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Theory of the Formation of Brown Dwarfs

We investigate the dynamical decay of non-hierarchical accreting triple systems and its implications
on the ejection model as Brown Dwarf formation scenario. A modified chain-regularization scheme is
used to integrate the equations of motion, that also allows for mass changes over time as well as for
momentum transfer from the accreted gas mass onto the bodies. We integrate an ensemble of triple
systems within a certain volume with different accretion rates, assuming several prescriptions of how
momentum is transferred onto the bodies. We follow their evolution until the systems have decayed.
We find that the formation probability of Brown Dwarfs depends strongly on the assumed momentum
transfer which is related to the motion of the gas. Due to ongoing accretion and consequent shrinkage
of the systems, the median escape velocity is increased by a factor of 2 and the binary separations
are decreased by a factor of 5 compared with non-accreting systems. Furthermore, the obtained semi-
major axis distribution drops off sharply to either side of the median, which is also supported by
observations. However, the disks around the ejected Brown Dwarfs seem to have too low accretion
rates and masses to account for many of the observed disks in typical low-mass star-forming regions.
We conclude that accretion of gas and the kinematic properties of the accreted gas during dynamical
interactions strongly influence the abundance as well as the dynamical properties of Brown Dwarfs
and, that the ejection scenario seems to be a promising scenario to produce both, very close Brown
Dwarf binaries as well as single Brown Dwarfs, whereas it seems less likely to find very long-lived
accretion disks around them.

Theorie der Enstehung Bauner Zwerge

Wir untersuchen den dynamischen Zerfall nicht-hierarchischer akkretierender Drei-K&rper-Systeme
und deren Bedeutung fiir das “Ejection Scenario” als Entstehungs-Szenario Brauner Zwerge. Die Be-
wegungsgleichungen werden mit einer modifizierten CHAIN-Regularisierungs-Methode integriert, die
ebenfalls die Anderung der Masse der einzelnen Korper sowie den Impulstransport des akkretierten
Gases auf die Korper beriicksichtigt. Wir simulieren viele statistisch, innerhalb eines gewissen Vol-
umens, erzeugte Drei-Korper-Systeme mit unterschiedlichen Akkretionsraten, wobei wir dabei unter-
schiedliche Moglichkeiten, wie das akkretierte Gas dessen Impuls auf die Korper iibertriagt, annehmen.
Wir verfolgen die Entwicklung der Drei-Korper-Systeme bis sie zerfallen sind. Wir fanden, dass die
Enstehungswahrscheinlichkeit Brauner Zwerge sehr stark abhingig ist vom angenommenen Impul-
siibertrag, der mit der Bewegung des Gases zusammenhéngt. Wegen der permanenten Akkretion
und der damit verbundenen Schrumpfung der Drei-Koérper-Systeme, wurde im Vergleich mit nicht-
akkretierenden Systemen der Median der Entweichgeschwindigkeiten um einen Faktor 2 vergrossert
und die Abstidnde der Doppelsysteme um einen Faktor 5 verringert. Desweiteren fanden wir heraus,
dass die erhaltene Bahn-Halbachsen-Verteilung sehr steil zu beiden Seiten des Median abfillt, was
auch mit entsprechenden Beobachtungen iibereinstimmt. Jedoch finden wir auch, dass die Akkretion-
sscheiben um unsere Braunen Zwerge zu geringe Massen und Akkretionsraten aufweisen, um viele
der beobachteten Scheiben in typischen Entstehungsregionen von Sternen mit niedriger Masse zu erk-
ldren. Wir kommen zu dem Schluss, dass die Gasakkretion und die kinematischen Eigenschaften des
akkretierten Gases wihrend der dynamischen Wechselwirkung sehr stark die Hiufigkeit als auch die
dynamischen Eigenschaften der Braunen Zwerge beeinflusst, und, dass das “Ejection Scenario” ein
vielversprechenden Modell ist, dass sowohl sehr enge Doppelsysteme als auch viele einzelne Braune
Zwerge erzeugen kann, wihrend es eher unwahrscheinlich ist, dass man um diese herausgeschleuderten
Braunen Zwerge Akkretionsscheiben mit grosser Lebensdauer finden kann.
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Chapter 1

Introduction

Since their first detection 10 years ago (Nakajima et al., 1995) many Brown Dwarfs have been
detected ever since (e.g. Basri, 2000). Brown Dwarfs, known as ’failed stars’ which have
not enough mass to start hydrogen burning as in normal stars, were found at many different
star-formation sites such as Taurus (Bricefio et al., 2002), Orion (e.g. Muench et al., 2002;
Béjar et al., 1999), Ophiuchus (e.g. Allen et al., 2002), and the Chamaeleon cloud (e.g. Lopez
Marti et al., 2004; Comer6n et al., 2000), as cluster members (Moraux et al., 2002; Bouvier
et al., 1998; Martin et al., 1998) and as free-floating objects (Kirkpatrick et al., 1999, 2000).
Based on the frequency of detection it is widely believed that they should be as common as
low-mass stars. In addition to their similar abundance many of them also show accretion
features similar to ordinary TT stars and it was even possible to detect circumstellar disks
around them (Jayawardhana et al., 2003; Pascucci et al., 2003; Klein et al., 2003; Apai et al.,
2002; Natta & Testi, 2001). Also some of them are known to form binary and higher order
systems (Bouy et al., 2003).

Based on these results it is tempting to claim that Brown Dwarfs may have been formed like
ordinary low mass TT stars. In this picture it is assumed that the collapse of a gravitationally
unstable molecular cloud core forms a single object (see e.g. Shu, 1977), or perhaps a small
multiple system, but the final mass of the object is primarily dependent on the mass of the
pre-stellar core. From this it would follow that stars form from the collapse of higher-mass
molecular cloud cores, while Brown Dwarfs form from very dense low-mass ones. This idea
is also consistent with observations of Motte et al. (1998), who found that there is a striking
similarity between the distribution of core masses and the distribution of stellar masses in
the p Ophiuchus molecular cloud. In addition, as such objects are surrounded by accretion
disks (see e.g. Lin & Pringle (1990)), the accretion features of Brown Dwarfs, i.e. mainly Ha
emission, are readily accounted for. It should be, therefore, no surprise that these accretion
features seem to vanish after the same time as in T Tauri stars (see e.g. Liu et al. (2003)),
although it is certainly not a strong argument for a T Tauri-like formation of Brown Dwarfs,
given the complex physics of circumstellar disks.

Indeed most of the observed properties of Brown Dwarfs can be understood by assuming that
Brown Dwarfs form like T Tauri stars. The only feature that lacks a clear understanding are
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the properties of Brown Dwarf binaries. Kroupa et al. (2003) argue that if Brown Dwarfs are
formed like low-mass stars they should have the same pairing statistics and binary properties,
scaled down to the substellar regime. On the contrary, from recent surveys of Close et al.
(2003), Gizis et al. (2003), Bouy et al. (2003) and Martin et al. (2003), as well as from the
model calculation of the standard star-formation scenario of Kroupa et al. (2003), it has been
found that the observed properties of Brown Dwarf binaries are not a natural extension of the
trends seen among stars with decreasing primary mass. Therefore Kroupa et al. (2003) come
to the conclusion that Brown Dwarfs may not be formed with the same scaled down properties
as stars and further infer that, in order to form Brown Dwarfs, their accretion phase must
be interrupted by other (external) processes. Which process this actually can be is currently
under vivid debate.

Reipurth & Clarke (2001) suggested that the ejection of fragments from unstable multiple
systems out of their surrounding molecular cloud may lead to an early end of the accretion
process of the fragments and, consequently, leave some of them substellar. This formation
scenario is constantly challenged by observational studies (Bricefio et al., 2002; Natta & Testi,
2001). They argue that because accretion features are observed around objects with an age
of up to 10 Myr, which is about the lifetime of disks around T Tauri stars, close collisions,
required for the ejection of fragments, cannot have happened as they tend to truncate the
disks, severely limiting their lifetime, which in turn should make the frequency of detection
much lower than actually observed. On the other hand the amount of material that is stripped
off the disk is also sensitive to the eccentricity of the perturber orbit. For instance strongly
hyperbolic encounters are known to be much less destructive than parabolic ones which are
assumed to be the most likely encounter orbit in larger clusters (Ostriker (1994); Larson
(1990)). For accreting small-N clusters the encounter parameters are not well known and
certainly need to be studied in greater detail. Based on these uncertainties, we belive that the
ejection scenario cannot be ruled out completely but needs more accurate modeling in order
to provide better predictions.

It is therefore our aim to explore under which conditions Brown Dwarfs form in accreting
triple systems and derive statistics of escaping Brown Dwarfs and binaries which can then
be compared to observations. For this we further investigate the ejection scenario by means
of N-body calculations where the bodies are gaining mass according to a given accretion
rate. In order to address the problem of the life-time of Brown Dwarf disks we also carry out
simulations of disk collisions in such decaying accreting triple systems that produce Brown
Dwarfs by ejection and can then compare our results with observations. From these simulations
we can also make predictions about the disk masses and surface density profiles, which can
then be used to further constrain possible formation scenarios by observations.

In Chapter 2 we give a brief overview of the existing Brown Dwarf formation scenarios. In
Chapter 3 we explain the method which allows us to investigate decaying accreting triple
systems numerically. We will then apply this method in Chapter 4 to obtain statistics of ejected
Brown Dwarfs and Brown Dwarf binaries in dependence of the initial conditions and accretion
prescriptions. From these results we will find initial conditions that produce binary Brown
Dwarf properties which are in agreement with observations. We, therefore, use these initial
conditions for our further modeling of disk collisions in accreting triple systems and follow the
further evolution of such highly perturbed disks by means of hydrodynamical simulations in



Chapter 5. From the results we can finally draw some first conclusions about the expected
life-time, mass, and surface density profile of the disks around the ejected Brown Dwarfs. Our
main results are then summarized and discussed in Chapter 6.



Chapter 2

Brown Dwarf Formation Scenarios

This chapter gives a brief summary of some of the ideas that have been suggested on how
Brown Dwarfs can be formed.

2.1 The Photo-Erosion model

It has been suggested that the strong, ionizing UV radiation of hot O and B stars might be
responsible for the increased number of Brown Dwarfs in Orion (Kroupa & Bouvier, 2003).
The basic mechanism is laid out in Whitworth & Zinnecker (2004) and the following summary
can also be found in Whitworth & Goodwin (2005). This model starts with a standard pre-
stellar core, which would, if it remains undisturbed, form an intermediate- or high-mass star.
As this core is overrun by the hot ionizing radiation of a massive star, an ionization front
starts to propagate into the core, 'photo eroding’ it. At the same time a compression wave is
launched in front of the ionization front. When the compression wave reaches the center, a
protostar is created, which then grows by accretion. At the same time an expansion wave is
reflected and propagates outwards, setting up the inflow which feeds accretion onto the central
star. The outward propagating expansion wave soon meets the inward propagating ionization
front, and shortly thereafter the ionization front find itself ionizing gas which is too tightly
bound to the protostar that it cannot be unbound by the act of ionization. All the material
that was within the ionization front at this time ends up in the protostar. On the basis of
a simple semi-analytic treatment, Whitworth & Zinnecker (2004) show that the final mass is

given by
6 R 173 1/3
ar LyC o -
M ~ 0.01M <7> y <7) ,
©\0.3kms1 % <105OS1 103cm—3

where aj is the isothermal sound speed in the neutral gas of the core, &LyC is the rate at which
the star(s) exciting the HII region emit hydrogen-ionizing photons, and ng is the density in
the ambient HII region. The Brown Dwarfs formed in this way are likely to be single and
should have no difficulty retaining a disk (Whitworth & Goodwin, 2005).
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This mechanism is quite effective, as it produces Brown Dwarfs for a wide range of conditions.
However, for low-mass star forming regions harboring Brown Dwarfs, like the Chamaeleon
cloud, there must be a different process at work because of the generally low abundance of
higher mass stars and because it is expected that photo evaporation is only efficient in the
vicinity of massive stars (Kroupa & Bouvier, 2003).

2.2 Fragmentation of a Massive Disk

It has been suggested, by many different authors, that substellar objects can be formed by
fragmentation of massive circumstellar disks (Lin et al., 1998; Boss, 2001; Boffin et al., 1998;
Watkins et al., 1998a,b; Pickett et al., 2000). However, as far as single isolated disks are
concerned, the question whether they will fragment is not easily answered. From simulations
of Pickett et al. (2000) it became clear that only under idealized conditions, where the disk is
assumed to be locally isothermal implying extremely efficient cooling, the disk disrupted and
formed low-mass fragments. However, thermal and tidal effects prevented permanent conden-
sations to form in massive disks, despite the vigorous growth of the spiral instabilities. For
older, larger but less massive protostellar disks they find that only if the expansion of the disk
in response to gravitational instabilities is restricted, long-lived condensations form. Further-
more, they find that a more realistic adiabatic evolution leads to vertical and radial expansion
of the disk but no clump formation. It seems therfore unlikely that the fragmentation of an
isolated massive disk is an efficient way to produce Brown Dwarfs.

However, if a massive protostellar disk interacts impulsively with another disk, or with a naked
star, then it can be launched directly into the non-linear regime of gravitational instability
and fragmentation is then much more likely, as simulations of Boffin et al. (1998), Watkins
et al. (1998a,b) and Lin et al. (1998) suggest. Such interactions could be quite frequent in the
dense proto-cluster environments where stars are born (Bate et al., 2002a, 2003). According to
the calculations of Boffin et al. (1998) and Watkins et al. (1998a,b), the impulsively triggered
fragmentation of disks seems to be a good mechanism to produce Brown Dwarf companions,
provided the effective shear viscosity is high enough.

In the simulations of Bate et al. (2002a) and also in the collapse calculations of molecular
cloud cores of Lang (2003) such a collision produced much more companions initially, which
then became unbound from the central star because of gravitational interaction with the other
fragments in the disk. This way it was also possible to form single free-floating Brown Dwarfs.
As their simulations further show, this scenario is able to explain the increased number of
low-mass Brown Dwarfs with a mass at around 0.02M, as reported by Lada & Lada (2003).

It, therefore, appears that collisions with massive disks and the subsequent disk fragmentation
is a very promising scenario to produce single Brown Dwarfs as well as Brown Dwarfs com-
panions to stars. In addition, it should be also possible that the Brown Dwarf companions can
have disks. However, it seems less likely that the single ejected Brown Dwarfs possess disks
with long life-times, as these must also have suffered a more or less close collision similar as
in the ejection scenario of Reipurth & Clarke (2001), but further modeling of such perturbed
disks is required to justify this assumption.
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2.3 Opacity-limited Fragmentation in a Shock Compressed Layer

An efficient way to form very low-mass objects is by the fragmentation of a two-dimensional
shock-compressed layer, as found by Boyd & Whitworth (2005). The following summary
follows closely the one given in Whitworth & Goodwin (2005).

The fragmentation of a two-dimensional shock-compressed layer is more relevant to the con-
temporary picture of ’star-formation in a crossing time’ as presented, e.g. in Elmegreen (2000).
In this picture star-formation occurs in molecular clouds wherever two or more turbulent flows
of sufficient density collide with sufficient ram pressure to produce the shock-compressed layer
out of which pre-stellar cores can condense. This 2D fragmentation has the advantage that the
fastest-condensing fragment has finite size, that is, smaller or faster fragments condense out on
larger time-scales. In the model of Boyd & Whitworth (2005) the continuing inflow of matter
into the fragment is also taken into account, which allows to identify the smallest fragment
which can cool radiatively fast enough to dispose both the work being done by compression
of the fragment, and the energy being dissipated at the accretion shock. They find that for
shocked gas with a temperature of ~ 10K and no turbulence, i.e. the velocity dispersion of the
gas is equal to the isothermal sound speed, 0.2km s ™!, the smallest fragment that can condense
out has a mass less than 0.003M), and fragments with masses below 0.005M¢ condense out
for a wide range of pre-shock densities and shock speeds.

The efficient and fast formation of such very low-mass fragments makes this model the primary
choice for the explanation of free-floating planetary mass objects found in surveys of young
cluster (e.g. Zapatero Osorio et al., 2002). However, to account for the properties of more
massive Brown Dwarfs these condensations need to be followed further, which requires some
additional modeling efforts.

2.4 Brown Dwarf Formation by Supersonic Turbulence in Molec-
ular Clouds

Padoan & Nordlund (2004) suggest that Brown Dwarfs are formed directly by the process
of turbulent fragmentation. They described this process as follows: The gas densities and
velocity fields in star-forming clouds are highly non-linear because of the presence of supersonic
turbulence. The turbulent kinetic energy is typically 100 times larger than the gas thermal
energy, and the gas is roughly isothermal, so that very large compressions due to a complex
network of interacting shocks cannot be avoided. Dense cores of any size can be formed in
the turbulent flow, independent of the Jeans mass. Those cores that are massive and dense
enough to be larger than their Jeans mass collapse into protostars, while smaller subcritical
ones reexpand into the turbulent flow.

Based on a simple model of Padoan & Nordlund (2002) the authors are able to relate the power
spectrum of the turbulence, which is a power-law, to the distribution of the core masses. The
core mass distribution then turns out to be a power-law that is close to the Salpeter stellar
initial mass function (IMF) (Salpeter, 1955) if the power-law index [ of the power spectrum
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is chosen as in Boldyrev et al. (2002) with 8 = 1.74. This value is also consistent with
the observed velocity dispersion-size Larson relation (Larson, 1981). Since massive cores are
usually larger than their Jeans mass, we can expect that the high-mass end of the core mass
distribution also represents the the mass distribution of the collapsing cores.

On the other hand, for low-mass cores the probability of the cores to be dense enough to
collapse is determined by the statistical distribution of core density. In order to compute
the collapse probability of low-mass cores the authors assume that the distribution of core
density can be approximated by the log-normal probability density function of the turbulent
gas density and that the core densities and masses are statistically independent. Because of
the nature of the log-normal probability distribution function, even very small substellar cores
have a finite chance to be dense enough to collapse. This probability increases with increasing
Mach number. Therefore, we will get more Brown Dwarfs relative to stars in molecular clouds
with a stronger turbulent velocity field.

The resulting mass distribution of collapsing cores is found to be a power-law for masses larger
than 1M when typical parameters for molecular clouds are used. At smaller masses the mass
distribution flattens, reaches a maximum at a fraction of a solar mass, and then decreases with
decreasing stellar mass. For plausible values of the Mach number and gas density that should
be appropriate for dense cluster-forming regions inside molecular cloud complexes, Padoan
& Nordlund (2004) find very good agreement of their stellar mass function with the IMF of
the young star-forming cluster IC348 observed by Luhman et al. (2003). The model is also
able to explain the very different abundances of Brown Dwarfs relative to stars in Taurus and
Orion, if the turbulent velocity dispersion or the average gas density in Taurus is decreased
by a factor of 2 relative to Orion. Such a decrease is also consistent with the lower velocity
dispersion and density found in Taurus compared to Orion (Padoan & Nordlund, 2004).

However, apart from predicting the overall abundance and general form of the IMF, this model
cannot make any further predictions about the properties of Brown Dwarfs, like kinematics
and multiplicity.

2.5 Brown Dwarfs by Ejection

The basic idea behind the ejection scenario is that protostars are born primarily in groups and
clusters and gravitational interactions in these dense systems may significantly influence, if not
completely determine, the final stellar and substellar mass spectrum (Klessen, 2001; Bonnell
et al., 1997, 2001). The underlying mechanism is, that the ejection of some cluster members
out of their surrounding cloud core, that is caused by the decay of the non-hierarchical multiple
system they initially form in, reduces, if not inhibits, the further accretion of those objects,
thereby limiting their mass. In this picture the final mass of an object is correlated with the
time it is bound to its parent cluster, a correlation that was also recently found by Bate &
Bonnell (2004) in their simulation of large fragmenting molecular clouds. Thus it follows,
that in order to form Brown Dwarfs they must be ejected early in order to stop the accretion
process duly.
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Such dynamical interactions between pre-stellar objects are generally thought to play an im-
portant role during the earliest stages of star-formation. It has been shown that the dynamical
decay of bound, non-hierarchical, small-N multiple systems is able to explain the reduction
of the mean distances between pre-stellar objects from typically a few 100AU, at a time they
start to fragment out of their parental molecular cloud core, down to the typical distances of
pre-stellar and stellar binaries of a few 10AU (Sterzik & Durisen, 1998; van Albada, 1968).
From an observational point of view it as been argued for a long time that stars frequently form
in clusters which then disperse within a few dynamical time scales (Zinnecker et al., 1993).
This is also supported by direct detections of very young and dense small-N clusters (Lada &
Lada, 1991) and by the fact that in star-forming regions the fraction of binaries and bound
multiple systems decreases rapidly with time, implying significant orbital evolution during the
formation process (Lada & Lada, 1991). On the theoretical side, Burkert & Bodenheimer
(1993), Burkert et al. (1997) and many more have demonstrated that the fragmentation of
a turbulent cloud core leads almost always to the formation of multiple fragments in a non-
hierarchical, unstable configuration that decays after some crossing times, confirming these
assumptions.

Therefore, it seems that the assumed initial conditions for the ejection scenario, consisting
of compact non-hierarchical small-V cluster, are frequently met in the earliest stages of star-
formation, making it rather likely for an early ejection to occur. However, the theoretical
predictions of the ejection model are so far either only qualitatively given, as the prediction
of disk sizes and life-times (Reipurth & Clarke, 2001), or if quantitatively then with rather
low statistics, as the binary fractions and separations (Bate et al., 2003; Delgado-Donate
et al., 2003, 2004; Bate & Bonnell, 2004), with the exception of the substellar IMF (Padoan
& Nordlund, 2004; Delgado-Donate et al., 2004; Bate & Bonnell, 2004).

This gave us the motivation to investigate the ejection scenario by means of statistical N-body
experiments with the focus on Brown Dwarf disk and binary properties.



Chapter 3

The Numerical Treatment of the
Few-Body Problem

In this chapter we want to briefly outline the numerical techniques that are necessary to
investigate strongly interacting, non-hierarchical few-body systems. Most of the following
discussion is based on the theory as presented by Stiefel & Scheifele (1971), whereas for the
description of the CHAIN-algorithm we follow closely Mikkola & Aarseth (1990) and Mikkola
& Aarseth (1993).

3.1 Regularization of the Newtonian Equations of Motion in
the Two-Body Problem

Numerical calculations of gravitationally, strongly interacting point-masses were always chal-
lenged because as soon as two bodies get very close to each other, usually called a near
collision, large gravitational forces arise and their orbits are sharply bent. During a numerical
integration the only way to overcome this difficulty is to use a small step length and many
steps of integration during the phase of close approach. Because of truncation and round-off
errors the numerical precision after near collision will be rather poor.

These difficulties are related to the singularity of the Newtonian potential at the positions
of the gravitating masses, characterized by the occurrence of infinite velocities. We are thus
interested in transforming the singular differential equations into regular ones, and we call this
procedure regularization.

In the following discussion we consider the two-body motion in the center of mass frame, which
allows us to write the equations of motion as

— —

av _ K1 (3.1)

dt r2r
with v =1 — 03, 7 =71 — 73, 7 = |7 |, K = G(M;y + M3), where v1 5, 715 and M o are the
velocities, position vectors and masses of the two bodies respectively, and G is the constant
of gravity.
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3.1.1 One-Dimensional Motion

The essential steps in order to transform the Newtonian equations into non-singular differential
equations can be best described if we restrict the motion of the particles to one dimension.
Obviously, under such circumstances the particles do collide with each other, provided their
velocities are not always directed away from each other. By assuming, > 0 the equations of
motion and the energy —hj can be written as

T he0 Eolven (32)

and h; is a constant.

3.1.1.1 First step of regularization

Our first aim is to obtain regular functions describing the motion. The basic idea for perform-
ing this, is to compensate for the infinite increase of the velocity at collision by multiplying v
with an appropriate scaling factor which vanishes at collision. Such a factor is the distance r
itself. A new independent variable s is adopted such that the velocity with respect to s is rv
or p p

r r

Consequently the new variable s, called fictitious time, is defined by
dt = rds.

Transformation from ordinary to fictitious time is performed by

d 1
224
ar P

d2 d? dr d

_ Tis? ds ds

a2 r3

The equations 3.2 of motion and of energy are thus transformed into
r’ —r? + Kr=0 (3.4)
P2 =2 (K’I“ — hk’l“Q) (3.5)

where a prime indicates differentiation with respect to s. The latter relation implies 2/(0) = 0
at collision.

3.1.1.2 Second Step of Regularization

The equation 3.4 of motion is still singular as can be seen by rewriting it as
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At collision the right hand side appears in the undetermined form (% - K ) However, if we
insert equation 3.5 into 3.4, giving the result

7+ 2hr = K, (3.6)

we obtain an elementary differential equation that is perfectly regular.

3.1.1.3 The Harmonic Oscillator

After the second step of regularization we introduce a new coordinate u defined by
r=u’ (3.7)

For the one-dimensional example this is not really necessary as we already obtained a regular
differential equation of motion. However, for the three-dimensional motion a similar coordinate
transformation is necessary to lead to success. If the transformation 3.7 is substituted into
the energy equation 3.5 the differential equation

0/? = K — hyu? (3.8)
is obtained and by using this result the equation 3.4 of motion are transformed into

hug

u+2

u=0. (3.9)
For a positive value of hj this is the differential equation of a harmonic oscillator with the

frequency 4/ %’“ For any value of hj, the nonlinear problem 3.2 of Kepler motion is now reduced
to the linear differential equation 3.9.

3.1.2 Generalization to Three-Dimensional Motion

We introduce a fictitious time s analogous to the one-dimensional case with the same trans-
formation as in equation 3.3, noting now that » = | 77|, i.e. r is the three-dimensional distance
between the bodies. Using this fictitious time s as independent variable the equations 3.1 of
motion become

r7” ' 7T+ KT =0, (3.10)

where ¢ = r. By taking into account the relation

1
P =(T,0) = (7,7 =5 |7,
T T
the energy equation may be written
K 1 02
= =g I

The original equations of motion 3.1 form a system of three differential equations for the
unknown components r,,7,,7, in cartesian coordinates as functions of ¢. The total order is
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six. These equations are replaced by the system 3.10 for the unknowns ¢, r;,r,, 7. as functions
of s and the total order is seven. Thus we should always consider the ordinary time ¢ as a fourth
coordinate of the particles to be determined during the motion. Similar to the one-dimensional
case, the equation 3.10 is still singular and needs to be regularized. In the one-dimensional
case we performed this by inserting into the corresponding equation of motion the energy
equation, but in the three-dimensional case at hand this does not lead us anywhere. As it
turns out, we first have to apply a coordinate transformation similar to 3.7 and then need to
write the energy equation and the equations of motion with the new coordinate @ before we
can substitute them into each other.

A suitable coordinate transformation has been found by Kustaanheimo & Stiefel (1965) and
can be written in matrix notation as

T=LW)u (3.11)
with
uy —u —Uus Uyg
L(w)=| " "~ % (3.12)
us Uy Ul ug
Uy —U3 U —U1

where # is now a four dimensional vector. Here we want to note that we used the convention
that a physical vector (ry,7y,7.) is automatically supplemented to a 4-vector 7 by adding a
fourth component of value zero. Equation 3.11 is called the KS-transformation. This matrix
has the following important properties:

1. L(W) is orthogonal
LY(W)L(W) =rE

with LT being L transposed and E being the unity matrix.

2. The elements of L( %) are linear and homogeneous functions functions of the components
U; thus
L(w) = L(u’)

where the prime denotes differentiation with respect to s.
3. The first column of L(%) is the position vector u.
4. When two vectors u, v satisfy the bilinear relation
U4V] — UV + UgV3 — UVg = 0
then
L)V = L(V) W .
From these properties it follows that

v =2L(u) . (3.13)
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Without going into the detailed derivation of the corresponding energy equation and equations
of motion written in terms of the new variable @, we simply give them here and refer to Stiefel
& Scheifele (1971) for a thorough derivation. The energy relation reads

h
U+ =W =0. (3.14)

These regularized equations of motion then need to be accompanied by the equation for the
physical time to completely determine the solution

t'=(u,u). (3.15)

If we also consider external perturbations, e.g. perturbations of a third body, the right hand
side of equation 3.14 is no longer zero and equation 3.16 becomes instead

R, WP/ 1oV —

W+ —=u ="— ==+ LT (W)F 3.16

u’ + 5 U 5 590 + L' (W) (3.16)

where we have splitted the perturbing force into a part that can be described as a derivative
=

from a perturbing potential V (¢, 7) and another force F' that does not have a potential. In

this case, equations 3.16 and 3.15 need to be accompanied by the equation for the energy

= (g—z, 7/) —2(W.LTF) .
u

We thus arrived from the singular three-dimensional Newtonian equations of total order six
to the regularized equations of total order ten.

3.2 Multiple Regularization

In the preceding section we have considered the regularization of the equations of motion of two
bodies and also gave an expression for the treatment of the perturbed two body motion. Here,
it is important to note that these perturbations are not formally required to be small, but can
be arbitrarily large. However, for large perturbations the regularized time step is required to be
sufficiently small. This can, in extreme cases, counterbalance the gain in accuracy we achieved
by introducing the regularized equations of motion, as the influence of round-off errors, because
of the greater number of time steps, increases. If this perturbation is due to a third body, this
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Figure 3.1: A four-particle regularization chain, where R;, R2, R3 are the interparticle
distances and my, me, ms, my4 are the masses of the bodies.

problem can be avoided by selecting a new regularized pair which incorporates the perturber.
However, for bound triple systems we want to investigate here, the complicated nature of the
motion of closely interacting triple systems would make it then necessary to frequently select a
new pair during the integration, involving many transformations from regularized coordinates
to physical ones and vice versa. These additional transformations during the integration will,
once again, lead to a loss off accuracy by introducing further round-off errors and will also
degrade the efficiency of the algorithm.

Therefore, it is desirable to find a way to avoid frequent switching of the dominant inter-
acting pair, which led to the introduction of multiple regularization methods. By multiple
regularization it is understood that at least two separations in a compact multiple system are
treated specially to remove the two-body singularity. The method we used for our few-body
experiments is the so called 'chain’-method and is presented in the following sections.

3.2.1 The Chain Regularization

The main principle of the chain method is based on the observation that in an N-body
system we can make a chain of interparticle vectors such that all the bodies are connected.
Subsequently all the interactions included in this vector chain can be regularized. An example
of such a chain is given in Fig. 3.1. The chain is constructed in such a way as to include the
smallest interparticle distances and, thus, the dominant two-body forces, while the other less
dominant contributions are left in their singular form. Here we only want to briefly outline
the basic steps required to obtain the equations of motion in the new chain coordinates and
refer the reader to Mikkola & Aarseth (1993) for the full and rather complex expressions.

We obtain the equations of motion in terms of the regularized chain variables from the original
ones by a canonical transformation. For this we consider the N-body Hamiltonian

1 9 m;m;
H=) ool =) == =T-U
m; #].|7“z—7“]|
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where p; and 7; are the physical momenta and coordinates of the mass-points m;, and T
and U are the kinetic energy and the negative of the potential energy respectively. Here, and
subsequently, we use units in which the gravitational constant G = 1 and assume that the
frame of reference is that of the center of mass. Furthermore we only consider the case of an
unperturbed Hamiltonian, as in this thesis we did not consider any external perturbations.

After selecting the chain vectors connecting the N mass points, we relabel these points

1, 2, ..., N along the chain as shown in Fig. 3.1. The next step is to adopt the new canonical
coordinates
Ry = -1,
Ry = iy—i, (3.17)
Ry_1 = 7N —7TN-1

—_
while the corresponding canonical momenta W; are related to old momenta p; by the gener-

ating function
1

- 4 — —
S=> Wi (fiy1— 1)
i=1
which gives the old momenta in terms of the new ones by p; = 95/97;. Thus, the relative
—
momentum vectors W; are obtained recursively by

— —
Wi=Wi1—pr, (k=2 ..,N—=2) (3.18)

— — — _
with W1 = —p; and Wy = py. The momenta W,and corresponding relative coordinates R;
are substituted into the Hamiltonian which becomes

1=/ 1 1\ = 11— —
- 52(_+ )Wi—Z—W“-Wk
]\ Mgt Tk
= em Y omm
k41 iMm;j
— _— - — 3.19
el 1<;2 Ry (319
= <i<j
where the non-chained distances are given by R;; = |} — 73| = |20,/ ﬁkr‘ and the m; are

the masses of the particles.

In order to regularize the Hamiltonian 3.19, we proceed, as we did in section 3.1.2, by first
applying a time transformation and then substituting the KS-transformed coordinates and
momenta. However, here we employ a different time transformation suggested by Mikkola &
Aarseth (1990), which leads to a much better accuracy for the numerical integration. It is
given by

1

CTH+U

where the term (7' + U) is the Lagrangian of our multiple system. After applying this time
transformation to the Hamiltonian 3.19 we obtain a Hamiltonian of the form I" = (H—FE)/(T+

t/
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U) (see Stiefel & Scheifele, 1971), where E is here the numerical value of the Hamiltonian H
evaluated from the initial conditions. The transformations

R = L(G;)3;
W, M (3.20)
2|Q;

define the Hamiltonian in terms of the KS-transformed positions @Z and momenta P, (compare
to relations 3.11 and 3.13), where L denotes the KS-matrix 3.12. The regularized Hamiltonian
I is then given by

1 1= 71 1 2
P=molizntmn) G 2= -0
k=1 N ML Q k=1 Qg

_EN: 1 Bl LY Qk;) (Cgk)ﬁ;ﬁ_ i m;m,;
" |ax

“E|, (3.21)
1<i<j—2 4

‘Qk 1

where P! and L' are the transposed forms of the momentum vectors and the KS-matrix L.
From the regularized Hamiltonian we obtain the equations of motion by the Hamiltonian
equations

Q) = a P = _ o (3.22)

0P 0Qk

where a prime denotes differentiation with respect to the fictitious time s. The explicit expres-
sions for Q)z and ]3,2 together with the Lagrangian (T'4 U) as function of the KS-transformed
variables are given in Mikkola & Aarseth (1993). The differentiation with respect to Qy.of the
part of the Hamiltonian 3.21 that contains the non-chained distances R;; can be carried out by
exploiting that @ is the KS-transform of R, with R= L(Q) @, and the non-chained potential
Upe isUpe =U (é), thus a function of K. The derivative OU,,. / 8@ can then be written in the
form OU,./0Q = 2 L'(Q)OU,./OR (sce also Stiefel & Scheifele, 1971). For the unperturbed
chain, the equations of motion 3.22 then only need to be accompanied by the time equation

t = !
T+U

(3.23)

making the system of regularized differential equations complete. In order to recover the
relative coordinates and momenta from the solution, the relations 3.20 are used.

3.2.2 Algorithmic Implementation

The implementation of the chain regularization consists of the following main steps:

1. Determine the numerical value of the total energy E and of the Lagrangian (7' + U).
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2. Find the chain indices, i.e. the particle indices along the chain.

3. Form the chained vectors ﬁk, W/k (relations 3.17 and 3.18) and transform them to KS-
variables Q, Py (using the inverse of relations 3.20).

4. Advance Qk, ﬁk and t by one ficticious time step (see equations 3.22 and 3.23).

5. Check if we have to switch the chain and if so, find the new chain indices and reconstruct
- — N N
the chain vectors Ry, W} and KS-variables i, Pr. Otherwise leave the chain vectors
and KS-variables untouched.

6. Repeat point 4 to 5 until we reached a given physical time or some other stopping
condition.

7. Transform the KS-variables Qk and ﬁk back to the physical chain vectors EK,WR and
then further to the physical variables 7; and w; using the same relations as in point 3.

An important part of the implementation of the chain regularization method is the chain
selection procedure, which must ensure that the dominant two-body motions are included.
Before the calculation can begin the chain needs to be constructed. First the shortest inter-
particle vector is is determined. Then we proceed by searching for the particle which is closest
to either end of the known chain. This operation is repeated until all the particles have been
included. To facilitate the procedure, it is beneficial to sort all the distances and perform
a sequential search for the missing terms. The main steps to construct a new chain are as
follows:

1. Find the new chain and reconstruct the chain vectors

(a) Transformation of the KS-variables Qk and P, to physical variables Ry, and W/k,
and further to 7, wj;

(b) evaluation and sorting of all mutual distances 7j; = |r; — 75| for i # j and i, j =
1,...,N

(c) relabeling of particle indices along the new chain

(d) formation of new chain vectors R, and W/k

(e) transformation to KS-variables Qy, and P,

It is necessary to check after every integration step if the dominant two-body interactions
are included (point 5 in the chain algorithm). This is because one integration step typically
involves ~ 50 derivative evaluations using the Bulirsch-Stoer method (Bulirsch & Stoer, 1966)
and to integrate a close two-body encounter without regularizations is extremely inefficient
and leads to a significant loss of accuracy. However, repeating the chain construction after
every step might be time consuming and not always necessary. This especially applies to the
case when we have one close pair and a third particle that is at a much wider distance. In
this case we only have to make sure that the shortest distance between the pair is contained
in the chain, while it is not necessary to require that always the shorter distance of the other
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two much larger distances is included in it. This chain can then be integrated without any
modification as long as the close pair and the other particle is well separated.

The actual decision-making algorithm in point 5 of the chain algorithm is simplified, if we
consider only three- and four-body systems, as we will do throughout this thesis. Then the
following simple geometrical consideration is sufficient: adopt the new chain if the smallest dis-
tance is not regularized or the second smallest distance coincides with the separation between
the first and last chain member. An existing chain is therefore maintained during very close
two-body encounters when a temporary transformation to physical variables and consequent
chain reconstruction might lead to loss of accuracy caused by round-off errors.

The actual numerical integration is carried out by the extrapolation method of Bulirsch &
Stoer (1966). This method also provides estimates of the local error. An integration step is
considered to be successful if this local error is less than a pre-defined tolerance. In the chain
algorithm this tolerance is specified with respect to the total energy. As shown in Mikkola &
Aarseth (1990) we can write for the energy error 6H = |H — E|

|H — E|

—  ~ €

(T+0)

where € is the maximum relative error of the coordinates and momenta. By comparing to
the regularized Hamiltonian I' = (H — E)/(T + U) it turns out that the error condition is a
condition on the numerical value of I'itself, leading to éI" ~ €. In order to calculate the error
in I" we can write

0P 0Qx

= > (@i 0B - B 6Gh).

As it can be seen, we can use the energy conservation check without additional computational
overhead, because the coefficients Q)z and 15% are readily available after the integration step,
which also applies to the 5P, and 5@/& values, as they are estimated by the Bulirsch-Stoer
method. In practice we require that every individual term in the above expression is, in
absolute value, less than the specified tolerance.

3.2.3 Implementing Accretion

To allow for mass changes within the regularized chain integration is not straightforward as we
are faced with the difficulty that the above positions and momenta are defined relative to the
center of mass, which changes if the masses change. In addition, the inclusion of accretion into
a multiple regularization scheme has been tried by many different groups more than 20 years
ago without success (private communication Hans Scholl, 2004). Therefore, the only way to
investigate accreting triple systems as we want to do in this thesis, is to first carry out a chain
step leaving the masses of the bodies constant and then update the masses according to a given
user-supplied expression. After that we have to update the center of mass and its velocity as
well as the individual momenta of the bodies and the total energy of the system. How the
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velocities have to be changed depends on the momentum transfer the accreted gas carries onto
the bodies. In the code we treat two extreme cases of gas motion, one where we assume that
the gas is at rest with respect to the reference frame, and one where we assume that the gas is
always moving with the same velocity and direction of the corresponding accreting body. In
the latter case the momentum of the bodies increases while the velocities remain unchanged
during the mass growth, whereas in the former, the momentum remains unchanged and the
velocities are reduced. For a physical justification we refer the reader to Chapter 4 as we are
here only concerned with implementation issues.

The main chain algorithm from section 3.2.2 is modified as follows:

1. Determine the numerical value of the total energy E and of the Lagrangian (T + U).
2. Find the chain indices, i.e. the particle indices along the chain.

3. Form the chained vectors ﬁk, W/k and transform them to KS-variables Qk, ﬁk.

4. Compute accretion effects.

5. Advance Qk, ﬁk and ¢ by one ficticious time step (see equations 3.22 and 3.23).

6. Check if we have to switch the chain and if so, find the new chain indices and reconstruct
- — — -
the chain vectors Ry, W and KS-variables Q, Py.

7. Repeat point 4 to 6 until we reached a given physical time or some other stopping
condition.

8. Transform the KS-variables Qk and ﬁk back to the physical chain vectors EK,W/k and
then further to the physical variables 7; and ;.

The accretion procedure takes as input argument the current time and the time difference
since its last invocation and returns the new masses, relative coordinates, momenta and the
total energy to the main routine. For the chain vectors the same chain as the previously
generated is used. This is justified as long as the time steps or accretion rates are sufficiently
small so that the effect of mass growth does not significantly deform this chain. The algorithm
is as follows:

1. Compute accretion effects.

(a) Transform the KS-variables back to the physical chain vectors and then further to
the physical variables 7; and ;.

(b) Calculate the new masses according to a user supplied expression.

(c) Change the velocities according to an assumed momentum transfer prescription
(user supplied).

(d) Update the center of mass and velocity.

(e) Update the physical chain vectors using the same chain as previously generated.
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(f) Transform the physical chain vectors to the KS-transformed variables.
(g) Update the total energy of the system.

(h) Return the new chain variables, energy and masses.

As it will be shown in Chapter 4, for the accretion rates and initial conditions of the triple
systems used in our simulations, we find that this implementation of accretion leads to a time-
dependent total energy that matches our analytical predictions very well (see section 4.2.2).
Our implementation, therefore, seems to be correct for our purposes.



Chapter 4

The Decay of Accreting Triple Systems
as Brown Dwarf Formation Scenario

In this chapter we employ the chain method as explained in Chapter 3 in order to investigate
the decay of accreting triple systems and their relation to the ejection scenario as Brown Dwarf
formation scenario. We consider the statistics of the properties of single and binary Brown
Dwarfs that formed by ejection in dependence of the accretion rate and gas motion of the
accreted gas. We then compare the obtained Brown Dwarf properties to observations and can
thus draw conclusions about the viability of the ejection scenario as Brown Dwarf formation
scenario.

In section 4.1 we briefly highlight some interesting theoretical studies that have been recently
done regarding decaying multiples and their relation to Brown Dwarf formation as well as
other Brown Dwarf formation scenarios. In section 4.2 we show what we can expect from
the results of the evolution of accreting multiple systems, in section 4.3 we explain the initial
setup as well as the methodology of our simulations, in section 4.4 we present and discuss our
results and, finally, in section 4.5 we present our conclusions obtained so far.

4.1 Previous Numerical Studies on Brown Dwarf Formation

Bate et al. (2002a) were the first who could follow the fragmentation of a massive cloud,
subject to a turbulent velocity field, down to substellar masses and therefore were able to
draw conclusions about how Brown Dwarfs form. They find that their Brown Dwarfs formed
mainly through instabilities in massive circumstellar disks and, to a lower amount, as ejected
embryos from unstable small-N clusters, confirming these Brown Dwarf formation channels.
Lang (2003) carried out a similar study but instead of focusing on an entire turbulent molecular
cloud he studied many realizations of a collapsing cloud core and its fragmentation. In both
studies the number of Brown Dwarfs did not exceed 100 and there were only a few Brown
Dwarf binaries. Their low frequency of less than 10% is in contradiction with the observed one
of ~ 20% by Close et al. (2003) and Bouy et al. (2003). The reason for this is not very clear

21
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yet. Bate et al. (2003) argue that the disruption of wider Brown Dwarf binaries due to the
closeness of the encounters in their simulation (< 20AU) and exchange interactions with stars,
which replace the lower-mass substellar members with more massive stellar objects, reduce
significantly the number of Brown Dwarf binaries. However, we cannot exclude the possibility
that the softening of the gravitational potential of the fragments, which is of the order of 10AU
in their simulation, limits the formation of close Brown Dwarf binaries with semi-major axis
< 10AU, due to the lower absolute value of the potential energy at those radii compared to
the non-softened potential, which should result in wider binary pairs. The greater semi-major
axis of those binaries also reduces the probability that they survive subsequent gravitational
interactions with the cluster. Given the low absolute numbers of Brown Dwarf binaries in
these simulations it is impossible to obtain any firm statistical result about Brown Dwarf
binaries and to compare them to the observations.

Kroupa & Bouvier (2003) discuss various scenarios of Brown Dwarf formation. They try to
explain the different abundances of Brown Dwarfs seen by Bricefio et al. (2002) in the Taurus
region and the known one in the Orion nebula cluster (Muench et al., 2002; Luhman et al.,
2000) by estimating the kinematics of Brown Dwarfs resulting from the different formation
models. They find that the ejection scenario is able to reproduce the number of Brown Dwarfs
per star consistently if one assumes that in both clusters the same number of Brown Dwarfs are
produced per star and the velocity dispersion of the ejection process is about 2 km-s~!. These
results have the disadvantage that they are in disagreement with the estimated Brown Dwarf
abundance in the galactic field, if this abundance is not overestimated (Kroupa & Bouvier,
2003). If one, on the other hand, drops the assumption that the Brown Dwarf production
rate is independent of the environment and assumes a velocity dispersion of 3km-s~! of the
ejected Brown Dwarfs, they find that low-mass tranquil star-forming regions are more efficient
in producing Brown Dwarfs than the ones like the Orion nebula cluster (ONC). This is also
true even if one adds the Brown Dwarfs formed by photo-evaporation in the ONC.

The question whether the ejection scenario is able to reproduce the high abundance as well
as the binary properties of Brown Dwarfs has been addressed by various authors. Sterzik &
Durisen (2003) calculate pairing and binary statistics by integrating many small-N clusters
neglecting hydrodynamical interaction by the remaining gas as well as any ongoing accretion.
They constrain their initial conditions by a modified clump mass spectrum of Motte et al.
(1998), which determines the total masses of the clusters, and a composite single star mass
spectrum (SMS) which comprises a recently observed one for Brown Dwarfs (Béjar et al., 2001;
Chabrier, 2002) as well as one for hydrogen-burning stars (Kroupa et al., 1993). They find
broad agreement between their results and observations of Brown Dwarf binaries, concluding
that, once Brown Dwarfs have formed in sufficient numbers as to fit the observed Brown-
Dwarf-IMF of the galactic field, the subsequent decay of the emerging multiple systems with
the given constraints can explain their binary properties. They also point out that, because
they scale their results by fixing the virial speed for all systems choosing vy;, = 3.3 km-s ™1,
their Brown Dwarf systems are already in a very compact configuration close to the final
binary separations. Indeed for a triple Brown Dwarf system, all having masses of 0.08M, one
gets a very small Hénon radius Ry, which is a measure of the mean interparticle distance,
with a value of Ry =~ 10 AU. Of course in initially higher order systems the interparticle
distances can be larger, but even for a system of 6 Brown Dwarfs Ry is still as small as
20 AU. This scaling is motivated by the observed mass versus size relation of molecular cloud
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cores that imply that the specific energy and hence the virial speed is a constant and of about
the previously mentioned value. Sterzik & Durisen (2003) simply assume the same relation
between the size of the emerging cluster and its total mass. The findings of Sterzik & Durisen
(2003) therefore imply that from a purely dynamical point of view Brown Dwarfs must have
formed in extremely compact configurations in order to explain the observed Brown Dwarf
binary separations of, e.g. Close et al. (2003). It still has to be shown that fragments, which
will eventually become Brown Dwarfs, are initially mostly formed within such small volumes.
Simulations of Boss (2001) seem to support this view. Bate et al. (2002b) argue in contrary
that at the time the isothermal collapse of a fragment ends and the gas starts to heat up
and finally halts the collapse, the radii of these fragments should be at least 5 AU and their
separations consequently = 10 AU. They also find in their numerical simulation no binary
fragments forming with a lower initial separation. Also Bate et al. (2002a) reported that their
ejected Brown Dwarfs were still undergoing significant accretion before the time of ejection,
therefore contradicting the notion of Brown Dwarfs being “frozen” out of the gas with their
final masses. Furthermore this makes it possible that fragments start out further apart with
lower masses and much lower virial speed, and, due to their growing masses, finally reach the
required compactness to produce tight binaries. Given these difficulties and the ease at which
close binaries are formed if one includes mass growth during the dynamical interactions of the
fragments, accretion seems to us the major ingredient to form close Brown Dwarf binaries.

Delgado-Donate et al. (2003) focus on accreting multiple system by placing 5 accreting seeds
inside a molecular cloud core following their evolution in response to the gravitational potential
of the gas as well as the mutual gravitational interaction between the seeds. They find that
Brown Dwarfs, once an appropriate mass function for the parent cloud cores is chosen, are
readily formed if dynamical interactions with an unstable multiple system are drawn into
account. Even though they came to better statistical results on this formation scenario by
integrating 100 realizations of a multiple system in a cloud, they got only a few Brown Dwarf
binaries. They conclude that if the binary fraction among Brown Dwarfs turns out to be low,
it can easily be explained by these simulations. On the other hand if the binary fraction turns
out to be high, they infer that the core mass function must extend down into the substellar
regime (the core mass function of Motte et al. (1998) they were using has a lower cut off of
0.25Mg). Because of their low Brown Dwarf binary statistics they cannot draw any further
conclusions on the properties of Brown Dwarf binaries.

Given the computational expense of a full hydrodynamical simulation and the necessity to
include mass growth of the fragments it is certainly appropriate to treat the gas accretion and
interaction in an approximate fashion by assuming a certain accretion rate and specifying ad
hoc the momentum the accreted mass adds to the stellar embryos. This approach was shown
to be a good approximation in Bonnell et al. (1997) if one assumes that the gas is at rest and
the bodies are not moving with significantly supersonic velocities. This modeling of dynamical
interaction of the fragments allows for a better statistical description of the resulting Brown
Dwarf properties, including binaries, because of the increased number of systems that can be
integrated within a reasonable amount of time. It also quantifies the influence which accretion
has on the dynamical evolution of multiple systems.
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4.2 Analytical Predictions

4.2.1 The Toy Model

Our analytical model calculations are mainly based on the toy model of Reipurth & Clarke
(2001) that we want to discuss here briefly. These calculations are mainly estimates of
timescales of the physical processes involved.

At first it is assumed that a flattened cloud is collapsing and the central region accretes mass at
a constant rate of M;, fau ~ 6x107%(T/10K) %M@yrfl. This value was obtained by numerical
simulations of Hartmann, Calvet, & Boss (1996) who found a period of nearly constant mass
accretion onto the central region that lasted about 1 free-fall time which corresponds to ~ 10%yr
in this case. For the following discussion we will consider all physical processes on this time
scale. The central part of the cloud is assumed to fragment into 3 fragments and the infalling
mass is equally distributed amongst them. The choice of 3 fragments is motivated by the fact
that a triple system is the smallest possible cluster with the ability to decay into smaller-N
systems, and therefore was chosen as starting point for their investigation. The typical time
scale of such a multiple system is the so-called crossing time t.,, for which Reipurth & Clarke
(2001) use a simplified expression. As it will turn out these simplifications have a strong
impact on the number of Brown Dwarfs formed, so we therefore want to explicitely show
which approximations were used. The crossing time is defined as (Anosova, 1986)

G /ZMiZMiMj
t = L , (4.1)

(—2E)%?

where F is the total Energy and G the gravitational constant. This expression can be simplified
if one sets M; = M for all ¢ and assumes virial equilibrium. We then get

3/2
{ = 3 , (4.2)

e | 3 (%)

i#j

where 7;; is the distance between the body ¢ and j. For three bodies and 7;; = R for all ¢ # j,

this further reduces to
[ (R/AU)?
ter ~ 0.1 ~ -7 4.
0-16 M /Mg (4.3)

This was used in the discussion of Reipurth & Clarke (2001) and will be refered as the R =
const.-approximation for the rest of this paper.

Only a few triple systems are known to be stable while all the other decay after some time,
ejecting a single body and a binary system into opposite directions. Reipurth & Clarke (2001)
now want to estimate how many systems have decayed before their masses grow beyond the
hydrogen-burning limit, which is, for our discussion, set to 0.08 M. The time of such a decay
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can only be described stochastically. Anosova (1986) find that the number of systems that
have not yet decayed at a time ¢ is roughly an exponential function over time, characterized
by the half life of the decay 7. The half life has to be determined numerically and Sterzik
& Durisen (1995) found in their simulations of decaying multiple systems that 95% of their
systems have decayed after 100t.,, giving 7 ~ 23.1¢... To account for the increasing masses
of the fragments the mass M is considered to be a function of time and, for simplicity, this
function is further assumed to be linear. The mass growth decreases t.. and therefore 7,
increasing the probability that a triple system decays after a time t. Plugging in the time
dependence of M into t.- and assuming a quite conservative value for R, with R = 200 AU,
results in a decay function as shown by Reipurth & Clarke (2001, Fig. 1). In this figure it is
also accounted for that, at the beginning of the formation of the fragments, their interaction
potential is, due to their small masses, still low compared to the potential of the surrounding
gas. Therefore the fragments do not interact significantly until a time T; which, in absence
of any detailed hydrodynamical calculations, cannot be reliably determined and was therefore
set to a time when M = 0.04Mg. This value is quite "pessimistic", as it significantly reduces
the time interval within which the fragments have to decay before they reach the hydrogen
burning limit. In this calculation a third of the systems have decayed before they reached that
mass limit and consequently became Brown Dwarfs. At this point we find it is worth pointing
out that lower accretion rates result in a higher abundance of Brown Dwarfs, although the
decay of the triple systems happens a lot later.

This result shows, according to Reipurth & Clarke (2001), that the ejection scenario is able
to produce many Brown Dwarfs even under quite "pessimistic" assumptions and should be
therefore very efficient in more realistic situations. So they argue that, for instance, the
time the fragments need to reach the hydrogen burning limit greatly increased if the mass
is distributed amongst more than three bodies, resulting in a lower accretion rate for each
Brown Dwarf. Also, they note, the accretion process is stopped earlier if the infalling gas is
not equally distributed among the bodies. A mass difference between them tends to drive out
the lower-mass member by mass segregation, whereby this body accretes even less material
because of the lower gas densities in the outer regions of the cloud. This process drives it even
further out by mass segregation and so forth. This scenario has been named ’competetive
accretion’ and was investigated by Bonnell et al. (2001). We find that the average distance
and mass is also a very conservative choice compared to the one suggested by Sterzik & Durisen
(2003), who effectively place three bodies with a mass of 0.08 M, inside a volume of 10 AU as
pointed out in section 4.1.

While the initial conditions seem to be "pessimistic" in order to produce Brown Dwarfs, there
is one assumption that was too optimistic for triple systems, namely the half life of the decay.
Our own simulations of 1000 decaying triple systems suggest, that only about 55% of all the
systems have decayed after 100¢.., making 7 ~ 87t... Repeating the previous calculation
with the new 7 yields a Brown Dwarf formation probability of only 13%, making the ejection
scenario much less probable if only three fragments are involved. We want to show, however,
that the rather low probability of forming Brown Dwarfs from unstable triple systems is a
dramatic understatement of how efficient this particular model is. The key point that has
been left out in the previous calculation is the fact that while the fragments are growing in
mass the whole multiple system shrinks in size, making R a function of time. But to account
for this effect we first need to have a closer look at the change of energy of an accreting triple
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system which also requires some consideration on how mass is accreted onto the bodies.

4.2.2 The Energy of Accreting Multiples

To obtain an expression for the energy of accreting bodies we first have to consider how much
momentum the infalling gas carries onto them. The first case we want to look at is accretion
of gas at rest, which means that the momentum of the fragments is not changed when the
mass is increased. The change of the momentum is therefore only due to the gravitational
force between the bodies. The Newtonian equations therefore read

dM,; dv; M; M ry;
Lvi4 — M, = E kit Ak B I 4.4
dt Vit dt G Py ( T@'Zj rij) ( )

The difference to the equations of motion with constant masses is the term dM;/dt - v; which
can also be seen as an additional velocity dependent friction term, and thus will be treated
like an external force in the following discussion. In the cluster simulations of Bonnell et al.
(1997) this approximation was shown to reflect the evolution of the total energy of the cluster
over time of their fully hydrodynamical calculation sufficiently well as long as the bodies do
not move significantly supersonic. As we expect our fragments to move with a speed of the
order of 1km/s, which is about 4 times higher than the typical sound speed of a cold molecular
cloud core, this approximation should still be an underestimate.

To derive the energy equation for multiple systems, accreting gas at rest, we multiply both
sides of equation 4.4 with v; and rearrange it to give

w2 () en () @

r
i i#j K

with o VM
_ 22 iy
E_Z(QUZ) GZ< = ) (4.6)
( i#]
Splitting up F in kinetic and potential Energy, Fy;, and E,,, equation 4.5 becomes

dE M M
P _MEkin +2 MEpot (4.7)

where we set M; = M and M; = M for all i as we will only consider equal mass systems in
this paper. Assuming virial equilibrium, that gives

1

5 Epot = E (4.8)
and
Eyin =—F, (4.9)
finally leads to ]
& _ 5- M) E. (4.10)

dt " M(1)



4.2. ANALYTICAL PREDICTIONS 27

This is a linear first-order differential equation with time varying parameters and has the
solution

M (u)
M du | . (4.11)

E(t) = Ep - exp /5- )
0

By setting M = M -t+ My and M = const. we obtain the final energy equation for our model
with accretion of gas at rest

. 5
E(t) =E, - (%t + 1) : (4.12)

As is easily seen the energy depends strongly on the accretion rate M and decreases, due to
Ey < 0, with the 5*" power of ¢, making the system shrink extremely quickly. This expression

. 5
also shows that the typical time scale at which the systems shrinks goes with ~ (M /MO) ,
i.e. with the accretion time scale to the power of 5 for accretion of gas at rest.

If we compare this with the toy model of Reipurth & Clarke (2001) where the energy equation
reads

<M-t+MO>2
R

with constant R, it can be clearly seen that we get a less steep dependence on ¢t and M if
only the mass growth but not the time dependence of R is considered, underestimating the
compactness of accreting multiple systems, which in turn makes the decay times too long.

E(t) = -3G (4.13)

We also want to see how the energy decreases if the gas is not at rest. For simplicity we assume
that the accreted mass is moving at the same speed and direction as the bodies, thus leaving
the velocities of them unchanged. While it cannot be expected that this type of accretion is
a physically reasonable choice it should nevertheless show the influence of gas motion on our
results. The equations of motion remain unchanged and the energy relation reads

dE M M

and repeating the steps we did to obtain E(¢) for the accretion of gas at rest, we finally get

. 3
M
E(t)=Ey - (ﬁo t 4+ 1) (4.15)
which differs from the solution with accretion of gas at rest only in the value of the exponent.
Now the energy depends less strongly on the accretion rate and ¢ as the typical time scale at
which the system shrinks goes only with the 3" power of the accretion time scale. We should
therefore expect, on average, longer decay times than we would get in the case of accretion of
gas at rest but still shorter time scales as in the toy model of Reipurth & Clarke (2001). For
illustration, we can also assume that the gas has always the same velocity but the opposite
direction as the fragments. This would lead to a value of the exponent of 7, resulting in an
even stronger decrease of the total energy and therefore to even shorter decay times as in the
"accretion-of-gas-at-rest” model.
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Figure 4.1: Comparison of the numerical solution (dotted line) of an accreting triple system
accreting gas at rest with the analytic solution. In addition the analytical solution for accretion
of gas in motion and of counterstreaming gas, as well as the solution using the approximation
R = const. (Reipurth & Clarke, 2001) are shown. It can be clearly seen that the latter
approximation underestimates the absolute value of the total energy by an order of magnitude.

To show the validity of our calculations, we integrate the equations of motion numerically as
will be described in section 4.3 and plot the total energy over time which is shown in Fig. 4.1.
The numerical solution seems to oscillate a little around the equilibrium solution indicating
that the system does not strictly remain virialised. This effect was to be expected as the virial
theorem is not strictly valid here because the velocities of the bodies are not limited at close
collision (see e.g. Landau & Lifshitz 1969, chapter 10). Despite these deviations our numerical
solution matches the predicted energy curve very well. These oscillations seem to be a general
property of strongly gravitationally interacting triple systems as they were also seen in the
study of Anosova et al. (1989) in the virial coeflicient k, defined as k = Ej;,/ | Epot|which is
for Newtonian interactions 1/2. A comparison of their Fig. 3 with our deviations from the
expected energy curve show qualitatively the same behavior as they both oscillate around an
equilibrium solution. It should be mentioned that we start with zero velocities and therefore
are, at the beginning, not in virial equilibrium. This explains why at the beginning the
numerical solution is always above the analytical value. At later times (here after about
2000 yr), which correspond to the first two collisions, the numerical solution lies on average
close to our analytical estimate. Also shown in Fig. 4.1 is the assumed energy curve used by
Reipurth & Clarke (2001) which differs by one order of magnitude from our results, regarding
accretion of gas at rest.

4.2.3 The Expected Formation Probability of Brown Dwarfs

Since we found that both our analytically and numerically obtained E(t) agree very well, we
now want to use the analytical solution to obtain the formation probability of Brown Dwarfs
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Figure 4.2: The probability that an equal mass triple system has not yet decayed after a
time ¢ for the different models. T, is the time when the fragments reach the Brown Dwarf
limit of M = 0.08M, and T; is the time the fragments effectively start to interact with each
other, which was chosen to be the time when they reach 0.04Mg.

repeating the steps done by Reipurth & Clarke (2001), but using the proper half life of the
decay for triple systems of 7 = 87t., as obtained from our calculations. The result is shown
in Fig. 4.2. As it was to be expected from the energy curves of the previous section, the
R = const.-approximation underestimates significantly the number of Brown Dwarfs. The
approximation of 'gas in motion’ leads to a six times higher number of Brown Dwarfs and
with the ’gas at rest’-approximation almost all ejected fragments should be Brown Dwarfs. For
our numerical investigation that follows, however, we do not expect that all ejected fragments
have a mass lower than 0.08My. We find that there is a significant number of meta-stable and
stable systems with extremely long decay times, challenging the assumption that the number
of systems that have not yet decayed is a simple exponential function over time (Binney &
Tremaine, 1987). Furthermore, the determination of the half life of the decay is not unique,
because counting the number of systems that have not yet decayed after any other time as
100t., gives very diverse values of 7, sometimes deviating by a factor of more than 2. Clearly
the question of how to obtain statistically the number of decayed systems as a function of
time needs to be investigated more thoroughly. For this reason the decay curves as shown in
Fig. 4.2 are expected to deviate quite a bit from our numerical results, but we do not expect
this deviation to be an order of magnitude.
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Figure 4.3: Initial configuration of the triple systems (taken from Anosova, 1986). The
components of the triple systems are placed at the points A (—0.5,0), B (4+0.5,0), and C (§, 7).
The point C is chosen randomly within the region D.

4.3 Simulations

4.3.1 Initial Conditions

In order to investigate the ejection scenario numerically we integrate a large number (1000) of
realizations of triple systems with an initial mass of 0.04Mg and with constant mass growth
M. To cover all geometrically possible initial configurations we follow the approach of Anosova
(1986), illustrated in Fig. 4.3, where all three bodies are initially in the z — y-plane and two
bodies are always placed at © = —0.5, y = 0 and = 0.5, y = 0. The position of the third
body is randomly chosen within a region lying in the positive quadrant and embraced by a
unit circle around the point x = —0.5, y = 0 (region D in Fig. 4.3). This arrangement of the
bodies has been proven to be a representative sample for statistical studies of unstable triple
systems by Anosova & Orlov (1994). We then multiply the initial position vectors by 200 AU
to give the desired maximum separation.

The initial velocities of the cluster members are usually derived from the kinematical properties
of the surrounding molecular cloud core. Since the observed ratio of rotational to potential
energy of molecular cloud cores, (3, has been found to be low for most of the cloud cores, with
a value of # = 0.02 (Goodman et al., 1993), we do, for simplicity, neglect any possible initial
uniform rotation of our clusters. This decreases the lifetime of our triple systems, but we do
not expect this effect to be significant for our main results. We also neglect any random motion
the fragments could have due to the thermal as well as the turbulent energy of the cloud. This
approximation seems justified as the temperatures of molecular cloud cores are rather low and,
because the turbulent velocities are thought to be subsonic at the time fragmentation starts,
the turbulent velocities must be rather low as well. However, as it was shown in section 4.2.2
most of our triple systems reached their virial equilibrium state quickly. Thus most of the
observed collapse of the system is due to its dissipative energy change rather than virialisation,
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which is why our results will not change significantly as a function of initial velocities of the
fragments. So, for simplicity, all our fragments start with zero velocities getting the maximum
value of v, for a given three body geometry.

Our choice of initial positions and velocities results in a range of total energies and consequently
virial speeds with most of them having values between 0.6 and 0.8 km - s~!. In this range the
distribution of v, is nearly flat. Thus our initial conditions are, apart from the absolute
value, very similar to the ones favored by Sterzik & Durisen (1998) and used by Sterzik &
Durisen (2003).

During the integration the fragments accrete mass at a given rate which we will vary to
investigate the influence of M on our results. For M we choose 1, 2 and 5 times the value
suggested by Reipurth & Clarke (2001) of Mpc ~ 1.4 -1079Mg - yr—! per fragment for a
cloud with a temperature of 10 K. We further assume a certain radius around the origin
outside of which the accretion of the fragments is stopped if the system has decayed. This
radius serves as an ’effective’ cloud radius, determining the region where the bodies accrete
a significant amount of gas. Because we only stop the accretion of a single body if the triple
system has decayed, we can investigate accreting equal mass systems and limit the influence of
the rather artificial geometry of the accretion region. Otherwise the geometry of the accretion
region would have strong effects on our results through unequal accretion, which would not be
modeled reasonably in this case. In order to decide whether a system has decayed, we employ
two simple escape criteria. First, we require that the escaper and the binary are unbound
with respect to each other, i.e. the total energy of the binary, treated as one body, and the
escaper is positive. Second, we require that the distance between the escaper and the center
of mass of the binary is more than 7 - dy with dy being the initial mean harmonic distance.
Hence our cloud radius has to be larger than 7-2/3dg ;e =~ 462 AU because as soon as the
escaper reaches the end of the accretion region we have to decide whether the system has
decayed and consequently whether we have to stop any further accretion or not. The value
of the minimum cloud radius was obtained by taking into account that the escaper has twice
the speed of the binary and both are moving in opposite directions. Our cloud radius was
chosen to be R, = 600 AU and for comparison we also performed some runs with higher R
but found, that our results do not vary significantly even if we increase this value by a factor
of 2.

As outlined in section 4.2.2, we will investigate two cases of momentum transfer during mass
growth, one with zero momentum transfer (gas is at rest) and one with a momentum that
does not change the velocity of the bodies, corresponding to gas that is accreted while having
the same direction and absolute value of the velocity as the bodies. The latter case is there
to unambiguously see the effect when the bodies pick up momentum during accretion.

The integration of the equations of motion are performed with the chain code of Mikkola &
Aarseth (1993) with our modifications as described in Chapter 3. This code gives sufficiently
low errors in the total energy budget. This is a necessary requirement as the total energy
directly relates to the ejection velocities, binary separations and decay times we want to
investigate. In our test calculations of constant-mass triple systems we observed a median
relative error in energy of 10~ !2.
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Figure 4.4: Fraction of systems that ejected a single member with a mass lower than a given
mass m. Shown are the results for different accretion rates in multiples of 1.4 107¢ Muyr~! of
gas at rest. The dashed line represents the estimate of Reipurth & Clarke (2001) of ejected
embryos with a lower mass than 0.08 Mg. It can be clearly seen that only if the accretion
rate is 5 times the value suggested by Reipurth & Clarke (2001) the number of Brown Dwarfs
match their estimate.

4.4 Results

4.4.1 Number of Brown Dwarfs

In Fig. 4.4 the fraction of systems, accreting gas at rest, that ejected a single member with a
mass lower than a given mass m is shown. As indicative from the discussion in section 4.2.3
the number of Brown Dwarfs in our simulation is lower (84%) than the analytically obtained
value (nearly 100%). Since we measured the mass of the ejected embryo at the cloud edge, the
masses are generally higher than at the time of decay which was predicted in our analytical
model. This difference, however, is only of the order of a few percent and can, therefore, not
explain the gap between our numerical and analytical results. Furthermore, the influence of the
accretion radius on the decay times of the systems turned out to be negligible. Nevertheless,
the fraction of systems that produced Brown Dwarfs is almost three times higher than was
assumed by Reipurth & Clarke (2001) and more than six times higher as in the R = const.-
approximation for triple systems. Considering that in reality the accretion process is likely to
be competitive, increasing the formation probability of Brown Dwarfs, as outlined in section
4.2, our numerical results seem to confirm that the ejection scenario can be very efficient even
if one only considers three fragments. It must be mentioned that the “accretion-of-gas-at-rest
approximation” is only valid if the fragments are moving at subsonic velocities (Bonnell et al.,
1997). However, the average velocity of our bodies is of the order of a few km-s~!. Therefore
we still underestimate the decrease in energy of the systems, as additional drag forces from
the gas, caused by the bodies exciting wakes in their passage, are not taken into account.
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Figure 4.5: Fraction of systems that ejected a single member with a mass lower than a given
mass m. Shown are the results for different rates of accretion of gas in ’extreme’ motion in
multiples of 1.4107% Moyr—!. The dashed line represents the estimate of Reipurth & Clarke
(2001) of ejected embryos with a lower mass than 0.08 M. As in the case of accretion of
gas at rest, the number of Brown Dwarfs in our simulation is significantly higher than they
assumed.

We also show in Fig. 4.4 the number of Brown Dwarfs obtained at higher accretion rates.
It can be seen that the number of Brown Dwarfs decreases with increasing M and only if
the accretion rate is 5 times the value suggested by Reipurth & Clarke (2001) one gets about
the same number of Brown Dwarfs as they obtained. This once more demonstrates that the
shrinkage of the system, reflected by the time dependence of R, and the interaction with
the gas decreases greatly the total energy of the triple system at a given M and, therefore,
increases the decay probability before the hydrogen-burning limit is reached. It also shows
that the decay curve over the time ¢ cannot be expressed by a single exponential because of
the significant gap between our analytical and numerical results.

Fig. 4.5 shows the fraction of ejected fragments with a lower mass than a given mass m,
accreting gas in ’extreme’ motion. As in the case of accretion of gas at rest, the number of
Brown Dwarfs in our simulations is lower than we expected from our analytical calculations.
The difference, however, of about 9% is considerably smaller than the difference in the case
of accretion of gas at rest, which was 18%. Increasing the accretion rate causes the number of
Brown Dwarfs to decrease and in this case a little more than twice the suggested value of M
is necessary to obtain the same number of Brown Dwarfs as anticipated by Reipurth & Clarke
(2001).

4.4.2 Decay Times

In Fig. 4.6 the cumulative distribution of the decay times of accreting triple systems is shown
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Figure 4.6: Fraction of systems that decayed before a time ¢ in initial (M = Mj) crossing
times. The solid lines represent the results for triples accreting gas at rest (open circles) and
for triples accreting gas in motion (open squares). For comparison the results of decaying
triple systems with constant mass of M = 0.04, 0.2, 0.4 Mg, are also shown (dashed lines).

and compared to those of decaying systems of constant mass. As it was expected due to the
decrease in total energy over time, the decay probability of accreting triples quickly exceeds
the time for a constant mass of M = 0.04 My, and after some crossing times even those with
M = 0.2Mg and M = 0.4 Mg. The different slopes of the curves for the different accretion
models reflect the different time dependence on the total energy. Due to the different time
dependence, the decay probability of the triple systems accreting gas at rest is generally
higher than that of the triple systems accreting gas in motion. It is worth pointing out that
the maximum fragment mass reached in our experiments with accretion is still lower than
0.4 M, for the accretion of gas at rest model and lower than 0.2 Mg in the case of accretion of
gas in motion. This might look counterintuitive because, on average, lower-mass but accreting
triple systems seem to decay earlier than heavier non-accreting systems. However this is a
direct consequence of the time dependence of R explained in section 4.2.2.

4.4.3 Escape Velocities

Fig. 4.7 shows the distribution of escape velocities of ejected Brown Dwarfs which are higher
than a certain velocity v. Compared to constant-mass systems, the escape velocities are
considerably higher for triple systems accreting gas at rest with the median of the distribution
being boosted up by a factor of two and more, depending on the accretion rate.

In our simulation more than 28% of the escaping Brown Dwarfs have a larger velocity than
2km - s~! as opposed to only 10% in the case of constant-mass systems with M = 0.08. One
also finds that there is a tendency towards higher escape velocities with higher accretion rates
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Figure 4.7: Fraction of systems, producing a single ejected Brown Dwarf with a speed larger
than a given velocity v for different accretion rates (a) and different accretion models (b).
Also shown are the results for systems of constant mass (dashed lines).

with more massive Brown Dwarfs being formed at higher M. Half of the Brown Dwarfs that
formed at an accretion rate of 5Mpc obtain an escape velocity of more than 2km - s~!. For
systems that accrete gas in ’extreme’ motion, the escape velocities are only marginally higher
than the velocities for systems of constant mass with M = 0.08 M. The difference to the
escape velocities from systems accreting gas at rest is a direct consequence of the, on average,
lower absolute value of the total energy at decay time of the systems accreting gas in motion.
In all cases the escape velocities of Brown Dwarfs are always higher if they have been ejected
from accreting triples even if compared to the ones from the most massive equal-mass Brown
Dwarf system with constant mass.

These results have a direct implication for the abundance of Brown Dwarfs in stellar systems
as discussed by Kroupa & Bouvier (2003). As we find almost more than a third of the escapers
having velocities exceeding 2km - s~1, they should easily escape their stellar birth cluster if this
cluster has a lower escape velocity than the Taurus cluster with v,z = 1.4km - s~!. Therefore,
it is observationally difficult to detect such free-floating Brown Dwarfs at an advanced age like
that of Taurus. On the other hand, it must be emphasized that for accretion rates that are
not too high, the fraction of escapers with a lower escape velocity than 1.4km -s! is, with
about 50%, very high and one should therefore also expect many Brown Dwarfs to be retained
in similar clusters at a younger age. The observed abundance of Brown Dwarfs in a young
cluster also depends critically on the evolution of the entire cluster which is until today only
well understood for a few of the sufficiently young star-forming regions, such as Taurus, the
Pleiades and the ONC. This makes it hard to draw any conclusions about how Brown Dwarfs
form from the observed abundance alone in other clusters, where there is little information
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about the earlier cluster evolution.

4.4.4 Binary Semi Major Axis

The investigation of binary properties should give tighter constraints on the formation model,
as at least for close binaries it is not expected that they change their orbital parameters a
lot because of possible interactions with other members of the surrounding stellar cluster.
If the surrounding cluster is virialized, then the encounter probability for sufficiently close
encounters is only significant in regions with extreme stellar densities, such as the inner 0.4pc
of the Trapezium cluster (compare to Clarke & Pringle (1991)).

The advantage of our simulations is the ability to investigate a large number of Brown Dwarf
binaries as a result of the neglect of competitive accretion. As in reality, however, competetive
accretion will take place to some degree, we investigated this effect by performing test calcu-
lations of accreting triple systems, where the same infalling mass is unequally distributed. We
found a clear trend towards lower abundances of Brown Dwarf binaries with higher differences
in the accretion rates, while the semi-major axis distribution did not change significantly.
From the latter result and the assumption that the two heaviest bodies always form the bi-
nary, the reason for the lower abundance is simply a result of the binaries having higher masses
for a given total energy at the time of decay which results in lower escape velocities.

In all of our runs, we got a few hundred up to more than 800 binary Brown Dwarfs, depending
on the accretion rate, which makes it possible to obtain statistically meaningful results. In
Fig. 4.8 the distribution of the semi-major axis of our obtained Brown Dwarf binaries is shown
for the different types of accretion as well as for M = 0.08 M, systems of constant mass. In
this plot it is remarkable that the separations of the heaviest possible Brown Dwarf binaries
resulting from the decay of systems with constant mass are on average a lot higher, with its
median being larger by a factor of 5, than the binary separations resulting from accreting lower
mass triples. It can be clearly seen that the semi-major axis distribution for accreting triple
systems is narrower and the peak is at lower values compared to systems of constant mass. The
difference is again caused by the time dependence of the total energy for the different types
of accretion compared to the R = const. case. It is also responsible for reducing the median
binary separation to 1/50th of its original value, R=200. In addition, from this plot one can
infer that the more the momentum of the bodies is reduced, the narrower the semi-major
axis distribution and the lower the peak position of the distribution become. We also found
that the peak of the semi-major axis distribution does not change much with the accretion
rate; only the cut-off is lower for higher rates. This is simply a result of only considering
Brown Dwarf systems, because the final total energy is ~ (M(t)/My)"™, with n depending
on the accretion model, which means that the total energy depends on the final mass of the
fragments and not directly on the accretion rate. Therefore, choosing a maximum mass limit
determines the available maximum energy that can be divided between the kinetic energy of
the escaper and the energy of the binary. The lower cut-off of the distribution for higher
accretion rates is mainly due to the fact that, at higher accretion rates, more massive Brown
Dwarf binaries are formed, which causes the minimum total energy of the system to increase,
thus decreasing the maximum semi-major axis.
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Figure 4.8: Semi major axis distribution for different kinds of accretion at M = Mpc as
well as for constant mass systems with M = 0.08 M. Due to the steeper decrease of the total
energy in the case of accretion of gas at rest the resulting Brown Dwarf binaries have lower
separations than in the case of accretion of gas in ’extreme’ motion.

Surprisingly, the semi-major axis distributions resulting from accreting triple systems already
bear some resemblance to the observed one by Bouy et al. (2003), as there is no Brown Dwarf
binary with a wider separation than 20 AU, and the observed peak is at about the same value
as the observed value a,cqr; ~ 3 AU. The observed sample, however, has the disadvantage that
it is magnitude limited and therefore prone to biases.

To get an approximately unbiased sample it is better to choose the binary Brown Dwarfs over
a finite volume within which both components can be fully resolved. For the sample of Bouy
et al. (2003), this would include all binaries with a distance of less than 25pc (W. Brandner
2004, private communication). The semi-major axis distribution of these objects is shown in
Fig. 4.9 together with our numerically obtained distribution for decaying triples, accreting
gas at rest. There is a remarkable agreement between these two distributions, as they both
have the peak value at a ~ 3 AU and approximately the same, rather steep, slope to both
sides of it. That our distribution fits almost perfectly the one obtained from observations
is certainly a coincidence, given the arbitrariness of our initial conditions. However, what
we can predict is that, according to our model, the distribution cannot be flat for a semi
major axis below the peak value, but must decrease. Because of the detection limit of the
observations of Bouy et al. (2003), it is not clear whether or not the observed distribution
will also decrease with decreasing a. This rather steep decline in our simulation is not a
numerical artifact but rather seems to be a general property of binaries formed directly by
decaying multiple systems without dissipative processes, such as tidal interactions between
the fragments. These effects are known to form much harder, spectroscopic binaries resulting
in a flatter semi-major axis distribution for small separations, as it was observed for G-stars
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Figure 4.9: Semi major axis distribution of the Brown Dwarf binaries obtained in our simula-
tion of decaying triple systems, accreting gas at rest, and the observed volume-limited sample
distribution of Bouy et al. (2003). These two distribution match very well, given the uncer-
tainties (Poisson noise) which are of the order of about a third for the observed distribution.
Both distributions have a peak at about the same value of a = 3 AU and show about the same
degree of asymmetry around the peak.

by Duquennoy & Mayor (1991). If observationally confirmed, the decrease of the semi-major
axis distribution to lower separations would indicate that tidal interactions are less important
for the formation of Brown Dwarf binaries.

The asymmetric shape of our semi-major axis distribution is similar to the one in Sterzik
& Durisen (1998, Fig. 9b), which was obtained by integrating constant mass triple systems
with initial masses constrained by an observed stellar IMF as well as a clump mass spectrum
for the total cluster mass and scaling the results assuming a constant virial speed. The
interesting point here is that our decaying accreting triple systems with equal initial masses
seem to result in a very similar total energy distribution after they stopped accretion without
applying any constraints. It should be mentioned that our semi-major axis distribution is
not strongly influenced by the deviation of our initial virial velocities from the v,; = const.-
assumption of Sterzik & Durisen (2003). We found that even if we choose only triple systems
which have their initial v, in any very narrow range within the flat part of our initial virial
velocity distribution, the asymmetric shape of the semi-major axis distribution is recovered
and, moreover, the obtained distributions hardly differ from the one shown in Fig. 4.9.

4.5 Summary and Discussion

In this work we investigated the influence of accretion and gas interaction on the decay of
gravitating triple systems and its implications on the viability of the ejection scenario as
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Brown Dwarf formation scenario. We have shown that accretion and consequent shrinkage of
triple systems increases the velocities significantly compared to non-accreting systems. The
high velocities of Brown Dwarfs should make it less likely to find them in star-forming clusters
with a shallow potential well and a low escape velocity, but rather in an extended region
around it, usually called the Brown Dwarf halo. This would, at a first glance, contradict
the rather high abundance of Brown Dwarfs observed in Chamaeleon which have the same
spatial distribution as the stellar population (Lopez Marti et al., 2004), but one must also bear
in mind that there is still a substantial fraction of Brown Dwarfs in our simulations having
escape velocities that are rather low compared to typical escape velocities of low-mass star-
forming clusters. These Brown Dwarfs should also share the same kinematics as the stars in
the cluster, which would explain why the velocity dispersion of Brown Dwarfs in Chamaeleon
is very similar to that of the stars (Joergens & Guenther, 2001). Given that the formation
probability of Brown Dwarfs in the ejection scenario can be, in principle, rather high, the
high abundance of them in Chamaeleon does not seem unreasonable as long as there is no
reliable estimate of the combined potential of stars and the remaining gas. Since in this region
there are only a few massive stars, gas removal should be less efficient, therefore increasing
the influence of the gas potential. The abundance and spatial distribution of Brown Dwarfs
within star-forming regions seems to depend on many parameters, which are observationally
not easily accessible making it rather hard to argue convincingly for or against a Brown Dwarf
formation model based on these criteria.

Tighter constraints on a Brown Dwarf formation model should be expected from Brown Dwarf
binary properties. As already mentioned in section 5.1 the Brown Dwarf binary properties
observed so far do not seem to be a natural extension of the binary properties obtained from
the standard star-formation model of Kroupa & Bouvier (2003) for hydrogen-burning stars.
In general the components seem to be very close and their semi-major axes are distributed
in a rather narrow region below =~ 20 AU. As our simulations show such features are readily
obtained if accretion is taken into account during decay. The median of the binary semi-
major axis distribution in the case with accretion turned out to be up to 50 times smaller
compared to the initial inter-particle distances. This reduction in scale made it possible to
start with much larger fragment separations of a few 100AU in order to obtain the observed
close Brown Dwarf binaries. This is also the typical length scale on which fragments are formed
in collapse calculations of molecular cloud cores. To achieve the same Brown Dwarf binary
properties without accretion the fragments must be brought initially in almost unreasonably
close configurations as explained in section 4.1, because the typical binary separation is by a
factor of up to 5 larger than in the case with accretion.

We were also able to represent the semi-major axis distribution of the volume limited sample
of binary Brown Dwarfs of Bouy et al. (2003). A general feature of this distribution is a
rather asymmetric shape which can also be obtained by decaying constant mass systems with
masses constrained by observed clump and stellar mass spectra as well as assuming a constant
virial speed (Sterzik & Durisen, 1998, 2003). The important point to make here is that
we were able to produce such a semi-major axis distribution without any mass constraints
other than our initial masses. Another feature of these distributions is a steep drop off to
both sides of the median, which is not observed for G-type binaries (Duquennoy & Mayor,
1991). This is mainly because we did not include such dissipative processes such as tidal
interaction between fragments as well as interactions between their disks, which tend to reduce
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the binary separations further and circularize their orbits. On the other hand, if this drop-off
to lower separations is confirmed observationally, it would provide some evidence that tidal
interactions might be less important for the evolution of Brown Dwarf binaries than they
are for G-type stars. In general the relative numbers of spectroscopic binaries and those
near the median separation should provide evidence for or against a dynamical origin of an
observed binary distribution. We also found that the Brown Dwarf binary distribution is not
much affected by competitive accretion, as our test calculations of unequally accreting triple
systems indicate. This would mean that the distribution depends only to a lesser degree on
the detailed distribution of mass within the triple system, but this needs to be confirmed in
future studies.

Given the similarities in our distribution to Sterzik & Durisen (1998),it is rather hard to judge
from observations how large the influence may be of other constraints, such as the maximum
total mass of the cluster determined by the mass of the molecular cloud core.

To answer this question, it would be necessary to investigate how the initial properties of
forming clusters relate to the properties of their parental molecular cloud core. Recent studies
seem to indicate that they depend strongly on the remaining turbulent velocity field Goodwin
et al. (2004); Delgado-Donate et al. (2004), but there is yet no detailed investigation on how
this influences the initial properties of the clusters. Delgado-Donate et al. (2004) find wider
configurations in their simulations when the index of the turbulent power spectrum « is as
high as —5, and closer ones for lower indices, but do not report on other quantities such as
initial cluster energy or virial state of the cluster. They further find that for an index of —5
there are fewer Brown Dwarfs forming than at an index of —3. They explain this fact by the
occurrence of wider configurations at the o = —b-case. An alternative explanation could be
given by our model of decaying triple systems accreting gas in ’extreme’ motion, as in the case
of a = —5 the turbulent motion of the gas is on larger scales and, therefore, it is more likely
that the accreted gas is adding some momentum to the bodies, even though not as high as we
did in our simulations.

We have shown analytically as well as numerically that the probability of forming Brown
Dwarfs should be high even for initially moderately compact systems. This is also true without
considering competitive accretion, as competitive accretion will increase the number of Brown
Dwarfs, which our test simulations of unequally accreting triple systems also indicate. Only
if the accretion rate is very high, in our simulations of the order of 107 Mg, - yr~!, forming
Brown Dwarfs by ejection seems less likely especially if the accreted gas changes the momentum
of the bodies. Our analytical calculation furthermore showed that the reason why the ejection
scenario is much more efficient than previously assumed lies in the shrinkage of the system,
reflected by the time dependence of R, which causes the energy to decrease further (see eqn.
4.5). Tt turned out that the total energy, assuming accretion of gas at rest, is proportional
to [(M/Mp) - t]°> and, assuming gas in extreme motion, it is proportional to [(M /M) - t]3
while the time dependence under the R = const.-approximation is only ~ (M -t)?/R. This
convincingly explains the very different formation probabilities, resulting from our numerical
calculations for the different kinds of momentum transport during mass growth, even though
our analytical results differ significantly from our numerical ones. The differences must be
due to the fact that the assumption, that the time of the decay can be described as a single
exponential function with a half-life directly proportional to the crossing time is not strictly
valid, as even varying the half-life of the decay did not reduce this difference significantly.
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We can conclude so far that accretion of gas and the kinematic properties of the accreted
gas during dynamical interactions strongly influence the abundance as well as the dynamical
properties of Brown Dwarfs, and because of the high formation probability and the agreement
between our semi-major axis distribution and the observed one of Bouy et al. (2003), makes
the ejection scenario a viable option for forming single as well as binary Brown Dwarfs if only
three fragments are involved.



Chapter 5

Disks Around Ejected Brown Dwarfs

5.1 Introduction

In this Chapter we investigate disks around Brown Dwarfs that formed by an early ejection out
of an unstable accreting triple system. As we already mentioned in Chapter 1, such an early
ejection is usually accompanied by a very close encounter with other cluster members. First,
this follows from the fact that an encounter leading to escape is usually a close one compared
to the initial size of the multiple system (Aarseth et al., 1994). Second, in order for the decay
to happen early in time, so that the Brown Dwarf cannot grow beyond the substellar limit,
the crossing time of the multiple system has to be short, which in turn requires the initial
system to be rather compact. Such encounters have a strong influence on the properties of
the disks around the pre-stellar objects. From simulations of star-disk encounters performed
by Hall (1997) it became clear that the resulting perturbed disks are truncated down to radii
half the closest encounter distance. Consequently, the disks around ejected Brown Dwarfs
should be very small and therefore their life times short (Reipurth & Clarke, 2001). On the
contrary, active accretion disks have been detected around Brown Dwarfs with an age of up to
10 Myr(Sterzik et al., 2004), which is also the typical life-time of an accretion disk around a T'T
star (see e.g. Liu et al., 2003). At a first glance, this seems to contradict a severe truncation
by close collisions, as due to their shorter life-times they should be less frequently detected,
but accretion disks seem to be at least as common around Brown Dwarfs as they are around
low-mass stars according to the occurance of K —band excess emission (Muench et al., 2001).
However, from observations it was also found that the accretion rates of young Brown Dwarfs
are about two magnitudes lower than for solar-type stars of the same age, and are typically
in the range between 10°Mg - yr~! and 107'2M, - yr~! (Natta et al., 2004; Muzerolle et al.,
2003). These low values make it possible, that even very low-mass disks, with masses as low
as a few Jupiter masses, are able to survive for 10 Myr, and more, around Brown Dwarfs.
Even more so, recent simulations of Padoan et al. (2005) seem to suggest that the observed
accretion features, mainly Ha emission, and the accretion rates derived from them are not
only due to viscous disk accretion but to a larger extent because of accretion of low-density
gas on larger scales of the molecular cloud. Because of the Bondi-Hoyle type of this accretion
process, the observationally long established relation between the accretion rate and the mass

42
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of the accreting object, M o M?, is most elegantly accounted for. For the life-time of severely
truncated disks around Brown Dwarfs, this means that the disk accretion rates could have
much lower values than the rates derived from the observed line profiles, implying an even
larger average life- time for Brown Dwarfs disks for a given disk mass. However, it is so far not
very clear if there is enough gas mass on larger scales in typical low-mass star-forming regions
to account for the certainly low but not negligible accretion rates (H.Klahr, Th. Henning;
private communication). Still, it has to be shown whether close encounter of multiple systems
leading to escape will leave disks around Brown Dwarfs massive enough to survive for 10 Myr.

So far, truncated disk sizes were determined after close two-body encounters (Hall et al., 1996;
Hall, 1997), where the encounter orbits were usually parabolic ones. For large-N cluster, this
type of encounter orbit is assumed to be the most likely one (Ostriker, 1994; Larson, 1990).
For close encounter in bound small-N cluster, however, we will typically have more than two
bodies approaching at the same time with the result, that these encounter orbits deviate
significantly from simple two-body ones. As another consequence, the resulting disk profile
should depend on the closest encounter distances of each of the approaching bodies. Although
close triple approaches have been investigated extensively in the literature (e.g. Aarseth et al.
(1994); Agekian & Anosova (1990, 1991); Anosova & Zavalov (1981)), the closest two-body
encounter distances were unfortunately not considered.

The compactness of a multiple encounter also depends on the total size of the system, which
is indirectly proportional to its total energy. For accreting triple systems, where this size
is getting smaller with time and total mass, the size of the truncated accretion disks will,
therefore, depend on the time of decay of that system. Thus, for a given accretion rate and
initial compactness, there is a correlation between encounter distances and total mass of the
system, with lower-mass systems suffering, on average, less close encounters. Given these
additional parameters and the uncertainties regarding the closest two-body distances in the
general three-body problem, we find it necessary to investigate this problem in more detail by
means of numerical simulations.

The aim of our study is to investigate disk collisions in decaying triple systems that produce
Brown Dwarfs by ejection and to estimate the life-times of these strongly perturbed disks
around the ejected Brown Dwarfs. Given the computational expense of simulating the entire
evolution of a triple system with a disk, we will only simulate the last encounter that finally
leads to decay. Although at that time the disk might already have suffered some close triple
encounter, the last one in an accreting triple system is, on average, the closest one due to the
decreasing total system size.

In section 5.2 we will investigate the encounter parameters of triple approaches leading to
escape. In section 5.3 we will describe our simulations of disk collisions in close triple encoun-
ters. As the outcome of such a collision depends on many parameters we will first simulate
disk collisions in non-accreting triple systems, while we model the disk similar to Hall et al.
(1996), i.e. we neglect the influence of gas pressure, viscosity and self-gravity. This way the
results are scale-free, which enables us to apply them to accreting triple systems under a vari-
ety of initial conditions without the need for further simulations of disk collisions. To account
for viscous evolution in strongly perturbed gaseous disks, we will use the result of Clarke &
Pringle (1993), that the perturbed and highly eccentric disk material recircularizes quickly
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after the encounter, and recircularize our post-encounter disks as well. We then present and
discuss the resulting radial surface density profiles and derive relative disk masses for disks
around ejected bodies. In section 5.4 we will apply our scale-free model to accreting triple
systems and determine their post-encounter sizes. In order to get the absolute disk masses
we use typical parameters of accretion disks around observed Brown Dwarfs and derive abso-
lute disk surface densities. In section 5.4.4 we estimate the disk life-time by integrating the
evolution equation of the surface density for a Keplerian disk (Lynden-Bell & Pringle, 1974),
using the surface density distributions obtained from our disk collision simulations as initial
condition. In section 5.5 we will discuss our results and draw conclusions about the evolution
and life-time of disks around ejected Brown Dwarfs.

5.2 Close Triple Encounters Leading to Escape

5.2.1 Classification of Close Triple Approaches

Most of the work that has been done on disk collisions only dealt with the case of two-body
encounter orbits characterized by periastron distance and eccentricity. As already mentioned
in the Introduction, disk collisions in close triple approaches are characterized by at least two
encounter distances and the encounter orbits deviate significantly from orbits in the two-body
problem.

A classification of encounter orbits in close triple approaches for the general three-body prob-
lem with negative total energy is given in Anosova & Zavalov (1981) and Anosova & Orlov
(1992). In these studies two basic types of orbits during close triple approaches, named ’fly-
by’ and ’exchange’, have been found. Orbits of the fly-by’ type are characterized by a close
passage of one of the components to the center of mass of the system while the other two
bodies form a binary that moves into the opposite direction. Fig. 5.1 and 5.2 show some
typical examples. This type of approach leads in most of the cases to the escape of the body
passing close to the center of mass (Anosova & Orlov, 1992). Anosova & Orlov (1992) further
introduced four subtypes of the 'fly-by’ approach based on the deflection angle, defined as the
angle between the velocity of the ejected body before and after the triple encounter. They
found, that the probability of escape decreases with increasing deflection angle. For close
triple approaches of the ’exchange’ type the escape probability is even lower. These orbits can
be best described as a sequence of two close two-body collisions between the escaper and one
body of the final binary, illustrated in Fig. 5.3.

However, the decay probability depends only to a lesser degree on the type of approach and
mainly on its compactness, with closer approaches having a higher decay probability than
wider ones. In the literature different definitions for the minimum size of a triple system
have been used. Agekian & Anosova (1990) defined it as the minimum separation of the most
distant body with respect to the center of mass, while Aarseth et al. (1994) determined several
geometrical parameters, like the triangular perimeter, at the time when the moment of inertia
is at minimum. Although the so obtained minimum sizes were defined at different times of
the triple interaction, the average distance between the bodies at those times was always less
than the viral system size, confirming that a triple approach leading to escape is always a
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Figure 5.1: A typical example of a 'fly-by’ triple approach leading to escape. The solid line
shows the escaper orbit while the dashed and the dot-dashed line show the orbits of the bodies
that form the binary. Each filled symbol shows the positions of the three bodies at a certain
time, with the numbers reflecting the sequence in time. This particular example shows an
example of a 'fly-by’ of type 1a* according to the classification in Anosova & Orlov (1992),
with a value of the deflection angle of the escaper orbit much lower than 20 degree.
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Figure 5.2: A typical example of a 'fly-by’ triple approach leading to escape. The solid line
shows the escaper orbit while the dashed and the dot-dashed line show the orbits of the bodies
that form the binary. Fach filled symbol shows the positions of the three bodies at a certain
time, with the numbers reflecting the sequence in time. This particular example shows an
example of a fly-by’ of type 1b* according to the classification in Anosova & Orlov (1992),
with a value of the deflection angle of the escaper orbit larger than 20 degree.
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Figure 5.3: A typical example of an 'exchange’ triple approach leading to escape. The solid
line shows the escaper orbit while the dashed and the dot-dashed line show the orbits of the
bodies that form the binary. Each filled symbol shows the positions of the three bodies at a
certain time, with the numbers reflecting the sequence in time.

close one. From these minimum triple sizes and geometrical configurations at those minima,
there is, however, no simple quantitative relation to the minimum two-body distances due to
the complex orbits of the three bodies, and need to be determined by numerical simulations.

Qualitatively, one can already infer some basic properties of disk collisions in triple encounter
from the general classification scheme. Here we assume that the disk mid-plane is in the
orbital plane of the triple. From the orbits shown in Fig. 5.1 to 5.3 it becomes clear that
a disk around the escaper suffers at least two collisions, a prograde and a retrograde one,
for a given direction of rotation of the disk. Depending on the encounter distance between
the escaper and each of the two other bodies, one of these collision types will dominate the
interaction. This is most prominent for ’exchange’ encounters, where the difference of these
distances usually exceeds a factor of 20. Therefore, disk collisions in exchange encounters can
generally be treated like the ones in two-body encounters. However, for encounters of the
fly-by’ type the two-body encounter distances of the escaping body are comparable in most
of the cases and we expect that the resulting disk properties will be significantly different from
the two-body disk collision results. As another consequence of the vastly different encounter
distances in an exchange encounter, the two-body encounter distances are, on average, much
smaller than in the ’fly-by’ encounter for a given virial size. From the result of Agekian &
Anosova (1990), it roughly follows that the minimum separation of the most distant body
is always less than 0.65d, with d being the viral system size, for both types of close triple
encounters leading to escape. Also, from Fig. 5.3 it becomes clear that a disk around the
escaping body in an exchange encounter will suffer two very close two-body encounters of
the same kind, either prograde or retrograde, and with the same body of the final binary.
Therefore, the results of Hall (1997) regarding multiple disk encounters should be directly
applicable in this case.
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Figure 5.4: Parameterization of close triple approaches suitable for our investigation of disk
collisions. 71, ry are the closest two-body encounter distances. The different symbols show
the triple configurations at the time a minimum of the distance between the escaper and one
of the other bodies is reached.

5.2.2 Encounter Parameter for Disk-Collisions

As we found from the previous discussion, disk collisions in "fly-by’ encounters should deviate
the most from pure two-body disk collisions, because of a prograde and retrograde disk en-
counter happening nearly at the same time with comparable strength. This deviation should
be largest if these two encounter distances are equal and should get smaller when their differ-
ence gets larger. Therefore, we parameterize disk collisions in close triple approaches by the
ratio of r1/ry and rp,ip, With rp, = r1 < 7o, where 71, 7o are the closest two body encounter
distances between the escaper and the other two bodies. Fig. 5.4 shows an example of three-
body configurations at the times of the closest two-body distances. For our simulations of
disk collisions we do not consider the dependence of our results on the particular shape of an
orbit as well as other parameters that influence the outcome of disk collisions. This is mainly
because including other parameter would not only increase the parameter space significantly,
but is also very difficult to do in a systematic way. For example, the eccentricity of the per-
turber orbit cannot be easily accounted for as it constantly changes during the encounter and
its time dependence differs significantly for different encounters with similar values of 71 /79
and 7;,;,. For our post-encounter disk models we average over these additional parameter and
should, therefore, expect that our results will substantially scatter around the average model.

In order to get a statistically representative sample of encounter orbits of close triple ap-
proaches leading to escape, we generate the triple positions according to Anosova (1986, Fig.
1) where all three bodies are initially in the x — y-plane and two bodies are always placed
at x = —0.5, y = 0 and x = 0.5, y = 0. The position of the third body is randomly chosen
within a region lying in the positive quadrant and embraced by a unit circle around the point
x = —0.5, y = 0. This arrangement of the bodies has been proven to be a representative sam-
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Figure 5.5: Distribution of the ratio of the closest two-body encounter distances r1/r2. The
dotted line indicates the position of the median, which is at ry/rs ~ 0.4.

ple for statistical studies of unstable triple systems by Anosova & Orlov (1994) and should,
therefore, also lead to a representative sample of close triple approaches leading to escape. We
set the velocities of the bodies to zero initially, as we later want to apply our scale-free results
to the ejected Brown Dwarfs obtained in Chapter 4, where we have chosen the same initial
conditions in the simulations of accreting triple systems. The integration of the equation of
motion is carried out with the CHAIN code of Mikkola & Aarseth (1993) and is stopped if
a binary and a single body are separated by more than 7d while they are gravitationally un-
bound to each other. In total we integrated 1000 triple systems and determined the minimum
two-body distances and their ratios at the last triple approach.

Fig. 5.5 shows the distribution of r1/ry of the last triple encounter before the triple system
decays obtained from our simulation. As it can be clearly seen, 71 /7y is uniformly distributed
in the range (0.05,1) and has a strong peak for values below 0.05. This strong peak was to
be expected because all the close triple encounters of the ’exchange’ type have very small
minimum two-body distance ratios and exchange encounters make up 16% of all the close
triple encounters leading to escape (Anosova & Orlov, 1992). Taking this into account, the
distance ratios of the 'fly-by’ encounters can then be assumed to be uniformly distributed in
the whole range, which is also consistent with a median value of 0.4 for the entire distribution.

Finally, in Fig. 5.6 we plotted the closest two-body encounter distance r,,;, over the ratio
r1/r9 for each close triple encounter that lead to escape in our simulation. As it can bee seen,
for a given ratio of r;/re the minimum two-body distance is almost uniformly distributed
between some maximum value and nearly zero. As mentioned earlier, due to the fact that
there is a maximum size of a close triple encounter above which the triple system does not
break up, there is a correlation between the maximum value of 7,,;, and the ratio ry/ry, which
in this case seems to be almost linear. The lower limit of 7,,;, does not seem to depend on
r1/r2 and may get arbitrarily close to zero.
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Figure 5.6: Minimum distance ry,;, in units of the mean harmonic distance (virial size) over
the ratio Tl/’I“Q.

5.3 Disk Collisions in Close Triple Encounters

5.3.1 Initial Conditions

After determining the encounter parameter of close triple approaches suitable for the investi-
gation of disk collisions, we now want to study the properties of the highly perturbed disks
in dependence on 7,;, and ri/re. We considered 5 different values of r1/rq, 0.9, 0.8, 0.6, 0.5
and 0.2. For each of these values we carried out more than 20 realizations of disk collisions in
triple systems with varying r.,in.

For our disks we choose a thin disk model, neglecting pressure forces and self-gravity which
implies a low disk mass compared to the central mass, with My;sp/Meentrar < 0.1. In this
case Pfalzner et al. (2005) have shown that the self-gravity and pressure forces of the disk can
be neglected. Even for a mass ratio as high as My;sk/Meentrat = 0.1 the angular momentum
and mass transfer is in principle very similar to lower-mass disks apart form a pronounced
“eigen-evolution” of the disk after the collision which is due to its self-gravity. However, in
our case we do not expect this eigen-evolution to be a dominant effect because our disks are
much less massive after the encounter, owing to the much stronger interaction in a close triple
encounter compared to the much wider encounter in Pfalzner et al. (2005).

The disk is composed of 10, 000 test particles initially placed on circular orbits and distributed
axial-symmetrically according to a given radial surface density distribution, which we have
chosen as ¥ = ¥ - (ro/r), with Xy being the surface density at rg. The structure of disks
around very young, deeply embedded objects is still significantly influenced by the infall of
matter from their accretion envelope and hydrodynamical simulations show that the surface
density profiles of these disks are generally rather flat (see e.g. Lin & Pringle (1990) and Yorke
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& Bodenheimer (1999)). Therefore, choosing ¥ oc 7~! for our disk profile seems reasonable,
especially compared to the profile ¥ oc 77125 obtained by Lin & Pringle (1990). In addition,
choosing a flat profile increases the amount of material that gets stripped off the disk as more
particles are initially in the outer disk compared to steeper disk profiles.

In our simulations we only consider cases where the disk mid-plane coincides with the orbital
plane of the triple system, making the disk collisions coplanar. As this type of collision is
most destructive to the disk we overestimate the amount of material that gets stripped off
the disk and consequently underestimate the final disk mass. However, the results of Hall
et al. (1996) indicate that this effect should be rather small, as the amount of material that
remained bound in their simulations hardly changed with inclination. The effect on the disk
profile, however, should be larger because of the larger differences in the energy and angular
momentum transport, and needs to be quantified for disk collisions in triple systems in a
future study.

In absence of detailed hydrodynamical calculations of triple systems in collapsing molecular
clouds we can only speculate about the initial size of the disk before the last encounter. It
seems plausible to us that it should be less than the mean harmonic distance d of the triple
and choose, therefore, an initial radius of d/3 for our calculations. Although it is likely that
the escaping body already suffered a two-body collision that was closer than the one at the last
triple encounter, we restrict ourselves to those cases where the last encounter dominates the
resulting disk profile. If the disk is much smaller due to a previous encounter, the effect of the
last encounter on the disk is rather low, so the properties of the disk in that case are mainly
determined by triple encounters that do not lead to escape. The systematic investigation of
the much larger parameter space of these encounter types is, however, beyond the scope of
the present work. Apart from that, we might expect that due to the infall of material in a
collapsing cloud core, the disk should constantly gain mass as long as it resides in the core,
which should partly compensate the mass loss due to previous close encounters.

For all of our calculations we choose a fixed radial extent of the disk, ranging from 0.1 to
20 AU, covering more than two orders of magnitude in radius. We then adjust d, the mean
harmonic size of the triple system, so that the outer radius of the disk corresponds to 1/3d. In
order to reduce the effect of the artificial inner boundary we only carry out disk collisions with
Tmin > 1.5 AU. We start our calculations at a time when the maximum separation between
two bodies is 1d and stop if it is more than 4d. Although we found that varying the initial
separation influences our results significantly, there was no systematic change. This is mainly
because of the rather chaotic motion of the triple system before the last encounter, resulting
in very different initial orbital configurations at a given maximum separation of the bodies for
different triple encounters even if those encounters have very similar values 71 /o and 7.
Together with the neglect of all the other parameters mentioned in section 5.2.2 this should
reduce the direct correlation between the post-encounter disk profiles and our set of encounter
parameter. As we will find later, the correlation is still strong enough to allow for a scale-free
model.

In order to integrate 10,000 test particles efficiently one has to make a compromise between
accuracy and runtime. While the motion of the triple system can be integrated with a median
accuracy of 1072 in total energy within a very short time using the CHAIN algorithm (Mikkola
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& Aarseth, 1993), to maintain such an accuracy level during the whole disk collision calculation
for the motion of the test particles would require a huge amount of CPU time. The main reason
for this is the rather large radial extent of our disk and the extremely small time scale of the
motion of particles with small disk radii compared to the crossing time of the triple system.
We therefore decided to integrate the test particle motion with the 5th order Runge-Kutta
Cash-Karp scheme (see Press (1993)) with adaptive time-step control, which conserved the
total energy of an undisturbed disk with an accuracy of 1076 over 10 orbital periods of the
outer rim of the disk. This makes it possible to integrate many realizations of disk collisions
in triple encounters while still ensuring a reasonable accuracy of the particle motion over the
time of integration, which was on average between 10 and 20 outer orbital periods in our
simulation runs.

In our code we use two integration schemes to advance the entire system in time, the CHAIN
algorithm for the triple system and the Runge-Kutta scheme for the mass-less disk particles.
Because of the smaller time scale of the particle motion around the ejected body, the particles
are advanced on smaller timesteps compared to the much larger time-steps of the triple system.
To couple the particle motion to the motion of the triple system, the force of the triple system
acting on the mass-less particles is treated as a time varying external force in the Runge-
Kutta scheme. In order to obtain this force at a time required by the Runge-Kutta scheme,
the triple system is integrated from a previous configuration of a regular CHAIN step up to
this particular point. The triple configurations obtained at those times are, however, not used
to advance the triple system further. This is to reduce the influence of accumulating round-off
errors caused by having a much larger number of CHAIN steps than actually required by the
corresponding accuracy criterion.

5.3.2 Disk Profiles

Fig. 5.7 shows a typical example of a recircularized radial surface density disk profile after a
close triple encounter, together with its initial profile in a log-log diagram. Many features of
the radial disk profile seen in this diagram are similar to the results for parabolic two-body
encounters investigated by Hall (1997), e.g., the disks are severely truncated and the surface
density drops by orders of magnitudes in the outer disk regions. Also, the inclusion of the
viscous evolution of the disk by recircularizing the disk material further depletes the outer
disk regions, because at larger radii the disk material looses much angular momentum and,
therefore, ends up at smaller radii (Hall, 1997; Hall et al., 1996). This has also the effect that
in the inner regions of the disk the surface density is enhanced relative to the initial density.
We also find, as in Hall (1997), that the surface density of the outer parts of the disk can be
described by an exponential function. However, Hall (1997) gave no detailed description of
the radial structure of the inner disk, where most of the disk mass resides.

From our simulations we found that most of our disk profiles can be divided into three distinct
regions, a power-law region with > o r~1 for disk radii below 0.27,,;, and two regions, located
between 0.2 and 0.77,,;,and above 0.77,,;,, where the surface density decreases exponentially
as ¥ o exp(log(1/2) r/7), with the outer region being flatter, i.e. having a larger full-width-
half-value 7, than the inner one. At 0.2r,,;, Kobayashi & Ida (2001) also find that the structure
of the disk is changing by investigating the eccentricity change of the disk material after a
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Figure 5.7: Model of the truncated accretion disk surface density profile. Shown is the initial
as well as the truncated, recircularized profile, with the thin solid lines representing the profiles
from one of our simulations and the bold lines the fitted curves on a log-log scale (a) and on
a semi-log scale (b). The recircularized profile can be divided into three different regions.
Below 0.2 71,5, it has the same power-law shape as the initial profile, but with ¥ increased by
a factor of ~ 1.7. For larger disk radii there are two regions, between 0.2 7,,;, and 0.7 r,;,and
above 0.7 ry,in, that can be fitted with an exponential profile, ¥ o exp(log(1/2) r/7), having
different slopes, 71 and 75 (here 71 & 0.0647,;, and 7o ~ 0.27,in ).
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prograde encounter. Inside that radius the disk is only weakly perturbed, whereas outside of it,
resonances lead to strong perturbations. Although only strictly valid for parabolic encounters,
they also find that this boundary is only weakly dependent on the eccentricity of the perturber.
In our simulations the eccentricity of the perturber with the closest encounter distance was
always below 2.5 at the time of closest approach and therefore the region was at most shifted
to 0.247,,,;, which can be neglected given the uncertainties in our fits.

As already mentioned, in the inner power-law region the surface density is enhanced relative
to the initial surface density and as we can see here, it is increased by a constant factor, which
varied in our simulations between 1.5 and 2. This factor is similar to the surface density
enhancement for the parabolic, retrograde encounters of Hall (1997) at r = 0.47,,:,,, although
in all our runs we observed this increase at somewhat lower radii. This might be partly
due to the influence of the prograde encounter, as Hall (1997) observes the enhancement at
0.257,;y, for this case, but also because of the, on average, higher eccentricity at the time of
closest approach. Another consequence of the higher eccentricity of the orbits might be that
the density enhancement never exceeded a factor of 2, in contrast to the prograde, parabolic
encounters in Hall (1997), where the surface density was 5 times higher than its initial value.
However, as we will see in section 5.3.3, even when the eccentricities are close to the parabolic
case, the disks surface densities are not as strongly enhanced in the inner region as in that
case, which indicates that the higher eccentricities have a rather limited influence on the disk
structure. The reason for the lower surface density enhancement has rather something to do
with the dynamics of the triple encounters that cannot be sufficiently described in terms of
two-body encounters, as we will discuss in section 5.3.3.

In order to find out how the surface density profile is related to the encounter parameter
T'min and r1/re, we fitted for each of our obtained post-encounter disk profiles two exponential
functions to the outer two regions and determined the full-width-half values 71, for the region
between 0.2 and 0.77,,;, and 7o, for the region outside 0.77,,;,. We then plotted these values
over T, for each ri/ry separately. We found that, while the uncertainties of the values for
71 where mostly between 2% and 10%, they were much larger for 75, mainly because of the
much lower number of particles left in the outer regions of the disk. In those regions many
particles are stripped off the disk and the remaining ones are recircularized to smaller radii,
due to their much smaller angular momentum. Therefore, we can give for most of the ry/ry
values we investigated only upper limits for 7.

Fig. 5.8 to 5.12 show 7 in dependence on 7y, for different values of r1/ry. In all cases
71 increases with increasing ry,;, which means that for larger r,,;, the radial surface density
disk profile gets flatter in this region. Furthermore, 7 seems to depend linearly on r,;,.
However, we find that the scatter of the values around this function is much larger than the
uncertainties in determining 7. As already mentioned in section 5.2.2 and 5.3.1 the reason
for the large scatter is because of the reduction to only two parameters describing the much
more complex triple interaction. Furthermore, we find no significant difference between triple
collisions, where the disk suffered a retrograde or a prograde encounter at the time the ejected
body reached the closest encounter distance r,,,. This indicates that the orientation of the
disk plays only a minor role and most of the uncertainty comes from the complexity of the
encounter orbit.!

! Also, we did not find that the deviations of 7, correlate with any other parameter we investigated, like the
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Figure 5.8: Full-width-half-value 71 over the smallest encounter distance r,,;, for ri/ro ~
0.95. The behavior can be approximately described by a linear function, with a slope of
0.064 £+ 0.005. However, the deviations from this linear function cannot be explained by the
errors of 7. For r,,;, larger than 10 AU 71 scatters more strongly than for values below 10AU,
which cannot be directly correlated to any other change in the orbital parameters of the triple
encounters.
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Figure 5.9: Full-width-half value 7j0ver the smallest encounter distance r,,;, for r1/re = 0.8.
It can be approximately described as a linear function, with a slope of 0.076 + 0.006. As in
the case of r1/ry = 0.95, for values of r,,,;, above 10 AU the values of 71 seem to deviate more
strongly, whereby here they are always below the average linear increase for r,;, < 10 AU.
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Figure 5.10: Full-width-half-value mover the smallest encounter distance 7, for r1/ro ~
0.6. The solid line is the linear fit to the data, with a slope of 0.084 4+ 0.005. This value is
very similar to the ones obtained for other 71 /79 in the same range of r,,;, < 10 AU.
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Figure 5.11: Full-width-half-value 71 over the smallest encounter distance 7, for ri/ro ~
0.5. The solid line is the linear fit to the data, with a slope of 0.085 + 0.008. Although higher
than for other values of 71 /79, the slope is not significantly different, given the rather large
scatter of the data.
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Figure 5.12: Full-width-half-value 71 over the smallest encounter distance 7,,;, for ri/ro ~
0.2. The solid line is the linear fit to the data, with a slope of 0.16 4 0.03. Despite the rather
larger scatter, the slope is significantly higher than for larger values of ry/rs.

For each of the values of r; /ro we determined the slope of the linear fit with the corresponding
error and plotted these values over r1/r in Fig. 5.13 . As can be readily seen, for values of
r1/72 lower than 0.5 there is only a weak increase in the slope of 71(7in) and, considering
the errors, it is not absolutely certain if the slope at r1/ro = 0.5 is really larger than the
one at r1/re = 0.95 or if this is an effect of the limited number of points available for the
fit. In addition, one should also consider that the amount of angular momentum transferred
from the orbit of the triple systems to the disk depends on the relative size of the disk, with
respect to Tpin, (Hall et al., 1996) and, therefore, influences the radius of the recircularized
disk material as well as the overall density distribution. The results of Hall et al. (1996) clearly
show that the angular momentum transport is not a simple function of the relative disk radius
and, therefore, the dependence of the recircularized disk profile on the encounter radius is
usually not the same for different 7,;,. Since the range of ry,;, was lower for ri/ro = 0.5
than for r1/ro = 0.95 as shown in section 5.2.2, the lower value of the slope of 71 (7min) for
r1/r2 = 0.95 could also be caused by a change of the functional dependence of the angular
momentum transport for encounters with 7,,:, > 10 AU for our disks , which corresponds to
disks radii lower than 2r,,;,. This assumption is supported by the angular momentum transfer
curves for prograde parabolic encounters in Hall et al. (1996, their Fig. 7b). For retrograde
encounters there is no such change but since for r;/ro = 0.95 the retrograde and prograde
encounters are nearly of equal strength, the prograde encounter will always affect the disk
profile significantly.

For encounters with 1 /7o < 0.5 we find that the slope of 71 (r,,:,,) increases much stronger and
nearly all values of 71 for r1 /ro = 0.2 were larger than the corresponding values for r1 /ro > 0.5.

eccentricity of the perturber and the escape velocity of the ejected body. We therefore come to the conclusion
that the value of 71 must depend on many parameters in a rather complex way, which, in order to investigate
further, would require us to cover a much larger parameter space than we can currently study.



5.3. DISK COLLISIONS IN CLOSE TRIPLE ENCOUNTERS o7

0.2 7

0.15— —

0.1 —

0.05 | | | |
0 . . .

Figure 5.13: Slope of the linear change of 71 with r,,,;,, over r1 /ry. The error bars of the slope
represent the errors of the linear fit which were always larger than the errors of the individual
71. The horizontal error bars represent the rj/ro-intervals from which we have chosen the
individual triple collisions.

This clearly shows that at least in this regime the radial surface density distribution depends
strongly on the parameter 7 /79 and leads to disk profiles which are generally much flatter for
lower values of 71 /7.

For the application of these results to encounters with different values of r1 /ry we fitted the
data in the range (0.5,1) linearly and for lower values we interpolate between the points at
r1/r2 = 0.5 and r1/re = 0.2, as shown by the solid lines in Fig. 5.13.

As mentioned earlier, the uncertainty in the values or 7 are much larger than they are for
71 because of the lower number of particles left in the outer disk regions. Only in the case
of r1/ro = 0.2 we could determine 75 with comparable accuracy as 71. Consequently, only
in this case it was possible to determine the slope as of To(7,) with a value of 0.2 within
an uncertainty of 15%. In all the other cases we can only say that ao must be between 0.1
and 0.2. Based on our data we did not find that the slope changes with r1/ry and therefore
assumed for the further discussion a value of as = 0.2 for all r;/ry. Although, that is an
overestimate for most of our disks after a triple encounter with r1/ro > 0.5, this choice has
little or no influence on our further simulations of the viscous evolution of the disk, as we will
see that in those cases the outer parts of the disk contain less than 6% of the total disk mass.

From these results we can now construct a scale-free model of the post-encounter radial surface
density profile by substituting 71 2 with the linear fits we obtained for the different values of
r1/r2 and taking into account the density enhancement relative to the original disk profile for
the region below 0.2r,,;, by multiplying it with a constant factor k. Thus, the surface density
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profile takes the following form:

o ;17 <0270
Y=Y, k- 0-2:(;”'" -G - exp (log(l/Z) . aﬂfmm> 302700 <1 < 0.77min (5.1)
Gar—a b-exp <log(1/2) : azrcnm) ;1 > 0.7 min

where ¢ is the radius at which the initial profile has a value of ¥y and a and b are constants
chosen to ensure that ¥ is a steady function and are given by

i = oxp <10g(1/2) . %) o

b = exp <10g(1/2) 0.7 (ail - a%»_l :

The values of a; 2 for a given value of ry/ry are chosen according to our linear fits shown in
Fig. 5.13. By replacing 71 2(rmin) With a1 ormin we neglect the small positive intercept of
the linear fits for simplicity, underestimating the values of 712 in our model. Therefore, the
derived absolute disk sizes and masses represent lower limits.

S]
I

5.3.3 Relative Disk Masses

From our model surface density profile we can now determine how the total disk mass changes
with 7., for a given value of r1/ro and calculate the size of the disk, where we define this
size as the radius rqgy within which 90% of the total disk mass is contained. We can then
compare the disk sizes with the result from parabolic two-body disk encounters of Hall et al.
(1996), who found rgge, = 0.57min 2

In order to obtain the disk mass Mp from our model we integrate equation 5.1 over the radius

r
o

Mp :27['-/7“-2(7"). (5.2)
0
The general solution can then be written in the form

Mp=2w-k-Xg-70" (02 +M1(a1) + Mg(al,ag)) * Tmin (53)

where M o are the relative masses of the outer, r > 0.2r,;,, disk regions with respect to the
mass of a disk with ¥ % extending to 7,;,. As it can be seen, in our model the disk mass
is directly proportional to 7., for given values of a1 2, which is also consistent with the disk
masses we get from our simulations, shown in Fig. 5.14 to 5.18. In these figures we plotted
for each value of 1 /7o the masses of the disks in units of the initial disk mass over 7, and
found that the values are linearly correlated with a correlation factor larger than 95%. The
values of M o together with rggy for each value of 1 /r2 we investigated are shown in table
5.1. Also shown is the fraction of the total post-encounter disk mass that is contained within

*Here rmin corresponds to the periastron distance.
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Figure 5.14: Disk mass in units of the initial disk mass over the smallest encounter distance
T'min for r1/ra = 0.95. The solid line is the linear fit to the data, with a slope of 0.0296+0.0007.
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Figure 5.15: Disk mass in units of the initial disk mass over the smallest encounter distance
T'min for 71/r9 = 0.8. The solid line is the linear fit to the data, with a slope of 0.031 + 0.001.
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Figure 5.16: Disk mass in units of the initial disk mass over the smallest encounter distance
T'min for 71/r9 = 0.6. The solid line is the linear fit to the data, with a slope of 0.034 + 0.002.
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Figure 5.17: Disk mass in units of the initial disk mass over the smallest encounter distance
Tmin for r1/ro = 0.5. The solid line is the linear fit to the data, with a slope of 0.036 + 0.002.
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Figure 5.18: Disk mass in units of the initial disk mass over the smallest encounter distance
T'min for 71/r9 = 0.2. The solid line is the linear fit to the data, with a slope of 0.065 %+ 0.005.

lr/ra | M, | M,y ‘ My | 790% (rmin) |
0.95 | 0.2 (60%) | 0.13 (38%) | <0.006 (2%) | _ 0.38
08 | 0.2 (52%) | 0.17 (44%) | <0.015 (4%) | 0.49
0.6 | 0.2 (49%) | 0.19 (46%) | <0.02 (5%) |  0.52
05 |02 (49%) | 0.19 (46%) | <0.02 (5%) |  0.52
02 |02 (27%) | 0.37 (51%) | 0.16 (22%) 1.0

Table 5.1: Relative mass fractions M; 1 o with respect to the mass of a disk with X oc % and
radius 7, and the 90%-mass-radii rgqy for our disk models with different values of 71 /rs.
M; is the mass contained in the inner region below 0.2r,,;, and M2 are the masses in the
outer two regions. In parenthesis the mass fraction with respect to the total post-encounter
disk mass is given.
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the three different disk regions.

This table clearly shows that for r1/ry > 0.5 there is only a very small amount of mass
contained in the outer region of the disk with » > 0.7r,,;, and more than 95% of the disk
mass is within 0.77,,;,, making the post-encounter disk very compact. Therefore, the outer
part of the disk will have little effect on the further dynamical evolution of the disk we later
want to investigate and, thus, the rather large uncertainty of the disk profile and mass for this
region, which is of the order of 50%, does not have a significant influence. Furthermore, we
find only a weak increase in mass in the region between 0.27,,;, and 0.7r,,;, for decreasing
r1/ro > 0.5, as it was to be expected from the results of 7i(ri,). Comparing this mass
with the mass that is contained within 0.2r,,;, we find that they are nearly equal, given the
errors of about 10% for M;. Only in the case with r1/ry = 0.95 there seems to be more mass
contained in the innermost region, with about 60% of the total disk mass.

Because of the strong increase of 7 o for r1/ry = 0.2, as shown in section 5.3.2, we also have
a strong increase in mass contained in the outer disk regions for this case. As a consequence,
these disks are no longer strongly concentrated and appear to be much flatter, as now there
are only about 78% of the total disk mass contained within 0.77,,;, as opposed to more than
95% for r1/re > 0.5. In contrast to disk encounters with r1/r9 > 0.5 the outermost part of
the disk now contains almost a quarter of the total mass of the disk and most of its mass is
contained in the region between 0.27,,;, and 0.77,,;,. This comes close to the corresponding
values for a disk with ¥ % truncated at a radius 17,,,.

Up to this point, we completely specified the disk profile as shown in eqn. 5.1 apart from
a constant k, which specifies how much the surface density in the inner disk region below
0.27,in is enhanced relative to the initial surface density. As in that region we are severely
limited by noise, fitting each single profile for that region to determine this constant is rather
problematic. The reason for this is that the surface density in our simulation is rather noisy
in the inner parts of the disk. Therefore the power-law indices of the fits usually deviate
from —1 which makes the corresponding constant factor much more uncertain. We, therefore,
determined k by exploiting eqn. 5.3 and the linearly fitted disk masses in Fig. 5.14 to 5.18,
because the determination of the masses are based on a larger number of particles than that
of the inner disk profile.® For the determination of k, we expressed eqn. 5.3 in terms of the
initial disk mass M = 27 270« (Fout — Tin), Where 74, is the outer and r;, the inner initial
disk radius. We then inserted the values from table 5.1 for each r;/re and set the numeric
value of the slope of M (r,,:,) equal to the corresponding slope of the fits, thus obtaining k.
In all cases we found that k = 1.7+ 0.1, which lies also in the range we roughly expected from
the disk profiles in section 5.3.2. Since this factor does not seem to depend on r;/rg, it follows
that a flatter disk profile implies a larger total disk mass. From this it follows further, that
in general the masses of the post-encounter disks increase with decreasing r1/ry, which also
agrees with our results shown in Fig. 5.14 to 5.18.

If we consider the actual values of the masses we find than our disks have at most 40% of
the initial disk mass and in most cases much less than 30%. To relate our masses to the
disk masses after two-body collisions we use the result of Hall et al. (1996) who found that
the post-encounter disk has only one third of the initial mass for a disk radius of 4r,,;,. As

¥We thus assume that the inner profile is strictly a power-law with index —1.
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our disk radius is always 20AU this means that for each r1/ry the corresponding disk mass
in our case is the one at r,,;; = 5AU. From our model we find values ranging from 15% to
18% of the initial disk mass for r1/ry > 0.5. For the case of r1/ro = 0.2r.,:, it is 33%. This
reflects the trend we intuitively would expect, as for larger values of r1/ry we have roughly
speaking two two-body encounters with similar strength and consequently more stripping of
disk material, whereas for lower values of 1 /ro we are getting closer to a single two-body
encounter. In addition, we also find that this trend is strongly non-linear and not a simple
function of r1/re. The fact that in a triple encounter we only find the same disk mass for
r1/r2 < 0.2 has the direct consequence, together with the distribution of 71 /r9 shown in 5.5,
that the majority of close triple encounters is more destructive than the corresponding two-
body ones and only in one third of the cases we should get at least comparable disk masses.
However, the convergence of the disk masses for smaller r1/ry is not as trivial as it might
sound, because we also find that the influence of the third body in the case of ry/ry = 0.2
is still significant. In order to demonstrate this effect, we carried out a calculation for one
particular triple encounter where the disk is only affected by the escaper and the body with
the closest encounter distance r,,;,, but otherwise leave the orbits of the bodies unchanged.
In that example we find that the post-encounter disk mass is increased by almost 10% of the
initial disk mass which makes the post-encounter disk mass 33% larger compared to the case,
where the disk is affected by all three bodies. As we find that for the ry/ro = 0.2-case the
disk masses are comparable to the two-body case it directly follows that the orbits in a triple
encounter tend to increase the mass of the disk while the presence of the third body reduces
it. We therefore expect that for ratios r1/ry < 0.2 the trend for higher disk masses at a given
Tman 1S continued.

From our simulation we believe that this mass increase compared to the results of a two-body
disk encounter is closely related to the formation of the final binary after the triple encounter.
To show this, we compared in Fig. 5.19 the distance between the escaper and the body of
the binary with the smallest encounter distance r,,;, and the distance, these bodies would
have if they moved on a hyperbolic orbit with the same eccentricity at r = r,,. As it can be
clearly seen, the distance between the bodies in the triple system is almost always lower than
in the two-body case, leading to an enhanced interaction time which is much larger than 5
dynamical times found for the parabolic two-body case by Hall et al. (1996) (one dynamical
time is the ratio of r,,;, over the velocity vy, at that point). The lower distances before the
encounter are present because the bodies do not approach each other from an infinite distance
but are in a bound system with finite size. The lower distances after the encounter are due to
the formation of a binary where one of the two bodies is slowed down relative to the escaper
because of the presence of the third body. For the disk around the escaper this means, on
the one hand, that the disk starts loosing material earlier in the encounter than it would do
in a hyperbolic encounter. On the other hand, due to the lower values after the encounter,
particles that became unbound after the closest collision are slowed down again and could be
re-captured by the escaper or the other two bodies depending on the direction of their ejection.
Since much of the disk material is initially on smaller radii around the ejected body than after
the encounter, the initial deviation from the hyperbolic encounter should only play a minor
role, while the deviations after the closest encounter are more effective, because much of the
disk material is distributed over a much larger area. Fig. 5.20 shows a snapshot of a disk
after the final binary has formed and where the disk is only affected by the perturber with the
closest encounter distance r,;,. Although, at this time, after more than 20 dynamical times,
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Figure 5.19: Distance of the escaping body to the body of the binary with the smallest
encounter distance r,,;, over the time in units of 7.,y /Vmn for one particular triple system,
where vy, is the relative velocity of the two bodies at the time of 7, (solid line). The dashed
line represents the corresponding distance if the bodies would strictly move on a hyperbolic
orbit with an eccentricity of ~ 1.4. The dotted line marks the time when the final binary
forms from the triple system.
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Figure 5.20: Snapshot of a disk after a triple encounter. Shown are the orbits of the escaper
(solid line) and the binary (dashed and dotted dashed line) as well as the particles representing
the disk material (blue dots).
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Figure 5.21: Mass of the disk around the ejected body in units of the initial disk mass over
the time in dynamical time units for one particular triple system. Shown are the results for a
triple collision where the disk is only affected by the escaper and its closest perturber (filled
squares) and for a triple collision where the disk is affected by all three bodies (filled circles).
Briefly after the time of the formation of the final binary (~ +15 dynamical times) the disk
mass rises significantly due to the abrupt slow down of the perturber during binary formation.
Due to this deceleration of the perturber motion the disks gained about 10% of the total disk
mass.

the particle states, i.e. whether they are gravitationally bound or unbound to any of the three
bodies, would have been long evident in a two-body encounter (Hall et al., 1996), in a triple
encounter there is a substantial amount of unbound material that gets captured later because
of the perturber getting drastically slower when it forms a binary. The increased effect of the
the perturber on the disk can bee seen by looking on the strong spiral arm that develops during
the encounter, which, in a two-body encounter, is always pointing away from the perturber.
In this figure, however, it is bent towards the binary because of the much lower velocity of
the perturber after binary formation relative to the escaping body, making it possible that
this otherwise unbound material gets captured by the escaper or by the perturber. Here we
want to remind the reader that the effect is solely because of the deceleration of the closest
perturber and not because of the mass of the third body, which the disk is not affected by
in this particular simulation. The re-capture of disk material can also be seen in Fig. 5.21
where we plotted the change of mass of the disk around the ejected body. Here it can be
clearly seen that first, the time required for the particle states to settle is much longer than
in the two-body case, and, second, that just after the encounter and after the formation of a
binary, much of the disk material lost is re-captured by the ejected body. From this figure it
is also evident that the change of disk mass in an orbit of a triple system is no longer a simple
function over time and a substantial amount of disk material changes its gravitational state
more than once. Without the rather abrupt deceleration the disks would have masses very
close to the corresponding minimum shown in Fig. 5.21. Therefore, the loss caused by the
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presence of the third body is in that case compensated by approximately 10% of the initial
disk mass, leading to the mass expected for only two masses in a nearly-parabolic two-body
encounter.

In contrast to the behavior for the disk masses for lower ry/ry, the case r1/ry = 0.2 does not
converge towards the expected two-body result for the 90%-mass-radii rqqy,. Here we find that
the disks after triple encounters are comparable or much larger than after slightly parabolic
two-body ones. As shown in table 5.1 we also find the tendency for the post-encounter disks
to become flatter with decreasing ri/re in the value of rgyg. The dependence on ry/ry is
nearly the same as for the slope of 71(7min), i-€., only a weak increase for r1/rs > 0.5 and
a much stronger one for values below. As a consequence of the high mass concentration in
the inner disk regions for r1/ry > 0.5, the 90%-mass-radius has rather low values. However,
compared to the results of Hall (1997), where we have rgqy; = 0.57,, our values are not
much different in the cases with r1/ry > 0.5, although here we would expect to have a much
stronger deviation. As already mentioned, for r;/ro = 0.2 we do not get similar 90%-mass-
radii and find that it is around 1r,,;,, that is, twice as large as in the parabolic two-body
case. Considering that for the r1/ro = 0.2-case we have about the same disk mass as for the
corresponding two-body case, we come to the conclusion that parabolic two-body collisions
produce disk with a much higher mass concentration in the inner regions and, therefore, also
with a significantly increased average surface density.

We believe that the generally flatter mass distribution of disks after triple encounters is pre-
sumably caused by the capture process of unbound material after the final binary has formed,
as we described in the previous few paragraphs. Since it is known that the unbound material
carries most of the angular momentum away from the disk (Hall et al., 1996) the re-capture
process brings some of this high-angular-momentum material back to the disk which recircu-
larizes after the collision to larger radii, producing a flatter disk profile. In our example (Fig.
5.21) one third of the final disk material was re-captured for the case where all three bodies
affect the disk, and should have a larger angular momentum thus ending up at larger radii.

5.3.4 Summary of Results

In Table 5.2 we summarized all the results of our post-encounter disk in dependence of the
encounter parameters 7,;, and r1/ry. These values are then used to construct the recircular-
ized surface density profile of a post-encounter disk for a given set of encounter parameters
by using equation 5.1 and interpolating a; for a given ry/ry as shown in Fig. 5.13. The only
free parameter that remains to be specified is X, the value of the surface density of the initial
disk at a radius of 7y, which must be provided by the problem one wishes to study.

5.4 Application to Accreting Triples

5.4.1 The Model

With the post-encounter disk model, developed in the previous section, we now want to
determine the absolute sizes the disk should have if Brown Dwarfs form by early ejection from
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‘ rl/TZ ‘ k ‘ ai [Tmin] ‘ az [Tmin] ‘ M; ‘ M,y ‘ My ‘ T'QO%(rmin) ‘
095 | 1.7+£0.1 | 0.064 £0.005 | 0.1-0.2 | 0.2 | 0.13 | <0.006 0.38
0.8 | 1.6£0.1]0.076£0.006 | 0.1-0.2 | 0.2 | 0.17 | <0.015 0.49

0.6 | 1.7£0.1 | 0.084£0.005 | 0.1-0.2 | 0.2 | 0.19 | <0.02 0.52
0.5 | 1.7£0.1 | 0.085£0.008 | 0.1-0.2 | 0.2 | 0.19 | <0.02 0.52
02 |1.7£02| 0.16£0.03 0.2 0.2 037 | 0.16 1.0

Table 5.2: Summary of all numerical results for the half-width-values a1, a2, the constant k,
the relative mass fractions M; 1o with respect to the mass of a disk with ¥ o % and radius
T'min, and the 90%-mass-radii rgyy for our disk models with different values of ry/ro. M; is
the mass contained in the inner region below 0.27,,;, and Mo are the masses in the outer
two regions.

a molecular cloud core, using our simulations described in Chapter 4. In these simulations we
assumed that a flattened cloud is collapsing and the central region accretes mass at a constant
rate of Mmfa” ~ 6 X 10*6(T/10K)%M@yr*1. The central part of the cloud is then further
assumed to fragment into 3 fragments and the infalling mass is equally distributed among them.
Due to the fact that these fragments form in compact non-hierarchical configurations, these
triple systems decay after some time, ejecting a single body and a binary system into opposite
directions. Once outside of the cloud the fragments stop accreting and if that happens early
enough a Brown Dwarf has formed. In our model we further accounted for the momentum
the accreted gas carries onto the bodies and found that the amount of momentum transfered
influences the properties of the resulting single and binary Brown Dwarfs significantly. We also
found that, if the accreted gas is at rest with respect to the reference frame, i.e. it does not
carry any additional momentum onto the bodies, the resulting semi-major axis distribution of
the binary Brown Dwarfs matches the observed, volume-limited sample of Bouy et al. (2003).
It is, therefore, invitingly to see whether it is possible to form these very compact binaries
while the ejected single objects possess disks with a life-time comparable to the one of TT stars
or if the existence of compact Brown Dwarf binaries contradicts the existence of long lived
disks around the corresponding single escaper in the ejection scenario. Thus, our investigation
provides a way to relate binary properties to disk properties and this relation can then be
tested observationally.

In order to apply our scale-free results of disk collisions in triple systems to this particular
model, we re-run these simulations and determined 7,,;, and 7 /ro. However, we also have to
check if the encounter parameter for close triple approaches in accreting systems are compara-
ble to the encounter parameter in non-accreting systems. Although the amount of mass that
these system accrete during one crossing time is only 6% and one should, therefore, expect
the system to contract adiabatically, it is not clear if the encounter parameter relative to the
total system size are adiabatic invariants. Even if this might be the case, we still have to show
whether the code we are using reproduces the encounter parameter shown in Fig. 5.5 and 5.6,
because in this code we increased the masses stepwise, which might influence the dynamics
at close collisions. Fig. 5.22 shows the distribution of 71 /rs for accreting and non-accreting
triple systems and in Fig. 5.23 we plotted 7,4, in units of the mean harmonic size d at the
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— accreting triples E
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probability density

Figure 5.22: Distribution of the ratio of the closest two-body encounter distances 71 /rs for

accreting triple systems accreting gas at rest (solid line) and for non-accreting triple systems
(dashed line).

Figure 5.23: Minimum distance r,,;, in units of the mean harmonic distance (virial size) at
the time of decay over the ratio r1/ry for accreting triple systems accreting gas at rest.
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Figure 5.24: Absolute values of the encounter parameter r,,;, over ri/ro for accreting triple
systems accreting gas at rest (a) and the fraction of encounter that have larger r,,;, than a
given value (b).

time of decay?, over r;/ro for accreting triple systems. As it can be seen the distribution of
r1/r2 matches essentially the one for non-accreting systems, i.e. for 71 /ro > 0.1 the values are
equally distributed and for lower 71 /ry they are strongly peaked. The only notable difference
is that the peak for r1/r9 < 0.05 seems to be somewhat lower. This is because in accreting
triple systems it becomes increasingly difficult to capture the minimum distances, as the time
scales are decreasing rapidly which is especially a problem for encounter with r1/ry < 0.05 as
most of them have extremely small 7,,;,. Apart from this slight difference in the distribution
of r1/ry, the distribution of r,,;, over 1 /re for accreting triple systems seems to be indifferent
from the corresponding one of non-accreting systems. It seems therefore justified to apply
our scale-free results of disk collisions in non-accreting triple systems to these accreting triple
systems.

To get a first impression of the absolute sizes of the post-encounter disks we can expect in our
sample of accreting triple systems we plotted 7, in AU over /7y in Fig. 5.24 . As it can
bee seen the majority of the encounter distances are extremely small and only a comparatively
low fraction, approximately 7%, has 7,,;,, > 5AU . Making use of our previous result that the
90%-radii are mostly 0.57,i,, we, expect our disks also to be rather small with rggy, < 0.25.
Here we have to note, however, that for small /9 these radii are becoming larger relative
t0 Tmin, as we found from section 5.3.3, which will lead to larger rqgy. This effect will be
considered in section 5.25.

“For non-accreting triple systems d is constant throughout the calculation but for accreting triples d is a
function of time, so we take d at the time of the triple encounter.
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Compared to the distribution of 7, relative to the size d of the triple system we find that
the distribution of the absolute values of 7, differs significantly. This is because the mean
harmonic size d depends on time in multiple systems with accretion, and the encounter distance
scales with d. From Fig. 5.24 it can be seen that, first, 7, is no longer equally distributed
between some maximum value and zero but tends on average to lower values, and, second, there
seems to be a peak for encounters with r1 /ry > 0.8, while for r1 /ry < 0.2 the maximum value of
T'min 18 generally lower than one would expect from the continuation of the corresponding values
above 0.2. The much lower average value of r,,;, with respect to its maximum value for a given
r1/72 can be explained if one considers that the resulting distribution is the superposition of the
distributions obtained from the scale-free one, as sown in Fig. 5.23, and scaled with different
values of d reflecting the total energy distribution of our sample. Since the total energy
depends on the fragment masses as £ o< (M (t)/My)® and these masses are nearly equally
distributed between 0.05Mg and 0.07M in our sample, it becomes clear that the distribution
of the mean harmonic size d, which is indirectly proportional to the total energy, is strongly
peaked towards small values. This has the consequence that there are more superimposed
distributions with a lower d than with a larger one, and it is therefore that lower r,,;, are
more frequent than larger ones for a given r1 /7.

The differences at both ends of the distribution shown in Fig. 5.24 compared to the scale-free
one in Fig. 5.23 is an effect of the dependence of the decay probability on r1/rs. Anosova
& Orlov (1992) found that the decay probability increases with decreasing deflection angle,
defined as the angle between the direction of motion of the escaper before and after the
encounter. This angle becomes, on average, larger for smaller values of r1/ry, as for small
values the escaper is strongly deflected by the single body with the closest encounter distance,
while the deflection by the third body that works in the opposite direction is very limited. For
accreting triple systems, where the mass depends on time, this means that the average system
mass becomes larger for smaller 71 /rs. Since the size d depends strongly on the fragment

M
My
of 7min decreases much more for decreasing r1/ro than for non-accreting systems, which is
most visible at the extreme values of /7.

5
masses, as the total energy is proportional to ( ) , it becomes clear that the average value

In order to apply our results of disk collisions from section 5.3 to accreting triple systems in
a collapsing molecular cloud core we must assume that the disk has a mass lower than 0.1
times the mass of the ejected Brown Dwarf. Although, from simulations of collapsing cloud
cores it has been found that disks at such an early stage of formation should be more massive
(Yorke & Bodenheimer, 1999; Lin & Pringle, 1990), in our case the disks should have already
lost much of their material because of previous interactions in the triple system. In section
5.3.1 we assumed that the disk has an initial size of %d, with d being the mean harmonic
size of the triple system at the time of decay. If we take the largest value for d from our
sample of accreting triple systems at the time of decay with d = 83.4AUand fragment mass
of M = 0.048, we find that the surface density at 1AUfor our ¥ %—disk profile must be less
than 240g - cm~2 in order to for the disk mass to be less than 0.1M. This value seems to be
roughly compatible with simulations of disks forming in collapsing molecular cloud cores (e.g.
Laughlin & Bodenheimer (1994), Yorke et al. (1993)) and might even be an underestimateS.

5In these simulations the disk was only resolved down to a radius of ~ 6AU, so the value at 1AU depends
on how one extrapolates.
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Figure 5.25: Disk sizes rogy, defined as the radius within which 90% of the disk mass is
contained. Shown are the values of rggy over r1/ry(a) and the fraction of encounter that
produced a disk that has a larger size than a given rgge(b).

Therefore, our assumption of a low-mass disk before the last encounter seems to be justified
and for simplicity we will set ¥y = 240g - cm~2 for all our disks. As most of the other accreting
triple systems have a much smaller mean harmonic distance at the time of decay, we could,
in principle, also allow for somewhat more massive disks similar to those in Lin & Pringle
(1990), without that self-gravity in disks will influence our statistical results significantly. We,
however, decided to take a low value for all disks in order to get a lower limit on the resulting
post-encounter disks.

At this point we have fixed all parameters necessary to determine the physical sizes as well as
the absolute masses of the post-encounter disks we will present in the next sections.

5.4.2 Post-Encounter Disk Sizes

Fig. 5.25 shows the distribution of rgqey, over r1/rs as well as the fraction of encounters that
produced a disk that has a larger value than a given rqpy. Compared to the distribution of
Tmin OVer r1/ro in Fig. 5.24 there is no essential difference for r1/ry > 0.8 apart from the fact
that rggy is only half of the value of 7,;,. For lower /79, however, the dependence of the disk
profile on r1/ry becomes significant, as now the disks are getting flatter, resulting in larger
values of rggy with respect to r,;,. As one can see, this effect causes the maximum value of
r90% for a given r1/ry to remain roughly constant at 4AU while 7,,;, is strongly decreasing in
Fig. 5.24. For r1/ry < 0.4 the increasingly flatter disk profile can no longer counterbalance
the quickly decreasing i, and the absolute value of rgqy decreases again.
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Figure 5.26: Disk mass in units of M, the mass of Jupiter, over 1 /r2(a) and the fraction of
encounters that produced a disk with a larger mass than a given value (b). Here it is assumed
that the initial surface density profile, > %, has a value of ¥y = 240g - cm ™2 at a radius of
r = 1AU.

The overall effect of the increasingly flatter disk profile for lower 7 /rs on the distribution of
the absolute values of 79y is, however, limited compared to the influence of 7,,;,. This can
be easily seen, if one compares the distribution of 7., in Fig. 5.24(b) with the distribution
of rggy in Fig. 5.25(b). Assuming that rggy ~ 0.5r,:,, the resulting distribution of rgg
is only decreased by a few percent, as one can see by comparing the fraction of systems at
Tmin = DAU and at rgge; = 2.5AU. This changes, however, for the closer encounter, as most
of them have 71 /ry < 0.5 and, therefore, flatter disk profiles. As a consequence the median of
these two distributions seems nearly identical.

In general we find that for the close encounter we investigate here, the majority of the resulting
recircularized post-encounter disks have sizes of only a few AU.

5.4.3 Absolute Disk Masses

In Fig. the distribution of the post-encounter disk masses are shown. The distribution of
the disk masses over r1/ry shows the same features as the one for rggy in Fig. 5.25 . This
is because, as we already found from the discussion of the relative disk masses in section
5.3.3, a flatter disk profile corresponds to a higher mass for the same initial surface density
distribution.

As already noted in section 5.4.1, in order to apply the scale free results from our disk-collision
calculations we must ensure that the initial disk is of low mass with My, < 0.1M, which
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is why we have chosen ¥y = 240g-cm™2. As a result, the post-encounter disk masses are,

as the disk sizes, generally very low, with masses barely exceeding 1Mj. For our sample we
find only 2% of the systems with masses larger than 1Mj and half of the disks have masses
larger than 0.16Mj. These masses fall in the lower range of the expected disk masses derived
from millimeter observations of Klein et al. (2003), who found masses ranging from 0.4 to
2.4Mj for the disk around CFHT-BD-Tau 4 in the Taurus star-forming region. At a first
glance our results seem, therefore, to be consistent with observations. However, the age of
the object should be around 1Myr, the approximate age of the Taurus cluster, and at this
time the majority of our disks should have already accreted a substantial amount of material,
as our fragments have an age less than 1 - 10°yr. Therefore, only a few percent of our disks
should have a mass larger than 0.4Mj, but this depends strongly on the amount of viscosity
in the disk, which is even for the well studied TTauri disks not very well constrained.

Concerning the expected disk life-time it appears that we could still cover the whole range
of disk life-times as found for disks around TTauri stars, if one considers that Brown Dwarfs
disks have rather low accretion rates, typically of the order of ~ 1071M, - yr~! (Natta et al.,
2004). However, here one should also note that the accretion rate is decreasing with time
and the observed accretion rates are around Brown Dwarfs with an age of usually more than
5-10%yr. Therefore, the accretion rate was initially much higher and taking an average value is
not straight forward without some hydrodynamical modeling of the disk, which we will carry
out in the next section.

5.4.4 Evolution of Ejected Disks

So far we determined the sizes and estimated the masses of disks around Brown Dwarfs just
after they have left the cloud core. For our model this is approximately at a time when the
ejected Brown Dwarfs have an age of 3—6-10%*yr. As we noted previously, the observed Brown
Dwarfs with disks have ages of usually more than 5 - 10°yr (Muzerolle et al., 2003). In order
to bridge this gap from our post-encounter disks to disks of that age we have to take into
account their further, viscous evolution.

At the beginning of our disk collision simulations we assumed a disk that forms in a collapsing
cloud core and should, therefore, possess a rather flat surface density profile, with 3 % Once
the Brown Dwarf with its disk is ejected out of the cloud core, the disk profile will change as
there is now no longer a strong infall of material that affects the evolution and structure of the
disk. The disk evolves then rather isolated, only subject to the temperature of the ambient
medium outside of the cloud core and to its own viscously generated heating. For simplicity
we neglect the stellar irradiation from the central object, noting that it presumably is only an
effective heating mechanism in the upper layers of the disk (see, e.g., D’Alessio et al. 1998),
whose effects however are reduced by small disk scale heights (D’Angelo et al., 2003), which
is the case for our disks.

Because the heating due to viscosity diminishes for larger disk radii, the temperature of the
outer disk will be given by the temperature of the ambient medium outside of the cloud core.
This temperature varies between different star-forming regions, ranging from ~ 20K for the
rather cool Taurus regions up to 100K and more for the hotter Orion regions (Bell et al., 1997).
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As we will find later, our rather small disks will expand significantly after about 2.5 - 105yr
even if we initially assume very low temperatures throughout the disk. Therefore, most of
the disk material is then at radii where it will evolve with the constant temperature of the
ambient medium. In order to make predictions about the outer disk profile at a typical age of
a young Brown Dwarf, we, therefore, can evolve the whole disk at this constant temperature.

However, we cannot use this approximation in order to determine the life-time of our post-
encounter disks. From an observational point of view the life-time of a disk is determined
with the time when the accretion rate drops below a value of ~ 107!'2M, - yr~!, which is
currently the detection limit for detecting H,-emission (Muzerolle et al., 2003). As we will see
in section 5.4.4.1, the inner disk inside ~ 1AU becomes increasingly hotter, which increases
the viscosity and, therefore, the accretion rate. Since most of our disks are initially inside that
radius, their mass loss and life-times are strongly influenced by these much hotter conditions.
Because taking the detailed temperature structure into account during the integration of the
disk evolution is computationally rather expensive, we cannot calculate all our post-encounter
disks with realistic temperature profiles. For this reason, we calculate only one such case and
compare it to a calculation with the same initial conditions but at a constant temperature
throughout the disk. We then increase this constant temperature until we match the mass loss
of the more realistic calculation. As the temperature in the more realistic case is decreasing
with time, and we match only the first 10*yr with the approximate model resulting in a rather
high value for the constant temperature, the mass loss will be generally overestimated at later
times causing the accretion rate to drop much faster. Therefore, our statistical result on the
life-times of our post-encounter disk represent lower limits.

We evolve our post-encounter surface density profile according to the evolution equation of a
thin disk, given in Lynden-Bell & Pringle (1974)

ox 30 0
— = — (VX . .
ot ror [\/;87“ (V \/?)] (5-4)
with v being the kinematic viscosity. For v we take the a-model of Shakura & Sunyaev (1973),
giving

v=oacsH

where ¢, is the speed of sound, H the pressure scale height and « a dimension-less parameter.
The value of « is not very well constrained and typical values range from 1-10"% to 11071
Laughlin & Bodenheimer (1994) find in their simulations of the viscous evolution of disks in
collapsing molecular cloud cores, that the surface density profile of their three-dimensional disk
calculations can be best reproduced by a thin-disk model with an effective o = 0.03. This value
takes into account that the disk in a collapsing molecular cloud core is rather massive and,
therefore, gravitational torques from spiral arms that develop as the disk becomes unstable,
lead to an enhanced redistribution of angular momentum. However, for our post-encounter
disks we find a very low mass compared to their central object, making our disks non-self-
gravitating and, therefore, allows us to neglect the influence of spiral arms. This should in turn
make the value of @ much lower. Arguments based on the duration of FU Orionis outbursts,
provided they are due to disk instability, also suggest a lower value for T Tauri disks (Bell
& Lin, 1994), with o between 10 *and 1073. We therefore decided to take the upper limit
and set &« = 1-1073 for our calculations, which is also a value found for disks, where the
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effective viscosity is caused by magneto rotational instability (MRI) (Abramowicz et al., 1996;
Brandenburg et al., 1996; Balbus & Hawley, 1991).

For the vertical structure relative to the disk mid-plane the disk can be assumed to be in local,
hydrostatic equilibrium leading to
H ~ &
)

(Pringle, 1981), where (2 is the angular frequency and for a Keplerian, or low-mass, disk given
by
GM

r3

Q=

with G the constant of gravity and M the mass of the central object. Assuming an ideal gas,
the isothermal sound speed is given by

1)

where 7T is the temperature, 1 the mean molecular weight, m, the proton mass and kgthe
Boltzmann constant.

As we mentioned previously, the evolution of the outer disk profile should happen at the
constant temperature of the ambient medium of the molecular cloud. This allows us to write
equation 5.4 in a non-dimensional form, where ¥, the time ¢ and the radius r are given as
follows:

>y = 2’.%
Tmin
t = t’-%. (5.5)
S
ro= T

The dashed variables are the non-dimensional quantities and 3 is initially given by the model
surface density profile obtained from our disk collision results:

% ;' <0.2
EZM 53+ G- exp <log(1/2)-%) ;0.2 <1 <07
Tmin 1 G ) L
oz a-b-exp(log(1/2)- -] ;0" >0.7

The dimensionless form of equation 5.4 is then integrated for 60 different initial profiles varying
in the non-dimensional half-width value a; of the exponential part of the initial disk profile
located between 0.2, and 0.77,;,, while the non-dimensional half-width value as of the
outer part is always ao = 0.2. For the non-dimensional calculations we integrate equation
5.4 on a radial, logarithmically spaced Eulerian grid with 1000 grid points where the inner
and outer boundaries are at v, = 1-1073 and r/,, = 1-10? respectively. This allows us
to resolve the rather small initial post-encounter disks, while still allowing to investigate the
outer disk profile at later times, when the disks are much more extended, without being
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strongly influenced by the outer boundary. At both boundaries we set 3 = 0 which allows the
disk material to move freely out of our computational domain, corresponding to a 'no-torque’
boundary condition (Lynden-Bell & Pringle, 1974). We do not consider the influence of an
ordered magnetic field of the central object onto the disk via the disk-locking mechanism (e.g.
Koenigl, 1991) which could lead to significant disk braking, shortening the disk life-time as
expected for ejected T Tauri stars (Armitage & Clarke, 1997). We neglect it because from
observations of the rotational evolution of Brown Dwarfs it is still unclear if the magnetic field
around a Brown Dwarf will couple efficiently to the disk to cause significant braking (Eisloffel
& Scholz, 2005).

In our test calculation where the detailed temperature structure is taken into account, we
integrated the dimensional form of equation 5.4 on an Eulerian grid with 100 logarithmically
spaced grid points and boundaries at r;, = 0.1AU and r,,; = 100AU and the same 'no torque’
boundary condition we used for the non-dimensional calculation. The radial temperature
structure is determined at each integration step by requiring, that the locally generated viscous
heating is balanced by the radiative losses, which is explained in greater detail in section
54.4.1.

Equation 5.4 is integrated using the “method of lines” described in Skeel & Berzins (1990). In
this method the space derivatives are replaced by a second-order accurate spatial discretization,
converting the partial differential equation into a system of first order ordinary differential
equations in time. As this system of differential equations tend to be rather stiff, an implicit,
variable-order multi-step scheme developed by Shampine & Reichelt (1997) is used to advance
it in time.

5.4.4.1 Temperature Structure of Brown Dwarf Disks

In order to integrate equation 5.4, the kinematic viscosity v needs to be determined at each
time-step. As v depends on the mid-plane temperature we need to find a way to obtain 7.
For a thin disk this temperature can be obtained by using that the thermal energy is only
transported in vertical direction (Pringle, 1981). Therefore, the temperature only depends
on the local energy balance at a given radius r. This balance requires that the viscously
generated heat equals the radiative losses. Here we neglect the energy loss by convection as it
is not expected to be a major energy carrier (Bell et al., 1997). Since in a thin disk with low
a the disk maintains both thermal and hydrostatic equilibrium on a viscous time scale, the
internally generated viscous heat is that of a steady disk and further assuming a Keplerian
disk with ’central couple’ (Lynden-Bell & Pringle, 1974) leads to

3SMGM R
4 _ k

(Pringle, 1981) where we assigned the generated heat an effective Temperature T¢s¢ at which
a black body would radiate the same amount of energy®. Here o is the Stefan-Boltzmann

6The radiation emerging from the disk surface can be described as black body radiation, as the disk is
optically thick (Pringle, 1981).
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Figure 5.27: Rosseland mean opacity x over temperature for three different densities p (taken
from Bell & Lin (1994)).

constant, M (t,7) the accretion rate at a time ¢ and disk radius 7, and R, is the (sub)stellar
radius. For a steady disk we can further exploit that

y22%<y—-%) 5.7)

(Pringle, 1981) which we can substitute into equation 5.6 to give

1
9 GM Xv\1
Teff:<_._._> . (5.58)

In order to obtain the radiative losses one has to account for the absorption of the gas which is
dominated by the dust. The effect of absorption on the emitted radiation that emerges from
the mid-plane and travels vertically through the disk is characterized by the optical thickness
7, which is for a thin disk approximately given by

T =k(p,T)pH

(Pringle, 1981). Here p and T are the mid-plane density and mid-plane temperature respec-
tively, and x the frequency averaged Rosseland mean opacity. For x we use the formulas
derived by Bell & Lin (1994) that account for contributions from dust grains, molecules,
atoms, and ions in eight temperature regimes. In Fig. 5.27 the temperature dependence of x
is shown for different values of the mid plane density p. As it can be easily seen, x is for high
temperatures above 100K a rather complicated function which is why it needs some numerical
effort to obtain 7" as a function of x and p when calculating the temperature profile. We should
note here that these opacities were chosen for simplicity and more sophisticated models are
available in Semenov et al. (2003) and include the improved grain opacity tables of Henning
& Stognienko (1996).

As our disk variables are vertically integrated, the mid-plane density p is not readily available
but can be approximately obtained by

P:E
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Figure 5.28: Temperature structure of a ¥ o %—proﬁle with a surface density of 31 = 3y-1.7at
r=1AU, ¥y = 240g - cm~? and a central object with mass M = 0.08 M. The temperature
of the ambient interstellar cloud medium is T, = 20K.

(Pringle, 1981). To relate the viscously generated heat to the mid-plane temperature we use
the theory of Hubeny (1990) who found

8 4 4T (59)

-1
37 \/§ €H>

where eprepresents roughly the ratio of the total extinction, i.e. absorption plus scattering,
and absorption (D’Angelo et al., 2003). For simplicity we set ey = 1, therefore, neglecting
the influence of radiation that is scattered while it emerges from the mid-plane of the disk.

We can now equate the viscous heating and the radiative cooling terms by inserting 7.y
from equation 5.8 into equation 5.9 and solve for the mid-plane temperature. As we already
mentioned, ~ is a rather complicated function and cannot be easily inverted, which is why
we have to solve equation 5.9 numerically. The method we are using is described in Forsythe
et al. (1977) and is a combination of bisection, secant, and inverse quadratic interpolation
methods.

In Fig. 5.28 we show the radial temperature profile of a disk with > % and absolute surface
densities matching the power-law part in our post-encounter disk profile, where we assumed
an ambient medium temperature of 20K. Here it can be seen that outside a radius of ~ 1AU
the disk temperature is set by T,np, the temperature of the ambient medium, while for smaller
radii the disk temperature raises quickly and reaches values as high as 1000K. Since v, the
kinematic viscosity, is directly proportional to 7" this means that the accretion rate at the inner
disk is much higher than in the outer parts, causing the surface density in the inner disk to
decrease much more rapidly. Because the accretion rate depends directly on the surface density
Y (eq. 5.7), M will also become lower, which in turn causes the temperature to decrease, in
our test calculation down to ~ 800K within 1 - 10*yr at a radius r ~ 0.1AU. Because of the
decreasing temperature in the inner disk, the region of the disk where the temperature is set
by Tymp will extend down to less than 1AU. In addition, as we already mentioned in the last



5.4. APPLICATION TO ACCRETING TRIPLES 79

section, viscous evolution will also transport disk material to larger radii where the viscously
generated heat is low, thus the temperature is set by the ambient medium. Therefore, at later
times most of the disk will finally evolve at the constant temperature 7,,,;, and allows us to
approximately investigate the outer disk profile as well as the size of the disk by integrating
equation 5.4 at a constant T' = T,,,,;,- However, as in our test case we were only able to evolve
the disk until a time of 1 - 10*yr, we cannot determine to what extend this simplification is
justified, but it seems to us a reasonable one.

As we noted earlier, with this approximation we cannot determine the life-time of the disk, as
the accretion rate is dominated by the much hotter conditions in the inner disk and most of the
disk material is for the majority of our disks inside the hot region below 1AU. From Fig. 5.28
it becomes clear that, in order to approximate these conditions with a constant temperature,
it cannot be much larger than 1000K. Indeed, comparing the mass loss in our test calculation,
where the detailed temperature structure is accounted for, with the corresponding one with
constant temperature leads to the same mass loss within the first 1-10%yr provided the constant
temperature is set to 7' = 1000K. Because we expect the temperature in the inner disk to
decrease with time, for the reasons we mentioned before, the case with constant 7' = 1000K
will definitely over estimate the mass loss at later times, causing the accretion rate to drop
much faster, which provides, therefore, only a lower limit on the life-time of the disk.

In order to cover the extreme cases we work with two constant-temperature approximations,
one for predicting the outer disk profiles and sizes at the low ambient temperature, and the
other one for predicting a lower limit on the expected life-times of Brown Dwarf disks at the
much hotter T' = 1000K.

5.4.4.2 Disk Sizes

As we have seen in section 5.4.2, the sizes of the recircularized disks are mainly of the order of
a few AU just after the triple encounter. In this section we want to illustrate how quickly the
disks re-expand and how large they should be at a typical age of a young Brown Dwarf. For
this purpose we integrate equation 5.4 in its non-dimensional form for many profiles, differing
in the non-dimensional half-width value a;. We then calculate ¥/ at many different times ¢'.
For a given encounter 7,;,, r1/r2 the corresponding value a; is calculated according to the
linear fit as shown in 5.13. We then choose the results of the integration run with the closest
matching initial profile. After determining the viscous time-scale from equation 5.5, with M
being the mass of our Brown Dwarf at hand, we select the resulting >'(r/,¢’) that corresponds
to a physical time ¢ we wish to obtain rgqy at, and determine 3(r,¢) in order to get rggy.
As we here neglect the hotter conditions in the inner disk, our rgge are smaller and represent
lower-limits on the sizes of our disks. However, we do not expect the effect to be significant
for disks with rqqe, larger than 5AU, as the hot inner region is for those disks comparatively
small.

Fig. 5.29 shows for two different ambient temperatures, the fraction of our Brown Dwarf disks
that have a 90%-radius larger than a given rgqy, at 0.25Myr, 0.5Myr and 1Myr. As it can bee
seen, for low ambient temperatures of T,,,;, ~ 20K, typical for low-mass star-forming regions
similar to Taurus, the majority of the post-encounter disks remain compact at an age between
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Figure 5.29: Fraction of ejected Brown Dwarf disks with 90%-mass-radii larger than a given

rgoy, at different times. Shown are disks evolving with the constant ambient temperature
Tomp = 20K (a) and Ty = 100K (b).

0.25Myr and 0.5Myr, with 79, generally less than 20AU. This is, despite the fact that,
compared with their initial size shown in Fig. 5.25, the disks increased their size on average
by a factor of more than 4. We find, that most of our ejected disks remain significantly smaller
than one would expect from ordinary T Tauri stars, with only 20% exceeding a size of 10AU
at an age of 0.5Myr, which could be an important observational discriminant for the ejection

scenario.

After about 1Myr, the approximate age of the Taurus star-forming region, the disks expanded
further with half of them having now sizes of more than 20AU and almost all of them have
rooy larger than 10AU. As this already falls into the lower range of sizes expected for typical
TTauri stars, it should be rather difficult to make a distinction between Brown Dwarfs formed
by ejection and isolated Brown Dwarfs based on their size. Only if the disks around a Brown
Dwarfs in a cool low-mass star-forming region turn out to be much more extended than 50AU
at an age of ~ 1Myr then one should not find many close Brown Dwarf binaries. If, however,
large Brown Dwarf disks and close Brown Dwarf binaries exist in the same star-forming region
then it is seems very unlikely that both formed by ejection and the ejection scenario cannot
be the primary Brown Dwarf formation mechanism for that region.

While for cool low-mass star-forming regions it seems possible to distinguish between a for-
mation by ejection and a more or less isolated one based on disk sizes, for the hotter regions
similar to Orion, with Ty,,;, ~ 100K, no such distinction can be made. For T,,,;, = 100K
already after 0.25Myr almost all disks are larger than 20AUand after 0.5Myr almost 50% are

larger than 100AU.
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We therefore come to the conclusion, that only observations of disks around the youngest
Brown Dwarfs in rather cool star-forming regions might be able to constrain Brown Dwarf
formation scenarios. However, one should also note that in our disk collision simulations we
have considered the presumably most destructive configuration, as the disk was always in
the orbital plane of the triple system, thus we only considered coplanar encounter. It might
be, therefore, possible that at least some of the disks are larger if the disk encounter are
non-coplanar, which should be investigated in a future study.

5.4.4.3 Evolution of the Surface Density Profile

As we found from section 5.4.2, the outer disk profile of our post-encounter disks is steeply
decreasing with ¥ o exp (—%) and has rather small half-width values 7 of mostly less than
1AU. As such a profile clearly deviates from the expected power-law profile of a thin, steady,
viscous disk (D’Alessio et al., 1998), it would be interesting to know for how long it can in
principal be observed before it reaches its equilibrium structure. From the previous section
we found that, if the disk evolves in a hot star-forming environment, it expands within a short
time to much larger radii. Therefore, it should reach its equilibrium structure already at an
age much less than 2.5-10%yr and it is, therefore, rather unlikely to observe possible signatures
of an encounter in the disk profile at typical ages of observed young Brown Dwarfs. This is why
we restrict ourselves to the investigation of disk profiles at rather cool ambient temperatures
and choose Tj,,p = 20K. Here we only want to illustrate the general evolution of our post-
encounter disks, looking at two examples with different initial profiles. For better comparison
we choose their r,;, values such that they have the same masses. Thus we investigate two
disks with different profiles and approximately the same life-time. For the encounter parameter
that produce the steeper disk profile we choose 7y, = 5AUand 71 /r2 ~ 0.95, resulting in a
half-width value 7, = 0.064 - 5AU = 0.32AU, while for the flatter profile r,,;, = 2.3AU and
r1/re = 0.2, resulting in 7 = 0.16 - 2.3AU = 0.368AU.

Fig. 5.30 to 5.32 show the evolution of the surface density for the two disks at t = 2 - 10%yr,
2.5-10%yr and 5 - 10%yr.

At times as early as a few 10%*yr the outermost profiles are still rather steep and can be
described as a single exponential function. For the 71/ry ~ 0.95 encounter ( Fig. 5.30 left
panel) one can even distinguish the two disk regions with different half-width values, but their
difference is rather small and it should be extremely difficult to observe such a structure in a
real disk.

From the detailed structure calculations of D’Alessio et al. (1998) we know that our profiles
will eventually approach the ¥ oc 7~ !5-profile for constant temperature disks which is steeper
than the ¥ oc »~!-profile of the inner part of our initial disk profiles. As we can see from Fig.
5.31 and 5.32, after a time of more than 2.5 - 10°yr the inner part of our disks are already
close to the steeper ¥ oc r~1%-profile. This was to be expected, as that time corresponds to
half the viscous time, given by t, ~ r?/v, at 1AU, indicating that at small radii the disk is
already viscously more evolved. In the outer parts of the disk, on the other hand, the surface
density still seems to decrease exponentially but much less steeply than initially, because the
disk has expanded. Closer inspection, however, reveals that this decrease can only be poorly
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Figure 5.30: Radial Surface density profiles at a time of ~ 2.5 - 10*yr (solid line) together
with their initial profiles (dashed line), plotted semi-logarithmically. Shown are the profiles
for a disk with a steep initial profile (a; = 0.064) and 7,,;, = 5AU (a), and a flatter profile
(a1 = 0.16) with 7,3, = 2.3AU (b). The parameters were chosen that both disks have initially
the same mass. The disk are evolved at an ambient temperature of Ty, = 20K.
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Figure 5.31: Radial Surface density profiles at a time of ~ 2.5 - 10%yr (solid line) together
with their initial profiles (dashed line), plotted semi-logarithmically. Shown are the profiles
for a disk with a steep initial profile (a; = 0.064) and 7,,;, = 5AU (a), and a flatter profile
(ap = 0.16) with 7, = 2.3AU (b). The disk are evolved at an ambient temperature of
Tump = 20K. The blue solid line represents the power-law profile of the steady, constant
temperature disk solution of D’Alessio et al. (1998). The parameters were chosen that both
disks have initially the same mass.
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Figure 5.32: Radial Surface density profiles at a time of ~ 5 - 10%yr (solid line) together
with their initial profiles (dashed line), plotted semi-logarithmically. Shown are the profiles
for a disk with a steep initial profile (a; = 0.064) and r,,;, = 5AU (a), and a flatter profile
(a1 = 0.16) with 7, = 2.3AU (b). The disk are evolved at an ambient temperature of
Tump = 20K. The blue solid line represents the power-law profile of the steady, constant
temperature disk solution of D’Alessio et al. (1998). The parameters were chosen that both
disks have initially the same mass.
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fitted with one exponential function, but it is rather similar to the asymptotic solution of the
viscously spreading ring for large radii, as shown in Lynden-Bell & Pringle (1974), although in
our case it is not identical, because v is not constant. We also find that at a time ¢ = 2.5-10%yr
and later the two, initially different, profiles can now hardly be distinguished.

Therefore, we come to the conclusion that after 1 —2-10°yr any signatures of the initial profile
vanish. This is also true for our largest disk with r;,;, = 17.5AU that evolve on larger time
scales (see eq. 5.5). At later times, an outer disk profile similar to the viscously spreading
ring for large radii develops which is also the disk profile one would expect from isolated disks
(Hartmann et al., 1998). Therefore, directly from the structure of the disk the signatures of a
close collision can only be observed within the first 10%yr after the encounter.

5.4.4.4 Estimated Life-Time of Brown Dwarf Disks

The limit to detect active accretion disks around Brown Dwarfs is given by the observability
of the broad accretion components of the Ha-line profile, which currently means that only
disks with an accretion rate larger than ~ 10712Mg, - yr~! can be identified(Muzerolle et al.,
2005). We, therefore, define the disk life-time as the time after which the accretion rate drops
below this minimum value. As we mentioned in section 5.4.4.1, the value of the accretion
rate in a viscous disk is dominated by the much hotter conditions at lower disk radii. As
evolving the disk to a time of a few Myr and calculating the detailed temperature structure at
every time-step is computationally too expensive, we assume a very high constant temperature
throughout the disk with 7" = 1000K, which should overestimate the mass loss as explained
in section 5.4.4.1. This allows us to integrate the non-dimensional form of equation 5.4 for
different profiles and then scale the results for each of our post-encounter disks according to
equation 5.5.

Fig. 5.33 shows the fraction of Brown Dwarf disks with a life-time larger than a given value
for two different limiting accretion rates (left panel) as well as the distribution of accretion
rates at a time of 1Myr. As it can be seen, we find no Brown Dwarf disk in our sample with
a life-time larger than 2.50r 5Myr (depending on the detection limit) and the majority of our
disks have life-times less than 1Myr. Such low life-times are in direct contradiction to the
observations of Sterzik et al. (2004) who find an active accretion disk around a Brown Dwarf
with an age of ~ 10Myr.

On the other hand, Kenyon et al. (2005) suggest a typical time-scale for Ha-emission to become
undetectable of less than the age of oOri (3-7 Myr). Although this would roughly agree with
our results, our accretion rates at earlier times similar to the age of Taurus or IC-348 (both
~ 1 — 3Myr) appear to be very low compared to the observed accretion rates of Brown Dwarf
disks in Muzerolle et al. (2003) which are mostly above 1- 10~ Mg, - yr—!. For our disks we
find that only 4% have accretion rates larger than 1-107''M - yr~! and none with M larger
than 4-1071"Mg, - yr~! at an age of 1Myr. It, therefore, seems that in our model, we can only
account for Brown Dwarfs with very low accretion rates.

The overall disk fraction among Brown Dwarfs at an age of 1Myr seems also much lower
than observed in star-forming regions with similar age (e.g. Jayawardhana et al., 2003).
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Figure 5.33: Fraction of Brown Dwarf disks with a life-time lager than a given value, for two
different limiting accretion rates (a). Panel (b) shows the fraction of Brown Dwarf disks with
an accretion rate larger than a given value at a time of 1Myr. Encounter of the 'exchange’
type (see section 5.2) have been assumed to produce too small disks to be considered here.
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Here we find that at 1Myr only 13% of the disks should have detectable accretion signatures
(assuming 5-107'2M, - yr~! as the detection limit), while the disk fraction in Taurus, IC 348
and Cha I is ~ 50%(Jayawardhana et al., 2003). This difference can, however, be explained
if one considers that disks are more easily detected than accretion signatures (Natta et al.,
2004). Therefore, the number of confirmed substellar accretors is generally much lower than
the number of detections of circumstellar disks. If we assume that the seemingly non-accreting
Brown Dwarf disks are accreting ones, but with accretion rates lower than 5-10712M, - yr—!
down to 1-107'2Mg - yr~!, then one can easily see from Fig. 5.33 (a) that for this lower
detection limit we get about the same disk fraction as actually observed. However, this result
should be taken with some care, as we implicitly assumed that the observed disks in these
clusters have ages of exactly 1Myr. If they turn out to be only a few 10%yr older, than such a
high fraction cannot be reproduced with our model. This is especially true as the age spread
of the Brown Dwarfs in Taurus and Cha I is of the order of 2Myr (Jayawardhana et al., 2003;
Barrado y Navascués, 2005). In addition, the number of accretors, i.e. Brown Dwarf disks
with M > 5-10"2Mg, - yr—!, is for Cha I at (28 = 6)% (Natta et al., 2004), which is more
than twice as much as we predict from our model.

It, therefore, seems to us that the accretion rates of our post-encounter disks at an age of
~ 1Myr is much lower than has actually been observed in low-mass star-forming regions. This
would further imply that, if all Brown Dwarfs form by ejection in accreting triple systems
then the fraction of these systems that produce the very close binaries must be less or equal
the fraction of Brown Dwarfs around which disk material was detected but not any accretion
signatures. However, due to the rather large age spread of the observed objects and the strong
time dependence of disk fraction in our model, we do not want to give any numeric constraints
on the close Brown Dwarf binary fraction for any particular star-forming region, as it would
be highly uncertain. Instead, a much more detailed comparison, taking into account the age
of each individual observed object and the, hopefully, well constraint accretion rate close to
1-107'2M, - yr~! could constrain our model much better.

Nevertheless, we want to remind at this point, that our model underestimates the disk fraction
in many ways, with two being most significant: first, we evolve the disks at the maximum
temperature, which should, in reality, decrease significantly with time, reducing the mass loss
and therefore extending the life-time of our disks; second, compared to collapse calculations of
Lin & Pringle (1990), our disks have rather low initial surface densities ¥ , and this by almost
a factor of 4. Therefore, it seems plausible to us, that the disk fraction can be significantly
higher at later time for more realistic initial conditions, which would in turn also increase the
accretion rates and bring them much more in line with observations.

5.5 Summary and discussion

In this chapter we investigated disk collisions in triple systems and applied these results to disk
collisions in accreting triple systems that produce Brown Dwarfs by ejection and estimated
the sizes and life-times of these strongly perturbed disks around the ejected Brown Dwarfs.

Different from two-body disk encounters, we find that disk encounter in triple systems can
no longer be sufficiently characterized by encounter distance and eccentricity of the perturber
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orbit, as the disk in a close triple approach is strongly influenced by the motion of two bodies,
instead of only one. We, therefore, introduced a simple parameterization that considers this
fact and consists of the ratio of the closest encounter distances to each of the perturbers, 1 /73,
and the minimum value of r1 and 79, 7in. For larger values of /12 we would expect our
results to be very different from two-body disk collisions, while for lower values our results
should be rather similar to the two-body case.

From our disk collision simulations we find that, in most of our recircularized post-encounter
disk profiles there are three distinct regions, a power-law region in the innermost disk and
two regions further outside where the surface density drops off exponentially with different
half-width values. The extent of these regions is determined by 7y, while only the half-width
value of the middle region depends also on r1/ry. We find for low values of r;/re that the
disks are much flatter than for larger values, which is reflected by a larger half-width value
of the exponential drop-off in the middle region. From these data we constructed a model
surface density profile that only depends on our encounter parameter 7,,;, and r1/ro. We then
used this model and calculated disk radii, relative to 7,,;,, and relative disk masses in order
to compare to the two-body results of Hall (1997).

Intuitively one would expect that these results converge for low values of 71 /r3, as mentioned
above. However, for low 71 /re we find that rggy for our disks is twice as large as the value of
r90% = 0.57min obtained by Hall (1997), while for larger rq /7y it surprisingly reaches quickly
r90% = 0.57min. On the other hand, for the disk masses we find that for lower r/ro the
results are comparable to the two-body results while the disk masses are quickly decreasing
for larger values of r1/ry, as in the latter case there are two encounters with comparable
strength. Together with the larger disk radii this has the effect that in a triple encounter
either less mass is distributed over the same disk area, or the same amount of material is
distributed over a larger area, compared to disks from two-body encounters. It follows that,
disks after triple encounters have flatter radial profiles and are much less concentrated than
after two-body encounters.

The reason for the much flatter profile is the fact that in a triple encounter the ejected body
is after the encounter dramatically slowed down when the two perturber form the final binary.
This causes much of the material, that was initially unbound, to be re-captured by the ejected
body. Because this material has also a larger specific angular momentum its recircularized
radius will also be larger, causing the flatter disk profile. Here we want to note, that this
process is not specific to disk collisions in triple encounters but also applies to encounter in
higher order multiple systems.

Our model of the post-encounter surface density disk profile allowed us to make predictions
about the disks around Brown Dwarfs that were ejected from accreting triple systems. It was
thus possible to investigate the problem if we can form the close Brown Dwarf binaries as
obtained from our earlier simulations, while still having disks with life-times as inferred from
observations.

As we applied our disk model to the very close encounter in accreting triple systems we found
that after such collisions the disks have very small sizes, with only 2.5% of the Brown Dwarf
disks having rqgy larger than 2.5AU. Consequently their masses are extremely low, with the
majority of the Brown Dwarf disks having M < 1Mj. Although, these values are within
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the range of masses determined for observed Brown Dwarf disks (Klein et al., 2003), these
observed disks are, however, already at an advanced age (=~ 1Myr). Our disks, on the other
hand, have ages less than ~ 10°yr, as in the ejection scenario the decay happens well before
one free-fall time of the molecular cloud core (Reipurth & Clarke, 2001). Therefore, we expect
that most of our disks have much lower masses at a time of 1Myr. It must, however, be
mentioned, that we fix our disk masses by requiring the initial disk before the encounter to
have a mass lower than 1/10 times the mass of the central Brown Dwarf. This is because, we
simulated disk encounter for low-mass disks, and as soon as the disks become more massive
the self-gravity of the disks becomes important and our results from section 5.3 are no longer
applicable. Therefore, we think g can be in principal much higher than we assumed, and
it should be possible that the disks had initially higher masses and thus the post-encounter
disks would also be much more massive, which could better fit the observed disk masses.

In order to relate our results to observations of Brown Dwarf disks we let our post-encounter
disks evolve viscously until a time of a typical age of observed young Brown Dwarfs. We found,
that the outer disk profile is mainly dominated by the temperature of the ambient interstellar
cloud medium and, therefore, the disks expand much slower for cooler, low-mass star-forming
regions like Taurus than hotter ones, similar to the Orion Nebular cloud. We found that only
in cooler low-mass star forming regions we can expect that the sizes of disks around ejected
Brown Dwarfs are, on average, significantly smaller than they are expected around T Tauri
stars, provided the Brown Dwarfs have an age of less than 1Myr. We also investigated, if the
profiles of the ejected disks can be used to determine if the disk suffered a close encounter
which is necessary to form a close Brown Dwarf binary. Our results show, that the peculiar
signatures of the initial disk-profile vanish on time-scales usually much less than 2-10°yr even
if one assumes a rather cool environment. After that time the outer profile is much flatter
than initially and does not appear to be strongly truncated. It should be, therefore, rather
difficult to distinguish such a profile from that of an isolated disk observationally.

From this we follow further, that only the disk sizes, but not the disk profiles, of disks around
very young Brown Dwarfs in cool low-mass star-forming region could be used to distinguish
between a formation by ejection and a more isolated formation. However, one should also
note that in our particular case the encounters that truncate the disks are very close, owing to
the rather strong decrease of the total energy for the accretion-of-gas-at-rest approximation,
as shown in section 4.2.2. A less stronger decrease in total energy, as e.g. for the gas-in-
motion approximation (see Fig.4.1), would lead to, on average, larger encounter distances
and, therefore, to larger disks. Thus disk sizes much larger than we found at an age of less
than 1Myr do not generally rule out a formation by ejection. All we can say here is that from
our model the existence of mainly very close Brown Dwarf binaries in a star-forming region
implies very small disk sizes around ejected Brown Dwarfs at an age of less than 1Myr.

So far the sizes of disks around Brown Dwarfs are not very well constrained by observations
and only the detection of millimeter dust emission (Klein et al., 2003) has shown that they
must extend to larger radii where the disk temperature is low (10 — 20K) and, therefore,
dominated by the ambient medium. This means in our case a radius larger than typically
~ 1 — 2AU. For the accretion rates and life-times of Brown Dwarf disks on the other hand,
there is much more data available to compare our results with.

Using as definition of the disk life-time, the time where the accretion rate drops below ~
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10712M, - yr~! (Muzerolle et al., 2005), we find from our simulations that there is no disk with
a life-time larger than 5Myr, even if we apply our lowest threshold value for M. Although this
might seem to reflect the time scale for Ha-emission to become undetectable as mentioned in
section 5.4.4.4, comparing the values of M at earlier times, it becomes clear that our model can
only account for the lowest accreting Brown Dwarfs with M mostly less than 107" Mg - yr—!
at an age of IMyr. In addition, our disk-fraction at 1Myr with about 13% seems also to be
too low compared to the observed fraction of =~ 50% in clusters at a similar age, like Taurus.
However, as we find, this difference can in part be explained if we account for the fact that
not in all Brown Dwarf disks accretion features have been detected. If we apply our lower
threshold value for M we find a disk fraction that is very close to 50%. Still, our model cannot
explain the rather high fraction of Brown Dwarf disks with much higher accretion rates than
5-10712Mg, - yr~! at an age of ~ 1Myr.

On the other hand, we should also note here that the assumptions about initial conditions
of our disks are rather “pessimistic”. As we mentioned earlier, we had to restrict ourselves
to low-mass disks just before the triple encounter, as otherwise these simulations would be
computationally too expensive. However, from the collapse calculations of Lin & Pringle
(1990) we find that these densities can be a factor of 4 larger than the one we assumed
here. Such large values should make the masses of our post-encounter disks much larger and
consequently their life-times as well as accretion rates. However, here we can only speculate
about how the life-time increases, as we expect that the evolution of a triple system, where the
disk’s gravity can no-longer be neglected, is not only different from triple encounter without a
massive disk, but should be also much more complex to treat systematically in order to obtain
meaningful statistics, because of the much increased parameter space.

In addition to the low initial densities, we fixed the temperature at all times to the maximum
initial temperature which we obtained from the calculations in section 5.4.4.1. As mentioned
earlier, the temperature in the inner disk will decrease with time for the more realistic model.
Therefore, we overestimated the accretion rates at later times dramatically. It seems plausible
to us that, if we assume a realistic temperature distribution, our disks will have significantly
larger life-times. However, future simulations of the evolution of all our post-encounter Brown
Dwarf disks need to show to what extent we can expect much larger life-times.

Given that we have chosen very conservative initial conditions and temperatures for our disks
and that we still get a disk fraction of 13% at 1Myr, inspires confidence that in more realistic
simulations we can have both, very close Brown Dwarf binaries and long lived accreting disks
around Brown Dwarfs, although probably not as long lived as 10Myr, like the Brown Dwarf
disk found by Sterzik et al. (2004). Currently, however, it seems that our disks around ejected
Brown Dwarfs generally have too low accretion rates and life-times to account for most of the
observed disks at ages of typical star-forming regions. This does not necessarily mean that
Brown Dwarfs cannot have formed by ejection in these regions but excludes for many of these
disks our initial conditions that produce the very close Brown Dwarf binaries observed in the
galactic field.
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5.6 Limitations and Future Prospects

In this section we want to remind the reader that our model is based on many simplifying
assumptions. This is especially with regard to the initial conditions of the disk before the
encounter, as already pointed out previously. Here we want to make some additional remarks
that have been left out in the discussion so far.

First, we should remind that in the entire chapter we only considered disk collisions in decaying
triple systems, where the triple systems had zero total angular momentum. Although we do not
believe that our results regarding the disk structure change dramatically if rotation is taken
into account, the effect of an initial uniform rotation of the triple system on the resulting
disks around the ejected body should, nevertheless, be quantified in a future study. Also, the
effect of non-coplanar encounter, where the disk mid-plane is no longer in the orbital plane
of the triple system, should be investigated, as it might change the disk structure as well as
the amount of material that gets stripped off the disk. However, we think that these effects
should not change our main results significantly, whereas the following might be much more
important.

We chose, for simplicity reasons, a ¥ oc 1/r-profile but it is currently unclear how the disk
will evolve during the interaction in the triple system and how its profile will be before the
last encounter. As we already mentioned, this would require to investigate the much larger
parameter space of encounter that do not lead to escape. Even if we restrict ourselves to the
last encounters before the break-up of the system, we find, that it becomes already difficult to
describe the outcome of a disk collision in terms of only two encounter parameter, as can bee
seen by the rather large errors of our model parameter in Fig. 5.13. Therefore, to investigate
disk collisions in a systematic way during the whole interaction in a bound triple system and
determining the structure of the remaining disk in dependence on the properties of these triple
systems is already a large computational challenge, even without considering the permanent
infall of disk material due to the collapse of the molecular cloud core.

Another simplifying assumption in our model is, that the disk material is recircularized after
the encounter. This assumption is based on results of simulations that treat the viscous evo-
lution in a very simplified way (Clarke & Pringle, 1993). Much more detailed hydrodynamical
simulations of perturbed disks need to justify this. Such calculations then need to take into ac-
count the non-Keplerian velocity profile of these disks, caused by the eccentric orbital motion
of the disk material, but also the non-axis-symmetric structure, which makes two-dimensional
simulations necessary. These investigations are very important for the further evolution of the
disk, as they determine the time-scale of recircularization. In our simulations we assumed that
this time-scale is much shorter than the time-scale the disk expands. We, therefore, started
our disk evolution calculations with a completely recircularized disk. In reality we expect that
recircularization could, in principal, take place on longer time-scales which causes a compe-
tition between viscous expansion and contraction due to recircularization. It is, therefore,
possible that the disks do not become that much concentrated, which in turn should reduce
the accretion rate, as there is less material in the inner regions and M owX. From this it
follows that longer recircularization time-scales will increase the life-time of our disks, whereas
our model, once again, tends to reduce it.
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Finally, the value of the viscosity parameter « is still rather uncertain and we can only say here
that our value chosen seems to be reasonable based on MHD simulations of Abramowicz et al.
(1996); Brandenburg et al. (1996). This seems even more so as our disks have rather low surface
densities and can be easily ionized by cosmic X-rays, making ideal MHD applicable (Hubertus
Klahr, private communication). Further constraining the value of the viscosity parameter is,
however, vital for the determination of the life-time of our disks, because increasing it by only
a factor of 2 would have the same effect as increasing the temperature of the inner disk by the
same factor, which would reduce the life-time of our disks dramatically.

For the future we plan to resolve at least some of these issues. The less complex task seems
to us, of course, to calculate the evolution of all our disks with the more realistic temperature
profile to get a better estimate of the life-time of our disk. Then we should determine the
time-scale of recircularization of the perturbed disk material. Although, it is computationally
rather challenging, as we now have to carry out two-dimensional simulations, one should
already be able to estimate the time-scale of recircularization after calculating a few extreme
cases of perturbed disks.

On contrary, the investigation of the disk structure during the interaction in a triple system is
much more complex and challenging, both to do systematic as well as computationally. First,
the encounter parameter have to be re-determined for triple encounter that do not lead to
decay, which is not so challenging, but then it needs to be shown that the outcome of disk
collisions in such encounters can really be sufficiently described by only two parameter or if
one needs to consider more parameter. Second, and more importantly, the disks are very
unlikely to be of low-mass compared to the masses of the central object at the beginning of
the simulation, as the infalling material will first accumulate in the disk (e.g. Lin & Pringle,
1990). This will significantly change the dynamics of the triple system and will probably
also have an effect on the statistics and relative importance of the encounter parameters. In
addition, as the disks are no longer of low mass, pressure forces and self-gravity need to be
considered during the calculations which is already a challenging task for isolated disks and
even more so for a parameter study. Therefore, such a study seems not tractable to do in the
near future but higher resolution runs of collapsing, turbulent, molecular clouds, similar to
Bate & Bonnell (2004), could give already a glimpse on what to expect, although, in absence
of a realistic thermodynamical treatment of the disk, needs to be taken with some care.



Chapter 6

Conclusions

In this thesis we investigated the influence of accretion and gas interaction on the decay of
gravitating triple systems and its implications on the viability of the ejection scenario as Brown
Dwarf formation scenario. We carried out N-body calculations where the bodies are gaining
mass according to a given accretion rate and derived statistics of escaping Brown Dwarfs and
Brown Dwarf binaries and compared these to our analytical model. For the integration of
motion we used a modified chain regularization routine that also allowed for mass growth of
the fragments during their gravitational interaction.

We considered the kinematics, the abundance as well as the binary properties of the ejected
fragments in dependence of the relative motion of the accreted gas with respect to the bodies.
In these calculations we treat the gas interaction in an approximate fashion by specifying ad hoc
the momentum the accreted mass adds to the stellar fragments. This modeling of dynamical
interaction of the fragments allowed for a better statistical description of the resulting single
and binary Brown Dwarf properties, because of the increased number of systems that can be
integrated within a reasonable amount of time.

We also carried out simulations where the ejected body is surrounded by a mass- and pressure-
less disk which allowed us to construct a model of the radial surface density profile that is fully
determined by two encounter parameter of the triple collision that lead to decay. This model
was then applied to determine the sizes and masses of disks around ejected Brown Dwarfs from
accreting triple systems, while these triple systems also produce the very close Brown Dwarf
binaries that match the observations. Furthermore, we investigated the viscous evolution of
these strongly truncated disks in dependence of their inter-stellar environment, which allowed
us to make predictions about the disk profiles, sizes and accretion rates at ages, at which
young Brown Dwarfs in star-forming regions have been observed. From these simulations we
further obtained lower limits on the life-time of accretion disks around ejected Brown Dwarfs
and estimated disk fractions for typical low-mass star-forming regions, which we compared to
observations.
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6.1 Summary of Results

Our main results can be summarized as follows:

We have shown that accretion and consequent shrinkage of triple systems increases the
escape velocities significantly compared to non-accreting systems. The high velocities
of Brown Dwarfs from our simulations should make it less likely to find them in star-
forming clusters with a shallow potential well and a low escape velocity, but rather in
an extended region around it, usually called the Brown Dwarf halo.

In addition, a substantial fraction of Brown Dwarfs in our simulations have escape
velocities which are rather low compared to typical escape velocities of low-mass star-
forming clusters. These Brown Dwarfs should also share the same kinematics as the
stars in the cluster, which would also agree with observations of low-mass star-forming
regions.

Because of ongoing accretion and consequent shrinkage of the systems, the binary sep-
arations are decreased by a factor of 5 compared with non-accreting systems and the
median of the binary semi-major axis distribution in the case with accretion turned out
to be up to 50 times smaller compared to the initial inter-particle distances. This reduc-
tion in scale made it possible to start with much larger fragment separations in order to
obtain the observed close Brown Dwarf binaries.

We were also able to represent the semi-major axis distribution of the volume limited
sample of binary Brown Dwarfs of Bouy et al. (2003). In contrast to G-type binaries
(Duquennoy & Mayor, 1991), the components in Brown Dwarf binaries seem to be very
close and their semi-major axis distribution drops off steeply to both sides of the median.
If this drop off to lower separations is confirmed observationally, it would provide some
evidence, that tidal interactions might be less important for the evolution of Brown
Dwarf binaries than they are for G-type stars.

We have shown analytically as well as numerically that the probability of forming Brown
Dwarfs should be high even for initially moderately compact systems. This is also true
without considering competitive accretion, as competitive accretion will increase the
number of Brown Dwarfs, which also our test simulations of unequally accreting triple
systems indicate. Only for increasing accretion rates forming Brown Dwarfs by ejection
seems less likely.

Our analytical calculation showed that the reason why the ejection scenario is much
more efficient than previously assumed lies in the shrinkage of the system, reflected by
the time dependence of the mean harmonic size of the triple system. It turned out
that the total energy is, depending on the amount of momentum transfer of the gas
onto the bodies, strongly decreasing if this time-dependence is taken into account, while
it is much less so if the system size remains constant. This convincingly explains the
very different formation probabilities, resulting from our numerical calculations for the
different kinds of momentum transport during mass growth.
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e We found from our simulations of disk collisions in close triple encounter that the result-
ing recircularized disks are generally flatter and less massive than after similar two-body
encounter with the same minimum encounter distance r,,;,. The difference in the disk
profiles is related to the significant slow down of the ejected body after the close triple
encounter, caused by the formation of the final binary, which causes some of the unbound
high-angular momentum material to be re-captured by the ejected body.

e The disks around Brown Dwarfs ejected from accreting triple systems have very low
masses mostly below 1Mj and sizes typically less than 2AU at a time just after the
ejection. These low masses are currently in contradiction to observations of Klein et al.
(2003), considering that our disks will have lost a substantial amount of mass until they
reach the age of the observed objects.

e A difference in disk size between disks around ejected Brown Dwarfs and Brown Dwarfs
that might have formed similar to isolated T Tauri stars can only be expected in rather
cool low-mass star-forming regions at an age less than 1Myr.

e Any signature of the initial post-encounter profile vanishes after ~ 2 - 10°yr and the
disk does no longer appear to be strongly truncated. It should be then rather hard to
distinguish it from a disk profile of an isolated disk that did not suffer a collision.

e The life-times of disks around ejected Brown Dwarfs, in our current model, do not exceed
5Myr. It seems, therefore, very unlikely that accreting disks around older Brown Dwarfs
have suffered close triple encounter that also lead to the formation of very close Brown
Dwarf binaries.

e Our model can currently only account for the accreting Brown Dwarfs with the lowest
accretion rate mostly below 1-1071'Mg, - yr=! at an age of ~ 1Myr.

e The disk fraction of accreting Brown Dwarfs with accretion rates larger than 5 - 10712
is in our model too low to account for many of the observed disks in typical low-mass
star-forming regions. From our model we can only conclude that the fraction of very
close Brown Dwarf binaries must be less than the fraction of Brown Dwarfs around
which disk material was detected but not any accretion signatures in those regions.

6.2 Discussion and Conclusions

Our results as laid out above have helped to arrive at a clearer picture of the consequences as
well as the feasibility of the ejection scenario as Brown Dwarf formation scenario presented by
Reipurth & Clarke (2001). This especially applies to the properties of Brown Dwarf binaries.
In contrast to previous work, we found that the formation of close Brown Dwarf binaries,
as observed in the galactic field (Bouy et al., 2003), might be a common byproduct of the
ejection if the accretion process is not very competitive. Although Sterzik & Durisen (2003)
come to similar binary properties without considering accretion during the interaction, their
choice of the initial compactness of the multiple systems seems to be problematic for Brown
Dwarfs, as it would require them to start on initial separations that are very close to the
initial sizes of the opacity-limited fragments of about 10AU (compare to Bate et al., 2002a).
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It seems, therefore, very likely that these Brown Dwarfs will merge to a single object, rather
than interact like point-masses. We, on the other hand, have shown that the initial separation
can be more than an order of magnitude larger to achieve the same compactness for binary
Brown Dwarfs, if accretion and momentum transfer of the accreted gas is accounted for.

Therefore, in our model very close Brown Dwarf binaries can form under a much larger variety
of initial separations than in similar models without accretion. This has also the consequence
that the properties of molecular cloud cores have a larger influence on the outcome of the
ejection scenario than just setting the initial conditions. This, in turn, means that from
Brown Dwarf binary properties one cannot relate, in a simple way, to the initial separations
of the multiple system they might have formed in. This is also reflected by the dependence
of the total energy of triple systems (eqn. 4.12) , as it depends only linearly on the initial
compactness of the system, given by the initial energy FEj, whereas its dependency on the
accretion rate is much stronger.

However, from our simulation we cannot draw any conclusions about how efficient the ejection
scenario can produce binary Brown Dwarfs, as we did not extensively explore the influence of
competitive accretion. As we found from our test calculations, the higher the difference in the
accretion rates between the members of the triple is, the lower is the number of Brown Dwarf
binaries. From simulations of Bonnell et al. (1997) it turned out that the competitiveness
of the accretion process also depends on the number of fragments in a multiple system, with
smaller- N systems having a lower maximum mass ratio of their members at a given time
than for larger- N systems. This would simply mean that it might be more likely to form
Brown Dwarf binaries in triple rather than in higher order systems. In addition, observations
of Brown Dwarf binaries indicate that their mass ratios are close to one (Bouy et al., 2003),
supporting the idea that Brown Dwarf binaries could have formed in decaying accreting triple
systems, where competitive accretion did not play a big role. However, this needs to be
confirmed by more detailed hydrodynamical simulations.

Since we found initial conditions for our accreting triple systems that resulted in the close
Brown Dwarf binary distribution that match the observations, we can further study the con-
sequences for the single ejected Brown Dwarfs with the same initial conditions and compare
these to observations of Brown Dwarfs in low-mass star-forming regions. This allows us then
to speculate, if we could expect very close Brown Dwarf binaries in these regions, as so far
only close Brown Dwarf binaries could be resolved at distances not greater than ~ 105pc.

Considering the results of our simulations of disks around ejected Brown Dwarfs, the general
impression is that currently the chances to find the very close Brown Dwarf binaries in low-
mass star-forming regions as Taurus, IC348 and Chamaeleon are rather limited, as there seem
to be too many Brown Dwarf disks with too high accretion rates. Therefore, a null-result for
close Brown Dwarf binaries in these regions would be in complete agreement with the ejection
scenario. If, however, there might be some close Brown Dwarf binaries much more detailed
modeling is required in order to relate the number of very close Brown Dwarf binaries to the
number of single Brown Dwarfs with accretion disks. Such modeling then needs to take into
account the influence of competitive accretion and needs better constraints on the accretion
rates as well as initial masses, when the fragments start to significantly interact with each
other. This can only be done with fully hydrodynamical models of collapsing cloud cores,
where the initial conditions are self-consistently obtained.
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However, so far such models could not produce any close Brown Dwarf binaries and much
more effort needs to be invested in order to understand why that is so. The other problem
with such models is, that it is rather difficult to get meaningful statistics. Therefore, a refined
approximative model based on the results of a few of such fully hydrodynamical calculations
seems to be a good way to have both, sensible initial conditions and a good statistical descrip-
tion of the resulting distribution of Brown Dwarf properties. This would also lead to a much
better understanding of the relation between initial cloud properties and the properties of the
embedded accreting clusters.

We conclude that accretion of gas and the kinematic properties of the accreted gas during
dynamical interactions strongly influence the abundance as well as the dynamical properties
of Brown Dwarfs and, that the ejection scenario seems to be a promising scenario to produce
both, close Brown Dwarf binaries as well as single Brown Dwarfs, whereas it seems less likely
to find very long-lived accretion disks around them.



98

CHAPTER 6. CONCLUSIONS



Bibliography

Aarseth, S. J., Anosova, J. P., Orlov, V. V., & Szebehely, V. G. 1994, Celestial Mechanics
and Dynamical Astronomy, 60, 131

Abramowicz, M., Brandenburg, A., & Lasota, J. 1996, MNRAS, 281, L21+

Agekian, T. A. & Anosova, Z. P. 1990, Celestial Mechanics and Dynamical Astronomy, 49,
145

—. 1991, AZh, 68, 1099

Allen, L. E., Myers, P. C., Di Francesco, J., Mathieu, R., Chen, H., & Young, E. 2002, ApJ,
566, 993

Anosova, J. P. & Orlov, V. V. 1994, Celestial Mechanics and Dynamical Astronomy, 59, 327

Anosova, J. P. & Zavalov, N. N. 1981, Trudy Astronomicheskoj Observatorii Leningrad, 36,
109

Anosova, Z. P. 1986, Ap&SS, 124, 217
Anosova, Z. P. & Orlov, V. V. 1992, A&A, 260, 473
Anosova, Z. P., Orlov, V. V., Chernin, A. D., & Kiseleva, L. G. 1989, Ap&SS, 158, 19

Apai, D., Pascucci, 1., Henning, T., Sterzik, M. F., Klein, R., Semenov, D., Giinther, E., &
Stecklum, B. 2002, ApJ, 573, L115

Armitage, P. J. & Clarke, C. J. 1997, MNRAS, 285, 540

Béjar, V. J. S., Martin, E. L., Zapatero Osorio, M. R., Rebolo, R., Barrado y Navascués, D.,
Bailer-Jones, C. A. L., Mundt, R., Baraffe, I., Chabrier, C., & Allard, F. 2001, ApJ, 556,
830

Béjar, V. J. S., Zapatero Osorio, M. R., & Rebolo, R. 1999, ApJ, 521, 671

Balbus, S. A. & Hawley, J. F. 1991, ApJ, 376, 214

Barrado y Navascués, D. 2005, Memorie della Societa Astronomica Italiana, 76, 348
Basri, G. 2000, ARA&A, 38, 485

Bate, M. R. & Bonnell, 1. A. 2004, MNRAS, 728

99



100 BIBLIOGRAPHY

Bate, M. R., Bonnell, I. A., & Bromm, V. 2002a, MNRAS, 332, L.65

—. 2002b, MNRAS, 336, 705

—. 2003, MNRAS, 339, 577

Bell, K. R., Cassen, P. M., Klahr, H. H., & Henning, T. 1997, ApJ, 486, 372
Bell, K. R. & Lin, D. N. C. 1994, AplJ, 427, 987

Binney, J. & Tremaine, S. 1987, Galactic dynamics (Princeton, NJ, Princeton University
Press, 1987, 747 p.)

Boffin, H. M. J., Watkins, S. J., Bhattal, A. S., Francis, N., & Whitworth, A. P. 1998, MNRAS,
300, 1189

Boldyrev, S., Nordlund, A., & Padoan, P. 2002, ApJ, 573, 678

Bonnell, 1. A., Bate, M. R., Clarke, C. J., & Pringle, J. E. 1997, MNRAS, 285, 201
—. 2001, MNRAS, 323, 785

Boss, A. P. 2001, ApJ, 551, 1167

Bouvier, J., Stauffer, J. R., Martin, E. L., Barrado y Navascues, D., Wallace, B., & Bejar,
V. J. S. 1998, A&A, 336, 490

Bouy, H., Brandner, W., Martin, E. L., Delfosse, X., Allard, F., & Basri, G. 2003, AJ, 126,
1526

Boyd, D. F. A. & Whitworth, A. P. 2005, A&A, 430, 1059
Brandenburg, A., Nordlund, A., Stein, R. F., & Torkelsson, U. 1996, ApJ, 458, L45+

Briceno, C., Luhman, K. L., Hartmann, L., Stauffer, J. R., & Kirkpatrick, J. D. 2002, ApJ,
580, 317

Bulirsch, R. & Stoer, J. 1966, Numerische Mathematik, 8, 1

Burkert, A., Bate, M. R., & Bodenheimer, P. 1997, MNRAS, 289, 497
Burkert, A. & Bodenheimer, P. 1993, MNRAS, 264, 798+

Chabrier, G. 2002, ApJ, 567, 304

Clarke, C. J. & Pringle, J. E. 1991, MNRAS, 249, 584

—. 1993, MNRAS, 261, 190

Close, L. M., Siegler, N., Freed, M., & Biller, B. 2003, ApJ, 587, 407
Comeroén, F., Neuhiuser, R., & Kaas, A. A. 2000, A&A, 359, 269
D’Alessio, P., Canto, J., Calvet, N., & Lizano, S. 1998, ApJ, 500, 411
D’Angelo, G., Henning, T., & Kley, W. 2003, ApJ, 599, 548



BIBLIOGRAPHY 101

Delgado-Donate, E. J., Clarke, C. J., & Bate, M. R. 2003, MNRAS, 342, 926

—. 2004, MNRAS, 347, 759

Duquennoy, A. & Mayor, M. 1991, A&A, 248, 485

Eisloffel, J. & Scholz, A. 2005, Memorie della Societa Astronomica Italiana, 76, 331
Elmegreen, B. G. 2000, ApJ, 530, 277

Forsythe, G. E., Malcolm, M. A., & Moler, C. B. 1977, Computer Methods for Mathematical
Computations (Prentice Hall Professional Technical Reference)

Gizis, J. E., Reid, I. N., Knapp, G. R., Liebert, J., Kirkpatrick, J. D., Koerner, D. W., &
Burgasser, A. J. 2003, AJ, 125, 3302

Goodman, A. A., Benson, P. J., Fuller, G. A., & Myers, P. C. 1993, ApJ, 406, 528
Goodwin, S. P., Whitworth, A. P., & Ward-Thompson, D. 2004, A&A, 414, 633
Hall, S. M. 1997, MNRAS, 287, 148

Hall, S. M., Clarke, C. J., & Pringle, J. E. 1996, MNRAS, 278, 303

Hartmann, L., Calvet, N., & Boss, A. 1996, ApJ, 464, 387+

Hartmann, L., Calvet, N., Gullbring, E., & D’Alessio, P. 1998, ApJ, 495, 385
Henning, T. & Stognienko, R. 1996, A&A, 311, 291

Hubeny, I. 1990, ApJ, 351, 632

Jayawardhana, R., Ardila, D. R., Stelzer, B., & Haisch, K. E. 2003, AJ, 126, 1515
Joergens, V. & Guenther, E. 2001, A&A, 379, L9

Kenyon, M. J., Jeffries, R. D., Naylor, T., Oliveira, J. M., & Maxted, P. F. L. 2005, MNRAS,
356, 89

Kirkpatrick, J. D., Reid, I. N., Liebert, J., Cutri, R. M., Nelson, B., Beichman, C. A., Dahn,
C. C., Monet, D. G., Gizis, J. E., & Skrutskie, M. F. 1999, ApJ, 519, 802

Kirkpatrick, J. D., Reid, I. N., Liebert, J., Gizis, J. E., Burgasser, A. J., Monet, D. G., Dahn,
C. C., Nelson, B., & Williams, R. J. 2000, AJ, 120, 447

Klein, R., Apai, D., Pascucci, 1., Henning, T., & Waters, L. B. F. M. 2003, ApJ, 593, L57
Klessen, R. S. 2001, ApJ, 556, 837

Kobayashi, H. & Ida, S. 2001, Icarus, 153, 416

Koenigl, A. 1991, ApJ, 370, L39

Kroupa, P. & Bouvier, J. 2003, MNRAS, 346, 369

Kroupa, P., Bouvier, J., Duchéne, G., & Moraux, E. 2003, MNRAS, 346, 354



102 BIBLIOGRAPHY

Kroupa, P., Tout, C. A., & Gilmore, G. 1993, MNRAS, 262, 545
Lopez Marti, B., Eisloffel, J., Scholz, A., & Mundt, R. 2004, A&A, 416, 555

Lada, C. J. & Lada, E. A. 1991, in Astronomical Society of the Pacific Conference Series,
3-48676

Lada, C. J. & Lada, E. A. 2003, ARA&A, 41, 57

Landau, L. D. & Lifshitz, E. M. 1969, Mechanics (Course of Theoretical Physics, Oxford:
Pergamon Press, 1969, 2nd ed.)

Lang, B. 2003, PhD thesis, University of Heidelberg
Larson, R. B. 1981, MNRAS, 194, 809

Larson, R. B. 1990, in ASSL Vol. 162: Physical Processes in Fragmentation and Star Forma-
tion, 389-399

Laughlin, G. & Bodenheimer, P. 1994, ApJ, 436, 335

Lin, D. N. C., Laughlin, G., Bodenheimer, P., & Rozyczka, M. 1998, Science, 281, 2025
Lin, D. N. C. & Pringle, J. E. 1990, ApJ, 358, 515

Liu, M. C., Najita, J., & Tokunaga, A. T. 2003, ApJ, 585, 372

Luhman, K. L., Rieke, G. H., Young, E. T., Cotera, A. S., Chen, H., Rieke, M. J., Schneider,
G., & Thompson, R. I. 2000, ApJ, 540, 1016

Luhman, K. L., Stauffer, J. R., Muench, A. A., Rieke, G. H., Lada, E. A., Bouvier, J., &
Lada, C. J. 2003, ApJ, 593, 1093

Lynden-Bell, D. & Pringle, J. E. 1974, MNRAS, 168, 603

Martin, E. L., Basri, G., Zapatero-Osorio, M. R., Rebolo, R., & Lopez, R. J. G. . 1998, ApJ,
507, L41

Martin, E. L., Barrado y Navascués, D., Baraffe, I., Bouy, H., & Dahm, S. 2003, ApJ, 594,
525

Mikkola, S. & Aarseth, S. J. 1990, Celestial Mechanics and Dynamical Astronomy, 47, 375
—. 1993, Celestial Mechanics and Dynamical Astronomy, 57, 439

Moraux, E., Bouvier, J., & Cuillandre, J.-C. 2002, in SF2A-2002: Semaine de I’Astrophysique
Francaise, 469—

Motte, F., Andre, P., & Neri, R. 1998, A&A, 336, 150

Muench, A. A., Alves, J., Lada, C. J., & Lada, E. A. 2001, ApJ, 558, L51

Muench, A. A., Lada, E. A, Lada, C. J., & Alves, J. 2002, ApJ, 573, 366

Muzerolle, J., Hillenbrand, L., Calvet, N., Briceno, C., & Hartmann, L. 2003, ApJ, 592, 266



BIBLIOGRAPHY 103

Muzerolle, J., Luhman, K. L., Briceno, C., Hartmann, L., & Calvet, N. 2005, ArXiv Astro-
physics e-prints

Nakajima, T., Oppenheimer, B. R., Kulkarni, S. R., Golimowski, D. A., Matthews, K., &
Durrance, S. T. 1995, Nature, 378, 463

Natta, A. & Testi, L. 2001, A&A, 376, 1.22

Natta, A., Testi, L., Muzerolle, J., Randich, S., Comerén, F., & Persi, P. 2004, A&A, 424, 603
Ostriker, E. C. 1994, ApJ, 424, 292

Padoan, P., Kritsuk, A., Norman, M. L., & Nordlund, A. 2005, AplJ, 622, L61
Padoan, P. & Nordlund, A. 2002, ApJ, 576, 870

—. 2004, ApJ, 617, 559

Pascucci, 1., Apai, D., Henning, T., & Dullemond, C. P. 2003, ApJ, 590, L111
Pfalzner, S., Umbreit, S., & Henning, T. 2005, ArXiv Astrophysics e-prints
Pickett, B. K., Durisen, R. H., Cassen, P., & Mejia, A. C. 2000, ApJ, 540, L95
Press, W. H. 1993, Science, 259, 1931

Pringle, J. E. 1981, ARA&A, 19, 137

Reipurth, B. & Clarke, C. 2001, AJ, 122, 432

Salpeter, E. E. 1955, ApJ, 121, 161+

Semenov, D., Henning, T., Helling, C., Ilgner, M., & Sedlmayr, E. 2003, A&A, 410, 611
Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337

Shampine, L. F. & Reichelt, M. W. 1997, SIAM J. Sci. Comput., 18, 1

Shu, F. H. 1977, ApJ, 214, 488

Skeel, R. D. & Berzins, M. 1990, STAM J. Sci. Stat. Comput., 11, 1

Sterzik, M. F. & Durisen, R. H. 1995, A&A, 304, L9

—. 1998, A&A, 339, 95

—. 2003, A&A, 400, 1031

Sterzik, M. F., Pascucci, I., Apai, D., van der Bliek, N., & Dullemond, C. P. 2004, A&A, 427,
245

Stiefel, E. L. & Scheifele, G. 1971, Linear and regular celestial mechanics; perturbed two-body
motion, numerical methods, canonical theory (Berlin, New York, Springer-Verlag, 1971.)

van Albada, T. S. 1968, Bull. Astron. Inst. Netherlands, 20, 57



104 BIBLIOGRAPHY

Watkins, S. J., Bhattal, A. S., Boffin, H. M. J., Francis, N., & Whitworth, A. P. 1998a,
MNRAS, 300, 1205

—. 1998b, MNRAS, 300, 1214

Whitworth, A. P. & Goodwin, S. P. 2005, Memorie della Societa Astronomica Italiana, 76,
211

Whitworth, A. P. & Zinnecker, H. 2004, A&A, 427, 299
Yorke, H. W. & Bodenheimer, P. 1999, ApJ, 525, 330
Yorke, H. W., Bodenheimer, P., & Laughlin, G. 1993, ApJ, 411, 274

Zapatero Osorio, M. R., Béjar, V. J. S., Martin, E. L., Rebolo, R., Barrado y Navascués, D.,
Mundt, R., Eisloffel, J., & Caballero, J. A. 2002, ApJ, 578, 536

Zinnecker, H., McCaughrean, M. J., & Wilking, B. A. 1993, in Protostars and Planets III,
429-495



List of Figures

3.1

4.1

4.2

4.3

4.4

4.5

A four-particle regularization chain, where R;, R, R3 are the interparticle
distances and mq, mo, mg, my4 are the masses of the bodies. . . . . .. .. ...

Comparison of the numerical solution (dotted line) of an accreting triple system
accreting gas at rest with the analytic solution. In addition the analytical
solution for accretion of gas in motion and of counterstreaming gas, as well as
the solution using the approximation R = const. (Reipurth & Clarke, 2001) are
shown. It can be clearly seen that the latter approximation underestimates the
absolute value of the total energy by an order of magnitude. . . . . . . ... ..

The probability that an equal mass triple system has not yet decayed after a
time ¢ for the different models. T} is the time when the fragments reach the
Brown Dwarf limit of M = 0.08M¢, and T; is the time the fragments effectively
start to interact with each other, which was chosen to be the time when they
reach 0.04Mg. . . . . .« oL

Initial configuration of the triple systems (taken from Anosova, 1986). The com-
ponents of the triple systems are placed at the points A (—0.5,0), B (+0.5,0),
and C (§,n). The point C' is chosen randomly within the region D. . . . . . ..

Fraction of systems that ejected a single member with a mass lower than a
given mass m. Shown are the results for different accretion rates in multiples
of 1.4107% Muyr~! of gas at rest. The dashed line represents the estimate of
Reipurth & Clarke (2001) of ejected embryos with a lower mass than 0.08 M. It
can be clearly seen that only if the accretion rate is 5 times the value suggested

14

by Reipurth & Clarke (2001) the number of Brown Dwarfs match their estimate. 32

Fraction of systems that ejected a single member with a mass lower than a
given mass m. Shown are the results for different rates of accretion of gas in
‘extreme’ motion in multiples of 1.4107% Myyr~!. The dashed line represents
the estimate of Reipurth & Clarke (2001) of ejected embryos with a lower mass
than 0.08 M. As in the case of accretion of gas at rest, the number of Brown
Dwarfs in our simulation is significantly higher than they assumed. . . . . . ..

105



106

4.6

4.7

4.8

4.9

5.1

5.2

5.3

LIST OF FIGURES

Fraction of systems that decayed before a time ¢ in initial (M = Mj) cross-
ing times. The solid lines represent the results for triples accreting gas at
rest (open circles) and for triples accreting gas in motion (open squares). For
comparison the results of decaying triple systems with constant mass of M =
0.04, 0.2, 0.4 Mg, are also shown (dashed lines). . . . ... ... ... ......

Fraction of systems, producing a single ejected Brown Dwarf with a speed larger
than a given velocity v for different accretion rates (a) and different accretion
models (b). Also shown are the results for systems of constant mass (dashed
lines). . . . . .o

Semi major axis distribution for different kinds of accretion at M = Mpo as
well as for constant mass systems with M = 0.08 Mg. Due to the steeper
decrease of the total energy in the case of accretion of gas at rest the resulting
Brown Dwarf binaries have lower separations than in the case of accretion of
gas in 'extreme’ motion. . . . . ... Lo Lo

Semi major axis distribution of the Brown Dwarf binaries obtained in our simu-
lation of decaying triple systems, accreting gas at rest, and the observed volume-
limited sample distribution of Bouy et al. (2003). These two distribution match
very well, given the uncertainties (Poisson noise) which are of the order of about
a third for the observed distribution. Both distributions have a peak at about
the same value of a = 3 AU and show about the same degree of asymmetry
around the peak. . . . . . . ..o

A typical example of a 'fly-by’ triple approach leading to escape. The solid
line shows the escaper orbit while the dashed and the dot-dashed line show the
orbits of the bodies that form the binary. FEach filled symbol shows the positions
of the three bodies at a certain time, with the numbers reflecting the sequence
in time. This particular example shows an example of a ’fly-by’ of type la*
according to the classification in Anosova & Orlov (1992), with a value of the
deflection angle of the escaper orbit much lower than 20 degree. . . . . . . . ..

A typical example of a 'fly-by’ triple approach leading to escape. The solid
line shows the escaper orbit while the dashed and the dot-dashed line show the
orbits of the bodies that form the binary. Each filled symbol shows the positions
of the three bodies at a certain time, with the numbers reflecting the sequence
in time. This particular example shows an example of a 'fly-by’ of type 1b*
according to the classification in Anosova & Orlov (1992), with a value of the
deflection angle of the escaper orbit larger than 20 degree. . . . . . .. .. ...

A typical example of an ’exchange’ triple approach leading to escape. The solid
line shows the escaper orbit while the dashed and the dot-dashed line show
the orbits of the bodies that form the binary. Each filled symbol shows the
positions of the three bodies at a certain time, with the numbers reflecting the
sequence in time. . . . . . .. L L. Ll L

45



LIST OF FIGURES 107

5.4

9.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

Parameterization of close triple approaches suitable for our investigation of disk
collisions. rq, 7y are the closest two-body encounter distances. The different
symbols show the triple configurations at the time a minimum of the distance
between the escaper and one of the other bodies is reached. . . . ... .. ... 47

Distribution of the ratio of the closest two-body encounter distances r1 /ry. The
dotted line indicates the position of the median, which is at r;/ro = 0.4. . . . . 48

Minimum distance 7,;, in units of the mean harmonic distance (virial size)
over the ratio 71/ma. . . . . .. 49

Model of the truncated accretion disk surface density profile. Shown is the
initial as well as the truncated, recircularized profile, with the thin solid lines
representing the profiles from one of our simulations and the bold lines the fitted
curves on a log-log scale (a) and on a semi-log scale (b). The recircularized
profile can be divided into three different regions. Below 0.27r,,;, it has the
same power-law shape as the initial profile, but with ¥ increased by a factor
of =~ 1.7. For larger disk radii there are two regions, between 0.27,,, and
0.7 rminand above 0.7 1., that can be fitted with an exponential profile, ¥
exp(log(1/2) r/7), having different slopes, 71 and 7o (here 71 ~ 0.0647,:, and

Full-width-half-value 71 over the smallest encounter distance 7, for r1/ry ~
0.95. The behavior can be approximately described by a linear function, with a
slope of 0.064+ 0.005. However, the deviations from this linear function cannot
be explained by the errors of 71. For r,,;, larger than 10 AU 7| scatters more
strongly than for values below 10AU, which cannot be directly correlated to
any other change in the orbital parameters of the triple encounters. . . . . . . . 54

Full-width-half value mjover the smallest encounter distance 7, for ri/ro =
0.8. It can be approximately described as a linear function, with a slope of
0.076 4+ 0.006. As in the case of r1/ry ~ 0.95, for values of 7, above 10 AU
the values of 7 seem to deviate more strongly, whereby here they are always
below the average linear increase for 7, < 10AU. . . . . . . ... ... . ... 54

Full-width-half-value Tjover the smallest encounter distance r,,;, for r1/re ~
0.6. The solid line is the linear fit to the data, with a slope of 0.084 4+ 0.005.
This value is very similar to the ones obtained for other r; /ry in the same range
of rin <I0AU. . . . . . . . o 55

Full-width-half-value 71 over the smallest encounter distance 7, for ri/ro ~
0.5. The solid line is the linear fit to the data, with a slope of 0.085 4+ 0.008.
Although higher than for other values of ri/ry, the slope is not significantly
different, given the rather large scatter of thedata. . . . . .. .. ... ... .. 55

Full-width-half-value 71 over the smallest encounter distance 7, for r1/ry ~
0.2. The solid line is the linear fit to the data, with a slope of 0.164+0.03. Despite
the rather larger scatter, the slope is significantly higher than for larger values
of ri/ra. e 56



108

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

LIST OF FIGURES

Slope of the linear change of 71 with 7y, over r1/ry. The error bars of the slope
represent the errors of the linear fit which were always larger than the errors of
the individual 77. The horizontal error bars represent the r1/ro-intervals from
which we have chosen the individual triple collisions. . . . . . . . ... ... ..

Disk mass in units of the initial disk mass over the smallest encounter distance
T'min for r1/ro = 0.95. The solid line is the linear fit to the data, with a slope
of 0.0296 £ 0.0007. . . . . . . e,

Disk mass in units of the initial disk mass over the smallest encounter distance
T'min for r1/re = 0.8. The solid line is the linear fit to the data, with a slope of
0.031 £0.001. . . . . . e e e e

Disk mass in units of the initial disk mass over the smallest encounter distance
T'min for r1/re = 0.6. The solid line is the linear fit to the data, with a slope of
0.034 £0.002. . . . . .. e

Disk mass in units of the initial disk mass over the smallest encounter distance
T'min for r1/r9 = 0.5. The solid line is the linear fit to the data, with a slope of
0.036 £0.002. . . . . .. e e e e e

Disk mass in units of the initial disk mass over the smallest encounter distance
T'min for r1/r9 = 0.2. The solid line is the linear fit to the data, with a slope of
0.065 2 0.005. . . . . .. e e e e e e e e e

Distance of the escaping body to the body of the binary with the smallest
encounter distance 7, over the time in units of 7, /Um:n for one particular
triple system, where v,,;, is the relative velocity of the two bodies at the time
of rin (solid line). The dashed line represents the corresponding distance if
the bodies would strictly move on a hyperbolic orbit with an eccentricity of
~ 1.4. The dotted line marks the time when the final binary forms from the
triple system. . . . . ..

Snapshot of a disk after a triple encounter. Shown are the orbits of the escaper
(solid line) and the binary (dashed and dotted dashed line) as well as the
particles representing the disk material (blue dots). . .. ... ... ... ...

Mass of the disk around the ejected body in units of the initial disk mass over
the time in dynamical time units for one particular triple system. Shown are the
results for a triple collision where the disk is only affected by the escaper and
its closest perturber (filled squares) and for a triple collision where the disk is
affected by all three bodies (filled circles). Briefly after the time of the formation
of the final binary (=~ 415 dynamical times) the disk mass rises significantly
due to the abrupt slow down of the perturber during binary formation. Due
to this deceleration of the perturber motion the disks gained about 10% of the
total disk mass. . . . ...

Distribution of the ratio of the closest two-body encounter distances r/ry for
accreting triple systems accreting gas at rest (solid line) and for non-accreting
triple systems (dashed line). . . . . ... ... ... L oL

64



LIST OF FIGURES

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

Minimum distance 7, in units of the mean harmonic distance (virial size) at
the time of decay over the ratio r1/ry for accreting triple systems accreting gas
at rest. . . . oL L e e e e

Absolute values of the encounter parameter r,,;, over 1 /re for accreting triple
systems accreting gas at rest (a) and the fraction of encounter that have larger
Tmin than a given value (b). . . . . . . ...

Disk sizes rggy, defined as the radius within which 90% of the disk mass is
contained. Shown are the values of rgqy over ri/ra(a) and the fraction of
encounter that produced a disk that has a larger size than a given rggy (b).

Disk mass in units of M, the mass of Jupiter, over r1/ry(a) and the fraction
of encounters that produced a disk with a larger mass than a given value (b).
Here it is assumed that the initial surface density profile, 32 %, has a value of
Yo =240g -cm 2 at aradiusof r =1AU. . . .. ... ... ... .. ......

Rosseland mean opacity x over temperature for three different densities p (taken
from Bell & Lin (1994)). . . . . . . . L

Temperature structure of a ¥ %—proﬁle with a surface density of > = 3 -

1.7at r = 1AU, ¥¢ = 240 g - cm~2 and a central object with mass M = 0.08 M.
The temperature of the ambient interstellar cloud medium is 7, = 20K.

Fraction of ejected Brown Dwarf disks with 90%-mass-radii larger than a given
rooy, at different times. Shown are disks evolving with the constant ambient
temperature Ty, = 20K (a) and Ty = 100K (b). . . o o o o oo o000 oL

Radial Surface density profiles at a time of ~ 2.5 - 10*yr (solid line) together
with their initial profiles (dashed line), plotted semi-logarithmically. Shown are
the profiles for a disk with a steep initial profile (a; = 0.064) and 7, = 5AU
(a), and a flatter profile (a; = 0.16) with 7, = 2.3AU (b). The parameters
were chosen that both disks have initially the same mass. The disk are evolved
at an ambient temperature of Ty, =20K. . . . . . . .. ...

Radial Surface density profiles at a time of ~ 2.5-10%yr (solid line) together with
their initial profiles (dashed line), plotted semi-logarithmically. Shown are the
profiles for a disk with a steep initial profile (a; = 0.064) and 7,,;, = 5AU (a),
and a flatter profile (a; = 0.16) with r,,,;,, = 2.3AU (b). The disk are evolved
at an ambient temperature of T,,,;, = 20K. The blue solid line represents the
power-law profile of the steady, constant temperature disk solution of D’Alessio
et al. (1998). The parameters were chosen that both disks have initially the
SAME MNASS.  « - « « © « o o e e e e e e e e e e e e

109

71

78



110 LIST OF FIGURES

5.32 Radial Surface density profiles at a time of ~ 5-10°yr (solid line) together with
their initial profiles (dashed line), plotted semi-logarithmically. Shown are the
profiles for a disk with a steep initial profile (a; = 0.064) and 7,,;,, = 5AU (a),
and a flatter profile (a; = 0.16) with r,,;,, = 2.3AU (b). The disk are evolved
at an ambient temperature of T,,,;, = 20K. The blue solid line represents the
power-law profile of the steady, constant temperature disk solution of D’Alessio
et al. (1998). The parameters were chosen that both disks have initially the
SAME TNASS.  « « v v v v v e e e e e e e e e e e e e e e e e 84

5.33 Fraction of Brown Dwarf disks with a life-time lager than a given value, for two
different limiting accretion rates (a). Panel (b) shows the fraction of Brown
Dwarf disks with an accretion rate larger than a given value at a time of 1Myr.
Encounter of the ’exchange’ type (see section 5.2) have been assumed to produce
too small disks to be considered here. . . . . . . .. ..o 86



Danksagung

Hiermit mo6chte ich allen danken, die mich wihrend meiner Promotion privat oder auch beruflich
unterstiitzt, angeregt, ermutigt und auch sonst dazu beigetragen haben, dass die hier nun vorliegende
Arbeit vollendet werden konnte. Grofsen Dank gebiihrt . ..

Many thanks go to ...

Meinem Betreuer Prof. Dr. Thomas Henning, fiir das sehr heiff diskutierte Thema meiner Arbeit, das
mir dadurch auch viel Spafs bereitete. Desweiteren mdchte ich ihm fiir die zahlreichen Diskussionen,
Anregungen und Ideen sowie fuer seine Geduld und Unterstiitzung sehr herzlich danken.

Dr. Andreas Just fiir die Begutachtung meiner Arbeit und seiner Geduld.

Prof. Dr. Andreas Burkert fiir die Co-Betreuung und vor allem fiir die ’Initialziindung’ dieser Arbeit.
Ich méchte ihm auch sehr fiir seine Unterstuetzung und anregenden Diskussionen danken.

Prof. Dr. Rainer Spurzem fiir seine grofiartige Hilfe, ohne die diese Arbeit kaum so zustande gekommen
wire, und vor allem fiir seine Bereitschaft sich intensiv damit auseinanderzusetzen. Es war mir eine
grofe Freude mit ihm zusammenzuarbeiten!

Dr. Seppo Mikkola for the invaluable discussion about how to implement accretion into the chain.
Especially I would like to thank him for the development of the unique code, taylor-made for our

purposes, which speeded up my whole thesis project significantly.

Dr. Hubertus Klahr fiir seine wertvollen Anregungen beziiglich der Thermodynamik der Scheiben und
die tolle Zusammenarbeit, was die Arbeit wesentlich bereichert hat.

I would also like to thank Dr. Seppo Mikkola and Dr. Sverre Aarseth for giving our small N-body
workshop during their visit in Heidelberg and for the interesting discussions we had.

Sami Dib for the many insights into the physics of the inter-stellar medium and for good company.
The whole theory group, old and new, for interesting discussions.

Konrad, Marc und Vernessa, fiir viel Ablenkung vom ernsten Doktorandenalltag und der guten Atmo-
sphére in unserem Zimmer.

Also thanks to all the others: Boris, Jens, Angela, Sabine, Michael, Bernd, Nadine, Thorsten, Stephan,
Sigi, Daniel, Ilaria, Gerhard, Oliver, Alessandro, Andrea, Micaela and many more for sharing lunch
and coffee and all the fun we had.

Johny Setiawan fiir seine hervorragenden Kochkiinste, die ich wohl schwer vermissen werde!

Dem Berserker, dem Wizzard und dem Novizen, Goetz, Stefan und Andre, fiir die vielen gemeinsamen
Skatabende, die legendéren Spiele und den vielen Spafs den wir hatten.

Christian Maier, fiir seine unzihligen Partytipps und beharrlichen Uberredungskiinste in den Tanzkurs
zu gehen, die nachhaltig (im positiven Sinne!) mein Leben verdnderten (siehe nichster Punkt ;)

Shohreh ... Vielen Dank fuer die vielen gliicklichen Stunden die ich mit Dir erleben durfte!

Meinen allergrofiten Dank gilt meiner Familie und vor allem meinen Eltern fuer ihre Geduld und
Unterstuetzung bei meiner Arbeit - und Shohreh die immer fuer mich da ist.



