt(0) > 0

#
#
#
#
#
#
#
#
#
#
#
#
#
#

q
q

pt
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st = Apt

........................................................... ...........................................

n

n
A

dt(pt)

Figure 10

itive mass of the old investors with aspiration levels between ¹u0 and u
µ
Akminf±kg

n

¶
must hold

asset k in t = 1. Since the aspiration levels of these investors are very low, they will never want

to switch to another asset, no matter how low the price of k may be, and how often it falls84.

The demand of such an investor for k— xkt is illustrated in figure 5. These investors insure that

there is a positive demand for asset k and, therefore that its price in equilibrium is positive.

The mathematical possibility to rule out this kind of equilibria, however, does not guarantee the

applicability of the conditions defined above to economic models. Indeed, the condition above

might require that ¹u0 < u (0), if min
©
±k

ª
= 0. It is questionable, whether one can imagine

consumers who would find it satisfactory to consume a zero-amount of the consumption good,

or investors who would be satisfied with the opportunity to lose the whole amount of money

invested. On the contrary, it is possible that zero equilibrium prices for assets with positive fun-

damental value help us gain new insights into the problem of emerging and bursting of bubbles

in asset markets. If, however, min
©
±k

ª
> 0, then the conditions excluding degenerate equilib-

ria may still appear sensible: since investors derive utility from consumption and not directly
84 In this case the cumulative utility of the alternative k will remain positive over the time, whereas an (untried)
act k0 will always have a cumulative utility of 0. Thus, k0 will never be chosen.
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from the returns of the assets, it is possible that some investors are satisfied with some small,

but positive amount of consumption.

The severity of the conditions needed to exclude degenerate equilibria shows that it might be use-

ful to state conditions under which at least one of the equilibria has non-zero prices. Such results

will allow to construct economies which exhibit both non-degenerate equilibria and equilibria

with 0-prices of some of the assets. On the one hand, this will enrich the model by introduc-

ing new effects, such as for instance zero-asset prices, bubbles and arbitrage possibilities. On

the other hand, the assumptions imposed on the aspiration levels of the decision-makers will be

more acceptable, than those needed to exclude degenerate equilibria at all.

The idea for stating such conditions is simple. The necessary condition for the existence of an

equilibrium with a positive price of asset k in each period t for each length of memorym is that

in each period of time there is an interval of investors holding k. Let this interval have aspiration

levels [¹ujk ; ¹ujk¡1]. Suppose that the length of this interval is ¸. This would guarantee that the

price of the asset k will never fall below ¸
Ak

, as long as the investors from this interval hold k.

It is however not the price of the asset alone that determines the behavior of the investors, but

its returns. Therefore, one has to insure that the investors with aspiration levels [¹ujk; ¹ujk¡1] hold

the asset even if its return is the lowest possible, i.e. its dividend is min
©
±k

ª
and its price falls

by the greatest possible amount for this economy.

Suppose that the assets are enumerated from 1 to K, as follows: 1 is a riskless asset with ±1t = r

w.p. 1. Let r > min
©
±k

ª
for each k 6= 1 and min

©
±k

ª
> min

©
±k+1ª for each k 2 f2:::Kg.

Now choose aspiration levels ¹uj1 > ¹uj2 > ::: > ¹ujK 2 (¹u0; ¹un), such that:

(i) u
³

¹uj1¡¹uj2+rA1
¹un¡¹uj2

´
¸ ¹uj1

(ii) u
µ

¹uj2¡¹uj3+minf±2tgA2
¹un¡¹uj1+¹uj2¡¹uj3

¶
¸ ¹uj2

... ...

(K) u
µ

¹ujK¡¹u0+minf±KgAK
¹un¡¹uj1+¹ujK¡¹u0

¶
¸ ¹ujK

: (4.34)

Proposition 4.10 Suppose that (4.34) has a solution ¹uj1 > ¹uj2 > ::: > ¹ujK with ¹ujk 2 (¹u0; ¹un)
for all k = 1:::K and for the given ¹u0, ¹un, r, min

©
±k

ª
, k 2 f2:::Kg. Let the initial endowments

with assets of the old investors with aspiration levels between [¹u0; ¹uj1] at t = 1 satisfy:
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®i0 =

8
>>>><
>>>>:

K if ¹ui 2 [¹u0; ¹ujK ]
K ¡ 1 if ¹ui 2 [¹ujK ; ¹ujK¡1 ]
::: ::: :::
2 if ¹ui 2 [¹uj3 ; ¹uj2]
1 if ¹ui 2 [¹uj2 ; ¹uj1]

9
>>>>=
>>>>;

The initial endowments of the investors with aspiration levels [¹uj1; ¹un] can be chosen arbitrarily.
Then, for each length of memorym, there exists in each period t ¸ 1 a temporary equilibrium
of the economy with prices pt =

¡
p1t :::pKt

¢
:

p1t ¸ ¹uj1 ¡ ¹uj2

A1

p2t ¸ ¹uj2 ¡ ¹uj3

A2 :::

pK¡1t ¸ ¹ujK¡1 ¡ ¹ujK

AK¡1

pKt ¸ ¹ujK ¡ ¹u0

AK
and allocations ®it such that:

®it =

8
>>>><
>>>>:

K if ¹ui 2 [¹u0; ¹ujK ]
K ¡ 1 if ¹ui 2 [¹ujK ; ¹ujK¡1]
::: ::: :::
2 if ¹ui 2 [¹uj3; ¹uj2 ]
1 if ¹ui 2 [¹uj2; ¹uj1 ]

9
>>>>=
>>>>;

.

Although the sufficient condition has been stated, it is not clear, whether there are values of the

parameters for which it holds. For simplicity, consider the case in which the utility function is

linear, Ak = 1 for all k = 1:::K and the intervals [¹uj0 ; ¹ujK ]; [¹ujK ; ¹ujK¡1]... [¹uj2; ¹uj1] have equal

length ¸. With this assumption condition (4.34) can be written in terms of the parameters of the

model and ¸ and becomes:
¸ + min

©
±k

ª

¹un ¡ ¹u0 ¡ ¸ (K ¡ 1)
¸ ¹u0 + ¸ (K ¡ (k ¡ 1)) for k = 1:::K . (4.35)

It is easy to show that (4.35) is a quadratic inequality in ¸ with a positive coefficient in front of

¸2. Therefore, it will have a solution independently of the sign of its discriminants (one for each

k). Moreover, the solutions will have the form ¸ 2
¡
¡1; ·̧k

¤
[

h
^̧
k; +1

´
if the discriminant

of inequality k is strictly positive. If the discriminant is non-positive, then every ¸ is a solution

of the inequality. It remains, therefore, to state conditions insuring that some of the solutions lie

in the interval
h
0; ¹un¡¹u0K

i
of possible values of ¸. It follows that at least one of the following
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two conditions must hold for every k = 1:::K:
min

©
±k

ª

¹un ¡ ¹u0
> ¹u0, (4.36)

meaning that ·̧k > 0 or

1 +
Kmin

©
±k

ª

¹un ¡ ¹u0
> ¹un ¡ (¹un ¡ ¹u0) (k ¡ 1)

K
, (4.37)

meaning that ^̧k < ¹un¡¹u0
K .

The interpretation of (4.36) is straightforward: it says that even at pkt = 0 and ±kt = min
©
±k

ª
,

there are still investors with sufficiently low aspiration levels, who are ready to hold this asset.

Thus, it is equivalent to the condition for non-existence of degenerate equilibria with zero-prices.

The second condition gives few insights into how the parameters of the model influence the

existence of non-degenerate equilibria. The highest aspiration level in the economy ¹un has

a negative impact on the left-hand side and a positive one on the right-hand side of (4.37).

Therefore, for higher ¹un a non-degenerate equilibrium may fail to exist. For instance, in the two

assets case with minf±tg = 0 and ¹u0 > 0 only a low enough ¹un can guarantee the existence of

a non-degenerate equilibrium: (4.37) implies

¹un · 2¡ ¹u0.

Since min
©
±k

ª
was defined as decreasing in k it follows further that the inequality is more

likely to hold for smaller k, i.e. for assets with higher minimal dividends, than for those with

lower minimal dividends.

To illustrate the result, consider again the case of two assets introduced in section 7. Suppose

that ¹un > (1 + r) > 1 > ¹u0 and let ¹ua 2 (¹u0; 1) be some aspiration level. Now endow the

investors with aspiration levels between [¹u0; ¹ua] with asset a, investors with aspiration levels

between [¹ua; (1 + r)]with asset b and let the portfolio holdings of the investors from the interval

[(1 + r) ; ¹un] be arbitrary (but satisfy the interval condition imposed by assumption (A2)). Now

note that if ¹ua is chosen in such a way that85

¹ua <
¹ua ¡ ¹u0

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
,

then the investors with aspiration levels [¹u0; ¹ua] will always hold a, whereas the investors with

85 Such a ¹ua always exists if, for instance, ¹un ¡ r < 3
2 and ¹un < 2 + r ¡ ¹u0. Note that in this case the condition

that the intervals have equal length is not necessarily fulfilled.
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aspiration levels [¹ua; (1 + r)] will always choose b. Hence, the price of awill satisfy:

pt ¸ ¹ua ¡ ¹u0

in each period of time. Nevertheless, it is possible that an equilibrium with pt = 0 exists.

Especially, if

¹u0 > 0,

an equilibrium in which

pt = 0

®it = b for all i 2 [0;n]

can obtain in any period t, such that ®it¡1 = a holds for all investors with aspiration levels

[(1 + r) ; ¹un].

4.9 Discussion of the Results

Grandmont (1982) considers an economy with one consumption good and fiat money, which

only has the function of storing value. He shows the possibility of an equilibrium in which

money has a price of 0 and states sufficient conditions with respect to the expectations of the

investors guaranteeing the existence of a monetary equilibrium (i.e. an equilibrium in which

the price of money is positive). A key condition is that for each system of prices in period t

(especially, even if the current price of money is 0) , the investors place a positive probability

on the event that money has a positive price in the next period.

Although the expectations are not explicitly modelled in the case-based decision-theory (they

are replaced by the constructs of aspiration level, memory and cumulative utility of an act), it

seems that the similarities between the conditions imposed by Grandmont (1982) to guarantee

the existence of a monetary equilibrium and the condition required for the existence of an equi-

librium with positive asset prices are straightforward. In both cases the model should insure

that the asset is held by some positive mass of investors even if the price of this asset is cur-

rently 0. In the model constructed by Grandmont (1982, p. 897), this is guaranteed by imposing

requirements on the expectations of the investors, which should not be too sensitive to the cur-

rent price, but also take into account past, possibly positive prices. With case-based decisions,

the same result is achieved by imposing (at least for some investors) a relatively low aspiration

level, which prevents the cumulative utility of an asset from becoming negative and, thus, in-
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sures that the investors will continue to hold an asset even if its price falls to 0. The sensitivity

with respect to current prices (and current dividends) is, therefore, captured by the aspiration

level of an investor and can be analyzed using the graph of the demand of a single investor for

asset k. The individual elasticity of demand with respect to the current price is 0 in the interval
£
0; pk¤t (i)

¢
and ¡1 in the interval

¡
pk¤t (i) ; 0

¤
(of course, provided that a positive pk¤t (i) exists),

see figure 4. At the point pk¤t (i), however, the elasticity is not well defined. Whereas a small

increase of the price towards pk¤t (i) has a 0-effect, a small decrease of the price towards pk¤t (i)

causes the demand to fall from 1
pk¤t (i)

> 0 to 0. Thus, at the point pk¤t (i) the demand of a single

investor for k is infinitely sensitive to decreases of the price. The position of pk¤t (i) depends on

the aspiration level of the investor considered. If
¡¯̄
C it¡1 (k)

¯̄
+ 1

¢
¡

¯̄
Cit¡1 (k

0)
¯̄
> 0

holds86, then pk¤t (i) is an increasing function of the aspiration level of the investor. It is the

position of the lowest pk¤t (i) in the economy that determines whether an equilibrium with a 0-

price of k exists. If for a positive mass of investors pk¤t (i) does not exist (meaning that the price

would have to be negative to insure that (4.19) holds), then pkt = 0 cannot occur in equilibrium.

The new result, however, is that even assets with real value can be traded at 0 prices in equilib-

rium. Indeed, the fiat money in Grandmont’s model is only valuable if it is expected to have a

positive price in the future, thus if it is accepted by the young investors in exchange for consump-

tion goods. But the assets in the model presented here are real, in the sense that they represent

production possibilities and yield real dividends, independently of their price. This shows that

introducing case-based decision-makers as investors in an economy with real assets may cause

their prices to fall to 0, not because they are inferior to other assets in the economy, but because

their returns are considered to be unsatisfactory with respect to some set of aspiration levels at

some time.

However, even if pkt = 0 holds at some time, the price of asset k need not remain 0 forever. If the

investors become dissatisfied with other acts and find k to have the highest cumulative utility in

some later period, their demand for k will become positive and its price will recover to a strictly

positive value. This means, however that a financial market populated by case-based decision-

makers is not informationally efficient. Indeed, pkt = 0 could not hold, should the information

86 This condition is always satisfied, if the length of the memory is 1. It also holds in each period for an investor
i, all of whose predecessors have held the same asset k.
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that asset k might yield some strictly positive dividends in the future be implemented into the

price.

Arbitrage opportunities can be present in a market also in cases, in which the price vector is

strictly positive in all its components. Indeed, whereas a relatively low ¹u0 prevents the prices

from becoming 0, it also makes the investors with such low aspiration levels satisfied with the

act they have initially chosen. Investors with low aspiration levels have, therefore, little or no in-

centives to switch between the acts. Hence, they might end up holding an asset which is strictly

dominated by another one (w.r. to zero-order stochastic dominance). As long as the investors are

satisfied with the payoffs of the act which their predecessors have chosen, they do not have rea-

sons to experiment and acquire more information, which would allow them to profit by choosing

the asset which bears higher returns in the mean. Even with infinite memory, investors with rel-

atively low aspiration levels will not be able to learn the possible return realizations in order to

make optimal decisions.

4.10 Conclusion

I have presented a model of an overlapping-generations economy, populated by case-based

decision-makers. The choice to invest the initial endowment into a given asset is positively

inf luenced by the price of this asset and negatively by the prices of the other assets in the econ-

omy. Therefore, the demand of the investors for an asset is non-monotonic in the price of the

asset: increasing for relatively low prices and decreasing at high prices.

A temporary equilibrium of the economy exists under quite general conditions on continuity

and strict monotonicity of the utility function and on the initial holdings of the old investors in

t = 1. These conditions, combined with the continuity of the distribution of investors and the

aspiration levels in the economy, are crucial for the existence, since they guarantee the upper

hemicontinuity of the value of demand function and allow the application of Kakutani’s fixed

point theorem. The conditions which exclude 0-equilibrium prices are comparable with those of

Grandmont (1982) and require that some positive mass of investors demands an asset when its

price is 0. This requirement implies relatively low aspiration levels for some positive mass of

investors, which contradicts the economic intuition that an investor can only be satisfied with a

positive amount of consumption. Therefore, although possible from mathematical point of view,
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exclusion of equilibria with 0-prices may not be sensible in a model of economic behavior.

Furthermore, I believe that the possibility that a price of an asset which pays real dividends,

falls to 0 in some period, but might recover later, can provide some explanations of the arising

and bursting of bubbles, overreaction and underreaction observed in real financial markets and

in laboratory settings. The presence of case-based decision-makers in the economy could fur-

ther account for unused arbitrage possibilities, which are not always identified by case-based

decision-makers (even if their memory is infinite) or for predictability in price movements, re-

sulting from the dependence of the investment decisions on past information. An analysis of

the dynamics of equilibrium prices can therefore provide useful insights about markets with

adaptively learning non-Bayesian investors and allow to explain some of the paradoxes of the

asset pricing, with which the economic research is confronted. The dynamic of asset prices in a

market populated by case-based decision-makers will be topic of the next chapter of this thesis.

169



Appendix

Proof of proposition 4.2:

Write the cumulative utility of the act k as:

U it (k) =
X

¿2Cit¡1(k)

£
v¿ (k)¡ ¹ui

¤
+ u

µ
pkt
pkt¡1

+
±kt
pkt¡1

¶
¡ ¹ui = (4.38)

=
X

¿2Cit¡1(k)

v¿ (k) + u
µ
pkt
pkt¡1

+
±kt
pkt¡1

¶

| {z }

¡
¡¯̄
C it¡1 (k)

¯̄
+ 1

¢
| {z } ¢ ¹ui|{z}

identical for the whole interval identical for the investor
whole interval specific

and those of k0, as:

U it (k0) =
X

¿2Cit(k0)

£
v¿ (k0) ¡ ¹ui

¤
=

X

¿2Cit¡1(k0)

£
v¿ (k0)¡ ¹ui

¤
= (4.39)

=

X

¿2Cit¡1(k
0)

v¿ (k0) ¡
¯̄
Cit¡1 (k

0)
¯̄

| {z }

¢ ¹ui|{z}

identical for the investor specific
whole interval

.

p̂kt , as defined in the proposition, then denotes the lowest possible price of k, for which the cumu-

lative utility of k exceeds the cumulative utility of k0 for all investors, whereas ·pkt is the highest

possible price, for which the inverse relation holds. The continuity and the strict monotonic-

ity of the utility function with respect to pkt insures that p̂kt and ·pkt are well defined and unique.

The three cases listed in the proposition emerge naturally, when comparing the cumulative util-

ities given by (4.38) and (4.39). (4.28) guarantees that the comparison between the cumulative

utilities depends on the aspiration level of the investors. The definition of p̂kt and ·pkt implies im-

mediately that if pkt ¸ p̂kt , then act k is preferred by all investors, whereas pkt · ·pkt implies that

everyone chooses k0. If pkt 2
£
·pkt ; p̂kt

¤
, some of the investors will choose k and some k0. The

critical aspiration level ¹u¤ (which, of course, depends on the price pkt ) is determined by setting

the two cumulative utilities equal and solving for ¹ui. (A1) insures that ¹u¤ is continuous in pkt
and increasing (decreasing), if

¡¯̄
Cit¡1 (k)

¯̄
+1

¢
¡

¯̄
Cit¡1 (k

0)
¯̄ >
(<)

0.

Therefore, the result of the proposition obtains.¥

Proof of proposition 4.3:
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Write the cumulative utilities of k and k0 as in (4.38) and (4.39). (4.29) implies that the choice

of the investors depends on the comparison
X

¿2Cit¡1(k)

v¿ (k) + u
µ
pkt
pkt¡1

+
±kt
pkt¡1

¶ ¸
<

X

¿2Cit¡1(k0)

v¿ (k0) ,

which depends only on the price pkt and leads to equality if pkt = ~pkt , with ~pkt defined in the

statement of the proposition.¥

Proof of proposition 4.4:

The value of demand for k is defined in (4.30). Since a function which is continuous in pkt ,

constant in all other prices and defined for each pt, is a special case of an upper hemicontinuous

correspondence, which is non-empty, closed- and convex-valued for eachpt, the value of demand

of all intervals dklt (pt) satisfies the same conditions. Therefore, dkt (pt) is also non-empty, closed-

and convex-valued for each pt. Since there is only a mass ofn investors, each of whom has 1 unit

of the consumption good, the maximal value of demand for an asset k can be n. The prohibition

of short sales insures that the value of demand does not fall below 0. It remains to show that

dkt (pt) is upper hemicontinuous. By the definition of upper hemicontinuity it follows that for

each ¹pt 2 [0;1)K, and for each neighborhood V
¡
dklt (¹pt)

¢
, there exists a neighborhood of

¹pt, N l (¹pt), such that for every pt 2 N l (¹pt), dklt (pt) µ V
¡
dklt (¹pt)

¢
. Now, take an arbitrary

neighborhood

V
¡
dkt (¹pt)

¢
¾

"
LX

l=1

min
©
dklt (¹pt)

ª
;
LX

l=1

max
©
dklt (¹pt)

ª
#

and define N (¹pt) =
TL
l=1N

l (¹pt). Since for each l and any V
¡
dklt (¹pt)

¢

V
¡
dklt (¹pt)

¢
¶

£
min

©
dklt (pt)

ª
; max

©
dklt (pt)

ª¤

for each pt 2 N (¹pt), it follows that

V
¡
dkt (¹pt)

¢
¶

"
LX

l=1

min
©
dklt (pt)

ª
;
LX

l=1

max
©
dklt (pt)

ª
#

for each pt 2 N (¹pt). Therefore, dkt (pt) is upper hemicontinuous. Of course, the same line of

reasoning holds for any k 2 1:::K. Therefore, the correspondence dt (pt) =
¡
d1t (pt) :::dKt (pt)

¢

is also upper hemicontinuous.¥

Proof of proposition 4.5:

An application of the Kakutani fixed-point theorem, see Mas-Collel, Whinston andGreen (1995,

p. 953). ¥
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Proof of proposition 4.7:

Write the cumulative utility of act a as:

U it (a) =
X

¿2Cit¡1(a)

£
v¿ (a)¡ ¹ui

¤
(4.40)

and those of b as:

U it (b) =
X

¿2Cit¡1(b)

£
1 + r ¡ ¹ui

¤
+

£
1 + r ¡ ¹ui

¤
=

¡¯̄
Cit¡1 (b)

¯̄
+ 1

¢ ¡
1 + r ¡ ¹ui

¢
. (4.41)

Neither of the cumulative utilities depends on the price of a, pt. To make their decisions, the

investors compare:
X

¿2Cit¡1(a)

£
v¿ (a) ¡ ¹ui

¤
R

¡¯̄
Cit¡1 (b)

¯̄
+ 1

¢ ¡
1 + r ¡ ¹ui

¢
.

As long as
¯̄
C it¡1 (a)

¯̄
¡

¯̄
Cit¡1 (b)

¯̄
¡ 1 6= 0

is satisfied, û is well defined and represents the aspiration level of the investor, who is indifferent

between a and b.¥

Proof of proposition 4.10:

The aspiration levels and the initial holdings are chosen in such a way that none of the investors

with aspiration levels between [¹u0; ¹uj1] has an incentive to switch away from his initial portfolio,

as long as none of the other investors in this interval changes his portfolio. The kth line of (4.34)

further implies that even if the investors with aspiration levels in the interval [¹uj1; ¹un] switch

away from any asset k they might be holding, causing its price to fall from ¹un¡¹uj1+¹ujk¡¹u0
¹ujk¡¹u0 and

its utility realization to become at most

u
µ

¹ujk ¡ ¹u0+ ±ktAk
¹un ¡ ¹uj1 + ¹ujk ¡ ¹u0

¶
,

the investors with aspiration levels [¹ujk¡1; ¹ujk ] are still satisfied with the realized return from

asset k even if its dividend is the lowest possible. Hence, the young investors with aspiration

levels [¹ujk¡1; ¹ujk ] choose asset k in each period of time. Since they have a positive mass (¹ujk >

¹ujk¡1), there is always an equilibrium with a positive price of k. Since an analogous condition

is imposed for each asset k, it follows that there is an equilibrium path, such that in each period

of time the price vector is strictly positive, pt À 0 .¥
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Chapter 5. Asset Price Dynamics with
Case-Based Decisions

In the last chapter, an equilibrium concept for an economy populated by case-based decision-

makers has been proposed and studied. The existence of an equilibrium is insured for a wide

class of utility functions and initial conditions, which makes the concept well applicable. In

section 7 of the last chapter, an example of an economy with two assets has been presented.

In this chapter, I study the dynamic of asset prices in an asset market populated by case-based

decision-makers, based on this example.

The aim of this chapter is in the first place explorative. It analyzes what kind of behavior can

emerge in a market with case-based investors and how this behavior inf luences asset prices.

Moreover, by considering an economy with heterogenous consumers, who differ in their aspi-

ration levels, it is not only possible to study how the aspiration level determines the behavior of

a given investor, but also to analyze the interaction between the different aspiration levels and

to indicate their inf luence on asset prices. The relationship which has already been found be-

tween the aspiration level and the investment behavior in an individual portfolio choice problem

reappears in a market environment, but the results also depend on the interaction of prices and

portfolio choices in equilibrium, which was not present in chapter 3.

Apart from the aspiration level, the memory of the individuals plays a crucial role for the dy-

namic. It is intuitivelyclear that relatively short memory does not allow investors to learn enough

about the possible price and dividend realizations, so as to be able to form correct beliefs and

make optimal choices. However, it is also questionable whether the ability to remember long

sequences of realizations insures optimal behavior in the limit. Indeed, the results of chapter 3

have shown that endogenous memory87 combined with a constant aspiration level leads to op-

timal behavior, only if the environment is stationary and the aspiration level is appropriately

chosen. That is why the cases of both short memory (with only one case remembered) and long

memory (all previous cases remembered) is considered in order to study the inf luence of mem-

ory on learning and on asset prices. Since the results show that even in the case of long memory,

87 That is memory, consisting only of cases the decision maker has personally experienced.



optimal learning obtains only for investors with appropriately chosen aspiration levels, I drop

the assumption of completely endogenous memory and examine whether the usage of hypothet-

ical cases can insure optimal decisions in the limit. Again, the results depend on the prespecified

value of the aspiration level.. Whereas optimal behavior emerges for relatively low aspiration

levels, investors with high aspiration levels exhibit switching behavior even if they are allowed

to use hypothetical cases.

Having once identified the characteristic features of asset prices in an economy populated by

case-based decision-makers, the second aim of this chapter consists in comparing them to em-

pirically observed phenomena and asking whether the presence of case-based investors in real

asset markets could help explain such phenomena.

The empirical work in financial economics has found significant violations of the rational ex-

pectations hypothesis. Phenomena, such as bubbles, i.e. significant deviations of the prices from

fundamental values, excessive volatility, predictability of asset returns and arbitrage possibilities

are observed in real, as well as in experimental markets.

Indeed, the literature on overlapping generations models initiated by Samuelson (1958) and Di-

amond (1965) and further developed by Tirole (1982, 1985) shows that rational bubbles emerge

as a stationary state in OLG models with population growth. Whereas in Tirole’s model, bub-

bles cannot burst, Weil (1987) demonstrates that bubbles bursting with positive probability can

also obtain in an OLG model, provided that the economy is not dynamically efficient. However,

rational bubbles can only be positive (i.e. the price can become higher than the fundamental

value, but never lower) and the question of how such bubbles get started is not answered in the

literature88. Moreover, dynamic inefficiency is a necessary condition for emergence of rational

bubbles. It requires that the population growth rate exceeds the interest rate in the economy.

Nevertheless, the empirical evidence demonstrates that ’’irrational’’ bubbles are not rare in real

and in experimental markets89 .

In the model presented in this chapter, rational bubbles are excluded by the assumption of no

88 Indeed, if under rational expectations it were known that a bubble would start in some period t, then in period
(t ¡ 1) the investors would already start to invest in this asset in order to profit from the bubble at t. But then the
bubble would already start at (t ¡ 1). Hence, a rational bubble cannot have an initial date.

89 Kindelberger (1978) gives a historical account on the most famous bubbles. Sunder (1995) reviews the experi-
mental literature, whereas Camerer (1989) provides a review of the theory with experimental results. Recent results
are provided by Hommes, Sonneman, Tuinstra and van de Helden (2002).
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population growth. Nevertheless, prices may deviate significantly from the fundamental value.

Small bubbles obtain in equilibrium. The one-period rise in the asset price, which is not condi-

tioned either on dividend payments, or on changes in the fundamentals, is followed by a decrease

in the price caused by a low dividend realization. The evolution of the economy is described

by such two-state cycles in the presence of investors with relatively high aspiration levels, who

switch among the available portfolios. The arising of a bubble, as well as its bursting, can, there-

fore, be ascribed to the dissatisfaction of investors with high aspiration levels with the returns

achieved and their willingness to abandon the unprofitable asset and switch to a different one.

Whereas in a model without similarity considerations the price increase takes only one period,

including similarity between problem-act pairs allows a bubble to develop over a longer period

of time. The price may rise even in a period in which the dividend of the risky asset is low

and this upward movement may last for few periods. The price drops in a single period and the

bubble never reemerges again.

Excessive volatility is another phenomenon observed in asset markets, see Shiller (1981, 1990).

Empirical findings show that the asset prices are too volatile to be explained by subsequent

changes in the dividend payments. Roll (1984, 1989) demonstrates this on the examples of the

orange juice future prices and the crash of 1987. Moreover, it is found that the frequency of

trades is too high to be justified by changes in fundamentals or by profitability considerations,

see Odean (1999) and Barber and Odean (2001 (a), 2001 (b)). Hence, the hypothesis of rational

expectations fails to explain observed data.

Note that models with rational expectations do not in general predict constant asset prices. So,

for instance, the consumption asset pricing model of Lucas (1978) is based on the assump-

tion that consumers are infinitely lived and the process of dividends is a Markovian. Hence,

dividends inf luence asset prices in two ways: first, through the changes in the value of the en-

dowment of the consumer, who receives higher income, the higher the dividends paid to him;

second, through the Markov process, which specifies the dependence of the dividend tomor-

row on the dividend today. The model of Lucas, therefore, predicts that prices should change

over time and the empirical models must control for such price changes explained by the model.

However, these changes should be correlated with the dividend process, a result rejected by the

data.
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In contrast to the model of Lucas (1978), the model of overlapping generations used here does

not predict any price changes over the time, given expected utility maximization combined with

rational expectations. Indeed, if all investors are identical, the price should equal the funda-

mental value of the asset at any period of time, since the dividend process is i.i.d.90 . Hence,

any price volatility observed in this model is excessive compared to the bench-mark of rational

expectations.

Moreover, similar to the results of Daniel, Hirshleifer and Subrahmanyam (1998) and Gervais

and Odean (2001), who explain the excessive trades by overconfidence and the self-attribution

bias, in a model with case-based decision-makers, those investors who have extremely high

aspiration levels (i.e. who expect unrealistically high returns), trade too much. They generate

excessive price volatility, which depends positively on their share in the economy. Moreover,

these investors lose money, since they tend to buy at high prices and sell at low prices.

Predictability of asset returns is found in the market data, see De Bondt and Thaler (1985),

Chopra, LakonishokandRitter (1992),Bernard (1992), Bernard and Thomas (1989,1990), Lough-

ran and Ritter (1995). Their results show that factors like past performance, market-to-book

ratios and capitalizations of stocks, as well as seasonality can help predict future returns. Espe-

cially, negative short run correlation of price movements for individual assets has been observed

by Blume and Friend (1978), Lo and MacKinlay (1988) and Jegadeesh (1990).

This evidence violates the efficient market hypotheses, since it implies that information freely

available in the market is not priced. The observed phenomena are, thus, usually associated with

underreaction and overreaction to information. Since the investors do not react adequately to

new information, the market later corrects the prices so that they coincide with the fundamental

values. As such corrections take place slowly, they cause autocorrelation of returns in the short

run.

In theoretical models, such effects are obtained by introducing noise traders, whose behavior

depends on past prices. So, for instance, the presence of positive feedback traders in the market

can lead to price bubbles, as De Long, Shleifer, Summers and Waldmann (1990 (b)) demonstrate.

The representativeness bias (i.e. the fact that people interpret short sequences of observations

as representative for the population) is used by Barberis, Shleifer and Vishny (1998) to explain

90 As already noted above, rational bubbles are excluded by the assumption of no population growth.
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under- and overreaction in financial markets. The assumption about the existence of chartists

(positive feedback traders) and fundamentalists (who ignore prices and trade only on signals

about future returns) in the market generates positive autocorrelation in the short run and nega-

tive autocorrelation in the long run, see Cutler, Poterba and Summers (1990).

With case-based decision-makers, predictability of asset returns also obtains. The interpretation

of the result is, however, somewhat different from those in the theoretical work cited above. In

fact, no new information is needed in the market to induce autocorrelation of returns, no change

of fundamentals occurs in the model. Instead, the fact that the decision of a case-based investor

is inf luenced by his memory, hence, by past prices and returns, implies that the market prices

also depend on past data and become predictable to some extent.

Arbitrage possibilities have been observed in experimental markets by Rietz (1998) and Oliven

and Rietz (1995), who comment on how difficult it is to enforce arbitrage restrictions, even

by explaining that they exist and encouraging market participants to use them. In real markets

Rosenthal and Young (1990) present an example of two assets representing ownership of the

same company which are traded at different prices with up to 30% difference. Similar examples

are presented by Lamont and Thaler (2001) and in Shleifer (2000, Chapter 3).

De Long, Shleifer, Summers and Waldmann (1990 (a)), as well as Shleifer and Vishny (1997)

show how noise traders can generate arbitrage possibilities in a theoretical model. If the rational

arbitrageurs are fully invested or if they face the risk of dropping from the market before the

asset price returns to the fundamental value, they will in general not be able to eliminate the

arbitrage possibilities present in the market. Their model differs from the current one in two

aspects: first, they consider two ex-ante identical assets with positive fundamental value and

demonstrate that they can be traded at different prices; second, the noise traders in their model

differ from the rational ones only by their misperceptions of the expectation of the returns of

one of the assets. Still, the noise traders are able to form expectations about the realizations of

the possible states of the nature, i.e. they are expected utility maximizers with biased beliefs.

In contrast, in the model presented in this chapter, only case-based decision-makers are present,

who do not form any beliefs about states and state-contingent payoffs. The assets in this model

are not identical and the effect that an asset with positive fundamental value is not traded and

has a price of 0 is an interesting feature of the current model, not present in the models cited
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above. Moreover, in chapter 6 it will be shown that this feature of the model does not disappear,

even if expected utility maximizers, who believe that the asset has a positive fundamental value,

are introduced into the market.

The no-arbitrage restriction belongs to the basics of the financial economics. To use arbitrage

opportunities, the investor needn’t even entertain beliefs about the probabilities of the states of

nature. However, the investor has to know the possible states of nature and the payoff of each

asset in each state. This knowledge which is usually presupposed in asset market models, is

missing in a model with case-based decision-makers. Since case-based investors learn from

past utility realizations of the assets and compare these realizations to an aspiration level, it is

possible that they do not see arbitrage opportunities, even if they are present in the market. For

instance, suppose that an asset with positive fundamental value has brought a low return in the

last period. If the aspiration level of the decision-makers is relatively high, they will switch to a

different asset, abandoning the one, whose return they find unsatisfactory. If every investor in the

market behaves in this way, the asset in question will have a price of 0, although its fundamental

value is positive. Hence, an arbitrage possibility emerges. As was shown in chapter 4, this is a

typical feature of a market populated with case-based decision-makers.

Of course, the validity of the approach selected here is limited by the fact that only case-based

decision-makers are present in the market. Should it turn out that the wealth share of the case-

based decision-makers becomes 0 in the limit in presence of expected utility maximizers, the

explanatory power of the results obtained would be at best marginal. This question will be

analyzed in chapter 6, where it will be shown that case-based decision-makers are indeed able

to survive in a financial market. The implications of their behavior for the price dynamic are

therefore of interest for the financial literature.

At the same time, the simplifying assumption that only case-based decision-makers are present

in the market renders the model tractable and allows to focus on the aspects of the case-based

reasoning alone, thus, providing a bench-mark for the evolutionary model which is constructed

in chapter 6.

The chapter is structured as follows. In section 1, I shortly repeat the market model introduced

in the last chapter and the results derived there for the individual and aggregate demand for

assets. In section 2, I use the concept of a market equilibrium in a context of case-based decision
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making specified in chapter 4 and the existence results derived there to define an equilibrium for

the economy. Section 3 analyzes the evolution of the economy for the case of short memory and

determines the long run distribution of asset prices, as well as the dynamics of asset holdings

for different groups of investors. It is discussed how empirically observed phenomena such as

bubbles, predictability of returns, excessive volatility and arbitrage possibilities can emerge in a

market populated by case-based decision-makers. Section 4 considers the case of long memory.

It identifies conditions under which investors with high aspiration level are able to learn to

behave as expected utility maximizers in the limit. However, even with infinite memory, not all

of the investors learn the real distribution of returns. Phenomena such as the equity premium

puzzle can thus obtain in the limit even if the investors in the economy are risk-neutral. In section

5, I examine whether hypothetical reasoning leads to optimal decisions in a market environment.

In section 6, a similarity function on the space of problem-act / price-portfolio pairs is introduced

and the price dynamic studied for the cases of long and short memory. Section 7 concludes. The

proofs of the results are stated in the appendix.

5.1 The Economy

Consider the economy, described in section 1 of chapter 4, consistingof a continuum of investors,

uniformly distributed on the interval [0;n]. For each i 2 [0;n] and some constant ¹u0 2 R+
0

denote by ¹ui = ¹u0 + i the aspiration level of investor i. The aspiration level of the investors is

then also uniformly distributed on [¹u0; ¹un].

Each investor lives for two periods. The preferences of the investors are assumed to be such that

they wish to consume only in the second period of their life. The preferences over consumption

in the second period are representedby a utility function u (¢), which is identical for all investors.

u (¢) is assumed to be strict monotonically increasing and continuous in consumption in period

two with u (0) > 0. There is one consumption good in the economy. The initial endowment

of the investors consists of one unit of the consumption good in the first period and is 0 in the

second period.

I use the example from section 7 of chapter 4 to describe the possibilities for transferring con-

sumption between two periods: a riskless asset, denoted by b and a risky asset with exogenous

supply, denoted by a. The riskless asset is available in a perfectly elastic supply at a price of
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1 in each period. It delivers (1 + r) units of consumption good in period t for each unit of the

consumption good, stored in period (t¡ 1).

The supply of the risky asset is fixed at A > 0. The payoff of one unit of the asset in period t

is:91

±t =
½
±D with probability q
0 with probability 1¡ q

¾
,

and is identically and independently distributed in each period92 . The price of the risky asset at

time t is denoted by pt and determined endogenously in an equilibrium. New emissions are not

considered, since I am interested in the behavior of prices on the secondary asset market only.

The decision of a young investor in terms of the case-based decision theory is described as a

problem to be solved by choosing an act out of a given set. In the present context the problem

can be formulated as: ’’Choose a portfolio of assets today to enable consumption tomorrow’’.

The decision of a young investor now consists inchoosing a portfolio of two assets —the riskless

asset b and the risky asset a. For the present, I consider only the case, in which there are only

two portfolios available for a single investor: either the whole initial endowment is invested in

a or in b. Short sales are prohibited. The case of allowed diversification is discussed in section

6 of this chapter.

Denote by ®it¡1 the act chosen by a young investor with an aspiration level ¹ui in period (t ¡ 1).

Then the values of ®i —

A = fa; bg
represent the set of acts available to an investor who solves the problem formulated above.

91 The risky asset can be thought of as an asset of a firm with a given initial capital D , which does not depreciate
and which is reinvested in each period. The production function for the consumption good is linear with a random
coefficient ·:

y (D) = ·D
with

· = ± , with probability q
· = 0, with probability 1 ¡ q,

identically and inependently distributed in each period. Hence, the profits of the firm (normalizing the price of the
consumption good to 1) are

D±, with probability q
0, with probability 1 ¡ q.

Assuming that the profit is paid out as dividends to the owners of the firm proportionally to the shares they own
and that no reinvestment (no new emmissions) take place, we obtain the payoff structure of the risky asset.

92 q is interpreted as the objective probability of high returns, known to an external observer, but not to the investors
in the economy. Hence, q will be irrelevant for the investors’ decisions. However, the specification of q makes it
possible to analyze the long run behavior of the economy.
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Now, define the indirect utility of consumption by vt (®t¡1), the memory of an investor i by

M it and parameterize the length of memory by m, as in chapter 4. It is again assumed that

the memory of an investor i consists of the cases experienced by the investors of the previous

(m+ 1) generations with the same aspiration level as i, ¹ui. The cumulative utility of an asset

® 2 fa; bg is, therefore:

U it (®) =
X

¿2Cit(®)

£
v¿ (®) ¡ ¹ui

¤

with

Cit (®) =
©
t¡m¡ 1 · ¿ < t j ®i¿ = ®

ª

describing the set of periods (among the lastm+1) in which the predecessors of investor i have

chosen act ®.

As usual, the investor chooses in each period the asset with the highest cumulative utility.

The individual and aggregate demand for assets, given the memory of the investors at time thave

already been derived in sections 3 and 7 of chapter 4. It was shown that the individual demand

for the risky asset in general depends non-monotonically on its current price, rising for relatively

low prices and decreasing for high prices. Moreover, the individual demand for the risky asset

can be very insensitive to price changes near 0. These characteristics of the individual demand

determine the properties of the aggregate value of demand for the risky asset, which is increasing

in its price and can be 0 for low prices. Moreover, as shown in section 7 of chapter 4, the value

of demand for the risky asset is a correspondence, which maps the range of non-negative prices

pt 2 [0;1] into the range of possible values of demand [0;n]. It is upper hemicontinuous, non-

empty, closed- and convex-valued for every price pt. These properties insure the existence of a

temporary equilibrium.

5.2 Temporary Equilibrium

In chapter 4, it was demonstrated that a temporary equilibrium exists under quite general con-

ditions (assumptions (A1) and (A2)). I now shortly restate the definition of a temporary equi-

librium and the existence result for the economy at hand.

Definition: A temporary equilibrium at time t is defined by:
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² portfolio choices for all young investors ®it 2 fa; bg for each i 2 [0;n];

² utility of consumption derived by the old investors vt
¡
®it¡1

¢
for each i 2 [0;n];

² a price of the asset a, pt

such that following conditions are fulfilled:

1. Case-based decision-making of the young consumers:

®it =
½
a, if U it (a) ¸ U it (b)
b, if U it (a) · U it (b)

¾

at the equilibrium price pt.

2. Consumption-decision of the old consumers:

vt
¡
®it¡1

¢
=

(
u

³
pt
pt¡1

+ ±t
pt¡1

´
if ®it¡1 = a

u (1 + r) if ®it¡1 = b

)

3. Market-clearing condition:

st =: Apt =
Z

fi:®it=ag
di =: dt

where dt denotes the mass93 of the young investors who choose to hold a in period t and

st is the value of supply of a.

Following assumptions are needed to insure existence:

(A1) The utility function u (¢) is strictly increasing and continuous.

(A2) At t = 1, the population of the old investors can be partitioned into a finite number of intervals

such that all the investors of the same interval hold the same asset.

The following proposition insures the existence of an equilibrium in each period t ¸ 1 for an

arbitrary length of memory. Its proof was given in section 7 of chapter 4.

Proposition 5.1 Assume that (A1) and (A2) hold. Then, for each length of memory m 2
f0:::t¡ 1g, a temporary equilibrium of the economy exists in every period t ¸ 1.

93 Or, in other words — the value of demand for a in period t. Remarks 4.1 and 4.2 in chapter 4 show the
equivalence of

Apt =
Z

fi:®i
t=ag

di

to the market clearing conditions in this economy.
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The uniqueness of the equilibrium is, however, not guaranteed. The discussion of non-degeneracy

of equilibria, see section 8 of chapter 4, applies here as well. Since I believe that the conditions

excluding degenerate equilibria are too strong to be justified by economic intuition, I make as-

sumptions on the aspiration levels that insure that at least one equilibrium with positive price

of the risky asset exists in each period of time. Where appropriate, I also discuss the issue of

multiplicity of equilibria.

5.3 Price-Dynamics with One-Period Memory

After introducing the notion and guaranteeing the existence of a temporary equilibrium, I pro-

ceed to investigate the dynamics of asset prices and asset holdings in the economy. Of course,

the paths will depend on the initial distribution of the asset holdings, as well as on the assump-

tions about the range of aspiration levels of the investors. Another important factor is also the

length of the investors’ memory parameterized by m. If investors are only learning about the

utility realizations of the last period, they are not likely to learn much about the economy and its

structure. On the opposite, if they have the experience of all previous generations, then informa-

tion will gradually accumulate in the economy and one would suppose that (given a stationary

structure of dividends) in the limit the investors will be able to learn to act as expected utility

maximizers, who know the true distribution of returns.

I consider only the two extreme cases — one-period memory and infinite memory. The analy-

sis in general is quite complicated that is why I concentrate on examples, which, I think, pro-

vide some intuition into how a market, populated by case-based decision-makers evolves and in

which aspects it differs from a market, in which only expected utility maximizers with rational

expectations trade.

First, assume that the investors in the economy have a memory of length 1. This implies that

the agents are myopic, they base their decisions only on the nearest past, without considering

any information about the long run behavior of the economy. It might be that they are unable

to extract information from past data, or that the data is not available to them. Limited time,

capacity and resources can also be a reason for the agents to adapt simple heuristics based on

small amounts of information. It may be also that the agents, not knowing the structure of the

model, consider important for their decision only what happened in the recent past and thus do
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not try to obtain more information.

Now, consider the following example, which illustrates the price dynamics in an economy with

short memory. I make the following assumptions:

(A4) Let the utility functions of the investors be linear, i.e.:

u
µ
pt
pt¡1

+ ±t
pt¡1

¶
= pt
pt¡1

+ ±t
pt¡1

u (1 + r) = 1 + r.

(A5) Suppose that the initial holdings94 of the old consumers at time t = 1 be such that the investors

[0; ¹ua ¡ ¹u0] hold the risky asset a, whereas those on the interval [¹ua ¡ ¹u0;n] hold the riskless

asset b for some ¹ua 2 (¹u0; 1).

(A6) Fix the price of the risky asset in t = 0 to be95

p0 =
[¹ua ¡ ¹u0]
A

=
£
¹ua ¡ ¹u0

¤
,

with A = 1.

Assumption (A4) about the linearity of the utility function is not crucial: it simplifies the com-

putations and allows for explicit solutions, but does not influence the qualitative implications.

(A5) specifies the initial holdings in the economy in such a way that for all possible sequences

of dividend realizations there is an equilibrium path on which the price of the risky asset re-

mains strictly positive over the time. Although equilibria with pt = 0 still exist, I concentrate

my analysis on non-degenerate equilibria. (A6) fixes the price at t = 0 to be the equilibrium

price for the initial allocation specified in (A5).

Given these assumptions, three possible cases can be distinguished which qualitatively change

the dynamics of the price pt: either the highest aspiration level in the economy is lower than

(1 + r), or it lies in the interval between (1 + r) and the return of the risky asset, when it yields

positive dividends, or it is higher than the return of the risky asset when the dividend is positive.

94 Since at t = 0 the memory of all investors is empty, their choices can be set arbitrarily.
95 This would be the price of a in t = 0 if the young consumers chose their asset holdings to be a for those with
aspiration levels

£
¹u0; ¹ua

¤
and b for those with aspiration levels [¹ua; ¹un]. Remember that the mass of the investors

with aspiration levels in a given range
£
¹u0; ¹ua

¤
is ¹ua¡¹u0, since the aspiration levels and the investors are distributed

uniformly on an interval with a length n.

184



5.3.1 The Case of Low Aspiration Levels

Let

(1 + r) ¸ ¹un > 1 ¸ ¹ua > ¹u0. (5.42)

The specification of the aspiration levels is illustrated in figure 11 a). The following proposition

obtains:

Proposition 5.2 Assume (A4), (A5) and (A6). Suppose as well that (5.42) holds. Then the
allocation

®it = a for i 2
£
0; ¹ua ¡ ¹u0

¤

®it = b for i 2
£
¹ua ¡ ¹u0;n

¤

and the price
pt =

£
¹ua ¡ ¹u0

¤

for each t ¸ 1 represent a stationary state of the economy.
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(1 + r)¹un
r

1¹ua| {z }

rr r r
¹un
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r r r r
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ph = [¹un ¡ (1 + r) + ¹ua ¡ ¹u0]

Figure 11
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Although the utility function is assumed to be linear, pt may differ from the fundamental value

of a as estimated by a statistician who knows the dividend process of the asset. Computed in

this way, the fundamental value of a is given by:

FV =
q±D
r

. (5.43)

In general, the fundamental value need not coincide with the price of the asset pt = [¹ua ¡ ¹u0]. If

D is relatively high and [¹ua ¡ ¹u0] relatively low, the asset might be undervalued and vice versa.

This does not necessarily mean that riskless arbitrage is possible. Indeed, as long as ±D
¹ua¡¹u0 > r,

the price

pt =
£
¹ua ¡ ¹u0

¤

does not allow for arbitrage, as long as the arbitrageurs live for two periods only.

Note, however, that if ±D
¹ua¡¹u0 < r, then the riskless asset is always better than the risky one. In

this case, arbitrage opportunities are present in the market, but not identified by the case-based

decision-makers with short memory, who are not able to learn the possible return realizations in

order to make optimal decisions.

This result illustrates that the notion of arbitrage crucially depends on the knowledge of the

investors about the economy. If the investors do not know (or do not believe) that two securities

are identical, or that one security is dominated by another one in each state of nature, then no

arbitrage possibilities exist for them in the market, although they might be present from the point

of view of an external observer, who knows (or believes to know) the structure of payoffs.

5.3.2 The Case of Intermediate Aspiration Levels

Let the dividend of the risky asset ±D, the riskless interest rate r and the ranges of the aspiration

levels ¹u0 and ¹un be such that:

1 + ±D
¹un ¡ (1 + r) + ¹ua ¡ ¹u0

> ¹un > 1 + r > 1 > ¹ua > ¹u0. (5.44)

Hence, the return of the risky asset is satisfactory for the investors with high aspiration levels

[(1 + r) ; ¹un] only if the dividend is positive. The specification of the parameters in this case is

illustrated in figure 11 b). Assume further that
¹ua ¡ ¹u0

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
> ¹ua (5.45)

holds. (5.45) says that the investors with low aspiration levels, [¹u0; ¹ua], are ready to hold the
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risky asset, even if all of the investors with high aspiration levels, [1 + r; ¹un] switch to the risk-

less asset96. As was shown in section 8 of chapter 4, this condition insures the existence of an

equilibrium path with positive price of the risky asset in each period of time.

5.3.2.1 Computation of the Equilibrium

(5.44) implies that the investors with high aspiration levels, [1 + r; ¹un] are neither satisfied with

the returns of the riskless asset, nor with the return of a if its dividend is low and the price

of a remains unchanged relative to the last period. Therefore, these investors will permanently

switch between a and b, holding a as long as its dividend is high, switching to b in the first period

in which the dividend of a becomes 0 and buying a in the following period, since the return of

b is unsatisfactory for them. In contrast, the investors with aspiration levels lower than (1 + r)

are always satisfied with the returns of their initially chosen portfolio and therefore never switch

away from it. The following proposition obtains:

Proposition 5.3 Assume (A4), (A5) and (A6). Suppose as well that (5.44) and (5.45) hold.
Then the economy evolves according to a Markov process with two states h and l such that:

®ih = a for i 2
£
0; ¹ua ¡ ¹u0

¤
[

£
(1 + r) ¡ ¹u0;n

¤

®ih = b for i 2
£
¹ua ¡ ¹u0; (1 + r) ¡ ¹u0

¤

ph =
£
¹un ¡ (1 + r) + ¹ua ¡ ¹u0

¤

and
®il = a for i 2

£
0; ¹ua ¡ ¹u0

¤

®il = b for i 2
£
¹ua ¡ ¹u0;n

¤

pl =
£
¹ua ¡ ¹u0

¤

and a transition matrix ¹P

¹P =

0
@

pt+1 = ph pt+1 = pl
pt = ph q 1¡ q
pt = pl 1 0

1
A .

5.3.2.2 Discussion of the Results

Whether condition (5.45) holds or not, in period t = 1, a price upward movement is observed

which does not depend on the size of the dividends that asset a pays. Hence, the price increase

cannot be attributed either to changes of fundamentals, nor to changes of the dividend payment.

In contrast, the downward movement is conditioned on the asset paying a low dividend in the

96 (5.44) and (5.45) hold simultaneously if, for instance, ¹u0 = 0, ¹un + ¹ua < 2 + r and ¹un > 1 + ±D for
±D < (1 + r).
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second period. As a whole, the structure of asset-price movements reminds of small bubbles,

which emerge without visible reasons (apart from the fact that some of the investors are dissat-

isfied with the safe technology) and then burst because of low dividend payments. Of course, if

the asset continues to pay high dividends, the high price of the asset persists, until in some pe-

riod t the dividend becomes low. As long as the probability 1¡ q of a low dividend is positive,

the bubble bursts in finite time with probability one.

Note that the probability that the price rises in period t + 1 if it was low (pl, as defined in

proposition 5.3) in t, is 1, whereas the probability that the price falls in t +1 if it was high (ph,

as defined in proposition 5.3) in t, is equal to the probability of a low dividend (1¡ q). This

means that asset prices are predictable to some extent. Especially, a rational external observer,

who knows the model and can predict the behavior of the case-based decision-makers, can also

predict the price pt+1 if pt is low, because he can be sure that the price will rise in the next period.

Still, he cannot predict the price movements in periods, in which the price of the asset is high.

The predictability of the asset price, however, does not mean that arbitrage is necessarily possi-

ble. Note that, if at time t the price is

pt = [¹ua ¡ ¹u0],

then the payoff of 1 unit invested in a in t +1 is
[¹un ¡ (1 + r) + ¹ua ¡ ¹u0] + ±D

¹ua ¡ ¹u0
> 1 + r if ±t = ±D.

and
[¹un ¡ (1 + r) + ¹ua ¡ ¹u0]

¹ua ¡ ¹u0
if ±t = 0.

Whereas the payoff is always greater than the payoff of 1 unit invested in b if ±t = ±D, this is

not necessarily satisfied if the dividend is 0. Especially, it will be always smaller than (1 + r) if

¹ua > 1
1+r holds. In this case, arbitrage is impossible.

To study the limit behavior of the economy and, especially, the frequencies with which the in-

vestors with relatively high aspiration levels hold asset a and asset b, it is useful to introduce the

following notation. Let ! denote a typical equilibrium path characterizing the evolution of the

economy. The computation of temporary equilibria has shown that only paths on which the two

states h and loccur will play a role for the evolution of the economy. Hence, a typical path ! is

a random sequence of h and l and can be written as

! = (!t)1t=0
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with !t 2 fh; lg. Let © denote the set of all such paths and § denote the ¾-algebra on ©. Ct (h)

and Ct (l) describe the set of periods in which the economy is in state h and l, respectively (on

a path !, where this dependence is omitted for convenience in the notation):

Ct (h) = f¿ < t j !¿ = hg
Ct (l) = f¿ < t j !¿ = lg .

Denote by ¼h and ¼ l the limit frequencies states h and l:

¼h = lim
t!1

jCt (h)j
t

¼l = lim
t!1

jCt (l)j
t

if these limits exist. Usually, these limits will depend on the path ! as well. However, the

following proposition shows that for the economy at hand these frequencies are well defined and

independent of the chosen path !. Denote by P the probability distribution on (S; §) induced

by the 1-fold of the transition matrix ¹P .

Proposition 5.4 On P -almost all paths ! 2 © the limit frequencies ¼h and ¼l coincide with
the invariant probability distribution of a Markov chain with transition matrix97:

¹P =

0
@

pt+1 = ph pt+1 = pl
pt = ph q 1¡ q
pt = pl 1 0

1
A

and can be computed to be:

¼h =
1

2¡ q
¼l =

1¡ q
2¡ q .

Now, knowing the distribution of asset prices over time, the moments of the distribution can be

determined. The mean of the asset price is:

¹1a = ¹ua ¡ ¹u0+
[¹un ¡ (1 + r)]

(2¡ q) . (5.46)

It is possible to choose the parameters in such a way that the fundamental value of the asset (as

defined in (5.43)) is equal to the mean asset price98. Indeed, this is the case if

D¤ =
r (2¡ q) (¹ua ¡ ¹u0) + r (¹un ¡ (1 + r))

(2 ¡ q) q± .

97 Since P 2 =
µ

q2 + 1 ¡ q q ¡ q2

q 1 ¡ q

¶
has only positive entries (for non-degenerate probability distribution of

dividends), ¼h and ¼l exist, see Lawler (1996, p.15).
98 Since the price of the asset changes over time, whereas the fundamental value remains constant, the price will
obviously differ from the fundamental value at least in some periods. Thus, we can ask, wether the fundamental
value can still be the best estimator for the expected price in the long run.
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However, the equality need not hold in general and it is also possible that the mean price of the

asset in the long run remains above or below the fundamental value99.

The price of the asset has a positive variance, given by:

¾1a =
p

1¡ q [¹u
n ¡ (1 + r)]
(2¡ q) . (5.47)

The fluctuation of the price is neither due to changes in the fundamental value of the asset, nor

to new information, nor even necessarily to changes in the dividend payments. Hence, the asset

price exhibits extreme volatility, which can not be explained by the characteristics of the asset,

but which is consistent with the empirical evidence on price volatility cited in the introduction.

The price f luctuation in the model can be explained by the decision-making process of the in-

vestors. The risk (as represented by ¾1a) faced by the investors in the market consists of two

parts: exogenous and endogenous. The exogenous risk is created by the random fluctuation of

the dividends and depends negatively on the probability of high dividends q. The endogenous

risk is caused by the ignorance of the investors and their reliance on the cumulative utility of an

asset to predict returns. It depends positively on the mass of investors with high aspiration levels

[¹un ¡ (1 + r)], who are not satisfied with the returns of the riskless asset and thus would hold

the risky asset as long as its dividends are high, but sell it, once the dividend falls to 0. In chap-

ter 3, I have shown that investors with relatively high aspiration levels usually trade too much

in the sense of Odean (1999). The results derived here demonstrate that in a market environ-

ment increasing the number of case-based decision-makers with high aspiration levels leads to

an increase of the risk faced by the economy, as well as to frequent change of asset holdings. By

switching too often between the available portfolios, not acting on information, these investors

not only cause the price of the risky asset to f luctuate without changes of the fundamental value

but also lower their profits, since they buy when prices are high and sell at low prices. To un-

derstand the last point consider three cases. If the expected return of asset a at price ph is higher

than those of asset b, it immediately follows that the expected return of a is also higher than

99

D¤± > (¹un ¡ 1)
¡
¹un ¡ (1 + r) + ¹ua ¡ ¹u0

¢
,

as required in condition (5.44) holds, for instance if
r > (2 ¡ q) q (¹un ¡ 1) .

If
D¤± < (¹un ¡ 1)

¡
¹un ¡ (1 + r) + ¹ua ¡ ¹u0¢ ,

then D > D¤ always holds and the risky asset is undervalued, ¹1
a < FV .
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those of b at price pl . It follows that the rational choice of an investor should be to buy a if the

observed price of a is pl. Hence, by switching from a to b, the investors with aspiration levels

higher than (1 + r) lower their returns compared to the situation in which they hold a in each

period of time.

Alternatively, if the expected return of asset b is higher than those of a at a price pl , it follows

that the return of b is also higher than the return of a at a price ph and therefore the switch from

b to a lowers the expected returns of an investor.

In the case in which the return of b exceeds those of a at a price ph but is lower than those of a at

a price pl, the investors with aspiration levels higher than (1 + r) always hold the asset with the

lower expected return. Obviously, from an individual point of view, the optimal choice would

be a, at pl and b at ph, hence the switching behavior lowers the expected return of the investors

in this case, as well.

Of course, it might be that case-based reasoning still leads to higher expected returns than choos-

ing a portfolio at random and holding it forever. Nevertheless, in an empirical study, observing a

behavior similar to that of the case-based investors with relatively high aspiration levels in this

model would lead to the conclusion that these investors lower their profits by switching too of-

ten among the available portfolios, compared to the situation in which the optimal portfolio is

held.

The cycle determined in proposition 5.4 is not unique. In fact, in each period t, multiple equilib-

ria exist. For instance, in t = 2, with ±2 = 0, there is an equilibrium in which everyone switches

to b and the price of a falls to 0. The price pt can also crash in a period with high dividends. As

long as

¹u0 >
±D

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
,

there is an equilibrium in t = 2 (with ±2 = ±D) in which the price of the risky asset equals 0.

It is also not guaranteed that a cycle emerges from the first period on — the time needed to reach

a state, from which on a cycle can evolve, depends on the initial allocation of the assets in the

economy and on the parameters of the model. In this example, the cycle will start only in the

first period in which ±2 = 0 holds if (5.45) is not satisfied.

The dynamics is further simplified by the assumption of only two assets in the economy. Should
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the number of assets exceed two, further equilibria would emerge. This is due to the short

memory of the investors. Since the investors observe only one past utility realization, they

assign a cumulative utility of 0 to those assets whose returns they do not observe. Hence, an

investor who is dissatisfied with one of the acts, has to choose another one at random, which

implies multiple equilibria even if assumption (A3) from chapter 4 is fulfilled.

The assumption that the riskless asset is available in perfectly elastic supply at a price of 1 and,

hence, its price and returns are fixed, does not influence the results qualitatively. Assuming a

variable price of b also leads to a two-state stochastic cycle. Differently from the cycle described

above, the price of b rises when the price of a falls and vice versa. Hence, the investors with

high aspiration levels do not only create excessive volatility of the prices of the risky assets, but

also cause the ex-ante riskless asset to exhibit volatile stochastic returns.

5.3.3 The Case of High Aspiration Levels

Now consider the third case, in which the highest aspiration level ¹un exceeds the return of the

risky asset even if the dividend is positive, i.e.:

¹un > 1 +
±D

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
> 1 + r > 1 > ¹ua > ¹u0. (5.48)

The position of the aspiration levels relative to the asset returns is illustrated in figure 11 c). To

insure that degenerate equilibria exist, assume that (5.45) holds.

5.3.3.1 Computation of the Equilibrium

Differently from the case of intermediate aspiration levels, with high aspiration levels the in-

vestors with aspiration levels [1 + r; ¹un] are not satisfied with the returns of the risky asset,

even if its dividend is high, i.e. ±t = ±D. Therefore, they switch between the two possible

portfolios in each period of time, holding a in odd periods and b in even periods. Hence, the

economy evolves according to a deterministic cycle:

Proposition 5.5 Assume (A1), (A4), (A5) and (A6). Suppose as well that (5.48) and (5.45)
hold. Then the deterministic cycle with two states h and l such that:

®ih = a for i 2
£
0; ¹ua ¡ ¹u0

¤
[

£
(1 + r) ¡ ¹u0;n

¤

®ih = b for i 2
£
¹ua ¡ ¹u0; (1 + r) ¡ ¹u0

¤

ph =
£
¹un ¡ (1 + r) + ¹ua ¡ ¹u0

¤

and
®il = a for i 2

£
0; ¹ua ¡ ¹u0

¤
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®il = b for i 2
£
¹ua ¡ ¹u0;n

¤

pl =
£
¹ua ¡ ¹u0

¤
.

describes the evolution of the economy. The state in period t is h if t = 2k + 1 and l if t = 2k
with k 2 Z+

0 .

5.3.3.2 Discussion of the Results

Again, as in the case of intermediate aspiration levels, the economy evolves according to a cycle

with two possible states. However, now the cycle is no longer stochastic — the high- and low-

price-states alternate in each period so that the price-sequence is completely predictable for an

external observer. Hence, the small bubbles observed are deterministic. The mean price of the

asset is

¹a =
1
2
[¹un ¡ (1 + r)] +

£
¹ua ¡ ¹u0

¤
,

whereas its variance is positive and equals

¾a =
1
2
[¹un ¡ (1 + r)] .

One sees that the larger the mass of the investors with relatively high aspiration levels, the higher

is the mean price of the asset, but also the higher is its volatility. Hence, as in the previous

example, these traders create excessive risk in the economy by trading more, than it would be

optimal for them and by possibly causing the risky asset to be overvalued.

Note that in both the second and the third case, the movements of the asset price are negatively

correlated over the time. Indeed, it was shown that in the case of intermediate aspiration levels

a price fall is followed by a price rise with certainty. In the case of high aspiration level, a period

of rising prices is followed by a downward movement and vice versa. Such negative short run

correlation is found in market data and Lo and MacKinlay (1988) observe that this correlation

is higher for stocks with smaller capitalization. If we assume that the aspiration levels of the

investors remain constant, but the dividend paid by the asset increases100, it is easy to see that

the correlation between the returns of the asset a is smaller in the case in which the aspiration

levels are relatively low as compared to ±D (the capitalization of the firm is large)101 and rises

as the capitalization diminishes, rendering the aspiration levels of the investor relatively high as

100 As observed in footnote 1 the value of the dividend ±D can be used as a proxy for the capitalization of the firm
D. Hence, the higher the dividend, the higher is the capitalization of the firm.

101 In the case of low aspiration levels (±D is relatively high) there is no correlation between the returns. As
±D decreases (the case of intermediate aspiration levels), the correlation increases (upward movements follow
downward movements).
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compared to ±D.

Another interesting finding is that in the case of high aspiration levels, the market-to-book ratio

and the inverse of the price are good predictors of the future price movements. This was em-

pirically observed by De Bondt and Thaler (1987), Fama and French (1992) and Lakonishok

and Shleifer and Vishny (1994). In periods in which the state of the economy is h, the market-

to-book ratio is high and the inverse of the price low, hence the expected price movement is a

downward one. At state l the inverse relationship holds. De Bondt and Thaler (1987) interpret

this phenomenon as an overreaction of the investors to past positive or negative earnings. In an

economy populated by case-based decision-makers this predictability of the price movements is

due to the high aspiration levels, which render the investors unsatisfied with the returns of both

assets in the economy in any possible state. The investors with high aspiration levels are forced

to change their holdings in every period of time, thus, creating forecastable price f luctuations in

the market.

Of course, the cycles of the type described can only emerge if the memory of the decision-

makers is particularly short, i.e. if they are unable to learn from the past and to realize that

the environment in which they act is stable. It is, therefore, of interest to examine whether

introducing long memory would help to smooth the price movements and allow agents to learn

to choose the asset with the higher expected returns.

5.4 Price-Dynamics with Long Memory

Now assume that the agents can remember all cases of their predecessors, from t = 0 on. One

may argue that the effort to remember so many cases goes beyond their bounded capacity to

process information. In fact, the decision-maker i at time t need not remember the particular

cases, but only the cumulative utilities computed by his predecessor at (t ¡ 1). He then adds

the net utility realization of ®it¡1,
£
vt

¡
®it¡1

¢
¡ ¹ui

¤
to the cumulative utility102 U it¡1

¡
®it¡1

¢
and

chooses the act with the maximal cumulative utility at t.

The analysis of an economy, in which the agents have infinite memory is very complicated in

the case in which the aspiration levels are distributed on a continuum. If this assumption is

102 This simplification is made possible by the assumption, that agents know only about cases of their predecessors
with the same aspiration level.
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relaxed, then the value of demand correspondence is not necessarily convex-valued. However,

the convex-valuedness is indispensable for the existence of a fixed point of a correspondence in

the Kakutani fixed-point theorem103. Hence, I construct an economy with three types of agents

for which an equilibrium with a positive price of the risky asset exists in each period.

5.4.1 Investor Types

Assume, as in section 3 that assumptions (A4), (A5) and (A6) hold. Suppose, however that

the aspiration levels of the investors in the economy are such that the interval of investors

[1 + r ¡ ¹u0;n] has an aspiration level ¹u3 2 (1 + r; ¹un), the interval of investors [¹ua ¡ ¹u0;

1 + r ¡ ¹u0] has an aspiration level ¹u2 2 (¹ua; 1 + r) and the investors [0; ¹ua ¡ ¹u0] have an aspi-

ration level ¹u1 2 (¹u0; ¹ua). Call these groups of investors type 3, type 2 and type 1, respectively.

Hence, (A5) implies that the initial holdings of the assets in t = 0 are such that the investors of

type 3 and 2 hold b, whereas those of type 1 hold a. Assuming again that

1 +
±D

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
> ¹u3 > 1 + r > ¹u2 > 1 > ¹u1 (5.49)

and
¹ua ¡ ¹u0

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
> ¹u1 (5.50)

hold, it is easy to conclude that:

² the investors of type 1 will always hold a, since (5.50) insures that the return of a (even if all

of the investors of type 3 switch to b in a single period and the dividend of a is 0) is higher

than their aspiration level ¹u1;

² the investors of type 2 will always hold b, since their aspiration level is smaller than the

returns of b, (1 + r);

² the investors of type 3 will in general switch between a and b. Since the return of a when

its dividend is positive exceeds their aspiration level, they will only switch from a to b in

periods in which the dividend paid by a is 0.

The following proposition guarantees that in each period of time at least one equilibrium with

103 In fact, relaxing this assumption in my model endangers only the existence of an equilibrium with a strictly
positive price. The reason for this is the prohibition of short sales, which insures that the price of the risky asset
cannot fall below 0.

195



pt 6= 0 exists:

Proposition 5.6 Assume (A4), (A5) and (A6). Suppose as well that (5.49) and (5.50) hold.
Then, in each period of time, (at least) one of the following two states, denoted by h and l, is an
equilibrium of the economy:

®ih = a for i 2
£
0; ¹ua ¡ ¹u0

¤
[

£
(1 + r) ¡ ¹u0;n

¤

®ih = b for i 2
£
¹ua ¡ ¹u0; (1 + r) ¡ ¹u0

¤

ph =
£
¹un ¡ (1 + r) + ¹ua ¡ ¹u0

¤

and
®il = a for i 2

£
0; ¹ua ¡ ¹u0

¤

®il = b for i 2
£
¹ua ¡ ¹u0;n

¤

pl =
£
¹ua ¡ ¹u0

¤
.

This proposition also allows a direct comparison between an economy with short and long mem-

ory. Since the allocations and equilibrium prices in proposition 5.3 and proposition 5.6 coincide,

it is possible to derive conclusions about the inf luence of a long memory on the evolution of the

economy.

Proposition 5.6 further clarifies that despite the constant choices of the investors of type 1 and 2,

the asset holdings and the price of the asset a in general vary over time. Hence, the distribution

of the returns of a depends on the behavior of type 3.

5.4.2 Price Dynamics — An Example

To enable the analysis of the economy in the long run, I make the following simplifying assump-

tions:

(A7) Symmetry of returns: the net utility achieved by the investors of type 3 from a when it pays

positive dividends is equal to the negative of the net utility achieved by the investors of type 3

when a pays zero dividend and type 3 still chooses a:

1 +
±D

¹un ¡ (1 + r) + ¹ua ¡ ¹u0 ¡ ¹u3 = ¹u3 ¡ 1 := c

(A8) Once the investors of type 3 have switched from a to b, they hold b for k 2 Z+n f0g periods

exactly104:
¹ua ¡ ¹u0

¹un ¡ (1 + r) + ¹ua ¡ ¹u0 ¡ ¹u3 := k
¡
1 + r ¡ ¹u3

¢

104 Here, I implicitly assume that if an investor of type 3 is indifferent between a and b at time t, he chooses asset
a.
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k 2 Z+n f0g

These two assumptions allow a very simple representation of the cumulative utility of a for the

investors of type 3 and imply following results:

Proposition 5.7 Assume (A4), (A5), (A6), (A7) and (A8). Let further (5.49) and (5.50) hold.
The expected number of periods, during which the investors of type 3 hold asset a in a row is
given by:

E [t] =
½ 1

(1¡2q) for q < 1
2

1 for q ¸ 1
2

¾
.

Denote by ¼h and ¼ l the invariant probabilities of states h and l.

Corollary 5.1 If q < 1
2, then the economy will be in state hwith
®ih = a for i 2

£
0; ¹ua ¡ ¹u0

¤
[

£
(1 + r) ¡ ¹u0;n

¤

®ih = b for i 2
£
¹ua ¡ ¹u0; (1 + r) ¡ ¹u0

¤

ph =
£
¹un ¡ (1 + r) + ¹ua ¡ ¹u0

¤

during a fraction of time

¼h =
1

1 + k (1¡ 2q)
and in state l, given by:

®il = a, if i 2
£
0; ¹ua ¡ ¹u0

¤

®il = b, if i 2
£
¹ua ¡ ¹u0;n

¤

pl =
£
¹ua ¡ ¹u0

¤
.

during a fraction of time

¼l =
k (1¡ 2q)

1 + k (1 ¡ 2q)
almost surely in the limit.

If q ¸ 1
2, then the economy will be in state h during a fraction of time ¼h = 1 almost surely in

the limit.

5.4.3 Discussion of the Results

Consider first the case q < 1
2. Using corollary 5.1, the mean of pt can be computed to be:

¹1p = ¹ua ¡ ¹u0 +
1

1 + k (1 ¡ 2q)
(¹un ¡ (1 + r))

and its variance is:

¾1p =
p
k (1¡ 2q)

1 + k (1 ¡ 2q) (¹u
n ¡ (1 + r)) .

Now, it is possible to compare the moments of the distribution of the prices in an economy with

long memory to the moments of distribution in an economy with short memory. It is easy to see
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that ¹1p = ¹1p, as computed in (5.46), if

k =
1¡ q
1¡ 2q

(the equality can only hold if 1¡q
1¡2q 2 Z+). The same condition implies that the variances of the

two distributions are also equal: ¾1p = ¾1p, (as computed in (5.47)). In general, however, the

moments of the two distributions do not coincide. Since a higher value of k means105 that asset

b is held for a longer period of time, once chosen by type 3, this implies that if

k <
1¡ q
1¡ 2q

,

¹1p > ¹1p. At the same time the variance ¾1p increases, as k assumes values smaller than 1¡q
1¡2q .

Since k decreases in ¹u3, it follows that the mean price and the variance of a depend both posi-

tively on the highest aspiration level in the economy, as well as on the mass of the investors of

type 3 (of course, as long, as type 3 still finds the positive dividend of a to be satisfactory).

It is also of interest to compare the results obtained in an economy with representative con-

sumers to the results of an individual portfolio choice problem. In chapter 3, I have analyzed an

individual portfolio choice problem of a case-based decision-maker with a constant aspiration

level and long memory. Using the results of Gilboa and Pazgal (2001), it could be shown that

if the returns of the available portfolios are exogenously given, bounded above and below and

i.i.d. over the time, following statements hold:

1. If the aspiration level of the investor exceeds the highest achievable mean return, then the

investor will switch infinitely often among all available acts. He will choose each act with

a frequency which is inversely proportional to the difference between its mean and the

aspiration level of the investor.

2. If the aspiration level of the investor is lower than the mean return of some of the available

portfolios, then one of these portfolios will be chosen with frequency 1 almost surely in the

limit.

The results for the economy with representative agents with long memory are similar. Note that,

105 Note that once the parameters of the economy with infinite memory are defined, k is fixed. Of course, it is
only meaningful to compare the economy with long memory to the economy with one-period memory if they
have the same parameters. Still, ¹u3 is only defined for the economy with infinite memory and can vary between
[(1 + r) ; ¹un]. Since k depends negatively on ¹u3, changing ¹u3 (while keeping all other parameters constant) allows
us to compare the distributions of the two economies for different values of k.
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if q < 1
2, the realized mean returns of an investor of type 3 are:

¹rb = 1+ r for asset b

and

¹ra =
1
2

1
1

1¡2q

µ
1

1¡ 2q
¡ 1

¶ µ
1 +

±D
(¹un ¡ (1 + r) + ¹ua ¡ ¹u0)

¶
+ (5.51)

+
1
2

1
1

1¡2q

µ
1

1¡ 2q ¡ 1
¶
+

1
1

1¡2q

µ
¹ua ¡ ¹u0

(¹un ¡ (1 + r) + ¹ua ¡ ¹u0)

¶

for asset a, where the first term represents the return during those periods, in which type 3 holds

a and the dividend of a is positive, the second term represents the return in periods, in which

type 3 holds a, but the dividend is 0, whereas the last term represents the returns of the periods,

in which the dividend of a is 0 and the investors of type 3 switch from a to b. Using (A7), (A8)

and (5.51), it is then easy to compute that

¹ra ¡ ¹u3 = k
¡
1 + r ¡ ¹u3

¢
(1 ¡ 2q) ,

and since

¹rb ¡ ¹u3 = 1+ r ¡ ¹u3,

it follows that:
¹ra ¡ ¹u3

¹rb ¡ ¹u3
= k (1¡ 2q) =

¼ l
¼h

.

Hence, in the limit, the frequencies ¼h and ¼l, with which type 3 chooses acts a and b, are

indeed inversely proportional to the difference of the realized mean returns of the act considered

(as observed by the investors of type 3) and the aspiration level ¹u3.

Note further that if q < 1
2, neither act is satisfactory for the investors of type 3 ex-ante. The

maximal expected return of asset a, (if the investors of type 3 always hold a), is

1 +
q±D

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
< 1 +

±D
2 (¹un ¡ (1 + r) + ¹ua ¡ ¹u0)

= ¹u3,

where the equality follows from (A7). Since ¹u3 > 1 + r holds, it follows that the mean returns

of a and b are not satisfactory for the investors of type 3, which makes them switch between the

acts infinitely often in the limit. Hence, result 2:, which was shown for an individual portfolio

choice problem holds in a market environment, as well.

As in the case of short memory, the investors of type 3 exhibit behavior similar to those of

overconfident investors described by Odean (1999), since they expect higher returns than any

asset in the economy can earn on average and, hence, switch too often between the available

portfolios, reducing their earnings. The investors with high aspiration levels further increase
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the price f luctuations in the economy compared to the situation in which only investors with

relatively low aspiration levels (¹u1 and ¹u2) interact106.

Now, consider the case in which q ¸ 1
2 holds. Since in this case there is a positive probability

that the cumulative utility of a never falls beneath the cumulative utility of b for the investors

of type 3 , they hold a with frequency 1 almost surely in the limit. Hence, the mean of the asset

price pt is

¹1p = ph = ¹un ¡ (1 + r) + ¹ua ¡ ¹u0

and its variance is 0107. Of course, these results qualitatively differ from the results for an econ-

omy with one-period memory. Whereas with one-period memory, the investors with high as-

piration level are never satisfied and switch permanently between the acts, with long memory

they learn to choose one of the acts in the limit.

Again, this result is compatible with the result obtained for a portfolio choice problems in which

the price-process is exogenously given. If the investors of type 3 always hold a, its maximal

achievable average return is given by:

1 + q±D
¹un ¡ (1 + r) + ¹ua ¡ ¹u0

.

Since now q ¸ 1
2, this average return exceeds ¹u3 and makes a satisfactory in the limit, whereas

b generates returns which are always lower than the aspiration level ¹u3.

Note that if q ¸ 1
2 , then asset a is the ex-ante optimal choice from the point of view of a rational

risk-neutral expected utility maximizer, since its expected mean return at the equilibrium prices

is higher than those of b. In this case, the investors of type 3 learn to behave as expected utility

maximizers in the limit.

The learning process, however, does not spread over the whole economy. The investors of type

2 never learn that the act they choose is suboptimal at the equilibrium price. As in the case of

one-period memory, their aspiration level is too low to give them an incentive to experiment and

learn that expected returns of a are higher than those of b.

This last result provides apossibleexplanation of the equity premium puzzle, definedas aversion

of investors to hold stocks, see Mehra and Prescott (1985). They find that, although the observed

106 In an economy in which only type 1 and type 2 investors are present the price of a remains constant over time.
107 This does not mean that the investors of type 3 never hold b, but the time during which b is held is negligible

compared to the time during which a is held.
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returns on the stock market have been substantially higher than the returns of bonds for long

periods, investors prefer to hold bonds. The estimated levels of risk aversion needed to explain

this phenomena are too high to be realistic.

In an economy populated by case-based decision-makers, the equity premium puzzle can obtain

even for risk-neutral investors. Indeed, suppose that the mass of the investors of type 1 and type

3 is relatively small compared to the positive dividend of the asset ±D (or alternatively to the

capitalization of the firm D), whereas the mass of investors of type 2 is relatively large. This

means that the long run mean price of a is relatively low. In this case, the mean returns of asset a

exceed the mean returns of b (remember that q > 1
2 ) in the long run. Nevertheless, a large mass

of investors in the economy chooses the riskless asset in each period, because these investors

are satisfied with the returns of b and are not apt to switch to another asset, with ’’unknown’’

returns.

The validity of the qualitative results derived in the last section does not depend on the assump-

tion of (A4), (A7) and (A8). They have been useful in order to allow an analytically tractable

discussion and the computation of the limit distributions. In fact, statements analogous to state-

ments 1: and 2: can be formulated for an economy with an endogenously priced asset under

much more general conditions. Remember that act b has been assumed to be unsatisfactory for

type 3. If u (1 + r) exceeds ¹u3, then the initial allocation of the economy is a stationary state.

10: If the highest aspiration level in the economy ¹u3 exceeds the maximal achievable mean

utility of a, then the investors of type 3 switch infinitely often between the acts a and

b. In the limit, they almost surely choose the acts a and b with frequencies ¼h and ¼l ,

respectively such that:
¼h
¼ l

= ¹u3 ¡ ¹rb
¹u3 ¡ ¹ra

= ¹u3 ¡ u (1 + r)
¹u3 ¡ ¹ra

, (5.52)

where ¹ra and ¹rb denote the actual mean utility achieved by choosing a, respectively b, as

observed by the investors of type 3.

Note that the frequency ¼h is only implicitly determined by (5.52), since ¹ra now depends on the

frequency, with which type 3 switches between a and b, hence on ¼h .
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20: If the highest aspiration level in the economy, ¹u3, is lower than the maximal achievable

mean utility of a, then the investors of type 3hold a with frequency 1 almost surely in the

limit, i.e. ¼h = 1 and ¼ l = 0 obtain.

The next section demonstrates that statements 10. and 20: hold when the distribution of the divi-

dends has an absolute continuous part with respect to the Lebesgue measure on the real numbers.

Moreover, this result is independent of the specific form of the utility function.

5.4.4 Price Dynamics for General Probability Distributions

Assume (A1) and (A2). Consider the economy consisting of three types of investors 1, 2 and 3

with aspiration levels ¹u1, ¹u2 and ¹u3, respectively. Assume that n = 1. It is then convenient to

define the mass of each type of investors by µi (i = 1; 2; 3) with µ3 = 1 ¡ µ1 ¡ µ2. The initial

holdings of the investors of types 1 and 2 are given by:

®10 = ®30 = a (5.53)

®20 = b.

SetD = 1 and suppose that the dividend payments of a are distributed identically and indepen-

dently in each period of time according to a probability distribution Q with a support
£
±; ¹±

¤
. Let

the aspiration levels of the three types of investors fulfill:

u
µ
1 +

¹±
1¡ µ2

¶
> ¹u3 > u (1 + r) > ¹u2 > u

µ
1 +

±
1 ¡ µ2

¶
> ¹u1 (5.54)

and
µ1 + ±
1 ¡ µ2

> ¹u1 (5.55)

Denote by ~± the dividend payment which yields a 0-net utility to the investors of type 3, if the

price of a is (1¡ µ2):

u

Ã
1 +

~±
1¡ µ2

!
= ¹u3.

Assume that the probability distribution Q has an absolute continuous part with respect to the

Lebesgue measure ¹Leb on the real numbers, with a density g which is positive and bounded

away from 0 on the interval
³
~± ¡ ³;~± + ³

´
for some ³ > 0.

First note that the possible temporary equilibria are not changed by the assumption of a more

general probability distribution.
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Proposition 5.8 Suppose that (5.53), (5.54) and (5.55) hold. Then, in each period of time, (at
least) one of the following two states, denoted by h and l, is an equilibrium of the economy:

®ih = a for i 2 f1; 3g
®ih = b for i = 2
ph = [1¡ µ2]

and
®il = a for i = 1

®il = b for i 2 f2; 3g
pl = µ1.

The following two propositions assure the validity of statements 10: and 20: and generalize the

results of section 4 of chapter 3 to the case of endogenous prices.

Proposition 5.9 Let the probability distribution Q of the dividend payments has an absolute
continuous part with respect to the Lebesgue measure ¹Leb on the real numbers with a density g
such that

g (±) ¸ Á > 0
for all ± 2

³
~± ¡ ³;~± + ³

´
, where ~± is given by:

u

Ã
1 +

~±
1¡ µ2

!
= ¹u3.

Suppose further that Z ¹±

±
u

µ
1 +

±
1 ¡ µ2

¶
g (±) d± < ¹u3

and
u (1 + r) < ¹u3.

Then the state of the economy is h, if "t > 0 and l for "t < 0, where "t is given by:
"0 = 0

"t =

8
>><
>>:

"t¡1 + u
³
1 + ±t

1¡µ2

´
¡ ¹u3, if "t¡1 ¸ 0 and "t¡1 + u

³
1 + ±t

1¡µ2

´
¡ ¹u3 ¸ 0

"t¡1 + u
³
µ1+±t
1¡µ2

´
¡ ¹u3, if "t¡1 ¸ 0 and "t¡1 + u

³
1 + ±t

1¡µ2

´
¡ ¹u3 < 0

"t¡1 ¡ u (1 + r) + ¹u3, if "t¡1 < 0.

9
>>=
>>;

and±t »iid Q. For the Markov chain describedby "t, there exists an invariant (finite) probability
measure ¼ on the set

h
u

³
µ1+±
1¡µ2

´
¡ ¹u3; +1

´
such that

¼ l = ¼
·
u

µ
µ1 + ±
1 ¡ µ2

¶
¡ ¹u3; 0

¶

and
¼h = ¼ [0; +1)

almost surely describe the frequencies with which state h and state l occur in the limit, respec-
tively. ¼h > 0 and ¼ l > 0 hold. Moreover, there exists a limit mean utility of asset a, ¹ra, as
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observed by the investors of type 3, which satisfies
¼h
¼l

=
¹u3 ¡ u (1 + r)

¹u3 ¡ ¹ra
.

The proposition states that analogously to the setting in which the utility realizations are iden-

tically and independently distributed, in a market setting relatively high aspiration levels lead

to constant switching between the available acts. The frequency with which each of the acts is

chosen is inversely proportional to the net-mean utility of the act as observed by the investors

of type 3.

Proposition 5.10 Suppose that

u (1 + r) < ¹u3 <
Z ¹±

±
u

µ
1 +

±
1¡ µ2

¶
g (±)d±.

Then the state of the economy is h for "t > 0and l for "t < 0, where "t is defined as in proposition
5.9. The limit frequencies of the states h and l almost surely satisfy

¼h = 1
¼l = 0.

Hence, if the aspiration level of type 3 is chosen to lie between the highest achievable mean

utilities of the best and the second-best act, these investors learn to choose the optimal portfolio

in the limit.

The results of propositions 5.9 and 5.10 rely on the assumption that the memory of the investors

is endogenous and that investors observe only past cases experienced by investors with the same

aspiration level as their own. In the context of financial markets these two assumptions might

seem too severe, since hypothetical cases can be easily constructed and included in the memory.

The next section, therefore, discusses an example which illustrates the influence of hypothetical

reasoning.

5.5 Hypothetical Cases

Assume that the economy consists of identical agents and n = 1 holds. The aspiration level of

an investor is denoted by ¹u and is assumed to be constant over time. Differently from the model

presented above, it is assumed that asset b is also in fixed supply of 1 unit in each period of time.

In each period, b pays a dividend of r per unit. The representative investor is allowed to choose

among three investment alternatives: investing his whole initial endowment in a, in b, or in the

204



market portfolio, which consists of one unit of a and one unit of b. The indirect utility achieved

by choosing a or b is given by:

vt (a) = u
µ
pat + ±t
pat¡1

¶

vt (b) = u
µ
pbt + r
pbt¡1

¶
,

respectively. pat and pbt denote the price of a and b in period t. As in the previous section, the

dividendpayments of the risky asset ± are distributed according toa distributionQ on the interval
£
±; ¹±

¤
. 1 > ¹± > r > ± ¸ 0 is assumed. Note that the return of the market portfolio is given

by108:

1 + ±t + r

in each period of time, hence its indirect utility is

vt (MP ) = u (1 + ±t + r) .

The market portfolio dominates the other two investment opportunities independently of the

dividend payment of the risky asset109. Hence, it is of interest to know, whether the case-based

decision-makers are able to learn to make optimal choices in the limit, in spite of their limited

knowledge of the economy.

5.5.1 Individual Portfolio Choice

Let ®t denote the portfolio choice of the representative investor at time t: ®t 2 fa; b;MP g,

where MP stays for the investment into the market portfolio. The memory of the represen-

tative investor is constructed in the following way: in each period, the investor remembers

the last (m +1) choices of his predecessors and the utility realizations achieved from choos-

ing these portfolios. Apart from that, if the market portfolio was not the act chosen at time

108 The return of the market portfolio is computed as:
pa

t¡1

pa
t¡1 + pb

t¡1

pa
t + ±t

pa
t¡1

+
pb

t¡1

pa
t¡1 + pb

t¡1

pb
t + r
pb

t¡1

= 1 + r + ±t ,
since the market clearing condition of the market for consumption goods insures that pa

t + pb
t = 1 for each t.

109 This dominance, however, is not just a property of the assets, but an equilibrium property in a model with a
representative consumer. Indeed, if the representative investor in this model holds a, the price of a is 1 and the
return of a is at most 1 + ± t , which is less than the return of the market portfolio. If, however, the representative
investor holds the market portfolio, then the return of a is at most 1+±t

pa
t¡1

, which can exceed 1+ ± t +r for low enough
pa

t¡1. Still, since everyone in the economy would be holding the market portfolio, there is no possibility to profit
from the increase of the price of a, since it automatically leads to a decrease in the price of b.
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¿ 2 ft¡m¡ 1; t¡m:::; t¡ 1g, the representative investor also observes the realization of the

market portfolio at ¿ . Hence, for those periods in whichMP was not chosen, the investor has

two cases in his memory. The memory at time t can be, therefore, written as

Mt = ((®¿ ; v¿+1 (®¿)) ; (MP ; v¿+1 (MP )))t¡1¿=t¡m¡1 .

There is some redundancy in this definition: in periods in which MP was indeed the choice

of the investor this case is listed twice in his memory. Still, this will create no problem when

the cumulative utilities of the acts are computed. Given the memory of the investorMt and his

aspiration level ¹u, the cumulative utilities are determined as follows:

Ut (a) =
X

¿2Ct(a)
[v¿+1 (a)¡ ¹u]

Ut (b) =
X

¿2Ct(b)
[v¿+1 (b) ¡ ¹u]

Ut (MP ) =
tX

¿=t¡m
[v¿ (MP )¡ ¹u] ,

with

Cit (®) = ft¡m¡ 1 · ¿ < t j ®¿ = ®g
for ® 2 fa; bg. A sum over an empty set is assumed to equal 0.

5.5.2 Limit Behavior with Long Memory

Again, two cases have to be considered: the case of low aspiration level is given by:

¹u <
Z ¹±

±
u (1 + ± + r) g (±) d±.

Hence, the aspiration level should be lower than the average utility achieved by holding the

market portfolio in each period of time. Note that since the investor is observing the realizations

of the market portfolio in each period of time, he learns that the market portfolio dominates the

assets a and b, hence it is not possible that he chooses one of the assets a and b with frequency

1 in the limit. He, therefore, eventually chooses the market portfolio and, since the average

utility achieved by the market portfolio exceeds his aspiration level, the expected time until the

first switch to an alternative portfolio is 1. But even if the investor switches from the market

portfolio to a or to b, he eventually chooses the market portfolio again (since the returns of the

market portfolio are always higher and with positive probability exceed his aspiration level).

Hence, in the limit the market portfolio will be chosen with frequency 1.
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Proposition 5.11 Suppose that the aspiration level of the representative investor satisfies:

¹u <
Z ¹±

±
u (1 + ± + r) g (±) d±.

Denote by ¼a, ¼b and ¼MP the frequencies with which the risky asset, the bond and the market
portfolio are chosen in the limit, respectively.

¼MP = 1
¼a = ¼b = 0

obtains almost surely in the limit.

The previous proposition shows that optimal behavior obtains even for relatively low aspiration

levels, e.g. even for aspiration levels lower than u (1 + r), if the decision-maker includes the

hypothetical case containing the return of the market portfolio into his memory in each period of

time. Nevertheless, even with hypothetical reasoning optimal learning does not always obtain

in the limit. Especially, if the aspiration level of the representative investor is relatively high,

¹u >
Z ¹±

±
u (1 + ± + r) g (±) d±, (5.56)

he is not satisfied with the average utility achieved from the market portfolio by holding it in

each period of time. But condition (5.56) also implies that:

¹u >
Z ¹±

±
u (1 + ±)g (±) d±

and ¹u > u (1 + r). Hence, since the investor finds all portfolios available unsatisfactory, he will

switch among them infinitely often in the limit.

Proposition 5.12 Suppose that the aspiration level satisfies:

¹u >
Z ¹±

±
u (1 + ± + r) g (±) d±.

The representative investor holds portfolios a and b during a strictly positive proportion of time
with probability 1 in the limit.

The analysis of an economy in which the investors are allowed to learn the realizations of the

market portfolio apart from the realizations of actually chosen portfolios in the past shows that

this additional information improves the learning in the economy. Especially, for low aspira-

tion levels, investors acquiring information about the market portfolio learn that it dominates

the alternative investment opportunities and choose it eventually with frequency 1. This result

contrasts the results with endogenous memory which show that investors with relatively low

aspirations choose a possibly suboptimal portfolio in each period of time.
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However, for high aspiration levels, the results do not differ qualitatively from those achieved

with endogenous memory. The investor never learns to choose the optimal portfolio in the limit.

Since he is dissatisfied with each one of the possible acts, he chooses the dominated ones with

strictly positive frequency in the limit.

In this example, investors with low aspiration levels are able to learn to choose the optimal mar-

ket portfolio in the limit, because the market portfolio weakly dominates the other two available

portfolios. If no dominance relationship is present, learning need not obtain in the limit even

if the returns of all available portfolios are observed in each period of time. To see this, con-

sider again the case, in which only the two undiversified portfolios consisting of assets a and b

are available and the supply of b is fixed. Suppose that the current choice of the investors is b

and observe that the utility realization of b is u (1 + r), as long as the young investors choose

b as well, whereas the utility realization of a is at most u
¡¹±

¢
, as long as none of the investors

chooses a. Hence, if ¹± < 1, as assumed above, it follows that there is an equilibrium path on

which the representative investor chooses b in each period of time, independently of his aspi-

ration level. Equivalently, there is an equilibrium path, on which a is chosen in each period of

time, whereas the utility realization of b is

vt (b) = u (r) < u (1) · vt (a)
in each period. It follows that optimal learning in a market with case-based decision-makers is

not guaranteed, even if they observe all past utility realizations of all acts available.

This result contrasts the result obtained in an individual portfolio choice problem with identically

and independently distributed returns. The reason for this difference stems from the fact that in

a market environment, the return of a portfolio depends not only on the dividend payment, but

also on its price. When constructing a hypothetical case, an individual takes the price as given,

without taking into account price changes which would occur if everyone changed his behavior.

Hence, hypothetical cases act as self-confirming prophecies: if everyone beliefs that the price

of a will be 0 the price of a indeed remains 0, since at this price the utility realizations of a never

exceed those of b. As a consequence, multiple equilibria emerge and it is à priori not clear which

equilibrium path will be chosen. Overvaluation and undervaluation may occur in an equilibrium

and persist for long periods of time.

The last example, in which the representative investor is allowed to choose only between the
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two undiversified portfolios, demonstrates further that learning might be more effective if hy-

pothetical cases are not used. Indeed, in the case

¹u 2
Ã
u (1 + r) ;

Z ¹±

±
u (1 + ±)g (±)d±

!
,

investors not using hypothetical cases learn with probability 1 to choose the better of the two

portfolios a with frequency 1 in the limit. In contrast, when hypothetical cases are used, the

probability that a is chosen with frequency 1 in the limit depends crucially on the ability of the

investors to coordinate on the equilibrium in which a is chosen in the initial
l³
u(1+r)¡u(±)
u(1+±)¡u(r)

´m

periods of time110.

5.6 Similarity in Asset Markets

Up to know, it has been assumed that no similarity considerations influence the decisions in the

economy. Due to this, it was necessary to restrict the choice set to a finite number of acts. In

this section, similarity between problem - act pairs is introduced and the investors are allowed

to choose among all diversified portfolios consisting of assets a and b.

In section 8 of chapter 3, similarity considerations were embedded into a portfolio choice prob-

lem. There, it was assumed that only similarity among portfolios is taken into account by the

investor. However, the market situation might also inf luence the evaluation of different acts.

Buying an asset in a market boom might be quite different from buying the same asset, when

prices fall. The characteristics of a given decision situation are captured by the notion of a prob-

lem. In a financial market, asset prices seem to bear the most important information about the

decision situation and, thus, will inf luence similarity perceptions111.

In a model of case-based decision making in financial markets, these two aspects of similarity

— similarity between problems and between acts — are captured in a single similarity function:

s ((½;®) ; (½0;®0)) ,

which is to be interpreted as the degree of similarity of choosing act ® in problem ½ to choosing

110 After a has been chosen for
l³

u(1+r)¡u(±)
u(1+±)¡u(r)

´m
periods, the choice of b ceases to be an equilibrium, since

Ut+1 (b) = tu (r) + u (1 + r) < tu (1 + ±) + u (±) = Ut+1 (a)

holds for all t ¸
l³

u(1+r)¡u(±)
u(1+±)¡u(r)

´m
.

111 The initial endowment of an investor (or, alternatively, his income at the beginning of the period) might also
influence the perceived similarity between two decision situations. However, since the initial endowment remains
constant in this model, it will not play any role, even if it were included into the similarity function.
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act ®0 in problem ½0. It has already been shown that the acts® can be situated on a metric space,

depending on how similar they are perceived to one another. Since it seems to me that the major

characteristic of a portfolio choice problem is represented by the prices in the economy, I propose

to identify each problem with a price vector (p1:::pK) and to represent a problem - act pair in

¢K¡1 £¢K¡1. As in chapter 3, I will again use the Euclidean distance between such points as

a measure of similarity.

5.6.1 OLG-Model with Two Types of Investors

Consider a simplified version of the economy described in section 1. The length of the contin-

uum of investors is assumed to be 1. There are two types of investors, i 2 f1; 2g, with constant

aspiration levels ¹u1 and ¹u2, respectively. The shares of these two types are denoted by µ1 2 (0; 1)

and µ2 = 1¡ µ1 and remain constant over the time.

SetD = 1 and suppose that the dividend paid by the risky asset is identically and independently

distributed according to a probability distribution Q on the interval
£
±; ¹±

¤
. Let g (¢) denote the

density of the distribution Q. The supply of the risky asset a is fixed at A = 1. The riskless

asset is available in perfectly elastic supply and delivers a return of (1 + r) per unit invested. In

contrast to the model introduced in section 1, diversification is allowed. Still, no short sales are

possible.

(A1), i.e. the continuity and strict monotonicity of the utility function u (¢), is assumed through-

out this section.

Let ®it denote the act chosen at time t by an investor of type i 2 f1; 2g and identify ®it by the

share of the initial endowment invested in a (®it 2 [0; 1]). pt denotes the price of asset a at time t.

The similarity function of an investor is defined for such pairs (p;®), i.e. the investor considers

only the price of the risky asset as relevant for the description of the market situation.

Since short sales are not allowed and since the initial endowment of the economy is fixed at 1, it

follows that the price of the asset a, pt, can only take on values between [0; 1]. Since the portfolio

share of a can also vary between [0; 1], it follows that the (p;®)-pairs can be represented on a

square with side length one. The Euclidean distance on this square can, therefore, be taken as a

210



measure of similarity. Therefore, assume that

s ((p;®) ; (p0;® 0)) = f (k(p;®) ¡ (p0;®0)k) ,

where f (¢) is strictly decreasing. s (¢) is assumed not to depend on the type of investors and

s ((p;®) ; (p;®)) = 1.

Assume that the memory of the investors is endogenous, i.e. they can only remember cases

(p;®;u (®)) that really occurred in the economy. Moreover, each investor of type i 2 f1; 2g
can only observe past cases experienced by investors of his own type, i.e. cases of the type

(pt;®it;u (®it)). Let m parameterize the length of memory, as above. Since in period t = 0 the

memory of the investors is empty, let ®0 2 (0; 1) be the act chosen112 (at random) in period 0 by

both types and let p0 = ®0 be the equilibrium price at t = 0.

5.6.2 Equilibrium Paths

Given the initial allocation ®0 and the initial price p0 = ®0, an equilibrium path of the economy

is defined as a vector of asset prices (p¤t)t=0;1;::: and a vector of portfolios (®1¤t ;®2¤t )t=0;1;::: chosen

by the young investors at t (with ®1¤0 = ®0, ®2¤0 = ®0, p¤0 = p0), such that:

(i) young investors make case-based decisions in each period:

®i¤t 2 arg max
®2[0;1]

U it (®) =

= arg max
®2[0;1]

t¡1X

¿=t¡m¡1
s
¡¡
p¿ ;®i¿

¢
; (pt;®)

¢
¢

¢
·
u

µµ
p¿+1 + ±¿+1

p¿

¶
®i¿ + (1 + r)

¡
1¡ ®i¿

¢¶ ¡ ¹ui
¸

and

(ii) the market for the risky asset is cleared in each period: either p¤t > 0 and satisfies
®1¤t (p¤t) +®2¤t (p¤t)

p¤t
= 1

or

p¤t = 0 and ®1¤t (0) +®2¤t (0) = 0.

I will not discuss the question of existence of an equilibrium path in general. For a concave

similarity function and for the cases of one-period and long memory, it will be shown that equi-

112 The results for ®0 = 1 and ®0 = 0 are qualitatively the same, the interesting case is, however, the one of a
diversified initial portfolio.
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librium paths exist, by studying the price dynamics. Note that the market clearing condition

allows for degenerate equilibria, in which no one holds asset a and its price falls to 0. Since it

has been shown that case-based decision-makers with concave similarity functions do not diver-

sify if their aspiration level is relatively high, see section 8 of chapter 3, it is natural to expect

that such degenerate equilibria occur for high values of ¹u1 and ¹u2. That is why I assume that the

aspiration level of the investors of type 1 is sufficiently low so that they never switch from their

initially chosen portfolio. This insures the existence of an equilibrium path with a positive price

of the risky asset in each period of time.

(A9) Suppose that ¹u1 < u
³
µ1®0+±

1¡µ1(1¡®0)®0+ (1 ¡®0) (1 + r)
´

.

(A9) insures that even if all investors of type 2 hold ® = 1 at some time t, whereas the investors

of type 1 hold ®0 (hence pt = 1¡ µ1 (1 ¡ ®0)), all investors of type 2 switch to ® = 0 at (t+ 1),

causing the price to fall to pt+1 = µ1®0 and if the dividend of the risky asset is ± at (t+ 1),

the investors of type 1 are still satisfied by the return of their portfolio ®0. Given this condition

on ¹u1, the investors of type 1 will hold ®0 forever, no matter how long their memory is and

independently of the price and dividend realizations and of the portfolio choices of type 2.

To avoid the discussion of multiple cases, I assume

1 > ¹± > r > ®0r > ± ¸ 0.

5.6.3 Price Dynamics with One-Period Memory

Consider first the case of one-period memory, hence, the investors only remember the last case

observed. Since the aspiration level of type 1 is fixed in such a way that they never switch from

their initially chosen portfolio, only the aspiration level of type 2 needs to be considered. If

this aspiration level is relatively low, then type 2 is always satisfied with the return of his initial

portfolio ®0, given that everyone in the economy continues to hold ®0. Therefore, the following

proposition obtains:

Proposition 5.13 Assume (A9) and let

¹u2 < u
µµ

1 +
±
p0

¶
®0+ (1 ¡®0) (1 + r)

¶
.

Then, there is an equilibrium path on which ®1¤t = ®0, ®2¤t = ®0 and p¤t = p0 for each t =
0; 1; :::. Hence, (®1 = ®0;®2 = ®0; p = p0) is a stationary state of the economy.
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Now, let the aspiration level be such that the portfolio ®0 is not satisficing for type 2 if the risky

asset pays a dividend lower than ~± 2
¡
±; ¹±

¢
even if the price of a remains unchanged. Hence,

let113

¹u2 = u

ÃÃ
1 +

~±
p0

!
®0 + (1 ¡ ®0) (1 + r)

!

for some ~± 2 ¡
±; ¹±

¢
. As long as the utility from the return of the riskless asset exceeds ¹u2, the

state in which the investors of type 2 hold portfolio ®2 = 0 in each period is a stationary state

of the economy.

Proposition 5.14 Assume (A9) and let

¹u2 2
µ
u

µµ
1 +

±
p0

¶
®0 + (1¡ ®0) (1 + r)

¶
;u (1 + r)

¶
.

Then, on almost all paths of dividend realizations ~! = (±1; ±2:::±t:::), there is an equilib-
rium path, such that ®1¤t = ®0, ®2¤t = 0 and p¤t = µ1®0 for all t ¸ ¹t (~!), for some ¹t (~!).
(®1 = ®0;®2 = 0; p = µ1®0) is, thus, a stationary state of the economy.

Since the proof of this proposition demonstrates how a bubble can endogenously emerge and

burst in an economy populated by case-based decision-makers, I include part of it into the main

text.

Proof of proposition 5.14

Since (A9) guarantees that the investors of type 1 never switch away from their initially chosen

portfolio, only the behavior of the investors of type 2 needs to be considered.

Note that for ± ¸ ~±

u
µµ

1 +
±
p0

¶
®0+ (1 ¡®0) (1 + r)

¶
= u (1 + ± + (1 ¡ ®0) r) ¸ ¹u,

hence, the return of the investors of type 2 is satisfactory for them if the young investors continue

to hold ®0 and, therefore, by the argument of proposition 5.13, there is an equilibrium, such that

®2¤t = ®0 and p¤t = p0 for all t such that ±¿ ¸ ~± for all ¿ · t. Let t0 = min
n
t j ±t < ~±

o
. t0 is

finite on almost all paths of dividend realizations ~!, but its value depends on the chosen path114.
113 Observe that since

u
µµ

1 +
±
p0

¶
®0 + (1 ¡ ®0) (1 + r)

¶
= u (1 + ± + (1 ¡ ®0) r) · ¹u < u (1 + r)

for ± < ~±, it follows that
1 + ± + (1 ¡ ®0) r < 1 + r

and therefore that for each ± < ~±
± < ®0r < r.

Hence, for ~± 2
£
± ;¹±

¤
to hold, ± < ®0r must be satisfied. If this assumption is violated, no such ~± exists.

114 Similarly, all period numbers introduced hereafter depend on the realized dividend path ~!. I neglect this depen-
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In period t0, the utility realization of ®0 is at most u (1 + ±t0 + (1¡ ®0)r) < ¹u2 if the portfolio

holdings remain unchanged. Therefore, the cumulative utility of ®0 is negative for the investors

of type 2. Since the similarity function is decreasing in the distance between two portfolios for

a given price p, it follows that the investors of type 2, who take the price as given, choose the

portfolio furthest away from ®0. Hence ®2t0 = 1 if ®0 < 1
2 and ®2t0 = 0 if ®0 > 1

2.

Suppose first that ®0 ¸ 1
2. Then, p¤t0 = µ1®0 is the equilibrium price corresponding to ®2¤t0 = 0

and one easily checks that ®2 = 0 indeed maximizes the cumulative utility of type 2 in this case.

Once the portfolio consisting only of bonds has been chosen, the utility realization becomes

u (1 + r) in each period, independently of the price pt. Since u (1 + r) > ¹u, it follows that the

state (®1 = ®0;®2 = 0; p = µ1®0) is stationary.

Now consider the case ®0 < 1
2. Given pt0, the investors of type 2 choose the portfolio which

is furthest away from ®0, i.e. ® = 1. However, if ®t0 = 1 is chosen, the price pt0 rises to

µ1®0 + (1 ¡ µ1) and the utility achieved by type 2 increases to

u
µ
µ1®0 + (1¡ µ1) + ±t0

p0
®0 + (1¡ ®0) (1 + r)

¶
.

If this is still smaller than ¹u2, then the cumulative utility is indeed maximized at ®2 = 1, given

pt0 = µ1®0 + (1¡ µ1).

However, if

u
µ
µ1®0 + (1¡ µ1) + ±t0

p0
®0 + (1¡ ®0) (1 + r)

¶
> ¹u2, (5.57)

then the cumulative utility of ®0 is positive at pt0 = µ1®0 + (1¡ µ1) and, therefore, ®2 = 1 is

not optimal given pt0 = µ1®0+ (1¡ µ1). Should this be the case, choose ®2¤t0 in such a way that

u
µ
p¤t0 + ±t0
p0

®0 + (1 ¡ ®0) (1 + r)
¶

= ¹u2,

where p¤0t clears the market, given that ®2¤t0 is chosen by type 2, whereas type 1 still holds ®0:

p¤t0 = µ1®0 + (1¡ µ1)®2¤t0 .

Since u (¢) is continuous and strictly increasing, such portfolio and equilibrium price exist by

the intermediate value theorem and are unique. Note further that 1 > ®2¤t0 > ®0 and

µ1®0 + (1¡ µ1) > p¤t0 > p0
must hold. Moreover, the cumulative utility of ®0 given p¤t0 is

U2
t0 (®0) = u (p

¤
t0 + ±t0 + (1¡ ®0) (1 + r)) ¡ ¹u2 = 0 = U2

t0 (®)

dence in the notation for convenience.
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for all ® 2 [0; 1]. Hence, at p¤t0 , the investors of type 2 are indifferent among all available

portfolios and, therefore, ®2¤t0 is an optimal choice.

Again, two cases can occur: either ®2¤t0 > 1
2 and the investors of type 2 switch to ®2¤t00 = 0 at time

t00 = min
n
t > t0 j ±t < ~±

o
, as shown above, or ®2¤t0 < 1

2 holds. In the latter case, construct ®2¤t00

in the same manner as ®2¤t0 . Again, 1 > ®2¤t00 > ®2¤t0 > ®0 must hold. Repeat the same procedure

n times as long as ®2¤tn <
1
2 holds. Now note that since

u
µ
p¤tk + ±tk
p¤tk¡1

®2¤tk¡1 + (1¡ ®¤tk¡1 ) (1 + r)
¶

= ¹u2

and

p¤tk¡1 = µ1®0 + (1 ¡ µ1)®2¤tk¡1,

it follows that the price at time tk is given by

ptk = ptk¡1
$ ¡ (1 + r)
ptk¡1 ¡ µ1®0

ptk¡1 (1 ¡ µ1) + (1 + r) ptk¡1 ¡ ±tk (5.58)

for all k = 1:::n, where $ = u¡1 (¹u2) denotes the return which yields a utility exactly equal to

the aspiration level of the investors of type 2.

Note that

®¤2tn
µ
p¤tn + ±
p¤tn

¶
+

¡
1¡ ®¤2tn

¢
(1 + r) < ®0

µ
p0 + ±
p0

¶
+ (1¡ ®0) (1 + r) ,

is equivalent to

r
¡
®0 ¡ ®¤2tn

¢
+
±®¤2tn
p¤tn

¡ ±

=
¡
®0 ¡ ®¤2tn

¢ ·
r ¡ ±µ1
p¤tn

¸
< 0,

which is satisfied, since ®0 < ®¤2tn and r > ± > ±µ1 hold. Hence, for arbitrary high shares ®¤2tn,

there are still values of ±t, for which the portfolio choice is considered unsatisfactory.

It has to be shown that the sequence defined recursively by (5.58) satisfies

p¤tn ¸ 1 ¡ µ1 + 2µ1®0
2

= µ1®0+
1
2
(1¡ µ1)

after a finite number of periods tn, hence after a finite number of iterations (n¡ 1). Here, the

critical value of p¤tn is computed as the price necessary to render ®¤2tn ¸ 1
2. The demonstration

of this is deferred to the appendix. But once this value of p¤tn is reached,

®2¤tn =
p¤tn ¡ µ1®0
1¡ µ1

¸
2µ1(1¡µ1)®0+(1¡µ1)

2 ¡ µ1®0
1¡ µ1

=
1
2

obtains and from the next period, ¹t (~!)

¹t (~!) = min
½
t > tn j u

µ
®¤2tn

µ
p¤tn + ±t
p¤tn

¶
+

¡
1¡ ®¤2tn

¢
(1 + r)

¶
< ¹u2

¾
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in which a sufficiently low dividend realization obtains, the investors of type 2 switch to asset b

and hold it forever. Observing that ¹t (~!) is finite with probability 1, completes the proof of the

proposition.¥

It is obvious from the proof of proposition 5.14 that the price of a rises during the (n¡ 1)

iterations if ®0 < 1
2 and condition (5.57) holds. Moreover, it rises in those periods in which the

dividend paid by the risky asset is 0. Imagine, therefore, that the risky asset has a fundamental

value of 0 (either ± = 0 or q = 0). In this case, the case-based decision-makers holding a small

initial share of the risky asset steadily increase the share of their wealth invested in a, until it

exceeds 1
2 . Hence, they cause a bubble. At the time when the critical value of ptn is reached, the

bubble bursts and never reemerges again.

If the aspiration level of type 2 exceeds u (1 + r), the economy starts to evolve in a cycle:

Proposition 5.15 Let ¹u2 2
³
u (1 + r) ;u

³
1 + ¹±

1¡µ1(1¡®0)

´´
. Then on almost all paths of div-

idend realizations ~!, there is a time ¹t (~!), such that for all t ¸ ¹t (~!) the economy evolves
according to a stochastic cycle with two states:

h, with ®1h = ®0, ®2h = 1 and ph = 1 ¡ µ1 (1 ¡ ®0)
and

l, with ®1h = ®0, ®2l = 0and pl = µ1®0.
Define ±̂ as

¹u2 = u

Ã
1 +

±̂
1¡ µ1 (1¡ ®0)

!

and let q denote the probability of a dividend payment higher than ±̂, according to Q:

q =
Z ¹±

±̂
g (±)d±

The frequencies with which the two states h and l occur almost surely satisfy:

¼h =
1

2¡ q
¼l =

1¡ q
2¡ q .

If the aspiration level is set even higher, so that even u
³
1 + ¹±

1¡µ1(1¡®0)

´
is not satisficing, then

the investors of type 2 switch between the two corner portfolios in each period:

Proposition 5.16 Let ¹u2 > u
³
1 + ¹±

1¡µ1(1¡®0)

´
. Then, on almost all paths of dividend realiza-

tions ~!, there is a time ¹t (~!) such that for all t ¸ ¹t (~!) the economy evolves in a deterministic
cycle of period 2 with two states h and l, as described in proposition 5.15.
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The results of this section show that investors with short memory and a strictly decreasing sim-

ilarity function diversify only for a finite number of periods, unless their aspiration level is

relatively low. Note that to prove this, the assumption of a concave similarity function was not

necessary. This is due to the fact that with one period memory only one utility realization at a

time is observed. Since the similarity function obtains its maximum for identical problem- act

pairs, the investor either retains his initially chosen portfolio (given a utility realization exceed-

ing his aspirations) or chooses one of the corner portfolios, since they are most dissimilar to the

initial one. It is possible to show that these results still hold with long memory, as long as the

similarity function is concave.

5.6.4 Price Dynamics with Long Memory

Now assume that the investors can remember the whole history of the economy from time 0 on.

Suppose that the similarity function of the investors is concave115.

The result that in an economy with two types of agents only investors with relatively low aspi-

ration level hold diversified portfolios, holds here as well. The introduction of a long memory

further allows to consider learning effects. An investor who can only remember the last case re-

alized is not able to learn much about the possible dividend and price realizations. In contrast,

making observations for a long time might allow the investors to gather enough information so

as to be able to choose the optimal portfolio from the point of view of the standard theory in the

limit.

Denote by ¹ (® j p) the expected utility from holding portfolio ® 2 [0; 1] at time t, given that

the price of ® remains constant at p = pt = pt+1:

¹ (® j p) =
Z ¹±

±
u

µµ
1 + ±
p

¶
® + (1 ¡ ®) (1 + r)

¶
.

115 Since s = f (k(p; ®) ¡ (p0; ®0)k), for s to be concave, it is necessary that the decreasing function f is not too
convex. To see this, denote the Euclidean distance functional by e and note that

s00 = f 00 (e0)2 + e00f 0 .
Since e00 > 0 and f 0 < 0,

¡ e00f 0

(e0)2
> 0

and s0 0 < 0 holds, as long as

f 00 < ¡ e00f 0

(e0)2
.

217



For instance, for pt = pt+1 = p0,

¹ (®0 j p0) =
Z ¹±

±
u (1 + ± + (1¡ ®0)r) g (±) d±

obtains. To avoid the discussion of multiple cases, assume that the following inequality holds:

¹ (®0 j p0) < u (1 + r) < ¹ (® = 1 j p = 1 ¡ µ1 (1¡ ®0)) . (5.59)

Note that as long as the investors of type 2hold ®0 the price of® remains p0 = ®0. If type 2 holds

® = 0, p = µ1®0 obtains and in the case that the choice of type 2 is ® = 1, p = 1¡ µ1 (1¡ ®0)
is the equilibrium price of the risky asset. Since the investors of type 1 are constructed in such a

way that they hold ®0 in each period, independently of how the economy evolves, the analysis

concentrates on the behavior of the investors of type 2, who will determine the evolution of the

asset price. Note that since now their memory consists of all observed cases, in the long run the

mean of the observed utility realizations of an act determines its evaluation. Since, however, the

behavior of type 2 has an inf luence on the market price, this mean utility shall be constructed for

the respective equilibrium price which obtains, given the portfolio chosen by type 2. Should an

expected utility of a portfolio be satisfactory at a constant equilibrium price, then the expected

time for which this portfolio is held is infinity. Alternatively, if the expected utility of a portfolio

lies below ¹u2, then the investors of type 2 switch away from this portfolio in finite time. The

first result is that the investors of type 2 only consider the utility realizations of three portfolios:

®0, ® = 1 and ® = 0. The inequality (5.59), therefore, assumes one possible ordering of the

expected utilities of these three portfolios in order to avoid considering multiple cases.

Proposition 5.17 Suppose that the probability distribution Q on
£
±; ¹±

¤
has a density function

which is continuous with respect to the Lebesgue measure and strictly bounded away from 0 on
the interval

h
±̂ ¡ ³; ±̂ + ³

i
for some ³ > 0 and ±̂ such that

u

Ã
1¡ µ1 (1¡ ®0) + ±̂
1¡ µ1 (1¡ ®0)

!
= ¹u2.

1. If ¹u2 < ¹ (®0 j p0), the expected time during which the investors of type 2 hold ®0 is

infinite.

2. If ¹u2 2 (¹ (®0 j p0) ;u (1 + r)), the investors of type 2 hold either ® = 1 or ® = 0 with

frequency 1 almost surely in the limit.

3. If ¹u2 2 (u (1 + r) ;¹ (1 j 1¡ µ1 (1¡ ®0))), the investors of type 2 hold ® = 1 with
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frequency 1 almost surely in the limit.

4. If ¹u2 > ¹ (1 j 1¡ µ1 (1¡ ®0)), the investors of type 2 hold ® = 1 and ® = 0 with strictly

positive frequencies almost surely in the limit, whereas the frequencies of all other acts are

0. The frequencies with which the investors of type 2hold ® = 1 and ® = 0 are given by

¼1 and ¼0, respectively and satisfy:
¼1
¼0

=
u (1 + r)¡ ¹u2

¹r1 ¡ ¹u2
,

where ¹r1 denotes the actual mean utility derived by holding asset a as observed by the

investors of type 2.

Comparing proposition 3.12 to proposition 5.17, one easily sees the analogy: if the aspiration

level of the investors of type 2 is relatively low, the initially chosen portfolio is considered

satisfactory. Hence, the initial allocation and price prevail infinitely long in expectations. If the

investors of type 2 consider ®0 as unsatisfactory, they sooner or later switch to an undiversified

portfolio and never diversify again, due to the concavity of their similarity function. Now, they

have to choose between the two undiversified portfolios. If at least one of these portfolios is

found to be satisfactory, then it is held forever. If, however the expected utility of none of these

portfolios exceeds the aspiration level ¹u2, then the investors of type 2 switch infinitely often

between them, causing the price of a to f luctuate in a stochastic way.

Note that if the aspiration level of the investors of type 2 is appropriately chosen, i.e. if

¹u2 2 (u (1 + r) ;¹ (1 j 1¡ µ1 (1¡ ®0))) , (5.60)

these investors learn to choose the best among the three acts ®0, ® = 1 and ® = 0, namely

® = 1 in the limit. Still, their choice might not be optimal from the point of view of an expected

utility maximizer, since they only observe realizations of at most three portfolios.

Since the dynamic of the economy is predetermined solely by the behavior of the investors of

type 2, it can easily be derived from proposition 5.17. The following corollary obtains:

Corollary 5.2 Suppose that the probability distribution Q on
£
±;¹±

¤
has a density function

which is strictly bounded away from 0 on the interval
h
±̂ ¡ ³; ±̂ + ³

i
for some ³ > 0 and ±̂

such that u
³
1¡µ1(1¡®0)+±̂
1¡µ1(1¡®0)

´
= ¹u2.

1. Let ¹u2 < ¹ (®0 j p0). Then, the expected time which the economy spends in the state
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(®1 = ®0;®2 = ®0; p = p0) is infinite.

2. Let ¹u2 2 (¹ (®0 j p0) ;u (1 + r)). Then, with probability 1 in the limit, the economy

remains either in state (®1 = ®0;®2 = 0; p = µ1®0) with frequency 1 or in state

(®1 = ®0;®2 = 1; p = 1¡ µ1 (1¡ ®0)) with frequency 1.

3. Let ¹u2 2 (u (1 + r) ;¹ (1 j 1 ¡ µ1 (1 ¡ ®0))). Then, with probability 1 in the limit, the

economy remains in state (®1 = ®0;®2 = 1; p = 1 ¡ µ1 (1 ¡ ®0)) with frequency 1.

4. Let ¹u2 > ¹ (1 j 1¡ µ1 (1¡ ®0)). Then, in the limit, the economy almost surely evolves

according to a stochastic cycle with two states h and l, as described in proposition 5.15.

The frequencies of these states satisfy:
¼h
¼l

=
u (1 + r) ¡ ¹u2

¹r1 ¡ ¹u2
.

The results are similar to those derived for an economy in which investors do not take similarity

between acts and problems into account and in which diversification is not allowed. Investors

with low aspiration levels induce stable prices and portfolio allocations. Nevertheless, the port-

folios held by the investors in a stationary state need not coincide with the optimal portfolio in

an economy with a representative investor, implying that the case-based decision-makers do not

make optimal decisions, given the market price.

If at least some of the investors in the economy have a relatively high aspiration level, then

the economy evolves according to a cycle with two states — a low-price and a high-price state.

Moreover, as in the model without similarity perception, the fluctuation of the price has a greater

amplitude, the higher the value of 1¡ µ1, i.e. the mass of the investors of type 2 in the economy.

5.7 Conclusion

In this chapter, I have analyzed the price dynamics in an economy populated by case-based

decision-makers. If the investors have a short memory, the position of the highest aspiration

level relative to the highest possible return of the risky asset determines the dynamics of prices

and asset holdings. If the highest aspiration level is relatively low, the price of the risky asset

and the holdings of the investors remain constant over the time. Still, the price of the asset might

deviate significantly from its fundamental value and arbitrage possibilities may be present in the
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market.

Higher aspiration levels induce cycles, which may be stochastic or deterministic. The risky

asset exhibits excess volatility, which depends positively on the mass of investors with high

aspiration levels in the economy. The behavior of these investors is very similar to the behavior

of ’’overconfident’’ investors, described by Odean (1999): they trade too much, lowering their

own profits and increasing the variance of prices. Since investors base their decisions on past

information, price movements are forecastable to some extent and exhibit negative correlation

in the short run.

For the case of long memory, I consider an economy with three types of investors. If the highest

achievable mean utilityof the risky asset exceeds both the highest aspiration level in the economy

and the return of the riskless asset, then the investors with high aspiration level are able to learn

this and hold the risky asset forever in the limit. However, if the mean utilities of both assets

are unsatisfactory relative to the highest aspiration level, a two-state cycle emerges as in the

case of short memory. This results show that even a long memory (and infinite sampling of the

available acts) does not guarantee optimality of the decisions in the long run. Whereas investors

with high aspiration levels fail to learn because they are dissatisfied with the returns of both

assets, investors with low aspiration levels have no incentive to experiment with new acts and,

thus, make suboptimal choices forever. This last fact may help explain the equity-premium

puzzle observed in the financial markets, even if the investors are risk-neutral.

The consequences of the usage of hypothetical cases are not unequivocal. If one of the acts

dominates all other available portfolios, then learning the utility realizations of the dominant

act combined with a relatively low aspiration level leads to optimal behavior in the limit. In

contrast, high aspiration levels imply that the dominated acts are chosen with strictly positive

frequencies in the limit.

If no dominance relationship is present among the available acts, hypothetical reasoning might

even worsen the limit choice compared to the case of completely endogenous memory.

Allowing for diversification and introducing a similarity function on problem - act / price -

portfolio pairs does not change the results qualitatively. Diversified portfolios are chosen only

by investors whose aspiration levels are relatively low. Investors with high aspiration levels
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switch to an undiversified portfolio in finite time and never diversify again. The price dynamic

obtained is, therefore, very similar to the one without similarity considerations. It is, however,

shown that in this case a bubble (increase of the price of the risky asset over few periods) can

emerge and burst in finite time, never reappearing again.

A major criticism of the model presented in this chapter is that the economy consists only of

case-based investors and that, (given the OLG structure of the model), the initial endowment

does not change over time, hence, it is independent of the previous returns. These two criticisms

will be addressed in the next chapter, where an economy with both case-based decision-makers

and expected utility maximizers is studied. Differently from the descriptive approach taken up to

now, the purpose of the last chapter is partly normative. There, the issue of evolution of decision

rules (such as expected utility maximization and case-based decision-making) is examined, the

question being whether case-based decision-makers can survive in a financial market in the

presence of expected utility maximizers. This question is tightly connected to the issue of price

dynamic analyzed in this chapter. Should it be found that the share of wealth owned by the case-

based decision-makers shrinks to 0, as time evolves, the inf luence of case-based investors on

prices and returns would become negligible. Prices and returns would behave as under rational

expectations. The claim that the presence of case-based decision-makers can explain empirically

observed phenomena such as bubbles, predictability of returns or arbitrage possibilities would

be, therefore, unfounded. I turn to the analysis of these issues in the next chapter of this thesis.
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Appendix

Proof of proposition 5.2:

From the assumptions made about the parameters, for investors with ¹ui 2 [¹ua; ¹un] and ®i0 = b,

the cumulative utilities satisfy:

U i1 (b) = 1 + r ¡ ¹ui > 0 = U i1 (a) .

Hence, ®i1 = b for i 2 [¹ua ¡ ¹u0; ¹un ¡ ¹u0]. By induction, suppose that the investors with ¹ui 2
[¹ua; ¹un] choose b in some period t and consider the decision of the young investors in period

(t+ 1). Since

U it+1 (b) = 1 + r ¡ ¹ui > 0 = U it+1 (a)

for all ¹ui 2 [¹ua; ¹un], it follows that®it = b obtains ineach periodof timefor i 2 [¹ua ¡ ¹u0; ¹un ¡ ¹u0].

Now consider the investors with ¹ui 2 [¹u0; ¹ua] and ®i0 = a. In t = 1, the cumulative utilities

they observe satisfy:

U i1 (a) = 1 +
±t

¹ua ¡ ¹u0
¡ ¹ui ¸ 1¡ ¹ui > 0 = U i1 (b) ,

as long as p1 = ¹ua ¡ ¹u0, hence as long as ®i1 = a for i 2 [0; ¹ua ¡ ¹u0]. By induction, U it (a) >

U it (b) holds for each t ¸ 1 if ®it¡1 = a for all i 2 [0; ¹ua ¡ ¹u0]. Hence, in each t ¸ 1, there is a

temporary equilibrium in which

®it = a for i 2
£
0; ¹ua ¡ ¹u0

¤

®it = b for i 2
£
¹ua ¡ ¹u0; ¹un ¡ ¹u0

¤

pt = ¹ua ¡ ¹u0.

Hence, the initial state of the economy is stationary.¥

Proof of proposition 5.3:

Equilibrium in t = 1

In t = 1, the investors with aspiration levels ¹ui 2 [¹ua; (1 + r)] observe cumulative utilities:

U i1 (b) = 1 + r ¡ ¹ui > 0 = U i1 (a)

and choose ®i1 = b. The investors with aspiration levels ¹ui 2 [(1 + r) ; ¹un] observe cumulative

utilities:

U i1 (b) = 1 + r ¡ ¹ui < 0 = U i1 (a)

and choose ®i1 = a, regardless of the price pt. Since their mass is [¹un ¡ (1 + r)], as long as the
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investors with aspiration levels ¹ui 2 [¹u0; ¹ua] choose ®i1 = a, the cumulative utilities observed

by these investors are

U1 (a) =
¹un ¡ (1 + r) + ¹ua ¡ ¹u0 + ±t

¹ua ¡ ¹u0
¡ ¹ui > 1¡ ¹ui > 0 = U i1 (b) ,

by assumption (5.44). Hence, the investor on the interval [0; ¹ua ¡ ¹u0] indeed choose ®i1 = a in

equilibrium. Hence, in t = 1, state h116:

p1 = ph =
£
¹un ¡ (1 + r) + ¹ua ¡ ¹u0

¤
,

®i1 = a for i 2
£
0; ¹ua ¡ ¹u0

¤
[

£
(1 + r)¡ ¹u0;n

¤
,

®i1 = a for i 2 £
¹ua ¡ ¹u0; (1 + r)

¤

is an equilibrium.

Equilibrium in t = 2

In t = 2, two cases must be considered:

² ±2 = ±D
The young investors with aspiration levels [¹ua; (1 + r)] observe cumulative utilities:

U i2 (b) = 1 + r ¡ ¹ui > 0 = U i2 (a)

and choose®i2 = b. As long as the investorswithaspiration levels ¹ui 2 [¹u0; ¹ua][[(1 + r) ; ¹un]
choose ®i2 = a, they observe cumulative utilities:

U i2 (a) = 1 +
±D

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
¡ ¹ui > 0 = U i2 (b) ,

where the inequality holds by assumption (5.44). Hence, it is indeed optimal for them to

choose a. It follows that in t = 2 with ±2 = ±D, there is an equilibrium, in which state h

obtains:

p2 = ph =
£
¹un ¡ (1 + r) + ¹ua ¡ ¹u0

¤
,

®i2 = a for i 2
£
0; ¹ua ¡ ¹u0

¤
[

£
(1 + r)¡ ¹u0;n

¤
,

®i2 = b for i 2
£
¹ua ¡ ¹u0; (1 + r) ¡ ¹u0

¤
.

² ±2 = 0

The young investors with aspiration levels [¹ua; (1 + r)] observe cumulative utilities:

U i2 (b) = 1 + r ¡ ¹ui > 0 = U i2 (a)

116 Since the investors on the boundaries of the intervals are indifferent between holding a and b, I include them in
both sets. This, of course, does not inf luence the price of a, since each investor has a mass of 0.
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and choose ®i2 = b.

Even if all of the young consumers with aspiration levels [¹u0; ¹ua] [ [(1 + r) ; ¹un] choose a,

the cumulative utilities they observe are given by:

U i2 (a) = 1¡ ¹ui

U i2 (b) = 0.

Whereas U i2 (a) > U i2 (b) holds for all i 2 [0; ¹ua ¡ ¹u0], it is obviously violated for i 2
[(1 + r) ¡ ¹u0;n], because of condition (5.44). Hence, ®i2 = b for all i 2 [(1 + r) ¡ ¹u0;n].

The cumulative utilities observed by the investors i 2 [0; ¹ua ¡ ¹u0] then become:

U i2 (a) =
¹ua ¡ ¹u0

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
¡ ¹ui > 0 = U i2 (b) ,

according to assumption (5.45) and these investors choose ®i2 = a. Hence, in t = 2 with

±2 = 0, the economy returns to state l with

p2 = pl =
£
¹ua ¡ ¹u0

¤
= p0

®i2 = a for i 2
£
0; ¹ua ¡ ¹u0

¤
,

®i2 = b for i 2
£
¹ua ¡ ¹u0;n

¤
.

It follows by induction that if in period t the economy is in state l, the state in (t+1) is h with

probability 1. If in period t the state is h, then in (t +1) the economy moves to state l if the

dividend realization is 0, hence, with probability (1¡ q) and stays in state h if the dividend

realization is ±D, or with probability q. The economy, therefore, evolves according to a Markov

process with two states h and l and a transition matrix:

¹P =

0
@

pt+1 = ph pt+1 = pl
pt = ph q 1¡ q
pt = pl 1 0

1
A .¥

Proof of proposition 5.4:

In the proof of proposition 5.2 it was shown that the price process is a Markov process with a

transition matrix:

¹P =

0
@

pt+1 = ph pt+1 = pl
pt = ph q 1¡ q
pt = pl 1 0

1
A .

The invariant probability distribution of this Markov process can now computed to be:µ
¼h
¼l

¶
=

µ
¼h
¼l

¶0
¹P ,
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which simplifies to

q¼h = (2 ¡ ¼h) .

It follows that the invariant probabilities satisfy:

¼h =
1

2 ¡ q
¼ l =

1 ¡ q
2 ¡ q .

These probabilities are obviously strictly positive for q 2 (0; 1) and, therefore, the Markov chain

described by ¹P is positive recurrent. Since any positive recurrent chain on a countable space is

also positive Harris recurrent, see Meyn and Tweedie (1996, p. 208), it follows that the Law of

Large Numbers applies for this chain. Hence, let ¶h denote the indicator function for state h:

¶h (t) =
½

1, if the state of the economy is h
0, if the state of the economy is l

¾
.

According to theorem 17.1.7 in Meyn and Tweedie (1996, p. 425),

lim
t!1

1
t

tX

¿=1

¶h (¿ ) =
Z
¶h (¿) d¼ = ¼h

holds almost surely for any initial distribution over the states h and l. Since 1
t
Pt
¿=1 ¶h (¿)

describes the mean time up to period t that the economy spends in state h, it follows that the

frequency of state h equals ¼h almost surely in the limit. Analogous arguments show that the

frequency of state l equals ¼l on almost each path ! 2 ©.¥

Proof of proposition 5.5:

Equilibrium in t = 1

In t = 1, the investors with aspiration levels ¹ui 2 [¹ua; (1 + r)] observe cumulative utilities:

U i1 (b) = 1 + r ¡ ¹ui > 0 = U i1 (a)

and choose ®i1 = b. The investors with aspiration levels ¹ui 2 [(1 + r) ; ¹un] observe cumulative

utilities:

U i1 (b) = 1 + r ¡ ¹ui < 0 = U i1 (a)

and choose ®i1 = a, regardless of the price p1. Since their mass is [¹un ¡ (1 + r)], as long as the

investors with aspiration levels ¹ui 2 [¹u0; ¹ua] choose ®i1 = a, the cumulative utilities observed

by these investors are

U1 (a) =
¹un ¡ (1 + r) + ¹ua ¡ ¹u0 + ±t

¹ua ¡ ¹u0
¡ ¹ui > 1¡ ¹ui > 0 = U i1 (b) ,

by assumption (5.48). Hence, the investors on the interval [0; ¹ua ¡ ¹u0] indeed choose ®i1 = a in
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equilibrium. It follows that in t = 1, state h:

p1 = ph =
£
¹un ¡ (1 + r) + ¹ua ¡ ¹u0

¤
,

®i1 = a for i 2
£
0; ¹ua ¡ ¹u0

¤
[

£
(1 + r)¡ ¹u0;n

¤
,

®i1 = b for i 2
£
¹ua ¡ ¹u0; (1 + r) ¡ ¹u0

¤

is an equilibrium.

Equilibrium in t = 2

In period t = 2, two cases are possible: either the dividend of the risky asset is positive or 0.

² ±2 = 0

The young investors with aspiration levels [¹ua; (1 + r)] observe cumulative utilities:

U i2 (b) = 1 + r ¡ ¹ui > 0 = U i2 (a)

and choose ®i2 = b.

Even if all of the young consumers with aspiration levels [¹u0; ¹ua] [ [(1 + r) ; ¹un] choose a,

the cumulative utilities they observe are given by:

U i2 (a) = 1¡ ¹ui

U i2 (b) = 0.

Whereas U i2 (a) > U i2 (b) holds for all i 2 [0; ¹ua ¡ ¹u0], it is obviously violated for i 2
[(1 + r) ¡ ¹u0;n], because of condition (5.44). Hence, ®i2 = b for all i 2 [(1 + r) ¡ ¹u0;n].

The cumulative utilities observed by the investors i 2 [0; ¹ua ¡ ¹u0] then become:

U i2 (a) =
¹ua ¡ ¹u0

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
¡ ¹ui > 0 = U i2 (b) ,

according to assumption (5.45) and these investors choose ®i2 = a. Hence, in t = 2 with

±2 = 0, the economy returns to state l with

p2 = pl =
£
¹ua ¡ ¹u0

¤
= p0,

®i2 = a for i 2
£
0; ¹ua ¡ ¹u0

¤
,

®i2 = b for i 2
£
¹ua ¡ ¹u0;n

¤
.

² ±2 = ±D
The young investors with aspiration levels [¹ua; (1 + r)] observe cumulative utilities:

U i2 (b) = 1 + r ¡ ¹ui > 0 = U i2 (a)
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and choose ®i2 = b.

Even if all of the young consumers with aspiration levels [¹u0; ¹ua] [ [(1 + r) ; ¹un] choose a,

the cumulative utilities they observe are given by:

U2 (a) = 1 +
±D

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
¡ ¹ui.

Since

1 +
±D

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
¡ ¹un < 0,

it follows that there is a subinterval of investors with aspiration levels between [(1 + r) ; ¹un]

for whom

U i2 (a) < U
i
2 (b)

holds and who, therefore, choose ®i2 = b.

I will show that if (5.45) holds, there is an equilibrium, in which all investors with aspiration

levels [(1 + r) ; ¹un] choose ®i2 = b. Indeed, suppose to the contrary that if all investors from

[(1 + r) ¡ ¹u0;n] choose ®i2 = b, for some of them

U i2 (a) =
¹ua ¡ ¹u0 + ±D

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
¡ ¹ui > 0 = U i2 (b)

holds. This implies that
¹ua ¡ ¹u0 + ±D

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
¡ (1 + r) > 0,

since (1 + r) is the lowest aspiration level in this interval. Hence,
±D

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
> (1 + r) ¡ ¹ua ¡ ¹u0

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
. (5.61)

On the other hand, the first inequality of condition (5.48) implies that
±D

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
< ¹un ¡ 1, (5.62)

whereas condition (5.45) requires

¹ua ¡ ¹u0 > ¹ua
¡
¹un ¡ (1 + r) + ¹ua ¡ ¹u0

¢

and since ¹ua ¡ ¹u0 · ¹ua for ¹u0 ¸ 0, this means that
¡
¹un ¡ (1 + r) + ¹ua ¡ ¹u0

¢
· 1,

or

2 + r ¡ ¹un ¡ ¹ua + ¹u0 ¸ 0

must hold.

Now compare the left hand sides of (5.61) and (5.62). It is easy to see that since

¹un ¡ (1 + r) + ¹ua ¡ ¹u0 > 0,
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(1 + r)¡ ¹ua ¡ ¹u0

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
¸ ¹un ¡ 1

is equivalent to

[¹un ¡ (1 + r)]
£
2 + r ¡ ¹un ¡ ¹ua + ¹u0

¤ ¸ 0,

which is always satisfied, as long as (5.48) and (5.45) hold. Hence, ±D cannot satisfy (5.61)

and (5.62) simultaneously and, therefore,
¹ua ¡ ¹u0 + ±D

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
· (1 + r)

obtains. But then

U i2 (a) =
¹ua ¡ ¹u0 + ±D

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
¡ ¹ui · 0 = U i2 (b)

holds for all ¹ui 2 [(1 + r) ; ¹un]. Hence, it is optimal for the investors i 2 [(1 + r) ¡ ¹u0;n] to

choose ®i2 = b, whereas ®i2 = a for all i 2 [0; ¹ua ¡ ¹u0] holds. The equilibrium price is then

given by p2 = pl = [¹ua ¡ ¹u0].

Since the state of the economy in t = 2 coincides with the state in t = 0, independently of the

dividend payment, it follows by induction that the two states h and l defined in the proposition

indeed determine a deterministic cycle of the economy.¥

Proof of proposition 5.6:

Since the investors of type 1 and type 2 do not change their asset holdings over time, there are

three cases to consider:

1. Let ®3t¡1 = a and ±t = ±D. From ®3t¡1 = a, it follows that:

U3
t¡1 (a) ¸ U3

t¡1 (b) .

From ±t = ±D, it follows that the return of a if ®3t = ®, is

1 +
±D

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
> ¹u3,

by assumption (5.49). It follows that if ®3t = a, then

U 3
t (a) = U3

t¡1 (a) + 1 +
±D

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
¡ ¹u3 > U3

t¡1 (a) ¸ U3
t¡1 (b) = U3

t (b) .

Hence, there exists an equilibrium in which:

®it = ®ih = a for i 2
£
0; ¹ua ¡ ¹u0

¤
[

£
(1 + r) ¡ ¹u0;n

¤

®it = ®ih = b for i 2
£
¹ua ¡ ¹u0; (1 + r) ¡ ¹u0

¤

pt = ph =
£
¹un ¡ (1 + r) + ¹ua ¡ ¹u0

¤
.
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2. Let ®3t¡1 = a and ±t = 0. From ®3t¡1 = a, it follows that:

U3
t¡1 (a) ¸ U3

t¡1 (b) .

From ±t = 0, it follows that the return of a if ®3t = a, is

1 < ¹u3,

by assumption (5.49).

– If
U3
t (a) = U

3
t¡1 (a) + 1 ¡ ¹u3 > U3

t¡1 (b) = U
3
t (b) ,

then ®3t = a has the maximal cumulative utility for the investors of type 3 and is chosen
again. Hence,

®it = ®ih = a for i 2
£
0; ¹ua ¡ ¹u0

¤
[

£
(1 + r) ¡ ¹u0;n

¤

®it = ®
i
h = b for i 2

£
¹ua ¡ ¹u0; (1 + r) ¡ ¹u0

¤

pt = ph =
£
¹un ¡ (1 + r) + ¹ua ¡ ¹u0

¤

is an equilibrium.

– If
U3
t (a) = U

3
t¡1 (a) + 1 ¡ ¹u3 = U3

t¡1 (b) = U
3
t (b) ,

then a and b have the same cumulative utilities. Hence,
®it = ®

i
h = a for i 2

£
0; ¹ua ¡ ¹u0

¤
[

£
(1 + r) ¡ ¹u0;n

¤

®it = ®ih = b for i 2
£
¹ua ¡ ¹u0; (1 + r) ¡ ¹u0

¤

pt = ph =
£
¹un ¡ (1 + r) + ¹ua ¡ ¹u0

¤

is again an equilibrium, but
®il = a for i 2

£
0; ¹ua ¡ ¹u0

¤

®il = b for i 2
£
¹ua ¡ ¹u0;n

¤

pl =
£
¹ua ¡ ¹u0

¤

is also an equilibrium, since for ®3t = b, the return of a becomes
¹ua ¡ ¹u0

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
< 1 < ¹u3

and the cumulative utility of a is smaller than those of b for type 3.

– If
U3
t (a) = U3

t¡1 (a) + 1 ¡ ¹u3 < U3
t¡1 (b) = U3

t (b) ,
then the cumulative utility of a is smaller than those of b for type 3 even if they choose
a at t. Hence, ®3t = b. The return of a then becomes:

¹ua ¡ ¹u0

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
< 1 < ¹u3

and since

U3
t (a) = U

3
t¡1 (a) +

¹ua ¡ ¹u0

¹un ¡ (1 + r) + ¹ua ¡ ¹u0
¡ ¹u3 < U 3

t¡1 (b) = U
3
t (b) ,

it follows that
®il = a for i 2

£
0; ¹ua ¡ ¹u0

¤
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®il = b for i 2
£
¹ua ¡ ¹u0;n

¤

pl =
£
¹ua ¡ ¹u0

¤

is an equilibrium at time t.

3. Let ®3t¡1 = b. This means that

U3
t¡1 (a) · U3

t¡1 (b) .

– If
U 3
t (b) = U 3

t¡1 (b) + 1 + r ¡ ¹u3 > U3
t¡1 (a) = U3

t (a) ,
then ®3t = b is the choice of type 3 and the equilibrium is state l.

– If
U 3
t (b) = U 3

t¡1 (b) + 1 + r ¡ ¹u3 = U3
t¡1 (a) = U3

t (a) ,
then type 3 is indifferent between a and b and both states h and l are equilibria.

– If
U 3
t (b) = U 3

t¡1 (b) + 1 + r ¡ ¹u3 < U3
t¡1 (a) = U3

t (a) ,
then ®3t = a is the choice of type 3 and the equilibrium is state h.¥

Proof of proposition 5.7:

Consider the Markov chain given by:

"1 = ¹u3 ¡ (1 + r)

"t+1 = "t + c, w.p. q if "t ¸ 0

"t+1 = "t ¡ c, w.p. 1¡ q if "t ¸ c

"t+1 = "t ¡ k
¡
¹u3 ¡ (1 + r)

¢
, w.p. 1¡ q if 0 · "t < c

"t+1 = "t + ¹u3 ¡ (1 + r) , w.p. 1 if "t < 0.

Note that

"t = U3
t (a) ¡ U3

t (b) ,

where it is implicitly assumed that the investors of type 3 hold asset a when indifferent between

the two acts. Since

"1 = ¹u3 ¡ (1 + r) > 0,

at t = 1, ®31 = a is chosen. a is held as long by the investors of type 3 as "t ¸ 0 holds. Note

that once "t = ¹u3 ¡ (1 + r) obtains, with probability (1 ¡ q) in the next period the cumulative
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utility of a becomes

U3
t+1 (a) = ¹u3 ¡ (1 + r) ¡ k

¡
¹u3 ¡ (1 + r)

¢
= (k ¡ 1)

¡
¹u3 ¡ (1 + r)

¢
,

since

¹u3 ¡ (1 + r) < ¹u3 ¡ 1 = c

by assumption (A7). It follows that ®3t+1 = b and b is held by the investors of type 3 for

exactly (k ¡ 1) periods. Consider, therefore, period t+ k and note that "t+k = 0 and, therefore,

®3t+k = a. As long as "¿ ¸ 0 holds, a is chosen by the investors of type 3. When "¿ < 0 obtains

for the first time

"¿ = ¡k
¡
¹u3 ¡ (1 + r)

¢
,

hence b is chosen and held for exactly k periods in a row. At ¿ + k, "¿+k = 0 obtains again and

the same process repeats.

Whereas, (A8) guarantees that b is held for axactly k periods in a row every time it is chosen

by the investors of type 3, the time during which a is held is random117. In fact, denote by ~"t the

following process

~"t+k = "t+k = 0

~"¿ = ~"¿¡1 + cw.p. q

~"¿ = ~"¿¡1 ¡ c w.p. 1 ¡ q.
~"t is a random walk with a step length c. Moreover, as long as ~"¿ ¸ 0 holds, ~"¿ = "¿ holds,

whereas in the first period at which ~"¿ = ¡c,
"¿ = ¡k ¡

¹u3 ¡ (1 + r)
¢

obtains. It follows that the expected time during which a is held is equal to the expected time

needed by ~" to reach ¡c for the first time starting at 0.

Now, I compute the expected time during which a is held in a row denoted by t. The analysis

above shows that

E [t] = E [minf¿ j ~"¿ = ¡cg]
It is a well-known result of the probability theory that the generating function of the time that a

117 Although it has been shown that b is held only for (k ¡ 1) periods in a row after the first switch of the investors
of type 3 from a to b at time (t + 1), this is an exception which only occurs once. Note, as well that because of
®3

0 = b, b is chosen during exactly k periods up to time (t + k).
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simple random walk needs to reach the point ¡1 for the first time is given by:

F¡1 (s) =

"
1¡ (1¡ 4q (1 ¡ q) s2)

1
2

2qs

#
,

see Grimmet and Stirzaker (1994, p.145). Differentiating F¡1 (s) with respect to s and taking

the derivative at s = 1, gives the expected value of the time the random walk needs to reach ¡1

for the first time:

F 0¡1 (s = 1) =
1¡

q
(1¡ 2q)2

2q
q

(1¡ 2q)2
, (5.63)

see Grimmet and Stirzaker (1994, p. 130). Since the time needed by ~"¿ with a step-length of c to

reach ¡c for the first time is equal to the time needed for a simple random walk to reach ¡1 for

the first time, the expected value of t is given by (5.63) if Pr ft = 1g = 0. It remains to state

the condition, for which Pr ft = 1g = 0 holds. Using corollary (6) in Grimmet and Stirzaker

(1994, p. 144) and the ref lection principle, one finds that the probability that the random walk

ever visits the negative part of the real axis is:

min
½
1;

1 ¡ q
q

¾
=

½
1 if q · 1

2
1¡q
q < 1 if q > 1

2

¾
.

Hence, the probability that the random walk never visits the negative part of the real axis (and

therefore never reaches ¡c) is positive if q > 1
2 and in this case E [t] = 1. If q · 1

2, then the

probability to reach ¡c in finite time is 1 and the expected time until the first such visit is:

E [t] =
½ 1

(1¡2q) , if q < 1
2

1, if q = 1
2

¾
.¥

Proof of corollary 5.1:

Consider again the Markov chain given by:

"1 = ¹u3 ¡ (1 + r)

"t+1 = "t + c, w.p. q if "t ¸ 0

"t+1 = "t ¡ c, w.p. 1¡ q if "t ¸ c

"t+1 = "t ¡ k
¡
¹u3 ¡ (1 + r)

¢
, w.p. 1¡ q if 0 · "t < c

"t+1 = "t + ¹u3 ¡ (1 + r) , w.p. 1 if "t < 0.

As in the proof of proposition 5.7,

"t = U3
t (a)¡ U3

t (b)

and "t evolves on the countable space

ª =
©
¡k

¡
¹u3 ¡ 1 + r

¢
;¡ (k ¡ 1)

¡
¹u3 ¡ 1 + r

¢
:::¡

¡
¹u3 ¡ 1 + r

¢
; 0; c; 2c:::

ª
.
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The state h coincides with "t ¸ 0, whereas the state l is represented by "t < 0. The chain is

irreducible, since for each x and y 2 ª there is a positive probability to reach x starting from

y and y, starting from x. To see this, consider the following cases:

1. x ¸ y ¸ 0. To reach x from y, the chain must make x¡yc steps upwards in a row, which

happens with probability q
x¡y
c > 0. To reach y starting from x, the chain must make x¡yc

steps downwards in a row, which happens with probability (1¡ q)
x¡y
c > 0.

2. x ¸ 0 > y . To reach x starting from y, the chain must first reach 0, which happens with

probability 1 and then make xc steps upward in a row, which happens with probability

q xc > 0. To reach y starting from x, the system must first reach 0, hence make xc steps

downwards in a row, which happens with probability of at least q xc > 0 and then make
k(¹u3¡1¡r)¡y

¹u3¡1¡r upward steps in a row, which happens with probability 1.

3. 0 > x ¸ y. To reach x starting from y, the chain must make x¡y
¹u3¡1¡r upward steps in

a row, which happens with probability 1. To reach y starting from x, the chain must

first reach 0, which happens with probability 1 in ¡x
¹u3¡1¡r steps, must then jump down

to ¡k (¹u3 ¡ 1 + r), which happens with probability (1¡ q) and then make
k(¹u3¡1¡r)¡y

¹u3¡1¡r

upward steps in a row, which also happens with probability 1.

In all these cases, states x and y are connected and, therefore, the Markov chain is irreducible.

Suppose first that q < 1
2 . As observed in the proof of proposition 5.7, "t restricted to [0;1)

behaves as a random walk on the half-line as described by the process ~"t. Hence, according

to Meyn and Tweedie (1996, pp. 184-185) 0 is reached with probability 1 starting from each

x ¸ 0 if q < 1
2. On the other hand, starting from x < 0, 0 is reached in at most k steps with

probability 1. Hence, 0 is reached with probability 1 from any initial state and is, therefore, a

recurrent state. But from the properties of irreducible Markov chains on countable spaces, we

know that if one state is recurrent, then so are all states of the chain, see Meyn and Tweedie

(1996, p. 182). Moreover, since the Markov chain defined by "t contains an accessible atom, 0,

it follows that the chain is positive recurrent, see theorem 10.2.1 in Meyn and Tweedie (1996, p.

242). Hence, there exist positive probabilities ¼h and ¼l describing the invariant probabilities

with which "t ¸ 0 and "t < 0 obtain, respectively. Since the economy is in states h for "t ¸ 0
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and in state l for "t < 0, ¼h and ¼l equal the frequencies of these states. Furthermore, the Law

of Large Numbers applies, see theorem 17.1.7 in Meyn and Tweedie (1996, p. 425) and in the

limit, ¼h and ¼ l almost surely equal the mean time during which the investors of type 3 hold a

and b, respectively. Hence, it follows from the results of proposition 5.7 that
¼h
¼ l

= 1
k (1¡ 2q)

holds almost surely in the limit. Combined with ¼h + ¼ l = 1, this implies

¼h =
1

1 + k (1¡ 2q)
and

¼l =
k (1¡ 2q)

1 + k (1 ¡ 2q)
.

For q · 1
2 , according to the proof of proposition 5.7, there is a positive probability that starting

from 0, ~"t and, hence, also "t never crosses 0 from above. Since b is held for exactly k periods in

a row, in order to spend a positive proportion of time taking on values below 0, "t must cross 0

from above for an infinite number of times. However, this event has a probability of 0. Hence,

"t < 0 obtains only for a finite number of periods. It follows that the mean proportion of time

the economy spends in state h, is 1.¥

Proof of proposition 5.8:

Since the investors of type 1 and type 2 do not change their holdings over time, there are three

cases to consider:

1. Let ®3t¡1 = a and ±t ¸ ~±. From ®3t¡1 = a it follows that:

U3
t¡1 (a) ¸ U3

t¡1 (b) .

From ±t ¸ ~±, it follows by assumption (5.54) that the return of a is satisfactory for type 3 if

®3t = ®:

u
µ
1 +

±t
1¡ µ2

¶
¸ ¹u3.

Hence if ®3t = a,

U 3
t (a) = U

3
t¡1 (a) + u

µ
1 +

±t
1¡ µ2

¶
¡ ¹u3 ¸ U 3

t¡1 (a) ¸ U3
t¡1 (b) = U

3
t (b)

holds and therefore, there exists an equilibrium in which:

®it = ®
i
h = a for i 2 f1; 3g

®it = ®
i
h = b for i = 2
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pt = ph = 1¡ µ2.

2. Let ®3t¡1 = a and ±t < ~±. From ®3t¡1 = a, it follows that:

U3
t¡1 (a) ¸ U3

t¡1 (b) .

From ±t < ~±, it follows by assumption (5.49) that the utility derived from a is

u
µ
1 + ±t

1¡ µ2

¶
< ¹u3

if ®3t = a.

– If
U 3
t (a) = U3

t¡1 (a) + u
µ
1 + ±t

1¡ µ2

¶
¡ ¹u3 > U3

t¡1 (b) = U 3
t (b) ,

then a has the maximal cumulative utility for the investors of type 3 and is chosen
again, ®3t = a. Hence,

®it = ®
i
h = a for i 2 f1; 3g
®it = ®ih = b for i = 2
pt = ph = 1¡ µ2

is an equilibrium.

– If

U 3
t (a) = U

3
t¡1 (a) + u

µ
1 +

±t
1¡ µ2

¶
¡ ¹u3 = U3

t¡1 (b) = U
3
t (b) ,

then a and b have the same cumulative utilities for the young investors of type 3. Hence,
®it = ®

i
h = a for i 2 f1; 3g
®it = ®ih = b for i = 2
pt = ph = 1¡ µ2.

is again an equilibrium, but
®it = ®il = a for i = 1

®it = ®
i
l = b for i 2 f2; 3g

pl = µ1
is also an equilibrium. To see this, note that the return of a is

u
µ
µ1 + ±t
1 ¡ µ2

¶
< u

µ
1 +

±t
1¡ µ2

¶
< ¹u3

if ®3t = b. In this case, the cumulative utility of a is smaller than those of b for type 3.

– If
U 3
t (a) = U3

t¡1 (a) + u
µ
1 +

±t
1¡ µ2

¶
¡ ¹u3 < U3

t¡1 (b) = U 3
t (b) ,

then the cumulative utility of a is smaller than those of b for the investors of type 3 even
if they choose a at t. Hence, ®3t = b and the utility realization of a is

u
µ
µ1 + ±t
1¡ µ2

¶
< ¹u3.
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Since then

U3
t (a) = U 3

t¡1 (a) + u
µ
µ1 + ±t
1 ¡ µ2

¶
¡ ¹u3 < U3

t¡1 (b) = U3
t (b) ,

it follows that
®it = ®il = a for i = 1

®it = ®
i
l = b for i 2 f2; 3g

pl = µ1
is an equilibrium at time t.

3. Let ®3t¡1 = b. This means that

U3
t¡1 (a) · U3

t¡1 (b) .

– If
U 3
t (b) = U

3
t¡1 (b) + u (1 + r) ¡ ¹u3 > U3

t¡1 (a) = U
3
t (a) ,

then ®3t = b is the choice of type 3 and the equilibrium is state l.

– If
U 3
t (b) = U

3
t¡1 (b) + u (1 + r) ¡ ¹u3 = U3

t¡1 (a) = U
3
t (a) ,

then type 3 is indifferent between a and b and both states h and l are equilibria.

– If
U 3
t (b) = U

3
t¡1 (b) + 1 + r ¡ ¹u3 < U3

t¡1 (a) = U
3
t (a) ,

then ®3t = a is the choice of type 3 and the equilibrium is state h.¥

Proof of proposition 5.9:

Since "t is defined as:

"0 = 0

"t =

8
>><
>>:

"t¡1 + u
³
1 + ±t

1¡µ2

´
¡ ¹u3, if "t¡1 ¸ 0 and "t¡1 + u

³
1 + ±t

1¡µ2

´
¡ ¹u3 ¸ 0

"t¡1 + u
³
µ1+±t
1¡µ2

´
¡ ¹u3, if "t¡1 ¸ 0 and "t¡1 + u

³
1 + ±t

1¡µ2

´
¡ ¹u3 < 0

"t¡1 ¡ u (1 + r) + ¹u3, if "t¡1 < 0.

9
>>=
>>;

,

"t, t ¸ 1, describes the evolution of the difference between the cumulative utilities of a and b

for the investors of type 3:

"t = U3
t (a)¡ U3

t (b)

and it is obvious that "t is a Markov chain, since ±t is identically and independently distributed

according to Q. Moreover, "t evolves on

ª0 =
·
u

µ
µ1 + ±
1¡ µ2

¶
¡ ¹u3; +1

¶
,

since the greatest amount by which the cumulative utility of b can exceed the cumulative utility

of a is ¹u3¡u
³
µ1+±
1¡µ2

´
, whereas the cumulative utility of a can become very large, if ± > ~± occurs
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for a long period of time. Denote by P the transition probability kernel of "t. The idea of the

proof consists in showing that "t is a stationary process with an invariant probability measure

¼, as defined in the statement of the proposition. Since for positive "t the investors of type 3

choose asset a, whereas for negative "t, they choose b, the frequency with which a and b are

chosen in the limit coincide with

¼ [0; +1)

and

¼
·
u

µ
µ1+ ±
1¡ µ2

¶
¡ ¹u3; 0

¶
,

respectively.

Denote by G the interval [0; ¹u3 ¡ u (1 + r)]. The following Lemma shows that the set G is a

small set, i.e. that there exists a measure º on the set

ª0 =
·
u

µ
µ1 + ±
1¡ µ2

¶
¡ ¹u3; +1

¶

such that

PK (";F ) ¸ º (F )
for any set F 2 ª0 and any " 2 G, where PK (";F ) denotes the probability to reach a set F

starting from " in K steps, see Meyn and Tweedie (1996, p. 111).

Lemma 5.1 The set G= [0; ¹u3 ¡ u (1 + r)] is small.

Proof of lemma 5.1:

The assumption about the probability distribution of ± and the continuity of the utility function

u (¢) implies that the net utility realizations

~u = u
µ
1 + ±

1 ¡ µ2

¶
¡ ¹u3

of a (as long as its cumulative utility remains positive) are distributed according to a probability

distribution Q0, such that Q0 has an absolutely continuous part with respect to the Lebesgue

measure on the real numbers. Moreover, there is a number ³ 0, such that the density of ~u g0 is

bounded away from 0 on an interval (¡³ 0; ³ 0) for some ³ 0 satisfying ¹u3 ¡ u (1 + r) > ³ 0 > 0,

i.e.:

g0 (~u) ¸ Á0 > 0

for all ~u 2 (¡³ 0; ³ 0) and for some Á0.
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Divide the set G into K sets, G1:::GK with length less than ³
0

2 . Fix an " 2 Gi and suppose that

F ½ Gj. Now, for each 0 < » < ³
0

2 , there is a positive probability P»¡ that

"t+1 2
µ
"t +

³ 0

2
¡ »; "t +

³ 0

2

¶

and a positive probability P»+ that

"t+1 2
µ
"t ¡

³ 0

2
; "t ¡

³ 0

2
+ »

¶

Moreover, because of the assumptions made on the probability distributionQ, these probabilities

are bounded away from 0:

P»+ ¸ Á0»

P»¡ ¸ Á0».

Now choose » such that » (K ¡ 1) · ³0
2 holds. It follows that after (K ¡ 1) steps the process "t

will be at a distance of at most ³ 0 away from the set Gj , of which F is a subset with probability

of at least

[Á0»]K¡1 .

Therefore, at step K, there is a positive probability of at least:

P ("t+K¡1;F ) = P (~u 2 (F ¡ "t+K¡1)) =
Z

F¡"t+K¡1
g0 (~u) d~u ¸ Á0¹Leb (F ) .

Hence, the probability that set F ½ Gj is reached afterK steps starting at some "t is at least

PK ("t;F ) ¸ [Á0»]K¡1 Á0¹Leb (F ) =: º (F ) ,

where º is absolutely continuous with respect to the Lebesgue measure on the interval G. The

probability that a set F ½ G which is not a subset of any Gj is reached in K steps fulfills

PK ("t;F ) =
KX

i=1

PK ("t;Fi) ¸ [Á0»]K¡1 Á0
KX

i=1

¹Leb (Fi) = [Á0»]K¡1 Á0¹Leb (F ) ,

where [Ki=1Fi = F and Fi ½ Gi, i.e. Fi is a partition of F into sets each of which is a (possibly

empty) subset of some Gi. Since each set outside G is reached with a non-negative probability

starting fromG, it follows that the setG is a small set and the measure º (F ) is defined as

º (F ) = [Á0»]K¡1 Á0¹Leb (F ) , F ½ G

º (F ) = 0, else.

Moreover, according to proposition 5.5.3 in Meyn and Tweedie (1996, p. 127), since each small

set is a petite set, G is a petite set.¥

The next Lemma demonstrates that the Markov chaindefined by "t is'-irreducible. '-irreducibility
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is an analogue to the concept of irreducibility of Markov chains on countable sets, defined for

Markov chains on general sets. It defines a measure ', which assigns a strictly positive value

only to subsets of the set ª0 which are reached with strictly positive probability from every initial

point "t, see Meyn and Tweedie (1996, p. 91).

Lemma 5.2 Let ' be defined as the Lebesgue measure on the set [0; ¹u3 ¡ u (1 + r)] and be 0
elsewhere. Then the Markov chain " is '-irreducible.

Proof of lemma 5.2:

Obviously,' assigns a positive probability only to subsets of the intervalG. The statement of the

lemma is therefore true if it can be shown that each of the subsets of this interval is reached with

positive probability from any initial point. Since it has been shown that starting from anypoint in

the intervalG, any subset ofG is reached with positive probability, it remains to demonstrate that

starting outside the interval [0; ¹u3 ¡ u (1 + r)], a subset of this interval is reached with positive

probability. Consider two cases: if "t < 0, then "t grows by ¹u3 ¡ u (1 + r) in each period,

until "t+k ¸ 0 obtains for the first time. But at time (t + k) "t+k 2 [0; ¹u3 ¡ u (1 + r)], hence

the intervalG is reached with probability 1, starting from a negative "t. If "t > ¹u3 ¡ u (1 + r)
holds, then there is a positive probability that the next

l
2"t³0

m
steps are negative with realizations

between
³
¡ ³02 ;¡

´³0
2

´
with

l
2"t³0

m
´³0
2 < ¹u3¡u (1 + r), (hence, ´ < 1) and, therefore, the subseth

0;
l
2 "t³0

m
´³0
2

i
of G is reached with strictly positive probability in finite time from any initially

chosen "t. Therefore, the Markov chain is '-irreducible.

Since ' is finite, it follows according to proposition 4.2.2 in Meyn and Tweedie (1996, p. 92)

that there exists a probability measure Ã on ª0, which assigns a probability of 0 to a subset F

of ª0 if and only if

Ã

Ã
" j

1X

n=1

Pn (";F ) > 0

!
= 0.

Ã is absolutely continuous with respect to ', hence if ' (F ) > 0, then Ã (F ) > 0 holds as

well. Denote by B (ª0) the Borel ¾-algebra on ª0. Let B+ (ª0) denote the subset B (ª0), whose

elements are assigned a strictly positive probability according to Ã:

B+ (ª0) = fF 2 B (ª0) j Ã (F ) > 0g .

Note that the petite setG satisfies G 2 B+ (ª0).¥

Part (ii) of theorem 10.4.10 in Meyn and Tweedie (1996, p. 254) combines the notion of petite
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set and irreducibility of a Markov chain with the notion of positive recurrency, which assures

the existence of an invariant probability distribution ¼, as required in proposition 5.9:

Proposition 5.18 Suppose that a Markov chain is Ã-irreducible. Let ¿G denote the first hitting
time of the set G. The chain is positive recurrent, if for some petite set G 2 B+ (ª0)

sup
"2G
E" [¿G] <1.

Proof of proposition 5.18:

See Meyn and Tweedie (1996, p. 254).¥

It has already been shown that the chain defined by "t is Ã-irreducible and that G is a petite

set with Ã (G) > 0 (since '(G) > 0). It remains, therefore, to show that the expected hitting

time of the set G, starting from G, is bounded from above. To demonstrate this note that the

process "t, constrained to its positive part, is a random walk on a half line with negative expected

increment. Proposition 11.4.1 in Meyn and Tweedie (1996, p. 278) demonstrates that for such a

random walk all compact sets are regular. A regular set F 0 has the property that

sup
"2F 0
E" [¿F ] < 1

for all F 2 B+ (ª0), see Meyn and Tweedie (1996, p. 263). Since G 2 B+ (ª0), it follows that

sup
"2G
E" [¿G] <1

holds for the process "t reduced to a random walk on the half line. Moreover, since all compact

sets are regular, it follows that

sup
"2F
E" [¿G] <1

holds for all compact sets F ½ [0; +1).

Now, consider the unconstrained process "t. There are two possibilities: either "t remains non-

negative forever and in this case it behaves like a random walk on the half line and, therefore,

G is regular, or "t eventually becomes negative. If "t < 0 at some t, then the expected time in

which " reaches G is at most
¹u3 ¡ u

³
µ1+±
1¡µ2

´

¹u3 ¡ u (1 + r) ,

which is finite. Therefore, the expected time that the process needs to reach the set G starting

from set G is bounded from above. But then the condition of proposition 5.18 is satisfied and

the Markov chain defined by "t is positive recurrent. Hence, there exists an invariant proba-

bility measure ¼ for the process "t, see Theorem 10.0.1 in Meyn and Tweedie (1996, p. 238).
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Moreover, since

sup
"2ª0
E" [¿G]< 1

holds, it follows that the process described by "t is a positive Harris chain118.

It now remains to show that ¼h and ¼l as defined in the statement of the proposition are positive

and satisfy
¼h
¼l

=
¹u3 ¡ u (1 + r)

¹u3 ¡ ¹ra
.

Note that according to the Strong Law of Large Numbers, the cumulative utility of a if it is

chosen for an infinite number of times by the investors of type 3 satisfies:

lim
t!1
U 3
t (a) = ¡1,

since the mean utility of a is lower than the aspiration level ¹u3. Analogously, if b is chosen for

an infinite number of periods,

lim
t!1
U3
t (b) = ¡1

obtains, since u (1 + r) < ¹u3 by assumption. Therefore, as in the proofs of propositions 3.1

and 3.2 in chapter 3, the case-based decision rule implies that on almost each path of dividend

realizations, both portfolios will be held infinitely often by the investors of type 3.

Now consider the difference U3
t (a) ¡ U3

t (b) = "t. It can be shown that "t remains bounded

above on almost each path of dividend realizations. At times at which a is chosen "t never falls

below 0, since this would contradict choosing the act with the highest cumulative utility in each

period. Suppose, therefore that there is a sequence of periods t0, t00..., such that "t0, "t00... grows

to infinity. In other words, suppose that for each N > 0 there is a k such that "tn > N for all

n > k. Since Ut (a) has negative expected increments, it follows (as shown above) that b is

chosen infinitely many times on almost each path of dividend realizations. But each time that b

is chosen, the difference "t falls below 0. If "tn > N , the time needed to return to the origin is

at least
N

¹u3 ¡ u
³³

1¡µ2+±
1¡µ2

´´ ,

which grows to infinity, as "tn becomes very large. However, since the positive part of "t is a

random walk on the half line, it follows from proposition 11.4.1 in Meyn and Tweedie (1996, p.

278) that the setG is regular for this process and, therefore, it is reached in finite expected time

from each point in G. Moreover, the expected stopping time is uniformly bounded above by a
118 See Meyn and Tweedie (1996, p. 207) for a definition of a Harris chain.
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number
~N = sup

"2G
E" [¿G] < 1.

The Law of Large Numbers then implies that for each · > 0 on almost each path of dividend

realizations, there is a period K such thatPn
i=1 ¿Gi
n

· ~N + ·

for all n ¸ K. On the other hand, the assumption that "tn ! 1 implies that there is a time K0

such that ¿Gi > ~N + · for all i ¸ K0. It is therefore always possible to choose n large enough,

so that Pn
i=1 ¿Gi
n

> ~N + ·,

a contradiction. Hence, almost each sequence "t0 , "t00... (where t0, t00... denote periods at which

a is chosen) is bounded above and below.

Analogously, at times at which b is chosen, "t assumes a minimal value of u
³
µ1+±
1¡µ2

´
¡ ¹u3 and

increases in each period of time by an amount

¹u3 ¡ u (1 + r) .

However, "t cannot exceed ¹u3 ¡ u (1 + r), since this would again be in contradiction with the

case-based decision rule. Hence, "t is bounded on almost all paths of dividend realizations.

But then it follows that

lim
t!1
U3
t (a)
U 3
t (b)

= lim
t!1

U 3
t (a)

U3
t (a) ¡ "t

= 1 (5.64)

holds with probability 1 in the limit. For a given set
h
u

³
µ1+±
1¡µ2

´
¡ ¹u3; 0

´
, the invariant probability

¼l describes the mean time that the Markov chain defined by "t spends in this set between its

visits to another set, [0; +1), see theorem 10.4.9 in Meyn and Tweedie (1996, p. 253). Note

that a is chosen in periods in which "t ¸ 0 holds, whereas b is chosen in periods in which "t < 0

holds. Now define a function ¶h : ª0 ! f0; 1g with

¶h (x) =

(
1 if x 2 [0; +1)
0 if x 2

h
u

³
µ1+±
1¡µ2

´
¡ ¹u3; 0

´
)

.

It is clear that ¶h 2 L1 (ª0;B (ª0) ;¼), hence that ¶h has a finite expectation with respect to

¼ on ª0. Moreover, it has been shown above that the process described by " is positive Harris

recurrent. Therefore, theorem 17.1.7 in Meyn and Tweedie (1996, p. 425) implies that

lim
t!1

1
t

tX

¿=1

¶h ("¿) =
Z
¶hd¼
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holds almost surely for any initial probability distribution. Note that 1
t

Pt
¿=1 ¶h ("¿) represents

the mean time that the system spends in state h. By the definition of ¶h ("¿), it follows that

lim
t!1

1
t

tX

¿=1

¶h ("¿) = ¼h

almost surely. Hence, the frequency with which the investors of type 3 choose a in the limit

equals ¼h on almost all paths of dividend realizations. It follows that

lim
t!1

jC3
t (a)j

jC 3
t (b)j

=
¼h
¼ l

holds with probability 1 as well. Substituting this into (5.64) implies:

lim
t!1
U 3
t (a)
U 3
t (b)

= lim
t!1

jC3
t (a)j

jC 3
t (b)j

P
¿2C3t (a)

v¿(a)
jC3t (a)j ¡ ¹u3

u (1 + r) ¡ ¹u3
=

= ¼h
¼ l

limt!1
P
¿2C3t (a)

v¿(a)
jC3t (a)j ¡ ¹u3

u (1 + r)¡ ¹u3
= 1.

It follows that the mean utility of a, as observed by the investors of type 3 converges with prob-

ability 1 to a number ¹ra, with

¹ra = lim
t!1

X

¿2C3t (a)

v¿ (a)
jC 3
t (a)j

.

Hence,
¼h
¼l

=
¹u3 ¡ u (1 + r)

¹u3 ¡ ¹ra
.¥

Proof of proposition 5.10:

Consider the difference between the cumulative utilities of a and b restricted to its positive part:

~"t = "t, if "t ¸ 0

~"t = 0, else.

It is easily seen that ~"t is a random walk on the half line with positive expected increments, since

¹u3 <
Z ¹±

±
u

µ
1 +

±
1¡ µ2

¶
g (±) d±

holds by assumption. By proposition 9.5.1 in Meyn and Tweedie (1996, p. 278), ~"t is transient.

Hence, for each state and especially for ~"t = 0, the expected number of visits to this state is

finite, implying that the probability of an infinite number of visits to 0 is 0. Furthermore, since

it is assumed that

u (1 + r) < ¹u3
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holds, it follows that once "t < 0 obtains, b is held only for a maximum of2
666

u
³
µ1+±
1¡µ2

´
¡ ¹u3

u (1 + r)¡ ¹u3

3
777

periods. Hence, "t+k > 0 occurs in finite time k. But then the transience of ~"t implies that the

decision-maker will switch to b only for a finite number of times with probability 1. Hence, on

almost all paths of dividend realizations, b is held only for a finite number of periods. It follows

that the limit frequency of state h is 1, whereas those of state l is 0.¥

Proof of proposition 5.11:

Denote by "t (a; b), "t (a;MP ) and "t (b;MP ) the differences between the cumulative utilities

of a and b, a and the market portfolio and b and the market portfolio, respectively:

"t (®;®0) = Ut (®)¡ Ut (®0)
for ®; ®0 2 fa; b;MPg and ® 6= ®0. First, I show that the market portfolio is almost surely

chosen in finite time. In a second step, I demonstrate that, once chosen, the market portfolio is

held infinitely long in expectation. The Strong Law of Large Numbers then ascertains that the

market portfolio is held with frequency 1 almost surely in the limit.

Denote by

~"t (®;®0) = "t (®;®0) , if "t (®;®0) ¸ 0

~"t (®;®0) = 0, if "t (®;®0) < 0.

Suppose that a is currently chosen. In such periods ~"t (a;MP ) and ~"t (b;MP ) behave as random

walks on the half line with negative expected incrementsZ ¹±

±
[u (1 + ±) ¡ u (1 + ± + r)] g (±) d± < 0

and

¹u ¡
Z ¹±

±
u (1 + ± + r) g (±) d± < 0,

respectively. For such random walks on the half line all compact sets are regular, see proposi-

tion 11.4.1 in Meyn and Tweedie (1996, p. 278). Moreover, by proposition 4.3.1 in Meyn and

Tweedie (1996, p. 96), the point 0 is an atom of a random walk on a half line with negative ex-

pected increment. Therefore, the chains defined by ~"t (a;MP ) and~"t (b;MP ) are'-irreducible

with

' (0;1) = 0
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' (0) = 1.

Hence, the set f0g has a positive measure under the maximal irreducibility measure Ã of these

two chains. Therefore, starting from any positive ~"t (a;MP ) > 0 and ~"t (b;MP ) > 0, the

random walk on the half line reaches 0 in finite expected time. Since "t (a;MP ) = 0 and

"t (b;MP ) = 0 obtain with probability 0, it follows that "t+k (a;MP ) < 0 and "t+k (b;MP ) <

0 obtain almost surely in finite time k, (where k in general depends on the path of dividend

realizations chosen). But

"t+k (a;MP ) < 0

implies that the market portfolio has a larger cumulative utility at time (t+ k) than the portfolio

consisting of risky assets only. Hence, with probability 1, the representative investor abandons

a in finite time.

Suppose first that "t (a; b) has positive expected increments,Z ¹±

±
u (1 + ±)g (±)d± ¡u (1 + r) > 0.

If at time (t + k) the representative investors chooses b, then, by an argument similar to the one

presented above, both ~"t (a; b) > 0 and ~"t (b;MP ) < 0 obtain in finite time with probability

1. Therefore, in finite time the investor switches away from b and chooses the market portfolio

or the risky asset. It remains to show that almost surely he will choose the risky asset and the

riskless bond only for a finite number of times.

Indeed, suppose that a is chosen an infinite number of times and note that it cannot be that a is

always abandoned for b, since "t (a; b) has positive expected increments, if a is chosen and re-

mains constant when b or MP is chosen. Hence, starting from 0, ~"t (a; b) will return to 0 only

a finite number of times in expectation and, therefore, with probability 1, the representative in-

vestor will switch from a to b only a finite number of times. Hence, since a is chosen infinitely

often and since ~"t (a;MP ) becomes 0 in finite time, it follows that the representative investor

switches to the market portfolio infinitely often. Note, however that once the market portfolio

is chosen ~"t (a;MP ) and ~"t (b;MP ) have negative expected increments. Therefore, the proba-

bility that the cumulative utility of the market portfolio falls below the cumulative utility of the

assets a and b is less than 1. It follows that the probability that Ut (MP ) falls below the cumu-

lative utility of a for an infinite number of times is 0. But then, the decision-maker will switch

only a finite number of times between a and the market portfolio, a contradiction. Hence, almost
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surely a is chosen only for a finite number of periods.

Alternatively, if b is chosen infinitely often, it follows that (since a can be chosen for a finite

number of times onalmost each path of dividend realizations, as shown above) the representative

investor switches infinitely often between b and the market portfolio. Again, once he switches

to the market portfolio, there is a positive probability that the cumulative utility of the market

portfolio never falls below that of a and b. Hence, the probability that the cumulative utility of

the market portfolio falls below the cumulative utility of a and b for an infinite number of times

is 0 and, therefore, the decision-maker can only switch between b and the market portfolio for a

finite number of times. The assumption that b is chosen an infinite number of times, therefore,

also leads to a contradiction. It follows that both a and b are chosen for a finite number of times

on almost all paths of dividend realizations. Therefore, the market portfolio must be chosen for

an infinite number of times on almost each path of dividend realizations. Hence,

¼MP = 1

¼a = ¼b = 0

obtains.

The argument for the case Z ¹±

±
u (1 + ±)g (±)d± ¡ u (1 + r) < 0

is analogous and the proof is obtained from the two preceding paragraphs by replacing a by b

and vice versa.¥

Proof of proposition 5.12:

First note that none of the acts a and b can be chosen only for a finite number of times, since

this would imply that the cumulative utility of the acts chosen infinitely often converges to ¡1
with probability 1, whereas the cumulative utility of the act chosen only for a finite number of

times remains finite. This contradicts the case-based decision rule, which prescribes choosing

the act with the maximal cumulative utility in each period. It follows that acts a and b are chosen

infinitely often on almost each dividend path.

Now consider the differences between the cumulativeutilities of the acts "t (a; b), "t (a;MP )and

"t (b;MP ). Six cases are possible.
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1. Suppose that at time t the representative investor switches from portfolio a to b. This

means that the difference between the cumulative utilities of a and b satisfies:

"t¡1 (a; b) ¸ 0

"t (a; b) 2 [u (±)¡ ¹u; 0] .

Since from t on, b is the act chosen, "t (a; b) behaves like a random walk on the negative half

line with positive expected increment (since the cumulative utility of a remains unchanged,

whereas the cumulative utility of b falls in expectation). Consider as above the process

"t (a; b) constrained to the negative half line and note that, by an argument similar to the

one used in the proof of proposition 5.11, starting from the interval [u (±)¡ ¹u; 0], it will

reach 0 in finite time with probability 1. Therefore, in finite time the difference between

the cumulative utilities of a and b becomes positive again and hence, the representative

investor switches either toMP or to a. Moreover, since the random walk on a half line has

the property that all compact intervals are regular, it follows that the expected time needed

for "t (a; b) to become positive again, starting from [u (±)¡ ¹u; 0] is uniformly bounded

above119. Hence, the time for which b is held is also uniformly bounded from above in

expectation.

2. Suppose that at time t, the representative investor switches from portfolio b to a. This

means that the difference between the cumulative utilities of a and b satisfies:

"t¡1 (a; b) · 0

"t (a; b) 2 [¹u ¡u (r) ; 0] .

An argument analogous to those presented in case 1 shows that the time during which a is

held is uniformly bounded above in expectation.

3. Suppose that at time t, the representative investor switches from portfolio a toMP . This

means that the difference between the cumulative utilities of a andMP satisfies:

"t¡1 (a;MP ) ¸ 0

"t (a;MP ) 2
"
min
±2[±;¹±]

½
u

µ
1
2
+ ±

¶
¡ u (1 + ± + r)

¾
; 0

#
.

119 Of course, if "t (b; MP ) < 0 and "t (a;M P ) < 0 obtain before "t (a; b) becomes positive again, the
investor will switch to MP even at an earlier period. This does not contradict the conclusion that the
expected time during which b is held in a row is bounded from above.
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Since the cumulative utility of the market portfolio behaves like a random walk with

negative expected increment as long as the market portfolio is chosen, it follows that

"t (a;MP ) is a random walk on the negative half line with positive expected increment.

Hence, starting from "
min
±2[±;¹±]

u
µ
1
2
+ ±

¶
¡ u (1 + ± + r) ; 0

#
,

it becomes positive in finite time with probability one. The expected time for "t (a;MP )

to become positive is moreover uniformly bounded above for all starting points lying in

this interval.

4. Suppose that at time t, the representative investor switches from portfolio b toMP . This

means that the difference between the cumulative utilities of b andMP satisfies:

"t¡1 (b;MP ) ¸ 0

"t (b;MP ) 2
·
u

µ
1
2
+ r

¶
¡ u

¡
1 + ¹± + r

¢
; 0

¸
.

An argument analogous to the one presented in case 3 shows that the time during which

MP is held is uniformly bounded above in expectation.

5. Suppose that at time t, the representative investor switches from the market portfolio to a.

This means that the difference between the cumulative utilities of a andMP satisfies:

"t¡1 (a;MP ) · 0

"t (a;MP ) 2 [0; ¹u¡ u (1 + ± + r)] .

Since, however, the market portfolio always yields returns which are strictly higher than

those of a, it follows that the difference between the cumulative utilities of a andMP

strictly increases in each period of time and therefore in at most&
¹u ¡ u (1 + ± + r)

min±2[±;¹±] fu (1 + ± + r) ¡ u (1 + ±)g

'

periods "t¡1 (a;MP ) · 0obtains again. Hence, as in the previous cases, the expected time

during which the investors hold a is finite and uniformly bounded above.

6. Suppose that at time t the representative investor switches from the market portfolio to b.

This means that the difference between the cumulative utilities of b andMP satisfies:

"t¡1 (b;MP ) · 0

"t (b;MP ) 2 [0; ¹u¡ u (1 + ± + r)] .
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Since the difference "t (b;MP ) decreases in each period of time by at least u (1 + r) ¡
u (1 + ± + r), which is positive with probability 1, it follows that almost surely

"t (b;MP ) · 0 obtains again in finite time. This happens in at most»
¹u ¡ u (1 + ± + r)

u (1 + r)¡ u (1 + ± + r)

¼
,

periods, if ± > 0 holds. If ± = 0, we can again use the property of a random walk

with negative expected increment to demonstrate that the expected time needed for

"t (b;MP ) · 0 to obtain is finite and uniformly bounded above.

The discussion of the six possible cases shows that the expected time during which a single

act is chosen in a row is finite and uniformly bounded from above. In analogy to the proof

of proposition 5.10, it can be, therefore, shown that every sequence "tk (®;®0), ® 6= ®0, ®,

®0 2 fa; b;MPg is almost surely bounded. Hence, for each ® 6= ®0, the limit of the cumulative

utilities satisfies:

lim
t!1

Ut (®)
Ut (®0)

= lim
t!1

Ut (®)
Ut (®) + "t (®;®0)

= 1.

Since the realization of the market portfolio is observed in each period of time, the Strong Law of

Large Numbers implies that the cumulative utility of the market portfolio almost surely satisfies:

lim
t!1
Ut (MP )
t

=
Z ¹±

±
u (1 + ± + r) g (±) d± ¡ ¹u.

It follows, therefore that

lim
t!1

Ut (a)
Ut (MP )

= lim
t!1

jCt (a)j
t

³ P
¿2Ct(a) u¿ (a)
jCt(a)j ¡ ¹u

´

R ¹±
± u (1 + ± + r) g (±) d± ¡ ¹u

= 1.

Since u¿ (a) can obtain values between
£
u (±) ;u

¡
1 + ¹±

¢¤
, it follows that

P
¿2Ct (a) u¿(a)
jCt(a)j is also

bounded between
£
u (±) ;u

¡
1 + ¹±

¢¤
on each possible path of dividend realizations. It follows

that the quotient jCt(a)jt must be bounded away from 0 on almost each dividend path, in order to

guarantee that the limit is indeed 1. Hence, the mean proportion of time during which asset a is

chosen in the limit is strictly positive on almost each path of dividend realizations. Analogous

reasoning shows that the mean proportion of time during which asset b is chosen is also strictly

positive in the limit with probability 1.¥

Proof of proposition 5.13:

The aspiration level of the investors of type 1 has been chosen low enough, so as to guarantee

that they never switch away from their initial choice. Hence, only the behavior of the investors
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with high aspiration level has to be considered. Note that

u
µµ
p0 + ±
p0

¶
®0 + (1¡ ®0) r

¶
= u (1 + ± + (1¡ ®0) r)

is the utility realization of portfolio ®0, given that the dividend of the risky asset is 0 (the lowest

possible) and still all young investors choose ®0. Since for all ±1 2
£
±; ¹±

¤
,

¹u2 < u (1 + ± + (1¡ ®0) r) · u (1 + ±1 + (1 ¡ ®0) r)
holds by the strict monotonicity of u (¢), type 2 observes a cumulative utility of an act ® given

by:

U 2
1 (®) = s ((p0;®0) ; (pt+1;®t+1)) ¢

¢
·
u

µµ
p1 + ±1
p0

¶
®0 + (1 + r) (1¡ ®0)

¶
¡ ¹u2

¸
.

If ®2¤1 = ®2¤0 , then p1 = p0 and therefore U2
1 (®0) > U2

1 (®) for all ® 6= ®0. Therefore if every

young investor chooses ®0, ®2¤0 is indeed the optimal choice of type 2. Hence, in equilibrium

p1 = p0 obtains for each ±1 2
£
±; ¹±

¤
.

By induction, the same result holds for each period of time t, hence (®0;®0; p0) is a stationary

state of the economy.¥

Proof of proposition 5.14 (continued from the main text):

To show that

p¤tn ¸ 1 ¡ µ1 + 2µ1®0
2

= µ1®0+
1
2
(1¡ µ1)

obtains almost surely in finite time, first compute the difference between two subsequent mem-

bers of the sequence p¤tk :

p¤tk ¡ p¤tk¡1 =
p¤tk¡1 (1¡ µ1)
p¤tk¡1 ¡ µ1®0

·
$ ¡ (1 + r) +

µ
r ¡ ±tk
p¤tk¡1

¶
®tk¡1

¸
, (5.65)

where $ denotes the return of a portfolio which yields utility exactly equal to ¹u2. Note that
p¤tk¡1 (1 ¡ µ1)
p¤tk¡1 ¡ µ1®0

> 1 ¡ µ1,

whereas
1¡ µ1 + 2µ1®0

2
¡ µ1®0 =

1¡ µ1
2

is the least amount by which ptk should grow to obtain a value higher than 1¡µ1+2µ1®0
2 .

Note that

$ ¡ (1 + r) +
µ
r ¡ ±tk
p¤tk¡1

¶
®tk¡1 ¡ [$ ¡ (1¡ ®0) (1 + r)¡ ®0 ¡ ±t0 ]
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= $ ¡
¡
1 ¡ ®2¤tk¡1

¢
(1 + r)¡

µ
p¤tk¡1 + ±tk
p¤tk¡1

¶
®2¤tk¡1 ¡ [$¡ (1 ¡ ®0) (1 + r) ¡ ®0 ¡ ±t0 ]

= r
¡
®2¤t0 ¡ ®0

¢
+
±tk
p¤tk¡1

®2¤tk¡1 ¡ ±t0

and that by the choice of t0,

$ ¡ (1¡ ®0) (1 + r) ¡ ®0 ¡ ±t0 > 0

holds. Hence,

$ ¡ (1 + r) +
µ
r ¡ ±tk
p¤tk¡1

¶
®tk¡1 > r

¡
®2¤t0 ¡ ®0

¢
> 0

if
±tk
p¤tk¡1

®2¤tk¡1 ¡ ±t0 ¸ 0.

Now choose z in such a way that
1
2z = r

¡
®2¤t0 ¡ ®0

¢
.

Obviously, after at most z (not necessarily sequential) periods in which ±tk · ±t0
®2¤
tk¡1
p¤tk¡1 obtains,

the difference between p¤tk and p0 would exceed 1¡µ1
2 and, therefore, p¤tk ¸ 1¡µ1+2µ1®0

2 would

obtain.

Let tz denote the last zth period in which ±tk · ±t0 obtains. It follows that there exists a tn such

that

tn = min
½
tk · tz j p¤tk ¡ p0 ¸ 1¡ µ1

2

¾

and, therefore,

p¤tn ¸ 1 ¡ µ1 + 2µ1®0
2

®2¤tn ¸ 1
2

obtains. On the other hand, since
p¤
tk¡1
®2¤
tk¡1
> 1, the probability that the number of periods in which

±tk · ±t0
®2¤
tk¡1
p¤tk¡1 obtains is less than z is 0 on the set of sample paths of dividend realizations.

Hence, with probability 1, tz and, hence also tn is finite.¥

Proof of proposition 5.15:

It has been shownabove that foru (1 + ± + (1¡ ®0) r) < ¹u2 the investors of type 2 switch either

to ®2¤t = 0, implying that the price p¤t = µ1®0, or to ®2¤t = 1, implying p¤t = 1 ¡ µ1 (1¡ ®0)
in some finite period ¹t (~!) as derived in the proof of proposition 5.14. It remains to show that

after the first time, in which ®2¤t = 0 or ®2¤t = 1 obtains, a cycle emerges.
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Consider first the case of ®2¤t = 0 and p¤t = µ1®0. Since the last (and only) case observed now

by type 2 is (µ1®0; 0;u (1 + r)) and since u (1 + r) < ¹u, it follows that the optimal act at pt+1

is ®2t+1 = 1. But if ®2t+1 = 1, the price becomes p¤t+1 = 1¡ µ1 (1 ¡ ®0) and since the similarity

function is strictly decreasing in the Euclidean distance between problem-act pairs, it is easily

seen that ®2¤t+1 = 1 is indeed the optimal choice.

Alternatively, if ®2¤t = 1 and p¤t = 1 ¡ µ1 (1¡ ®0) hold and the dividend realization at time

(t+ 1) is ±t+1 < ±̂, then the investors of type 2 observe a utility realization of at most

u
µ
1 +

±t+1
1 ¡ µ1 (1 ¡ ®0)

¶
< ¹u2.

Note that such a ±̂ 2
£
±; ¹±

¤
exists, since the return of the portfolio ® = 1 if the dividend realiza-

tion is ± and the investors of type 2 hold ® = 1 is at most

u
µ
1 +

±
1 ¡ µ1 (1 ¡ ®0)

¶
.

But

u
µ
1 + ±

1 ¡ µ1 (1 ¡ ®0)

¶
< u (1 + ± + (1¡ ®0) r)

is equivalent to

±µ1 < r,

which is always satisfied under the assumption made.

Hence, if ±t+1 < ±̂, the investors of type 2 are unsatisfied with ® = 1 even at the highest

price that might obtain in period (t+ 1). From the fact that the similarity function is strictly

decreasing in the Euclidean distance, it follows that the investors of type 2 choose ®2¤t+1 = 0.

The equilibrium price is computed as p¤t+1 = µ1®0 and it is easily verified that at p¤t+1 ®2¤t+1 = 0

is indeed optimal.

If at time (t+ 1) at which the investors of type 2 hold the risky asset, its dividend realization is

higher than ±̂, then the utility they obtain exceeds ¹u2 as long as the price remains unchanged at

p¤t = 1 ¡ µ1 (1¡ ®0) .

But in this case the investors of type 2 are satisfied with ® = 1 and

arg max
®2[0;1]

U2
t+1 (®) = 1

holds, since the similarity function obtains its maximum if the problem-act pairs are identical.

Therefore ®2¤t+1 = 1 and p2¤t+1 = 1 ¡ µ1 (1¡ ®0) obtains in an equilibrium.

The argument above shows that the evolution of prices and portfolio choices follows a Markov
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process with a transition matrix:

¹P =

0
@

p¤t+1 = 1¡ µ1 (1¡ ®0) p¤t+1 = µ1®0
p¤t = 1¡ µ1 (1¡ ®0) q 1 ¡ q

p¤t = µ1®0 1 0

1
A .

The invariant probability distribution of the states ph = 1 ¡ µ1 (1¡ ®0); ®1h = ®0; ®2h = 1 and

pl = µ1®0; ®1l = ®0; ®2l = 0 is computed in the same way as in the proof of proposition 5.4.¥

Proof of proposition 5.16:

It follows from the proof of proposition 5.15 that a cycle with two states h and l emerges after

a finite number of periods t (~!). Moreover, the investors of type 2 switch to ®2¤t+1 = 0, if the

last period price satisfies p¤t = ph and the dividend is lower than ±̂, causing the price to fall

to p¤t+1 = pl. Conversely, given that the last period price of a is low (p¤t = pl, ®2¤t = 0), the

investors of type 2 are not satisfied with u (1 + r) and switch to ®2¤t+1 = 1, causing the price to

rise to ph.

It remains only to consider periods t, such that p¤t = ph, ®2¤t = 1 and ±t+1 ¸ ±̂ hold. Since

u
³
1 + ¹±

ph

´
< ¹u2, it follows that the cumulative utility of ® = 1 is negative at (t +1) for the

investors of type 2 and, thus, the optimal act at any price pt · ph is ®2¤t = 0. But for ®2¤t = 0,

the price pt = pl < ph must hold and, therefore, ®2¤t = 0 and p¤t = pl obtain as equilibrium at

time t.

To summarize, the investors of type 2 choose ®2¤t = 1 in each period t, such that ®2¤t¡1 = 0 and

they choose ®2¤t = 0 in each period t, such that ®2¤t¡1 = 1. Therefore, the result of the proposition

obtains.¥

Proof of proposition 5.17:

1. If ¹u2 < ¹ (®0 j p0), then the cumulative utility of ®0 for the investors of type 2 is given by:

U2
t (®0) =

tX

¿=1

£
v¿ (®0) ¡ ¹u2

¤
,

as long as they hold ®0. Since

E [vt (®0)] = ¹ (®0 j p0) > ¹u2

U 2
t (®0) behaves as a random walk on R with positive expected increment. According to

theorem 9.5.1 in Main and Tweedie (1996, p. 228) such random walks are transient, hence

the expected time until their first return to 0 is infinite.
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2. If ¹u2 2 (¹ (®0 j p0) ;u (1 + r)), then the process

~U2
t (®0) =

½
U 2
t (®0), if U2

t (®0) ¸ 0
0, else

¾

describes the cumulative utility of®0 for the investors of type 2 as long as it is non-negative.
~U 2
t (®0) is a random walk on R+

0 , but with negative expected increments, since now

¹ (®0 j p0) < ¹u2.

Since for such random walks all compact sets are regular, see proposition 11.4.1 in Meyn

and Tweedie (1996, p. 278), it follows that

~U2
t (®0) = 0

obtains in finite time with probability 1. Therefore, since the distribution Q is continuous,

it follows that

U2
t (®0) < 0

obtains almost surely in finite time.

Once the cumulative utility of ®0 has become negative, apply the proof of proposition

5.15 to show that the investors of type 2 will choose either ® = 0 or ® = 1 in finite time.

Note that this result can be applied, since the portfolios ®2¤tk , tk · tn¡1, constructed in this

proof120 have a cumulative utility of 0 and, therefore, do not influence the evaluation of any

of the acts available, whereas the cumulative utility of the last chosen diversified portfolio

®2¤tn is negative. Once ® = 1 or ® = 0 has been chosen for the first time, its cumulative

utility behaves as a random walk with positive expected increments, since

¹u2 < u (1 + r) < ¹ (1 j 1 ¡ µ1 (1 ¡®0)) .

Therefore, it remains positive infinitely long in expectations. Hence, the expected time

during which the investors of type 2 hold ® = 1 or ® = 0 is infinity.

Note, further that the cumulative utility of any portfolio ® as observed by the investors of

120 In the case of long memory, however, the time periods tk will not denote the subsequent periods in which
the dividend realization is lower than ~±, but those periods in which ± tk < ~± and

Utk

¡
®2¤

tk¡1

¢
+ u

¡
®2¤

tk¡1 (1 + ± tk) +
¡
1 ¡ ®2¤

tk¡1

¢
(1 + r)

¢
¡ ¹u2 < 0;

whereas Utk¡1
¡
®2¤

tk¡1

¢
¸ 0 holds. The portfolio ®2¤

tk (and, hence, the price p¤
tk) are then chosen in such a

way that

Utk

¡
®2¤

tk¡1

¢
+ u

µ
p¤

tk + ± tk

p¤
tk¡1

®2¤
tk¡1 +

¡
1 ¡ ®2¤

tk¡1

¢
(1 + r)

¶
¡ ¹u2 = 0

Hence, Utk (®) = 0 for each ® 2 [0; 1] and, therefore, the choices till time tk do not influence the
evaluation of the available portfolios.
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type 2 is given by:

U2
t (®) = s ((pt;®) ; ((1¡ µ1 (1¡ ®0) ; 1))) V 2

t (1) + s ((pt;®) ; ((µ1®0; 0))) V
2
t (0)

+s
¡
(pt;®) ;

¡¡
p¤tn ;®

2¤
tn

¢¢¢
V 2
t

¡
®2¤tn

¢
,

where the notation from the proof of proposition 3.12 is used and the upper index 2 refers

to the investors of type 2. Now, if exactly one of the numbers V 2
t (1), V 2

t (0) and V 2
t (®2¤tn )

is positive, the act 1, 0 or ®2¤tn will be chosen, respectively. The rule of cumulative utility

maximization precludes the case that two of these numbers are positive at some t121 . But if

all of them are negative, then U2
t (®) becomes a convex function in ®, since the similarity

function is concave. Therefore, a corner solution obtains in each period of time. Hence,

either ® = 1 or ® = 0 are chosen.

On all paths, on which the cumulative utility of ® = 1 never falls below the cumulative

utility of ® = 0, the frequency of ® = 1 is 1. If, however the investors of type 2 switch to

® = 0 at some time T , then

u (1 + r) > ¹u2

implies that the cumulative utility ® = 0 exceeds the cumulative utility of ® = 1 for

each t > T . Hence, ® = 0 is chosen in each period afterwards. On these paths, the limit

frequency of ® = 0 is, therefore, equal to 1.

3. If ¹u2 2 (u (1 + r) ;¹ (1 j 1¡ µ1 (1¡ ®0))), then the investors of type 2 switch to ® = 1 or

to ® = 0 in finite time, as shown in part 2 of this proof. If ® = 1 has been chosen, then

its cumulative utility behaves like a random walk with positive expected increments and,

therefore, ® = 1 is held infinitely long in expectation. If ® = 0 has been chosen, then it

will be only held for a finite time, since its return is considered unsatisfactory. Moreover,

since the similarity function is concave, once the cumulative utilities of ® = 0, ®2¤tn and,

hence, also of ® = 1 have become negative, the optimal act will be a corner solution, as

shown in part 2 of this proof. Therefore, a corner solution obtains and ® = 1 will be chosen

in finite time and then held forever in expectation.

Even, if the investors of type 2 should switch to ® = 0 at some time, the cumulative utility

of this portfolio would become lower than the cumulative utility of ® = 1 in finite time. But

since the events that the cumulative utility of ® = 1 becomes negative have a probability

121 The proof of this statement is by induction and is analogous to the argument stated in the proof of
proposition 3.12 in chapter 3.
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lower than 1 and are independent, the probability of the event that the cumulative utility of

® = 1 falls below 0 infinitely often is 0. Hence, in the limit, type 2 indeed holds ® = 1

with frequency 1.

4. Now, let ¹u2 > ¹ (1 j 1 ¡ µ1 (1 ¡®0)). In this case the investors of type 2 again switch to

one of the corner acts in finite time. As in the previous cases, the concavity of the similarity

function implies that only corner acts will be chosen in each period of time. However, in

this case neither ® = 0, nor ® = 1 are considered satisfactory in expectations. Denote by

"t the following process:

"0 =
V 2
t (®2¤tn ) [s ((ph; 1) ; ((p¤tn;®2¤tn ))) ¡ s ((pl; 0) ; ((p¤tn;®2¤tn )))]

1 ¡ s =: ¹V

"t =

8
>><
>>:

"t¡1 + u
³
1 + ±t

1¡µ1(1¡®0)

´
¡ ¹u2, if "t¡1 ¸ 0 and "t¡1 + u

³
1 + ±t

1¡µ1(1¡®0)

´
¡ ¹u2 > 0

"t¡1 + u
³
µ1®0+±t

1¡µ1(1¡®0)

´
¡ ¹u2, if "t¡1 ¸ 0 and "t¡1 + u

³
µ1®0+±t

1¡µ1(1¡®0)

´
¡ ¹u2 < 0

"t¡1 + u (1 + r)¡ ¹u2, if "t¡1 < 0.

9
>>=
>>;

.

Note that (1 ¡ s) "t, where

s = s ((p = 1¡ µ1 (1¡ ®0) ;® = 1) ; (p = µ1®0;® = 0)) 2 [0; 1) ,

describes the evolution of the difference between the cumulative utilities of a and b for the

investors of type 2. To see this, write

"t = U 2
t (1)¡ U2

t (0) = V 2
t (1) + sV 2

t (0)¡ V 2
t (0)¡ sV 2

t (1) + ¹V (1¡ s) =

=
£
V 2
t (1) ¡ V 2

t (0)
¤
(1¡ s) + ¹V (1¡ s) .

By the same arguments as those used in the proof of proposition 5.9 it can be shown that "t

is a Ã-irreducible Markov chain on

ª00 =
·
u

µ
µ1®0 + ±

1 ¡ µ1 (1 ¡ ®0)

¶
¡ ¹u2; +1

¶

with an invariant (finite) probability measure ¼ such that

lim
t!1

jC 2
t (1)j

jC 2
t (0)j

=
¼1
¼0

,

almost surely holds, where ¼1 = ¼ [0; +1) and ¼0 =
h
u

³
µ1®0+±

1¡µ1(1¡®0)

´
¡ ¹u2; 0

´
denote the

limit frequencies with which acts a and b, respectively, are chosen by the investors of type

2.

In analogy to the proof of proposition 5.9 it can be show that V 2
t (1) ¡ V 2

t (0) must be

bounded on almost each path. Hence, U 2
t (1) ¡ U 2

t (0) is also bounded with probability 1
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and, therefore,

lim
t!1
U2
t (1)
U2
t (0)

= 1

almost surely holds. It follows that

lim
t!1
V 2
t (1) + sV 2

t (0) + V 2
t (®2¤tn ) s ((ph; 1) ; ((p¤tn ;®2¤tn )))

sV 2
t (1) + V 2

t (0) + V 2
t (®2¤tn ) s ((ph; 1) ; ((p¤tn ;®2¤tn )))

= 1.

Since V 2
t (®2¤tn ) is finite, it does not influence the limit, hence

lim
t!1

jC2
t (1)j

P
¿2C2t (1)

(v¿(1)¡¹u2)
jC2t (1)j + s jC2

t (0)j
P
¿2C2t (0)

(u(1+r)¡¹u2)
jC2t (0)j

s jC 2
t (1)j

P
¿2C2t (1)

(v¿ (1)¡¹u2)

jC2t (1)j + jC2
t (0)j

P
¿2C2t (0)

(u(1+r)¡¹u2)

jC2t (0)j
= 1

lim
t!1

¼h
¼l

P
¿2C2t (1)

(v¿ (1)¡¹u2)
jC2t (1)j + s (u (1 + r) ¡ ¹u2)

s¼h¼l

P
¿2C2t (1)

(v¿(1)¡¹u2)

jC2t (1)j + (u (1 + r) ¡ ¹u2)
= 1.

This implies
¼1
¼0

lim
t!1

P
¿2C2t (1) (v¿ (1) ¡ ¹u2)

jC 2
t (1)j

=
¡
u (1 + r) ¡ ¹u2

¢
,

with probability 1. Hence, there exists a ¹r1 such that

¹r1 = lim
t!1

P
¿2C2t (1) v¿ (1)
jC 2
t (1)j

holds with probability 1 and
¼1
¼0

=
u (1 + r)¡ ¹u2

¹r1 ¡ ¹u2
almost surely obtains.¥
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Chapter 6. Fitness and Survival of Case-
Based Decisions — An Evolutionary Ap-
proach

In chapters 3 and 5 of this thesis, I have analyzed the behavior of case-based decision-makers

who face a portfolio choice problem with exogenous prices or act in a market environment.

The primary aim was a descriptive one, but I have also claimed that this behavior could explain

empirically observed phenomena which seem to be inconsistent with the hypothesis of expected

utility maximization combined with correct or rational expectations. In an individual portfolio

problem, the case-based decision-makers fail in general to choose the optimal portfolio at the

equilibrium price. Their portfolios are often underdiversified and high aspiration levels cause

them to trade too much and lose money.

In a market context, equilibria with zero asset prices cannot be excluded in general and case-

based decision-makers are not always able to learn to choose an optimal portfolio. The price

dynamics in a market populated by case-based decision-makers exhibits patterns which can help

explain phenomena such as arbitrage possibilities, excess volatility, bubbles and predictability

of asset returns. However, if the aspiration level is chosen appropriately and the memory of the

investors is long, case-based decision-makers learn to choose the optimal portfolio in the limit.

The explanatory power of the case-based decision theory depends crucially on the question of

whether case-based decision-makers can survive in a financial market. Indeed, consider an

economy with different types of investors whose shares in the population evolve over time. If

it turns out that investors of a certain type (say, case-based decision-makers), acquire system-

atically lower profits compared to investors of another type (e.g., expected utility maximizers),

then the wealth share of the case-based investors will become insignificant in the limit. Hence,

these investors will not be able to inf luence the market process in the long-run. Whatever ex-

planations have been found based on the premise that such investors exist in the market, they

will be invalidated by the market evolution.

In this chapter, I address one small part of this question: whether case-based decision-makers



can survive in a market in the presence of expected utility maximizers. Gilboa and Schmeidler

(1996) show that if a case-based decision-maker adapts his aspiration level in a manner that

is both ambitious and realistic, he eventually learn to imitate an expected utility maximizer

with rational expectations provided that the environment is stationary. However, to the best of

my knowledge, there are no results evaluating the relative performance of case-based decision-

makers in a market environment. Therefore, a description of the evolution of such an economy

is of interest.

Indeed, Matsui (2001) shows that each case-based decision-maker can be represented as an ex-

pected utility maximizer withbeliefs over some state space. Thestate space is, however, different

for expected utility maximizers and case-based decision-makers. Whereas this representation is

still intuitive in an individual decision-making problem, in which the states of nature are viewed

as subjective, its intuition seems to be lost if a market is considered in which the states of nature

are exogenously determined (say by a dividend process) and in which investors with different

beliefs can be naturally compared, only if their beliefs comprise the same state-space.

As usual, in the model presented in this chapter, case-based decision-makers base their decisions

solely on what they have observed in the past. They evaluate an act according to its previous

performance as recorded by their memory. The achieved returns are evaluated by comparing

them to an aspiration level. The act that has the highest cumulative utility is then chosen. In

contrast, the expected utility maximizers choose an act based on their (subjective) expectations

about the asset returns in the next period. They prefer the act with the highest expected utility

given their beliefs.

The proportions of the two types of investors and, therefore, their wealth shares evolve according

to the relative success of both groups. The higher the returns achieved by a type of investors,

the more off-springs they have, or, alternatively, the higher the share of the initial endowment

they receive in the future. This endogenizes the initial endowment of the investors and allows

to address the issue of the relative performance of these two strategies.

Two questions are of main interest:

First, whether expected utility maximizers can always outperform case-based decision-makers,

i.e. whether case-based decision-makers are able to survive in such an environment;
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Second, whether the effects observed in a market populated solely by case-based decision-

makers also transfer to a market in which expected utility maximizers are present.

Indeed, even if it were found that case-based decision-makers can survive in presence of ex-

pected utility maximizers, it could be still the case that they survive by simply imitating the

behavior of the latter. The answer to the second question is, therefore, crucial for the issue of

the explanatory power of the case-based decision theory.

To analyze these issues, the chapter is organized as follows: section 1 surveys shortly the litera-

ture on evolutionary finance. Section 2 presents a description of the economy. In section 3, the

evolutionary dynamic of investor types is introduced. In section 4, the evolutionary dynamic

is analyzed for the case of risk-neutral expected utility maximizers in order to ask the question

whether case-based decision-makers can survive in a financial market. Section 5 addresses the

inf luence of case-based investors on prices. Sections 6 and 7 generalize some of the results from

section 4 to the case of expected utility maximizers with a utility function exhibiting constant

relative risk-aversion (CRRA). Section 8 concludes. The proofs of all propositions are stated in

the appendix.

6.1 Survey of the Literature

In the last years, the problems of evolution in financial markets have been gaining attention in

the economic literature. As a starting point serves the common view formulated by Friedman

(1953) that markets select for rational traders with correct beliefs. At a first glance, the statement

resembles a tautology: should noise traders enter the market, they would make losses, since they

would be buying at high prices and selling at low prices. Therefore, rational traders would be

able to make profits at their costs. As time evolves, the wealth of the noise traders would shrink

to 0 and the market would be dominated by rational traders, who would determine the prices in

equilibrium.

Thorough analysis of this question, however, leads to ambiguous results. One of the approaches

chosen by De Long, Shleifer, Summers and Waldmann (1990, 1991) models explicitly the be-

havior of rational, as well as of noise traders. In an overlapping generations model they show

that if the misperceptions of the noise traders lead them to choose a riskier portfolio than the one
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chosen by the rational traders, then the noise traders dominate the market by achieving higher

expected returns than traders with correct beliefs. The reason is that rational traders engaging

in arbitrage face the risk that they will have to leave the market at a time at which the mispric-

ing caused by the noise traders aggravates. This effect is called noise trader risk. Whereas De

Long, Shleifer, Summers and Waldmann (1990) obtain their results by comparative static, the

latter article, De Long, Shleifer, Summers and Waldmann (1991), models an evolutionary fi-

nancial market. The drawback of this evolutionary model consists in the assumption that asset

prices are independent of the behavior of the market participants and, especially, of the strategy

of the noise traders.

In a similar setting, but assuming a non-competitive market for assets, Palomino (1996) shows

that noise traders can dominate the market even if the evolutionary selection accounts for the

disutilities of risk-bearing. His results rely on an imitationdynamic based not on relative payoffs,

but on a mean-variance function of the difference of returns of rational and noise traders.

These results opened a discussion on the criteria of investment strategies for which a market

selects. Several studies on this issue, see Blume and Easley (1992), Hens and Schenk-Hoppé

(2001), Evstigneev, Hens and Schenk-Hoppé (2002), show that the most successful strategy

consists in maximizing logarithmic expected utility with correct beliefs. Since the logarithmic

function has the property to maximize the growth of wealth, investors with such utility functions

accumulate the whole market wealth over time and drive other types of investors to extinction.

Evstigneev, Hens and Schenk-Hoppé (2002, 2003) further demonstrate that the strategy of ex-

pected utility maximizers with correct beliefs and logarithmic utility function is the sole globally

stable strategy in a financial market.

Should a logarithmic utility maximizer be absent from the market, Blume and Easley (1992)

show that the market selects for patient investors if relative risk-aversion is controlled for and

for the investors with relative risk-aversion close to 1 if the discount factors are controlled for.

Therefore, traders with systematically wrong beliefs survive only if they are more patient or if

their coefficient of relative risk-aversion is close to 1, implying a utility function close to the

logarithmic one. The influence of risk-aversion for survival is, hence, not unequivocal.

Correct beliefs can also be used as a selection criterium. Especially, in markets with perfect

foresight, agents with beliefs closest to the truth perform best, as shown by Blume and Easley
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(2001) and Sandroni (2000).

Whereas the major part of the literature searches for the best strategy, there is still little research

into how different investment rules perform relative to each other. One such issue is addressed

by Sciubba (2001), who analyzes the relative performance of the CAPM rule, as compared to

logarithmic utility maximization with correct beliefs and mean-variance utility maximization.

She shows that CAPM-traders vanish, whereas those maximizing a mean-variance utility imitate

the logarithmic utility maximizers and, therefore, survive.

Given that selection criteria have been identified and studied, it seems that the question about the

relative performance of two strategies is easy to answer by examining which of these strategies

is superior according to a given criterium. This is, however, not the case for the two investment

rules analyzed in this paper. The reason is that the models described above make strong assump-

tions about the available portfolio rules and the beliefs of the investors as well as on the market

structure.

Most of the work cited, e.g., Blume and Easley (1992, 2001), Hens and Schenk-Hoppé (2001),

Evstigneev, Hens and Schenk-Hoppé (2002), assumes that the assets in the economy are short-

lived, thus, ignoring the inf luence of capital gains on the market selection. In this chapter, a

long-lived asset is modelled.

Evstigneev, Hens and Schenk-Hoppé (2003) derive their results for a market with long-lived as-

sets, but they assume, like Blume and Easley (1992) that the investment rules are simple, i.e.

the share of wealth invested in a given asset remains constant over time, or that the investment

rule does not depend on current prices. None of these assumptions holds, neither for the strat-

egy of the case-based decision-makers, nor for those of the expected utility maximizers, in this

model.

The results of Sandroni (2000) and of Blume and Easley (2001) are based on the assumption of

perfect foresight, which cannot be fulfilled for case-based decision-makers in general and is not

satisfied for the expected utility maximizers in this model, either.

6.2 The Economy

The structure of the model is essentially the same as the one presented in chapter 5, except for the
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introduction of expected utility maximizers. Consider an economy, consisting of a continuum

of investors uniformly distributed on the interval [0; 1]. The economy evolves in discrete time

t = 0; 1:::. In period t, a proportion et of the investors are expected utility maximizers, whereas

the rest, ct = 1¡ et, are case-based decision-makers. No population growth is considered.

The model has an overlapping generations structure. Each investor lives for two periods. The

preferences of the investors are assumed to be such that they wish to consume only in the second

period of their life. The preferences about the consumption in the second period are represented

by a linear utility function u (x) = x, which is identical for all consumers. Hence, risk-neutrality

is assumed. There is one consumption good in the economy with a price normalized to 1. The

initial endowment of the investors consists of one unit of the consumptiongood in the first period

and is 0 in the second period of their life.

There are two possible ways to transfer consumption between two periods: either using a riskless

asset b, or investing in a risky asset a. The riskless asset is available in a perfectly elastic supply

at a price of 1 in each period. It delivers (1 + r) units of consumption good in period t for each

unit of the consumption good invested in period (t¡ 1).

The supply of the risky asset a is fixed at A = 1. The payoff of one unit of the asset in period t

is:

±t =
½
± with probability q
0 with probability 1 ¡ q

¾

and is identically and independently distributed in each period122. Let pt denote the price of a in

period t. New emissions are not considered, since I am interested in the behavior of prices on

the secondary asset market only. I assume that the payoffs satisfy 1 > ± > r > 0.

Short sales are not permitted. Without loss of generality, it is also assumed that each single in-

vestor can invest in one of the assets only, i.e. diversification is allowed for the mass of investors

122 q is interpreted as the objective probability of high returns, known to an external observer, but not necessarily
to the investors in the economy, especially to the case-based decision makers.
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of a given kind, but not for a single investor123. Therefore, the set of available acts reduces to:

®it 2 fa; bg ,

with i 2 feu; cbg, where eu and cb identify the expected utility maximizers and the case-based

decision-makers, respectively.

Given the act chosen by an investor of type i at time (t¡ 1), his indirect utility from consumption

at time t can be written as:

vt
¡
®it¡1

¢
=

½ pt
pt¡1

+ ±t
pt¡1

, if ®it¡1 = a
1 + r, if ®it¡1 = b

¾
. (6.66)

Note that the utility derived from the choice of a depends not only on the dividend of the risky

asset, but also on the price of a at time t, therefore on the decisions of the young investors at

time t124.

6.2.1 Information and Individual Decisions

The individual decision-making process predetermines the evolution of asset prices as well as

of the shares of different investor types in the economy.

6.2.1.1 Case-Based Decision-Makers

First consider the case-based decision-makers. Their description of the situation contains the

statement of the problem they have to solve: ’’Invest your initial endowment in one of the two

assets, a or b to enable consumption tomorrow’’, as well as the set of available acts:

®cb 2 fa; bg .

Unlike expected utility maximizers, case-based decision-makers do not use information about
123 For expected utility maximizers with a linear utility function, this assumption can be made without loss of

generality. In chapter 3, it has been shown that if the case-based decision makers in this model are allowed to
diversify and if they have a similarity function on pairs of portfolios which is decreasing in the distance between
two portfolios, then only case-based decision makers with relatively low aspiration level will diversify. Case-based
decision makers with high aspiration levels will choose one of the non-diversified portfolios in each period. In
section 4 of this chapter, it is shown, that case-based decision makers with low aspiration level (¹u < 1) have no
influence on prices in a stationary state. Therefore, I concentrate on the evolutionary dynamic aspiration levels
exceeding 1. If these investors hold the same diversified portfolio in each period of time, then the analysis of
section 4 applies, since the portfolio held by the case-based investors is less risky than the one chosen by the
expected utility maximizers when e ! 1. If, however the case-based investors switch away from the initially
held diversified portfolio in some period of time, they never diversify thereafter. Hence, the assumption of no
diversification can be made without loss of generality, since it does not inf luence the limit results.

124 This is due to the fact that the risky asset is long-lived. With a short-lived asset, the indirect utility of a would
be independent of the current price pt :

vt (a) =
± t

pt¡1
.
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possible states of nature, state-contingent outcomes and their probability distribution. Therefore,

they can only base their decisions on the experience of previous generations about which they

are informed. This information is contained in their memory. Since in this model the problem

of the case-based decision-makers is assumed to remain identical over time, an act chosen and

a utility realization observed (indexed by the time) are sufficient to describe a case:

(®t¡1; vt (®t¡1)) .

The memory of a given case-based decision-maker can, therefore, be represented by:

M it =
¡¡
®it¡1; vt

¡
®it¡1

¢¢
; :::

¡
®it¡m¡1; vt¡m

¡
®it¡m¡1

¢¢¢

wherem parameterizes the length of memory, i.e. the number of cases remembered. I assume

that the memory consists only of acts chosen and utilities realizedby case-based decision-makers

who lived in previous generations. The experience of expected utility maximizers is not taken

into account.

Moreover, it is assumed that each investor can remember only one case per period. This as-

sumption is important, because there might be periods in which some of the case-based decision-

makers choose a, whereas others choose b. For simplicity, the case of one-period memory, i.e.

m = 0 is analyzed125. Denote by °cbt the proportion of case-based decision-makers which have

chosen act a at time t. Now consider the memory of the young case-based decision-makers at

time (t+ 1): since a proportion of °cbt of the case-based decision-makers hold a in period t, I

assume that the same proportion of the young case based decision-makers, or a mass of °cbt ct+1,

will have memory

Mt+1 = ((a; vt+1 (a)))

at time (t+ 1). In the same way, since a proportion of
¡
1¡ °cbt

¢
of the case-based decision-

makers hold b in period t, a mass of
¡
1¡ °cbt

¢
ct+1 of the young case-based decision-makers

will have memory

Mt+1 = ((b; vt+1 (b)))

at time (t+ 1). This way of assigning memory has two advantages: first, it allows to capture

the experience of all individual investors from the past period in the right proportions; second,

this rule partitions the continuum of case-based decision-makers into at most two intervals, with

125 Case-based decision makers with one-period memory behave in a very naive fashion, since they base their
decision on one observation only. However, if it were found that they can survive in the presence of expected utility
maximizers, one could argue that case-based decision makers with larger experience will also be able to survive in
an asset market.
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the property that all investors in a given interval have the same memory. In chapter 4, this was

shown to be one of the properties guaranteeing the existence of an equilibrium in an economy

with case-based decision-makers.

The aspiration level is denoted by ¹u and is assumed to be identical for all case-based decision-

makers in the economy and constant over time. However, since the memory might differ among

the investors, the cumulative utilities will also differ in general. In this simple setting, the cu-

mulative utilities can be written as follows:

Ut (®) =
½

[vt (®)¡ ¹u] , ifMt = ((®; vt (®)))
0, else:

¾
.

In each period, a case-based decision-maker compares the cumulative utilities of the two acts

a and b available to him and chooses the one with the higher cumulative utility.

Given the indirect utility of consumption, (as determined above in (6.66)), the decision of a

single case-based decision-maker takes the form:

®cbt =

8
>><
>>:

a, ifMt = (a; vt (a)) and vt (a) ¸ ¹u
or ifMt = (b; vt (b)) and vt (b) · ¹u

b, ifMt = (b; vt (b)) and vt (b) ¸ ¹u
or ifMt = (a; vt (a)) and vt (a) · ¹u

9
>>=
>>;

Note that, since the indirect utility of b is constant, the comparison vt (b) T ¹u depends only on

the parameters ¹u and r and does not reverse over time. In contrast, the indirect utility of a and

hence the comparison vt (a) T ¹u depends on pt.

Denote by ~pt the price of a, for which an investor with memory (a; vt (a)) is indifferent between

a and b:

~pt :
~pt
pt¡1

+ ±t
pt¡1

¡ ¹u = 0.

As long as ~pt > 0, three possible cases can occur:

1. If pt > ~pt, then the investor chooses asset a (®cbt = a).

2. If pt < ~pt, then the investor chooses asset b (®cbt = b).

3. If pt = ~pt, then the investor is indifferent between holding a and b (®cbt 2 fa; bg).

Using this last argument, it is straightforward to aggregate over the population of case-based

decision-makers to obtain the share of those holding asset a, °cbt (pt). Since r and ¹u are constants,
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three cases are relevant: 1 + r S ¹u:

1. 1 + r < ¹u:

°cbt (pt) =

8
><
>:

1, if pt+±tpt¡1
> ¹u£

1¡ °cbt¡1; 1
¤
, if pt+±tpt¡1

= ¹u
1¡ °cbt¡1, if pt+±tpt¡1

< ¹u

9
>=
>;

;

2. 1 + r = ¹u:

°cbt (pt) =

8
><
>:

£
°cbt¡1; 1

¤
, if pt+±tpt¡1

> ¹u
[0; 1], if pt+±tpt¡1

= ¹u£
0; 1 ¡ °cbt¡1

¤
, if pt+±tpt¡1

< ¹u

9
>=
>;

;

3. 1 + r > ¹u:

°cbt (pt) =

8
><
>:

°cbt¡1, if pt+±tpt¡1
> ¹u£

0; °cbt¡1
¤
, if pt+±tpt¡1

= ¹u
0, if pt+±tpt¡1

< ¹u

9
>=
>;

.

Figure 12 gives an illustration of °cbt (pt) for these three cases. Note that °cbt (pt) is a non-empty,

closed- and convex-valued, upper hemicontinuous correspondence.

6

-

6

-
pt pt

°cbt¡1
1¡ °cbt¡1

°cbt °cbt

1.................
.................

¹u > 1 + r¹u < 1 + r

6

-
pt

.................

¹u = 1+ r°cbt

°cbt¡1
1 ¡ °cbt¡1

1 .................

Figure 12

As the figure shows, the proportion of case-based decision-makers willing to hold a is increasing

in the price pt. This is the crucial difference between case-based decision-makers and expected

utility maximizers, who prefer to hold asset a only if its price does not exceed some critical

268



level.

6.2.1.2 Expected Utility Maximizers

Now I turn to the description of the expected utility maximizers. I assume that expected utility

maximizers have expectations about the state-contingent payments of each of the assets. How-

ever, these expectations are not necessarily rational. Even if an expected utility maximizer is

informed about the correct distribution of the dividends of the risky asset and of the returns of

the safe technology, it is not clear that he will be able to predict the influence of the case-based

decision-makers on the asset prices. To do so, an expected utility maximizer would also have

to take into account the constitution of the population, the case-based decision-making process,

as well as the inf luence the evolution of types has on prices and returns in the economy. I as-

sume that expected utility maximizers neglect these issues. They act boundedly rational, taking

into account the information about the correct distribution of dividends and the correct interest

rate, but building their expectations about the price as if the economy consisted only of expected

utility maximizers, identical to themselves.

The expected utility maximizers compute the fundamental value of the risky asset peu as the

discounted value of the expected future dividends:

peu =
q±
r

and perceive peu to be the ’’true’’ price of the risky asset126 . Therefore, they hold a if pt < peu, b

if pt > peu and are indifferent between the two assets at the critical price peu. Differently from

the case-based decision-makers, expected utility maximizers, therefore, hold the risky asset only

if its price is relatively low.

Aggregating the demand of all expected utility maximizers, it is possible to derive the share of

those willing to hold a, °eut , depending on pt:

°eut (pt) =

8
<
:

1, if pt < peu
[0; 1], if pt = peu
0, if pt > peu

9
=
; .

Like °cbt (pt), °eut (pt) is a non-empty, closed- and convex-valued, upper hemicontinuous corre-

126 The fundamental value peu corresponds to the price under rational expectations if only risk-neutral expected
utility maximizers are present in the market. Although expected utility maximizers do not need to have rational
expectations in general, their expectations are rational in the limit when e ! 1.
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spondence. The value of demand for a of the whole population is obtained as:

dt (pt) = et°eut (pt) + (1¡ et) °cbt (pt) .

It is also a correspondence, which has the characteristics stated above and maps the interval [0; 1]

into [0; 1].

6.2.2 Temporary Equilibrium

The state of the economy is determined by a quadruple of endogenous variables
¡
et; °eut ; °cbt ; pt

¢

and by the random dividend payment ±t. Assume first that the share of expected utility maxi-

mizers in the population at time t, et, is given.

A temporary equilibrium at time t for a given et is defined by:

² portfolio choices for all young investors described by the proportion of case-based decision-

makers choosing a, °cbt , and the proportion of expected utility maximizers choosing a, °eut ,

and

² a price of the asset a— p¤t (et),

such that following conditions are fulfilled:

1. the value of demand for a of the young case-based decision-makers satisfies:

°¤cbt = °cbt (p¤t (et)) ,

2. the value of demand for a of the young expected utility maximizers satisfies:

°¤eut = °eut (p¤t (et)) ;

where p¤t (et) is the equilibrium price for the given et and

3. the market for the risky asset is cleared: either p¤t (et) > 0 satisfies
°eut (p¤t (et)) et + °cbt (p¤t (et)) (1¡ et)

p¤t (et)
= A ´ 1,

or

p¤t (et) = 0 and °eut (0) et + °cbt (0) (1¡ et) = 0.

Since the value of demand dt (pt) is a closed- and convex-valued, non-empty and upper hemi-
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continuous correspondence, which, according to the budget constraints and to the short sales

constraint, is bounded between [0; 1], the following corollary of proposition 4.9 in chapter 4

obtains:

Corollary 6.1 Given the proportions of the case-based decision-makers and the expectedutility
maximizers in the population et and ct such that et + ct = 1, a temporary equilibrium exists in
each period t ¸ 1.

Whereas in a market populated only by case-based decision-makers, it is in general not possible

to prevent the price of the risky asset in an equilibrium from falling to 0, such a situation cannot

occur in a market with expected utility maximizers. 0-equilibrium prices are caused by the fact

that the demand of the case-based decision-makers can be very insensitive to price changes at

low prices. Therefore, very low aspiration levels are needed to exclude degenerate equilibria.

Expected utility maximizers, on the contrary, are ready to buy the risky asset, if its price is near

0. Therefore, °eut (0) > 0 always holds, as long as peu > 0. The following proposition obtains:

Proposition 6.1 As long as peu > 0 and et > 0 hold, p¤t (et) > 0 obtains in a temporary
equilibrium.

Hence, one of the effects caused by case-based investors, namely that some of the assets with

strictly positive fundamental value can have 0 prices in an equilibrium, is eliminated by in-

troducing some small positive amount of expected utility maximizers into the economy, who

believe that the risky asset has a positive fundamental value. Hence, degeneracy of equilibria is

not robust in this respect127.

6.3 The Evolution of Investor Types

After insuring that an equilibrium exists in each period of time, I now introduce the selection

dynamic. I measure the fitness of a given type of investors by the actual average returns they

achieve relative to the average returns of the society as a whole. This gives rise to a replicator

dynamic, in which the type of investors who perform better on average grows. Note that since

each investor is born with the same initial endowment of 1 unit of the consumption good, the

share of a type of investors can be identified with the total income of the investors of this type.

127 However, see section 5 for an example that e¤
t = 0 and p¤

t = 0 can obtain in a temporary equilibrium even if
the initial value of e is positive.
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This raises the question of whether this kind of evolution is to be interpreted as internal or

external128 .

Internal evolution is used to describe situations in which the number of investors following a

given strategy remains unchanged and the selection is based on wealth changes. Strategies which

are not successful lose money and the most successful strategy accumulates the whole wealth

of the economy in the limit. Such is the evolution of wealth shares described in the analysis of

Hens and Schenk-Hoppé (2001), Evstigneev, Hens, Schenk-Hoppé, (2002, 2003), as well as in

Blume and Easley (1992, 2001).

An overlapping generations structure does not allow for a natural wealth dynamic to arise as in

the models above. Therefore, I work with a replicator dynamic, which describes external evolu-

tion. In this case, the wealth of each investor remains unchanged, but the number of investors of

a given type changes depending on the success of their strategy. It is, as if those who use more

successful strategies found more imitators than those using less profitable strategies. In the limit

all of the individuals follow the most successful strategy, driving suboptimal strategies to extinc-

tion. This idea is one of the basics of the evolutionary game theory. The replicator dynamic has

been applied by Alós-Ferrer and Ania (2003) to analyze the asset market game introduced by

Shapley and Shubik (1977). Since the assets in their model are short-lived, it is possible to ap-

ply the standard replicator dynamic used in the evolutionary game theory without changes. With

long-lived assets, the replicator dynamic has to be modified so as to take into account the cap-

ital gains caused by price changes. The replicator dynamic introduced in the next paragraph,

therefore, exhibits properties which differ from those of the replicator dynamic usually adopted

in the evolutionary game theory.

As was explained above, in the current model, the number of investors following a given strategy

coincides with the wealth share invested in this strategy. Therefore, the interpretations in terms

of internal and external evolution are both feasible in this context129.

128 I thank Thorsten Hens for pointing out this aspect to me.
129 An alternative interpretation of this model proposed by Thorsten Hens would be to think of infinitely living but

myopic investors who reinvest their wealth in each period, but optimize for one period ahead only. In this case, the
evolution of the wealth shares of these investors would coincide with the replicator dynamic introduced below. Note
that this alternative assumption would not change the price expectations and the behavior of the expected utility
maximizers as long as their utility function exhibits constant relative risk-aversion. The behavior of the case-based
decision makers would also remain unchanged as long as the similarity between the problems encountered is not
influenced by the wealth available.
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6.3.1 Replicator Dynamic

Differently from the usual approach in evolutionary game theory, the replicator dynamic in

this model is applied not to the portfolio strategy chosen by an individual, but to the ’’meta’’-

strategies used by the two types of investors, hence, to the performance of case-based decision-

making versus expected utility maximization130.

One can think of the ’’game’’ associated with the replicator dynamic introduced below in the

following way: individuals out of an infinite population are allowed to choose one of the two

pure strategies ’’case-based decision-maker’’ and ’’expected utility maximizer’’. The payoffs

are then determined according to the equilibrium growth of wealth of the investors using each

strategy. Blume and Easley (1992) demonstrate that this structure indeed gives rise to a replicator

dynamic in a model with infinitely living investors and short-lived assets, see Friedman (1998, p.

25, footnote 7). Therefore, the fitness of the strategies is measured not according to the utility

obtained, but according to the realized returns. Higher realized returns mean higher wealth

share for the particular type of investors in the economy and, therefore, a greater influence on

market processes131. If it were found that given this selection dynamic, case-based decision-

makers’ wealth share decreases to 0 almost surely, then the inf luence of this type of investors on

market prices would vanish with time. Whatever effects then have been observed in an economy

populated solely by case-based decision-makers, these effects would disappear.

The following replicator dynamic is introduced, following Weibull (1995, pp. 124-125)132.

First, note that since investors from the same type might choose to hold different assets in a given

period of time, it is necessary to compute the average performance of each type of investors.

Therefore, denote by

~veut = °eut¡1vt (a) +
£
1¡ °eut¡1

¤
vt (b) (6.67)

130 This approach is, therefore, similar to the indirect evolutionary approach initiated by Güth and Yaari (1992). In
their setup, the genetic phenotype describes a decision rule for choosing a strategy in a game. The solution of the
game, computed in accordance with the proportions in which these phenotypes are present, determines the payoffs
and, hence, the evolution of decision rules (not of strategies) in the population. The present model differs, however,
from the work of Yaari and Güth by the fact that instead by a game, the payoffs are determined by a market.

131 This property, which follows from the market clearing condition in this model, need not hold in general. See
for instance Kogan, Ross, Wang and Westerfield (2003) for a model, in which noise traders can inf luence the price
process, even though their share converges to 0 in the limit.

132 In this model the length of period is assumed to be 1 and the growth rate of the population is 0. This correspondes
to ¿ = 1 and ¯ = 0 in the overlapping generations model presented by Weibull (1995).
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~vcbt = °cbt¡1vt (a) +
£
1¡ °cbt¡1

¤
vt (b)

~vt =
£
°eut¡1et¡1 + (1¡ et¡1)°cbt¡1

¤
vt (a) +

£
1¡ °eut¡1et¡1 ¡ °cbt¡1 (1 ¡ et¡1)

¤
vt (b)

the average returns achieved by an expected utility maximizer, by a case-based decision-maker

and by the whole society at time t, respectively. I assume, as usual for the replicator dynamic

that the type of investors who performs better than the average have increasing share in the pop-

ulation, whereas the share of the worse performing type shrinks. Since the population remains

constant over the time, the dynamics can be described by the change of the variables et and ct:

et =
~veut
~vt
et¡1 (6.68)

ct = ~vcbt
~vt
ct¡1.

Since

et + ct = ~veut
~vt
et¡1 +

~vcbt
~vt
ct¡1 =

=
£
°eut¡1vt (a) +

£
1¡ °eut¡1

¤
vt (b)

¤
et¡1+

£
°cbt¡1vt (a) +

£
1¡ °cbt¡1

¤
vt (b)

¤
ct¡1£

°eut¡1et¡1 + (1¡ et¡1) °cbt¡1
¤
vt (a) +

£
1¡ °eut¡1et¡1 ¡ °cbt¡1 (1¡ et¡1)

¤
vt (b)

=

= 1

holds, the condition that the population does not grow as a whole is satisfied. Therefore, the

evolution of et is enough to determine the dynamic of the system. Using (6.66), the equilibrium

share of expected utility maximizers from (6.68) can be written as:

e¤t =

h
p¤t (e

¤
t)+±t
pt¡1

°eut¡1 + (1 + r)
¡
1¡ °eut¡1

¢i
et¡1

p¤t(e¤t )+±t
pt¡1

¡
°eut¡1et¡1+ °cbt¡1 (1¡ et¡1)

¢
+ (1 + r)

¡
1¡

¡
°eut¡1et¡1 + °cbt¡1 (1¡ et¡1)

¢¢ .

(6.69)

Note that the numerator represents the wealth of the expected utility maximizers (i.e. the value

of the portfolio held by the old expected utility maximizers) at time t, whereas the denominator

corresponds to the wealth of the whole society at t. Hence, the proportion of investors follow-

ing a decision rule at time t is equal to the relative share of wealth held by these investors. I,

therefore, claim that the replicator dynamic defined by (6.68) can indeed be interpreted as a rel-

ative wealth dynamic in the sense of Blume and Easley (1992, 2001), Hens and Schenk-Hoppé

(2001) and Evstigneev, Hens and Schenk-Hoppé (2002, 2003).

The price of the risky asset pt¡1, however, might become 0 in a period, in which et¡1 = 0.

Therefore, e¤t is not always well defined. Nevertheless, a limit of e¤t can be computed for this

case. Should pt¡1 = 0 be an equilibrium price, only expected utility maximizers would be
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(potentially) willing to hold a at time (t¡ 1), hence pt¡1 = °eut¡1et¡1 in an equilibrium with a

positive share of expected utility maximizers. Moreover, since peu > 0, °eut¡1 = 1 will hold for

prices near 0. Substituting in (6.69) one obtains:

lim
et¡1!0

e¤t = lim
et¡1!0

p¤t (e¤t )+±t
et¡1

et¡1
p¤t(e

¤
t )+±t
et¡1

et¡1+ (1 + r) (1 ¡ et¡1)
=

p¤t (e¤t ) + ±t
p¤t (e¤t ) + ±t + 1+ r

,

which is well defined. This means, especially, that starting with et = 0, the mass of expected

utility maximizers may become strictly positive if expected utility maximizers hold an asset with

positive fundamental value the price of which is 0.

Alternatively, if the initial mass of the case-based decision-makers is 0, then it remains 0 in all

subsequent periods. Indeed, let ct¡1 = 1¡ et¡1 = 0. Then

e¤t =

h
p¤t (e

¤
t )+±t
pt¡1

°eut¡1 + (1 + r)
¡
1¡ °eut¡1

¢i
et¡1

p¤t (e
¤
t )+±t
pt¡1

¡
°eut¡1et¡1 + °cbt¡1 (1¡ et¡1)

¢
+ (1 + r)

¡
1¡

¡
°eut¡1et¡1+ °cbt¡1 (1¡ et¡1)

¢¢

=

h
p¤t (e¤t)+±t
pt¡1

°eut¡1 + (1 + r)
¡
1¡ °eut¡1

¢i
et¡1

p¤t (e
¤
t )+±t
pt¡1

°eut¡1et¡1 + (1 + r)
¡
1¡ °eut¡1et¡1

¢ = 1.

This is due to the fact that the expected utility maximizers perceive the risky asset as valuable,

preventing its price from falling to 0. Hence, if case-based decision-makers have an aggregate

initial endowment of 0, they are not able to invest and to achieve returns in the future.

The replicator dynamic introduced above describes the evolution of wealth for the two types

of investors. Nevertheless, even if the only fitness criterium considered is the wealth growth,

(6.68) is not the only way to characterize the selection process. The choice of the replicator

dynamic is made here for computational simplicity: its linearity allows for explicit solutions in

a model with two strategies.

The question arises, whether the introduction of an alternative dynamic would change the results

significantly. It seems that the stability results presented below are robust in this respect. Weibull

(1995, p. 88) and Nachbar (1990, p. 78) show that a stable state under a regular replicator

dynamic is a Nash equilibrium. Like the regular133 replicator dynamic, (6.68) also selects a

Nash-equilibrium of the ’’meta’’-game described above134 . Especially, e = 1 is a stable state of
133 See Weibull (1995, p. 141) for a definition of a regular dynamic. In contrast to the replicator dynamic presented

in this chapter, a regular dynamic has the property that starting from an interior point of the simplex, the system
remains forever in its interior, whereas starting at a vertice, the system never leaves it. Crucial for this property is
the assumption of Lipschitz continuity of the replicator dynamic. Since the replicator dynamic in this model is not
Lipschitz continuous at e = 0, it violates this invariance property.

134 This is due to the fact that Lipschitz continuity is violated only at e = 0 and that this point is never a Nash
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the system only if it is a Nash equilibrium of this ’’meta’’-game.

Consider the class of evolutionary dynamics which are payoff-monotone, i.e. the growth of the

share of a strategy in the population is increasing in the payoff of the strategy. This class contains

the replicator dynamic as a special case. However, if there are only two available strategies, this

class also includes the sign-preserving dynamic, i.e. the shares of the strategies performing

better than the average grow and vice versa, as well as the positive correlation dynamic, i.e. the

share of at least one of the strategies performing better than the average grows. Friedman (1998,

p. 25) gives a classification, whereas Weibull (1995, pp. 149-152) provides a description and a

characterization of these types of evolutionary dynamics.

Moreover, as Friedman (1998, p. 40) points out, for the case of two strategies, the class of payoff-

monotonic dynamics also includes the best-reply dynamic, see Gilboa and Matsui (1991) and

Fudenberg and Levine (1997), as well as fictitious play, see Brown (1951) and Fudenberg and

Levine (1997).

Weibull (1995, pp. 147-148) further shows that every continuous-time pay-off monotone regular

dynamicexhibits the property that the set of stable states contains only Nashequilibria. The same

result is derived by Nachbar (1990, p. 78) for the discrete-time version.

Since the main focus of this paper is on the stability of the state e = 1, in which only expected

utility maximizers are present in the market, and since the replicator dynamic (6.68) is Lipschitz

continuous (and therefore regular) at e = 1135 , it seems that these results can be carried over

to the model at hand. Especially, every selection dynamic, which is monotone in the growth of

wealth and regular at e = 1 will exhibit the same stability properties at e = 1, as the replicator

dynamic (6.68).

6.3.2 Temporary Equilibrium with Replicator Dynamic

The equilibrium share of expected utility maximizers is only implicitly determined by (6.69),

since it depends on p¤t , which on its turn depends on e¤t . Therefore, it is necessary to introduce a

new equilibrium concept in which the shares of the two types in the population are determined

equilibrium of the ’’meta’’-game.
135 See the derivation of the explicit form of the replicator dynamic at e = 1 in the proofs of propositions 6.5, 6.6,

6.8 and 6.10. It is easily seen that the replicator dynamic is continuously differentiable at e = 1 and, therefore,
Lipschitz continuous.
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endogenously.

Given
¡
et¡1; °eut¡1; °cbt¡1; pt¡1

¢
, a temporary equilibrium with replicator dynamic at time t is de-

fined as a vector:
¡
e¤t ; °¤eut ; °¤cbt ; p¤t

¢
, such that:

(i) °¤eut = °eut (p¤t)

(ii) °¤cbt = °cbt (p¤t)

(iii) p¤t (e¤t) clears the market for the risky asset given e¤t ;

(iv) e¤t is determined by the replicator dynamic:

e¤t =

h
p¤t (e

¤
t)+±t
pt¡1

°eut¡1 + (1 + r)
¡
1¡ °eut¡1

¢i
et¡1

p¤t(e
¤
t )+±t
pt¡1

¡
°eut¡1et¡1+ °cbt¡1 (1¡ et¡1)

¢
+ (1 + r)

¡
1¡

¡
°eut¡1et¡1 + °cbt¡1 (1¡ et¡1)

¢¢ .

Corollary6.1 does not guarantee the existence of suchan equilibrium. Nevertheless, it is possible

to show that such anequilibrium exists ineach periodas longas the initial state
¡
et¡1; °eut¡1; °cbt¡1; pt¡1

¢

is an equilibrium136. The evolution of the system is therefore well defined.

Proposition 6.2 Suppose that
¡
et¡1; °eut¡1; °cbt¡1; pt¡1

¢
is such that

pt¡1 = et¡1°eut¡1 (pt¡1) + (1 ¡ et¡1) °cbt¡1 (pt¡1) .
Given such

¡
et¡1; °eut¡1; °cbt¡1; pt¡1

¢
, a temporary equilibrium with replicator dynamic at time t

exists.

6.4 Analysis of the Dynamic

The definition of a temporary equilibrium with replicator dynamic, together with the dividend

process determine the evolution of the system. I first discuss the stationary states.

6.4.1 Stationary States

Since I am interested in the evolution of the investor types in the market, I define a stationary

state as a state in which e¤t = const for all t, whereas portfolio holdings and prices might but

need not be constant. Nevertheless, it is possible to show that only steady states in which all

four state variables are constant can occur.

Proposition 6.3 (i) e = 1 is a stationary state.

(ii) e = 0 is a stationary state if ¹u < 1 and °cb0 > 0 hold.

136 In fact, the condition stated in proposition 6.2 is weaker. It only requires that at (t ¡ 1) a temporary equilibrium
for the given share et¡1 of the expected utility maximizers obtains.
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Since in these two stationary states the whole population consists of one type of investors only,

the mean return of this type equals the mean return of the population. Therefore, the proportions

of the two types do not change over time. Note that in the case e = 1, the price of the risky asset

is stable over time and satisfies:

p¤t = °eut = min fpeu; 1g for all t ¸ 0.

Therefore, as long as the no-short-sales condition is not binding, the asset price coincides with

the fundamental value of the asset and a rational expectations equilibrium emerges.

For the case e = 0, the price remains constant over the time and satisfies

p¤t = °cb0 .

Obviously, the price need not coincide with the fundamental value peu. In this case, arbitrage

opportunities might remain unused in the market.

Proposition 6.3 shows that only a relatively low aspiration level allows the case-based decision-

makers to keep their mass at 1 in the market. Should their aspiration level exceed this bench-

mark, then there would be periods in which the case-based decision-makers refuse to hold a

even at a price of 0. In such periods, expected utility maximizers would be able to acquire a for

free. Should now the dividend of a be strictly positive in the next period, the mass of expected

utility maximizers would become positive. Hence, e = 0 would not be stationary in this case.

The trivial stationary states derived in proposition 6.3 describe situations in which only one

of the two types of investors dominates the market. One can also identify stationary states in

which both types of traders coexist. Of course, in order to gain the same mean return in each

period, both types must hold the same portfolio in every period. Furthermore, to insure that case-

based decision-makers do not change their portfolio over time, their aspiration level should be

relatively low:

¹u < p
¤ +minf±tg
p¤

= 1,

i.e. it should not exceed the return of the risky asset in periods in which the dividend payment

is 0 and its price remains unchanged compared to the last period of time.

Proposition 6.4 Let ¹u < 1.

1. If peu > 1, then each e 2 [0; 1] is a stationary state, provided that the portfolios held and
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the price of a fulfil:
°cb = 1
°eu = 1
p¤ = 1.

2. If peu · 1, then each e 2 [0; 1] is a stationary state, provided that the portfolios held and

the price of a fulfil:
°cb = peu
°eu = peu
p¤ = peu.

Note that as long as peu · 1 holds, the price in the stationary state coincides with the price under

rational expectations. Moreover, it is not possible to distinguish between case-based decision-

makers and expected utility maximizers. Both types of investors hold the same optimal portfolio

at the equilibrium price. By imitating the expected utility maximizers, case-based decision-

makers with relatively low aspiration levels are, thus, able to survive in a financial market.

However, they cannot inf luence prices and it is not possible to empirically reject the hypothesis

of rational expectations and expected utility maximization in such a market. It is, therefore,

interesting whether a positive share of case-based decision-makers can survive if the portfolio

strategies of expected utility maximizers and case-based decision-makers differ.

6.4.2 Stability of e = 1

It has been shown that case-based decision-makers with an aspiration level lower than 1 can

survive in a market without influencing prices. Now I shall look at the dynamics of the system

for case-based decision-makers with aspiration levels higher than 1.

If the aspiration level of the case-based decision-makers is relatively high, their behavior might

inf luence prices. The price dynamic in a market populated only by case-based decision-makers

has been discussed in chapter 5. Transferring the results obtained in chapter 5 to the context

of the current model, it is easy to derive the dynamic of prices and asset holdings for the case

e = 0. If 1 + r > ¹u > 1, p¤t = 0 in each period holds and all investors hold b in every period.

For relatively high aspiration levels, 1 + ± > ¹u > 1 + r, the price process is a stochastic cycle

with two states: ph = 1 and pl = 0. The Markov transition matrix describing this process is
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given by:
pt+1 = ph pt+1 = pl

pt = ph q 1 ¡ q
pt = pl 1 0

.

Since, the evaluation of the risky asset by the expected utility maximizers is constant over time,

it is intuitively clear that similar patterns can be expected to emerge in an economy in which both

types of investors are present. Indeed, proposition 6.1 shows that in the presence of expected

utility maximizers the price in state lwould be strictly positive. Furthermore, as long as peu < 1

holds, the price ph would be lower than 1. Nevertheless, it is possible that cycles similar to those

described in section 3 of chapter 5 emerge in an economy in which both case-based decision-

makers and expected utility maximizers are present.

In the current model, the magnitude of these cycles depends positive on the mass of case-based

decision-makers in the economy. Therefore, such cycles can persist only if a positive mass

of case-based decision-makers survives. Hence, it is necessary to examine the stability of the

stationary state e = 1. Only if this stationary state is not stable, the case-based decision-makers

will be able to survive and influence the prices in the market.

The discussion of the results for asset markets without expected utility maximizers in chapter 5

shows that the dynamic of the system crucially depends on the aspiration level of the case-based

decision-makers. It has already been shown that for ¹u < 1 stationary states with a positive mass

of case-based decision-makers are possible. Moreover, the value of e in these stationary states

is undetermined and can vary between [0; 1]. Hence, the further discussion concentrates on the

case in which such stationary states do not occur, i.e. on ¹u > 1. Two cases have to be considered:

¹u 2 (1 + r; 1 + ±), referred to as the case of high aspiration levels and ¹u 2 (1; 1 + r), the case

of low aspiration levels.

For ¹u 2 (1; 1 + r), it is easy to see that the return of b is satisfactory for the case-based decision-

makers, whereas the return of a, given that the dividend is 0 and the price of a remains unchanged

or falls, is not satisfactory. Even if all case-based decision-makers hold a in period 0, the return

of a will fall below their aspiration level almost surely in finite time. Hence, they will switch to

b and hold it forever.

For ¹u 2 (1 + r; 1 + ±), the return of a is considered satisfactory when the dividend is high and

the price of a weakly increases, whereas the return of b and the return of a if its dividend is
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low, are regarded as unsatisfactory. If the initial endowment with assets in period 1 is identical

for all case-based decision-makers, these investors switch infinitely often between a and b. The

case-based decision-makers hold a as long as its dividend is high, switch to b in the first period

of low dividends t0 and choose again a in period t0 + 1, since (1 + r) < ¹u holds.

6.4.2.1 The Case of High Aspiration Levels

Consider first the case of high aspiration level:

¹u 2 (1 + r; 1 + ±)

and assume that the fundamental value peu exceeds 1.

Under these two assumptions, the dynamics of prices and asset holdings can be described as

follows:

°¤eut = 1 for each t;

°¤cbt =

8
<
:

1, if °cbt¡1 = 1 and ±t = ± or
°cbt¡1 = 0

0, if °cbt¡1 = 1 and ±t = 0

9
=
; ;

p¤t =

8
<
:

1, if °cbt¡1 = 1 and ±t = ± or
°cbt¡1 = 0

e¤t , if °cbt¡1 = 1 and ±t = 0

9
=
; .

Note that the average returns of the two types of investors are identical in periods in which both

types hold a. Therefore, the population shares remain unchanged:

e¤t = e
¤
t¡1, if °¤cbt¡1 = 1.

Hence, these periods do not influence the dynamic of population shares. It is, therefore, suf-

ficient to analyze how et changes in periods in which the holdings of both types of investors

differ.

Proposition 6.5 Let the aspiration level satisfy
¹u 2 (1 + r; 1 + ±)

and suppose that peu ¸ 1 holds.

1. If peu < 1+±
1+r , then there exists an ~e 2

¡
1

1+r ; 1
¢
, such that e¤t is a submartingale as long as

e¤t¡1 < ~e and a supermartingale as long as e¤t¡1 ¸ ~e.
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2. If peu ¸ 1+±
1+r , then e¤t is a submartingale for all e¤t¡1 2 [0; 1]. The case-based

decision-makers disappear with probability 1.

First note that the condition that peu T 1+±
1+r is equivalent to q T (1+±)r

(1+r)± . Since (1+±)r
(1+r)± 2 (0; 1),

both cases 1: and 2: are possible. Proposition 6.5 has, therefore, a simple interpretation: if the

initial share of expected utility maximizers in the market is relatively small, then in expectation

their share increases:

E
£
e¤t j e¤t¡1 < ~e

¤
¸ e¤t¡1.

If, however, their share is relatively large, then the behavior of the system depends on the prob-

ability of high dividends. If this probability is relatively low, then the share of expected utility

maximizers decreases in expectations. This means that the stationary state e = 1 is not stable,

in the sense that there is a positive probability that the replicator dynamics does not converge

to it. Neither the case-based decision-makers, nor the expected utility maximizers will vanish

with probability 1 in this case. Alternatively, if the probability of high dividends is large, then

the case-based decision-makers vanish on almost all paths of dividend realizations.

The intuition behind this result is simple: the replicator dynamic of e¤t is concave in the returns

of the expected utility maximizers. Therefore, it selects for the less risky strategy, given that

the expected returns of two strategies are identical. In those periods in which the case-based

decision-makers hold b, their portfolio is less risky than the portfolio of the expected utility

maximizers, who hold a. Moreover, if we let the share of the case-based decision-makers go to

0 and assume peu = 1, the expected returns of both portfolios become identical and the replicator

dynamic selects for the less risky one, hence, for the one held by the case-based decision-makers.

By continuity, the same result holds in some surrounding of e = 1 and in some surrounding of

peu = 1 and, therefore, as long as peu is not very large, a positive share of case-based decision-

makers survives with positive probability in the limit.

If, however, peu exceeds 1+±
1+r , the excess return of the expected utility maximizers is sufficiently

high to compensate for the higher risk of their portfolios. In this case, they accumulate the whole

market wealth with probability 1 in the limit.

Note that higher values of peu correspond to higher values of q, ceteris paribus. The probability

of high dividends has two effects on the evolutionary dynamic. On the one hand, higher q implies
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higher expected returns of the risky asset and, therefore, higher profits for the investors holding

a, i.e. for the expected utility maximizers. On the other hand, higher values of q cause the

case-based decision-makers to switch less frequently between the two undiversified portfolios

and to hold the risky asset during a larger share of time, hence to behave in a less risk-averse

manner137. These two effects work in the same direction, making the strategy of the expected

utility maximizers more successful.

This result should not be surprising. The literature on evolutionary financial markets cited in the

introduction shows that correct beliefs alone do not guarantee survival. The form of the utility

function is crucial for the ability of an investor to accumulate wealth. Only for the logarithmic

utility function does the selection criterium used by the wealth dynamic coincide with the target

of expected utility maximization with correct beliefs. Hence, a proper degree of risk-aversion

combined with correct beliefs is needed for survival. Therefore, expected utility maximizers

with correct beliefs in the limit can be ’’outperformed’’ according to the replicator dynamic by

investors who do not have correct beliefs, but behave as if they were risk-averse.

Note that e = 1 is a Nash-equilibrium of the ’’meta’’-game described in section 3 only in the

case in which it is stable under the replicator dynamic. Indeed, since the return of the risky asset

is uncertain, a rational player would maximize the expected growth of wealth, or the expected

value of the replicator dynamic given the present share of expected utility maximizers in the

market so as to determine whether to behave as an expected utility maximizer or a case-based

decision-maker. But this is exactly what has been computed in the proof of proposition 6.5.

For peu ¸ 1+±
1+r , the strategy ’’expected utility maximizer’’ is indeed a best response if everyone

else plays ’’expected utility maximizer’’, hence e = 1 is a Nash equilibrium. However, for

peu < 1+±
1+r , the best-response to the strategy combination in which everyone plays ’’expected

utility maximizer’’ is ’’case-based decision-maker’’, therefore, e = 1 is not a Nash equilibrium

and cannot be a stable state under a regular replicator dynamic.

Since at e = 1, the replicator dynamic (6.69) is Lipschitz continuous, it follows that every

payoff-monotone replicator dynamic will exhibit the same stability properties at e = 1. The

result is therefore robust with respect to the choice of an evolutionary dynamic. Analogous

arguments hold also for the stability results obtained below.
137 See chapter 5, proposition 5.4 for the derivation of the limit frequencies with which the case-based decision

makers hold asset a, respectively b.
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A result similar to the one of proposition 6.5 can be derived for lower fundamental values of the

risky asset. For peu 2
¡
1
2; 1

¢
, the following proposition obtains:

Proposition 6.6 Let the aspiration level satisfy
¹u 2 (1 + r; 1 + ±) .

Then there is a critical value ~peu 2
¡
1
2; 1

¢
such that E

£
e¤t+2 j e¤t

¤
< e¤t holds for

e¤t 2
"
max

(
peu; 1 ¡ peu + rp

eu2

1 + r

)
; 1

!

if peu > ~peu.

Hence, for lower fundamental values, the result that there is a positive probability that the case-

based decision-makers do not disappear also obtains. Near e = 1, the share of expected utility

maximizers falls in expectation and, therefore, the state e = 1 is not stable.

For lower values of peu , (especially lower than 1
2 ), the results are not clear. Whereas the expected

share of expected utility maximizers decreases in periods in which the case-based decision-

makers hold a, (E
£
e¤t+2 j e¤t , °¤cbt = 1

¤
< e¤t always holds near e = 1), their share increases in

expectation in periods in which the case-based decision-makers hold b,

E
£
e¤t+2 j e¤t , °¤cbt = 0

¤
> e¤t

as long as et is sufficiently close to 1. It is, a priori, not obvious which of these two effects will

dominate.

Nevertheless, it is intuitively clear that for sufficiently low fundamental values of the risky asset,

the case-based decision-makers disappear with probability 1. Indeed, imagine that ± = 0 so

that peu = 0 holds, hence, the risky asset never pays a positive dividend. In this case, the

case-based decision-makers who hold a strictly dominated asset with positive frequency (and

a portfolio identical to the portfolio of the expected utility maximizers, else) disappear with

probability 1 in the limit. By continuity, this result holds in some surrounding of peu = 0

(± = 0) and, therefore, case-based decision-makers with high aspiration level cannot survive for

low fundamental values of the risky asset.

To summarize, if the fundamental value of the risky asset is neither too high, nor too low, there

is a positive probability that the case-based decision-makers do not disappear from the market.

This result can be made even stronger:
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Proposition 6.7 Suppose that e¤t is a supermartingale on some interval [~e; 1]. Then
Prfe¤t ! 1g = 0.

The share of case-based decision-makers, thus, remains almost surely positive as long as it can

be shown that e¤t is a supermartingale near 1. This result can be interpreted in terms of the defi-

nition of survival and dominance introduced by Blume and Easley (1992). In their terminology,

survival requires that the share of an investor type, say of case-based decision-makers, fulfills:

Pr
½
lim sup

t!1
ct > 0

¾
= 1, (6.70)

whereas the case-based decision-makers dominate the market if

Pr
n
lim inf

t!1
ct > 0

o
= 1 (6.71)

is satisfied. Note that proposition 6.7 implies that both (6.70) and (6.71) are fulfilled as long as

e¤t is a supermartingale on some interval [~e; 1].

6.4.2.2 The Case of Low Aspiration Levels

Now suppose that the case-based decision-makers have an aspiration level which satisfies

1 < ¹u < 1 + r,

implying that the case-based decision-makers hold b in each periodof time. For any fundamental

value of the risky asset satisfying
1 + ±
1 + r > p

eu > 0,

it can be shown that the share of expected utility maximizers is a submartingale near e = 0 and

supermartingale near e = 1. Therefore, case-based decision-makers with low aspiration level

need not vanish from the market even if their aspiration level is relatively low.

Proposition 6.8 Suppose that the aspiration level satisfies
1 < ¹u < 1 + r.

Let peu ¸ 1hold.

1. If peu < 1+±
1+r , then there is an ê 2 (0; 1) such that e¤t is a supermartingale on [ê; 1] and a

submartingale on [0; ê).

2. If peu ¸ 1+±
1+r , then e¤t is a submartingale on [0; 1]. The case-based decision-makers

disappear with probability 1.

Note that with low aspiration levels the case-based decision-makers survive for exactly the same

285



values of q which were found in proposition 6.5. Although in the case of low aspiration level, q

inf luences the selection only by increasing the average return of the expected utility maximizers

and not through the less risk-averse behavior on the side of the case-based decision-makers, in

the limit when ct becomes very small, the condition for the survival of the case-based decision-

makers is identical in both cases.

However, the cut-off values ~e (as defined in proposition 6.5) and ê from proposition 6.8 reflect

the fact that the strategy of the case-based decision-makers is riskier in the case of high aspi-

ration level. Therefore, the case-based decision-makers with low aspiration level are likely to

survive in a higher proportion than case-based investors with high aspiration level. The follow-

ing relationship between ~e and ê holds:

Proposition 6.9 ~e, as defined in proposition 6.5 and ê from proposition 6.8 satisfy:
~e > ê.

For fundamental values lower than 1 a result analogous to the result of proposition 6.6 applies.

Since, however, with low aspiration levels the portfolio chosen by the case-based decision mak-

ers is less risky, they are able to survive for a larger range of parameter values.

Proposition 6.10 Suppose that the aspiration level satisfies
1 < ¹u < 1 + r:

Let peu 2 (0; 1) hold. Then e¤t is a supermartingale on the interval
h
max

n
peu; 1¡ peu + rpeu

2

1+r

o
; 1

i
.

The result of proposition 6.7 applies in this case as well, implying that the share of case-based

decision-makers remains positive with probability 1 as long as e¤t is a supermartingale in some

interval [ê; 1].

6.5 Asset Prices in the Presence of Case-Based Decision-Makers

Up to now, it has been shown that the case-based decision-makers are able to survive in a strictly

positive proportion in the presence of expected utility maximizers. This section analyzes the

effect of case-based reasoning on asset prices.

Consider first the case of high aspiration levels. When the fundamental value of the risky asset

is smaller than 1, the case-based decision-makers can inf luence its price and cause bubbles,

excessive volatility and predictability of returns as long as their share exceeds maxfpeu; 1 ¡
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peug138 . Indeed, since thecase-based decision-makers switchbetween a and b infinitelyoften, the

price of a f luctuates depending on the share of case-based decision-makers and on their behavior

and exhibits excessive volatility139. Moreover, the returns of a are predictable. Especially, if

p¤t¡1 = °¤eut e¤t¡1, meaning that in a certain period only expected utility maximizers hold a, an

external observer could predict that the price of a in the next period will (weakly) rise, since the

young case-based decision-makers will buy a in period t independently of the dividend paid by

the risky asset.

Case-based decision-makers can cause a bubble to emerge and to persist in the market for sev-

eral periods. Suppose, for instance, that the share of expected utility maximizers is lower than

(1¡ peu) at some time t and that case-based decision-makers hold a in period t. Then the equi-

librium price of a is given by

p¤t = (1¡ e¤t) > peu.
Moreover, if the case-based decision-makers achieve a high dividend, i.e. ±t+1 = ±, then their

return will exceed those of the expected utility maximizers and e¤t+1 < e¤t holds in equilibrium

in period (t+1). Furthermore, since everyone of the young case-based decision-makers wishes

to hold a at (t+ 1),

p¤t+1 =
¡
1¡ e¤t+1

¢
> p¤t > peu

obtain in equilibrium. Hence, the price increases above the fundamental value for several pe-

riods as long as the dividend of the risky asset remains positive. In the first period t0 such that

±t0 = 0, the bubble bursts, since the case-based decision-makers switch to b and their share

in the population decreases. Moreover, the price of the risky asset might even fall below the

fundamental value peu. Simple computations show that this happens if

(1¡ e¤t0 ) >
(peu ¡ 1)2

peu (1 + r)
,

hence, if the bubble has lasted sufficiently long to decrease substantially the share of the expected

utility maximizers.

The phenomenon described above might seem to lead to the following problem: suppose that

the case-based decision-makers achieved a higher average return (by holding the risky asset)

138 If this condition is satisfied, the wealth share of the expected utility maximizers is not sufficiently high to prevent
deviations of the price of the risky asset from the fundamental value.

139 In an overlapping generations model with constant initial endowments and no population growth the price of
the risky asset should remain constant over the time, given rational expectations and expected utility maximization.
As was shown above, stable prices obtain for e = 1.
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than the expected utility maximizers. Then their share in the population of the young generation

would rise. Since the young case-based investors would also prefer to buy the risky asset, their

growing share would drive the price of the asset upwards and, therefore, increase the return of

their ’’parents’’ further, which on its turn would increase the share of young case-based decision-

makers, and so on. This would mean that expected utility maximizers could be driven out of the

market in a single period if their evaluation of the risky asset is below 1. It turns out that this

cannot happen140.

Indeed, consider the case in which °¤cbt = 1 and e¤t < 1 ¡ peu hold and, therefore, °¤eut = 0

(since at the price p¤t = (1 ¡ e¤t) the expected utility maximizers are not ready to hold a). Let

further the dividend in the next period be high: ±t+1 = ±. Since

1 +
±
p¤t
> 1 + ± > ¹u,

the young case-based decision-makers in period (t+ 1) also wish to hold a141 . Therefore, the

return of a at (t+ 1) becomes:
1 ¡ e¤t+1+ ±

p¤t
=

1¡ e¤t+1 + ±
1¡ e¤t

=
c¤t+1 + ±
c¤t

,

with c¤t = 1¡ e¤t . Then the equilibrium share c¤t+1 = 1¡ e¤t+1 can be determined according to

the equation:

c¤t+1 =
c¤t+1+±
c¤t
c¤t

c¤t+1+±
c¤t
c¤t + (1 + r) (1¡ c¤t)

=
c¤t+1 + ±

c¤t+1 + ± + (1 + r) (1¡ c¤t)
. (6.72)

It can be shown that (6.72) has a single solution c¤t+1 < 1 and, therefore, the share of the case-

based decision-makers does not rise to 1:

Lemma 6.1 Equation (6.72) has only one non-negative root c¤t+1 < 1. Furthermore, c¤t+1 > ct
holds.

There is, however, a case in which the expected utility maximizers disappear from the market,

at least for some finite number of periods. To see how this can happen, consider the case of low

aspiration levels. Since the aspiration level satisfies

1 < ¹u < 1 + r,

140 I would like to thank to Hans Haller for encouraging me to pursue this issue.
141 To guarantee that the case-based decision makers will still be willing to hold a given the return

c¤
t+1+±

c¤
t

, it is
sufficient to show that c¤

t+1 > c¤
t obtains in equilibrium. This is demonstrated in the proof of lemma 6.1.
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°¤cbt = 0 holds for each t. Then, to equilibrate the market for the risky asset,

°¤eut = min fe¤t ; peug

p¤t = min fe¤t ; peug
must hold. Suppose that the share of the expected utility maximizers is relatively small so that

the price of the risky asset is lower than its fundamental value (e¤t < peu) and let the next period

dividend be low, ±t+1 = 0. The equilibrium share of the expected utility maximizers is now

given by the solution of the equation:

e¤t+1 =
e¤t+1
e¤t
e¤t

e¤t+1
e¤t
et + (1 + r) (1 ¡ e¤t)

=
e¤t+1

e¤t+1 + (1 + r) (1 ¡ e¤t)
. (6.73)

(6.73) has two solutions: e¤t+1 = 0 and e¤¤t+1 = e¤t (1 + r) ¡ r, which is always smaller than e¤t .

However, if the initial share of the expected utility maximizers is relatively small, i.e. if

e¤t <
r

1 + r
,

e¤¤t+1 < 0 and e¤t+1 = 0 obtains in equilibrium.

The expected utility maximizers can vanish if they hold the risky asset, hoping that it is valuable,

but if there are not enough of their type to prevent its price from falling when the dividend of

the asset is low. This effect is similar to the noise trader risk identified by De Long, Shleifer,

Summers and Waldmann (1990). Although the expected utility maximizers do not have rational

expectations in this model, they suffer from an undervaluation of the risky asset caused by the

case-based decision-makers. If, furthermore, the returns of the expected utility maximizers are

relatively low compared to those of the population as a whole, then the share of the case-based

decision-makers increases causing the undervaluation of the risky asset to become even more

severe.

However, the expected utility maximizers do not disappear forever. In the next period, the mass

of the expected utility maximizers is determined by the following equation:

e¤t+2 =
e¤t+2 + ±t+2

e¤t+2 + ±t+2 + (1 + r)
.

Note that the expected utility maximizers do not regain a positive mass in the next period if

±t+2 = 0. Indeed, in this case their share satisfies:

e¤t+2 =
e¤t+2

e¤t+2 + (1 + r)
and it is easily seen that the sole non-negative solution of this equation is e¤t+2 = 0. Nevertheless,

the mass of the expected utility maximizers becomes positive again in the first period in which
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the dividend of the risky asset becomes positive, since then

e¤t+2 =
e¤t+2 + ±

e¤t+2 + ± + (1 + r)
holds. This equation has a unique strictly positive solution between 0 and 1.

Note that this result does not contradict proposition 6.1, which only guarantees a positive equi-

librium price of the risky asset as long as e¤t is positive. The effect arises, because of the depen-

dence of the replicator dynamic on the price of the risky asset and, therefore, indirectly on et

itself. It shows that even in markets in which expected utility maximizers are a priori present,

the price of an asset with positive fundamental value may fall to 0 and remain so for few peri-

ods. The price recovers almost surely in finite time and the share of expected utility maximizers

becomes positive again.

The results of this section imply that some of the phenomena empirically observed in finan-

cial markets could be attributed to the presence of case-based decision-makers in the economy.

However, the emergence of bubbles or price crashes requires a relatively high proportion of

case-based decision-makers in the market. It is not clear whether the analytical computation

of the probability of the occurrence of such phenomena in this model is possible. Future work

has, therefore, to deal with simulations of the model, which would enable the estimation of the

frequency of such phenomena.

6.6 CRRA Utility

Up to now, the assumption of risk-neutrality has been made. Suppose, instead that the investors

in this economy have a utility function with constant relative risk-aversion. The coefficient of

relative risk-aversion is denoted by (1¡ ¯) so that the utility functions can be parameterized in

the following way:

u¯ (x) = x¯, ¯ 2 (0; 1]

u¯ (x) = ln x, ¯ = 0.

Diversification is still not allowed142. Parameterizing the utility function in this way has two

142 As has already been stated above, the diversification constraint affects only the behavior of risk-averse ex-
pected utility maximizers. Since case-based decision makers are in general unwilling to diversify, it is of interest
to study the model with diversification constraints first, hence to ask whether the risk attitude of the expected util-
ity maximizers alone will allow them to drive the case-based decision makers to extinction. The assumption of no-
diversification is abandoned in section 7.
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effects: first, it changes the cut-off price at which the expected utility maximizers are indiffer-

ent between holding a and b; second, it alters the critical values of the aspiration level which

determine the patterns of behavior of the case-based decision-makers. The second effect does

not have much inf luence on the results derived in the previous section. Just replace ¹u T 1,

¹u T (1 + r) and ¹u T (1 + ±) by ¹u T u¯ (1), ¹u T u¯ (1 + r) and ¹u T u¯ (1 + ±), respectively

to obtain the new critical values of ¹u and determine which of the three cases discussed above is

relevant.

Changing the cut-off price may, however, have a significant effect on the results. Since now the

expected utility maximizers are risk-averse, they are ready to hold a only if its price is relatively

low, i.e. only if its expected return exceeds the return of b so as to compensate for the higher

risk. Hence, at the critical price peu (¯), the expected return of a is higher than those of b. It

is a priori not clear whether this excessive return can compensate for the risk of a, when the

population shares of investor types evolve according to the replicator dynamic, which benefits

both high expected return and low risk.

First, I compute the cut-off price peu (¯)at which the expected utility maximizers with coefficient

of relative risk-aversion equal to (1 ¡ ¯) are indifferent between a and b, given their belief that

there are only expected utility maximizers in the market:

(1 + r)¯ = q
µ
peu (¯) + ±
peu (¯)

¶¯
+ (1¡ q)

µ
peu (¯)
peu (¯)

¶¯
, for ¯ 2 (0; 1]

ln (1 + r) = q ln
µ
peu (¯) + ±
peu (¯)

¶
+ (1 ¡ q) ln

µ
peu (¯)
peu (¯)

¶
, for ¯ = 0.

Solving for peu (¯), one obtains:

peu (¯) =

8
><
>:

±

¯

r
(1+r)¯¡(1¡q)

q ¡1
, for ¯ 2 (0; 1]

±
q
p

(1+r)¡1
, for ¯ = 0.

9
>=
>;

. (6.74)

Note that for ¯ = 1, peu (1) = peu = q±
r holds.

Consider the case in which the cut-off price exceeds 1 so that the expected utility maximiz-

ers hold the risky asset independently of its price in the market. According to (6.74), this is

equivalent to:

q ¸ (1 + r)¯ ¡ 1
(1 + ±)¯ ¡ 1

, for ¯ 2 (0; 1]

q ¸ ln (1 + r)
ln (1 + ±)

, for ¯ = 0.
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The following two propositions generalize the results of propositions 6.5 and 6.8143.

Proposition 6.11 For a given ¯, let peu (¯) ¸ 1 and assume that the aspiration level satisfies
¹u 2 (u¯ (1 + r) ;u¯ (1 + ±)) .

1. If ¯ 2 (0; 1] and q 2
h
(1+r)¯¡1
(1+±)¯¡1 ;

(1+±)r
(1+r)±

´
, then there exists an ~e (¯) 2 (0; 1) such that e¤t is

a submartingale below ~e (¯) and a supermartingale above ~e (¯).

2. If ¯ 2 (0; 1] and q 2
h
(1+±)r
(1+r)± ; 1

i
, then e¤t is a submartingale on [0; 1]. The case-based

decision-makers disappear with probability 1.

3. If ¯ = 0 and q 2
h
ln(1+r)
ln(1+±) ;

(1+±)r
(1+r)±

´
, then there exists an ~e (0) 2 (0; 1) such that e¤t is a

submartingale below ~e (0) and a supermartingale above ~e(0).

4. If ¯ = 0 and q 2
h
(1+±)r
(1+r)± ; 1

i
, then e¤t is a submartingale on [0; 1]. The case-based

decision-makers disappear with probability 1.

Proposition 6.12 For a given ¯, let peu (¯) ¸ 1 and assume that the aspiration level satisfies
¹u 2 (u¯ (1) ;u¯ (1 + r)) .

1. If ¯ 2 (0; 1] and q 2
h
(1+r)¯¡1
(1+±)¯¡1 ;

(1+±)r
(1+r)±

´
, then there exists an ê (¯) 2 (0; 1) such that e¤t is

a submartingale below ê (¯) and a supermartingale above ê (¯).

2. If ¯ 2 (0; 1] and q 2
h
(1+±)r
(1+r)± ; 1

i
, then e¤t is a submartingale on [0; 1]. The case-based

decision-makers disappear with probability 1.

3. If ¯ = 0 and q 2
h
ln(1+r)
ln(1+±) ;

(1+±)r
(1+r)±

´
, then there exists an ê (0) 2 (0; 1) such that e¤t is a

submartingale below ê (0) and a supermartingale above ê(0).

4. If ¯ = 0 and q 2
h
(1+±)r
(1+r)± ; 1

i
, then e¤t is a submartingale on [0; 1]. The case-based

decision-makers disappear with probability 1.

As in the case of a linear utility function, a relatively low probability of high dividends insures

the survival of the case-based decision-makers. Moreover, the upper bound of q for which the

case-based decision-makers survive does not depend on ¯. However, if q exceeds this bound,

143 It might seem that the following two propositions for the cases of high and low aspiration level are identical.
However, the cut-off points ~e (¯) and ê (¯ ) are different in the two cases, therefore the claims are stated seperately.
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the case-based decision-makers cannot compensate for the higher returns of the expected utility

maximizers by a lower risk and vanish with probability 1 in the limit. ~e (¯) > ê (¯) holds in

analogy with proposition 6.9.

The results derived in this section, however, severely rely on the assumption that diversification

is not possible for risk-averse investors. They suggest that the excess return achieved by holding

the risky asset at a lower price is still not sufficiently high to compensate for the riskiness of the

strategy of the expected utility maximizers. Allowing for diversification, allows the expected

utility maximizers not only to reduce the riskiness of their strategy, but to achieve even higher

excess returns. Therefore, it can be expected that expected utility maximizers with relatively

high coefficients of relative risk-aversion will be able to drive the case-based decision-makers

out of the market even for values of q < (1+r)¯¡1
(1+±)¯¡1.

6.7 CRRA Utility with Diversification

Suppose first that the expected utility maximizers have a logarithmic utility function, i.e. ¯ = 0

in the terms of the last section, and assume that diversification is possible, whereas short sales

are still forbidden. Suppose that the expected utility maximizers expect the price in the next

period to be pt+1 and know the true distribution of the dividends, as well as the riskless interest

rate. Still, it is assumed that they act as if only expected utility maximizers were present in the

market. Their decision problem, therefore, can be stated as:

max
°eut 2[0;1]

q ln
·
pt+1 + ±
pt

°eut + (1 + r) (1¡ °eut )
¸
+ (1 ¡ q) ln

·
pt+1

pt
°eut + (1 + r) (1 ¡ °eut )

¸
,

where °eut now denotes the proportion of the income each expected utility maximizer invests

into the risky asset144. The first-order condition of this problem is easily seen to reduce to:

°eut =
(1 + r)

³
pt+1+q±
pt

¡ (1 + r)
´

³
pt+1+±
pt

¡ (1 + r)
´³

(1 + r)¡ pt+1
pt

´ .

Since short sales are forbidden, °eut 2 [0; 1] must hold and the optimal portfolio is, therefore,

144 Since all expected utility maximizers are identical and since diversification is allowed, they will solve identical
optimization problems in each period and will hold identical portfolios at each price pt . Hence, °eu

t also denotes
the proportion of the income the expected utility maximizers invest into the risky asset, as in the previous sections.
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determined by:

°eut (pt) =

8
>>><
>>>:

1, if pt < pt+1(pt+1+±)
(1+r)(pt+1+(1¡q)±)

(1+r)
³
pt+1+q±
pt

¡(1+r)
´

³
pt+1+±
pt

¡(1+r)
´³

(1+r)¡pt+1pt
´ , if pt 2

h
pt+1(pt+1+±)

(1+r)(pt+1+(1¡q)±) ;
pt+1+q±
1+r

i

0, if pt > pt+1+q±
1+r .

9
>>>=
>>>;

.

Note that pt < pt+1+q±
1+r is the condition that the expected return of the risky asset exceeds the

return of the riskless one and that it implies that pt+1+±pt > (1 + r). At the same time,

pt <
pt+1 (pt+1+ ±)

(1 + r) (pt+1+ (1 ¡ q) ±)
implies that pt+1

pt
< (1 + r). Hence, for °eut (pt) 2 [0; 1], the no-arbitrage restrictions are ful-

filled. The short sale constraints insure that the demand for a is well-defined even if these

restrictions are not satisfied.

Remark 6.1 If pt+1(pt+1+±)
(1+r)(pt+1+(1¡q)±) ¸ 1 holds, then the young expected utility maximizers invest

their whole endowment into the risky asset a, independently of its current price pt.

It is a standard result that °eut (pt) is a decreasing function:

Lemma 6.2 @°eut (pt)
@pt

· 0.

The following corollary obtains:

Corollary 6.2 For each expected price pt+1 there exists a unique equilibrium price p¤t in a
market populated only by expected utility maximizers.

In an equilibrium with rational expectations, the price of the risky asset must satisfy in each

period:

pt+1 = pt

°eut (pt) = pt.

Proposition 6.13 In an economy populated only by expected utility maximizers with a logarith-
mic utility function, the equilibrium price under rational expectations is given by min

©
peulog; 1

ª

with

peulog =
1 + r + ± ¡

q
(1 + r + ±)2 ¡ 4q± (1 + r)

2r
.

peulog ¸ 1 holds, iff q ¸ (1+±)r
(1+r)± .

Note that the values of q for which the price under rational expectations exceeds 1 coincide

with the values derived in proposition 6.11 and 6.12 which guarantee that case-based decision-
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makers disappear with probability 1 in the limit. Moreover, as the following corollary states, if

q satisfies

q ¸ (1 + ±)r
(1 + r) ±

;

then the expected utility maximizers are ready to invest their whole endowment in the risky asset

a, independently of the price pt:

Corollary 6.3
peulog

¡
peulog + ±

¢

(1 + r)
¡
peulog + (1¡ q)±

¢ ¸ 1 (6.75)

holds if q ¸ (1+±)r
(1+r)± .

The following proposition can now be stated in analogy to propositions 6.11 and 6.12:

Proposition 6.14 Let peulog ¸ 1. If the aspiration level of the case-based decision-makers satis-
fies145 ¹u 2 (0; ln (1 + ±)), then the share of the expected utility maximizers converges to 1 with
probability 1.

The proposition shows that case-based decision-makers with an aspiration level exceeding the

utility of 1 unit of consumption good disappear, when logarithmic expected utility maximizers

are present in the market. The ability of the expected utility maximizers to diversify combined

with a logarithmic utility function reduces their exposure to risk sufficiently so that they out-

perform the case-based decision-makers. This result is a special case of the more general one

obtained by Blume and Easley (1992, 2001), Hens and Schenk-Hoppé (2001) and of Evstigneev,

Hens and Schenk-Hoppé (2002, 2003), who show that expectedutility maximizers with logarith-

mic utility function and correct beliefs follow the most successful strategy in a financial market

and drive all other strategies to extinction. Note that since the logarithmic utility maximizers in

this model act as in an equilibrium with rational expectations in an economy populated by ex-

pected utility maximizers identical to themselves, they indeed have correct beliefs in the limit

for e ! 1146. Moreover, since their utility function lets them act as if they maximized the ex-

pected growth of their wealth, i.e. as if they maximized the expected value of the function given

by the replicator dynamic, the result that they drive the case-based decision-makers out of the

market remains true for all values of peulog.

145 The result is stated for case-based decision makers with logarithmic utility function.
146 This makes their strategy similar to the strategy called ¸¤ in the works of Hens and Schenk-Hoppé (2001) and

of Evstigneev, Hens and Schenk-Hoppé (2002, 2003), which operates with rational beliefs only in the limit, when
its wealth share converges to 1.
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It is straightforward to extend the result of proposition 6.14 to the more general case of constant

relative risk-aversion. Denote the price under rational expectations for an arbitrary coefficient

of relative risk-aversion (1¡ ¯) by peu¯ and note that it increases with decreasing relative risk-

aversion.

Lemma 6.3
@peu¯
@¯ ¸ 0 for all ¯ 2 (0; 1].

It can be further shown that for each ¯ 2 (0; 1], the case-based decision-makers survive for a

certain range of the parameters.

Proposition 6.15 Suppose that diversification is allowed. Let ¯ 2 (0; 1].

If ¹u 2 (u¯ (1 + r) ;u¯ (1 + ±)) and

1. q 2
h

r
r+(±¡r)(1+±)¯¡1 ; (1+±)r(1+r)±

´
, then there exists a cut-off point ~ed (¯) 2 (0; 1) such that e¤t

is a supermartingale above ~ed (¯) and a submartingale below ~ed (¯).

2. q 2
h
(1+±)r
(1+r)± ; 1

i
, then the share of the case-based decision-makers converges to 0 almost

surely.

If ¹u 2 (u¯ (1) ;u¯ (1 + r)) and

1. q 2
h

r
r+(±¡r)(1+±)¯¡1 ; (1+±)r(1+r)±

´
, then there exists a cut-off point êd (¯) 2 (0; 1) such that e¤t

is a supermartingale above êd (¯) and a submartingale below êd (¯).

2. q 2
h
(1+±)r
(1+r)± ; 1

i
, then the share of the case-based decision-makers converges to 0 almost

surely.

The condition q ¸ r
r+(±¡r)(1+±)¯¡1 implies that the expected utility maximizers wish to invest

their whole initial endowment into the risky asset, independently of its price, whereas q < (1+±)r
(1+r)±

is necessary for the survival of the case-based decision-makers. When these two conditions are

met simultaneously, the case-based decision-makers do not vanish in the limit, according to

propositions 6.5 and 6.8.

The case of a logarithmic utility function (¯ = 0) represents the limit case, in which
r

r + (± ¡ r) (1 + ±)¯¡1
=

(1 + ±)r
(1 + r)±
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holds. Since the cut-off price below which the expected utility maximizers invest all their initial

endowment in the risky asset is decreasing in ¯, this means that lower values of q (than (1+±)r
(1+r)± )

are needed to satisfy a condition analogous to (6.75) formulated for peu¯ . Proposition 6.15 states

that for each ¯ 2 (0; 1], there is an interval of values of q for which this condition is fulfilled

and at the same time the survival condition q < (1+±)r
(1+r)± is satisfied. For these values of q, the

share of case-based decision-makers remains positive with probability 1 in the limit. Since these

intervals become smaller and smaller, as the value of ¯ decreases, it is easier for more risk-averse

expected utility maximizers to drive the case-based decision-makers out of the market147 . For

each ¯ > 0, however, the case-based decision-makers survive almost surely, at least for some

values of the parameters.

6.8 Conclusion

The chapter presents a first attempt to analyze an asset market in which both expected utility

maximizers and case-based decision-makers are present. It has been demonstrated that in a

stationary state both types of investors can coexist, holding identical portfolios. The price of

the risky asset is then equal to its fundamental value. However, in this case it is empirically

impossible to distinguish between the two types of investors and the hypotheses of expected

utility maximization and rational expectations cannot be rejected.

The analysis of the stationary state in which the proportion of expected utility maximizers is

1 shows that in general this stationary state need not be stable. Especially, if the fundamental

value of the risky asset satisfies certain conditions, case-based decision-makers with relatively

high aspiration level retain a strictly positive mass with probability one in the limit. Therefore,

according to the definition of Blume and Easley (1992), the case-based decision-makers not

only survive, but also dominate the market. In this sense they are also able to influence the

price dynamics. By switching between the two assets they can cause predictability of price

movements, excessive volatility and bubbles, which burst with probability one.

Alternatively, if the fundamental value of the risky asset is too high or too low, the case-based

decision-makers vanish from the market with probability one.

For case-based decision-makers with relatively low aspiration levels the results are similar. They
147 In the sense that there is a greater range of parameters for which this happens.
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vanish with probability one, if the fundamental value of the asset is too high, but survive and

dominate the market with probability1, else. Moreover, incertainperiods they can even drive the

expected utility maximizers out of the market, causing the price of the risky asset to fall to0. This

effect seems to be similar to the so called ’’noise trader risk’’ discovered by De Long, Shleifer,

Summers and Waldmann (1990), although the expected utility maximizers in this model have

no rational expectations. However, the share of expected utility maximizers becomes positive

again and in the limit both types of investors coexist in the market.

Some of the results obtained for the case of risk-neutral expected utility maximizers are gener-

alized for expected utility maximizers with a utility function exhibiting constant relative risk-

aversion. It turns out that even expected utility maximizers with logarithmic utility function

do not always drive the case-based decision-makers to extinction. However, these results rely

severely on the fact that diversification is not possible for risk-averse investors.

The ability to diversify allows the expected utility maximizers with logarithmic utility function

to drive the case-based decision-makers out of the market. However, for lower degrees of risk-

aversion, there are always values of the parameters for which the case-based decision-makers

survive in a strictly positive proportion. This confirms the result established in the literature that

logarithmic expected utility maximizers with correct beliefs perform best and accumulate the

whole market wealth in the limit.

The analysis of the model, therefore, answers the two questions stated in the introduction by

identifying conditions under which case-based decision-makers survive in the presence of ex-

pected utility maximizers and discussing their inf luence on prices. However, these results apply

for the special case of one-period memory (on the side of the case-based decision-makers) and

of constant expectations (on the side of the expected utility maximizers). Further research will

have to allow for a longer memory and for Bayesian adaptation of expectations in order to ana-

lyze the issue of the efficiency of these learning rules in an evolutionary setting.

A final note has to be made on the issue of introducing expected utility maximizers with rational

expectations. It is straightforward to see that with a linear utility function and non-binding short-

sales-constraints, the expected returns of the two assets must be identical in each period of time.

Therefore, the replicator dynamic selects for the less risky strategy in each period. Hence, the

results about the instability of the stationary state e = 1 remain valid even if the expected utility
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maximizers have rational expectations with respect to the behavior of the case-based decision-

makers and to the evolutionary dynamic of the economy.
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Appendix

Proof of proposition 6.2:

In order to show the existence of an equilibrium, it is sufficient to demonstrate that the system

of equations formulated in conditions (i), (ii), (iii) and (iv) of the definition has a solution:

e¤t =
~v¤eut
~v¤t
et¡1 (6.76)

°¤eut = °eut (p¤t ) (6.77)

°¤cbt = °cbt (p¤t )

°¤eut e¤t + °¤cbt (1¡ e¤t ) = p¤t (6.78)

First note that since

pt¡1 = °eut¡1et¡1 + °cbt¡1 (1 ¡ et¡1) ,

(6.76) can be written as:

e¤t =

h
p¤t+±t
pt¡1
°eut¡1 + (1 + r)

¡
1¡ °eut¡1

¢i
et¡1

p¤t + ±t + (1 + r)
¡
1 ¡ °eut¡1et¡1 ¡ °cbt¡1 (1 ¡ et¡1)

¢ =: f (p¤t ) , (6.79)

where p¤t is determined from (6.77) and (6.78), taking et as given. It follows that f (p¤t ) depends

on et through p¤t . Moreover, f (p¤t ) is continuous in p¤t and can only take values between 0 and 1

for all possible values of et and, thus, of p¤t between 0 and 1. Therefore, it suffices to show that

f (p¤t (et)) has a fixed point in order to prove the existence of an equilibrium. Since for a given

et, multiple equilibria can emerge, it will be shown that in each possible case, equilibria can be

selected in such a way that a fixed point argument applies.

It is necessary to consider several cases depending on the values of the parameters peu and ¹u.

Let first peu ¸ 1 and let °cbt¡1 = 1. It follows that p¤t¡1 = 1. Now, if 1 + ±t ¸ ¹u holds,

then p¤t (et) = 1 for all et and is, thus, continuous in et, which guarantees the existence of an

equilibrium according to the Brouwer’s fixed point theorem, Mas-Collel, Whinston and Green

(1995, p. 952).

If 1 + ±t < ¹u, then °cbt = 0 and p¤t (et) = et, which is again a continuous function.

Now let °cbt¡1 be arbitrary. The decision of the case-based decision-makers depends on the com-

parison
p¤t + ±t
pt¡1

=
et + °cbt (1 ¡ et) + ±t

pt¡1
Q ¹u.
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Hence, for a given et, the share of case-based decision-makers holding a in a temporary equi-

librium satisfies148:

°cbt =

8
>>>>><
>>>>>:

1, if 1+±t
pt¡1
> ¹u > 1 + r

°cbt¡1, if min
n
et+°cbt¡1(1¡et)+±t

pt¡1
; 1 + r

o
> ¹u

¡
1 ¡ °cbt

¢
, if max

n
et+°cbt¡1(1¡et)+±t

pt¡1
; 1 + r

o
< ¹u

0, if
et+°cbt¡1(1¡et)+±t

pt¡1
< ¹u < 1 + r

9
>>>>>=
>>>>>;

.

It follows that for ¹u · 1 + r:

p¤t (et) =

8
<
:
et + °cbt¡1 (1¡ et), if

et+°cbt¡1(1¡et)+±t
pt¡1

¸ ¹u

et, if et+°
cb
t¡1(1¡et)+±t
pt¡1

< ¹u

9
=
; .

If ¹upt¡1¡±t > 1, then p¤t = et, which is a continuous function and therefore a fixed point exists.

If ¹upt¡1 ¡ ±t · 1, both parts of p¤t (et) matter and p¤t (et) is obviously not continuous. Nev-

ertheless, p¤t (et) is continuous but for upward jumps149 . Moreover, this property is preserved

if p¤t (et) is subjected to a monotone transformation, see Milgrom and Roberts (1994, p. 445).

Now note that since for peu ¸ 1 the choice of °eut = 1 is optimal in each period, it follows

that in each period the expected utility maximizers invest a larger share of their income into

the risky asset than the case-based decision-makers do. This implies that the share of the ex-

pected utility maximizers is increasing in the price of the risky asset pt, @f@p¤t ¸ 0. Hence, f (¢)
is a monotone transformation of p¤t . Therefore, f (¢) is also continuous but for upward jumps.

Moreover, f transfers [0; 1] into [0; 1]. Theorem 1 of Milgrom and Roberts (1994, p. 446) as-

certains that such functions have a fixed point. Therefore an equilibrium share e¤t of expected

utility maximizers exists in this case.

For ¹u > 1 + r:

p¤t (et) =

(
1, if 1+±t

pt¡1
¸ ¹u

et +
¡
1¡ °cbt¡1

¢
(1 ¡ et), if 1+±t

pt¡1
< ¹u

)
.

In both cases, p¤t (et) is continuous in et and, therefore, the Brouwer’s fixed point theorem applies

and an equilibrium exists.

Now suppose that peu 2 (0; 1), p
eu+±t
pt¡1

¸ ¹u and °cbt¡1 is arbitrary. Then the equilibrium share of

148 The points of indifference are omitted here for simplicity.
149 A function g : [0; 1] ! [0;1] is continuous but for upward jumps, if for all x0 2 [0; 1]

lim sup
x"x0

· g (x0) · lim inf
x#x0

holds, see Milgrom and Roberts (1994, p. 445).
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case-based decision-makers willing to hold a in a temporary equilibrium is given by:

°cbt =

8
<
:

°cbt¡1, if ¹u · 1 + r and pt+±tpt¡1
¸ ¹u

0, if ¹u · 1 + r and pt+±tpt¡1 < ¹u
1, if ¹u > 1 + r ,

9
=
; .

where the last line follows from the fact that

pt ¸ peu, if °cbt = 1

must hold in equilibrium. For ¹u · 1 + r the equilibrium price is therefore:

p¤t (et) =

8
><
>:

peu, if et + °cbt¡1 (1¡ et) ¸ peu
et + °cbt¡1 (1¡ et), if et + °cbt¡1 (1¡ et) < peu and et+°

cb
t¡1(1¡et)+±t
pt¡1

¸ ¹u

et,
et+°cbt¡1(1¡et)+±t

pt¡1
< ¹u

9
>=
>;

,

if peu > °cbt¡1 and

p¤t (et) =
½
°cbt¡1 (1¡ et), if °cbt¡1 (1¡ et) ¸ peu
peu, if °cbt¡1 (1¡ et) < peu

¾
,

if peu · °cbt¡1.

Note that when peu > °cbt¡1 holds,

°cbt¡1 (1¡ et¡1) < peu

must hold at (t¡ 1). Therefore, the mass of case-based decision-makers is not sufficient to drive

the equilibrium price of the risky asset to peu. It follows that at least some of the expected utility

maximizers must hold a at (t¡ 1). If

°cbt¡1 (1¡ et¡1) + et¡1 · peu,
then all of the expected utility maximizers will hold a in (t ¡ 1), hence

°eut¡1 = 1 > peu > °cbt¡1

obtains. Else, it must be that the expected utility maximizers are indifferent between a and b,

therefore:

°cbt¡1 (1¡ et¡1) + °eut¡1et¡1 = peu

must hold. But this can only be true, if

°eut¡1 > p
eu > °cbt¡1.

This argument demonstrates that the share of expected utility maximizers holding a at time

(t¡ 1) exceeds those of case-based decision-makers holding a at (t¡ 1) and, therefore, @f@p¤t ¸ 0

holds. Since p¤t (et) is continuous but for upward jumps, the fixed point argument of Milgrom

and Roberts (1994, p. 446) applies to the function f and an equilibrium e¤t exists.

For the case peu · °cbt¡1, p¤t (et) is a continuous function in et and, therefore, a fixed point
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argument applies for f and guarantees the existence of an equilibrium.

For the case ¹u > 1 + r,

p¤t (et) =
½

1 ¡ et, if 1¡ et ¸ peu
peu, if 1¡ et < peu

¾

holds. p¤t is again continuous in et so that an equilibrium exists.

Now consider the case peu 2 (0; 1), p
eu+±t
pt¡1

< ¹u and let °cbt¡1 be arbitrary. If ¹u · 1 + r, the

equilibrium price is given by:

p¤t (et) =
½
et, if et · peu
peu, if et > peu

¾
,

which is a continuous function of et and, therefore, an equilibrium exists. The same equation

describes the price in the case, in which ¹u > 1 + r, but °cbt¡1 = 1.

For ¹u > 1 + r and °cbt¡1 < 1 the equilibrium price depends on the parameters in the following

way:

1. If peu + °cbt¡1 ¡ 1 ¸ 0:

p¤t (et) =
½
et + (1¡ et)

¡
1 ¡ °cbt¡1

¢
, if et + (1¡ et)

¡
1 ¡ °cbt¡1

¢
· peu

peu, if et +
¡
1 ¡ °cbt¡1

¢
(1¡ et) > peu

¾
,

2. If peu + °cbt¡1 ¡ 1 < 0 and ¹upt¡1 ¡ ±t ¸ 1 ¡ °cbt¡1:

p¤t (et) =
½
peu, if (1¡ et)

¡
1 ¡ °cbt¡1

¢ · peu
(1¡ et)

¡
1 ¡ °cbt¡1

¢
, if (1¡ et)

¡
1 ¡ °cbt¡1

¢
> peu

¾
,

3. If peu + °cbt¡1 ¡ 1 < 0 and ¹upt¡1 ¡ ±t < 1 ¡ °cbt¡1:

p¤t (et) =

8
>><
>>:

peu, if (1¡ et)
¡
1 ¡ °cbt¡1

¢
· peu

(1¡ et)
¡
1 ¡ °cbt¡1

¢
, if (1¡ et)

¡
1 ¡ °cbt¡1

¢
> peu and (1¡°cbt¡1)(1¡et)+±t

pt¡1
· ¹u

(1¡ et), if (1¡°
cb
t¡1)(1¡et)+±t
pt¡1

> ¹u

9
>>=
>>;
:

In cases 1. and 2, p¤t (et) is continuous. Hence, a fixed point of f (¢) exists.

Consider, therefore, case 3. If

(1¡ peu) > °cbt¡1 > peu,
then °cbt¡1 > °eut¡1. In this case define a function g such that:

g (½¤t (ct)) =
½¤t(ct)+±t
pt¡1

°cbt¡1+ (1 + r)
¡
1¡ °cbt¡1

¢

½¤t (ct) + ±t + (1 + r)
¡
1¡ °cbt¡1ct ¡ °eut¡1 (1¡ ct)

¢ ,

where

½¤t (ct) = p
¤
t (1¡ ct) .
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g is, thus, the equilibrium equation for the share of case-based decision-makers. It is easily

verified that g (¢) increases in ½¤t , as long as °cbt¡1 > °eut¡1 holds. Moreover, since p¤t (et) is

continuous but for downward jumps, ½¤t (ct) is continuous but for upward jumps. Hence, an

equilibrium share c¤t exists and the equilibrium share e¤t is obtained as e¤t = 1¡ c¤t .

If °cbt¡1 < peu, then °cbt¡1 < °eut¡1. In this case, it is useful to write p¤t (et) as a correspondence in

the following way150:

p¤t (et) =

8
>>>><
>>>>:

peu, if (1 ¡ et)
¡
1¡ °cbt¡1

¢
· peu

(1¡ et)
¡
1¡ °cbt¡1

¢
, if (1 ¡ et)

¡
1¡ °cbt¡1

¢
> peu and (1¡et)+±t

pt¡1
< ¹u

©
(1 ¡ et)

¡
1 ¡ °cbt¡1

¢
; (1¡ et)

ª
, if (1¡et)+±t

pt¡1
¸ ¹u and (1¡°cbt¡1)(1¡et)+±t

pt¡1
< ¹u

(1¡ et), if (1¡°cbt¡1)(1¡et)+±t
pt¡1

¸ ¹u

9
>>>>=
>>>>;

.

This correspondence is illustrated in figure 13, where

~pt = ¹upt¡1 ¡ ±t
denotes the price at which the case-based decision-makers who have observed a are indifferent

between a and b.

The figure shows that although p¤t (et) does not satisfy the conditions of the fixed point theorem

of Kakutani, see Mas-Collel, Whinston and Green (1995, p. 953), it still has a fixed point due

to the fact that

(1 ¡ et) = ~pt for
(1¡ et) + ±t
pt¡1

= ¹u

and

(1¡ et)
¡
1¡ °cbt¡1

¢
= ~pt for

¡
1¡ °cbt¡1

¢
(1 ¡ et) + ±t
pt¡1

= ¹u

Since °cbt¡1 < °eut¡1, f (¢) is monotonically increasing in pt. The monotone transformation of the

correspondence, however, does not change the fixed point property and therefore f (¢) also has

a fixed point.¥

Proof of proposition 6.3:

(i) Let first et¡1 = 1. It follows that (1¡ et¡1) = 0. Since

e¤t =

h
p¤t (e

¤
t )+±t
pt¡1

°eut¡1 + (1 + r)
¡
1¡ °eut¡1

¢i
et¡1

p¤t (e
¤
t )+±t
pt¡1

°eut¡1et¡1 + (1 + r)
¡
1¡ °eut¡1et¡1

¢ = 1,

the claim of the proposition obtains.

150 In some of the previously considered cases p¤
t (et) is alsoa correspondence. Therefore, the functional form given

selects one equilibrium in case of multiplicity. It turns out, however, that in this last case, the whole correspondence
p¤

t (et) is necessary to guarantee the existence of a fixed point.
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Figure 13

(ii) If pt¡1 > 0 and et¡1 = 0, then e¤t =
~veut ¢0
~vt

= 0. Therefore, if it can be insured that the demand for

a of the case-based decision-makers is strictly positive over time, the mass of the expected utility

maximizers will remain 0 in every period of time. Hence, a condition is needed that insures that

°¤cbt > 0 for each t. Assume, as in the proposition that °cb0 > 0. Let (t ¡ 1) be some period in

which °cbt¡1 > 0 andnote that those case-based decision-makers who have case (a; vt (a)) in their

memory either observe a return of 1 or a return of 1+ ±
pt¡1

if the price of the asset does not change

between period (t¡ 1) and period t. In both cases, the return observed exceeds the aspiration

level ¹u < 1, guaranteeing that a proportion of at least °cbt¡1 of the case-based decision-makers

holds a at t. The rest of the case-based decision-makers have observed the case (b; (1 + r)) and

since (1 + r) > 1 > ¹u is a satisfactory return, they invest in b. Therefore, the proportion of
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case-based decision-makers holding a, as well as the price of a remain constant over the time:

°cbt = p¤t = °cb0 > 0 for each t ¸ 1.¥

Proof of proposition 6.4:

The assumption

¹u <
p¤ +minf±tg

p¤
= 1

guarantees that as long as the price of a remains constant over the time, none of the case-based

decision-makers will ever switch away from the initially chosen portfolio. Indeed, if a case-

based decision-maker remembers (b; vt (b)),

vt (b) = 1 + r > 1 > ¹u

holds and ®cbt = b. Alternatively, if a case-based decision-maker remembers (a; vt (a)), then

two possibilities occur: if ±t = ±,

vt (a) =
p¤ + ±
p¤

> 1 > ¹u;

if ±t = 0, then

vt (a) =
p¤ + 0
p¤

= 1 > ¹u.

In both cases, the alternative chosen last is satisfactory and is chosen again. Hence, °cbt = °cb0
for each t ¸ 1.

Let first peu > 1. Since short-sales are forbidden, the market price satisfies p¤ · 1 < peu in

each period, therefore in each period °eut = 1 holds. At the same time, given that the case-based

decision-makers start with °cb0 = 1, °cbt = 1 will hold in each t, as the argument above demon-

strated. This means that the equilibrium price p¤t = p¤ = 1 in each t is indeed constant over

the time. Moreover, since the case-based decision-makers and the expected utility maximizers

hold the same portfolio consisting only of risky assets, their returns are equal for each possible

dividend realization in each period of time:

~veut = ~vcbt =
p¤ + ±t
p¤

.

Therefore e¤t = e0 = e for all t. This result does not depend on the initial share e0 of the expected

utility maximizers.

Let now peu · 1. Now the short-sale constraint is not binding. Therefore, the expected utility

maximizers will choose a if p¤ < peu, b if p¤ > peu and will be indifferent at peu. If p¤ exceeded

peu, then the expected utility maximizers would hold b in each period, whereas at least some
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of the case-based decision-makers would have to hold a to guarantee that the price remains

positive. Therefore, both types of investors would hold different portfolios and would therefore

achieve different returns in general. Hence, et could not remain constant over time.

Alternatively, if p¤ < peu, then all expected utility maximizers would hold a, whereas at least

some of the case-based decision-makers would have to hold b, because else the price of a would

jump to 1. Hence, in this case et would not remain constant over time, either. The only possi-

ble stationary state occurs therefore at p¤ = peu. Note that this is the equilibrium price if the

portfolios of both types of investors satisfy:

°cbt = °eut = peu

for each t. Moreover, these portfolios are indeed optimal at the equilibrium price peu. But since

now both types of investors hold identical portfolios, their returns are equal for each dividend

realization in each period of time:

~veut = ~vcbt = peu
p¤ + ±t
p¤

+ (1¡ peu) (1 + r) .

Therefore, their shares in the population remain constant over time.¥

Proof of proposition 6.5:

As was pointed out in the main text, the average returns of the case-based decision-makers and

the expected utility maximizers are equal if both types hold a and only differ in periods in which

the case-based decision-makers hold b, whereas the expected utility maximizers hold a. In such

periods, the expected (since it depends on a random dividend payment) equilibrium share of

case-based decision-makers is given by:

E
£
c¤t j c¤t¡1

¤
= q

(1 + r) c¤t¡1
(1 + r)c¤t¡1 +

(1+±)
p¤t¡1

¡
1¡ c¤t¡1

¢ + (1¡ q) (1 + r) c¤t¡1
(1 + r) c¤t¡1 + 1

p¤t¡1

¡
1¡ c¤t¡1

¢ .

Now note that since in (t¡ 1) only the expected utility maximizers hold a,

p¤t¡1 = e
¤
t¡1 = 1¡ c¤t¡1:

Therefore, the evolution of c¤t depends on the comparison:

E
£
c¤t j c¤t¡1

¤
= q

(1 + r) c¤t¡1
(1 + r) c¤t¡1 + (1 + ±)

+ (1 ¡ q) (1 + r)c¤t¡1
(1 + r) c¤t¡1 + 1

R c¤t¡1,

which is equivalent to:

r (1 + ±) + r (1 + r) c¤t¡1 ¡ q± (1 + r) R (1 + ±) (1 + r)c¤t¡1 + (1 + r)2 c¤2t¡1

r
¡
1 + ± + (1 + r) c¤t¡1

¢
¡ (1 + r) c¤t¡1

¡
1 + ± + (1 + r) c¤t¡1

¢
¡ q± (1 + r) R 0
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¡
1 + ± + (1 + r) c¤t¡1

¢ £
r ¡ (1 + r)c¤t¡1

¤
¡ q± (1 + r) R 0. (6.80)

It is clear that for c¤t¡1 ¸ r
1+r ,

E
£
c¤t j c¤t¡1

¤
< c¤t¡1,

therefore, c¤t is a supermartingale and since e¤t + c¤t = 1 in each period, it follows that e¤t is a

submartingale if e¤t¡1 · 1
1+r . For c¤t¡1 ! 0, the l.h.s. of (6.80) becomes:

(1 + ±) r ¡ q± (1 + r) = (1 + ± ¡ peur) r ¡ peur > 0 for peu <
(1 + ±)
(1 + r)

,

since per assumption peu = q±
r and ± > r hold. If peu < (1+±)

(1+r) , the continuity of the l.h.s. of

(6.80) guarantees that

E
£
c¤t j c¤t¡1

¤
> c¤t¡1

holds in some surrounding of 0. Hence, ct is a submartingale for c¤t¡1 close to 0. It follows that

for some ~c 2
¡
0; r1+r

¢

E
£
c¤t j c¤t¡1 = ~c

¤
= ~c.

The assertion of the first part of the proposition now follows by defining ~e = 1¡ ~c.

If peu > (1+±)
(1+r) , the l.h.s. of (6.80) is negative for all c¤t¡1 2 [0; 1] and, therefore,

E
£
e¤t j e¤t¡1

¤
> e¤t¡1 for all e¤t¡1 2 [0; 1]

obtains. It follows that e¤t is a submartingale on [0; 1]. Hence, the convergence theorem for

submartingales, see theorem 35.5 in Billingsley (1995, p. 468), applies, i.e. e¤t converges almost

surely. It follows that on almost each dividend path

lim
t!1

e¤t
e¤t¡1

= lim
t!1

(1 + ±t)
1 + (1¡ e¤t) r + ±t

= 1

must hold, which is only possible, if e¤t ! 1 with probability 1.¥

Proof of proposition 6.6:

Assume that et 2
h
max

n
peu;1 ¡ peu + peur2

1¡peu
o
; 1

´
.

The proposition will be proved separately for those periods in which the case-based decision-

makers hold a and those periods in which they hold b. First note that if °cbt = 1 holds, then the

case-based decision-makers continue to hold a at time t+1, iff ±t+1 = ± so that in this case

pt+1 = pt = peu.

By assumption, the share of case-based decision-makers satisfies

c¤t = 1¡ e¤t · 1¡ peu < peu ,

since peu < 1
2 . If the price cannot rise higher than peu , the average return of the case-based
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decision-makers is, therefore:

~vcbt+1 = 1+
±
peu

,

whereas the average return of the population is given by

~vt+1 = peu+ ± + (1 + r) (1 ¡ peu) = 1 + r ¡ rpeu + ±,
as long as e¤t+1 < peu holds. Furthermore, since 1 + ±

peu > 1 + ± > ¹u, the young case-based

decision-makers invest in a as well so that °cbt+1 = 1.

Alternatively, if ±t+1 = 0, then the highest return that the case-based decision-makers can

achieve from a is 1 < ¹u, therefore the young case-based decision-makers will choose b, achiev-

ing an average return of at most 1. Since this average return is smaller than the average return

of the population, given by:

~vt+1 = peu + (1 + r) (1 ¡ peu) = 1 + r ¡ rpeu ,

the mass of the case-based decision-makers decreases, making it possible for the expected utility

maximizers to sustain the price of a at peu at time (t+ 1).

If ±t+1 = ±, then the returns and the behavior of the investors in (t+ 2) is described exactly

as in (t+ 1), except in the case, in which the share of the case-based decision-makers has risen

above peu and does not allow the expected utility maximizers to reduce the price of the risky

asset to its fundamental value. This can happen, if the initial c¤t is relatively high, so that:

c¤t+1 =

³
1 + ±

peu

´

1 + r ¡ rpeu+ ± c
¤
t > p

eu . (6.81)

It is, therefore, shown that if peu is sufficiently large, c¤t+1 < peu holds for all values of c¤t 2
(0; 1¡ peu). Indeed, rewrite (6.81) as

c¤t >
peu (1 + r ¡ rpeu + ±)

1 + ±
peu

.

To exclude the case, in which the inequality in (6.81) holds, it is necessary that:
peu (1 + r ¡ rpeu+ ±)

1 + ±
peu

> 1 ¡ peu,

or that

¡ rpeu3 + peu2 (2 + r + ±) ¡ (1¡ ±) peu¡ ± > 0. (6.82)

Note first that for ± = r
2q (peu = 1

2), the l.h.s. is negative and that for ± = r
q (peu = 1), the l.h.s.

is positive. Using now the fact that peu = q±
r , rewrite (6.82) as:

q2±2 (1 ¡ q) + ±q (2q + qr + r) ¡ r > 0
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and since the l.h.s. of this expression is a convex quadratic function, there exists a ±̂, such that

for every ± > ±̂ (6.82) is satisfied.

The expected value of the share of the case-based decision-makers at time (t+ 2), given their

share at time t, can then be written as151:

E
£
c¤t+2 j c¤t ; °cbt = 1

¤
= c¤tq

³
1 + ±

peu

´

R+ ±

"
q
1 + ±

peu

R + ±
+ (1¡ q) 1

R

#
+

+c¤t (1¡ q) 1
R

·
q
(1 + r)
R+ ±

+ (1 ¡ q) (1 + r)
R

¸
,

where R = 1+ r ¡ rpeu. Using simple algebra and the fact that peu = q±
r shows that

E
£
c¤t+2 j c¤t ; °cbt = 1

¤
> c¤t ,

if and only if

(q + r)R (R (1 + r) + ± (1¡ q)) + (1¡ q) (1 + r) (R+ ± (1¡ q)) (R+ ±) > (R+ ±)2R2

(6.83)

holds. If

peu =
q±
r

= 1,

meaning thatR = 1 and q± = r, condition (6.73) simplifies to:

(1 + ±) r (± ¡ r + qr) > 0,

which is always satisfied, since ± > r holds by assumption. On the other hand, for

peu =
q±
r

=
1
2

and, hence, R = 1+ r
2 and q± = r

2 , (6.83) is equivalent to
qr
2

+
qr2

4
+

3r3

16
¡ 1

2
¡ r ¡ ±r ¡ ±2r ¡ ±r2 > 0,

which is never satisfied, since
qr
2
<
r
2
<

1
2

qr2

4
< r2 < r

3r3

16
< r3 < r2 < ±r

hold according to the assumption that ± > r, r 2 (0; 1) and q 2 (0; 1). Therefore,

E
£
c¤t+2 j c¤t ; °cbt = 1

¤
> c¤t

151 In fact, as above, it should be taken into account that the share of the case-based decision-makers might exceed
peu in (t + 2) if the risky asset pays a high dividend. However, this will only increase the expected value of c¤

t+2.
Since the argument relies on showing that the expected value of c¤

t+2 exceeds c¤
t , neglecting this effect has no

influence on the results.
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holds for ± = r
q and since the expected value of c¤t+2 is continuous in ±, it follows that the process

c¤t , c¤t+2, c¤t+4::: is a submartingale in some surrounding of ± = r
q . At the same time,

E
£
c¤t+2 j c¤t ; °cbt = 1

¤
< c¤t

holds for ± = r
2q . By continuity of the expected value of c¤t+2, there is, therefore, a value for ±,

¹± 2
³
r
2q ;
r
q

´
such that the expected value of c¤t+2 exceeds c¤t for ± > ¹±.

Now suppose that °cbt = 0. Similar arguments as those stated above allow to write the expected

value of c¤t+2 as:

E
£
c¤t+2 j c¤t ; °cbt = 0

¤
= c¤tq

(1 + r)
R + ±

2
4q

³
1 + ±

peu

´

R + ±
+ (1¡ q) 1

R

3
5 +

+c¤t (1¡ q) (1 + r)
R

2
4q

³
1 + ±

peu

´

R + ±
+ (1¡ q) 1

R

3
5 .

Again, one should take into account that the mass of the case-based decision-makers could in-

crease above peu in period (t+ 1), when the dividend of the risky asset is low. However, this

would require that:
(1 + r)

1 + r ¡ rpeuc
¤
t > peu,

or, equivalently

e¤t < 1¡ peu+ rp
eu2

1 + r
,

which is excluded by the assumptions made.

Using simple algebra and the fact that peu = q±
r shows that

E
£
c¤t+2 j c¤t ; °cbt = 0

¤
> c¤t

holds if

(1 + r) [R (1 + r) + ± (1¡ q)] [R+ ± (1 ¡ q)] > (R+ ±)2R2 (6.84)

is satisfied. Note that for peu = 1, condition (6.84) is equivalent to

(1 + r) (1 + ± ¡ r) > 0,

which is always satisfied. For peu = 1
2, (6.84) becomes

3r2

8
+
r
4
+
r2±
2

+
r±
2

+
±
2
> 0,

which is obviously satisfied for all positive values of r and ±. Since the expected value of c¤t+2 is
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continuous in ±, it follows that there is a ·± 2
h
r
2q ;
r
q

´
such that

E
£
c¤t+2 j c¤t ; °cbt = 0

¤
> c¤t

for all ± > ·±. Now choose the maximal of the three values ±̂, ·±, ¹± and denote it by ~±. Let

~peu = q~±
r . It follows that ~peu 2

¡1
2 ; 1

¢
and that

E
£
c¤t+2 j c¤t

¤
> c¤t ,

for peu > ~peu and

et 2
·
max

½
peu; 1¡ peu + peur2

1 ¡ peu
¾
; 1

¶
.

Since c¤t+2 and e¤t+2 sum to 1, it follows that

E
£
e¤t+2 j e¤t ; °cbt = 0

¤
< e¤t

E
£
et+2 j e¤t ; °cbt = 1

¤
< e¤t ,

if peu > ~peu and

et 2
·
max

½
peu; 1 ¡ peu+ peur2

1¡ peu
¾
; 1

¶

are fulfilled simultaneously.¥

Proof of proposition 6.7:

In lemma 19 in Sciubba (1999, p. 40), it is demonstrated that a supermartingale bounded be-

tween [0; 1] and starting below 1 cannot converge to its upper boundary with probability 1. The

following argument follows closely the proof of proposition 17 in Sciubba (1999, pp. 40-41).

Suppose that e¤t converges to 1 with strictly positive probability and denote the event on which

this happens by £. Now consider e¤t on the event £ and suppose that on £ Prfe¤t ! 1g = 1.

Denote by £0 µ £1 µ :::£t µ :::£ the natural filtration of £. Since Prf£g > 0, and since the

process of the dividends is i.i.d., the Law of Large Numbers applies and the distribution of divi-

dends on £ coincides with the distribution of the dividends on ©, the set of all possible dividend

paths. Especially, Prf±t = ± j £t¡1g = Prf±t = ±g = q. Therefore, the process e¤t on £ can be

described in exactly the same way, as the process e¤t on © and, therefore, e¤t is a supermartingale

on £. But, according to Lemma 19 in Sciubba (1999, p. 40),

Prfe¤t ! 1 j £g 6= 1,

since e¤t is a supermartingale bounded above by 1. Therefore, there is no event with positive

probability on which e¤t ! 1 occurs almost surely. Hence,

Prfe¤t ! 1g = 0
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and the case-based decision-makers survive with probability 1.¥

Proof of proposition 6.8:

Since peu ¸ 1 holds, the expected utility maximizers hold a in each period of time. The case-

based decision-makers always choose b, since their aspiration level is between 1 and (1 + r).

Therefore, the price of a is given by

p¤t = e¤t = 1¡ c¤t
for each t. The return of the case-based decision-makers is (1 + r) in each period, whereas the

average return of the population is given by

~vt = e¤t + ±t + (1¡ e¤t ) (1 + r) = 1 + ±t + c¤t r.

Hence, E
£
c¤t+1 j c¤t

¤
can be written as:

E
£
c¤t+1 j c¤t

¤
=

·
q

(1 + r)
1 + c¤tr + ±

+ (1¡ q) (1 + r)1 + c¤tr

¸
c¤t T c¤t

This simplifies to:

(1¡ c¤t) r (1 + c¤tr + ±) ¡ q (1 + r)± T 0. (6.85)

For ct ! 0 the left hand side becomes:

r (1 + ±) ¡ q (1 + r) ± > 0 for peu < 1 + ±
1 + r

.

For c¤t = 1, the l.h.s. of (6.85) is negative. Since the l.h.s. of (6.85) is a quadratic function

with a negative coefficient in front of c¤2t , it follows that for peu < 1+±
1+r , there exists a unique

ĉ 2 (0; 1), for which the left hand side of (6.85) is 0. For c¤t > ĉ, c¤t is a supermartingale and

vice versa. Now denote by ê = 1¡ ĉ the share of expected utility maximizers corresponding to

the share ĉ of case-based decision-makers. It follows that e¤t is a supermartingale for e¤t > ê and

a submartingale for e¤t < ê.

If peu ¸ 1+±
1+r , then c¤t is a supermartingale on the whole interval [0; 1]. Therefore e¤t is a sub-

martingale on [0; 1]. Hence, the convergence theorem for martingales applies, i.e. e¤t converges

almost surely. It follows that on almost each dividend path

lim
t!1

e¤t
e¤t¡1

= lim
t!1

(e¤t+±t)
e¤t+±t+(1+r)(1¡e¤t¡1)

(e¤t¡1+±t¡1)
e¤t¡1+±t¡1+(1+r)(1¡e¤t¡2)

= 1.

must hold. For e¤t = e¤t¡1 = e¤t¡2, this implies:

lim
t!1

(e¤t + ±t)
e¤t + ±t + (1 + r) (1¡ e¤t )

= lim
t!1

(e¤t + ±t¡1)
e¤t + ±t¡1 + (1 + r) (1 ¡ e¤t)

.

Note, however that since ±t is a stochastic process, this equality can only hold if the average
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return of the expected utility maximizers coincides with the average return of the society in each

period of time, hence if e¤t ! 1 with probability 1.¥

Proof of proposition 6.9:

Rewrite conditions (6.80) and (6.85) as:

¡ (1 + r)2 c¤2t ¡ (1 + r) c¤t (1 + ± ¡ r) + (1 + ±)r ¡ q± (1 + r)
and

¡r2c¤2t ¡ (1 + r) c¤t (1 + ± ¡ r) + (1 + ±) r ¡ q± (1 + r) ,

respectively. One easily sees that

¡ (1 + r)2 c¤2t ¡ (1 + r) c¤t (1 + ± ¡ r) + (1 + ±) r ¡ q± (1 + r)

· ¡r2c¤2t ¡ (1 + r) c¤t (1 + ± ¡ r) + (1 + ±) r ¡ q± (1 + r)
always holds. Hence, the sole positive root of (6.80) ~c is always smaller than the sole positive

root of (6.85), ĉ. Since ~e = 1¡ ~c and ê = 1¡ ĉ, it follows that ~e > ê.¥

Proof of proposition 6.10:

Since e¤t ¸ max
n
peu; 1 ¡ peu + rpeu

2

(1+r)

o
, the mass of expected utility maximizers is sufficiently

large to support the price of a at peu in periods t+ 1 and t+2. Since the aspiration level of the

case-based decision-makers satisfies ¹u 2 (1; 1 + r), they hold b in each period of time. Their

average return is, therefore,

~vcbt = (1 + r) ,

whereas the average return of the population is

~vt = 1 + ±t + r ¡ rpeu.
Hence, E

£
c¤t+1 j c¤t

¤
can be written as:

E
£
c¤t+1 j c¤t

¤
=

·
q

(1 + r)
1 + r ¡ rpeu + ± + (1¡ q) (1 + r)

1 + r ¡ rpeu
¸
c¤t T c¤t

This easily simplifies to:

¡q (1 + r) ± T ¡rpeu (1 + r ¡ rpeu + ±)
and by using the fact that peu = q±

r , one obtains that c¤t is a submartingale if

q±2 (1 ¡ q) > 0,

which is always satisfied for q and± 2 (0; 1)152 . Since c¤t is a submartingale and since e¤t = 1¡c¤t ,

152 For q± = 0 both the case-based decision makers and the expected utility maximizers hold only asset b and
achieve identical returns in each period of time. The mass of the case-based decision makers, thus, remains constant.
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it follows that e¤t is a supermartingale on"
max

(
peu; 1¡ peu + rpeu2

(1 + r)

)
; 1

#
.¥

Proof of lemma 6.1:

Rewrite (6.72) as:

c¤2t+1 + c¤t+1 (± + (1 + r) (1 ¡ c¤t )¡ 1) ¡ ± = 0. (6.86)

For c¤t+1 = 1 the l.h.s. becomes:

(1 + r) (1¡ c¤t) > 0:

For c¤t+1 = 0 the l.h.s. is

¡± < 0.

Since the l.h.s. of (6.86) is a convex quadratic function, it follows that it has exactly one root

between 0 and 1.

To prove the second part of the assertion, compute the l.h.s. of (6.86) for c¤t+1 = c¤t :

(c¤t ¡ 1) (± ¡ c¤t r) ,

which is always negative, since c¤t < 1 and

± > r ¸ c¤tr
hold by assumption. Therefore, c¤t < c¤t+1 obtains.¥

Proof of proposition 6.11:

As was demonstrated in the proof of propositions 6.5, the condition for the existence of ~e (¯),

as defined in the proposition, is that for peu ¸ 1,

(1 + ±) r ¡ q± (1 + r) > 0

holds. The condition q 2
h
(1+r)¯¡1
(1+±)¯¡1;

(1+±)r
(1+r)±

´
is, therefore, equivalent to

peu (¯) ¸ 1

and

(1 + ±) r ¡ q± (1 + r) > 0

for ¯ 2 (0; 1], whereas the condition q 2
h
ln(1+r)
ln(1+±) ;

(1+±)r
(1+r)±

´
is equivalent to

peu (0) ¸ 1

and

(1 + ±) r ¡ q± (1 + r) > 0.
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Hence, these conditions indeed insure the existence of ~e (¯).

If, on the other hand, q ¸ (1+±)r
(1+r)±, the argument in the proof of proposition6.5 can be used to show

that e¤t is a submartingale on the whole interval [0; 1] and that the case-based decision-makers

disappear with probability 1 in the limit.

It still remains to be shown that
h
(1+r)¯¡1
(1+±)¯¡1;

(1+±)r
(1+r)±

´
makes sense for each ¯ 2 [0; 1], i.e. that

(1 + ±) r
(1 + r) ±

>
(1 + r)¯ ¡ 1
(1 + ±)¯ ¡ 1

, (6.87)

for ¯ 2 (0; 1] and
(1 + ±) r
(1 + r) ±

>
ln (1 + r)
ln (1 + ±)

(6.88)

hold.

Consider first (6.87) and rewrite it as:

(1 + ±)
h
(1 + ±)¯ ¡ 1

i

±
>

(1 + r)
h
(1 + r)¯ ¡ 1

i

r
.

Since r < ±, (6.87) can be proved by showing that the function

h¯ (x) =
(1 + x)

h
(1 + x)¯ ¡ 1

i

x
is increasing in x for all ¯ 2 (0; 1]. Differentiate with respect to x to obtain:

h0¯ (x) =
1¡ (1 ¡ ¯x) (1 + x)¯

x2
.

Note that h01 (x) = 1 > 0 for all x and that

lim
¯!0
h0¯ (x) = 0 for all x.

Differentiating h0¯ (x) with respect to ¯ one obtains:
@h0¯ (x)
@¯

= [x ¡ (1¡ ¯x) ln (1 + x)] (1 + x)¯
x2

.

@h0¯ (x)
@¯ > 0 is equivalent to

¯ > ln (1 + x) ¡ x
x ln (1 + x)

.

But ln(1+x)¡x
x ln(1+x) · 0 for each x 2 (0; 1) and hence,

@h0¯(x)
@¯ > 0 holds for all x 2 (0; 1) and all

¯ 2 (0; 1]. Therefore, h0¯ (x) > 0 for all ¯ 2 (0; 1], implying that h¯ (x) is strictly increasing in

x for all ¯ 2 (0; 1].

For (6.88) it is enough to show that
(1 + r) ln (1 + r)

r
<

(1 + ±) ln (1 + ±)
±
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holds, or that the function

h0 (x) =
(1 + x) ln (1 + x)

x
is increasing in x for x 2 [0; 1]. Since

h00 (x) =
x¡ ln (1 + x)

x2
¸ 0

is satisfied for all x 2 [0; 1], h0 (x) is indeed increasing in x and the claim holds.¥

Proof of proposition 6.12:

As proposition 6.8 shows, the condition which is necessary for the survival of the case-based

decision-makers is peu ¸ 1 and

r (1 + ±)¡ q (1 + r) ± > 0,

or

q <
(1 + ±)
(1 + r)±

. (6.89)

As in the proof of proposition 6.11,

q ¸ (1 + r)¯ ¡ 1
(1 + ±)¯ ¡ 1

,

and

q ¸ ln (1 + r)
ln (1 + ±)

ref lect the fact that the price peu (¯) ¸ 1. But in proposition 6.11, it has been shown that these

conditions for q make sense. Hence, the result obtains.¥

Proof of lemma 6.2:

Denote by ½1 = pt+1 + ± and by ½2 = pt+1. Therefore, °eut (pt) can be written as

°eut (pt) =
(1 + r) (q½1 + (1¡ q)½2 ¡ pt (1 + r)) pt

(½1 ¡ pt (1 + r)) (pt (1 + r) ¡ ½2)
.

Now differentiate with respect to pt to obtain:
@°eut (pt)
@pt

= (1 + r)
[q½1 + (1 ¡ q) ½2 ¡ 2pt (1 + r)] (½1 ¡ pt (1 + r)) (pt (1 + r)¡ ½2)

(½1 ¡ pt (1 + r))2 (pt (1 + r) ¡ ½2)2

+ (1 + r)
[2pt (1 + r)¡ ½1 ¡ ½2] (1 + r) (q½1 + (1¡ q)½2 ¡ pt (1 + r)) pt

(½1 ¡ pt (1 + r))2 (pt (1 + r)¡ ½2)2
.

Simple algebra shows that the sign of the derivative is determined by the sign of the polynomial:

¡ (1 + r)2 p2t ((1 ¡ q) ½1 + q½2) + 2pt½1½2 (1 + r)¡ ½1½2 (q½1 + (1¡ q)½2) , (6.90)
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which is quadratic in pt. The discriminant of (6.90) can be computed to be:
D
4

= ¡ (1 + r)2 ½1½2q (1 ¡ q) (½1 ¡ ½2)2 < 0,

and since the coefficient in front of p2t is less than 0, it follows that (6.90) is always negative.

Hence, @°
eu
t (pt)
@pt

< 0 follows.¥

Proof of corollary 6.2:

Since °eut (pt) is continuous and decreasing in pt and since it maps the interval [0; 1] of possible

prices pt into [0; 1] it follows that it has exactly one fixed point. But the fixed point °eut (pt) = pt

is exactly the equilibrium condition for the market in which only expected utility maximizers

are present.¥

Proof of proposition 6.13:

The conditions for an equilibrium under rational expectations can be combined to obtain:
(1 + r)

¡
peulog + q± ¡ peulog (1 + r)

¢
peulog¡

peulog + ± ¡ peulog (1 + r)
¢ ¡
peulog (1 + r) ¡ peulog

¢ = peulog,

where the l.h.s. represents the value of demand for the risky asset, °eut (pt), the r.h.s. represents

the value of supply and peulog denotes the price under rational expectations. Simplifying, one

obtains the following quadratic equation for peulog:

¡r2peu2log + (1 + r + ±) rpeulog ¡ (1 + r)q± = 0.

For q > 0, the discriminant of this equation is strictly positive:

D = (1 + r + ±)2 r2 ¡ 4r2 (1 + r) q± =

= r2
¡
1 + r2 + ±2 +2r + 2± + 2±r ¡ 4q± ¡ 4rq±

¢
>

> r2
¡
1 + r2 + ±2 +2r + 2± + 2±r ¡ 4± ¡ 4r±

¢
=

= r2 (1 + r ¡ ±)2 > 0

and, therefore, the equation has two roots:

peulog;1 =
1+ r + ± +

q
(1 + r + ±)2 ¡ 4q± (1 + r)

2r
and

peulog;2 =
1+ r + ± ¡

q
(1 + r + ±)2 ¡ 4q± (1 + r)

2r
,

both of which are easily seen to be positive. Consider first peulog;1.

peulog;1 > 1
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is equivalent to

1 + r + ± +
q

(1 + r + ±)2 ¡ 4q± (1 + r) > 2r, or

1¡ r + ± +
q

(1 + r + ±)2 ¡ 4q± (1 + r) > 0,

which is always fulfilled. Therefore peulog;1 > 1 is satisfied for all values of the parameters. Note,

however that an equilibrium price equal to 1 can only obtain, if

peulog <
peulog

¡
peulog + ±

¢

(1 + r)
¡
peulog + ± (1¡ q)

¢ (6.91)

is satisfied in order to insure that the unconstrained value of demand at peulog exceeds 1. However,

it is easy to see that peulog;1 does not satisfy this condition. Indeed (6.91) can be written as:

peulog;1 <
± (q ¡ r)
r

,

which is equivalent to

1 + r + ± +
q

(1 + r + ±)2 ¡ 4q± (1 + r) ¡ 2± (q ¡ r) < 0.

Since however 1 + ± > 2±q holds, this cannot be fulfilled for any values of the parameters.

Therefore, peulog;1 is not an equilibrium price of the economy without short sale constraints.

It turns out that peulog;2 satisfies condition (6.91). Indeed, for peulog;2 it becomes:

1 + r + ± ¡ 2± (q ¡ r) <
q

(1 + r + ±)2 ¡ 4q± (1 + r),

which simplifies to:

¡±q (1 ¡ q) ¡ r (1 + r) ¡ ±r (1¡ r) ¡ 2±rq < 0,

which is obviously true for all values of ±, q and r.

On the other hand, peulog;2 ¸ 1 is equivalent to:

1 + r + ± ¡
q

(1 + r + ±)2 ¡ 4q± (1 + r) ¸ 2r, or

1¡ r + ± ¸
q

(1 + r + ±)2 ¡ 4q± (1 + r),

which (since both sides are positive) is equivalent to:

(1¡ r + ±)2 ¸ (1 + r + ±)2 ¡ 4q± (1 + r)

q ¸ r (1 + ±)
± (1 + r)

.¥
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Proof of corollary 6.3:

Since q ¸ r(1+±)
±(1+r) , it follows that peulog;2 ¸ 1. Observe first that

pt+1 (pt+1 + ±)
(1 + r) (pt+1 + (1 ¡ q) ±) (6.92)

is increasing in pt+1 and in q. Since now the next period price expected by the expected utility

maximizers satisfies pt+1 ¸ 1, (6.92) becomes:
pt+1 (pt+1+ ±)

(1 + r) (pt+1+ (1 ¡ q) ±) ¸ (1 + ±)
(1 + r) (1 + (1¡ q)±) ¸

¸ (1 + ±)

(1 + r)
³
1 +

³
1¡ r(1+±)

±(1+r)

´
±
´ ¸

¸ 1.¥

Proof of proposition 6.14:

Since peulog ¸ 1, it follows that q ¸ r(1+±)
±(1+r) and therefore, according to corollary 6.3, the critical

price (6.92) exceeds 1. Therefore, the expected utility maximizers wish to invest their whole

initial endowment in asset a in each period of time independently of its price pt. Hence, the

condition for the survival of the case-based decision-makers is identical to those in propositions

6.5 and 6.8, namely q < r(1+±)
±(1+r) . Since now q ¸ r(1+±)

±(1+r) , only part 2 of each of propositions 6.5

and 6.8 applies and e¤t is a submartingale on [0; 1]. Therefore, the case-based decision-makers

disappear with probability 1.¥

Proof of lemma 6.3:

Let peu¯ denote the price under rational expectations for ¯ 2 (0; 1]. Since I am interested in com-

parative statics with respect to ¯, it is useful to write the maximization problem of an expected

utility maximizer, who expects the price tomorrow to be pt+1 = p, if the price today is also equal

to p:

max
°eut 2[0;1]

q
·µ

1 + ±
p

¶
°eut + (1 + r) (1¡ °eut )

¸¯
+ (1¡ q) [°eut + (1 + r) (1¡ °teu)]¯

and observe that the first order condition simplifies to:

°eut (p) =

(1 + r)

"µ
(1¡q)r
q( ±p¡r)

¶ 1
¯¡1

¡ 1

#

±
p + r

"µ
(1¡q)r
q( ±p¡r)

¶ 1
¯¡1

¡ 1

# , (6.93)

which describes the optimal °eut , as long as the term on the r.h.s. of (6.93) is between [0; 1]. If
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the r.h.s. of (6.93) exceeds 1 or lies below 0, °eut takes the values 0 and 1, respectively153:

°eut (p) =

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

0, if
(1+r)

2
4
Ã

(1¡q)r
q( ±p¡r)

! 1
¯¡1

¡1
3
5

±
p+r

2
4
Ã

(1¡q)r
q( ±p¡r)

! 1
¯¡1

¡1
3
5
< 0

(1+r)

2
4
Ã

(1¡q)r
q(±p¡r)

! 1
¯¡1

¡1
3
5

±
p+r

2
4
Ã

(1¡q)r
q(±p¡r)

! 1
¯¡1

¡1
3
5

, if
(1+r)

2
4
Ã

(1¡q)r
q( ±p¡r)

! 1
¯¡1

¡1
3
5

±
p+r

2
4
Ã

(1¡q)r
q( ±p¡r)

! 1
¯¡1

¡1
3
5

2 [0; 1]

1, if
(1+r)

2
4
Ã

(1¡q)r
q( ±p¡r)

! 1
¯¡1

¡1
3
5

±
p+r

2
4
Ã

(1¡q)r
q( ±p¡r)

! 1
¯¡1

¡1
3
5
> 0

9
>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

.

Note as well that at the interior solution, °eut 2 [0; 1] implies
0
@ (1 ¡ q) r
q
³
±
p ¡ r

´

1
A

1
¯¡1

¡ 1 ¸ 0,

or equivalently: 0
@ (1¡ q) r
q
³
±
p ¡ r

´

1
A · 1,

since 1
¯¡1 < 0. Since peu¯ is the price under rational expectations, °eut

¡
peu¯

¢
= peu¯ must hold.

The first derivative of the r.h.s. of (6.93) with respect to ¯ is negative. To see this, denote
0
@ (1¡ q)r
q
³
±
p ¡ r

´

1
A

1
¯¡1

=: z

and differentiate °eut w.r. to z:
@°eut
@z

=
(1 + r) ±p³

±
p + r (1 ¡ z)

´2 > 0.

But z itself is increasing in ¯, since

@z
@¯

= ¡ 1
(¯ ¡ 1)2

2
4 r (1¡ q)
q

³
±
p ¡ r

´

3
5

1
¯¡1

ln
r (1 ¡ q)
q
³
±
p ¡ r

´

and
r (1 ¡ q)
q
³
±
p ¡ r

´ · 1.

Hence, @°
eu
t
@¯ · 0 holds. This means that for ¯ > ¯0, °eu¯;t (p) · °eu¯0;t (p) for every p.

153 For the interior solutions, the no-arbitrage conditions are satisfied. For the corner solutions, the short sale
constraints prevent arbitrage even if the no-arbitrage conditions fail.
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Moreover, @°
eu
t
@p · 0, since

@z
@p

=
1
¯ ¡ 1

0
@ (1 ¡ q) r
q

³
±
p ¡ r

´

1
A

2¡¯
¯¡1

(1¡ q) r±
qp2

³
±
p ¡ r

´2 < 0

and @°
eu
t
@z > 0. Combining these two results means that for each ¯ °eut is a falling function in the

price, whereas keeping the price constant, °eut decreases in ¯. Hence,
@peu¯
@¯ · 0 must hold, as

the figure 14 schematically illustrates.¥

6

peu¯
-

°eut

p

peu0̄

peu¯00

¡
¡¡µ¯ increases

¯ > ¯ 0 > ¯ 00

Figure 14

Proof of proposition 6.15:

Consider first the case of peu¯ = 1 and note that the value of q, for which °eut = peu¯ = 1 is still

an interior solution of (6.93) is given by:

(1 + r)
·³

(1¡q)r
q(±¡r)

´ 1
¯¡1 ¡ 1

¸

± + r
·³

(1¡q)r
q(±¡r)

´ 1
¯¡1 ¡ 1

¸ = 1,

which simplifies to

q =
r

r + (± ¡ r) (1 + ±)¯¡1
. (6.94)
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From @°eut
@z > 0 and

@z
@q

=
1
¯ ¡ 1

0
@ (1 ¡ q) r
q
³
±
p ¡ r

´

1
A

2¡¯
¯¡1 ¡r

³
±
p ¡ r

´

q2
³
±
p ¡ r

´2 > 0,

it follows that @°
eu
t
@q > 0 and since °eut falls in price, it follows that the equilibrium price is

increasing in the probability of high dividend q. Therefore, for values of q higher than (6.94)

the price under rational expectations (for a given ¯) is equal to 1, see figure 15.

6

-

peu¯ ; q 0; q00

°eut

p

peu¯ ; q ¡
¡¡µq increases

q00 > q0 > q

Figure 15

Hence, for all current values of pt · 1, the expected utility maximizers, who believe that pt+1 =

1, invest their whole initial endowment into the risky asset. Therefore, the interval of values

q 2
"

r
r + (± ¡ r) (1 + ±)¯¡1

;
(1 + ±)r
(1 + r) ±

!

corresponds to the case, in which the expected utility maximizers invest their whole initial en-

dowment into a, independently of its price pt and the case-based decision-makers survive, ac-

cording to propositions 6.8 and 6.5. It remains to show that this conditions can be fulfilled

simultaneously. Indeed,
r

r + (± ¡ r) (1 + ±)¯¡1
< (1 + ±)r

(1 + r)±
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is equivalent to

(± ¡ r)
h
(1 + ±)¯ ¡ 1

i
> 0,

which is always satisfied for ¯ > 0. Note that the logarithmic utility function represents the

limit case, ¯ = 0, in which the equality holds.¥
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Chapter 7. Conclusion

In this chapter, I summarize the main findings of the thesis and give an outlook for future re-

search.

7.1 Main Results

The thesis has analyzed the behavior of case-based investors in financial markets. The dynamics

of portfolio holdings have been derived and discussed in the context of an individual portfolio

choice problem, as well as in a market environment with endogenous prices. The price process

in an economy populated by case-based decision-makers has been studied. Last, the fitness of

case-based decisions has been addressed and conditions for survival of case-based investors in

a market with expected utility maximizers provided.

7.1.1 Portfolio Choice with Case-Based Decisions

The analysis of the individual portfolio choice problem shows that a case-based investor with

endogenous memory can learn to choose an optimal portfolio if he adapts his aspirations in

the ’’realistic-ambitious’’ manner, as proposed by Gilboa and Schmeidler (1996). However, in

general, investors using case-based reasoning make suboptimal decisions in the limit. Low

aspiration levels lead to satisficing behavior and imply that an investor may hold a suboptimal

or an underdiversified portfolio, or fail to use arbitrage possibilities. Relatively high aspiration

levels, on the other hand, cause frequent trades and constant switching among the available

portfolio in the limit. Investors with high aspiration levels exhibit similar behavior to those of

’’overconfident’’ traders described by Odean (1999), since they expect to achieve unrealistically

high returns. These results are robust with respect to an adaptation rule, according to which the

aspirations are set equal to the lowest or to the highest utility realization achieved, or to a linear

combination of both.

Hypothetical reasoning helps the investor to choose the optimal portfolio in the limit, if he ac-

quires information about the returns of all portfolios available in each period of time. Analogous

results are obtained if the information is acquired for a finite number of periods, but the aspi-



ration level of the decision-maker is relatively low. Investors with high aspiration levels fail to

behave optimally even if the number of periods during which information is acquired is large,

as long as it is finite.

The introduction of similarity considerations into a portfolio choice problem does not change

these results qualitatively. If the similarity function is concave, it can be shown that investors

with relatively high aspiration levels will not only trade too frequently, but also hold undiversi-

fied portfolios in the limit.

With similarity considerations, the ’’realistic-ambitious’’ adaptation rule of Gilboa and Schmei-

dler (1996), however, does not lead to optimal choice in the limit in general. If the similarity

function is concave, the decision-maker learns to choose the best undiversified portfolio in the

limit. Introducing convexities into the similarity function, improves the quality of learning. By

allowing the investor to better differentiate between acts, the limit choice can become arbitrary

close to the expected utility maximizing act.

7.1.2 Asset Prices in an Economy with Case-Based Decision-Makers

In order to study the price dynamic, a notion of equilibrium for an overlapping generations

model with case-based decision-makers is defined and studied. The existence of equilibrium in

an economy populated with case-based investors is proved under quite general conditions. It is

shown that degenerate equilibria with 0-asset prices are a typical feature of such markets. Con-

ditions excluding such degenerate equilibria are identified, but it is questionable whether these

conditions are economically meaningful. Therefore, conditions which guarantee the existence

of at least one non-degenerate equilibrium are stated and consequently used in the analysis.

The equilibrium constructed is subsequently used to analyze the price dynamic in an economy

populated only by case-based investors. In a model in which diversification is not allowed and

the memory of the investors is short, it is found that asset prices and portfolio holdings remain

constant over time if the aspiration levels in the economy are relatively low. Nevertheless, asset

prices and portfolio holdings in a stationary state need not coincide with those predicted by

expected utility maximization under rational expectations.

The presence of investors with high aspiration levels in the economy leads to cycles which can
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be stochastic or deterministic. These investors switch constantly among the available portfolios

and cause excessive price volatility andpredictability of returns. They buy at high prices and sell

at low prices, thus lowering their expected returns. In contrast, investors with low aspirations do

not change their portfolios over time, but might end up holding a suboptimal portfolio or even

ignoring arbitrage possibilities present in the market. If their mass in the economy is relatively

large, effects such as the equity premium puzzles might be observed even in an economy with

risk-neutral investors.

Allowing the investors to remember all past cases experienced by his predecessors with the same

aspiration level does not necessarily lead to optimal behavior. Only if the aspiration level is

appropriately chosen, does an investor learn to choose the optimal portfolio (at the equilibrium

price) in the limit. Excessively high aspirations again lead to frequent trading and excessive

volatility.

In contrast to the individual portfolio choice problem, introducing hypothetical reasoning in a

market environment does not lead to optimal decisions even if the returns of all available port-

folios are observed in each period of time. Moreover, it is shown that the usage of hypothetical

cases might even deteriorate limit choices compared to a situation in which the memory of the

investors is completely endogenous.

Allowing for diversification and introducing a similarity function on the set of problem-act /

price-portfolio pairs does not change the results significantly. In this case, investors with high

aspiration levels can cause a bubble on an asset to emerge. The bubble may arise, even if the

underlying asset has a 0 fundamental value. The bubble bursts in finite time with probability

1 and never reappears again. Moreover, as long as the similarity function is concave, the no-

diversification result, derived in the context of individual portfolio choice also holds in a market

environment. Especially, investors with high aspirations hold a diversified portfolio only for a

finite number of periods. Afterwards, they either choose one of the corner portfolios forever or

switch constantly among the undiversified portfolio available.

7.1.3 Fitness of Case-Based Decisions

The last chapter of the thesis analyzes the issueof survival of case-based investors in the presence

of expected utility maximizers in the market. A replicator dynamic selecting for the type of
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investors with higher average returns is introduced. It is shown that case-based investors can

coexist with expected utility maximizers by imitating them. The resulting equilibrium replicates

the equilibrium under rational expectations.

Case-based investors can also survive in strictly positive proportion even if their strategy differs

from the one of the expected utility maximizers. Especially, if the portfolio held by the case-

based decision-makers is less risky than the one of the expected utility maximizers, then both

types of investors coexist in the market in strictly positive proportions almost surely in the limit.

Moreover, if the share of case-based decision-makers is sufficiently large and their aspiration

level relatively high, they can influence market prices by causing bubbles, excessive volatility

and predictability of returns. Case-based investors with relatively low aspiration levels can drive

the expected utility maximizers out of the market for a finite number of periods and cause an

asset with positive fundamental value to be traded at a 0-price in the market.

The conditions for survival of the case-based investors, derived for a linear utility function, are

further generalized for the case of constant relative risk-aversion. It is found that only expected

utility maximizers with a logarithmic utility function are able to drive the case-based investors

out of the market for all parameter values. For all coefficients of relative risk-aversion lower than

1, parameter values are identified for which the wealth share of the case-based decision-makers

remains positive almost surely in the limit.

7.2 Outlook

This thesis is only a first attempt to examine the behavior of case-based decision-makers in a

market environment and their inf luence on prices and asset returns. It shows that case-based

reasoning is not always inferior to expected utility maximization and that it might help explain

observed phenomena in real and experimental markets. Nevertheless, more research has to be

done and further questions have to be answered, before the meaning of case-based reasoning in

financial markets is fully understood.

In the course of the discussion, I have assumed that case-based investors act on their own ac-

count, deciding directly which portfolio to choose. However, given the small amount of in-

formation they possess, it seems much more natural to assume that case-based decision-makers
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rely on institutional investors to invest their wealth. Hence, instead of choosing an asset directly,

they would choose a broker, whose investment rule is in general unknown. Thus, the situation is

clearly one of structural ignorance. Hypothetical reasoning is impossible in this case and the ap-

plication of case-based decision theory to evaluate the performance of a broker already chosen

seems quite natural.

Such a model, however, might be very complex, since it has to capture the interaction of differ-

ent brokers, i.e. different investment rules in an asset market, whereas the wealth available to

a broker is determined by his past performance and the aspiration levels of the small investors.

Nevertheless, it might provide interesting results about the investment rules which survive ac-

cording to such ’’case-based selection’’, as well as about the dynamics of asset prices in a more

realistic model.

Up to now, no interaction between case-based investors (or consumers) and the supply side has

been modelled in the literature. Of course, this interaction can be neglected in a competitive

market, such as the one discussed in this thesis. In an oligopolistic market, however, this in-

teraction gains importance, especially, since it has been shown that case-based decision-makers

might leave profit opportunities unused.

A monopolist who knows that his consumers behave according to the case-based decision theory

might try to inf luence their choices, by creating cases in which the utility realizations exceed

the aspiration level (e.g. through advertising) and, thus, might be able to sell at higher prices

extracting a greater proportion of the consumer rent154.

In a further step, the interaction between oligopolists in a market with case-based consumers

should be analyzed. If the goods produced are similar, then each producer will have to take into

account that a positive experience with his own product positively influences the evaluation of

the rival product as well. Therefore, prices have to be strategically set and publicity planned, so

as to maximize profits.

Although the proposed direction for further research can also find application in the context of

financial markets, in which the market-maker has a monopolistic position or brokers engage

154 There is still little literature discussing how a monopolist can increase his profits in the presence of boundedly
rational consumers. Sarafidis (2004) provides an analysis for the case of time-incosistent consumers and shows
that the monopolist does not necessarily profits from the bias of the consumers and might be even interested in
eliminating it.
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in an oligopolistic competition, the results would easily generalize to different economic con-

texts, such as competition in consumption good markets, in which publicity and perceptions of

similarity play an important role.

Last, but not least, few words have to be said about the role that case-based reasoning could play

in the economic theory. In the introduction, I have argued that the case-based reasoning models

learning by induction. The economic literature has proposed few models which capture this type

of learning, the most prominent of which is the evolutionary approach used in game theory. The

advantage of this approach consists in the fact that the individual using it need not have any prior

notion about the quality of the different alternatives. Instead, the past performance is used to

determine those alternatives which survive in the selection process. Of course, both approaches

use different selection methods, therefore a comparison of the results obtained in these two ways

would help to understand the driving forces of evolution in economic environment.

The common feature of both approaches consists in the fact that they can be used for selecting

among ’’meta’’-strategies and ’’meta’’-rules, without the necessity of constraining the possible

outcomes in advance and formulating ex-ante priors about the probabilities of success155. Hence,

these two approaches allow to construct models of acquiring nomologic knowledge. Although

in this thesis this aspect of the case-based reasoning has been neglected, such an approach will

surely lead to interesting and stimulating results. The work of Gilboa and Schmeidler (2003) on

inductive inference show the possibilities which the usage of case-based reasoning opens in this

respect.

To summarize, the case-based decision theory opens large perspectives for modelling economic

problems in a different and more intuitive way. It allows to introduce and examine the inf luence

of features not present in standard theoretical models. This thesis has taken one step to un-

derstand the consequences of case-based reasoning in financial markets. It has answered some

questions, but much more research is necessary, before the role and the meaning of case-based

decisions in economic problems is clarified and their predictive power tested.

155 Gilboa, Postlewaite and Schmeidler (2004) argue that the formulation of a prior might be impossible in some
situations due to lack of information.
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