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Magnetoenzephalographische Untersuchung der Repräsentation von
Huygens Rauschen im auditorischen Kortex des Menschen

Die Verarbeitung und die Repräsentation der Tonhöhe wurde anhand von Huygens
Rauschen (regular interval sounds–RIS) untersucht. Die Tonhöhe von RIS wird durch
zeitlich verzögerte Überlagerung von weißem Rauschen mit sich selbst hervorgerufen.
Mittels Magnetoenzephalographie (MEG) wurde die Beziehung zwischen der spezi-
fischen Antwort auf den Beginn eines Tones (pitch onset response–POR) und der
perzipierten Tonhöhe hergestellt. Die Quellenanalyse zeigte Aktivität im lateralen
Heschl Gyrus des auditorischen Kortex beider Hemisphären. Die Latenz der POR
war hochkorreliert mit der Tonhöhe, so dass sich bei tieferer Tonhöhe die Latenz der
POR verlängerte. Im zweiten Experiment wurde der Einfluß der Klangfarbe sowohl
auf die Wahrnehmung als auf die POR untersucht. Mit dem Anstieg der Tonhöhe,
bedingt durch das Verschieben eines Bandpassfilters im Spektrum, verlängerte sich die
Latenz. Die Ergebnisse weisen darauf hin, dass die POR sowohl die Tonhöhe als auch
die Klangfarbe widerspiegelt und damit eine objektive neurophysiologische Repräsenta-
tion der Wahrnehmung eines Tones darstellt. Simulationen der Tonhöhenverarbeitung
zeigten, dass zeitliche Modelle die perzipierte Tonhöhe von RIS erklären können, aber
bei einer Veränderung der Tonhöhe, hervorgerufen nur durch eine Klangänderung bei
gleicher Grundfrequenz, versagen. Die Resultate der POR zeigen, dass mit Hilfe des
MEG wertvolle Parameter gewonnen werden können, die in Modellen der Tonhöhen-
verarbeitung eingebunden werden könnten.

Magnetoencephalographic study on the representation of Huygens noise
in the auditory cortex of humans

Processing and representation of pitch in human was studied by using regular in-
terval sounds (RIS–Huygens noise). The distinct pitch of RIS is introduced by delaying
random noise and adding it back to the same noise. The relation between the psycho-
acoustically measured pitch of RIS and the auditory evoked neuromagnetic responses
was investigated. The pitch specific onset response (POR) was derived by means of
magnetoencephalography (MEG). Source analysis revealed the center of this activity
in the lateral part of Heschl’s Gyrus in the auditory cortex of both hemispheres. The
latency of the POR correlated highly with the perceived pitch. When the perceived
pitch of RIS decreased, the latency of the POR increased. In a second experiment, the
influence of timbre on perception and the POR was investigated. An increase of the
perceived pitch resulted in an increase of the POR-latency, when the center frequency of
the bandpass filter was increased. These results indicate that the POR integrates both,
pitch and timbre and, thus, POR is an objective neurophysiological representation of
the perception of a sound. Simulations of pitch processing showed, that temporal pitch
models can account for the perceived pitch of RIS but fail to simulate timbre-induced
pitch changes. Hence, MEG provides valuable parameters which could be integrated
in models of pitch processing.
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Chapter 1

Introduction

Common sounds with a well defined pitch are produced e.g. by our vocal chords

or by musical instruments. The processing of sounds in the human auditory sys-

tem, that lead to a specific sensation of pitch and timbre (e.g. understanding of

speech) is one of the major topics in the field of auditory research. Knowledge,

collected from two entirely different sources of experimental information are com-

bined to reveal the mechanisms of auditory processing. First, from findings of

anatomy and physiology of the central auditory system and secondly from the

perception of pitch revealed by psychoacoustic measurements. Joining together

the results of both fields, the goal is to explain the findings in terms of some

model, law, hypothesis or theory. Thus, the pattern represents the triangle in

the research of human perception, illustrated in Figure 1.1.

Investigations concerning the perception of pitch have concentrated on two

questions: (1) Which physical parameters determine pitch and (2) How are these

parameters processed in the auditory nervous system.

So far, psychoacoustic experiments have elucidated many aspects regarding the

first question. They showed that pitch is related to the repetition rate of a sounds’

waveform and that the perception is linked to the fundamental frequency (f0),

when the frequencies of the partials are integer multiples of a common basic at f0.

The second question is still unexplained and much remains unknown about the

processing of pitch. Seebeck (1841) and Ohm (1843) had the discussion on the

’missing fundamental’: Seebeck reported that the pitch of periodic sounds always

seemed to follow f0, even when this component was attenuated. Ohm replied that

the observations must be based on an illusion and argued that the ears perform a

real-time frequency analysis similar to the mathematical formulation of Fourier.

He, and later Helmholtz (1863) concluded that the lowest spectral component de-

termines the pitch of the tone, whereas higher harmonics determine the sounds’

1



2 1. Introduction

Perception

Physiology

Modelling

Figure 1.1: The triangle in the research of human perception. Experimental evidence
from anatomy and physiology combined with psychoacoustic results (perception) must
correspond with models and theory.

timbre.

But even more than a century of research after this initial discussion about the

phenomenon of the missing fundamental, have not revealed the specific neural

mechanisms subserving the perception of an acoustic stimulus. Although a great

deal is known about neural response properties at many levels of the auditory

system, we presently have only a very rudimentary understanding of which par-

ticular response properties are responsible for the sensation of a specific pitch

or timbre. One of the most heavily debated topics in hearing research is the

question, how populations of neurons represent and convey information through

trains of spikes in the ascending auditory system.

There are fundamentally two basic ideas about how information in auditory sti-

muli is encoded: the spectro-temporal theory and the autocorrelation theory of

pitch processing. Historically, the theory of coding by spatial patterns of neural

excitation can be ascribed to the formulations of the resonance-place theory of

auditory representation (Helmholtz, 1863). It is based upon the tonotopically

organized auditory periphery, in which the single frequencies of a sound are pro-

cessed in spatially-organized auditory channels. In contrast, the idea of temporal

coding was initiated by Rutherford (1886), with the development of his ’telephone

theory’ of hearing. Licklider (1951) proposed that the auditory system performs

an autocorrelation process of the temporal response across all frequency chan-

nels. The pitch information is extracted by temporal patterns between spikes in

a spike train or by the time-of-arrival of spikes relative to a reference event.

But until today, experimental research could not provide conclusive evidence,

which theory can account for the perception and the processing of sounds.
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The present work attempts, to shed some light on the unresolved controversy

about perception, processing, and representation of pitch in the human audi-

tory cortex. With respect to the interdependency of perception, physiology and

modelling, illustrated in Figure 1.1, the major focus lays on a framework that

connects all domains. The thesis contains psychoacoustic experiments to reveal

the individual sensation of pitch. To understand the relation between perception

and neural responses, there are different types of modalities with which one can

look at the human brain. Magnetic resonance imaging (MRI) and computer to-

mography (CT) scanners give information about the macroscopic structure of the

brain; positron emission tomography (PET) and functional MRI units provide

information on the blood flow, oxygen consumption and metabolic activity in the

brain. But the only two methods that provide information with a high tempo-

ral resolution are magnetoencephalography (MEG) and electroencephalography

(EEG). Thus, neurophysiological measurements of the evoked magnetic fields are

able to give information about the signal processing of sounds and their repre-

sentation in the brain in sufficiently good time resolution. The simulation and

modelling part is comprised by applying the auditory image model of pitch pro-

cessing provided by Patterson et al. (1995) to find out if temporal pitch models

can account for the perceived pitch.

Figure 1.2: The discovery of RIS in 1693: Huygens in the courtyard as imagined
by Bilsen and Ritsma (1969/70). The noise coming from the fountain is periodically
reflected by each step of the staircase and introduces a pitch.
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Several investigators have demonstrated, that the auditory system can ex-

tract pitch information from complex stimuli (e.g. a tone played by a piano)

whose spectral components are not resolved by the auditory periphery (Houtsma

and Smurzynski, 1990; Shackleton and Carlyon, 1994). The stimuli are typically

highpass filtered harmonic sounds but for many, if not most, of these stimuli the

complex pitch occurs along with other perceptual attributes.

A class of sounds that offers a potential advantage for studying the processing

of pitch are Regular Interval Sounds. The discovery of this naturally occurring

sound goes back to the 17th century, when the Dutch physicist and astronomer

Christiaan Huygens (1629–1695) discovered a form of pitch, while visiting the

French castle of Chantilly de la Cour near Paris. As illustrated in Figure 1.2,

Huygens was standing outdoors between a garden fountain and a marble stair-

case, when he noticed that the noise, coming from a fountain, was transformed by

the staircase and produced a noisy sound with a distinct musical pitch. Huygens

described the situation in a letter to de la Hire (see Appendix A). In general,

the noise is delayed and added back to the undelayed version (delay-and-add).

The introduced pitch varies with the reciprocal of the delay time d, the pitch

strength increases with n, the cascaded delay-and-add iterations (Bilsen, 1966).

In contrast, when the delayed noise is first multiplied by a factor of minus one

before it is added back to the original (delay-and-subtract), pitch differs signifi-

cantly compared to that, generated with the delay-and-add condition. When the

number of iterations is one, Yost (1996a) reported that the pitch is ambiguous,

having two pitches in the region of 1
0.9d

and 1
1.1d

. He stated, when n was increased

to eight, pitch shifts to 1
2d

. However, Raatgever and Bilsen (1992) found that

pitch values depend on the delay time. They concluded, that pitch is equal to
1
2d

for delay times of less than about 6ms and pitch shifts to ambiguous values

of 1
0.9d

and 1
1.1d

when the delay time increased. However, pitch matching is very

difficult and often only musically trained listeners can perform the task reliably.

In the last years, the name for these sounds changed from Huygens noise, rippled

noise to Regular Interval Sounds (RIS), which is today commonly used. In order

to avoid any further confusion in the present work, the sounds produced by feed-

back of the delayed noise are called RIS.

An understanding of the pitch shift of RIS is important for solving the problem of

pitch processing in human. Models and theories of pitch must be able to account

for the pitches of these stimuli.

The aim of the present work is to investigate the relationship between the

perceived pitch and the neuromagnetic responses evoked by the onset of pitch.
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MEG is applied in the experiments to measure the auditory evoked magnetic

field on the scalp. By presenting a continuous stimulation, responses to the sim-

ple onset of energy are avoided and the specific pitch onset response (POR) is

isolated. The center of activity is determined, using an equivalent current dipole

model that fits the evoked field.

The controversial results, as described above, reported on the perceived pitch

elicited by RIS are examined and find particular attention in the psychoacous-

tic parts of this work. In addition, the pitch of the applied RIS is compared

with the sensation evoked by complex sounds. All applied sounds are simulated

with the auditory image model to test if the sensation and the neuromagnetic

representation in the auditory cortex can be predicted with the model.

The following Chapter 2 provides the indispensable background to the field

of hearing research. Psychoacoustic results on the pitch of sinus tones, complex

harmonic tones and RIS are presented for an overview of the perception of these

sounds. Anatomical and physiological basics of the ascending auditory system

are given briefly, to build the connection to the neurophysiological representa-

tion in the human auditory cortex. The last section of this Chapter introduces

the formalism underlying the auditory image model, that is used to simulate

the processing of sounds to extract a specific pitch. Chapter 3 provides proper-

ties on the generation of RIS and shows how changes of the parameters affect

the sound. The algorithm of the Bradley-Terry-Luce (BTL) method is shortly

sketched and is used in the psychoacoustic experiments to derive a relative scale

of the perceived pitch. The third block covers the physiological, physical, and

technical basics which are mandatory to derive the neuromagnetic activity of the

human brain. With the knowledge of Chapters 2 and 3, the perception and the

neurophysiological correspondence of RIS is examined in Chapter 4. The repre-

sentation of the POR in the auditory cortex is determined and the correlation

between the evoked responses and the perceived pitch of RIS is built up. Finally,

the auditory image model is applied to find out, if the perception and the physi-

ological representation of RIS can be predicted with simulations. In Chapter 5,

the sensation of bandpass filtered harmonic sounds is investigated. It is tested,

if harmonic complex sounds evoke a pitch equal to that of RIS. The bandpass

filtered harmonic complex sounds are used for a MEG experiment to investigate

the dependence of the POR to the perceived pitch when timbre changes due to

different filter conditions. These sounds were also analyzed with the temporal

pitch model.
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Chapter 2

Pitch—Perception, Physiology

and Simulation

This Chapter provides an overview over psychoacoustic results on the perception

of pitch, beginning with the scaling of the perceived pitch of pure tones and ending

with that of Regular Interval Sounds (RIS). The processing of sounds in the

mammalian central auditory pathway is described with emphasis on the physio-

logy of the human auditory system, although results of invasive research mostly

depend on studies of nonhuman animals. Today, most of the neural function of

the different ascending processing stages and the complicated connections among

each other that we know, have been obtained primarily from cats, gerbils and

non-human primates. The last part of this Chapter covers the modelling of pitch

processing in general, and gives a detailed description of the Auditory Image

Model (Patterson et al., 1995) that is used for simulation of pitch processing in

the Chapters 4 and 5.

2.1 Perception of Pitch

In 1973 the American National Standards Institute (ANSI) defined pitch as

”. . . that attribute of auditory sensation in terms of which sounds may be or-

dered on a scale extending from high to low.” Pitch is an essential element for

features like melody or harmony in music, and not to forget, pitch conveys in-

formation important for the perception of speech. Like loudness or timbre, it is

a subjective measure that cannot be expressed by physical means. The primary

objective correlate to pure tones is the physical attribute frequency. However,

the intensity, duration or the temporal envelope influences the pitch of a sound,

7
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too. In terms of complex tones, like a tone played by a piano, its sound can be

perceived as a single pitch or as a cluster of different pitches. Even individual

sinusoidal partials can be heard simultaneously, all of them with a different pitch

sensation. The third class of sounds that are discussed, have a continuous spec-

trum with a spectral or temporal regularity. The pitch sensation evoked by these

sounds can either correspond to the regularity of the spectral ripples or to their

temporal properties (details are given in Chapter 3).

2.1.1 Pure Tones

The easiest way to evoke a specific pitch is the use of a tone, that consists of

only one distinct frequency. But even the sensation evoked by a pure tone is

difficult to measure since ”perceived pitch” is not a physical unit but rather a

relative scale. One way to overcome this problem is to present a pure tone of the

frequency f1 and to adjust the frequency of a second pure tone in a way until it

sounds twice or half as high as the pitch of the reference tone. The classical result

of such experiments leads to the mel scale introduced by Stevens et al. (1937).

The pitch, expressed in mels (derived from melody scale), is neither identical

nor even linear to frequency and has an arbitrary pitch reference of 1,000 mels

at a frequency of 1,000Hz. At low frequencies the mel scale is proportional to

the frequency scale, but for higher frequencies, it bends more and more (e.g. a

frequency of 10 kHz corresponds only to 4,500 mels).

But also other parameters, like the sound pressure level (SPL), influence the pitch

of pure tones. For tones below 1,000 Hz, pitch decreases with increasing intensity

(up to 10% for SPL levels of 90 dB). The pitch of pure tones with a frequency

between 1,000 and 2,000Hz remains rather constant, and for frequencies above

2,000Hz, it rises up to 20% (f=8kHz, 90 dB SPL) with increasing intensity (Mor-

gan et al., 1951). Hence, frequency alone is not sufficient for a valid description

of pitch, even when the sensation is evoked by pure tones.

A pitch shift of a test tone can also be caused by the simultaneous presentation of

other tones or noise which mask the tone. Partial masking produced by a sound

that is lower in frequency than the test tone yields positive pitch shifts, whereas

masking sounds of higher frequency causes a decreased pitch. Altogether, the

pitch of pure tones is shifted away from the spectral slope of the partial masking

sound up to a semitone (Terhardt and Fastl, 1971).
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2.1.2 Complex Tones

Complex tones comprise several pure tones and occur much more frequently in

daily life than sounds that consist of only one frequency. The vowels of human

speech for example, or the sounds produced by musical instruments are complex

tones. If the frequencies of the components are integer multiples of a common

basic or fundamental frequency (f0), the resulting complex tone is called a har-

monic complex tone or a harmonic series of a complex tone.

The pitch of complex tones is a special topic in hearing research since 150 years

ago, Seebeck (1841) and Ohm (1843) discussed the phenomenon of the missing

fundamental. Twenty years later, Helmholtz (1863) argued that the pitch sen-

sation associated with the missing fundamental can be explained as a nonlinear

difference tone generated in the auditory periphery. Schouten (1940) published

his, residue theory of pitch and claimed that the sensation of the fundamental

frequency (f0) is caused by periodic fluctuations in the envelope pattern of clus-

ters of harmonics that the ear fails to resolve. Thus, the output of a cochlear

filter consists of a summed signal of two or more harmonics. The periodicity of

the envelope is the same as f0 and probably determines the perception of the

pitch, even if this fundamental is physically absent. Some years later, new ex-

periments showed that Schouten’s residue theory failed to explain newer results.

Ritsma (1962), e.g. reported a clear upper limit of the harmonic order beyond

which no pitch of a tonal residue can be perceived anymore. Ritsma (1967) and

Plomp (1967) showed that the region of harmonics that convey a pitch sensa-

tion of the missing fundamental is to be best in the order of 3, 4, and 5. In

this so-called dominant region, harmonics differ by 25% or more, and are well

resolved in the cochlea. Houtsma and Goldstein (1972) concluded that the per-

ceived pitch of complex sounds is mediated primarily by a central mechanism that

operates on neural signals derived from the spectrally resolved harmonics in the

cochlea. The importance of the resolved frequency components in the processing

of pitch resulted in the development of different harmonic pattern recognition

models (Goldstein, 1973; Wightman, 1973; Terhardt, 1979). All models combine

the basic idea that the tonotopically organized auditory nerve fibers are stimu-

lated by different resolved harmonics. The fundamental pitch is extracted not

in the auditory periphery but in the central nervous system by combining the

activity of several groups of auditory nerve fibers.

On the other hand, psychoacoustic experiments conducted by Moore and Rosen

(1979) showed that periodic pulse-trains retain a certain pitch quality even in

the total absence of resolved harmonics. Houtsma and Smurzynski (1990) in-
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vestigated the perceived pitch of complex sounds as well as the discrimination

performance between sounds in dependence of the lowest harmonics. They found

that the identification performance of a fixed f0 dropped progressively from nearly

perfect to a low but significantly above chance level with increasing the order of

the lowest harmonic. The just noticeable difference between two pitches also in-

creased from 0.5 Hz to 5 Hz with increasing the harmonic order. However, they

reported that the discrimination performance remained constant, if the order of

the lowest harmonic was on the order of 12 or higher.

Thus, the sum of these results is that not only low-order harmonics, that are

resolved in the cochlea, determine the pitch of a complex tone, but also higher,

unresolved harmonics contribute to the sensation. But their degrees of contribu-

tion to the perception is quite different. The resolved harmonics evoke a strong,

sharply defined pitch, whereas the unresolved components are characterized by

much higher identification scores. So, the sensation of the perceived pitch of a

broadband stimulus that consists of resolved and unresolved components will be

dominated by the lower, resolved harmonics. An exception was only found for

complex tones with very low fundamental frequencies (Moore and Peters, 1992).

But psychoacoustic experiments also showed, that the sensation evoked by a com-

plex tone in terms of a musical note can be ambiguous and is far from a distinct

pitch. It is especially the case when the low-order harmonics are weak or to-

tally absent or if only a few harmonics are present. Schouten et al. (1962) used

frequency components of three tone complexes with a fundamental frequency of

200Hz and shifted them equidistantly in the frequency domain. The results of a

similar experiment conducted with three tone complexes with a fundamental fre-

quency of 300Hz (Zwicker and Fastl, 1999) is shown in Figure 2.1. The perceived

pitch of these inharmonic complex sounds rises, if the frequency components are

shifted upwards, and falls, if they are shifted downwards. Even for a purely har-

monic complex with the lowest component shifted between 1,400Hz and 1,600Hz,

a pitch is perceived within an interval of 270Hz and 310Hz.

Another source of ambiguity, discussed by Helmholtz (1863) is the fact, that the

auditory system can perceive a sound complex in two different ways. Helmholtz

distinguished between a single pitch of the fundamental frequency and called it

a synthetic perception (or in the words of Helmholtz: ”perzipiert”). The second

possibility is the dominant perception of the single pitches of the overlapping in-

dividual harmonics or partials, leading to a analytic (”aperzipiert”) perception.

The conditions, that decide whether the pitch of a sound complex is derived

analytically or synthetically is completely unexplained. So far, experimental at-

tempts failed to measure and control the mode of perception in single individuals

(Smoorenburg, 1970; Houtsma and Fleuren, 1991). Some listeners show a strong
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Figure 2.1: Pitch shift of complex tones in dependence of the lowest harmonic. Fre-
quency components of three tone complexes with a frequency spacing of 300Hz between
adjacent harmonics are shifted in the frequency domain. The perceived pitch of these
inharmonic complex sounds rises, if the frequency components are shifted upwards, and
falls, if they are shifted downwards. Figure adopted from Zwicker and Fastl (1999).

tendency towards analytic perception behavior, others have a tendency towards

synthetic perception, and still others show an inconsistent behavior. Only group-

averaged behavior under conditions where synthetic and analytic processing leads

to opposite responses shows some definite tendencies (Schneider et al., 2003).

Houtsma (1995) reported for two-tone complexes with high-order harmonics the

listeners’ responses are divided about half-and-half into synthetic and analytic

responses. Lowering the order of the presented harmonics caused a dominance of

the analytic responses.

2.1.3 Pitch of Regular Interval Sounds (RIS)

The first observation on the pitch of rippled noise was made by Huygens (1693)

while visiting the French castle of Chantilly de la Cour. He described the pitch

as corresponding with the sound of an open organ pipe of a length matching the

depths of the stairs. For reference, parts of the original work of Huygens can be

viewed in Appendix A. The main difference in comparison to complex sounds is,

that the basis of rippled noise or regular interval sounds is noise and therefore,

the envelope of the spectrum is not a line spectrum but rather a flat continuum
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comparable to the spectrum of white noise, but with spectral ripples depending

on different parameters such as the delay time, the number of iterations and the

gain factor. A detailed description of how exactly these sounds are generated and

how their characteristic spectra are affected by changing the parameters is given

in section 3.1.

In general, if an arbitrary sound x(t) and its echo x(t − d) are added (delay-

and-add), a repetition pitch is introduced that is perceived with the frequency

corresponding to a pure tone frequency of 1
d

(Bilsen, 1966). The pitch of RIS has

been studied systematically for both, monotic and diotic conditions (Yost and

Hill, 1978) and pitch effects are typically found for delay times between 1 and

20ms, corresponding to pitches between 1,000 and 50Hz. With an increase of the

number of the delay-and-add stages, the salience of the pitch increases, but the

perceived pitch itself is unaffected (Yost, 1996b). Patterson (1996) stated that

the dominant perception of RIS produced with two or less iterations is noise. He

observed with an increase of the number of iterations, that the tonal component

of the perception grows stronger, whereas the noise component weakens with the

greatest rate of change in the region of four iterations. With eight iterations or

more, the dominant perception is that of a buzzy tone. In the study of Krumb-

holz et al. (2003), the pitch of RIS is described as that of a ’cracked’ bassoon.

Patterson (1996) found, that doubling the number of iterations causes a 3.8 dB

increase of the tone/noise ratio. With increasing the number of iterations, the

pitch of RIS approaches a line spectrum, close to that of a complex sound.

Rippled sounds that are generated with the delay-and-subtract process (that is

the echo x(t−d) is first multiplied by a factor of minus one before it is added to the

original noise x(t)) have a different pitch compared to the sounds produced with

the delay-and-add process. The perceived pitch was examined in different psy-

choacoustic studies and is still a controversy. Bilsen (1966) generated the sounds

in his experiment with one iteration and claimed that these stimuli produced with

the delay-and-subtract process have two pitches equal to approximately 0.88
d

and
1.14

d
. Yost et al. (1978) reported for RIS generated with the delay-and-subtract

process and more than four iterations a pitch shift of an octave below the corre-

sponding RIS produced with the same delay time but positive feedback. But for

RIS generated with less than four iterations, they reported the perceived pitch

not in the expected region of f = 1
2d

, but around 1
0.9d

and 1
1.1d

, independent of

the delay time d. Raatgever and Bakkum (1986) found different results for their

pitch matching experiment, using an infinite number of iterations. The change

in the perception of RIS produced with the delay-and-subtract process only de-

pended on the delay d. Figure 2.2 shows the results of their experiment. Pitch

matches at 1
2d

only occurred for delay times of less than 6ms, but with increas-



2.1. Perception of Pitch 13

Figure 2.2: Pitch of RIS generated with the delay-and-subtract process. The y-axis
represents the pitch of RIS generated with the delay-and-add process, matched to the
test RIS generated with the delay-and-subtract process on the x-axis. Both axes show
the delay time (in ms) of RIS. The test- and the matching-RIS consisted of the third to
the eleventh harmonics; the pitch matching was done by the two authors (JR and FB),
where the Figure is adopted from (Raatgever and Bilsen, 1992).

ing delay, pitch matched around 1
0.9d

and 1
1.1d

compared to RIS generated with

the same delay time but positive gain. Yost (1996a) reported that the perceived

pitch is determined only by the number of iterations n. He found that the tran-

sition from the perception of ambiguous pitches in the region of 1
0.9d

and 1
1.1d

to

pitch matches at 1
2d

is between three and five iteration processes, independent of

the delay time. Recently, in a similar pitch matching experiment, Wiegrebe and

Winter (2000) used high-pass filtered RIS and found the transition for the pitch

shift depending on both, the delay and the cut-off frequency. The results of their

study show (see Figure 2.3) that, e.g. for a cut-off frequency of 625Hz an octave

shift occurs for stimuli with delay times of 2 and 4ms. For delays of 8 and 16ms

the deviation of RIS with negative g was found to be differing by 10% compared

to RIS generated with the delay-and-add process. In general, these results show

that whether listeners hear an octave shift between the delay-and-add and the

delay-and-subtract processed sounds, depends on the delay time as well as on
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Figure 2.3: Pitch matches of test RIS produced with delay-and-subtract processes to
RIS generated with delay-and-add. The adjusted pitch with about 100% deviation of
the delay time, corresponds to an octave shift between the two stimuli. 10% deviation
represents ambiguous pitches (adopted from Wiegrebe and Winter (2000).)

the high-pass cut-off frequency. When the delay time was 1ms, the octave-down

shift was still perceived even when the stimuli were high-pass filtered at 10 kHz.

With a delay time of 2ms, the perception switched when the cut-off frequency

was raised from 5 kHz to 10 kHz. The sensation of an octave shift vanished and

a pitch near the matching stimulus was perceived.
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2.2 Neuronal Representation of Pitch

2.2.1 Neurophysiology of the Auditory Pathway

In this section, a short review of the specific properties of the human auditory

pathway, as illustrated in Figure 2.4, is given, starting with the auditory periphery

and ending in the auditory cortex. The knowledge of the generation of auditory

evoked cortical activity in its different steps is a crucial basis for understanding

the neuromagnetic measurements of Chapter 4 and 5.

Figure 2.4: Left: Schematic overview of the afferent connections in the central audi-
tory pathway, starting from the brainstem (Superior olivary nucleus) up to the primary
auditory cortex. Right: Lateral view of the human cortex. After Kandel and Schwartz
(1985), page 406.
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The Auditory Periphery and the Cochlea

The preprocessing of sounds starts in peripheral regions where the mechanical

oscillations are converted in receptor potentials for the neural activation. The

function of the outer ear is to collect sound oscillations and to transmit them

through the outer ear canal to the ear drum. The outer ear canal of humans acts

like an open pipe with a length of 2 cm corresponding to a frequency of about

4 kHz. So, the outer ear canal is responsible for the high sensitivity of humans in

this frequency region. The middle ear (see Figure 2.5) converts the air-oscillations

transmitted through the outer ear into salt water-like fluid motions of the inner

ear. To avoid large losses of energy through reflections at the air-fluid border, a

transformation has to occur in the middle ear. Like in mechanical systems the

impedance matching can be achieved using levers. At the end of the outer ear

canal a light but sturdy funnel-shaped tympanic membrane (eardrum) acts as a

pressure receiver over a wide frequency range. It is firmly attached to the large

arm of the malleus (hammer). The motions of the eardrum are transmitted over

the incus (anvil) to the footplate of the stapes (stirrup) by the so called three

middle ear ossicles (malleus, incus, and stapes). A ring-shaped membrane (oval

window) forms together with the stapes footplate the entrance to the inner ear.

Through the levers, an almost perfect match between the impedances is reached

in human at a middle frequency region around 1 kHz.

The inner ear is embedded in the extremely hard temporal bone and is basically

the same for all mammals. The snail-shaped cochlea of humans forms 21
2

turns,

is filled with two electrochemically different fluids (perilymph and endolymph)

Figure 2.5: Schematic drawing of the auditory periphery.
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and consists of three different channels of scalae, which run together from the

base to the apex. The footplate of the stapes is in direct contact with the fluid

in the scala vestibuli which is separated from the scala media only by the very

thin and light Reissner’s membrane. The fluid oscillations are transmitted to the

basilar membrane which separates the scala media from the the scala tympani and

supports the organ of Corti with its sensory cells. The fluids can be considered

as incompressible, and so the movement of the stapes must be equalized through

the basilar membrane at the round window, which closes off the scala tympani at

the base of the cochlea. For very low frequencies, the equalization occurs through

a connection between the scala tympani and vestibuli at the apex of the cochlea

called helicotrema. The basilar membrane of humans has a total length of 32mm

and widens with a factor of about three from the base to the apex. It carries the

organ of Corti with about 3,000 inner and 16,000 outer haircells, which transform

the mechanical oscillations in the inner ear into a signal (action potentials), that

can be processed by the nervous system.

The haircells are arranged in one row of inner haircells on the inner side of the

organ of Corti, and three rows of outer haircells near the middle of the organ

of Corti. The organ of Corti is partly covered by the tectorial membrane, that

is made up of two kinds of hydrated protofibrils. Although the functions and

their neural innervation of the inner and outer haircells are not clear in single

detail, it is assumed that the outer haircells only effect the organ of Corti and

that they exert large influence on the inner haircells. The afferent synapses of the

inner haircells show a characteristic chemical behavior, whereas those of the outer

haircells are atypical. More than 90% of the fibers contact the inner haircells, with

each fiber normally connecting only one inner haircell. In this way, each inner

haircell is contacted by 10–20 afferent dendrites of primary auditory neurons. In

contrast, the outer haircells are mainly innervated by efferent fibers coming from

the brain. The inner haircells themselves rarely receive efferent terminals. The

few efferent fibers contact only the afferent fibers and do not have direct synaptic

connections with the inner haircells.

Since the basilar membrane widens from the oval window to the apex and is

more flexible near the apex of the cochlea, different places along the basilar

membrane resonate with different sound frequencies. Békésy proved that low

frequencies producing oscillations on the basilar membrane near the helicotrema

whereas high frequencies resonate near the oval window. Figure 2.6 shows a

schematic drawing of the discoveries of von Békésy: a wave originates with a

small amplitude at the oval window, travels along the basilar membrane, grows

slowly, reaches its maximum at a certain location and rapidly dies out in the

direction of the helicotrema. The envelope of the stimulus oscillations according
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Figure 2.6: Schematic drawing of the unwound basilar membrane from the helicotrema
(hel) to the oval window (o.w.). Three simultaneously presented frequencies produce
travelling waves with their maxima at different places along the basilar membrane, from
Zwicker and Fastl (1999).

to the different regions of the three maxima (indicated by the dotted lines) is

invariant in its position along the basilar membrane. Each frequency has its

peak amplitude at a different position with a logarithmic representation of the

frequencies along the basilar membrane. The tonotopical organization of the

inner ear performs a spectral analysis and separates the different frequencies of

the sound according to a place principle. The delay time between the incoming

sound at the oval window and the response of the basilar membrane increases

with increasing distance along the basilar membrane, respectively increases with

decreasing center frequency. Sounds with low-frequency-content that reach their

maximum near the end of the cochlea show delay times up to 11ms.

Auditory Nerve

In human, the entire flow of information from the inner ear to the brain runs

through approximately 30,000 afferent neurons of the spiral ganglion that con-

tact the hair cells of the cochlea and end centrally in the cochlear nucleus. Two

different types of primary auditory neurons form the auditory nerve: type I neu-

rons are bipolar and myelinated. They represent about 90–95% of the neurons

in the auditory nerve and contact only one inner hair cell. Type II neurons (5–

10%) are smaller, pseudo-unipolar, and unmyelinated. In contrast, the dendrites

of the type II neurons are ramified and contact up to ten outer hair cells. The

specific role of the type II neurons is still unclear, since no nerve impulse could

be recorded so far. It is even not certain if they conduct action potentials.

The fact that a frequency analysis is performed in the cochlea and the one-to-one

connection of the type I auditory nerve fibers with the inner hair cells makes

it obvious that the single auditory nerve fibers are sensitive only to a restricted
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frequency range. The threshold of the responses to pure tones of different fre-

quencies is described by tuning curves of the single auditory nerve fibers. The

frequency to which the fiber is most sensitive is the characteristic frequency and

is directly related to the longitudinal position along the cochlea (Liberman, 1978,

e.g.). Spiral ganglion neurons showing a low characteristic frequency, contact

with inner hair cells in the apical part of the cochlea, whereas fibers with a high

characteristic frequency innervate the cochlea at its base. In absence of a sound,

most of the type I neurons show an irregular, spontaneous activity. With the

onset of a tone above threshold of the neuron, the discharge pattern changes.

The peristimulus time histogram (PSTH) of the fiber shows an initial phasic in-

crease in the number of discharges, followed by a maintained tonic firing rate

at a steady level that persists for the duration of the tone. At the offset of the

tone, the discharge rate is depressed below the spontaneous level before returning

to its resting state. In response to low characteristic frequencies up to 4–5 kHz

Cariani (1999), the firing of the individual auditory nerve fibers is synchronized

with the phase of the tonal stimulation (phase locking). The distribution of the

intervals between successive spikes (first-order intervals) on an interspike inter-

val histogram is characterized by peaks corresponding to integer multiples of the

period of the pure tone. When both, the distribution of successive and nonsucces-

sive spikes is counted, the all-order spike interval histograms of each fiber can be

summed and weighted according to their characteristic frequencies. The result is

an all-order interval distribution of the entire population of auditory nerve fibers

(Figure 2.7).

Figure 2.7: Autocorrelation like responses of the auditory nerve fibers. Left: short
term autocorrelation function of a voice like stimulus with fundamental frequency f0.
Right: Population interval histogram recorded from the auditory nerve in cat, after
Cariani (1999)
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Cochlear Nucleus

All primary auditory nerve fibers terminate in the two cochlear nuclei, located on

the dorsolateral side of the brainstem between the spinal cord and pons. At the

first stage of the ascending auditory pathway, the rather homogenous incoming

signals from the auditory nerve fibers are re-encoded into various functionally

different channels. Shortly after entering the brainstem, the spiral ganglions

all bifurcate into an anterior ascending branch that goes to the anterior ventral

cochlear nucleus (AVCN) and in a posterior descending branch going first to

the posterior ventral cochlear nucleus (PVCN) and then to the dorsal cochlear

nucleus (DCN). Thereby, the tonotopy of the cochlea is preserved: fibers from

the cochlear apex (representing low frequencies) bifurcate as soon as they enter

the cochlear nucleus complex. The ascending branch stays in the ventrolateral

portion of AVCN, whereas the descending branch stays in the ventrolateral por-

tions of PVCN and DCN. Spiral ganglions carrying high frequency information

go to the dorsomedial portion of the VCN before they bifurcate. Both branches

project to regions more medial of the AVCN, PVCN and DCN. This cochleotopic

organization of the two cochlear nuclei is maintained throughout the ascending

auditory pathway. The cochlear nuclei themselves show a large variety of neu-

ronal cell types, like bushy-, stellate-, octopus- or fusiform-cells. In correlation

with the different cell types, various responses have been derived from single unit

recordings especially in the cat. An overview over the different response types is

given in Figure 2.8. Three different types of the primary-like (PL) neurons are

described in the VCN. They show a similar response compared to the PSTH of

the auditory nerve fibers and differ only in their onset response: the sustained

primary-like neurons (PLs) do not show an initial peak, whereas the primary-like

with notch (PLN) exhibit a short pause after the onset. Onset units respond par-

ticularly to sound onsets. The two most common types are onset-lockers (OL)

and onset-chopper (OC) units. Cell types that discharge at regular intervals, in-

dependent of stimulus frequency and phase, are called chopper units (C). They

are subdivided in sustained (CS) and transient (CT ) chopper units and differ only

in their discharge regularity.

The ascending connections of the cochlear project to several brain stem audi-

tory nuclei in three main output pathways, as illustrated in Figure 2.4. The

first, the ventral acoustic stria (VAS), or trapezoid body, contains axons origi-

nating mainly from bushy cells of the AVCN and stellate cells of the PVCN. The

bushy cell axons terminate essentially in the three principal nuclei of the superior

olivary complex: the lateral and the medial superior olivary nucleus, and the

medial nucleus of the trapezoid body. Other axons of the VAS project to the
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Figure 2.8: Peristimulus time histogram (PSTH) of different cell types from recordings
of the ventral cochlear nuclei (VCN). Primary-like sustained (PLS) and with notch
(PLN ). Onset units that lock (OL), chopper after onset (OC) or are inhibitory after
onset (OI). Chopper units, either with sustained (CS) or transient responses (CT ).
After Popper and Fay (1992b).

lateral lemniscus (LL) and the inferior colliculus. The second output pathway,

the intermediate acoustic stria (IAS), or stria of Held, includes axons originating

mainly from the octopus cells of the PVCN and project to the preolivary nuclei

of the superior olivary complex, higher to the lateral lemniscus and to the inferior

colliculus. These two latter structures also receive ascending inputs via the third

output pathway, the dorsal acoustic stria (DAS), or stria of Monakow, containing

axons mainly from the DCN. In addition to the projections to the more central

auditory nuclei, there is also a weak connection between the two cochlear nuclei.
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Superior Olivary Complex and Lateral Lemniscus

The superior olivary complex consists of several nuclei and is located in the ventral

aspect of the brainstem, between the cochlear nucleus and midline. The three

main nuclei–lateral (LSO) and medial superior olivary nuclei (MSO) together

with the medial nucleus of the trapezoid body (MNTB)–represent the first stage

of the auditory pathway where a massive convergence of the information of both

ears takes place. Especially the MSO is thought to be concerned with sound

localization on the basis of time differences. The nucleus is composed of spindle-

shaped cells with two dendrites. The lateral end receives input from both, the

contralateral and ipsilateral cochlear nuclei. In contrast to the MSO, the LSO

uses intensity differences to localize sounds in space. Nearly all binaural neurons

of these nuclei are excited by inputs from the ipsilateral cochlear nucleus and

inhibited, via an interneuron, by inputs from the contralateral cochlear nucleus.

When this inhibition is reduced, either because of differences in time or intensity,

the cells give a maximum response. Thus, from the outset of the superior olivary

complex, there is an extensive bilateral representation of each ear in the auditory

system. The axons projecting from the cochlear nucleus together with the output

from the superior olivary complex form the lateral lemniscus that mainly projects

to the mesencephalon (inferior colliculus). A relatively narrow band of neurons

that is oriented vertically, constitutes the nucleus of the lateral lemniscus. This

nucleus exhibits again an extensive crossing between both ascending neurons via

the Probst commissure.

Inferior Colliculus

The inferior colliculus represents the principal source of ascending inputs to the

auditory thalamus. The main auditory structure of the mesencephalon receives

its inputs from the axons originating in the cochlear nucleus, superior olivary

complex and lateral lemniscus. According to functional differences in the response

types, the inferior colliculus can be divided in three main subregions: the central

nucleus (ICC), the pericentral nucleus (ICP) and the external nucleus (ICX).

Single unit recordings in the ICC exhibited two main response types. The first

type showed a transient onset response to the beginning of a tone, whereas the

second type is characterized by a sustained response lasting during the whole

duration of the stimulus. However, all response types of the Cochlear Nucleus

as described in Figure 2.8, are also observed in the ICC. The majority of the

recordings in the ICC showed a good tonal selectivity of the single units, indicated

by a narrow, V-shaped tuning curve. The good tonal selectivity represents the
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basis of the tonotopic organization of the inferior colliculus. Single units of the

ICC are arranged according to their increasing characteristic frequency along the

dorsoventral axis. In contrast, single units in the ICP and ICX exhibited a poorer

tonal selectivity, characterized by broad and irregular tuning curves. Single units

in the ICP and ICX show adaptation to repetitive stimuli, which is not the case

in the ICC. Furthermore, some single units in the ICX seem to be particularly

sensitive to complex acoustic stimuli.

Thalamus and Auditory Cortex

The auditory thalamus receives input mainly from the inferior colliculus and in-

cludes three distinct regions where sounds evoke activity: the medial geniculate

body (MGB), the lateral part of the posterior nucleus of the thalamus (PO),

and the auditory sector of the reticular nucleus of the thalamus (RE). The tono-

topic organization observed in the inferior colliculus is maintained throughout the

thalamical projections to the auditory cortex. Tracing studies in cats (Rouiller

and Ribaupierre, 1989) have shown that the principal thalamic region (MGB) is

organized tonotopically and that neurons project to the anterior, primary, and

posterior auditory fields. A clear tonotopic organization was also observed for

the PO, which mainly projects to the primary and anterior auditory cortex. In

contrast, the sector of RE which is sensitive to auditory stimuli receives input

from the MGB as well as descending projections from the cerebral cortex and

can be understood as a feedback control.

The auditory cortex in mammals is located in the caudal part of the Planum

supratemporale. In human, the primary auditory cortex or koniocortex is located

on the superior surface of the temporal lobe, adjacent to the superior temporal

gyrus, in the depth of the Sylvian fissure where it occupies most of Heschl’s Gyrus.

Cytoarchitectonically this part is defined as Brodman area 41. The size and exact

location of the arial borders and the distribution of these areas differ between the

studies, since a large interindividual as well as an interhemispherical variability

can be found. There may be one to three–rarely four–transverse gyri of Heschl in

each hemisphere (Campain and Minckler, 1976). Galaburda and Sanides (1980)

described the primary auditory cortex almost entirely within the first transverse

gyri of Heschl, whereas other authorities include the parakoniocortex known as

area 42 (Kulynych et al., 1994; Leonard et al., 1998)), which surrounds the konio-

cortex and extends a variable distance beyond the transverse gyri of Heschl onto

Planum temporale. It is described as the posterior part of the temporal gyrus

and comprises area 22. Like most of the other cortical areas, the auditory cortex

has a classical cytoarchitecture formed by six layers. The lamination is strongly
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related to the topography of the interconnections of the auditory cortical areas.

Afferent input originating from the thalamus, terminates mainly in layer III and

IV, whereas layer I receives preferential input from the MGB. The deep layers

V and VI are source of the descending projections that terminate in the inferior

colliculus and in the auditory thalamus. Transcallosal projections terminating in

the opposite auditory cortical fields originate from layers III and V (Rouiller and

Welker, 1991).

2.2.2 Pitch–Specific Evoked Responses in Human

The great benefit of scalp-recorded electric potential and magnetic field studies is

the possibility to measure noninvasively in awake, behaving humans and can be

directly correlated with aspects of perception. The sum of active sources (sites

of inhibitory postsynaptic potentials – IPSP) and active sinks (excitatory post-

synaptic potentials – EPSP), as well as their passive return currents, weighted

by strength, synchrony, orientation, and distance from the recording site is re-

presented in the topography of the field on the scalp as can be seen from section

3.3.

Merzenich and Brugge (1973) recorded the electric potential of anesthesized

macaques evoked by sinus tones of different frequencies and localized three tono-

topic organized auditory areas. They reported a representation of high frequen-

cies in the caudal part of the koniocortex, whereas low frequencies caused activity

in the more rostral located part. Multiple auditory representations, with some of

the areas exhibiting a specific tonotopic organization have been reported in other

mammmals such as gerbil (Scheich et al., 1993) or monkey (Morel et al., 1993).

The first study on auditory evoked fields in humans was published by Reite et

al. (1978). Romani et al. (1982) could show in humans that the magnetic field

evoked by the presentation of amplitude modulated sinus tones can be modelled

with tonotopically organized equivalent source dipoles in the primary auditory

cortex. High carrier frequencies were located medial, whereas the center of ac-

tivity evoked by lower carrier frequencies was found more lateral.

Scalp-recorded auditory evoked potentials (AEPs) or auditory evoked magnetic

fields (AEFs) are often onset responses (see Figure 2.9, left). The response could

be generated from neurons that respond specifically to the onset of the stimulus

but it could also be that only the change in the stimulus synchronizes sufficiently

enough neurons to generate a field potential. Subsequent activity is cancelled out,

since it contains both, negative and positive components. However, there is no

total cancellation effect because of the differences in the rise and fall times of the
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Figure 2.9: Typical auditory evoked response by the presentation of RIS. Left: stimulus
onset from silence, right: response to the transition from RIS to RIS. The nomenclature
describes the components according to their polarity either with N (negative) or P
(positive) and the ideal latency of the component after stimulus onset.

synaptic potentials. The remaining steady-state response is known as sustained

field. The transient responses are generally classified following the categorization

suggested by Picton et al. (1974): (1) early auditory evoked fields (EAEF) with

latencies up to 8ms, (2) responses in the middle latency (MAEF) interval between

8ms and 40ms, and (3) late auditory evoked fields (LAEF) that occur later than

40ms after stimulus onset. EAFS mirror activity beginning in the auditory nerve,

following the ascending auditory pathway up to the brainstem. For a review of

the generators of the EAFs, see Scherg (1991). The nomenclature, that is used in

the present work describes the components according to their polarity either with

N (negative) or P (positive) and the ideal latency of the component after stimu-

lus onset. For example, P30 stands for the positive peak, approximately 30 ms

after the onset of a sound. Additionally, an ’m’ for neuromagnetic is added to

distinguish it from a response measured by EEG. The single peaks of the MAEFs

are ordered with increasing latency (8 ms, 12ms, 19ms, 30ms, and 40ms). The

two early components at latencies of 8 and 12 ms seem to be the result of subcor-

tical sources. Because of the radially distribution, both components can not be

detected with MEG and occur in the EEG only (see section 3.3). A typical time

course of an equivalent dipole source of the magnetic field, located in the auditory

cortex is shown in the left part of Figure 2.9. A different waveform is observed

when the magnetic fields were evoked by the transition from one tone to another.

As illustrated in the right part of Figure 2.9, the N19m and P30m components
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Figure 2.10: Equivalent source dipoles of MEG components P30m, P50m and N100m
fitted on the single components. Figure adopted from Schneider et al. (2004).

vanished and the first positive peak is observed approximately 50–60ms after the

transition. The source of the N19–P30 complex could be explained by Scherg and

von Cramon (1986) with a two dipole model, suggesting a single source in each

auditory cortex. It was validated with intracranial measurements by Liégeois-

Chauvel et al. (1991) who located the N19–P30 generator in the posterior part

of medial Heschl’s Gyrus (see also Figure 2.10).

The late auditory evoked response of Figure 2.9 shows the typical P50–N100–

P200 complex, arising from different areas of the auditory cortex. Reite et al.

(1988) identified the source of the P50 component as most likely in Planum tem-

porale. Liégeois-Chauvel et al. (1994) reported the generator of the P50 to be

more lateral compared to the N19–P30 complex, which was validated in MEG

measurements by Mäkelä et al. (1994) and can be seen in Figure 2.10 from Schnei-

der et al. (2004).

The prominent N100 peak is composed of multiple, partially temporally overlap-

ping, independent components (Näätänen and Picton, 1987; Lütkenhöner, 2001).

Pantev et al. (1988) and Roberts and Poeppel (1996) showed with MEG the

dependence of the transient N100m deflection to sinusoidal tones of different fre-

quencies. Both studies reported a correlation between frequency and latency of

the N100. Ragot and Lepaul-Ercole (1996) used EEG and showed that for har-

monic series with a varying spectrum the latency of the N100 only depends on

the fundamental frequency and not on details of the spectrum. Other studies

(Stufflebeam et al., 1998, e.g.) revealed that the N100 is also sensitive to other

stimulus features as the intensity of the stimuli. The multiple sources of the N100

component are probably generated over a wide region of the supratemporal plane.
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Magnetic field recordings by Lütkenhöner and Steinsträter (1998) suggested that

the N100 arises from Planum temporale and that the P200 seems to have its

center of activity in Heschl’s Gyrus.

To isolate the specific response to the onset of pitch, Mäkelä et al. (1988) used a

continuous stimulation with transition from noise to square waves. In this way,

responses to the simple onset of energy flux are avoided and responses to the

pitch onset can be extracted. About 100 ms after the transition, a prominent

deflection (N100m’) was found to be sensitive to pitch height and pitch salience.

In a recent MEG study, Krumbholz et al. (2003) applied transitions from noise

to RIS to investigate the POR to RIS with positive gain. They reported the

specific N100m’ response to be involved in pitch processing and found the center

of activity for this component in the medial Heschl’s Gyrus.

Gutschalk et al. (2002) applied a four dipole model to describe the relationship

between click train of different pitch strength at different sound intensities. The

dipole pair that accounted for the pitch strength was located in the lateral part

of Heschl’s Gyrus. The second pair of dipoles was fitted posterior to the first in

Planum temporale. It was found to be sensitive to the intensity of the sounds.

Thus, they concluded, that the anterior dipole pair is involved in the perception

of pitch. In a positron emission tomography (PET) study from Griffiths et al.

(1998), activation in Heschl’s Gyrus increased with the temporal regularity of

RIS. The results of a functional magnetic resonance imaging (fMRI) experiment

conducted by Warren et al. (2003) showed, that the medial Heschl’s Gyrus is

activated similarly when processing either pitch or noise. But they reported an

increased activity evoked by pitch changes in a small area of the lateral Heschl’s

Gyrus. The results of another fMRI experiment conducted by Patterson et al.

(2002) revealed activity in the lateral aspect of Heschl’s Gyrus for a melody of

RIS versus a fixed pitch condition, which gives reason to the fact, that the lateral

Heschl’s Gyrus is involved in detecting pitch changes.

2.3 Modelling of Pitch Processing

The first theory dealing with the ”pitch of the missing fundamentals” was in-

troduced by Schouten (1940), who claimed that the residual pitch is extracted

by using the temporal activity pattern of nerve fibers, stimulated by unresolved

frequency components. Licklider (1951) introduced the first model of the cochlea

that described the perceived pitch in two dimensions. Figure 2.11 shows the

tonotopy of the cochlea in x–direction. The τ–dimension represents peaks in

the autocorrelation function calculated with interspike intervals of the auditory
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Figure 2.11: Schematic drawing of Licklider’s duplex theory. The tonotope x–
dimension is along the uncoiled cochlea. The signal of the activated neurons of the
auditory nerve (A) is fed to autocorrelators (B), whose delay– or τ–dimension is or-
thogonal to x. Figure adopted from Licklider (1951).

nerve.

A few years later, experimental findings (Houtsma and Goldstein, 1972) sug-

gested, that pitch is derived at a more central processing stage of the auditory

system. Thus, most of the today known pitch models contain elements of central

pitch processing.

Goldstein (1973) assumed in his so called optimum processor theory that the

frequencies fi of spectrally resolved harmonics are transformed into Gaussian

random variables xi, with means equal to fi and variances that depend on fi

only. According to this theory, all amplitude and phase information is ignored.

It is assumed that the input numbers xi are noisy representations of harmonic

frequencies and the central processor makes an estimate of the unknown har-

monic numbers and the corresponding fundamental frequency. The probability

of an incorrect estimate of the harmonic order can cause mismatch in the har-

monic numbers, which results in ambiguous pitches. The virtual pitch theory of

Terhardt (1979) is an alternative attempt to explain the perception of a distinct

pitch. Unlike the optimum processor theory, it is formulated in a deterministic

manner and assumes that the single frequencies are transformed in the auditory

periphery into special pitch cues. The output of the model are different possible
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pitches, each with an associated strength, derived from the stimulus properties.

Another computational model has been proposed by Meddis and Hewitt (1991a).

It is composed of a linear bandpass filter representing the outer and middle ear,

followed by a bank of 128 overlapping critical-band (gammatone) filters mapping

the basilar membrane motion. The output of each channel is transformed with

the hair-cell simulation model (Meddis, 1988), which includes a simple refractory-

repository period model for the auditory nerve fibers. Finally, an interspike in-

terval autocorrelation process according to the formulations of Licklider (1951)

is computed and averaged across the channels (see Figure 2.11). The perceived

pitch is predicted by the location of the first peak in the windowed autocorrelation

function, the pitch strength by the relative height of this peak.

2.3.1 Auditory Image Model

A model related to the formulations of Meddis (1988) was introduced by Patter-

son et al. (1995) is applied in the present work to test if the perceived pitch of

RIS and bandpass filtered complex sounds can be explained with the model.

It mainly consists of three different stages of auditory processing: spectral analy-

sis, neural encoding and a temporal integration stage. Briefly, the spectral analy-

sis converts the sound wave into a representation of the Basilar membrane motion

(BMM). The neural encoding stage stabilizes the BMM in level and sharpens spe-

cial features like vowel formants to produce a simulation of the neural activity

pattern (NAP) evoked by the sound in the auditory nerve. The temporal integra-

tion stage stabilizes the periodic structure in the NAP and produces a simulation

of the perceived pitch, referred to as the auditory image.

Spectral Analysis

The first step of the model is to perform a spectral analysis of the incoming

sound. The digitized wave is transformed into an array of filtered waves, which is

the model’s multichannel representation of the BMM. The single filters a linearly

distributed along the frequency scale, each of their bandwidths corresponding to

a fixed distance on the basilar membrane. It is essentially the same function

originally described by Greenwood (1961) as the ’cochlear frequency position’

function. The simulated human filter shape relating the equivalent rectangular

bandwidth (ERB) to its center frequency (f0) is

ERB = 24.7 Hz + 0.108f0. (2.1)



30 2. Pitch—Perception, Physiology and Simulation

The conversion of the multichannel representation of the basilar membrane mo-

tion to the approximation of the neural activity pattern (NAP) that flows from

the cochlea up the auditory nerve to the cochlear nucleus can be performed (1)

by a gammatone filterbank or (2) a physiological auditory filter for generating

the BMM. The description of AIM is restricted to the physiological version, since

these settings were applied in the present work to simulate the pitch of RIS and

bandpass filtered complex sounds.

A non-linear transmission line filter is used to implement the classical, one-

dimensional, approximation to cochlear hydrodynamics (Giguère and Woodland,

1994a). According to (Giguère and Woodland, 1994b), a feedback circuit repre-

senting the fast motile response of the outer haircells generates level-dependent

BMM. The filterbank generates combination tones of the type f1 − n(f2 − f1)

which propagate to the appropriate channels.

Simulation of the Neural Activity Pattern

In the second stage of AIM is the conversion from the mechanical BMM to the

afferent neural activity, at the level of the auditory nerve, realized. The trans-

duction process itself is performed by inner haircells. Again, two alternative

simulations are provided for generating the neural activity pattern (NAP): a

bank of two-dimensional adaptive thresholding units (Holdsworth and Patterson,

1993) and a physiologically adopted bank of inner haircell simulators (Meddis,

1988). The module provided by Meddis simulates the operation of an individual

inner haircell; specifically it simulates the flow of neurotransmitters across three

reservoirs that are postulated to exist in and around the haircell. The module

reproduces important properties of single afferent fibers, such as two component

time adaption and phase locking. The solution of the transmitter flow equations

is realized with the wave-digital-filter algorithm provided by Giguère and Wood-

land (1994a). In this way is one haircell coupled to each channel of the filterbank.

Figure 2.12 shows the typical simulation output of a NAP in response to a com-

plex harmonic sound with a fundamental frequency of 250Hz. The ordinate of

the upper panel of the figure is ERB-scaled. Thus, each line represents the output

of an auditory channel over the time. The lower panel is the sum of all channels.
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Figure 2.12: Simulation of the Neural Activity Pattern of a harmonic complex sound
with a fundamental frequency of 250Hz. The ordinate of the upper panel is ERB-scaled.
Each line represents the output of an auditory channel over time. The sum of activity
in all channels is given in the lower panel.

The Auditory Image

It is often assumed that the peripheral auditory processing ends at the output of

the cochlea and that the pattern of activity recorded at the level of the auditory

nerve is in some sense what we hear. But the simulation of the NAP is not the

representation of human auditory sensation because phase differences are still

included which we do not hear. Furthermore, at this level the model does not

include auditory temporal integration. For example, when the processing of a

periodic sound is simulated, the NAP oscillates. But the sensation of periodic

sounds does not flutter. In fact, periodic sounds produce the most stable audi-

tory images. The first models suggested to integrate the NAP over time using a

sliding temporal window. However, the results of these early models smear out

fine-grain temporal detail that we hear (Patterson and Moore, 1986). So, the

problem is to determine how the auditory system can integrate over cycles to

form a stable image, but without losing fine-grain temporal information. In the

auditory image model a mechanism is implemented that monitors the activity in

the single channels of the NAP (see Figure 2.12). To illustrate the mechanism,
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Figure 2.13: Mechanism of strobed temporal integration. The top part (a) shows ac-
tivity in a single channel of the NAP, enumerated from one to eight according to the
occurrence in time. The linear decay of the activation in the buffer of the NAP is re-
presented in the second row (b). When a pulse in the NAP reaches the threshold level,
the whole information of the NAP is transferred to the corresponding channel of the
static image buffer (entitled ’Build-up of image buffer’) and summed with the informa-
tion that is already there (c). The rows c1-c8 show the auditory image just after each
successive trigger pulse.
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underlying the construction of the auditory image, Figure 2.13a shows a single

channel of the NAP. It is assumed that there is a buffer store in the auditory

system through which the neural activity flows in a first-in first-out (FIFO) fash-

ion. At the same time the level decays linearly in time (Figure 2.13b). A large

pulse in the channel triggers temporal integration in that channel; that is a copy

of all the current information in the corresponding NAP-channel (FIFO-buffer)

is transferred to the corresponding channel (Build-up of image buffer in Figure

2.13) of a static image buffer and summed point for point with the information

that is currently there. At this point the temporal code is converted to a spatial

code. The strength of the auditory image decays exponentially in time but the

position of the information does not change once it occurs in the image buffer

(Figure 2.13c).

The triggering mechanism itself is an adaptive threshold value for each chan-

Figure 2.14: Simulation of the Stabilized Auditory Image from the NAP shown in
Figure 2.12. The abscissa represents the time interval and corresponds to the decaying
image buffer with a half life time of 20ms. In analogy to the NAP, the ordinate is the
center frequency of each channel. The SAI is computed from the NAP of a complex
sound with f0 = 250Hz. The activity of each frequency channel can be summed up
and results in the summed stabilized auditory image (lower part of the Figure). The
distance from 0 to the location τ of the first peak in the summarized SAI corresponds
to a predicted pitch of 1

τ =250Hz.
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nel. After the NAP pulse exceeds threshold, a trigger pulse is generated at the

time associated with the maximum of the peak. The threshold value is then

reset to a value above the height of of the current NAP peak. The value decays

linearly in time until another peak is encountered. The amount of threshold ele-

vation is determined by the height of the most recent peak and the time between

the last pair of trigger pulses in a way that for periodic sounds the mechanism

turns to generate one trigger pulse per period at the time of the largest peak.

The period-synchronous integration causes periodic information to accumulate

whereas aperiodic information is faded out. The triggering is done on a channel

by channel basis and since the major peaks in the single channels occur at dif-

ferent times this mechanism is asynchronous across channels and it is this aspect

that causes the alignment of the auditory image and which, in turn, accounts

for the loss of phase information in the auditory system (Patterson, 1987). The

quantized temporal integration of the periodic information generates a stabilized

auditory image (SAI). Figure 2.14 shows the SAI computed from the NAP of a

complex sound with an f0 of 250 Hz. The perceived pitch is represented in the

first peak of the summarized SAI (lower part of Figure 2.14). As can be seen,

the first peak is at τ=4ms which corresponds to a predicted pitch of 1
τ

=250Hz.



Chapter 3

Methods

This Chapter gives a brief description about the applied methods and is divided

in three parts. In the first part, a review of how noise can be processed to in-

troduce a pitch is presented. The special characteristics of the applied stimuli in

the experiment described in Chapter 4 are shown.

In the second part, an introduction on the method of paired comparison according

to Bradley and Terry (1952), and Luce (1959) is given, together with the applied

algorithm. Using the method they developed, the known problems of subjects

who have to judge pitch, is solved for the experiments that follow.

In the last part of the Chapter, the technical background for the magnetoen-

cephalographic measurements is provided, a crucial cue to understand the inves-

tigations, presented in Chapters 4 and 5.

3.1 Huygens Noise—Regular Interval Sounds

Different and also controversy definitions of the sound that Huygens described

initially in 1693 exist in the literature about regular interval sounds. Bilsen

and Ritsma (1969/70) introduced the term ’rippled noise’ for the phenomenon

observed in the garden of Chantilly de la Cour. In their experiment, the noise

was processed with only one iteration and the name was derived from the rippled

power spectrum (see Figure 3.1, where the spectrum is shown for RIS generated

with two iterations for better illustration). However, this type of sound has also

been referred to as ’ripple noise’ (Yost and Hill, 1978), ’repetition noise’ (Fay

et al., 1983), ’cosine-noise’ (Bilsen et al., 1975) and ’comb-filtered noise’ (Pick,

1980). With an increase of the number of iterations, Yost et al. (1993) suggested

that the stimuli produced by the circuits shown in Figure 3.2 be referred to as

35
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Figure 3.1: Power spectra of RIS, generated with positive (left) and negative gain
(right). Sounds with increasing pitch salience are depicted from top to bottom. The
number of iterations (n = 2, 8, and 4, 096 - top to bottom) determines the peak-to-
valley ratio.

’iterated rippled noise (IRN)’ since the first stage of the process (Figure 3.2a)

introduces ripples in the power spectrum and subsequent stages (see Figure 3.1)

iterate the process and only sharpen the ripples. Griffiths et al. (2001) introduced

the term ’regular interval noise’ to give more emphasis on the rippled spectrum;

Patterson et al. (2002) extended it to ’regular interval sounds’. In the past,

RIS generated with infinite numbers of iterations (see Figure 3.2b) has also been

referred to as ’comb-filtered noise’ (Raatgever and Bilsen, 1992) and ’peaked

rippled noise’ (Fastl, 1988). To avoid any confusion on the notation, we use the

term Regular Interval Sounds (RIS) throughout the present work, independent of

the number of iterations. The power spectra of RIS (Figure 3.1, top to bottom)

are combed and come close to a line spectrum for a high number of iterations

n. Increases of the peak-to-valley ratio in the spectrum are often used to explain

the increase in the pitch strength with increasing iterations. For a positive sign

of g (Figure 3.1, left), the spectra peak at integral multiples of the inverse of the

delay (f = 1
d
, 2

d
, 3

d
, . . .).

If the gain is negative (Figure 3.1, right), the spectra peak at odd multiples of
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f = 1
2d

(f = 1
2d

, 3
2d

, 5
2d

, . . .). Independent of the set of the parameters, there are

also different possibilities to process and introduce the pitch in the noise. The

basis of RIS is always noise that is periodically reflected against the staircases.

The noise signal Φ(t) is multiplied by a gain factor |g| ≤ 1, delayed by a time

d and added back to the original noise. This process is repeated n times. The

amplitude y(t) of the original Huygens noise is given by

y(t) = Φ(t) + g

n∑

k=1

Φ(t− kd). (3.1)

In the hearing experiments of our days, the output y(t) is derived slightly differ-

ent:

y(t) = Φ(t) +
n∑

k=1

bkΦ(t− kd). (3.2)

In contrast to the original Huygens way, where the coefficients bk would be

simply

bk(H) = g, (3.3)

the noise signal is processed as shown in Figure 3.2c. The delayed and attenuated

component is added to the original noise, giving bk the form

bk(O) = gk (3.4)

In the literature, it is often called IRNO (Yost, 1996b), and stands for the add-

original process. The pitch that is derived using the network of Figure 3.2c is

stronger, since the spectral peaks grow faster.

A second method to create RIS is shown in Figure 3.2d. In this special network

that was initially used by Yost et al. (1996), the delayed and attenuated noise

is added, not to the original noise, but rather to the same signal that enters the

current delay-attenuate-add stage of the circuit (IRNS). The coefficients bk in the

equation 3.2 would be

bk(S) = gk

(
n

k

)
(3.5)

This version of processing the noise does not have an analog in the natural en-

vironment. It does, however, provide an important perceptual comparison for

the naturally occurring IRNO stimulus because the two are perceptually similar

but can exhibit significant spectral differences. The envelope of RIS generated

with a delay of 2 ms, positive gain and six iterations is shown exemplarily for the

add-original and the add-same network in Figure 3.3. The Hilbert transforma-

tion of the resulting sound represents the envelope in time, which is shown in the
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Figure 3.2: Different possibilities of delay-and-add circuits to generate: a) rippled
noise,with one iteration, b) comb-filtered noise (infinite number of iterations), c) IRNO
add-original, the network that was used in the present work to generate RIS, and d)
IRNS add-same network.
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Figure 3.3: RIS, generated with 2ms delay, positive gain and six iterations. Figure a.)
shows the Hilbert envelope of the time signal. No difference between RIS generated with
the IRNO (left) and the IRNS (right) can be observed. In contrast, the spectra of Figure
b.) demonstrate the differences. The peaks of the IRNO circuit are sharper, but the
peak-to-valley ratio is higher for the IRNS condition. Figure c.) shows the normalized
autocorrelation functions: The first peak at lag 2ms, which commonly approximates
the perceived pitch is identical for both circuits. The difference in the autocorrelation
function is in the slope of decrease, which is larger for the IRNS condition.
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upper panel of the Figure. The fine structure of both signals exhibit no periodic

fluctuations and does not allow to distinguish the sounds from each other. Figure

3.3b clearly demonstrates the differences in the power spectrum of the sounds.

When using the IRNO network to generate RIS, several smaller peaks appear in

the valleys between the major peaks. The number of these peaks increase and

their amplitudes decrease as the number of iterations is increased. In contrast,

no smaller spectral peaks between the main peaks are observed, when the IRNS

circuit is used to generate RIS.

The Wiener-Khintchine relation says, that the inverse Fourier transform of the

power spectrum is the autocorrelation function. In the lower part of Figure 3.3,

the autocorrelation functions of both signals are computed. In each case, the

peaks in the functions appear at time lags corresponding to the delay time d and

its integer multiples. The first peak in the autocorrelation function at time lag

τ results in a perceived pitch with a frequency of 1
τ
. The height of the first peak

increases with n for both, IRNO and IRNS stimuli. A comparison of the autocor-

relation functions (Figure 3.3c) for IRNO and IRNS reveals that the remaining

first peak in the autocorrelation function has the same height, when the stimuli

are generated with the same gain g and the same number of iterations n. The

magnitude of the remaining peaks decrease as the lag increases. As can be seen,

the remaining peaks in the autocorrelation are greater for the IRNO-condition.

However, (Yost et al., 1996) reported, that listeners were not able to distinguish

between RIS generated either with the IRNO and the IRNS network. Thus, it

can be concluded that the time lag of the first positive peak of the autocorrelation

function is related to the perceived pitch of the sound and the height of this peak

corresponds to the perceived pitch strength. The experiments, conducted in the

present work were all produced with the IRNO network since an analog in nature

exists.

If the gain is negative, the autocorrelation function of RIS is different, compared

to RIS generated with a positive gain factor: the peaks in the autocorrelation

function at τ and its even integral multiples are negative. The peaks at odd mul-

tiples are positive. Thus, the first positive peak in the autocorrelation function

of RIS generated with a negative gain factor g is located at time lag τ = 1
2f0

.

3.2 Scaling of Pitch

The task of pitch matching is very difficult and subjects often have problems to

perform the task. Yost (1996a) reported that even musicians have problems to

rate the pitch and had to exclude four of six musically trained subjects in his
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experiment. Thus, it is necessary to introduce a procedure to circumvent the

known problems on pitch matching. The method of paired comparison, where

subjects are simply asked to decide between the pitch of two sounds, allows to

derive a relative pitch scale reliably for all subjects.

The Bradley-Terry-Luce (BTL) model is such a method of paired comparisons

and is used in the present work to derive relative pitch scales. It was developed

by Bradley and Terry (1952) and extended by Luce (1959). It is typically applied

in tasks when objects to be compared can be judged only subjectively (e.g. taste,

art). The method was initially introduced by Fechner (1860/1965) and became

popular in 1927 when Thurstone published his ”law of comparative judgement”.

In the method of paired comparisons objects or in our case auditory stimuli are

presented in pairs. The basic experimental unit is the comparison of two stimuli,

A1 and A2, by a judge who must choose one of them. If more than two stimuli are

under consideration every judge has to perform every possible paired comparison.

The setup is called ”balanced paired-comparison experiment” and for n stimuli

and t judges the numbers of paired comparisons will be

t

(
n

2

)
. (3.6)

The goal is to determine the probability that the stimulus Ai is chosen (P (Ai))

and to use this value to derive a relative scale of pitch. In our experiments,

the judges have to decide which tone is of higher pitch (Ai Â Aj). Ties or

indifferent judgements are not permitted, so a listener must claim one of the two

stimuli to be of higher pitch. To avoid judging effects, depending on the order of

representation, each pair was presented twice. With random variation, once in

the order Ai, Aj and in reversed order Aj, Ai. The mean of both comparisons

was used to get the raw data of the number of times each stimuli was judged by

the t judges to have a higher pitch than each of the other stimuli. From these

raw data, a n square matrix A is formed as

Aij =




− a12 · · · a1n

a21 − · · · a2n

...
... − ...

an1 an2 · · · −


 (3.7)

where aij denotes the observed number of times, stimulus i was judged to be

of higher pitch than stimulus j. The total number of comparisons of the two

stimuli is tij = aij + aji. Since a stimulus can not be compared to itself, the

diagonal elements of the matrix are left vacant. From A, a probability matrix is

constructed with elements pij =
aij

tij
. It is the probability that the stimulus Ai is
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preferred over stimulus Aj (Ai Â Aj). The summation of the symmetric elements

is pij + pji = 1. The elements of the basic Bradley-Terry form of the probability

matrix X can be derived with:

xij =
pij

1− pij

=
pij

pji

(3.8)

and analogously

xji =
pji

1− pji

=
pji

pij

. (3.9)

Using the natural logarithm on the single elements of X, the scale is transformed

from a ratio scale to a difference scale. Finally, the values (s(i)) of the single

stimuli can be obtained by averaging over the columns of the transformed matrix

X

s(i) =

∑n
j=1 ln xij

n
. (3.10)

In the special case where all subjects judged the pitch of the stimulus Ai higher

than the pitch of stimulus Aj (aij = tij), the values in equation 3.8 and in

equation 3.9 equal infinity. According to (David, 1988), who suggested to assume

that ’half a subject’ rated the pitch vice versa, the value of aij was corrected to

(aij = tij − 1
2
).

3.3 Magnetoencephalography

Information about brain activity can be obtained from recordings of the electric

or magnetic field outside the skull. Both, electroencephalography (EEG) and

magnetoencephalography (MEG) are reflections of the same neural phenomena:

the synchronous activity of neurons (mostly postsynaptic currents). The advan-

tage of both techniques is their temporal resolution, which is only limited by

the sampling rate of the signal. Today, the possible resolution is in the order

of tens of milliseconds and thus, allows to record the brain activity in real-time.

The relative sensitivities of EEG and MEG of different events in the brain de-

pend on the geometrical arrangement of the generator cells only, with respect

to the sensors and on the conductivity distribution of the head. Compared to

MEG, the interpretation of the EEG signals requires more precise knowledge of

the thicknesses and conductivities of the tissues in the head since concentric in-

homogenities do not affect the magnetic field at all but have to be taken into

account in the analysis of EEG data.
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3.3.1 Electromagnetic Fields of Biological Origin

Information is processed in the human cortex by a total of approximately 1010

neurons, which are connected by about 1014 synapses among each other. Elec-

tric pulses, called action potentials propagate along the axons and transmit the

information from one neuron to another. As illustrated in Figure 3.4, chemical

transmitters are liberated into the 50 nm-wide synaptic cleft that separates the

two neurons, when a pulse arrives along the axon of a presynaptic cell. The

transmitter molecules diffuse to the postsynaptic membrane where they activate

selective ion channels. In the rest state of the cell, the resulting currents are

balanced by diffusive and ohmic currents for each ion type (mainly Na+, K+, and

Cl−) leading to a concentration gradient between intra- and extracellular space

and to a transmembrane potential of about –80 to –90mV.

Thus, an increase of the permeability of the ion specific channels through the

cell membrane causes either a depolarization (excitatory postsynaptic potential,

EPSP) or a hyperpolarization (inhibitory postsynaptic potential, IPSP) of the

second cell. A net current flows through the membrane and, as illustrated in

Figure 3.4, the return current flows back through the surrounding tissue. The

summed PSPs of all synapses of a neuron charge the membrane potential. When

Figure 3.4: Schematic view of a neuron: Generation of postsynaptic potentials from
presynaptic activity. The presynaptic action potential propagates along the axon. At the
synaptic cleft, the liberated chemical transmitters diffuse to the postsynaptic membrane
and initiate a postsynaptic action potential. Note the amplitude and duration difference
between the pre- and postsynaptic potential. Potential differences due to propagating
action potentials, can be detected. Adopted from Ilmoniemi (1993).
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the transmembrane potential is increased (in the case of an EPSP) up to a thresh-

old of about –40 mV, an action potential is initiated in the second cell’s axon.

Since the charge distribution of a single neuron is only of the order of approxi-

mately 20 fAm, it takes about 106 synchronized neurons to produce a magnetic

field or an electric potential that can be recorded at the scalp. Thus, with the

assumption of 20,000 pyramidal cells/mm2 on the cortical surface, a generator

of such an amplitude covers at least an area of about 0.5 cm2 (Eggermont and

Ponton, 2002) and the cortical activity measured with MEG and EEG always

mirrors a sum activity.

Furthermore, two effects account for the measured signal. First, the resulting

field of the PSP decays with the distance by only 1/r2 whereas the quadrupolar

field of an action potential decreases with 1/r3. Second, a typical PSP lasts about

10ms, whereas the duration of an action potential is only in the order of 1ms.

Thus, the temporal overlap, and in particular, the temporal synchronization of

different neurons is remarkably reduced.

Altogether, the field distribution at the scalp is mainly an effect of the post-

synaptic current flow with its approximate dipolar distribution.

3.3.2 Neuromag-122TM Gradiometer System

The auditory evoked magnetic field that is recorded from the human brain, typi-

cally has a peak amplitude of 100 fT. In contrast, the electromagnetic noise

caused by MRI-scanners (3T), the earth’s static field (50 µT ) or laboratory

noise (100 nT) are many orders of magnitude larger compared to the far field

outside the head evoked by the brain tissue. Therefore, the detection of this kind

of biological activity requires highly sensitive instrumentation and, at the same

time, attempt to eliminate extraneous magnetic fields.

The Neuromag-122TM whole head magnetoencephalograph provides the possibility

to measure these auditory evoked magnetic fields. The cross-section of Figure 3.5

(left), illustrates the dewar, that consists of two cylinder shaped vessels, between

which there is a thermally insulating vacuum. The subject’s head is placed in-

side the helmet-shaped device (Figure 3.5 right). The construction is such that

the 122 sensors cover the full cortex with an average distance of only 17mm

apart from the scalp. The sensors are planar gradiometers that consist of two

figure figure-eight-shaped and perpendicular wristed pickup coils. The advantage

of applying gradiometers instead of magnetometers is their higher sensitivity to

sources near the coils, since the rather homogeneous field produced by distant

noise sources is cancelled out. The time varying magnetic flux produced by the
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Figure 3.5: Left: Cross section of the dewar, cooled with liquid helium as shown in
Hämäläinen et al. (1993). The helmet shaped sensor elements (enlarged) illustrate
the planar gradiometer array with its two ’figure-eight-shaped’ pickup coils, which are
coupled to the SQUIDs. Right: Front view of the dewar with subject SR.

human brain passes through a pickup coil and induces a time-varying electrical

current within the wire. In a typical coil, though, this current is quickly dissi-

pated as heat by the electrical resistance of the wire. Thus, MEG measurements

became possible only through the development of superconductive instrumenta-

tion, which ensures that even very small changes in the magnetic flux induce a

certain amount of current within the coil. Each pickup coil is coupled to an input

coil, which transforms the voltage back into a secondary magnetic field. It is de-

tected by a so called SQUID (Super Conducting Quantum Interference Device),

a superconducting ring, interrupted by two Josephson junctions (DC SQUID).

The electrons of the induced current tunnel through the parallel junctions and

interfere with each other. This is caused by a phase difference between the wave

functions of the electrons, which depends upon the strength of the magnetic field

through the loop. The phase difference of 2π is reached for a magnetic flux quant

with the flux Φ0 = h/2e = 2.07 · 10−15 Vs2. Hence, the two junctions in paral-

lel can detect variations in the magnetic field very sensitively. To maintain the

superconducting state, the pickup coils and the SQUIDs are immersed within a

liquid helium bath at an operating temperature of 4.2 ◦K.

The amount of magnetic noise from non-neuronal sources is significantly reduced
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by operating the whole device inside a magnetically shielded room made of alter-

nating layers of high magnetic permeability (µ-metal with µ ≥ 30, 000) and high

electrical conductivity (aluminium). Depending on the frequency of the noise,

the shielded room manufactured by Imedco (Switzerland), reduces the external

magnetic noise by 40–100 dB/Hz.

3.3.3 Source Identification

In general, neural activity can be represented mathematically as a primary source

with the current density ~Jp(~r) in a closed volume G of finite conductivity σ(~r).

The volume represents the head and thus, outside G, the conductivity and the

current density is zero. The potential Φ(~r) inside the head can be computed as

the divergence of the source from Poisson’s equation,

∇ ~Jp(~r) = ∇(σ(~r)∇Φ(~r)). (3.11)

Using Maxwell’s equations

∇ · ~E =
ρ

ε0

(3.12) ∇ · ~B = 0 (3.13)

∇× ~E = −∂ ~B

∂t
(3.14) ∇× ~B = µ0

(
~J + ε0

∂ ~E

∂t

)
, (3.15)

one can estimate ~J(~r) from measurements of ~E and ~B. Under quasistatic

conditions, i.e., sufficiently small time derivatives, the associated field ~E(~r) is

~E(~r) = −∇Φ(~r). (3.16)

The intracellular currents ~Jp(~r) inside G give rise to an electric field in the

extracellular space, which in turn, results in currents that flow passively through

the conducting medium. The passive current density ~Jv(~r) is given by Ohm’s

law,

~Jv(~r) = σ(~r) ~E(~r). (3.17)

Thus, the total current density ~J(~r) inside the head is the sum of the intra-

cellular and the extracellular current density. Together with equations 3.16 and

3.17, ~J(~r) can be written as

~J(~r) = ~Jp(~r) + ~Jv(~r) = ~Jp(~r)− σ(~r)∇Φ(~r). (3.18)



3.3. Magnetoencephalography 47

Using 3.18, then Maxwell’s equation 3.15 becomes for the quasistatic approx-

imation

∇× ~B = µ0
~J(~r). (3.19)

A solution to 3.19 that obeys Maxwell’s third equation (3.13), and under the

condition that ~B vanishes at infinity, is given by the Ampère-Laplace law:

~B(~r) =
µ0

4π

∫ ~J(~r ′)× ~R

R3
dv′ =

µ0

4π

∫ (
~Jp(~r)− σ∇′Φ

)
×

~R

R3
dv′, (3.20)

where ~R = ~r− ~r ′ is the distance between the observation point ~r and the source

point ~r ′. Using the mathematical identities, the magnetic field becomes for a

current of finite spatial extent

~B(~r) =
µ0

4π

∫ (
~Jp(~r) + Φ∇′σ

)
×

~R

R3
dv′. (3.21)

In 3.21, both current densities contribute to the magnetic field. The passive

return current density is represented by Φ∇′σ. If the conductivity inside G is

homogenous, then ∇σ = 0. Thus, the extracellular current density does not

contribute to the extracranial field.

The potential Φ of equation 3.21 can be replaced by its relation to 3.18 together

with ∇ ~J(~r) = 0, which is a consequence of 3.15. One obtains

∇ · (σ∇Φ) = ∇ · ~Jp(~r), (3.22)

Outside the head the conductivity is zero. Together with the continuity of the

current components, which makes the current normal to ∇G inside G to zero,

the boundary condition is

n̂∇G∇φ = 0 on ∇G. (3.23)

The normal on the scalp ∇G is represented by n̂∇G .

The potential can be calculated from 3.22 together with the boundary condi-

tion given in 3.23. Knowing the potential, the calculation of the magnetic field

based on 3.21 is straightforward.

If the volume element, where ~Jp(~r) 6= 0, is small it can be replaced by
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~Jp(~r) ≈ I ~l δ(~r − ~rQ) = ~Q δ(~r − ~rQ). (3.24)

In 3.24, ~rQ is the position where the current density is different from zero, I

is the current strength, ~l the direction vector of the current density, and ~Q is the

current dipole moment,

~Q =

∫
dr′ ~Jp(~r

′). (3.25)

As illustrated in Figure 3.6, the contribution of a primary current described

by the current dipole ~Q at position ~rQ can be derived from equation 3.21 to

~Bp(~r) =
µ0

4π

~Q× (~r − ~rQ)

|~r − ~rQ|3 . (3.26)

Figure 3.6: Schematic view of the magnetic field ~B generated by a source Q inside
the head.

~Q = ~IL

~rQ

~r

Bp(~r) = µ0

4π

~Q.[~r×~rQ]

|~r−~rQ |3
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In summary, the potential and the magnetic field at any position outside and

on the surface of the head can be calculated from the intracellular source density
~Jp(~r) and depend linearly upon it:

φ(~r) =

∫
d~r ′ ~Lpot(~r, ~r ′) ~Jp(~r

′), (3.27)

~Bα(~r) =

∫
d~r ′ ~Lα(~r, ~r ′) ~Jp(~r

′), (3.28)

where ~L is the lead field vector depending on the geometry and conductivity

of the head only.

3.3.4 The Inverse Problem

Calculating the potentials and magnetic field distribution that result from the

intracellular currents is known as the forward problem. Conversely, the electro-

magnetic inverse problem is to estimate the cerebral current sources underlying

an externally measured magnetic field (MEG) or potential (EEG). As shown by

Helmholtz (1853), the inverse problem poses a very difficult mathematical prob-

lem without a unique solution. There can be primary current distributions that

are either magnetically silent ( ~B = 0 outside G), electrically silent ( ~E = 0 outside

G), or both. For example, a radial dipole in a spherically symmetric conductor

produces an electric field, but is magnetically silent outside G. The case is illus-

trated in Figure 3.6, when ~r× ~rQ is zero. Thus, a priori information needs to be

incorporated into the analysis to make some assumptions regarding the location

or the geometry of the source to derive a reliable solution.

The activated neurons are most commonly described in terms of a ”single-dipole-

in-a-sphere” model. That is a single equivalent dipole, located in the center of

a spherically symmetric homogenous medium. The solution of the inverse prob-

lem can be obtained with different methods: The Principal Component Analy-

sis (PCA) calculates the autocorrelation function of the sampled signal matrix.

Eigenvectors and eigenvalues of this matrix define the topographies, that con-

tribute to the measured signal. Another method is to use the MUSIC-algorithm

(multiple signal classification). One assumes, that the sources and the noise are

orthogonal to each other and that the number of the sources is known. For a

comparison of the advantages and disadvantages of these methods, see Sieroka

(2004).

The brain activity can also be modelled with a distributed source model, in which
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several current dipoles are densely spaced along the brain’s gray matter. A prob-

lem occurs when the number of dipoles exceeds the number of sensors that record

the field distribution. One has to handle an underdetermined problem and needs

to place constraints in order find a solution. One way to overcome the problem

is given with the ”minimum norm solution”, a solution for which the norm of the

activities of all sources exhibits its minimum (e.g. Hoechstetter (2001)).

The auditory evoked fields (AEFs), that are investigated in the Chapters 4

and 5 have the immense advantage, that the pyramidal cell dendrites of the audi-

tory cortex (the putative generators of the electrical sources) are arranged in a

columnar fashion with an orientation normal to the cortical surface. Assuming

20,000 pyramidal cells/mm2 on the cortical surface and an evoked amplitude of

about 20 nAm; the center of activity covers an area of approximately 0.5 cm2

(Eggermont and Ponton, 2002).

fMRI studies conducted by Griffiths et al. (1998) and Warren et al. (2003) re-

vealed, that pitch changes in a continuous sound (like melody) revealed increased

activity in a very small area of the lateral Heschl’s Gyrus only. Thus, the center

of activity due to the change of pitch can be adequate modelled with one dipole

in each auditory cortex of both hemispheres.



Chapter 4

Pitch and Neuromagnetic

Representation of RIS

The aim of this Chapter is to correlate the neuromagnetic responses evoked by

RIS with psychoacoustic results. The perceived pitch shift between RIS gener-

ated with positive and negative sign of the gain g finds particular attention, since

the results on the perceived pitch of RIS generated with a negative gain are rather

controversial. The pitch shift from ambiguous pitches in the region of 1
0.9d

and
1

1.1d
to the pitch of 1

2d
is investigated in view of the controversial literature as

described in section 2.1.3.

The psychoacoustic results, the neurophysiological responses and the perception

of RIS are investigated not only in dependence of g, but also of the delay time

d and the number of iterations n. We also included n = 4, 096 iterations in the

experiments, where the power spectrum of RIS approaches a line spectrum.

A continuous stimulation is used to extract the neuromagnetic pitch onset re-

sponse (POR). In contrast to earlier studies (Pantev et al., 1988; Roberts and

Poeppel, 1996), we concatenated segments of RIS with fixed n and d, but alternat-

ing sign of g to avoid responses evoked by the energy onset. In the psychoacoustic

experiment, listeners performed pitch matching according to methods reported by

Yost (1996a). Second, we circumvented their reported difficulty of pitch match-

ing by using a simple two-alternative forced choice task. In the simulation part,

the temporal pitch model introduced in section 2.3 is employed to simulate the

perceived pitch of RIS. The outcome of the stabilized auditory images is used

to predict the perceived octave shift and the transition in the perception to am-

biguous pitches in the region of ±10% between RIS generated with positive and

negative gain.

51
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For convenience, we use the notation RIS(d, g, n) for RIS generated with a delay

time d, a gain factor g of either plus or minus one and a number of iterations n.

4.1 Material and Methods

4.1.1 Subjects

Twenty adult listeners (ten male, ten female) with no reported history of pe-

ripheral or central hearing disorder participated in both experiments after giving

informed consent. The mean age (± standard deviation) was 33 (± 9) years.

During the MEG sessions, subjects watched a silent movie of their own choice.

They were asked not to pay attention to the stimuli and concentrate on the movie.

4.1.2 Stimuli for MEG Recordings

Digitally generated white noise at a sampling rate of 48,000Hz was used to pro-

duce RIS. The gain g was either set to plus or minus one. Pitch strength was

varied by employing 2, 8 and 4,096 iterations (representing n →∞). According

to Bilsen (1966) and Yost (1996a), delays of 2, 4, 8 and 16ms (corresponding

to 500, 250, 125, and 62.5Hz for RIS(d,+1,n)) were used to cover a range of

three octaves (oct). The single RIS segments had a length of 510 ms and were

high-pass filtered at 500Hz to compare our results to other studies (Krumbholz

et al., 2003).

The RIS segments were balanced in energy and ramped with a 10-ms hanning

window at the beginning and at the end. To avoid neuromagnetic responses

to the energy onset, the segments were concatenated with alternating sign of

g (+1/-1), but same d and n to produce a RIS sound with a length of 10.5 s.

Thereby, the subsequent RIS segments of the continuous sounds overlapped in a

way that there was no visible change of the sound pressure at the transition of

two segments (Figure 4.1).

Sounds were presented diotically via a 16 bit soundcard at a sampling rate

of 48,000 Hz. Etymotic Research (ER3) earphones equipped with 90 cm plastic

tubes and foam ear pieces were used. The transfer function of the whole setup

shows a band-pass characteristics with a bandwidth from approximately 500 to

5,000Hz. A Brüel & Kjær sound level meter was used to set the overall level of

the sounds to 63 dB SPL.

Neuromagnetic responses were recorded in four different sessions. In each session
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Figure 4.1: The individual RIS-segments are concatenated with alternating gain. At
the transition of the segments, energy is kept constant and there are no visible differ-
ences in the fine structure of the waveform.

d was kept constant while n was varied randomly between the different stimuli.

In this way, ten different RIS segments were generated for each condition. The

stimuli were delivered in pseudo-random order. Altogether, 350 RIS segments of

each condition were presented within one session.

4.1.3 Data Processing and Source Analysis

The neuromagnetic responses to the presented sounds were DC-recorded with

a Neuromag-122TM whole head planar gradiometer system inside a magnetically

shielded room (Imedco, Switzerland). Data were sampled with a rate of 1,000Hz

and lowpass filtered at 330 Hz. To co-registrate the 3D-MRI reconstructions, the

landmarks of nasion, two pre-auricular- and additional 32 surface points were

digitized with a Polhemus 3D Space Isotrack2 system.

The software package BESA2000 (MEGIS GmbH, Germany) was used to per-

form the source analysis offline. Before averaging the auditory evoked fields, data

was inspected and noisy channels were excluded. Epochs with gradient changes

greater than 800 fT per millisecond were rejected. In this way, approximately

330 sweeps per subject and condition were averaged over a period of -100ms to

600ms relative to the transition of the single RIS segments.

A spatio-temporal source model with one equivalent dipole in each hemisphere

was used (Scherg et al., 1989). The averaged waveforms of RIS(2,+1,8) were 2–

30Hz band-pass filtered (zero-phase, 12 dB/oct), and the first prominent negative

deflection (N100m’) of this condition was fitted in a 30 ms-interval around that

peak. The evoked responses of this condition produced a consistent fit for every
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single subject and was used as a spatial filter to derive the equivalent source wave-

forms of all other conditions. No further constraints concerning dipole location,

orientation or symmetry-conditions were applied. A principle component ana-

lysis (PCA) over an interval of 400–500ms after the transition of the unfiltered

auditory evoked responses was computed (Berg and Scherg, 1994) to compen-

sate drifts and other low frequency artifacts due to the continuous stimulation.

The PCA component that accounted for the largest variance in this interval was

included in the spatio-temporal filter for the respective condition. The applied

method of using fixed dipoles derived from one condition causes source strength

differences. In order to determine these differences, we also fitted the source

waveforms in response to the strong pitch of RIS generated with 4,096 iterations

on every single condition. These averaged responses allowed to fit any condition

for all subjects in the same way as described for the responses to RIS(2,+1,8).

Furthermore, the source model defined with the responses to RIS(2,+1,4096)

was used to derive the equivalent source waveforms in response to any other RIS

condition generated with 4,096 iterations. For calculating the grand averaged

and significances, all resulting equivalent source waveforms were low-pass filtered

(zero-phase, 12 dB/oct) at 100Hz. The period of 100ms before the transition

was used to define the baseline. Most individual source waveforms, especially

those evoked by RIS conditions with 2 iterations and delay times of 8 and 16ms,

did not allow to derive latency and amplitude reliably. Thus, we applied a boot-

strap resampling procedure for statistical evaluation. Latencies and amplitudes

of the N100m’ in response to all RIS conditions were determined for each of the

1,000 independent bootstrap resamples generated by sampling 20 waveforms with

replacement from the original waveforms. Peak latency and amplitude was as-

sessed by deriving the minimum and the corresponding value from the mean of

the resamples. The critical t-intervals of latency and amplitude were computed

using the resulting distribution of the single minima and the corresponding amp-

litude of each resample (Efron and Tibshirani, 1993). Latency differences of the

N100m’ peak were considered significant when the t-intervals of two conditions

did not overlap. Additionally, we derived for the source waveforms evoked by

RIS(d,g,4096) the latencies and amplitudes of N100m’ component for each single

subject.

T1-weighted magnetic resonance images (MRI) of the individual anatomical struc-

ture of 19 subjects were co-registrated to describe the location of the fitted dipoles.

The voxel size was set to 1mm. MR data was acquired using a Siemens Symphony

1.5T-scanner. The resulting locations of the fitted dipoles were rescaled1 accord-

1www.mrc.cbu.cam.ac.uk/Imaging/Common/mnispace.html
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ing to the stereotactic space of Talairach and Tournoux (1988) and projected

onto the probabalistic map provided by Schneider et al. (2004).

4.1.4 Psychoacoustics

The evoked pitch of RIS that is generated with a negative gain factor, was ex-

amined in different psychoacoustic studies, but with controversy results. Yost et

al. (1978) reported for RIS generated with a negative gain factor (g = −1) and

n > 4 a pitch shift of an octave below the corresponding RIS with g = +1. For

RIS generated with less than four iterations, they reported the perceived pitch

not in the expected region of f = 1
2d

, but around 1
0.9d

and 1
1.1d

, independent of

the delay time d.

Raatgever and Bakkum (1986) reported different results for their pitch matching

experiment, using an infinite number of iterations. The change in the perception

of RIS(d,-1,∞) depended on the delay d. Pitch matches at 1
2d

only occurred for

delay times of less than 6ms, but with increasing delay, pitch matched around
1

0.9d
and 1

1.1d
compared to RIS(d,+1,∞) (see Figure 2.2). Yost (1996a) pointed

out, that the task of pitch matching is very difficult and often subjects could not

perform the task. For example, in his study published in 1996 four of six musi-

cians were excluded. They were not able to rate the pitch of RIS generated with

a delay time of 4ms and a gain factor of g = +1 with that of a pulse train within

±20% accuracy. Thus, we also applied a paired comparison task to circumvent

the reported problems.

Pitch Matching

In view of the existing controversy on the pitch of RIS generated with a negative

gain factor, we first tried to reproduce the conditions of the study published by

Yost (1996a). As in MEG, RIS were produced with digitally generated white

noise at a sampling rate of 48,000Hz. The stimuli had a length of 500ms and

were ramped at the beginning and at the end with a 10-ms hanning window.

The unfiltered sounds were presented diotically via Sennheiser headphones at

an overall level of 63–65 dB SPL. According to Bilsen (1966) and Yost (1996a),

delays of 2, 4, 8 and 16 ms (corresponding to 500, 250, 125, and 62.5Hz for

RIS(d,+1,n)) were used. Pitch strength was varied using 1, 2, 3, 4, 6 and 8

iterations. To determine the pitch of RIS generated with negative gain, two

sounds with an inter-stimulus interval of 250ms were presented to the listener.
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During one session, the delay time of the test RIS was fixed, while the delay

of the matching RIS was changed randomly in an interval of an octave. The

test sound was presented with fixed parameters, while the second sound was of

variable pitch, adjusted by the subject. The test RIS was always generated with

a gain factor of minus one, the second RIS was produced with a gain factor of

plus one but with the same number of iterations. To find the matched pitch

of RIS(d,-1,n), the listener could adjust the pitch of the second RIS generated

with a positive gain factor by changing the delay either by small (1%), medium

(3%) or large (9%) steps. Furthermore, the subject could listen to the two RIS

sounds again, without any pitch change of the second sound. Once, the listener

was satisfied with the matched pitch, octave changes of the matching RIS were

also possible to make sure that the pitch match was in the same octave. The

number of iterations (n) was changed randomly to a new value after each pitch

match was determined. During one session in which the delay of the test RIS was

fixed, listeners had to adjust each number of iteration ten times. The listeners

were not told which conditions were being presented. Altogether, listeners had

to adjust 60 pitch matches during one session. The subjects had to repeat the

four sessions, leading to a total of 480 pitch matches.

Paired Comparison

Psychoacoustic measurements of the paired comparison task were carried out us-

ing the same audio-equipment and conditions as in the MEG experiment. Stimuli

were generated with delay times of 2, 4, 8 and 16ms, the gain g was plus or minus

one and the number of iterations n was 2, 8 and 4,096. Sounds had a length of

500ms and were also high-pass filtered at 500 Hz.

In each pitch-matching task, d and g were varied, while n was fixed. Therefore,

comparisons across different numbers of iterations were not carried out. A two-

alternative forced choice task for paired comparisons was applied. Two different

RIS with fixed n, but varying d and g were presented with an inter-stimulus in-

terval of 500ms in random order. After repetition subjects had to judge which

tone had the higher pitch before the next pair was presented. During one session,

every combination of paired comparisons was presented twice with reversed order.

Listeners judged all possible combinations of RIS, excluding the comparison of

RIS to themselves, which led to a total of 2
(

n
2

)
= 56 trials per session. Subjects

had to repeat the session once. Thus, every pair of RIS was judged four times by

each subject.

A scale for the relative ’height of pitch’ was derived from the results of the paired

comparison experiment, using the Bradley-Terry-Luce (BTL) method (David,
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1988). According to the description of the algorithm (see section 3.2), the pitch

of the RIS stimuli can be ordered according to a linear scale.

Additionally, the same experiment was conducted with completely unfiltered RIS,

to compare our psychoacoustic data with the results published by Yost (1996a).

4.2 Results

4.2.1 Source Analysis

RHLH

Figure 4.2: Localization of the mean coordinates of the averaged equivalent dipoles pro-
jected onto an axial plain (left). The coordinates of the sulcal borders were provided by
Schneider et al. (2004). Right: MRI of a single subject with highlighted Heschl’s Gyrus.
The fitted dipoles of the isolated POR (circles) are located in the left and right lateral
part of Heschl’s Gyrus. The diamonds show the onset of RIS from silence (N100). For
comparison, the mean location of the fitted dipoles in response to continuous click trains
with varying pitch strength (Gutschalk et al., 2004) are also depicted with squares. The
vertical and horizontal bars represent the standard error of mean.

The neuromagnetic responses evoked by RIS(2,+1,8) produced a good signal-

to-noise ratio with a consistent fit for each subject. Therefore, this condition was

always used for fitting a two-dipole model with one equivalent dipole in each hemi-

sphere. In both hemispheres, the averaged coordinates of the equivalent source

waveforms were located in the lateral aspect of the primary auditory cortex (left:
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x=−54(±8), y=−9(±7), z=12(±11) and right: 54(±7), −11(±6), 14(±8), bra-

ckets indicate the standard deviation). The projection of the averaged location

of 19 subjects onto an axial plane through Heschl’s Gyrus and Planum temporale

is shown with circles in Figure 4.2. Additionally, we derived the location of the

N100m component evoked by the onset of the 10.5 s lasting sound by fitting the

onset of the RIS(2,+1,8) condition. The diamonds of Figure 4.2 indicate the po-

sition of the fitted dipoles. The center of activity was found to be more posterior

compared to the fit on the N100m’ component (left: x=−53(±6), y=−20(±6),

z=8(±9) and right: 54(±6), −23(±6), 10(±10))

4.2.2 Neuromagnetic Responses to the Change of Pitch

The grand-average of the source waveforms for all 20 subjects in response to the

transition of concatenated RIS-segments with alternating gain g, but fixed d and

n is presented in Figure 4.3. The comparison of the morphology of the left (black)

and right (grey) hemisphere revealed no differences in latency and amplitude.

Therefore, the responses of the right- and left-hemisphere were pooled to calculate

significances with the bootstrap method. The morphology of the AEF is similar

for all conditions. The responses to the transition of RIS with alternating g are

characterized by a first peak at about 60ms, followed by the N100m’ deflection

evoked by the pitch onset. The third evoked neuromagnetic response with a

latency of 200ms to 250ms (P2) differed between conditions in both, amplitude

and latency.

Pitch Onset Response

The mean amplitude of the POR is shown in Figure 4.4. A decrease of the

absolute value of the evoked source waveforms was observed when the delay time

d was increased while n was held constant, especially for RIS generated with

two and eight iterations. For constant values of the delay time d, the amplitude

of the POR increased with higher number of iterations n of the presented RIS.

Especially the responses to RIS generated with 4,096 iterations were augmented

compared to RIS consisting of two and eight iterations only. The latency of the

N100m’ in response to RIS with fixed n increased significantly when the delay

time d was increased. A summary of all POR latencies and the corresponding

bootstrap assessed t-intervals is given in Table 4.1. The mean N100m’-latencies

of RIS generated with the same number of iterations n but opposite sign of g are

presented in Figure 4.5 (left) for direct comparison.
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Figure 4.3: Grand-average source waveforms of 20 subjects based on the fit of the
POR evoked by RIS-segments. All waveforms of the left (black) and right hemisphere
(grey) are zero-phase filtered from 1–100Hz. Independent of gain (top/bottom) and the
number of iterations (left to right: 2, 8 and 4,096), the N100m’ latency was augmented
significantly with increasing delay. The amplitude of N100m’ decreases with increasing
delay. Note the different scaling in the plot with 4,096 iterations.
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Figure 4.4: Mean N100m’ amplitude of the equivalent source waveforms in response to
RIS generated with two, eight and 4,096 iterations (left to right). Error bars represent
the bootstrap assessed standard error over the subjects. The amplitude evoked by RIS
generated with 2 and 8 iterations did not change significantly, when either the sign of
the gain factor (black/grey) was changed or the delay time d was varied. According to
the bootstrap assessed t-intervals, the amplitude of the POR evoked by RIS generated
with 4,096 iterations was increased significantly compared to the responses evoked by
RIS generated with 2 and 8 iterations.

Table 4.1: Latency (in ms) of the N100m’ component evoked by the transition of
all applied RIS-segments. Critical t-intervals (20 subjects; t=1.7291) were bootstrap
computed to assess significance.

iterations delay (ms)/gain

2/+1 2/–1 4/+1 4/–1 8/+1 8/–1 16/+1 16/–1

2 it 106 126 124 140 143 137 178 163

±t-int ±8 ±4 ±6 ±8 ±6 ±11 ±21 ±17

8 it 97 115 109 141 134 136 155 150

±t-int ±5 ±5 ±3 ±27 ±15 ±7 ±16 ±8

4,096 it 92 96 99 104 111 112 128 128

±t-int ±3 ±3 ±2 ±3 ±3 ±3 ±4 ±4
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Figure 4.5: Left: N100m’ latency of the bandpass filtered source waveforms in response
to RIS. Right: Relative pitch of the psychoacoustic judgements to the same RIS stimuli
using the BTL method. Error bars indicate the bootstrap assessed standard error. The
latencies of the N100m’ component evoked by RIS are significantly increased for delay
times of 2 and 4ms when the gain factor is changed from positive to negative. In
contrast, the peak latency of the POR did not differ significantly when the delay time
of the presented RIS was set to 8 and 16ms. Analogously, the relative pitch scale
of the paired comparison task revealed significant differences between the pitch of RIS
generated with 2 and 4ms and opposite gain. For delay times of 8 and 16ms, the pitch
difference was found to be within errors. Note that the relative BTL-based pitch scales
cannot be compared directly, since RIS-conditions with different number of iterations n

were not tested within the trials of the same session.
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The POR evoked by RIS generated with a positive gain , revealed for all

n a nearly linear increase in the latency of the d-logarithmic scaled diagrams.

The comparison with the corresponding POR latencies evoked by RIS generated

with negative gain exhibited a significantly later N100m’ for delay times of 2

and 4ms, independent of n. In contrast, the latency differences for delay times

of 8ms and 16ms did not differ significantly. The good signal-to-noise ratio of

RIS(d,g,4096) allowed to detect the N100m’ peak in single subjects. The results

were equivalent to the bootstrap calculated t-intervals. The latency difference

between RIS generated with a positive and a negative gain factor was significant

(F1,19 = 11.09, p < 0.01) for 2 and 4 ms delay times, whereas no increase in the

latency of N100m’ was observed for delay times of 8 and 16ms (F1,19 = 0.74, n.s.).

The latency of the POR in response to RIS(2,-1,n) has the same value compared

to revealed latency of RIS(4,+1,n). This indicates also the perceived octave shift

between RIS(2,+1,n) and RIS(2,-1,n). Similarily, the same latency of the N100m’

component was evoked RIS(4,-1,n) and RIS(8,+1,n). However, the effect was not

observed anymore for RIS(8,-1,n) compared to RIS(16,+1,n).

Figure 4.6: Latency of pitch responses evoked by RIS with positive gain in dependence
of the different delay times d. The regression lines represent the observed latencies
evoked by RIS with different number of iterations n. The dashed lines correspond with
the fit formula described in the text. The latency of the pitch-specific N100m’ component
depends on both, the delay time d and the number of iterations n of the presented RIS.
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The dependence of the evoked N100m’ latency on the parameters of the pre-

sented RIS was investigated with the neuromagnetic responses evoked by RIS

generated with positive gain. Figure 4.6 illustrates the latency of the POR in

dependence of the delay time d. The slope of the POR-latency decreased with

an increase of the number of iterations, respectively an increase of the pitch

strength (top to bottom) from 24 ms/oct (n = 2) and 19ms/oct (n = 8) to

12ms/oct (n = 4, 096).

Thus, the latency of the N100m’ depended on both, pitch and pitch strength.

The latencies of the POR in response to RIS generated with positive gain factor

g can be fitted using the formula

latN100m′(d, n) = 18 ms ·
√

n + 3
2√

n
· ln d + 75 ms

where d is the delay in milliseconds and n the number of iterations. The N100m’

latencies in response to RIS generated with positive gain are shown in Figure

4.6 together with the results of the fit-formula (latN100m′) for a fixed number of

iterations (2, 8 and 4,096).

The applied spatio-temporal source model with one equivalent dipole in each

hemisphere did not result in a stable fit for each subject and every single RIS

condition. The neuromagnetic responses of RIS(2,+1,8) revealed a high SNR

and produced a stable fit in each subject. Therefore, we modelled the equiva-

lent dipoles for every subject to the responses of RIS(2,+1,8) and derived the

equivalent source waveforms to the transition of all other RIS conditions with

the fixed dipole model, since the exact location of the two dipoles does not af-

fect the latency of the POR, but influences only the amplitude of the equivalent

source waveforms. The error of the source strength is shown exemplarily for

the RIS conditions generated with 4,096 iterations. The Talairach coordinates

of the fitted dipoles in response to RIS(2,+1,4096) are also in the lateral part

of Heschl’s Gyrus (left: x=−52(±1), y=−12(±2), z=5(±3) and right: 52(±1),

−11(±2), 8(±3)). The difference of the source strength in dependence of the

two analysis methods is shown in Figure 4.7 for the condition RIS(16,-1,4096).

The mean of the equivalent waveforms over 20 subjects is derived either by mo-

delling the responses of the condition RIS(2,+1,4096) (black line) or by fitting

the source waveforms on the condition RIS(16,-1,4096) (dotted). The shadowed

area represents the 90%-confidence interval over the subjects. The influence on

the source strength of the POR is given for all RIS conditions generated with

4,096 iterations in Table 4.2. The values represent the ratio between the source

strength of the POR assessed with the fit on the individual condition and the fit

on RIS(2,+1,4096).



64 4. Pitch and Neuromagnetic Representation of RIS

Table 4.2: RIS generated with 4,096 iterations. Influence on the source strength of
the POR when the dipole model is either fitted on the individual condition or held fixed
on the fitted condition of RIS(2,+1,4096). The given values correspond to the ratio of
the source strength assessed with the two different methods.

RIS(2,+1,4096) 1 ±s.e.

RIS(2,-1,4096) 0.99 ±0.16

RIS(4,+1,4096) 0.80 ±0.14

RIS(4,-1,4096) 0.88 ±0.15

RIS(8,+1,4096) 0.83 ±0.16

RIS(8,-1,4096) 0.88 ±0.18

RIS(16,+1,4096) 0.90 ±0.15

RIS(16,-1,4096) 0.90 ±0.15

Figure 4.7: Difference of the source strength waveforms due to the fitting method.
Grand average of the equivalent source waveforms in response to RIS(16,-1,4096) when
the model is fitted either on the individual condition (black line) or fixed (dotted line)
on the fitted source waveforms in response to RIS(2,+1,4096). The area in grey defines
the 90% confidence interval over 20 subjects. Note that the fixed spatio-temporal filter
resulted in a smaller amplitude. However, the latencies are not affected by the different
fitting methods.



4.2. Results 65

P50m–First Responses after the Transition

The first response that occurred after the transition between two RIS-segments

varied in both, latency and amplitude. As shown in Figure 4.8, the latency of

this component increased with an increase of the delay time of RIS for a fixed

number of iterations. Furthermore, increasing the pitch strength of RIS caused

a latency decrease. Compared to the N100m’ component, there is no pitch-

dependent latency difference between RIS generated with positive and negative

gain: for RIS produced with two and eight iterations and a negative gain, the first

positivity peaked significantly later for delay times of 2, 4, and 8ms compared

to RIS with positive gain. But for RIS(d,g,4096) there was no latency difference

between RIS generated with opposite sign of the gain factor. And for delay

times of 16ms, the latency difference between RIS(16,+1,n) and RIS(16,-1,n)

was within errors, independent of n. The peak-amplitude of this component

(see Figure 4.9) decreased with increasing the delay time of the presented RIS,

independent of the sign of the gain factor but only for two and eight iterations.

The amplitude of the responses evoked by RIS generated with 4,096 iterations

was completely independent on the delay time. The sign of the gain factor of

RIS is totally irrelevant for the observed amplitude for all applied number of

iterations.

Figure 4.8: P50m component evoked by the RIS-RIS transition: Latency (in ms) of
the positivity for the different number of iterations (left to right). The latency of the
P50m increased with the delay time d of the presented RIS.
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Figure 4.9: P50m component evoked by the RIS-RIS transition. The amplitude of the
positivity increased with an increase of the number of iterations n, independent of the
gain factor of RIS. .

4.2.3 Psychoacoustics

Pitch Matching

Altogether, five subjects which also took part in both, the paired comparison

task and the MEG experiment, participated in the pitch matching experiment.

The results of the five single subjects is illustrated in detail in Appendix B. As

can be seen from the Appendix, two listeners were not able to match the pitch

reliably and were excluded. Only the three musicians were able to perform the

task and executed a total of 480 pitch matchings each. RIS(d,+1,n) was always

used as the matching stimulus throughout the experiment. The test stimulus was

generated with the same parameters but negative sign of the gain factor. In this

way, the timbre of the matching RIS is similar to the test RIS. Figures 4.10 and

4.11 show the mean distribution of 1,920 pitch matches. From top to bottom,

the number of iterations of the tested RIS increases from one to eight. The noisy

timbre of RIS generated only with one or two iterations as compared to the more

tonal quality of RIS(d,g,8) makes it more difficult to match the pitch reliably. As

can be seen, the peaks of the distribution sharpen with increasing n.

The pitch of RIS(2,-1,n) was matched at 250Hz, which is an octave below the

pitch of RIS(2,+1,n), independent of the number of iterations. If n is set to one

or two, octave like mistakes occurred at frequencies of 125 Hz and 62.5Hz. Pitch

matches at about ±10% (450 or 550Hz) of the perceived pitch of RIS(d,+1,n)

were not observed. RIS(4,-1,n) revealed the same results: octave like errors (at

a frequency of 62.5Hz and 31.25Hz) were observed for the noisy test stimuli

generated with up to three iterations. But again, no single subject rated the
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Figure 4.10: Matched pitch of RIS generated with a delay of 2ms (top) and 4ms
(bottom). The abscissa is log-scaled and represents the perceived pitch of RIS generated
with a negative gain. Independent of the number of iterations, pitch was matched an
octave below ( 1

2d) the corresponding pitch of RIS produced with the same parameters
but opposite sign of g. Note that even octave like errors occurred for n < 3.
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Figure 4.11: Matched pitch of RIS generated with a delay of 8ms (top) and 16ms
(bottom). With an increase of the delay time d, the perceived pitch of RIS generated
with a negative gain was matched in the region of 1

0.9d and 1
1.1d . The transition of the

pitch shift to ambiguous pitch matchings was observed for delay times of 8ms (upper),
where still some octave matchings occurred.
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pitch of RIS(4,-1,n) around 225Hz or 275Hz, which would correspond to a 10%

change of the sensation compared to RIS(4,+1,n). A change in the perception

was found when the delay time was increased to 8ms. Independent of n, subjects

matched the pitch either an octave below (62.5 Hz) RIS(8,+1,n) or approximately

at 137.5Hz and at 112.5Hz. A further increase of the delay time led to a main

peak of the perceived pitch of RIS(16,-1,n) in a range of 55–60Hz which differed

to the pitch of RIS(16,+1,n) at about 10%. No octave shifts, which would cor-

respond to 31.25 Hz were perceived.

In summary, an octave shift between RIS generated with opposite sign of the gain

factor was perceived for delay times of 2 and 4ms. The transition between the

perception of an octave and an ambiguous pitch in the range of ±10% compared

to RIS produced with g = +1 was found at a delay time of 8ms. When the delay

time was increased to 16 ms, the sensation of an octave shift vanished completely

and the perception was found to be within the range of ±10%. These results

were observed independent of the number of iterations, only the delay time of

RIS was relevant.

Paired Comparison

The results of the paired comparison task performed by the 20 subjects were

linear-scaled according to the BTL-method. The mean of the relative perceived

pitch of the 500 Hz highpass filtered RIS is shown in Figure 4.12 (right) for the

different sessions. In each block, the number of iterations n of the tested RIS

was fixed (2, 8 or 4,096 iterations, top to bottom). Since RIS-conditions with

different n were not tested within trials of the different blocks, the relative scales

of the three diagrams cannot be compared directly. Only differences between

RIS stimuli with the same number of iterations are relevant. The comparison of

RIS(d,+1,n) with RIS(d,-1,n) (black versus grey) exhibited significant changes

(p < 0.05) for the 2ms and 4ms delay conditions in the relative pitch according

to the t-intervals (Table 5.2) for all tested conditions. A qualitative change of

the relative pitch difference between RIS conditions with opposite sign of g was

observed in all diagrams independent of the pitch strength: the pitch differences

vanished with increasing the delay time to 8 ms and 16ms.

The tested RIS covered the same frequency range and, although the diagrams only

represent the relative pitch, all scales nearly had an identical range (5.67 (n = 2),

5.75 (n = 8), 6.16 (n = 4, 096)), independent of the number of iterations.

Furthermore, the psychoacoustic experiment was repeated with unfiltered RIS

stimuli in order to compare our results directly with other pitch-matching experi-

ments (Yost, 1996a, e.g.). The values of the relative pitch between conditions of
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Table 4.3: Relative pitch of all tested RIS-conditions. Left: 500Hz highpass filtered
RIS. Right: unfiltered RIS conditions. Relative pitch values obtained by the BTL pro-
cedure for the same stimuli. Errors are based on bootstrap assessed t-intervals.

RIS(d,g,n) filtered RIS unfiltered RIS

(2,+1,2) –3.50 ±0.81 –2.62 ±1.57

(2,–1,2) –1.41 ±0.41 –1.24 ±0.43

(4,+1,2) –0.96 ±0.31 –0.67 ±0.49

(4,–1,2) –0.06 ±0.29 –0.08 ±0.23

(8,+1,2) 0.78 ±0.33 0.64 ±0.40

(8,–1,2) 0.99 ±0.35 0.50 ±0.85

(16,+1,2) 2.17 ±0.47 1.71 ±0.84

(16,–1,2) 1.99 ±0.38 1.61 ±0.69

(2,+1,8) –3.59 ±0.29 –3.26 ±0.59

(2,–1,8) –1.77 ±0.45 –1.78 ±0.56

(4,+1,8) –1.36 ±0.45 –1.22 ±0.28

(4,–1,8) –0.09 ±0.26 –0.27 ±0.62

(8,+1,8) 0.63 ±0.31 0.99 ±0.58

(8,–1,8) 1.21 ±0.35 0.75 ±0.80

(16,+1,8) 2.16 ±0.36 2.32 ±0.41

(16,–1,8) 2.63 ±0.43 2.47 ±0.52

(2,+1,4096) –3.46 ±0.67 –4.10 ±0.54

(2,–1,4096) –2.51 ±0.50 –2.57 ±0.86

(4,+1,4096) –1.55 ±0.52 –1.26 ±0.47

(4,–1,4096) –0.21 ±0.45 –0.06 ±0.47

(8,+1,4096) 1.11 ±0.45 0.87 ±0.29

(8,–1,4096) 1.22 ±0.64 1.39 ±0.27

(16,+1,4096) 2.70 ±0.26 2.68 ±0.24

(16,–1,4096) 2.69 ±0.48 2.94 ±0.44
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Figure 4.12: Relative pitch scale obtained with the BTL-method of paired comparisons:
The comparison demonstrates a high similarity between the perceived pitch based on
unfiltered (left) and 500Hz highpass-filtered RIS sounds (right).
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filtered and unfiltered RIS are given in Table 5.2, the diagrams are shown in

Figure 4.12. The comparison shows, that independent of the filter condition and

the number of iterations, the pitch differences are significant for delay times of 2

and 4ms and within errors for delay times of 8 and 16ms. Two exceptions are

be found between the highpass filtered und the unfiltered RIS conditions. The

filtered RIS(8,+1,8) condition differs significantly in the relative pitch compared

to the RIS(8,-1,8) condition. This pitch difference is not observed in the unfiltered

condition. The second difference between the filtered and unfiltered relative pitch

is observed for RIS generated with 4,096 iterations and a delay time of 8ms.

However, the resulting differences of these two conditions seem to represent a

statistical error.

4.2.4 Correlation of the Neuromagnetic POR

to the Perceived Pitch of RIS

As shown in Figure 4.5, the psychoacoustic results agree very well with the find-

ings of the POR in the MEG-experiment: differences in the latency of N100m’

in response to RIS produced with opposite sign of g were significant for delay

times of 2 and 4 ms and not significant for 8 and 16ms, independent of the num-

ber of iterations n. The same observation was made for the paired comparison

task of the psychoacoustic study. The BTL scale exhibited significant pitch dif-

ferences for RIS generated with opposite gain factor g and delay times of 2 and

4ms. The pitch differences disappeared when the delay was increased up to 8 and

16ms. The correspondence between the neuromagnetic responses to the change

of pitch and the perceived pitch of the psychoacoustic experiment is illustrated

in Figure 4.13. The diagrams show the latency of N100m’ plotted against the

relative pitch scale assessed with BTL for the different number of iterations with

high pitches at the bottom. Black markers represent RIS conditions generated

with g = +1, whereas RIS(d,-1,n) are in grey. The delay of the POR is highly

correlated (ρ > 0.9 for all tested n) with the inverse of the perceived pitch, in-

dependent of the gain factor and the number of iterations. That is, the delay

gets longer as the pitch gets weaker, as would be expected. Although the BTL-

method gives a relative scale for the perceived pitch, the range of the three pitch

diagrams is nearly identical. Since subjects had to judge the pitch and not the

pitch strength, the BTL-scale could be considered approximately as an absolute

scale of pitch. Figure 4.14 shows the latencies of the N100m’ plotted against

the pitch scales to summarize the correlation between our neuromagnetic and

psychoacoustic results. The latency of the N100m’ evoked by the distinct pitch
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Figure 4.13: Correlation between the latency of N100m’ (POR) evoked by RIS and
the relative perceived pitch of the corresponding sounds. RIS generated with positive
gain are in black whereas RIS produced with a negative factor of g are in grey. Vertical
and horizontal error bars represent the standard error of mean. For all tested numbers
of iterations n, the pitch response and the perceived pitch are highly correlated.
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Figure 4.14: Correspondence between latency of N100m’ and the perceived pitch of
RIS with positive gain. Error bars indicate the standard error of mean. The pitch
response of the MEG-experiment depends on the pitch strength (n); the relative pitch
is independent of n. The dashed lines show the mean of the pitch evoked by RIS with
the different delay times (2, 4, 8 and 16ms).

of RIS generated with positive gain increases with the delay time d of RIS. The

POR also depends on the number of iterations: increasing n with a fixed delay

d revealed a significant decrease in the observed latency. In contrast to the POR

of the MEG-experiment, the relative pitch height was not affected by varying n,

giving evidence that the relative pitch of the BTL scale is independent from pitch

strength.

4.3 Auditory Image Model: Simulation of RIS

In this section, a short description of how the Auditory Image Model (AIM)

(Patterson et al., 1995) predicts the perceived pitch of RIS generated with positive

or negative gain is given. The exact explanation of how the model extracts the

pitch can be found in 2.3.1. AIM is based on the simulation of the spectral

analysis performed along the basilar membrane using a bank of auditory filters:

the neural transduction process of the inner hair cells and the primary auditory

fibers is simulated in each of the frequency channels defined by the filters. In the

next stage of processing, the time-interval information of each frequency channel

is evaluated by strobed temporal integration. The array of these histograms,
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Figure 4.15: Simulation of pitch extraction with RIS(d, g, n) with the Auditory Image
Model (AIM; Patterson et al., 1995). Stabilized Auditory Images (SAIs) are created
from the neural activity pattern by strobed temporal integration. The position and height
of the first peak at time lag τ predicts the perceived pitch.
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the ’auditory image’ (Figure 4.15a and 4.15b) is shown for RIS generated with

a delay of 2ms and the gain either set to plus or minus one. Respectively, the

abscissa represents the time interval of the image buffer. It decays over time and

is limited to 32ms. The activity of each frequency channel is summed up and

results in the summed stabilized auditory image (SAI).

The distance from 0 to the location τ of the first peak corresponds to the frequency

of the perceived pitch 1
τ
. Thus the predicted pitch of RIS(2,+1,8) (Figure 4.15c)

is 1
2 ms

= 500Hz. Changing the gain of RIS to g = −1 causes a significant change

in the representation of the first peak (Figure 4.15d, RIS(2,-1,8)): now the SAI

exhibits a minimum at lag τ and the first positive peak is located at 2τ . Thus,

the predicted pitch is an octave below the pitch evoked by RIS with a positive

gain factor.

Because of the decay in the buffer, the first positive peak at 2τ decays more

and more with increasing the delay time d (Figure 4.15e). RIS stimuli with

negative gain also reveal two side maxima at 1
0.9d

and 1
1.1d

which flank the observed

minimum at lag τ (Figure 4.15d and 4.15f). For delay times of 2 and 4ms, the

first positive peak at lag 2τ is still prominent and determines the perceived pitch.

But with an increasing delay time the height of the peak at 2τ decreases and

the two side-peaks which predict the ambiguous pitch become more prominent

(Figure 4.15f). In this way, the model explains the pitch shift of RIS(d,-1,n) from

an octave below the pitch of RIS(d,+1,n) to the perceived ambiguous pitch in

the region of ±10%.

4.4 Discussion

The aim of this experiment was to investigate the correlation between neuromag-

netic responses and the perceived pitch of RIS. Especially, the perceived pitch

shift of RIS generated with a negative gain compared to RIS produced with an

opposite sign of g was investigated. The correlation between the perceived pitch

shift and the neuromagnetic responses evoked by a RIS-RIS transition is built

up.

Our results revealed a remarkable agreement between the neurophysiological and

the psychoacoustic results (Figure 4.5). The POR evoked by RIS generated with

opposite signs of the gain factor g and delay times of 2 and 4ms showed signifi-

cant differences in the latency of the N100m’.

The corresponding perception of the BTL scaled relative pitch of RIS also differed

significantly for delay times of 2 and 4ms. The latency difference of the POR

and the pitch difference were consistent with each other: Both, the latency dif-
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ference of the N100m’ and the relative pitch difference did not differ significantly

for delay times of 8 and 16ms. This equivalence was independent of the number

of iterations n. Both, the perceived pitch and the latency of the neuromagnetic

pitch responses indicate the pitch shift. For delay times of 2 and 4ms, the pitch

of RIS generated with a gain factor of minus one was an octave lower than that

of RIS produced with a positive sign of g, and rather similar for delay times of 8

and 16ms. Our results showed that latency of the POR does not simply represent

the spectral differences of the applied RIS conditions, as observed at the level of

the basilar membrane. It is rather a neurophysiological correlate of the perceived

pitch.

The simulation with AIM showed that the temporal pitch model introduced by

Patterson et al. (1995) is able to predict the shift in the perception of RIS in

dependence of the delay time d. The location of the first peak in the SAI (Figure

4.15c and 4.15e) at lag τ corresponds to the frequency of the perceived pitch

( 1
τ
). For RIS generated with a negative gain factor, the first positive peak at 2τ

(Figure 4.15d) as well as the two side maxima at 1
0.9d

and 1
1.1d

(Figure 4.15f) can

account for the perceived pitch.

Earlier studies conducted by Pantev et al. (1988) or Roberts and Poeppel (1996)

used sinusoidal tones with a silent inter-stimulus interval to derive pitch-dependent

properties of the N100. In contrast, the continuous stimulation allows to investi-

gate the response to the onset of pitch in absence of the large proportion which

is simply evoked by the energy onset. However, Ragot and Lepaul-Ercole (1996),

who applied vowels like harmonic series with different spectral envelopes in their

EEG study, reported latencies for the N100 which are comparable with our results

of the POR evoked by RIS conditions generated with 4,096 iterations. This is

interesting insofar as our neurophysiological responses were evoked by a continu-

ous sound without an energy change at the transition of two RIS conditions (see

Figure 4.1). The N100m’ latency increased with increasing delay times (see also

Figure 4.13), which is also in agreement with findings of Krumbholz et al. (2003)

who reported comparable results of the POR latency in response to RIS(d,+1,n).

We also observed decreasing amplitudes of N100m’ with increasing delay times.

Especially for RIS generated with two iterations and a delay time of 8 and 16 ms

we observed smaller amplitudes, since our stimulation consisted of a continuous

pitch and we recorded the responses to the transition of RIS. The N100m’ evoked

by RIS(d,+1,4096) exhibited latencies comparable to findings of Mäkelä et al.

(1988) who measured the transition from noise to square waves. Krumbholz et

al. (2003) proposed a fit formula for the latency of the POR with the delay time

d as the only parameter determining the latency. However, the MEG data in our

experiment revealed a strong dependence on the number of iterations. The slope
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of the latency-increase per octave decreased with increasing n of RIS. Therefore,

the fit formula from Figure 4.14 depended on d as well as on the number of iter-

ations n. This behavior possibly represented the fact that the extraction of pitch

takes longer when the signal-to-noise ratio is reduced and may be responsible for

the latency differences of the POR in response to RIS generated with different n.

The morphology of the recorded equivalent source waveforms exhibited a promi-

nent positive peak at about 60–90 ms after the transition. The comparison with

the data published by Rupp et al. (2005) suggests, that this peak is probably not

only a response to the onset (P50m) of RIS, but also includes an off-response.

Gutschalk et al. (2002) showed that the decay of the sustained field can account

for this positive effect. The increased latency of this positivity evoked by RIS

with increased delay times d can be explained with an overlapping effect of the

positive P50m component and the pitch specific deflection (N100m’).

The location of the POR evoked by RIS was in both hemispheres in the lateral

aspect of Heschl’s Gyrus. The applied fitting method with a fixed dipole model

on the RIS(2,+1,8) condition can be justified, since the latency of the POR is

not influenced by a change of the dipole location. The decrease of the amplitude

strengths was only in the order of 10–20%. With regard to Figure 4.1, the fit

of the dipoles in response to RIS/RIS transitions was more lateral compared to

neuromagnetic source locations evoked by continuous click trains with varying

pitch strength (Gutschalk et al., 2004). In another study, Griffiths et al. (1998)

used PET to show that activation in Heschl’s Gyrus increased with the temporal

regularity of RIS. Further validation of the lateral activity is given by several neu-

roimaging studies based on functional MRI. Warren et al. (2003) reported that

the medial Heschl’s Gyrus is activated similarly when processing either pitch or

noise. Only in a small area of the lateral Heschl’s Gyrus, they reported an in-

creased activity evoked by the change of pitch. The results of another functional

MRI experiment conducted by Patterson et al. (2002) showed activity in the lat-

eral aspect of Heschl’s Gyrus for a melody of RIS versus fixed pitch condition.

Interestingly, the equivalent dipoles evoked by our stimulation were located in

the same area. (S. Uppenkamp, personal communication, 2004, see also Chapter

6).

The psychoacoustic experiment handled the difficult pitch matching with a sim-

ple two alternative forced choice task. The BTL-procedure was applied to derive

the perceived pitch. RIS generated with opposite sign of g were connected with

significant differences in the BTL scale for delay times of 2 and 4ms, revealing the

perceived octave shift. The pitch shift vanished when the delay time of RIS was

set to 8 and 16ms. Some subjects rated the ambiguous pitch of RIS generated

with a negative gain factor higher, whereas others ranked it lower compared to
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RIS consisting of positive gain. Even ratings within subjects were not unique,

and therefore, the relative pitch differences in the BTL scale were within errors.

Our results are in agreement with psychoacoustic experiments of Raatgever and

Bilsen (1992). In their pitch matching study, subjects had to adjust the fre-

quency of RIS(d,+1,∞) to fixed RIS(d,-1,∞). A pitch shift of an octave occurred

for delay times of less than 3.5ms respectively 6ms (see also Figure 2.2). In the

present experiments, we found the transition between the octave shift ( 1
2d

) and

pitch matchings in the region of 1
0.9d

and 1
1.1d

between delay times of 4ms and

8ms. These observations were made in the pitch matching experiment as well as

in the paired comparison study. We also exhibited no differences in the perception

between 500Hz highpass filtered and completely unfiltered RIS. In contradiction

to (Yost, 1996a), we did not observe in any psychoacoustic experiment an in-

fluence of the number of iterations n on the perceived pitch of RIS(d,-1,n). In

a similar pitch matching experiment, Wiegrebe and Winter (2000) used high-

pass filtered RIS and found the pitch shift between RIS(d,+1,8) and RIS(d,-1,16)

depending on the delay and on the cut-off frequency. At a cut-off frequency

of 625Hz, which is comparable to the highpass filtered sounds employed in our

study, they observed an octave shift for stimuli with delay times of 2 and 4ms,

as illustrated in Figure 2.3. For delay times of 8 and 16ms the deviation of RIS

with negative g was found to differ by 10% compared to RIS with a positive sign

of g. Their findings are consistent with our results. However, according to the

results of Wiegrebe and Winter (2000) higher cutoff frequencies of the highpass

filters applied to RIS, changes the perceived pitch shift. Thus, in the following

Chapter, we apply bandpass conditions with different center frequencies to our

RIS-like stimuli to determine the question if removing lower frequency compo-

nents affects the perceived pitch of the sounds. Furthermore, we investigate the

latency dependence of the pitch onset response evoked by the transition of band-

pass filtered sounds and test if the auditory image model can account for pitch

shifts due to different bandpass filter conditions.
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Chapter 5

Perception and Representation of

Filtered Complex Sounds

The results of Chapter 4 show, that the latency of the neuromagnetic N100m’

component correlates highly with the perceived pitch of RIS. The spectrum of

RIS generated with 4,096 iterations is nearly equal to the spectrum of a complex

harmonic sound. Thus, the first question to be answered in this Chapter: Is the

perceived pitch of RIS and a corresponding complex sound correlated?

Moreover, the simulation of RIS generated with a negative gain (see section 4.3)

revealed two side maxima at 1
0.9d

and 1
1.1d

in the simulated activity of the sum-

marized stabilized auditory images. These peaks seem to correspond to the am-

biguous pitch. In addition, the stabilized auditory images of the single auditory

channels (see Figure 4.15) exhibit, that the side maxima merge together with

an increase of the center frequency of the single channels. To address the role

of these two peaks, we applied harmonic complex sounds and filtered them with

three different bandpasses. The neuromagnetic pitch onset response as well as

the perceived pitch of the bandpass filtered complex sounds is investigated in this

Chapter.

5.1 Material and Methods

The stimulus conditions were equal to Chapter 4. Also, recordings were made

with the same hardware and acquisition settings described in the previous Chap-

ter.

81
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5.1.1 Subjects

Ten adult listeners (five male, five female) participated in the bandpass experi-

ment. Eight of them took also part in the RIS experiment described in Chapter 4.

The two additional subjects also had no reported history of peripheral or central

hearing disorder. After giving their informed consent, all subjects participated in

both experiments, the MEG measurements and the psychoacoustic study. The

mean age of the ten subjects was 33.5 years with a standard deviation of ±8.2

years. In comparison to the RIS experiment, the same conditions were provided:

subjects watched a silent movie of their own choice and were asked to concentrate

on the movie and not to pay attention to the stimuli.

5.1.2 MEG stimuli

Harmonic series with a frequency spacing between adjacent components (∆f) of

either 125 Hz or 250 Hz were applied. In the ’even’-condition, a complete har-

monic series with a fundamental frequency (f0 = ∆f) of either 125 or 250Hz was

produced. The ’odd’-conditions were generated by shifting the spectrum to a fun-

damental frequency to 62.5Hz and 125Hz, leading to an incomplete series only

with odd numbers of harmonics (f0 = ∆f
2

). The spectra of all stimuli are shown

in Figure 5.1. The spectra of the ’even’ conditions are very similar to the applied

RIS sounds generated with a delay time of 4ms and 8 ms respectively, a positive

gain factor, and 4,096 iterations (see also Chapter 4). RIS generated with a neg-

ative gain factor has a fundamental frequency of f0

2
compared to RIS generated

with a positive gain. The corresponding spectrum only consists of odd harmonics

of the fundamental frequency (see Figure 3.1) and is the equivalent to the ’odd’

conditions. As illustrated in Figure 5.1, all harmonic complexes were bandpass

filtered. Three different bandpass conditions were used. A ’LOW’-bandpass with

cutoff frequencies at 500Hz and 1,000Hz, a ’MID’-bandpass (1,000–2,000 Hz)

and a ’HIGH’-bandpass (2,000–4,000Hz) condition. The complex sounds had a

total length of 510ms, were balanced in energy and ramped with a 10-ms han-

ning window at the beginning and at the end. Neuromagnetic responses to the

sound onset from silence were avoided by using a continuous sound. It consisted

of complex stimuli with the same bandpass condition and the same frequency

spacing between adjacent harmonics but alternated between the ’odd’- and ’even’-

conditions. In analogy to the sounds applied in Chapter 4, the subsequent stimuli

of the continuous sounds overlapped in a way that there was no visible change of

the sound pressure at the transition.

The resulting sound had a total length of 10.5 s and was superimposed with a
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Figure 5.1: The applied stimuli either had a spacing between adjacent frequency com-
ponents of ∆f= 250Hz (upper two panels) or 125Hz (lower two panels). The fun-
damental frequency was either f0=250Hz (first panel) or f0=125Hz (third panel) to
generate complete harmonic complex sounds (’even’-condition). The ’odd’-condition
consists of sounds that were frequency shifted by f0/2 to produce harmonic complex
sounds, but only with odd harmonics (second and fourth panel).
As illustrated, all applied sounds were superimposed with white noise (DC–10,000Hz),
attenuated at 20 dB, relative to the signal to any suppress distortion effects.

white background noise (DC–10,000Hz) attenuated at 20 dB relative to the over-

all level of the sound (see Figure 5.1) to avoid any distortion effects.
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Neuromagnetic responses were recorded in two sessions. In each session the

frequency spacing (∆f) of the concatenated sounds was fixed. Altogether 150

continuous sounds of 10.5 s-length were presented with a total of 500 odd/even

transitions, leading to a length of 29 minutes per session.

5.1.3 Data Processing and Source Analysis

In analogy to Chapter 4, a spatio-temporal source model with one equivalent

dipole in each hemisphere was used (Scherg et al., 1989) to estimate the mo-

ment and the space coordinates of the activated cortical area. The fit of the

dipole sources was applied to the averaged waveforms of the transitions. In both

sessions, the waveforms in response to the transition of the ’even-’condition of

the lowest bandpass (500–1000 Hz) was 2–30Hz bandpass filtered (zero-phase,

12 dB/oct). The first prominent negative deflection (N100m’) of this condition

was fitted in a 30ms-interval around that peak. The responses of this condition

produced a consistent fit for all ten subjects and was used in all cases as a spatial

filter to derive the equivalent source waveforms of all other conditions. No further

constraints concerning dipole location, orientation or symmetry-conditions were

applied.

The drift and other low frequency artifacts of the continuous stimulation were

compensated by computing a principle component analysis (PCA) over an inter-

val of 400–500 ms after the transition of the unfiltered auditory evoked responses

(Berg and Scherg, 1994). The PCA component that accounted for the largest

variance in this interval was added to the spatial filter for the respective con-

dition. For further calculations, the resulting equivalent source waveforms were

zero-phase filtered from 1–100Hz. The period of 100ms before the transition was

used to define the baseline.

In a second model, the averaged waveforms to the onset of the bandpass-filtered

continuous sounds were also used to fit a single equivalent dipole in each auditory

cortex of both hemispheres. Each onset of the three bandpass-conditions (LOW,

MID, HIGH) were filtered and fitted in the same way as the averaged responses

to the transitions.

The location of the fitted dipoles were rescaled1 according to the stereotactic

space of Talairach and Tournoux (1988) using the T1-weighted magnetic reso-

nance images (MRI) of the individual anatomical structures of 9 subjects (see

also section 4.1.3). The coordinates in space were projected onto the probabalis-

tic map of the auditory cortex provided by Schneider et al. (2004).

1www.mrc.cbu.cam.ac.uk/Imaging/mnispace.html
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5.1.4 Psychoacoustics

Psychoacoustic experiments were conducted in two different sessions: in the first

session we used bandpass filtered complex sounds as illustrated in Figure 5.1.

According to the MEG measurements, sounds were superimposed with a white

background noise (DC–10,000Hz), ramped with a 10 -ms hanning window and

attenuated at 20 dB relative to the overall level of the sound complexes.

For a direct comparison between the psychoacoustic results of the complex sounds

and RIS, listeners had to judge the pitch of RIS sounds with a similar spectrum:

Delay times were set to 4 or 8ms. The number of iterations was fixed at eight and

the gain factor was either plus or minus one. The tested RIS stimuli were also

generated with a sampling rate of 48,000Hz; they had a total length of 500 ms

and were ramped with a 10 ms hanning window at the beginning and at the end.

In analogy to the complex sounds, RIS were also bandpass filtered (LOW, MID,

and HIGH) and superimposed with white noise in the same way as the complex

sounds, leading again to a total of 12 different conditions. The tested sounds of

both sessions were presented using the ER3 earphones to ensure that the sounds

were of the same quality as in the MEG experiment. The level of the sounds was

set to a convenient level, adjusted by the subjects (60 dB ±4 dB).

For both sessions, a two-alternative forced choice task for paired comparisons was

applied: Two different sounds were presented randomly, with an inter-stimulus

interval of 300 ms. Subjects had to indicate the tone with the higher pitch. During

one session, every combination of paired comparisons was presented twice with

reversed order. They judged all possible combinations of the sounds (12 × 12),

excluding the comparison of the single sounds to themselves, which led to a total

of 132 trials per session.

The scale for the relative ’height of pitch’ was derived from the paired comparison

experiment according to the algorithm described in section 3.2.
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5.2 Results

5.2.1 Source Analysis

Figure 5.2: Left: Mean coordinates of the averaged equivalent dipoles projected onto
an axial plain. The sulcal borders were kindly provided by Schneider et al. (2004).
Equivalent dipoles were evoked by the transition from complex sounds with a ∆f of
250Hz and 125Hz. The fitted dipoles of the isolated POR (circles and squares) are
located in the left and right lateral Heschl’s Gyrus (solid borderline). The diamonds
show the onset of the complex sounds from silence (N100m) averaged over all bandpass
conditions. The standard errors of nine subjects are represented by vertical and
horizontal bars. Right: MRI of a single subject (AR), with 3D-surface of Heschl’s
Gyrus.

As for the experiment conducted with RIS, the neuromagnetic responses,

evoked by the transition from the frequency-shifted (’odd’) sound complexes to

the harmonic complex (’even’) sounds with the same ∆f between adjacent fre-

quency components were fitted on the N100m’-component with the two-dipole

model. The coordinates of both equivalent dipoles were transformed in the space

of Talairach and Tournoux (1988). In Figure 5.2, the mean coordinates of nine

subjects are depicted on an axial plane through Heschl’s Gyrus (solid border-

line) and Planum temporale (dotted borderline). Both dipoles are located in the
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lateral part of Heschl’s Gyrus. As illustrated, the evoked equivalent dipoles of

the ∆f=125 Hz complex sound condition seem to be more laterally compared to

the center of activity evoked by complex sounds of a ∆f=250Hz sound. The

difference in the location of the POR evoked by both conditions is within errors.

An overview of all derived dipole-coordinates are given in Table 5.1.

The table also shows the mean coordinates of the equivalent dipoles, fitted

on the N100m component to the sound onset from silence. The three different

bandpass conditions (’LOW’,’MID’,’HIGH’) of the filtered complex sounds are

Table 5.1: Coordinates of the equivalent dipoles located in the left and right auditory
cortex in response to bandpass filtered complex sounds transformed in the space of Ta-
lairach and Tournoux (1988). The neurophysiological activity evoked by the transition
(POR) of the complex sounds was modelled from the ’LOW’-condition. The coordinates
of the equivalent dipoles evoked by the onset of the sounds from silence were derived for
all bandpass conditions. All coordinates represent the averaged values of 9 subjects (±
s.e.).

right audit. cortex left audit. cortex

Spacing Bandpass x y z x y z

∆f=250Hz POR 52 -14 14 -52 -18 11

±5 ±8 ±5 ±5 ±5 ±7

LOW 55 -19 14 -56 24 7

±4 ±9 ±9 ±5 ±5 ±7

MID 52 -18 13 -51 -23 4

±5 ±8 ±11 ±5 ±6 ±9

HIGH 56 -22 15 -56 26 11

±4 ±7 ±11 ±6 ±6 ±7

∆f=125Hz POR 54 -14 11 -55 -16 11

±6 ±7 ±13 ±6 ±6 ±13

LOW 56 -16 13 -55 23 9

±6 ±8 ±7 ±5 ±5 ±10

MID 55 -17 13 -54 -21 9

±4 ±8 ±7 ±5 ±5 ±9

HIGH 53 -19 15 -52 23 9

±5 ±9 ±8 ±7 ±4 ±10
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all located posterior to the POR-response. This is also illustrated in Figure 5.2

with diamonds, which represent the mean of all six conditions to the sound onset

from silence.

5.2.2 Neuromagnetic Responses to the Change of Pitch

The evoked neuromagnetic responses fitted to the transition from the ’odd’- to

the ’even’-condition of the ’LOW’-bandpass filtered sounds are shown in Figure

5.3 as grand-average of all 10 subjects. As can be seen from the Figure, the

equivalent source waveforms of all tested complex sound conditions revealed no

significant differences between the right (grey) and left (black) hemisphere. Thus,

the mean of both source waveforms was used for further calculations. All values,

either amplitude or latency of the N100m’ component which are presented in this

Chapter stand for mean values of both hemispheres.

The morphology of the AEFs is similar to the source waveforms of the RIS-

RIS transitions described in section 4.2.2. All responses to the transitions of

the bandpass filtered sounds presented in Figure 5.3 exhibit a first positivity at

approximately 70–80ms after the transition, followed by the prominent N100m’

deflection. After the zero-crossing, a second positive peak, the P200 was observed

at about 200–250 ms after the transition. Generally, the latency of this component

was increased, when the ∆f was decreased. The amplitude of the P200 depended

strongly on the bandpass condition. The highest amplitudes were observed for

the ’LOW’-condition, whereas this component nearly vanished after the ’HIGH’-

bandpass filtered transition.

The latency of the pitch specific N100m’ component was examined for all

tested bandpass filtered sound transitions. The resulting mean latencies are

presented in Figure 5.4. When ∆f was fixed and the bandpass condition was

increased, the latency of the POR increased significantly for tested harmonic

sounds (∆f = f0 = 250Hz: F (2, 18) = 6.93, p < 0.01 and ∆f = f0 = 125Hz:

F (2, 18) = 7.47, p < 0.01). Between the ’even’- and ’odd’-conditions of a fixed

∆f , the latency increased significantly for the harmonic sounds generated with

∆f = 250Hz (F (1, 9) = 12.26, p < 0.01) and was found to be insignificant for

the sounds with ∆f = 125Hz (F (1, 9) = 0.19, n.s.). Between the ’even’- and

’odd’-conditions generated with a fixed ∆f and filtered with the same band-

pass, the latency difference reached the level of significance for the stimuli with

∆f = 250 Hz, filtered to the ’LOW’-frequency range (t(9) = 2.07, p < 0.05) and

the sounds filtered with the ’MID’-bandpass filter (t(9) = 3.92, p < 0.01). The
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Figure 5.3: Grand-average source waveforms of 10 subjects based on the fit of the
POR evoked by the transition from the ’odd’- to the ’even’-condition of the ’LOW’-
bandpass filtered sounds. All waveforms of the left (black) and right hemisphere (grey)
are zero-phase filtered from 1–100Hz. Independent of the ’even’- or ’odd’-condition and
the fundamental frequency f0, the N100m’ latency increased when the filter condition of
the bandpass filter was increased from ’LOW’ (500–1,000Hz) to ’MID’(1,000–2,000Hz)
and ’HIGH’(2,000–4,000Hz). Increasing the bandpass filter from ’LOW’ to ’MID’ and
’HIGH’ also caused a decrease of the N100m’ amplitude in all tested conditions.
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Figure 5.4: Mean latency (in ms) of the N100m’ component evoked by the transition of
bandpass filtered complex sounds. The different bandpass conditions are along the x-axes
from ’LOW’ (500–1,000Hz) to ’MID’ (1,000–2,000Hz) and ’High’ (2,000–4,000Hz).
The latencies of the POR, evoked by harmonic sounds with the ’even’-conditions are
represented with ∆f = f0 and the ’odd’-conditions with ∆f = f0/2.
Independent of ∆f , the latency of the POR increased significantly, when the bandpass
condition was increased. Between the ’even’- and ’odd’-conditions, the latency increased
significantly for the harmonic sounds generated with ∆f = 250Hz (squares) and was
found to be insignificant for the sounds with ∆f = 125Hz (circles). Between the ’even’-
and ’odd’-conditions generated with a fixed ∆f and filtered with the same bandpass, the
latency difference reached the level of significance, only for the stimuli with ∆f =
250Hz, filtered to the ’LOW’- and ’MID’-frequency range.
Error bars represent the standard error of 10 subjects.

latency difference was insignificant, when the sounds were bandpass filtered with

the ’HIGH’-bandpass filter (t(9) = 0.93, n.s.). When the sounds were generated

with ∆f = 125 Hz, the latency differences were insignificant for the three band-

pass conditions (’LOW’: t(9) = 0.91, n.s., ’MID’: t(9) = 0.10, n.s. and ’HIGH’:

t(9) = −0.37, n.s.).
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Figure 5.5: Mean amplitude (in nAm) of the N100m’ component evoked by the tran-
sition of bandpass filtered complex sounds. In analogy, to Figure 5.4, the different
bandpass conditions are along the x-axes from ’LOW’ (500–1,000Hz) to ’MID’ (1,000–
2,000Hz) and ’High’ (2,000–4,000Hz). The amplitudes of the ’even’-conditions are
represented with ∆f = f0 and the ’odd’-conditions with ∆f = f0/2.
Independent of ∆f , the latency of the POR decreased significantly, when the band-
pass condition was increased. Between the ’even’- and ’odd’-conditions, there was no
significant difference of the amplitude. Error bars represent the standard error of 10
subjects.

Analogously, the amplitudes of the N100m’ component evoked by the transi-

tions of the complex sounds, were examined. Figure 5.5 shows the mean ampli-

tudes of the POR over all subjects. Again, the amplitudes of the POR evoked by

the ’even’-conditions of the complex sounds are represented with ∆f = f0, and

the ’odd’-conditions with ∆f = f0/2 respectively.

When the harmonic sounds were generated with ∆f = 250Hz, the latency of the

N100m’ component decreased significantly, when the bandpass condition was in-

creased (F (2, 18) = 17.45, p < 0.001). Amplitude also decreased when the sounds

consisted of harmonics with a ∆f = 125Hz and only the filter-passband was in-

creased (F (2, 18) = 15.28, p < 0.001). Keeping the bandpass condition fixed, no

significant effect was observed for amplitude differences between the ’even’- and

’odd’-conditions. Neither for ∆f = 250Hz (F (1, 9) = 1.84, n.s) nor for harmonic
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sounds with a ∆f of 125Hz harmonic sounds (F (1, 9) = 2.52, n.s.).

5.2.3 Psychoacoustics

In the first session of the paired comparison task, the 10 subjects rated the pitch

of complex sounds and in the second part the corresponding RIS was judged.

The results of both sessions were linear-scaled according to the BTL-algorithm

described in section 3.2. All derived relative pitches are given together with the

t-intervals of each value in Table 5.2. In Figure 5.6, the correlation between RIS

and the complex sounds are illustrated for a direct comparison.

The upper part of the table shows the relative pitch values of RIS. With a

fixed delay time d and fixed gain g, the relative perceived pitch increased with

increasing the bandpass condition. This effect was found for both delay times

(4 and 8ms), and observed independent of a positive or negative sign of g. The

comparison between RIS with opposite sign of the gain factor revealed, that the

differences in relative pitch were not significant, except for the condition with

a delay time of 4 ms and a passband of the filter of 2,000–4,000Hz (p < 0.05,

according to the t-interval).

In the lower part of the Table, the values of the bandpass filtered complex sounds

are listed. Analogously, the perceived pitch of all tested conditions was rated

higher for fixed ∆f and f0, when the passband of the filter was increased from

’LOW’ to ’MID’ and ’HIGH’. The comparison of the conditions with the same

∆f between adjacent peaks in the spectra revealed, that the perceived pitch

of the complex sound that consisted of odd harmonics (∆f = f0/2) only, was

judged higher than the pitch of the corresponding complete harmonic sound

(∆f = f0). The higher rating of the perceived pitch was consistent for all sound

conditions tested, but only reached the level of significance (p < 0.05) in two

cases: ∆f=250 Hz, bandpass filtered between 2,000 and 4,000Hz (’HIGH’) and

in the ∆f=125Hz sounds, that were bandpass filtered from 1,000–2,000Hz.

The correlation between the pitch of the bandpass filtered complex sounds

and the corresponding RIS generated with 8 iterations is illustrated in Figure

5.6. The filled symbols represent the sound conditions that consist of all har-

monics and, respectively, the RIS conditions with a positive gain factor. The

open symbols show the perceived pitch of complex sounds, with odd harmonics

which correspond to RIS generated with a negative gain. The tested sounds with

a ∆f with 250 Hz (RIS: 4ms delay time) are shown in squares and sounds with

∆f=125Hz (delay time of RIS 8 ms) are diamonds. In general, the relative pitch

of the sounds with ∆f=250Hz was judged higher as the pitch of ∆f=125Hz.
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Table 5.2: Relative perceived pitch of all tested RIS and complex sound-conditions.
The Relative pitch values were obtained by the paired comparison task by linear sca-
ling according to the BTL procedure. All stimuli were bandpass filtered into three dif-
ferent passbands: ’LOW’ (500–1,000Hz), ’MID’(1,000–2,000Hz) and ’HIGH’(2,000–
4,000Hz). Upper: Relative pitch of RIS(d, g,8). Lower: Relative pitch of complete har-
monic sounds (∆f = f0) and complex sounds consisting of odd harmonics (∆f = f0/2)
only. Error bars represent the bootstrap assessed t-intervals for 10 subjects (t=1.8331)
of each value. Note that negative pitch values correspond to high pitches; positive values
to low pitches.

RIS delay gain bp cond. relative pitch

4 + LOW 1.15 ±0.80

– 1.23 ±1.24

+ MID -0.85 ±0.61

– -0.68 ±0.48

+ HIGH -1.70 ±0.53

– -2.31 ±0.37

8 + LOW 1.79 ±0.30

– 1.56 ±1.14

+ MID 0.66 ±0.46

– 0.53 ±0.35

+ HIGH -0.83 ±0.41

– -0.54 ±0.57

Complex Sound ∆f f0 bp cond. relative pitch

250 250 LOW 0.25 ±0.52

125 -0.04 ±0.82

250 MID -0.55 ±0.53

125 -0.90 ±0.37

250 HIGH -1.77 ±0.54

125 -2.42 ±0.46

125 125 LOW 2.33 ±0.34

62.5 1.70 ±0.99

125 MID 1.50 ±0.41

62.5 0.87 ±0.45

125 HIGH -0.29 ±0.52

62.5 -0.67 ±0.38
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As expected, the correlation between the paired comparison task of the tested

complex sounds and the paired comparison study conducted with the correspond-

ing RIS exhibits a remarkable correlation coefficient of ρ =0.90.

Figure 5.6: Correlation between the relative perceived pitch of bandpass filtered com-
plex sounds and the corresponding bandpass filtered RIS. The relative pitch was derived
from the paired comparison task by linear scaling according to the BTL-method. Er-
ror bars represent the bootstrap assessed t-intervals for 10 subjects. Filled symbols
represent the pitch of sound conditions that consist of all harmonics (∆f = f0) and,
respectively, the RIS conditions with a positive gain factor. The open symbols show the
perceived pitch of complex sounds, with odd harmonics (∆f = f0/2) which correspond
to RIS generated with a negative gain. The sounds with ∆f = 250Hz (RIS: 4ms delay
time) are shown in squares; sounds with ∆f=125Hz (delay time of RIS equals 8ms)
are diamonds.
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5.2.4 Functional Dependence of the POR

on the Perceived Pitch

The latencies of the POR evoked by the different bandpass filtered complex

sounds were correlated to the corresponding relative perceived pitch of the har-

monic sounds, as derived in the psychoacoustic study. Figure 5.7 illustrates the

observed correlations for the tested harmonic sounds with a ∆f of 250 Hz (left)

and for ∆f=125Hz (right). In both diagrams, open symbols represent the evoked

POR (and respectively the relative pitch) of harmonic complex sounds that con-

sist of odd harmonics (∆f = f0/2) only. Filled symbols show the sounds gener-

ated with harmonics of all integer multiples (∆f = f0). Both diagrams comprise

the applied three different bandpass conditions of the sounds in ascending order

of the regression line. It can be seen, that the psychoacoustically derived relative

pitch corresponds very well with the corresponding latency of the POR evoked

Figure 5.7: Correlation between the latency of the N100m’ component and the relative
perceived pitch of the bandpass filtered complex sounds. Complex sounds produced with
a ∆f of 250Hz (left) and ∆f =125Hz (right). Filled symbols represent the pitch of
sound conditions that consist of all harmonics (∆f = f0) and, respectively, the latency
of the POR evoked by these sounds. The open symbols show the perceived pitch of
complex sounds, with odd harmonics (∆f = f0/2) and the corresponding latency of the
N100m’ component. Horizontal error bars represent the standard error of mean for the
POR. The vertical error bars were derived using the bootstrap algorithm.
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by the same sound and the perceived pitch of the tested stimuli highly correlated

with the latency of the N100m’ component (ρ=0.97 for both correlations). The

effect was found to be independent of the case that the complex sounds were

produced either with the ’even’- or ’odd’-condition. The slope of the regres-

sion line also was nearly identical (∆f=250Hz: m = −0.0014/ms, (∆f=125Hz:

m = −0.0016/ms). Thus, the mean of both regression lines suggests, that an

increase of the relative perceived pitch of about 0.015 corresponds to a latency

increase of 10 ms in the N100m’ component.

5.3 Simulated Pitch of Complex Sounds

The Auditory Image Model (AIM), as introduced in section 2.3, is applied to

predict the perceived pitch of bandpass filtered sounds. The simulation of the

stabilized auditory images was computed for all harmonic complex sounds used

for the MEG-measurements and for the psychoacoustic task. The summed ac-

tivity of each auditory channel in the stabilized auditory image (SAI) results in

the summed SAI. The simulation of the bandpass filtered sounds is illustrated

in Figure 5.8 for a ∆f of 250 Hz, and in Figure 5.9 for the sounds generated

with ∆f =125Hz respectively. Since the sounds were bandpass filtered with

three different conditions (’LOW’, ’MID’, and ’HIGH’), each of the Figures is

divided into three subplots, showing the simulation of the filtered sounds. Each

subplot contains the outcome of the model computed with the ’even’-condition

(∆f = f0) in black; the ’odd’-conditions (∆f = f0/2) are in grey. The abscissa

represents the time interval of the image buffer. The spike probability decays

over time with a half life time of 20ms. The distance from 0 to the location τ

of the first prominent peak corresponds to the frequency of the predicted pitch

with 1
τ
. When the sounds, generated with ’even’-condition are simulated, the

first peak in the summed SAI is independent of the bandpass filter condition at

τ = 1
∆f

. Sounds generated with ’odd’-harmonics reveal a minimum at time lag

τ flanked by two side maxima. For these simulations, the first positive peak is

at 2τ . As can be seen from the Figures, the distance (∆τ) between both side

maxima peaks and the minimum at τ is equal. The distance ∆τ is independent

of the spacing between adjacent frequencies (∆f) of the simulated sounds but

depends on the bandpass filter condition only. The side maxima merge together

when the bandpass condition is increased from ’LOW’ (∆τ=0.65ms) to ’MID’

(∆τ=0.35ms) and ’HIGH’ (∆τ =0.15ms).
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Figure 5.8: Summed activity of the SAIs in response to simulated bandpass filtered
complex sounds with a ∆f of 250Hz. From bottom to top, the simulation of the three
different bandpass filtered sounds (’LOW’ 500–1,000Hz, ’MID’ 1,000–2,000Hz, and
’HIGH’ 2,000–4,000Hz) are shown. The ’even’-conditions (∆f = f0) are in black and
the ’odd’-conditions (∆f = f0/2) in grey. The time interval of the spike probability
decays over time and is limited to 32ms. The SAI predicts the perceived pitch with
distance from 0 to the location τ of the first prominent peak. The frequency of the
perceived pitch is 1

τ . The sounds generated with ’even’-harmonics exhibit their first
peak independent of the bandpass filter condition at τ = 1

∆f . In contrast, the sounds
generated with ’odd’-harmonics reveal a minimum at time lag τ flanked by two side
maxima. The first positive peak for these simulations is at 2τ . The predicted pitch is
ambiguous and corresponds either to one of the side maxima or to the first positive peak
at time lag 2τ .
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Figure 5.9: In analogy to Figure 5.8, the summed activity of the SAIs in response
to simulated bandpass filtered sounds, here with a ∆f of 125Hz, is shown. Bottom to
top, the simulation of the three different bandpass filtered sounds ’LOW’, ’MID’, and
’HIGH’. ’Even’-conditions (∆f = f0) are in black, ’odd’-conditions (∆f = f0/2) in
grey. Note that in comparison to Figure 5.8 the distance from 0 to the first positive
peak at τ = 1

∆f =8ms is doubled.

5.4 Discussion

In this experiment, the pitch of bandpass filtered sounds was investigated. A

high correlation between the perception and the pitch-specific N100m’ compo-

nent evoked by these sounds was found. It was tested, whether the auditory

image model can predict the pitch of bandpass filtered sounds.

The paired comparison task of the psychoacoustic experiment demonstrated, that

complex sounds can be perceptually regarded as a correlate to RIS. Subjects rated

the pitch of complex sounds in the first session, and pitch of RIS generated with

eight iterations in the second session. Both, the complex sounds and RIS were
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filtered, using three different bandpass frequencies (’LOW’ 500–1,000 Hz, ’MID’

1,000–2,000Hz, and ’HIGH’ 2,000–4,000Hz). The pitch scaling according to the

BTL-algorithm revealed a correlation of ρ =0.90 between the relative pitch of

complex sounds and the perceived pitch of RIS (see Figure 5.6). The results

showed, that for sounds with the same fundamental frequency (f0), the perceived

pitch increases when the bandpass filter condition is changed from ’LOW’ to

’MID’, and ’HIGH’. This is in line with Zwicker and Fastl (1999), who reported

that not all complex sounds from which the lower harmonics have been removed,

elicit a pitch that corresponds to f0. They demonstrated that rather a specific

combination between f0 and the lowest component must occur to produce the

sensation of virtual pitch, that is a pitch of the fundamental frequency. They

suggested an existence region in which a pitch of f0 can be evoked. According to

the definition of this region, a pitch of f0 is only perceived when the sounds are

filtered with the ’LOW’ and ’MID’- bandpass filter.

The results of our psychoacoustic experiment showed that pitch also increased

between the ’LOW’- and ’MID’- bandpass conditions, independent of the applied

∆f and f0. Additionally, an increase of pitch due to changes of the applied

bandpass characteristics was observed This could also be caused by the fact that

timbre influenced the ratings of listeners. Within a fixed bandpass filter con-

dition, and in absence of timbre changes, subjects rated the pitch of complex

sounds generated with the ’even’-condition (∆f = f0) lower than pitch of sounds

produced only with ’odd’ harmonics (∆f = f0/2).

The equivalent dipoles fitted on the N100m, evoked by the onset of the sound

from silence revealed a center of activity in Planum temporale. Näätänen and

Picton (1987) reported that this deflection, occurring 100ms after the onset of

the stimulus consists of at least three different components. Thus, the two-dipole

model with one equivalent dipole in each hemisphere represents the center of ac-

tivity built from a sum of different N100m deflections. The use of a continuous

stimulation allowed to investigate the POR (N100m’) evoked by the onset of pitch

in absence of activity due to the energy onset. The pitch-specific N100m’ was

located more posterior in the lateral aspect of Heschl’s Gyrus.

The latency of the POR depended on the fundamental frequency of the pre-

sented sound. When f0 was decreased from 250Hz to 125Hz (see Figure 5.4),

the POR latency increased significantly, independent of the applied filter con-

dition. Furthermore, the latency also increased, when the bandpass condition

was increased from ’LOW’ to ’MID’ and ’HIGH’. These results are in line with

Bernstein and Oxenham (2003), who reported that low and high order harmonics

make different contributions to the perceived pitch. The single components of the
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presented sounds are equally spaced on a linear frequency scale, but the absolute

bandwidths of the auditory filters increase with increasing the center frequency.

Thus, the spacing between the individual components within a complex sound

becomes smaller and smaller in the cochlear representation. The number of har-

monics of each auditory filter increases with increasing harmonic number. As a

conclusion, low order harmonics are resolved from one another, whereas higher-

order harmonics begin to interact within single auditory filters and become un-

resolved. Thus, the latency increase might also be evoked by the presentation of

less resolved harmonics. Carlyon and Shackleton (1994) demonstrated, that the

ability to distinguish between two sounds drops steadily with an increase of the

lowest harmonic number present. Thus, it is suggested that extraction of pitch

takes longer when lower harmonics are removed. Furthermore, the prolongation

of the extraction time might also have caused the observed significant drop of the

N100m’-amplitude, since the activity over time of the single neurons is blurred.

The latency increase of the POR was highly correlated with the perceived

pitch of the presented complex sounds. Figure 5.7 reveals that subjects did not

perceive the missing fundamental (virtual) pitch anymore, when the bandpass

condition was changed to higher center frequencies which is physiologically rep-

resented in the latency increase of the N100m’ component. However, the loss

of the virtual pitch alone cannot explain the increase of the latency. Roberts et

al. (2000) reported that the N100 latency, evoked from the onset of sounds from

silence was further modulated according to a secondary spectral analysis. They

employed triangle and square wave stimuli of the same fundamental frequency

and similar spectral center of gravity and revealed latency differences of the N100

component. Interestingly, they also reported that the spectral substructure ana-

lysis of their stimuli corresponded to a subjective perception of the sounds. The

conclusion was that the latency of the N100 component is determined by both,

an acoustic analysis (allowing contributions of both center of gravity as well as

substructure or periodicity) and by a perceptual processing stage which recog-

nizes a sound‘s timbre or the presence of the missing fundamental, respectively.

When removing the lower harmonics of our applied stimuli, the perception of

the complex sounds changes in that way that for a constant ∆f of adjacent har-

monics, the chroma shifted. Probably, listeners used both, timbre and pitch cues

in the psychoacoustic task. In an EEG study, Ragot and Lepaul-Ercole (1996)

presented harmonic complex sounds, filtered in three different formant regions,

whose center frequencies corresponded to 350 Hz, 700Hz and 2,300 Hz. Harmonic

complex sounds with a different f0 were applied. Their experiment showed, that

the latency of the N100 peak rather depended on f0 than on the frequency spec-
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trum of the sound. However, all sounds presented in their experiment evoked a

clear pitch at f0 and timbre effects were suppressed. But their results also reveal

a increase of the N100 latency when f0 was fixed and the center frequency of the

formant filter was changed from 350 Hz to 700 Hz.

Figure 5.8 illustrates the simulation of the summarized stabilized auditory

images for complex sounds generated with a ∆f of 250 Hz. Respectively, the

simulations of the sounds produced with ∆f =125Hz are shown in Figure 5.9.

The predicted pitch by the model corresponds to the distance from 0 to the first

prominent peak of the neural autocorrelation function. With regard to the sim-

ulated outcome of the different filter conditions applied to the complex sounds

generated with all harmonics (∆f = f0), the pitch is predicted. Independent of

the bandpass condition, the first prominent peak was observed at time lag τ = 1
∆f

.

Thus, the predicted pitch is the same for all tested filter conditions. In contrast,

the psychoacoustic results showed that the pitch increased with an increase of the

applied bandpass filter from ’LOW’ to ’MID’ and ’HIGH’. Removing the lower

harmonics of the complex sounds weakens the pitch of the missing fundamental

until no pitch around f0 is perceived anymore.

The simulation of the complex sounds generated with the ’odd’-condition (∆f =

f0/2) revealed a minimum at time lag τ . Thus, the first prominent peak, that

predicts the pitch of the sound can be either one of the side maxima that flank

the minimum at τ , or the peak at time lag 2τ predicts the pitch. In the first case,

the perceived pitch either would be slightly higher (or lower) between a tone and

a semitone compared to the ’even’-condition. In the second case, the predicted

pitch is an octave.

However, our psychoacoustic study revealed, that the pitch of the sounds gener-

ated with odd harmonics only, is higher for all tested conditions, compared to the

corresponding sound with the same f0 but generated with even harmonics and

filtered into the same frequency passband. The result was consistent for complex

sounds either generated with ∆f =250Hz or ∆f =125Hz.

Thus, the outcome of the model cannot account for the change of the perceived

pitch of the applied sounds when influences of timbre increased.
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Chapter 6

General Discussion and

Conclusion

The present work was conducted to elucidate special aspects of the mechanisms

on pitch processing in human. Particularly, the relation between psychoacous-

tic measurements and their auditory evoked neuromagnetic responses were ex-

amined. MEG was used to record the pitch-specific responses evoked by pitch

changes. To determine the location and temporal course of the neuromagnetic

activity in the auditory cortex, source analysis was applied. Both, neuromagnetic

responses as well as psychoacoustic results were compared with simulations of the

pitch processing based on the auditory image model provided by Patterson et al.

(1995).

In the first experiment, regular interval sounds (RIS–Huygens noise) were ap-

plied to investigate the perception and the representation in the auditory cortex.

The spectral envelope of RIS is a rippled continuum and thus, activity across the

tonotopic dimension of neural activity in the central auditory pathway is rather

uniform. The fact, that even RIS generated with one or two iterations is per-

ceived as a tone with a distinct pitch suggests that this pitch is extracted using

temporal regularity. In the second experiment, the study was systematically ex-

tended, to investigate the influence of bandpass filtered harmonic sounds on pitch

processing, i.e. to determine the role of resolved harmonics.

The perceived pitch of RIS generated with a delay-and-add process (gain g =+1)

is proportional to the inverse of the delay time d. Pitch salience is increasing

with the number of iterations n. When RIS is generated with a negative gain

g (delay-and-subtract), the perceived pitch differs considerably. However, the

resulted pitch change is discussed controversially in the literature. The present

work was carried out with special emphasis on this debate. Yost (1996a) reported

103
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that the pitch of RIS generated with a negative gain depended on the number of

iterations n. When RIS was produced with less than four iterations, pitch was

found in the region of 1
0.9d

and 1
1.1d

. The perceived pitch was shifted to 1
2d

when

n was increased.

The results of our pitch matching experiment are in contrast to these findings.

The musically trained listeners who performed the task reliably, adjusted the

pitch of RIS generated with a negative gain g an octave below ( 1
2d

) the pitch of

RIS produced with an opposite sign of g when the delay time was 2 and 4ms.

For delay times of 8 and 16ms, pitch matches were observed at about 1
0.9d

and
1

1.1d
. Pitch was found to be independent of the number of iterations, since n was

varied in the experiment between one and eight. These results are in line with

Raatgever and Bilsen (1992), who reported that the pitch depended on the delay

time d. In analogy to our results, they found the transition between ambiguous

pitches and the pitch shift of an octave below the pitch of RIS produced with a

positive gain within delay times of 4–6ms.

However, pitch matching tasks are very difficult and Yost (1996a) had to ex-

clude four out of six subjects in his study. The pitch matching experiment of

the present work also showed that the task could only be performed reliably by

musically trained listeners. The results of two listeners, who were excluded from

the test can be found in Appendix B.

To circumvent the observed difficulties, a simple two alternative forced choice

task was applied, together with the BTL-algorithm that allows to derive a linear

pitch scale. It was found that RIS generated with opposite sign of g exhibited sig-

nificant differences in the relative pitch scale for delay times of 2 and 4 ms, which

mirrors the perceived octave shift. The pitch difference vanished when the delay

time of RIS was increased to 8 and 16ms. Some subjects rated the ambiguous

pitch of RIS generated with a negative gain factor higher, whereas others ranked

it lower compared to RIS based on positive gain. Even ratings within subjects

were not unique, and therefore, the relative pitch differences in the BTL scale

were within errors between RIS generated with an opposite sign of g.

Wiegrebe and Winter (2000) also investigated the pitch shift of RIS but applied

different highpass filters on the sounds. They reported, that the perceived pitch

shift depended on the delay time d but also on the cutoff frequency of the filter.

To determine the influence of the filter on the perceived pitch, bandpass filtered

complex harmonic sounds were presented in the second experiment.

In order to receive similar spectra compared to RIS generated with positive and

negative gain, complex sounds were generated with even and odd harmonics.

Complex harmonic sounds with a frequency spacing (∆f) of 125 and 250Hz

between adjacent harmonics were bandpass filtered with three different center
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frequencies, to investigate, whether different bandpass conditions affect the per-

ceived pitch. For all sounds tested, listeners judged the pitch of the complex

sounds that were only produced with odd harmonics, higher compared to com-

plex sounds generated with all harmonics and filtered with the same bandpass

condition. Furthermore, the following effect was observed: The perceived pitch

also changed, when ∆f was fixed, but the center frequency of the bandpass filter

was increased. Two arguments are relevant for the perceived pitch shift. First,

the pitch of the missing fundamental disappeared, with increasing the center

frequency of the filter passband. According to Zwicker and Fastl (1999), the per-

ceived pitch at f0 vanishes if lower harmonics of a complex sound are removed.

They claimed that rather a specific combination between f0 and the lowest com-

ponent present must occur to elicit a pitch of the missing fundamental f0. Second,

it might be possible that the increasing timbre influence on the presented sounds

provoked listeners to rate octave mistakes.

The neuromagnetic representation of pitch changes were identified using MEG.

Earlier studies demonstrated that the latency of the N100m component evoked by

the onset of a sinusoidal sound from silence depended on the frequency of the pre-

sented tone (Pantev et al., 1988). In an EEG study, Roberts and Poeppel (1996)

used pure tones within a frequency range of 100 to 5,000Hz and showed, that

the latency of the N100m component increased as a function of the frequency of

the stimulus tone. Ragot and Lepaul-Ercole (1996) applied complex tones with a

fundamental frequency (f0) between 100 and 330Hz and showed that the latency

of the N100 increased from about 100ms to 120 ms with decreasing f0. They con-

cluded, that the N100 latency might be used as a physiological, non-subjective

index of the perceived pitch.

However, Stufflebeam et al. (1998) reported, that the latency of the N100m com-

ponent is increased systematically by decreasing intensity and Roberts et al.

(1998) demonstrated that the latency of the N100m is also sensitive to percep-

tual changes of the stimulus.

All above mentioned experiments have the common aspect, that the N100(m)

component was evoked by the stimulus onset from silence. Lütkenhöner (2001)

reported that the N100m deflection is composed of multiple, partially temporally

overlapping, independent components and Näätänen and Picton (1987) identified

at least three different sources of the N100, which were probably generated over

a wide region of the supratemporal plane.

In an early investigation, Clynes (1969) recorded EEG using a continuous stimula-

tion with changing frequency to isolate the specific response to the onset of pitch
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and to avoid overlapping responses evoked by the simple energy onset. Later,

Mäkelä et al. (1988) used a continuous stimulation with transitions from noise

to square waves. At about 100 ms after the transition, a prominent deflection

(N100m’) was found to be sensitive to both, pitch height and pitch salience.

Thus, a continuous stimulation with concatenated RIS segments of alternating

gain was used to study the pitch-specific neuromagnetic pitch onset response

(POR).

The observed latency of the N100m’ component was highly correlated with the

perceived pitch of the applied sounds. The neuromagnetic responses evoked by

RIS generated with opposite signs of the gain factor and delay times of 2 or

4ms produced significant latency differences of the N100m’ component. How-

ever, when the delay time of the presented RIS was increased to 8 and 16ms, the

latency differences stayed equal.

The results of this experiment showed clearly that the latency of the POR does

not simply represent the spectral differences of the applied RIS conditions ob-

served at the level of the basilar membrane but is rather a neurophysiological

correlate of the perceived pitch of a sound.

To test, whether perception changes evoked by shifting the chroma are also re-

flected in the latency of the POR, MEG measurements were extended by pre-

senting complex sounds with a fixed ∆f , analogously to the psychoacoustic ex-

periment. In the ’even’-condition, sounds were produced with all harmonics

(∆f = f0), and in the ’odd’-condition with odd harmonics (∆f = f0/2) only.

The stimuli were concatenated with an alternation between ’even’ and ’odd’ and

were bandpass filtered to the same frequency interval.

The perception of bandpass filtered sounds were also highly correlated with the

observed latency of the N100m’ component. However, the results showed, that

the latency of the POR is prolonged when the center frequency of the bandpass

filter was increased, but stimuli were presented at a fixed fundamental frequency.

Thus, the results support strongly the hypothesis, that the N100 latency reflects

the perceived pitch, rather than the applied spectrum of the presented stimuli

as suggested by Ragot and Lepaul-Ercole (1996). The POR revealed significant

latency differences between the presentation of ’even’- and ’odd’-conditions for a

∆f of 250Hz and for bandpass conditions of ’LOW’ (500-1,000Hz) and ’MID’

(1,000–2,000Hz). The latency difference of the ’HIGH’ (2,000–4,000Hz) filtered

sounds were insignificnat. This corresponds to reports of Wiegrebe and Winter

(2000). They found that an octave shift is perceived when RIS was generated

with an opposite sign of g and a delay time of 4ms (∆f =250Hz), but they also

demonstrated that removing lower harmonics, or increasing the cutoff frequency

of the highpass filter caused a pitch shift of RIS produced with a negative gain
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to the region of ±10% compared to RIS produced with g = +1 (see also Fig-

ure 2.3). The transition was found between cutoff frequencies of 1,250Hz and

2,500Hz. They also reported that the pitch of RIS generated with a delay time

of 8ms revealed pitch differences of about 10%, independent of the applied high-

pass cutoff frequency. This is also conform with our experiment. The latency

differences of the bandpass filtered sounds generated with a ∆f of 125Hz were

found to be within errors, independent of the tested filter condition.

The location of the POR was fitted with two equivalent dipoles in each audi-

tory cortex. As illustrated in Figure 6.1 (circles), the source dipoles were located

in the lateral part of Heschl’s Gyrus. Recently, Krumbholz et al. (2003) applied

transitions from noise to RIS and reported, that the specific N100m’ response

arose in the medial Heschl’s Gyrus. Rupp et al. (2005) found the activity of the

Figure 6.1: Coordinates of activity from different experiments, projected onto an axial
plain with sulcal borders provided by Schneider et al. (2004).
The fitted dipoles of the isolated pitch specific response evoked by RIS (circles) are
located in the left and right lateral Heschl’s Gyrus. Mean coordinates of the averaged
equivalent dipoles from MEG studies with a continuous stimulation (Gutschalk et al.,
2004; Rupp et al., 2005) are also illustrated Additionally, the plot shows results of fMRI
experiments: The center of activity evoked by pitch changes from Warren et al. (2003)
and Patterson et al. (2002).
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N100m’ in the region of medial Heschl’s Gyrus (depicted in the Figure with stars)

for an alternating noise-RIS transition. Similarly, Gutschalk et al. (2004) applied

a continuous click train stimulation with varying pitch strength. As can be seen

from Figure 6.1 (squares), the dipole pair, fitted to the N100m’ accounted for

the pitch strength and was located in the lateral part of Heschl’s Gyrus. Further

validation of the observed activity in the lateral Heschl’s Gyrus is given by se-

veral other neuroimaging studies. Based on functional MRI, Warren et al. (2003)

reported that the medial Heschl’s Gyrus is activated similarly when processing

either pitch or noise. Only a small area of the lateral part of Heschl exhibited

an increased activity evoked by pitch changes. The functional MRI data of Pat-

terson et al. (2002) also revealed activity in the lateral half of Heschl’s Gyrus,

when pitch of RIS was varied. The mean coordinates of the activated area (S.

Uppenkamp, personal communication, 2004) are also depicted in Figure 6.1. As

can be seen from the Figure, the location of the equivalent source dipoles of the

applied continuous stimulation with changing pitch matched exactly the activity

of the MRI data, confirming (1) the applied model with two dipoles and (2) the

fitted location of the equivalent source dipoles. Furthermore, Patterson et al.

(2002) concluded, that the lateral Heschl’s Gyrus is involved in detecting pitch

changes and represents the center of melody processing in the auditory cortex.

The present results support this hypothesis and beyond, demonstrated that the

N100m’ component is involved in pitch processing.

It has been shown in the present work that the POR represents a neuro-

physiological correlate of the perceived pitch. To simulate how temporal pitch

information can be extracted in the auditory pathway, the auditory image model

(AIM) was applied. A strong correspondence between the perceived pitch shift

(due to the changing sign of the gain) of RIS and the simulation with AIM was

found. The location of the first positive peak in the stabilized auditory image at

time lag τ mirrored the frequency of the perceived pitch ( 1
τ
) for RIS generated

with a positive gain. The results support the hypothesis of Yost et al. (1998),

that the first prominent positive peak observed in the stabilized auditory image

seems to play a major role in pitch extraction.

For RIS generated with a negative gain, the model was also able to predict the

shift in the perception of RIS in dependence of the delay time d. The stabilized

auditory images revealed a first positive peak at 2τ which predicts a pitch shift

of an octave. Since a decaying buffer with a half life time of 20 ms is integrated

in the model, increasing the delay time of the simulated RIS results in a smaller

amplitude of the peak at 2τ . At the same time, the observed two side maxima
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at τ = 1
0.9d

and τ = 1
1.1d

become more prominent in comparison to the peak at

2τ and can account for the ambiguity of the pitch. The location of the peaks

represent exactly the perceived pitch shift of 10% between RIS with opposite sign

of g. Thus, the temporal pitch model is able to predict the octave shift as well

as the ambiguous pitch of RIS generated with a negative gain.

The bandpass filtered sounds were also simulated with AIM to test, whether the

model can also extract the timbre-induced shift in the perception and the cor-

responding latency change of the POR. The outcome of the simulated sounds

generated with all harmonics (∆f = f0) revealed a peak at time lag τ = 1
∆f

.

Independent of the applied bandpass condition, the stabilized auditory images

exhibited the first prominent peak at time lag τ = f0. However, as revealed by

the psychoacoustic experiments of the present work and according to the above

mentioned existence region of the missing fundamental (Zwicker and Fastl, 1999),

pitch at f0 was not perceived anymore, when sufficient lower harmonics were re-

moved from the sounds.

As expected from the simulation of RIS generated with a negative gain, the com-

plex sounds generated with the ’odd’-condition (∆f = f0/2) revealed a minimum

at time lag τ . Analogously, the first prominent peak, that predicts the pitch of

the sound can be either one of the side maxima that flank the minimum at τ ,

or the peak at time lag 2τ . In the first case, the predicted pitch varies between

a tone and a semitone (up or down) compared to the ’even’-condition. In the

second case, the predicted pitch shift is an octave. However, the psychoacoustic

measurements revealed, that the perceived pitch of the ’odd’-condition was al-

ways rated higher than the pitch of the corresponding ’even’-condition.

AIM failed to predict the pitch shift, when the influence of spectral envelope

increased.

In the present work, two effects were observed that influenced the POR la-

tency in opposite direction. When RIS was applied, the latency of the N100m’

deflection was highly correlated to the perceived pitch of RIS. The latency of

the N100m’ increased when the perceived pitch of RIS decreased. Furthermore,

the latency of the POR depended on the pitch strength of RIS. With increas-

ing number of iterations n, the latency also decreased. In the experiment where

bandpass filtered sounds were applied, the fundamental frequency was fixed, but

the center frequency of the bandpass filtered sound was increased. Removing

lower harmonics of the presented sounds resulted in an increase of the N100m’-

latency. The latency increase was also highly correlated to the perceived pitch of

the psychoacoustic experiment conducted with bandpass filtered sounds.

Two effects can account for this result. First, it could be that listeners were
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mainly influenced by timbre changes and rated octave mistakes. However, the

stronger argument is given secondly by the harmonic resolvability within the

auditory filters. The number of harmonics of each filter increases with increasing

harmonic number and begin to interact. The latency increase of the POR might

be due to the presentation of less resolved harmonics which prolong the pitch

processing, i.e. the extraction time of pitch in the auditory system. This effect

was also observed when RIS was presented. With a fixed delay time d and fixed

gain g, the latency of the POR was also increased with decreasing number of iter-

ations. For RIS generated with two iterations, the noise component of the sound

is still prominent but the tone/noise ratio increases with increasing n. Thus,

the extraction of a prominent pitch is easier, which resulted in a shorter latency

of the N100m’. In summary, the POR rather reflects the evoked sensation of a

sound, than the spectrum.

The present work settled the controversial debate on the pitch of RIS gener-

ated with a delay-and-subtract process. The results of the psychoacoustic studies

are in line with the reported findings of Raatgever and Bilsen (1992) and Wiegrebe

and Winter (2000). Furthermore, the POR was found to represent a neurophysio-

logical correlate of the perceived pitch.

It is important to note that the observed perceptual pitch shift between RIS

produced with a positive and negative gain factor cannot be explained by spec-

tral auditory mechanisms. Temporal properties are able to explain the perceived

pitch shift of RIS. However, the temporal pitch model failed to predict timbre in-

duced influences on the perceived pitch. Thus, pitch shifts, effected by changing

the spectrum but fixed fundamental frequency, should be taken into account in

temporal models to increase their ability of correct pitch processing simulations.

The neuromagnetic POR can probably provide valuable physiological parameters

which could be integrated in further models, since the latency of the pitch specific

response was found to integrate both, timbre and pitch.

In summary, the results of the present work support the view of Carlyon and

Shackleton (1994) who proposed that two different extraction mechanisms ac-

count for the perceived pitch. Spectral cues are involved when the stimuli contain

resolved harmonics, but the auditory system also relies on temporal cues for pitch

extraction, regardless of resolvability, yielding some ambiguous pitch percepts.



Appendix A

Huygens (1693): Pitch of

Rippled Noise

The original report by Huygens is taken from the paper by Bilsen and Ritsma

(1969/70):

”Je veux ajouter ici au sujet de la réflexion du son une observation assez singulière,

que j’ai fait autrefois étant à la belle maison de Chantilly de la Cour où est la

statue Equestre on descend avec un degré large de [. . .] marches dans le parterre où

il y a une fontaine de celles qu’on appelle gerbe d’eau, qui fait un bruit continuel.

Quand on est descendu en bas et qu’on se tient entre le degré et la fontaine, on

entend du coté du degré une résonance qui a un certain ton de musique qui dure

continuellement, tant que la gerbe jette de l’eau. On ne savait pas d’où venait

ce son ou en découvrait des causes peu vraisemblables ce qui me donna envie

d’en chercher une meilleure. Je trouvai bientôt qu’il procédait de la réflexion

du bruit de la fontaine contre les pierres du degré. Car, comme tout son, ou

plutôt bruit, réitéré à des intervalles égaux et très petits, fait un ton de musique

et que la longueur d’un tuyau d’orgue détermine le ton qu’il a par sa longueur,

parce que les battements de l’air arrivent également dans les petits intervalles de

temps que ses ondoiements emploient à savoir quand il est fermé par le bout, ainsi

je concevois que chaque bruit tant soit peu distingué que venait de la fontaine,

étant réfléchi contre les marches du degré, devait arriver à l’oreille de chacune

d’autant plus tard qu’elle soit plus éloignée, et cela par des différences de temps

justement égales à celle que les ondoiements de l’air emploient à aller et venir

autant qu’était la largeur d’une marche. Ayant mesuré cette largeur qui est de

17 pouces, je fis un rouleau de papier qui avait cette longueur, et je trouvai qu’il

avait le même ton qu’on entendait au bas du degré. Je trouvai, comme j’ai dit,

que la gerbe n’allant point l’on cessait d’entendre ce ton. Et ayant eu l’occasion
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d’aller à Chantilly pendant l’hiver, qu’il était tombé beaucoup de neige qui ôtait

la forme aux marches, je remarquai qu’on entandait rien quoique la gerbe allât

et f̂ıt du bruit à l’ordinaire.”



Appendix B

Pitch Matching Results of RIS

The pitch matching results of RIS according to the described method in Chapter

4. In the results section of Chapter 4, only the mean of the subjects who matched

all RIS sounds is shown. Here, the results of all single subjects is illustrated. Yost

(1996a) reported that some subjects had difficulties to perform the task, which

was also observed in the present task.
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Figure B.1: Subject PS: Matched pitch of RIS generated with a delay of 2ms and
4ms.
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Figure B.2: Subject PS: Matched pitch of RIS generated with a delay of 8ms and
16ms.
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Figure B.3: Subject EH: Matched pitch of RIS generated with a delay of 2ms and
4ms.
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Figure B.4: Subject EH: Matched pitch of RIS generated with a delay of 8ms and
16ms.
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Figure B.5: Subject RS: Matched pitch of RIS generated with a delay of 2ms and
4ms.



119

Figure B.6: Subject RS: Matched pitch of RIS generated with a delay of 8ms and
16ms.
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Figure B.7: Subject HGD: Matched pitch of RIS generated with a delay of 4ms and
8ms.
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Figure B.8: Subject NS: Matched pitch of RIS generated with a delay of 2ms.
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