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Abstract

In this thesis efficient numerical methods for the simulation, the parameter estimation, and
the optimal control of the Red River system are presented.

The model of the Red River system is based on the Saint-Venant equation system, which
consists of two nonlinear first-order hyperbolic Partial Differential Equations (PDE) in
space and in time. In general a system of equations of this type can not be solved ana-
lytically. Therefore I choose a numerical approach, namely the Method Of Lines (MOL)
combined with the Backward Differentiation Formulae (BDF) method implemented in the
solver DAESOL, which is developed at IWR, (University of Heidelberg), for the solution of
the Saint-Venant equation for the simulation of the Red River system.

In a river, there are geometrical and hydraulic parameters, e.g. friction coefficients, river
bed slope, etc., which are very expensive or — even worse — impossible to measure. The
Red River system is a large system, therefore the number of the unknown parameters is
also large, thus manual parameter estimation, as often done by hydrologists, does not work
effectively. To overcome this problem and to come up with accurate parameter values, we
estimate these parameters by solving a corresponding least-squares problem. This high
dimensional nonlinear constrained optimization problem is solved by applying a special
reduced Gauss-Newton method implemented in the software packages for parameter esti-
mation PARFIT and FIXFIT. Based on the code FIXFIT we have developed a numerical
tool for solution of simulation and parameter estimation problems for river flows that are
modeled by hyperbolic PDE.

Using the validated model, we formulate an optimal control problem for preventing floods
in the Red River lowland. This problem is solved by the direct multiple shooting method
within the software package MUSCOD-II. We propose an online optimization approach
with a nonlinear model predictive control (NMPC) technique to reduce the maximum flood
level at Ha Noi by controlling the water discharge at the output of the reservoir Hoa Binh.
The potential of our approach is demonstrated in real-life test cases corresponding to the
flood season in the year 2000.
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Kurzfassung

In dieser Arbeit werden effiziente numerische Methoden fiir die Simulation, fiir Aufgaben
der Parameterschitzung sowie fiir Optimal-Steuerungsprobleme beim Rote-Fluss-System
im Norden Vietnams vorgestellt.

Das Modell des Rote-Fluss-Systems beruht auf der Saint-Venant-Gleichung, einer insta-
tionédren raumlich eindimensionalen nichtlinearen hyperbolischen partiellen Differentialgle-
ichung (PDE) erster Ordnung, die aus zwei Komponenten besteht. Da ein Differential-
gleichungssystem dieses Typs nicht analytisch gelost werden kann, wihlen wir einen nu-
merischen Ansatz. Mit der Linienmethode (MOL) wird die PDE in eine hochdimensionale
gewOhnliche Differentialgleichung iiberfiihrt und mit "Backward-Differentiation-Formulae”
(BDF) in Zeitrichtung diskretisiert. Fiir die in dieser Arbeit durchgefiihrten Simulatio-
nen der Saint-Venant-Gleichung des Rote-Fluss-Systems wird der am IWR der Universitét
Heidelberg entwickelte BDF-Loser mit variabler Schrittweite und Ordnung (DAESOL) ver-
wendet.

In ein Modell fiir einen Fluss gehen geometrische und hydraulische Parameter ein, z.B.
Reibungskoeffizienten oder Gefillwerte des Flussbettes, die in der Praxis oft nur sehr
aufwindig oder iiberhaupt nicht durch Messungen direkt ermittelt werden kénnen. Da
das Rote-Fluss-System sehr ausgedehnt ist, treten eine hohe Anzahl unbekannter Param-
eter auf. Eine "hindische” Schitzung dieser Parameter, wie sie vielfach von Hydrologen
durchgefiihrt wird, erwies sich als ineffektiv. Um diese Schwierigkeit zu {iberwinden und
zu genauen Parameterwerten zu kommen, bestimmen wir die Parameter durch Losung
eines geeigneten Least-Squares-Problems, wobei als Messdaten Pegelstinde verwendet wer-
den. Die numerische Losung dieses hochdimensionalen beschréinkten Optimierungsprob-
lems wird durch Anwendung einer speziellen reduzierten Gauk-Newton-Methode, die in den
Softwarepaketen PARFIT und FIXFIT implementiert ist, vorgenommen. Auf der Grund-
lage des Codes FIXFIT haben wir ein Werkzeug zur Simulation und Parameterschitzung
von Fluss-Modellen entwickelt, die in Form von hyperbolischen PDE vorliegen.

Unter Verwendung des validierten Modells formulieren wir ein Optimal-Steuerungsprob-
lem mit dem Ziel der Vermeidung von Uberflutungen im Tiefland des Rote-Fluss-Systems.
Dieses Problem wird mit einer direkten Mehrzielmethode, wie sie im Softwarepaket MUS-
COD-II realisiert ist, gelost. Dariiber hinaus schlagen wir eine Regelungsstrategie im
Rahmen des "Nonlinear Model Predictive Control” (NMPC) vor. Hierbei wird Echtzeit-
Optimierung eingesetzt, um die Wasserzufuhr beim Reservoir Hoa Binh unter wechselnden
sonstigen Bedingung online so zu bestimmen, dass der maximale Pegelstand bei Hanoi
so niedrig wie moglich gehalten wird. Das Potenzial unseres Ansatzes wird anhand von



VII

Testfillen, die der Situation wihrend der Hochwasserphase im Jahre 2000 entsprechen,
nachgewiesen.
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Chapter 1

Introduction

Every year the Red River system collects 115-117 billion m® water from a drainage-basin
of about 169000 km*, among them 86 660 km” (51%) in Vietnam. This water amount is
an essential factor for the life of 17 million people in the lowland of the Red River system,
both in the positive and the negative sense. It provides resources for living and production.
For instance, the hydroelectric power plant Hoa Binh (on this river system) delivers about
40% of the electric energy of Vietnam. But the Red river from time to time also causes
strong floods which kill people and damage many valuable things. In consequence of
natural disasters in the Red River lowland, for example in 1996 [48], 312 persons died and
610 persons were injured, 36700 dwelling-houses and 15190 classrooms were damaged, and
383000 ha of area under cultivation were destroyed. Such disasters impend every year, and
people living there are often in danger. So the control of the Red River system is a very
important problem for Vietnam.

One possibility for preventing floods is the strengthening of the dike system. But to
do it for nearly 3000 km dike, which were built since 866 to date and reaches now the
height of 14,5-15,0 m in Ha Noi, this is unfortunately too expensive, especially for such
a week economy like Vietnam’s. Therefore, the control of this river system by means
of hydroelectric reservoirs is a more practical solution. There are two most important
reservoirs in northern Vietnam. With a volume of 2,94 x 10° m? and a drainage-basin of
4,3% of the entire area of the Red River until Son Tay, the smaller reservoir Thac Ba
plays only a reserve role in flood prevention. The main duty is taken by Vietnam’s largest
reservoir Hoa Binh, whose volume is 9,45 x 10°m3. But both reservoirs are far away to
be enough to prevent floods in the Red River whose discharge may be 37800m?/s as in
August 1971, when the water level in Ha Noi reached the record level of 14,6 m. It remains
a very hard question for the Vietnamese government, for all responsible institutions and
experts, how to control these reservoirs to minimize flood in the Red River lowland.

There are many difficulties in answering the above mentioned question. They can be listed
as follows,
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e geographical, meteorological and hydrological data are lacking and inaccurate, both
for the past and for the present time,

e there are no suitable methods or software for operative forecast of floods,

e knowledge of the dependencies of the flood in lowland on the working regimes of the
reservoirs is lacking.

The main goal of this thesis is to contribute to the solution of the above listed problems
with the ultimate goal to find a method for optimal control of the reservoirs. Here, we
focus on the control of the reservoir Hoa Binh. Our work can be formally broken down
into the following parts:

e formulating the model of the Red River system.
e using numerical methods to simulate the Red River system,

e estimating unknown parameters of the Red River system by means of optimization
and

e finding an optimal control for the reservoir Hoa Binh to minimize flood in the lowland.
The criterion for minimizing flood in the Red River lowland is minimizing the water
level in Ha Noi.

The research approach of this thesis is interdisciplinary and motivated by the applicational
aspect.

The mathematical model of the river flows is based on the Saint-Venant equation system.
This is a system of two hyperbolic Partial Differential Equations (PDE), which can be
solved by numerical methods, e.g. finite element methods, finite volume methods, or finite
difference methods. To treat the instationary case, we use finite difference for the spatial
discretization. The resulting large-scale time dependent Ordinary Differential Equation
(ODE) system connected by algebraic constraints, is treated by the BDF method imple-
mented in the solver DAESOL which was developed by Prof. Bock, Dr. Schléder and
their team at the Interdisciplinary Center for Scientific Computing (IWR). There exist
already software and methods for modelling river flows, e.g. the comercial software MIKE
developed by “DHI Water and Environment”, WENDY and RIBASIM developed at Delft
Hydraulics, Holland, etc. which are based on fixed stepsize methods in time. In contrast
to those software and methods, in this thesis a stepsize control strategy is applied in order
to improve the computing time and stability of the numerical methods.

One noticeable problem arising in the modelling procedure of the Red River system is
caused by the fact that there are geometrical and hydraulic variables which can not be
measured, e.g. the friction coefficients, river bed slope, etc. In previous work these variables



are determined manually based on the experiences of hydrologists. However, the number
of these variables is very big due to the spatial discretization of the Saint-Venant equations
(up to some thousands) and, even worse, they are strongly correlated with each other,
therefore the manual estimations for the unknown variables of the river flows are not
sufficiently effective. In order to avoid this problem and to come up with a good model for
the Red River system, in this thesis, the variables which can not be measured, are treated
as unknown parameters and their values are estimated by means of optimization. Here,
the values of water levels at the gauging stations, which was measured in the past, are
used. To the best of the author’s knowlegde this is the first time that optimization based
parameter estimation is carried out for a river system. To realize this idea, we formulate an
optimization problem fitting the model response to the measurement data. This is a least
squares problem constrained by a large scale ODEs. For the solution of this problem, the
Generalized Gauss-Newton method developed and implemented in the codes PARFIT by
Bock (1981 [10], 1983 [11], 1987 [12]), and Bock et al. (2001 [13]), and the Reduced Gauss-
Newton method which was developed and implemented in the code FIXFIT by Schloder
(1987 [54]) and Dieses (2001 [27]) are used as a framework. Based on the code FIXFIT
we have developed a tool for solution of simulation and parameter estimation for river
flows (see Thai et al. [14]). This software can be applied for solution of simulation and
parameter estimation problems which are constrained by hyperbolic and parabolic PDEs.

The values of unknown parameters of the Red River system are estimated and their sta-
tistical reliability is assessed, i.e., in terms of the variance-covariance matrix or confidence
intervals. A validation and a verification for the estimated parameters is made. This shows
that the model response is fitted well to the measurement data.

In order to find an optimal control for the reservoir Hoa Binh to minimize the water level in
Ha Noi, an optimization problem is formulated. This problem is solved by MUSCOD-II, a
powerful software package for simulation and optimization, which has been developed in the
research group of Professor Bock. This software is based on the boundary value problem
(BVP) approach, that is simulation and optimization are done at the same time, and it
has been applied very successfully to many application problems. MUSCOD-II solves the
optimal control problem with a reduced SQP-method (see Bock et al. [15] and Leineweber
[42]) based on the direct multiple shooting discretization. As results, we recommend new

strategies for optimal control of the reservoir Hoa Binh in order to minimize the water level
in Ha Noi.

This thesis is organized in 7 chapters:

In Chapter 2 the Saint-Venant equation system is chosen for modelling the Red River
system. A derivation of this equation system is recalled to explain all dependencies between
the variables in the equation system.

Chapter 3 describes mathematical methods for the solution of the Saint-Venant equation.
We first show how the original model equations are discretized in space to obtain a large
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system of ODEs connected by algebraic constraints, and then how the BDF method which
is implemented in the solver DAESOL is applied to obtain the solution of the model
equations. The stability, convergence, and accuracy of the numerical method applied to
our problem are discussed.

Chapter 4 is dedicated to the presentation an efficient numerical method for solution of
the parameter estimation problem. The parameter estimation problem for the Red River
system is a least-squares problems constrained by the Saint-Venant equation, i.e. by the
PDEs. In this chapter a discussion about numerical methods for solution of this optimiza-
tion problem is made, and based on that the Reduced Gauss-Newton method developed
and implemented in the code FIXFIT is chosen for the framework of parameter estimation
in this thesis.

Chapter 5 presents numerical results of parameter estimation and simulation of the Saint-
Venant equations for the Red River system. In the first part of this chapter the introduction
to the Red River system is made. In the second part we present the values of the estimated
parameters with their confidence intervals. A validation and a verification of the estimated
parameters is made, and these show good coincidence between the model response and the
measurement data. In the third part of the chapter, numerical results for simulation of the
Saint-Venant equations are presented for the estimated parameters. These show the values
of the state variables, i.e. water discharge and water level at every river cross-sectional
node depending on the time.

The mathematical model of the Red River system can then be used for optimal control
problems: in Chapter 6 the optimization problem is formulated in order to find an optimal
control of the reservoir Hoa Binh to minimize the maximal water level in Ha Noi. For the
solution of this problem the software package for optimization MUSCOD-II is applied.

Finally, in Chapter 7 we summarize the results and give an outlook to further research
directions.



Chapter 2

Dynamical Modelling of a River System

This chapter contains an introduction to the mathematical modelling of river flows. The
first section gives an outline of existing models for open channel flows. In the second
section, the hydraulic model is considered in more detail. The parameterization of hydraulic
functions for the Red River system is shown in the third section. Based on this description,
we can neglect weakly influential terms in the mathematical physics equations for the Red
River system. This leads to the specific case of Saint-Venant equation, which is significantly
simplified. The aim of this chapter is to choose a suitable model for the considered Red
River system.

2.1 Model Classification for River Flows and a Suitable
Model of the Red River System

The main task of modelling of river flows is to determine the nonlinear dynamic relationship
between hydraulic quantities, i.e., water discharge (or water velocity), water level (or cross-
sectional area) and the time. This has called attention from many experts over the past
hundreds of years. Mathematical models of a hydraulic system are ranging from very
simply computable models to complex computer-based, physically-based models. They
can be classified into the following types [48], [68]:

e Metric Models
e Conceptual Models

e Hydraulic Models
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Metric Models, e.g. black-box models, time-series models, are based on observational data
and seek to characterize flow response largely on the basis of these data, using some form
of statistical estimation or optimization (see [68],[51], [37], and [65]). These models ignore
physical laws, and are usually simple as no deeper knowledge of the studied processes is
needed and no expensive morphometric and physical measurements are required. Usually,
metric models are lumped, i.e. they do not attemp in any way to represent the processes
occuring within the river channel, not even in a simplified manner.

Conceptual (see [48], [68]) models are partly physically based. In a conceptual type model
the internal descriptions of various subprocesses are modelled attemping to represent, in a
simplified way, the known physical process.

Hydraulic Models represent processes in a mathematical-physics form, based on physical
laws (see [4, 59]) and are solved in an approximated manner via finite difference or finite
element methods.

In the present project a hydraulic type model is chosen for the modelling of processes in
the Red River system because of a number of reasons. Hydraulic models allow to describe
completely and exactly the processes in the Red River system. By a hydraulic model, we
can easily express all dependencies between hydraulic variables, e.g. the water level, the
water discharge etc., the knowledge of which is very important for the control of the Red
River flows. One more reason to use a hydraulic model to modelling the Red River system
is that it does not require availability of detailed hydraulic data in the past time, which
are not available in Vietnam.

The main problem of a hydraulic type model is the inability of measuring some hydraulic
quantities, e.g. river bed friction, river bed slope, etc. To avoid that and to come up
with accurate values of these hydraulic quantities, we treat these unmeasurable quantities
as unknown parameters and estimate them from measurements by means of optimization.
We will discuss this in detail in Chapter 4.

2.2 Hydraulic Models for River Flows

In nature, water flow in the river is unstationary, i.e. it varies in time and space, and has a
free surface. The basic flow equations mathematically describing unsteady river flow are the
continuity equation, derived from the principle of conservation of mass, and the momentum
equation from Newton’s second law, the principle of conservation of momentum. J.-C.
Barre de Saint-Venant [22] derived those equations more than a century ago, long before
the techniques to solve them became available. These are called the Saint-Venant equation
system. However, the first version of the Saint-Venant equation is not complete: the forces
upon the investigated system are not described, some important quantities are missing,
e.g. the lateral in (out) water discharge.
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To continue Saint-Venant’s work, in the last decades many scientists have recalled and com-
pleted the derivation of the Saint-Venant equation using new performances in mathematics.
Different ways of generating this equation system can be found in books of hydrology or
physics like Maniak [45], Chow et al. [17], Somojlovich [57], or Stoker [62]. It is not our
intention to give a complete overview of all these methods. In this section, using material
from the above literature, we outline the establishment of the Saint-Venant equation. The
main goal here is to explain the dependencies of all hydraulic variables.

2.2.1 Assumptions for the Derivation of the Saint-Venant Equa-
tion for River Flows

The commonly used model for river flows is the one-dimensional Saint-Venant equation.
In deriving it the following assumptions are made:

e Flow in the channels can well be approximated by a flow with uniform velocity over
each cross-section,

The channel is straight enough so that its course can be considered as a straight line,

the pressure in the water obeys hydrostatic pressure law,

the slope of the river bed is small,

the effects of friction and turbulence can be modelled by a friction slope S;.

2.2.2 Derivation of the Saint-Venant Equation

Consider a control volume between two cross sections z and z + dz and between two level
¢ and & + d€ as shown in Figure 2.1.

2.2.2.1 Continuity Equation

Let x [m], t [s] be the space and the time variables: ¢ > 0, x¢ < z < z1, A(z, h(z,t)) [m?]
be the cross-section area, dA be the normal area vector, dV be the elemental volume, and
U be the velocity vector with |U| = u[ms™!], and its direction is the direction of the flow.
Then the continuity equation for this control volume can be written as follows

L[ s

Where:
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(b) Plan view
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Figure 2.1: An elemental control volume for derivation of Saint-Venant Equations
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/ / / and / / indicate the integration over the control volume and the integration

over its surface respectively.

e U-dA is the vector dot product of the vector U and the normal area vector dA, which
is defined as

U-dA = |U|cos (U, dA)|dA|
e p is the water density.

The first member of (2.1) is the rate of change of mass stored within the control volume.
If A(x,h(z,t)) is the average cross-sectional area and dx is the length of the elemental

control volume, then
d O(pA(z, h(z,t))dz)
— = 2.2
dt / / / pav ot (2:2)

Here the partial derivative is used because the control volume is defined to be fixed in size
(though the water level may vary within it)

The second member of (2.1) is total outflow of mass from the control volume. This can be
computed as follows

//,oU dA = //pU dA+// pU - dA (2.3)

inlet outlet

If we call Q(z,t) = uA [m3s!] the flow discharge, ¢(x,t) [m2s~!] the lateral in- or outflow
per unit length and assume that the density is constant, then

// pU - dA = —p(Q(z,t) + gdx) (2.4)
and
// pU - dA = p(Q(z,t) + 3Q(§:;,t) dz) (2.5)

outlet
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Substituting Eqs (2.2)-(2.4) into (2.1) and simplifying by dividing by pdz, we obtain

0Q(z, 1) N 0A(z, h(z,t)

=0 2.6
Oz ot (26)
Equation (2.6) is the continuity equation for a river flow.
2.2.2.2 Momentum Equation
Newton’s second law for the considered control volume:
d
p%(A(x h(z,t))udz) ZF (2.7)

where F' are the forces acting on the control volume .

Using the Reynold’s transport theorem (see [17, 1])

p%(A(:r, h(z,t))uAx) ///updV+// upU - dA

we can rewrite (2.7) as follows
4 dV+// U-dA=>_F (2.8)
p up up = .

There are five forces acting on the considered volume:
Y F=F,+F;+F.+F,+F, (2.9)

where F is the gravity force due to the weight of the water in the control volume, F}
is the friction force along the bottom and sides of the control volume, F, is the contrac-
tion /expansion force produced by abrupt changes in the channel cross section, Fy, is the
wind shear force on the water surface, and the F}, is the unbalanced pressure force. In our
modelling, we will neglect F, and F,,. Each of the remaining three forces is evaluated in
the following paragraphs.

Gravity

The weight of our considered volume is pgA(z, h(z,t))dz. Here g is the gravity acceleration.
In Fig. 2.1 we can see that F} is given by

F, = pgA(x, h(z,t))drsing (2.10)
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We assume that 6 is very small. Hence the bed slope Sy = tanf = sinfl. Substituting this
to (2.10) gives

F, = pgA(z, h(z,t))Sodz (2.11)
Friction

The friction force can be evaluated by the empirical formula

CrupgAlw, h(z, ))ululda

F;=— 2.12
f R% ( )
where C), is the Manning Coefficient and R is the hydraulic radius.
Pressure
There two components of the pressure force:
e Pressure over the vertical surface F},, which is computed by
0 h(z,t)
Fo=—god [ palbia,t) - 9o, €)de o (213)
0

e Pressure over the part of slice in contact with the banks of the river Fj,, which is
computed by

h(z,t)
Fon = {/0 pg(h(z,t) — f)bw(xaﬁ)d{:} dx (2.14)

Let us now consider equation (2.13). Using the Leibniz integral rule, we can rewrite the
right hand side of this equation as follows

h(z,t)
—% /0 pg(h(z,t) — &)b(z, f)d€} dx

h(z,t) o
= - {/0 5y Pa(h(z, 1) = £)b(z,8)) df} dz

Oh(z, 1)

pg&h(x, t): h(zx, t)Jb(:v, h(x,t)) o dx

=0

(pg(h(:v,t)—O)b(:v,O) AU [

* oz
=0
h(z,t)

o0x

— e ——

= (pg(h(z,t) — §)b(z,£)) df} dzx
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Hence, we can compute F}, as follows

F, = Fp+Fy,

h(z,t)
R o= - { | 5 ratitat) - 00z, ) ds} da
h(z,t)
+ {/0 pg(h(z,t) — &)be(z, S)df} dz

h(z,t)
= — /0 pgh.(z,t)b(z, £)dédx

Note that h,(x,t) is independent of £ and the cross section area is computed by A(z, h(zx,t)) =
foh(x’t) b(x,&)dE. We can rewrite this equation as follows

h(x,t)
Fo= = [ pohale,b(s,€)dcda
0

h(;t)
= —pghm(x,t)/o t b(x,&)dédr = —pgA(x, h(z,t))he(z,t)dx. (2.15)

Now let us consider the left hand side (LHS) of (2.8). The first member of the LHS is
computed by

%///upd‘/:pdw% (Q(x, 1)) (2.16)

The second member of the LHS can be computed as follows:

[[unida = [ [wpwaas [ [ wpuas

c.s. inlet outlet
= Q) + ade) + Qe ) + 5 (s, ) )
= —pqudx + %(pu@(m, t))dx (2.17)

Now substituting equations (2.11), (2.12), (2.15), (2.16), and (2.17) into (2.8) and simpli-
fying gives
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9Q(x, 1 a( Qa, 1)*
A

oz \ A(z, h(z, 1))

o oz ) = —A(z,h(z,1))gha(z, 1)

+A(z, h(z,t))g(So — Sf) + qu, (2.18)

Ff _ Cnu|u| . . .
AT — g 15 called friction slope.

where Sy =

The two differential equations (2.6) and (2.18) are the basic equations for the modelling of
river flows, and called the Saint-Venant equations.

2.2.3 Alternative Formulations

There are other ways of representing the Saint-Venant equations which are expressed in
terms of different pairs of the state variables:

2.2.3.1 Using Q(z,t) and h(z,1t)

Equations (2.6) and (2.18) can be rewritten in term of Q(x,t) and h(z,t) as follows:

(one) _ __Qed) g
ot B Ap(z, h(z,t)  Ap(z, h(z,t))
] 9Q(z,1) 9 [ Qz,1)?
g = ~% (A(x, h(x,t))) — A(z, h(z,t))ghs(x,t)
\ +A(z, h(z,t))g(So — S¢) + qu.

2.2.3.2 Using Q(z,t) and y(z,1)

In the current time, by applying new technologies, at any gauging station we can measure
the absolute water level y(z,t), i.e. the water level with respect to the null level. In Figure
2.1 the relation between h(x,t) and y(z,t) is shown:

y(z,t) = h(z,t) + z() (2.19)

Here, z(z) is the bed height. By definition we have

2z (z) = =Sy (), where Sy is the bed slope. (2.20)
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Differentiating (2.19) and substituting into (2.20) we get
Yz (z,t) = hy(x,t) — So(x) (2.21)

By using (2.19), (2.20) and (2.21) we can represent the cross-sectional area and its partial
derivatives as follows

Az, h(z,1)) = Alw,y(z,t) - 2(2)) = Az, y(, 1),
Az, y(z,t) = Ay(z,y(z, 1)y, 1) (2.22)

Substituting (2.19), (2.20), (2.21), and (2.23) into (2.6) and (2.18), we obtain the system

( T —_ Qz(2, 1) q
) Ay (,y(w, 1)) +Ay(w,y(w,t))
o) — Q( t) .
{ Qulz,t) = 2~ e t%)Qz( 1) (2.24)
(th ) A, y(a,1)
\ Ax ))( w( at)+Sf)+qU

The equation system (2.24) is the Saint-Venant equation expressed in term of Q(x,t) and
y(z,t) and has the following advantages

e An unique coordinate system for the whole system. Because the null level is unique
for the Red River system.

e S; is eliminated from the equation system. That reduces the number of unknown
parameters.

By doing an analogous transfer, we can rewrite the Saint-Venant equation in term of u(z, t)
and h(x,t) or u(z,t) and y(z,t) as follows

2.2.3.3 Using u(z,t) and h(z,t)

The flow velocity u(z,t) is computed by
Qz,1)
A(z, h(z, 1))
Q(z,1)
A(z,y(=,1))

u(z,t) =



2.3 Parameterization for Hydraulic Functions of Saint-Venant Equation 15

Then, the Saint-Venant equation can be rewritten in the following form

Az, h(z,1)) u(z, t)Ag (2, h(z,t)) q
e t) = B @) ) T T Buhw) T B h@i)
(2.25)
ut(x,t) = —u(x,t)uw(x,t) _ghw(xat) _g(Sf_SO)—i_%

Here, B(z, h(x,t)) denotes the width of the river at the location z and corresponding to
the water depth h(z,1).

2.2.3.4 Using u(z,t) and y(z,t)

x — _Mu z,t) — u(x,f)ﬁw(x,h(x,t)) !
MO S By )™ T Bey@) | Bah)

- ol PV (et — e (g _qu(z,t)

ut(l‘,t) = ( at) m( ,t) gyw( ’t) gSf+A(x,y(.’1?,t))

Here, B(z, h(z,t)) denotes the width of the river at the location z and corresponding to
the water level y(z,1).

2.3 Parameterization for Hydraulic Functions of Saint-

Venant Equation

In order to describe our system completely, in this section we will discuss how to parame-
terize the following hydraulic functions, which occur in the Saint-Venant equation:

e Lateral water flow ¢
e Cross-sectional area A(z,y(z,t))

e [FTriction slope Sf

2.3.1 Lateral Water Flow

Lateral water inflow to a river channel includes following components:
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Rainfall ¢, (positive),

Underground water source gy, (negative),

Water used for farm products grarm (negative),

Water used for living gjive (negative),

Evaporating water geyap(negative).

The two last components are very small compared to the first three components. Hence,
we investigate only the first three components.

Rainfall

The investigation of the water balance in Vietnam [34] shows that the mean of the rainfall
in the Red River lowland is about 1.50 m per year, or 4.76 x 10~ [m/s]. For the Red River
system, the width of the river varies from 2.00 x 10% to 2.00 x 10® [m]. Correlatively, the
discharge of rainfall per unit of length ¢, varies from 9.52 x 107 to0 9.52 x 1075 [m3/s]

Underground Water Sourses

The total resource of underground water for the Red River system is 0.27 x 102 [m3/s].
If the total length of Red River is 5.50 x 10° [m], then per unit of length, the value of
underground water is 4.91 x 1075 [m3/s]

Water used for farm products

The total of water required for farm products is 10'° [m?] per year (see [34]), or 3.17 x 102
[m3/s]. If the total length of Red River is 5.50 x 10° [m], then, the value of the the water
used for farm per unit of length is gsgrm = 5.76 X 107* [m?/s].

Summarzing the above investigation, we get Table 2.1 for the water balance

Water resource Notation | Value [m3/s]
Underground water Guw 4.91 x 107°

Water used for farm Gfarm 5.76 x 10~

Rainfall q- 9.52x 107%+9.52x 107
Total lateral water q ~ 6.00 x 10~*

Water discharge in Ha Noi Q 3.00 x 10% = 9.00 x 10?

Table 2.1: Evaluation of Water Resource

In this table, we can see that ¢ < @, and consequently the lateral water g can be neglected.
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2.3.2 Cross-Sectional Area

Cross-sectional area is a function of x and y
A= A(z,y)

If at every location z, we define the river width b(z,y) as a function of the water level y
and the location z, then the cross-sectional area can be computed as follows

Az,y) = /y( | b(z, y)dy (2.26)

where yo(x) is the river bed level at the location z, i.e. the level, in which b(z, yo) = 0.

Wetted perimeter is the length of the cross section along which there is friction between
the fluid and the boundary. It is denoted by W, and computed as follows

Y
Wy (z,y) = / VT (2.27)
Yol T

In Equation (2.12) the hydraulic radius R appears. It is defined as

Az, y)

R(z,y) = W, (@9)

(2.28)

In practice, at some location x, the relation between the river width and the water level is
given in the table form

Water level y Yi Y2 |- | Un
River width b(z,y) | by | by | ... | by

Table 2.2: Definition of Cross section

In Table (2.2), n is the number of measured points in the y direction.

Then, as an approximation of the solution of equations (2.26) and (2.27) we compute

A(z,y) and W,(z,y) at arbitrary y = y;, for i =1,2,..,n

Aww) = Y by - ) (2.29)

Wy (z,4:) = z_: \/(ij = b;)? + (Yj+1 — 4i)? (2.30)
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2.3.3 Friction Slope

By rewriting the Manning equation and replacing u = %, we get

) (2.31)

A2RS

The hydraulic radius can be easily computed by the equation (2.28). The only unknown
function is the Manning coefficient C,,. That is an unmeasurable quantity, and our task
now is to estimate it.

The investigation of the U.S. Army Corps of Engineers for the Mississippi River [67] shows
that the Manning coefficient C;, depends on the water discharge and this relation is also a
function of the time. This is illustrated in the Figure 2.2.

Based on the results of this investigation, we assume that C), is a function of the discharge
Q. We propose that C,, for the river channel i.,,n, at the cross-sectional area 7., is defined
by a polynomial as follows

’np(ichan) Q (7’ . ) %
.cross 'cross —_ . . max\¢Ychan
Cn (:E;chan ’ Q(xzchan ) t)) - Z p(lchan, 7’) (W) ’ (232)
=0 Zchan ’

where: xzzh?;f is the location at the cross-sectional area ... of the channel i.,n; Q(:r:zh‘:j, t)
and Qmaz (fchan) are the water discharge in the location xzzh‘:j at the time ¢ and the maximal
value of the water discharge for the channel ichan; Pichan, %), 2 = 0,1,...,7p(%chan) is the
parameter number ¢ of the channel ichan, With 7, (ichan) is number of the all parameters of

channel 7¢n.

There are two problems we have to solve

e Determine the number of all the parameters n,(ichan) + 1

e Determine the values of all parameters p(ichan, %)

The second problem is solved by means of optimization, minimizing the difference between
the value of the water level measured at some gauging stations and the value of the water
level at the same gauging stations, but computed from the simulation of the Red River
system. We will discuss it in more detail in the next section.

For the first problem, we assume that the second problem is solved, i.e. we can determine
the values of all parameters if we know 7, (ichan). Then n,(ichan) can be determined by
using the F-test for linear hypotheses testing (see [5], [55]). The main idea of this is to
answer to the question: for a given number 7, are the ¢ + 1 parameters significantly better
than ¢ parameter?

The main steps for taking the decision are:
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Step 1: starting from ¢ = 1, i.e. there is only one parameter.

Step 2: Determining parameter p; for n, = ¢ and the corresponding residual S;.

Step 3: Determining parameter p;;; for n, = ¢ + 1 and the corresponding residual
Sit1-

Step 4: Computing the test function

I . Si_Si-I—lnm_np
test —

Y
Si1 Tp

where n,,, n, are the number of measurements and number of parameters, respec-
tively.

- If F;fest Z an,nm—np
and go to step 2,

then p;,, is significantly better than p;. We set 1 =1+ 1

— Else the suitable parameter number n, = 7. Stop.

Here, F},, n,.—n, denotes the quantile of the Fisher distribution on the some probability
confidence level, say 0.95, with the degrees of freedom n, and n,, — n, (see e.g. [47]).

2.3.4 The River Network Models
2.3.4.1 Internal Boundary Condition

It is important to have a good model for the junction of two channels in order to connect
several single channels to a river network. In Figure 2.3, the basic notations of two joint
river channels are shown: the channels 1 and 2 join to channel 3 at the location Z. z, 9,
x3 are respectively the locations of the beginning points of the channels 1 and 2, and the
last point of the channel 3.

The precise hydraulic description of the flow at channel junctions is rather complicated
and difficult because of the hight degree of flow mixing, separation, turbulence, and energy
loss. We assume that the energy losses are neglected, and the junction is point-type. Then
the conditions for the water flow at the joint point are:

Q3 (f’ t) = Ql(ja t) + Q@ (Ea t) (2'33)
hi(Z,t) = hs(z,t) (2.34)
ho(Z,t) = hs(z,t) (2.35)
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X1

Figure 2.3: Junction of two river channels

The flow directions shown in Figure 2.3 play only a formal role. In the case that the flow
in any channel has a converted direction, the equation (2.33)-(2.35) are also valid with the
change that the sign of the discharge of this channel is converted in the equation (2.33).

2.3.4.2 Boundary Condition

Figure 2.4 illustrates a scheme of the Red River system. As it will be menioned later in
Chapter 3 for an unique solution of the simulation of the Red River system, the following
boundary conditions should be given:

e Upper boundary conditions, i.e. a state variables at the input nodes of the system,
namely Hoa Binh, Phu Tho, and Vu Quang. In our study of the Red River system the
water discharge at these three input nodes are given as functions in time Q(x"PP*",¢),
where z"PP¢T is the location of the upper boundaries.

e Lower boundary conditions, i.e. a state variables at the output nodes of the system,
namely Thuong Cat, Trieu Duong, Nam Dinh, Phu Le, Ba Lat, and Dinh Cu. In our
study the water level at these listed output nodes of the Red River system are given
as functions in time y(z!°"", t), where z!°"* is the location of the lower boundary
nodes.

Let z denote

e the state variables, which are given in the left hand site of Equations (2.33)-(2.35)
as the internal boundary conditions,

e and the variables Q(z"PP®", ), and y(z'°"", ), which are given as the boundary con-
ditions of the Red River system.
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Figure 2.4: The Red River Network
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Then, we can summary all internal boundary conditions and all boundary conditions in
the following general form:

z = ¢(t, w;p). (2.36)

Here:

z € IR™, with n, = 2 - Nehan, Where nga, 18 the number of all channels of the Red
River system,

e ¢ is the time variable: ¢ € I := [tg, teng| and z is the space variable z € X := [zg, Zend),

e w(t,z,w,z;p) is the state variable, i.e. water discharge @) or water level y at the point
z. And z is the state variable which is given as boundary condition or determined by
equations (2.33)-(2.35): z € IR™, with ncpg, is the number of the channel members
and n, = 2 X Nepan is the number of boundary conditions including internal boundary
conditions,

e p is the parameter: p € IR"®, with n, the number of parameters,

e o(t,w;p) is the vector of the right hand side of the equation for boundary condition
for channel members: ¢ : I x IR™ x IR™ — IR™.

For the ease of presentation, later in this thesis we call (2.36) the boundary conditions of
the Red River system.

2.3.4.3 The Model for a River Connected Network

The Saint-Venant equation for all channel members in the river network coupled with
the boundary conditions and the internal boundary condition determined by the equation
(2.36) and initial conditions establishes the model of the river network. It can be written
in the following general form:

Saint-Venant equation

w(x’t7w’ww7z;p) :f(t’x7w’ww7z;p)’ (2'37)

Boundary conditions
z = ¢(t, w;p),
Initial Conditions
w(to, ) = wo(x),

where:
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t is the time variable: ¢t € I := [tg, tenq] and z is the space variable x € X := [x¢, Zepal,

w(t, z,w, z; p) is the state variable, i.e. water discharge ) or water level y at the point
z. And z is the state variable which is given as boundary condition or determined by
equations (2.33)-(2.35): z € IR™, with ncpe, is the number of the channel members
and n, = 2 - Nepan 18 the number of boundary conditions including internal boundary
conditions,

p is the parameter: p € IR", with n, the number of parameters,

ft,x,w,wy, z;p) is the vector of the right hand side of the Saint-Venant equation
for channel members: f: 1 x X x R™ x IR™ x IR"™ — IR™

¢(t,w;p) is the vector of the right hand side of the equation for boundary condition
for channel members: ¢ : I x R™ x IR™ — IR™,

wy is the initial condition: wy : X — IR™.
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Chapter 3

Numerical Methods for Simulation of
the Saint-Venant Equation

In the last chapter the mathematical equations model for the river flows are described.
Now it is shown how these can be solved.

As it has been mentioned in the last section, the Saint-Venant equation for river flows is a
pair of two first-order nonhomogeneous hyperbolic partial differential equation. In Section
3.1 the introduction the equation of this type is given. The focus of this section is existence
and uniqueness of solutions of the considered initial-boundary value problems.

It is well-known that a hyperbolic partial differential equation cannot be solved analytically
except by making some very strict assumptions which are unrealistic for most situations.
Therefore a numerical approach has to be used. In the next sections, the numerical methods
for simulation of the Saint-Venant equation for river flows are outlined. In Section 3.2 it is
shown how to discretize the Saint-Venant equation in space. That leads our PDE system
into a large stiff system of semi-implicit ordinary differential equations. For the solution of
this system, we use the solver DAESOL which has been developed in the research group of
Bock and Schléder by Bauer [6, 8]. This is a stable and efficient integrator. The theoretical
basis of the solver DAESOL is given in Section 3.3.

Due to the problem that the number of characters is limited, in this chapter some letters,
e.g. v, 2, u, and w are used as the notation of mathematical variables or functions and not
related with the physical variables which have the same notations in the model equations.
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3.1 Introduction to Hyperbolic PDE

The investigation of general hyperbolic PDE has been described in many textbooks of
mathematics like Tveito [66], Morton [46], or textbooks of computer science and scientific
computing like Ames [2], or university lectures scripts like Sleigh et al. [56]. In this
section, using the material from the above listed literature the author will make clear some
important properties of hyperbolic PDE, which are useful for the numerical solution of the
Saint-Venant equation - a specific case of a hyperbolic PDE.

3.1.1 The Characteristics of the Saint-Venant Equation

The general form of a linear first-order hyperbolic partial differential equation is

wy + a(x, )yw, = f(z,1) (3.1)
w(z,0) = wy(z)

with state variable w € IR, spatial variable z € IR, time variable t € IR, t > 0. a, f, and
wy are given smooth functions.

For simplicity we assume that w is scalar. However the results of the following discussion
is also valid for the case, when the state variable w is a vector.

Definition 3.1.1 Any solution of

dz
- = a(x(t),t) (3.2)
z(0) = =z

is called the characteristic of hyperbolic PDE (3.1)

Remark 3.1.2 By choosing different values of xo, we have a family of characteristics of

(3.2).

In Figure 3.1 an example for the family of characteristic curves is illustrated. Along a
characteristic curve the solution w(z,t) satisfies

dw ow JOw d_:r

W T o ol
ow ow
= WJFG(ﬂC(t),t)%

= f(z,t) (3.3)
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family for negative a(x,t) family for positive a(x,t)

Figure 3.1: A family of characteristics of a hyperbolic PDE

The same principles can be applied to the case
w +a(w)w, = f(z,1) (3-4)
w(z,0) = wy(z)

where if d—j = a(w) then

dw ow n ow dzx
dt ot Oz dt

= f(z,1) (3.5)

Now let us define the characteristics for the Saint-Venant equation. Firstly, we have to
arrange our equation system in the form of (3.4). For simplicity, we consider a simplest
river channel which has rectangular cross section area A of constant river width b and
constant bed slope Sy. The result of this consideration is valid for rivers in general, i.e.
with a cross section area of any form, where the river width and the bed slope are functions
of water depth and space, respectively.

If we define the wave speed c(z,t) by

then
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and consequently, we have

dh = —dc.

Now by replacing all the terms involving h of equation system (2.25), and replacing A = b.h,
as it has been assumed above, we get

Continuity equation

oh oh ou

2¢ 0c  2c¢. Oc c? ou
—_h— - - - — 0
gb8t+ gbu8x+bgax

oc oc ou

The last equation uses ¢ and u as state variables.
Momentum equation

Analogously, for the momentum equation, we get

ou oc ou

Adding and subtracting (3.6) and (3.6) give

ou ou oc oc
5 T (U+C)%+2a +2(u+6)£ = g(So—Sy)
ou ou oc Oc
E%—(U—C)%—Qg—ﬂu—c)% = ¢(So—Sy)
These equations can be rearranged as
O(u + 2¢) O(u+2c)
T—f—(u—f—C)T —g(So—Sf) (37)
0(u — 2¢) o(u—2c)
— T (u— C)T =9(So — Sy) (3.8)
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The equation system (3.7) and (3.8) is the Saint-Venant equation written in the general
form of (3.1), where

[ u+2 [ u+tec _ So — Sy
w_(u—Qc) a_(u—c> f_g<50—5f)

By definition (3.2) the equations of the two characteristics C; and Cj of the Saint-Venant
equation are

d
Ci: & e
gt (3.9)
Cy : pri uU—c
using equation (3.3) we have the relationship between v and ¢ along the curve C;
d(u+ 2c
M2 (o - 5y) (3.10)
and along the curve Cy
d(u — 2¢
M2 g - 5y) (3.11)

Definition 3.1.3 Flows can be classified as follows
e If the flow velocity is greater than the wave speed: u > c, then the flow is called
supercritical
e If the flow velocity is equal to the wave speed: v = c, then the flow is called critical

e If the flow wvelocity is lower than the wave velocity: v < c, then the flow is called
subcritical

3.1.1.1 The Domain of Dependence and the Zone of Influence

For any river flow, the velocity is always less than the wave velocity, i.e. |u| < ¢. Conse-
quently, from now and through this thesis we consider only subcritical flows.

As it is shown in Figure 3.3, the state variables at the point P are determined by the
equations of two characteristics C'; and C5, which are crossed at P. Only the domain,
bounded within two characteristics can influence the conditions at P. Any disturbance
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Figure 3.2: Characteristics and flow classification: (a) subcritical flow; (b) critical flow; (c)
supercritical flow in a positive direction; (d) supercritical flow in a negative direction

C, C

Zone of influence of Q

Domain of dependence of P 0 X

Figure 3.3: Domain of dependence and zone of influence
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outside of this domain will not influence the flow at P. This domain is called domain of
dependence of P.

Conversly, any disturbance occuring at some point ¢, as shown in Figure 3.3 can be
propagated in both upstream and downstream by the curves C; and Cs. This means that
the conditions at ) can influence only the zone that is bounded within the two curves C}
and C5. This zone is called zone of influence of Q.

Knowledge of the characteristics and of the domain of dependence and influence is impor-
tant in the study of the influence of initial and boundary conditions to uniqueness of the
solution of the system.

3.1.2 Existence and Uniqueness of the Solution for the Saint-
Venant Equation

If we denote wy = u+2¢, wy =u—2¢, a1 =u+¢, ag =u—c, e=g(Sy— Sf), then the
Saint-Venant can be rewritten as follows

Owy |, O _
ot “163: - ¢
(3.12)
Owy |, Ow2 _
at | Cor

Boundary conditions and internal boundary conditions: let w, be the state variables, which
are given as the boundary conditions and the internal boundary conditions as mentioned
in Section 2.3, then Equation 2.36 of the boundary conditions and the internal boundary
conditions can be rewritten in the following form

w, = ¢(t, wr, wa; ).
Initial Conditions
wl(tﬂax) = w(l)(x)ﬂ w2(t05m) = wg(iﬁ)

This is a system of two simultaneous first-order hyperbolic partial differential equations.
Let us now specify which initial and boundary conditions determine unique solutions for
this equation system. The following theorems are taken from Ames [2]. Their proofs and
additional information can be found in Bernstein [9], Garabedian [32], and Courant and
Hilbert [20].

Theorem 3.1.4 [2] Let us suppose that continuously differentiable values of wy and we
are specified on the noncharacteristic curve CD of Fig. 3.4 (a), and assume that CD
to be continuously differentiable. A solution to Eqns (3.12), assuming these prescribed
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Figure 3.4: Uniqueness domains for hyperbolic systems |[2]
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values, is uniquely determined in the region CDE bounded by the initial curve C'D, the
Ci characteristics CE, and the Cy characteristics DE. The direction of propagation is
assumed to be upward, but if it were reversed there would be a corresponding “triangle” of
uniqueness below CD.

Theorem 3.1.5 [2] Let us suppose that CD is a noncharacteristic curve that is contin-
uwously differentiable. An unique solution is determined in the region CDEF of Fig. 3.4
(b), where DE and E'F are characteristics, provided that wy and we are known at C' and
continuously differentiable values of wy or we are given along each of segments C'D and
CF. The values at C' must be compatible with the characteristics. An unique solution can
sometimes be assured even when a discontinuity appears at C.

Theorem 3.1.6 [2] In the case sketched in Fig. 3.4 (c), with CD and CE characteristics,
an unique solution is determined in the region CDFE, where EF and F'D are character-
istics, when wy and wy are known at C' and continuously differentiable values of wy or ws
are given along CD and CE. The values at C' must be compatible with the characteristics.

From these theorems the extent to which initial and boundary conditions determine the
unique solution of the Saint-Venant equation can be deduced. That is stated in the follow-
ing corollary.

Corollary 3.1.7 Suppose that

e at the initial moment of time, the values of both state variables of (3.12) are given,

e on the left boundary, the values of both state variables of (3.12) for the considered
time interval are given,

e in the right boundary, the values of both state variables of (3.12) for the considered
time interval are given,

Then the solution to the Saint-Venant equation (3.12) is unique.

Remark 3.1.8 The results of the corollary (3.1.7) can be applied for the Saint-Venant
equations expressed in terms of different pairs of state variables, i.e. (wi,ws), or (u,h),
or (u,y), or (Q,h), or (Q,y), or (Q,A), because the relationship between those pairs of
variables are unique.
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3.1.3 An Introduction to Numerical Methods for Solving the Saint-
Venant Equation

Let us now to discuss numerical methods to solve the Saint-Venant equation for the Red
river system, which is described in Chapter 2. We recall Equation (2.37) with the corrre-
sponding initial and boundary conditions, which is written in the general form as follows,

Saint-Venant equation

w(l‘7t1w’w$”z;p) = f(t7$1w’w$”z;p)

Boundary conditions
z = ¢(t, w;p),
Initial Conditions
w(to, ) = wo(x),

where:

e ¢ is the time variable: ¢t € I := [t, teng| and z is the space variable x € X := [zg, Tend),

e w(t,z,w,z;p) is the state variable, i.e. water discharge ) or water level y at the point
x. And z is the state variable which is given as boundary condition or determined by
equations (2.33)-(2.35): z € IR™, with n¢pa, is the number of the channel members
and n, = 2 - Nepay, 18 the number of boundary conditions including internal boundary
conditions,

e p is the parameter: p € IR", with n, the number of parameters,

e f(t,x,w,wy, z;p) is the vector of the right hand side of the Saint-Venant equation
for channel members: f: I x X x R™ x IR™ x IR™ — IR™

e ¢(t,w;p) is the vector of the right hand side of the equation for boundary condition
for channel members: ¢ : I x IR™ x IR™ — IR™,

e wy is the initial condition: wqy : X — IR™.

The idea of numerical methods is that to transform this continuous problem into a discrete
form in space. This results in a system of algebraic equations, which can be solved by nu-
merical methods, e.g. Newton-like methods. The solution to the newly obtained system of
algebraic equations is an approximation to the solution of the original continuous problem.
There are four fundamental concepts in the context of discretization methods: accuracy,
consistency, stability and convergence. The following discussion about those four concepts
is based on the material from [2], [3], [21], [46] and [60].
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3.1.3.1 Accuracy

There are two quantities for the measure of how well the numerical solution represents the
exact solution of the problem:

e Truncation (or local) error which shows how well the difference equations match the
differential equations

e (Global error which reflects the overall error between the numerical solution and the
exact solution.

It is impossible to find the global error, because the exact solution is unknown.

An expression of the truncation error of a numerical method can be obtained by substituting
the known exact solution of the problem into the discretization, leaving a remainder which
is then a measure of the error. Or, alternatively, the exact solution of the discretized
problem could be substituted into the differential equation and the obtained remainder is
the expression of the truncation error. In our case, the exact solution the Saint-Venant
equation of the Red river system is not available, therefore the second way of obtaining an
expression of the truncation error for a numerical method is preferable.

For the equation (3.1), the truncation error 7 is a function of the time step At and the
space step Ax: 7 = 7(At,Az). If 7 = O(At?, Ax?), then the method is said to be pth
order in time and ¢th order in space.

3.1.3.2 Consistency

A method is said to be consistent if the truncation error decreases as the step size is
reduced. This is satisfied when p,q > 1.

3.1.3.3 Stability

A numerical method is said to be stable if any error in the numerical solution, which is
obtained by this method, will remain bounded. For a hyperbolic PDE as the criterion for
the stability of a numerical method we can use the restrictions on the size of the grid, i.e.
Ax and At at the location x and at the time ¢, which is introduced by Courant, Friedrichs
and Lewy (1928). This is called the CFL condition and stated for Equation (3.4) at an
arbitrary location x and arbitrary time ¢ as follows [46]

la|At < Az, (3.13)
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where a = a(w(z, t)) is the coefficient of Equation (3.4), which is determined at the location
x and at the time ¢.

Physically, the condition (3.13) means that the set of the points used for the computation
enclose the domain of dependence as shown in Figure 3.5 (a). In this figure, PQ is the
characteristic of the considered equation.

Figure 3.5 (b) illustrates the situation in which the CFL condition is violated. Either of the
characteristics P@) or PR lies outside of the computing triangle. As we have mentioned
in the last section, the values of the state variables at () and R must alter the solution
of the differential equation at P by the relationship along the characteristic curves. The
numerical solution at P however, remains unaltered, since the numerical data of the set
of points used for calculation are unchanged. The error in the solution therefore is not
bounded or we can say by other words, the numerical scheme is not stable.

Q X Q ‘R X
@ (b)

Figure 3.5: CFL Condition (a) and the violation (b) [46]

3.1.3.4 Convergence

The method is said to be convergent, if the numerical solution tends to the exact solution
as the grid size is reduced to zero.

A detailed study of the stability and the convergence of the particular numerical method
which is used for simulation of the Saint-Venant equation is given in Section 3.3.
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3.1.4 Classification of Numerical Methods and the Available Soft-
ware for Simulation of River Flows

3.1.4.1 Numerical Methods

There are many techniques available to transform a continuous problem into a discrete
system. These techniques can be used either for a spatial discretization or for a time
discretization. The three most popular methods for general fluid flow problems are,

e Finite Difference Methods (FDM) (see e.g. Lions et al. [19]), in which the derivative
terms in the model equations are approximated by algebraic relations of the values
at particular points or nodes. These techniques are simple to implement, but require
a high degree of regularity within the mesh and so this limits their application to
complex problems, i.e. problems of high dimensions or complex boundary.

e Finite Element Methods (FEM) (see e.g. Johnson [35]), the basis of which is to divide
the computing domain into elements such as triangles or quadrilaterals and to place
within each element nodes, where the numerical solution is determined. The solution
at any position is then represented by a series expansion of the nodal values within
the local vicinity of this position. The nodal distributions are multiplied by basis
functions and the particular way in which the basis functions are defined determines
the choice of variant of FEM.

e Finite Volume Methods (FVM) (see e.g. Leveque [44]) which are based on forming a
discretization from an integral form of the model equations, and entails subdividing
the domain into a number of finite volumes. Within each volume, the conservation
within each cell is achieved.

The methods of the two last categories are usually used for simulation of complex systems,
i.e. systems of high dimension. They require complete geometrical information of the
system and their computational cost is high. This disadvantage limits their applicability
for large scale problems.

For open channel flows, the one dimensional models are applied due to the fact that water
in channels is flowing mainly in the direction along the river channel. Hence, for simulation
of river flows, the finite difference method is used.

3.1.4.2 Available Software for Simulation of the Red River

Let us now make a review of the available software packages for simulation of river systems
in Vietnam. The material for the following analysis is taken from [4], [63], and [64].
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The commonly used software packages for simulation of river flows in open channels in
Vietnam are:

1. Software based on conceptual models: HMC, developed by the Russian National
Centre for Meteorology; SSARR (Stream Synthesis And Reservoir Regulation), de-
veloped by Rockwood, US Army (1957);

2. Software based on hydraulic models: VRSAP (Vietnam River System And Plains),
developed by Prof. Nguyen Nhu Khue (1978); WENDY and RIBASIM developed
at Delft Hydraulics, Holland; MITSIM, developed at the Massachusetts Institute of
Technology (1977-1978); MIKE, developed at DHI Water and Environment, Den-
mark.

3.1.4.3 An efficient Numerical Approach for Simulation of the Red river

As mentioned above, through out this thesis we will consider only hydraulic models, i.e. of
the software of the second group. These software packages are based upon finite difference
methods and have been applied for simulation of some parts or of the whole river system.
Practical application shows that they have the following advantages:

e They are already available!
e They produce acceptable results for simulation of river systems,

e They have user friendly interfaces (e.g. MIKE).
Besides these advantages, there are many disadvantages:

e Some of them are old, e.g. SSARR, VRSAP, MITSIM. Therefore they have problems
in providing the amount of needed memory for large problems,

e Most of the newly developed software packages, e.g. MIKE, are commercial, therefore
licences are required. Moreover, it is difficult to modify or integrate commercial
software with others, e.g. with software for optimization, because normally source
codes of commercial software are not released.

e They are based upon numerical methods which use a fixed stepsize technique. That
means during the computation the space and the time steps are fixed. They are
chosen before computing process and restricted by the CFL stability condition (3.13).
Therefore the time step can not be chosen large and consequently, the computation
cost is high.
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e They do not allow to identify unknown parameters of the system from the measured
data, which was collected in the past, by means of parameter estimation. That is
very uncomfortable because the quality of simulation results strongly depends on
the values of some unknown parameters of the system which vary in time, e.g. the
friction coefficient of river channels.

In order to avoid the above listed limitations of the software, already available for simulation
of river flows, we come up with an efficient software for simulation which satisfies the
following conditions:

e produces good results for simulation of river flows,
e runs fast,
e is easy to use,

e can be easily integrated with other software packages, e.g. for parameter estimation
or optimization,

e Estimates unknown parameters for the system by means of optimization, minimizing
the difference between the the measured values of the state variable and the values
of this state variable, which are computed from a model of the system, at some given
gauging stations.

We introduce an efficient numerical approach for solving the Saint-Venant equation with
step control techniques. The main points are:

e Using the Method of Lines (MOL) to transform the Saint-Venant equation into a
large system of differential algebraic equations (DAE). This point is described in
detail in Section 3.2

e Using a multistep method, namely the BDF method, to lead the DAE system which
is established in the last step into the nonlinear algebraic system. The mathematical
background of this point is discussed in Section 3.3

e Using a Newton-like method to solve the algebraic system which has to be solved
within each step of the BDF method.

We integrate this simulation technique with powerful software packages for parameter
estimation PARFIT (Bock|11, 12]) and FIXFIT (Schloder [54]) as well as for optimization,
MUSCOD (Bock and Plitt [15]). This yields an efficient tool for simulation, parameter
estimation and optimal control of river flows.



40 Numerical Methods for Simulation of the Saint-Venant Equation

3.2 Spatial Discretization

Recall the model equation for a river network (2.37). For simplicity we drop p from the
equations. This gives:

Saint-Venant equation

W= f(t,z,w,wy, 2), (3.14)
Boundary conditions
= ¢(t, w)a (315)
Initial Conditions
w(to, ) = wo(x), (3.16)

where:

e ¢ is the time variable: ¢t € I := [tg, teng| and z is the space variable x € X := [zg, Tend),

e w(t,z,w,z) is the state variable, i.e. water discharge @ or water level y at the point
x and z is the state variable which is given as boundary condition or determined
by equations (2.33)-(2.35): if Nchan is the number of the channel members of the
Red River system, then z € IR™, where n, = 2 X nghan is the number of boundary
conditions including internal boundary conditions,

e f(t,x,w,wsy, z) is the vector of the right hand side of the Saint-Venant equation for
channel members: since the Saint-Venant equation system of a single river chan-
nel consists of two equations, then the number of all equations of the Saint-Venant
equation system for the Red River system, which consists of ng., channels is n,, =
2 X Nepan, and f: I x X x IR™ x IR™ x IR"* — IR™,

e ¢(t,w) is the vector of the right hand side of the equation for boundary condition for
channel members: ¢ : I x R™ — IR™,

e g is the initial condition: wqy : X — IR™.

Substituting (3.15) into 3.14 yields an ODE in w:
Saint-Venant equation

w = f(t,x,w,ws, ¢(t,w)), (3.17)
with the initial condition 3.16.

In this section we outline the method of lines (MOL) to discretize the model equations in
space. This leads the Saint-Venant system into a large system of ODEs.
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3.2.1 Method of Lines

Discretize the space interval into N subintervals:
T <1 < ... <ZTn-1 <IN = Tend,

then the step size Az is determined by

TN — Zo

=

The main idea of the MOL is to approximate the differentials by differences in the solution

at discretized points. There are many ways to approximate the first derivative of w w.r.t.
z, and the three most popular difference formula are:

Ax =

e Forward difference

(wg); = ——— + O(Ax) (3.18)

e Central difference

(wy); = % + O(Az?) (3.19)
e Backward difference
(wg)s = “’%’—1 +0(Ax) (3.20)

In practical applications many other difference formula can be derived for different problems
being modelled. We will discuss the choise of a suitable difference formula for the spatial
discretization of the Saint-Venant equation for the Red River system in the next paragraph.

Substituting the approximations of w, into (3.14) gives an ODE-system of dimension n, =
2 x N. Let the values of w at the discretization points be denoted by w;, i = 1,2, ..., N.
Define a function of dimension n,

y = (wy, wa, ..., Wy ).

The Saint-Venant is now transformed into the following ODE system

with the initial conditions
y(to) = Yo

This system of ODEs can be solved by linear multistep methods which are introduced in
Section 3.3.
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3.2.1.1 Practical Realization

As it is shown in Equations (3.18)-(3.20) the three-point forward difference formula and
the three-point backward difference formulas are first-order of accuracy, and the three-
point central formula is a second order of accuracy. In practice, based on the physical
properties of the investigated system, i.e. the type of the model equation systems, and
the possible requirement of an increase in the order of accuracy we can derive different
differentiation formulas using more points in the approximation formulas, e.g., five points
instead of three. For hyperbolic PDE, there are different routines that can be used for
approximation of first derivatives w.r.t the spatial variable z, e.g. the routine DSS002 of
order two based on a central difference scheme of two points, or the routine DSS004 of order
four based on a central difference scheme of four points, or the routine DSS020 considering
the flow direction. The investigation made by Schiesser [52, 53] shows that the use of higher
order schemes, e.g. DSS004, DSS020 have the effect to reduce the numerical oscillation,
which appears when the boundary condition changes in jumps. For our considered system,
water discharge and water level in a river can not jump. Hence, there is no big difference
when using different scheme for spatial discretization. In Figures 3.6 and 3.7 the numerical
results of the water level along a river channel, say channel 1, at 7h00, July 27, 2000, and
of the water level at a arbitrary spatial node, say at the location z = 24000 m in the
distance from Hoa Binh in the time period from 1h00, July 15, 2000 to 13h00, July 27,
2000, discretized by different schemes, e.g. DSS002, DSS004, and DSS020 are shown.

Water level along the channel 1 discretized by different schemes

20 T 20
by DSS020
by DSS004
19.5 19.5
19 B 19
18.5 g 18.5
£ 18 - 18
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B
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< . .
=
17 17
16.5 16.5
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15.5 15.5
o 10000 20000 30000 40000 50000 60000

x [m]

Figure 3.6: Water level along Channel 1 discretized by different schemes

It is observed that the differences between the values of the water level discretized by
schemes DSS002, DSS004, and DSS020 are under 2 x 1072 m, i.e. efficiently small. Conse-
quently, any from these three schemes is acceptable. For the purpose of reducing the cost
of computation, the routine DSS002 is applied in our approach.
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Water level at the location x=24000 m, discretized by different schemes
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Figure 3.7: Water level at location x = 24000 m, discretized by different schemes

3.3 Time Discretization

In this section we give an outline of the theory of multistep methods for the ODE system
(3.21)-(3.22), in particular of the BDF method which is implemented in the solver DAESOL
in our research group “Stmulation and Optimization” at the Interdisciplinary Center for
Scientific computing (IWR), Heidelberg. The material for the following discussion can be
found in [3, 6, §].

3.3.1 Linear Multistep Method

The aim of a multistep method is to find the solution y € C'([to, tena], IR") of the initial
value problem

Y= f(ta y)’ y(tO) =% (3‘22)

We first discretize the interval of integration by a mesh
A={tg<t; <..<ty_1<tn}
and let h; =t; — t;_1 be the ith step size. Then we construct appoximations
ya : A = R" : t; = ya(t;)
where y; := ya(t;) is an approximation of y(¢;) for i =0, ..., N.

Assume that we have equidistant discretization, i.e. h; = h for i =0, ..., N.
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3.3.1.1 Definition of the Multistep Method

The main idea of multistep methods is to use information from previous integration step
to construct high-order approximations of the solution at the computed node. The general
form of a k—step linear multistep method for an equidistant discretization problem is given
by [3, 60]

k k
Zaj Yn—j = hZBJ fn—j- (323)
=0 =0

where «;, 3; are the method’s coefficients. Let us assume that ag # 0, and |oy| + |Bk| # 0.
By scaling, we can set ap = 1. If |Gy| = 0, then the linear multistep method is explicit,
otherwise implicit.

Alternatively, with the purpose to discuss stability the linear multistep method can be
expressed in terms of the characteristic polynomials

p(€) = _Z a; €, (3.24)

o(§) =D 8¢ (3.25)

In the following discussion we will look in more detail at the properties of the linear
multistep method (3.23) with respect to Consistency, Stability and Convergence.

3.3.1.2 Consistency

Define the linear operator L(t,y, h) by

L(t,y,h) =Y [ogy(t — jh) — hB;i(t — jh)],

=0
where y(t) € C*([to, tena], IR™). By definition the truncation error of the linear multistep
(3.23), 7, can be written as
7w = h 'L(t,y,h),
where y(?) is the exact solution of (3.22).

Definition 3.3.1 The linear multistep method (3.23) is said to be consistent of the order
p if

L{t,y, h) = O(K"*")
for all t and h, such that [t,t + kh] € [to, tend)
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A linear multistep method is consistent if it has order p > 1. The necessary and the
sufficient conditions for the consistency of the multistep method (3.23) are stated in the
following theorem, the proof of which can be found in [3]

Theorem 3.3.2 A linear multistep method (3.23) is consistent iff
k k
D=0, > jaj+) Bi=0
=0 =0

A multistep method expressed in terms of the characteristic polynomials (3.24) and (3.25)
is consistent iff p(1) =0, p(1) = o(1)

3.3.1.3 Stability

The multistep method is essentially a difference equation which approximates the differ-
ential equation. In general, we can rewrite the equation (3.23) as follows

k
Zajyn_j = @n, n==kk+1,.. (3.26)
=0
The homogeneous difference equation of (3.26) is defined as

k
Zozjyn_j =0, n==kk+1,.. (3.27)
=0

Definition 3.3.3 The multistep (3.23) is said to be stable if its homogeneous difference
equation (3.27) is stable

Stability is defined as below:
Theorem 3.3.4 Define the equation
k .
$(&) = oy =0. (3.28)
§=0

The difference equation (3.26) is stable if all k roots & of ¢(&) satisfy |&| < 1, fori =
1,2, ...k, and |&] = 1, then & is a simple root.
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3.3.1.4 Convergence

Before discussing the convergence of the multistep method, first let us take a look at the
stability of the method in the limit A — 0, i.e. 0-stability.

Definition 3.3.5 Given a mesh
A={tg<t; <..<ty_1<ty},
and let h; = t; — t;_1 be the ith step size. Then the function vy, defined as
yn: A = R" = t; = yp(ty)
1s called a mesh function.

Definition 3.3.6 The linear method (3.23) is said to have 0-stability if there are positive
constants hy and K such that for any mesh functions x, and z, with h < hyg,

k—1
|z — 2| < K {Z |z; — zi| + max
0 k<n<N

k
WY 0(Tnj — 2nmj)
=0

k
= " (Bif (tnmjs Tay) — f(tn_j,zn_j))‘} ., 1<I<N

J

If we plug in y, instead of z, and y(t,) instead of z, into the stability condition of the
definition (3.3.6), then we obtain that if the k initial values are accurate to order p and
the method has order p, then the global error is O(h?).

Definition 3.3.7 The multistep method (3.23) is said to be convergent if

lim y,, = y(tn), n=12,..,N
h—0

Theorem 3.3.8 The linear multistep method is 0-stable iff all roots &; of the characteristic
polynomials p(&) satisfy

and if |&| =1, then & is a simple root, 1 < i < k.

If the root condition is satisfied, the method is accurate to order p, and the initial values
are accurate to order p, then the method is convergent to order p



3.3 Time Discretization 47

3.3.1.5 Absolute and Relative Stability

Applying the linear multistep method (3.23) to the test problem g = Ay gives
k k
> iyn i =hAY  Bivn -
=0 =0
If we let y,, = £™ then & must satisfy
k k
> oy T =hAY " g e (3.29)
=0 =0

or if it is in terms of characteristic polynomials, then

pl€) = hAa (€) (3.30)

Definition 3.3.9 The linear multistep method is said to be absolutely stable if the value
|yn| does not grow with n. This is equivalent to the condition that all roots of (3.29) satisfy
€l < 1.

The region, where z = h satisfy the condition (3.29) or (3.30) is called a the region of
absolute stability. The boundary of this region for the linear multistep method (3.23) can
be found by plotting

Definition 3.3.10 The linear multistep (3.23) is called A-stable if its region of absolute
stability contains the left half-plane hRe(\) < 0.

Theorem 3.3.11 An explicit linear multistep method cannot be A-stable.

Theorem 3.3.12 The order of an A-stable linear multistep method cannot exceed 2.

The region of absolute stability for the BDF method introduced in the next section is
illustrated in Figure 3.8. It shows that the region where the condition for absolute stability
is violated increases with the number of steps k. The methods become unstable for & > 6.
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in the complex z—plane
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Figure 3.8: BDF absolute stability regions. The stability regions are outside the shaded
area for each method [3].

3.3.2 Practical Implementation of the BDF-method
3.3.2.1 The BDF method

BDF-methods (Backward Differentiation Formulae) are multistep-methods, based on poly-
nomial interpolation of the last, already computed values.

An interpolation polynomial can be defined from the already computed values of the last
k + 1 values y,, Yn—1, ---,Yn—r at the next value y,,1 by

n+1
P(t; Yn+1Yny -+ yn—k) = Z Lz(t) < Y; (331)

i=n—k

and in consequence,
n+1

P(ta Yn+1Yny -y ynsz) = Z Lz(t) *Yiy (332)
i=n—k
where L; is a Lagrange Basis polynomial:
n+1

t—1t,;
Li(t) = H t-—tj-’ i=n—Fk,...,n+1
j=n—k t J
i

P(tn+1; Ynt1> Yns - Yn—k) 1S an approximation of §(,41):

k+1

. . 1

Y(tnt1) = D(tnst1; YUnt1, Yno - - - > Yn—k) = 7 (Oéo “Ynt1 + E Q; yn—i—l—z’) (3.33)
i—1
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The coefficients of the linear multistep method are determined from (3.31) and (3.32):
o =h-Lnpiltns), i=0,...k+1.

For simplicity, let us abbreviate

k+1

B = Zai *Yn+1—i-
i=1

Then, equation (3.33) becomes

y(tn+1) ~ P(tn—l—l; yn—l—l: Yny oo vy ynfk) = (ao - yn—|—1 + ﬁ) (334)

S S

3.3.2.2 Practical Implementation of the BDF-method in the solver DAESOL

The code DAESOL was implemented especially for the solution of initial value problems
for DAEs of index 1 of the following type

A(t’y’z’p)y = f(t,y,z,p)
0 = g(t,y,2,p),
y(to) = yo, 2(to) = 20,

where:

t is the time variable: t € [to, t;],

y € IRY, and z € IR™ ¢ denoting the state variables,

p € IR™ the parameters,
e A: RxR"xIR™ — R4 f: RxR"xIR"™ — IR*and ¢ : Rx R™x IR"™ — IR"™ ¢
being functions with m > d > 0,n, > 0.
We assume that the following conditions are satisfied:
e The functions A, f and g have to be differentiable efficiently often respect to the time
t, and for sensitivity analysis once with respect to the state variables and parameters,
e A and g, are regular,

e The initial values y(ty) and z(t;) must be consistent, i.e. g(to, y(to), 2(t0),p) = 0.
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The code DAESOL is based on Backward Differentiation Formulae (BDF) method. The
principal idea is to approximate the derivative § by a polynomial P(tp.1; Yns1, Yns v Yn—i)
interpolating the actual unknown value y,; in step n + 1 and the last already computed
values of y:

A(tn—l—la Yn+1, Zn+1, p) P(tn—f—l; Yn+1; Yny -y yn—k:) = f(tn—l—la Yn+1, Zn-l—lvp)
0 = g(tn+1ayn+17zn+lap)7
Applying (3.34) into (3.35) gives

1
A(tn+1, Ynt1s 2041, D) - h Zaiynﬂ—i = f(tn+1,Yn+1; Zn41, D)

g(tn+1ayn+1,2n+1,p) = 0.

or in more compact form:

k1
Aps (Oéo Ynp1 Y0 yn+1i> —h-fo1 =0

i=1
n+1 = 0;

with

An+1 = A(tn+1, Yn+1, Z’n+1:p)a Sy = f(tn+1, Yn+1, Zn+1:p)a gn+1 = g(tn+1, Yn+1, Zn+1,p)-

This defines a nonlinear system of equations in the unknowns x, .1 = (Yn+1, 2ns1) which is
solved by a Newton-like method:

1. Given estimates xg)ll = (ygl, T(Lll) for the unknowns (yn41,2n+1) - here given

by a polynomial, extrapolating the last already computed values z, (Predictor),
Tn—15--sTn—k-

2. A Newton-iteration is defined by

) o 4 A0,

with the increment (Corrector)

Ag™ — g1, ( Av(ﬁ)l (aOyn+1 + Z 1 QilYnt1-i) T hf'n )

+1 =
" gr(z—l—)l

and

J= ( O!()A +A (Oéoyn“ + Zz 1 CYnt1— z) + hfy A (&oynﬂ + ZZ 1 OYn+1— z) + hfz )
Gy gz
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DAESOL code uses a special monitoring strategy for minimizing the number of evaluations

and decompositions of the Jacobians ai % _ and %4~ in keeping them frozen as long

(y,2)? 9(y,2)? 9(yz)
as possible.

3.3.2.3 Step and Order Control

In a BDF method of order £, the truncation error can be estimated as follows

Ek(n) =p (tn+1 - tn)Q(thrl - tnfl) e (tn+1 - tn+17k) ||y[tn+1: s atnfk]H

where p < 1 is independent of the step size.

For the next step n + 1, the step size is computed as follows

o TOL
hz(/]:k+\/ ! 9 , K=k-1Lkk+1, Kk <6,
PR [Y[tnsr, - - taw]l

where TOL < TOL, e.g. TOL = TOL.

If the calculated step size is significantly bigger or smaller than the one from the last step,
then we increase or decrease the order by one. Otherwise the order is retained.

With the newly computed step size, we compute the new truncation error for the new step
Ep(n+1). If
Er(n+1) <TOL,

then the step size is accepted, otherwise it should be reduced.

Remark 3.3.13 Step and order control allow DAESOL to control the truncation error in
each step, i.e. the error in each time step is bounded. That is one significant advantage
of this method in comparison with the fized step methods which are commonly used for
stmulation of hydraulic systems in practice. The BDF method tmplemented in the solver
DAESOL with step and order control function is an effective tool for simulation of the
Saint- Venant equation.
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Numerical Methods for Simulation of the Saint-Venant Equation
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Chapter 4

Numerical Methods for Parameter
Estimation

In this chapter, we discuss methods of parameter estimation for river systems. The problem
is formulated in Section 4.1. This is a least-squares problem constrained by PDEs and can
be solved by the Gauss-Newton methods, which have been introduced by Bock (1981 [10],
1983 [11], and 1987 [12]) and Schléder (1987 [54]). The theoretical basis of these methods
is presented in Sections 4.2 and 4.3. In Section 4.5 a statistical analysis for the solution
of the parameter estimation problem is made. This shows how the statistical reliability,
i.e. variance-covariance matrix or confidence intervals of the solution of the parameter
estimation problem solved by Generalized Gauss-Newton method can be evaluated. And
finally, Section 4.5 is devoted to a common summary of numerical approaches for solution
of the simulation and parameter estimation problems for the Red River system.

4.1 Problem Formulation

4.1.1 Optimization Problem

In practice, the situation is that the measurement data z; for one or more state variables
k € M™ (M, is a set of the state variables, whose measurements are used for the parameter
estimation), namely the water level or the water discharge at the gauging stations, is given
at the time t; (¢ = 1,..,n,,). Here n,, is the number of the measurement points.

If we denote by u¥)(¢;, w, p) the model response for the measurement zy; withi = 1,..., ny,,
then the measurements can be described as follows

2k = uB) (t5, w, p) + exi, (4.1)
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where, w € IR**Y denotes the state variables of the river system, which is divided into
N discretization nodes, p are the parameters (By, Sy, Sf, ¢,...), and €; is an error that
is assumed to follow a normal distribution ez; ~ N(0,0%;), here oy; denotes the standard
deviation of the measurement z;.

The parameter estimation problem is to determine the unknown parameter vector p that
fit the model to the experimental data

) ) o (25 — u®) (t;, w, p))?
min | F(p) 3 := min 37 3 2 , (4:2)
pw pw keM,, i=1 Oki
such that
w(t,p) = f(t,w,p)  w(to) = wo. (4.3)

Here, (4.3) is the Saint-Venant equation written in form of ODEs, with f : [to, t] X IR™ X
IR" — IR™ and n,, =2 X N, where N is the number of spatial discretization nodes.

4.1.2 Problem Discretization

The problem (4.2)-(4.3) is a high-dimensional constrained parameter estimation problem,
as we transformed the PDE to a large ODE system which consists of up to thousands equa-
tions. This is an infinite dimensional problem, because we have to optimize in the function
space (for k¥ € M,). Now we describe how it is transformed into a finite dimensional
optimization problem and the resulting discretized system is presented.

The simplest method of discretization is the single shooting method [61]. It treats the
boundary problem as an initial value problem at the full integration interval, where the
initial values of the integration are iteratively improved until the boundary conditions of
the problem are satisfied. The disadvantages of the single shooting method is that for
such problems, where the solution of the initial values problem is strongly sensitive w.r.t.
variations of the initial values, it is very difficult to find a solution to the original initial-
boundary value problem.

In order to reduce the impact of a high sensitive system, Bock (1981 [10], 1983 [11]) pro-
posed the multiple shooting approach for the state discretization of parameter estimation
problems. The idea behind this method is to split the long integration interval [ty, t.] into
m subintervals 7,711 (j =0,1,...,m —1)

to=To <7 < .. < Ty = 1e (44)
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Figure 4.1: Multiple Shooting Discretization

With this approach the original initial-boundary value problem is transformed into a set
of initial value problems. A new variable s; at each multiple shooting node & is introduced
as the initial value for the initial value problem formulated at this node,

y(t) = f(t,y,p)  y(m) =8k,  k=0,..,m—1 (4.5)

To ensure continuity between the integration intervals, the following corresponding conti-
nuity conditions have to be satisfied

hk‘(ska Sk-l—lap) = y(Tk—l—l; Skap) — Sk4+1 = Oa k= 0; —ey M = 1 (46)

The scheme of the multiple shooting discretization is shown in Figure 4.1. This approach
is especially suited for the parameter estimation problem for river systems for the reason
that the multiple shooting method requires the continuity of the state functions and their
derivatives only inside of multiple shooting subintervals. It is important because for real-life
problems of parameter estimation for river flows, the input data for boundary conditions
are usually measured discontinuously (normally these data are given in a table format). We
can smooth them by e.g. spline interpolation to obtain piecewise continuously differentiable
input for boundary conditions.

Finally, the following discretized nonlinear least-squares problem is obtained

min [|r (z)]]; (4.7)
re(z) =0, (4.8)
where z = (so, ..., Sm,p)’ € R", with n = (m + 1) X n, + n,, is the augmented vector,

ry € C}(IR™ '™ IR™) is the n; least-squares conditions, r, € C3(IR™ e [Rr2Tmxny+ns)
denotes the all equality constraints including n, initial conditions, ng possible equality
conditions r3 and m matching conditions (4.6).
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For solution of this problem, the Reduced Gauss-Newton method introduced by Schloder
(1987 [54]) can be applied. In Section 4.2 an introduction to the Generalized Gauss-
Newton method proposed by Bock (1981 [10], 1983 [11], 1987 [12], 2001 [13]) is made. It
will be shown that for large scale problems like (4.7)-(4.8) the standard implementation of
the Generalized Gauss-Newton method is not suitable. We are naturally led to the more
specific strategy of the Reduced Gauss-Newton method, which is presented in Section 4.3.
Finally, Section 4.5 gives a conclusion of this Chapter.

One important point we should note is that the reduced Gauss-Newton method intro-
duced by Schloder (1987 [54]) is a specific case of the Generalized Gauss-Newton method
introduced by Bock (1981 [10], 1983 [11], 1987 [12], 2001 [13]).

4.2 Generalized Gauss-Newton Method

In this section we discuss the algorithm and the theoretical basis of the Generalized Gauss-
Newton method introduced by Bock (1981 [10], 1983 [11], 1987 [12], 2001 [13]) and imple-
mented in the software package for parameter estimation PARFIT at our research group
“Simulation and Optimization”.

4.2.1 Basic Steps of the Generalized Gauss-Newton Method

For solution of nonlinear constrained least-squares problems of the type (4.7)-(4.8), Bock
(1981 [10], 1983 [11], 1987 [12], 2001 [13]) proposed a Generalized Gauss-Newton method,
the main steps of which are:

1. Starting from an initial guess xg

2. Improving a given estimate zj iteratively by
Tpr1 = Tg + tpAxg (4.9)
The increment Axy solves the following constrained linear problem
min [|ry (z¢) + Ji(2x) Az 3 (4.10)
re(zy) + Jo(zg)Az =0, (4.11)
ory or,

where Ji(z) := s J(z) = o
stepsize.

and t € (0, 1] is a relaxation factor, also called the
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Dy bj ... ... Dr DY \
D’ o ... ... 0 Dr "
Gy —1I G? Te
_ (SN _ 0 0 ._ h
J = ( I ) = G I 0 ro= o |, (412)
s .
\ 0 Gpor —I GP_, ) '
with the abbreviations
Df = 0ri(S0, - - - » Sm, D)/ 08}, D? :=0ri(soy ..., Sm,p)/Op, i=1,...,3
=) ()
D] = 2 , Dé) = 2
1= ( >
Gi = 0y(Tit1; 8i, )/ 0si, G = 0y(Tiy1; 8i,p)/Op, 1=0,...,m.
and the dimensions
Dzj € IR™*™, D? ¢ R™i*mw i=1,...,3
Dg c R(n2+n3)xny7 Dg c B(n2+n3)><np’
G;, I € IR™* ", G? € R"w*™r, 1=0,...,m—1.

Remark 4.2.1 The initial conditions ro depends only on sy, therefore D% = 0m2xmy) for
j=1,...,m. Consequently, the matriz D! has the following special structure

. 0
-(3)
Dy

forg=1....m.

4.2.2 Theoretical Background of the Generalized Gauss-Newton
Method

Before continuing the discussion of the Generalized Gauss-Newton method we study some
theoretical background of the method, i.e. the constraint qualification, the positive defi-
niteness, the stationarity condition, the theorem of the existence of a generalized inverse,
and the local convergence theorem. This theory is stated by Bock [10, 11].

4.2.2.1 Optimality Conditions

In this section we recall the nonlinear problem (4.7)-(4.8)
min |y (@)

re(z) =0,
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and the corresponding the linear problem (4.10)-(4.11)

n&imn |r1(zx) + Ji(zx) Az]|3

re(zg) + Jo(zk) Az =0

Definition 4.2.2 (Lagrangian Function) The Lagrangian for the constrained nonlinear
optimization problem (4.7), (4.8) is defined as

Lz, X) = glIra(@) [} — Xr.(), (413)

where X is the Lagrange multiplier

It is possible, however, that some column of the matrix J. vanishes due to the algebraic
representation of ., so that this does not play a role in the Lagrangian gradient. To ensure
that such degenerate behavior does not occur we usually make an assumption called a
constraint qualification [CQJ. One such CQ is defined as follows:

Definition 4.2.3 (Constraint Qualification [CQ])

Given the point x € D C IR"™ and the constraint Jacobian J. defined as
[
Jo = ( f ) ,

Rg(J.(z)) = ne. (4.14)

we say that the [CQ)] is satisfied if

Definition 4.2.4 (Regular Point)
A feasible point x € D C IR™ which satisfies the condition (4.14) is said to be a reqular
point.
Definition 4.2.5 (Positive Definiteness [PD])
Given a point © € D C IR™ and the Jacobian J defined by (4.12).
We say that [PD] is satisfied if
Rg(J(z)) = n. (4.15)

Lemma 4.2.6 Let [PD] is satisfied. Then Jy(x)" Ji(z) is positive definite in the Kernel
of J.(z).
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We state now the theorems for necessary conditions for solution of problem (4.7)-(4.8).
The first order condition was derived by Karush (1939 [36]), Kuhn and Tucker (1951 [39]).
The results for the second order necessary conditions have been developed by Fiacco and
McCormick during 1960s [30].

Theorem 4.2.7 (Necessary Optimality Conditions)
Let z* € D C IR" be reqular and a solution of problem (4.7)-(4.8). Then z* is feasible, i.e.
re(z*) =0, (4.16)

and the first order necessary condition holds: There exists a multiplier vector \* that
satisfies the following conditions (Karush-Kuhn-Tucker conditions):

%L(fc*, X)) =7 () T (z*) = X T () = 0. (4.17)

Additionally, the second order necessary condition is satisfied: For all directions
Yw # 0 J(z)w =0

the Hessian matriz H of the Lagragian function L, which defined by

82
is positive semi-definite
wT H(z*, \*)w > 0. (4.19)

Definition 4.2.8 A vector (z*, \*) which satisfies the feasibility condition (4.16) and the
stationarity condition (4.17) is called a Karush-Kuhn-Tucker point (KKT point).

Lemma 4.2.9 Let [CQJ and [PD] be satisfied. Then the following equivalence holds
(x*,\*) is a KKT point of (4.7)-(4.8) <= (0,\*) is a KKT point of (4.10)-(4.11).

In the Generalized Gauss-Newton method, the generalized inverse J* of the Jacobian J is
required. The following theorem has been stated by Bock [10, 11, 12].

Theorem 4.2.10 Let J = (JI,JY) be the Jacobian matriz of the linear least-squares

17%c

problem and satisfy the [CQ] and [PD] conditions. Then the following holds:

1. For any r = (r{,r) € R™ ™" exists one KKT point (Ax,\) for (4.10)-(4.11), and

C
Az 18 a strict minimum.
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2. There exists a linear mapping J*© : IR™*" — IR"™, such that
Az=—-J'R (4.20)

is the solution of (4.10)-(4.11) for any R € IR™ ™. The solution operator J* is
called generalized inverse and determined by

JTJ JTN\N T/ JT 0
() ()

3. The generalized inverse J* satisfies the defining condition

JrJJt = Jt (4.21)

4.2.2.2 Local Convergence

Theorem 4.2.11 (Local Convergence Theorem)

Let J(z)* be the generalized inverse of the Jacobian J(x) = (J1(z)T, J.(x)T)T of the func-
tion r = (rf,rT) € CY(D,IR™*™) in a nonlinear constrained least-squares problem. As-
sume further that the following Lipschitz conditions are satisfied:

1T (I (@ +tly —2)) = J(@))(y — 2)[| Swtlly — =],  w<oo, (4.22)
1(J(2)" = J(@)")Res(z)]| < K(@)llz — =]l < &llz - =], (4.23)

Res(z) := R(z) — J(z)J(z)* R(x) (Residuum) k<1

vt €10,1],Vx,y,2 € D,z —y = J(z)" R(x)

~—~

Then for all xy € D with

(071

0o = N +Kr <1, (aj == || (z;) T R(z))]]), (4.24)
o]
Dy =K ( Xy, 1—750 ) CcD, (425)
the following holds:
1. The iteration
Tjp1 =+ Az, Azy=—J(z;)"R(x;) (4.26)

1s well-defined and remains in Dy.

2. There exists z* € D with J(z*)"R(z*) = 0 and x; — z*(j — 00).
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3. The following a priori error estimation holds

o7
1—0y

lz; — 2|l < &

4. The convergence is linear with

(6 71%V,
|zl < (=55 45 ) 1Az]] = &l|Az].

The following interpretations of the local convergence theorem can be made:

e The constant w in (4.22) is a bound on the nonlinearity of the problem, and its inverse
w™! charactizes the size of the region in which the linearized problem (4.10)-(4.11)
is an acceptable approximation of the original problem (4.7)-(4.8). But normally, in
practical applications of parameter estimation the initial guess x( is not sufficiently
close to the solution, i.e. this point is out of the region, where the linear approxi-
mations is valid. In order to solve this problem, globalization strategies are applied.
The idea of this is that in each iteration we relax the iteration (4.26) to

Tgt1 = Tk + t Ay 19 E]O, 1], (427)

where tj is the relaxation factor (or stepsize), which is chosen such that the next
step xxy1 is “better” than xy. The stepsize can be determined by e.g. a line search

method. More detailed material of globalization strategies can be found in Bock et
al. (1987 [12], 2001 [13]).

e The coefficient  in (4.23) characterizes the compatibility of the data with the model.
If k < 1, then a fixed point z* is a local minimum, otherwise there may exist pertuba-
tions of the measurement data in the same order of magnitude as the measurements,

such that the fixed point is stationary but not a minimum (see Bock [12] and Dieses
[27]).

4.2.3 Solution of the Linear Problems

An important step in the algorithm of the Generalized Gauss-Newton method is to solve
the linear system (4.10)-(4.11) for Az. If the Jacobian of the system is as defined by (4.12),
then the augmented vector Az can be computed in principle by (4.20). From (4.12) we
can note that the total Jacobian matrix of the problem (4.10)-(4.11) is large, but sparse.
The matrix is of the size (ny +no+n3+mxn,)-((m+1) xn, +n,), due to the augmented
and the matching conditions, but has a special structure due to the explicit form of the
linearized matching conditions. Base on this very useful property, Bock (1981 [10], 1987
[12]) proposed not to solve the original large system (4.10)-(4.11) directly, but eliminate
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extra variables si,..., s, by e.g. Gauss elimination. The problem (4.10)-(4.11) is then
transformed to the condensed problem, which depends only on Ap and Asy

||E1AS() + PlAp + U,1||g (428)

min
Aso,Ap

E.Asy+ P.Ap +u, =0, (4.29)

Here, the coefficient’s matrices of system (4.28)-(4.29), i.e. E;, P;, and u; and E,, P,, and
u. can be computed as follows (see [12], [54]):

Ey = D}+> Di[[Gi (4.30)
i=1 j=1
E, = D{+) D.[[Gi (4.31)
i=1 j=1
m i—1 i—j—1
P = DY+ Di ( ( 1] Gis ) Gy ) (4.32)
=1 j=0 k=1
m 1—1 i—j—1
P, = D*+) D: ( Gi i ) G* ) (4.33)
i=1 §=0 k=1
m i—1 i—j—1
uw = r1+ZD;<Z( 11 Gi_k>hj>, (4.34)
=1 7=0 k=1
m i—1 i—j—1
U = T+ ZDé ( ( Gi—k ) hj ) s (435)
i=1 7=0 k=1

where the operator [] is defined as

[[og = { MMM i 1<
e T 1, otherwise.

Having solved system (4.28)-(4.29) for Ap and Asy, the increments of the variables sy, ..., s,
can be computed in the forward recursion

ASJ’_H = GjASj —{—G?Ap—{—hj, ] = 0,...,m— 1. (436)

In the following, the main steps of the algorithm implemented in PARFIT for solution of
the condensed problem (4.28)-(4.29) are outlined (Bock 1981 [10], 1987 [12]). The scheme
of this algorithm is shown in (4.37).

T Rll R12
Je} O ( Bu By @ f 00 p" (4.37)
7 0 B 0 e
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In step (1), the matrix .J, associated with the equality constraints is reduced to upper trian-
gular form by a suitable method, e.g. orthogonal transformations or Gaussian elimination,
and the first n, variables are eliminated from the least-squares part.

In step (2), the remaining matrix B of the least-squares part is then triangularized by
orthogonal transformations.

The above described procedure results in a equivalent triangular system, which can be
easily solved for Asy and Ap.

Remark 4.2.12 We compute the augmented vector Ax the following steps:

e Deriving the condensed system (4.28)-(4.29) by (4.31)-(4.35),
o Solving (4.28)-(4.29) for Asy and Ap by the scheme (4.37),

e Computing the other variables Asy, ..., Asy, by the forward recursion (4.36).

Remark 4.2.13 The condensed system (4.28)-(4.29) only has a size of (n1 + ng + n3) X
(ny +np) as in the case of single shooting. But to obtain the condensed problem (4.28)-
(4.29), we need to compute and store all derivative matrices D!, DY, G¥ and G;, i.e. to
store full Jacobian J. A single Jacobian storage is determined as follows (see Dieses (2000

[27]):
Storage = (n1 +n3) X (ny(m+1)+n,) +ny X (ny +n,) X m~+ng X (n, +ny,) memory cells.

And as we have above mentioned, this procedure has to be repeated for each iteration. For
the system derived from PDEs, the equation number is n, normally is very large, e.g. for
a river channel with the length of 500 [Km], if the number of spatial discretization nodes
is 500 (one node per Km), then the equation number n, = 1000. Therefore, the needed
memory to store the Jacobian is big.

From the above two remarks we can see that to treat large scale problems, the standard
implementation of the Generalized Gauss-Newton method is not efficient due to the high
cost of computation. Hence, a specific strategy to reduce the computational effort is
necessary. This reduced approach is presented in the next section.

4.3 Reduced Gauss-Newton Method

In this section we present the Reduced Gauss-Newton method which was developed and
implemented in the code FIXFIT by Schloder (1987 [54]). This is a version of the General-
ized Gauss-Newton method specialized for parameter estimation problems in PDEs. The
main idea of this method is to exploit equality conditions, e.g. initial conditions to reduce
the computational effort for solution of the problem.
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4.3.1 The Reduced Approach (Schléder Trick)

As mentioned before, r. consists of the initial conditions 7o € IR™ and the equality con-
straints r3 € R™T™*"_ If we write r. = (r5,73)", and define r}(s;,p) as the component
part of 7, at the multiple shooting node 7 and its derivative matrix ‘D] := drj(s;, p)/dp,

where ¢ = 0,...,m, and [ = 1, 3. Then, the following holds for [ =1, 3:

r = er(si,p) (4.38)
i=0

dr dri(si,p ik
D = d—pl =Y 71511) ) _. > Dy (4.39)
=0

Due to the modification of the way to present the equality constraint r., the linear prob-
lem (4.7)-(4.8) and the corresponding linear problem (4.10)-(4.11) are formally led to the
following forms

min |7, (2)] (4.40)
ro(z) = 0, (4.41)
r3(z) =0, (4.42)
and

min ||y () + Ji (xx) Az 3 (4.43)
ro(xy) + Jo(wr) Az = 0, (4.44)
r3(x) + J5(zg) Az =0 (4.45)

Here, as it has been mentioned in the last paragraph, = (so, ..., Sm, D).

The Jacobian J and the right hand side r of the system (4.43)-(4.45) are determined as
follows,

DY DY ... ... Dm DP

Dy o ... ... 0 Db ()
7, Dy Dy ... ... Dr Dg :2
— 3
J=| Jo | = Go —I Go ; r= ho ., (4.46)
J3 G, -I 0 : :
\ 0 G -1 @) \ it/

As it has been discussed in Section 4.2.3, the Jacobian matrix J is large but sparse. Hence,
we can transform it into the following condensed system by applying Gauss elimination to
eliminate the variables si,..., sp:

| E1Asy + PiAp + uq|3 (4.47)

min
Asg,Ap
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EQASO + PgAp + Uy = 0, (448)
E3Asy + PsAp + us = 0, (4.49)
where the coefficient’s matrices are determined as (see [54, 27])
E = D/+) Di][Gi-, 1=13 (4.50)
=1 j=1
E, = DY, (4.51)
m i—1 [ i—j—1
i=1 §=0 \ k=1
P, = Dy="Db, (4.53)
m i—1 i—j—1
w = r?+Z{D{[ ( HGi_k)hj] } 1=1,3, (4.54)
i=1 =0 \ k=1
uy = T9=rJ. (4.55)

Here, the operator ] is defined as

ﬁM.._ M- My, ... M, if 1 <n,
e I, otherwise.

Assume that DY has full rank. In the our problem of parameter estimation for the Red
River system, the initial condition s is explicitly given, therefore DY = I € IR™*™_ i.e.
the assumption is satisfied and consequently, there exists the inverse of DY, namely I.
Solving (4.48), (4.51) and (4.53) for s, gives

Asy = —(D9) ' [’DyAp + 3] (4.56)

Substituting (4.56) in problem (4.47)-(4.49) gives
IﬁlAln P Ap + |2 (4.57)
PyAp + iy = 0, (4.58)

where ([54], [27])
P = R+E[-(D)'-D5  1=13
— Dl()[_(DO)—l . ODP] ODP
i—1 i—j—1

Z{ZD”—i—DlHGZ =D~ DF] + f_[ Gi_xG%]} (4.59)

7=0 k=1
u = UH‘El[—(Dg) ry)  1=1,3
= D)[=(De)'r3l + 17 +
m i i—1 i—j5—1
Y Ui+ D[ Gip)(=(D9) ')+ > T] Gishil}- (4.60)
i=1 j=1 j=0 k=1
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The problem (4.57)-(4.58) has only few degrees of freedom, i.e. n,. In order to derive
this problem, the matrices P, and @ need to be computed. It has been shown in the last
section that in the standard procedure of the Generalized Gauss-Newton method, P, and
@ are computed explicitly by (4.59)-(4.60), and this is hard on the computation of all
derivative matrices, i.e. D}, D¥ G, and etc., which is very expensive, namely, the size of
the matricies D} and Dj is (ny 4 n3) x (ny X (m + 1) 4 n,), the size of the matricies G
and G, is m x ny x (ny +ny,), and the size of the matrix Dy is ny X (n, + n,). In the next
subsection, the efficient approach for computing the matrices P, and 4, is outlined.

4.3.2 Generation of Derivatives

In order to reduce the computational effort which is very high for a large scale parameter
estimation problems in PDEs, e.g. for river flows, Schloder proposed to avoid the explicit
computation and storage of D}, G; etc. by a successive evaluation of directional derivatives.

We define the following recursions

G, = —(D3)~'-°D} (4.61)
“iGg = —(D))7' 1Y (4.62)
1. Fork=0,...,m—1
ka =Gy kile + Gz (463)
kGR = Gk . ki]GR + h,k, (464)

2. Fori=1,...,mand [ =1,3
P = D}-7'G,+°DY Pl :=PF~'+D;-"'G,+ Dl (4.65)
a = DY-T'Gr4r) wli=ull+ Dl TGr (4.66)

Then, P, and @, are determined by
P=pP" @=a" (4.67)

In the Schloder approach it is proposed to evaluate Gy, -k_le as n, directional derivatives
of y w.r.t. p instead of product of G} with ’“_IG,,, e.g. the jth column (’“Gp)j is interpreted

as
k1@
(ka)jzﬁ€ y(7k+1;$k+€< fp> )
J

Analogously for the computation of the directional derivative Gy, - *~'G .

(4.68)

e=0
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In the software package FIXFIT (Schloder, [54]) these directional derivatives are approxi-
mated by a difference quotient as follows

=g,
Y Tk+1;$k+6< i ) — Y(Th415 Tk)
J

€

(*Gp); = + O(e) (4.69)

The Schloder approach for constrained least-squares problems in PDEs has made a very
great progress for computational effort. Instead of computing n, + n, derivatives in the
standard Generalized Gauss-Newton method, in the Reduced Gauss-Newton method for
the recursion (4.63)-(4.66) we need to compute only n, + 1 (n, for G, and 1 for *Gp)
directional derivatives. It is a great advantage because usually we have n, >> n,.

4.4 Statistical Analysis for the Solution

Parameters estimated by method discussed in the last sections are useful only if some es-
timate of their statistical reliability, i.e. variance-covariance matrix or confidence intervals
is given. In the following we show how the covariance matrix and confidence intervals of
the solution of parameter estimation can be evaluated in the Generalized Gauss-Newton
method. The material for this discussion is taken from works of Bock (1981 [10], 1987
[12]), Schloder (1987 [54]) and Dieses (2000 [27]).

As it has been assumed in Section 4.1, there is an error that follows a normal distribution
in the measurements of data. Therefore, the right hand side of the least-squares problem
r1, and consequently the vector r and the solution Az determined by

Ag:=—Jr r= ( 78 ) : (4.70)

are random variables. Here, J is the Jacobian of the complete system (4.40)-(4.42).

The variance-covariance matrix for x = (so, ..., Sm_1,p) is approximated by
Cov(z) = E(AzAz") = J+E(7“7“T)J+T, (4.71)

On the other hand,

E(rrT) = B2 ( 181 02 ):: 82A (4.72)

Substituting (4.72) into (4.71) gives

Cov(z) = B2JT AT =: B°P, (4.73)
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The works of Bock (1981 [10]), Schléder (1987 [54]), Dieses (2000 [27]) show that the
variance-covariance matrix for the parameters p, which are estimated by the Generalized
Gauss-Newton method, can be easily approximated.

Let us consider the reduced condensed system (4.57)-(4.58) with the corresponding Ja-
cobian J = (P, P{)". In order to compute Ap this system is reduced to a triangular
form using the equivalence transformations (4.37), which can be describe in more detail as
follows,

Ri1 Ry }n3
J:T:(T 0) 0 R i (4.74)
0 0 !

The following steps are done in a triangularizing process (4.74):

e First, the part associated with equality conditions is reduced to an upper triangular
form by a suitable transformation 7', e.g. by Gauss elimination,

e Second, using the matrix L to eliminate the variables corresponding to the triangular
matrix R;; from the least-squares part,

e Third, Using a suitable orthogonal transformation ), e.g. Householder transforma-
tion, to triangularize the remaining least-squares part.

The variance-covariance matrix can then determined by

Cov(p) = BPRTART" =: P, (4.75)
where
R —RRiR 0 - 0 0
+ 11 11 1214199 —_
Rt = < J R 0 ) A= < 0 I, ) (4.76)

The standard deviations of the parameter p are defined as

1
o(pi) = BE; (4.77)
It can happen that the common factor 5 is unknown, then it can be independently esti-
mated by

ﬁ2 ~ ||7‘1(80’ SRR Smflap)”%
Iy ’

where Iy =n; — [; and [} = ny, +n, — (N2 + ng)

(4.78)

Approximations of the corresponding confidence intervals 6; for the parameter i can be
computed by

D=

01' = ﬁ(f)iillﬂl,lz;lfa) Z = 1, ceey np, (479)

where Fy, 1, 1o denotes the quantile of the Fisher distribution on the (1 — «) probability
confidence level with the degrees of freedom [/; and /5.
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4.5 Summary

This is served as a summary for Chapters 2-4. In these chapters, the following problems
have been treated:

e The Saint-Venant equation system, which is specified for the Red River flows by
neglecting weakly influential term, is chosen for modeling the Red River system
with given initial and boundary conditions. This is a hyperbolic PDE system, and
normally has no analytical solution. Therefore, a numerical approach has to be
applied.

e The method of lines combined with the BDF method which is implemented in the
solver DAESOL developed at the research group of Bock & Schléder at the Interdis-
ciplinary Center for Scientific Computing (IWR), Heidelberg, is used for solving the
Saint-Venant equation system. The time step control strategy is applied to improve
the stability of the numerical method and computing time.

e The parameter estimation problem for the Red River system is formulated. This is
a large scale constrained least-squares problem, for solution of which the Reduced
Gauss-Newton method developed and implemented in the code FIXFIT by Schloder
is described.

The numerical results presented in Chapter 5 show that the chosen numerical approach is
fast, stable, and efficient for solution of simulation and parameter estimation problems for
the Red River system.
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Chapter 5

Numerical Results for Parameter
Estimation and Simulation

In this chapter, the results for estimation of hydraulic parameters, and the modelling for
fixed parameters are presented.

The first section is devoted to describe the Red River system and its specific behaviour.
In Section 5.2 the numerical results of parameter estimation for the Red River system are
shown. We insert those parameters into the model equation system for the Red River
system and solve it by the method of lines combined with the BDF method which is
introduced in Chapter 3 to obtain numerical results for simulation of the Red River system,
which are given in Section 5.3. Section 5.4 presents a relaxed model, which is suitable for
the optimal control of the Red River system. Finally, in Section 5.5 we summarize and
discuss the results, which are presented in this chapter.

5.1 The Red River System

The network scheme of the Red River system is shown in Figure 2.4. It consists of 15
connected river channels with a total length of 477000 [m]. In this thesis we denote each
channel by a number (see Figure 2.4), from 1 to 15 as in Table 5.1. Here, the letters, e.g.
A, B, and C are used to denote the crosses between channels, where the names are not
given or unknown. An important point, to which we should pay attention is that there
exists the hydro-electric power plant Hoa Binh working in the Red River system. The
water amount from the output of the hydro-electric power plant Hoa Binh is nearly 50%
of the total amount of the Red River system, which is flowing through Ha Noi, and the
volume of the reservoir Hoa Binh is very big, approximately 9 x 10° [m3]. Therefore the
working regime of this hydro-electric power plant plays a very important role in control of
the level at Ha Noi.
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Number From To Notation | Length [m)]

1 Hoa Binh Trung Ha 1 58000
2 Phu Tho Trung Ha 2 26000
3 Trung Ha Son Tay 3 12000
4 Vu Quang Son Tay 4 36000
5 Son Tay Ha Noi 5 58000
6 Ha Noi | Thuong Cat 6 10000
7 Ha Noi Hung Yen 7 78000
8 Hung Yen A 8 9000
9 Hung Yen | Trieu Duong 9 8000
10 A B 10 12000
11 A Dinh Cu 11 60000
12 B C 12 20000
13 B Nam Dinh 13 8000
14 C Phu Le 14 44000
15 C Ba Lat 15 38000

Total 477000

Table 5.1: Notation of the Red River channels

In this chapter the Saint-Venant equation (2.24) with the parameterization of the hydraulic
functions given in Section 2.3, is used as a model for the Red River system. The method
of lines combined with the BDF method implemented in the solver DAESOL, introduced
in Chapter 3 is used for numerical solution of the Saint-Venant equation. The following
boundary conditions are needed for unique solution of the mathematical model of the
considered Red River system:

e The upper boundaries of this system are the water discharge at Hoa Binh, the water
discharge at Phu Tho, and the water discharge at Vu Quang
e The lower boundaries of this system are the water levels at Thuong Cat, at Trieu
Duong, at Nam Dinh, at Phu Le, at Ba Lat, and the level at Dinh Cu.
The Red River system naturally can be splited into two part:

e Part 1: Domain of tidal non-influence

e Part 2: Domain of tidal influence

The first part is located from the highland to the gauging station Hung Yen, which is
at about 70 km distance from the sea. In this station the influence of the tides is not
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noticeable. There are many gauging stations located in this area (see Figure 2.4), e.g. Hoa
Binh, Phu Tho, Vu Quang, Trung Ha, Son Tay, Ha Noi, Thuong Cat, Hung Yen.

In the second part of the Red River system, tidal influences to the water level increase in
the direction to the sea, i.e. down to the gauging stations Phu Le, Ba Lat, and Dinh Cu.
Therfore the accuracy of the models at the gauging stations Phu Le, Ba Lat and Dinh Cu
may be very low. In this thesis we focus in the river flows from Hoa Binh to Ha Noi. The
model of the tidal influential part serves only for computing the lower boundary condition,
i.e. the water level at the gauging station Hung Yen. The numerical results presented in
the next sections show that this approach is acceptable as the hydrodynamic model of the
flows in the first part of the Red River system is fitted well to the measurements.

In the following the numerical results of two problems are presented:

1. First, we present numerical results of the parameter estimation problem. The esti-
mated values of unknown parameters are shown with their confidence intervals.

2. Second, we present numerical results for simulation of the Saint-Venant equation
for the Red River system with estimated values of unknown parameters for a given
period of time.

5.2 Numerical Results for Parameter Estimation

As mentioned in Section 2 the Manning friction coefficient C,, can not be arbitrarily mea-
sured but it can be modeled by the formulae (2.32), where the values of the unknown
parameter p are the solution of the least-squares problem (4.2) constrained by (4.3). The
values of the weighting coefficient in (4.2) are equal to the values of the corresponding
measurement.

In this section we firstly show the values of the unknown parameters with their confidence
intervals, and then a validation and a verification of those parameters are made.

5.2.1 Results of Parameter Estimation

In order to estimate unknown parameters of the Manning coefficients for the channels of
the Red River system, the values of the water level at the gauging stations Hoa Binh, Phu
Tho, Trung Ha, Vu Quang, Son Tay, Ha Noi, Hung Yen, and Tao Xuan in the flood season
of the year 2000, i.e. from 1h00 am, July 15 to 1h00 am, August 15, 2000, are used as
the measurement data. The water level at the gauging stations is measured every 6 hours.
Initial guesses of the unknown parameters are taken from a research report of the Ha Noi
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Institute for Meteorology and Hydrology (2003 [63]), and the geometrical data of the Red
River system, which was measured in 1998-2000, is taken from the National Center of
Hydrometeorological Forecasting.

As mentioned in Section 2.3 the number 7, (ichan) of parameters for the channel ichan in the
parameter model (2.32) is determined by the algorithm which is given in paragraph 2.3.3.
The main idea of this algorithm is to compute the residual for each case, e.g. for the case
when n, = 2 and for the case when n, = 3. Based on the values of the residual we compute
a test function Fiey for linear hypotheses testing and compare it with the quantile of the
Fisher distribution on some probality confidence level, say 0.95, with the corresponding
degrees of freedom ([47]). This comparison is a criterion to decide if the case “n, = 3" is
significantly better then the case "n, = 2". As a concrete example, in Table 5.2 the values

of Fiesy and Fy, 5. —n, of Channel 1 for the two following cases:

1. “n, =27 vs. “ny, = 37, and

13 - 2 13 - ”
2. “ny, =3" vs. “ny, =47,

are shown. In the case 1, it is shown that Fie > Fp%» . ie. m, = 3 is better than

Variables Notation | Case 1 | case 2

Number of measurements Tm 121 121

Number of parameters 1 2 3

Residual for n, =1 S; 0.0084 | 0.0054
Residual for n, =1 +1 Sit1 0.0054 | 0.0048

Floy, = 25100 21.25 | 4.370

F'r(L),;(,)menp 19.50 5.63

Table 5.2: Computation of Fie: for Channel 1

n, = 2. In contrast to that, for the case 2, Fieg < F&?ﬁm_%, i.e. n, =4 is not better than
n, = 3. It means that for Channel 1, the optimal number of parameters is n, = 3. Here,
Ny, is the number of measurements and Fj-%> s the quantile of the Fisher distribution

Np ,Mm —N

on the probality confidence level 0.95 with the degrees of freedom are n, and n,, — n,.

Analogously, the suitable numbers of the parameters for all the channels located in the
first part of the Red River system, i.e. of the channels 1,...,7 can be determined.

In the tidal influential domain, as a consequence of the tidal propagation the values of the
water level in the channels oscillate. The values of the water level at the sea entrances
Phu Le, Ba Lat and Dinh Cu can be either positive or negative, and therefore there exist
possible backward flows. Then the sign of the water discharge can be changed, i.e. the
derivative of the functional S; determined by (2.31) can be discontinuous. This badly



5.2 Numerical Results for Parameter Estimation 75

affects the stability of numerical methods for solution of the Saint-Venant equation and of
the parameter estimation problem for the Red River system.

In order to avoid this problem we assume that the values of the water level at the sea
entries Phu Le, Ba Lat and Dinh Cu are zero, and the values of the Manning coefficient of
all channels located in the domain of tidal influence with the exception of the channel 9 are
equal and independent of the values of the water discharge, i.e. the number of unknown
parameters is 1. The second assumption is made due to the fact that there is only one
gauging station, namely Tao Xuan located in this area, and therefore a detailed study
of the processes in this domain is not available. The parameters for the channel 9 can
be estimated using the measurements of the gauging station Hung Yen. However, in this
thesis we focus on the first domain of the Red River system. The investigation of the
second domain is used for computing the lower boundary for the Saint-Venant equation
of the tidal non-influential domain, i.e. for computing the water level in Hung Yen. In
the following the numerical results of the simulation show that the model response of the
water level at the gauging stations Hoa Binh, Phu Tho, Trung Ha, Vu Quang, Son Tay, Ha
Noi, Hung Yen and Tao Xuan is fitted well to the measurement data, i.e. the assumption
made above is suitable.

In Table 5.3 the numerical results for the parameter estimation of the domain 1 are shown,
namely the estimated values of the parameters for the channels 1,...,7 of the Red River
system for the period of time from 1h00 am, July 15, 2000 to 1hO0 am, August 15, 2000
with their confidence intervals. In this parameter estimation problem, we consider only the
channels located in the domain 1 of the Red River system and our task is to estimate 17
unknown parameters of these channels (see Table 5.3). The following information is used
as the input data for this parameter estimation problem:

e The values of the water discharge at the gauging stations Hoa Binh, Phu Tho, and
Vu Quang in the investigated time period are used as the upper boundary conditions
for the system,

e The values of the water level at the gauging stations Thuong Cat and Hung Yen
in the investigated time period are used as the lower boundary conditions for the
system,

e The values of the water discharge and the water level along all 7 considered channels
at 1h00 am, July 15, 2000 are used as the initial conditions. In Section 5.3 a technique
for computing initial conditions is discussed in more detail,

e The values of the water level at the gauging stations Hoa Binh, Phu Tho, Trung
Ha, Vu Quang, Son Tay, and Ha Noi in the investigated time period are used as the
measurement, data for the parameter estimation problem,

e The initial guesses for the unknown parameters are given in Table 5.3.



76 Numerical Results for Parameter Estimation and Simulation

This parameter estimation problem is solved in a computer P-IV, 2500 MHz, 2 G RAM.
The total computing time is 51m0.31s.

Channel | Notation | Initial guess Estimated
p(1,0).10? 2.500 0.159 £+ 0.064
1 p(1,1).10? 0.000 0.293 £ 0.035
p(1,2).10! 0.000 —0.402 £ 0.044
p(2,0).10? 2.500 3.483 £0.093
2 p(2,1).10? 0.000 —0.113 £ 0.009
p(3,0).102 2.000 2.319 4+ 0.133
3 p(3,1).10? 0.000 0.151 £ 0.093
p(3,2).10* 0.000 —0.218 £ 0.156
p(4,0).10 2.000 2.865 + 0.054
4 p(4,1).10? 0.000 0.019 £0.011
p(4,2).10! 0.000 —0.020 £ 0.005
p(5,0).10? 2.000 1.423 + 0.082
5 p(5,1).10? 0.000 0.151 £0.078
p(5,2).10" 0.000 —0.472 £0.018
6 p(6,0).10? 2.000 2.221 +0.152
p(7,0).10? 2.000 1.976 + 0.057
7 p(7,1).10? 0.000 0.142 £ 0.016

Table 5.3: Initial guess and estimated parameters for the domain 1 with data from the
year 2000.

In Table 5.4 the numerical results for the parameter estimation of the domain 2 are shown,
namely the estimated values of the parameters for the channels 8, ..., 15 of the Red River
system for the period of time from 1h00 am, July 15, 2000 to 1h00 am, August 15, 2000 with
their confidence intervals. In this parameter estimation problem, we consider the model
of the all 15 channels of the Red River system and our task is to estimate 2 unknown
parameters of these channels (see Table 5.4). The following information is used as the
input data for this parameter estimation problem:

e The values of the water discharge at the gauging stations Hoa Binh, Phu Tho, and
Vu Quang in the investigated time period are used as the upper boundary conditions
for the system,

e The values of the water level at the gauging stations Thuong Cat, Trieu Duong,
Phu Le, Ba Lat, and Dinh Cu in the investigated time period are used as the lower
boundary conditions for the system,

e The values of the water discharge and the water level along all 15 considered channels
at 1Th00 am, July 15, 2000 are used as the initial conditions. In Section 5.3 a technique
for computing initial conditions is discussed in more detail,



5.2 Numerical Results for Parameter Estimation 77

e The values of the water level at the gauging stations Hung Yen and Tao Xuan in
the investigated time period are used as the measurement data for the parameter
estimation problem,

e The initial guesses for the unknown parameters are given in Table 5.4.

This parameter estimation problem is solved in a computer Intel P-IV, 2500 MHz, 2 G
RAM. The total computing time is 51m30.44s.

Channel Notation | Initial guess | Estimated
i=28,10,...,15 | p(,0).102 2.000 2.089 4+ 0.043
9 p(9,0).10? 2.000 1.743 £ 0.160

Table 5.4: Initial guess and estimated parameters for the domain 2 with data from the
year 2000.

The Manning coefficients for every river channel can be computed by inserting the esti-
mated parameter values into equation (2.32). Here the maximal water discharge is 20000
[m3s™!] for all channels. The results are illustrated in Figure 5.1.

5.2.2 Validation of the Estimated Parameters

Applying newly estimated values of Manning coefficients into the Saint-Venant equations
which is coupled with corresponding initial and boundary conditions we can compute the
values of the water level at the gauging stations Hoa Binh, Trung Ha, Vu Quang, Ha Noi,
Hung Yen, etc. at any time. The computing results and the measurements from 1h00 am,
Jyly 15 to 1h00 am August 15, 2000 are illustrated in Figure 5.2.

These show good coincidence between data and model response, especially for the domain
tidal non-influence. In the gauging station Ha Noi, the model response is fitted is well to
the measured data.

In order to qualify the model of the Red River system with the estimated parameters we
recall the objective function (let be denoted by OBJ) of the least-squares problem (4.2)
which can be written for the case of the water level at a gauging station as follows,

Nm

Yi 2
OBJ = — =),
=1
where n,, is the number of measurements, z; and y; (with i = 1,...,n,,) are the measure-

ment data and the model response of the water level at this gauging station, respectively.
The near OBJ to zero the better is model.
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Figure 5.1: Estimated Manning Coefficients

Gauging station OBJ Gauging station OBJ
Hoa Binh 0.856 - 1072 Phu Tho 3.780- 1072
Trung Ha 1.486 - 1072 Vu Quang 1.001 - 1072

Son Tay 1.132-1072 Ha Noi 1.729 - 1072
Hung Yen 6.500- 107! Tao Xuan 6.404 - 107!

Table 5.5: Objective function for the water level in flood season 2000.
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The values of the OBJ for the water level at the gauging stations are presented in Table
5.5.

The values of OBJ for the water level at all the gauging stations in the domain 1 are
close to zero. In the gauging stations located in the domain 2 the values of the objective
functions are much greater than the values of the objective functions of the water level at
the gauging stations of the domain 1 due to the bad affect of the tidal propagation, but
still acceptable, i.e. the estimated parameters can characterize the Red River system in
the flood season of the year 2000, i.e. the time period, in which the parameter estimation
has been realized. In order to test if these estimated parameters could characterize the
Red River system for a large time interval in the following a verification is realized.

5.2.3 Verification for the Estimated Parameters

The idea of this verification for estimated parameters is to compare the model response
and the measurements of the state variables of the system, e.g. the water level for some
time interval which has not been used as measurement data for solution of the least-squares
problem (4.2)-(4.3).

In this study we apply the estimated parameters from the previous section (2000) to com-
pute the water level at the gauging stations Hoa Binh, Trung Ha, Phu Tho, Vu Quang,
Son Tay, Ha Noi, Hung Yen, and Tao Xuan in the flood season of the year 1996, i.e. from
August 01 to August 31, 1996. The results and the measurement data are illustrated in
Figure 5.3.

As a criterion for the evaluation of the coincidence between data and model response the

values of OBJ for the water level at the gauging stations are computed and presented in
Table 5.6.

Gauging station OBJ Gauging station OBJ
Hoa Binh 3.952- 102 Phu Tho 4.759 - 1072
Trung Ha 3.943-1072 Vu Quang 3.418-1072

Son Tay 8.119-1072 Ha Noi 3.900- 1072
Hung Yen 8.80- 1072 Tao Xuan 3.360 - 1072

Table 5.6: Objective function for the water level in flood season 1996

The coincidence is still good, e.g. for the water level in Ha Noi the value of OBJ is 3.90-1072,
but it is clearly worse than in the previous validation. This can be explained by the fact
that from August, 1996 to July, 2000 the Manning coefficients have been changed in the
consequence of the deformation of the surface of the river bed. The practical solution to
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this problem would be to realize a periodical parameter estimation for the river system,
say every year. However, in practical applications it can happen that not all needed
measurement data are available. For instance, in this research as the measurement data
for parameter estimation for the Red River system only the data in the flood seasons 1996
and 2000 years are available. In order to find out the parameters, which can characterize
the system for the large time interval, say from August, 1996 to July, 2000 we are naturally
led to the idea of multi-experimental parameter estimation.

5.2.4 Multi-Experimental Parameter Estimation

The idea of a multi-experimental parameter estimation is to find the values of the parame-
ter, which simutaneously satisfy the least squares problem (4.2)-(4.3) for the data measured
in both 1996 and 2000.

The computing results are presented in Table 5.7.

Channel | Notation | Initial guess Estimated
p(1,0).102 2.000 2.097 = 0.039
1 p(1,1).102 0.000 0.044 + 0.020
p(1,2).10! 0.000 —0.064 + 0.024
p(2,0).10? 2.000 4.103 + 0.090
2 p(2,1).102 0.000 —0.147 £ 0.01
p(3,0).10? 2.000 2.67 £ 0.097
3 p(3,1).10? 0.000 —0.273 £0.071
p(3,2).10* 0.000 0.513 4 0.122
p(4,0).10 2.000 3.201 + 0.062
4 p(4,1).10? 0.000 —0.026 £ 0.014
p(4,2).10 0.000 —0.009 £ 0.0.007
5 p(5,0).10? 2.000 1.484 £+ 0.029
p(5,1).10? 0.000 0.265 + 0.013
6 p(6,0).10? 2.000 2.216 4+ 0.091
p(7,0).10? 2.000 2.461 + 0.043
7 p(7,1).10? 0.000 0.028 +0.014

Table 5.7: Initial guess and estimated parameters for the domain 1 in 1996. and 2000.

The Manning coefficients for every river channel can be computed by inserting the esti-
mated values parameters into equation (2.32). Here the maximal water discharge is 20000
[m3s™']. The results are illustrated in Figure 5.4.
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Figures 5.5 and 5.6 show the simulation of the water level at gauging stations with the
parameters estimated by multi-experimental parameter estimation for two time intervals
in 1996 and 2000. The good coincidence between measured data and response model is
observed, and the objective functions of the water level at the gauging stations, which are
small (Tables 5.8 and 5.9) show that the parameters presented in Table 5.7 are suitable for
the Red River system.

Gauging station OBJ Gauging station OBJ
Hoa Binh 2.640- 1072 Phu Tho 4.247-1072
Trung Ha 3.470- 1072 Vu Quang 5.826 - 1072

Son Tay 4.929-1072 Ha Noi 4.426 - 1072
Hung Yen 1.372-1071 Tao Xuan 3.190-10°1

Table 5.8: Evaluation of multi-experimental parameter estimation in 1996

Gauging station OBJ Gauging station OBJ
Hoa Binh 2.667 - 1072 Phu Tho 4.106 - 102
Trung Ha 1.019- 102 Vu Quang 2.034-107

Son Tay 1.750 - 102 Ha Noi 3.734-10 2
Hung Yen 3.385-1071 Tao Xuan 5.729 - 101

Table 5.9: Evaluation of multi-experimental parameter estimation in 2000

5.3 Numerical Results for Simulation of the Saint-Venant
Equation for the Red River System

The Saint-Venant equation for the Red River system is completely determined if,

e the Manning coefficients of the channels are estimated as in the last section, and

e the geometrical data of the Red River system are given as mentioned in Chapter 2.

For an unique solution of this equation system, the corresponding initial and boundary
conditions are required.

The boundary conditions are given as mentioned in Section 5.1.
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The initial conditions mean all the values of the state variables, i.e. the water discharge @)
and the water level y at all the spatial nodes at the first time moment ¢,. But normally,
this information is not available at the spatial nodes with the exception of gauging stations.
Therefore, an approximation for the initial conditions must be made. One possible way
is to assume that the processes are starting from a static position. Then, the initial
conditions of the system are solution of the Saint-Venant equation in the static case, i.e.
the Saint-Venant equation coupled with the following additional conditions:

Q(z,0) =0
{ ye(,0) = 0 (5.1)

Substituting (5.1) into (2.24) and rearranging give the following Initial Value Problem
(IVP) in space,

Qw(ﬂf, 0) = 07 Q(Q?(), 0) = QO
gS
Yo(2,0) = W, y(zr,0) = yo
Ay — g
where, z € [z, 2] is the space variable; Q(z,0), y(z,0) and Q,(z,0), y,(x, 0) are the water
discharge, the water level and their derivatives w.r.t. = at ¢ = 0; A is the cross-sectional
area at the location z and corresponding to the water level y(z, 0).

This IVP can be easily solved by a standard solver, e.g. the solver DAESOL. The obtained
results are the initial conditions of the Red River system.

Figures 5.7-5.10 illustrate the water level and the water discharge at the discretization
nodes of the Red River system depending on time. In this simulation, the Saint Venant
equation (2.24) for the Red River system with the corresponding initial and boundary
conditions is solved in the time interval from July 15 to August 15, 2000. The simultion
is realized in a computer Intel P-IV-2500 MHz, 2 MB RAM, and the computing time is
37.66 seconds.

5.4 A Relaxed Model for the Optimal Control Problem
of the Red River System

As mentioned in Chapter 3 for the unique solution of the Sant Venant equation for the Red
River system, the neccessary upper and lower boundary conditions are required. In the
simulation and the parameter estimation processes, the water discharge at upper bound-
aries, namely at the gauging stations Hoa Binh, Phu Tho, and Vu Quang, and the water
level at the lower boundaries, namely at the gauging stations Thuong Cat, Trieu Duong,
Nam Dinh, Phu Le, Ba Lat, and Dinh Cu, are given in the investigated time period as
the boundary conditions for the Red River system. However, in Chapter 6 when using
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the model of the Red River system to find an optimal strategy for the control of the Red
River system, a difficulity arose that any change of the control function, namely the wa-
ter discharge from Hoa Binh, leads to a change of the water level in the gauging stations
Thuong Cat, Trieu Duong, and Nam Dinh, i.e. the lower boundary conditions depend
on the control function. This leads to a bad consequence that in a new iteration step
of the optimization process with a new value of the control function, the lower boundary
conditions of the Red River system are not defined. In order to avoid this problem and
to come up with a good model of the Red River system, which is suitable for the optimal
control problem, we relax the model of the Red River system by assuming that the water
discharge at the input of the channel 6, 9 and 13 are functions of the water discharge at
the output of the channel 5, 7 and 10 (see Fig. 2.4), respectively. We propose that the
water discharge ()i, at the input of the channel i,y With i, = 6,9,13 at the time ¢ is
defined by a polynomial as follows,

np(icha,n)
Qin (ichan; t) = Z p(ichan; i)Qéut (i:ilan7 t); (52)
=0

where, Q¢ . (i%..., t) is the water discharge at the output of the coming river channel to the
channel ican, namely of Channel 5, 7, and 10, respectively, and 7n,(ichan) is the number
of the all parameters of the channel ichan. The number n,(ican) can be chosen by using

F — test for linear hypotheses testing as mentioned in Section 2.3.

In order to estimate the unknown parameters in (5.2) we have to solve the least-squares
problem (4.2) for the time interval from July 15, 2000 to August 15, 2000. The initial and
boundary conditions of the Red River system are given as mentioned in the last sections.
As the measurement data, the values of the water level at the input of the channels 6,
9, and 13, which are computed from the simulation of the complete Red River system in
the investigated time interval, are used. Our task is to estimate 5 unknown parameters as
shown in Table 5.10. The initial guess of the parameter for the channel i.,, is based on
the numerical results of the previous simulation of the complete Red River system with

the assumption that the ratio % is constant. The initial guess and the estimated

out\®chan?

parameters for the relaxed model are shown in Table 5.10.

Channel | Notation | Initial guess Estimated
p(6,0).10 % 0 —0.3648 £ 0.0450
6 p(6,1) 0.1280 0.8880 £ 0.0801
p(6,2).10* 0 —0.1888 +0.0324
9 p(9,1) 0.3570 0.2068 £ 0.0052
13 p(13,1) 0.22 0.397 £ 0.0008

Table 5.10: Initial guess and estimated parameters for the relaxed model
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Figure 5.11 shows the simulation of the water level at the input of the channels 6, 9,
and 13 with the newly estimated parameters and the corresponding measurements. The
good coincidence between measured data and response model is observed, and the objec-
tive functions of the least-squares problem for the water level at the investigated points,
which are sufficiently small (Table 5.11), show that the relaxed model with the parameters
presented in Table 5.10 can replace the model of the complete Red River system.

Validation for parameters of Channels 6, 9 and 13
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Meas. at input of Channel 9 —%—
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time[days]

Figure 5.11: Validation of the parameters for the relaxed model

Channel OBJ
6 1.108 - 102
9 2.862 101
13 1.077

Table 5.11: Evaluation of parameter estimation for the relaxed model in 2000

By doing the above relaxation we remove the channels 6, 9, and 13 with their lower
boundary conditions, namely the water level at the gauging stations Thuong Cat, Trieu
Duong, and Nam Dinh, from the model of the complete Red River system. As it has been
mentioned in the last sections, the remained lower boundary conditions of the Red River
system, namely the water level at the gauging stations Phu Le, Ba Lat, and Dinh Cu,
are constant in the null level, therefore all the boundary conditions of the newly obtained
(relaxed) model of the Red River system are now defined and independent of the control
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function. This model is suitable for the optimal control problem, which will be considered
in the next section.

5.5 Summary

As a conclusion of this chapter we give some recommendation for future research in mod-
elling of river systems:

e The Saint-Venant equation can be well solved by the method of lines combined with
the BDF method which implemented in the solver DAESOL at the research group of
Bock and Schléder (IWR, Heidelberg). A stepsize and order control strategy is used
in this solver and this improves the stability and computing time of the numerical
methods.

e The unknown hydraulic, geometrical variables of a river system can be treated as
unknown parameters, which can be estimated by means of optimization. The opti-
mization problem of parameter estimation for a river system is a large scale least-
squares problem, which can be solved effectively by the Generalized Gauss-Newton
methods, which were developed by Bock (1981 [10], 1983 [11], and 1987 [12]) and
Schloder (1987 [54]). The software packages PARFIT and FIXFIT implemented re-
search group of Bock and Schléder are recommended tools for parameter estimation
because of their stability and efficiency.

e In a data missing condition, where only some of the required measurements are
available, a multi-experimental parameter estimation, as presented in 5.2.4 is recom-
mended. However, more gauging stations should be built up. In order to determine
an optimal number and suitable positions for the new gauging stations an optimal
experimental design (see Fedorov [28, 29|, Bauer [7], and Korkel [38]) is recommended
to be considered.
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Chapter 6

Optimal Control of the Red River
System

The aim of this chapter is to find an optimal strategy for the control of the Red River
system in order to prevent floods in the Red River lowland using the mathematical model
of the Red River system, which has been discussed in Chapters 2-5.

In Section 6.1 the modelling of the control system of the Red River system is described, and
then the optimization problem for preventing floods in the Red River lowland is formulated.
This problem is solved by the SQP method combined with the multiple shooting technique
which was developed and implemented in the software MUSCOD-II by Bock and Plitt
(1984 [15]) and Leineweber (1999 [42]). In Section 6.2 an introduction to MUSCOD-II is
made. Some scenarios for the optimal control of the Red River system are given in Section
6.3. Finally, Section 6.4 summarizes the results reported in this chapter and the outlook
for future work.

6.1 Optimization Problem

6.1.1 Modelling of the Control Problem

The scheme of the Red River system is shown in Figure 6.1. The Red River system is
controlled by the control of the water discharge at the output from the reservoir Hoa Binh,
whose technical data [48] are given in Table 6.1.

The task of optimal control of the Red River system is to determine a strategy for control
of the working regimes of the reservoir Hoa Binh for a given information about the current
state of the reservoir Hoa Binh and the Red River system (feedback information), the
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Figure 6.1: The control scheme of the Red River system

Number | Data Notation Values Unit
1 Normal water level H,ormal 117 [m]
2 Minimal water level H o 80 [m]
3 Maximal water level Hnax 120 [m]
4 Flood waiting level H.i 88 [m]
5 Normal volume Voormal | 6.65 x 10? [m?]
5 Minimal Volume Vinin 3.80 x 10° [m?]
6 Maximal Volume Vinax | 9:45 x 10° [m?]
7 Number of turbines Tturbine 8 [turbine|
8 Discharge of a turbine Qturbine 300 [m?s!]
9 Number of upper tunnels Nupper 6 [tunnel]
10 Discharge of an upper tunnel | Qupper 2250 [m3s™1]
8 Number of lower tunnels Nower 12 [tunnel]
11 Discharge of a lower tunnel Qlower 1825 [m3s71]
12 Maximal discharge in output max 37800 [m3s ]

Table 6.1: Technical Data of Reservoir Hoa Binh
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information of the current flows to the reservoir Hoa Binh and the forecast of the input
flows to the system for some time interval in the future, such that some criteria are satisfied
for this time interval.

There are two main criteria for the optimal control of the reservoir Hoa Binh:

1. to minimize floods in the Red River lowland, and

2. to maximize the production of electric energy of the Hydro-electric power plant Hoa
Binh.

In this thesis, we are especially interested in the search for optimal controls of the reservoir
Hoa Binh to minimize floods in the Red River lowland.

In the following the modelling of the control system of the Red River system including the
Red River, the reservoir Hoa Binh, and the control function are described.

The Red River System

The modelling of the Red River system is shown in Chapters 2-5. It is shown that the
processes in the Red River system can be modeled by the following ODE system,

y(@) = Fly(t),ut),p) (6.1)
y(to) = %o (6.2)

Here, t € [to,t;] is the time variable, y € IR™ denote the differential variables, u €
IR™ is the control function, and p is the vector of the parameters such as hydraulic or
morphometric parameters. The number of the differential state variables n,, is determined
by the number of the ODEs obtained from the discretization of the Saint-Venant equations.

Reservoir Hoa Binh

Let us denote () as the input discharge to the reservoir Hoa Binh, and the control function
u is the water discharge from Hoa Binh to the Red River system, and V' is the water volume
in the reservoir Hoa Binh. We should note that ), v and V' are functions of the time ¢,
and V is a function of () and wu, which is described by the continuity equation as follows

V(Q(1), u(t)) = Q(t) — u(t) (6.3)
with the natural constraints that
Vmin S V S Vmaxa (64)

where the values of V;, and V., are given in Table 6.1
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Control Function

Let 6; € [0,1] denote the relative opening of the tunnel through the i-th turbine, and let u;
be the maximal flow through the i-turbine. Then the total water discharge of the output
flow from the reservoir Hoa Binh to the Red River system is determined as,

€L,

where I, is the index set of turbines and gates of the reservoir Hoa Binh, which are shown
in Table 6.1. The control function u has to follow the following constraints,

Umin S U(t) S Umax, (65)

where Umin and Umax are the minimal and the maximal water discharge from the reservoir
Hoa Binh, respectively. From Table 6.1, it is obvious that uy;, = 0 (all the tunnels are
closed) and ., = 37800 [m3 s7'] (all the tunnels are opened).

For ease of presentation we define a new vector x € IR™*! of the state variables for the
Red River system as follows,

r=(y", V)" (6.6)

Then the modelling of the Red River system including the reservoir Hoa Binh is defined
as system (6.1)- (6.2) coupled with the equation 6.3. This system can be written in a form
of a DAE as follows,

e(t) = fla(t),u(t),p) (6.7)
z(ty) = o (6.8)

The ODE system (6.7-6.8) can be solved effectively by the BDF method as it has been
discussed in Chapters 2-5.

6.1.2 Constraints

The state and control trajectories are required to satisfy so called path constraints
h(z(t),u(t),p) >0, t € [to, tf].

This constraint type includes minimum or maximum values for the controls, safety restric-
tions on the system state, e.g. the constraints given by (6.4) or (6.5).

The initial conditions of the state variables of the system also may be treated as a con-
straint, which can be written in a general form as follows

T'()(.T)(to)) = 0
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6.1.3 Optimization Criteria

The Red River lowland is a very large area, and to formulate an optimal control problem
for preventing floods at the whole system is an impossible task. In order to relax this
problem we choose some important spatial nodes of the system, e.g. big cities, political,
financial, or cultural centers, etc. and minimize floods at these places. In this thesis we
focus on preventing floods in Ha Noi, the capital of Vietnam.

Let H(z(t)) denote the water level in Hanoi, and let [¢o, ¢;] be the time interval considered.
Then the optimization criteria for the prevention of flood at Ha Noi can be given by e.g.

1. minimizing the average value of the water level at Ha Noi in the interval [to, 7], i.e.

minimize /ttf H(z(t))dt (6.9)

2. minimizing the maximal water level at Ha Noi, i.e.

minimize max H(z(t)), (6.10)
tE[to,th

This objective is nonsmooth. In order to reformulate it we introduce a global param-
eter p[0] € p. Then the following problem is equivalent to (6.10):

minimize  p[0], (6.11)
such that

H(z(t) <plo], Vi€ [to,t]. (6.12)

3. minimizing the water volume in the reservoir Hoa Binh at ¢ = ¢; in order to prevent
the forth-coming floods, i.e.

minimize  V(Q(ty), u(ty)) (6.13)

4. In addition, the following criteria
tf
minimize / (u(t) — Q(1))dt, (6.14)
to

may be impossed to keep the work of the control system in the interval [0, 7] as less
as possible.
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All together the objective functional of the problem of preventing floods in Ha Noi is
formulated as a sum of criteria (6.11), (6.9), (6.13) and (6.14) as follows,

| @B (@) + as(u(®) - Q) di + azp -+ aaV (@), uley).

to
Here, o; (i =1,...,4) are the weighting coefficient and T = [to, t/].
The term L = a; H(z(t)) + aq(u(t) — Q(¢))? is called the Lagrange term, and the term

E = asp + a3V (Q(ty), u(ty))

is the Mayer term of the objective.

6.1.4 Problem Formulation

We can now formulate an optimal control problem for preventing floods in Ha Noi

ty
min / L(x(t),u(t),p) dt + E(z(ty), p). (6.15)
$(),Z(), to
U(),p
subject to

h(z(t),u(t),p) > 0, t € [to, ty] (6.17)
r(z(ty)) = 0. (6.18)
Solving the optimal control problem (6.15)-(6.17) we obtain optimal trajectories z*(t) and

an optimal control function u*(t) for ¢ € [to, t].

6.2 MUSCOD-II - a Software Package for Optimization

Problem (6.15)-(6.17) represents an infinite-dimensional optimization problem. This can
be solved by direct multiple shooting in connection with a recursive quadratic programming
technique which was developed and implemented in the software package MUSCOD-II by
Bock and Plitt (1984 [15]) and Leineweber (1999 [42]). In this section, we first describe
how Problem (6.15)-(6.17) is transformed into a finite-dimensional optimization problem
by discretization of the control functions as well as the state variables. Then, the quadratic
programming method for solution of the resulting discretized system is introduced. In the
following we briefly sketch the algorithm. For details see e.g. Leineweber [41, 43, 42|,
where also multi-stage optimization is described.
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Figure 6.2: Control and state parameterization (m = 5).
6.2.1 Parametrization

In the software package MUSCOD the infinite-dimensional optimal control problem is
discretized by means of multiple shooting technique (see e.g. Bulirsch [16], Deuflhard [23],
Stoer [61], Bock [15]). In the following it is shown how the control function, the state
variables and the path constraints are discretized by the multiple shooting method.

6.2.1.1 Control Discretization

In the direct multiple shooting method (as in all direct solution approaches) the infinitely
many degrees of freedom u(t) for ¢ € [ty, t] are approximated by a finite control represen-
tation. For that, first, we subdivide the internal [ty, ;] into m subintervals as follows

lo <ty b1 <tm =1y

One special feature of the direct multiple shooting method introduced by Bock and Plitt
[15] is to use control functions that have only local support, like piecewise constant or linear
functions on the control grid {¢o,t1,...,tn}, i-e. the control functions are approximated
by using given basis functions:

U(t) = ¢z(t; qi) for t € [ti,tﬂ_l), 1=0,1,...m— 1. (619)
Here, ¢; are local control parameters.

This approach has the advantage that the resulting discretized problem is a structured
optimization problem.

Where continuity of the controls is desired, the control can conceptually be treated as an
additional differential system whose time derivative can be controlled.
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6.2.1.2 State Discretization

The basic concept of the multiple shooting method is to transform the boundary values
problem in the interval [to, %] into a system of m independent initial values problems.

For this purpose (m + 1) additional vectors sf,s7,...,s? of the same dimensions n, as

differential states are introduced, which we will denote differential node values.

All but the last node value serve as initial values for m independent relazed initial value
problems on the intervals [t;, t;41]:

zi(t) = f(zi(t), di(t, @), i) (6.20)
zi(t;) = sj. (6.21)

1

Here, p; is the parameter in the interval [t;,¢;11]. The continuity of the parameter p is
formulated as

Ditv1 = Pi, 1=0,...,m—1
By substituting the independent trajectories x;(¢) into the Lagrangian term L in Eq. (6.15)

we can simultaneously calculate the integral objective contributions L;(s;, ¢;) that are given
by

tit1
Li(si, i, i) :=/ L(z;(t), a:)) dt. (6.22)
t;
The continuity of the state trajectory, i.e. of the solution of the m — 1 independent initial

values problem, is formulated by the following m matching conditions:

x . .
3i+1=$i(ti+1asi,qi,pi), 1=0,....m—1

The initial conditions of the system now are required to be satisfied the following

r(s9) =0

6.2.1.3 Discretization of Path Constraints

Using the multiple shooting grid ¢y, ..., t,,, the infinite dimensional path inequality con-
straints (6.17) are transformed into m + 1 vector inequality constraints

h(si,é(t,q),p;) >0, i=0,1,...,m.

Note that it would be equally possible to use a finer grid for the discretization of the path
constraints.
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6.2.1.4 Discretized Optimization Problem

By discretizing the optimal problem (6.15)-(6.17) by the multiple shooting method we
obtain the following finite dimensional nonlinear programming problem (NLP):

m—1
min Z Li(sj,s7,qi,p) + E(sr,, 55, D) (6.23)

q0,---,9m—1, =0

S05---5Sm
subject to

Di+1 = Di) i=0,....m—1 (6.24)
siv1 — Ti(tit1; 8is gispi) = 0, i=0,....m—1 (6.25)
7(s)) = 0 (6.26)
(6.27)

h(si, ¢i(t,q:),p;) > 0, i=0,1,...,m.

The advantage is that the NLP has a sparse structure, due to the fact that all constraint
functions and the additive terms of the objective function each depend only on a small
number of variables, and conversely, each variable appears only in a few problem functions.

For the ease of presentation we write the NLP (6.23) - (6.27) in a compact form by intro-
ducing the following vectors

qo0 So
q:= : € R, s:= : € R", and w::(g)eﬂ%n“’

gm—1 Sm

with n, = mn,, n, == (m + 1)(ny + n,), and n, = n, + ns, and define Fy(w) =
Z;’;l Li(si, gi,p) + E(sm,p) and summarize all equality constraints in a function Fj :
IR™ — IR™ and all inequality constraints in a function F3 : IR™ — IR™. The NLP can

then be summarized as

. . FQ(U)) 0,
min  Fj(w) subject to {F3 0.

w S (w) (6.28)

AV

6.2.2 Solution of the NLP

In MUSCOD, the NLP (6.28) is efficiently solved by a tailored sequential quadratic pro-
gramming (SQP) method that exploits the special sparse structure of the problem due to
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the local influence of the variables. SQP is an iterative method in which the NLP at each
iterative step is approximated by the following quadratic problem (QP):

rgin %AwTBkAw + VF (w)Aw (6.29)
Fs(wy) + VF(wg)Aw > 0, (6.31)

where By, is an approximation of the Hessian of the Lagrangian function L of the problem
(6.28), which is defined as

L=F -)F-\F.

The solution Awy of QP (6.29)-(6.31) is the new search direction for the optimum , i.e. at
the value of w at step k + 1 is determined by

W1 = Wi + aAwy.

Here « is called the step length and is determined by a line search. This determines
the trust region where the quadratic approximation (6.29)-(6.31) of the NLP is valid. A
detailed description of SQP methods can be found in the optimization textbooks, e.g. Gill
[33], Fletcher [31]. In the direct multiple shooting methods described in this chapter the
QP has a block-sparse structure. Such problems can efficiently be solved by the reduced
SQP methods developed by Bock (1984 [15]). In these methods instead of directly solving
the QP, the problem first is condensed by eliminating the additional variables sq, ..., s,
introduced by the multiple shooting method, and then solve the resulting dense QP by a
standard solver. The values of the variables sq, ..., s,, are computed by a forward recursion.
For a more detailed description of this recursion formulae see Bock et al. [15] or Leineweber
[42].

6.3 Selected Results for Optimal Control of the Red
River System

6.3.1 Optimal Control of the Red River System

In order to find an optimal control for the Red River system to prevent flood in Ha Noi, we
solve the optimal control problem (6.23) - (6.27) constrained by the Saint-Venant equation
of the relaxed model of the Red River system, which was introduced in the last chapter,
with the corresponding upper and lower boundary conditions of the system. In practice,
the values of the boundary conditions of the (relaxed) Red River system are taken from the
meteorological forecast. Let us now apply the numerical method for solution of optimal
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control problems, which is described above, to an example: to prevent the peak of the flood
in the flood season 2000. The duration of the highest peak of the flood is 18 days (432
hours), starting from 1h00, July 15, 2000. We assume that the forecasting information is
available in this time interval. Then based on it we find an optimal control for the Red
River system in the flooding time, i.e. 432 hours.

In this flood season, in the case without any control, i.e. we let all the coming water to
the reservoir Hoa Binh go through down to the Red River lowland, the water level at Ha
Noi increased up to 11.3 [m] as illustrated in Figure 6.3.
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Figure 6.3: The Flood at Ha Noi in 2000

As it is shown in Table 6.1 there are

e 8 turbines with a total discharge of 2400 [m3s™]
e 12 lower tunnels with a total discharge of 21900 [m3s™]

e 6 upper tunnels with a total discharge of 13500 [m3s!],

which can be used as the means of control function for preventing floods in the Red River
lowland. However, the upper tunnels are used only for very urgent situations, when the
safety of the reservoir is under dangers and the reservoir can be destroyed. Normally, only
the lower tunnels and the turbines are used as a means for control of the Red River system.
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At the beginning of the flood season in the year 2000, two lower tunnels are open and three
turbines are working. The total water discharge from the output of the reservoir Hoa Binh
then is 4550 [m®s™!]. In this test we assume that as means for control we can change the
number of the openning lower tunnels from 0 to 5, i.e. If Q(t) is the water discharge at the
input of the reservoir Hoa Binh and u(t) is the water at output of the reservoir to the Red
River system, then u(t) € [900,10025] [m3s~!]. By changing values of u(¢) we can control
the water discharge at the output of the reservoir Hoa Binh, and consequently control the
floods in the Red River lowland.

The aim of the optimal control is to minimize the maximal water level in Ha Noi in the
time interval [¢o, ;] and the water volume in the reservoir at ¢ = t;. As above mentioned
the objective functional is then

where p[0] is the global parameter that satisfies (6.12).

The values of Viyin and Vinax in the constraint (6.4) are given in Table 6.1. Because of the
security reason the water volume in the reservoir Hoa Binh should not reach the maximal
value, and it either should not be decreased down to the minimal value due to necessaries
of water for the electric products and the transportation in the Red River lowland. Hence,
we set Vipin = 5 x 10° [m?] and Vipa = 8 x 10° [m?]. At the beginning of the flood season
the water volume of the reservoir Hoa Binh is 6 x 10° [m3].

The above described optimal problem is solved with the software package MUSCOD-II
developed at the research group Bock & Schléder (IWR, Heidelberg). The initial values of
the state variables are taken from the simulation of the Red River system, which has been
described in the last chapters. The numerical setup of this problem is shown in Table 6.2.

Name Values Unit
Time 1.5552 - 10° S
# multiple shooting nodes | 72 -
# state variable 497 -
# inequality constraints | 5 -
# controls 1 -

Table 6.2: Numerical setup of the offline optimal control problem

As a solution of the optimal problem for the Red River system the scenario for the optimal
control of the reservoir Hoa Binh and the corresponding values of the water level in Ha Noi
are given. Figure 6.4 illustrates the scenarios of optimal control of the reservoir Hoa Binh
for the flood season 2000. This shows that the optimal control strategy could decrease the
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peak of the water level in Ha Noi from 11.3 to under 8.9 m. The control strategy is that
when the flood is still not coming, we let the water volume in the reservoir Hoa Binh go to
minimum. Hence, when the peak of the flood is coming, a big free volume, namely 3.10°
m3, is available to accumulate water in order to keep the water level in Ha Noi low.

6.3.2 Online Control Approach for the Red River System

However, in practice a general meteorological forecast is normally available only 96 hours
in advance, and an sufficiently exact meteorological forecast is normally available only 48
hours in advance. Therefore we can find the solution for optimal control of the Red River
system only for a time interval 7' = 96 hours. In order to find an optimal control of the
Red River system for a long time interval, say for the whole flood season, we propose to
apply an online control technique, namely Nonlinear Model Predictive Control (NMPC).
The process of NMPC reads:

1. At t =ty we find the optimal control of the Red River system for the time interval
[to,to + T with given information of the Red River system in this interval, e.g.
the boundary conditions of the Red River system, the current water volume of the
reservoir Hoa Binh, and the current water level in Ha Noi.

2. Apply the scenario obtained from Step 1 to control the Red River system.

3. At t =ty + At we update new information of the Red River system, set ¢ty = £y + At
and repeat Step 1. Here, At < T is the time interval to update new forcasting
information.

We apply NMPC algorithm to the problem, described in the last paragraph, i.e. to mini-
mize the water level in Ha Noi in the flood season 2000 with 7" = 96 hours or 3.456 - 10° s,
and At = 48 hours or 1.728 - 10° s. In each interval [ty, to + T] the optimal control problem
is solved by MUSCOD-II with the numerical setup shown in Table 6.3 Figures 6.5 and 6.6

Name Values Unit
Time 3.456 - 10° S
# multiple shooting nodes | 16 -
# state variable 497 -
# inequality constraints | 5 -
# controls 1 -

Table 6.3: Numerical setup of the online optimal control problem

illustrate the control function, namely the water discharge from Hoa Binh, in the different
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scenarios: without control and with the NMPC, and the corresponding water level in Ha
Noi. This show that by applying NMPC we can decrease the maximum water level in Ha
Noi from 11.3 m (no control) to 9.6, i.e. the online algorithm, which we have introduced,
can effectively reduce the maximum water level in Ha Noi.

Remark 6.3.1 In the mentioned NMPC algorithm for the optimal control of the Red River
system we have implicitly assumed that the forcast is exact. However, in practical applica-
tions it happens that the real process differs from the predictive process, e.q. the real water
wput in Hoa Binh differs from its forcast. In this case an adaptive strateqy have to be
considered.

6.4 Summary

In this chapter the following work is done:

e Formulate the optimal control probem for preventing floods in the Red River lowland
with the suitable objective functional.

e Use the direct multiple shooting in connection with the recursive quadratic program-
ming technique within MUSCOD-II, the software for optimization, to find solution
for the optimal control problem of the Red River system.

e Propose an online control approach for preventing floods in the Red River lowland
and apply this approach to a concrete test problem, namely to prevent the flood in
the year 2000.
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Chapter 7

Conclusions and Outlook

Conclusions

The objective of this thesis was to investigate numerical methods for solution of simulation,
parameter estimation and optimal control problems of river flows and their application to
the Red River system in Vietnam. The ultimate aim is to explore the possibility of better
control of the Red River system. The developed and validated model of the Red River
shows excellent corresponce with reality and promises good prediction potential. Within
this thesis, we have presented all necessary steps for development of a good model of a
river system and its final use for control:

e Dynamical Modeling: Based on the specific properties of the Red River system
and the necessity of explicit dependence of the state variables on the control functions
we have chosen the one-dimensional Saint-Venant equation system to describe the
processes in the Red River system. This is a pair of two nonlinear hyperbolic PDEs.
Because several river channels are considered, several of these PDEs are coupled with
each other.

e Numerical Simulation Methods: For the solution of the Saint-Venant equation
system we have proposed to use the method of lines to transform the PDEs into a
large system of ODEs, which can be solved by e.g. the BDF method. A stepsize
and order control strategy is used in this solver, which improves the stability and
computational cost of the numerical methods compared to fixed stepsize methods,
which are implemented in most currently used software packages for simulation of
river flows.

e Parameter Estimation Problem: In the past the unknown geometrical and hy-
draulic variables which can not be measured, e.g. the friction coefficients, river bed
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slope, etc. have been manually estimated. However, this way of estimating unknowns
is not efficient due to the fact that the number of these parameters is high and they
are strongly correlated with each other. In this thesis we have proposed to treat
all the unknown variables as unknown parameters and estimate them by means of
optimization. For this purpose we have formulated the optimization problem for pa-
rameter estimation for a river system. This is a least-squares problem constrained by
a large system of ODEs. Numerical methods for solution of this problem have been
discussed and based on this discussion we have chosen the Reduced Gauss-Newton
method which was developed and implemented by Schloder (see [54]) for solving the
parameter estimation problem for the Red River system. A detailed description of
this method was made.

Parameter Estimation and Validation for the Red River: We have applied
the optimization methods to estimate unknown parameters of the Red River system,
namely the functional form of the Manning Coefficients for all river channels. The
validation of the estimated parameters shows excellent correspondence of the model
response and the measurement data. To the best of the author’s knowledge this is
the first time that optimization based parameter estimation has been carried out for
a complete river system.

Optimal Control: Based on the validated model, we have formulated an optimal
control problem for preventing floods in the Red River lowland. This is solved by the
direct multiple shooting method within the software package MUSCOD-II. We have
proposed an online optimization approach to reduce the maximum flood level at Ha
Noi by controlling the water discharge at the output of the reservoir Hoa Binh and
demonstrated its potential at an example problem.

Based on the software packages PARFIT and FIXFIT for simulation and parameter esti-
mation as well as the software package MUSCOD-II for optimization we have built up a
tool for solution of simulation, parameter estimation and optimal control problems for a
river system. The obtained numerical results for the Red River system have shown that
this tool is capable to considerably support the modelling process and opens a door to
model based optimal control of real river systems.

Outlook

Based on the results of our investigation we would like to note the following promising
directions for future research:

e Experimental design for location of gauging stations: In order to obtain

better information of the Red River system more gauging stations should be built
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up. Techniques of experimental design (see Fedorov [28, 29|, Bauer et al. [7], and
Korkel [38]) can help us to determine the optimal number and suitable positions for
new gauging stations.

Real-time State and Parameter Estimation: In this thesis the unknown pa-
rameters have been well estimated for some time period. However, these parameters
slowly vary in time, therefore a real-time parameter estimation is recommended to
keep the model up to date. Because not all state variables can be measured it is also
important to develop state estimation techniques (see e.g. Christopher et al. [18])
for better observation and control of the river system.

Real-time Control of the Red river system: We have proposed an online control
approach for the Red River system. The demonstrated example problem shows the
potential of this approach. The following open problems should be investigated in the
future research: fast optimal control algorithms for river systems, suitable objective
functions for real-time control and the stability of the closed-loop system, and ways
to apply the optimal control scenarios to a real river system. As a framework for this
research the results from the work of Diehl et al. |26, 24, 25] and of Rawlings [49]
can be taken.

Mixed Integer Optimization: In this thesis we have assumed that the control
function u(t) can be chosen form a continuous set of values. This assumption may
be acceptable if u is the water discharge at the output of a turbine. But in the case
when the water level in the reservoir is too high not only turbines, but also the upper
and the lower tunnels would be used to let out water from the reservoir in order
to decrease its water level for safety. The problem is that for the upper and lower
tunnels of the reservoir there are only two standing positions, namely opening and
closing. This leads to a mixed integer dynamic optimization problem that should be
addressed by tailored solution techniques (see e.g. Lee et al. [40], Rehbock et al.
|50], and Stein et al. [58]).
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