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Chapter 1. Introduction

The case-based decisi on theory has been recently proposed by Gilboa and Schmeidler (1995) as
analternativetheory for deci sion-making under uncertainty. Differently from the expected util ity
theory, the case-based decision theory models decisions in situations of structural ignorance,
in which neither states of the world, nor their probabilities can be naturally derived from the
description of the problem. It isassumed that adecis on-maker can only |earn from experience,
by eval uating an act based onits past performance in similar circumstances. An aspiration level
isused asabench-mark in the eval uati on process. It distingui shesresults cons dered satisf actory
(those exceeding the aspiration level), which make the alternative more attractive, from the

unsati sfactory ones, which influence negatively the eval uation of the alternative.

Similarity considerations play an important role in case-based reasoning. The eval uation of an
aternati ve depends not only on its own performance, but also on the utility realizationsachieved

from smilar alternativesin similar circumstances.

Although the case-based decision theory has been appliedin several economic contexts', it has
not been used to model decision-making in financial markets up to now. Still, a model of fi-
nancial markets, in which expected utility maximization is replaced by case-based reasoning is
of interest for several reasons. First, it allowsto gain a deeper understanding of the case-based
decision theory itself. In such a model the operationalization of theoretica concepts such as
the aspiration level, the past experience of the decision-maker, as well as his similarity percep-
tions becomes necessary. It istherefore poss ble to examine the inf luence of these concepts on
individual behavior. The results achieved further allow to interpret these concepts in an eco-

nomically meaningful way.

Second, the application of the case-based decision theory to financia markets contributes to
the literature on behavioral finance, by describing the dynamics of portfolio holdings and asset
pricesin a market with case-based investors. Theanaysis of the behavior implied by case-based
reasoning alows for comparisons to the predictions of the standard financia theory, as well as
to the results obtained from alternative decision theories?.

This literature is reviewed in section 2 of the introduction.
The implications of an abstract decision theory can only be understood by applying it to a specific economic

9
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Introducing case-based deci sionsinto amode! of financia marketsfurther allowsto comparethe
gualitative results on price dynamics and portfolio holdings to empirical findings. Hence, the
case-based decision theory might a low to explain empirical observations which areinconsistent

with standard asset pricing theories.

Last, but not least, in an asset market the performance of case-based reasoning can be com-
pared to the performance of alternative decision rules, especialy to those of expected utility
maximization. This comparison is useful, especially for the analysis of competitive environ-
ments in which the inf luence of a given decision rule on market pricesis determined by its past
performance. |If the case-based decision-makers consistently lose money compared to rational
individuals, then their influence on the market processes will vanishinthelimit. If, on the other
hand, individual susi ng case-based reasoning are not driven out of the market, then theinf luence

of their behavior on prices and returns cannot be neglected.

It follows that the application of the case-based decision theory to model s of asset markets can
lead to i nteresti ng results both in thefield of decision theory and of financial markets. However,
before turning to the construction of formal models, the pl ace of the case-based reasoninginthe

field of decision theory has to be discussed and its applicability to financial markets examined.

The decision theory has developed rapidly during the last sixty years. The expected utility the-
ory, axiomati zed by von Neumann and Morgenstern (1947) and Savage (1954), was proposed
both as a normative and a descriptive theory. Experimental findings, however, attack its em-
pirica validity, whereas alternative models criticize its normative foundations. The case-based
decision theory proposed by Gilboa and Schmeidler (1995) also emergesfrom this discourse, by
criticizing fundamental concepts of the expected utility theory and proposing a new framework
for decision-making under uncertainty. In order to understand its place among the numerous
decision theories proposed in the literature, the development of this field will be sketched in
section 1 of thisintroduction, before presenting the framework of Gilboaand Schmeidler (1995,

1997 (@) in section 2 and reviewing the literature on case-based decisi ons.

Sinceitisfound that the expected utility theory combined with rati onal expectations cannot ex-

problem. A decision theory is evaluated according to its ability to explain empirical findings and to produce qual-
itatively new predictions, not obtained before. Financial markets represent a perfect "testing” field for decision
theories, first, because the implications of expected utility maximizationsare very well studied inthis context, and
second, because of the vast quantity of empirical data available.

10



plainarange of phenomenaobservedin the market data, alternati ve theori esfor decision-making
under uncertai nty have been applied totheanalysis of financial marketsintheliterature. In sec-
tion 3, | shortly review two maor approaches. the noise trader approach, which assumes ex-
pected utility maximization with biased beliefs, and the assumption of alternative pref erences,
such as ambiguity-aversion or loss aversion, which criticize the conceptual foundations of the
expected utility maximization. Sincethe case-based decis on theory questionsthe mere possibil-
ity of reasoning about states of nature and forming belief sabout their probabilities, it represents
anew framework for modelling decisions in financia markets, which substantially differsfrom

the two approaches discussed.

The applicability of the case-based decision theory to financial marketsis further discussed. In
section 4, | argue that the structural ignorance of the decision-maker assumed in the case-based

decision theory might well describe the complex structure of financial markets.

Since the case-based decision theory was only recently devel oped, not much is known about its
behavioral implications. I, therefore, discuss how case-based decisi ons can incor porate some of
the psychological biases observed in experimental andreal financial markets. | further compare
the type of learning modelled by the expected utility theory to those implied by the case-based

decision theory.

Section 5 presents an overview of thethesis.

1.1 DevelopmentsintheTheory of Decison-Making under
Uncertainty

The expected utility theory as proposed by von Neumann and Morgenstern (1947) and Savage
(1954) is the most prominent theory for decision under uncertainty. According to this theory
uncertainty is represented as a set of statesof theworld. It iseither assumed that the probability
of the occurrence of these states is objectively given (as in the case of betting on an outcome
of throwing afair coin) or that the decision-maker is able to ascribe subjective probabilities
to each of the states (as in the case of betting on an outcome of a horse race). The decision
under uncertainty is then regarded as a choice among a set of acts, each of which representsa
probability distribution over state-contingent outcomes. The expected utility theory proposes a
representation of the preferences over such acts: theutility of an actiscomputed asthe weighted
1



sumof the utility of the state-contingent outcomes, the wei ghtsbeing the state probabilities. Von
Neumann and Morgenstern (1947), Anscombe and Aumann (1963) and Savage (1954) each
propose a system of axiomsimposed on preferences which are equival ent to an expected utility

representation.

It seemed at thetime that these results have put an end to along discussion i n which the exi stence
of objective probabilities has been oppaosed to the thesis that all probabilities are subjective.
Keynes (1921, p. 4), who holds the objectivistic view, writes ’[...] in the sense important to
logic probability isnot subjective. Itisnot that’sto say, subject to human caprice. A proposition
is not probable because we think it so. When once the facts are given which determine our
knowl edge, what is probable or improbabl e in these circumstances has been fixed objectively,
and is independent of our opinion”. Keynes suggests that the reasoning about probabilities
should obey the laws of | ogic, and, hence, be rational in the following sense: given individual’s
knowledge® about some propositions / and the knowledge of propositions ascertaining some
probability rel ation between h and p, the individual will rationally entertain aprobabilistic belief
in p, Keynes (1921 p. 16). Nevertheless, the notion of rationality and hence also of probability
isrelative to the knowledge h a person has, Keynes (1921, p. 32).

A person who behavesboundedly rational might however fail to use his knowl edge to establish
these logical connections. He will, therefore, either have no or awrong notion of the probability
heistrying to estimate. Moreover, athough Keynes derives the probabilistic beliefs from logic
conclusions, he argues that these beliefs do not always exist and are not aways measurable
and comparabl e to one another, Keynes (1921, p. 33), a statement which seems to oppose his
objectivistic view.

De Fnetti (1937) and Ramsey (1926), on the other hand, represent the subjectivistic view. Ram-
sey (1926, p. 67-68) criticizestherelativity view of Keynes. He himself proposesabehavioristic
view of probability beliefs: ”the degree of belief isacasual property of it, which we can express
vaguely as the extent to which we are prepared to act on it”, Ramsey (1926, p. 71). Hence, the
method to measure belief s consists in asking the person how he would act for different payoffs.
Thisideaislater used by Savage (1954) to €licit subjective probabilities.

3 Keynes (1921, p. 12) differentiates between direct (obtained by experience) and indirect (obtai ned by argument)
knowledge. He only permitsthe derivation of the probability of p, given the knowledge of i (which may be direct
or indirect) by indirect knowledge, hence by logical argument.

12



De Finetti (1937) supports the thesis that all probabilistic beliefs are subjective. Even in the
case of games of chance, such as roulette and throwing a fair coin, does he criticize the view
that thereadily agreed upon equal possibility of all outcomes shoul d be seen as ademonstration
of the existence of objective probability distributions. De Fnetti (1937, p. 112) argues that this
" objectivity” might have itsreason in acommon psychological perception of symmetry, which
has nothing to do with objective considerations. ”[...] any event whatever can only happen or
not happen, and neither in one case nor in the other can one decide what would be the degree
of doubt with which it would be ” reasonable” or ”right” to expect the event before knowing
whether it has occurred or not”, De Finetti (1937, p. 113).

The work of von Neumann and Morgenstern (1947), Anscombe and Aumann (1963) and Sav-
age (1954) shows that both views, the objectivistic and the subjectivistic, | ead to the same rep-
resentation of preferences. The expected utility theory further establishes a connecti on between
rationality and probabilistic reasoning: every rational person should have a system of prefer-
ences, which lead him to make decisions as if he had some subjective probabilities in mind.
Moreover, it alows to establish a link between the knowledge of a person and her probability
perceptions. Starting with a prior and updating it in a Bayesian way, the decision-maker can
learnthe "true” objective probability distribution inthelimit. Hence, the expected utility theory
provides atheoretical support for the ideas expressed by Keynes.

The expected utility theory hasturned out to be avery useful and easily applicable instrument
for model ling deci sion-making under uncertainty. In the mean time the applicationsto financial
markets, insurance, contingent contracts, bargaining, to mention only a few, are SO humerous
that it would be impossible even to try to list them here. This shows that the expected utility

theory has become a val uable and indispensabl e part of the economic methodology.

However, no sooner wasthistheory devel oped that thefirst criticisms began to emerge. Ellsberg
(1961) constructed athought experi ment which questioned theintuition of P2, theaxiom, called
"the sure-thing principle” in the theory of Savage. His experiment showed that in making de-
cisions people do not necessarily behave asif they ascribed subjective probabilitiesto states of
the nature. Theideathat peopl e evaluate situationsin which they have information about prob-
ability distributions differently from situations in which such information is (partially) missng

made the economists aware of a phenomenon called ”ambiguity-aversion” and gave rise to a

13



new branch of the literature on decision-making. By relaxing’ the sure-thing principle and the
independence axiom the axiomatizations of preferences proposed by Schmeidler (1989), Gilboa
and Schmeidler (1989), Gilboa (1987), Wakker (1989) and Sarin and Wakker (1992) are able to
describe decision-making in situations, in which the decision-maker considers multiple priors,
(i.e. he considers more than one probability distribution as possible) or in which the perception
of probabilities is described by a capacity®. Inthefirst case, the decision-maker uses diff erent
probability distributions to eval uate acts, which are not comonotonic.. Nevertheless, his beliefs
can be described by aset of probability distributions. Inthe second case, inwhich thebeliefsare
described by a capacity, a probability distribution cons stent with the capacity might not even
exist. Hence, the question of the existence of probabilities posed by Keynes (1921) is raised
again.

The non-expected utility theories allow to capture the idea that people might value information
about state probabilitiesand underestimate utility reaizations in states the probabilities of which
arenot known. Ambiguity-aversion doesnot only all ow to explai nthetypical behavior observed
in the Ell sberg paradox. 1t can also account for paradoxes observed in financial markets, which
are based on the assumption that decision-makers assign additive probabilities to the possible

states of nature.

Objective probabilities also do not stand the test of experiments. Allais (1953) constructs the
first experiment violating the” independenceaxiom” of von Neumann and Morgenstern (1947).
It isfound that the perception of probabilities is a non-linear one, people underweight large
probabilities and overweight small ones, Gonzalez and Wu (1999). The rank-dependent theo-
ries (called so, because the eval uation of a payoff and the assignment of probabilities depend
on the rank of the payoff under the act considered), such as Quiggin’s (1982) rank-dependent
utility, Yaari’s (1987) dual theory of choice under risk, Tversky and Kahneman's (1992) cumu-

4 For instance, by assuming that the independence axiom or the sure-thing principle only hold for comonotonic
acts (acts whichrank states accordingto their consequences in the same way), asin Schmeidler (1989) and Gilboa
(1987) or only for mixtures with constant acts, as in Gilboaand Schmeidler (1989). Wakker (1989) usesaversion
of his, Wakker (1984), " cardinal coordinate independence” axiom, also restricted to comonatonic acts. Sarin and
Wakker (1992) propose an axiom, whichis similar to stochastic dominance in the context of additive probabilities,
see Camerer and Weber (1992, p. 351).

5 A capacity is a function, which assigns to each event a number between 0 and 1. It satisfies the monotonidty
property, i.e. the number assigned to a union of two events should weakly exceed the number assigned to each of
these events. In contrast to probability, a capacity need not be additive.

14



lative prospect theory® allow for representations of such weighting functions. It turns out that
it isimpossibl e to distingui sh empirically, whether the utility function is non-linear and the per-
ception of probabilitiesis non-biased or whether the probabilities are biased and the individual

isrisk-neutral .

An interesting feature of the model of Tversky and Kahneman (1992), not present in the other
decisi on theori es, i stheintroduction of aref erence point, representi ng the statusquo. Payoffsare
treated as gains and losses rel ative to this ref erence point and eval uated diff erently according to
thisdistinction. Lossesare weighted stronger thangai nsandtheindividual exhibitsrisk-aversion
for gains and is risk-loving for losses. In this sense, the prospect theory is similar to the case-
based decision theory, in which payoffs are also eval uated with respect to an aspiration level.
Neverthel ess, the devel opment of the case-based decision theory represents a completely new

approach to decis on-making under uncertainty.

1.2 The Case-Based Decision Theory

Although the discussion about multiple priors and rank-dependent utility raises the old question
of whether probabilities are well-defined and exist, the main concepts of the theory of Savage
remain unchanged. The probability distribution is replaced by the more genera concept of a
capacity or by a probability weighting function, but the description of the world by means of

states of nature and the representati on of acts as vectors of state-conti ngent outcomes persists.

In 1995 Gilboa and Schmeidler propose a new theory for decision-making under uncertainty
which criticizes these concepts per se — the case-based decision theory. They argue that the
theory of Savage can describewell only situations, in which the states of nature and their proba-
bilities are well known or can easily be inferred’. In contrast, decision problems in which either
the states of the world are not clearly stated, or they are so numerous and complex that prob-
abilities could hardly be attributed to them in a sensible way, are not captured by the expected
utility theory.

6 An axiomatizaion of the cumulative prospect theory is provided by Wakker and Tversky (1993).

7 Andternaive theory for decision making under uncertainty, which criticizes the same issues isformulaed by
Eadey and Rustichini (1999). The ideaand the framework are very similar to those of Gilboa and Schmeidler, but
similarity considerationsare not introduced and it isassumed that the decision maker can observe the realizations
of all available acts, independently of his actual choice.

15



Gilboa and Schmeidler (1995) handle thisproblem by proposing a new framework: the descrip-
tion of the decision situation is called a problem. To "solve” the problem the decision-maker
has to choose an act out of agiven set of available acts, known to him. The decision-maker
does not have any knowledge of states of the world, state-contingent outcomes and their dis-
tributions. Nor does he try to infer them from the statement of the problem he faces. I nstead,
he uses his memory, in which information about past cases is collected. A case is defined as
atriple consisting of a problem encountered, an act chosen to solve this problem and a utility
realization consequently experienced. The utility realizations are evaluated according to an as-
piration level. A utility realization which exceeds theaspiration level is cons dered satisf actory
and increases the eval uation of the act which has lead to it and vice versa. The sum of the net
utility realizations (utility realization less the aspiration level) observed when choosing a cer-
tai n act determines its cumulative utility. It is postulated that the deci sion-maker chooses the act

with maximal cumulative utility.

This simple way to make decisions might however turn out to be impractical, should an act
have never been chosen before, or should the problem a decision-maker faces differ from those
encountered inthe past. Therefore, Gilboaand Schmeidl er (1995, 1997 (a)) introducethe notion
of smilarity, which plays an important rolein the case-based decision-making. Problems, acts
and utility realizations can be perceived as similar. The eval uation of an act isthen aff ected by
itssimilarity to the acts chosen in the past and by the similarity of past problems to the current
one. For instance, buying an asset at a price of 10 might be considered similar to buying the
same asset at a price of 9,50. If an investor has achieved a satisfactory (unsatisfactory) return
by buying this asset at a price of 10inthe past, then thisresult will positively (negatively) affect
his evaluation of the act to buy the asset at a price of 9,508

Differently from the smilarity concept defined by Rubinstein (1988), which isabinomial rela-
tion (two objectsareeither similar or dissmilar), in the case-based decis on theory the similarity
is atrinomia relation (object a is more similar to o/ than to «” ). Therefore, it can be repre-

sented by a smilarity function. This similarity function serves to determine the weights with

8 At the moment | am vague ebout the distinction between acts and problems. In this example it might bethat the
act isdefined as " buy asset X at apriceof 10" or that the act isspecified simply as " buy asset X” and the price
enters the description of the decision problem encountered. Indeed, in the case based decision theory this does not
create a problem, since the similarity function is specified for problem-act pairs. | will be more explicit about this
issue in chapter 2. See also Gilboa and Schmeidler (2001 (a), p. 51).
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which each of the past net utility realizations enters the evaluation of an act®.

To illustrate the main concepts of the case-based decision theory suppose that the set of avail-
able acts is given by 2 with o denoting a representative act. T past experience is captured by
the memory, which consists of cases encountered inthe past. A caseisatriple of aproblem en-
countered, p,, an act actually chosen to solve this problem, o and a utility realization actually

observed as a consequence™, u.-. Hence, the memory at time ¢ has the form:

Mt = ((pT; Qrj uT))T:L“t,1 . (11)
The proposed representation of preferencesis of the form: for eacha and o/ € 2
a = o, iff

Ui(a) > Ug(a)),with

t—1

U(a) =) s ()i (prsar)) [ur — ], (12)
where s ((p; @) ; (p,; ) denotestﬂ?si milarity between the problem-act pair encountered at
time 7 and the problem-act pair to be evaluated and u; stays for the aspiration level of the
decision-maker at time t". U, («) is called the cumul ative utility of act « at time ¢. Note that
sati sfactory results enter the cumulative utility of an act with a positive sign, whereas unsatis-
factory reali zations have a negative impact. Moreover, since in general the similarity function
depends in a non-degenerate way on the act considered, different aspiration levels lead to dif-

ferent evaluations of the acts avail able, even if the memory of two decision-makersisidentical.

1.2.1 Axiomatic Representation

Gilboa and Schmeidler (1997 (a)) show that the representation (1.2) with a, = 0 is equivalent
to axioms imposed on the preferences of a decision-maker over acts, given a set of observed
cases, i.e. for a given memory. Assumethat the utility function, associated with the payoffs of

the acts, is given'?, so that u.. indeed denotesa utility realizati on experienced at time 7. Suppose

9 Of course, it might be that the similarity between certain acts and/ or problems is considered to be 0. The

respective utility realizations will then have no effect on the eval uation of the actsin the current situation.

10 The case-based decision theory also allows teh consideration of hypothetical cases. | neglect this issue at the
moment and discuss this aspect in chapter 3, section 7 and in chapter 5, section 5. Note that thetime index can al so
be interpreted just as the number of cases present in the memory. Hence, hypothetical reasoning is dso captured
by this representation.

1 Theindexation by ¢ allows for updating of theaspiration level depending on the past problems encountered and
realizations observed.

12 Gilboa, Schmeidler and Wakker (2002) propose an axiomati zation which derives the utility function « (-), the
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that the memory isof length (¢ — 1) and isgiven by (1.1). The set of actsis given by 2( and the
problem at hand is p. The similarity function of the decision-maker over the set of acts2l can
bedlicited by changing the utility realizations of the diff erent problem - act pairsin the memory
and by asking the decision-maker about his preferences over the acts for different utility vectors
u € R*~1. Denote this preference relation by ., for agiven u. Following axioms are required,
see Gilboa and Schmeidler (1997 (a), p. 51-52):

Al: Preorder: -, iscomplete and transitive;

A2: Continuity: {2, },cpe—1 iScontinuousin u, i.e. for each sequence (uy,),~, — u, such that
a =y, o foralk
=y o
holds.
A3: Additivity: forall wandv € Rt andfordl o, o/ € %,
a>=,o anda =, o
imply a >, .
A4: Neutrality: foru = (0...0)

a ~ o holdsfordl a, o € 2.

A5: Diversity: for dl digtinct acts «, o/, o, o € 2 there exists avector u € Ri—!, so that:

/ 14 n
Ay O =y O = O .

The five axioms imply the existence of s ((p; @) ; (p.; @, )), such that

a = o, iff
> s(pa);(pa)u. > > s(pre);(par)) u.

Moreover, if there are more than four acts available, the similarity function is unique in the
following sense: if s ((p; @) ; (p,; ) represents the preference relation -, then so does each
¢, such that:

s' ((pa);(prsar)) = Bs ((pa) 5 (prs ar)) + w,
with 3 > 0 and (wT)tT_:l1 € R*1, Gilboa and Schmeidler (1997 (a), p.52-53).

The first axiom, which defines the preference order, is standard in decisi on theory and without it

cumulative utility representation and the similarity function directly from preferences.
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afunctiona representation isvirtually impossible. The second axiom requiresthat preferences
do not change discontinuously when small changes in the utility realizations are observed. It
insures the continuity of the functional representation. The additivity-axiom is central for the
additive representation of the preferences by the cumulative utility asgiven in (1.2). It requires
that if two vectors of utility realizations v and v both support the choice of an act a, then so
should their sum do. In a similar manner, in which the additivity in expected utility theory is
viol ated by behavior typical for the Ell sherg paradox, .43 would be violated by adeci son-maker
whose similarity function is not i ndependent of the utility realizations observed, see Gilboaand

Schmeider (1993, p. 15) for an example.

The neutrality axiom definesthe aspiration level asu = 0. Achieving 0 asa utility realization
from all acts chosen does not allow to diff erentiate among them, since 0 isa ” neutral” result
— it makes the decision-maker " neither sad, nor happy”, see Gilboa and Schmeidler (1997
(&), p.52). Note that since .44 defines the aspiration level to be 0, the utility realizations «
and v in A3 areunderstood as " net” utility realizations, i.e. utility minus the aspiration level.
Indeed, the representati on proposed would not be valid, should in A3 » and v represent utility
redizations and the aspiration level be different from 0. However, it is easily seen that each
utility function v’ = u + b in combination with an aspiration level @’ = b would satisfy the
axiomsfor aconstant b € R, aslong as the utility redlizations u are replaced by the " net”
utility realizations v’ — u’ everywhere in the axioms. Hence, differently from the von Neumann
Morgenstern representation, the utility function in the case-based decision theory can only be
subjected to linear affine transformations together with the aspiration level, so as to leave the

behavior of the decision-maker unchanged.

The diversity axiom A5 is only a technical one, it is not implied by the representation (1.2). It
precludes the case in which one act is always ranked between other two, independently of the
utility realizations observed. Gilboa and Schmeidler (1997 (), p. 52) give an example of the
acts "sell 100 shares’, "sell 200 shares” and "sell 300 shares’ and argue that for this particular
acts A5 might seem controversial. Still, it is not needed for settings in which less than 4 acts
are considered, since then it is trivially satisfied. Moreover, Gilboaand Schmeidler (1997 (a),
p. 60-61) demonstrate that indeed, without this axiom arepresentation of preferences by (1.2)

is not guaranteed.
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Note that the definition of similarity is ” context” -dependent®, i.e. the perception of similarity
is determined relative to the memory M,. Gilboa and Schmeidler (1997 (a), p. 54) indicate
conditions for a memory-independent similarity relation. However, since the similarity should
beindependent of the vector of utility realizati ons observed, the description of actsand problems
present in the memory is essentia for the eicitation of similarity perceptions. For instance, the
act "buy 10 shares of Telecom” might be represented in different contexts as "buy an asset”,
"buy arisky asset”, " buy sharesof atelecommunication branch”, etc. and these representations

will induce possibly different notions of similarity on the set of problem-act pairs.

One would like to associ ate the definition of similarity with behavior remaining constant under
certain circumstances. To simplify matters, consider a setting, in which all problems are consid-
ered identical and similarity among acts only has to be determined. Supposethat s («; ') = 1,
hence, a and o are compl etely similar. However, thisdoes not mean that the decisi on-maker will
be indifferent between o and o’ in all contexts. Indeed, thiswill be the case only for contexts,

containing cases in which either « or o/, but no other act has been chosen, i.e. for memories:

M, = (</)3 OGUT)TeSc{L..tq} ; (ps o uT)TE{l...iFl}\S) .
Since s (a; ') = 1, the decision-maker will indeed be indifferent between « and o’ for all
vectors u € RL. If, on the other hand, the memory also contains cases in which a diff erent
act o” hasbeen chosen and if s («; ) # s (o/; "), the indifference between « and o will no
longer hold*, since their cumulative utilities will be influenced differently by the realizations

of o”.

| have presented only one possi ble axiomatization of the case-based decision theory, which, |
think, provides useful insights into the assumptions needed to derive the preference representa
tion and summarizes the cases which will be used in thisthesis. Apart from the axiomati zation
presented above several axiomatizations have been proposed in the literature. Thefirst of them
goes back to Gilboa and Schmeidler (1995), who only consider similarity among problems, but
not among acts. Hence, the similarity function takes the form s (p; p’). On the other hand, sm-

ilarity onthe set of utility realizations can also be included, so asto embed the notion that from

13 Gilboaand Schmeidler (1997 (a)) call the set ((p, ; o)) _" acontext.

14 Inasimilar manner, in expected utility theory, we connect equal likelihood of statess and s’ to equal willingness
to engagein alotterie which delivers = (2'), if s (s) occursand y (y'), if not s (not s’) occurs, aslong asz > y
impliesz’ = 3. Still, we do not expect this willingness to remain identical for both states, if the signs of the

inequalities are different. | thank Uzi Seagd for pointing out this analogy to me.
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similar acts chosen in similar situations similar (and not identical ) results are expected, see
Gilboa and Schmeidler (2001 (a), p.52). The axiomati zation, which generali zes these three ap-
proaches and is based on similarity among casesis derived in Gilboa and Schmeidler (2001 (a),
pp. 62-90). In dl these works the utility function « (-) isassumed to be given. Gilboa, Schmei-
dler and Wakker (2002) present an axiomatic representation in which the utility function isaso

derived from the pref erences.

The axiomatic foundation of the case-based decision theory serves severa purposes. Firdt, it
avoids postul ating the exi stence of such constructsas similarity or aspiration level. Instead, they
are derived from observed behavior and therefore gain ” cognitive significance”, see Gilboaand
Schmeider (1993, p. 9). Furthermore, in an experimental setting, resultsabout the typical form
of the similarity function and typical rules for adapting the aspiration level can be elicited by
simply observing the choices made. Artifactual results arising from different interpretati ons of

these concepts by subjects and experimenters can be avoided inthis way.

Second, the formulation of the axioms in terms of observable characteristics, such as binary
choices, alow to test the theory in an experimental setting. By presenting the subject a set of
past cases and by diciting his preferences for multiple vectors of utility realizations, one can
examinewhether the exhibited behavior vid ates the axioms imposed. S nce the axiomati zation
precludes some types of behavior, the case-base decision theory can be subject to fal sification
in the sense of Popper (1966).

Third, the axioms alow to judge the reasonability of a theory, since they present the assump-
tionson the preferences (behavior) of a decision-maker that are necessary for a given functional
representation to hold. Apart from their descriptive power (do people behave according to the
prescriptions of the theory?) their normative power (would people wish to behave according to

the axi oms of the theory, if they knew and understood them?*) can be analyzed.

1.2.2 Applicationsof the Case-Based Decison Theory

Since the case-based decision theory is arelatively new concept, there are still few applications

of it to economic problems. The case-based decision theory has been applied in the consumer

15 Gilboaand Schmeidler (2001, pp. 9-12) view anormative theory as atheory describing "second-order reality”,

i.e. describing ded sions with respect to preferences a decision maker would wish to have.
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theory, Gilboa and Schmeidler (1997 (b), 2001 (b)), Gilboaand Pazgal (2001), theory of voting,
Aragones (1997), production theory, Jahnke, Chwol kaand S mons(2001), social learning, Blon-
ski (1999), cooperation in games, Pazga (1997), herding behavior, Krause (2003) and choices
among | atteries, Gayer (2003).

Gilboa and Schmeidler (1997 (b), 2001 (b)) and Gilboa and Pazga (2001) analyze a repeated
consumer problem, consisting in choos ng one of the avail able goods (or consumption bund es).
Gilboa and Schmeidler (1997 (b)) and Gilboa and Pazgal (2001) assume a constant aspiration
level and a memory, congisting of all past cases encountered. Gilboa and Schmeidler (1997
(b)) consider the case of deterministic utility realizations connected with the choice of a con-
sumption good. They discuss the influence of similarity between acts on the decisions made.
They demonstrate that positive similarity can be associ ated with compl ementarity among goods,
whereas negati ve s mil arity is connected with substitutability between goods. Gilboaand Pazgal
(2001) are interested in the influence of the position of the aspiration level on choices among
goods with random utility realizations. They show that high aspiration levels |ead to ” brand

switching” behavior, an effect observed in empirical market data.

In contrast to theseworks, the setting of Gilboa and Schmeidler (2001 (b)) allowsfor adaptati on
of the aspiration level towards the consumer surplus experienced. Assuming constant utility
realizations of each commodity chosen, the impact of a price increase on consumer’s behavior
isanalyzed. Since aprice increase lowersthe experienced utility realization, it initialy leadsto
switching behavior. Since, however, the aspiration level i ssubsequently adapted downwards, the
decision-maker becomes eventuall y satisfi ed with one of theactsand his choice remains constant
afterwards. It is further shown that the reaction of aconsumer may be different, depending on

whether a price increase occurs suddenly or in agradua manner.

Aragones (1997) studies a model of voting, in which voters assign negative net utilities to the
policies adopted by the parties. He models an interaction between parties adopting a specific
policy and voters choosing a party depending on their pdicy. He shows that, with two parties,
the dynamic process of i nteraction forces the partiesto adopt distinct poli cies, which they do not
ater over time. The voters are endogenously divided into three categories, depending on their
aspiration level. One category aways opts for the first party, another one always chooses the
second party, whereas a third category exhibits switching behavior.
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Pazgal (1997) examines the behavior of case-based decision-makers, who engage in a game,
but are not even informed about the strategic nature of the situation. He showsthat the usage
of the "ambitious-redistic” rule for adaptation of aspiration levels, proposed by Gilboa and
Schmeider (1996), alows the playerstolearn to coordinate on a Pareto-optimal equilibriumin

acoordination game.

Blonski (1999) introduces case-based decisions into a model of socia learning. Similarity is
used to describe the structure of the society. He examines the effects of social structures on the
optimality of choices. The results show that diff erent similarity functionsimply different stable

states and may positively or negatively influence the learning process in the society.

Jahnke, Chwolka and Simons (2001) analyze the adaptation process of a firm, who faces a
kinked demand function, but does not know itsexact form. The firm can choose the price of the
product, as well as the capacity in each period of time. The capacity chosen determines, which
part of the demand function isrelevant for the decision of the consumers. The decisi on process
of thefirmis modell ed using the case-based decisiontheory. It isassumed that the information of
the firm (or the problem it faces) at each time consists of its optimization problem, the decision
made in the last period and the parameters estimated from previous choice. The possibility to
engage in hypothetical reasoning, as well as the (de facto'®) deterministic utility realizations
of the available acts allow the firm to learn and choose the optima combination of price and

capacity despite its short memory.

Krause (2003) models social learning in financial markets. In the tradition of herding behavior
model's, he assumes that the investors sequentialy decide on one of the two avail able alterna
tives with independent random utility realizations. No market is modelled. The memory of an
investor consists of cases experienced by investors who have made their decisions prior to him.
A problemisdefined by theidentity of theinvestor who made aparticul ar choice and by thetime
passed since the decision was made. These two dimensions determine the similarity between a
problem present in the memory and the problem at hand, more recent problems being attached
higher smilarity. Krause (2003) conducts some simulations of the dynamic of choicesin such
an economy. He identifies herding behavior. However, since he assumes that both alternatives

are equally good, it is not possible to judge the optimality of choice arising from case-based

16 The demand s distributed according to a Poisson process, but Jahnke, Chwolka and Simons (2001) assume that
the period between two subsequent decisionsis sufficiently long, sothat the Law of Large Numbersisapplicable.
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decisionsin hismodel.

Gayer (2003) anayzesthe impact of similarity considerationsin alottery choice problem. She
argues that the notion of a probability distribution can be sharpened only with experience. So,
people might know how to interpret a probability of 4, but not be able to work with probabil-
ities such as 0, 34526. Hence, instead of computing the expected utility of alottery using the
rea probability, they use a notion of similarity between the known probability% and 0, 34526
to evaluate a lottery, in which the latter probability is assigned to an outcome. Sheshowsthat if
the smilarity function evolves with time, making the distinction of probabilities moreand more
precise, the decision-maker learnsto work with the real probability distributions. However, she
conducts some simul ati ons which demonstrate that overweighting of small and underwei ghting
of large probabilitiescan occur inthemodel. Hence, this particul ar form of aprobabil ity wei ght-
ing function can be explained by assuming such kind of case-based learning about probability

distributions.

Although few, these applications demonstrate the potential of the case-based decision theory to
describe human behavior in complex economic environments, in which the states of natureand
the respecti veprobability distributi onsare not naturall y defined and in which, therefore, learning
from experience plays an essential role. Neverthel ess, up to now the case-based decision theory

has not been applied to model decision-making in financia markets'’.
1.3 Decison Theory and Financial Markets

The expected utility theory combined with the assumption of correct or rational expectations
is still most commonly used to describe behavior in financia markets. A range of observed
phenomena, however, seem to be inconsistent with the theoretical results and to question the

predictive power of this approach.

The standard theory of asset pricing isbased on the condition of no-arbitrage. Two securities,
which bear the same payoffs in each state of nature should have the same price, Eichberger
and Harper (1997, p. 118). However, violations of this condition are observed in real, as well

as in experimental markets. Rosenthal and Young (1990) find that shares issued by the same

17 The model of Krause (2003) is more in the spirit of the literature on social learning and herding behavior, in
which an act can have two realizations, which are exogenously given. Markets and prices are not model ed.
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company, but traded in different markets have significantly different prices over long periods.
Similar findingsarereported by Lamont and Thal er (2002): they present acase, in which holders
of a share of company A are expected to receive x shares of company B, butthe shareof A costs

less than z times ashare of B.

Whereas in real markets arbitrage might be hampered by transaction costs and short-sale con-
sraints, in experimental settingsitispossibletoimitateperfect markets. Rietz (1998) and Oliven
and Rietz (1995), however, demonstrate that violations of arbitrage freedom occur in experi-
mentsas well. The eff orts taken by experimenters to indi cate profit opportuniti esto the subjects
involved and to teach them what trading strategi esto useto eliminate arbitrage did not help to re-
move the violations of the no-arbitrage condition. A professional arbitrageur had to be inserted

into the market to insure that the law of one price holds.

The capital asset pricing model (CAPM), Sharp (1964), Lintner (1965), predicts that, given as-
sets with normally distributed payoffs, the investors in the economy should choose efficient
portfolios, i.e. portfolios with minimal variance for a given mean. Moreover, given that there
isa riskless asset in the market, each investor should invest one part of his endowment into the
market portfolio and the rest into the riskless asset, implying the two-fund- separation theorem.
Both implications are viol ated in the experiments of Krdl, Levy and Rappoport (1988). More-
over, low rates of diversification are often observed in real markets, Kang and Stulz (1997),
Coval and Moskowitz (1999), Tesar and Werner (1995). Instead of holding the market portfolio,

investors seem to exhibit preferences for national or even local assets, the so-called home bias.

Asset market models imply that expected returns of the assets in the market can differ only to
account for therisk-aversion of the investors. Hence, arisky asset will ingenera exhibit higher
expected returnsthan ariskless one, if investors arerisk-averse. M ehraand Prescott (1985) find
that the mean returnsof securitiesexceed significantly those of bondsover thewhole period, for
which returns have beenregistered. They estimatetherisk-aversion, which woul d be consistent
with such behavior on the side of investors and find values which seem to be extremely high.

This paradox has entered the literature under the name of ” equity premium puzzle”.

Theefficient market hypothesis, formulated by Fama(1970), statesthat price movements should
be unpredictable. Hence, trade on information available in the market should not be prof-

itable, since such information is aready taken into account by the market participants. Es
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pecially, past prices should not entail any information about future price movements. The em-
pirica evidence, however, demongtrates that information is often priced incorrectly. DeBondt
and Thaler (1985), Chopra, Lakonishok and Ritter (1992) find overreacting to information,
whereas Bernard (1992), Bernard and Thomas (1989,1990), Loughran and Ritter (1995), Iken-
berry, Lakonishock and Vermaellen (1995) and Womack (1996) find that investors react too
dowly to news. Since prices adapt with time, so as to reflect the information correctly, price

movements become predictable, violating the implications of the efficient market hypothesis.

The efficient market hypothesis further suggests that ”buy and hold” is the best strategy to
follow. Since prices follow a random walk, winnings and | osses are due merely to incoming
new information, henceto chance and not to the proficiency of atrader. Therefore, no active
trading can make an investor better-off. Nevertheless, Odean (1999) finds that investors trade
too often. Not only are these trades not justified by new information, but traders engaging in
them lose money even if transaction costs are not taken into account. Similar resultsare obtained
by Barber and Odean (2001 (a), 2001 (b)).

The financial theory predicts that pricesshoul d reflect information about fundamentals. Hence,
pricesshould only changewhen new inf ormation becomesavailable. Itishowever found that ob-
served asset pricevolatility cannot be explai ned by changes in dividend payments (which would
ref lect changesin fundamental s) or by new information, Roll (1984), Shiller (1981, 1999).

One of the approachestaken to explain the phenomenaobserved in financial marketsconsistsin
assuming that some of theinvestors in the market have biased belief s, while keeping the assump-
tion of expected utility maximization. For instance, Del. ong, Shleifer, Summersand Waldmann
(1990 (@), as well as Shleifer and Vishny (1997) show how noise traders, who misperceive
the variance of arisky asset, can generate arbitrage possibilities in a market where the ratio-
na arbitrageursare fully invested. The presence of positive feedback traders, who mistakenly
believe that asset price movements are positively correl ated, can lead to price bubbles, as De-
Long, Shleifer, Summers and Waldmann (1990 (b)) demonstrate. The representati veness bias,
(i.e. the usage of short time-series asif they were representative of the population) is used by
Barberis, Shleifer and Vishny (1998) to explain under- and overreaction in financial markets.
The assumption about the existence of chartists (positive feedback traders) and fundamentalists

(who ignore prices and trade only on signal s about future returns) in the market generates pos-
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itive autocorrel ation in the short-run and negative autocorrelation in the long-run, see Cutler,
Poterba and Summers (1990). The excessive rate of tradesis explained by the overconfidence
of traderswho overestimate the precision of the signal sthey receive, asin Odean (1998), or, ina
dynamic set-up, by the self-attribution bias, asin Daniel, Hirshleifer and Subrahmanyam (1998)
and Gervais and Odean (2001).

Another class of mode s assumes that investors have alternative preferences, different from ex-
pected utility maximization. For instance the presence of ambiguity-averse investors in the
market can lead to results, which are incons stent with the resul ts obtained under expected util-
ity maximizations and can explain some of the anomalies observed empirically. One of thefirst
observations made by Dow and Werlang (1992) is that the optimal portfolio chosen by a Cho-
guet expected utility maximizer is not sensitiveto price changesat points of completeinsurance
for anon-degenerateinterval of prices. This observation contradicts the result of Arrow (1965),
who shows that such intervals consist only of single points for an expected utility maximizer.
Moreover, Mukerji and Tallon (2003) demonstrate that such ” portfolio inertia” characterizes

the perception of ambiguity.

Epstein and Wang (1994) construct an infinite horizon equilibrium model with arepresentative
agent in which beliefs are represented by a multiple prior. They show that the result of Dow
and Werlang (1992) remainsvalid, in that price is undetermined in an equilibrium. They con-
clude that high price volatility can result out of this indeterminacy. Nevertheless, as Epstein
and Wang (1994, p. 310) themselves note, these results do not necessarily imply price inde-
terminacy in a model with heterogenous agents. Even in a representative agent model, price
indeterminacy requires the presence of non-diversifiable risk'®. In a model with heterogenous
agents with identical multiple priors Chateauneuf, Dana and Tallon (2000) demonstrate that
equilibrium allocations are comonotonic (hence, satisfy the sure-thing principle) and the equi-
librium price supporting the allocation is unique. Smilar to the representative agent setting,
aggregate uncertainty isrequired to induce price indeterminacy in an equilibrium, as shown by
Dana (2000).

Whereas willingness to diversify is equivalent to a concave von Neumann Morgenstern utility

function in the context of expected utility maximization, Chateauneuf and Tallon (2002) show

18 Figures 6 and 7 in Rigotti and Shannon (2001, p. 41-42) provide an illustration of this fact.
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that with Choquet expected utility different notions of preference for diversification are sup-
ported by different characteri stics of the decision problem — concave utility index isin general
neither necessary, nor sufficient for such preferences to emerge. An important role plays the
specific perception of ambiguity, i.e. the specific capacity of the decision-maker. Therefore,
non-additive priors and ambiguity-aversion can aso explain phenomena, such as underdiver-
sfication, see Uppa and Wang (2003) and the "home bias”, i.e. the fact that investors hold
undiversified portfolics, in which foreign securities are underrepresented, see Epstein and Miao
(2003). The results are based on the assumption that some of the assets (e.g. the foreign ones)
are ambiguous. Ambiguity-averse investors, hence, choose to hold alower share of ambiguous
assetsin ther portfolio compared to aportfolio of an ambiguity-neutral investor. Excessive re-
turns, as compared to the predi ction of the CAPM, can al so be explained by the fact that individ-
uals are ambiguity-averse and require an " uncertainty” premium, see Kogan and Wang (2002).
In a similar way, Chateauneuf, Eichberger and Grant (2002) show that pessimistic investors,
who overestimate the probability of low returns of arisky asset, prefer a riskless investments

and can, therefore, provide an explanation for the equity premium puzzle.

The cumulative prospect theory aso offers explanations of financial market paradoxes, see
Camerer (1998). Thaler and Johnson (1990) provide evidence that people are more willing
to choose risky acts, after they have gained money, than after having made | osses. Benartzi and
Thaler (1995) model an individua portfolio choice problem and show that loss aversion can
make an investor reluctant toinvest in risky assets. Hence, they suggest that the prospect theory
might help to explai n the equity premium puzzle. Barberis, Huang and Santos (2001) construct a
market model, in which investorsareinterested not only in maximizing expected utility, but also
in their financial wealth in each period of time. The utility derived from financia wealthina
given period is computed us ng conceptsfrom the prospect theory, | osses being wei ghted higher
than gains. Both gains and | osses are measured rel ative to areference level (e.g. apast price).
The model explains the equity premium puzzle, high volatility of stock prices and predictability

of returns.

The higher sensitivity for losses than for gains in the prospect theory can account for investors
holding too long stockslos ng value and sel ling quickly stocksthat have gainedin valuerecently,

see Shefrin and Statman (1985). This prediction is consistent with empirical studies: Odean
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(1998 (b)) finds that investorsindeed sel | winners quickly, but hold loserstoo long. Experiments
conducted by Weber and Camerer (1998) show similar effects.

Like the expected utility theory, the prospect theory and the Choquet expected utility the case-
based decision theory is derived from a set of axioms, which trand ate the set of preferences
consistent with the theory into observable patterns of behavior and allow to test the theory in
an experimental setting. The new approach of Gilboa and Schmeidler however deviates signif-
icantly from another theories for decision-making under uncertainty discussed up to this point,
since it replaces the framework of the expected utility theory by anew one. The description of
financial marketsin terms of states of nature and state-contingent outcomes has persisted in the
literature for more than thirty years. The non-expected utility theories, like Choquet expected
utility and the prospect theory guestion the existence (or the uniqueness) of probability distrib-
uti ons over the outcomes, but do not criticize the main concepts per se. It istheref ore necessary
to ask the question whether the new framework introduced by the case-based decision theory
is appropriate in the context of financial markets. Furthermore, | will analyze whether the kind
of behavior described by the case-based decision theory can capture some of the psychologic

phenomena observed in financial markets. Thiswill be the topic of the next section.
1.4 Case-Based Reasoning in Moddsof Financial Markets

Gilboa and Schmeidler (1995) find that the theory they propose should be regarded more asa
complement to the expected utility theory, than as an alternative to it. They suggest that the
case-based decision-making may be appropriate in situations in which decision-makers have
little information about the problem and are unabl e to form beliefs about the possibl e outcomes
and their probabilities. It seemsthat the decision problemsinfinancia markets hardly meet this
criterion. Financial economistsregard it as natural to think in terms of states of nature (leading
to contingent payoffs) and state probabilities. Sincetheworksof Arrow (1970, p. 98) it hasbeen
assumed that the expected utility framework naturally fits the description of an asset interms of

aprobability distribution over state-conti ngent outcomes.

A thorough consideration of this framework, however, shows that it is in no way natural to
formulate the states of nature in a financial market. Indeed, besides the problem of deciding,

whi ch payoffs of asecurity should be considered possibl e, the question of correlation among the
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payoffs of different assets arises. Hence, it is not asolution of the problem to identify the states

of the world with the payoffs an asset renders™®.

Moreover, in amarket environment payoffs are determined not only by the dividends paid by an
asset, but also by the capital gains and therefore, by the equilibrium prices, which themselves
depend on the expectations of the market participants. The well known beauty contest used
by Keynes (1936) to describe the expectation formation in asset markets illustrates this point.
As Arthur (1995, p. 23) notes "[w]here forming expectations means predicting an aggregate
outcomethat isformedin part fromothers’ expectati ons, expectation formation can become sel f-
referential. Theproblem of |ogically forming expectationsthen becomesill-defined, and rational
deduction finds itself with no bottom ground to stand upon”. Moreover, in economies with
heter ogenous investors the computational problems connected with determining the equilibrium

with rational expectations are still nat solved by the economic science.

Heterogeneity of beliefsis a natural characteristic of real markets. Furthermore, beliefs tend
to change with time and these changes are not necessarily consistent with Bayesian updating.
The rules used to make decisions given some beliefs often violate the expected utility maxi-
mi zation. But then it is questionable whether states of the world, which would have to include
changing beliefs as well, can be naturally formulated and asset payoffs assigned to them. In
such an environment it might be much more natural for a decision-maker to evaluate portfo-
lios of assets according to their past performance. Asa consequence of his critique of rationd
expectations Arthur (1995) proposes an inductive approach to modelling decisions in financial
markets. Similarly to the approaches of Sargent (1993) and of Evans and Honkapohja (2001),
the idea of Arthur isbased on adaptive expectations, which presupposes that investors know the
model of the economy, except for its parameters, which they can estimate as statisticians from

mar ket data.

The case-based decision theory also provides a model of inductive learning. However, differ-
ently from the approaches cited above, it does not presuppose knowledge of the structure of the
economy and of possible model s which can explain the data. | nstead, a Situation of "structura
ignorance” is modelled and the decision-maker uses inductive reasoning based on his experi-

ence, hisaspiration level and his perception of similarity to evaluate the availabl e alternatives.

19 See Bossert, Patanaik and Xu (2000, p.296) for adiscussion of the problems connected with the construction
of states.
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The case-based decision theory relieson the concepts of memory, aspiration level and smilarity.
Although these concepts seem very natural, they need not reflect the way in which peopl e per-
celve adecision problem. Some situations might be well described in the standard framework
of states and state-contingent payoffs and it might be quite counterintuitive to try to represent
the information available as cases. If an investor is experienced and well acquainted with the
market situation, if he expects to be ableto make correct f orecasts about the future, based on the
data he possesses, then he will possibly find the Savage framework to be the appropriate deci-
sion rule to follow. Such an investor might be confused, if asked to formulate his experiencein
terms of a memory containi ng past casesand simil arity among problems. I n contrast, if the situ-
ationis new, or considered unpredictabl e, if the investor does not have enough knowl edge about
the structure of the market or about the behavior of other market participants, he might prefer
to base his behavior on hisown or on other's experience. In short, if an investor already knows
the structure of payoffs and can compute the optimal act, an aspiration level becomes usel essto
him. On the other hand, if heis not aware of possible payoffsand their correlation, then an as-
piration level usedto distinguish ”good” from ”bad” results, a perception of similarity between
assets, aswell as memory reflecting knowledge of past cases may compensate for this lack of

more general information and be useful concepts to base one's decis ons upon.

The difference between the expected utility maximization and the case-based decision theory
consists not only in the information and structural knowledge they presuppose, but aso in the
processing and usage of thisinformation. The question therefore arises, whether it is possible
to indicate case-based reasoning in financial markets. Up to now, experiments designed to test
the case-based decision theory have not been constructed. Nevertheless, it ispossibleto analyze
whether the case-based decision theory alowsto capture some of the psychol ogic biases com-
monly observed. The next paragraphswill therefore deal with the question of how the kind of
behavior, described by the case-based decision theory is connected to the behavior observed in

financial markets and how the main elements of the model can be interpreted in this context®.

141 Anchoring

Case-based decision-makers learn from information contained in past cases. Hence, a case-

20| consider only those phenomena, which seem to be captured by the case-based decision-theory. For complete
reviews on psychologicd phenomenain financial markets see Rabin (1998), Shiller (1999) and Hirshleifer (2001).
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based investor uses past prices and dividends to draw concl usions about the future perf ormance
of aportfolio in the future. This behavior isregarded asirrational from the point of view of the
efficient market hypotheses, which states, see Fama (1970), that asset prices should move asa
random walk and therefore past prices could not be used to predict future returns*. However,
empirical evidence showsthat usage of information which seemsto beirrel evant for thedecision

at hand is often observed.

When asked to make quantitative predictions, subjects in experiments use avail able pieces of
information as a bench-mark. Moreover, they tend to do so even if the information availableis
of little or even no relevance to the problem stated, see Tversky and Kahneman (1974). This

phenomenon is call ed anchoring.

Shiller (1999) suggeststhat the same phenomenonmight be observed infinancial markets, where
investors, lacking a better rule for predicting returns or future prices, use the current values as
abench-mark for their assessments. ”Values in specul ative markets, like the stock market, are
inherently ambiguous. Who would know what the value of Dow Jones | ndustrial Average should
be? [...] Thereisno agreement upon economic theory that would answer these questions. Inthe
absence of any better information, past prices (or asking prices or similar objectsor other smple
comparisons) are likely to be important determinants of prices today” , Shiller (1999, p. 1315)
writes. But thisis exactly the way in which a case-based investor uses information of smilar

past cases to make forecasts about future prices and returns.

Eff ects of anchoring are indeed found in financial markets. Shiller, Kon Ya and Tsutsui (1996)
analyze the price crash of the Nikkei between 1989 and 1992. When asked to assess whether
the stock prices in Japan were too high, American and Japanese investors gave significantly
different answers on average. Shiller (1999, p. 1316) suggests that this effect may be due to
anchoring: whereas American investors used the American stock prices (which were relatively
low at thetime) asa bench-mark and concluded that Nikkei wasovervalued, Japanese investors
were used to high price-earning ratios and claimed that the stock prices ref lected correctly the

fundamental values. Further evidence of anchoring in financia markets is provided by Shiller

21 Should the expected direction of the next price movement be different from 0, there would be risk-neutral
investors who would use this information to buy (for an upward movement) or to sell the asset (for adownward
movement). Hence, the price would rise or fall and the excess returns present in the market would disappear. See
Samuel son (1965) and Manddbrot (1966) for analytical proofs of the efficient market hypothesis.
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(1984).

Shiller (1990) further finds that the models used by investors to predict future prices are ” ex-
tremely smple”, e.g. " notion that large price drops should be followed shortly by a reversal”
and the usage of " more established theories” is”rare”, (Shiller 1990, p. 57). The case-based

decision theory allows to incorporate such |earning from past price patternsin aformal model.

1.4.2 ReferencelLeveds

Case-based decisions require a specification of an aspiration level, which has two functions:
it determines the ex-ante expectations of the investors about the performance of the available
acts and it defines which utility realizations are considered satisfactory. Whereas the usage of
an aspiration level in the framework of expected utility maximization would not inf luence the
behavior of adecision-maker??, case-based decisions are sensitive to changes of the aspiration
level, since they alter the evaluation of results aready experienced. Although not modelled in
the standard decis on theory, ref erence and aspiration levels seem to inf luence deci sion-making

in experimenta and real markets.

Northcraft and Neale (1987) find that anchoring might distort the evaluation of aresult already
achieved. Rabin (1998, p. 13) states: ”Instead of utility at time ¢ depending solely of present
consumption [...], it may aso depend ona” reference level ’[...] determined by factorslike past

consumption or expectation of future consumption” .

Empirical studies show that such kind of behavior isnot atypical for financial markets. DeGe-
orge, Patel and Zeckhauser (1999) find that managers adjust earnings to meet threshold levels
such as zero, past levels and level forecast by analysts, suggesting that investors are sensitive
not only to the level of actual earnings, but also to deviations from a certain reference level.
Richardson, Teoh and Wysocki (1999) note that a similar phenomenon exists in the analysts
forecasts, which are pessimistic in the short run, so that prices are likely to exceed the forecast
level. Lewellen, Lease and Schlarbaum (1977, p. 308) report that 42% of the investors they
interview choose major public indices as a criteriato eval uate portfolio perf ormance, whereas
" another 45% report[...] that they had internalized instead a personal standard of return as an

22 Theintroduction of an aspiration level is equivalent to alinear-affine transformation of the von Neumann Mor-

genstern utility function, which does not influence the preferences of an expected utility maximizer.
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amal gam of experience, evidence and concepts of "fair” yields’.

The empirical findings show that areference or aspiration level can influence decisions in fi-
nancial marketsin twoways. first, it may change evaluation of an outcome al ready experienced
and second, it provides a bench-mark for forming expectations. Both roles of aspirations are

captured by the case-based decision theory.

Both passages cited above suggest that the aspiration level depends on past evidence observed.
The case-based decision theory allows for such updating of the aspiration level. Although, the
aspirations have to be chosen arbitrary at first (Snce no information about possible utility real-
ization is avail able), the case-based investorswill in general update it in away that ref lectstheir
past experience. However, sincethere islittle evidence on how reference level s are determined,
see Rabin (1998, p. 15) and since there are few works trying to describe economic behavior,
when reference level sare updated over the time?, we must be careful when interpreting results,

achieved by assuming some kind of updating of the aspiration level.

143 RepresentativenessHeuristic

The case-based decision theory further impliesthat in theinitia periods the decision-maker re-
lieson arelatively small series of data he possesses and acts as if it were representative of the
populationfromwhichitisdrawn. Thusat earlier periodsa case-based decis on-maker behaves
as if he were chasing a trend in the price movements. This phenomenon is called representa-
tiveness heurigtic: Tversky and Kahneman (1974) find that peopletry to categorize events and
infer probabilities from this categorization. A typical error resulting from this kind of behav-
ior isto assume that small samples accurately represent the population, Tversky and Kahneman
(1971). Peopletend to see patternsin short random sequences and rely on these patterns when
making decisions. ”Because we underestimate the frequency of a mediocre financial analyst
making lucky guesses three times in arow, we exaggerate the likelihood that an analyst is good,
if sheisright threetimesin arow”, Rabin (1998, p. 25). Although a case-based decision-maker
does not think in terms of probabilities, with little experience his behavior can initially exhibit

the representativeness heuri stic.

23 Seefor instance Ryder and Heal (1973), who assume a first-order autocorrelation processfor the reference level

and Duesenberry (1949), who assumes, that the aspiration level at agiven periodis set to be the highest utility level
achieved up tothis period.
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Krall, Levy and Rappoport (1988) report an experiment cons sting in choos ng an optimal port-
folio of three risky assetswith known means, variances and covari ances, whose returns were not
serially correlated. The participantsin the experiment were students, who had taken a one-year
coursein statistics. However, the students seemed not to rely on the statistical information pre-
sented to them. Instead, they used the time series available, trying to infer some patterns and
trends from past returns.

Such kind of behavior is similar to the one suggested by the theory of Gilboaand Schmeidler
(1995). Sinceacase-based decision-maker hasno model of the structure of the economy, know|-
edge of parametersisof little use for him. Hence, it is possible that his predictions about future
returns and, therefore, his behavior depend on information which is not representative for the

process of asset returns.

Shiller (1990, p. 59) finds this kind of behavior in the housing markets of three major cities
inthe USA, in which housing prices have recently risen significantly: "1t is peculiar, then that
there is so little apparent interest in quantitative data about fundamentals. There isinstead a
feeling in most cities that housing prices cannot decline”. But the representati veness heuristic
seems to be common in financial markets, as well. Shiller (1990, p. 63) reports that 47% of
the individua investors and 28% of the ingtitutional investors he interviewed find that a 15%
jump in the price of a share recommended by a broker isa "strong” or ”positive” evidence for
the broker’s ability to choose profitable investments. Further evidence is provided by DeBondt
(1993), who findsthat small investors' sentimentsfollow price movements. Bange (2000) finds
that small investors tend to use feedback strategies, i.e. buy shares which have performed well
in the near past. Ippolito (1992) and Sirri and Tuffano (1998) present evidence that investors
extrapolate the performance of mutua funds. By assuming that the decision-maker bases his
decisions on small (possibly not representative) samples in the initial periods, the case-based

decision theory is abl e to capture such effects.

144 Bedidf Perseverance and Confirmatory Bias

The similarity function of a decision-maker states which cases are considered to be rel evant for
the problem at hand and determines the weights of the past utility realizations for the eval uation

of each act available. If some of theseweightsare0, the decision-maker might neglect available
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information, which objectively seen could improve his decision, see chapter 3. If some of these
wei ghts are even negative, then positive past evidence may be interpreted as negative. This can
lead to phenomena such as belief perseverance, i.e. refusal to process information, which may
oppose one'sviews, and confirmatory bias, which describes thefact that people tend to interpret

additional evidence as supporting their beliefs.

The phenomena of belief perseverance and confirmatory bias have been observedin the experi-
ments of Lord, Ross and Lepper (1979), who provide evidence that identical information given
to people who aready differ in their opinion leads to even more severe polarization. Smilar
results are documented by Plous (1991) and Darley and Gross (1983). The more complex the
problem and the more ambiguous the evidence that subjects receive, the more pronounced are
the effects, Lord, Ross and Lepper (1979, p. 2099).

Applied to case-based decisions, belief perseverance means that an investor, who has aready
come to the conclusion that a portfolio cvisa” good” choice, may just ignore information about
assetsyielding higher returnsthan his portfolio, for instance by assigning these casesasimilarity
weight of 0. Alternatively, subject to the confirmatory bias, he may apply negative similarity
wei ghts to these cases and therefore interpret this information as justifying his actual choice.
Odean (1999, p. 1295) finds that investors " do not [...] routinely look up the performance of
a security they sold several months ago and compare it to the performance of a security they
bought in itsstead”. Hence, a decision-maker may persist in following an unprofitable strategy,

despite the fact that contrary evidence is easily available to him.

145 Learning

The next point to be made concerns learning. Economists usually argue that biases, found in
experiments are eliminated, once subjects become more experienced in solving the particular
kind of problems, or once their mistakes are explained to them. Hence, (at least) in the long run
economi ¢ agents should be expected to behave rationally. For acase-based deci s on-maker this
need not be the case, as subsequent analysis will show. Is it plausible to assume that | earning

could lead to suboptimal decisions?

Experiments show that learning does not necessarily lead to application of the principles learned.

Kahneman and Tversky (1982), aswel | asthe experi mental results of Kroll, Levy and Rappoport
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(1988) find that statistical knowledge does not help subjects to perform better in experiments.
Wilson and LaFleur (1995) demonstrate that even a conscious reasoning process per se does not

necessarily lead to better decisions.

" Learning can even sometimes tend to exacerbate errors’, notes Rabin (1998, p. 32), for in-
stance, by making the decision-makers overconfident. ” Additional information can lead to an
illusion of knowledge and foster overconfidence, which leadsto biased judgements’ , write Bar-
ber and Odean (2001 (b), p. 6). Thisis confirmed by severa studies, see for instance, Hoge
(1970), Slovic (1973), Peterson and Fitz (1988). Barber and Odean (2001 (a), 2001 (b)) find
that certain classes of investors, to whom large data bases are available, tend to become over-

confident and to lower their profits significantly.

Hence, especially in complex systems, such as financial markets, which, according to Odean
(1999, p. 1295), are” anoisy placetolearn”, it cannot be expected that decision-makersbehave
fully rationaly even if they have been making similar decisions for along time. The case-based
decisiontheory alowsto examinetheinfluence of parameters, such as aspiration level, smilar-
ity function and memory, on learning and indicate conditions under which optimal learning is
possiblein the limit. On the other hand, it also alows for patterns which are incons stent with

rational learning and might therefore better describe empirical evidence fromfinancial markets.

1.4.6 Learningthrough Induction

A different issue | would like to address concerns the type of learning modelled by the case-
based decision theory. It has already been mentioned that a case-based deci s on-maker learns
from his experience about possi ble utility reali zations and their frequencies. Instead of starting
with a predefined set of models of the environment and trying to learn which of these modelsis
correct, the case-based decis on-maker reasonsinductively using asubj ective similarity rel ation.
Thiskind of implicit induction dati ng back to Hume (1748) i sbased on hisclaim that "fromsim-
ilar causes we expect similar effects” and represents a starting point for the case-based decision
theory, Gilboa and Schmeidler (2001 (a), p. 184). Differently from the so called explicit induc-
tion introduced by Wittgenstein (1922, 6.363), which consistsin ” accepting as true the simpl est
law that can be reconciled with our experience”, it does not define rules or laws. Although

rules can be implicitly present in the case-based reasoning, for instance as a summary of multi-
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ple cases or as an indicator of smilarity between cases, see Gilboaand Schmeidler (2001 (a), p.
107-108), rule-based reasoning is cons dered | ess flexibl e than the case-based decision theory,

since it does not give any recipe for behavior in case arule is contradicted by experience®?>.

It iswell known that induction does not give asati sfactory answer to the question of how knowl-
edgeis acquired from the point of view of the philosophy of science, see Musgrave (1993). Nev-
ertheless, for the purpose of economic theory it creates a new possibility to model knowledge
acquisition. Instead of learning being purely deductive, as in the expected utility theory, where
the set of consistent models is constrained more and more with incoming information, but in
which no new models outside the initial set can be learned, an inductive method is proposed,

which does not rely on prior structural knowl edge.

Poincare, see Keynes (1921, p. 285), distinguishes two notions of ignorance. Probability it-
self representsignorance, but thisignorance concerns only the outcome of a stochasti ¢ process.
Poincare compares this kind of ignorance to the ignorance about the laws governing processes,
which are considered deterministic per se. It seems that whereas the standard decision theories
take the nomologic knowl edge of laws for granted and allow learning only about facts or prob-
abilities by means of logic conclusions, (ontologic knowledge), the case-based decis on theory
model s exactly the acquisition of nomologic knowledge®. In fact, the expected utility theory
treats these two types of knowledge identically. The same framework is used to model |earn-
ing about aredization of arandom variable and learning a probability distribution or learning
amodel of an economy. The conceptual problem that the expected utility theory facesin this
respect is that new structural meta-knowledge is required each time anew metalaw hasto be

learned.

| am far away from concluding that the case-based decision theory is superior to the standard
decision theories and especially to expected utility maximization. In order to draw a smilar
conclusion, one should ask the question whether the case-based decision theory itself allows
for differentiating between nomological and ontologica knowledge. The inductive learning

24 Inthis sense rule-based reasoning is similar to Bayesian updating, which also does not specify the behavior in
case an unforeseen event (with aprior probability of 0) occurs.

25 Gilboa, Lieberman and Schmeidler (2004) provide a comparison of the performance of case-based and rule-
based reasoning based on the housing market in Td Aviv. They demontsrate that case-based reasoning outperforms
rule-based reasoning for relatively small and for relatively large data sets. In contrast, rule-based reasoning is
superior for data sets of intermediate size.

%6 This dassification of knowledgeisto be found in Keynes (1921, p. 288).
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model ed by the case-based decision theory is constrained by the fact that similarity perceptions
are used to make decisions, but similarity relations only become known with experience?’. But
then it follows that the case-based decision theory does not conceptually differentiate between
learning about facts and learning about laws, either. Hence, the case-based decision theory
allowsfor an aternative way of | earning, which cannot repl ace but only compl ement themethods
of the expected utility theory. Applying thistheory ina specific economic model can, therefore,
provide new ing ghtsinto the functi oning of economic systemsand | ead to abetter understanding
of the case-based decisiontheory itself.

1.5 Overview of the Thess

It has been shown that the case-based decis on theory can incorporate some important psycho-
logical biases, which human behavior exhibits. Furthermore, the case-based decision theory
allows to model decisions which are not based on a definition of states of nature and on the
knowl edge of state-contingent payoffs. Hence, it offers an alternative framework for modelling
decisionsin complex systems, such as financia markets. This thesi s applies the case-based de-
cison theory to financial markets, the first aim being to describe the behavior of case-based
investors. This is donein the context of an individua portfolio choice problem, as well asin a
mar ket envi ronment with endogenous prices. Thethesis studies the question of how the choices
of case-based investors differ from those of expected utility maximizers with correct beliefs.

Further, the dynamic of asset prices and portfolio choicesis analyzed.

The second am of thisthesisis an explanative one. The qualitative implications of case-based
decision-making in financia markets are compared to the empirically observed phenomena, in
order to study whether the presence of case-based i nvestors coul d explain some of theempirical

findings.

Afterwards, the somewhat nor mative issue of performance of case-based decisions relative to
expected utility maximizationisdiscussed. The analysisaddressesthe question of whether case-
based i nvestors can survive and inf luence market prices in the presence of expected utility max-

imizers.

In order to answer these questions, thethesisis organi zed asfoll ows. Chapter 2 addresses some

2T Gilboaand Schmeidler (1993) call this effect second-order induction.
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conceptual issues connected with the application of the case-based decision theory to financial
markets. It first discussesthe descri pti on and oper ati onali zati on of the exogenous characteristics
of the decision Situati on, such asthe decis on problem, the set of avail able actsandthememory of
adecision-maker. It isfound that case-based decisionsare sendtive to the particul ar description
of problems and acts, since it might influence the perception of similarity. | discuss whether
the case of endogenous memory (i.e. memory that contains only cases actually experienced by
the investor) as opposed to exogenous memory (i.e. cases in memory are independent of the
decision made by the investor) is more interesting and appropriate in the context of financial
markets. | further address the evol ution of memory inthe context of an economy with financial

mar kets populated by case-based decision-makers.

Further, the concepts derived by means of axioms are considered. The literature on aspiration
levels and their adaptation in economic environment is sparse and few adaptation rules have
been formulated and studied. 1, therefore, decide to concentrate on constant aspiration levels
throughout mast of thethesis and to analyzetheinf luence of aspiration level s by means of com-
parative statics. Adaptation of aspirations is used only in the context of an individual portfolio
choice problem in order to test the robustness of the results achieved and to explore whether the
results of Gilboaand Schmeidler (1996) can betransferred to a decision problem with similarity
considerations.

The smilarity function isthe last i ssue discussed in this chapter. | suggest to use the Euclidean
distance between portfolios or aternatively between price-portfolio pairs to measure smilarity.
In aportfolio choice problem with exogenous prices| suggest to cons der only similarity between
acts(portfolios), whereas problemsare considered identical . | namarket environment, similarity
between problem-act / price-portfolio pairsisintroduced. The similarity function is assumed to
decrease in the Euclidean distance, take on values between 0 and 1 and assign asimilarity of 1
to identical objects. No other assumptions on the similarity function seem to be justified elther

by the case-based decision theory, or by the analysis of the decis on situation.

Chapter 3 concentrates on the analysis of a portfolio choice problem with case-based decisions.
In afirst instance the results derived by Gilboaand Schmeidler (1996) and Gilboa and Pazgal
(2001) are presented and interpreted in the context of a portfolio choice problem. Gilboaand

Schmeid er (1996) find an adaptation rule which guarantees that a case-based deci sion-maker
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who acts in a stationary environment learns to choose the optimal (from the point of view of
expected utility maximization) portfolio in the limit. Gilboa and Pazgal (2001) analyze the
inf luence of a constant aspiration level on repeated choicein a stationary environment. They
show that high aspiration levels lead to constant switching among available acts. In chapter
3, these results are reinterpreted in the context of portfolio choice. Investors who update their
aspiration level in the ”ambitious-realistic” way proposed by Gilboa and Schmeidler (1996)
eventual ly |earn to make correct decisons. I nvestorswith high constant aspiration levels switch
constantly among the avai labl e portf olios, never | earning to choose the optimal one. Hence, they
trade too much and, by failing to hold the optimal portfolio all the time, they loose money in
general. Case-based investors with high aspiration levels, therefore, exhibit behavior similar to
those of ” overconfident” investorsinthe sense of Odean (1998). However, differently from the
overconfident investors, who overestimate the meaning of incoming information, the behavior
of case-based decision-makers is predetermined by the negative evaluation of the past returns

achieved..

Investors with low constant aspiration level in genera exhibit a constant but suboptimal behav-
ior. Since they find thereturns of their portfolio satisfactory, they do not haveanincertive to try
another one. Low aspiration levelscan therefore expl ain such effects asholding underdiversified

portfolios and especially the home-bias, aswell as unused arbitrage possibilities.

Similar results are achieved by assuming that the investor sets his aspiration level equal to the
maximal or totheminimal utility realization achieved, or to alinear combination of both. If the
wei ght put on the maximal utility realization is sufficiently high, theinvestor behaves as if he
hasarelatively high aspiration level inthelimit and viceversa. Hence, theresults are robust for

thiskind of aspiration level updating.

Further analys sshows how theresultschange, if theinvestorsare abl eto observe therealizations
of al portfolios at each time and not only of the portfolio actualy chosen. If the investor is
allowed to make dbservations for an infinitely long time, he learns (given thei.i.d. structure
of returns) to choose the best portfolio in the limit. However, if theinvestor is only allowed to
observe all realizations for afinite number of periods, this hel ps him to act optimally only if his
aspiration level is relatively low. If his aspiration level is chosen sufficiently high, learning for

afinite period of time does not improve his performance.
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Thisanaysisis carried through with avery special form of similarity function — it is assumed
that all problems are identical and all acts are completely different from each other. Hence,
the utility realization, given that a portfolio is chosen does not contain any information used to
evauate the perf ormance of other portfolios. Thisassumption is relaxed in section 8 of chapter
3in order to analyze the influence of smilarity cons derations on portfolio choice. It is again
assumed that problems are identical, but the similarity between portfolios / acts is modelled
by a function which is decreasing in the Euclidean distance between portfolios situated on a
smplex. It is assumed that the ssimilarity function is concave in the Euclidean distance. First,
the case of constant aspiration level isconsidered. It isshown that acase-based investor chooses
a diversified portfolio in each period only if his aspiration level is sufficiently low. For high
aspiration levels the investor switches to one of the undiversified portfolios in finite time and

never diversifies again af terwards.

Next, the issue of learning is analyzed. For the " ambitious-realistic’ rule proposed by Gilboa
and Schmeidler (1996), it is shown that the decison-maker learns to choose the best non-
diversified portfolio, but his choice is not globally optimal in the limit. Crucial for this result
is the assumption of aconcave similarity function. Allowing for convexity regions in the sm-
ilarity function makes the investor experiment among more portfolios and improves his limit
choice. Nevertheless, the learning is not optimal but in the limit case, in which the similarity
function col lapses to the identity indicator function, asin the model of Gilboa and Schmeidler
(1996).

The results of this chapter show that athough investors making case-based decisions can learn
to make optimal choices if their aspiration level is updated in a specia way, they in general act
suboptimally. Moreover, their behavior can help explain some of the phenomena observed in

real and experimental asset markets.

The next step is, therefore, to model a market with case-based decison-makers, the first am
being to describe how prices and portfolio holdings evolvein such a market. In asecond step,
it will beinteresting to know whether the presence of case-based decision-makersin the market

can explain empirical phenomena, which are incons stent with expected utility maximization.

The analysis of a market presupposes a definition of a competitive market equilibrium in an

economy populated by case-based decision-makers. In chapter 4, an asset market equilibrium
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inthe context of an overlapping generations (OLG) economy popul ated by case-based decision-
makersisintroduced. It is shown that the equilibrium exists under mild conditions imposed on
the utility function and theinitial endowmentsof theoldinvestorsin period 1. The uniqueness of
the equilibrium is, however, not guaranteed. Moreover, itisdemonstrated that the demand of the
case-based decision-makers can be very insensitive to price changes when prices are low. This
leads to the existence of degenerate equilibria, in whichthe pricesof someof the assetsare0. In
equilibrium, these assets are not demanded. It is possible to state conditions which exclude the
existence of such equilibria, or at least insure that a non-degenerate equili brium exi sts, but these
conditionsare not always economical ly meaningful, sincethey requirethe existence of investors
with very low aspiration level s. Furthermore, the existence of such degenerate equilibria might
help model and explai n phenomenasuch as arising and bursting of bubbles or the pers stence of

arbitrage possibilitiesin the market.

Chapter 5 studies the asset price dynamicsin an OLG model with case-based decision-makers.
At firgt, it isassumed that the deci sion-makers can only choose between two undiversified port-
folios— one completely riskless, the other consisting only of risky assets. The memory of an
investor contains only cases actually experienced by his predecessors with the same aspiration
level. It turns out that the memory and the highest aspiration level in the economy are the ma-
jor factors which determine the dynamic of prices and portfolio holdings in equilibrium. With
one-period memory the economy remains in a stationary state with constant asset prices and
constant portfolio choices over thetime, as long asthe aspiration levels are relatively low. The
portfolio holdingsarenot necessarily optimal at the equilibrium prices and the price of the risky
asset in genera differs from the price under rational expectations. Higher aspiration level s lead
to two-state-cycles, which can be stochastic (for intermediate aspiration levels) or determinis-
tic (for high aspiration levels). The price dynamic exhibits small bubbles. a one-period price
rise, which does not depend on the value of the dividend redlization, is followed by a (one-
period) price fall, caused by alow dividend realization. Predictability of asset returns obtains
in the model, since the price rise does not depend on the dividend reali zations. The case-based
decision-makers with high aspiration levels, who constantly switch among the availabl e port-
folios, cause excess price volatility. Moreover, arbitrage possibilities can persist in a market
with case-based investors. Itisfound that high aspiration level shave the same effects on prices

as overconfidence: they increase the trading volume and the price volatility. Furthermore, the
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traders with high aspiration levels incur losses, since they tend to buy at high pricesand sell at

low prices.

The analysisisthen carried out for the case, in which the memory of the investors encompasses
all past casesin the economy from period 0 on. The price dynamic and the portfolio holdingsin
equilibrium are determined. Theresultsfor different aspiration level sare similar to those derived
with one period memory: whereas|ow aspiration level slead to satisficing behavior and constant
prices, high aspirationsimply stochastic cycles. If, however, the highest aspiration level in the
economy is chosen appropriately, theinvestors with this aspiration level learn to choose the op-
timal portfolio asthe timeevol ves. Hence, although the economy exhibitstwo-state cycles, with
time the cycles vanish and the investars with high aspirations behave optimally at the equilib-
rium asset prices. Nevertheless, it is not guaranteed that the asset price coincides with the price
under rational expectations. Indeed, the investors with lower aspiration levelsin general fail to
learn to behave optimally. Hence, in the stationary state of the economy the expected returns of
the risky asset might be too high, compared with the returns of the riskless bond and still a pos-
itive share of the investors would be holding bonds in each period of time. Thisresult, which
isindependent of the curvature of the utility function of the case-based decision-makers, might
help to explain the equity premium puzzle. The analysis of an asset market with case-based in-
vestors further allows to generali ze the theorem of Gilboa and Pazgal (2001), formul ated for an

individual choice problem, to amarket environment..

In anext step, the assumption that the memory of the investors can contain only cases actually
experienced by their predecessors with the same aspiration level is relaxed. | construct an ex-
ampl e, in which investors can choose between the two undiversified portfolios and the market
portfolio. The market portfolio dominates weakly the two other available portfolios. Allowing
the investors to observe the utility realization of the market portfolio in each period of time, in
addition to the cases actually experienced, leads to the choice of the market portfolioin thelimit,
but only if the aspiration level is chosen sufficiently low. For relatively high aspiration levels,
the non-diversified portfoliosare aimost surely chosen with strictly positive frequencies. Hence,
hypothetical reasoning need not lead to optimal choicesin general, especialy, if no dominance

relationship is present among the acts available.

The assumption that the investors can only choose between the two undiversified portfolios
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seems to be too severe. Therefore, section 6 of chapter 5 considers the case in which diversifi-
cation isalowed and a similarity function is used to evaluate portfolios not chosen before. In
contrast to chapter 3, the similarity function is now assumed to depend not only on the portfo-
lio chosen, but also on the problem encountered, where a problem is associated with the price
of the risky asset inthe economy?. The results do not change qualitatively, aslong as the simi-
larity function is concave. However, with similarity considerations a bubble on the ri sky asset
can endogenoudly emerge and persist for a number of periods. The price of the asset risesin
periads, in which the dividend realization islow, which can explain phenomena such asthe in-
ternet bubbl e, during which no dividend paymentsoccurred. The bubble bursts with probability

1 infinite time and never reappears.

Having described the price dynamic in an economy populated solely by case-based decision-
makers, a somewhat normative approach is adopted next in order to discusstheissue of survival
of case-based decision-makers in the market. This issue is crucial for the understanding and
interpretati on of the descriptive results obtained. Indeed, the influence of case-based investors
on prices can be persistent over time only if they are able to survivein afinancial market in the
presence of expected utility maximizers (or even of expected utility maximizers with rational
expectations). Only inthis case would it be meaningful to explain the emergence of empirically
observed phenomena by the presence of case-based investors. Should, on the other hand, the
case-based decis on-makers vanish with time, then they could only have temporary influence
on the market. In chapter 6, therefore, | model an economy popul ated by case-based decision-
makers and expected utility maximizers. Whereas the share of wealth invested into the risky
asset by the case-based decision-makers is increasing in its price, this shareis falling in the
priceof theasset for the expected utility maximizers. A replicator dynamic isintroduced, which
selects for the type of investors performing better than the average of the society. The state in
which only expected utility maximizers are present in the market is stationary for all values of
the parameters. For relatively low aspiration levels, there are also stationary states in which
the case-based decision-makers and the expected utility maximizers coexist in the market (in
arbitrary proportions), hold identical portfolios and achieve identical returns in each period of

time. However, these stationary states are empirically indistingui shable from an economy with

28 This assumption seems appropriate, since all other parameters describing the portfolio choice problem of an

investor remain constant over time.
29 This assumption is only needed in the case of long memory.
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expected utility maximizers with rational expectations.

I, therefore, study the dynamic of the systemfor higher aspiration level sand analyze the stability
of the stationary state, in which only expected utility maximizers are present in the market.
Under the assumption of alinear utility function it is possible to identify cases in which the
proportion of the expected utility maximizers decreases in expectation in some surrounding of
the stationary state. Hence, the stationary state is not stabl e and the case-based decision-makers
surviveamaost surely in apositive proportion. Thisisdueto thefact that near the stati onary state
the expected returnsof both types of investorsare equal, whereas the portfolio of the case-based
decison-makersislessrisky. Since the replicator dynamic is concave, it selects for the strategy

of the case-based decision-makers.

If the aspiration level of the case-based decision-makers is relatively high, then they can cause
excess ve vol atility, bubbles and predictability of returns in a market in which the share of the
expected utility maximizersis not too large. For relatively low aspiration levels, the case-based
decision-makers can drive the expected utility maximizers out of the market for afinite number
of periods. In these periods arisky asset with positive fundamental valueis traded at a price of
0. Hence, arbitrage possibilities are present in the market, which can be used by the expected
utility maximizers, even though their weal th shareis 0. Inthefirst period in which therisky asset
pays a high dividend the share of the expected utility maximizers recoversto adtrictly positive

level.

The assumption of alinear utility function is next relaxed. It isfound that for any coefficient of
relativerisk-aversion between [0; 1), there are val ues of the parameters, for which the case-based
decision-makers survive aimost surely in the market. Only expected utility maximizers with a
logarithmic utility function are able to drive the case-based decision-makersto extinction for all

values of the parameters.

Chapter 7 summarizes the results of the thesis and outlines directions for future research.
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Chapter 2. Conceptual |ssues

The case-based decision theory has been mainly discussed in the literature as an axiomatic the-
ory for decision-making under structural ignorance, see Gilboa and Schmeidler (2001 (a)) . It
has been applied to economic problems in severa contexts, but not to financial markets. The
application of the case-based decision theory, especialy in a market environment and in the
context of financial markets poses some conceptual issues, which have to be discussed before

congtructing a formal model.

The axioms which support this theory and were presented in the introduction show that the
elicitation of preferences and similarity perceptions from the choices of the decision-maker are
dependent on severa el ements, which are assumed to be given in the derivation of the theory.
Such elements are the set of avai labl e acts and the probl ems whi ch the decision-maker facesand
their exact description, aswell as the composition of thememory. Inamaodel, in which the case-
based decision theory isapplied to an economic problem, the specifi cation of these el ementshas

to be done in advance and will play an important role for the results derived.

A second i ssue concernsthecharacteristics of acase-based deci sion-maker, which can be elicited
by the meansof theaxioms, i.e. his aspiration level and hissimilarity function. Up to my knowl-
edge, there are few empirical results on aspiration level adaptation and similarity perceptionsin
economic environment, see Lant (1992) for a study on aspiration adaptations and Zizzo (2002),
Buschenaand Zilberman (1995, 1999) and Rubinstein (2003) for experiments on similarity per-
ceptions®. None of these works discusses the problemsin the context of asset markets. Since
empirical evidence is missing, the question of how aspiration levels are chosen, what rules for
adapting the aspiration level aremodeled and how similarity considerations can be i mplemented

into amodel of afinancial market will have to be discussed.

Up to now the case-based decision theory has only been applied to individual choice problems.
Embedding case-based decisionsinto a market environment requires establi shing a connection
between prices and decisions, which will enable defining a market equilibrium. Such a defi-
nition will especialy concern the specification of the memory of an investor and its possible

30 Thereis, of course, a vast experimental work done by psychol ogists on similarity perceptions. | will not make

an attempt to review thisliterature here, but see Tversky (1977) for references.



dependence on prices and individua choicesin the economy.

2.1 Problemsand Acts

The case-based decision theory describes a decision situation in terms of two components —
the problem faced and the set of available acts. The memory of a case-based decisi on-maker,
which determines his preferences, is also formul ated in terms of problems and acts. Therefore,

the description of these two componentswill play amagjor role for the decision to be made.

The problem is identified with the description of the decision situation. However, this descrip-
tion does not consist of states of nature, asin the expected utility theory. Nor does it include the
possible realizations of an act, as is usually assumed. Hence, in contrast to the set of states of
nature in the expected utility theory, aproblem cannot be acomplete description of the Situation,
"leaving no relevant aspect undescribed”, Savage (1954, p. 9). The problem can be possibly
seen as aformul ation of the aims of the decis on-maker, combined with the description of rele-
vant characteristics of the situation, about which the decision-maker isinformed. Consider for
instance the problem faced by an investor in afinancial market. It could bedescribed as: ”invest
acertain amount of wealth today, so as to enable future consumption”. Note that maximization
of expected payoffs or utility cannot be embedded as an aimin this problem, since the investor
wouldn’'t have the knowl edge to sol ve such a problem. True, he will be searching for an ” opti-
mal act”, but this eval uation will not take place based on the prospects of the act, about which

he has no information, but on the basis of cases present in his memory, i.e. on past realizations.

This problem formul ation stated aboveis quite vague and doesnot allow to distingui sh between
stuationsinwhich aninvestment hasto be made. It can beused if al problems encountered are
regarded as identical, as for instance in Gilboaand Schmeidler (1996, 1997 (b), 2001 (b)) and
Pazgal (1997). However, it clearly does not capture important characteristics of the decision
situation, which could help the investor make a decison. A problem could be, for instance,
characterized by the time at which thedecisionismade, the wealth to beinvested, the prices for
consumption goods in the economy, as well as the asset prices, the investor engaged in solving

the problem®, in short, by any featurewhich isindependent of the acti onstaken by the decision-

31 This becomesrelevant, if the decision maker has to rely on the experience of other investors.
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maker®. So, for instance, Blonski (1999, p. 63) and Krause (2003) define a decision problem
by the period in which the decision is made and the agent involved in the decision-making
process. Jahnke, Chwolka and Smons (2001) represent a problem by the aim of the firm (its
optimization problem) combined with the past inf ormation avail able about choicesand inferred

parameter val ues.

Inthisthesi s, aproblem will in genera be characterized by the (rather vague) aim of theinvestor
to obtai n future consumption by making investments today. The period in which the decision is
made, the personality of the investor (captured by his aspiration level), as well as asset prices
will be used to differentiate among probl ems in some of the models. The dependence on thetime
period might account for the fact that investors have limited memory and can, therefore, only
remember a certain number of recent cases. Alternatively, it might capturetheideathat investors
regard the environment as changing and rely only on relatively recent cases to make decisions.
The personality of an investor involved in a certain case might determine the relevance of his
experience for the choice of another investor or the credibility ascribed to this evidence. Asset
pricesrepresent animportant part of the description of the market situation. Buyingan assetina
booming market might be quite different from buying the same asset when the prices decrease.
Therefore, it seemsto methat pricesshould al so enter the description of aproblemin the context

of afinancial market model.

Once included into the description of a problem, the features listed above will influence the
similarity perceptions of an investor. Sincel assume that the similarity with respect to investors
personality and with respect to the period of timeat which the problem is encountered is either 0
or 1 it ismore convenient to capture these factors by the contents of the memory of an investors.
Hence, the memory contains only cases in which problems assigned a smilarity of 1 to the
current problem are encountered. In contrast, asset prices enter explicitly the definition of a
problem in the context of an asset market model and, therefore, appear as an argument of the

similarity function.

The description of actsis not | ess problematic than the description of the problem. Nevertheless,
the question of how acts can be ascribedto agivendeci sion situation, aswell aswhich acts should

be consideredrelevant, isaquestion, which posesitsel f in the applications of any decision theory:.

32 Likethe states in the expected utility theory, the problem is seen as exogenously given and independent of the

act chosen by the decision maker.
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Therefore, it is solved in the same way as in the applications of the expected utility theory to
financia markets. | identify actswith portfalios to be chosen. Redtrictions, such as short sales
or diversification constraints, are introduced in some of the models and the inf luence of such

restrictions i s discussed.

Notice, however, the difference between the case-based decision theory and the expected utility
representation of acts. In the latter, a portfolio can always be identified by a vector of state-
contingent outcomes. In the case-based decision theory, on the contrary, a portfolio is only
characterized by its composition, by its perceived similarity to other portfolios and by its past
returns contained in the memory. Hence, differently from the expected utility theory, the case-
based deci sion theory ismuch more sensitiveto eff ects of label ling. Sincethe similarity function
is elicited in a given context (with formulated past problems and acts chosen), which does not
comprise the utility achieved, the decisions might be very sendtive in regard to changing the
"nicknames” of the acts. The expected utility theory doesnot all ow for such frame-dependency:
all acts haveto beeval uated based only ontheir state-contingent outcomes, labels areirrelevant
for the decision. Similarly, the model of Ead ey and Rustichini (1999), whichisclose in spirit to
the case-based decision theory, explicitly prevents |abelling effects by introducing the require-
ment that each act is evaluated solely by its past utility redizations. On the one hand, since
framing of decisionsis observed in experiments, see Tversky and Kahneman (1981), it might
be seen as an advantage of the case-based decision theory to be able to accept framing in ab-
sence of more structured i nformati on about the acts, than their ” nicknames” . On the other hand,
however, the dependence on label smakesaforma model much lessrigorous and theresultsob-
tai ned become unequivocal if multiple act descriptions appear natural inthe context of a model
discussed.

2.2 Memory

The memory of the decisi on-maker represents theinformati on he useswhen solving thedecision
problem at hand. The memory contains past problems, choicesmade and utility reali zati ons ob-
tained. In deriving the preference relation from the set of axioms the memory isassumed to be
exogenoudy given. In real situations, however, the memory will not be exogenous, but will be

determined by the previous choicesof the decision-makers. In this case, | will speak of endoge-
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nous memory. The analysi s of decisions with exogenous memory is relatively straightforward
in the case-based decision theory and i s described by maximization of the cumulative utility. In
anindividual choice problem, learning the random realizationsof all availableacts at each pe-
riod of time, leads to optimal choices in the limit, as long as the environment is stationary, see
proposition 3.8, chapter 3. Exogenous memory is used by Gayer (2003), who assumesthat all
possibl e lotteries are present in the memory in such away that the observed frequencies of their
realizations ref lect the actual probability distributions. However, most of the work concentrates
on decision-making with endogenous memory. So, for instance, Gilboa and Schmeidler (1996,
1997 (b), 2001 (b)), Pazgal (1997), Gilboaand Pazgal (2001) all use the cases actually encoun-
tered by adecision-maker to construct his memory. On might argue that this assumption requires
adecison-maker to start with absol utely no information in period 1. An aternative interpreta-
tion could be, however, that the experience possessed by the decision-maker does not allow him
to differentiate between the available acts(i.e. he isindifferent anong them). Inboth cases, this
assumption seems to be close in spirit to the Laplace principle of insufficient reason. Never-
thel ess, the assumption of endogenous memory has the advantage that no ad hoc assumptions
about the congtitution of the memory are required and experience can be modelled as a natural
product of repeated deci sion-making. | will, therefore, assume through most of the text that only

choices actually made and utility realizations actually obtained are present in the memory.

This assumption preventsinvestors from using hypothetical cases of the type ”if | had invested
in asset o (instead of o) | would have received a utility realization of v’ (instead of «)”. Such
hypotheti cal reasoning is used by Jahnke, Chwolka and Simons (2001) to model the adjustment
process of afirm which faces incomplete information about the demand function and has to
choose optimal capacity and price. In their model, such hypothetical reasoningis possible only
for certain capacity - price constellations and is justified by the fact that the decision of the
consumerscan bepredicted, if only one of the quantiti es (priceor capacity) is changed, whereas

the other oneis kept constant.

Although the case-based decisi on theory allowsfor such hypothetical reasoning, see Gilboaand
Schmeid er (2001 (a), pp. 93-95), excluding it can be justified by limited memory and limited
capacity required to process the whole information about prices and dividends in the market.

Moreover, an investor might feel that his actual experience is more important for his decision
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than hypothetical casesand ignorethem, by assi gning asimilarity of 0 between such hypothetical

cases and the problem at hand.

Of course, the case of completely endogenous memory is an extreme case, which can be used
rather as a bench-mark, than as a sensible description of reality. Therefore, where appropriate,
I will allow for partial hypothetical reasoning and discuss the differencesin results. It turns out
that partial hypothetical reasoning hel psthe investor to make better decisions only in the case,
in which the aspiration level isrelatively low. In general, the behavior of decision-makers with
high aspiration level s does not change qualitatively by introduci ng hypotheti cal reasoning.

The fact that the behavior of an individual depends on his memory and his memory on his
behavior, makes hisdecisions path- and history- dependent. Moreover, sincethe number of cases
present in the memory grows as more decisions are made, experience and hence information
accumul ates over the time. Starting with little or no information initially, the individual has to
choose at random in the initial periods. Therefore, results on limit behavior seem to be more

appropriate, than analysis of few periods only.

In an individua portfolio choice, the memory naturally contains cases encountered by this par-
ticular investor. In amarket environment matters are different. Snce | consider an overlapping
generations model, inwhich each investor makes a singleinvestment decision, it is not possible
to assume that an investor learns from his own past decisions. Therefore, | introduce |earning
from past generations. Thisapproachiss milar to the one adopted by Krause (2003), who alows
the decision-makersto learn not only from their own past decisions, but also from those made
by other market participants. He then introduces a similarity function on the set of investorsto

account for different eval uation of personal and indirect experience.

Inmy model eachinvestor isidentified by hisaspirationlevel. Therefore, | assume that each in-
vestor's memory contains only cases encountered by his predecessors with the same aspiration
level. Of course, this assumption is rather arbitrary. However, it may be argued that an investor
might perceive similarity among problem/act pairs based on the aspiration level of the investor
from whom he receives the information about the particul ar case. Assuming asimilarity func-
tion, which assigns a smilarity of 1 to two cases, in which investors with identical aspiration
levelsare involved and 0 otherwise, leadsto identical results. A more general approach is pro-

posed by Blonski (1999), who isinterested in learning by the means of social communi cation.
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He models the social structure of the society using asimilarity function on the set of individ-
uals, which assumes only values 0 and 1 and which describes the set of those members of the
society, whose experience an individual takes into account, when making his decision. Since,
however, the problems of socia learning lie outside the scope of this work, | neglect this kind

of dependencein this thesis.

Independently of the length of the memory m, i.e. of the number of cases contained in it, |
assumethat the investorslearn the most recent m cases. This assumption implies that investors
assign more weight to recent experience than to cases lying far away in the past. However, |
do not assume a gradual discounting of the past, as Krause (2003) and Gilboa and Schmeidler
(2001 (b)) do. Instead, it isassumed that the capacity of the memory isrestricted to m and all

cases remembered are considered equally relevant to the problem at hand®.

Remembering thelast case in an overlapping generations model | eads to thefollowing phenom-
enon: sincetheyoung consumers learn the utility realization derived by their direct predecessor,
and since this utility redization is increasing in the price of the portfolio held, the young in-
vestors are more willing to choose the same portfolio as their predecessors, the higher the price
of this portfoliois. Hence, their demand for an asset isin general non-monotonic in itsprice, in-
creasing at low prices and decreasing at high prices. Learning from the direct predecessor thus
makes preferences for assets price-dependent and can lead to 0-asset prices in equilibrium. It
seems that thi s paradox can be resol ved by excluding thelast case from the memory of the young
investors. However, this assumption only leadsto a globally decreasing demand for assets, but

does not prevent equilibrium pricesfrom falling to 0.

Intheindividual portfolio choice problem| concentrate only on the case of long memory, i.e. the
investor remembers all past cases, in order to compare my findings to theresults obtained in the
literature, where long memory is commonly used, see Gilboa and Schmeidler (1996, 1997 (b),
2001 (b)), Gilboa and Pazgal (2001), Pazgal (1997). Inthe case of an asset market | distinguish
between the two extreme cases of long memory and one-period memory. Theassumption of one-
period memory is made by Blonski (1999), aswell as by Jahnke, Chwolka and Simons (2001),
who assume that the memory contains only (hypothetical) cases from the last period. Again,

these two extremes are not to be seen asa good description of real investors, but they provide

33 In other words, the similarity of the last m cases to the problem at hand is 1, whereas the similarity of cases

lying morethan ¢ — m periods back in the past to the investment problem at time ¢ is0 .
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anintuition of how learning, investors' behavior and asset prices are inf luenced by the length of
memory*. Intheevolutionary model discussed | ater | assumethat the memory of the case-based
investors is short. On the one hand, this assumption makes the computati ons tractable. On the
other hand, the fact that case-based decision-makers survive even if their memory contains one
case only, means that they would also be able to survive, if the length of their memory grows

and hence the availabl e information increases.

After discussing the concepts of problems, actsand memory, which are assumed as exogenousin
the axiomati c derivation of the case-based deci sion theory, | now turntothetwo characteristics of

the decison-maker, aspiration level and similarity function which are derived from the axioms.
2.3 Aspiration Level

The aspiration level is one of the main concepts of the case-based decis on theory. 1ts exi stence
is embedded in A4 Neutrality and its val ue can be derived from observed choices. In fact, the
aspirationlevel isthe utility realization u, which, if observed in each of the cases present in the

memory, would make the decision-maker indifferent among all acts.

2.3.1 The Concept of Aspiration L evel in Psychology

The concept of ” aspiration level” goes back to Dembo (1931) and isused in socia psychol ogy
to describe a personal standard applied to evauate achievements or situations. The aspiration
level determinestheenvisaged proficiency of an individual at a given task and isinfluenced by
past experience and comparison to others, see Festinger (1942) and Frey, Daunenheimer, Parge
and Haisch (1993, p. 82). The aspiration level hastwo main functions: it setsa” level of future
performance in afamiliar task which an individual [...] explicitly undertakes to reach”, Frank
(1935, p. 119), hence, it defines the motives of behavior, Gebert and Rosenstiel (1992, p. 51)
and is used for selfeval uation, Heckhausen (1989, p. 172).

The evolution of the aspiration level over timeismainly dueto observed sequences of successes

and failures while performing a task. Here, success and failure refer to situations, in which

34 In histalk at the RUD conference in Evanston (IL) in June 2004, Itzhek Gilboa expressed the idea tha rea-
tively long, aswell asrelatively short memory provide the most natural environments for the usage of case-based
reasoning. Whereas with short memory, rules cannot yet be formulated, with long memory, rules are not needed
anymore.
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the actual performance exceeds, respectively falls below, the aspiration level, Lewin, Dembo,
Festinger and Sears (1944, p. 334). The difference between the aspiration level and the actua
performance, called attainment discrepancy, explains best the adaptation of aspiration levels
observed in the data. So, Jucknat (1937) and Festinger (1942) find that aspirations are adapted

upwards, when the attainment discrepancy is positive and vice versa.

This, so called "typical” reaction is aso found by McClelland (1958) and Atkinson and Litwin
(1960). Moreover, they demonstrate that persons motivated by the wish to succeed choose aspi-
ration level swhich are rel atively high, but redlistic. On the other hand, persons, whose motiva-
tion is to avoid failure are found to choose either extremely high or extremely low aspirations.
Heckhausen (1963) and Moulton (1965) show that this group can be subdivided into subjects
with high genera motivation, who usually choose very high aspiration level s and subjects with

low general motivation, who tend to set their goalsrelatively low.

Hence, the experimental evidence shows that realistic aspiration levels are often observed, but

extremely high or extremely low values are typical for subjectstrying to avoid failure.

The tendency to adapt the aspiration level and the speed of the adaptation arerelated toitsinitial
level. Sears (1940) and Irwin and Mintzer (1942) find that subjects with low aspiration levels
adapt their aspirations more strongly in the direction of the discrepancy, than do subjects with
relatively high aspiration levels. These findings can be interpreted in terms of realism of the
goals set, where realism corresponds to aspirations bei ng attainable and closely related to actua
performance, seeL ewin, Dembo, Festinger and Sears (1944, p. 345). Preston and Bayton (1941)
further show that even if subjects are pressed to di stinguish between their hopes and their actual
goals®, the actual goals tend to be biased upwards, suggesting that even objective statements

exhibit someirrealism.

The aspiration level isfurther influenced by factors, such as socio-economic background, sim-
ilarity between decision situations and group standards. A more favorabl e soci o-economic Sit-
uation tends to reduce the aspiration level, see Gould (1941). The more similar two decision
situations are, the more relevant is the performance and hence the aspiration level adopted for

the earlier experienced one for the setting of goalsin the second situation, Jucknat (1937). The

35 This distinction is made necessary by the fact, that the question about the aspiration level might beinterpreted
in different ways, for instance, as a minimum to overrich, as an expectation of the actual achievement or as the
performance hoped for, see Lewin, Dembo, Festinger and Sears (1944, p. 344).
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inf luence of performance of others on the aspiration level is exactly opposite to the influence
of one’'s own performance: if an individual significantly outperf orms a group, hewill in general
tend to decrease his aspiration level, see Frey, Daunenhei mer, Parge and Haisch (1993, p. 82)

and vice versa.

Two main differences have to be mentioned in the understanding of the concept of aspiration
level in the social psychology and in economics, represented by the case-based decision theory.
First, in socia psychology it is understood that the task is familiar and therefore the individ-
ua can sensibly decide what aspirations he might associate with it. In experiments, subjects
are usually presented the possible outcomes and even the estimated probability to obtain a cer-
tain level of proficiency. In case-based decision theory on the opposite, it is assumed that the
decision-maker has no or little structural knowledge about the situation. Hence, the choice of

an aspiration level cannot be based on the description of the task alone.

The second difference refers to the elicitation of aspiration levels in experiments. Whereas in
social psychology the notion of aspiration level in experimental settingsis defined as the goal
of the subject with respect to a known task, as reported to the experimenter, see Heckhausen
(1989, p. 172), the theory of Gilboa and Schmeidler (1997 (a)) relies on revealed preferencesin
order to elicit cognitive constructs.

2.3.2 Aspiration Levelsin the Economic Literature

The concept of aspiration level in economics isfirst proposed by Simon (1957) and March and
Simon (1958) with the introduction of the term satisficing behavior. The main idea behind this
concept is that a decision-maker who actsin a complex system and whose cognitive abilities are
constrained might search for an al ter native whose performance is good enough (in the sense that
it exceeds a predefined level) rather than optimal.

Concerning the adaptation of aspirations, March (1994, p. 22) writes: ” The history isimportant
because aspiration levels — the dividing line between good enough and not good enough — are
not stable. In particular, individuals adapt their aspirations[...] to their experience.” March
further suggeststhat aspirations adapt morerapidly upwards, which givestheindividualsstimuli
to search for better alternatives. Not satisfaction, but the dissati sfaction should be seen as the

driving force of the economy, see March and Simon (1958, p. 71).
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Empirical investigations on adaptation rules in economic environment are rare. Lant (1992)
examines the adaptation of aspirations in organizations. She finds that adaptation into the di-
rection of the discrepancy between the aspirations and the realized payoff can better explain the
evidence than rational and adaptive expectations do. Her aim is, however, to test different con-
cepts of expectati ons formation rather than different rules for adaptation of the aspiration level
against each other. Thefindings of Lant are verified by Mezias, Chen and Murphy (2002) inthe
context of financial servicesorganizations. They also find that aspirations are adapted towardsa
combi nation of the past aspiration level and the performance achieved. They further record ade-
pendence of aspiration |evels on the performance of other companies. Shapira (2001) examines
the effects of aspirations on the risk taking behavior of government bond traders. He finds that
bond traders are more willing to trade when they haven't achieved their aspirations and prefer
to keep their positions unchanged, once the aspiration level has been reached. Here, the aspira
tionsare identified with the targets set. Hence, theresults provide insightsinto a behavior of an

individual with a constant aspiration level.

Rainwatter (1994) and Easterlin (2003) examine the change of aspirations with respect to in-
come and living standards. They find that increased income and growing consumption lead to
an increase of aspirations. Moreover, the magnitudes of growth in aspirations corresponds to
the magnitude of consumption growth. Hence, instead of becoming sati sfied with their achieve-
ments, households become more demanding over time, at least with respect to incomeand con-

sumption®.

The economic literature has not presented many models incor porating adaptati on of aspiration
levels. It isusually assumed that aspirations are adapted i n the directi on of the current consump-
tionlevel. Most of the models combine rational expectationsand expected utility maximizati on
with aspiration adaptation. In these models, consumers take into account that increasing con-
sumption first and decreasing it thereafter will decrease their utility, because of increased as-
piration levels. These models propose or implicitly assume certain models for adaptation of

aspiration levels, e.qg. Ryder and Heal (1973) suggest to use the formula
= Pur—1 + (1 — F) @1,

where 3 € (0; 1) denotesthe speed of adaptation in thedirection of the attai nment di screpancy™.

36 Eagterlin (2003) findsthat in the family domain, aspirations do not increase over time.
37 Gilboa and Schmeidler (2001 (b)) use an adaptation rule, which is similar to the one proposed by Ryder and
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Duesenberry (1949), on the other hand, implicitly assumes that the ruleis given by:
Ut = max Ur,
T<t
i.e. the aspirations are set at the highest utility realization observed. There are also empirica
findings that people prefer not to get accustomed to a level of consumption they know they
cannot maintain, see Rabin (1998, p. 15, footnote 8 and the literature cited there). However,
this literature presupposes that individuals are conscious of the process of adaptation of their
aspiration level and that they are informed about the future consumption stream. | n contrast, the

case-based decis on theory makes none of these assumptions.

Sauermann and Selten (1962) and Selten (1996) propose an aspiration adaptation theory. The
source of bounded rationaity in their model is the presence of multiple goas, which are in-
comparable and cannot be represented by a functional subject to optimization. It is therefore
suggested that an aspiration level is used with respect to each goal. Starting with a vector of
such aspiration levels, the decision-maker searches for alternatives which perform better than
the preset aspiration level with respect to at least one of the goals. The aspiration level is then
adapted upwards with respect to this particular goal. The (mental) search continues, until an
increase of any of the aspiration levels is impossible. This process leads to a choice of an un-
dominated alternative, but in general, different initial aspiration levels lead to distinct results.
Differently from the case-based decision theory, the theory of Sauermann and Selten presup-

poses the knowledge of the payoffs of each alternative with respect to each of the goals.

Aspiration levels are used in most similar manner to the one proposed by the case-based deci-
sion theory in the literature on reinforcement learning in games. Three approaches can be dis-
tinguished inthisliterature, see Bendor, Mookherjee and Ray (2001): constant aspiration levels,
which are, however, cons stent with the long-run average payoffs of the players®, asin Bendor,
Mookherjeeand Ray (1992, 1995); adaptation of aspiration levelsin the direction of attai nment
discrepancy, as suggested by Ryder and Heal (1973), but with rare permutations, see Karandikar,
Mookherjee, Ray and Viega- Redondo (1998); aspirations based on observations of other market
participants, as in Dixon (2000), where firms engaging in Cournot competition adapt their as-
pirations towards the average profits in the market and in Palomino and Vlega-Redondo (1999),

Heal (1973). They assume however, that the adaptation towards the last encountered utility realization takes place,
only if this realization exceedsacertain level.

38 Toinsure consistency of actual play and aspiration levels, a new equilibrium concept has to be defined and its
existence shown. This is done in Bendor, M ookherjee and Ray (1992, 1995).
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where the players participating in a Prisoners Dilemma game adapt their aspiration levels to-
wards the average payoff of the population. Most of the results indi cate convergence towards a

cooperative outcome of the game, even if this outcome is not a Nash equilibrium.

The sparse literature on aspiration level sin economics shows that the concept i s rel atively new
and that more research is needed in order to understand itsimplications on economic behavior.
Some of the problems, might be connected with the different interpretati ons of the concept used
and with the necessity of elicitation of the aspiration level using self-reports and the difficulties
arising from it. The case-based decision theory avoids these problems by deriving the aspira-
tion level directly from the axioms and thus relating a cognitive concept directly to exhibited
behavior.

2.3.3 TheOperationalization of the Concept of Aspiration Level in the
Applications of the Case-Based Decison Theory

The aspiration level in the case-based decision theory can be seen as a bench-mark which helps
the decision-maker separate” good” from ”bad” performance. Since heonly observes the utility
realizations of some of the acts for agiven problem, it is impossible for him to know what the
best solution of the problem would have been, either in an ex-ante, or in an ex-post sense®. It s,
therefore, the aspiration level that indi catesthat an observed utility realization issati sfactory (if it
exceedstheaspiration level) or unsatisfactory (if itliesbelow it). Satisfactory utility realizations

enter the eval uation of an act positively and vice versa

The aspiration level has also another function — if an act cannot be eval uated by its own past
performance, or by the performance of similar acts in smilar problems, the decision-maker
assumesthat its cumulative utility is 0, hencethis act is evaluated as if it would result in utility
exactly equal to the aspiration level. Hence, apart from discriminating between good and bad
outcomes, the aspiration level determines the prior expectations of the decision-maker about
acts he has no information about. Indeed, with an empty memory, the cumulative utility of all

actsis0 and therefore al acts are assigned utility realizations equal tothe aspiration level .

Of course, the aspiration level needn’t remain constant over the time, but can be updated, so

asto take into account the experi ence of the decision-maker. However, neither the value of the

39 Observing the realizations of all actswould enable a verification of an ex-post, but not of an ex-ante optimality.
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aspiration level, nor the updating rule are determined by the theory and have therefore to be
specified in the context of the model®.

The works of Gilboa and Schmeidler (1997 (b)), Gilboa and Pazgal (2001), Blonski (1999)
and Krause (2003) use a constant aspiration level to derive their results. Whereas the case of a
constant aspiration level seems quiteirrealistic on empirical grounds, it hasitstheoretical advan-
tages, since no ad hoc assumpti on about adaptation rules are needed. Moreover, the possibility to
do comparative statics varying the aspiration level can provide us with useful insghtsinto how
the aspiration level influencesthe results. Therefore, constant aspiration level will be assumed

in most parts of thisthess.

In the context of individual portfolio choice, this assumption will be relaxed. Thisseems appro-
priate for two reasons: first, inapartia model theanalysis of updating rulesis ssmplified by the
fact that prices and income are assumed exogenous and fixed over the time. Hence, apart from
the case of constant aspiration level, the formula proposed by Duesenberry (1949), as well asa
version of it, inwhich the aspiration level at ¢ is set equal to alinear combination of the best and
the worst results achieved till timet isexamined. Second, the work of Gilboa and Schmeidler
(1996), later applied to cooperation games by Pazgal (1997), has identified an adaptation rule,
which applied in a stationary environment leads to an optimal choice from the point of view
of expected utility maximization. Hence, this case can be used as a bench-mark to evaluate al-
ternative adaptation rules. Furthermore, the validity of thisrule will be tested in a model with

similarity considerations, a case not analyzed inthe literature.

Whereas | keep the aspiration level of the investors constant in an asset market model with case-
based investors, | alow for heterogenous aspiration levels across the economy. It is, therefore,
not only possible to examinethe influence of an overal increase in aspiration level s through-
out the economy, but also to compare the behavior and performance of investors with diff erent

aspiration levels under identical conditions.

In thelast part on the evolutionary fitness of case-based decisions | assumethat all case-based
decision-makershaveidenti cal and constant aspiration levels over the time, an assumption made

to smplify calculations and to make results tractable. Again, comparative statics alows to

40 The axiomatization of the case-based decision theory, proposed by Gilboa and Schmeidler (1997, p.53) allows
for adaptation of the aspiration level towardsalinear combination of the utility realizations observed.
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analyze the inf luence of an increase or decrease of the aspiration level on the dynamics of the

economy.
2.4 Similarity

The theory of case-based decisions alows to incorporate similarity cons derations into a formal
model. However, similarity is a relatively new concept in economics, hence, it is not a priori
clear how similarity should be operationalized in diff erent contexts. Therefore, thefirst question

to ask iswhat does "similar” mean in the context of financia markets.

The case-based decisi on theory works with similarity functions, which allow anumerical repre-
sentation of perceived smilarity. Up to now, there hasbeen littl e research regarding the form and

the characteristics of similarity functions. Thisisthe next issue to be discussed in this section.
24.1 Smilarity — A Philosophical View

Similarity, without doubt, affects our judgements and therefore influences our decisions. Nev-
ertheless, although " there is nothing more basic to thought and language than our sense of simi-
larity” , Quine (1969, p. 6), it seemsto be very difficult to give a precise definition of similarity,
which could be used in aformal model. Phil osophical thought hasbeen dwelling on thisquestion

for along time and till, the problem does not seem to have a straightforward sol ution.

The problem isthat similarity can be neither defined by means of sets, nor by means of logical
structures. Indeed, suppose that one could divide the objects into sets, such that all objects,
which are similar to each other are in one such set. One easly seesthat as long as objects are
compared with respect to al possible criteria, each object should either be placed into aseparate
set, or all objects will be considered ssmilar in some sense and will build a unique set, thus

leading the notion of similarity ad absurdum.

A representation of similarity by means of alogical structureisalso problematic. Suppose you
want to evaluate alternative o. If you know that aternative o/ has performed well and you
consider o and o’ to be similar, you will probably think that o will also perform well. Now
suppose that you also know that aternative o’ has performed badly and you consider o to

be dissmilar to «. Will this make your believe that o will perform well stronger? Probably
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yes, if you feel that this confirms the (perceived) law that aternatives that perform poorly are
not smilar to «, therefore that aternatives which are similar to o« cannot perform poorly. It is
however paradoxical that an alternative, whichis considered to be diss milar to o should be used

to predict the performance of o*.

The main problem is, of course, that since mathematical concepts obey the laws of logic, one
necessarily embeds this paradox into each mathematical model of similarity. And indeed, the
theory of Gilboaand Schmeidler (1997 (a)) also bears this paradox in itself.

Although aphilosophical definition of smilarity isproblematic, it still does not mean that smi-
larity is aconcept that coul dn’t beimplemented in an economic model. Infact, aslong asweare
interested only inindividual perception of similarity, it is enoughto elicit the similarity function
of anindividua (by asking him questions of the type "is o similar to o’?” or "isa moresimilar
to o/ thanto «”?"), in order to model his behavior. However this behavioristic modelling does
not give any clues up to which similarity perceptions are sens ble or what should be understood

under similarity in economics.

2.4.2 Smilarity in Economics

Similarity does not bel ong to the standard concepts of economic theory. Rubinstein (1988) sug-
gests atheory of decision-making based on similariti es between lotteries. The concept of Sim-
ilarity he uses is abinomial one. Two objects are either smilar or not similar. Similarity is
defined on intervals of real numbers and two numbers are considered similar, if and only if
the difference between these two numbers is less than a given number s, and dissimilar else.
This definition of similarity can be used to explain some of the experimentally observed behav-
ior of choices between |otteries, Buschena and Zilberman (1995, 1999), as well as hyperbolic
discounting, Rubinstein (2003). Since however the similarity relation is not transitive, it leads
to preferences with intransitive indifference relations®. Of course, this intransitivity of prefer-
encesis dueto the assumption of binomia similarity relation and can be avoided by introduci ng

a”"more smilar than” relation.

41 This argument is known as the Hempel’s puzze. Its original version is that since " each black raven tends to
confirm the law, that all ravensare black, so each green leave, being a non-black non-raven, should tend to confirm
the law that all non-black things are non-ravens, that is, again, that al ravensare black”, Quine (1969, p. 5).

42 Kajii (1996) provides a characterization of preferences consistent with the similarity concept of Rubinstein.
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Such arelation is proposed by Tversky (1977), who derives a smilarity function from a set of
axioms. Similarity is seen as possession of common attributes, still symmetry isnot implied by
the axioms and is generally violated empirically. The approach of Nehring and Puppe (2003)
issimilar to that of Tversky (1977). Their similarity concept isatrinomial relation, interpreted
as "« ismore similar to o thanis o/”. It satisfies reflexivity, symmetry and transitivity and
expresses the idea that oo and o” have more common attributes than o/ and o”. M oreover, this
trinomial relation is representable by a smilarity function. However, the similarity relation is
not complete, i.e. it is not defined for all triples of acts and theref ore similarity judgements are

not always possible.

An aternative theory is the case-based decision theory proposed by Gilboa and Schmeidler
(1997 (@)). They assume a sSmilarity function defined on problem — act pairs, which is aso
based on a” more similar than” relation. They suggest that the cumulative utility of an act
depends not only on the utility realizations observed when the same act was chosen in the past,
but also on utility realizationsof similar acts chosenin similar decision problems. An axiomatic
representation of this functional form is provided. Nevertheless, the axiomatization does not
give any clue about the characteristics a similarity function should have and their impact on the

decisions made®.

Few models have used this concept of similarity up to now. Gilboa and Schmeidler (1997 (b))
show how similarity between goods can be interpreted in terms of complementarity and sub-
stitutability in a consumer choice problem. Blonski (1999) models socia learning and repre-
sents socia structures by similarity considerations. He shows that different smilarity functions,
associated with ”star” -communication structures, A-neighborhood structures and compl ete in-
formation, imply different stable states of the dynamical learning process. Gayer (2003) shows
how similarity cons derations may aff ect the perception of lotteries and lead to overestimation
of low probabilitiesand underestimation of high probabilities. She proposes to measure thesim-
ilarity between lotteriesin terms of distance. In contrast to the models presented in thisthesis,
she assumes an endogenous similarity function, which becomes finer, as the memory grows.

She shows that if the similarity function depends on the distance, its concavity insures that the

43 Billat, Gilboaand Schmeidler (2004) provide an axiomatization of a similarity function which isan exponential
function of the Euclidean distance. However, they do not provide any reasons for the choice of this particular form
of the similarity function. Nor are there applications of this similarity function in the litearture providing insights
into how its form inf luences decisions.
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decision-maker will be able to learn the correct distri bution.

This research shows that the results obtained are very sensitive to the form of the similarity
function assumed. It will turn out that the form of the ssimilarity function plays amajor role for

the behavior of case-based investors in financial markets, aswell.

2.4.3 Smilarity in Financial Markets

Supposethat you ask an investor, who has lost areasonable amount of money on dot.com assets,
whether he would be ready to invest in a dot.com company now. You would probably receive
afirm no, even, if the company you are proposing is a sound one. Not necessarily because the
unlucky investor has looked up the performance of the company and has analyzed the pro and
contras, but because his experience has taught him that dot.com assets can lead to significant
losses and he obvioudly finds the investment you are proposing to be quite similar to the bad

choice he hasmade last time. Similarity can, therefore, play major rol ein asset choice decisions.

The most natural concept of similarity (from the point of view of standard financia economics)
is the concept of covariance. However, since the case-based decision theory presupposes no
knowl edge about state-contingent outcomes and their distribution, it does not seem appropriate

to use the concept of covariance to model similarity in case-based decision-making*.

Since the information availabl e to a case-based decison-maker consists of a problem and a set
of acts, it isreasonabl e to use the description of actsto elicit anotion of similarity. In this sense
similarity may refer to the fact that assets of firmsin the same industry are regarded as smilar,
as contrasted to firms from different industries. For instance, an investor may consider shares
of BMW and Renault to be more similar to each other, than the shares of Renault and Telecom.
Similarity percepti ons might also include the nati onality of an asset. Thus, aninvestor might find
that Telecom is more similar to BMW than to Renault. Other characteristics, such as maturity
or being derivatives of the same underlying asset can also influence smilarity perceptionsin

financial markets.

The above discussed characteristics allow only for a comparison of individual assets, but not

4 There seems to exist a certain connection between the notions of similarity and correlation, as observed by

Matsui (2000). Still, since his states of nature do not necessarilly correspond to the states of nature as considered
in the standard financial economics, the interpretation of hisresult is ambiguous.
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of portfolios. However, it is easy to imagine, how similarity might refer to the comparison of
the structure of two portfolios. For instance, an investor may consider a portfolio, consisting of
20% risky assets and 80% bondsto be more similar to ariskless portfolio, consisting of 100%

bonds, than a portfolio, consisting only of risky assets.

To formalize these ideas, note that each portfolio, consisting of at most K assets can be repre-
sented as a point in a K-dimensional simplex AX~1. Now, similarity between portfolios can be
modelled as a continuous decreasing function of the Euclidean distance between the points in
thissmplex:
s(a;d) = f([la—a|) with
flla=dl) < o

In order to include similarity considerations between assets (such as maturity, or belonging to
the sameindustry), it is enough to modify the simplex, all owing the di stance between itsvertices

to vary with the degree of similarity. Figure 1 illustrates this.

Suchasimilarity function applies, of course, only to situations which are considered to be iden-

tical and inwhich only similarity between acts matter.

Still, the market situation might also inf luence the evaluation of different acts. Buying an asset
in a market boom might be quite different from buying the same asset, when prices fall. The
characteri sti cs of agiven decision situation are captured i n the notion of aproblem. Inafinancial
market, asset prices seem to bear the most important information about the decision Situation

and will, therefore, inf luence similarity perceptions.

In amodel of case-based decision-making in financial markets, these two aspects of similarity
— smilarity between problems and between acts — are captured in a single similarity function:
s((pa); (p;a)),
whichisto beinterpreted asthe degreeof similarity of choosing act «in problem p to choosing
act o/ in problem . It has aready been shown that the acts o can be situated on a metric
space, depending on how similar they are perceived to one another. Since it seemsto me that the
major characteristic of a portfolio choice problem is represented by the pricesin the economy; |
proposeto identify the problem with a price vector (p; ... px ) and to represent a problem - act pair

in AK—1 x AK-1 Again, taking the Euclidean distance as measure of similarity, the similarity
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A, B and C are mutually dissimilar.
b) A and B aresmilar, Aand C, aswell as B and C' are mutually dissimilar.

Figure 1

function can be written as:
s((pa);(psa’)) = f([(esp) = (@50))

where f (-) iscontinuous and decreasing.

The axiomati zation of Gilboa and Schmeidler (1997 (a)) implies that the similarity function is
unique up to an affine-linear transf ormation, and theref ore the similarity functi on can be normal-
ized, so that it takes on only values between 0 and 1 where avalue of 1 meansthat two objects
are”identical” or "completely smilar”:

s((pa);(pa)) =1,
whereas 0 can be interpreted as ” having nothingin common”, or being ” completely different”,

depending on the context.

Of course, thenotion of similarity, aswell as the specific similarity function used by aninvestor
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will influence his behavior in a financial market, since they will determine his evaluation of
acts. Moreover, the similarity function may (as well as the aspiration level) evolve with the
time, ref lecting the fact that the deci sion-maker learns about (di s)similaritiesamong a ternatives,
which hewasnot aware of, see Gilboaand Schmeidler (2001 (a), Chapter 19) and Gayer (2003).
In thisthesis, | will assume that the similarity function remains constant over the time and will

explore the influence of the form of the similarity function on investors behavior.

2.5 Concluson

Thischapter hasdi scussedtheconceptual i ssues connected withthe appli cati on of thecase-based
decision theory to financial markets. Most of the concepts are relatively new in economics and
therefore the literature discussing them is sparse. The freedom connected with the possibility
to vary the parameters and the specification of the model has both its advantages and di sadvan-
tages. Ontheone hand, the possibility to use arbitrary methodsfor aspiration adaptations and to
introduce memory, containing arbitrary cases, allowsfor avery rich model. On the other hand,
it bears the risk of losing any explanatory power, if the specifications used have no economi-
cally meaningful interpretations. Inthe model s presented in the next chapters of thisthesi sl will
therefore try to control for the assumptions made about aspiration level s, contents of the mem-
ory and similarity perceptions by varying them, so asto test the robustness of results. Thiswill
also allow to examine the inf luence of these concepts on the behavior of economic subjects, as

well asto give them an interpretation in the context of the model used.

67






Chapter 3. PortfolioChoiceand Case-
Based Reasoning

Having anal yzed the issues of operationalization of the concepts of the case-based decision the-
ory in the context of financial markets, it is now possibleto construct aspecific model in which
the meaning and the influence of the memory, the aspiration level and the similarity function
of aninvestor on his decisions can be studied. In this chapter, | apply the case-based decision
theory to a standard portfolio-choice problem. | assume that the process of returnsisi.i.d. and
model the behavior of the investor in the limit. Standard portfolio choice theory predicts that
the investor would choose the portfolio that maximizes his expected utility, provided he knows
the correct distribution of returns. Should the decision-maker have i mpreci se knowl edge of the
distribution, expected utility theory assumes that he will use Bayesian learning and will be able
to learn the correct distribution with time. In contrast, a case-based decision-maker neither has
the correct probability distribution in mind, nor does he like a Bayesian have a prior, which he
updates, as more information becomes revealed. Instead, he learns from past observations, ac-
cumul ating information about what is possible, as opposed to using the incoming informati on
to exclude some possibilities (as a Bayesian would). The value of the aspiration level, as well
asthe way it is updated determine hisbehavior. | concentrate on limit behavior for two reasons:
firgt, theinitial decisions of the case-based decision-makers depend crucialy on the random re-
alizationsof thereturn processand second, | am interested in studying the possi bility of learning

to choose the optimal portfolio over time.

| first usetheresults derived by Gilboaand Schmeidler (1996) and Gilboaand Pazgal (2001) for
general decision problemshby applying them to a portf oli o-choice problem. Gilboa and Schmei-
dler (1996) construct a method for updating the aspiration level that |eads to optimal behavior
in the limit, aslong asthe utility realizationsarei.i.d. In Gilboaand Pazgal (2001), the case of a
constant aspiration level is considered in amodel of consumer choice. An aspiration level, ex-
ceeding the highest mean utility reali zation of an act makesthe decision-maker switch infinitely
often among the available acts. For low values of the aspiration | evel, the choi ce of the decision-
maker remains constant over time, but isin general suboptimal, since being satisfied with the
utility reali zati ons obtained, he does not have an incentive to try another, possibly superior, acts.
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In anext step, | analyze aternative rules for updating the aspiration level. The max (min) -rule
setstheaspiration level in each period equal tothemaximal (minimal) achieved utility reali zation
up to this period. A linear combination of these two rules attaches aweight 3 to the minimal
redization and aweight (1 — ) tothe maximal one. It can be shown that if 5 is relatively low,
then the decision-maker behaves as if he had a relatively high aspiration level inthelimit, i.e.
he switches constantly among the portfolios available to him. If 5 isrelatively high, he behaves
in a satisficing manner. However, there is an interval of values of 3 for which the results are
path-dependent.

The derived results can then be interpreted in light of the empirical evidence from financial
markets. Satisficing behavior can help explain unused arbitrage possibilities, low diversifica-
tion and the home-bias, whereas updating the aspiration level upwards can be associated with

overconfidence and | ead to frequent, but unprofitabl e trades.

Up tothis point, | assume that the investor’s information consists only of the utility realizations
of the portfolios he has actually chosen. Inthe stringent analysis, | relax this assumptionin two
ways. First, | consider the case in which al portfolio realizations are observed and included in
the eval uation in each period of time. In this case, the aspiration level becomes irrelevant for
the behavior of an investor, he learnsthe correct distribution of returns and chooses the optimal
portfolio in the limit. Restricting the ability of the investor to learn al returnsfor only afinite
number of periods improves his choice (compared to the situation of endogenous memory) if
hisaspiration level isrelatively low, but does not lead to optimal decisionsif his aspiration level
isrelatively high.

Another possibility to relax the assumption that the investor learns only about the utility real-
izations of the actsactually chosen consists in introducing a similarity function among acts. |
define similarity between two portfolios as a decreasing function in the Euclidean distance be-
tween thesetwo portfolios (assuming that portfoliosare situated on a smplex). Oncea portfolio
is chosen and its utility realization observed, the investor assigns the same utility realization
to every other availabl e portfolio, but weighted by the similarity between the portfolio actually

chosen and the portfolio eval uated.

| examine again the model of repeated portfolio-choice, assuming first that the similarity func-

tion is concave in the distance between portfolios. It turns out that when the decision-maker
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starts with a diversified portfolio, he diversifies only for afinite number of periods, if his as-
piration level is relatively high. Afterwards, he chooses one of the undiversified acts in each
period of time. Moreovey, if his aspiration level exceeds the mean returns of both undiversified
portfolios, then he switches infinitely often between them in the limit. Hence, similarity con-
siderationsin combination with high aspiration level lead to a combination of the two effects —

underdiversification and frequent trading.

Next, | analyze the issue of learning in this setup. | apply the ”ambitious-realistic” adaptation
rule, introduced by Gilboa and Schmeidler (1996), to the portf olio-choice problem with simil ar-
ity. With a concave similarity function, thisrul e allowsthe decis on-maker to learn to choosethe
optima non-diversified portfolio. Convexities in the similarity function improve learning, by
increasing the number of portfoliosfromwhich the optimal oneis selected. Neverthel ess, global
optimality can be achieved only in the limit, in which no similarity between distinct portfolios
is present and the number of available acts is finite, as in the model of Gilboaand Schmeidler
(1996).

The rest of the chapter is organized asfollows. | start by presenting the general setting of Gilboa
and Schmeidler (1996) in section 1. In section 2, the model of Gilboa and Schmeidler is ap-
plied to a portfolio-choice problem. Section 3 describes the sufficient conditions, under which
a case-based decision-maker behaves like an expected utility maximizer, as stated by Gilboa
and Schmeidler (1996). Section 4 presents the implications of a constant aspiration level on the
behavior of a decis on-maker, derived by Gilboa and Pazgal (2001), while section 5 examines
max-min adaptation rules. In section 6, possible interpretations of the results in the context of
the portfolio-selection problem are proposed. | n section 7, themodel is adapted in order to allow
the decision-maker to acquire additional information. Section 8 analyzes the portfolio-choice
problem with similarity considerati ons, assuming a concave similarity function and a constant
aspiration level. The adaptation rul e of Gilboaand Schmeidler (1996) isapplied to the portfolio-
choice problem with similarity. Section 9 concludes. The proofs of all results are stated in the

appendix.
3.1 Case-Based Decision-Making

Consider a decison-maker who faces an identical problem p in each time periodt = 1,2, ....
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Let2( beafinite set of possible acts, among which the decision-maker can choose in each period
of time. The utility resulting from the choice of an act o € 21 is arandom variable &, with a

distribution function (I1,,) which can be interpreted as a conditional distribution of utility;

ac?
giventhat act « ischosen. Itis assumed that thesedi stributions havefinite expectations ., finite
variance o, and bounded supports A,. One can think about the acts in terms of the theory of
Savage (1954): the decision-maker chooses an act and thus, indirectly, a probability distribution

over results.

The main difference between the model of Savage (19%4) and the one of Gilboa and Schmei-
dler (1996) concerns the information availabl e to the decision-maker. Whereas in the setting of
Savage the (subjective) probability distributions (I1,,) ., are known to the decision-maker, in
the model of Gilboa and Schmeidler (1996) the individual is not even aware of the possible re-
ali zations he can expect from agiven act. To be precise, the decision-maker’s information at the
beginning of period ¢ = 1 consistsonly of the problem p to be solved and the set of possible acts
2. After an act o, has been chosen at time ¢, the decision-maker learns the utility realization w;
of thisact. Thus, at the beginning of period (¢ + 1) hehasinformation, consisting of triples of a
problem to be solved, act chosen and a utility realization achieved by choosing the act for each
of the previous periods:
My = {(pr;azsur) - (o o)}

M, represents thememory of the decision-maker at time (¢ + 1). Since, however, al problems

areidentical (o, = p for each 1), only thetuples (o, ; u,) are used to make decisions.

Now supposethat the decision-maker hasan aspiration level, which is used asa bench-mark (in
away to be specified below) to assess the utility reali zations of the different acts. This aspiration
level need not remain constant over time, but may be updated in some way depending on the
history observed. Call theaspiration level of the decision-maker at timet — ;. Then the behav-
ior of adecision-maker can be characterized by an infinite vector of triples ((us; au; ut));—1 o
defining the aspiration level, the act chosen and the utility achieved from this act for each pe-
riod of timet¢. Call the set of such vectors S, and let w be a typical element. Then S, can be
written as:
So = {w = (@ 0 w) 5., p © B x Ax )"

where u, is a real number, o, is one of the possible acts from 2, the redizations u, are drawn
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fromtheset A = U,cq A, Of al possibleredizations, and N is the set of natural numbers. Thus,

Sp represents the set of all possi ble decision-paths an analyst may expect to observe.

Of coursg, if a decison rule is specified, then the set of possible paths will reduce to paths

consistent with this particular rule. For instance, the behavior of an expected utility maximizer,

who knows, that the act o* € 2 yieldsthe maximal expected utility, can be represented by:
Spv = {w= (@ 03 w)oy ., = (@5 00 = 0"310)) g, | = (R X {07} X Age)"

The set of chosen actsisthus reduced to {«*} and the set of possible realizations to A~

Alternatively, if the decision-maker has no information about the distributions (I1,,) .y, he can
only condition hisbehavior (i.e. the choice of anact and of an aspirationlevel) ontheinformation
healready possesses. Thecase-based decision theory proposed by Gilboaand Schmeid er (1995)
statesthat the decision-maker chooses in each period that act which has the maximal cumul ative
utility up to the current period. | will write u,, oy, u,* for the projections of S, on R, 2l and A
(for aspecific w), respectively, and will denote by U, («) the cumulative utility (to be specified
below) of an act « at the beginning of period ¢t. Then the set of possible decision-paths for a

decision-maker, acting in accordance with the case-based deci sion theory, reduces to:

S1:{wESo|at€aIgmg§<Ut(a) Vt21}.

Given that all problems are identical, the concept of cumulative utility of an act isspecified as

follows:
t—1

Ui(a) = Z s (o o) (ur — ) ,
=1
where s («; o) denotes the perceived similarity between the acts o and . In sections 3-
7, 1 will assume that no smilarity considerations influence the decision. Two acts are only
considered similar, if they are identical:
s (o a,) = Lifa=a,
Ty 0 ifafar 7
Inthis casg, it is convenient to formul ate the cumulative utility of an act isthe following way:
define by C; («) the set of al periods up to period ¢, in which act o has been chosen, i.e.:
Ci(a)={r<t|a, =a}

45 All the variablesintroduced inthe model depend of course on the chosen path w. | suppressthisdependencein

the notation for convenience. All probabilities are defined with respect to the distribution of w.

73



Denote by
Up(o) = > (up— 1)

T€Ci(a)
the cumul ative utility of an act « at time ¢, given that the aspiration level at timet is«,. The

interpretation of the cumulative utility is simple: the decision-maker sums up the "net” utility
realizations of anact (utility achieved at some period, lessthe aspiration level at timet) over all
the periods at which the act has been chosen up to the present. Then he compares the cumul ative

utilities over the set 2 and chooses the act with the maximal cumulative utility.

In the next section, | present a possible application of thismodel in financial markets.
3.2 The Portfolio-Choice Problem

Consider an investor facing the problem p of investing a single unit of weal th*® in each period
t = 1, 2.... He can choose among portfolios consisting of two assets* denoted by a and b, with
random returns §,, distributed on an interval [§,;8,] and &, distributed on an interval [4,; &, ],
respectively.

Assume that the di stributions of returns are identical and independent in each period ¢, athough
6, and 6, might becorrel ated in asingle period. Supposethat the assetsare not perfectly divisible
and that short-sales are not allowed, or alowed only up to acertain limit only so that only a s,
congisting of afinite number of portfolios = {«;...an, } isavailable, with «; denoting the
share of asset a in the portfolio*™. Thus, if the decision-maker chooses a portfolio « and the
reaizations of the random returnsare 6, and 6,, he will achieve areturn of
adg + (1 — )by

Denotetheutility function of theinvestor by « (-). Then the distributions of ¢, and 6, determine
the digtribution functions (I1,) , . Of the utility realizations of all possible acts . If v is well-

46 \\e can assume, that the deci sion-maker has an exogenousincome and that he uses the returns of hisinvestment
for consumption. However, it isalso possible to think of a decision-maker, desiring to choose the alternaive with
the highest return pa amount of wealthinvested.

47 The arguments stated do not depend on the number of assets. Theintroduction of more assets would only change
the type of the variable o defined bel ow from scalar to vector, but would leave all the results unchanged.

48 The setof portfolios should al so entail the budgetrestriction of the portfoli o-choice problem. Sincetheportfolios
are defined by the share of wealth the decision maker invests into asset a, assuming tha the rest of the budget is
invested in b, the budget restriction is satisfied for each of the availeble portfalios.
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defined, bounded and continuous on

[ad, + (1 — a) 8,; ada + (1 — ) 6]
for al o € 2, then the distribution IT,, of « (-) for a given « is characterized by afinite mean
u,, and finite variance o, i.e. they have the same properties as in the model of Gilboa and
Schmeidler (1996). Moreover, differently from the setting of Gilboa and Schmeidler (1996)
the digtributions (I1,,),, ., have bounded and closed supports A,. As in the classic theory of
portfolio-choice, Markowitz (1952, 1959), one would like to determine the portfolio chosen by

the decision-maker.

It is clear that in the initial periods the behavior of the decision-maker is guided by chance, as
he has no or little information about possible payoffs and their distributions. However, astime
evolves, his behavior is determined by his memory which, on its turn, depends on the choices
made. It is reasonable to ask whether the behavior of the decision-maker will exhibit some
congtant patternsinthelimit. Hence, the limit frequenci es with which each of the acts is chosen

as the number of periods becomes large are of particular interest.

Consider an individual facing the portf olio-choice problem formulated above, who acts accord-
ing to the case-based decision theory, so that w € S;. For agiven path w € S; denote by
Ce (@)l = {7 <t]|a; =a}l
the number of timesthe act o hasbeen chosen up to period ¢. Dividing by the number of periods,
we obtain the relative frequency of an act o up to period ¢:
|Gt ()]

The behavior of the decision-maker in the IorL;g run can be characterized by the limit of the

relative frequenciesfor each « € 2 ast — oo. If such alimit exists, it will be denoted by
(o) = tlirgo 1Gi ()]

and referred to as the relative frequency of o onw. Of course, the existence and the values of

7 (o) will depend on the way the decision-maker changes his aspiration level @, with time. The

effect of using particular updating rulesis analyzed in sections 3, 4 and 5.
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3.3 Case-based Decision Theory and Expected-Utility
M aximization

In this and the subsequent two sections, the limit behavior of a decison-maker acting in ac-
cordance with case-based decision theory will be explored for different rules of updating the
aspirationlevel. The behavior of an expected utility maximizer, who, inthe same set-up, would
choose the act with the maximal expected utility at each period of time, can be used as a bench-
mark. | first state two theorems by Gilboa and Schmeidler (1996), which identify conditions
under which the case-based decison-making approaches expected utility maximization in the

limit. Next, | analyze the behavior of a decision-maker who does not sati sfy these conditions.

It is intuitively clear (see aso proposition 3.4) that a relatively low aspiration level can lead
to a path, on which a sole suboptimal act is chosen forever. Therefore, a special adaptation
rule is necessary to guarantee that a case-based deci sion-maker behaves like an expected utility

maximizer. It consists in making the aspiration level convergent towards max,eg( 4, -

The first result of Gilboa and Schmeidler (1996) states that starting from a sufficiently high
aspiration level and gradual ly updating it in the direction of the highest average utility achieved,
leads with a probability close to oneto a path on which the case-base decision-maker imitates
the behavior of an expected utility maximizer in the limit. Formally; let

ZTECt () tr

|C: ()]
denote the average utility of an act « upto period ¢, if this act has been chosen at | east once (i.e.

|C; (a)| # 0) and write

Xt (Oé) =

X, = max {X; () | 1C; ()] > 0}
for the maximal achieved average utility among all the acts chosen at least once. The idea of
Gilboa and Schmeidler (1996) consists in assuming that, starting from aninitial aspiration level

u1, the aspiration level is updated in the fol lowing manner:

U1 = Uy

th — ﬁﬂt—l ‘I— (1 - ﬂ)Xt fOf t Z 2,
i.e., giventheinitial aspiration level, the level for the next periodis determined as alinear com-

(3.3)

bination of the aspiration level of the previous period and the highest average utility achieved,
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for a chosen parameter 5 € (0; 1). In this case, the set of possible decision paths reduces to:

o L= o ﬂl - ﬂl and
@—@(6,”&1)—{&)651’ Et:ﬂﬁt_1+(1—ﬁ)th0rt22}’
so that only paths on which both the decision ismade according to the case-based decis on theory

and the aspiration level is updated according to (3.3) are considered.

Gilboa and Schmeidler (1996, p.11) define aprobability distribution on ® in the following way:
define a o-algebraon S, i.e. the algebra generated by the Borel o-algebra on each copy of R
and of A and by the algebra 2 on each copy of 2. Let & = ¥ (3; 41) be the induced o-algebra
on ®. A probability measure P on X is called consistent with (I1,,),q if for every ¢ > 1and

a € 2, the conditional distribution of u;, given that o, = «v isII, and u; («) isindependent of

((r; our; U’r))7<t

Theorem 3.1 Gilboa and Schmeidler (1996, p. 11). Let there begivena set A = {ay...an },
probability distributions (I1,) ., and a parameter 3 € (0; 1) as above. Then, for each ¢ >
0, there exists a up € R, such that for each w; > wpand each probability measure P on
(® (B;u1); X (B;w1)), consistent with (I1,) ey

P{wefbﬁlﬂ(argmeaﬁ(ua):l}zl—s

Thisresult can be made even stronger*®. Suppose that the decision-maker still follows the rule
given by (3.3), but in some periods he becomes ambitious and sets his aspiration level to a
number exceeding the highest average by a constant » > 0. Then, independently of theinitial
aspiration level, he will behave in the limit like an expected utility maximizer with probabil ity
1. Formally, let N C N be the set of periods, in which the decision-maker is ambitious. Then

the rule he applies to update his aspiration level can be stated as foll ows:
l_Ll - T_Ll
Uy = Pu—1 + (1 — B) X fort>2,¢ §é N (34)
=Xy +hfort>2,te N

In this case, the set of possible decision paths becomes:

11 = 41 and
=@, (Bu;N;h) =Qw eS| ay=pu+(1-p0) X, fort>2,t¢ N
U= Xy +hfort>2,te N

Theorem 3.2 Gilboaand Schmeidler (1996, p.12). Lettherebegiven®A = {a...an }, (Ila) ey
B € (0;1)asabove, N C N, h > 0 and u; € R. If N isinfinite but sparse, then for each prob-

49 The necessary conditions, which insure that expected utility maximizing obtains in the limit, are: (i) the con-
vergence of the aspiration level to the maximal mean; (:¢) arelatively slow convergence, Gilboa and Schmeidler
(1996, p. 14).
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ability measure P on (®, (3; @y, N; k) ; X (8;6y; NV h)), consistent with (I1,,)
P{w €dy | In (argmaxua> = 1} =1
ac

Hence, Gilboaand Schmeidler (1996) state two possibl e updating rules, for which the behavior

acl

of acase-based deci sion-maker with high probability conformsto the expected utility hypothesis
in the limit. Aninvestor, faced with the portfoli o-choi ce problem from above, will behave with
high probability (or even almost surely) asif he weremaximizing expected utility with frequency
1 in the limit, aslong as he is following (3.3) or (3.4). The relatively high initial aspiration
level or the adaptation of the initial aspiration level upwards insure that all acts will be tried a
sufficient number of times, so that the utility realizations observed by the decision-maker are
representative of the underlying stochastic process. Hence, by starting with no information at
al, theinvestor will, inthe end, have the same (or al most the same) informati on as an informed
expected utility maximi zer, but in asomewhat different form— instead of adistribution, he will
have a set of raw data, with amost the same distributi on as the one perceived by the expected
utility maximizer. Note that the case-based decision-maker need know nothing about objective
(or subjective) distributions, nor have any knowl edge in statistics. He does not concern himself
with the existence of objective probabilities or the fact, whether or not they vary over the time.
Neither does he pay any attention to possibl e autocorrelation in his set of data. However, given
that the probability distributions (I1.),.cq have the properties given above, he will act asif he
were informed about them.

The two updating rules (3.3) and (3.4) are interpreted by Gilboa and Schmeidler (1996, p. 2-3)
as both " realistic” and " ambitious”. In this context, ”realism” means that the decision-maker
adapts hisaspiration level towardsthe average of the a ready observed utility redizations. Thus,
heincreasesor decreaseshis aspiration |evel depending on whether the observed reali zati ons ex-
ceed or fall short of his expectations. The term ”ambitiousness” refers either to the fact that the
initial aspiration level is set high, or to the ideathat in some periods the aspiration level isin-
creased by a constant. This ambitiousness insures that the decision-maker will not choose a
suboptimal act forever, without trying a better one. The combination of ”realism” and ”ambi-
tiousness’ guarantees that the aspiration level eventually converges to max,, cq 4t,,. Therefore,
since only the act with maximal mean utility is perceived satisfactory in the limit, the decision-
maker chooses it with frequency 1.
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Now, | turn to explore the limit behavior of a decision-maker, who applies different rules for

updating his aspiration level.
3.4 TheCaseof Constant Aspiration Levd

In this section, the case of a constant aspiration level is analyzed. The results concerning the
case of arelatively high aspiration level, stated in propositions 3.1 and 3.2, are specia cases
of the more general theorem, proved in Gilboa and Pazgal (2001, p. 125). Since, however, the
argument of the proof seems to be important for understanding and interpreting other results
aswell, | state these as separate propositions and deliver a proof which differs from the onein
Gilboa and Pazgal (2001).

Consider a decison-maker acting in accordance with the case-based decision theory, whose
aspiration level remains constant over time. In this case, the space of possible decision paths

reducesfrom S to:

@2:®2(ﬂ1):{w€ Sl| u; =uyp foralt e N }

for someu; € R.

Define a probability distribution P on &, to be consistent with (I1,,) , . @ adistribution, which
induces the same probability on u; as Il, giventhat oy = a ischosen, in such away that u; is
independent of the memory up to time ¢. The next propositions state that it the relative position
of u; to the maximal mean utility max.cs 1, determines the relative frequencies of choices,
implied by this distribution.

In the first proposition, u; is set sufficiently high, so that al possible returns achieved when
choosing an act are negative. Thisis possible, because of the assumption that the supports of
the returns are bounded. Denote by

Py =@ (uy) = {we S| w=u >ufordluecAandalteN }
the set of possible decision paths.

Proposition 3.1 Let the constant aspiration level u; of a decision-maker exceed all possible
utility realizations of the available acts, i.e. v < u; for all v € A. Then, each probability
distribution P on @/, consistent with (I1,) ..y satisfies:

p{wecpg\va,aemaw(a) and 7 (a), st &) _ 1_“‘“&}— 1.
W(a) Ul — MKy
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Next, it is shown that the same result also holds if the mean utilities of the acts do not exceed

the aspiration level. Let &/ be the corresponding set of possible decision-paths:
O = Y () = {w € Sy | U =1 >p,foralacAanddlteN }.

Proposition 3.2 Let the constant aspiration level u; of the decison-maker exceed the mean
utilities of all the actsavailable, i.e. p,, < @ for all a € 2. Then each probability distribution
P on @3, consigtent with (I1,,) , .o Satisfies:

P{wG@'z'\Voz,& € A3n (a) and 7 (@), St. mla) _ “1_“@} — 1.
T(Q) U= g

A decision-maker with a constant, but relatively high aspiration level will not be satisfied with
any of the acts available to him. Hence, (aslong as the act of doing nothing is not consi dered),
inthelimit all available acts are chosen with positive frequency. Although the decision-maker
eventual ly acquires enough observations from each act, so as to be ableto infer their distribu-
tions, he usesthis information in a diff erent manner than an expected utility maximizer. I nstead
of choosi ng the act with the highest mean utility, he chooses all acts with afrequency inversely
proportional to their ”net”-mean utility, i.e. the difference between the mean utility and the
aspiration level. In the portfolio choice problem, this means that the investor most frequently
choosesthe portfolio which yields the highest mean utility, but, at times, he a so chooses inferior

portfolios (or even portfolios dominated in the sense of zero-order stochastic dominance).

Now suppose that the aspiration level becomes even |ower, so that at |east one act has a mean

utility exceeding the aspiration level. Again, define the corresponding set of decision paths as:

Y =@ (uy) ={w eS| =1 <p,forsomea eAandalteN }.
Thenthe following result applies:

Proposition 3.3 Let the constant aspiration level @, lie below the mean utility 1, of at least
one of the acts . Wtite A for the set of acts, for which this condition is satisfied. Suppose as
wel| that 11, — @, # 0 holdsfor each oo € 2. Then, on almost all paths w, one of the acts from
A ischosen with frequency 1 in the limit ;

p{ €| Ja(w) e Asuchthat (o (w)) :1onw} —1.

For compl eteness, the obviousresult for the casewhen all realizationsof al poss bleactsexceed
the aspiration level is aso stated:
o) =) () ={we S| ty=u <ufordluecAanddlteN }

denotes the corresponding set of decision paths.
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Proposition 3.4 Let the constant aspiration level , lie below all possible realizations of the
available acts, i.e. u; < ufor all v € A. Then, on almost all pathsw, one of theactsa € 2 is
chosen with frequency 1 in the limit:

Plwe V| Ja(w)eAsuchthatr(a(w)) =1lonw} =1,

Given that theinitial aspiration level is sufficiently low, on almost every path w one of the acts
will be chosen with frequency 1 in the limit. However, it is not necessarily the act with the
highest mean utility. Moreover, on two different paths of return realizations, the limit choices
of the decision-maker may differ. Indeed, the acts with mean utility below the aspiration level
are chosen with frequency 0, but this does not guarantee optimality in the long run, as there
is a positive probability that the act with the highest mean utility might never be chosen. In
the context of portfolio-selection this means that the investor may be constantly choosing an

inefficient portfolio, or even a dominated portfolio, thus leaving arbitrage possi bilities unused.
3.5 Max-Min Updating Rules

Suppaose now that instead of keeping hisaspiration level constant over time, theinvestor updates
it in accordance with the utility realizations he observes. If theinvestor is optimistic, he may,
for instance, believethat in the future he will continueto achievethe best result he has observed
up to the present. One could alternatively interpret this kind of adaptation of the aspiration level
as a sdlf-attribution bias, the tendency of people to ascribe their failures to bad luck and their
successesto their personal abilities™. Aninvestor acting in thisway will then think that the high
returns he has observed are due to his ability to pick the right assets at the right time, whereas
the low returns are due to chance. High payoffs, therefore, increase the expectati ons of such an
investor (ascaptured by hisaspiration level) and lower hiseva uation of futurereturns. Therule
capturing this phenomenon is given by:

| uy <maxyepu,fort=1
= { max {u1; max,<;us}, fort > 1, [’ (35)

i.e. thedecison-maker setshisaspiration level equal to the maximal utility achieved upto period

. Write
_ | up <max,ep u, fort =1
3 = {w €S| = { s {1y e s fOr £ > 1,

50 See Miller and Ross (1975) and Langer and Roth (1975) for a description and analysis of the self-attribution
bias.

51 |If @, exceeds the upper boundary of A, no updating of the aspiration level takes place and, consequently, the
result of proposition 3.1 holds.
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for the set of possible decision paths consistent with this updating rule. Then (again defining a

probability measure P on ®,, consistent with (I1,,) o) the following result applies.

Proposition 3.5 Consider a decision-maker who updates hi saspiration level accordingto(3.5).
Assumethat o, > 0 for all o € 2A. Then, each probability distribution P on ®5 consistent with
(Ia) , g SAUiSieES:

P{we%wa,aemaw(a) and = (&), st. 24 _ maXUGA“_“&} _1

(@) | maxuesu — 1,

Alternatively, one can cons der apessimistic investor, who sets hisaspiration level at the lowest
possible level of utility achieved until the current period. Unlike the self-confident investors,
this investor believes that his own mistakes are the reason for low profits, whereas the high

returns are only due to chance®?. His adaptation ruleis captured by:
— 121, fOI’t - 1
%= min {t1; min;<;u,}, fort > 1, |-

No matter how high the initial aspirationlevel of such aninvestor might be, he will alwaysend

(3.6)

up choosing one act with frequency onein the limit. Let
@4:{w651|ﬂt:{ Uy > ming,ep u, fort =1 }}

min {@1; min;<;u,}, fore > 1,
denote the set of consistent decision paths.

Proposition 3.6 Consider a decision-maker, who updates his aspiration level according to
(3.6). Then, each probability distribution P on ®4, consistent with (Il ) ..o Satisfies:
P{wed,s| FJa(w) eA,suchthat 7 (o (w)) =1lonw} =1

Theupdating rules(3.5) and (3.6) represent extreme cases of very optimistic and very pessimistic
decision-makers. Itisalso of i nterest to consider anintermediatecase, in which theinvestor takes
into account the minimum, as well as the maxi mum achieved. His pessimism is captured by the
wei ght /3 he assigns to the minimal realization achieved and hisoptimism by theweight (1 — )
of the best redlization. The cases 3 = 0 and 3 = 1 correspond then to the updating rules (3.5)
and (3.6), respectively. Then for sufficiently low values of 3, the decision-maker chooses all

acts with positive frequency in the limit, whereasfor § near 1, satisficing behavior emerges.

52 Sociol ogists have found that men and women expl ain their misfortunes differently. Whereas men tend to explain
their mistakesby bad luck andtheir successesby their own abilities, womenseem todo thecontrary. Thisisprobably
also the reason why most of the overconfident investors are men, as Barber and Odean (2001 (b)) find.

5 If 4, liesbelow the lower boundary of A, then no updating of theaspiration level takes place and, consequently,
the result of propasition 3.4 halds.
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Proposition 3.7 Leto, > 0for all « € 2. Consider the adaptation rule

U] = U1 € [minu; max u
ueA ueA ] (37)
Uy = ﬁmin{ﬁl;mi? uT} + (1 — /) max {ﬂl;maicuT} for Vt > 2
T< T
and denote by @5 the set of consistent decision paths. Thenfor all valuesof 3 € [0; 1] suchthat:
maxu — [,

vy foreacha €%, (3.8)
maxX u — Imin min u
uEAOL acl ’lLEAa
each probability distribution P on ®5 consistent with (Il,,) , o, Satisfies:
[ e mlen _ iy (- O mapmgcn - p |
Pqwe®s] 7 (o) :ﬁminminu—i—(l—ﬁ)maxmaxu— =1
0 uEhq ol uehy | He

Thus, if thedecision-maker i srel ati vely opti misti ¢, hisaspiration level becomes sufficiently high
in the limit and he switchesinfinitely often among all possible acts, with afrequency inversely
proportional to the net mean utility of the actinthe limit. It ishowever not truethat for all values
of 8 higher than thosein (3.8), one act will be chosen with frequency 1 on amost each path w.

In fact, thiswill be the case only if

Max MAX U — fq

(S ENa

B> —= —— for some o € 2. (3.9
maxmaxu — min min u
acl uclAq acl ucAq

For valuesof (3 between (3.8) and (3.9), however, the frequenci eswith which the acts are chosen

are path-dependent. For instance, even if 5 does not satisfy (3.9), it is possible that the act
chosen in the first period yields a low utility realization, and, as aresult, the aspiration level is
updated downwards. The next act chosen may then turn out to be satisfactory (relative to the
low aspiration level) and, thus, will be chosen forever. If, however, the first act chosen has a
rel atively high realization, then the aspiration level isupdated upwards, possibly rendering all

of the acts unsatisfactory, and causing permanent switching among them.

To summarize, the results of this and the preceding section show that high (or increasing over
time) aspiration level slead to permanent switching among the acts, whereas ow (or decreasi ng

over time) aspiration levels induce satisficing behavior in the limit.
3.6 Interpretation of the Results

In this section, the results derived above are compared to the empirical evidence from finan-
cial markets. It will be shown that some of the observed phenomena are consistent with the
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theoretical results obtained.

3.6.1 Choosingan Efficient Portfolio

The CAPM, suggested by Sharpe (1964) and Lintner (1965) generates strong predi ctions not
only with respect to portfolio holdings but also with respect to asset pricesin equilibrium. The
early empirical studiesinthis areahave been sharply criticized by Roll (1977), who argued that
only the meanvari ance-efficiency of the chosen portfolios, and not their optimality could be
tested. Kroll, Levy and Rappoport (1988), thusconduct an experiment which is designed to test
whether subjects choose mean-variance-efficient portfolios if mean, variance and covariances
of the available risky assets are known. The experiment is designed in a way which excludes
any serial correl ation between the returns of the assets. This makes the compari son between the
experimental and the theoretical results particularly smple. Kroll, Levy and Rappoport (1988,
p. 509) refute the foll owing three hypothess:

Changes in the covariance structure affect the choice of a portfolio;

Allowing subjects to borrow and lend at the same rate leads to a movement in the direction of a
common, optimal risky portfolio;

The chosen portfolios become more efficient, as subjectsgain more experience and obtain feed-
back.

Hence, the behavior observed isinconsistent with the predictionsof the portf dio-choice theory,
asformulated by Markowitz (1952, 1959) and Tobin (1958) and, therefore, ultimately with the
CAPM onwhich it isbased. Theresultsobserved in the experiment are however cons stent with

the behavior of case-based decision-makers with constant low aspiration level.

First, the proofs of propositions 3.3 and 3.4 show that the covariance between the assets does
not play any rae for the limit behavior of the decision-maker. Thisis due to thefact that the
result of the portfolio chosen in a certain period is evaluated independently of the realizations

of the portfolios which were not chosen in this period.

Notealso that for different subjects with the same aspiration level, the choiceof portfolio in the
limit need not be the same, even if borrowing and lending at the same rateis allowed. As has

already been mentioned, the limit behavior in the case of |ow aspiration level depends strongly
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on the first periods, in which the behavior of the investors is guided by chance. Thus, even

identical subjects may end up with different (suboptimal) portfolios of risky assetsin the limit.

As stated above, a case-based investor with arelatively low aspiration level will not choose an
optimal portfolioingeneral, evenif heisallowed to repeat his choiceinfinitely often. Thisresult
is due to the fact that the feedback obtained isinterpreted as positive, rel ative to the aspiration
level and is cons stent with the falsification of hypothesis (¢).

3.6.2 Arbitrage Restrictions

A rather "strange” feature of the case-based decision-makerswith rel atively low aspiration level
is that they may choose a portfolio which is strictly dominated by another portfolio inthe set of
the possible actswith frequency 1 inthelimit. Thus, amarket in which case-based i nvestorsop-
eratewould not be safefrom arbitrage. Empirical datashow, see, for instance, Hglewski (1989)
that unpredictable vd atility, indivisibility of assets, transaction costs and imperfect financial
mar kets can render arbitrage strategies too costly. However, neither of these e ements drives the
resultsinthe model above. Neverthel ess, some experimental studies demondtrate that arbitrage

opportunities may occur even in perfect financial markets.

Rietz (1998) constructs an experimental market with two states of the world and no aggregate
uncertainty. He finds, see Rietz (1998, p. 2), that ”[a]arbitrage opportunities were prevalent
and extremely robust. Exactly why traders did not expl oit the opportunities remai ns a mystery.
They ssmply did not take advantage of profitable opportuniti es even when they had been shown
how, when they had cons derable experience, when they could also engage in direct portfolio
trading and when they could sell short.” Even though the set-up is quite simple and the subj ects
are literally taught how to exploit arbitrage possibilities, a professional arbitrageur is needed to

draw the pricesto their arbitrage-free val ues.

In another empirical study by Oliven and Rietz (1995), the non-arbitrage conditions on prices
are tested in the context of afutures-market. Again, the result isthat investorsfail to use even
the s mplest possibilities for arbitrage. The highest number of violations — 37,7%, Oliven and
Rietz (1995, p. 2) — isobserved in the behavior of the so-called price-takers (investors who
accept an outstanding offer or bid), whereasthe price-makers (those who set offers or bids) fail

to use an arbitrage possi bility in only 5,39% of the time.
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Whereas the observed behavior is incons stent with expected utility maximization, case-based
investors with relatively low aspiration levels might indeed fail to use arbitrage possibilities.
As long as they consider the prafits achieved in the past satisfactory, they do not consider it

necessary to experiment with different portfolios and engage in arbitrage activities.

Aninteresting resultisthat inthe experiment of Olivenand Rietz (1995) the number of violations
of the non-arbitrage conditi on increaseswith theincome class reported. Thismight be explained
by the findings of Gould (1941), who examines the dependence of aspiration level on socio-
economic factors. His results show that aspiration level s decrease with more favorable social
and economic position. Hence, high-income investors might have lessincentives to experi ment

and might therefore be more viable to violations of non-arbitrage conditions.

The reason for not using arbitrage possibilities in this case is due to the fact that the decision-
maker is not informed about the existence of better acts. In section 7 it will be shown that
supplying the deci sion-maker with additional information canlead to optimal behavior.

3.6.3 Diverdfication and Familiar ity Effects

Even after asset marketshave been largely globalized, investors seem not to understand and use
the advantages of diversification. Tesar and Werner (1995) anal yze aggregate trade with assetsin
several countries(USA, Canada, Great Britain) and show that the percentage of domesti c assets
held i shigher than the optimal one. Coval and M oskowitz (1999) find a similar biasin the USA,
whereinvestors seem to prefer local firmsto firms operating in other statesand regions. Several
possibl e expl anati ons have been proposed in theliterature, see Coval and Moskowitz (1999) and
Lewis (1999). Transaction costs and cross-border frictions arethefirst to be considered, as in
Black (1974) and Sulz (1981). However, Tesar and Werner (1995) show that taking them into
account doesnot removethe effect completely. Lewis (1999) clai ms that insuring agai nst home-
risks (e.g. inflation-risk) cannot explain the home-bias, either. There is some evidence that the
informational structure of the economy might be connected with the preferences to invest in
home or foreign companies, see Grinblatt and Keloharju (2001), Kang and Stulz (1997) and
Cova and Moskowitz (1999). They argue that since investors are better informed about local

than foreign companies, itisrationa for themtoinvest moreinloca companies™. Itis, however,

5 For models on assymetric information in this context see Brennan and Cao (1997) and Coval (1999).
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unclear why information per se should lead to a buy-and-hold decision. Analyzing Japanese
companies, Kang and Sulz (1997) find that those preferred by foreign investors are not only
large (and thus better known and communicating more information), but also well-performing

and low-risk.

Supposethen that bef ore choos ng aportfolio for thefirst time, the investor recei vesinformati on
about past returns of some of the assets available. Assuming that he is better informed about
domestic and large forei gn companies, heismorelikely to receiveinformation about thereturns
on their assets. As long as he considers the information to be equivaent to real experience
(see section 7) and provided that his aspiration level isrelatively low, he will prefer buying
the portfdio consisting of the shares of those companies he has been informed about. For low
values of the aspiration level (or, alternatively, relatively high returns), the cumulative utility of
the portfolio chosen remains positive over the time. The investor will, therefore, continue to
choose this particular asset forever, without considering others, especialy if he hasno (or only

vague) information about their utility realizations.

Another explanation stated in theliterature, e.g. Huberman (1998), isthat i nvestors exhibit some
kind of preferencesfor local assets. It iswell known that peopl e prefer actswhich arefamiliar to
them. However, provided that theinvestor believesthat one of the acts yieldsahigher profit, itis
not quite clear why he should choose the more familiar and the more unprofitabl e one (ignoring
patriotic feelings and wishes to invest in the domestic industry to support it). Thus, familiarity
effects can be taken into account in those cases in which the acts are equally eval uated from
the point of view of expected returns. Suppose, therefore, that acase-based decision-maker still
evauatesthe actsaccording to their cumulative utility in each period. 1f, however, two actshave
the same cumulative utility, he chooses the one contai ning morefamiliar assets. Suppose aswell
that the decision-maker hasno initial information about the returnsof theassets. Inthiscase, the
cumulative utility of all the actsisOinperiodt = 1. Thefirst choiceswill be therefore based on
familiarity preferences. If, furthermore, theaspiration level of the investor isrelatively low, this
kind of behavior may lead him to choose an underdiversified portfolio containing a high share

of (familiar) domestic assets.

To summarize, the assumptions of case-based decisi onscombined with arelatively |ow constant

aspiration level can help explain, why investors fail to choose an efficient portfolio in the long
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run. These assumptionsal so imply that unexpl oited ar bitrage possibilities might be present in the
mar ket and can descri be situations in which investors neglect foreign assetsand fail to diversify

their portfolios optimally.

3.6.4 ExcessveTrading

Up to this point, the implications of the case-based decision theory in the case of low aspiration
level have been analyzed. Now consi der the case of high aspiration level. Propositions 3.1 and
3.2 show that investors with arelatively high aspiration level switch among the actsin the long
run, choosing all of them with positive probability. They violate optimality by trading more
often than it would be rational, given correct beliefs. Odean (1999) findsthat the frequency of
tradesis extremely high in financial markets. He shows that excessive trading is not eliminated
even after controlling for liquidity demands, tax-loss selling and portfolio-rebalancing. It leads
to lower returnsfor theinvestors engaging init, which do not disappear, even if transaction costs

areignored. Odean call s such investors overconfident.

Case-based investors with high aspiration level also choose to trade more frequently than ra-
tiona, thus lowering their returns. Whereas " overconfident” investors are usualy modelled
as decision-makers, who believe that the signals they receive about future returns are more pre-
cise, thanthey actually are, asin Hirshleif er, Subrahmanyamand Titman (1994), Hong and Stein
(1999), Dani€l, Hirshleifer and Subrahmanyam (1998, 2001), Odean (1998 (a)), the behavior of
case-based decision-makersisonly influenced by information about past returns. Their subop-
timal behavior is not due to the fact that they lack information. In fact, choosing each act for
an infinite number of times, they receive enough information in order to learn the distribution
and the mean utility of each portfolio. The evaluation of the experienced payoffs as dissatisfic-
ing relative to the unrealistically high expectations captured by the aspiration level causes the

excess ve trading in this model.

As proposition 3.3 shows, the ” optimal” constant aspiration level inthe model should fulfill:

max [, > U1 > max Ua

acA acA\{arg max p1, }
Once it becomes larger than max,cqy 4, the investor engagesinto excessi ve trading and lowers
their utility from trade compared to the optimum. Note as well that the higher the aspiration

level of the decision-maker, the lower hisaverage utility in the long run becomes. As one can
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easly verify frompropositions3.1 and 3.2, it followsthat, if u; — oo, thenthelimit frequencies

of al the actsare equal, sincefor all « and & € 2:

tim &) gy Ma— @

Uy —00 T (Oz) U1—00 4o, — U7
holds. Hence, the acts with high mean utility will be chosen more frequently for smaller values

=1

of u, thanfor higher aspiration levels, implying that increasing the aspiration level |eadsto | ower

mean utility.

Barber and Odean (2001 (b)) show that investors who have previously experienced superior
performance tend to switch to on-line-trading and trade more actively, thus decreasing their
profits. One of the possible reasons suggested by Barber and Odean (2001 (b), p. 6) is the
self-attribution bias, the tendency of people to ascribe their failuresto luck and their successes
to their personal abilities. Propositions 3.5 and 3.7 show that the empirical findings of Barber
and Odean (2001 (b)) can be reproduced by the behavior of case-based decision-makers with a
linear utility function, who update their aspiration level s towards the highest utiliti es they have
achieved inthe past. The aspiration level becomes higher asthetime passes and in the limit the

investors trade too much, achieving lower mean profits, than would be optimal®.

Shapira (2001) analyzes the observed behavior of government bond traders. He finds that bond
traders who have achieved the goa's set to them tend to trade less in order to take less risk.
Traders who fail to fulfill the targets become more aggressive and trade more taking greater
risks. Shapira explains his findings by the prospect theory of Kahneman and Tversky (1979).
Propositions 3.5 and 3.7 provide an alternative explanation: if the trader perceives the acts he
has tried as unsatisfactory with respect to his aspiration level (alias set goals), he will switch
between the acts, until he finds a satisfactory one, or infinitely often, if no act can satisfy him.

Having achieved histargets, he will then settle on the successful act and stop trading.

3.7 Collecting Additional I nfor mation

Up to this point, it has been assumed that the decision-maker receives no other information

apart fromthe utility reali zations of the acts he chooses. Thisassumption seems quite restrictive

55 In this modd prices and returns are exogenoudly given and therefore needn’t coincide with their equilibrium
values. Neverthdess, it can be shown, (see chapter 5) that traders with rdatively high aspiration levels trade too
much and achieve lower profits in a market environment with endogenous prices and returns as wdl. | thank
Michael Waldman for this comment.
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in the context of financial markets, where abundant information about past returns of assets is
available. In thissection, the case in which the deci sion-maker acquires additional information
about the acts from the set 2 is considered. Two assumptions are made: first, the information
coll ected regardsonly past utility realizations; second, the decisi on-maker treats theinformation
hereceives as absol utely reliable and uses it when calculating the cumul ative utility of an act as
if hehad chosen this act in some previous period and achieved the utility realization he hasbeen

informed about®.

Consider a decision-maker who receives information about therealizations of all possible actsin
each period of timet = 1,2, .... Some additional notation is necessary in order to discriminate
between the knowl edge of the decision-maker and his actual behavior. Let k; («) denote the
information of the decision-maker about the realization of the act « in period t € N and denote
by
ke = (ke () ...kt (o))
the information of the decision-maker about the reali zations in period ¢ (note that thereali zation
of the act actually chosen in period ¢ isaso contained in the informati on about period ¢). Then
the set of possible paths can be defined as:
55 = {w = (@ o u k). } © (R X A A X (X geuha))"

In this context, the cumulative utility of an act o in period ¢ is defined as:
t—1

Ul (a) = [k (@) — @]

T=1

The decision-maker chooses in each period the act with maximal cumul ative utility so that the
set of possible paths reducesto:

ST = {w €Sty € argrgg;l(UtI () Vt > 1}.
Define ao-algebraon S{, i.e. the algebra generated by the Borel o-al gebra on each copy of R
of A andof (x .cq/,) and by the algebra2® on each copy of 2. Let ¥ be the induced o-algebra
on S1. Let theprobability distribution P on S{ beconsistent with (I1,,) . Again, the behavior

of the decision-maker can be characterized by the frequencies with which the acts are chosen

5 The case-based decision theory of Gilboaand Schmeidler (1997 (a), 2001 (a)) allowsfor amore generd treat-
ment of the assessment of information. It is, for instance, possible to value personal experience more than the
indirect, acquired by the information available, or vice versa. This would require the introduction of a similarity
function between information and experience. The analysis of sections 3 — 5 has been carried through with the im-
plicit assumption that the similarity between direct and indirect experienceis0. In the current section, itisassumed
that thissimilarity is 1.
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when the number of periods becomesinfinitely large.

Proposition 3.8 Consider a decision-maker who in each period of time receives the infor ma-
tion about the utility realizations of all acts a € 2l in this period. Then, independently of his
aspiration level (;),_, , , onalmost all paths of return realizations hewil | choose the act with
the highest mean utility with frequency 1:

P{w eS| 3n (argmag)fua) = 1} =1
ac

Theresult of the proposition statesthat a case-based deci sion-maker who possessesand is ableto
process the whol e past inf ormation about the problem he is facing behaves as an expected utility
maximizer in thelimit. M oreover, thisresult depends neither on the value of the aspiration level,

nor on the way it is updated.

Note that although the case-based decis on-maker eventually learnsto choose the optimal port-
folio, his learning differs from the Bayesian one. It is possible to elicit the " beliefs” of the
case-based decision-maker in the following way: since the cumulative utility of an act « is

given by

t—1
Ul (@) =) [k, (@) — ],

the decision-maker obviously acts in a freql]gr%tist way, ascribing to each act those possible re-
alizations which he has actually observed and weighting them by the frequency with which
they have occurred.. The difference of this approach from the Bayesian learning is two-fold.
First, instead of starting with a prior on the set of possible outcomes and updating it to elim-
inate outcomes which never occur, the case-based decision-maker starts with the "prior” that
each act yields a utility realization equal to his aspiration level u,. After the first period, the
decision-maker observes the utility realizations of al portfolios and ” updates’ his beliefsin a
non-Bayesian manner, sSince now headds to his” prior beliefs’ the possi bility that an act o yields
the utility realization k (o). He assigns this realization a probability of 1 in the eval uation of
the act. Note that in this period he assigns a probability of 0 to any realization different from
k1 («), which cannot happen to a Bayesian who starts with a correct prior and, therefore, never

assignsa0 probability to a set with a positive objective probabil ity.

The assumption of proposition 3.8 suggests that the decision-maker is able to process and ac-

quire unlimited amount of information without incurring costs. While it is not quite realistic to

imaginethat adeci sion-maker coll ects the whol einformati on avail able in every single period of
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time, collecting information for few periods may be avery realistic assumption, if one consid-
ers an investor who has not faced the problem before. Before choosing a portfolio for the first
time, he may try to gather information about the realizations single portfolios had in the near
past. However, once he becomes more familiar with the problem, he might begin to rely on his

experience and stop collecting further information.

In the next two propositions, the case of an investor who receives information about all real-
izations only for afinite number of periods KC isanayzed. After period /C, the deci sion-maker
receives only information about the utility realizations of the acts he actually chooses. Assume,
as above that information and direct experience are treated equally when evaluating the acts.

Using the notation from above define the new set of possibl e decision paths as:

Sé< = {w = <((ﬂt;at;ut;kt))t:1’m,c;((ﬁt;at;ut))t:,CH’KHM)} C
C RxAxAXx (XaemAa))K (R x 2A x A)N/{l...IC}

In this case the cumul ative utility is defined as:
S Ry () — ) fort <K
U@ =0 K ) — )+ Y w fort>K
=1 177 t TGCZC(D() T
with O () denoting the set of periods between period K and period ¢, in which the act « has
been chosen:

Cra)={K<T<t|ar=a}.

Consider firgt the case of constant aspiration level, i.e. u; = u; foral ¢t = 1,2, .... The set of

possibl e decision paths then reduces to:

K (e — \ Kk u € argmaxaey UK (o) VE > 1
Sl (K7u1)_{we50’ at:ﬂ1Vt21 :

Define a probability measure P on S{, consistert with (I1,,) .. Thefirst result shows that if
a decision-maker with arelatively low aspiration level receives information for a sufficiently

large number of periods /C, then he will be rationa with probability arbitrarily close to 1.

Proposition 3.9 Consider a decision-maker with a constant aspiration level #; such that the
"net” mean utility of all actsin some subset of 2 — A ispositive, i.e.:

pe — 1 > 0,ifa c A.
Let the decisi on-maker recel veinformation about the utility realizationsof all acts for 7" periods.
Then, for each ¢ > 0, there exists an integer K, such that

P{w € S{ (Th ) | I <argm€‘cgl<ua) = 1} >1—¢
forall T" > K.
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Arbitragepossibilitiesand underdi versifi cation areeliminated with ahigh probability in amarket
in which investors with relatively low aspiration level are allowed to learn. Thisis, however,

not true when investors with high aspiration levels are considered.

Proposition 3.10 Consider a decis on-maker with a constant aspiration level w4, such that the
"net” mean utility of all actsa € 2 isnegative, i.e..
t, — uy < 0, for al a e 2.

Let the decision-maker receive infor mation about all the realizations of the acts for /C periods.
Then for all finite K

) ~ 7 (« Ul — [hs
p{wele(IC;ulﬂ\V’Oz,aEQ[H?T(a) andw(a),s.t.ﬁgd;:ai_za}:l
holds.

The result of the proposition is not due to the fact that the investor has not enough information
about the possible reali zations and their distributions. Indeed, if K issufficiently large, then at
period IC the decision-maker chooses the optimal act with probability is close to 1. However,
since even the best act seems to him unsatisfactory, after period K, the investor will switch
among all available acts asin the case in which he cannot gather additional information. Thus,
we shoul d not expect that investors with high aspiration level slearn to behave optimally, unless

they are able to proceed the whole past information available in the market.

In an analogous way it is possi ble to describe the behavior of adeci sion-maker who updates his
aspiration level to the maximal utility achieved in the past.
Proposition 3.11 Consider a decision-maker with an aspiration level updated according to®”
U < max,cpu,fort=1
iUy = { max {meag[c ki—1 («) ;Ht_l}, forl<t<K+1 3. (3.10)
max {u;_1;u;_1},fort >+ 1
Denote the set of decision-paths consi stent with this updating-rule by SX (KC). Then each prob-

ability distribution P on S5 (K), which is consistent with (I1,) ., Satisfies:

P{w € SK(K) | Vo, a € % 3 (a) and 7 (&), St. m(a) _ maxuenu _“&} ~1.
T (&) MaxuenU — fi,

If wethink of investors using the updating rule (3.10) as being subjected to the self-attri bution

bias, we agai n reach the conclusion that investors who increase their expectations to unreal isti-

cally highlevels switch more often between the acts than it would be optimal and lose money in

57

The initial value of the aspiration leve u; does not influence the behavior of the investor in thelimit, as long
asitis below the upper boundary of A. If it exceeds this upper boundary, then no updating of the aspiraion level
takes place and the result is asin proposition 3.10.
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general. Hence, even inthe case in which information about |ong return sequences is available,
the behavior of theseinvestorsissimilar to the behavior of ” overconfident” investorsdescribed
by Odean (1999). Barber and Odean (2001 (b), p. 7) relate the overconfidence of online in-
vestors to the fact that "[o] nline investors have access to vast quantities of investment data”.
The abundant information makes the traders believe that they have better skillsthan the aver-
ageinvestor and trade more than it would berational. The last proposition showsthat if atrader
suffers from the self-attri bution bias, (in the sense that he ascribes his success to his own abil ity

and losses to chance), additional information will not help him to learn to behave rationaly.
3.8 Portfolio Choicewith Similarity Consider ations

Up to now, | have assumed that the utility yielded by aportfolio doesnot i nfluence the eval uation
of the portfolios not chosen in the given period. It is, however, possible that the utility achieved

by choosing one portfolio affectsthe eval uation of another one because of similarity perceptions.

In chapter 2, the issue of introducing similarity perceptions into a model of financial markets
has been discussed. | now present a model of individual portfolio choice in which similarity
considerations are integrated. By using this model, the impact of the form of the similarity
function on the individual decision-making can be examined. The results are then compared to
those obtained without similarity consi derations and to theresults of the standard theory, which

assumes afully informed expected utility maximizer.

Differently from the analysis above, the introduction of a similarity function allowsto consider
an infinite number of available acts. Suppose, therefore, that 2 = [0; 1]. Hence, diversification

is allowed, but short-sales are forbidden.. Assume that the similarity function satisfies™®
slga) =1
s(a;d) = s(a;a)
s(0;1) € [0;1)
for al «, o/ € [0;1]. Let s further depend only on the distance between o and « and assume

that it is gtrictly decreasing and concavein ||ja — o/||. Fgure 2 provides an example of such a

58 Gilboa and Schmeidler (2001 (a), p.144) comment that the second characteristic of the similarity function re-
quired in the model, symmetry, is not natural in some applications. Moreover, they define a different notion of
symmetry in the context of their model. However, since in this model the distance between the portfolios deter-
mines the similarity, the similarity function is assumed to by symmetric.
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similarity function.

A

Figure 2

Recall that the memory of the investor at timet isrepresented by the set of cases encountered
until period ¢

M, = ((Pﬂ 0473“7))7:1,2...7:—1 .
M, is assumed to be endogenoudy determined at each timet, i.e. M, contains only caseswith

portfolios actually chosen and utility realizations actually observed by the investor.

3.8.1 TheCaseof Constant Aspiration L evel

Assumefirstthat the aspiration level « of the investor is constant over thetime. Givenaproblem
p andamemory of length ¢, the deci sion rul e of acase-based decisi on-maker consistsin choosing

the act with maximal cumulative utility U; («) with:
t—1

Ui(a) = 3 s (aiae) [ur — a1

=1
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Let «; = & denote the act chosen in thefirst period and assume that & is astrictly diversified
portfolio, i.e. & € (0;1). ®g describesthe set of possible paths:
B = {w €S| Ut i@ffordlt: 1,2, ... } .
a1 =
Let P denote a probability measure consistent with (IL, ), @ described in section 3. Itis
easly seen that:
Lemma3.1l If u < ug, then the expected time, for which theinvestor will hold & isinfinite. If

u > pg, then theinvestor will almost surely switch in finite time to a different act o with o = 0
fora>3anda=1fora <3,

The next proposition showshow an investor will behave if his aspiration level is higher than the
mean utility of the initially chosen portfolio.
Proposition 3.12 Let the similarity function s («; /) of an investor be concave in |ja — /|

with s (1;0) € [0;1) and the memory of theinvestor be endogenous and contain all past cases
up to the current period. If @ > p, and

e @ > max {jg; 111}, then
P{we@ﬁ\ﬂw(a):[0;1]—>[O;1]and ™ (0) = =— 7 () = Ofor a¢{0;1}}:1;

® [y > U > iy, then

P{w e &g | In(a):[0;1] — [0;1]and 7 (0) =1, 7 (a) = Ofor a # 0} = 1;

o 1y > U > i, then

P{we &g | In(a):[0;1] — [0;1]and 7 (1) =1, 7 (a) =0for a # 1} = 1;

o 1y >uand p, > u,then

7(l)=1, 7m(a)=0 fora#1
P{w € &g | I (a) : [0;1] — [0; 1] and or } =1.
7(0)=1, w(a)=0 fora#0

An investor whose aspiration level exceeds the mean utility of the initially chosen portfolio

will only diversify for a finite number of periods. Afterwards he will either choose one of the

undiversified portfolios forever or switch between them, depending on whether he finds their

mean utility satisficing or not. Note that the result that an investor will diversify only for afinite

number of periods, provided that his aspiration level isreatively high, does not depend on the

assumption that the investor can remember all past cases. The statement remains true, even if
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the investor can remember the last m cases, where m isfinite. 1tisessentia, however, that the

investor remembers only cases that really occurred, i.e. that his memory is endogenous.

With two assetsonly, simil arity between the two undiversified portfolios can be normalized to 0.
Hence, only similarity perceptions with respect to the portfolio structure pay arole for the limit
behavior. This featureis due to the indeterminacy of similarity function with respect to affine-
linear transformati ons. To discusstherole of similarity between assets, theintroduction of athird
asset is necessary. Hence, supposethat apart from assets a and b, athird asset a is present in the
economy. Its dividend payments are denoted by 6, and are distributed on an interval [Qd; 5&}.
A portfolio consisting of the three assets a, b and & is now described by two variables (a; &) €
21 = [0; 1], denoting the proportion of a and of & in the portfolio. Thus, choosing a portfolio
(a; &) resultsin a utility realization of
u(abg + &bs + (1 —a — &) o)
If » iswell-defined, bounded and continuous on
[ab, + b, + (1 — a — &) §; ada + @ba + (1 — a — &) by

for dl (o; &) € 2, then the distribution II,, of « (-) for agiven « is characterized by afinite

mean, 1,4, finite variance and bounded supports.

One can imagine the portfolios consisting of a, b and a Situated on atriangle. Thesimilarity be-
tween portfoliosisthen represented by the distance between the corresponding points. Because
of the uniqueness of the similarity function with respect to linear affine transformations, it is
possible to normalize the distance between a and @ so that s ((1;0);(0;1)) = 0. | assume as
above that s depends only on the Euclidean di stance between two points:

s((a;a);(a5d)) = f([(esa) = (o50)]),

where f is strictly decreasing and s is concave™.

% Sinces = f (||(a; &) — (a’;&")]|), for s tobe concave, itis necessary that the decreasing function f isnot too

convex. To seethis, denote the Euclidean distance functional by e and note that

s = f// (6/)2 +6Hf,.
Sincee’” > 0and f' <0,
6//f/
(e")
and s’ < 0 halds, as long as
f// < 3 e/lf/

(e
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Supposethat the initially chosen portfoliois strictly diversified with (aq; &) € (0; 1)* and note
that in analogy to lemma 3.1 the strict monotonicity of the similarity function in the Euclid-
ean distance implies that if .., < @ (where u denotes the constant aspiration level), then
(aq; &) is abandoned almost surely in finite time and one of the undiversified portfolios (0; 1),
(1;0) or (0;0) is chosen. The concavity of the similarity function further implies that one of the
undiversified portfolios will be chosen in each period of time afterwards. In order to focus on
the inf luence of similarity between the corner portfolioson limit behavior, | will concentrate on
the choi ces between the three corner portfolios and neglect the diversified ones. Hence, itiscon-
venient to denote the undiversified portfolios (1;0), (0; 1) and (0;0) by a, @ and b, respectively.

Write s,;, and s, for the similarity between a and b and a and b.

Denote, as above, the set of al possible paths on which case-based decisionaremade by S;. Let

Py denote a subset of .Sy, on which the first chosen portfolios is an undiversified one and the

aspiration level is constant and exceeds the maximal mean utility of an undiversified portfolio:
Qi ={w € Sy | Uy = u > max{p,; ps; ppt foralet=1,2,...and (ay;éy) € {a;a;b}}.

Let P again denote a probability distribution on &f; which is consistent with (II(,,4)) (s8) 012"

Proposition 3.13 e If
Sab + Sap 2> 1,
then on @, the frequencies with which the portfolics are chosen in the limit satisfy almost

surely with respectto P:

o If
Sap T Sap < 1,
then on @, the frequencies with which the corner portfolios are chosen in the limit satisfy

almost surely with respect to P:
) _ (1 —sab) (ps — )
(@) (L= sa) (ke —1u)
) _ _ (wa—1)
m(a) (11— sa) (up — 1)
) _ _ (p,—1)

(@) (1= sa)(m—a)’
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m(a;&) =0, dse

The proposition shows that depending on the relationship between s, and s, Smilarity be-
tween the corner portfolios can have different eff ects on thelimit choice of theinvestor. Aslong
asthe sum of s, and s4p iSlarger than 1, the negative impact exhibited by portfolios a and a on
the cumulative utility of b isso large that bis never chosen after some finite period ¢. If, how-
ever, their sumislower than 1, b isstill an optimal choice during a positive fraction of time. The
frequencies with which a and a are chosen depend on how similar they areto b. Especially, the
portfoliowhich is more smilar to bis chosen | ess frequently, since its cumul ative utility suffers
more from the negative net utility realizationsof b. Clearly, for sy, = s, this effect di sappears.
Still, aslongas 0 < sz, = s, holds, the utility realizations of b negatively affect the cumula-
tive utilities of ¢ and a and their frequencies are therefore lower than in the casein which no

similarity between ¢ and b and a and bis perceived.

3.8.2 Learningwith Similarity

The model of Gilboa and Schmeidler (1996) poses the question whether a case-based decision-
maker isableto learn to choose the opti mal (expected utility maximizing) act if the sameproblem
is repeated an infinite number of times. They find arule for adapting the aspiration level that
indeed implies optimal behavior in the limit, see section 3. The combination of realism and
ambitiousness leads to optimal choice, formally, for each ¢ > 0, the probability of choosing one
of the actsa € argmax {u,, | o € [0; 1]} with frequency 1isat least (1 — ¢), provided that the
initial aspiration level is chosen to be sufficiently high. Especialy;, to prove that optimal | earning
is possible, Gilboaand Schmeidler (1996) sel ect the initial aspirationlevel u; insuch away that

it remains above

R=2 mex u (bar+ 6, (1— ) — alél[gll] u(da+8 (1 — )
during the first Ty periods. Ty is chosen so as to assure that during the first 7; periods al acts
(out of the finite set () are chosen at least C' times each. At the same time, C'is sufficiently
largeto guarantee that after C' choices the average utility of each act « is close to itsmean utility
- The choice of the initial aspiration level, therefore, precludes the possibility that a decision
maker becomes satisfied with a suboptimal act and never chooses an aternative one.
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The theorem assumes a very specific ssmilarity function, for which
s(;a) = 1,ifa=d
s(;a) = 0,ifa#d.

In other words, two acts are only considered similar, if they areidentical.

It is interesting to know whether this adaptation rule aso works for more genera similarity
functions. Suppose as above that the smilarity function is concave. Suppose as well that the
first act chosenisa; = @ € (0;1). Asabove, ¢ denotes the set of paths on which a case-based
decision-maker adapts his aspiration level according to (3.3):

_ . U = Uy
‘I)_{“’esl(ﬂ’“l)' 4 = B, + (1 — ) X, fort > 2 } (31)
Let P be a probability measure on ®, which is cons stent with (I1,,) as in Gilboa and

ac(0;1]?
Schmeidler (1996, p.11). It is clear that for sufficiently high initial aspira[ti(])n level aninvestor
following updating rule (3.3) will switch at sometimetoact 1 or 0. Moreover, to enable optimal
learning, the initial aspiration level has to be set higher than R, which exceeds the maximal
possibl e redlization of theinitialy chosen portfolio a. Thisimpliesthat the investor switchesto

Oor1lat=2 Letu, (&)denotethe utility reaization of portfolio @ in period 1.

Proposition 3.14 Suppose that s is concaveand strict monotonical ly decreasing in the Euclid-
ean distance between acts. Define ¢ as

b = {w e ®|u (@) < max{p; u}}.
For each e > 0 there exists a u, such that for any @; > u,:

P{wé(b ES <arg max ua> :1} > (1—5)P(<T>>

ac{0;1}
foreacha € A 37 (a) suchthat
Plued| = =wm=tldl  gng }>(1—5)[1—P(<§>},
m(a) =0 for a ¢ {0;1}

holds.

A similar result obtains if the second rule (3.4) proposed by Gilboa and Schmeidler (1996) is
applied and the initial aspiration level is selected to exceed the maxima possible realization
of the initially chosen act, or if the aspiration level is updated in an ambitious way in thefirst
period:
Uy = Xy + h.
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As above, denote by
uy; = u; and
(I)l = (I)l(ﬁ,’ljl,N,h) = w 651‘ ﬁt:ﬁﬂt_1+(1—ﬁ)th0rt2 2,t¢N
U= Xy +hfort>2,te N

the set of decision pathsand let P denotethe probability measure on ®; consistentwith (IL,,) 0:1]"

Proposition 3.15 Suppose that s is concaveand strict monotonically decreasing in the Euclid-
ean distance between acts. Assume that e ther
i1 > u (@0 + (1 — @) és)
or 1 € N. Define @, as
By = {w € O1 | ur (@) < max {; p1}}

Then:
P {w €d | I <arg a?{%ﬁ}’“‘a> = 1} =P <<I>1>
foreacha € 2 3Ir (a) suchthat
Plwed,| ==t g :1—P(ci>1),
() =0 for a ¢ {0;1}
holds.

Two eff ects combineto prevent efficient learning. First, the concavity and the strict monotonic-
ity of the similarity function and the initially high aspiration level imply that the diversified
portfolio & isabandoned in the second period. Aslong asthe average utility of both undivers-
fied portfolios lies bel ow the aspiration level, the concavity of the smilarity function forces the

investor to overvalue the negativeimpact on diversified portfaios. Hence, only non-diversified
portfolios are selected after ¢ = 2.

Second, although & is never chosen again, itsinitial realization inf luences the evolution of the
aspiration level. Especidly, if it exceeds the maximal mean of the undiversified portfolios, the
aspiration level converges towards u (@) and both & = 0 and o = 1 seem unsatisfactory in the
limit.

Since the proofs of propositions 3.14 and 3.15 heavily rely on the concavity of the similarity
function, I now expl ore how resul tschangeif the simil arity functionisconvex over some range®.

I make the following assumptions:

Assumption 1: Supposethat s (a; o) isconcavein|ja — /| for |la — /|| € (—1;1) for some
leN,l >1anddl o/ € [0;1] and s (a; a’) = 0 outsidethis interval. Moreover, assume that

s (o; o) iscontinuous, sothat s (a’ — 1;0/) = s (o +4;0/) = 0 foral o

60 Note, that a continuous similarity function that hasamaximumat s (a; a) = 1 cannot be convex everywhere.
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Assumption 2: Let a; = 0 and let theinvestor choose the act which is next to the act he chose
last, if indifferent:
arg max {Ur (@)} — ae }

(In other words, suppose he chose «; = 0 last and the cumul ative utility of «; hasfallen below

ar = arg min {

acarg max U; (a)

0. Since the similarity between 0 and oo > 1 is 0, theinvestor isindifferent among all o > 1

and by the above assumption he should choose o = -} the act next t0 0.)

>

0 a1 a2 a3 g 1 a

Figure 3

Figure 3 illustrates these two assumptions.

Now consider an investor who updates his aspiration level according to (3.4) and satisfies as-

sumptions 1 and 2. Denote the corresponding set of paths by ®:

(I>7z{w€<131| a =0 }

Gy = arg minaEargmaxUt (a) {Harg maXaelo;1] {Ut (Oé)} - Oét—lH}

Proposition 3.16 °*Suppose that Assumptions1 and 2 hold. For all z; € R and all 5 € (0; 1),

61 Ananalogousresult, ascertaining that for asufficiently highinitial aspiration level thebestoftheacts{o-l-z ..1}

ENE
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on almost all possible pathsin ®, (with respect to a probahility distribution on ®, consistent
with (Ha)ae[o;”), an investor who updates his aspiration level accordingto (3.4) will choose the

act
12 [—-1
argmax i i, | o € 0;7;7...7;1

Theresult showsthat convexitiesof the smilarity function improvethelearning process. | nstead

with frequency 1.

of just learning the better one of the two corner acts 0 and 1, the investor can now learn to
choose the best of the I + 1 acts (including 0 and 1). Therefore, he can do better, the more
intervals [ hedistinguishes. Asl — oo, theintervalson which the similarity functionispositive,
shrink to single pointsand the simil arity function approximates the special degenerate case used
by Gilboa and Schmeidler (1996): s(o;a’) = 1, if @ = o and s (o;’) = 0, else. Note,
however that athough the act chosen with frequency 1 converges towards the optimal one, in
the limit, learning becomes impossible, since with an uncountable number of acts, choosing
each act for infinitely many periods becomesimpossible. However, choosing [ to be sufficiently
large, allows the investor’s limit choice to approximate expected utility maximization with an

arbitrary degree of accuracy.

3.9 Conclusion

| suggest to use the case-based decision theory of Gilboa and Schmeidler (1995, 1996) to model
investors' behavior infinancial markets. This could be reasonable, sincethe case-based decision
theory generalizes the expected utility theory by von Neumann and Morgenstern (1947) and
Savage (1954), while capturing some of the psychoogica biases, observed in red financid
markets. Gilboaand Schmeidler (1996) propose sufficient conditions, under which thelong run
behavior predicted by the case-based decisi on theory coincides with the optimal behavior of an
expected utility maximizer. Removing these conditions and assuming constant aspiration level
can lead to asuboptimal limit behavior. A relatively low aspiration level induces a satisficing
behavior, whereas an excessively high aspiration level forces the investor to trade too often.
Similar results are achieved by allowing the decision-maker to update his aspiration level in an
optimistic (towards the best achieved utility realization) or in a pessmistic (towards the worst

achieved utility realization) way.

is chosen with frequency 1 with arbitrarily high probability, can be derived for the decision rule (3.11).
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If the information about the utility realizations of all acts is available to the decision-maker in
each period of time, then heis able to learn to behave optimally in a stationary environment. If,
however, receiving informationis restricted to a finite number of periods, optimal behavior can
only be achieved for relatively low aspiration levels. This means that phenomenalike failing to
use arbitrage opportunities, to diversify optimally or to choose an efficient portfolio result from
lack of information, rather than from suboptimal behavior. Information, however, cannot help
resol ve the problem of excessive trading aslong as the number of information periods remains
finite. Neverthel ess, the case-based decision theory allowsfor optimal learning eveninthe case
of constant aspiration level: thereisarange of values of the aspiration level for which the case-
based decis on-maker behaves optimally inthelong run, choosing the act with the highest mean
utility.

Introducing asimilarity function on the set of portf olios does not change theresultsqualitatively.
Whereas for investors with constant low aspiration level there is a positive probability that they
would hold theinitialy chosen (and possibly suboptimal) diversified portfolio forever, investors
with relatively high aspiration levels exhibit switching behavior. Especiadly, with a concave
similarity function a decision-maker with an aspiration level exceeding the mean utility of the
initially chosen portfolio chooses one of the undiversified portfolios from some period on. If
his aspiration level also exceeds the mean utilities of both undiversified portfolios, he chooses
these portfolios with positive frequencies in the limit. M oreover, a concave similarity function
prevents learning the optimal portfolio in the setting of Gilboa and Schmeidler (1996) for a
decision-maker with a concave utility function. By alowing for convexities, the quality of
learning is improved and the limit choice can become arbitrary close to the expected utility

maximizing act.

Thisis afirg attempt to apply the case-based decision theory to model human-behavior in fi-
nancial markets, which leaves alarge number of questions open. First, the assumption that the
distributions (I1,,),c remain constant over the time should be relaxed. Thiswill alow to con-
sider amarket consisting of case-based decis on-makerswhose behavior will make the prices of
the assets correl ated over the time. Second, it would be interesting to look at the implications
whi ch the exi stence of case-based investorsin the market may have on other market partici pants.

These two questions will be discussed in the next chapters of thisthess.
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Appendix

Proof of proposition 3.1:

First it is shown that if all utility realizations are below the aspiration level, all available acts
must be chosen infinitely many times. Since the number of acts is finite, at |east one act must
be chosen for an infinite number of periods. Let this be the act . Consider an act & which
ischosen L times. As all possible realizations lead to a negative " net” - utility, the cumul ative
utility of o will becomeinfinitely low inthelimit. At the same time, the cumulative utility of &
will not fall below

L ggu—uq.

Hence, thereisatimeT > L, such that for eacht > T
Ui (a) < U (a)
and still act o is chosen. This contradicts the case-based decision theory, which states that in

each period the act with the highest cumulative utility has to be chosen. Therefore, since & was

chosen arbitrarily, each act will be chosen infinitely often.

Next, it is stated that the quotient of the cumulative utilities of each two acts converges to 1.
Indeed, let o and & betwo distinct acts. Denote by ¢, («; &) the difference of the cumul ative
utilities of o and & at time ¢:

er(a;a) = Uy (a) — Ui (@)

Hence:,
LQ(&) . LG(&)‘%€t(a;&)

too Uy (&)t U, (@)
Consider the difference e; («; &). Obvioudly, this difference remains constant at times at which

neither o, nor & is chosen. Consider, therefore, the case in which « is chosen. Note that the
minimal difference between thecumulative utilitiesin aperiod inwhich a ischosen must exceed
0, since el sethe maximi zation of cumul ative utility would be viol ated. Moreover, sincetheleast
possibleutility reaization of & ismin,¢ 4., u—1uy, it followsthat the maximal possible difference

between the cumulative utilities of o and & at a time at which « ischosen is
— min u + U.
u€Aa

But since the net-utility realizations of o are always negative, this (maximal) difference is neu-
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tralized by the choice of « in at most
{ (mingep, u — U1) -‘
(maxyep, u — 1)
periods. An analogous argument shows that & can aso be chosen for only a finite number of

periods in arow. It follows that the difference between the cumulative utilities of arbitrary two
acts is bounded on every possible path w (since the possible utility realizations are finite) and,

therefore,
U (a) Ui (@) +er ()
- =1 3.12
oo Uy (&)t U; (a) (3.12)
holds on each path. Hence, from the definition of cumulative utility it follows that on each path

w e D
. Ul . [C(a)] [Xi () —
| MY @) ~ G @) X @) —m] G
Since (3.13) holds on each path of utility realizations, for any such path it can be written as:
G| . (X (@) — 1]
A= AT
According to the Strong Law of Large Numbersit foll ows that:
() 1Cy (a)] (X (&) =] [pg — U]

— | —_1 —

m(@) oe|C(a)] e [Xi(a) — W] [u — U]
with probability 1.1

= 1.

Proof of proposition 3.2:

If the decision-maker has an infinite time-horizon, then at least one act « must be chosen infi-
nitely often. Let o be such an act. Then, according to the Strong Law of Large Numbers, its
cumulative utility satisfies:

P {tlirglo Ut (a) = —o0 | tllrono |Cy ()] = oo} =

. Xt (a) _ .
P lim |C, — — = — lim |C = =
{lm 163 ()] | B — ] = o0 | jim 1 ) = o0}
P{l — @] Jim |, (a)] = =00 | lim |G (a)| =00} = 1
In contragt, if an act & is chosen afinite number of periods, say L times, its cumulative utility is
limited from below:
: N> T

tlirgo Ui(a) > L min 4 — %,
Hence, onamost every pathw € 4 there existsaperiod T (w) > L after which the cumul ative
utility of & will always exceed that of «. But this means that the decision-maker does not obey
the case-based decis on theory, since he does not choosethe act with maximal cumulative utility.

Thus, a case-based decision-maker will choose each of the actsin 2 for an infinite number of
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periods.

Now, consider the difference between the cumulative utilities of arbitrary two acts o and &,
et (a; &). Aslong as act « is chosen, this difference represents a random walk on the half line
with negative expected increment. Define &, (a; &) as

Ei(a) = g (a;a)ife (a;a) >0

Ei(a;a) = 0,6ese
Such a random walk has an accessible atom at 0%. Moreover, each set of the type [0; ] is
regular, see Meyn and Tweedie (1996, p. 278). This means that the state 0 is reached in fi-
nite expected time, starting from each set of the type [0; ¢] and especidly, starting from the set
[0; @1 — mingena, u]. Denote the supremum of these expected times by A and observe that it is
finite according to the definition of regular sets. Note that 4; — min,, ¢ v equals the maximal
possible value of ¢, («; &) in a period, in which the decision-maker switches from an arbitrary
o/ to . Observe as well that since the probability that ¢, (a; &) = 0is0 (for atomless distri-
butions of 6, and &), it follows that &, («; &) = 0 coincides with ¢; (a; &) < 0. Hence, the
decision-maker switches away from « when &, («; &) = 0 isreached®. It follows that the ex-
pected time for which an arbitrary act « is held in arow isfinite and uniformly bounded from

above.

It remains to show that ¢ («; &) is bounded on almost each path of dividend realizations. At
timesat which aischosen e, («; &) never fallsbelow 0, sincethiswould contradi ct choosi ng the
act with highest cumulative utility in each period. Suppose, therefore that there i sa sequence of
periods t/, t..., such that £,/ (a; &), e (c; &)... grows to infinity. In other words, suppose that
for each M > Othereisak, such that ¢4 (a; &) > M for al n > k. Since U, («) has negative
expected increments, it foll ows (as shown above) that each other act and especially & is chosen
infinitely many times on almost each path of dividend reali zations. But each time that the act &
ischosen, the differences; (a; &) fallsbelow 0. If e (a; &) > M, the time needed to return to
the origin is at least ————  which grows to infinity, as ¢~ and, hence, M becomes very

Up—mingep, u'’

large. However, as has been explained above, the expected time for return to the origin 0 of

62 See Meyn and Tweedie (1996, p. 105) for a definition of an accessible atom.

63 Of course the decision-maker might switch away from o in anearlier periodif for some o’ # &, e (a; ') < 0
obtains. In this case, the expected time during which «vis held is also bounded from above and is obvioudy less
than V.
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&, (a; @) isfinite and uniformly bounded above by . The Law of Large Numbers then implies
that for each x > 0 on amost each path of dividend realizations there is a period K (w), such
that
h <N +k

for al n > K (w), where 7, denotes thenti me needed for &, («; @) to reach the origin, once
a has been chasen. On the other hand, the assumption that £ (o; &) — oo implies that the
stopping times 7; become infinitely large as the time grows— acontradiction. Hence, amost
each sequence ¢y (o; &), ey (a; &)... (Wheret/, t”... dencte periods at which « is chosen) is
bounded from above. A symmetric argument for & showsthat ¢, («; @) is bounded from below.

It follows that on a most each path w € o}
lim 2@y Ui@) +a(a56)
t—oo [ (a) t—o0 U, (a)

holds. The remaining part of the proof isasin proposition 3.1.H

=1

Proof of proposition 3.3:

In the proof of proposition 3.2, it has been shown that it isimpossiblethat only acts from the set
2\ A arechoseninfinitely often. Thismeansthat at least oneact o € A will bechoseninfinitely
often. Suppose to the contrary of the statement of the proposition that there are two actsfrom
A, a and &, which are chosen with positive frequency. It is easy to show that this leads to a

contradiction.

Indeed, consider the periods 214, 224,...€ N a which the decision-maker switchesto act « and
denote by z,5, 204,...€ N the times, at which the decision-maker switchesto act &. Then ac-
cording to the case-based decision theory it must be that:
U, (@) > Uy, (&) 2 U, () > U, (&) > U, (a) > ...

But these inequalities imply that U, («), which is arandom walk with positive expected incre-
ment 41, — @, > 0, crosses each of the infinitely many boundaries U, (&) from above. Since,
however, there is a positive probability that a random walk with positive expected increment
starting from a given point, never crosses a boundary lying below this point, see Grimmet and
Stirzaker (1994, p. 144), and since the stopping times are independently distri buted, it follows
that the probability of infinitely many switches between oo and & is 0. Hence, only one of these

two acts can be chosen with positive frequency inthe limit.
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Alternatively, supposethat an act & from the set 2\ A is chosen infinitely of ten with an act from
A. Then, with probability 1, thecumulative utility of o will becomeinfinitely high, whereas the
cumul ative utility of & will become infinitely low, as the number of periods grows to infinity.

Hence, choosing act & infinitely often will contradi ct the case-based decision theory, aswel|.l
Proof of proposition 3.4:

Let o bethe first act chosen, i.e. a; = a.. Asits cumulative utility U; («) remains positive for
al t € N, whereas the cumulative utility of all the other acts stays at 0, a will be the only act
chosen forever.l

Proof of proposition 3.5:
It will be shown that under this updating rule the aspiration level converges to .

First, note that all available acts will be chosen infinitely often. Indeed, imagine that only one
act is chosen infinitely often, cal it o. Then either®
P{ lim { max uT} —maxu} =1
Ci(a)—o0 | T€CH() u€A,
or
U] > maxu > [,
’U,EA&

Then, on amost each path w € &3, thereissomefinite T (w), such that 4; > y,, holdson w for
al t > T (w) . Butinthis case the Strong Law of Large Numbers impliesthat the cumulative
utility of oo will convergeto —oo on amost each path. Hence, since o was chosen arbitrarily, it
follows from proposition 3.2 that all available acts must be chosen infinitely often. Then, the
aspiration level will convergeto max,c, u with probability 1, implying that on almost each path
w € &3, thereisaperiod T’ (w), such that @, > p,, hddsonw fordl ¢ > 7" (w) and al o € A.

Now apply the proof of proposition 3.2 to obtain the claim stated in the proposition.ll
Proof of proposition 3.6:

Suppose, contrary to the statement of the proposition, that two acts o and & are chosen with

positive frequencies in the limit. Then either

P{ lim {minw;} = min u} =1

t—o0 ue Aa UA&

64 Suppose that the aspiration level has already reached some inner point of the support A, say @r. Suppose

that IT,, (@) = e. Then the probability of the event that @, remainsthe maximad utility realization experienced as
Ct (Ck) — 0 iSlimct(a)Hoo 60,5(&) =0.

109



and u; — min {A,; A5} on amost each pathw € &, or

71 < min v < min Sl b
pin, {1ai s}

In both cases, on amost each pathw € @, thereissomefinite 7" (w), suchthat @, < min {u,; 1z}

holdsonw for all ¢t > T' (w). From the proof of proposition 3.3, it follows that the investor will

switch only for afinite number of times between o and &. Hence, in the limit, one of the acts o

and & is chosen with frequency 1.8

Proof of propostion 3.7:

Suppose, to the contrary of what the proposition statesthat an act o« € 2(ischosen with frequency

one in the limit on some set of paths &5 C ®;, assigned a positive probability by P on &s.

Consider two cases:

1.

If aisthefirst act to be chosen, then the aspirationlevel in the limit satisfies
}E?O“t =(1-75) e u +515161}\riu
with probability 1 on 5. Since

ﬁ < maXycA, U — Uq
maxX,cp, ¥ — minmin, ey, u
ac

for dl a € A,

it follows that

max u —
6 < UEAQ Mo or

. b
maxyep, ¥ — Milyep, U

e .
o < (1= OV O

Then, on almost each path w € &;, thereis somefinite 7 (w), such that @; > , holds
onwforall ¢t > T'(w) . But in this case the Srong Law of Large Numbers implies that
the cumulative utility of awill converge to — oo, whereas the cumulative utility of the
unchosen acts remains 0 almost surely on &5. Hence, on &5, the case-based decisionruleis
amost surely violated and therefore, P <<I>5) = 0, acontradiction.

|f some other acts have been chosen onw € & before choosing «, then it can happen that

min, ey, u > rgai:put, where T"isthefirst period in which o ischosen. Note that if rtniFP Uy
< <

isvery low, the aspiration level may remain sufficiently low so that act o really becomes

satisfactory in the limit. Suppose that

min u; < min u,
t<T u€A,
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and that

max u; < maxu,
t<T u€NAy

i.e. the aspiration level at 7' is sufficiently low and cannot become higher than
(1 — B) maxyea, u + ﬁItIliTI} ut, aslong, as only act « is chosen. However, the assumption
<

made insures that

max u —
ﬁ < UEA Mo . or

maXyecp, ¢ — Minming, ey, u
ac

< (1—fF)maxu min min v < (1 — /) maxu min ug,
Ha ( ﬂ)ueAa +Ba A uEAa ( B)ueAa +ﬁt<T ¢

which contradicts the assumption that P (%) > (, as shown above.
If,

minu, < minu
t<T uEA,

max u; > maxu,
t<T ueA,

then the condition

1- <(1- '
g, < ( ﬁ)rréz/i\xu—i—ﬁmm min u < (1 — () max u, +ﬁrt212{1ut

acA ueA,
contradicts the assumption that P <<I>5> > (.
Analogous reasoning shows that for

minu; > min u

t<T uEAa
max u; < maxu,
t<T UEAo
<(l—fF)maxu+Fminminu < (1 — f)maxu+ 0 min u
Ha ( 6> uEA, P acA uEA, ( ﬂ) u€A, ﬁuEAa

and for

minu; > min u
t<T ’LLGAoc

max u; > maxu,
t<T u€Aq

< (1 —fF)maxu min min v
Ha ( ﬁ) u€AQ + ﬁ acl ucha
< (1 —fF)maxu min u

P <CI>5> = 0 must hold.

Since o and &5 have been chosen arbitrarily, thisshowsthat no act wil | be chosen with frequency
oneinthelimit on aset of paths with positive probability. Since the cumulative utility of an act

becomes infinitely negative, if the act is chosen infinitely many times and stays finite, el se, it
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follows that all acts, including

ac u EA&

argmax {max u}
and

ac | u€Aa
have to be chosen infinitely often in the limit. In this case, the limit aspiration level becomes:

arg min { min v p,

lim @ — (1 — o
I 5

and the result of the proposition follows by arguments, similar to the proof of proposition 3.2.
Proof of proposition 3.8:

First, note that the aspiration level plays no role, when evauating the avail able acts, since for

each ¢: t t

UL @) = [k (@) — ) = Y ko (@) — t

Ui (a) = th;[/fr(a)—w]—ikr(a)—tut,
thus

Ui (@) = U/ ()
)
ikr(&) > ikr(a)

et T=1 =1

*
Q€ arg max
& acl Hao

be one of the acts with the maximal mean utility. Consider the difference
t

Z [kT (a*) - kT (Oé)] '

For anarbitrary act « with p,. > p,,, itisasequence of independent and identically distributed

random variableswith mean y,.— i, > 0. Then, accord ng to the Strong L aw of Large Numbers

P{tlirgo% Zl [kr (@) = kr (@)] = pge — Ma} =1

and thus;



Hence, on amost each path w € S}, thereexistsaT), (w) € Nsuchthat foreacht > T, (w)

Z [kT (a*) - kT (a)] >0

T7=1

holds on this path. Denote by 7' (w) = max,cy T, (w) SO that for each t > T (w), the above
inequality is valid on w for each o € A with . — p, > 0. Thus, after period T (w) the
cumul ative utility of act o* will exceed that of all acts with mean utility lessthan .. Hence,

on amogt al paths, none of the acts o ¢ arg maxqea 11, Will be chosen after time 7" (w ).l
Proof of proposition 3.9:

Consider thei.i.d. random variables u; («1) ...u¢ (o). Accordingtothe Law of Large Numbers,

for eache > 0 and each k > 0 there exists anumber K, suchthat

P { Doy e (0) € (po — K; o + /@)} > (1 — £> (3.19)

t n
holds for eacht > IC,,. Now set L = max,cu K. Note that the utility reaizations of a;...a,

are correlated, because they all depend on 6, and 6,. The exact form of correlation depends
on the correlation between 6, and ¢,, which is not specified. Consider therefore the ”worst”
possible case, in which the sets of paths of dividend realizations on which (3.14) does not hold
aftertime IC aredigtinct for al « € 2(. Hence, the probability that (3.14) does not hold for some
a € Aisamoste. It followsthat with probability of at least (1 — ¢) (3.14) holdsfor al « € 2.

Now, if x ischosen in such away that

:uoz*—:u&
< ———
ST
for each & with p,._p; > 0 and

then with probability of at least (1 — ¢)
UK (") = K[Xg(a*)—a] > Kpy — K —u] >
> Klpat+r—u] > KXk (&) —u] =Ug (&)
holdsfor all & with p,._ 115 > 0 and moreover,
UK (a*) > UK (a) = UE (@),
at eacht > IC. Hence, act o* is chosen in each period after time /C with probability of at |east
(1—¢).M



Proof of proposition 3.10:

Supposethat after /C periods of information acquisition, act « has the highest cumul ative util ity
Uk (). Itisclear that it cannot be the only act to be chosen forever after period /C, sinceinthis
case its cumulative utility would become —oo on amogt all paths w, whereas the cumul ative
utility of all theother acts would remain finite. Thus, all the acts must be choseninfinitely often
after period KC. Since the cumulative utility of each act in period K + 1 isfinite (because of
the bounded supports A,), it will not have any influence on the limitin (3.12). Therefore, the

conclusions of propositions 3.1 and 3.2 hold.H

Proof of proposition 3.11:

The proof is easily obtained by combining the results of propositions 3.5 and 3.10.H
Proof of lemma3.1

Suppose first that o < u. The cumulative utility of @, aslong astheinvestor holdsit, isthena
random walk with differences

abe + (1 — @) bp — a.
Since the expected value of thedifferenceis u; —u > 0 and the processstartsat 0, the expected
time until the first period in which the process reaches 0 is co. But, aslong as U; (@) > 0,

Ui (a) = s(a; @) Uy (@) > Uy (@), since s (o; &) € [0; 1] and, therefore, a i's chosen.

Now suppose that « > p. Then, the expected increments of U (&) are negative. Therefore,
when the process startsat 0, it will cross any finite barrier below 0 in finitetime. Let ¢ be the
first period, at which U; (&) < 0. Then U; (o) = s(a;a) Uz (@) < 0. Sinces = (a;a’) is
strictly decreasing in the distance between the acts, U; () has a maximum either at 0 or at 1.
Moreover, s (1;&) > s (0;a), iff & > $ and sinceU; (&) < 0, theact lest similar to & is chosen.
It followsthat

Proof of propostion 3.12

It has already been shown that for i, — @ < 0, theinvestor switchesin finitetimetoa = 1 or
to a = 0. Suppose, without loss of generadity that @ > —% and, therefore, « = 0 is chosen at

some timet, such that ¢ = min {¢ | U; (&) < 0}. Two cases are possible: either o — a < 0 or
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to — > 0. Define 'V, (a) as:

Vi)=Y [ur (@) — ).
TECt(Ot)
Thenattimet > ¢t suchthata,_; = 0foral ¢t — 1 < 7 < ¢, thecumulative utility of an act «

can be written as:
Ui (o) = Vi (@) s (a; @) +V; (0) s (;0).
AslongasV; (0) >0,
Ui (0) = Ve(@) s (0;a) + Vi (0) > Vi (@) s (a; @) + Vi (0) s (a5 0) = Us (a)

holdsfor each o € [0; 1], where the inequality stems from the fact that

Vi(@) s (0;0) < Vi(a) s (a;a) < Ve(a) <0
and

0 <Vi(0)s(;0) < Vi (0).

If uo—u > 0holds, then V4 (0) > 0 holdsinfinitely long in expectation. If, however, p,—u < 0,

then ) ) )
Vi (0) < V&) <i<_1,;(>0'_1)3 0:0) _
obtainsin finitetime. Let now ¢’ denote 7
7 — min {t 1V, (0) < Vi (@) (i (_17804()0—1;3 (0;&)) } |

Notethat at ¢’ the cumulative utility of o = 1 is:
Uy (1) = Vi(a) s (1;8) + Vi (0) 5 (1:0).

Moreover, since now Vz (@) < 0, ¥z (0) < 0 and s is concave, it follows that at ¢ Uz () is
convex for every a € [0; 1]. Therefore, the optimal act iseither 1 or 0. Moreover:

Uy (1) = Vi (@) s (L;@) + Vi (0)s (1:0) > Vi(a) s (0;@) + Vi (0) = Uy (0)),
so that oy = 1 ischosen.
Again,if u;—u > 0,thena = 1 will beheldinfinitely longinexpectati on, wheressif ;;,—u < 0,
then the cumulative utility of o« = 1 becomes lower than the cumulative utility of o = 0 infinite

time.

To argue by induction, suppose that an act « is only abandoned in periods 7 such that V; (o) < 0.

Suppose that this condition holds up to sometimet — 1.



Now consider aperiod ¢ such that o;_; = 1. At ¢, the cumulative utility of an act «isgiven by:
Ui (a) = Vi (@) s (0;a) + Vi (0) 5 (a;0) + Vi (1) s (e 1).

If V;(1) < 0, then al three terms are negative and, since the similarity function is concave,

U; () becomes convex and can only have a corner maximum. Hence, «; € {0;1}. If, on the

other hand, V; (1) > 0, it follows that

U(1) = Vi(a)s(1;a)+ Vi(0)s(0;1) + Vi (1) = Vi (@) s (1;@) + Vi (0) 5 (03 1) + Vi (1)
> Ve (@) s(1;a) + Ve (0) s (0;1) > Vir (@) s (1;@) + Ve (0) s (0, 1) + Ver (1)
= Uw (1),
wheret” denotes the period in which the investor last switched from an arbitrary act to o = 1.
The second inequality follows from the fact that either o = 1 is chosen for the first time at ¢”
and, hence, Vi = 0, or o = 1 hasbeen abandoned at sometime¢”” < ¢”, which could have only
happened for Vi (1) = Vi (1) < 0. Cumulative utility maximizationin ¢’ implies:
Up: (1) = Upr (@)
for each o € [0;1]. Hence,
Uy (1) = U (a)
= Vi(@)[s (@) = s(o;@)] + V3 (0) [s (1;0) = s (@ 0)] + Vi (1) [1 — s (o 1)]
= Vo (@) [s (1:a) — s (056)] + Vir (0) [s (1;0) — 5 (03 0)] + Vi (1) [1 — s (0 1)]
> Ve (a)[s(L;0) —s(a;a)] + Ve (0) [s (1;0) — s (a; 0)] + Vi (1) [1 — s (3 1)]
= Upr (1) = Up (@) = 0.
Hence, o, = 1 obtains. It follows that act 1 can only be abandoned ina period suchthat V; (1) <
0.
Now consider a period ¢ such that a,_; = 0. The cumulative utility of an act «isgiven by:
U (a) =Vi(@)s(0;a) + Vi (0) s (a;0) + Vi (1) s (a; 1)
If V;(0) < 0, then dl three terms are negative and, since the similarity function is concave,

U; () becomes convex and can only have a corner maximum. Hence, o; € {0;1}. If, on the
other hand, V; (0) > 0, it follows that

U2 (0) = Vi(a)s(0;8)+ Vi(0) + Vi (1) (0:1) = Vr (@) 5 (0;@) + V4 (0) + Vi (1) 5 (03 1)
> Vi (6) 5 (05@) + Vi (1) 5 (0,1) > Vi (a) 5 (0;0) + Vi (1) 5 (051) + Vi (0)
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= Up (0),
where t” denotes the period in which the investor last switched from an arbitrary act to o = 0.
The second inequality followsfrom the fact that either o = 0 is chosen for the first time at ¢”
and, hence, Vi = 0, or o = 0 hasbeen abandoned at sometime¢”” < ¢”, which could have only
happened for Vi (1) = Vi (1) < 0. Cumulative utility maximizationin ¢’ implies:
Uz (0) = Upr (o)
for escha € [0;1]. Hence,
U (0) = Uy (@)

= Vi(a)[s (0;0) = s(a; )] + Vi (0) [1 = s (a; 0)] + Vi (1) [s (1;0) — s (a;1)]

= Ve (@)[s(0;a) —s(e;a)] + Vir (0) [1 = s (a; 0)] + Vi (1) [s (150) — s (e 1)]

> Vi (@) [s(0;a) —s(a;a)] + Ve (0) [1 — s (a; 0)] + Vir (1) [s (1;,0) — s (e 1)]

= Up (0) = Upr (@) = 0.
Therefore, act a = 0 isabandoned only if V; (0) < 0 holds. Moreover, the argument shows that

only acts 0 and 1 are chosen after period ¢ in which theinitially chosen portfolio is abandoned.

Now, consider the following process.
8{(1; O) _ V‘(@) [S (1; a) —S (0; Oé)]

t

1—s
. —_ €t+u 6at+1 _1_1/, If(c;t 20
6t+1 (170) - €t+ug(sbt+1 —’EL, |f€t <0 .

(1 —s) e (1;0) represents the difference between the cumulative utilities of the actsa = 1 and

a = 0 after period . To see this note that
U (1) = U (0)
= [Vi(1) +sVi(0) +Vi(a) s (L;0)] —[sVi (1) + Vi (0) + Vi (@) s (0; )] =
= (1=5)Vi(1) = Ve (O)] + Vi(a)[s (1;@) — s (0; )]
and
[s(1;2) — 5(0,a)]

0 (130) = V (1) = V; (0) + Vi (o) A —=8l,

If a least one of the two mean utilities 1., and .., exceeds @, then the frequencies 7, and 7 are

obtai ned from proposition 3.3.

Suppose now that both 1, and ., lie below . Note that if one of the two acts, say a = 0 were
chosen only for a finite number of times, the cumulative utility of the other act, « = 1, would
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converge amost surely to —oo, since s, — 4 < 0. Let ¢” denotethelast period inwhicha = 0is
chosen (depending on the path of dividend realizations). Then, it would be possible to find a

period ¢ > t” such that
[s(0;3) — s (1;0)]
1—s

Vi (1) < Ve (0) + Vi(a)
holds and, therefore,

Ui (1) = Ve (1) + sV (0) + Vi(a) s (1) < sVi(1) + Vi (0) + Vi (@) s (0;a) = Ui (0).
Hence, the assumption that act 0 is chosen only for afinite number of times contradicts the case-
based decision rule on amost al possible paths of dividend realizations. Analogous reasoning
shows that (because of the assumption p, — u < 0), act a = 1 cannot be chosen for a finite

number of timeson a set of paths with a positive probability measure.

Aslong asact a = 1 is chosen, the difference ¢; (1;0) represents a random walk on the half
line with negative expected increment. An argument analogous to the one used in the proof of

proposition 3.2 showsthat ¢; (1; 0) remains bounded on amost all pathsin ®g. It foll ows that
lim U (1) ~ im U (0) + (1 —s) & (1;0)
t—o00 []t (O) t—o00 Ut (0)

with probability 1. Hence,

=1

L V() + Vi (0) + Vi
P V() + sV (1) + V(@) s (0:a
10 (D] e, 25780 + 5100 0) e, 00 S50 + Vi (@) 5 (150)

lim = 1.
P {S|ct(1)|2760t( bt 4 (G (O0)] X e 0) S +Vt—(64)s(0;@)]
Since |C; (1)] — oo and |C; (0)] — oo on amost each path, it follows according to the Law of

Large Numbersthat
lim ZTECt (1) [UJT o ﬂ] — -
e |G () :
lim > reci (o) [Ur — U] e
t=eo |y (0)] ’

obtain almost surely in the limit. Hence,

G = 1)+ 5 IC O)] (g = @) + V@) s (5a))
t=o0 [s|Cy (] (1 — @) + |Ce (0)] (1o — u) + Vi(a) s (0;0)]
G ()] (= 1)+ 51C, (0)] (g = @) + Vi (@) s (1)
t=o0 [s|Cy ()] (1 — @) + [C (0)| (1o — @) + V(@) 5 (0; )]
I L R s R ol B
0 [ (1, — @)+ 1y — ) + M|
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C,(1 _ _

i Gl (i =) +s(m—a)

- O P v
o stk (1 — 1) + (1o — )

amost surely holds (since Vz (a) is finite on almost @l paths, it does not influence the limit

behavior). Therefore, the limit frequencies 7, and 7 satisfy

G m—n
mo |G O)] - w

1

Proof of propostion 3.13

First, | show that adiversified portfolio is never chosen. Indeed, suppose that upto timet, only
undiversified portfolioshave been chosen. Thenthe cumulative utility of any portfolio («; &) is
given by
Ut (a; &) = Vi(a)s((a); (a; &) + Vi(a) s ((@) ; (o; &) + Vi (0) s ((0); (@)
Note that if an act has been chosen in the past at least once and is not chosen at time (¢ — 1),
then its 1z must be negative, else it would not have been abandoned for another act. Indeed, if
(o/;8") # (ow_1;64—1) ischosen at time ¢, then
Uy (o &) < Up (o5 6)
forall (o; &) € [0;1)° must hold at thistime. AslongasV; (a; &) — Vi (a; &) is positive,
Uy (a; &) < Uy (a5 &)
gl holds for al («; &) € [0; 1]2. The investor can switch to adifferent act, only if V; (o; &) —
Vi (a; &) < 0holds. Hence, thefirst switch away from (a’; &') occursat V; (o/; &) < 0. When
a time?, (o/;a’) is chosen again, Vz (o/;&’) < 0 and, therefore, the next switch away from
(o'; &") oceurs at t such that
Vi(o &) < Vi (a; &) — Vi (s &) <.
Hence, at £, Vi (a/;&") < 0 must hold. Therefore, at £, at most one of the corner acts can have a
positive Vz, namely the one chosen at time (¢ — 1). If Vi (au; &) > 0, then
(o7 6) =arg  max  Up(a; &) = (013 Gz-1)
(@;a)€[0;1]
and, therefore, an undiversified act is chosen again. If, on the other hand, Vz (as; &) < 0, then
thefunction Uz («; &) isasumof convex functionsand has, therefore, a corner optimum. Hence,
again an undiversified act ischosen. It followsthat starting with an undiversified portfolio, the
investor never diversifies and, hence,

m(a;&) =0foral (o;&) ¢ {a;a;b}.
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Suppose now that

Sab + Sap > 1
holds and assumethat theinvestor has chasen to hold the undiversified portfolio consi sting only
of asset b in the first period,

(15 61) = 0.
Without loss of generality, assume

Sab < Sab-
Since y, < 1,
Uz (b) = Vz(b) <0
obtainsamost surely infinitetime. Hence, at ¢, (a; &) = a ischosen, since
Ur(a) = saVi(b) > sapVi (b) = Uz (a) > Vi (b) = Uz (b).
Aslong as a ischasen, the cumul ative utility of the portfolios consisting only of b and only of
a is given by:
Ui (b) = Vi(b) + saVi(a)
Uc(a) = saVi(b),

since the similarity between a and a is0. Hence,

Ui (a) > U (b)
at each such ¢ and, especially, in the first period ¢’ such that

Up(a) < Ug(b) or
Up () < Up(a)
holds. Clearly, ¢’ isamost surely finite, since
Ui (a) = Us(b) = (sab—1) (Vi (b) = Vi(a))
Ut(a) = Ui (a) = (sab— sav) Vi(b) + Vi (a)

and V; (a) has negative expected increments ., — @ < 0. Hence, in period ¢/, act a is chosen.

Aslong as the investor holds portfolio a, the cumulative utilities of the three undiversified port-
folios satisfy:

U (b) = Vi(b) +sapVe (a)+ sapVi(a)

Ue(a) = saVi(b) +Vi(a)

Uila) = saVi(b) + Vi (a)

120



Note that as long as V; (@) > 0holds, act a ischosen, since Vz(b) < 0and Vi (a) < Ohold.
Once, however, V; (@) < O obtains,
Sab + Sap > 1
implies that
Sab Vi (a) + sapVi (@) < max{V;(a); Ve (a)}.
To see this, assume without loss of generality®, V; (a) > V& (a) and note that
(Sab + sa0) Vi (@) + 50 [Vir (@) = V; ()]
< Vi(a) + s [Vi (a) = Vi(a)] < Vi (a)
holdssinceboth V; (@) < 0 and V¥ (a) < V; (a) are negative. Hence,
Uy (b) < max {U; (&) ; U; (a)}

and, therefore, act b is not chosen.

If portfolio a or portfolio a is the first one chosen, then the term V7 (b) = 0 and the above

argument applies as well.

Hence, at period ¢ when the next switch occurs, the investor chooses again a. Applying this
argument inductively and noting that in each period of time, V, («;&) > 0 can hold for at
most one portfolio at atime impliesthat b isnever chosen again after period . Hence, itslimit

frequency isamost surely 0.

In contrast, @ and a must be chosen for an infinite number of periods each by an argument
analogous to that inthe proof of proposition 3.12. Moreover, since the similarity between these
two assetsis0 and sincethefinite Vy (a) doesnot influencethelimit behavior, it followsthat the

frequenci eswith which a and a are chosen aredetermined analogoudy tothe proof of proposi tion

3.2 and are given by
m(a)  pa—u
™ (&) He — u
Suppose now that
Sap 55 <1

holds. Assume that portfolio b is chosen only for a finite number of times. Denote the |ast
period inwhich b ischosenby ¢. Asinthefirst case, it can be shownthat « and @ must be chosen

infinitel y often almost surely and that the difference of their cumul ative utilitiesis almost surely

6 A symmetric argument holds for V; (@) < Vi (a).
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bounded above and below. Now consider the difference between the cumulative utilities of b
and a:
Up(a) = U (b) = [Vi(a) = Vi(b)] (1= sap) = Vi(a) sap =
= [Vi(a) = Vi(a)] sab — Vi (b) (1 — san)

+Vi (@) (1 — sap — Sap) -
Wheress [V} (a) — Vi (a)] has the same limit properties as U; (a) — U (a) and is, therefore,
bounded above and below, V; (b) isfinite and

Vi (@) = —o0
amost surely since a is chosen infinitely often and the expected increments of V; (a) are nega-
tive, p, — u < 0. Combined with
Sab + Sab < 1,
thisimplies that
Ui(a)— U (b) —» —0
amost surely. I1n the same way;, it can be shown that
Ui(a) — Ui (b)) —» —o0

But then, on almost each path, it would be possible to find a period ¢, such that

Ur(a) < Ug(b)

Ur(a) < Uz(b)
and still act b is not chosen. This, obvioudy, contradicts the case-based decision rule. Hence,
act b must be chosen infinitely often on amost all paths.

Assuming that act a is chosen for only a finite number of times with ¢’ being the last period in
which a is chosen, whereas the other two portfdios are chosen infinitely often, would imply
Ui (a) =U:(b) = [Ve(a) = Vi (0)] (1 = sa) — Vi (a) sab =
= [Vi(b) = Vi(a)] sap + Vi (@) (1 — sap)

—Vi (b) (1 — sab + Sab) -
Hence,

Ut (@) — Ut (b) — o0,
whichisin contradiction with the case-based decision rule. The same argument applies to the

casewhen act a is chosenfor afinite number of times, whereasactsb and a are chosen infinitely
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often.

Now suppose that two acts are chosen for a finite number of periods each. Obvioudly, these
cannot be acts b and a, Since then
Ui (a) — —o0,
whereas U, (a) remainsfinite, implying a contradi ction to the case-based decision rule. In the
same way, it cannot be the acts b and a. Hence, suppose that « and a are chosen for afinite
number of times each. Then
Uy (&) — Uy (b) = [V (&) — Vi ()] (1 — ) — Vi (@) ap
andsinceV; (a) and V; (a) are finite, whereas V' (b) has negati ve expected i ncrements, it foll ows
that
Uy (a) — U, (b) — o0
and till act b is always chosen after some period ¢, which again contradicts the case-based
decision rule. Hence, each of the three acts must be chosen for an infinite number of times on
almost each path.

Now write the differences between the cumulative utilities as:

et(a;a) = Vi(a) = Vi(a) + Vi (b) [Sab — Sab]

e (bra) = (1 —sa)[Vi(b) = Vi (a)] + saVi(a)

g (@ b) = (1 —sa)[Vi(a) = Vi (0)] + sanVi (@) -
At timet, at which the investor switches froma to a,

0<¢g(a;a) <u—u(d,)

holds. From ¢ on, ¢, (a;a) behaves as a random walk on the half line with negative expected
increments, aslong as a is chosen. Hence, the expected time until itsreturnto 0 is amost surely

finite and uniformly bounded above for dl initial values on the interval [0; @ —u (8,)]. In the
same way, if theinvestor switchesfroma to b,

0<e(ba) <(1—sa)n—ul@s)
and ¢, (b; a) behaves as a random walk on the half line with negative expected increments, as
long as b is chosen. Hence, the expected time until its return to 0 is amost surely finite and

uniformly bounded above for initial values on the interval

[0 (1 = sa) [0 — u(85)]] -
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Anal ogous arguments apply for the other two portfolios b and a. Hence, the argument of the
proof of proposition 3.2 can be used to show that the differences ¢, are bounded above and

below almost surely. It follows that

. Ut(a) .
tIL%O U 1 (3.15)
Ug(a)
th—’%lo Ut(b) =
Ut (a)
li = 1
00 U, (@)

holds on almost each path.

Because of |C; (a; &)| — oo ondmost all pathsfor al (a; &) € {a;a; b}, it followsthat
lim ZTect(a;a) [ur (a; &) — 1 —
t—o0 |Cy (o &) e

holds with probability 1 for all non-diversified portfolios. Hence, (3.15) can be rewritten as
(Ci (a)| (g — @) + Sap |C (b)] (16 — W)

o e IO @ (e — ) + 10, (0)] Gty — @) + 52 1C1 @) (g — 1)
- C (@) (g — ) + 535 ]C (0)] 1ty — 0 .

t—00 5qp |Cy () | (pty, — @) +[Cy (D)] (pty, — ) + e |Gy (@)] (11 — 1)
G (= 1) + sl CO =) _
B 52y G, )] Gy — ) +1C. (@) (10 — 1)

Sinceﬂﬂ%‘; = limtﬁoofcgf,% by definition, it follows that

T (a) (Hq — ) + SabT (b) (4, — 1) ]
SabT (@) (pta — @) + 7 (

(@) (g — @) + savm (b) (1, — @)
SabT () (pa — @) +7 () (1 — @) + sapm (@) (pa — W)
7 (a) (pq — 1) + sam (b) u

savm (b) (up — @) + (@) (pa — )

After smplifying and solving for f% f(fg and f(%g the rel ati onships stated in the proposition

b) (pp — @) + sav (@) (pa — )

= 1.

obtains.l
Proof of proposition 3.14

First note that the similarity between 0 and 1 can be normalized to 0 without loss of generality,
see Gilboaand Schmeidler (1997 (a)). To see this perform the following linear transformation

of the similarity function:
s(a;a’) —s(0;1)

maXa,a’G[O;l} {S (Oé; O/) - S (O) 1)} .

Itisclear that the new similarity function s’ takes on only nor-negati ve values between 0 and 1

s (a; ) =
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and ascribes asimilarity of 0 to the pair (0;1).

Since U (a) > Uy (o), iff

t

S s (@) fup (@) — @) = 3 s (o ") up () — )

T=1

it follows that alinear transformation of the similarity function does not change the pref erences
of an investor. Hence, using s’instead of s does not influence the behavior of the investor.
Hence, itisassumed that
$(0;1) =0

holds.
| first show that if the aspiration level isupdated according to (3.3), only non-diversified port-
folios are chosen from period ¢t = 2 on. Indeed, in period t = 2

Uy (@) =Va (@) =uy (@) — Pu; — (1 — B ug (@) =B u (&) —ay] <0
according to the assumption made. Hence, a2 > X3 (). Moreover, (3.3) impliesu; > Xs (&)
as long as @ is not chosen again. To see this, note that the aspiration level is updated towards
X: > Xo(a) = w1 (&). Hence, starting with ;> X (&), the aspiration level remains above
X, (@) aslong as ais not chosen again. Therefore, V; (&) < 0 aslong as o, # a for all

t>71>2,

In period ¢ = 2, the cumulative utility of an arbitrary act « isgiven by:
Us (o) = Va(a) s(a;a) <0,

and since s («; &) isstrictly decreasing,

arg max. Us (o) € {0;1}.

Assume without loss of generality that oy, = 0, hence that
: ‘&) =0
20
Aslongasa, = 0 ischosenforalt > 7 > 2
Ui (@) = s (; @) Vi (@) + s (o 0) V; (0)

holds. If V; (0) > 0, a = 0 ischosen, since

U(a) = s(aga)Vi(a)+ s(a;0)V2(0) <

< 5(0;a) Vi (@) +V;(0) = U, (0) .

125



If V; (0) < 0 obtains, the function
Us (o) = s(o; @) Vi (@) + s (;0) V4 (0)
becomes convex (sincenow V; (&) < 0and V; (0) < 0 hold and s is concave). Therefore,

arg max U (a) € {0;1}.

a€l0;1

Suppose that o = 1ischosen at sometime?. Aslongasa, # aforalt > 7 >,
U (@) = s(a;a) Vi(a) + s (a;0) Vi (0) + s (a; 1) Vi (1)
Ve (0) < 0, isimplied by the usage of the case-based decision rule at ¢’. Applying the same
argument as above, V; (0) < 0 aslong as a = 0 isnot chosen again.
If V; (1) < 0 holdsat ¢, the cumul ative util ity functi onbecomes convex and obtai nsits maxi mum
aoorl.
Consider, therefore, the case V; (1) > 0. Since V; (1) > 0 > max{V; (a);V;(0)}, it follows
that X; = X; (1). Denoteby ¢ the last period between ¢’ and the current period ¢ at which V' (1)
was non-positive and still o« = 1 was sel ected:
t=max{t;7<t|V,(1) <0,a, =1,V,,; (1) > 0}.
Since V; (1) <0, itfollowsthat X; (1) — u; < 0 holds. On the other hand, since V7, (1) > 0,
X1 (1) = gy >0 > max{Xp, (0) — @y 5 Xy (@) —Ugyy )
Hence, X;,, = X;,, (1) and, therefore,
Uiy = Pui + (1 = 8) Xga (1).
Since X; (1) — 4z, >0,
Uppr > Ug
foll ows.
Attimet + 2, Vi, (1) > 0 holds and, therefore, again Xz, = X7, (1) > @z, and
Upop = Py, + (1= 08) Xip (1)
Hence,
Uiy > Uiy
obtains. Reasoning inductively, we obtain that @; > u;.
At time ¢, the cumul ative utility of act o = 1is given by

U(1) =s(l;a) Vi(a) +Vi(1).
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Hence, o = 1 ischosen if
s(La)Vi(a) +Vi (1) = s (a; @) Vi(@) + 5 (;0) Vi (0) + 5 (e 1) Vi (1) (3.16)

holdsfor al a € [0;1]. Rewrite (3.16) as

Vi(1) (1 =s(es1)) =5 (s 0) Ve (0) +[s (L) = s (a;0)] Vi (@) 2 0

Vi(1) (1 =s(a;1)) = 5 (0;0) (F = 2) [X5(0) — 5] + [s (1;&) — s (s &)] [ua (&) — ug]

+ [ty — ug] [s (; 0) (' — 2) — s (1;@) + s (a;@)] > 0.
Consider the function s («; 0) (t' — 2) + s (o; @) and note that since s (-; -) is concave, it hasa
minimum at O or at 1. Fora =1,

5(a;0) (' = 2) + s (@) = s (L; @),
whereasfor a = 0,
(t'—2)+s(0;a) >1+s(0;a) > s(1;a).
It follows that:
Join (6 — g [s (05 0) (F —2) — s (1;8) + s (@) = 0.
Therefore,
U (1) = Us(a) > Vi()(1-s(La))—s(a:0) V;(0) +[s(L:a) — s (e;0)] Vi (a)
> V(1) (1— s (a5 1) = s (a;0) Vi (0) + [s (1;2) — s (s @)] Vi (@)
= Ui(1) = Up(a) 2 0

foreacha € [0;1], sinceattimet, V; (1) < 0 holdsand a; = 1. Hence, oy = 1 ischosen.
Anaogoudy, if az—1 = 0 and V; (0) < 0, the optimum is a corner solution, wheressif V; (0) >
0 holds, the diff erence between the cumulative utilities of 0 and arbitrary act o becomes:

Ue(0) = Uy () = V2 (0) (1 = 5 (e 0)) — 5 (1) Vi (1) + [s (0 ) — s (s @)] Vi (@) = 0,
snce V4 (0) (1 —s(a;0)) > 0, V4 (1) < 0, Vi(a) < 0and s (0;a) — s(asa) < Ofor all
a € [0; 1] holds. Hence, for V; (0) > 0, 0 isthe optimal choice.

Reasoning by induction shows that
P{wed®|a€{0;1} foreacht > 1} =1.
Given an ¢ > 0define C; and Cyto be the number of observations of utility realizations of

portfolioss a = 0and o = 1, respectively, such that the average utilities of both portfolios are
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1
2

sufficiently close to their mean utilities with probability (1 — ¢)2. Especialy, for g # 11, %, let
¢ max {ag g} — oin {{ags 0 (8) )\ ma (g o, )

3
and
1 & )
P{EZUZ(D—M SE}Z(1—€)2
1 lgol 1
Pyl 2 w(0) —p| <& > (1-¢)
0 =1

forany C; > C, andany Cy > Cy and denote by C the maximum of C; and C,,. Let T, = 4C
and set the initial aspiration level 4, so that:

i1 > g = win {u (8,) ;1 (8)} + 2 (—;)T (max {u (5) s (53) } — min {u (8,);u (&)})
Clams7.1, 7.2. and 7.3 in Gilboaand Schmeidler (2001 (a), pp. 164-166) can then be used to
establish that after 7, periods, both actsa = 1 and a = 0 will be chosen at least C' times each.
It followsthat with probability of at least (1 — ) the average utilities of both portfdios 0 and
1 are ¢-close to their mean utilities’”. Let B denote the set of paths on which this is satisfied,

P {B} > (1 —¢). Obviously, the events B and & are independent.

If the initial realization of a does not exceed max {y;; y4}, then claims 7.4-7.7 in Gilboa and
Schmeider (2001 (a), pp. 166-171) can be used to show that the better of the two acts0 and 1

is chosen with frequency 1 on the set 5, hence

P{wé@\ﬂﬁ(arg max ua) :1}2(1_5)13(@).

ae{0;1}
If, however u; (&) > max {uq; 1o}, then the aspiration level u; converges aimost surely to
w1 (@) on the set B. Hence, on amost each path in B, thereisaperiod 7" such that

Uy > max {fiy; flo} +§
foreach ¢t > T'. It follows that both actsa = 0 and @ = 1 are chosen infinitely often on each
such path. An argument similar to the one applied in the proof of proposition 3.2 shows that
7 (0) and 7 (1) satisfy
m(0) o —wi (@)
m (1) po—u1 (@)

% For juy = p,, the proof istrivid.

67 Although it is not assumed that the variables §, and &, are independent in a single period of time, they are
independent accrosstime. Since the two sequencesw; (1) and u,,, (0) observed by the decision maker have entries
only for distinct time periods (I # m), it follows that the two events (the average utility of 1 being ¢-closeto
and the average utility of 0 being £-closeto 1) are independent.
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on BN ®\&. Ashas been shown above, all other acts are chasen with frequency 0. Since

2 (Bmcb\ci)) > (1—¢) [1 e (cb)} ,
the result of the proposition obtains.l
Proof of proposition 3.15
Att =2, either

Uz (@) =Va(a) =ur (@) = Bun— (1 = Blua (&) =B [ua (&) — @] <0
or
Us(a)=Va(a)=ui (@) —Xo—h=—-h<0
holds. Hence, uz > X (@). Moreover, analogous to the proof of proposition 3.14, it can be
shown that (3.4) implies v, > X (@) aslong as ais not chosen again. To see this, note that
the aspiration level is updated towards X; > X, (@) = u1 (@) andisincreased by h in some
periods. Hence, startingwithu, > X, (@), theaspiration level remains above X, () aslong as
aisnot chosen again. Therefore, V; (&) < 0 aslongas a; # aforalt > 7 > 2.
Att=2
Us (o) = V5 (a) s(asa) <0,
and since s («; @) is strictly decreasing,
arg max Uz (a) € {0;1}.
Assume, without loss of generality that a., = 0, hence that
nin, s (sa) =0

Aslongasa, = 0Oischosenforalt > 7 > 2

Ui (@) = s (; @) Vi (@) + s (o5 0) V; (0)
holds. If V4 (0) > 0, « = 0 ischosen, since:

Ui(a) = s(a;a)Vi(a)+s(a;0)V,(0) <
< s5(0;0) V(@) + V;(0) = U, (0).

If V; (0) < 0 obtains, the function

Ui (@) = s (s @) Vi (@) + s (o 0) V; (0)
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becomes convex (sincenow V; (@) < 0and V; (0) < 0 hold and s is concave). Therefore,

arg max Us (o) € {0;1}.

Suppose that o = 1ischosen at sometime. Aslongasa, # aforalt > 7 >1t,
U (@) =s(a;a) Vi(a) +s(a;0) Vi (0)+ s(a; 1) Vi (1)
Vi (0) < 0, isimplied by the usage of the case-based decision rule at . Applying the same

argument as above, V; (0) < 0 aslong as a = 0 isnot chosen again.

If V; (1) <0 holdsat ¢, thecumulative utility function becomes convex and obtains it maxi mum
aoorl.

Consider, therefore, the case V; (1) > 0. Since Vi (1) > 0 > max{V; (a); V;(0)}, it follows
that X; = X; (1). Hence, u; > u; must hold, where
t =max{t;7 <t|V,.(1)<0,a, =1,V (1) > 0}.
by the argument stated in the proof of proposition 3.14. Note that the argument appliesfor the
updating rule (3.4) aswell, since the definition of ¢ implies that

t+1,..t'¢ N.

To see this ote that if ¢ € IV, then V; (aw—1) < 0 must hold and, hence, ¢ ¢ {¢ +1,...7'}.

At time ¢, the cumul ative utility of act o = 1is given by
U (1) = s (L) V; (@) + Vi (1).
Hence, a = 1 ischaosen if
s(L;a) Vi (@) + Vi (1) =2 s(a;a) Vi (@) + 5 (25 0) V3 (0) + s (a3 1) V; (1) (3.17)

holdsfor all a € [0; 1]. Rewrite (3.17) as

Vi(1) (1 =s(a;1)) =5 (;0) Ve (0) +[s (L) — s (a;0)] Vi (@) =2 0

Vi(1) (1 =5 (a;1)) =5 (s 0) (7' = 2) [X; (0) — ug] + [ (1;&) — s (a5 )] [ur (@) — 1]
[ = ) s (03.0) (7 = 2) = s (1:a) 45 (@) 2 0.
Consider thefunction s («; 0) (¢ — 2) + s («; @) and note that since s is concave, it has amini-
mumatOoratl. For o =1,

s(;0) (' =2)+s(xa) =s(L;a),
whereasfor a = 0,
#—2)+s(0;a)>1+s(0;a) > s(l;a).
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It follows that:

min_[a; — g [s (;0) (F —2) — s(1;a) + s (a;a)] = 0.

a€l0;1]
Hence,
Ur (1) = Us(a) = Vi (1) (1= s(s1)) = s(a;0) Vg (0) + [s (1; @) — s ()] Vi (@)
> Vi(1)(I=s(a;1)) —s(a;0) Vi (0) + [s (1;@) — s (a; @)] Vi (@)
Ur(1) = Ui(a) >0

foreacha € [0;1], sinceat timet, V; (1) < 0 holds. Hence, o, = 1 ischosen.

Anaogoudly, if 0 is chosen at sometime and V; (0) < 0, the optimum is a corner solution,
whereasif V; (0) > 0holds, thedifference between the cumul ative utilities of 0 and an arbitrary
act o becomes:

Vi(0) (1 — s (0;0) — s (a5 1) V; (1) + [s (0;8) — s (e;0)] Vi (@) > O,
snce V; (0) (1 —s(a;0)) > 0, Vi(1) < 0, Vi(@) < 0 and s(0;a) — s(a; @)
a € [0; 1] holds. Hence, for V; (0) > 0, 0 isthe optimal choice.

< Ofor all

Reasoning by induction shows that
P{we€ &, | a; € {0;1} foreacht > 1} = 1.

Suppose that both o = 0 and o« = 1 are chosen infinitely often. Then claim 7.8 of Gilboa and
Schmeid er (2001, p. 172-173) shows that for dmost each w € S5,

th—>r<1>10 (g — X;) =0
and

fim Xefe) =p =0
for each o chosen infinitely often. Therefore, if Xz (a) = w (@) < max {uo; 111}, thenthereis
aperiod T (depending on the path w) such that for all but a sparse set of periods after T’

|ty — max {pg; py } < €

for any initially chosen ¢ onw € ;. Accordingto claim 7.9in Gilboa and Schmeidler (2001, p.
173), acts0 and 1 are indeed chosen in an infinite number of periods. Therefore, X; (0) —
and X; (1) — p,. Claims 7.4-7.7 in Gilboaand Schmeidler (2001, p. 166-170) then show that
on paths w such that

lim (a; — X;) =0,

t—o00
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T (arg max ua> =1
a€l0;1]

amost surely obtains.

If, however, u; (&) > max {pg; 1y }, then a, — uy (&). Hence, there is aperiod 7' (depending
on the path w) such that

[t — i (@)] < ¢

foreacht > T onw € ®;\®; except on asparse set of periods for an arbitrary chosen ¢. Again,
claim 7.9 of Gilboaand Schmeidler (2001, p. 173) assuresthat each the acts 0 and 1 are chosen

an infinite number of times in the limit. But since now

lim @, =y (@) > max {4; i}

7(0) > 0and 7 (1) > 0 obtai n._;:(&()) and 7 (1) satisfy
m(0) _ p—wm (@)

m(1) o —ui (@)
as shown in Gilboa and Pazgal (2001).1

Proof of proposition 3.16

Since a; = 0 and the aspiration level israised by A in some periods,
Uz (0) = V£(0) <0
for somefinite > 0. Since s (0; ) > 0 only for e € (0; ), it followsthat
Ur(a) =0 > Uz (o) foradl a 2—; ando/ < —;
Therefore, a1 = 1 ischosen by assumption 2. Note that
U (0)=V,(0) <0

foral ¢t > ¢,suchthat o, # 0 for al ¢ < 7 < t by the argument in the proof of proposition 3.14.

1
U£7 <0
2

2
Ui (@) =0 > U; (o) foral a 27 and o/ <7

Since
obtainsfor afinitet > ¢,

Hencea; , = 4, etc.

Once each of the acts {0;4;4...1=4; 1} has been chosen at least once,

o = (0



8o (od) ) ()

fora € [£1;4], since s (a;a’) > Oonly for o/ = fando/ = &L out of {0;1;2. &1},

By an argument analogous to the one used in the proof of propasition 3.15, V; (¥) > 0 can hold

k
4(7) >0
then ay = ay—1 = %, since

() (1) (o) 4 () ()

foral a e [%2; 4] and

k K K kK —1 K -1
() =0z () (o T) o (5) ()

foral k' # kand al a € [0;1] hold. If

o ()1 ()

then U («) is convex, because s («; -) isconcave. Hence,
kE k-1
arg max U;(a)€<—;——

only for onek € {0;...1}. If

171

ac[tHt]
and
U()eolklfore\/t
arg max o ST e T .
gaE[O;l} t 717 la e"y
Therefore,
12 [-1
lim @, = 0;—5>..——;1
Jim = maxq po | @ € 4 0573777

obtainsalmost surely, seeclaims 7.4 — 7.7 in Gilboaand Schmeidler (2001, p. 166-170). Hence,
only
ar max
gaE{O;'};%...l} He
issatisficing in thelimit and

| ar max =1
( & aG{O;Jl' ;'%...1} Ma)
almost surely obtains on @, as shown in clam 7.8 and 7.9 in Gilboa and Schmeidler (2001, p.

172-174).1
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Chapter 4. OntheDefinition and Ex-
Istenceof an Equilibriuminan OL G Econ-
omy with Case-Based Decisions

In the last chapter, the individua portfolio choice problem with case-based decisions was con-
sidered. It wasfound that investors acting in accordance with the case-based decision theory in
general viol ate the predictions of the expected utility theory by holding undiversified portfalios,
trading too much and not using arbitrage possibilities present in the market. However, these re-
sults were achieved by assuming that asset prices (and thereforereturns) are exogenoudy given
and identically distributed over time. In this chapter, this assumption is dropped and an asset

market populated by case-based decision-makers is constructed.

The construction of a market populated by case-based decision-makers makes necessary the
discussion of somemethodol ogical i ssuesfirst, the aim bei ng to define anotion of an equilibrium
for amarket popul ated by case-based investors and to guarantee that such an equilibrium exists,

hence that the definitionis meaningful .

The case-based decision theory has been applied in multipl e settings, asfor instance, in the con-
sumer theory, Gilboa and Pazgal (2001), theory of voting, Aragones (1997), production theory;
Jahnke, Chwol kaand Simons (2001), social learning Blonski (1999), cooperation in games Paz-
gal (1997) and portfolio choice, see chapter 3 of thisthesis. Still, up to now the applications of
the case-based decision theory have been restricted to individua decisions, neglecting equilib-
rium considerations. Especially in financial markets, the assumption of an exogenoudy given
and stable price process is very difficult to defend, both on an empirical and theoretical level.
Inafinancia market populated with case-based deci s on-makers, past prices inf luence the port-
folio choices and, therefore, future prices. Investigating the price process of such an economy
might help us gain new insights about the way financial markets function when (some of) the
investors make decisions based on their own or on other investors experience. That iswhy a

notion of an equilibrium of an economy populated with case-based decisi on-makersis necessary.

| make afirst attempt to formulate such an equilibrium for a financia market with an exoge-
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noudly fixed asset supply. Whereas the dividend payments of the assets are exogenoudy given,
their pricesare determined endogenoudy according to amarket clearing condition. | consider an
overlappi ng-generations economy in order to capture the insight that decision-makerswho live
only for one period are not able to learn much about the structure of theeconomy as awhole. It
isonly natural that in an overl apping generations economy, the knowl edge about the profitabil-
ity of assetsis based on the experience of past generations. In the model suggested below, the
investors are distributed on acontinuum and differ only with respect to their aspiration levels. I,
therefore, assume that each investor |earns from his predecessors with the same aspiration level
as his own. This provides an intuitive interpretation of a memory of a decison-maker in this

context as experience of previous generations.

At the sametime, the assumption about learni ng from previous generati ons makesthe eval uation
of an asset by the young investors (whichisbased onthe consumption possibilitiesit bearsfor the
old) implicitly dependent on its current price. This dependence determi nes the demand function
for assets on an individual and on aggregate level. It is possible to show that an equilibrium
point exists under quite general conditions on the utility function of the investors and the initial
asset holdingsint = 1.

Since the old investors consume the returns of the asset, a higher price of an asset implies a
higher utility realization observed by the ol d consumersand, therefore, ahigher eval uationby the
young investors. Hence, the demand for assets isin general increasing for relatively low prices
and decreasing for high prices. Moreover, thedemand for an asset of anindividua investor may
be very insensitive to price changes at low prices. If thisfeatureis also present at the aggregate
level, it is not possible to exclude equilibria with 0-asset prices. However, conditions can be
identified for which degenerate equilibriacannot occur, or for which at least one non-degenerate

equilibrium exists,

Sincethe eval uati on of an asset by ayoung investor dependson itscurrent price, price-dependent
preferences emerge inthe model. Thiskind of preferencesisfirst introduced into the economic
literature by Veblen (1899) for "snob” goods, whose demand increasesin price. A differentinter-
pretation of such preferencesis given by Pollak (1977) and Martin (1986), who argue that price
dependent preferences might be a sensible assumption in cases in which the quality of a prod-

uct is not public knowledge, but only known to some of the consumers. Martin (1986) suggests

136



to speak of price dependent expectations, instead. In this case, prices convey information about
the quality of the product. Samuel son (1966) notes that price-dependent pref erences are natural
inmonetary economi es, i n which the demand for money should depend ontheprice level. Inthe
context of financial markets, price-dependent preferences are introduced into aportfolio choice
problem by Allingham and Morishima (1973). They derive comparétive stati cs results for the

inf luence of a price change on the optimal portfolio.

Equilibrium results for economies with price dependent preferences are derived by Arrow and
Hahn (1971, p. 129-131) for the caseof finitenumber of consumersand by Greenberg, Shitowitz
and Wieczorek (1979) for an economy with a continuum of consumers. The main assumption,
which insures the exi stence (apart from the standard assumptions of Debreu (1959)) isthe con-
tinuity of the utility function with respect to consumption and prices. The main features of such
economiesdo not differ substantially from those of standard Arrow-Debreu economies, see Bal-
asko (2003 ().

Financia economies with temporary equilibria, in which beliefs of investors depend on prices
naturally exhibit price-dependent preferences. Grandmont (1982, p. 892) derives necessary con-
ditions for the existence of a temporary equilibrium. In an economy with heterogenous agents,
existence requires that their beliefs about future prices are not too different. Whereas Grand-
mont imposes an expected utility representation of preferences, Balasko (2003 (b)) constructs a
temporary equilibrium with arbitrary preferences. He shows that atemporary equilibriumin his
economy is equivalent to an equilibrium with price-dependent preferencesin an Arrow-Debreu
economy and shows existence. Neverthel ess, he also has to impose acertain agreement on prob-
abilities. Especially, in the case of von Neumann Morgenstern expected utility representation,
the beliefs of each investor should assign positive probability to each state of nature, Balasko
(2003 (b), p. 3). Page and Wooders (1999) derive existence results in financial markets with
price-dependent preferences by imposi ng non-arbitrage conditions. Their assumptions on ex-
pectations are similar to those made by Grandmont (1982) and Balasko (2003 (b)).

The fact that all of the cited models are constructed in the Arrow-Debreu setting with assets
representing vectors of state-contingent outcomes, as well as the restrictions imposed on the
beliefs of consumers over the states of nature does not allow the direct application of these

results to an economy populated by case-based decision-makers, even oncethe (implicit) price-
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dependence of preferences is demonstrated. Since beliefs and state-contingent outcomes are
not well defined in such amodel, different factors, such as the aspiration level of the investors
and their memory play an important role for the existence of an equilibrium. Nevertheless, it is
possible to draw a parallel between the findingsin the literature and the existence result derived

here.

The rest of the chapter is organi zed as follows: section 1 presents the model of an overl apping-
generations economy populated by case-based decis on-makers. Section 2 describesthe decision-
making process, whereas section 3 derives the individual demand for assets. In section 4, it is
shown that the Walras' Law holds for the economy. Section 5 gives adefinition of atemporary
equilibrium. In section 6, the existence of an equilibrium is shown under quite general condi-
tions. Section 7 provides an example of an economy with two assets, one of which isin fixed
supply, the ather one — in perfectly e astic supply. The conditions for existence of an equilib-
rium are then discussed for this example. Section 8 analyzes conditions under which equilibria
with 0-prices can be excluded. A discussion of the results is provided in section 9. Section 10

concludes.
4.1 TheEconomy

| consider an economy evolving in discrete time and consisting of a continuum of investors
uniformly distributed ontheinterval [0; n]. Foreachi € [0;n] and someconstant w’ € R denote
by @' = u°+ i theaspiration |l evel of investor i. Hence, the mapping frominvestorsto aspiration
levels is one-to-one and one can identify the continuum of investors with the continuum of
aspirationlevels [u°; 4"]. The aspiration level of the investorsis then also uniformly distributed

on [a’; u™].

Each investor lives for two periods. The preferences of the investors are assumed to be such
that they wish to consume only in the second period of their life. The preferences about the
consumption in the second period are represented by a utility function « (-), which is identical
for al consumers and independent of their aspiration level. | assume, asusua that u isstrictly

increasing and continuous in consumption in period two.

Thereis one consumption good in the economy. The initial endowment of the investors consi sts

138



of one unit of the consumption good in the first period and is 0 in the second period.

There are K assets in the economy, which allow to transfer consumption over time. The supply
of therisky asset k € {1... K} isfixed at Ay > 0. The payoff of oneunit of the asset & in period
t isarandom variable 5?, which isidentically and independently distributed in every period on

aclosed and bounded set. min {6*} > 0 for all  is assumed.
4.2 Investment Decision of the Young Investors

The decision situation is described as aprobl em®® to be solved, by choosi ng an act out of agiven
set. Inthe present context the problem can be formulated as: ” Choose aportfolio of assetstoday

to enabl e consumption tomorrow” .

The decision of a young investor now consists in choosing a portfolio of £ assets — 1...K.
For smplicity, | consider only the case, in which there are only k& portfolios available for a
single investor: he can invest his whole initial endowment in one asset only. Short sales are
prohibited®®. Denote by ! , the act, chosen by ayoung investor with an aspiration level @' in
period ¢ — 1. Then the values of o —
A={1.K}

represent the set of acts avail able to the investors, when solving the problem formulated above.
The portfolio, chosen in period (¢ — 1) is held until ¢, when the old investors sell the risky asset

they own to the young investors and consume the dividends of the asset and the revenues from

the asset sales. Normalizing the price of the consumption good to 1, the indirect utility™ from

68 | assume here implicitly that the price vector does not characterize the decision problem. This assumption is

dropped in section 6 of chapter 5, where aproblem is identified with the price vector in the economy.

69 Sincethe investors in the economy are infinitesimally small, it is plausible, that short sales are impossible for a
single investor, because of high transaction costs and legal requirements. The assumption of no diversification can
be justified partially by the results of the previous chapter, which show that among the investors with a concave
similarity functions, only those with relatively low aspiration levels will bewilling to hold diversified portfolios
infinitely long. This assumption will be dropped in section 6 of the chapter 5, in which similarity considerations
in a market environment will be discussed.

70 |.e. conditioned on the alternative chosen at (¢t — 1).
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consumption of an old investor in period ¢ can be written, as™:
ve (o)) = u(;,?:+gi—l), ifa! | =k,
where p} denotes the price of asset k& at time ¢. In terms of the case-based decision theory

v, (of_,) denotesthe utility realization of act o;_;.

In the spirit of the case-based decision theory, | assumethat the decision-makers have amost no
information about the problem they arefacing. They do not know the structure of the economy,
nor the process of price formation. They have no informati on about possi ble prices and returns
of the assets and their distribution. Their information consists of the problem formulation, the
set of possible acts and their memory. Hence, they can only learn from experience of subjects,

who have lived before them.
The memory is avector of cases’:

(047—1; Ur (047—1))
of previous choices and achieved utilities. | assume that the memory of a young investor i at
time ¢ congists only of the (m + 1) last cases, realized by investors from previous generations
with the same aspiration level ™ i
Mtz = ((ai—ﬁ Ut (%—1)) e (ai—m—l;vt—m (ai—m—l)))
Hence, m € {0;1...t — 1} parameterizesthelength of the memory (which isassumed to beequal
for all investors). If m =t — 1, theyoung investors remember all past casesfrom ¢ = Oon, if

m = 0, the memory contains only the last case.

Note that since the memory of each investor at time ¢t containsthe last case (a}_;; v (af_y)), it

in general depends on the price vector p;.

Based on his memory at time ¢, theyoung investor ; constructs the cumul ative utility of each of

1
&
Py

receives ;E?— . Since the dividends are distributed proportionally to the number of assets held, the investor receives

;}— of the dividend 6% paid per unit.

"2 Since the problem formulated here is considered to remain unchanged in each period, acase consists only of an
act chosen and utility obtained.

7 This means that the investors do not observe all past choices and realizations, but only those of a given cohort
of their predecessors. One possibility to rdax this assumption is by introducing social learning, the possibility to
learn from investors with different characteristics, asin Blonski (1999) and Krause (2003).
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the acts:

TeCi(k)
where

Ci(k)y={t—-m—-1<7<t|al =k}
denotes the set of cases in the memory of investor 7 in which act £ has been chosen. The sum
over an empty set isassumed to be 0. Note that the cumulative utility of the same act in general
differsamong the investors, depending on the memory they have (past cases observed by them),
but also on their aspiration level.

After determining the cumulative utilities of all acts, the decision-maker compares them and

chooses the act with the highest cumul ative utility, i.e.:

0; = arg, max U; (k)}.

Note that the case-based decisi on theory does not require the knowledge of past prices and div-
idend payments™. The decision of an investor isonly influenced by past cases and not directly
by prices or by the probability distribution of returns. The influence of past and current prices
is only indirect, through the observed utility realizations v, (-). Nevertheless, it is obvious that
current pricesinfluence the choice of an investor through his eval uation of an act and nat only

through the budget constraint. Hence, pri ce-dependent preferences emerge.
4.3 Individual Demand for Assets

Before proceeding to define a temporary equilibrium, | analyze the individual behavior in this
economy. Consider ayoung investor i in period t whose memory is given by M. Suppose, first
that the old investor ¢ holds asset £ in period ¢t. This meansthat the cumulative utility of & for

the young investor ¢ can be written as:

Uik) = Y [o-(k) — ] +u<pr+i_f) @

7 Although the cumulative utility of act k£ can be written as:
k k
i - Dy [ -
CHOEIEDY [mk)—uhu(pk o )—u,
TECE_, (k) t=1 t—1
kK K
the investor need not know p¥_,, p¥ and 6%. It is suffidient for him to know the values of « (—%’— + —5L)and

P 1’?71
v, (k) in order to make adecision.
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whereas the cumulative utility of an asset k # k is:

vi(F) = > e (k) -
TECg_l(é)
Note that only the cumul ative utility of the asset chosen by the direct predecessor of the young

investor ¢ depends on the price vector at ¢, whereas the cumulative utilities of the other acts are
independent of current prices. Therefore, it is possible to identify a subset of acts K/ C 4,
which have the highest cumulative utility among the acts not chosen by the investor i at time
(t—1):

K'=<arg  max Ut <l~<:> : (4.18)
kel.K
-y

It isthen obviousthat the young investor will either choose asset & or some of theassetsk’ € K.
Take one such k. Suppose that there exists a price of asset &, pf* (i) > 0 such that’

kx k

i (o i by \? 6 —i .

GO O @) = X e )+ (B ) a - i, @19
reCiL (k) Dia Dr

Thenthree cases are possible:

1. 1f p¥ > pk* (4), then investor i chooses asset & (o = k).

2. If pF < pf* (i), theninvestor i chooses one of the assets &/ € K’ (o} € K').

3. If p¥ = pk* (4), then investor i is indifferent between holding & and some of the assets of

theset K’ (o} € K" U {k}).

Therefore, the demand for & of investor 7 at timet is given by the correspondence:

0, if 0 < pf <pf* (i)
l‘i (k> = {pfi(i) ) O}, if pf = p,]f* (Z) . (4.20)
rt if pf > pi* (i)

Of coursg, it is possible that no such price pf* (i) > 0 exists. Thisisthe caseif

> o (k) - @] +u (p—‘,ffk—) — > U (k)

TE Cé— 1(k) =1

™ If p (4) exists, thenit will be unique, since (+) and, thus, U} (k) are strictly increasing inp¥, whereas U} (k)
is aconstant.
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for the given realization of 6 and for each &’ € K. Then
U (k) > U (K)
foreachpf > 0anddl k' € K’, hence oi = k.

In this case, the demand of 4 for k is afunction of p¥ and is given by:
- fordl pf >0

zy (k) = { n for pl — 0 } : (4.21)
The demand z¢ (k) for asset k of aninvestor whose predecessor holds k at timet isillustrated in

figures 4 and 5 for the two cases described above.

The opposite case, inwhich &’ istheact chosen for any price, cannot occur if the utility function
u (-) and the range of possible prices pF are unbounded above. If, however, (asit will be shown

to bein an equilibrium), p¥ isbounded above, say by p*, and if pf* (i) > p*, i.e.:
=k k

> o (k) -] +u(p—+_iL) —at < U (K)

reCi_, (k) t—1 D1

for k' € K', then o € K’ for each price p} € [0; p*] and the demand for & is 0.

Few comments are in place. First, note that the demand of an investor for an asset depends
only on therelative prices. Increasing all prices by acertain factor A (including, of course, the
price of the consumption good in every period) leaves the consumption of the ddinvestorsand,
therefore, the portfolio choice of the young investors unchanged. Furthermore, the proportion
of the endowment which an investor whose predecessor holds & investsin k is0 if p is suffi-
ciently low and jumps to 1, once p¥ exceeds the critical level pf* (i). Hence, the proportion of
the endowment invested in & is monotonically increasing in the price of k. Itis, therefore, only
possibl e to induce the investor to substitute & by &’ by reducing the price of k£ and not by in-
creasing it. If theinvestor isready to hold &, even at p¥ = 0, or if heis not ready to buy & even
if the price rises to p*, then his portfolio choice is absol utely insensitive to price changes. At
the same time, the investment decision of an investor, whose predecessor holds &, is indepen-
dent of the prices of the other assets (p} ...pJ; p**1...pJ). Hence, no substitution effects can
beinduced by changing these prices. Therefore, the investment decision of case-based investors
is relatively insendtive to price changes. The absence of substitution effects will subsequently

turn out to be the reason for the existence of equilibriawith 0-asset prices.
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Demand for k of asingleinvestor ¢
zi(k

3

5 > I
Dy

Figure 4

4.4 Walras' Law for an Economy with Case-Based
Decison-M akers

It is possible to show that the Walras' Law holds for the economy populated by case-based
decision-makers. In order to guaranteeitsvalidity it is, however, necessary to specify the prop-
erty rights on assets which are not traded in some period and have an equilibrium price of 0,
because else positive dividend payments might get lost for the economy as a whole. Suppose
that an old investor 7 holds asset % in period ¢ and the equilibrium price of this asset satisfies
p¥ = 0. Sincethe oldinvestor i will notliveat (¢ + 1) and will not be ableto sell the asset (since
at a price of 0 the demand for the asset must be 0 in an equilibrium), | assume that the young
consumer 4 (with the same aspiration level asthe old one who owns k) inherits the asset from

him. Theinheritance does not i nfl uence the budget constraint of the young consumer and, there-
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Demand for(k: of asingle investor : if p}*(:) does not exist
xi(k

=L
yZ

Figure5

fore, he chooses an act from the set K’ defined above. Since the investor has received the asset
by chance and not by an explicit chaice, | assume for simplicity of exposition that the returns of
the inheritance are considered to be irrelevant for the computation of the cumulative utilitiesin
the next period. It is not difficult to show that the characteristics of the value of demand func-
tion d; (p:), which is defined and analyzed in section 6 remain unchanged and the existence of

an equilibriumis still guaranteed, if these returns are also taken into account.

To prove the validity of the Walras' Law, write the budget constraints of the individua in the

economy asfollows:

K
Z x¢ (k) pf < 1, for the young investors (4.22)
k=1
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with zt (k) > 0, iff o} = k, and
K
> (xiy (k) + gi_y (k) (0} + 6F) > g, for the oldinvestors (4.23)
k=1

where ¢! denotes the consumption derived by the old investor 7 at time ¢ and g; , (k) denotes

the i nherited number of shares of asset k at (¢t — 1)"°. Both (4.22) and (4.23) hold with equality;
since the whol e initial endowment of the young consumersisinvested and because of the strict

monotonicity of u (-).

Now integrate the budget constraints over the continuum of investors and note that the assump-
tion that al| assets which are not demanded at (¢ — 1) are inherited impliesthat:

/ <Z ("Ei—l (k) + gi—l (k?)) pf) di = ZAkpf.

im0 \k=1
Combining thiswith (4.22) and (4.23), one obtains:
" K K
/ D ai (k)pfdi+c=n+ Y A(pf+6), (4.24)
Lo k=1 k=1

wherec; = [ ddi denotes the consumption of the old investors at time ¢. Since thel.h.s. of
1=0

(4.24) represents the value of the demand, whereas the r.h.s. isthe value of supply (including

the dividend payments), it fol lows that the val ue of the excess demand is0 for all possible price

vectorsp, = (p}...p;*) > 0.

Note, however that for someinvestors non-satiation might beviol ated at a price of 0. Especially,
i (k) (pf = 0) = 0 might obtain as has been shown in thederivation of the individual demand
for assets. If thisholdsfor all i € [0;n], then the aggregate supply of & exceeds the aggregate
demand for k at the price p¥ = 0. Hence, asset k is not desirable, see Varian (1992, p. 318).

Therefore, its equilibrium price would be 0.
4.5 Definition of a Temporary Equilibrium

Having described the individual decision-making processin the economy, the nation of amarket
equilibrium at time ¢ isnow introduced. The property which alows to find a price vector p;, =
(pi...pf) suchthat the marketsareequilibrated is, of course, the (i ndirect) dependenceof U; (k)

on p¥ for all investors 4, whose predecessors have chosen k in t — 1. This property makes the

" Of course xi_, (k) > 0,iff of_; = kand g{_, (k) > 0,iff pf = 0;... p} , =0;pF , , #0adal , , =k

for some h > 1 must hold.
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demand of the young investors at least partially dependent on the price vector p,, so that an
equilibrium exists under quite general conditions. However, the fact that the demand function
is not always sufficiently elastic with respect to prices leads to equilibria in which some of the

assets are not demanded and their priceisO0.

A temporary equilibrium at time ¢ is defined by:

e portfolio choices of the young investors — o € 21 for eachi € [0;n);
e utility of consumption obtained by the old investors — v, («_,) for eachi € [0; n];

e apricevector — p, = (p}...pK)

such that following conditions are fulfilled:

1. Case-based decision-making of the young consumers:

: Ul (k
ay € argkergll?.)%}{ 7 ( )}
forall i € [0;n] at the equilibrium price vector p;.

2. Indirect utility of the old consumers, derived from a!_,
wlob ) = {u(gE ) = )
for al i € [0;n| at the equilibrium price vector p;.

3. The excess demand in each of the marketsis 0 or negative. |f the excess demand in one of

the marketsis dtrictly negative, then the pricein the market is0.

Ay = / ot (k) di, if pF #0 (4.25)

n

zi (k) di =0 < A, ifpf =0
foral k € {1...K} and

K n
n=>y_ (pf / 't (k) dz’) . (4.26)

Remark 4.1 (4.25) can be formulated as:
Apph = / di =: df for Vk € {1..K}
{i:ai:k’}

where df denotes the mass of the young investors, who choose to hold & in period ¢. In other
words, d; represents the value of demand for £ at time ¢, whenever [z (k) di # oo at pf = 0.

147



(A1)
(A2)

Note, however, that p} = 0 cannot be an equilibrium priceif [ x} (k)di = oo at0, since
then the excess demand is positive. Therefore, for the purpose of showing the existence of an
equilibriumit is enough to analyze the characteristics of the value of demand d} and show that
it crosses the value of supply at least once.

Remark 4.2 Sncethe price of the consumption good isnormalizedto 1, (4.26) represents the
clearing condition for the market for the consumption good. Note that n represents theinitial
supply of consumption good (apart from dividend payments). It is obtai ned by noting that (4.22)
holds with equality and i ntegrating the budget constraint (4.22) with respect to . According to
remark (4.25), (4.26) can be rewritten as:

4.6 Existenceof a Temporary Equilibrium

It can be shown that under mild conditions on the utility function and the initia holdings of the

old consumersin ¢ = 1, an equilibrium exists.
Following assumptions are made:

The utility function « (-) is strictly increasing and conti nuous.

At t = 1, the popul ation of the old investors can be partitioned into a finite number of intervals
such that all investors of the same interval hold the same asset.

Suppose that at sometime ¢, an interval of investors with identical memoriesisindifferent be-
tween two or more acts. Thentheinterval is partitioned into afinite number of subintervalssuch

that the investors of the same interval choose the same act.

Note that (A3) isnot in contradiction to the assumptions of the case-based decision theory, but

just specifies how decisions are made in case of indifference.

The ideaof the proof isrelatively smple. First, it can be shown (proposition 4.1) that condition
(A2) imposed on the initial holdings of theold investors at ¢ = 1 aso holds in all subsequent
periods, as long as (A1) and (A3) arefulfilled. Thisallows to partition the young investors in
each period intointerval s such that al young investorsin the same interval have identical mem-
ories. This structure alows to integrate the individual demand for assets on one such interval
of young investors with identical memories to obtain the aggregate demand of theinterval. Fur-
ther, remark (4.25) statesthat it isnot necessary to analyze the demand correspondence, but only
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the value of demand correspondence d;, = (d;...d;*). The propertiesof the utility function, as
well astheinterval structure described above imply that the value of demand for assetsd, isan

upper hemi continuous, non-empty, convex-val ued correspondence, which maps the convex and

closed set
LU IR P
" A

into [0; 2™ for all possible memories (corollaries 4.1, 4.2, 4.3, 4.4, proposition 4.4). Thevaue

of supply s, = (Ayp;...Axp{) isacontinuous function of the price vector, which al'so maps

] o

into [0; n]K. A common point of d, and s, isan equilibrium attime¢. With the hel p of Kakutani’s

fixed point theorem, it is shown that such a common point exists.

The following proposition follows from (A1), (A2) and (A3) and will be proved in the course

of the discussion.

Proposition 4.1 Assume (A1), (A2) and (A3). Then, for eacht > 1, the population of the old
investors can be partitioned into a finite number of intervals such that all the investors of the
same interval hold the same asset.

First, notethat if inperiod ¢ = 1theinitia asset holdingssatisfy (A2), then in the next period the
population will again be (sub)divided into suchintervals. Indeed, consider aninterval [aj; fal] C
[@%; @] such that oy = k for all i with @’ € [a/; 4']. Fix aprice’” p§ > 0. Thenin period ¢ = 1,

al individuasin thisinterval have the same memory and asses the cumul ative utility of k as.
. ko gk . . )
Ui (k) =u (p—}f + —,16) —a'forala' e [af;a’] :
Py Po
Since u (+) is continuous and increasing in p*, it fol lows that three cases are possibl e®:

1. Let g} besuch that™: .
) o
u (p—}f+—,1€> —a' =0,
. _ ~Po Do
If p¥ > p holds, al investorsin thisinterval choose k:

pk Sk ) ) )
u(—i +—1) — @' >0fordl @ e [w/;u]
P #b

™" If pk = 0 wasan equilibrium pricein ¢ = 0, then the demand for & must have been 0 in ¢ = 0, hence none of
the old investors considersthe returns of £ to be relevant for hisdecisionint = 1.
"8 Notethat sincethe memory of the investorsis empty at ¢ = 0, the cumulative utilities of the assets other than
kare0.
™ Of course, p} dependson theinterval [@/; ' ]. | neglect this dependence in the notation for convenience.
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i.e o) =kforalie [j;l].

2. Let ¥ be such that™:
By _
ul| = +—]—u =0.
(i -3t)

If p¥ < ¥ holds, none of the investors chooses &:
k

Pk . . .

u(—t+—,ﬁ>—a’<0foralla’e[aj;al],
. DPo  Po

iea) € K'={1.K}\{k}fordlic[j;].

3. If p} € [pf; p}], then thereisan aspiration level a* € [w; @],
— %k Ef 61
Po Po
such that the investors with an aspiration level higher than @* choose an asset from the set
K', whereas those with alower aspiration level continue to choose k:
o € K'\ifa' > a*

of =k, ifut < u*.

Of course, which of these cases will occur (or which are relevant), depends on the range of
possible prices, as well as on the range of aspiration levelsin the interval considered (e.g. if
a isrelaively low, al investors may want to hold k, even for p¥ = 0, hence o = k obtains
independently of the price). Nevertheless, (43) implies that the interval [a/; '], consisting of
investors with identical memories, is divided into at most two K intervals, which aso consist

of investors with identical past choices and identical memory.

A similar argument holdsalso for any periodt, by induction. Letpf , > 0. Consider an interval
of investors [u”; u¢] with identical memory, suchthat o, = k forall i inthisinterval. Consider
the acts different from £. Notethat the cumulative utility for investor ; of each such act is given
by:

Uik =Y v (K)—|Ci, (k)| @,

Tecrti—l (k")
oriso, (if \Ct"_l (k’)\ = 0) and is thus linear and continuous in %*. Therefore, the investors,

for whom £’ isin the set K’ of the assets with highest cumul ative utility build a sub-interval of
[a®; u¢] . Consider onesuch (open) subinterval (@/; a!) C [’ u¢] of investorswith identical sets

K'. |K'| > 1 can occur in two cases only: first, if K’ consistsonly of acts &/, with |C}_, (K')| =

80 Of course, p} dependson theinterval [@/; @']. | neglect this dependence in the notation for convenience.
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0, second, if

> - ¥ ww)
TE C’L1 (k") TECL 1(E)
and

’Cti—l (k,)’ = ‘CZ—I (k'”)‘
for all " and £” in K. In the second case, obviously (@/;@') = (a’ u¢)®. The anaysis of
the first case is analogous to the analysis for ¢ = 1, discussed above. As for the second case,
(A3) insures that showing the result of proposition 1 for the case | K’| = 1 will alow to extend
it tothecase |K’| > 1, aswell. Thedifferent casesfor an arbitrary period ¢ and |K'| = 1 are
summarized in the following propositions 4.2 and 4.3:
Proposition 4.2 Consider an interval of investors with aspiration levels [u/; ']  [@;a"]

with identical memories and identical sets K’ such that K’ = {k'}. Let o' , = k and suppose
that

(|Cia(B)]+1) = |CLy (K)] #0
holdsfor all i € [j;1]. Define py by:

(pheri] ¥ wm+u(F ) - (cm+)a

Pi Pi—1

py = min T€CE1 (k) o . .
i > > o (K)—a"|Ciy (K')| for everyu' € [u/; 4]
L TeCi_, (k) J
and pF by:
( k K . =)
reR | X vk tu (G 45 - (O] 1)
ko T€C}_ (k) - -
= max . . . .
b < Y v (K)—a|C (K)| for every @' € [a/; 0]
TECti_l(k’)

\ Ve

if a maximum exists and set F = 0, else. Then the individual choi ces of the young investorsin
thisinterval are given by:

o ai=FKforall ie [j;l]if pF <
o of = kforall ie[j:l]if pk> pk

e if pf > 0and pf € [pF; pf], then there existsa critical aspiration level @* € [@/;u!] such
that X .
Y on®ru(F ) - D )

_ TeCi_ (k) TeCi_1 (k')
= : : (4.27)
! ([Ci, (&) +1) = |Ci, ()]

81 Of course, |[K’| > 1 can occur for a single investor, even if these two conditions are not satisfied. Since,

however, asingle investor hasamassO0, his decision (in case of indifference) does not inf luence the prices and the
equilibrium allocation.
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and

i __ k/ if —3 Z *
o =K,ITu (S)u
i gifa = g
o =K, ITu <Z)u,
if
. , N >
(|Ciy (k)| +1) — |CL_ (K] 0. (4.28)

(<)

If (4.28) does not hold, then the denominator in (4.27) is0 and u* isnot well defined. This case

is considered in proposition 4.3.

The following corollary obtains:

Corollary 41 Consider aninterval of investorswith aspiration levels [@/; @] C [a°;@"] and
identical memories. Let ! | = k and the sets K’ = {k’} be identical for all investors in this
interval. Suppose that

(IC (B)] +1) =[Gy (K)] # 0
holdsfor al i € [5;1]. The value of demand for & (or the mass of investor s, who wish to hold )
of thisinterval, d; ( [a’; '] ), isan increasing, continuous function of theprice p. The function
consists of at most three segments.

o for pf > pF,

df ([ﬂj;ﬂl]) = 4! — @ = const,
o for pf < pF,
df ([ﬂj; ﬂl}) = (0 = const,

o for pf € [#;pf], df isstrictly increasing in pf and convex, concave or linear, if w(-) is
convex, concave or linear, respectively. dff ([u/;a']) is bounded above™ by [’ — u/] and
below by 0.

The result of the corollary is illustrated in figure 6 for a concave utility function « (-):

It isaso possible to derive the demand for &’ of these investors.

Corollary 42 Consder aninterval of investorswith aspiration levels [, a'] C [a%a"] and
identical memories. Let o}, = k andthesets K’ = {k'} beidentical for all investors. Suppose

that . ‘
(IO (B + 1) = |Gy (K)] # 0

82 The upper boundary results from the budget constraint of each investor.
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holds for all ¢ € [5;1]. The value of demand for £’ (or the mass of investors, who wish to hold
k') of thisinterval, df ([a’;@']), isa decreasing, continuous function of the price pf, bounded
between [0; (u' — @7)].

Assume now that (|C;_; (k)| +1) — |CL_, (K')]| = 0.

Proposition 4.3 Consider an interval of investors with aspiration levels [u/;4']  [@;a"]
and identical menories. Let ol ; = k and the sets K’ = {k’} be identical for all investors.
Suppose that ' ‘

(|Cy (k)| + 1) — |Ci_y (K| =0 (4.29)
holdsfor all i € [j;1]. Define pF as

k (Sk
R CAED MU & S D SRR O} S
r€Ciy (k) P P/ o)
Then the individual choices of the young investors in thisinterval are given by:

o if pf < pF then o = K for all i € [5;1];
o if pf > pF, then oi = kforall i € [5;1];

o if pf = pF, then oi € {k; ¥} for al i€ [j;1].
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Note that in order to insure that proposition 4.1 holds, it must be that at p¥ = pF the interval
of investors is divided into two intervals (one of which possibly empty), one of the intervals

choosing &, and the other one &', which is guaranteed by (A3).
Propositions 4.2 and 4.3 complete the proof of proposition 4.1.
The following corollary is obtained directly from proposition 4.3:

Corollary 43 Consider aninterval of investorswith aspiration levels [u/; @] C [u°;u"] and
identical menories. Let ol ; = k andthesets K’ = {k’} beidentical for all investors. Suppose
that

(‘Ctlfl(k)} + 1) - {0271 (k/)| =0 .
for all i € [j;1]. The value of demand for k of thisinterval, dj ([a’; @']), isan upper hemicon-

tinuous correspondence, which is non-empty closed- and convex-val ued for each pf > 0. It has
the form

o df ([w;u']) =0for pf <pF,

o df ([w;u!]) € [0; (a" — w)] for pf = pf

o df ([@;u']) =u" — @ for pf > p}.

The value of demand is bounded above by (' — @) and below by 0.

Corollary 4.3 isillustrated in figure 7.
The value of demand for £’ of theinterval [@/; '] then has the following properties:

Corollary 44 Consder aninterval of investorswith aspiration levels [ﬂj; ﬂl} C [a% 4" and
identical memories. Let o | = k andthesets K’ = {k'} beidentical for all investors. Suppose
that

(IC ()] +1) = | (K)| =0
for all i € [5;1]. The valueof demand for &’ of thisinterval, d¥ ([u;a!]), isan upper hemicon-
tinuous correspondence, which is non-empty, closed- and convex-valued for each pf > 0. The
value of demand is bounded above by (a' — @) and below by 0.

Since the investors whose predecessors do not hold £ do not observe the returns of k, their
decision does not depend on pf. The value of demand of these investors for k is derived in the
same way, as the value of demand for %’ of the investors, whose predecessors hold %, hence it

has the same properties, as stated in corollaries 4.2 and 4.4.

Corollaries 4.1, 4.2, 4.3 and 4.4 clarify how the val ue of demand correspondence for asset £ at
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time ¢ can be constructed for the whole population of investorsin the economy. Suppose that at
time ¢, the population of old investors can be partitioned into L interval s such that the investors
in the sameinterval haveidentical memories and identical sets K’. Denote the value of demand

for anasset k of one suchinterval by d¥ (p,)®for [ = 1...L. Thenthevalue of demand for asset
k isgiven by:

L
df (pr) = di'(py). (4.30)
=1

Proposition 4.4 Thevalueof demand for asset k, d* (p,), isa correspondence, which maps the
range of non-negative price vectors p; € [0; 00| K into the range of possible values of demand
[0;n]. Itisupper hemicontinuous, non-empty, closed- and convex-valued for every price vector
pe. The value of demand for assets d; (p:) = (dj (pe) ...d{ (pe)) is, therefore, also an upper
hemi conti nuous correspondence, which i snon-empty, cl osed- and convex-val ued for every price
vector p; and mapsthe non-negative pricevectorsp; € [0; oo}K into therange of possibl e values
of demand [0; n] .

Now consider the value of supply function. By definition, it is a continuous function of p;.

83 Notethat thevalue of demand d}* (p,) depends only on one of the components of the pricevector and isconstant

in its other components. Therefore, the characteristics of d¥ (p,) areidentical with those found in corollaries 4.1,
42,43 and 4.4.
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According to remarks 4.1 and 4.2, the equilibrium price vector p, must satisfy:

df = Awp}
foral k € {1...K'} and
K
de =n,
k=1
hence
K
Z Apl = n,or
k=1
P — k= 1K,
Ay,
since the prohibition of short sales implies d* > 0. Hence, the value of demand and the value
of supply functions need only be considered for arange of pricesp} € [0;%2,] for k =1...K.

Proposition 4.5 The correspondence

~ di  dE
dt (pt) = (ItlA_tK) ,

which maps [Oﬁﬂ X . X [O;A—’;] — [O;Ail] X ... X [O;A—’;] has a fixed point.

Corollary 45 The correspondence d, (p;) has at least one common point with 3 (p;) = p; on
the set [O; Ail} X ... X [0; A—ﬁ{] Hence d; (p:) has at least one common point with s; (p;) for p; €

[o;ﬂ X . X [o;ALK] .
Any common point of s, and d, isatemporary equilibrium of theeconomy. Indeed, if at thispoint
the priceis strictly positive, the usua equilibrium condition (demand equal s supply) obtains by

dividing both the value of demand and the val ue of supply for asset k by the price p¥:
k

d
Ap=—foreachk = 1..K,
Pt
If, however, p¥ = 0, the intersection point represents a degenerate equilibrium, at which the
excess demand for k is — A < 0. Hence, atemporary equilibrium exists at any timet¢ > 1 and

for any length of memory.

The results are summarized in the fol lowing proposition:

Proposition 4.6 Let (A1), (A2) and (A3) hold. Then for each length of memorym € {0...t — 1},
a temporary equilibrium of the economy existsin every period ¢t > 1.
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4.7 The Caseof Two Assets

It might be useful to look at an example in order to clarify the intuition of the proof. Suppose
that there are two assets in the economy: arisky asset, denoted by a and arisklessasset b. The
risky asset has a fixed supply A and is characterized by a dividend process é,, identically and

independently distri buted according to:

5 — 6D with probability ¢
P71 0 with probability 1 — ¢ [

Denotethe price of the risky asset by p,. Therisklessassetisavailablein perfectly el astic supply

at apriceof 1 and hasareturn of (1 + r) per unit.

Note that in case of two assets assumption (. A3), which specifies how decisions are made in
case of indifference, is not needed, since only one alternativeis available, i .e. the set K’ always

consists of one act only.

The demand for the risky asset a of an investor whose predecessor holds a is described by
(4.20) and (4.21) and illustrated in figures 4 and 5. The value of demand for a of an interval
of such investors is an upper hemicontinuous correspondence, asillustrated in figures 6 and 7.
Moreover, sincethe only investment alternative isb, the demand for b of each of these investors

is1, if their demand for a 1s0 and vice versa.

Since the price of b remains constant over the time, the indirect utility achieved by holding
bis(1+ r) in each period of timein which b is chosen. Consider a young investor : whose

predecessor holds b at time ¢. Such an investor compares the cumulative utilities of a and b,

given by:
U= Y [or(@—a]= > [or(a)=a],
reCi(a) T€C]_1(a)
Ul (b) = Z [u(l+r)—af.
T€Ci(b)

Since both terms do not depend on p,, the decision of the young i nvestor amounts to comparing

two constants:

1. 1f Ui (a) > U} (b), theninvestor ; chooses asset a (o = a).

2. IfU!(a) < U (b), theninvestor i chooses asset b (o} = b).
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3. IfUi(a) = U} (b), theninvestor i isindifferent between holding a and b (o} € {a;b}).

Hence, the demand of such an investor does not depend on the price of the risky asset p; and is
constant. The foll owing two proposi tionsill ustrate the demand for a of an interval of investors,

whose predecessors hold b:

Proposition 4.7 Consider an interval of investors with aspiration levels [u/;4'] C [a°;u"]
and identical memories. Let o;_; = b and suppose that

‘qu (a)‘ - ‘0271 (b)‘ —-1#0
forall i € [j;1]. Then

o if
> [orla)—a] < (|G ()] +1) (1+7r—7') forescha’ € [w/;a'],  (431)
TEC_4(a)
then a! = b for every i € [5;1].

o if
Y [rla)—w] = (|G (0)] +1) (1 +7—1) foreachu’ € [w/;a'], (432

T€Ci_,(a)
then ai = a for every i € [7;1].

e if neither (4.31), nor (4.32) are satisfied, then thereisacritical aspirationlevel @ € (@/;a'),

such that: .
> e (@] = (|G ()] +1) (1 +7)
~ TGCZ_I(G,)
u = N .
| (1Ciy (a)] = |Ciy ()] — 1)
In this case;
T 'f —1 Z ~
o, = a, It u (S)u
i_ i <
ay =bifu <Z>u,
if
. ) <

The following corollary characterizes the val ue of demand of these investors:

Corollary 46 Consider aninterval of investorswith aspiration levels [a/; @'] C [u% a"] with
identical memories. Let ai ; = b and suppose that

|Gy (a)] = |Gy ()| =1 #0 (4.33)
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for all i € [j;1]. Thenthevalueof demand for a of theinterval [a/; @'|, d, ([u/;@']), isaconstant
function of p; and can obtain (depending on the memory and the aspiration levels [@; @']) only
values between 0 and (@' — @’).

Figure 8 a) illustrates the value of demand for the three possible cases described in proposition
4.7.

a)
dy([w7; ) dy([w7; ) dy([w7; 4)
al —
p; ZBt 2315
b)
de([@; 7)) de([@’; ) de([@; 4'))
al — ud ut — //
b Dbt bi
Figure 8

Now consider the case of theinvestor swhose predecessors hol d b and whose memory i ssuch that

(4.33) does not hold. Itisevident (and therefore not proved) that the foll owing result obtains:

Proposition 4.8 Consider an interval of investors with aspiration levels [a/;u'] C [@;a"]
and identical memories. Let ol ; = b and suppose that

Oy (@]~ |Gy )] ~1=0
for all i € [5;1]. Then

o if

Y or@] > (|CL )] +1) (1+7),
T€C;_(a)
then a! = a for every i € [j;1];
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Y. @] < (G ®)] +1) (1+7),
TGCLl(a)
then o = b for every i € [j;1];
o if

Y @)= ([ )] + 1) (14 7),
TECg—l(a)
then a! € {a; b} for every i € [j;1].

Figure 8 b) illustratesthe value of demand for these three cases. Its properties are characterized
in the following corollary.

Corollary 4.7 Consder aninterval of investorswith aspiration levels [ﬂj; a’} C [a% u"] with
identical memories. Let ai ; = b and suppose that

Cia(a)] = |Ciy (0)] -1 =0
for all i € [5;1]. Then the value of demand for a of theinterval [a; @], d; ([a/;@']), is (in
general) an upper hemicontinuous correspondence, which is independent of the price p;, non-
empty; closed- and convex-val ued and can obtain valuesintherange [0; @' — /].

In analogy to the case with K assets, (A2) impliesthat each of the intervals into which the
population is partitioned at time (¢ — 1) isdivided into at most two new intervals at time ¢ such
that the investorsin the same interval s have identical memories and make identical choices. In
analogy to the case of K assets, it can be shown that p, < & must hold in equilibrium. Since
the val ue of demand for a of each suchinterval is an upper hemi conti nuous non-empty, closed-
and convex-val ued correspondence, the fol lowing proposition obtains:

Proposition 4.9 The value of demand for asset a, d; (p:), iSa correspondence, which maps the
range of non-negative prices p; € [O; -g] into the range of possible values of demand [0; n]. It

is upper hemi conti nuous, non-empty and closed- and convex-val ued for every price p;. Hence,
for each length of memory m € {0; ...t — 1}, atemporary equilibriumexists for each ¢ > 1.

The proposition is proved by applying the Kakutani fixed-point theorem and insures the exis-
tence of an equilibrium. The argument for two assets can be illustrated in a diagram, see figure
0.

Notethat the uni queness of the equilibrium is not guaranteed (smilarly to the case of K assets)
and that equilibria with p, = 0 cannot be excluded in general. Moreover, the model alows for
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an equilibrium, in which the price of therisky asset isp; = 4 and the demand for the riskless

asset is0.
4.8 Conditionsfor a Non-Degenerate Equilibrium

The argument above makes clear that it is not possible to rule out equilibria in which the price

of an asset is 0 and the demand for it isO.

Nevertheless, it is possible to indicate conditions which guarantee that the equilibrium prices

are gtrictly positive. Figure 10 captures the idea for the case of two assets.

The sufficient condition is that some positive mass of investorsis ready to choose act &, even
if the price of the asset falls from its highest possible value to 0 and the dividend of £ isthe
lowest possible, i.e. min {6"“} in the period under consideration. To guarantee this, it is neces-

sary that there is apositive mass of investors in the market, whose aspiration levels are below

mind §¢ min{ 6%
u (M) e u’ <u (M> , WhereAik is the highest possible equilibrium price

n n

of k. Thisis, however, not sufficient. Toinsure that the price pf is positiveat eachtime ¢, a pos-
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itive mass of the old i nvestors with aspiration level s between @° and u @ﬁ must hold
aset k int = 1. Sincethe aspiration levels of these investors arevery low, they will never want
to switch to another asset, no matter how low the price of £ may be, and how often it falls®.
The demand of such aninvestor for K — 2% isillustrated infigure 5. These investors insure that

there is a positive demand for asset & and, therefore that its price in equilibrium is positive.

The mathematical possibility to ruleout thiskind of equilibria, however, does not guarantee the
applicability of the conditions defined above to economic models. Indeed, the condition above
might require that @@ < « (0), if min {§*} = 0. Itis questionable, whether one can imagine
consumers who would find it sati sfactory to consume a zero-amount of the consumpti on good,
or investors who would be satisfied with the opportunity to lose the whole amount of money
invested. Onthecontrary, itis possible that zero equilibrium prices for assets with positive fun-
damental value help us gain new insightsinto the problem of emerging and bursting of bubbles
in asset markets. If, however, min {6’“} > 0, then the conditi ons excluding degenerate equilib-

riamay still appear sensible: since investors derive utility from consumption and not directly

84 In this case the cumulative utility of the alternative k& will remain positive over the time, whereas an (untried)
act k' will always have a cumulative utility of 0. Thus, " will never be chosen.
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from the returns of the assets, it is possible that some investors are satisfied with some small,

but positive amount of consumption.

The severity of the conditions needed to excl ude degenerate equili briashowsthat it mi ght be use-
ful to state conditi onsunder which at least one of the equilibriahasnon-zero prices. Such results
will alow to construct economies which exhibit both non-degenerate equilibria and equilibria
with 0-prices of some of the assets. On the one hand, this will enrich the model by introduc-
ing new effects, such as for instance zero-asset prices, bubbles and arbitrage possibilities. On
the other hand, the assumptions imposed on the aspiration | evels of the decision-makerswill be

more acceptabl e, than those needed to exclude degenerate equilibriaat all.

The idea for stating such conditions is simple. The necessary condition for the exi stence of an
equilibrium with apositive price of asset £ in each period ¢ for each length of memory m is that
in each period of time thereis an interval of investorsholding k. Letthisinterval have aspiration
levels [u?s; w*-1]. Suppose that the length of thisinterval is A. This would guarantee that the
price of the asset k& will never fall below —A; aslong as the investors from thisinterval hold k.
It is however not the price of the asset alone that determines the behavior of the investors, but
itsreturns. Therefore, one has to insure that theinvestors with aspiration levels [u/*; /1] hold
the asset even if itsreturn isthe lowest possible, i.e. itsdividend ismin {6’“} anditspricefals

by the greatest possible amount for this economy.

Supposethat the assets are enumerated from 1 to K, asfollows: 1 isariskless asset with 6% =r
wp. 1. Letr > min {§"} foreach k # 1 and min {6*} > min {6**'} for each k € {2..K}.
Now choose aspiration levels @t > w/2 > ... > w/x € (a%u"), such that:

() (PR >

un —J2

(ZZ) u (uj2 uj3+min{5%}A2) > 72

an—udl 2 —gI3

(4.34)

> glx

WK —a0+min{5K }AK
(K) u < " — I+ K — g0 )

Proposition 4.10 Suppose that (4.34) hasasolutionw/* > w2 > ... > @/ withu/* € (% u")
for all k = 1...K and for thegiven °, 4™, r, min {5’“} k € {2..K}. Lettheinitial endowments
with assets of the old investor swith aspiration level s between [u°; 4% at t = 1 satisfy:
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( K it aleax] )
K—1 if @ eux;ux]
2 if @ e [ak;u”]
1 if  a e [u?;uh]
Theinitial endowmentsof theinvestorswith aspir ation level s[a/*; 4] can be chosen arbitrarily:.
Then, for each length of memory m, there exists in each period t > 1 a temporary equilibrium
of the economy with prices p; = (p; ...pf"):
1 at — g2
> _—
pt - Al
2 w2 — uk
Py = A2

TIK -1 TIK
K—l u - u
Dy >

p;, > —————
¢ Ak
and allocations Oéi such that;

Although the sufficient condition has been stated, it is not clear, whether there are val ues of the
parameters for which it holds. For simplicity, consider the case in which the utility function is
lingar, Ay, = 1 forall k = 1...K and the intervals [u%; w/x]; [@/%; u/%-1]... [u/?; "] have equal
length A. With this assumption condition (4.34) can be written in terms of the parameters of the

model and A\ and becomes:
A + min {5k}
ar —ud — A (K —1)
Itiseasy to show that (4.35) isaquadratic inequality in A with a positive coefficient in front of

>+ ANK —(k—1) fork=1..K. (4.35)

M2, Therefore, it will have asol ution independently of the sign of itsdiscriminants (onefor each
k). Moreover, the solutionswill have theform \ € (—oo; \¢] U [)A\k;—koo) if the discriminant
of inequality k is gtrictly positive. If the discriminant i s non-positive, then every \ isasolution
of theinequality. It remains, therefore, to state conditionsinsuring that some of the solutionslie

in the interval [0; JL;(L&} of possible values of \. It follows that at |east one of the foll owing
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two conditions must hold for every &k = 1... K:

. 6k
mfl—{o}mo, (4.36)

3 u" —u
meaning that \,, > 0 or

K min {&* i — i) (k — 1
G {0 L @iy ko)

a —u K

(4.37)

meaning that \, < £,

The interpretation of (4.36) is straightforward: it says that even at p¥ = 0 and 6} = min {§*},
there are still investors with sufficiently low aspiration levels, who are ready to hold this asset.

Thus, itisequival ent tothe condition for non-existence of degenerate equilibriawith zero-prices.

The second condition gives few insights into how the parameters of the model influence the
existence of non-degenerate equilibria. The highest aspiration level in the economy u"™ has
a negative impact on the left-hand side and a positive one on the right-hand side of (4.37).
Therefore, for higher 4™ anon-degenerate equilibrium may fail to exist. For instance, in the two
assets case with min {6, } = 0 and @ > 0 only alow enough @™ can guarantee the existence of
anon-degenerate equilibrium: (4.37) implies
a" <2 —a’.

Since min { 6"} was defined as decreasing in k it follows further that the inequality is more
likely to hold for smaller &, i.e. for assets with higher minimal dividends, than for those with

lower minimal dividends.

To illustrate the result, consider again the case of two assets introduced in section 7. Suppose
that 4" > (1+7) > 1 > 4’ and let @a® € (u° 1) be some aspiration level. Now endow the
investors with aspiration levels between [@”; 4% with asset a, investors with aspiration levels
between [u%; (1 4 r)] with asset b and | et the portfolio hol dings of theinvestors from the interval
(14 r);u"] bearbitrary (but satisfy the interval conditionimposed by assumption (A2)). Now

note that if u* is chosen insuch away that®
—a _ =0
u u
= (1+r)+a*—a®

then the investors with aspiration levels [u%; 4] will always hold a, whereas the investors with

—a

u <

8 Suchau® awaysexists if, for instance, u™ — r < 3 and @™ < 2+ r — u”. Notethat in this case the condition

that the intervals have equal lengthis not necessarily fulfilled.
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aspiration levels [u%; (1 + )] will dways choose b. Hence, the price of a will satisfy:

pe >0 —a@°

in each period of time. Nevertheless, it is possible that an equilibrium with p, = 0 exists.
Especidly, if

u° > 0,
an equilibrium in which
pr = 0
of = bfordlie[0;n]

can obtain in any period ¢, such that ai ; = a holds for al investors with aspiration levels
[(1+7);a™].

4.9 Discussion of the Results

Grandmont (1982) considers an economy with one consumption good and fiat money, which
only has the function of storing value. He shows the possibility of an equilibrium in which
money has a price of 0 and states sufficient conditions with respect to the expectations of the
investors guaranteeing the existence of a monetary equilibrium (i.e. an equilibrium in which
the price of money is positive). A key condition is that for each system of prices in period ¢
(especially, even if the current price of money is0) , the investors place a positive probability

on the event that money has a positive price in the next period.

Although the expectations are not explicitly modelled in the case-based decision-theory (they
are replaced by the constructs of aspiration level, memory and cumulative utility of an act), it
seems that the similarities between the conditions imposed by Grandmont (1982) to guarantee
the existence of amonetary equilibrium and the condition required for the existence of an equi-
librium with positive asset prices are straightforward. In both cases the model should insure
that the asset is held by some positive mass of investors even if the price of this asset is cur-
rently 0. Inthemaodel constructed by Grandmont (1982, p. 897), thisisguaranteed by imposing
requirements on the expectations of the investors, which should not be too sensitive to the cur-
rent price, but also take into account past, possibly positive prices. With case-based decisions,
the same result is achieved by imposing (at least for some investors) arelatively low aspiration
level, which prevents the cumul ative utility of an asset from becoming negative and, thus, in-
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sures that the investorswill continue to hold an asset even if itspricefallsto 0. The sensitivity
with respect to current prices (and current dividends) is, therefore, captured by the aspiration
level of an investor and can be analyzed using the graph of the demand of asingle investor for
asset k. Theindividua elagticity of demand with respect to the current priceis 0 in the interval
0; pf* (¢)) and —1 in theinterval (p}* (i) ;0] (of course, provided that a positive p* (i) exists),
see figure 4. At the point p¥* (i), however, the el asticity is not well defined. Whereas a small
increase of the price towards pf* (i) has a 0-effect, asmall decrease of the price towards p¥* (i)
causes the demand to fall from m > 010 0. Thus, at the point p}* (i) the demand of asingle
investor for k isinfinitely sensitive to decreases of the price. Theposition of p* (i) dependson
the aspiration level of theinvestor considered. If
(G2 ()] + 1)~ |Gy ()] > 0

holds®, then pf* (i) is an increasing function of the aspiration level of the investor. It is the
position of the lowest p¥* (i) in the economy that determines whether an equilibrium with a 0-
priceof k exists. If for a positive mass of investors p** (i) does not exist (meaning that the price

woul d have to be negative to insure that (4.19) holds), then pf = 0 cannot occur in equilibrium.

The new result, however, is that even assets with real value can be traded at 0 prices in equilib-
rium. Indeed, the fiat money in Grandmont’s model is only valuableif it is expected to have a
positive priceinthefuture, thusif it isaccepted by the young i nvestors in exchange for consump-
tion goods. But the assets in the model presented here are real, in the sense that they represent
production possi bilities and yield rea dividends, independently of their price. Thisshows that
introducing case-based decision-makers asinvestors in an economy with real assets may cause
their pricesto fall to 0, not because they are inferior to other assetsin the economy, but because
their returns are considered to be unsatisfactory with respect to some set of aspiration levels at

sometime.

However, even if p¥ = 0 holdsat some time, the price of asset & need not remain 0 forever. If the
investors become dissati sfied with other actsand find & to have the highest cumulative utility in
some later period, their demand for & will become positive and its price will recover to astrictly
positive value. This means, however that a financial market populated by case-based decision-

makers s not informationally efficient. Indeed, pf = 0 could not hold, should the information

8 This condition isalways satisfied, if the length of the memory is 1. It also holds in each period for an investor
1, al of whose predecessors have held the same asset k.
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that asset £ might yield some dtrictly positive dividends in the future be implemented into the

price.

Arbitrage opportunities can be present in a market also in cases, in which the price vector is
grictly positive in all its components. Indeed, whereas arelatively low @° prevents the prices
from becoming 0, it a so makes the investors with such low aspiration levels satisfied with the
actthey haveinitialy chosen. Investorswith low aspiration level shave, therefore, little or noin-
centives to switch between the acts. Hence, they might end up ha ding an asset which is strictly
dominated by another one (w.r. to zero-order stochastic dominance). Aslong astheinvestorsare
sati sfied with the payoffs of the act which their predecessors have chosen, they do not have rea-
sonsto experiment and acqui re more information, which would al low them to profit by choosing
the asset which bears higher returnsin the mean. Even with infinite memory, investorswithrel-
atively low aspiration levels will not be able to learn the possible return reali zations in order to

make optimal decisions.
4.10 Conclusion

| have presented a model of an overlapping-generations economy, populated by case-based
decison-makers. The choice to invest the initial endowment into a given asset is postively
inf luenced by the price of this asset and negatively by the prices of the other assets in the econ-
omy. Therefore, the demand of the investors for an asset is non-monotonic in the price of the

asset: increasing for relatively low prices and decreasing at high prices.

A temporary equilibrium of the economy exists under quite general conditions on continuity
and strict monotonicity of the utility function and on the initial holdings of the old investorsin
t = 1. These conditions, combined with the continuity of the distribution of investors and the
aspiration levels in the economy, are crucial for the existence, since they guarantee the upper
hemi continuity of the value of demand function and alow the application of Kakutani’s fixed
point theorem. The conditions which exclude 0-equilibrium prices are comparable with those of
Grandmont (1982) and require that some positive mass of investors demands an asset when its
priceis0. This requirement implies relatively low aspiration levelsfor some positive mass of
investors, which contradicts the economic intuition that aninvestor can only be satisfied witha

positive amount of consumption. Therefore, although possi ble from mathemati cal point of view,
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exclusion of equilibriawith 0-prices may not be sensible in amodel of economic behavior.

Furthermore, | believe that the possibility that a price of an asset which pays real dividends,
fallsto 0 in some period, but might recover later, can provide some explanations of the arising
and bursting of bubbl es, overreaction and underreaction observed in real financial markets and
in laboratory settings. The presence of case-based decision-makers in the economy could fur-
ther account for unused arbitrage possibilities, which are not always identified by case-based
decision-makers (even if their memory isinfinite) or for predictability in price movements, re-
sulting from the dependence of the investment decisions on past information. An analysis of
the dynamics of equilibrium prices can therefore provide useful insights about markets with
adaptively learning non-Bayesian investors and allow to explain some of the paradoxes of the
asset pricing, with which the economic research is confronted. The dynamic of asset pricesina

market populated by case-based decision-makers will betopic of the next chapter of thisthesis.
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Appendix

Proof of proposition 4.2:
Write the cumulative utility of the act £ as.

k k
i _i p 6 _j
Uik) = > [UT(k)—u}+u(pk—t+p;)—u: (4.38)
reCi_, (k) t-1 t-1
> 2B (o ]+
= N O~
TGC’Z,I(k) ptfl ptfl '~
identical for\t’hewholeinterval identical for the investor

wholeinterval  specific
and those of ¥/, as:

Ui )y = > o) —al= Y o (K)—u] = (4.39)
TeCL(K') TEC] (k)
- Yo wK) |G ()] &
o TGCi_l(k’)
identical for the investor specific
whol e interval

pF, asdefined in the proposition, then denotes thel owest possibl e price of &, for which the cumu-
lative utility of k& exceedsthe cumulative utility of &’ for all investors, whereas pF isthe highest
possible price, for which the inverse relation holds. The continuity and the strict monotonic-
ity of the utility function with respect to pf insures that p* and p¥ are well defined and unique.
The three caseslisted in the proposition emerge naturally, when compari ng the cumulative util-
ities given by (4.38) and (4.39). (4.28) guarantees that the compari son between the cumul ative
utilities depends on the aspiration level of the investors. The definition of £f and pF impliesim-
mediately that if pf > pF, then act k is preferred by all investors, whereas p¥ < pF implies that
everyone chooses k. If pf € [p}; p}], some of the investors will choose k and some /. The
critical aspiration level @* (which, of course, depends on the price pF) is determined by setting
the two cumulative utilities equal and solving for @?. (A1) insuresthat @* is continuous in pf

and increasing (decreasing), if

(|Cy (&) +1) — |C_y (k)] (<)0.

Therefore, the result of the proposition obtains.l

Proof of proposition 4.3:
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Write the cumul ative utilities of £ and £’ as in (4.38) and (4.39). (4.29) impliesthat the choice
of the investors depends on the comparison

3 vf(k)+u(pr+6—f)§ S u ),

k
reCiy (k) Pooa P/ ™ ceoiw)
which depends only on the price pf and leads to equdity if p¥ = pF, with pi defined in the

statement of the proposition.ll
Proof of proposition 4.4:

The value of demand for k is defined in (4.30). Since a function which is continuousin p¥,
constant in all other prices and defined for each p;, isaspecia caseof an upper hemi continuous
correspondence, whichisnon-empty, cl osed- and convex-val uedfor eachp;, the value of demand
of al intervalsd}! (p,) satisfiesthe same conditions. Therefore, dF (p,) isa so non-empty, closed-
and convex-valuedfor each p,. Sincethereisonly amass of n investors, each of whomhas1 unit
of the consumpti on good, the maximal value of demand for an asset & can be n. The prohibition
of short sales insures that the value of demand does not fall below 0. It remains to show that
d* (p:) is upper hemicontinuous. By the definition of upper hemicontinuity it follows that for
each p, € [0;00)"™, and for each neighborhood V (d¥! (7)), there exists a neighborhood of
Pt N' (pr), such that for every p, € N' (py), df* (pr) C V (dj* (pr)). Now, take an arbitrary
neighborhood

V (df (py)) D [Z min {d}* (p;) } ; Z max { d}’ (ﬁt)}]
and define N (p;) = N, N* () Sincefor each { and a_ny V (d (py))
V (df (pr)) 2 [min {dfl (pe)} ; max {d’ (pe) }]
foreachp, € N (p), it follows that
> min {df! (p)}; > max {df’ (pt)}]

for each p, € N (p,). Therefore, d¥ (p,) is upper hemicontinuous. Of course, the same line of

4 (df (ﬁt)) 2

reasoning holdsfor any k£ € 1...K. Therefore, the correspondence d; (p;) = (d% (pg) ...df (pt))

is aso upper hemicontinuous.ll
Proof of proposition 4.5:

An applicati on of the K akutani fixed-point theorem, see Mas-Collel, Whinston and Green (1995,
p. 953). &
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Proof of proposition 4.7:

Write the cumulative utility of act a as:.

Ui@)= Y. [vr(a)—7] (4.40)
TECti—l(a)
and those of b as:

Uiy = Y [+r—a]+[1+r—a]=(CL,0b)|+1)(1+r—u). (441
TeCi_,(b)
Neither of the cumulative utilities depends on the price of a, p;. To make their decisons, the
investors compare:
> urle)—w] Z (|G )] +1) (147 —a).
reCi_, (a)
Aslong as

Cia(@)] =[Gy ()] -1 #0
issatisfied, o iswell defined and representsthe aspiration level of theinvestor, whoisindifferent
between a and b.1

Proof of proposition 4.10:

The aspiration level sand the initial holdings are chosen in such away that none of the investors
with aspiration | evels between [4°; /1| hasan incentiveto switch away from hisinitial portfolio,
aslong asnone of the other investorsin thisinterval changes his portfolio. The k! lineof (4.34)
further implies that even if the investors with aspiration levelsin the interval [4/*; "] switch
away from any asset & they might be holding, causing its price to fall from %W and
its utility realization to become at most
( wk — a0+ 6T A, )
u . : )
" — it 4+ ik — g0
the investors with aspiration levels [u/—1; w/*| are gtill satisfied with the realized return from

asset k even if its dividend is the lowest possible. Hence, the young investors with aspiration
levels [u7+1; u’*] choose asset k in each period of time. Since they havea positive mass (u/+ >
u’*-1), there is always an equilibrium with a positive price of k. Since an anal ogous condition
isimposed for each asset £, it follows that there is an equilibrium path, such that in each period

of time the price vector is strictly positive, p, > 0 .l
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Chapter 5. Asset Price Dynamicswith
Case-Based Decisions

In the last chapter, an equilibrium concept for an economy populated by case-based decision-
makers has been proposed and studied. The existence of an equilibrium is insured for a wide
class of utility functions and initial conditions, which makes the concept well applicable. In
section 7 of the last chapter, an example of an economy with two assets has been presented.
In this chapter, | study the dynamic of asset prices in an asset market populated by case-based

decision-makers, based on this example.

The aim of this chapter is in the first place explorative. It analyzes what kind of behavior can
emerge in a market with case-based investors and how this behavior influences asset prices.
Moreover, by considering an economy with heterogenous consumers, who differ in their aspi-
ration levels, itisnat only poss bl e to study how the aspiration |evel determinesthe behavior of
agiven investor, but also to analyze the interaction between the different aspiration levels and
to indicate their inf luence on asset prices. The relationship which has already been found be-
tween the aspiration level and theinvestment behavior in an individual portfolio choice problem
reappearsin amarket environment, but the results also depend on the interaction of pricesand

portfolio chaices in equilibrium, which was not present in chapter 3.

Apart from the aspiration level, the memory of the individuals plays a crucia role for the dy-
namic. Itisintuitively clear that relativel y short memory doesnot all ow investorsto learn enough
about the possible price and dividend realizations, so as to be able to form correct beliefs and
make optimal choices. However, it is aso questionable whether the ability to remember long
sequences of realizations insures optimal behavior in the limit. Indeed, the results of chapter 3
have shown that endogenous memory® combined with a constant aspiration level leadsto op-
timal behavior, only if the environment is stationary and the aspiration level is appropriately
chosen. That iswhy the cases of both short memory (with only one case remembered) and |ong
memory (all previous cases remembered) is considered inorder to study the inf luence of mem-

ory on learning and on asset prices. Since theresults show that eveninthe case of long memory,

87 That is memory, consisting only of cases the decision maker has personally experienced.



optimal learning obtains only for investors with appropriately chasen aspiration levels, | drop
the assumption of completely endogenous memory and examine whether the usage of hypothet-
ical cases caninsureoptimal decisionsinthe limit. Again, the resultsdepend on the prespecified
value of the aspiration level.. Whereas optimal behavior emerges for relatively low aspiration
levels, investors with high aspiration levels exhibit switching behavior even if they are alowed

to use hypothetical cases.

Having once identified the characteristic features of asset prices in an economy populated by
case-based decision-makers, the second aim of this chapter consists in comparing them to em-
pirically observed phenomenaand asking whether the presence of case-based investors in real

asset markets could hel p explain such phenomena.

The empirical work in financial economics has found significant violations of the rational ex-
pectationshypothesis. Phenomena, such asbubbles, i.e. significant deviationsof the pricesfrom
fundamental val ues, excessive vol dtility, predictability of asset returns and arbitrage possibilities

are observed inreal, aswell asin experimental markets.

Indeed, the literature on overlapping generations modelsinitiated by Samuel son (1958) and Di-
amond (1965) and further devel oped by Tirole (1982, 1985) showsthat rational bubbles emerge
as agtationary state in OL G model s with population growth. Whereas in Tirole's model, bub-
bles cannot burst, Weil (1987) demonstrates that bubbl es bursting with positive probability can
also obtainin an OLG model, provided that the economy is not dynamically efficient. However,
rational bubbles can only be positive (i.e. the price can become higher than the fundamental
value, but never lower) and the question of how such bubbles get started is not answered in the
literature®. Moreover, dynamic inefficiency isanecessary condition for emergence of rational
bubbles. It requires that the popul ation growth rate exceeds the interest rate in the economy.
Neverthel ess, the empirical evidence demonstrates that "irrational” bubblesare not rarein red

and in experimental markets®.

In the model presented in this chapter, rational bubbles are excluded by the assumption of no

8 Indeed, if under rational expectations it were known that a bubble would start in some period ¢, then in period
(t — 1) theinvestorswould aready start to invest in thisasset in order to profit from the bubble at ¢. But then the
bubble would aready start at (¢t — 1). Hence, a rational bubble cannot have an initial date.

89 Kindelberger (1978) gives ahistorical account on the most famous bubbles. Sunder (1995) reviews the experi-
mental literature, whereas Camerer (1989) providesareview of thetheory with experimental results. Recent results
are provided by Hommes, Sonneman, Tuinstra and van de Helden (2002).
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population growth. Nevertheless, prices may deviate significantly from the fundamental value.
Small bubbles obtain in equilibrium. The one-period rise in the asset price, which is not condi-
tioned either on dividend payments, or on changesin the fundamentals, isfol lowed by adecrease
in the price caused by a low dividend redlization. The evolution of the economy is described
by such two-state cyclesin the presence of investors with rel atively high aspiration levels, who
switch among the avail able portfolios. Thearising of abubble, aswell asitsbursting, can, there-
fore, be ascribed to the dissatisfaction of investors with high aspiration levels with the returns

achieved and their willingness to abandon the unprofitable asset and switch to a different one.

Whereas in a model without similarity cons derations the price increase takes only one period,
including similarity between problem-act pairs alows a bubble to develop over alonger period
of time. The price may rise even in a period in which the dividend of the risky asset is low
and this upward movement may last for few periods. The price dropsinasingle period and the

bubble never reemerges again.

Excessive volatility is another phenomenon observed in asset markets, see Shiller (1981, 1990).
Empirical findings show that the asset prices are too volatile to be explained by subsequent
changesin the dividend payments. Roll (1984, 1989) demonstrates this on the examples of the
orange juice future prices and the crash of 1987. Moreover, it is found that the frequency of
tradesis too high to be judtified by changesin fundamentals or by profitability considerations,
see Odean (1999) and Barber and Odean (2001 (&), 2001 (b)). Hence, the hypothesis of rational

expectations fail s to explain observed data.

Note that model s with rational expectations do nat in general predict constant asset prices. So,
for instance, the consumption asset pricing model of Lucas (1978) is based on the assump-
tion that consumers are infinitely lived and the process of dividends is a Markovian. Hence,
dividends inf luence asset pricesin two ways. first, through the changes in the val ue of the en-
dowment of the consumer, who recel ves higher income, the higher the dividends paid to him;
second, through the Markov process, which specifies the dependence of the dividend tomor-
row on the dividend today. The model of Lucas, therefore, predicts that prices should change
over timeand the empirical model s must control for such price changes explained by the model.
However, these changes should be correlated with the dividend process, aresult rej ected by the
data
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In contrast to the model of Lucas (1978), the model of overl apping generations used here does
not predict any price changes over the time, given expected utility maximization combined with
rational expectations. Indeed, if al investors are identical, the price should equal the funda-
mental value of the asset at any period of time, since the dividend processis i.i.d.*. Hence,
any price volatility observed in this model is excessive compared to the bench-mark of rational

expectations.

Moreover, similar to the results of Daniel, Hirshleifer and Subrahmanyam (1998) and Gervais
and Odean (2001), who explain the excessive trades by overconfidence and the self-attri bution
bias, in amodel with case-based decision-makers, those investors who have extremely high
aspiration levels (i.e. who expect unrealistically high returns), trade too much. They generate
excessi ve price vol atility, which depends positively on their share in the economy. Moreove,

these investors lose money, since they tend to buy at high prices and sell at low prices.

Predictability of asset returns is found in the market data, see De Bondt and Thaler (1985),
Chopra, Lakonishok and Ritter (1992), Bernard (1992), Bernard and Thomas (1989,1990), L ough-
ran and Ritter (1995). Their results show that factors like past performance, market-to-book
ratios and capitali zations of stocks, aswell as seasonality can help predict future returns. Espe-
cialy, negative short run correl ation of price movements for i ndividual assets has been observed
by Blume and Friend (1978), Lo and MacKinlay (1988) and Jegadeesh (1990).

This evidence violates the efficient market hypotheses, sinceit implies that information freely
avail ablein the market isnot priced. The observed phenomena are, thus, usual ly associated with
underreaction and overreaction to information. Since the investors do not react adequately to
new information, the market later corrects the prices so that they coincide with the fundamental
values. As such correctionstake place dowly, they cause autocorrelation of returnsin the short

run.

In theoretical models, such effects are obtained by introducing noise traders, whose behavior
depends on past prices. So, for instance, the presence of positive feedback traders in the market
can lead to price bubbl es, asDe L ong, Shleifer, Summersand Waldmann (1990 (b)) demonstrate.
The representativeness bias (i.e. the fact that people interpret short sequences of observations

as representative for the popul ation) is used by Barberis, Shleifer and Vishny (1998) to explain

9%  Asalready noted above, rational bubbles are excluded by the assumption of no population growth.
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under- and overreaction in financial markets. The assumption about the existence of chartists
(positive feedback traders) and fundamentalists (who ignore prices and trade only on signals
about future returns) in the market generates positive autocorrel ation in the short run and nega-

tive autocorrelation in the long run, see Cutler, Poterba and Summers (1990).

With case-based decision-makers, predictability of asset returns also obtains. The interpretation
of the result is, however, somewhat diff erent from those in the theoretical work cited above. In
fact, no new information is needed i n the market to i nduce autocorrel ati on of returns, no change
of fundamentals occursin the model. Instead, the fact that the decision of acase-based investor
is influenced by his memory, hence, by past prices and returns, implies that the market prices

also depend on past data and become predi ctabl e to some extent.

Arbitrage possibilities have been observed in experimental markets by Rietz (1998) and Oliven
and Rietz (1995), who comment on how difficult it is to enforce arbitrage restrictions, even
by explaining that they exist and encouraging market participants to use them. In rea markets
Rosenthal and Young (1990) present an example of two assets representing ownership of the
same company which aretraded at different prices with up to 30% difference. Similar examples
are presented by Lamont and Thaler (2001) and in Shleifer (2000, Chapter 3).

De Long, Shleifer, Summers and Waldmann (1990 (a)), as well as Shieifer and Vishny (1997)
show how noi se traders can generate arbitrage possi bilitiesin a theoretical model. If the rational
arbitrageurs are fully invested or if they face the risk of dropping from the market before the
asset price returns to the fundamental value, they will in general not be able to eliminate the
arbitrage possibilities present in the market. Their model differs from the current one in two
aspects: firdt, they consider two ex-ante identical assets with postive fundamental value and
demonstrate that they can be traded at diff erent prices, second, the noise traders in their model
differ from the rational ones only by their misperceptions of the expectation of the returns of
one of the assets. Sill, the noise traders are able to form expectati ons about the reali zati ons of
the possible states of the nature, i.e. they are expected utility maximizers with biased beliefs.
In contrast, in the model presented inthis chapter, only case-based deci sion-makers are present,
who do not form any beliefs about states and state-conti ngent payoffs. The assetsin this model
are not identical and the effect that an asset with positive fundamental value is not traded and

has a price of 0 is an interesting feature of the current model, not present in the models cited
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above. Moreover, inchapter 6t will be shown that this feature of the model does not disappear,
evenif expected utility maximizers, who believe that the asset has apositive fundamental value,

are introduced i nto the market.

The no-arbitrage restriction belongs to the basics of the financial economics. To use arbitrage
opportunities, the investor needn’t even entertai n beli efs about the probabilities of the states of
nature. However, the investor hasto know the possible states of nature and the payoff of each
asset in each state. This knowledge which is usually presupposed in asset market models, is
missing in amodel with case-based decision-makers. Snce case-based investors learn from
past utility realizations of the assets and compare these realizations to an aspiration level, it is
possibl e that they do not see arbitrage opportunities, evenif they are present in the market. For
instance, suppose that an asset with positive fundamental value has brought alow return in the
last period. If the aspiration level of the decision-makersisreatively high, they will switchtoa
different asset, abandoning the one, whose return they find unsati sfactory. If every investor inthe
market behavesin this way, the asset in question will havea price of 0, although its fundamental
value is positive. Hence, an arbitrage possibility emerges. Aswas shown in chapter 4, thisisa

typical feature of a market populated with case-based decision-makers,

Of course, the validity of the approach selected hereis limited by the fact that only case-based
decision-makers are present in the market. Should it turn out that the wealth share of the case-
based decision-makers becomes 0 in the limit in presence of expected utility maximizers, the
explanatory power of the results obtained would be at best marginal. This question will be
analyzed in chapter 6, where it will be shown that case-based decision-makers are indeed able
to survive in afinancial market. The implications of their behavior for the price dynamic are

therefore of interest for the financial literature.

At the same time, the smplifying assumption that only case-based decisi on-makers are present
in the market renders the model tractable and allowsto focus on the aspects of the case-based
reasoning alone, thus, providing a bench-mark for the evol utionary model whichis constructed

in chapter 6.

The chapter is structured as follows. In section 1, | shortly repeat the market model introduced
in the last chapter and the results derived there for the individual and aggregate demand for

assets. Insection 2, | usethe concept of a market equilibrium in a context of case-based decision
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making specified in chapter 4 and the existence resultsderived thereto define an equilibrium for
the economy. Section 3 analyzes the evolution of the economy for the case of short memory and
determines the long run distribution of asset prices, as well as the dynamics of asset holdings
for different groups of investors. It is discussed how empirically observed phenomena such as
bubbles, predi ctability of returns, excessive volatility and arbitrage possibilities can emergeina
market popul ated by case-based decision-makers. Section 4 considers the case of long memory.
It identifies conditions under which investors with high aspiration level are able to learn to
behave as expected utility maximizersin the limit. However, even withinfinite memory, not all
of the investors learn thereal distribution of returns. Phenomena such as the equity premium
puzzle can thus dbtain inthelimit evenif theinvestorsin the economy arerisk-neutral. Insection
5, I examine whether hypothetical reasoning leadsto optimal decisionsina market environment.
In section 6, asimilarity function on the space of problem-act / price-portfolio pairsisintroduced
and the price dynamic studied for the cases of long and short memory. Section 7 concludes. The

proofs of the results are stated in the appendix.
51 TheEconomy

Consider the economy; described insection 1 of chapter 4, consi sti ng of acontinuum of investors,
uniformly distributed on the interval [0;n]. For each i € [0;n] and some constant @® € Ry
denote by @' = @° + i the aspiration level of investor 7. The aspiration level of theinvestorsis

then al so uniformly distributed on [a”; 4.

Eachinvestor lives for two periods. The preferences of theinvestorsare assumed to be such that
they wish to consume only in the second period of their life. The preferences over consumption
in the second period arerepresented by a utility function « (- ), whichisidentical for al investors.
u (+) is assumed to be strict monotonically increasing and continuous in consumption in period
two with « (0) > 0. There is one consumption good in the economy. The initial endowment
of the investors cons sts of one unit of the consumption good in the first period and is 0 in the

second period.

| use the example from section 7 of chapter 4 to describe the possibilities for transferring con-
sumption between two periods: ariskless asset, denoted by b and arisky asset with exogenous

supply, denoted by a. The riskless asset is available in a perfectly elastic supply at a price of
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1 in each period. It delivers (1 + r) units of consumption good in period ¢ for each unit of the

consumption good, stored in period (¢ — 1).

The supply of therisky asset isfixed at A > 0. The payoff of one unit of the asset in period ¢

is
5 — 6D with probability ¢
71 0 with probability 1 — ¢ [
and is identically and independently distributed in each period®. The price of the risky asset at

timet is denoted by p; and determined endogenously in an equilibrium. New emissions are not

considered, since | aminterested in the behavior of prices on the secondary asset market only.

The decision of a young investor in terms of the case-based decision theory is described as a
problem to be solved by choosing an act out of agiven set. In the present context the problem

can be formulated as: ” Choose a portfolio of assets today to enable consumption tomorrow” .

The decision of ayoung investor now cons stsinchoosing aportfolio of two assets—theriskless
asset b and the risky asset a. For the present, | consider only the case, in which there are only
two portfolios available for a single investor: either the whole initial endowmernt is invested in
a or inb. Short sales are prohibited. The case of alowed diversification is discussed in section
6 of this chapter.

Denote by o, the act chosen by ayoung investor with an aspiration level @ in period (¢ — 1).
Thenthe values of o —
A ={a;b}

represent the set of acts available to an investor who solves the problem formulated above.

91 The risky asset can be thought of as anasset of afirm witha given initial capital D, which does not depreciate
and which isreinvested in each period. T he production function for the consumption goodislinear with arandom
coeffident x:

y(D)=kD
with
k = 6,with probability ¢
k = 0, with probability 1 — ¢,
identically and inependently distributed in each period. Hence, the profits of the firm (normalizing the price of the
consumption good to 1) are
Dé, with probahility ¢
0, with probability 1 — q.
Assuming that the profit is paid out as dividends to the owners of the firm proportionally to the shares they own
and that no reinvestment (no new emmissions) take place, we obtain the payoff structure of therisky asset.

92 gisinterpreted as the objective probability of high returns, known to an external observer, but not to the investors
in the economy. Hence, ¢ will be irrelevant for the investors' decisions. However, the specification of ¢ makes it
possible to analyze the long run behavior of the economy.
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Now, define the indirect utility of consumption by v; («;_1), the memory of an investor ¢ by
M and parameterize the length of memory by m, asin chapter 4. It is again assumed that
the memory of an investor i consists of the cases experienced by the investors of the previous
(m + 1) generations with the same aspiration level asi, 4. The cumulative utility of an asset
a € {a; b} is, therefore:

Ul ()= > [vr(a) — o]

T€CH(a)
with

Ci(a)={t-m—-1<7<t|al =a}
describing the set of periods (among the last m + 1) in which the predecessors of investor i have

chosen act a.
Asusual, theinvestor choosesin each period the asset with the highest cumulative utility.

Theindividual and aggregate demand for assets, given the memory of theinvestorsat timet have
already been derived in sections 3 and 7 of chapter 4. It was shown that the individual demand
for therisky asset in general dependsnon-monotonically on its current price, rising for relatively
low prices and decreasing for high prices. Moreover, theindividual demand for the risky asset
can be very insensitive to price changes near 0. These characteristics of the individual demand
determinethe properties of the aggregate val ue of demand for therisky asset, whichisincreasing
inits price and can be 0 for low prices. Moreover, as shown in section 7 of chapter 4, the value
of demand for the risky asset is a correspondence, which maps the range of non-negative prices
pt € [0; o0o] into the range of possibleval ues of demand [0; ). It isupper hemicontinuous, non-
empty, closed- and convex-valued for every price p;. These propertiesinsure the existence of a

temporary equilibrium.
5.2 Temporary Equilibrium

In chapter 4, it was demonstrated that atemporary equilibrium exists under quite general con-
ditions (assumptions (A1) and (A2)). | now shortly restate the definition of atemporary equi-

librium and the existence result for the economy at hand.

Definition: A temporary equilibrium at time ¢ is defined by:

181



(A1)
(A2)

e portfolio choicesfor all young investors o} € {a;b} for eachi € [0;nl;
e utility of consumption derived by the old investors v; (o}_,) for eachi € [0; n];

e apriceof theasset a, p;

such that foll owing conditions are fulfilled:

1. Case-based decision-making of the young consumers:

i [ a, ifU}(a)>Ul(b)
at_{b, ifU;’(a)gU;'(b)}

at the equilibrium price p;.

2. Consumption-decision of the old consumers:
oty = i) el |
u(l+7r) ifaj_, =b
3. Market-clearing condition:
sy =: Ap, = / di =:d,
{izoi=a}

where d, denotes the mass™ of the young investors who choose to hold « in period ¢ and

s¢1s the value of supply of a.

Following assumptions are needed to insure existence:

The utility function « (-) isstrictly increasing and conti nuous.
At t = 1, the popul ation of the old investors can be partitioned into afinite number of intervals

such that all the investors of the same interval hold the same asset.
The following proposition insures the existence of an equilibrium in each period ¢ > 1 for an

arbitrary length of memory. Its proof was given in section 7 of chapter 4.

Proposition 5.1 Assume that (A1) and (A2) hold. Then, for each length of memory m €
{0...t — 1}, atemporary equilibrium of the econony existsin every period t > 1.

93 Or, in other words — the value of demand for a in period t. Remarks 4.1 and 4.2 in chapter 4 show the

equivalence of

{i:ozf;:a,}

to the market clearing conditionsin this economy.
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The uni queness of the equilibriumis, however, not guaranteed. The discussion of non-degeneracy
of equilibria, see section 8 of chapter 4, applies here aswell. Since |l believe that the conditions
excluding degenerate equilibria are too strong to be justified by economic intuition, | make as-
sumptions on the aspiration levels that insure that at least one equilibrium with positive price
of the risky asset exists in each period of time. Where appropriate, | also discuss the issue of

multiplicity of equilibria.
5.3 Price-Dynamicswith One-Period Memory

After introducing the notion and guaranteeing the existence of atemporary equilibrium, | pro-
ceed to investigate the dynamics of asset prices and asset holdingsin the economy. Of course,
the paths will depend on the initial distribution of the asset holdings, aswell as on the assump-
tions about the range of aspiration level s of the investors. Another important factor is also the
length of the investors memory parameterized by m. If investors are only learning about the
utility reali zati ons of the last period, they are not likely to learn much about the economy and its
structure. Ontheopposite, if they havethe experienceof al previousgenerations, then informa-
tion will gradually accumulate in the economy and one would suppose that (given a stationary
structure of dividends) in thelimit the investors will be able to learn to act as expected utility

maximizers, who know the true distri bution of returns.

| consider only the two extreme cases — one-period memory and infinite memory. The analy-
ssingenerd is quite complicated that is why | concentrate on examples, which, | think, pro-
vide some intuition into how amarket, populated by case-based decis on-makersevolvesandin
which aspectsit differs from a market, in which only expected utility maximizers with rationa

expectations trade.

First, assume that the investors in the economy have a memory of length 1. This implies that
the agents are myopic, they base their decisions only on the nearest past, without cons dering
any information about the long run behavior of the economy. It might be that they are unable
to extract information from past data, or that the data is not available to them. Limited time,
capacity and resources can aso be a reason for the agents to adapt smple heuristics based on
small amounts of information. It may be also that the agents, not knowing the structure of the

model, consider important for their decision only what happened in the recent past and thus do
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(A45)

(A6)

not try to obtain more information.

Now, consider the following example, which illustrates the price dynamics in an economy with

short memory. | make the following assumptions:

Let the utility functions of the investors be linear, i.e.:
u(pt n 5t): P 4 bt
Pt—1 Pt Pi—1 Pt
u(l+r)=1+r.

Suppose that theinitial holdings™ of the old consumers at time ¢ = 1 be such that the investors
[0; @ — @°] hold the risky asset a, whereas those on the interval [#* — @°; n] hold the riskless
asset b for some a® € (@°;1).
Fix the price of therisky asset int = 0 to be®®
po = M _ [u _ ﬂO]
0 A ’
with A = 1.

Assumption (A4) about the linearity of the utility function is not crucid: it smplifies the com-
putations and allows for explicit solutions, but does not influence the qualitative implications.
(Ab) specifies theinitial holdingsin the economy in such away that for all possible sequences
of dividend redlizations there is an equilibrium path on which the price of the risky asset re-
mains strictly positive over the time. Although equilibria with p, = 0 ill exist, | concentrate
my analysis on non-degenerate equilibria. (A6) fixesthe priceat t = 0 to be the equilibrium
price for theinitial allocation specifiedin (A5).

Given these assumpti ons, three possi ble cases can be distingui shed which qualitatively change
the dynamics of the price p;: either the highest aspiration level in the economy is lower than
(1+ ), oritliesintheinterval between (1 + ) and the return of the risky asset, when it yields

positive dividends, or it ishigher than the return of the ri sky asset when the dividend is positive.

9  Qinceatt = 0 the memory of all investorsisempty, their choices can be set arbitrarily.

95 This would be theprice of a int = 0 if the young consumers chose their asset holdings to be a for those with
aspiraion levels [ao; a“] and b for those with aspiration levels [¢%; 4"]. Remember that the mass of the investors
with aspiraion levelsinagivenrange [a’; a* ] isu® —u°, since theaspiration level sand the investors are di stributed
uniformly on an intervd with a length n.

184



531 TheCaseof Low Aspiration Levels

Let
(1+7)>a">1>u > u’ (5.42)

The specification of the aspiration levelsisillustrated in figure 11 @). Thefollowing proposition
obtains:

Proposition 5.2 Assume (A4), (A5) and (A6). Suppose as well that (5.42) holds. Then the
allocation

of = aforie [0;u" —u°]
ap =bfori e [a* —u’n]
and the price
pe = [u® — @]
for each t > 1 represent a ationary state of the economy.

a) Low aspiration levels

Stationary stete
a b
ﬂ? u® u” (1 + 7’)
a b
b) Intermediate aspiration levels
Sochastic Cycle
a b
° u° 1 (I47) an 1+L2
~ ~~ N ~ - ~~ d
a b a
c) High aspiration levels
Deterministic Cycle
a b
a’ e 1 (I+r) 1+£ g
N\ ~ 7\ ~~ -\ -~ s
a b a
Figure 11
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Although the utility function isassumed to be linear, p, may differ from the fundamental value
of a as estimated by a statistician who knows the dividend process of the asset. Computed in

this way, the fundamental value of a is given by:
6D

FV = qT. (5.43)

In general, the fundamental value need not coincide with the price of theasset p, = [u® — @]. If
D isrelatively high and [a* — u°) relatively low, the asset might be undervalued and vice versa.
This does not necessarily mean that riskless arbitrage is possible. Indeed, as|ong as% >,
the price

p = [a" = ']
does not allow for arbitrage, aslong as the arbitrageurs live for two periods only.

Note, however, that if =225 < r, then the riskless asset is always better than the risky one. In
this case, arbitrage opportunities are present in the market, but not identified by the case-based
decisi on-makers with short memory, who are not abl e to learn the possiblereturn realizationsin

order to make optimal decisions.

This result illustrates that the notion of arbitrage crucially depends on the knowledge of the
investors about the economy. I the investors do not know (or do not believe) that two securities
are identical, or that one security is dominated by another one in each state of nature, then no
arbitrage possibilities exist for them in the market, although they might be present from the point

of view of an external odbserver, who knows (or believes to know) the structure of payoffs.

5.3.2 TheCaseof Intermediate Aspiration L evels

Letthedividend of therisky asset 6 D, the riskl ess interest rate r and the ranges of the aspiration

levels @° and @" be such that:
14— oD ——— > " >1+7r>1>u" > u’ (5.44)
ur— (1 4+7r)+ u* — ad

Hence, the return of the risky asset is satisfactory for the investors with high aspiration levels

(14 r);a"] only if the dividend is positive. The specification of the parametersin this caseis
illustrated in figure 11 b). Assume further that

e — ,&O

ur— (1+7r)+ue —ud

holds. (5.45) says that the investors with low aspiration levels, [4°; i), are ready to hold the

> u® (5.45)
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risky asset, even if all of theinvestorswith high aspiration levels, [1 + r; @"| switch to the risk-
less asset™. As was shown in section 8 of chapter 4, this condition insures the existence of an
equilibrium path with positive price of the risky asset in each period of time.

5.3.2.1 Computation of the Equilibrium

(5.44) implies that the investors with high aspiration levels, [1 4 r; u"] are neither satisfied with
the returns of the riskless asset, nor with the return of « if its dividend is low and the price
of a remains unchanged relative to the last period. Therefore, these investors will permanently
switch between a and b, holding a aslong asits dividend ishigh, switching to bin the first period
in which the dividend of a becomes 0 and buying « in the following period, since the return of
b is unsatisfactory for them. In contrast, the investors with aspiration levels lower than (1 + r)
arealwayssatisfied with thereturns of their initially chosen portfoli o and theref ore never switch

away fromit. The following proposition obtains:

Proposition 5.3 Assume (A4), (A5) and (A6). Suppose as well that (5.44) and (5.45) hold.
Then the economy evolves according to a Mar kov process with two states / and [ such that:

a, =aforie [0;a* —a’] U [(1+7) —a’n]
af =bforie [u*—u’%(1+7r) —u’
pr=[a"— (1+7)+ 3" — @’
and
ol =bforic a’;n]

of = aforie [0;u" — u°]
[—a_ -0
-~ fa ]

Dl
and a transition matrix P

P= || p=pn q l1—gq
Dt = P 1 0

DPi+1 = Ph | Pi+1 = Di )

5.3.2.2 Discussion of the Results

Whether condition (5.45) holds or nat, in period ¢ = 1, aprice upward movement is observed
which does not depend on the size of the dividends that asset a pays. Hence, the price increase
cannot be attributed either to changes of fundamental' s, nor to changes of the dividend payment.

In contrast, the downward movement is conditioned on the asset paying alow dividend in the

9%  (5.44) and (5.45) hold simultaneously if, for instance, @ = 0, @ + @® < 2 +r and @™ > 1 + 6D for
6D < (1 +7).

187



second period. As awhole, the structure of asset-price movements reminds of small bubbles,
which emerge without visible reasons (apart from the fact that some of the investors are dissat-
isfied with the safe technology) and then burst because of low dividend payments. Of course, if
the asset continuesto pay high dividends, the high price of the asset persists, until in some pe-
riod ¢ the dividend becomes low. Aslong asthe probability 1 — ¢ of alow dividendis positive,
the bubble bursts in finite time with probability one.

Note that the probability that the price rises in period ¢ + 1 if it was low (p;, as defined in
proposition 5.3) int, is 1, whereas the probability that the pricefalsint + 1 if it was high (py,,
as defined in proposition 5.3) in ¢, is equal to the probability of alow dividend (1 — ¢). This
means that asset prices are predictable to some extent. Especially, arational externa observer,
who knows the model and can predict the behavior of the case-based decision-makers, can also
predictthe price p..1 if p; islow, because he can be surethat the price will risein the next period.

Still, he cannot predict the price movements in periods, in which the price of the asset is high.

The predictability of the asset price, however, does not mean that arbitrage i s necessarily possi-
ble. Notethat, if at timet the priceis

by = [aa - ﬂo],

then the payoff of 1 unitinvestedinaint +1 is
[@" = (1+r)+a*—a’]+ 6D
ue — 9

and

a” — (1 —a_—O.
GRS RS
u” —u

Whereas the payoff isaways greater than the payoff of 1 unit invested inb if 6, = 6D, thisis

not necessarily satisfied if the dividend is 0. Especialy, it will be always smaller than (1 + r) if
ur > Tﬁ holds. In this case, arbitrage isimpossible.

To study the limit behavior of the economy and, especialy, the frequencies with which the in-
vestorswith relatively high aspiration levels hold asset « and asset b, it is useful to introduce the
following notation. Let w denote a typical equilibrium path characterizing the evolution of the
economy. The computation of temporary equilibria has shown that only paths on which the two
states h and [ occur will play arole for the evol ution of the economy. Hence, atypical path w is
arandom sequence of ~ and [ and can be written as

w= (W)=
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withw; € {h;l}. Let & denotetheset of al such pathsand ¥ denotethec-agebraon ®. C; (h)
and C; (1) describe the set of periodsin which the economy is in state /4 and [, respectively (on

apath w, where this dependence is omitted for convenience in the notation):
Ci(h) = {r<t|w,=h}
Ci(l) = {r<t|w,=1}.

Denote by 7, and ; the limit frequencies states h and I:

Ci(h

TR = tlimJAt—M

m = lim —’Ct(l)’
t— o0 t

if these limits exist. Usually, these limits will depend on the path w as well. However, the
foll owing proposition showsthat for the economy at hand these frequenciesarewel | defined and
independent of the chosen path w. Denote by P the probability distribution on (S; ¥) induced

by the co-fold of the transition matrix P.

Proposition 5.4 On P-almost all pathsw € & the limit frequencies 7;, and m; coincide with
the invariant probability distribution of a Markov chain with transition matrix”:

_ Dit1 — Ph | Pt+1 — DI
P=\|p=pu q l—gq
Pt = Di 1 0
and can be computed to be:
1

7Th—2_q
l—gq
T = .
I ¢

Now, knowing the distribution of asset prices over time, the moments of the distri bution can be

determined. The mean of the asset priceis:
(1
g =a —a’ + w. (5.46)
(2-4q)
It ispossible to choose the parameters in such a way that the fundamental value of the asset (as
defined in (5.43)) is equal to the mean asset price®. Indeed, thisisthe caseif
r(2—q (@ —a’) +r@ —(1+r7)

D* =
(2—q)qb

97 o o ([ @+1—q ¢—¢ . . ) G
Since P* = q 1—¢ hasonly positive entries (for non-degenerate probability distribution of

dividends), 7, and 7; exist, see Lawler (1996, p.15).

98 Since the price of the asset changes over time, whereas the fundamental value remains constant, the price will
obvioudly differ from the fundamental value at least in some periods. Thus, we can ask, wether the fundamental
value can still be the best estimator for the expected pricein thelong run.
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However, the equality need not hold in general and it is a so possible that the mean price of the

asset in the long run remains above or below the fundamental value™.

The price of the asset has a positive variance, given by:

1 [u" — (1+7)]
o, = \/1 — qw. (5.47)

The fluctuation of the priceis neither due to changesin the fundamental value of the asset, nor

to new information, nor even necessarily to changes inthedividend payments. Hence, the asset
price exhibits extreme volatility, which can not be explained by the characteristics of the asset,

but which is consistent with the empirical evidence on price volatility cited in the introduction.

The price fluctuation in the model can be explained by the decision-making process of the in-
vestors. The risk (as represented by o) faced by the investors in the market consists of two
parts. exogenous and endogenous. The exogenousrisk is created by the random fluctuation of
the dividends and depends negatively on the probability of high dividends ¢q. The endogenous
risk is caused by the ignorance of theinvestors and their reliance on the cumulative utility of an
asset to predict returns. It depends positively on the massof investorswith high aspiration levels
[u™ — (1 + r)], who are not satisfied with the returns of the riskless asset and thus would hold
the risky asset aslong asits dividends are high, but sell it, once the dividend fallsto 0. In chap-
ter 3, | have shown that investors with rel atively high aspiration level susually trade too much
in the sense of Odean (1999). The results derived here demonstrate that in a market environ-
ment increasing the number of case-based decision-makers with high aspiration level s leads to
anincrease of the risk faced by the economy, as well as to frequent change of asset holdings. By
switching too often between the avail able portfolios, not acting on information, these investors
not only cause the price of the risky asset to f luctuate without changes of the fundamental value
but also lower their profits, since they buy when prices are high and sell at low prices. To un-
derstand thelast point consider three cases. If the expected return of asset a at price py, is higher

than those of asset b, it immediately follows that the expected return of « is aso higher than

99
D*§ > (@ — 1) (a" — (1L +7) + a* —a"),
asrequired in condition (5.44) holds, for instance if
r>2-q)qg@ —-1).
If
D*6 < (u* —1) (@™ — (L +r)+u* —a"),
then D > D* aways holdsand the risky asset isundervalued, u} < FV.
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those of b at price p;. It followsthat therationa choice of an investor should be to buy « if the
observed priceof a is p;. Hence, by switching from a to b, the investors with aspiration levels
higher than (1 + ) lower their returns compared to the situation in which they hold a in each

period of time.

Alternatively, if the expected return of asset b is higher than those of a at aprice p;, it follows
that the return of b is a so higher than the return of a at aprice p, and therefore the switch from

bto a lowers the expected returns of an investor.

In the caseinwhich the return of b exceeds those of a ata pricep,, but islower thanthose of a at
aprice p;, the investors with aspiration level shigher than (1 + ) a ways hol d the asset with the
lower expected return. Obvioudly, from an individual point of view, the optimal chaice would
bea, a p, and b a p;,, hence the switching behavior | owers the expected return of the investors

in this case, aswdll.

Of course, it might bethat case-based reasoning still leadsto higher expected returnsthan choos-
ing a portfolio at random and holding it forever. Neverthel ess, in an empirical study, observing a
behavior similar to that of the case-based investors with relatively high aspiration levelsin this
model would lead to the conclusion that these investors lower their profits by switching too of-
ten among the avail able portfolios, compared to the situation in which the optimal portfdio is
held.

The cycle determined in proposition 5.4 isnot unique. In fact, in each period ¢, multiple equilib-
riaexist. For instance, int = 2, with 6, = 0, thereisan equilibrium inwhich everyone switches
to b and the price of a fallsto 0. The price p, can aso crash in a period with high dividends. As

long as
6D
= (1+r)+a*—a®
thereisan equilibriumin¢ = 2 (with 62 = D) in which the price of the risky asset equals 0.

a° >

It is also not guaranteed that acycle emerges from the first period on — thetimeneeded to reach
adtate, from which on a cycle can evolve, depends on theinitial all ocation of the assetsin the
economy and on the parameters of the model. In thisexample, the cycle will start only in the
first periodin which 6, = 0 holdsif (5.45) isnot satisfied.

The dynamicsisfurther s mplified by the assumption of only two assetsin the economy. Should
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the number of assets exceed two, further equilibria would emerge. This is due to the short
memory of the investors. Snce the investors observe only one past utility realization, they
assign a cumulative utility of 0 to those assets whose returns they do not observe. Hence, an
investor who is dissatisfied with one of the acts, has to choose another one at random, which

implies multiple equilibria even if assumption (A3) from chapter 4 isfulfilled.

The assumption that the riskless asset is availablein perfectly elastic supply at aprice of 1 and,
hence, its price and returns are fixed, does not influence the results qualitatively. Assuming a
variable priceof b also leadsto atwo-state stochastic cycle. Differently from the cycle described
above, the price of b rises when the price of « falls and vice versa. Hence, the investors with
high aspiration levels do nat only create excessive volatility of the prices of the risky assets, but

also cause the ex-ante riskless asset to exhibit vol atile stochastic returns.

533 TheCaseof High Aspiration Levels

Now consider thethird case, in which the highest aspiration level u™ exceeds the return of the
risky asset even if the dividendis positive, i.e.:

u" >1+ oD

" a"—(1+7r)+u* —a°
The position of the aspiration levels relative to the asset returnsisillustrated in figure 11 ). To

>14r>1>a">a (5.48)

insure that degenerate equilibria exist, assume that (5.45) holds.
5.33.1 Computation of the Equilibrium

Differently from the case of intermediate aspiration levels, with high aspiration levels the in-
vestors with aspiration levels [1 + r; 4" are not satisfied with the returns of the risky asset,
even if its dividend is high, i.e. 6; = ¢6D. Therefore, they switch between the two possible
portfolios in each period of time, holding « in odd periods and b in even periods. Hence, the

economy evolves according to adeterministic cycle:

Proposition 5.5 Assume (A1), (A4), (A5) and (A6). Suppose aswell that (5.48) and (5.45)
hold. Then the deterministic cycle with two states h and [ such that:
aj, =aforie [0;a* —a’] U [(1+7)—a’n]
aj, =bforie [a*—u’%(1+7)—a°
pr=[a" = (1+7)+u—a’
and
of =aforic [0;11”—110]
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af =bforie [a*—a%n]

—a —0
pr= [u —u } .
describes the evolution of the econony. The statein periodtishift =2k + 1and [if t = 2k
with k € Zg.

5.3.3.2 Discussion of the Results

Again, asinthe case of intermediate aspiration level s, the economy evolves according to acycle
with two possible states. However, now the cycleis no longer stochastic — the high- and [ ow-
price-states aternate in each period so that the price-sequence is completely predictable for an
external observer. Hence, the small bubbl es observed are deterministic. The mean price of the
asst is

ty = = @ — (L+r)) + [a°— a9 ,

2
whereasits variance is positive and equals

Ua:_;[ﬂn—(l—i-r)].
Oneseesthat thelarger the mass of theinvestorswith relatively high aspiration level's, the higher
is the mean price of the asset, but also the higher isits volatility. Hence, as in the previous
exampl e, these traders create excessive risk in the economy by trading more, than it would be

optimal for them and by possibly causing the risky asset to be overval ued.

Note that in both the second and the third case, the movements of the asset price are negatively
correl ated over the time. I ndeed, it was shown that in the case of intermediate aspiration levels
apricefall isfollowed by a pricerisewith certainty. In the case of high aspiration level, a period
of rising pricesisfollowed by a downward movement and vice versa. Such negative short run
correlation isfound in market dataand Lo and MacKinlay (1988) observe that this correl ation
is higher for stocks with smaller capitalization. If we assume that the aspiration levels of the
investors remain constant, but the dividend paid by the asset increases'?, it is easy to see that
the correl ation between the returns of the asset a is smaller in the case in which the aspiration
levelsarerelatively low as compared to 6 D (the capitalization of the firmislarge)™™ and rises

as the capitali zati on diminishes, rendering the aspiration level s of the investor relatively high as

100 Asobservedin footnote 1 the val ue of the dividend § D can be used as aproxy for the capitalization of the firm
D. Hence, the higher the dividend, the higher is the capitalization of the firm.

101 In the case of low aspiraion levels (6D is relatively high) there is no correlation between the returns. As
6D decreases (the case of intermediate aspiration levels), the correlation increases (upward movements follow
downward movements).
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comparedto 6D.

Another interesting finding isthat in the case of high aspiration | evels, the market-to-book ratio
and the inverse of the price are good predictors of the future price movements. This was em-
piricaly observed by De Bondt and Thaler (1987), Fama and French (1992) and L akonishok
and Shleifer and Vishny (1994). In periods in which the state of the economy is h, the market-
to-book ratio is high and the inverse of the price low, hence the expected price movement isa
downward one. At state / the inverse rel ationship holds. De Bondt and Thaler (1987) interpret
thi s phenomenon as an overreaction of the investors to past positive or negative earnings. Inan
economy popul ated by case-based decis on-makersthis predictability of the price movementsis
due to the high aspiration levels, which render the investors unsatisfied with the returns of both
assetsin the economy inany possible state. The investors with high aspiration levels are forced
to changetheir holdingsin every period of time, thus, creating f orecastable pricefluctuationsin
the market.

Of course, the cycles of the type described can only emerge if the memory of the decision-
makersis particularly short, i.e. if they are unable to learn from the past and to realize that
the environment in which they act is stable. It is, therefore, of interest to examine whether
introducing long memory would hel p to smoath the price movements and allow agentsto learn

to choose the asset with the higher expected returns.

5.4 Price-Dynamicswith Long Memory

Now assume that the agents can remember all cases of their predecessors, from ¢t = 0 on. One
may argue that the effort to remember so many cases goes beyond their bounded capacity to
process information. In fact, the decision-maker : at time ¢ need not remember the particular
cases, but only the cumulative utilities computed by his predecessor at (¢t — 1). He then adds
the net utility realization of o} _,, [v: (ai_,) — @'] to the cumulative utility’® U}, (o ;) and

chooses the act with the maximal cumulative utility at ¢.

The analysis of an economy, in which the agents have infinite memory is very complicated in

the case in which the aspiration levels are distributed on a continuum. If this assumption is

102 Thissimplificationis madepossible by the assumption, that agents know only about cases of their predecessors
with the same aspirdion level.
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rel axed, then the val ue of demand correspondence is not necessarily convex-valued. However,
the convex-val uedness is indi spensable for the exi stence of a fixed point of acorrespondencein
the K akutani fixed-point theorem'®®. Hence, | construct an economy with three types of agents

for which an equilibrium with a positive price of the risky asset existsin each period.

541 Invedor Types

Assume, asin section 3 that assumptions (A4), (A5) and (A6) hold. Suppose, however that
the aspiration levels of the investors in the economy are such that the interval of investors
[1+r —u%n] has an aspiration level @* € (1 +r;u"), the interval of investors [a® — @’
1+ r — @] has an aspiration level @2 € (a1 +r) and the investors [0; @ — 4] have an aspi-
ration level @' € (a°;u?). Call these groups of investorstype 3, type 2 and type 1, respectively.
Hence, (A5) impliesthat theinitial holdings of the assetsin ¢t = 0 are such that the investors of
type 3 and 2 hold b, whereas those of type 1 hold a. Assuming again that

oD
1+ = —— > B> 1+r>u? > 1>l (5.49)
an—(147r)+a*—a°

and .
I_La—ﬂ _1
5.50
a”—(1+r)+aa—ao>u (550)

hold, it is easy to conclude that:

¢ theinvestors of type 1 will dwayshold a, since (5.50) insuresthat the return of a (evenif al
of theinvestorsof type 3 switch to b in a single period and the dividend of a is0) is higher

than their aspiration level @!;

o the investors of type 2 will aways hold b, since their aspiration level is smaller than the

returnsof b, (1 +r);

e the investorsof type 3 will in general switch between a and b. Since the return of a when
its dividend is positive exceeds their aspiration level, they will only switch from a to b in

periods in which the dividend paid by a is0.

The following proposition guarantees that in each period of time at |east one equilibrium with

103 |n fact, relaxing this assumption in my model endangers only the existence of an equilibrium with a strictly

positive price. The reason for thisis the prohibition of short sales, which insures that the price of the risky asset
cannot fall below 0.
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(A7)

Proposition 5.6 Assume (A4), (A5) and (A6). Suppose as well that (5.49) and (5.50) hold.
Then, in each period of time, (at least) one of the fol lowing two states, denoted by ~ and/, isan
equilibrium of the economy:
af =aforie [0;a*—a’] U [(1+7r)—a%n]
af, =bforie [a*—a’(1+r)—a’
pp = [a" — (1+7) + a1 — @°]
and
aj =aforie [0;a" —u]
of =bforie [a*— a%n]

= [a*—a°].

Thisproposition also all owsa direct comparison between an economy with short and long mem-
ory. Since theallocations and equilibrium prices in proposition 5.3 and proposition 5.6 coincide,
it ispossible to derive conclusions about the inf luence of along memory on the evol ution of the

economy.

Proposition 5.6 further clarifies that despite the constant choi ces of theinvestors of type 1 and 2,
the asset holdings and the price of the asset a ingeneral vary over time. Hence, the distri buti on

of the returns of a depends on the behavior of type 3.

54.2 Price Dynamics— An Example

To enabletheanalysis of theeconomy inthelong run, I make thefollowing smplifying assump-

tions:

Symmetry of returns: the net utility achieved by the investors of type 3 from a when it pays
positive dividends is equal to the negative of the net utility achieved by the investors of type 3
when a pays zero dividend and type 3 till chooses a:

6.D _3

P =u—-1:=c

1
+m—a+m+m—m

Once theinvestors of type 3 have switched from a to b, they hold b for £ € Z™\ {0} periods

exactly™*:
u® — ' 3

an—(1+r)+ae—u0 " =k(tr—)

104" Here, | implicitly assume that if an investor of type 3 isindifferent between a and b at time ¢, he chooses asset

a.
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ke 7\ {0}

These two assumptions allow avery simple representati on of the cumulative utility of a for the

investors of type 3 and imply following results:

Proposition 5.7 Assume (A4), (A5), (A6), (A7) and (AS). Let further (5.49) and (5.50) hold.
The expected number of periods, during which the investors of type 3 hold asset a in a row is

given by: , X
for g < 5
— (1-2q) 2

Bl {oo forqzé}'

Denote by 7, and 7; the invariant probabilities of states h and (.

Corollary 51 If ¢ < 4, then the economy will be in state h with
af =aforie [0;a*—a®] U [(1+7)—a%n]
aj, =bforie [a*—a’(1+r)—a°
pn = [a" — (1+7) +u* — a]

during a fraction of time
1

TR (1 - 29)

and in state [, given by:
af =aq,ifi € [O;Ha —HO]

af =b,ifi e [ﬂ“—ﬂo;n]
P = [ﬂa — 70} .
during a fraction of time
k(1—2q)
T =
1+ k(1 —2q)

almost surely in the limit.

If g > -; then the economy will bein state h during a fraction of time 7, = 1 almost surely in
the limit.

5.4.3 Discusson of theReaults

Consider first thecase ¢ < % Using corollary 5.1, the mean of p; can be computed to be:

5 ("= (14 7)

o __ ~a =0
Hp = T T T — 2g)

and itsvarianceis.
o Kk (1—2q)
P T 14+k(1—-2)

Now, it is possibleto compare the moments of the distribution of the prices in an economy with

@ — (1+71)).

long memory to the moments of distribution in an economy with short memory. It is easy to see
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that i2° = yu,, as computed in (5.46), if
_1-q
1-—2¢
. . 17 ., . . .
(the equality can only hold if ﬁqé € Z*). The same condition implies that the variances of the

k

two distributions are also equa: o,° = 117 (as computed in (5.47)). In genera, however, the
moments of the two distributions do not coincide. Since a higher value of £ means'® that asset

bisheld for alonger period of time, once chosen by type 3, thisimpliesthat if

l1—gq
k< ,
1—2¢q
py > M;. At the same time the variance o ° increases, as k assumes val ues smaller than ﬁq;.

Since k decreases in 3, it follows that the mean price and the variance of a depend both posi-
tively on the highest aspiration level in the economy, aswell as on the mass of the investors of

type 3 (of course, aslong, astype 3 ill finds the positive dividend of a to be satisfactory).

It is also of interest to compare the results obtained in an economy with representative con-
sumersto the results of anindividua portfolio choice problem. In chapter 3, | have analyzed an
individua portfolio choice problem of a case-based decision-maker with a constant aspiration
level and long memory. Using the results of Gilboa and Pazgal (2001), it could be shown that
if the returns of the avail able portfolios are exogenously given, bounded above and below and

i.i.d. over the time, following statements hold:

1. If the aspiration level of the investor exceeds the highest achievable mean return, then the
investor will switch infinitely often among all available acts. He will choose each act with
a frequency which isinversely proportional to the diff erence between its mean and the

aspiration level of theinvestor.

2. If theaspiration level of the investor is|ower than the mean return of some of the available
portfolios, then one of these portfolios will be chosen with frequency 1 almost surely in the

[imit.

The results for the economy with representative agents with long memory are similar. Note that,

105 Note that once the parameters of the economy with infinite memory are defined, & isfixed. Of coursg, it is

only meaningful to compare the economy with long memory to the economy with one-period memory if they
have the same parameters. Still, 3 is only defined for the economy with infinite memory and can vary between
[(1+7);u"]. Since k depends negatively on 4, changing 4> (while keeping all other parameters constant) allows
us to compare the distributions of the two economiesfor different values of k.
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if g < é the realized mean returns of an investor of type 3 are:

i, = 1+ r for asset b

and
11 ( 1 )( 6D )
uo= =— —1) (14— — | + (5.51)
2712(1 1—2q (@ — (1 +7r)+a*—u)
LAl ( 1 1)+ 1 ( u® — u° )
21_—12(] 1—2q 1_—12(1 (@ — (1 +1r) +ue —ao%

for asset a, where the first term represents the return during those periods, in which type 3 holds
a and the dividend of a is postive, the second term represents the return in periods, in which
type 3 holds a, but the dividend is 0, whereas the last term represents the returns of the periods,
in which the dividend of « is0 and theinvestors of type 3 switch from a to b. Using (A7), (A8)
and (5.51), itis then easy to compute that

w,— =k (1+r—a°) (1 —2q),

and since
py —ud =1+4r—u?,
it follows that:
r 73
Heq — U l
=k(1—2q) =—
P (1—2q)

Hence, in the limit, the frequencies m;, and m;, with which type 3 chooses acts a« and b, are
indeed inversely proportional to the difference of the realized mean returnsof the act considered

(as observed by the investors of type 3) and the aspiration level 3.

Note further that if ¢ < -; neither act is satisfactory for the investors of type 3 ex-ante. The

maximal expected return of asset a, (if theinvestors of type 3 dwayshold a), is
qéD <14 oD 3
(1+7)+ua*—ad s@ —(1+r)+a—a)

where the equality follows from (A7). Since #® > 1 + r holds, it follows that the mean returns

1+ —
u j—

of a and b are not satisfactory for theinvestors of type 3, which makes them switch between the
acts infinitely often in the limit. Hence, result 2., which was shown for an individual portfolio

choice problem holds in a market environment, aswell.

As in the case of short memory, the investors of type 3 exhibit behavior smilar to those of
overconfident investors described by Odean (1999), since they expect higher returns than any
asset in the economy can earn on average and, hence, switch too often between the available

portfolios, reducing their earnings. The investors with high aspiration levels further increase

199



the price fluctuations in the economy compared to the situation in which only investors with

relatively low aspiration levels (u' and @?) interact'°e,

Now, consider the casein which ¢ > 4 holds. Since in this case there is a positive probability
that the cumulative utility of a never fals beneath the cumulative utility of b for the investors
of type 3, they hold a with frequency 1amost surely in the limit. Hence, the mean of the asset
price p; is
py =ph=1u"—(1 +7)+a® — @’

and its variance is 0%7. Of course, these results qualitatively differ from the results for an econ-
omy with one-period memory. Whereas with one-period memory, the investors with high as-
piration level are never satisfied and switch permanently between the acts, with long memory

they learn to choose one of the actsin the limit.

Again, thisresult iscompatibl ewith the result obtained for aportfolio choice problems in which
the price-process is exogenoudly given. If the investors of type 3 always hold a, its maximal

achievabl e average return is given by:
q6D
ur— (14 7r) +ae —ad’
Sincenow ¢ > 1, this average return exceeds u* and makes a sati sfactory in the limit, whereas

1+

b generates returns which are always | ower than the aspiration level @2

Notethat if ¢ > -; , then asset a isthe ex-ante optimal choice from the point of view of arational
risk-neutral expected utility maximizer, sinceits expected mean return at the equilibrium prices
is higher than those of b. In this case, the investors of type 3 learn to behave as expected utility

maximizersin the limit.

The learning process, however, does not spread over the whol e economy. The investors of type
2 never learn that the act they chooseis suboptimal at the equilibrium price. Asin the case of
one-period memory, their aspiration level istoo |ow to givethem an incentive to experiment and

learn that expected returns of a are higher than those of b.

Thislast result provides apossibl eexplanati on of the equity premium puzzle, definedasaversion
of investors to hold stocks, see Mehraand Prescott (1985). They find that, althoughthe observed

106 |n an economy in which only type 1 and type 2 investors are present the price of a remains constant over time.

107 This does not mean tha the investors of type 3 never hold b, but the time during which b is held is negligible
compared to the time duringwhich « is held.
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returns on the stock market have been substantially higher than the returns of bonds for long
periads, investors prefer to hold bonds. The estimated level s of risk aversion needed to explain

this phenomena are too high to be realistic.

Inan economy populated by case-based decision-makers, the equity premium puzzl e can obtain
evenfor risk-neutral investors. Indeed, suppose that the mass of theinvestorsof type 1 and type
3 isrelatively small compared to the positive dividend of the asset 6 D (or alternatively to the
capitalization of thefirm D), whereasthe mass of investors of type 2 is relatively large. This
means that the long run mean priceof a isrelatively low. I nthiscase, the mean returnsof asseta
exceed the mean returns of b (remember that ¢ > %) in the long run. Nevertheless, alarge mass
of investors in the economy chooses the riskless asset in each period, because these investors
are satisfied with the returns of b and are not apt to switch to another asset, with ” unknown”

returns.

The vaidity of the qualitative results derived in thelast section does not depend on the assump-
tion of (A4), (A7) and (A8). They have been useful in order to alow an analytically tractable
discussion and the computation of thelimit distributions. In fact, statements analogous to state-
ments 1. and 2. can be formulated for an economy with an endogenously priced asset under
much more general conditions. Remember that act b has been assumed to be unsatisfactory for

type 3. If u (1 4+ r) exceeds @3, then theinitial allocation of the economy is a stationary state.

1. 1f the highest aspiration level in the economy @ exceeds the maximal achievable mean
utility of a, then theinvestors of type 3 switch infinitely often between the acts a and
b. Inthe limit, they amost surely choose the acts o and b with frequencies 7, and 7,

respectively such that:
=3 T 73
m  u—u,  w—u(l+r)
— = = : 5.52
™ ud— g ud — pf, 5529

where pi/ and 1, denote the actual mean utility achieved by choosing a, respectively b, as

observed by the investors of type 3.

Notethat thefrequency 7, isonly implicitly determined by (5.52), since 1, now depends on the

frequency, with which type 3 switches between a and b, hence on 7, .
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2. If the highest aspiration level in the economy, 42, is lower than the maximal achievable
mean utility of a, then the investors of type 3 hold a with frequency 1 amost surely in the

limit,i.e. 7;, = 1 andm; = 0 obtain.

The next section demonstrates that statements 1’. and 2’. hold when the distribution of the divi-
dends has an absolute continuous part with respect to the L ebesgue measure on thereal numbers.

Moreover, thisresult isindependent of the specific form of the utility function.

54.4 Price Dynamicsfor General Probability Distributions

Assume (A1) and (A2). Consider the economy consisting of three types of investors 1, 2 and 3
with aspiration levels !, w? and u?, respectively. Assumethat » = 1. It is then convenient to
define the mass of each type of investorsby 6; (i = 1,2,3) with 3 = 1 — 0, — 0. Theinitia
holdings of the investors of types 1 and 2 are given by:
ay = o =a (5.53)
ai = b
Set D = 1 and suppose that the dividend payments of « are distributed identically and indepen-
dently in each period of time according to aprobability distribution @@ with asupport [é; 5} . Let
the aspiration levels of the three types of investorsfulfill:

w1+ i > >u(l+r)>u?>u(l+ g A (5.54)
1— 0, 1—0,
and
01+é 1
T, " (5.55)

Denote by 4 the dividend payment which yields a0-net utility to the investors of type 3, if the
price of a is (1 — 62):

6 JR—
1-0,) "
Assume that the probability distribution () has an absolute continuous part with respect to the

=3

ul l+

Lebesgue measure 1.7* on the real numbers, with a density ¢ which is positive and bounded
away from 0 on the interval (3 - ¢ 5+ C) for some ¢ > 0.

First note that the poss ble temporary equilibria are not changed by the assumption of a more
general probability distribution.
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Proposition 5.8 Supposethat (5.53), (5.54) and (5.55) hold. Then, in each period of time, (at
least) one of the fol lowing two states, denoted by 2 and /, is an equilibrium of the economy:

of = aforic {1;3}
ol =bfori=2
pr=[1— 0y
and
o =afori=1
al =bfori € {2;3}
plzgl.

The following two propositi ons assure the vaidity of statements 1. and 2’. and generalize the

results of section 4 of chapter 3 to the case of endogenous prices.

Proposition 5.9 Let the probability distribution () of the dividend payments has an absolute
conti nuous part with respect to the Lebesgue measure 1.%? on the real number swith a density ¢
such that

g(6)=z¢>0

for all 6 € (5 — §;5+(>,Where5 is given by:

Suppose further that )
5
1 §)ds < a?
/ﬁu<+1_92>g() <
and
u(l+7) <
Then the state of the econony ish, if ¢, > 0 and [ for ¢, < 0, where e, isgiven by:
60—0
( €t—1+U<1—|—1—§9L2> — @3, ifeim > Oandst_1+u<1+1—‘j’9—2) —a2>0 )
&t = 8t-1+U(%‘f§:>—ﬂ3, ifet_lzoandat_1+u<1+1—§‘9—2)—a3<()
g1 —u(l4+7) +u?, ife;1 < O.

andé; ~% (). For the Markov chain described by ¢, there existsan invariant (fi nite) probabil ity

measure 7 on the set [u <f1_—+9‘§> — a3 +oo> such that

and

7, = m [0; +00)
almost surely describe the frequencies with which state h and state [ occur in the limit, respec-
tively. 7, > 0and m; > 0 hold. Moreover, there exists a limit mean utility of asset «, 4, as
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observed by the investors of type 3, which satisfies
T, @ —u(l+r)

i u® — i,

The proposition states that anal ogoudly to the setting in which the utility realizations are iden-
tically and independently distributed, in a market setting rel atively high aspiration levels lead
to constant switching between the avail able acts. The frequency with which each of the acts is
chosen isinversely proportiona to the net-mean utility of the act as observed by the investors
of type 3.

Proposition 5.10 Suppose that
0 §
u(1+7“)<u3</u(1+ )g(é)dé.
5 1—6s

Thenthe state of theeconomyish for e, > Oand! for ¢, < 0, wheree, isdefined asin proposition
5.9. The limit frequencies of the states » and [ almost surely satisfy
7w, =1

7Tl:O.

Hence, if the aspiration level of type 3 is chosen to lie between the highest achievable mean
utilities of the best and the second-best act, theseinvestors learn to choose the optimal portfolio

in the limit.

The results of propositions 5.9 and 5.10 rely on the assumpti on that the memory of the investors
is endogenous and that investors observe only past casesexperienced by investorswith the same
aspiration level astheir own. In the context of financial markets these two assumptions might
seem too severe, since hypotheti cal cases can be easily constructed and i ncluded inthe memory.
The next section, therefore, discusses an example which illustratestheinfluence of hypothetical

reasoning.
5.5 Hypothetical Cases

Assume that the economy consists of identical agentsand » = 1 holds. The aspiration level of

aninvestor isdenoted by u and is assumed to be constant over time. Differently from the model

presented above, it is assumed that asset b is alsoin fixed supply of 1 unit in each period of time.

In each period, b pays adividend of r per unit. The representative investor is all owed to choose

among three investment alternatives: investing hiswholeinitial endowment in a, in b, or in the
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market portfolio, which consists of one unit of a and oneunit of b. Theindirect utility achieved

v(a) = wu (—pt :_6t>
P
)
P+
ve(b) = w (—) ,
' P? 1

respectively. p? and p® denote the price of a and bin period t. Asin the previous section, the

by choosing a or b isgiven by:

dividend paymentsof therisky asset 6 aredistributed according toadistribution @) on theinterval
[6;6]. 1> 6 >r >4 > 0isassumed. Note that the return of the market portfolio is given
by°8:
1+6:+7r
in each period of time, henceits indirect utility is
vy (MP)=u(l4+6+7).

The market portfolio dominates the other two investment opportunities independently of the
dividend payment of the risky asset'®. Hence, it isof interest to know, whether the case-based
decision-makers are able to |earn to make optimal choicesin thelimit, in spite of their limited

knowl edge of the economy.

55.1 Individua Portfolio Choice

Let oy denote the portfolio choice of the representative investor at time t: o, € {a;b; MP},
where M P stays for the investment into the market portfolio. The memory of the represen-
tative investor is constructed in the following way: in each period, the investor remembers
the last (m + 1) choices of his predecessors and the utility realizations achieved from choos-

ing these portfolios. Apart from that, if the market portfolio was not the act chosen at time

108 The return of the market portfolio is computed as:

Pi_1 pit 0 [ Pt
pe+pi piy [ LA
= 1 + r+ 6t,

since the market clearing condition of the market for consumption goodsinsuresthat p¢ + p? = 1 for each ¢.

109 This dominance, however, is not just a property of the assets, but an equilibrium property in a model with a
representative consumer. Indeed, if the representative investor in this model holds a, the price of ¢ is1 and the
return of a isat most 1 + 6, which isless than thereturn of the market portfolio. If, however, the representative
investor holds the market portfolio, then the return of a isat most - —"i’- , Which can exceed 1+ 6.+ for low enough
pi_4. Still, since everyone in the economy would be holding the market portfolio, thereis no possibility to profit
from the increase of the price of a, since it automatically leadsto a decreasein the price of b.
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T € {t—m—1;t—m..;t — 1}, therepresentative investor also observes the reali zati on of the
market portfolio at 7. Hence, for those periodsin which M P was not chosen, the investor has

two casesin his memory. The memory at timet can be, therefore, written as

M; = ((arivrgr (ar))s (MP3vpa (MP)) 2y 0y
There is some redundancy in this definition: in periodsin which M P was indeed the choice
of the investor this case is listed twice in his memory. Still, thiswill create no problem when
the cumulative utilities of the acts are computed. Given the memory of the investor M; and his

aspiration level u, the cumul ative utilities are determined as foll ows:

V@) = 3 [ora(a) -

7€C%(a)

Ur(b) = > [vrra (b) —
T€Cy(b)

U(MP) = Y [o-(MP)—1],

with
Cila)={t—-m—-1<7<t|a, =a}

for o € {a;b}. A sumover an empty set isassumed to equal 0.

5.5.2 Limit Behavior with Long Memory

Again, two cases have to be consideredi the case of low aspiration level is given by:
< /ﬁu(1+6+7’)g((5)d(5.

Hence, the aspiration level should beﬁlower than the average utility achieved by holding the
mar ket portfolioin each period of time. Notethat since theinvestor is observing therealizations
of the market portfolio in each period of time, he learns that the market portfolio dominates the
assetsa and b, henceit is not possible that he chooses one of the assets a and b with frequency
1 in the limit. He, therefore, eventually chooses the market portfolio and, since the average
utility achieved by the market portfolio exceeds his aspiration level, the expected time until the
first switch to an dternative portfolio isoco. But even if the investor switches from the market
portfolio to a or to b, he eventually chooses the market portfolio again (since the returns of the
market portfolio are aways higher and with positive probability exceed his aspiration level).

Hence, in the limit the market portfolio will be chosen with frequency 1.

206



Proposition 5.11 Suppose that the aspiration level of the representative investor satisfies:
5
ﬁ</ u(l+6+7)g(6)dé.
8

Denote by 7, 7, and 7 s p the frequencies with which the risky asset, the bond and the market
portfolio are chosen in the limit, respectively.

Tmp — 1
Ta=mp=0
obtains almost surely in the limit.

The previous proposition shows that optimal behavior obtains evenfor relatively low aspiration
levels, e.g. even for aspiration levels lower than u (1 + r), if the decision-maker includes the
hypothetical case containing the return of the market portfolio into his memory in each period of
time. Nevertheless, even with hypothetical reasoning optimal |earning does not aways obtain

in the limit. Especially, if the aspiration level of the representative investor isrel atively high,

5
H>/ u(l4+64r)g(0)ds, (5.56)
8
he is not satisfied with the average utility achieved from the market portfolio by holding it in
each period of time. But condition (5.56) al so implies that:

6
i / w(1+8)g(8)ds
4
andu > u (1 + r). Hence, since theinvestor finds al portfolios avail able unsati sfactory, he will

switch among them infinitely often in the limit.

Proposition 5.12 Suppose that the aspiration level satisfies:
5
ﬁ>/ u(l+6+7)g(6)dé.
s

Therepresentative investor holds portfalios a and b during a strictly positive proportion of time
with probability 1 in the limit.

The analysis of an economy in which the investors are allowed to learn the realizations of the
mar ket portfolio gpart from the realizations of actually chosen portfolios in the past shows that
this additional information improves the learning in the economy. Especially, for low aspira
tion levels, investors acquiring information about the market portfolio learn that it dominates
the alternative investment opportunities and choose it eventually with frequency 1. Thisresult
contrasts the results with endogenous memory which show that investors with relatively low
aspirations choose a possi bly suboptimal portfolio in each period of time.
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However, for high aspiration levels, the results do not differ qualitatively from those achieved
with endogenous memory. Theinvestor never learnsto choose the optimal portfolio in thelimit.
Since he is dissatisfied with each one of the possible acts, he chooses the dominated ones with

srictly positive frequency in the limit.

Inthis exampl e, investors with low aspiration level s are able to | earn to choosethe optima mar-
ket portfolio in the limit, because the market portfolio weakly dominatesthe other two available
portfolios. If no dominance relationship is present, learning need not obtain in the limit even
if thereturns of all available portfolios are observed in each period of time. To seethis, con-
sider again the case, in which only the two undiversified portfolios cons sting of assetsa and b
are available and the supply of b isfixed. Suppose that the current choice of the investorsis b
and observe that the utility realization of biswu (1 + r), aslong as the young investors choose
b as well, whereas the utility realization of a isat most u (5) aslong as none of the investors
chooses a. Hence, if 6 < 1, as assumed above, it follows that thereis an equilibrium path on
which the representative investor chooses b in each period of time, independently of his aspi-
ration level. Equivaently, there is an equilibrium path, on which a ischosen in each period of
time, whereas the utility realization of b is
v (b) =u(r) <u(l) <wvla)
in each period. It followsthat optimal learning in a market with case-based decision-makers is

not guaranteed, even if they observe all past utility realizations of all acts available.

Thisresult contraststhe resul t obtai ned in an individual portfolio choice problemwith identically
and independently distributed returns. The reason for this diff erence stems from the fact that in
amarket environment, the return of a portfolio depends not only on the dividend payment, but
also onits price. When constructing a hypothetical case, an individual takes the price as given,
without taking into account pri ce changeswhich would occur if everyone changed hisbehavior.
Hence, hypothetical cases act as self-confirming prophecies. if everyone beliefs that the price
of a will be 0 the price of a indeed remains 0, sinceat this price the utility realizations of a never
exceed those of b. Asa consequence, multiple equilibriaemerge and it isapriori not clear which
equilibrium path will be chosen. Overval uation and underval uation may occur inan equilibrium

and persist for long periods of time.

The last example, in which the representative investor is alowed to choose only between the
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two undiversified portfolios, demonstrates further that |earning might be more effective if hy-
pothetical casesare not used. I ndeed, in the case

i e <u(1+7’);/6u(1+5)g(5)d6> |
investors not using hypothetical cases learn \fvith probability 1 to choose the better of the two
portfolios a with frequency 1in the limit. In contrast, when hypothetical cases are used, the
probability that a is chosen with frequency 1 in the limit depends crucialy on the ability of the
investors to coordinate on the equilibrium in which « is chosen in the initial K%&‘%ﬁ%ﬂ
periods of time*®.

5.6 Similarity in Asset Markets

Up to know, it has been assumed that no similarity considerations influence the decisionsin the
economy. Due to this, it was necessary to redtrict the choice set to a finite number of acts. In
this section, smilarity between problem - act pairsisintroduced and the investors are allowed

to choose among al diversified portfolios cons sting of assetsa and b.

In section 8 of chapter 3, smilarity considerati ons were embedded into a portfolio choice prob-
lem. There, it was assumed that only similarity among portfolios is taken into account by the
investor. However, the market situation might aso influence the evaluation of different acts.
Buying an asset in a market boom might be quite different from buying the same asset, when
pricesfall. The characteristicsof agiven decision Situation are captured by the notion of aprob-
lem. In afinancial market, asset prices seem to bear the most i mportant informati on about the

decision situation and, thus, will inf luence similarity perceptions™.

In amodel of case-based decision making in financial markets, these two aspects of similarity

— similarity between problems and between acts — are captured in a single similarity function:
s((p;a); (05 ),

whichisto beinterpreted asthe degreeof similarity of choosing act «.in problem p to choosing

110 After @ has been chosen for K;ﬂ(ﬁiﬁﬁ%ﬂ periods, the choice of b ceasesto be an equilibrium, since

Uppr O) =tu(r)+u(l+7) <tu(l +48) + v (@) = Ut1 (a)
holdsfor all ¢ > | (=2 )|
11 Theinitial endowment of an investor (or, alternatively, his income at the beginning of the period) might also
influence the perceived similarity between two decision situations. However, since the initial endowment remains
constant in thismodel, it will not play any role, even if it were included into the similarity function.
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act o/ inproblem . It has already been shown that the acts o can be situated on a metric space,
depending on how similar they are perceived to oneanother. Sinceit seemsto me that the major
characteristic of aportfolio choice problem isrepresented by the pricesin the economy, | propose
to identify each problem with a price vector (p;...px) and to represent aproblem - act pair in
AE=L 5 AK=1 Asin chapter 3, | will again use the Euclidean distance between such points as

ameasure of similarity.

56.1 OLG-Model with Two Typesof Investors

Consider a smplified version of the economy described in section 1. The length of the contin-
uum of investors is assumed to be 1. There are two types of investors, ¢ € {1; 2}, with constant
aspirationlevels u! and u?, respectively. Thesharesof thesetwo types aredenoted by 6; € (0;1)

and 8, = 1 — 0; and remain constant over the time.

Set D = 1 and supposethat the dividend paid by therisky asset isidentically and i ndependently
distributed according to a probability distribution 2 on theinterval [Q ; 5} . Let g (+) denote the
density of the distribution Q. The supply of the risky asset a isfixed at A = 1. The riskless
asset isavailable in perfectly elastic supply and deliversareturnof (1 + ) per unit invested. In
contrast to themode! introduced in section 1, diversification is alowed. Still, no short sales are

possible.

(A1), i.e. thecontinuity and strict monotonicity of the utility function « (- ), isassumed through-
out this section.

Let o! denote the act chosen at time ¢ by an investor of type i € {1;2} and identify o} by the
shareof theinitial endowment investedin a (o} € [0; 1]). p; denotestheprice of asset a attimet.
The similarity function of an investor is defined for such pairs (p; ), i.e. theinvestor considers

only the price of the risky asset as rel evant for the description of the market situation.

Since short salesarenot a lowed and since the initial endowment of the economy isfixedat 1, it
foll ows that the price of the asset «, p;, can only take on valuesbetween [0; 1]. Sincetheportfolio
share of a can aso vary between [0; 1], it follows that the (p; a)-pairs can be represented on a

sguare with side length one. The Euclidean distance on this square can, therefore, be taken asa
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measure of smilarity. Therefore, assume that

s((p;a); (0 ) = f(l(pa) — (5 )),

where f (-) isdtrictly decreasing. s () is assumed not to depend on the type of investors and
s((pa);(pa)) =1

Assume that the memory of the investors is endogenous, i.e. they can only remember cases
(p; a; u () that redly occurred in the economy. Moreover, each investor of typei € {1;2}
can only observe past cases experienced by investors of his own type, i.e. cases of the type
(p; ol u (ab)). Let m parameterize the length of memory, as above. Since in period ¢ = 0 the
memory of the investorsis empty, let ap € (0; 1) be the act chosen™? (at random) in period 0 by
both types and let py = a be the equilibrium priceat ¢t = 0.

5.6.2 Equilibrium Paths

Giventheinitial allocation o, andtheinitial price p, = «, an equilibrium path of the economy
isdefined as avector of asset prices (p;),_, ,  andavector of portfolios (a;*; a;*),_, . chosen

by the young investorsat ¢ (with aj* = v, a2* = o, pf; = po), suchthat:

(¢7) young investors make case-based decisionsin each period:

ok c Uz —
ai € arg max, i (a)

t—1

= arg max Z s ((pT; ai) ; (pt;a)) .

O[e[();l}‘i':"t—m—l
: lu ((M> al + (1+7)(1- ai)) — ﬂz}
b~
and

(i7) themarket for therisky assetis cleared in each period: either p; > 0 and satisfies
o () +o" (pf) _ 4
P

or
pf =0anda;* (0) 4+ a’* (0) = 0.

I will not discuss the question of existence of an equilibrium path in general. For a concave

similarity function and for the cases of one-period and long memory;, it will be shown that equi-

12 Theresultsfor oy = 1 and oy = 0 are qualitatively the same, the interesting case is, however, the one of a
diversified initid portfolio.
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(A9)

librium paths exist, by studying the price dynamics. Note that the market clearing condition
allows for degenerate equilibria, in which no one holds asset « and its pricefallsto 0. Since it
hasbeen shown that case-based decision-makers with concave similarity functions do not diver-
sfy if their aspiration leve is relatively high, see section 8 of chapter 3, it is natural to expect
that such degenerate equilibria occur for high values of 4! and 2. That iswhy | assume that the
aspirationlevel of the investors of type1 is sufficiently low so that they never switch from their
initially chosen portfolio. Thisinsures the existence of an equilibrium path with a positive price
of the risky asset in each period of time.

Suppose that @ < (ﬁg‘lﬁ(f_‘%)ao F(1—ag) (1+ r)).

(A9) insuresthat evenif all investors of type 2 hold o« = 1 at sometimet, wheress the investors
of typel hold ag (hencep; = 1 —6; (1 — «y)), al investors of type 2 switchto o = O at (¢ + 1),
causing the price to fall to p;11 = 610 and if the dividend of the risky asset is§ at (¢ + 1),
the investors of type 1 are still satisfied by the return of their portfolio ag. Given this condition
on @', the investors of type 1 will hold « forever, no matter how long their memory is and

independently of the price and dividend reali zations and of the portfolio choices of type 2.

To avoid the discussion of multiple cases, | assume

1>6>r>aqyr>48>0.
5.6.3 Price Dynamicswith One-Period Memory

Consider first the case of one-period memory, hence, the investors only remember the last case
observed. Sincethe aspirationlevel of type 1 isfixed in such away that they never switchfrom
their initially chosen portfolio, only the aspiration level of type 2 needs to be considered. If
this aspiration level is relatively low, then type 2 is always satisfied with the return of hisinitial
portfolio ay, given that everyone in the economy continues to hold ag. Therefore, the following

proposition obtains:

Proposition 5.13 Assume (A9) and let
< u <(1—|—p£) ap~+ (1 —ap) (1+T)) :
0

Then, there is an equilibrium path on which o}* = g, a?* = ap and p; = p, for each t =
0,1,.... Hence, (! = ag; a? = ag;p = py) isa stationary state of the economy.
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Now, | et the aspiration level be such that the portfolio «, isnot satisficing for type?2 if the risky

asset pays a dividend lower than § € (é; 5) even if the price of a remains unchanged. Hence,

Iet113 .
il =u i « -« r
e = <<1+p0> o+ (1 0) (1+ ))

for some é € (6;6). Aslong asthe utility from the return of the riskless asset exceeds 42, the
state in which theinvestors of type 2 hold portfolio a? = 0 in each period is a stationary state

of the economy.

Proposition 5.14 Assume (A9) and let

u’ € (u ((1 +i)ao+(1—ao) (1+r)) ;u(1+r)).

Then, on almost all paths of dividend realizations @ = (61;62...0+..), there is an equilib-
rium path, such that a* = «ag, o?* = 0 and p; = 6,a, for al ¢ > (@), for some ¢ (©).
(o' = ap;a? = 0;p = H1ap) is, thus, a stationary state of the economy.

Since the proof of this proposition demonstrates how a bubble can endogenously emerge and
burst inan economy popul ated by case-based decision-makers, | include part of it into the main

text.
Proof of propostion 5.14

Since (A9) guarantees that the investors of type 1 never switch away from their initially chosen

portfolio, only the behavior of the investors of type 2 needs to be cons dered.

Note that for § > 6

u((l—l—p%) ag+ (1 —ao)(1+r)) =u(l+6+(1—ag)r) > 1,
hence, the return of theinvestorsof type 2 issatisfactory for themif the young investors continue
to hold o and, therefore, by the argument of proposition 5.13, there is an equilibrium, such that
a2 = ag and p; = po for al ¢ suchthat 5, > §forall < . Lett/ = min{t 15, < ’5}. tis
finiteon almost all paths of dividend reali zations @, but its val ue depends on the chosen path™.

13 Observe tha since
6
u <<1+p_) ap+ (1 —ao)(1—|—r)) =u(l+6+(1—-ap)r)<ua<u(l+r)
0
for 6 < 6, it follows that
1+46+(1—ap)r<l+r
and therefore that for each § < &
- ~ O < agr <. -
Hence, for 6 € [&;6] to hold, & < ar must be satisfied. |f this assumption is violated, no such 6 exists.
14 Similarly, all period numbersintroduced hereafter depend on the realized dividend path &. | neglect this depen-
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In period ¢, the utility reaization of o isat mostu (1+ 6y + (1 — ag)r) < @? if the portfolio
holdings remain unchanged. Therefore, the cumulative utility of « isnhegative for the investors
of type 2. Since the similarity function is decreasing in the di stance between two portfolios for
agiven price p, it follows that the investors of type 2, who take the price as given, choose the

portfolio furthest away from «g. Hence o, = 1ifap <3 andoj =0if ag > 3.

Suppose first that o > —; Then, p}; = 61ap isthe equilibrium price corresponding to o = 0
and one easily checksthat o = 0 indeed maximizes the cumulative utility of type 2 in this case.
Once the portfolio consisting only of bonds has been chosen, the utility reaization becomes
u (1 4+ 7) in each period, independently of the price p,. Since v (1 +r) > u, it followsthat the
gate (o = ap;a? = 0;p = 0,y) is Sationary.

Now consider the case ay < 4. Given py, the investors of type 2 choose the portfolio which
is furthest away from «y, i.e. a = 1. However, if apx = 1 is chosen, the price py rises to
0rap + (1 — 61) and the utility achieved by type 2 increasesto

U Orag + (1p_ 01) +6u ag+ (1 —ap) (1+ T)) )
0
If thisisstill smaller than @2, then the cumul ative utility is indeed maximized at o = 1, given

py = i + (1 — 01).

However, if

0 1-6 ,
100 + ;. )+oe o (1—ag) (1 +r)) > i, (5.57)
0

then the cumulative utility of oy is positive a py = 6100 + (1 — 61) and, therefore, o = 1 is

not optimal givenp, = 6,0 + (1 — 6;). Should this be the case, choose o2 insuchaway that

*/ 6/
u (ptpLao +(1—ag) (1+ 7‘)) = @,
0

where p;’ clearsthe market, giventhat o2* is chosen by type 2, whereastype 1 till holds ay:
pyp = 0100+ (1 —6) atQ,*.
Since u () is continuous and strictly increasing, such portfolio and equilibrium price exist by
the intermediate value theorem and are unique. Note further that 1 > a2 > o and
Ora0 + (1 —601) > p > po
must hold. Moreover, the cumulative utility of o given pj, is

Uz (o) =u(pl + 60+ (1 —ag) (1 +7)) =@ =0=Uj ()

dence in the notation for convenience.
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for al o € [0;1]. Hence, at pj, the investors of type 2 are indifferent among all available

portfolios and, therefore, o.2* isan optimal choice.

Again, two cases canoccur: either of* > 1 and the investors of type 2 switch to o = 0 a time
¢ = min {t >t 6 < 6} as shown above, or o < 3 holds. In the latter case, construct a3
in the same manner as o', Again, 1 > a2 > a2* > ap must hod. Repeat the same procedure

n times aslong as 2! < 5 holds. Now note that since

+0 _
(M ?:1+<1 tk 1)(1+T‘>):U2
ptk 1
and
p:k_l = 910[0 + (1 — 91)0%21:—1,
it foll ows that the price at time ¢* is given by

— (1
Do) 10+ (14 7) prs — b (5.58)
Pe—1 — 010&0

foral k = 1..n, wherew = ! (4%) denotesthe return which yields a utility exactly equal to

Dtk = Pir—1

the aspiration level of the investors of type 2.

Note that
o? <pt"—*+§)+(1—atn)(1 +7r) < (p0+é)+(1—040) (1+7),
DPin Do

isequivaent to

*2
r(ag — oj7) —i—éa—:n )
tn
r— 00
— (a0—a?) {—1
tn
which is satisfied, sSince g < a2 and r > § > §0; hold. Hence, for arbitrary high shares a}2,

< 0,

there are ill values of 4, for which the portfolio choice is considered unsati sfactory.

It has to be shown that the sequence defined recursively by (5.58) satisfies

1 — 91 + 2910&0 1
=40 -(1-0
2 100 + 2 ( 1)
after a finite number of periods¢™, hence after afinite number of iterations (n — 1). Here, the

Din >

critical value of p}. iscomputed as the price necessary to render «;? > <. The demonstration

of thisis deferred to the appendix. But once thisvaue of pj, is reached,
20, (1-0; oo +(1-61)
2

9 DPin — thao — b1 1
n = > = =
A 1-0, = 1- 6, 2

obtai ns and from the next period, ¢ (©)

tH@) = mm{t>tn’“( *2(3%) + (1—ai )(1+r))<u2}

tn
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in which asufficiently low dividend realizati on obtains, the investors of type 2 switch to asset b
and hold it forever. Observing that ¢ (©) isfinite with probability 1, completes the proof of the

proposition.l

It is obvious from the proof of proposition 5.14 that the price of a rises during the (n — 1)
iterationsif ag < —é and condition (5.57) holds. Moreovey, it rises in those periods in which the
dividend paid by therisky assetis0. Imagine, therefore, that the risky asset has a fundamental
value of 0 (either 6 = 0 or ¢ = 0). In this case, the case-based decision-makers holding a small
initial share of the risky asset steadily increase the share of their wealth invested in a, until it
exceeds%. Hence, they cause abubble. At thetimewhenthecritical value of p,. isreached, the

bubble bursts and never reemerges again.

If the aspiration level of type 2 exceedsu (1 + r), the economy startsto evolvein acycle:

Proposition 5.15 Letu* € (u (147);u (1 + m» . Then on almost all paths of div-
idend realizations @, there is a time ¢ (@), such that for all ¢ > (&) the economy evolves
according to a stochagtic cycle with two states:
h,with o} =ag, 02 =1and p, =1—6; (1 — )
and
[, with oz}ll = o, ozlz =0and p; =01qyp.

W@=ull+ a
N 1—91(1—(340)

and let ¢ denote the probability of a dividend payment higher than 6, according to Q:
5
q= / g (6)dé

5
The frequenci es with which the two states h and [ occur almost surely satisfy:
1
T = 5 _ p
_1-gq
T = 5 q'

Define § as

If the aspiration level is set even higher, so that even u (1 + 17(1%@) isnot satisficing, then

the investors of type 2 switch between the two corner portfoliosin each period:
Proposition 5.16 Leta? > u (1 + M) Then, on almost all paths of dividend realiza-

tionsw, thereisatimet (@) such that for all ¢ > ¢ (@) the economy evolves in a deterministic
cycle of period 2 with two states / and [, as described in proposition 5.15.
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The results of this section show that investors with short memory and a strictly decreasing S m-
ilarity function diversify only for a finite number of periods, unless their aspiration level is
relatively low. Note that to prove this, the assumption of a concave similarity function was not
necessary. Thisisdue to the fact that with one period memory only one utility realization at a
timeisobserved. Sincethe similarity function obtainsits maximum for identical problem- act
pairs, the investor either retains hisinitially chosen portfolio (given a utility realization exceed-
ing his aspirations) or choosesone of the corner portfolios, since they are most dissmilar to the
initial one. It is possible to show that these results still hold with long memory, as long as the

similarity function is concave.

5.6.4 Price Dynamicswith Long Memory

Now assume that the investors can remember the whol e history of the economy from time 0 on.

Suppose that the similarity function of the investorsis concave™®.

The result that in an economy with two types of agents only investors with relatively low aspi-
ration level hold diversified portfolios, holds here as well. The introduction of a long memory
further allows to consider | earning effects. Aninvestor who can only remember the last case re-
alized is not able to learn much about the possible dividend and price redlizations. In contrast,
making observations for along time might allow the investorsto gather enough information so
asto be able to choose the optimal portfolio from the point of view of the standard theory in the
limit.

Denote by 1 (a | p) the expected utility from holding portfolio o € [0; 1] at time ¢, given that

the price of o remainsconstant at p = p; = pr41:
5
o
p(a|p):/ u<(1+;)a+(1—a)(1+r)).
&

Snces = f(||(p; ) — (p';&')]]), for s to be concave, it is necessary that the decreasing function f is not too
convex. To seethis, denote the Euclidean distance functional by e and note that

115

=) e
Sincee”’ > 0and f’ <0,
e’ f!
_(e/)Q >0
and s’ < 0 holds, as long as
< < )



For instance, for p, = p;11 = po,

5
p (o | po) = / u(l4+6+(1—ao)r)g(d)dd
s
obtains. To avoid the discussion of multiple cases, assume that the foll owing inequality holds:

plao | po) <u(l+r)<pla=1|p=1-=6;(1-)). (5.59)

Notethat aslong astheinvestorsof type 2 hold o the price of o remainsp, = «. If type2 holds
a =0, p = 01 obtains and in the case that the choice of type2isa =1,p=1—6; (1 — ao)
isthe equilibrium priceof therisky asset. Since the investors of type 1 are constructed in sucha
way that they hold «q in each period, independently of how the economy evolves, the analysis
concentrates on the behavior of the investors of type 2, who will determine the evolution of the
asset price. Note that since now their memory consi sts of all observed cases, in the long run the
mean of the observed utility realizations of an act determinesits evaluation. Since, however, the
behavior of type 2 has an inf luence on the market price, thismean utility shall be constructed for
the respecti ve equilibrium price which obtains, given the portfolio chosen by type 2. Should an
expected utility of aportfolio be satisfactory at a constant equilibrium price, then the expected
timefor which thisportfolioisheldisinfinity. Alternatively, if theexpected utility of a portfolio
lies below %2, then the investors of type 2 switch away from this portfolio in finite time. The
first result isthat theinvestors of type 2 only consider the utility realizations of three portfolios:
ap, « = 1 and a = 0. The inequality (5.59), therefore, assumes one possible ordering of the

expected utilities of these three portfoliosin order to avoid considering multiple cases.

Proposition 5.17 Suppose that the probability distribution @ on [4; 6] hasa density function
which is continuous with respect to the Lebesgue measure and strictly bounded away from 0 on

the interval [3 — o+ (} for some ¢ > 0 and é such that
u 1—91(1—@0)4‘6 :712.
1 —01 (1 —Oéo>

1. If @? < p(ag | po), the expected time during which the investors of type 2 hold « is

infinite.
2. Ifa® e (u(ao|m);u(1+ 7)), theinvestors of type2 hold either o« = 1 or a = 0 with

frequency 1 amost surely in the limit.

3. fa*e (u(l+r);u(1]1-0;(1-ap))), theinvestors of type 2 hold a = 1 with
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frequency 1 amost surely in the limit.

4. 1fu?>p(1|1-01(1— o)), theinvestorsof type2 hold o = 1 and a = 0 with strictly
positive frequencies amost surely in the limit, whereas the frequencies of all other acts are
0. The frequencies with which the investors of type 2hold o = 1 and « = 0 are given by

1 and 7, respectively and sati fy:
T u(l4+r)— u?
2 k)

T M-
where 17 denotes the actual mean utility derived by holding asset a as observed by the

investors of type 2.

Comparing proposition 3.12 to proposition 5.17, one easily sees the analogy: if the aspiration
level of the investors of type 2 is relatively low, the initially chosen portfolio is considered
sati sfactory. Hence, the initial alocation and price prevail infinitely long in expectations. If the
investors of type 2 consider «y as unsati sfactory, they sooner or later switch to an undiversified
portfolio and never diversify again, due to the concavity of their similarity function. Now, they
have to choose between the two undiversified portfolios. If at least one of these portfoliosis
found to be satisfactory, then it isheld forever. If, however the expected utility of none of these
portfolios exceeds the aspiration level @2, then the investors of type 2 switch infinitely often

between them, causing the price of « to f luctuate in a stochastic way.

Note that if the aspiration level of the investors of type 2 is appropriately chosen, i.e. if

@ e (uw(l4+r);p1]1-01(1-ag)), (5.60)
these investors learn to choose the best among the three acts oy, a = 1 and o« = 0, namely
a = 1linthelimit. Still, their choice might not be optimal from the point of view of an expected

utility maximizer, since they only observe realizations of at most three portfolios.

Since the dynamic of the economy is predetermined solely by the behavior of the investors of

type 2, it can easily be derived from proposition 5.17. The following cordlary obtains:

Corollary 5.2 Suppose that the probability distribution ) on [ﬁ;?ﬁ] has a density function
which is strictly bounded away from 0 on the interval [ES — o+ C} for some¢ > 0 and é

such that u <%11(I—‘_’§0i)5> = .

1. Letw® < p(ag| po). Then, the expected time which the economy spends in the state
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(a! = ag;a? = ag;p = pp) isinfinite.

2. Letw? € (u(ao | po);u (14 7)). Then, with probability 1 in the limit, the economy
remains either in sate (a! = ap;a? = 0;p = f1ap) With frequency 1 or in state

(o' =ag;a? =1;p=1-01 (1 — ap)) with frequency 1.

3. Letw?e (u(l+7);u(1|1—601(1—ap))). Then, with probability 1 in thelimit, the

economy remainsinstate (o' = ag;a® = 1;p =1 — 61 (1 — ay)) with frequency 1.

4. Leta? > pu(1|1—6,(1—ap)). Then, inthelimit, the economy almost surely evolves
according to a stochastic cycle with two states 4 and [, as described in proposition 5.15.

The frequencies of these states satisfy:
n u(l+7r) —u?

M I —u?

The results are simil ar to those derived for an economy in which investors do not take similarity
between acts and problems into account and in which diversification is not alowed. Investors
with low aspiration levelsinduce stable prices and portfdio allocations. Nevertheless, the port-
folios held by the investors in a stationary state need not coincide with the optimal portfolio in
an economy with a representati veinvestor, implying that the case-based decision-makers do not

make optimal decisions, giventhe market price.

If a least some of the investorsin the economy have arelatively high aspiration level, then
the economy evolves according to a cycle with two states— alow-price and a high-price state.
Moreover, asinthemodel without similarity perception, thefluctuation of the price hasagreater

amplitude, the higher thevalueof 1 — 6, i.e. the massof theinvestors of type 2 inthe economy.

5.7 Conclusion

In this chapter, | have analyzed the price dynamics in an economy popul ated by case-based

decison-makers. If the investors have a short memory, the position of the highest aspiration

level relative to the highest possible return of the risky asset determines the dynamics of prices

and asset holdings. If the highest aspiration level isrelatively |ow, the price of the risky asset

and the holdings of theinvestors remain constant over thetime. Still, the price of the asset might

deviate significantly from its fundamental value and arbitrage possibilitiesmay be presentinthe
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market.

Higher aspiration levels induce cycles, which may be stochastic or deterministic. The risky
asset exhibits excess volatility, which depends positively on the mass of investors with high
aspirationlevelsinthe economy. The behavior of these investorsisvery similar to the behavior
of " overconfident” investors, described by Odean (1999): they trade too much, lowering their
own profits and increasing the variance of prices. Snce investors base their decisions on past
information, price movements are forecastable to some extent and exhibit negative correl ation

in the short run.

For the case of long memory, | consider an economy with three types of investors. |f the highest
achievabl e mean utility of therisky asset exceeds both the highest aspirationlevel in the economy
and the return of the riskless asset, then theinvestors with high aspiration level are ableto learn
this and hold the risky asset forever in the limit. However, if the mean utilities of both assets
are unsatisfactory relative to the highest aspiration level, a two-state cycle emerges as in the
case of short memory. Thisresults show that even along memory (and infinite sampling of the
avail able acts) does not guarantee opti mality of thedecisionsin the long run. Whereas investors
with high aspiration levels fail to learn because they are dissatisfied with the returns of both
assets, investors with low aspiration levels have no incentive to experiment with new acts and,
thus, make suboptimal choices forever. This last fact may help explain the equity-premium

puzzle observed in the financial markets, even if the investors are risk-neutral .

The consequences of the usage of hypothetical cases are not unequivocal. If one of the acts
dominates all other available portfolios, then learning the utility realizations of the dominant
act combined with arelatively low aspiration level leads to optimal behavior in the limit. In
contrast, high aspiration levels imply that the dominated acts are chosen with strictly positive

frequenciesin the limit.

If no dominance relationship is present among the avail able acts, hypothetical reasoning might

even worsen the limit choi ce compared to the case of completely endogenous memory.

Allowing for diversification and introducing a similarity function on problem - act / price -
portfolio pairs does not change the results qualitatively. Diversified portfolios are chosen only

by investors whose aspiration levels are relatively low. Investors with high aspiration levels
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switch to anundiversified portfolioin finite time and never diversify again. The price dynamic
obtained is, therefore, very similar to the one without similarity considerations. It is, however,
shown that in this case a bubble (increase of the price of the risky asset over few periods) can

emerge and burst in finite time, never reappearing again.

A magjor criticism of the model presented in this chapter is that the economy consists only of
case-based investors and that, (given the OL G structure of the model), the initial endowment
doesnot change over time, hence, itisindependent of the previous returns. Thesetwo criticisms
will be addressed inthe next chapter, where an economy with both case-based deci son-makers
and expected utility maximizersisstudied. Differently fromthe descri ptive approach taken up to
now, the purpose of thelast chapter ispartly normative. There, the issue of evol ution of decision
rules (such as expected utility maximization and case-based decision-making) is examined, the
guestion being whether case-based decision-makers can survive in a financia market in the
presence of expected utility maximizers. This question istightly connected to the issue of price
dynamic analyzed in thischapter. Should it be found that the share of wealth owned by the case-
based decision-makers shrinks to 0, as time evolves, the influence of case-based investors on
prices and returns woul d become negligible. Prices and returns would behave as under rational
expectations. The claimthat the presence of case-based decision-makers can explain empirically
observed phenomena such as bubbles, predictability of returns or arbitrage possi bilities would

be, therefore, unfounded. | turn to the analysi s of these issuesin the next chapter of thisthesis.
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Appendix

Proof of proposition 5.2:
From the assumpti ons made about the parameters, for investors with 4* € [u% 4"] and oy = b,
the cumulative utilities sati sfy:
U@)=1+r—a">0=U,(a).

Hence, o = bfori € [u® — a% " — u°]. By induction, suppose that the investors with i’ €
[u®; u"] choose b in some period ¢ and consider the decision of the young investors in period
(t+1). Since

U (b) =147 —a" >0=U/, (a)

forall u' € [u% ", itfollowsthat o = b obtainsineach periodof timefori € [a® — a% a™ — @),

Now consider the investors with 4* € [a°; @] and oy = a. Int = 1, the cumulative utilities

they observe satisfy:

. 5 By y i

Ui(a) =1+ ———= —u' > 1—a' > 0=Uj (b),
aslongasp; = u* — u’, henceaslong aso = afor i € [0;a* — u°]. By induction, U/ (a) >
U} (b) holds foreacht > 1if ai | = afor al i € [0;u% — u°]. Hence, ineacht > 1, thereisa

temporary equilibrium in which

aj = aforie [0;u®— 1’
aj = bforie [a*—u’;u" —u]
pe = a*—a’.

Hence, theinitial state of the economy is stationary.ll

Proof of proposition 5.3:

Equilibriumint =1

Int = 1, theinvestors with aspiration levels @' € [a%; (1 + )] observe cumul ative utilities:
Ui(b) =1+r—a">0=Uj(a)

and choose o = b. The investors with aspiration levels @’ € [(1 + ) ; "] observe cumul ative

utilities:
Ui(b) =1+r—a' < 0=Uj(a)

and choose o' = a, regardless of the price p;. Sincetheir massis[u™ — (1 + )], aslong asthe
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investors with aspiration levels @’ € [u"; u*] choose o} = a, the cumulative utilities observed
by these investors are

Uile) = e — 1

by assumption (5.44). Hence, the investor on theinterval [0; 4® — 4°] indeed choose o} = a in

" — (1+7r)+a* —u’ + &
0

—a'>1—a">0=U(b),

equilibrium. Hence, int = 1, tate h™®:
po= pp=[a"—(1+r)+a*—a"],

On],

af = aforie[a*—a’jJull+r)—a
af = aforie [a*—a%(1+r7)]

isan equilibrium.

Equilibriumint =2

Int = 2, two cases must be considered:

e 69=06D
The young investors with aspiration levels [a%; (1 + r)] observe cumulative utilities:
Us(D) =1+r—a">0=U,(a)
and choose oy, = b. Aslong astheinvestorswithaspiration levelsa® € [u% a*|U[(1 + r) ; 4"

choose o, = a, they observe cumulative utilities:
, 6D
) =1
U (@) T GRS p—-
where the inequality holds by assumption (5.44). Hence, it isindeed optimal for them to

choose a. It followsthat int = 2with 6, = 6D, there is an equilibrium, in which state h

— ' > 0="UL(b),

obtains:
p2=pn=[0"—(1+7)+a" -],
ay=aforie [0;a" —a’] U (1 +7r)—a’n],
ab =bforie [u®—a’ (1+7r) —a].
[ ] 62:0

The young investors with aspiration levels [a%; (1 + r)] observe cumulative utilities:

Us(D) =1+r—a">0=U,(a)

16 Since the investors on the boundaries of the interval s are indifferent between holding @ and b, 1 indude themin
both sets. This, of course, does not inf luence the price of a, Since each investor has amass of 0.
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and choose o, = b.

Evenif al of the young consumerswith aspiration levels [u%; @] U [(1 +7); @"] choose a,

the cumulative utilitiesthey observe are given by:

Ub(a)=1—a"

Ui (b) = 0.

Whereas Us (a) > Uj (b) holds for al i € [0;4* — @], it is obvioudy violated for i €

[(1 +7) — 1% n], because of condition (5.44). Hence, o}, = b forall i € [(1+r) — @’ n].

The cumul ative utilities observed by theinvestors i € [0; u® — u°] then become:

—at>0=U(b),

U (a) =

,ELCL

0

—Uu

ar— (1+7r)+us —ud

according to assumption (5.45) and these investors choose o, = a. Hence, int = 2 with

02 = 0, the economy returns to state [ with

pe=p = [u*— 1] = py

of =aforie [0;a" —

o =bforie [a*—a

0

a’]

;n].

It follows by induction that if in period ¢ the economy isin state , the statein (¢ + 1) ish with

probability 1. If in period ¢ the state is h, then in (¢ + 1) the economy moves to state [ if the
dividend realization is 0, hence, with probability (1 — ¢) and stays in state 4 if the dividend

realizationis 6D, or with probability q. The economy, therefore, evolves according to a Markov

process with two states » and [ and a transition matrix:

P =

Proof of proposition 5.4:

Pit1 = Ph

DPit1 = Di

Dt = Pn

q

l—q

Pt =D

1

0

IE

In the proof of proposition 5.2 it was shown that the price processis a Markov process with a

transition matrix:

p—

Pit1 = Dhn

Pit1 = Di

Dt = Pn

q

1—¢q

Pt = D1

1

0

The invariant probability distribution of this Markov process can now computed to be:

Th
Uy

Th
T

)=(
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which smplifiesto

qmn = (2 —m) .
It follows that the invariant probabilities sati sfy:
1
Th = 2_q
_ 1-g
T = 2—q'

These probabilitiesareobvioudy strictly positivefor ¢ € (0; 1) and, therefore, the M arkov chain
described by P is positive recurrent. Since any positive recurrent chain on a countable space is
also positive Harris recurrent, see Meyn and Tweedie (1996, p. 208), it follows that the Law of

Large Numbers applies for this chain. Hence, let +;, denote the indicator function for state h:
1, if the state of the economy ish
tn (1) = { 0, if the state of the economy is }
According to theorem 17.1.7 in Meyn and Tweedie (1996, p. 425),

¢
o1
tliIélQ;Z%(T):/Lh(T)dﬂ'Iﬂ'h

=1

holds almost surely for any initial distribution over the states h and 1. Since 2 S0 _ 5, (1)
describes the mean time up to period ¢ that the economy spends in state b, it follows that the
frequency of state h equals 7, almost surely in thelimit. Anal ogous arguments show that the
frequency of state ! equals m; on dmost each pathw € ©.1

Proof of proposition 5.5:
Equilibriumint =1

Int = 1, the investors with aspiration levels @ € [a%; (1 + )] observe cumulative utilities:
Ui(b) =1+r—a" > 0=U](a)
and choose o} = b. The investors with aspiration levelsa? € [(1 + r) ; u"] observe cumulative
utilities:
Uiy =1+r—1u'<0="Uj{(a)
and choose o = a, regardless of the price p;. Sincetheir massis [@" — (1 + )], as long asthe
investors with aspiration levels @* € [u’; 4] choose o = a, the cumulative utilities observed
by these investors are .
0y (o) = T

by assumption (5.48). Hence, the investors on the interval [0; u* — 4] indeed choose o = a in

—u'>1—u">0=U(b),
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equilibrium. It followsthat int = 1, state h:
po= pp=[a"— (147 +a® —a°],
af = aforie[0;a*—a’]u[1+r)—a’n],
af = bforie [a®—a’%(1+7r)—a°

isan equilibrium.

Equilibriumint = 2

In period ¢ = 2, two cases are possible: either the dividend of the risky asset is positive or 0.

e H=0
The young investors with aspiration levels [u%; (1 + )] observe cumulative utilities:
Us(b) =1+r—1a">0="Us;(a)

and choose o, = b.
Evenif al of the young consumerswith aspiration levels [u%; @] U [(1 +7); 4"] choose a,
the cumulative utilities they observe are given by:

Us(a)=1—a"

Us (b) = 0.
Whereas Us (a) > Us (b) holds for dl i € [0;u* — u], it is obvioudy violated for i €
[(1 +7r) —u® n], because of condition (5.44). Hence, o}, = bforall i € [(1+ r) — a%nl].
The cumul ative utilities observed by thei rgvestorsz’ € [0; @* — @°] then become;
Uﬁ@_m—aisim—m_w>o_%@%

according to assumption (5.45) and these investors choose o, = a. Hence, int = 2 with

6, = 0, the economy returns to state [ with

p2=p = [0 — u’] =,
aé =aqafori e [O;ﬁa—ﬁo] ,

0

ob =bfori e [ﬁa—ﬁ ;n].

o 0y =06D
The young investors with aspiration levels [a% (1 + r)] observe cumulative utilities:

Us(D) =1+r—a" > 0=U,(a)
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and choose o, = b.
Evenif al of the young consumerswith aspiration levels [u%; @] U [(1 +7); @"] choose a,

the cumulative utilitiesthey observe are given by:

6D
Ug(a):1—|— —

=t
" — (1+7) +u* —ud o

Since
6D
a" — (1 +7)+a*—a°
it follows that thereis a subinterval of investors with aspiration levels between [(1 + ) ; 4"

1+ u" < 0,
for whom
Us (a) < Uj (b)

holds and who, therefore, choose o, = b.
I will show that if (5.45) holds, there is an equilibrium, in which al investors with aspiration
levels[(1 +r) ; u"] choose oy, = b. Indeed, suppose to the contrary that if al investors from
(1 +7) —u% n] choose b, = b, for some of them

u* —u’+6D

Ué(“):an—(1+r)+ﬂa_ao_ﬁi>0:U2i(b)

holds. Thisimplies that
u* —u’ + 6D
wm—=(1+r)+a*—a°
since (1 + r) isthe lowest aspiration level in thisinterval. Hence,
6D a®* — u°

—(1+7) >0,

1 — : 5.61
ﬂ"—(1+r)+ﬁ“—ﬂ0>( +) = (1+r)+as—ad (561)

On the other hand, the first inequality of condition (5.48) implies that
oD <u™—1, (5.62)

an—(1+7)+a* —a
whereas condition (5.45) requires

a*—u® >a (a"— (1+7r) +ua* — ")

and since @ — @° < @® for @ > 0, this means that

(@" = (14r)+a*—u°) <1,
or

24 r—a"—u"+a’ >0

must hold.
Now compare the left hand sides of (5.61) and (5.62). Itiseasy to seethat since

a" — (14+7) +a* —u® > 0,
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u® — @
1 — >t —1
(1+7) an—(1+r)+aa—a0—u

is equivalent to
[@* — (1 +r)] [2+r—u" —a*+u°] >0,
which is aways satisfied, aslong as (5.48) and (5.45) hold. Hence, D cannot satisfy (5.61)

and (5.62) simultaneously and, therefore,
u —u’ + 6D
u"— (1+r)+ua*—a ~

<(1+r)
obtains. But then
a*—a'+6D

UQ(G’> == _(l_l_r)_'_ﬂa_ao
holdsfor al a* € [(1+ r);u"]. Hence, itisoptimal for theinvestorsi € [(1+ r) — a%n] to

—a' < 0="Ui(b)

choose oy, = b, whereas o, = a for dl i € [0; a* — @°) holds. The equilibrium priceisthen

given by p, = p; = [u® — @°).

Since the state of the economy int = 2 coincides with the statein¢ = 0, independently of the
dividend payment, it follows by induction that the two states h and [ defined in the proposition

indeed determine a deterministic cycle of the economy.ll
Proof of proposition 5.6:

Since the investors of type 1 and type 2 do not change their asset holdings over time, there are

three cases to consider:

1. Letaj , =aandd, =6D. From o} | = a, itfollowsthat:
Upy (a) > U} (b).

From 6, = 6 D, it follows that the return of a if o = «, IS
. 6D 5
* = (14r)+us—ad -
by assumption (5.49). It followsthat if o} = a, then
U @) = Ut (0)+ 1+ o= — > U (@) 2 U, () = R ),
Hence, there exists an equilibrium in which:

o) = af =afori e [0;a — O}U[(l—i-r)—u n|
of =aj, =bforie [a* —a (1+7r)— @]

pr=pr=[0"—(1+7r)+a" —uo]
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2. Leta? , =aandé, =0. Froma} | = a, it followsthat:
Uf—l (a) = Utg—l (b) .
From ¢, = 0, it followsthat the return of a if o = a, is
1 <@,
by assumption (5.49).
— If
U (a) = Uy (a) +1 —a* > U2, (0) = U7 (b)),

then o} = a hasthe maximal cumul ative utility for the investors of type 3 and is chosen
again. Hence,

of = af =aforie [0;a* —a°] U [(1+7) —@°;n]
af = ap =bforie [a* —a; (14 r) — a’]
po=pp= (0"~ (1+7)+u" — ]
isan equilibrium.
— If
U (a) = U}y (a) +1 =@’ = U7 (b) = U7 (b),
then a and b have the same cumul ative utilities. Hence,
o =al =aforic [O;ﬂ“—ﬂo} U(1+r) —ﬂo;n}
af = aj =bfori e [a* —a; (1+r) — a°
p=pn=[u"—(1+7r)+u" — o]
isagain an equilibrium, but
of =aforie [0;u" — u°]

p = [u® — 1’
isalso an equilibrium, sincefor o = b, the return of a becomes
a® — s
— < 1<u

" —(1+r)+u*—u
and the cumul ative utility of a is smaller than those of b for type 3.

—If
UF (a) = Uy (a) +1 —@® < ULy (b) = UF (1),
then the cumulative utility of a issmaller than those of b for type 3 even if they choose
a att. Hence, o = b. Thereturn of a then becomes:
a® — ,aO

_3
v Qe @
and since
U2 (a) = U2, (a) + ot — — @< U3, (b) = U (b)
t =1 a" — (14 7)+ a* — a° =1 £
it follows that

of =afori € [0;u" — 0]
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af =bforie [a*—a%n]
p = [a" —u’]
isan equilibrium at time'.

3. Leta} , = b Thismeans that
Up oy (a) < U (b).

- If
UP () =U2 (b) + 1+7 = > Up, (a) = U7 (a),
then o = b is the choice of type 3 and the equilibrium is state /.

—If
UP () =U2, (b) + 1+7 -’ = U, (a) = U} (a),
then type 3 isindifferent between a and b and both states 4 and [ are equilibria.

- If
UP(0) =U2y () + 147 =@ < U}y (a) = U} (a),
then o = a isthe choice of type 3 and the equilibriumis state 4.1

Proof of proposition 5.7:

Consider the Markov chain given by:

g1 = wW—(1+r)
€1 = &+, Wp.qife >0
€41 = &—c¢,Wp. 1—gqife >¢
Epy1 = 5t—k(ﬂ3—(1+r)) WP 1—qif0<e<c
Eip1 = &40 — (14+7r),wp. Life <O.
Note that
ee = Uy (a) = U (b),
whereit isimplicitly assumed that the investors of type 3 hold asset a when indifferent between
the two acts. Since
e1=a —(1+7)>0,
at=1,a} =aischosen. aisheldaslong by theinvestorsof type 3 ase; > 0 holds. Note

that oncee; = @ — (1 + r) obtains, with probability (1 — ¢) in the next period the cumul ative
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utility of a becomes
Ulnla)=a® —(1+7) k(@ —(1+7)=(k-1) (@ - (1+7)),

since

w—(1+r)<u*—1=c
by assumption (A7). It follows that o ; = b and b is held by the investors of type 3 for
exactly (k — 1) periods. Consider, therefore, period ¢ + k& and note that e;.+, = 0 and, therefore,
at3+k =a.Aslongase, > 0 holds, aischosen by the investors of type 3. When e, < 0 obtains
for thefirst time

er=—k (@ —(1+r)),
hence b is chosen and held for exactly k periodsinarow. At T + k, e, = 0 obtains again and
the same process repeats.

Wheress, (A8) guarantees that bis held for axactly & periodsin arow every time it is chosen
by the investors of type 3, the time during which aisheld israndom™’. Infact, denoteby &, the

following process

Et+k = Erk =10
Er = Er—1+CWP.q
€, = E;,.1—cWp.1—gq.

g; isarandom walk with a step length ¢. Moreover, aslong as &, > 0 holds, £, = ¢, holds,
whereasin thefirst period at which &, = —c,

er = —k (@® = (1+7))
obtains. It follows that the expected time during which ais held is equal to the expected time
needed by & to reach —c for the first time starting at 0.

Now, | compute the expected time during which a is held in a row denoted by ¢t. The analysis
above shows that

E[t]= E[min{r | & = —c}]
Itisawell-known result of the probability theory that the generating function of the time that a

HT Although it has been shown that b isheld only for (k — 1) periods in arow after the first switch of the investors

of type 3 froma tod attime (¢ + 1), thisis an exception which only occurs once. Note, as well that because of
a3 = b, bischosen during exactly k periodsup to time (¢ + k).
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simple random walk needsto reach the point —1 for the first timeis given by:

F71<S): [1_<1_4Q(1_Q)52)2]’

2qs
see Grimmet and Stirzaker (1994, p.145). Differentiating £'_; (s) with respect to s and taking
the derivative at s = 1, givesthe expected value of the time the random wal k needs to reach — 1
for thefirst time: -
1—4/(1—2¢)°
Fl(s=1)= %i__ﬂ (5.63)

2,/(1 - 20)°
see Grimmet and Stirzaker (1994, p. 130). Sincethe timeneeded by &, with astep-length of ¢ to

reach —c for thefirst timeis equal to the time needed for a simplerandom walk to reach —1 for
the first time, the expected value of ¢ is given by (5.63) if Pr{t = oo} = 0. It remains to sate
the condition, for which Pr {t = oo} = 0 holds. Using corollary (6) in Grimmet and Stirzaker
(1994, p. 144) and the ref lection principle, one finds that the probability that the random walk
ever vigits the negative part of thereal axisis:
[zl [ ifg<s
e IS G B B O
Hence, the probability that the random walk never visits the negative part of the real axis (and
therefore never reaches —c) ispositive if ¢ > § and inthiscase E [t] = cc. If ¢ < 3, thenthe

probability to reach —c in finitetimeis 1 and the expected time until the first such visitis:

—1 i 1
Em::{ﬂ2@’ﬁQ<f }.
00, ifg=7

Proof of corallary 5.1:
Consider again the Markov chain given by:
g1 = uw—(1+r)
€yl = e+, Wp.qife, >0
€yl = & —c,Wp. 1—gqife >c
g1 = a—k(@—(1+7),wp.1-qif0<eg<c
er1 = ea+a —(1+7),wp. life <0,
Asin the proof of proposition 5.7,
et = Up (a) = U7 (b)
and ¢, evolves on the countabl e space
U={-k(@—147r);—(k—1) ("= 14+7r)..— (@®—1+7);0;¢2c..}.
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The state h coincides with €, > 0, whereas the state [ is represented by £, < 0. The chain is
irreducible, since for each x and y € W there is a positive probability to reach x starting from

y and y, starting from z. To seethis, consider the following cases:

1. z >y > 0. Toreach z from y, the chain must make =¥ steps upwards in arow, which
happens with probability ¢ = > 0. To reach y starting from z, the chain must make =t

z—y

steps downwards in a row, which happens with probability (1 —¢) < > 0.

2. x > 0 >y. To reach z starting from y, the chain must first reach 0, which happens with
probability 1 and then make £ steps upward in a row, which happens with probability
gc > 0. To reach y starting from z, the system must first reach 0, hence make £ steps
downwards in a row, which happens with probability of at least ¢= > 0 and then make
k!ﬂ3717r !fy . . . .-

upward steps in arow, which happens with probability 1.

ad3—1—r

3. 0> z >y. Toreach z darting from y, the chain must make ==~ upward steps in

wd—1—r

a row, which happens with probability 1. To reach y starting from z, the chain must
first reach 0, which happenswith probability 1 in ==%= steps, must then jump down

u3—1—r
to —k (u® — 1 + r), which happens with probability (1 — ¢) and then makeﬂ%rb’

upward stepsin arow, which also happens with probability 1.

In all these cases, states x and y are connected and, therefore, the Markov chain isirreducible.

Suppose first that ¢ < % As observed in the proof of proposition 5.7, &, restricted to [0; co)
behaves as a random walk on the half-line as described by the process ;. Hence, according
to Meyn and Tweedie (1996, pp. 184-185) 0 is reached with probability 1 starting from each
x> 0if ¢ < 3. On the other hand, starting from = < 0, 0 is reached in at most % steps with
probability 1. Hence, 0 is reached with probability 1 from any initial state and is, therefore, a
recurrent state. But from the properties of irreducible Markov chains on countable spaces, we
know that if one state is recurrent, then so are all states of the chain, see Meyn and Tweedie
(1996, p. 182). Moreover, since the Markov chain defined by ¢, contains an accessible atom, 0,
it followsthat the chain is positive recurrent, seetheorem 10.2.1in Meyn and Tweedie (1996, p.
242). Hence, there exist positive probabilities 7, and 7; describing the invariant probabilities

with which ¢, > 0 and ¢, < 0 obtain, respectively. Since the economy isin statesh fore; > 0
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and in state [ for ¢, < 0, m;, and 7; equal the frequencies of these states. Furthermore, the Law
of Large Numbers applies, seetheorem 17.1.7 in Meyn and Tweedie (1996, p. 425) and in the
limit, 75, and 7; @ most surely equal the mean time during which the investors of type 3 hold a

and b, respectively. Hence, it follows from the results of proposition 5.7 that

mo_ 1
™ k(1—2¢q)
holds almost surely in the limit. Combined with s, + 7; = 1, this implies
1
T k(1 - 29)
and
__k(—=2q)
TR —2)

For q < % , according to the proof of proposition 5.7, there is a positive probability that starting
from 0, £, and, hence, also ¢, never crosses 0 from above. Sinceb isheld for exactly & periodsin
arow, in order to spend a positive proportion of time taking on values below 0, £, must cross 0
from above for an infinite number of times. However, this event has a probability of 0. Hence,
g; < 0 obtains only for a finite number of periods. It follows that the mean proportion of time

the economy spendsin state h, is 1.1
Proof of proposition 5.8:

Since the investors of type 1 and type 2 do not change their holdings over time, there are three
casesto consider:

1. Leto} , =aand§, > 6. From o} | = ait followsthat:
U?—l (a) > Utg—l (0) .
From 6, > 4, it follows by assumption (5.54) that the return of « is satisfactory for type 3 if

3
oy
1 > ud.
u( + 1—62) > U
Henceif o = a,

) = a:
Ul(a)=U} ,(a)+u(1+—
1— 6,

holds and therefore, there exists an equilibrium in which:

) C@ UL (a) 2 UP () = U ()

ol =a} =aforie{1;3}

ol =al =bfori =
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pr=pp=1—0,.

2. Leto} | =aand§; < 6. Froma} | = a, itfollowsthat:
Uiy (a) 2 Ui, (b).
From 6, < 4, it follows by assumption (5.49) that the utility derived froma is

6t _3
u(1+1_02> <u

UF (@) = Uy () 4 (14— ) = a0 > U, () = U 1),
— V2

then a has the maximal cumulative utility for the investors of type 3 and is chosen
again, @ = a. Hence,

if &} = a.

—If

of =al =aforie {1;3}
o =al =bfori=2
pr=ph=1—102
isan equilibrium.

—If

U @)= U (@) +u (14 725 ) - = UL, ) = U2 0),
then a and b have the same cumul ative utili2ti esfor the young investors of type 3. Hence,
ol =al =aforie {1;3}
o =al =bfori=2
pe=pn=1—0a.
isagain an equilibrium, but
al=al =afori=1
ol =af =bfori € {2;3}
p="01
isa so an equilibrium. To see this, note that the return of a is
u(%) <u<1+1ft02) <
if a2 = b. Inthiscase, the cumulative utility of a is smaller than those of b for type 3.
— If

)
U2 (a)=U?, (a)+u(1—|——1 te )—u3< U2 | (b) = U (b),
— V2

then the cumul ative utility of a issmaller than those of b for theinvestors of type 3 even
if they choose a at t. Hence, o = b and the utility realization of a is

U 01+ 0 <ﬁ3
1—0- '
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S ncethen

01+06 _
US (a) = U1 () +u (11_ 9;) —a@ < UL, (b) = UR (b),

it followsthat

al=ai=afori=1
of = bfori € {2;3}
p =0,

o
isan equilibrium at time ¢.

3. Leta? , = b Thismeans that
Uf—l (a) < Utg—l F

—If
U (0) =Upy (0) +u(l+7) =@ > Uy (a) = U (a),
then o = b is the choice of type 3 and the equilibrium is state .
—If
UP (0) =U2, () +u(l+7) =@’ = Uy (a) = U (a),
then type 3 isindifferent between a and b and both states /. and [ are equilibria.
—If
UP () = Uy () + 1+ —u’ < Uy (a) = U; (a),
then o} = a isthe choice of type 3 and the equilibriumis state 7.1

Proof of proposition 5.9:

Since ¢, isdefined as;

gy = 0
Sio1+u 1+f§72>—713, ife, 1 >0ande,  +u(1+7% ) —u3>0

€ = g1+ u %‘j%%‘)—ﬂ?’, ife,y >0ande, +u(1+7%)-a®<0 (>
g1 —u(l+7)+ ad if ;1 <O.

e, t > 1, describes the evolution of the difference between the cumul ative utilities of @ and b
for theinvestors of type 3:
er = Uy (a) = U} (b)
and it isobviousthat ¢, is aMarkov chain, since ¢, is identically and independently distributed
according to Q. Moreover, ¢, evolveson
= [u (fljé) — +oo) :

since the greatest amount by which thecumulative utility of b can exceed the cumul ative utility

of aisa® —u (%j) whereasthe cumulative utility of « can becomevery large, if § > & occurs
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for along period of time. Denote by P the transition probability kernel of ;. The idea of the
proof congsts in showing that ¢, is a Sationary process with an invariant probability measure
7, as defined in the statement of the proposition. Since for positive ¢; the investors of type 3
choose asset a, whereas for negative ¢, they choose b, the frequency with which a and b are
chosen in the limit coincide with

7 [0; +00)

Ql‘i‘é =3,
o (258)-00)

Denote by G theinterval [0; 4® — u (1 + r)]. The following Lemma shows that the set G is a

and

respectively.

small s, i.e. that there exists a measure v on the set
0, +20
r_ =3,
v = {u (1_02) U ,+oo)
P (¢;F) > v(F)

forany set F € ¥ and any € € G, where PX (¢; F) denotes the probability to reach a set F
gartingfromein K steps, see Meyn and Tweedie (1996, p. 111).

such that

Lemma5.l Thesat G = [0;a® — u (1l +r)]issmall.

Proof of lemmab5.1:

The assumption about the probability distribution of 6 and the continuity of the utility function
u (+) impliesthat the net utility realizations

5\
u(1—|—1_02> —1u

of a (aslongasits cumulative utility remains positive) are distributed according to a probabil ity

U

distribution ¢, such that Q" has an absolutely continuous part with respect to the Lebesgue
measure on the real numbers. Moreover, there is a number (', such that the density of @ ¢’ is
bounded away from 0 on an interval (—(’; ¢’) for some ¢’ satisfying w® — u (1 +7) > ¢’ > 0,
i.e.:
g (@) >¢ >0
foral @ € (—¢';¢") and for some ¢'.
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Dividetheset G into K sets, G .. GK with length less than g Fix an e € G; and suppose that
F C G;. Now, foreach0 < ¢ < there is apositive probablllty Pe_ that

Eta1 c (€t+% — g;ﬁt "‘%)
and a positive probability P+ that

¢ ¢
€41 € (€t 5 JEt 5 +&

Moreover, because of the assumpti ons made on the probability distribution @, these probabilities

are bounded away from 0:

P£+

Vv

¢'¢

P- > ¢
Now choose¢ suchthat £ (K — 1) < % holds. It follows that after (K — 1) steps the processe,
will be at adistance of at most ¢’ away from the set G;, of which F is a subset with probability
of at least

e
Therefore, at step K, there is a positive probability of at least:
PeuksF) =Pe(F-cux) = [ g(@dizdu®).

F—ey k1

Hence, the probability that set F' C G is reached after K steps starting at some . is at least
PX (e F) > [0 ¢'u (F) = v (F),

where v is absolutely continuous with respect to the Lebesgue measure on theinterval G. The
probability that a set F C G whichis not a subset of any G; isreached in K stepsfulfills

PE (s F ZPK e F) > [0g" e Z;ﬁeb = [0’ ¢'utet (F),
where UK | F; = F and F, C G, 1.e. Fjisapartition of F into sets each of whichisa (possibly

empty) subset of some G;. Since each set outside G isreached with a non-negative probabil ity
starting from G, it follows that the set G isasmall set and the measure v (F) is defined as

v(F) = [¢g" ¢t (F), FCG

v(F) = 0,ése
Moreover, according to proposition 5.5.3 in Meyn and Tweedie (1996, p. 127), since each small
setisapetite set, G isapetite set.ll

The next Lemmademonstratesthat the Markov chaindefined by e, isp-irreducible. ¢-irreducibility
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is an anal ogue to the concept of irreducibility of Markov chains on countable sets, defined for
Markov chains on general sets. It defines a measure o, which assigns astrictly positive value
only to subsets of the set ¥’ which arereached with strictly positive probability fromevery initial
point £, see Meyn and Tweedie (1996, p. 91).

Lemma5.2 Let o be defined as the Lebesgue measure on the set [0; 4® — u (1 + r)] and be 0
elsawhere. Then the Markov chain ¢ is -irreducible.

Proof of lemmab.2:

Obvioudly, ¢ assignsapositi ve probability only to subsets of theinterval GG. The statement of the
lemma s therefore true if it can be shown that each of the subsets of thisinterval is reached with
positive probability from any initial point. Sinceit hasbeen shown that starting fromany pointin
theinterval GG, any subset of G isreached with positive probahility, it remainsto demonstrate that
dtarting outside the interval [0; @® — u (1 + r)], asubset of thisinterval isreached with positive
probability. Consider two cases: if ¢, < 0, then ¢, grows by 43 — w (1 + r) in each period,
until £, > 0 obtains for thefirst time. But at time (t + k) g,y € [0;4® — u (1 + r)], hence
theinterval G is reached with probability 1, starting from anegativee,. If ¢, > @3 — u (1 + )
holds, then thereis apositive probability that the next {Qﬂ steps are negative with realizations
between (——%’; ——7’2&) with {Q?W 2 < @ —u(1 +r), (hence,n < 1) and, therefore, the subset
[0; {2?} -”ﬂ of G isreached with gtrictly positive probability in finite time from any initially

chosen ;. Therefore, the Markov chain is ¢-irreducible.

Since ¢ isfinite, it follows according to proposition 4.2.2 in Meyn and Tweedie (1996, p. 92)
that there exists a probability measure ¢ on ¥/, which assigns a probability of 0 to a subset F'
of ¥’ if and only if

W (5 | iPn(e;F) > 0) =0.
1 is absolutely continuous with r%pegt:%o o, hence if p (F) > 0, then ) (F') > 0 holds as
well. Denote by B (U’) the Borel o-algebraon ¥’. Let B+ (') denote the subset 5 (¥’), whose
elements are assigned a strictly positive probability according to ¢:

BT (V) ={F e B(¥)|v(F)>0}.

Note that the petite set G satisfiesG € B+ (¥').1

Part (i7) of theorem 10.4.10 in Meyn and Tweedie (1996, p. 254) combines the notion of petite
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set and irreducibility of a Markov chain with the notion of positive recurrency, which assures

the existence of an invariant probability distribution 7, asrequired in proposition 5.9:

Proposition 5.18 Suppose that a Markov chainis«-irreducible. Let 7 denote the first hitting
time of the set G. The chainis positive recurrent, if for some petite set G € B+ (')

sup F¢ [1¢] < o0.
ceG

Proof of proposition 5.18:
See Meyn and Tweedie (1996, p. 254).1

It has already been shown that the chain defined by ¢, is ¢ -irreducible and that G is a petite
set with ¢ (G) > 0 (since ¢ (G) > 0). It remains, therefore, to show that the expected hitting
time of the set G, starting from G, is bounded from above. To demonstrate this note that the
process ;, constrained to its positive part, isarandomwalk on a haf linewith negative expected
increment. Proposition 11.4.1 in Meyn and Tweedie (1996, p. 278) demonstratesthat for sucha
random walk all compact setsareregular. A regular set I’ has the property that

sup E, [7p] < o0

ecF’

foral F € BT (1), see Meynand Tweedie (1996, p. 263). Since G € B* (¥'), it follows that

sup B, [Tg] < o0

eeG
holds for the process ¢, reduced to arandom walk on the half line. Moreover, since all compact
sets are regul ar, it follows that

sup E¢ [7¢] < o0

ecF

holds for all compact sets F' C [0; +00).

Now, consider the unconstrained process ¢;. There are two possibilities: either £, remains non-
negative forever and in this case it behaves like arandom walk on the half line and, therefore,
G isregular, or e, eventually becomes negative. If ¢, < 0 a some t, then the expected timein

which ¢ reaches GG is at most

73 o144
u _u(lfGQ)
w—u(l+r)

whichisfinite. Therefore, the expected time that the process needs to reach the set G starting

from set GG isbounded from above. But then the condition of proposition 5.18 is satisfied and

the Markov chain defined by ¢, is positive recurrent. Hence, there exists an invariant proba-

bility measure 7 for the process ¢,, see Theorem 10.0.1in Meyn and Tweedie (1996, p. 238).
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Moreover, since

sup E, [7g] < o0
eevw’
holds, it follows that the process described by ¢, is a positive Harris chain™®.

It now remains to show that 7;, and 7; as defined in the statement of the proposition are positive

and sati sfy
Th w—u(l+7)
mo

Note that according to the Strong Law of Large Numbers, the cumulative utility of a if it is

chosen for an infinite number of times by the investors of type 3 satisfies:

tlinolo U (a) = —o0,
since the mean utility of a islower than the aspiration level 4*. Anaogoudy, if b ischosen for
an infinite number of periods,

tlirglo U} (b) = —o0
obtains, since u (14 r) < 3 by assumption. Therefore, asin the proofs of propositions 3.1
and 3.2 in chapter 3, the case-based decision rule implies that on a most each path of dividend

realizations, both portfolioswill be held infinitely often by the investors of type 3.

Now consider the difference U? (a) — U? (b) = &. It can be shown that &, remains bounded
above on amost each path of dividend redlizations. At timesat which a ischosen ¢; never fals
below 0, sincethis woul d contradi ct choosing the act with the highest cumul ative utility in each
period. Suppose, therefore that there is a sequence of periods¢’, t”..., such that ey, e4/... grows
to infinity. In other words, supposethat for each N > 0 thereisak such that ;. > N for al
n > k. Snce U, (a) has negative expected increments, it follows (as shown above) that b is
chosen infinitely many times on almost each path of dividend realizations. But each time that b
is chosen, the difference ¢, falsbelow 0. If ¢,» > N, the time needed to return to the originis

at least
N

3 1-0
u u 1—62

which grows to infinity, as ¢,» becomes very large. However, since the positive part of ¢; isa

random walk on the half line, it follows from proposition 11.4.1in Meyn and Tweedie (1996, p.
278) that the set GG isregular for this process and, therefore, it isreached in finite expected time

from each point in G. M oreover, the expected stopping timeis uniformly bounded above by a

118 See Meyn and Tweedie (1996, p. 207) for adefinition of a Harris chain.
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number

N =supE, [r¢] < .
eeG
The Law of Large Numbers then impliesthat for each x > 0 on almost each path of dividend

reaizations, there is a period K such that

n
2.im176; <N +k

n
for al n > K. On the other hand, the assumption that e;» — oo impliesthat there isatime K’

such that 7¢, > N + s forall i > K'. It istherefore always possible to choose . large enough,
so that

Z?:l TG,

n
acontradiction. Hence, almost each sequence ey, c4... (Where ', t”... denote periods at which

>N—|—Ii,

a is chosen) is bounded above and below.

Analogoudly, at times at which b is chosen, ¢, assumes aminimal value of « (%gf) — u3 and
increases in each period of time by an amount

@ —u(l+7).
However, e, cannot exceed @2 — u (1 + r), since thiswould again be in contradiction with the

case-based decision rule. Hence, €, is bounded on almost all paths of dividend realizations.

But then it follows that , ,

. UP(a) , U? (a)

lim 42— — lim ——t——t—
P U2 (b) P U2 (a) — &
holdswith probability 1in thelimit. For agiven set [u (ﬁl—ﬂ?) _ o) , theinvariant probability

=1 (5.64)

1—92
m; describes the mean time that the Markov chain defined by ¢, spends in this set between its

vigits to another set, [0; +00), see theorem 10.4.9 in Meyn and Tweedie (1996, p. 253). Note
that @ is chosen in periodsinwhich e, > 0 holds, whereas b ischosen in periodsinwhich e, < 0
holds. Now defineafunction ¢, : ¥ — {0;1} with

Lif z € [0;400)
Lh(x):{ 0if ze€ [u(%ﬁ)—fﬁ;()) }

It is clear that v, € Ly (V'; B(¥');7), hence that +,, has a finite expectation with respect to
won ¥'. Moreover, it has been shown above that the process described by ¢ is positive Harris
recurrent. Therefore, theorem 17.1.7 in Meyn and Tweedie (1996, p. 425) impliesthat

t

o1
tliglo—t Z w (e;) = / L dm

=1

243



holds almost surely for any initial probability distribution. Note that < Zt,l ty, (€,) represents

the mean time that the system spendsin state h. By the definition of ¢, (), it foll ows that

1 t

lim - Ly, (ET) =Tp
t—o0
T=1

amost surely. Hence, the frequency with which the investors of type 3 choose a in the limit

equals; on amost all paths of dividend redlizations. It follows that
CP (@) 7
= |CEB)]
holds with probability 1 aswell. Substituting thisinto (5.64) implies:
S s _L(_L _
Lo U@ |G (a)] ZmeCt@ Topa)
too UB (D) t5oo [C3 (D) w(l+47) — @B

ur(a) =3
B ﬂ llmt—>oo ZTGC?(Q) ‘Cts(“)| =1
T u(l+r)—uad |

It follows that the mean utility of a, as observed by the investors of type 3 converges with prob-

ability 1 to anumber p/, with

T : Ur (CL)
e = lim — .
Hoo%(a) C (a)
Hence,

—3
s u’ —u(l+r
— - 73 ( r a
@ u® — fig
Proof of propostion 5.10:
Consider the diff erence between the cumulative utilities of « and b restricted to its positive part:
51& = Et,if€t20
gt = 0,€se.
Itiseasly seen that £, isarandom wal k on the half linewith positive expected i ncrements, since

0 5
u</ﬁu(+1_92)g(5)d5

holds by assumption. By proposition 9.5.1 in Meyn and Tweedie (1996, p. 278), ¢, istransient.

Hence, for each state and especialy for £, = 0, the expected number of vists to this State is
finite, implying that the probability of an infinite number of visits to 0 is 0. Furthermore, since
it is assumed that

u(l47r) <@’
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holds, it followsthat once e, < 0 obtains, b isheld only for a maximum of
U %ng —ad
B
periods. Hence, ;.4 > 0 occursinfinlitetime k. Buttrllen the transience of £, implies that the
decision-maker will switch to b only for afinite number of timeswith probability 1. Hence, on
amost al paths of dividend realizations, b isheld only for afinite number of periods. It follows

that the limit frequency of state 2 is 1, whereas those of state/ is(0.H
Proof of proposition 5.11:
Denote by ¢ (a;b), e (a; M P) and ; (b; M P) the diff erences between the cumulative utilities
of ¢ and b, a and the market portfolio and b and the market portfolio, respectively:
et (a;af) = U (a) — Uy (@)
for o,/ € {a;b; MP} and o # . First, | show that the market portfolio is almost surely
choseninfinitetime. In a second step, | demonstrate that, once chosen, the market portfolio is
held infinitely long in expectation. The Strong Law of Large Numbers then ascertains that the
market portfolio is held with frequency 1 almost surely in the limit.
Denote by
E(ad) = g (a;d),ife (;a) >0
g (o) = 0,ifei(a;a) <.

Supposethat a iscurrently chosen. Insuch periodsé, (a; M P) and &, (b; M P) behave asrandom
wal ks on the half line with negative expected increments

/6[u(1+6) —u(l4+6+7)]g(6)dd <0
and ‘ 5

u—/ u(l+6+71)g(6)dsd <0,
respectively. For such random wal kﬁs on the half line al compact sets are regul ar, see proposi-
tion 11.4.1 in Meyn and Tweedie (1996, p. 278). Moreover, by proposition 4.3.1in Meyn and
Tweedie (1996, p. 96), the point 0 is an atom of arandom walk on ahaf line with negative ex-
pected increment. Therefore, the chains defined by é; (a; M P) and&; (b; M P) are p-irreducible
with
@ (0;00) = 0
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v(0) = 1.
Hence, the set {0} has a positive measure under the maximal irreducibility measure ¢ of these
two chains. Therefore, starting from any positive &; (a; M P) > 0 and & (b; M P) > 0, the
random walk on the half line reaches 0 in finite expected time. Sincee;(a; MP) = 0 and
g; (b; M P) = 0 obtainwith probability 0, it followsthat e, 4, (a; M P) < 0ande;,, (b; M P) <
0 obtain amost surely in finite time &, (where k£ in general depends on the path of dividend
realizations chosen). But
ek (a; MP) <0
implies that the market portfolio hasalarger cumul ative utility at time (¢ + k) than the portfolio
consisting of risky assets only. Hence, with probability 1, the representative investor abandons

a infinite time.
Suppose first that &; (a; b) has p_)ositi ve expected i ncrements,

/6u(1+6)g(6)d6 —u(l+7)>0.
If at time (¢ + k) the repr@enfative investors chooses b, then, by an argument similar to theone
presented above, both &; (a;b) > 0 and &; (b; MP) < 0 obtain in finite time with probabil ity
1. Therefore, in finite time the investor switches away from b and chooses the market portfolio

or the risky asset. It remainsto show that almost surely he will choose the risky asset and the

riskless bond only for afinite number of times.

Indeed, suppose that « is chosen an infinite number of times and note that it cannot be that a is
aways abandoned for b, since ¢; (a; b) has positive expected increments, if a is chosen and re-
mains constant when b or M P is chosen. Hence, starting from 0, &; (a; b) will return to 0 only
afinite number of timesin expectation and, therefore, with probability 1, the representative in-
vestor will switch from a to b only afinite number of times. Hence, since a is chosen infinitely
often and since &; (a; M P) becomes0 in finite time, it follows that the representative i nvestor
switches to the market portfolio infinitely often. Note, however that once the market portfolio
ischosené, (a; M P) and &, (b; M P) have negative expected increments. Therefore, the proba-
bility that the cumulative utility of the market portfolio falls below the cumulative utility of the
assetsa and b islessthan 1. It follows that the probability that U, (M P) falls bel ow the cumu-
lative utility of a for an infinite number of times is 0. But then, the decision-maker will switch

only afinite number of timesbetween a and the market portfolio, acontradiction. Hence, amost
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surely a is chosen only for afinite number of periods.

Alternatively, if b is chosen infinitely often, it follows that (since a can be chosen for a finite
number of times onalmost each path of dividend realizations, as shown above) the representative
investor switches infinitely often between b and the market portfolio. Again, once he switches
to the market portfolio, there is a positive probability that the cumul ative utility of the market
portfolio never falls below that of ¢ and b. Hence, the probability that the cumulative utility of
the market portfolio fall sbel ow the cumulative utility of « and b for aninfinite number of times
is0 and, theref ore, the deci sion-maker can only switch between b and the market portfolio for a
finite number of times. The assumption that b is chosen an infinite number of times, therefore,
also leadsto acontradiction. It followsthat both a and b are chosen for afinite number of times
on amost all paths of dividend realizations. Therefore, the market portfolio must be chosen for

an infinite number of times on almost each path of dividend realizations. Hence,
Tmp = 1
m, = m=20
obtains.

The argument for the case
5
/ u(l4+6)g(6)dd —u(l+7r)<0
8

is analogous and the proof isobtained from the two preceding paragraphs by replacing a by b

and vice versall
Proof of propostion 5.12:

First note that none of the acts a and b can be chosen only for a finite number of times, since
thiswould imply that thecumulative utility of the acts chosen infinitely often convergesto —oo
with probability 1, whereas the cumulative utility of the act chosen only for afinite number of
times remains finite. This contradicts the case-based decision rule, which prescribes choosi ng
the act with the maximal cumulative utility in each period. It follows that acts a and b are chosen

infinitely often on almost each dividend path.

Now consider the di ff erences between the cumul ati veutilities of the actse; (a; b), &; (a; M P)and

et (b; M P). Six cases are possible.

247



1. Suppose that at time ¢ the representative investor switches from portfolio a tob. This
means that the diff erence between the cumul ative utilities of a and b satisfies:
ei—1(a;0) >0

g (a;0) € [u(§) —u;0].
Sincefromt on, b istheact chosen, ¢; (a; b) behaveslikearandomwalk on the negative half
line with positive expected increment (since the cumul ative utility of a remains unchanged,
whereas the cumul ative utility of b falls in expectation). Consider as above the process
e+ (a; b) constrained to the negative half line and note that, by an argument similar to the
one used in the proof of proposition 5.11, starting from the interval [u (&) — @; 0], it will
reach 0 in finite time with probability 1. Therefore, in finite time the diff erence between
the cumulative utilities of a and b becomes positive again and hence, the representative
investor switches either to M P or to a. Moreover, since the random walk on a half line has
the property that all compact intervals are regul ar, it follows that the expected time needed
for e, (a; b) to become positive again, starting from [u (&) — @; 0] is uniformly bounded
above™®. Hence, the time for which b is held is aso uniformly bounded from abovein

expectation.

2. Suppose that at time ¢, the representative investor switchesfrom portfolio b to a. This
means that the difference between the cumul ative utilities of a and b satisfies:
et-1(a;0) <0
et (a;b) € [u—u(r);0].
An argument analogous to those presented in case 1 shows that the time during which ais

held is uniformly bounded above in expectation.

3. Supposethat at time ¢, the representative investor switches from portfolio a to M P. This

means that the diff erence between the cumul ative utilities of ¢ and M P satisfies:
-1 (a; MP) >0

i {n(B2) w000}

g (a; MP) €

119 Of course, if &; (b; MP) < 0and e (a; M P) < 0obtain befores, (a; b) becomes positive again, the

investor will switchto M P even a an earlier period. This does not contradict the conclusion tha the
expected time during which b is held ina row is bounded from above.
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Since the cumul ative utility of the market portfolio behaves like a random walk with
negative expected increment as long as the market portfolio is chosen, it follows that
e+ (a; M P) is arandom walk on the negative half line with positive expected increment.

Hence, starting from

Lreri‘i%]u(l%—é) —u(14+6+7);0

it becomes positivein finite time with probability one. The expected timefor ¢, (a; M P)

to become positive is moreover uniformly bounded above for all starting points lying in

thisinterval.

Suppose that at time ¢, the representative investor switches from portfolio b to M P. This

means that the difference between the cumul ative utilities of b and M P satisfies:
g,_1 (b MP) >0
et (b; MP) € {u (% +r) —u(l+6+7);0].
An argument anal ogous to the one presented in case 3 shows that the time during which

M P isheld isuniformly bounded above in expectation.

Suppose that at time ¢, the representative investor switches from the market portfolio to a.
This meansthat the difference between the cumul ative utilities of a and M P satisfies:
gi1(a; MP) <0
g (a; MP) e [0;u—u(l+4+7)].
Since, however, the market portfolio always yields returns which are strictly higher than

those of a, it follows that the difference between the cumulative utilities of ¢ and M P

strictly increases in each period of time and theref ore in at most
u—u(l+d+r)
minée[ﬁ;g] {u(l+6+7r)—u(l+06)}
periodse;_, (a; M P) < 0obtainsagain. Hence, asin the previous cases, the expected time

during which the investors hold « isfinite and uniformly bounded above.

Suppose that at time ¢ the representative investor switches from the market portfolio to 5.
This meansthat the difference between the cumul ative utilities of b and M P satisfies:

-1 (b; MP) <0
et (b MP) € 0;u—u(l+48+7)].
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Since the difference ¢, (b; M P) decreases in each period of time by at least u (1 + r) —
u (144 + r), which is positive with probability 1, it follows that amost surely
et (b; MP) < 0 obtainsagain in finite time. This happensin at most

[ u—u(l+d+r) -‘

u(l+r)—u(l+do+7)
periods, if ¢ > Oholds. If & = 0, we can again use the property of a random walk

with negative expected increment to demonstrate that the expected time needed for
e+ (b; MP) < 0 to obtain is finite and uniformly bounded above.

The discussion of the six possible cases shows that the expected time during which a single
act is chosen in arow isfinite and uniformly bounded from above. 1n anaogy to the proof
of proposition 5.10, it can be, therefore, shown that every sequence e (a; @), a # o/, «,
o' € {a;b; M P} isalmost surely bounded. Hence, for each o # o/, thelimit of the cumul ative
utilities satisfies:

Ut () Ut (o)

A U (o) fm U, () + & (o 0!) L

Sincetheredlization of the market portfolio i sobserved in each period of time, the Strong L aw of

Large Numbersimpliesthat the cumulative utility of the market portfolio aimost surely satisfies.

U (MP 6
tlim %:/ u(l+6+7)g(6)ds— u.
— 00 _ﬁ
It foll ows, therefore that
U C (ZTGCt a ’11,7—((1) _ a)
lim 2@, [Ce(@) o) ~1.

oo Up (MP) 20t (501 4§54 1) g (6)do — @
Since u- (a) can obtain values between [u (8);u (1 +6)], it follows that Lﬁ%ﬁ%@ isalso
bounded between [u (8);u (1 + 6)] on each possible path of dividend realizations. It follows
that the quoti ent Jgfﬂ must be bounded away from 0 on almost each dividend path, in order to
guaranteethat the limit isindeed 1. Hence, the mean proportion of time during which asset a is
choseninthe limitisstrictly positive on amost each path of dividend realizations. Analogous
reasoning shows that the mean proportion of time during which asset b is chosen isalso strictly

positivein the limit with probability 1.1
Proof of propostion 5.13:

The aspiration level of the investors of type 1 has been chosen low enough, so as to guarantee

that they never switch away from their initial choice. Hence, only the behavior of the investors
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with high aspiration level hasto be considered. Naote that

u((p(’pﬁ‘i) ao—{—(l—ozo)r) —u(14+8+ (1—ag)r)

isthe utility realization of portfolio oy, given that thedividend of the risky asset is 0 (the lowest

possible) and still al young investors choose . Sincefor al §; € [&;6],
@ <u(l+8+(1—ag)r) <u(l+61+(1—ag)r)
holds by the strict monotonicity of « (-), type 2 observes acumulative utility of an act a given
by:
Ui (@) = s((po;a0); (per; aern)) -

- [u ((“;51) a0+ (1 +7) (1 —a0)> —a2] .

If a?* = 2%, then p; = p, and therefore UZ (o) > U? () for all a # «. Thereforeif every

young investor chooses v, o2* is indeed the optimal choice of type 2. Hence, in equilibrium

p1 = po obtains for each 6, € [§;6].

By induction, the same result holds for each period of timet, hence («o; co; po) isa Stationary

state of the economy.ll
Proof of proposition 5.14 (continued from the main text):

To show that

1—6, 420 1
Din Z 1;_ 140 :91060+5(1—91)
obtains amost surely in finite time, first compute the difference between two subsequent mem-

bers of the sequence p;;.:

£ (1—6 "
Pl — Pleer = Paa (1 01) {w —(1+7)+ (7" _ ) at“] , (5.65)

* *

ptk—l - 010&0 ptk—l
where @ denotes the return of a portfolio which yields utility exactly equal to @2. Note that
p:k—l (1 — 91)

" >1— 61,
ptk—l - 91050
whereas
1—91+291(X0 1—61
— 0109 =
2 2

isthe least amount by which p,. should grow to obtain avalue higher than =20,

Note that

w—(l—i—r)—i—(r— o

*
ptk—l

)Oétkl —lmw—(1—ay) (1+7r)—ay— by
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*

*kfl +6
= @—(1—af) (1+7) - (Bp—) oy — [ — (1~ ag) (1+7) — ap — 6]
tk—1

O

— 2« tr 2%

= 7 (Ozt/ — ao) + Q1 — Oy
th—1

and that by the choice of ¢/,
w—(1-a)(1+7)—ag— 06y >0

holds. Hence,
w—(1+7r)+ (r— ftk )O[tkl >7‘(af,*—ozo) >0
. ptk—l
if
1)
*tk a?:,l - 6t/ Z 0.
ptk:—l

Now choose z in such away that

1 2%

2_2’ :T(Oét/ _OZO) .

Obvioudly, after at most z (not necessarily sequential) periodsinwhich 6, < a—%f’—lpjk_l obtains,
o

the diff erence between pj, and po would exceed 152 and, therefore, pi, > 1=20a would

obtain.

Let ¢* denote the last 2™ period inwhich 6, < &y obtains. It follows that there exists at™ such
that

1—46
t"—min{tkgtz]p:k—poz 5 1}

and, therefore,

p:n 2 1— 91 —2|— 291@0
1
2* > -
Oétn el 2

obtains. On the other hand, since —‘—Zg’}fg‘l > 1, the probability that the number of periodsin which
tk—1
O < —*—ai’ Py.—1 Obtainsislessthan z is 0 on the set of sample paths of dividend realizations.
thk—1

Hence, with probability 1, ¢t* and, hence also ¢ isfinite.ll
Proof of propostion 5.15:

It hasbeen shownabovethat foru (1 +48 + (1 — ag) r) < u? theinvestorsof type 2 switch either
to a?* = 0, implying that the price p; = 61, or to o2 = 1, implying p; = 1 — 601 (1 — ap)
in some finite period ¢ (w) asderived in the proof of proposition 5.14. It remains to show that

after the first time, inwhich a?* = 0 or o2* = 1 obtains, acycle emerges.
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Consider first the case of a?* = 0 and p; = 0, . Sincethelast (and only) case observed now
by type 2 is (61a; 0;u (1 + r)) and sincew (1 + r) < a, it follows that the optimal act at p;
isaf,; = 1. Butif o7, = 1, the price becomes p;,; = 1 — 61 (1 — ap) and since thesimilarity
function is strictly decreasing in the Euclidean distance between problem-act pairs, it is easily

seen that off, = 1 isindeed the optimal choice.

Alternatively, if a?* = 1 and p} = 1 — 61 (1 — ap) hold and the dividend redization at time
(t+1)isSbde < 6, then the investors of type 2 observe a utility realization of at most

b4 1 —9
1 )
“( +1—91(1—a0)) <

Note that such aé € [8; 6] exists, since the return of the portfolio a = 1 if the dividend realiza-

tionis g and the investors of type 2 hold o = 1 isat most
w1+ 4
1-— 91 (1 — 040) '

u<1+1_91é§1_a0)) <u(l+46+4+(1—a)r)

But

isequivaent to
§01 <r,
whi ch is always sati sfied under the assumption made.

Hence, if 6,41 < &, theinvestors of type 2 are unsatisfied with & = 1 even at the highest
price that might obtain in period (¢ + 1). From the fact that the similarity function is strictly
decreasing in the Euclidean distance, it follows that the investors of type 2 choose af_*H = 0.
The equilibrium price is computed asp;, ; = 610 and itiseasily verified that at p;,, a7, = 0
isindeed optimal.

If at time (¢ + 1) at which theinvestors of type 2 hold therisky asset, its dividend redlization is
higher than 6, then the utility they obtain exceeds @2 as |ong as the price remains unchanged at
pp=1—01(1— o).

But in this case the investors of type 2 are satisfied with o = 1 and
arg max U7 (a) =1

a€[0;1]
holds, since the similarity function obtains its maximum if the problem-act pairs are identical.

Therefore o2t = 1 andp?t, =1 — 6; (1 — ) obtainsin an equilibrium.
The argument above shows that the evol ution of prices and portfolio choices follows a Markov
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process with atransition matrix:

~ Pra=1-0(1-a) | pisy =bhayg
P=||pi=1-0,(1-aqy) q l—q
pzk = 91@0 1 0

The invariant probability distribution of the states p, = 1 — 0, (1 — oy); o) = ag; a3 = 1 and

p = b1a0; af = ap; af = 0 iscomputed inthe same way asin the proof of proposition 5.4
Proof of proposition 5.16:

It follows from the proof of proposition 5.15 that a cycle with two states 4 and [ emerges af ter
a finite number of periods ¢ (©). Moreover, the investors of type 2 switch to %, = 0, if the
last period price satisfies p; = pp, and the dividend is lower than 6, causing the price to fall
to p;,; = p.. Conversely, given that the last period price of a islow (p; = p;, a?* = 0), the
investors of type 2 are not satisfied with « (1 +r) and switchto o}, = 1, causing the priceto

riseto py,.

It remains only to consider periods ¢, such that p; = pp, a?* = 1 and 6441 > 4 hold. Since
u (1 + ﬁ) < 2, it follows that the cumulative utility of « = 1 isnegative a (¢t + 1) for the
investors of type 2 and, thus, the optimal act at any pricep; < pj, isa?* = 0. But for a?* = 0,
the price p: = p; < pr, must hold and, therefore, o?* = 0 and p; = p; obtain as equilibrium at

timet.

To summarize, the investors of type 2 choose o?* = 1 in each period ¢, such that o?*; = 0 and
they choose a?* = Oineachperiodt, suchthat o?*, = 1. Therefore, the result of the proposition

obtains.l

Proof of proposition 5.17:

1. If @® < p (o | po), then the cumulative utility of ap for the investors of type 2 isgiven by:
t

Uf (@) = Z [0 (v0) — ﬂﬂ ,

T=1

as long asthey had «,. Since

E [v: ()] = p (o | po) > u”
U? (ayp) behaves as arandom walk on R with positive expected increment. According to
theorem 9.5.1 in Main and Tweedie (1996, p. 228) such random walks are transient, hence

the expected time until their first return to 0 isinfinite.
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2.

1f @2 € (1 (g | po);u (1+ 7)), then the process

U7 (a) :{ OU’t (ao), gls(ét (ap) = 0 }

describes the cumulative utility of o for the investorsof type 2 aslong asitisnon-negative.

U2 () is arandom walk on R¢, but with negative expected increments, since now

p (o | po) < u

Since for such random walks all compact sets are regular, see proposition 11.4.1 in Meyn
and Tweedie (1996, p. 278), it follows that

U7 (a0) = 0
obtainsin finite time with probability 1. Therefore, since the distribution @ is continuous,
it follows that

U (ag) <0
obtains almost surely in finite time.
Once the cumulative utility of g has become negative, apply the proof of proposition
5.15 to show that the investors of type 2 will choose either o = 0 or a = 1 infinitetime.
Note that this result can be applied, since the portfolios o, tF < "1, constructed in this
proof?® have acumulative utility of 0 and, therefore, do not i nfluence the evaluation of any
of the acts available, whereas the cumulative utility of the last chosen diversified portfolio
aZ¥ isnegative. Once = 1 or o = 0 has been chosen for the first time, its cumulative
utility behaves as arandom walk with positive expected increments, since

P <u(l4+r)<pl]1—0:(1—-ap)).

Therefore, it remains positive infinitely long in expectations. Hence, the expected time
during which the investors of type 2 hold oo = 1 or aw = 0 isinfinity.

Note, further that the cumulative utility of any portfolio o as observed by the investors of

120 1n the case of long memory, however, the time periods ¢* will not denote the subsequent periodsin which
the dividend realization islower than &, but those periods in Whlch O < § and
Upe (aFi) +u(adics (L4+6p) + (1 —afia) (147)) —a® <0,
whereas Uy —1 (a7 ;) > 0 holds. The portfolio aZ: (and, hence, the price p;,) are then chosen in such a
way that

+ 06
U, ( %) +u <y ok 1+(1—atk 1)(1+r)> —@2=0
thk—1
Hence, U,x (o) = 0 for each a € [0; 1] and, therefore, the choices till time ¢* do not influence the
evaluation of the available portfolios.
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type 2 isgivenby:
Uf (a) = s ((p; @) (1 = 01 (1 = a0) :1))) Vi (1) + 5 ((p; @) 5 (61003 0))) V;* (0)

+5 ((p; @) 5 ((pins ) Vi2 (af)
where the notation from the proof of proposition 3.12 is used and the upper index 2 refers
to the investors of type 2. Now, if exactly one of the numbers V;2 (1), V;2 (0) and V2 (a%)
ispositive, the act 1, 0 or o will be chosen, respectively. Therule of cumulative utility
maximization precludes the case that two of these numbers are positive at some ¢*#. But if
al of them are negative, then U? (o) becomes a convex function in «, since the similarity
function is concave. Therefore, a corner solution obtainsin each period of time. Hence,
either = 1 or a = 0 are chosen.
On all paths, on which the cumulative utility of « = 1 never falls below the cumulative
utility of a = 0, thefrequency of o = 1 is 1. If, however the investors of type 2 switch to
a =0 a sometime T, then

w(l+r) >u?

implies that the cumulative utility o = 0 exceeds the cumulative utility of o = 1 for
eacht > T. Hence, « = 0 ischosen in each period afterwards. On these paths, the limit

frequency of a = 0 is, therefore, equal to 1.

Ifu2 e (u(l4+7r);u(l]1—0;(1—ag))),thentheinvestorsof type2 switchtoa =1 or
toa = 0 in finitetime, asshown in part 2 of this proof. If & = 1 has been chosen, then
its cumulative utility behaves like arandom walk with positive expected increments and,
therefore, o« = 1 is held infinitely long in expectation. If o = 0 has been chosen, then it
will be only held for afinite time, since its return is considered unsatisfactory. Moreovey,
since the similarity function is concave, once the cumulative utilitiesof o = 0, o2 and,
hence, aso of « = 1 have become negative, the optimal act will be a corner solution, as
shownin part 2 of this proof. Therefore, a corner solution obtainsand o = 1 will be chosen
in finite time and then held forever in expectation.

Even, if the investors of type 2 should switch to o = 0 at some time, the cumul ative utility
of thisportfolio would become | ower than the cumulative utility of o = 1 infinitetime. But

since the events that the cumulative utility of « = 1 becomes negative have a probability

121 The proof of this statement is by induction and is analogous to the argument stated in the proof of
proposition 3.12 in chapter 3.
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& =

lower than 1 and are independent, the probability of the event that the cumulative utility of
a = 1 falsbelow 0 infinitely oftenis 0. Hence, in thelimit, type 2 indeed holdsa = 1
with frequency 1.

Now, let u? > (1] 1 —61 (1 —ayp)). In this case theinvestors of type 2 again switch to
one of the corner actsin finitetime. Asin the previous cases, the concavity of the similarity
function implies that only corner acts will be chosen in each period of time. However, in
this case neither o = 0, nor o = 1 are considered sati sfactory in expectations. Denote by

e, the following process:
V2 (0) [s ((pn3 1) 5 (P ) = 8 (213 0) 3 (P 03)))]

= =V
=0 1—s
5t—1+“<1+f91(1170))—ﬂ21 ifEt_ledet_1+u(1+Timm>—ﬂ2>0
8t—1+U<1__9]0%> — u?, ife;1 >0ande, 1 +u (fgﬁ) —u? <0
g1 +u(l+r)—u? ife;-1 < 0.

Notethat (1 — s) ¢, where
s=s(p=1-0,(1—ap);a=1);(p=0b1a0;0=0)) € [0;1),
describes the evol ution of the difference between the cumul ative utilities of ¢ and b for the

investors of type 2. To seethis, write
e, =UZ (1) = U7 (0) = V2 (1) + V2 (0) = V2 (0) = sV (1) + V(1 — 5) =
=[VZ (1) -V20)] 1=+ V(1-s).
By the same arguments as those used in the proof of proposition 5.9 it can be shown that ¢
isay-irreducible Markov chain on
"o 9106() +§ _o.
v P(l — 01 (1 —a0)> ! ’+OO)
with an invariant (finite) probability measure 7 such that
N (]
lim ————— = —,
t=o0 [CZ(0)] o
almost surely holds, where 7, = 7 [0; +-00) and my = [u (1—_99‘%%0—)) — 0> denote the

limit frequencies with which acts a and b, respectively, are chosen by the investors of type
2.

In anal ogy to the proof of proposition 5.9 it can be show that V2 (1) — V2 (0) must be
bounded on almast each path. Hence, U2 (1) — U2 (0) is al so bounded with probability 1
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and, therefore,

almost surdly holds. It folows that
VE (D) +sV2(0) + V2 (afh) s (pni 1) 5 (P s 03)))

im = 1.
t=o0 V2 (1) + V2 (0) + V2 (o) s ((pa3 1) (pn: o))
Since V2 (aZ¥) isfinite, it does not influence the limit, hence
Yrec2y(vr(1)-a) > e (ullr)—a?)
2 €Cy () 2 €CL (0
t—00 9 1| Zrec) O (1)—7) 9 /o reco@+n)—a2)
2 Lrec? (vr (1)—a2) B
; T |(1c)t2(1)| +s(u(l+r)—a?) 1
1m — = 1.
oo ez y(vr () —a2) _
T s EC'|(01}(1)| + (u(l+r)—u?)
This implies
—2
T . 27602(1) (vr (1) — %) 9
— lim L =(u(l+7r) —u),
R cz ) (el =)
with probability 1. Hence, there existsa pf such that
0~ lim > recz(y vr (1)
Pos |CE(1)

holds with probability 1 and
T u(l+r)—u?

= 2

= T4

7o H1
amost surely obtains.
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Chapter 6. Fithessand Survival of Case-
Based Decisions— An Evolutionary Ap-
proach

In chapters 3 and 5 of thisthesis, | have analyzed the behavior of case-based decision-makers
who face a portfolio choice problem with exogenous prices or act in a market environment.
The primary aim was adescriptive one, but | have also claimed that this behavior could explain
empirically observed phenomenawhich seem to be incons stent with the hypothesi s of expected
utility maximization combined with correct or rational expectations. In an individua portfolio
problem, the case-based decision-makers fail in general to choose the optimal portfolio at the
equilibrium price. Their portfolios are often underdiversified and high aspiration levels cause

them to trade too much and | ose money.

In amarket context, equilibria with zero asset prices cannot be excluded in general and case-
based decision-makers are not always able to learn to choose an optimal portfolio. The price
dynamicsin amarket popul ated by case-based decis on-makersexhibits patterns which can help
explain phenomena such as arbitrage possibilities, excess volatility, bubbles and predictabil ity
of asset returns. However, if the aspiration level is chosen appropriately and the memory of the

investorsislong, case-based deci son-makers |earn to choose the optimal portfolio in the limit.

The explanatory power of the case-based decision theory depends crucially on the question of
whether case-based decision-makers can survive in a financial market. Indeed, consider an
economy with different types of investors whose shares in the popul ation evolve over time. If
it turns out that investors of a certain type (say, case-based decis on-makers), acquire system-
aticaly lower profits compared to investors of another type (e.g., expected utility maximizers),
then the weal th share of the case-based investors will become insignificant in the limit. Hence,
these investors will not be able to inf luence the market process in the long-run. Whatever ex-
planations have been found based on the premise that such investors exist in the market, they

will be invalidated by the market evolution.

In this chapter, | address one small part of this question: whether case-based decison-makers



can survivein amarket in the presence of expected utility maximizers. Gilboa and Schmeidler
(1996) show that if a case-based decision-maker adapts his aspiration level in a manner that
is both ambitious and realistic, he eventually learn to imitate an expected utility maximizer
with rational expectations provided that the environment is stationary. However, to the best of
my knowledge, there are no results eval uati ng the rel ative performance of case-based decision-
makersin a market environment. Therefore, a description of the evol ution of such an economy

is of interest.

Indeed, Matsui (2001) shows that each case-based decision-maker can be represented as an ex-
pected utility maximizer withbelief sover some state space. Thestate spaceis, however, different
for expected utility maximizers and case-based decision-makers. Whereasthis representation is
still intuitive inan individua decision-making problem, in which the states of nature are viewed
as subjective, itsintuition seemsto belost if amarket is considered inwhich the states of nature
are exogenously determined (say by a dividend process) and in which investors with diff erent

beliefs can be naturally compared, only if their beliefs comprise the same state-space.

Asusual, inthemodel presented in this chapter, case-based decision-makersbasetheir decisions
solely on what they have observed in the past. They eval uate an act according to its previous
performance as recorded by their memory. The achieved returns are eval uated by comparing
them to an aspiration level. The act that has the highest cumulative utility is then chosen. In
contrast, the expected utility maximizers choose an act based on their (subjective) expectations
about the asset returns in the next period. They prefer the act with the highest expected utility
given their beliefs.

The proportions of the two typesof investorsand, therefore, their wealth shares evol ve according
to the rel ative success of both groups. The higher the returns achieved by a type of investors,
the more off-springs they have, or, aternatively, the higher the share of the initial endowment
they recelve in the future. Thisendogenizes the initial endowment of the investorsand alows

to address the issue of the rel ative performance of these two strategies.
Two questions are of main interest:

First, whether expected utility maximizers can always outperform case-based deci sion-makers,

i.e. whether case-based decision-makers are able to survive in such an environment;
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Second, whether the effects observed in a market populated solely by case-based decision-

makers also transfer to a market in which expected utility maximizers are present.

Indeed, even if it were found that case-based decision-makers can survive in presence of ex-
pected utility maximizers, it could be still the case that they survive by smply imitating the
behavior of the latter. The answer to the second question is, therefore, crucia for the issue of

the expl anatory power of the case-based decision theory.

To analyzethese issues, the chapter is organized as follows: section 1 surveys shortly thelitera-
ture on evolutionary finance. Section 2 presents a description of the economy. In section 3, the
evolutionary dynamic of investor types is introduced. In section 4, the evolutionary dynamic
is analyzed for the case of risk-neutral expected utility maximizersin order to ask the question
whether case-based decision-makers can survive in afinancial market. Section 5 addresses the
inf luence of case-based investors on prices. Sections6 and 7 generali ze some of theresultsfrom
section 4 to the case of expected utility maximizers with a utility function exhibiting constant
rel ative risk-aversion (CRRA). Section 8 concludes. Theproofs of al propositions are stated in
the appendix.

6.1 Survey of the Literature

In the last years, the problems of evolution in financial markets have been gaining attention in
the economic literature. As a starting point serves the common view formul ated by Friedman
(1953) that markets select for rational traderswith correct beliefs. Atafirst glance, the statement
resembles atautology: should noisetradersenter the market, they would makelosses, sincethey
would be buying at high prices and selling at low prices. Therefore, rational traders would be
able to make profits at their costs. Astime evolves, the wealth of the noisetraders would shrink
to 0 and the market would be dominated by rational traders, who would determine the pricesin

equilibrium.

Thorough analysis of this question, however, leads to ambiguousresults. One of the approaches
chosen by De Long, Shleifer, Summers and Waldmann (1990, 1991) models explicitly the be-
havior of rational, as well as of noise traders. 1n an overlapping generations model they show

that if the misperceptions of the noisetraders lead them to choose ariskier portfolio than the one
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chosen by the rational traders, then the noise traders dominate the market by achieving higher
expected returns than traders with correct beliefs. The reason is that rationa traders engaging
in arbitrage face the risk that they will have to | eave the market at atime at which the mispric-
ing caused by the noise traders aggravates. This effect is called noise trader risk. Whereas De
Long, Shleifer, Summers and Waldmann (1990) obtain their results by comparative static, the
latter article, De Long, Shleifer, Summers and Waldmann (1991), models an evol utionary fi-
nancial market. The drawback of this eval utionary model consistsin the assumption that asset
prices are independent of the behavior of the market partici pants and, especialy, of the strategy

of the noise traders.

Inasimilar setting, but assuming a non-competitive market for assets, Palomino (1996) shows
that noise traders can dominate the market even if the evolutionary selection accounts for the
disutilitiesof risk-bearing. Hisresultsrely on animitationdynamic based not on rel ative payoffs,

but on a mean-vari ance function of the difference of returns of rational and noise traders.

These results opened a discussion on the criteria of investment strategies for which a market
selects. Severa studies on this issue, see Blume and Easley (1992), Hens and Schenk-Hoppé
(2001), Evstigneev, Hens and Schenk-Hoppé (2002), show that the most successful strategy
consists in maximizing logarithmic expected utility with correct beliefs. Since the logarithmic
functi on hasthe property to maximizethe growth of weal th, investorswith such utility functions
accumul ate the whol e market wealth over time and drive other types of investors to extinction.
Evstigneey, Hens and Schenk-Hoppé (2002, 2003) further demonstrate that the strategy of ex-
pected utility maximizerswith correct beliefsand | ogarithmic utility function i sthe sole globally

stable strategy in afinancial market.

Should a logarithmic utility maximizer be absent from the market, Blume and Ead ey (1992)
show that the market selectsfor patient investors if relative risk-aversion is controlled for and
for the investors with relative risk-aversion close to 1 if the discount factors are controlled for.
Therefore, traders with systematically wrong beliefs survive only if they are more patient or if
their coefficient of relative risk-averson is close to 1, implying a utility function close to the

logarithmic one. The influence of risk-aversion for survival is, hence, not unequivocal .

Correct beliefs can also be used as a selection criterium. Especidly, in markets with perfect

foresight, agents with beliefs closest to the truth perform best, as shown by Blume and Eadey
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(2001) and Sandroni (2000).

Whereas the mgjor part of the literature searchesfor the best strategy, thereis still littleresearch
into how different investment rules perform relative to each other. One such issueis addressed
by Sciubba (2001), who analyzes the relative performance of the CAPM rule, as compared to
logarithmic utility maximization with correct beliefs and mean-variance utility maximization.
She showsthat CAPM-tradersvanish, whereasthose maximizing amean-variance utility i mitate

the logarithmic utility maximizers and, therefore, survive.

Giventhat selection criteriahave been identified and studied, it seemsthat the questi on about the
rel ative performance of two strategiesis easy to answer by examining which of these strategies
is superior according to a given criterium. Thisis, however, not the case for the two investment
rulesanal yzed in this paper. The reason isthat the models described above make strong assump-
tions about the availabl e portfolio rules and the belief s of the investors as well as on the market

structure.

Most of the work cited, e.g., Blume and Ead ey (1992, 2001), Hens and Schenk-Hoppé (2001),
Evstigneev, Hens and Schenk-Hoppé (2002), assumes that the assets in the economy are short-
lived, thus, ignoring the influence of capital gains on the market selection. In this chapter, a

long-lived asset is model led.

Evstigneev, Hensand Schenk-Hoppé (2003) derive their resultsfor amarket with long-lived as-
sets, but they assume, like Blume and Eadey (1992) that the investment rules are simple, i.e.
the share of wealth invested in a given asset remains constant over time, or that the investment
rule does not depend on current prices. None of these assumptions holds, neither for the strat-
egy of the case-based decision-makers, nor for those of the expected utility maximizers, in this
model.

The results of Sandroni (2000) and of Blume and Easley (2001) are based on the assumption of
perfect fores ght, which cannot be fulfilled for case-based decision-makersin general and is not

satisfied for the expected utility maximizersinthis model, either.

6.2 The Economy

The structure of themodel isessentially the same asthe one presentedin chapter 5, except for the
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introduction of expected utility maximizers. Consider an economy, consisting of a continuum
of investors uniformly distributed on the interval [0; 1]. The economy evolvesin discrete time
t =0,1.... Inperiod ¢, aproportion e; of the investors are expected utility maximizers, whereas

therest, c; = 1 — ¢, are case-based decision-makers. No popul ation growth is consi dered.

The model has an overlapping generations structure. Each investor livesfor two periods. The
preferences of the investorsare assumed to be such that they wish to consumeonly in the second
period of their life. The preferences about the consumption in the second period are represented
by alinear utility functionu () = x, whichisidentical for al consumers. Hence, risk-neutral ity
is assumed. Thereis one consumption good in the economy with aprice normalizedto 1. The
initial endowment of theinvestorsconsists of one unit of the consumptiongood in thefirst period

and is 0 inthe second period of their life.

There aretwo possible waysto transfer consumpti on between two periods: either using ariskless
asset b, orinvestinginarisky asset a. Theriskless asset is available in a perfectly elastic supply
at apriceof 1 ineach period. It delivers (1 + r) units of consumption good in period ¢ for each

unit of the consumption good invested in period (¢ — 1).

The supply of the risky asset a isfixed at A = 1. The payoff of one unit of the asset in period ¢

is:
5. — 6 with probability ¢

£ 0 with probability 1 — ¢
andisidentically and independently distributed in each period'®?. Let p, dencte the priceof a in

period t. New emissions are not considered, since | am interested in the behavior of prices on

the secondary asset market only. | assume that the payoffs satisfy 1 > 6 > r > 0.

Short sales are not permitted. Without loss of generality, it is also assumed that each single in-

vestor caninvestinoneof theassetsonly, i.e. diversficationisallowed for the massof investors

122 4 isinterpreted as the objective probability of high returns, known to an externa observer, but not necessarily
to theinvestorsin the economy, espedally to the case-based decision makers.
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of agiven kind, but not for asingle investor'?®. Therefore, the set of available acts reduces to:
oy € {a; b},
withi € {eu;cb}, where eu and ¢b identify the expected utility maximizers and the case-based

decision-makers, respectively.

Giventhe act chosen by an investor of typei at time (¢ — 1), hisindirect utility from consumption

at time ¢ can be written as:
. L S jfal =a
¢ — pi—1 pi—1 o
vt (at—l) { 1+, ifa;, ;=0 (6.66)

Note that the utility derived from the choice of a depends not only on the dividend of the risky
asset, but also on the price of a at time ¢, therefore on the decisions of the young investors at

time ¢4,
6.2.1 Information and Individual Decisions

The individual decision-making process predetermines the evol ution of asset prices as well as
of the shares of different investor types in the economy.
6.21.1 Case-Based Decison-Makers

First consider the case-based decision-makers. Their description of the situation contains the
statement of the problem they have to solve: ” Invest your initial endowment in one of the two
assets, a or b to enable consumption tomorrow”, aswell asthe set of availabl e acts:

a € {a;b}.

Unlike expected utility maximizers, case-based decision-makers do not use information about

123

For expected utility maximizers with a linear utility function, this assumption can be made without loss of
generality. In chapter 3, it has been shown that if the case-based decision makers in this model are allowed to
diversify and if they have a similarity function on pairs of portfolios which is decreasing in the distance between
two portfolios, then only case-based dedision makerswith relatively low aspiration level will diversify. Case-based
decision makers with high aspiration levds will choose one of the non-diversified portfalios in each period. In
section 4 of this chepter, it is shown, that case-based decision makers with low aspiration leve (z < 1) have no
influence on prices in a stationary state. Therefore, | concentrate on the evolutionary dynamic aspiration levels
exceeding 1. If these investors hold the same diversified portfolio in each period of time, then the andysis of
section 4 applies, since the portfolio held by the case-based investors is less risky than the one chosen by the
expected utility maximizers when e — 1. If, however the case-based investors switch avay from the initidly
held diversified portfalio in some period of time, they never diversify thereafter. Hence, the assumption of no
diversification can be made without loss of generality, since it does not influence the limit results.

124 Thisis due to thefaat that the risky asset islong-lived. With a short-lived asset, the indirect utility of a would
be independent of the current price p;:

04

Pt—1 '
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possibl e states of nature, state-contingent outcomesandtheir probability distribution. Therefore,
they can only base their decisions on the experience of previous generations about which they
are informed. This information iscontained in their memory. Since in this model the problem
of the case-based decision-makersis assumed to remain identical over time, an act chosen and
autility realization observed (indexed by the time) are sufficient to describe a case:
(150 (1)) -
The memory of a given case-based decision-maker can, therefore, be represented by:
M = ((O‘Lﬁ Uy (04L1)) e (af}mfﬁ Ut-m (aifmq)))

where m parameterizes the length of memary, i.e. the number of cases remembered. | assume
that the memory consistsonly of actschosen and utilitiesreali zed by case-based deci son-makers
who lived in previous generations. The experience of expected utility maximizersisnot taken

into account.

Moreover, it is assumed that each investor can remember only one case per period. This as-
sumption isimportant, because there might be periodsin which some of the case-based decision-
makers choose a, whereas others choose b. For smplicity, the case of one-period memory; i.e.
m = 0 isanalyzed®. Denote by v the proportion of case-based decision-makers which have
chosen act a at time t. Now consider the memory of the young case-based decision-makers at
time (¢ + 1): since a proportion of ¢ of the case-based decision-makers hold a in period t, |
assumethat the same proportion of theyoung case based decision-makers, or amass of 7% ¢;1,
will have memory

M1 = ((a;ve41 (a)))
at time (¢ + 1). In the same way; since a proportion of (1 — ~¢”) of the case-based decision-
makers hold b in period ¢, amass of (1 — ~{") ¢1 of the young case-based decision-makers
will have memory

My = ((b;v441 (D))
at time (¢t + 1). Thisway of assigning memory has two advantages: firgt, it allows to capture
the experience of all individual investors from the past period in the right proportions; second,

thisrul e partitions the conti nuum of case-based deci sion-makersinto at most two intervals, with

125 Case-based decision makers with one-period memory behave in avery naive fashion, since they base their
decision on one observation only. However, if it werefound tha they can survive in the presence of expected utility
maximizers, one could argue that case-based decision makerswith larger experience will also be able to survivein
an asset market.
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the property that al investors in agiven interval have the same memory. In chapter 4, this was
shown to be one of the properties guaranteei ng the existence of an equilibrium in an economy

with case-based deci son-makers.

The aspiration level is denoted by « and is assumed to be identical for all case-based decision-
makersin the economy and constant over time. However, since the memory might differ among
the investors, the cumulative utilities will also differ in general. In this smple setting, the cu-

mul ative utilities can be written as follows:

v () — al, iIf My = ((o; v (c
)= { frfe)= o 1= (o) )

In each period, acase-based decision-maker compares the cumulative utilities of the two acts

a and b availabl e to him and chooses the one with the higher cumul ative utility.

Given the indirect utility of consumption, (as determined above in (6.66)), the decision of a

singl e case-based decisi on-maker takes the form:

a, if My =(a;v(a)) and v (a)>u

b _ o if My=(b;v; (b)) and v (b) <@
Y =Y b, if M; = (b;ve (b)) and v (b) > @
o if My=(a;u(a)) and wu(a)<u

Note that, since the indirect utility of b is constant, the comparison v; (b) % u depends only on
the parameters u and » and does not reverse over time. In contrast, the indirect utility of « and

hence the comparison v; (a) % u depends on p.

Denoteby p, the price of a, for which aninvestor with memory (a; v, (a)) isindifferent between

a and b:
- Dt Ot

D — +— —u=0.
) Pi—1 Pt
Aslong asp, > 0, three possi ble cases can occur:
1. 1f p; > py, then theinvestor chooses asset a (a” = a).
2. 1f p; < py, then theinvestor chooses asset b (o5” = b).
3. If p; = p, then the investor isindifferent between holding a and b (a$® € {a;b}).

Using this last argument, it is straightforward to aggregate over the population of case-based

decisi on-makersto obtain the share of those hol ding asset a, v (p;). Sincer and u are constants,
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threecasesarerdevant: 1 +r = u:

VIIA

1. 14+r<a
1, if 28 5 g )

v (p) = [1—iul], if 2= = w
1—~5, if 2t g
2. 1+r=u: \
[ 151, if 252 > g
v (pe) = § [031], if 222 — g
(0,1 — gty ], if2E2 < g

3 1+r>au:
e, if 28 > g
cl c £ prto —
v (p) =S (055, if R =g

0, if 22 < g
bt—1

Figure 12 gives anillustration of v& (p;) for thesethree cases. Note that v (p;) isanon-empty,

closed- and convex-valued, upper hemicontinuous correspondence.

b a<l+r v} u>1+r
’Yfil
_ 1=, .
Pt Dy
q/fb } u=1+r
b 1 S #MW/
fy(t:—]. R
b
1 =7 2z

Figure 12

Asthefigure shows, the proportion of case-based deci sion-makerswilling to hold a isincreasi ng

inthe price p,. Thisisthe crucia difference between case-based decision-makers and expected

utility maximizers, who prefer to hold asset a only if its price does not exceed some critical
268



level.
6.2.1.2 Expected Utility Maximizers

Now | turn to the description of the expected utility maximizers. | assume that expected utility
maximizers have expectati ons about the state-contingent payments of each of the assets. How-
ever, these expectations are not necessarily rational. Evenif an expected utility maximizer is
informed about the correct distribution of the dividends of the risky asset and of the returns of
the saf e technol ogy, it is not clear that he will be abl e to predict the i nfluence of the case-based
decision-makers on the asset prices. To do so, an expected utility maximizer would also have
to take into account the constitution of the population, the case-based decision-making process,
as well as the inf luence the evolution of types has on prices and returns in the economy. | as-
sume that expected utility maximizers neglect these issues. They act boundedly rational, taking
into account the information about the correct distribution of dividends and the correct interest
rate, but building their expectationsabout the priceasif the economy cons sted only of expected

utility maximizers, identical to themselves.

The expected utility maximizers compute the fundamental value of the risky asset p®* as the

discounted value of the expected future dividends:
ew _ 90
e =
T
and perceive p®* to be the”true” priceof therisky asset'®. Therefore, they hold a if p; < p*, b

if p, > p® and are indifferent between the two assets at the critical price p*. Differently from
the case-based deci s on-makers, expected utility maximi zers, theref ore, hol d therisky asset only

if its priceisrelatively low.

Aggregating the demand of all expected utility maximizers, it is possible to derive the share of

those willingto hold a, v¢*, depending on p;:

1, ifpt<peu
Vit (p) =9 [0;1], ifp, = p™
0, if pr > p™

Like~s (p:), 7§ (p:) isanon-empty, closed- and convex-valued, upper hemicontinuous corre-

126 The fundamental value p°* corresponds to the price under rational expectations if only risk-neutral expected
utility maximizers are present in the market. Although expected utility maximizers do not need to have rational
expectationsin generd, their expectations are rationd in the limit whene — 1.
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spondence. The value of demand for a of the whol e popul ation is obtained as:

di (pe) = exvs" (pe) + (1= e0) 75" (pe) -
It isal so acorrespondence, which hasthe characteri sti cs stated above and mapsthe interval [0; 1]
into [0; 1].

6.2.2 Temporary Equilibrium

The state of the economy i sdetermined by a quadruple of endogenous variables (e:; v§*; v5”; pt )
and by the random dividend payment 6,. Assumefirst that the share of expected utility maxi-

mizersin the population at timet, e;, iS given.

A temporary equilibrium at time ¢ for agiven e, is defined by:

e portfolio choicesfor all young investors described by the proportion of case-based decision-
makers choosing a, v, and the proportion of expected utility maximizers choosing a, 7%,

and

e apriceof theasset a — p} (ey),

such that following conditions are fulfilled:

1. thevalue of demand for a of the young case-based deci sion-makers satisfies.
%P =7 (0 (er))

2. thevalue of demand for a of the young expected utility maximizers satisfies:

*eu

Y= (pi () s
where p; (e;) isthe equilibrium price for the given e; and

3. themarket for therisky asset is cleared: either p; (e;) > 0 satisfies
V5 (P (e)) e+ 5 (9 (e)) (1 — ey)
pi (et)

=A=1,
or
p; (e;) = 0and~§" (0) e +7§b (0) (1 —ey) =0.

Since the value of demand d; (p;) isa closed- and convex-valued, non-empty and upper hemi-
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continuous correspondence, which, according to the budget constraints and to the short sales
congtraint, is bounded between [0; 1], the following corollary of proposition 4.9 in chapter 4
obtains:

Corollary 6.1 Giventhe proporti onsof the case-based deci sion-makers and the expected util ity

maxi mi zersin the population e; and ¢ such that e; + ¢; = 1, a temporary equilibrium existsin
each period ¢ > 1.

Whereas in a market popul ated only by case-based decision-makers, it isin genera not possible
to prevent the price of the risky asset in an equilibrium from falling to 0, such asituation cannot
occur inamarket with expected utility maximizers. 0-equilibrium prices are caused by the fact
that the demand of the case-based decision-makers can be very insendtive to price changes at
low prices. Therefore, very low aspiration level s are needed to exclude degenerate equilibria.
Expected utility maximizers, on the contrary, are ready to buy the risky asset, if itspriceis near
0. Therefore, v¢* (0) > 0 dways holds, aslong asp® > 0. The following proposition obtains:

Proposition 6.1 Aslong as p® > 0 and e, > 0 hold, p; (¢;) > 0 obtains in a temporary
equilibrium.

Hence, one of the effects caused by case-based investors, namely that some of the assets with
strictly positive fundamental value can have 0 prices in an equilibrium, is eiminated by in-
troducing some small positive amount of expected utility maximizers into the economy, who
believethat the risky asset hasa positivefundamental value. Hence, degeneracy of equilibriais

not robust in this respect?’.
6.3 The Evolution of Investor Types

After insuring that an equilibrium exists in each period of time, | now introduce the sel ection
dynamic. | measure the fitness of a given type of investors by the actua average returns they
achieve relative to the average returns of the society asawhole. This gives riseto areplicator
dynamic, in which the type of investors who perform better on average grows. Note that since
each investor is born with the same initial endowment of 1 unit of the consumption good, the

share of atype of investors can be identified with the total income of the investors of this type.

12T However, see section 5 for an example that e = 0 and p; = 0 can obtain in a temporary equilibrium even if
theinitial value of e is positive.
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This raises the question of whether this kind of evolution is to be interpreted as internal or

external'®.

Internal evolution is used to describe situations in which the number of investors following a
given strategy remains unchanged and the sel ectionisbased on weal th changes. Strategi eswhich
are not successful 1ose money and the most successful strategy accumul ates the whole wealth
of the economy in the limit. Such isthe evolution of wealth shares described in the analysi s of
Hens and Schenk-Hoppé (2001), Evstigneev, Hens, Schenk-Hoppé, (2002, 2003), aswell asin
Blume and Ead ey (1992, 2001).

An overlapping generations structure does not alow for a natural wealth dynamic to arise asin
the models above. Therefore, | work with areplicator dynamic, which describes external evolu-
tion. Inthis case, the wealth of each investor remai nsunchanged, but the number of investorsof
agiven type changes depending on the success of their strategy. It is, asif those who use more
successf ul strategies found moreimitatorsthan those using | essprofitabl e strategies. In thelimit
all of theindividual sfollow the most successful strategy, driving suboptimal strategies to extinc-
tion. Thisideaisoneof the basics of the evolutionary game theory. The replicator dynamic has
been applied by Alés-Ferrer and Ania (2003) to analyze the asset market game introduced by
Shapley and Shubik (1977). Since the assets in their model are short-lived, it is possible to ap-
ply the standard replicator dynamic used in the evol utionary game theory without changes. With
long-lived assets, the replicator dynamic has to be modified so as to take into account the cap-
ital gains caused by price changes. The replicator dynamic introduced in the next paragraph,
therefore, exhibits properti es which differ from those of the replicator dynamic usually adopted

in the evolutionary game theory.

Aswasexplained above, in the current model, the number of investorsfollowing agiven strategy
coincides with the weal th share invested in this strategy. Therefore, the interpretations in terms

of internal and external evolution are both feasible in this context?°.

128 | thank Thorsten Hensfor pointing out this aspect to me.

129 An alternative interpretation of this model proposed by Thorsten Hens would be to think of infinitely living but
myopic investors who reinvest their wedth in each period, but optimize for one period ahead only. In this case, the
evol ution of thewealth shares of these investors would coincide with thereplicator dynamicintroduced below. Note
that this alternative assumption would not change the price expectations and the behavior of the expected utility
maximizers aslong astheir utility function exhibits constant relative risk-aversion. The behavior of the case-based
decision makers would also remain unchanged as long as the similarity between the problems encountered isnot
influenced by the wealth available.
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6.3.1 Replicator Dynamic

Differently from the usual approach in evolutionary game theory, the replicator dynamic in
this model is applied not to the portfolio strategy chosen by an individual, but to the " meta’-
strategi es used by the two types of investors, hence, to the perf ormance of case-based decision-

making versus expected utility maximization'*,

One can think of the " game” associated with the replicator dynamic introduced below in the
following way: individuals out of an infinite population are allowed to choose one of the two
pure strategies ” case-based decision-maker” and " expected utility maximizer’. The payoffs
are then determined according to the equilibrium growth of wealth of the investors using each
strategy. Blume and Ead ey (1992) demonstrate that thisstructure indeed givesriseto areplicator
dynamicinamodel withinfinitely livinginvestorsand short-lived assets, see Friedman (1998, p.
25, footnote 7). Therefore, the fitness of the strategiesis measured not according to the utility
obtained, but according to the realized returns. Higher realized returns mean higher wealth
share for the particular type of investors in the economy and, therefore, a greater influence on
market processes™. If it were found that given this selection dynamic, case-based decision-
makers weal th share decreases to 0 almost surely, then the inf luence of this type of investors on
mar ket priceswould vanish withtime. Whatever effects then have been observed in an economy

populated solely by case-based decision-makers, these eff ects would di sappear.
The following replicator dynamic isintroduced, fol lowing Weibull (1995, pp. 124-125)'%,

First, note that sinceinvestors from the same type might choose to hold diff erent assetsin agiven
period of time, it is necessary to compute the average performance of each type of investors.

Therefore, dencte by
0t = e (a) + [1 =] v (D) (6.67)

130 Thisapproach is, therefore, similar tothe indirect evolutionary gpproachinitiated by Giith and Yaari (1992). In

their setup, the genetic phenotype describes a decision rule for choosing a strategy in agame. The solution of the
game, computed in accordance with the proportionsin which these phenotypes are present, determines the payoffs
and, hence, theevolution of decision rules (not of strategies) inthe population. The present model differs, however,
from the work of Yaari and Giith by the fact that instead by a game, the payoffs are determined by a market.

131 This property, which follows from the market clearing condition in this modd, need not hold in general. See
for instance K ogan, Ross, Wang and Westerfield (2003) for amodel, in which noise traders can inf luence the price
process, even though their share convergesto 0 in the limit.

132 Inthis model thelength of periodisassumed to be 1 and the growth rate of the population is0. Thiscorrespondes
tor = 1 and 8 = 0 in the overlapping generations model presented by Weibull (1995).
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i = v (a)+ [1=924] v (D)

U o= [veera+ (1 —e)v2 o (a) + [1— 75 ec1 — 782y (1 —er1)] ve (D)

the average returns achieved by an expected utility maximizer, by a case-based decision-maker
and by the whole society at time ¢, respectively. | assume, as usual for the replicator dynamic
that the type of investors who performsbetter than the average haveincreasing sharein the pop-
ulation, whereas the share of the worse performing type shrinks. Since the popul ation remains

constant over the time, the dynamics can be described by the change of the variables e, and ¢;:

NEU

(%

et = f €t—1 (668)
Ut
~cb
,UC
o = —feo.
Vg
Since
o o
e+ = —e6_ gt =g 1=
Ut Uy

[ (@) + [T =y v (®)] e+ [P v (@) + [T =P ] v (0)] e

[%:6316:&71 + (1 - 6t71> 7?31} Vg (a) + [1 —Viti€1 — 7?31 (1 - 6t71>] Vg (b) a
= 1

holds, the condition that the population does not grow as a whole is satisfied. Therefore, the
evolution of e; is enough to determine the dynamic of the system. Using (6.66), the equilibrium

share of expected utility maximizers from (6.68) can be written as.
| g 4 (1) (195 | e

Pt—1
€ = —— .
E% (Ve + 98 (1 =) + (1 +7) (1= (v em1 +781 (1= e)))
(6.69)

Note that the numerator represents the weal th of the expected utility maximizers (i.e. the value

of the portfolio held by the old expected utility maximizers) at time ¢, whereas the denomi nator
corresponds to the wealth of the whole society at ¢. Hence, the proportion of investors foll ow-
ing adecisonrule at time ¢ is equal to the relative share of wealth held by these investors. |,
therefore, claim that the replicator dynamic defined by (6.68) canindeed be interpreted asarel-
ative weal th dynamic in the sense of Blume and Eadey (1992, 2001), Hens and Schenk-Hoppé
(2001) and Evstigneev, Hens and Schenk-Hoppé (2002, 2003).

The price of the risky asset p,_;, however, might become 0 in a period, in which e¢,_; = 0.
Therefore, e; is not always well defined. Nevertheless, alimit of e; can be computed for this

case. Should p;—1 = 0 be an equilibrium price, only expected utility maximizers would be
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(potentially) willing to hold a at time (¢ — 1), hence p;,_; = v§*,e;_; in an equilibrium with a
positive share of expected utility maximizers. Moreover, since p®™ > 0, v¢*; = 1 will hold for

prices near 0. Substituting in (6.69) one obtains:
pE(ep)+é, -
lim e* = lim et—1 €i-1 _ Py (et) +
e =0 ' 10 ﬂﬁe—i‘-i@etq + (1471 —eq) Pi(e)+oe+147

which is well defined. This means, especially, that starting with e, = 0, the mass of expected

utility maximizersmay become strictly positiveif expected utility maximizers hold an asset with

positive fundamental value the price of whichis0.

Alternatively, if theinitial mass of the case-based decision-makers is 0, then it remains 0 in all

subsequent periods. Indeed, letc;—1 = 1 — e;—1 = 0. Then
Bt (14 7) (1= 93 e

Pt—1
*
€y =

ARyt ey + 9y (1= emn)) + (L47) (1= (35 eem1 + 752y (1 — e1)))

pi(ef) 48, e eu
[ pt_1+ Vet A+ (1 +7) (1 - %71)] -1

BLRyeu o0y (14 7) (1= 75 e01)
Thisisdueto the fact that the expected utility maximizers perceive the risky asset as valuable,
preventing its price from falling to 0. Hence, if case-based deci son-makers have an aggregate

initial endowment of 0, they are not able to invest and to achieve returns in the future.

The replicator dynamic introduced above describes the evolution of wealth for the two types
of investors. Nevertheless, even if the only fitness criterium considered is the wealth growth,
(6.68) is not the only way to characterize the selection process. The choice of the replicator
dynamic is made here for computational smplicity: itslinearity allowsfor explicit solutionsin

amode with two strategies.

The question ari ses, whether theintroduction of an alternative dynamic would changetheresults
significantly. It seemsthat the stability results presented bel ow arerobust in thisrespect. Wei bull
(1995, p. 88) and Nachbar (1990, p. 78) show that a stable state under a regular replicator
dynamic is a Nash equilibrium. Like the regular®> replicator dynamic, (6.68) also selects a
Nash-equilibrium of the ” meta”’-game described above'®. Especidly, e = 1 isastable state of

133 SeeWeibull (1995, p. 141) for adefinition of aregular dynamic. In contrast to thereplicator dynamic presented
in this chapter, aregular dynamic has the property that starting from an interior point of the simplex, the system
remainsforever in its interior, whereas starting at a vertice, the system never leavesit. Crucial for this property is
the assumption of Lipschitz continuity of the replicator dynamic. Since the replicator dynamic in this model isnot
Lipschitz continuous at e = 0, it violatesthis invariance property.

134 Thisis due to the fact that Lipschitz continuity is violated only a& e = 0 and that this point is never a Nash

275



the system only if it isaNash equilibrium of this” meta’ -game.

Consider the class of evolutionary dynamics which are payoff-monotone, i.e. the growth of the
shareof astrategy in the popul ationisincreasing in the payoff of the strategy. Thisclasscontains
the replicator dynamic asa specia case. However, if there areonly two avail able strategies, this
class also includes the sign-preserving dynamic, i.e. the shares of the strategies performing
better than the average grow and vice versa, aswell as the positive correlation dynamic, i.e. the
share of at | east one of the strategies perf orming better than the average grows. Friedman (1998,
p. 25) gives aclassification, whereas Weibull (1995, pp. 149-152) provides a description and a

characteri zation of these types of evol utionary dynamics.

Moreover, as Friedman (1998, p. 40) pointsout, for the case of two strategi es, the cl ass of payoff-
monotoni ¢ dynamics also includes the best-reply dynamic, see Gilboa and Matsui (1991) and
Fudenberg and Levine (1997), as well as fictitious play, see Brown (1951) and Fudenberg and
Levine (1997).

Weibull (1995, pp. 147-148) further showsthat every conti nuous-ti me pay-off monotoneregular
dynami cexhibitsthe property that the set of stable states containsonly Nashequilibria. The same
result is derived by Nachbar (1990, p. 78) for the discrete-time version.

Since the main focus of this paper is on the stability of the state e = 1, in which only expected
utility maximi zers are present in the market, and since the replicator dynamic (6.68) isLipschitz
continuous (and therefore regular) at ¢ = 1*®, it seems that these results can be carried over
to the model at hand. Especially, every sdl ection dynamic, which is monotone in the growth of
wealth and regular at e = 1 will exhibit the same stability propertiesat e = 1, as the replicator
dynamic (6.68).

6.3.2 Temporary Equilibrium with Replicator Dynamic

The equilibrium share of expected utility maximizers is only implicitly determined by (6.69),
since it depends on p;, which onitsturn dependson e;. Therefore, it is necessary to introducea

new equilibrium concept in which the shares of the two types in the population are determined

equilibrium of the ” meta”-game.

135 Seethe derivation of the explicit form of the replicator dynamic at e = 1 in the proofs of propositions 6.5, 6.6,
6.8 and 6.10. It iseasily seen that the replicator dynamic is continuoudly differentiable at e = 1 and, therefore,
Lipschitz continuous.
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endogenoudly.

Given (er—1; 75" ;7515 pe—1 ), atemporary equilibrium with replicator dynamic at time't is de-
fined asavector: (e;;~v;;~;®; py ), such that:

=t ()

7P = (0))

pi (€f) clearsthe market for the risky asset given e;;

e; 1s determined by the replicator dynamic:

; : 6 eu eu
. [&LL;; Ly 4+ (L+r) (1= %71)} €1
et = K[ % .
BUEIR (ye oy g 49 (L= ) + (L +7) (1= (5% e +7525 (1= es1)))

Corollary 6.1 does not guarantee the existence of suchan equilibrium. Nevertheless, itispossible

to show that such anequilibrium existsineach period aslong astheinitial state (e;—1; v 1; 75" 1; pe—1)
isan equilibrium®®. The evol ution of the system istherefore well defined.

Proposition 6.2 Supposethat (e;—1; 7“3 752 1; pe—1) issuch that

P = ety (1) + (1 = em1) 721 (Per) -
Given such (eq—1; 7§15 7§ 1; pe—1), @ temporary equili brium with replicator dynamic at time ¢
exists.

6.4 Analysisof the Dynamic

The definition of a temporary equilibrium with replicator dynamic, together with the dividend

process determine the evolution of the system. | first discussthe stationary states.

6.4.1 Sationary States

Since | am interested in the evolution of the investor types in the market, | define a Sationary
state as astate in which ef = const for all ¢, whereas portfolio holdings and prices might but
need not be constant. Nevertheless, it is possible to show that only steady states in which all
four state variabl es are constant can occur.

Proposition 6.3 (i) e = 1 isa Stationary state.
(ii) e = 0 isa stationary stateif u < 1 and v > 0 hold.

136 In fact, the condition stated in proposition 6.2 isweaker. It only requiresthat at (¢ — 1) atemporary equilibrium
for the given share e; _; of the expected utility maximizers obtains.
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Since in these two stationary states the whol e population consists of one type of investors only,
the mean return of this type equal sthe mean return of the population. Therefore, the proportions
of thetwo types do not change over time. Note that in the case e = 1, the price of therisky asset
is stable over time and satisfies:

Py = ¢ = min {p*; 1} foral ¢ > 0.
Therefore, aslong as the no-short-sales condition is not binding, the asset price coincides with

the fundamental value of the asset and arational expectations equilibrium emerges.

For the case e = 0, the price remains constant over the time and satisfies
i =7
Obvioudy, the price need not coincide with the fundamenta value p*. In thiscase, arbitrage

opportunities might remain unused in the market.

Proposition 6.3 shows that only arelatively low aspiration level allows the case-based decision-
makersto keep their mass at 1 inthe market. Should their aspiration level exceed this bench-
mark, then there would be periods in which the case-based decision-makers refuse to hold a
even at aprice of 0. Insuch periods, expected utility maximizers would be able to acquire a for
free. Should now the dividend of a be strictly positive in the next period, the mass of expected

utility maxi mizers woul d become positive. Hence, e = 0 would not be stationary in this case.

The trivial stationary states derived in proposition 6.3 describe situations in which only one
of the two types of investors dominates the market. One can also identify stationary statesin
which both types of traders coexist. Of course, in order to gain the same mean return in each
period, both types must hol d the same portfolio in every period. Furthermore, to insurethat case-
based deci s on-makers do not change their portfolio over time, their aspiration level should be

relatively low:
g <P +min{é} L

*

i.e. it should not exceed the return of the risky asset in periods in which the dividend payment

is0 and its price remains unchanged compared to the last period of time.

Proposition 6.4 Letu < 1.

1. If p™ > 1,theneach e € [0; 1] is a Stationary state, provided that the portfolios held and
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the price of « fulfil:

2. If p® < 1,theneach e € [0;1] is a stationary state, provided that the portfolios held and

the price of « fulfil:

'YCb — U
,yeu — peu
p* — peu

Notethat aslongas p* < 1 holds, the priceinthe stationary state coi ncides with the pri ce under
rational expectations. Moreovey, it is not possible to distinguish between case-based decision-
makersand expected utility maximizers. Both typesof investorshold the same optimal portfolio
at the equilibrium price. By imitating the expected utility maximizers, case-based decision-
makers with relatively low aspiration levels are, thus, able to survive in a financial market.
However, they cannot inf luence prices and it is not possibl e to empirically reject the hypothesis
of rational expectations and expected utility maximization in such a market. It is, therefore,
interesting whether a positive share of case-based decision-makers can surviveif the portfolio

strategies of expected utility maximizers and case-based deci son-makers differ.

6.4.2 Sabilityofe=1

It has been shown that case-based decision-makers with an aspiration level lower than 1 can
survive in amarket without influencing prices. Now | shall look at the dynamics of the system

for case-based deci sion-makers with aspiration level s higher than 1.

If theaspiration level of the case-based decision-makersisrelatively high, their behavior might
influence prices. The price dynamic in a market populated only by case-based deci sion-makers
has been discussed in chapter 5. Transferring the results obtained in chapter 5 to the context
of the current model, it is easy to derive the dynamic of prices and asset hol dings for the case

e=0.1f1+r>u>1,p; = 0ineach period holdsandall investorshold b in every period.

For relatively high aspiration levels, 1 + 6 > u > 1 + r, the price process is a stochastic cycle
with two states. p, = 1 and p; = 0. The Markov transition matrix describing this processis
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given by:

Pit+1 = Ph | Pt+1 = DI
Pt = Ph q l1—gq
Pt =Dpi 1 0
Since, the eval uation of the risky asset by the expected utility maximizersisconstant over time,

itisintuitively clear that ssmilar patterns can be expected to emerge in an economy in which both
types of investors are present. Indeed, proposition 6.1 shows that in the presence of expected
utility maximi zers the pricein state [ woul d be strictly positive. Furthermore, aslong asp®™ < 1
holds, the price p;, would belower than 1. Nevertheless, it ispossiblethat cycles similar to those
described in section 3 of chapter 5 emerge in an economy in which both case-based decision-

makers and expected utility maximizers are present.

In the current model, the magnitude of these cycles depends positive on the mass of case-based
decison-makers in the economy. Therefore, such cycles can persist only if a positive mass
of case-based decision-makers survives. Hence, it is necessary to examine the stability of the
stationary state e = 1. Only if this stationary state is not stable, the case-based decison-makers

will be able to survive and influence the prices in the market.

The discussion of the results for asset markets without expected utility maximizersin chapter 5
shows that the dynamic of the system crucially dependson the aspiration level of the case-based
decision-makers. It hasalready been shownthat for u < 1 stationary stateswith a positive mass
of case-based decision-makers are possible. Moreover, the value of e in these stationary states
is undetermined and can vary between [0; 1]. Hence, the further discussion concentrates on the
caseinwhich such stationary statesdo not occur, i.e. onz > 1. Two caseshave to be cons dered:
u € (14 r;1+ 06), referred to asthe case of high aspiration levelsand @ € (1;1 + r), the case
of low aspiration levels.

Foru € (1;1 + r), itiseasy to see that thereturn of b issatisfactory for the case-based decision-
makers, whereasthereturn of a, given that the dividend i s0 and the price of a remains unchanged
or fals, is not satisfactory. Even if al case-based decison-makers hold a in period 0, thereturn
of a will fall below their aspiration level aimost surely in finitetime. Hence, they will switch to

b and hold it forever.

Foru € (14 r;1+ 6), thereturn of a is considered satisfactory when the dividend is high and

the price of a weakly increases, whereas the return of b and the return of « if its dividend is

280



low, are regarded as unsatisfactory. If theinitial endowment with assetsin period 1 is identical
for al case-based deci sion-makers, these investors switch infinitely often betweena and b. The
case-based decision-makers hold a as long asits dividend is high, switch to b in thefirst period
of low dividends ' and choose again « in period ¢ 4+ 1, since (1 +r) < @ holds.

6.4.21 TheCaseof High Aspiration Levels

Consider first the case of high aspiration level:
uwe(l+r;1+0)
and assume that the fundamental value p* exceeds 1.

Under these two assumptions, the dynamics of prices and asset holdings can be described as

follows:

v = 1foreacht;
((1,if 4%, =1andé, =6o0r )
7 = _ Y2y =0 ;
0,if %, =1andé, =0

Lif 4%, =1andé,=6o0r
P = 753120 .

ef,if 7%, =1landé; =0
Notethat the averagereturns of the two types of investors areidentical in periodsin which both
types hold a. Therefore, the popul ati on shares remai n unchanged:

ey = ey, if 7 =1.
Hence, these periods do not influence the dynamic of population shares. Itis, therefore, suf-
ficient to analyze how e, changes in periods in which the holdings of both types of investors
differ.

Proposition 6.5 Let the aspiration level satisfy
we(l+r;1490)
and suppose that p* > 1 holds.

1 If pv < 1, then thereexistsan ¢ € (7;1), suchthat ¢; isa submartingale aslong as

e;_; < éandasupermartingaleaslong as e;_; > €.
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2. If p™ > %‘fj then e; is a submartingale for all e; ; € [0;1]. The case-based

deci sion-maker s disappear with probability 1.

First note that the condition that p<* % -}—‘"—‘Jﬂi IS equivalent to g % %)Lg Since ﬁ—j:i)% € (0;1),
both cases 1. and 2. are possible. Proposition 6.5 has, therefore, a simple interpretation: if the
initial share of expected utility maximizersin the market isrelatively small, then in expectation
their share increases:
Ele | e, <é] >e;,.

If, however, their shareisrelatively large, then the behavior of the system depends on the prob-
ability of high dividends. If this probability isrelatively low, then the share of expected utility
maximizers decreases in expectations. This meansthat the dtationary statee = 1 is not stable,
in the sense that there is a positive probahility that the replicator dynamics does not converge
to it. Neither the case-based deci sion-makers, nor the expected utility maximizerswill vanish
with probability 1 inthis case. Alternatively, if the probability of high dividends is large, then

the case-based deci sion-makers vanish on almost all paths of dividend realizations.

The intuition behind thisresult issimple: the replicator dynamic of e} is concave in the returns
of the expected utility maximizers. Therefore, it selects for the less risky strategy, given that
the expected returns of two strategies are identical. In those periods in which the case-based
decision-makers hold b, their portfolio is less risky than the portfolio of the expected utility
maximizers, who hold a. Moreover, if we let the share of the case-based decision-makers go to
0 and assume pe* = 1, the expected returns of both portf olios becomeidentical and the repli cator
dynamic selectsfor theless risky one, hence, for the one held by the case-based decision-makers.
By continuity, the same result holds in some surrounding of e = 1 and in some surrounding of
p® =1 and, therefore, aslong as p® isnot very large, a positive share of case-based decision-

makers survives with positive probability in the limit.

If, however, p* exceeds ﬁij the excess return of the expected utility maximizersis sufficiently
high to compensatefor the higher risk of their portfolios. Inthiscase, they accumulatethe whole

market wealth with probability 1 in the limit.

Note that higher values of p¢* correspond to higher values of ¢, ceteris paribus. The probability
of high dividends hastwo eff ectson the evol utionary dynamic. On the one hand, higher ¢ implies
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higher expected returnsof the risky asset and, therefore, higher profits for the investors holding
a, i.e. for the expected utility maximizers. On the other hand, higher values of ¢ cause the
case-based decision-makers to switch | ess frequently between the two undiversified portfolios
and to hold the risky asset during a larger share of time, hence to behave in a less risk-averse
manner®’, These two effects work in the same directi on, making the strategy of the expected

utility maximizers more successful.

Thisresult should not be surprising. Theliterature on evol utionary financia marketscitedinthe
introduction shows that correct beliefs alone do not guarantee survival. The form of the utility
function is crucia for the ability of an investor to accumulate wealth. Only for the logarithmic
utility function does the sel ection criterium used by the weal th dynami c coi ncide with the target
of expected utility maximization with correct beliefs. Hence, a proper degree of risk-aversion
combined with correct beliefs is needed for survival. Therefore, expected utility maximizers
with correct beliefs in the limit can be ” outperformed” according to the replicator dynamic by

investors who do not have correct beliefs, but behave asif they were risk-averse.

Note that e = 1 is a Nash-equilibrium of the ” meta’-game described in section 3 only in the
case inwhich it isstable under the replicator dynamic. Indeed, sincethe return of therisky asset
is uncertain, arationa player would maximize the expected growth of wealth, or the expected
value of the replicator dynamic given the present share of expected utility maximizersin the
market so as to determine whether to behave as an expected utility maximizer or a case-based
decison-maker. But this is exactly what has been computed in the proof of propostion 6.5.
For p** > ﬁ , the strategy ” expected utility maximizer” isindeed a best response if everyone
else plays "expected utility maximizer’, hence e = 1 is a Nash equilibrium. However, for
Pt < ﬁf , the best-response to the strategy combination in which everyone plays ” expected
utility maximizer” is” case-based decison-maker”, therefore, e = 1 is not a Nash equilibrium

and cannot be a stable state under aregul ar replicator dynamic.

Since at e = 1, the replicator dynamic (6.69) is Lipschitz continuous, it follows that every
payoff-monotone replicator dynamic will exhibit the same stability propertiesat e = 1. The
result is therefore robust with respect to the choice of an evolutionary dynamic. Anaogous

arguments hold also for the stability results obtained bel ow.

137 See chapter 5, proposition 5.4 for the derivation of the limit frequencies with which the case-based decision
makershold assé a, respectively b.
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A result similar to theone of proposition 6.5 can be derived for lower fundamental values of the

risky asset. For p € (—;, 1), the following propasition obtains:
Proposition 6.6 Let the aspiration level satisfy

ue (1+m149).
Then thereisacritical value p* € (3;1) suchthat E [e},, | €] < e; holds for

2
t ’ 14+7r [’

Hence, for lower fundamental values, the result that there is a positive probability that the case-

if peu > peu,

based decision-makers do not disappear a so obtains. Near e = 1, the share of expected utility

maximizers fallsin expectation and, therefore, the state e = 1 isnot stable.

For lower valuesof p¢*, (especially lower than é), theresultsare not clear. Whereasthe expected
share of expected utility maximizers decreases in periods in which the case-based decision-
makershold a, (E [e},, | €], 7i® = 1] < e dways holdsnear e = 1), their shareincreasesin
expectation in periods in which the case-based decison-makers hold b,

Elefps e 7 =0] > ¢
aslong as e, issufficiently closeto 1. Itis, apriori, not obvious which of these two effects will

dominate.

Nevertheless, itisintuitively clear that for sufficiently low fundamental values of the risky asset,
the case-based decisi on-makers disappear with probability 1. Indeed, imaginethat 6 = 0 s0
that p°“ = 0 holds, hence, the risky asset never pays a positive dividend. In this case, the
case-based decision-makers who hold a strictly dominated asset with positive frequency (and
a portfolio identical to the portfolio of the expected utility maximizers, else) disappear with
probability 1 in the limit. By continuity, this result holds in some surrounding of p** = 0
(6 = 0) and, theref ore, case-based decision-makers with high aspiration level cannot survive for

low fundamental val ues of the risky asset.

To summarize, if the fundamental val ue of the risky asset is neither too high, nor too low, there
IS a pogitive probability that the case-based decision-makers do not disappear from the market.

Thisresult can be made even stronger:
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Proposition 6.7 Supposethat e} isa supermartingale on someinterval [é; 1]. Then
Pr{e; — 1} =0.

The share of case-based decision-makers, thus, remains almost surely positive as long asit can
be shown that e} is asupermartingale near 1. Thisresult can be interpreted interms of the defi-
nition of survival and dominance introduced by Blumeand Eadey (1992). In their terminol ogy,

survival requires that the share of an investor type, say of case-based decis on-makers, fulfills:

Pr {lim sup ¢; > 0} =1, (6.70)
t—o0
wher eas the case-based deci sion-makers dominate the market if
Pr {lim inf ¢ > o} ~1 (6.72)

issatisfied. Note that proposition 6.7 implies that both (6.70) and (6.71) are fulfilled aslong as
e; isasupermartingale on someinterval [¢; 1].
6.4.2.2 TheCasedf Low Aspiration Levels

Now suppose that the case-based deci sion-makers have an aspiration level which satisfies
l<u<1+4r,

implying that the case-based deci sion-makers hold b in each period of time. For any fundamental

value of the risky asset satisfying

ﬂ> 5u>0
1+7r p '

it can be shown that the share of expected utility maximizersisasubmartingale near e = 0 and
supermartingale near e = 1. Therefore, case-based decision-makers with low aspiration level

need not vani sh from the market even if their aspiration level is relatively low.

Proposition 6.8 Suppose that the aspiration level satisfies
l<u<1+4r.
Let p* > 1hold.

1. If peu < }—‘ff then thereisan ¢ € (0;1) such that ¢} isa supermartingaleon [¢; 1] and a

submartingale on [0; é).

2. If p™ > ﬁ'—f then e} isa submartingale on [0; 1]. The case-based decis on-makers

disappear with probability 1.

Notethat with |ow aspiration | evels the case-based decisi on-makerssurvivefor exactly the same
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values of ¢ which were found in proposition 6.5. Althoughin the case of low aspirationlevdl, ¢
inf luences the selection only by increasing the average return of the expected utility maximizers
and not through the less ri sk-averse behavior on the side of the case-based decis on-makers, in
the limit when ¢; becomes very small, the condition for the survival of the case-based decision-

makersisidentica in both cases.

However, the cut-off values é (as defined in proposition 6.5) and ¢ from proposition 6.8 reflect
the fact that the strategy of the case-based decision-makers is riskier in the case of high aspi-
ration level. Therefore, the case-based decision-makers with low aspiration level are likely to
survivein ahigher proportion than case-based investors with high aspiration level. The foll ow-
ing rel ationship between é and ¢é holds:

Proposition 6.9 ¢, asdefined in proposition 6.5 and ¢ from proposition 6.8 sati sfy:
€ > e.

For fundamental values lower than 1 a result anal ogous to the result of proposition 6.6 applies.
Since, however, with low aspiration | evels the portfolio chosen by the case-based deci sion mak-

ersislessrisky, they are able to survive for alarger range of parameter values.

Proposition 6.10 Suppose that the aspiration level satisfies

l<u<1l+4r.
eu2
Let p € (0; 1) hold. Then e} isa supermartingale ontheinterval [max {pe“; 1—p™+ %} ; 1}.

The result of proposition 6.7 applies in this case aswell, implying that the share of case-based
decisi on-makers remains positive with probability 1 as long as e} isasupermartingale in some

interval [é; 1].

6.5 Assat Pricesin the Presence of Case-Based Decison-M akers

Up to now, it has been shown that the case-based deci son-makers are ableto survivein astrictly
positive proportion in the presence of expected utility maximizers. This section analyzes the

effect of case-based reasoning on asset prices.

Consider first the case of high aspiration levels. When the fundamental val ue of the risky asset

is smaller than 1, the case-based decision-makers can influence its price and cause bubbles,

excessive volatility and predictability of returns as long as their share exceeds max{p®; 1 —
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p°*}*®. Indeed, sincethecase-based decision-makers switchbetween a and b infinitel y of ten, the
price of a f luctuates dependi ng on the share of case-based deci sion-makersand on their behavior
and exhibits excessive volatility**°. Moreover, the returns of a are predictable. Especidly, if
P = vi"ef_;, meaning that in a certain period only expected utility maximizershold a, an
external observer could predict that the price of a in the next period will (weakly) rise, since the
young case-based deci sion-makers will buy « in period ¢ independently of the dividend paid by
the ri sky asset.

Case-based decis on-makers can cause a bubbl e to emerge and to persist in the market for sev-
eral periods. Suppose, for instance, that the share of expected utility maximizersis|ower than
(1 — p*) at sometime ¢ and that case-based decision-makershad a in period ¢. Then the equi-
librium price of a isgiven by
pp = (1—¢) >p™
Moreovey, if the case-based decision-makers achieve a high dividend, i.e. 6;+; = ¢, then their
return will exceed those of the expected utility maximizers and e ; < e; holdsin equilibrium
inperiod (¢ + 1). Furthermore, since everyone of the young case-based deci sion-makerswishes
toholdaat (t+ 1),
Pi = (1 —efpn) > pi > p™

obtain in equilibrium. Hence, the price increases above the fundamenta value for several pe-
riods as long as the dividend of the risky asset remains positive. In the first period ¢’ such that
oy = 0, the bubble bursts, since the case-based decision-makers switch to b and their share
in the population decreases. Moreover, the price of the risky asset might even fall below the

fundamental value p“. Simple computations show that this happensif

(p™ = 1)°

p(l+r)

hence, if the bubble haslasted suffi ciently long to decrease substantial ly the share of the expected

(1—¢€;) >

utility maximizers.

The phenomenon described above might seem to I ead to the following problem: suppose that

the case-based decision-makers achieved a higher average return (by holding the risky asset)

138 |f thiscondition issatisfied, thewealth share of the expected utility maximizersis not sufficiently high to prevent
deviaions of the price of therisky asset from the fundamental value.

139 In an overlapping generations model with constant initial endowments and no popul ation growth the price of
the risky asset should reman constant over the time, given rational expectations and expected utility maximization.
As was shown above, stable pricesobtain for e = 1.
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than the expected utility maximizers. Then their sharein the population of the young generation
would rise. Since the young case-based investors would aso prefer to buy the risky asset, their
growing share would drive the price of the asset upwards and, therefore, increase the return of
their " parents’ further, which onitsturn would i ncrease the share of young case-based decision-
makers, and so on. Thiswould mean that expected utility maximizers could bedriven out of the
market in asingle period if their evaluation of the risky asset is below 1. It turns out that this

cannot happen*.

Indeed, consider the case in which v;® = 1 and e < 1 — p* hold and, therefore, y;¢* = 0
(sinceat theprice p; = (1 — ¢;) the expected utility maximizers are not ready to hold a). Let
further the dividend in the next period be high: 6,,, = 6. Since

1+ il > 146> 1,
Pt
the young case-based decision-makersin period (¢ + 1) also wish to hold a**. Therefore, the

return of a at (¢ + 1) becomes:
l—efn+6 1—ep1+6 i+

P 1—ef ci
withc; = 1 — e;. Thentheequilibrium share ¢, = 1 — e;,; can be determined according to

the equation:

i +6

g G _ i+
ﬁ‘zfuscf—i-(l—i-r)(l—c;") G to+1+7r)(1—-¢)

t

It can be shown that (6.72) has asingle solution ¢;, ; < 1 and, therefore, the share of the case-

(6.72)

* .
G =

based decision-makers does not riseto 1:

Lemma 6.1 Equation (6.72) hasonly onenon-negativeroot c;,; < 1. Furthermore, c;,; > c;
holds.

Thereis, however, a case in which the expected utility maximizers disappear from the market,
at least for some finite number of periods. To see how this can happen, consider the case of low

aspiration levels. Since the aspiration level satisfies

l<u<l+r,

140 | would like to thank to Hans Haller for encouraging me to pursue thisissue.

To guarantee that the case-based decision makers will still be willing to hold a given the return —L ,itis
sufficient to show that c;, ; > ¢; obtainsin equilibrium. This isdemonstrated in the proof of lemmaé. 1
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v = 0 holds for each ¢t. Then, to equilibrate the market for the risky asset,

vt = min{e;p™}

p; = min{e;;p™}
must hold. Suppose that the share of the expected utility maximizersisrelatively small so that
the priceof therisky asset islower than its fundamental value (ej < p**) and let the next period
dividend be low, 6,41 = 0. The equilibrium share of the expected utility maximizersis now
given by the solution of the equati o?:

€ *
_?:-Let
t

% €li1
€1 == = — —. (6.73)
o E’e“t;—let +(1+7r)(1—ef) €t (1+7)(1—€f)

(6.73) has two solutions: e ; = 0 and e;7; = e; (14 r) — r, which is always smaller than e;.

However, if theinitial share of the expected utility maximizersisrelatively small,i.e. if
T

147’

ef <
e;7; <0andej,; =0 obtainsinequilibrium.

The expected utility maximizerscan vanishif they hold therisky asset, hoping that it is valuable,
but if there are not enough of their type to prevent its price from falling when the dividend of
the asset is low. This effect is smilar to the noise trader risk identified by De Long, Shleifer,
Summersand Waldmann (1990). Although the expected utility maximizers do not have rational
expectations in this model, they suffer from an underval uation of the risky asset caused by the
case-based decision-makers. If, furthermore, the returns of the expected utility maximizers are
relatively low compared to those of the population as a whol e, then the share of the case-based
decision-makers increases caus ng the underval uation of the risky asset to become even more

SEVEre.

However, the expected utility maximizers do not disappear forever. In the next period, the mass
of the expected utility maximizersis determined by the fol lowing equation:
€rpo +0tto
€ o+ 02+ (1+7)
Note that the expected utility maximizers do not regain a positive mass in the next period if

812 = 0. Indeed, in this case their share satisfies:

* JR—
€2 =

€0
ero+(1+1)
anditiseasly seen that the sole non-negative sol ution of thisequationise;, , = 0. Nevertheless,

* —
€i1o =

the mass of the expected utility maximizers becomes positive again in the first period in which
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the dividend of the risky asset becomes positive, since then
€2+
efo+ 0+ (1+7)
holds. This equation has a unique strictly positive solution between 0 and 1.

* —_
Ci42 =

Note that this result does not contradict proposition 6.1, which only guarantees a positive equi-
librium price of therisky asset aslong ase; is positive. The effect arises, because of the depen-
dence of the replicator dynamic on the price of the risky asset and, therefore, indirectly on e;
itsalf. It shows that even in markets in which expected utility maximizers are a priori present,
the price of an asset with positive fundamenta value may fall to 0 and remain so for few peri-
ods. Theprice recoversamost surely infinite timeand the share of expected utility maximizers

becomes positive again.

The results of this section imply that some of the phenomena empirically observed in finan-
cia markets could be attributed to the presence of case-based decision-makersin the economy.
However, the emergence of bubbles or price crashes requires a relatively high proportion of
case-based decision-makers in the market. It is not clear whether the analytical computation
of the probability of the occurrence of such phenomenain thismodel is possible. Future work
has, therefore, to deal with simulations of the model, which woul d enable the estimation of the

frequency of such phenomena.
6.6 CRRA Utility

Up to now, the assumption of risk-neutrality has been made. Suppose, instead that the investors
in this economy have a utility function with constant relative risk-aversion. The coefficient of
rel ative risk-aversion is denoted by (1 — ) sothat theutility functions can be parameterized in
the following way:

ug(x) = a” e (0;1]

ug(x) = Inz, (=0,

Diversification is still not allowed™?. Parameterizing the utility function in this way has two

142 As has already been stated above, the diversification constraint affects only the behavior of risk-averse ex-

pected utility maximizers. Since case-based decision makers are in general unwilling to diversify, it is of interest
to study the model with diversification constraintsfirst, hence to ask whether the risk attitude of the expected util-
ity maximizersalone will allow them to drive the case-based decision makersto extinction. The assumption of no-
diversification is abandoned in section 7.
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effects: firg, it changes the cut-off price at which the expected utility maximizers are indiffer-
ent between holding a and b; second, it alters the critical values of the aspiration level which
determine the patterns of behavior of the case-based decision-makers. The second effect does
not have much influence on the results derived in the previous section. Just replace u % 1,
A= (1+r)anda = (1+68) by = us (1), = ug(1+r)and = ug (1 + 6), respectively
to obtai n the new critical values of u and determinewhich of the three cases discussed above is

rel evant.

Changing the cut-off price may, however, have a significant eff ect on the results. Snce now the
expected utility maximizers are risk-averse, they areready to hold a only if its priceisrelatively
low, i.e. only if its expected return exceeds the return of b so as to compensate for the higher
risk. Hence, at the critical price p® (3), the expected return of « is higher than those of b. It
is apriori not clear whether this excessive return can compensate for the risk of a, when the
population shares of investor types eva ve according to the replicator dynamic, which benefits

both high expected return and low risk.

First, | compute the cut-off pricep®* (/3)at which the expected util ity maximizerswith coefficient
of relativerisk-aversion equal to (1 — /) areindifferent between a and b, given their belief that
there are only expected utility maximizersin the market:

(1+7) = q<w>ﬁ+<1—q) (g:—(gy,forﬁe (0; 1]

peu (ﬁ) (
In(l1+7r) = g¢ln <p—pe<f()ﬁ—;— 6) +(1—¢g)In (—iw Eg;) ,for 5= 0.
Solving for p (/3), one obtains:
( \/ L , forge(0;1] )
pr(B) =4 VT (6.74)
i T(I—_T_l, for 3 = 0. }

Note that for 3 = 1, p°* (1) = p°* = 4 holds.

Consider the case in which the cut-off price exceeds 1 so that the expected utility maximiz-

ers hold the risky asset independently of its price in the market. According to (6.74), this is

equivalent to:
(1+68)° -1 ’
In(1+7) B
1 = 1n(1+5)’forﬁ_0'
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The following two propositions generalize the results of propositions 6.5 and 6.8'4.

Proposition 6.11 For agiven 3, let p® () > 1 and assume that the aspiration level satisfies
u€ (ug(1+r);us(l+9)).

1. If3e(0;1)and g € [%%}Z—j,{ﬁ%‘") then there existsan ¢ () € (0;1) such that e is

e
a submartingale below é (3) and a supermartingale above € (3).
2. If ge(0;1]and q € [%, 1}, then ¢; is a submartingale on [0; 1]. The case-based
decision-maker s disappear with probability 1.
3. Ifg=0and g e “—E&%,ﬁ‘—%) then there existsan ¢ (0) € (0;1) suchthat ¢} isa
submartingale below ¢ (0) and a super martingale above ¢ (0).

(14r)é>

deci sion-maker s disappear with probability 1.

4. If p=0and q € [M-l],then e; isa submartingale on [0; 1]. The case-based

Proposition 6.12 For agiven 3, let p® () > 1 and assume that the aspir ation level satisfies
u € (ug(1)sup (1+7)).

B . . . .
1. If e (0;1]and g € [ﬁﬁ—_;,%) then there existsan ¢ (8) € (0;1) suchthat e is

a submartingale below é (3) and a supermartingale above é (3).

(147)é>

deci sion-maker s disappear with probability 1.

2. If ge(0;1]and q € [M 1}, then e} is a submartingale on [0; 1]. The case-based

3. Ifg=0and g e [%%’%> then there existsan ¢ (0) € (0;1) suchthat e} isa

submartingale below ¢ (0) and a super martingale above ¢é (0).

4. If g =0and g € H}—L‘E)Lg;l],then e; isa submartingale on [0; 1]. The case-based

decision-maker s disappear with probability 1.

As inthe case of alinear utility function, arelatively low probability of high dividendsinsures
the survival of the case-based decision-makers. Moreover, the upper bound of ¢ for which the

case-based decision-makers survive does not depend on 5. However, if ¢ exceeds this bound,

1431t might seem that the following two propositions for the cases of high and low aspiration level areidentica.
However, the cut-off pointsé () and é (3) are differentin the two cases, therefore the clams are stated seperately.
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the case-based decis on-makers cannot compensatefor the higher returns of the expected utility
maximizers by a lower risk and vanish with probability 1 inthelimit. é(8) > ¢é (/) holdsin

analogy with proposition 6.9.

The results derived in this section, however, severely rely on the assumption that diversification
is not possible for risk-averseinvestars. They suggest that the excess return achieved by holding
the risky asset at alower priceis still not sufficiently highto compensate for the riskiness of the
strategy of the expected utility maximizers. Allowing for diversification, allows the expected
utility maximizers not only to reduce the riskiness of their strategy, but to achieve even higher
excess returns. Therefore, it can be expected that expected utility maximizers with relatively
high coefficients of relative risk-aversion will be able to drive the case-based decision-makers

out of the market even for values of ¢ < %;%

6.7 CRRA Utility with Diver sification

Supposefirst that the expected utility maximizershave alogarithmic utility function,i.e. 5 =0
in the terms of the last section, and assume that diversification is possible, whereas short sales
are still forbidden. Suppose that the expected utility maximizers expect the price in the next
period to be p,,; and know the true distribution of the dividends, aswell as the riskless interest
rate. Still, itisassumed that they act asif only expected utility maximizers were present in the
market. Their decision problem, therefore, can be stated as:

g atn (2 1 (o) 0 g B ) (1)
where v¢“ now denotes the proportion of the income each expected utility maximizer invests
into the risky asset™*4. Thefirst-order condition of this problem is easily seen to reduce to:

(1+7) (B2 (14 7))

petd (145 ) ((14r) - 222)

pt pt
Since short sales are forbidden, ¢« € [0; 1] must hold and the optimal portfolio is, therefore,

7?:(

144 gince all expected utility maximizers are identical and since diversification is allowed, they will solve identical

optimization problems in each period and will hold identical portfolios at each price p;. Hence, v¢* also denotes
the proportion of the income the expected utility maximizersinvest into the risky asset, asin the previous sections.
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determined by:

pt+1 (prr1+6)

b ( L1+gs > i < (1+r)(pe+1+(1—9)6)
eu o (1+7) = I}t ! —(1+7) ; P11 (Preq496) . Pe1tgb
Vi (pe) = (pt p]:é_(l"""))((1"'”_1)?;] ) , ifp e [(1+r)(Pt+1+(1—Q)5)’ 1+r

- )
0, if pp > 2T

Note that p; < -’-"fj&"—s is the condition that the expected return of the risky asset exceeds the

return of the riskless one and that it implies that M;—% > (14 r). Atthe sametime,

P+1 (Pe1+ 0)

(147) (pera+ (1 —q) )
implies that 2= < (1 + ). Hence, for 7" (p;) € [0;1], the no-arbitrage restrictions are ful-

filled. The short sale constraints insure that the demand for « is well-defined even if these

pr <

restrictions are not satisfied.

Remark 6.1 If 7 +ﬁt+(;(pt++1g‘5)q) 5 > 1 holds, then the young expected utility maximizers nvest

their whole endovvment into the risky asset a, independently of its current price p,.

It isastandard result that v§* (p;) is a decreasi ng function:

Lemma 6.2 Qy—%ﬂﬁ <0.

The following corollary obtains:
Corollary 6.2 For each expected price p;,; there exists a unique equilibrium price p; in a
market populated only by expected utility maximi zers.

In an equilibrium with rational expectations, the price of the risky asset must satisfy in each
period:
Pv1 = Dt
Ve (o) = pre
Proposition 6.13 Inan economy populated only by expected utility maximizer swith alogarith-

mic utility function, the equilibrium price under rational expectationsis given by min {pfgg; 1}
with

1+T+(5—\/(1+r+5)2—4q5(1+r)
2r '

eu
Prog =

1+6)r
pi > 1 holds, iff ¢ > XF)L&

Note that the values of ¢ for which the price under rational expectations exceeds 1 coincide
with the values derived in proposition 6.11 and 6.12 which guarantee that case-based decision-
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maker s disappear with probability 1 in the limit. Moreover, asthe following corollary states, if

g satisfies
(14+6)r

92— o
(1+7)6
then the expected utility maximizersare ready to invest their whole endowment i n the risky asset

a, independently of the price p;:

Corollary 6.3

eu eu 6
Pigy (1 + 9) > 1 (6.75)

(1+7) (pfo“g—i-(l—q)é) -

: 14+6)r
holdsif ¢ > Gt

The following proposition can now be stated in anal ogy to propositions 6.11 and 6.12:

Proposition 6.14 Let pig, > 1. If the aspirationlevel of the case-based decision-makers satis-

fies“s @ € (0;1n (1 + §)), then the share of the expected utility maximizers convergesto 1 with
probability 1.

The proposition shows that case-based deci sion-makers with an aspiration level exceeding the
utility of 1 unit of consumption good disappear, when logarithmic expected utility maximizers
are present in the market. The ability of the expected utility maximizersto diversify combined
with a logarithmic utility function reduces their exposure to risk sufficiently so that they out-
perform the case-based decision-makers. This result is aspecial case of the more general one
obtai ned by Blume and Eadey (1992, 2001), Hensand Schenk-Hoppé (2001) and of Evstigneey,
Hens and Schenk-Hoppé (2002, 2003), who show that expected utility maximizerswith logarith-
mi c utility function and correct beliefs fol low the most successful strategy in afinancial market
and drive all other strategiesto extinction. Note that since the logarithmic utility maximizersin
thismodel act asin an equilibrium with rational expectationsin an economy popul ated by ex-
pected utility maximizers identical to themselves, they indeed have correct beliefs in the limit
for e — 1¥5, Moreover, since ther utility function letsthem act as if they maximized the ex-
pected growth of their wealth, i.e. asif they maximized the expected value of the function given
by the replicator dynamic, the result that they drive the case-based decision-makers out of the

market remains true for all values of pi .

145 The result is stated for case-based decision makers with logarithmic utility function.

146 This makes their strategy similar to the strategy called \* in the works of Hens and Schenk-Hoppé (2001) and
of Evstigneev, Hens and Schenk-Hoppé (2002, 2003), which operateswith rational beliefsonly in the limit, when
its weal th share convergesto 1.
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Itis straightforward to extend theresult of proposition 6.14 to the more general case of constant
rel ative risk-aversion. Denote the price under rational expectations for an arbitrary coefficient
of relativerisk-aversion (1 — 3) by pg* and note that it increases with decreasing relative risk-

aversion.

%Eu
Lemma6.3 —55 > 0forall 3 € (0;1].

It can be further shown that for each 5 € (0; 1], the case-based decision-makers survive for a

certain range of the parameters.

Proposition 6.15 Suppose that diver sification is allowed. Let 5 € (0;1].
Ifa € (ug(1+7);ug(1+6))and

T . (A+o)r ; int > . s
1. qe€ [H(é_r)(lmﬂ,l, (1+T')5) , then there exists a cut-off point é; () € (0;1) such that e;

isa supermartingale above ¢, (5) and a submartingale below ¢, ().

2. g€ [%, 1} , then the share of the case-based decision-makers convergesto 0 almost

surely.

Ifa € (ug(1);us (14 7)) and

r (At i - i 5 . *
1. qe€ |:r+(6—r)(1+6)’6’1’ (Hr)é),then there exists a cut-off point ¢, (3) € (0;1) such that e}

isa supermartingale above ¢, (3) and a submartingale below é, (53).
2. g€ [%, 1} , then the share of the case-based decision-makers convergesto 0 almost
surely.

The condition g > m implies that the expected utility maximizers wish to invest

their wholeinitial endowment into the risky asset, independently of itsprice, whereas ¢ < 1&{—%

is necessary for the survival of the case-based decisi on-makers. When these two conditions are
met simultaneoudly, the case-based decision-makers do not vanish in the limit, according to

propositions 6.5 and 6.8.

The case of alogarithmic utility function (5 = 0) representsthe limit case, in which
r (@ +9)r

r+@B—r)1+8) (1+7)é
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holds. Sincethe cut-off price below which the expected utility maximizersinvest al theirinitial
endowment in the risky asset isdecreasing in 3, this means that lower values of ¢ (than %)Lg)
are needed to satisfy a condition anal ogous to (6.75) formulated for pz*. Proposition 6.15 states
that for each 8 € (0; 1], there isaninterva of values of ¢ for which this condition is fulfilled
and at the same time the survival condition ¢ < {%ﬁ% is satisfied. For these values of ¢, the
share of case-based decision-makers remains positive with probability 1 inthelimit. Since these
intervals become small er and smaller, astheval ue of 3 decreases, it iseasier for morerisk-averse
expected utility maximizers to drive the case-based decision-makers out of the market*#. For
each 5 > 0, however, the case-based decision-makers survive aimost surely, at least for some

values of the parameters.
6.8 Conclusion

The chapter presents a first attempt to analyze an asset market in which both expected utility
maximizers and case-based decision-makers are present. It has been demonstrated that in a
stationary state both types of investors can coexist, holding identical portfolios. The price of
the risky asset is then equal to its fundamental value. However, in this case it is empirically
impossible to distinguish between the two types of investors and the hypotheses of expected

utility maximization and rational expectations cannot be rej ected.

The analysis of the stationary state in which the proportion of expected utility maximizers is
1 shows that in genera this stationary state need not be stable. Especidly, if the fundamental
value of the risky asset satisfies certain conditions, case-based deci sion-makers with relatively
high aspiration level retain a strictly positive mass with probability onein the limit. Therefore,
according to the definition of Blume and Eadey (1992), the case-based deci Sion-makers not
only survive, but also dominate the market. In this sense they are also able to influence the
price dynamics. By switching between the two assets they can cause predictability of price

movements, excessive volatility and bubbles, which burst with probability one.

Alternatively, if the fundamental value of the risky asset is too high or too low, the case-based

decision-makers vani sh from the market with probability one.

For case-based decision-makerswith relatively low aspiration level stheresultsare similar. They

147 In the sense that there is a greater range of parameters for which this happens.
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vanish with probability one, if the fundamental value of the asset is too high, but survive and
dominate the market with probability 1, el se. Moreover, incertainperiodsthey can even drivethe
expected utility maximizersout of the market, causingthe price of therisky assettofall to0. This
effect seems to be similar to the so called " noise trader risk” discovered by De Long, Shiefer,
Summers and Waldmann (1990), although the expected utility maximizers in this model have
no rational expectations. However, the share of expected utility maximizers becomes positive

again and in the limit both types of investors coexist in the market.

Some of the results obtained for the case of risk-neutral expected utility maximizers are gener-
alized for expected utility maximizers with a utility function exhibiting constant relative risk-
averson. It turns out that even expected utility maximizers with logarithmic utility function
do not aways drive the case-based decision-makers to extinction. However, these results rely

severely on the fact that diversification is not possible for risk-averse investors.

The ability todiversify alows the expected utility maximizers with logarithmic utility function
to drive the case-based decision-makers out of the market. However, for lower degrees of risk-
aversion, there are always values of the parameters for which the case-based decison-makers
survivein astrictly positive proportion. Thisconfirms theresult established inthe literature that
logarithmic expected utility maximizers with correct beliefs perform best and accumulate the

whol e market wealth in the limit.

The analysis of the model, therefore, answers the two questions stated in the introduction by
identifying conditions under which case-based decision-makers survive in the presence of ex-
pected utility maximi zers and discuss ng their inf luence on prices. However, theseresults apply
for the special case of one-period memory (on the side of the case-based decision-makers) and
of constant expectations (on the side of the expected utility maximizers). Further research will
have to allow for alonger memory and for Bayesian adaptation of expectationsin order to ana-

lyze the issue of the efficiency of these learning rulesin an evolutionary setting.

A final note has to be made on the issue of i ntroducing expected utility maximizerswith rationa
expectations. Itisstraightforward to seethat with alinear utility function and non-bi nding short-
sales-congtraints, the expected returnsof thetwo assetsmust beidentical in each period of time.
Therefore, the replicator dynamic selects for the lessrisky strategy in each period. Hence, the
results about the instability of the stationary statee = 1 remain valid even if the expected utility
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maximizers have rational expectations with respect to the behavior of the case-based decision-

makers and to the evolutionary dynamic of the economy.
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Appendix

Proof of proposition 6.2:
In order to show the existence of an equilibrium, it is sufficient to demonstrate that the system

of equations formulated in conditions (4), (i), (i2¢) and (iv) of the definition has a solution:

~keu

(%

e = f* €1 (6.76)
(%
Y = () (6.77)
v = ()
viter + i (1 —ef) = p; (6.78)

First note that since

Do = e+ (L —eeq),
(6.76) can be written as:
— Pt = f (p}) (6.79)
pi 6+ (1+7) (1 —yfe—y2 (1 —e) =~ .
wherep; is determined from (6.77) and (6.78), taking e; as given. It followsthat f (p;) depends

* Bt (14 r) (1= 55) | ers
€t

on e, through p;. Moreover, f (pf) iscontinuousin p; and can only take values between 0 and 1
for all possible values of e, and, thus, of p; between 0 and 1. Therefore, it suffices to show that
f (p; (e;)) hasafixed point in order to prove the existence of an equilibrium. Since for agiven
e, multiple equilibria can emerge, it will be shown that in each possible case, equilibria can be

selected in such away that afixed point argument applies.
Itisnecessary to consider several cases depending on the values of the parameters p** and .

Let first p® > 1 and let v*, = 1. It follows that p; ; = 1. Now, if 1 + 6; > @ holds,
then p; (e:) = 1 for all e; and is, thus, continuous in e;, which guarantees the existence of an
equilibrium according to the Brouwer’s fixed point theorem, M as-Collel, Whinston and Green
(1995, p. 952).

If 1 +6, < @, then ¢ = 0 and p; (e;) = e,, which is again a continuous function.

Now let ¢ | be arbitrary. The decision of the case-based decision-makers depends on the com-

pari son
p; t0: e+ (1 —e) +6

Dt—1 Pt—1

VIA

U.
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Hence, for a given e;, the share of case-based decision-makers holding a in atemporary equi-
librium sati sfies"®:

(1, ifﬁ‘f‘ >u>1+r )
. . +y¢b(1—ep)+6 _
, 'yfﬁl, if min { =T 7’pt(let) 14 >
. —
M= b . er vt (1—er)+6; _
(1—'yt), Ifmax{T,1+r}<u
e tet (1—e)+6 _
0, |fﬂb;,t(_le#<u<1+r )

\
Itfollowsthat for a < 1+ 7;

. b (1—e;)+6
e+, (1—ey), jf oia el o

Pt—1
e if 6t+’Ygil(1*€t)+(5t <
i pt—1
If up,—1 — 6+ > 1, then p; = e, whichis acontinuousfunction and therefore afixed point exists.

p; (&) =

If ap—1 — 6 < 1, both parts of p; (e;) matter and p; (e;) is obvioudy not continuous. Nev-
ertheless, p; (e;) is continuous but for upward jumps'®. Moreover, this property is preserved
if p; (e;) is subjected to a monotone transformation, see Milgrom and Roberts (1994, p. 445).
Now note that since for p¢* > 1 the choice of v§* = 1 is optimal in each period, it follows
that in each period the expected utility maximizers invest a larger share of their income into
the risky asset than the case-based decision-makers do. Thisimplies that the share of the ex-
pected utility maximizersisincreasing in the price of the risky asset py, % > 0. Hence, f (+)
is a monotone transformation of p;. Therefore, f (-) isaso continuous but for upward jumps.
Moreover, f transfers [0; 1] into [0; 1]. Theorem 1 of Milgrom and Roberts (1994, p. 446) as-
certains that such functions have afixed point. Therefore an equilibrium share e; of expected

utility maximizers existsin this case.

Foru>1+r:
ifl—‘*ﬁ;za

1,
* _ pt—
2 (€t> o { e; + (1 — ’ygﬁl) (1 — et), if 'pth&t_l < }
In both cases, p; (e;) iscontinuousin e; and, therefore, the Brouwer’sfixed point theorem applies

and an equilibrium exists.

Now suppose that p°* € (0;1), % > @ and y$® | isarbitrary. Then the equilibrium share of

148 The points of indifference are omitted here for simplicity.
149 A function g : [0; 1] — [0;1] iscontinuous but for upward jumps, if for all 2’ € [0; 1]
limsup < g (2') < lim/i?f/

zlx’

holds, see Milgrom and Roberts (1994, p. 445).
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case-based decision-makers willing to hold a in atemporary equilibrium is given by:
¥y, ifa<14rand2t > g
v = ¢ 0, ifﬂ§1+rand%£‘<a
1, ifu>1+r,
where the last line follows from the fact that
pe > p i =1
must hold in equilibrium. For o < 1 4 r the equilibrium price is therefore:
pe, ifer +752; (1—ee) > p™

- et + CLEJ 1—et )40 _
py(er) =1 €t +y2 (L —e), ife +752 (1 —e) <p™ and == pt(_l 1 > :

et-‘r’yctb,] (1—et)+6¢ < i

e
ts Pt—1

if p* > 4, and

p; (er) = { 721 (1 —er), ?f vi2y (1= er) > p™ }
' P, if 921 (1—e) < p™

if p= < 92y
Note that when p®* > ~v5%, holds,

Y2 (1= ep) < p™
must hold at (¢ — 1). Therefore, the mass of case-based deci sion-makersisnot sufficient to drive
the equilibrium price of therisky asset to p¢“. It follows that at least some of the expected utility
maximizers must hold a at (¢t — 1). If

ﬁil (1—e41)+ em1 < p™,

then all of the expected utility maximizers will hold a in (¢ — 1), hence

v =1>p™ >4,
obtains. Else, it must be that the expected utility maximizers are indiff erent between a and b,
therefore:

71?31 (1 —e1) +7itiei—1 = p™
must hold. But this can only betrue, if
vt > ™ >0

This argument demonstrates that the share of expected utility maximizers holding a at time
(t — 1) exceedsthose of case-based deci sion-makers holding a at (¢ — 1) and, therefore, a%é >0
holds. Since p; (e;) iscontinuous but for upward jumps, the fixed point argument of Milgrom

and Roberts (1994, p. 446) appliesto the function f and an equilibrium e} exists.

For the case p™ < ~%,, p; (e;) is a continuous function in e, and, therefore, a fixed point
302



argument appliesfor f and guarantees the existence of an equilibrium.

Forthecaseu > 1+ r,

. 1 —ey ifl—e>p™
P (ee) = { Y, if1—e; <p™

holds. p; isagain continuousin e; S0 that an equilibrium exists.
Now consider the case p™ € (0;1), £-=% < u and let ;" be arbitrary. If @ < 1+ 7, the
equilibrium price isgiven by:
% . Et, |f (73 S peu
pi (@) _{ p, ife >p [
which is a continuous function of e; and, therefore, an equilibrium exists. The same equation

describesthe pricein the case, inwhich 4 > 1+, but %, = 1.

Fora > 1+ rand~$®, < 1 the equilibrium price depends on the parameters in the foll owing

way:

L Mpotad, —1>0:
*(615):{ €t+(1—€t) (].—’Yfﬁl), if 6t+(1—et) (]‘_’7;{11) Speu }

Dy P, if e, + (1 N 721;_1) (1 o et) > peu
2. pt 4, —1<Oandap, 1 —6 >1—7:
p* (et) _ peu’ If (1 - et) 1 _’Y?El S peu
f (1—e) (1 —72), if (T—e) (1 —=7i2y) >p™ f°
Py, if (1—e)(1—72,) <p™ )

. 1521 )(1—et)+6 _
pie) =4 (T—e) (L—7fy), if(1—e) (1 —~,) > puand-— <
_~cb _

(1-e), jf Laitaloeder

Incases 1. and 2, p; (e;) iscontinuous. Hence, afixed point of f (-) exists.

Consider, therefore, case 3. If
(1 =p™) > 7, > p™,
then v, > ~v%,. Inthis case define afunction g such that:

F(c)+6;
giledibineb 4 (1 4r) (1—72,)

* bt—1
Ct)) = ’
9(pi () pr(c) + 6+ (1+7) (1= —v5 (1= )

where

p; (ct) = py (1 —cy) .
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(2)

g is, thus, the equilibrium equation for the share of case-based decision-makers. It is easily
verified that ¢ (-) increases in p;, aslong as v, > 4%, holds. Moreover, since p; (e,) is
continuous but for downward jumps, p; (c:) is continuous but for upward jumps. Hence, an

equilibrium share ¢f exists and the equilibrium share e} isobtained ase; = 1 — .

If v, < p, then v, < ~¢“,. Inthiscasg, it is useful to write p; (e;) asacorrespondencein

the fol lowing way™°:

e 0wty <

(1—e) (1—5,), if (1—e)(1—75) >p™ and% <u
: = =y —€¢) 104 _
yZ (et) {(1 o Gt) (1 o ’Y?ﬁl) 7<1 . et)}, |f 1;(? 1+5t 2 i and (1 ’yt—;ngll )+6 <1

(17", ) (1) 46
Pt—1

(1 — et), |f
This correspondence is illustrated in figure 13, where

>4

De = Upi—1 — Oy
denotes the price at which the case-based decis on-makers who have observed a are indiff erent
between a and b.

The figure showsthat although p; (e;) doesnot satisfy the conditionsof thefixed point theorem
of Kakutani, see Mas-Collel, Whinston and Green (1995, p. 953), it still has a fixed point due
to the fact that

(1 —et) :ﬁtform -
q Pt—1
an
(1=7P) (L —e) + &

(1—e) (1 —=7y) = pifor =u
Pi

Sincev¢?, < ¢, f (-) ismonotonically increasingin p,. The monotone transformation of the
correspondence, however, does not change the fixed point property and therefore f (-) also has
afixed point.l

Proof of proposition 6.3:

Let firste,—1 = 1. It followsthat (1 — e;—1) = 0. Since
* ptf;L i+ () (1 - Vt—lﬂ i
et — p* e* +6t eu 1 1 — ou
Pt—1 Vi-16t—1 + ( + T) ( ’thletfl)

the claim of the propositi on obtains.

=1,

150

In some of the previously considered casesp; (e;) isalsoa correspondence. Therefore, thefunctional form given
selects one equilibrium in case of multiplicity. It turnsout, however, that in thislast case, the whole correspondence
P} (e) isnecessary to guarantee the existence of afixed point.
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(i4)

Figure 13

If p—1 > 0ande;—; =0,thene; = 3% = 0. Therefore, if it can beinsured that the demand for
a of the case-based decision-makersisstrictly positive over time, the massof the expected utility
maximizerswill remain 0 in every period of time. Hence, a condition is needed that insures that
vi > 0 for each t. Assume, asin the proposition that v& > 0. Let (¢ — 1) be some period in
which~y?, > 0 andnotethat those case-based decision-makers who have case (a; v (a)) intheir
memory either observeareturn of 1 or areturn of 1 +$ if the price of the asset doesnot change
between period (¢ — 1) and period ¢. In both cases, the return observed exceeds the aspiration
level u < 1, guaranteeing that a proportion of at least v5*, of the case-based decision-makers
holdsa at ¢. Therest of the case-based decision-makers have observed the case (b; (1 + r)) and

since (1+r) > 1 > u is asatisfactory return, they invest in b. Therefore, the proportion of
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case-based decision-makers holding a, aswell as the price of a remain constant over the time:

v = pr =42 > 0foreacht > 1.1
Proof of proposition 6.4:

The assumption
o P + min{é;} _

*

p
guarantees that as|ong asthe price of a remains constant over the time, none of the case-based

1

decision-makers will ever switch away from the initially chosen portfolio. Indeed, if a case-
based deci sion-maker remembers (b; v, (b)),

v(b)=1+r>1>u

holds and o’ = b. Alternatively, if a case-based decision-maker remembers (a; v; (a)), then
two possibilities occur: if 6, = 6,

46
vt(a):p —: >1>u
p
if 6; = 0, then
vt(a):p +0:1>ﬂ.
p*

In both cases, the alternative chosen last is satisfactory and is chosen again. Hence, 75 = ~§°
foreacht > 1.

Let first p°* > 1. Since short-sales are forbidden, the market price satisfiesp* < 1 < p® in
each period, therefore in each period {* = 1 holds. At thesametime, given that the case-based
decision-makers start with v* = 1, v¢* = 1 will hold in each ¢, asthe argument above demon-
strated. This means that the equilibrium price p; = p* = 1in each ¢ isindeed constant over
the time. M oreover, since the case-based decision-makers and the expected utility maximizers
hold the same portfolio consisting only of risky assets, their returns are equal for each possible
dividend realization in each period of time:

Thereforee; = ep = eforall t. Thisresult doesnot depend on theinitial share e of the expected

utility maximizers.

Let now p* < 1. Now the short-sale constraint isnot binding. Therefore, the expected utility
maximizerswill choose a if p* < p, bif p* > p® and will beindifferent at p*. If p* exceeded

p?*, then the expected utility maximizers would hold b in each period, whereas at least some
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of the case-based decision-makers would have to hold a to guarantee that the price remains
positive. Therefore, both types of investors would hold diff erent portfolios and would therefore

achieve different returnsin general. Hence, e¢; could not remain constant over time.

Alternatively, if p* < p®, then all expected utility maximizers would hold a, whereas at |east
some of the case-based deci sion-makers woul d have to hold b, because else the priceof a would
jumpto 1. Hence, inthis case e; would not remain constant over time, either. The only possi-
ble stationary state occurs therefore at p* = p®. Note that this is the equilibrium price if the
portfolios of both types of investors sati sfy:
W=t =p™
for each t. Moreover, these portfolios are indeed optimal at the equilibrium pricep®®. But since
now both types of investors hold identical portfolios, their returns are equal for each dividend
realization in each period of time:
P =g = peup*p—tét +(1=p™) (1 +7).

Therefore, their shares in the popul ation remain constant over time.ll
Proof of proposition 6.5:

Aswas pointed out in the main text, the average returns of the case-based decison-makers and
the expected utility maximizers areequal if both typeshold a and only differ in periods in which
the case-based decision-makers hold b, whereas the expected utility maximizers hold a. Insuch
periads, the expected (since it depends on a random dividend payment) equilibrium share of

case-based decisi on-makersis given by:
(L+7)ci,y (L+7r)g,
Elci e 1l =q :
;i (1+r)er, +%_a-_f) (1—ciy) (1+7r)e, + Z%_l (1—cty)
Now note that sincein (¢ — 1) only the expected utility maximizers hold a,

+(1—q)

P =e€_1=1—cy
Therefore, the evolution of ¢; depends on the comparison:
14+r)c 1+7)cr
S LR it LS Z 4
(I14+7r)g_+(1+9) (1+7)c  +1

E [Cj; | CI—J =q

which is equivalent to:

r(1+8) +r (147 —qs(L+7) 2 (1+8) (L+r)c,+(1+7)7c?,

r(1+5—|—(1—|—7“)cf_1)—(1—1—7“)0;;_1 (1—1—5—|—(1+7")Ct—1)—q5(1+7’)§0
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(1+6+0+r)gy) [r—0Q+r)c ] —qs(1+r)20. (6.80)

Itisclear that for c;_; > 1—;

Eci [ ciq] < ey,
therefore, c; is a supermartingale and since e; + ¢; = 1 ineach period, it follows that e} is a
submartingaeif ef | < 1=. For ¢f_; — 0, thel.h.s. of (6.80) becomes:

1+6
(1+0)r—qgs(1+r)=(14+6—p%r)r—p™r>0forp™ < ﬁ,

since per assumption p* = gf and$ > r hold. If p*™ < ﬁ—"ﬁ; the continuity of the I.h.s. of
(6.80) guarantees that

Elc;|ciq] > ¢y
holdsin some surrounding of 0. Hence, ¢, isasubmartingale for ¢;_; closeto 0. It follows that

forsomeé € (0; 7))

Elc|c=¢ =¢

The assertion of the first part of the propaosition now follows by definingé = 1 — é.

If pu > {4 thel.h.s. of (6.80) is negative for all ¢;_; € [0; 1] and, therefore,

Ele|ef ] > e forale; €[0;1]
obtains. It follows that ¢} is a submartingale on [0; 1]. Hence, the convergence theorem for

submartingal es, seetheorem 35.5in Billingsley (1995, p. 468), applies, i.e. e; convergesamost

surely. It follows that on almost each dividend path

lim -2 — im (1+0) —
t—o0 6?_1 t—oo 1+(1—62<)7‘+5t

must hold, which is only possible, if e; — 1 with probability 1.1

Proof of proposition 6.6:

Assumethat e € [max {p;1 — p + 325 }:1).

The proposition will be proved separately for those periods in which the case-based decision-
makers hold a and those periodsin which they hold b. First note that if 5> = 1 holds, then the

case-based decision-makers continue to hold a at time t + 1, iff 6,,; = 6 so that in this case

U

pt+1 =pt = p~.
By assumption, the share of case-based decision-makers satisfies
G=1-—¢e <1—p™ <p™,
since p¢ < % If the price cannot rise higher than pe“, the average return of the case-based
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decison-makersis, therefore:
0 =1+ o
whereas the average return of the population is given by

O =p"+0+1+r)1—=p")=1+r—rp™+56,
aslong ase;,; < p* holds. Furthermore, since 1 + ]ﬁ > 1+ 6 > u, the young case-based
decision-makersinvestin a aswell sothat v{%, = 1.
Alternatively, if 6,41 = 0, then the highest return that the case-based decision-makers can
achievefroma is1 < u, thereforethe young case-based decision-makers will choose b, achiev-
ing an average return of at most 1. Since thisaverage return is smaller than the average return
of the popul ation, given by:

U1 =™+ (L4+7) (1= p™) =1+ —rp™,

the mass of the case-based deci s on-makersdecreases, making it possiblefor the expected utility

maximizers to sustain the price of a at p* at time (¢t + 1).

If 6;.1 = ¢, then the returns and the behavior of the investorsin (¢ + 2) is described exactly
asin (¢t + 1), except in the case, in which the share of the case-based decision-makers has risen
above p* and does not alow the expected utility maximizers to reduce the price of the risky

asset to its fundamental value. This can happen, if theinitial ¢} isrelatively high, so that:

(1 + ﬁ)
14+r—rpfv+0
Itis, therefore, shown that if p* is sufficiently large, ¢f,; < p® holds for all values of ¢} €
(0; 1 — p*+). Indeed, rewrite (6.81) as

. PM(L+r—rp™+06)
> .
1425
To exclude the case, in which theinequality in (6.81) holds, it is necessary that:
p (1471 —rpu+06)

c; > p™. (6.81)

* R—
Gy —

1 —pev,
1+-L !
or that
— ™ P 24T+ 6) — (L—8) P — 6> 0. (6.82)

Notefirst that for § = 5 (p™ = 3), thel.h.s. is negative and that for § = £ (p™ = 1), thel.h.s.
ispositive. Using now the fact that p« = f, rewrite (6.82) as.

q262(1—q)+5q(2q+qr+r)—r>0
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and since the |.h.s. of this expression is a convex quadratic function, there exists a §, such that
for every 6 > 6 (6.82) is satisfied.

The expected value of the share of the case-based decision-makers at time (¢ + 2), given their

share at time ¢, can then be written as®?:

(1+5%) [ 1+ |
* * * p peU
E[ct+2|ct,7§b:1] = G4q R+ QR+5 +(1_Q)E +
. L] (1+7r) (1+7r)
1—q)=|g~——2 + (1 — q)———=
+c; ( Q)R{QR+6+( q) 7|

where R = 1 + r — rp®. Using smple a gebra and the fact that p« = gf showsthat

E [0;2 | C:»Vfb = 1] > ¢,

if and only if
(g+")RRA+7r)+6(1-q)+ (1 —q)(1+7)(R+6(1—q) (R+6)> (R+ 6)°R?
(6.83)
holds. If
P _ e 1

meaning that R = 1 and ¢6 = r, condition (6.73) simplifies to:
(1+06)r(d—r+qr)>0,
which isaways satisfied, since 6 > r hads by assumption. On the other hand, for

and, hence, R = 1+ 3 and ¢0 = 5, (6.83) is equivalent to
2 3
qr - qr 37”__1___2_2
2—}——4 +_16 5 T or —o6“r — or° >0,

which is never satisfied, since

oo _r_1
2 2 2
2

% < r?<r
3r3

— < rP<ri<ér
hold according to the assumption that 6 > r, € (0;1) and g € (0; 1). Therefore,

Elciiy| i =1] >

151 In fact, as above, it should be taken into account that the share of the case-based decision-makers might exceed
p° in (t+ 2) if therisky asset pays ahigh dividend. However, this will only increase the expected value of ¢ .
Since the argument relies on showing that the expected value of c;,, exceeds c}, neglecting this effect has no
influence on the results.
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holdsfor 6 = p and sincethe expected valueof c;_, iscontinuousin ¢, it fol lowsthat the process
¢f1 Cy2r Gra--- IS@SUbmartingale in some surrounding of 6 = 7. Atthe sametime,

Elcial e =1 <¢
holds for 6 = -2’%1 By continuity of the expected value of ¢} ,, thereis, therefore, avalue for o,

€ (2—721,2) such that the expected value of ¢}, , exceeds ¢ for § > 6.

Now suppose that v¢* = 0. Similar aguments as those stated above allow to write the expected

value of ¢}, as:

5
C e L) | \Itga 1
E[Ct—i—Z‘Cta’Ytb:O} = thR—l—5 q(R+p5>+(1 C])E +
5
. +r) | o 1
+c; (1—q) 7 ‘1<R+5>+<1_Q)§'

Again, one should take into account that the mass of the case-based decision-makers could in-
crease above p in period (¢ + 1), when the dividend of the risky asset is low. However, this

would require that:
A+7) o e
———c; > p°Y,
1+7r—rpeu
or, equivalently
2
rpeu
<l —ptt 4 —,
“ Pt 1+7r

which is excluded by the assumptions made.

Using smple a gebraand the fact that p** = gf showsthat
E[cfis| 7 =0] > ¢
holdsiif
A+ [ROA+7)+6(1—q)][R+6(1 —q)] > (R+6)R? (6.84)

is satisfied. Note that for p* = 1, condition (6.84) is equivalent to

(1+r)(14+6—-1) >0,
which isalways satisfied. For p = 1, (6.84) becomes

3_7‘2 ror?% ré 6

—_ —_— —_— —_ O’
s "1t T3y

whichis obviously satisfied for all positivevaluesof ~ and 6. Since the expected value of ¢}, 5 is
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continuous in &, it followsthat thereisaé € [-g,g) such that

Elcial e =0 > ¢
for al § > . Now choose the maximal of the three values §, &, 6 and denote it by 5. Let
5 = 2 It followsthat j° € (1;1) and that

E ¢ ] >,

eu, eu peur2 .
et € lmaxqp ;1—p +1_peu I

Sincec;,, and e;,, sumto 1, it follows that

for pe* > p** and

E[6:+2|6:>7§b:0] < ¢
E[€t+2|€:>'7§b:1] < e,

if peu > pev and

eu,r2
e € {max {peu; 1 —p®+ 1p_ po } ; 1)
are fulfilled smultaneoudy.l

Proof of proposition 6.7:

In lemma 19 in Sciubba (1999, p. 40), it is demonstrated that a supermartingale bounded be-
tween [0; 1] and starting below 1 cannot converge to its upper boundary with probability 1. The
following argument foll ows closely the proof of proposition 17 in Sciubba (1999, pp. 40-41).
Suppose that e; converges to 1 with strictly positive probability and denote the event on which
this happens by ©. Now consider e; on the event © and suppose that on © Pr{e; — 1} = 1.
Denoteby ©, C O, C ...0; C ...0O the naturdl filtration of ©. Since Pr{©®} > 0, and since the
process of the dividendsisi.i.d., the Law of Large Numbers applies and the di stribution of divi-
dendson © coincides with the distribution of the dividends on @, the set of all possible dividend
paths. Especialy, Pr{6; = 6 | ©;,_1} = Pr{é; = 6} = ¢. Therefore, the processe; on© can be
described in exactly the ssmeway, asthe process e; on ® and, therefore, e} is a supermartingale
on ©. But, according to Lemma 19 in Sciubba (1999, p. 40),
Pr{e; — 1|0} # 1,
since e is a supermartingale bounded above by 1. Therefore, there is no event with positive

probability on whiche; — 1 occurs almost surely. Hence,

Pr{e; — 1} =0
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and the case-based decision-makers survive with probability 1.1
Proof of proposition 6.8:

Since p°* > 1 holds, the expected utility maximizers hold « in each period of time. The case-
based decision-makers always choose b, since their aspiration level is between 1 and (1 + 7).
Therefore, the price of a isgiven by
pp=e=1-¢
for each t. The return of the case-based decision-makersis (1 + r) in each period, whereas the
average return of the population is given by
Oy=e +0;,+(1—¢€)(1+r)=1406+ .

Hence, E [c},, | ¢;] can bewritten as:
(1+7r)

(1+7r) o
q1+c;*7“+6

1+ cgr

Elcin | ] = +(1—q) ¢

Thissmplifiesto:

/\II\/

(1—c)r(L+cr+8) —q(l+r)6 0. (6.85)
For ¢; — 0 the left hand side becomes:
146
1+7
For ¢; = 1, thel.h.s. of (6.85) is negative. Sincethel.h.s. of (6. 85) is a quadratic function

r(1+06)—q(l+r)é>0forp™ <

with a negative coefficient in front of ¢2, it follows that for p* < there exists a unique

1+ '
¢ € (0;1), for which theleft hand side of (6.85) is0. For ¢; > ¢, ¢; isasupermartingal e and
vice versa. Now denote by ¢ = 1 — ¢ the share of expected utility maximizers corresponding to
the share ¢ of case-based decision-makers. It followsthat e; is asupermartingae for e > ¢ and

asubmartingale for e < é.

If pev > 1= then ¢ is a supermartingale on the whole interval [0; 1]. Therefore ef is a sub-

147’
martingale on [0; 1]. Hence, the convergence theorem for martingal es applies, i.e. e; converges

almost surely. It followsthat on aimast each dividend path

(ef+6+)
*
. €y . ef+o6it+(1+r)(1—ef_y
lim —& = lim — (-ci) =1.
t—oo ;4 t—o0 (e;‘_1+5t71)

e’t*_1+§t_1+(1+7“)(1762‘_2)

must hold. For e} = e} | = e} ,, thisimplies:
lim (e + 0 = lim (e + 1) .
tmooei + 6+ (L+1) (L—¢f)  tooej+ 0,0+ (1+7)(1—¢f)

Note, however that since ¢; is a stochastic process, this equality can only hold if the average
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return of the expected utility maximi zers coincides with the averagereturn of the society in each
period of time, henceif e; — 1 with probability 1.1

Proof of proposition 6.9:

Rewrite conditions (6.80) and (6.85) as:
— 1+ — A+ (1 +6—r)+(1+8)r—qgs(1+7)
and
2 — (A4 A +6—r)+(148)r—gb(1+7),
respectively. One easily seesthat
— A+ =40 +6—r)+ (1 +8)r—g5(1+7)
< 2 — (4G A+6—r)+ 1 +8)r—qgb(1+7)
always holds. Hence, the sole positive root of (6.80) ¢ isaways smaller than the sole positive

root of (6.85), ¢. Sinceée=1—-candée=1— ¢, itfollowsthaté > ¢.l

Proof of propostion 6.10:

u2
(1+7)
large to support the price of a at p® in periodst + 1 and ¢t 4 2. Since the aspiration level of the

Since e} > max {pW; 1 — peu 4 = } the mass of expected utility maximizers is sufficiently

case-based decision-makerssatisfiesw € (1;1+ ), they hold b in each period of time. Their
averagereturn is, therefore,
3" = (1+7),
whereas the average return of the population is
O =14+06;+1r—rp™.
Hence, E [c},, | ¢;] can bewritten as:
Bl | €] = |t

il +r—rp®+6
Thiseasly smplifiesto:

) (1+7)

1+7r—rpe

+(1—g¢ % Z6

AV

—q(1+17)é % —rp®™ (1 + 7 —rp™ + 9)
and by using the fact that p** = ng , One obtains that ¢} isasubmartingale if
g6 (1 —q) >0,

whichisalwayssatisfied for g andé € (0;1)*2. Sincec; isasubmartingaleand sincee; = 1—c;,

152 For ¢6 = 0 both the case-based decision makers and the expected utility maximizers hold only asset b and
achieve identical returnsin each period of time. Themass of the case-based deci sion makers, thus, remai ns constarnt.
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it followsthat e} isasupermartingale on

Tpeu2
-1 — p™ 1] .1
[max{p ; D +(1+7‘)}7 ]

Gt 6+A+r(1—-¢)—1)—6=0. (6.86)
For c;,, = 1 thel.h.s. becomes:

Proof of lemma6.1:

Rewrite (6.72) as.

(1+7r)(1—¢) >0.
For ¢y, = 0 thel.h.s. is
—6 < 0.
Since the |.h.s. of (6.86) is a convex quadratic function, it followsthat it has exactly one root
between 0 and 1.

To prove the second part of the assertion, compute thel.h.s. of (6.86) for ¢, ; = ¢:
(c; = 1) (6 =),
which is always negative, since ¢; < 1 and
o>r>cr

hold by assumption. Therefore, ¢; < ¢, obtains.ll
Proof of propostion 6.11.

As was demonstrated in the proof of propositions 6.5, the condition for the existence of é (),
asdefined in the proposition, isthat for p** > 1,
(1+8)r—qgs(1+7r)>0

holds. The conditionq € ME;M is, therefore, equivalent to
(1+6)P =17 (1+7)8

p“(B)>1
and
(1+86)r—qg(1+7r)>0
for 8 € (0; 1], whereas the condition ¢ € [ﬁ}—ig,%) isequivaent to
p™(0) =1
and
(1+6)r—qé(1+7r)>0.
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Hence, these conditions indeed insure the existence of € (5).

If, onthe other hand, ¢ > %—i% theargument in the proof of proposition6.5 can be usedto show

that e} is a submartingal e on the whole interval [0; 1] and that the case-based decision-makers

disappear with probability 1 inthe limit.

. - N - .
[t stil| remains to be shown that ﬁ—ié)ﬁ%,%) makes sense for each 5 € [0;1], i.e. that

1+&r (Q+r’-1

> , 6.87
(1115 (1+6)°—1 (687)
for 8 € (0;1] and
(1+6)r In(1+4r)
6.88
76 In(l+o) (6.88)
hold.
Consider first (6.87) and rewriteit as.
@+ [a+8) -1 (1+r)|@+r)’-1]
> :
o r
Sincer < 6, (6.87) can be proved by showing that the function
(1L+2)|(1+2) 1]
hg (x) = -
isincreasing in z for al g € (0; 1]. Differentiate with respect to x to obtain:
1—(1—8z)(1+2)°
h'ﬁ (x) = e )
Notethat 2} (z) = 1 > 0 for al x and that
%iir%) hg (z) =0 for al z.
Differentiating hj; () with respect to 3 one obtains:
Ohg(z) [p—(1—pz)In(1+a)](1+2)
op 22 '
@sﬁ(ﬂ > 0 isequivalent to
In(l+z)—=x
6> rln(l14+x)
But % < 0foreach z € (0;1) and hence, @5;&) > 0 holdsfor all z € (0;1) and all

B € (0;1]. Therefore, hj; (x) > 0 for al 8 € (0; 1], implying that hg () isstrictly increasing in
x foral g e (0;1].
For (6.88) it is enough to show that

(1+7r)In(l+r) _ (1+6)In(1+96)
r o
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holds, or that the function
(1+2)In(1 +x)

ho (z) = -
isincreasing in x for € [0;1]. Since
r—In(l1+=x
ho (z) = * >0

issatisfied for all = € [0; 1], ho (z) isindeed increasing in z and the claim holds.l
Proof of proposition 6.12:

As proposition 6.8 shows, the condition which is necessary for the surviva of the case-based
decison-makersisp > 1 and
r(l+6)—q(l+r)6>0,

or
(14 9)
(1+71)6

q < (6.89)

Asinthe proof of proposition 6.11,
(1+ T)B -1
(1467 -1

> In(1+7)
In(1+9)
reflect the fact that the price p (3) > 1. But in proposition 6.11, it has been shown that these

q=

and

conditions for ¢ make sense. Hence, the result obtains.ll
Proof of lemma6.2:

Denote by p, = piy1 + 6 and by p, = piy1. Therefore, 45" (p:) can be written as
(Ltr)(gpm+ (A —g)pp—p(A+7)pe

eu p —
) = ) (14 1) — )
Now differentiate with respect to p; to obtain:

a,yeu (pt)
Opt

= (1+r)

[QP1+(1_Q)P2_QP7& (1+T)]( pr—pe(14+7) (e (1 +71)—py)
(py — e (1+ 7)) (0 (1 +7) = py)?
2pe(1+7)—p —po] (L +7) (goy + (1 —q)pp —pe (1 + 7)) pi

(o = (L47)* (pe (1 +7) — py)°
Simpl e al gebrashowsthat the sign of the derivativeisdetermined by the sign of the polynomial:

— 1+ 1)’ pF (1 = @) py +aps) +2pp1py (1 +7) — pypy (gpy + (1 —q)py) . (6.90)

+(1+7r)
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which is quadratic in p,. The discriminant of (6.90) can be computed to be:

D
7=+ o (1= (o = py)” <0,
and since the coefficient in front of p? islessthan 0, it follows that (6.90) is aways negative.

Hence, @”%%tm < 0 followsH
Proof of corollary 6.2:

Since y¢* (p) is continuous and decreasingin p: and since it mapstheinterval [0; 1] of possible
pricesp; into [0; 1] it follows that it has exactly onefixed point. But the fixed point v§* (p:) = py
is exactly the equilibrium condition for the market in which only expected utility maximizers

are present.
Proof of proposition 6.13:
The conditions for an equilibrium under rational expectations can be combined to obtain:

(14 7) (pf + a6 — pis, (14 7)) PR o

eu eu eu ew) Diog
(plog + 6 — plog (1 + T)) (plog (1 + 7,) - plog) =
where the |.h.s. represents the value of demand for the risky asset, ¢ (p:), the rh.s. represents

the value of supply and pf7, denotes the price under rational expectations. Simplifying, one

obtains the fol lowing quadratic equation for pZ:
—rzpfé‘; + (1 +7+6)rpig — (1 +7)gé =0.
For ¢ > 0, the discriminant of this equation is strictly positive:
D = (14+7r+6°r*—4r?(1+7)gd =

= r? (1 +r2 +6%+2r + 2(5+25r—4q5—47“q5) >

> 72 (147246 +2r + 264 26r — 46 — 4ré) =

= ?(1+r—67>>0
and, therefore, the equati on has two roots:

14746+ \/(1 +r46)° —4g6 (1 +7)

and
y 1+r+5—\/(1+r+(5)2—4q(5(1+r)
plog,2 = o ’
both of which are easily seen to be positive. Consider first pfy, ;.
Plog,1 > 1
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isequivaent to

1+r+6+\/(1+r+6)2—4q5(1—|—7‘) > 2r,or

L= 464047 +6°—4g5(1+1) > 0,
whichis awaysfulfilled. Therefore pg; ; > 1issatisfied for all values of the parameters. Note,

however that an equilibrium price equal to 1 can only obtain, if
Piog (Pfag +6)
(1+7) (pf +6 (1 —q)

is satisfiedin order to insurethat the unconstrained value of demand at pf7, exceeds1. However,

(6.91)

Plog <

it iseasy to seethat pf* ; does not satisfy this condition. Indeed (6.91) can be written as:

log, 1
6(g—r)

Plog1 < .
which is equivalent to
1—|—7’+5+\/(1 +r+68)7—4g5(147)—26(q—1) <0,

Since however 1 + 6 > 246q holds, this cannot be fulfilled for any values of the parameters.

Therefore, pi;, ; isnot an equilibrium price of the economy without short sale constraints.
It turns out that pf,, » satisfies condition (6.91). Indeed, for pi, , it becomes:
L7 4+6—28(g—1) < \/(L+7+6)° — g6 (1 +7),

which smplifiesto:

—6q(1—q)—r(1+r)—06r(1—r)—26rqg <0,
which is obvioudy true for al valuesof 6, ¢ and r.

On the other hand, pig,, , > 1 isequivaent to:

L7+ 68—/ (147462 —4g6 (1 +7) > 2r, or

1—r+(52\/(1+7’+5)2—4q6(1+7“),
which (since both sides are positive) is equivaent to:

(I—r+8)° > (1+7r+8)>—4g5 (1 +7)
r(1+40)
S5(1+7)

q =
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Proof of corollary 6.3:

. r 8 - eu .
Sinceq > 64(1—;% it follows that Ploga = L. Observefirst that

D1 (pt+1 + 6) (692)

(1+7) (P11 + (1 —q) )
isincreasing in p;1 and in g. Since now the next period price expected by the expected utility

maximizers satisfiesp; ,; > 1, (6.92) becomes:

Pey1 (Pey1+0) > (1+90)
I+7)(pa+(1-q)d) — (1+r)A1+(1-q)0)
S (14 9)
T a1+ (-5 e)
> 1.8

Proof of proposition 6.14:

Since pfy, > 1, it follows that ¢ > ;"J(ﬁ'—f} and therefore, according to corollary 6.3, the critical
price (6.92) exceeds 1. Therefore, the expected utility maximizers wish to invest their whole
initial endowment in asset a in each period of time independently of its price p,. Hence, the
condition for the survival of the case-based decison-makersisidentical to thosein propositions
6.5 and 6.8, namely ¢ < QJ&%‘% Since now q > %&%ﬁ% only part 2 of each of propositions 6.5
and 6.8 applies and e; is a submartingale on [0; 1]. Therefore, the case-based decision-makers

disappear with probability 1.1
Proof of lemma6.3:

Letpg* denote the priceunder rational expectationsfor 3 € (0; 1]. Since | am interested in com-
parative statics with respect to 3, it is useful to write the maximization problem of an expected
utility maximi zer, who expects the price tomorrow to be p, ; = p, if the price today isal so equal

to p:

S B
max_q [(1 +—) e (1) (1 ﬁ“)] FA— ) (1) (1= )]
vte(0;1] p

and observe that the first order condition simplifies to:

(45)"

(42)" 1|

which describes the optimal %, as long asthe term on ther.hs. of (6.93) is between [0; 1]. If

(1+7)

(6.93)

)
p—i-r
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ther.h.s. of (6.93) exceeds 1 or liesbelow 0, 7§* takes the values 0 and 1, respectivel y**:

ool (29)
0, if = q(p_r) — - <0
&4, < 1—q)r 5_1_1
425
ool ()] ool (e)
v (p) = - ﬁi-,lf . = = ¢ [0;1]
o) (2225 } s (525)
(1+r) <—‘%]L> 5_1—1}
1, if Al —— >0
; K )

(I—gr
/()

A=—gr | 4

(1))

since -1 < 0. Since p§* is the price under rational expectations, v{* (p§‘) = p3* must hold.

or equivalently:

B—1
Thefirst derivative of ther.h.s. of (6.93) with respect to 3 is negative. To seethis, denote
JE
B—1
(1; qr —
o(3-)
and differentiate y7* w.r. to z:
;" (I+7r)3
/}/t _ P >0
— 5 .
02 (i +r(l— z))
But z itself isincreasing in 3, since
o= 1 |ro-g |7 ra-g
o —1)? 8 8
e aG-n)] e(E)
and
r(1—q <1

[
a . 1 eu eu
Hence, 55 < 0 holds. Thismeans that for 8 > &', 7§} (p) < 7§/, (p) for every p.

153 For the interior solutions, the no-arbitrage conditions are satisfied. For the corner solutions, the short sale
constraints prevent arbitrage even if the no-arbitrage conditionsfail.
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Moreove, % < 0, since

2=0

0 1 [a-gr\  a-gr
apﬁ—1<q(£q7)> qu(;_—r)ﬁo

and %ﬁ} > 0. Combining these two resultsmeans that for each 5 v¢* isafalling function in the

eu

price, whereas keeping the price constant, 7§ decreasesin 3. Hence, 8_5% < 0 must hold, as
the figure 14 schematically illustrates.ll

eu

Vi

Figure 14

Proof of propostion 6.15:

Consider first the case of =1 and note that the value of ¢, for which ¢+ = py =1 is still

an interior solution of (6.93) is given by:

(1—1—7‘){

W[(u—w)ﬁ_q

VRS
2=
>
|
o =
N~
it
—
[—
—

-~
>
|
3
=

q
which smplifiesto
(6.94)




From % > 0and

> 0,

=
0: 1 ((1—q>r> —(2-1)
oqg p[B-1 8 2
v ) v
it follows that %—iﬁ > 0 and since y{* falls in price, it follows that the equilibrium price is
increasing in the probability of high dividend ¢. Therefore, for values of ¢ higher than (6.94)
the price under rational expectations (for agiven 3) isequal to 1, seefigure 15.

ey

Vi

Figure 15

Hence, for all current values of p; < 1, theexpected utility maximizers, who believethat p;, ; =
1, invest their whol e initial endowment into the risky asset. Therefore, the interval of values
r A+ 0)r
r+-r)1+6)°1 (1 +r)5>
corresponds to the case, in which the expected utility maximizersinvest their whole initial en-

qc

dowment into a, independently of its price p; and the case-based decisi on-makers survive, ac-
cording to propositions 6.8 and 6.5. It remains to show that this conditions can be fulfilled
simultaneoudly. | ndeed,

r (146)r

r+ (6 —r)(1+6)"" = (L+r)o
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isequivaent to

(6 — 1) [(1+5)5—1} >0,
which is dways satisfied for 5 > 0. Note that the logarithmic utility function represents the
limit case, 8 = 0, in which the equality holds.l
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Chapter 7. Conclusion

In this chapter, | summarize the main findings of the thesis and give an outlook for future re-

search.

7.1 Main Results

The thes shas anal yzed the behavior of case-based investorsin financial markets. The dynamics
of portfolio hadings have been derived and discussed in the context of an individual portfolio
choice problem, as well asin amarket environment with endogenous prices. The price process
in an economy populated by case-based decisi on-makers has been studied. Last, the fitness of
case-based decisions has been addressed and conditions for survival of case-based investorsin

amarket with expected utility maximizers provided.

7.1.1 Portfolio Choicewith Case-Based Decisons

The analysis of theindividua portfolio choice problem shows that a case-based investor with
endogenous memory can learn to choose an optimal portfolio if he adapts his aspirations in
the "realistic-ambitious” manner, as proposed by Gilboa and Schmeidler (1996). However, in
general, investors using case-based reasoning make suboptimal decisions in the limit. Low
aspiration levelslead to satisficing behavior and imply that an investor may hold a subopti mal
or an underdiversified portfolio, or fail to use arbitrage possibilities. Relatively high aspiration
levels, on the other hand, cause frequent trades and constant switching among the available
portfolio in the limit. Investorswith high aspiration levels exhibit similar behavior to those of
"overconfident” tradersdescribed by Odean (1999), sincethey expect to achieveunrealistically
high returns. These results are robust with respect to an adaptati on rule, according to which the
aspirations are set equal to the lowest or to the highest utility reali zation achieved, or toalinear

combination of both.

Hypothetical reasoning helps the investor to choose the optimal portfolio in the limit, if he ac-
quires information about thereturns of all portfoliosavailablein each period of time. Analogous

results are obtained if the information is acquired for afinite number of periods, but the aspi-



ration level of the decision-maker is relatively low. Investors with high aspiration levels fail to
behave optimally even if the number of periods during which information is acquired islarge,

aslong asitisfinite.

The introduction of similarity considerations into a portfolio choice problem does not change
these results qualitatively. If the similarity function is concave, it can be shown that investors
with relatively high aspiration levels will not only trade too frequently, but also hald undivers-
fied portfoliosin the limit.

With similarity considerations, the ” realistic-ambitious” adaptati on rule of Gilboa and Schmei-
dler (1996), however, does not lead to optimal choice inthe limit in genera. If the similarity
function is concave, the decision-maker learns to choose the best undiversified portfolio in the
limit. Introducing convexitiesinto the similarity function, improves the quality of learning. By
allowing the investor to better diff erentiate between acts, the limit choice can become arbitrary

close to the expected utility maximizing act.

7.1.2 Asset Pricesin an Economy with Case-Based Decison-Makers

In order to study the price dynamic, a notion of equilibrium for an overlapping generations
model with case-based decision-makersis defined and studied. The existence of equilibriumin
an economy populated with case-based investorsis proved under quite general conditions. It is
shown that degenerate equilibriawith 0-asset prices are atypical feature of such markets. Con-
ditions excluding such degenerate equilibria are identified, but it is questionable whether these
conditions are economically meaningful. Therefore, conditions which guarantee the exi stence

of at least one non-degenerate equilibrium are stated and consequently used in the analysis.

The equilibrium constructed i s subsequently used to analyze the price dynamic in an economy
populated only by case-based investors. In amodel in which diversification is not allowed and
the memory of the investors is short, it is found that asset prices and portfolio holdings remain
constant over timeif the aspirationlevelsinthe economy are rel atively low. Nevertheless, asset
prices and portfolio holdings in a stationary state need not coincide with those predicted by

expected utility maximization under rational expectations.

The presence of investors with high aspiration level sin the economy |eadsto cycles which can
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be stochastic or deterministic. These investors switch constantly among the availabl e portfolios
and cause excessive pricevolatility and predictability of returns. They buy at high pricesand sell
at low prices, thus lowering their expected returns. I n contrast, investors with |ow aspirations do
not change their portfolios over time, but might end up holding a suboptimal portfolio or even
ignoring arbitrage possibilities present in the market. If their massin the economy isrelatively
large, eff ects such as the equity premium puzzles might be observed even in an economy with

risk-neutral investors.

Allowing theinvestorsto remember al past cases experienced by his predecessorswith the same
aspiration level does not necessarily lead to optimal behavior. Only if the aspiration level is
appropriately chosen, does an investor learn to choose the optimal portfolio (at the equilibrium
price) in the limit. Excessively high aspirations again lead to frequent trading and excessive
volatility.

In contrast to the individual portfolio choice problem, introducing hypothetical reasoning in a
mar ket environment does not lead to optimal decisions even if the returns of al avail able port-
folios are observed in each period of time. Moreovey, it is shown that the usage of hypothetical
cases might even deteriorate limit choi ces compared to a situation in which the memory of the

investors is compl etely endogenous.

Allowing for diversification and introducing a similarity function on the set of problem-act /
price-portfolio pairs does not change the results significantly. In this case, investors with high
aspiration levels can cause a bubble on an asset to emerge. The bubble may arise, even if the
underlying asset has a 0 fundamental value. The bubble bursts in finite time with probability
1 and never reappears again. Moreover, as long as the similarity function is concave, the no-
diversification result, derived in the context of individual portfolio choicea so holdsin amarket
environment. Especially, investors with high aspirations hold a diversified portfolio only for a
finite number of periods. Afterwards, they either choose one of the corner portfolios forever or

switch constantly among the undiversified portfolio avail able.

7.1.3 Fitness of Case-Based Decisons

Thelast chapter of thethesisanalyzestheissueof survival of case-based i nvestorsin the presence

of expected utility maximizers in the market. A replicator dynamic selecting for the type of
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investors with higher average returns is introduced. It is shown that case-based investors can
coexist with expected utility maximizersby i mitating them. Theresulting equilibrium repli cates

the equilibrium under rational expectations.

Case-based investors can al so survive in strictly positive proportion even if their strategy differs
from the one of the expected utility maximizers. Especialy, if the portfolio held by the case-
based decision-makers is less risky than the one of the expected utility maximizers, then both

types of investorscoexi st in the market in strictly positive proportionsalmost surely in thelimit.

Moreover, if the share of case-based decision-makers is sufficiently large and their aspiration
level relatively high, they can influence market prices by causing bubbles, excessive volatility
and predictability of returns. Case-based investorswith relatively low aspirationlevels candrive
the expected utility maximizers out of the market for a finite number of periods and cause an

asset with positive fundamental value to be traded at a 0-price in the market.

The conditions for survival of the case-based investors, derived for alinear utility function, are
further generalized for the case of constant rel ative risk-aversion. It isfound that only expected
utility maxi mizers with a logarithmic utility function are able to drive the case-based investors
out of themarket for al parameter values. For al coefficientsof relativeri sk-aversion lower than
1, parameter values areidentified for which the weal th share of the case-based decison-makers

remains positive ailmost surely in the limit.

7.2 Outlook

This thesisis only afirst attempt to examine the behavior of case-based decision-makersin a
market environment and their influence on prices and asset returns. It shows that case-based
reasoning is not aways inferior to expected utility maximization and that it might help explain
observed phenomena in real and experimental markets. Nevertheless, more research has to be
done and further questions have to be answered, before the meaning of case-based reasoning in

financial marketsisfully understood.

In the course of the discussion, | have assumed that case-based investors act on their own ac-
count, deciding directly which portfolio to choose. However, given the small amount of in-

formation they possess, it seems much more natural to assume that case-based deci son-makers
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rely oningtitutional investorsto invest their wealth. Hence, instead of choosing an asset directly,
they would choose a broker, whose investment ruleis in general unknown. Thus, the Situationis
clearly one of structural ignorance. Hypothetical reasoning isimpossiblein thiscase and the ap-
plication of case-based decision theory to eval uate the performance of a broker a ready chosen

seems quite natural .

Such amodel, however, might be very complex, sinceit has to capture the interaction of differ-
ent brokers, i.e. different investment rulesin an asset market, whereas the wealth available to
abroker is determined by his past performance and the aspiration levels of the small investors.
Nevertheless, it might provide interesting results about the investment ruleswhich survive ac-
cording to such ” case-based selection”, as well as about the dynamics of asset pricesin amore
realistic model.

Up to now, no interaction between case-based investors (or consumers) and the supply side has
been modelled in the literature. Of course, this interaction can be neglected in a competitive
market, such as the one discussed in thisthesis. In an digopolistic market, however, this in-
teraction gains importance, especially, snce it has been shown that case-based decision-makers

might leave profit opportunities unused.

A monopolist who knowsthat his consumer s behave according to the case-based decis on theory
might try to influence their choices, by creating cases in which the utility realizations exceed
the aspiration level (e.g. through advertising) and, thus, might be able to sell at higher prices

extracting agreater proportion of the consumer rent**.

In afurther step, the interaction between oligopolists in a market with case-based consumers
should be analyzed. If the goods produced are similar, then each producer will havetotakeinto
account that a positive experience with his own product positively influences the evauation of
the rival product aswell. Therefore, prices have to be strategically set and publi city planned, so

asto maximize profits.

Although the proposed direction for further research can aso find application in the context of

financial markets, in which the market-maker has a monaopolistic position or brokers engage

154 Thereisstill little literaure discussing how a monopolist can increase his profits in the presence of boundedly
rational consumers. Sarafidis (2004) provides an analysis for the case of time-incosistent consumers and shows
that the monopolist does not necessarily profits from the bias of the consumers and might be even interested in
eliminating it.
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in an oligopolistic competition, the results would easily generalize to different economic con-
texts, such as competition in consumption good markets, in which publicity and perceptions of

similarity play an important role.

Last, but not least, few words haveto be said about the role that case-based reasoning could play
in the economic theory. In the introduction, | have argued that the case-based reasoning models
learning by induction. The economic literature has proposed few model swhich capturethistype
of learning, themost prominent of whichistheevol utionary approach used in game theory. The
advantage of thisapproach consistsinthefact that theindividual using it need not have any prior
notion about the quality of the different alternatives. Instead, the past performance is used to
determine those al ter nativeswhich survive in the selection process. Of course, both approaches
use diff erent selection methods, therefore a compari son of theresults obtained i n these two ways

woul d help to understand the driving forces of evolution in economic environment.

The common feature of both approaches consists in the fact that they can be used for selecting
among " meta’ -strategies and " meta” -rul es, without the necessity of constraining the possible
outcomesin advance and f ormul ati ng ex-ante priors about the probabiliti es of success™>. Hence,
these two approaches all ow to construct models of acquiring nomol ogic knowledge. Although
in this thesi s this aspect of the case-based reasoning has been neglected, such an approach will
surely lead to interesting and stimulating results. The work of Gilboa and Schmeidler (2003) on

inductive inference show the possibilities which the usage of case-based reasoning opensinthis
respect.

To summari ze, the case-based decis on theory opens large perspectives for modelling economic
problemsin a different and moreintuitive way. It allowsto introduce and examinethe inf luence
of features not present in standard theoretical models. This thesis has taken one step to un-
derstand the consequences of case-based reasoning in financial markets. It has answered some
guestions, but much more research is necessary, before the role and the meaning of case-based

decisionsin economic problems is clarified and their predictive power tested.

155 Gilboa, Postlewaite and Schmeidler (2004) argue that the formulation of aprior might be impossible in some

situations due to lack of information.
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