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Development and Application of a Versatile Balloon-Borne DOAS Instrument for
Skylight Radiance and Atmospheric Trace Gas Profile Measurements

In the framework of this thesis, a novel balloon-borne DOAS instrument was developed, characterized
in the laboratory and employed during 5 stratospheric balloon flights. Its light weight and small size
allows versatile applications on different platforms and under several observation geometries (scanning
and fixed limb, nadir, and direct sunlight).

Skylight radiances in the UV /visible range between 330 and 550 nm are measured, and the recorded
spectra are analyzed for column densities of O3, NOs, BrO, HyO, and O, along the line of sight by
applying the Differential Optical Absorption Spectroscopy (DOAS) method.

Radiative Transfer (RT) calculations are used to (a) simulate the measured quantities and (b) infer
vertical profiles of O3z, NO3, and BrO concentrations. Since the measurements were performed under a
variety of viewing geometries, they provide a stringent validation of the applied Monte Carlo RT model.

The new method of atmospheric trace gas profiling by balloon-borne UV /vis limb scatter measure-
ments is tested against simultaneous measurements of the same parameters available from in-situ, or
UV /vis/near IR solar occultation observations performed on the same payload. Reasonable agreement
is found between (a) measured and RT calculated limb radiances and (b) inferred limb O3, NOs, and
BrO and correlative profile measurements when properly accounting for all relevant atmospheric pa-
rameters (temperature, pressure, aerosol extinction, and major absorbing trace gases). Additionally,
scanning limb observations provide time-resolved profile information of radicals during sunset.

Entwicklung und Einsatz eines vielseitig anwendbaren ballongestiitzten DOAS In-
struments zur Messung von Streulichtradianzen und atmosphéarischen Spurenstoff-
profilen

Im Rahmen der vorliegenden Arbeit wurde ein neuartiges, ballongestiitzes DOAS Instrument entwickelt,
im Labor charakterisiert and auf 5 stratosphérischen Ballonfliigen eingesetzt. Sein leichtes Gewicht und
seine kleinen Abmessungen erlauben einen vielféltigen Einsatz auf unterschiedlichen Plattformen und
unter mehreren Beobachtungsgeometrien (Limbmessungen mit festem bzw. variablem Elevationswinkel,
Nadir- und direkte Sonnenlichtbeobachtungen).

Streulicht Radianzen im UV und sichtbaren Wellenldngenbereich zwischen 330 und 550 nm werden
gemessen. Die aufgenommen Spektren werden mittels der Differentiellen Optischen AbsorptionsSpek-
troskopie (DOAS) nach Siulendichten von Oz, NO2, BrO, HoO und O4 entlang des Lichtweges ausgew-
ertet.

Strahlungstransportrechnungen werden benutzt, um (a) die gemessenen Grofen zu simulieren und (b)
vertikale Profile von O3, NO2 und BrO zu erhalten. Da die Messungen unter einer Vielzahl von Beobach-
tungsgeometrien durchgefithrt wurden, bieten sie einen gute Validierung des benutzten Monte Carlo
Strahlungstransportmodels.

Die neuartige Methode, atmosphérische Spurenstoffprofile aus ballongestiitzen Messungen limb-
gestreuter UV /vis Strahlung zu gewinnen, wird mittels simultaner Messungen derselben Parameter
durch in-situ oder UV /vis/nah-IR Sonnenokkultationsmessungen auf derselben Ballonnutzlast {iber-
priift. Es wird eine verniinftige Ubereinstimmung zwischen (a) gemessen und mittels Strahlungstrans-
portrechnungen ermittelten Limbradianzen und (b) den errechneten O3z-, NOs-, und BrO-Profilen und
den gleichzeitigen Profilmessungen der anderen Instrumente gefunden, wenn alle relevanten atmo-
sphérischen Parameter (Temperatur, Druck, Aerosolextinktion und die am stérksten absorbierenden
Spurengase) richtig beriicksichtigt werden. Zusétzlich bieten die Limbmessungen mit variblem Eleva-
tionswinkel zeitaufgeldste Profilinformation von Radikalen wihrend des Sonnenuntergangs.
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Chapter 1

Introduction

The discovery of the Antarctic ozone hole (Farman et al., 1985) was an important milestone in atmo-
spheric research. Although it had been already known before that anthropogenic emissions of nitrogen
and halogen species reduce the stratospheric ozone burden ( Crutzen, 1970; Molina and Rowland, 1974),
the observed almost total destruction of ozone at altitudes where concentrations are usually maximum
(i.e. between 12 and 20km) was quite unexpected. It showed that the fragile equilibrium state of the
earth’s atmosphere can be significantly disturbed by even relatively small anthropogenic interferences.

Due to the important role the stratospheric ozone layer plays for life on earth by efficiently shielding
the surface from biologically dangerous UV radiation, a fact already found in the 19" century by
Cornu (1879) and Hartley (1881), the discovery of its destruction sparked immense research activities.
By now, the mechanisms of the ozone hole formation are believed to be qualitatively understood (e.g.
Crutzen and Arnold (1986); Solomon et al. (1986); Toon et al. (1986)). Chlorofluorocarbons (CFC) were
identified as the precursor substances of the ozone destroying species. Consequently, their production
was regulated and, finally, stopped in the Montreal Protocol (1987) and its amendments.

This scientific success was achieved by precise observations and chemical modeling of stratospheric
processes. Since then, the ozone layer is constantly monitored by total ozone column measurements
from ground stations and satellites in nadir geometry (i.e. looking straight downwards) like TOMS!
and GOME/ERS-2 (Burrows et al., 1999a) etc. Satellites have the advantage of global coverage and
long-term measurements, allowing precise trend observations not only of ozone but also, e.g., halogen
species. Satellites in solar occultation geometry (observation of direct sunlight during sunset or sunrise)
offer the possibility of vertical profile measurements, however, with limited global coverage. The most
recent generation of atmospheric satellites (OSIRIS/Odin (Murtagh et al., 2002; Llewellyn et al., 2004)
and SCIAMACHY /Envisat (Burrows et al., 1995)) combine the advantages of both methods, as they
allow for the retrieval of the vertical distribution of trace gas concentrations independent of the solar
position during daytime by the observation of limb scattered skylight as function of tangent height
in the UV and visible spectral range. The profile retrieval requires accurate Radiative Transfer (RT)
calculations to model the average path the light traveled through the atmosphere on its way from the
sun to the detector. Together with the gigantic data amount involved, this effort has only become
possible in the recent years thanks to increased computational power. Consequently, the novel methods
require careful validation by correlative ground-based, aircraft, or balloon-borne measurements. For
stratospheric trace gas profiling up to altitudes well above the ozone layer (up to ~ 40km), balloon
measurements allow a much higher sensitivity by diving through the profile compared to satellites
looking on it from outside and, therefore, play a key role in validation of satellite profile measurements.

"http://toms.gsfc.nasa.gov/

11
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Balloon-borne in-situ sensors (e.g. Electro Chemical Cell (ECC) ozone sondes) are regularly launched
from many stations worldwide providing precise ozone profiles at all latitudes and seasons. Balloon-
borne optical measurements in the UV, visible, and IR spectral range have the advantage of retrieving
profiles of several species at the same time but require larger instruments and are, thus, more costly
and only performed during larger campaigns. The results obtained from such measurements are not
only important for satellite validation but also increase our understanding of chemical and dynamical
atmospheric processes. The mentioned modeling of the atmosphere by 3-D Chemical Transport Models
(CTM) requires precise observations of all relevant species as initialization and to validate their output
parameters.

This work presents one of the most stringent tests ever to validate the individual steps in the still
novel method of atmospheric trace gas profiling from limb scatter measurements. The first effort of
stratospheric NOo profile measurements were already performed by McFElroy (1988), however, with
technological limitations regarding the applied spectrograph and RT calculations compared to today’s
possibilities. The following steps were realized in the frame of this thesis:

e Development of an new UV /visible DOAS instrument optimized for balloon-borne application
with a particular emphasis on compact design to allow versatile applications on several platforms
and stable optical imaging to achieve sensitive detection of important stratospheric trace gases

e Application of the Differential Absorption Spectroscopy (DOAS) method (Platt et al., 1979) to
the recorded spectra allows the detection of O3, NO2, H2O, Oy, and also weakly absorbing radicals
like BrO, and potentially OCI1O, 10, OIO, or CH5O.

e Application of a novel backward Monte Carlo RT model developed by von Friedeburg (2003) to
interpret the measured parameters.

e Absolute calibration of the instrument prior to the balloon flight to measure spectrally resolved
limb radiances and validation of the RT model on the absolute radiance level.

e Validation of the RT calculated weighting functions (i.e. relative contribution of individual al-
titudes to the total observed absorbance) by comparison of measured trace gas Slant Column
Densities (SCD) to RT simulations using correlative trace gas measurements performed on the
same gondola during balloon ascent and solar occultation by well established in-situ (ECC ozone
sonde) and UV /visible/IR direct sunlight sensors (LPMA /DOAS (Camy-Peyret et al., 1993; Fer-
lemann et al., 2000)) for a variety of observation geometries (fixed limb during balloon ascent,
scanning limb during balloon float and nadir observations).

e Retrieval of vertical trace gas profiles using the Maximum A Posteriori (MAP) algorithm de-
veloped by Rodgers (1976) and comparison to correlative profile measurements from the same
balloon gondola to demonstrate the overall feasibility of the novel method of atmospheric trace
gas profiling by balloon observation of limb scattered UV /visible radiation.

o Retrieval of time-dependent profile information from scanning limb measurements during balloon
float and comparison to photochemically calculated profiles as function of Solar Zenith Angle
(SZA) for the radical NOs.

The present thesis is organized as follows. Chapter 2 gives a brief overview about atmospheric dynamics
and chemistry with particular emphasis on the stratosphere and the chemistry of the species under
investigation, namely ozone and the NO, and halogen families. Chapter 3 discusses the methods
used for the analysis and interpretation of the measurements. They include the Differential Optical
Absorption Spectrometry (DOAS), the employed Monte Carlo Radiative Transfer Model 'TRACY, the
Maximum A Posteri (MAP) inversion technique for the vertical profile retrieval, and chemical modeling
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of stratospheric trace gas profiles. Chapter 4 describes the setup of the newly developed balloon-
borne miniDOAS instrument and the LPMA/DOAS balloon payload, and gives a characterization
of the instrument. Experimental details about the DOAS evaluation and the absolute radiometric
calibration are also given. Chapter 5 reports on sensitivity exercises studying the sensitivity of the
RT calculations on input parameters. The second topic is a detailed error analysis of the retrieved
vertical profiles. In chapter 6, the results obtained during 5 measurement campaigns are discussed. A
comparison of measured and RT calculated limb radiances is discussed and the retrieved vertical Og,
NOy, and BrO concentration profiles are compared to correlative profile measurements of the same
species obtained by in-situ and direct sunlight DOAS measurements deployed on the same gondola.
Chapter 7 concludes the thesis with a summary and an outlook.
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Chapter 2

Atmospheric Chemistry and Dynamics

2.1 Atmospheric Composition and Dynamics

2.1.1 Vertical Structure of the Atmosphere

Barometric Formula

The atmosphere is the gaseous layer surrounding our planet attached to it by gravity. The pressure at
a given altitude is thus given by the weight of the gas above. At sea level, it is under normal conditions
(i.e. at 25°C): pp = 1013hPa := 1 atm. The air density, under these condition, is oo = 2.5 - 1019 cm=3.
Assuming constant temperature throughout the atmosphere, the pressure as a function of altitude can
be written as (barometric formula):

z

p(z) =po-e o, (2.1)
kT

with the scale height zo = - 5" A good estimate for the whole atmosphere is zy ~ 8 km. This implies
that the pressure drops to half of its value every z 1R 5.5km. This simplified view on the atmosphere

suffers from some serious misassumptions, i.e. the temperature is anything but constant throughout
the atmosphere (see below) so that the calculated scale height is just a rough estimate. Especially at
colder temperatures, e.g. in the stratosphere, the pressure decreases faster leading to scale heights of
only ~ 6km.

The Atmospheric Temperature Profile and Vertical Structure

The atmosphere can be subdivided into several layers with distinct boundaries, called pauses, according
to their temperature (see figure 2.1). In the lowermost layer, the troposphere, the temperature profile
is governed by adiabatic expansion and compression during elevation and sinking of air masses. The
motor for this motion is the solar radiation. During the day, the Earth’s surface is heated up, the
warm air elevates and is cooled by expansion. An additional cooling occurs in the upper troposphere by
radiative cooling in the Infra Red (IR) wavelength range by water. This causes a temperature profile
decreasing by 5 — 10 K/km and a temperature minimum on the top of the water vapor atmosphere called
the tropopause. It is generally higher up and, thus, its temperature is lower the higher the tropospheric
water content is which again is determined by the surface temperature. So the tropopause altitude
ranges between 17 — 18 km with temperatures of ~ —80°C in the tropics, and between 9 — 13 km with
temperatures of ~ —50°C at higher latitudes, with the lowest tropopause heights occurring in the polar

15
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Figure 2.1: Left panel: thermal structure of atmospheric layers. Adopted from (Brasseur and Solomon,
1986). Right panel: Vertical distribution of solar short wave heating rates by O3, Oz, NO3, H2O, CO5, and
of terrestrial long wave cooling rates by CO5, O3, and HyO. Adopted from (London, 1980).

Table 2.1: Composition of the water vapor free atmosphere (permanent constituents). Adopted from
(Roedel, 2000)

Gas Molar Mass | %-vol | %-mass
Ny (Nitrogen) 28.02 78.09 | 75.73
05 (Oxygen) 32.00 20.95 | 23.14
Ar (Argon) 39.94 0.93 1.28
Air (average) 28.97 100 100

winter. Due to convection causing this temperature profile, there is a constant, though decreasing with
increasing altitude, mixing of the troposphere. In the stratosphere the conditions are vice versa. The
radiative cooling in and below the tropopause and the heating in the upper stratosphere by the increasing
absorption of solar radiation lead to an increasing temperature profile and, thus, little convective and
mixed layering. In contrast to the troposphere, the radiative budget is determined by absorption of solar
radiation and emission of thermal IR radiation. Only in the polar winter stratosphere, the temperature
is slightly decreasing with altitude with a below adiabatic rate of 1 — 2K/km. On top of the stratopause
which is given by a temperature maximum around 50 km, there is the mesosphere where temperatures
decrease again due to similar reasons as in the troposphere. Above ~ 75 — 80km (mesopause), the
temperature is again strongly increasing due to the absorption of solar UV radiation (mainly by oxygen)
up to values of 1200— 1500 K (thermosphere). The higher atmospheric layers (above 50 km) is also called
ionosphere because of the occurrence of ions and free electrons. Finally, the heterosphere in an altitude
above 100 km denotes the layer where the elements are no longer mixed but layered according to their
mass, e.g. above 1000 km there is only hydrogen.
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2.1.2 Atmospheric Composition

The major gaseous constituents are given in table 2.1. Additionally, many trace gases important for
atmospheric chemistry and climate exist. The most important are COy (~ 370 — 380 ppm!), CO
(~ 0.1ppm), O3 (between 0.05 ppm in the troposphere and 5 ppm in the stratosphere), halogen species
(some hundred ppt in the troposphere), nitrogen oxides (NO,, between 0.01 ppb in clean air up to
1 ppm in heavily polluted air) and sulphur compounds (0.1 — 100 ppb), among many others. Due to the
fact that 99 % of all atmospheric gases reside below 40km, this region, i.e. the troposphere and the
stratosphere, are the central research topic of atmospheric sciences.

Further important atmospheric constituents are the aerosols. Aerosols, in generally, are all forms of
solid or liquid particles floating in the atmosphere. Liquid aerosols are droplets consisting mainly of
water (tropospheric clouds or fog) or acid. Solid aerosols are e.g. dust or soot particles. Aerosols can
appear in a manifold of shapes, sizes and densities depending on their origin which affects their optical
properties. This makes them difficult to handle in radiative transfer which they decisively influence.
Their number density N (see figure 2.2) lies in the range between 10%cm ™3 for heavily polluted air,
10% cm 3 for clean continental air, and 102 cm ™3 for very clean maritime air. Their mass concentration
are between 30 — 150 #8/m® over continents. Aerosol particle sizes typically range between 10 nm and
10 pm. The size distribution of aged aerosols with radii larger than ~ 0.1 um can be described by a
potential distribution (Junge distribution):
. dN(r) —s

n (T)ZWNT ) (2.2)
with s & 3.5 £ 1. 7* = r/r¢ is the dimensionless radius normalized to a unit radius rg. The size distri-
bution often has several maxima, called modes, even for a given aerosol type. They can be attributed
to the production and age processes of the particles. Two principal classes of aerosol production exist.
Firstly, aerosols can be generated by homogeneous condensation of supersaturated vapors from the gas
phase (homogeneous nucleation). Such vapors can originate from chemical reactions of initially gaseous
atmospheric constituents (e.g. sulfuric acid vapors from sulfur dioxide). Secondly, already condensed
particles (e.g. mineral dust or sea salt spray) can be raised from the ground by wind. Already floating
solid particles can serve as condensation nuclei (heterogeneous processes).

Another important issue in tropospheric radiative transfer are clouds. Clouds consist of either condensed
water droplets or ice particles and can be classified according to their droplet number density and water
content. Clouds influence the radiative transfer and, thus, tropospheric trace gas measurements in many
ways. In addition to preventing direct sun measurements, clouds prolong the light path in scattered light
measurements. Clouds also have a higher albedo than the earth surface (except for ice, see table 3.2.2).
Clouds are difficult to treat in quantitative RT calculations due to their manifold of manifestations
which are generally not exactly known.

2.1.3 The Troposphere and its Dynamics

The troposphere contains the air we breath. So changes in its composition by pollution directly affects
human health. But its chemical composition also interacts with climate and, thus, weather phenomena
which also affects life on earth. COs concentrations, e.g., have dramatically risen since the beginning
of industrialization and still do, which might cause a global temperature rise of several degrees. This
effect might be amplified by an increase in the HoO content which also is an important greenhouse gas.

Lppm =parts per million, i.e 1 trace gas molecule among 1 million air molecules. Also used are the abbrevi-
ations ppb =parts per billion, and ppt =parts per trillion



18 CHAPTER 2. ATMOSPHERIC CHEMISTRY AND DYNAMICS

Ll 3 Tropopause |
.% (—_——_—_
12 + B
10 | 4
8t 4
Continental
Aerosols

Altitude (km)
o
T

IN
T
w0
(4]
Q
wn
L
pd
c
o
@

1 10 102 10° 104 10°

N (cm3) —=

Figure 2.2: Number density vs. altitude for sea salt aerosols (lower left) and continental aerosols (farther
right). The arrows denote the approximate tropopause height. Adopted from (Roedel, 2000).

The troposphere itself can be subdivided into several layers according to their dynamics. The lowermost
millimeters form the molecular viscous layer whose name denotes that its dynamics is governed by
molecular viscosity while above it is dominated by turbulent diffusion. The next 20 — 200 m form the
Prandtl layer where surface friction force dominates over other forces e.g. caused by pressure gradients.
The transition to the free troposphere above ~ 1000 m whose dynamics is dominated by global circulation
patterns occurs in the Ekman layer where the wind directions changes steadily from the ground wind
directions to the direction of the geostrophic winds of the free troposphere. All these layers combined
form the planetary boundary layer or mizing layer which is characterized by steady mixing. This layer
is especially interesting when studying the effects of pollution as most of it occurs there.

The free troposphere is dominated by global circulation patterns which are briefly discussed in the
following. The global circulation is driven by the strong differences in solar radiation between the
tropics and the higher latitudes. The dominating wind system in the tropics up to ~ 30° — 35° northern
and southern latitude are the trade winds, which blow pretty smoothly from northeast on the northern
and from southeast on the southern hemisphere, respectively. In the equatorial region they meet forming
the Inner Tropical Convergence zone (ITC). The trade winds are driven by the uplift of hot humid air
in the zone of the strongest solar radiation. Hence, air has to stream towards the equator and this
air is distracted to the west by the Coriolis force. This causes the air pressure to be rather low in the
ITC and to increase towards higher latitudes where the air descends again. This circulation pattern is
referred to as Hadley-cell. Around ~ 30° — 35° of latitude, there is the subtropical high pressure belt
which is characterized by high pressure, regularly calm winds and a vertical wind component directed
downwards. Further poleward, from 35° — 70°, the zone of west wind drift attaches with typically
westerly winds which are not as uniform as in the tropics but disturbed by cyclones and anti-cyclones
and waves of different wavelengths. The west wind drift are thermal winds caused by the temperature
gradient between (sub-)tropical and higher latitudes. At the polar front (subpolar deep pressure rim) the
cold air masses from high latitudes and the warmer ones from the moderate latitudes hit. This region is
characterized by low pressure which is increasing again towards the poles. At high polar latitudes there
are circumpolar east winds at lower altitudes caused by downward winds that are deflected eastwards
by the Coriolis force.
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2.1.4 The Stratosphere and its Dynamics
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Figure 2.3:  Schematic view of the principal regions of the lower stratosphere with distinct transport
characteristics. Broad arrows denote the diabatic circulation, wavy arrows denote stirring along isentropic
surfaces. The thick black line denotes the tropopause and the thin black lines isentropic surfaces. Isentropic
surfaces in the remainder of the stratosphere may be assumed to be roughly horizontal. Adopted from
(WMO, 1999)

The significance of the stratosphere for life on Earth lies in the fact that it hosts the ozone layer
which efficiently shields the surface from life endangering solar UV radiation. Due to anthropogenic
pollution the stratospheric ozone concentration has decreased within the last decades which sparked
an intense research on the processes leading to this ozone depletion. Stratospheric ozone and trace gas
measurements are the main focus of this work, so a brief overview about stratospheric dynamics and
chemistry is given in this and the following sections.

The most prominent feature of stratospheric dynamics are the strong zonal winds which can be qual-
itatively explained as thermal winds. The tropical tropopause and lower stratosphere are very cold
compared to the polar stratosphere on the respective summer hemisphere which is heated up by strong
solar radiation. This poleward temperature gradient leads to a westward circulation according to the
principles of thermal winds. This is why on top of the tropospheric west wind drift there are strato-
spheric east winds and the poles are circulated by an enormous anticyclonic vortex. On the winter
hemisphere, the polar stratosphere is even colder than the tropical stratosphere due to the negligible
solar radiation so that the resulting thermal winds are westerlies as in the troposphere. While the sum-
merly east winds are a pretty smooth circulation, the winterly west winds show an uneven structure
with wave movements, instabilities and a strong meridional component. That is why there is hardly
any meridional mixing in summer while it is rather intense during winter. This can be seen, e.g. in
the ozone distribution: ozone produced in the tropical stratosphere can be transported to higher lat-
itudes during winter while this transport breaks down during summer causing lower ozone values in
high latitudes during fall compared to spring. An exception marks the polar vortex, which is built
during polar night due to the strong temperature gradient between the dark polar stratosphere and the
still sunlit stratosphere in the lower latitudes which prevents any meridional mixing. There is also a
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strong difference between the northern and southern hemispheres due to the different distribution of the
continents on the surface. While the southern hemisphere is dominated by oceans and a circumpolar
land mass, the northern hemisphere is more structured with oceans and mountains. This also disturbs
the stratospheric circulation which is generally more turbulent with stronger meridional mixing in the
northern compared to the southern hemisphere. This is especially true for the Antarctic vortex which is
generally more stable and, hence, colder than its Arctic counterpart which is typically more disturbed
by intermediate warmings and never inhibits mixing with mid-latitude air totally. This also an impacts
the ozone hole which is more severe in the Antarctic (see section 2.5). In spring, the vortex breaks
down and the circulation pattern changes from winter to summer type (final warming). This causes
fragments of the vortex to be transported to mid-latitudes, e.g. ozone-poor Antarctic air can affect the
stratosphere over Australia.

Of particular interest are the exchange processes between troposphere and stratosphere as basically
all anthropogenic pollutants, except for e.g. exhaust gases of supersonic jets, are emitted into the
troposphere and, hence, enter the stratosphere from there. The low stratospheric water content suggests
that the main entry to the stratosphere occurs via the very cold tropical tropopause which acts as a
cold-trap. This is explained by the ascent of air in the I'TC which continues through the tropopause into
the stratosphere. In the extra-tropical stratosphere, the air generally descends and, thus, can enter the
troposphere. This effect is strongest in the polar vortex and weakest in the summer hemisphere, and is,
e.g., the origin of most of the ozone in the free troposphere. Additionally, there is dynamic mixing of
stratospheric and tropospheric air by diabatic and isentropic transport between the 310—380 K potential
temperature (©) levels, especially in the region of the subtropical jets at the tropopause breaks. So,
following Hoskins (1991), the atmosphere can be subdivided into three sections. An overworld above
the ® = 380K isentrope (which is the tropical tropopause height by definition) that is globally above
the tropopause, an underworld below © ~ 300 — 310K that always belongs to the troposphere, and a
middleworld in between where the isentropes cut the tropopause and, hence, adiabatic mixing between
troposphere and stratosphere is possible. The characteristic exchange times between lower and middle
stratosphere range between some months and two years while the timescales for stratosphere troposphere
exchange are typically faster so that the mentioned times are also valid for the stratosphere troposphere
mixing, an average number for which is 15 — 18 months.

As a conclusion it should be emphasized that a combination of the mentioned dynamical as well as the
radiative and chemical processes described in the following sections are responsible for the observed
global distribution of ozone and other species. Experimentally, transport processes can be studied by
measuring long-lived species, called tracer species, like CHy or NoO. Theoretically, the combination of
these processes can be studied in state-of-the-art 3D Chemical-Transport Models (3D CTM) like, e.g.,
SLIMCAT ( Chipperfield, 1999), the KArlsruhe SImulation model of the Middle Atmosphere (KASIMA,
Ruhnke et al. (1999)), or REPROBUS (Lefévre et al., 1994, 1998).

2.2 Stratospheric Ozone Chemistry

The first explanation of the formation and destruction of stratospheric ozone was given by Chapman
(1930). Molecular oxygen (O2) is photolyzed by ultraviolet radiation (A < 242nm) which produces
oxygen atoms that react with molecular oxygen to ozone via a three-body reaction:

0, X 0+0 (A < 242 nm) (R2.1)

0+0, -5 03 (R2.2)
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The ozone loss is given by its photolysis with UV radiation (A < 310nm) followed by the reaction with

another oxygen atom or ozone:

0; ™ 0,+0('D) (A < 310 nm) (R2.3)
o'n) 2 o (R2.4)
03 % 0,40 (A < 1180 nm) (R2.5)
o+o0 X o, (R2.6)
0+03 — 20, (R2.7)

The photolysis of Oy (reaction R2.1) and thus the O3 production occurs mainly in the upper stratosphere
where radiation at short wavelengths occurs with high intensity. Together with the O3 photodissociation
reactions (R2.3 and R2.5) an equilibrium builds up. Note that by Os photolysis atomic oxygen is
produced which reacts back to Oz in the order of seconds (reaction R2.2). An important issue is
the timescales on which the reactions occur. This leads to the definition of families. The species are
grouped in a way that family members can be transformed to other members of the family on short
timescales while the lifetime of the whole family is rather long. So the O, family is defined as the sum
of odd-oxygen (e.g. O3, O(*D)).
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Figure 2.4: Og loss rates due to the catalytic cycles involving the HO,, CIO,+BrO,, NO,, and O,
families, respectively as a percentage of total O3 loss rates for 60°N in October as calculated for the 1990s
using JPL-97 values (DeMore et al., 1997). Adapted from Portmann et al. (1999).

The so obtained O3 abundances are qualitatively correct, e.g. they predict a concentration maximum
in the lower stratosphere but are quantitatively much higher than the measured ones which means that
additional O3 loss processes must exist. Additionally to the O3 destruction by atomic oxygen several
O3 destroying catalytic reactions exist:
X+03 — XO+0,
XO4+0 — X+ 0Oy
0340 — 209

(R2.8)
(R2.9)
(R2.10)

net :
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where X stands for one of the radicals OH (HO,-cycle (Bates and Nicolet, 1950)), NO (NO,-cycle
(Crutzen, 1970; Johnston, 1971)), Cl (ClO,-cycle (Molina and Rowland, 1974)), or Br (BrO,-cycle
(Wofsy et al., 1975)). The OH-radical can destroy Oz also without O atoms:

OH+03 — HO3+ 0, (R2.11)
HO2+03 — OH +20, (R2.12)
net : 203 — 302 (R213)

This cycle is especially important at lower altitudes where less atomic oxygen is available. There is
another type of catalytic cycle involving species of different families without need for O atoms:

X+03 — XO +0, (R2.14)
Y+03 — YO +0q (R2.15)
XO4+Y0 — X+Y+0, (R2.16)
net : 203 — 30, (R2.17)

with X=0OH and Y=CI or Y=Br, or X=CI and Y=Br, respectively. These combined cycles are also
more relevant in the lower stratosphere. The halogen cycles are most important at altitudes around
~ 20 km, while the NO, cycle dominates near ~ 30km. The relative importance of the different cycles
is summarized in figure 2.4. The plotted numbers are calculated for mid-latitudes (60°N) in October.
The relative contributions are different at other latitudes or seasons and, especially, inside the polar
vortex where the dramatic ozone losses in spring are dominated by halogen species (see section 2.5).
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Figure 2.5:  Meridional cross section of Oz profile trends derived from SAGE v6.1 data in the period
1984-2000. Trends were calculated in percent per decade relative to the overall time average. Shaded areas
are statistically insignificant at the 20 (95 %) level. Updated from Wang et al. (2002).

Due to anthropogenic emissions, the global total ozone column has decreased within the past years
(also see next sections for details). In the period 1997-2001, the global average was ~ 3 % below
the pre-1980 values (WMO, 2003). The lowest annually averaged total column since the beginning
of systematic global observations in the mid-1960s occurred in 1992-1993 with values 5% below the
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pre-1980 average. However, the ozone trends differ for different seasons and latitudes. In the tropics
(25°N-25°8S), no significant trend could be observed in the 1980-2000 period, but only a decadal variation
of ~ 3 % peak-to-peak approximately in phase with the solar 11-year cycle. Total column ozone loss
becomes statistically significant in the 25°-35° latitude bands of each hemisphere. In mid-latitudes
(35°-60°), the total column in the 1997-2001 period is below the pre-1980 average by ~ 2 — 4 % in
the northern hemisphere summer-autumn and winter-spring period, and by ~ 6 % year-round in the
southern hemisphere. The observed ozone profile trends also show significant deviations for different
altitudes (see figure 2.5). The ozone loss is strongest in the 30 — 50 km range with a maximum negative
decadal trend of 7 — 8 % for the 35°-60° latitude bands of both hemispheres for the period 1979-2000,
as observed by the SAGE-II satellite instrument (Wang et al., 2002).

Due to the decrease in stratospheric chlorine loading over the next 50 years, the total global ozone
column is expected to increase in future. For the present time, a leveling of ozone values is expected,
but, because of the year-to-year variability, it could take as long as a decade to clearly measure it.
For quantitative prediction of O3 recovery, several effects are relevant next to the halogen abundances.
E.g., stratospheric cooling, mainly due to further CO; increases, is predicted to enhance future ozone
increases in the upper stratosphere. A recovery to pre-ozone-hole-values (i.e. pre-1980) is predicted to
be significant by 2050 by model calculations.

2.3 Stratospheric Nitrogen Chemistry

Nitrogen species play an important role in stratospheric chemistry with respect to ozone. On the one
hand, they are responsible for ozone depletion (NO, cycle), but on the other hand, they can transfer
ozone destructive halogen species into passive reservoir species.

2.3.1 Sources and Sinks of Stratospheric NO, and NO,

Nitrogen species are grouped into two families: odd nitrogen NO,=NO+NOQO5 and all reactive nitrogen
NO,=NO-+NO2+NO3+2N305+HNO3+HO2NO2+CIONO2+BrONO,. The major source of strato-
spheric NO,, is the reaction of O(!D) with N,O:

O('D)+N,0 — 2NO (58 %) (R2.18)
— Ny +0, (R2.19)

N5O itself is transported into the stratosphere from the troposphere. Tropospheric NoO sources are
both natural and anthropogenic. The major contributions come from oceans and tropical forests. But
as a consequence of biomass burning and the use of artificial fertilizers, the tropospheric NoO level has
risen from 260 — 285 ppb (pre-industrial) to 315 — 317 ppb (January 2001, (Prinn et al., 2000; Hall et al.,
2002)) with an average annual growth rate of ~ 0.75ppb (WMO, 2003). N5O is an inert gas with a
lifetime of 120 (97—137) years. There is no destruction process known in the lower stratosphere. Besides
the NO oxidation (reaction R2.18) there is also NoO photolysis, which is responsible for ~ 90 % of its
removal:

N0 % N, +0('D) (A< 398 nm) (R2.20)
Another important source of NO,, in the higher atmosphere (mesosphere and lower thermosphere) via
N, dissociation by Solar Proton Events (SPE), Galactic Cosmic Rays (GCR) and Energetic Electron
Precipation (EEP). Quantitative, global estimates of their contribution to the total NO, production
are not available.
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Figure 2.6:  Overview on stratospheric NO, chemistry. Shown are the sources, sinks and pathways (dotted
lines: heterogeneous pathways) of the NO, family. The species marked in red can be measured with the
instruments on the LPMA/DOAS balloon payload. (taken from Bdsch (2002)).

The major sink of stratospheric NO,, is the reaction with atomic nitrogen which is only available above
~ 30km via NO photolysis:

NO+N — Ny+0 (R2.21)

During daytime, NO and NOy are in a photochemical equilibrium via the reactions:

NO +03 — NOg+ 0Oy (R222)
NOys+03 — NO +0s3 (R223)
NO, ™ NO+0O  (\<405nm) (R2.24)

Additionally, NO (equation R2.22) oxidation can occur by oxidants other than Oz, like HOy, CH304
and ClO. The ratio of NO:NOs (Leighton ratio) is about 1 : 1 during daytime. With the beginning of
the night, NO is rapidly converted to NOs due to the missing NOs photolysis. NO; is oxidized to NOg
by Os:

NOy+03 — N3+ 09 (R225)

NOg3 does not exist during daytime because of its fast photolysis:

NO; % NO,+0  (A<587nm) (R2.26)
M, NO+4+0, (A< 1180nm) (R2.27)

NOg reacts with NOy into the nighttime reservoir species NoOs:

NO3; +NO; — N,Os (R2.28)
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which reacts back to NOy and NOj by collisional decomposition or photolysis during day:

M

NOs — NO3+NOy (R229)
N2Os; 2% NO +0, (A< 1252nm) (R2.30)

As all of the NOg is destroyed during day, NoOs decreases during the course of the day to restore the
old NO, values. The result of these processes is the typical ’tilt tub-shaped’ diurnal variation of NOs
(Otten, 1997). During polar night, N3Oy is transformed into HNOj3 by heterogeneous reactions on PSC
surfaces (see also section 2.5):
NoOs + HCI — HNO3+ CIONO, (R2.31)
N.Os + Ho O — 2HNO; (R2.32)

HNOj3 and, thus, NO,, is also removed out of the gas phase by the formation of PSCs (denitrification).

NOs plays a crucial role in ozone chemistry as it transforms ozone destroying species into reservoir
species:

NO,+OH . HNO; (R2.33)
NO,+ClO0 . ClONO, (R2.34)
NO, +BrO -4 BrONO, (R2.35)

The catalysts can be reactivated by photolysis:

HNO; % NO,+ OH (A < 604 nm) (R2.36)
CIONO, ™, Cl1+NO; (A < 735nm) (R2.37)
2,010 +NO, (A < 1065 nm) (R2.38)
BrONO, ™ Br+NO; (A < 861 nm) (R2.39)
22, BrO + NO, (A < 1129nm), (R2.40)
or by reactions with the OH radical
HNO; + OH — NOs+ H,0. (R2.41)

2.3.2 NO, partitioning

An important question in stratospheric nitrogen chemistry is the contribution of the individual species
to the total NO, abundance (NO, partitioning). It is determined by the different life times of the
individual species and the time constants of the reactions mentioned in the previous section.

Both the production and destruction of HNOg3 are slow processes, so HNOg3 only has a small impact on
the diurnal variation of NO,. During polar winter HNO3 becomes the by far dominant NO, species due
to the heterogeneous process continuously converting NoOs into HNOj3 (reactions R2.31 and R2.32)
and the inefficiency of the HNOj3 destruction processes (reactions R2.36 and R2.41). This effect of
denitrification is an important prerequisite for the formation of the polar ozone hole.

As N3O is the major source of stratospheric NO,, (reactions R2.20 and R2.18), the distribution of NO,,
and N2O are photochemically linked. This correlation defines NO,* (=standard climatological NO,)
and any deviation of the actual NO, from it is a sign of denitrification (Rinsland et al., 1996). Below
30km, NO, and N2O are almost linearly anti-correlated (Loewenstein et al., 1993). The slope of this
lower stratospheric correlation is controlled by a combination of photochemistry and dynamics. Higher
up (30 — 70km), the correlation is dominated by the increasing destruction of NO, by reaction R2.21
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and becomes non-linear as it reaches a maximum. Above ~ 70km, NO, increases rapidly with altitude
and is predominately composed of NO (Michelsen et al., 1998).

2.4 Stratospheric Halogen Chemistry
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Figure 2.7: Overview about halogen species in the stratosphere and their contribution to ozone depletion.

Halogen species play an important role in stratospheric ozone destruction and are dominantly responsible
for the formation of the polar ozone hole. Figure 2.7 gives an overview of the stratospheric abundances
and partitioning of halogen species and their significance for ozone loss. Due to their strong bonding,
fluor species are very stable and do not play a role in ozone depletion. From chlorine over bromine to
iodine, the source gases get less stable and, thus, their Ozone Destruction Potential (ODP) increases.
The major contribution to ozone destruction (~ 60 %) is by chlorine due to its high stratospheric
abundances, but bromine also plays an important role as its much lower abundances (~ 0.6 % of
chlorine) is compensated by a ~ 50 times higher ODP. The contribution of iodine species is still not
totally clear as there are no exact measurements of its stratospheric load. In the following, the chemistry
of the latter three halogen families is briefly discussed.

2.4.1 Stratospheric Chlorine Chemistry

Similarly to the NO, family, a reactive chlorine family can be defined as ClO,=Cl+ClO+2Cl,05.
Stratospheric ClO, has several sources all of which originate from chlorinated organic compounds that
release Cl atoms either by photolysis or OH or O(!D) initiated oxidation chains. The only relevant
natural source is methyl chloride (CH3Cl) (see figure 2.8, left panel). The most prominent anthropogenic
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Figure 2.8: Left 2 panels: Overview about the chlorine and bromine source gases, respectively. Right
panel: Measurements of chlorine source gases and reactive chlorine species from space for November 1994,
35°-49°N. The available chlorine (Cl,*) determined by the source gases is nearly constant with altitude up
to 47 km.

sources are the ChloroFluoroCarbons (CFC). CFCs are chemically inert gases with a low water solubility,
are photostable in the troposphere and, hence, have long tropospheric lifetimes ranging from years to
centuries resulting in a uniform distribution. After the Montreal protocol (1997) and the amendment
of Copenhagen (1989) and London (1992), the industrial production of CFCs was limited and, finally,
stopped. They were replaced by partly halogenated substitutes (HCFCs) that are less stable and, thus,
have a shorter atmospheric lifetime. Their portion is small but still growing. Summarizing, organic
chlorine in the stratosphere continues to decline slowly, and inorganic chlorine in the stratosphere has
stabilized (WMO, 2003).

Once released from the organic source, chlorine participates in a number of reactions. As in the case of
NO,, ClO, is dominated by a fast cyclic transformation between Cl and CIO:

R2.42
R2.43
R2.44
R2.45

Cl4+03 — ClO+0,
ClO+NO — Cl+NOg
ClO+0OH — Cl+HO;

(
(
(
ClO+0 — Cl+0, (

)
)
)
)

and the photolysis of C1O

clo ™ a+o (R2.46)

The main temporary reservoir species are formed by reactions with NOsy, HO5 and CHy:

ClO +NO, X CIONO, (R2.47)
ClO +HO; — HOCI+ 0O, (R2.48)
Cl+HO; — HCI+0, (R2.49)
Cl+CHy — HCI+CH; (R2.50)
The active species can be regenerated from CIONO5; and HOCI by photolysis:
CIONO, ., Cl+NO; (A < 735nm) (R2.51)
M, €10 +NO, (A < 1065 nm) (R2.52)

HOClI ™ cl+o0H (A < 500 nm) (R2.53)
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HCI photolysis only occurs for A < 205 nm and is, hence, very inefficient but HCI can be split by reaction
with OH:

HCl+OH — Cl+Hy0 (R2.54)

From the above reactions, only the HOCI photolysis is efficient so that most of the chlorine resides in
the inactive species HCI and CIONOs. A significant activation to ClO, only occurs between 30 — 45 km
while for altitudes ~ 50km nearly all chlorine resides as HC1 (Solomon (1999), see also figure 2.8, right
panel). As a result, chlorine mainly contributes to ozone destruction in the upper stratosphere, except
under ozone-hole conditions where heterogeneous processes lead to a significant chlorine activation (see
section 2.5). At low temperatures, chlorine activation can also occur on liquid sulfate aerosols in mid-
and polar latitudes (Solomon et al., 1998).

2.4.2 Stratospheric Bromine Chemistry
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Figure 2.9: Left panel: Mean tropospheric Br from NOAA-CDML flask measurements of CH3Br and
the most abundant halons (symbols), and in recent WMO scenario calculations. Right panel: Changes in
the global tropospheric burden of both brominated and chlorinated ozone depleting gases in recent years
expressed as Equivalent Cl (ECl = Cl1 + 45 - Br) compared to WMO scenario Ab ( WMO, 2003). Adopted
from Motzka et al. (2003).

Bromine species have an important impact on global ozone destruction. About half of the polar ozone de-
pletion occurs due to bromine catalysts. The sources of stratospheric reactive bromine (BrO,=Br+BrO)
are about half natural and half anthropogenic (see figure 2.8, middle panel). The most important source
is methyl bromide (CH3Br) contributing by almost 50 %. CHs3Br is released both naturally (biomass
burning, oceans) and anthropogenically (agriculture, leaded gasoline, etc.) with a natural contribution
between 60 — 90 %. It has a lifetime of ~ 0.7 years (WMO, 2003). Measurements of Antarctic firn air
indicate a positive trend of Br, from CH3Br 2 — 2.5 ppt in the 1950-1995 period (Sturges et al., 2001).
CH3Br has peaked 1998 and has since declined by nearly 5 % (Motzka et al., 2003). Another important
source are halogenated hydrocarbon gases (halons) mostly used in fire extinguishers. Although con-
trolled by the Montreal protocol, their global mean is still slightly increasing, due to the use of large
halon stocks and the continued production in developing countries, by a mean annual rate of 0.1 ppt
which is much slower than was observed in the mid-1990s (Motzka et al., 2003). Consequently, the
sum of Bry from the most abundant halons and CH3Br peaked in 1998 and declined thereafter in the
troposphere at a mean annual rate of —0.25 + 0.09ppt (mean over 1999-2002, Motzka et al. (2003)).
This also caused the tropospheric Equivalent Chlorine (ECl = Cl 4 45 - Br) to decrease faster than
expected in WMO (2003) (see figure 2.9).

The stratospheric total inorganic bromine (Br,) for early 1999 in air of 5.6-year mean age is estimated to
21.5+3ppt from BrO measurements and 18.4(41.8, —1.5)ppt from organic precursor measurements. The
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Figure 2.10: Recent history of the total organic (Bry™) and inorganic (Brij) stratospheric bromine budget
(taken from Dorf et al. (2005), see also Fraser et al. (1999); Butler et al. (2000); Montzka et al. (2003)).

slight offset allows for the possibility of a bromine influx of 3.1(—2.9,43.5)ppt from the troposphere
to the stratosphere (Pfeilsticker et al., 2000). This question might be answered by a future balloon
flight in the tropics where most of the tropospheric influx to the stratosphere occurs. An average
annual increase of Bry, of 0.7ppt is found by balloon-borne DOAS measurements in the years 1996-
2000 (Harder et al. (1998, 2000); Fitzenberger et al. (2000); Pfeilsticker et al. (2000), see figure 2.10)
which is broadly consistent with the increase of tropospheric organic bromine over this time period.
Salawitch et al. (2005) suggests that inorganic Br, at and above the tropopause is 4 — 8 ppt greater
than assumed in models used in past trend assessment studies. This study concludes that enhanced
Br, causes photochemical loss of ozone below 14 km to change from being controlled by HO, catalytic
cycles (primarily HO2+03) to a situation where loss by the BrO+HOs cycle is also important.

As in case of ClO,, several reactions transform Br to BrO and vice versa:

Br+03 — BrO + 0, (R2.55)
BrO+NO — Br+NO, (R2.56)
BrO +ClI0 — BrCl+ 0, (R2.57)

— Br+0ClO (R2.58)

— Br+ClOO (R2.59)

BrO+0 — Br+0. (R2.60)
BrO % Br+0 (A < 515nm) (R2.61)

The major reservoir species are formed by reactions with NOs, HO5, C10, and CH,0O

BrO+NO; — BrONO, ( )
BrO +HO; — HOBr + 0, ( )
BrO +ClO — BrCl + O, (R2.64)

Br+HO; — HBr+0: ( )
Br+CH,O — HBr+ CHO ( )
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The active BrO, species are again released by photolysis:

BrONO, ™ Br+NO; (A < 861 nm) (R2.67)
2, BrO +NO, (A < 1129 nm) (R2.68)
HOBr ™ Br+OH (A < 578 nm) (R2.69)
BrCl % Br+Cl (A < 546 nm) (R2.70)
Additionally, Br is rapidly regenerated from HBr by a reaction with OH:
HBr + OH — Br+H,0 (R2.71)

Because of the rather long wavelength absorption of the reservoir species, their photolysis is very efficient
throughout the whole stratosphere. Consequently, the bromine partitioning is shifted more towards the
active species compared to chlorine.

Reaction R2.58 is the only relevant source of OCIO in the lower stratosphere. Its fast photolysis

oclo0 % cl0+0 (A < 470 nm) (R2.72)
prevents the production of large abundances during daytime. However, OCIO is widely used as an
indicator for chlorine activation and ozone depletion (Solomon et al., 1987; Erle, 1999; Fitzenberger,
2000; Wagner et al., 2001). Recent simultaneous observations of significant OClO and NOy amounts
(Riviere et al., 2003) suggest that some uncertainties in the interaction between nitrogen and halogen
species. Canty et al. (2005) finds that production of OCIO occurs more slowly than implied by standard
photochemistry. If the yield of BrCl from the reaction of BrO + ClO is increased from 7 % (JPL 2002
value) to 11 % (near the upper limit of the uncertainty), good agreement is found between measured
and modeled nighttime OCIO. This study highlights the importance of accurate knowledge of BrO +
Cl1O reaction kinetics as well as air parcel trajectories for proper interpretation of nighttime OCIO.

An important sink of BrONOs is the hydrolysis on the surface of PSCs or liquid sulphate aerosols. The
hydrolysis together with further heterogeneous reactions can lead to substantial bromine activation also
outside the polar vortex (Erle et al., 1998).

2.4.3 Stratospheric Iodine Chemistry

The role of reactive iodine species (I0,=I+10) in stratospheric ozone depletion is not yet clear as there
are no direct measurements of their abundances which indicates only small amounts. However, due
to its high ODP which is more than 300 times higher than that of chlorine, iodine may contribute
up to 10 % to total ozone destruction. From balloon-borne DOAS measurements, an upper limit for
total I, in the lower stratosphere (< 0.1ppt) is inferred. This would imply a rather small impact
of iodine on ozone (< 1 %) (Bdsch et al., 2003). In the troposphere, iodine oxides (IO and OIO)
could be measured in the midlatitude marine boundary layer (Alicke et al., 1998, 1999; Hebestreit,
2001) and in polar latitudes (Wittrock et al., 2000; Frieflet al., 2001; Allan et al., 2001). The source
of tropospheric I, is believed to be the rapid photolysis of alkyl iodides (e.g. CHsI, CHyly, CoHsl,
CH,ClI). These species are released into the atmosphere from supersaturated oceanic surface waters
where they are formed as metabolic byproducts of many maritime algae species (Davis et al., 1996).
Additionally, biomass burning may emit some methyl iodide (CH3I) (Andreae et al., 1996). There
are no significant, known anthropogenic sources. CH3l abundances in the range of 0.1 — 1 ppt have
been reported from the middle and upper troposphere of the tropics and subtropics (Andreae et al.,
1996). Unfortunately, no observations of inorganic gaseous iodine are yet available from the upper
troposphere and the stratosphere. However, some iodine tied to upper tropospheric aerosols with
mixing ratios (possibly) up to 1 ppt were detected (Murphy et al., 1997; Murphy and Thompson, 2000).
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The discrepancy between the measured tropospheric and the inferred upper limits of stratospheric I,
amounts gives rise to the question if much less iodine enters the stratosphere than frequently assumed
or if the stratospheric iodine chemistry, briefly discussed in the following, is still too poorly understood.
The first question can best be tackled by precise measurements at the stratospheric entry, i.e. the
tropical tropopause, while the second question would require further laboratory studies of the iodine
chemistry under stratospheric conditions.

The impact of iodine species on the stratospheric ozone chemistry was first investigated by Solomon
et al. (1994). They concluded that already 1ppt of total gaseous iodine would possibly dominate the
ozone destruction in the lowermost stratosphere at mid- and high latitudes in winter and suggested that
interhalogen reactions can lead to rapid ozone loss:

X403 — XO+0, (R2.73)
I+0;3 — I0+0, (R2.74)
X0 +10 — X+1+40, (R2.75)
— X0O0 +1 (R2.76)

— IX+0, (R2.77)

where X is either Cl or Br. The I:IO ratio is determined by the above reactions and further influenced
by the 10 photolysis:

10 ™ 140 (A < 500 nm) (R2.78)

and the reaction of IO with NO and, possibly, OH:

10 +NO — I+NO, (R2.79)
10 +OH — I+HO, (R2.80)
(R2.81)

10, is transformed to reservoir species (HI, HOI, and IONO;) by reactions with HO2 and NOa:

10 +HO; — HOI+ 0, (R2.82)
I+HOy — HI+ Oy (R2.83)
10 +N0O, X TONO, (R2.84)

The active species are again released by photolysis:

HI ™ 14H (A < 401 nm) (R2.85)
HOI ™ 1+0H (A < 554nm) (R2.86)
IONO;, ™ 10 +NO, (R2.87)
2, 14 NO; (R2.88)

The photolysis of HOI and IONO, is very fast and, hence, their daytime abundances are small. The
photolysis of HI is inefficient as its absorption occurs mainly in the short UV. Hence, HI is mainly
destroyed by reaction with OH:

HI+OH — 1+H0 (R2.89)
(R2.90)
This chemical scheme suggests that IO is by far the dominant I, species in the lower stratosphere during

daytime ( Wennberg et al., 1997; Pundt et al., 1998; Bdsch et al., 2003). Therefore, the ozone depletion
potential per molecule is much higher than that of Cl or Br (e.g. ODP(I) > 300 - ODP(Cl)).
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A still open question is whether or not the OIO molecule is photolytically stable. The ab initio cal-
culations of Misra and Marshall (1998) suggest a threshold for the OIO photolysis of 418 nm while its
visible absorption spectrum covers the wavelength range 480 — 660 nm (Himmmelmann et al., 1996; Cox
et al., 1999; Ingham et al., 2000). The absorption of OIO below 480 nm is, if occuring at all, weak and,
hence, rapid photolysis does not occur as it does for OC1O or OBrO. However, Allan et al. (2001) found
that OIO must largely predissociate to I + Os following the absorption and computed extremely fast
tropospheric photolysis rates. It is known from laboratory studies that OIO is formed by reactions of
10 with either CIO or BrO or by selfreaction with IO:

I0 +CI0 — O0I0O+Cl or products (R2.91)
I0 +BrO — OIO +Br or products (R2.92)
I0+1I0 — OIO+1 or products (R2.93)

Its sinks are reactions with NO and OH:

OIO +NO — 10 +NO, (R2.94)
OIO +OH — HOI+ 0, (R2.95)
OIO is observed in the marine boundary layer with mixing ratios up to 8 ppt (Hebestreit, 2001; Allan

et al., 2001). It may form a major gaseous reservoir in the polar stratosphere in winter as its photolysis
is weak and the NO concentrations are low while ClO and BrO concentrations are high.

Another question still subject of laboratory and field investigations is whether iodine oxides, i.e. 10 and
OIO, selfreact and subsequently polymerize into larger, stable chains as indicated by studies of Vogt
et al. (1999); Hoffmann et al. (2001).

2.5 Polar Ozone and the Ozone Hole
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Figure 2.11: Left panel: Typical Antarctic and Arctic ozone profiles under ozone hole conditions (red and
green lines, respectively) compared to unaffected conditions (blue lines). Right panel: Time series of the
average Antarctic and Arctic total ozone columns in October and March, respectively. The symbols denote
satellite measurements and the horizontal gray lines the average total ozone for the years 1970 to 1982.
The gray shading shows the combined differences resulting from chemical losses and dynamical processes.
Updated by Newman et al. (1997). Adopted from (WMO, 2003).

Anthropogenic effects on stratospheric chemistry became most obvious to a wider public through the
discovery of the so-called ozone hole over Antarctica in early 1985 by Farman et al. (1985). The polar
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Table 2.2: PSC classification according to their optical properties following e.g. David et al. (1998).

Type Signal Depolarization Shape Composition | Temperature
PSC 1a weak significant non-sperical | NAT (solid) | < —77°C
PSC 1b | very weak negligible spherical STS (liquid) | < —=77°C
PSC 2 large strong non-spherical | ice (solid) < —85°C

ozone hole is caused by catalytic Os destruction involving halogenes under certain conditions that
occur in the Antarctic every winter/spring season and, to a lesser degree, also in the Arctic winter.
In the Antarctic, it leads to an almost total Og destruction in the altitude region where usually the
O3 maximum lies and it typically covers the entire area south of the polar circle. This can be seen in
figure 2.11 (left panel) where the typical present situation during ozone hole conditions is compared to
measurements before its appearance. Average October values in the ozone layer between 14 and 20 km
are reduced by 90 % from pre-1980 values. The Arctic ozone layer is still present in spring as shown
by the average March profile obtained over northern Finland between 1988 and 1997. However, March
Arctic ozone values are often below pre-1980 average. This can also be seen when looking at the total
polar ozone (see figure 2.11, right panel). After 1982, significant polar ozone loss is found which is
generally stronger in the Antarctic. In the following, the mechanisms leading to this ozone depletion
are briefly discussed.

The formation of the ozone hole includes several stages. The first stage is the formation of the polar
vortex due to strong meridional temperature gradients between the sunlit mid-latitudes and the dark
polar regions during polar night. This leads to strong circumpolar thermal winds that inhibit meridional
mixing of in- and extra-vortex air.

50 hPa, 50-90°N Minimum Temperature

1 L
HNO, = 6 ppbv, H,0 = 4 ppmv 230 4 HNO, = 6 ppbv, H,0 = 4 ppmv

50 hPa, 50-90°S Minimum Temperature

\ -

Type | PSC Type | PSC E

/\//)wl/d‘w TypeIIPSCé

Type Il PSC 190 ,_

Tul "Aug'Sep ' Oct "Nov ' Dec 'Jan 'Feb' Mar " Apr "'May 'Jun
1978-2001 1999-2000

. Jan ‘l:g%‘zlgg?r "Apr "May "Jun " Jul "Aug'Sep " Oct ‘l‘gg;‘ Dec
Figure 2.12:  Time series of the minimum temperature in the Arctic (50 — 90°N, left panel) and Antarctic
(50 — 90°S, right panel) on the 50 hPa level. The blue line shows the 1978-2001 mean, and the thin black
lines show the maximum-minimum values. Shading shows the density of observation, with heavy shading
indicating high and light shading a low probability. The green line shows the values for 1999-2000 (right
panel) and 2001 (left panel). Data were processed as in Scaife et al. (2000). The horizontal lines indicate
the threshold temperature for PSC formation. Adopted from (WMO, 2003).

The temperatures in the lower stratosphere drop well below the Polar Stratospheric Cloud (PSC)
threshold temperature for several months within the Antarctic vortex (see figure 2.12), another key pre-
requisite for the ozone hole formation. Although already known for more than a century, the name PSC
was first invented by McCormick et al. (1982) who presented satellite measurements of high-altitude
clouds in the Arctic and Antarctic stratosphere. They can be liquid or solid and mainly consist of wa-
ter, nitric acid, and sulfuric acid. PSCs can be classified according to their LIDAR (=LIght Detection
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And Ranging) backscatter signals (see table 2.2). The mechanisms for the formation and the exact
constitution of PSCs is still subject of research. It was first believed that PSCs consist mostly of water
ice. These stratospheric ice clouds (now referred to as PSC type 2) are usually optically thick and
brilliant in color. They can occur when the temperature falls below the freezing point (Tj.. = —85°C).
But McCormick et al. (1982) also observed optically thinner PSCs at warmer temperatures (type 1
PSCs). Crutzen and Arnold (1986) and Toon et al. (1986) suggested that these consist of solid Nitric
Acid Trihydrate (NAT=HNO3-3H,0) which is supported by laboratory measurements of Hansen and
Mauersberger (1988) who showed that the NAT crystal is stable a few degrees above the ice frost point
(Tnar =~ —77°C) under stratospheric conditions. Nitric Acid Dihydrate (NAD=HNO3-2H50) could
also form stable particles up to temperatures of 2.5°C below Ty ar. Type la particles typically have
diameters in the range of 1 — 10 pm (WMO, 2003), but also HNOj3 containing particles believed to be
NAT (or NAD) rocks have been observed by Fahey et al. (2001). The observed number concentrations
cover a wide range between 1075 —1cm ™3, with the lower concentrations for the bigger diameters. Voigt
et al. (2000) brought the first direct evidence for the existence of NAT particles in the stratosphere by
balloon-borne in-situ measurements finding an HoO/HNOj3 mole rate in a PSC layer with a stoichio-
metric ratio of 3 : 1. Nitric acid containing PSCs can also occur in the form of liquid Supercooled
Ternary HoSO,/HNO3/H2O Solutions (STS) which are formed by the ubiquitous Stratospheric Sulfate
Aerosol (SSA) particles, i.e. HoSO4/H50 solutions, taking up large amounts of HNOj3 at temperatures
below —80°C (Carslaw et al., 1994), which are then called PSC type 1b.

PSCs affect the stratospheric chemistry in two ways. Firstly, they cause a decrease in NO, by uptake
of HNOg (denitrification), and secondly, on the surfaces of the PSC particles, heterogeneous reactions
build up large abundances of ClO, out of otherwise unreactive reservoir species (chlorine activation):

CIONOs(g) + HCI(s) — Cla(g) + HNOs(s) (R2.96)
CIONOz(g) + HoO(s) — HOCI(g) + HNOj3(s) (R2.97)
HOCI(g) + HCl(s) — Cla(g) + HyO(s) (R2.98)

Also bromine reservoir species are activated:

BrONOg(g) + HCl(s) — BrCl(g) + HNOs(s) (R2.99)
CIONOs(g) + HoO(s) — HOBr(g) + HNO3(s) (R2.100)
HOBr(g) + HCl(s) — BrCl(g) + HaO(s) (R2.101)

These reactions cannot occur in gasphase as the activation energy is not available. With the return of
sunlight in polar spring, the photolytically unstable compounds Cly and HOCI are rapidly photolyzed
to ClO,:

hv

L, % 2q1 (A < 495nm) (R2.102)
HOCl % Cl+O0H (A < 500 nm) (R2.103)

These processes in the absence of NO, which prevents CIONO, formation lead to ClO, concentrations
up to 100 times above what is usually observed.

The chemical O3 destruction occurs primarily by two gas-phase catalytic cycles, the ClO-dimer cycle
(Molina and Molina, 1987) and the ClO/BrO cycle (McElroy et al., 1986):
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Cycle 1: clo+co 2L cooal (R2.104)
Cl00Cl ™ 2c1+0, (R2.105)
2(C1+03 — ClO +0y) (R2.106)
net: 203 — 309 (R2.107)
Cycle 2: BrO +ClO — Br +Cl+ 0, (R2.108)
— BrCl + Oq (R2.109)
BrCl ™ Br 4+l (R2.110)
Br+03 — BrO+0, (R2.111)
Cl+03 — ClO 40, (R2.112)
net: 203 — 30, (R2.113)

Of lesser importance is a third cycle requiring atomic oxygen:
Cycle 3: ClO+0 — Cl+02 (R2.114)
Cl4+0; — Cl+0 (R2.115)
net: O3+0 — 209 (R2.116)

The abundances of BrO determine the removal rate by cycle 2. It is less important in the Antarctic
with higher chlorine activation but may account for up to 60 % of the Arctic ozone loss in cold winters
(Chipperfield and Pyle, 1998). In contrast to ClO, the abundance of BrO is not strongly affected by
reactions involving PSCs because less than half of the available inorganic bromine budget is sequestered
in reservoirs such as BrNOj3 and HBr.

With increasing solar radiance, renoxification, i.e. the release of NO, out of reservoir species, begins
and the ozone depletion is thus slowed down and finally ends. In case of denitrification, this cannot
happen until the final break-down of the vortex and, thus, mixing with mid-latitudinal air resupplies
polar NO,,.

2.6 Stratospheric Water

An important issue in atmospheric radiative transfer and climate research is the amount of stratospheric
water. Due to the fact HyO mixing ratios are smaller by several orders of magnitude in the stratosphere
compared to the troposphere, (Brewer, 1949) postulated that the air enters the stratosphere via the
very cold tropical tropopause which act as a cold trap dehydrating the air. However, thes dehydration
effects are still subject of research. Central question is the discrepancy between the observed average
H50 mixing ratio of the air entering the stratosphere ([H20]. = (3.7 £0.25) ppm (SPARC, 2000)) and
the average tropical tropopause temperature which lies significantly above the dewpoint corresponding
to the stated HoO mixing ratio. However, only few measurements of the water concentration of the
TropicalTransitionLayer (TTL) exist (Holton and Gettelmann, 2001). Next to dynamical reasons (e.g.
Sherwood and Dessler (2001)), the existence of Sub— VisibleCirrus (SVC) might be an explanation of
the mentioned discrepancy. Several potential methods for SVC formation exist. One of them is by strong
convection causing clouds to penetrate into the stratosphere. Temperature gradient and water vapor
cause ice formation. Finally, large crystals fall, while small crystals remain as SVC. Another potential
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mechanism of SVC formation includes freezing on also lifted aerosols. Hartmann et al. (2001) showed
that tropopause cirrus crucially affects the heat balance of the stratosphere and may be important
in dehydrating the air. Thus the study of thin cirrus may contribute to the understanding of the
dehydration, dynamics, and radiative balance of the tropical tropopause layer (Clark et al., 2003).

The major chemical source of HyO in the stratosphere is by oxidation of methane which can be approx-
imately described by the following pseudo-reaction equation considering only the stable end products:

CHy — 2H50 +CO, (R2117)

The experimentally determined HoO-yield per CH4 molecule is 1.94 + 0.27 (Dessler et al., 1994) or
1.975 + 0.03 (Zdger et al., 1999b,a), i.e. close to 2. This leads to constant value of the potential water
(Brasseur and Solomon, 1986):

2 [CHy] + [H20] = cons =~ 8ppm. (R2.118)
Oltsman and Hofmann (1995) first observed a statistically significant increase of stratospheric HoO with

balloon-borne frostpoint-hygrometer measurements over Boulder, Colorado. This positive trend is con-
firmed by several studies over the last decades (SPARC, 2000) and lies in the order of 1%/a or 40 Ppb/a.



Chapter 3

Methods

3.1 Differential Optical Absorption Spectroscopy (DOAS)

The Differential Optical Absorption Spectroscopy was decisively developed at the IUP Heidelberg (e.g.
Platt et al. (1979, 1980); Platt and Perner (1980)). Since then, it has evolved into a versatile method
for atmospheric remote sensing.

DOAS applications can be subdivided into 2 principal categories: passive and active ones. Active DOAS
systems use an artificial lamp as light source. At the end of the light path, a mirror (retro-reflector)
reflects the light back to a spectrograph analyzing its spectral composition and, thus, providing infor-
mation on the trace gas abundance along the light path. As the measured absorbance is proportional to
the length of the observed light path, the detection limit of the DOAS system gets lower with increasing
length of the light path as long as enough light is reflected to the detector. Long light paths can be
achieved by either setting up the mirror as far away as possible (Long Path (LP) DOAS, e.g. Platt
et al. (1979)), or, in order to obtain local trace gas information, by using a multi-reflection cell (e.g.
White Cell or Herriot Cell). Setups with several mirrors and, thus, several light paths are also in use,
e.g. with mirrors in different altitudes to provide profile information or in more sophisticated setups
to provide, e.g., 2D pollution information (DOAS tomography). However, due the need of lamps and
mirrors, active DOAS is limited to ground-based measurements of the lower-most part of the bound-
ary layer. In contrast, passive DOAS uses an extraterrestrial light source, mostly the sun, but also
lunar or stellar light can be used. This allows, additionally to ground-based applications, measure-
ments from any imaginable platform like ships, aircrafts, balloons or satellites (Platt and Stuz, 2005,
in press). Passive DOAS measurements can be subdivided into two major categories, the first one
using direct solar, lunar or stellar light, and the second one scattered sun light. The direct sun light
measurements have the advantage of a high amount of analyzed photons and an easy geometry, but are
limited to trace gas measurements along the line-of-sight from the detector to the sun. Ground-based
applications are additionally limited to cloud-free conditions. For balloon measurements e.g., strato-
spheric profiles can be retrieved during the ascent of the balloon or during sunset and sunrise (solar
occultation). The solar occultation technique is also used by several satellites (POAM, HALOE which,
in fact, do not use the DOAS technique, or SCTAMACHY /Envisat (Burrows et al., 1995)). As solar
measurements are obviously limited to daytime, nighttime measurements can be performed by lunar
observations from the ground, balloon (SALOMON (Renard et al., 2000; Berthet et al., 2003)) or from
satellites (SCIAMACHY), or stellar observations from balloon (AMON (Renard et al., 1996, 1998))
or satellite platforms (GOMOS/Envisat). Within the last few years, many DOAS applications have
been developed using scattered or reflected solar light. By the analysis of several light paths through

37
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the atmosphere, Multi AXis (MAX)-DOAS applications (see Honninger et al. (2000); Honninger et al.
(2004)) can, e.g., provide vertical profile information on trace gases in the boundary layer, or when
performed from an aircraft (AMAX-DOAS (Wang et al., 2003; Heue et al., 2005)), of the Upper Tro-
posphere/Lower Stratosphere (UT/LS) region. Another very recent ground-based application is the
use of a 2D scanning detector to obtain 2D trace gas information, e.g. the emission of a smokestack
(Imaging DOAS, Lohberger (2003)). Several recent satellites use scattered skylight as source either by
looking down in nadir geometry analyzing the sunlight reflected from the Earth’s surface or atmosphere
to obtain total column information of atmospheric trace gases (GOME/ERS-2, ILAS, SCIAMACHY,
OMI/EOS-AURA, or GOME-2/METOP), or in limb geometry which allows to retrieve vertical profiles
by analyzing light scattered at different tangent heights (OSIRIS/ODIN, e.g. Sioris et al. (2003); von
Savigny et al. (2003); Haley et al. (2004) or SCTAMACHY, e.g. von Savigny et al. (2004)). Also the
miniDOAS balloon measurements in limb and nadir geometry presented in this work are an example
of atmospheric skylight DOAS measurements. Scattered sunlight measurements allow the largest pos-
sible freedom of viewing geometries, but also require precise radiative transfer calculations, which are
computationally expensive and require the knowledge of atmospherical parameters like temperature,
pressure and aerosol extinction profiles, or cloud conditions.

3.1.1 Theory

Beer-Lambert Law

The extinction of light with a given spectral intensity I(A) passing through an air layer element dl,
neglecting emission and scattering of light into the direction of the considered light beam, can be
written as:

dI(N) = —I(\) (as(\) + aa(N) di, (3.1)

where a(A) and a,(\) are the scattering and absorption coefficients, respectively. The sum of ag(A)
and a,(\) is called extinction coefficient. Neglecting inelastic Raman scattering, the coefficient a(\)
includes Mie scattering on aerosols and droplets and molecular Rayleigh scattering:

as()‘) = URayl(/\) *NRayl + UMie(/\) ‘M Mie, (32)

where o is the scattering cross section and n is the density of the respective scatterers. Taking into
account all absorbers ¢ with a non-zero absorption cross section o; at wavelength A and their density
n;, the absorption coefficient «,(\) can be written as

as(\) = oi(N) - ni. (3.3)
Integration of equation 3.1 along the light path L yields the Beer-Lambert law:

I(\) =1(N) exp{ - /(as()\) + a,(N) dl}. (3.4)
L
An important quantity is the optical density (or depth) 7, defined as:

(A = —In {I(N)/(V)}. (3.5)

Using this definition, the Beer-Lambert law (equation 3.4) can be written as

I\ = Io(\) exp { —7(\)}. (3.6)
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Figure 3.1: Schematic illustration of the DOAS principle. In the left panel the differential optical density
7' is illustrated. In the right panel the split of the absorption cross section o into a broad band o}, and a

narrow band component ¢’ is shown.

The DOAS Principle

In atmospheric measurements, the quantities of interest are the densities of the absorbing trace gases
n; along the light path. These could only be obtained from the measured intensity I()\) if one knew
exactly the light intensity without atmospheric extinction Io(\) (i.e. the extraterrestrial solar intensity)
and the extinction due to Rayleigh and Mie scattering o, which is generally not the case. Also only
one absorber could be obtained at a given wavelength.

The Differential Optical Absorption Spectroscopy overcomes these limitations by analyzing whole spec-
tra (i.e. intensities measured at several wavelengths). It is based on the fact that the Rayleigh and
Mie scattering cross sections orqy and oare change only weakly with wavelength, while the molecular
absorption cross section o; usually consist of narrow absorption bands (i.e. are strongly wavelength-
dependant), often overlaid by a broad continuum. Hence, the absorption cross section ¢ of a certain
species is split into a broad band (o) and a narrow band component (o', called differential absorption

cross section):

o=o,+0. (3.7)
The absorption coefficient can be rewritten in the same way:

Qg = Qg p + Q. (3.8)

So equation 3.4 can be rewritten

10 =100 exp { = [ (@) + aus + ez} =509 e { - [ aarl. (39)
where

B0 =100 exp { ~ [ (@) + 0wt} (3.10)

includes all the broad band absorption structures.

Similar to equation 3.5 the differential optical density 7/ can be defined as:
T\ = —In {IN)/I;(N)} = / D oA npdl =Y 1(N). (3.11)
Ly i
This is illustrated in figure 3.1.

In a rather simple approach, the broad band structures could be removed by high pass filtering. In
practice, usually a Fraunhofer reference spectrum Ip(A) with no (or only little) atmospheric absorption
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is used, and the broad band absorption is approximated by a polynomial.

Assuming constant pressure and temperature along the light path (or absorption cross sections that
are independent of pressure and temperature), the differential absorption cross section o} for species 4
is independent of the light path and the differential optical density 7/ can be written as:

() = /L ol (A)dl = ol (\) - /L nidl = o)) - SCD;, (3.12)

with the Slant Column Density SCD. Hence, the SCD is the quantity obtained by the DOAS method.
In praxis, the assumption of ¢; being constant with p is mostly fulfilled for atmospheric pressures, but
the absorption cross section is generally not independent of temperature, which is a serious shortcoming
of the DOAS approach. However, it can be overcome by the use of several (mostly two) cross section
sections of the same species obtained at different temperatures in the spectral analysis (see also the
corresponding section).

Spectral Retrieval

In this section it is described how the DOAS principle is applied to an actual measured spectrum. The
incoming solar light is spectrally analyzed by a spectrograph and recorded by a detector (e.g., as in the
case of the miniDOAS instrument, a linear CCD array detector). So the instrumental properties of the
spectrograph have to be accounted for. The finite resolution of the spectrograph can be described by a
convolution of I(\) with the (wavelength dependent) instrument function H

') = I(\) o H = / IO = X) - H(V) dN’ (3.13)

The instrument function describes the effects of the width of the entrance slit and the properties of
the grating. Usually the instrument function is measured with narrow emission lines from low pressure
lamps (e.g. from an HgCd lamp). During the recording process, the incident intensity in a certain
wavelength range AX(4) is mapped to a discrete pixel ¢ with center wavelength A(4)

A()+AN(G) /2

1(i) = / (V) dx. (3.14)
(i) —AX(5) /2

Note that I(7) stands for the intensity recorded by pixel i for a given incident intensity I(\). Using the

equations discussed in the last section its logarithm can be written as:

InI(i) = Inly(i) — <Z SCD;j - 0;(i) + R(i) + A() + N(i)) : (3.15)

where (i) stands for the differential cross section either brought to the instrumental resolution by
convolving a high resolution cross section from the literature with the instrument function similar to
equation 3.13 or a cross section recorded with the same instrument. The broad band components
like Mie or Rayleigh extinction are expressed by R(i). Any structures in the spectrum caused by the
spectrograph itself are summarized by A(#). N(i), finally, describes the inevitable detector and photon
noise.

The goal of the DOAS retrieval is to obtain the SCD; of the m absorbers. Therefore, an appropriate
model function F () is used for the approximation of In I(4).

F(Z) = 1n10(i7 do)o, dl,O---) — (Za]‘ . O'j(i, dO,j7 dl,j~-~) + Pp(Z)) (316)

j=1
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The cross sections ¢;(i) and Io(\) are input data to the retrieval procedure while the m scaling factors
a;, the p polynomial coefficients c;, and the additional parameters d, ;, (7 = 0...m) are the output. The
resulting a; then correspond to the SCD; of the respective absorber. The broad band structures are
approximated by a polynomial P,(\) of degree p (usually p is between 2 and 5):

Py(i) =Y en(i—ic)" (3.17)
h=0

with the center pixel i, of the considered spectral range. To account for possible differences in the
wavelength-pixel mapping of Iy(¢) and (i) compared to I(7), the reference spectra Iy(¢) and o;(¢) can
be shifted and squeezed/stretched, expressed by the spectral alignment parameters d; ;. The parameter
d;o describes a shift of the wavelength-pixel mapping by d;o pixels. If d;; # 0, the spectrum is
additionally linearly squeezed, i.e., pixel i is shifted by d;1(i — i.) pixels. For k > 1 the parameter
d; i describes a squeeze of higher order, usually not used. The misalignment of the different spectra is
a result of different measurement conditions (e.g., ambient temperature, pressure) which can never be
completely avoided. Especially when using a highly structured light source like the sun, the shift and
stretch parameters of I(i) with respect to (i) have to be determined very precisely.

The spectral analysis consists of a linear least square fit to derive the parameters a; and ¢, and a
non-linear Levenberg-Marquardt fit to determine the parameters d; ;, so that

X’ = zn: (M)Q (3.18)

.
i=0 v

is minimized. Here, n is the number of pixels of the spectral range used for the retrieval and ¢; is the

th

measurement error of the i** diode resulting from measurement noise. Usually, a constant measurement

error is assumed for all diodes, i.e. €; = € = const.

The fitting procedure starts with a linear least-square fit with initial values for d;;. The retrieved
values for a; and ¢, are then input parameters for a Levenberg-Marquardt fit. Only one iterative step
is performed and new values for d; ;. are obtained, which in turn are used for a new call of the linear fit.
The result of the linear fit is again used for a new call of the non-linear fit etc. If one of several stopping
conditions for the Levenberg-Marquardt fit is fulfilled (e.g. convergence of the fit represented by very
small changes of x? from one step to the next(usually 107%), or after a certain number of iterations, or
if the nonlinear method becomes unstable) the whole procedure is aborted.

To account for instrumental stray light caused by reflections inside the spectrograph (e.g. by light
of the 0*" or 2"¢ and higher orders of the grating), an intensity offset O(i) can be introduced which
is a polynomial of up to 2"¢ order. The product of O(i) and the mean intensity I) of the spectrum
is directly subtracted from the measured intensity, i.e. the left side of equation 3.15 is replaced by

In(I(i) — O(3) - I). Its coeflicients are additional parameters of the non-linear fit.

Error Analysis

Linear Least Squares Fit

The linear least-squares fit will yield the best possible result and the correct errors if several assumptions
are valid: (1) The errors of the pixel intensities /(i) must have a finite variance. If the error of I(¢)
is dominated by photo-electron noise and, thus, the errors are Poisson distributed this assumption is
valid. (2) The normal least-square fit used in most of the analysis procedures assumes that the errors
of I(i) are independent, which is not always the case (see below). (3) The systematic error of I(i) is
zero. If this is not fulfilled, a bias is introduced in the results. (4) The trace gas cross sections o; must
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be linearly independent. Correlations between the o;’s can lead to unrealistic fit results. The validity
of these assumption must be checked for every DOAS instrument, measurement and evaluation.

N
The solution § = (co,...,Cp,a1,a1,...,0n) (vector combining the (p+1) coefficients of the polynomial
and the m trace gas abundances) of the linear least-squares fit is given by:

—

7= [%rx] X

—1
9 =52 {‘YT‘Y} . (3.19)
— —
where J = (In(I(7)) is the logarithm of the spectrum to be analyzed and X is the coefficient matrix
given by the (p + 1) arguments of the polynomial P,(i) and the m reference spectra o;:
1 (0—i)t (0—i)?2 -+ (0—io)? 01(0) 02(0) -+ o,m(0)
(1—ic)t (1—ic)? o (I=io)” o1(1) o2(1) - om(1)
To| 1 ot o o 2o ) @) o) (3.20)
1 (n—i)t (n—i)? -+ (n—i)? o1(n) o2(n) -+ opn(n)

Its number of columns is given by the number of the number of parameters (p + 1) + m to be ﬁged,
and its number of lines by the number of pixels (n + 1) of the analyzed wavelength interval. © is
the covariance matriz of the analysis. Its diagonal elements are used to calculate the error of the fit
parameters [3;:

ABj = /©jj- (3.21)

Its off-diagonal elements allow to compute the correlation coefficients Ciyy:
G)’U’UJ
Vv evv@ww

>
The correlation matriz C' is normalized in a way that all diagonal values have a value of 1, with all
other elements between +1. The correlation coefficients C,,, are a measure of the correlation of the v*"
parameter with the w!” parameter. An absolute value of C,,, near 1 indicates a large correlation of the

Cmu = (322)

two parameters.

0 is the error of the intensity of one pixel estimated by the fit. If &; is not explicitly given, o is used as
measurement error instead, e.g. to calculate x2. A significant overestimation of the real measurement
errors ¢; (estimated by considering the different noise contributions) is an indication of an inadequate
model function or of systematical errors. Further, it can be shown that & is equal to the root-mean-
square (rms) of the remaining residual Res(i) = InI (i) — F(i), if the number of pixels n contained in
the spectral fitting range is clearly larger than the number of linear parameters of the fitting procedure
(sum of the number of cross sections and the degree of the polynomial m + (p + 1)).

Nonlinear Levenberg-Marquardt Fit

In contrast to the linear least-square fit, the Levenberg-Marquardt method is an iterative numerical
procedure. The reference spectra o;(i) and InIy(7) are aligned to InI(¢) by varying d,j in order to
minimize y?. Therefore, o;(i) and In Io(i) have to be recalculated for the new wavelength-pixel mapping,
usually by cubic spline interpolation. The Levenberg-Marquardt method also gives an estimate of the
errors Adj;, of the alignment parameters. As the alignment parameters are input data for the linear
fit, the errors Ad; ; influence the results of the linear fit. To investigate this dependence, a numerical
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method is used (Stutz and Platt, 1996). A spectrum is calculated consisting of the various reference
spectra scaled, shifted and squeezed according to the results of the linear fit. In addition, the spectrum
is shifted and squeezed as given by the errors Ad; . The results of the linear fit performed with the
original spectrum and the spectra additionally shifted and squeezed allows to infer the errors of the
linear parameters caused by the errors of the alignment. Assuming this error and the statistical error
of the linear fit to be independent, the total error is obtained by Gaussian error propagation.

Effect of the Residual Structure

Generally, the remaining residual structure Res(i) = InI(i) — F(i) of the procedure does not consist
of pure noise. A pure noise spectrum is characterized by completely independent pixel intensities, i.e.
structures having a width of one pixel, which is a necessary prerequisite for the validity of the error
calculation for the linear fit. Real residuals, however, often show structures with widths of more than
one pixel, i.e. the pixels are not independent. Theoretically, the dependencies of the measurement errors
can be described by the variance-covariance matrix. If this matrix is known, the linear fit procedure can
be extended in a way that the calculation of the fit results also considers the error interdependencies
(Albritton et al., 1976). If the variance-covariance matrix is not known, a numerical method can be
used to examine the influence of these residual structures on the fit results and its errors (Stutz and
Platt, 1996). Smoothing of a pure noise spectrum with a running mean results in a spectrum similar
to the residuum that is normally found. The variance-covariance matrix can then easily be calculated
by varying the width of the smoothing filter until the the width of the generated structures are of the
same order as the width of the residual structures. However, this variance-covariance matrix has to
be recalculated for every measured spectrum, a very time-consuming and uncomfortable procedure.
Therefore, empirical correction factors for errors given by the fitting procedure are inferred based on
Monte Carlo simulations. It can be shown that only the fit errors need to be corrected, the changes
of the fit results are small. Smoothed noise spectra with a running mean of different width are added
to absorption lines with different half-widths. For all combinations of filter widths and half widths of
the absorption lines a linear fit is performed. The resulting variations of the fit parameters allow to
derive correction factors, which can be found in Stutz and Platt (1996). Instead of using smoothed noise
spectra, this analysis can be performed with residual spectra calculated by cyclic displacement of the
channels of the residuum of the fitting procedure (Hausmann et al., 1997).

The occurrence of stable residual structures is not captured by this method. Systematical errors can bias
the fitting procedure in two ways. First, these residual structures can be misinterpreted as molecular
absorptions and second, the fitting errors are wrongly estimated. A method to investigate the impact
of spectral artifacts on the DOAS evaluation can be found in Hausmann et al. (1999). However, this
method is restricted to irregular, non-reproducible structures generated within the optical setup, while
it is not valid in the presence of reproducible systematic structures like improperly removed Fraunhofer
structures.

The Detection Limit

An important quantity to judge the quality of trace gas measurements is the theoretical detection limit.
The detection limit can be defined as the lowest measurable value for a fit parameter a; or as the
smallest detectable average optical density Dyni. For the latter, an average optical density D_j of a
reference spectrum o; is defined. FJ is given by three times the standard deviation of the reference
spectrum:

m 1/2

D, =3 [ni : 2 (30) - aj)z] (3.23)

1=

As the estimation of the detection limit requires time-consuming Monte-Carlo calculations, only the
linear problem is considered (neglecting the uncertainties of the wavelength-pixel mapping). Defining
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the detection limit @; as the value of a; with a relative error of 0.5 yields
a; =210 =2-Ap;. (3.24)

This still requires the calculation of(_t}le covariance matrix © (i.e. the DOAS fit has to be performed).
Simplification of the expression for © allows to derive an expression for the smallest detectable average
optical density D¢ (Stutz, 1996):

6
vn—1

with the mean noise of the measurement ¢ and the number of pixels n. Hence, for a given noise level
(which has to be estimated) and number of pixels used for the evaluation, the theoretical detection
limit can be obtained. However, if an evaluation is performed, equation 3.24 can be used instead for
the calculation of the detection limit.

(3.25)

Dijimit = 0

3.1.2 DOAS Evaluation Software

Several software packages are available that can be used for DOAS evaluation. The first one, historically,
is '"MFC’ (Gomer et al., 1995), which performs the complete error propagation as described above,
and the calculation of the covariance and correlation matrices, but it does not allow the fitting of an
intensity offset polynomial. Additionally, it has a script language for automation. As an MS-DOS
program it has certain restrictions regarding the spectra that can be treated, e.g. it is limited to 1024
pixels per spectrum in its release version, which makes it hard to use with the Ocean Optics USB2000
that has 2048 pixels per spectrum. A Linux version of MFC with Graphical User Interface (GUI),
called "XDoas’, has been developed by Grassi (2002) which overcomes the DOS restrictions regarding
the loadable spectra. Unfortunately, it is not completely bugfree. The software used in this work is
"'WinDOAS’ developed at BIRA/TASB (Fayt and van Roozendael, 2001). It allows the fitting of an
additive polynomial and also to fix certain parameters a; of the fit. Disadvantage of this software are
a different error calculation neglecting the influence of the uncertainty of the non-linear parameters on
the linear ones, and the absence of a script language and spectrum manipulation functionality which
basically limits its application to the sole fitting process. Nevertheless, it is widely used and tested so
that it became a standard in DOAS evaluation. Just recently, the latest 32bit version of the Windows
DOAS tool 'DOASIS’, developed at the IUP Heidelberg by Kraus (2004), became available. It combines
all the above listed features such as GUI, script language (based on JScript and the Microsoft .Net
framework) for spectrum manipulation and fitting, and also has the possibility of fitting an intensity
offset but still requires validation.

3.1.3 Error Sources

The precision of the fit results is determined by the statistical fluctuations, i.e. noise, of the measured
intensities. Additionally, there are several effects, that are inaccurately treated by the model function
described above. These effects result in systematical errors which affect the accuracy of the measure-
ment. Also, the estimation of the fitting error will be distorted. For some effects, it is possible to find
a correction term which can be included in the model function. In this subsection, a brief overview
about the various effects, arising from instrumental shortcomings as well as from deficits of the model
function, is given.
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Noise Contributions

Several effects contribute to the noise of the measurement. The statistical errors of the fitted parameters
and the theoretical detection limit are determined by the noise of the measurement.

The physical limit of every measurement is given by the photoelectron noise op. It is due to the
statistical distribution of the number of electrons generated by the photons illuminating the detector
pixel. They are distributed according to Poisson statistics, so oy, is given by

Oph = \/a : Ne,total ~ \/Nphoton37 (326)

with the maximum number of photo electrons N totqi, Which can be calculated from the semiconductor
capacity and the charge voltage, and the degree of saturation a.

The dark-current noise o4 of a single detector photodiode is due to the statistical variance of the
dark current across the junction. The dark current electrons are Poisson distributed and, thus, for an
integration time ¢ and a mean number of dark current electrons per time n the noise is obtained by

ci=vVn-t (3.27)

The mean number of dark current electrons depends strongly on the temperature of the photodiode.
Before every DOAS evaluation the measured spectra are corrected for dark current, i.e. a recorded dark
spectrum brought to the same integration time as the measured spectrum is subtracted. So, strictly,
o4. has to be multiplied by a factor of v/2. Also, this correction assumes that the dark current is linear
in the integration time which is true for short integration times but becomes increasingly incorrect for
long integration times as the dark current per time decreases with increasing saturation of the detector
pixel.

Another important noise contribution is the electronic offset noise. The electronic offset is added to
the photoelectron current before its A/D conversion to ensure positive values. Furthermore, there are
several electronic noise contributions o, e.g. caused by the readout process, by the preamplifier, or
by the analog-to-digital converter. All these noise contributions are random noise and, thus, decrease
when several spectra are added:

Oof fset ™ N7%7 (328)
where N is the number of scans.

All noise contributions can be added up quadratically to get the total noise oyu;:

Otot = \/aih +02.+ 0% (3.29)

For short integration times, the dark current noise can usually be neglected. Consequently, the total
noise consists of the signal dependant photoelectron noise (the most dominant contribution for high
saturation «) and the offset noise. The two latter are both proportional to N ~2 so that the signal-to-
noise ratio can be increased by co-adding subsequently recorded spectra.

Correlations

An important issue potentially leading to large systematical errors are correlations between the cross
sections included in the fit. These effects are hard to describe quantitatively. In fact, the residual
structure as a measure of the quality of the DOAS evaluation can even become smaller when structures
are improperly fitted by correlating cross sections. Several typical examples exist. Firstly, correlations
may occur between weakly structured absorbers like O3 or, especially, O4 and the polynomial. This
problem can be avoided (or, at least minimized) a by choosing the polynomial degree as low as possible.
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It is also important to check whether the fit parameters are in a reasonable order of magnitude, e.g.
not negative. Secondly, correlations exist when including a pseudo-absorber correcting for the Ring
effect and an additive intensity offset correcting for instrumental stray lights. This can be avoided
by only using either of them. However, both effects exist, so excluding either Ring or intensity offset
can yield larger residua. Obviously, two (or more) cross sections of the same absorber at different
temperatures are quite similar in structure and, thus, strongly correlate. This can be avoided by a
mathematical orthogonalization procedure which makes the cross sections linearly independent. But also
cross sections of different absorbers can show cross correlations or can correlate with the spectrum itself
or structures improperly removed out of the spectrum. An example is the recently discovered center-
to-limb-darkening effect that might create large fake IO absorptions in solar occultation measurements
(Bdsch et al., 2003). Correlations between the cross sections can be investigated by analyzing the
covariance matrix that is computed for every DOAS evaluation (equation 3.19). Generally, correlations
increase with the degrees of freedom of the fit and decrease with increasing fit range, i.e. numbers of
pixels.

Temperature and Pressure Dependence of the Absorption Cross Section

Most of the UV /vis absorption cross sections show a strong dependence on temperature and, to a lesser
degree, on pressure, i.e. the absolute value and the shape of the cross section change with temperature.
This affects the spectral evaluation in two ways. Firstly, the temperature dependence can directly lead
to different fit parameters a; for different temperatures due to a change of the absolute value. Secondly,
an altering shape can result in large residual structures. Hence, if the temperature dependence of the
cross section of a strong absorber is not taken into account, the detection of underlying weak absorbers
may be impossible. First some general remarks about treating the temperature dependence are given,
then some characteristics of the temperature and pressure dependence of the cross sections used in this
work (O3, NOg, BrO, Oy, and H5O, see figure 3.2) are briefly discussed.

In order to minimize the effects of the temperature dependence of the cross sections on the residual,
cross sections measured at several different temperatures are included. If the temperature dependence is
approximately linear, two cross sections are sufficient to cover a large temperature region, i.e. the region
where the temperature dependence is linear. As the two cross sections generally strongly correlate,
they have to be orthogonalized. Therefore, they are fitted by a polynomial to get their differential
structure, and one of them is orthogonalized with respect to the other one which serves as base. So the
orthogonalized cross sections just consists of the structures not included in the base cross sections. If the
temperature dependence is weak and/or the temperature range of the probed air masses is small, the
optical density of the orthogonalized cross section is small while the optical density of the fit parameter
of the base cross section is similar as if only one temperature were fitted. Note that the fit parameter
of the orthogonalized cross section cannot be interpreted as a slant column density. The difference
of the absolute size of the cross sections at different temperatures can be corrected by a procedure
described in Butz et al. (2005). Two DOAS evaluations at two different temperatures are performed.
Then, an average temperature along the line of sight weighted with the actual profile is calculated and
the obtained SCD values for the two evaluations are averaged according to the average temperature.

A detailed study of the temperature dependence of the ozone absorption in the Chappuis band (410 —
760nm) can be found in Burkholder and Talukdar (1994) or more recently for the wavelength range
230—850nm by Voigt et al. (2001). Near the peak of the Chappuis band (550 —650 nm) the cross section
varies slightly (< 1%), while at wavelengths outside the peak it decreases with decreasing temperature.
For example, at 420nm the absorption cross section decreases by 40% when the temperature decrease
from 298 K to 220 K. A pressure dependence is not observed.
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The temperature dependence of the NOs cross section in the visible wavelength range has been quite
profoundly studied (Davidson et al., 1988; Amoruso et al., 1993; Harwood and Jones, 1994; Kirmse
et al., 1997; Harder et al., 1997; Pfeilsticker et al., 1999). The NOy cross section can be described as
a bell-shaped envelope with a superimposed differential structure. The temperature effect on the cross
section is a slight broadening of the envelope with increasing temperature while the amplitude of the
superimposed fluctuations decrease. The effect of the broadening of the envelope is largest for the red tail
of the cross section, while for the UV the envelope does not change significantly with temperature. Thus,
no (or only a very small) dependence of the integrated cross section on the temperature is found. The
differential cross section shows an asymmetric increase with decreasing temperatures. The differential
cross section has a smaller negative temperature coeflicient in the neighborhood of the peaks and a larger
positive coefficient in the region in between. The magnitude of this temperature variation depends on
the wavelength and the spectral resolution of the instrument used. For a resolution of 0.54 nm (FWHM)
the differential cross section at 448 nm increases almost linearly with decreasing temperature by about
38% from 298K to 200 K (Pfeilsticker et al., 1999). Additionally, at very high spectral resolution, the
differential cross section shows a large dependence on pressure. However, for the low spectral resolution
of typical DOAS spectrographs, this effect is not important.

The temperature and pressure dependence of the O4 absorption is investigated by Osterkamp (1997)
and Pfeilsticker et al. (2001). They find that the shape of the Oy collisional pair absorption cross
section does not depend on pressure or temperature, while the magnitude of the cross section decreases
by about 11% when increasing the temperature by 50 K.

The H2O absorption shows large variations for changing temperatures and pressures. For HyO, most of
the individual rotational-vibrational lines of the electronic transitions are identified and the absorption
line properties are known (Rothman et al., 2003) so that the cross section can be calculated for different
pressures and temperatures. Since stratospheric water vapor concentrations are small and, hence, most
of the absorption occurs in the troposphere, it is sufficient to use an HoO cross section for an average
tropospheric temperature and pressure.

The Ring Effect

The Ring effect is caused by the filling-in of Fraunhofer lines by inelastic Raman scattering ( Grainger
and Ring (1962), see also section 3.2.2). It can be corrected for by including a so called Ring cross
section oRring as pseudo-absorber in the fit. According to a first order expansion series, the Ring cross
section is given as (Chance and Spurr, 1997):

I aman I aman
R . 1R (3.30)

ORing = ~ ’
IRayleigh 1

where Irgman is the Raman scattered, Irqyieign the Rayleigh scattered, and I = Irayicigh + {Raman the
total intensity.

The Ring cross section can be calculated by the DOAS tools MFC, DOASIS and WinDOAS. The used
algorithms and, thus, also the results are quite different, so a brief comparison of the three Ring tools is
given here. The clearest calculations can be performed with MFC as every individual step is traceable.
The Raman spectrum Iggman can be calculated directly from the measured spectrum using the 'Y’
command (Gomer et al., 1995). For the calculations of Irgman, the spectrum is assumed to consist of
pure Rayleigh scattered radiation. As the measured spectrum consists of both Rayleigh and Raman
scattered radiation the Rayleigh spectrum Igrqyieign is given by the difference of the measured spectrum
Imeas and the calculated Irgman. With these results a Ring spectrum o g;4 can be calculated according
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Figure 3.3: Left panel: Measured solar spectrum I,cqs, Raman spectrum Irgman calculated with MFC,

and therewith calculated Ring cross section og;,g. Right panel: Comparison of o ging calculated with MFC
by Iraman/(Imeas — IRaman) (black line) and Iraman/Imeas (gray line), oring calculated with DOASIS
multiplied by a constant (red line) and multiplied by 0rayieign (magenta line), and o i, calculated with
WinDOAS using a high resolved Kurucz spectrum (green line) and the measured I,;cq5 (the same as used
for the MFC and DOASIS calculations) as reference (blue line).
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Figure 3.4: Left panel: high pass filtered oy, obtained with MFC (black line), DOASIS (red line, and

WinDOAS with Kurucz (green line) and self-recorded reference (blue line). Right panel: same as left panel
but for another self recorded solar spectrum. oging from MFC is shown in black, DOASIS in red, and
WinDOAS (self recorded reference, only) in green.
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Figure 3.5: RMS residual of a BrO DOAS evaluation vs. detector altitude using o g, calculated with
MFC (black line), DOASIS (red line), and WinDOAS using a high resolved Kurucz solar spectrum (green
line) and the self-recorded solar spectrum (blue line).
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Figure 3.6: DOAS fit using the Ring cross section calculated by MFC (upper left), DOASIS (upper right),
and WinDOAS (lower panels), respectively. Shown is the optical density (OD) of the fitted og;n, (red line)
and the latter plus the residual (black line). The evaluated spectrum was recorded at 6.8 km.
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to equation 3.30:

I aman
R (3.31)

ORing = .
Imeas - IRaman

An example of the Ring cross section calculation is shown in figure 3.3 (left panel). It can be seen that
the Raman spectrum is smaller by a factor of ~ 20 in the entire wavelength range. Consequently, o ring
is in the order of 0.05 with strong structures at the Fraunhofer lines.

In DOASIS, the Raman spectrum cannot be calculated separately, the Ring tool calculates o rsng directly
from the input solar spectrum. The resulting spectrum (see figure 3.3, right panel, red line) looks kind
of strange on the first view as it has units of 10728, It shows approximately a A~* dependance.
Multiplying the DOASIS 0 Ring by TRayieign (See equations 3.43ff.) results in a cross section very close
t0 ITrRaman/Imeas With Iraman calculated by MFC (see figure 3.3, right panel, magenta line).

The WinDOAS Ring tool is thought for usage of a high resolution solar spectrum like Kurucz as
reference. Therefore, the solar spectrum is convolved with the instrumental slit function. Using a solar
reference recorded with the actual instrument does not yield useful results as the spectrum is interpolated
to a higher resolution during the calculation to be convolved again with the instrument slit function
which is mathematically absurd. Additionally, the resulting o gsny has a A4 dependance as in the case
of the DOASIS ring tool. This might be useful for direct sunlight measurements where the fraction of
Rayleigh and Raman scattered light decreases with wavelength but in case of stray light measurements
when Ip,eqs already consists predominately of Rayleigh scattered radiation the so obtained oging is not
useful. A comparison of the differential structures of the Ring cross sections which can be obtained
by high-pass filtering is shown in figure 3.4 (left panel) for an arbitrarily chosen wavelength interval.
ORing from MFC and DOASIS are almost identical while that calculated by WinDOAS shows broader
lines as a result of the convolution during the calculation. This can lead to significantly higher residuals
of the DOAS evaluation as shown in figure 3.5 for the example of a BrO evaluation no independent
whether a high resolved Kurucz or the actual reference spectrum is used for the calculation of oRing.
By looking at the evaluation (see figure 3.6), it can be clearly seen that at lower altitudes where the
Ring effect is strongest, the spectral features caused by the Ring effect are well removed if the MFC or
DOASIS calculated o ging are used, while the fit of the WinDOAS o ring’s yield much worse results. At
higher altitudes, orng calculated with WinDOAS (Kurucz reference) yields lower residuals than the
MFC or DOASIS calculated opging. At these altitudes, the Ring features are not as clear, so it might
be that the, obviously worse oging (WinDOAS, Kurucz) compensates for structures caused by other
effects than the Ring effect.

Another strange observation is shown in figure 3.4 (right panel). orin, calculated with MFC looks as
expected but the results from MFC and WinDOAS have intriguing pixel structures which look similar
but are not identical. Obviously, some variable got to the limit of its computing precision during the
calculation. It is also interesting that the problem does not occur at all wavelengths e.g. around 455 nm
or 498 nm, oRing from both DOASIS and WinDOAS look normal.

Summarizing all the above observations, it can be concluded that the Ring calculations by MFC are the
most trustable and also traceable. Despite its A™* dependence, o g;n, calculated by DOASIS shows the
same differential structures yielding the same residuals in the DOAS evaluation. However, the algorithm
has, obviously numerical, problems under certain conditions. The Ring tool from WinDOAS cannot
be recommended for stray light measurements as both methods (i.e. using a Kurucz or self recorded
reference) yield different differential structures eventually leading to higher residuals compared to the
other candidates.
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The Solar I, Effect

The DOAS method assumes the measured spectrum to be well approximated by a model function F'(\)
(equation 3.16):

F()\) 1n{/]0(>\) H()\)\’)d)\’} — f:aj/aj()\)H()\X)d)\'Jer()\) , (3.32)

with the symbols used in section 3.1.1. However, the logarithm of the measured spectrum I*(\) =
I(\) o H is given by:

InI*(\) =In /IO(/\) exp iSCDj o;(A) + RO\) | HOA = N)dX 3, (3.33)

j=1

Equation 3.32 can only properly describe equation 3.33 if Io(\) = const and SCD; - 0;(\) < 1. Even
though the Fraunhafer reference spectrum Io(\) is highly structured, its impact is small as shown by
Huppert (2000) by numerical tests for the example of a DOAS BrO evaluation but can, nevertheless,
lead to disturbing residual structures. For atmospheric applications, the second assumption is usually
fulfilled except for some absorbers or very long light paths. This especially affects the evaluation of
small absorbers underlying strong absorbers as in the case of BrO (Aliwell et al., 2002). This can be
avoided by using Iy-corrected cross sections o, () instead of simply convoluted ones (Johnston, 1996):

1 [Io(N)eSOP ) H(X = X)dA
- SCD [ Io(A\) H(A = X) dA ’

ar,(N) (3.34)

An initial SCD has to be chosen, usually the maximum measured. o7, can be computed, e.g., using
WinDOAS if a highly resolved cross section and solar spectrum are available. Another possibility to
correct for this effect would be to record the cross section directly with the instrument and the sun as
light source which is, however, experimentally very complicated.

Discretization Effects

Changes of the pixel-wavelength mapping of the measured spectra and the molecular cross sections
with respect to the solar reference spectrum are corrected by shifts and squeezes. For that purpose, the
cross sections and the measured spectra have to be interpolated by splines. This approximation is the
better the higher the sampling ratio, i.e. the number of pixels per FWHM of the instrument function,
is. Roscoe et al. (1996) found that the sampling errors become small for a sampling ratio > 4.5. This
criterium is fulfilled for the used spectrographs with a sampling ratio between 8 — 10 pixels per FWHM
(see section 4.1).

For the fitting procedure, molecular cross sections at the instrumental resolution are required. For that,
usually, highly resolved cross sections from the literature are convolved with the instrument function
obtained from measurements of low pressure lamps with emission lines reasonably smaller than the
instrumental resolution. However, the instrument function is not constant over the entire spectral range
of the spectrometer. This means that the convolved cross sections are not exactly what the instrument
would measure. This leads to systematical errors, i.e. higher residual structures, for large optical
densities. For molecular absorptions this effect is usually small, except for the case of the evaluation of
small absorbers underlying stronger absorbers, e.g., as in the case of BrO. This problem can be avoided
by using molecular cross sections measured with the instrument itself rather than convolved ones.
However, due to the constant changes of the setup of the instrument this experimentally very costly
procedure has not been done for the miniDOAS spectrometer. Especially high residual structures occur,
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if a convolved (Kurucz et al., 1984) reference spectrum is used for the evaluation which is necessary to
retrieve the absolute absorption in the measured solar reference spectrum so that this approach becomes
almost impossible (see chapter 6).

Instrumental Shortcomings

For an ideal DOAS evaluation a stable optical imaging is crucial. A change in ambient pressure and
temperature can lead to a change of the resolution and/or the pixel-wavelength mapping due to me-
chanical relaxation and change of the refractive index of the air inside the spectrometer. Consequently,
this leads to additional residual structures. One reason for the structures are the different sensitivity
of the individual pixels of the CCD array. The sensitivity of the pixels can be obtained experimentally
by measuring an unstructured spectrum, e.g., of a halogen lamp. By dividing the measured spectra by
the low pass filtered lamp spectrum, the effect of the non-constant diode sensitivity in case of a shift
can be reduced (see, e.g., section 4.2.1).

Spectrometer stray light is caused by reflections of light from higher orders of the grating or light with
wavelengths outside the detection range. The stray light causes an additive offset to the measured
intensity and, thus, changes the optical density of the Fraunhofer lines or the molecular absorption. It
can be reduced by using filters cutting off the undetected wavelengths. It can also be removed during
the fitting process by including an intensity offset polynomial.

Further effects potentially causing additional residual structures are the Etalon effect caused by multiple
reflections on thin parallel surfaces or the memory effect which causes strong structures of one spectrum
to also appear in the next one. Residual structures can also be caused by the grating itself or the glass
fibers when different modes are excited. All these effects are considered to be small and not further
investigated.

3.2 Radiative Transfer Calculations

3.2.1 Definition of the Radiometric Quantities

The radiation flux ¢ is defined as the incident radiation energy per time:

dE
¢=— Wl (3.35)

Differentiating ¢ with respect to wavelength gives the spectral fluz ¢y:

dp d*E [W
A= N T didy {nm} ' (3:36)
The flux per solid angle can be defined as intensity I:
do [W
I=— |[—|. 3.37
dS) [ sr } ( )

The spectral flux on an arbitrarily orientated area element is defined as (spectral, planar) irradiance
E)\Z

Ey

—@{ W } (3.38)

T dA | nm m?
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Taking into account only the perpendicular part of the incident light dA; and the solid angle df) gives
the (spectral) radiance Ly, sometimes simply called intensity Iy:

d?¢) w
Ly = . 3.39
AT AL dQ [nm m? sr] (3:39)
Integrating the radiance over the half sphere considering the factor cos 6 yields the irradiance:
E\ = / Ly cosfdS2, (3.40)
27

where 6 is the angle between the incident radiation and the normal of dA. The irradiance is of importance
when the direction of the incoming radiation plays a role e.g. when calculating heating rates. Integrating
the radiance over the whole sphere without considering its direction, i.e. neglecting cos, defines the
actinic flur F, sometimes also called scalar irradiance:

FA:/ML,\dQ [n w } (3.41)

m m?

This quantity is of interest in photochemistry where the direction of the incoming light is not important.

3.2.2 Scattering and Absorption

Rayleigh Scattering

Rayleigh scattering occurs if the wavelength of the radiation is considerably larger than the dimensions
of the scatterers, e.g. molecules.

The cross section o was first derived by Lord Rayleigh (1842-1919) and, thus, carries his name:

873 a?

_om 3.42
3eZ M\ (3.42)

OR
where « is the polarizability of the respective molecule. More accurate calculations by Brasseur and
Solomon (1986) yield the empirical formula:

4.0-10728
TR = N3.9164+0.074 A+0.05 A1

[cm?], with A given in [um]. (3.43)

Another accurate empircial formula is given by Nicolet (1984):

4.02-107%8

OR = it 2], with A given in [pm], (3.44)

[em
x =0.04 for A > 0.55um
x =0.389 A +0.09426/X — 0.3228 for 0.2 pm < A < 0.55 pm.

More recent calculations by Chance and Spurr (1997) taking into account, e.g. the anisotropy of the
polarizability of nitrogen and oxygen molecules, give an average polarizability:
(n—1)?
_ 3.45
T\ AN (3.45)
where n is the refractive index and Ny = 6.02205 - 1023 mol~! is Avogadro’s number. They also give an
empirical formula for the Rayleigh cross section:

B 3.9993 - 1028 A4
T 1-1.069- 107222 — 6.681 - 105 \~*

OR [em?], with X given in [um], (3.46)
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which is the formula used for the treatment of Rayleigh scattering in the RTM TRACY. Due to the
factor of A™%, Rayleigh scattering is strongly wavelength dependent. This can be illustrated by looking
at the free path length Ir = 1/(00oR), with the air density ¢ which is typically 2.7-10'” cm=3 at ground
level. It is ~ 160 km for red light (A = 650 nm), ~ 50 km for blue light (A = 490 nm) and only ~ 14km
for UV light (A = 360nm). This explains why the sky is blue as most of the red light reaches the
ground directly while the blue part of the spectrum gets scattered more and reaches the ground not
only directly from the sun but from the entire hemisphere. When the sun is low above the horizon
during sunrise and sunset it appears red because all the blue parts of the spectrum are scattered out of
the direct beam.

The differential cross section for unpolarized light is given by:

dO’R

—— =o0pR- 0 3.47

a0 OR pR( )a ( )
with the phase function pr(0) describing the angular dependence of Rayleigh scattered radiation and
the angle € between incident and scattered radiation. The phase function for unpolarized light can be
written as:

3
pr(0) = 1 (1 — cos® ), (3.48)
or, more accurately taking into account the molecules’ polarization anisotropy (Penndorf, 1957), as:

pr(6) = 0.7629 (1 — 0.932 cos® ). (3.49)

Raman Scattering

In contrast to Rayleigh scattering, where the wavelength of the incident and the scattered photon
is the same (i.e. elastic process), Raman scattering is an inelastic process occuring if the scattering
molecule changes its state of excitation. If only the the rotational state is altered (Av = 0) it is called
Rotational Raman Scattering (RRS). If also the vibrational state changes (Ar+0) the term Rotational-
Vibrational Raman Scattering (RVRS) is used. Only discrete amounts of energy given by the energy
difference of the molecule’s excitation state before and after the scattering process can be absorbed
or emitted, respectively. As a consequence, the spectrum of light scattered off molecules consists of
a strong Rayleigh line surrounded by several closely spaced vibrational Raman bands each consisting
of several rotational Raman lines, i.e. Stokes lines (AJ = 42, S-branch) and Anti-Stokes (AJ = —2,
O-branch). For air, i.e. Oy and Ny, RRS frequency shifts of up to £200cm~! occur. For RVRS a
vibrational shift of £2331cm ™! for nitrogen and £1555cm ™! for oxygen has to be added. As the RVRS
is by an order of magnitude weaker than the RRS, only RRS is usually regarded in atmospheric RT.

The RRS cross section is given by:

256 T2 fn by N0
27 M4

with the polarization anisotropy 7 (given in [ecm3|), the Placzek-Teller coefficients b, the fractional
populations in the initial state fy and the wavelength of the shifted line X’ (in [cm]). For details about
the calculation of the ogrrs for Oy and No see Bussemer (1993); Burrows et al. (1996); Haug (1996);
Sioris and Evans (1999); Funk (2000). orps has the same wavelength dependence as ograyieign (i-e.
~ A™%) and also the phase function is the same as in the elastic case. The ratio of Raman and Rayleigh
scattering lies in the order of some percents.

ORRS — s (350)

Measurements of scattered sunlight are affected by Raman scattering which causes a 'filling in’ of the
Fraunhofer lines. This is referred to as Ring effect (Grainger and Ring, 1962). The Ring effect must
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be corrected for in the DOAS evaluation (see section 3.1.3). In the RTM TRACY inelastic scattering
is not yet included as only one wavelength is considered during the calculations.

Mie Scattering

Apart from molecular scattering also scattering off particles with dimensions in the order of the wave-
length, e.g. aerosols or cloud droplets, occurs. In contrast to Rayleigh scattering, where cross section
and phase functions can be found rather easily, these scattering processes are much harder to describe
mathematically as they depend on many parameters of the scatterers such as size, shape, reflectivity,
etc. Under the assumption of spherical particles the Mie theory can be applied.

The Mie scattering off spherical liquid droplets can be compared to the diffraction from a pinhole.
Interference results in angular dependent minima and maxima. It usually requires rather complex
calculations to derive exact cross sections and phase functions which are usually done numerically.
As Mie scattering not only depends on the wavelength but also on the size, i.e. the radius r, of the
particle, the size parameter « = 277/ is used. For a given «, the Mie extinction function F(«), i.e the
extinction cross section normalized to the particle cross section, can be calculated. In reality, aerosols
are not all of the same size but they are a mixture of aerosols with different sizes described by the size
distribution function n(r). If the size distribution is known a macroscopical extinction coefficient k. ()
can be obtained:

k(X)) = /OOo 71?2 E(a) n(r) dr. (3.51)

For aerosols larger than 0.1 um, n(r) usually obeys an r~* dependence, with s & 4. Substituting this
into equation 3.51 yields a simple A dependence for k.:

Ee(X\) ~ X375, (3.52)
so that the wavelength dependence is by far smaller than in the Rayleigh case.

The phase function of an aerosol mixture is obtained as an average over the aerosol sizes weighted with
their size distribution. This phase function can be approximatively described by the Henvey-Greenstein
functions (Henvey and Greenstein, 1941):

1—g°2
(1+9%2—2gcosh)

p]\/Iie,HG(o) = 3 (353)
2

where g is the asymmetry coefficient which describes the degree of ’forward-peakedness’ of the scattering
process. If g = 0 the phase function becomes 1 for all angles (isotropic case). If g = 1 the entire
intensity is scattered in forward direction. For atmospheric aerosols g lies between 0.6 and 0.7 ( Perliski
and Solomon, 1993). In this case the phase functions show a monotonous decrease with increasing 6.

Light cannot only be scattered off aerosols but also be absorbed. The ratio between scattering and total
extinction is called single scattering albedo w:

w = ks
T ks4 Kk,

(3.54)

where k; and k, are the extinction parameters for scattering and absorption, respectively.

In continental air, the free path length for aerosol extinction is 45 km in the red (A = 600 nm) and 25 km
in the blue (A = 400 nm).
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Table 3.1: Typical albedo values for different surface types.

surface type albedo w
Earth average with clouds 30 %
Ocean 5 %
Urban areas 10 %

Ice, clouds 70 — 80 %

Surface Scattering

Another important aspect in atmospheric radiative transfer is the scattering off the ground. The key
quantity in this context is the albedo w, defined as the ratio of the reflected (I,) and the incident
intensity I;:

w="". (3.55)

The values of w are quite variable depending on the surface type. Some typical values are given in table
3.2.2.

Note that the albedo is also wavelength dependent and typically decreases in the UV. The surface
scattering can be mathematically described as Lambertian reflection. The Lambertian phase function
is given by:

cos

ambertian 0) = 3 3.56
PLambert () - ( )

with 7—! as normalization constant. As a consequence, an illuminated Lambertian surface of constant
albedo has the same brightness to a detector at every viewing angle. This is because the area of
the surface seen by the detector increases with 1/ cos 6 and, thus, cancels out the cosf decrease of the
scattering probability. But, on the other hand, the observed brightness depends on cos 6; of the incident
radiation, i.e. the Earth’s brightness decreases with setting sun.

Cloud Scattering

The radiative transfer within clouds is rather difficult to handle and still subject of intense research.
Water clouds can be seen as a dense accumulation of water droplets. So every photon undergoes several
Mie scatterings inside the cloud. After ~ 7 — 8 scattering processes the photon has lost any memory of
its initial direction. So when only interested in detectors outside, optically thick clouds, i.e. clouds that
are significantly thicker than their free path length, can be parameterized phenomenologically. Every
photon incident on a cloud can either be reflected, absorbed, or transmitted. Reflections off a cloud
can be treated in the same way as reflection off the ground as the top of most cloud covers can be
approximated by a Lambertian reflector with an albedo ranging between 70 — 80 %. As the transmitted
photons have been multiply scattered inside the cloud, they are emitted on the bottom of the cloud
with a constant phase function, i.e. the same probability for every angle. So, theoretically, clouds can
be described by the three parameters cloud coverage (i.e. fraction of the sky that is covered by clouds),
cloud albedo and transmittance. In quantitative radiative transfer calculations for real scenarios clouds,
nevertheless, are quite problematic, especially for space-borne measurements in nadir geometry, as the
cloud coverage is quite variable and, thus, strongly alters the total albedo. Clouds can also partly shield
the troposphere and, hence, influence the measured total columns of trace gases that have significant
abundances in the troposphere (e.g. NOy or BrO). So cloud detection is an important issue for these
kinds of measurements.



58 CHAPTER 3. METHODS

3.2.3 The Radiative Transfer Equation (RTE)

The Radiative Transfer Equation (RTE) is a continuity equation describing the change in radiance of
radiation passing through the atmosphere.

The loss of radiation (extinction ey) in the incoming direction is given by:
dI§ = —ex Ixds = —(ko(N) + ks(N)) In ds, (3.57)

where k, and k, are the absorption and scattering coefficients, respectively, defined by k = no, with
the number density n and the cross section ¢ summed over all scatterers and absorbers. Sources of
radiation are thermal emission and scattering into the outgoing direction:

dIth = B\, T) kq(N) ds, (3.58)
2hc? 1
with the Planck function B(A\,T) = h; e .
N exp (557) — 1
T 2m 0
I3 = ks()\)/ / 5329 1 Gnoao, (3.59)
0 47
. . . 47 dog
with the scattering phase function S(p,6) = — 2
os
Adding all these terms yields the RTE:
T g 2
D n )+ 1) + BOD R 1) [ [ 52D g siwoan, (3.60)
0

Complications in solving the RTE arise from the improper knowledge of the spatial distributions of the
scatterers (aerosols, cloud particles, ...) and their physical properties, the value of the scattering phase
function S for solid particles, and the values of the absorption and scattering coefficients for all solid
particles, liquids and relevant atmospheric gases. Additionally, the earth’s sphericity make things more
complicated.

3.2.4 Analytical Approaches to the RTE

As it is not possible to analytically solve the RTE in general, simplifications have to be made. E.g.,
neglecting multiple scattering and thermal emission yields the Lambert-Beer-Law (see corresponding
section 3.1.1). Neglecting any scattering, i.e. ks < k, which is valid e.g. in the IR, yields the
Schwarzschild equation:

dly

ds
Other solution approaches simplify the geometry, like the two stream approrimation. It considers a
plane parallel atmosphere with horizontally homogeneous layers.

= —ka(N) (Ix = B(A,1)). (3.61)

In the two stream model the radiation is divided into an up- and a downwelling part. This approach
can be extended by considering more than two directions. The radiance is then calculated along these
directions or ’ordinates’ leading to the discrete ordinate method (Dahlbeck and Stammes, 1991). This
method is implemented in the Radiative Transfer Model (RTM) "UVspec/DISORT’ developed by the
Norwegian Institute for Air Research (NILU) (Kylling, 1995). It treats multiple scattering by aerosols
and clouds in higher orders in plane parallel geometry with spherical geometry and the direct beam
including refraction in pseudo-spherical geometry. Refraction was modified to full spherical by the
Belgian Institute for Space Aeronomy (BIRA-TASB) (see von Friedeburg (2003), chapter 7).
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The finite difference method separates the direct from the diffuse, i.e. at least once scattered, radiation.
A widely used example for this method is 'SCIATRAN’ developed by the IUP Bremen (Buchwitz
et al., 1998). It treats the direct beam including refraction in full spherical geometry and full multiple
scattering in pseudo-spherical geometry. It iteratively solves the RTE to achieve convergence to full
sphericity.

Another method is raytracing. This technique computes the attenuation of the radiation from the sun
through a layered (either plane parallel or spherical) atmosphere to the detector. Usually, only single
scattering is allowed. Examples are "AMFHD’ (Frank, 1991) for zenith scattered light and "DAMEF’
(Schulte, 1996) for direct sunlight. DAMF is used for the calculation of the air mass factors for the
balloon-borne direct sunlight measurements (see chapter 4.6.3). As the direct intensity is so much
higher than the diffuse one, treating the scattering out of the detector’s line of sight is sufficient while
scattering into the detector’s line of sight can be neglected.

3.2.5 The Monte Carlo Approach to the RTE

The Monte Carlo method, generally, can be used to model physical processes with multiple outcomes
occurring with certain probabilities. The advantage of this approach is that, even if analytical solutions
to a problem are difficult or even impossible to find, it will still yield a reasonable result if enough model
calculations are performed to get a reasonable statistics. This means that, in contrast to analytical
models, no simplifications, e.g. regarding earth’s sphericity etc., have to be made.

In radiative transfer, the propagation of a single photon can be seen as a random walk from the sun
through the atmosphere to the detector. On its way, several processes can change the photon’s direction
by scattering or, when considering an ensemble of identical photons, its intensity by absorption. As the
probabilities of all these processes are known (if all relevant atmospheric parameters are known), the
path of the photon can be modeled. This is done by drawing a random number in [0, 1]. If the number
lies in a certain interval depending on a certain process’ probability, this process occurs and the photon
is e.g. scattered to a different direction of propagation. This is repeated until the photon finally reaches
the detector. However, this method is not practicable as it would require an average of ~ 1022 modeled
photon paths to get one that actually hits a detector of typical size. One idea to overcome this problem
is the backward Monte Carlo approach. As all interactions of the photon with matter are invertible it is
also possible to model a photon traveling backwards from the detector to the sun. But still, this would
require a lot of modeled photons as the sun only covers a fraction of ~ 5.4-1076 (derived from the sun’s
half aperture angle of 0.267° (Meeus, 1992)) of the total sky. So the strict Monte Carlo principle that
everything occurs randomly has to be abandoned at the point of the last scattering before the photon
leaves the atmosphere. At this point it is forced’ to the sun so that, as a consequence, all modeled
photons that are at least scattered once finally hit the sun.

3.2.6 The Monte Carlo Radiative Transfer Model (RTM) TRACY

The Monte Carlo implementation in the RTM TRACY (Trace gas RAdiative monte Carlo Ymplementa-
tion) developed by von Friedeburg (2003) based on routines from Morgner (2003) is briefly described in
the following. Its predecessor, the RTM "AMFTRAN’ developed by Marquard (1998); Marquard et al.
(2000), also used the backward Monte Carlo technique to account for multiple scattering. AMFTRAN
also included off-axis and satellite nadir geometry to be used for GOME measurements. Many effects
of radiative transfer, e.g. related to O4 measurements, can be reproduced. But AMFTRAN does not
support all geometries including airborne off-axis or balloon-borne limb or very slant lines of sight in
ground-based off-axis geometry and it suffers from problems with high SZA and is limited to a fixed
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altitude grid. It also does not allow for the calculation of BoxAMFs (i.e. discretized weighting functions)
which are required for the profile retrieval of the balloon-borne limb measurements (see section 3.3).

Motivation and Requirements to the RTM

The balloon-borne limb geometry at high SZA which is used in the frame of this work demands for
highly accurate radiative transfer calculations. For SZA>70° Earth’s sphericity complicates geometrical
calculations. Especially when more than one scattering event occurs, which is the case especially at
low altitudes, any geometrical approximations get invalid. The presence of aerosols of different types
and, hence, different phase functions further complicates the problem of deriving exact light paths and,
hence, air mass factors. Several different light paths contribute to a scattered light measurement and
must be computed properly to simulate the measured SCDs.

The following requirements for the simulations of the balloon-borne limb measurements are implemented
in the RTM TRACY

o all scattering and attenuation processes relevant to the radiative transfer including albedo

e multiple trace gas concentration and aerosol load profiles

e aerosol scattering parameterizations

e atmospheric refraction

e variable detector locations: latitude, longitude, and altitude

e variable viewing directions: rotation of the line of sight with respect to two perpendicular axes
(elevation and azimuth angle)

e variable field of view of the detector, e.g. spherical or elliptical
e variable discretisation of the atmosphere in all 3 dimensions

e supports 3D variations in atmospheric parameters’

The Backward Monte Carlo Implementation

The backward Monte Carlo implementation of the RTM TRACY is discussed in detail in (von Friedeburg
(2003), chapter 6 and A.1), so here only a brief overview is given. For a reference of all in- and output
parameters see also (von Friedeburg, 2004).

In order to make the rather costly Monte Carlo calculations more efficient several deviations from the
strict modeling of real photons are made. The first one is the concept of Photon Units (PU). Instead
of a single photon, an ensemble of identical photons with a given intensity or weight is modeled. This
concept facilitates the treatment of albedo reflection and absorption. In the case of modeling a single
photon, an absorption process or reflection at a surface with an albedo < 1 would lead to the annihilation
of the photon with a certain probability. Thus, the calculated photon path until that event would be
useless. In the case of a PU simply its intensity is weighted with the absorption or reflection probability.
For simplicity, the denotation photon is used to refer to the PUs in the following.

The photon’s path is modeled in a three dimensionally discretized atmosphere. In z-direction (altitude)
several layers can be defined which can again be subdivided into two dimensional atmosphere segments,
referred to as 'voxels’. Despite the possibility of 3D calculations, only 1D calculations, i.e. discretization

lin the frame of this work only 1D calculations are performed for the sake of computing time
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only along the z-axis, are performed in this work as the spacial inhomogeneities within a given altitude
layer are rather small and the measurements are not sensitive to them anyway. Additionally, 3D
discretization would lead to more voxels and, thus, much longer computation times. Each of these
voxels, i.e. altitude layers in our case, are given certain parameters such as air density, trace gas
or aerosol content as input. Additionally, the lowermost voxel’s bottom, i.e. the surface, can reflect
photons according to the given albedo. In a similar manner, clouds are treated as an infinitesimally
thin layer at a certain voxel limit given by the cloud altitude which can reflect, absorb or transmit the
photon.

As denoted by the term ’backward Monte Carlo’, the photons are launched from the detector and their
path towards the sun is modeled. Therefore, the photon starts at the user-defined detector position
and its initial direction of propagation is diced out according to the detectors pointing direction and
field of view. Next, the 'raytracer’ calculates the path to the next voxel intersection and the distance
to it along the photon’s direction. Then it is diced out if any scattering or absorption occurs along that
path. In case of a scattering event its type (i.e. Rayleigh or Mie) and location is diced out. At the voxel
intersection, the photon’s deviation from its incident direction due to refraction given by the different
refractive indices of the two neighboring voxels is calculated. However, the refraction feature is turned
off for the RT calculations presented in this thesis as its implementation is not yet fully validated. Then,
according to the scattering phase function, its new direction is diced out and the routine starts anew
until the photon finally reaches the defined top of the atmosphere. As it is extremely unlikely that a
modeled photon hits the sun by chance (p ~ 5.4 - 107%) due to the small fraction of the sky that is
covered by the sun another deviation from the strict Monte Carlo concept is done by ’forcing’ the photon
into the Sun’s direction after the last scattering process. This means that at the last scattering event,
the photon’s new direction is not randomly chosen, but its intensity is weighted with the probability of
being scattered into the sun’s direction and the photon’s direction is set towards the sun. This method
implies that every photon has to be scattered at least once and, thus, every photon that leaves the
atmosphere without being scattered is not counted. This is rather unlikely for detector’s placed at low
altitudes but becomes more probable with increasing altitude or detector elevation angle. It is also
not checked whether the unscattered photon reaches the sun, so that direct sun light conditions cannot
be modeled in the current version of TRACY, a feature that might be implemented in future and is
implemented in some older versions.

Output Parameters of TRACY

After a reasonable number of simulated photons (typically some thousands), all successful, i.e. at least
once scattered, photon paths are summed up weighted with their respective intensities and the results
are derived. Among many other parameters (for a complete list see (von Friedeburg, 2004)), the program
computes the so-called Box Air Mass Factors (BoxAMF), i.e. discretized weighting functions, which are
defined as the ratio of the averagely traveled light path inside a given voxel and its height. These are also
used to calculate the slant column absorption of the trace gases by multiplying their concentration with
the BoxAMF and the voxel height and summing up over all voxels. These simulated SCDs can be directly
compared to the measurements. Another output is the radiance in the direction of detection which can
also be directly compared to the measured absolute radiance assuming a homogeneous radiance over
the detector’s field of view (or at least a linear inhomogeneity in vertical direction so that it is averaged
out).
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Validation of TRACY

"Tracy’ has been validated against the, already mentioned, analytical RTMs SCIATRAN and DIS-
TORT (see von Friedeburg (2003), chapter 7 for results of the comparison exercises), as well as several
measurements (see e.g. Honninger et al. (2004); Wagner et al. (2004)).

Another stringent test to the model’s absolute radiance and photon path calculations are the balloon-
borne limb measurements presented in this work (see chapter 6) as they are conducted under rather
difficult conditions, e.g. high SZA up to 95° and very slant light paths through the atmosphere with
BoxAMFs reaching 200 and more.

3.3 Profile Retrieval

The output of the DOAS evaluation of the measurement spectra, e.g. during balloon ascent or limb
scanning, are Slant Column Densities (SCD) as a function of detector/tangent heights. The BoxAMF,
output by the radiative transfer calculations, are used to derive vertical concentration profiles. There-
fore, the BoxAMF-matrix AMF has to be inverted, which is an inversion problem as described by
Rodgers (2000).

Mathematically, the inversion problem can be formulated as follows:

SCD = AMF - VCD, (3.62)

VCD = AMF~!.SCD, (3.63)

where SCD is a vector containing all the measured SCD values and VCD is a vector containing
the desired Vertical Column Densities (VCD) on the grid used in the RT calculation. From these, the
concentration at every altitude layer can be inferred by dividing by the layers’ height d;: ¢; = VCD;/d;.

The inversion problem cannot be solved by simple matrix inversion of m‘ for several reasorﬁoz irstly,
the problem is overdetermi&dlgecause t{lﬂ}are generally more measurements contained in SC'D than
there are altitude layers in VCD so that AMF is not a square matrix and, thus, cannot be unequivocally
inverted. Secondly, the measurements generally do not contain information about all the altitudes of
m, so an initial guess (@ priori information) is necessary for these altitudes in order to get reasonable

results for the V' C D-values of the altitudes the measurements contain information about.
—

Following chapter 4 of (Rodgers, 2000), a best estimate vCD considering the measurements and their
errors and the a priori information and its error can be found by a method called the Mazimum A
Posteriori (MAP) solution or the Mazimum Likelihood (ML) solution (this term is, strictly speaking
incorrect but, however, widely used). It can be written as follows:

e
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VCD = (AMFT S scp AMF + S 1) {(AMFT 'S scp SCD + S ;1 VCD,,), (3.64)

where S is a covariance matrix defined as a diagonal matrix containing the squared errors, e.g.
«—
S scp = diag(ASCD)?. VCD,, is the a priori profile that has to be estimated, e.g. from chem-

—
— ~
ical model output or other measurements, and S ,, is its covariance. The covariance for VC'D can be

obtained by:

Awd

~

S = (AMF” 'S g0p AMF + S 1), (3.65)

>
and its averaging kernel matrix A by

— S Co—o o R
A = (AMF? S'scp AMF + S ;1) "'AMET 'S sop AMF. (3.66)
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The averaging kernels give information about the quality and information content of the retrieved profile.
Each row of the averaging kernel matrix tells where the information of the corresponding VC'D; is taken
from. Ideal would be a delta function for each row, i.e. a value of 1 at column ¢ and 0 everywhere
else, so that the averaging kernel matrix would be the unit matrix. The area of the averaging kernel,
i.e. the sum of its elements, should also be close to 1 for altitude levels where the retrieval is accurate.
Generally, the area can be seen as a rough measure of the fraction of the corresponding profile point
that comes from the measurements, rather than from the a priori. The half-width of the averaging
kernel gives information about the altitude resolution of the retrieved profile. A value bigger than 1
suggests to repeat the retrieval on a wider grid. A value close to 1 indicates that the altitude grid was
appropriately chosen but, as the FWHM cannot become smaller than 1 due to the discretisation, an
even better resolution might be possible. The trace of the averaging kernel matrix gives the number of
independent points in the retrieved profile. If this number is lower than the number of altitude layers
used the inversion should be repeated on a wider grid. The reason for this is that too many output layers
might cause artefacts in the retrieved profile, i.e. a too low value for one altitude is compensated by a
too high value in the next one causing oscillations as a result. The retrieval method works in a way that
it ’decides’ whether to take the information from the measurements or the a priori profile based on the
errors given in the respective covariance matrices. The covariance of the measurement is determined by
the measurement errors but the error of the a priori can be taken e.g. from climatology. If it is unknown,
its number has to be chosen carefully. If it is too small the retrieval could disregard information from
the measurements. If it is too big or the a priori profile is wrongly chosen, the algorithm can produce
fake features in the retrieved profile that might be mistaken as profile information. So it is important
to always check the averaging kernels.

3.4 Chemical Modeling

In order to interpret the time-dependent profile observations during scanning limb measurement mode
at balloon float, profiles as function of SZA are calculated by chemistry models. The output profiles of
the photochemically active radical NOs can be validated by the measurements. Calculations from two
models are used in the frame of this thesis being briefly described in the following.

3.4.1 The SLIMCAT 3-D Chemical Transport Model (CTM)

SLIMCAT is an off-line CTM being forced by the UK Meteorological Office (UKMO) analyzes for
the horizontal winds and temperatures (Chipperfield and Pyle, 1998; Chipperfield, 1999). The vertical
(diabatic) motion is calculated from the MIDRAD radiation scheme (Shine, 1987). Included in the
model is a detailed stratospheric chemistry scheme involving the O,, NO,, Cl,, Br,, and HO, families
and long-lived tracer like NoO, CHy, or COamong others. The rate coefficients are based on the
JPL-2002 kinetic data (Sander et al., 2003). The photolysis rates are calculated using 4-dimensional
lookup-tables (with pressure altitude, temperature, O3 column, and SZA as coordinates) based on a
scheme by Lary and Pyle (1991). Also included is heterogeneous chemistry on liquid and solid PSCs
and mid-latitude sulphate aerosols. The standard simulations are performed on 24 isentropic levels
ranging from ground to ~ 60 km with a horizontal resolution of 7.5° x 7.5°.
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3.4.2 The 1-D Chemical Box Model LABMOS

The 1-D Chemical Box Model LABMOS? developed at the IUP Heidelberg (e.g. (Erle, 1999; Fitzen-
berger, 2000; Bdsch, 2002)) allows for photochemical scaling of measured profiles of radicals like
NOs or BrO. Stratospheric chemistry is modeled on 19 potential temperature (0) levels between 336 K
(=~ 10.5km) and 1520 K (= 42km). Aerosol loads are taken from Deshler et al. (2003) as recommended
by Dufour et al. (2005). NO, is initialized with the measured NOy profile while all other relevant
species are taken from the SLIMCAT output corresponding to the time and place of the measurement.
Its chemistry scheme is based on JPL-2002 kinetic data (Sander et al., 2003) and includes the most
important gas phase, photolytical, and heterogeneous reactions of the O,, NO,, HO,, ClO, and BrO,
families. Photolysis rates are interpolated with respect to pressure, temperature, overhead ozone and
solar zenith angle (SZA) from a lookup table where the actinic fluxes are calculated as recommended
by Lary and Pyle (1991) and validated for jxo, by Bdsch et al. (2001).

2_LAgrangian MOdel of the Stratosphere



Chapter 4

Instrumental and Experimental Details

The novel mini-DOAS spectrometer has been designed for low weight (= 5kg) and low power con-
sumption (7.5 W), with particular emphasis being put on stable optical imaging and a reasonably large
signal to noise ratio. While the former characteristic offers the chance for versatile applications, the
latter feature is found to be necessary for the detection of Oz, NOg and in particular of the weakly
absorbing gases (e.g. OCI1O, BrO, OIO, or I0), based on the experience with the direct sunlight DOAS
(Ferlemann et al., 1998, 2000; Harder et al., 1998, 2000; Bésch et al., 2003).

In the first section of this chapter, the setup of the mini-DOAS instrument is described. In the second
sectioned, a detailed characterization of the performance and noise contribution of the spectrometer is
given. and its performance both in the lab and during the balloon flights is discussed. A

4.1 Setup of the miniDOAS Instrument

This section describes the setup of the miniDOAS. The instrument has constantly been updated and
new features have been added. Two stages of the development, in the following referred to as "mk.1"
and "mk.2", are distinguished. The first subsection describes the early setup of the instrument (mk.1)
used during the first four balloon flights (see table 6.1). The second section discusses the current setup
of the instrument used from 2004 on (mk.2) and its advantages compared to the mk.1.

4.1.1 miniDOAS mk.1

The mini-DOAS instrument consists of 5 major parts (see figure 4.1): (a) 2 light intake telescopes
for simultaneous nadir and limb observations (the latter being mounted on an automated elevation
scanner), (b) glass fibre bundles which conduct the sky light from the telescopes into the spectrometers,
(c) two commercial Ocean Optics USB-2000 spectrometers (d) which are put into a water-ice-bath for
temperature stabilization, and finally (e) a single board computer for data handling and storage.

(a) The nadir and limb telescopes each consist of a spherical quartz lense (12.7 mm in diameter, 30 mm
focal length) which focuses the incoming scattered skylight onto the round or the rectangular entrance
of the glass fiber bundles. During the balloon flight, the nadir telescope is mounted to the bottom of
the outer frame of the LPMA /DOAS payload structure, which provides an unobscured view into nadir
direction. The limb telescope is mounted on an elevation angle scanner (built by Hofmann Meftechnik,
Rauenberg, Germany) which supports limb observations in a range of +10° to —20° elevation angle,

65
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Figure 4.1: Sketch of the mini-DOAS instrument

with step sizes as small as 0.04°. During the balloon flight, the scanner is mounted on the right hand
side (i.e. in a +90° azimuth angle relative to the sun’s azimuth direction) of the azimuth controlled
LPMA /DOAS gondola.

(b) Each glass fibre bundle consists of 7 individual quartz glass fibers (100 um in diameter, 2m in
length, numerical aperture NA = 0.22). Glass fibre bundles are used, since they not only allow for a
more flexible arrangement of the instrument, but are also known for largely reducing the polarization
sensitivity of grating spectrometers (Stutz and Platt, 1996, 1997). In fact, laboratory measurements show
that by using glass fibre bundles the polarization sensitivity of an Ocean Optics USB 2000 spectrometer
is small (< 1%). For the nadir observations, the individual glass fibres are arranged in round geometry
at the light intake, a mounting which in combination with the telescope supports a field of view (FOV)
of 0.6°. For the limb observations the glass fibres are arranged in a 'rectangular geometry’ light intake
setup i.e., the individual glass fibre entrances are aligned linearly. This arrangement supports a FOV of
0.19° in the vertical and 1.34° in the horizontal direction. Likewise, the glass fibres are linearly aligned
at both exits, and the outgoing light is skimmed by a 50 ym wide and 1000 gm high spectrometer
entrance slit.
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Figure 4.2: Relative efficiency vs. wavelength of the SONY ILX511 CCD detector (left panel) and of the
two gratings used (right panel) as given by the manufacturer (Ocean Optics, 2004)

(¢) The heart of the mini-DOAS balloon instrument consists of two commercial Ocean Optics USB
2000 spectrometers for simultaneous nadir and limb observations. The USB 2000 is a miniature grating
spectrometer working in cross Czerny-Turner geometry. Its advantage is the small size (86 x 63 x
30mm?), the low weight (270g) and the high photon detection sensitivity owing to an integrated
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Table 4.1: Overview of the different spectrographs used.

Serial# wavelength region | grating#
USB2E3197 327 — 527nm 10 mk.1
USB2E3198 327 — 527nm 10 mk.1
USB2G919 336 — 550 nm 11 mk.1
USB2G2556 336 — 550 nm 10 mk.2
USB2G2557 336 — 552nm 10 mk.2
USB2G365 178 — 873 nm 3 mk.2

linear CCD array detector (Sony ILX511). The light enters the spectrometer through an entrance slit
(50 pm x 1000 gm) from which it is focused by a collimator mirror onto a holographic grating with
1800 grooves/mm. A second mirror focuses the light onto the linear CCD array with 2048 pixels (each
pixel is 14 ym wide and 200 pm high). Attached onto the CCD array detector is a cylinder lense which
focuses the 1000 pm high entrance slit onto the 200 um high detector. Also attached to the CCD array
detector is the preamplifier and a control logic unit which handle the pre-amplification of the signals,
A /D conversion to 12 bit data and communication.

Several USB 2000 spectrometers have been used during the five balloon flights (see Table 4.1). Figure
4.2 shows the relative sensitivity of the CCD array detector and the relative efficiency of the 2 gratings
available with a groove density of 1800 mm~!. Grating # 10 is favored because of its higher efficiency
in the UV where the CCD detector has a lower sensitivity. Therefore, the whole spectrometer has
an almost constant sensitivity over its entire spectral range. Spectrometer # USB2G919 has been
delivered with the wrong grating (# 11) built-in and replaced by another spectrometer with the desired
grating (# 10) after one flight. An exception is the spectrometer # USB2G365. Its grating has a only
600 grooves/mm, s0 it covers a much wider spectral region (178 — 873 nm) at a lower resolution (3nm).
Hence, its performance cannot be compared to that of the other spectrographs discussed in the following.
Some results obtained with this spectrometer are discussed in section 6.6.1.

The spectrographs cover a spectral range of approx. 330 — 550 nm at a full width at half maximum
(FWHM) resolution of 0.8 — 1.0 nm, or 8 — 10rixel/rwnmM depending on wavelength. This wavelength
coverage and resolution should allow for the detection of the atmospheric trace gases Oz, NOg, Oy,
H50, BrO, and OCIO (and potentially I0, OIO, CH50).

(d) Both spectrometers are kept in a waterproof freezer bag, which itself is immersed in a water-ice
reservoir (~ 2liters). This ensures a stable spectrometer and CCD array temperature of 0°C during
the entire balloon flight.

(e) Data handling and storage is maintained by a single board PC (type National Geode 200 MHz)
equipped with a flash memory. The allocated data are transferred from the spectrometers to the PC
via a USB data transfer connection. It supports a data transmission rate fast enough to record a single
spectrum every 25 ms. Possible integration times per spectrum as provided by the manufacturer of the
spectrometers are in the range of 3— 65535 ms. The PC can either be operated under Windows or Linux
with our lab-owned DOASIS or XDOAS softwares packages, respectively. Both software tools support
the automatic adjustment of the integration time, and recording and storage of the measured spectra.
However, the control of the limb scanning stepper motor is only possible with DOASIS so this software
is used from the second flight on when the stepper motor has been implemented.

The total size of the instrument is 260 x 260 x 310 mm? (w/o fibers), its weight is ~ 2kg plus 2kg of
water and ice, and its power consumption is ~ 7.5 W.
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4.1.2 miniDOAS mk.2

miniDOAS mk. 1 (Kiruna 2002)
miniDOAS mk. 1 (Kiruna 2002)
miniDOAS mk. 2 (Kiruna 2004)
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Figure 4.3:  Spectral shift of the measured spectra relative to the solar reference recorded at balloon
float vs. pressure for the miniDOAS mk.1 compared to mk.2. The solar reference spectra were recorded at
4.6 hPa, 10.3hPa, and 7.1 hPa for the Kiruna 2002, 2003, and 2004 flights, respectively.

In this section, the instrumental improvements and the performance of the current version of the
miniDOAS instrument are discussed.

The biggest problem of the initial setup was the missing pressure stabilization. Hence, the spectrometer
optics was always at ambient pressure. When the pressure decreases from ~ 1000 hPa at ground level to
~ 5hPa at balloon float, the refractive index of the air inside the spectrograph also decreases influencing
the optical imaging and resulting in a spectral shift of the recorded spectra of more than one pixel. A
pressure sealed housing has been developed to enclose the two spectrometers. The effect on the imaging
can be seen in figure 4.3. For the unstabilized mk.1 flights, the spectral shift decreased from ~ 1.7 pixels
at ground pressure to zero at float, while the spectral shift is much smaller for the mk.2 flight. The
reason for the remaining shift of the pressure stabilized mk.2 instrument is somewhat unclear. As the
sign of the shift is the opposite, it cannot be explained by a bad sealing of the instrument, unless the
internal design of the different spectrometers used has changed. A possible explanation could be that the
instrument was not perfectly sealed and air entered the spectrograph during the ascent thus increasing
the pressure inside. This is, however, unlikely as tests on the ground showed that the instrument is stable
for many hours. The spectral shift could also be attributed to an imperfect temperature stabilization
as a change in temperature also effects the optical imaging of the spectrograph. Unfortunately, there
has been no further flight in the mk.2 configuration so far to further investigate this effect.

In order to achieve a stable pressure during flight, a vacuum sealed housing to for the two spectrometers
was built. Its design is similar to the housing of the direct sunlight balloon spectrometer. In order to
save weight, it is completely made of aluminum. It consists of a pot where the two spectrometers are
placed in and a flange which is screwed onto it with a rubber ring in between. On the flange, there
are vacuumproof plugs for the two USB cables and feedthroughs for the glass fibers. Therefore, new
custom built glass fiber bundles are used. They consist of 11 single fibers each 100 ym in diameter
aligned linearly at the exit connected to the spectrometers forming a 1100 um high slit. This means
that the 1000 pm high entrance slit of each spectrometer is completely lit resulting in a higher light
throughput compared to the old setup. The glass fiber at the telescope side have the same geometry
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as in the mk.1 configuration, i.e. round geometry for the nadir channel and linear geometry for the
limb channel. Since 11 fibers are used now the horizontal FOV of the limb telescope increased to 2.1°.
The vertical FOV is still 0.19°. The FOV of the nadir telescope is now approx. 0.8°. The sealing was
checked in the laboratory. The instrument can keep a pressure below 10~! hPa for over a week. The
imaging has also been checked in the laboratory and is stable for over 12h as long as the temperature
is constant. For temperature stabilization, the whole aluminum pot with the spectrographs inside is
put into an epoxy glass housing with a water ice mixture inside. The rest of the setup like telescopes
and board computer remains unchanged. Due to the additional aluminum housing, the total weight
of the instrument (including fibers, stepper motor and electronics) increased to 4.3kg plus 2.8kg of
water-ice-mixture.

Thanks to the higher light throughput and the strongly decreased spectral shift, much lower residuals
can be achieved which allows the evaluation of small absorbers like BrO (for a detailed discussion of
the results see section 6.5).

4.2 Characterization of the Instrument

4.2.1 Instrumental Noise
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Figure 4.4: Left panel: Root mean square, or 1-o (filled squares) and peak to peak residual (open squares)
as a function of the number of co-added spectra N at 80% illumination level of the CCD array detector for
white light of an Ulbricht sphere (black symbols and lines) and skylight (red symbols and lines). Right panel:
electronic noise (red symbols and lines) and resulting residuals assuming 80 % saturation level (red symbols
and lines) as a function of the number of co-added scans N.

Several effects contribute to the total instrumental noise. There are random noise contribution caused by
the detector electronics and the statical noise of the photo-electrons themselves. Additionally, system-
atic effects, e.g., caused by pixel structures of the detector or a non-linearity of the detector sensitivity
contribute to the instrumental noise. In this section, first, the random noise contributions are given
quantitatively, and then the systematic noise sources and ways to reduce them are discussed qualita-
tively.
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The most dominant source of noise is caused by the photon-electron statistics. Assuming them to be
normally distributed, their 1-o noise is given by The square root of their number. The well-depth of
the CCD-detector is 62500 as given by the manufacturer (Ocean Optics, 2004). Assuming a saturation
level of 80 % yields an photo-electron shot noise of 224 electrons corresponding to a 1-o noise of
Ophoto—electron = 0.474 % for a single scan. As full saturation corresponds to 4096 counts, 1count
corresponds to ~ 15 photo — electrons. Thus, the photo-electron noise is ~ 15 counts. If a white light
source (e.g. a halogen lamp) is used, the noise level of a single spectrum can be experimentally obtained.
For structured light sources (e.g. the sun), the noise can only be experimentally measured by dividing
two spectra. Also for a DOAS evaluation, the spectrum is divided by a reference spectrum of the
same light source. Therefore, always two spectra contribute and, consequently, the noise increases
by factor of v/2. Thus, the physical limit of the residual given by the photo-electron shot noise is
Tphoto—electron = 0.67 %.

The second most important noise contribution is caused by the detector and its attached electronics.
Noise is caused during the read-out, the pre-amplifying and A /D-conversion processes. As no details
about the implemented electronic devices are available, quantitative numbers of the electronic noise can
only be obtained experimentally by recording dark spectra, i.e. spectra with no photo-electron noise.
Again the statistics is tricky. In figure 4.4, the electronic noise (black lines) is determined experimentally
by subtraction of two consecutively measured dark spectra. A noise of 66 electrons (corresponding to
4.4 counts) for 1 scan, which is increasing proportionally to the square root of the number of scans,
is found. This yields for a single offset 45.2 electrons or 3.1 counts (i.e. the afore mentioned numbers
divided by v/2)). As 2 spectra with their electronic noise contribute to a DOAS evaluation, the plotted
numbers give the real noise contribution caused by the electronics. Assuming 80 % saturation level, the
electron contributes to the residual with oejectronic = 0.095 % for 1 scan. As it is pure random noise,
it decreases proportionally with the number of scans which is shown in figure 4.4 by red lines. Note
that, strictly speaking, 4 electronic offsets contribute to the DOAS evaluation of 1 spectrum as both the
spectrum to be evaluated and the reference spectrum are offset corrected by a dark spectrum (called
offset spectrum). However, the offset spectrum is usually recorded with 10000 scans corresponding to
a noise of 10~° which can be neglected even for 1000 co-added scans.
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Figure 4.5: Typical dark current spectrum after removal of the electronic offset for 60s integration time
(black line) and resulting noise spectrum (red line), i.e. two subtracted dark current spectra of the same
integration time.

The dark current is caused by a discharge of the detector pixels without light impact. The dark current
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Figure 4.6: Left panel: Average (black squares) and maximum (red squares) dark current vs. integration
time (T;,:) and linear fits of the measured data (solid lines). Right panel: rms noise (o = \/02, + ¢2,) vs.
Tint (black squares) and non-linear fit thereof (red line).

spectrum of the SONY ILX511 (see figure 4.5, black line) shows a large pixel to pixel variation e.g.,
next to pixels with very small dark current there are pixels for which the current is up to 18 counts/s
(corresponding to 270 electrons/s) (see figure 4.6, left panel). The average dark current is measured at
1.09 counts/s (corresponding to 16.6 electrons/s). The dark current noise spectrum (see figure 4.5, red
line) does not show any structures. The dark current noise cannot be independently measured as the
electronic noise o is also contributing to the total noise o of a dark spectrum. However, the electronic
noise is constant while the dark current noise is increasing with the square root of the integration time
Tint: 0gc = T+ VTint. 0 = /02 + 2% - Ty is non-linearly fitted to the measured rms noise data. A
value of x = 0.42counts/ 5 is found. For typical integration times of ~ 100ms during balloon flight,
the dark current noise only contributes with 4 - 107° to the total noise (assuming an 80 % saturated
spectrum), which is negligible.

The root-mean-square sum of the above contributions' gives a total noise of o4 = 0.68 %. As all
these sources of noise are purely random and proportional to the number of scans, the total noise of
the measurement can be reduced by summing up multiple spectra. Figure 4.4 (left panel) shows the
total noise at 80% saturation as a function of the number of co-added spectra for both white light and
skylight as source. It can be seen that the noise is proportional to the square of the reciprocal number
of scans N up to N = 10000 for white light as source. For solar light as source, the residual noise
is slightly higher at high scan numbers (N > 1000), resulting from incompletely removed Fraunhofer
residuals. For the white light source, the total noise for a single scan is measured at 0.63% which is
close to the above mentioned number of 0.68 % obtained by summing up the theoretical photo-electron
shot noise and the measured electronic noise. For a fairly large number of scans the instrument, in fact,
operates at the physical limits given by the photo-electron and electronic noise. During balloon flight
up to 1000 spectra (corresponding to ~ 20 s integration time) are co-added resulting in a total 1-o noise
of 2.4-107%.

The most important systematic source of noise are the diode structure. It is caused by the different
sensitivity of the individual detector pixels. If the instrument were totally stable this would cause no

1 — 2 2
Otot = \/O-photofelect'ron + Oclectronic



72 CHAPTER 4. INSTRUMENTAL AND EXPERIMENTAL DETAILS

rms residual [10]

wavelength [nm] 30 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
490 495 500 505 510 515 520 -|||||||||||||||||||||||||||||
1 P BRI PRSI IS BRI B ] = residual raw spectra
3.8 1 E residual corrected spectra
] 1 —— spectral shift
3.6—_ 25—_
3.4 ]
E] b ]
S, 3.2 20 -
2 ] T 1
g 3.0 = ]
€ b g 1
= 28] 3 15
1 A
2.6—_ 4
] raw spectrum 10 b
2.4+ lamp corrected spectrum 7]
21.013 high pass filtered lamp spectrum ]
= ]
H 4
£1.00 5]
- 1 o
20.99 4 ————————— | — 77— 7
490 495 500 505 510 515 520 0.0 0.2 0.4 0.6 0.8 1.0
wavelength [nm] shift [pixels]

Figure 4.7: Left panel: comparison of a raw (red line) and a corrected spectrum (green line). Also shown
is the high pass filtered lamp spectrum (black line) used for the correction. Right panel: spectral shift (black
line) and residual of the DOAS evaluations in the visible spectral range (490 — 520 nm) with (green squares)
and without (red squares) lamp correction.

problems as every spectrum is divided by the reference spectrum during the DOAS evaluation process.
But if shifts occur due to instable pressure and temperature inside the instrument, every single pixel is
not divided by the same pixel of the reference spectrum which causes large residuals by far exceeding
the residuals caused by photo-electron and electronic noise. As these structures are very systematic, a
remedy for this problem is to divide every spectrum by a high pass filtered white lamp spectrum prior
to the DOAS evaluation. This "lamp correction" is illustrated in figure 4.7. In the left panel, the diode
structures, i.e. a high pass filtered white lamp spectrum, are shown as well as the noisy raw spectrum
and the much smoother corrected spectrum. In the left panel, the impact of the lamp correction is
shown by the example of the balloon ascent at Kiruna 2003. Using the uncorrected spectra for the
DOAS evaluation results in RMS residuals increasing from ~ 1 - 1072 for shifts < 0.2 pixels to values
above 2-1072 for shifts > 1 pixel. Using the corrected spectra, the residuals have values close to 1-1073
independent of the spectral shift.

4.2.2 Detector Linearity

An important factor for the quality of a spectrometer is the linearity of the detector. Especially in the
case of absolute radiance measurements, any nonlinearity directly affects the accuracy of the result. For
DOAS evaluations, a nonlinearity is a minor problem as long as the intensity within the wavelength
interval of interest is rather constant. Nevertheless, nonlinearities can introduce additional structures
and lead to higher retrieval uncertainties.

The Windows drivers for the spectrometer provided by Ocean Optics (2004) have a linearity correction
feature. This feature uses a polynomial of 7*" degree to calculate a corrected count rate from every
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Figure 4.8: Relative sensitivity of the detector with the linearity correction turned on (left panel) and off
(right panel). Plotted is the difference of two spectra with 1 ms difference in integration time divided by a
spectrum divided by its integration time (17 ms in the left, and 3ms in the right panel, respectively) vs. the
saturation of every single pixel.

measured count rate for every pixel:
7
d=c: Zajcj, (4.1)
j=0

where ¢’ denotes the corrected and c the uncorrected count rate. However, this feature cannot be
switched on by our measurement software DOASIS. So during all balloon flight it was switched off. As
I found out only afterwards, it is possible to switch the linearity correction on in the original software
OOIBase32 (Ocean Optics, 2004). Then the driver performs the linearity correction also when called
from the DOASIS software. This will be done for future balloon flights. As all the measured spectra
consist of many co-added scans, the linearity correction cannot be performed afterwards for already
conducted flights.

The detector linearity is checked in a laboratory measurements. The white light of an Ulbrich sphere,
which is also used for the absolute calibration, is used. The current through the lamp is kept constant
which ensures a constant light output during the entire measurement series given the voltage stays
constant, too, which is the case after the lamp has reached a constant temperature, approx. 30 — 60 min
after it is switched on. The intensity is measured for integration times ranging between the minimum
integration time of the spectrograph (3 ms) up to the time when full saturation is reached (~ 20ms) in
steps of 1ms. 1000 scans have been added for a better S/N ratio. Then the difference of 2 consecutive
spectra, i.e. spectra with 1ms difference in integration time, is calculated. This difference gives the
number of counts which are measured within 1 ms after a certain saturation is reached. These differences
obtained for all integration times are normalized by dividing them by a spectrum with the intensity of
the lamp measured in 1 ms, obtained by taking one spectrum and dividing it by its integration time.
This can be written as:
c(t) —c(t—1
A=) (42)
T
where ¢(t) is the number of counts measured within the time ¢, and ¢(7T") /T is a spectrum with integration
time 7" divided by its integration time 7. This function is a measure of the sensitivity of every detector
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pixel at a certain saturation. This function is plotted vs. the degree of saturation of each pixel of the
spectrum ¢(t) in figure 4.8. The left panel shows the sensitivity with the linearity correction turned on
in the driver while the right panel shows a similar measurement with the linearity correction turned
off. In an ideal case, i.e. if the detector were perfectly linear and had no noise, all values would be
equal to one. Any deviation from one is due to measurement noise or detector nonlinearities. In the
uncorrected case, the sensitivity decreases from values near 1.03 for low saturation levels (0.2 — 0.3) to
values below 0.9 for a saturation level of 0.9. This value of 0.9 means that the detector sensitivity to
photons is 10 % lower for a pixel with 90 % saturation compared to a pixel with 40 % saturation. Note
that this does not mean that spectra with a saturation of 90 % have a 10 % lower count rate per time
compared to one with a saturation of 40 % as the actual measured count rate is the integral over the
shown sensitivity function. However, this nonlinearity effect can result in deviations of higher saturated
spectra compared to lower saturated ones in the order of several %. In the linearity corrected case, the
sensitivity is almost constant for saturation levels between 0.2 and 0.9 within the uncertainties given by
the measurement noise. For saturation levels below 0.1, the measurements are too noisy to allow clear
conclusions. The deviations of the curves for different integration times might be due to fluctuations in
the lamp’s output or the linearity correction itself might lead to these small intensity fluctuations. An
explanation is the temperature dependant offset which is always added to every spectrum, i.e. every
measured count rate ¢; for pixel ¢ is the sum of the actual signal caused by the photoelectrons s; and
an offset value 0;(T") which strongly depends on temperature 7', i.e. ¢; = s; + 0;(T). As the offset
is not known at the moment a spectrum is recorded, the automatic linearity correction can only take
the measured value ¢; as input although it should be applied to the signal s;. However, this error
should be small in the case of a temperature stabilized measurement and high saturation levels when
s; gets significantly larger than the offset (the offset is in the order of 1 — 10 % of the full saturation
depending on the temperature and the individual spectrometer). As already mentioned above, the
intensity correction cannot be performed afterwards on offset-corrected spectra as it obviously has to
be done for every single scan individually and, thus, cannot be applied to spectra consisting of several
co-added scans.

4.2.3 Spectrograph Stray Light
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Figure 4.9: Straylight socket determined by filter measurements of light from a halogen lamp.
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To estimate the amount of straylight contribution, a series of measurements of the light of a halogen
lamp using several filters is performed in the laboratory. The used filters have a throughput near 1
for wavelengths above the cut-off wavelength and a throughput of < 1075 at wavelengths below this
wavelength with a transition range of 20 nm around the cut-off wavelength. E.g., the used filter type
0OG530 has a transmission of 0.86 at 550 nm, 0.48 at 530 nm, and 5-107° 510nm. So all light detected
at wavelengths below the cut-off wavelength is assumed to be straylight. As the straylight reaches
the detector indirectly, it is assumed to be wavelength Figure 4.9 reveals that the straylight socket
contributes with to the measured signal by 0.2 % at the low and 0.3 % at the high wavelength end of
the detector for full saturation. This means that also for poorly saturated spectra, e.g. in the UV at
tropospheric altitudes where the saturation level is only around 20 %, the straylight ratio is around
1 %. It should be noted that for solar radiation as light source the situation might be slightly different
but the numbers should be of the same order. This can be seen by comparing the measured curves
for the filters with highest (OG 590) and lowest cut-off wavelength (GG 385). Although the OG 590
filter cuts off a big portion of the lamp’s output, the straylight is not much lower than for the GG
385 filter. Additionally, the straylight contamination of the measured spectra is corrected for by the
additive polynomial in the DOAS fit. Hence, it is believed that straylight does not seriously affect the
accuracy of the results of the DOAS fit. For the absolute radiance measurements straylight can lead to
errors of up to 1 % in the worst condition, i.e. in the UV at low altitudes where the saturation level of
the measured spectra is only around 20 %.

4.3 Observation Geometry
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Figure 4.10: Sketch of the viewing geometry for limb (left panel) and nadir observations (right panel).

The miniDOAS instrument can be operated in three observation modes. They are illustrated in figure
4.10. One spectrometer channel is looking in limb direction. Its azimuth angle is kept fixed during the
entire flight at an angle of 90° relative to the sun given the gondola is perfectly azimuth-stabilized. This
ensures that the local SZA is constant along most of the light path which is important when measuring
photochemically active species like BrO or NOy. This viewing direction has the disadvantage of being
at the minimum of the radiance as the Rayleigh scattering cross section gets minimal for an angle of
90° to the sun. On the other hand, looking into a relative radiance minimum ensures that the radiance
is not strongly changing when the gondola oscillates in azimuthal direction. Looking at an angle of 180°
to the sun would be another option resulting in a higher radiance as long as the SZA is below 90°. For
higher SZA, the telescope would look into the dark hemisphere. Looking into the direction of the sun is
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not practicable because of the danger of looking directly into the sun resulting in oversaturated spectra
that cannot be evaluated. The elevation angle of the limb telescope is fixed during balloon ascent and
vertical profiles can be inferred from the measurements as the balloon ascents through the atmosphere.
At balloon float, i.e. when the balloon altitude is more or less constant, the limb telescope’s elevation
angle is changed and, thus, scanning through the atmosphere. The second spectrometer channel is
looking into nadir direction, i.e. straight downwards. It was also tested for direct sun observations (see
section 6.6.1).

4.4 DOAS Evaluation

For the DOAS evaluation, the WinDOAS software (Fayt and van Roozendael, 2001) is used whose
features are briefly described in section 3.1.2.

4.4.1 Wavelength Calibration of the Spectrograph
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Figure 4.11: Left panel: Example of an HgCd spectrum (black squares) and 2-peak-GauR fit of the
measured spectrum (red line). Right panel: example wavelength-pixel correlation plot (black squares) and
15t — 5th order polynomial fit (colored lines) of the experimental data.

An important issue for DOAS evaluation is the exact wavelength calibration of both the measured
spectra and the fitted trace gas cross sections. Literature cross sections measured with Fourier Trans-
form (FT) spectrometers are believed to have a very precise wavelength calibration. The wavelength
calibration of grating spectrometers is not exactly known and depends on the measurement conditions
(e.g. temperature and pressure inside the spectrograph). Hence, it has to be anew determined for every
balloon flight by measuring spectral features of known wavelength, e.g. gas emission lines. But also the
Fraunhofer lines of the spectra to be evaluated can be used for wavelength calibration.

One way to determine the wavelength calibration is to record the line spectrum of low pressure gas
lamps (e.g. mercury-cadmium (HgCd), Neon, Krypton,...) in the laboratory before the balloon flight.
However, this method is inaccurate in several aspects. The instrumental conditions (spectrograph tem-
perature and, especially, pressure) and, thus, the wavelength-pixel mapping are different under lab and
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flight conditions. The line width of the emission lines is generally much narrower than the spectro-
graph’s resolution. Hence, the lines can be approximated as delta-peaks and the recorded spectrum is
given by the instrument function. If the instrument function is can be formulated mathematically (e.g.
by a Gaussian), the exact position of the line can be obtained by fitting the respective instrument line
shape to the spectrum. If the instrument function is not known, the line position can be approximated
(i.e. with 1 pixel uncertainty) by the pixel with maximum intensity. Additional uncertainties are intro-
duced if multiple lines are considered. The positions of the individual lines cannot be determined as
exactly as for single lines. In figure 4.11 (left panel), an example of a measured HgCd line spectrum
together with a 2-peak-Gauf fit is shown. The instrument function can be very well approximated by a
Gaussian although a slight asymmetry is observed. However, the line position can be determined quite
precisely. In figure 4.11 (right panel), the obtained pixel-wavelength correlation for all lines are shown.
Polynomials with degrees between 1 and 5 are fitted to the experimental data. Except for the linear
fit, which significantly deviates from the polynomial fits with higher degrees (up to 10 nm) the obtained
fit results are very similar which shows that the non-linearity of the wavelength-pixel-correlation is not
very strong.

For sunlight measurements, a more precise wavelength calibration is possible using the Fraunhofer struc-
tures. One possible method is to use the calibration feature of WinDOAS. The application of this tool
is briefly described here, for more details see (Fayt and van Roozendael, 2001). The wavelength range
of the spectrograph is split into several regions. In every region, a model-function (e.g. Gaussian) is op-
timized in a way that its convolution with a high-resolved Kurucz spectrum best matches the measured
spectrum. For every region, the instrumental resolution and the wavelength calibration is obtained.
This method only yields reasonable results if the instrumental line function is well approximated by the
applied function. As shown above, the line function of the used Ocean Optics spectrometers is very close
to a Gaussian. The obtained calibration can be checked by the following method. The high-resolution
Kurucz spectrum is convolved with the measured instrumental function. The obtained spectrum is used
as reference spectrum for a DOAS evaluation. The shift and stretch parameters show deviations of the
applied wavelength calibration from that of the analyzed spectrum. The advantage of this method is
that it can be used for the same wavelength range the fit is actually performed in. Note that only the
solar reference spectrum has to be wavelength calibrated. The analyzed spectra are shifted relative the
reference by the DOAS fit algorithm. All the described methods are used for the wavelength calibration
of the spectra measured during the balloon flights and its results cross-checked. Hence, the wavelength
calibration is believed to be precisely known.

4.4.2 General

All spectra measured during a balloon flight are corrected for offset and dark current prior to the DOAS
evaluation. Therefore, offset and dark current spectra recorded either on the ground short before the
balloon launch or, if available, at balloon float after sunset are used. Afterwards, the spectra are divided
by a high pass filtered white lamp spectrum to eliminate the pixel-to-pixel structures (for details see
section 4.2.1).

All high resolution cross sections are convolved to the instrumental resolution with the actual instru-
mental slit function determined from a recorded line spectra of an HgCd lamp (A = 468nm for the
evaluations in the visible range and A = 360 nm for the BrO evaluation in the UV).

Also included in the fitting routine is a correction spectrum for the Ring effect (Grainger and Ring,
1962) calculated with WinDOAS for the actual Fraunhofer reference. As Fraunhofer reference the
first spectrum after reaching float altitude (i.e. with the lowest SZA) is used for which the trace gas
absorptions should be minimal. This is definitely the case for absorbers like O4 and HoO who have their
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highest concentrations in the troposphere and, with restrictions, for O3 which peaks typically 15km
below float altitude, but not for NOy with its maximum near float altitude. This results in negative
NO2-dSCD values throughout most of the flight.
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Figure 4.12: Sample DOAS evaluations of the miniDOAS mk.1 instrument for the flight at Kiruna March
23, 2003. Shown is the evaluation of ozone (left panel) and NO3 (right panel) in the wavelength intervals
490 — 520 nm and 400 — 450 nm, respectively, for a limb observation at float altitude in limbscanning mode
(31.62km altitude, —5.5° elevation angle, 90° azimuth angle, and 89.9° SZA for the O3 evaluation, and
30.94 km altitude, —3.5° elevation angle, 90° azimuth angle, and 89.4° SZA for the NO; evaluation,
respectively). Shown is the optical density of the absorbance of O3, NO5, Ring (red lines) and the latter plus
the residual structure (black lines). The upper two traces show the measured (red line) and the Fraunhofer
(black line) spectra. The latter is recorded at 29.75km altitude, +0.5° elevation angle, 90° azimuth angle,
and 88.5° SZA.

4.4.3 O3 Evaluation

The spectral retrieval of Oz is performed in the 490 — 520 nm range (see table 4.2 and fig. 4.12). The
following cross sections are used: Og from Voigt et al. (2001) at T' = 203K or T' = 223K, NO;y from
Harder et al. (1997) at T = 217K and T = 230K, while the latter is orthogonalized with respect to the
former, HoO vapor from Rothman et al. (2003) at T = 230K and p = 400 hPa, and O4 from Hermans
(2002). All high resolution cross sections are convolved to the instrumental resolution with the actual
instrumental slit function determined from a recorded line spectrum of an HgCd lamp (A = 468 nm).
A polynomial of 3"® degree is used to account for the broad band structures. A higher degree is
not recommendable as the Og cross section is relatively broad so that correlations are likely if the
polynomial’s degree is too high. Additionally, an additive polinomial of 2" degree (intensity offset) is
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Table 4.2: Trace gas cross sections used for the DOAS evaluation of Oz in the 490 — 520 nm wavelength
region. Note that the cross section at T5 was orthogonalized with respect to the one at T}.

Trace Gas Reference T 15
O3 Voigt et al. (2001) 203 K -
NO2 Harder et al. (1997) 217 K 230 K
H,O Rothman et al. (2003) 230 K -
Oy Hermans (2002) room temp. -

Table 4.3: Trace gas cross sections used for the DOAS evaluation of NO; between 400 nm and 460 nm.
Note that the cross section at T, was orthogonalized with respect to the one at T7.

Trace Gas Reference T 15
O3 Burrows et al. (1999b) 202 K 21 K
NO2 Harder et al. (1997) 217 K -
H,O Rothman et al. (2003) 230 K -
Oy Hermans (2002) room temp. -

Table 4.4: Trace gas cross sections used for the DOAS evaluation of O4 in the 465 — 490 nm wavelength
region. Note that the cross section at 75 was orthogonalized with respect to the one at T7.

Trace Gas Reference T Ts
Os Voigt et al. (2001) 203 K | 223 K
NO2 Harder et al. (1997) 217 K 230 K
H>O Rothman et al. (2003) 230 K -
Oy Hermans (2002) room temp. -

Table 4.5: Trace gas cross sections used for the DOAS evaluation of HO in the 490 — 520 nm wavelength
region. Note that the cross section at 75 was orthogonalized with respect to the one at T7.

Trace Gas Reference T Ts
Os Voigt et al. (2001) 203 K | 223 K
NO- Harder et al. (1997) 217 K 230 K
H.O Rothman et al. (2003) 230 K -
Oy Hermans (2002) room temp. —

Table 4.6: Trace gas cross sections used for the DOAS evaluation of BrO in the 347 — 359 nm wavelength
region according to (Aliwell et al., 2002). Note that the cross section at T was orthogonalized with respect
to the one at T3.

Trace Gas Reference T T
BrO Wahner et al. (1988) 228 K -
O3 Voigt et al. (2001) 203 K 223 K
NO- Harder et al. (1997) 230 K -
Oy Hermans (2002) room temp. —
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Figure 4.13: Sample DOAS evaluations of the miniDOAS mk.2 instrument for the flight at Kiruna March
24, 2004. Shown is the evaluation of NOy (upper left panel), BrO (upper right panel), HoO (lower left
panel) and Oy4 (lower right panel) in the wavelength intervals 435 — 460 nm, 346 —359 nm, 490 — 520 nm and
465 — 490 nm, respectively, for limb observations during balloon ascent (17.33km altitude, —1.5° elevation
angle, 90° azimuth angle, and 79.9° SZA for the NO, evaluation, 24.68 km altitude and 82.4° SZA for the
BrO evaluation, 2.64km altitude and 74.7° SZA for the HyO evaluation, and 11.45km altitude and 77.5°
SZA for the O4 evaluation, respectively). Shown is the optical density of the absorbance of the trace gases
and Ring cross section (red lines) and the latter plus the residual structure (black lines). The Fraunhofer

reference spectrum is recorded at 32.77km altitude, —1.5° elevation angle, 90° azimuth angle, and 85.4°
SZA.
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included to account for spectropgraph’s stray light.

4.4.4 NO, Evaluation

The spectral retrieval of NOy is performed between 400nm and 460nm (e.g. in the 435 — 460 nm
wavelength range). The following cross sections are used: Oz from Burrows et al. (1999b) at T' = 202 K
and T = 221 K while the latter is orthogonalized with respect to the former, NOs from Harder et al.
(1997) at T = 217K, Ho0 vapor from Rothman et al. (2003) at T = 230K and p = 400 hPa, and Oy
from Hermans (2002). In this wavelength interval the O3 cross section from Voigt et al. (2001) recorded
with a Fourier Transform spectrometer is rather noisy because the O3 absorption gets minimal. That
is why the cross section from Burrows et al. (1999b) recorded with the GOME spectrometer at medium
resolution but higher signal to noise ratio is favored. A polynomial of 5" degree is used to account for
the broad band structures. Because the NOs cross section is highly structured, correlations with the
polynomial are unlikely. Additionally, an additive polynomial of 2"¢ degree (intensity offset) is included
to account for spectropgraph’s stray light.

4.4.5 O, Evaluation

The spectral retrieval of O4 is performed in the 465 — 490nm wavelength interval. The following
cross sections are used: Og from Voigt et al. (2001) at T' = 203K and T' = 223 K while the latter is
orthogonalized with respect to the former, NOy from Harder et al. (1997) at T = 217K and T = 230K,
while the latter is orthogonalized with respect to the former, HoO vapor from Rothman et al. (2003)
at T = 230K and p = 400hPa, and O4 from Hermans (2002). The particular problem of the DOAS
Q4 evaluation is that the O4 cross section has a rather broad band structure correlating with the
polynomial, so the degree of the polynomial is set to 3. No additive polynomial is fitted to minimize
correlations as its effect is rather small.

4.4.6 H,0 Evaluation

The spectral retrieval of HoO is done in the same wavelength interval and with the same cross sections
as Og. Alternatively, a cross section from Coheur et al. (2002) is used. For some tests two Og cross
sections from Voigt et al. (2001) at T" = 203K and T = 223K, with the latter orthogonalized with
respect to the former, have been used. However, due to the small temperature dependence of Os in this
wavelength region the effect on the HyO-dSCD is small.

4.4.7 BrO Evaluation

Thanks to the lower residuals that can be achieved with the mk.2 version of the instrument, the weak
absorber BrO can also be observed. The spectral retrieval is done according to the advices from Aliwell
et al. (2002). It is performed in the 346 — 359 nm wavelength interval with the following cross sections:
BrO from Wahner et al. (1988) at T = 228K and shifted by +0.25nm to match the wavelength
calibration from the IUP Bremen (Fleischmann et al., 2000), O3 from Voigt et al. (2001) at T = 203K
and T = 223 K while the latter is orthogonalized with respect to the former, NOs from Harder et al.
(1997) at T' = 230K and Oy4 from Hermans (2002). The particular challenge of the BrO evaluation is to
detect the rather small BrO absorption, which is only a factor of ~ 2—5 above the detection limit, before
the background of the much higher O3 absorption. The O3 absorption has to be completely removed
the spectrum as remaining Oz structures might be mistaken as BrO. Unfortunately, no self-recorded
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O3 cross sections are available, so that cross sections from the literature convolved with the instrument’s
slitfunction have to be used. This is a potential source of errors as the line shape is not exactly known
so that some structures remain in the residual which can be attributed to Oz. In future, it is planned to
record Og cross sections with the instrument in the laboratory to further improve the BrO fit. Another
crucial point is the choice of an appropriate Ring spectrum. It is found that the Ring cross sections
calculated with the WinDOAS program cannot be used for BrO evaluation as their structures are too
broad (see section 3.1.3). Using Ring cross sections either calculated with MFC or DOASIS together
with an additive polynomial (intensity offset) of 2"¢ degree significantly reduces the residuals and, thus,
improves the fit. The BrO evaluation is also sensitive to the degree of the polynomial used to remove
the broad band structures. It is found that the polynomial correlates with the O4 cross section, as only
a small part of the O4 absorption band lies in the fitting range. If the polynomial’s degree is > 2, the
04-SCDs become unrealistically negative. However, the O4-SCDs have realistic values for a polynomial
of 2"¢ degree. Consequently, the polynomial’s degree is set to 2. The retrieved BrO-SCDs are also
sensitive to the chosen fitting range, most likely due to correlations with other cross sections, so the
346 — 359 nm wavelength interval is chosen as recommended by Aliwell et al. (2002).

4.4.8 Determination of the Solar Reference Offset

One particular problem of the DOAS evaluation is that it only yields differential Slant Column Densities
(dSCD) as result, i.e. the trace gas abundance of the measurement spectrum minus that of the solar
reference spectrum. But the quantity of interest is the absolute SCD which can be inferred from the
dSCD only if the trace gas amount contained in the solar reference spectrum is known. This value can
usually not be easily determined. Several possibilities are discussed in the following.

The most direct way is to use a solar reference spectrum with no (or known) trace gas absorbtion.
Usually, the high resolution Kurucz spectrum convolved to the instrumental resolution is used. However,
the use of a Kurucz reference involves large residuals so that this method is only possible for strong
absorbers (e.g. Oz or H2O). But even if the DOAS evaluation is possible, the strong residual structures
caused by the incompletely removed Fraunhofer lines can lead to huge systematical errors, i.e. a
constant offset additional to the actual SCD value. In that case, this method cannot be used as it
is the offset which is to be determined (for details see the corresponding results sections, e.g. 6.5.5).
It would be best to have a reference spectrum recorded with the same instrument with known or
little trace gas absorption. This could be obtained by recording spectra at balloon float with a high
positive elevation angle of the limb telescope. This, however, implies looking into relative darkness
and such a measurement has not been done so far. Another possibility is to use the correlative profile
measurements to determine the offset. Therefore, a profile, e.g., inferred from the solar occultation or
ozone sonde measurements together with the RT calculated BoxAMF is used to simulate an SCD value
for each measured dSCD. The difference is the desired offset value. If the instrument is not altered,
this spectrum can be used as a reference for all further balloon flights. Unfortunately, no 2 flights
in exactly the same configuration have been conducted so far. Another possibility is to use a profile
from a chemical transport model to simulate the SCDs, which works well in the case of BrO where
the concentrations above float altitude, i.e. ~ 32 km are small and well known. For NOs, however,
the concentrations are too high and the uncertainties too big to give reasonable results (for a detailed
discussion see the respective result sections).
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4.5 Absolute Radiometric Calibration

In this section experimental details about the absolute radiometric calibration performed in cooperation
with the IUP Bremen are discussed.

The radiometric calibration of both the nadir and the limb spectrometer is performed in two steps:
In a first step, a small, but not absolutely calibrated, Ulbricht sphere is absolutely calibrated against
an absolute radiance standard using the miniDOAS spectrometer as transfer device. In a second step,
this now absolutely calibrated integrating sphere is used for radiometric calibration of each of the
spectrometers, shortly before the actual balloon flight is conducted.

For absolute radiance calibration, a NIST (National Institute of Standards and Technology) calibrated
FEL 1000 W irradiance Quartz Tungsten Halogen (QTH) standard (serial number F-455 from OSRAM
Sylvania (Walker et al., 1987)) in combination with a calibrated space grade Spectralon diffuser plate
manufactured by Labsphere is employed. The same setup has been used for absolute radiometric
calibration of SCTAMACHY during the SCTAMACHY calibration campaign (Dobber, 1999). The bi-
directional reflectance distribution function (BRDF) of the diffuser plate is calibrated in 0—23° geometry
by the Dutch company TNO TPD (for more details see TNO TPD report of calibration (van Leeuwen,
2003)). NIST provides the calibration at a distance of 50 cm. This means that the radiance reflected from
the diffuser plate under an angle of 23° is known if the NIST lamp is set up at a distance of 50 cm from
the diffuser plate. The wavelength dependent radiometric irradiance accuracy of the NIST-FEL lamp
ranges between 0.91% — 1.09%, and the long term reproducibility is 0.87% —0.96% in the 350 —654.6 nm
wavelength range (for more details see the NIST report of calibration (844,/25 70 96-96-1, 1997). For the
radiance transfer measurements, the NIST-FEL lamp and the Spectralon diffuser plate are positioned
into the optical axis given by the light intake of the transfer spectrometer as recommended by Dobber
(1999). The field of view of the spectrometer light intake telescope is small and completely located
inside the characterized lamp irradiance plane on the Spectralon diffuser plate. After the measurement
is taken, a not yet absolutely calibrated integrating sphere (type BN-102-3) is cross calibrated with the
calibrated transfer spectrometer. The uncertainty of the radiance of the NIST-FEL lamp and Spectralon
setup in the 300 — 700 nm region is 2 — 3% as indicated by test measurements performed during the
SCIAMACHY calibration campaign (Gerilowski, 2004). For the somewhat less ideal conditions in the
field, the estimated accuracy of the absolute radiometric calibration for both spectrometers is assessed
to 35% at 380nm, 10% at 440 nm and 4% at 510 nm, including all known sources of uncertainties and
errors. The reproducibility of the integrating sphere measurements is better than 1%.

The absolute calibration in the UV, where the accuracy is much worse than in the visible range is
cross-checked by comparing the measured limb radiance at two wavelengths (e.g. 360 nm vs. 490 nm),
for conditions under which the radiative transfer is simple. Usually, spectra recorded at balloon float
altitude, where the radiative transfer is dominated by Rayleigh scattering, are chosen for this test. For
further details see section 6.5.3.

4.6 The LPMA /DOAS Balloon Payload

4.6.1 The Gondola

The LPMA /DOAS balloon gondola is based on a gondola developed for astronomical observations by
the Observatoire de Genéve and was further optimized for atmospheric measurements by Camy-Peyret
et al. (1995). The gondola can be stabilized in azimuthal direction with an accuracy of about 3 — 6°
and 1° or better in the lower stratosphere and at balloon float altitude, respectively. Therefore the
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gondola is aligned to the magnetic field of the earth with a gyroscope. The gondola can be rotated with
respect to the much larger balloon. The rotational energy is converted to frictional heat through the
torque of a special joint of the gondola and the balloon. The fine-pointing is performed by a suntracker
(Hawat et al., 1995), which provides the infrared Fourier Transform Interferometer and the DOAS
UV /vis spectrograph with a parallel solar beam. Further the gondola equipment includes pressure and
temperature sensors and GPS antennas.

4.6.2 The LPMA Fourier Transform Interferometer

The infrared Fourier Transform Interferometer (FTIR) operated by the french LPMA? team is a Michel-
son interferometer with plane mirrors of the BOMEM DA2.01 type. It has an effective aperture of
45 mm and produces a maximum path difference of A,,,, = 50 cm leading to an apodised resolution of
1/A ez = 0.020cm™!. The interferometer is equipped with a two channel output optics with two liquid
nitrogen cooled detectors (HgCdTe and InSb, respectively). The spectral signatures of CIONOg, HNO3,
O3, CHy, N2O, NO, and H50 are covered by the HgCdTe detector (mid-IR) and those of HCl, NOa,
CH,4, and HF by the InSb detector (near-IR) (Camy-Peyret et al., 1995; Payan et al., 1998, 1999). The
instrument has also been used to measure H,O and O3 in the 920 nm and 760 nm region, respectively, to
retrieve CClyFs in the lower stratosphere, and to obtain COg in the 13 um region (Camy-Peyret et al.,
1999). A multifit algorithm (Carlotti, 1988) associated with an efficient minimization of the Levenberg-
Marquardt type is used for the simultaneous retrieval of vertical mixing ratio profiles of several trace
gases from ascent and occultation data. The algorithm allows to combine the information contained
in several micro-windows. The molecular parameters used in the forward model are extracted from
the HITRAN2000 database (Rothman et al., 2003). For further details on the LPMA instrument and
retrieval see also Dufour et al. (2005).

4.6.3 The Direct Sunlight DOAS

The parallel light beam of the suntracker is also used by a direct sunlight DOAS? instrument. This
spectrometer is optimized for airborne applications and was designed and developed by Ferlemann
et al. (1998, 2000) and Harder et al. (1998). The basic features of the instrument are relatively low
weight and power consumption, stability of the spectral imaging and insignificant thermal drift of the
spectroscopic system. The instrument consists of two spectrographs in one housing, which analyze the
UV and the visible part of the sunlight separately (see figure 4.14). The light enters the spectrograph
via two quartz fibres bundles, forming a rectangular entrance slit for each spectrograph on one fibre
end. On the other end of the fibres a telescope optic is mounted, intended to average the light received
from the sun, to limit the spectral transmission range of the incoming light and to match the f-number
of each spectrometer. Coming from the entrance slit, the light reaches a holographic grating, which
disperses the light of the respective wavelength range (UV: 316 — 418 nm with 0.5 nm resolution; visible:
399.9 — 653.0nm with 1.5nm resolution) onto Peltier cooled photodiode arrays. The width of the
entrance slit was chosen to fulfill the sampling criteria given by Roscoe et al. (1996), i.e. the FWHM
of the instrument function should be sampled with more than 4.5 detector pixels. The instrumental
resolution is found to be 0.45nm (= 4.5 detector pixels) and 1.48nm (= 5.7 detector pixels) for the
UV and the vis spectrometer, respectively. The whole spectrometer housing is evacuated and thermally
stabilized by a surrounding vessel filled with a water-ice mixture. In addition, a refrigerant circulates in
a cooling circuit to regulate the temperature of the optical components and to cool the warm side of the
photodiode Peltier elements. Low spectrometer stray light is achieved by suppressing the higher-order

2Laboratoire de Physique Moléculaire et Applications
3also referred to as solar occultation measurements



4.6. THE LPMA/DOAS BALLOON PAYLOAD 85

Optic Fibers Cables to Electronics

Electronic \\

\
§§§§§§§§§§@§§§§§ﬁ§§
\

N\ NN
Tl
— Ll

Cooling Shield for

,ffhe Pump

Heat Exchanger

N

Pump

T

0

72

Preamplifier Entrance Slit

%:

7

Photodiode Cooling Circuit

Array

Ice Water

B 8B B

Epoxy-glass

Holographic Gratin
Resin Housing oropn! 19

O O &) )Y Q \
\‘\\\\\\\\\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\

Stainless Steel
Insulation Housing

Figure 4.14:  Schematic drawing of the direct sunlight DOAS spectrograph. Two holographic grating
spectrographs (UV and visible) are integrated into a vacuum-sealed aluminum container. The light enters
the spectrographs through two quartz fibre bundles which form an apparent rectangular slit at their end.
Light detection is performed with two photodiode array detectors. The whole container is thermostated by
a liquid-water-ice-filled vessel surrounding it. In addition, a refrigerant is circulated in a cooling circuit to
regulate the temperature of the optical components and to cool the warm side of the Peltier elements.

and zero-order grating reflections by using light traps and, for some flights, by including a dispersive
prism preananalyzer for the UV spectrograph ( Viadelis, 1998). A detailed characterization of the DOAS
spectrograph can be found in Bauer (1997). In the wavelength range covered by the combination of
the UV and vis spectrograph, absorption features of several species can be found, e.g. Oz, BrO, NOq,
OCIO, SO3, HNOy, HCHO, O4 etc. in the UV range, and O3z, NO,, H,O, O4, NO3, OCIO, 10, OIO
etc. in the vis range. The performance and quality of the direct sunlight DOAS spectrometer has been
demonstrated during 13 flights (Ferlemann et al., 1998, 2000; Harder et al., 1998, 2000; Pfeilsticker et al.,
2000, 2001; Fitzenberger et al., 2003; Bosch et al., 2001, 2003; Dorf et al., 2005; Butz et al., 2005). The
instrument is also cross validated with other balloon-borne and satellite instruments (Randall et al.,
2002; Sugita et al., 2002; Fitzenberger et al., 2003; Pfeilsticker et al., 2003; Sioris et al., 2003). Its
measurements are therefore used as a reference for the validation of the novel miniDOAS instrument.
For the most recent flights, the instrument is absolutely calibrated in the field before flight. For details
about the calibration technique and results of the solar irradiance measurements see Gurlit et al. (2003,
2004). An Electro-Chemical Cell (ECC) Ozone-Sonde is connected to the control electronics of the
DOAS spectrograph providing in-situ information of the Oz-concentration along the balloon trajectory.
The Os-profile measured by the ECC O3 Sonde is also used for the validation of the miniDOAS Og3-
profile measurements.



86

CHAPTER 4. INSTRUMENTAL AND EXPERIMENTAL DETAILS



Chapter 5

Sensitivity Studies and Error Analysis

In this chapter, the influence of uncertainties of the input parameters on the output of the RT calcula-
tions is examined. The effects of the errors on the profile retrieval is also discussed. Finally, the findings
are used to develop strategies for optimal measurements.

5.1 Sensitivity of the TRACY RT Calculations

In this section, it is reported on sensitivity studies of the RT modeling to the various input parameters
needed by TRACY. The parameters under examination are the viewing geometry (detector aperture
and its elevation and azimuth angle), wavelength and atmospheric parameters like aerosol load and
cloud conditions. If not otherwise stated, the following parameters are used for the simulations: half
aperture angle of 0.67° in vertical, and 0.1° in horizontal direction. The elevation is 1.5° below the
horizon, the azimuth angle is 90° to the sun and the wavelength 490 nm

5.1.1 Aperture Angle of the Telescope

First, the effect on the radiative modeling arising from the uncertainty of the field of view of the detector
is studied. The telescope’s opening aperture is determined geometrically from the focal length of the
lens and the size of the entrance slit of the glass fiber bundle (see section 4.1). The horizontal half
aperture angle is 0.67° for the mk.1 and 1.05° for the mk.2 of the instrument. The vertical half aperture
angle is 0.095°. No measurements of the field of view exist as the angles are very small and, thus,
difficult to determine experimentally.

Figures 5.1 - 5.3 show simulated radiance, O3-SCD, and NO5-SCD vs. altitude as a function of horizontal
(left panels) and vertical aperture angle (right panels). It can be seen that all three quantities do not
depend on the vertical aperture angle between 0.1° and 5°. In vertical direction, increasing discrepancies
are observed for half aperture angles > 1°. However, for horizontal aperture angles < 0.5° the simulated
radiances and SCDs agree within their respective error bars. To summarize, it can be stated that small
derivations of the real field from the calculated angles both in vertical and horizontal direction are not
expected to affect the radiative transfer calculations.
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Figure 5.5: Relative deviation of the O3-SCDs (left panel) and NO3-SCDs (right panel) obtained by the
two methods (see figure 5.4) vs. detector altitude as a function of wavelength.

5.1.2 Wavelength

The wavelength of the analyzed radiation is not really subject to uncertainty. But as DOAS evaluations
are typically performed in wavelength intervals of 10 — 50 nm while the RT is calculated at the center
wavelength of the respective inverval, it is important to examine the wavelength dependence of the
RT. Absolute radiance measurements are available for every single detector pixel so it can be directly
compared to a simulation for the same wavelength, so the wavelength dependence of the radiance is
not examined here. In figure 5.4, O3 and NO2-SCDs are plotted vs. detector altitude as a function
of wavelength between 360 and 490nm. Two sets of SCDs are plotted for each wavelength. The
lines together with error bars are the direct TRACY output. Additionally, the SCD is calculated by
multiplying the BoxAMF calculated by TRACY by a vertical profile. Theoretically both methods
should yield the same result. However, discrepancies of > 10 % are observed under certain conditions.
This can be seen in figure 5.5 where the relative deviation of the results of the two methods is plotted
vs. altitude. For O3-SCDs and wavelengths between 360 and 420 nm the discrepancies are rather small,
ie. <1 % for most altitudes. For 450 nm the deviations are already higher and for the simulation at
490 nm the SCDs calculated using the BoxAMF are generally smaller than the direct TRACY values by
3 — 7 %. In the case of NO3-SCDs, the deviations are generally higher, i.e. > 10 % for the lowest and
highest altitudes of the simulation and almost independent on wavelength. The reason for this behavior
is unclear.

The O3-SCDs (see figure 5.4, left panel) show a rather strong wavelength dependence, especially at
altitudes in the 10 — 25km range. However, the deviations between the simulations decrease with
wavelength and are rather small between 450 nm and 490 nm and, thus, should not significantly affect
the RT in the 490 — 520 nm interval where the O3 DOAS evaluation is performed. NOs, which has its
concentration maximum at higher altitudes, is less affected by the wavelength dependence of the RT.
This can be seen in 5.4 (right panel). Again, the wavelength dependence of the RT should be less a
problem in the NOg evaluation interval (400 — 450 nm or 435 — 460 nm).
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5.1.3 Elevation Angle of the Detector

From all parameters the elevation angle of the detector has the strongest impact on the limb measure-
ments. This is examined in the following by simulating limb radiances (figure 5.6), Os- (fig. 5.7), and
NO,-SCDs (fig. 5.7) as a function of elevation angle. Additionally, the effect of elevational oscillations
is studied by calculating radiance weighted averages of the mentioned quantities:

(G0 6a) = I(po — da/2) * 2(dpo — da/2) + I(¢o) * (o) + I(po + da/2) * 2(Ppo + a/2)
0,04 I(¢o — ¢a/2) + I(¢o) + 1(¢o + ¢4/2)

where z(¢) stands for the quantity of interest (radiance I, O3z-, or NO32-SCD, respectively), I(¢) the
simulated radiance for elevation angle ¢, and ¢4 for the amplitude of the elevational oscillation around

elevation angle ¢g. As only the value of x at the upper and lower turning point of the oscillation together
with x(¢g) is taken for the calculation of the average, x(¢o, ¢4) for a real oscillation with amplitude ¢ 4
around ¢ might be closer to z(¢g), i.e the effect is overestimated, or in other words: the shown values
of (o, ) might describe an oscillation with even larger amplitude than ¢ 4.
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Figure 5.6: Left panel: RT calculated BoxAMF vs. altitude as a function of elevation angle. Right panel:
RT calculated limb radiance vs. detector altitude as a function of elevation angle.

It can be clearly seen in that all three considered quantities (limb radiance, O3- and NO2-SCD, see
figures 5.6 and 5.7 strongly depend on the elevation angle. By looking at the BoxAMF (figure 5.6, left
panel), it can be seen that the tangent height (i.e. altitude layer where the BoxAMF gets maximal)
is strongly decreasing with deceasing elevation for negative elevation angles. E.g. for —3° elevation
angle, the tangent height is about 7km below the actual detector altitude and for —1° about 1km
below. For elevation angles > —0.5°, the tangent height coincides with the detector altitude but the
BoxAMF, especially at the detector altitude, is strongly decreasing with increasing elevation angle
which, consequently, causes a decrease of the trace gas SCDs. Qualitatively, it can be seen that the
length of the light path and, thus, the SCDs increase with decreasing elevation angle. As the relative
error of the DOAS evaluation decreases with increasing SCD, the sensitivity of the measurements can be
increased by looking at a lower elevation angle. Additionally, the radiance is higher for lower elevation
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Figure 5.7: Simulated O3-SCD (left panel) and NO2-SCD (right panel) vs. detector altitude as a function
of elevation angle

angle which also increases the sensitivity of the measurements. However, the increased sensitivity is
only important in the case of BrO whose SCDs are close to the detection limit. For all other trace
gases, the statistical DOAS error is rather small.

The elevation angle is roughly adjusted on ground prior to the balloon flight. But discrepancies of
~ 0.5° between the adjusted and actual elevation angle have been observed for all the flights. However,
the strong dependence of the measured radiances and trace gas SCDs on elevation angle allows a precise
determination of the elevation angle by comparing the measurements and RT simulations, especially
for the scanning limb measurements, so that the uncertainty of the elevation angle is very low.

Elevational Oscillations

The limb measurements are affected by oscillations of the gondola around the average elevation angle
¢o which is studied in this subsection. First, the effect of elevational oscillations on the BoxAMF itself
is examined for two cases (¢y = —1.5° in the left panel and ¢y = 0° in the right panel of figure 5.8) for
selected detector altitudes (10, 20, and 30km) and amplitudes ¢4 between 1° and 4°. Qualitatively,
two things can be seen. Firstly, the effect is increasing with increasing altitude. For 10km detector
altitude, the width of the BoxAMF is only slightly increasing with increasing ¢4, while for 30km
detector altitude, appreciably lower altitudes contribute to the measurements (up to 7km below the
detector for ¢ = —1.5° and ¢4 = 3°. Secondly, the effect is stronger for lower elevation angles. For
o = 0°, the width of the Box AMF is increased to ~ 3km, while it is ~ 7 km for ¢g = —1.5° (in the case
of 30 km detector altitude and ¢4 = 3°). Obviously, the effect of elevational oscillations is also strongly
increasing with their amplitude ¢ 4. For ¢4 = 1°, the BoxAMF are very close to the still gondola case
and increasingly deviate with increasing ¢ 4.

The effect on the actually measured quantities is shown in the figures 5.10 - 5.9. Again, the case of
¢o = —1.5% is shown in the respective left and ¢y = 0° in the right panels. Additionally, the relative
deviation of the simulations assuming gondola oscillations (¢4 > 0°) from those assuming a still gondola
(i.e d4 = 0°) is plotted vs. detector altitude in the right side of each panel. One qualitative feature is
common to all cases: for all quantities the values are lower for detector altitudes below their respective
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Simulated Os- (upper row) and NOs- SCDs (lower row) vs. detector altitude as a function
of elevational oscillation with amplitude ¢4 for ¢g = —1.5° (left panels) and ¢y = 0° (right panels) shown
in solid lines. Also shown is the absolute (squares and dotted lines) and the relative deviation (squares and
solid lines) of the simulations with elevational oscillations from that for a still gondola (i.e. ¢4 = 0°).
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Figure 5.10: RT calculated limb radiance vs. detector altitude as a function of elevational oscillation with
amplitude ¢4 for ¢9 = —1.5° (left panel) and ¢y = 0° (right panel) shown in solid lines. Also shown is
the absolute (squares and dotted lines) and the relative deviation (squares and solid lines) of the simulations
with elevational oscillations from that for a still gondola (i.e. ¢4 = 0°).

maxima while the values are higher for altitudes above the maximum. As already seen for the Box AMFs,
the considered quantities are not strongly affected for ¢ 4 = 1°. The relative deviations are at most 5 %
and much below this value for detector altitudes below ~ 25km. It can also be seen that the absolute
deviations are generally stronger for ¢y = —1.5° compared to ¢y = 0°. However, the relative deviations
can be smaller for ¢y = —1.5° compared to ¢y = 0° if the absolute values are higher. The radiances
are the more sensitive than the SCDs with relative deviations exceeding 100 % for high altitudes and
amplitudes. But also the trace gas SCDs can be up to 50 % above those of a still gondola in this case.
The NOs measurements are only slightly affected at detector altitudes below ~ 25km but deviations
strongly increase when the detector altitudes surpass the NOs concentration maximum which is at that
altitude. For BrO no simulations have been undertaken, but the qualitative trend should be similar to
the case of O3 as the qualitative shape of the profile is similar.

The lessons learned from these sensitivity studies can be summarized as follows. The sensitivity of the
measurements towards trace gas SCDs can be increased by looking at lower elevation angles. However,
this also increases the effect of elevational oscillations so that an elevation angle around 0° is the best
compromise. Especially, the NOs measurements are affected by this as its maximum is higher up. In
the case of BrO, a lower elevation angle might improve the measurements and the effect of elevational
oscillations is lower at the altitude of its concentration maximum (i.e. 15 — 20 km).

5.1.4 Azimuth Angle of the Detector

The effect of azimuthal oscillations of the gondola is examined in this subsection. The azimuth angle
of the gondola is stabilized by countermovements of a pivot and measured by onboard instruments.
Typically, the azimuth angle is oscillating with amplitudes ranging between 15° in the beginning and
< 5° around the desired zero position. Only shortly after launch and when the gondola is subject to
changing wind directions which usually occur in the tropopause region, the azimuth stabilization is
worse with occasional revolutions of the gondola.

The dependence of the quantities of interest (limb radiance, Os-, and NO3-SCD is shown in figures
5.11 - 5.13. In the left panels, simulations of the respective quantity are plotted vs. detector altitude
for azimuth angles relative to the sun between 5° and 180°. In the right panels, simulations of the
respective quantity are plotted vs. relative azimuth angle between 0° and 180° for several detector
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Figure 5.11: Left panel: RT calculated limb radiance vs. detector altitude as function of azimuth angle
relative to the sun. Right panel: limb radiance vs. relative azimuth angle for several detector altitudes.
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Figure 5.13: Left panel: simulated NO2-SCD vs. detector altitude as function of azimuth angle relative
to the sun. Right panel: simulated NO5-SCD vs. relative azimuth angle for several detector altitudes.

altitudes.

The RT calculated limb radiances show a strong azimuth dependence. At our viewing direction, i.e. 90°
to the sun, the limb radiances are minimum. This is because the predominant Rayleigh scattering has
a minimum at 90°. The Rayleigh phase function is only one half of the value at 0° and 180° scattering
angle, respectively, as one polarization axis is not scattered in perpendicular direction. Consequently,
the simulated radiances are increasing with increasing deviation from 90°. The increase of the simulated
limb radiance from 90° to 180° is monotonically growing from ~ 15 % at 3km to ~ 93 % at 33 km,
where the analyzed radiation is dominated by single Rayleigh scattered photons. With decreasing
altitudes multiple and Mie scattered photons increasingly contribute to the analyzed radiation so that
the difference between 90° and 180° becomes smaller compared to the pure Rayleigh case. The Mie
scattering phase function is monotonically decreasing with scattering angle for 0° to 180° (for details
see next section). From 90° to 5° azimuth angle, the RT calculated radiances are strongly increasing
by factors between ~ 2.5 and ~ 4. This is because both the Rayleigh and the, especially, the Mie phase
function are increasing. The radiances calculated for 0° are significantly lower than those calculated for
5¢ at all altitudes which is believed to be a shortcoming of the RT model as there is no physical reason
for this behavior. From this study can be concluded that the number of analyzed photons and, thus,
the relative error of the DOAS evaluation of the trace gases can be increased by choosing an azimuth
angle around 0° to the sun. However, this is not practicable from an experimental point of view as there
is the danger of pointing directly to the sun which causes the spectra to become oversaturated. Also for
azimuth angles around 30°, the radiance is highly variable with azimuth angle which makes it difficult
for the automated measurement routine to determine the right integration time for the measurement.
Note that typically 1000 scans are added to one spectrum and only one oversaturated scan makes the
entire set useless. So the chosen azimuth angle at the radiance minimum is the better choice in this
context. For moderate azimuth oscillations (amplitudes < 30°) around 90°, the measured limb radiances
should only be little affected as the RT calculated radiances are only 0 — 10 % (occasionally up to 15 %)
higher at 75° and 105°.

The azimuth dependance of the simulated trace gas SCDs (see figure 5.12 and 5.13) is comparably low.
The simulated trace gas SCDs show an increase with azimuth angle in the 5 — 180° range. The values
simulated for 0° are, against the general trend, significantly higher than those at 5°. I assume the RT
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calculations around 0° to be inaccurate as there is no physical reason why the light path should become
longer when the telescope is pointing closer to the sun. The difference of the Oz- and NO5-SCDs,
respectively, increase by ~ 5 — 16 % from 5° to 180° of azimuth. For the assumed azimuth oscillations
of 5 —15° the effect is not significant within the uncertainty of the RT calculation. As the values at 90°
lie approximately in the middle of the range, the observed SCDs should be close to the 90°-values even
for 360° turns of the gondola.

Summarizing the major points of this sensitivity study, it can be concluded that the miniDOAS trace
gas measurements are not significantly affected by azimuthal gondola oscillations. The limb radiances
are minimum for our viewing geometry, so azimuth movements lead to higher measured radiances.
However, for moderate azimuth oscillations (< 30°), the effect is negligible.

5.1.5 Aerosols
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Figure 5.14: Left panel: Aerosol extinction profiles of the scenarios used in this work for 490 nm. Right
panel: Aerosol scattering phase functions of the aerosol scenarios shown in the left panel. Also shown are
Henvey-Greenstein phase functions with asymmetry parameter g = 0.6 (cyan line) and g = 0.7 (blue line).

The effect of aerosol scattering on the RT calculations is examined in this subsection. Aerosol are a
potential difficulty in the atmospheric radiative transfer as their properties are not precisely known. For
stratospheric aerosol extinctions, satellite measurements exist which can be used for the RT modeling.
For tropospheric aerosols, however, no measurements for the time of our balloon flights exist. Two
parameters are necessary as input for TRACY: an extinction profile and a scattering phase function.
Figure 5.14 (left panel) shows the aerosol extinction profiles used in this work. Tropospheric aerosols
are highly variable, so several scenarios are modeled. One "high load" scenario with values typical for
polluted urban areas and the "low" and "very low load" scenario typical for unpolluted rural areas. For
the stratosphere, typical scenarios are assumed (von Friedeburg, 2003): "aerosol 2" for the 10 — 30 km
range and "aerosol 3" above. Alternatively, for the Kiruna 2003 flight aerosol extinction measurements
from SAGE III (Thomason and Taha, 2003) are available which are very close to the standard profile.
The corresponding phase functions are shown in figure 5.14 (right panel). The phase functions are
calculated by Mie-theory assuming standard scenarios (von Friedeburg, 2003). For comparison, also
Henvey-Greenstein phase functions (see equation 3.53) are shown for asymmetry parameters g = 0.6
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and g = 0.7. The phase functions used for the stratospheric aerosols are very close to the Henvey-
Greenstein functions with ¢ = 0.7. The single scattering albedo w (see equation 3.54) is set to 0.96
for the tropospheric and lower stratospheric aerosol (aerosol 2), and @ = 1 is assumed for the upper
stratospheric aerosol (aerosol 3).
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Figure 5.15: RT calculated limb radiances vs. detector altitude for several aerosol scenarios as described
in the text for an azimuth angle of 90° (left panel) and 30° (right panel) relative to the sun. For the
stratosphere, the standard scenarios are used unless otherwise stated.

The effect of tropospheric and stratospheric aerosols on the observed quantities is studied in the fol-
lowing by switching on and off the above described aerosol profiles. RT calculated radiances for several
aerosol scenarios are shown in figure 5.15 for an azimuth angle of 90° (as used for the miniDOAS limb
measurements) and 30° relative to the sun. In the latter case, the limb radiance is increased by addi-
tional aerosols at higher altitudes due to fact that more scatterers are available. In the troposphere,
the additional aerosol lead to a lower radiance due to absorption and scattering of light out of the light
path. At our geometry (i.e. 90° azimuth angle), additional aerosols always lead to lower limb radiance
as the aerosol scattering for angles near 90° is very unlikely. So aerosols only scatter photons out of
the light path but do not lead to additional photons getting scattered into the telescope’s field of view
compared to pure Rayleigh scattering. Above 15km the effect of aerosols can be neglected, only in
the lower stratosphere, a slight decrease in radiance is observed when aerosols are switched on. In the
troposphere, a strong decrease of the radiance is seen with increasing aerosol load.

In the study of how aerosols affect the simulated trace gas SCDs two cases have to be distinguished:
Stratospheric absorbers like O3 and NO» (see figure 5.16) and trace gases with maximal abundances in
the troposphere (see figure 5.17). As the limb radiances are not significantly affected by stratospheric
aerosols, the stratospheric absorbers O3 and NOs are neither. All simulations are basically identical for
altitudes above 9km. Also in the troposphere, the influence of aerosols is very weak. With good eyes
can be seen that the the tropospheric SCDs are slightly lower in the "high load" and fairly larger in the
"no aerosol" case compared to the "low load" cases. Of course, the influence of tropospheric aerosols is
much higher for the tropospheric absorbers. Both the HoO-SCDs and O4-ODs are strongly decreasing
with increasing aerosol load. Also for stratospheric detector altitudes the simulated SCDs are higher
for less tropospheric aerosols as most of the observed absorption is due to photons scattered off the
troposphere. The stratospheric aerosols have only a little impact and lead to slightly higher SCDs for
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Figure 5.16:
aerosol scenarios as described in the text.
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lower stratospheric altitudes, i.e. around 10 — 25 km, but their effect becomes insignificant for altitudes
above.

5.1.6 Scanning Limb Observations
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Figure 5.18: Simulated limb radiances (left panel) and O3- and NOg- SCDs (right panel) vs. elevation angle
¢o as a function of elevational oscillation ¢4 between 0° and 2° (solid lines) for scanning limb observations.

This section discusses the effect of elevational oscillations on the RT calculations for scanning limb
observations at constant float altitude. Generally, the gondola is more stable during float compared to
the ascent phase of the flight. Typically, the elevational oscillations have amplitudes between 0.5 — 1.5°
and the azimuthal oscillations < 3°. As shown in the previous sections, small azimuthal oscillations and
other uncertainties do not seriously affect the results of the TRACY calculations and are not discussed
here.

Simulated limb radiances, O3z-, and NOg- SCDs (right panel) are plotted vs. elevation angle ¢g as a
function of elevational oscillation ¢ 4 between 0° and 2° for a typical scanning limb observation in figure
5.18. The elevational gondola oscillations are treated in a similar manner as in the figures in section
5.1.3. Qualitatively, the results are similar to those obtained for fixed limb measurements during balloon
ascent. For an amplitude ¢4 = 1°, the simulations are close to the simulations assuming a still gondola,
i.e. ¢4 = 0° for all three parameters. For an amplitude ¢ 4 = 2°, significant deviations from the still
gondola case are observed. For higher elevations corresponding to tangent heights above the relative
maximum of the respective quantity, the simulations are generally higher if gondola oscillations occur
compared to a perfectly stable gondola. For tangent heights around and below the maximum, the
simulations are below the still gondola case if oscillations are considered, i.e. the maximum is more
smeared out and less pronounced in the case of elevational oscillations.

5.1.7 Optimization of the Observation Geometry

One big advantage of scattered light observations is a high degree of freedom of the choice of viewing
geometry. As already mentioned in the previous sections, varying the elevation and azimuth angle can
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improve (but also worsen) the quality of the limb measurements for a specific parameter. The arguments
are summarized here . This section concludes with some remarks how the limb scanning sequence can
be improved.
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Figure 5.19: Simulated limb radiances (black lines) and NO5-SCDs (red lines) vs. elevation angle for
constant detector altitude of 32km (left panel) and vs. detector altitude for a constant elevation angle of
0° (right panel). In both plots, the SZA is 85°.

For the elevation angle, there is no alternative to the chosen one of 90° relative to the sun. The
biggest argument for this is that the SZA along the line of sight is constant under this condition which
is especially important for the limb scan during sunset or sunrise. During day, an azimuth angle of
180° to the sun could slightly increase the observed limb radiances. Azimuth angles off these relative
radiance extrema are not recommendable as the radiance becomes strongly dependant on azimuth angle
which might render the automatic saturation leveling more difficult. The sensitivity tests regarding
elevation angle have shown that the AMF and, thus, the trace gas SCDs are higher for elevations slightly
below the horizon (e.g. for —1.5° compared to 0°) while the tangent altitude is still very close to the
detector altitude. Especially the sensitivity of the detection of the weak absorber BrO benefits from this.
Further decrease in elevation angle leads to tangent heights below the detector, wider BoxAMFs and,
thus, worse the conditioning of the profile inversion problem (see the Kiruna 2002 flight, section 6.2.1).
However, a lower elevation angle leads to stronger sensitivity of the measurements to elevational gondola
oscillations especially affecting the NOs observations around the NOg concentration maximum between
above 25km. So for the NOs measurements, a higher elevation angle of 0° is favorable. Consequently,
the ascent measurements could be optimized by setting the elevation angle to —1.5° in the beginning up
to altitudes of 20 — 25km and then switch to 0° above. After arrival at balloon float altitude (usually
around 33km for a 150000 m?® balloon), the elevation angle can be further increased to record a solar
reference spectrum with minimum absorption. In figure 5.19 (left panel), simulated limb radiances and
NO,-SCDs for positive elevation angles between 0° and 10° for 32 km detector altitude and SZA=85°
are plotted. It is seen that the limb radiance is strongly decreasing with elevation angle. NO2-SCDs
are also decreasing with elevation angle. A good compromise would be an elevation angle of +2° where
the NO2-SCD is by ~ 40 % below that for 0° elevation. Also O3-SCDs decrease by ~ 30 %. However,
the limb radiance is by a factor of ~ 2.3 smaller compared to 0° elevation angle which implies that
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the measurement time increases by the same factor if the same saturation, i.e. photoelectron noise is
desired. Higher elevation angles do not seem useful as the NOy- SCDs decrease only little while the
radiances decrease stronger. Lower trace gas absorption can also be achieved by higher balloon float
altitudes. If a 400000 m® balloon is used instead of a 150000 m? balloon, the float altitude increases
from ~ 33km to ~ 38km. The resulting limb radiances and NO2-SCDs are shown in figure 5.19 (right
panel).

However, this sequence is difficult to achieve from an experimental standpoint without the possibility
to change the elevation from ground by telecommand. In the current version of the instrument without
telecommunication, the exact times for the detector movements would have to be programmed before
launch which is difficult as experience has shown. A delayed launch or faster than assumed ascent could
result in even worse measurements as using a fixed elevation angle.
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Figure 5.20: RT calculated BoxAMFs vs. altitude as function of elevation angle for the two limbscan
sequences described in the text. Also denoted are the approximate tangent heights of each observation given
by the maximum BoxAMF.

Now it is discussed how the limb scan sequence can be further improved. For the two scanning limb
measurements so far, a constant elevation step of 0.5° was chosen. The corresponding BoxAMF for
constant detector altitude of 33.2km and 88° SZA are shown in figure 5.20 (left panel). It can be seen
that the tangent height does not change for the first 3 observations. With decreasing elevation, the
steps in tangent height are increasing from ~ 1km to ~> 3km. So it may be wiser to start the limbscan
sequence with a larger step width (e.g. 1.5°) and decrease it (to 0.3°) for lower elevations. Step widths
< 0.3° do not seem useful as the unavoidable elevational oscillations are of the same order at best. The
resulting BoxAMFs and tangent heights are shown in the right panel of figure 5.20. In this case the
steps in tangent height are always around 2 —3 km. However, it is crucial to determine the zero position
of the telescope very precisely. In the so far conducted flight, there was an uncertainty of 0.5°. In this
case it might be the better choice to use a constant step width.



5.2. SENSITIVITY OF THE PROFILE RETRIEVAL 103

5.2 Sensitivity of the Profile Retrieval

5.2.1 Detecting Low Trace Gas Amounts in Front of Large Backgrounds

By looking at the RT calculated BoxAMFs (e.g. figure 5.6), it can be seen that by far the biggest
contribution to the measured SCD comes from the altitude layer the detector is actually in with AMF
> 50. For altitudes significantly above the detector altitude, the AMF approaches 1/cos(SZA), e.g.
values between 4 and 11 for SZA=75° and 85°, respectively. For altitudes more than 1km below
the detector, the BoxAMF are comparitively low (typically between 2 and 0.3) but always non-zero.
This implies that high trace gas concentrations in the troposphere can dominate the measured SCDs
in the stratosphere. This is the case for HoO and O4 which both have much lower stratospheric
than tropospheric concentrations. But also stratospheric NOy measurements can be dominated by
high tropospheric contributions in heavily polluted areas. The effect is quantitatively examined here.
Another problem arises for measurements of low concentrations below the concentration maximum, e.g.
when measuring tropospheric O3 or BrO , or lower stratospheric NOs.
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Figure 5.21: Simulated HyO-SCDs (left panel) and O4-ODs (right panel) assuming a tropospheric profile
(i.e. all values in the respective profiles above 9km are set to zero, red lines), a stratospheric profile (i.e.
all values in the respective profiles below 9km are set to zero, green lines) and a total profile (black lines).
Also shown is the relative contribution of the stratospheric profile to the total SCD/OD (blue lines).

Water vapor has a pronounced maximum at low altitudes with mixing ratios > 1000 ppm on the
ground decreasing to ~ 6 ppm in the stratosphere (see figure 6.49). Considering the exponentially with
altitude decreasing air density, tropospheric concentrations are exceeding stratospheric concentrations
by 4 orders of magnitude. To check the sensitivity of the measurements towards stratospheric H2O,
three simulations are carried out (figure 5.21, right panel): (a) one with the total profile as shown in
fig. 6.49, (b) one with all concentrations set to zero at stratospheric altitudes (i.e. above 9km), and
(c) one with all concentrations set to zero at tropospheric altitudes (i.e. below 9km). This exercise
reveals that tropospheric HoO by far dominates the limb scattered radiation as the simulation using
the tropospheric profile is almost identical to the one using the total profile. In fact, the tropospheric
SCD exceeds the stratospheric SCD by a factor of 20 in the lower and 60 in the upper stratosphere,
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i.e. the stratospheric SCD contributes only by 2 — 3 % to the total SCD. This is due the fact that the
tropospheric water vapor concentration is by several orders of magnitude (up to 4 for the lowermost
troposphere) bigger than the stratospheric one. This affects the stratospheric limb measurements in a
way that, even if the BoxAMF of the actual balloon altitude is ~ 100 times bigger than the tropospheric
BoxAMF, the measured SCDs are dominated by the tropospheric H,O concentration.

In the case of Oy, the qualitative picture is similar although the dominance of the tropospheric contri-
butions is not as strong as for HyO. In figure 5.21 (right panel), a similar exercise as for HoO is shown.
The stratospheric contribution to the total OD ranges between 70 % in the lower and 20 % in the upper
stratosphere. Under these condition, a sensitive measurements of the stratospheric profile is possible
(see e.g. section 6.5.7).
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Figure 5.22: Simulated NO2-SCDs vs. detector altitude assuming an NO» mixing ratio in the lowermost
altitude layer of 100 ppb (red line), 10 ppb (green line), 1 ppb (blue line), and 0.1 ppb (cyan line). Also shown
is an example of measured NO2-SCDs (black line) from an unpolluted area (Kiruna in northern Sweden).

A third sensitivity study in this context is undertaken for the case of stratospheric NOs measurements
above polluted areas, i.e. the question whether sensitive stratospheric NOy measurements are possible
in front of the tropospheric background is tackled. The N O, abundances in the boundary layer are quite
variable with mixing ratios ranging from 0.02 ppb in unpolluted, remote areas to 10—1000 ppb in heavily-
polluted areas (Seinfeld and Pandis, 2000). Figure 5.22 shows simulations of NO2-SCDs assuming
NO; concentrations ranging from 0.1 — 100 ppb in the lowermost altitude layer (i.e. between 0 — 1km
and zero everywhere above). Also shown are NO-SCDs measured during balloon ascent at Kiruna, i.e.
for an unpolluted area. In this case, only stratospheric NOs contributes to the observed NO5s-SCDs.
By comparing the heavy pollution simulations (i.e. 100ppb NO3) to the unpolluted measurements,
it can be seen that the stratospheric measurements would be by far dominated by the tropospheric
NOs. A sensitive measurement of stratospheric NOy would be difficult if not impossible in this case.
However, it should be considered that the limb scattered radiation is collected from quite a big area
(several hundred km in diameter), so that the average NO2 concentration of this area is relevant for
the measurements. An average of 100 ppb NO; over several hundred km is very high even for industrial
centers. For 10 ppb, the (simulated) tropospheric and (measured) stratospheric contribution are of the
same order. As has been shown in the case of O4 the retrieval of stratospheric profiles is possible
under such conditions. However, as tropospheric NOs concentrations are highly variable (in strict
contrast to Oy4), variations of the tropospheric NOs background during the flight are misinterpreted
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as stratospheric profile information so that the retrieved profiles might become very inaccurate in this
case. For tropospheric NOs concentrations of 1ppb and less, the tropospheric contribution is much
smaller than the stratospheric at higher altitudes so that the measured NO2-SCDs are not significantly
affected. So far, no enhanced NO5-SCDs were measured at low altitudes for all balloon flights which
implies average NOy concentrations < 0.1 ppb in the boundary layer.

A similar problem occurs when low trace gas concentrations are to be measured below the concentration
maximum. This is especially problematic for NO; measurements in the lower stratosphere, but to a
lesser degree also for O3 and BrO measurements at low altitudes. In that case, the measured SCDs are
largely determined by the concentrations above the balloon altitude. As the profile information comes,
qualitatively speaking, from the difference of the measured SCDs at different altitudes, this profile
information has large relative errors as it is given by the difference of two similar but large numbers
which is always problematic. In the case of NOg, the SCD at lower altitudes is given by the large
absorption of the solar reference spectrum and the measured (negative) dSCD. Small uncertainties of
the latter two quantities yield a large relative error of the retrieved SCD. In the case of O3 and BrO,
this effect is smaller but the relative errors of the retrieved profiles are also maximum for altitudes below
the maximum. This effect is discussed more quantitatively section 5.2.4.

5.2.2 Photochemical Effects
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Figure 5.23: Photochemically simulated concentration profiles of NOy (left panel) and BrO (right panel)
as a function of detector altitude. The profiles are calculated with the LABMOS 1-D model (see section
3.4).

The abundances of radicals like NOy and BrO are strongly variable with the incident solar radiation.
Thus, their profiles are dependent on the SZA. Photochemical effects can be studied with scanning limb
measurements. Here, it is discussed how photochemical changes affect the profile measurements during
balloon ascent, and how the profiles of photochemically active radicals can be interpreted.

Figure 5.23 shows photochemically simulated profiles as function of SZA for NO5 and BrO. The profiles
are calculated with the LABMOS 1-D model (see section 3.4 for details on the chemistry models) for
the example of the Kiruna 2004 flight. The NO, amount is initialized with the NOy concentrations
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measured by the direct sunlight DOAS, while all other species are initialized with SLIMCAT output.
Qualitatively, it is seen that the NOs concentrations are increasing and the BrO concentrations are
decreasing with SZA in the SZA range of interest (SZA were between > 70° for stratospheric altitudes for
all miniDOAS flights and the measurements usually end around SZA=95° when limb radiances become
too low). For more details on the NOy and BrO photochemistry see sections 2.3 and 2.4.2, respectively.
This implies that the NO3-SCDs measured during balloon ascent are lower at low altitudes and higher
at high altitudes compared to the hypothetical case of a balloon ascent with a constant median SZA.
As the contribution of the light below the actual balloon altitude is rather low (BoxAMF are typically
< 2 for altitudes more than 1km below the detector but in the order of 100 at the detector altitude),
this means for altitudes around the maximum that the retrieved profile is a good representation of the
situation corresponding to the SZA when the balloon passes these altitudes. For altitudes much below
the concentration maximum, lower concentrations than present at the time when the balloon passes
these altitudes are retrieved because a certain fraction of the observed absorption occurs at altitudes
of the NOy maximum. Thus, the lower measured SCDs are compensated by too low concentrations at
the corresponding altitude. The change of SZA during the flight through the stratosphere is around 7°
corresponding to an NOy increase of 5—7 % at the relevant altitudes for the shown example. Therefore,
the distortion of the retrieved profile due to photochemical effects is assumed to be small.

For BrO profile measurements during balloon ascent, the situation is somewhat different, but the
conclusions are the same. This is due to the fact that the BrO maximum lies in the lower stratosphere
and the concentrations are decreasing with SZA. So the measurements performed around the maximum
should not be much affected by the moderately decreasing concentrations for higher altitudes. Also the
measurements at higher altitudes are not strongly affected as the photochemical changes are rather low
at higher altitudes. This is because the photochemical decline sets in later with increasing altitude. As
a consequence, for each altitude the retrieved profile can be seen as a representation of the situation
when the balloon (or, more precisely, the tangent height which is approximately the detector height for
elevation angles around 0°) passed the respective altitude level.

5.2.3 Effect of the a prior: Profile

The Maximum A Posteri (MAP) technique requires the assumption of an a priori profile and a corre-
sponding covariance (see section 3.3). The a priori combines all information that is available about the
trace gas profile of interest before the actual measurement is performed. It is, e.g., taken from CTM
outputs or other measurements of the trace gas under the respective conditions (e.g. from climatology
or nearby satellite measurements). The covariance can be taken, e.g., from climatology. More math-
ematically, it can also be seen as a parameter determining the relative contribution of the a priori to
the retrieved profile. The a priori is necessary because the balloon-borne limb measurements usually
contain no profile information about the altitudes above balloon float altitude. So if the measured SCDs
were just inverted without assuming a priori values, the retrieved concentrations above would be merely
undetermined, which results in extreme oscillations of the values exceeding the actual concentrations by
several orders of magnitude. This causes the retrieved concentrations of the altitudes below float (for
which the measurements are sensible) to become highly incorrect. Therefore, it is necessary to constrain
the values above balloon float by reasonable a priori assumptions. On the other hand, it is desirable
that the retrieved profile below balloon float, where the measurements are sensitive, is independent from
the a priori. The effect of the a priori and the chosen covariance on the retrieved profile is examined in
the following by two sensitivity exercises. First, the a priori is varied for constant covariance, then the
covariance is altered for a constant a priori profile.

Figure 5.24 shows the results of the first study for a sample O3 profile retrieval for the Kiruna, 2003
flight. As a priori profile, the correlative ozone sonde measurements are used. For the test, this profile
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Figure 5.24: Retrieved O3 profiles (squares and dotted lines) as a function of the used a priori profiles
(solid lines). The a priori was multiplied with the stated factors ranging from 0.1 to 10.
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is multiplied with factors between 0.1 and 10. The resulting profiles are used as a priori for the profile
retrieval. The covariance is set to 100 %. In the left panel, the retrieved profiles are shown as a function
of the used a priori. As there are measurements only between 3 and 30 km, the retrieved profile is only
determined by the measurements in this altitude range. This can be seen from the averaging kernels
being close to 1. Outside this altitude range, the retrieved profile is mostly determined by the a priori.
This is seen in figure 5.24 for altitudes < 3km and > 30km. At the transition between the altitude
range determined by the measurements and the altitude range determined by the a priori, oscillations
can occur for the retrieved profile, especially if there is a mismatch of the a priori and the measurements.
In the present test, the concentrations of the a priori profiles multiplied with factors < 2 are definitely
larger than in reality. So this mismatch of measured SCDs and a priori is compensated by unrealistically
fluctuating retrieved concentrations in the 30 — 35km range. This mismatch above 30km also effects
the retrieved values below. The retrieved profiles for the a priori multiplied by 5 and 10 are lower
for all altitudes between 3 — 30km. For ’real’ profile retrievals, the a priori is usually not wrong by a
factor of 5 or more, so these two examples can be viewed as absolute worst case scenarios. For the a
priori multiplied with factors between 0.1 and 2, the retrieved profiles are not significantly affected for
stratospheric altitudes. For tropospheric altitudes, the retrieved concentrations show stronger deviations
if the a priori is wrong. In a similar test not shown here, it is found that the retrieved profiles do not
change if only the values below 30km of the a priori profiles are multiplied with factors between 0.1
and 10.

In the second sensitivity test, the same a priori profile is used but its covariance is varied between 0.1
and 5 times of the a priori value, i.e. between 10 % and 500 % relative error. This time, the ozone profile
measured one year later at the same location is taken, which is supposed to be close but not identical
to the measured situation. The results are shown in figure 5.25. It is found that the retrieved profiles
do not significantly deviate in the sensitive altitude range. Above 30km, oscillations occur for high
covariances. The high fluctuations might influence the retrieved concentrations below 30 km, which is
seen in the "5"-case by slightly lower values. Decreasing the covariance, decreases the fluctuations but
also the averaging kernels (see 5.25 right panel). For (relative) covariances > 1, the averaging kernels
are almost 1 in the entire sensitive altitude range between 3 and 30 km. So covariances higher than 1
are usually not necessary. For a relative covariance of 0.1, the averaging kernels are only between 0.3
and 0.95. However, the retrieved profile is not significantly affected by this.

The lessons learned from these two sensitivity exercises can be summarized as follows: the retrieved
profiles are not significantly affected by the a priori profile, if its values are reasonably chosen, for
altitudes the measurements are sensitive indicated by averaging kernels close to 1. If the a priori is
significantly wrong outside this range, the retrieved profile can be affected and/or oscillations can occur.
The oscillations can be reduced by choosing a smaller a priori covariance.

5.2.4 FError Analysis

In this subsection, a qualitative discussion of all relevant error sources in the profile retrieval procedure
and a quantitative error analysis considering the major uncertainties are given.

Uncertainty of the DOAS Retrieval

The relevant error sources of the DOAS retrieval are discussed in detail in section 3.1.3. Most of
the mentioned effects like instrumental noise, Ring and solar Iy effect, affect the residual, and thus
the DOAS retrieval error output by the WinDOAS evaluation tool. This error is used for the profile
inversion as SCD error. However, additional systematic errors exist which are not accounted for by the
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Figure 5.26:  Absolute (left panels) and relative errors (right panels) of the DOAS SCD retrieval of
O3 (upper row) and NO (lower row) vs. detector altitude (for a definition of the individual error contributions
see text). Also shown in the left panels are the retrieved SCDs and their total errors (as error bars) vs. detector
altitude (gray lines).



CHAPTER 5. SENSITIVITY STUDIES AND ERROR ANALYSIS

110
0,-0D error
10* 10° 10°
35 " " PR R R | " " " MR
] —=
g F—
30 j =
] Y
. 4
25 ]
T ]
X, ]
o 20 -
° ]
3 4
c 154
o 4
S ]
3 B
S 10
] —0,0D
E total error
5__ —— DOAS error
E dSCD error
] offset error =
10° 10? 10°
O, optical density
H,0-SCD error [cm™]
1020 1021 1012
35 N | L M | L
] T
] i S
1 =
25 ]
T ]
= ]
o 20
- ]
2 4
s 15
3 4
5 ]
3 B
S 10
] —H,0-sCcD
g total error
5‘_ —— DOAS error
E dSCD error
] offset error
0 — — :
1021 1022 1023

H,0-SCD [cm™]

detector altitude [km]

detector altitude [km]

35

30

25

20

15 ]

10
— total error

5 - —— DOAS error
i dSCD error
] — offset error

o+————r—+ 1+ 71T
0 5 10 15 20

relative error [%]

35

30

25 ]

20

15 ]

10—_ =2
17 g
1 total error

5] —— DOAS error
] dSCD error
] offset error

L o e LA A B e o o o e S S o S
0 10 20 30 40 50

relative error [%]

Figure 5.27: Same as figure 5.26 but for an O4-OD (upper row) and HyO-SCD retrieval (lower row).
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Figure 5.28: Same as figure 5.26 but for a BrO-SCD retrieval.

retrieval error. Errors originating from correlations of the cross sections are difficult (if not impossible)
to treat quantitatively with the used software and, thus, not considered in this error analysis. However
by carefully checking the DOAS evaluation, this error source can be minimized. Further uncertainties
of the DOAS retrieval arise from the cross sections. Their magnitude is determined in laboratory
measurements only to a certain precision. Also their temperature dependance gives rise to errors.
Assuming a ~ 10K temperature uncertainty, yields ~ 3 % deviation of the O3 and NO5 and ~ 5 %
of the BrO cross section. Another uncertainty (the largest contribution to the total error in most
cases) of the measured SCDs arises from the determination of the trace gas absorption contained in the
solar reference spectrum which is added to the retrieved dSCDs to get SCDs (see section 4.4.8). Its
uncertainty is estimated to 5 — 10 % of its value for O3, NO3, and BrO, and > 20 % for H,O and Oy4
as its value is very low in those cases.

The uncertainties of the retrieved trace gas SCDs are discussed in the following for the example of the
Kiruna 2004 flight. The following errors are taken into account:

e the DOAS retrieval error as given by the WinDOAS evaluation (further called "DOAS error"),
e the uncertainty of the cross section: 5 % of the retrieved dSCD (further called "dSCD error")

e the uncertainty of the solar reference offset: 5 % of its value for Oz, NOs, and BrO, and 20 % of
its value for HoO and Oy (further called "offset error"),

e and the "total error" as the sum of the above contributions

The mentioned error contributions and the total error are plotted for the 5 species vs. detector altitude
in figures 5.26 - 5.28. In the left, the absolute values and, in the right, the relative errors are shown.
The relative errors are obtained as the ratio of the respective absolute SCD error and the trace gas SCD
(and not the dSCD). The major contribution to the total error of the O3-SCD retrieval is given by the
offset error. This contribution is, by definition, constant with altitude and, thus, its contribution to the
relative error is maximum in the troposphere where the measured SCDs are minimum. In numbers, its
uncertainty ranges between 8.5 % for the lowermost troposphere and 3 % in the stratosphere around
the ozone maximum. The DOAS error is comparatively low and also decreases with altitude as the
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residuals of the DOAS evaluation strongly decrease with altitude due to the smaller wavelength shift of
the measured spectra relative to the solar reference spectrum. Its values are around 2.5 — 1 % in the
troposphere, decreasing to negligible ~ 0.2 % in the stratosphere above 15km. The dSCD error shows a
rather odd altitude dependence with a minimum around 10 km. This is because the retrieved dSCDs are
negative in the troposphere and thus their error increases with decreasing altitude. The resulting total
error has values of 15 % for the lowermost altitudes decreasing to almost constant values around 5 %
above 10 km. In the case of NOs , the qualitative picture looks similar, but with higher absolute numbers
between 50 % total uncertainty for the lowermost and 5 % for the uppermost spectra for which the
NO3-SCDs are maximum. The major reason for the high errors is the rather unfavorable measurement
geometry as the solar reference spectrum is recorded near the NOs concentration maximum. This results
in a large offset and causes the retrieved dSCDs to become negative for most of the flight. Therefore
the dSCD error is increasing with decreasing altitude although the absolute SCDs are decreasing with
decreasing altitude. At this point, it might be argued that the dSCD error is somewhat arbitrary as
it depends on the chosen solar reference spectrum. Taking e.g. the lowermost spectrum as reference
would yield positive dSCDs throughout the flight and, thus, dSCD errors increasing with altitude.
However, the determination of the offset of this spectrum is not easily possible as it requires the excact
knowledge of the entire stratospheric and tropospheric NOy concentration profile. As the offset is
usually determined by comparison with a stratospheric profile composed from direct sunlight DOAS
measurements and CTM output above, the tropospheric SCDs have a higher uncertainty due to the
temperature and other uncertainties of the cross section so the chosen estimation of the error is logical.
Additionally, the DOAS error is increasing with decreasing with altitude for the same reasons as stated
for Os. Its relative contributions range from 12 % near the ground to < 1 % above 20km. In the case
of BrO, the relative contributions of the individual error sources are somewhat different. The total
error of the BrO-SCD (see figure 5.28) is dominated by the DOAS retrieval error which lies around
10 —20 % for most of the stratosphere, i.e. above 12km. Below, the error is dramatically increasing due
to a larger residual caused by an increasing spectral shift and the decreasing UV skylight. Therfore the
BrO-dSCDs fall below the detection limit for altitudes < 10km. The solar reference offset, which can
be determined rather precisely using SLIMCAT CTM output, only causes a minor error contribution
as well as the uncertainty of the cross section. Their added contributions cause a relative uncertainty of
~ 5 %. This results in a total error of 15—25 % for the BrO-SCD for altitudes above 12 km. The altitude
dependence of the error contributions for the tropospheric absorbers HoO and Oy (see figure 5.27) is
completely different compared to the afore discussed stratospheric trace gases. The SCDs decrease by
more than an order of magnitude from the lowermost to the uppermost spectra. This causes individual
contributions to be predominant in the troposphere but almost negligible in the upper stratosphere and
vice versa. In the troposphere, the most important error contribution is caused by the uncertainties of
the cross section (dSCD error) with almost 5 %. The relative dSCD error is decreasing to < 1 % in the
upper stratosphere. The opposite altitude dependence is observed for the offset error. In numbers, the
offset error is around 1 — 2 % in the troposphere and increasing for the uppermost spectra to 20 %, i.e
the assumed uncertainty of the offset as the SCD is almost equal to the offset value at high altitudes.
The DOAS error is really small for the O4-SCD retrieval with relative errors between 1 — 4 %. For
the HoO retrieval, the DOAS errors are somewhat larger with 2 — 5 % in the troposphere increasing to
15 % in the upper stratosphere. Note that the DOAS error in our definition is not the relative error
of the DOAS retrieval, as the former is defined as 0/SCD and the latter as ¢/dSCD with the DOAS

retrieval error o.

Uncertainty of the RT Calculation

As discussed in the first section of this chapter, the RT calculations have large uncertainties which affect
the BoxAMF used for profile inversion. Firstly, as a Monte-Carlo model is used, the calculated BoxAMF
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Figure 5.29: Relative error of the RT calculated BoxAMF vs. number of modeled Photon Units (PU) as
function of altitude (adopted from (von Friedeburg, 2003)).

are subject to statistical fluctuation. Their effect can be minimized by simulating more photons which
improves the statistics. von Friedeburg (2003) calculated the relative errors of the BoxAMFs as function
of modeled photons and altitude (see figure 5.29) for the following geometry: 10km detector altitude,
—4° elevation angle, 90° azimuth angle relative to the sun and circular half aperture angle of 0.5°. The
relative errors of the BoxAMF is smaller than 4 % at all altitude levels if more than 2000 modeled
photons contribute to the calculations. Generally, the relative error is decreasing with altitude. For
the RT calculations used in this work, usually 10000 photons are modeled. So the relative errors are
assumed to be < 2 % for the relevant altitudes above 10 km.

Also systematic effects arising from uncertainties of the observation geometry, aerosol profiles etc.
(see section 5.1) affect the accuracy of the calculated BoxAMF. However, no error is assumed for the
BoxAMF in the following quantitative error analysis.

Error of the Retrieved Profile

The error of the profile retrieval is calculated according to equation 3.65 based on the DOAS retrieval
error and the assumed a priori covariance. This error contribution is further called "retrieval error". As
shown above, neither the a priori and nor its covariance significantly affect the profiles in the altitudes
of interest, so the statistical profile retrieval error is determined by the statistical DOAS retrieval error.
Additionally, the above mentioned systematic effects affect the accuracy of the retrieved profiles and
have to be treated separately. The effect of the uncertainty of the cross section (dSCD error) and the
solar reference offset (offset error) can be accounted for by calculating two sets of SCDs one with and
the other without considering the respective uncertainty. The difference of the profiles retrieved with
these SCDs is a measure of the impact of the respective error on the retrieved profile.

A quantitative analysis of these effects is shown in figures 5.30 and 5.31 for example profile inversions
of O3, NO3, BrO, and O4. Qualitatively, the altitude dependence of the individual error contributions
is similar for the retrieved profiles and measured SCDs. For the Og profile inversion, the total relative
error is rather small and also constant throughout the stratosphere with values around 5 — 6 % in the
11 — 30km altitude range. The most dominant contributions are the systematical uncertainties (dSCD
and offset errors), the statistical retrieval error is < 1 % in the mentioned altitude range. For altitudes
below, the relative offset error is strongly increasing as the absolute concentrations are decreasing causing
total uncertainties up to 50 % at 7km. For lower altitudes, the measurements are no more sensitive
to Ogs indicated by averaging kernels < 1 and, hence, the retrieved profiles are mostly determined by
the a priori. So these altitudes are not considered in the plotted profiles and error analysis. For the
NOs profile inversion, the qualitative picture is similar, but the absolute numbers of relative errors are
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Figure 5.30: Absolute (left panels) and relative errors (right panels) of the retrieved O3 (upper row) and
NO2 (lower row) profile vs. altitude (for a definition of the individual error contributions see text). Also
shown in the left panels are the retrieved profiles and their total errors as error bars vs. altitude (gray lines).
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Figure 5.31: Same as figure 5.30 but for a BrO (upper row) and O4 (lower row) profile retrieval.
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higher. In the upper stratosphere (above ~ 19km in this case) where appreciable NOy concentrations
are measured, the total errors are < 10 % which is sensitivity comparable to that of O3. With decreasing
altitude, the systematical uncertainties are strongly increasing, e.g. for the 14 — 16 km layer, a total
error of 20 % is found, but its value is exceeding 100 % for the lowermost considered altitude layer
(i.e. 6 —8km). The error of the BrO retrieval is dominated by the retrieval error originating from the
statistical error of the DOAS retrieval. The total relative error is around 10 — 15 % in the 12 — 26 km
range, i.e. for altitudes with appreciable BrO concentrations. Above, the relative errors are increasing as
the BrO concentrations are further decreasing. For altitudes below 12 km, the total error is significantly
increasing due to the poor signal to noise ration (decreasing BrO concentrations, but increasing residuals
due to low light and instrumental instabilities). Totally opposite is the situation for the profile inversion
of the (mostly) tropospheric absorber O4. In the troposphere and lower stratosphere up to 15km, the
most dominant error contribution is given by the systematic DOAS uncertainty (dSCD error). The
assumed 5 % dSCD error yield ~ 5 % error of the retrieved profile as the total SCD is predominantly
given by the dSCD. The offset and also the statistical retrieval error do not play an important role at
low altitudes. Above 15km, the offset, and thus its error, becomes the most important contribution.
With exponentially decreasing O4 concentrations, the relative error is dramatically increasing, and the
measurements become mostly insensitive to O4 above ~ 22km, indicated by highly fluctuating retrieved
04 absorptions with relative errors > 50 % and by decreasing averaging kernels.
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Figure 5.32: Absolute errors of the retrieved O3 (upper row) and NOs (lower row) mixing ratio profile vs.
altitude (for a definition of the individual error contributions see text). Also shown in the left panels are the
retrieved mixing ratio profiles and their total errors as error bars vs. altitude (gray lines).

Finally, O3, NOg, and BrO concentration profiles are converted to mixing ratio (M R) and errors on the
mixing ratio scale are estimated. Therefore, the retrieved concentrations (con) at each altitude layer
are divided by the layer’s average air density N (i.e. air molecules per volume V') obtained from the
pressure and temperature measurements under the assumption of the ideal gas equation:

_pV _ 10-23 3
N = (bp = 138107 0/x) (5.2)
MR =" (5.3)

N
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Figure 5.33: Same as figure 5.32, but for a BrO mixing ratio profile.

From this definition, it is clear that the relative errors are the same on the concentration and mixing
ratio scale. However, as the air density N is decreasing exponentially with altitude and the measurement
uncertainties are approximately constant on a concentration scale for most of the stratosphere for the
mentioned trace gases, the mixing ratio error is usually larger at higher altitudes. For O3 the estimated
total error is ~ 0.1 ppm in the lower and ~ 0.4 ppm in the upper stratosphere for the simulated case.
For NO; total errors are between 0.02 — 0.04 ppb below 20km and ~ 0.16 ppb at 30 km. However, the
mixing ratios are also increasing in the same way in both cases so that the relative errors are constant
(for O3) and even decreasing with altitude (for NOz), as shown before. For BrO, the mixing ratios are
approximately constant above ~ 22 km in the simulated case while the concentrations are, consequently,
strongly decreasing in that altitude range. Therefore, the total mixing ratio uncertainty also increases
with altitude with numbers between ~ 1 ppt below 20 km and ~ 5 ppt around 30 km.
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Chapter 6

Results and Discussion

6.1 Flights and Observations

Table 6.1 gives an overview about the 5 miniDOAS flights undertaken so far. 4 of them were performed
at high-latitudes (1 in summer and 3 in winter) and 1 flight at mid-latitudes fall conditions. Also given
is the configuration of the instrument and the observation modes (for a description see previous chapter,
i.e. section 4.3) applied during the flight. During the first flight of the Kiruna 2003 campaign (i.e. the
flight on March, 4), the sealing of the spectrometers was leaking, causing some humidity to enter the
spectrometers during balloon ascent. Although the instrument worked well during the flight and the
retrieved trace gas data looks reasonable, some intriguing features are observed in the DOAS analysis
which are most likely due to water contamination on the detector. Considering this uncertainty, the
results are not discussed here. The results obtained during the other 4 flights are presented in detail
in the following sections. The measured quantities are compared to correlative measurements by other
instruments and to simulations with the RTM TRACY. For clarification please note the following.
Although always denoted in the figure captions which instrument the respective results are obtained
with, two abbreviations are used for the in-figure legends: the term 'measurements’ alone always refers
to miniDOAS limb measurements, and the term 'DOAS’ alone stands for the larger direct sunlight
DOAS spectrometer.

6.2 The LPMA /miniDOAS Flight from Kiruna, August 18/19",
2002

6.2.1 Flight Conditions

The first application of the miniDOAS instrument took place at high-latitudes aboard the LPMA gon-
dola. Like all high-latitudes flights, it was launched from Esrange near Kiruna in northern Sweden.
Esrange is a satellite, rocket and balloon research facility operated by the ’Swedish Space Corpora-
tion’ (SSC') and the balloon launches are performed by a cooperation of SSC and the French *Centre
Nationale des Etudes Spatiales’ (CNES?). Esrange is situated at 67.9° northern latitude and 21.1°
eastern longitude. The flight took place on August 18/19*" i.e. at the end of summer at the time of

 for more details see their website http://www.ssc.se
*for more details see their website http://www.cnes.fr
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Table 6.1: Compendium of balloon-borne miniDOAS measurements

Date Location Geophys. Cond. Instrument Observation Mode
Time (UT) SZA range
Aug. 18/19, 2002 Kiruna high-lat. sum. LPMA/ nadir
15:15 - 2:38 67.9°N, 21.1°E 69.75° — 94.4° miniDOAS fixed limb
94.6 — 88.1°
March 4, 2003 Kiruna high-lat. spring | LPMA/DOAS nadir
12:55 - 15:25 67.9°N, 21.1°E 77.6° — 88.8° miniDOAS fixed limb
March 23, 2003 Kiruna high-lat. spring | LPMA/DOAS nadir
14:47 - 17:35 67.9°N, 21.1°E 78.9% —94.7° miniDOAS fixed limb during ascent
scanning limb at float
Oct., 9, 2003 Aire-sur-1I’Adour mid-lat fall LPMA /DOAS nadir
15:39 - 17:09 43.7°N, 0.25°W 66° — 88° miniDOAS fixed limb
March, 24, 2004 Kiruna high-lat. spring | LPMA/DOAS | fixed limb during ascent
13:55 - 17:35 67.9°N, 21.1°E 72° — 98° miniDOAS mk.2 | scanning limb at float
November, 2004 ' | Teresina, Brazil tropics LPMA /DOAS direct sunlight
5.1°S, 42.8°W — miniDOAS mk.2

I flight canceled, only groundbased measurements exist
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Left panel: altitude (black line) and Solar Zenith Angle (SZA, red line) vs. Universal Time

(UT). Note that times > 24 hours refer to August 19**). Right panel: results from the ozone sonde launched
from Esrange on August 18!, Shown are the temperature (black line), relative humidity (red line), and the
ozone mixing ratio (green line). The approximate height of the tropopause (~ 10km) is shown in blue dots.
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the ’turn-around’ between stratospheric summer and winter circulation, i.e. from easterly to westerly
winds. During the turn-around, the stratospheric dynamics are characterized by very weak winds from
arbitrary directions, i.e. no direction is preferred. As a result, the gondola landed only ~ 150 km away
from the Esrange base. The altitude profile of the flight together with the Solar Zenith Angle (SZA)
are shown in figure 6.1 (left panel). The gondola was launched at 15:15 UT at SZA=69.8°. After
~ 2h50min, around 18:05 UT at SZA=85.9°, the float altitude of ~ 38 km was reached. The balloon
remained at this constant altitude until ~ 20 UT corresponding to an SZA of 94.5°. Afterwards, the
balloon descended to an altitude of ~ 35km at 22:15 UT due to cooling of the helium in the absence of
sunlight. After ballast was dropped, the balloon ascended again and the float altitude of 38.2km was
reached again at 0 UT at SZA=98.1° so that the sunrise measurements could be performed at a constant
balloon altitude. At 2:58 UT and SZA=88.1°, the gondola was cut and landed ~ 150 km south of the
base. In figure 6.1 (right panel), the results of the ozone sonde, launched ~ 3 h after the LPMA-balloon
from Esrange, are shown. Plotted are temperature, O3 mixing ratio and relative humidity vs. altitude.
From these measurements, the tropopause height is determined to ~ 10 km. From the relative humidity
profile it can be assumed that there was a cloud layer around 2km and a second one between 7 — 9 km.

6.2.2 Instrument Performance
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Figure 6.2: Left panel: electronic offset level (as a proxy for the spectrograph temperature) as function
of time (¢t = 0 marks the launch time of the balloon). Right panel: spectral shift of the spectra relative to
the solar reference recorded at float at ¢ = 2.75h.

Being the first flight, it was interesting to see how well and stably the instrument operated under 'real’,
i.e. stratospheric, conditions. From the software side, the instrument performed as expected. During
this flight, the XDOAS package (Grassi, 2002) under Linux was used for the only time. The automatic
saturation level determination recorded more than 1000 well saturated spectra before sunset. After the
radiance became too low (around SZA= 95°), the instrument switched into the 'night mode’ measuring
dark current and electronic offset spectra. At sunset, i.e. when the intensity exceeded a certain level, it
switched again into nominal measurement mode for sunset measurements. Some few spectra were lost
due to communication problems. The reason for this abnormalities remains unclear being one of the
reasons why the use of XDOAS was discontinued. Another important issue is the optical stability of
the instrument. It can be checked by looking at the spectral shift of the measured spectra relative to a
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solar reference spectrum shown in figure 6.2 (right panel). The solar reference spectrum was recorded
around 18 UT shortly after the float altitude of ~ 38km was reached. The relative shift is maximum
for the spectra recorded at ground level and decreases with decreasing altitude difference and, thus,
pressure difference between the two spectra. ~ 1h after the launch, i.e. at an altitude of ~ 20km and
a pressure of ~ 60hPa, the relative shift drops below 0.1 pixels and remains below this value until the
end of the sunset ~ 3h later. This is an indication that the temperature stabilization worked well up
to this point (~ 6h after the launch). After sunset, the relative shift is ~ 0.25 pixels and increases to
~ 0.75 pixels indicating that the temperature stabilization was not perfect anymore. The temperature
inside the spectrograph can also be checked by looking at the electronic offset. The electronic offset
recorded before the launch and during night at balloon float is shown in figure 6.2 (left panel). After
~ 15min, a constant offset value and, thus, temperature is reached. The same offset value is measured
for the first hour after sunset indicating that the temperature stabilization was very good for about
7.5h. Afterwards, the offset values increase by 6 counts during the next 2.5h. This increase corresponds,
roughly estimated, to a 1 K decrease in temperature of the spectrograph. This can be explained by the
fact that all the liquid water was either frozen or evaporated by then. The frozen ice does not remain
at a constant temperature of 0°C but cools down as the surrounding temperature was around —25°C
at float altitude. The residuals of the DOAS fit in the Oz retrieval region (490 — 520 nm) are around
1-1072 for the ascent and 2 - 10~3 during sunset and sunrise.

As the stepper motor was not yet implemented for this first flight, the limb telescope was kept at a
constant elevation angle of ~ —3° and azimuth angle of 90° to the sun. This elevation angle was chosen
because the limb radiances are very low for 0° elevation at 38 km. However, this elevation angle was not
a really wise choice as the measurements become more sensitive to elevational oscillations of the gondola
and the BoxAMF are smeared out over a wider altitude range. Thus, the profile inversion problem is
worse conditioned compared to an elevation angle around 0° which was, consequently, chosen for all the
following flights.

6.2.3 O3 measurements
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Figure 6.3: Comparison of measured (black line) and simulated (red line) O3-SCDs during balloon ascent
vs. detector altitude (=balloon altitude).
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Figure 6.4: Comparison of measured (black line) and simulated (red line) O3-SCDs at balloon float during
sunset (left panel) and sunrise (right panel) vs. local SZA.

Firstly, a comparison between measured and simulated O3-SCDs is discussed. For the simulations, the
Os-profile measured by an ECC ozone sonde launched ~ 3h after the LPMA-balloon from Esrange
is used for altitudes < 36km. For altitudes above, the Os-concentrations are obtained from close-by
SCIAMACHY measurements (von Savigny, pers. comm.). As the DOAS evaluation with a convolved
Kurucz spectrum as Fraunhofer reference does not work for this flight, the unknown offset of the
measured dSCDs due to the O3 absorption contained in the solar reference is determined by comparing
the measured and simulated SCDs. A value of 8 - 10'? cm™2 is found. For the ascent measurements
(see figure 6.3), a rather good agreement between the measured and simulated O3-SCDs is observed
for balloon altitudes above 15km. For lower altitudes, the agreement is worse. An explanation could
be tropospheric clouds which are not considered in the simulations or a wrongly assumed tropospheric
aerosol load. During sunset (see figure 6.4, left panel), the measured and simulated SCDs match quite
well over the entire observed SZA range of 85.5° — 94.5°. During sunrise (see figure 6.4, right panel),
the measured SCDs are systematically lower than the simulated ones, however, the qualitative trend is
the same. The Os-profile used for the simulations was measured ~ 7h earlier which could explain the
discrepancies.

Secondly, the simulated BoxAMFs and the measured SCDs are used to obtain a vertical profile. Box-
AMFs for several balloon altitudes are shown in figure 6.5 (left panel). It can be seen that the individual
BoxAMF generally have a rather broad maximum. For detector altitudes up to 18 km, the maximum is
reached in the box the balloon is actually in. With increasing altitude the maxima become broader, i.e.
more underlying boxes contribute to the observed light path. This means that the troposphere (i.e. the
altitude layers up to 10km) significantly contributes to the observed light path. As the troposphere is
more difficult to model due to the existence of clouds (which are not considered in the present simula-
tions) this could be an explanation for the observed discrepancies between the measured and simulated
SCDs. Starting with the BoxAMF for 21km, a maximum forms at the layer of the tangent height.
The tangent height is defined in this case as the lowermost layer which can be ’directly’ seen by the
telescope, i.e. without multiple scattering. This maximum increases with increasing balloon altitude
but the altitude layers between the tangent and detector height (~ 7km) still significantly contribute
to the observed light path. It can also be seen that the maximum of the BoxAMF corresponding of
the "highest’ available spectrum recorded around 37 km lies in the 29 — 30 km layer, which means that
hardly any profile information about the altitudes above 30 km is contained in the measurements. The
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Figure 6.5: Left panel: RT calculated BoxAMFs vs. altitude for selected detector altitudes during balloon
ascent. Right panel: miniDOAS Ogs-profiles retrieved on a 2km grid (black line) and 1km grid (gray line)
compared to the measurements from the ECC ozone sonde launched ~ 3h after the LPMA balloon (red
line). Also shown is the a priori profile (green line) used for the retrieval.
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Figure 6.6: Averaging kernels for the profile retrievals shown in fig. 6.5 on a 1km grid (left panel) and a
2km grid (right panel), respectively.
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RT calculated BoxAMF for all altitudes are inverted according to the methods described in section
3.3. The results are shown in figure 6.5 (right panel). Two profile retrievals have been performed on
a 1km and 2km grid, respectively. The averaging kernels for both retrievals are shown in figure 6.6.
The profile retrieved on a 1km grid looks very noisy. Additionally, the averaging kernels do not reach
1 for most altitudes which means that this grid size is too narrow. The profile retrieved on a 2km grid
looks much smoother. However, the agreement with the ozone sonde profile is rather poor. There are
several reasons for this. Firstly, the elevation angle, which strongly affects the measured SCDs and the
tangent height of the observations, is not exactly known. This uncertainty might be the reason for the
shift of the respective maxima of the two profiles. Secondly, the broad maxima of the BoxAMF cause
the profile inversion problem to be worse conditioned compared to the case of a detector elevation angle
around 0° (see the next sections). For altitudes below ~ 15km, the BoxAMF show no pronounced
maximum which causes a rather poor vertical sensitivity at these altitudes.

Summarizing the results from this flight leads to the conclusion that the chosen elevation angle of 3°
below the horizon was a rather unwise choice. Consequently, elevation angles around 0° were chosen
for all further miniDOAS fixed limb measurements.

6.3 The LPMA/DOAS/miniDOAS Flight from Kiruna, March
2374, 2003

6.3.1 Flight Conditions
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Figure 6.7:  Left panel: Altitude profile of the LPMA/DOAS balloon (black line) and Solar Zenith
Angle (SZA) vs. Universal Time (UT). Right panel: results of the ozone sonde launched ~ 3h after the
LPMA/DOAS gondola. Shown are the temperature (black line), Os-mixing ratio (green line), and the
relative humitity (red line). For comparison, the relative humidity measured by a meteo sonde launched
~ 3.5h before the LPMA-balloon is also shown (magenta line). The approx. height of the tropopause
(~ 8km) is given with blue dots.



126 CHAPTER 6. RESULTS AND DISCUSSION

10

2.0

elevation angle [°]

-6

gondola azimuth - solar azimuth angle [°]

-8

suntracker elevation - solar elevation angle
-0 42444+ 204+ B A T T

T T T T T
14:30 15:00 15:30 16:00 16:30 17:00 17:30 15:00 15:30 16:00 16:30 17:00 17:30
uT uTt

Figure 6.8: Azimuth angle of the gondola minus solar azimuth angle (left panel) and elevation angle of
the suntracker minus solar elevation angle (right panel), respectively, vs. time.

The second flight of the Kiruna campaign was launched on March 23", 2003 at 14:28 UT and SZA—77°.
The altitude profile and the corresponding SZA are shown in figure 6.7 (left panel). After 2h15min
ascent, the float altitude of ~ 32km was reached at 16:43 UT and SZA=90.2°. After ~ 1h at float,
the balloon was cut at 17:41 UT and SZA=96°. The results of the ozone sounding by an ECC sonde
launched at 17:38 UT, i.e. ~ 3h after the LPMA/DOAS balloon, is shown in figure 6.7 (right panel).
From the temperature profile, the tropopause height is estimated to 8 km. The relative humidity profile
has several maxima around 2 km, 4 km, and 6 —7 km which might be due to cloud layers. For comparison
also a humidity profile measured by a meteo sonde launched in the morning at 10:56 UT, i.e. ~ 3.5h
before the LPMA /DOAS-balloon, is shown. In this sounding, the humidity only has a maximum around
2km which shows that the cloud cover was highly variable on that day.
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Figure 6.9: Sketch of the gondola movements.
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An important aspect for limb measurements is the stability of the gondola. The gondola movements
can be described with respect to three axes. It can perform rotational oscillations with respect to the
z-axis given by the flight train of the balloon. These azimuthal movements are slowed by controlled
countermovements of the pivot (azimuth stabilization). The gondola can also swing along the flight
train in x- and y-direction. These elevational oscillations cannot be stabilized.

The absolute azimuth angle of the LPMA-gondola relative to the Earth (e.g. 0° corresponds to North,
90° to East etc.) is recorded by onboard instrumentation. Subtracting the local solar azimuth angle
yields the azimuth angle of the gondola relative to the sun. This quantity vs. time is plotted in figure
6.8 (left panel). In the troposphere and especially in the tropopause region, the gondola was quite
unstable in azimuth. Above ~ 10km (i.e. after 15:10 UT), the azimuth stabilization was very well
with amplitudes of 6 — 15° decreasing to < 3° towards the end of the flight. As shown in section 5.1.4,
azimuth oscillations of this magnitude do not significantly affect the measurements or RT calculations.

As the sensitivity tests have shown (see section 5.1.3), the measurements are much more sensitive to
elevational gondola movements. Unfortunately, the elevation of the LPMA gondola is not directly
measured by onboard sensors. The only existing data about the gondola’s elevational position is given
by the suntracker’s elevation angle. Assuming that the suntracker is perfectly locked to the sun, i.e.
always pointing to the same point of the solar disk, the gondola’s elevation angle can be obtained by
subtracting the actual solar elevation given by 90°—SZA from the suntracker’s elevation angle. This
quantity is plotted vs. time in figure 6.8 (right panel). Note that the miniDOAS limb telescope is
pointing at an angle of ~ 90° relative to the sun and, thus, also relative to the suntracker so that the
shown quantity does not directly give the elevational oscillation of the limb measurements. However,
it can be assumed that the elevation angle of the detector is qualitatively the same. Also note that
the plotted data only gives the elevation angle of the gondola, when the suntracker is locked to the
sun. Before 15:10 UT, this was not the case most of the time, so no information about the elevation is
available for tropospheric altitudes. Afterwards, the elevation oscillations had amplitudes of 0.5 — 1.5°
between 10 — 18 km, increasing to amplitudes of 2 — 3° between 18 — 28 km, and again decreasing to 1°
for the beginning and < 0.5° at the end of the float phase. However, for the following RT calculations
during ascent, it is assumed that the telescope is constantly pointing to an azimuth angle of +90°
relative to the sun and to an elevation angle of 0.5 above the horizon.

6.3.2 Instrument Performance

The spectral shift and the residuals of the DOAS evaluation of O3 and NOs vs. detector altitude in the
490 — 520 nm and 400 — 450 nm wavelength range, respectively, are shown in figure 6.10 . The residuals
of the O3 retrieval are pretty constant with altitude ranging between 1.1 - 1072 at low and 0.8 - 1073
at high altitudes. In the NOy region, the residuals are decreasing from 1.6 - 1073 at low altitudes to
0.7 - 1073, This behavior is mainly due to the lower limb radiances at low altitudes.

6.3.3 Absolute Limb Radiance Measurements

The evaluation of the measurements with regard to absolute limb radiances is done in the same way as
described in section 6.5.3. In this section, only a discussion of the results is given.

The resulting calibration coeflicient as function of wavelength is shown in figure 6.12. The sensitivity
of the instrument is increasing between 350 and 400 nm. It is almost constant between 400 and 490 nm.
In the 490 — 530 nm interval, the sensitivity is highly variable with a sharp maximum near 510 nm.

A comparison between measured and RT calculated limb radiances during balloon ascent is shown in
figure 6.13 (left panel) for 360 nm and 490 nm. Measurements for altitudes < 11 km are rejected because
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Figure 6.10: RMS residual of the DOAS retrieval of NOy (400 — 450 nm, blue squares) and Oz (490 —
520 nm, red squares), and spectral shift of the spectra relative to the solar reference spectrum (blue and red
line, respectively) vs. detector altitude.

the gondola was unstable. An uncertainty of the radiometric calibration of 10 % and 5 % is assumed
for the radiometric calibration at 360 nm and 490 nm, respectively. Note that the measurements at
360 nm are corrected as described in section 6.5.3. The match between measurements and simulations
is excellent for all (stratospheric) altitudes at 490 nm, and also for altitudes > 18km at 360 nm. Below
18 km, the measured radiances are systematically higher than the simulated ones. The reason for this
is still unclear. It is suspected that the TRACY RT calculations become incorrect for an increasing
fraction of multiple scattered photons.

A comparison between measured and RT simulated limb radiance for the limb-scanning measurements
at float altitude is shown in figure 6.13 (right panel) for 490 nm. The limb scans start at an elevation
angle of 0.5° above the horizon and decrease to 5.5° below the horizon with 0.5° step width. The
altitudes given in the figure are rough geometrical estimates of the tangent height of the observation.
Note that an exact knowledge of the tangent height is not necessary as the only input needed for the
TRACY RT calculation is the detector position and viewing direction relative to the sun. Again, the
RT simulations match very well with the measurements. Only for the first limb-scanning sequence a
discrepancy is observed for the 15.5km data point.

6.3.4 O; Results

In a first step, the slant column densities of ozone (O3-SCD) are inferred from the measured spectra,
and compared with the same parameter simulated by Tracy RT calculations. As input either the
O3 profile simultaneously measured on board by an Electro Chemical Cell (ECC), or by a stand-alone
ECC O3 Sonde, ~ 3h launched after the LPMA /DOAS gondola is used. Figure 6.15 (left panel) reveals
that the measured and simulated O3-SCDs compare reasonably well, however only for the simulations
using the ozone profile measured by the ECC Sonde aboard (blue line in fig. 6.15). Conversely taking
the O3 profile in the simulation measured by the stand-alone ECC Sonde (~ 3h launched after the
LPMA /DOAS payload), larger O3 concentrations are obtained in the 12 — 21 km height range with a
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Figure 6.11: lllumination situation around the earth terminator as seen from the International Space

Station (ISS).
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Figure 6.12:  Output of the Bremen Ulbricht Sphere used for the absolute radiance calibration (red

line), and determined calibration coefficient (i.e. wavelength dependant sensitivity, see section 6.5.3 for its
definition) (black line).
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Figure 6.13: Left Panel: Comparison of measured and RT calculated limb radiances vs. detector altitude
for ascent for 360 nm (in blue) and 490 nm (in red). Right panel: measured (black lines) and simulated (red
lines) limb radiances vs. local SZA for balloon float in limb scanning mode for 490 nm. The altitude labels
denote the calculated tangent heights of the respective observation.
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Figure 6.14: Determination of the O3 absorption of the solar reference spectrum. Left panel: retrieved
03-SCDs with convolved Kurucz spectrum as solar reference vs. O3-dSCDs with self recorded solar reference
(black squares) and linear fit (red line) of the correlation plot. Right panel: simulated O3-SCDs vs. measured
03-dSCDs (black squares) and linear fit (red line) of the correlation plot.
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Figure 6.15: Left panel: comparison of measured and simulated O3-SCDs in the UV and visible spectral
range. For the simulations the two O3 profile measured by the ECC Ozone Sondes (see right panel) are used.
Right panel: Comparison of retrieved O3 profiles from miniDOAS limb measurements during balloon ascent
(black line), direct sunlight DOAS measurements during balloon ascent (red line), and two ECC Ozone
Sondes one on board the LPMA/DOAS gondola (blue line) and one stand alone (green line).
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Figure 6.16: Left panel: RT calculated BoxAMF as a function of altitude. Right panel: averaging kernels
of the profile inversion shown in fig. 6.15.
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corresponding overestimation in the simulated Oz -SCDs (green line in fig. 6.15). This comparison
clearly demonstrates the quality of the limb Os measurements and its sensitivity towards the shape
and Ojz concentration of the profile. A major uncertainty of the measured SCDs is given by the solar
reference offset to be added to the DOAS retrieved dSCDs. Two methods for the determination of this
offset value are used and compared in figure 6.14. The first possibility is to use the high resolution
Kurucz spectrum convolved to the instrumental resolution as solar reference for a DOAS evaluation
of the measured spectra. As the Kurucz spectrum contains no atmospheric absorption features, the
DOAS fit yields the absolute SCD in this case. However, the retrieval error is much higher compared to
using a self-recorded solar reference due to improperly removed Fraunhofer structures. This can be seen
when comparing the error bars in figure 6.14 (left panel) for the two DOAS evaluations. Despite the
large errors of the Kurucz-fit, its correlation with the DOAS results using the self-recorded reference
is excellent. A linear fit of the correlation yields a value of 5.797 - 10? cm~2 for the solar reference
offset. The second way to determine the offset is via a correlation of the measured dSCDs to the RT
simulated SCDs shown in the right panel of the mentioned figure. The correlation is also very good
and yields an offset value of 5.782 - 10'? cm~2 which agrees excellently with the offset determined by
the Kurucz fit within their uncertainties. For the following profile retrieval, an offset of 5.8 - 10 cm—2
is used. To estimate the error arising from the offset uncertainty, a second profile is retrieved with an
offset value of 6.5- 10" cm~2 and the difference of the two profiles is added to the profile retrieval error
(for details on the error calculation, see section 5.2.4). As can be seen in figure 6.15 (left panel), adding
6.5-10' cm ™2 to the measured dSCDs yields an SCD-profile which matches well the simulations using
the stand-alone ECC-sonde as input. Note that the error bars shown in that figure only include the
statistical DOAS error but no systematical DOAS error arising from uncertainties of the cross section
or the offset determination.

In a second step, the measured O3-SCDs are mathematically inverted into an Oz profile (see fig. 6.15,
right panel), using RT simulated Box Air Mass Factors (BoxAMF, see fig. 6.16, left panel) for each
observation, and the inversion routines described in section 3.3. Overall, a good agreement is found
between the inferred limb Oj profile and the simultaneously measured O3 profiles either from the aboard
ECC sonde or from the direct sun DOAS observations indicating the feasibility of the balloon-borne
limb method. The large sensitivity for upper tropospheric and lower stratospheric trace gas detection
is also indicated by the averaging kernels (see fig. 6.16, right panel) which attain a value close to unity
within the 4 — 30km height range on a 1km altitude grid below 20km and 2km above 20km. The
lower altitude resolution above 20 km is chosen because there are much less measurement points due to
the lower limb radiances in this altitude range (~ 100 measurements in the 3.5 — 20 km range vs. ~ 10
measurements in the 20 — 30 km range).

6.3.5 NO; Results

The NO, profile retrieval is done in the same way as for O3. The NOg absorption of the solar reference is
done by a correlation of the measured NO3-dSCDs with simulated NO2-SCDs using the direct sunlight
DOAS profile (see figure 6.17, left panel). A value of 2.28-10'6 cm~2 is found and added to the measured
dSCDs. Using this offset value, the measured SCDs compare excellently to the RT simulated SCDs
(see figure 6.17, right panel). An uncertainty of 5 % is assumed for this offset value and used for the
calculation of the error of the retrieved profile arising from this uncertainty (for details of the error
calculation, see section 5.2.4). No systematical cross section uncertainty is assumed for this comparison
as the same cross sections are used by both methods (i.e. miniDOAS limb and solar occultation DOAS).

Fig. 6.18 (left panel) shows a comparison of the NOs profiles for the balloon ascent inferred from
miniDOAS limb (black line) and direct sunlight DOAS (red line) measurements. Generally, the two
profiles compare excellently, especially from 20km down to 7km. Above 20km the two profiles show
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Figure 6.17: Left panel: Determination of the NOy absorption of the solar reference spectrum. Shown
are the measured NO3-dSCDs vs. simulated NO3-SCDs (black squares) and a linear fit (red line) of the
correlation plot. Right panel: Comparison of the measured NO3-SCDs (black line) and simulated NO2-SCDs
(red line) using the DOAS ascent profile as input.
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some discrepancies which may be due to the low numbers of limb measurements which cause some
fluctuations in the miniDOAS profile. However, this finding demonstrates the equally large sensitivity
of the balloon-borne ascent limb measurement compared to the solar occultation technique. It is a result
of the trade of the larger sensitivity of the direct sunlight measurement (i.e. lower residual/error of
the DOAS evaluation) compared to the limb spectroscopy due to the much higher number of analyzed
photons, and the higher air mass factors of the limb measurements (up to ~ 50 in the limb case for the
altitude layer the balloon is in vs. 1/cos(SZA)=s 6 for SZA~ 80° in the direct sunlight case) and, thus,
the better conditioning of the inversion problem.

6.3.6 O, Results
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Figure 6.19: Measured O, optical densities (OD, black lines) compared to simulations (colored lines)
using different tropospheric aerosol scenarios (left panel). For details of the aerosol scenarios see section
5.1.5.

For the O2-O4 dimer (O4), the absorption cross section o is not known. The only available experimental
data from literature is the pair absorption cross section o which is defined as the O4 absorbance per
unit length (£) over the Og concentration squared:

e(T)

a(T) = 02 =

o Keqo(T), (6.1)

where o is the (unknown) O4 absorption cross section and K., is the (also unknown) O, equilibrium
constant. It is assumed that o is independent of temperature (Johnston et al., 1984) and, thus, the
T-dependance of « arises only from the T-dependance of K.,. As the band shapes do not change with
T and p, and the T-dependence is rather weak (about 11 % for AT = 50K) (Pfeilsticker et al., 2001),
the O4 pair absorption cross section measured by Hermans (2002) at room temperature is used for the
DOAS evaluation.

O- has a constant mixing ratio of ~ 21 % up to very high altitudes (> 60km). Accordingly, the
O3 concentration [Oz] can be calculated by [Oz] = 0.2094 - p/(k - T). As the concentration of Oy is
proportional to the known Oy concentration squared, the O4 measurements can be used to investigate
the length of the light path through the atmosphere. In our case, the RT modeled BoxAMFs are
multiplied with a squared Og concentration profile (see figure 6.20, left panel) and multiplied by the peak
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Figure 6.20: Left panel: O4 absorption profile retrieved from miniDOAS limb measurements (black line)
compared to the profiles retrieved from direct sunlight DOAS measurements during balloon ascent (red line)
and solar occultation (green line). Shown is the O4 absorption per unit length multiplied by the peak Oy
collision pair absorption cross section «;. For comparison, the Oa-concentration squared ([O2]?, blue line)
is shown. Right panel: Corresponding averaging kernels for the miniDOAS O, profile retrieval.

Oy collision pair absorption cross section «; of the O4 absorption band used for the DOAS evaluation.
This quantity can be compared to the measured O4 optical densities (OD). In a second step, the
calculated BoxAMFs are used to retrieve a vertical O, absorption profile. Dividing the retrieved O4
absorption per unit length for each altitude layer by «; yields the Os-concentration squared. As the
O4 concentration decreases exponentially with altitude, the O4 measurements are especially sensitive
to the troposphere while their sensitivity decreases with altitude.

Figure 6.19 shows a comparison of the measured O4 ODs as a function of detector height compared
to simulations of the same quantity for several aerosol scenarios as described in section 5.1.5. It can
be seen that stratospheric aerosol does not affect the O4 ODs significantly (e.g. by comparing the red
and green lines or the blue and cyan lines, respectively). Tropospheric aerosol, however, significantly
shortens the light path at lower altitudes. The plot reveals that assuming a high tropospheric aerosol
load (magenta line) leads to smaller than measured O4-ODs while not considering any tropospheric
aerosol in the simulation (green line) yields larger than measured O4-ODs in the troposphere. A profile
inversion of the O4 measurements in the above mentioned units and the corresponding averaging kernels
are shown in figure 6.20. Note that the shown errors only include the statistical DOAS error but no
systematical effects. From the averaging kernels it can be seen that the measurements are only sensitive
up to an altitude of 18 km due to the very low O4 concentrations higher up. In the 3-18 km range, the
miniDOAS profile compares well with the profiles obtained from direct sunlight DOAS measurements
during ascent and solar occultation. The profile retrieved from miniDOAS O, measurements also
compares very well to the calculated [Os]? profile up to 14 km. For higher altitudes, the measurements
show higher values, most likely due to the temperature dependence of the O4 absorption cross section
which is not accounted for. But also the decreasing with altitude sensitivity might be an explanation
for the increasing discrepancies.
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6.3.7 Scanning Limb Measurements

The scanning limb observations are discussed in more detail for the Kiruna 2004 flight (see section
6.5.10), so only a brief discussion of the results is given here. The limb scans for this flight cover an
elevation angle between +0.5° and —5.5°. For the corresponding tangent heights see table 6.3.7.
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Figure 6.21: Measured (black squares) and simulated (colored squares) Os- (upper panel) and NO3- SCDs
(lower panel) for scanning limb measurements at balloon float. For the NO5- SCD simulation, photochem-
ically corrected profiles (red squares) are used (for details see text). For comparison a simulation using a
constant profile obtained from DOAS ascent measurements is shown by green squares. Also shown are the
simulated Oz- and NO3- SCDs multiplied by a factor of 0.9 (blue lines).

The measured O3- and NO3-SCDs are compared to RT simulations using the same profile as for the
simulations of the respective SCDs during ascent. For NO,, additionally, photochemically scaled profiles
are used as input for the simulation. The comparison is shown in figure 6.21. For the O3-SCDs, the
picture looks somewhat different compared to the Kiruna 2004 flight: measured and simulated Os-
SCDs match very well for high tangent heights, while the simulated SCDs are systematically larger
for tangent heights below 21 km; for the Kiruna 2004 flight, the opposite is found. For this flight, the
elevational gondola oscillations were small (1 — 0.5°) during float which explains the good coincidence
at high tangent heights. There are two possible explanations for the mismatch at low tangent altitudes:
either the ozone profile is different with lower concentrations compared to that observed during balloon
ascent or the RT calculated BoxAMF are slightly too large. For the NO2-SCD comparison of the
first 4 limb scans using the photochemically scaled profiles as input for the simulation, the qualitative
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Table 6.2: Tangent height of the scanning limb observations as a function of detector elevation angle.
The tangent heights are given by the altitude layer with maximum BoxAMF.

elevation | tangent height
+0.50° | 32.0 — 33.0km
—0.00° | 32.0 — 33.0km
—0.50° | 32.0 — 33.0km
—1.00° | 31.0 — 32.0km
—1.51° | 30.0 — 31.0km
—2.01° | 28.5 —29.0km
—2.52° | 26.0 — 26.5km
—-3.02° | 23.5 —24.0km
—3.53° | 20.5 —21.0km
—4.03° | 16.5 —17.0km
—4.53° | 13.0 — 13.5km
—5.04° —
—5.54° —

picture looks the same as for Oz. Multiplying both the simulated Oz- and NO2-SCDs by a factor of 0.9
(shown by blue lines in the figure) results in values almost identical to the measurements. This gives
rise to the assumption that the RT calculated BoxAMFs are slightly too large (i.e. by 10 %) under
these unfavorable conditions with very low sun and very slant light paths through the atmosphere, and
that the photochemical increase in NOs concentration is handled correctly by the chemistry model.
Future limb scan measurements with lower SZA have to show wether these discrepancies, which are not
observed for the ascent measurements, is typical for the geometry, i.e. for elevation angles < 0° or due to
the high SZA. For the last limb scan, the simulated NO5-SCDs are systematically higher than measured,
also similar to the case of O3. It is also seen that the simulations using a constant profile obtained
from the direct sunlight DOAS measurements during balloon ascent for SZA in the range of 80 — 88.5°
become incorrect with increasing SZA. This comparison nicely demonstrates the feasibility to obtain
time-dependant profile information of photochemically active radicals by limb scanning observations and
gives confidence into the validity of the applied chemical calculations in the SZA range of 88 — 92.5°.

In the next step, vertical profiles are inferred from the measured SCDs and the RT calculated BoxAMF
using the same algorithm as for the ascent profile retrieval. The problem is that only very few measure-
ments exist. The differences in tangent altitude between consecutive scans are between < 1km for the
first to < 4km for the last measurement points. Therefore, the profile retrieval is tested on a 2km and
a 3km grid for O3 and NOs in figures 6.22 and 6.23, respectively. The O3 profile retrieved on a 2km
grid has very odd averaging kernels and large covariances and is not shown here. The averaging kernels
of the NOs retrieval on a 2km grid are much smaller than 1 with a width wider than the grid size
for altitudes below 25km indicating a lower vertical resolution there. The averaging kernels at these
altitudes also imply that the retrieved profile points are not independent. Above 23km, the averaging
kernels indicate a vertical resolution of 2km. However, the retrieved profiles are also very noisy at
these altitudes. So a resolution of 2km is considered too fine for the given measurement geometry and
uncertainties. On a 3km grid, the both the retrieved O3 and NO; profiles are smoother. The averaging
kernels are close to 1 for the 16 — 34 km altitude range indicating a vertical resolution of 3km there.
Below, the averaging kernels decrease very quickly indication a low sensitivity of the measurements.
However, the retrieved O3 profiles have somewhat smaller concentrations than the ozone sonde profile,
a fact already discussed for the SCD comparison above. Also the NOy profiles are smaller than the
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Figure 6.22: Left Panel: Retrieved O3 profiles from scanning limb measurements on a 3km grid. Right
Panel: Averaging kernels for the profile retrieval of limbscan 2 shown in the left panel.

chemically modeled concentrations.

Summarizing the experience gained from this retrieval exercise, it seems to be possible to retrieve Oz and
NOy profiles from scanning limb measurements with 3km vertical resolution between 15km and float
altitude, However, with rather hight uncertainties due to the low number of measurements. Therefore,
in order to validate the RT model or the photochemical calculations, a comparison of measured and
simulated SCDs without the additional uncertainties of the retrieval are more useful.

6.3.8 Nadir Measurements

In nadir geometry, the detector telescope is pointing straight downwards to the surface at an elevation
angle of —90°. In this observation mode, the measured SCDs are not sensitive to gondola movements
as the azimuth angle is meaningless for —90° elevation angle and the elevational oscillations are rather
small. Figure 6.24 shows a comparison of measured and simulated O3-SCDs for the miniDOAS nadir
observations. The SCDs are plotted vs. SZA which is increasing almost linear with time. Note that
all data for SZA< 90° correspond to the balloon ascent while all data for SZA> 90° were recorded
during balloon float. The agreement of measured and simulated SCDs is good. Some discrepancies are
observed at higher altitudes. It should be noted that this need not be a problem of the RT calculations
but might be due to changing O3 concentrations observed during the balloon flight (see figure 6.15,
right panel, which shows slightly different O3 profiles measured by the two sondes or the DOAS during
ascent and occultation). For high SZA, i.e. > 92° the RT modelling becomes increasingly difficult
as only very few of the modeled photons actually hit the sun, i.e. contribute to the calculation which
results in rather poor statistics and noisy BoxAMFs.
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Figure 6.23: Left Panels: Retrieved NOy profiles from scanning limb measurements on a 2km and 3km
grid (upper and lower row, respectively). Right Panels: Averaging kernels for the profile retrieval of limbscan
2 shown in the left panels. The corresponding SZA intervals of limbscans 2 — 4 are 90 — 91°, 91 — 91.7°,
and 91.8 — 92.8°, respectively.
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Figure 6.24: Comparison of measured and simulated O3-SCDs in nadir geometry vs. local SZA.

6.4 The LPMA/DOAS/miniDOAS Flight from Aire-sur-
I’Adour, October 9", 2003

6.4.1 Flight Conditions

The flight from Aire-sur-I’Adour was the, so far, only miniDOAS flight at mid-latitudes. It was launched
on October 9", 2003 from the CNES balloon division headquarter situated at 43.7° northern latitude
and 0.25° western longitude. The flight profile of the flight is shown in figure 6.25, left panel. The launch
was at 14:55 UT at SZA=65° . After 1h37 min of ascent, the float altitude of ~ 33 km was reached at
16:32 UT at SZA=80.8°, approx. half an hour earlier than initially planned. After about half an hour
at float (at 17:08 UT and SZA=87.5°%), the balloon had to be cut because it approached the densely
populated area of Toulouse, ~ 30 min earlier than initially planned. So, unfortunately, we missed the
sunset and also the limb scanning measurements which were supposed to commence automatically at
17:10 UT. To determine the right time to switch into limb scanning mode is always problematic since
it is solely based on the calculated trajectory.

Figure 6.25, right panel, shows the results of the ozone sonde launched at 16:13 UT, i.e. ~ 1.5h after
the LPMA /DOAS balloon, from the base in Aire-sur-’Adour. From the measured temperature, Og,
and humidity profile, the tropopause height is determined to ~ 14km. From the relative humidity
profile, it can be assumed that there were clouds around 1.5km and 9 km.

In figure 6.26 (left panel) the gondola’s azimuth angle minus the solar azimuth angle is plotted vs. time.
This quantity should be zero for a perfectly azimuth stabilized gondola. However, it can be seen that
the azimuth stabilization completely failed during the first ~ 40 min, i.e. up to an altitude of ~ 16 km.
Afterwards, the gondola stabilized with azimuthal oscillations with an amplitude of 6 — 10° during
ascent and decreasing to ~ 3° during balloon float. The period time of the oscillations is typically in
the order of 20s. As described in more detail in section 6.3.1, the gondola’s elevation angle is examined
by looking at the suntracker’s elevation minus the solar elevation angle. This quantity is plotted vs.
time in figure 6.26 (right panel). It can be seen that the gondola movements were stronger during ascent
with amplitudes up to 5°. As for the azimuthal oscillation, the period time of the elevational oscillation
is ~ 20 s which is in the order of the typical integration time for 500 co-added scans. Note that even
if it were possible to integrate over exactly one (or several) full periods the obtained spectrum, and
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Figure 6.25: Left panel: Altitude profile of the LPMA/DOAS balloon (black line) and Solar Zenith Angle
(SZA) vs. time. Left panel: Results of the ozone sonde launched ~ 1.5 after the LPMA/DOAS gondola.
Shown is the temperature (black line), O3 mixing ratio (red line), and relative humidity (green line). The
approx. height of the tropopause (~ 14 km) is shown with blue dots).

10
] 2.5
— 8 suntracker elevation - solar elevation angle
[N ] 2.0
P ]
— 6_
2 15
© ]
£ 4 1.0
g 1
§ 24 s °°
s 7 2 0.0
g 0] :
K ] S 05
3 -2 g
g ] % -1.0
8 4] 1.5
© ] .
5 ]
2 6] -2.0
H ]
o ] 25
-8
1“ -3.0
-10 - r T — T 7T T
15:00 15:30 16!00 16!30 17!00 BT 77—
15:45 16:00 16:15 16:30 16:45 17:00
uT uT
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thus trace gas absorption, would be different compared to a perfectly stable gondola as the radiative
transfer is highly nonlinear. This effect of gondola instability is discussed quantitatively in 5.1.3. In the
following it is assumed that the limb telescope is always pointing to a constant elevation angle of —0.5°
to the horizon and an azimuth angle of 90° to the sun.

6.4.2 Instrument Performance
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Figure 6.27: RMS residual of the DOAS retrieval of NOgy (400 — 450 nm, blue squares), O4 (465 —490nm,
black squares), and O3 (490 — 520 nm, red squares), and spectral shift of the spectra relative to the solar
reference spectrum (blue and red line, respectively) vs. detector altitude.

The stability of the optical imaging is checked by looking at the RMS residual of the DOAS retrieval
and the spectral shift of the measured spectra relative to the solar reference spectrum recorded at float
altitude (33.1km and SZA=81°). These quantities vs. balloon altitude are plotted in figure 6.27. The
spectral shift decreases from values of 1pixel and 1.4 pixels in the 400 — 450 nm and 490 — 520 nm
wavelength range, respectively, for altitudes near ground level to zero with increasing balloon altitude.
Consequently, the residuals are higher for lower altitudes where the spectral shift is largest. The RMS
residuals decrease from values of 1.2 - 1073 and 1.8 - 1073 in the 400 — 450 nm and 490 — 520 nm
wavelength range, respectively, to values around 0.4 - 10~2 at balloon float altitude. The high residuals
in the Oz retrieval region (490 — 520nm) are not only due to the higher spectral shift but also due
to the imperfectly removed water vapor absorptions because of the high tropospheric HoO content.
This significantly affects the quality of the O3 DOAS retrieval at altitudes below 9km. For altitudes
above 9km, where the HyO absorption strongly decreases, the RMS residuals decrease to values around
0.5—0.6-10~2 which is very close to the limit given by the photo-electron shot noise. In the 400 —450 nm
region, the residuals are slightly higher because of the lower number of analyzed photons. All in all,
the residuals are reasonably small for a detection of the mentioned trace gases.
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Figure 6.28: Left panel: measured O3-SCDs (black and gray line, respectively) vs. detector altitude
compared to several simulations for several elevation angles (colored lines) are shown. Right panel: measured
03-dSCDs vs. simulated O3-SCDs (black squares) and a linear fit of the correlation plot (red line).
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Figure 6.29: Left panel: Os-profiles retrieved on a 1 km (black line) and 2km grid (gray line), respectively,
compared to the profiles measured by the direct sunlight DOAS (red line) and an ECC sonde (green line)
launched ~ 1.5h after the LPMA-balloon. Also shown is the a priori profile (blue line) used for the retrieval.
Right panel: Averaging kernels for the profile retrieval on a 1km grid.
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6.4.3 O3 Results

The measured O3-SCDs are compared to RT simulated values in figure 6.28 (left panel). Several
simulation runs with elevation angles between —1° and +1¢ are performed to determine the exact angle
which was roughly adjusted to 0° on the ground. As input for the simulation, a profile composed from
ozone sonde measurements (0 — 22km), DOAS ascent measurements (22 — 33km) and typical values
above is used. It can be seen that the best matching between the measured and simulated SCDs is
achieved for an elevation angle of —0.5° (green line). This value together with the azimuth angle of
90° to the sun is used for the profile retrieval. The Ogs absorption of the solar reference spectrum is
determined from the correlation of measured dSCDs and simulated SCDs (see figure 6.28, right panel).
A value of 4.9-10' cm =2 is found and added to the measured dSCDs (black line). The uncertainty of this
offset is assumed as 10 %, so a second SCD profile is used for the profile inversion with 5.4-10' cm—2
added to the measured dSCDs (gray line). As the measured O3-SCDs for altitudes below 9km are
affected by the strong and not perfectly removed HoO absorptions also present in the 490 — 520 nm
region, they are deleted for the profile inversion and only SCDs above 9km are considered.

The Oz-concentration profiles retrieved on a 1km (black line) and 2 km grid (gray line), respectively, are
shown in figure 6.29 (left panel) together with the profiles obtained from the direct sunlight DOAS (red
line) and an ECC sonde (green line) launched ~ 1.5h after the LPMA /DOAS-balloon. The miniDOAS
profile with 1 km resolution compares very nicely to the ozone sonde profile in the 11 — 22 km range, e.g.
the maxima at 17 km and 20 km can be seen. Below 11 km, the miniDOAS measurements are somewhat
lower which can be explained by the existing difficulties in tropospheric RT modeling. Additionally, the
gondola was rather unstable below 16 km with strong azimuthal oscillations and even revolutions. The
comparison to the DOAS profile is also quite good over the entire altitude range within the error bars
(for details about the DOAS profile retrieval and error calculation see Butz et al. (2005)). The a priori
profile used for the retrieval is also shown in the figure and its covariance is set to 100 %. The rather
odd shape of the a priori is due to the fact that its values have been set to a constant value between
10km and 33 km. This little exercise demonstrate the retrieved profile’s independence of the a priori in
this altitude range, only above and below typical Os-concentrations are used to stabilize the inversion.
The averaging kernels of the retrieval (shown in figure 6.29, right panel) behave very well in the entire
region of interest, i.e. 9 — 33 km, with values close to 1. The profile retrieved on a 2 km altitude grid is
also shown (gray line), although a broader grid does not seem to be necessary given the shown retrieval
on the 1km grid. The error bars in the plot are the sum of the (rather small) profile inversion error
originating from the DOAS retrieval error which is very small in the case of O3, and the much bigger
contribution originating from the uncertainty of the solar reference offset. Assuming 0.25-10' cm™2,
i.e. 10 % (see above), for its uncertainty leads to a pretty constant uncertainty in the retrieved profiles

—3 at higher altitudes. Considering the low

decreasing from 0.25-10'2cm™2 at lower to 0.1-10'? cm
tropospheric O3 concentrations, this uncertainty is in the order of 40 — 100 % for altitudes below 15 km

but decreasing to 4 — 7 % at higher altitudes (17-33km) with much higher O3 concentrations.

6.4.4 NO, Results

The measured NO2-SCDs and an RT simulation of the same quantity is shown in figure 6.30 (right
panel). Again, the determination of the solar reference offset to be added to the retrieved dSCD
values is the biggest uncertainty. The particular problem for this flight is that DOAS measurements
are only available for altitudes above 18 km up to 33km. So for all other altitude levels, SLIMCAT
NO; concentrations scaled to the DOAS profile are used. A value of 4-10'° cm~2 is added to the
measured dSCDs. The so obtained NO; -SCDs (black line) match quite nicely for altitudes up to
~ 20km with the simulation (red line). However, at higher altitudes the measured values are higher
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Figure 6.31: Left panel: NO2 concentration profiles retrieved from miniDOAS limb measurements on a
2km grid (black line) and on 1km grid (green line), respectively, and direct sunlight DOAS measurements
(red line) during balloon ascent. Right panel: NO, using different solar reference offsets (4-1016 cm=2 (profile
1), and 3.5:10'6 cm =2 (profile 2), respectively) retrieved on a 2km grid (black and gray lines) and on a 2km
grid (green and yellow lines), respectively. Also shown is the difference of the respective profiles (blue and
cyan lines).
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Figure 6.32: Averaging kernels for the profile retrievals shown in fig. 6.31 (right panel) on a 1 km grid
(left panel) and a 2 km grid (right panel), respectively.

than the simulated ones. A possible reason are the rather strong elevational oscillations of the gondola
with amplitudes of 3 — 4° for the respective phase of the flight (see figure 6.26, right panel) which
can lead to significantly higher NO2-dSCDs compared to a still gondola. A second SCD profile with
3.5-10'6 cm~2 added to the measured dSCDs (gray line) is also shown in figure 6.30 (right panel). These
SCD values are much below the simulated ones for altitudes below 20 km but in agreement with the
simulations between 20 and 25 km. It cannot really be judged, which of the two SCD offset values is the
real one so the uncertainty of the SCD measurements is estimated to the difference of the two profiles,
ie. 0.5-10' cm™2. As for the DOAS retrieval for both measurement techniques (i.e. miniDOAS limb
and direct sunlight DOAS), the same NO; cross sections are used, no systematical cross section error
is assumed for the error calculation of the following profile retrieval.

Another specific problem for the NOy profile retrieval for this flight are the low BoxAMF at low altitudes
(i.e. below ~ 8km) compared to those above 10km (see figure 6.30, left panel). This makes the
measurements rather insensitive at those altitudes and including the measurements below 9km only
leads to an odd behavior of the averaging kernels (i.e. values > 1) for these altitudes, so all measured
SCDs below 9km are excluded for the profile inversion. The NOy concentration profiles retrieved on a
2km grid (black line) and 1km grid (gray line), are shown in figure 6.31 (left panel). As a priori profile,
the same profile used for the simulation (i.e. NO2 concentrations from the DOAS measurements where
available and adjusted SLIMCAT values everywhere else) is used. The covariance of the a priori is set
to 100 % to ensure the independence of the retrieved profile from it. From the averaging kernels (see
figure 6.32), it can be seen that the measurements are sensitive to NOs between 10 and 34km both
on a 1km and 2km grid as the values are 1 in this altitude range (except for the 10 — 15 km range of
the 1km grid retrieval where the averaging kernels are between 0.9 — 1). However, the profile retrieved
on the 1km grid is rather noisy, especially at altitudes above 25km, i.e. near the NOs concentration
maximum, which is attributed to elevational gondola movements. These fluctuations are averaged out
in the 2 km case so that this profile is favored. The obtained miniDOAS profiles match very well within
the error bars with the NOg profile obtained from direct sunlight DOAS measurements during balloon
ascent (red line). Only in the 25 — 32km range, the miniDOAS concentrations are significantly larger
which can be explained by the already mentioned effect of the elevational gondola oscillation leading to
higher measured NO»-SCDs in this altitude range. The effect of the uncertainty of the determination
of the NOgy absorption of the solar reference spectrum is investigated by performing another profile
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inversion with a second set of SCDs with an offset value by 0.5 - 10! cm~2 smaller (see above). The
results are visualized in figure 6.31 (right panel). It can be seen that the difference in the SCD offset
leads to a rather constant difference between the two obtained concentration profiles (bluish lines) with
values decreasing from 0.25 - 10 cm™2 at low altitudes to 0.1 - 10° cm ™2 at high altitudes both on the
1km and 2km grid. This difference is added to the error of the profile retrieval itself, i.e. originating
from the NOs DOAS retrieval error which is shown by the error bars in figure 6.31 (right panel), and
included in the error bars of the profiles plotted in 6.31 (left panel). This error contribution dominates
the total error by far which can easily be seen when comparing the error bars of the profiles in the left
and right panel.

6.5 The LPMA/DOAS/miniDOAS Flight from Kiruna, March
24", 2004

6.5.1 Flight Conditions
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Figure 6.33: Left panel: Altitude profile of the LPMA/DOAS balloon (black line) and Solar Zenith Angle
(SZA) vs. Universal Time (UT). Right panel: results of the ozone sonde launched from Esrange ~ 1h after
the LPMA/DOAS gondola. Shown are the temperature (black line), O3-mixing ratio (green line), and the
relative humidity (red line). The approx. height of the tropopause (~ 8.9km) is given with blue dots.

The flight was launched on March 24", 2004 at 13:54 UT and SZA=74.1°. The altitude profile of the
flight and the corresponding SZA are shown in figure 6.33 (left panel). After 2h10 min ascent, the float
altitude of ~ 33km was reached at 16:05 UT and SZA=85.6°. After ~ I%h at float, the balloon was
cut at 17:50 UT and SZA=97.7°. The results of the ozone sounding by an ECC sonde launched at
14:58 UT, i.e. ~ 1h after the LPMA/DOAS balloon, is shown in figure 6.33 (right panel). From the
temperature profile, the tropopause height is estimated to ~ 8.9km. The relative humidity reaches
almost 100 % around 1km which might be due to clouds.
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Figure 6.34: Azimuth angle of the gondola minus solar azimuth angle (left panel) and elevation angle of
the suntracker minus solar elevation angle (right panel) vs. time.

The elevational and azimuthal position of the gondola relative to the sun is shown in figure 6.34. It
can be seen that the azimuth oscillation had an amplitude between 6 — 10° during ascent and in the
beginning of the float phase. During float the gondola movements slowed to 1 — 2° in the last hour
of the flight. The same trend can be seen in the elevational oscillations with amplitudes around 1°
during the beginning of the ascent increasing to 2 —3° later on, i.e. between 15:10-16:20 UT or altitudes
above ~ 19km and the first 15min of float. In the course of the float phase, the gondola’s elevational
oscillations slowed to amplitudes < 0.5° during the last hour of the flight.

6.5.2 Instrument Performance

As can be seen in figure 6.35 (right panel), the residuals achieved in the DOAS evaluations are lower
than in the previous flights thanks to a higher light sensitivity which allows for co-adding 1000 scans
per spectrum and a lower spectral shift due to the pressure stabilization (see also section 4.1.2 for
details on the miniDOAS mk.2 applied for the first time in this flight). This allows for the first time
for the detection of BrO. The residuals in the UV are generally higher in the UV, especially at low
altitudes, mostly because of the much lower limb radiances under these conditions leading to rather
poorly saturated spectra (i.e. a saturation level of ~ 15 % in the troposphere compared to ~ 50 %
in the stratosphere in the BrO retrieval range of 347 — 359 nm) which can be seen in figure 6.35 (left
panel).

6.5.3 Absolute Limb Radiance Measurements

The instrument is absolutely radiometrically calibrated shortly before the balloon flight with an abso-
lutely calibrated Ulbricht sphere. For experimental details about the calibration of both the source and
the instrument, see section 4.5. Here, the results of the calibration measurements and the limb radiance
measurements during the balloon flight are reported.

For the absolute radiometric calibration in the "field" shortly prior to the actual balloon flight, spectra
with the Ulbricht sphere as source are recorded at different integration times (between 3 and 19 ms)
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Figure 6.35: Left panel: saturation levels vs. wavelength for a tropospheric spectrum (black line) recorded
in 6.49 km altitude and the stratospheric spectrum (red line) recorded in 32.77 km altitude used as Fraunhofer
reference. Right panel: spectral shift (gray lines) and residual of the DOAS evaluations (colored squares) in
the UV and visible spectral range with and without halogen lamp correction.
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Figure 6.37:  Left panel: measured radiance vs. wavelength (black line) for a spectrum recorded at
balloon float (32.8 km, SZA=85.4°, 90° azimuth and —1.5° elevation angle) and absolutely calibrated Kurucz
spectrum convolved with the instrument’s slit function (red line). Right panel: zoom of the plot shown in
the left panel into a narrower wavelength interval.
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Figure 6.38: Left panel: Absolutely calibrated Kurucz spectrum convolved with the instrument’s slit
function (black line) compared to the extra-terrestrial solar function (ETSF) used by TRACY. Right panel:
Limb radiance measured at several wavelengths (black squares) compared to TRACY simulations of the same
quantity (red squares) for the spectrum shown in figure 6.37. Also shown is the relative deviation of the
radiance values vs. wavelength (green squares).
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Figure 6.39: Left panel: Measured limb radiance at 360 nm vs. altitude with (green line) and without
correction (black line). For details about the applied correction see text. Also shown are TRACY RT
simulations of the same quantity (red line). Right panel: Measured limb radiance at 490 nm vs. altitude
(black line) compared to RT simulated radiances assuming different elevational oscillations of the detector
(colored lines).

resulting in different saturation levels of the measured spectra (see figure 6.36, left panel). The obtained
count rates (i.e. counts per ms) are divided by the output radiance of the source I(\) to obtain a
calibration coefficient ¢(\):

count rate counts,/ms

e() = I(\) mW cm~2 nm~1 sr—!

(6.2)

¢()\) is thus a measure for the sensitivity of the spectrometer towards radiation. It is plotted vs.
wavelength in figure 6.36, right panel) as a function of integration time. The sensitivity is almost
constant in 350 — 450 nm, strongly increasing by a factor of > 3 from 450 — 490 nm reaching a maximum
near 490 nm. From 490 — 550 nm it is again decreasing by a factor of ~ 2. Comparing the absolute
values of ¢(\) obtained for this flight to those from Kiruna 2003 (see figure , it can be seen that the
new instrument has a sensitivity higher by a factor of ~ 7 at 500nm and ~ 3.5 at 400 nm. The values
of ¢(\) obtained at different wavelengths deviate by ~ 3 % due to the detector non-linearity. For the
radiometric calibration of the spectra of the actual balloon flight, the calibration coefficient obtained
for the highest saturation (i.e. recorded with 19ms integration time) is used. The uncertainty of the
output radiance of the calibration source ranges between 4 % at 510nm and 380nm (for details see
section 4.5) which directly affects the accuracy of the absolute calibration of the instrument by the
same relative error. One disadvantage of the used calibration source is that the wavelength dependence
of its radiance output (see figure 6.36, right panel, red line) is totally different from that of the typical
limb radiance (see figure 6.37, left panel). While the lamp’s radiance is strongly increasing from the
blue to the red end of the observed wavelength interval, the limb radiance shows the opposite trend.
Considering the instrumental sensitivity also increasing to higher wavelengths, this results in lamp
spectra with very poor saturations at lower wavelengths (e.g. 3 % at 360 nm) for full saturation around
500nm. For limb radiances, especially at higher altitudes, the recorded spectra have a comparatively
equal saturation over the entire observed wavelength interval (see figure 6.35, left panel). This means
that the achieved saturations are considerably different for the calibration and the actual atmospheric
measurements which means that the that the detector non-linearities (around 3 %, see section 4.2.2)
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affect the accuracy of the radiometric calibration. Adding this error to the uncertainty of the absolute
calibration of the source leads to a total relative error of the miniDOAS radiometric calibration of
ranging between 5 % at 490 nm and 35 % at 360 nm.

For the comparison of measured and RT simulated limb radiances, a precise wavelength calibration is
crucial. The wavelength calibration of the measurement is performed by a fit of a spectrum measured at
balloon float to a Kurucz spectrum convolved with the instrumental slit function using the WinDOAS
calibration tool. For details of this procedure see section 4.4.1. A comparison of the so wavelength
calibrated measured spectrum to the convolved Kurucz spectrum is shown in figure 6.37. In the right
panel, it can be seen that the wavelength calibration is very accurate as the Fraunhofer lines appear
at the same wavelengths. The qualitative trend of the measured limb radiance compared to the solar
irradiance can be explained as follows: the solar irradiance is moderately increasing by a factor of ~ 2
from the blue to the red end of the observed wavelength interval. As the Rayleigh scattering strongly
decreases with wavelength (i.e. it is proportional to A=* the observed limb radiance is consequently also
decreasing with wavelength for the shown spectrum recorded at balloon float where Rayleigh scattering
is the dominating effect. As the solar spectrum is highly structured, the actual irradiance value at a
given wavelength is strongly dependant on the spectral resolution of the observation. Therefore, it is
crucial that the solar irradiance spectrum used as input for the RT calculation has the same resolution
as the instrument to be compared with. Figure 6.38 shows a comparison of the Extra-Terrestrial
Solar Function (ETSF) used by TRACY and an absolutely calibrated Kurucz spectrum (Kurucz et al.,
1984) convolved to the instrumental resolution for wavelengths around 360nm. It can be seen that
the resolution of the TRACY ETSF is much wider than that of the miniDOAS instrument. This
results in the Fraunhofer lines to be much more smeared out in the TRACY spectrum compared to
the miniDOAS measurements which results in strong deviations between the irradiance value used by
TRACY (red arrow) and that the miniDOAS instrument "sees" (black arrow). Therefore, all TRACY
simulations are multiplied with the ratio of Kurucz and ETSF irradiance at the wavelength of interest.
As a consequence, the TRACY RT calculations are based on the Kurucz solar irradiance.

Figure 6.38 shows a comparison of measured and TRACY simulated radiances as a function of wave-
length for a spectrum recorded at balloon float (32.8km, SZA=85.4°, 90° azimuth and —1.5° eleva-
tion angle). It can be seen that the relative deviation of the two radiance values is below 5 % for
wavelengths above 420nm and increasing for lower wavelengths to ~ 20 % at 360nm. This is in
agreement with the uncertainty of the absolute calibration assumed to 5 % at 490nm and 35 % at
360nm. The RT under these conditions are comparatively simple as most photons (~ 80 %) are single
Rayleigh scattered and Mie-scattering on aerosols plays a minor role (< 10 %). Therefore, the RT
simulated radiances are assumed to be pretty accurate under these conditions and, thus, used to check
the miniDOAS radiometric calibration at low wavelengths. The TRACY simulations yield a radiance
ratio of 7(360nm)/I(490nm) = 1.84. This is a reasonable value as the following simple estimation
shows: The relative solar irradiance calculated from the convolved Kurucz spectrum shown in figure
6.37 for the two wavelengths is F(360nm)/FE(490nm) = 0.58. The relative probability for Rayleigh
scattering is (490nm/360nm)* = 3.432 which yields a radiance ratio of (360 nm)/I(490 nm) = 1.99
assuming solely Rayleigh scattering. Therefore, the radiance measurements at 360 nm are multiplied
by a correction factor of setting which sets the ratio /(360 nm)/I(490 nm) to 1.84.

Figure 6.39 shows the limb radiances measured during balloon ascent vs. detector altitude. It can
be seen that the uncorrected measurements at 360nm (left panel) are significantly higher than the
simulated values. After the above described correction is applied, the measured radiances are close
to the simulations for high altitudes. However for altitudes below 20 km the measured radiances are
significantly higher than simulated. For A = 490nm, the picture looks similar. At higher altitudes
(above ~ 14km), measured and simulated radiances match quite nicely. The fluctuations of the mea-
sured radiances are most likely due to gondola instabilities. The radiance measurements are especially
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sensitive to elevational oscillations but also to strong azimuthal oscillations (see section 5.1). There-
fore, additional simulations considering elevational oscillations with amplitudes between 1° and 3° are
carried out. It can be seen that the observed radiances lie between the simulations assuming a still and
a with 3¢ oscillating gondola for altitudes above ~ 20 km. Below 20 km, elevational fluctuations should
have a smaller effect on the radiance according to the RT simulations. Also the azimuthal oscillations
with an amplitude of at most 15° does not significantly affect the simulated radiance. However, the
fluctuations of the measurements become higher. Below 16 km, the measured radiances are significantly
higher (by > 20 %) than simulated. It should be noted that the measurements below 13km have ap-
preciable contributions from the troposphere, which is more difficult to RT model due to the presence
of clouds which are not considered in the presented RT simulations. Additionally, the gondola is much
more unstable in the troposphere and especially around the tropopause which was around 9 km. Strong
azimuthal oscillations and revolutions lead to significantly higher radiance as the telescopes looks into
a radiance minimum given a still gondola. For an azimuth angle of 0°, simulated radiances are about
twice as high as for the azimuth angle of 90° assumed in the actually shown simulations.

Summarizing the above results, it is found that the measurements and the TRACY RT simulations
match very well for higher altitudes. As the TRACY simulations at 360 km begin to deviate from
the measurements at higher altitudes compared to 490 km, I assume that the increasing significance of
multiple scattering causes the RT simulations to become increasingly incorrect.
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Figure 6.40: Comparison of measured (black lines) and RT calculated radiances vs. SZA for scanning
limb measurements during balloon float at 425 nm (upper panel), 450 nm (middle panel), and 490 nm (lower
panel).
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Now, the limb radiances obtained during scanning limb measurements at balloon float (~ 33 km altitude)
for SZAs between 85.6° and 96.5° are discussed. Each limb scan covers an elevation angle range of
0.5 — 6.5° below the horizon with a step width of 0.5°. The tangent heights corresponding to each
observation are shown in table 6.5.10.

Figure 6.40 shows a comparison of measured and RT calculated limb radiances for scanning limb mea-
surements. Qualitatively, a very good coincidence for the considered wavelengths between 425 and
490nm is found. For the first limb scans obtained for 86.6 — 89.5°, the deviations are larger caused
by stronger elevational gondola oscillations with amplitudes of 1 — 1.5°. This results in a rather noisy
trend of the measured radiances. As shown in section 5.1.3, amplitudes > 1° significantly affect the ob-
served limb radiances. For SZA > 89.5°, the gondola oscillations slowed to amplitudes < 0.5° which are
not considered to affect the measured radiances. The azimuthal gondola oscillations have amplitudes
between 4° for the first limb scans and 1° for the limb scans corresponding to SZA > 89.5°. These
small oscillations are not expected to significantly affect the measured radiances. For the limb scans
corresponding to SZA > 90°, the RT calculated limb radiances are systematically lower by 10 — 20 %
than measured at all considered wavelengths. An explanation might be a systematic error of the instru-
ment’s absolute calibration. Additionally, the uncertainties of the RT calculations are increasing due
to the lower number of modeled photons and, thus, increasing statistical error. This can also be seen
in the calculated BoxAMF becoming noisier with increasing SZA.

6.5.4 O; Results
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Figure 6.41: Determination of the O3 absorption of the solar reference spectrum. Left panel: retrieved
03-SCDs with convolved Kurucz spectrum as solar reference vs. O3-dSCDs with self recorded solar reference
(black squares) and linear fit (red line) of the correlation plot. Right panel: simulated O3-SCDs vs. measured
03-dSCDs (black squares) and linear fit (red line) of the correlation plot.

As the DOAS method only gives differential Slant Column Densities (dSCD), i.e. the difference of
the O3z absorbance of the evaluated spectrum and the Fraunhofer reference spectrum, this so-called
Fraunhofer offset has to be determined separately. That for, the measured spectra are evaluated with
a Kurucz extraterrestrial solar spectrum convolved to the instrument’s resolution as reference. This
DOAS evaluation shows much higher residuals (RMS residual of 12 - 1073 vs. 0.3 - 1073 for the self
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Figure 6.42: Left panel: comparison of measured and simulated O3-SCD's in the UV and visible spectral
range. For the simulations the Os profile measured by the ECC Ozone Sonde (see right panel) is used.
Right panel: Comparison of retrieved O3 profiles from miniDOAS limb measurements during balloon ascent
in the visible (black line) and UV spectral range (gray line), and direct sunlight DOAS measurements during
balloon ascent (red line) and solar occultation (green line). Also shown is the profile from an ECC Ozone
Sonde launched ~ 1h after the LPMA/DOAS gondola.

recorded reference). Nevertheless, both SCD trends correlate very well and all structures seen in the
precise DOAS evaluation with the self recorded solar reference can also be seen in the case of the
Kurucz reference. A linear fit of the correlation plot gives a value of (7.657 £0.0024) - 10!? cm ™2 for the
Fraunhofer offset (see fig. 6.41, left panel). In the right panel of the figure a correlation plot of measured
dSCDs and simulated SCDs is shown. A linear fit yields an offset value of 7.617 - 10'? cm~2. For the
following profile retrieval, a value of 7.6-10* cm~=? is added to the measured dSCD. In figure 6.42 (right
panel), the resulting SCDs are shown in comparison to an RT simulation using the ozone sonde profile
as input. Except for some deviations above 25km arising from strong gondola oscillations, both sets
of SCDs agree very well. For comparison and as a test of the RT calculations, Og is also evaluated in
the UV. It is performed in the 346 — 359 nm wavelength range with the same references used for the
evaluation of BrO except that only one O3 temperature (T = 223 K) is used. Again, the measured and
simulated O3-SCDs compare very well if a proper value for the Fraunhofer offset (7-10° cm~2) is added
to the measured dSCDs. This underlines the validity of the radiative transfer calculations in the UV.

Figure 6.42 shows a comparison of the retrieved profiles from the miniDOAS measurements in the
UV and visible spectral range as well as the Os profiles obtained from the direct sunlight DOAS
during balloon ascent and solar occultation and the ECC sonde. Generally, a good agreement is found
between the profiles. Only above 25km, the miniDOAS values are higher than the ones from the
otherwise measured profiles. This is most likely due to the strong oscillations of the gondola in this
part of the flight which results in strong fluctuations of the measured O3-SCD’s and, thus, the obtained
O3 concentration values above 25 km so that these values are not shown. In the UV, the measurements
are affected less by these gondola movements so that the retrieved profile is rather smooth up to 30 km.
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Figure 6.44: Left panel: Comparison of retrieved NO profiles from miniDOAS limb measurements during
balloon ascent for 1 km grid size (black line), and direct sunlight DOAS measurements during balloon ascent

(red line). Also shown is the a priori used for the profile inversion. Right panel: Averaging kernels of the
miniDOAS profile retrieval shown in the left panel.
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6.5.5 NO, Results

The the steps in the NO profile retrieval are basically the same as in the case of O3. A particular
problem, however, is the determination of the Fraunhofer offset. The method of using a convolved
Kurucz spectrum as refernce is not possible which can be seen in fig. 6.43. Again, the correlation
between the SCD values obtained with the Kurucz and the self-recorded solar reference is excellent,
despite the high residual of the Kurucz fit. But the results of the Kurucz fit are definitely wrong as
they are all negative. This means that there must be a systematic, constant offset that is found by the
DOAS fit in all spectra. Changing the spectral region of the NOy DOAS evaluation results in totally
different values for this offset. It is difficult to find a reason for this behavior as the NO4 optical density
in the Kurucz DOAS evaluations are generally much lower than the residual, i.e. the NOs absorption
cannot be seen with the eye.

In order to be able to retrieve a profile, despite that, the Fraunhofer offset is determined by comparing
the measured and simulated SCDs (fig. 6.43). This comparison yields a value for the offset of 4 -
10'6 ecm~2. An uncertainty of 5 % is assumed dor this value, so a second profile retrieval is performed
with 3.8-10'6 cm™2. The NO,- SCD measurements are affected by elevational oscillations of the gondola
above 25 km which leads to significantly larger measured SCDs than simulated.

The NOg concentration profile retrieved an a 1km is shown in figure 6.44 (left panel) compared to a
profile inferred from direct sunlight DOAS measurements during balloon ascent. The averaging kernels
of the miniDOAS profile retrieval are shown in the right panel. The difference of the retrieved profiles
with 4 - 1016 cm~2 and 3.8 - 10'% cm 2 offset is added to the error of the profile retrieval to account for
the uncertainty of the determination of the solar reference offset. From the averaging kernels it can be
seen that the miniDOAS limb measurements are sensitive to NOo for altitudes between 7 and 32km
with averaging kernels reaching 1 for the 15 — 30km range. For altitudes below 15km the averaging
kernels are monotonically decreasing to values of ~ 0.6 at the 8 — 9km layer and ~ 0.4 at the 7 — 8 km
layer indicating the decreasing sensitivity with decreasing altitude. For altitudes between 7 and 27 km
the profiles inferred from the two measurement techniques match within the respective error bars. For
altitudes above 27 km the miniDOAS profile shows much higher concentrations compared to the DOAS
profile which is due to the too high SCDs measured at these altitudes due to the elevational gondola
oscillations. So the values for these altitudes are believed to be unrealistic. The local SZA for both
measurements is between 76.8° and 85.4° at 10km and float altitude (~ 33 km).

6.5.6 BrO Results

As the determination of the Fraunhofer offset by a Kurucz fit is not possible for a small absorber like
BrO, it is taken from the RT simulations. As input the BrO profile measured with the direct sunlight
DOAS spectrometer is used between 10 and 30km. Outside this altitude range the output of the
SLIMCAT model for SZA=85.4°, which is the SZA of the solar reference spectrum, is used. The model
output is very reliable for altitudes above 30 km which are input for the determination of the Fraunhofer
offset and the photochemical changes are small for SZA>90 at these altitudes. Its value is found to be
1.6 - 10" cm=2. Fig. 6.45 (left panel) shows a comparison of the modeled and simulated BrO-SCD’s.
Between 10 km and 23 km they agree quite well. Below 10 km the agreement becomes poorer which can
be explained by the high uncertainties of the DOAS evaluation due to the high residuals causing the
SCDs to be below the detection limit assumed as twice the DOAS fit error. These high residuals for low
altitudes are a result of the poorly saturated spectra in the UV because of the low UV radiance and the
spectral shift of the spectra because of instrumental instability (see fig. 6.35). With increasing altitude
the residuals become lower and the obtained SCDs become more reliable with less fluctuations. Above
23km the gondola instabilities, which affect strongly the miniDOAS measurements but also slightly
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Figure 6.45: Left panel: comparison of measured (black line) and simulated (red line) BrO-SCDs. For the
simulations the BrO profile measured by the direct sunlight DOAS spectrograph (see right panel) is used.
Also shown is the detection limit (green line) given by twice the DOAS retrieval error. Right panel: averaging
kernels for the BrO profile retrieval shown in figure 6.46.
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Figure 6.46: Comparison of retrieved BrO profiles from miniDOAS limb measurements during balloon
ascent (black lines), and direct sunlight DOAS measurements during balloon ascent (red lines). The left
panel shows concentration and the right panel mixing ratio profiles. Also shown is the a priori profile (green
line) used for the retrieval.
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the direct sunlight measurements, are an explanation for the discrepancy between the simulated and
measured SCD values.

Fig. 6.46 shows the retrieved profile of the miniDOAS limb and the direct sunlight DOAS measurements
during balloon ascent. Because of the high fluctuations of the miniDOAS BrO-SCDs an altitude grid
of 2km is chosen. On this grid a smooth profile is obtained and the averaging kernels are close to 1
for 10 — 32km of altitude. The miniDOAS BrO profile compares well with the DOAS profile in the
11 — 23km range. Above 23km the two profiles show some discrepancies that have already been dis-
cussed for the SCD comparison. As in the case of NOg profile retrieval, the much higher uncertainties of
the miniDOAS limb measured BrO-SCDs compared to the SCDs of the direct sunlight DOAS measure-
ments are compensated by the better conditioning of the inversion problem (i.e. BoxAMFs with sharp
maximum at the detector altitude) so that both profiles have similar uncertainties. The error arising
from the uncertainty of the Fraunhofer reference offset (assumed to 0.1 - 10** cm~2) is only a minor
contribution (~ 20 %) of the shown total error. Its effect on the shown profile is only around 2 %. The
total uncertainty of the retrieved profile lies between ~ 12 % in the 12 — 26 ki range and significantly
higher below and above as concentrations are much lower. For more details on the error calculations
see section 5.2.4. As discussed in section 5.2.2; the effect of the photochemical changes of the BrO con-
centration during balloon ascent on the retrieved profile is assumed as small. The SZA ranges from
76.5° at 9km, 79° at 15km where the maximum concentrations are found, and 85.4° at float altitude
of ~ 33km. As the limb measurements are very sensitive to the concentrations at the actual detector
altitude, the retrieved profile is assumed to represent the situation of the time the BrO maximum is
observed, i.e. SZA ~ 79°. The retrieved mixing ratios of ~ 10 ppt around 20 km and ~ 15 ppt around
25km are in reasonable agreement with the current understanding of stratospheric bromine chemistry
and previous DOAS balloon measurements at the same place and conditions (compare e.g. Harder et al.
(1998); Fitzenberger (2000)).

6.5.7 0O, Results
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Figure 6.47: Measured O4-ODs (black lines) compared to simulations (colored lines) using different
tropospheric aerosol scenarios (left panel) and Oy profiles (right panel). For details of the aerosol scenarios
see section 5.1.5. Right panel: For the tropospheric O4 profile (green line) the O, concentration is set to 0
for all altitudes above 9 km while for the stratospheric profile (blue line) all values < 9km are set to 0.
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Figure 6.48: Left panel: O4-profile retrieved from miniDOAS limb measurements (black line) compared
to the profiles retrieved from direct sunlight DOAS measurements during balloon ascent (red line) and solar
occultation (green line), respectively. Shown is the O4 absorption per unit length multiplied by the peak O4
collision pair absorption cross section «;. For comparison, the Oz-concentration squared ([O2]?, blue line)
is shown. Right panel: Averaging kernels for the miniDOAS Oy profile retrieval shown in the left panel.

As the 04-SCDs are especially sensitive to the tropospheric light path (because the O, concentration
decreases exponentially with altitude), and the tropospheric light path is - in contrast to the strato-
spheric light path - very sensitive to the aerosol load, the O4 measurements can be used to investigate
the tropospheric aerosol loads (Wagner et al., 2002, 2004). Figure 6.47 (left panel)® shows a comparison
of measured and simulated O4-ODs for several tropospheric aerosol scenarios as described in section
5.1.5. It can be seen that the O4-ODs agree best with the simulation using very low tropospheric aerosol
load (blue line). This aerosol load is quite reasonable for a remote and, thus, rather unpolluted area
like northern Scandinavia. It can be seen that the simulations with high aerosol load (red line) - a
scenario typical for heavily polluted areas - do not match the measurements as well as the simulations
without any tropospheric aerosols (cyan line). This underlines the validity of the TRACY treatment of
aerosol scattering. For altitudes below 5km some, and for altitudes below 2.5 km all, measured SCDs
are considerably smaller than the simulated ones. A reason for this can be clouds which are not con-
sidered in the RT calculations but can significantly shorten the range of sight and thus decrease the
BoxAMF and O4-OD. The biggest uncertainty of the miniDOAS measurements is the O4 absorption
contained in the Fraunhofer reference spectrum. A number of 3.2 - 1073 is found and added to the
measured differential optical densities. However, the impact of the Fraunhofer offset is negligible in the
troposphere as O4-ODs reach values around 8-1072. In another exercise, the sensitivity of the measure-
ments towards the Oy concentration for different balloon altitudes is studied. Therefore, the Oy4 profile
is split into a tropospheric profile (i.e. all values for altitudes > 9km are set to 0) and a stratospheric
one (consequently, all values for altitudes < 9km are set to 0). The simulations using these two profiles
compared to a simulation using the entire O4 profile and to the measurements is shown in figure 6.47
(right panel). The green and blue lines, show the contribution of the tropospheric and stratospheric
profile, respectively, to the total simulated OD (red line). In the troposphere (i.e. below 9km), the
stratosphere only contributes by ~ 5 % to the total O4-OD. In the lower stratosphere, stratospheric
and tropospheric values contribute equally to the measured OD but the stratospheric contributions

3For a definition of the quantities used in this section see section 6.3.6
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drops to ~ 10 % around 30km as the O4-concentration decreases exponentially with altitude, while
the tropospheric BoxAMFs decrease only little with increasing balloon altitude. This means that the
sensitivity of the measurements decreases with altitude.

The measured O4-ODs are inverted and the resulting vertical optical densities are divided by the height
of each layer using the same algorithm as in the case of all the other trace gases. This results in a
vertical profile of the O4 absorption per unit length. This profile is divided by the peak O4 collision
pair cross section «a; of the respective O4 absorption band used for the DOAS evaluation. Because of
the definition of o the result of this procedure is not the O4 concentration but the Os-concentration
squared ([O2]? = 0.2094 - p/(kp - T)). Figure 6.48 (left panel) shows a comparison of the retrieved
profiles from miniDOAS limb and direct sunlight DOAS measurements and also [Oz]?. The errors are
calculated as described in section 5.2.4. From the averaging kernels (figure 6.48, right panel), it can be
seen that the measurements are sensitive up to 27km so the retrieved profile is shown only up to this
altitude. Except for the value at 1km which os most likely affected by clouds, the measured profiles
compare quite well within the error bars. While the calculated [O2]?> compares quite nicely to the
measured profiles up to 11km, the measured profiles have increasingly higher values with increasing
altitude. An explanation for this is the non-accounting temperature dependence. As the O4 cross section
increases with decreasing temperature, the measured O, optical densities are systematically too low as
the atmospheric temperatures were below 0°C and the used Oy cross section was recorded at room
temperature. Another possible explanation might be the decreasing sensitivity of the measurements
of both methods to O4 with increasing altitude due to the increasing effect of tropospheric O4 to the
measured O4-ODs in the case of the limb measurements, and the very low O4-ODs for higher altitudes
in the direct sunlight case. Also the uncertainty of the Fraunhofer offset of the O4-OD might be a
reason for the observed discrepancies as it affects the lower ODs measured at high altitudes more than
the much higher ODs measured at lower altitudes.

6.5.8 H-,0 Results

The water vapor mixing ratio is derived from the dew point profile measured by the Ozone Sonde
launched from Esrange ~ 2h after the LPMA /DOAS payload. From the dew point §p one can approx-
imately calculate the HoO partial pressure pg,o for every altitude using Magnus’ Formula:

CQ~9D>.

PH,O = Cy - exp <m

where Cy = 610.78 Pa; Cy = 17.84362; C3 = 245.425°C; (6 < 0°C). (6.3)

Dividing this result by the actual pressure which is also measured by the Ozone Sonde gives the HoO mix-
ing ratio (see fig. 6.49 left panel). With the air density derived from the measured temperature and
pressure profile one can derive a concentration profile (see fig. 6.49 right panel). As the water vapor
measurements of the Ozone Sonde get less accurate with increasing altitude, a constant mixing ratio
of 6 ppm is assumed for altitudes above 28 km. However, these uncertainties in the stratospheric water
vapor profile don’t affect the quality of the simulations (see below).

In figure 6.50 comparisons of measured and simulated HoO-SCDs are shown. In the left panel a com-
parison of the measurements to simulations using the same HsO concentration profile but different
tropospheric aerosol scenarios as described in section 5.1.5. The results are very similar to the case
of Oy, as the water vapor concentration is also maximum on the ground and strongly decreases with
increasing altitude. For high tropospheric aerosol loads the simulated HoO-SCDs (red line) are much
below the measured ones (black line). Assuming no tropospheric aerosol in the simulation, the sim-
ulated HoO-SCDs (cyan lines) are much above the measured ones especially at low altitudes (below
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Figure 6.49: Water vapor mixing ratio (left panel) and concentration (right panel) profile obtained from
the Ozone Sonde relative humidity measurements. The raw measurements are plotted in red and the profile
actually used for the simulation in black.
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Figure 6.50: Left panel: Comparison of measured (black line) and simulated (colored lines) HoO-SCDs for
several tropospheric aerosol scenarios. Right panel: Comparison of measured (black line) and simulated (red
line) H,O-SCDs. For the simulation of tropospheric water vapor (green line), all values in the HoO-profile
above 9km are set to zero, and for the stratospheric simulation (blue line), all values below 9 km are set to
zero.
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Figure 6.51: Left panel: HoO concentration profile inferred from miniDOAS limb measurements (black
line) and ozone sonde measurements (red line). Right panel: Averaging kernels for the miniDOAS profile
inversion.

~ 6km). As in the case of Oy, the best match between measurements and simulations in the tropo-
sphere is found for the very low aerosol load scenario (blue line). As already discussed in section 5.2.1,
the miniDOAS limb measurements are totally insensitive to stratospheric water vapor. This can be seen
in 6.50, right panel). It is obvious that small stratospheric contributions to the total SCDs in the order
of 10%° — 102" cm~2 cannot be sensitively measured as the typical DOAS error of the HyO evaluation
is > 102 ecm~2. Also the uncertainty of the solar reference offset is of this order of magnitude. Under
these conditions, the comparison between measured and simulated SCDs is very good above ~ 7km.
The good qualitative agreement between the measured and simulated SCD demonstrates that the RT
calculations are very accurate also for altitude layers that are not directly seen by the telescope but
only by multiple scattered photons. However, the simulated HoO-SCDs are generally higher than the
measured ones above 7km. There are several potential reasons for this discrepancy: as always when
comparing SCDs, there is the uncertainty of the trace gas amount in the reference spectrum which is
obtained from the simulations for the uppermost measurements. However, the effect of the offset which

—2 is small for lower altitudes where the measured dSCDs are several 1022 cm™~2.

is assumed as 4-10%! cm
Another reason is the fact that the tropospheric water vapor concentration as well as the cloud cover is
highly variable spatially and temporally so that the conditions seen from the gondola can be different
than the one measured by the ozone sonde. Also the lowermost measurements (below 2.5km) might be
affected by clouds. As clouds largely shorten the light path in the altitude levels the balloon is actually
in, the measured SCDs are much lower than the simulated ones since no clouds are considered in the
RT calculations. But also the gondola movements which are rather strong shortly after launch might

be an explanation for the observed discrepancies.

A profile inversion is shown in figure 6.51. From the averaging kernels (right panel), it can be seen
that the retrieval is independent from the a priori profile up to 20 km. In the troposphere, the obtained
H5O concentrations are reasonable and match quite well with the values measured by the ozone sonde
up to 5km. In the stratosphere, however, the retrieved concentrations show huge discrepancies which
is due to the afore discussed fact that the stratospheric water vapor contributes by at most 5 % to the
total SCD. Considering the uncertainties in both the measurement and the RT calculations it is clear
that the limb observations are not sensitive to the small stratospheric HoO concentrations in front of
the large tropospheric background.
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6.5.9 Upper Limits of Stratospheric 10
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Figure 6.52: Sample DOAS evaluation in the 407 — 461 nm range for a limb observation during balloon
ascent (15.5km altitude, —1.5° elevation angle, 90° azimuth angle, and 79.2° SZA) using a Fraunhofer
reference spectrum recorded at 32.77 km altitude, —1.5° elevation angle, 90° azimuth angle, and 85.4°
SZA. Shown is the optical density of the absorbance of the trace gases and Ring cross section (red lines)
and the latter plus the residual structure (black lines). Also shown is the RT simulated IO optical density
(green line) assuming a constant 10 mixing ratio of 0.5 ppt.

The measured spectra are also searched for IO absorption. No IO significantly above the detection
limit given as twice the DOAS evaluation error as calculated by the WinDOAS tool is found. Several
fit regions in the 400 — 465 nm range have been tested. The results presented in this section are
obtained in the 407 — 461 nm interval and the same cross sections as for the NOy evaluation are used.
Additionally, an IO cross section measured by Héonninger (1999) at T = 295K and p = 10 mbar with
0.085 — 0.095nm resolution, convolved with the miniDOAS slit function, is used. A sample DOAS
evaluation for a stratospheric spectrum measured at 15.5km is shown in figure 6.52 (for details see
figure caption).

The question discussed in the following is how much IO can reside in the atmosphere without being
detected by the miniDOAS instrument with the given residuals, i.e. which IO upper limits can be
inferred from the measurements. Therefore RT simulations of I0-dSCDs are performed. The key
problem is that the limb scatter measurements are also sensitive to the IO concentrations below and
above the detector altitude, so the shape of the IO profile plays a role. As no IO profile measurements
exist, a constant mixing ratio is assumed. Figure 6.53 shows simulated 10-dSCDs for assumed 10
mixing ratios between 0.1 and 1ppt. Also shown are the retrieved I0-dSCDs which are always below
the detection limit indicated by the 2—o DOAS error. In the lower stratosphere up to 18 km, the inferred
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detection limit corresponds to IO mixing ratios < 0.2 ppt. With increasing altitude, the concentrations
corresponding to constant mixing ratio are decreasing due to decreasing air density and, thus, the
inferred upper limits are increasing, e.g. to 0.3ppt at 22km, 0.5ppt at 26km and 1ppt at 30km,
because the DOAS residuals are almost constant with altitude. For altitudes below 10 km, the obtained
upper limits increase due to the strongly increasing residuals caused by the spectral shift of the optical
imaging and the decreasing simulated dSCDs due to decreasing BoxAMFs because of lower SZAs. Note
that the numbers are only rough estimations based on the assumption of constant IO mixing ratio. For
other profile shapes, e.g. decreasing mixing ratio with decreasing altitude, the upper limits are higher.
Also the exact determination of the detection limit of a DOAS evaluation is problematic. For the used
definition of twice the DOAS error (see equation 3.24), the residual is assumed to consist of white noise.
If systematic structures with widths > 1pixel are present, the detection limit might be higher. Also
correlations of the cross sections might cause the DOAS fit to retrieve wrong dSCDs for trace gases at
the detection limit. In a similar study by Bdsch et al. (2003) about IO upper limits inferred from solar
occultation measurements, fake 10 is retrieved by the DOAS fit if the center-to-limb darkening effect is
not properly corrected for. However, this effect does not occur for limb scattering observation as always
all the light from the entire solar disk contributes to the skylight.
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Figure 6.53: Measured (black squares, gray error bars) and simulated (colored lines) I0-dSCDs vs. detector
altitude. For the simulation, constant atmospheric |0 mixing ratios between 0.1 and 1ppt are assumed.
Also shown is the 1 — o DOAS error (gray line) and the theoretical detection limit given as twice that value
(2 — o error, black line).

A further test to obtain an upper limit is performed by looking directly at the DOAS evaluation itself.
Therefore, the optical density of the IO absorption assuming a constant 10 mixing ratio of 0.5 ppt is
simulated. It is shown in figure 6.52 by a green line together with the residual. It is clearly seen that
an IO absorption of this optical density should be detected by the DOAS fit. Stutz and Platt (1996)
pointed out that a DOAS fit is able to detect optical densities below what is visible by the eye. Hence,
the detection limits as given by the above mentioned formula seem reasonable.
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The estimated upper limits are in reasonable agreement with previous studies. Direct sunlight obser-
vation at large air masses either from Kitt peak (Wennberg et al., 1997) find upper limits of the total
atmospheric I, column of 0.2 (+0.2/—0.1) ppt. Balloon-borne SAOZ measurements (Pundt et al., 1998)
yield an upper limit of 10 of 0.2 4+ 0.1 ppt for the lower stratosphere. The lowest upper limits are re-
ported by Bésch et al. (2003) inferred from solar occultation DOAS balloon measurements. The lowest
values are 0.10 ppt, 0.07 ppt, and 0.06 ppt for 20, 15 and 12.5 km, respectively. Somewhat contradictory
to these studies, Wittrock et al. (2000) report that stratospheric IO could occasionally have been as
large as 0.65 — 0.8 (+0.2) ppt.

6.5.10 Scanning Limb Measurements
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Figure 6.54: RT calculated BoxAMF vs. altitude as a function of detector elevation angle for the 15¢ (left
panel) and the 14" (right panel) limb scan, corresponding an SZA range of 85.6 — 86.0° and 91.2 — 91.8°,
respectively.

This section discusses the trace gas information obtained from scanning limb observations at balloon
float (~ 33km altitude) for SZAs between 85.6° and 96.5°. Each limb scan covers an elevation angle
range of 0.5 — 6.5° below the horizon with a step width of 0.5°. The corresponding tangent altitudes
defined as the altitude layer with maximum BoxAMF are shown in table 6.5.10. The BoxAMF for the
1%t and 14" limb scan, corresponding to an SZA range of 85.6 — 86.0° and 91.2 — 91.8°, respectively,
are shown in figure 6.54. Obviously, the tangent altitudes decrease with decreasing elevation angle.
The distances between the tangent heights for one observation to the next is increasing with decreasing
elevation angle for constant step width. The definition of a tangent heights becomes more and more
difficult with decreasing elevation angle as the maxima become less pronounced. For elevation angles
< —5° no maxima are seen and the BoxAMF do not significantly change with further decreasing
elevation angle. For a more detailed discussion of the BoxAMF for scanning limb geometry see also
section 5.1.6.

The primary objective of the scanning limb measurements is to obtain time-dependant profile informa-
tion of photochemically active radicals like NOy. To study the sensitivity of the measurements towards
photochemical changes, the validity of the TRACY RT calculations is examined by comparing mea-
sured and simulated SCDs of the photochemically stable species O3, O4, and H2O. In a second step,
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Figure 6.55: Measured (black lines) and simulated (red and green lines) Os- (upper panel) and NOo-
SCDs (lower panel) for scanning limb measurements at balloon float. For the NOg- SCD simulation, photo-
chemically corrected profiles (red lines) are used (for details see text). For comparison a simulation using a
constant profile obtained from DOAS ascent measurements is shown with green lines.
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Figure 6.56: Measured (black lines) and simulated (red lines) O4-ODs (upper panel) and HyO-SCDs
(lower panel) for scanning limb measurements at balloon float.
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Table 6.3: Tangent height of the scanning limb observations as a function of detector elevation angle.
The tangent heights are given by the altitude layer with maximum BoxAMF.

elevation | tangent height
—0.50° | 33.0 — 33.5km
—1.00° | 32.0 — 32.5km
—1.51° | 31.0 — 31.5km
—2.01° | 29.0 —29.5km
—2.52° | 27.0 — 27.5km
—3.02° | 24.5 —25.0km
—-3.53° | 21.0 —21.5km
—4.03° | 17.5 —18.0km
—4.53° | 13.5 — 14.0km
—5.04° 9.0 —9.5km
—5.54° —
—6.05° —
—6.55° —

photochemically scaled NO, profiles are used to simulate NOs- SCDs being compared to the measure-
ments. To account for the photochemistry, for each observation a profile corresponding to the SZA at
the balloon’s position is calculated. Therefore, NOy profiles as function of SZA are calculated using
the 1-D box model LABMOS (see section 3.4.2). The qualitative trend of the NO2 profiles with time is
discussed in section 5.2.2.

The inferred trace gas SCDs are shown in figures 6.55 and 6.56. First, the results of the photochemically
stable species are discussed. It can be seen for all trace gases that the first limb scans (for SZA < 88°) are
affected by the strong elevational gondola oscillations with amplitudes of 3—1.5° resulting in fluctuations
of the SCDs. Additionally, the measured O3- SCDs for the highest elevation angles and, thus tangent
heights, are higher than the simulated ones. As the gondola oscillations slowed down to amplitudes < 1°
with increasing time, i.e. for SZA > 90°, the deviations at high tangent heights become smaller. For
lower tangent heights (~ 21 km and lower), the agreement of measured and simulated SCDs is generally
excellent for all limb scans. For the last shown limb scan (SZA>93°), the analyzed radiance is very
low which affects the accuracy of both the measurements and the simulations so that the agreement
becomes worse. Also for the tropospheric absorber Oy, the measured and simulated optical densities
agree well within the error bars giving confidence in the RT calculations even under the hard to model
situation of SZA > 90°. For water vapor, the measurements are rather noisy with large errors because of
the low HoO absorbance as most water vapor resides at the lowermost altitudes where the BoxAMF are
very small. However, a good qualitative agreement between measurements and simulation is observed.

Now, the results for the photochemically active radical NOs are discussed. The NOs concentrations
are increasing with SZA, abd the strongest increase is observed for SZA>90°. This is seen in figure
6.55 (lower panel) showing measured and simulated NO2-SCDs. Two simulations are carried out, one
using the constant NOg profile inferred from DOAS measurements during balloon ascent for SZA=77 —
85° and a second one using photochemically modeled profiles. Similar to the O3-SCD comparison,
the first 11 limb scans (corresponding to SZA<90° show some deviations of measured and simulated
NO2-SCDs caused by rather strong elevational gondola deviations. Also the photochemical growth of
NO, concentrations is rather small being seen by the almost matching of the green and red lines in
the figure. For limb scans 12 — 15, i.e. SZA=90.1 — 92.9°, simulations and measurements agree better,
however, only if the photochemically modeled profiles are used for the simulations. Hence, the increase
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Figure 6.57: Og profiles retrieved from scanning limb observations (left panel) and averaging kernels for
the profile inversion corresponding to SZA=90.6 — 91.1° (right panel).

of NOy concentrations with SZA is clearly seen in the miniDOAS scanning limb measurements.

In a last step, vertical profiles are obtained from the scanning limb measurements for O3 and NOs. As
the first limb scans are affected by strong gondola instabilities only the limb scans 12—16, i.e. SZA> 90°
are considered. The altitude grid is chosen to 4km below 24km and 2km above owing to the lower
sensitivity at lower altitudes due to increasing steps of tangent altitude and lower sensitivity of the
measurements due to broader maxima of the BoxAMF. The shown error bars only include the retrieval
error obtained from the statistical DOAS error but no systematical effects. The retrieved Oz profiles are
shown in figure 6.57 (left panel) together with the Ozone Sonde profile smoothed to the same altitude
grid. Qualitatively, a fair agreement between the miniDOAS and Ozone Sonde profiles is found above
18 km, while deviations increase with decreasing altitude. The averaging kernels (see figure 6.57, right
panel) indicate a sensitivity of the measurements between 8 and 34km on the chosen altitude grid. Tt
should be noted that the averaging kernels corresponding to the other profile inversions (not shown here)
are very similar but getting slightly worse with increasing SZA. The obtained NOy profiles are shown
in figure 6.58 for 4 limb scans between 90° and 93° SZA and compared to LABMOS model outputs
for a median SZA of each limb scan. Additionally, the constant DOAS ascent NOy profile, which is
used as a priori for all miniDOAS retrievals, is shown for comparison. The retrieved profiles match well
the photochemically modeled profiles for all 4 limb scans. Especially around the NOy concentration
maximum (i.e. in the 26 — 34 km range), the match is excellent, while deviations are stronger below as
concentrations are lower and the sensitivity of the measurements decrease. However, a rather strong
deviation is observed at 29 km for the 3¢ shown limb scan (lower left panel) indicating a rather strong
sensitivity of the profile retrieval to even small deviations of individual measurements. The averaging
kernels (see figure 6.59) indicate a sensitivity of the measurements to NOg between 12 and 34 km on the
chosen altitude grid. To summarize it can be said that the observed overall good matching increases
our confidence in the quality of miniDOAS scanning limb measurements and the validity of the applied
RT and photochemical modeling. Additionally, this comparison demonstrates the feasibility to obtain
time-dependent profile information of radicals as function of SZA by scanning limb measurements.
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6.6 The Tropical Large Balloon Campaign in Teresina, Brazil,
November /December 2004

In the framework of Envisat validation, a campaign dedicated to launch for the first time large balloons
inside the Inner Tropical Convergence zone (ITC) was organized. Three miniDOAS flights aboard the
LPMA/DOAS, LPMA /TASI, and MIPAS-B2 balloon gondolas, respectively, were planned. Unfortu-
nately, none of the flights took place due to operational reasons. However, several new applications of
the miniDOAS instrument were tested and are briefly described in this section.

6.6.1 Direct Sunlight Measurements

In order to validate the absolute radiance measurements of SCIAMACHY in the wavelength region above
650 nm not covered by our "large" DOAS (Gurlit et al., 2004), a broad band spectrometer covering a
wavelength region of 178 — 873 nm at moderate resolution was absolutely calibrated and tested during
ground based sunrise and sunset measurements.

Instrumental

For the planned LPMA /DOAS flight, the nadir channel of the miniDOAS instrument was replaced by
a direct sunlight spectrometer. The only difference of the direct sunlight configuration compared to the
limb/nadir configuration is that the telescopes are replaced by a cosine corrector. A cosine corrector
by Ocean Optics (Ocean Optics, 2004)) is placed directly in front of the light intake of the glass fiber
bundle. The fiber is put behind the LPMA suntracker seeing the same light as the two telescopes of
the large DOAS. An Ocean Optics USB2000 spectrometer covering the 178 — 873 nm wavelength region
at a resolution of ~ 3nm FWHM, corresponding to a sampling of ~ 3 pixels per FWHM, is used. This
wavelength range allows the DOAS retrieval of O3, NOy, HoO, Oy, and Os.

Absolute Radiometric Calibration

The instrument is absolutely calibrated in order to measure the solar irradiance. The calibration proce-
dure is described in detail in Gurlit et al. (2004). Here, some results from the calibration measurements
are discussed.

For the calibration, two light sources are used: a collimator providing a parallel light beam with the same
aperture angle as the sun (therefore this source is also called "sun simulator"), and a National Institute
of Standards and Technology (NIST) FEL 1000W irradiance standard Quartz Tungsten Halogen (QTH)
lamp (serial number F-455).

The advantage of the collimator’s parallel light is its high homogeneity. Hence, the output intensity is
independent of the distance between the source and the detector. However, its output power is rather
low so that rather long integration times of the order of 30 min are necessary to achieve a reasonable
S/N ratio. Additionally, the source is only indirectly calibrated for absolute irradiance by transfer
measurements (see Gurlit et al. (2004) for details) which causes additional uncertainties. For the actual
absolute calibration, the NIST-lamp is used whose output power is much larger. However, it is a point
source which implies that its intensity is decreasing quadratically with the distance between lamp and
detector R. So this distance has to be determined very precisely to know exactly the light intensity
at the detector position. The R2?-law is only valid for sufficiently large R, i.e. when the lamp can be
viewed as a point. This is checked by a series of measurements for variable R ranging between 2.6
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Figure 6.60: Left panel: Measured intensity vs. wavelength as a function of the distance between
calibration lamp and detector R. Right panel: relative deviation of the intensity times R? from that for
R =4.1m as a function of R.

and 4.1 m. The measured intensities (with 5s integration time and 50 co-added scans, shown in figure
6.60, left panel) are multiplied by R?. This should result ideally in the same values for each R. This is
checked by calculating the relative deviation of the individual measurements from the value obtained
for R = 4.1m (shown in figure 6.60, right panel). For wavelengths < 375 nm, the relative deviations are
very high due to the very low observed intensities. In the 475 — 775 nm range the deviations are below
1 % for the measurements at R = 3.1m and 3.6 m and getting larger towards both ends of the shown
wavelength range as the measured intensities decrease. For R = 2.6 m, the values are systematically
lower. An explanation might be a deviation from the R%-law. But also detector non-linearities might
explain this behavior as the saturation levels of the measured spectra are significantly lower for larger
detector distances. Note that the non-linearity correction (see section 4.2.2) was switched on during
this measurement. With the correction switched off, the deviations are significantly larger. All in all,
this measurement demonstrates a good reproducibility of the calibration measurements. Unfortunately,
the calibration measurements were not completed by the time the actual balloon flight was canceled, so
that no absolute irradiance information exists for the ground-based sunset and sunrise measurements
and, thus, the calibration of the miniDOAS and DOAS cannot be directly compared.

The Sunset Observation on November 24, 2004

The trace gas retrieval of the miniDOAS direct sunlight measurements are compared with the measure-
ments of the same quantities performed with the large DOAS in the same observation geometry (see
figure 6.61). Generally a good agreement is found for the broad-band absorbers O3 and O4. For the
highly structured absorbers NOs the miniDOAS measurement have rather low optical densities as the
resolution is rather poor. Also big uncertainties are introduced by the convolution of the high resolution
literature cross section du to the low sampling ratio of the detector. Also the HoO measurement agree
only qualitatively. The quantitative discrepancies might be explained by differences in the used cross
sections and also the afore mentioned effects of poor resolution and sampling. However, it should be
noted that the primary objective of the spectrograph is the measurement of solar irradiance at balloon
float altitude. Therefore only the major trace gas absorptions have to be removed out of the spectra,
while a sensitive detection of weakly absorbing trace gases is not necessary. The presented RMS resid-
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squares) measurements shown in figure 6.61.

uals (figure 6.62) show that this is possible even under the condition of very high water concentrations.
The rather good agreement of the O4 measurements show that the detection of broad band absorbers
is reasonable, so that the determination of the total air mass along the line of sight by O4 or Os obser-
vations is assumed to be possible. The determination of the total air mass (either by measurements or
RT simulations) is crucial for the calculation of a top-of-the-atmosphere irradiance from the measured
irradiance "inside" the atmosphere.

6.6.2 Application of the miniDOAS Instrument on the MIPAS-B2 Gondola

So far, the miniDOAS instrument has only been flown on the LPMA balloon payload. Due to its compact
design and its automated measurement routine, the miniDOAS instrument can be easily installed on
other balloon gondolas. In this section, the planned measurements aboard the azimuth controlled
MIPAS-B2 payload are briefly described. Descriptions of the MIPAS-B2 spectrometer and gondola can
be found in (Friedl-Vallon et al., 2004) and on their website?.

Instrumental

The instrument can be installed on the MIPAS-B2 gondola without problems. As there is no connection
to the onboard power supply available, the miniDOAS is equipped with own batteries. Two 14.4V
Lithium batteries with deep discharge protection wired in series are used. Their capacity of 13 Ah each
should allow for 50h of measurements assuming a current of 0.3 A at 28.8V. Even if the capacity
decreases due to the low ambient temperatures during the balloon flight, the batteries’ capacity is
enough for the typical flight duration incl. countdown of max. 20h.

Planned Scanning Limb and Nadir Measurements

Due to its optimization for solar occultation measurements, the LPMA /DOAS gondola typically arrives
at float altitudes at rather high solar zenith angles (typically > 85°). This leaves only very little time for

*http:/ /www-imk.fzk.de/asf/mipas-b/mipas-b.htm
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limb scanning measurements at float. Additionally, these measurements are very difficult to interpret
as radiative transfer calculations under low sun conditions, especially around SZA=90°, are notoriously
problematic.

The MIPAS-B2 instrument analyzes thermic emission of the earth in the infra-red spectral region and
is, thus, independent of the sun. For the flight in Teresina, a launch at 2h a.m. local time, i.e. an ascent
during night and arrival at float altitude before sunrise, was planned. Then, at least 5h, if possible
even longer until sunset ~ 12h later, at float was planned. This flight profile gives the possibility of
extensive limb profiling measurements during sunrise and also under high sun conditions, i.e. with
higher limb radiances. However, some constraints apply. The MIPAS-B2 instrument performs several
limb scans in different viewing geometries, i.e. under several angles to the sun. This means that the
whole gondola and, thus, also the miniDOAS limb telescope are rotated after every scan. A MIPAS
limb scanning sequence typically takes 30 min. As the miniDOAS limb scanning measurements are
automatic, they cannot be synchronized with the MIPAS limb scans. This means that every miniDOAS
limb scanning sequence has to be significantly shorter than 30 min to ensure that at least one complete
scan is perfomed before the gondola is rotated. So the measurement routine is programmed that way
that every scan takes ~ 15 min. At low tangent heights, this should allow for adding 1000 scans which is
the minimum for the detection of BrO. Additionally, the limb scanning sequence itself, i.e. the angular
step size, has been optimized as discussed in section 5.1.7. The mentioned exact determination of the
telescope’s zero position is easy on the MIPAS gondola as the elevation of the gondola is monitored by
onboard instrumentation.

Another objective of the miniDOAS instrument is the direct validation of the absolute nadir radiances
measured by SCTAMACHY with balloon-borne measurements. This asks for a direct satellite overpass
or, as a direct overpass is very difficult to achieve, temporal and spatial as close as possible measure-
ments. As the LPMA/DOAS gondola is preferably launched in the afternoon to allow for daylight ascent
and sunset measurements, this goal could not yet be achieved. The launch time and trajectory of the
MIPAS-B2 gondola is usually planned in a way to get a close ENVISAT match, so close-by miniDOAS
balloon and SCIAMACHY satellite nadir measurements could be achieved and compared.



Chapter 7

Conclusions

7.1 Summary

In the framework of this thesis, a new balloon-borne DOAS instrument ('miniDOAS’) was developed
with a special emphasis put on small size, low weight and power consumption, but also a stable optical
imaging. While compact design offers the possibility of versatile applications, optical stability is crucial
for the detection of weak absorbers like BrO.

The miniDOAS instrument has been thoroughly characterized in the laboratory. In its typical configu-
ration, the miniDOAS consists of 2 independent spectrometer channels analyzing skylight in limb and
nadir geometry in the 330 —550 nm wavelength range at a resolution of 0.8 —1.0 nm with a sampling ratio
of 8 — 10pixels/pwHM. This wavelength range allows the detection of the atmospheric trace gases Os,
NO,, BrO, H,0, O4 and, potentially, OCIO, I0, OIO, and CH,O. Its size is 26 x 26 x 31 cm?, its weight
~ Tkg, and its power consumption ~ 7.5 W. The spectrometers are kept at a constant temperature of
0° C by a water-ice mixture. The temperature stabilization lasts for ~ 8 h under flight condition which
is longer than the usual flight duration. The spectrometers are also pressure stabilized by a vacuum
sealed aluminum housing that can keep pressures < 1mbar for several days. The instrumental noise
causes an RMS of 6.8 - 1072 for a single scan. During balloon flight, typically 1000 scans are co-added,
worth 20 — 100s integration time, corresponding to an RMS residual of 0.24 - 1073.

The new instrument has been tested during 5 balloon-flights aboard the LPMA /DOAS balloon payload.
The measured quantities are skylight radiances and, after DOAS analysis, trace gas column densities
along the line of sight. The measured limb radiances are compared to RT calculations of the same
quantity using the novel Monte Carlo radiative transfer model TRACY developed by von Friedeburg
(2003). The trace gas information retrieved from the miniDOAS measurements is compared to correla-
tive profile measurements by other sensors deployed on the LPMA /DOAS gondola (ECC ozone sonde,
direct sunlight DOAS) and stand alone in-situ sensors (ECC ozone sonde). Additional instrumentation
aboard the LPMA/DOAS and the stand-alone ozone sonde provide measurements of the key atmo-
spheric parameters like temperature-, pressure- and humidity-profiles. This offers the unique possibility
to validate each step of the novel technique of atmospheric trace gas profiling by limb scatter measure-
ments individually. The RT model’s output can be validated on the radiance level. Additionally, the
RT calculated trace gas SCDs can be compared to simulations of the same quantity using the measured
profiles and atmospheric parameters as input. In a final step, the measured SCDs are inverted using
the MAP inversion technique which allows a detailed study of the profile retrieval and its sensitivities.

The accuracy of the absolute radiance calibration is between 35 % in the UV (390nm) and 5 % in the
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visible range (500nm). Measured and RT calculated radiances in scanning limb geometry at balloon
float match well for the observed high SZA between 85° and 94°, a situation still very hard to model. For
fixed limb observations during balloon ascent, the measurements agree well for tangent altitudes above
~ 10km at 490nm and ~ 15km at 360 nm. This is interpreted as that measurements and calculations
agree well for conditions where the RT is dominated by single Rayleigh scattering. With increasing
significance of multiple scattering the measured and modeled radiances diverge.

For vertical O3 and NO profiles, the accuracy is 5—10 % for altitudes around the relative maximum, but
much higher for altitudes below. Averaging kernels indicate a height resolution of 1km. For BrO profiles
the uncertainties are slightly higher (15—25 %) at stratospheric altitudes due to the much lower observed
BrO optical densities. The height resolution is 2km as indicated by the averaging kernels. Measured
and simulated SCDs of the tropospheric absorbers O4 and HO coincide well for the entire observed
altitude range, i.e. also for measurements in the stratosphere where the observed SCDs are dominated
by multiply scattered photons from the troposphere indicating the proper treatment of this situation by
the TRACY RT calculations. Comparison of measured and simulated O4-SCDs also yield information
about tropospheric aerosol loads. Vertical O4 absorption profiles can be inferred in the troposphere
and lower stratosphere with strongly decreasing sensitivity above 20 km due to the exponentially with
altitude decreasing concentrations. HoO concentrations can only be inferred in the troposphere. In the
stratosphere, concentrations are too low (over 4 orders of magnitude lower than on the ground) to be
sensitively measured before the large tropospheric background. In fact, stratospheric water vapor only
contributes by ~ 3 % to the measured SCDs for stratospheric detector altitudes at 490 nm.

During balloon float phase, scanning limb measurements are performed with constant detector alti-
tude but variable elevation angle, i.e. tangent altitude of the observation. A fair agreement between
measured and RT simulated O3- and NO2-SCDs is found for the considered SZA range of 85 — 95°.
The lower sensitivity of the measurements due to lower limb radiances at high SZA are compensated
by increasing light paths and, thus, increasing SCDs. Vertical O3 and NOs profiles can be retrieved
with 2 — 4km altitude resolution. The increasing NOy concentrations with increasing SZA due to NO,
photochemistry is observed. So scanning limb observations provide time-dependant profile information
which is especially interesting for studies of the combined photochemistry of the radicals NO, BrO and,
possibly, OCIO.

7.2 Outlook

The instrument’s compact design and automated measurement routines allow the versatile application
on different platforms and viewing geometries. During the Teresina campaign, several new possibilities
were tested. They include direct sunlight observations using the parallel sunlight beam provided by the
LPMA suntracker. With a wavelength range covering 200 — 870 nm, these measurements can provide
absolute solar irradiance information at wavelengths not covered by the other sensors onboard which
is not only important for satellite validation (e.g. SCIAMACHY on Envisat) but also to validate the
currently available solar irradiance information e.g. from (Kurucz et al., 1984) or SOLSPEC (Thuillier
et al., 1997, 1998a,b)). The LPMA /DOAS gondola offers unique possibilities for the validation of the
instrument. However, its flight trajectory is optimized for solar occultation measurements meaning high
solar zenith angles of 70 — 95°. Especially the scanning limb measurements are limited to SZA between
85° and 95°. These conditions are difficult to RT model and suffer from low limb radiances, especially
for SZA > 90°. The LPMA /TASI and MIPAS-B2 balloon payloads observe IR emission and are, thus,
independent of the solar position. Therfore, their trajectory usually has longer times at float during
daytime. This offers the possibility for extensive scanning limb measurements also under high sun
conditions which largely simplify the RT calculations, provide larger limb radiances and lower residual



7.2. OUTLOOK 179

trace gas absorptions of the solar reference spectrum which reduces the errors of the measurements
due to incorrect determination of the solar reference offset. The higher radiances allow to co-add
more scans per observation at every elevation angle which decreases the residuals and, thus, would
allow to detect weak absorbers like BrO or, potentially OCIO by scanning limb measurements. Limb
scanning observations allow to retrieve time-dependent profile information being especially interesting
for studying photochemical changes of radicals like NO9, BrO, and OClO. The combined photochemistry
of the mentioned radicals is subject of most recent research. Additionally, the flight trajectory of the
mentioned balloon gondolas can be planned to achieve a direct satellite overpass so that nadir radiances
measured by miniDOAS and e.g. SCIAMACHY /Envisat can be directly compared. A validation of
nadir radiances is very difficult, if not impossible, for measurements not performed at the identical time
and position due to the high temporal and spacial variability of the cloud cover and ground albedo
which the nadir radiances are directly proportional to. Another advantage of the MIPAS-B2 over the
LPMA /DOAS payload is the availability of additional onboard sensors providing exact knowledge of
the gondola’s position relative to the sun and earth, i.e. the exact azimuth and elevation angle of the
detector. This removes all uncertainties of the RT calculations arising from missing pointing information.
All the three discussed applications (direct sun observations on LPMA /DOAS, and scanning limb and
nadir measurements on LPMA /TAST and MIPAS-B2) were planned for the recent tropical large balloons
campaign at Teresina but were canceled for operational reasons. However, they are planned to happen
during the backup campaign at the same place in June 2005. For this campaign, also fixed limb
measurements aboard LPMA /DOAS are planned with the scientific objective to obtain new information
about Oz, NO, BrO and, potentially, IO, OIO, or CH5O concentrations in the tropical UT/LS!. This
is highly interesting information for global stratospheric chemistry as most of the transport from the
troposphere to the stratosphere occurs in this region. Hence, these measurements could provide new
insights on the source strength of ozone depleting species in the stratosphere by transport from the
troposphere.

Another possible application of a revised miniDOAS instrument is the stand-alone operation. However,
this would require additional instrumentation providing exact information of the detector’s position
(e.g. by GPS) and azimuth and elevation angle (e.g. as aboard MIPAS-B2). Another thinkable
solution would be to use a high detector aperture (360° azimuth and > 30° elevation range) to allow
direct sun observations throughout the entire flight without the necessity of an active suntracker. This
can be achieved, e.g., by a design similar to that deployed by the SAOZ balloon payload, i.e. a cone-
shaped mirror reflecting the sunlight onto the detector. This would not eliminate the problem of
contamination of the observed solar irradiance by scattered light, an effect believed to be manageable
for SAOZ measurements of O3, NOs, or BrO, but the sensitivity could be improved thanks to a more
stable optical imaging due to temperature and pressure stabilization.

Another possible platform for the miniDOAS instrument are stratospheric research aircrafts like Geo-
physica. So far, a comparable instrument in multi-axis-geometry (AMAX-DOAS (Heue et al., 2005)) is
employed on the DLR Falcon providing interesting information about tropospheric NOy columns. With
scanning limb observations, profile information of the mentioned trace gases and also of BrO can be
inferred for altitudes below the airplane’s flight altitude (e.g. 20km for the Geophysica).

Also the existing observation modes can be improved by further instrumental tuning. One possibility
is to attach a Peltier cooling directly to the detector. This would not only allow lower detector temper-
atures, a feature fairly unnecessary in the UV /vis spectral range as the noise originating from the dark
current is already immeasurably small at 0° C, but also a higher stability of the detector temperature.
Temperature instabilities are believed to be the major reason for the still existing spectral shift and,
thus, enhanced residuals at lower altitudes after the elimination of pressure fluctuations by evacuation

Upper Troposphere and Lower Stratosphere
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of the spectrometers. Also the application of additional sensors providing the detector’s exact azimuth
and elevation angle would largely simplify the interpretation of the limb scatter measurements and
increase the accuracy of the retrieved vertical profiles. Another idea is to extend the wavelength range
into the near-IR region. O2-SCD measurements might provide more exact information about the light
path of the observations and, thus, more details about the aerosol load. Stratospheric water vapor mea-
surements also improve in the IR due to the lower contribution of photons coming from the troposphere
via multiple scattering. E.g. at 950 nm, the contribution of double-scattered radiation is smaller by a
factor of ~ 2% = 16 compared to 490 nm.



Appendix A

Technical Manual

A.1 Profile Retrieval

WinDOAS performs DOAS evaluation and retrieves dSCDs from measured spectra

JUL DATE.EXE | calculates the sun’s position for a given time and geolocation

interpol.m creates atmosphere files for TRACY

matrix.m creates matrix.txt for TRACY

trin.exe creates profile.txt for TRACY

3DRTSim.exe the actual TRACY executable

SRManager.exe calls TRACY with several profile files

amf fw.m calculates SCDs from a vertical profiles and RT modeled BoxAMF

amf inv.m inverts the AMF matrix and retrieves the vertical profile from measured SCDs

A.1.1 RT Modeling

In this section, the parameters and files that are necessary for the RT modeling with TRACY are
described. The main input file of TRACY is called by default 'profile.txt’. It contains information
about the trace gas and aerosol profiles to be considered, the detector position and its viewing geometry,
and atmospheric parameters like ground and cloud albedo, and cloud coverage. And it tells TRACY
what to do, i.e. how many photons to model and in which mode to run. Another important input file is
‘matrix.txt’ which contains the geolocation of every measurement. Additionally, several files containing
information about the atmospheric conditions are necessary and have to be created for every balloon
flight. For a description of the format of the individual input files, also see the TRACY user manual
(von Friedeburg, 2004).

All the relevant atmospheric parameters like pressure, temperature and air density vs. altitude are
provided by LPMA in a file with extension .MTB’. From this file, a file with the columns altitude, air
density, temperature and pressure is created called, accordingly, LPMA??.ATp’ (?? stands for the flight
number). Vertical profiles of the trace gases of interest and aerosol extinction coefficient also have to be
given. From these files, the MATLAB program ’interpol.m’ interpolates the atmospheric profiles on the
grid given in the file ’grid.txt’. The names of the trace gas and aerosol extinction files have to be given
in the ’profile.txt’ file while the air density, temperature and pressure have default names. Note that
the information in the latter three files is redundant as the air density can be calculated from pressure
and temperature using the ideal gas equation, so TRACY only uses the values of the file ’AirDen.Dat’.
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Also note that the air density file has to be called ’AirDen.Dat’ and not ’AirDen.txt’ as written in the
TRACY user manual.

The dSCDs are retrieved from the measured spectra using WinDOAS and the trace gas content of the
solar reference spectrum has to be determined using one of the methods described in section 4.4.8. This
gives a file with the measured SCDs and their uncertainties vs. time as output. For every measurement,
the position of the detector, its viewing direction and the sun’s position has to be calculated. For the
LPMA/DOAS flights, LPMA provides a file 'TLPMA??.ysg’ that gives the gondola’s geolocation, i.e.
latitude, longitude and altitude vs. time typically in steps of 1 or 10 s . This information can be
used to calculate the sun’s position, i.e. the Solar Zenith Angle (SZA) and Solar Azimuth angle (SAz).
All this information is saved in a file, usually called 'LPMA??.pos’. Note that times in the HH:MM:SS
format can neither be read nor handled by MATLAB, so they have to be changed into numerical format
(fraction of the day, e.g. 12 p.m. corresponds to 0.5). This can be done, e.g., with ORIGIN. The file with
numerical time is usually called 'LPMA??7.nos’. This file together with a file containing the times of the
measurements are the input for the MATLAB program ’matrix.m’ which calculates the file ‘'matrix.txt’
that can be directly used as input for TRACY. As TRACY can only handle several detector positions
in one profile.txt but only one observation geometry, i.e. elevation angle, the situation is more tricky
in case of scanning limb measurements. In this case, the elevation angle of each observation has to be
added as sixth column in the 'matrix.txt’ file. With the program ’trin.exe’ (called with the parameter
"-limbscan’, for more details try ’trin -help’), an individual profile-file for every single measurement can
be created from this matrix-file and a ’skeleton profile-file’ in which the numbers from the matrix-file
are written. The TRACY input program ’trin’ must also be used if TRACY is run under Linux which
is possible using the Windows emulator 'wine’. As TRACY crashes after the simulation of ~ 50000
photons, it is practically impossible to work through a complete matrix-file. But if TRACY is called
anew after every single simulation, it runs stably. ’trin’ also creates a bash-script ’aufruf.scr’ which
calls TRACY for all the created profile-files. Under Windows, the program ’SRManager.exe’ can be
used to call TRACY. In case of a crash, it automatically restarts TRACY at the last worked line of
the matrix-file. However, this only works if the automatic error report sending service under Windows
is turned off. If this service is turned on, a dialog box appears after every crash of TRACY and the
program waits until "okay’ is pressed. In order to know in which line of the 'matrix’ file to restart the
calculation, TRACY always writes the line number of the matrix-file it is currently working on into a file
called ’status.txt’. Note that when TRACY is called (i.e. without using ’SRManager’), it always starts
working at the line number of the matrix-file as written in the profile-file plus the number contained
in the file ’status.txt’ which can be quite confusing. However, when 'SRManager’ is called, ’status.txt’
is set to 0 and, consequently, TRACY starts working at the line of the matrix given in ’profiles.txt’.
The profile-files to be worked on have to be written into the file 'SRList.txt’. This file is also created
by ’trin’. The important output files of TRACY are the two files by default called ’AMF.txt’ and
'BOX.txt’. Beside many other information, ’AMF.txt’ contains the simulated radiances and trace gas
SCDs that can be directly compared to the respective measured quantities. The 'BOX.txt’ contains the
modeled Box Air Mass Factors (BoxAMFs) that are used for the profile retrieval.

A.1.2 Profile Inversion

The profile inversion is performed according to the Maximum a posteri algorithm as described in Rodgers
(2000) chapter 4. This algorithm is implemented in the MATLAB program ’amf inv.m’. It requires the
RT modeled BoxAMFs (file "*. AMF’), the measured SCDs and their uncertainties (file "*.SCD’) and an
a priori profile ("*.VCD’) for the desired trace gas profile as input. Note that the unit of the "*.VCD’-file
is not [em~2] but [cm™3], so it gives trace gas concentrations (i.e. VCD divided by 10000 cm) rather
than a Vertical Column Density (VCD). The altitude grid of the three files CAMF’, ’SCD’ and "VCD’)
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have to match, i.e. for every line in the SCD-file there has to be one line with BoxAMF in the AMF-
file. The grid of the VCD-file has to be the same as that of the lines of the BoxAMF. The output of
amf inv.m’ is the retrieved profile '* out.VCD’ and the averaging kernels ("*.AVK’) of the retrieval.
The covariance matrix of the measured SCDs is calculated from the given measurement uncertainties
by creating a diagonal matrix with the measurement errors squared as elements. The covariance of the
a priori profile is calculated from the profile itself. Therefore, the parameter error in the ’amf inv.m’
code can be set. It gives the relative error, i.e. a value of 1 means that the covariance is identical to the
a priori profile values squared. Additionally, the altitude gridding can be manipulated in the 'matrix.m’
code by setting the parameters alt and grid. The program assumes the input BoxAMFs and VCD on
a 1km grid (if the BoxAMF are calculated on a different grid, the program code has to be adjusted).
The output grid is also 1 km for grid points < alt while the grid size is grid for grid points > alt. The
parameter grid has to be an integer > 1 since several BoxAMFs can be added to get a broader grid but
a finer grid spacing can only be achieved by recalculating the BoxAMFs with TRACY.

The MATLAB program ’amf _fw’ can be used to generate simulated SCDs that can be directly compared
with the measured values. Therefore, the modeled BoxAMFs (file "*.AMF’) and a vertical profile (file
" VCD’) are used. The output is a file ("* _out.SCD’) containing a simulated SCD for each observation
contained in the AMF-file.
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