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Abstract Discrete systems arising from elliptic PDEs can be solved
efficiently using multigrid methods. In many cases of practical interest
the resulting linear equations exhibit strong anisotropies. It is well-
known that standard multigrid methods fail to work for this type of
problems. Various ILU methods have been proposed and investigated
to overcome these difficulties. To be applied successfully, they usually
require a modification of the ILU iteration [11, 13]. Only in the par-
ticular case of a 7-point decomposition for a 5-point discretization
no modification is needed [8]. We give a new proof for this situa-
tion, showing in which way the smoothing property is related to the
size of the restmatrix. The method is shown to carry over to 9-point
finite element discretizations. Numerical experiments document the
excellent smoothing properties.
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1 Introduction

Multigrid schemes are among the fastest methods for solving large
systems of discrete equations arising from the discretization of PDEs.
A frequently occurring problem in many practical applications is
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strongly anisotropic diffusion caused by the underlying model prob-
lem and/or by a discretization using anisotropic grids. It poses severe
difficulties to multigrid methods due to a deterioration of the approx-
imation in comparison to the algebraic properties. To overcome these
problems, different strategies have been proposed. One method is
based on semi-coarsening techniques, which improve the approxima-
tion [1, 2]. We shall not follow this direction here. A second strategy
aims to improve the smoothing iteration. This idea, considered al-
ready in [2, 4, 12], has been rigorously defined in [13]. Essentially,
the methods developed in this context are based on the idea of line-
block iterations. A successful application is therefore limited to two-
dimensional problems of anisotropic diffusion or three-dimensional
problems with one strongly coupled spatial direction. This includes
many problems from environmental sciences, where models often ex-
tend over large areas in horizontal direction only. In view on this type
of problems, where the mathematical models often consist of systems
of PDEs, methods applicable to systems are highly desirable.

Prominent schemes of the line smoother type are variants of the
ILU iteration. They have been investigated thoroughly in a number
of articles [6–11, 13]. Applied to the discretization of the anisotropic
Laplace equation, the iteration usually has to be modified to fulfill
a robust smoothing property [11, 13]. Only in the case of 7-point
ILU smoothing for a 5-point discretization with a special ordering
of the unknowns the unmodified ILU iteration can be applied as a
smoother [8]. This case is of special interest and is investigated fur-
ther in this paper. We give a proof of the smoothing property for
the 5-point discretization using a 9-point ILU-decomposition stencil.
The method coincides with the method investigated in [8]. The new
proof relates the smoothing property to the size of the restmatrix
of the iteration and allows the understanding of the robust smooth-
ing property in these terms. Numerical experiments show that the
method carries over to 9-point finite element discretizations. This is
of special interest, since these methods are frequently used in nu-
merical simulations. An extension of this method to discretizations
resulting from systems of PDEs is easily possible.

The remainder of this paper is organized as follows. In section 2
we introduce the notation and define the model problem to be inves-
tigated. In section 3 we introduce the variants of the ILU iteration to
be investigated. They are analyzed in section 4 using Fourier analysis.
Numerical results are discussed in section 5, confirming the theoreti-
cal findings. Concluding remarks are given in section 6.
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2 The model problem

Let Ω =]0, 1[2, ε ∈]0, 1], f ∈ L2(Ω) and u ∈ H1
0(Ω) the weak solution

of

−ε∂xxu − ∂yyu = f, x ∈ Ω, (1a)

u = 0, x ∈ ∂Ω. (1b)

The solution is fully regular, i.e. u ∈ H2(Ω)∩H1
0(Ω). Let T be a uni-

formly refined hierarchy of admissible, quasi-uniform triangulations
and Tl ∈ T , l ≥ 0. Let Vl ⊂ H1

0(Ω) denote the space spanned by
conforming P1 Ansatz functions corresponding to Tl. For the finite
element solution ul(ε) of (1) on grid Tl holds

‖u(ε) − ul(ε)‖L2(Ω) ≤ Cεαh2
l ‖f‖L2(Ω), (2)

where hl denotes a characteristic length scale of Tl, C is a generic
constant independent of hl, ε and f . The constant α depends on the
triangulation. Standard arguments lead to α = 4 [2]. For special grids,
α = 1 or α = 2 may be shown [10].

To construct an ε-uniform convergent multigrid method using uni-
form grid refinement, the deterioration of the approximation with
respect to ε has to be balanced by the behavior of the smoothing
iteration. Let Al denote the symmetric finite element stiffness matrix
of problem (1) on grid level l and let the smoothing iteration be given
by

Sl := Il − W−1
l Al.

Il denotes the identity matrix and Wl a symmetric approximation of
Al. Let Rl := Wl − Al, γ > 0.5 and

‖Rl‖2 ≤ Cεα‖Al‖2, Wl ≥ γAl, (3)

then ε-uniform multigrid convergence of the V (ν, ν)-cycle for ν ≥ 1
follows from standard arguments, see [5].

For general grid hierarchies T , i.e. α > 1, a smoother of optimal
complexity fulfilling (3) is not available. If the grid hierarchy matches
certain conditions, a construction on the base of the ILU iterations is
possible. We give the definition of an appropriate grid. Let x1 = (0, 0),
x2 = (1, 0), x3 = (0, 1) and x4 = (1, 1) the corners of Ω and

T
t
0 := {triangle(x1,x2,x4), triangle(x1,x3,x4)}, (4a)

T
t
l := the uniform refinement of T

t
l−1, l > 0. (4b)
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The stiffness matrix Al resulting from the discretization has a con-
stant matrix stencil. Using the usual stencil notation, it can be writ-
ten as

Al =





−1 0
−ε 2 + 2ε −ε
0 −1



 , (5)

where the corresponding entries for boundary degrees of freedom
(DOF) have to be omitted. The discretization fulfills the approxi-
mation property (2) with α = 1 [10]. In the limiting case ε → 0 the
problem decomposes into a set on one-dimensional problems with
three point stencil.

For convenience of notation, the subscripts indicating the grid
level will be omitted, whenever possible.

3 Variants of the ILU iteration

Let A ∈ R
n×n and I := {1, . . . , n}. A set E ⊂ I × I with (i, i) ∈

E,∀i ∈ I and (i, j) ∈ E ⇒ (j, i) ∈ E is called a pattern. The ILU
decomposition of A with respect to the pattern E is given by the
multiplicative splitting

A = LU − R, (6)

with matrices L and U uniquely determined by

(LU)i,j = Ai,j, ∀(i, j) ∈ E, (7a)

diag(L) = I, (L)i,j = (U)i,j = 0, ∀(i, j) 6∈ E (7b)

L is lower triangular, U is upper triangular matrix. (7c)

The decomposition can be calculated by an incomplete Gauss elimi-
nation and gives rise to the ILU iteration with iteration matrix

S := I − (LU)−1A.

Note, that LU is symmetric. To specify the ILU iteration completely,
we need to specify the pattern and the ordering of the unknowns. We
make use of the following two patterns

E5 =





?
? ? ?

?



 , E9 =





? ? ?
? ? ?
? ? ?



 , (8)
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where a star denotes a possibly non-vanishing matrix entry. For bound-
ary DOF the corresponding entries have to be omitted. Next, we spec-
ify two lexicographical orderings. In the first, we order the unknowns
first top down and then left to right

x(n) < x(m) ⇒ n ≺ m, (9a)

x(n) = x(m) ∧ y(n) > y(m) ⇒ n ≺ m, (9b)

where n, m denote DOF, x(n) the x-coordinate of n, y(n) the y-
coordinate of n and n ≺ m, that n is enumerated before m. The
second realizes an ordering first from left to right and then top down

y(n) > y(m) ⇒ n ≺ m, (10a)

y(n) = y(m) ∧ x(n) < x(m) ⇒ n ≺ m. (10b)

Now we can give the definitions of the ILU iterations used throughout
the paper. Let the decomposition (6) be defined using the pattern E5

from (8) and the ordering (9). We denote the resulting ILU iteration
by the subscript 0 and abbreviate this definition by

S0 is defined by pattern E5 and ordering (9)

and analogously

S1 is defined by pattern E9 and ordering (9),

S2 is defined by pattern E9 and ordering (10).

The corresponding lower-, upper- and rest-matrices are denoted by
Li, Ui and Ri, i = 1, 2, 3, resp.

In the context of discretization (5), iteration S0 has been investi-
gated in e.g. [13] and will be used here for comparison only; iteration
S1 and S2 has been investigated in e.g. [8].

4 Fourier analysis

In this section we analyze the ILU iterations defined in the previous
section by means of Fourier analysis. To this end, we have to restrict
ourself to matrices with constant matrix stencils on infinite or cyclic
domains. In this case the matrices commute pairwise and can be
investigated by means of their spectrum. Let h > 0 and

gh := {(x1, x2)|x1 = j1h, x2 = j2h, j1, j2 ∈ Z}
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an infinite grid. Let A be given by (5) and k1, k2 ∈]− π, π], then A is
diagonal in the basis

ϕk1k2
(x, y) = exp (i(k1x1 + k2x2)/h) ,

with the eigenvalues

A = ε(2 − cos(k1)) + (2 − cos(k2)),

where we have identified the matrix with its eigenvalues. This repre-
sentation is valid for infinite domains. In the case of finite domain the
grid is a subset of gh. For cyclic boundary conditions the admissible
frequencies are a subset of ] − π, π]2. Let

g̃h := {(x1, x2)|(x1, x2) ∈ gh ∧ x1, x2 ≥ 0}

the double semi-infinite grid. The ILU iteration cannot be defined on
gh directly. As mentioned above, the coefficients of L and U can be
calculated from the recursion defined by the Gaussian elimination.
This recursion can be applied to grid g̃h. Therefore, for every ILU
decomposition (6) specified in the previous section, we are able to
define

L̃i,j := lim
k,l→∞

Li+k,j+l, Ũi,j := lim
k,l→∞

Ui+k,j+l. (11)

We claim, that the limits exist and define the constant matrix stencil
of the ILU iteration on grid gh by (11). In this way, we define L̃i,
Ũi, R̃i and S̃i, the iteration corresponding to Si, i = 1, 2 from the
previous section.

We investigate the smoothing property of S̃1, S̃2. It is easy to see,
that

R̃1 = r1













0 0 1
0 0 0
0 0 0
0 0 0
1 0 0













, R̃2 = r2





0 0 0 0 1
0 0 0 0 0
1 0 0 0 0



 , (12)

with suitable functions r1 and r2 depending on ε. Identifying R̃i with
its eigenvalues, we get

R̃1 = r1(4 cos(k1) cos2(k2) − 2 cos(k1) − 4 cos(k2) sin(k1) sin(k2)),

R̃2 = r2(4 cos2(k1) cos(k2) − 2 cos(k2) − 4 cos(k1) sin(k1) sin(k2)).

Some properties of the ILU decompositions are given in
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Fig. 1. Numerical evaluation of function r1 and r2 from (12) and their upper
bounds r̄1 and r̄2.

Lemma 1 The ILU decomposition (11) of S̃1 and S̃2 is well-defined

and the following estimates hold

0 < r1(ε) ≤ r̄1(ε) := 1.10ε, ∀ε ∈]0, 1],

0 < r2(ε) ≤ r̄2(ε) := 0.17ε, ∀ε ∈]0, 1].

Proof The proof cannot be given analytically. The convergence (11)
has been verified numerically using double precision floating point
arithmetics. The limiting values have been determined for 16 signifi-
cant digits. The verification has been carried out for

ε ∈ {ξ ∈]10−4, 1] | ξ = (0.1)n/4, n ∈ N0}.

The numerical evaluation of r1 and r2 are displayed in Fig. 1 together
with their upper bounds r̄1 and r̄2.

Before we investigate the smoothing property of the iterations, we
prove two technical lemma.

Lemma 2 Let a, b, c, d ∈ R, c ≥ 0, d ∈ [0, 1] and f(x) := a + bx −
c
√

1 − d2x2. Then it holds

min
x∈[−1,1]

f(x) =

{

a −
√

b2/d2 + c2 if b2(1 − d2) < c2d4

a − |b| − c
√

1 − d2 otherwise
.
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Proof (i) Let c > 0 and d = 1. It holds f ′′ > 0 and therefore f is
minimal for x ∈] − 1, 1[ with f ′(x) = 0, if existing, otherwise at the
boundary of the interval. It holds

f ′(x0) = 0 ⇔ x0 = −b/c
√

1 − x2
0 ⇔ x0 = −b/

√

b2 + c2 ∈] − 1, 1[.

Therefore minx∈[−1,1] f(x) = f(x0) = a−
√

b2 + c2 hold in accordance
with the assertion. (ii) Let c > 0 and d ∈]0, 1]. Then it holds f(y/d) =

a + by/d − c
√

1 − y2, y ∈ [−d, d]. If

y0 := −b/
√

b2 + c2d2 ∈] − d, d[⇔ b2(1 − d2) < c2d4, (13)

then it follows from (i) miny∈[−d,d] f(y/d) = a−
√

b2/d2 + c2 in accor-
dance with the assertion. If (13) does not hold, the minimum is taken
at the boundary of the interval minx∈[−1,1] f(x) = a− |b| − c

√
1 − d2.

(iii) The cases c ≥ 0 and d = 0 can be verified easily.

Lemma 3 Let i = 1, 2, ε ∈ [0, 1], 0 ≤ riδ ≤ 0.72ε and k1, k2 ∈
] − π, π]. Then it holds

A + δR̃i ≥ 0. (14)

Proof First, we prove the assertion for R2. It holds

A + δR ≥ ε(2 − cos(k1)) + (2 − cos(k2)) + 4δr cos2(k1) cos(k2)

− 2δr(cos(k2) + 2| cos(k1) sin(k1) sin(k2)|). (15)

Using x := cos(k1), y := cos(k2), the right hand side of (15) reads

f := ε(2 − 2x) + (2 − 2y) + δr(4x2y − 2y − 4|x|
√

1 − x2
√

1 − y2)

The assertion is equivalent to

min
r∈[0,c]

min
x∈[−1,1]

min
y∈[−1,1]

min
ε∈[r/c,1]

f ≥ 0, ∀c, δ > 0 with cδ ≤ 0.72.

It holds

fε : = min
ε∈[r/c,1]

f

= 2r/c(1 − x) + 2(1 − y) + 2δr(2x2y − y − 2|x|
√

1 − x2
√

1 − y2).

Let ã1 := 2 − 2xr/c + 2r/c, b̃1 := −2 + 4δrx2 − 2δr and c̃1 :=

4δt|x|
√

1 − x2, then fε = ã1 + b̃1y − c̃1

√

1 − y2 and due to Lemma 2

fy,ε : = min
y∈[−1,1]

fε = ã1 −
√

b̃2
1 + c̃2

1

= 2(1 − xr/c + r/c) − 2(1 + δr)
√

1 − 4δrx2/(1 + δr)2.
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Let ã2 := 2(1+ r/c), b̃2 := −2r/c, c̃2 := 2(1+ δr) and d̃2
2 := 4δr/(1+

δr)2, then fy,ε = ã2+b̃2y−c̃2

√

1 − d̃2
2x

2. Using Lemma 2 to determine

fx,y,ε := minx∈[−1,1] fy,ε, one has to distinguish four cases. It holds

b̃2
2(1 − d̃2

2) < c̃2
2d̃

4
2 ⇔ 1/(δc) − 4 < r/c < 1/(δc) + 4. (16)

Case 1: Condition (16) is not fulfilled if r/c ≥ 1/(δc) + 4. This does
not happen, since δc > 0 and r/c ≤ 1.
Case 2: Condition (16) is not fulfilled if δc ≤ 1/4 and r/c ≤ 1/(δc)−
4. Due to Lemma 2 we get

fx,y,ε = 2(1 + r/c) − 2r/c − 2(1 + δr)
√

1 − 4δr/(1 + δr)2

= 2 − 2|1 − δr|

and because of δr = (δc)(r/c) ≤ 1/4 we get fx,y,ε ≥ 0.
Case 3: Condition (16) and δc < 1/5 are never fulfilled, since r/c ≤ 1.
Case 4: Condition (16) is fulfilled, if δc ≥ 1/5 and 1/(δc)−4 < r/c <
1. From Lemma 2 follows

fx,y,ε = 2(1 + r/c) − 2(1 + (δr)(r/c)
√

1 + 4/(δc)(r/c)).

Let k := δc, z := r/c and g(z) := z2 +(4k− 2/k)z +(8+1/k2 − 8/k).
Then fx,y,ε ≥ 0 ⇔ g(z) ≤ 0. Because of g′′(z) > 0, g(z) ≤ 0,
∀z ∈ [0, 1] is equivalent to g(0) ≤ 0, ∧ g(1) ≤ 0. (a) It holds g(0) ≤
0 ⇔ k2 − k + 1/8 ≤ 0, which is fulfilled for k ∈ [0.2, 0.72]. (b) It
holds g(1) ≤ 0 ⇔ k3 +9/4k2 − 5/2k +1/4 ≤ 0. It is easy to see, that
the latter condition is fulfilled for k ∈ [0.2, 0.72]. Therefore fx,y,ε ≥ 0
∀z = r/c ∈ [0, 1] and k = δc ∈ [0.2, 0.72]. The proof of (14) follows
the same line.

Now we can prove the robust smoothing property of S̃2.

Theorem 1 Let ε ∈]0, 1] and A defined by (5). Then the ILU itera-

tion S̃2 fulfills the robust smoothing property (3).

Proof The first condition of (3) follows from (5), (12) and Lemma 1.
From Lemma 1 we get 0 ≤ r2 ≤ 0.18ε. Therefore Lemma 3 implies
A + 4R̃2 ≥ 0. Hence W̃2 ≤ 0.75A.

Remark 1 The robust smoothing property for S̃1 cannot be shown
along the line of Theorem 1. The rest matrix R̃1 decreases slower
than R̃2 with decreasing ε. From the estimate given in Lemma 1, it
can be concluded only, that A + γ0R̃1 ≥ 0 with γ0 ≈ 0.7, which is
not sufficient. The numerical experiments given in the next section
indicate, that the robust smoothing property does not hold for S̃1.
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5 Numerical results

In this section, we investigate the robustness of two different multigrid
methods applied to three different model problems. The multigrid
methods differ by the smoothers used, the model problems by the
boundary condition and by the discretization.

We begin with the formulation of the model problems. Let Ω =
]0, 1[2 and ε ∈]0, 1]. For all model problems a conforming Galerkin
FEM is used. The mathematical model (1) of the first two model
problems has been introduced in section 2. The two model problems
differ by the discretization. To obtain the first one, equation (1) is
discretized on the grid hierarchy (4) by means of P1 elements. The
model problem is denoted by MP1. The second model problem results
from (1) using Q1 elements and the grid hierarchy

T
s
0 := {square(x1,x2,x3,x4)}, (17a)

T
s
l := the uniform refinement of T

s
l−1, l > 0. (17b)

For the inner DOF of the grid, it leads to the 9-point stencil

A =
ε

6





−1 2 −1
−4 8 −4
−1 2 −1



 +
1

6





−1 −4 −1
2 8 2
−1 −4 −1



 , (18)

It is denoted by MP2. To specify the third model problem, we define

L̇2(Ω) := {u ∈ L2(Ω)|
∫

Ω
udx = 0},

Ḣ1(Ω) := {u ∈ H1(Ω)|
∫

Ω
udx = 0}.

Let u ∈ Ḣ1(Ω), f ∈ L̇2(Ω) and

−ε∂xxu − ∂yyu = f, x ∈ Ω, (19a)

∂nu = 0, x ∈ ∂Ω, (19b)

where ∂n denotes the partial derivative in direction of the outer nor-

mal. The solution is fully regular, i.e. u ∈ H2(Ω) ∩ Ḣ1(Ω). Model
problem MP3 results from (19) discretized by Q1 elements on the
grid hierarchy (17).

We investigate two V(1,1)-cycle multigrid schemes applied to model
problems MP1-MP3. In all cases the canonical grid transfer opera-
tions are used and the exact solution is determined on grid level 1.
The solution methods differ by the smoothers only. We investigate
the multigrid schemes using the ILU iterations S1 and S2, denoted
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Fig. 2. Convergence rates of multigrid scheme 1 applied to MP1 in dependence
on ε.

by scheme 1 and scheme 2, resp. We consider the model problems on
the grid level 5 to 10, corresponding to 322 to 10242 elements. We
evaluate the multigrid convergence for

ε ∈ {ξ ∈]10−6, 1] | ξ = 10n/2, n ∈ Z}. (20)

It is measured by

ρ10,20 :=

(‖d20‖2

‖d10‖2

)1/10

, (21)

where di denotes the defect after the i-th iteration. The discrete sys-
tem of equations of MP3 are singular. In this case adequate precau-
tions have been taken to avoid numerical difficulties.

5.1 Numerical results for MP1

We investigate the multigrid schemes for MP1. The discretization
is equivalent to a finite difference discretization. The convergence
rates (21) of solution scheme 1 in dependence on ε on the different
grid level are displayed in Fig. 2. They deteriorate with increasing
grid level and do not seem to be bounded away uniformly from 1.
Neglecting boundary conditions, the case corresponds to the usage of
the ILU iteration S̃1 from the previous section. The robust smoothing
property could not be shown in that case, see Remark 1. The results
are similar to the ones resulting from the ILU iteration S0, which has
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Fig. 3. Convergence rates of multigrid scheme 2 applied to MP1 in dependence
on ε.

been analyzed in [13]. Fig 3 shows the results for the multigrid scheme
2. The results indicate a very fast convergence of about ρ . 0.03
uniformly in ε and the grid level. Neglecting boundary effects, the
ILU iteration used coincides with S̃2 analyzed in section 4, which has
been shown to fulfill the robust smoothing property (Theorem 1).

Remark 2 A modification of the ILU iteration S0 has been discussed
in e.g. [11,13]. For an appropriate modification, which has to be cho-
sen experimentally, the usage of the iteration led to a robust multigrid
convergence of about ρ . 0.3 [13]. The new method proposed here is
superior to the modified ILU iteration.

5.2 Numerical results for MP2

We investigate the multigrid schemes S1 and S2 for model problem
MP2. The discretization leads to the constant nine point stencil (18).
The results for multigrid scheme 1 are displayed in Fig 4. As for MP1,
a uniform multigrid convergence is not obtained. In contrast to the
previous case, the multigrid iteration diverges for sufficiently small ε
and sufficiently fine grids. This is due to the fact, that for certain ε
the stiffness matrix is no longer an M-Matrix and the ILU iteration
divergences for sufficiently fine grids. The results for scheme 2 are
similar to the ones obtained for MP1. The multigrid convergence rate
is uniformly bounded in ε and the grid level by ρ . 0.03.
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Fig. 4. Convergence rates of multigrid scheme 1 applied to MP2 in dependence
on ε.
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Fig. 5. Convergence rates of multigrid scheme 2 applied to MP3 in dependence
on ε.

5.3 Numerical results for MP3

We investigate the multigrid schemes S1 and S2. The discretization
leads, for interior DOF, to the same discretization stencil as for MP2.
Similar to MP2, the multigrid scheme 1 diverges for certain ε and
sufficiently fine grids. The convergence rates show a slightly more
complex behavior than in the previous cases. Therefore, we chose a
finer resolution for ε than (20). The convergence rates are given in
Fig. 5. The convergence is uniformly bounded by ρ . 0.1.
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6 Conclusions

In this paper we investigated 9-point variants of the ILU iteration as
smoother in multigrid. For the 5-point discretization of the anisotropic
Laplace operator a new proof is given relating the size of the restma-
trix to the smoothing property. For an appropriate ordering excellent
multigrid convergence results without modification of the ILU. The
method carries over to the 9-point finite element discretization ob-
tained on a tensor product grid.

Since no modification of the ILU iteration is necessary, an exten-
sion of the method to equations arising from systems of PDEs using
a point block ILU method is easily possible. Applications to more
complex model problems seem promising [3].
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