Evolution equations in ostensitble metric
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Abstract

The primary aim is to unify the definition of “solution” for completely

different types of evolutions. Such a common approach is to lay the founda-
tions for solving systems like, for example, a semilinear evolution equation
(of parabolic type) in combination with a first—order geometric evolution.
In regard to geometric evolutions, this concept is to fulfill 3 conditions :
First, consider nonempty compact subsets K(t) C RY without a priori
restrictions on the regularity of the boundary. Second, the evolution of
t — K(t) might depend on nonlocal properties of the set K(¢) and its
normal cones. Last, but not least, no inclusion principle.
The approach here is based on generalizing the mutational equations of
Aubin for metric spaces in two respects : Replacing the metric by a count-
able family of (possibly nonsymmetric) distances (called ostensible met-
rics) and extending the basic idea of distributions.

1. Introduction : Diverse evolutions come together
under the same roof

Many applications consist of diverse components so that their mathe-
matical description as functions often starts with long preliminaries (like
general assumptions about regularity). However, shapes and images are
basically sets, not even smooth (Aubin [2]).

So the question is posed how to specify models in which both (real- or
vector—valued) functions and shapes are involved. Usually the components
depend on time and have a huge amount of influence over each other.
Consider, for example, a bacterial colony growing in a nonhomogeneous nu-
trient broth, region growing methods in image segmentation and Lyapunov
methods in shape optimization ([18, Demongeot, Kulesa, Murray 97], [26,
Lorenz 2001] and [19, Demongeot, Leitner 96], [20, Doyen 95]).

The primary aim here is to unify the definition of “solution” for com-
pletely different types of evolutions. In particular, the motivation behind
the generalizing process is given by the following model problem : For
each point of time ¢ € [0,T[, we consider a pair (u(t), K(t)) whose first
component u(t) is an element of a reflexive Banach space X whereas the
second component K (t) is a nonempty compact subset of RY. Roughly
speaking, the “rate of change with respect to time” of each component
depends on time ¢, the vector u(t) € X and the compact set K(t) C RY
(including its limiting normal cones Ng () :
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K(t)> g (t, u(t), K(t), Niw()loxw)
with the generator A of a strongly continuous semigroup on X.

{&C}L(t) = Ault) + f (t, u(t), K(t), New (lox)

Considering the second component K(t), it is not directly evident
how to define the “rate of change” for a compact subset of RY. The
widespread idea of prescribing the normal velocity has the disadvantage
that much preparation is usually required for generalizing the speed in nor-
mal direction to arbitrary compact subsets (see [16, Chen, Giga, Goto 91],
[32, Soner 93]. [8, Barles, Soner, Souganidis 93] [9, Barles, Souganidis 98],
[1, Ambrosio 2000], [14, Cardaliaguet 2000], [13, Cardaliaguet 2001], for
example). Many concepts start with basic assumptions that restrict appli-
cations to local effects on deformation.

So the aspect of geometric evolutions poses three additional challenges.
They provide the main starting points for generalizing mutational equa-
tions of Aubin [2].

— Extending the notion of derivative to time—dependent compact subsets
K(t) cRYN without any regularity conditions on its boundary 0 K (t).

As in Aubin’s theory of mutational equations, the derivative of K(-)

at time ¢ is described by a set I% (t) of continuous maps of deforma-
tion that induce a first—order approximation of K(¢+ -) each. Thus,
a distance between compact subsets (maybe in a generalized sense) is
essential.

So firstly, no regularity conditions on the topological boundaries are
supposed a priori and secondly, no subsets of the boundaries have to
be neglected as in geometric measure theory, for example (see [22, Fed-
erer 69], [12, Brakke 78]).

— Evolution of K(t) depending on nonlocal properties “up to 15¢ order”.

For the evolution of K () at time ¢, an element of the set K (t)
is prescribed as a function g of time ¢, the vector u(t) € X and the
compact set K (t) C RY (including its normal cones at the boundary).
So on the one hand, we exclude boundary properties of second order
(like mean curvature), but on the other hand nonlocal features of both
K (t) and the graph of normal cones Nk 4)(-) can be taken into consid-
eration. In this respect, the concept here differs from many approaches,
especially from level set methods (see [1, Ambrosio 2000] for a general
survey).

— No restricting to geometric evolutions with inclusion principle.

If a compact initial set is contained in another one, then the so—

called inclusion principle states that this inclusion is preserved while
the sets are evolving.
Several approaches use it as a geometric starting point for extend-
ing analytical tools to nonsmooth subsets. An excellent example is De
Giorgi’s theory of barriers formulated in [17, De Giorgi 94] and elabo-
rated in [11, Bellettini, Novaga 97|, [10, Bellettini, Novaga 98]. Another
widespread concept is based on the level set method using viscosity
solutions. There the inclusion principle is closely related with the cor-
responding partial differential equation being degenerate parabolic and
thus, it can be regarded as a geometric counterpart of the maximum
principle (see e.g. [9, Barles, Souganidis 98], [1, Ambrosio 2000]).
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An elegant approach to front propagation problems with nonlocal terms
has been presented in [14, Cardaliaguet 2000], [13, Cardaliaguet 2001],
[15, Cardaliaguet, Pasquignon 2001]. The inclusion principle again is
the key for generalizing the evolution from CU!' submanifolds with
boundary to nonsmooth subsets of RY.

As mentioned before, the primary aim of this paper consists in a unified
concept for completely different types of evolutions and, geometric evolu-
tions represent just a typical example. So we use only the properties of
compact subsets with respect to a given generalized distance function (as
presented in § 3). In comparison with earlier nonlocal approaches like
[13], [14], it has the advantage of covering the very easy example that the
normal velocity at the boundary is m .

Let us give a brief overview of this paper : Among previous approaches,
C° semigroups have been a very successful concept for evolution equations
in Banach spaces, but the two main pillars (i.e. exponential series and
Cauchy integral formula) cannot be used beyond vector spaces.

In § 2, we sketch the mutational equations of Aubin ([2],[4],[5]). They

extend ordinary differential equations even to metric spaces and thus pro-
vide our starting point for combining diverse types of evolutions. In [2],
the primary geometric example is the set JC(R™) of all nonempty compact
subsets of RY supplied with the Pompeiu-Hausdorff distance d.
At the end of § 2, we provide a link between mild solutions of semilin-
ear evolution equations and mutational equations. Indeed, considering the
weak topology instead of the norm topology has the analytical interpre-
tation that the metric is replaced by a family of pseudo—metrics. Then
adequate assumptions about the reflexive Banach space X and the in-
finitesimal generator of the semigroup imply the existence of solutions for
systems in both X and (K(RY),d) (see Proposition 4, the detailed proof
will be presented in forthcoming part II).

However, first-order geometric evolutions have not been covered so far
because the topological boundary and its normal cones are not taken into
account. In § 3, the two main obstacles due to boundaries are sketched.
They motivate both the definition of “ostensible metric” and extending
the basic idea of distributions (in the figurative sense that an important
property has to be satisfied merely by the elements of a given “test set”
instead of all elements).

Then in § 4, this notion is formulated for a nonempty set with a count-
able family of ostensible metrics. This section is to point out the differ-
ences between Aubin’s concept and our definitions of so—called right—hand
forward solutions. At the end of § 4, we present two further aspects of
generalizing mutational equations. In particular, the time direction is now
taken into consideration, i.e. roughly speaking, a “later” element is always
compared with an “earlier” one or — to be more precise — the arguments
of ostensible metrics are always sorted by time. So the triangle inequality
can be replaced by the weaker condition called timed triangle inequality.

Thus, right-hand forward solutions prove to be a special case of so—
called timed right—hand forward solutions. Finally, the most general frame-
work for mutational equations (discussed in this paper) is presented in § 5
providing all the definitions and the proofs in detail.



4 THOMAS LORENZ

2. A previous approach : Mutational equations of Aubin

An approach to evolution problems in metric spaces is the mutational
analysis of Jean—Pierre Aubin (presented in [4, Aubin 93], [2, Aubin 99]).
It proves to be the more general background of “shape derivatives” intro-
duced by Jean Céa and Jean—Paul Zolésio and has similarities to “quasi-
differential equations” of Panasyuk (e.g. [29, Panasyuk 85]).

Roughly speaking, the starting point consists in extending the terms
“direction” and “velocity” from vector spaces to metric spaces. Then the
basic idea of first—order approximation leads to a definition of derivative
for curves in a metric space and step by step, we can follow the same track
as for ordinary differential equations.

Let us now describe the mutational approach in more detail : In a vector
space like RY, each vector v # 0. defines a continuous function
[07OO[XRN —>RNa (h,l‘) — x+hv

mapping the time h and the initial point x to its final point — similar to the
topological notion of a homotopy. This concept does not really require addi-
tion or scalar multiplication and thus can be applied to every metric space
(M, d) instead : According to [2, Aubin 99], amap ¢ :[0,1]x M — M
is called transition on (M, d) if it satisfies

1.9(0,z) == YV xzeM,
2. limsup + - d(d(h, 9(t,z)), I(t+h,z)) = 0 VoeM, t<l,

h10
. d(9(h,2), 9(h,y)) — d(z.y)\ T
3. a(¥) :=sup limsu < 00,
S ( ey )
4. 8(9) := sup limsup M < o0

c€M RO
with the abbreviation (r)* := max(0,r) for r € R.

Condition (1.) guarantees that the second argument x represents the initial
point at time ¢ = 0. Moreover condition (2.) can be regarded as a weak-
ened form of the semigroup property. Finally the parameters «(1), 8(«)
imply the continuity of ¢ with respect to both arguments. In particular,
condition (4.) together with Gronwall’s Lemma ensures the uniform Lips-
chitz continuity of ¥ with respect to time :

d(9(s,z), I(t,z)) < B)-|t—s| for all s,t€0,1], z € M.

Obviously the function [0,1] x RY — RY  (h,2) — z+ hv
mentioned before fulfills the conditions on a transition on (RY, |- |).
Let us give some further examples :

1. Leaving vector spaces like RY, we consider the set K(RY) of all
nonempty compact subsets of R supplied with the so—called Pompeiu—
Hausdorff distance

d(K;,K3) := max { sup dist(z, K3), sup dist(y,Kl)}
z e K, y € Ko
It has the advantage that (IC(RY),d) is compact (see e.g. [2] or [31]).
Supposing f : R¥Y — RY again to be bounded and Lipschitz, the
transitions are defined as reachable sets of the vector field f, i.e.

Yy :[0,1] x K(RY) — K(RY)
(t, Ko) — {a(t) | 3 () € C'([0,1],RY):
& () = f=(), (0) € Ko}.

The Theorem of Cauchy-Lipschitz ensures that ; is a transition on
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(K(RY),d) and, a(dy) < Lip f, B(97) < || fllz~ (sce [2], Prop. 3.5.2).

2. Now more than one velocity is admitted at every point of RY, i.e.

strictly speaking, we consider the differential inclusion % x() €
F(x(-)) (a.e.) with a set-valued map F : RNV ~» RN instead of
the ODE % () = f(z(-)). For every bounded Lipschitz map

F:RN ~ RY with convex values in K(RY),
Ip 2 [0,1] x K(RYN) — K(RY)
(t, Ko)— {z(t)| 3 =() € AC([0,t],RN):

4 () € F(z() ae., z(0) € Ko}
is a transition on (C(RY), d) — as a consequence of Filippov’s
Theorem (see [2, Aubin 99|, Proposition 3.7.3). For any A > 0,
LIP, (RN, RY) abbreviates the set of bounded A-Lipschitz maps F :
RN ~ RY with compact convex values.

In contrast to example (1.), the reachable
set Op(t, Ky) of a set—valued map F' might
change its topological properties. F'(-) := B,
= {v e RY||v] < 1}, for example, leads
to the expansion with constant speed 1 in all
directions and makes the “hole” of the annulus
Ko = {z]1<|z|] <2} C RV disappear at
time 1.

This phenomenon cannot occur in the examples of ordinary differential
equations (with Lipschitz right-hand side) since their evolutions are
reversible in time.

A transition ¢ :[0,1]x M — M provides a first-order approximation
of a curve z(-): [0,T[— M at time ¢ € [0,T] if
limsup + - d(9(h, 2(t)), z(t+h)) = 0.
hl0
Naturally ¥ need not be unique in general and so, all transitions fulfilling
this condition form the so—called mutation of x(-) at time ¢, abbreviated

as (t). A mutational equation is based on a given function f of time

t € [0,T[ and state € M whose values are transitions on (M, d), i.e.
f:Mx[0,T[— O(M,d), (z,t) — f(z,t),

and we look for a Lipschitz curve z(-) : [0, T[— (M, d) such that f(x(¢),t)

belongs to its mutation  (£) for almost every time t € [0,T[ (see [2],

Definition 1.3.1).

The Theorem of Cauchy—-Lipschitz and its proof suggest Euler method
for constructing solutions of mutational equations. In this context we need
an upper estimate of the distance between two points while evolving along
two (different) transitions.

First of all, a distance between two transitions ¢, 7 : [0,1] x M — M
has to be defined and, it is based on comparing the evolution of one and
the same initial point
DW,7) = sup limsup + - d(9(h, z), 7(h, ))
z€M hlo
(see [2], Definition 1.1.2). Considering the preceding example of (K(RY),d)
and reachable sets ¥g, ¥ of bounded Lipschitz maps F,G : RN ~ RN,

Filippov’s Theorem implies D(9p,9g) < sup d(F(x), G(z)) (see [2],
z €RN
Proposition 3.7.3).
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These definitions lead to the substantial estimate
ea(ﬁ) h _
d(,ﬂ(hv .’L'), T(ha y)) < d(l‘7y) ! ea(ﬁ)h + h D(’lg’T) : Whl (*)
for arbitrary points xz,y € M and time h € [0,1] ([2], Lemma 1.1.3).
The proof of this inequality provides an excellent insight into the basic
technique for drawing global conclusions from local properties : Due to
the definition of transitions, the distance ¢ : [0,1] — [0,00[, h +—
d(9(h, x), 7(h, y)) is a Lipschitz continuous function of time and satisfies

i 2R w0 _
h10 h
1 1, _
m o fe(d(0ha), rthy) - A0 ), T(L )
<limsup 5 (d It+h, x), (b, ﬁ(t,x))) +
h10

— (vt ), T(ty)) +

for almost every ¢ € [0,1] (i.e. every ¢ at which the limit on the left-hand
side exists). So the estimate results from well-known Gronwall’s Lemma
about Lipschitz continuous functions. In fact, Gronwall’s Lemma proves
to be the key analytical tool for all these conclusions of mutational anal-

ysis and, its integral version holds even for continuous functions (see [2],
Lemma 8.3.1).

Considering now mutational equations, estimate (x) is laying the foun-
dations for proving the convergence of Euler method. It leads to the follow-
ing mutational counterpart of the Theorem of Cauchy—Lipschitz (quoted
from Theorem 1.4.2 in [2, Aubin 99]).

Theorem 1. Assume that the closed bounded balls of the metric space
(M,d) are compact. Let f be a function from M to a set of transitions
on (M,d) satisfying

1. 3A>0: D(f(x), fly) < A-d(z,y) Vz,yeM

2. A:= sup oaf(x)) < oo.
re M

Suppose for y : [0, T[— M that its mutation 33(75) is nonempty for each t.

Then for every initial value xog € M, there exists a unique solution
z(-) : [0,T[ — M of the mutational equation z(t) > f(x(t)), i.e. for
almost every t € [0,T7,

limsup + - d(z(t+h), f(z(t) (h,z(t))) = 0,
h10
satisfying x(0) = xo and the inequality (for every t € [0,T)

d(z(t), y(t)) < d(fo, y(0)) - ANt
/ (AN (t=s) | pf D(f(y(s)), ¥) ds.
0

XS ;(s)
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Linking semilinear evolution equations to mutational equations

Extending now the results of Aubin ([2]), strongly continuous semi-
groups on reflexive Banach spaces induce an interesting example of transi-
tions in a slightly generalized sense. Basically, the metric is replaced by a
family of distance functions. Here we just state some conclusions from the
general results of §§ 4,5 briefly and, the detailed verification is presented
in forthcoming part II.

Let A: Dy — X (Da C X) be a closed linear operator on a Banach
space X generating a semigroup (S(¢));>o. Then for every w € X and
initial point ug € X, the inhomogeneous equation % u(t) = Au(t) + w
has a unique solution w : [0,00] — X with «(0) = ug, namely

¢
wt, up) = u(t) = S(t)uwo —|—/ S(t—s) w ds.
0
If X, (-,-) is a transition on (X, | -|x), then the condition

B(Zw) = sup  limsup g Jlug — Zu(h, uo) || < oo
quX hLO

implies that the infinitesimal generator A : X — X is bounded and so
many important examples of semigroup theory are excluded.

For applying the mutational approach to C° semigroups, we prefer the
weak topology on X to the norm | -|x and define

Qo : X XX —[0,00[,  (z,y) — [(z -y, V)|
for every linear form o € X’ with ||v'||x» <1. Each ¢, is a so—called
pseudo—metric, i.e. it is reflexive (g, (z,2) = 0 for all ), symmetric
(qv (z,9) = qu (y,z) for all z,y) and satisfies the triangle inequality. The
family {q,/} induces the weak topology on X.

From now on, we suppose the Banach space X to be reflexive. This
assumption has two advantages : Firstly, closed bounded balls of X are
weakly compact (see e.g. [35, Yosida 78]). So any bounded sequence in X
has a subsequence converging with respect to every g, simultaneously.
Secondly, the reflexivity of X guarantees that the adjoint operators S(t) :
X' — X' (t > 0) form a C° semigroup on X’ with the infinitesimal gener-
ator A’ (see [21, Engel,Nagel 2000], Prop. 1.5.14). This useful consequence
opens the possibility that X, (-,-) fulfills (slightly weakened) continuity
conditions on transitions with respect to each ¢, for v € X’ fixed :

In regard to time, we obtain

Qv (Ew(tl,uo), Ew(tQ,UQ)) = <S(t1) Uy — S(tg) Uuop, ’Ul>|

(uo, (S(t1) = S(t2)") V')

— 0 for to —t;1 — 0
uniformly for all ug € X, |lug||lx < 1. So for all p >0 and v € Da C X/,
sup lir}rlllsg)lp %-qv/(ﬂw(t,uo), Ew(t—i—h,uo)) < p |AV|x,

Il P
1

Il x
0<t

INe
INIA

i.e. restricting ourselves to a priori bounded subsets of X, we can follow
the steps of mutational analysis using a finite parameter (X)) w.r.t. g, .
Similarly, all ug,u; € X and every linear form v’ € Dy C X' satisfy

QU/(Ew(haUO)a Ew(haul)) - qv’(u07 ul) < {<u0 — U1, (S(h)/fldx/)’l}/ﬂ

lilills(ljlp qyr (Z‘w(h,uo), Z‘w(:ﬂu)) — g, (uo, u1) < {<’UJO oy, A ’Ul>|.

A

If additionally v" € Dy4s is an eigenvector of A’ (and X its eigenvalue),
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then it provides an upper estimate of the parameter «(X,,) w.r.t. g,

4y’ (Ew(h,uo), Ew(hﬂn)) — g, (uo, u1)
h ¢y (uo, u1)

lim sup
h10

for all wg, u; € X with gy (uo,u1) > 0.

These preliminaries form the basis for proving the existence of weak so-
lutions by means of mutational analysis and according to [7, Ball 1977],
weak solutions are mild solutions :

< A

Proposition 2. Suppose :

1. X s a reflexive Banach space.

2. The linear operator A generates a C° semigroup (S(t))¢>0 on X.

3. The dual operator A" of A has countably many eigenvectors {v}}jc 7
(Ilvjllx =1) spanning the dual space X'. Set q; := Qu-

4. Let f:X x[0,T] — X satisfy || fllre < oo and for each j € J,

qj(f(xl,tl), f(afg,tg)) < wj(qj(xl,xg) + |t2 —t1|) for all xy, ty
with a modulus w;(-) of continuity.

For each xy € X, there exists a mild solution x : [0,T[— X of the initial
value problem 4oa(t) = Az(t) + f(z(t),1), x(0) = xo,
¢

ie. x(t) = S{)zo + /0 S(t—s) f(x(s), s) ds (by definition).

Assumptions (1.)—(3.) are formulated in a quite general way for pointing
out the key features. Basic results of functional analysis provide interesting
examples like

— a compact symmetric operator A : X — X on a separable Hilbert
space X, e.g. some integral operators of Hilbert—Schmidt type on
L*(0) (O c R¥ open),

— an infinitesimal generator A : Dy — X of a C° semigroup on a
Hilbert space X whose resolvent is compact and normal, e.g. a strongly
elliptic differential operator (of second order) in divergence form with
smooth autonomous coefficients.

Assumption (4.) of Prop. 2 is very restrictive because f: X x[0,7] — X
has to be continuous with respect to each linear form v} separately. Even
easy examples of rotation might fail to satisfy this condition. Thus, we take
more than one linear form v (j € J = {ji1,J2,J3 ... }) into consideration
simultaneously :

Proposition 3. In addition to assumptions (1.)—(3.) of Proposition 2,
let f:Xx[0,T]— X fulfill ||f|lpe <o0 and

> 2 g (flat), fnt) < w(z 2k By )
k=1

forall z,y € X and t1,t2 € [0,T] with a modulus &(-) of continuity.
For each xg € X, there exists a mild solution x : [0,T[ — X of the
semilinear equation 4 x(t) = Axz(t) + f(z(t),1), z(0) = xo,

After replacing the metric by a family of distance functions, the main
steps of mutational analysis have not changed so far. So in principle, we
can already deal with systems of semilinear evolution equations in reflexive
Banach spaces and mutational equations in (JC(RY), d).

Using the abbreviations for z,y e X

oo

ko 9, (zy) . —k
Z? T enE =) 27" a@y),

k=1
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Proposition 4.

In addition to assumptions (1.)—(3.) of Proposition 2, suppose for
[ X xKRY)x[0,T] — X
g: X x KRY) x [0,T] — LIP4(RY,RY):

4o Nfllpe < 00, A<

5. Pu(f(z1, K1, t1), f(z2, Ko, t2)) w(]&1,2])

6. SU.I?\] Cﬂ(.g(:l"17‘[<17tl) (Z)7 g(x27K27t2) (Z)) g w(|£1,2|)

z€R

using the abbreviation |1 2| := poo(x1, 22) + d (K7, K2) 4+ ta—t1

forall z1,75€X, K, Ko € K(RY), 0<t; <ty <T with a modulus w(-)

of continuity.

IN

Then for every initial elements w9 € X and Ko € K(RY), there exists
a solution (z,K) : [0,T[ — X x K(RYN)  of the following problem :
a) x:[0,T[— X is a mild solution of the initial value problem
W gt =Ax(t) + fx(t), K(t), 1)
z(0) = xo
b) K(-):[0,T[~ K(RYN) is Lipschitz w.r.t. d and, K(0)= K.

c) liI}IlllS(l)lp F o d(Vyear), K@), ) (B K(t), K(t+h)) = 0 for ae. t.

3. Obstacles to first—order geometric evolutions
due to boundaries

Applying the mutational analysis of Aubin to a metric space (M,d),
obstacles are mostly related to the continuity parameters of a transition

d(9(h,z), d(h,y)) — d(z,y)\ T
( ( D d(i,3> y) < 09

a(¥) = sup limsup
T#y hlO
(W) = sup limsup + - d(z, I(h, x)) < oo0.
zteM  hloO
In regard to first—order geometric evolutions, these difficulties arise when
incorporating normal cones into a distance function of compact subsets.
We are going to use reachable sets 9¥p(-,-) of differential inclusions
#(-) € F(z(-)) ae. as candidates for transitions on K(RY). So the

topological properties of ¥ (t, K) may change in the course of time.

For the regularity in time : Ostensible metrics

Let us consider first the consequences of the boundary for the continuity
of ¥p :[0,1] x K(RY) — K(RY) with respect to time.

The key aspect is illustrated easily by

an annulus K expanding isotropically |

at a constant speed. After a positive J | f?
finite time t3, the “hole” in the center . e
has disappeared of course. z n 2

Every boundary point z3 at time t3 has close counterparts at earlier
sets. To be more precise, x3 € 0Vp(t3, Kg) is final point of a trajectory
x(-) : [0,t3] — R? of F(-):= B; and, each z(t) belongs to the boundary
of ¥p(t,Kg). Furthermore a so—called adjoint arc connects each normal
vector at x3 to a normal vector at x(t). However, this tool of control
theory works only in backward time direction. In particular, starting at
a point y € 0Ky of the “hole”, there is no trajectory belonging to each
09F(t, Kg) up to time ts.



10 THOMAS LORENZ

In general, the topological boundary of ¥ (-, K) : [0,00[ ~ RN (with
K € K(RY)) is not continuous with respect to d. Furthermore, the
normals of later sets find close counterparts among the normals of earlier
sets, but usually not vice versa.

For this purpose, we dispense with the symmetry condition on a metric :

Definition 5.  Let E be a nonempty set. q: ExXE — [0,00[ is called
ostensible metric on E if it satisfies the conditions :

1. VzekE: q(z,z) =0 (reflexive)

2. VaxyzeE: qlz,z) <qlz,y) + qy,2) (triangle inequality).

Then (E,q) is called ostensible metric space.

In the literature on topology (e.g. [34, Wilson 31], [23, Kelly 63], [33,
Stoltenberg 69], [24, Kiinzi 92]), a quasi—metricp : EXxE — [0, co[ on a set
E satisfies the triangle inequality and is positive definite, i.e. p(x,y) =0
< xz =y forevery z,y € E. A pseudo—metric p: ExXxE — [0,00[ on
aset F # () is characterized by the properties : reflexive (i.e. p(z,z) =0
for all z), symmetric (i.e. p(z,y) = p(y,x) for all z,y) and the triangle
inequality. So this generalized distance of Definition 5 is sometimes called
quasi—pseudo—metric (see [23, Kelly 63], [24, Kiinzi 92], for example), but
just for linguistic reasons we prefer the adjective “ostensible”.

In regard to the first—order geometric evolution, we suggest the osten-
sible metric gx n : K(RY) x K(RY) — [0, o0],

g~ (K1, Ks) = d(Ky,K>) + dist(Graph °N,, Graph °Nk,)

with  Ng(x) denoting the limiting normal cone of K CRY at z€0K,
"N (x) = Ng(x)NB.

So, qx,n(Ki1, K3) > 0 takes the graphical distance from the limiting

normal vectors *N K, CB1 to b k, C By into account. Correspondingly

to the example of an annulus Kg expanding isotropically, the first argu-

ment K7 can be regarded as earlier set whereas the second argument Ko

represents the later set. In particular, it is easy to verify

are.N(VFr(s, Kg), Up(t,Ke)) < const- (t—s) forall s <t <1.

Applying now the steps of mutational analysis to an ostensible metric
space (FE,q), we encounter analytical obstacles soon. In particular,
[07 1] - [Oa OO[, t— qic,N (ﬂF(ta K1)7 ﬁF(ta KZ))

need not be continuous. For example, the isotropic expansion at a speed
of 1 (F(-):=B;) and K; := By, Ky := {1 <|z| <2} C RY satisfy

>1 for 0 <t <1
dK,N (ﬁF(ta K1)7 ﬂF(tv KQ)) =0 for t>1"
So we cannot apply the proof of key estimate (%) (mentioned in § 2) to
ostensible metric spaces immediately. A more general form of Gronwall’s

Lemma is needed instead — without supposing continuity.

Lemma 6 (Lemma of Gronwall for semicontinuous functions I).
Let ¢ :[a,b] — R, f,g € C%a,b[,R) satisfy f(-)>0 and

Y(t) < limsup (¢t — h), v t€la, b,
R0

Y(t) > limsup (t + h), V tela, b,
hl]O

lim sup M < f(t) - limsup ¥(t —h) + g(t) vV tela, bl
h10 h10
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Then, for every t € [a,b], the function (-) fulfills the upper estimate

B0 < v e 1 [ e g5y as with ) = [ ) ds

Proof. Let § > 0 be arbitrarily small. The proof is based on comparing
1 with the auxiliary function s : [a,b] — R that uses (a)+4d, g(-)+4
instead of ¥(a), g(-) :

polt) = (6(@)+8) O+ [ OO (g(s) 4 6) .
Then, Ph(t) = J(t) os(t) + () +5 on [a,],
ws(t) > ¥(t) for all t € [a,b] close to a.

Assume now that there is some ¢y € |a,b] with ¢s(to) < ¥(to). Setting
t1 == inf {t € [a,to] | ps(t) <v(t) },
we obtain  @s(t1) = ¥(t1) and a<t; <ty because
@s(t1) = lim  @s(t1 —h) > limsup P(t1 —h) > ¥(t1),
h10 hi0
@s(t1) = lm @s(ty +h) < lirglshlp Y(t1+h) < P(t).

h >0 h >0
Thus, we conclude from the definition of #;

liminf fetith—est) lim sup P(t1+h)—(t1)
1o h = D
@5(t1) < f(ta) - 1irlills(l)lp Y(ti—h) + g(t)
f(t1) ws(ty) +g(t) +6 < f(t1) - hT’IlllS(l)lP ws(tr —h) + g(t1)
< f(t1) - ws(ty) + g(t1)
— a contradiction. So ¢s(-) > ¢(-) for any § > 0. o

. i, . h)—

Remark 7. (i) The condition hI}ILllS(l]lp M < f(t)-9(t) + g(t)
(supposed in the widespread forms of Gronwall’s Lemma) is stronger than
the third assumption of this lemma due to the semicontinuity condition

Y(t) < limsup ¥(t — h).
hlo

(ii)  This and the following subdifferential version of Gronwall’s Lemma
also hold if the functions f, g : [a,b] — R are only upper semicontinuous
(instead of continuous). The proof is based on upper approximations of
f(), g(-) by continuous functions.

Corollary 8 (Lemma of Gronwall for semicontinuous functions II).
Let v : [a,b) — R, f,g € C%[a,b,R) satisfy f(-)>0 and

Ql)(t) < hI}Pll(I)lf 1/1(15* h)7 Vie ]a’a b]a
P(t) > liglnliélf Pt +h), vV tela, b,
lim inf LELR 00 < f(¢) - lim inf Yt —h) + gt) Y tela, bl

Then, for everyt € [a,b], the function ¥(-) fulfills the upper estimate
t t
V() < Yla) - e + / etW=1E) g(s) ds  with p(t) := / f(s) ds.

a

Proof follows the same track as in Lemma 6 — just using instead
t) = inf {t € [a,t0] | ws(-) < () in[t,t0] } > a. O
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When extending key estimate (*) to transitions ¥, 7 on an ostensible metric
space (FE,q), the required semicontinuity of ¢t — q(¥(t, ), 7(t,y)) will
be guaranteed by a further condition on generalized transitions.

For the regularity with respect to initial states : the distributional notion

Now we consider the consequences of the topological boundary for the
continuity of 9 : [0,1] x K(RY) — K(RY) with respect to the second
argument.

For any initial sets K1, Ko € K(RY) and a given map F € LIP,(RY ,RY),
the reachable sets of &(-) € F(x(-)) a.e. at time ¢t are compared with re-
spect to gk, v. In particular, we need an estimate of the distance from any
x € 0VF(t, K2) to the boundary of 9p(t, K1).

x is reached by a trajectory z(-) of F
starting in Ko and, x(0) belongs to the
boundary of K5. Moreover, each normal
vector to Jp(t, K2) at x is connected
to some pg € Nk, (x(0)) by an adjoint
arc (due to Hamilton condition). Now
(z(0), ‘i—g‘) has its closest counterpart

»()

x()

(Y0,90) at Graph Nk, |sk, and, its
distance is bounded by ¢k v (K1, K2).
However we cannot guarantee that any trajectory of F' starting in yo stays
in the boundary of ¥r(s, K1) up to time ¢. Roughly speaking, yo might
belong to a “hole” of K7 disappearing with the course of time.

For excluding this phenomenon, additional assumptions about K; are
needed. Suitable conditions on F' guarantee, for example, that compact
sets with C! boundary preserve this regularity for short times (see [25]
or part II) and, their topological properties do not change.

Assuming further conditions on one of the sets Ki, Ky € K(RY) pre-

vents us from applying the mutational analysis of Aubin. Thus, we use the
basic idea of distributions.
In an ostensible metric space, there are no obvious generalizations of linear
forms or partial integration and so, distributions in their widespread sense
cannot be introduced. More generally speaking, their basic idea is to select
an important property and demand it for all elements of a given “test set”.

In the mutational analysis of a metric space (M, d), the estimate

d(¥(h, x), 7(h,y)) < dz,y) - eDr + h D7) SOt (%)

(for arbitrary x,y € M and h € [0,1]) represents the probably most im-
portant tool for constructing solutions by means of Euler method. So it is
our starting point for overcoming the recent obstacle in (K(RY), g n). In
fact, forthcoming part IT will verify in detail that under suitable assump-
tions about F, G : RY ~» RY (and their Hamiltonian functions Hz, Hg),

ax.n (Vr(h, K1), Ya(h, K2))

< (aen(E1, Ks) + h-AN [Hp = Hellor@xos,) - €4
holds for every K; € K(RY) with Cb! boundary, all Ky € K(RY) and
h > 0 sufficiently small (depending only on K, F').
So following the basic idea of distributions in an ostensible metric space
(E,q), we are interested in how to realize the formal estimate

g(I(h, 2), T(h,y)) < (alzy) + h Q™0 7)) e " (xx)
for all points y € FE, every element z of a given “test set” D C E and h > 0

sufficiently small (depending only on 9, z). In particular, the definitions of
Q™ (¥, 7) and the parameter '~ have to be adapted.
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4. Right—hand forward solutions of mutational equations :
Definitions

Seizing the motivation of first—order geometric evolutions, we now specify
the approach for the more general situation of a nonempty set E (instead
of K(RY)) and a fixed nonempty “test set” D C E. In this section,
the mutational analysis of Aubin is extended to so—called right—hand for-
ward solutions and, the main definitions are stated. Finally we explain two
further aspects of generalization that are leading to the so—called timed
right—hand forward solutions in timed ostensible metric spaces presented
in section 5 in detail.

As a consequence of § 2 (about linking semilinear evolution equations
to mutational equations), we consider more than one distance on E. Thus,
suppose (¢e)ees to be a countable family of ostensible metrics on FE.
Assuming J to be countable makes the Cantor diagonal construction
available for proofs of existence.

Definition 9.  Assume for ¥:[0,1] x E — E and each index ¢ € J
1. 9(0,-) = ldg,

2. limsup + - q-(9(h, I(t,x)), V(t+h, z) = 0 VackE, t<l,
hlo
limsup + - ¢-(9(t+h, z), I(h, ¥(t,x))) = 0 V z€FE, t<l,
hl0
+
3. a7 (¥) <oo: sup limsup (qE (ﬂ(h’zz’ 19(:’32; qE(z,w) < o’ (9)
zyeGED h10 R
4. 36:(9):]0,1] — [0,00][: nondecreasing, limsup SB.(9)(h) = 0,
hlo
qa(ﬁ(s,x), 19(75,30)) < B(W)(t—9) Vs<t<l zek,
5. VzeD HT@:T@(ﬂ,Z)E}O,l]Z 19(t,z)€D Vt<To,
6. limsup qg(ﬂ(t—h, 2), y) > qg(ﬂ(t,z), y) V zeéD, yeE, t <Tp
hlo

Then Y(-,-) 1is a so—called forward transition on (E, D, (¢:)cer)-

Here the term “forward” and the symbol — (representing the time axis)
indicate that we usually compare the state at time ¢ with the element at
time t+ h for h | 0.

Conditions (1.)—(4.) are quite similar to the properties of Aubin’s transi-
tions on metric spaces (see § 2). Indeed, condition (1.) states that = is the
initial value of [0,1] — E, t — 9(¢,x) and, condition (2.) can again
be regarded as a weakened form of the semigroup property. It consists of
two demands as ¢. need not be symmetric any longer.

Condition (3.) differs from its earlier counterpart in two respects : The first
argument is restricted to elements z of the “test set” D and, o2 (¢) may
be chosen larger than necessary. Thus, it is easier to define a2’ (-) < oo

uniformly in some applications like the first—order geometric example. In
condition (4.), the Lipschitz continuity of Aubin’s transitions is replaced
by equi—continuity with respect to time as this detail is used only for tech-
nical reasons in proofs.

Condition (5.) guarantees that every element z € D stays in the “test set”
D for short times at least. Roughly speaking, it means in the preceding
geometric example that smooth sets stay smooth shortly. This assumption
is required because estimates using the parameter o (-) can be ensured
only within this period. Further conditions on 7g(¥,-) > 0 are avoidable
for proving existence of solutions, but they are used for proving uniqueness
(see 8§ 5.3.4, 5.3.5).
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Condition (6.) forms the basis for applying generalized Gronwall’s Lemma 6.
Indeed, every curve y : [0,1] — E with ¢.(y(t—h), y(t)) — 0 (for h | 0
and each t) satisfies

g:(0(t,2), y(t)) < fim sup. e (9(t = h,2), y(t—h)).
for all z € D and times t €]0, To(¥, z)] (due to Lemma 20 in § 5.1).

In the preceding section, we mentioned the formal estimate (xx) as
starting point and, its general counterpart in (E, D, (ge)ccy) is

qs(ﬁ(h’ Z)? T(h’ y)) < (QE(Z,y> + h Q?(ﬁ, T)) . geonst - h

for all z € D, y € E, e€J and small t > 0. For realizing this
formal inequality, we specify the distance between forward transitions on
(E, D, (qc)ecr) in the following way :

Definition 10.
O~ (E,D,(g:)ccy) denotes a set of forward transitions on (E, D, (ge)ec7)
Supposing

(9(h.2), T(hw)) — a=(z.9) -

+
_ () h
Q= (9,7) := sup limsup [ 222 e < 00

je2 Lo
Y

forall 9,7 € @7 (E,D,(ge)ccy), €€ T.

Remark 11. Using here the parameter o.” (1) of the second argument 7
(instead of 19) is just for technical reasons. Indeed, it ensures the triangle in-
equality of Q2" immediately, i.e. Q= (V1,793) < Q (¥1,92) + QL (92, 93)
for any transitions 91,392,935 on (E, D, (¢:)ecy) because for all z€ D,

yeE, t€]0,1], we conclude from g.(z, z) = 0 and the triangle inequality

Q5(191(h z 193 h Y ) qE z, . e% = (93) h
S qg(rl?1<h z 192 h Z ) q . a?(ﬂg) h
+ e (V2(h, 2), D3(h,y)) — qe(z,y) L eor (95) h

Moreover, it usually does not impose serious restrictions on applications
since the parameter «-”(9) is often chosen as a global constant.

These definitions lay the foundations for concluding from generalized Gron-
wall’s Lemma 6 (see Proposition 22) :

Proposition 12. Let 9,7 € ©7(E,D,(ge)ecy) be forward transi-
tions,e € J,z€D, ye E and 0 < h<7Tg(9,2z). Then,

—(m)h 1

¢ (O(h,2), T(hy)) < qe(zy) - =M 4 b QU () Comrmit -

The next step is to generalize the term “mutation” to (E, D, (¢c)ec7)-
Considering a curve z(+) : [0,7[ — M in a metric space (M,d), its mu-
tation 2 (t) at time ¢ € [0, T[ consists of all transitions ¢ on (M, d) with

limsup + - d(J(h, z(t)), z(t+h)) = 0
hlo

according to the definition of Aubin ([2], § 1.2). It reflects the idea of
first—order approximation that most concepts of “derivative” start with.
For (E, D, (¢:)ecy) however, we prefer adapting the criterion to the key
estimate of Proposition 12.

So firstly, only elements of D are used in the first argument of ¢. and
secondly, a first-order approximation is to have the same effect, roughly
speaking, as if the factor Q."(-,-) was 0. Thus, a forward transition ¥
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on (FE, D, (¢:)cey) 1is regarded as a generalized derivative of a curve
z(-) : [0,T[ — E at time t if for each € € J, there is a parameter
az” (t) > 0 with

limsup + (g=(9(h,2), z(t+h)) — qe(z, z(t)) - e Wy <
)
for all “test elements” z € D. To minimize the risk of confusion over Aubin’s
concept and its generalization here, we dispense with a new definition of
“mutation” and introduce the term “primitive” instead (in accordance
with the more general Definition 24).

Definition 13. Let 9(-):[0,T[— O~ (E,D,(g:)ccy) be a given
function and, suppose for x(-):[0,T[— (F, (qe )Eej)

1.V tel0,T], eeTJ 3 ac(t) =a- (6z(-),9()) < oo :
de

€

limsup + (g (9(t) (h,2), x(t+h)) — g-(z, z(t)) - e ) <0,
h10
forall z€ D and az’(t) > a7 (0(t) > 0,
2. x() is uniformly continuous in time direction w.r.t. each g,
i.e. there is we(z,-) 10,7 — [0,00] with limsup wc(z,h) = 0,

h10

ge(2(s), z(t)) < we(z, t—s) for 0<s<t<T.
Then x(-) is a so—called right—hand forward primitive of ¥(-), abbreviated
to z(-) 3 9(-).

The additional term “right-hand” indicates that z(-) appears in the sec-
ond argument of the distances ¢. (¢ € J).
Forward transitions induce their own primitives. To be more precise, every
constant function 9(-) : [0,1] — O~ (E, D, (¢c)eccy) with 9(-) = 9y has
the right-hand forward primitives [0,1[ — E, t — 9y(¢,2) with any
x € F — as a consequence of Proposition 12 in a slightly generalized form
qe (ﬁ(tl +h7 (E)7 T(tQ +h7 y))
< (g:(9(t,2), T(t2y)) + b QU (D7) - e (DR
(see Proposition 22).  This property is easy to extend to piecewise con-

stant functions [0,7[— O (E, D, (ge):c7) and so it will be the basis for
Euler approximations later.

Let us apply now this concept to mutational equations in a generalized
form. Correspondingly to ordinary differential equations, the definition of
“solution” can be formulated by means of “primitives”.

Definition 14. For f: Ex[0,T[— O~ (E,D,(q:)ccy) given, a
map x(-) : [0,T[— E is a so—called right-hand forward solution of the
generalized mutational equation

() > fla(),)
if x(-) s a right-hand forward primitive of the composition f(x(-), -) :
[0,T[— O~ (E, D, (¢.)), i.e. for eache € J,

1.V tel0,T] 3 az(t) > a7 (f(z(t),t)) - YV zeD
liri?ls(;lp% (g-(f(z(t),1) (R, 2), z(t+h)) — g-(z,2(t)) - ¥ D) <0,

2. () is uniformly continuous in time direction w.r.t. each q..
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Two further aspects of generalizing mutational equations

In the preceding sections, the same feature of an ostensible metric space

(E, q) occurred for several times : Considering ¢(zx,y), the first argument
x refers to the state at an earlier point of time whereas the second argument
y represents the later element.
In fact, this rule can be extended to the entire concept of right—hand for-
ward solutions. We only need the possibility of distinguishing between the
“earlier” and “later” element of E. For this reason, F := R x F with
an additional time component is regarded instead of the nonempty set F.
The term “timed” and the tilde usually symbolize that the (forward) time
direction is taken into consideration by means of a separate real compo-
nent.

Definition 15. Set E =R x E. §:ExE — [0,00[  fulfills the
so—called timed triangle inequality if for every (r,z), (s,y), (t,2) € E
with r < s <t,

q((rz), (t,2)) < q((r2), (s.) + @((s,9), (t,2)).

G: Ex E — [0,00[ is called timed ostensible metric on E if it satisfies
q((tv Z)7 (tv Z)) =0
q((r,2), (t.2)) < q((r,2), (s,9) + a((s,). (t.2))
for all (r,x), (s,y), (t,2) € E with r<s<t.
(E,q) is then called timed ostensible metric space.

Every ostensible metric ¢ on E induces a timed ostensible metric ¢ on
E ™= Rx E according to a((s,), (t,y)) :== [t—s|+q(z,y). Thus,all
statements about ostensible metric spaces result immediately from their
more general counterparts about timed ostensible metric spaces.
From the topological point of view, there is only one additional condition

to suppose, i.e. the convergence with respect to the timed ostensible metric
implies the convergence of the time components.

Definition 16. Let E be a nonempty set, E 2 RxE, q: ExE —s [0, ool.
(E,q) is called time continuous if every sequence (Zn = (tn,Tn))nen
in E and element T = (t,2) € E with §(#,,%) — 0 (n — o00) fulfill
t, —t (n— o00).

The second aspect of generalization is related to the modified semi-
group condition on transitions, i.e. condition (2.) of Definition 9. Using
the Landau symbol o(-), it demands for every & € FE, t € [0,1] and e € J

A{q;({sf(h, 9, 7)), I(t+h, 7)) =
G (0(t+h, @), 9(h, I(t,7))) = o(h)

In short, the main idea now is to replace o(h) with the other Landau

|

=)
—~~

>
~

for h ] 0.

symbol O(h). Strictly speaking, each ¢ has a parameter ~.(¢) € [0, 00|
(depending only on €) with

limsup + - @ (I(h, I, 7)), I(t+h, 7)) < 7(9)
hl0O . " _ _

limsup - (It +h, ), I(h, ¥(t, 7)) < 7=(V)
hlO

forall Z€ E, t € [0,1] and each € € J. So the challenge is to incorporate
this parameter in the concept of “timed” right-hand forward solutions.
The dependence of v.(¥) on ¢ € J exemplifies an additional feature for
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characterizing V. Assuming 0 € J, we choose the asymptotic behavior
of 7.(9) (for € — 0) as a further criterion and specify “timed forward
transitions” on (E, D, (Ge)ees) in final Definition 17.

Analytically speaking, 7.(-) > 0 gives the opportunity to introduce an
additional limit process that follows the process of first—order approxima-
tion. This might be useful for multi-scale problems, for example, although
they are not considered in this paper.

However, ~.(+) and its upper bounds are also of direct use for semilinear
evolution equations mentioned in Proposition 3. Its continuity assumption

EDO - E g (2,Y)
2 g sy, (f(z7t1)7 f(yat2 < W( 2” k 1_(;'1_2“(172!) + |t2_t1|)
_ k=1

(for all z,y € X and t1,t € [0,T] with a modulus &(-) of continuity) was
to take more than one pseudo-metric ¢; = Qv (GeJ=1{j,J2,03 ---})
into account.

The corresponding parameters o (-) are closely related with the eigen-
values of the infinitesimal generator A (as mentioned in § 2). For this
technical reason, we consider only a finite number of pseudo—metrics g;
simultaneously and define for xz,y € X, n € N

(x,y) . _
Z 2” g 1;1}1:1]7@(;79)’ Pn(‘r’y) = Z 2 * qjk(x7y)

Obviously, each prn is a pseudo—metric on the reflexive Banach space X,
but the preceding continuity assumption (of Proposition 3) implies merely

o0
N kB (zy)
Po(f(z,t1), fly,t2)) < w(l)n(%y) ‘:Z_H 2 W + [to —t1|>
S(.AL)(pn(ZE,y) + 27" + ‘t2_t1|)7

i.e. the continuity of the right—hand side with respect to P, p, is not really
guaranteed in the way we need without introducing the parameter v, (-).

5. Timed right—hand forward solutions of mutational equations

Now so—called timed forward transitions ¥ of order p on (E, 5, (@c)ecy)
are defined precisely in § 5.1. In § 5.2, the definition of timed right—hand
forward primitive is formulated and, we present three ways for estimating
the distance between a transition and a primitive. § 5.3 deals with timed
right-hand forward solutions of generalized mutational equations : defini-
tion, stability, existence and estimates.

General assumptions for § 5. Let E be a nonempty set, D C I,

pER andset F:=RxFE, D:=RxD, m:E—R, (t,z) —t.

J C [0,1]" abbreviates a countable index set with xk € N, 0 € J.

Furthermore we assume for cach . : E x E — [0,00[ (¢ € J) :

1. timed triangle inequality,

2. time continuity, i.e. every sequence (Zn = (tn,2n))nen in E and T =
(t,z) € E with G.(Z,,7) — 0 (n —> 00) fulfill ¢, — ¢ (n — o),

3. reflexivity on D, ie. ¢.(3,2) =0 forall 3¢ D.

5.1. Timed forward transitions

Definition 17. A map 9 : [0,1) x E — E is a so—called timed forward
transition of order p on (E, D, (Ge)ccy) if it fulfills for each € € J
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1. 9(0,-) = 1dg,

2.3 4.(9) >0 : limsup &”-y.(d) = 0 and
lim sup %.ag(&'(h,a&@%)), It +h, 7)) < 1(9) VY Tk, te[0,1],
111%}2113 LG (0@ +h, 7), Oh, 9(t,7))) < 7(0) Y FekE, te[0,1],

- ~ ~ +
9(h,3), I(h. ) — G=(2.3) — 7e (D) h) ot

3.3 a7 (¥): sup limsup <q£( n (65 26)7) < aZ(9)

zeﬁ%§e§ hlO
4.3 B.(¥):]0,1] — [0,00[: nondecreasing, }li% B-(9)(h) = 0,

3 (0(s,7), 9(t, 7)) < B(V)(t—s) Vs<t<l, TcE,
5.VZeD 3To=T6(0,2) €)0,1]: J(t,2)eD V te[0,To),

6. limsup G- (I(t—h, 2), ) > @(0(t,2),7) V ZeD, yek, t<To
o (t+mz<my),

7.9(h, (t,x)) € {t+h}x E V (t,z)eE, hel0,1].

é; (E, D, (Ge)ec7) denotes a set of timed forward transitions on (E, D, (qgz))
assuming

o~ ~ . — +
T~ . qe (ﬂ(haz)a T(h7g)) - qE(ZJD - e () h
Q- (9,7) := sup limsup
zebyek hlO h

to be finite for all 5,? € é;(E,f), (@x)ecr), €€ T.

Remark 18. (i) A set E # () supplied with only one function
§: Ex E — [0,00] can be regarded as easy (but important) example
by setting J := {0}, qo = q.

Considering a timed forward transition 9 : [0,1] x E — E of order 0,
the condition limsup £°-~.(J) =0 means 0 = 0°-~o(J) = yo(d) —

e—0

due to the definition 00 = 1. N
So it leads to the key property for all z € E, t € [0, 1].

limsup + 5(5(]% 5(@5)% 5(75"’ h, ) =0
h10 _ -
h|O

Then many of the following results do not depend on € or 7. (-) (and its up-
per bounds) explicitly. So we do not mention the index ¢ there any longer
and abbreviate the corresponding set of timed transitions (of order 0) as
é'—’(E,f),Zj). In particular, the transitions in metric spaces (introduced
by Aubin in [2], [4]) prove to be a special case.

(ii) Foraset E#0, afamily ¢. : Ex E — [0,00[ (¢ € J) and
p € R given, let ¢. : Ex E — [0,00[ be defined similarly to the remark
after Definition 15, i.e.

G ((s,2), (t.y)) = fe) s —t|+qe(a,y) forall (s,2), (t,y) € E.
with a function f(g) = o(e?) > 0 for £ | 0. Thenevery ¥ :[0,1]xE — E
satisfying conditions (1.)—(6.) for (E, D, (qc)ees) induces a timed forward
transition ¢ : [0,1] x E — E of order p on (E, D, (g:)) by

G(h, (t,2)) = (t+h, 9(h,x)) forall (t,z) € E, hel0,1].
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As a consequence, the following statements about ép'_’ (E,E, (@)ecr)
can be applied to their counterparts without separate time component
very easily. Correspondingly these functions o : [0,1] x E — FE are
called forward transitions of order p on (E, D, (q:)ccy) and abbreviated
as 8;(E7 D, (ge)ees)-

gii) Condition (6.), the timed triangle inequality and the continuity
of ¥(-,z) imply limsup q. (ﬁ(t —h,2), ﬂ) = ¢ (19(157 zZ), 'y“)
h10

for all ¥ € Q;(E,z:),(aa)sejy zeD, JeB, 0<t<To(¥,2), c€J
with t+m 2 <m ¥.

(iv) Q= :0,(E,D,(q)) x 0, (E,D,(g.)) — [0,00] satisfies the
triangle inequality for the same reasons as in Remark 11.

(v)  As an alternative, we can follow exactly the track of this sec-
tion with the condition m; zZ < m;  on test elements Z € Z) instead of
m Z<m Yy (for example, in the definitions of a7 (¥), Q= (9,7)). How-
ever the equivalence of these two modifications is not obvious in general.

Now an abbreviation for continuous functions of time is introduced.
The symbol — is to remind us of considering the forward time direction :

Definition 19. Let JCR be nonempty, DCE+#0, q: ExE — [0, 00].
UC™(J, E,q) abbreviates the set of uniformly continuous functions f :
J — E in the sense that there is a nondecreasing w(f,-) :]0, co[— [0, 00|

with limsup w(f,h) =0
hl0
and Vos,ted: s<t = q(f(s),f(t) < w(f,t—2s).

Such function w(f,-) is called modulus of continuity of f(-).

Now Gronwall’s Lemma 6 for semicontinuous functions proves to be the

main tool. For applying this idea to distances like 1. (t) = g-(9(¢, 2),y(t))

with a function 7(-) : [0,T] — E, we have to ensure the semicontinuity

property ¥ (t) < limsup ¢.(t — h). It is the key point for using condi-
h10

tion (6.) of Definition 17.

Lemma 20. Let V€6, (E,D,(4.)-cy), €€ J, Z€D, 0<t<To(V,%),
7() : [0,t] — E satisfy g (y(t—h), y(t)) — 0 for h |0 and
T 9( %) < m §() increasing.

Then, 55(5(t>aa ﬂ(t)) < liI}ILllS(l)lp ge(g(t—hﬂ% y(t_h))

Proof.  Due to condition (6.) of Def. 17 and the timed triangle inequality,
G=(9(t,2), 5(t)) < lir}{lf(t)lp G- (I(t—h, 2), §(t))
< limsup (@ (9(t—h, 2), T(t—h)) + G (FE—h), 7))

< limsup q~5(1§(t—h, Z), g(t_h)) + 0. o
R10O
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As another apphcatlon of Gronwall’s Lemma 6, we consider és'_’ (5, 5)
for any 9. Although QH @H(E D, (=) x QH(E D, (G=)) — [0, 00]
satisfies the triangle inequality, it need not be reﬂexwe i.e. we cannot

expect QH(ﬂ 9) =0 for every ¥ € @H(E D, (G:)ees) in general. The

parameter 7. (19) provides an upper bound :

Lemma 21. Every timed transition ¥ € @H(E D, (q)ecy) fulfills
Q= (9,9) < 37.(9).

Proof is based on Gronwall’s Lemma 6 applied to
pe: [0,1] — [0,00],  h — @ (I(h,2), I(h,7))
with any z € D, ye E (m Z < m 5). The preceding Lemma 20 guarantees
pe(h) < limsup @.(h—k).
)

Now choose h € [0,79(5,2)[, 0 > 0 arbitrarily and we obtain for any
k > 0 small enough

G(I(h+k,2), Ok, I(h3))
GOk, 9(h,7)), I(h+k, §))
G- (D(k, 9(h.2)), D(k, 9(h.5))) — G (9(h.2), D(h)) —7e(D) k -7
k- {@(0h2), 9h) + =) k} ‘
So the timed triangle inequality leads to

pe(htk) = G (I(h+k, 2), I(h+k, §))
< G (0(h+k, %), Ik,  9(h,2)))
+q1(12(k7 9(h,3), Ik, I(h7))
+ g (9, I(h7y), I(h+k, 7))
< 2 (%@ +6) k _ -
+ (T (@) +06) k (p=(h) +7:(9) - k) + @c(h) + 7e(9) - k,

ie.  limsup 2R —ee) < (0 (9) 46) - po(h) + 3 (1:(9)+9).
kLo
Since § > 0 is arbitrarily small, we conclude from Gronwall’s Lemma 6
(@) h

pe(h) < 9e(0) - €7 N 4 3. (1) Tt

Jim sup we(h) — %(}(L)) ce%e (9)h < 3 75(5).

h10
O

The final result of this subsection is the upper estimate of the dis-
tance between two points while evolving along different timed transitions.
In comparison with transitions on metric spaces (M,d) (according to [2,
Aubin 99]), it generalizes the key estimate (x) mentioned § 2. So we con-
tinue this approach and use the inequality as a motivation for defining
“primitives” and “solutions” in the next subsections.

Proposition 22. Let 1?/{,? € é; (E,f), (Ge)ecg) be timed forward
transitions, € € J, ZzZ€ 5, yE E and 0 <t1 <ty <1, h>0 (with
mzZ<my, t1+h<To(¥72)). Then the following estimate holds

Ge(V(t1+h,2), Ftat+h,§)) < G (0(t1,2), T(ts,y)) - eo= @ h
AN (1 3 ~\\ e () h_
h (Q (9,7)+7=(9) +7:(7)) W
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Proof. The auxiliary function ¢, : h — Ge(9(t, +h, 3), T(t2+h, 7))
has the semicontinuity property ¢(h) < limsup, o @(h—k) due to

the assumptions of é;(E, D, (¢.)ec7) and the preceding Lemma 20.
Moreover it fulfills for any h € [0, 1] with t; +h < To(J, 2)

hIIIcliSélp M < o’ (7) - p(h) + é?(ﬁ,?)—&-%(&)—f—’yg(?).
Indeed, for all £ > 0 sufficiently small, the timed triangle inequality leads to
pe(h+k) < G@Oti+h+k 2), Ik I(t1+h, 2)))

(9(

(Tg(k l9t1+h A)), (k? T(t2+h @)))
4= (7(k, T(t2+h,9)), T(ta+h+k, 7))
(

< Ve 79) k + 62'_)(7SQ T) k"f’(Ps( eve (1) k + 75(77) k+0(l€)

since t1 4+ h+k < To(0,%) implies 9(t;+h,z), I(ti+h+k,Z) € D.
Thus the claim results from Gronwall’s Lemma 6. O

Remark 23. If a-7(7) = 0, then the corresponding inequality is
G (Ot + h, 2), T(ta + h, 7))
< aE(ﬂ(tlvz)a (tQag)) ( (19 T) +76(19) +7€(;)) - t.

5.2. Timed right-hand forward primitives

Definition 24.  The curve & : [0,T] — (E,(¢-)ecy) is called timed
right-hand forward primitive of a map ¥ :[0,7[— 6, (E, D, (¢c)ce7),

abbreviated to T(-) 3 9(-), if for each £ € T,

1.V tel0,7[ 3a-@t) >0, %(t) >0 :
ag (t) = a7 (9(1),  7e(t) = 7=(9(1)), lin}lsblp e Fa(t) = 0,
timsup (& (9(1) (b, ), F(t-+1)) @5 #0) SO ) < A1),
foriall e D with mz < m x(t),

2. () € UCT(]0,TE,q.),

3. mzlt) = t+ m z(0) for all t €[0,T].

Remark 25. Let #(-) : [0,7[— E be a timed right—hand forward
primitive of ¥ : [0, T[ — 60, (E, D, (¢z)ees). For any t €]0,T[, the map
Z(t+-) : [0,T—t[—> E is a timed right-hand forward primitive of J(t+ ).
From now on we skip the attributes ’timed’, 'right—hand’, ’forward’ of
primitives in this subsection.

Remark 26. Timed transitions induce their own primitives — as a di-
rect consequence of Definition 17 and Proposition 22. Correspondingly,
each piecewise constant function o : [0,T] — ©,°(E, D, (¢:):e7) has a
primitive that is defined piecewise as well.

Now three ideas are presented how to estimate the distance between
a primitive and a point evolving along a timed transition. As an obstacle
though, all preceding definitions have in common that only points of D
usually appear in the first argument of g.. So essentially, we have two
possibilities : Either restricting ourselves to the comparison with elements
of D (as in Proposition 27) or using auxiliary functions for the distance
(as in Propositions 28, 30).
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Proposition 27.  Suppose {/; € é;(E,B, (Ge)ecy), Z € 15, t; €[0,1],
ty € [0,T[. Let the curve Z(-) : [0,T[— E be a timed primitive of
9(-) [0, T[— O, (E, D, (¢:)cey) such that for each € € J,

ar(,7,9) < M.(-),
~/'77€(~"§719) < RE(')7
Q- (¥, I() < (),
tl “+ 1 Z S s %(tz)
with upper semicontinuous Mg, Re, cc : [0,T] — [0, 0o
to+h
Set pe(h) = M, (s) ds.
t2

Then, for every € € J and h €)0,T[ with t; +h < T@({/JV,E),

q~5 (¢(t1+h7 z)? E(t2+h))

< G (P(tr,3), F(ta)) - e +

1,
h

+ / eheW=h) (¢ (ty+5) + 2 Re(ta+s) +7e(D)) ds.
0

Proof. ~ We follow the same track as in the proof of Proposition 22 and

consider the function ¢, : b — G (¢ (t1+h,z), Z(te+h)). The property
ve(h) < limsup @ (h —k) results from Lemma 20.
k10

Furthermore we prove for any h € [0,T] with t; +h < To (1, %),

lim sup M < Mc(t1+h) - @ (h) +ce(tat+h) +2 Re(ta+h) + 'Ys({g)
kLo
In particular, this inequality implies ¢.(h) > limsup @.(h+k) since its
k1O

right-hand side is finite. Thus, the claim results from Gronwall’s Lemma 6
and its Remark 7 (ii).

For all small k£ > 0, the timed triangle inequality and Prop. 22 lead to
@e(h+ k)

< G(lti+h+k, 2), O(ta+h) (k, P(t1+h, 2)))
+ G (O(ta+ 1) (k, D(ti+h,2))), F(ta +h+k)))
eMs(f2+h)'k_1

< QU@ Vtat+h) +7:(¥) + Ae(tat+h,7,0)) ML th)
+ @o(h) - ef Ak LS (4o 4 b T 0) - k + o(k)

< ee(h) - eMeltarth) -k g |Cs(t) ""YE(J) +2 Ra(t)|t:t2+h -k + o(k)

since t; +h+k < To(h, %) implies ¢(t1+h,2), U(t,+h+k2) e D. O

The next proposition provides an upper bound of the auxiliary function
@a(t) = ~inf (q~a(5, ¢(t,@) + 65(27 5(”))
zeD,mz<t
for describing the distance between (t,y) and a timed primitive Z(t)
without restricting to ¥ (t,y) € D. The basic idea consists in estimating

both h — G- (¥(h,Zm), Y(t+h, 7)) and h — g (Y(h, Zp), T(t+h))
(for small A > 0) with a minimizing sequence (Z,)men in D. Here
assumptions about the time parameter Tg ({/;, ) > 0 are required for the
first time. Roughly speaking, we need lower bounds of 7g (1;, Zm) > 0 for
“preserving” the information while m — oc.

If T@({ﬁv, Zm) vanishes too quickly, then the comparison with J(-,Zm)
cannot be put into practice long enough for proving estimates.
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Proposition 28. Let a timed forward transition ¥ € é;(ﬁ,ﬁ, (g=)),
a map 5() ([0, 1[— é;(E,E, (@2)), a curve T : 0,1 — E and j € E,
Ae > 0 satisfy

1. Z()) is a timed primitive of 9(-) with m (0) =m § =0,

2. a):(’(z;)vaa):()%vg) S ME <

:Y:g(’?’?) < RE()

Q- (Y,9(4) < co(v), with upper semicontinuous Rc(-), c.(+) > 0,
3. foreach t€[0,1], p(t) := _inf  (G(Z, ¥t,7) + @ (F, T(t)))

zeD,mz<t _
can be approximated by a minimizing sequence (Z,)nen in D and
hnLszth ’/lem §7T15n S t7
ae(zmagn) S )\E . hm7
him < To(¥,Zm)  for all m < n,

Then,
t

0(t) < @.(0) eMet + / eM==9) (e (8) + 2 Re(t) + 2 Ao + T:(1)) ds.
0

Remark 29. If this minimizing sequence (Z,) in D fulfills
SUPy o gy e Con )
To(f(25,1), %)
then the estimate is fulfilled with A. = 0. This provides a way to unique-
ness results in the case of R.(-) =0, v.(¢) = 0.

— 0 (m — o0)

Proof is based on the second version of Gronwall’s Lemma (Cor. 8) :
The timed triangle inequality implies for ¢; <ty <1, Z€D with 7112 < ¢4

@, 0(t2,9) < @(Z Y(t1, 7)) + Be(d) (ta—t1),

LG 7)< BEF0)  +w@(), tety),

As a consequence, . (t) < lilglliélf we(t—h) for every t €]0,1].

Now we prove for any t € [0, 1]

li inf eelith) —eet) < Mo () 4 co(t) + 2 Re(t) + 2 A + TA(1).

Let (2,) denote a sequence in D and h,, | 0 according to cond. (3.), i.e.

{mzm < mZn <t Ge(EmZn) S Ay b < To(,Zm) ¥m <,
GGy O(69)) + @Gy T(1) — e(t) (n — o0)

Due to Prop. 27 and Lemma 21, we obtain for 0 < h < h,, < T@(zz, Zm)

G (V(h, Zm), P(t+h, 7))

~ h ~
< G (Zm, V(7)) - eMeP 4 / eMe (h=9) Q= (4,1) + 37:()) ds
Me h _ q

~ O ~
S E]vs(gm; 1#(15737)) : eME & + ET 678(1/1)

and

G (V(h, Zm), T(t+h))
h

< G (Zm, T(t)) - eMeh +/ eMe(h=9) (e, (t+5)+2 Re(t+5)+7:(¢)) ds.
0

Firstly, @e(t+h) < @ (¢(h,Zn), b(t+09)) + @ (V(h,Z), T(t+h))
results directly from its definition. Secondly, the timed triangle inequality
implies for any n > m
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A hon + G (Zny 0(t,7))
Ae hin + @ (Zn, Z(t))

G Gy 0(6,0)) < & Gons Zn) + G (G 0(5,7))
@ (Zme 1) < @EGmiZn) + G (Zns 7))
and, n — oo leads to the estimate

@Gy 06,9)) + G (Zmy T(1)) <2 A by + (1),
AS a Consequence,

@e(t + him)
hom, ~
< @t bpu®) Mot g [ M e 2 BT ()] s
0 S
So finally,

lin inf eeltthl —eel < Mo (t) + 2\ + ce(t) + 2 Re(t) + T (4). O

Finally, the auxiliary function ¢.(-) is modified with regard to the
transition ¥(-,y) :
pe(t) == inf  ((Z (D) + @ B(1))

- %
Here p. : ExE — [0,00[ represents a generalized distance function
on E that has the additional advantage of symmetry (by assumption) and
satisfies the triangle inequality (not just the timed one).

Roughly speaking, p. might take not all the properties of elements
T,y € F into consideration — compared with ¢.. The compact subsets
of RN give an example with p. := d (Pompeiu-Hausdorff distance) and
ge = qK,N -

In regard to timed transitions, the assumptions about p. have the advan-
tage that they do not consider the comparison of two transitions. Instead
we suppose continuity properties for each transition v, e.g. the distance
D=(Z1,22) between arbitrary points zi, 22 € E may grow exponentially at
the most while evolving along 1;

7~ Def.

Proposition 30. Let p., . : EXE — [0,00] (€ .J), D= RxD C
E, peR, mzd (RS @NPH(E,D, (Ge)eeg), V() :[0,1[— Q;’(E,D, (g)),
:[0,1]— E, y€ E, A. >0 satisfy the following conditions :

z
1. Each q. fulfills the timed triangle inequality, q-.(z,Z2) =0 VZ € ﬁ,
2. De is symmetric and satisfies the triangle inequality,
3. &() is a timed primitive of U(-) with m #(0) > m 7,
4 3 Mc<oo: o (¥), a-(-,%,0) <M.,
5& (w(ha :Jl)v ¢(h752)) S ﬁ€(51752) : eME h V :1717527 h
3 Ra(')ZOI%@)a 78("%15) SRE()?
lim sup ps(wh,w(t,y}z),w(wh,y)) < R.(1)
R10
ﬁs(w(t_hag)v 111(15737)) —0 fO’l" th,
Q- (W, 9()) < celo), with upper semicontinuous Re(-), ce(+),
5. foreach t €01, pe(t) == inf (Be(d(1,9), B) + %(Z T(1)
T < Bt _
can be approximated by a minimizing sequence (Zp)nen in D and
hn, L 0 with
ngm < m g’r’zv < m %(t)7 ﬁe(zmvzn) < /\E'hma
hw < To(¥,Zm), Ge(ZmyZn) < e hy  for allm < n.

t
Then, ¢c(t) < @:(0) Mt + / eMe (79 (e () + 4 Re(t) + 2 \) ds.
0
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Proof is based on the same version of Gronwall’s Lemma as the preceding
Prop. 28 : ¢ (t) < h%nii(?f we(t —h) results from conditions (1.), (2.)

because for any z € D with m % < m Z(t —h),
D (0(6,9), 7) < De(0(6,9), D(t—h.7)) + De(d(t-h.5), 2)
< P (Pt=h,5), &(t,) + P (P(t—h,7), Z)
a(z, z(t)) <q(z @(t—h)) + we((:), ).
For showing hglli(l)lf M < Mo -@o(t) + ce(t)+4 R(t) +2 A,

let (Zn)nen denote a minimizing sequence in D and h,, 1 0 such that

T Zm < TiZn < m (1),

e e e~ ~ vV m<mn,
pe(fmv Zn)v 4= (Zm, Zn) < Aerhpy, b < T@(iﬁ, Zm)

P(W(t, ), Zn) + G(Zn, 2(t)) — @:(t) (n — 00).

According to conditions (2.), (4.), we obtain for all m <mn, 0 <h < hy,

Pe («Z(tfh, ), J(j,zm»
P (V(h,Zm), O(t+h, 7))

< Pe(D(h,Zn), b(h, B(tD))) + P ($(h, (7)), d(t+h, §))
< Pe(Zm V(D)) - M 4 (Ro(t) +o(1)) h

< (A b + DGy O(6,1)) - MP 4 (Re(t) + 0(1)) .

Furthermore Prop. 27 implies for any 0 < h < h,, < 7o (1}, Zm), n>m

e (¥(h,Zm), Z(t+h))
h

< (Ae hum + G (Zn, E(2))) - M +/ eMe (=) (e (t45) + 3 R(t+5)) ds
0

and n — oo leads to
we(t+ hp) < e (t) - eMehm 4 2\ eMehm b 4+ (R.(t)+0(1)) hpn

hm
N / eMehm=9) (¢_(t+45) + 3 Re(t+s)) ds.
0

So finally, lim inf eeltth) —eelt) < M- (t) + co(t) +4 Re(t) +2 Ae.
O

5.3. Timed right-hand forward solutions

5.3.1. Definition = The term “primitive” of ¥ : [0,T[— é;’(E, D, (@=))
is closely related to the expression “solution” Z(:) of a generalized muta-

tional equation Z(-) > f(z(-), -).
Definition 31. For f: E x [0,T[ — é;’(E,ﬁ,(Z]})) given, a map

Z:[0,T[— E s a timed right—hand forward solution of the generalized

mutational equation T (-) > f(Z(-),) if () is timed right-hand forward
primitive of f(Z(-),-):[0,T[— O, (E,D,(q:)), i.e. foreache € J,

LoV telo,T[ 3 a=(t)=an (F@1).t), F(t) = 1=(f@E?),1)) :

nr’?lsgp %(as (F@(t),t) (h,2),3(t+D)) — G- (Z, T(t))- €= @ h) < A:(),

~

forall 7€ D withm Z<m #(t) and limsup &7 -7.(t) = 0,

_ e 10
2. () € UCT([0,T[, E, qc),

3. mz(t) = t+ mz(0) for allt € [0,T7.
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5.3.2. Topological preliminaries Generally speaking, construct-
ing solutions (of evolution systems) by approximation is usually based on
compactness or completeness. In this subsection, we are adapting the term
of sequential compactness to (E, (¢:)cc7) and distinguish between the or-
der of arguments ,,;, ¥ in the vanishing distance ¢ :

4= (Tpn,;, T) — 0 is regarded as right — convergence of (T,,)jen to T,
4=(Z, Zn;) — 0 as left — convergence.

The following definitions can be extended to tuples (E,(gc)eecs) without
time component in a canonical way.

Definition 32. Let E be a set, E = RxE, §. : ExE — [0,00[ (¢ € J).
(E, (Ge)ees) s called timed two—sided sequentially compact (uniformly
with respect to €) if for everyv € E, r. >0 (¢ € J) and any sequences

(%n)nENa (ﬂn)neN in KB satzsfymg

4e(ZTn, Yn) — 0 forn— oo Veed
66(57‘%71)’ q~e(5’§n) <r. VneN Veed
M Ty < T1Yn VneN

there exist subsequences (Tn,)jen, (Un;)jen and some I € E such that
Ge(Tp,, ) — 0 .
& B,) — 0 forj oo Vecd
Some ostensible metric spaces have this compactness property in common
like (K(RY), d), but in general, it is too restrictive.
Indeed, (K(RY),qxc.n) is not two-sided sequentially
000 . © compact since, for example, K, := {n%_l <lz| <1}
K, K, K; K and K :=B; satisfy d(Kn,K)=qxn(Kn, K)—0
(n — 00), but g n(K,K,)> %
So for weakening this condition on (E, (gz)ec7), we coin a more general
term of sequential compactness that is particularly adapted for a sequence
of Euler approximations at a fixed point of time :

Definition 33. Let © denote a nonempty set of maps [0,1] xE — E.
(E, (Ge)eeT, ©) s called timed transitionally compact if it fulfills :

Let (Tp)nen, (hj)jen be any sequences in E, 10,1[, respectively and
veE with sup,, G=(V,%n) < oo for eache € J, h; — 0. Moreover
suppose Uy, : [0,1] — O to be piecewise constant (n € N) such that all
curves U, (t)(-, ) : [0,1] — E have a common modulus of continuity
(neN, tel0,1], 7 € E).

Each 9, induces a function (") : [0,1] — E with §,(0) = &, in
the same (piecewise) way as timed forward transitions induce their own
primitives according to Remark 26 (i.e. using Uy (tm) (-, Jn(tm)) in each
interval Jtm,tms1] in which U,(-) is constant).

Then there exist a sequence ny / oo and T € E satisfying for each e € J,

~ o
~ X o - a a

im m @y, = ma, X T~
:If —oo " A - . . -
llirn_%lig q@(ng JT) = 0) Xp«o T . . )’72(-)
limsup sup G (%, Yn,(hy)) = 0. X -

Jrmee k2 O hy hy hy
A nonempty subset F C E s called timed transitionally compact in

(E, (¢c)eeg, ©) if the same property holds for any sequence (T )nen in
F (but T € F is not required).
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Remark 34. Suppose that ( (Ge)ecr) 1s timed two-sided sequentially
compact (uniformly with respect to €). Then (E, (Gz)zc, @ (E, D, (q.)))
is timed transitionally compact since any sequences (), (hj), (19“()),
(yn) as in the preceding Definition 33 fulfill
Ge @y Un(hyn)) < ce(hp) — 0 for n — oo and every ¢ € J.
So there exist a sequence ny " oo of indices and T € E with
Ge(Tn,, ) — 0, G(Z, Yn,(hn,)) — 0 for £ — oo
and finally, - (Z, Un, (h;)) < @(Z, Un, (hn,)) + ce(hy) for hy,, <h;.

5.3.3. Convergence theorem Generally speaking, the existence of a
solution can often be concluded from approximation. Seizing this well—
tried notion here, we use Euler method in the next subsection. As a first
step in this direction, the relevant kind of convergence has to be specified.
It is to guarantee that the limit function of approximating solutions is a
solution (in other words, it is to preserve the solution property).
Assumptions (5.ii), (5.iii) of the next proposition formulate a suitable form
of convergence that might be subsumed under the term “two-sided graphi-
cally convergent”. Obviously, it is weaker than pointwise convergence (with
respect to time) and consists of two conditions with the limit function
appearing in both arguments of g.. Admitting vanishing “time perturba-
tions” 4, (53. > 0 exemplifies the basic idea that the first argument of ¢,
usually refers to the earlier element whereas the second argument mostly
represents the later point.

Proposition 35 (Convergence Theorem).
Suppose the following properties of

foy F:Ex[0,T[ — 6, (E,D,(¢)ecy)  (meN)

Ty T 0,7 — E :
1. M. = iutpw{a:*(fm@,tm < o0,
Re > sup {5t B oo )y e (FnBo), (PG}
with T:I;ysup e’ R, =0,
e 10

2. limsup @?(fm@hh), fm@mtz)) < R,
for m — o0, ta—t1 10, G(y1,92) — 0 (my1 < miY2),

SR () > fm(gm('% ) in [OaT[7

4. We(h) = sup we(Tm,h) < oo (moduli of continuity w.r.t. Ge)
limsup @.(h) = 0,
h10
5.V t1,t2€[0,T], t3€]0,7] 3 (mj)jen with m; /oo and

() limsup Q- (f@E(t) 1), fm,(E(t1),11)) < Re,

@ 3 (9f)jen: 05 \0, 4= (Z(t2), Tpm, (t2+§’)) — 0,
1 .Z’(tg) 1 l‘m] (t2+5/)

@) 3 (§)jen: 0N\ 0,  G(Tm,(ts—0;), Z(t3)) — O,
1 (Em](t ) < T x(tg)

for each € € J.

Then, %(-) is a timed right-hand forward solution of Z(-) > f(Z(-), )
in [0, T
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Proof. The uniform continuity of Z(-) results from assumption (4.) :

Each Z,,(-) satisfies g. (fm(tl), Em(tg)) < Welta —ty) fortg <ty <T.
Let e € J, 0 <t <ty <T be arbitrary and choose (0});en, (J;)jen,
for t1, t2 (according to condition (5.ii), (5.iii)). For all j € N large enough,
we obtain t; + 5’- <ty —9d,; and so,

7 (3(01), 3t2) £ T(50), Ty (148))) + To(Fony (0148)), T (12-5))
+ e (Tm, (t2—0;), T(t2))
< o1) + WOty — 1) for j — oo.
Nowlet e € J, 2€D and te[0,T], 0<h<To(f(Z(),t), ) be
chosen arbitrarily. Condition (6.) of Definition 17 ensures for all k €]0, h[
sufficiently small
@(JE®,6) (0,2), Bt+h) < @(F@(E),6) (h=k,Z), T(t+h) + .

According to cond. (5.1) — (5.iil), there exist sequences (m;);en, (6;)jen,
(6%)jen satisfying m; oo, 0; 10, 0510, ;406 <k and

Q= (F@(®), 1), s (E(),8)) < Re+h?,
e (xmj (t+h—9;), (t+h)) — 0,
g-(Z(t), Tm, (t+65)) — 0.

Thus, Proposition 27 implies for all large j € N (depending on ¢, Z, ¢, h, k),
a-(F@(0),0) (h, 2), T(t+h)
< G (f@@1),t) (h—k, 2), T, (4065 + h—Fk))

< (S
E(a:mj(t+5’ +h=k), Tm,(t+h—25;))
T, (t+h — 65), z(t+h)) + h?

1) R

+
+ J

(@
Ge(Z, T, (t+0))) - eMer(h=h) .
h—k

+ €M€-(h_k_s) (é;(f(f(i),t), J?m]- (-%7nja')|t+5;+5) + 3R5) ds
+ Qe(k — 85— 81)
+ e (T, (t+h — 6;), Z(t+h)) + h?

IN

S—

< (@G 70) + T@(0), T, (t+5)) - M) 4
h ~ ~
+‘/0 eME‘(h_S) Q’:(f(g(t),t), fmj(gmj’.)|t+5;+s) dS
+ W (k) + 2h? + const-h R,
< Ge(Z Z(t) - Mt + 3h% + const-h R. + ©.(k)
h
[ O (Rt 4 @ (o, GO Ty Gy ))

< G-(Z, Z(t)) -eM=" 4 const- h (R. + h) + @.(k)
+ h eMeh Q= (fm, (E(2), 1), Fony T, () DI

h
+ / eMe(hme) QH(fmJ(mmJ ‘t+5” fmJ(me |t+6/+s) ds.
Now j 0—> oo and then & — 0 provide the estimate
G- (@), 1) (h, ), F(t+h))
< (%, () eM" + const- h(Re+h) + 0 + 0

+h eM" limsup sup Q (fmj(‘%mw'”wa/.’ fmj(fmj7')|t+5/.+s)'
j— o0 0<s<h J J
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Finally convergence assumption (2.) together with the equi-continuity of
(T (+))men ensures

hlilfélp l;mjli}f OSSSI;hQE (fm, (xmj,~)|t+5}7 fm, (xmj,~)|t+5;_+s) < R.
and thus,

limsup + (cfa (f(ﬁf(t),t) (h,2), Z(t+h)) — q=(Z, Z(t)) - M= h) < const- R..
h10 5

5.3.4. Existence due to compactness Our intention is to construct
a timed right-hand forward solution of a generalized mutational equation
by means of Euler method. For considering the family of (g.).c 7, we pre-
fer some form of compactness to a version of completeness. Thus in view
of Convergence Theorem (Proposition 35), the term “timed transitionally
compact” (Definition 33) comes in useful.

Proposition 36. (Existence of timed right—hand forward solutions
due to timed transitional compactness)

Assume that the tuple (E, (3-)ec, é';(E,lN), (g=))) is timed transi-
tionally compact. Furthermore let f : E x [0, 7] — é';(E,ZND, (Ge)ecr)
Julfill for every e € J

1. M. = sup a_ (f(y,1)) < 00,
t,y

2. ce(h) = sup Be(f@O)(R) < oo, c-(h) M50
ty

3. 3R : swp %(fGt) < R<oo, &"R.0
t,y

4. 30(): @?(f@l’tl); f(@2,t2)) < Re + @aiae@b%)-ﬁ-tz—h)
forall 0 <t <ty <T and y1,92 € E (m1 91 < 71 Y2),

We(+) > 0 nondecreasing, limlscl)lp We(s) = 0.
S

Then for every Tg € E7 there is a timed right—hand forward solution

Z:[0,T[ — E of the generalized mutational equation %(-) > f(Z(-), -)

Proof is based on Euler method for an approximating sequence (Z,(+))
and Cantor diagonal construction for its limit Z(-). For neN (2" >T') set

E" = gln, % ::Zh" for j=0...2",
Zn(0) = Ty, Zo(*) == o,

Talt) = F@at), ) (t—th, Fa(t)) for te i, 571], j<om
The uniform modulus of continuity ¢.(-) can be replaced by a non-
decreasing convex function [0,7+1] — [0,00[ such that all Z,(-) are

equi—continuous in the sense of
aa(%n(s), 5n(t)) < c(t—s) forany 0<s<t<T+h, and €€ J.

Since J is countable there is a sequence (ji)ren with {j1,j2 ...} =
J C [0,1]. Now for every t €]0,T[, choose a decreasing sequence
(0k(t))ken in Q- T satisfying
t) < b t+6k(t) < T,
) < hg for any j € {j1...Jk}
Then, ¢, (in(t), fn(tJer(t))) < hy foranyj e {j1...5x}, k,n€eN
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and s0  G. (Tn(t), Tn(t+6,(t)) — 0 (k—o00) forevery e € J,
uniformly in n.

Thus for each ¢t € ]0,7] and any fixed € € J, the timed transitional
compactness of (£, (¢-), ©, (E, D, (q:))) provides sequences my, / 00,

ng / 0o (my < ng)of indices and an element #(t) € E (independent of £)
satisfying for every k € N

lsglz qe (im (t), E(t)) < %’
sSup QE( (t),  Zn,(t+ 0, (t))) < %

1>k
(In particular, each my, n; may be replaced by larger indices preserving the
properties.) For arbitrary K € N, these sequences my, ny /' 0o can even
be chosen in such a way that the estimates are fulfilled for the finite set of
parameters t € Qx :=|0,T[ N N-hx and € € Tk :={€j,,€j, - -€j} T
simultaneously.
Now the Cantor diagonal construction (with respect to the index K)
provides subsequences (again denoted by) my, ng /" 0o such that my, < ny,

SUP ae(im (t)7 %(t)) = %
lbgp G=(2(s), Tni(5+0my(s) <

for every K € N and all € € Jg, s,t€Qk, k> K.

In particular, g.(Z(s), Z(t)) < c.(t—s) forany s,t € Qn = Ux Qk
with s <t and every € € J. Moreover, the sequence (2, (-))ren fulfills
forall ee J, K € N, t € Qk and sufficiently large k,! € N (depending
merely on ¢, K)

@ (Tnn (), T (t+0m, (1) < 5 +7
For extending #(-) to ¢t €]0,T[\ Qn, we apply the timed transitional
compactness to ((Zn, (t))r ey and obtain a subsequence n;; /oo of indices
(depending on ¢) and an element Z(t) € E satisfying for every ¢ € 7,

qNE (%mj (t)’ 5(’i’)) — O’ .
A 51>1P q~E (5(”’ 5mi (t + 6mj (t))) —0 for J e
i>j
This implies the following convergence even uniformly in ¢ (but not nec-
essarily in ¢)
limsup limsup ¢ (%, (t—2hk), Z(t)) =0,

K—o k— o0

N
limsup limsup §¢.(Z(t), Zn,(t+2hk)) =0.

K—o k— o0
Indeed, for K € N fixed arbitrarily, there are s = s(¢t, K) € Qx and
K' =K'(e,K)eN with t—2hxg < s < t—hg, K' > K and

Qe (T, (8), Ty (54 0y (s))) < £+ 7 forall k1> K’
So for any k,1; > K', we conclude from 5mzj () < % hml < l hy; < % hi

Gc (T, (t —2hg), T(t)) < (T, (t—2hK), T, (s
+ ¢e (EEM (8)s acn, (
+ qe (5% (s+ 5mz]. (s))7 ni; (t)
+ G (T, (1), (1)
< colhg)+L+4 +c5(2hK)+q5(xm (1), Z(t))

and j — oo leads to the estimate g. (%, (t—2 hi), T(t)) < 2c.(2hg)++.
The proof of  limsup limsup gz (Z(t), Zn, (t+2hk)) = 0 is analogous

K— o0 k—

(with &' = §'(t, K) € Qg satisfying t+hg < s <t+2hg).

s
t

)
+ 0y (5)))
)
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Now we summarize the construction of Z(:) in the following notation :
For each ¢ € J and j € N, there exist K; € N (depending on ¢,j) and
N; € N (depending on ¢, j, K;) such that N; > K; > N;—; and

{‘75(55%(8—2%), #s)) <
A
@ (2(t), Tn;(t+2hk;)) <

for every s,t € [0,T].

[T

Convergence Theorem (Prop. 35) states that Z(-) is a tlmed right-hand

forward solution of the generalized mutational equation 1:( )3 F(T, ).
Indeed, set g, : (§,t) — f(Zn, (t;q2+2th),t7vj2+2th) for 1% gt<t‘}vj1
and regard the sequence t —— Ty, (t+2hy, +2hg;) of solutions.

Obviously conditions (1.), (3.), (4.) of Proposition 35 result from the as-
sumptions here. Furthermore, we obtain for any 0 < ¢t <t/ < T (with
% <t<ty i <t <thiandjeN, eeJ

J J M J

Q= (3;.1) 9;(7.1)
= Q- (F(En, (1552 + 2 ), 1532 42, )
T (7w, 02 4+ 2hi), 2 4+ 20, ) )

oS

< Re + O (@n, (08242 hi,), B, (132 +2hk,)) + (b—a) hy,)
< R. + Oc(ce(t'—t+2hy;) + t'—t+2hy,)
— R. for j — o0, t' —t |0 and all ¥,7,

i.e. condition (2.) of Proposition 35 is also satisfied by (g;);en.

Finally for verifying assumption (5.) of Convergence Theorem, we benefit
from the convergence properties of the subsequence (Zy,);en mentioned
before. It ensures that for every t € [0,T[ (with 1% <t< t’}vtl),

Q= (F@®), 1, @), 1)
Q= (F @), 1), flEn, (" +2hic,), 132 +2huc,))

< R. + ws(qs(x , xN t“+2+2hK ))) + 2th th;l\aj?,t)
< R. + ws(qs(:r ,$N t+2hK )))+Cs(2th)+2th+2th)
— R, for j — oo.
O
Remark 37. (i)  Assumption (2.) is only to guarantee the uniform

continuity of the Euler approximations Z,(-). If this property results from
other arguments, then we can dispense with this assumption and even with
condition (4.) of Definition 17.

(ii)  The proof shows that the compactness hypothesis can be weak-
ened slightly. We only need that all Z,,(t) (0 <t <T,n€N) are contained
in aset F C E that is transitionally compact in (E, ( ), @H(E D, (q.))).
This modification is useful if each transition ¢ € @;’ (E,D,(¢.)) has all
values in F after any positive time, i.e. I, x) € F forall 0<t<1,
¥ € E. In particular, it does not require additional assumptions about
the initial value 7y € E.



32 THOMAS LORENZ

Corollary 38. (Existence of timed right—hand forward solutions
due to timed two—sided sequential compactness)
Suppose that (E, (@c)eey) s timed two-sided sequentially compact
(uniformly with respect to €). Moreover let f : E'x [0,T] — é'p_’ (E,D,(q))
satisfy the assumptions (1.)-(4.) of Proposition 36 for all € € J.
Then for every Tg € E, there is a timed right-hand forward solution

T:00,T[— E of () 3 f(&(),-) in[0,T] with T(0)= Zo.
Proof results directly from Proposition 36 and Remark 34. ]

5.3.5. Estimates Finally we extend the estimates of § 5.2 to timed

right—hand forward solutions. To be more precise, Propositions 27, 28 and

30 find their counterparts here and their proofs are based on the same no-

tions. So the same obstacles as before keep us from estimates that are easy

to apply : Due to the definitions, only elements of D wusually appear in
o

the first argument of g.. Furthermore a solution Z(-) of Z(-) > f(Z(-), -)
is required to fulfill the condition

limsup 4 (@ (F@(0),1) (h,2), F@+h) = @(Z 30) -3 O) < 5.(0)
hlO

with Z(t +h) and Z(¢) merely in the second arguments of g.. So we
cannot expect an explicit estimate of g-(Z(t), y(t)) for timed right—hand
forward solutions Z(-), y(-) in general.

Proposition 39. Assume for f: E x [0,T] — ép'_’(E,f), (¢z=)) and
the curves I,y € UCH([O,T[,E, ge)

o ~

1.a) y() > fy(),-) o [0,T],

b) (t) € D for all t € [0,T, N
lir}?lsgp B @ (@t +h), f@@),1) (h2(1) < 2(f@1),1),

o) ¢ (Z(),y(t) < m;?félp G (T(t—h), y(t—h)),
d) T 5(0) = T g(O) = 0,

2. M. = sup a7 (f(v,t)) < oo,
t,o

3. IR <00 : sup %(f(@,1) < R, & R 2490,
t,0

4. 3 @s(')vLs :

Q- (f(01,t1), f(D2,t2)) < Re+ Le-G(01,02) + @e(t2 — t1)
fOT all 0 <t <ty <T and ’171,’172 S E with m™ v1 < ™ "JQ,
We(+) > 0 nondecreasing, limsup ©.(s) = 0.
Lo
¥ e(LetMe)-t _q

Then,  G:(Z(t), (t)) < G(%(0), §(0)) - elF=tMIt 4 5 R, =0

Proof  is a consequence of Gronwall’s Lemma 6 : ¢ (t) := q-(2(t), y(t))
satisfies the semicontinuity property ¢.(t) < limsup @.(t—h) according
hl0

to assumption (1.c).

Moreover, limsup M < (Le+M.) pe(t) + 5R. forallt
hl0

results from Proposition 27 and
plt+1) < T(T+D), F@0),1) (b, 71)
+ @ (f@(). 1) (h, T(t)), Y(t+h
< @ (f@@).0) (h, 70), Gt+h
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Proposition 40. L B
Assume for f: Ex[0,T] — 6,7 (E,D,(¢)) and 2,y :[0,T[— E
1#() 3 f@), ), ¥ 3 JGE),-) i [0,T],
m1 2(0) = m y(0) = 0,

2. M. := sup a- (f(0,t)) < oo,
t,v
3. JR.<o0: sup 'ys(f(i?, t) < R, e’ R el0 0,
to
4% 3 O (), Le
Q= (f(v1,t1), f(V2,t2)) < Re+ L~ qe(01,02) + Dc(ta — t1)
fO’f’ all 0<t; <ta <T and 51,52 S E with 51 <m 52,

We(+) > 0 nondecreasing, 1imls$1p We(s) = 0.
S

Furthermore suppose the existence of Ac > 0 such that for each t € [0,T7,
the infimum
pe(t) == inf (G2, 7)) + 2:(Z §(t)) < o0
Z S D7 T E S t
can be approzimated by a sequence (Zj)jen in D and h; | 0 with

mzy <mze <t qe(Z5,2k) < Ae - hy, by <To(f(Z5,t), Z5) Vij<k.

e(Le+Me) -t _

Then, -(t) < ¢.(0) eLetM)t 4 2 ((Lo+1) A\ +4R.) - =

Proof follows exactly the same track as for Proposition 28 and is based
on the second version of Gronwall’s Lemma (i.e. Corollary 8). o

Remark 41. If the above-mentioned sequence (Z;);en in D satisfies
supy s ;e (Z5,50)
To(f(%5:1), %)

then, e (t) < p(0) elbetM)t 4 QR %

In the case of symmetric . and D dense in (E,§.), we obtain ¢ (t) =

= ((1),y(1))-

— 0 (j — o0)

In the following counterpart of Proposition 30, it is a relevant point that the
assumptions about p. do not consist in the comparison of two transitions

of f, i.e. regularity condition (9.) on f(v1,t1), f(V2,t2) is used only with
Q- (induced by ¢.).

Proposition 42. Suppose for pe,de : Ex E —[0,00[ (¢ € J),

PERAN>0 and f:Ex[0,T] — 6, (E,D,(G)), %§:0,7[— E
the following properties :

1. (B, (§)ees ép'_’(ﬁ, D, (q.))) is timed transitionally compact,

2. each pe is symmetric and satisfies the triangle inequality,

5. Acw) = inf (P-(31,2) + G-(2,32)) < 00 for 1,1 € E,
z e 5
71 2 < ™ Vg

4. E(-) is a timed right-hand forward solution of Z(-) 3 f(Z(-), -)
constructed by Fuler method according to the proof of Prop. 36,

5. y(+) is a timed right-hand forward solution of y(-) > f(y(), ")
in [0,T[ with m 2(0) =1 y(0) =0,
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6. 3 M <o0:aD (7, f (7, ), A2 (.7, @) < M.,
pe(¥(h,21), ¢(h, %)) < Pe(Z1,20) - Mt

V 21,5 € B, helo1], ¥ € {f(Zs)|Z€E,s<T},

" ’ R€<OOI WE(.’%’ f(i,)), :Y\E(Wga f(ga)) < Rs7
lim sup pe (J(h-, P(t,2)), $(t+h, 5))
hl0 h

V ZeE, te0,1, v {f(Zs)|ZeE,s<T},
8 Fel):  P(P(t,2),0(t+h,2) + B(d)(h) < co(h)
V ZeB, te0,1], ye{f(Zs)|Z€E, s<T},
ce(h) — 0 for h |0,
9. 3 3.0, L. :
Q- (f(W,th), f(@o,t2)) < Re + Lo Ac(01,02) + Golts —t1)

fO?”CL” 0<t;<ta <T and 51,526@ with 7T151§7T1f172,

We(+) > 0 nondecreasing, limls(lJJp We(s) = 0,
S

IA

R,

10.  for each 56177, 60>0, 0<s<t<T, O<h<l with t+h+6<T,
the infimum A, (f(ﬁ, s) (h,0), Y(t+h+6)) can be approzimated by
a sequence (Zp)nen in D and h, 1 0 such that for all m < n,
TiZm ST Zn < T Y(t+h+o),  Pe(Zm,Zn) < Ac - hm,
hm < T@(]’F(ﬁ, 8)s Zm), 4= (Zm, Zn) < Ae - him.
Then, ¢(t) := lir?ls(l)lp A(F(t), Gt +0))  fulfills

e(t) < (pc(0) + (BR-+2X) t) (1+Lct) e*Met,

Proof. Let (Z,(-))nen denote the sequence of Euler approximations
according to the proof of Proposition 36, i.e. for n€N (with 2" > T') set
by = &, t = jby for j=0...2",
fn(()) = %O, 50() = .%0,

Ta(t) = J@a(t), 1)) (t—th, Ta(8])) for €]t 61, j<2m
Then the Cantor diagonal construction provided a subsequence (Zp,(+))
with the additional property

0=(Z(t), Ty, (t+2br)) — 0 (k—> o0) for every ¢ € [0,T7.
Proposition 30 and condition (9.) imply for any 6 >0, k€N (with 2b < 9)

Ac (T (t+2bg), Gt +0))

Ac (T (2b1), 5(9)) - €Mt

IN

t
b [ M (R L A @ (5525 ), 5+9) + 5.0
i .
+ 4R.+2)X.) ds.

The triangle inequality of p. ensures A (3y,73) < pe(01,V2) + Ac(To, U3)
for any v1,v2,v3 € E and thus,

Ac(Fny (t+2bg), F(t+0))
< AL (T, (2bk), §(6)) - M
t
+ / eME.(t_S) (La Ca(bnk) + LE AE(%nk(s—"_zbk)’ §(8+5))
0
+5R 42\ +3:(9)) ds
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< ANE (5%(2 b), §(5)) CeMet 4 (5R5+2>\5+@s(5)+Ls cs(bnk)) M-t 4
t
I eMgt/ e~Mes [ A, (mnk(s-i-Qbk) (5"‘5))
0

Now the well-known integral version of Gronwall’s Lemma (strictly speak-
ing, applied to a nondecreasing semicontinuous auxiliary function) provides
an upper bound

A (Fn, (t+2by), G(t+0)) - e Met

< AT (201), T(9)) (1 + Lo t Met)

+ (5Re+2Ac +35:(6) + Le co(bny)) (t + Lo & eMet).
So finally we obtain A (7 (1), (t+5))

<limsup (P (T(t), Tn, (t+2bk)) + Ac(Tn, (E+2br), Y(t+0)))
k— o
< 0 + limsup As(ink_(Qb ), 9(0)) 1+ Let) e*Met
k — oo
(14 Let) e2Met

k
+(BR4+2A+03:.(0)) ¢
(55(5(0), 5(6)) + (5 Re + 2 \e + 3:(5)) t). (1+L.t) e2Met
because A (Tn, (201), 5(8)) < Pe (T, (2b1), (0)) + A ((0), §(5)). O

IN

(
(
5.4. Systems of generalized mutational equations

Generalizing mutational equations in the presented way has the useful
advantage that components of a system can come from different applica-
tions — for example, a first-order geometric evolution and a QO semigroup
on a reflexive Banach space. To be more precise now, let (E1, D1, (¢})ee7,)
and (E'g, .52, (¢2)eres,) satisfy the general assumptions of this section 5.
Furthermore é;’ (Ey, Dy, (@})-c7,) abbreviates timed right-hand forward

transitions of order p and, O/ (EQ, Ds, (¢2)ere7,) denotes timed right—
hand forward transitions of order p'.

Convention in § 5.4. For the sake of simplicity, we always restrict
ourselves to tuples (T1,%2) € Ey x By with m 7, = m To, i.e. the
components T € El, To € E2 refer to the same point of time.

Strictly speaking, we consider elements (t,z1,z2) € R X E; x Ey with
Def.

sets Ep, F2 # 0 and prefer the notation (71, Z2) = ((t,21), (¢, 22)) in
the style of preceding sections.

Definition 43. For ¥, Eé"’(El, Dy, (G1)) and 9, Eép'_/(Eg, Ds, (32)),
deﬁne 191 X 192 [O 1] X E1 X E2 — E1 X E27
(h, %1, T2) — (D1(h,T1), Da(h,T2)).

These maps ¥1 x U induce timed forward transitions of order max {p,p'}

on (E1 X E27 D1 X DQ, (agl + 55%)86\71, E/Ejz)
(as it is easy to verify in details).  So assuming transitional compactness
of both components and suitable conditions on

(fh f2) : [OvT] X Ey x By — @;(Ellev (aal)) X @pH(E%DQa @?))
the results of § 5.3.4 guarantee the existence of a timed right-hand forward
solution (%1, Z2) : [0,T[— E1xE, of the generalized mutational equation

(z1(-), z2(-))° > (.}?1(51()7 z2(+), +), .f;(%l()v za(+), ))
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In this context, only one asymptotic demand (for h | 0) has to be fulfilled
by both components Z;(-), T2(-) simultaneously. So it is not obvious that
(Z1(+), T2(+)) is a timed right—hand forward solution of the system

Na0s h@e, &0, )
T2() 3 fa(@1(), (), -)

(i.e. separately with respect to each component). Seizing the notion of
Proposition 36, the Euler method can be applied to

(El x Ej, (qul + 552)8651,6’6\727 @;(ElaDlv (aal)) X 9;(E2ﬂD27 ((75%)))
immediately. In addition, each component of the Euler approximations
solves its own ’approximated’ mutational equation in F; and Fs, re-
spectively. So the key point is to adapt Convergence Theorem 35 to each
component of limit function [0,7[ — E; X Es. (Its proof follows exactly
the same track.) Finally Proposition 36 also holds for systems.
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