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Zusammenfassung:

Die Photorekombination hochgeladener Quecksilberionen wurde mittels einer Elek-
tronenstrahlionenfalle (electron beam ion trap) experimentell untersucht. Ein Elek-
tronenstrahl variabler Energie überstrich den Bereich 45− 54 keV, in dem die KLL
Resonanzen der Hg75+...78+-Ionen liegen. Zum Nachweis der Photorekombination
diente die dabei erzeugte Strahlung. Dies ermöglichte es, die Anregungsenergien
dieser Resonanzen zustandsselektiv mit Meÿfehlern kleiner als ± 5 eV zu bestim-
men. Diese Genauigkeit gestattete es zum ersten Mal, zwischen verschiedenen ab
initio Berechnungen für eine Anzahl von Kon�gurationen zu unterscheiden, wobei
sich einige signi�kante Abweichungen zeigten. QED-Beiträge und Kerngröÿene�ekte
von jeweils in etwa 160 eV und 50 eV muÿten dabei berücksichtigt werden.

Die hohe experimentelle Au�ösung erlaubte es zudem, bei einzelnen, zustandsse-
lektierten Resonanzen die Linienpro�le genau aufzuzeichnen. Diese wiesen eindeutig
durch Quanteninterferenz zwischen radiativer und dielektronischer Rekombination
verursachte Asymmetrien auf. Zum ersten Mal konnte so bei hochgeladenen Ionen
die diese Asymmetrie charakterisierenden Fano-Parameter mit Meÿfehlern von nur
6% bestimmt werden.

Abstract:

The photorecombination of highly charged mercury ions was studied experimentally
by means of an electron beam ion trap. The KLL resonances of Hg75+...78+ ions
were scanned with an electron beam of variable energy (45− 54 keV). The photore-
combination process was monitored by recording the emitted radiation. By these
means, the excitation energies of state-selected resonances were determined with
uncertainties as low as ± 5 eV. Such accuracy made it possible for the �rst time
to distinguish among di�erent ab initio calculations for the various con�gurations,
revealing some signi�cant discrepancies. These predictions included QED and �nite
nuclear size e�ects as large as 160 eV and 50 eV, respectively.

The high experimental resolution allowed one to measure precisely the line pro-
�les of state-selected resonances in individual charge states, which showed clear
asymmetries arising from quantum interference between radiative and dielectronic
recombination. For the �rst time in highly charged ions, the Fano parameters char-
acterizing the asymmetry could be determined with relative uncertainties as low as
6%.





You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New
York and his head is meowing in Los Angeles. Do you understand this? And radio

operates exactly the same way: you send signals here, they receive them there.
The only di�erence is that there is no cat.

Albert Einstein
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Introduction

The discovery and subsequent explanation of the photoelectric e�ect hundred years
ago by Albert Einstein is considered one of the initial milestones in the development
of quantum mechanics. Nowadays, the availability of more and more powerful light
sources of lasers, synchrotrons and free-electron lasers, capable of delivering pho-
tons of almost any desired energy, has made it possible to study photoionization of
single atoms both for inner and outer shells, and contributed greatly to our current
understanding not only of atoms, but moreover of molecules, clusters, surfaces and
solids.

K
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Figure 1: Two di�erent pathways for photoionization are shown on the left side of the �gure,
namely direct photoionization (DPI) and resonant photoionization (RPI). The picture on the right
side illustrates the time-reversed radiative recombination (RR) and dielectronic recombination
(DR) processes, respectively.

The time-reversed process of photoionization, illustrated in the right hand side
of Fig. 1, is photorecombination, which is as important in the physical world as its
counterpart. The most common photorecombination phenomenon is the capture of
a free electron by an ion under emission of a photon, dubbed radiative, or direct
recombination. A slightly more complex recombination process is the capture of a
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Introduction

free electron with the cooperation of another electron in a bound state. Thereby the
bound electron resonantly absorbs all the available energy, i.e., the kinetic energy
of the incoming electron and the binding energy of its �nal state, and undergoes a
transition between two electronic states. Both, the initial ground state of the ion
in the charge state q as well as the excited intermediate state of charge q − 1 are
discrete. If the intermediate state stabilizes through photon emission, one calls this
phenomenon dielectronic recombination.

The central goal of this work is to study the interplay of these two mechanisms
in very heavy, highly charged ions, and to extract precision data on their electronic
structure for comparison with theory, making use of their collision energy depen-
dence.

Photons emitted by electrons recombining with ions play a central role in the
energy transport and in the ionization balance of plasmas. In particular, photore-
combination and photoionization are very important in high temperature plasmas.
Examples for high temperature plasmas on earth are found in fusion devices such as
tokamaks or in the foci of powerful pulsed lasers. Knowledge of the cross sections
of these interactions between ions, electrons and photons and their scaling laws are
essential to model the charge state evolution of the di�erent plasma constituents
and the energy balance. Moreover, high temperatures are common in vast regions
of our universe, as for example in the coronae of stars and active galactic nuclei
(AGN). Here, atoms loose a large number of electrons and become highly charged
ions (HCI). Their study has developed rapidly in recent years, and recombination
processes of electrons with HCI have again attracted particularly strong interest.

Due to the tremendous energy concentration needed to produce HCI, these ions
are extremely rare on earth. However, they can now be routinely produced in
laboratories using tokamaks, heavy-ion accelerators, lasers, and ion sources such as
EBIS (electron beam ion sources), ECR (electron cyclotron resonance ion source)
and EBIT (electron beam ion trap), which will be explained later in this work.

In summary, the speci�c radiative and collisional properties of these ions are
of enormous practical relevance in �elds such as thermonuclear-fusion research, in
the development of x-ray lasers, for spectral diagnostics in astrophysics or even for
medical sciences, as in the ion irradiation tumor therapy [Sch00]. Although their
di�cult production still restricts a widespread use, applications of HCI experienced
considerable growth in the last years and, for example, new projects have been
suggested for utilizing HCI for nano-structuring and micro-analysis of surfaces.

On the other hand, highly charged ions are of generic importance in fundamental
research to advance our understanding of the electronic structure of bound systems
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for mainly two reasons. First, many phenomena which are normally weak in neutrals
atoms quickly grow as a function of the ion charge state Z, and are thus magni-
�ed. For example, the magnetic dipole (M1) transition probability (2 3S1 → 1 1S0)
scales with Z10. Second, HCI can be prepared as relatively simple systems, with a
well-de�ned number of typically few electrons or even as hydrogen like systems up
to U91+. These ions have the least complex electronic structure, and can be studied
theoretically with very high accuracy. Calculations for few-electron systems, are
far more di�cult and less reliable, but a strong theoretical development is taking
place currently. HCI, o�ering the possibility to increase the number electron sys-
tematically in a controlled way experimentally complement these e�orts in a ideal
way.

Despite of their structural simplicity, some aspects of the physics of HCI are not
easy to treat theoretically, and are not yet completely understood. This is, e.g., the
case for the quantum electro-dynamical (QED) contributions to the binding energy,
which become strongly enhanced for the heaviest HCI due to the Z4 scaling of the
leading terms of the radiative corrections. Quantum electrodynamics is, for these
reasons, essential to describe the electronic structure of HCI. The interaction of the
electron with its own radiation �eld in the presence of the deep nuclear Coulomb
potential a�ects the electronic energies at the 10−3 level, roughly a factor of thou-
sand larger than in atomic hydrogen. In addition, the usual perturbative approach
breaks down under these circumstances, and new mathematical techniques have to
be applied. Here, HCI provide the unique opportunity to study QED, the most
precise and most accurately tested theory among the �eld-theoretical approaches
representing the foundations of our physical understanding, in the non-perturbative
regime. Whereas a relative accuracy of 10−14 has been achieved in the calculation
of the 1s−2s transition energy in atomic hydrogen, limited by the knowledge of the
proton structure, the theoretical uncertainty in the precision of the 1s − 2p transi-
tion energy in hydrogen-like uranium is accurate on the order of 10−5, limited by
the uncalculated higher-order Feynman diagrams as well as by nuclear excitations.

Another intriguing aspect is the tremendous increase of the electron-nucleus in-
teraction due to the Z−1 scaling of the electron distance to the nucleus in H-like
ions and the resulting Z−3 scaling of the electronic density. This phenomenon is
not unique in HCI, since any 1s electron in a neutral, heavy element is also subject
to the same exposure to unshielded nuclear �elds. However, the large number of
accompanying electrons makes the disentanglement of e�ects due to the electron-
nucleus overlap, so-called nuclear size e�ects, far more di�cult both experimentally
and theoretically. Examples of the size of these e�ects are energy changes in the
order of 10% for the hyper�ne splitting of the 1s electrons for ions belonging to
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the upper third of the periodic table, induced by the �nite extension of the nuclear
charge, and even still 2% shifts due to the nuclear magnetization distribution. We
will see in the present work how levels can change by as much as 50 eV due to such
interactions.

In general, a photorecombination experiment can be used to study QED and
nuclear size e�ects provided that the accuracy in the determination of the collision
energy is su�ciently high. This means that beams of ions or electrons or both have
to be prepared and brought to overlap with well de�ned relative velocities, and that
the photorecombination yield has to be detected.

Some twenty years ago, to prepare extremely highly charged ions required large
facilities with a series of accelerators providing ion energies at least of 100 MeV/u.
High ion velocities allow to strip the electrons o� while passing through foil or gas
targets. Experiments were di�cult, since the ion velocity is poorly de�ned after
stripping, and expensive, since most of the ions are lost in single pass experiments.
More speci�cally, di�culties arise due to the large ion velocity (> 0.5 c) implying
considerable corrections to spectroscopic measurements due to the Doppler shift, or
are related to the satellite electrons attached to the ions during its passage through
foils. More recently it became possible to keep the ions for long periods of time
orbiting in storage rings and cool the beams by merging them with a very cold
electron beam. These recycled ion beams at well de�ned velocities, along with the
merged electron beam in the cooler, enabled a new class of precision recombination
experiments. In the merging region, the relative (center-of-mass) velocity of the ion-
electron system can be made very small, well de�ned, and very low energy collisions
can be studied. Thus, a large number of dielectronic recombination cross sections
at low collision energies have been measured in several rings, as the CRYING in
Stockholm, the ESR at GSI and the ASTRID in Aarhus. At the TSR in Heidelberg,
for example, recombination of O7+ has been studied [KBB90] by observing the O6+

recombined ions. The relative energy resolution obtained was as low as 0.4%, and
cross sections achieved levels of uncertainty of 25%. More recently, the new electron
target installed at the TSR storage ring has shown the capability of reducing the
transverse and longitudinal temperatures at zero relative velocities to 0.5 meV and
20 µeV [OSL 05], respectively, allowing for an unsurpassed spectroscopic resolution
for future recombination or dissociation experiments.

In order to access dielectronic recombination in the innermost shells of highly
charged ions, however, large relative energies between electron and ion beams are
necessary, and could not be realized at that time in storage rings. Thus, the most
accurate innershell recombination studies were performed exploring the so-called
resonant transfer and excitation (RTE) of relativistic U90+ ions in a hydrogen gas
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target [GBB90]. In this type of experiment the capture of an electron from the neu-
tral target excites simultaneously the projectile in a single collision, i.e. the �electron
beam� is represented by the bound target electrons, with the disadvantage of a large
uncertainty in its velocity due to the Compton pro�le of the bound electrons. In
order to reduce the width of the Compton pro�le, another experiment based on
the RTE technique used the channeling of helium-like Ti20+ [BKR90] ions through
crystal targets, and achieved a resolution of about 1.5%. Here, the binding energy of
the electrons along the central lattice channels can be very low, the electrons behave
nearly as free and the relative collision energy is better de�ned.

The possibilities o�ered by electron beam driven ion sources and traps were recog-
nized in the early 1980s, and experiments devised to explore electron-ion interactions
at electron energies in the range of a few hundred eV up to 70 keV were soon after
successfully demonstrated. The �rst results reported in the dielectronic recombi-
nation by means of an EBIT (LLNL) with Ne-like Ba46+ [MLK88] were based on
ideas already tested before in measurements carried out in an EBIS with Ar13+
ions [BCA84]. Later, the cross sections of He-like Ni26+ [KML89] were measured
relatively to radiative recombination, showing a good agreement with theoretical
predictions. In EBIS, experiments delivered the ratio between dielectronic and ra-
diative recombination cross sections at relative energies of about 2 keV [ABC90].
In these machines, as in the cooler of storage rings, the determination of resonance
energies is mainly limited by the electron beam energy spread as well as by the uncer-
tainty in determining the exact electron energy. Nevertheless, precise measurements
of the most energetic deep dielectronic resonances seemed to become possible. In
1995, the dielectronic recombination of U87+...90+ was studied by Knapp [KBC95]
at the LLNL EBIT. Resonant features at nearly 70 keV were observed, with clear
indications of quantum interference between di�erent channels of photorecombina-
tion introduced above. As will be explained later in more detail, the Z2 dependence
of the direct radiative recombination process enhances the possibility of observing
quantum interference between this and the indirect DR process at a given resonance
electron energy. That work has been, for nearly ten years, the clear experimental
signature of this interesting phenomenon in HCI, but, at the same time, since many
resonances from di�erent charge states were blended, has been heavily disputed in
the scienti�c community.

At the inception of the present work, one of the motivations was to be able to pos-
sibly verify the existence of these quantum interferences, and, if present, to decisively
improve those results, by fully exploiting the new experimental capabilities which
had become available at the Heidelberg EBIT, located at the Max-Planck-Institut
für Kernphysik. The present work concentrates on the study of the photorecombi-
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nation processes with highly charged 36Kr34+ and 80Hg78+...75+ ions. In particular,
we have performed accurate studies of dielectronic recombination resonances in the
KLL region, obtaining resonance energies around 50 keV with unprecedentedly low
uncertainties of ±5 eV. The absolute energy scale established in the experiment is
the same for all the the �ve di�erent charge states. The measured resonance energies
include quantum electrodynamic contributions for the 1s electron (in mercury ions)
of about 160 eV and �nite nuclear size e�ects of 50 eV. Thus, our measurements
can be used to test the most accurate theoretical calculations over a wide range of
electronic con�gurations. Although those results represent a novelty by themselves,
the central achievement of this work is the �rst characterization of the quantum
interference in the photorecombination of HCI for several state-selected resonances
in individual charge states through their Fano parameters.

This thesis is structured in the following manner; Chapter 1 contains a review
of the relevant atomic theory and the di�erent perturbative methods used there, as
well as a detailed description of the dielectronic and radiative recombination pro-
cesses, including quantum interference. Chapter 2 is dedicated to the description
of the present experimental setup at the Heidelberg EBIT, its operational parame-
ters, photon detectors, electronics and data acquisition system as well as of a test
experiment on DR measurements of He-like krypton. Chapter 3 is dedicated to
the results on the photorecombination and quantum interference of highly charged
mercury ions.
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Chapter 1

Theory

This work is dedicated to the experimental investigation of the photorecombination
processes, in which a free electron is captured into a bound state of a (heavy) highly
charged ion, under emission of a photon. The two main processes are called radiative
recombination (RR) and dielectronic recombination (DR). The RR occurs when the
electron is directly captured into a vacant state of an ion releasing the available
energy through photon emission. In the DR process, the capture of the free electron
resonantly excites an electron already bound to the ion into an intermediate excited
state. Later, this state relaxes to a lower lying state either by emitting a photon or by
an Auger process. Radiative and dielectronic recombination, therefore, are the time-
reversed photoionization and Auger process, respectively. Photoionization results in
the ejection of a bound electron into the continuum with a kinetic energy equal
to the photon energy reduced by the ionization potential. In the Auger process,
an inner shell vacancy (in many cases produced by photoionization) is �lled by
another electron from a higher shell. The released energy is transfered to a second
electron, the so-called Auger electron, which escapes carrying the excess energy in
a radiationless process.

Ab initio calculations of DR and RR are di�cult to perform, since the initial state
contains two charged particles, with one electron in the continuum and a complex
many-electron ion. Thus, many di�erent approximations are necessary to derive
cross sections, resonance energies as well as general scaling laws. Quantitatively
accurate data are needed to test the validity of these approximations and to guide
the development of theory in this �eld.

Since these processes strongly depend on the electronic structure of the ion, a
better understanding requires the correct description of its electronic structure. In
the following, a brief review of the relevant atomic theory for one- and few-electron
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Chapter 1. Theory

ionic systems will be given.

1.1 Atomic structure of highly charged ions

The discovery of nuclear scattering by Rutherford [Rut11] led to the development
of the Bohr [Boh13] atomic model, later improved by Sommerfeld [SU26], both
of which were essential for the development of quantum mechanics. For a bound
system, the time-independent Schrödinger equation [Sch26a, Sch26b] describes the
quantum states of an atom or ion. Within this theory, all states with identical prin-
cipal quantum number n are degenerate. Later, the relativistic Dirac theory [Dir28]
showed that the atomic energy levels are split as a function of the total angular
momentum J and the nuclear charge Z. The discovery of the Lamb shift [LR47]
between the 2s1/2 and 2p1/2 states, which have the same energy in the Dirac theory,
triggered the development of quantum electrodynamics (QED). The interaction of
a bound electron with its radiation �eld is responsible for the observed 2s1/2− 2p1/2

splitting. The largest contribution to this shift is due to the self energy of the elec-
tron, which arises through the emission and reabsorption of virtual photons by the
electron. Additional contributions due to the �nite size of the nucleus, in particular
for heavy ions, are also observed. Section 1.1.3 is dedicated to give an overview on
the QED and nuclear size corrections.

1.1.1 One-electron systems

The Schrödinger equation Hψ = Eψ for an electron in the Coulomb �eld of an
in�nitely heavy ion is an eigenvalue equation for the electronic wave function

(
− ∆

2me

− Zα

r

)
ψnlm(r) = Enψnlm(r) , (1.1)

where me is the electron mass, Z the nuclear charge, α ≈ 1/137 the dimensionless
�ne structure constant de�ned as α = e2/~c and r the relative electron-nucleus
distance. ψnlm is the wave function, with principal quantum number n, orbital
angular momentum and magnetic quantum numbers, l and m, respectively. For a
one electron system, the wave function ψnlm can be separated as the product of a
radial and an angular component

ψnlm = Rnl(r)Ylm

(r
r

)
, (1.2)
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1.1. Atomic structure of highly charged ions

where Rnl is the radial function and Ylm is a spherical harmonic. The energy
levels of a one-electron atom in a state with principal quantum number n are given
by:

En = −me (Zα)2

2n2
, n = 1, 2, 3 ... . (1.3)

For convenience, we use here the atomic unit system, me = ~ = e = 1. Possible
values for the angular momentum are l = 0, 1, ..., n − 1. The magnetic quantum
number m can take the values m = 0,±1, ...,±l. Here, all states with di�erent
orbital angular momentum l but with the same principal quantum number n have
the same energy.

Taking into account the �nite nuclear mass, a more accurate description of the
hydrogen spectrum is given by substituting the electron mass me by the reduced
nucleus-electron mass:

µ =
meM

me +M
, (1.4)

with M being the nuclear mass. Hydrogen-like ions can be described in a good
approximation by simple modi�cations of Eq. (1.3) with the modi�ed nuclear charge
Z. However, in ionic systems with two or more electrons, where the electron-electron
interaction comes into play, these equations do not hold anymore, and approximate
solutions to the many-body problem have to be found.

Coming back to hydrogen, in order to solve the symmetry requirements of spe-
cial relativity not present in the Schrödinger theory, Dirac proposed a relativistic
Hamiltonian containing the momentum components of a free electron of mass me:

HD = ~α · ~p c+ βmec
2 . (1.5)

It turns out that Eq. (1.5) must be treated as a matrix equation, which describes
a particle with spin s = 1/2. Then the wave equation can be written as

i~
∂ψ

∂t
=
(
~α · ~p c+ βmec

2
)
ψ , (1.6)

where ~α (expressed in terms of the Pauli spin matrices σ̂x,y,z) and β are the 4×4
Dirac matrices, which ful�ll the anticommutation relations αiαk + αkαi = 2δi,k,
αiβ + βαi = 0 and β2 = 1 and are given by
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Chapter 1. Theory

αx =

(
0 σ̂x

σ̂x 0

)
, αy =

(
0 σ̂y

σ̂y 0

)
, αz =

(
0 σ̂z

σ̂z 0

)
, (1.7)

and

β =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 . (1.8)

However, more complicated Hamiltonians can be constructed in order to describe
particles of spin s = 1, 3/2 and so on. The fact that the Dirac theory intrinsically
includes spin e�ects leads to the conclusion that the spin itself is a relativistic e�ect.

By adding an attractive Coulomb potential V (r) = −Zα/r (radially symmetric)
to the Hamiltonian in Eq. (1.5), one gets

HD = ~α · ~p c+ βmec
2 − Zα/r . (1.9)

Eq. (1.6) is then rewritten as

i~
∂ψ

∂t
=
(
~α · ~p c+ βmec

2 − Zα/r
)
ψ . (1.10)

In Dirac theory the hydrogenic problem can be solved exactly, with energy levels
given by

En,j = mec
2

[
1 +

(Zα)2

(n− δj)
2

]− 1
2

, (1.11)

δj = j +
1

2
−
√

(j + 1/2)2 − (Zα)2 .

The total energies given in Eq. (1.11) are expressed as a function of the quantum
numbers n and the total angular momentum j, which is given by j = |l−s|, ..., l+s.
The expansion of Eq. (1.11) in powers of (Zα) yields
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1.1. Atomic structure of highly charged ions

En,j = mec
2

[
1− (Zα)2

2n2
− (Zα)4

2n3

(
1

j + 1/2
− 3

4n

)
+ · · ·

]
. (1.12)

By analyzing these equations we observe that the energy levels with the same
principal quantum number n but di�erent total angular momentum j are split into
n components of the �ne structure, unlike in the non-relativistic Schrödinger formu-
lation given in Eq. (1.3). The �rst term of Eq. (1.12) corresponds to the electron
rest energy, while the second term corresponds to the non-relativistic contribution
to the energy. The next higher-order terms contain smaller relativistic corrections.
We will see below that when two or more bound electrons have to be taken into
account, this analytical representation breaks down.

AlthoughHD contains the main relativistic contributions for one-electron systems
to all orders of Zα, it has to be further supplemented to include quantum electro-
dynamic e�ects. Moreover, Eq. (1.12) assumes a point-like nucleus, and further
corrections appear when the potential of an extended nucleus is considered.

1.1.2 Many-electron systems

The non-relativistic Hamiltonian for a system consisting of a nucleus of mass M
surrounded by N electrons has the general form

Ĥ =
N∑

i=1

p̂2
i

2µ
+

N∑
i=1

V̂ (i) +
∑
i<j

Ŵ (i, j) . (1.13)

The Hamiltonian is expressed in terms of the center-of-mass coordinate R and the
associated momentum of the i-th electron p̂i = ~

i∇i. The �rst term in Eq. (1.13),
corresponding to the kinetic energy, contains the reduced mass µ of an electron. The
second term describes the electrostatic interaction of the electrons with the nuclear
charge Z:

V̂ (i) = −Zα
ri

, (1.14)

and the third term describes the mutual electrostatic repulsion potential between
electrons:

Ŵ (i, j) =
1

|ri − rj|
. (1.15)
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Chapter 1. Theory

This term becomes very important even in the case of two-electron (He-like) ions.
Equation (1.13) can not, in general, be solved analytically because of the presence
of the electron-electron interaction term. Nevertheless, various approximations have
been applied to calculate these interactions more or less accurately.

The extension of the Dirac Hamiltonian to account for relativistic e�ects in a
many-electron system is not straightforward at all. The relativistic correction to
the non-relativistic Coulomb repulsion between two electrons is known as the Breit
interaction and can be introduced into the Hamiltonian as an operator of the order
(Zα)2. The resulting Hamiltonian is usually divided in a non-relativistic part and
a relativistic part (HREL):

HREL = Hmass +HDarwin1 +HSO +HSOO +HSS +HSSC +HOO . (1.16)

Hmass is the relativistic mass-correction term. HDarwin1 is the so-called one-body
Darwin term, which has its physical origin in the rapid small-scale �uctuations
(Zitterbewegung) causing the electron to see a smeared-out Coulomb nuclear poten-
tial. The so-called spin-orbit term HSO represents the spin-orbit interaction of a
given electron. For Z > 26, HSO dominates over the Coulomb repulsion. Additional
two-electron e�ects are classi�ed as �ne structure terms, such as spin-other-orbit
(SOO) and spin-spin (SS) interactions, and non-�ne structure terms, like spin-spin
contact (SSC), orbit-orbit interactions (OO) [BS57].

Theoretical methods for the many-body problem

One of the most widely used methods is the Hartree-Fock approximation. It has
been applied thanks to computer codes such as those developed by Cowan [Cow67,
CG76] and Froese-Fischer [Fro72,Fro77]. Here, the motion of the single electron is
calculated using an e�ective potential generated by the averaged potential caused
by all the other electrons, which is assumed not to change in time. Although the
correlated motion of the electrons is not taken into account, this method is quite
useful and it achieves a reasonable accuracy of about 1% or even better in the
determination of energy levels.

Here, the wave function Ψ is approximated by a single Slater determinant Ψ

consisting of one orbital for each of the n electrons:
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1.1. Atomic structure of highly charged ions

Ψ =
1√
n!

∣∣∣∣∣∣∣∣∣
ψa(1) ψa(2) . . . ψa(n)

ψb(1) ψb(2) . . . ψb(n)

. . . . . . . . . . . .

ψn(1) ψn(2) . . . ψn(n)

∣∣∣∣∣∣∣∣∣ . (1.17)

Then a set of orbitals which minimizes the total energy is determined. The calcu-
lation starts with a set of initial orbitals and re�nes them iteratively. Therefore, the
Hartree-Fock method is often called a self-consistent �eld (SCF) approach. Magnetic
interactions are not yet included here, but they are taken into account in modi�ed
revisions, such as the relativistic Hartree-Fock method. It can be used as a starting
point in perturbation theory for light atoms and ions. However, for heavy ions the
e�ective �ne structure constant term (αZ) is no longer a small number, and more
higher-order relativistic terms are needed.

Another way of solving this problem is to use the following one-body Dirac Hamil-
tonian:

ĤD = α̂ · p̂ c+ βµc2 + V̂ + Ŵd − Ŵex , (1.18)

where Ŵd represents the total electrostatic potential due to the N − 1 other
electrons of the Slater determinant Ψ, and Ŵex is the exchange potential between
electrons. Thus, the relativistic e�ects to the one-electron problem are included
consistently. The search for self-consistent eigenfunctions of ĤD is called the Dirac-
Fock method.

Another relativistic method, known as the Relativistic Many-Body Perturba-
tion Theory (RMBPT), has also been extensively used for many years. The non-
relativistic approach developed by Kelly [Kel66] was extended later to relativistic
problems by Johnson and Sapirstein [JS86]. By replacing the Coulomb repulsion
potential term (relativistic Hamiltonian) by a localized, one-electron model poten-
tial, a complete set of one-electron eigenfunctions including continuum states is
obtained. In this model, each bound electron state satis�es the one-electron Dirac
equation. The di�erence between the Coulomb repulsion term and the model po-
tential is treated as a perturbation. This perturbation is expanded in series of the
total energy and wave function by systematically summing single, double, and mul-
tiple excitations from the ground state. In most cases, an atomic state being an
eigenfunction of the Dirac-Fock equation with a closed core potential is used as a
reference state. Modern approaches to RMBPT typically use basis sets whose projec-
tion operators are implemented by restricting all sums to positive energy eigenstates.
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Chapter 1. Theory

RMBPT converges rapidly for highly charged ions, making possible to achieve high
accuracy already with only the �rst and second order perturbation terms. However,
for neutral atoms and light ions the third, fourth and even higher-order terms are
commonly required.

The 1/Z expansion approximation uses the fact that the electron-electron in-
teraction is 1/Z times weaker than the nuclear potential. This method uses anti-
symmetrized products of hydrogenic orbitals in order to perform a perturbation
expansion. It has been used in calculations of few-electron heavy-ion systems, for
instance, by Safronova and co-workers [IS75]. The 1/Z expansion is a suitable
method for heavy ions with only few electrons. This method is applied to both the
relativistic [SU79] and the non-relativistic domains.

A certain problem arises from the fact that Dirac-Fock wave functions with a
minimum number of radial functions describing only the occupied states do not
account for the electron-electron correlation. This issue can be solved by adding
extra con�gurations, called con�guration state functions (CSF), representing the
interaction with di�erent unoccupied con�gurations. They must have the same
total angular momentum J and parity as the occupied con�gurations. An ansatz
for the correlated N -electron wave function ψ is a linear combination of NS Slater
determinants Ψν , which includes various N -electron con�gurations:

ψ =

NS∑
ν=1

cνΨν . (1.19)

The cν are the mixing coe�cients. In this way antisymmetrized many-electron
wave functions are de�ned. If the sum in Eq. (1.19) includes su�cient terms, this
procedure can in principle approximate the exact solution to any desired degree
of accuracy. However, an enormous computational e�ort would be needed if the
basis is made too large, but it is solved without much di�culty if the number of
con�gurations introduced in the ansatz (1.19) is judiciously chosen. Then, a sim-
ple diagonalization of the Hamiltonian matrix, which may have a dimension of up
to several thousands, in the subspace spanned by the Ψν yields a good approxi-
mation of the exact eigenstates. This is called con�guration interaction (CI) tech-
nique. If the calculations not only optimize the mixing coe�cients cν , but also the
one-electron wave functions, then this is called the Multi-Con�guration Dirac-Fock
(MCDF) method. It starts with initial estimates of the wave functions, e.g., hydro-
genic or Thomas-Fermi one-electron orbitals, and a CI calculation providing initial
mixing coe�cients. Due to the optimization of the wave functions, this method can
reach high accuracy even with a limited number of CSF.

20



1.1. Atomic structure of highly charged ions

Another possibility is to use a Sturm-Liouville basis in which the single particle
states are characterized by their similarity to the eigenfunctions of the pure Coulomb
potential. The Sturm-Liouville states form a complete set in which states with
di�erent principal quantum numbers are no longer orthogonal.

1.1.3 QED and nuclear size e�ects: the Lamb shift

QED is a �eld theory which describes all phenomena involving charged particles
interacting with the quantized radiation �eld. Interactions between the charged
particles are mediated by the exchange of photons, the quanta of the electromagnetic
�eld.

a) b)
Figure 1.1: Feynman diagrams for the self energy (a) and vacuum polarization (b) correction of a
bound electron (in the order of α, two vertices). The double lines indicate electron wave functions
and propagators in the external Coulomb potential of the nucleus. The wavy lines represent the
virtual photons.

These interactions are generally described with the well known Feynman dia-
grams. The order of a Feynman diagram in α is de�ned as the number of virtual
photon lines, or loops, that it contains. For a bound electron, the �rst two so-called
one-loop corrections are the self energy (SE) and the vacuum polarization (VP)
terms, whose Feynman diagrams are shown in Fig. 1.1. The dominant QED cor-
rection in one-electron systems is the SE. It is due to the emission and reabsorption
of a virtual photon by the bound electron in a very brief period of time without
violating the Heisenberg uncertainty relation. In order to avoid the in�nite mass di-
vergency which appear in the calculations, appropriate regularizations are required;
this can be achieved by renormalizing the electron mass. The earliest calculations
for the self energy correction were performed in the 1950s by Brown, Langer and
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SESE
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SEVP

S(VP)E
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Figure 1.2: Feynman diagrams for various QED corrections in order α2.

Schaefer [BLS59]. Modern variants of the self energy calculation have been carried
out by Mohr [Moh73,MS93].

The vacuum polarization correction (see Fig. 1.1b) can be described as an in-
teraction of the bound electron with virtual electron-positron pairs. In the case of
heavy ions, the propagation of those fermionic pairs in the strong �eld of the nucleus
is described relativistically by the Coulomb-Dirac Green's function [MPS98]. The
expansion of this propagator in powers of the coupling constant Zα yields in the
�rst order the so-called Uehling part of the VP correction. The remaining orders in
(Zα)n for n ≥ 3 are subsumed in the Wichmann-Kroll correction [WK56]; according
to Furry's theorem, there are no contributions with even powers of n.

Besides of SE and VP, further contributions of second order in α appear in the
presence of a nuclear �eld. The required complex calculations have not yet been
completed, in particular in the case of few-electron ion systems. However, they have
been carried out to the lowest-order in Zα for He- and Li-like systems.
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1.1. Atomic structure of highly charged ions
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Figure 1.3: Level scheme of hydrogen-like uranium U91+ according to various atomic models.
The 1s Lamb shift is taken from Ref. [YAB03]. The numbers on the right hand side indicate the
approximate binding energies for di�erent levels.

Some Feynman diagrams describing additional contributions to the Lamb shift
in hydrogen-like ions are displayed in Fig. 1.2. They are e.g., diagrams containing
two-photon self energy SESE, second-order vacuum polarization corrections VPVP,
mixed self energy-vacuum polarization SEVP, and the e�ective self energy-vacuum
polarization contribution S(VP)E. Numerical results for these second-order correc-
tions can be found in [BMP97]. While the VPVP, SEVP and S(VP)E can be
calculated exactly, the more complex two-photon self-energy correction remains one
active research topic [MS98,LPS 98].

Nuclear size e�ects

The in�uence of the nucleus has to be taken into account when a certain level of
accuracy is required in electronic structure calculations. Since the nucleus is not a
point charge, but it has a �nite charge and magnetization distribution, the distortion
of the central potential has to be considered. These corrections can be rather large
for heavy ions. The distribution of the nuclear charge has to be introduced into the
Dirac equation. Due to uncertainties in our knowledge of nuclear parameters, some
limitations when testing QED are unavoidable.

For a homogeneous nuclear charge distribution, the following expression (accurate
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to 0.2%) is obtained for the nuclear size e�ect in ns1/2 states for hydrogen-like
ions [SAY00]:

∆EFS

(
ns1/2

)
=

(αZ)2

10n

[
1 + (αZ)2 fns (αZ)

](
2
αZ

n

R

~/mec

)2γ

mec
2 , (1.20)

where γ =
√

1− (αZ)2. R is given in �rst order in terms of the root-mean-square
radius (√〈r2〉) as √5/3

√
〈r2〉 [NM95]. The function f in Eq. (1.20) is explicitly

written for n = 1 and n = 2 states as

(n = 1) f1s1/2
= 1.380− 0.162 (αZ) + 1.612 (αZ)2 ,

(n = 2) f2s1/2
= 1.508 + 0.215 (αZ) + 1.332 (αZ)2 .

Figure 1.4 shows the contributions to the �nite nuclear size e�ect for the 1s1/2

and 2s1/2 states as a function of the nuclear charge Z. The largest contributions

Figure 1.4: Finite nuclear size contribution ∆EFS to the 1s1/2 and 2s1/2 states as a function of
the nuclear charge Z. The curves were calculated using Eq. (1.20).
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1.1. Atomic structure of highly charged ions

are observed for the n = 1 state. For instance, the contribution to the 1s1/2 state
of a highly charged mercury ion (Z = 80) is already as large as 54 eV. The isotopic
e�ect, i.e., the di�erence in these contributions due to the mass and volume of the
nucleus for two di�erent isotopes, increases also with Z. From Eq. (1.20), the iso-
topic e�ect between the heavy nuclei of 232U and 238U is calculated to be ≈ 1.16 eV.
The measurement of this tiny energy in comparison with the KLL dielectronic re-
combination resonance excitation energies in He-like uranium ions (≈ 60 keV) or
with the binding energies for the K-shell (≈ 132 keV) challenges the most accurate
experimental techniques.

Experimental tests

One way of testing QED is to measure the Lamb shift in one- or few-electron systems.
The Lamb shift is de�ned as the di�erence between the actual binding energy Eexp

of a given electronic state and the corresponding theoretical Dirac energy EDirac in
the Coulomb �eld of a point-like nucleus (see Fig. 1.3):

∆ELamb = Eexp − EDirac . (1.21)

The Lamb shift consists of two parts: the pure QED contributions, which are
mainly due to SE and VP corrections, and nuclear structure e�ects mainly those
caused by the �nite size and shape (FS) as well as virtual excitations or the pola-
rization of the nuclear charge density distribution:

∆ELamb ≈ ∆ESE + ∆EV P + ∆EFS . (1.22)

The Lamb shift for the 1s electron in heavy ions can be calculated with a total
relative precision of 10−3. A recent calculation for the Lamb shift of the 1s1/2 ground
state in 238U91+ [YAB03] yields 466.11 ± 0.39 ± 1.30 eV, where the two error bars
arise from the uncertainty in the e�ect of �nite nuclear size and in the determination
of the SESE contribution, respectively. Table 1.1 shows the di�erent contributions.
The labels added in the table (a, b, c, ...) are referred to the diagrams shown in Fig.
1.2. The diagram a was, in one case, calculated with the irreducible mass. As
shown in Fig. 1.3, the self energy and �nite nuclear size corrections reduce the
binding energy by approximately 355 eV and 199 eV, respectively. By observing
the Lyman-α1 transitions (2p3/2 − 1s1/2) associated with the electron capture by
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Table 1.1: One-electron Lamb shift contributions (eV) for the 1s1/2 state in hydrogen-like ura-
nium (238U91+) (from [YAB03]). Nuclear size e�ects are based on a nuclear radius

〈
r2
〉1/2 =

5.860(2) fm. The estimated uncertainties are due to missing diagrams and limited knowledge of
the nuclear radius.

Finite nuclear size 198.81 ± 0.38
First order SE 355.05

VP -88.60
Second order SESE (a, irred.) -0.97

SESE (a, red., b, c) 1.28 ± 1.28
VPVP (d) -0.22
VPVP (e, f) -0.75 ± 0.20
SEVP (g, h, i) 1.12
S(VP)E (k) 0.13 ± 0.04
Total (a-k) 0.59 ± 1.30

Total recoil 0.46
Nuclear polarization -0.20 ± 0.10
Sum of correction 466.11 ± 0.39 ± 1.30
Dirac value (point nucleus) binding energy -132279.92 ± 0.01

bare ions, the total 1s Lamb shift of H-like uranium has been measured in the ESR
storage ring at the GSI resulting in 460.2 ± 4.6 eV by Gumberidze [GSB05].

Calculations for few-electron systems, even for the He-like ions become very com-
plicated due to the electron-electron interaction. For instance, QED contributions
to the energy of a He-like system can be expressed as the sum of two indepen-
dent one-electron contributions and a two-electron contribution. This last one, the
electron-electron interaction term, includes the one- and two-photon exchange, self
energy and vacuum polarization screening diagrams and higher order corrections.
Some of their corresponding Feynman diagrams are shown in Fig. 1.5. Modern theo-
retical developments in QED calculations of high-Z many-electron ions are reviewed
e.g., by Lindroth in [Lin95].

Most experiments performed for the study of the Lamb shift in more complex
heavy ions have also concentrated in measuring x-ray energies. The experimental
uncertainties are in the best cases about 10−4 for the total energy. In a beam-
foil experiment, Schweppe [SBB91] determined the Lamb shift of the lithium-like
uranium (U89+) 2s1/2 level with an uncertainty of 0.1 eV using Doppler-tuned spec-
troscopy. In a di�erent approach, Brandau [BKM03] measured the 2s1/2 − 2p1/2
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1.2. Photorecombination in electron-ion collisions

two-photon exchange self energy vacuum polarization

Figure 1.5: Feynman diagrams for the electron-electron interaction corrections corresponding to
the Lamb shift in two-electron ions.

energy splitting for few Li-like ion systems (Au, Pb and U) using low energy di-
electronic recombination resonances and extrapolating to the Rydberg series limit,
and reviews the di�erent experimental and theoretical results. An experiment with
trapped Li-like Bi80+ at the SuperEBIT [BOS98] measured the 1s22p3/2 − 1s22s1/2

transition energy with a relative accuracy of 1.4 × 10−5, and resolved the hyper�ne
splitting of the ground state 1s22s con�guration, hence, testing the predictions of
QED contributions to this transition energy within 1.5 × 10−3.

1.2 Photorecombination in electron-ion collisions

This section deals with the basic theory of resonant dielectronic recombination (DR)
and non-resonant radiative recombination (RR).

Figure 1.6 shows schematically the direct process (RR) through the top path
and the resonant DR process (bottom path) which passes via an intermediate state.
Within the resulting scheme, both processes start at the same initial state and end
on the same �nal state of the recombined ion. This is the essential premise for the
two processes to be able to interfere.
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Figure 1.6: Scheme for the dielectronic (DR) and radiative (RR) recombination processes, re-
spectively. Both, the direct recombination (RR) and the two-step recombination (DR) processes
start on the left side of the sequence. RR �nishes in one single step while the DR goes to the same
�nal state via an intermediate excited state.

1.2.1 Dielectronic recombination

Dielectronic recombination (DR) is a consequence of the electron-electron interaction
between a continuum electron and one of the bound electrons in an ion. This process
can obviously not happen in the case of bare ions. Here, �rst, the free electron is
captured into a vacant excited state of the ion Aq+ transferring non-radiatively
the energy di�erence to a core electron with energy E1, which is simultaneously
promoted to a higher laying excited state with energy E2 of the ion, thus forming
an intermediate (singly, doubly or multiply excited state),

Aq+ + e− →
[
A(q−1)+

]∗ → [
A(q−1)+

]
+ ~ωDR . (1.23)
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1.2. Photorecombination in electron-ion collisions

This resonant process, can only happen when the energy di�erence between the
core electron state and the state in which the second electron is excited is equal to the
kinetic energy of the free electron Ee plus the binding energy Ip of the recombined
state. This resonance condition is written as

∆E = E2 − E1 = Ee + Ip . (1.24)

In the second step, the formed excited state [A(q−1)+
]∗ may decay as well to the

ground state via an Auger autoionization process, where again there is a change in
the ion charge as the ion returns to its initial state. However, in highly charged
ions, radiative deexcitation via emission of one or more photons strongly dominates.
While the Auger rates are proportional to the electron-electron interaction and show
only a small dependence on Z, the radiative decay rates increase with up to very
high powers of Z for magnetic, two photon or higher-order transitions (with Z4 for
simple photon dipole allow transitions). In this way, radiative stabilization of the
excited intermediate states is usually the dominant channel in highly charged ions,
in contrast to neutrals, where Auger processes dominate.

Dielectronic recombination is the time-reversed Auger process and, thus, the cor-
responding pathways are labeled accordingly. For instance, in a KLL DR resonance
for a He-like initial state, as shown in Fig. 1.6, the free electron is captured into the
L-shell of an ion, while a bound electron is promoted from the K-shell to the L-shell
to form an excited 1s2l2l′ state. This intermediate excited state decays radiatively
into the 1s22l

e− + A(Z−2)+ (1s2) →
[
A(Z−3)+

]∗
(1s2l2l′) (1.25)

→ A(Z−3)+ (1s22l or 1s22l′) + ~ω(Kα) . (1.26)

In a KLM resonance, the electron is captured into the M-shell, while a K-shell
electron is excited to the L-shell (or vice versa), forming the 1s2l3l′ state. Con-
sequently, this doubly excited state decays radiatively to 1s23l′ or 1s22l emitting
either a Kα or Kβ x-ray line, respectively.

The �rst theoretical attempts to describe the DR process were made in the 1940s
by Massey and Bates [MB42]. Later, Burgess pointed out that DR is of signi�cant
importance when high temperature plasmas, like those observed in the solar corona,
are considered [Bur64]. The �rst measurements on DR cross sections were per-
formed in the 1980s [MNF83,DDM83]. However, due to low statistics and limited
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energy resolution as well as high backgrounds, these experiments could not resolve
the structure of most of the observed resonances. In the energy balance of high
temperature fusion plasmas, dielectronic recombination has been shown to play an
important role. Therefore, precise knowledge of DR processes becomes one of the
critical issues modelling fusion plasma reactors.

DR cross section

Following the process given by (1.23) for the di�erent states de�ned and taking into
account the resonance condition (1.24), one can introduce the so-called isolated-
resonance approximation, where there are no overlapping resonances with the same
total angular momentum in the (doubly) excited state |d〉. The DR cross section
can then be written as the product of the resonant electron capture probability to
form the intermediate state and its �uorescence yield, de�ned as the branching ratio
between the radiative and the Auger widths of the intermediate state, Γr and Γa,
respectively. Thus,

σDR(Ee) =
2π2~3

p2
e

Va (i→ d)Ld(Ee) ωd , (1.27)

ωd =
Γr

Γr + Γa

=
Γr

Γd

. (1.28)

Here, Va(i → d) denotes the total probability per unit of time for the resonant
electron capture from |i〉 to |d〉. pe is the momentum corresponding to the electron
initial energy Ee =

√
p2

ec
2 +m2

ec
4−mec

2 and Γd is the total width of the intermediate
state. The function Ld(Ee), re�ecting the Lorentzian shape of the resonance, is
de�ned as

Ld(Ee) =
Γd/2π

(Ee − Er)
2 + Γ2

d/4
, (1.29)

with the normalization ∫ Ld(Ee)dEe = 1. Er is the resonance energy. Considering
the principle of detailed balance, the dielectronic capture probability Va is related
to the autoionization probability Aa as

Va(i→ d) =
gd

2gi

Aa(d→ i) , (1.30)

30



1.2. Photorecombination in electron-ion collisions

where gd and gi are the statistical weights (degeneracies) of the quantum states
of the intermediate and initial states, respectively. The factor 2 re�ects the two
possible spin orientations of an electron in the continuum state. Combining the
previous Eqs. (1.27-1.30), we �nally obtain the following expression for the DR
cross section

σDR(Ee) =
π~2

p2
e

gd

2gi

Γa(d→ i)Γr(d→ f)

(Ee − Er)
2 + Γ2

d/4
. (1.31)

The DR resonance strength SDR is also a useful quantity for describing the DR
process. In the case of a very narrow resonance width, the theoretical line pro�le
can be approximated by a delta function. The resonance strength is de�ned as

SDR ≡
∫
σDR(E)dE =

2π2~2

p2
e

gd

2gi

ΓaΓr

Γd

. (1.32)

1.2.2 Radiative recombination

In ion-electron collisions the non-resonant radiative recombination occurs at any
electron energy, thus also at the DR resonance energy. Here, a free electron with an
energy Ee is captured into a vacant state with the binding energy Ip, and the excess
energy is taken away by the emitted photon. Therefore, the process can be written
as:

Aq+ + e− → A(q−1) + ~ωRR , (1.33)

with the photon energy

~ωRR = Ee + Ip . (1.34)

Figure 1.7 shows the photorecombination of krypton ions (photon energy versus
electron energy). Here, the diagonal lines represent the RR process, where the pho-
ton energy increases with the electron energy according to Eq. (1.34). In addition
to RR, we can also distinguish bright spots due to the resonant DR processes (see
Eq. (1.24)).
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Figure 1.7: Scatter plot of the photorecombination of krypton ions. Diagonal bands are visible
due to RR into the n = 2 and n = 3 shells, respectively. The horizontal line indicates the transitions
from n = 2 → 1 due to DR process. As singular bright spots we can characterize DR resonances.
This two-dimensional map was taken during the present work (see section 2.6).

In high-temperature low-density laboratory and astrophysical plasmas, RR radi-
ation is used for the determination of the plasma temperature and the ionization-
recombination balance. Since radiative recombination cross sections can be esti-
mated readily with reasonable accuracy, RR can be used to normalize experimental
data and determine the cross sections of other processes competing with it. Thus,
RR is a useful tool in the diagnostic of plasmas. For instance, the method of line-
ratio measurements is used as a temperature diagnostic for plasmas [BRF02]. Also
in electron-ion collision experiments, this process is well-suited for the understanding
of fundamental reactions. As shown above, in this process a photon of well-de�ned
energy is emitted. Such x-rays from bare- and hydrogen-like heavy ions provide new
chances of testing QED [SKE97]. RR x-ray measurements using free electrons and
a dense ion beam allow accurate observations of the Lamb shift in hydrogen-like
uranium ions [SMB00].

The �rst measurements of RR rates were performed with merged-beam tech-
niques, and showed a good agreement with calculations based on the Kramers for-
mula (see below Eq. (1.36)). This process has been studied in storage rings like
the TSR in Heidelberg [MSW91], with ion charge states ranging from Si11+ to
Se23+ [Mül95]. These experiments provide absolute cross sections and RR rates for
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1.2. Photorecombination in electron-ion collisions

center-of-mass energies from 0 eV to a few keV.
At the GSI in Darmstadt, absolute RR rates of heavier ions such as Au76+ and

U28+ have been measured with an electron energy resolution of 10 meV. The RR
cross section measurements on U28+ at low electron energies are not in accord with
the theoretical results [MSW91], being underestimated by a factor of 20 to 50. The
reasons for this RR enhancement at small, close to zero relative energies between
the electron and ion beams that have been observed in all storage ring experiments
and were investigated in great detail (see also [GHB00] in the TSR) are unclear
until the present day.

RR cross sections

Formulae for the cross section of the radiative recombination in simple systems,
namely, hydrogenic and bare ions have been derived by Kramers [Kra23] and Bethe
and Salpeter [BS57]. Due to the fact that RR is the inverse photoionization process,
they made use of the principle of detailed balance. Radiative recombination can
be applied to study photoionization, in particular in cases where no photoe�ect
experiments can be performed directly with present technologies. For instance, by
observing RR into excited states, the calculated photoionization cross section of
the initially excited state of non-hydrogenic ions can be tested [APS92]. In the
photoionization process, the photon with energy ~ω is absorbed by the projectile
ion which emits an electron with momentum p (photoionization, see Eq. (1.62) in
section 1.3). As the photoionization cross sections can be calculated using the Bethe
and Salpeter formula [BS57], RR cross sections may be obtained by using the Milne
relation:

gqσph(ω) =
2mec

2Ee

~2ω2
gq+1σRR(Ee) , (1.35)

where gq = 2n2 (sum of l levels in a given n, times 2 accounting for the spin) and
gq+1 = 1 are the statistical weights of the �nal and initial states, respectively. Using
σph (see Eq. 1.63) in Eq. (1.35), Kramers derived the following expression for the
RR cross section

σKramers
RR =

32πa2
0α

3

3
√

3

Z|E0|3/2

(E0 + Ee)Ee

, E0 = Z2Ry/n2 . (1.36)
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Here, as in Eq. (1.35), Ee is the kinetic energy of the free electron and Ry is
the Rydberg constant (13.6 eV). This expression (1.36) can be simpli�ed [BS57] for
the recombination cross sections into high-n states. The following formula provides
cross sections for hydrogenic ions which are in good agreement with experimental
results for the capture into a state with principal quantum number n:

σn = 2.10× 10−22 q4Ry2

nEe (q2Ry+ n2Ee)
cm2 . (1.37)

Here, q is the charge of the bare ion. Exact calculations of RR cross sections
were carried out in the dipole approximation by Stobbe [Sto30] for bare ions. In the
non-relativistic Stobbe formula for radiative recombination into an empty K-shell,
the cross section is given by

Figure 1.8: Total RR cross section into the K-shell as a function of the electron energy calculated
using Eq. (1.37). The parameters q denotes the nuclear charge of bare ions.
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Figure 1.9: Total RR cross sections for Hg79+ ions as a function of the electron energy calculated
using Eq. (1.37), plotted for di�erent quantum numbers n.

σStobbe
RR =

28π2α

3

(
ν3

1 + ν2

)2
e−4ν arctan(1/ν)

1− e−2πν
, (1.38)

where ν = αZ/v is the Sommerfeld parameter (v the initial electron velocity).
This formula can lead to rather tedious numerical calculations if a sum over many
n has to be performed. By comparing the results of the Kramers approximation
with the more precise one obtained with the Stobbe formula, di�erences in the cross
sections for lower n states appear. A correction (the so-called Gaunt factors, Eq.
(1.58)) of about 21% has to be subtracted in the case of recombination into states
with the principal quantum number n = 1, 12% for n = 2 and 9% for n = 3 [ABK90].

The RR cross section has its maximum at low electron energies and decreases
smoothly with increasing electron energy. From Eq. (1.37), the ground state (n = 1)
is inferred to be dominant. Figure 1.9 shows cross sections of Hg ions obtained by
means of Eq. (1.37) for RR into di�erent n states.
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1.2.3 Quantum mechanical interference between RR and DR

So far, we have discussed RR and DR under the assumption that they are com-
pletely independent. However, it has been shown that such a description is not
complete in a rigorous quantum-mechanical approach [JCH87]. In fact, RR and DR
in the photorecombination (PR) process have to be treated as coherent interfering
components of an electromagnetic transition occurring between the initial and �nal
atomic states. The amplitudes of the direct recombination accompanying emission
of a photon and of the indirect process can in principle interfere as the initial and
�nal states are the same.

Figure 1.10: Total cross section [Har05] for the radiative (red squares) and dielectronic (black
circles) recombination for the 1s(2s1/22p1/2)0 excited states as a function of Z. For the calculation
of averaged DR cross sections σDR = Sd/Γ a rough estimate was taken for the experimental width
Γ. On the right scale is shown the Z4 dependency of the natural width of these resonances (blue
triangles).

For low-Z ions, RR is in comparison with DR a weak process with cross sections of
the order of 10−23 cm2, whereas DR is a few orders of magnitude stronger, resulting
in a large di�erence in the magnitude of the amplitudes, thus making interference
e�ects usually negligibly small. For highly charged ions (HCI), as shown in Fig.
1.10, stronger interference e�ects are expected, since the two amplitudes become
comparable in magnitude due to the fact that the cross section for RR scales with
Z2, while the one for DR is independent of Z. Moreover, the Z4 scaling of the
natural width of the DR resonances provides a larger overlap with the RR, and,
therefore, an enhancement of the interference e�ect (see Fig. 1.10).
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1.2. Photorecombination in electron-ion collisions

A few theoretical contributions dealing with this issue appeared in the last decade,
and in one of the few existing calculations of quantum interference, Badnell and
Pindzola [BP92] predicted a signi�cant increase of the interference e�ect between
RR and DR at KLL resonances of HCI [PBG92].

The projection operator formalism

Two main approaches have been developed to provide a uni�ed description of the
PR process. The �rst one is based on a radiative modi�cation of the close-coupling
equations in existing R-matrix codes [GBS02]. This method provides highly accurate
cross sections [WE47]. The basis of the R-matrix is constructed from the real,
pseudo and continuum orbitals which are included to describe the motion of the free
electron. A limited number of coupled channels can be taken into account in the
calculations. The second approach is based on the so-called projection-operator and
resolvent-operator methods [JCH87]. Here, the transition operator describing the
electron-ion PR process can be expressed as a sum of the direct (RR) process and
the indirect resonant term due to the DR contribution. In the following, this second
approach will be explained in more detail.

Under the absence of collisional and radiative decoherence and relaxation pro-
cesses, the projection-operator and resolvent-operator formulation, as used by Ja-
cobs, Cooper and Haan [JCH87] and by Badnell and Pindzola [BP92] to obtain PR
cross sections for uranium ions, provides a uni�ed description of the radiative and
dielectronic recombination in the Hilbert-space. The total Hamiltonian describing
the PR is the sum of the electronic part He, the radiation �eld Hr and the atom-�eld
interaction term Her, and is given by

H = H0 + V = He +Hr +Her . (1.39)

This Hamiltonian can be separated by applying the so-called Feshbach projection
operators P,Q and R to the wave function. P projects onto the initial subspace i of
the electron continuum, |i~p〉 (~p is the linear momentum of the incident electron), Q
projects onto the subspace of the closed-channel, autoionizing, (doubly) excited state
|d〉 and R projects onto the �nal subspace of photon continua |fω~k〉 (ω~k represents
the emitted photon with energy ~ω~k and momentum ~~k). These operators provide
a precise description of the autoionization process for the individual parts of the
Hilbert space and have to ful�ll some orthogonality and commutation rules [HJ89,
ZGS97].
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The transition operator T (z) describing the photorecombination process can be
described as a function of a complex energy variable z (see details in [ZGS97] and
references therein), as

T (z) = V + V G (z)V . (1.40)

Here, G(z) = [z−H]−1 is the resolvent Green operator. The total PR cross section
σPR

if (Ee) leading to the transition i→ f as a function of the incident electron energy
Ee, integrated over all directions Ω~k of the outgoing photon has the form

σPR
if (Ee) =

2π

~

∫
dΩ~k

∣∣〈fω~k |RTP | i~p
〉∣∣2

F (~p)
ρ~k , (1.41)

where ρ~k is the �nal state density of the emitted photon per unit of energy and
solid angle intervals and F (~p) is the incoming electron �ux. The transition operator
T (z) can be represented in terms of two contributions, the RR and the DR term,
by using projection operators RTP [HJ89]. Therefore, the cross section for the PR
process, which involves the square of the matrix element RT (z)P yields [BJO04]:

σPR
if (Ee) = σRR

if (Ee) + σDR
idf (Ee) + σint

idf (Ee) , (1.42)

where σint
idf (Ee) represents the interference term. Haan and Jacobs [HJ89] deve-

loped a non-perturbative procedure for obtaining the matrix elements of the pro-
jection RT (z)P of the transition operator. Applying this procedure to complex
atomic systems implies the inversion of very large matrices. Alternatively, by means
of a perturbative expansion in powers of V [ZGS97], problems with limited number
of discrete and continuum states can be treated. RT (z)P might be approximated
in the lowest order by introducing the projection QG (z)Q of the propagator G (z)

onto the Q-subspace of the autoionizing states as

RT (z)P = RTRR (z)P +RTDR (z)P ∼= (1.43)

RV P +RV Q
1

Q [z −H0 − V PG0 (z)PV − V RG0 (z)RV ]
QV P .

In this lowest order approximation, one can extract the cross sections for DR and
RR independently. It is noted that an additional interference term appears here
which was neglected in the traditional independent resonances approximation.
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1.2. Photorecombination in electron-ion collisions

RR, DR and interference cross sections

To calculate the cross sections, the states de�ned as |i〉, |d〉 and |f〉 have to be
translated into the total angular momentum states with Ji, Jd and Jf , respec-
tively. The magnetic quantum numbers of these atomic levels are consequently
expressed as Mi, Md and Mf . The state of the recombined electron is characterized
by its orbital and total angular momenta (l and j), or by a new quantum number
κ = (l − j) (2j + 1) [BJO04]. Within this nomenclature one can more speci�cally
represent the unperturbed eigenstates of the system as follows

|i ~p〉 = |γiJi, ~p κ; Jd〉 ,
|d〉 = |γdJd〉 , (1.44)
|f~k〉 = |γfJf , ~k〉 .

Here, γ represents a set of additional atomic quantum numbers not speci�ed
explicitly, which contains the magnetic m and the principal n quantum numbers.
Continuum wave functions are normalized on the energy scale. Explicit expressions
for the PR cross sections can be derived with these unperturbed states with the use
of the corresponding projection operators [BJO04,ZGS97].

i) Radiative recombination

In the lowest-order, the projected transition amplitude RT (z)P is equal to RV P
(1.43), which is essentially Hamiltonian Her of interaction between the ion and the
electromagnetic �eld. The RR cross section is given by the radiative transition be-
tween the initial state i and the �nal state f . Thus, it is obtained from Eqs. (1.41)
and (1.43) by summing over the �nal degenerate magnetic substates and averaging
over the initial degenerate magnetic states. In order to obtain the proper dimen-
sion of an area for the cross section, the transition amplitude is expressed in units
of energy multiplied by the volume. The photon density ρ~k can be expressed as(
~ω~k

)2
/ (2π~c)3. By considering only the electric-dipole radiation and the energy-

normalized electronic states in the continuum, the RR cross section is reduced to
the following expression:

σRR
if (Ee) =

1

2 (2Ji + 1)

4π2~2ω3
~k

3c2p3

∑
κ

∑
J

∣∣∣〈γfJf

∥∥∥ ~D ∥∥∥ γiJi, Ee κ; J
〉∣∣∣2 . (1.45)
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Here, ~D = e
∑
~rj is the dipole moment operator, which expresses the reduced

matrix elements of the many-electron electric dipole transition.

ii) Dielectronic recombination

In the resonant channel of the PR process, two projection operators (RTDR (z)P

in Eq. (1.43)) have to be analyzed carefully. The interaction operator RV Q con-
nects the levels d and f by spontaneous radiative decay. The second interaction
operator QV P connects the intermediate level d and the electron continuum state
i via autoionization, electron recombination and the electron-electron electrostatic
interaction (Hes = e

∑
1/rkl). In order to account for increased relativistic e�ects

on the electron-electron interaction [MJ71], the Breit interaction has to be included
in addition for heavy ions. Relativistic e�ects include retardation and the magnetic
interaction of two relativistic electronic currents.

The transition amplitude TDR (z) for DR must be evaluated at z = E+i ε, ε→ 0,
in most cases introducing the pole approximation [HJ89] for the resolvent operator.

The DR transition operator (1.43) can therefore be written as

TDR =
∑
Md

Hem |γdJdMd〉 〈γdJdMd|Hes

E − Ed + iΓd

2

, (1.46)

Γd = ~

(∑
f

Ar
df +

∑
i

Aa
di

)
, (1.47)

where Γd is the total width of the resonant state d in the absence of environ-
ment interactions between the radiative and autoionization decays. Aa

di is the auto-
ionization rate from the resonant doubly excited state d to the non-resonant electron-
continuum state i and is given by

Aa
di =

2π

~
1

2Jd + 1

∑
κ

|〈γiJi, Ee κ; J ‖Hes‖ γdJd〉|2 δEd,Ei+Ee , (1.48)

whereas Ar
df is the rate for radiative decay from the state d to the �nal state f

given by

Ar
df =

4e2ω3

3~c3
1

2Jd + 1

∣∣∣〈γfJf

∥∥∥ ~D∥∥∥ γdJd

〉∣∣∣2 δEd,Ef+~ω . (1.49)
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In these equations, δ is the Kronecker delta function, which can be substituted
by the Dirac delta function δ′ when the electron continuum states are de�ned with
periodic boundary conditions (−iπδ′ (E − E ′) → −iπρ (Ee) δE,E ′). The DR cross
section is then given in terms of the reduced matrix elements for these two interaction
Hamiltonians. By introducing standard expressions for the radiative decay and
autoionization rates, this cross section is written in the following form

σDR
idf (Ee) =

(2π~)3

8πmEe

(2Jd + 1)

2 (2Ji + 1)
Aa

diLd (Ee)ωd , (1.50)

with ωd being the level-speci�c branching ratio for the d→ f spontaneous tran-
sition (for the de�nition of Ld see Eq. (1.29)).

iii) Interference term

In order to analyze the interference term in the PR cross section, one has to take
into account the phase relations in the calculation of the transition amplitudes for
the RR and the DR processes, respectively. The interference term, from a level i to
a level f via level d, is obtained using the lowest-order autoionization and radiative
decay rates as well as the lowest-order DR cross section for a single electric-multipole
(L) in the following form

σint
idf (Ee) = σDR

idf (Ee)
4

~Aa
di

Re
{[

(Ei + Ee − Ed) +
i Γd

2

]
1

Qidf

}
, (1.51)

where Qidf is the �dimensionless� multichannel Fano line-pro�le parameter de�ned
as

1

Qidf

=
π√

(2Jd + 1)

∑
κ

〈
γfJf

∥∥∥ ~D∥∥∥ γiJi, Ee κ; Jd

〉
〈γiJi, Ee κ; J ‖Hes‖ γdJd〉〈

γfJf

∥∥∥ ~D∥∥∥ γdJd

〉 .(1.52)

An extended analysis of higher order electromagnetic-multipole contributions of
Qidf is given in ref. [ZGS97]. In that work Qidf can have in addition to the real part
given in Eq. (1.52) an imaginary part. Eq. (1.51) can �nally be rewritten, because
only the real part belongs to the interference term, as follows:

41



Chapter 1. Theory

Figure 1.11: Calculated shape for a DR resonance in the KL1/2L3/2 region of boron-like mercury
ions (Hg75+) with di�erent Fano factors Qidf (convoluted with a Gaussian distribution of 70 eV
FWHM). The �xed parameters are the natural width (35 eV) and the electron energy (49.657 keV).
Generally, the asymmetry nearly disappears for values of the Fano factor higher than 30.

σint
idf (Ee) = σDR

idf (Ee)
4

~Aa
di

[
(Ei + Ee − Ed)Re

(
1

Qidf

)
− Γd

2
Im

(
1

Qidf

)]
.(1.53)

It is understood from Eq. (1.53) that, in the vicinity of a resonance, the cross
section of the interference term results as a product of the linear function Ee, which
changes sign at a resonance energy (Ed − Ei), and the Lorentzian pro�le func-
tion characterizing the DR cross section. Therefore, the energy dependency results
in asymmetric line pro�les [Fan61]. It can also be noticed that the continuum-
continuum coupling modi�cations are more signi�cant and the resonance shape is
most pronounced when the values of Qidf are small. In particular, in heavy highly
charged ions, for values of Qidf being larger than 30 − 40 the asymmetry nearly
vanishes and the curve pro�les emerge into symmetric Lorentzians. As an example,
Fig. 1.11 illustrates how the shape of a KLL DR resonance (Z = 80) changes for
di�erent Fano factors Qidf (for a �xed natural width and resonance energy).
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Fano showed [Fan61, FC65] that the observed asymmetric resonance curves in
the inelastic scattering cross sections of electrons by atoms are explained by taking
into account the interference between transition amplitudes leading directly into
the ionization continuum and those indirectly proceeding via a discrete autoionizing
intermediate resonant state. He could reproduce the asymmetric resonance line
shapes for the energy-dependent photoionization spectra around the resonances.
Figure 1.12a shows the interference in electron inelastic scattering from helium
atoms taken from his work. The larger resonance state in Fig. 1.12a corresponds to
the inelastic scattering through the 2s2p 1P level of helium atoms. The �ts to this
resonance, convoluted with a Gaussian distribution to accounts for the experimental
resolution, are shown for di�erent natural linewidths in Fig. 1.12b.

Helium Spectrum - Zero Angle
Acceleration Voltage 504
First peak 60.0 ± 0.1
Second peak 63.5 ± 0.2 G=.06 eV

G=.02 eV

G=.04 eV G=.02 eV

G=.06 eV

G=.04 eV

Figure 1.12: a) Experimental inelastic scattering of electrons from He atoms (open dots) in the
Fano original work [Fan61]. The two peaks are due to the 2s2p resonance at low energy loss and
the 2s3p or 3s2p level at higher energy loss. b) Detail of the �ts to the 2s2p resonance in [Fan61]
for di�erent natural linewidths Γ.

The �rst signature for the interference between DR and RR processes in photo-
recombination in collisions of free electrons with highly charged, heavy ions (Fig.
1.13) was reported by Knapp for uranium ions (U87+...90+) in the LLNL SuperEBIT
[KBC95] using a technique, very similar to the one presented here, but at lower
resolution, and with poorer statistics. In addition, the photon energy resolution
was not used to separate the photorecombination into the di�erent charge states.
Therefore, their Fano factors were determined only for the averaged charge state
taking into account their respective DR strengths.

Considerable e�orts have also been pursued at storage rings, where only the
charge changing ions are detected, to observe the interference e�ect for ions in low
charge states such as Sc3+ by Schippers [SKM02]. In one experiment (Fig. 1.14), a
small experimental evidence for an asymmetry of the 3p53d2 (3F) 2F resonance line
shape was concluded. The low energy side of this resonance is blended with three

43



Chapter 1. Theory

Figure 1.13: DR resonances in the KL1/2L3/2 region for highly charged uranium ions in collision
with electrons [KBC95].

close resonances, thus, making the observation of the interference di�cult. The
measured Fano factor for this structure resulted in 6.3 ± 1.8 which was strongly
a�ected by the residual gas molecules. Here, by allowing a constant background as
an additional free parameter, the Fano factor appeared to be 10.4 ± 4.1 (39%).

Figure 1.14: DR resonance line shape (3p53d2(3F) 2F) in Sc3+ in collision with electrons [SKM02].

44



1.3. Dynamic processes

1.3 Dynamic processes

Plasmas, in particular those at high temperatures, are characterized by the collisions
taking place between their constituent particles. The Coulomb forces let these par-
ticles interact with each other on a long range scale. Excitation, ionization, charge
exchange and recombination processes coexist and a certain degree of ionization is
reached in equilibrium. The excited states can autoionize by emission of an electron
or radiatively decay to lower states emitting one or more photons. In the follo-
wing for completeness and for practical reasons when working with an EBIT a short
description of the main electronic processes except from radiative and dielectronic
recombination is given, namely electron or photon impact ionization and excitation
as well as charge transfer.

1.3.1 Electron impact excitation and ionization

The most common processes involving highly charged ions in collisions with electrons
are the collisional excitation (also called electron impact excitation), and ionization.
There is extended literature covering both of these topics and sophisticated theo-
retical calculations are at hand. Here, for short overview, only the scaling features
of electron impact excitation and ionization are brie�y described and widely-used
semi-empirical formulas are provided for the estimation of the respective cross sec-
tions.

The excitation process takes place if the kinetic energy Ee of the incident electron
is larger than the threshold energy to excite an ion from level n to level n′ (1.54).
The excited ion is stabilized usually by emitting a photon with speci�c energy, by
photon cascades (1.55), or by Auger processes.

Excitation : Aq+ + e− →
[
Aq+

]∗
+ e− (1.54)

→ Aq+ + ~ω .

Aq+ indicates an ion q-times ionized and the asterisk denotes the excited state.
The excitation can also be resonant (resonant excitation) if the incident electron,
after exciting one of the inner-shell electrons, is captured generally forming an in-
termediate doubly-excited state. This state decays preferentially by Auger electron
emission for light ions. If the doubly excited state decays by emission of a pho-
ton, the process is called dielectronic recombination (see Eq. (1.23)), as described
previously.
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Resonant excitation : Aq+ + e− →
[
A(q−1)+

]∗∗ (1.55)
→
[
Aq+

]∗
+ e−

→ A(q−1)+ + ~ω

For positive ions the dipole excitation cross sections is approximated by the Bethe
formula,

σex ≈
A

Ee

+B
lnEe

Ee

, Ee � En,n′ , (1.56)

where A and B are constants, and En,n′ the transition energy. The so-called
Bethe constant B is associated with the dipole oscillator strength. The empirical
Van Regemorter formula [FRB97] provides also a good estimate of excitation cross
sections by electron impact. The cross section for the allowed dipole n → n′ tran-
sitions is given there as a function of x, the ratio between the kinetic energy of the
incoming electron and En,n′ (x = Ee/En,n′):

σV R
ex (x)[cm2] = 2.36× 10−13 1

E 2
n,n′

G(x)

x
fn,n′ , (1.57)

where fn,n′ is the absorption oscillator strength and G(x) the e�ective Gaunt
factor. An empirical approximation for the Gaunt factor as a function of x is given
in [FRB97] as

G(x) = 0.349 ln(x) + 0.0988 + 0.455 x−1 . (1.58)

Experiments based on the measurements of electron impact excitation cross sec-
tions are performed with crossed-beam (high-energy) or merged-beam (low-energy)
methods. As the e�ective ion target densities are extremely low (e�ectively less
than 10−11 Torr), sophisticated techniques are necessary to extract the weak signal
from the much larger background. Here, absolute excitation cross sections have been
measured mainly for the resonance s−p transitions in low charged ions such as C3+,
N4+, Al3+, Si3+ or Ar7+. The observed cross sections decrease with increasing the
ion nuclear charge Z, following roughly a σ ∝ Z−4 law.
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An EBIT can also be used for these experiments by observing the photons emitted
by the excited trapped ions. To obtain absolute cross sections, one can normalize the
photon yield to that one observed for the radiative recombination process (see 1.2.2)
[KMS93].

In the case of resonant excitation, the doubly-excited state decays predominantly
via autoionization (1.56) in low-charged ions, while radiative decay (1.56) becomes
the dominant channel for highly charged ions.

The direct ionization process takes place if Ee exceeds the binding energy or
ionization potential Ip of the target electron. The sum of the energies of the two
scattered electrons is equal to the kinetic energy of the incoming electron minus the
binding energy of the bound electron, thus,

Direct ionization : Aq+ + e−(Ee) → A(q+1)+ + e−(E1) + e−(E2) , (1.59)
Ee − Ip = E1 + E2 .

Electron impact ionization is used to breed high charge states of ions in various ion
sources including an EBIT. An often used expression for calculating the ionization
cross sections for positive ions is the semi-empirical Lotz formula:

σL
i [cm2] = 4.49× 10−14N

I2
p

ln(u+ 1)

u+ 1
, u = Ee/Ip − 1 , (1.60)

where N is the number of equivalent electrons in the same shell. This formula is
known to be well suited for few-electron ion systems. Nevertheless, it can be used
for estimations of cross sections for most cases with an accuracy within about a
factor of 2 or 3.

Using crossed-beam methods, and later storage rings, experiments on Cl6+, Fe15+

or Se23+ have been carried out. Ionization cross sections for ions as highly charged as
U91+ have been measured using an EBIT and the results were compared to various
relativistic calculations [MEK94].

It should be noted that, in the ionization processes of multi-electron ions by
electron impact, the indirect ionization process plays a signi�cant role. When one of
the inner-shell electrons is excited to a higher state or ionized into the continuum, a
series of the autoionization cascades might follow. In particular at low energies this
leads to an increase of the cross section which, in some cases, can be one order of
magnitude. Moreover, considerable amount of double and multiple ionization might
occur at high electron impact energies.
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1.3.2 Photon impact

Two main processes can occur in ion-photon collisions, namely, photoexcitation and
photoionization via absorption of the photon. In principle, at high photon energies,
both processes can occur as well by Compton scattering of the photon but cross
sections are extremely small and are not considered here. In the photoexcitation
(1.61), the absorption of a photon results in excitation of a bound electron in the
ion. In the photoionization process (1.62), a bound electron is ejected into the
continuum.

Photoexcitation : Aq+ + ~ω →
[
Aq+

]∗
, (1.61)

Photoionization : Aq+ + ~ω → A(q+1)+ + e− . (1.62)

There is a lack of experimental data for such cross sections on ions with a charge
state higher than q = 5. The main reason for this is the di�culty in producing a
dense target of highly charged ions to study their interactions with relative weak
photon beams even at third generation synchrotrons.

Sophisticated calculations performed on the photoionization cross sections in the
non-relativistic dipole approximation have shown a good agreement with experi-
mental results at low photon energies. At high photon energies, the presence of a
series of sharp resonances strongly a�ects the behavior of the photoionization cross
sections. These resonances have their origin in the autoionization of intermediate
doubly excited states.

The photoionization cross section is often estimated with the Kramers formula

σph
i (n) =

64πa2
0α

3
√

3n2

(
|E0|

|E0|+ Ee

)3

, E0 = Z2Ry/n2 , (1.63)

where α is the �ne structure constant and a0 the Bohr radius of the ground
state hydrogen atom. This formula contains the dependence on the various atomic
parameters, the ion charge Z, the photon energy ω (Ee = ~ω−E0) and the principal
quantum number n.

1.3.3 Charge exchange

The charge exchange is a process in which a bound electron is transfered from one
atom or ion to another one. This process is particularly e�ective when slow neutral
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atoms or molecules approach highly charged ions. Here, two or even more electrons
can be exchanged in a single collision. The electrons occupy vacant states of the
target ion. If these states are excited states, the ion subsequently decays to the
ground state by a series of successive photon emission cascades:

Charge exchange : Aq+ +B →
[
A(q−1)+

]∗
+B+ (1.64)

...→ A(q−1)+ + ~ω +B+ . (1.65)

A simple classical model is useful to understand this mechanism. The predomi-
nant principal quantum number n0 of the electron-transferred state depends mainly
on the ion charge q and the binding energy Ip of the neutral target atom, but not
on the nuclear charge Z:

n0 = 3.7
q0.75√
Ip[eV ]

. (1.66)

With increasing collision energy, the electron is captured into lower laying n-
states. Only at very high energies in deep laying n at highly charged ions with
extremely small cross sections. As for the previous equation (1.66), an empirical
formula for the electron capture cross section can be obtained within the �over-the-
barrier� model (q ≥ 6) with an accuracy of 30 − 50 % at collision velocities well
below 1 a.u. = 1/137 · c by

σCX [cm2] = 2.6× 10−13 q

I2
p [eV ]

. (1.67)

Although multiple electron capture may also occur in very highly charged ions,
single electron capture always dominates.
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Chapter 2

Experimental setup

The experiments on photorecombination of highly charged ions demand the use of
sources of ions and electrons. Both conditions are met in an electron beam ion trap,
which also allows one to collect the photons emitted in the process. The appara-
tus enables to vary the electron beam energy while maintaining good resolution
and reproducibility in the range needed to access the deep laying shells of the ions
under study. A slowly energy-varying electron beam is used for the simultaneous
production of ions via ionization and for scanning the recombination resonances.
The photorecombination is observed by detecting the x-rays which are emitted in
the RR or during the relaxation of the (doubly) excited states formed in the DR. An
appropriate data acquisition system allows to measure the energy and intensities of
the photons and the energy of the interacting electron simultaneously as well as to
determine DR and RR strengths as a function of the electron energy.

2.1 The Electron Beam Ion Trap

The basic principle of an electron beam ion trap (EBIT), depicted in Fig. 2.1, is
to use the negative space charge of an electron beam to trap positive ions, and
ionize them. The high density electron beam produced at high energies is therefore
the most important component in an EBIT. Here, depending on the electron beam
energy, ions can be prepared in all possible charge states.

The electron beam is generated in a Pierce-type electron gun, and its energy can
be varied depending on the experimental requirements. Electrons are accelerated
towards the positively biased trap region guided by a high magnetic �eld. After
passing the trap region, the beam is decelerated to nearly its initial energy, allowed

51



Chapter 2. Experimental setup

to expand and dumped in the collector. The magnetic �eld is produced with two
superconducting coils in a Helmholtz con�guration. This �eld compresses the elec-
tron beam generating a large space charge potential, con�ning the ions in the radial
direction. Several independently biased electrodes, the drift tubes, are used to trap
the ions longitudinally and to manipulate or extract them. The trapped ions occupy
a volume of cylindrical shape of 40 mm length and roughly 0.2 mm in diameter. Ioni-
zation takes place mainly inside the trap volume through successive collisions with
the energetic electron beam. Figure 2.1 shows a conceptual picture of the EBIT,
displaying the trapping potentials in the radial and longitudinal direction.

Figure 2.1: Principle of an electron beam ion trap. The electron beam is accelerated towards the
drift tube region (three of nine shown here). It passes the drift tubes with nearly constant velocity,
and is then decelerated before it arrives at the collector, to minimize there the heat deposition and
x-ray production. The bold lines illustrate the radial potential produced by the space charge of
the electron beam and the axial potential generated by the drift tubes bias voltage.

History

The underlying principle of the EBIT, namely the use of an electron beam to ioni-
ze and trap, has its origin in the modi�ed electron beam ion source (EBIS). The
EBIS was invented by Donets in 1965 in Dubna, who showed four years later the
production of Au19+ [DIA69] using a vacuum tube inside an ordinary conducting
solenoid. This device was improved and a few cryogenic versions called KRYON-I
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to -III, were built. There, the drift tubes inside the superconductive solenoid were
kept at 4.2 K. In particular, KRYON-I injected successfully bare C, N an O ions
into the Dubna Synchrophasotron to boost the ion energy. KRYON-II was the �rst
EBIS producing bare Ne, Ar, Kr and Xe ions [Don85]. Many EBIS were developed
worldwide since then. The latest improvement of EBIS is required by the demand
to provide intense ion beams for big accelerators and colliders like the RHIC at BNL
or the LHC at CERN.

Even smaller EBIS were constructed to use them as a tool for atomic physics ex-
periments in many laboratories world-wide. Litin et al. [LVS82], who had extensive
experience with the Berkeley EBIS concluded that the long electron beam path tends
to induce plasma instabilities and, therefore, a shorter electron beam path would be
preferable. Instead of a solenoid, the use of a split pair magnet was proposed. The
�rst EBIT with Helmholtz coils was constructed by Levine et al. [LMB89] at the
Lawrence Livermore National Laboratory (LLNL). This EBIT was later improved
in order to reach higher electron energies up to 200 keV and electron beam currents
as high as 200 mA (Super-EBIT). This machine yielded even small amounts of bare
uranium ions (U92+) [MEK94]. The original low energy LLNL design has been used
to build two similar devices, located at the National Institute of Standards and Tech-
nology (NIST) [Gil97] and at the Oxford University [Sil94]. A further modi�ed copy
is the Berlin EBIT [BFF97] and a new EBIT is at the Stockholm University [Uni05].
A high-energy EBIT (150 keV and 150 mA) was constructed at the University of
Electro-Communication, Tokyo [CAI 96]. The EBIT at the Max-Planck-Institut für
Kernphysik in Heidelberg [CDM99] has a worldwide unique design and is one of
the existing three high-energy EBITs. It is designed to enable the production of
electron beam with energies up to 350 keV and currents as high as 750 mA, thus,
reducing experimental acquisition times for high-energy experiments. Two more
EBITs are under construction in Heidelberg: A high-current (5 A) EBIT which will
be used for charge-breeding of radioactive isotopes at the ISAC facility at TRIUMF
(Vancouver), and a second device for experiments at the VUV free electron laser
(FEL) at the Tesla test facility Laboratory in Hamburg. Furthermore, quite re-
cently, another high-energy EBIT designed for electron beam energies up to 200 keV
is commissioned in the Institute of Modern Physics in Shanghai.

There are two principal di�erences between an EBIT and an EBIS. First, in
an EBIS the magnetic �eld is provided by a single long and closed solenoid, while
the short split coil Helmholtz con�guration in an EBIT allows one to easily access
the trap volume via several ports enabling all types of spectroscopy. The second
di�erence is that the EBIT trap length is much shorter than that of an EBIS (roughly
1:25). A shorter trap helps to reduce plasma instabilities. The longer trap in an EBIS
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can produce, therefore, a higher �ux of ions. On the other hand, the main purpose
of an EBIT is to trap ions for spectroscopy. The higher electron beam compression
in an EBIT and optimized evaporative cooling results in faster ionization as well as
higher interaction rates with the electron beam.

2.1.1 The Heidelberg EBIT

The Heidelberg EBIT design and construction took place at the Freiburg-University
in 1998, and after two years of operation the machine was moved to the Max-
Planck-Institut für Kernphysik in July 2001. The main di�erence to other EBITs is
its horizontal arrangement, which has the advantage of simpler ion extraction and
transfer to external experiments. In addition, a better thermal shielding reduces
the liquid helium consumption. The liquid helium tank (4 K) is surrounded by two
thermal shields (at 20 K and 50 K, cooled with a separate cryogenic system) which
also provide additional pumping. In fact, while EBIT-II at LLNL has been reported
to have a boil-o� of liquid helium of 5 l/h, in the Heidelberg EBIT this has been
reduced by a factor of 25 (0.2 l/h), thus signi�cantly reducing the running costs.
The magnetic �eld strength can be varied in the range from 3 T to up to 9 T. This
strong �eld compresses the electron beam down to below 50 µm diameter, bringing
the electron beam density to values as high as≈ 12000 A/cm2. The excellent vacuum
conditions (10−13 Torr) minimize the losses of the trapped ions by charge-exchange.
Due to the electron beam properties, namely high energy and high current, a broad
variety of ion charge states (Hg78+, W74+, Xe54+, Kr36+, Ge30+,...) have already
been produced.

Figure 2.2: Structural picture of the Heidelberg EBIT.
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Stable electron beams with an energy up to 100 keV as well as high current beams
(up to 535 mA) have been achieved so far. After mass-to-charge ratio selection a
variety of ion species (Ne10+, Ar18+, Kr34+, Xe44+, U64+) have been extracted from
the trap forming low-energetic beams with typical energies of 10 keV/q. These ions
have been used for atomic collision experiments in a reaction microscope [UMD03],
carried out with the cold target recoil ion momentum spectroscopy (COLTRIMS).

In the following a detailed description of the main parts of the Heidelberg EBIT,
as the electron gun, the drift tube assembly, the collector and the gas or ion injection
is given.

The Electron Gun

A schematic picture of the electron gun shown in Fig. 2.3 displays the assembly of
its various electrodes (anode, cathode, focus). The cathode of the electron gun has
a Pierce geometry and, thus, a spherical-concave shape with a diameter of 3 mm
and a concave radius of 5 mm. The cathode is made of a porous tungsten matrix
impregnated with barium. Due to the di�usion of the barium through the tungsten
matrix to the cathode surface, the emitting layer, which has a low work function
(ΦW,Ba = 2.0 eV) is constantly regenerated. By means of a tungsten �lament, the
cathode (indirect heating) is brought to temperatures of around 1100 ◦C.

Figure 2.3: Electron gun assembly.

The focus electrode controls the emission current and compensates the edge e�ects
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of the cathode �eld. The anode electrode also generates an extraction �eld for
the electrons emitted from the cathode. The combination of these two electrodes
determines the beam intensity and a�ects its focusing.

The cathode and the focus electrode are surrounded by a soft iron shield in order
to reduce any in�uence of the EBIT magnetic �eld on the emitted electron beam
since the residual magnetic �eld at the cathode surface Bc is critical with respect to
minimize the beam radius [Her58] (see section 2.3). Two solenoidal coils surround
the electron gun; the so-called bucking coil, which cancels the residual magnetic �eld,
and the trimming coil, which provides better focusing of the electron beam.

Figure 2.4: The measured perveance of the Heidelberg EBIT electron gun showing the electron
beam current as a function of the voltage applied to the focus electrode [Roh05].

Electron guns are commonly characterized by the so-called perveance P , de�ned
as P = I/V

3/2
cathode, where I is the electron beam current (A) and Vcathode the voltage

(V) applied between the cathode and anode. As displayed in Fig. 2.4, the Heidelberg
EBIT gun has a perveance of 1 µperv (1 perv = 1 A/V3/2). For comparison, the
Super-EBIT gun reaches a perveance of 0.6 µperv [Wid98] while the Tokyo EBIT
gun has been reported to achieve about 0.4 µperv [WAC97]. The maximum voltage
on the electron gun platform is expected to be 350 keV. Therefore, the total electron
energy to be reached is about 370 keV in the ionization region (20 kV) which is
su�ciently high to produce U92+ ions.
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The Ion Trap

The trap region consists of nine electrodes (drift tubes) made of high purity copper.
These electrodes have a cylindrical shape, with a central bore whose radius decreases
towards the direction of the central trapping region (see Fig. 2.5). They can be
biased independently, thus allowing for di�erent trap con�gurations (see Fig. 2.2)
with a total trap length varying from 40 mm to 200 mm. Accordingly, such a
geometry allows the setting of appropriate conditions, to use the EBIT either as an
ion trap for spectroscopy (short trap) or as an ion source (long trap). The central
drift tube or trapping electrode (DT9 in Fig. 2.5) has an inner diameter of 10 mm.
The whole set of drift tubes is biased at positive voltages up to ≈ 20 kV.

DT1DT2DT3DT4DT9
DT5

DT6
DT7

DT8

Ceramic rods

Figure 2.5: Assembly of the nine drift tubes.

Two superconducting coils in a Helmholtz con�guration are located around the
drift tubes, generating a �eld of 8 T at a current of 76.24 A (4.2 K). Higher magnetic
�elds (9 T) are produced by cooling the system down to 2.2 K with a Lambda
refrigerator. The central drift tube has four elongated apertures allowing optical
access to the trapped ions. The vacuum chamber has two horizontal ports located
at a distance of 300 mm from the trap center. On one of these ports, under normal
running conditions, a set of optical lenses for visible spectroscopy is mounted, while
the opposite port has a beryllium window of 250 µm for x-ray spectroscopy. The
x-rays observed through this port need to pass two more beryllium foils located in
the thermal shields in order to separate the vacuum of the cryostat operating at
di�erent temperatures. A third port is conventionally used for the external atom
injection. The fourth aperture port is placed on top of the helium tank at about
1200 mm distance from the trap center and is planned to be used for inserting an
x-ray detector.
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The Electron Collector

After passing through the drift tubes the electrons are decelerated to 1.5 keV energy
or even less. Inside the collector (Fig. 2.6) the electron beam is allowed to expand,
since the residual magnetic �eld of the superconducting magnet at that place is
compensated by a magnetic coil surrounding the collector electrode. The defocused
beam is dumped onto the inner wall of the collector electrode. The suppressor
electrode at the entrance of the collector, biased negatively with respect to the
collector, prevents secondary electrons produced in the collector walls from escaping
the collector. Both the collector current and the suppressor current are regularly
monitored to check the beam tuning. The extractor electrode located at the exit of
the collector is biased to a negative voltage with respect to the cathode, to make
sure that no electrons can pass the collector. Moreover, as indicated by its name,
the extractor electrode is used to separate the ions coming from the trap from the
electrons in the beam.

Extractor
electrode

Suppressor
electrode

Collector cooling
circuit

Collector magnet
coil

Collector

Electron beam

Figure 2.6: Cross section of the electron collector.

Ion and gas injection

In order to load the trap with the desired element, two types of injection systems
are available at the Heidelberg EBIT: a gas injector and a laser ion source (LIS)
for solid targets.
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The gas injector delivers a neutral, collimated atomic beam to the trap region
through multiple di�erential pumping stages (see Fig. 2.7). Elements or molecules
which can be brought into the gas phase (Ne, Ar, Kr, Xe, Cl2, UF6, Hg, Bi,...) can
be injected in this way. The input of a needle valve is connected to the gas supply.
The gas pressure in the �rst stage is about 10−6 Torr, while at the second stage
it is reduced to 10−9 Torr (monitored with an ionization gauge). By using slits at
the various di�erential pumping stages, a slit-shaped atomic beam is formed, which
overlaps with the electron beam in the central trap region. The �nal pressure in
the ionization region is reduced by a few orders of magnitude (estimated value of
10−13 Torr). The density of neutral atoms injected into the trap is assumed to be
proportional to the pressure measured in the second stage of the injector.

Stage 1
10 Torr

-6

Turbomolecular
pump

Valve

Electron beam

Magnetic cryostat
vacuum chamber

50 K Thermal shield

20 K Thermal shield

Stage 2
10 Torr

-9

4 K Dewar
(Liquid He)

Trap center
10 Torr

-13

Turbomolecular
pump

Slits

Figure 2.7: The two-stage di�erentially pumped gas injection system.

The laser ion source (Fig. 2.8) is located behind the electron collector. This
source uses a plasma generated by focussing a pulsed laser of a few mJ and 9 ns pulse
duration onto a solid target (108-109 W/cm2). The plasma expands from the solid
target surface. A beam consisting mostly of singly charged ions is extracted from the
plasma by applying short high-voltage pulses between two grids, when the plasma
in its expansion is located in between them. Thus, electrons are separated from
the ions, which are �nally accelerated into the EBIT. By modulating the voltages
applied to the trap electrodes, the injected ions are allowed to enter the central drift
tube and then trapped longitudinally (for details see [MTW03]). The LIS has been
used for the injection of ions from solid materials such as Ge, Cu, Al and Pb. The
estimated number of ions produced (on the target surface) is approximately 1014 per
Joule of the laser power.
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Laser

Lens

Target

Plasma

Extraction grids Einzel lens

Ion beam

EBIT

Figure 2.8: The laser ion source for solid targets.

Operation

For the proper operation of the EBIT it is mandatory to maintain very clean con-
ditions using UHV and XHV technology. The vacuum pumping system consists
of high compression (ratio up to 109 for N2, 104 for H2) turbomolecular pumps.
To enhance the compression ratio for H2, each large turbo pump (pumping speed
300 l/s) is backed by a small turbo pump (70 l/s) in the forevacuum line. Diaphragm
pumps and scroll pumps are used for oil-free roughing. To e�ectively pump the elec-
tron gun and collector chamber region, non-evaporative getter (NEG) modules are
mounted in addition. By far, the highest pumping speed is obtained by the two
large coaxial thermal shields, operating at 50 K and 16 K, respectively, and by the
liquid helium tank at 4.2 K. The di�erent vacuum regions separated by the thermal
shields are connected through narrow gaps and labyrinthic structures, to maintain
pressure di�erentials as large as possible. The only vacuum gauge mounted on the
magnet dewar is located outside the 50 K shield. Its reading is therefore indicating
the worst pressure in the whole system, which is typically in the range of 5×10−10

Torr to 2×10−9 Torr. The pressure values between the 50 K and the 16 K shields,
inside the 4 K dewar, and �nally in the central magnet bore become stepwise lower.
Accurate pressure values in the trap region can not be given, but they are estimated
from charge exchange rates to be in the 10−13 Torr regime.

The EBIT is mounted on a high-voltage platform which will allow in the near
future to accelerate the extracted ion beam to energies of up to 350 keV/q. A sepa-
rate platform (electron gun) supports the electron-gun which is connected through
an insulated, high-voltage hollow coaxial line to the collector. A high voltage cage
surrounds this platform. It also encloses a three-phase motor-generator system to
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Table 2.1: Typical parameters of the Heidelberg EBIT.

Electron beam energy 100 keV
Electron beam current 250− 535 mA
Electron beam radius 23 µm (calculated) at 150 mA and 50 keV
Trap length 40− 200 mm
Vacuum 10−13 Torr (estimated)
Maximum magnetic �eld 8 T at 4.2 K; 9 T at 2.2 K

deliver AC power to the devices mounted on the electron gun platform. During high
energy operation, this cage is closed for safety reasons. For experiments in which
the kinetic electron energy needs to be known, a high precision voltage divider has
been constructed (see its detailed description below) to measure the exact platform
voltage. The voltages for the electron gun platform (negative) and the drift tube

VextractorVDT5VDT4 Vdump
Vanode

Vcathode

Vfilament

Vfocus

Ve-gun VDT rack

HV coaxial bridge
e-gun - collector

HV guard shield HV guard shieldHV DT rack

Vcathode

Ve-gun

VDT rack

Ve-gun+V +Vcathode DT rack

Figure 2.9: A schematic diagram of the di�erent potentials applied to the elements of the Hei-
delberg EBIT. The lower curve indicates the potential distribution along the longitudinal axis.
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Electron gun

Superconducting
magnet

Collector

Figure 2.10: Photograph of the Heidelberg EBIT without lead radiation shields. The electron
gun, collector and superconducting magnet chambers can be seen, respectively.

rack (positive) are fed in by di�erent high voltage power supplies. Three Glassman
power supplies (Models 60, 125 and 350 kV) and two fast Trek high voltage ampli-
�ers (Models Trek 20/20 and Trek 30/20) of 20 and 30 kV capable of delivering up
to 20 mA of current with a voltage scanning speed of 350 V/µs for fast ramping
purposes are used.

The EBIT is equipped with an interlock system for person and machine safety
reasons. Since all the vacuum levels and high voltage settings are integrated into
this system, the EBIT can only be run under proper, well-de�ned conditions.

Thanks to the low helium consumption, the magnet dewar has to be �lled with
50 l liquid helium only at intervals of approximately 10 days.

2.2 Modelling of the ion production and population

A quantitative description of the photorecombination process requires detailed know-
ledge of the charge balance, electron as well as ion densities, and other trap param-
eters. In order to understand the ion charge evolution with time and its spatial
distribution in the trap region, a system of rate equations describing the collision
processes has to be solved. The individual relevant processes have already been
discussed in sections 1.2 and 1.3. The charge state of a speci�c ion changes, in most
of the cases, only in steps of single elementary charges, as single electron processes
are assumed to be dominant, although multielectron processes (involving changes in
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the �nal charge state of two or even more) are not negligible [ST98].
Rate equations for the evolution of charge states have been derived, for instance,

in [PBD91]. There are mainly two types of charge-changing processes: those due to
interactions with the electron beam (recombination and ionization) and those due
to collisions with the residual gas or actively injected neutrals (charge exchange).
The processes occurring inside the electron beam have rates R that can be described
in the form

R ≡ dNq

dt
= ±Je

e
Npσp(Ee)f(re, rp) , (2.1)

where Nq is the population of the ion of interest with charge q. The sign (±)
indicates the creation or destruction of ions with charge q and thus, depends on
the process. Je is the electron beam current density and e the elementary charge.
The index p indicates the speci�c charge changing reaction with its corresponding
cross section σp. Here, we will consider only single ionization or electron capture,
i.e. p = q − 1 and p = q + 1, i.e. excitation is neglected. Finally, f(re, rq) is the
overlap factor between the electron beam and the ion species with the charge q. This
factor is di�erent for electron impact ionization (EI), radiative (RR) and dielectronic
(DR) recombination on the one side and charge exchange on the other side. The
production rates of ions with charge q under steady-state conditions, outside DR
resonances considering single electron transitions only, are given [PBD91] by EI and
RR

REI
q =

Je

e
Nq−1σ

EI
q−1(Ee)f(re, rq−1) , (2.2)

RRR
q =

Je

e
Nq+1σ

RR
q+1(Ee)f(re, rq+1) . (2.3)

These two processes are driven by the electrons and, thus, occur always within
the electron beam. In contrast, ions can capture electrons by collisions with neutral
gas atoms or molecules, which are injected for cooling purposes or due to the residual
background, in the whole volume occupied by the trapped ion cloud. The rates for
these charge exchange (CX) processes or electron capture (see Eq. (1.64) and its
following discussion) are given by

RCX
q = N0Nq+1σ

CX
q+1vq+1 , (2.4)
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Figure 2.11: Evolution of dysprosium (Z = 66) ion charge states, taking into account only
the electron impact ionization and the radiative recombination processes, respectively. The �xed
parameters are Ee = 150 keV, Ie = 150 mA and B = 3 T. This result was obtained under the
assumption that the target gas is injected only at time zero.

where N0 is the neutral gas density and vq+1 the average velocity of ions in the
trap. Here, the overlap factor f(re, rq+1) has been set to one, since neutrals are
assumed to cover the whole trap region. In addition, three more rates intrinsic to
the trapping are usually taken into account, the axial and radial escape rate as well
as the source rate, respectively. Ions with nuclear charge Zq can escape from the
electrostatic trap V if their energy is larger than eZqV . The source rate appears
due to the continuous injection of neutral gas. The escape rates of highly charged
ions can be estimated to be very small, and the source rate is typically small as well,
usually having a low injection �ow. Under such conditions, they can be neglected
in approximate calculations.

For highly charged ions being axially strongly con�ned by the negative electron
beam charge potential, we assume the overlap factor f to be equal to unity, i.e. all
the ions of all the charge states are inside the electron beam. Then, the full rate
equation for ions with charge q is given by (neglecting the DR contribution as DR
occurs only at a very narrow energy range)
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dNq

dt
=

Je

e

[
Nq−1σ

EI
q−1 +Nq+1σ

RR
q+1 −Nqσ

EI
q −Nqσ

RR
q

]
−N0Nqσ

CX
q vq +N0Nq+1σ

CX
q+1vq+1 . (2.5)

In order to illustrate the time evolution of the di�erent charge states present in a
trap, Fig. 2.11 shows the evolution of dysprosium ions in the idealized case where the
charge balance is determined only by the ionization and the radiative recombination
processes under the assumption that no ions are lost during trapping [PBD91]. The
ion losses caused by the charge exchange of the background gas are assumed to be
negligible.

Elastic as well as inelastic collisions with electrons from the beam not resulting
in ionization events have nonetheless an indirect e�ect on the charge state balance
in the trap, since the ion ensemble is heated with a rate given by

dkTi

dt
= fe,i

8π(Je/e)q
2
i e

2 ln Λi

3mi

, (2.6)

where kTi is the ion temperature, fe,i the electron-ion overlap factor for a given
ion charge q of specie i and mass mi. Λi is the so-called Coulomb logarithm which
describes the length scale over which the electron beam appears to be di�erent
from a smooth �uid. Since this heating depends on q2

i , it is enhanced for the more
highly charged ions. This heating would eventually lead to losses of trapped ions.
Fortunately, a cooling technique can be applied, removing constantly energy from
the ion cloud, namely, evaporative cooling. It was used in 1988 for the �rst time
in an EBIT [LMH88], and is based on the principle that all ions with di�erent
masses thermalize in the trap. Thus, lighter ions, share their kinetic energy with
the heavier ones but, at same time experience lower e�ective trapping potentials due
to their smaller maximum charge state, and, therefore evaporate more easily, thereby
removing a sizable fraction of the heat input and cooling the heavier components.

For the particular case of dielectronic recombination measurements, the rate equa-
tion for the evolution of helium-like ions with the above mentioned approximations
is given by:

dNHe

dt
=
Je

e

[
NLiσ

EI
Li −NHeσ

RR
He −NHeσ

DR
He (Er)

]
−N0NHeσ

CX
He vHe , (2.7)

where Er indicates the resonant energy of the DR process. Note that, at E 6= Er,
σDR

He ≈ 0.
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Two methods have been mainly used to study the dielectronic recombination in an
EBIT, depending on the particular interest, by using either fast or slow sweeping of
the electron beam energy around the DR resonances. The most common one, dubbed
�unperturbed scanning�, consists of three phases [KMS93]. First, the electron beam
is set to high energy and current to generate the desired charge state distribution
(cooking stage). Then, the electron beam energy is rapidly ramped down linearly to
pass through the dielectronic recombination resonances (probe). Each ramping takes
only a few milliseconds (< 50 ms) in order to avoid any perturbation of the ion charge
distributions before bringing back the electron beam to the cooking stage. Finally,
after repeated cooking-ramping cycles, there is a dump to avoid accumulation of
heavy impurity ions and to clean the trap. Here, it is assumed that the DR does
not change the charge state balance, and only a few percent of all trapped ions are
recombined in each scan.

In the second, so-called �steady-state� method, which we use throughout the
present experiments, the electron beam energy is scanned very slowly up and down
through the resonances to keep a quasi-stationary charge balance between ionization
and recombination at each energy. This has for our purposes the decisive advantage
to allow for a far more accurate determination of the electron beam energy, since
the strongly varying accelerating voltage is much better de�ned than with the other
methode.

If one is interested in obtaining total DR cross sections, which was not the main
intention of the present work, it is usually assumed that the charge distributions are
similar to those found for the static case discussed above. The charge equilibrium
equation (dNHe/dt = 0 in Eq. (2.7)) can be rewritten as

NLi

NHe

=
1

σEI
Li

[(
σDR

He (Er) + σRR
He

)
+N0σ

CX
He

ev

Je

]
. (2.8)

If the collisions of the ions with neutral atoms are negligible, the DR cross section
for helium-like ions is expressed in terms of the ratio NLi/NHe by

σDR
He (Er) = σEI

Li

NLi

NHe

−B(Ee) , (2.9)

where B is an o�-resonance slowly varying background due to RR [ABC90]. This
approximation is used to obtain DR cross sections in combination with the corre-
sponding electron-impact ionization cross sections of Li-like ions to �t the observed
DR resonances [ZCU03,ZCG04], taking into account the electron beam spread, the
detector e�ciency and other parameters.
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2.3 Electron beam properties

In this section we describe in more detail general features of the electron beam, like
its radius and its space charge potential, since these properties play the most impor-
tant role in the production and trapping of the HCI and especially in determining
the actual electron-ion interaction energy in the EBIT, the decisive point for any
DR precision experiment.

2.3.1 Electron beam radius

In a �rst model, the Brillouin theorem [Bri45] describes a uniformly distributed
electron beam propagating under the presence of an uniform axial magnetic �eld B.
This theory assumes a laminar �ow (the electron trajectories do not cross each other)
and that the electrons are produced in a region of zero magnetic �eld. It does not
take into account the initial thermal energy of the electrons. The electron beam
radius rB is then given in terms of the electron beam current Ie, the axial magnetic
�eld B and the electron speed ve as

rB =

√
2meIe

πε0veeB2
, (2.10)

where me is the electron mass, e the elementary charge and ε0 the permittivity
of vacuum. Equation (2.10) can be reduced to the following form:

rB [µm] = 829.91

√
Ie [A]

B [T ]E
1/4
e [eV ]

. (2.11)

In the non-relativistic regime, the radius is obtained using ve =
√

2eEe

me
with Ee

being the electron energy. For relativistic electron beam energies the electron speed
is given by:

ve = c

√
1−

(
Ee

mec 2
+ 1

)−2

. (2.12)

More rigorous calculations of the electron beam radius were performed by Herr-
mann [Her58], starting with a non-laminar electron beam of cylindrical shape and
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Figure 2.12: The Herrmann radii as a function of the electron beam current and energy, for the
speci�c gun properties of the the Heidelberg EBIT.

taking into account the thermal motion of the electrons. Assuming that the axial
velocity of the electrons is independent of the radial position, the e�ective electron
beam radius is expressed in terms of the Brillouin radius rB and a multiplicative
factor containing contributions resulting from the properties of the cathode (radius
rc, magnetic �eld strength on its surface Bc and temperature Tc) and of the magnetic
�eld used for compression. The Herrmann radius rH de�ned as containing 80% of
the total electron beam current then reads:

rH = rB

√√√√1

2
+

1

2

√
1 + 4

(
8mekBTcr2

c

e2r2
BB

2
+
B2

c r
4
c

B 2r2
B

)
, (2.13)

where kB is the Boltzmann constant. This equation is also valid in the relativistic
regime by using Eq. (2.12) for ve. Figure 2.12 illustrates the variation of the beam
radius as a function of electron beam energy and current. Showing a smooth decrease
of the radius with decreasing electron beam current and increasing energy.
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Figure 2.13: The Herrmann radii as a function of the magnetic �eld at the cathode surface (a),
of the axial magnetic �eld inside the EBIT (b) and of the cathode temperature (c). Also indicated
as the blue dotted line together with the scale on the right hand side (b) is the electron current
density as a function of the axial magnetic �eld.

As it can be observed in Fig. 2.13a, the radius becomes considerably smaller
when the residual magnetic �eld on the cathode is close to zero, and thus, should
be minimized in the experiments. By setting Tc and Bc to zero, Eq. (2.13) becomes
identical to the Brillouin formula Eq. (2.10). Figure 2.13b displays the dependence of
the electron beam radius and electron current density on the magnetic �eld. Figure
2.13c shows the variation of the electron beam radius with the cathode temperature.
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2.3.2 Negative space charge potential and the ion compensa-
tion

When resonance (or excitation) processes are being investigated, it is a requisite to
precisely know the electron energy. Under conditions of an intense electron beam like
in an EBIT, the radial space charge potential Vsp generated by the negative charge
density of the electrons in the beam has to be taken into account as it reduces the
e�ective interaction energy in relation to the actually applied acceleration voltage.
In order to come to a quantitative notion of this space charge potential, we �rst have
to assume an electron beam with a top-hat uniform pro�le distribution along the
radial direction [Gil03] and identical radius re, i.e. a uniform magnetic �eld along
the axial direction. The electron density ρ is written in terms of the electron beam
current Ie by

ρ =
Ie
ve

1

A
=

Ie
πr2

eve

, (2.14)

where ve is the velocity of the electrons and A the cross section of the beam.
Here, re is the Herrmann radius rH calculated with Eq. (2.13) for a magnetic �eld
realized in the center of the trap.

The Poisson di�erential equation,

∇2Vsp = − ρ

ε0
, (2.15)

is represented in cylindrical coordinates and the radial equation with∇2 = 1
r

∂
∂r
r ∂

∂r

is solved in order to determine the electric �eld Esp(r) and the potential Vsp(r) inside
and outside the electron beam along the radial direction r. Esp(r) is found after a few
steps taking into account the continuity of the derivative ∂Vsp/∂r at the boundary
r = re as

Esp(r ≤ re) = − Ie
2πε0ve

r

r2
e

, (2.16)

Esp(r ≥ re) = − Ie
2πε0ve

1

r
. (2.17)

The space charge potential (− d
dr
Vsp = Esp) has to satisfy the conditions that

the potential at the wall of the drift tube is zero (Vsp(r = rdt) = 0) and that the
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potential is again continuous at r = re. With these boundary conditions, the space
charge potential is given by:

Vsp(r ≤ re) =
Ie

4πε0ve

[(
r

re

)2

+ ln

(
re

rdt

)2

− 1

]
, (2.18)

Vsp(r ≥ re) =
Ie

2πε0ve

ln

(
r

rdt

)
. (2.19)

Figure 2.14 shows the radial space charge potential obtained for an electron beam
current and energy of 150 mA and of 50 keV, respectively, as well as for a magnetic
�eld of 8 T at the center of the trap. The radius of the electron beam resulted to
be 23 µm from Eq. (2.13). The space charge potential becomes zero on the wall of
the drift tube electrode and is largest at its center (r = 0):

Vsp(0)[V ] ≈ 30Ie [A]√
1−

(
Ee[keV ]

511
+ 1
)−2

(
ln

(
re

rdt

)2

− 1

)
, (2.20)

using Eq. (2.12) for relativistic velocities.

Figure 2.14: Radial space charge potential distribution as a function of the radial position r for
an electron beam energy and current of 50 keV and 150 mA, respectively. The radius of the drift
tube is 5 mm while the electron beam radius is calculated to be 23 µm for a magnetic �eld of 8 T.
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Figure 2.15: (a) The radial space charge potential as a function of the electron beam energy at
r = 0. (b) The space charge potential versus the electron beam current at r = 0. In these �gures
the beam properties were Ie = 150 mA, Ee = 50 keV and re = 23 µm.

Some examples relevant for the present experimental work are described in the
following.

The dielectronic recombination resonances of He-like Kr34+ occur at electron
beam energies of roughly 9 keV. The experiment was performed using a magnetic
�eld of 5 T. Under these conditions, the Herrmann beam radius is 29 µm, and a
space charge potential of -183 V is calculated (rdt = 5 mm, I = 100 mA). Increasing
the magnetic �eld to 8 T, the electron beam energy and current to 50 keV and 150
mA, respectively, results in a beam radius of 23 µm, and, accordingly in a space
charge potential of -128 V. Figure 2.15 shows the dependence of the Vsp at r = 0 as
a function of the electron beam current and energy.

We have to note that, due to the di�erent radii of the drift tubes along the beam
axis, a so-called axial space charge potential is generated as well. This potential
∆V ax

sp , is calculated at the trap center as the di�erence between the radial space
charge potential of two neighboring electrodes with di�erent radii (the central elec-
trode DTcentral and a second electrode DTi), thus, ∆V ax

sp = V DTi
sp − V DTcentral

sp . The
present geometry of the Heidelberg EBIT (rDTcentral = 5 mm and rDTi = 1.5 mm)
results in the axial space charge potential at the trapping center against the drift
tube nearby as follows:
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Figure 2.16: Axial space charge potential generated by an electron beam energy and current of 9
keV and 100 mA, respectively (see Fig. 2.5). The middle region (40 mm) corresponds to the central
drift tube rdt ≡ rDTcentral ≡ rDT9 with a radius of 5 mm. The next electrodes rDTi ≡ rDT4,5 have
a radius of 1.5 mm.

∆V ax
sp [V ] =

72.24 Ie [A]√
1−

(
Ee[keV ]

511
+ 1
)−2

. (2.21)

For instance, a potential well of about 38 V (see Fig. 2.16) is generated along the
electron beam axis which e�ciently traps ions along the axial direction even without
applying any voltage to the drift tube electrodes.

Furthermore, the compensation to the radial space charge potential by positive
ions accumulated in the trap has to be also taken into account. The compensation
factor f is de�ned as the ratio between total positive nq and negative electron ne

charges [Wid98]:

f =

∑
q nqq

ne

. (2.22)

The actual number of ions and the charge distribution depend strongly on the
operating conditions, namely, the electron current, its energy, current density, the
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element trapped, injection pressure, trapping time etc. There is also a strong in�u-
ence by the impurity contents of the trap (including residual gas).

The ion compensation can be estimated by observing the energy shift of dielec-
tronic recombination resonances as a function of the electron beam current under
some assumptions. We will show below, in chapter 2.6, that an ion compensation
as large as 30 to 40 % can be obtained under normal running conditions.

2.3.3 Electron beam energy

The electrons are accelerated to the required energy by establishing a potential
di�erence between the cathode electrode and the drift tubes. For experiments at
medium electron energies, this is done by biasing the drift tube trap assembly at a
positive voltage (Vdrift tubes) as high as 20 kV in addition to the standard cathode
voltage of -1501.5 ± 0.1 V (Vcathode). For high energy experiments the whole electron
gun platform is negatively biased up to -350 kV (Vplatform). Neglecting the in�uence
of the space charge potential, the electron beam energy is therefore given by

Ebeam = (−Vcathode − Vplatform + Vdrift tubes) · qe . (2.23)
The voltages applied to the drift tube and electron gun platform are measured

by means of two high-precision voltage dividers (see Fig. 2.17). They were designed
to have an output voltage range measurable with the highest possible accuracy by
means of two high precision multimeters (Keithley 2002 series, see Table 2.2 for
their speci�cations) whose best accuracy is speci�ed in the range of 0.2 − 20 V.
The multimeter read is transfered through a GPIB bus to a PC and recorded every
200 ms by means of a Labview program. The value of the acceleration voltage used
to determine the electron beam energy is taken from this instrument.

Table 2.2: Speci�cations using the Keithley 2002 model multimeter for DC voltage measurements.
∆V represents the uncertainty of the measured voltage.

Voltage Range Full scale Resolution ∆V (24 h) ∆V (90 d)
(V) (V) (nV) (µV) (µV)
1 0.2− 2 ± 2.10000000 10 1.8 7.6
10 2− 20 ± 21.0000000 100 14 63

The drift tube voltage divider is mounted on top of the drift tube rack. It consists
of 20 resistors of 200 MΩ (typeMG 815) and a smaller one of 1 MΩ. The dimensions
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of the MG 815 resistors are about 150 mm in length and 9 mm in diameter. The
resistor set is located inside a Lucite box surrounded by soft iron sheets in order to
reduce electromagnetic noise. Its dividing ratio at constant temperature (± 0.5 ◦C)
is 3986.9 ± 0.4 (see Table 2.3). This ratio was determined by applying very well
de�ned voltages from a special source (Keithley Model 2430 Source/Meter) between
0 V and 1000 V, both positive and negative, ramping them slowly and recording the
voltage drop on the di�erent elements, the total current �ow, the temperatures in the
laboratory and of the divider etc. This divider has been periodically recalibrated,
showing always ratios within the indicated error bars.

Vout

R1

R2

V1
)R(R

RV
V

21

21
out

+

=

Figure 2.17: Electronic voltage divider scheme for the drift tube and platform with resistors R1,2

speci�ed in Table 2.3.

The platform voltage divider (see a sketch in Fig. 2.18) is connected to the elec-
tron gun platform and has 40 resistors of 200 MΩ. The resistors are mounted on
a plastic column inside an inner Lucite cylinder of 260 mm diameter and 1200 mm
length. The whole inner cylinder is �lled with SF6 gas in order to avoid any dis-
charges between the divider elements. The metal �lm resistors are also of the type
MG 815 and have a temperature coe�cient, according to their speci�cations, of
80 ppm/◦C, very good long-term stability and narrow fabrication tolerances (1%).

The temperature coe�cient of the individual 200 MΩ resistors was (+8390 ±12)
Ω/◦C (42 ppm); this value is also valid for the whole set of 40 resistors. Initially, a
200 kΩ resistor R2 was mounted which had a temperature coe�cient of (+5.0±0.4)
Ω/◦C (25 ppm). The total temperature coe�cient of the divider ratio was then
17 ppm/◦C. Since the temperature �uctuations in the air-conditioned laboratory
were typically ± 0.5 ◦C, the systematic error induced by the thermal coe�cient of
the divider was at that time ± 0.5 V at 50 kV.

In order to reduce this uncertainty even more, and to prepare the platform voltage
divider for calibration at the Physikalisch-Technische Bundesanstalt (PTB), several
improvements have been introduced to this setup. The temperature dependency of
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the whole resistor R1 set was made nearly negligible small (in the sub-ppm range)
by adding to it appropriately chosen resistors with very low resistance values but
very high temperature coe�cients of opposite sign (5 × 10 kΩ) in series with the
main large resistors of which R1 was made. Depending on the voltage range to
be measured, the voltage output is now read by means of any of three di�erent,
selectable resistors, R2 = 7.998 MΩ, 1.267 MΩ and 406 kΩ. In addition, these
resistances are composed of combinations of resistors also selected to have roughly a
zero total temperature coe�cient. For this purpose the thermal coe�cients of single
resistors were measured in the temperature range of 20◦C − 80◦C. A conservative
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Figure 2.18: Mechanical drawing of the platform voltage divider.
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Figure 2.19: Temperature variation of the two voltage dividers and of the room as a function of
time.

estimate of the divider temperature coe�cient < 2 ppm is considered.

The inner cylinder of the divider has a wall along its axis at 1/3 of its diameter.
This wall has holes with two ventilators at the bottom and a slit of about 5 cm at
the top which allow to circulate the SF6 gas up and down the cylinder. An outer
concentric cylinder, which thermally isolates the inner divider from the room envi-
ronment, also reduces external temperature gradients by a forced air �ow between
the two cylinders using two additional ventilators. An active thermal stabilization
system, not shown in Fig. 2.18, allows to maintain a constant temperature inside
the voltage divider. The temperature is measured with sensors (type AD 590) which
are read by a temperature control unit of type TEC. This unit regulates the current
through four heater resistors of 25 W each. This setup reduces the temperature
�uctuations to a range as narrow as 0.02 ◦C at 32 ◦C (see Fig. 2.19, solid blue dots
on the right-hand side scale), even as the external temperature makes excursions of
± 3 ◦C during 4 hours. Thus, the voltage divider ratio is expected to stay constant
with a maximum variation of less than 2ppm/◦C × 0.02 ◦C.
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Figure 2.20: Calibration of the platform voltage divider for the two ramping directions as a
function of the divider output voltage.

Figure 2.21: Density plot of the residue obtained in the linear �t to the whole data (up and
down) shown in Fig. 2.20. The left �gure shows the histogram obtained by bining the residual
data with 0.01 V.

As in the case of the drift tube voltage divider, the platform voltage divider is
calibrated with a maximum input voltage of 1000 V and with di�erent scan speeds
ranging from 5 V/s (typical values for experiments) to 100 V/s. Figures 2.20 and 2.21
show the calibration of this voltage divider for the two ramping directions and the
density plot of the residues, respectively. Their measured ratios are shown in Table

78



2.4. X-ray spectroscopy setup

2.3. Note that the divider ratio shown in Fig. 2.20 is di�erent from those shown
in Table 2.3. The high energy experiments presented in this work were performed
without the temperature coe�cient compensation and active stabilization setup.
Thus, the estimated uncertainty in our results due to temperature �uctuations in
the voltage divider resistors is below 0.5 V at 50 kV.

Table 2.3: Characteristics of the voltage dividers developed for the Heidelberg EBIT. R1 and R2

are taken as shown in Fig. 2.17.

Label R1 R2 Ratio Range (kV)
drift tube divider 20×200 MΩ 1 MΩ 3986.9 (0.4) < 20

7.998 MΩ 992.8 (0.3) 2-20
platform divider 40×200 MΩ 1.267 MΩ 6335.62 (0.01) 12-120

406.5 kΩ ≈ 20000 40-400

2.4 X-ray spectroscopy setup

In the present experiment, the �ux and energy of the emitted photons, as well as
the electron energy have to be precisely measured. The simultaneous requirements
of large solid angle and a broad spectral range lead to the use of semiconductor solid
state detectors. X-ray detectors designed for good energy resolution are typically
made of silicon or germanium crystals. These detectors are used in many �elds of
experimental physics. Semiconductor detectors work as solid state ionization cham-
bers. When an x-ray impinges onto the detector and deposits its energy on a primary
electron resulting from an ionization event, a large number of secondary electron-
hole pairs are generated in the crystal since the energy of the primary electron is
subsequently shared with more electrons from the valence band. As the energy re-
quired to create an electron-hole pair in germanium is only 2.96 eV, the number of
pairs produced is larger than that of the ion-electron pairs in gas detectors, whose
production requires, typically, 10 times more energy. Therefore, semiconductor de-
tectors have better energy resolution due to the smaller statistical �uctuations. The
detector crystal is placed between two electrodes generating an electric �eld. This
�eld collects the free electrons and generates a detectable electrical signal. The am-
plitude of the signal is proportional to the photon energy. The electronic charge
produced in the detector is transformed to a voltage signal by a preampli�er, which
is later processed by a multi-channel analyzer.
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Table 2.4: Some properties of a solid-state germanium detector (GLP 36360) used at the Heidel-
berg EBIT.

Geometry Coaxial
Area (mm2) 1018
Crystal thickness (mm) 13
Be window thickness (mm) 0.254
Resolution (eV) 560 at 122 keV
Distance to the trap (mm) 343.7 (10)
Solid angle (sr) 86 (5) 10−4

In this work, a GLP 36360 (see Table 2.4) coaxial detector with high e�ciency
over a broad spectral range (see Fig. 2.22) was used. It is made of intrinsic germa-
nium with an impurity concentration below 1010 atoms/cm3. Coaxial Ge-detectors
have a larger detection volume than those with planar geometry.

Generally, detectors are characterized by their detection e�ciency and resolution.
The detection e�ciency depends on the solid angle Ω subtended by the detector as
seen from the source or interaction point and its intrinsic e�ciency εint. The solid
angle is calculated from the experimental geometry:

Ω =

∫
A

cos θ

d 2
dA . (2.24)

Here, d represents the distance between the source and the surface element dA.
θ is the angle between the normal to the surface element and the source direction.
For a non-negligible source size a second integration has to be taken into account.
For the particular case of a point source located along the axis of a circular cylindrical
detector where the distance between them d� a (a is the detector radius), the solid
angle is approximated by

Ω =
A

d 2
. (2.25)

The intrinsic e�ciency is the fraction of photons registered by the detector over
the total number of photons impinging on it:

εint =
registered photons
photons on detector . (2.26)
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This intrinsic e�ciency depends on the type of radiation. In the case of a photon
hitting a germanium detector, three main processes occur, namely, the photoelectric
e�ect, coherent and incoherent scattering (Rayleigh and Compton scattering) and
pair production. Compton scattering and pair production can be safely neglected
at the present photon energy range. The photoelectric e�ect arises when an atomic
electron absorbs a photon, being ionized and subsequently ejected from the atom
with an energy equal to the photon energy minus the binding energy of the elec-
tron. The cross section can be calculated for example using the �rst-order Born
approximation for photons well above the K-shell binding energy [Leo87].

The total cross section σ due to these processes yields

σ = σphotoionization + ZσCompton + σpair ≈ σphotoionization . (2.27)

The product of the total cross section and the density of atoms N gives the
interaction probability per unit of length:

µ = Nσ = σ

(
NAρ

A

)
. (2.28)

Here, NA is the Avogadro number and ρ the density of the material.
Figure 2.22 displays the calculated intrinsic e�ciency of germanium crystals of

di�erent thickness combined with Be windows as a function of the photon energy.
Here, the solid black curve shows the e�ciency of the detector used in the present
work, which has a 254 µm Be window and a Ge crystal thickness of 13 mm. Over the
photon energy range of roughly 8 to 100 keV, the e�ciency of the detector is almost
100 %, excluding the K-edge region of germanium at 11.1 keV. These curves were
calculated using a parametric equation for the e�ciency given in Ref. [DMB98]. In
experiments, the attenuation of the photons by the di�erent beryllium windows has
to be taken into account as well.

The energy resolution R of a detector is conventionally de�ned as the full width
at half maximum (FWHM) of a peak divided by the photon energy E:

R =
FWHM
E

. (2.29)

The overall energy resolution in a germanium detector is generally determined by
three factors: the statistical spread in the number of charge carriers produced in the
crystal WD, the variation in the charge collection e�ciency WX , and the electronic
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Figure 2.22: Intrinsic e�ciency as a function of the photon energy. The black solid curve shows
the e�ciency for the Ge-detector used in the present experiments (GLP 36360).

noise WE. The total FWHM WT can be expressed as the sum of the quadrature of
these three contributions as follows:

W 2
T = W 2

D +W 2
X +W 2

E . (2.30)

The second contribution, WX , is the most signi�cant one in detectors of large
volume and low average electric �eld. The third factor, WE, represents the noise
caused in all the electronic components following the detector. At low energies, the
contributions from electronic noise WE and charge collection WX dominate, while
WD becomes important at higher energies.

2.4.1 Line shapes in solid state detectors

When a monoenergetic photon impinges on solid state x-ray detectors, the expected
Gaussian pulse height distribution is always distorted by tails at the low-energy
side. These are a result of the incomplete charge collection in the detector crystal,
due to defects or impurities in the crystal [Gun78,GR80]. The observed shape can
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be described as a mixture of symmetric and asymmetric pro�les in the following
analytical form [Wid98]:

y(E) = A e−
(E−Ec)2

2σ2 + a A eb(E−Ec)

[
1− e−

c(E−Ec)2

2σ2

]
H (E − Ec) , (2.31)

where Ec denotes the centroid energy of a Gaussian distribution with an ampli-
tude A. a, b and c are free parameters used in the �tting procedure for the tail
characterization. The second term is multiplied by a Heaviside function H which
only acts at the lower side of the centroid (see Fig. 2.23a).

A more detailed description and analysis of the response of solid state detectors
is given in Ref. [CMH01]. By recording the spectra of a monoenergetic source, it
has been empirically found that the line shape can be described by the primary
Gaussian peak (G) accompanied by a long �at structure (S) at the low-energy
side of the centroid. In many detectors such a �at structure is superimposed by a
second �at one (TS), and a peak due to the escape of Kα x-rays from the detector
crystal is observed and denoted as ESC (not shown in Fig. 2.23b). In addition,
an exponential-like feature (D) on the low energy side of the main Gaussian peak
is needed to �t the data. By taking into account the features, G,S and D, the
observed line shapes in Ge-detectors are reproduced as shown in Fig. 2.23b. The
exact function used for the �tting procedure is

y(E) = AG e−
(E−Ec)2

2σ2 + AS erfc
(
E − Ec

σ
√

2

)
+

AD e
E−Ec

β erfc
(
E − Ec

σ
√

2
+

σ

β
√

2

)
, (2.32)

where AG, AS and AD are the amplitudes for the Gaussian, the �at structure and
the exponential contribution, which were treated as free parameters. β is the slope
of the exponential feature, σ the standard deviation of the Gaussian component and
erfc the complex error function. The quality of the �ts was tested with the χ2/DoF
method by successive iterations. As an example, Fig. 2.23 shows the result of these
�tting function pro�les and the plot of the obtained residue for x-rays due to the
radiative decay of the doubly excited state 1s2p2 in krypton ions. The data points
�tted with the function (2.31) resulted in a χ2/DoF of about 0.82 while a slightly
better χ2/DoF of 0.93 was obtained by using Eq. (2.32).
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Figure 2.23: Experimental data for the x-ray peak emitted from the radiative emission of the
1s2p2 DR resonance of Kr ions and �ts: (a) with Eq. (2.31) and (b) with Eq. (2.32). Both �tting
procedures result in an almost perfect description of the experimental line shape and the quality
of both �ts is practically identical. The lower diagrams display the residuals.

2.5 Experiment control and data acquisition

As it has been described above, in the present experiments two energy values have
to be measured and recorded simultaneously, namely the photon and the electron
beam energy. Since this means that a pulse and a slowly varying ramp signal have
to be digitalized in coincidence, we have used a pulse sensing ADC (Analog Digital
Converter Silena 4418 ) on a CAMAC crate. The ADC requires the following pulses
in order to proceed with the conversion: the ampli�ed analog pulse from the Ge-
detector, a pulse with a height proportional to the drift tube voltage and a gate pulse
which triggers the module. Figure 2.24 shows schematically the data acquisition
system used for the photon and electron energy collection.

A Labview application running on a personal computer controls the acceleration
voltage. A voltage ramp is produced with a two channel, 16-bit DAC (0 − 10 V)
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function generator which is used to program the output of a high voltage power
supply. The sawtooth function allows to scan the relevant DR resonances at rates of
5 V/s to 100 V/s. The function generator provides a second ramp, which is fed into
a second channel of the ADC. The reason for not using the �rst sawtooth is that
the range (0 − 10 V) of the ADC can be fully used in this way, and the additional
digitalization noise introduced by this ADC is therefore reduced. A third signal at
the end of each scan cycle is used for the EBIT dump (see section 2.1.1). The dump
is always set at the end of the scanning to make sure that the ion charge distributions

Amplifier

CFD

Bipolar

Coin-Anti-

coincidence

Busy

PUR

ADC

Scaler

CAMAC

Unipolar

Gate

Computer

+

Labview
DAQ 2000

Ramp

DAC1

Ramp

Power

Supply

DAC2

End ramp

Clear

VME

Fast NIM

Alpha

Station

Boot

Server

(LYNX)

BUS

CPU

LAN

NFS
Transport

service

Pre

amplifier

Ge

detector

Trigger
Busy system

SIGNAL PROCESSING

ENERGY

CONTROL

EBIT

DATA

STORAGE

Controller

Figure 2.24: Overall scheme of the data acquisition system.
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at the DR resonance region is always the same. This signal is also used to clear a
CAMAC scaler which counts the photons on each ramp. Such information allows to
distinguish in the data analysis between the up or down direction of the ramping.

At a given energy during the scan, photons emitted are recorded by the ger-
manium detector. The output signal of its preampli�er is sent to a spectroscopy
ampli�er (ORTEC 672 ). This ampli�er provides four output signals: bipolar and
unipolar outputs, a busy and a pile-up-rejection (PUR) signals, respectively. The
unipolar output is directly sent to the ADC.

The gate used for the ADC trigger is prepared as follows: the bipolar signal passes
through a constant fraction discriminator whose output is set in coincidence to the
busy signal of the spectroscopy ampli�er. In addition, the PUR signal and a busy
signal of the data acquisition system are set in anti-coincidence.

The CAMAC crate is controlled through a bus by a VME crate. The operating
system on the VME crate (RIO processor) of this computer is LYNX. The data
acquisition software running on the VME computer is a multi-branch system (MBS),
which provides a transport service in order to transfer the raw data to a client. In
our case, the client is called GOOSY (GSI-Online-O�ine-System), which runs on
an Alpha work station and stores the data in an event-by-event list mode. GOOSY
allows to plot and analyze the data online or o�ine.

2.6 Test Measurement: DR in He-like Kr 34+

During the setup time, a preliminary experiment with He-like krypton ions was
carried out to test di�erent parts of the data acquisition system and explore various
possibilities. Krypton can already be brought to the He-like state at energies beyond
4 keV, and can be �lled easily into the EBIT. Another reason for the choice of Kr
was the availability of data by other groups for comparison. Although our results
are incomplete, due to the lack of a reliable calibration of the electron and x-ray
energy scales at that time, they are illustrative of the photorecombination processes
and therefore presented in the following section.

2.6.1 Dielectronic recombination in He-like Kr 34+ ions

The experimental data previously available for He-like krypton ions were mainly
related to the x-ray region. The wavelengths of its K-shell x-rays have been accu-
rately measured with a high-resolution crystal spectrometer (see Fig. 2.25) at the
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LLNL EBIT by Widmann [WBD95]. The achieved precision of 55 ppm allowed to
test theoretical predictions with experimental data. At the Berlin EBIT, the DR
resonance strengths for the KLn (n = 2 to 5) series of He-, Li- and Be-like krypton
ions have also been measured by Fuchs [FBR98] providing a better understanding
of the ionization balance in tokamak plasmas (see Fig. 2.26).

Figure 2.25: Spectrum of Li-like satellites of krypton ions obtained with x-ray crystal spec-
trometer by Widmann [WBD95] by scanning the electron beam energy in the range from 8.7 to
9.5 keV.

Figure 2.26: Measured total DR cross section of the KLL resonances of krypton ions (from
Fuchs, [FBR98]).

In order to cover a region including the main dielectronic resonances of the K-
shell and also the direct excitation of the n = 1 to n = 2 transitions, the electron
beam energy was swept up and down between 7 and 14 keV. The scanning time in
each direction was about 50 s. The trap was dumped each 300 s in order to avoid
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Figure 2.27: Scatter plot of the photorecombination in krypton ions. Diagonal bands due to RR
into the n = 2 and n = 3 shells are visible. The horizontal line indicates the photon transitions
from n = 2 → 1 after KLL, KLM, KLN,. . . DR processes, indicated as bright spots. The broad
band at low x-ray energies (at ≈ 5 keV) corresponds to x-ray lines resulting from n = 3 → 2
transitions of impurity barium ions. The upper diagonal band represents RR into the n = 2 shell
of barium. At lower x-ray energies (3.5 keV), weak features are observed due to the escape peak
in the Ge-detector.

the excessive accumulation of impurity ions. The axial magnetic �eld was �xed at
5 T.

In Fig. 2.27, the photon energy is plotted versus the electron beam energy. These
two-dimensional (2D) maps allow to project selected regions either onto the electron
beam energy axis or onto the x-ray energy axis. The acquisition time needed to
record this overview map was about 5 hours at an electron beam current of 60 mA.

The diagonal bands displayed in Fig. 2.27 are due to the radiative recombination
(RR) processes (see section 1.2.2) into states with principal quantum number n = 2

and n = 3. The uppermost weak diagonal band is due the RR into n = 2 states
of the impurity barium ions. A projection of the krypton n = 2 band onto the
electron beam energy axis is shown in Fig. 2.28a. A series of bright spots along
a horizontal band at x-ray energies of about 13 keV are assigned to the radiative
decay (n = 2 → 1) after the formation of intermediate excited states in the
KLn (n = 2, 3, 4, ...) DR processes (see Fig. 2.28b). In this band, the cluster at
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the lowest electron energy (≈ 9 keV) is due to the KLL DR resonances. At an
electron energy of approximately 11.3 keV, the KLM resonances appear, which can
radiatively decay either through an n = 2 → 1 transition or through an n = 3 → 1

transition leading to higher photon energies. At 12.1 keV, the KLN resonances are
observed. Increasing the electron beam energy even more, the resonances become
unresolvable and, eventually, overlap with lines produced at electron energies greater
than 13.1 keV due to the direct excitation process of the 1s electrons to the n = 2

shell [WBD95]. At about 13.7 keV, superimposed on the direct excitation region,
the KMM resonance appears, resulting from capture into n = 3 and excitation from
n = 1 to n = 3.

The features observed at very low x-ray energies of about 3.5 keV are due to the
escape peak, which appears when part of the photon energy deposited into the Ge
detector (here ≈ 13 keV) escapes it as a Ge Kα photon (KL1 = 9.69, KL2 = 9.86

and KL3 = 9.89 keV, [DKI 03]).

Figure 2.28: Photorecombination of krypton HCI. Projections of the diagonal band (a) due to
radiative recombination into n = 2 states and of the horizontal band containing the n = 2 → 1
transitions at about 13 keV x-ray energy (b).
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Scans of the electron beam energy from 7 to 11 keV covering only the KLL
resonances were also carried out (Fig. 2.29). The speed of the electron beam scan
was about 90 V/s and, thus, every cycle lasted roughly 100 s.

In order to reduce the ion temperature and to obtain a better electron beam
energy de�nition, the external longitudinal trapping potentials were set to zero, thus
making the trap as shallow as possible. A relative energy resolution of E/∆E ≈ 300

at 9 keV was achieved. Nevertheless, even without positive potentials applied to the
outer drift tubes, an axial trapping potential (≈ 20 eV at 50 mA and 9 keV) is always
induced by the electron beam simply due to the changes in the value of the radii of
the drift tubes along the beam axis, as discussed in more detail in section 2.3.2. The
next subsections describe the analysis of the KLL DR resonances of He-like Kr34+
ions.

2.6.2 Towards an absolute electron beam energy determina-
tion

The upper diagram in Fig. 2.29 displays the photon yield at di�erent x-ray energies
against the electron acceleration voltage. Here, the KLL DR resonances of krypton
ions from He-like Kr34+ (the �rst three spots on the left-hand side) to O-like Kr28+

ions (the spot on the right) can be seen. The lower diagram in Fig. 2.29 shows the
projection of the x-ray intensity onto the electron energy axis. The theoretical rela-
tive contributions of di�erent DR states to the observed He-like resonances [Saf02]
are indicated as histogram bars.

There are three main DR resonance groups from the initial He-like state (1s2)
leading to intermediate 1s2l2l′ states, namely, those corresponding to the 1s2s2,
1s2s2p and 1s2p2 excited con�gurations. Each of them consist of several di�erent
states. The 1s2s2 (2S1/2) peak with the lowest excitation energy is isolated from
the others, as well as the peak due to the 1s2s2p (2P1/2) state at 8.9 keV. The peak
corresponding to the 1s2p2 levels contains several closely-spaced resonances with
total angular momentum J = 1/2 or J = 3/2 which can not be resolved. Here, two
strong resonances, the 4P5/2 and 2P3/2, are blended together at an electron energy
of about 9 keV. Other 1s2p2 resonances overlap with those belonging to Li-like ions
(resonant state 1s2s22p). In Fig. 2.30, the four theoretical [Saf02, Che86] He-like
resonances (delta functions convoluted with a Gaussian distribution of 40 eV width,
dotted blue and solid black curves) are shown in comparison with the experimental
data (step curve). Here, the energy scale was referred to the predicted 1s2s2 line
position.
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Figure 2.29: Top: two-dimensional map of the KLL DR region of He- to O-like krypton ions.
Bottom: projection of the KLL resonances onto the electron beam energy axis together with an
histogram which shows the (theoretical) relative intensities for the three analyzed He-like DR
resonances.

We have used series of Gaussian functions (see green curves in Fig. 2.29) to �t the
centroids of the resonance peaks appearing in the projections onto the electron beam
energy axis. The quality of these �ts was tested with the χ2 over degrees-of-freedom
(DoF) method. The widths of the projected resonances are mainly caused by the
electron beam energy spread, due to the space charge potential and to high-voltage
noise of the power supplies.

Due to the work function of the materials used in the cathode (ΦBa,W = 2.00 eV)
and in the drift tube electrodes (ΦCu = 4.65 eV), a �nal correction of 2.65 eV has
to be applied to the measured voltage.
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Figure 2.30: Experimental data (black) in comparison with two theoretical curves: the dotted
blue curve is calculated by convoluting the He-like resonances given by Safronova in the NRMBPT
[Saf02] with a Gaussian distribution with an experimental width of 40 eV. The solid curves show
predictions obtained with the HULLAC code [Che86,FBR98] for several charge states.

As has been discussed in detail in the experimental section, the actual electron
beam energy in the central drift tube and thus the measured energy of a given reso-
nant state of DR depends on the combined electron and ion space charge potentials.
According to Eq. (2.20) the electron space charge depends linearly on the electron
beam current Ie. Therefore, by precisely determining the acceleration voltages at
which a certain DR resonance appears as a function of the beam current and ex-
trapolating to Ie = 0, where neither electron nor ion space charge exist, one can
obtain its absolute excitation energy.

Figure 2.31 shows the acceleration voltage of three He-like KLL DR resonances as
a function of the electron beam current. As expected, they clearly display a linear
dependence on the electron beam current. A polynomial of second order was also
tried, but the �t quality was found to be signi�cantly poorer (see details in Table 2.7).
As indicated on the top of Fig. 2.31, extrapolated absolute resonance energies for the
three He-like lines were determined with an experimental uncertainty of± 1 eV. Since
the observed shift (see Fig. 2.32) of the 1s2p2 line from the theoretical prediction
is a result of the combined space charge potential of the electrons and the ions, one
can try to extract the ion space charge potential under the assumption that the one
for the electrons is given by Eq. (2.20). Then, the ratio of the experimental shift
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2.6. Test Measurement: DR in He-like Kr 34+

Figure 2.31: The observed apparent resonance energy versus the electron beam current for three
He-like ion KLL DR resonances. The numbers on the top of the �gure represent the electron beam
energy for each resonance extrapolated to zero electron beam current.

Figure 2.32: a) Observed shift of the 1s2p2 DR resonance in Kr34+ from the calculations [Saf02] as
a function of the electron beam current. The red line represents a linear �t to the data points, while
the dashed black line shows the shift only due to the radial space charge potential. b) Calculated
ion compensation of the space charge potential for the 1s2p2 resonance.
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and the calculated radial space charge yields the percentage of the compensation
by the ions. Figure 2.32b displays the deduced ion compensation as a function of
the electron beam current which results, under the given conditions, to be about
38% of the radial space charge potential and essentially independent on the electron
current.

As shown in Fig. 2.33, no signi�cant e�ect of the total space charge on the
accumulation of positive ion charges could be observed by varying the dump interval
between 300 s and 40 s (shorter cycles result in less trapped ions).

Figure 2.33: Resonance energy (1s2s2) as a function of the electron beam current with di�erent
dumping times, 40 s (red circles) and 300 s (black squares).

In Fig. 2.34 we explore height and space charge potential corrected positions
of the resonances as a function of the electron beam current for two groups of
Ie = 20−40 mA and 70−100 mA, respectively. Here, we observed that the analyzed
He-like peaks of interest are not disturbed by the increase of the other charge state
populations (Li- to O-like) at lower values of the electron beam current.

Finally, in Fig. 2.35 we explore the dependence of the voltage di�erence obtained
for the He-like DR resonances on the ramping direction (up or down) at a scan rate
of 90 V/s for di�erent electron beam currents. While ramping up, the 1s2s2 and
1s2s2p resonances consistently appear at values 4.1 eV higher than when under ram-
ping down. The capacitive load of the voltage divider, due to the input impedance
of the voltmeter and the capacity of the coaxial cable used to connect R2 with the
instrument, causes an apparent shift of -1.2 V at about 9 kV when the average
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Figure 2.34: Projections of the KLL DR region for two di�erent ranges of electron beam current
(70− 100 and 20− 45 mA). The energy scale of these curves is referred to the predicted resonance
excitation energy of the 1s2s2 state (see Table 2.5).

Figure 2.35: Energy di�erence between the centroids of the He-like resonances while ramping up
and down the electron beam energy, as a function of the electron beam current.
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divider ratio is used, as it is the case in Fig. 2.36. This value, in fact, increases
the discrepancy observed in that �gure, resulting in a di�erence of 5.3 V for the
resonances between the up and down ramps. The most likely explanation is a
dynamic change in the ion charge balance, which can qualitatively appreciated from
Fig. 2.36. The up branch shows a photon yield for the He-like resonances of about
20% higher in comparison to the down branch. This behaviour could be induced by
the strong recombination of Li- to C-like ions in the down branch when the beam
energy decreases before the He-like resonances are hit, as illustrated in Fig. 2.36. The
change in the ion population and its average charge state could cause a reduced ion
compensation of the space charge, thus possibly explaining the observed up/down
asymmetries. The 1s2p2 resonance shows a down shift of 6.3 eV, into the opposite
direction and is most probably due to the in�uence of the nearby Li-like resonances
peaks. Nonetheless, by using the sum of the up and down branches, as has been
done in all the measurements presented in this work, this e�ect should vanish, or at
least be strongly attenuated.

Figure 2.36: Projections of the KLL DR region for the two branches of the ramp at a �xed beam
current of 100 mA. The displayed energy scale is uncorrected for the space charge potential.

2.6.3 Results for DR resonance positions of He-like Kr

By taking into account the theoretical relative intensities (parameter QD in Table
2.5) it is possible to estimate the center of gravity of the three peaks for both, the
excitation and the x-ray energies. Table 2.5 shows the theoretical resonance and
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x-ray energies (see section 2.6.4) for the He-like krypton ions. They are calculated
in a Non-Relativistic Many Body Perturbation Theory (NRMBPT) approach by
Safronova [Saf02] and through a Multi-Con�guration Dirac-Fock method (MCDFM)
by Harman [Har05]. The �rst column indicates the usual labels (compare, i.e.,
[JPS84]).

Table 2.5: Theoretical DR resonance energies of He-like krypton ions from MCDFM [Har05] and
NRMBPT calculations [Saf02] (also photon energies). QD represents the satellite intensity factor
including the statistics weights and is given in 1013/sec (NRMBPT). The labels (p,o,...) are the
commonly used.

Label Level MCDFM NRMBPT

Resonance Resonance X-ray QD

(keV) (keV) (keV)

p 1s2s2 2S1/2 - 1s22p 2P1/2 8.823 8.8222 12.8590 5.44

o 1s2s2 2S1/2 - 1s22p 2P3/2 8.8222 12.7968 2.52

t 1s2s(1S)2p 2P1/2 - 1s22s 2S1/2 8.9697 8.9683 13.0775 12.1

r 1s2s(3S)2p 2P1/2 - 1s22s 2S1/2 8.9008 8.9026 13.0119 10.8

s 1s2s(3S)2p 2P3/2 - 1s22s 2S1/2 8.9766 8.9768 13.0861 12.7

q 1s2s(1S)2p 2P3/2 - 1s22s 2S1/2 8.9479 8.9472 13.0565 1.82

1s2s2p 4P1/2 - 1s22s 2S1/2 8.8405 8.8432 12.9525 0.07

1s2s2p 4P3/2 - 1s22s 2S1/2 8.8501 8.8526 12.9619 1.71

1s2s2p 4P5/2 - 1s22s 2S1/2 8.9036 8.9036 13.0129 0.00

m 1s2p2 2S1/2 - 1s22p 2P3/2 9.1061 9.1034 13.0780 7.22

1s2p2 2P1/2 - 1s22p 2P1/2 9.0084 9.0095 13.0464 0.16

a 1s2p2 2P3/2 - 1s22p 2P3/2 9.0841 9.0817 13.0563 22.6

1s2p2 4P1/2 - 1s22p 2P1/2 8.9353 8.9370 12.9738 0.42

f 1s2p2 4P3/2 - 1s22p 2P3/2 8.9799 8.9812 12.9558 0.9

e 1s2p2 4P5/2 - 1s22p 2P3/2 8.9918 8.9925 12.9672 39.9

k 1s2p2 2D3/2 - 1s22p 2P1/2 9.0146 9.0149 13.0519 38.1

l 1s2p2 2D3/2 - 1s22p 2P3/2 9.0146 9.0149 12.9896 8.88

j 1s2p2 2D5/2 - 1s22p 2P3/2 9.0599 9.0576 13.0322 54.4

Table 2.6 displays the results obtained through extrapolation to zero electron
beam current (Fig. 2.31), and the experimental resonance widths (Gaussian) in
comparison with the two calculations. As the observed 1s2s2 and 1s2s2p con�gu-
rations in good approximation consist of a single resonance each, the experimental
width is understood to re�ect the intrinsic electron energy spread. The third con-
�guration (1s2p2) is broader, due to several blended resonances it contains.

The absolute experimental resonance energies are consistently shifted by about
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Table 2.6: Absolute KLL resonance energies of He-like Kr34+ in comparison with theoretical
(NRMBPT) and MCDFM calculations, respectively. The numbers in brackets for the experimental
data represent statistical and systematic uncertainties.

State Transition Width Experiment MCDFM NRMBPT

(eV) (eV) (eV) (eV)

1s2s2 p, o 36.8 (0.7) 8792.3 (1.1) 8823.1 8822.2

1s2s2p r 36.1 (0.4) 8868.2 (1.1) 8900.8 8902.6

1s2p2 t, s, q, f, e, a, k, l 55.1 (0.4) 8964.8 (1.4) 8997.9 8996.6

30 eV. The 1s2p2 would move to lower energies if the resonance 1s2s22p (Li-like)
nearby line would be taken into account. In fact, in Ref. [FBR98] it was already
shown that a weak Li-like peak overlaps with the He-like peak arising from the 1s2p2

states (see Fig. 2.30). The almost perfect linearity of the electron current-space
charge shift in the range between 100 mA to 20 mA does not suggest a non-linearity
of the ionic space charge compensation, which could explain the discrepancy. As
of now, we have no consistent explanation for the observed discrepancy, which cer-
tainly will be subject of further investigations that have not been possible within
the present work. However, di�erences up to 1.8 eV between the predictions of
both calculations along with an experimental extrapolation uncertainty of only 1 eV
strongly support the expectation that DR measurements in the EBIT might be able
to reach an absolute precision su�cient to sensitively test predictions of state-of-
the-art theories

The analysis of the di�erences between the resonance excitation energies obtained
in the experiment allows, however, to accurately compare experimental and theo-
retical data. They are presented in Table 2.7 together with the calculated values
(NRMBPT and MCDFM), and were obtained by using di�erent methods. First, this
table displays the results extrapolated using the resonance position as a function of
the electron beam current plot (Fig. 2.31) by �tting linear and parabolic functions,
respectively. In some cases, the same slope was �tted simultaneously to the three
data sets. The extrapolated resonance positions resulting from the parabolic �t
agree with those obtained by the expected linear function; however, their error bars
are substantially larger. The table also shows the results obtained by averaging
the di�erences between the peak centroids at each electron beam current. Since
the extrapolation uses an additional parameter, B (the slope), larger error bars are
expected here in comparison to the direct method because of the increased number
of degrees of freedom.
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Table 2.7: Di�erences between resonance energies. B- and C-shared indicate that these parame-
ters (y = A + Bx + Cx2) were forced to be the same in the �ts to the three data sets in Fig.
2.31. �Ie & averaged� indicates the method in which the di�erences are obtained at each electron
beam current and later averaged.

Method 1s2p2 − 1s2s2p 1s2s2p− 1s2s2

(eV) (eV)
Line B-free 96.6 (1.8) 75.9 (1.6)
Parabola B-, C-free 96.2 (5.6) 78.5 (5.1)
Line B-shared, B = 1.13± 0.02 96.6 (2.3) 75.2 (2.1)
Parabola B-shared, B = 0.89± 0.13 96.6 (6.3) 75.3 (5.4)

C-shared, C = 0.002± 0.001

96.6 (1.3) 75.8 (1.2)
Ie & averaged 96.7 (0.7) 75.4 (0.6)
NRMBPT 94.0 80.4
MCDFM 97.1 77.7

Given that the predictions of both theories display discrepancies of 2.7 and 3.1 eV
for the two values, respectively, and our experimental data deviates at most by
0.1 and 0.5 eV for the same values respectively, these results clearly demonstrate the
potential of DR measurements in an EBIT for precision spectroscopy of HCI.

Moreover, the similarity between the measurements shown here and those carried
out at the Berlin EBIT [FBR98] along the di�erent ion charge states is striking (see
Fig. 2.26). The resonance energy di�erences obtained in these measurements re-
sulted in almost identical values to those presented here, although the experimental
technique used there was a di�erent one in which the scan velocity was much higher
to reduce instantaneous changes in the charge balance to a minimum. This con-
vincingly underlines the reproducibility of the photorecombination results obtained
with di�erent EBITs.

2.6.4 X-ray energy measurements

As mentioned above, the two-dimensional plot (Fig. 2.37) also allows one to project
selected regions onto the x-ray energy axis at a particular electron energy. Thereby,
the energy of the x-ray emitted in the radiative stabilization of the intermediate ex-
cited states during the DR process can be determined as well, even though the res-
olution of the germanium detector is substantially poorer. The left plot in Fig. 2.37
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Figure 2.37: The left-hand part of the picture shows the projected electron energy regions (in
between the vertical dotted lines in the right-hand picture) onto the x-ray energy axis for the
He-like KLL DR resonances.

shows di�erent projections (dashed lines in the right-hand side).
The resolution of the x-ray detector used in this experiment (FWHM≈ 580± 2 eV

at 14.4 keV) did not allow to resolve all the di�erent decay paths of the doubly excited
states formed in DR. Therefore, as it can be seen in Fig. 2.37, we observe only a
single composite peak at each projected region.

The �rst projection corresponds to the 1s2s2 2S1/2 state, whose decay to the
ground state is forbidden by the dipole selection rules (∆l = 0). However, this
state can radiatively decay either through two-photon emission or, more predomi-
nantly, through the so-called two-electron-one-photon transition (TEOP), either to
the 1s22p 2P1/2 or to the 1s22p 2P3/2 state. A detailed analysis of this type of tran-
sition in Ar16+ can be found in Ref. [ZCU03]). The other two peaks are due to
the 1s2s2p and 1s2p2 con�gurations, which can decay to the ground state through
di�erent dipole-allowed channels (see Table 2.5).

Although the apparent energies of the DR resonances change with the electron
beam current due to the space charge potential, the photon energies do not vary,
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which was proved by determining their energies at di�erent electron beam currents.
The calibration of the photon energy axis on the germanium detector was carried

out with two radioactive sources, namely, 57Co and 241Am. These sources provide
several calibration lines in the energy range from 4 to 25 keV. In particular, the
cobalt source has a strong line at 14 keV, conveniently close to the observed krypton
Kα lines. Table 2.8 summarizes their values. Figure 2.38 shows the calibration
spectra. The line pro�les were �tted with Gaussian functions, as well as with the
two di�erent non-symmetric distributions described in subsection 2.4.1 (see also
Eqs. (2.31) and (2.32)), to determine their positions. The resulting data points
were �tted to a linear function to obtain the conversion factor. The quality of this
�t is extremely good, as apparent from the regression coe�cient R2.

Table 2.8: Cobalt and americium lines used for the Ge-detector calibration (see e.g. [Nuc05]).

57Co 241Am

(keV) (keV)
4.508* 9.4423
6.398** 13.9441
14.4129 16.84

17.7502
26.3448

* Ge scape peak

** Fe Kα

Unfortunately, the calibration for the �rst set of data (Exp.1) was not carried
out simultaneously with the experiment. An unquanti�able shift of the ADC gain
occurred between measurement and calibration. Therefore, the results have a very
large systematic error (for the absolute energy), while the x-ray energy di�erences
are good to ± 2% of their value. This part of the experiment was repeated later
(Exp.2), and calibrations were alternated with the data acquisition.

In Fig. 2.39, the results of the x-ray energies for the di�erent transitions are
displayed. The dotted vertical lines separate the three types of functions used for
the �tting procedure, both for these lines and for the calibration lines. The scattering
of the data points is consistent with the uncertainties of the �t functions. When the
data is �tted with the function given in [Wid98] (Eq. (2.31)), smaller uncertainties
are obtained. Larger error bars are observed when the data points are �tted with
the function from Eq. (2.32) given in [CMH01]. These are, most likely, due to
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Chapter 2. Experimental setup

Figure 2.38: Calibration lines and �t used for the Ge-detector channel-energy conversion. The
upper spectrum corresponds to a cobalt source (57Co) and the lower to an americium source
(241Am).

the larger number of free parameters used. Finally, peaks �tted with a Gaussian
function have also large error bars due to inappropriate �t area selection. Actually,
the non-symmetric pro�le of the peaks, intrinsic to any solid state detector, does
not allow to use a Gaussian pro�le over the whole peak distribution, but only (to a
good approximation) around the symmetric high-energy parts of the peak.

A weighted average of these data points was obtained (Fig. 2.39). The measured
widths of the x-ray peaks seem to be limited by the detector resolution itself. The
two less intense peaks observed at lower x-ray energies (1s2s2 and 1s2s2p) have a
Gaussian width of about 440 eV, while the peak at the highest energy has a slightly
larger width of 460 eV due to the blend of a number of transitions. Table 2.9
summarizes the results.

The experimentally determined transition energies show consistently values which
are too low by 70 to 80 eV in comparison with theory and earlier experimental
data taken with crystal x-ray detectors. We infer that the radiative recombination
photons from Li-, Be-, and B-like ions, which have slightly lower energies at a given
acceleration voltage than the photons due to RR of He-like krypton ions, are the
cause of this shift (see Fig. 2.40). As one can see in Fig. 2.28, the radiative
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2.6. Test Measurement: DR in He-like Kr 34+

Figure 2.39: Plot of the results (Exp.1) for the x-ray transitions from the indicated doubly excited
He-like krypton ions. The three sections indicate the type of function used for the �t (compare
with Eqs. (2.31) and (2.32)).

Table 2.9: Experimental and calculated (NRMBPT) photon energies for the three He-like DR
resonances. The third column shows the measured x-ray resonance width. The error margins
displayed for Exp.1 are only the statistical. Exp.2 includes the systematic and statistical errors.

Con�guration Transition Width Exp.1 Exp.2 NRMBPT
(eV) (eV) (eV) (eV)

1s2s2 → 1s22p p, o 444.7(4.1) 12788.2(2.9) 12771.3(3.3) 12839.6
1s2s2p → 1s22s r 436.2(3.2) 12935.3(2.1) 12943.8(14.7) 13011.9
1s2p2 → 1s22p t, s, q, f, e, a, k, l 460(1) 12954.8(1.8) 12918.7(11.8) 13007.8

recombination at about 8.5 keV has a photon yield which is about half the size
of the 1s2s2 DR resonance. Very similar data from Fuchs [FBR98] indicate that
the He-like ions are about 25% of the total population, Li-like 30%, Be-like 22%
and B-like 14%. The correspoding ionization potentials are 136.4 eV, 376.5 eV
and 530.9 eV, lower than the He-like one, respectively. Unfortunately, the detector
resolution is not su�cient to resolve the blend of photon energies caused by RR of
these various ions. The �t shows a shift of about 60 eV in the right direction under
these conditions. As we will see later, with heavier ions, the x-ray energy resolution

103



Chapter 2. Experimental setup

Figure 2.40: Deviation of the theoretical (NRMBPT) DR He-like 1s2s2 (red curve) peak centroid
due to the presence of the radiative recombination lines of di�erent charge states. The black curve
shows the sum of all contributions and the green one the �t.

will be su�cient to separate the di�erent higher charge states in the RR band, thus
avoiding this problem.

Table 2.10 displays the di�erences between the measured x-ray energies, which
allows direct comparison with the predictions. However, the in�uence of the RR
bands also a�ects, if less, these results.

These data show that calibrations are needed more frequently and that the e�ect
of RR has to be avoided by increasing the resolution to a level better than the
ionization potential separation. With these caveats, DR measurements can provide
qualitative data for the energetic x-ray transitions in the range beyond 10 keV, where
crystal spectrometers have low e�ciencies and resolution limitations.

Table 2.10: Di�erences for x-ray energies.

Peak labels Exp.1 (eV) Exp.2 (eV) NRMBPT (eV)

1s2p2 → 1s22p - 1s2s2p → 1s22s 19.5 (2.8) -25.1 (18.9) -4.1

1s2s2p → 1s22s - 1s2s2 → 1s22p 147.1 (3.6) 172.5 (15.1) 172.3
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Results and discussion

This section describes the results of an experiment dedicated to the photorecombi-
nation of mercury ions from Hg78+ (He-like) to Hg75+ (B-like). Mercury ranks fourth
among the heaviest stable elements. Its Kα transitions have energies of about 70 keV,
quite close to the 100 keV of uranium. Other-Z dependent e�ects, such as the Lamb
shift, are also close in magnitude to the uranium case. For these reasons, it was
selected for the present work. The data presented here are the �rst state-selective
measurements for deep lying KLL resonances of very highly-charged heavy ions.

3.1 Photorecombination of Hg75+...78+ ions

In this experiment, the EBIT was used to measure the resonance energies and the
level splittings of several (doubly) excited states, especially 2l2l′ con�gurations, of
few-electron mercury ions (Hg78+...75+) formed through dielectronic resonances. As
in the case of the krypton test experiments (see section 2.6), the energy of the
photons emitted from the resonantly excited states has been determined as well,
but with improved accuracy. In addition to the measurement of the exact resonance
and photon energies, the interference between the two photorecombination processes,
RR and DR, has been observed for the �rst time and precisely characterized for well
de�ned states through the Fano parameters [GCB05,KBC95].

In order to inject mercury as an atomic beam into the EBIT, a few mercury drops
were introduced in an evacuated glass vial which was connected to the needle valve
in the gas injection system port. The evaporation of mercury at room tempera-
tures (10−4 Torr) [Win03] delivered su�cient neutral mercury atoms through the
di�erential pumping stages into the trap region.
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Figure 3.1: Logarithmic 2D contour-map of the photorecombination (x-ray intensities) of highly
charged mercury ions. The diagonal lines correspond to RR processes into n = 2, 3, 4 and 5. The
clusters containing a number of bright spots are due to DR resonances.

At �rst, the electron beam energy was scanned over a broad range from 45 to
70 keV in a saw-tooth pro�le as shown in Fig. 3.1 in order to gain an overview
from below the resonances up to nearly the direct excitation region. We used a scan
speed of roughly 100 V/s at a constant electron beam current of about 180 mA.
Later, a smaller region was chosen and scanned in more detail and with better
statistics. Here, the electron beam energy was scanned very slowly (37 V/s) across
the KLL resonances in the energy range from 45 to 54 keV (see Fig. 3.2). This
experiment was performed with an electron beam current of 160 mA. In contrast to
the krypton test experiment, a higher magnetic �eld of 8 T was used. Since mercury
was the heaviest element inside the trap and lighter impurity ions do not accumulate
excessively due to their higher evaporation probability and in addition to the fact
that ionization times become longer, a long dumping time of 5 min was set. The
voltage applied to the drift tube electrodes next to the central drift (trapping) tube
was set to + 2.5 kV. This high potential allowed to e�ciently trap highly charge
mercury ions, and use at the same time the lighter impurity ions for evaporative
cooling. The vacuum pressure at the top of the superconducting magnet cryostat
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3.1. Photorecombination of Hg75+...78+ ions

Figure 3.2: Logarithmic 2D contour-map of the photorecombination of highly charged mercury
ions in the DR KLL region (accumulated for 100 hrs.). The two diagonal bands correspond to RR
(n = 2) processes; the upper band into J = 1/2 (2s1/2 and 2p1/2) and the lower into J = 3/2
(2p3/2) states. The energy di�erence between these bands is larger than 2 keV. DR resonances are
visible as bright spots. Here, the areas enclosed by white frames in the upper RR band (J = 1/2)
are thin cuts whose projections are described below (for details see text). The count rates of x-rays
due to RR processes into n = 2, J = 3/2 states was about 8 counts-per-second (cps) while those
into states with J = 1/2 was 2 cps.

was about 2×10−10 Torr during the experiment.
At �rst glance the KLL DR region in Fig. 3.1 might seem to be nearly struc-

tureless; however, a high resolution mapping clearly shows a series of pronounced
structures in Fig. 3.2. Here, strong x-ray yields are concentrated on �ve clusters
of horizontally aligned bright spots which are due to DR resonances of mercury
ions with open L-shell. Using the nomenclature introduced in Ref. [KBC95], they
are labeled KL12L12 (left one), KL12L3 (two central clusters) and KL3L3 (two right
clusters). Four of the clusters strongly overlap with the RR bands. For an ini-
tial He-like state they represent the DR into the �nal states KLJ=1/2LJ=1/2 (1s2s2,
1s2s2p1/2, 1s2p1/22p1/2), KLJ=1/2LJ=3/2 (1s2s2p3/2, 1s2p1/22p3/2) and KLJ=3/2LJ=3/2

(1s2p3/22p3/2), respectively. These denominations are also used for other charge
states in an analogous way. In fact, the grouping of the bright spots for a given clus-
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ter at similar x-ray energies forming horizontal bands re�ects similar deexcitation
energies for di�erent charge states. As indicate in the �gure, lower charge states
occur at higher electron beam energy, since the binding energy available through
the recombination is smaller for those ions.

Some other x-ray features can be seen in Fig. 3.2. A few vertical lines with
broad x-ray energy distribution at well de�ned electron energies �falling down� from
some DR resonances are due two-photon decay channels [DVD69]. Those are very
interesting by themselves, however, were not in the focus of the present work since
there x-ray continua are hard to study due to the lack of su�cient counting statistics
and also of precise theoretical predictions for many-electron ions [SDK69,KAB93].

Furthermore, two feeble x-ray lines observed near 73 and 75 keV which are in-
dependent of the electron energy, thus forming bands in the 2D plot, are identi�ed
as the Kα1 and Kα2 transitions of lead, which are either excited by high-energy
cosmic radiation and or by natural radioactivity in the lead block shielding of the
Ge-detector. The data were corrected for these weak background sources without
observing signi�cant changes on the projections discussed below.

The following subsections contain a detailed description of the analysis of the re-
sonance excitation and x-ray energies for charge states ranging from He-like (Hg78+)
to B-like (Hg75+) mercury ions. The analysis is performed in an analogous way as
in the krypton test experiment.

3.1.1 State selectivity and line shapes

Projections of narrow slices, cut out of the diagonal RR features (see Fig. 3.2) onto
the electron beam energy axis allow one to study the resonances for ions in a speci�c
charge state, because the photon energies on the di�erent slices of each RR band
correspond to di�erent ion charge states according to their ionization potentials (see
Table 3.1). Each slice is about 480 eV broad (in vertical direction). The central x-ray
energy of these slices (see Fig. 3.3) is equal to Eγ = Ebeam + Ix and Ix is chosen to
a value near the ionization potential Ip of a particular charge state. In some cases,
the value Ix was shifted from the ionization potential to reduce the in�uence of
strong resonances from neighboring charge states, at the cost of somewhat reduced
statistics. For example, the upper slice of the RR n = 2, J = 1/2 band contains RR
photons from the He-like ion charge state and also a fraction arising from Li-like
ions (see Fig. 3.3, cut 1 and later Fig. 3.8a for a detailed description). In contrast,
in cut 3 a strong Be-like peak with a very weak contribution from a Li-like resonance
is observed (see Fig. 3.8b)). The lowest slice, cut 5 of this band, includes almost
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3.1. Photorecombination of Hg75+...78+ ions

exclusively photons from the B-like ions (projection on Fig. 3.9b). The plots shown
in Figs. 3.3 and 3.4 correspond to cuts taken along the RR n = 2, J = 1/2 and
J = 3/2 band, respectively.

Table 3.1: Ionization potentials of the highest charge states of mercury ions present in the trap
[Sco03].

Charge state Con�guration Ionization potential
(keV)

77 1s22s 23.5444
76 1s22s2 23.1807
75 1s22s22p 22.5826
74 1s22s22p2 22.1659
73 1s22s22p3 19.6669
72 1s22s22p4 19.3036
71 1s22s22p5 18.9413
70 1s22s22p6 18.5553

All the observed resonances were �tted with the following asymmetric Fano pro�le
[SKM02] caused by the interference between DR and RR, as described in section
1.2.3:

F (Ee) =
A

Q2Γd

2

π

[
(ε+Q)2

ε2 + 1
− 1

]
, (3.1)

with ε =
2 · (Ee − Er)

Γd

.

Here, Q is the Fano factor, A de�nes the total peak area and Γd is the natural
width of the resonance. Ee and Er are the incoming electron and the resonance
energy, respectively. For large values of Q the function in Eq. (3.1) converges to a
Lorentzian, while small Q values indicate stronger asymmetry.

To account for the electron energy spread, the theoretical Fano pro�le is con-
voluted with a normalized Gaussian distribution. This convolution containing the
experimental FWHM (ωexp) results in
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Y (Ee) =
2A

ωexp

√
ln 2

π

[(
1− 1

Q2

)
R[ω(z)]− 2

Q
Im[ω(z)]

]
, (3.2)

z =

√
ln 2

ωexp

[2 (Er − Ee) + iΓd] .

Equation (3.2), which was used for each electronic state, includes the real and
imaginary parts of the so-called complex error function ω(z). These terms were ob-
tained using an algorithm given by Humlicek [Hum78], who treated the convolution

Figure 3.3: Projections of the slices along the RR n = 2, J = 1/2 band. Eγ and Ee are the
photon and electron beam energies in keV, respectively. For assignment of the observed peaks, see
Figs. 3.8 to 3.10.
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3.1. Photorecombination of Hg75+...78+ ions

Figure 3.4: Projections of the slices along the RR n = 2, J = 3/2 band. Eγ and Ee are the
photon and electron beam energies in keV, respectively.

of a Lorentzian type function with a Gaussian pro�le. The result of this type of
convoluted pro�le is commonly known as a Voigt distribution. For very large Q
values (symmetric pro�les), Y (Ee) approaches the Voigt shape. In a few cases, the
resonance pro�les could be �tted with Gaussian or Lorentzian distributions without
loosing accuracy because of their high degree of symmetry. The positions of weak
resonances are also �tted with Gaussian in order to speed up the �tting procedure,
since the statistical error is larger than the shift of the centroid induced by the
asymmetry, as for instance, in the Be-like resonance Be1 (cut 4) shown in Fig. 3.5.

In the present �tting procedure, the natural width Γd is the only parameter taken
from theory. That means that the resonance energy Er, its area A, experimental
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Figure 3.5: One of the slices (cut 4) along the RR n = 2, J = 1/2 band contains contributions
from Be- and B-like ions (top part). The weak Be1 resonance was best �tted with a symmetric
type function, while the strong Be3 and B1 resonances at higher energies were �tted with the
asymmetric function (3.2). For the labeling of the resonances see Tables 3.4 and 3.5.

width ωexp and Fano factor Q are free parameters. The analysis results in an experi-
mental Gaussian width of about 60 eV at 50 keV electron beam energy, corresponding
to a relative resolution ∆E/E ≈ 1/1000. The �t quality was evaluated with the χ2

over degrees-of-freedom (DoF) method. For instance, we obtained for the projection
of the KL12L3, containing the B- and Be-like resonances (see Fig. 3.5) in the J = 1/2

band, from the Lorentzian �t a χ2/DoF of 3.8 whereas a Fano �t resulted in a much
better χ2/DoF of 0.8 .

3.1.2 Excitation energies

In the present experiment the electron gun platform was negatively biased due to the
required high electron beam energy. As described in detail before (see section 2.3.3),
the voltage applied to this platform (VPlatform) was measured with the platform
voltage divider and the high voltage on the drift tube rack (VDT ) by means of the
drift tube voltage divider. The absolute resonance energies are determined by adding
three more terms to Eq. (2.23) which account for the space charge potential due to
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3.1. Photorecombination of Hg75+...78+ ions

the electron beam, its compensation by the fraction f of positive ions (see section
2.3.2) and the electrodes work functions Φ = −2.65 eV:

Eresonance = −Vcathode − VPlatform + VDT + Vsp(1− f) + Φ , (3.3)

where Vcathode is the negative cathode voltage.
The negative space charge potential Vsp is estimated using the formula (Eq.

(2.20)). At 160 mA electron current and 46 kV acceleration voltage, it reduces
the beam energy by 142 eV. This number is obtained with an electron beam radius
re = 23 µm. In order to evaluate the e�ect of the positive space charge compensation
due to the trap ions, we have compared the present experiment with the krypton.
The mercury injection pressure was lower, and the ion breeding times are longer. A
smaller amount of trapped ions will result from such operation parameters, and the
space charge compensation will be reduced. For krypton, a 38% of ion compensation
was determined. Thus, we have conservativelly estimated the ion fraction to be
f = (30± 10)%, which yields a total space charge potential of −99± 14 eV. A much
more reliable result for the space charge compensation could have been extracted
from a zero current extrapolation.

The space charge potential is a function of the electron density, and hence of
the electron velocity, and thus, varies slightly over the scanned energy region. The
amount determined for the 1s2s2 KL12L12 resonance (99 eV) was scaled with the
electron energy as Ee

−1/2 since the electron beam current is constant. Then, on
average, the KL12L3 resonances are shifted by 97 eV and the KL3L3 by 95 eV.

It is important to emphasize that the experimental absolute electron energy scale
determined in this way has a systematic error of ± 14 eV. Comparing the result of
46.358 eV ± 4 eV (statistical) ± 14 eV (systematic) for the 1s2s2 state, which has
a nearly symmetric shape, with the various theoretical excitation energies in Table
3.2 one �nds it in excellent agreement with all predictions.

The total uncertainty of the energy scale can be further reduced down to ± 4 eV,
by using the theoretical value of the He-like 1s2s2 excitation energy of 46.358 keV
(MCDFS, see below) as the reference. He-like calculations are supposed to be the
most reliable ones, and show the smallest spread across the various models of less
than 7 eV for all the resonances, and less than 3 eV for the 1s2s2 state (Table 3.2).
Thus, using a single theoretical reference, a relative energy scale spanning more than
5 keV (at 50 keV), valid for all ionization stages discussed here can be established
in addition to the absolute energy scale explained above.
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Tables 3.2 to 3.5 show the comprehensive results obtained for the He- to B-like
charge states in comparison with calculations carried out with four di�erent metho-
des. In the following, some more detailed information concerning these predictions
is provided.

Table 3.2: Measured and theoretical DR resonance energies for the singly and doubly excited
states |d〉 of He-like mercury (Hg78+) ions. The He1 resonance is used as reference for the absolute
energy scale by adjusting its value to the MCDFS prediction (see text). The state (1s2s)02p3/2,
J = 3/2 has two allowed radiative decay channels which are designated with two di�erent labels,
He3 and He5.

|d〉 J Label Exp. MCDFS CI-DFS QMB MCDFM

(keV) (keV) (keV) (keV) (keV)

1s2s2 1/2 He1 46.358(4) 46.358 46.361 46.359 46.361

(1s2s)02p1/2 1/2 He2 46.611(6) 46.613 46.614 46.612 46.614

(1s2s)02p3/2 3/2 He3 48.844(6) 48.844 48.842 48.840 48.842

(1s2p1/2)02p3/2 3/2 He4 48.918(9) 48.923 48.926 48.922 48.928

(1s2s)02p3/2 3/2 He5 48.845(5) 48.844 48.842 48.840 48.842

1s(2p3/2)
2 5/2 He6 51.064(6) 51.065 51.063 51.058 51.063

a) The calculations based upon the Multi-Con�guration Dirac-Fock method by
Sco�eld (MCDFS) [Sco03] are analogous to those previously carried out for uranium
ions in [KBC95,Sco89]. They include a multipole expansion for the emitted photon
states. It has been found that only the electric dipole and quadrupole contributions
are signi�cant. Continuum states are also implemented into the code. There, the DR
process is introduced by including the coupling between the continuum states and
the doubly excited states. The code includes both the Coulomb and retarded Breit
interactions. Admixtures of the doubly excited states to the continuum state are
added to the lowest order. The matrix elements for the x-ray emission include both
the purely continuum part and sums over the excited bound states. The asymmetry
of the lines comes from the cross terms, when the matrix elements are squared to
calculate the cross sections.

b) The second calculation (CI-DFS) was performed by Tupitsyn [Tup04] in the
Dirac-Hartree-Fock (DF) basis for occupied states and Dirac-Fock-Sturm (DF-Sturm)
basis for unoccupied states (see section 1.1.2). Here, the set of the di�erent con�gu-
rations was generated including all of the single, double and most parts of the triple
electronic excitations from the main con�guration.

The Breit electron-electron interaction in the Coulomb gauge, the nuclear size
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3.1. Photorecombination of Hg75+...78+ ions

Table 3.3: Measured and theoretical DR energies for the doubly excited states |d〉 of Li-like
mercury (Hg77+) ions.

|d〉 J Label Exp. MCDFS CI-DFS QMB MCDFM

(keV) (keV) (keV) (keV) (keV)
1s2s22p1/2 1 Li1 46.686(5) 46.688 46.690 46.686 46.688

((1s2s)12p1/2)3/22p3/2 2 Li2 49.086(6) 49.066 49.068 49.063 49.071
((1s2s)12p1/2)3/22p3/2 1 Li3 49.136(9) 49.116 49.118 49.113 49.121
((1s2s)02p1/2)1/22p3/2 2 Li4 49.218(13) 49.212 49.211 49.209 49.213
((1s2s)12p1/2)3/22p3/2 3 Li5 48.970(5) 48.964 48.967 48.961 48.969

(1s2s)1(2p3/2)22 3 Li6 51.154(5) 51.150 51.153 51.147 51.155

Table 3.4: Measured and theoretical DR energies for the doubly excited states |d〉 of Be-like
mercury (Hg76+) ions.

|d〉 J Label Exp. MCDFS QMB MCDFM

(keV) (keV) (keV) (keV)

1s2s2(2p1/2)
2 1/2 Be1 47.135(5) 47.124 47.121 47.132

(1s2s22p1/2)12p3/2 3/2 Be2 49.270(8) 49.248 49.257

(1s2s22p1/2)02p3/2 3/2 Be3 49.349(6) 49.335 49.333 49.344

(1s2s22p1/2)12p3/2 5/2 Be4 49.265(17) 49.244 49.246 49.252

1s2s2(2p3/2)2
2 5/2 Be5 51.433(6) 51.425 51.423 51.426

(�eld shift) and QED corrections were all included in the Hamiltonian, making it
di�cult to extract individual contributions. To give an idea about the magnitude of

Table 3.5: Measured and theoretical DR energies for the doubly excited states |d〉 of B-like mercury
(Hg75+) ions. The doubly excited state 1s2s2(2p1/2)22p3/2, J = 1 has two allowed radiative decay
channels which are designated with two di�erent labels, B1 and B3.

|d〉 J Label Exp. MCDFS QMB MCDFM

(keV) (keV) (keV) (keV) (keV)

1s2s2(2p1/2)
22p3/2 1 B1 49.557(4) 49.549 49.546 49.547

1s2s2(2p1/2)
22p3/2 2 B2 49.499(4) 49.491 49.487 49.488

1s2s2(2p1/2)
22p3/2 1 B3 49.552(7) 49.549 49.546 49.547

(1s2s22p1/2)1(2p3/2)
2
2 3 B4 51.603(8) 51.601 51.593 51.598

B1+B3 B13 49.556(4) 49.549 49.546 49.547
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the di�erent QED and nuclear shifts, an additional calculation was performed using
perturbation theory (Table 3.6). This table shows how the experimental errors are
already small enough to become sensitive to QED contributions to the 2p states,
and to nuclear size e�ects of the 2s states.

Table 3.6: QED contributions and nuclear size e�ects per electron performed on the basis of
CI-DFS calculations for mercury ions. The estimated uncertainties are indicated in parenthesis.

E�ect 1s 2s 2p1/2 2p3/2

QED contribution 162.5 (2.0) 26.3 (1.0) 2.1 (0.2) 4.2 (0.2)
Nuclear size correction 54.2 (1.0) 8.9 (0.2) 0.5 - 0.2 -

c) The columns labeled QMB are predictions by Artemyev [ASS 03]. In zero or-
der approximation, the interelectronic interaction is neglected. In the �rst order of
perturbation theory, QED diagrams of electron-electron one-photon exchange, one-
electron self energy and one-electron vacuum polarization are taken into account
(see section 1.1.3). In the next order, self energy-screening and vacuum polarization-
screening largely cancel each other. The diagram of two-photon exchange is calcu-
lated using relativistic many body perturbation theory (RMBPT), because it has
been shown that the results di�er only in the order of 0.5 eV, compared with the full
QED calculations [BMJ93]. For this method an accuracy of 5 eV for a particular
energy level has been estimated. However, error bars are not given because a third
order perturbation theory would be still needed to determine them properly.

d) The most recent calculations, also based on the Multi-Con�guration Dirac-
Fock technique (labeled MCDFM) have been performed in the Theory Department
of the Max-Planck-Institut für Kernphysik [HJK05a]. Here, the corrections due to
the Breit interaction, �nite nuclear size and nuclear mass e�ects (reduced mass and
mass polarization) as well as approximate QED contributions are included. The
DR resonance strengths are constructed from radiative transition rates and Auger
rates. In the MCDF theory, there are two di�erent possible methods of calculation:
in the average level (AL) scheme, calculations yield the resonance energies and
wave functions with the same average quality for all the many-electrons states.
In the optimal level (OL) scheme, a certain state, which should be optimized, is
selected; the rest of con�gurations will be used only to improve the chosen one, by
accounting for correlation e�ects. Generally, the OL is more accurate, but requires
more computer storage and processing time since it performs separate calculations
for all the states of interest, and, usually, convergence is more di�cult to reach.

Figure 3.6 shows the di�erences between the experimental resonance energies and
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Figure 3.6: Di�erences (in eV) between experiment and theory (black open squares for MCDFS ,
blue triangles for CI-DFS, green rhombus for QMB and red circles for MCDFM ) for all the measured
resonance energies from He- to B-like mercury ions. In this plot the experimental energies use the
theoretical value for the DR (1s2s2)1/2 state of He-like ions of each calculation as reference. The
error bars shown in the plot are those of the experimental relative resonance energy determination
(see Tables 3.2 to 3.5).
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the calculations for the charge states ranging from He-like Hg78+ to B-like Hg75+ ions.
The error bars given in this �gure are those of the experimental data (see Tables 3.2
to 3.5).

An overall evaluation of the theory can be made by extracting separately for
each charge state the average shift and standard deviation of the di�erent models,
as shown in Table 3.7. To account for the small di�erences of the 1s2s2 excitation
energy among the various calculations, here, the energy scale uses as reference the
1s2s2 resonance energy value predicted by each particular model. The various nor-
malization energy changes of -3 eV (CI-DFS), -1 eV (QMB) and -3 eV (MCDFM),
respectively, are consistent with the relative error bar of ± 4 eV.

Table 3.7: Theoretical shift to the experimental data ∆ and its standard deviation σ per each ion
charge state and model in eV. ε represents the averaged experimental error bar for a given charge
state. The bold numbers indicate the lowest theoretical discrepancies.

Charge state Figure MCDFS CI-DFS QMB MCDFM

He ε = 6 ∆ 1.2 1.3 -1.5 1.7

He σ 2.1 4.1 4 4.8

Li ε = 7.2 ∆ -9 -7.3 -11.8 -5.5

Li σ 9 8.9 9.3 7.7

Be ε = 8.4 ∆ -15.2 -14.8 -8.2

Be σ 6.1 3.4 4.6

B ε = 5.3 ∆ -6 -10.7 -8.3

B σ 3.2 1.2 3.1

The results of the calculations have similar tendencies, in that the discrepancies
move into the same direction for a given charge state for all the theoretical mo-
dels. We observe a very good agreement between all theoretical predictions and the
experimental results for the He-like resonances, even when they are up to 5 keV
away from the reference energy. The Li-like resonances are, in general, in less good
agreement with theoretical predictions. Two of these resonances, Li2 and Li3 with
the same electronic con�guration ((1s2s)12p1/2)3/22p3/2 but di�erent total angular
momentum J = 2 and J = 1, respectively, show signi�cantly larger systematic
discrepancies than the others (≈ 20 eV). For the MCDFM calculations where more
levels have been taken into account, these di�erences are somewhat reduced to 17 eV.
In addition, the Li5 which has the same electronic con�guration than Li2 and Li3
but J = 3, it agrees with MCDFM within 1 eV. The observed Be-like as well as B-
like resonances disagree, in general, with all the theoretical predictions. In the case
of the Be-like ions, these discrepancies may be due to the problematic theoretical
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3.1. Photorecombination of Hg75+...78+ ions

treatment of the screening of the Lamb shift, and to the admixture of the (2pj)
2

con�gurations to the ground state (2s2) 1S0, pointed out by Lindroth [Lin95].
Using the di�erences in resonance energies, the �ne structure splitting can also

be accurately extracted. This is expected to result in smaller experimental uncer-
tainty, since the systematic errors originated from the absolute electron beam energy
determination are canceled out.

The results are shown in Table 3.8, in comparison with di�erent calculations;
four of them have already been described, the �fth was carried out by Safronova in
a Non-Relativistic Many Body Perturbation Theory (NRMBPT) but only for the
He-like ions. Figure 3.7 displays the deviations graphically. The experimental errors
can be as small as 3 eV. The experimental results are found to be in excellent agree-
ment with all theoretical predictions except from the Li6-Li2 where the theoretical

Table 3.8: Fine structure splitting for di�erent observed ion charge states.

States Experiment MCDFS MCDFM QED CI-DFS NR-MBPT

(keV) (keV) (keV) (keV) (keV) (keV)

He6-He1 4.706 (6) 4.707 4.702 4.699 4.702 4.698

He6-He3 2.220 (6) 2.221 2.221 2.218 2.221 2.219

He3-He1 2.486 (6) 2.486 2.481 2.481 2.481 2.479

Li6-Li1 4.468 (4) 4.462 4.467 4.461 4.463

Li2-Li3 0.050(9) 0.050 0.050 0.050 0.050

Li6-Li2 2.068 (6) 2.084 2.084 2.084 2.085

Li6-Li4 1.936 (12) 1.938 1.942 1.938 1.942

Li6-Li5 2.184 (4) 2.186 2.186 2.186 2.186

Li5-Li1 2.284 (4) 2.276 2.281 2.275 2.277

Li5-Li4 0.248(12) 0.248 0.244 0.248 0.244

Li4-Li1 2.532(12) 2.524 2.525 2.523 2.521

Be5-Be1 4.298 (5) 4.301 4.294 4.302

Be5-Be3 2.084 (6) 2.090 2.082 2.090

Be5-Be4 2.168 (17) 2.181 2.174 2.177

Be3-Be4 0.084 (17) 0.091 0.092 0.087

Be3-Be1 2.214 (5) 2.211 2.212 2.212

Be4-Be1 2.130 (16) 2.120 2.120 2.125

B4-B13 2.047 (7) 2.052 2.051 2.047

B4-B2 2.104 (7) 2.102 2.110 2.106

B13-B2 0.057 (3) 0.058 0.059 0.059
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Chapter 3. Results and discussion

Figure 3.7: Di�erences (in eV) between the experimental results and the MCDF calculations for
the �ne structure splitting.

value is about 15 eV higher. In fact, di�erences which include either the Li2 or
Li3 resonances, disagree with theory consistently with the discrepancy in the energy
determination for the excitation energy of those states discussed above. However,
their own di�erence Li2-Li3 agrees well with all the predictions.

Summarizing, QMB seems to neglect some electronic interaction contribution (in
�rst order perturbation), leading in the case of the resonance energies to the poor-
est general agreement across the whole range of con�gurations. Some preliminary
calculations using the optimized level MCDFM method, deviate in the case of the
Be-like ions from the results by only half as much as other theories. In view of
this improved agreement, it is planned to extend its application to the He-, Li- and
B-like con�gurations.

The small discrepancies between theory and experiment for the resonance energy
di�erences can lead to the conclusion that the largest theoretical uncertainty comes
from the calculation of the binding energy of the K-shell vacancy, where noticeable
disagreements were seen.
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3.1. Photorecombination of Hg75+...78+ ions

3.1.3 Asymmetry of resonance line shapes

By using the narrow cuts, as explained in section 3.1.1, and �tting the lines, the
Fano parameterQ is obtained for individual states for the �rst time in highly charged
ions [GCB05].

The procedure used for the �ts is the following: the initial Q factor of a given
resonance was set to a very large value (completely symmetric, see Fig. 1.11 in
section 1.2.3). Then, the �t was ran iteratively in order to optimize the χ2/DoF.
The asymmetries of the theoretical di�erential DR cross sections, at 90◦, tend to
be somewhat weaker when the calculated cross sections are convoluted (see blue
and green curves in Figs. 3.8 to 3.10, respectively) with the experimental resolution
(ωexp ≈ 70 eV).

Figure 3.8: Experimental (black curve) and �tted (red curve) DR resonance pro�les, for two
di�erent slices of the RR n = 2, J = 1/2 band in the KL12L12 region, together with the normalized
(non-convoluted) theoretical cross sections (blue and green curves for He- and Li-like ions, respec-
tively). Note that the Fano factors are negative for all states. (a) Projection of the upper slice
(cut 1 in Fig. 3.2) with He-like and Li-like resonances. (b) Projection of an intermediate region
(cut 3 in Fig. 3.2) with Be- and Li-like resonances.

Figure 3.8a shows the �t to the projection of the uppermost slice (cut 1) in the
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RR n = 2, J = 1/2 band where the degree of asymmetry for the He1 and Li1
resonances was extracted. Even though there are six possible KL12L12 resonances
when starting with He-like ions (see Tables A.1 to A.4 in the Appendix) which all
lie within the displayed energy window, only two of them are visible experimentally
in the �gure (He1 and He2) since all the other ones are too small according to the
calculations. The predicted position and relative cross section of a third He-like ion
DR resonance at 46.423 keV, more than 3 times weaker and separated by about one
linewidth from the He1 resonance, is also displayed. The three further calculated
resonances are such small that they are not visible on the linear scale.

According to Table A.2 (see Appendix) four Li-like resonances are predicted to lie
in the energy window of Fig. 3.8a on the high energy side of the He-like resonances.
Three of them are 20 times weaker than the main line, thus, they cannot be resolved
in the experimental data. The strongly asymmetric Li1 (Li-like) resonance dominates
in the KL12L12 region (Fig 3.8a).

Figure 3.9: In comparison with the He- and Li-like resonances in the KL12L12 region (see Fig.
3.8), the KL12L3 Be- and B-like ones show opposite, i.e. positive Fano factors. The two cuts
displayed here exemplify the method used to resolve resonances from speci�c charge states. The
normalized (non-convoluted) theoretical cross section (blue and green curves) are also shown.
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In addition to the above discussed Li-like resonances, which appear only very
weakly in cut 3 (Fig. 3.8b), now a single strong Be-like resonance (Be1) occurs at
47.135(5) keV in the experimental spectrum. Since the Li-like resonances at 46.847
and 47.028 keV are much weaker in this slice, they do not disturb the characterization
of the resonance pro�le of the Be-like line.

Figure 3.9a shows the only two Be-like resonances (Be2 and Be3), out of a total of
four in the KL12L3 region with a photon energy near the RR n = 2, J = 1/2 band,
which have sizable intensities and were included in the �t. Since the theoretical
strength and Fano parameter of the weaker Be2 were kept �xed in the �t, only
information on Be3 could be extracted. At these x-ray energies (≈ 71.6 keV), two
B-like resonances are predicted in the KL12L3 region. The resonance labeled B1

is about 600 times stronger than a second B-like resonance at 49.491 keV. In the
next projection (cut 5), shown in Fig. 3.9b, B1 is almost completely isolated from
the neighboring Be3 resonance, which now is in addition, very weak in intensity,
such that the separated B1 line shape and Fano factor can be determined with high
precision. Nevertheless, the Be3 resonance was included in the �t.

Figure 3.10: Projections onto the electron beam energy axis of two slices of the RR n = 2,
J = 3/2 band, in the KL12L3 (a) and KL3L3 (b) regions, respectively.
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In Fig. 3.10 some resonances with unresolved blends are shown. The Be4 reso-
nance in Fig. 3.10a overlaps with another Be resonance, which is 10 times weaker and
was therefore neglected. A Be-like resonance at a slightly higher energy (49.335 keV)
was taken into account in the �t. From these curves the Fano parameters of B2 and
B3 were extracted with relatively larger error bars. B2 partly overlaps with another
resonance (B2') at the same energy, but with half its strength, which is separated
from B3 by one linewidth. This partial blend is re�ected in the 10% error bar of the
measured Fano parameter. On the other hand, the free (position) �t of B3 resulted
in a symmetric resonance, as expected.

The worst case, shown in Fig. 3.10b, is the Be5 resonance, which is nonetheless
separated from the closest resonances by more than one experimental width. More-
over, these neighboring resonances are about 10 times weaker than the one for Be5.
The group of resonances (B and C) on the right side was not analyzed, because
C-like resonances are also expected in this energy region. As a consequence, the
error bar of Be5 is correspondingly large.

We have analyzed the asymmetry factor of the DR resonances individually in
the cases where they are reasonable well separated from other features. Table 3.9
summarizes the results of these experiments. As can be clearly seen in Table 3.9, the
measured asymmetry Fano factors are in good agreement with theoretical results for
all the charge states and di�erent con�gurations. Only for two of them, Be1 and
Be5, signi�cant deviations between experiments and theory are observed, beyond

Table 3.9: Theoretical (qtheo; MCDFS) and measured Fano factors (qmeas) for the strongest DR
resonances. Resonances labeled �sym� were �tted with a symmetric pro�le or they resulted in a
very large Fano factor. Γd are MCDFS predictions for the natural width of the resonances.

Label |d〉 J Γd (eV) Qtheo Qmeas

He1 1s2s2 1/2 1 -140 sym.
Li1 1s2s22p1/2 1 11 -12.2 -14.2(2.2)
Be1 1s2s2(2p1/2)2 1/2 16 -12 -9.3(0.9)
Be3 (1s2s22p1/2)02p3/2 3/2 19 7.3 6.7(0.6)
Be4 (1s2s22p1/2)12p3/2 5/2 11 13 18.2(6.6)
Be5 1s2s2(2p3/2)22 5/2 5 16.3 11.1(2.0)
B1 1s2s2(2p1/2)2 2p3/2 1 35 5.2 5.1(0.3)
B2 1s2s2(2p1/2)2 2p3/2 2 16 9 10(1)
B3 1s2s2(2p1/2)2 2p3/2 1 35 -441 sym.
B4 (1s2s22p1/2)1 (2p3/2)22 3 16 -630 sym.
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3.1. Photorecombination of Hg75+...78+ ions

the experimental error bar.
In order to verify the accuracy of the experimentally determined Fano factors and

demonstrate that the line asymmetry is not an experimental artifact, we analyzed
the pro�les of strong transitions not a�ected by interference using the same analyzing
procedure. A cut in Fig. 3.2 was selected in parallel to the J = 3/2 band but shifted
to lower x-ray energies, passing through a set of lines excited by DR resonances
which do not overlap with the RR band, since the photon is emitted through a
transition from a J = 1/2 level, whereas the foregoing recombination took place
into a J = 3/2 vacancy. That means that these transitions are followed by a n = 2,
J = 3/2 to n = 2, J = 1/2 transition for the �nal relaxation. In this projection,
three strong peaks from C-, N- and O-like Hg ions are clearly visible. Here, no
quantum interference is expected to occur, and the observed line pro�les are indeed
symmetrical as shown in Fig 3.11. This con�rms that the observed asymmetry is not
an artifact produced by our data acquisition system, other experimental peculiarities
or by the data analysis, but appears only in the resonance pro�les of those states
where it was predicted. Indeed, this was already implied in the changing signs of the
measured Fano factors, which also exclude an asymmetry caused by our apparatus
or experimental procedure.

Figure 3.11: Projection of a slice taken below and parallel to the RR n = 2, J = 3/2 band. This
cut shows clearly the symmetry of all the resonances ranging from B- to O-like Hg ions. The lower
plot displays the residue of the �t.
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3.1.4 Deexcitation X-ray transitions

During the experiment, the energy scale of the Ge-detector collecting the photons
following recombination was calibrated about every four hours. The calibration lines
used in this experiment were produced by irradiating thin foils of tungsten, tantalum
and lead with 122 keV γ-rays of a 57Co source from behind, exciting Kα and Kβ lines
from those targets. Two Kα lines, namely, the Kα1 transition from the 2p3/2 to the 1s

states (also labeled as KL3) and the Kα2 corresponding to the 2p1/2 to 1s transition
(KL2) can be seen for each element. The two Kβ lines are detected for Ta and W
targets, but those of Pb were very weak. The observed Kβ3 peak from W is, in fact,
a mixture of two transition lines, namely, KM2 and KM3. Their intensity ratio is
known to be I(KM2)/I(KM3) = 0.521 [SPK73]. The next peak at higher energies
(W Kβ1) contains a larger number of blended transitions, and could not be used.
In Table 3.10 their energies are given [NIS04]. More details on the energy of these
lines, their uncertainties and ratios can be found in Ref. [IBL98].

Table 3.10: Kα and Kβ transition energies of Ta, W and Pb which were used in the energy
calibration of the germanium detector [NIS04, IBL98].

Transition Ta W Pb
(eV) (eV) (eV)

KL2 (Kα2) 56278.7(18) 57981.9(19) 72806.6(25)
KL3 (Kα1) 57533.9(17) 59318.8(17) 74970.2(24)
KM2 (Kβ3) 64947.7(28) 66952.1(29)
KM3 (Kβ1) 65222.1(29) 67245.6(30)

Figure 3.12 shows a calibration spectrum. Here, the right scale indicates the
energies of the calibration lines, which �t in the energy-channel conversion shows a
regression coe�cient of R = 1 and an accuracy at 70 keV of about 20 eV for each
individual calibration. Calibrations were carried out between the measurements (see
below) allowing one to correct for any systematic drift. In contrast to the krypton
test experiment, where both calibration and measured lines showed low energy tails,
in the present experiment the line pro�les are not visibly a�ected by such tails and,
therefore, Gaussian distributions could be used for the �tting procedure without loss
of accuracy.

Like in the demonstration of interference patterns, we have performed selective
projections onto the x-ray energy axis of the 2D map for well de�ned windows in
the electron energy (see Fig. 3.13). At an electron beam resonance energy, such
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Figure 3.12: Kα (W and Pb) and Kβ (W) lines excited with the 122 keV emission line of 57Co.

Figure 3.13: Logarithmic 2D contour-map of the photorecombination of highly charged mercury
ions in the DR KLL region. The dotted lines represent a few of the thin cuts projected onto the
x-ray energy axis (see Fig. 3.14 for the projections of the cuts labeled here as a and b).
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projections contain x-ray photons from the resonances as well as from RR n = 2

(the two peaks; J = 1/2 and J = 3/2, respectively). The experimental data were
grouped into two data sets (about two hours each), one taken before and another
after a Ge-detector calibration took place. Sets of data acquired over 4 hours do not
allow to distinguish the small He-like resonances clearly. Thus, the highest charge
state analyzed here corresponds to Li-like ions.

As an example, Fig. 3.14 shows two di�erent projections corresponding to the
resonances of Li-like ions in the KL12L12 region (Li1 in Fig. 3.14a) and the resonances
of B-like ions labeled B1 and B3 in the KL12L3 region (Fig. 3.14b). The good quality
of these �ts is inferred from the χ2/DoF value, which was 0.72 and 0.88 for the
spectra containing the Li1 and B1 resonances, respectively.

Figure 3.14: Two projections onto the x-ray axis of a single data set. The two peaks, which
are always present in these type of projections correspond either to the RR n = 2, J = 1/2 and
J = 3/2 bands, respectively outside of the resonance energy or to a superposition of RR and DR
contributions for cuts including a resonance. a) Projection of the Li1 resonance in the KL12L12

region for excitation energies Ee in the range Ee = (46686 ± 46) eV. b) Projection of the B1 and
B3 resonances in the KL12L3 region Ee = (49557± 61) eV.

The results obtained for the x-ray spectra at resonance energies in the di�erent
sets of data with their separatedly calibrated runs were averaged according to their
respective statistical weights. Table 3.11 shows the measured photon energies in
comparison with MCDFS and MCDFM calculations. Some of the predictions marked
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with a double subindex in the table have been obtained by averaging a few (two to
four) single state values taking into account their theoretical strengths (see Tables
A.1 to A.4 in the Appendix).

Table 3.11: Measured x-ray energies, compared with theoretical MCDFS and MCDFM calcula-
tions for Hg ions in di�erent charge states [Sco03]. The primes accompanying some of the resonance
labels indicate the existence of a second resonance, the x-ray energy of which, is near by the one
under study. Some of the resonances are labeled with two subindeces if two or more single states
contribute (see text). |d〉J and |f〉J indicate the intermediate and �nal state with their correspond-
ing total angular momentum J .

Label |d〉J |f〉J Experiment MCDFS MCDFM

Li1 [1s2s22p1/2]1 [1s22s2]0 69.841(65) 69.866 69.869
Li2 [((1s2s)12p1/2)3/22p3/2]2 [1s22s2p1/2]1 72.006 72.015
Li3 [((1s2s)12p1/2)3/22p3/2]1 [1s22s2p1/2]1 72.057 72.065
Li3' [((1s2s)12p1/2)3/22p3/2]1 [1s22s2p1/2]0 72.093 72.102
Li23 72.081(78) 72.033 72.042
Li5 [((1s2s)12p1/2)3/22p3/2]3 [1s22s2p3/2]2 69.805(60) 69.826 69.833
Li6 [(1s2s)1(2p3/2)22]3 [1s22s2p3/2]2 72.039(60) 72.012 72.019
Be1 [1s2s2(2p1/2)2]1/2 [1s22s22p1/2]1/2 69.657(32) 69.703
Be2 [(1s2s22p1/2)12p3/2]3/2 [1s22s22p1/2]1/2 71.827
Be3 [(1s2s22p1/2)02p3/2]3/2] [1s22s22p1/2]1/2 71.914
Be23 71.879(14) 71.907
Be4 [(1s2s22p1/2)12p3/2]5/2 [1s22s22p3/2]3/2 69.722
Be4' [(1s2s22p1/2)12p3/2]3/2 [1s22s22p3/2]3/2 69.726
Be4 69.702(15) 69.722
Be5 [1s2s2(2p3/2)22]5/2 [1s22s22p3/2]3/2 71.880(16) 71.904
B1 [1s2s2(2p1/2)22p3/2]1 [1s22s2(2p1/2)2]0 71.674(17) 71.666 71.671
B5 [(1s2s22p1/2)1(2p3/2)22]3 [1s22s22p1/22p3/2]2 71.682(20) 71.669 71.669
B2 [1s2s2(2p1/2)22p3/2]2 [1s22s22p1/22p3/2]2 69.560 69.562
B2' [1s2s2(2p1/2)22p3/2]2 [1s22s22p1/22p3/2]1 69.578 69.580
B3 [1s2s2(2p1/2)22p3/2]1 [1s22s22p1/22p3/2]2 69.618 69.620
B3' [1s2s2(2p1/2)22p3/2]1 [1s22s22p1/22p3/2]1 69.636 69.638
B23 69.551(17) 69.585 69.586
B4 [(1s2s22p1/2)1(2p3/2)22]3 [1s22s2(2p3/2)2]2 69.546(15) 69.603 69.603

In Fig. 3.15 the di�erences between experimental results and the predictions
(MCDFS and MCDFM) for the measured transitions are plotted. The relatively
large error bars (≈ 60 eV at 72 keV) found in the Li-like ion resonances are due to
the low number of counts. Within these uncertainties, a fair agreement with the
theoretical predictions is observed. The measured Be-like ion resonance energies,
instead, are signi�cant smaller than theoretical predictions (≈ 30 eV), well outside
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Figure 3.15: Di�erences between the observed x-ray energies and the MCDFS (black squares)
and the MCDFM (red circles) calculations. The error bars shown are those of the measured x-ray
energies (see Table 3.11).

the experimental error bars of only ± 14 eV. The somewhat larger error bar for
the Be1 resonance is partly due to its low number of counts, and, in addition, to
its complete overlap with the RR n = 2, J = 1/2 band. Here, the B-like ion
resonances found at the x-ray energy region around 71.7 keV, are found to be in
a good agreement with the predictions, while the other two resonances at about
69.6 keV are consistently shifted towards lower energies compared to the calculations.

Fine structure in the x-ray energy spectra

The di�erences between the x-ray transition energies measured here provide again
information on the �ne structure splitting of the n = 2 levels with di�erent J for ions
in a particular charge state. Here we distinguish between the emission of photons
from the 2p3/2, 2p1/2 and 2s1/2 states into lower states. Data in Fig. 3.16 are
divided into two zones: the upper part corresponding to the di�erences between
states J = 1/2 and J = 3/2, and the lower one to the di�erences of those states
with the same J , which are, in �rst approximation, expected to be close to zero. The
energy separation between the J = 1/2 and J = 3/2 bands is, on average, 2.15 keV
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Figure 3.16: Fine structure splitting between states with J = 3/2 and J = 1/2 (upper part)
and di�erence between states with the same J (lower part) for mercury ions with di�erent charge
states and con�gurations as indicated on the top of the �gure. The experimental and theoretical
(MCDFS and MCDFM calculations) data points are obtained from Table 3.11.

slightly decreasing with decreasing the ion charge.
The results are for Li- and Be-like ions agree within error bars with the theoreti-

cal predictions. Signi�cant deviations between experimental results and theoretical
predictions, well outside the experimental error bars are found for all B-like states.
Although the experimental results for the lower zone (Fig. 3.16) transitions are in
agreement with the expectations, this discrepancy, the reason of which is unclear,
has to be taken seriously, nonetheless.
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The aim of this work was to use the energy dependence of the photorecombination
to study the electronic structure of HCI, and to investigate the related quantum
interference e�ects. The experimental methods implemented at the Heidelberg EBIT
have made it possible to achieve those ends.

In the present work, we have extensively reported on accurate measurements of
DR resonance energies of highly charged Hg75+...78+ ions. Their excitation energies,
which are in the range of 50 keV, have been determined with a relative experimental
uncertainty as small as ± 5 eV [GAC05]. This has allowed us to benchmark the
quality of the most advanced state-of-the-art calculations [HJK05b]. At the present
level of accuracy, calculations of QED contributions to the binding energies of 1s,
2s and 2p states, and nuclear size e�ects up to n = 2 can currently be compared
with experimental values. Predictions and experimental results agree for the DR of
He-like Hg78+ within ± 2 eV. However, agreement becomes poorer for lower charge
states. In fact, discrepancies as high as 15 eV have been observed for the Be-like
Hg76+ ions, which cannot be explained by the experimental uncertainties. Since the
�ne structure splitting, which was also measured, compares rather well with theory,
these discrepancies are most likely due to an imprecise calculation of the binding
energy of the DR initial state.

It is planned to extend both the experimental and the theoretical analysis to the
lowest mercury charge states (also present in the experiment as shown, for instance,
in Fig. 3.11), namely, C-, N- and O-like. For ions with almost �lled L-shells, the
number of possible resonances and transitions in the KLL region becomes again
small, and therefore more appealing to theory. For instance, only two resonances,
completely separated in the x-ray energy by about 2 keV, are predicted (MCDFS)
for the O-like mercury ions at 52.336 keV.

Although the x-ray detector resolution limited the accuracy of the x-ray energy
measurements, the �nal results have nonetheless absolute error bars as small as
± 14 eV at 70 keV. Thus, they can compete with the most precise experiments in

133



Conclusions

many-electron high-Z ions, as the Kα1 transitions in U90+ ions at (100626 ± 35) eV
[BCI 90] or in Bi81+, (78825 ± 85) eV [SMG92]. They are even within a factor
of three in accuracy of the most recent result reported for the H-like U91+ Lyα

transition [GSB05], whose averaged value has an error bar of ± 4.6 eV.
Perhaps the most original result of this thesis is the unambiguous observation of

the quantum interference between dielectronic and radiative recombination processes
for several resonances in highly charged mercury ions [GCB05]. Our improved
experimental resolution has made it possible to accurately characterize, for the �rst
time, the degree of asymmetry in state-selected DR resonances, and indicates a
deviation from theory in the case of two Be-like resonances. A full understanding of
the implications of these discrepancies has not yet been achieved.

In summary, as for the resonance positions and the Fano factors, we �nd signif-
icantly large systematic di�erences between the experimental observations and all
available theoretical predictions for the Be- as well as for two of the B-like states.
Since the resonance energies, determined from the electron beam energy, the x-ray
energies from the Ge detector, and the shape of the Fano pro�le represent three quite
independent measurements that cannot be a�ected by the same systematic experi-
mental error, these deviations, even though they are sometimes close to the size of
the error bars, have to be taken seriously. Screening of the Lamb shift in Be-like
ions, and con�guration admixture could, in part, explain these �ndings [Lin95]. A
set of improved calculations by Harman [HJK05a] seems to indicate that the agree-
ment can be improved by increasing the number of states in the calculations, and a
further expansion of the basis set of states is underway [HJK05b].

In order to become completely independent of any theoretical input, the presented
measurements should be carried out in future by varying, in addition to the electron
beam energy, the electron beam current. As we showed in the case of Kr34+ ions,
the extrapolation to zero current can provide absolute resonance excitation energies
with error bars on the order of 1 eV. It is planned to perform such experiments with
highly charged uranium ions. The low uncertainties of the present results will be
further improved by means of the thermally stabilized high-precision voltage divider
developed here. In addition, the uncertainties of the measured x-ray energies will
be reduced in forthcoming experiments by means of higher resolution detectors.

More generally, the di�culties appearing in the determination of x-ray energies
in the 100 keV range could be avoided in part by developing electron beams with
better de�ned properties in combination with photon detection. That goal could,
in principle, also be pursued by introducing spectroscopic instrumentation to the
new electron target at the TSR, with its excellent electron beam characterization,
although problematic corrections of the Doppler shift may still be needed there. On
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the other side, a large increase in resolution through a consequent application of
the EBIT techniques utilized in the present work can already be foreseen for the
immediate future. In this way, spectroscopy of trapped HCI will continue to deliver
reliable data and remain an extremely valuable alternative tool for the study of QED
e�ects in high-Z ions.
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A.1 Mercury tables: theoretical parameters

In the following, four tables (He- to B-like) containing several theoretical parameters
from the MCDFS calculations are given [Sco03]. These tables contain the con�g-

Table A.1: MCDFS calculation for the observed and nearby resonances of He-like mercury ions.
The resonance and x-ray energies are given in keV. The strength is expressed in units of b · eV/sr

(b = barn = 10−24 cm2) and Γd is the natural width in eV.

|d〉 J Label Excitation Eγ Strength Γd Q

1s2s2 1/2 He1 46.358 67.678 2511.71 1.1 -140

1s(2p1/2)
2 1/2 46.681 70.000 13.07 15.6 -2.75

(1s2s)02p1/2 1/2 He2 46.613 70.156 3956.1 6.9 -15.3

(1s2s)12p1/2 1/2 46.423 69.965 787 4.9 -8.1

1s2s2p1/2 3/2 46.417 69.959 53.12 10.7 -1.1

1s2s2 1/2 46.358 67.528 17.9 1.12 -5.1

(1s2s)02p3/2 3/2 He3 48.844 72.386 3118.8 4.5 -11.9

1s2s2p3/2 3/2 48.695 72.238 32.5 15.6 -1.37

(1s2p1/2)02p3/2 3/2 He4 48.923 72.243 1574 18.8 6.95

1s2p1/22p3/2 3/2 48.838 72.157 154.5 11.9 2.7

(1s2p1/2)12p3/2 5/2 48.834 70.003 2921.7 11.1 10.6

(1s2s)02p3/2 3/2 He5 48.844

1s2p1/22p3/2 3/2 48.838 70.007 239 11.9 -9.4

(1s2p1/2)02p3/2 3/2 48.923 70.093 162.7 18.8 -6.2

1s(2p3/2)
2 5/2 He6 51.065 72.234 1418.5 5.2 13.2

1s(2p3/2)
2 3/2 51.133 72.302 29.3 208.7 6

1s(2p3/2)
2 1/2 51.169 72.339 14.8 297.3 -6.2
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uration of the doubly excited state |d〉 and total angular momentum J , the label
for the observed states, excitation energy (keV), photon energy Eγ (keV), strength
(barn·eV/sr), natural width Γd (eV) and the dimensionless Fano parameter Q.

Table A.2: MCDFS calculation for the observed and nearby resonances of Li-like mercury ions.
The resonance and x-ray energies are given in keV. The strength is expressed in units of b · eV/sr

(b = barn = 10−24 cm2) and Γd is the natural width in eV.

|d〉 Label J Excitation Eγ Strength Γd Q

1s2s22p1/2 1 Li1 46.688 69.865 2229 11.1 -12.2

1s2s2p1/2
2 1 46.847 69.787 127.5 15.8 -10.9

1s2s2p1/2
2 1 46.847 69.824 65.8 15.8 -12

1s2s2p1/2
2 0 47.028 69.968 70.76 17.7 -12.2

1s2s2p1/22p3/2 0 49.106 72.046 12.1 29.6 -4.4

((1s2s)12p1/2)3/22p3/2 2 Li2 49.066 72.006 819.6 20.7 7.1

((1s2s)12p1/2)3/22p3/2 1 Li3 49.116 72.056 216.4 26.9 5.3

((1s2s)12p1/2)3/22p3/2 1 Li3 49.116 72.093 285.4 26.9 4.9

((1s2s)02p1/2)1/22p3/2 2 Li4 49.212 72.152 573.4 14.5 9.6

1s2s22p3/2 M2-decay 2 48.879 72.056 232.9 0.1 257

1s2s22p3/2 1 48.938 72.115 166.8 19.5 -2.6

1s2s2p1/22p3/2 2 48.951 71.892 15.6 6.5 1.7

1s(2p1/2)
22p3/2 1 49.372 71.989 4 19.2 -3.2

1s(2p1/2)
22p3/2 2 49.313 71.930 15.4 0.1 845

((1s2s)12p1/2)3/22p3/2 3 Li5 48.964 69.825 1704.2 10.7 12.5

((1s2s)02p1/2)1/22p3/2 2 49.212 70.073 178.45 14.5 79

((1s2s)12p1/2)3/22p3/2 1 49.116 69.876 211.6 26.9 -14.3

((1s2s)02p1/2)1/22p3/2 2 49.212 69.972 378.8 14.5 7.8

1s2s2p1/22p3/2 2 48.951 69.812 89.9 6.5 -125

1s2s2p1/22p3/2 1 49.216 70.077 9 7.2 3.8

1s2s2p1/22p3/2 1 49.039 69.900 30 26.7 4.24

(1s2s)1(2p3/2)2
2 3 Li6 51.150 72.011 1177.8 5.4 15.7

1s2s(2p3/2)
2 2 51.264 72.125 220.8 23.5 7.6

1s2s(2p3/2)
2 1 51.303 72.164 194.8 14.9 -9.3
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Table A.3: MCDFS calculation for the observed and nearby resonances of Be-like mercury ions.
The resonance and x-ray energies are given in keV. The strength is expressed in units of b · eV/sr

and Γd is the natural width in eV.

|d〉 Label J Excitation Eγ Strength Γd Q

1s2s2(2p1/2)
2 1/2 Be1 47.124 69.703 255.8 16.1 -12

(1s2s22p1/2)12p3/2 3/2 Be2 49.248 71.827 149.6 11.1 2.8

(1s2s22p1/2)02p3/2 3/2 Be3 49.335 71.914 1676.46 18.9 7.3

(1s2s22p1/2)12p3/2 5/2 49.244 71.822 4.7 10.1 -1.9

1s2s22p1/22p3/2 1/2 49.284 71.862 57.6 30.1 -4.5

(1s2s22p1/2)12p3/2 5/2 Be4 49.244 69.721 3000 10.8 12.9

(1s2s22p1/2)12p3/2 3/2 49.248 69.726 249.1 11.1 -11.3

1s2s22p1/22p3/2 1/2 49.284 69.761 32.2 30.1 2

(1s2s22p1/2)02p3/2 3/2 49.335 69.813 184.1 18.9 -7.5

1s2s2(2p3/2)2
2 5/2 Be5 51.425 71.903 1963.8 5.1 16.3

1s2s2(2p3/2)2
2 5/2 51.497 71.975 192.7 28.6 6.7

1s2s2(2p3/2)2
2 5/2 51.528 72.006 304 14.5 -9.2

Table A.4: MCDFS calculation for the observed and nearby resonances of B-like mercury ions.
The resonance and x-ray energies are given in keV. The strength is expressed in units of b · eV/sr

and Γd is the natural width in eV.

|d〉 Label J Excitation Eγ Strength Γd Q

1s2s2(2p1/2)
22p3/2 1 B1 49.549 71.665 656.97 35 5.2

1s2s2(2p1/2)
22p3/2 2 49.491 71.607 1.3 15.9 -1.5

1s2s2(2p1/2)
22p3/2 2 B2 49.491 69.578 748 15.9 8.9

1s2s2(2p1/2)
22p3/2 1 B3 49.549 69.617 400.2 35 -441

1s2s2(2p1/2)
22p3/2 2 49.491 69.559 481 15.9 18.5

1s2s2(2p1/2)
22p3/2 1 49.549 69.636 73.1 35 -5.8

(1s2s22p1/2)1(2p3/2)
2
2 3 51.601 71.668 328.5 15.7 5

(1s2s22p1/2)1(2p3/2)
2
2 3 B4 51.601 69.602 656.33 15.7 -630

1s2s22p1/2)(2p3/2)
2 1 51.649 69.651 25.42 38.9 -877

1s2s22p1/2)(2p3/2)
2 1 51.693 69.621 93.6 25 673
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