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Abstract

Many problems in physics and mathematics may be reduced to solving equa-
tions depending on a parameter. The justification of the existence of solutions to
the equations and the sensitivity analysis maybe conducted based on Implicit Func-
tion Theorem (IFT) under certain regularity assumptions. Provided the regularity
assumptions do not hold, generalizations of IFT are needed in order to study so-
lutions to the equations. The paper focuses on a particular generalization of IFT
which is then applied to a parametric linear time-optimal control problem.

1 Introduction

In many problems in physics and mathematics equations depending on a parameter arise.
The equations may be formally written in the form

F (y, τ) = 0 (1)

where F : Rs × R → Rs. Basically, one would like to know

• for which values of τ does the equation (1) have a solution;

• how many solutions exist for a given value of τ ;

• how do the solutions vary as the parameter τ varies.

In some situations, the answers to these questions can be derived based on the classi-
cal implicit function theorem (IFT). The classical IFT states, that when a continuously
differentiable function F (y, τ) vanishes at a point (y0, τ0) with the nonsingular Jacobian
∂F (y0, τ0)

∂y
, there exist a number δ0 > 0 and a unique function y(τ) satisfying equation

(1) for τ ∈ [τ0 − δ0, τ0 + δ0] and the initial condition

y(τ0) = y0. (2)
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We mention few examples of applications of classical IFT. Robinson [17] and Fiacco [3]
proposed independently to use the classical IFT for showing Frechet differentiability of
solutions to finite-dimensional parametric programming. The classical IFT is used in
[11, 12] to investigate differentiability of solutions to parametric optimal control problems
in a neighborhood of a regular parameter value.

However, in many important physical problems the classical IFT does not apply because
conditions of this theorem do not hold true due to several reasons: mapping F (y, τ) can
be mapping in Banach spaces or can be nonsmooth or the linear transformation given by

L :=
∂F (y, τ)

∂y
has a nontrivial kernel. That is why, the classical IFT has been extended

in various directions, e.g., to Banach spaces [13], to multivalued mappings [2, 16], to
nonsmooth functions [1, 15, 19]. In the case dim Ker L 6= 0 the existence of solutions
to (1) and investigation of properties of the solutions can be reduced to an application of
the IFT for a new bifurcation function which is obtained, e.g., from Lyapunov-Schmidt
reduction. These methods are explained in detail in [5].

Since our setting here is finite dimensional and functions, that we are interested in, are
single-valued, but dim Ker L 6= 0, we focus in this paper on a particular generalization
of the IFT which is sufficient in many applications including presented below. This
generalization allows us to get special representations of solution function y(τ), τ ∈ [τ0, τ0+
δ], δ0 > 0, to the equation (1) with the initial condition (2). This representation will be
used in the later applications. Our results are related methodologically to the results
from [10], [6]. However, our results differ by more detailed form of presentation which is
suitable for further applications to optimal control problems.

The paper is organized as follows. In Section 2, we formulate and prove a generalized
implicit function theorem which states that there exist 2m̄ solution functions yp(τ), τ ∈
[τ0 − δ0, τ0 + δ0], = 1, . . . , 2m̄, satisfying the equation (1) and the initial condition (2) if a
corresponding algebraic system of k := dim Ker L equations has 2m̄ solutions. We show
that the functions yp(τ), τ ∈ [τ0 − δ0, τ0 + δ0], = 1, . . . , 2m̄, can be presented in a special
form. On the base of these results we investigate changes of the structure of solutions to
parametric time-optimal control problems in a neighborhood of an irregular point τ0 in
Section 3.

2 Implicit function theorem

Let F (y, τ), y ∈ Rs, τ ∈ R, be a sufficiently smooth function. Let y0 ∈ Rs, τ0 ∈ R be such
that

F (y0, τ0) = 0. (3)

Denote

L :=
∂F (y0, τ0)

∂y
, b :=

∂F (y0, τ0)

∂τ
. (4)

Suppose, that the matrix L is singular. Denote by ϕ(i) ∈ Rs, i = 1, . . . , k; ψ(i) ∈ Rs,
i = 1, . . . , k; bases of the spaces Ker L and Ker LT respectively,

Φ := (ϕ(i), i = 1, . . . , k) ∈ Rs×k, Φ∗ := (ψ(i), i = 1, . . . , k) ∈ Rs×k, (5)
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Aj :=
∂

∂y

(∂F (y, τ)

∂y
ϕ(j)

)∣

∣

∣

y=y0,τ=τ0

∈ Rs×s, j = 1, . . . , k.

Theorem 1 Let β0 = (β0
i , i = 1, . . . , k) be a solution to the system of k equations

ΦT
∗ [b +

1

2
S(β)β] = 0, (6)

where

S(β) := (AjΦβ, j = 1, . . . , k) ∈ Rs×k, (7)

with respect to k unknowns β = (βi, i = 1, . . . , k). Suppose that

det ΦT
∗ S(β0) 6= 0. (8)

Then there exist a number δ > 0 and continuous function ȳ(ε), ε ∈ [−δ, δ], such that

F (ȳ(ε), τ0 + ε2) ≡ 0, ε ∈ [−δ, δ], (9)

y(0) = y0. (10)

The function ȳ(ε), ε ∈ [−δ, δ], can be presented as follows

ȳ(ε) = y0 + ε

k
∑

i=1

βi(ε)ϕ(i) + ε2v(ε), ε ∈ [−δ, δ], (11)

where ϕ(i) ∈ Rs, i = 1, . . . , k, is a basis of the space Ker L, β(ε) = (βi(ε), i = 1, . . . , k);
v(ε), ε ∈ [−δ, δ], are some continuous functions with the initial conditions β(0) = β0.

Proof. Let us consider an s-vector-function of the form (11) and show that there exist
continuous functions

β(ε) = (βi(ε), i = 1, . . . , k), v(ε) ∈ Rs, ε ∈ [0, δ], (12)

and parameters

β0 = (β0
i , i = 1, . . . , k), v0 ∈ Rs, (13)

such that the relations hold

F (ȳ(ε), τ0 + ε2) ≡ 0, (14)

ϕT (i)v(ε) ≡ 0, i = 1, . . . , k, ε ∈ [−δ, δ], (15)

β(0) = β0, v(0) = v0. (16)

We consider two new functions

F̂ (β, v, ε) = F (y0 + εΦβ + ε2v, τ0 + ε2),

F̃ (β, v, ε) =
1

ε2
F̂ (β, v, ε), β ∈ Rk, v ∈ Rs. (17)
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At ε = 0 we define the function F̃ (β, v, ε) and its derivatives by continuity, namely

F̃ (β, v, 0) =
1

2

∂2F̂ (β, v, 0)

∂ε2
=
∂F

∂y
v +

∂F

∂τ
+

1

2

k
∑

j=1

βj

[ ∂

∂y

(∂F

∂y
ϕ(i)

)]

Φβ, (18)

∂F̃ (β, v, 0)

∂β
= S(β),

∂F̃ (β, v, 0)

∂v
=
∂F

∂y
. (19)

Here F = F (y, τ) and the function and all its derivatives are calculated at the point
(y0, τ0).

Taking into account the notations (4), (5) and (7), we can rewrite (18) as follows

F̃ (β, v, 0) = Lv + b +
1

2

k
∑

j=1

βjAjΦβ = Lv + b+
1

2
S(β)β. (20)

Obviously, the equations (14), (15) are equivalent to the following equations

F̃ (β(ε), v(ε), ε) ≡ 0, ΦT v(ε) ≡ 0, ε ∈ [−δ, δ]. (21)

We define the parameters (13) as a solution of the system

F̃ (β0, v0, 0) = 0, (22)

ΦT v0 = 0. (23)

Taking into account (20), (22) may be rewritten in the form

Lv0 + b +
1

2
S(β0)β0 = 0. (24)

Let us show that the system (23), (24) has a solution. Multiplying the both sides of
the equation (24) by the matrix ΦT

∗ yields the system (6) of k equations with respect
to the unknowns β = (βi, i = 1, . . . , k). By assumption, this system has a solution
β0 = (β0

i , i = 1, . . . , k).

In the next we make use of the following Proposition (see results in [20] or Lemma 3 in
[8])

Proposition 1 Let b̄ ∈ Rs be such a vector that ΦT
∗ b̄ = 0. Then there exists a unique

solution v ∈ Rs to the system Lv = b̄, ΦTv = 0.

From Proposition 1 we may conclude that, for any vector β0 = (β0
i , i = 1, . . . , k) satisfying

(6), there is a unique vector v0 = v0(β
0) satisfying (23), (24). Hence, the system (23),

(24) has the solution (β0, v0). It is easy to check that the function F̃ (β, v, ε) and its
derivatives ∂F̃ (β, v, ε)/∂β, ∂F̃ (β, v, ε)/∂v are continuous in a neighborhood of the point
(β0, v0, ε = 0) ∈ Rk ×Rs ×R under assumption that the function F (y, τ), y ∈ Rs, τ ∈ R,
is sufficiently smooth.

Now let us compute the Jacobian Ω of the equations (21) with respect to the variables β,
v at the point (β0, v0, ε = 0) :

Ω =

(

S(β0) L
0 ΦT

)

, (25)
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where Φ and S(β) are defined in (5), (7). Let us show that under the condition (8) the
matrix Ω is not singular:

detΩ 6= 0. (26)

Suppose the contrary. Then there is a vector (x, z) 6= 0, x ∈ Rs, z ∈ Rk, such that

xTL+ zT ΦT = 0, xTS(β0) = 0. (27)

Multiplying the first equality from (27) by Φ, we get zT ΦT Φ = 0. Consequently, z = 0
and the system (27) takes the form

xTL = 0, xTS(β0) = 0. (28)

Since xTL = 0, then x ∈ Ker LT , and consequently, x = Φ∗γ, where γ ∈ Rk. Taking this
fact into account, we may conclude that (28) is equivalent to the system

γT Φ∗
TS(β0) = 0. (29)

The assumption (8) and the equality (29) result in γ = 0, and, consequently, x = 0.
Thus, we have shown that x = 0, z = 0. However this contradicts to the assumption that
(x, z) 6= 0. Hence, the relation (26) follows from (8).

To finish the proof we apply the classical IFT in the formulation of [18].

Theorem 2 Consider a continuous function F(z, ε) : Rl × R → Rl. Assume that in a
some neighborhood W ⊂ Rl × R of a point (z0, ε0) ∈ Rl × R there exists the continuous

derivative
∂F(z, ε)

∂z
. Assume further that

F(z0, ε0) = 0, det
∂F(z0, ε0)

∂z
6= 0.

Then there exist a number δ > 0 and a unique continuous l-vector-function z(ε), ε ∈
[ε0 − δ, ε0 + δ], such that

F(z(ε), ε) ≡ 0, ε ∈ [ε0 − δ, ε0 + δ], z(ε0) = z0.

The relations (22), (23) and (26) allow us to apply Theorem 2 to the system (21). Accord-
ing to the theorem there are unique functions (12) satisfying (21) and (16). Consequently,
there is a continuous function ȳ(ε), ε ∈ [−δ, δ], of the form (11) satisfying (14)-(16). This
finishes the proof of the theorem. �

Corollary 1 Let ȳ(ε), ε ∈ [−δ, δ], be a function from Theorem 1. Then there exists
another continuous function

z(ε) := ȳ(−ε) 6≡ ȳ(ε), ε ∈ [−δ, δ],

such that
F (z(ε), τ0 + ε2) ≡ 0, ε ∈ [−δ, δ], z(0) = y0.
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Corollary 2 Let the system (6) with respect to k unknowns β = (βi, i = 1, . . . , k) have
2m̄ different solutions βp ∈ Rs, p = 1, . . . , 2m̄, satisfying the conditions

det ΦT
∗ S(βp) 6= 0, p = 1, . . . , 2m̄. (30)

Then there exist a number δ0 > 0 and 2m̄ different functions yp(τ), τ ∈ [τ0, τ0 + δ0],
p = 1, . . . , 2m̄, such that

F (yp(τ), τ) ≡ 0, τ ∈ [τ0, τ0 + δ0], y
p(τ0) = y0. (31)

Each function yp(τ), τ ∈ [τ0, τ0 + δ0], p = 1, . . . , 2m̄, can be presented as follows

yp(τ) = yp(τ0 + ∆τ) = y0 +
√

∆τ

k
∑

i=1

βp
i (
√

∆τ )ϕ(i) + ∆τvp(
√

∆τ ), ∆τ ∈ [0, δ0].

Here βp(ε) = (βp
i (ε), i = 1, . . . , k); vp(ε), ε ∈ [0,

√
δ0], p = 1, . . . , m̄, are some continuous

functions connected by the relations

βp(ε) = −βm̄+p(−ε), vp(ε) = vm̄+p(−ε), ε ∈ [0,
√

δ0], p = 1, . . . , m̄,

with the initial conditions βp(0) = −βm̄+p(0) = βp, vp(0) = vm̄+p(0) = vp, where vp ∈ Rs

is a unique solution to the system

Lvp + b +
1

2
S(βp)βp = 0, ΦTvp = 0,

for p = 1, . . . , m̄.

Let us give some examples illustrating the assumptions of Theorem 1 and Corollary 2.

First, let us show that the system (6) may have “many” solutions. We consider the
following system

s = 2, F (y, τ) =

(

y2
1 − α1τ

y2
2 − α2τ − α3τ

2

)

, τ ≥ 0, y = (y1, y2), y0 = (0, 0), τ0 = 0.

Consequently, F (y0, τ0) = 0,

L :=
∂F (y, τ)

∂y

∣

∣

∣

y=y0,τ=τ0

=

(

2y1 0
0 2y2

)

∣

∣

∣

y=y0,τ=τ0

=

(

0 0
0 0

)

, b =

(

−α1

−α2

)

,

ψ(1) = ϕ(1) =

(

1
0

)

, ψ(2) = ϕ(2) =

(

0
1

)

, Φ = Φ∗ = I,

∂F (y, τ)

∂y
ϕ(1) =

(

2y1

0

)

,
∂F (y, τ)

∂y
ϕ(2) =

(

0
2y2

)

,

A1 :=
∂

∂y

(∂F (y, τ)

∂y
ϕ(1)

)

=

(

2 0
0 0

)

, A2 :=
∂

∂y

(∂F (y, τ)

∂y
ϕ(2)

)

=

(

0 0
0 2

)

.

For this example, we have

S(β) = (A1β,A2β) =

(

2β1 0
0 2β2

)

.

The equations (6) take the form

−α1 + β2
1 = 0, −α2 + β2

2 = 0. (32)

Consider the following situations.
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A) α1 > 0, α2 > 0. In this case the system (32) has 4 solutions :

β1 = (
√
α1,

√
α2), β

2 = −β1, β3 = (
√
α1,−

√
α2), β

4 = −β3.

For any βp, p = 1, . . . , 4, the matrix ΦT
∗ S(βp) = S(βp) is nonsingular. There are

four functions yp(τ), τ ∈ [0, δ0], p = 1, . . . , 4, satisfying (31).

B) α1 > 0, α2 = 0. In this case the system (32) has 2 solutions :

β1 = (
√
α1, 0), β2 = −β1

but for any βp, p = 1, 2, the matrix ΦT
∗ S(βp) is singular. If α3 < 0 then there is no

function yp(τ), τ ∈ [0, δ0], satisfying (31).

C) α1 < 0 or α2 < 0. In this case the system (32) has no solution.

Above we gave an example when the system (6) has more than 2 solutions and the matrix
ΦT

∗ S(βp) is non-singular for all p as well as an example when the system (6) has 2 solutions
and the matrix ΦT

∗ S(βp) is singular for p = 1, 2.

Now, let us give an example when the system (6) has only 2 solutions βp, p = 1, 2, and
the matrix det ΦT

∗ S(βp) is nonsingular for p = 1, 2,

s = 2, F (y, τ) =

(

y2
1 − α1τ

y1y2 − α2τ

)

, τ ≥ 0, y = (y1, y2), y0 = (0, 0), τ0 = 0.

In this example, F (y0, τ0) = 0,

L :=
∂F (y, τ)

∂y

∣

∣

∣

y=y0,τ=τ0

=

(

2y1 0
y1 y2

)

∣

∣

∣

y=y0,τ=τ0

=

(

0 0
0 0

)

, b =

(

−α1

−α2

)

,

ψ(1) = ϕ(1) =

(

1
0

)

, ψ(2) = ϕ(2) =

(

0
1

)

, Φ = Φ∗ = I,

∂F (y, τ)

∂y
ϕ(1) =

(

2y1

y2

)

,
∂F (y, τ)

∂y
ϕ(2) =

(

0
y1

)

,

A1 :=
∂

∂y

(∂F (y, τ)

∂y
ϕ(1)

)

=

(

2 0
0 1

)

, A2 :=
∂

∂y

(∂F (y, τ)

∂y
ϕ(2)

)

=

(

0 0
1 0

)

,

S(β) =

(

2β1 0
β2 β1

)

, ΦT
∗ S(β) = S(β).

In this example the system (6) takes the form

−α1 + β2
1 = 0, −α2 + β1β2 = 0. (33)

Consider several situations.

A1) α1 > 0, α2 ∈ R. In this case the system (33) has 2 solutions :

β1 = (
√
α1, α2/

√
α1), β

2 = −β1.

For any βp, p = 1, 2, the matrix ΦT
∗ S(βp) is nonsingular.

B1) α1 = 0, α2 6= 0. In this case the system (33) has no solution.

C1) α1 = 0, α2 = 0. In this case the system (33) has a unique solution : β1 = (0, 0). It
is evident that the matrix ΦT

∗ S(βp) is singular.

These examples show that all assumptions of Theorem 1 and Corollary 2 are essential.
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3 A parametric time-optimal control problem

The necessity of constructing and investigating a function y(τ), τ ≥ τ0, which is implicitly
defined by the relations

F (y(τ), τ) ≡ 0, τ ∈ [τ0, τ0 + δ0], y(τ0) = y0, (34)

arises when we study parametric optimal control problems. In this case, provided the
value of the parameter τ = τ0 is an irregular (or a bifurcation) point (see Definition in [8]

or below) then the matrix L :=
∂F (y0, τ0)

∂y
is singular and we can not apply the classical

IFT for justification of the existence of the functions y(τ), τ ≥ τ0, satisfying (34).

In what follows, we give an example of a parametric optimal control problem where
Theorem 1 and Corollary 2 allow us to justify the existence of the problem solution.

3.1 Problem statement and optimality conditions

In the class of piecewise-continuous controls, we consider the classical time-optimal control
problem in which the initial state depends on a parameter τ ∈ [0, τ ∗]:

TO(τ) :







min t∗,
ẋ = Ax+ bu, x(0) = z(τ), x(t∗) = 0,
|u(t)| ≤ 1, t ∈ [0, t∗].

(35)

Here x = x(t) ∈ Rn is a state vector, u = u(t) ∈ R is a control, z(τ), τ ∈ [0, τ ∗], is known
continuous piecewise-smooth n−vector function. In the sequel we assume that

rank{b, Ab, . . . , An−1b} = n (36)

and the function z(τ), τ ∈ [0, τ ∗], is such that ‖z(τ)‖2 6= 0 and the problem (35) has a
solution for any τ ∈ [0, τ ∗].

For a fixed τ , we denote the optimal time by t∗(τ), the control interval by Tτ = [0, t∗(τ)],
and the optimal control and the optimal trajectory by u0

τ (·) = (u0
τ (t), t ∈ Tτ ) and

x0
τ (·) = (x0

τ (t), t ∈ Tτ ).

The following necessary optimality conditions known as the maximum principle are proved
in [14, 9].

Theorem 3 Maximum Principle A feasible control u0
τ(·) = (u0

τ(t), t ∈ Tτ ) is optimal
in the problem TO(τ) if and only if there is a vector q(τ) ∈ Rn such that along the solution
ψ(q(τ), t), t ∈ Tτ , of the adjoint system

ψ̇ = −ATψ, ψ(0) = q(τ) (37)

the following conditions are satisfied

qT (τ)z(τ) = −1, ψT (q(τ), t)bu0
τ (t) = max

|u|≤1
ψT (q(τ), t)bu, t ∈ Tτ . (38)
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It is easy to show that under the assumption (36) the problem TO(τ) has a unique optimal
control u0

τ (·) and the control has a bang-bang form

u0
τ (t) = sign σ(q(τ), t), t ∈ Tτ . (39)

Here σ(q(τ), t), t ∈ Tτ , denotes a switching function

σ(q(τ), t) = ψT (q(τ), t)b = q(τ)Tf(t), t ∈ Tτ , (40)

f(t) = F−1(t)b, Ḟ = AF, F (0) = I. (41)

Let tj(τ), j = 1, . . . , p(τ), be zeroes of the switching function. Due to the maximum
principle conditions (38), the problems TO(τ), τ ∈ [0, τ ∗], are considered to be solved if a
vector of data (the zeroes of the switching function, and optimal time, and the Lagrange
vector)

P (τ) = ( tj(τ), j = 1, . . . , p(τ), t∗(τ), q(τ) ) (42)

is known for τ ∈ [0, τ ∗].

We are interested in the dependence of a solution to the problem TO(τ) on the parameter
τ and the expansion of the functions (42) in a neighborhood of a point τ0 if a solution to
TO(τ0), or in other words a data set P (τ0), is known.

Let Q(τ) be the set of all vectors q(τ) satisfying (37), (38). The properties of the point-set
mapping τ → Q(τ), τ ∈ [0, τ ∗], and of the time-optimal function t∗(τ), τ ∈ [0, τ ∗], are
studied in [8].

Let us take an arbitrary vector q(τ) ∈ Q(τ). A vector q(τ) is called basic, if

rank
(

f (i)(tj(τ)), i = 0, ..., sj − 1; j = 1, ..., p(τ), z(τ)
)

= n, (43)

where sj is the order of zero tj(τ). It is shown in [8] that under the assumption (36) there
is always a basic vector q(τ) ∈ Q(τ) among the vectors q ∈ Q(τ). Hence, without loss
of generality we will consider only basic vectors q(τ) ∈ Q(τ). Consider the corresponding
switching function (40) and construct the set of the zeroes of the switching function

{tj(τ), j = 1, ..., p(τ)} = {t ∈ Tτ : σ(q(τ), t) = 0},
tj(τ) < tj+1(τ), j = 1, ..., p(τ) − 1.

We denote l∗(τ) = 1 if the time point 0 is a zero of the switching function, and l∗(τ) = 0
otherwise. Similarly, l∗(τ) = 1 if the optimal time t∗(τ) is a zero of the switching function
and l∗(τ) = 0 otherwise. Further we denote by L(τ) the indices of the multiple zeroes,
that is

L(τ) = {j ∈ {1, ..., p(τ)} :
∂σ(q(τ), tj(τ))

∂t
= 0}.

Finally, we denote k(τ) := sign q(τ)Tf(+0) = u0
τ(+0).
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Definition 1 The sets of the data

S(τ) = {p(τ), k(τ), l∗(τ), l∗(τ),L(τ)}, P (τ) = (tj(τ), j = 1, ..., p(τ); t∗(τ), q(τ)) (44)

are called the structure and the defining elements of the solution to TO(τ), corresponding
to the vector q(τ).

Having the data (44) been computed, we are able to construct the control u0
τ (·) by the

rules

u0
τ (t) = (−1)jk, t ∈ [tj(τ), tj+1(τ)[, j = 0, ..., p(τ); t0(τ) ≡ 0, tp(τ)+1(τ) ≡ t∗(τ), (45)

and to validate the maximum principle. In other words, the problem TO(τ) is considered
to be solved if the data (44) is known.

Definition 2 A control u0
τ (·) is called regular, and the parameter value τ ∈ [0, τ∗] is a

regular point, if the “degree of irregularity” β∗(τ) = l∗(τ) + l∗(τ) + |L(τ)| equals to zero.

Remark 1 It is shown in [8] that under the condition (36) the property of regularity (or
irregularity) of a control u0

τ (·) is independent of the choice of the basic vector q(τ) ∈ Q(τ).

Figure 1 shows the switching functions for a regular (left) and an irregular (right) values
of the parameter τ .

0 t1(τ ) t2(τ )
t3(τ )

t4(τ ) t5(τ )
t
∗(τ )

0

t1(τ ) t2(τ )

t3(τ ) t4(τ ) t5(τ ) t6(τ )

t7(τ ) = t
∗(τ )

Figure 1: Switching functions for a regular (left) and an irregular (right) parameter values

As pointed out in [8] one of the main properties of a regular point is the stability of a
solution structure and a “regular” behavior of the defining elements for small perturba-
tions in the parameter τ. Irregular points do not possess such a property since a solution
structure may change for any small perturbation of the parameter τ

S(τ − 0) 6= S(τ) 6= S(τ + 0)

and the defining elements behave “irregularly”, in particular the following situations may
occur

q(τ − 0) 6= q(τ) 6= q(τ + 0) or |dtj(τ)/dτ | = ∞ for some 1 ≤ j ≤ p(τ).
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Suppose that for some parameter value τ0 ∈ [0, τ∗] the optimal time t∗(τ0), the optimal
control u0

τ0
(·) and some vector q(τ0) ∈ Q(τ0) are known. We denote by S(τ0), P (τ0) the

data (44), corresponding to q(τ0), and by E+(τ0) a sufficiently small right-sided neighbor-
hood of the point τ0. Our aim is to determine a new solution structure S(τ0 +0) and new
initial values P (τ0 +0) for the defining elements. As it was mentioned before, having this
information we are able (see [8]) to describe the behavior of the solutions to the problems
TO(τ) and to construct the optimal controls u0

τ(t), t ∈ [0, t∗(τ)], for τ ∈ E+(τ0).

If τ0 is a regular point then in a neighborhood of τ0 the solutions to TO(τ) are determined
uniquely by the rules described in [4, 7].

3.2 Properties of the solutions in a neighborhood of an irregular

parameter value

We suppose that τ0 is an irregular parameter value and study the properties of the solu-
tions to TO(τ) for τ ∈ E+(τ0). Due to the irregularity of τ0 the set Q(τ0) may contain
more than one element and in general it may happen that the initial state for the adjoint
system changes q(τ0 + 0) 6= q(τ0). Moreover, S(τ0 + 0) 6= S(τ0). Consequently, in order to
know the properties of the solutions to TO(τ) in the neighborhood E+(τ0) it is necessary
to define the new vector q(τ0 + 0), the new structure S(τ0 + 0) and the new initial values
P (τ0 + 0) for the data P (τ).

Assume, that we determined the vector q∗ := q(τ0 + 0), e.g. by the rules, which are
described in [8]. Denote by σ∗(t) := q∗Tf(t), t ∈ Tτ0 , the switching function corresponding
to q∗. Let us make

Assumption 1 The following conditions are satisfied

σ̈∗(t∗j) 6= 0 if t∗j ∈ (0, t∗∗), j ∈ J∗ \ J∗
R; σ̇∗(t∗j) 6= 0 if t∗j = 0 ∨ t∗∗, or j ∈ J∗

R.

Here, the moments t∗j are the zeroes of the switching function σ∗(t), t ∈ Tτ0 , the set J∗ is a
set of the indices of the zeroes, J∗

R is a set of the indices of the zeroes where the switching
function changes its sign and consequently the corresponding control is discontinuous, the
numbers dj are absolute values of the derivatives of the switching function at its zeroes:

t∗∗ = t∗(τ0), {t∗j , j = 1, ..., p∗} = {t ∈ [0, t∗∗] : σ∗(t) = 0},
t∗j < t∗j+1, j = 1, ..., p∗ − 1;

J∗ = {1, 2, ..., p∗}, J∗
R = {j ∈ J∗ : t∗j ∈ (0, t∗∗), u

0
τ0

(t∗j − 0) 6= u0
τ0

(t∗j + 0)}; (46)

αj = −u0
τ0

(t∗j + 0) if t∗j 6= t∗∗; αj = u0
τ0

(t∗j − 0) if t∗j = t∗∗; dj = |q∗T ḟ(t∗j)|, j ∈ J∗.(47)

Let us illustrate the notations (46), (47). Consider the switching function and the corre-
sponding control σ∗(t), u0

τ0
(t), t ∈ [0, t∗∗], as in Figure 2. Then according to the notations

(46), (47)

p∗ = 7, J∗ = {1, 2, . . . , 7}; J∗
R = {1, 3, 6}, (48)

αj = 1, j = 1, 2, 6; αj = −1, j = 3, 4, 5, 7;

dj > 0 for j = 1, 3, 6, 7; dj = 0 for j = 2, 4, 5.

11
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∗

3
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∗

4
t
∗
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∗
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t
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∗

∗

Figure 2: Switching function and the corresponding control at an irregular point.

Now let us discuss problems arising while constructing the new structure S(τ0 + 0) and
the new initial conditions P (τ0 + 0).

According to the definition, the structure S(τ0 + 0) and the initial conditions P (τ0 + 0)
are defined by the zeroes

tj(τ), j = 1, . . . , p(τ), (49)

of the switching functions σ(q(τ), t), t ∈ [0, t∗(τ)], for τ ∈ E+(τ0)\τ0. Since the initial state
for the adjoint system is equal to q∗ = q(τ0+0) then the new zeroes (49) may be generated
only by the zeroes t∗j , j = 1, . . . , p∗, of the function σ∗(t) =q∗Tf(t), t ∈ [0, t∗(τ0)]. Let us
define the indices m(j), j = 1, . . . , p∗, by the following rule:

m(j) ∈ {1, . . . , p(τ)} is the minimal index for which tm(j)(τ0 + 0) = t∗j . (50)

In other words, zero tm(j)(τ) is the minimal zero from (49) generated by the zero t∗j .

Obviously,

1. if j ∈ J∗
R then the single zero t∗j always generates one single zero tm(j)(τ);

2. if j ∈ J∗\J∗
R, t∗j 6= 0 ∨ t∗∗ then the double zero t∗j may (see Fig. 3)

a) either generate two single zeroes tm(j)(τ) and tm(j)+1(τ);

b) either disappear, that is not generate any zeroes tj(τ), j = 1, . . . , p(τ);

c) or generate one double zero tm(j)(τ);

12



Figure 3: Situations 2a) (left), 2b) (right)

3. if j ∈ J∗\J∗
R, t∗j = 0 (or t∗j = t∗∗) what means that t∗j is a “boundary” zero, then it

may (see Figures 4 and 5)

a) either generate one single non-boundary zero t1(τ) > 0, τ ∈ E+(τ0)\τ0, t1(τ0 +
0) = 0 (or tp(τ)(τ) < t∗(τ), τ ∈ E+(τ0)\τ0, tp(τ)(τ0 + 0) = t∗∗);

b) either disappear, that is not generate any zeroes tj(τ), j = 1, . . . , p(τ);

c) or generate one boundary zero t1(τ) ≡ 0, (or tp(τ)(τ) ≡ t∗(τ)), τ ∈ E+(τ0)\τ0.

Figure 4: Situations 3a) (left), 3b) (right) for t∗j = 0

Figure 5: Situations 3a) (left), 3b) (right) for t∗j = t∗∗

13



Thus, in order to define the new structure S(τ0+0) and the new initial conditions P (τ0+0)
it is necessary to determine which of the situation 2a) – 3c) occurs for each zero t∗j ,
j ∈ J∗\J∗

R. In other words, we have to determine the index sets

J(0) = {j ∈ J∗\J∗
R : t∗j 6= 0 ∨ t∗∗ and situation 2a) is true for t∗j},

J3a = {j ∈ J∗\J∗
R : t∗j = 0 and situation 3a) is true for t∗j}, (51)

J̄3a = {j ∈ J∗\J∗
R : t∗j = t∗∗ and situation 3a) is true for t∗j}.

Note, that according to [8], the set J̄3a can be determined exactly, if p∗ 6∈ J∗ or p∗ ∈ J∗

and q∗T ż(τ0 + 0) 6= 0 by the following rule

J̄3a = ∅ if p∗ 6∈ J∗ or p∗ ∈ J∗ and q∗T ż(τ0 + 0) > 0,

J̄3a = {p∗} if p∗ ∈ J∗ and q∗T ż(τ0 + 0) < 0.

Without additional investigation we are not able to determine sets (51) in advance. But
we may try to find the sets (51) by enumeration. For example, we may choose

J(0) ⊂ {j ∈ J∗\J∗
R : t∗j 6= 0 ∨ t∗∗}, J3a = ∅ or J3a = {1}; J̄3a = ∅ or J̄3a = {p∗}, (52)

J(∗) := J∗
R ∪ J(0) ∪ J3a ∪ J̄3a.

This means, that we assume that for τ ∈ E+(τ0)\τ0,
if j ∈ J(0), then double zero t∗j will generate two single zeroes tm(j)(τ) and tm(j)+1(τ);

if j ∈ J3a then “boundary” zero t∗j = 0 will generate one single non-boundary zero
t1(τ) > 0,

if j ∈ J̄3a then “boundary” zero t∗j = t∗∗ will generate one single non-boundary zero
tp(τ)(τ) > t∗∗.

Hence, we assume that for τ ∈ E+(τ0)\τ0 the solution to the problem TO(τ) will have
the following structure: optimal control u0

τ (t), t ∈ [0, t∗(τ)], will have p̄ switching points
where p̄ := |J(∗)| + |J(0)|. Here, we take into account, that each double zero t∗j ,j ∈ J(0),
of the old switching function σ∗(t), t ∈ [0, t∗∗], will generate two single zeroes of the new
switching function σ(q(τ), t), t ∈ Tτ .

Let us give some explanations using the switching function shown in Figure 2. The old
function σ∗(t), t ∈ [0, t∗∗], has 7 zeroes and the corresponding sets J∗ and JR defined by
(48). Suppose we choose

J(0) := {2, 5}, J3a := ∅, J̄3a := {7}. (53)

Then J(∗) = {1, 2, 3, 5, 6, 7} and p̄ = 8, and we suppose that the new switching function
σ(q(τ), t), t ∈ Tτ , will have a form presented in Figure 6 with the dashed line (here
tj := tj(τ), τ ∈ E+(τ0)).

Let us denote the zeroes of the new switching function σ(q(τ), t), t ∈ Tτ , by

tj(τ), j = 1, . . . , p̄; tj(τ) < tj+1(τ), j = 1, . . . p̄− 1. (54)

Since the new zeroes are generated by the old zeroes

t∗j , j = 1, . . . , p∗, t∗j < t∗j+1, j = 1, . . . , p∗ − 1, (55)
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it is important to know the correspondence between the new and the old zeroes, that is,
which old zero generates which new zero. In order to define this correspondence we use
the index function (50) m(j) : J(∗) → {1, . . . , p̄}, where m(j) denotes the minimal index
from {1, . . . , p̄} such that

tm(j)(τ0 + 0) = t∗j , j ∈ J(∗),

i.e. tm(j)(τ) is the minimal new zero generated by the old zero t∗j , j ∈ J(∗). (We have to
add the word “minimal” because the old zero t∗j with j ∈ J(0) ⊂ J(∗) generates two new
zeroes.) For the situation presented in Figure 6, we have

J(∗) = {1, 2, 3, 5, 6, 7}; m(1) = 1, m(2) = 2, m(3) = 4, m(5) = 5, m(6) = 7, m(7) = 8.

Figure 6: Old and new switching functions.

Having the index correspondence function m(j), j ∈ J(∗), it will be convenient for us to
use another variables for denoting the new zeroes besides the notations (54). Namely, let
us consider the functions

t̄j(τ), j ∈ J(∗), ∆tj(τ), j ∈ J(0), (56)

such that

t̄j(τ0) = t∗j , j ∈ J(∗), ∆tj(τ0) = 0, j ∈ J(0). (57)

Then we can use the following presentation of the zeroes (54):

tm(j)(τ) = t̄j(τ), j ∈ J(∗); tm(j)+1(τ) = t̄j(τ) + ∆tj(τ), j ∈ J(0). (58)

The advantage of this presentation is that it takes into account the correspondence be-
tween the old and the new zeroes explicitly. For the example shown in Figure 6, the
relations (58) read

t1(τ) = t̄1(τ), t2(τ) = t̄2(τ), t3(τ) = t̄2(τ) + ∆t2(τ),

t4(τ) = t̄3(τ), t5(τ) = t̄5(τ), t6(τ) = t̄5(τ) + ∆t5(τ), t7(τ) = t̄6(τ), t8(τ) = t̄7(τ).

Further, we will use both presentation (54) and (58) for the zeroes of the new switching
function.
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3.3 Application of the generalized IFT for determining a new

solution structure

Let us check whether our choice (52) of the sets (51) is correct. To reduce a number of
subcases under consideration we will suppose that t∗1 > 0.

The terminal conditions of the initial problem (35) and the maximum principle conditions
(37)–(40) imply that if the choice of the sets (51) is correct then the following equality
conditions hold

z(τ0) +
t∗
∗

∫

0

f(t)u0
τ(t)dt = 0, (59)

σ(q(τ), tj(τ)) = 0, j = 1, . . . , p̄, qT (τ)z(τ) + 1 = 0,

where u0
τ (t), σ(q(τ), t), f(t), t ∈ Tτ , are defined by (39)–(41).

Introducing an s−vector-function (s = p̄+ 1 + n)

y(τ) = (t̄j(τ), j ∈ J(∗); ∆tj(τ), j ∈ J(0); t
∗(τ), q(τ)), τ ∈ [τ0, τ0 + δ0], (60)

we can rewrite the relations (59) in the form

F(y(τ), τ) = 0, qT (τ)f(t̄j(τ)), j ∈ J(∗); q
T (τ)f(t̄j(τ) + ∆tj(τ)) = 0, j ∈ J(0), (61)

qT (τ)z(τ) + 1 = 0,

where

y = (t̄j, j ∈ J(∗); ∆tj, j ∈ J(0); t
∗, q)

F(y, τ) = k

p̄−1
∑

j=1

(−1)j

tj+1
∫

tj

f(t)dt+ z(τ); t0 = 0, tp̄+1 = t∗,

tm(j) = t̄j, j ∈ J(∗); tm(j)+1 = t̄j + ∆tj, j ∈ J(0), k := u0
τ0+0(+0).

Consequently, if our choice is successful then there is an s−vector-function y(τ), τ ∈
[τ0, τ0 + δ0], satisfying the relations (61) and the initial conditions

y(τ0) = y0, y0 = (t∗j , j ∈ J(∗); ∆tj = 0, j ∈ J(0); t
∗
∗, q

∗). (62)

Hence, to check if the choice (52) is correct, first of all it is necessary to check if there
exists such a function y(τ), τ ∈ [τ0, τ0 + δ0].

An ordinary way to check this is to use the classical IFT. However, there are several
reasons why we are not able to apply the theorem to the system (61). First, due to the
presence of the equations

qTf(t̄j), j ∈ J(∗); q
Tf(t̄j + ∆tj) = 0, j ∈ J(0),

and the initial conditions (62) , it is evident that, the Jacobi matrix (calculated at the
point (y0, τ0)) for the system (61), contains |J(0)| pairs of equal rows. Hence, the Jacobian
is singular if J(0) 6= ∅.
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To overcome this difficulty, let us consider a new system of the equations

F(y, τ) = 0, qTf(t̄j) = 0, j ∈ J(∗); (63)

qT (f(t̄j + ∆tj) − f(t̄j))/∆tj = 0, j ∈ J(0), qT z(τ) + 1 = 0.

Note that the new system (63) is equivalent to the old one (61), but in the Jacobi matrix
(calculated at the point (y0, τ0)) for the system (63), there are no equal rows. Hence, we
have a chance to apply the classical IFT to the system (63). Indeed, in some situations
under some reasonable assumptions we are able to do this (see [7], [8]). However, it often
happens in practice that the classical IFT cannot be applied to the system (63) either.

For the problem under consideration such a situation happens if the unperturbed problem
TO(τ0) is abnormal. This means that the final moment t∗∗ := t∗(τ0) is a zero of the
switching function σ∗(t) = σ(q∗, t), t ∈ Tτ0 = [0, t∗(τ0)] :

q∗Tf(t∗∗) = 0. (64)

Due to (64), the Jacobian of the system (63) is again singular at the point (y0, τ0). Let
us show how to apply Theorem 1 for the justification of the existence of a function y(τ),
τ ∈ [τ0, τ0 + δ0], satisfying (63) and (62). We rewrite the system (63) in the form (34)
where

F T (y, τ) =
(

F(y, τ)T , qTf(t̄j), j ∈ J(∗); (65)

qT (f(t̄j + ∆tj) − f(t̄j))

∆tj
, j ∈ J(0), q

T z(τ) + 1
)

.

Then the matrix L = ∂F (y0, τ0)/∂y and the vector b = ∂F (y0, τ0)/∂τ have the form

L =













Ā1 0 Ā0 a 0
D1 0 0 0 AT

1

0 0 0 0 AT
0

0 D0 1/2D0 0 AT
∗

0 0 0 0 gT













∈ Rs×s; b =













ż(τ0 + 0)
0
0
0

q∗T ż(τ0 + 0)













∈ Rs; (66)

A1 =
(

f(t∗j), j ∈ J(∗) \ J(0)

)

, A0 = (f(t∗j), j ∈ J(0)),

D1 = diag
(

q∗T ḟ(t∗j), j ∈ J(∗) \ J(0)

)

, A∗ =
(

ḟ(t∗j), j ∈ J(0)

)

, (67)

D0 = diag(q∗T f̈(t∗j), j ∈ J(0)), Ā0 = A0diag(2αj, j ∈ J(0));

Ā1 = A1diag(2αj, j ∈ J(∗) \ J(0)), a = αp̄f(t∗∗), g = z(τ0),

the numbers αj, j ∈ J∗, are defined according to (47).

To apply Theorem 1 to the system (34) with F (y, τ) defined by (65), we will need some
lemmas, that are formulated below.

Consider a matrix L of the form (66) with the blocks

A1 ∈ Rn×l, A0 ∈ Rn×m, A∗ = (A∗j , j = 1, . . . , m) ∈ Rn×m,

A∗j ∈ Rn, a ∈ Rn, g ∈ Rn, D1 = diag(d1
j , j = 1, . . . , l), D0 = diag(d0

j , j = 1, . . . , m),

Ā0 = A0diag(α0
j , j = 1, . . . , m); Ā1 = A1diag(α1

j , j = 1, . . . , l), s = l + 2m+ 1 + n.

Suppose that the following conditions are fulfilled
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1. d1
jα

1
j > 0, j = 1, . . . , l; d0

jα
0
j > 0, j = 1, . . . , m;

2. rank A0 = m, rank (A1, A0, a) = rank (A1, A0), rank (A1, A0, A∗, g) = n;

3. ∃q∗ ∈ Rn such that q∗TA1 = 0, q∗TA0 = 0, q∗Tg 6= 0.

Denote by

ϕ(i) ∈ Rs, i = 1, . . . , k; ψ(i) ∈ Rs, i = 1, . . . , k; (68)

bases of the spaces Ker L and Ker LT respectively.

Lemma 1 Let Conditions 1)-3) be true. Then the vectors (68) can be chosen as

ψ(1) = (q∗, 0, . . . , 0), ψ(i) = (ξ(i), 0, . . . , 0), i = 2, . . . , k; (69)

ϕ(i) = (ϕj(i), 1 ≤ j ≤ l +m; ∆ϕj(i), 1 ≤ j ≤ m;ϕ∗(i), ξ(i)), i = 1, . . . , k, (70)

where

ϕj(i) = 0, j = 1, . . . , l; ϕl+j(i) = −ξ
T (i)A∗j

d0
j

, ∆ϕj(i) = 0, j = 1, . . . , m;

ϕ∗(i) = 0, i = 2, . . . , k, (71)

ξ(i), i = 2, . . . , k, is a basis of the set Ker (A1, A0, g)
T , and ϕ(1) is some solution of the

system Lϕ(1) = 0 with the component ϕ∗(1) = 1.

Proof is given in Appendix.

Corollary 3 Let Assumption 1, condition (64) and the following conditions

rank
(

f(t∗j), j ∈ J(0)

)

= |J(0)|, rank
(

f(t∗j), j ∈ J(∗), ḟ(t∗j), j ∈ J(0), z(τ0)
)

= n (72)

be true. Then for the matrix (66) with the data (67), bases of the sets Ker L and Ker LT

can be constructed by the rules (69)-(71).

Proof. It is easy to check that under the assumptions of the Corollary the conditions
1)-3) are fulfilled with l = |J(∗) \ J(0)|, m = |J(0)|. �

Lemma 2 Let the conditions of Corollary 3 are fulfilled and q∗T ż(τ0 + 0) < 0 (and hence
p∗ ∈ J(∗)) and all components ∆ϕj(1), j ∈ J(0), of the vector ϕ(1) are positive (negative).
Then the system (6) has two solutions β+, β− (β+ = −β−) and

det ΦT
∗ S(β+) = − det ΦT

∗ S(β−) 6= 0. (73)

Proof is given in Appendix.

Corollary 4 If k = 0 then the statement of Lemma 2 is true without the additional
assumption about positivity (negativity) of all ∆ϕj(0), j ∈ J(0).
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Theorem 4 Let the conditions of Lemma 2 be true. Then there exist a number δ > 0
and two continuous s-vector-functions

y+(τ) = y+(τ0 + ε2) =
(

t̄+j (ε), j ∈ J(∗); ∆t
+
j (ε), j ∈ J(0), t

+∗(ε), q+(ε)
)

, ε ∈ [0, δ];

y−(τ) = y−(τ0 + ε2) =
(

t̄−j (ε), j ∈ J(∗); ∆t
−
j (ε), j ∈ J(0), t

−∗(ε), q−(ε)
)

, ε ∈ [0, δ]; (74)

with τ = τ0 + ε2 such that

F (y±(τ), τ) ≡ 0, τ ∈ [τ0, τ0 + δ2], y±(τ0) = y0 (75)

The functions (74) can be represented as follows

y±(τ) = y±(τ0 + ε2) = y0 + ε

k
∑

i=0

β±
i (ε)ϕ(i) + ε2v±(ε), ε ∈ [0, δ], (76)

where ϕ(i) ∈ Rs, i = 1, . . . , k, is the basis (70) of the space Ker L, β±(ε) = (β±
i (ε),

i = 1, . . . , k); v±(ε), ε ∈ [0, δ], are some continuous functions with β+(0) = β0, v+(0) = v0

and β−(0) = −β0, v−(0) = v0; (β0, v0) is solution to the system (23), (24), β0
1 > 0.

Proof follows from Corollaries 2 and 3, and Lemma 2. �
Theorem 4 yields, that τ0 is a bifurcation point for the system of equations (65). Due to
the Theorem 4 we may conclude that in order to make a right choice (52) of the sets (51)
one has to choose the sets that satisfy the assumptions of the theorem. Note, that the
conditions of the theorem are only necessary for the sets (52) to be correct. To guarantee
that the sets are correct we have to check the following inequality conditions for one of
the functions (74):

a) For τ = τ0 + ε2 ∈ E+(τ0), we check the inequalities

∆t+j (ε) ≥ 0, j ∈ J(0), t̄
+
p∗(ε) ≤ t+∗ (ε), (77)

(or ∆t−j (ε) ≥ 0, j ∈ J(0), t̄
−
p∗(ε) ≤ t−∗ (ε)). (78)

Conditions (77) guarantee, that the function

u0
τ (t) = (−1)jk, t ∈ [t+j (τ), t+j+1(τ)), j = 0, . . . , p̄, (79)

where

t+
m(j)(τ) = t̄+j (ε), j ∈ J(∗), t

+
m(j)+1(τ) = t̄+j (ε) + ∆t+j (ε), j ∈ J(0), (80)

t+p̄+1(τ) = t+∗(ε),
(

or the function

u0
τ(t) = (−1)jk, t ∈ [t−j (τ), t−j+1(τ)), j = 0, . . . , p̄, (81)

where

t−
m(j)(τ) = t̄−j (ε), j ∈ J(∗), t

−
m(j)+1(τ) = t̄−j (ε) + ∆t−j (ε), j ∈ J(0), (82)

t−p̄+1(τ) = t−∗(ε),
)

is an admissible control for the problem TO(τ) with τ = τ0 + ε2.
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b) For τ = τ0 + ε2 ∈ E+(τ0), we check the inequalities

(−1)jσ(q+(ε), t) ≥ 0, t ∈ [t+j (τ), t+j+1(τ)), j = 0, . . . , p̄, (83)

(

or

(−1)jσ(q−(ε), t) ≥ 0, t ∈ [t−j (τ), t−j+1(τ)), j = 0, . . . , p̄
)

. (84)

If the inequalities (83) (or (84)) hold then the conditions of maximum principle are
fulfilled and hence the admissible control (79) (or (81)) is optimal in the problem
TO(τ), τ = τ0 + ε2 ∈ E+(τ0).

Having the presentation (76), one can check the inequalities (77), (83) (or (78), (84))
using the vectors (70), (71) and the solution

(β0, v0)
(

or (−β0, v0)
)

with β0
1 > 0 (85)

to the system (23), (24).

Let us give some sufficient conditions for the inequalities (77), (83) to be true.

Theorem 5 Let conditions of Lemma 2 hold (namely, all components ∆ϕj(1), j ∈ J(0),
of the vector ϕ(1) are positive) and

ϕp∗(1) < 1, ∆∗
j := αj ξ̄

∗Tf(t∗j) < 0, j ∈ J∗ \ J(∗), (86)

where ξ̄∗ =
k
∑

i=1

β0
i ξ(i), β

0 = (β0
i , i = 1, . . . , k) is a solution to the system (6) with β0

1 > 0,

constructed by the vectors (69)-(71) (see also the system (A.23), (A.24) in Appendix).
Then the relations (77), (83) hold and the control (79) is optimal in the problem TO(τ)
for τ ∈ E+(τ0). The following expansions are true for the defining elements

tm(j)+1(τ0 + ∆τ) − tm(j)(τ0 + ∆τ) = ∆ϕj(1)s∗
√

∆τ + o(
√

∆τ ) if j ∈ J(0); (87)

tm(j)(τ0 + ∆τ) = t∗j + ϕj(1)s∗
√

∆τ + o(
√

∆τ ) if j ∈ J(∗) \ J(0);

t∗(τ0 + ∆τ) = t∗∗ + ϕ∗(1)s∗
√

∆τ + o(
√

∆τ);

q(τ) = q∗ + ξ̄∗
√

∆τ + o(
√

∆τ ),

where s∗ = β+
1 > 0.

Proof. It follows from (70), (71) and (74), (76) that

∆t+j (ε) = ε∆ϕj(1)β+
1 (ε) + ε2∆µj(ε), j ∈ J(0),

t̄+p∗(ε) = t∗∗ + εϕp∗(1)β+
1 (ε) + ε2µp∗(ε), (88)

t+∗ (ε) = t∗∗ + εϕ∗(1)β+
1 (ε) + ε2µ∗(ε),

q+(ε) = q∗ + ε

k
∑

i=1

β+
i (ε)ξ(i) + ε2ξ0(ε), (89)
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where

β+(ε) = (β+
i (ε), i = 1, . . . , k),

v+(ε) = (µj(ε), j ∈ J(∗),∆µj(ε), j ∈ J(0), µ∗(ε), ξ
0(ε)) (90)

are the functions as in Theorem 4 with β+
1 (0) = β0

1 > 0 (see proof of Lemma 2).

The relations (77) follow from (88) and the assumption that

∆ϕj(1) > 0, j ∈ J(0), ϕp∗(1) < 1 = ϕ∗(1).

Consequently, the control (79) is admissible in the problem TO(τ) with τ = τ0 + ε2.

Let us prove the relations (83). Since Assumption 1 and the latter equations from (63)
are true, it is enough to show that the relations

αjσ(q+(ε), t̃j(ε)) < 0, j ∈ J∗ \ J(∗), (91)

are true, where the functions

t̃j(ε), ε ∈ [0, δ], j ∈ J∗ \ J(∗), (92)

are given implicitly by

∂σ(q+(ε), t̃j(ε))

∂t
≡ 0, ε ∈ [0, δ], t̃j(+0) = t∗j , j ∈ J∗ \ J(∗). (93)

Indeed, by construction

σ(q+(+0), t̃j(+0)) = 0,
∂σ(q+(+0), t̃j(+0))

∂t
= 0, j ∈ J∗ \ J(∗). (94)

Taking into account (89), (93), let us calculate

αj

dσ(q+(ε), t̃j(ε))

dε

∣

∣

∣

∣

ε=+0

= αj

( k
∑

i=1

β+
i (0)ξT (i)f(t∗j) +

∂σ(q+(+0), t̃j(+0))

∂t

dt̃j(+0)

dε

)

= ∆∗
j < 0, j ∈ J∗ \ J(∗). (95)

To finish the proof we note that the relations (91) follow from (94) and (95), and the
expansions (87) follow from (70), (71) and (74), (76). �

Theorem 6 Let Assumption 1 be fulfilled and q∗Tf(t∗∗) = 0, q∗T ż(τ0 + 0) < 0. Let the
sets J(0) and J(∗) (see(52)) be such that

rank
(

f(t∗j), j ∈ J(0)

)

= |J(0)|, rank
(

f(t∗j), j ∈ J(∗), z(τ0)
)

= n, (96)

∆ϕj(1) > 0 or ∆ϕj(1) = 0 and ∆µj > 0, for j ∈ J(0), (97)

∆∗
j := αjξ

T (1)f(t∗j) < 0 or ∆∗
j = 0 and δ∗j := αjξ

0T
f(t∗j) < 0, for j ∈ J∗ \ J(∗), (98)
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where ϕ(1) = (ϕj(1), j ∈ J(∗),∆ϕj(1), j ∈ J(0), ϕ∗(1) = 1, ξ(1)) ∈ Ker L; β0 = β0
1 > 0,

v0 = (µj, j ∈ J(∗),∆µj, j ∈ J(0), µ∗, ξ
0) is a solution to the system (23) (24). Then the

relations (77), (83) take place and the control (79) is optimal in the problem TO(τ) for
τ ∈ E+(τ0). The following expansions are true for the defining elements

ti(j)+1(τ0 + ∆τ) − ti(j)(τ0 + ∆τ) = ∆ϕj(1)s∗
√

∆τ + ∆µj∆τ + o(∆τ), j ∈ J(0);

ti(j)(τ0 + ∆τ) = t∗j + ϕj(1)s∗
√

∆τ + µj∆τ + o(∆τ), j ∈ J(∗) \ J(0); (99)

t∗(τ0 + ∆τ) = t∗∗ + ϕ∗(1)s∗
√

∆τ + µ∗∆τ + o(∆τ);

q(τ) = q∗ + s∗ξ(1)
√

∆τ + ξ0∆τ + o(∆τ),

where ∆τ = τ − τ0 > 0, s∗ = β0
1 > 0.

Proof. First of all let us note that (96) leads to k := dim Ker L = 1. Hence, the relations
(77) follow from (88) with k = 1 and (97). Consequently, the control (79) is admissible
in the problem TO(τ) with τ = τ0 + ε2.

Now let us prove the relations (83). Similarly to the proof of Theorem 5, it is enough
to show that the relations (91) are true, where the functions t̃j(ε) < 0, ε ∈ [0, δ0], j ∈
J∗ \ J(∗), are given implicitly by (93).

Indeed, as before, the relations (94) are true and

αj

dσ(q+(ε), t̃j(ε))

dε

∣

∣

∣

∣

ε=+0

= αj

[(

β+
1 (ε)ξ(1) + εβ̇+

1 (ε)ξ(1) + 2εξ0(ε) + ε2ξ̇0(ε)

)T

f(t̃j(ε))

+q+(ε)ḟ(t̃j(ε))
dt̃j(ε)

dε

]∣

∣

∣

∣

ε=+0

= ∆∗
j ≤ 0, j ∈ J∗ \ J(∗). (100)

For j ∈ {j ∈ J∗ \ J(∗) : ∆∗
j = 0}, let us calculate

αj

d2σ(q+(ε), t̃j(ε))

dε2

∣

∣

∣

∣

ε=+0

= αj

[(

2β̇+
1 (+0)ξ(1) + 2ξ0(+0)

)T

f(t̃j(+0))

+q̇T (+0)ḟ(t̃j(+0))
dt̃j(+0)

dε
+ qT (+0)f̈(t̃j(+0))

(dt̃j(+0)

dε

)2
]

= 2αjξ
0T
f(t∗j) = 2δ∗j < 0. (101)

Here we have taken into account (89), (94) and the relations

q̇+T (ε)ḟ(t̃j(ε)) + q+T (ε)f̈(t̃j(ε))
dt̃j(ε)

dε
≡ 0, ε ∈ [0, δ],

which follow from (93).

The relations (91) follow from (94), (100) and (101). The expansions (99) are true due to
(70), (71) and (74), (76). �

The assumptions made in the beginning of Subsection 3.1 guarantee the existence of a
collection of sets (52) satisfying the conditions of Theorem 4 and the inequalities (77),
(83) (or (78), (84)). Having the sets (52), one may construct optimal solutions to the
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problems TO(τ), τ = τ0 + ε2 ∈ E+(τ0) by (79), (80) (in case the relations (77), (83)
take place) or by (81), (82) (in case the relations (77), (83) take place). Here t̄±j (ε), j ∈
J(∗), ∆t±j (ε), j ∈ J(0), t

∗±(ε), q±(ε) are the components of the corresponding s−vector-
function (74) satisfying (75).

Remark 2 Above we presented some rules for determining a collection of appropriate
sets (52) by enumeration. It is possible to formulate rules which allow us to determine
the appropriate sets uniquely without enumeration. For normal time-optimal problems it
is done in [8]. For problems under consideration (abnormal problems) the rules are under
construction and will be published separately.
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5 Appendix

Proof of Lemma 1.

Let ξ(i), i = 2, . . . , k, be a basis of the set Ker (A1, A0, g)
T . Consequently

the vectors ξ(i), i = 2, . . . , k, are linearly independent, (A.1)

ξT (i)(A1, A0, g) = 0, i = 2, . . . , k; rank (A1, A0, g) = n− (k − 1). (A.2)

It follows from 3) that rank (A1, A0, g) = rank (A1, A0) + 1. Hence,

rank (A1, A0, a) = rank (A1, A0, g) − 1 (A.3)

and a basis of the set Ker (A1, A0, a)
T consists of k vectors. By construction (here we

take into account that rank (A1, A0, a) = rank (A1, A0)) we have

ξT (i)(A1, A0, a) = 0, i = 2, . . . , k; q∗T (A1, A0, a) = 0. (A.4)

Let us show that

the vectors ξ(i), i = 2, . . . , k, and q∗ are linearly independent. (A.5)

Suppose the contrary. Then, taking into account (A.1) we get q∗ =
k
∑

i=2

ξ(i)µi, with some

µi, i = 2, . . . , k. Hence, due to (A.2) we have q∗Tg =
k

∑

i=2

ξ(i)Tgµi = 0. However, this

contradicts 3). Consequently, relations (A.5) are true. The relations (A.1)-(A.5) mean,
that the vectors ξ(i), i = 2, . . . , k, and q∗ form a basis of the set Ker (A1, A0, a)

T . Thus,
we may conclude that the vectors (69) should be included into a basis of the set Ker LT .
Let us show that the vectors (69) form a (complete) basis of the set Ker LT . Suppose
again the contrary. Then there exists a vector

(x, y, w, ω, α), (y, w, ω, α) 6= 0, (A.6)

x ∈ Rn, y ∈ Rl, w ∈ Rm, ω ∈ Rm, α ∈ R,
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such that

xT Ā1 + yT D̄1 = 0, (A.7)

ωTD0 = 0 (A.8)

xT Ā0 + 1
2
ωTD0 = 0, (A.9)

xTa = 0, (A.10)

yT ĀT
1 + wTAT

0 + ωTAT
∗ + αgT = 0, (A.11)

where the matrix D̄1 = diag(d1
jα

1
j , j = 1, . . . , l) is positive definite.

The relation (A.8) yields that ω = 0 and (A.9) results in xT Ā0 = xTA0 = 0. Multiplying
(A.7) and (A.11) by y and x from the right respectively, and taking into account that
ω = 0, xTA0 = 0, we get

xT Ā1 + yT D̄1y = 0, yT ĀT
1 x + αgTx = 0.

Consequently,

αgTx = yT D̄1y. (A.12)

Multiplying (A.11) by q∗ from the right, we get αgT q∗ = 0. Due to the condition 3) the
latter equality is true only if α = 0.

The equalities α = 0 and (A.12) lead to y = 0. Under the relations ω = 0, y = 0, α = 0
the equation (A.11) takes the form wTAT

0 = 0. Due to the assumption rank A0 = m, the
equation wTAT

0 = 0 yields w = 0. Thus, we get y = 0, w = 0, ω = 0, and α = 0. However,
this contradicts to (A.6). Consequently, there is no vector (A.6), satisfying the system
(A.7)-(A.11). This means that the vectors (69) form a basis of the set Ker LT .

Let us prove the second part of the Lemma concerning a basis of Ker L. By construction

the vectors ϕ(i), i = 2, . . . , k, are linearly independent, (A.13)

Lϕ(i) = 0, i = 2, . . . , k.

It has been shown above that dim KerLT = k, hence, clearly, dim KerL = k too. Then,
the relations (69), (70),(A.13) imply that there exists one more vector ϕ(1) satisfying the
properties

the vectors ϕ(i), i = 2, . . . , k, and ϕ(1) are linearly independent, (A.14)

Lϕ(1) = 0. (A.15)

Let the vector ϕ(1) have the form

ϕ(1) = (ϕ1(1), ϕ0(1),∆ϕ(1), ϕ∗(1), ξ(1))

with ϕ1(1) = (ϕj(1), j = 1, . . . , l), ϕ0(1) = (ϕl+j(1), j = 1, . . . , m), ∆ϕ(1) = (∆ϕj(1), j =
1, . . . , m), ϕ∗(1) ∈ R, ξ(1) ∈ Rn. Condition (A.14) yields that ϕ(1) 6= 0.

Suppose, that ϕ∗(1) = 0. Then relations (A.15) can be rewritten as follows
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Ā1ϕ
1(1) + Ā0∆ϕ(1) = 0, (A.16)

D̄1ϕ
1(1) + ĀT

1 ξ(1) = 0, (A.17)

ĀT
0 ξ(1) = 0, (A.18)

D̄0ϕ
0(1) + 1

2
D̄0∆ϕ(1) + ĀT

∗ ξ(1) = 0, (A.19)

gT ξ(1) = 0, (A.20)

where D̄0 = diag (d0
jα

0
j , j = 1, . . . , m)>̇0, Ā∗ = A∗diag (α0

j , j = 1, . . . , m), Ā0 =
A0diag (α0

j , j = 1, . . . , m).

Multiplying (A.16) and (A.17) by ξT (1) and ϕ1T
(1) from the left respectively and taking

into account (A.18) results in ϕ1T
(1)D̄1ϕ

1(1) = 0. This yields ϕ1(1) = 0. Then (A.16)
takes the form Ā0∆ϕ(1) = 0. Due to the assumption 2) the latter equality leads to
∆ϕ(1) = 0. Hence, the equations (A.17)-(A.20) can be rewritten as

ĀT
1 ξ(1) = 0, ĀT

0 ξ(1) = 0, D̄0ϕ
0(1) + ĀT

∗ ξ(1) = 0, gT ξ(1) = 0. (A.21)

It follows from (A.21) that ξ(1) ∈ Ker (A1, A0, g)
T and, hence, ξ(1) =

k
∑

i=2

ξ(i)αi.

Suppose, that ϕ0(1) 6= 0. Consequently,

0 6= ϕ0(1) = −D̄−1
0 AT

∗ ξ(1) = −D̄−1
0 AT

∗

k
∑

i=2

ξ(i)αi =
k
∑

i=2

ϕ0(i)αi,

(αi, i = 2, . . . , k) 6= 0.

Here ϕ0(i) = (ϕl+j(i), j = 1, . . . , m). However, this contradicts (A.14).

Now let us suppose that ϕ0(1) = 0. Then, (A.21) results in

ĀT
1 ξ(1) = 0, ĀT

0 ξ(1) = 0, ĀT
∗ ξ(1) = 0, gT ξ(1) = 0. (A.22)

Due to the second condition from 2) the relations (A.22) yield ξ(1) = 0. Thus, we get

ϕ(1) = (ϕ1(1) = 0, ϕ0(1) = 0,∆ϕ(1) = 0, ϕ∗(1) = 0, ξ(1) = 0).

However, this contradicts to the condition ϕ(1) 6= 0. Consequently, our assumption that
a vector ϕ(1) satisfying relations (A.14), (A.15) has the component ϕ∗(1) equal to zero is
wrong.

Summing up, we have proved that there is a vector ϕ(1) satisfying the relations (A.14),
(A.15) with the component ϕ∗(1) 6= 0. Without loss of generality we may consider that
ϕ∗(1) = 1. Lemma is proved. �

Proof of Lemma 2. Taking into account the properties of the vectors ψ(i), ϕ(i), i =
1, . . . , k, (see Lemma 1 and Corollary 3), we can rewrite the system (6) in the form

q∗T [(β1)
2f∗ + β1

∑

j∈J(0)

k
∑

i=2

2αj ḟ(t∗j)∆ϕj(1)ϕj(i)βi + ż(τ0 + 0)] = 0, (A.23)
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ξT (i)[(β1)
2f∗ + β1

∑

j∈J(0)

k
∑

i=2

2αjḟ(t∗j)∆ϕj(1)ϕj(i)βi + ż(τ0 + 0)] = 0, (A.24)

i = 2, . . . , k,

where

f∗ =
∑

j∈J(∗)\J(0)

αj ḟ(t∗j)(ϕj(1))2 +
∑

j∈J(0)

αj ḟ(t∗j)(2ϕj(1)∆ϕj(1) + ∆ϕ2
j(1)) (A.25)

+αp̄ḟ(t∗∗)ϕ
2
∗(1)/2.

Let us show that q∗Tf∗ > 0. Using (A.25) and the fact that by construction

q∗T ḟ(t∗j) = 0, j ∈ J(0), (A.26)

we obtain

2q∗Tf∗ =
∑

j∈J(∗)\J(0)

2αjq
∗T ḟ(t∗j)(ϕj(1))2 + αp̄q

∗T ḟ(t∗∗). (A.27)

Since Lϕ(1) = 0, then

q∗T ḟ(t∗j)ϕj(1) + ξT (1)f(t∗j) = 0, j ∈ J(∗) \ J(0), (A.28)

ξT (1)f(t∗j) = 0, j ∈ J(0), (A.29)
∑

j∈J(∗)\J(0)

2αjf(t∗j)ϕj(1) +
∑

j∈J(0)

2αjf(t∗j)∆ϕj(1) + αp̄f(t∗∗) = 0. (A.30)

Consequently, the vector µ̃ = (µ̃j = ϕj(1), j ∈ J(∗) \ J(0), µ̃j = ∆ϕj(1), j ∈ J(0)) is a
solution of the following problem

min
∑

j∈J(∗)

djµ
2
j , s.t.

∑

j∈J(∗)

2αjf(t∗j)µj = −αp̄f(t∗∗). (A.31)

By construction p∗ ∈ J(∗)\J(0), t
∗
p∗ = t∗∗, consequently, the vector µ̄ = (µ̄j = 0, j ∈ J(∗)\p∗,

µ̄p∗ = 1/2) is feasible in problem (A.31). Thus

∑

j∈J(∗)

djµ̃
2
j =

∑

j∈J(∗)\J(0)

αjq
∗T ḟ(t∗j)(ϕj(1))2 ≤ 1/4dp∗ =

1

4
αp̄q

∗T ḟ(t∗∗). (A.32)

It follows from (A.27), (A.32), and the inequality αp̄q
∗T ḟ(t∗∗) > 0 that

q∗Tf∗ > 0. (A.33)

We consider now the system (A.23), (A.24). Using (A.26) we can rewrite the equation
(A.23)

(β1)
2q∗Tf∗ + q∗T ż(τ0 + 0) = 0 or (β1)

2 = −q∗T ż(τ0 + 0)/q∗Tf∗.

By assumption, q∗T ż(τ0 + 0) < 0, consequently, ε∗ := −q∗T ż(τ0 + 0)/q∗Tf∗ > 0 and the
parameter β1 can take one of two values

β+
1 =

√
ε∗, β

−
1 = −√

ε∗. (A.34)

26



Thus, the parameter β1 is defined. To determine the other parameters βi, i = 2, . . . , k, we
have the system of (k− 1) equations (A.24) with (k− 1) unknowns. Using the properties
of the vectors ϕ(i), i = 2, . . . , k, we can rewrite the system (A.24) as follows

PT [(β1)
2f∗ + ż(τ0 + 0) + 2β1A∗DA

T
∗Pβ̄] = 0, (A.35)

where

P = (ξ(i), i = 2, . . . , k), β̄ = (βi, i = 2, . . . , k),

D = diag
(αj∆ϕj(1)

q∗T f̈(t∗j)
, j ∈ J(0)

)

. (A.36)

Under the assumption ∆ϕj(1) > 0, j ∈ J(0), (or ∆ϕj(1) < 0, j ∈ J(0)) it is easy to verify
that D>̇0 (or D<̇0) and, hence,

detPTA∗DA
T
∗P 6= 0. (A.37)

Thus, for any β1 the system (A.35) has a unique solution with respect to β̄. It follows
from (A.34), (A.35) that there are two solutions β+ = (β+

i , i = 1, . . . , k), β− = (β−
i , i =

1, . . . , k) of system (6), moreover β+ = −β−.

Let us prove now the relations (73). Again suppose the contrary: the matrix ΦT
∗ S(β+) is

singular. Then there is a vector γ = (γi, i = 1, . . . , k), γ 6= 0, such that

Φ∗
TS(β+)γ = 0. (A.38)

Using again the features of the vectors ψ(i), ϕ(i), i = 1, . . . , k, we can rewrite the last
system in the form

q∗T η = 0, PT η = 0, (A.39)

where P = (ξ(i), i = 2, . . . , k), γ̄ = (γi, i = 2, . . . , k),

η = γ1f∗ + γ1

∑

j∈J(0)

k
∑

i=2

2αjḟ(t∗j)∆ϕj(1)ϕj(i)β
+
i − 2β+

1 A∗DA
T
∗P γ̄.

As it has been mentioned before, by construction q∗T ḟ(t∗j) = 0, j ∈ J(0); q
∗Tf∗ > 0. Hence,

the first equation from (A.39) takes the form γ1q
∗Tf∗ = 0, implying γ1 = 0. Thus, the last

equation from (A.39) takes the form

2β+
1 PTA∗DA

T
∗P γ̄ = 0. (A.40)

Relations (A.37), (A.40) yield that γ̄ = 0. Thus, γ = (γ1, γ̄) = 0, which contradicts to
the assumption that γ 6= 0. This proves the relation (73) and finishes the proof of the
Lemma.

�
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