A NOTE ON AN INDIVIDUAL BIOEQUIVALENCE SETTING

C. SURULESCU & N. SURULESCU

ABSTRACT. We give a new simpler proof along with a generalization for
the inequality of Yao and Iyer [Yaly99] arising in bioequivalence studies
and by using a nonparametric approach we also discuss an extension of
the individual bioequivalence setting to the case where the data are not
necessarily normally distributed.

1. INTRODUCTION

Bioequivalence testing is required when trying to get the approval for manu-
facturing and selling of a generic drug having mainly the same properties with
a (more expensive) reference (brand-name) drug. Establishing bioequivalence
prevents the generic drug manufacturer from performing expensive clinical
trials to demonstrate the quality of his product. Two drugs are considered
bioequivalent if they are absorbed into the blood and become active at about
the same rate and concentration. Bioequivalent drugs are supposed to provide
the same therapeutic effect.

For explaining the notions and notations we use, we recall the problem
setting in [Yaly99] for the individual bioequivalence. Thus, the amount of the
chemical absorbed by a patient’s bloodstream when using a reference drug is
a random variable X, which has mean pur and standard deviation og. The
corresponding variable for the same patient when using the generic drug has
mean pr and standard deviation op. The therapeutic window of a patient is
defined to be the interval in which must lie the concentration of the chemical

in the bloodstream, in order for the drug to be classified as beneficial for that
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patient. Usually, the therapeutic window is assumed to be an interval centered
at the mean pg, namely the range (up — 20g, ur + 2zog). The drug will be
uneffective if the amount absorbed in the bloodstream is too low and it could
cause severe side effects if too much of the chemical substance is absorbed.

Denoting by pr and p; the probabilities that the subject will have benefit
from using drug R, respectively 7', the regulatory agency might approve the
marketing of drug 7" provided that g—z > v, where v is about 1 or even larger.

The therapeutic window of a patient is generally unknown, therefore a quan-
tity of interest for the approval procedure will be inf,> ﬁ—ﬁ-

Usually, to derive this quantity the assumption that X and 7" have normal
distributions is made, though it is well known that in practice this is rarely

the case. Under this assumption, Yao and Iyer [Yaly99] have shown that
@(HR’*‘ZUR*NT) _ @(HR*ZU'R*HT)
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where ¢ and ® are the probability density function, respectively the cummu-
lative density function of a standard normal variable and (p, 0?) # (0, 1).
Thus, the approval of manufacturing the generic drug T may be granted if

from the statistical analysis of experimental data it can be proven that

2

ORV2T (T — PR
(2) ¢
or or
Alternatively to (2), a more flexible approval criterion can be used, namely

one of the type
(3) U(Zy) 2 by,

for some large enough given bound b,, where Z, := {z > 0 : 2_11; > v} and
¢ is for instance the Lebesgue measure. We will discuss in the next sections
sufficient conditions for (3) to be satisfied.

For more information about individual bioequivalence see [AnHa90], [Schal95],

[ScLu93], [MaFr02], [Manl04], [MHPBO03| and the references therein.
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In this paper we give a simpler proof and a generalization of the inequality
of Yao and Iyer and we also give a nonparametric extension of the above

bioequivalence setting.

For the sake of clarity, we put all our proofs in the Appendix.

2. A GENERALIZATION OF THE INEQUALITY OF YAO AND IYER
The main result of Yao and Iyer in [Yaly99] was the proof of the following
inequality:

B(2h) - G(=h)
) ()~ 9(—2)

s min {1, Y275 (£)],
o o
for all z > 0, p € R\{0} and o € (0,00)\{1}; this inequality comes from (1)
after some changes of notations.
As in [Yaly99], observe that it is enough to treat the case p > 0. Here we

will prove the following generalization:

Proposition 2.1. In the above settings, we have:

(i) If o > 1, then

B —B(HE) L B(2) - B()
®(z) — ®(—=2) ®(z) — ®(—=2)
Bl )t
> %62‘;22 = min {1, @q&(g) }, Vz >0

(i1) If o € (0,1) then
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This result is based on Lemma 2.1, generalising Lemma 3 in [Yaly99], (which
was the most difficult part of the proof therein) and on Lemmas 2.2 and 2.3

below.

Lemma 2.1. The function o — F(o) := ®(Z=£)) @(ﬁ%“(g)) is strictly

decreasing on (0,1), where (o) = o4/21In *.

Lemma 2.2. For every o > 0, 0 # 1, we have:

6 26 =) 1

() — B(—2) 60

2

1 1 2
—min{l,~} > (1— i 1,—2)-2—7
min{ 0} min{ 0} z%e

1 ) 1 22
+ (— — min{1, —})e 27 >0, Vz > 0.
o o
The following lemma generalises Lemma 1 and Lemma 4 in [Yaly99]:

Lemma 2.3.

Oz — 1) —P(—2 — )
(7) —

(2 — p2) — (=2 — o)
V2 >0, p1, p2 €R, p1 # po.

Remark 2.1. Replacing z with Z, 1, by £+ and py by £2 then

e for yy > po > 0 one has
() — (M)
O(5) — &(=7)

thus the function

Bl

> min{1, e S C2PY — o 3 (2)

(0,00) 3 = By (p) := 3 [@(Z—H) — o(—=—Fy]

is increasing, i.e. Lemma 1 in [Yaly99] is obtained;

e for py > py > 0 one has
(=) — (=)

ag

() — B(=5")

thus the function

(0,00) 3 = By(p) := d(Z=F) — o(—Z—EH)

is proved to be decreasing, i.e. we obtained Lemma 4 in [Yaly99].
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Remark 2.2. Sufficient conditions ensuring (3) to be satisfied can be easily
22
derived upon using for ¢ > 1 the monotonicity of the function z — 2%~ 7

(increasing on (0,1/2), decreasing on [v/2,00)) and for 0 < ¢ < 1 the fact that

Q) () g VT oy R — o(Z )
®(z) - ®(—2) mm{L_é?¢(§>} B(z) — (—2)

: v2r 2(;) — @7

> omin {12205 V5 555

and this term can be minorated by applying Lemma 2.2.

Vz >0

3. A NONPARAMETRIC APPROACH FOR THE BIOEQUIVALENCE SETTING

Consider now that the random variables X, T from the Introduction have
continuous univariate distributions, with the densities fx, respectively fr,
which are not necessarily Gaussian, and assume that we correspondingly have
the independent observations: x4, ..., x,, respectively t1,...,%,. Then fx and

fr can be estimated by using the classical nonparametric estimators:

fx(z) = # : K(:E;é:&)

n

70 = o U ()

i= n

where K is a kernel, hX and hl are the bandwidths (with the usual properties:

hX — 0, AT — 0 for m,n — oo; mhX — 0, nhl — oo for m,n — oo and, of
course, h.x and h! have to be chosen in practice by a corresponding criterion).

With the above notations, the rapports of interest for bioequivalence studies

are
URT2ZOR MRTZOR
fr(t)dt [ fr(t)dt
br . BR—Z0R B _ MR—Z0R
(8) on R(z) :== Py ~ R(z) := pmtron , 2>0,
Ix(z)dx [ fx(z)dz
HR—ZOR HR—ROR

and for the approval procedure it will be important to find the quantity of

interest inf,¢ R(z), but this is clearly more difficult then for the case presented
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in the previous section and an analytic treatment is hardly possible. Even when
considering the Gaussian kernel, the usual nonlinear optimization procedure
implemented in Maple is surprisingly very much time consuming. However, a
great (and also easy to implement) simplification can be achieved when using

one of the following kernels (see e.g., [Scott92]):

e the rectangular kernel: K (u) := $x(_1,1)(u);
)= (1= Ju])x (1 (w);
e the Epanechnikov kernel: K (u):= 3(1 — u?)x(_1,1)(u);
e the triangle kernel: K(u) := (1 — |u|)x(1,1)(v);
e the double Epanechnikov kernel: K (u) := 3|u|(1 — |u|)x(1,1)(%).

e the triangular kernel: K(u

Moreover, the procedure can also be used for finding the largest therapeu-

tic window under which the rapport of interest exceeds some given positive

constant .
Since all kernels above are supported on (—1,1), then the global minimum

can be found in the following way:

e construct AT := AT N (0, 00), where

U{_ — h} MR ti+hl —pp t;i—hl —pg _ti+hg_ﬂR}'
OR ’ OR ’ OR ’

e construct Aﬁ* = AX N (0, 00), where

U{— ~n z; + hy ~ir wj—hi—mz’ _xj+hi—u}z};
OR OR OR

e if K is not the rectangular kernel, then construct AT deriv 38 the set
constituted by the critical points of R(z) on the union of the subin-
tervals of R, where R is differentiable (which in this case are roots of
some polynomials, thus easy to be handled by the computer); if K is

the rectangular kernel, set AT derin = 0.

e denote 2 := AL+ [ J AKX AT deriv’

Then we have:
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Proposition 3.1. With the notations above and with K being one of the ker-

nels enumerated before,

n MURTZOR

i=lpyr—20R 2 min{R(zmaz‘)a lll’I(l) R(Z), R(Q[)}a
z—

= K BRrR—t;
: wx S (M
liné R(z) = mh;l 1;11 for the continuous kernels above,
2= n s
n Zl K(NI;L% i
and
—1; —t;
o mhE X [ (t) + - ()
hng R(z) T m for the rectangular kernel,
zZ—r n P .
"2 [ (o) + K- ()]

with the notations K, (§) = limy ¢ K(t), respectively K_(§) := limy ¢ K(t).

Remark 3.1. If K is one of the kernels presented above, then for each v > 0 and
using an algorithm similar to the one described above one can easily determine

Z.,, in order to check the approval condition (3).

Simulation result: Figure 1 illustrates a simulation with m = 150, n = 160
for the case where X and 7T are normally distributed and the nonparametric
estimators are constructed with the Epanechnikov kernel. The continuous lines
represent R(z) and its minimum, which is 0.012; the lines of circles represent
R(z) and its minimum, which is 0.0088. This shows that the Gaussian case

can be well recovered with this nonparametric procedure.
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FIGURE 1. The continuous line is R(z); the line of circles is
R(z); the horizontal lines are the corresponding minimums

4. CONCLUSIONS

In this paper we gave a generalization and a simpler proof of the inequality of
Yao and Iyer [Yaly99] concerning an individual bioequivalence setting when the
data were supposed to be normally distributed. Our generalization can be used
to develop a more flexible approval criterion (of the type (3)) for manufacturing
and selling a drug which is supposed to be bioequivalent with a reference
one. Finally, we extend these settings to the more general situation when the
data are not necessarily normally distributed, upon using the nonparametric
estimation technique. This idea can also be useful in the context of global

nonlinear optimization problems.
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APPENDIX A. PROOFS

Proof. (of Lemma 2.1) Denoting 6 := £ € (1,00), we have

o(2=M9)y _ o Z2= 1)y L 9120 — VITnB) — B(—260 — V2T D).

o o

Consider g : (1,00) = R, g(f) := ®(20 — v2In0) — &(—20 — vV21n0), VO > 1.
Observe that

1 20v/2In6 — 1
0) = (2+ H(0—v21n0) [PV 2R T L p(—220v/21n6)] > 0,
g() (Z 0\/21n0) oz w0 a1 o )]

for all # > 1, because u := z0v/21nf > 0 and it is easy to see that

u—1

—— +e >0, Yu>0.
u+1

Proof. (of Lemma 2.2) If ¢ > 1, we can write

o oV 2T

— 1 F 22
@(g) —o(=2) = /e—md:c

1—-L1

since eT< "2> > 1+ 12—2 (1 - ﬁ), Vz € R\{0}. Further, from the decreasing

N

monotonicity of  — e~ on [0, z] deduce that

and

and thus (6) is proved.
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For the case where o € (0,1) we have:

o) -(F) _ () - () :
= 1+2 142
O(z) — D(—=2) D(z) — P(—2) D(z) — P(—2)
2
1l e 1_
Vot ‘Z(a ) 1 2
> 142 >1 (——1) 2 V2 >0,
* O(2) — (—2) + o ©
upon using the same method as in the previous case. O

Proof. (of Lemma 2.3) Let

Q(z) := q’(Z—/Ll)—é(—Z—Ml)—6_%[(“1)2_(“2)2][‘1)(2—,UQ)—@(—Z—M)], z > 0.

Then
2 1 9 9 ezul + e*ZIll equ + ele'LZ
! _ —5l(p1)?+=2 ][ —
Qe = e 2 2
2

= \/—Q_We_%[(ﬂl)”zz][cosh(z\ul|) — cosh(z|pz|)], Vz > 0.

Now using the fact that the hyperbolic cosine is an increasing function on
(0,00), we have that Q'(z) > 0 if |u1| > |u2| and Q'(2) < 0 if |u1| < |p2l-

Thus, if |p1| > |pe|, then Q(z) > 0, Vz > 0, i.e. inequality (7) is satisfied,
since the minimum therein is e~ 2[(#)*=(12)],

If |p1| < |p2|, then consider the function

G(p) == 2(z — p) = @(—=2z — p)

and observe that it is decreasing on (0, 00), since its derivative is
]_ 2 2
G'(p) = ———e F 22 _ =21 < 0, V2 > 0, p> 0.
) =~ | | p
Observing that G(u) = G(—p), Vi € R, we have that G(u2) = G(|pe|) <

G(|p1|) = G(p1), which proves the inequality in this case. O

Proof. (of Proposition 2.1) In the case (i) observe that we can write

D) - @(Z) _ B(E) - 0(2) B(Z) - B(F)

a a a a a a

B(z) —0(—2) () -d(F)  2(2) - (—2)

g
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Now apply Lemma 2.3 for the first term in the right hand side and Lemma 2.2
for the other one.

In the case (ii), if u € (0, u(0)), then we have that By(pu) > Ba(u(o)) (see
Lemma 2.3 and Remark 2.1). Further, use Lemma 2.1 to obtain the last
inequality in (5).

If 4 > p(o), then 0By () > oBi(u(o)) (see again Lemma 2.3 and Remark
2.1). Then Lemma 2.1 implies that

oBi(uo) _ Fl)
O(z) —D(—2) D(z) — P(—2) ’
which completes the proof. O

Proof. (of Proposition 3.1)

The proof follows observing that for each of the kernels above R(z) becomes
a rapport of polynomials on some finite intervals dictated by the points in
AXT AL, Thus, the problem reduces to characterising the minimum of
these fractional expressions on such corresponding finite intervals, which in this

particular case means to find the roots of the polynomials at the numerator of

the derivatives. It only remains to observe that lim, ,o, R(2) = R(zmaez). O
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