THE INSTATIONARY MOTION OF A
NAVIER-STOKES FLUID THROUGH A VESSEL WITH
AN ELASTIC COVER

C. SURULESCU

ABSTRACT. We study here the time-dependent movement of a
fluid through a vessel having an elastic cover and inflow and out-
flow sections, the rest of the boundary being rigid and fixed. The
two media interact with each other. The fluid domain is moving
in time. For the elastic structure we use plate equations and in or-
der to describe the behavior of the fluid we consider Navier-Stokes
equations with prescribed pressures at the inflow and at the outflow
sides of the vessel. These are nonstandard boundary conditions.
We prove the existence of a solution for the coupled problem.

1. INTRODUCTION

In this paper we consider a time-dependent 3D /2D fluid-elastic
structure interaction problem. It can be formulated in the following
way: a viscous, incompressible fluid flows through a vessel having an
elastic plate as cover, one rigid, fixed bottom, two rigid, fixed opposite
walls and the other two opposite walls are the inflow, respectively the
outflow boundaries. The fluid domain is moving in time and is thus
unknown: its shape depends on the displacement of the flexible plate,
which in turn depends on the fluid stress acting on the elastic cover of
the vessel. The mechanics of the two media are coupled through the
position of the interface and the surface traction on the flexible part,
which comes from the fluid. For the fluid we consider time-dependent
Navier-Stokes equations with pressures prescribed on the inflow and
outflow parts of the fluid boundary. These are nonstandard boundary
conditions for a fluid flow. The elastic structure is viewed as a thin
plate, which is clamped on its entire boundary. This problem can be
viewed for instance as a rudimentary model for the study of blood flow
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in arteries. We show existence of a solution for the coupled system,
by firstly solving a linearized approximate problem (with the method
of Galerkin), then using Schauder’s generalized fixed point theorem to
show the existence of a solution for the approximate problem and even-
tually passing to the limit. The method follows the one in [CDEGO02],
where a similar problem has been studied, however in a different set-
ting, since in that paper all boundaries of the fluid domain were rigid
and fixed, excepting the cover. Our choice of boundary conditions for
the fluid will lead to some difficulties in the proof; these will be over-
come mainly by the right choice of the function spaces to be used and
due to condition (17) below.

Flori & Orenga [F10r98| studied the interaction of a compressible
3D fluid (Dirichlet boundary conditions on the rest of the boundary)
with a thin plate. Other time-dependent fluid-structure interaction
problems with time moving domains were considered for instance by
Errate, Esteban and Maday [EEM94] (1D fluid, 1D structure), Litvinov
[Litv96], Prouse [Prou71] and Beirao da Veiga [BdV01] (2D fluid, 1D
structure) or by Desjardins, Esteban et al. [DEGLO00] for the 3D case
of a fluid interacting with an elastic structure having a finite number
of elastic modes. Rigid bodies interacting with a fluid are studied for
instance by Desjardins and Esteban [DeEs99a| and [DeEs99b] or Taka-
hashi [Taka03]. For the time-dependent flow of a Stokes fluid through
an elastic tube (small displacements, cylindrical domains) we refer e.g.,
to [CaMi03] (effective 2D/1D problem) and to [Suru05] (3D/3D). For
stationary 3D fluid/3D elastic structure interaction problems we refer
to [Gran00], [Suru04].

2. SETTING OF THE PROBLEM

Consider a viscous incompressible fluid which fills a vessel of
length L, width [ and high 1. The vessel has an inflow and an out-
flow boundary and as a cover an elastic plate of small thickness, fixed
along its boundary. At the reference state the elastic plate occupies the
domain 4 x {1} and the fluid occupies at the initial state a domain

QWO = {($1,$2,$3) € R3 : (331,552) € QS, 0< T3 < 1 +7']()(.T1,.T2)},

where Q, = (0, L) x (0,1)" and 7, is a given initial displacement of the
elastic part.

factually, Q, could be any Lipschitz domain of R?, but for the sake of clarity we
took it here in this form
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FIGURE 1. The box and the deformation of the elastic cover

We consider the longitudinal displacements of the elastic plate negli-
gible. Thus we have for the elastic structure a 2D problem; the only rel-
evant, displacement is the transversal one and the corresponding equa-
tions for the motion of the elastic plate are then:

(1) Oun + A’n+yA%0m = g+ Gin (0,T) x Q,
(2) n=20,n = 0on (0,7) x 08
(3) n(0) = no, Ain(0) = 101,

where ¢ is the exterior force applied to the elastic plate, n is the
transversal displacement of the plate and G := (F})s, where Fj is
the surfacic force applied by the fluid on the structure.

As in [BdV01] or [CDEGO02], a viscoelastic term yA?9;n (7 > 0) has
been added to the usual equations of an elastic plate, in order to ensure
the smoothness of the structure’s velocity.

The domain occupied by the fluid at time ¢ is:

Qn(t) = {(.’El,.’ﬂg,xg) € R3 : (.’El,xg) S Qs, 0< T3 < 1 +7’}(t,$1,$2)}
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and the equations for the fluid are:
) du—vAu+ (u-Vju+Vp = finQ,r
divu = 0in Q7
uxn = 0on (0,7) xTIy

u = 0on (0,7) X (I'p U siges)

p = pouon (0,7)xTy,; (1=1,2)
) u(0) = uyinQ
where @, 7 C R* is defined as

Qnr = U {t} x Q,(),

0<t<T
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u is the fluid velocity, v is the kinematic viscosity of the fluid, p is the
pressure, f the density of the external forces, py; and pgo are the known
pressures at the inflow and outflow ends and uq is the initial velocity.
I'y = T'f1 Ul s, represent the inflow, respectively the outflow boundaries
(which we suppose to stay fixed), I', stands for the rigid bottom of the
box and I';4., represent the other two opposite boundaries of the fluid
domain.

The adherence of the viscous fluid to the interface is expressed in the
following equality of velocities:

(10) u(t, 1,72, 1 +n(t,z1,72)) = (0,0, 0m(t, 71, 22)), (1,22) € Qs.

The fluid incompressibility (5) and the boundary conditions (6) and
(7), toghether with (10) lead to the following compatibility condition:

(11) / oyn — / U1+/ u; = 0.
s Tp Ty

The surface force exerted by the fluid on the elastic wall is defined
by:

(12) / Ff.{,—:/ (—v(Vxu)xn,+p-ny)-v, Vv,
s 8Qn(t)_(FfUFbUFsides)

where v (t, x1,22) = v(t, 1, 22, 1+ 1(t, 21, 22)), V(21, 22) € Qs, 1y is the
unit outer normal at I';(t) := 09 ( )— (T U [y U Tgi4es)- Observe that
(with an obvious notation) dI'i(t) = v/1 + (85,1)% + (9x,n)2dz1d>.

3. A PRIORI ESTIMATES

In this section we make some a priori estimates, in order to moti-
vate in a natural (and heuristical) way the introduction of the function
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spaces we will use in the definition of the weak solution, in the formu-
lation of the main theorem of this section and, of course, in the proof
of the result.

Testing the Navier-Stokes equations by u, we obtain:

/ 8tu-u+/ (U-V)U-U+V/ |V><u|2:/ f-u
(1) Qy(t) () Qy(1)

+/ [V(qu)xnt—p-nt]-u—/po-nu
agﬂ (t) _(Ff Ul'p Ul sides ) Ff

Now using Reynold’s transport formula, we observe that

1d
[Ou-u+ (u-V)u-u| = ——/ lul?.
[%w 2dt Jo,

Thus, for the fluid equations we get the following equality:

1d
1d mP+y/ IV x uf?
2dt Jo,u 2, (1)

+/ [—I/(qu)xnt—i-p-nt]-u:/ f-u—/ Po-n-u.
89 (£) —(TUT Ul si4c) Q, (1) ry

Now test the equations of the elastic structure (with the supplementary
term) with 8t77 to obtain

2 L@ 2 2
) [ 1oal s [1ank e [ aa

S QS

Adding (13) and (14) while keeping in mind (12), the definition of G
and (10), we obtain the following energy equality:

1d 2 2 2 / 2
-2 V x o+ -—
i fo o [ g [ g [

(15) +7/ |A8m|2:/ f-u+/ g-(')tn—/po-n-u.
s Qn(t) . I,

The inequalities of Holder and Young lead to:

1d 1d
2dt|U—|L2 @t T VIV X u|L2(Q 2dt|at77|L2 ) 2dt|A77|L2 Q)

(13)

1
10 20,y < §|f|i2(ﬂn(t)) + §|u|i2(9n(t))

Lo 1 2 Co |2 1 2
+§|g|L2(QS) + §|at77|L2(Qs) + §|p0|L2(rf) + 2—00|U|L2(rf)-
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Now define
. u in Q,(¢)
= :
(0,0,0im) in Br — Q,(t)
where B = Q,x(0, K), (K > 14+n(t, x1, x2) V(x1, 22) € Qs, Vit € [0,T1])
is a Lipschitz domain such that Q,(t) C Bk, Vt € [0,T].

Then use condition (17) for the curl of the fluid’s velocity in the next
section to obtain the following inequality:

1d r
§%|u|iz(ﬂn(t)) + (V - )|V X u‘%ﬂ(n ®) 2dt|atn|L2 (%)

1 CrcCy
2 dt|An|L2(Qs) + (v - 20 )||at77||H2(Qs > |f|L2 )T 5 |U|L2 () (1))

+§|9\%2(Qs) + 5\3t77\L2(QS) + §|p0\%2(rf)a
where the constant cr above is the constant in the inequality

[ulfar,) < crlfips,)-

Ccrci

We assume v > % and v > 3
COCE

5 . Then Gronwall’s inequality
COCE
leads to:

1 Cr
(16) §|u(t, ')|%2(Q,,(t)) + (V  Seocs /\V X u‘iQ(Q (s)) @S

1 1 crecy
+§‘3t77(t, -)|i2(ns) + §|A77|%2(Qs) /||8m e ()@

200

el
5 (|U—0|L2 (Qng) T |7701|L2 @) T |An0|L2(Qs )

( |L2(Q7,(s + |g( )‘%Q(Qs) + Co|p0‘%2(1"f)) ds.

Thus, we have proved the following proposition:

Proposition 3.1. Assume that the data of the problem satisfy uy €
L2(Q770)7 To1 € LQ(QS)J Mo € Hg(Qs)) f e L2(07T7 L2(R3)); Po €
L*(0,T;L*(Ty)) and g € L*(0,T;L*(Ny)). Then the estimate (16)
holds, so that one gets
u € L(0, 75 L%(2,(1))) N L2(0, T; HY (2(1)))
and
n € Wh(0,T5 L*(9)) N H' (0, T Hy (25)) N L0, T5 Hy ().
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Indeed, by the estimates (16) it follows that u € L>(0, T; L*(Q,(¢)))
and V x u € L?(0,T;L*(Q,(t))). We remark that we have V x 0 €
L2(0,T;L?(Bg)), thus (via (17)) @ € L*(0,7;H'(Bgk)) and therefore
w € 12(0, T:H' (0, (1)),

So, function spaces of the form L4(0, T; L™ (Q5(¢))), L?(0, T; H!(Q45(2)))
have to be used, where €5(¢) has an analogous definition with €, (%)
above, with § € W1*°(0,T; L*(,)) N HY(0,T; H2()), so § € C%1/2
(0,T;C%(Q,)), with ¢ € [0,1). Observe that Qs(¢) is an open set, but
it is not necessarily Lipschitz, thus one has to take care when defining
the functional spaces in ().

Remark 3.1. (concerning the fluid equations)

Notice that for a time dependent domain the presence of the convec-
tion term in the fluid’s equations is essential for the stability conditions
in the norms above to hold. Indeed, otherwise we couldn’t simplify the
cubic term in the transport formula of Reynolds and we couldn’t ma-
jorize it either, since it doesn’t have a precised sign. The problem with
Stokes equations describing the fluid’s behavior instead of the Navier-
Stokes ones risks thus to be badly posed in a time-dependent domain
(see also [EEM94] ).

This kind of fluid problem (with boundary conditions involving the
pressure) studied here has also been studied for the stationary case in
[CMP94] and in [Bern00] and for the time dependent case (with time
moving domains) in [ABC99] and [Luka97]. In the latter ones the
boundary condition (8) contains supplementary the term %|u|?, but the
estimates obtained were only for the elliptic regqularization of the penal-
ized problem, with supplementary assumptions. The pressure boundary
conditions used here for the flutd problem have also been considered in
[JaAMi98] for cylindrical domains; however, there the focus is on another
topic, namely to analyze the motion of a viscous, incompressible fluid
through a filter with finite thickness, but the fluid equations therein are
the same as in this section, modulo, of course, the coupling conditions.

¢

4. FUNCTION SPACES, TRACE OPERATORS, PROPERTIES AND
ASSUMPTIONS

(]
and, for o > 0, K > 0, K > 1+ 6(t,21,22) > o > 0,
[0,T] x 5 and 6 = 0 on 9.
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For every t € [0,T], Qs(t) := {(z1, T2, 73) € R® : (z1,72) € Qy, 0 <
T3 < 1+ (¢, 71, 72)} is an open subset of R3; it is included in By :=
Q, x (0, K).

We define Qs C R* by

Qs = |J {t} x Qs(t)
0<t<T

and By, = (0,T) x Bg. The corresponding function spaces L4(£25(t)),

Hl(Qg(t)) (fOI‘ every t), Lq(Q(g,T), HI(QJ’T), Lq(BK’T), HI(BK,T) etc.
can be defined as usual.
We also define (in a natural way):

L2(07T7 HI(QJ(t))) = {V (= L2(Q5’T) - Vv e LQ(QJ,T)},
L2(0, T, Hy(Q5(1))) = D@Qsr) 0 o)

V5 :={veC (Qsr) : divv=0, v=0on (0,7) x (T UT siges),
vxn=0on (0,7) x I},

V; = V&Lz(O,T;Hl(QJ(t)))’

V:={veL?0,T;H'(Bk)) : divv=0,v=0on (0,7)x([pUlges),
vxn=0on (0,7) x Iy}

and

L0, T; L*(Qs(1))) = {v € L*(Qs,7) + sup essocyer|[vlLa(o;0) < oo}

Observe that for V5 we can give the following characterization:

Vs ={v e L*0,T;H'(Q(t))) : divv =0, v=0o0n (0,7)x(TpUlsiges),
vxn=0on (0,7) xI'f}.

The following ellipticity condition (also encountered in [ABC99] or
[Luka97], as a hypothesis) can be justified like in [CMP94] (Lemma
1.4) or in [GiRa86] (Theorem 3.9), observing that the divergence of
the velocity at the interface stays zero (and extending the velocity in
B — Qs(t) by its value on the interface between the two media):

There exists a constant cg > 0 such that Vu e V
(17) IV xu(t) Lo, > callul)li sg0-

Let us now see how does the trace on 0925(t) — (I'y U I'siges U I'y)
make sense. Consider the mapping C°(Q4(¢)) > v i v(t,z1, 29,1 +
5(t, Z1, CCQ))

Lemma 4.1. For every t € [0,T), the mapping vsu) : C'(Bx) (respec-

tively C'(5(t))) — C°(€2,) can be extended by continuity to a mapping
from HY(Bg) (respectively H' (Q5(t))) into L2(£2).
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Proof. The proof is analogous to the one for Lemma 1 in [CDEG02]. O

Remark 4.1. By the above lemma it also follows that for v € L*(0,T;
HY(Q5(1))) one has 750 (v) € L0, T L(Q)).

¢

From now on, until the end of this subsection, we will assume that
6 € H'(0,T; H§(€))-

Lemma 4.2. For every ) € Hy () there ezists w € Hyp, or . or, (Qs(t))
such that 5 (W) = ¥ and ||W|[mr 00 < call¥]la10y)-

Proof. The proof is analogous to the one in [CDEGO2]|, while taking
care at the in- and outflow boundaries when defining w. Since the
proof does not differ essentially from the one in [CDEGO02], we don’t
write it here. dJ

The following lemma gives a weak sense to the tangential trace on
the time moving boundary:

Lemma 4.3. For every t € [0,T], there exists a linear continuous
operator fyg"(’t) : H(curl, Q5(¢)) — H™Y(Q,) such that
fyfs‘(’t)(v) =v(t, 1,22, 1 +0(t,x1,22)) X 0y, V(x1,22) € Qs,
for all v.€ C*®(Qs(t)), where
H(curl, Q;(t)) := {v € L*(Q5(t)) : curl v € L*(25(¢))}.
Proof. For the proof we use Lemma 4.2 and the following Green formula

(see [GiRa86]):

<V X nta%(t)(w) > 1,10, = /
Q

(va)-w—/ v (V xw);
s(t) Qs(t)

| (va)-w—/ v (Vxw)<
Q5(t) Q5(t)

< (|Iv[lz2s ) + IV X VL2 s ) | W] 1 (05 1)) -
(]

A similar result can be stated for the normal trace on the time moving
boundary:

Lemma 4.4. For every t € [0,T], there exists a linear continuous
operator Vg, « H(div, Qs(t)) — H1(Q,) such that

'YZ;(t) (V) =v(t, 21,22, 1+ 0(t, 21, 72)) - 1y, V(x1,22) € Q,
for all v.€ C*®(Qs(t)), where
H(div, Q5(t)) := {v € L*(Q5(t)) : div v € L*(Q5(1))}.
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Proof. For the proof we use Lemma 4.2 and the following Green formula
(see again e.g., [GiRa86]):

<V, Vs (W) >—1,1;Qs=/ (div v) 'W+/ v (Vw);
Qs(t)

Q5(1)

[y [ v (vw) <
(t) (1)
< ([1v[lezes ) + 11div v |Lzs @)W 105 1)) -

0

The proof of the main result of this Section (Theorem 5.1) makes in
its last part use of the following lemma:

Lemma 4.5.
{v e H0 TyUT g0 UL (£ )(Q(s(t)) :vxn=0onTy;}

={veHr,ur.... (1) : 7e(v)=0, vxn=0 ony}.

Proof. ”C”: Let v € Hyp p - p 1y (2(t)) with v x n =0 on I'j.
There are functions v, in H'(Q4(t)) with supp v, compact such that
ve — v for € = 0 and such that vs¢)(ve) = 0. Since (by Lemma 4.1)
the mapping 5 : H'(Q5(t)) — L*(Q,) is continuous, it follows that
Yst)(v) = 0. v x n =0 on 'y is obviously satisfied, too.

72" Let v € Hyrp, p,,,. (Q5(t)) with 754 (v) =0 and v x n =0 on
I'y. The following Green formula can be proved by density arguments
for ¢ € C*(Qs(1)) :

0,6
/ (Vxv)4h = v-(vw)+/ ()% | =0 | s (4):
Qs(t) 25(t) s 1

Thus, if v € Hyp, r,... (Q5(t)) is such that 54 (v) = 0 and v x n =
0 on I'y, then one gets v € Hj LUl e, U((0% X (0, K))—T' ) )(Bk), where

Psides, ke = ((0, L) x {0} x (0, K)) U ((0, L) x {1} x (0, K)).

. | v in Qs(t)
V710 in B — Q5(t)

Thus, vg(z1, T2, ¥3) := V(21, T2, Bx3), B > 1isin Hj Ul sigesurs (1) (25(2))

with vg x n = 0 on I'y. Since vy 3y (in H'(Q5(t))), we have
veH] »(Q(t)) and v xn=0on I;. O

0,I'sUlsides UFI
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Lemma 4.6. Let v € V; such that for a.e. t, v54)(v) = (0,0,b), where
be L*(0,T; H(Qy)). Then define the function

V= v g QJ,T
o (05 0: b) n BK,T - QJ,T )
v belongs to V and
[Vllv < C([[vllvs + [0l 220, m3(52.))-

Proof. The proof follows observing that v € L?(0, T; H'(Bg)) (like in
the proof of the previous lemma) and

[Vllv < [vllvs + 11(0,0, )| z2(0.7:m (Brc—225(1)))-
Then

1100, 0, )| 2207111 (51— 2511)) < (K_Of)||bH%2(o,T;Hg(ns)) < KHbH%Q(O,T;H(}(QS))'
It follows thus that v € V, the rest of the properties necessary for v
to be in 'V being clearly verified. O

Observe that the following lemma holds, too:
Lemma 4.7. (Inequality of Poincaré)
[Vllea@ym) < [1VVlle, ) for v € Horyor,,,, (2(8)-

5. WEAK FORMULATION AND MAIN RESULT

With the function spaces in the previous section, we are now able
to give the weak formulation of the problem.

Let Mo € Hg(QS)’ U € LQ(QWO)’ Do € LQ(O’T; Hl/z(rf))’ Nor €
L*(Q;) such that ming (14 1n) > 0, div ug =0, ug = 0 on L'y U I'yiges,
up xn=0onTy, 47 () = (0,0,701) - ng on €y, fﬂs No1 — frfz u1(0) +
frfl ul(O) = 0.

Definition 5.1. (u,n) is a weak solution of (1)-(3), (4)-(10), (12) on
[0,7) if:
e ucV,NL>0,T;L*(Q,(t))),
o e Wheo(0,T; L*(Qs)) N HY(0,T; HZ(S))
® V() = (0,0,0;m) for a.e. t
o for all (¢,b) € V, x C1(0,T; H3(Qs)) such that
Ilp(ta Z1, T2, 1+ n(ta L1, .’1)2)) = (Oa 05 b(ta X1, 1‘2));
(t,x1,2z9) € [0,T] x Q4 we have for a.e. t

/m(t) ul) ) - /t/sms) o V/t/sms)(v xu) - (Vx 1)
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t t

+ / /Qn(s) (u-Viu-4 - /t o 0inob + o om(t)b(t) + / AnAb

Qs
0

0 0
t ¢ t ¢
o o V) o o VT

(18) + /Q ot (0) + / no1b(0)

no s

We may now state the main result:

Theorem 5.1. Suppose the assumptions stated before Definition 5.1
are satisfied and that £ € L2(0,T; L*(R?)), g € L*(0,T; L*(S%)), po €
L2(0,T; HV2(Ty)). R := Q, x (0,1) represents the reference configu-
ration of our problem.

Then there exists 0 < T < oo and a weak solution of the problem on
[0, T], which satisfies the following estimates:

[[al[roo 0,720, + |[0llL20,rm1(0, () + [10em][ £o0(0,7522(0))
+||A77||H1(0,T;L2(Qs)) < const (T, ||u0||Lz(Q,70), ||f||L2(0,T;L2(R3))a
gllz20,me200))5 M0l m2020)> [M01]122¢00) [P0l [L2 0,722 )))-

Remark 5.2. Notice that the theorem also implies the boundedness of
n in the norm of H'(0,T; HZ(S)), thus also n € C(0,T; Hy(Ss)).

¢

For the proof we will state firstly an approximate problem, whose
solutions are built by regularizing the nonlinear convection terms and
prove with the aid of Schauder’s Second Fixed Point Theorem the ex-
istence of such an approximate solution (via linearization and Galerkin
method). Then we prove some compactness properties, which will al-
low us further to pass to the limit in the approximate problem, in order
to get the existence of the solution of our problem.

Before proceeding with the proof of this result we give the following
remark, which is crucial for constructing approximate weak solutions
of the problem:

Remark 5.3. For the convective term fﬂn(t) (u-V)u- 4 the following
expression s valid:

/ (0 V)u- o= (vXu)xu-¢+1/(am)2b—
(1) (1) 2

8
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1, 1,
_5/ uir + B (R
Ty Iy

6. THE APPROXIMATE PROBLEM

6.1. Constructing the approximate solution. Let us now con-
struct a sequence (u,7)c>o of approximate weak solutions. Let u§,
NG, M1 be regularizations of the initial data such that div ufj = 0,
u§(z1, 9, 1 + n§(x1,22)) = (0,0,75,(z1,22)), u§ = 0 on I'y U Tyiges,
ujg xn=0on/TlY, st Mor — frfl (e frf2 ug, =0 and

e €0 .
Xy, U = Xy, Uo 111 L2(BK)7
where XS is the characteristic function of 2, and XS, the char-

acteristic function of €2,,. We also demand ng, % noy in L*(Qy) and
M6 = Mo in HE ().

The construction of such sequences can be done (like in [CDEGO02])
in the following way: take 1§ € D(€,) with 1§ = o in H2(,). For €
small enough, if ming,_ (1 +19) > 2c, we have ming (1 +n§) > 32.

Define
T = o in QWO
0 (07 077701) in BK—H - Qno
Observe that div g = 0.

Construct
ae __{ T in Qe
07 1 (0,0,75) in Bry1 — qu
Observe again that div 4§ = 0.
Now, consider

ug” (21, 72, 3) = (B0, (21, T2, Bx3), BUS 5 (21, T2, B3), UG 5(21, T2, BT3)),

B > 1, which is also solenoidal. For g > 1, ug’ﬂ = (0,0,n5,) in a
neighbourhood of {(z1, 9,1 + n§(z1,22)) : (@1,22) € Qs}. If we
regularize ug’ﬂ in the standard way, it gives the required approximations
on ug and 7;.

The proof of the next proposition is done in the subsequent para-

graphs of this subsection.

Proposition 6.1. Let @f and nf be regularizations of ., respectively
Ne, U, being the extension of u., defined as in Lemma 4.6. (For more
details on these regularizations we refer to the first step of the proof
below).
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Then there ezists a (weak) solution (ue,n) in the space
(Vg VL0, TELA(, (1))  (WH(0, T3 L(0,)) N (0, T3 HE(2)
with
b uc(t L1, T2, 1+ 776( 7372)) = (0) Oa 6t776(ta T, 1'2)) on Qsa
e du, € L?(0,T; L?(Q 5( ),
® Oune € L2(0,T;5 L*(9)),
* u(0) = uf, 7c(0) = 15, Fine(0) = 15,

e and

¢ ¢
(19) // 5tu€-¢€—|—1/// (Vxu)-(Vx,)
0 Qng(s) Qng(s)
¢
+// (V) X u, 9, + = / ameameb——// il e
0 QWE 2
X ¢ ¢
i3 [ [ vt [ [ o / | anavey / | a@n)an
o T 0o 0o 0o
¢ ¢ ¢
L f Lo f e
0 @ 0o T 0 Tt

Vip. € Vi, be L?(0,T; HF(S2)) such that
Y (t, 71,22, 1 + 0t (t, 21, 22)) = (0,0,b(t, 1, 22)) on Q.

Remark 6.1. We have used here Remark 5.3 to rewrite the convec-
tive term. QObserve that the approximate solution satisfies the same
estimates as those of the actual solution.

Indeed, take (u.,Ome) as a test function and notice that in virtue
of Reynolds’ transport formula and by the fact that the velocity of the
movwing boundary of the fluid domain Qnﬁ (t) is (0,0,0:m*) and since we
have u,(t, 1, To, 1408 (t, 21, 22)) = (0,0, 0mc(t, T1,72)) on Qs, it follows

that
1d

1
o 1 ue2:/ aue'ue+_/ 877528773
2dt Qn(t)| | a0 2 s(t yo
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With calculations similar to those in Section 3 and choosing the con-
stant c3 in the involved Young’s inequality such that:
Crc;

c
veg > i and ycg > Ser
3 3

and with

1 € € €
C4 = €T§ |UO|i2(Qﬂﬂe(0)) + |7701|%2(QS) + |A770|%2(QS) + ||f||i2(0,T;L2(Qﬂn€(t))

+||gH%2(0,T;L2(QS)) + ClHPO\\%z(o,T;m(rf)) 5
we get:

||ue||L°°(O,T;L2(Qnu @y + IV x ue||L2(0,T;L2(Qnu (t))

(20) +Hat77€”L°°(O,T;L2(QS)) + HAneHHl(o,T;LZ(QS)) <C,

where C > 0 s a constant depending only on the data and not on e.
Now taking into account condition (17), it follows (like in Subsection
3) that

(21) lud Loz o g < €

with C depending on the data and on maxp 7yyg, (1+7¢). Now use (20)
and the fact that H*(0,T; HZ(Q,)) < C%'/2(0,T;C%1(,)) (0 < g¢g< 1)
to deduce that ming ryxq,(1 +1e) doesn’t depend on e and so neither
does ming 17.q, (14 nf).

¢

Proof. (of Proposition 6.1) The proof is done in two main steps: in
the first one we linearize the weak formulation for this approximate
problem and show the existence of a unique solution of the linearized
regularized approximate problem, with the aid of the Galerkin method.
Under some supplementary regularity properties, we can pass to the
limit in the Galerkin approximations and apply in a second step a
version of the Generalized Schauder Fixed Point Theorem to prove the
existence of the approximate weak solution (uc, 7).

6.2. Step 1: The linearized approximate problem. We linearize
(19). Let § € H'(0,T; H3(Ss)), 6(0) = n§ and K > 1+ 6(t,z1,29) >
a > 0,V(t,z1,29) € [0,T] x Qs ( is such that ming_ (1+7n0) > 2a > 0).
Take v € LQ(O,T, HI(BQK))

Consider §f = R¥(6) and vf = R/(v) space-time regularizations of
§, respectively v, such that: R$(5.) — ¢ in C([0,T] x Q,) when §, —
§in C([0,T] x Q,), O,R:(8.) — 9,0 in L*(0,T; L*(Qs)) when 0,6 —
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0;6 in L2(0,T; L%(Q,)) and such that, if v is the limit of v, in L?(0, T}
H'(B,x)), then it is also the limit of R/(v,) in L?(0,T; H'(Bxx)).
As in [CDEGO02], we build R?(d) in the following way:

R{(6) = 5:(6 = d(t = 0)) + 5,

where S, is a space-time regularization such that S(b)|;—o = 0 when
b(0) = 0. In particular, observe that R!(d)|i—0 = n§. We may also
suppose that 2K > 1+ 6!(t, z1,22) > 2, V(¢, 21, 22) € [0,T] x Q.
The problem we want to solve is to find (u., ) such that:
e u € VyuNL*(0,T; LQ(Q(SE (t))),
® 7 € Wl’oo(oa T; LQ(QS)) n Hl(oa T; Hg(QS))ﬂ
e O,u. € L*(0,T; LQ(QJE (t))),

® attne S LQ(OaTa L2(Qs))7

o u.(t, 21,29, 1+ 6 (t, z1,22)) = (0,0, 0mc(t, 21, 22)) on €,
® u.(0) = uf, 7:(0) = n5, Ane(0) = nG

e and

(22) O/t/nég@ . -, + ”O/t/gég@(v < u,) - (V x )

t t t
f 1 : 1 :
+ (vae) Xu6'¢5_§ Ue,1U€,1'1/Je,1+§ Ue,106,1‘1/fe,1
sy (s) s n o UL
t t

t t
1
Qg Qs s 3
0 0

0 0

¢ ¢ ¢
L[ Lo [
o U 4i(e) 0o o VT

Vap € Vi, b€ L*(0,T; H3(R2,)) such that
W (t,z1, 9,1 + 0% (t, 11, 25)) = (0,0,b(t, z1,75)) on €.

Remark 6.2. Observe that in this problem the test functions do not
depend on the solution. Moreover (as in Remark 6.1), any solution of
the above problem satisfies energy estimates which are independent on
€.

¢
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6.3. Existence of a solution by the method of Galerkin. So far
we have dealt with equations set in a time-dependent domain. We now
make a transformation, in order to rewrite our equations in the refer-
ence configuration R := 2, x (0,1), which is a subset of R3, too, but
which does not depend on time (it is fixed). We define the transforma-
tion by ¢, : (0,T) x B — Qg (1),

(23) B (t, 21,22, 23) == (71, T2, T3(1 + 6X(t, 71, 72))),

V(z1,z9,23) € R, t € (0,T). Observe that ¢, is smooth in space and
time and that ¢,(t,.) is a C'—diffeomorphism. The time derivative of
¢e is 8t¢5 = (0, O, .’Egatég)

With this transformation and with the following notations:

u?s = ueo¢ea ,('b(fe = ’(nbcoqbea f¢€ ::fo¢€’ pOE = p00¢5

M. -
J. :=det Vo, M, := cof Vo, n% := 6711’ do? = ||M, - n||do
[IM - |

the equations (22) become:
¢ ¢
M M
24 //6uf€-1,bf€J€+y// £V) x u) - CV) x
( ) J Rt / R((\/Te ) ) ((\/Te ) )

" / [ (9 vty xut -t / [ 0 03

t t
1 1
-3 / / ulyvlyt e+ 5 / / uuls? - vl Je
o T o e

t

t t t
1
+5 / 00,08 + / Ouneb + / / An.Ab+ 7y / / A(O¢ne) Ab
Qs Qs s s
0 0

0 0

t t j
://f‘be'(,bfsje‘i‘// gb—// ngMenwaJE’
0 R 0 E] 0 1—‘f

Vople € L2(0, T Hi 1, o (R)), b € L*(0,T; H3(S2,)) such that
¢?E (ta L1, T2, 1) = (07 07 b(ta L1, 332)) on Qs;

div (M!9?) =0in R, 9% xn=0on I};.

(observe that dyuf«(t, x) = dyuc(t, @.(t,x))+ (00, (t,x)-V)u(t, P, (t,x)),
thus dyu, = dyufs — (9, - 3-(McV))ufe).




18 C. SURULESCU

The equality of the velocities at the interface becomes:
u?s (ta L1, T, 1) = (0: 0, atne(ta Z, 332)), (‘/El’ x2) € QS'
We now come to the construction of the Galerkin basis. We build a
basis {52}j€N of {veH'(R) : divv=0in R, vxn=0onTly, v=

0 on OR — I'f} by taking into account all the eigenfunctions of the
Stokes problem (like in e.g., [JAMi98)|)

0 0 _ €0
div 52 = 0inR
& xn = Oonly
p; = Oonly
52 = OondR —TYy.

Denote ) := M_'€). The family {4)};en is a basis of the space
{ve H(R) : div(Mlv) = 0inR, Mlvxn =0only, v =
0 on OR — I'y} and the functions ¢2 are smooth in time, because M,
it is.

We also consider a basis {p;};en of {b € HZ(S;) : st b— frﬂ wﬁi +
Jr,, W25 = 0 with ¥y € Hypr,,.. (R)} and we build functions {4} }jen
such that div (Mfe;) = 0 and ¥;“(t, 21,22, 1) = (0,0, pj(x1,22)) on
Q2s. This can be done by solving a Stokes-like problem (similarly to
e.g., [CMP94], while making the corresponding hypotheses):

—Aw;’e -+ (M€V)p;f’6 = 0in R
div (M{+;“) = 0in R
'(p;,e = Oon Fb U Fsides
M%7 xn = 0on Iy
p; = g¢; (known) on Iy
'(,b;f’c = (0, 0, pj) on OR — (Fb U Fsides U Ff)
Again, the functions 'd);’e are smooth in time, because M, is smooth in
time.

n
We are now looking for n := 21 B;(t)pj+ns and ufem™n ;= 21 o; (t)'c,bg’6
J= J=

+ " Bi(t)9;° such that for all 1 < j < m,
=1

M M
Ot g3+ [ (S0 xutm) - (S9) x
[ oty [ (TE9) st (Z9) )
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*ﬂwmwXﬁﬂx@mww?—L@QwMﬂm&MW%‘

_1/ d’e:mn ¢€aﬂ¢ 1/ ¢e:mn ¢e,ﬁq/)0€J
2 Ffl 2 Ff2

(25) = / fo - p T — [ pf-Me-n- )
R
and forall1 <[ <n
M M
i g+ v [ (T5E9) x utm) - (S0 x )
/R t : r Ve Ve :
[ (O0T) ) i — [ (G- (MDD g
R

1 1 X "
+§/ 8::77?@5%1 _ _/ u¢e,mn ¢57ﬂ,¢]l 16J + 2/ utﬁe,mn ¢evﬁ¢l 16J
Tp

2 T

8

+ / ounep+ [ AntAp+y | AlOml)Ap
s Qs

Qs

(26) = / £ 7T+ / g-p— / POM, -1 - T,
R s Iy

These equations are provided with the following initial conditions:
B;(0) = 0, uf=mn(0) = u‘ffo’m", where ud’f’m" is the projection of
ug"pf on the finite dimensmnal space span (7,b “ ) 1<j<m,1<i<n and
omi(0) = ngy", where ng;" is the projection of 7701 on the finite dimen-
sional space span (pl)1<l<n

We thus have a second order system of ordinary differential equa-
tions, whose coefficients are functions smooth in time (they are sums

of terms of the form fR 'c,bo P, I at'(bo Py, v fR V) x 'gbo -

0, 6
(( JE ) X "'pz LARREP ) st P - atpepk: fQS AplApk etc.).
By a transformation of variables, the second order system can be
reduced to a first order system of ODEs, having the mass matrix

(fw BT [P )
ST [o b W T+ [o pim )

This matrix can be written as a sum of two matrices, where for all
t € [0, 7] the first one is smooth and symmetric nonnegative and the
second one is symmetric positive.

Thus, by the usual theory for the ODE systems, the system (25),
(26) has a unique solution on [0, T}, ], for a T, , > 0.
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Now multiply (25) with a; and sum up for j =1, ..., m and multiply
(26) with §; and do the sumation for [ = 1,...,n. We add the two
equations that are obtained in this way and get

M M
doulemn . adomin g 4y / V) x ufom™m) - ((—=V) x ufem™n
1

m,n € ]' €571, € 1
=3 | wdrendia e g [ werendis g [ omadion:
Tr Tyo Qs

+ / Arf A4y / A @) Ay — / (Bucb,- (ML V) e o
s s R

Outle Outle = / foe-ufemn g+ / 90um; — / Py M, n-uomn .
s R s Ty

Now, clearly

e, J — a Ge,m,M . ¢€)an / e,y 2
th/ g™ / Ue tg [ e

(remember that R doesn’t depend on ¢) and since with the aid of the
Piola identity

d

d—JE =div (Mi . atdle)Je

and 01, (t, 71,2, 1) = (0,0, 06 (t, 71, 7)), we obtain

1
qbf,mn ¢€)man _
2dt/|u /8u J€—1-2/R|u6

= / atu?s,m,n . u?e,m,nje _ /(8t¢5 . (MCV))U?E’m’n . uzbg,m,n
R R

" 2div (ML, ) J.

1
+—/ 3t77?3t5£3t77?-
2 Q

Now, analogously as in Section 3, we get the following energy estimates:

™" |Leo 0,752 () + ||V X 0™ |L20,2502(R))
+||8t775nHL°°(O,T;H§(QS)) + HAn?HL“’(O,T;L?(Qs))
< const (T,||u0||L2(Q,,0), &, a, |lgll2omzze), fllezorrame),
(27) [pollz2(0,rs22 ) Mol mze00)> Mmorllz2ay))-

Since these estimates do not depend on m and n, it follows that
T =T.
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Remark 6.3. The dependence on € and o of the above estimates re-
lies on the transformation of domains we considered. However, if we
transform back to the deformed configuration, the energy estimates we
get (with calculations analogous to those in Section 8) no more depend
on € and on :

[ oo w2y, 1) 11V X0 L2 mway (o) + 10 | o o,rim300))

+ AN | z20,1;z2(0.)) < const (T, [[uol L2y, 119]]L20,m02(00))

(28) [pollz20,ms22 )5 Mol m200)s Mo1llz2(0q)s [IE]lL207L2R3)))-

This will be a useful observation later, when passing to the limit with
e — 0.

¢

6.4. Some more estimates. We now give some supplementary esti-
mates for Btu‘fe’m’" and Oyn" which are independent of m and n (though
they depend on €) and which will be needed in Subsection 7.

The following lemma holds:

Lemma 6.1. There exists a constant C(e, ) > 0 such that C does not
depend on m, n and

(29) [|Opugemn
For the proof we refer to the Appendix.

|L2(0,T;L2(R)) + Hattn?HL?(O,T;LZ’(Qs)) <C.

Remark 6.4. This lemma also provides us with an estimate for Ou™"
in L?(0, T; L? (3 (1)), since
atu?ﬁmyn(t: x1,T2, $3)

= 8tuT’" (t, ¢e(t’ X1, T, ajg))+(8t¢6-V)u£"’”(t, ¢e(t’ T1,T2, 1'3))

¢

Now thanks to the above estimates we are able to pass to limits in
the discrete system for m,n — oo. We thus obtain a unique solution
of (22), which satisfies the estimates (27), (28) and (29).

6.5. Step 2: The fixed point theorem. We have shown so far that
for any (v,d) with v € L?(0,T;H'(Bax)) and § € H'(0,T; HZ(Sy)),
K>1+46(t,x,22) > a>0,V (t,z1,72) € [0,T] x Qy there exists a
unique solution (u.,7.) of (22) with the above mentioned properties.

Observe that by the previous estimates n. € H'(0,T; H3(€,)) and
(by construction) that 7.(0) = n§. The function

- ue in QJE (t)
e -= (0, 0, 8t775) in BQK - ng (t)
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belongs to L?(0, T; H' (Bax))-
We define the spaces

S := L2(0, T H!(Byi)) x H(0,T; H3(Q,)
X = {(v,6) €S : [|(v,6)lls < Ox, @ < 1+3(t1,20) < K ,

V(t,$1,$2) € [OaT] X QSa 6(t = 0) = 778}
and the mapping F'P,:

X 5 (v,8) B (@, n.) € S.

The existence of a weak solution to the approximate problem (19)
will be proved if we show that for every e the mapping F'P, has a fixed
point. In order to do this, we intend to apply the Second Schauder
Fixed Point Theorem (see [Zeid86], Section 9.3), whose hypotheses we
verify in the following:

S is a reflexive, separable Banach space: this is clear.

FP(X) C X: by the estimates (28) it follows that supy rjxa, (1 +
ne) < K (we take the bounds of the data sufficiently small). We also
have

[0l B2n0)) < [0ellL2o s, @) + 2K110mcl[220,7:02(0))-

Thus we can choose C'x large enough with respect to the data and to
K such that ||(@, )]s < Cx.

We still have to verify that there exists some 7" > 0 such that 0 < o <
ming 7yxq, (1 +7¢). But 7" might depend on ¢, which we don’t want to,
since further we intend to pass to the limit for ¢ — 0, so we show that 1T’
may be chosen independently of €. Indeed, by (28) (after passing to lim-
its for m,n — co) we know that n. € H*(0,T; H3(f)) and the bound
doesn’t depend on €. Now using the imbedding H'(0,7T; H3()) <
C%12(0,T;C*(RQ,)) (0 < ¢ < 1) and the hypothesis ming 1., (1 +
n) > 37“ > 0 required for the solution of the approximate problem
in Subsection 6.1, it follows that there exists some 7" > 0 indepen-
dent of e such that miny 1o, (1 + 7)) > a > 0. Indeed, let us de-

fine the mapping ¥ : [0,00) — R, W(t) := ming 114, esoll + 7)-

Then ¥(0) = ming, .o(1 + 7) hgp 3¢ > a > 0. It follows then that
U = (a,00) is a neighbourhood of ¥(0). Since ¥ is continuous with
respect to time (for, 7. it is), we have that lims o V() = ¥(0) and
by the definition of continuity 3 W = (—¢,7}) a neighbourhood of 0
(Ty > 0) such that ¢ € W implies ¥(t) € U. We then take 0 < T < T}
(such a T clearly exists and does not depend on ¢).
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FP.: X CS — X is weakly sequentially continuous: let (v, 0, )neN
C X such that (v,,d,) "= (v,d). We want to prove that

FP,.(vy,,6,) = (07, n7) nzee (¥, me) = FP.(v,0) in S.

We know (use (28)) that (", n"),en is bounded in L2(0, T; H (Byg ) ) %
H'(0,T; H{(Q)) (ie. in S) and (by (29) and especially Remark 6.4)
that a subsequence of (x?0,ul, 0yn") (denoted in the same way) con-
verges weakly in L*(0,T; L*(Bax)) x L*(0,T; L*(52,)), where we have
denoted by x¢ the characteristic function of Q2 (). Let (i, 7.) be the
weak limit of (a7, 7). We are done if we show that (e, 1) = FP.(v,6).

Now, clearly 4, = (0,0,0,7) in Bog — Qp (t) and ﬁe(t, x1,%9, 1 +
6 (t, x1,12)) = (0,0,0:m.(t, 1, 72)) for any (z1,75) € Q,. Notice that
div ﬁe = 0. We next intend to pass to the limit for n — oo in the weak
formulation satisfied by (ul,n"):

t t
[ o [ [ (@xun (v s
o %, o %,
1 t
_5// u?,lvfz,e,l'w:tl // 61 nel 1/)61
T T4
0
1 t t
Qg Qs
0

/ / (VxvE )xul-ap? / / f¢+//gb // po-n-Py,
0 9y )

[
V! € Vg, be L*(0,T; Hg(Qs)) such that

S

Yo (t, z1, 22,1 + 551,6(@ x1,%9)) = (0,0,b(t, z1,2)) on Q.

Observe that here the test functions depend on n, which could create
problems when passing to the limit with n (actually, the main problem

comes from the term v f fQ (5 (Vxu)-(V x1p7), for which we do not

TLG

have enough regularlty) However, we can restrict ourselves to taking
test functions which no more depend on n, but which are still admissible
for sufficiently large n’s. The idea is based on the one in [CDEGO02],
but because of our problem formulation we have to nontrivially modify
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that proof. Thus, take ¥? € D(Q(sg T)T such that div 4 = 0. Then

(12,0) is admissible for n large enough, since 6» — ¢ uniformly for
n — oo, thus for large n’s the difference between 6™ and ¢ is very
small. For b € L?(0,T; HZ(£2;)) define

. (0,0,b) in Box — Q4 (t)
P (b) ::{ B(b) in Q(t) K

where B(b) is such that div B(b) =0, B(b)) xn=0onI';, B(b) = 0 on
[y U T s4es and, of course, B(b) = (0,0,b) on 0 (t) = (TpUTy UL siges)
(solve for instance a Stokes problem with these boundary conditions
and with prescribed pressures on I'y, like (for instance) in [Bern00] or
in [CMP94]). Then (3)(b),b) is admissible for all n.

With these test functions we can pass to the limit, since (ul,n?) is
weakly convergent. Any test function %, € VJE with (¢, 21, 29,1 +
68(t, 1, 15)) = (0,0,b(¢, 21, 22)) on €, can be written as ¥, — 4. (b) +
l(b) and v, — l(b) can be approximated by solenoidal functions

of D(Qy ) 1t follows that (xc,7) is the unique solution of the

linearized approximate problem associated to (v,¢), thus (ag,ﬁe) =
FP,(v,d) and the whole sequence (U”,n"),en converges (weakly) to
FP,(v,9).

X is nonempty, closed, bounded and convex: this is also clear.

We are able now to apply the Second Schauder Fixed Point Theorem
to deduce that F'P, has a fixed point (at least). But this means that
there exists a weak solution of our approximate problem. O

In order to show the existence of a weak solution of our initial prob-
lem, we have to pass to the limit with e — 0. For this we need compact-
ness for 0, in L%(0, T;L?*(Bak)) and for dyn. in L*(0,T; L*(Qs)). We
therefore have to deduce some compactness results for the solution of
the approximate problem, i.e. some bounds which should not depend
on €.

7. COMPACTNESS RESULTS

In the previous section we have seen that the solution we found
for the approximate problem satisfies the estimates (20) and (21) and
that @, has the same regularity in the function spaces for Bog as u, in
the function spaces for €2, (¢). But this is still not enough for us to pass
to the limit with € — 0, thus we need some stronger results, namely

fas usual, D(Q 6E,T) denotes the space of C* functions on Qs 7, with compact
support
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some compactness results. The method to use is the one involving
time difference quotients and certain test functions, like for instance in
[ABC99], [Salv85] or [Luka97].

Thus, let h > 0 be small enough and let us make the following

notation: for any function k depending on time and space we denote
k= (t,.) :=k(t—h,.) and kT(¢,.) :=k(t + h, .).

Lemma 7.1. Let T > 0 such that ming 77,6 (1 +n) > o > 0. Then
for all h > 0 as above there holds:

T T
(30) // Xele —a; | + // (Byme — 87 )? < Ch'?
Bak s
0 0

and

T
(31) // ‘Xfﬁe - Xe_ﬁe_‘Z S 0h1/3:
0 Bax

where for t < 0 we extend n. by n§ (thus o by 0) and @, by 0. The
constant C' does not depend on € and x. 1s the characteristic function

of Qng (t).
Proof. We show first that (30) implies (31). Indeed,
|Xeﬁe - Xe_ﬁ5_|2 - |X€ﬁe - Xeﬁe_ + Xeﬁg_ - Xe_ﬁe_‘Q
< Clae—a, P+ e — xe [*- 16 %)
Now we integrate between 0 and 7" and on Bsx and use (30) for the
first term in the right hand side to obtain

//mue i < 0h1/3+0// - lacP?
Bax

0 Bax

< Ch1/3 + C/ |X€ - X;|L3(B2K)‘ﬁ;‘]2:43(B2K)

L ) B 1
< Chs + Cllue|li4<o,T;L3<s2K))(/ IXe = X |Easan0) -
0

Now, 1, is bounded in L*°(0,7T; L?(Bag)) N L2(0,T; H(Bak)) (since
the solution of the approximate problem satisfies (20) and (21), see
also the begin of this section), thus . belongs to L?(0, T; LG(B x)) N

L>(0, T; L?(Byx)) and consequently i, is bounded in L*(0, T'; L3(Byx))
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(see, for instance, [Lion69], p.73). It remains to show the boundedness
of the other factor in the right hand side of the last inequality above.
For this, remember that d;n? is bounded in L°°(0,T; L?(€),)) indepen-
dently of € (see (20)), therefore we can calculate

/ |X€_X6_|3:/ |X6_X€_|:/ dX—/ dX
Box Bak Q y(t) Q y(t—h)

Ne ”Eﬁ

= [ )= ne=mi= [ | / Oy (s)ds| < Ch

t—h

Thus, |xe — X7 |2s < Ch%? and it follows that

T
// Ixete — x . |* < Ch'/.
0 Bax

For the proof of (30), remember that the solution (u,7.) of the
approximate problem satisfies

(32) O/T/S?ng(t) du - P, + VO/T/"né(t)(v xuc) - (VX )

T T T
1 1
+// (V x ﬁg) Xuc- Y+ _// 5t77€8t77§b— _// Ue,ﬂlg,ﬂbe,l
s Ja 2 Ja, 20 Jrp

e

T T T T
1
+—// Ue,ﬂlg,ﬁﬁe,ﬁ-/ attn6b+// AneAb+’Y// A(Oyne) Ab
2 )y I Qs Qs
0 0 0 0
T T T
L [ [
o ") 0o T o VTt

Vb € V5, b e L*(0,T; H3(€,)) such that

"'pe(trrl;x% 1+ 772(75,551; .’Ez)) = (0707 b(ta xlaxZ)) on Qs-

As for the test functions, we make the following choice: similarly as
in [CDEGO02], we take for § > 1

Vﬁ($1,$2,$3) = (Bvi(z1, 72, Bxs), Bva(T1, T2, Br3), v3(T1, T2, fT3))
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and then (like in [ABC99], [Luka97] or [Salv85]) put

W, = / (i)5(s)ds, b= / Oun(s)ds.

Observe that ¥, € H'(0,7; H'(B:x)) and b € H'(0,T; H3(Q;)) and
that the functions chosen as above are admissible test functions.
Indeed, we also notice that

|1me = 07 oo gomyxiey < CRY35 |Inf = (1) || o 0.y x@ray < CAM,
since 7. is bounded in H'(0,T; H3(€),)) and this space is imbedded

with continuous injection into C%/2(0,7T; C*(€,)) (0 < ¢ < 1).
Thus for an adequate 5 we have that

t
b (t,x1, 20,1+ (L, 21,22)) = (0,0, / One(s, x1,x2)ds) on .
t—h
Next we shall analyze the boundedness of each term in (32) (with
the previously considered test functions): the sum of the first, the

fourth, the fifth and the sixth terms in (32) writes (after anew using
the transport formula):

/QnE(T) ue(T)TZ (ﬁe)ﬂ—;O/T/s(t/; 8me)8meamﬂj /Qng(t) u[(e) s— (1) 4]

(we used here that @, = 0 for ¢ < 0).
For the last integral above we have:

- /T / (s = @)
__ / [ e ) - / / 85 = 8 (@05 80

< 2|‘ueHL2(O,T;L2(Qnﬁ @ (Te)g — fleHrﬁ(o,T;LZ(nnn @) < C(B—1) < Ch/3

€
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T
(B chosen adequately). Now, for — of ang () Ue (4, — u; ) we make the

following calculations:

T T T
(33) // ue-(ﬁe—ﬁe):// \ue\Q—// u -,
0 Qng (t) 0 Q’?g (t) 0 Q’?g (t)
T T T
1 1 1
——5 [ [ wres [ wr-g [ e
o @ o 0 ® o
T T—h T
1 1 1
Loy [ g [ -
0 Qng (t) 0 Qng (H—h) 0 Qng (t)

h

1 1L 1T
25// (Xj_XG)‘ﬁeP_i// |Ue\2—§// a.—a; %
0 Bak T Qng (t) 0 Qng (t)

It is clear that the second term in the right hand side of this last
identity is negative and that analogously as in the proof of (30)=-(31)

T
it can be shown that [ [, (x§ — xe)|@e|* < Ch'/?. This implies that
0

T T

1
// ue-(ﬁe—ﬁ;)§0h1/3——// i, — ;|2
0 Qng(t) 2 0 Qneﬁ (t)

Thus the sum of the first, 4th, 5th and 6th terms in (32) is majorized
by:

T

T T t
1 1
/ uc(T) /(ﬁe)ﬂ——//(/57:775)57:775@775——/ / i1, |>+Ch/3.
Q (T 2 2
4 (T) - a

né T 0 0 Q)
Ne

Now, the second term above is majorized as follows:

T t T
1 1 _
=5/ | ([ omovaiomd <5 [ om0 0 im0 ln
0 Ct-h 0
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and

t t
1/2
Ine =Nz < [ 1omdlay < OVE( [ 10ml,)
t—h

t—h
< CVh < Ch'3,

thus with the help of the energy estimates we have that this term is
bounded, too, by Ch'/3.
The second term in (32) is

y/T / (VXUe)'(VX/t(ﬁe)ﬁ)

0 Q (¢t t
4

<v

€

¢
|V x ueHL2(Qnu(t)) f |V x (ﬁe)ﬁHU(Qnu(é’))
t—h <

T t B 9 1/2
< wh||V x ue||L2(9nu(t))< J IV X (@)sllaqe u(t)))
0 € t_

Ne
< CVh < Ch'/P
t
(by the Cauchy-Schwarz inequality and the fact that we have [ (G.)gds €
t—h
HI(0, T; H'(B))).

We now come to the convective term, which is majorized as follows:
t

|/T/W(V><ﬁ£>xue-</<ﬁe>ﬂ>|s

t—h

T t
< 119 x @l ol o [ 11@)al o o
0 ) ‘ t—h ‘
T t
1/2
< Vh [ 19 x @l o s o ([ 1@)al B o)
0 ‘ ‘ t—h "
<

T
\/f_l/ |V % ﬁ2||L2(Qn£(t))||u6||L4(Qng(t))||(ﬁ6),3||%.2(0,T;H1(BZK))
0

< CVh<Ch'3,
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For the integral term containing the second time derivative of the
displacement we have:

/T/ attné(/t Oneds) = /T/ {Gt [ame(/t 8tn€ds)} —amﬁat(/t 3t77€d8)}

T T
= atne(T) / 8757]6 - / atneat(ne - 775_)
s T—h 0 o

(remember that 0;n. = 0 for ¢ < 0).
Now, for the first term in the right hand side above we write:

Qs

T T
[ o) / 3| < 110l 2(en / 8umel |2y < Ch
T—h

T—h
and for the second one we write (like in (33)):

T

— / OO (ne — n.)
0 2

1 r 1 r 1 r
1 2 1 e 1
= 2//6(8(‘,776) + 2//95(611775) 2//98(315776 8::775)
0 0 0
T T—h T
1 9 1 9o 1 9
= 73 (Ome)” + = (Oime) D) (Ome — Om,)
s Qs Qs
“h 0
T T
-~ [ [emr—5 [ [ @n-any
- 9 . t7e 2 0, t7e t77€
T—h 0

IN
|
N —
O\ﬂ
R
S
=
&
=

thus
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Next,

T T t
[ | ana / om) < [ 118nllie,y [ 118@m) o,
o ~h 0 t—h

T
1/2
< Vi [ 1800, / 18@m) ) < CVR< ORY
0

and

T
Iy / / A@m) A / dmy)| < / 120 [22(e) / NS
0 8 0 t—h

T t
1/2
< [ 180w ( [ 1801 R < VR < R,
0 t—h

We have arrived at the terms of the right hand side. For the first
one we have analogously as for the usual terms above:

T
// f(/ /||f||L2 @, 0) /|| Il s < OV
0 Qng(t) t—h

and for the second one the bound is (analogously, again) Ch. The last
of the right hand side terms is bounded by C+v/h, taking into account
the energy estimates for the approximate solution and the hypothesis
made on py.

All the above estimates imply that

T T
[ [@n-amy+[[ ra-apsens
0 ’ 0 Qng(t)

and this completes the proof of this lemma. ]

By the lemma above and the Frechet-Kolmogorov characterization of
a relatively compact subset of L2 it follows that x.Q. is relatively com-
pact in L?(0, T'; L?(Bax ) ) and 9,7, is relatively compact in L2(0, T'; L%(Qs)),
thus @ is relatively compact in L*(0, T; L?(€,4(t)))-
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8. PASSAGE TO THE LIMIT

Let T' > 0 such that inf. minjy 77,0, (1 +7¢) > @ > 0. By the energy
estimates, the usual Sobolev imbeddings and the compactness results
in the previous section we have the following convergences:

ne = nin Y20, T;C%(0)) (0< g < 1)

ne =X nin HY(0,T; HX(Q,))
ome = Omin L2(0,T; (D))
. 2 din L2(0,T;L*(Bsx))
i, ¥ @in L*(0,T; Hir,r,.,.. (Box))
(34)  xa. F x@in L*(0, T;L*(Box))
e S nin COY2(0,T;CQ,)) (0< g < 1)
omi ¥ Omin L2(0,T; LX(Q))
ol 4in L2(0,T; L*(Bax)),

where we have denoted by (u, 7) the limit of any subsequence (i, 7¢)e>0
of the sequence (U, 7¢)eso-
Furthermore,

e—0

(35) XV x u, = xV x 1 in L*(0, T; L?(Bak)).

Indeed, observe that there exists some & such that x.V x u, =0

¢ in L2(0, T; L2(Bsk)); since nf = 5 in C%3 (0, T; C*9(<Y,)), & = 0 in
BQK,T—Qng T and £|Qn,T = V x 1. Also notice that we have x.V x t 0
XV X U in LQ(O,T, LQ(BQK))

Next, we want the equality of velocities on the interface to be pre-

served in the limit, thus we are now concerned with the limit for e — 0
of

u(t, 21,29, 1+ nf(t, 21, 25)) = (0,0, 0me(t, 71, 23)) on (0,T) x Q.
Now, (0,0, 9ime(t, x1,z2)) — (0,0,0;n) in L?(0, T; L?(€2,)) and for the
left hand side of the above equality let us define
U= (0, 0, 875776) in BQK — Ca/g
€’ R(O, O, 8t77€) in Ca/g ’

where R is a lifting from H'/2(Q, x {a/2}) to Hip, v (Ca/2) such
that we have div R(O, 0, 3t776) =01in Ca/g, R(O, 0, aﬂ']e) ‘(Fbursides)macaﬂ =
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0 and R(0,0,0;n.) x n =0 on I'y N 9C,/» (again, one can solve for in-
stance a Stokes problem in C,/; with these boundary conditions and
with prescribed pressures on I'y N 0Cy2).

Then notice that a. — v, € L?(0,T; H!(B,x)) and its bound in this
space does not depend on €. It follows that there exists a subsequence
(U — Ve)eso Of (e — V¢)eso and a function vy := U — v (v is the
limit of v.) such that 6. — v, 2y, in L?(0,T; H'(Byx))- Notice
that we have vy = 0 on I'y U ['yj4e5, o xm = 0 on I'y and vy = 0
in Q57 for all § > 0 (since nf — 7 (uniformly)). We have v, €
L2(0, 75 Hy p,or, .. om0 (20(2))), thus by Lemma 4.5 it follows that
Yoty (@) = 0 and, since v, (v) = (0,0, 0¢n), that v, (1) = (0,0, ),
thus the equality of velocities is preserved on the interface.

Now we can pass to the limit for ¢ — 0 in the weak formulation
(approximate problem):

_O/t/%(s) u€-8t¢€+/ﬂng(t) ue(t)¢e(t)+u0/t/ﬂng(s)(vxue)-(VX%)

t t

t
1
+// (V X flg) X U * ¢6 + _/ 8t7763t77§b —/ 5t77€3tb
) Ja ) 2) Ja, ) Ja,

0

t t t
1 _
+ [ omopyr [ [ ansvey [ [ a@nss-g [ [ wid e
o o o " o Tt

Qs

t t t t
1 ]
iy [ [ wtiwa= [ [ twer [[gv= [ [ men-y.
o TP o 7 o o T

+/Q ug-¢€(o)+/ Moy b(0),

0 s

for a.e. ¢ and for all (¢,b) € V ; x C*(0, T; H7(€,)) such that

. (t,x1, w9, 1 + it x1, 1)) = (0,0,b(t, 1, 25)) on Q.

Observe again that the fluid test functions depend a priori on €, which
might be bad for instance when passing to the limit in the third term of
the above identity. We therefore consider test functions which do not
depend on € and which are admissible for € small enough. The idea of
constructing such test functions is analogous to the one in Subsection
6.5, where we have constructed test functions for the fluid which did not
depend on n. The construction is very much alike with the one therein,
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the difference being that we now use the convergences for ¢ — 0 instead
of those for n — oo and relations (34).

Now with the test functions constructed as above we can pass to
the limit in the corresponding weak formulation for ¢ — 0 and we get
the existence of a weak solution of (18) on (0,7") with the estimates in
Section 3.

9. SOME CONCLUDING REMARKS

The problem with both the cover and the bottom of the box being
elastic can be treated in a similar way. One has to take care at the
formulation of the corresponding function spaces, at the extensions to
the Lipschitz domain including €, ,(t) for any ¢ € [0,7] (u(t, z1,22)
denotes here the displacement of the bottom of the box) and also at the
transformation leading to a problem on a fixed domain R := (0, L) x
(0,1) x (0,1). The transformation corresponding to (23) in Subsection
6 would have the form ¢ : (0,7) x R — Qg s(t), with

¢e(t: Z1, T2, .Tg) = ('7/‘17 T2, .’E3(1+6§(t, xy, 552)_75(75; Xy, .7,'2))+7T£(t, Xy, x?))7

V(x1,79,73) € R, t € (0,T), where 7* has the same meaning for . as
the meaning of 6! for 7.

Furthermore, we have neglected here the longitudinal displacements
of the elastic cover, which is largely accepted, but not quite realistic.
The present proof seems to fail when longitudinal displacements are
considered, because one needs to controle the second derivatives in
space for the velocity of the fluid, which does not follow from the a
priori estimates. A different plate model and/or another proof might
be needed in order to handle this case.

Thinking about modeling blood flow in arteries, one would like to
have a more realistic model. In a forthcoming paper we shall treat the
time-dependent problem of a Navier-Stokes fluid moving inside a cylin-
der whose wall is a thin elastic shell (again with a viscoelastic term),
fixed on its boundary. We’ll consider Navier-Stokes equations to model
the fluid motion and assume that the velocities at both ends of the tube
are zero (one could also take nonzero velocities). The boundary con-
ditions for the fluid are thus less "realistic”, but considering an elastic
cylindrical shell instead of a box with elastic cover (and bottom) is
closer to reality. We shall prove again the existence of a solution to the
coupled problem.
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10. APPENDIX

Proof. (of Lemma 6.1) The proof is similar to the one of Lemma 8 in
[CDEGO02], however with some non trivial changes, due to the form of
the boundary conditions for the fluid. Multiply (25) by ¢&; and add the

corresponding equations for j = 1, ..., m. Also multiply (26) by 5, an
sum up for [ =1, ...,n. Thisis the same thing as to test our system with

m noo.. no..
> O'zj’l,bg’e + 3 8iby<, >" Bip). This is not (Gule™" 9yn), because
j=1 =1 =1

the Galerkin functions '(,b?’e and 9, depend on time.
Denote
. { o, 1<j<m
Tl Biemy, m+1<ji<n+m
and

¢-:={¢2’ 1<j<m _
j Vigm m+1<j<n+m

In the following we shall omit the indices of the functions implied in
the calculations. We have:

/R|ZAJ-¢J.|2J+/RZAJ-¢J.-ZAjat«ij
+1//R((%V)><u¢5 XZ)\ ¥;) / (8,p%-(MV)) ZA b,
% /R (MV) x v¥) x u® -;Aj@bj +5 /Q amdoun
_%/Fﬂul ot Z)\ P J+ - /rf2u1 o Z)\ ¢J1J+/ (8um)?

y / AdmAdn + / AnAdun

/f‘prA@bJ / ‘n- ZA¢J+/ gOun.

After some calculations, we see that

: vd M v d
. . 9 _ _ e \2 R A 2
\\ijw]ﬁm W+ | (5 xu) +2dt/93( am)

. 1
+||8tt77||i2(95) = —/ Z)\j'lbjz)\jat'ﬁbjz]— 5/ 3t77(9t5ﬁ3tt77
R j b
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—%/R((MV)XVﬂ)X“"&E-Z’.\J'"bj"‘”/(at(\/j)VXu‘bE)(%VXu‘f’f)
M M
_%/Fﬂulvl Z)\'(,leJ—i— /

Tya

d
— AnAatn+/f¢fZ)\j¢jJ—/ pof-n-ZAj«ijJr/ goun.
j Ty j 2

Now integrating from 0 to ¢t we get:

t
; M
1 STl + 5 / (T%V <t () + )| A1) [3a,
0

ubeok - ZA s + / (Ac?m)2

t
M(0) ¥
+ [ |18unl|?- :3/ V x u?(0))? + =||Ad,n(0)|[2.
O/H 220, 2 R( 70) u’:(0)) 2H in(0)|[72¢0,)

/ / ZA Y, Z)\ Onp,;J — / / Bymd,0* Oyn
——// ((MV) xv?) xu®- Z)\ P -|—1/// (0:(—= qu"bﬁ)(%qu‘z’S)
+y// ——Vxu®)( VXZ/\ Oup;) // (8yp%-(MV)) Z,\zp

_%O//Fﬂ uf UIZAJ%H //ﬁul UIZJ:AJWH// (A0y)?
_/s An(t)Adm(t) + / 0)Adn(0 // £ ZA P,
_j/Ffpge.n.zj:}\jquj+o//nsgaﬁn.

Now we have to estimate the terms in the right hand side such that
their bounds should not depend on m, n. Notice that there are no
problems with the terms depending on the initial data, since these
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are smooth. For the rest of the terms we have (C' > 0 is a constant
depending on the data, on K, a and €, but not on m and n):

t
|_//Zj‘j¢jz)\jat¢jj|
R -
0 J J
< OIS MoV ||| X0l (my)
J J

We have - \;0,%; = Y- ;0 M9+ Bionp) = > ;M M'ep+
j j=1 j=1 J=1

> Bjatz,b;f (remember the definition of ¢2). Since ;M ‘M is bounded
j=1

i;l L* (with bounds depending on ), it is
1> ;oMM Y |2y < Cl D 098 lLaosm )
j=1 j=1

20,7 (R) < C

In order to estimate the other term of the above sum, we observe
that 0;1; satisfies the following problem (remember the way 1 was
defined):

—Adpp; + (MV)0ip; = —(0;MV)p; in R
div (M'0,¢p;) = —div (d;M'yp}) in R
op; = OondR Ty
Op; xn = OonTy
op; = OonTy

no.
By linearity, ) 8;0;1] is a solution, too, of the same type of prob-
7j=1
lem, thus

1> B0} lle my < CUY Biptllery + 11 B} i my)-
j=1 j=1 j=1

But from the definition of 1 it follows that

1D vl + 1) Bl < CIY . Biillmre,)
j=1 j=1 j=1

< Cl1oml g2y
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thus

(36) 1D Bl ez smry < CllOMI 20 m12(0,)-

=1

Therefore, Z 5]at  is bounded independently of m, n in L?(0, t; H'(R)),
]_
because 9;n can be bounded in L?(0,#; HZ(€2,)) by a constant depend-
ing only on the data and on €, due to the viscous type term added to
the plate equations (see also the a priori estimates).
Consequently,

t
) 1 )
= [ [ Ay S n0m,01 < 0+ G bl e
! i j j

Clearly,

t
1

1
| — 5/ amatéﬂattm <C+ 6‘|att77||L2(0,t;L2(Qs))
Qs

0
and

t
1 - 1 :
|—5//R((MV)xvﬂ)xw»s.ZAjwjl < C+§||ZAjzpj\/j||i2(0,t;L2(R»,
0 J j

since M, v# and u? are all bounded independently of m, n.
t
The term yffR(at(%)V X u¢f)(%v x u%) is bounded indepen-
0

dently of m, n, for, u’ is bounded in L*(0,#; H'(R)) and 9,(J%) is
bounded in L*°, independently of m, n.

¢
Similarly, the term yffR(%V X u¢f)(%v X Y Aj0ip;) can be
0 J

estimated by a constant which does not depend on m, n, due to the

bound of % in L*®, to the fact that u® € L?(0,¢;H'(R)) and (see

(36)) that Y A\;0i%; € L*(0,t; H'(R)).
J
Further,

|// (9% - (MV)) ZA¢|<0+ ||wa||wm

since atqb‘ff is bounded independently of m, n.
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Next,
t t
1 : 1 :
o [t S A< g1 [ [ e YA

p. int wér.t. time %| /I;f (utiJe (t))Qvﬂ(t)J(tﬂ + %| v (ud>€ (0))2Vu(0)*](0)|

t t
1 1
il [ [ werawini+ 51 [ [ 3 nost 3T
0 ! 0 fg J

Using the regularity of the solution in Subsection 6 and the bound-
edness of ) \;0,9; in L*(0,¢; H'(R)) (actually proved before for a.e.

j
t € (0,T)), each of the above terms is bounded by a constant C, inde-

pendently on m, n, thus

t
1 .
=5 [ [ et S hwar <c
o J

The next term is to be treated in the same way.
t
The term [ ||A6t77|\%2(98) is clearly bounded independently of m, n,
0
thanks to the estimates (27).
Next,

1
= [ a0aan®] < 71800, +ClANOIs,

IN

1
C+ ZHAam(t)H%%m) <C
/ 1
|//Rf¢f Z)\j"-p]“” <C+ §|| Z)‘j¢j\/j||i2(o,t;L2(R))’
0 J J

t
1
[ [ sounl < €+ Gliounliunniany
O 8

t .
and we finally take care of the term — [ frf p-n-Y) A
0 J
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By integration by parts with respect to time, this term becomes:

t t
o Ty j 9 Ty j

_//F po-nZ/\j’t,bjatJ-i-/F po(t) 1 Y Ay 0)48, ) (1)
~ [ wl0)-n- 3 A,00%,0)70)

¢ .
Due to the estimates we made for — [ [, 3" X\j4p; > A;0:ap;J and to the
0 J J

estimates for n and u®, each of these terms is bounded by a constant
independent of m, n, if we assume that 9;py € L*(0,t; L*(L'y)).
Therefore, from the above calculations it follows that

1 . 1 1
§|| ZAj¢j\/j||%2(O,t;L2(R))+§||8tt77||%2(0,t;L2(QS)+Z||Aat77(t)||%2(ﬂs) <C.
j
Since d,u® = Z /'\jzpj + Z AjOyp; and VI > \/g, it follows that
j j

|100a®||r2(0.7:L2(R)) + |10un|| 200702004 < C,

with C' > 0 independent on m, n (it only depends on the data, on K,
« and €). This is actually what we intended to prove, if we remember
the convention of omitting the indices of the involved functions.

O
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