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Abstract In this report we present a new approach to simulations on complex shaped domains.
The method uses a Discontinuous Galerkin discretization and a structured grid to construct the
test and trial functions. Boundary and transmission conditions along the complex shape of the
domains are imposed weakly via the Discontinuous Galerkin formulation. This method offers
a discretization where the minimal number of unknowns is independent of the possibly very
complicated shape of the domain.

1 Introduction

In the simulation of physical, biological and chemical processes one often has to deal
with complex shaped domains. One might think of flow through root networks, solute
transport on the pore scale of porous media or exchange processes through cell mem-
branes.

Classical numerical methods require a grid resolving the complex geometry. Creating
such grids is a very sophisticated process and therefore methods without this requirement
are of high interest.

As existing approaches we want to mention Fictitious Domain methods ([GPP71] and
[BDGGT1]) and Composite Finite Element methods ([HS91]). Fictitious Domain meth-
ods move the information about the geometry into the formulation of the problem and
therefore the form of the grid is independent from the shape of the geometry. Composite
Finite Element methods offer a way to construct the trial and test functions in a way
such that they hold the information about the geometry.
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In this paper we will present a new approach. We will use a Discontinuous Galerkin
method with trial and test functions defined on a structured grid. This structured grid
dictates the amount of degrees of freedom. We then trim the support of our trial and
test functions according to the shape of the geometry.

This paper is organized as follows. First we will describe the goals, discuss existing
methods and then present our new approach. In the next section we will discuss the local
triangulation algorithm which is an essential part of our approach. Section 4 presents the
Discontinuous Galerkin discretization of an ellictic PDE. Then in section 5 we present
numerical results of calculations done with our approach and the discretization from
section 4. Finally we will discuss the advantages and disadvantages of this new approach.

2 Overview
2.1 Problem
Let Q C R be a domain and G a partition of €2 into subdomains
G(Q) = {Q<0>,...,Q<N—1>} (1)
with

0 c YV 0<i<N,
0

00N Qb = V 0<i<j<N,
0D NQY =16 vV 0<i<j<N,
N—-1 (2)
Q=] 09,
=0
I = U I
,]

The partition G is usually based on some geometrical properties retrieved from exper-
iments or previous simulations. The boundaries Q) may have a complicated shape.
The partition G and with it 9Q2® may change in time.

On each Q) we want to solve a partial differential equation

Li(u;) = fi (3)
with a differential operator L; together with suitable boundary conditions on 02 and

transmission conditions on the interfaces I'(49).

2.2 Different Approaches

We will briefly introduce possible ways to reach the described goals and discuss their
advantages and disadvantages. Then we will present our new approach.



2.2.1 Finite Elements

Following the standard finite element paradigm we would create a triangulation 7 )
of Q0 with 97® resolving dQ®. Most finite element methods require a conforming
triangulation, at least within each Q). Non conforming treatment of the interface I is
possible with mortar finite elements ([BMP94]).

Finding a triangulation of good quality is very difficult, especially in three dimensions.
Resolving the shape of Q) might require a very fine grid, resulting in a large number
of degrees of freedom. Moreover the approximation error of the finite element scheme
and the convergence behavior if iterative linear solvers depend on the mesh quality.

2.2.2 Fictitious Domain and Immersed Boundary

Fictitious domain methods, sometimes called embedding domain methods [BDGGT71],
were studied e.g. by [GPPT71]. Fictitious domain methods present an approach which
is independent of the subdomains Q®. One chooses an arbitrary grid irrespective of
the inner boundaries Q% ; usually this will be a structured grid. One uses a standard
discretization on the whole domain €2 without respect to the internal boundaries. The
internal boundary conditions on the interface I'®J) are imposed as constraints on our
partial differential equation. We obtain a problem with constraints which is solved using
the technique of Lagrange multipliers.

This method successfully uncouples the number of unknowns from the shape of T,
but it needs additional degrees of freedom to formulate the constraints. Solving this
new problem is quite expensive, because the Lagrange multipliers result in saddle point
problem.

The Immersed Boundary Method [Pes77] and Immersed Interface Method [LLO3] are
based on the same idea, but the constraints are introduced using virtual forces.

2.2.3 Composite Finite Elements

The composite finite elements, as introduced in [HS91], were developed to improve geo-
metric multigrid methods on domains with complicated structures and micro structures.

It is assumed that a level [ exists for which a standard finite element discretization
can be used. For level [ and all finer levels one uses one of the common trial spaces
i.e. piecewise linear finite elements. The trial functions on the coarse grid levels are
constructed by linear interpolation of the basis functions on level [ in the nodal points
of level I.

This approach is primarily intended as a fast iterative solver, not a discretization
scheme. Also the construction of the coarse grid basis functions can become very expen-
sive, especially if one wants to use higher order trial functions.

2.3 The New Approach

In our approach a triangulation 7 of € is given in addition to the domain 2 and the
partition G .



7T is a structured partition of 2, where the mesh size
h = min {diam(t), [t € T} (4)

is not determined by the shape of I'. 7 is chosen in such a way the differential equations
L; can be solved with a desired accuracy. Although one might sometimes choose a mesh
size smaller than the one demanded by the differential equations in order to avoid some
difficult cases in the matrix assembling (see 3.4.2).

The elements of the mesh are denoted by

T(Q) =A{Eo,...,Em-1} (5)
with

E; CQ V 0<i< M,
ENE; = V 0<i<j<M,

M—1
a= | B
=0
For all Ej, there exists a bijective mapping Tk, to a reference element Q
Ep = Tg, oL (7)
For each Q) € G (see Figure 1) we can define a triangulation

T(Q®) = {E,@

E{) = nE, v EY 0} ®)

Note that ET(LZ') is always a subset of F,,, therefore we will call F,, fundamental element
of Ey(f). There are no restrictions on the shape of Er(f).

Conforming trial functions depend on the shape of the elements. This makes it very
difficult to use them in our context as one does not have a predefined set of reference
elements for which to supply a set of shape functions. Each E,(f) can be shaped arbitrarily.
Therefore we use a Discontinuous Galerkin scheme (DG) with a discontinuous piecewise
polynomial approximation.

On each element EY we choose a local polynomial base function set {cp,(f)J} with

supp(p)) = B 9)

Using DG, our trial functions can be chosen independently from the shape of the
element. In [DFSO03] it is shown that star shaped elements are sufficient, although not
necessary, for the convergence rate to be independent of the shape of the elements.
Furthermore certain DG formulations are element wise mass conservative and therefore
able to accurately describe fluxes over element boundaries. A similar approach is also
used in structural mechanics ([HHO04)).



Figure 1: Construction of the partitions T(Q(i)) from the partitions G and 7 of the
domain 2.

(i)
n,J

fundamental element E,, and restrict their support to E,(Li):

We choose our local base functions ¢,,’: as polynomial functions ¢, ; defined on the

o = (i)
; ¢n,j inside of E
wff)] =9 . "0 (10)
0 outside of E,,
Assembling the matrix in DG means integrating over the volume of elements E,(f) and

the surface (9E7(Li). Therefore we subdivide ET(LZ) into easily integrable smaller objects. This
means that we create a disjoint set {Ey(;)k} of simple geometric objects, i.e. simplices and
hypercubes, with

Vok#L (1)

(@)

Following equation (7) we define E,; by a reference element Q) and a transformation

TE% as

o Q. (12)
)

To reduce the number of generated integration parts £ 1(12 .. and still keep a high accuracy

we allow curved boundaries for ‘ESL, which are represented by second order polynomials.
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Figure 2: Creation of E(i) from its fundamental element and Q) and the local triangu-
lation of E,(f) and aE,(f)

On the reference element € we have a set Qp = {(gi,w;)} of pairs of integration

points and scalar weights. The integral over a globally defined function f on Ef(li) can
be approximated as

/ fav YN F(Tgo 0 45) wy [det(Tpw (a5)) |- (13)
By £ | |

As the base functions are defined in local coordinates (£,7) on Q, integrating over a base
function ¢ requires more work (see Figure 3):

[ eav w3 S el o Ty 0a) wy | det(T @) | (14)
. k i ’ ’
B

Please note that evaluating the inverse Tjg"1 of Tg, can be very expensive, as the mapping
is generally non-linear. Taking into account that T, on a structured grid is affin linear

we can easily compute T’ binl o TE(Z') .
n,k

3 Local Triangulation

In this section we will describe the ideas behind our local triangulation algorithm. All
descriptions in this section refer to € as © C R? but can be extended in principal to
higher dimensions.

First we will present an introduction to our approach of recursive bisection for volume
triangulation. In the second part we focus on some special cases that must be taken into
account when discussing the local triangulation and show how to deal with these.

Our local triangulation consists of two parts. We first use a bisection on FE,, to create
a set {R, 1} of sub-rectangles. We now assign each R, ) to an class according to the
way R, intersects with the interfaces (7). Choosing suitable rules to control the
bisection we obtain a small set of classes. For each of these classes we predefine a
suitable triangulation.



Figure 3: Transformations from the reference triangle Qt to the reference square QS are
done by concatenating the transformation TE(i) from the reference triangle to

n,k

global coordinates and Tb?: onto the reference square.

3.1 Recursive Bisection

The recursive bisection is controlled by two rules.

First the shape of each interface T'(») implies a set of “special” points where we
must bisect our rectangles in one or more Cartesian directions (see Figure 4). We will
not discuss these “special” points exhaustively, but in section 3.3 we will describe the
requirements we took into account for our set of “special” points. Which points are
chosen does not affect the algorithm itself, it only changes the number of classes.

Figure 4: Bisection at “special” points, which are determined by the shape of the inter-
face T'(4),

The second criterion for bisection is the number of subdomains intersecting with the
sub-rectangles (see Figure 5). We should continue the bisection until we only have one
subdomain intersecting with each sub-rectangle. In practice one might get cases where
the second criterion forces a very deep subdivision of the element. In such cases one
could stop the bisection at a minimal diameter r,,;, of the sub-rectangle. This would
require to handle additional special cases or to constrain the shape of Q).

One can find different strategies to fulfill this second criterion. The one we have
chosen is to bisect at the intersection points between the edges of the sub-rectangle and
the interface T'(7).



Figure 5: Recursive bisection until each rectangle intersects with not more than one
interface I'(%7),

3.2 Intersection Classes

Choosing suitable rules to control the bisection we obtained three classes how I'(4) can
intersect with R,, . For each of these classes we define a triangulation rule. These
directly imply certain rules to create the triangles:

one corner missing:
connect the intersection points to the
corner opposite of the missing one.

two corners missing:
cut diagonally so that the resulting
diagonal is as short a possible.

three corners missing;:
nothing to be done at all.

..............

In the case of three dimensional domains one will obtain a lot more classes. For the
case of linear subelements may can refer to [P£l00].

3.3 Choosing “Special” Points

To obtain a small number of classes we must avoid certain cases. This is done in the
first part of the recursive bisection. We choose special points.

3.3.1 Discontinuities in the First Derivative
As it is not possible to find a good approximation of an edge with a discontinuity in the
)

first derivative we require bisection at all points where Fﬁf 7/ is not differentiable.

3.3.2 The Angle Condition

An essential condition is that the largest angle in every element is bounded away from

m [BAT6].
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Figure 6: Forcing an additional bisection reduces the number of class while still guaran-
teeing compliance with the angle condition.

Finding a suitable triangulation for each element can be very difficult. By choosing a
good bisection we can avoid additional classes and still fulfill the angle condition.

As we see in Figure 6, for the first case it would be sufficient to create a triangulation
by connecting the point that is closest to the right edge with the lower and upper right
corner. The second case would fall into a different class, because the right triangle must
be split to fulfill the angle condition.

Bisecting at the point that is closest to the right edge leads to rectangles falling into
the same class of intersection. Still compliance with the angle condition is ensured.

3.3.3 Double Intersection

Another problem is that E,(f) is not necessarily convex so that a line between two corners
of Ey(f) might intersect with the surface 8E,(f). This can be avoided by forcing a bisection
along the normal vector n at points p € ['(&3) where 7 is parallel or anti-parallel to é, or
éy. Forcing a bisection along the normal vector i at points p € I'(47) where 7 is parallel
or anti-parallel to é; or é, makes the second case fall into the same class as the first one.
Otherwise one would need a special separate treatment to avoid an intersection between
the cutting edge and the curvilinear edge (see Figure 7).

3.4 Special Cases

When talking about the local triangulation there are several special cases we must take
into account.



needs special
treatment basic classes

Figure 7: Forcing a bisection along the normal vector 7 at points p € I'®J) where 7 is
parallel or anti-parallel to é;, or é, makes the second case fall into the same
class as the first one. Otherwise one would need a special separate treatment
to avoid an intersection between the cutting edge and the curvilinear edge.

3.4.1 The Cone Condition

Given are a function u and an interpolation Operator I mapping to the space of piecewise
continuous polynomials. The interpolated function is denoted as

u' =Tou (15)

To get an estimation of the interpolation error one usually uses the Bramble-Hilbert
lemma [BH70]. Using the Bramble-Hilbert lemma it is possible to give estimations of
the error measured in the Lo-norm and the H'-norm. In the optimal case it is

lu—u'||L, o< O(RPHY) (16)
[lu — UIHHI x  O(hP). (17)

A prerequisite for these estimations is that the domain satisfies a strong cone property.
In our case the elements Ey(f) might not fulfill this cone property. Elements with a cusp
in one corver pose particular problems. As the tangential vectors of both edges are
parallel in the corner the cone condition is violated (see Figure 8). Furthermore the
element becomes anisotropic when refining the grid. To our knowledge there exist no
estimations of the interpolation error of the solution on such cusp elements.

We studied the interpolation error measured in Lo- and H'-norms for a single element.
To avoid numerical inaccuracies we did these calculations with MAPLE. When using
Lagrange interpolation we observed optimal convergence for both the error in Ls- and
in H'-norm. When using Ly projection we have no control over the derivatives and so
we loose one order in the error convergence in the H!-norm (see Figure 9).

10



Figure 8: Refinement of cusp elements results in anisotropic elements, whihc do not fulfill
the cone property.
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Figure 9: H! error and its convergence for Ly projection and Lagrange interpolation on
cusp elements.

In section 5.1 we will present numerical results that support the claim that the con-
vergence order of the DG Finite Element scheme is independent of the shape of the

)

elements E,(f .

3.4.2 Not Connected Parts of Q) in Q,

As we define the partition G and 7 independent of each other, cases may occur where
E,(f) =00 NQ, consists of two or more unconnected parts.

Often these cases vanish from a certain hmyi, on (see Figure 10 (a)) so that for h — 0
the common estimation for the convergence error applies. But there are cases where one
can not avoid these cases for any finite grid, like in cases shown in Figure 10 (b). A
subdomain Q) has a point of contact with an edge in the grid and the point’s offset a
along the edge is chosen in a way such that 7 is irrational.

We observed that for situations with not connected parts of one Q) the error can be
several orders of magnitude bigger than in a similar case with connected parts. But still
we obtained optimal convergence rates for the error both in Ls- and in H'-norm (see
Figure 11).

11



Figure 10: Situations with not connected parts of one Q) can occur. Often these cases
vanish from a certain hyi, on (a), but there are situations where they always

appear (b).
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Figure 11: For situations with not connected parts of one Q® the error is bigger than in
a case with connected parts. Still we obtain optimal convergence rate.

4 Discontinuous Galerkin Discretization of a general Elliptic
PDE

The test problem for the numerical experiments presented in this paper will be ground-
water flow. In the following we will present the DG discretization of this test problem.

4.1 The Problem

We restrict ourself on a single subdomain Q) C Q ¢ R% where we solve an elliptic PDE,
describing groundwater flow. On the remaining subdomain we have no PDE to solve.
The equation for groundwater flow is given by

V- {KVp}=f on QW (18)

12



with Dirichlet boundary conditions
p=g on I'p C o0 (19)

and Neumann boundary conditions
jeon=1J on I'y=0800\Tp (20)

and without transmission conditions on T'®J). j denotes the flux, p the pressure, K is
the permeability tensor and n is the normal vector.

4.2 Definitions

Now let 7(Q®) = {EY), e ,Eg)} be a non-degenerate quasi-uniform subdivision of
Q® . The outer normal on Eéz) is denoted 7.. The space of polynomial functions of

degree k is

Po={¢:RI SR | p(z) = anxo‘ , (21)
lof <k
where « is a multi-index.

In the implementation Py is created from shape functions on the reference quadrilat-
eral. The basis polynomials are L?-orthogonal and normalized on the reference element.
As Eéi) might be smaller than F, the base functions are not necessarily orthonormal on
EY.

The finite element space we are using is defined by

U|E§i) S Pk} (22)

and is discontinuous on the internal skeleton I'j,; with

Vi, = {v € Ls(9)

T = {e.s ‘ Yoy = 0B 0 0B where O, EY c0® and 5O £E) ).
(23)
Correspondingly, the external skeleton is denoted as

Pext = {’Ye

With each 7. ; € I'iyy we associate a unit normal n. The orientation can be chosen

Ye = EYD NN where EM c Q@ } . (24)

arbitrarily. In this implementation we have chosen n oriented outwards the Eéi) with
e > f. With every . € I'jnt we associate n oriented outwards 00,

We will refer to the discontinuity of a function v € Vi at a point x € v € 'yt as the
jump and denote it by

[]er(@) = vlypo s, , () = Vlppion,, (@)- (25)

The average of v € Vi, at x € v € T'jy¢ is

(0)es®) = 5 (oo, @)+ o, @) (26)
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4.3 Weak Formulation

We use a formulation described in [BR04]. The problem to be solved reads: Find p € Vj
such that
ac(p,v) + Jyp(p,v) = l(v) Yo € V. (27)

The bilinear form

ac(p,v) = Z /(KVp) -Vv dV

EQNeT® o

3 [ (®&VY) )l - (KVp) m)(v]ds (o)
’Yeferint Vef

+ Z /e(KVv)-np—(KVp)-nvds
Ye€lp 4,

is parametrized by € = £1. Choosing € = 1 we get a non-symmetric scheme introduced
by Oden, Babusky and Baumann in [OBB98]. For ¢ = —1 we obtain the Symmetric
Interior Penalty method which needs an additional stabilization term

)= Y =2 [Ipllelas

h’ef‘ﬁ
'YefeFint .
o (20)
+ 3 fme
Ye€'p Te Ye
with ¢ > 0 and 8 = §(d) (for d = 2 we choose ((d) = 1).
The right hand side is a linear form
)= > / fodv
BT gl
+ Z /J v ds
Ye€l'N Ye (30)
+ Z /e(KVv)-ngds
Y€l 4,

o
+ /v g ds.
Z |'76f|6

Ye€l'p Ye

5 Results

All following calculations are done with a prototype version of the algorithm described
in section 3 with  C R2.
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The implementation is based on the DUNE? framework ([BDE*04]).

)

§

Figure 12: Local base functions are defined on the reference quadrilateral and mapped

onto a bounding box Br(f). Then the support is trimmed such that supp(¢) =

B

In order to avoid big jumps in the non zero entries we decided to use a local base
function defined on a bounding box (Figure 12) which is orthonormal on this bounding
box (Figure 13). Badly chosen local base functions could lead to an ill-conditioned
matrix.

W

\\l\llllllllll!ll!]ﬂl

A
i
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%o V ®1 P2 ©3 ®s

Figure 13: Orthonormal base functions on a rectangular element ¢; for p = 2 and Q C
R2.

The discretization is parametrized with ¢ = 1 and ¢ = 0. This yields the scheme
introduced by Oden, Babusky and Baumann. The solution and its derivatives are dis-
continuous across element boundaries. As described in [OBB98] this scheme is element
wise mass conservative which is a big advantage in the simulation of physical processes.
They state that the method is not stable for a polynomial degree p < 1. They observed
optimal h— and p—convergence in the H'-norm; for the convergence in the Lo-norm
they found it to be O(hP*1) for p odd and O(hP) for p even.

First we will inspect the special cases described in section 3.4.1 and 3.4.2 and then
present calculations of a stationary velocity field in a channel with several obstacles.

5.1 Convergence Rate of H'-/L,-Error with Cusp Elements

We present results supporting the claim that in our scheme cusp elements don’t have a
negative impact on the convergence rate of the discretization error, both measured in
H'- and in Lo-norm.

3Distributed and Unified Numerics Environment (http://dune.uni-hd.de/)
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Our calculations are done on the unit square on the parable shaped subdomain (%)
(see Figure 14).

y:O -------------------------------------

0 z=1
Figure 14: Parable shaped subdomain (°) on the Unit Square.
This example treats a test problem with full regularity. We solve equation (18) with
K=1 on O (31)

and with two different sets of boundary conditions. First we use only Dirichlet boundary
conditions, then we use Neumann boundary conditions on the curved and on the lower
boundary and Dirichlet boundary conditions on the right boundary. We choose f, g and
J such that the exact solution

p(z) = el~lle=ol» with @ = (0.5,0.5) (32)

is obtained.

Figure 15 and Figure 16 show the Ly- and H'-error and their convergence for h — 0
for Dirichlet and Neumann boundary conditions. The calculations are done for trial
functions of polynomial degrees 2-5. The graphs on the right side show the experimental
order of convergence

log(Ek,l/Ek)
log(2)

Although the cone condition is not fulfilled in this subdomain Q© (Figure 14) we ob-
tained optimal h-convergence rate in the H'-norm. The h-convergence in the Lo-norm
also exhibits the predicted behavior O(hPT!) for p odd and O(hP) for p even.

EOC (33)

5.2 Examples on a Complex Domain

As a more realistic example we simulate Darcy flow (18) through a channel with internal
obstacles (Figure 17).

16



L, Convergence / Dirichlet Boudary Conditions L, Convergence Rate / Dirichlet Boudary Conditions

6.5 .
u} p=2 ——
p=3 —x—
6 =4 ke
=l o o g: o
55 m
S5 i
£ 5 45| * )
E &
I
8 b 4 I
L 2 N i o / -
X 1le-08 . *. \\\\ 8 35| / |
o N
1e-10 |- . T A
- .
1e-12 . i
jal
le-14 L L 15 ) )
L 10 100 0 00
ho/h hyh
HE Convergence / Dirichlet Boudary Conditions H: Convergence Rate / Dirichlet Boudary Conditions
100 w T 55 . :
p=2 —+—
p=3 —x—
p=4 %
5r = = & G -
1
45 : B
0.01 ES
£ 5 4T . Keenommeeen Koo V. 4
S 5 *
z —
5 1e-04 I 35f |
i o
.—<LU 3
T R 3
=i * e o
1e-06 [ - \\\,
- .
1e-08 |- S *
jo}
le-10 L L
1 10 100
ho/h ho/h

Figure 15: Convergence behavior with a cusp element and Dirichlet boundary conditions
fitting the exact solution e(=(@=20)*)  The plots show the Lo- and H'-error
and it’s convergence for h — 0.
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L, Convergence / Neumann Boudary Conditions
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Convergence behavior with a cusp element and Neumann boundary conditions

fitting the exact solution e(=(@=20)*) on the inner and lower boundary and
Dirichlet boundary conditions on the right boundary. The plots show the Lo-
and H'-error and it’s convergence convergence for h — 0.
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Figure 17: Domain with several internal boundaries.

Bundary conditions are Neumann boundary conditions on the top and bottom bound-
ary and on the surface of the obstacles and Dirichlet boundary conditions on the left
(p =1) and right (p = 0) boundary.

Without obstacles the solution would be a linear ramp. Physically, one expects in-
creased pressure in front of and a decrease of pressure behind the obstacles.

The pressure fluctuations due to the obstacles are one order of magnitude smaller than
the difference in the Dirichlet boundaries conditions. To make these small fluctuations
visible we show in Figure 18 the difference between the solution and the linear ramp.
Calculations for different combinations of A and p are presented.

6 Conclusions

In this paper we presented a new approach to simulations in complex shaped domains. It
is shown experimentally that we obtain optimal convergence rates for the error measured
in H'- and Ly-norm for a scalar elliptic problem.

The scheme is easily applicable for Discontinuous Galerkin discretizations of other
partial differential equations.

The disadvantage of the scheme is its high cost for the local triangulation if the grid
is very coarse compared with the structure of the partition G.

In future work we will apply our method to three dimensional domains and will work
on simulations with a time dependent partition G. Applying this scheme to R? requires
additional work on the control of the recursive bisection to obtain a minimal set of classes
for the triangulation. For time dependent case we have to investigate into the different
ways of projecting the old solution to the new time step.
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Figure 18: Darcy flow through a channel with internal obstacles. Variations in the pres-
sure due to the obstacles. Comparing the results on level 0 and 6 we observe
that for higher order discretizations the dominating pressure fluctuations are
already visible on level 0.
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