MATHEMATICAL ANALYSIS OF THE
TIME-DEPENDENT MOTION OF A FLUID THROUGH
A TUBE WITH FLEXIBLE WALLS

C. SURULESCU

ABSTRACT. We study the motion of a Stokes fluid through an
elastic cylinder. The fluid is driven by a small time-dependent
pressure drop between the outflow and the inflow ends of the tube.
We consider small displacements of the elastic structure, thus the
domains involved are not moving in time. We prove existence
and uniqueness of a weak solution for this three dimensional fluid-
elastic structure interaction problem.

1. INTRODUCTION

We consider a time-dependent fluid-structure interaction problem in
3D: a viscous incompressible fluid flows through an elastic tube with
thickness. The flow is driven by the difference of the pressures at the
ends of the tube (as in Jager & Mikeli¢ [JAMi98], Conca, Murat &
Pironneau [CMP94] or Cani¢ & Mikeli¢ [CaMi03]). We suppose that
the pressure drop between the inflow and the outflow ends of the tube
is small and that the viscous effects of the fluid are strongly predo-
minant when compared to the inertial ones. The displacements of the
elastic wall are assumed to be small, so that we can consider the fluid-
structure interface (and thus the involved domains) as being fixed. We
thus model the fluid by the Stokes equations, the behavior of the elastic
structure is described by the Lamé equations for linearized elasticity
and we deal with cylindrical domains. Concerning the boundary con-
ditions, the coupling is expressed by the equilibrium of surface forces
and by the continuity of velocities at the interface. The elastic wall
is considered to be clamped on its entire boundary, excepting the in-
terface between the two media and boundary conditions involving the
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pressure are taken for the fluid at the ends of the tube. These are non-
standard boundary conditions for a fluid flow (for other references on
this type of conditions, though in different contexts, see e.g., [ABC02],
[Bern02] and [Bern04], [Luka97] and [Luka98]). We show the existence
of a unique weak solution to the coupled problem described above.

Fluid-structure interaction problems arise in many practical applica-
tions and are often encountered in literature. One of the most popular
topics is haemodynamics. The problem we study here seems to be a
reasonable model for blood flow in smaller arteries (for the character-
istics of blood flow in this type of vessels see e.g., [Fung96]).

In the following we give a short overview of some related works on
mathematical analysis of fluid-structure interaction problems. Start-
ing with the stationary case, we refer to [Gran98] and [BCCV04] for
a 2D fluid interacting with a 1D elastic structure and to [Gran02],
[Suru04a), [Suru04b] and [Suru04c] for 3D models. In the time de-
pendent case we distinguish between models dealing with cylindrical
domains and models where the domains are moving in time. For the
former ones see for instance [CaMi03] (handling a problem similar to
the one considered here, however in a 2D/1D setting). Concerning the
latter case, in [CDEGO2] is studied the interaction between a Navier-
Stokes fluid contained in a cavity with an elastic plate as cover and
having the rest of the boundary fixed and rigid (3D/2D problem). In
[Suru04c| similar problems are treated, namely a Navier-Stokes fluid
flowing through a box with an elastic cover and having inflow and
outflow sections (with boundary conditions involving the pressure), re-
spectively a Navier-Stokes fluid moving in a cylinder bounded by a thin
elastic shell and with prescribed velocities at the tube’s ends (both in
the 3D/2D setting). Other time-dependent fluid-structure interaction
problems with time moving domains were considered for instance by
Errate, Esteban and Maday [EEM94] (1D fluid, 1D structure), Litvinov
[Litv96], Prouse [Prou71] and Beirao da Veiga [BdV04] (2D fluid, 1D
structure) or by Desjardins, Esteban et al. [DEGLO01] for the 3D case
of a fluid interacting with an elastic structure having a finite number of
elastic modes. Rigid bodies interacting with a fluid are studied for in-
stance by Desjardins and Esteban [DeEs99] and [DeEs00] or Takahashi
[Taka03].

2. PROBLEM SETTING

Let ; := D(0,7) x (0,L) C R® the fluid domain, where D(0,r) is
the disk centered at 0 and having radius r and L denotes the length
of the cylinder. The domain occupied by the elastic structure is 2, :=
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(D(0,R) — D(0,7)) x (0, L), with R > r. Together, these subdomains
form the domain € := Qf U ;. Let 'y, denote the fluid-structure
interface, I'fenas i (K =1,2) be the fluid boundaries at the ends of the
tube, ', be the exterior lateral boundary of the elastic cylinder and
Lsends = U's ends,i U ' enas,2 be its boundaries at the tube’s ends.

As we said in the previous section, we characterise the elastic struc-
ture with the aid of the Lamé system for linearized elasticity:

Oyu — div (Atrace e(u)I + 2pe(u)) =g in (0,7) x Q.
This can also be written in the equivalent form:
(1) Ogu— A+ p)V(divu) —2uV -e(u) =g in (0,7) x Q.

Here A\, p > 0 are the Lamé constants for the St. Venant-Kirchhoff
elastic material we consider, e(u) = 3(Vu + Vu') is Green’s linear
strain tensor and g is the given loading force.

The elastic structure is supposed to be clamped on its entire bound-
ary, excepting the interface with the fluid, thus to (1) we add the
boundary conditions:

(2) u=0on (0,7) x (Fegt U enas)

and we also have to take some initial conditions for the displacement
u and its velocity:

(3) u(0) =0, Gu(0) =ug in €4

(we assume here for simplicity of further writing that there is no initial
displacement, however there is no problem with handling the case with

u(0) # 0).
For the Stokes flow we consider the system:
ov—vAv+Vp = fin (0,T) x Q;
divv = 0in (0,T) x Qy
(4) vxn = 0on (0,7) X I'fends
p = 0on (0,T) % I'fepgsn
p = P(t)on (0,T) x I'fengso
v(0) = wvpin Qy,
where v stands for the velocity of the fluid, p for the pressure, f is a

given body force and P(t) is the time dependent pressure drop between
the inflow and outflow sections.
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We also have to add the coupling conditions, illustrating the equilib-
rium of surface forces and the continuity of velocities at the interface:

(Atrace e(u)I+2pe(u)) -ny, = p-ny—v(V xv)xnson (0,7) x Iy,
(5) ou = von (0,7) x Iy,

Remark 2.1.

e We will take the pressure drop P(t) in (4) as being as regular
as we need in all our further considerations.

e Here we consider the case of a fized fluid-structure interface.
This can be done when assuming that the displacements of the
structure (thus of the interface) are small enough; this is not
the case for large displacements. However, for the viscous fluid
sticking to the interface we could not consider a homogeneous
Dirichlet condition , since even if the displacements are small,
there is no guarantee that their velocity is small, too.

Now, having set the equations, the problem is the following:

Problem 1. Determine a solution (u,v) in (0,7) x Q of the system
(1)-(3) and (4), together with the coupling conditions (5).

3. WEAK FORMULATION AND MAIN RESULT

In this section we give the weak formulation of the coupled problem
and state the main result.
We consider the following function spaces:

V:i={peD(Q) : dive =0in Qy,
exn=0onT}eu, @ =0o0n TeUT;enast

H(Q) _ V(LQ(Q),(.,.)f,S), V(Q) _ VHI(Q),

Vy={veH' (Qy) : divv=0inQ;, vxn=0on e}
We denote by (€, ¢);,s the L?-inner product
(ga (P)f,s = (ga "P)Qf + (5: ‘P)QS, v&: 12 € LQ(Q)

The norm in L?(Q) is equivalent to the norm generated by this inner

product.
Assume now that
(6) g € L*(0,T;L*(Q,)) and f € L*(0,T;L*(Qy)),

Vo € Vf, g € H(l),FemUF (Qs) with vy = ug; on Ffs-

s,ends
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One can prove (like in e.g., [CMP94], see also [GiRa86] ch.I, S.3 )
that the following coercivity condition involving the curl of the fluid’s
velocity is satisfied:

(7) 3Cur >0 : Vv eL?0,T;Vy), |V x v|522f > Ccml||v||522f.

A weak formulation of problem (1)-(5) is obtained by testing the
equations for the fluid and those for the structure by ¢ € V(). The
weak problem obtained is the following:

Problem 2. Find (u,v) € L*(0,T;Hgp, . r
such that

®) (@ 9o, + (v, 9)a,) +alu, @) + H(T XV, V x @),

(Qs)) X L2(07 T Vf)

s,ends

— (& @)a, + (£, 0)a, — / P(t)gs, Vo € V(Q),

Ff,ends,Z

where a(u, @) is the continuous, bilinear form (see [Ciar88]):

a(u, @) := Mdiv u, div ¢)o, + 2u(e(u), e(¢))e,
t
ou(t =0) =ug, v(t=0)=vq and /v(s)ds =u(t) a.e. t on Ty,
0

Definition 3.1. (u,v) € L*(0,7;Hgp, o, . () x L*(0,T;Vy)
with u' € L2(0,T;L*(Qy)), u”’ € L*0,T;H'(Qy)) and with v' €
L%(0,T; L2(S2y)) is called a weak solution of Problem 1 if for all ¢ €

V() the variational formulation in (8) is satisfied in the sense of dis-
tributions (in D'((0,T))).

Next, as in [DEGLO1] we define a global velocity, together with its
corresponding initial condition and a global exterior force. This will
allow us to treat the problem as a whole, unlikely in e.g., [BAV04],
[Gran02] or [Suru04a], [Suru04b], where it was splitted in the two sub-
problems (one for the fluid and one for the elastic structure), each of
them being handled separately and eventually realising the coupling by
a fixed-point procedure.

With the following notations (xq,, respectively xq ; stand for the
characteristic functions of Q, respectively €2):

w = uxq, + VXo,;, Wo = UpXa, + VoXo, and G := gxo, + fxa;,

we obtain the problem (equivalent to Problem 2):
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Problem 3. Find w such that
t

©) < Owp g, +al [ wls)ds, @) + (T x .V x @),
0

= (G(1), @) o / P(t)ps, Yoo € V(Q) ace. t € 0,7

Ff,ends,Q
(10) w(0) = wo in V'(Q)

and
t t

(11) /w(s)xgsds: /w(s)ngds on Iy, a.e. t,

where V'(Q) is the dual space of V().

We have denoted by < .,. >y, the duality pairing between V'(2)
and V(€2), that is generated from the inner product (.,.)s,. Having in
mind the assumptions made on the data of the problem, w, as defined
above satisfies wy € V(€2) and the initial condition on w is equivalent
to

< w(0), @ > = (W0, @) 1nr Vo € V().
Remark 3.1. Choosing condition (11) instead of
w(t)xa, = w(t)xa, on Ly, ae. t
was 1mposed by the reqularity we get in virtue of the a priori estimates
(see Sections 4.2 and 4.3 below).

We can now state the main result:

Theorem 3.2. Under the assumptions in (6), there exists a unique
weak solution of Problem 1.

4. PROOF OF THE EXISTENCE
4.1. Galerkin approximations.

For the proof we use the method of Galerkin (like in Evans
[Evan98], Section 7.2., where it is applied to general linear second or-
der hyperbolic problems with Dirichlet homogeneous boundary condi-
tions). This means that we build a weak solution of the problem by first
constructing solutions of certain finite dimensional approximations and
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then passing to limits. We therefore take the functions wy = wy(x)
(k=1,2,...) such that

(12) {w¢}x is a basis of V().

We take {wy}, to be the complete set of eigenfunctions of the eigen-
value problem

we V() : (W, 0))1s = alw, @)1 Voo € V(Q),

where ((w,®))ss := (VX W,V X @)a, + (Vw, V), and also as-
sume that {w;};—1 o is orthonormalized with this H'(Q)-inner pro-
duct ((.,.))s,s- Moreover, observe that {wy}, is orthogonal w.r.t. the
L*-inner product (.,.)y,s.

Now fix a positive integer m and write

(13) wp(t) == Z Chm (1) Wy,

where the coefficients ¢, (t) (0 <t < T, k=1,...,m) are taken such
that

(14) (W (0), wi)r,s = (wo, Wk) 1,

be satisfied.
The Galerkin approximation corresponding to (9) writes (0 < ¢ < T,
k=1,..,m):

t

(Orwm(t), Wi) s + a(/ W (8)ds, wi) + V(V X wp(t),V X Wi)a,

(15) — (G(t), We)je — / P(t)wes.

I‘f,ends,2

The compatibility condition (11) is clearly satisfied for the Galerkin
approximation defined in (13), i.e. we have

t t

(16) /wm(s)xgsds= /wm(s)ngds on Iy, ae. t.
0 0
Now denoting the right hand side in (15) by Fj(t) observe that the

system (14), (15) can be written in the form of a linear ODE system
of first order for the Galerkin coeflicients ¢y, (t) and for di,(t) :=
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m
(Wi, Wi) G () + v > (VX Wi, V X Wi)a, Cim(t)
=1 =1

[]="

(17) +Za(wlawk)dlm(t) = Fi(1),

=1

dy () =cm(t), 1=1,...,m

and with the initial conditions
m

Z(Wlawk)f,sclm(o) = (wo, Wk)s,s)
=1
dm(0) = 0, 1=1,...,m.

By the classical theory of this kind of systems and using the proper-
ties of {wy, } it follows that there exists a unique solution (i, . - - , Crm,
dimy -+ s Q) € CY((0,T)) of (17) with the conditions above. This
leads to the existence of a unique solution w,, for the system (15)
together with the compatibility condition (16).

4.2. Energy estimates.

We intend to pass to the limit with m — oo in (15) and for this
we need some estimates that should be uniform in m. These are given
by the following

Proposition 4.1. There exists a constant C > 0 such that

t
1) sup (lwn(@)l, + 1 [ wn(s)dslfoen)
0

0<t<T

+||wm||i2(0,T;H1(Qf)) + ”w;n”i?(O,T;V’(Q))

< C(“G”%P(O,T;L?(Q))+||P||%2(0,T;L°°(Ff,ends‘2))+||u01”%Il(ﬂs))—i_”VO“%Il(Qf))'

The constant C' depends on the fited T > 0, on r, Cupr, v and
on the constants Cyace and Ciopy in the inequalities (with C in the
corresponding spaces):

||C||L2(Ff,ends,2) < C’tmceHCHHl(Qf) (Sobolev embeddings)
(19) 1Ko,y < Crorna(C,€) (by Korn’s inequality, see [Ciar88]).
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Proof. Multiply (15) by ¢k, (t). Upon summing up after £k = 1,...,m
and taking into account (13), we get:

t

(Orwm (1), wm(t))f,s—ka(/ Wi (8)ds, W (1) +v (VX W (t), VXwnr(t))a,

= (Q(t), () s — / P(t)malt)

from which we deduce
t

20) 5 5 [lwm@, +al [ wn()ds, [ wn(s)ds)] 17 xwn (@1,

0

1 2 1 ) o ) 2 Ctrace 2
< SIGOIF 5 llwm O} 5T PO (r, o+ 55 |0mOlina,):

with the constant ¢ chosen such that § > Z%CM

curl

Upon using (7) and applying the differential form of Gronwall’s in-
equality it follows that:

t t

w2, + af / n(5)ds, / W (5)ds)
0 0
< (Jwm(O)]2, + |G 01| Pll o )
> m 1. L2(0,T;L2(Q)) L2(0,T5L>°(T f,ends,2)) /-

Now using (19) we obtain:
¢
(21) Jeom(®I + Crcmll [ o (s)dsa,
0

< e (lwm(O)lI7s + 1GlL20rm20)) + 0TI P20 (0 ene.2))):
Integrate in time in (20) and use again (7) and (21) to deduce that

(22) ||wm||i2(0,T;Hl(Qf)) < COTI,St(T, T, Ccurlu CKorna Ctracea V)'

'(||V0||%2(Qf) + ||u01||i2(ns) + ”GH%Q(O,T;LZ(Q)) + 1Pl 200,100 (T 5 e 2)))-

In order to obtain (18), we still need some estimate for the time
derivative of w,,. In order to do that, let us fix any ¢ € V() with
[|¢||m: <1 and write ¢ = P,,{ +(I—P,,)¢, where P,, is the projection
from L2(Q) onto span {wy }x=1...m, i-e. V¢ € L2(Q) it is (P,.¢, W) =
(Caw)f,s, Vw € span {Wk}kZI,...,m-
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Since w!, (t) € span {Wy}g=1,. m, we have

(23) <wi(t), ¢ >ps = (Wi(t), Prml) g5 + (i (2), (T = Pra)C) 1,6
= (wlm(t)’ PmC)f,s-

Then we can write:
< W (),¢ > 0= (G(E), P s — / P(t)(Pm)s
Tt ends,2
t
~a( [ win(5)ds, P) = 1V X @ (t),¥ X Pl

0
from which it follows that

(24) ”wIm“%?(O,T;V'(Q)) < C(Ta r, v, Ccurla CKorn: Ctrace)'

'(||V0||%{1(Qf) + ||1101||%11(Qs) + ||G||%.2(0,T;L2(Q)) + ||P||L2(07T§L°°(Ff,ends,2)))’

upon using (7), (20), (22) and the fact that |P,,¢||m < ||€]lm < 1.
Now it is clear that we obtain (18) from (21), (22) and (24). O

4.3. Existence of a weak solution.
We now pass to limits (for m — oc) in our Galerkin approxima-

tions.
The estimate (18) implies that:

(25) (Wim)m is bounded in L*(0,7; L*())
t
(26) ( / W (5)ds), is bounded in L*®(0, T; H'(Q,))
0
(27) (Wim)m is bounded in L*(0,7; H'(Qy))
and
(28) (w! )m is bounded in L*(0,T; V'(Q)).

Consequently, there exists a subsequence (W, )x C (Wm)m and a
¢
function w € L*(0,7;L*(Q)) with [w(s)xa,ds € L*(0,T; H(;)),
0
wxa, € L?(0,T;H'(€)) and w' € L*(0,T; V'(€2)) such that

(29) Wi, "2 w in L2(0, T; L2(92))

k
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t ¢
(30) /wmk(s)xgsds h2g /w(s)xgsds in L?(0,7; H' ()
0 0

(31) Wi X, 2 wxq, in L2(0,T; HY(y))
and
(32) W, 2w in L2(0,T; V'(Q)).

We now fix an integer N and choose a function ¢ € C*(0,T;V(Q))
of the form

(33) @(t) =Y oty

where {4 },_7 are smooth functions. We choose N such that N < m,
multiply (15) by ag(t), sum after £ = 1, ..., N and integrate with respect
to time to obtain:

T ¢

/ [ < W (1), o(t) > +af / Wi (s)ds, w(t))+v(V><wm(t),V><<P(t))nf}

0 0

(34) /T .\ /F - P(1)gs(1)]dt.

Now we may pass to the limit in the above identity, in virtue of
(29)-(32) (set m = my); we obtain:

T t

/ [ < W' (t),p(t) > +a(/w(s)ds, cp(t))+u(V><w(t),chp(t))gf}dt

0 0

T

(35) ~ [0 ew- [ Poe]d
0 f.ends,2
Observe that (35) holds for all functions ¢ € L?(0,T;V(£2)), since

functions of the form (33) are dense in this space. It also follows from
(35) that

S

t
< W'(t), p(t) >5s +a /w )ds, (1)) + v(V x w(t), V x @(t))g;
0
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— (G(1), (1)) 5 — / P(t)ps(t),

forall p € V() and a.e. 0 <t < T. Also notice that w € C(0, T; H™1(Q)).
The compatibility condition (11) follows by passing to the limit in
(16) and using (26), (27), as well as the convergences (in L2(0, T; HY/2(T'4,)))
for the respective traces on the interface I's, .
The existence result is proved if we verify that
(36) w(0) = wp in Q.
We therefore choose any function ¢ € C'(0,T;V(Q)) with ¢(T) =0
and integrate by parts in time in (35) to obtain
¢
/ )fs+a(/w(s)ds,<p(t))+l/(vxw(t),Vxgo(t))gf dt
0 0
(37)
T
~ [ e[ PEealo)]at—(w o), 00y
0 fiends,2
From (34) we deduce in an analogous way that
T ¢
[ =m0 O)al [ wn(s)ds, @l0)+(Vxwn(0), VO,
0 0
(38)
T
= [ @@ o= POe0]d—(wn0), ¢O).
0 fiends,2

We set again m = my, and deduce from (14) and (29)-(32) (after passing
to the limit) that

/ [_ (w(t), e /w Yds, (1)) + v(V X w(t), V x ‘P(t))ﬂf
239) 0

I
St~
)

D= [ PO w000

Compare now the identities (37) and (39) to deduce (36), since ¢(0)
was arbitrary.
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5. PROOF OF THE UNIQUENESS

In this section we prove the uniqueness of the weak solution found
in Section 4. In order to do that, it suffices to show that the only weak
solution of Problem 3 with P(t) =0 and G(t) =0 for all 0 < ¢ < T is

(40) w = 0.

Thus, we know that w € L*(0,T;L*(Q)), wxq, € L*(0,T; H' (),
t
w' € L*(0,T5V'(?)), [w(s)xa,ds € L?(0,T; H'(5)) and
0
t

(41) <w >, +a(/w(s)ds, ) +v(Vxw, VX, =0,
0
for all ¢ € V() and with the initial condition

(42) w(0) = 0.
t
Let us denote 9(t) := [w(s)ds. Then notice that
0

43)  <¥" o >ps +a(P(t), ) +v(V x P'(1),V x @), =0,
for all p € V(Q),
(44) ¥(0)=0, ¢'(0)=0
and
¥ € L2(0,T;V(Q)), ¢ € L*(0,T; H(?)), " € L*(0,T; V'(Q)).
Fix 0 < s < T and take

J¥(r)dr if 0<t<s
t

(45) ¢(t) ==
0 if s<t<T
Then (43) can be written:
/ [(@(0), C()) 1.0 + a(8(0), (1)) + (¥ x (1), ¥ x C(0))a it = O,

since ¢(t) € V(Q), V¢ € (0,T), by the regularity of 2.
Upon integrating by parts with respect to time, it follows that (ob-
serve that ¢'(t) = —p(¢) for 0 <t < s):

S S

/ (WO Ot [ alC®.CO)v [(Tx(0), VxC O)a it =0,

0 0
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thus
[ O~ [ac@.coe+v [19xp0)3,d =0

It follows that
X / e, — ol (0 et = v [ 1V x (o) e <,
0

thus
1[||1,b(t)||fc,s+a( (0),€(0)] <0

and after applying (19) it follows that #(s) = 0. Now, since s was
arbitrary, this implies that ¢ = 0 in (0,7) x 2 and the conclusion
follows. |

6. CONCLUSION

In this paper we have considered a 3D/3D fluid-elastic structure
interaction problem. The viscous, incompressible fluid was moving
through an elastic tube with flexible and thick walls. We considered
very small displacements, in order to be able to assume that the do-
mains involved were cylindrical. For the coupled problem with the
fluid behavior described by the Stokes equations with boundary con-
ditions involving the pressure (at the in- and outflow) and with the
Lamé equations for linearized elasticity characterising the behavior of
the deformable structure, we have shown the existence of a unique
weak solution (velocity and displacement). The method seems not to
be directly adaptable to the case of a Navier-Stokes fluid. However, we
believe that the problem might be treated with the aid of other meth-
ods; this will make the object of a future work. Furthermore, allowing
for larger displacements of the fluid-structure interafce would normally
lead to dropping the assumption of cylindrical domains. By our knowl-
edge, this kind of time-dependent problems has not been treated yet
in the 3D/3D case, but only for 3D fluid/2D structure interactions
([CDEGO02], [Suru04c]) or in lower dimensions.
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