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Zusammenfassung

Proteindynamik und deren Beziehung zur biologischen Funktion von Proteinen ist Gegenstand
zahlreicher experimenteller und theoretischer Untersuchungen. In der vorgelegten Arbeit werden
Aspekte der Proteindynamik im Pico- und Nanosekundenbereich untersucht. Experimentelle Unter-
suchungen haben eine Abhaengigkeit zwischen enzymatischer Aktivität und atomaren Fluktuationen
auf diesen Zeitskalen aufgezeigt. Inkoherente Neutronenstreuung sowie Molekulardynamiksimula-
tionen stellen geeignete Instrumente zur Untersuchung atomarer Dynamik auf diesen Zeitskalen zur
Verfügung.

Ein interessantes Phänomen im Hinblick auf den Zusammenhang zwischen Flexibilität und Ak-
tivität ist die Dynamical Transition, d.h. ein nicht-linearer Anstieg atomarer Fluktuationen bei
einer charakteristischen Temperatur T0 ∼ 200K. Die explizite Einbeziehung des instrumentellen
Auflösungsvermögens eines Neutronenstreuspektrometers in die theoretische Analyse der Dynami-
cal Transition führt zu einer neuen Interpretation dieses Überganges. Mittels Molekulardynamik-
simulationen wird die quantitative Übereinstimmung dieser alternativen Interpretation mit der
Zeitskalen- wie auch der Temperaturabängigkeit der mittleren quadratischen Auslenkung eines Pro-
teins in Lösung gezeigt. Darüberhinaus bietet diese Interpretation eine Erklärung der experimentell
beobachteten Verschiebung der Übergangstemperatur, T0, in Abhängigkeit der instrumentellen
Auflösung.

Die Gauss’sche Näherung, grundlegend für die experimentelle Bestimmung der mittleren quadra-
tischen Auslenkung, 〈∆r2〉, wird untersucht und Korrekturen hierzu diskutiert. Abweichungen von

dieser Näherung werden für Q ≤ 6Å
−2

auf die Heterogenität atomarer Bewegungen zurückgeführt.

Abschliessend wird eine Methode vorgeschlagen, um aus der inkoherenten inelastischen Streufunk-

tion die Schwingungsdichte des Systems abzuleiten. Mittels dieser Methode werden Änderungen der

Schwingungsdichte des Proteins Dihydrofolate Reduktase bei Bindung des Liganden Metho-

trexate bestimmt. Es wird gezeigt, dass die Änderungen im Spektrum dieser internen Freiheitsgrade

einen signifikanten Beitrag zur freien Bindungsenergie dieses Systems beitragen.

Summary

Protein dynamics and its relation to protein function is the subject of various studies using both,
theoretical and experimental techniques. In this thesis, several aspects of protein dynamics on short
timescales are addressed. Motions in the pico- to nanosecond timescale have been experimentally
shown to be intimately related to enzyme activity. Incoherent neutron scattering and molecular
dynamics simulation are well suited and widely used to study motions on the above timescales.

A prominent phenomenon in the context of this observed flexibility-activity relationship is the dy-
namical transition, i.e. a non-linear increase in atomic fluctuations at a characteristic transition
temperature of T0 ∼ 200K. By explicitly incorporating finite resolution of neutron spectrometers
in the theoretical analysis of neutron scattering experiments, a novel interpretation of the dynami-
cal transition arises. This alternative ’frequency window’ interpretation is shown to reproduce the
timescale and temperature dependence of mean-square displacements calculated from MD simula-
tions of a protein in solution. The frequency window interpretation, furthermore, offers an explana-
tion of the experimentally observed shift of T0 with instrumental resolution. Implications of the new
interpretation for the relation between the dynamical transition and enzyme activity are discussed.

Molecular dynamics simulations are further used to test the Gaussian approximation implicit in
experimental data analysis. Deviations from Gaussian scattering in the calculated spectra for

Q2 ≤ 6Å
2

are shown to be dominated by the distribution of 〈∆r2〉.
Finally, a method to derive the vibrational density of states on an absolute scale from low-temperature

inelastic incoherent neutron scattering is suggested. The change in the vibrational density of states

of the protein dihydrofolate reductase on binding the ligand methotrexate is determined. The vi-

brations of the complex soften significantly relative to the unbound protein. The resulting free

energy change, which is directly determined by the density of states change, is found to contribute

significantly to the binding equilibrium.



Publication list

Balog, E., Becker, T., Oettl, M., Lechner, R., Daniel, R., Finney, J. & Smith, J. (2004).
Direct determination of vibrational density of states change on ligand binding to a protein.
Phys. Rev. Lett., 93, 028103.

Becker, T. & Smith, J.C. (2003). Energy resolution and dynamical heterogeneity effects on
elastic incoherent neutron scattering from molecular systems. Phys. Rev. E , 67, 021904.

Becker, T., Fischer, S., Noe, F., Tournier, A., Ullmann, M. & Smith, J. (2003). Protein
dynamics: Glass transition and mechanical function. In B. Kramer, ed., Advances in
Solid State Physics, vol. 43, 677–694, Springer.

Becker, T., Hayward, J., Daniel, R., Finney, J. & Smith, J. (2004). Neutron frequency
windows and the protein dynamical transition. Bioph. J., 87, 1–9.

Hayward, J., Becker, T. & Smith, J. (2002). The glass transition in proteins. In Krause, E. &
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Chapter 0

About the thesis

Protein dynamics has been the subject of vast experimental and theoretical work in the
last decades. Various experimental techniques, such as Mössbauer-spectroscopy or neutron
scattering are well suited and have been applied to probe protein motions on the pico- to
nanosecond timescale. Furthermore, advances in computational speed enable molecular dy-
namics simulations to give atomic detailed descriptions of dynamical processes on these fast
timescales. The results of these investigations show that protein dynamics shares features
commonly assigned to complex systems such as glasses. A phenomenon that attracted much
attention is the dynamical transition of proteins, characterized by a non-linear increase in
the measured mean-square displacement above a transition temperature T0 ∼ 200k. This
transition was shown to correlate with the onset of (e.g. ribonuclease A) or qualitative
changes in (e.g. myoglobin) the measurable activity of several enzymes (Frauenfelder et al.,
1999; Rasmussen et al., 1992). Whether a coupling of fast, picosecond dynamical processes
to slower, biological important motions of the enzyme is a general property of proteins is
still under debate (Brunori et al., 1999; Daniel et al., 1998). Furthermore, it is important
to know whether the dynamical transition is an inherent property of proteins or whether
protein dynamics is slaved by the surrounding solvent. For a protein in solution, glutamate
dehydrogenase GDH in methanol/water cryosolvents, the transition temperature has been
shown to depend on the instrumental resolution (Daniel et al., 1999).

In this thesis, a theoretical analysis of neutron scattering in the context of the dynamical
transition is given. By explicitly incorporating finite resolution of neutron spectrometers,
a new and alternative interpretation of the dynamical transition is presented and shown to
be consistent with both, simulation and experiment.

Molecular dynamics simulations are further used to test the Gaussian approximation im-
plicit in experimental data analysis. Deviations from Gaussian scattering in the calculated

spectra for Q2 ≤ 6Å
2

are shown to be dominated by the distribution of 〈∆r2〉.
Finally, a method to derive the vibrational density of states on an absolute scale from
low-temperature inelastic incoherent neutron scattering is suggested. The change in the
vibrational density of states of the protein dihydrofolate reductase (DHFR) on binding the
ligand methotrexate (MTX) is determined.
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2 About the thesis

The outline of this thesis is as follows:
In Chapters 1-3 a general introduction to the field of protein dynamics and an outline of
the theory and methods used in this thesis are given. Chapter 1 puts the field of protein
dynamics into a broader context, introduces the general concepts underlying theoretical
investigations and gives a short summary of the state of research on the dynamical tran-
sition. Chapter 2 provides the basic theory of neutron scattering as needed for Chapters
4-6. The forcefield, algorithms and analysis used for molecular dynamics simulations of
biological macromolecules are introduced in Chapter 3.

Chapter 4 presents an analysis of the temperature dependence of the incoherent interme-
diate scattering function calculated from molecular dynamics simulations. The scattering
function is shown to allow for an interpretation where all the temperature dependence of
slow relaxation processes resides in the corresponding relaxation frequency. This ’frequency
window’ model is discussed with respect to the opposite ’equilibrium’ interpretation where
changes of the scattering function upon temperature increase are described by correspond-
ing changes in the long-time converged properties of the system.

Chapter 5 presents a theoretical analysis of the dynamical transition as measured by neu-
tron scattering. Finite resolution of the instrument is taken explicitly into account. The
frequency window model is shown to offer an alternative interpretation of the dynamical
transition in terms of temperature dependent relaxation processes. The theoretical anal-
ysis is shown to reproduce quantitatively the temperature and timescale dependence of
mean-square displacements calculated from MD simulations. The frequency-window in-
terpretation is able to explain the experimentally observed timescale dependence of the
transition temperature of a protein in solution.

Chapter 6 investigates the Gaussian approximation commonly made in analyses of neutron
scattering spectra. Using neutron spectra calculated from molecular dynamics simulations
it is possible to access the errors inherent in the analysis procedure and to test methods to
improve the analysis. Furthermore, the origin of non-Gaussian scattering is investigated for
internal protein dynamics and shown to arise mainly from heterogeneity of atomic mean-
square displacements.

Finally, Chapter 7 presents inelastic neutron scattering measurements on the protein
dehydrofolate reductase (DHFR), an important enzyme in cancer research. A method is
introduced to quantitatively derive the vibrational density of states. An estimate of the
density of states changes upon ligand binding gives insight into the importance of internal
vibrational degrees of freedom for the free energy of complex formation.



Chapter 1

Protein dynamics

. . . and if we were to name the most powerful assumption of all, which leads one on to
and on in an attempt to understand life, it is that all things are made of atoms, and
that everything that living things do can be understood in terms of the jigglings and
wigglings of atoms.
R.P. Feynman, The Feynman lectures of physics (Feynman et al., 1963)

All things are made of atoms and these atoms are jiggling and wiggling. This seemingly naive
statement is, as R.P. Feynman pointed out, the basic insight underlying modern structural
biology. With the adoption of X-ray crystallography to the field of biology it became
finally possible to look at the phenomena of life at atomic resolution. The determination
of the structure of DNA still relied on the structural simplicity of the double helix and the
ingenious guesswork of Watson and Crick. Soon afterwards, however, Perutz was able to
solve the phase problem of protein crystallography and opened the door to the investigation
of the structural aspects of life. The first protein structure was solved by Kendrew in 1957
(myoglobin) and Perutz was able to obtain an atomic model for haemoglobin two years
later. By the year 2002 the Protein Data Bank (PDB) stored more than 15 000 structures
of biological macromolecules (Berman et al., 2000a).

One of the challenges of modern biology is to relate these structures to their function. This
relation is still insufficiently understood and touches upon several open questions on the
borderline between physics and biology (Frauenfelder et al., 1999).

1.1 Structural diversity of proteins

Proteins are polypeptides consisting of a sequence of residues chosen from the set of 20
naturally occurring amino acids. For a protein like myoglobin with 153 residues there are
already 20153 ≈ 10199 possible sequences each bearing its own structural and dynamical
peculiarities. Even for a given sequence of amino-acids the structural complexity is enor-
mous. Assuming only two possible configurations per amino-acid, myoglobin can take on
2153 different conformations. This vast number of possible configurations lays at the heart
of the folding problem of theoretical structural biology.

3



4 Protein dynamics

In spite of the huge number of possible configurations and the large amount of different
proteins in living cells, the investigation of proteins revealed surprising similarities in the
concepts underlying their structure. On different structural levels (secondary, tertiary,
quaternary) proteins seem to use the same building blocks to realize their own specific fold.
On the lowest level one can identify repeatedly use of secondary structural elements such as
helices, β-sheets or turns. These structures themselves are often arranged in a higher level
of order in so called motifs (Greek key, zinc-finger etc.). Similar structural arrangements
can be found in proteins fulfilling similar functions, e.g. β-barrels or membrane-spanning
arrangements of α-helices in membrane channels.

These striking findings strongly suggest that the three-dimensional structure of proteins
holds the key to their function (Anfinsen, 1973). However, this insight must not be taken
to an extreme that proteins are rigid molecules whose motions are merely thermal noise.
Already at the very beginning, it became clear that the structure of proteins alone is
not enough to understand the mechanisms by which proteins fulfill their function. Struc-
tural similar proteins, e.g. lysozyme and α-lactalbumin can serve rather different purposes.
Sometimes the atomic structure even seems to forbid the protein to fulfill its task. The
atomic structure of myoglobin for example does not reveal a permanent path connecting the
solvent to the active center. Nevertheless it is experimentally known, that myoglobin can
bind molecules as big as isocyanides (≈ 10 atoms). It follows that a path a few Ångstrøm
in diameter has to be transiently formed by myoglobin. It is the jiggling and wiggling of
the atoms that allow ligands to enter proteins and perform their function (Frauenfelder &
McMahon, 2000; Perutz & Mathews, 1966). To understand the molecular building blocks
of life we therefore have to investigate the structure and the dynamics of biological macro-
molecules and learn how both aspects are connected to each other. The kind of motions
and corresponding timescales of functional important dynamics are widely unknown. It is
one of the prominent problems in biophysics to distinguish these essential motions from the
background of thermal noise.

1.2 Flexibility-activity relationship

As already stated, proteins are flexible and have to be flexible to fulfill their function. This
flexibility-activity relationship in proteins is widely accepted (for a review see Daniel et al.
(2003a)). The actual motions required, their atomic description or the timescales of such
essential motions, however, are widely unknown or under debate. One of the first concepts
explicitly taking enzyme flexibility into account was the induced fit mechanism proposed
by Koshland in 1958 (Koshland, 1958). Koshlands mechanism allowed the enzymes to
undergo conformational changes during the binding process. The induced fit mechanism
therefore implied that the same protein should adopt a different structure, whether a ligand
is bound or not. This implicit prediction could be confirmed with the help of x-ray crystal-
lography. For several ligand binding enzymes, such as insulin or dehydrofolate reductase,
bound and unbound structures are known and shown to differ significantly. It is obvious
that motions connecting these states are essential for function since they represent inter-
mediate states in an catalytic cycle. Attempts have been made to classify these large-scale
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motions (Gerstein et al., 1994). However, their atomic description is usually unknown.
The knowledge about this conformational flexibility stems from crystallography, providing
only snapshots of rather stable intermediate conformations. The path between these in-
termediates, the processes and timescales involved in the necessary reorientations remain
unsolved. Spectroscopic techniques such as Mössbauer-spectroscopy or neutron scattering
on the other hand do provide such dynamic information, but the accessible timescales of
such measurements are in the pico- to nanosecond range; more than three orders of mag-
nitude faster than typical catalytic processes (microseconds to seconds). It is a surprising
observation that for several enzymes a correlation between dynamical phenomena on the
pico/nano-second timescale and enzyme activity has been observed. For these systems an
intimate coupling between the fast degrees of freedom explored by spectroscopy and the
slow biological important motions seems to exist.

Similar to structural biology, progress has been made in our understanding of the fast
dynamics of biomolecules over the last decades. New concepts such as the rugged or complex
energy-landscape or conformational substates have been developed or adjusted to account
for the phenomena seen by spectroscopic techniques such as Mössbauer spectroscopy, X-
ray or neutron scattering (Frauenfelder et al., 1979, 1991). The observed phenomena show
similarity to those attributed to complex systems such as glasses or polymer melts and make
proteins a valuable testcase to investigate physical aspects of complex molecular systems
(Angell, 1995; Green et al., 1994; Iben et al., 1989).

1.3 The energy landscape of proteins

The unifying concept connecting various aspects and fields of complex dynamical systems is
that of a complex or rugged energy landscape. Introduced to the field of protein dynamics
by Hans Frauenfelder (Frauenfelder et al., 1991) in analogy to spin-glass systems, it serves
as qualitative picture to interpret and connect experimental results and guide quantitative
theoretical model building.

Generally speaking, a complex energy landscape is a high-dimensional1 potential energy
surface comprising a large number of distinct minima. Well known examples featuring such
complex landscapes are spin-glasses; i.e. magnetic systems, where the interactions between
the magnetic moments are in conflict with each other. A common example would be a di-
lute alloy of iron atoms in gold. The interaction between magnetic moments favor parallel
or anti-parallel alignment depending on distance. As a consequence, there is not a unique
ground state with all spins aligned in such a way as to locally minimize their own energy
but a (high) number of similar minima with some spins (or clusters of spins) in unfavorable
alignment with respect to each other. This phenomenon is known as ”frustration”. In pro-
teins frustration arises from conflicting side-chain orientations, competing hydrogen bond
donor-acceptor geometries and steric interactions (Stein, 1985).

1For a given number of atoms, the potential energy landscape has 3N-6 dimensions. Therefore high-

dimensional is basically equivalent to many-particle. However, it should be noted that protein dynamics
describes single proteins containing only a few thousand atom, much less than systems usually considered
as complex or glassy systems (Angell, 1995; Green et al., 1994)



6 Protein dynamics
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Figure 1.1: Energy landscape

Fig. 1.1 shows a schematic plot of a complex energy landscape. It is characteristic of
complex systems that a large number of states with comparable energies exist separated
by barriers of varying heights. The topology of this landscape determines the accessible
conformational space as well as the dynamics exhibited to explore it. At sufficiently high
temperatures, kBT � 〈H〉, with 〈H〉 being the average barrier height, the system has
enough energy to freely cross these barriers and travel through the landscape. All confor-
mational space is accessible. With decreasing energy, however, higher energy states are
no longer populated2, the accessible conformational space decreases. Furthermore, it will
take an increasing amount of time to overcome barriers between accessible states until the
system finally drops out of ergodicity, i.e. until it is no longer able to sample the accessible
conformational space within the timescale of observation. The glass transition is a well
known example of such a drop out of ergodicity3. The topology of the energy landscape
thus couples the dynamics of the system, mainly the realm of physical research, to the
concept of conformational states used to explain biological function.

Dynamics in complex energy landscapes

In spite of the complexity and variability energy landscapes may show for different systems
the dynamics exhibits characteristic features that find their substrate in heuristic laws
applicable to most complex systems.

The dynamics of the system can be seen as traveling through the energy landscape, cross-

2Not with probability considerable greater than 0.
3The transition temperature (energy) from ergodic to non-ergodic, obviously depends on the timescale

of observation. Such timescale-dependence is intrinsic to the definition of the glass transition
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ing barriers to explore different minima. For a given barrier, the system will follow an
exponential relaxation, determined by the barrier H between two minima:

f(t) ∼ exp(−κt) (1.1)

where f(t), the relaxation function, describes the deviation of a system parameter from its
initial value. In a complex landscape, however there will be a whole distribution of such
barriers each leading to a slightly different time-dependence of relaxation processes. The
relaxation function will thus be given by:

f(t) ∼
∞
∫

0

dH g(H) exp(−κ(H)t) (1.2)

where g(H) denotes the distribution of barrier heights.

The correct form of f(t) depends, of course, on the distribution g(H), but it is possible
to empirically represent the relaxation behavior of many complex systems by a stretched
exponential or Kohlrausch-William-Watts (KWW) function:

f(t) = exp
[

−(κt)β
]

(1.3)

The whole complexity of the system condenses into two parameters, a characteristic fre-
quency κ and a stretching factor β. The stretching factor is a measure of the deviation of
the system from normal exponential behavior and can be seen as a measure of the systems
complexity.

Although successful in reproducing the dynamical characteristics of relaxation processes,
the KWW-function description is empirical. No strict theoretical relation between the
energetics of a given system and the stretching factor β exists so far. A more rigorous,
though more complicated approach to describe complex dynamics is the so called mode-
coupling theory first proposed by Bengtzelius, Götze and Sjölander in 1984 (Bengtzelius
et al., 1984) (see Cummins (1999) for a recent review).

The relaxation frequency itself will depend not only on the barrier height H, but also on
the temperature of the system, κ = κ(H,T ). For a single barrier κ is given by an Arrhenius
law:

κ(H,T ) = A exp

[

− H

kBT

]

(1.4)

where A is the pre-exponential factor and kB the Boltzmann constant.

For molecular reorientations the pre-exponential factor is typically of the order of 10−8 −
10−13s−1. In complex systems trying to fit Eq. 1.4 to the temperature dependence of
observed relaxation frequencies leads to unreasonable pre-exponential factors of A ∼ 10−30−
10−40.
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Again, agreement with experiment can be improved by empirical functions motivated by
simple one-barrier dynamics. For many systems the temperature dependence of relaxation
frequencies has been well reproduced by a Vogel-Fulcher law

κ(T ) = A exp

[

− C

(T − T0)

]

(1.5)

or equally well by a Ferry function

κ(T ) = A exp

[

−
(

E

RT

)2
]

(1.6)

Conformational substates

A concept that distinguishes biological research from physics is the concept of function.
Proteins are not merely macromolecules obeying the laws of quantum mechanics, but within
this framework they fulfill a very specific task. Conformational space in physics is commonly
described by the energy levels of the system where states with equal energy are considered as
equal; i.e. the energy-levels are degenerate. For biological considerations, however, it is more
important to distinguish those states of enzymes that are able to catalyse a given reaction
from those that cannot. Those states may differ in energy, therefore being distinguishable
in the above physical sense, but do not necessarily so. A mere change in the geometry
or orientation, not necessarily connected to a (considerable) change in energy may well be
enough to separate an enzyme from a dead macromolecule. A concept combining the energy
landscape with biological function is that of conformational substates. In physical terms a
conformational substate is a local minimum in the energy landscape. From a biological point
of view such a state is either functioning or not. The concept of conformational substates
therefore point out that a mere energetic point of view is not sufficient to characterize
biological macromolecules. Further distinctions between states have to be made to explain
the biology of these molecules.

Various theoretical and experimental studies have shown the existence and functional im-
portance of conformational substates in biological macromolecules (Austin et al., 1975;
Elber & Karplus, 1987; Frauenfelder et al., 1979; Schlichting et al., 1994). Temperature
dependent studies on the rebinding kinetics of ligands to the heme iron demonstrated that
proteins do exist in, and are confined to conformational substates differing in their ki-
netic properties (Austin et al., 1975; Frauenfelder, 1983). Direct measurements of atomic
movements gave further proof of the existence of distinct substates in proteins and the un-
derlying topology of the energy landscape. The most prominent phenomena in this respect,
the dynamical transition will be discussed in more detail in the next section.

Hierarchy of conformational substates

The suggestion that proteins, just as other complex systems, should have a large number
of similar states accessible at physiological conditions is counterintuitive. Although it was
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recognized already in 1969 that a folded protein does not necessarily have to be in an ab-
solute minimum of free energy (Levinthal, 1969), it still has to be in a functioning state.
The lesson to learn from experimental and theoretical studies on protein dynamics is that
the concept of a functioning state has to be replaced by a variety of heterogeneous func-
tioning states (Frauenfelder et al., 1991). The distinction between functioning and non-
functioning can be made by the concept of an hierarchy of states separated by differences
in free energy.

It is an intriguing question whether the energy landscape of proteins is a target of selection,
i.e. whether the dynamics of proteins is in a non-trivial way optimized to its biological
function. Suggestions were made that such a connection exists for thermophilic proteins,
i.e. proteins adapted to function at high temperatures (Brunori et al., 1999; Zaccai, 2000a).
However, a precise connection between the energy landscape, its conformational substates
and the biological function is not yet established.

1.4 The dynamical transition in proteins

A phenomenon showing the effect of conformational substates on the dynamics of pro-
teins is the dynamical transition as shown in Fig. 1.2 (plot taken from Rasmussen et al.
(1992)). Measuring the mean-square displacement of non-exchangeable hydrogens (neutron
scattering), heme-iron atoms (Mössbauer spectroscopy) or heavy atoms (Debye-Waller fac-
tors in X-ray christallography) a linear increase in 〈∆r2〉 is observed up to a temperature
T0 ∼ 200K. At the transition temperature T0, the slope changes showing a sharp increase in
atomic fluctuations. In analogy to a harmonic oscillator the low temperature linear behav-
ior is called the harmonic regime. The sudden increase in fluctuation above T0 is commonly
seen as onset of anharmonic fluctuations. A qualitative connection to the energy landscape
picture is readily made: below the transition temperature proteins are confined to a specific
conformational substate, whereas above T0 the protein starts to explore additional minima
of the landscape thereby showing increased mean-square displacement.

The first protein shown to undergo a dynamical transition was myoglobin, sometimes
called the ”hydrogen atom” of biophysics (for a review of the work done on myoglobin see
e.g. Frauenfelder & McMahon (2000); Frauenfelder et al. (1999)). Mössbauer spectroscopy
revealed the transition at a temperature T0 ∼ 180K by monitoring the mean-square dis-
placement of the heme iron on a nano-second timescale (Bauminger et al., 1983; Keller &
Debrunner, 1980; Parak et al., 1980, 1982). When neutron scattering became available for
biological studies the dynamical transition could be demonstrated for a variety of globular
proteins (Cusack & Doster, 1990; Daniel et al., 1998; Doster et al., 1989b; Fitter et al.,
1997), suggesting that the transition is a generic feature of proteins.

At the same time as neutron scattering experiments started to investigate protein dynamics,
molecular dynamics simulations began to give insight into the atomic details of processes
underlying the dynamical transition. Early simulations on BPTI suggested that dihedral
transitions are correlated to the increase in mean-square displacement (Steinbach & Brooks,
1993) but are not their primary cause (Steinbach & Brooks, 1996). Kneller et.al. showed
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Figure 1.2: The dynamical transition; plot taken from Rasmussen et al. (1992).

the importance of the quasielastic scattering for a correct interpretation of the measured
elastic spectrum and suggested a liquid like interpretation of protein picosecond dynamics
(Kneller & Smith, 1994; Kneller et al., 1992).

Activity and dynamical transition

Further interest in the dynamical transition arose from studies monitoring enzyme activity
along with the mean-square displacement. These studies suggested a correlation between
the onset of enzymatic activity and the increased fluctuations observed at the transition
temperature T0 (Austin et al., 1975; Ferrand et al., 1993; Parak et al., 1980; Rasmussen
et al., 1992). The first hint towards such relations came from investigations on the temper-
ature dependence of the rebinding kinetics of CO in myoglobin (Austin et al., 1975). Here
the transition temperature (T0 ∼ 180K) marks the onset of new processes in the binding
kinetics. With the help of time resolved X-ray scattering, conformational substates corre-
sponding to these processes could be identified (Ostermann et al., 2000; Schlichting et al.,
1994).

In 1992 Rasmussen et al. reported the loss of activity below the transition temperature
(T0 ∼ 220K) for the enzyme ribonuclease A (see Fig. 1.2)(Rasmussen et al., 1992). A
year later it was demonstrated that the completion of the bacteriorhodopsin photocycle is
blocked upon cooling below the transition temperature (T0 ∼ 200K) (Ferrand et al., 1993;
Lehnert et al., 1998).

Doubts on the generality of an activity-flexibility relationship were risen in Daniel et al.
(1998) and Dunn et al. (2000). Here, the transition behavior of the proteins glutamate
dehydrogenase and xylanase in solution were monitored along with activity measurements
on the same system. Thus, whether the measured mean-square displacement, or more
precisely the transition in the slope of 〈∆r2〉, is indeed related to enzyme activity remains
an open question. Considering the variety of proteins and their functional mechanisms it
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should not be surprising to find both kind of systems, those with functionality related to
the transition and those with activity independent of T0. The interesting question is, which
underlying topology of the energy landscape couples the observed increase in mean-square
displacement to the onset of function.

The suggested relation between activity and measured mean-square displacement is best
discussed with the help of a simple two state model like the one depicted in Fig. 1.3.
Two energies play an important role in this context. First, the difference ∆Q between
timescale of transitions between these states.
the states, determining the equilibrium dis-
tribution of conformational states and sec-
ond, the energy barrier ∆H determining the

The argument that the measured mean-
square displacement is related to the activity
goes as follows: The protein is in either of the
two states. The lower state is the ’rigid’, in-
active state whereas the higher energy state
is active. At temperatures kT � ∆Q the ac-
tive state is not populated, the enzyme there-
fore inactive. With rising temperature the
active state becomes populated, the enzyme

∆ H

∆ Q
E

ne
rg

y

Conformational Space

κ

Figure 1.3: Asymmetric energy landscape modelstarts to work4.

The expected temperature dependence of the mean-square displacement for this system was
shown in Ref. Keller & Debrunner (1980) to be consistent with Mössbauer spectroscopy
data. The contribution of the change from one state to the other is proportional to a
Boltzmann factor containing the activation enthalpy ∆Q:

〈∆r2〉c ∼ e
− ∆Q

kBT (1.7)

Here 〈∆r2〉c is commonly called the conformational contribution to the total mean-square
displacement.

Since the increase in mean-square displacement in this model is caused by the change to an
active state, this increase marks the onset of activity. Both, the onset of activity and the
increase in mean-square displacement are controlled by the same temperature T0 ∼ ∆Q

kB
.

Measuring the temperature dependence of the mean-square displacement therefore gives
access to the enthalpy difference ∆Q of functionally important states.

However, this does not take into account that spectroscopic techniques only detect motions
in a given time-window determined by the instrument used. Whether or not a change in the
mean-square displacement is seen for the system of Fig. 1.3 is determined not only by the
occupation of the second state, but also by the timescale on which transitions between states
occur. A given instrument will detect changes between states only if the barrier between

4The difference between the two states is not necessarily on/off. One can think of qualitatively different
activity-temperature signature instead. This is the case for myoglobin, showing a transition from exponential
to non-exponential rebinding kinetics
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them is low enough that the rate of transitions is within the resolution of the instrument.
Thus, ∆H controls whether a transition can be detected at a given instrument. Such
an interpretation of the dynamical transition was suggested in Ref. Daniel et al. (2003b)
based on measurements on proteins in a cryosolution showing no correlation between the
dynamical transition and measured enzyme activity (Daniel et al., 1998; Dunn et al., 2000).
A theoretical analysis of such an interpretation and consequences for the relation between
protein function and the dynamical transition are discussed in Ch. 5.

Solvent dependence of protein dynamics

To understand protein dynamics one has to include the influence of the surrounding media.
The effect of different hydration levels on the dynamical transition has been the subject
of both experimental and theoretical investigations (Careri et al., 1986; Diehl et al., 1997;
Ferrand et al., 1993; Fitter et al., 1996; Perez et al., 1999; Smith et al., 1987; Zanotti et al.,
1999a,b). Atomic fluctuations decrease significantly upon dehydration and neutron scatter-
ing results suggest that the dynamical transition is absent in dry protein powders (Doster
et al., 1990)5. Experimental studies on the dynamics of the hydration water demonstrated
a dynamical transition of water dynamics at the same temperature as characteristic for
proteins. A lively debate centers around the question whether the transition in hydra-
tion water dynamics drives the changes in protein internal dynamics, i.e. whether solvent
dynamics slaves protein dynamics. This view is backed by recent results of computer simu-
lations showing the strong influence of the solvent on internal dynamics of proteins (Tarek
& Tobias, 2002; Tournier et al., 2003; Vitkup et al., 2000). It was suggested that the
translational diffusion of water molecules on the surface of the protein is essential for the
transition to occur. In contrast, earlier molecular dynamics simulations demonstrated the
transition even for proteins in vacuum (Steinbach & Brooks, 1993). A solvent indepen-
dent transition was experimentally observed by Mössbauer spectroscopy on oxymyoglobin
solution compared to metmyoglobin crystals (Keller & Debrunner, 1980).

Theoretical considerations

Neutron scattering provides information on energetic and spatial properties of underly-
ing relaxation processes. The topology of the energy landscape determines the scattering
law. Comparing the measured incoherent spectra with theoretical considerations a direct
connection to the underlying energy landscape can be made.

Several dynamical models have been proposed to explain neutron spectra of biological
macromolecules. Doster et al. (1989b) proposed a two-state model as depicted in Fig. 1.3.
This model is able to reproduce the elastic scattering function over a temperature range
of 80 − 300K, suggesting the existence of distinct substates separated by an activation
enthalpy of ∆Q ∼ 3 kcal/mol. The energy barrier H between the two states was found
to be surprisingly small (again ∼ 3 kcal/mol). A similar model was proposed by Zaccai
and Bicout, suggesting an effective force constant Bicout & Zaccai (2001). The protein is

5In agreement with the inactivity of dehydrated proteins
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considered to change at the transition temperature T0 from a narrow harmonic potential
well to a softer energy well. In contrast to Doster et al. (1989b) the non-Gaussian wave
vector dependence of the incoherent elastic scattering intensity is considered to be a result
of a heterogeneous distribution of mean-square displacements (two regimes of 〈∆r2〉 in
Lehnert et al. (1998)). The observed increase in quasielastic scattering at the transition
has been explained by a simple diffusion model. Non-Gaussian scattering in this case can
be assigned to a combined effect of wave vector dependence of a single sphere and the
heterogeneity introduced by a distribution of accessible spheres (Dellerue et al., 2001).

1.5 Protein association

So far mainly dynamic properties of isolated proteins were discussed. For biological func-
tion, however, it is common that proteins assemble to dimers, trimers or even oligomers. To
understand these binding processes is of fundamental practical and theoretical importance
in life sciences as well as medicine (Benkovic et al., 1988; Gilson et al., 1997; Klotz, 1985;
Lamb & Jorgensen, 1997; Lian et al., 1994; Wang & et al., 2001). As already mentioned
binding processes between enzymes and substrate were among the first systems where dy-
namical aspects of proteins were recognized as being essential. Protein:ligand association
has been assumed to be dominated by factors such as the hydrophobic effect, hydrogen
bonding, electrostatic and van der Waals interactions. However, as early as 1963 it was
suggested that an additional mechanism might exist: due to increased flexibility in the pro-
tein:ligand complex manifested by a change in the spectrum of vibrations due to formation
of new, intermolecular interactions in the complex (Erickson, 1989; Finkelstein & Janin,
1989; Fischer et al., 2001; Page & Jencks, 1971; Steinberg & Scheraga, 1963; Sturtevant,
1977; Tidor & Karplus, 1994). Theoretical normal mode analysis was used to estimate this
vibrational change on insulin dimerization (Tidor & Karplus, 1994) and on water binding to
bovine pancreatic trypsin inhibitor (Fischer et al., 2001). These studies suggested that the
effect is likely to be thermodynamically important. However, experimental determination
of the vibrational change has been lacking. Inelastic neutron scattering, in which the dy-
namic structure factor S(Q,ω) is measured as a function of the scattering wave vector, Q,
and energy transfer, ~ω has been used to determine the vibrational frequency distribution,
g(ω), for several proteins (Cusack et al., 1988; Doster et al., 1989b; Smith et al., 1986).
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Chapter 2

Neutron scattering from proteins

Neutron scattering is a well established technique in solid state, polymer and recently also
in biological physics (for reviews on neutron scattering on proteins see e.g. Smith (1991)
and Gabe et al. (2002)).

Soon after the discovery of the neutron by Chadwick the theory of neutron scattering was
well established (Van Hove, 1954). Although time- and lengthscale probed by neutron
scattering techniques are well suited to examine biological systems, the first study dates
back only to 1971 (Dahlborg & Rupprecht, 1971). In these first experiments Dahlborg and
Rupprecht investigated DNA-fibers and one year later Middendorf and Willis presented
experimental data on proteins and membranes (Middendorf & Willis, 1972).

Neutron scattering experiments were hampered by the high costs and the low flux of neutron
sources at that time. The low flux demands high quantities of sample (∼300-600 mg) and
long observation times (∼10 hours) to get sufficient counting statistics.

Only in the late 80’s due to the advanced spectrometers build at the Institut Laue Langevin
(ILL) biochemical inelastic neutron scattering (INS) and quasielastic neutron scattering
(QENS) studies have been pursued more actively. Several groups started to investigate
the dynamics of proteins with neutron spectroscopy (Cusack, 1986; Cusack et al., 1986;
Doster et al., 1989a,b). At the same time computer simulations (Karplus & Petsko, 1990;
McCammon et al., 1977; Smith et al., 1986, 1987) became an established tool in theoretical
molecular biophysics (see Ch. 3).

This chapter starts with an introduction to neutron scattering theory as far as necessary to
discuss specific problems in protein neutron scattering studies addressed in later chapters.

2.1 Theory of neutron scattering

Neutrons are uncharged particles of spin 1
2 with mass m = 1.922 · 10−27kg. Having no

charge, neutrons are unperturbed by the electric field of molecules and are scattered at the
atomic core.

15
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The energy, E, of a neutron is related to its wavevector k via:

E =
~

2|k|2
2m

(2.1)

|k| =
2π

λ
(2.2)

where ~ is the Planck constant divided by 2π and λ is the wavelength associated with the
wavevector k.

For thermal and cold neutrons (see Table 2.1) Eqs. 2.1 & 2.2 yield a wavelength of 1− 10Å
much larger than the typical lengthscale of nucleon-nucleon interactions (∼ 10−3 − 10−4Å).
As a consequence, neutron-nucleon scattering is isotropic and can be described by a single
parameter b, the so called scattering length. This is expressed by the use of a Fermi pseudo-
potential, V̂ (r), to describe the interaction of neutrons with a system of bound nuclei:

V̂ (r) =
2π~

m

∑

l

bl δ(r −Rl) (2.3)

Here Rl denotes the position vector of atom l and bl is its scattering length.

The scattering lengths bl are in general complex numbers with the imaginary part repre-
senting neutron absorption. The real part of bl can be either positive or negative and its
value can differ largely from one isotope to another.

For a given element the mean-value taken over different isotopes and spin-states is referred
to as the coherent scattering length bcoh whereas the variance of b is called the incoherent
scattering length binc (see Sec. 2.3).

bcoh = b̄ (2.4)

binc =
√

b̄2 − b̄2 (2.5)

In App. 8.3 the scattering lengths and associated cross sections for the most important
elements in biological applications of neutron scattering are listed.

The basic quantity measured in neutron scattering experiment is the double differential
cross section, ∂2σ

∂Ω∂E , which is the number of neutrons scattered into the solid angle interval
[Ω,Ω + ∆Ω] with an energy transfer interval [E,E + ∆E].

d2σ

dΩdE
=

flux of neutrons in the solid angle dΩ per unit Energy

flux of incoming neutrons
(2.6)

The scattering cross-section will now be derived for the simplified case where both, incident
and scattered neutron state are described by plane wave solutions (contained in a large box
of volume V):
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Energy [meV]

Cold 0.1 − 10
Thermal 10 − 100
Hot 100 − 500
Epithermal ≥ 500

Table 2.1: Neutron energy scales. Data taken from
Lovesey (1987)

|ki〉 =
1√
V

eiki·r (2.7)

|kf 〉 =
1√
V

eikf ·r (2.8)

The derivation closely follows the one given in Lovesey (1987). A more detailed derivation
in the framework of scattering theory can be found in Appendix A of the same book.

Fig. 2.1 shows a schematic description of the scattering event. An incident plane wave
with wave vector ki is scattered by the sample into the solid angle dΩ. The energy and
momentum transfered to the sample during the scattering process are given by:

~Q = ~ki − ~kf (2.9)

~ω =
~

2

2m
(k2

i − k
2
f ) (2.10)

The cross-section for given initial and final states, |kiλi〉 and |kfλf 〉, is given by:

(

d2σ

dΩdE

)λf

λi

=
Wki,λi→kf ,λf

j0
(2.11)

where Wki,λi→kf ,λf
is the transition probability per unit time from state |kiλi〉 to |kiλi〉 and

j0 is the incoming flux:

j0 =
~ki

V m
(2.12)

Wki,λi→kf ,λf
can be calculated with Fermi’s Golden Rule:

Wki,λi→kf ,λf
=

2π

~

∣

∣

∣〈kfλf |V̂ |kiλi〉
∣

∣

∣

2
ρkf

(E) δ(~ω + Eλi
− Eλf

) (2.13)
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Figure 2.1: The scattering event

kf

k i

Q

Figure 2.2: The scattering triangle

with ρkf
(E) being the density of final neutron states.

ρkf
(E) =

V

(2π)3
mkf

~2
dΩ (2.14)

V̂ is the Fermi pseudo-potential Eq. 2.3. The delta function is put in Eq. 2.13 to ensure
energy conservation for the scattering event.

Noting that

〈kf |V̂ |ki〉 =
∑

l

bl eiQRl (2.15)

the scattering cross-section is obtained by inserting Eqs. 2.13, 2.12, 2.14 and 2.15 into Eq.
2.11

(

d2σ

dΩdE

)λf

λi

=
kf

ki

∣

∣

∣

∣

∣

〈λf |
∑

l

bl eiQRl |λi〉
∣

∣

∣

∣

∣

2

δ(~ω + Eλi
− Eλf

) (2.16)

Eq. 2.16 refers to given initial and final target states, |λi〉 and |λf 〉. In a given experiment
there will be a range of accessible initial states that can be assigned appropriate weights
pλ:

∑

λi

pλi
= 1 (2.17)
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The pλ will be in general a thermodynamic factor e
−

Eλ
kBT times a degeneration factor.

In addition, there will be a range of accessible final states. Thus the observed partial
differential cross-section finally reads:

d2σ

dΩdE
=

kf

ki

∑

λiλf

pλi

∣

∣

∣

∣

∣

〈λf |
∑

l

bl eiQRl |λi〉
∣

∣

∣

∣

∣

2

δ(~ω + Eλi
− Eλf

) (2.18)

The horizontal bar indicates an averages over all relevant parameters such as nuclear spin
orientation, distribution of isotopes etc. Eq. 2.18 is known as the first Born approximation
to the scattering cross-section.

2.2 Response function

As shown by van Hove (Van Hove, 1954) the scattering cross-section derived in the last
section can be written as thermal average of operators belonging solely to the target. In
this section the necessary steps to reformulate Eq. 2.18 in form of a correlation function
are sketched.

Starting with an integral representation of the delta function

δ(~ω + Eλi
− Eλf

) =
1

2π~

∞
∫

−∞

dt e−it
~ω+Eλi

−Eλf
~ (2.19)

the sum in Eq. 2.18 can be transformed as follows:

∑

λiλf

pλi

∣

∣

∣

∣

∣

〈λf |
∑

l

bl eiQRl |λi〉
∣

∣

∣

∣

∣

2

δ(~ω + Eλi
− Eλf

)

=
1

2π~

∞
∫

−∞

dt e−iωt
∑

λiλf

pλi
〈λi|

∑

l

b∗l e−iQRl |λf 〉

× 〈λf |eit
Eλf

~

∑

l′

bl′ eiQRl′ e−it
Eλi

~ |λi〉

=
1

2π~

∞
∫

−∞

dt e−iωt
∑

λiλf

pλi
〈λi|

∑

l

b∗l e−iQRl |λf 〉

× 〈λf |eit Ĥ
~

∑

l′

bl′ eiQRl′ e−it Ĥ
~ |λi〉 (2.20)
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The last term in Eq. 2.20 is now written in the Heisenberg representation of the operator
eiQRl :

eiQRl(t) = eit Ĥ
~ eiQRl e−it Ĥ

~ (2.21)

Together with the completeness relation of the states |λ〉,

∑

λ

|λ〉〈λ| = 1 (2.22)

the cross-section Eq. 2.18 becomes:

d2σ

dΩdE
=

kf

ki

1

2π~

∞
∫

−∞

dt e−iωt
∑

l,l′

∑

λ

pλ b∗l bl′〈λ| e−iQRl eiQRl′ (t)|λ〉

=
kf

ki

1

2π~

∞
∫

−∞

dt e−iωt
∑

l,l′

b∗l bl′

〈

e−iQRl eiQRl′(t)
〉

(2.23)

The angular brackets represent a thermal average
∑

λ pλ〈λ|(. . . )|λ〉 and the last equality
expresses the independence of this thermal average and averaging over isotopic distribution
and nuclei spin states (horizontal bar) for the Fermi pseudo-potential.

2.3 Coherent and incoherent scattering

For systems were the average b∗l bl′ is independent of the type of nuclei, i.e. independent
of l, Eq. 2.23 can be further simplified. This is appropriate for mono-atomic samples or
samples for which the scattering is largely dominated by one species, e.g. hydrogen rich
molecules.

Writing

b∗l′bl = |b|2 + δl,l′

[

|b|2 − |b|2
]

=
σc

4π
+ δl,l′

σinc

4π
(2.24)

Eq. 2.23 now reads

d2σ

dΩdE
=

(

d2σ

dΩdE

)

coh

+

(

d2σ

dΩdE

)

inc

= N
kf

ki

σc

4π
Scoh(Q, ω) + N

kf

ki

σi

4π
Sinc(Q, ω) (2.25)
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with the coherent and incoherent scattering functions

Scoh(Q, ω) =
1

2π~N

∑

l,l′

∞
∫

−∞

dt e−iωt 〈 e−iQRl eiQRl′ (t) 〉 (2.26)

Sinc(Q, ω) =
1

2π~N

∑

l

∞
∫

−∞

dt e−iωt 〈 e−iQRl eiQRl(t) 〉 (2.27)

Eqs. 2.26 & 2.27 state the scattering law in the impulse-energy representation. Fourier
transforming them with respect to time and position leads to the intermediate scattering
function, I(Q, t) and the van-Hove function, G(r, t), respectively:
Intermediate scattering function:

I(Q, t)coh =
1

N

∑

l,l′

〈exp(−iQrl(0)) exp(iQrl′(t))〉 (2.28)

I(Q, t)inc =
1

N

∑

l

〈exp(−iQrl(0)) exp(iQrl(t))〉 (2.29)

Van-Hove function:

G(r, t) =
1

N

∑

l,l′

∫

dr′〈δ(r − r
′ + rl(0))δ(r

′ − rl′(t))〉 (2.30)

G(r, t)s =
1

N

∑

l

∫

dr′〈δ(r − r
′ + rl(0))δ(r

′ − rl(t))〉 (2.31)

Whether to use the scattering function, S(Q, ω), the intermediate scattering function,
I(Q, t), or the van-Hove function, G(r, t), is a matter of convenience, since either of them
contain the whole information accessible via neutron scattering. The choice will usually be
dictated either by experimental setup or the point of view of theoretical investigation.

Although very similar in structure, there is a profound difference between coherent and
incoherent scattering. Coherent scattering is due to the superposition of the scattering
amplitudes of all nuclei. Coherent scattering is therefore determined by interference of
these amplitudes. Just as in X-ray scattering this leads to strong geometrical constrictions
of the scattered intensity. No such interference exists in incoherent scattering leading to a
scattering profile more or less continuously distributed.

In fact looking at the differential cross sections for a perfect Bravais lattice one finds:
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(

d2σ

dΩ

)

coh

=
σc

4π

∣

∣

∣

∣

∣

∑

l

exp(iQrl)

∣

∣

∣

∣

∣

2

(2.32)

(

d2σ

dΩ

)

inc

= N
σc

4π
(2.33)

The coherent part thus represents the well known Bragg scattering whereas incoherent
scattering provides an isotropic background.

This strict isotropy is no longer valid for real crystals or other molecular systems. Nev-
ertheless, incoherent scattering remains to be continuously distributed in space whereas
coherent scattering shows strong dependence on the scattering vector Q. This dependence
can be exploited to gain structural information about the system or determine dispersion
phenomena.

As can be seen in Eq. 2.31 incoherent scattering is determined by the density autocorrela-
tion function. The scattering profile is determined by the probabilities of individual atoms
moving in space. Therefore, incoherent scattering is determined by the average over atomic
movements in the protein.

For biological samples it is mainly the incoherent part of the spectra that contributes to the
measured intensity. As can be seen in App. 8.3 the incoherent cross section of hydrogen is
about 8-10 times larger, than any other biological relevant scattering cross section. Since
about half the atoms of a protein are hydrogens, measured intensities are clearly dominated
by incoherent scattering of hydrogen atoms (Bee, 1988; Hayward et al., 2002; Smith, 1991).
Unless advanced deuteration techniques are exploited (Reat et al., 2000) it follows that
neutron scattering of biological molecules is dominated by incoherent scattering which in
turn is dominated by the average dynamics of hydrogen atoms.

The measurable quantities analyzed and explored in this thesis, the mean-square displace-
ment and the vibrational density of states, are both accessible via the incoherent scattering
function. Further analysis will henceforth be restricted to incoherent scattering bearing
in mind that the actual measured spectra will be a valid estimate of the corresponding
scattering function.

2.4 Elastic, quasielastic and inelastic scattering

The spectrum of scattered neutrons is commonly divided into three distinct parts, elastic,
quasielastic and inelastic. From a physical point of view it is easy to distinguish elastic from
inelastic scattering, i.e. neutrons that do not change their energy during the scattering event
and those which do. In this definition quasielastic scattering is part of the inelastic spec-
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trum. Nevertheless, for practical pur-
poses it is useful to further discriminate
between neutrons that scatter ’nearly’
elastic (quasielastic), i.e. that loose or
gain only small amounts of energy, and
those who change arbitrary amounts of
energy. As is clear from this definition,
there is no sharp distinction between
these two parts, however, it proves help-
ful in practice.

In Fig. 2.3 an incoherent spectrum is
sketched (black) showing schematically
the different contributions according to
their energy scale; elastic scattering (blue),
quasielastic (red) and inelastic (green).
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Figure 2.3: The scattering spectrum

In a strictly static system, all incoherently scattered neutrons would be scattered elastically.
The more motions are present, the more neutrons are inelastically scattered. The ratio
between elastically scattered neutrons to the total amount of scattered neutrons is therefore
a measure of the overall amount of motions present in the sample. In biological systems
the relatively high intensity of elastic neutron scattering is often used to obtain a first
estimate of the dynamics present. The heights of the elastic peak can directly be related
to the average atomic mean-square displacement (see Sec. 2.6) giving information about
protein flexibility and dynamics. In any realistic experiment, the elastic scattering peak is
broadened by the resolution of the instrument (as seen in Fig. 2.3).

Quasielastic scattering is usually considered as scattering with energy transfer of ∆E ≤
2 meV (≤ 16 cm−1). This energy range corresponds to atomic motions over a time-scale
of 10−10 − 10−12s, i.e. to the nano- to picosecond timescale. Motions in this timescale
cause a broadening of the elastic peak. Processes leading to quasielastic scattering include
rigid-body translational and rotational diffusion as well as sidechain reorientations such as
methyl group rotation or diffusive motions of larger sidechains. For a thorough treatment
of such processes and derivations of the associated scattering laws see Ref. Bee (1988). For
biological samples quasielastic scattering is typically 3-4 orders of magnitude smaller than
elastic scattering rendering a clear separation of both difficult. Ch. 5 will examine the
consequences of this difficulty for the interpretation of the dynamical transition.

The inelastic region of the spectrum itself, i.e. energy transfer of ∆E ≥ 2 meV (≥ 16 cm−1),
encodes the information about the energetics of atomic motions. At low temperatures these
motions are given by harmonic vibrations around an equilibrium position. The scattering
function itself is therefore determined by the phonon spectrum of proteins. In the one
phonon approximation the inelastic part of incoherent neutron scattering can be directly
related to the vibrational density of states (see Ch. 7). This relation can be used to access
the thermodynamics of biologically relevant processes such as ligand binding.
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2.5 Separation of motions

In complex systems various dynamical processes occur simultaneously. Different processes
often have their own characteristic time- and/or lengthscales associated with them. Based
on these time- and lengthscales different regions of the neutron spectra reveal information
about different types of motions. As discussed in the previous section fast, vibrational
motions are seen at corresponding high energies while slow, diffusive motions lead to a
quasielastic broadening of the elastic peak. It is therefore good advice to separate the
scattering law Eq. 2.27 into several components and study each of them separately. This
can be achieved by splitting up the total displacement vector r according to contributions
of different types of motions.

In regard to protein dynamics on the pico-nanosecond timescale, one usually addresses
internal motions in contrast to rigid body motions of the molecule as a whole. This is
expressed by writing the position vector r as

r(t) = rext(t) + rint(t) (2.34)

where rext(t) and rint(t) denote the external, rigid body and internal motions, respectively.

The external motions can be further divided into translations, i.e. motions of the center
of mass, and rotations:

rext(t) = rtrans(t) + rrot(t) (2.35)

The internal part is commonly subdivided into fast, vibrational motions and slower, diffusive
dynamics:

rint(t) = rvib(t) + rD(t) (2.36)

The term diffusive expresses that these types of motions lead to a quasielastic broadening
of the elastic peak as described in the last section.

Assuming statistical independence of the external and internal motions the intermediate
scattering function of a single scatterer factorizes into an external and internal part:

I(Q, t) = 〈exp(−iQr(0)) exp(iQr(t))〉
= 〈exp(−iQrext(0)) exp(iQrext(t))〉〈exp(−iQrint(0)) exp(iQrint(t))〉
= Iext(Q, t) · Iint(Q, t) (2.37)

In the same fashion the internal scattering function can be factorized into fast, vibrational
and slow, diffusive motions:

Iint(Q, t) = Ivib(Q, t) · ID(Q, t) (2.38)
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In frequency space the scattering function is then given by the convolution of the various
scattering functions:

S(Q, ω) = Sext(Q, ω) ⊗ Svib(Q, ω) ⊗ SD(Q, ω) (2.39)

where the convolution of two functions is defined as:

g(ω) ⊗ h(ω) =

∞
∫

−∞

dω′g(ω′)h(ω − ω′) (2.40)

2.6 The Gaussian approximation

Neutron scattering experiments can access the average atomic mean-square displacement
of the sample via the Gaussian approximation. In this approximation the van-Hove self-
correlation function, G(r, t)s is assumed to be a Gaussian function in the position vector, r.
This holds true for various limiting situations such as simple diffusion, Brownian dynamics,
harmonic solids or a perfect gas. Given the variety of these limiting cases the Gaussian
approximation is commonly taken as a reasonable first approximation.

In scattering studies on proteins and polymers it is used together with a classical limit of
the scattering law, i.e. the position vectors, r(0) and r(t) are taken to commute at any
time t.

Given both these assumptions, the incoherent intermediate scattering function Eq. 2.29
can be written as

I(Q, t) = I(Q, t)inc =
1

N

∑

l

〈exp(−iQ[rl(0)−rl(t)])〉 =
1

N

∑

l

exp(−1

2
〈Q[rl(0)−rl(t)]〉2)

(2.41)

where the last equality is the Gaussian approximation.

For isotropic samples this can be further simplified to yield

I(Q, t) =
∑

l

exp(−1

6
Q2[rl(0) − rl(t)]

2) (2.42)

Taking the Fourier transform of Eq. 2.42 we obtain the Gaussian approximation for the
elastic scattering amplitude:

S(Q, 0) =
∑

l

exp(−1

6
Q2〈∆r2

l 〉) (2.43)
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Thus, the elastic scattering is given by a sum of Gaussians with the atomic mean-square
displacements as arguments. If the sample is homogeneous, i.e. if the atomic mean-square
displacements can be considered equal, the averaging is trivial and the elastic scattering
function reads

S(Q, 0) = exp(−1

6
Q2〈∆r2〉) (2.44)

Eq. 2.44 is commonly taken as starting point to access the mean-square displacement,
〈∆r2〉, from elastic neutron scattering. In Ch. 6 the influence of this last assumption on
the measured mean-square displacement, 〈∆r2〉exp, will be examined.



Chapter 3

Computer simulations of proteins

Proteins are complex systems containing several hundreds to thousands of atoms. This
excludes a quantum mechanical treatment of biological macromolecules1 even with the
high computational power nowadays available. To simulate large, complex systems, such as
proteins, accuracy has to be sacrificed to a reasonable extend for computational efficiency.
This is the aim of so called empirical force field methods or molecular dynamics. One of
the basic assumptions underlying all molecular mechanics force fields is the validity of the
Born-Oppenheimer approximation, i.e. the decoupling of electronic and nuclear degrees of
freedom. The energy of the system is written as a function of the nuclear positions only.
Furthermore the true energy function of the nuclei degrees of freedom is approximated
by energy terms that can be more easily calculated, i.e. the force field is designed for
computability.

The first molecular dynamics simulation dates back to the year 1957. Alder and Wainwright
investigated phase transition behavior in a system of hard-spheres (Alder & Wainwright,
1957). It took, however, another twenty years for the first simulation of a protein to
become feasible. In 1977 McCammon et.al. simulated the protein BPTI (Bovine pancreatic
trypsin inhibitor, McCammon et al. (1977)) in vacuum for a timespan of ∼9ps. Today
molecular dynamics simulations are a common tool for theoretical studies on biological
macromolecules.

The theory underlying molecular dynamics simulation can be divided into two main parts:
the representation of the system under study and the description of its time evolution. In
the following sections a short description of common methods and approximations suitable
and/or necessary for simulations on large complex systems shall be given. A thorough
treatment of the theory of molecular dynamics simulations would be beyond the scope of
this thesis and can be found in several textbooks, e.g. Allen & Tildesley (1987); Leach
(1996).

1Quantum mechanical treatment of parts of a protein, however, may well be feasible. The reaction center
of an enzyme for example can be treated with higher accuracy, while the structural relaxation of the rest
of the protein is modeled by empirical methods. This is the realm of MM/QM-Simulations (Molecular
Mechanics/Quantum Mechanics) which will not be discussed here. A thorough treatment may be found in
Leach (1996)

27
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3.1 Molecular dynamics forcefield

Several force fields such as CHARMM (Brooks et al., 1983) or Amber (Perlman et al., 1995)
have been designed to describe biological macromolecules. Although different in detail they
share to a wide extent the basic structure of the energy terms considered as well as their
functional form. The energy terms can be divided into two different classes; bonded and
non-bonded interactions.

Bond stretching

The obvious bonded interaction term is the direct representation of covalent bonds between
two atoms. The Morse potential (see Fig. 3.1) is a common form of this energy contribution,
describing accurately the radial dependence up to the dissociation of the bonded atoms.
In molecular dynamics simulations deviations from the minimum bond length are usually
small, so that in most cases it is sufficient to account for covalent bonds by the harmonic
approximation of the true potential:

Vbond = Kb(r − req)
2 (3.1)

Kb is a force constant representing the strength of the bond and req is often called the
equilibrium bond length. Indeed, for an isolated pair of atoms the bond length vibrates

with a frequency ω =
√

Kb

m around req, m being the reduced mass of the system. However,

for multi-atomic systems the equilibrium bond length is determined by the energy minimum
of the total system which in turn is determined by a balance of all energy terms present,
i.e. each individual energetic contribution is not necessarily at its minimum value.
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Figure 3.1: Bond stretching

In addition to the direct representation of covalent bonds a variety of other nearest neigh-
bour interactions are included in the bonded energy terms, e.g. angle bending and torsional
degrees of freedom.
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Angle bending

Variations of binding angles (see Fig. 3.2) are represented by the harmonic approximation:

Vangle = Kθ(θ − θeq)
2 (3.2)

Again Kθ is a measure of the energy required to deviate from the standard angle θeq. Force
constants for angle bending are considerably smaller then those of bond stretching terms,
reflecting the fact that the energy cost to bend angles away from their standard value is
small compared to changes due to bond length vibrations. The remarks about equilibrium
positions given for the bond stretching term are equally valid for angle bending.
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Figure 3.2: Angle bending

Torsion angles - Dihedrals

Bond stretching and angle bending are often referred to as hard degrees of freedom whereas
torsion- and dihedral-terms constitute soft degrees of freedom. Despite their softness they
are of utmost importance for a description of biological macromolecules. While the bond
stretching and angle terms determine the local geometry of the system, the global three-
dimensional structure and the slow, large-scale dynamics of proteins strongly depend on
the balance of the torsional energy with the non-bonded interactions.

Torsional terms describe the rotation of atom groups around a given bond. The angle φ is
given by the angle between the normals of the planes determined by atoms 1, 2 and 3 and
2, 3 and 4, respectively (see Fig. 3.3):

Vdihe =
∑

n

Vn

2
[1 + cos(nφ − γ)] (3.3)

Vn is called the barrier of the torsion potential, n its multiplicity and γ its phase angle.
In general one cosine function in Eq. 3.3 is sufficient to represent one torsional degree of
freedom.

Additional torsional angles (see Fig. 3.4) are sometimes used to maintain the geometry of
the system, e.g. the planarity of sp2 hybridized carbon atoms. These improper dihedrals
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are represented by a harmonic potential:

Vimprop = Kω(ω − ωeq)
2 (3.4)
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Figure 3.3: Torsional interactions
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Figure 3.4: Improper dihedral

Van-der-Waals terms

Van-der-Waals or London forces are commonly described by a Lennard-Jones 12-6 potential,
given by Eq. 3.5. Eq. 3.5 balances two terms, a short range repulsive and a slower decaying
attractive force. The attractive R−6-term arises from spontaneous dipoles inducing opposite
dipoles in nearby atoms. The electric field E of a dipole varies as E ∼ R−3, which will in
turn induce an dipole-moment µ ∼ αE at nearby atoms. The contribution to the potential
energy of this induced dipole therefore varies as µE ∼ R−6.

No such direct physical justification can be given for the form of the short range repulsion.
The origin of the repulsive interaction has its origin in exchange forces of overlapping elec-
tron wave functions. It is a consequences of the Pauli principle and its accurate treatment
requires quantum mechanics. Indeed, quantum mechanical calculations suggest a form ∼ 1/r

for very short distances and ∼ exp(−−2r/a0) for larger separations; a0 is the Bohr radius.
However, for force field methods an easy to calculate form of this repulsive interactions
is needed. The R−12 dependence fulfills this requirement and has proven to give accurate
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results in many circumstances.

Vvdw = 4ε

[

( σ

R

)12
−
( σ

R

)6
]

(3.5)

The Lennard-Jones potential is determined by two parameters: the collision parameter,
σ, and the depth of the potential, ε. The collision parameter is the distance between two
atoms at which the Van-der-Waals energy is zero.

σ

ε

Position

E
ne

rg
y

Van−der−Waals

Figure 3.5: Van-der-Waals interactions

Electrostatic term

The forces between charged particles in the system are given by the Coulomb potential,
Eq. 3.6. Rij is the distance between atoms i and j, qi, qj the corresponding charges and ε0

the dielectric constant in vacuum.

Velec =
qiqj

4πε0Rij
(3.6)

The electrostatic forces are a textbook example of non-bonded interactions. From a compu-
tational point of view the main difference between the bonded and non-bonded interactions
are the number of terms that have to be calculated for each atom. While there are only a
few bonded terms to be calculated per atom, the non-bonded interactions in theory involve
a sum over all atoms in the system. Therefore the total number of non-bonded terms to be
calculated rises with the square of the system size (∼ N 2, where N is the number of atoms).
However, the contribution of the non-bonded interactions to the energy function for atoms
separated by large distances will be small, so that it is reasonable to introduce an artificial
cutoff distance and calculate non-bonded interactions only for atoms within this distance.
For long range potentials like the Coulomb law (∼ 1

R ) this may introduce artifacts accord-
ing to the method used to cutoff the potential (Brooks, 1987; Brooks et al., 1985). In Fig.
3.6 two such schemes are depicted. The shift method adds a constant to the electrostatic
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potential, so that it becomes zero at a given distance rcutoff and it is set to zero for longer
distances. While computationally efficient this can introduce strong artificial forces at the
cutoff distance. A second scheme is the switch mechanism. In this scheme to distances are
specified rcuton and rcutoff and an interpolating function is introduced to smoothly change the
potential such that potential and forces become zero at rcutoff. The simulations analysed in
this thesis used the second scheme for the non-bonded interactions.

RR cotoffcuton

Electrostatic

shift

switch

Position

E
ne

rg
y

Figure 3.6: Electrostatic interaction

In summary, the total energy function for molecular dynamics simulations of proteins reads:

Vtotal =
∑

bonds

Kb(r − req)
2 +

∑

angles

Kθ(θ − θeq)
2 +

∑

dihedrals

Vn

2
[1 + cos(nφ − γ)]

+
∑

improper

Kω(ω − ωeq)
2 +

∑

i<j

4εij

[

(

σij

Rij

)12

−
(

σij

Rij

)6
]

+
∑

i<j

qiqj

εRij
(3.7)

Depending on the package used or the system simulated additional terms may be added.
Such terms can be used to assure correct geometry or to include additional effects, e.g. elec-
trostatic multipoles to mimic polarization or Urey-Bradley terms to include coupling be-
tween angle bending and bond stretching.

3.2 Time evolution

In the previous section a potential energy function for biological macromolecules has been
defined. In the next step the equations determining the time evolution of the system have
to be chosen. In molecular dynamics simulations these are formulated within the realm of
classical mechanics. The classical system can be characterized by its Hamiltonian function,
H(ql, pl) (Goldstein, 1991):

H(ql, pl) = K(ql, pl) + V (ql, pl) (3.8)
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where ql, pl are the generalized positions and momenta, respectively. K(ql, pl) and V (ql, pl)
denote the kinetic and potential energy.

The equations of motions are given by2

q̇l =
∂

∂pl
H(ql, pl) (3.9)

ṗl = − ∂

∂ql
H(ql, pl) (3.10)

Extended systems molecular dynamics

Conventional molecular dynamics simulations produce trajectories in the micro-canonical
ensemble, that is energy, volume as well as particle number are conserved. Experimental
setup, however, most often demands the isobaric-isothermic ensemble, i.e. pressure and
temperature kept constant. Andersen, Nosé and Hoover proposed methods to accomplish
molecular dynamics simulation in this ensemble. The basic idea in their approach is to
extend the system by additional degrees of freedom that represent the coupling to a heat
or pressure reservoir.

As an example of this extended system approach the equations of motions for the isoenthalpic-
isobaric ensemble are briefly discussed. Pressure control can be achieved by coupling the
system to a fictitious piston and explicitly including the piston degree of freedom. This
approach leads to a Hamiltonian of the form (Andersen, 1980):

HNHP =
∑

l

V
2
3

p̃2

2m
+ V (V

1
3 r̃) +

1

2
QV̇ 2 + PV (3.11)

where V, the Volume of the system, is introduced as an additional degree of freedom and Q
represents the mass of the piston. p̃ and r̃ are scaled momenta and coordinates, respectively.

r̃ = V − 1
3 r (3.12)

p̃ = V − 1
3 p (3.13)

The corresponding equations of motion then read:

¨̃r =
F

mV
1
3

− 2

3
˙̃r
V̇

V
(3.14)

V̈ =
Pint − Pext

Q
(3.15)

2For Cartesian coordinates these equations reduce to Newtons equations of motions:

r̈ = −
1

m
∇rV (r)

The Hamiltonian point of view is taken here, since it is more common in the physical literature and incor-
porating constraints and temperature/pressure control is easier to accomplish.
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where Pext denotes the externally applied pressure and Pint is the instantaneous internal
pressure of the system given by:

Pint =
1

dV

[

∑

i

p
2
i

mi
+
∑

i

riFi − (dV )
∂U

∂V

]

(3.16)

By coupling the system to a virtual piston continuous dynamical trajectories can thus be
generated with a conserved Hamiltonian given by Eq. 3.11. The Hamiltonian can thus be
used to check the stability of the simulation.

In a similar fashion temperature control can be incorporated by coupling the system to a
heat bath. The isobaric-isothermal ensemble was shown to be realized by the following set
of equations (see Tuckerman & Martyna (2000)):

ṙi =
pi

mi
+

pε

W
ri

ṗi = Fi −
(

1 +
1

N

)

Pε

W
pi −

Pη

Q
pi

V̇ =
dV pε

W

ṗε = dV (Pint − Pext) +
1

N

∑

i

p
2
i

mi
− pη

Q
pε

η̇ =
Pη

Q

ṗη =
∑

i

p
2
i

mi
+

p2
ε

W
− (dN + 1)kT (3.17)

where pε is a momentum conjugate to the logarithm of the volume, W is its associated
mass parameter, ε = ln(V/v0). Pext and Pint are defined as above.

Although these equations of motions are not hamiltonian, they do preserve a hamiltonian
function given by:

HHoover = H(p, r) +
p2

ε

2W
+

p2
η

2Q
+ PextV + (dN + 1)kTη (3.18)

Again this function can be used to test system stability.

The Leap-frog integrator

The equations of motions presented in the last section can be integrated numerically to
generate a trajectory representing the time evolution of the system. The simulation package
CHARMM uses a leap-frog scheme for constant temperature/pressure simulations. The
leap-frog algorithm is a variant of the well known Verlet integrator and share with the
latter the property of being symplectic, that is it preserves phase space density. Symplectic
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integrators in general show good energy conservation thereby guaranteeing stability of the
integration scheme.

The Verlet algorithm follows from a Taylor expansion of the position vector at times t+∆t
and t − ∆t:

r(t + ∆t) = r(t) + v(t)∆t +
1

2
a(t) ∆t2 + · · · (3.19)

r(t − ∆t) = r(t) − v(t)∆t +
1

2
a(t) ∆t2 + · · · (3.20)

Addition of these equations directly leads to the Verlet algorithm:

ri(t + ∆t) = 2ri(t) − ri(t − ∆t) + ai(t)∆t2 (3.21)

ai(t) = − 1

mi
∇riV (r1(t), . . . , rN(t)) (3.22)

It should be noted, that the velocity canceled out by adding Eqs. 3.19 & 3.20. The velocity
is not needed to calculate the trajectory of the system, it is, however, useful to access the
kinetic energy or calculate velocity correlation functions. In the Verlet-scheme velocities
have to be estimated aposteriori from the positions at different times. Another drawback of
the original Verlet integrator are numerical imprecisions due to the addition of large terms
(order O(∆t0)) to small terms (order O(∆t2))

The leap-frog algorithm avoids these problems by introducing an intermediate step for
calculating the velocities. The equations read:

ri(t + ∆t) = 2ri(t) + v(t +
1

2
∆t)∆t (3.23)

vi(t +
1

2
∆t) = vi(t −

1

2
∆t) + ai(t)∆t (3.24)

ai(t) = − 1

mi
∇riV (r1(t), . . . , rN(t)) (3.25)

3.3 Analysis of molecular dynamics simulations

System setup

Molecular dynamics simulations have been used to test theoretical analysis of the dynamical
transition (Ch. 4 and Ch. 5) as well as to access errors inherent in experimental data
analysis (Ch. 6). The atomic trajectories used for further analysis were created by Jennifer
C. Hayward.
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The model system chosen consists of one BPTI molecule in 70%v/v CD3OD/D2O in an
orthorhombic box with periodic boundary conditions. BPTI has 892 atoms and 4 internal
water molecules. There are 658 CD3OD and 661 D2O molecules in the solvent, providing at
least three solvent shells around the protein. This is adequate for simulating a protein in a
bulk solvent environment. As in typical neutron scattering experiments, the exchangeable
BPTI hydrogen atoms were replaced by deuterium, leaving 324 hydrogen atoms. The
concentration of BPTI in the simulation is 156mg/ml. This system was chosen to model a
solution of a protein in 70%v/v CD3OD/D2O cryosolvent, as has been used in the neutron
experiments (Daniel et al., 1998, 1999; Reat et al., 2000) further analyzed in the present
work.

The system was simulated using CHARMM (Brooks et al., 1983) version 27 with all-atom
parameter set 22 (Mackerell et al., 1998). All water molecules were represented by the
TIP3P potential (Jorgensen et al., 1983). The simulations were performed in the NPT
ensemble with a reference pressure of 1 atm.. A timestep of 0.001ps was used with SHAKE
(Ryckaert et al., 1977) applied to constrain bonds containing hydrogen or deuterium atoms.
Non-bonded and electrostatic interactions were truncated at 13.0Å using the shifting func-
tion (Steinbach & Brooks, 1994).

Trajectories were created at 15 different temperatures, starting from 80K, increasing in
steps of 20K to 220K, and further increasing in steps of 10K to 280K and a final trajectory
at 300K. The starting structure for the lowest temperature 80K was the energy-minimized
BPTI crystal structure (Parkin et al., 1996), Protein Data Bank reference (1BPI) (Berman
et al., 2000b) equilibrated for 500ps in a fully equilibrated box of solvent. The starting
structures for the rest of the simulations at increasing temperatures were the final structures
from the preceding temperature. The systems at each temperature were equilibrated for
150ps and then data collected every 0.1ps for 520ps

System properties

In the context of the dynamical transition and its relation to enzyme function, it is the
internal dynamics of protein atoms that is of most interest. Consequently, the protein
trajectories were decomposed into external (whole-molecule diffusion) and internal compo-
nents. The internal motions were extracted by superimposing every frame from the atomic
trajectory with an RMS fit onto the first frame (Kneller, 1991).

The result is a new atomic trajectory of internal motions. In the present work only these
internal motions are considered, i.e. all quantities are calculated from these new trajecto-
ries. This reflects the separation of motions in external and internal motions as discussed
in Ch. 2.

Mean-square displacement

The mean-square displacement, or more precisely the change in the slope of 〈∆r2〉, is the
main indicator of the dynamical transition. From molecular dynamics simulations the
mean-square displacement, 〈∆r2〉Sim is readily calculated via an running average:
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〈∆r2〉Sim(t) =
1

N

∑

α

〈(~rα(m)−~rα(0))2〉 ≈ 1

N

∑

α

〈

1

Nt − m

Nt−m−1
∑

k=0

(~rα(k + m) − ~rα(k))2

〉

(3.26)

where α indicates atoms of the system and m, k and Nt are integer numbers with t = m ·∆t,
∆t being the timestep of the simulation of total length Nt · ∆t.

Auto-correlation functions

Incoherent neutron scattering functions, as seen in Ch. 2, can be written in terms of auto-
correlation functions. As in the case of the mean-square displacement, such autocorrelation
functions are calculated via a running average as follows:

CAA(t) = 〈A(τ) · A(τ + t)〉 (3.27)

=
1

τmax

τmax
∑

τ=1

A(τ) · A(τ + t) (3.28)

In the analysis of molecular dynamics simulations presented in this work, these autocor-
relation functions were calculated with help of the program package nMOLDYN (Kneller
et al., 1995).
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Chapter 4

Protein dynamics and neutron

scattering

The incoherent scattering function resulting from internal motions of the protein bovine
pancreatic trypsin inhibitor (BPTI) is calculated from MD trajectories for temperatures
ranging from 100-300K. On the ∼200 picosecond timescale it is shown that there is con-
siderable freedom in the interpretation of the intermediate scattering function of internal
protein dynamics. The temperature dependence of I(Q, t) is well reproduced whether the
elastic incoherent scattering function (EISF) is considered to be temperature dependent or
independent. A single exponential relaxation is shown to be a valid approximation for times
10 ≤ t ≤ 200ps.

The guiding picture in interpreting protein dynamics is that of an energy landscape. The
shape of this energy landscape determines the associated microscopic dynamics. For pro-
teins the landscape is complex and rugged with many local minima. This situation is
depicted in Fig. 4.1. It shows a van-der-Waals plot of a small protein (BPTI) zooming in
on a single side-chain methyl group (alanine). The dynamics of methyl groups, due to their
threefold symmetry can be described by the energy barrier separating the minima and the
distance between these minima. The form of the scattering function is well known and can
be used to derive a complete description of the energy landscape of this simple system.
However, as shown in Fig. 4.1 a multitude of such simple models combine to constitute the
complete energy landscape of the protein.

Figure 4.1: Dynamical Complexity of proteins

39
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The heterogeneity of chemical compounds and the lack of symmetry in biological macro-
molecules lead to the presence of a wide range of vibrational and diffusive dynamical pro-
cesses.

Naturally, the scattering law Eq. 2.23 remains valid, but the dynamics of different parts
of the same system (atoms, residues, domains, etc. ) can be qualitatively different from
its neighbors, thereby rendering a simple formulation of the scattering law difficult. As
mentioned in Ch. 1 this complexity is often condensed into heuristic laws containing only
a few parameters, nevertheless yielding good agreement with experiment.

4.1 Internal protein dynamics

In Sec. 2.5 the scattering law for protein motions was split into different parts, rigid body
rotation and translation, vibrational and quasielastic or diffusive. In this chapter the focus
will be on the internal dynamics of proteins. Therefore the corresponding scattering law
reads:

I(Q, t) = IV (Q, t) · ID(Q, t) (4.1)

The vibrational part, IV (Q, t) describes molecular vibrations of the system whereas the
diffusive part contains relaxation processes.

The vibrational intermediate scattering function IV (Q, t) decays on timescales of ∼ 1ps or
faster, so that for longer timescales one can approximate I(Q, t) by

I(Q, t) = e−2W (Q)ID(Q, t) (4.2)

where e−2W (Q) is the Debye-Waller factor.

The form of the diffusive part ID(Q, t) depends on the actual processes present but some
general statements can be made. Since internal motions of a protein are restricted in space,
ID(Q, t) decays to a finite value ID(Q,∞) = A0(Q) > 0. Consequently Eq. 4.2 can be
written as:

I(Q, t) = e−2W
(

A0(Q) + I ′D(Q, t)
)

(4.3)

with I ′D(Q,∞) = 0. A0(Q) is called the elastic incoherent scattering function and is given
by:

A0(Q) =
1

N

∑

l

|〈exp(iQrl)〉|2 (4.4)

The time dependent part I ′D(Q, t) is subject to the condition

1 = I(Q, 0) = A0(Q) + I ′D(Q, 0) (4.5)
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The complexity of internal protein dynamics leads to a non-exponential behavior of I ′
D(Q, t).

This is taken into account by writing I ′
D(Q, t) as either a stretched exponential function or

a sum of exponential relaxation processes.

The stretched exponential or Kohlrausch-William-Watts (KWW) function contains four pa-
rameters, the Debye-Waller term exp(−2W (Q)), the EISF A0(Q), the stretching parameter
β and one exponential parameter κ̃.

I(Q, t) = e−2W (Q)
(

A0(Q) + (1 − A0(Q)) exp[−(κ̃t)β]
)

(4.6)

The relaxation frequency is then given by:

κ =





∞
∫

0

dt exp[−(κ̃t)β ]





−1

= κ̃
β

Γ( 1
β )

(4.7)

Here Γ(x) dennotes the gamma function.

Describing I(Q, t) as a sum of exponential relaxation functions introduces as parameters
the Debye-Waller term exp(−2W (Q)), the EISF A0(Q) and 2 parameters per exponential
relaxation process, Ai and κi

I(Q, t) = e−2W (Q)

(

A0(Q) +
∑

i

Ai(Q) exp[−(κit)]

)

(4.8)

with the normalization condition

A0(Q) =
∑

i

Ai(Q) (4.9)

Model descriptions with n exponential relaxation function thus provide 1 + 2n parameters.

4.2 Energy landscapes

Descriptions defined by either Eq. 4.6 or Eq. 4.8 pose several questions. The first question
that arises is, whether these equations lead to a good description of the scattering profile.
Once this question is answered in the confirmative, the next question would be whether
the obtained parameters can be considered to be a faithful representation of the system,
i.e. whether the parameters obtained are unique. Limitations in the accessible (Q, ω) space,
in both experiment and simulation, can make unequivocal interpretation of data using
simplified descriptions difficult. It is therefore important to ask which alternative sets of
parameters could describe the same set of data and how such alternative descriptions alter
the interpretation of derived quantities like the mean-square displacement of the system.

It was pointed out in Ch. 1 that the concept of conformational substates forms a bridge
between physical descriptions of protein dynamics in terms of energy landscapes and bio-
logical function of the enzyme. It is therefore important to understand how populations
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of different substates and transitions between them manifest themselves and influence neu-
tron scattering data. From Eq. 4.4 it can be seen that the elastic incoherent scattering
function is determined by the equilibrium distribution of position vectors. The EISF is
zero for liquids and nonzero for spatially constraint systems. Changes in the equilibrium
distribution of coordinates, e.g. due to changes in the temperature, alter the average taken
in Eq. 4.4 and therefore leave their traces in the EISF. In this sense it is a measure for
the conformational space explored by the system. Considerations relating conformational
substates to biological function are thus intimately related to the EISF and its changes with
temperature (Doster et al., 1989b; Frauenfelder & McMahon, 2000; Zaccai, 2000a,b).

In this respect the two qualitatively different situations depicted in Figs. 4.2 & 4.3 should
be considered. The pictures show a symmetric and an asymmetric two-well potential each
representing two conformational states separated by a barrier ∆B. The qualitative differ-
ence between both, the gap in energy between the substates in the asymmetric potential,
shows up as qualitative difference in the EISF. The scattering function for these two energy
landscapes is known and e.g. derived in Bee (1988)1:

I(Q, t) = e−2W (Q)
(

A0(Q) + A1(Q)e−κt
)

(4.10)

with

A0(Q) =
1

(1 + ρ)2
[

1 + ρ2 + 2ρj0(Qr)
]

(4.11)

A1(Q) =
2ρ

(1 + ρ)2
[1 − j0(Qr)] (4.12)

(4.13)

j0(Qr) is the zeroth order spherical Bessel function and ρ denotes the relative population
of conformational substates with conformational coordinate ri; i = 1, 2.

ρ =
p(r1)

p(r2)
= exp(−∆G

RT
) (4.14)

where ∆G is the difference in free energy as shown in Fig. 4.3, R is the gas constant and T
the temperature and p(ri) denotes the population of the energy well with conformational
coordinate ri.

In the symmetric case ∆G = 0 and thus ρ = 1. Inspection of Eq. 4.11 shows that
the symmetric potential has an EISF constant with respect to temperature, whereas the
asymmetric landscape exhibits changes of the EISF upon temperature change. Even more,
for the asymmetric landscape changes in the elastic incoherent scattering function should
be expected at a temperature of RT ≈ ∆G. The gap in free energy thus defines a transition
temperature intrinsic to the system. In contrast, no such distinct temperature exists for the
symmetric landscape. Regarding the dynamical transition observed in protein dynamics (cf
Ch. 1) it is tempting to use this qualitative difference to explain and interpret experimental

1The scattering function is known in the limit of jump models. Here the timescale of crossing the barrier
is assumed to be fast compared to the average time between successive crossing events.
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data (for recent reviews see Gabe et al. (2002); Parak (2003)). However, it will be shown in
this chapter that neutron scattering data calculated from MD simulation of internal motions
of the globular protein BPTI can equally well be described within the symmetric scenario,
i.e. without changes in the EISF. The consequences of this ambiguity for the interpretation
of the dynamical transition as measured by neutron scattering will be discussed in Ch. 5.

∆B

E
ne

rg
y

Conformational Space

κ

Figure 4.2: Symmetric double well
potential

∆G

∆B

E
ne

rg
y

Conformational Space

κ

Figure 4.3: Asymmetric double well
potential

4.3 Stretched exponential relaxation

The most prominent difference between models derived from the landscapes shown in Figs.
4.2 & 4.3 is the temperature dependence of the EISF. To test whether an analysis in the low
Q-range, determining the mean-square displacement of the system, is able to distinguish
both landscapes, both scenarios were used to analyze neutron spectra calculated from MD
simulations.

The two columns of Fig. 4.4 show a comparison of a description of the spectra by a
Kohlrausch-Williams-Watts function with a) all four parameters allowed to vary and b)
A0(Q) kept fixed.

The intermediate scattering function, I(Q, t), was calculated from MD trajectories of in-
ternal protein motions as described in Sec. 3.3. Each graph shows I(Q, t) at the indicated
temperatures for Q-values ranging from 0.2 − 1.6Å (symbols).

The left column shows fits of Eq. 4.6 with all four parameters allowed to vary whereas the
right column shows the resulting fits of the restraint model.

The fixed amplitude Ā0(Q) was determined from the amplitudes of the unrestraint fit as
follows: the decay of the intermediate scattering function is more pronounced at high
temperatures than at low temperatures, allowing a better extraction of A0(Q) at high
temperatures. The fixed EISF for the second model was therefore obtained by averaging
A0(Q) over the temperatures above 250K (see Fig. 4.5). Ā0(Q) thus represents an estimate
of the long-time, converged EISF.
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The timerange of 1 ≤ t ≤ 200ps is equally well reproduced by both models. Keeping
the EISF of the system constant with temperature has no effect on the reproducibility of
obtained data. Their interpretation, however, bears some important differences.

To understand these differences it is instructive to look at the two limiting situations,
t→ 0 and t→∞. t→ 0 here means times short compared to the lowest characteristic
relaxation time, 1/κ, but still long enough for vibrational motions to be resolved. In this
limit, the vibrational motions determine the intermediate scattering function and I(Q, t) is
given by the Debye-Waller factor, e−2W (Q). For times long enough to sample all relaxation
processes of the system (t→∞), I(Q, t) is given by I(Q, t → ∞) = e−2W (Q)A0(Q) i.e., the
product of the Debye-Waller factor and the EISF.

Looking now at the temperature dependence of the scattering function both models agree
on the fast timescale, where this dependence is solely determined by the Debye-Waller
factor. However, in the limit t→∞ both models differ. While in the constraint model
(EISF fixed) the temperature dependence is still determined by the Debye-Waller factor,
an additional dependency is introduced for the free model via the temperature dependence
of the EISF. Both models therefore disagree in there long time behavior.

The question then arises, why both models describe the data in Fig. 4.4 accurately? The
scattering function clearly shows temperature dependence beyond that given by the Debye-
Waller factor, nevertheless this dependency is well reproduced in both models. The ad-
ditional information needed to distinguish between both descriptions is the timescale of
motions present in the system. For complex systems like biological molecules we cannot
easily decide whether simulated or observed timespans are long enough to justify a descrip-
tion of the system in the limit t→∞. Looking again at Eq. 4.6 reveals that at intermediate
timescales the interpretation of the temperature dependence of I(Q, t) is complicated by the
fact that the relaxation frequency κ is expected to depend on temperature as well. Thus, at
intermediate timescales two scenarios lead to a temperature dependency of I(Q, t). First,
the EISF itself can be temperature dependent. As discussed, this is related to an increase
in conformational space explored. This possibility will be called the ’equilibrium model’.

Alternatively, the temperature dependence of I(Q, t) can be reproduced by temperature
dependent relaxation frequencies. The scattering function exhibits notable decrease due
to a given relaxation process only on timescales longer than their typical relaxation time.
In this scenario, changes in I(Q, t) upon temperature thus depend on the interplay of
observation time and relaxation frequency. This scenario will henceforth be called the
’frequency window’ interpretation.
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Figure 4.4: The intermediate scattering function, I(Q, t), calculated from internal
motions of BPTI over a Q-range of 0.2 − 1.6Å (symbols). solid lines: fits of Eq.
4.6 to I(Q, t) with a) all parameters free to vary (left) and b) A0(Q) fixed (right)
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System parameters

The three free parameters of the frequency window model reproduce the calculated spectra
as well as the four parameters of the full KWW function. Moreover, a comparison of the
remaining three parameters reveals that the effect of the choice of the frequency window
model is mainly to restrict the observed variation of the resulting three parameters, i.e. in
the frequency window model the remaining parameters are better defined. The qualita-
tive behavior of these parameters does not change and even quantitively both models are
comparable.

Fig. 4.5 depicts the amplitudes A0(Q) obtained from Eq. 4.6 for temperatures T & 250K
(symbols). The black curve marks Ā0(Q) as described above. For temperatures between
200 − 240K A0(Q) is plotted in Fig. 4.6. The errorbars in both plots are given by the
statistical errors of the fitting procedures. Inspection of Figs. 4.5 & 4.6 reveals that the
EISF as fitting parameter is well defined for temperatures T & 250K, however, errorbars
become large at 200K rendering the amplitudes meaningless for temperatures T . 180K.

Fig. 4.5 suggests a general decrease of A0(Q) with temperature with 250K being an ex-
ception. Such trend would be expected from an equilibrium scenario since with rising
temperature, more of conformational space is explored. No such trend, however, can be
seen in Fig. 4.6 for temperatures below 250K. Considering the large errorbars at low tem-
peratures this suggests that A0(Q) is not unambiguously defined by the calculated spectra.
The reason for this ambiguity in the amplitude can be understood by inspection of Fig.
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Figure 4.5: Elastic incoherent scattering factor, A0(Q), determined for T ≥ 250K by
fitting Eq. 4.6 to I(Q, t) (symbols). The black line depicts the average amplitude,
Ā0(Q)

4.7. Fig. 4.7 shows a comparison of the relaxation frequency κ for both models. κ was
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Figure 4.6: Elastic incoherent scattering factor,A0(Q), determined for 200 ≤ T ≤ 240K
by fitting Eq. 4.6 to I(Q, t) obtained from MD simulations.
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Figure 4.7: The relaxation frequency κ as determined by Eq. 4.7. (◦) κ obtained by
varying all four parameters. (4) κ obtained for the frequency window model (A0(Q)
fixed).
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calculated from Eq. 4.7 and averaged over all Q values. The errorbars were calculated from
the variance of κ with respect to different Q-values. Both models draw the same qualita-
tive picture of the temperature dependence of relaxation processes. At low temperatures,
T ≤ 200K, κ is small, κ ≤ 0.0025ps−1, thus the typical relaxation timescale 1/κ is of the
same magnitude as the total simulation time. Relaxation due to processes related to A0(Q)
are to slow to be observed in the simulations. Therefore, the amplitudes are indetermined
in the fitting process. Above 200K there is a general sharp increase in κ for both models
indicating either the onset (equilibrium) or speeding up (frequency window) of relaxation
processes. As fitting parameter, however, the relaxation frequency, κ, and the amplitude
A0(Q) are not independent of each other. A given value of I(Q, t) can be reproduced in two
ways, either by adjusting the amplitude making sure κ is large enough for the amplitude
to be resolved, or by chosing A0(Q) and adjusting the frequency such that the amplitude
is only partly resolved. For example, the larger decay of A0(Q) at T = 250K compared to
higher temperatures, is compensated for by a small relaxation frequency κ. The resulting
intermediate scattering function, I(Q, t) thus shows in effect the expected decrease with
increasing temperature. Fixing the amplitude in the frequency window scenario removes
this ambiguity and thus leads to a smoother temperature dependence of κ as seen in Fig.
4.7.

A similar improvement of parameters in the frequency model can be observed for the stretch-
ing parameter, β (Fig. 4.8), as well as for the vibrational mean-square displacement derived
from the Debye-Waller factor, 〈∆r2〉Vib (Fig. 4.9). The stretching parameter in Fig. 4.8
was obtained by averaging over all Q values. The errorbars, as in Fig. 4.7 indicate the
variation of the fitting parameter with Q. In agreement with experimental values, β varies
between 1 and 0.4 (Nienhaus et al., 1997). As mentioned in Ch. 1, β is a heuristic factor.
Its dependence on temperature is in general not known. In the analysis here β fluctuates
around a mean value of 0.7 for both models, the fluctuations are considerable smaller in the
frequency window model. Again this has to be attributed to the number of free parameters.
Neither model shows systematic variation with temperature.

The vibrational mean-square displacement depicted in Fig. 4.9 were calculated from the
Debye-Waller factors in the Gaussian approximation, i.e. by fitting a straight line to the
plot of −2W (Q) vs Q2 (compare Ch. 2). The errorbars represent the statistical error
of the fit. Representing fast, vibrational motions of the system, 〈∆r2〉Vib is expected to
rise linearly with temperature. As seen in Fig. 4.9 this is fulfilled for both descriptions
up to 280K, again smoother for the frequency window scenario. The increased fluctuations
between 220K and 260K can once more be attributed to the interdependencies of the fitting
parameters contributing to I(Q, t) in Eq. 4.6.

The stretched exponential function accurately reproduces the scattering function. However,
the four fitting parameters already show some interdependence and even redundancy. There
is enough leeway in the choice of parameters to hold the EISF constant with temperature
and furthermore the stretching parameter β shows no systematic temperature dependence.
It can be asked whether a single exponential relaxation function would be sufficient to
represent the data. In addition it is interesting to see whether system properties like the
relaxation frequency or 〈∆r2〉Vib do depend on the description chosen. These questions will
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tained from MD simulations. (4) β obtained by varying all four parameters. (◦) β
obtained for the frequency window model (A0(Q) fixed).
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fitting Eq. 4.6 to I(Q, t) obtained from MD simulations.



50 Protein dynamics and neutron scattering

be adressed in the next section.

4.4 Single exponential relaxation

I(Q, t) decays approximately exponentially for t ≥ 10ps and a single exponential function
provides the same number of fitting parameters as the stretched ’frequency window’ model.
Therefore, it was decided to model I(Q, t) with a single exponential that reproduces the
long-time behavior. Consequently, the equation fitted to the simulation-derived I(Q, t) is
the following

I(Q, t) = e−
1
6
Q2〈∆r2〉fast

[

Ā0(Q) + (1 − Ā0(Q))e−κFWt
]

(4.15)

Here, the Debye-Waller factor representing vibrational motions in Eq. 4.8 has been replaced
by the term e−

1
6
Q2〈∆r2〉fast . 〈∆r2〉fast includes all dynamics of the system faster than ∼10ps,

comprising not only vibrations but also fast diffusive motions.

The extraction of the parameters of Eq. 4.15 was again performed in two steps. First, the
equation was fitted to the simulation-derived I(Q, t) with all parameters allowed to vary
freely with temperature, including the amplitudes, A0.

In analogy to the previous section Ā0(Q) was obtained by averaging A0(Q) over the temper-
atures above 250K. Ā0(Q) again represents an estimate of the long-time, converged elastic
incoherent scattering function, and was kept invariant with temperature in all further anal-
yses, as required by the frequency window hypothesis. In a second fitting step Eq. 4.15
was fitted to the simulation-derived I(Q, t) with Ā0(Q) kept fixed.

Fig. 4.10 shows a comparison of the complete (left) and frequency window (right) model
fits with the simulation-derived I(Q, t). Both models reproduce the temperature-dependent
decay of I(Q, t) over the range 10 ≤ t ≤ 300ps. Motions on timescales faster than 10ps are
subsidised in the Debye-Waller factor according to the redefinition given above (compare
Fig. 4.14). For temperatures between 180 − 240K the frequency window scenario does not
reproduce the levelling off of the scattering funtion around t = 200ps. This might point to
the fact, that indeed in this temperature range changes in the EISF are present. On the
other hand inspection of the related relaxation frequency κ indicates that this temperature
region marks the transition of motions into the 200ps range. Given a total simulation time
of 500ps it can not be excluded that 200ps motions are not completely sampled in these
trajoctories.
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Figure 4.10: The intermediate scattering function, I(Q, t), calculated from internal
motions of BPTI over a Q-range of 0.2 − 1.6Å (symbols). solid lines: fits of Eq. 4.15
to I(Q, t) with a) all parameters free to vary (left) and b) A0(Q) fixed (right)
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System parameters

Fig. 4.11 depicts the amplitudes A0(Q) obtained from Eq. 4.15 for temperatures T ≥ 250K
(symbols). The blue curve marks Ā0(Q) (compare previous section). For temperatures
below 250K A0(Q) is plotted in Fig. 4.12. The errorbars in both plots are given by the
statistical errors of the fitting procedures. Figs. 4.11 & 4.12 exhibit a general decrease of
A0(Q) with temperature as expected from an equilibrium scenario. There are, however,
several exceptions reflecting the interdependency of the fitting parameters. In contrast to
the previous section, the EISF as fitting parameter is now well defined for all temperatures.

Inspection of Fig. 4.13 shows that the relaxation frequency obtained for the full exponential
model has values above 0.0025ps−1 even in the low temperature range. In these fits A0(Q)
thus contributes in a non-neglectable amount. In consequence the errorbars remain small
for all temperatures. Fig. 4.13 shows a comparison of the relaxation frequencies κ for
both models. For comparison κ is plotted for the stretched frequency model as well. κ
was again averaged over all Q values. The errorbars were calculated from the variance of
κ with respect to different Q-values. Above 250K both models agree quantitatively with
each other and with the relaxation frequency obtained for the KWW function (frequency
window model) in the previous section. The exponential frequency scenario closely follows
the KWW frequency for all temperatures, the full exponential fits led to consistently higher
values for κ for temperatures below 250K. Again, this demonstrates the relation between
equilibrium and frequency model at lower temperatures. The changes in the EISF in the
full exponential fits allow the frequency to remain large enough for the amplitude to be
resolved. Fixing the EISF instead forces κ to be small enough for the amplitude not to be
completely resolved. Both possibilities are flexible enough to reproduce the spectra here
obtained equally well.

Fig. 4.14 depicts 〈∆r2〉fast together with the vibrational mean-square displacement obtained
in the previous section (frequency window model). 〈∆r2〉fast was obtained by fitting a

straight line to the low Q-region (Q2 ≤ 1Å
−2

) of ln(a) vs Q2, a = exp(−1/6Q2〈∆r2〉fast)
being a fitting parameter of Eq. 4.15 for both scenarios.

〈∆r2〉fast, as discussed, includes all motions on timescales faster than 10ps. Consequently
both models lead to values of 〈∆r2〉fast consistently higher than 〈∆r2〉Vib representing only
vibrational motions. Both models show an approximately linear dependence of 〈∆r2〉fast on
temperature.
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Figure 4.11: Elastic incoherent scattering factor, A0(Q), determined for T ≥ 250K by
fitting Eq. 4.15 to I(Q, t) obtained from MD simulations (symbols). The blue line
depicts the average amplitude, Ā0(Q).
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Figure 4.12: Elastic incoherent scattering factor (A0(Q)) determined for T ≤ 240K by
fitting Eq. 4.15 to I(Q, t) obtained from MD simulations.
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Figure 4.13: Relaxation frequency κ determined by fitting Eq. 4.15 to I(Q, t) obtained
from MD simulations. (◦) κ obtained by varying all three parameters. (◦) κ obtained
for the frequency window model (A0(Q) fixed). (4) for comparison: κ obtained for a
KWW relaxation function.
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fitting Eq. 4.15 to I(Q, t) obtained from MD simulations (◦) for comparison: 〈∆r2〉Vib
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4.5 Conclusions

The temperature dependence of the incoherent intermediate scattering function, I(Q, t),
was shown to be well reproduced by a four parameter stretched exponential function. How-
ever, keeping the elastic incoherent scattering function of the system fixed does not affect
the quality of data reproduction. The remaining three parameters show qualitatively the
same behavior and are even quantitatively in good agreement. Whereas the temperature
dependence of both, the Debye-Waller factor and the average frequency κ is well established
in all models used in this chapter, there is no clear pattern visible for the stretching param-
eter β. The stretching parameter, although within the range commonly found in complex
systems (0.4 ≤ β < 1), does not show a systematic dependence on temperature.

Describing the system by a single exponential relaxation function fails to reproduce I(Q, t)
on timescales shorter than 10ps. The long-time decay due to slower relaxation processes,
however, is still well reproduced. Again, fixing the scattering amplitude with respect to
temperature leads to a description representing the spectra equally well. The parameters
obtained from both scenarios resemble each other indicating that the frequency window
model is a real alternative allowed by the ambiguity of incomplete data.

Even more, the relaxation frequency κ shows qualitatively the same behavior for all models,
a rather flat region at low temperatures followed by a sharp increase as the temperature
rises. Especially there is no qualitative difference in κ whether the spectra are described
by a single exponential or a KWW function. For the frequency window model both are in
good quantitative agreement.

Quantitavely similar results are also obtained for an averaged EISF Ā0(Q). This is of
importance with hindsight to the dynamical transition since it will be shown that the low
Q-regime of the EISF determines the converged mean-square displacement (see Ch. 5).
Thus the frequency window models discussed here agree quantitatively with respect to
contributions of the EISF to the total mean-square displacement.

Consequently, the scattering spectra calculated from internal protein motions of BPTI
does not allow to rule out a pure frequency window scenario, i.e. it can not be decided
whether there is at all a change of the elastic incoherent scattering factor. Both, the
KWW relaxation model and the approximation by a single exponential relaxation process
can reproduce the intermediate scattering function in a pure frequency window scenario
without loss of accuracy. It should be stressed, however, that the frequency window scenario
here is proposed as a limiting model that is still able to reproduce scattering data. The
frequency windows of neutron scattering experiments are in the same range as characteristic
frequencies of molecular motions, i.e. ∼ 1 − 100µeV. Therefore, the frequency window
scenario is likely to play a role in determining the dynamics observed using this technique.
Whether it plays a dominant role in the description of protein dynamics or contributes only
corrections to the picture provided by the equilibrium model cannot be decided on the basis
of the present analysis.

In a complex energy landscape, such as that explored by a solvated protein, the dynamics
observed by neutron scattering is likely to involve a combination of both the frequency-
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window and equilibrium scenarios. That is, the true description of the intermediate scat-
tering function will require both, changes of the EISF with temperature as well as an EISF
that becomes visible upon temperature rising due to an increase in κ.

Hence regarding neutron scattering a pure frequency window scenario has to be considered
as a possible, limiting description of internal protein dynamics. The consequences of this
finding with hindsight to the dynamical transition and its relation to enzymatic activity
will be discussed in the next chapter.
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Chapter 5

The dynamical transition in proteins

The leeway in model descriptions of neutron scattering data is shown to allow for two
limiting interpretations of the dynamical transition as measured with neutron scattering, an
equilibrium and a frequency window interpretation. In the former the transition is due to the
occupation of higher energy conformational substates whereas in the latter interpretation the
observed transition in the measured mean-square displacement is caused by a the temperature
dependence of relaxation times crossing the instrumental resolution.

The dynamical transition, as explained in Ch. 1, is one of the prominent features encoun-
tered in pico- to nanosecond dynamics of proteins. The observed connection to enzyme
activity makes it a valuable phenomenon to investigate the relation between the energy
landscape of enzymes and their biological function. In this chapter the dynamical tran-
sition measured by neutron scattering is discussed. Bearing in mind the structural and
dynamical complexity of proteins, the focus of attention is not to impose an energy land-
scape model of protein dynamics, but rather to reduce the observed phenomena to basic
features of the energy landscape.

Systems for which such a dynamical transition, i.e. a deviation from harmonic, linear
dependence of the average atomic mean-square displacement, 〈∆r2〉 with increasing tem-
perature, has been observed include glass-forming liquids, polymers and proteins (Bizzarri
et al., 2000; Cohen et al., 1981; Doster et al., 1989b; Frauenfelder et al., 1979; Keller &
Debrunner, 1980; Knapp et al., 1982; Rasmussen et al., 1992). For proteins, suggestions
have been made that the additional motions present at temperatures above the transition
may be important in biological function (Ding et al., 1994; Ferrand et al., 1993; Fitter et al.,
1997; Lehnert et al., 1998; Rasmussen et al., 1992). Several models have been used to de-
scribe the dynamics activated at the dynamical transition, including continuous diffusion
(Kneller & Smith, 1994), jumping between minima (Doster et al., 1989b; Elber & Karplus,
1987; Frauenfelder et al., 1979, 1991; Lamy et al., 1996), mode-coupling theory (Doster
& Settles, 1999; La Penna et al., 1999; Perico & Pratolongo, 1997), stretched-exponential
behavior (Dellerue et al., 2001) and ’effective force constants’ (Zaccai, 2000a).

The common theme connecting these model descriptions is that they explain the dynamical
transition via changes in the long-time, converged properties of proteins. Translated to the
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language of neutron scattering these models relate to changes in the elastic incoherent
scattering function, EISF of the system. As seen in the last chapter, neutron scattering
spectra of internal protein motions can be explained without such changes. The dynamical
transition is thus not necessarily related to changes in equilibrium properties of proteins.
The mean-square displacement as measured by neutron scattering techniques will now be
derived. It will be shown how the dynamical transition can be explained within the context
of the frequency window scenario.

5.1 Equilibrium and frequency window scenario

The experimental detection of the dynamical transition depends on the relationship between
the timescale of the characteristic relaxation processes leading to the increased mean-square
displacement and the time resolution of the experimental technique employed. Following
Ch. 4 two contrasting scenarios for the dynamical transition can be envisaged. In the
first, ’equilibrium’ scenario all motions in the system are resolved by the instrument at
all temperatures examined. In other words, the characteristic relaxation frequencies of
the dynamics are all within the energy resolution of the instrument used; the EISF of
the system is a quantity accessible by experiment. In this case, an observed dynamical
transition results from a change with temperature of the long-time probability distribution
of single atom displacements. Analysis of the dynamical transition can in principle lead to
a characterization of energy levels occupied by different conformational substates (Doster
& Settles, 1999; Doster et al., 1989b).

In the alternative, ’frequency window’ scenario, there is no change in the time-converged
atomic probability distribution with temperature. Apparent dynamical transition behavior
can be observed in this scenario if two criteria are fulfilled: a) below the transition, the
relaxation frequencies of the dynamics determining the mean-square displacement are too
slow to be detected by the finite energy-resolution instrument, and b) if the frequencies
increase with temperature such that they pass into the frequency window of the instrument.
This description of the dynamical transition has recently been suggested to explain the
timescale dependence of the mean-square displacement observed for an enzyme solution
(Daniel et al., 2003b). For systems in which the frequency window scenario dominates,
the dynamical transition reveals information about the timescales of motions crossing the
resolution window of the instrument. If these motions involve activated dynamics, then the
barriers concerned can be determined.

5.1.1 Finite Energy Resolution and the Mean-Square Displacement.

The frequency window scenario leads to a new interpretation of the dynamical transition
as measured by neutron scattering. For this purpose, the experimental derivation of mean-
square displacements has to be reexamined. 〈∆r2〉 is accessible via neutron scattering
experiments with the help of the Gaussian approximation (see Ch. 2). From Eq. 2.44 it
can be seen that 〈∆r2〉 is determined by the initial slope of the logarithm of the elastic
scattering vs Q2.
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Fitting the low Q-region of experimentally-obtained elastic scattering data with a linear
function yields the ’measured’ mean-square displacement, which we call 〈∆r2〉Exp. The
Gaussian approximation gives:

〈∆r2〉Exp = −6
∂

∂Q2
ln(SExp(Q, 0))|Q2=0 (5.1)

For any given instrument 〈∆r2〉Exp may not be the time-converged mean-square displace-
ment, but may have contributions due to finite energy resolution. We will now analyze the
components of 〈∆r2〉Exp using Eq. 4.3 as a starting point.

Inspection of Eq. 4.3 suggests that the elastic scattering can be obtained by neglecting the
quasielastic term, I ′D(Q, t). However, in a real experiment due to finite energy resolution
the intensity under the elastic peak can contain contributions from quasielastic scattering.
To represent this analytically we write the measured elastic scattering, SExp(Q, 0) as:

SExp(Q, 0) =

∞
∫

−∞

dω R(ω)S(Q,ω) (5.2)

= e−2W
(

A0(Q) + I ′D(Q,∆ω)
)

(5.3)

where R(ω) is the instrumental energy resolution function and

I ′D(Q,∆ω) =
∞
∫

−∞
dωR(ω)I ′D(Q,∆ω).

We thus obtain from Eq. 5.3 for the measured mean-square displacement:

〈∆r2〉Exp = −6
∂

∂Q2
ln(SExp(Q, 0))|Q2=0 (5.4)

= −6
∂

∂Q2
ln(e−2W (Q)) (5.5)

−6
∂

∂Q2
(ln[A0(Q) + I ′D(Q, ∆ω)) (5.6)

〈∆r2〉Exp = 〈∆r2〉Vib + 〈∆r2〉EISF − 〈∆r2〉Res (5.7)

= 〈∆r2〉Conv − 〈∆r2〉Res (5.8)

〈∆r2〉Exp in Eq. 5.8 contains two contributions, 〈∆r2〉Conv and 〈∆r2〉Res. One of these,
〈∆r2〉Conv, is the long-time, converged 〈∆r2〉, consisting of the vibrational contribution,
〈∆r2〉Vib and the diffusive contribution associated with the EISF, 〈∆r2〉EISF.

The second term in Eq. 5.8, 〈∆r2〉Res is the contribution to 〈∆r2〉EISF due to relaxation
processes too slow to be resolved by the instrument. Its subtraction means that it reduces
the observed 〈∆r2〉. Neglecting this second term corresponds to making the assumption
that all motions in the system are fast enough to be detected.

〈∆r2〉Res is generally given by

〈∆r2〉Res = 6
∂

∂Q2
I ′D(Q,∆ω) (5.9)
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Further simplification can be achieved by choosing the form of I ′
D(Q,ω). An approximate

analytical solution for 〈∆r2〉Res shall now be derived for the case that the diffusive scattering
can be described as a sum of exponential relaxation processes (compare Eq. 4.8):

I ′D(Q,ω) =
∑

l

Al(Q)
1

π

κl

κ2
l + ω2

(5.10)

From Eq. 5.9 and 5.3 〈∆r2〉Res is then given by 〈∆r2〉Res ≡
∑

l al∆ωl with

al = 6
∂

∂Q2
Al(Q)|Q2=0 (5.11)

∆ωl, the width of the Lorentzian function, is here assumed to be independent of Q. This
is true for most analytical models of spatially-confined systems (e.g., jumping between a
finite number of states, rotational or confined diffusion). However, in heuristic approaches
to experimental data treatment the width is often taken to be Q-dependent, in which case
〈∆r2〉Res would obtain one additional term.

Since

∞
∫

−∞

dω
1

π

κl

κ2
l + ω2

= 1, (5.12)

inspection of Eq. 5.7 shows that the maximal contribution of the relaxation mode Al(Q)
to 〈∆r2〉Res is given by al. This is intuitive for systems in which a real physical process
can be related to a given relaxation mode, l. If a certain mode l describes, for example,
jumping between two minima, this maximal contribution al is given by the distance between
these minima, and Eq. 5.8 is simply the statement that these jumps will be detected only
if they occur on timescales accessible to the instrument. However, for models where the
physical process involved cannot be described by a single relaxation mode, no direct physical
interpretation of al is possible.

Finally, we derive an approximate functional form of ∆ωl. To do this we make an approx-
imation to the resolution function, R(ω) that allows ∆ωl to be expressed analytically i.e.,
R(ω) is assumed to be a rectangular function of width ∆ω:

R(ω) =

{

1 −∆ω ≤ ω ≤ ∆ω
0 other

(5.13)

This allows us to write:

〈∆r2〉Exp = 〈∆r2〉Conv −
∑

l

al
2

π
arctan

∆ω

κl
(5.14)

Eq. 5.14 will be used to examine dynamical transition behavior in the context of the
frequency window scenario in both MD simulations and experiment (Sec. 5.2 and Sec.
5.3). First, however, a relation between transition temperatures measured at different
instruments and their respective energy resolutions will be derived.
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5.1.2 The transition temperature

The dynamical transition temperature, T0 can be operationally defined as the temperature
at which the measured mean-square displacement, 〈∆r2〉exp, starts to deviate from a straight
line. According to Eq. 5.8 〈∆r2〉exp consists of two parts: 〈∆r2〉Conv and〈∆r2〉Res. In
principle changes in either of these can produce a change in 〈∆r2〉exp. A change in 〈∆r2〉Conv

corresponds to a change in the time-converged properties of the protein. Such changes
could be due, for example, to the presence of distinct minima in the energy landscape of
a protein. However, if these minima are of the same energy they will not produce changes
in the EISF as their relative populations will not change with temperature. Rather, the
energies of the minima must be different so that the increased relative occupation of the
higher energy state with increasing temperature leads to an increase in 〈∆r2〉EISF and hence
in 〈∆r2〉Conv. The exact relation between T0 and the difference in energy ∆G will depend
on the underlying landscape model. However, the increase in 〈∆r2〉 will be approximately
proportional to the Boltzmann factor exp(−∆G/RT). The transition temperature will thus
be determined by RT0 ≈ ∆G. Since the changes occur in time-converged properties of
the protein the transition will be independent of instrumental resolution provided that all
associated motions are resolved. An example of a model based on a change in 〈∆r2〉EISF is
that of Ref. Doster et al. (1989b).

In the frequency window model the experimentally-observed transition is an effect of finite
energy resolution alone with no change in the time-converged dynamics. Since 〈∆r2〉Conv is
now independent of instrumental resolution, any difference in the measured mean-square
displacement between two instruments must arise from contributions of the second term in
Eq. 5.8, i.e. 〈∆r2〉Res.

Comparing transition temperatures, T0, due to changes in 〈∆r2〉Res, leads to a relation
between the instrumental resolutions and the relaxation frequencies. Each relaxation fre-
quency will lead to an observed dynamical transition once it is high enough to make a
measurable contribution to the total mean-square displacement, 〈∆r2〉exp, that is, once the
change in 〈∆r2〉Res is large enough to lead to a detectable deviation of 〈∆r2〉exp from linear-
ity. For two instruments of different energy resolutions, ~∆ω1 and ~∆ω2, this will happen at
different temperatures T1 and T2 respectively. We consider the case where δ〈∆r2〉Res(T,∆ω)
the measured excess mean-square displacement for instrument 1 at T1 ( i.e. , the portion
of 〈∆r2〉exp that is above linear behavior), is equal to the measured excess mean square
displacement for instrument 2 at T2, that is

δ〈∆r2〉Res(T1,∆ω1) = δ〈∆r2〉Res(T2,∆ω2) (5.15)

If we assume that these two transitions are due to the same dynamical process characterized
by the relaxation frequency κ(T ) we can then write:

arctan
∆ω1

κ(T1)
= arctan

∆ω2

κ(T2)
(5.16)

or, simplified:
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κ(T2)

κ(T1)
=

∆ω2

∆ω1
(5.17)

Further information can be obtained if the functional form for κ(T ) is known. Assuming
an Arrhenius temperature dependence, κ(T ) = κ0e

∆B/RT , gives:

1

T2
− 1

T1
=

R

∆B
ln(

∆ω2

∆ω1
) (5.18)

where ∆B is the barrier height (see Fig. 4.2) and R is the gas constant.

In this case, then, comparing the transition temperatures measured on different instruments
can lead to direct determination of the barrier height, ∆B.

5.2 Dynamical transition in MD Simulations

In Ch. 4 it was shown that the longtime relaxation of the scattering function I(Q, t) is
well reproduced by a single exponential relaxation function with temperature independent
EISF. We now examine whether the frequency window scenario can describe the simulation-
derived 〈∆r2〉Sim.

Assuming the presence of a single relaxation frequency, the mean-square displacement from
the frequency window model, 〈∆r2〉FW, is given by (see Eq. 5.14):

〈∆r2〉FW = 〈∆r2〉fast + 〈∆r2〉Ā0
(1 − 2

π
arctan

∆ω

κFW

) (5.19)

where 〈∆r2〉fast and 〈∆r2〉Ā0
are the fast and slow contributions to the mean-square dis-

placement, respectively. 〈∆r2〉fast, as in Eq. 4.15, subsidizes all motions faster than 10ps.

The temperature dependence of the mean-square displacement was determined directly
from the set of MD simulations, using Eq. 3.26. 〈∆r2〉Sim was calculated for four different
values of t: 20, 50, 100 and 200 ps. Fig. 5.1 shows the resulting mean-square displacements,
〈∆r2〉Sim. Below T ≈ 180K 〈∆r2〉Sim(t) is the same on all timescales, indicating that no
processes are activated with timescales between 20-200ps at these temperatures. Raising
the temperature further, a dynamical transition, i.e. a deviation from linearity of 〈∆r2〉Sim,
is observed on all timescales. However, the transitions on different timescales differ in two
aspects.

First, T0, the temperature at which 〈∆r2〉Sim deviates from the straight line, shows a
timescale dependence. This is illustrated in Fig. 5.2, in which 〈∆r2〉Sim is plotted for 20ps
and 200ps together with a linear fit over the temperature range 100 ≤ T ≤ 180K. Whereas
〈∆r2〉Sim deviates from linearity at ∼180K for the 200ps data, a deviation appears only at
∼220K on the 20ps timescale. This reflects the fact that for temperatures between 170-
220K the intermediate scattering function in Fig. 4.10 exhibits an additional decrease on
the 200ps, but not on the 20ps timescale. The presence of a timescale dependence of the
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transition temperature is a characteristic feature of the frequency window scenario. Since
in the frequency window picture no new motions are activated at T0, but rather existing
motions become faster and drift into the timescale accessible to an instrument, T0 depends
on the instrumental resolution.

A second difference between 〈∆r2〉Sim on different timescales is the magnitude of 〈∆r2〉Sim

for T > T0. This magnitude increases with timescale such that
〈∆r2〉Sim(200ps) ≈ 2〈∆r2〉Sim(20ps) at 300K. Again, this reflects the presence of motions on
the 20-200ps timescale.

To see whether a frequency window model is able to reproduce these differences, the mean-
square displacement, 〈∆r2〉FW was calculated using Eq. 5.19 at different values of the
resolution: ∆ω = 1/20ps, 1/50ps, 1/100ps and 1/200ps. The results thus obtained are compared
with 〈∆r2〉Sim in Fig. 5.1. The only difference between the four 〈∆r2〉FW shown is the factor
∆ω representing different instrumental resolutions. Nevertheless, 〈∆r2〉FW reproduces the
simulation data on all timescales (resolutions). As expected, the agreement for the lowest
resolution (timescale 20ps) is slightly worse than at other resolutions, since the frequency-
window model used here (Eq. 4.15) was parametrized to reproduce the simulation-derived
I(Q, t) only for longer times (see Ch. 4).

The inset to Fig. 5.1 depicts 〈∆r2〉fast, the fast contribution to 〈∆r2〉 together with the
time-converged slow contribution due to diffusive motions, 〈∆r2〉Ā0

. Also shown is a linear
fit to 〈∆r2〉fast over the temperature range 100<T <180K. Below T ≈220K the linearity of
〈∆r2〉fast is consistent with the motions being harmonic, given by the Debye-Waller factor
Ifast(Q, t)≈ e−2W . The linear fit suggests that there is a small transition in 〈∆r2〉fast at
T ≈200 − 220K. This might indicate the onset of fast anharmonic motions on timescales
faster than 10ps.

〈∆r2〉Conv is given by the sum of 〈∆r2〉fast and 〈∆r2〉Ā0
(see Eqs. 5.7 & 5.8), where 〈∆r2〉Ā0

is constant with respect to temperature. The high value of 〈∆r2〉Ā0
at low temperature

in the inset to Fig. 5.1 might be surprising at first but can be understood if one recalls
that in the frequency-window model motions do not cease to exist at a given temperature,
but simply shift to longer timescales. Given enough time, these motions still occur, leading
to a constant mean-square displacement even at low temperatures. Taking the symmetric
two-state model as an example again, this reflects that barrier crossings do occur at very
low temperatures, with the timescale of these crossings tending to infinity.

In Fig. 5.3 the relaxation frequency, κFW, is plotted obtained by the fit shown in Fig. 4.10.
For T ≤ 180K the relaxation time, 1/κFW is indeed much longer than the 200ps timescale,
i.e. κFW is sufficiently small not to lead to substantial decrease in I(Q, t) for t ≤ 200ps. At
the onset of the measured transition, at T ≈220K, it is ∼200ps, and becomes faster with
increasing temperature, reaching a timescale of ∼50ps at 300K.

The frequency window model does not suppose any particular form of the dynamics as-
sociated with the relaxation frequency, κFW. For example, a priori, the dynamics could
be continuous or jump diffusion. Distinguishing between these types of dynamics is be-
yond the remit of the present analysis method. Further analysis can involve fitting an

Arrhenius function, κ(T ) = ae−
∆B
RT , to κFW. κ(T ) in Fig. 5.3 indeed follows approximately
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Figure 5.1: Energy resolution and timescale-dependence of 〈∆r2〉. Solid lines: 〈∆r2〉Sim

calculated from MD trajectories using Eq. 3.26 with t=20,50,100 and 200ps. Symbols:
〈∆r2〉FW calculated using Eq. 5.19 with the instrumental energy resolution, ∆ω, set to
1/20, 1/50, 1/100 and 1/200 ps−1. Inset: The fast component, 〈∆r2〉fast of 〈∆r2〉FW (red)
and 〈∆r2〉A0

(blue). The straight line represents a linear fit to the temperature range
100− 180K.
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Figure 5.2: 〈∆r2〉Sim calculated from the MD trajectories for two values of t, 20ps and
200ps. Also shown is a linear fit to the temperature range 100− 180K.
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Figure 5.3: Symbols: Long-time relaxation frequency κ as obtained by fitting Eq. 4.15
to I(Q, t). The solid line shows the result of fitting an Arrhenius function to κ.
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Arrhenius behavior. The resulting parameters determining the slow dynamics in 〈∆r2〉FW

are 〈∆r2〉A0
, the pre-exponential a and ∆B, the activation free energy. 〈∆r2〉A0

is 0.96Å,
∆B is 3.0kcal/mol, and the pre-exponential factor is a∼1012s−1. These values are typical
for barrier crossing in condensed-phase molecular systems (see Bee (1988)). It must be
stressed, however, that overinterpretation of κFW is dangerous and that attribution of the
dynamics to any single process is unwarranted. Indeed, for a heterogeneous system such
as a protein in solution it is unlikely that simple types of motions determine the scattering
profile of the system. Further analysis of the simulations and quasielastic scattering would
be necessary to disentangle these different contributions and to obtain a detailed picture of
the underlying dynamics at atomic resolution (Tournier & Smith, 2003).

5.3 Dynamical transition in experiment

The frequency window model is now used to analyze experimentally-derived mean-square
displacements obtained from glutamate dehydrogenase in a cryosolution (Daniel et al.,
1999). The analysis again uses Eq. 5.19 as the fitting function. The fast component,
〈∆r2〉fast was assumed to depend linearly on temperature, 〈∆r2〉fast = αT . Eq. 5.19 was
fitted simultaneously to the mean-square displacements determined using the instruments
IN6 and IN16 with ∆ωIN6 = 50µeV = 50∆ωIN16, reflecting the fifty times higher energy
resolution of IN16.

Fig. 5.4 shows the result of the least-squares fit of Eq. 5.19 to the experimental data
sets. The model is able to reproduce the most prominent features of the experimental
data, namely the pronounced shift of the transition temperature, T0, from 150K to 220K
between the two instruments, and the leveling off of 〈∆r2〉exp at higher temperatures seen
on the higher-resolution instrument. The shift in T0 with resolution is in harmony with
the shift seen in the simulation data, 〈∆r2〉Sim, in Fig. 5.2. Motions being fast enough to
be detected at 150K with the instrument IN16 become fast enough to be seen on IN6 only
at 220K. The fact that the shift in the simulation data in Fig. 5.2 is smaller than that
seen experimentally in Fig. 5.4 is consistent with the fact that the difference in timescale
between the two simulation data sets is smaller than that between the two experimental
data sets.

The leveling off of 〈∆r2〉exp with T at high resolution is a consequence of the finite amount
that the relaxation process contributes to 〈∆r2〉Conv. According to Eq. 5.7 each process l
contributes at most al to the converged mean-square displacement. This can be illustrated,
again, with the two-state model. Jumping between the minima makes a contribution to
〈∆r2〉Conv. This contribution will not be seen in 〈∆r2〉exp at low temperature since the
timescale of these jumps is too slow. At higher temperatures the jumps contribute more
and more, thereby leading to a transition in 〈∆r2〉exp. If the timescale of these jumps is
much faster than the timescale accessible to the instrument i.e., τjump � τres, all of the
jumps are seen leading to no further increase in the observed mean-square displacement
with temperature.

At higher temperatures the frequency window model fails to obtain quantitative agreement



5.3. Dynamical transition in experiment 69

100 150 200 250 300
Temperature [K]

0

0.5

1

1.5

<
 ∆

r2  >
 [

 A
2  ]

IN16

IN6

Figure 5.4: 〈∆r2〉exp determined by two different instruments (IN6, IN16) fitted using
equation 5.19. Experimental data were taken from Daniel et al. (1999).
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Figure 5.5: Characteristic relaxation time as a function of temperature. 1
κ(T ) was

determined by fitting Eq. 5.19 to 〈∆r2〉exp

with experiment (Fig. 5.4). In particular, the continued increase in 〈∆r2〉exp above 270K
determined using the lower-resolution instrument is not reproduced. However, experimental
errors may be significantly higher than estimated at high 〈∆r2〉, due to the correspondingly
low elastic peak intensities. Furthermore, additional solvent-driven processes are likely to
be activated at ∼ 270K due to solvent melting. The assumption of a single relaxation
process is unlikely to be valid at T≥270K.

The temperature dependence of the relaxation frequency, κ (red curve) is shown in com-
parison to the data of Fig. 4.13 in Fig. 5.5. In the temperature range 150K-280K, the
relaxation time changes from ca. 100ns to ∼ 10ps. Thus the motion passes through the
approximate time resolution windows of the two instruments, which are 5ns for IN16 and
100ps for IN6. κ obtained from the analysis of the experimentally derived mean-square
displacements is in reasonable quantitative agreement with the frequency derived from the

simulated intermediate scattering function. 〈∆r2〉A0
is 0.81Å

2
, similar to the value obtained

in the MD analysis.

5.4 Transition-function relationship

The intriguing aspect of the dynamical transition from a biological point of view is the
observed relation to protein function. Various proteins show a pronounced change in their
functional characteristics or even cease to be active upon cooling down below the transi-
tion temperature (Austin et al., 1975; Rasmussen et al., 1992; Réat et al., 1997). In this
chapter a new interpretation of the dynamical transition in proteins has been suggested,
its prominent feature being a timescale dependent transition temperature. It shall now be
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discussed whether and in which way both transition mechanisms lead to different expec-
tations regarding the temperature dependence of enzyme activity and its relation to the
transition in the measured mean-square displacement.

This relation between activity and measured mean-square displacement can be discussed
within the framework of two state models like the ones depicted in Figs. 4.2 & 4.3. Two
energies play an important role in this context. First, the energy difference ∆G between
the states, determining the population probability of these states and the energy barrier
∆B determining the timescale of these transitions.

The argument that the measured mean-square displacement is related to the activity goes
as follows: The protein is in either of the two states. The lower state is the ’rigid’, inactive
state whereas the higher energy state is active. At temperatures kT � ∆G the active state
is not populated, the enzyme therefore inactive. With rising temperature the active state
becomes populated, the enzyme starts to work.

The expected temperature dependence of the mean-square displacement for this system
was shown in Ref. Keller & Debrunner (1980). The contribution of the change from one
state to the other is proportional to a Boltzmann factor containing the activation enthalpy
∆G:

〈∆r2〉c ∼ e
− ∆G

kBT (5.20)

Here 〈∆r2〉c is commonly called the conformational contribution to the total mean-square
displacement (Frauenfelder & McMahon, 2000).

Since the increase in mean-square displacement in this model is caused by the change to an
active state, this increase marks the onset of activity. Both, the onset of activity and the
increase in mean-square displacement are controlled by the same temperature T0 ≈ ∆G

kB
.

Measuring the temperature dependence of the mean-square displacement therefore gives
access to the enthalpy difference ∆G of functionally important states.

However, this does not take into account that timeresolved scattering techniques only detect
motions in a timewindow determined by the instrument used. Whether or not a change
in the mean-square displacement is seen for the system of Fig. 4.3 is not only determined
by the occupation of states, but also by the timescale on which transitions between these
states occur. A given instrument can detect changes between states only if the barrier
between these states is low enough that the rate of transitions is within the resolution of
the instrument.

This kind of interpretation of neutron scattering data is given by the frequency window
point of view suggested here. In the frequency window scenario the increase in mean-
square displacement detected by neutron scattering is not the onset of new anharmonic
motions due to new states that become occupied, but the transition is rather due to motions
becoming fast enough to be detected. The temperature at which motions become observable
depends on the resolution of the instrument, so the transition temperature should depend
on the instrument used. This interpretation has been shown to explain the more prominent
features of the data presented in Ref. Daniel et al. (1999) (Fig. 5.1). Regarding enzyme
activity, since no ’fixed’ transition temperature exists, no correlation should be expected.
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It should be mentioned, that this does not imply that these motions are not required for
function. Since in this picture the dynamical transition does not mark the onset of new
motions but a decrease of their typical timescale only a corresponding increase in the activity
should be expected. The interpretation thus is consistent with the Arrhenius behavior of
the activity seen in Ref. Daniel et al. (1998) even if these motions are required for function.

In accordance with these considerations it was found in Daniel et al. (1998) & Dunn et al.
(2000) that enzyme activity does not show a deviation from Arrhenius behavior down to
180K. The experimental data in Fig. 5.4, however exhibits several transitions. The mean-
square displacement as measured by the instrument IN6 shows a transition at ∼220K.
For the IN16 data at least two transitions are seen, a non-linear increase in 〈∆r2〉exp at
∼150K and a leveling-off at ∼220K. The absence of a measurable deviation of activity from
Arrhenius behavior down to 180K suggests that neither the increase of 〈∆r2〉exp as seen with
the instrument IN6 nor the leveling-off seen with IN16 are related to enzyme activity. Since
the enzyme activity can be measured down to only 180K the relationship of the ∼150K
transition to enzyme activity cannot be addressed.

5.5 Conclusions

The present theoretical analysis shows that the dynamical transition as observed by molec-
ular dynamics simulation and neutron experiment can be described without invoking a
temperature dependent change in the long-time, equilibrium atomic dynamics. In the
’frequency window’ model used to analyze the data the temperature dependence of dynam-
ical relaxation processes leads to the appearance of dynamical transition behavior in the
measured signal as, with increasing temperature, the processes become fast enough to be
resolved by the instrument used. The frequency window model is a true dynamical model
insofar as the change in slope of the observed 〈∆r2〉 at the dynamical transition is due to
the temperature dependence of timescales of motions. Assuming activated dynamics the
transition would thus be determined by the barriers between energy minima rather than
by differences in energies between the minima.

The frequency window model reproduces the broad features of the experimental mean-
square displacement results for a protein in a cryosolution and is also in good quantitative
agreement with MD simulation data on a smaller protein in the same solvent. The ob-
served timescale dependence of the mean-square displacement rules out an interpretation
of the present molecular dynamics or neutron experimental results based solely on the ’equi-
librium’ model. However, the analysis does not rule out a combination of the frequency
window and equilibrium models in which the transition involves both barrier crossing and
populating of higher energy states. Indeed, it is highly unlikely that the minima of a pro-
tein free energy landscape are equienergetic. Allowing the equilibrium dynamics to vary
(by allowing A0 to vary as in Fig. 4.11) led to a fit to the simulation-derived I(Q, t) that
is as good as, though not better, than that achieved with the frequency window model (see
Ch. 4). Moreover, some experimental work on proteins has not produced clear evidence for
resolution-dependent transition temperatures, although the difference in resolution of the
instruments used may not have been sufficient to detect an effect (Doster & Settles, 1999;
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Réat et al., 1997).

Work remains to be done in order to tease apart the equilibrium and frequency window
contributions to the temperature dependence of atomic fluctuations in proteins and their
surrounding solvent, as observed using neutron scattering. One possible way of doing this
would be to use single instruments with variable elastic resolution that can then effectively
access I(Q,t) at different times (Doster et al., 2001). Alternatively, different instruments
with different elastic resolutions can be used, as in Fig. 5.4. Varying the elastic resolution
is a procedure akin to examining MD simulations on different timescales. Extending MD
timescales and improving instrumental energy resolutions (for example, by using the spin-
echo technique (Bellissent-Funel et al., 1998; Dellerue et al., 2000)) will also be important
in this regard, as will be experiments with techniques sensitive to longer timescales, such
as Mössbauer absorption and NMR relaxation (Parak, 2003).

While spectroscopic techniques are time resolved, X-ray scattering accesses in principle
the converged mean-square displacement: 〈∆r2〉Conv. If the frequency window model holds
there should be no transition due to internal protein dynamics observable in X-ray B-
factors. Extraction of protein mean-square displacements via X-ray scattering is hampered
by the fact that crystallographic B-factors cannot distinguish between dynamic and static
contributions to 〈∆r2〉 (Frauenfelder et al., 1979). Notwithstanding, there is presently an
enthralling debate as to whether X-ray crystal diffraction does indeed detect a temperature
dependent transition in internal protein dynamics (Chong et al., 2001; Halle, 2004; Joti
et al., 2002; Teeter et al., 2001). A transition in crystalline crambin has been reported
(Teeter et al., 2001) while X-ray crystallographic evidence for the absence of a dynamical
transition in internal displacements in myoglobin has also been presented (Chong et al.,
2001; Joti et al., 2002). A challenge for the future is to understand the temperature de-
pendence of protein dynamics in the framework of the equilibrium and frequency window
descriptions and in the context of typical timescales for protein activity.
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Chapter 6

Gaussian approximation of the elastic

scattering function

Non-Gaussian scattering is shown to cause systematic underestimation of measured protein

mean-square displacements. Non-Gaussian scattering below Q2 < 6Å
−2

is shown to arise
mainly from the heterogeneity of atomic mean-square displacements.

An analysis of the mean-square displacement as measured by elastic incoherent neutron
scattering was given in Ch. 5. Central to the derivation of 〈∆r2〉exp is the Gaussian ap-
proximation (see Sec. 2.6). In this approximation, the Q-dependence of S(Q, 0) is given by
the function exp(−1/6Q2〈∆r2〉), i.e. plotting the natural logarithm of the elastic intensity
vs Q2 shows a straight line with slope −1/6〈∆r2〉. In general it can not be expected that
the Gaussian approximation holds true over a large range of Q-values. Only in the limit
Q → 0 the Gaussian approximation is exact and as a rule of thumb it is often assumed to
be valid as long as 〈∆r2〉Q2 . 1. With increasing values of Q, ln[S(Q, 0)] starts to deviate
from the straight line expected from Gaussian scattering. This non-Gaussian scattering is
the topic of this chapter.

Non-Gaussian scattering may arise from two aspects, dynamic or static. First, looking
at a single atom, there can be non-Gaussian scattering due to dynamics of this atom,
i.e. the motions of the atom do not lead to a Gaussian distribution of displacements. In
contrast, even in a system of Gaussian scatterers, non-Gaussian scattering arises if there is
heterogeneity in the mean-square displacements of single atoms. In such systems the elastic
scattering is described by a sum of Gaussians (see Eq. 2.43) which itself is not Gaussian
anymore.

It is an ongoing debate in the context of the dynamical transition which of the two pos-
sibilities dominate the Q-dependence of the elastic scattering function S(Q, 0) (Doster &
Settles, 1999; Doster et al., 1989b; Gabe et al., 2002; Parak, 2003; Réat et al., 1997; Zaccai,
2000b).

The dynamical point of view is taken for example in Doster & Settles (1999); Doster et al.
(1989b). Inspired by work on the rebinding kinetics of myoglobin a two-state model for the
dynamics of proteins was proposed. The full elastic scattering function of such a model is

75
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used to fit experimental spectra in the range 0 ≤ Q2 ≤ 20Å
−2

and derive the dynamical
transition behavior. The deviation from Gaussian scattering is thus assumed to origin from
dynamical aspects of the system.

The opposite point of view has been put forward in Fitter et al. (1997); Gabe et al. (2002);
Zaccai (2000b). Two linear regions in the spectrum of bacteriorhodopsin are identified and
interpreted as two distinct populations of high and low 〈∆r2〉, respectively. Further exper-
iments on partly deuterated bacteriorhodopsin suggested to identify these two populations
with the switch region around the retinal (low 〈∆r2〉) and the surrounding protein (high
〈∆r2〉) (Réat et al., 1997). Interestingly, Engler et al. (2003) reexamined the data of Doster
et al. (1989b) on myoglobin and showed that it can be as well interpreted, assuming three
different populations of mean-square displacements.

Non-Gaussian scattering, unless negligible in magnitude, will influence experimentally ob-
tained mean-square displacements in two ways. First, for systems with strong non-Gaussian
scattering contributions, the Q-range over which the Gaussian approximation is valid, will
be small. Typically, the experimentally accessible low Q-range is limited either by the
small-angle coherent scattering region or by the geometrical arrangements of detectors. If
the Q-range allowed by the Gaussian approximation is small, there may not be enough
data points to accurately determine 〈∆r2〉exp. Second, even in regions where ln[S(Q, 0)] is
approximately linear with Q2, 〈∆r2〉exp can be quantitatively wrong due to non-Gaussian
scattering. In Ref. Hayward & Smith (2002) it was shown, that even in the low Q-region,
experimental analysis systematically underestimates 〈∆r2〉. Thus, one task in experimen-
tal analysis is to determine the initial slope of S(Q, 0) as accurately as possible even in
situations where non-Gaussian scattering contributes considerably to ln[S(Q, 0)].

Computer simulations can be used to access the range of validity of assumptions inherent in
experimental analysis. The analysis of calculated spectra allows to compare directly with
the underlying system properties accessible via the atomic detailed description offered by
molecular dynamics simulation. In Hayward & Smith (2002) mean-square displacements
calculated directly from MD simulations were compared to those derived from simulations
following the protocol of experimental data analysis. A reduction of 〈∆r2〉exp of up to
30% was observed for instrumental resolutions available in current spectrometers. Compar-
ing 〈∆r2〉exp derived from spectra without convolution of a resolution function suggested
that motional heterogeneity itself leads to considerable underestimation of mean-square
displacements.

6.1 Q-dependence of S(Q, 0)

The Q-dependence of the scattering function contains information about spatial charac-
teristics of dynamical processes. Thus, in principle analysis of this dependence enables
to distinguish between different dynamical models, such as diffusion models, often strictly
obeying the Gaussian approximation, and jump models showing considerable deviations at
higher values of Q (see Bee (1988)). For complex, heterogeneous systems this dynamic infor-
mation is intermingled with contributions reflecting the variety of components contributing
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to the total spectrum. Thus, analysis of the Q-dependence of S(Q, 0) is hampered by the
necessity to estimate and disentangle contributions of both, static and dynamic origin.

Here, both these contributions will be expanded around the Gaussian approximation,
i.e. the deviations from Gaussian scattering are formally written in a power series of the
scattering vector Q. Both expansions are formally the same, thus without additional infor-
mation on the observed system, observation of the Q-dependence of elastic scattering does
not distinguish between both sources of non-Gaussian scattering. In other words, to every
dynamical process leading to a certain shape of S(Q, 0), a static distribution of mean-square
displacements can be defined resulting in the same S(Q, 0).

Though static and dynamic contributions might be difficult to disentangle, the power se-
ries expansion does lead to an approximation of elastic scattering around the Gaussian
contribution that allows for a quantitatively improved derivation of 〈∆r2〉 (see Sec. 6.2).

6.1.1 Non-Gaussian single-atom scattering

Non-Gaussian behavior can arise from single atoms when their dynamics does not lead to
a Gaussian distribution of displacements. This case was thoroughly treated already in Ref.
Rahman et al. (1962) and is briefly summarized here. For single atoms the intermediate
scattering function, I(Q, t) can be written as:

I(Q, t) = e−
∑

∞

l=1(Q
2)lγl(t) (6.1)

where the γl(t) are defined by l-point velocity autocorrelation functions. In Ref. Rahman
et al. (1962) it is shown that if γl(t) → Cl rapidly enough with time then the elastic
scattering can be written as:

S(Q, 0) = e−
∑

∞

l=1(Q
2)lCl (6.2)

Explicit calculation or comparison with the Gaussian approximation shows that the first

constant is given by C1 = 〈∆r2〉
6

As mentioned, it is central to experimental analysis that Eq. 6.2 remains close to a Gaussian
function determined by the mean-square displacement of the system. With that in mind
the RHS of Eq. 6.2 can be expanded as:

S(Q, 0) = e−
∑

l(Q
2)lCl = e−Q2C1e−

∑

l>1(Q2)lCl

= e−
1
6
Q2〈∆r2〉

(

1 +
∞
∑

m=2

bm · (−Q2)m

)

(6.3)

where the last equality uses the relation between C1 and 〈∆r2〉. The power series expansion
in Q2 expresses the idea, that corrections to the Gaussian approximation are small for low Q.
The parameters bm are combinations of the Cl (e.g. b2 = C2) and are therefore determined
by the dynamics of the system.
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6.1.2 Dynamical heterogeneity

Dynamical heterogeneity, i.e. a distribution of mean-square displacements also leads to
corrections to the Gaussian approximation. Fig. 6.1 shows the average mean-square dis-
placement per residue obtained from molecular dynamics simulations of the system de-
scribed in Sec. 3.3. Different colors indicate different temperatures. For low temperatures
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Figure 6.1: Temperature dependence of motional heterogeneity. Mean-square displace-
menta were calculated per residue from internal motions of BPTI in solution

(T . 180K) mean-square displacements are small and comparable throughout the sam-
ple. At higher temperatures, however, considerable differences in 〈∆r2〉 can be observed
from residue to residue, expressing the heterogeneity of dynamical processes of different
constituents of the protein. Thus, non-Gaussian scattering arising from heterogeneity can
be expected to increase with temperature.

This contribution can be accessed by assuming Gaussian single-atom scattering. The elastic
scattering function then reads:

S(Q, 0) =
1

N

N
∑

i

e−
1
6
Q2〈∆r2

i 〉 (6.4)

where i denotes atoms i = 1, . . . , N .

Although a sum of Gaussians is not itself Gaussian, Eq. 6.4 can again be rewritten to
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express the proximity to a Gaussian function. Formally, we rewrite Eq. 6.4 as follows:

S(Q, 0) = e−
1

6
Q2〈∆r2〉

(

1

N

N
∑

i

e−
1

6
Q2(〈∆r2

i
〉−〈∆r2〉)

)

(6.5)

= e−
1

6
Q2〈∆r2〉

(

∞
∑

m=0

1

m!

(−Q2

6

)m

µ(m)

)

(6.6)

(6.7)

Here, 〈∆r2〉 is the average mean-square displacement of the system and µ(m) is the mth

central moment of the distribution of 〈∆r2〉. Thus, in systems where heterogeneity is the
dominating contribution to non-Gaussian behavior, the elastic scattering can, in princi-
ple, be used to obtain experimentally the variance and higher statistical moments of the
distribution of mean-square displacements.

It should be noted here, that the first central moment µ(1) = 1
N

∑N
i (〈∆r2

i 〉 − 〈∆r2〉) = 0,
thus the first correction to the Gaussian approximation is of the order Q4. Thus the
expansions Eqs. 6.3 & 6.6 are formally equivalent.

6.2 Non-Gaussian scattering in MD Simulations

Theoretical analysis of the scattering law elucidates the possibility and form of non-Gaussian
scattering in complex systems. Whether and to what extent non-Gaussian scattering is
present in or even dominates elastic scattering of a complex system can only be addressed
by experiment or computational studies.

Here, molecular dynamics simulations were used to address two questions related to the
existence of non-Gaussian behavior in elastic scattering spectra of proteins. The first ques-
tion examined is, whether including corrections to the Gaussian approximation leads to
substantial improvement of 〈∆r2〉exp. The second question asks about the origin of non-
Gaussian scattering in the simulated system. Two opposing possibilities were introduced

and it will be shown, that for values of Q2 ≤ 6Å
−2

non-Gaussian scattering is dominated
by the observed heterogeneity of the atomic mean-square displacements (see Fig. 6.1).

6.2.1 The measured mean-square displacement

The measured mean-square displacement does depend on the energy resolution of the in-
strument. This dependence may lead to a substantial underestimation of the true 〈∆r2〉
(Hayward & Smith, 2002). The errors introduced by finite resolution can not be solved
by any analysis method. Only the expected error in the analysis may be estimated. How-
ever, in addition to this instrument inherent error, there is a second aspect in the deriva-
tion of mean-square displacements that leads to an underestimation of 〈∆r2〉exp. The way
〈∆r2〉exp is derived from experimental data, itself results in a systematically underestimated
mean-square displacement due to non-Gaussian scattering. The linear function commonly
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fitted to the low Q-region of ln[S(Q, 0)] best approximates all data points in the chosen
Q-range, thereby compromising between the true initial slope of elastic scattering and the
non-Gaussian contributions at higher Q-values.

To estimate the error associated with the Gaussian approximation and to test whether a
description of S(Q, 0) along the lines of Eqs. 6.3 & 6.6 leads to a better determination of the
true initial slope, the following strategy was applied. First, the elastic scattering function
S(Q, 0) was calculated from the trajectories described in Sec. 3.3 with the software package
nMOLDYN (Kneller et al., 1995). In Ref. Hayward & Smith (2002) it was shown, that
instrumental resolution alone already leads to a reduction of 〈∆r2〉exp compared to 〈∆r2〉
directly calculated from simulations. To access the error related to an underestimation
of the initial slope alone, the reference value for comparison with experimentally derived
mean-square displacements was determined from the elastic scattering function, S(Q, 0). To

obtain a reference 〈∆r2〉, the very low Q-region, 0 ≤ Q2 ≤ 0.2Å
−2

was fitted with a linear
function. This very low region, not accessible by experimental analysis, serves as a good
estimate of the initial slope of ln[S(Q, 0)]. The calculated spectra and the resulting fits are
shown in Fig. 6.2. Equipped with this reference, possible analysis schemes can be examined.
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Figure 6.2: Determination of the reference 〈∆r2〉. Symbols: Ln[S(Q,0)] calculated from

MD-simulations. Lines: Linear fit to the very low Q-range, 0 ≤ Q2 ≤ 0.2Å
−2

.

Here, we concentrate on the behavior of the mean-square displacement determined via the
Gaussian approximation (linear regression) compared to a non-linear fit of functions of the
form of Eq. 6.6 with various numbers of correction terms. The accuracy of these models for
different accessible Q-ranges is studied as well as the increase in accuracy upon including
higher order terms in Eq. 6.6.

Two different Q-ranges were examined here. A low Q-region, 0 ≤ Q2 ≤ 1.4Å
−2

, which is
commonly used to derive 〈∆r2〉exp from instruments like IN6 or IN16 and a high Q-range,

0.2 ≤ Q2 ≤ 3Å
−2

, used for data analysis on the instrument IN13. Figs. 6.3 & 6.4 show
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Figure 6.3: 〈∆r2〉exp as measured by instrument IN6 compared to the reference values
obtained from Fig. 6.2 (black). (◦) linear fit. (◦) incorporating one correction term in
Eq. 6.6 (m=2). (◦) incorporating two correction terms (m=3)
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Figure 6.4: 〈∆r2〉exp as measured by instrument IN13 compared to the reference values
obtained from Fig. 6.2 (black). (◦) linear fit. (◦) incorporating one correction term
in Eq. 6.6 (m=2). (◦) incorporating two correction terms (m=3) (◦) three correction
terms (m=4)
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the results of fitting various corrections to the Gaussian approximation to the calculated
spectra.

In Fig. 6.3 〈∆r2〉exp determined by fitting various approximations to the low Q-range is
shown. Three fitting models were tested. The Gaussian approximation (red) underestimates
the initial slope (black) by up to 20% (300K). Introducing a single correction term of Eq.
6.6 (blue), i.e. a correction term with Q4 dependence, reduces the error to 6%. Including
higher order corrections (green) does not further improve the estimation of the initial slope.
From an experimental point of view this is rather satisfactory since this low Q-region hardly
encompasses enough data points to allow for more then 3 fitting parameters. Only in
computer simulations, not restricted by any detector geometry, enough data points can be
calculated to render fits to higher order corrections well defined.

Fig. 6.4 depicts the corresponding results for the Q-range accessible to the instrument IN13.
〈∆r2〉exp derived by the Gaussian approximation (red) underestimates the initial slope by up
to 25% (300K). Again substantial improvement can be achieved by taking into account the
first correction in Eq. 6.6. Thereupon the error drops down to 6%. Thus, although fitting
to the large Q-range, the error of 〈∆r2〉exp obtained for one correction term did not increase
compared to the low Q-region. Without losing accuracy one can thus take advantage of
the increase in data points to reduce additional errors related to the statistics of available
data points.

The increase in data points may renders the introduction of higher order corrections feasi-
ble. The incorporating of a second correction (green) improved the obtained 〈∆r2〉exp, the
corresponding error now being as small as 4%. Further correction terms (magenta) did not
lead to substantial improvement.

Keeping in mind the limited amount of data points available in experimental analysis,
corrections to the Gaussian approximation should be restricted to one or two terms for
the low and high Q-region, respectively. Including these corrections leads to considerable
improvement of measured mean-square displacements.

6.2.2 Dynamic vs Heterogeneity – Q-dependence of S(Q,0)

Non-Gaussian scattering has profound effects on the results of elastic incoherent neutron
scattering experiments. This alone draws attention to the question about the origin of non-
Gaussian scattering in proteins. A second aspect of interest is added, again in the context
of the dynamical transition. Both possible origins, dynamics and heterogeneity, have been
exploited to derive information from the Q-dependence of elastic scattering. The dynamic
point of view suggests to use the additional information stored in the Q-dependence of
elastic scattering to adjust parameters of a given dynamical model, e.g. the asymmetric
energy landscape depicted in Fig. 4.3 (Doster et al., 1989b). Heterogeneity of mean-square
displacements was assumed to be responsible for non-Gaussian scattering for example in
Réat et al. (1997) and a population of high and of low mean-square displacement was
introduced to account for the observed non-Gaussian scattering.

As shown, the two scenarios can not be easily distinguished by the shape of the scattering
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function (compare Eqs. 6.3 & 6.6). Further information about the system is required to
unambiguously identify the main contributions. To address this question in the present
system the calculated spectra of Fig. 6.2 were compared to spectra of a heterogeneous
ensemble of perfect Gaussian scatterers with the same distribution of 〈∆r2〉 as the present
system. Therefore, spectra were directly calculated from Eq. 6.4 with the simulation-
derived distribution of mean-square displacements.

The distribution of mean-square displacements depends on the timescale of motions inves-
tigated. To compare to elastic scattering arising in a system of Gaussian scatterers, it is
therefore important to access the distribution of 〈∆r2〉 for the timescale observed in the
comparison spectra. This was achieved by adjusting the timescale such that the average
mean-square displacement reproduces the initial slope of the comparison spectra. This
timescale was then used to calculate the full distribution of 〈∆r2〉 and determine S(Q, 0)
according to Eq. 6.4. Fig. 6.5 shows a comparison of the resulting spectra. The true elastic
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Figure 6.5: Non-Gaussian scattering for 0 ≤ Q≤6Å
−2

. Comparison of simulated system
(symbols) with a heterogeneous system of Gaussian scatterers (lines).

scattering function is plotted as symbols (same data as in Fig. 6.2), the corresponding
spectra of a heterogeneous sample of Gaussian scatterers is plotted as lines. For all temper-
atures a remarkable agreement between both spectra is obtained, thus suggesting that the
non-Gaussian scattering in the present system is clearly dominated by contributions due to
the heterogeneity of mean-square displacements.

In the context of Fig. 6.1 it was deduced that non-Gaussian scattering arising from hetero-
geneity should increase in temperature. Fig. 6.6 further supports this statement. Shown
is the distribution of mean-square displacements leading to the graphs (solid lines) in Fig.
6.5. Starting from a narrow distribution concentrated around the corresponding mean-value
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Figure 6.6: Temperature dependence of the distribution of mean-square displacements.
Atomic mean-square displacements were binned with a bin-width of 0.02Å.
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Figure 6.7: Temperature dependence of non-Gaussian scattering. Gaussian scattering
(black) compared to a distribution of Gaussian scatterers (red) and the full trajectory
(symbols).

(T = 100K), the distribution clearly broadens upon temperature increase. The peak of the
distribution slightly moves to higher values and dissolves into a tail of increasing length.
For the amount of non-Gaussian scattering it is not the shift in the peak position that is
important but the formation of the broad tail upon temperature rising. The mean-value
of the distribution determines the initial slope of the elastic scattering function, the width
however, determines the amount of non-Gaussian scattering present in the system.

Fig. 6.7 indeed shows a considerable increase of non-Gaussian contributions. For 100K and
300K the data of Fig. 6.5 are plotted again together with a Gaussian scattering function
of the same average mean-square displacement. Whereas the Gaussian function can be
considered a reasonable approximation to the true scattering function for 100K it clearly
fails to reproduce the spectra at 300K.
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6.3 Conclusions

In this chapter it was demonstrated that computer simulations are a valuable tool to test and
examine experimental methods and the errors inherent in the underlying assumptions. The
atomic detailed description of molecular dynamics simulations may serve as experimental
data set as well as it provides reference values. References may be derived either directly
from trajectories (Hayward & Smith, 2002) or use can be made of the precision and range
accessible by simulations.

In the present work, based on theoretical considerations on the Q-dependence of the elas-
tic incoherent scattering function, the origin and effects of non-Gaussian scattering were
discussed. A formal expansion of the scattering function around the Gaussian contribu-
tion suggests a functional form to include corrections to the Gaussian approximation in
experimental analysis.

The deviation of the scattering function from linear behavior leads to an underestimation of
〈∆r2〉. Applying the Gaussian approximation in the Q-range accessible by current instru-
ments led to an underestimation of 〈∆r2〉 by 20% (IN6) or even 25% (IN13). A non-linear
analysis of elastic scattering, incorporating corrections to the Gaussian approximation, sub-
stantially improved the derived mean-square displacements. Incorporating only the lowest
order correction, a reduction of the error down to 6% could be achieved for both Q-ranges
investigated. Including further corrections did improve results in the high Q-range. How-
ever, whether or not it is feasible to incorporate higher corrections in experimental analysis
critically depends on the amount of data points available and their respective quality. In-
cluding higher order corrections inevitably leads to a better reproduction of data points
not necessarily wanted in noisy spectra.

The improvement in 〈∆r2〉exp here achieved is independent of the origin of non-Gaussian
scattering since both possible sources lead to the same fitting functions. However, the Q-
dependence of S(Q, 0) contains more information than the mean-square displacement of
the system. Non-Gaussian behavior may arise if the dynamics of single atoms itself leads to
non-Gaussian scattering, or it has its origin in the heterogeneity of the system investigated.
Spatial characteristics of dynamical processes are thus intermingled with information about
the distribution of mean-square displacements.

Here, the origin of non-Gaussian scattering of a small protein (BPTI) in solution was exam-
ined with the help of computer simulations. Spectra directly calculated from trajectories
were compared to those calculated from a system of Gaussian scatterers possessing the same
distribution of 〈∆r2〉 as the simulated system. The spectra are in good agreement for all
temperatures. The increase in non-Gaussian scattering upon temperature rising, expected
from the increase of width in the distribution of 〈∆r2〉, is reflected in the scattering spectra
directly calculated from molecular dynamics trajectories.



Chapter 7

Protein association - a neutron

scattering study

A method to derive the vibrational density of states on an absolute scale from low-temperature
inelastic incoherent neutron scattering is suggested and examined for ligand binding of the
protein dihydrofolate reductase (DHFR). The change in the vibrational density of states
of DHFR upon binding a ligand methotrexate (MTX) is determined. The vibrations of
the complex soften significantly relative to the unbound protein. The resulting free energy
change, which is directly determined by the density of states change, is found to contribute
significantly to the binding equilibrium.

An understanding of how ligands bind to proteins is of fundamental importance in biology
and medicine (Benkovic et al., 1988; Gilson et al., 1997; Klotz, 1985; Lamb & Jorgensen,
1997; Lian et al., 1994; Wang & et al., 2001). Protein:ligand association has been assumed
to be dominated by factors such as the hydrophobic effect, hydrogen bonding, electrostatic
and van-der-Waals interactions. However, as early as 1963 it was suggested that an ad-
ditional mechanism might exist, due to increased flexibility in the protein:ligand complex
manifested by a change in the spectrum of vibrations due to formation in the complex of
new, intermolecular interactions (Erickson, 1989; Finkelstein & Janin, 1989; Fischer et al.,
2001; Page & Jencks, 1971; Steinberg & Scheraga, 1963; Sturtevant, 1977; Tidor & Karplus,
1994). Theoretical normal mode analyses, used to estimate this vibrational change on in-
sulin dimerization (Tidor & Karplus, 1994) and on water binding to bovine pancreatic
trypsin inhibitor (Fischer et al., 2001), have suggested that the effect is likely to be thermo-
dynamically important. However, experimental determination of the vibrational change has
been lacking. Inelastic neutron scattering, in which the dynamic structure factor S(Q,ω)
is measured as a function of the scattering wavevector, Q, and energy transfer, ~ω has
been used to determine the vibrational frequency distribution, g(ω) for several proteins
(Cusack et al., 1988; Doster et al., 1989b; Smith et al., 1986). Here, we present a method
to experimentally determine the change in g(ω) accompanied with association processes
of biological molecules. This determination allows thermodynamic quantities associated
with the vibrational change to be derived. The enzyme chosen is dihydrofolate reductase
(DHFR), an important target for anticancer and antibacterial drugs (Epstein et al., 1995;

87
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Howell et al., 1986; Kamiyama & Gekko, 2000; Sawaya & Kraut, 1997; Stone & Morrison,
1984). DHFR catalyzes the reduction of dihydrofolate to tetrahydrofolate in the presence
of nicotinamide adenine dinucleotide phosphate (NADPH) cofactor.

7.1 Thermodynamics of association processes

From a thermodynamic point of view biological association processes are determined by
the free energy of association.

∆G0 = −kB log(Keq) (7.1)

where ∆Go is the standard free energy and Keq the equilibrium constant of the association
process A + B � AB.

The free energy itself can be decomposed into two parts, an enthalpic and an entropic part.

∆G = ∆H − T∆S (7.2)

= −kBT ln

(

ZDim

ZMon

)

(7.3)

Zi denotes the partition function of the dimer or monomer, respectively. Eq. 7.3 relates
the macroscopic observable free energy to the microscopic states of the system.

Usually the enthalpic part ∆H is considered to favor protein dimerization whereas the
entropic part is considered unfavorable due to loss of three translational and three rotational
degrees of freedom:

• unfavorable:

– loss of 3 rotational degrees of freedom

– loss of 3 translational degrees of freedom

• favorable:

– hydrophobic effects

– hydrogen bonding

– electrostatic/van der Waals interactions

– gain of six internal vibrational degrees of freedom

From Table 7.1, however, we see that the loss of translational and vibrational degrees of
freedom is counterbalanced by an increase in internal degrees of freedom. In addition the
vibrational spectrum might change upon complex formation; sloppy speaking the system
might get stiffer or more flexible. A priori, it is not clear what the net entropic contribu-
tion to the free energy of complex formation is, since positive and negative contributions
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might cancel out. Indeed, normal mode calculations on insulin suggested that entropic
contributions due to changes in the vibrational spectrum of an insulin dimer compared to
an isolated insulin are of the same order of magnitude as contribution due to the loss of
translational/rotational degrees of freedom (Tidor & Karplus, 1994).

Knowing the vibrational spectra of a system one can calculate the partition function and
therefore the vibrational contributions to entropy and free energy via Eq. 7.3:

∆Avib =

3N−6
∑

l=1

{[

1

2
~ω +

~ω

e
~ω

kBT − 1

]

−
[

~ω

e
~ω

kBT − 1
− kBT ln(1 − e

− ~ω
kBT )

]}

(7.4)

∆Hvib =

3N−6
∑

l=1

[

1

2
~ω +

~ω

e
~ω

kBT − 1

]

(7.5)

T∆Svib =
3N−6
∑

l=1

[

~ω

e
~ω

kBT − 1
− kBT ln(1 − e

− ~ω
kBT )

]

(7.6)

Neutron scattering, as will be shown in the next section, provides the facility to measure the
vibrational density of states of the scattering system. Hence, it is possible to experimentally
access the entropy contribution to the free energy of complex formation due to the increase
in internal degrees of freedom and changes in vibrations upon protein association.

7.2 Neutron scattering and vibrational density of states

The scattering function S(Q, ω) can be divided according to the energy change of the
neutron into an elastic and an inelastic part as follows

S(Q, ω) = Sel/qe(Q,ω) + S′
inelas(Q, ω) (7.7)

With regard to entropy changes due to dimerization it is the inelastic part that is of most
interest, since it gives access to the vibrational density of states in the limit of the one-
phonon approximation discussed in the next section.

7.2.1 One-phonon approximation

The one-phonon approximation includes two independent assumptions. First the harmonic
approximation, i.e. the system is assumed to vibrate harmonically around its minimum
position. This approximation can be expected to hold at low temperatures. The second
approximation assumes that the interaction of the sample and the neutron is dominated
by one-phonon exchange, that is during the scattering event the sample either gains or
looses the energy of one phonon. This approximation can be considered to be reasonable
at moderate interaction energies due to thermal neutrons (meV-range).
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The inelastic incoherent scattering function S ′(Q, ω) can be written:

S′(Q, ω) =
1

2π~N

∫ ∞

−∞
dt e−iωt

∑

l

b2
l exp(−2Wl(Q))

×
∑

d

[exp(< Qu(l, d, 0)Qu(l, d, t) >) − 1] (7.8)

Here Wl(Q) is the Debye-Waller factor of atom l and u(l, d, t) denotes the displacement of
atom l from its equilibrium position in the dth unit cell.

The one-phonon approximation we obtain by expanding the exponential and keeping only
the quadratic term in Q:

S′(Q, ω) =
1

2π~N

∫ ∞

−∞
dt e−iωt

∑

l

exp(−2Wl(Q))

×
∑

d

< Qu(l, d, 0)Qu(l, d, t) > (7.9)

Using the harmonic assumption the correlation function < Qu(l, d, 0)Qu(l, d, t) > can be
calculated to yield:

< Qu(l, d, 0)Qu(l, d, t) >=
~

2ml

∑

j,q

|Qσj
l (q)|2

ωj(q)

[

nj(q)e−itωj (q) + (nj(q) + 1)eitωj (q)
]

(7.10)

where ml is the mass of atom l and the sum is taken over all possible lattice modes. Inserting
Eq. 7.10 into Eq. 7.9 finally yields:

S(Q, ω) =
∑

l

b2
l

e−2Wl(Q)

2Nml

∑

j,q

|Qσj
l (q)|2

ωj(q)
[nj(q)δ(ω − ωj(q)) + (nj(q) + 1)δ(ω + ωj(q))]

(7.11)

In general, the polarization vectors σj
l (q) are not known and therefore Eq. 7.11 cannot be

further simplified.

However, in a powder sample the lattice vectors q can be considered to be isotropically
distributed, i.e.

< |Qσj
l (q)|2 >=

1

3
|Q|2|σj

l |2. (7.12)

Furthermore, in the limit of low Q,1 Eq. 7.11 can be related to a weighted density of states
(Cusack et al., 1988; Smith et al., 1986):

1Q small enough that only terms quadratic in Q have to be considered.
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G(ω) = lim
Q→0

6ω

Q2

(

exp(
ω

kBT
) − 1

)

S(Q,ω) (7.13)

G(ω) =
∑

j,l

b2
l |σ

j
l |2

ml
δ(ω − ωj) (7.14)

Compared to the real density of states, defined as

g(ω) =
∑

j

δ(w − wj) (7.15)

G(ω) is weighted by the factor
∑

l
b2
l
|σj

l
|2

ml
. For proteins it has been shown by computer

simulations that this factor is to a good approximation independent of the vibrational
mode j (Smith, 1991). In that case, G(ω) is proportional to the true density of states and
it remains to estimate the proportionality factor. A method to scale the weighted density of
states in experimental neutron scattering studies will be presented in the following sections.

7.3 Experimental data analysis

In the previous section it was shown how the scattering function S(Q,ω) can be related
to a weighted density of states. Thus, if the scattering function is accessed by experiment,
the density of states is a measurable quantity in inelastic incoherent neutron scattering.
However, the scattering function of the sample is not directly observable by experiment.
As mentioned at the beginning of Sec. 7.2 the observable quantity in neutron scattering
is the number of neutrons scattered in a solid angle Ω, having lost or gained an amount
of energy ∆E. The conversion to the dynamic structure factor of the measured sample is
performed by standard software packages at ILL such as SQW or INX. Since experimental
errors in the measured scattering function determine the error in the measured density of
states, a short summary of the corrections involved in primary data processing will now be
given.

The subject of interest is the dynamics of the sample alone, thus several corrections to
account for the number of neutrons absorbed or scattered by the sample holder have to be
applied. The absorption and scattering contributions of the sample holder can be measured
and are thus well known. The absorption of the sample is taken into account via an
attenuation factor α = exp(−σabsρd), where σabs is the absorption cross section, ρ denotes
the density of the powder sample, and d is the thickness of the sample. Thus to accurately
estimate the absorption by the sample, the true density of the powder inside the neutron
beam has to be known which can differ considerable from the average density of the whole
sample. Of all the standard corrections this is the most critical, fortunately however,
it contributes to the measured S(Q,ω) an overall correction factor Aatt. The measured
dynamic structure factor is thus proportional to the true S(Q,ω).
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Further corrections have to be applied to account for detector efficiency. The efficiency of
each detector is accessed by measuring the spectra of a pure vanadium sample, known to
be a nearly pure elastic scatterer.

With these corrections applied, the accessible experimental value, Y (Q,ω), relates to the
scattering factor as follows:

Y (Q,ω) = Aatt

NSσS

NV σV
· S(Q,ω) (7.16)

where NS, σSand NV , σV are the number of molecules and their incoherent scattering cross
section for the sample and Vanadium, respectively.

Although both, Aatt and NS , are difficult to estimate, Y (Q,ω) is proportional to the scatter-
ing function S(Q,ω). Thus, the proportionality of the experimentally determined, weighted
density of states, G(ω) to the true g(ω) persists (compare Eq. 7.13). The proportional-
ity factor, however, is no longer solely dependent on properties of the sample alone, but
accounts for experimental errors as well.

7.4 From G(ω) to g(ω).

Incoherent inelastic scattering on protein powders provides an observable proportional to
the incoherent scattering function, S(Q,ω). S(Q,ω) allows to derive G(ω), the weighted
density of states which in turn can be considered to be proportional to the true vibrational
density of states , g(ω).

Taken together neutron scattering provides a quantity G̃(ω) which is proportional to the
vibrational density of states :

G̃(ω) = αg(ω) (7.17)

The proportionality factor α, as discussed in the previous section, contains the theoretical

factor
∑

l
b2
l
|σj

l
|2

ml
(see Eq. 7.14) as well as contributions due to the experimental setup.

Since it is difficult to access both these contributions individually, a different approach shall
be taken here. To derive the weighted density of states from experimental data, the fact
was used that protein dynamics at low temperatures can be considered to be harmonic.
In this approximation the vibrational density of states determines the scattering function
S(Q,ω) and therefore all experimentally accessible quantities derived from it. Thus, any
quantity derived from S(Q,ω) and known on an absolute scale, can be used to adjust G̃(ω)
such that the same quantity calculated from G̃(ω) agrees with experiment. The quantity
suggested here is the mean-square displacement of the system. As explained in detail 〈∆r2〉
can be measured from elastic scattering within the Gaussian approximation (see e.g. Ch.
6).

On the other hand, the mean-square displacement of a harmonic system of equal masses m
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can be calculated from its density of states as follows:

〈∆r2〉 =

3N−6
∑

l=1

3~

4N · m coth(
~ωl

2kBT
) (7.18)

≈
∞
∫

0

dω g(ω)
3~

4N · m coth(
~ω

2kBT
) (7.19)

(7.20)

where g(ω) is the density of states and N equals the number of atoms. The mean-square
displacement of the system can thus be calculated from G̃(ω) interpreting m as the average
mass of a protein atom.

The true vibrational density of states can be determined along the following lines. In a
first step the mean-square displacement of the sample, 〈∆r2〉exp, is determined using the
methods discussed in Ch. 5 & Ch. 6. In a second step the weighted density of states, G̃(ω),
is derived from the inelastic part of the incoherent scattering function. G̃(ω) is then used
to calculated the mean-square displacement

〈∆r2〉G̃ =

∞
∫

0

dω G̃(ω)
3~

4N · m coth(
~ωl

2kBT
) (7.21)

〈∆r2〉G̃ is the mean-square displacement of a system whose true vibrational density of states

is given by G̃(ω).

The scaling factor necessary to obtain g(ω) such that the vibrational density of states is
consistent with the measured mean-square displacement can thus be determined by dividing
the experimental mean-square displacement by the calculated 〈∆r2〉G̃:

g(ω) =
〈∆r2〉exp

〈∆r2〉G̃
G̃(ω) (7.22)

That g(ω) of Eq. 7.22 indeed accounts for the right mean-square displacement is easily
checked by inserting Eq. 7.22 into Eq. 7.19.

Reexamining the explicit relation between the weighted density of states and g(ω) shows
that the conversion factor, in general, does depend on the frequency ω. As mentioned,
the proportionality between both weighted and true vibrational density of states is only
approximate. Although this proportionality has been observed in computer simulations, and
thus, given this proportionality, g(ω) should be equally well approximated for all frequency
ranges, it is interesting to ask, which frequency range contributes most to the scaling
factor here obtained. G̃(ω) will be scaled such that the vibrational density of states is
best reproduced in the frequency range contributing most to the scaling. In case the
proportionality between G̃(ω) is insufficiently fulfilled, this frequency range is expected to
be truthfully reproduced.
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The mean-square displacement of a harmonic system is dominated by contributions of low
frequency. This can be seen by inspection of Eq. 7.18 and noticing that coth( ~ω

2kBT ) ∼ kBT
~ω

for low ω. Therefore, it can be expected that the obtained scaling factor is biased towards
the low frequency region. For calculating thermodynamic quantities like the free energy
contribution of internal vibrations this is favorable since it is the low frequency region that
dominates these quantities (compare Eq. 7.4).

This method to obtain the vibrational density of states on an absolute scale will be used
in Sec. 7.6 to estimate the contribution of changes in the vibrational spectrum to the free
energy change upon binding of a ligand. First, however, an alternative method to access
〈∆r2〉 in association measurements shall be discussed. The method uses the additional
information contained in the inelastic part of the spectra to derive self-consistent relative
mean-square displacements of monomer and complexed system.

7.5 Absolute vs relative mean-square displacements

A method to use relative mean-square displacements to obtain the looked for scaling factor
shall be illustrated by working through an example. The spectra plotted in Figs. 7.1 &
7.2 show a typical example of the scattering function obtained in incoherent inelastic neu-
tron scattering measurement on proteins. The systems are DHFR/MTX monomers and a
DHFR/MTX dimerized system. Dimerization was achieved by connecting MTX molecule
pairs via a chain of ten carbon atoms, see Carlson et al. (2003) for details. The methods
discussed here are, however, in no way particular to the presented system but rather il-
lustrate generic questions common to neutron scattering studies of biological association
processes. The spectra show the typical peak around 3 − 4meV seen in low temperature
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Figure 7.1: Inelastic scattering:
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Figure 7.2: Inelastic scattering:
Complex

scattering experiments on proteins (120K in the present systems). The peak in Fig. 7.1
(monomer) is slightly lower in height than the corresponding peak in Fig. 7.2 (complex)
indicating an increase of inelastic scattering intensity in the complexed system. However,
both spectra are on a relative scale, thus this increase cannot readily be quantified.
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7.5.1 Measured mean-square displacements

The straightforward method to get the mean-square displacement from the spectra plotted
in Figs. 7.1 & 7.2 has already been intensively discussed in previous chapters ( e.g. see Ch.
6). The common approach is to plot the integrated elastic peak intensity vs Q2 and derive
the initial slope of the resulting curve.

Fig. 7.3 shows a plot of ln [S(Q, 0)] versus Q2, S(Q, 0) being the integrated elastic intensities
obtained from the spectra in Figs. 7.1 & 7.2. The straight lines are linear fits to the data

in the range 0 < Q2 < 1.5Å
−2

. The obtained mean-square displacements for the monomer
and complex are listed in Tab. 7.1. Fig. 7.3 reveals on inspection two seemingly odd
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Figure 7.3: Inelastic peak height

〈∆r2〉 [Å
2
]

Monomer 0.38 ± 0.05

Complex 0.49 ± 0.04

Average 0.44 ± 0.04

Table 7.1: 〈∆r2〉exp

facts. First, the spectra that is lower in absolute value (monomer) is assigned the smaller
mean-square displacement. Second, the data in the very low region seems to be noisy. The
first point is in obvious contradiction to the observation that the monomer has a lower
inelastic intensity indicating that this shift in the elastic intensity may be an artifact of the
measurement.

The temperature dependent studies of mean-square displacements often are able to re-
duce the noise using the lowest temperature as a normalization spectra. The resulting
mean-square displacements are then no longer on an absolute scale but refer to the lowest
temperature as origin.

Obviously this possibility is not given here. However, the information present in the elastic
peak can be used to derive the ratio of mean-square displacements between the two sys-
tems. Together with an best estimate of the average 〈∆r2〉 a scaling of the changes in the
vibrational density of states can be achieved that is consistent with the relative ratios of
elastic and inelastic intensity of both systems.

7.5.2 Inelastic peak height

In cases where the absolute value of the mean-square displacement is difficult to determine
with high enough accuracy, the relative value might be accessible more readily and used
together with an average mean-square displacement. The main idea is not to use values of
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the mean-square displacements independently from each other as in the previous case, but
to maintain the ratio between them.

The ratio of 〈∆r2〉 between monomer and complex can be obtained from the inelastic
peak height, since for low Q values the peak height is proportional to the mean-square
displacement and the square of the scattering vector Q (Smith, 1991):

S(Q,ωmax) ∼ 〈∆r2〉Q2 (7.23)

and hence:

SC(Q,ωmax)

SM(Q,ωmax)
=

〈∆r2〉C
〈∆r2〉M

(7.24)

Measuring the elastic peak height in the limit of low Q thus allows to access the ratio of
mean-square displacements between the complexed and monomeric system. Along with
an average 〈∆r2〉 the scaling factor for both systems can be determined along the lines
described in Sec. 7.4

The proportionality is given only in the limit of very low Q. For Q low enough, Eq.
7.23 can be considered to provide a good approximation. The meaning of low enough,
i.e. the range of Q values for which Eq. 7.23 can be expected to hold true, has to be
accessed experimentally. A glance at Eq. 7.23 suggests a straightforward criteria. The
proportionality of the peak height and Q2 holds true at very low Q, thus plotting the
inelastic peak-height vs Q2 has to be linear at low Q. If the proportionality of Eq. 7.23
breaks down, a deviation from the initial linear increase is expected. Thus the range of
Q for which Eq. 7.24 can be expected to hold true is given by the linear regime of a plot
of the inelastic peak height vs Q2. These plots for the monomeric and complexed system
are shown in Figs. 7.4 & 7.5. Both samples show a linear increase in peak-height over a
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Q-range of 0.5 < Q2 < 2Å
−2

. Thus, although strictly valid only in the limit of very low Q
(Eq. 7.24) can be considered to hold true over a finite Q range easily accessible by neutron
scattering instruments.
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As mentioned in Sec. 7.3 the scattering function S(Q,ω) is known only up to a scaling
factor. In comparing inelastic peak heights directly in Eq. 7.24 it was assumed that this
scaling factor is the same for both samples, i.e. that it cancels out in the ratio. However,
in the present example the complexed system exhibits the larger inelastic peak (Figs. 7.1 &
7.2) as well as a higher elastic intensity (Fig. 7.3), in contrast to the assumption that both
spectra are scaled by the same factor. Thus, before applying Eq. 7.24 the spectra have to
be set on the same scale. This can be achieved, by adjusting the spectra in a self-consistent
manner as described below.

7.5.3 Scaling of spectra

To minimize the effect of the scaling factor discussed in the last section the spectra were
scaled to give a self-consistent ratio between complex and monomer for both, elastic and
inelastic peak height.

The inelastic peak height is proportional to the mean-square displacement (Eq. 7.24),
whereas the elastic peak intensity is proportional to the exponential of 〈∆r2〉 (gaussian
approximation). A different scaling factor for the two samples therefore leads to inconsistent
inelastic peak heights compared to the corresponding elastic peak intensities. To obtain
consistency, a difference in inelastic peak height of for example 10% has to correspond to
a certain difference in elastic peak intensity, which is in general not equal to 10%. The
corresponding difference in elastic peak intensity depends on the absolute magnitude of the
mean-square displacement, in contrast to the dependency on the relative magnitudes for
the inelastic peak. The elastic peak is given by:

IDim

IMon

∼ e−Q2〈∆r2〉Dim

e−Q2〈∆r2〉Mon
= exp

[

−Q2〈∆r2〉Mon (κ − 1)
]

(7.25)

with κ = 〈∆r2〉Mon/〈∆r2〉Dim This additional information can be used to scale the spectra to
obtain self-consistency. To achieve this the following procedure was iteratively applied:

• For a given value of Q2 both spectra, monomer and complex, were scaled to give an
elastic peak intensity corresponding to a chosen mean-square displacement 〈∆r2〉M.

• The spectra of the complex was multiplied by a factor α < 0.

• The new ratio κ = 〈∆r2〉M/〈∆r2〉C was calculated from the inelastic peak height and
the ratio of elastic peak intensity was compared to Eq. 7.25

Fig. 7.6 shows the change in the dimer spectra for three different values of Q2. The changes
needed to obtain self-consistent peak heights are small, even within errorbars.

Although the changes in the spectra are small, the influence on the relative mean-square
displacement can be considerable. Fig. 7.7 shows the ratio 〈∆r2〉C/〈∆r2〉M before scaling
whereas Fig. 7.8 shows the corresponding ratio after scaling.



98 Protein association - a neutron scattering study

0 5 10 15

ω [meV]

0.0

1.0×10
-4

2.0×10
-4

3.0×10
-4

4.0×10
-4

S(
Q

,ω
) 

[a
.u

.]

0.03
0.03 scaled
0.89
0.89 scaled
1.68
1.68 scaled

Figure 7.6: S(Q, ω) scaled with mean 〈∆r2〉

0 0.5 1 1.5 2 2.5

Q
2
 [Å

-2
]

1

1.05

1.1

1.15

1.2

1.25

1.3

<
∆r

2 >
C
 / 

<∆
r2 >

M

Q2 [Å
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7.6 Ligand binding of dihydrofolate reductase

The theory developed in the previous section, especially the scaling method explained in
Sec. 7.4, will now be used to experimentally determine changes in free energy due to changes
in the vibrational spectrum upon ligand binding. The enzyme chosen is dihydrofolate re-
ductase (DHFR), an important target for anticancer and antibacterial drugs, catalyzing the
reduction of dihydrofolate to tetrahydrofolate in the presence of nicotinamide adenine din-
ucleotide phosphate (NADPH) cofactor. The ligand used is methotrexate (MTX), a folate
antagonist of DHFR that has been used effectively as a cytotoxic agent in the treatment of
cancers Huennekens (1994).

7.6.1 Experimental setup and Materials

Neutron scattering spectra were taken for the uncomplexed system DHFR/NADPH and
the complex DHFR/NADPH + MTX. To minimize scattering from solvent molecules both
systems were exchanged with D2O. To do this, lyophilized DHFR from E.coli was dissolved
in D2O equilibrated at 4◦C overnight and freeze dried. NADPH and NADPH+MTX were
added in equimolar ratios to the enzyme. As the dissociation constants of DHFR with
NADPH and MTX are low (Kd

NADPH
= 0.01M,Kd

MTX
= 0.15M (Basran et al., 1995)) it

can be assumed that the ligands bind quantitatively to the enzyme. D2O was added,
the solutions equilibrated for 4h at 4◦C and freeze dried, and a final exchange step in-
volving dissolution in D2O and lyophilization was performed. The uncomplexed enzyme
(DHFR+NADPH) and the complexed enzyme (DHFR+NADPH+MTX) were hydrated to
a degree of 30% i.e. 30 mg of D2O per 100 mg of dry weight protein. This was performed
by equilibrating the samples in a saturated solution atmosphere (KBr in D2O) at 20◦C for
3 days. The system data relevant for the analysis of neutron scattering spectra of these
samples are listed in Tabs. 7.2 & 7.3. For the neutron scattering experiments the samples
were contained in an aluminium sample holder. Sample amounts were 98.1 mg (uncom-
plexed) and 108.6 mg (complexed). The measurements were performed on the time-of-flight
spectrometer IN6 at the Institute Laue-Langevin (ILL), Grenoble with an incident neutron
beam wavelength of 5.12 Å. The scattering experiments were performed at 120K to ensure
all dynamics present is harmonic. Accumulation times were 24 hours/sample. Samples
were oriented at 135◦ with respect to the incident beam. Both sample transmissions were
97.7%, high enough to ensure the absence of multiple scattering effects. The raw data were
corrected using the INX program at ILL (Rieutord, 1990). INX normalizes the detector
responses with respect to an angle-independent standard vanadium sample, normalizes each
data collection run to the number of incident neutrons, performs slab corrections for self-
shielding and subtracts the cell scattering from sample + cell scattering. To improve the
statistics, the spectra derived from 122 scattering angles (from 10◦ to 114◦) were binned
into 11 constant-angle spectra. In order to compare the relative differences in the inelas-
tic part of the spectra of the two samples dynamical structure factors were normalized to
the elastic peak height. The errors in S(q, ω) (see Fig. 7.9) are statistical errors of the
measurement. The errors in deduced quantities were determined by error propagation.
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DHFR/NADPH D2O

Mass [mg] 98.1 29

σscatt [barn] 90247,5 19,5

σabs [barn] 2110,1 0.0

AtMass [g/mol] 14921,3 20,0

Density [g/cm3] 1,285 -

Table 7.2: Scattering cross sections,
molar masses and concentrations of
the uncomplexed system consisting
of DHFR/NADPH protein in D2O

DHFR/NADPH D2O

+ MTX

Mass [mg] 108.6 32

σscatt [barn] 91743.0 19,5

σabs [barn] 2221.1 0.0

AtMass [g/mol] 19520.8 20,0

Density [g/cm3] 1,282 -

Table 7.3: Scattering cross sections,
molar masses and concentrations of
the uncomplexed system consisting
of MTX bound to DHFR/NADPH
in D2O

7.6.2 Results

Fig. 7.9 shows the dynamic structure factor S(Q,ω), of the ’uncomplexed’ (DHFR+NADPH)
and ’complexed’ (DHFR+NADPH+MTX) forms of the enzyme. A significant difference
can be seen in the low-frequency region of the spectra (ω . 40cm−1). The fact that S(Q,ω)
is higher for the complex in the low-frequency region implies that the complexed form of
the enzyme has a higher number of low-frequency modes and thus is more flexible than the
uncomplexed form.

The experimental weighted frequency distribution, G̃(ω) was obtained from the spectra
using Eq. 7.13. As discussed G̃(ω) is on a relative scale. To determine the absolute
vibrational density of states , g(ω), experimental mean-square displacements, 〈∆r2〉exp, of
the samples were determined using the Gaussian approximation. 〈∆r2〉G̃ was calculated

from Eq. 7.21 and the experimentally derived G̃(ω) were finally scaled via Eq. 7.22.

The increase of low frequency modes in the complexed form is confirmed by the derived
vibrational density of states . Fig. 7.10 shows that below ∼ 15 − 20cm−1 g(ω) of the
complexed form is significantly higher than that of the uncomplexed protein.

For the protein to soften on binding there must be a shift in g(ω) from higher frequencies
(in the uncomplexed protein) to lower frequencies (in the complex). Inspection of Fig. 7.9
does not reveal significant differences between both systems at higher frequencies. One
possibility consistent with this finding would be that softened modes may be of too-high
frequency in the uncomplexed protein to be detectable by the instrument. However, there
is evidence of a frequency shift occurring within the frequency range shown in Fig. 7.10.
Integration of the difference between g(ω) of the two samples shows that the net equivalent
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Figure 7.9: Dynamic structure factor versus frequency for uncomplexed DHFR (red)
and complexed with methotrexate form of DHFR at 120K. Data from all scattering
angles are summed. Both spectra are normalized to the elastic peak height. Inset: the
low frequency region of the spectra.
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102 Protein association - a neutron scattering study

of about 2 modes are transferred from the 40-80cm−1 region in the uncomplexed protein
to the region below 20 cm−1 in the complex.

The change in g(ω) over the range 40-80cm−1 is not accompanied by a statistically sig-
nificant change in the S(Q,ω) in Fig. 7.9. The reason for this is that S(q, ω) is ampli-
tude weighted. Thus, removal of a low-amplitude, higher-frequency mode from the spec-
trum leads to only a relatively small intensity loss whereas adding a high-amplitude, low-
frequency mode adds a relatively large intensity. Consequently, the shifted modes scatter
much more strongly in the complex than in the uncomplexed molecule, with the net re-
sult that the spectral change appears as an increase in intensity at low frequencies in the
complex.

The vibrational partition function, Zvib,i.e. the partition function associated with the
vibrational energy levels in a harmonic system, is determined by g(ω) as follows McQuarrie
(1976):

Zvib =

3N−6
∏

i

e−β~ωi/2

1 − e−β~ωi
=

∞
∏

ω=ωmin

(

e−β~ω/2

1 − e−β~ω

)g(ω)

(7.26)

where ωmin is the lowest frequency in the system and β = 1/kT . The associated Helmholtz
vibrational free energy, Avib is given by

Avib = −kT ln[Zvib] (7.27)

the energy2 by

Ēvib = − ∂

∂β
ln[Zvib] (7.28)

and finally the entropy by

Svib = kB

[

ln[Zvib] + βĒ
]

. (7.29)

The free energy change, ∆G calculated from the density-of-states change in Fig. 7.10 is
−17 ± 4kJ/mol at 300K, favoring binding. The free-energy change contains a large entropic
contribution −TS = −25±6kJ/mol that is partially compensated by the energy term ∆E =
8 ± 2kJ/mol that opposes binding.

2In association processes of biomolecules, the change in volume can often be neglected. In these cases,
the energy here calculated is equivalent to the enthalpy of the system (Hill, 1994)
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7.7 Conclusions

The thermodynamic results here presented are subject to errors associated with the use of
the harmonic approximation (Sec. 7.2) and the necessity of determining the dynamic struc-
ture factor on an absolute scale (Sec. 7.4). The scattering measurements were performed at
120K. At this temperature the protein exhibits only harmonic vibrational dynamics (Doster
et al., 1989b), thus permitting the direct determination of the vibrational density of states.

The 300K vibrational density of states of trehalose-coated myoglobin has been found to be
identical to that at 100K, indicating harmonic behavior (Cordone et al., 1999). For hydrated
proteins at physiological temperatures a significant contribution to the atomic mean-square
displacements arises from anharmonic dynamics (Cordone et al., 1999; Smith et al., 1990;
Tournier & Smith, 2003). These anharmonic motions, together with overdamping of the
low-frequency modes, result in quasielastic scattering that renders difficult the derivation of
model-independent thermodynamic quantities from experimental data (Smith et al., 1990).
It is conceivable that anharmonic degrees of freedom might also be modified on ligand
binding. However, molecular dynamics simulations suggest that ∼ 99.5% of the modes in
a protein are effectively harmonic at 300K (Kitao et al., 1998). Assuming the protein does
remain harmonic, the density-of-states change will be the same at 300K as it is at 120K.

The dynamical change seen here indicates softening of the protein on complexation. Normal
mode calculations on proteins have indicated that the vibrational modes in the frequency
range at which the change is seen here involve mainly collective displacements of groups of
atoms distributed throughout the protein (Brooks & Karplus, 1983). These modes may be
modified by environmental effects, although in the present case the sample preparation is
consistent with the environments of the complexed and uncomplexed form being the same.
Normal mode calculations concur with the present findings in that they also indicate an
increase in flexibility on ligand binding to proteins and protein:protein association (Fischer
et al., 2001; Tidor & Karplus, 1994). Furthermore, increased backbone conformational flex-
ibility on binding a hydrophobic ligand to mouse major urinary protein has been detected
using nuclear magnetic resonance (NMR) relaxation experiments (Zidek et al., 1999). How-
ever, these results contrast with other observations using NMR and crystallography of a
flexibility decrease on protein binding to small organic ligands (Cheng et al., 1994; Fush-
man et al., 1994; Rischel & et al., 1994). NMR and crystallographic measurements are
likely to be dominated by changes in anharmonic degrees of freedom not present under the
conditions studied here. Moreover, the vibrational changes seen in the present work are not
detectable using NMR or crystallography (Fischer et al., 2001; Tidor & Karplus, 1994).

There remains much to learn about the various contributions to ligand binding free energies.
For example, although hydrogen bonds normally must be satisfied, whether they bring any
net contribution to the binding free energy in aqueous solution is debatable. For the
present system, although significant ligand:protein hydrogen bonding exists, free energy
perturbation calculations suggest that hydrophobic interactions contribute as much to the
binding free energy as do hydrophilic (Singh & Benkovic, 1988). Another effect that remains
to be accurately quantified is the loss on binding of the whole-molecule translational and
rotational entropic free energies of the protein and ligand (Karplus & Janin, 1999; Tamura
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& Privalov, 1997; Tournier & Smith, 2003; Yu et al., 2001; Zaman et al., 1999).

The contribution elucidated here, that from vibrational changes, has been hitherto largely
neglected in the consideration of binding equilibria, due largely to the absence of an exper-
imental technique for determining it. The estimation of −17 ± 4kJ/mol for the vibrational
free energy change can be compared with the experimentally estimated total binding free
energy in the present system which is 39kJ/mol (Basran et al., 1995). This suggests that
the vibrational change is thermodynamically significant and would contribute a factor of
∼ 103 to the binding constant. This illustrates how modifications of equilibrium internal
fluctuations in a protein can have consequences for binding equilibria of biomedical im-
portance. Recently, the vibrational effect has been included together with electrostatic,
van der Waals and nonpolar terms in an empirical theoretical analysis of ligand binding
free energies (Schwarzl et al., 2002). Whether the vibrational softening effect seen here is
general for protein:ligand interactions remains to be determined. The direct access to the
vibrational density of states provided by inelastic neutron scattering holds promise for the
study of vibrational thermodynamic changes in many biomolecular association processes.



Chapter 8

Final Remarks

Everything that living things do can be understood in terms of the jigglings and wigglings
of atoms. This quotation of R.P. Feynman preceded the first chapter of this thesis. One
hundred pages later it might be useful to finish with a short summary of what has been
achieved in the previous chapters. Therefore, this last chapter tries to put the results here
obtained in a broader context, to discuss their relevance for the field of protein dynamics
and finally to give an outlook on possible future directions of research.

This thesis mainly divides in two distinct parts. From a physicists point of view that
division can be drawn between elastic/quasielastic scattering on the one hand and inelastic
scattering on the other, each bearing quite distinct information on the system. From a more
biological point of view these two parts correspond to internal motions of single proteins
on one hand (elastic/quasielastic) and the investigations of association processes between
biological molecules on the other.

8.1 Protein dynamics

The interdisciplinary field of protein dynamics resides on the border between physics and
biology. The laws of physics govern the motions of atoms constituting a protein. A protein
itself, however, serves a biological purpose, e.g. it catalyzes a chemical reaction inside a
living cell. It is the aim of the field of protein dynamics to shed light on the relationship
between the dynamics or flexibility of proteins and their biological function. A prominent
and intriguing phenomenon bridging between both aspects is the dynamical transition in
proteins. The dynamical transition is a generic feature of globular proteins and its rela-
tion to enzyme function promises to reveal insight into the flexibility-function relationship
fundamental to protein dynamics.

105
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The Dynamical Transition

The dynamical transition,i.e. the sharp increase in atomic fluctuations at a transition tem-
perature T0 has been observed by a wide range of experimental techniques as well as com-
puter simulations (Cohen et al., 1981; Doster et al., 1989b; Keller & Debrunner, 1980;
Knapp et al., 1982; Rasmussen et al., 1992). A relation to the function of enzymes has
been established for various enzymes such as myoglobin (Austin et al., 1975), ribonuclease
A (Rasmussen et al., 1992) or Bacteriorhodopsin (Lehnert et al., 1998). Inspired by spectro-
scopic work on myoglobin (Austin et al., 1975; Frauenfelder et al., 1979) energy landscape
models have been suggested to account for both, the experimentally observed transition as
well as the onset of function at T0. The transition temperature in theses models reflects
the energetics of different conformational substates.

However, contrasting experimental evidence was reported for solutions of the proteins xy-
lanase (Dunn et al., 2000) and glutamate dehydrogenase (Daniel et al., 1998, 1999). In
these systems the dynamical transition seen on a 100ps timescale is neither related to the
onset of activity nor is the transition temperature T0 a property of the protein itself. T0

was observed to significantly shift to lower temperatures upon increasing energy resolution.

The main achievement of the first part of this thesis is to offer an alternative interpretation
of the dynamical transition seen in these systems that explains the prominent experimental
findings. This ’frequency window’ interpretation proposes that the transition seen by elastic
neutron scattering is not due to populating an energetically higher conformational substate,
but rather due to the process of barrier crossing itself that becomes fast enough to be
detected by the instrument.

To test this interpretation the intermediate scattering function, I(Q, t), was calculated
from molecular dynamics simulations for a small protein (BPTI) in a cryosolution. For a
temperature range of 100-300K the frequency window scenario was shown to reproduce the
calculated spectra over a time range of 1 ≤ t ≤ 200ps (stretched relaxation) or 10 ≤ t ≤
200ps (exponential relaxation). The frequency window scenario was thus shown to be a
valid alternative to the conventional interpretation of neutron scattering data in the context
of the dynamical transition.

Explicitly including finite energy resolution of the instrument in a theoretical analysis of
the scattering function, S(Q,ω), a description of the measured mean-square displacement,
〈∆r2〉exp was derived and compared to both experimentally derived mean-square displace-
ments and simulation results.

The theoretical description of the dynamical transition, based on a frequency window in-
terpretation, is in quantitative agreement with simulation results. Both, the timescale
dependence of 〈∆r2〉 as well as the temperature dependence are well reproduced fostering
the frequency window interpretation to account for the observed transition behavior.

Reanalyzing the experimentally obtained mean-square displacements of Ref. Daniel et al.
(1999) in the context of the frequency window interpretation led to qualitative agreement
with experiment. Both the prominent features observed in experiment, the shift in the tran-
sition temperature T0 as well as the leveling off of 〈∆r2〉exp around 220K, is well reproduced
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by the theoretical analysis.

Another interesting aspect of the frequency window interpretation concerns the relation
between the transition temperature T0 and enzyme activity. Since models of the dynamical
transition so far attributed the transition temperature to the population of new, energet-
ically higher substates, this temperature was a property of the system determined by the
energy landscape of the protein alone. If these new substates are involved in enzyme activity
a clear relation between protein function and the transition temperature can be observed.

In contrast, the frequency window scenario attributes the transition to dynamical processes
crossing the resolution window of the instrument. The transition temperature is no longer
determined by the system alone, but depends on the relation between the relaxation fre-
quencies of the system and the resolution of the instrument. Consequently, no relation
between the onset of activity and the transition temperature should be expected. Thus, in
addition to the ability to reproduce experimentally observed mean-square displacements,
the frequency window interpretation explains the absence of a relation between T0 and
enzyme activity observed in Refs. Daniel et al. (1998); Dunn et al. (2000).

As mentioned, the interpretation suggested here is an alternative to the conventional view
of energetically distinct substates. Although the presence of a timescale dependence of T0

in both simulation and experiment, is enough to rule out an explanation of the transition
behavior solely in terms of different populations of substates, it can not be concluded
that the frequency windows are the only factors contributing to the observed transition.
Furthermore, the relation between T0 and activity for various enzymes might well suggest
that in these systems indeed populations of activity related substates are populated at T0.
It will be a task for future research to disentangle these opposing scenarios and estimate
their relative contributions (see 8.3)

8.2 Association processes – ligand binding

Association processes are common and crucial in biochemical systems. Enzymes either have
to temporarily bind their substrate to catalyze specific reactions or proteins have to form
complexes to be functioning. Protein:ligand association has been assumed to be dominated
by factors such as the hydrophobic effect, hydrogen bonding, electrostatic and van der Waals
interactions. However, as early as 1963 it was suggested that an additional mechanism might
exist: due to increased flexibility in the protein:ligand complex manifested by a change in the
spectrum of vibrations in the complex due to formation of new, intermolecular interactions
(Erickson, 1989; Finkelstein & Janin, 1989; Fischer et al., 2001; Page & Jencks, 1971;
Steinberg & Scheraga, 1963; Sturtevant, 1977; Tidor & Karplus, 1994). Theoretical normal
mode analysis, used to estimate this vibrational change on insulin dimerization (Tidor &
Karplus, 1994) and on water binding to bovine pancreatic trypsin inhibitor (Fischer et al.,
2001), have suggested that the effect is likely to be thermodynamically important. Inelastic
incoherent neutron scattering allows to experimentally access contributions to the binding
free energy due to changes in the vibrational density of states upon association.

The second part of this thesis thus concentrated on the information contained in the inelas-
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tic part of incoherent neutron scattering. In the one-phonon approximation the inelastic
scattering function can be related to a weighted vibrational density of states. To experi-
mentally derive the true vibrational density of states, and thus to experimentally determine
thermodynamic contributions of changes in the vibrational density of states upon ligand
binding, a method was suggested to scale the weighted density of states. The extra in-
formation needed to obtain the scaling factor resides in the elastic intensity. Mean-square
displacements are derived from this intensity and subsequently the weighted density of
states is scaled such as to be consistent with the measured mean-square displacement.

This scaling method was applied to neutron scattering experiments on dihydrofolate reduc-
tase, an important target for anticancer and antibacterial drugs, catalyzing the reduction
of dihydrofolate to tetrahydrofolate in the presence of nicotinamide adenine dinucleotide
phosphate cofactor. The ligand used is methotrexate, a folate antagonist of DHFR that
has been used effectively as a cytotoxic agent in the treatment of cancers.

The present experimental analysis suggests a softening of the protein upon binding a lig-
and, i.e. a shift of frequencies to lower energy. Thermodynamically this resulted in a
contribution to the free energy of association of −17±4kJ/mol. Compared to the total bind-
ing free energy in the present system which is 39kJ/mol (Basran et al., 1995), this fosters
the importance of changes in the vibrational spectrum for the thermodynamics of ligand
binding.

The contribution elucidated here, that from vibrational changes, has been hitherto largely
neglected in the consideration of binding equilibria, due largely to the absence of an exper-
imental technique for determining it. The scaling method here proposed might encourage
further experiments to be done to access these contributions.

The analysis here presented can only be a first step towards an understanding of vibrational
changes upon binding and their contribution to biological function. Work has to be done to
confirm the present results as well as to test the assumptions and possible sources of error
in the presented scaling method.

8.3 Outlook

The work presented is neither the beginning nor the end of necessary and interesting re-
search in the field of protein dynamics. The questions addressed and the answers given
might, however, encourage further work on the topics presented in this thesis. As one of
the achievements of this work is the suggestion of an alternative interpretation of the dy-
namical transition, it is a natural wish of the author that further work is initiated to test
and hopefully discriminate between the alternative scenarios here presented.

Timescale dependence of T0

As explained in Ch. 5, a characteristic feature of the frequency window scenario is the
expected timescale dependence of the transition temperature T0. Experimental studies
testing the dependency of T0 on the timescale explored are scarce. Combined studies on
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instrument of different energy resolution could be designed to investigate the timescale
dependence of T0. It would be interesting to know whether the timescale dependence of the
transition temperature observed in Ref. Daniel et al. (1999) can be observed for systems
other than cryosolutions as well. For example, for a myoglobin powder, T0 was found to
be unchanged upon increasing the resolution of the instrument by a factor of 10 (Doster
& Settles, 1999). It has yet to be seen whether a timescale dependence of T0 is common
to most neutron scattering studies on proteins or whether it is a peculiarity of the protein
cryosolutions.

With regard to the complexity of biological macromolecules it should not come as a surprise
if the answer here is neither yes nor no. It may well turn out that T0 is indeed inherent
to certain systems like myoglobin powders whereas for other systems it is dependent on
instrumental resolution. Investigating this aspect further promises to shed new light on the
underlying energy landscape of proteins. As discussed in Ch. 5, T0 is intimately related to
the energy landscape of proteins. Thus an understanding of the transition temperature in
various systems can be used to quantify the energy landscape probed by pico- to nanosecond
dynamical processes. To accomplish this however, the features of the energy landscape de-
termining a given transition have to be identified, i.e., the contribution of both, equilibrium
and frequency window scenario have to be distinguished.

Computer simulation will play an important role in this respect. The fast increase in
computational power of modern computers allow already to access protein dynamics on the
nanosecond timescale. This timescale will be continuously expanded in the near future. The
detailed description of the time evolution of the system allows to freely vary the timescales
to be accessed. The analysis of 〈∆r2〉 presented in chapters 4 & 5 may be extended in
the timescales explored. The structure of most proteins investigated in the context of the
dynamical transition are known. Molecular Dynamics simulations may thus be used to
investigate the role of the frequency window scenario in different proteins.

Solvent dependence

Along the same lines of thought it is important to understand the influence the surrounding
has on protein dynamics. The timescale dependence of T0 is so far unambiguously observed
only for protein cryosolutions. It may be asked whether this holds true, i.e. whether other
environments indeed assure a system inherent transition temperature. It is in any case
interesting to ask in which way the environment alters the energy landscape of proteins.
The transition behavior in the context of its two opposing interpretations can shed light on
this aspect.
Again, a most promising approach would be to combine experimental analysis on various
timescales with computer simulations of the same system.

Describing dynamical processes in proteins

The motions and processes leading to the dynamical transition are still insufficiently under-
stood. Recent progress in the field showed that the transition is due to the change of just a
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few principal modes of protein dynamics (Tournier & Smith, 2003). This promising result
indicates that it might be possible to condense the complexity of protein motions into a
few degrees of freedom and thus getting a firmer grip on the principle processes necessary
for function. The vast amount of experimental data on the dynamical transition will serve
as a guide to model building. Thus, the theoretical analysis here presented may help to
quantify and access the transition behavior of simplified models of protein dynamics. The
presented relations between transition temperature and features of the underlying energy
landscape, such as barrier heights, allow to derive experimental observables from the model
chosen.

The ultimate test for all simplified theoretical models, of course, is experiment. In spite
of the vast amount of data, especially in the context of the dynamical transition, it is
my conviction that above all experimental advances have to be made to flourish theoretical
model building. Atomic detailed descriptions, as obtained by X-ray crystallography, provide
only a static picture of proteins. Spectroscopic techniques, such as neutron scattering or
Mössbauer spectroscopy provide dynamic information that is either related to a single
atom within a protein (Mössbauer) or given by an average over large parts of the protein
(hydrogen atoms in neutron scattering). Computer simulations are not yet capable to fully
bridge this gap although they do already serve as guiding instrument in theoretical model
building. What is needed is a more detailed and selective picture of the dynamical processes
taking place in biological macromolecules. Two experimental techniques may play a major
role in this respect, incoherent neutron scattering and time-resolved X-ray crystallography.

The dominance of hydrogen atoms in the neutron scattering profile of proteins can be used
to selectively investigate the dynamics of specific parts of proteins, thus delivering a more
detailed picture of protein dynamics. This can be achieved by selectively deuterating all
those parts of the protein not of interest in the current study, thus significantly increasing
the relative signal of the desired focus of interest. The Institute Laue-Langevin already
dedicated a new labratory to the deuteration of molecular systems. The required deutera-
tion techniques should be further developed to provide a more detailed picture of a moving
protein needed for theoretical model building. Promising first results have been obtained
by selectively deuterating Bacteriorhodopsin (Réat et al., 1997).

A second key technique in this respect will be time-resolved X-ray crystallography (Cruick-
shank et al., 1992). With this technique snapshots of proteins are taken at short time
intervals, thus providing time information along with atomic detailed description of X-ray
crystallography. This techniques already gave important insight in biological processes and
promises to shorten the gap between structural and dynamical aspects of proteins (Schlicht-
ing et al., 1994, 2000; Teng et al., 1994).

Flexibility-activity relationship

Independent of the question whether T0 is related to the activity of a certain enzyme, it is
important to further investigate the relationship between flexibility and activity of enzymes.
As discussed in Ch. 1 this relationship bridges the gap between a physical description of
protein dynamics and the biological relevant function of an enzyme. To establish and test
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such relations expertise in biochemical as well as physical methods is required. So far, most
work concentrated on one aspect, either flexibility or activity, and correlated afterwards to
relevant data of the other aspect often obtained for slightly different systems. However,
direct transfer of results from one system to another is a difficult task in biological systems.
It would be important to combine measurements on physical and biological aspects of
proteins more closely to be able to establish the looked for relation between dynamical
processes and protein function. The experimental data reexamined in this thesis took such
an approach and raised doubts on an assumed general relationship between fast picosecond
dynamics and the activity of enzymes. With further investigations combining expertise in
both fields new, interesting aspects will be revealed.

Association processes

The proposed method to scale experimentally derived density of states and thus access
thermodynamical quantities related to vibrational degrees of freedom of proteins needs to
be thoroughly tested. Computer simulations are well adapted to provide such tests. Normal
mode calculation, due to the large memories available today, can be performed even on large
proteins providing the vibrational density of states of the system. Molecular Dynamics
simulations can be used to calculate the scattering function S(Q,ω). The scattering function
can then be analysed along the lines here proposed and the derived vibrational density of
states can be compared to the true vibrational density of states obtained by normal mode
analysis. It would thus be possible to direectly access the quality of the scaling method

In addition, changes in the vibrational density of states upon binding can directly be ac-
cessed with normal mode calculations if the atomic structure of both, protein and complex is
known. These simulations promise to further elucidate the role of flexibility for association
processes of proteins.



Appendix i

Neutron scattering cross sections

Isotope conc bcoh binc σcoh σinc σscatt σabs

H — -3.7390 — 1.7568 80.26 82.02 0.3326
1H 99.985 -3.7406 25.274 1.7583 80.27 82.03 0.3326
2H 0.015 6.671 4.04 5.592 2.05 7.64 0.000519
3H (12.32 a) 4.792 -1.04 2.89 0.14 3.03 0

C — 6.6460 — 5.551 0.001 5.551 0.0035
12C 98.9 6.6511 0 5.559 0 5.559 0.00353
13C 1.1 6.19 -0.52 4.81 0.034 4.84 0.00137

N — 9.36 — 11.01 0.5 11.51 1.9
14N 99.63 9.37 2.0 11.03 0.5 11.53 1.91
15N 0.37 6.44 -0.02 5.21 0.00005 5.21 0.000024

O — 5.803 — 4.232 0.0008 4.232 0.00019
16O 99.762 5.803 0 4.232 0 4.232 0.0001
17O 0.038 5.78 0.18 4.2 0.004 4.2 0.236
18O 0.2 5.84 0 4.29 0 4.29 0.00016

P 100 5.13 0.2 3.307 0.005 3.312 0.172

S — 2.847 — 1.0186 0.007 1.026 0.53
32S 95.02 2.804 0 0.988 0 0.988 0.54
33S 0.75 4.74 1.5 2.8 0.3 3.1 0.54
34S 4.21 3.48 0 1.52 0 1.52 0.227
36S 0.02 3.(1.) 0 1.1 0 1.1 0.15

Table 1: Scattering cross sections of biological relevant molecules. All cross sections
are given in barns. Data were taken from Sears (1992)
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