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ZUSAMMENFASSUNG

Das Verstidndnis der Bewegungen in Proteinkristallen verspricht sowohl Einblicke in die funkti-
onsrelevante Proteindynamik als auch eine Verbesserung von Modellen zur Strukturbestimmung
mittels Beugungsexperimenten. Diese Arbeit présentiert Molekulardynamik (MD) Simulationen
kristalliner Staphylococcus Nuklease und wertet diese in Bezug auf Fluktuationen, Korrelationen,
diffuse Rontgenbeugung (RB), Unordnung und Modelle fiir Proteindynamik aus. Konvergenzei-
genschaften dynamischer Observablen werden bestimmt. Aus der logarithmischen Abhéngigkeit
des R Faktors mit der experimentellen diffusen RB von der Simulationszeit wird Konvergenz
innerhalb /1 us fiir die Kovarianz-Matrix abgeschétzt, welche die diffuse RB bestimmt. Der dy-
namische Ursprung der diffusen RB wird anhand von liquid-artigen und kollektiven Bewegungs-
modellen untersucht. Eine gleichférmige, fast isotrope Schale diffuser RB bei ¢=0,28 A~! stammt
zu gleichen Teilen von Korrelationen in der Dynamik benachbarter Wassermolekiile und inter-
ner Proteinbewegung, letztere dominiert von Fluktuationen in der a-Helix-Steigung und dem
B-Faltblatt-Abstand. Der Schale iiberlagert sind intensive Modulationen, welche durch wenige,
langsam konvergierende (>10ns) kollektive Bewegungen verursacht werden. Diese Modulationen
werden konkreten kollektiven Proteinbewegungen zugeordnet, welche auch die moglicherweise
funtionsrelevante Deformation des aktiven Zentrums beschreiben. Die Dynamik einzelner kol-
lektiver Moden wird mittels Brownscher Bewegung beschrieben. Moden mit Frequenzen un-
terhalb 0,55 THz sind iiberddmpft, wihrend die Mehrzahl (98,6%) unterddmpft schwingt. MD
Simulationen im Druckbereich von 1 bar bis 15 kbar zeigen eine qualitative Verédnderung interner
Proteinbewegungen bei ~4 kbar, manifestiert durch zwei lineare Regime der mittleren atomaren
Weglinge mit auf die Hilfte vermindertem Gradienten oberhalb 4 kbar. Im wesentlich fiihrt die
Druckerhdhung zu einem Verlust kollektiver Bewegungen mit effektiven Frequenzen unter 2 THz.

ABSTRACT

Understanding motions in protein crystals is likely to furnish insight into functional protein
dynamics and will improve models for refinement against diffraction data. In this thesis, molec-
ular dynamics (MD) simulations of crystalline Staphylococcal nuclease are reported and analysed
in terms of fluctuations, correlations, X-ray diffuse scattering, disorder and models of protein
motion. Convergence properties of dynamical quantities are determined. The logarithmic de-
pendence on the simulation length of the R factor with the experimental X-ray diffuse scattering,
which is determined by the atomic displacement variance-covariance matrix, is extrapolated to
predict a convergence time for the whole variance-covariance matrix of ~1 us. The dynamical
origin of the X-ray diffuse scattering is investigated using models of liquid-like and collective
motion. A smooth, nearly-isotropic scattering shell at ¢ = 0.28 A originates from equal con-
tributions from correlations in nearest-neighbour water molecule dynamics and from internal
protein motions, the latter consisting of a-helix pitch and inter-G-strand fluctuations. Super-
posed on the shell are intense features that originate from a very small number of slowly-varying
(>10mns) collective motions. The individual features are assigned to specific collective motions
in the protein, and some of these describe potentially functional active-site deformations. The
dynamics along each collective mode is described using Brownian dynamics. Modes with frequen-
cies below 0.55 THz are overdamped while the majority (98.6%) of modes perfom underdamped
vibrations. MD simulations over the pressure range 1bar to 15 kbar reveal a qualitative change
in the internal protein motions at a4 kbar. This change involves the existence of two linear
regimes in the mean-square displacement for internal protein motion with a twofold decrease in
the slope above 4kbar. The major effect of the pressure increase on the dynamics is a loss of
large-amplitude, collective protein modes below 2 THz effective frequency.
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CHAPTER 1

INTRODUCTION

Advances in science and technology have often been facilitated by the understanding and util-
isation of matter in its condensed state. At macroscopic length scales, the static and dynamic
properties of solids and liquids are essentially fully described by the classical theories of thermo-
dynamics, hydrodynamics and elasticity, which were firmly established in the nineteenth century.
During the first half of the twentieth century, access to the microscopic, i.e., atomic length scales
has been provided by new experimental techniques, such as scattering and spectroscopy, which
also laid the foundation for the triumphant success of quantum mechanics [1-3].

As a result of the immense mathematical simplification due to lattice-translational and point-
group symmetries, the analyses of condensed matter were often restricted to solids in the (nearly)
perfect crystalline state. But condensed matter in disordered phases — such as steel, glass or
water — is far more abundant, and of no less technological value, than the idealised single crystal.
Therefore, during the second half of the twentieth century, research concerning the structure
and dynamics of condensed matter in the disordered phase has been intensified. Although the
resulting descriptions are often fragmentary and phenomenological, lacking the mathematical
depth and rigour of conventional solid state physics, a variety of valuable concepts has emerged
— such as order parameters and the renormalisation group from the investigation of critical
phenomena — and has been fruitfully expanded into other fields of physics and science.

At the same time, advances in condensed matter physics have often been stimulated by inter-
disciplinary approaches which, in many cases, developed soon after into independent, broad
research fields. One of these fields, into which the author would like to classify this thesis, is
biophysics. The previously not encountered complexity of the living world coupled with its
nearly infinite diversity both complicates and vitalises this joint-venture of physics and biology.
About 90% of the biological matter is polymeric (polypeptides alias proteins, polynucleotides
alias DNA/RNA and polysaccharides alias starch/cellulose) and their molecular constitution,
structure and function, interaction with other molecules and molecular properties appear as the
central scientific issues in biophysics. The use of computer simulations has been invaluable for
these investigations. Nowadays, due to the rapid technological and methodological advances,
computer simulations not only assist in understanding experimentally observed phenomena, but
also, to an increasing degree, predict new phenomena awaiting their experimental verification.

This thesis contributes to the endeavour of relating protein structures to their function by inves-
tigating the dynamics of a model protein, Staphylococcal nuclease, in a crystalline environment.
Understanding motions in protein crystals is likely to furnish insight into functional protein dy-
namics and will improve models for refinement against diffraction data. In particular, molecular
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dynamics (MD) computer simulations are used to reproduce and interpret a recently performed
X-ray diffuse scattering experiment. Furthermore, the dependence of intra-molecular protein
dynamics on the applied hydrostatic pressure is investigated. In the following section, the wider
context of this thesis, i.e. the protein structure-dynamics—function relation, is discussed. Subse-
quently, the more specific context of X-ray diffuse scattering from protein crystals is introduced
and an outline of this thesis is provided.

1.1 PROTEIN STRUCTURE-DYNAMICS—FUNCTION RELATION

Protein function is commonly believed to depend on both the three-dimensional conformation
and flexibility of the polypeptide chain as well as the protein environment [4-6]. However, a
comprehensive dynamical description of how the specific fold of the protein, in conjunction with
its environment, facilitates its particular function has not yet been achieved. In this section, a
brief overview of the relation between protein structure, dynamics and function is given. The
selection of topics is inevitably incomplete and reflects the personal view and interests of the
author — many more aspects are described in a number of excellent reviews [7-11].

STRUCTURE AND MOTIONS

Proteins are linear polypeptides with the sequence of residues chosen from a pool of at least 22
genetically encoded amino acids [12] and comprise between approximately 50 and 1000 residues?,
leading to macro-molecules on the length scales of approximately 1 to 10 nm [5, 6]. For any given
polypeptide chain, rotations around covalent bonds in the peptide backbone and side chains make
possible a merely unlimited variety of potential conformations. The prediction of the (ensemble
of) conformations a protein will adopt in its native environment from the primary amino-acid
sequence remains one of the fundamental goals of biophysical research. Until this protein folding
problem is solved, assistance has to be provided by elaborate experiments. The predominant
present-day experimental methods for determining high-resolution three-dimensional protein
structures are X-ray crystallography and nuclear magnetic resonance (NMR)) — the former having
been pioneered by Watson and Crick [13]2, Bragg and Perutz [14-20] and Kendrew [21, 22], the
latter having been devised by Wiitrich [23]. Although both methods investigate proteins in very
different non-native environments, i.e. either in a highly-ordered crystal or a disordered high-
density solution, comparisons of X-ray crystallographic and NMR results indicate only minor
structural differences. However, a deficiency of both methods is that they yield the average
structure® of a macroscopic number of proteins while providing only limited information on the
dynamics. For X-ray crystallography, prospects to overcome this limitation are discussed in
Section 1.2.

"Molecules composed of less than 50 amino acids are commonly referred to as polypeptides. Examples for
very small proteins are the extensively studied crambin and bovine pancreatic trypsin inhibitor with 46 and 58
residues, respectively. The largest known protein to date is the giant muscle protein titin with 26,926 amino acids
in a single chain. The majority of proteins, however, comprises between 100 to 300 residues.

2In fact, the X-ray data collection and processing was done by Franklin and Wilkins. Franklin found, but did
not then publish, that the DNA had helical characteristics. Using Franklin’s data, Watson and Crick took the
crucial conceptual step of suggesting that DNA is composed of two anti-parallel polynucleotide strands.

3More precisely: in X-ray crystallography several conformations may be observed and their relative populations
(occupancies) are determined; NMR experiments result in an ensemble of structures (usually ~10) compatible
with the observed constraints.
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Intrinsic protein motions occur on the length and time scales of 1073 to 1 nm and 1071 to 10%s,
respectively [4, 24]. These motions can be decomposed into collective modes [25, 26], ranging
from high-frequency, small amplitude local displacements within rather rigid groups of atoms,
to low-frequency larger-amplitude relative motions between these rigid groups [27]. The more
localised motions are mostly harmonic vibrations not directly related to function. However,
including these degrees of freedom significantly decreases energy barriers for the slower, more
collective motions, which show significant anharmonic character that may be directly related to
functional motions [25, 28, 29]. Determining the exact nature of this coupling between slow and
fast motions is the subject of ongoing research [30].

FuUNCTIONAL DIVERSITY

Proteins can be categorised as catalytic, structural, transport, storage, motile, regulatory or
defence proteins according to their function [31]. Often, this functional diversity is reflected in
differences in the protein structure and its flexibility although examples exist, e.g. lysozyme and
a-lactalbumin®, where proteins of similar structure undertake very different functions.

In the case of catalytic proteins, or enzymes, the induced-fit model [35] has been shown to ade-
quately describe substrate binding [36, 37]. In the induced-fit model, the binding of a substrate
causes a specific change in the enzyme conformation that brings the catalytic groups into the
proper orientation required for the reaction. In general, the binding of non-substrates does not
cause this specific change.> The conformational changes in the induced-fit model are usually
local, mostly involving the residues forming the binding pocket and active site. The function
of regulatory or transport proteins, however, often requires the collective displacement of large
groups of residues being far from the ligand binding site. For example, the conformational
changes triggered by a ligand binding to a membrane-bound receptor are relayed across the
membrane, i.e. over approximately 4nm [38-40]. Similar long-range collective displacements
have been observed in motile proteins, such as kinesin and myosin which, upon the hydrolysis
of ATP, generate large-scale collective motion using mechanical amplifiers [41].

The above examples illustrate the importance of collective displacements for protein function.
However, the principles that determine the frequencies, forms and damping characteristics of
these collective modes are not yet well understood. Moreover, it is important to know whether
equilibrium motions in proteins can be correlated over long distances or whether anharmonicity
and damping destroy such effects.

ENERGY LANDSCAPE

The concept of a hierarchical protein energy landscape was introduced to explain the temperature
dependence of the rebinding kinetics of the ligands carbon monoxide and dioxygen after photo-
dissociation to myoglobin [42, 43]. In particular, the perception that the protein native state

“Whereas lysozyme catalyses the hydrolysis of bacterial cell wall polysaccharides [32] a-lactalbumin promotes
the conversion of galactosyltransferase to lactose synthase and is essential for milk production [33]. However, the
analysis of phylogenetic trees has suggested that lysozyme and a-lactalbumin descend from the same ‘ancestor’
protein and evolved differently after the divergence of the lineages of birds and mammals [34].

5The binding of substrate analogs and competitive inhibitors, however, often cause changes closely similar to
those induced by the substrate.



4 Introduction

merely represents an ensemble of a large number of almost iso-energetic substates, has provided
much insight into the functional mechanisms of proteins [44-47]. The substates are separated
by a distribution of barrier heights and transitions may occur due to thermal fluctuations or
non-equilibrium processes.

A much-studied phenomenon demonstrating the effect of conformational substates on protein
dynamics is the temperature-dependent dynamical transition® manifested in a non-linear in-
crease in the atomic mean-square displacement at approximately 200 K, which has been observed
experimentally using neutron scattering [48], Mdssbauer spectroscopy [49] and X-ray crystallog-
raphy [50]. Recently, molecular dynamics computer simulations showed that the temperature-
dependent dynamical transition involves a solvent-driven activation of anharmonic protein dy-
namics [51, 52]. For some enzymes it has also been shown that activity ceases below the dy-
namical transition temperature [50, 53, 54] but whether these observations reflect a general
relationship is disputed [55, 56].

PROTEIN-SOLVENT INTERACTION

Protein and solvent mutually influence their structural and dynamical properties. Upon dehy-
dration, protein flexibility (i.e. the average atomic fluctuation) is significantly reduced [57]. The
reduction may, in part, be due to increased interactions between surface side chains (leading
to higher energy barriers for transitions between conformational substates) due to the loss in
dielectric screening of protein surface charges by water molecules [58]. Conformational flexibility
of surface side chains is particularly important for enzyme function. Indeed, enzyme activity has
been shown to cease below a minimal hydration of approximately 0.2g/g (H20/protein) [59].
However, very recent results using vapour substrates indicated that enzyme activity is present
at hydrations as low as 0.03 g/g (H2O/protein) [60]. The temperature dependence of overall pro-
tein motion is also effected by low hydrations. Some neutron scattering results suggest that the
dynamical transition is absent for dry proteins [53, 54, 61]. However, in a study of oxymyoglobin
in a frozen aqueous environment the transition was found using Mossbauer spectroscopy [62].

It is only recently, that more attention has been turned to the reverse effect, i.e. how the protein
influences the solvent. In the vicinity of a protein, i.e. within the distance of ~7A of the protein
surface, corresponding to two hydration layers, the structural and dynamical properties of water
are significantly different from those in the bulk water [63—-67]. In particular, the protein surface
water is of higher density than the bulk [66, 68], shows retarded rotational and translational
relaxations and is in a dispersive diffusion (subdiffusive) regime [64, 67].

PROTEIN STABILITY

The biosphere is not restricted to the Earth’s surface but ranges from the floor of the oceans
to the stratosphere, and encompasses also inhospitable areas such as the polar regions, volcanic
sites and saturated salt lakes. Organisms living in a particular environment, and thus their
proteins, are not only adopted to, but also dependent on the local conditions of temperature,

50ften, this effect is also called the glass transition, closely following the notation of condensed matter physics
and the class of substances for which it has been observed first.
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hydrostatic pressure, salinity and pH. This mesophilic” character of proteins is due to a subtle
balance of stabilising and destabilising interactions. Even minor changes in the environmen-
tal variables may disturb this balance and potentially lead to dynamical, functional and/or
structural transitions and, eventually, denaturation or unfolding [7].

1.2 X-RAY BRAGG AND DIFFUSE SCATTERING

The Brookhaven Protein Data Bank (PDB) currently holds about 30,800 (about 10,800 with less
than 90% sequence identity) protein structures [69], about 87% of which were determined using
X-ray crystallography. In X-ray crystallography, the periodic crystal structure leads scattered
X-rays to interfere constructively giving rise to intense peaks in reciprocal space: the Bragg
scattering. The distribution and intensities of Bragg peaks can be converted into an average
electron density map of the crystal unit cell which can then be interpreted in terms of atomic
positions [6, 70-72].

X-ray Bragg diffraction from protein crystals is usually interpreted using one coordinate set
that represents the average structure of a macroscopic number of protein molecules. However,
a real protein crystal is not perfectly periodic. The disorder present can be static, such as
arises from crystal faults, impurities and structural inhomogeneity, or dynamic, i.e., due to
motions present at finite temperature. The disorder is represented in a refinement by occupancies
(if more than one coordinate set is actually used for refinement) and B factors, the latter
describing average fluctuations of the individual atoms around their average positions. B factors
contain static and dynamic components [43, 73]. Part of the static disorder may be temperature-
independent. However, as the temperature of a protein is lowered some of the dynamic disorder
may become static as proteins freeze into structurally inhomogeneous conformational substates.
Separation of static from dynamic disorder is therefore non-trivial. Static and dynamics disorder
manifest deviations from crystal periodicity, and thus decrease the intensity scattered into the
Bragg peaks and distribute it elsewhere in reciprocal space — this latter intensity constitutes
the so-called diffuse scattering [27, 74-82]. Diffuse scattering from molecular crystals has been
reviewed [83-86]. Whereas Bragg diffraction provides no direct information on the collective
motions likely to be related to protein function [87], these can, in principle, be probed using X-
ray diffuse scattering, because diffuse scattering directly depends on the relative displacements of
different atoms. Thus, diffuse scattering provides information complementary to that obtained
by conventional and time-resolved crystallography [88-90].

The goal of time-resolved protein crystallography is to determine the structures of reaction
intermediates in the crystal using Bragg diffraction. This goal can, in principle, be achieved
by the following two approaches. In the time-resolved approach the reaction is initiated, e.g. a
photolysis by an intense laser flash, and subsequently a time-delayed single X-ray pulse is used
to obtain the diffraction pattern [91]. The time resolution is given by the pulse length, thus
favouring the polychromatic or Laue method which allows very rapid data acquisition [92]. In the
kinetic approach, the population of the intermediate is increased either by slowing the reaction
by physical or chemical means, or by running the reaction in the steady-state [89]. The structure
of the intermediate is then often determined using monochromatic X-rays which provide more
reliable data [89]. In both approaches, the observed Bragg diffraction pattern is decomposed

"Here, the term mesophilic is not used in the biological terminology, in which it refers to the moderate
temperature range, but in its original (greek) meaning of ‘liking the inbetween’.



6 Introduction

into a number of structural states present, i.e. reactant, product and/or intermediate(s), which
requires the individual states to reach a population of approximately 25% or more in the crystal.
Information on transitions between these states can, in principle, be obtained from the diffuse
scattering as it directly measures correlated atomic displacements in those parts of the protein
that undergo changes during the reaction.

The length scales over which displacements are correlated in the crystal determine the shape
and the spread of the features present in the diffuse scattering pattern. The dynamical processes
giving rise to these displacements can be categorised as phonons, rigid-body molecular displace-
ments and intra-molecular motions. Acoustic scattering (also, less accurately, referred to as
thermal diffuse scattering) is due to the acoustic modes of crystal vibrations (phonons®) and
gives rise to diffuse scattering in the vicinity of and centred at the reciprocal lattice points [85].
Although acoustic scattering peaks are less localised than Bragg peaks their integrated inten-
sity is significant and, therefore, Bragg data should be corrected for acoustic scattering prior
to refinement. Neglecting the acoustic scattering correction has been shown to lead to signifi-
cant underestimation of B factors [93, 94]. The form of the phonon-scattering factors can, in
principle, be extracted from acoustic scattering [77] and provides information complementary to
the phonon dispersion curves obtained from coherent inelastic neutron scattering [95]. However,
information of lattice phonons in protein crystals remains scant.

Rigid-body molecular displacements may be correlated within and between unit cells and, in
the diffuse scattering pattern, give rise to streaks located on families of reciprocal-lattice planes.
Displacement correlations across unit cells have been observed for orthorhombic crystals of
lysozyme [75], yeast initiator tRNA [96] and calmodulin [97]. From simulations of rigid-body
molecular motions of crystalline fibres of tropomyosin transversal fluctuations of the fibres were
determined that did not, however, propagate through adjacent unit cells [74, 78]. Also, for a
tetragonal crystal of lysozyme it was demonstrated that independent rigid-body displacements
of individual molecules can yield a qualitative description of the diffuse scattering [98].

Intra-molecular protein dynamics is of potential functional importance and has, therefore, been
the focus of intense research. Correlated intra-molecular displacements give rise to strongly
delocalised features in the diffuse scattering pattern that are not associated with the reciprocal
lattice. This ‘very diffuse’ scattering, also denoted ‘variational’ scattering [76], is the subject
of the present thesis. The variety of intra-molecular motions present in a protein renders an
analytical description of the diffuse scattering cumbersome. However, molecular dynamics sim-
ulation provides a powerful means of describing the intra-molecular motions leading to diffuse
scattering. MD simulations of orthorhombic crystals of lysozyme have been shown to reproduce
features of the scattering pattern [27, 80]. Furthermore, it was demonstrated that the motions
of groups of rigid bodies, on average composed of five residues, also reproduce the prominent
features of the scattering pattern [27]. However, it has also been demonstrated that calculated
diffuse scattering does not converge for nanosecond MD simulations [99, 100].

A full analytical description of the diffuse scattering due to intra-molecular motions can be given
using the atomic displacement variance-covariance matrix. Unfortunately, this is non-trivial due
to the potentially high number of parameters (cross-correlations in displacements), which is of

8The diffuse intensity due to one-phonon scattering is proportional to w ™2, where the phonon frequency w is
given by the dispersion relation. Thus, the significant contribution to the diffuse intensity originates from the
acoustic modes with small magnitude, ¢ of the scattering vector, whereas the high-frequency optical and large-q
acoustic modes give only minor contributions.
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the order N2 where N is the number of atoms in the unit cell. Therefore, the variance-covariance
matrix must be approximated using models with significantly smaller numbers of parameters.
The difficulty of unambiguously doing so becomes clear when noticing that, depending on the
model used for analysis, in earlier research the protein motion determining diffuse scattering
was contrastingly found to be either liquid-like (diffusive) or vibrational [76, 80].

A limitation of the early investigations was the rather incomplete experimental sampling in
reciprocal space of the X-ray diffuse scattering. Recently, however, the most complete three-
dimensional protein crystal X-ray diffuse scattering map yet obtained, using crystals of Staphy-
lococcal nuclease, has been reported [101]. In this thesis, MD results are presented and used to
directly calculate and interpret the Staphylococcal nuclease X-ray data.

1.3 THESIS OUTLINE

The methodological background of this thesis is provided in Chapter 2 which is subdivided into
three sections. In Section 2.1 the molecular dynamics simulation technique is introduced. In
doing so, the focus is not on a general outline of the technique, as ample textbooks exists on
the subject, but rather on the coherent description of the particular methods used in this thesis.
In particular, the proper treatment of electrostatic interactions in the crystalline environment
using the Ewald method and the coupling to a thermostat-barostat are discussed. Next, in
Section 2.2, the setup of the simulation system and all simulations performed are described in
detail (complemented by Appendix A). Subsequently, in Section 2.3, the mathematical descrip-
tion of X-ray Bragg and diffuse scattering from molecular crystals is presented. In particular, a
model of dynamic disorder is introduced and an equation is derived to directly calculate X-ray
diffuse scattering from molecular dynamics trajectories. Furthermore, a brief description of the
experimentally obtained X-ray diffuse scattering map for Staphylococcal nuclease is given.

A central theme in statistical physics is the ergodic theorem which states that, if a system
is ergodic, the expectation value of any phase-space function can be computed either by time
(molecular dynamics approach) or ensemble averaging (monte-carlo approach). However, the
investigated system may not be ergodic in practice, such as glasses or metastable phases, or even
in principle, such as nearly-harmonic solids [102]. Nevertheless, ergodicity is usually assumed
when performing computer simulations and the following practical question arises:

Did the simulation sufficiently sample the relevant regions of phase space, i.e., did
the quantities of interest converge during the simulation?

For molecular dynamics computer simulations of proteins, the answer is non-trivial as certain
quantities converge on the timescales accessible to present-day computational resources whereas
others do not. In Chapter 3, therefore, the convergence properties of selected observables relevant
for later analyses are investigated. In particular, the atomic fluctuations, which are related to
X-ray crystallographic B factors, as well as cross-correlations, which are related to the variance-
covariance matrix which determines X-ray diffuse scattering, are examined. Furthermore, the
required simulation length for the variance-covariance matrix to converge is estimated. More-
over, the relation between the converged elements of the correlation matrix and the protein
topology /structure is determined. The main findings of these analyses also establish a more
sound basis for the interpretation of the results of the subsequent chapters.
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Chapter 4 addresses several issues regarding the Staphylococcal nuclease X-ray diffuse scattering
map which can be combined to the following, central question:

What is the origin of the X-ray diffuse scattering intensity from a protein crystal?

Section 4.1 approaches this question from a structural point of view and decomposes the unit-cell
scattering into protein and crystal solvent contributions. Subsequently, the protein scattering
is further dissected and the influence of the secondary structural elements is determined. A
dynamical perspective is then chosen in Section 4.2. In particular, two competing models of
protein motion, liquid-like versus vibrational, are investigated quantitatively and their diffuse
scattering is compared with that derived directly from the simulations. Furthermore, individual
three-dimensional features of the diffuse scattering map are assigned to specific collective motions
in the protein, and some of these explicitly involve potentially functional active-site deformations.

In Chapter 5, use is made of the comprehension established in the preceding chapters, and the
diffuse scattering is utilised as a tool, amongst others, to tackle the following problem:

How does the application of pressure change the internal protein dynamics?

To answer this question, the effect of pressure on the protein internal motions is studied in
the range 1bar to 15kbar. After briefly discussing structural relaxations, the dependence of
the mean-square displacement on the applied pressure is investigated. Furthermore, the effect
of pressure on the protein and solvent diffuse scattering and the protein vibrational density of
states are examined.

In each of the Chapters 3 to 5, a certain aspect of crystalline protein dynamics is presented in
an approximate self-contained manner. In particular, the last section to each of those chapters
discusses the main findings and draws important conclusions. In Chapter 6, the synopsis of
these results is given and an outlook is presented.



CHAPTER 2

MODELLING CRYSTALLINE STAPHYLOCOCCAL
NUCLEASE

Protein crystallography occupies a prominent position in the field of protein physics, since it
is the major source of experimental information on three-dimensional protein structures. How-
ever, a complete description of the multi-faceted physics underlying the dynamics of crystalline
proteins has not yet been achieved and is the subject of on-going research. The present thesis
contributes to this endeavour and this chapter provides the framework on which the studies are
based. Due to the multitude of excellent literature and text books, the description is limited to
the extent needed for an understanding of the thesis.

The bacterium Staphylococcus aureus secretes a thermostable nuclease known as Staphylococcal
nuclease (SNase, also known as thermonuclease). SNase is a calcium-dependent enzyme that
catalyses the hydrolysis of both DNA and RNA. Structurally, SNase is a small globular protein
comprising 149 amino-acid residues. It is a common, widely-used model system for the study of
protein conformation, dynamics and function. The structure, energetic properties and function
of SNase have been reviewed in Refs. [103-108].

In this thesis, the dynamics of a complete unit cell of crystalline SNase, i.e. including proteins
and crystal solvent, is described using molecular dynamics simulations. Molecular dynamics is
a classical, non-quantum technique and is outlined in Section 2.1. The focus here is on the
description of inter-atomic forces using the CHARMM potential energy function, the representa-
tion of the crystalline environment using periodic boundary conditions and the Ewald method
for electrostatic interactions, and on the proper implementation of the experimental constant-
temperature constant-pressure conditions. General introductions to, and in-depth descriptions
of molecular dynamics and related techniques can be found in Refs. [102, 109-112]. Subsequently,
Section 2.2 provides a detailed description of the setup and performance of all simulations car-
ried out and analysed in this thesis. In Section 2.3, the principles of X-ray scattering from a
crystalline sample are outlined. A model of disorder is introduced, leading to deviations from
perfect crystal periodicity and thus a loss in Bragg intensity, and an expression for the result-
ing X-ray diffuse scattering is derived. For crystals of SNase, three-dimensional X-ray diffuse
scattering has been reported [101] which represents the most complete map yet collected for a
protein crystal. Details on this experiment, which is in part interpreted in this thesis, are briefly
described.
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Figure 2.1: Schematic illustration of the bonded terms in the CHARMM force field, cf.
Eq. (2.2). (Adapted from AL Tournier: Dissertation, Heidelberg University, 2003.)

2.1 MOLECULAR DYNAMICS

A complete description of the dynamics of any physical system is, in principle, given by the
time-dependent Schrodinger equation. However, for many-particle systems this equation cannot
be solved analytically and, therefore, approximate methods have to be used which, in practice,
involve computer simulations. The choice of which approximation to use depends, on the one
hand, on the accuracy required for the particular system under investigation and, on the other
hand, on available computational resources. If the electronic dynamics is relevant, e.g. for the
study of chemical reactions or photon absorption or emission, the choice is restricted to the reper-
tory of quantum mechanical methods. Otherwise, if the focus of interest is for example directed
towards protein:ligand binding, conformational changes or folding, methods based on classical
mechanics, which allow investigations on significantly larger systems and longer timescales, may
be applied.

In this thesis, the computer simulations are performed using molecular dynamics which is a non-
quantum method combining the classical equations of motion with an empirical model potential,
or force field. Molecular dynamics is based on the Born-Oppenheimer approximation: due to
a large atomic nuclei:electron mass ratio, O(10%...10%), the electronic dynamics is at least
three orders of magnitude faster than the nuclei dynamics and, therefore, can be assumed to
instantaneously adopt to the positions of the nuclei. Consequently, in molecular dynamics only
the motion of the atomic nuclei is described.

The following section introduces the CHARMM force field, which was used throughout this the-
sis, and the subsequent sections then outline the treatment of electrostatic interactions in the
crystalline environment and the time evolution of a system coupled to an external thermostat-
barostat.
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2.1.1 CHARMM FORCE FIELD

Originally, the CHARMM force field was published 1983 along with a program suite of the same
name [113], but since then contributions from different authors resulted in a rather independent
development of both. Throughout this thesis, the program version 28b1 was used along with
the force field parameter set 22 [114].

In the CHARMM force field, atoms are represented as charged point masses and the potential
energy function, E is separated into internal, or bonded, and pairwise non-bonded terms,

E = Ebonds + Eangles + Edihedrals + Eimpr. dihed. T Eel + EvdW (21)
—_————
bonded terms non-bonded terms

= > Ky(b—beg)* + > Kol0 —0eq)* + > K[l +cos(ng — ¢eq)]

bonds angles dihedrals
12 6
o O O 29
+ Z Kw(w _ weq)2 + Z % 4 Z4€ij <i> _ <£> , ( )
. ‘ — €Ty — Tij Tij
impr. dihed. 1<J 1<J
N—— ~~ -
electrostatic van der Waals

where the individual bonded terms describe stretching of the bond length, b, bending of the
bond angle, 6, torsion of the proper dihedral angle, ¢, with multiplicity, n, and bending of the
improper dihedral angle, w, as depicted in Fig. 2.1. K, and z.q denote the force constants and
equilibrium values, respectively. The last two sums in Eq. (2.2) describe the electrostatic and
the van der Waals interaction, respectively. g; ; are the charges of, and r;; the distance between
atoms 7 and j, and € is the dielectric susceptibility. The Lenard-Jones 12-6 function is chosen
to describe the van der Waals interaction, the parameters being the depth of the potential, €;;
and the collision parameter, o;;. The CHARMM force field parameters form a self-consistent set,
being derived from ab initio calculations (non-bonded and bonded interactions) and experiments
(bonded interactions), and are optimised for use with the TIP3P [115] water model.

The computation of the sums over the non-bonded interactions in Eq. (2.2) requires O(N?2)
operations, N being the number of atoms, which is unfeasible for MD simulations of systems of
more then O(10%) atoms. Therefore, in practice non-bonded interactions are usually restricted
to atom pairs within a certain distance of each other using a cut-off method. CHARMM supports
a shift and switch mechanism as cut-off methods, the former shifting the potential (or force)
such that its value becomes zero at a specified cut-off distance, rcutof, the latter smoothly
interpolating the potential between a cut-on distance, rcuton and reutof such that potential
and force become zero at r.uon. Whereas the short-range van der Waals interactions can be
adequately described using any of these cut-off methods (provided that large enough values
for reuton and reugof are used), the convergence of the sum over the long-range electrostatic
interactions may be poor even for large values of r¢ytoff-

If the simulation system can be considered as being part of an infinite, periodic system, such
as a crystal unit cell, the electrostatic interactions between all atoms in the system may be
calculated using the Ewald method, which is outlined in the following section.
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Figure 2.2: A: An ideal crystal is obtained by translations {a,b,c} of a unit cell (red).
B: In the Ewald summation, each point charge (blue) is surrounded by a neutralising gaus-
sian charge distribution ( ), leading to rapidly convergent series in real space; the cor-
responding cancelling distribution (magenta) is calculated in reciprocal space. C: The
irregularly distributed charges (blue) are interpolated onto the vertices (green) of a regular
grid.

2.1.2 EWwWALD SUMMATION

The convergence of the sum over electrostatic interactions, Eq in Egs. (2.1) and (2.2) may be
very slow or, for an infinite system such as a crystal, even divergent, depending on the specific
charges ¢;'. For a periodic system, however, convergence can be improved by recasting E.
into the sum of two rapidly convergent series, one being evaluated in real space, the other in
reciprocal space, as originally proposed by Ewald [116].

In a crystal, illustrated in Fig. 2.2 A, electrostatic interactions between atoms belonging to
different unit cells have to be considered,

4iq;
For = Z Z ﬁuru ‘iRH 23)

where the lattice vector, R is defined as
R =la+ mb + nc, (2.4)

where {a,b,c} is the basis of the crystal lattice, {I,m,n} are integers, and the prime in Eq. (2.3)
denotes that R = 0 is excluded. Using the identity

1 —
f@) | 1- 1) 25)

+ )
x x

1
T

Eq. (2.3) is recast into a sum of two series,

Eel - Eel + ESJ (26)
S (eclPley R , el DY (2.7
i<y |r23 + R ||rij + R/l

where the complementary error function, erfc(-) = 1 —erf(-), has been chosen for f(-). The phys-
ical picture underlying this choice is illustrated in Fig. 2.2 B: each point charge, ¢; is surrounded

! As illustrative, one-dimensional, discrete examples consider the divergent harmonic series, > nY/n and the
converging alternating harmonic series, ) (-D"/n =In2.
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by a neutralising gaussian charge distribution of width (v/23)~!

A3
pilr) = =20 exp (e — i) (2.9

the potential of which is just given by the erf(-) function?, leading to a short-range, rapidly
converging series, Eepl” in Eq. (2.6). Re-balancing the total charge distribution, using —p;, leads
to the long-range term, Eg which is, therefore, computed in reciprocal space using discrete
fourier transforms,

1 _ 2 213-2
Eg — e Z/@Xp( ](QH%H ﬁ )Sz(Q)S](Q), (29)
Q

with the structure factor,

- Y e ), 210

the unit-cell volume,

V=a-(bxc), (2.11)
and the reciprocal lattice vector,

Q = ha" + kb* + Ic”, (2.12)

where {a*,b*, c*} is the basis of the reciprocal lattice® and {h,k,[} are integers not all zero.
Convergence of the series ER . and EQ o] is determined by the value of 3: small or large 3 improves
convergence of Eg or Eg, respectively, and using an optimised value for 3 results in an O(N 5 %)
algorithm.

Further algorithmic improvement can be achieved by using fast fourier transform routines which
require interpolation of the charges ¢;, located at arbitrary positions r;, onto a regular grid.
This particle meshing is illustrated in Fig. 2.2 C. The interpolated charges are then used in the
computation resulting in an O(N log N) algorithm.

Eq in the form of Eq. (2.6) has to be corrected for artefactual interactions of each charge ¢;
with its associated gaussian charge cloud p;, interactions of those atom pairs which are described
using bonded-terms of the force field, and a finite dielectric susceptibility of the outside medium,
leading to the corrections

bonded

£Blrill)
corr _ Z Z QZQJer ij

(2.13)
2 eyl

Z qi¥;

Throughout this thesis, periodic boundary conditions were applied to generate the crystal envi-
ronment. Electrostatic interactions were computed using the particle-mesh Ewald method [117],
for which the direct sum cut-off was 13 A and the reciprocal space structure factors were com-
puted on a 48 x 48 x 64 grid using 5" degree cardinal B-splines.

ext(Blr—rs]])

le—r;]l
3The reciprocal lattice is defined by the relations x; - x = 2md;j, where x; and x are basis vectors of the

direct and reciprocal lattice, respectively.

2The solution to the Poisson equation, A¢ = —4mp; is given by o(r) = q
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Figure 2.3: Allowing the simulation system to exchange heat, 6¢) and mechanical work,
PdV with its environment (A) leads to trajectories in the isothermal-isobaric ensemble, i.e.
with conserved average temperature and pressure (B).

2.1.3 TmME EVOLUTION

In molecular dynamics, the equations of motion governing the dynamics of biological macro-
molecules are formulated within the realm of classical mechanics [118, 119]. In the Hamilton
formalism, the equations of motion of the generalised positions, ¢; and momenta, p; are given
by

0
- 9 2.14
@=g (@, m1), (2.14)

0
n=—=-H(q,m), 2.15
5o Hap) (2.15)
where the Hamiltonian,

H(q,p) = K(q,pt) + Via,pr) (2.16)

is given by the sum of the kinetic and potential energy, K (q;,p;) and V(q;,p;), respectively.

Describing the potential energy exclusively by inter-particle interactions, e.g. due to the force
field E given by Eq. (2.2), integration of Egs. (2.14) and (2.15) leads to trajectories in the micro-
canonical ensemble, i.e. with the total energy, volume and number of particles being conserved.
However, most physical experiments are performed in an isothermal-isobaric environment, i.e.
with the temperature, T" and pressure, P being constant. Trajectories of the isothermal-isobaric
ensemble can be obtained by extending the system to contain thermostat and barostat variables,
which act as heat and pressure bath coupled to the system, cf. Fig. 2.3.

EXTENDED SYSTEM MOLECULAR DYNAMICS

Throughout this thesis, temperature and pressure coupling were enforced with the Nosé-Hoover
algorithm [120-122]. However, in its original formulation, this algorithm involves rescaling of
the simulation timestep which is inconvenient for molecular dynamics and, therefore, modern
implementations are based on non-Hamiltonian schemes. For N particles in d dimensions, a set
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of dynamical equations producing the NPT ensemble is defined by [109, 123]

. r; €
b=t %ri, (2.17)
. 1
pi=F;— <1 + N) p—wj.pz' - %Pz‘, (2.18)
) dee
V= , 2.19
o (219)
. 1 Pop
o= V(B = Pox) + 5 3 e (2.20)
. DPn
="t 2.21
) (2.21)
and
p; P
= b TC (AN + 1)kpT 2.22
P =2yt~ AN+ DT, (2.22)
where r; and p; are the position and momentum of particle ¢, respectively, F; = —V,,E is the

internal force acting on particle ¢, 1 is the thermostat variable, p,, its conjugate momentum and
Q is a parameter determining the coupling timescale*, e = In(V//V}) is the barostat variable, p,
its conjugate momentum and W is the associated mass parameter?, Py is the external applied
pressure, and Pjy is the instantaneous internal pressure of the system given by

1 p? oU
-Pint:_< i —Z-l-zi:ri'Fi—dVW)- (2.23)
Thus, the variables 1 and € act as thermostat and barostat, respectively, driving the system
towards the steady state, (Ting) = T and (Piyt) = Pexe. If ) ; F; # 0 the only conserved quantity
is given by the Hamilton function

2 2

Pe B0 o (AN + 1)kpT + PV, (2.24)

H =H

where H(r,p)=H/(q;, ;).

LEAP-FROG INTEGRATOR

A numerical integration scheme for the above defined equations of motion should generate a
trajectory being statistically equivalent to the real trajectory, i.e., assuming ergodicity for the
true trajectory,

O(t) = (0), (2.25)

lim
T —o0

where O is an observable, 7 the simulation length, - the time and (-) the ensemble average, the
ensemble average in Eq. (2.25) can also be computed from a single numerical trajectory, O(t,).

4Throughout this thesis, the temperature coupling constant 2,000 kcal ps~2

were used in the CHARMM program.

and the pressure piston mass 500 u
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Figure 2.4: A: Initial structure of SNase (cartoon representation with a-helices (red) and g-
strands (green), for a detailed description of secondary structural elements see Fig. 3.9 B on
pg. 37) with the C terminal residues 142-149 before ( ) and after (iceblue) a simulated
annealing MD simulation: the system was heated (20ps) to and equilibrated (10ps) at
800 K, then evolved for 200 ps and subsequently cooled during 100 ps to 0 K using the micro-
canonical ensemble.  B: Simulated annealing is a two-step scheme to sample, and locate
the minimum of, a large fraction of the protein energy landscape. First, an MD simulation is
performed at high temperature, thus significantly extending the accessible area of the energy
landscape ( ) relative to that accessible at lower temperature (navyblue). Then, the
temperature is slowly decreased to 0K, thus freezing the system into the lowest-energy
configuration explored.

The constant temperature-pressure module of the CHARMM program uses the leap-frog inte-
grator [124], which is time-reversible and symplectic, i.e. it conserves phase-space density and
thereby guarantees conservation of H’ to within an error, AH’ determined by the timestep At.
The choice of At is a trade-off between accuracy (AH’ decreases with decreasing At) and com-
putational effort for reaching a certain simulation length, 7 — throughout this thesis, At = 1fs.

The leap-frog algorithm is derived using a Taylor series expansion for the particle position, r;
at timestep ¢, and its velocity, v; at an intermediate timestep ¢,, + At/2; leading to

ri(th+ At) =r1i(tn) + vi(ts, + 2Y/2) At (2.26)
and
Vi(tn + 2t/2) = v;(t, — ot/2) + mLZFZ At. (2.27)
If required, the velocities at timestep ¢, are readily computed using
vilty) = % Viltn — 84/2) + vi(ta + 84/2)] . (2.28)

2.2 (COMPUTER SIMULATIONS

Molecular dynamics simulations were performed on the crystal unit cell of Staphylococcal nuclease
with four protein molecules and explicit solvent with the CHARMM program, cf. Section 2.1.
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Their setup and performance will be briefly outlined in this section, whereas the specific analysis
tools used will be discussed in the following chapters along with the results. All simulations used
the same initial configuration of the unit cell, the setup of which is described in the next section.

2.2.1 SYSTEM SETUP

From the Protein Data Bank (PDB) [69], the entry 2SNS [125], refined at 1.5 A resolution, was
taken as the protein starting structure. Coordinates for hydrogen atoms, which, in general,
can only be derived from very-high resolution (<1 A) X-ray crystallographic data® were gener-
ated with the hbuild algorithm implemented in CHARMM. The crystallographically unresolved
residues 142-149 were added using CHARMM. Initial coordinates for these residues were obtained
from an 800 K simulated annealing MD simulation, described in Fig. 2.4, of the protein with
residues 1-139 fixed in a TIP3P [115] water box.

The resulting protein structure was used to construct the crystal unit cell, having the initial
dimensions a = b =48.5A and ¢ = 63.4 A [101], and a symmetry according to the experimental
space group P4; [101, 125], defined by the point operations

(z,y,2), (—y,x,z + 1/4), (—z,—y,z + 1/2) and (y,—x, z + 3/4), (2.29)

describing a tetragonal unit cell containing four protein molecules arranged along a 4-fold screw
axis, chosen to be identical with the z-axis. 2115 TIP3P water molecules®, including 4 x 83
molecules observed crystallographically in 1ISTN [126], and 48 chloride counterions were added as
solvent, leading to an electrically neutral system of 15,993 atoms, depicted in Fig. 2.5. Periodic
boundary conditions were applied to generate the crystal environment and the electrostatic
interactions were computed using the particle-mesh Ewald method, cf. Section 2.1.2.

The system was initially energy minimised to a root-mean-square (RMS) force gradient of
1073 keal mol"'A~! and then uniformly heated to 300 K during 30 ps and subsequently equili-
brated for 100 ps with velocity scaling in the NVE ensemble and another 200 ps without velocity
scaling in the NPT ensemble with P = 1bar and 7' = 300 K. The temperature and pressure
coupling were enforced with the Nosé-Hoover algorithm, cf. Section 2.1.3. Subsequently the
NPT production runs were performed, which are described in the next section.

5In crystallography, the resolution usually refers to the length-scale corresponding to the largest-angle Bragg
peak observed. In X-ray crystallography the resolution is limited by the X-ray wavelength used and due to the
protein static and dynamic disorder as well as solvent scattering. High-resolution experiments are facilitated
at high-intensity synchrotron sources with very short wavelengths and at cryogenic temperatures, i.e. around
or below 100K. On 24"™ June 2005 the PDB held 78 X-ray structures with a resolution of 1 A or better. In
principle, hydrogens can easily be observed in neutron diffraction experiments because their coherent scattering
cross-section is comparable to that of other atoms abundant in biomolecules. However, the enormous costs and
technical limitations prohibit neutron diffraction to become a widely used method, as is evident from the small
number of entries in the PDB, i.e. six on 24*® June 2005. However, neutron diffraction is complementary to X-ray
studies and the additional information on hydrogens is of significant interest.

5The number of water molecules was varied during four preliminary simulation setups to obtain the correct
unit-cell density and thus stability for the unit-cell edge parameters, i.e. prevent shrinking or expansion of the
unit-cell volume.
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Figure 2.5: The complete simulation system of crystalline Staphylococcal nuclease with P44
symmetry for the protein molecules, cf. Eq. (2.29).  A: Single unit cell, including the four
proteins (green, blue, red and ), water molecules (shown as transparent iceblue volume
surfaces) and counterions ( ) viewed along ¢ 17 z-axis. The rotational symmetry of the
proteins around the 4-fold screw axis (c) can be seen. Water molecules and counterions
are restricted to volumes inside the primitive unit cell, whereas protein molecules are not
truncated at the unit-cell boundary in order to preserve correct topology; periodic boundary
conditions assure correct filling of the unit cell (B,C).  B: Single unit cell viewed along the
(1,1,1/2)-axis. The translational displacement of the proteins along ¢ can be seen. Void
volumes are occupied by protein molecules of neighbouring unit cells (C).  C: Single unit
cell (opaque) surrounded by three neighbouring unit cells (transparent). The scales of A
and B are approximately the same, being different from that of C.

2.2.2 PRODUCTION PHASES

The two thematically different aspects of crystalline protein dynamics investigated in this thesis
were approached using two sets of simulations, differing mainly in the simulation length, 7.
One aspect, the investigations of fluctuations, correlations and X-ray diffuse scattering, is based
on four rather long, 7 = 10ns, simulations, denoted Set 1, whereas the second aspect, the
study of pressure-induced changes in the dynamics, is based on a different set of 22 shorter,
7 = 1ns, simulations, denoted Set 2. General features of all simulations are discussed in
the following paragraphs and the detailed CHARMM inputs defining the energy functions and
dynamics parameters are given in Appendix A.

MD SIMULATIONS: SET 1

Four 10ns MD simulations were performed, starting from the equilibrated structure described
in the previous section, differing only in the treatment of the crystalline environment. In three
simulations (named T1, T2 and T3) a tetragonal constraint was imposed, i.e., the unit-cell
dimensions a and b scale identically and independently of ¢. This corresponds to the P44
experimental space group symmetry. In the fourth simulation (denoted O1) an orthogonal
constraint was used, i.e., a, b and ¢ scale independently, thus allowing for deviations from P4;.
Additionally, a 1ns simulation (named WB) of 4,989 TIP3P water molecules in a tetragonal
box (initial dimensions 48.5 x 48.5 x 63.4 A3) was performed in the NPT ensemble. Coordinates
were written every 50 fs.
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Figure 2.6: Scheme used to generate Figure 2.7: Schematic illustration of
the high-pressure trajectories forming the X-ray scattering setup in the
the MD simulation Set 2. plane-wave approximation.

MD SIMULATIONS: SET 2

Twenty-two 1 ns MD simulations in the pressure range 1 bar to 15 kbar were performed. The final
configuration of trajectory T1 served as starting structure, thus granting a very well (10.2 ns)
equilibrated configuration of the proteins in the unit cell. This system was then pressurised
at a rate of 1kbarns™! up to 15kbar and, at selected pressure values P;, branched to start a
high-pressure trajectory, each of which was equilibrated for 200 ps and then evolved for the 1ns
long production phase, cf. Fig. 2.6. Coordinates were written every 100 fs.

2.3 X-RAY SCATTERING FROM MOLECULAR CRYSTALS

In this section, those aspects of X-ray crystallography that are used in this thesis are outlined.
In particular, the equations for calculating the X-ray diffuse scattering intensity from MD trajec-
tories are derived. The description is limited to the concepts used in the thesis and the notation
roughly follows Refs. [127, 128]. More detailed descriptions can be found in Refs. [127-130] and
in Ref. [71], the latter being a state-of-the-art description of applied research.

2.3.1 BRAGG SCATTERING

Let
Aq(r,t) = AgelkiT—wot) (2.30)

be the amplitude of an incident plane wave, with k; being the wave vector, wg the frequency and
Ap the complex amplitude, being scattered at an object with, in general, the complex scattering
density o(r), cf. Fig. 2.7. At a detector, located at Rp, the scattered amplitude due to the
object point r is then given by

eiks~(RD—r)

AD(r7t) = AZ'(I‘,t)Q( )

- 2.31
Ry 1 (2:31)

where k; is the wave vector of the scattered wave. Then, for sufficiently large distances from
the object, ||RD|| > ||I‘”,

An . .
Ap(r,t) = %eﬂkS'RD—woﬂg(r)e“ki—ks)'r (2.32)
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and the total amplitude scattered from the object is given by

Ao .
Ap(t) = R—ge“ks'RD—wot) / o(r)eltkik)T qy, (2.33)

where the integral is evaluated in the region occupied by the object. For X-rays, not the
amplitude but intensity of the scattered radiation is detected,

2

2
4o : (2.34)
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where the scattering vector q = kg — k; was introduced. If the object is a crystal, i.e. being
periodic in real space with an associated reciprocal lattice, cf. Section 2.1.2, o(r) can be expressed
using the Fourier representation,

o(r) =) 0qe'?T, (2.35)
Q
and thus
, 2
A .
I(q) x |R—02| Z QQ/eZ(Q_q)'r dv| . (2.36)
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If the crystal is composed of a large number of unit cells, the integral yields significant values
only if”

q=Q, (2.37)

which is known as the von Laue condition, leading to peaks located at reciprocal lattice points,
the Bragg scattering,
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It remains to calculate the Fourier components,

1 —1Qr
0Q = 3 / o(r)e”" ¥ av, (2.39)

where the integral is evaluated over the unit-cell volume. In a solid, the majority of electrons
are located within small regions around the atoms, allowing to separate the integral into a sum
of contributions from individual atoms k,

1 . Ayt
0q =) e /k@k(r’)e‘@'r av’, (2.40)
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where the substitution r = Ry, +r; +r’ has been made, R, points to the unit-cell origin, chosen
to coincide with a primitive lattice vector, cf. Eq. (2.4), ry is the position vector of the k™ atom
with regard to the unit-cell origin, and r’ originates at the centre of that atom; the integral
describes the interference between waves scattered from different points of the atom and is

"For an infinite crystal, the value of the integral is fei(Q*q“ dV = Vé(Q — q), where d(-) is the three-
dimensional Delta function.
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denoted atomic form factor, fr(Q) — in general, fi(q). Identifying o (r") with the atomic charge
distribution, for coherent scattering fx(q) may be calculated from the total wave function, v of
the atom,

folq) = / ety V. (2.41)

In general, the charge distribution can be considered to be essentially spherically symmetric®,
thus fr(q) — fx(q) = fx. Values for f; are tabulated in the International Tables for X-ray
Crystallography and can be well approximated using the analytic expression

sin 6 G - (sinf\?
fk( 3 >:Zaiexp [—bi( 3 >
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where 20 is the scattering angle, A = 27/4 and ai, bi and ¢ are parameters [131]. Finally, the
summation in Eq. (2.40) can be carried out, leading to the unit-cell structure factor,

Fr(q) =) _ fre'd™. (2.43)
k

+ (2.42)

2.3.2 DIFFUSE SCATTERING DUE TO DYNAMIC DISORDER

In a perfect crystal, the structure factor of a single unit cell L is given by Eq. (2.43) and since all
unit cells are identical, F;, does not depend on the specific choice of L, hence F;, = F. However,
a real crystal is not perfectly periodic. The disorder present can be static, such as arises from
crystal faults, impurities and structural inhomogeneity, or dynamic, i.e., due to motions present
at finite temperature. Here, the focus is on the effect of dynamic disorder, described as time-
dependent atomic displacements, on the X-ray scattering. However, the presented analytical
tools are also adequate to describe static disorder.

Disorder causes the structure factor F'y, of a single unit cell L to deviate from the mean structure
factor, F'. Furthermore, if the displacements are time dependent so will F;,. The instantaneous
position of the ™ atom in the L*® unit cell can be written as rpr,(t) = R +rg+ugr(t), where ry,
denotes the mean position vector in the unit cell which is, due to the average periodic structure,
independent of L, and ugy(t) is the time-dependent displacement. Ry and rj are chosen such
that (ugz(t)) = 0. Henceforth, for clarity of notation, the dependence on the variables ¢ and g
is not explicitly written.

Generalisation of Eq. (2.43) to dynamic disorder leads to the time-dependent unit-cell structure
factor,

Fr, = Z fkeiQ'(l"k-i-UkL) (2.44)
k
_ L _iq-rg
- Z gi € ’ (245)
k

where the effective atomic form factor,

gF = fre' e, (2.46)

8 Although most of the electrons are not in an s-symmetric shell, asymmetries in the charge distribution are
almost averaged out.
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was introduced which can be written as

gE = gk + O, (2.47)
where qﬁ,% denotes the fluctuation from the mean, g, = (g,f )
o = gk — (98- (2.48)

The total amplitude Ap scattered by the crystal from an incident plane wave A; can then be
written as the sum over all unit cells,

Ap x 4A; ZFLeZq R = 4, gpera®etry) (2.49)
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The scattered intensity is then given by
Lo (JApl*) oc |42 (I + 1), (2.52)

where I1 and I represent the squared magnitude of the first and second term in Eq. (2.51),
respectively; the cross term vanishes due to <¢£ ) = 0. I is readily evaluated,

L=|F]P) 4R = |FPN18(Q - ), (2.53)
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and identified with the Bragg scattering, Ny, being the number of unit cells in the crystal. Using
Egs. (2.46) to (2.48), Iy can be written as

I, = Z eiq-(RL—RL/) Z fkfk/eiq-(rk—rk/)

LL k! (2.54)
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I5 is not localised to reciprocal lattice vectors but distributes intensity over all of the reciprocal
space and is denoted X-ray diffuse scattering. Therefore, the total X-ray scattering from a
crystal is given by the sum of Bragg and diffuse scattering,

Itot = IBragg + Idiff- (257)
Thus, the diffuse scattering is given by
Idiff = Itot - IBragg X <|FL‘2> - ’<FL>’2 (258)
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2.3.3 HARMONIC APPROXIMATION

Although exact, Eq. (2.56) is not particularly useful for practical applications since the averages
() need to be computed. To do this, the cumulant expansion for the characteristic function of
a stochastic variable X with the realisations z is used [132],

Fx (k) = () = exp (Z “’”"@(X)) , (2.59)

n=1

where C,,(X) denotes the n*P-order cumulant; the first three cumulants being

C1(X) = (z), (2.60)

Ca(X) = (2?) — (z)? (2.61)
and

C3(X) = (23) — 3(x)(2?) + 2(z)3. (2.62)

Identifying ugy with the realisations of X and bearing in mind (uxz) = 0, the first three
cumulants reduce to

Ci(X)=0, Co(X)=(? and C3(X)=(z%). (2.63)

If the displacements uy, are harmonic, i.e., ugz, has a gaussian distribution?, then Crnz2(X) =0
and

(eiq'ukL> — e_WkL(Q)’ (2.64)

where the Debye-Waller factor was introduced, given by [133, 134]

1
Wir(a) = §<(q “ugr)?) (2.65)
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where Uy Lﬁ are the elements of a 3 x 3 symmetric tensor, (ugrul,) and (-)7 denotes the transpose
of (-). The remaining average is calculated accordingly; it separates into a product of three
components, two of which cancel with the denominator in Eq. (2.56), yielding

<eiq~(ukL—uk/L/)>

<eiq-ukL > <€—’iQ'uk/L/ >

_ el )a (2.68)

where the displacement variance-covariance matriz, (ugru},;,) was introduced. The intensity
of the X-ray diffuse scattering in the harmonic approximation is then given by

Ty o Z Z fre Ve fr e~ Wirn @ (RL—Rp/tri—ry) [eqT<ukLu£/L/>q 1. (2.69)
LL' kK’

9Due to the factorial in Eq. (2.59), the equations derived here will approximately hold even if the displacements
ugz, are not harmonic, provided the probability distribution of uy, is approximately symmetric and centred around
the origin.
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However, the evaluation of the covariances between all atoms in the crystal is in equal measure
impossible as it is useless, the former due to the large number of atoms in the crystal, O(N 4)
with N4 being Avogadro’s number, leading to O(Ni) covariances, and the latter because the
sheer size of such a matrix renders an unambiguous interpretation futile.

Here, the assumption is made that the motions between atoms belonging to different unit cells
are independent, leading to vanishing covariances between these atoms and thus Eq. (2.69)
simplifies to

Laig oc Y fre™ Ve foe™ Wi i re=rar) [eq%ku{»q _ 1} (2.70)
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(2.71)

where in the last step the contributions of variances and covariances were separated; [-] denotes
the real part of a complex number.

COMPUTATIONAL CONSIDERATIONS

Estimates for upper bound values of the Debye-Waller factor and the variance-covariance matrix
yield

max {qT(ukuE/>q} o O (47%) 042 (10) ~ O(100). (2.72)

Due to the limited accuracy of numerical methods'® Eq. (2.71) was re-written prior implemen-
tation into a computer program to avoid large positive arguments in the exponential, yielding

Tair Z | fil? [1 - 6_2Wk(Q)]
k

+2 ) fofwcosq- (rg —rp)] {eqﬂuku{»q—m(q)—m/(q) — e Wi(@-Wy (@]
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(2.73)

2.3.4 EXPERIMENTAL DATA

In pioneering work by Gruner and coworkers at the Cornell High-Energy Synchrotron Source
images of diffuse X-ray diffraction from Staphylococcal nuclease were obtained from crystals at
many different orientations relative to the incident beam, and, for the first time, the data were re-
duced!! to measurements of diffuse intensity on the reciprocal lattice [101]. The experimentally-
obtained map is 99.5% complete in the reciprocal-space resolution range 10 to 2.5 A, in total
comprising 55,691 data points in the range ||q|| < 0.62 A~! and arises from the diffuse scattering
of the complete unit cell, i.e., proteins and crystal solvent, at room temperature.

ONumerical accuracy depends mainly on two aspects; firstly, on the specific implementation of mathematical
functions, which is, for example, often based on a truncated Taylor series expansion, e.g. for functions like exp(-)
or cos(-), and secondly, on the limited number of digits used to store a number, usually 17 digits for a 64-bit
double or 31 digits for a 128-bit representation.

1A mode-filtering technique was used to remove the Bragg peaks from the series of two-dimensional still
exposures.



CHAPTER 3

FLucTUATIONS AND CORRELATIONS

An accurate description of the dynamics of protein crystals is an important goal in molecular
biophysics. Obtaining a simplified physical description of the motions influencing X-ray scatter-
ing from protein crystals should allow improvement of models refined against diffraction data
together with a reduction in the number of independent parameters to be adjusted. Further-
more, understanding collective internal protein motions should provide information on dynamic
aspects of protein function.

A detailed description of protein crystal dynamics can be obtained using molecular dynam-
ics simulation. In this chapter, molecular dynamics simulations are used to characterise the
positional fluctuations of individual atoms and their cross-correlations. Atomic positional fluc-
tuations can be derived from X-ray crystallographic B factors [43], and can be compared with the
fluctuations observed in MD simulation. On the sub-nanosecond timescale simulation-derived
atomic fluctuations often differ significantly from experimental values. In recent comparisons
the inclusion of nanosecond-timescale dynamics has lead to better qualitative agreement but
fluctuations larger than the B factors [136-138].

Cross-correlations in the atomic displacements indicate collective motion and are therefore of
potential relevance to protein function. In MD simulations correlated motions have been de-
tected [25, 139, 140] and have been used to make deductions concerning dynamical aspects
of protein function [10, 141-143] but converge relatively slowly [99, 136]. Correlated motions
present in protein crystals can in principle be probed experimentally using X-ray diffuse scat-
tering [27, 76, 80, 83].

Advances in computational resources and methodology constantly improve the timescale and
system size accessible to MD simulation. In this chapter, results are presented of four 10ns
MD simulations of crystalline SNase (trajectories T1-3 and O1, cf. Section 2.2). A detailed
analysis is made of the atomic fluctuations and cross-correlations, their convergence properties
are examined, and their relation to the protein topology is determined. Then, by comparing the
calculated with the experimental X-ray diffuse scattering an estimate is made of the simulation
time required for the variance-covariance matrix, and thus the correlated motions, to converge.

First, a comparison is made of the MD simulations with experiment on three levels: the crystal
parameters and average structure, the atomic fluctuations, and the X-ray diffuse scattering.
Subsequently, correlations in C,-atom motions are investigated.

Results of this chapter have been published in Meinhold et al.; Physica B:350, 127 (2004), cf. Ref. [135] and
Meinhold & Smith; Biophys J:88, 2554 (2005), cf. Ref. [100].
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3.1 COMPARING SIMULATION RESULTS WITH EXPERIMENTAL DATA

3.1.1 CRYSTAL PARAMETERS AND AVERAGE STRUCTURE

The average values for the MD unit-cell sides and volumes are given in Table 3.1. For the
trajectories Tx (x=1,2,3) and O1 these values deviate by less than 0.8% and 2.8% from the
experimental values, respectively. The unit-cell volume averaged over all simulations is within
0.3540.23% of the experimental values.

To compare the simulation structure with the experimental coordinates (i.e. with the coordinates
of the PDB structure 2SNS) the average MD protein structure was computed as the time average

Rave = <Ui7TX RZ-TX(t)>t, where R1*(t) is the coordinate vector of protein i (i=1,...,4) in the

simulation Tx. |J denotes the union of sets which was performed in such a way that each R*(¢)
was optimally superposed! on a reference structure?. Thus, for certain analyses the trajectories
Tx were merged into a single-protein trajectory with an effective length of 120 ns. The RMSD of
R from experiment was computed for the experimentally-resolved residues 1-141. The result
for all non-hydrogen atoms is 1.67 A, and for the C,-atoms is 1.29 A.

3.1.2 FLUCTUATIONS OF SINGLE ATOMS

X-ray crystallographic B factors, By, arise from the fluctuations of the individual atoms k around
their space-group symmetric positions as given by

3
2y

The fluctuations may arise from internal protein motions, from translation and rotation of the
protein molecules in the unit cell, and from motions of the unit cells relative to each other. Exper-
imentally, other effects such as lattice distortion and refinement errors may also contribute. The
relative motions of unit cells are suppressed in the simulations due to the imposition of periodic
boundary conditions. Thus, the remaining fluctuations contain components from whole-molecule
translation and rotation and from internal motion. The protein fluctuations were derived from

By,. (3.1)

!The superposition was performed using CHARMM by minimising the RMS deviation (RMSD) between the
simulation and the reference structure.
2The single-protein mean structure, <RZ~TX (t)>t was used as reference.

Table 3.1: Average values for the MD unit-cell sides and volumes for the simulations (T'1-3,
O1) and the experimental values [101].

a [A] b [A] c[A] vV [A7]

EXP 48.5 48.5 63.4 149132.65

T1 48.3+0.2 48.3+0.2 63.8£0.4 148555+419
T2 48.6+£0.2 48.6£0.2 63.0£0.4 148706413
T3 48.6+0.2 48.6+0.2 62.9£0.5 148695+392
01 49.9£0.7 47.6£0.3 62.6+0.8 148634£399
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Figure 3.1: Mean-square C,-atom fluctuations calculated from the MD trajectories and
from experiment. The simulation-derived fluctuations are: the total (u?), including internal
motion and whole-molecule translation and rotation (SIM: total); the total (u?) with a
Gaussian fit to the atomic positional distribution (SIM: gaussian, see text); the contribution
from internal motion (SIM: intra); and the contribution from whole-molecule translation
and rotation (SIM: whole mol.). The decomposition of motions is described in detail in the
text, cf. Egs. (3.2) and (3.3). Experimental values were computed from B factors using
Eq. (3.1). B factors were not reported in the starting structure used for the MD simulations
(2SNS). Therefore, the experimental B factors shown here are from PDB entry 1STN [126],
a room-temperature structure refined at 1.7 A with an R factor of 0.162 and very similar
unit-cell parameters (¢ = b = 48.5A and ¢ = 63.5A). Secondary structural elements are
indicated, cf. Fig. 3.9.

the trajectories R?X(t), x=1,2,3, and the results are compared with the experimental B factors
in Fig. 3.1. The MD simulation fluctuations correlate well with those derived experimentally as
supported by a correlation coefficient of 0.89. However, the MD fluctuations tend to be slightly
larger, especially in the loop regions. Fig. 3.1 also shows that, on average, whole-molecule
translations and rotations contribute ~0.25 A2 to the total MS fluctuations.

One possible reason why the simulation-derived fluctuations are slightly larger than experiment
may be the assumption made in deriving the experimental B factors that the fluctuations are
harmonic. This assumption has been shown to lead to an underestimation of fluctuation mag-
nitudes [144]. To examine the consequences of this assumption, the fluctuations for each atom
were re-calculated from Gaussian fits to the simulation-derived atomic positional densities. The
results, which correspond to the experimental isotropic B factors, are presented in Fig. 3.1.
Use of the Gaussian assumption does indeed significantly reduce the fluctuations, especially in
the loop regions. However, the approximation does not account for most of the difference with
experiment, the MD fluctuations remaining higher than experiment.

The atomic mean-square fluctuations can be decomposed according to

() = ((up + Ty + Puy)?) (3.2)
= (i) + (Tuj) + (Mup) + Ky, (3.3)
where <uz> is the total mean-square fluctuation of atom k, the displacements 'uy, Tu; and Ruy,
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Figure 3.2: Protein internal root-mean-square fluctuations for all C,-atoms averaged over
sub-trajectory lengths At (grey lines) shown for a single protein of trajectory T1. Highlighted
in colour are the average over all Cy-atoms (blue) and three examples of different time
dependence (cf. legend and text). Error bars denote the standard deviation. For clarity,
only error bars for C29 are shown.

describe the fluctuations due to the protein internal motion, whole-molecule translation and
whole-molecule rotation, respectively, and K represents correlations between the displacements
Xuy, X={I,T,R}. The mean-square fluctuations of the displacements *u;, were calculated from
the MD trajectories as follows: to calculate 'uy, a new trajectory was created in which the protein
whole-molecule motion was removed by superposing all coordinate sets of a single-protein tra-
jectory, R;(t), on a single-protein reference structure (the mean structure of R;(¢)). To calculate
the whole-molecule rigid-body displacements, Tu; and Ruy, a new trajectory was then created
by superposing the mean structure of R;(¢) on each coordinate set of R;(t). For protein inter-
nal motions the mean-square fluctuation is <<Iui>> p=0.74 A%, In comparison, whole-molecule
translation contributes <<Tui>> p = 0.13 A2 and the whole-molecule rotational contribution is
<(Ruz>> ,—=0.16 A2, The whole-molecule rotational contribution converged on the 1ns timescale
with an average molecule-rotation angle of 1.2 + 0.1°. The translational contribution converged
more slowly, on the 10ns timescale. Thus, the total mean-square fluctuation <(ui>> =107 A?
arises mostly (69%) from internal protein motion, with whole-molecule translation and rotation
contributing equally to 27%. Although cross-correlations between the atomic displacements *uy,,
(Kg)r =0.04 A? contribute only 3% of the mean-square fluctuations, their average magnitude
(|Kk|)r=0.09 A? corresponds to 8% of the total fluctuations. This indicates that X={I,T,R} is
not an optimal basis for decomposition, due to the fact that, for a non-rigid body, the internal
and whole-molecule motion cannot be strictly distinguished, leading to K #0.

A related question is whether the simulation-derived <Iui> values in Fig. 3.1 have converged. To
examine this, the following analysis scheme was used.

CONVERGENCE OF TIME SERIES

The convergence of any given observable or time series, O(t) was investigated as follows. First,
the trajectory was grouped into n time-windows of length At which may overlap. Then, the
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observable was calculated on each sub-trajectory yielding n measurements {O;(At)}. The mean
and variance of these sets and their dependence on At were used to study convergence. If, for
all time-windows with At >At*, the observable has the same value to within € > 0, then At* is
considered to be the convergence time.

The above analysis scheme will be used throughout this chapter. First, the convergence of
protein-internal fluctuations are studied.

The results for all simulations are quantitatively similar. Those for a selected protein from
simulation T1 are depicted in Fig. 3.2. For the majority (~=65%) of atoms the fluctuations
reach a plateau after 2-4ns and the error bars gradually reduce during the progression of the
simulation. This behaviour is exemplified by C2 in the figure, which is situated in a turn
between two (-strands. For a smaller fraction (=15%) of atoms, however, the fluctuations
significantly increase throughout the simulation, as exemplified in the figure by C2%. Most of
these atoms are located either in a highly-flexible loop region (residues 46-51) or in the very
mobile C-terminus that was not visible crystallographically (residues 142-149). As a result, due
to this smaller fraction the fluctuation averaged over the whole molecule increases steadily with
time. The fluctuations of the remaining 20% of atoms exhibit more complex behaviour?, one
example being C1!? which is situated in a coil region.

3.1.3 X-RAY DIFFUSE SCATTERING

An improved version of the program SERENA [145] was used to calculate three-dimensional scat-
tering intensities according to Eq. (2.58)%. These intensities were compared with experimental
diffuse scattering data reported in Ref. [101], cf. Section 2.3.4.

The agreement between the theoretical and experimental X-ray diffuse scattering data was
investigated using diffuse scattering calculated on several timescales, At, as described in the

3For example, if an atom moves on an approximately elliptical orbit the quantity plotted in Fig. 3.2 will shown
an oscillatory behaviour for a small number of orbit cycles.

“Due to the presence of crystal solvent, Eq. (2.58) has to be used instead of Eq. (2.70) because the assumption
of small atomic displacements from an average position is not valid for the very mobile water molecules and
counterions, which are homogeneously distributed within the unit cell. Eq. (2.58) is the exact formulation,
whereas Eq. (2.70) is the harmonic approximation.

Table 3.2: Agreement factors R,:—10ns between the experimental diffuse X-ray pattern [101]
and the scattering obtained from each trajectory. A and B are results of least-squares fits
(see text) and the remaining two columns give extrapolated convergence times A t* for
specified values of R.

Rpt=10ns A B Mp_oo0  Othr—o.04

T1 8.15 9.90e-2 -7.07e-3 1.2ms 4.2 us
T2 8.35 9.91e-2 -6.45e-3  4.8ms 9.6 us
T3 8.08 9.81e-2 -7.45e¢-3 0.52ms 2.4 us
o1 8.56 9.86e-2 -5.49e-3 63 ms 43 us
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Figure 3.3: Dependence of the X-ray diffuse scattering agreement factor, R,; on the aver-
aging time interval At, the inset shows the data using a logarithmic timescale. The red line
represents a least-squares fit (see text and Table (3.2)). The figure shows results for the
simulation T3. The results from the other simulations are very similar, cf. Fig. 4.2. Error
bars denote the standard deviation.

analysis scheme introduced in the preceding section. The agreement factor, R is defined as

> , (3.4)

where (-) denotes the average over all sub-trajectories of length At, N, is the number of scattering
vectors, and s and ¢ are the coefficients for intensity scaling and background intensity, respec-
tively. Optimal agreement with the experimental X-ray diffuse scattering pattern is obtained
when the variance-covariance matrix has converged in the simulations.

12 (q) — [sI3"(q) + ]
Ir(q)

o1
ot = <?2}£m 2

q

In Chapter 4, Eq. (3.4) is used to evaluate models of protein motion by comparing the model
scattering with that derived directly from the simulation. The notation then changes to 1*P —
IMD and sim — pmodel - Fyrthermore, as the reference pattern was then calculated from a
simulation, the background intensity was zero and hence ¢ = 0.

Fig. 3.3 presents the time-dependence of the agreement factor, R ; between the simulation with
the lowest R factor (T3) and the experimental scattering data from Ref. [101]. R,; reduces to
~10% within the first 500 ps and then continues to decrease slowly on the nanosecond timescale,
reaching 8.1% at 10ns. The continued decrease of R,; with time indicates that the scattering
has not yet converged in the simulation but that the scattering intensity more closely resembles
the experiment when the nanosecond-timescale dynamics are included. The red line shows
the least-squares fit of R(At; A, B)=A+DB ln(ﬁ—;) and demonstrates that the agreement factor
decays logarithmically with time. Again, for aﬁ simulations, R ,; is similar, cf. Fig. 4.2 on pg. 43.
The R factors and fit results from each simulation are given in Table 3.2.
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3.2 CORRELATIONS IN C,-ATOM DISPLACEMENTS

The B factor results in Fig. 3.1 and the diffuse scattering R factor plot in Fig. 3.3 suggest that
the agreement with crystallographic experiments is sufficient to warrant a more probing analysis
of the simulation data. To do this, the correlations in C,-atom motion are now examined and
related to the inter-atomic distances and protein topology. The convergence properties of the
Cy-atom displacement correlation matrix are also investigated.

The analysis utilises the following definitions and considerations.

CORRELATION MATRIX

The variance-covariance matrix, <uku£/> characterises the protein collective motions. However,
the large number of independent elements makes (uku£,> cumbersome to calculate for the whole
unit cell. Instead, the correlation matrix, C}s for the relative displacements of all C,-atoms in
the unit cell was calculated where Cyy is given by
T
Crp — W) (3.5)
(up)(uz,)

For an atom pair (kk’), the correlation matrix element, Cy is determined by the trace of
the variance-covariance matrix, i.e., (ul - up) = Tr(ugu},). The differences between Cjy and
<uku;‘5,> are two-fold. Firstly, anisotropic correlations, i.e., off-diagonal elements which describe
correlations between the displacements in, e.g., the x and y directions, are not included in C'gy.
And secondly, (uku}g} is amplitude weighted whereas Cs is normalised. Alternative measures
that overcome these problems are discussed in Ref. [27]. However, for the present purposes C/

provides a convenient way of determining the correlated motions present.

ABSOLUTE VALUES OF Cl

There is no unique way of removing global translation and rotation from MD trajectories [136,
146-148]. Furthermore, MD algorithms that periodically remove global translation and rotation
of the simulated system potentially introduce artefactual anticorrelations. To understand this,
consider a one-dimensional system composed of two particles at positions x1(¢) =0 and x5 (t) =
x(t) where x(t) is an arbitrary displacement. Then Eq. (3.5) yields Cy,4, =0. In the centre-of-
mass frame, however, z1(t)=—2%z(t) and z2(t)=+32(t) and hence Cy 4, =—1.

To investigate the amplitude of the effect of removing global protein motion on Cpgzs a 100 ps
segment of the MD simulation T1 without the removal of global translation and rotation was
examined. The correlation coefficients, Cy were directly computed from this trajectory segment
using Eq. (3.5). Subsequently, global translation and rotation were removed and again C s was
computed. Removal of global translation and rotation reduces the correlation coefficient by
~-0.1 for intra- and inter-protein motions almost independently of the inter-atomic distance,
cf. Fig. 3.4. Consequently, the average values of Cpy given in Figs. 3.5, 3.8 and 3.9A are
underestimated by about 0.1.

CONVERGENCE OF Chp

To study the convergence properties of Cyr each trajectory was divided into non-overlapping
sub-trajectories as described in Section 3.1.2. For each sub-trajectory the correlation matrix was
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Figure 3.4: Correlation coefficient, Cgy for atom pairs belonging to the same protein (A)
or to different proteins (B) calculated from a 100ps trajectory with the overall unit-cell
translation and rotation (T/R) included (blue) or removed (red). Error bars denote the
standard deviation.

computed. For each At, the correlation matrices for each sub-trajectory were averaged element-
wise to yield the mean, (Cyi o¢) and standard deviation, o¢,,, ,,. The relative error, A Cypr ¢
is then

Uckk’ At

(Crrr at)|

For all quantities, the subscript At highlights the dependence on the length of the sub-trajectories.
The convergence criterion chosen was: (Uckk,’m <0.05) V (A Ciprat <0.2), where V symbolises
the logical or. It was checked that the qualitative results do not depend on the specific choices
of OC a0 OF D Chis,at- If the number of sub-trajectories is small (n $10) the statistics worsen,
leading to an overestimation of the number of converged elements due to a small but non-zero
probability that matrix elements coincidentally satisfy the convergence criterion. The amplitude
of this effect was estimated using a corresponding number of random matrices. The true con-
verged fraction of the correlation matrix, fc;zrlr, was then calculated as the difference f¢,,,— fczz;;}d

ACyp at = (3.6)

where fc, , and fcrar}d were calculated from Cys and the random matrices, respectively.
kk

The above definitions and considerations are now applied to the trajectories T1-3 and O1, i.e.
those trajectories forming the MD simulation Set 1.

In Fig. 3.5 are shown the displacement correlation matrix elements, Cyi for intra- and inter-
protein atom pairs, calculated for trajectory T1 and plotted against their corresponding inter-
atomic distances, rir. The average values of Cys as a function of rj; are indicated by the blue
lines. Intra-protein motions of atom pairs separated by less than ~20 A are mostly positively
correlated. For larger atomic separations the values of Cps range approximately from —0.5 to
+0.5 for both distributions, i.e. for intra- and inter-protein atom pairs. For rp < 20 A the
intra-protein motions exhibit a significantly higher degree of correlation than motions between
different proteins. At larger separations intra- and inter-protein motions on average appear
slightly anticorrelated. However, as described above, this anticorrelation is an artefact due to
the MD algorithm periodically removing the centre-of-mass translation and rotation of the unit
cell. Consequently, motions of atoms separated by ryw > 20A are, on average, uncorrelated.

Now, the convergence properties of Cj are investigated. To address this issue the absolute

and relative errors, o¢,,, ., and A Cypr a¢, respectively, were computed for non-overlapping sub-



3.2. Correlations in C,-Atom Displacements 33

intra-protein pairs inter-protein pairs
1 L T T T T T T T T 1 T T T T T T T T
Ckk’ [
- 05,
- O,
- _0.5,
0 10 20 30 40 50 0

A Mo [A] B

Figure 3.5: Displacement correlation matrix elements for all C,-atom pairs plotted against
their average distance, s for intra-protein motions (A) and inter-protein motions (B). Both
graphs were computed for the full trajectory T1 with length 10ns. The blue lines show the
average values for distance intervals of width 1 A. The atomic distance, rir between two
atoms k and k' was calculated as rir =ming{||rx — rpr + R||}, where R is a lattice vector,
cf. Eq. (2.4), and thus rgg is the minimum distance between atom k and any crystal image
of atom &’ created by the periodic boundary conditions.

trajectories with lengths At=0.1,....,5.0 ns and the converged fraction, sz‘,ff was calculated as
described above. Only intra-protein correlations showed a significant degree of convergence.
Hence, only these correlations are discussed in the following. Fig. 3.6 presents the dependence
of the intra-protein fczzr/r on At. Apart from in simulation T2, the converged fraction increases
roughly logarithmically with At. Fig. 3.6 also shows that the degree of convergence varies
significantly between the simulations. For the equivalent simulations Tx (x=1,2,3) one finds
fre > fr1 > frs indicating that simulation T2 possesses the highest degree of convergence.
In contrast, Table 3.2 indicates that the agreement factors R display the reverse order, with
simulation T3 in best agreement with experiment. This apparent conflict may be resolved
by considering a simulation restricted to a region of phase space significantly smaller than
that explored in the experiment. The variance-covariance matrix may appear to approach
convergence in this simulation. If, then, the simulation crosses a free-energy barrier into another,
previously unexplored region of phase space, then the variance-covariance matrix will appear to
be far from convergence while the elements themselves may resemble the experimental values
more closely.

It is also of interest whether the matrix elements, C} converge to the same value in different
simulations. This can be investigated by calculating fcwr for the merged trajectories Tx and
Tx+01 (x=142+3), respectively. If Cyp converges to the same value in all simulations it
contributes to fCZ‘;rfv otherwise it does not. On the other hand, if Cyp does not converge in
any single simulation then it is unlikely to converge in the merged trajectories. Therefore, the
maximum value of fC;‘;r/r for the merged trajectories is determined by the simulation with the
lowest degree of convergence i.e. T3. fC,‘;zrf for the merged trajectories are also shown in
Fig. 3.6. For At=2.5ns the converged fractions of Tx and Tx+O01 differ by 5% and 13% from
T3, respectively. Thus, the majority (87%) of the converged matrix elements converged (within
the error set by the convergence criterion) to the same value in all four simulations.

In Fig. 3.7 the intra-protein f¢,,, is plotted against the inter-atomic distance, the fraction
calculated from a random matrix, forana, being negligible (9+ 1)10~*. For shorter distances,
kk!
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Figure 3.6: Fractions of converged correlation matrix elements, focorr at different lengths,
At of sub-trajectories for all simulations and two merged trajectories. Results are shown for
intra-protein motions.

ek S 6 A, more than 80% of the intra-protein correlation matrix converges on the timescale
of At=1.0mns. This fraction drops to ~10% for rpw = 12A and becomes effectively zero for
separations larger than 15 A.

Another point of interest is the dependence of the correlation matrix on the protein topology.
To assess this, only converged elements of the intra-protein correlation matrix are examined.
Due to the covalent bonding structure, one might expect the correlations between atoms local
in the sequence to be larger than those between neighbouring atoms which are non-local in
sequence. The mean values, (Cjyi a¢) for atom pairs that are local in sequence, defined here
as A=k—k'<10 (note that for C,-atoms k and k' are identical with the residue numbers),
are compared in Fig. 3.8 with pairs that are non-local in sequence (A > 10) as a function of
(rixr). Indeed, the displacement correlations between atoms that are local in sequence are on
average larger than those between atoms that are non-local in sequence. The difference is ~0.1,
independent of (rpx/). Furthermore, the inset in Fig. 3.8 clearly demonstrates that the degree
of correlation for non-local atoms decreases only slowly with increasing separation. Closely
resembling the average distance dependence for all matrix elements shown in Fig. 3.5 A, the
magnitude of the converged elements decreases approximately exponentially with (rpg/) with a
decay length of 10.6 A for (r,;1) <25 A, beyond which (Cj) = 0.

Finally, it is investigated where atoms, for which the intra-protein correlation matrix elements
have converged, are located within the protein. In Fig. 3.9 A the converged intra-protein pairs
of C,-atoms in the simulations Tx (x=1,2,3) with At=2.5ns are shown. 94% of all nearest
and 68% of all second-nearest backbone neighbouring pairs converged in all four proteins in
the unit cell. Most of the regions in which the correlations converged are located in secondary
structural elements. The correlations between atoms located in «a-helices converge for sequence
distances A < 7. In contrast, the atom pairs within g-strands converge only for A < 2. The
off-diagonal elements are converged atom pairs that are non-local in sequence. The majority
of these are correlations between secondary structure elements. For almost all the strands in
the Staphylococcal nuclease (-barrel the inter-strand correlations have converged. Moreover,
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Figure 3.7: Fraction of the intra-protein correlation matrix elements that has converged,
fc,,, versus the atomic separation, rpi. Results presented are for sub-trajectory length
At=1.0ns.

there is some convergence between a1 and ai, and pronounced convergence between as and as.
Correlations between the o and [ elements in general have not converged. Finally, a comparison
between Figs. 3.1 and 3.9 demonstrates that the converged correlations exist in regions of low
mean-square fluctuation.

3.3 DiscussioN AND CONCLUSIONS

Molecular dynamics simulations (Set 1) of crystalline Staphylococcal nuclease have been analysed
in terms of B factors, the atomic displacement correlation matrix and X-ray diffuse scattering.

The average protein structures in all simulations are in accordance with the experimental ref-
erence structure (1.3 A average C, RMSD). The unit-cell edge parameters and volume are also
well reproduced, indicating that protein packing is described correctly.

Isotropic B (thermal) factors are widely used to derive atomic fluctuations from X-ray crys-
tallographic protein structures. The question arises, however, as to whether an unambiguous
description of the dynamics involved can be derived from B factor data in the absence of de-
tailed additional information. B factors contain static and dynamic components [43, 73], and
part of the static disorder may be temperature-independent. However, as the temperature of a
protein is lowered some of the dynamic disorder may become static as proteins freeze into struc-
turally inhomogeneous conformational substates. Separation of static from dynamic disorder is
therefore non-trivial.

One approach is to fit simplified displacement models directly to the B factor distribution.
However, this approach suffers from the drawback that many such qualitatively-different models
may yield fits of similar quality. Thus, it has been shown that a rigid-body TLS (transla-
tion/libration/screw) displacements model [149], in which the whole protein is considered as
rigid and internal dynamics is absent, accurately reproduces most [150] or all of protein B factor
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Figure 3.8: (Cli,at) versus (rgp) for atom pairs local or non-local in sequence. For the
local-in-sequence data error bars are drawn along the principal axes of each (Ciir at, ik’ ) A-
distribution. The dotted line connects data points for atom pairs which are local in sequence.
The inset shows the non-local-in-sequence data over the full distance range and shows a
profile similar to Fig. 3.5 A. Results are shown for trajectory T2 with a sub-trajectory length
At=1.0ns. Error bars denote the standard deviation.

distributions [151]. Alternatively, TLS models in which parts of the protein are considered rigid
(e.g., aromatic side chains) have also been shown to successfully fit B factor data [152, 153]. An
alternative model involves rigid-protein TLS degrees of freedom together with the internal dy-
namics described by normal mode eigenvectors with refinable amplitude factors [150, 154, 155].
Moreover, a very simplified Gaussian vibrational model, in which the protein is described as an
elastic network of locally interconnected C,-atoms in the absence of whole-molecule motion was
also shown to produce B factor distributions that agree very well with experiment [156-158].
Very recently, it has been demonstrated that B factor distributions are closely correlated to local
protein packing densities [87].

The availability of the above variety of fundamentally-different models, all of which reproduce
experiment, testifies to a lack of information that can be directly extracted from B factor dis-
tributions. Thus, additional information must be supplied. For the dynamical contribution,
this additional information is conveniently furnished by molecular simulation, in the form of
the dynamical equations and the associated atomic model and force field. MD simulation offers
a direct way of determining protein internal and whole-molecule motion [27, 136]. However,
due to computational limitations only part of the dynamics of the system is explored i.e., in
the present simulations of Staphylococcal nuclease, fluctuations are sampled occurring on the
nanosecond timescale and on lengthscales shorter than the box size of the simulation i.e., the
unit cell. That longer-timescale fluctuations exist, which are not sampled in the simulation, can
be inferred from the present results. Furthermore, correlated motions between unit cells, such
as commonly produce diffuse scattering streaks and rings associated with the reciprocal lattice,
are also suppressed by the imposition of periodic boundary conditions.

Although in the simulations the fluctuations derived from the whole-molecule rigid-body external
dynamics resemble the distribution of the total mean-square fluctuations their contribution to the
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Figure 3.9: A: Pairs of C,-atoms for which the protein-internal displacement correlations
converged. The regions of secondary structural elements are indicated and their average
correlation coeflicients are given in parentheses. The results shown are for the merged
trajectories Tx (x=1+2+3) with sub-trajectory length At=2.5ns. The colour-scale indicates
the number of proteins for which Cyg converged.  B: Structure of SNase with secondary
structural elements indicated. For convenience, the C- and N-termini are truncated, cf.
Fig. 2.4A. (Fig. B adapted from AD Gruia: Dissertation, Heidelberg University, 2004.)

total mean-square fluctuations is significantly smaller than that from internal motions. Internal
and whole-molecule motions were found to contribute ~0.74 A2 (69%) and ~0.29 A% (27%) to
the total mean-square fluctuations, respectively. Only in the regions of the secondary structural
elements are both contributions of comparable magnitude. Furthermore, the present results
indicate that the separation of the fluctuations into whole-molecule translation, rotation and
internal motion does not provide an adequate basis for describing B factors. Therefore, the
TLS-model may not provide a physically consistent description if the protein is represented as
a single rigid-body.

The simulation-derived total mean-square fluctuations are significantly larger than those derived
from the experimental B factors, cf. Fig. 3.1, as has been observed in previous MD studies [136—
138, 144]. Although part of the difference with experiment is due to the harmonic assumption
made in deriving the experimental B factors, most of the difference has other origins. One
possible contribution is the presence of crystallisation agents, ligands and/or large-size ions, e.g.
sulfate, in the experiment (which are absent in the simulation) which, due to steric hindrance
and/or salt-bridges, could restrict protein motion. Also, the simulation setup and performance
(e.g. the building of unresolved residues, length of equilibration) or inaccuracies of the force
field may have an influence. Furthermore, the uncertainties in experimental B factors may be
large. For example, the C, mean-square fluctuations derived from PDB entry 1ISNM [159], a
Staphylococcal nuclease structure similar to 1ISTN, are on average 30% larger than those shown
in Fig. 3.1.

A large fraction (~65%) of the fluctuations converges on the nanosecond timescale. The non-
converged segments comprise the experimentally-unresolved C-terminus region (residues 142-
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Figure 3.10: A: Graphical representation of the potential energy landscape. The generalised
atomic coordinates are indicated and span the whole configuration space upon which the
force field E, cf. Egs. (2.1) and (2.2), is defined. E' is hierarchically structured, possessing
multiple minima separated by a distribution of barrier heights. B: The sampled fraction of
the energy landscape increases with time, indicated by a colour gradient ranging from dark
blue symbolising shorter timescales to representing longer timescales. (Fig. A was
kindly provided by N Calimet.)

149), a highly flexible loop (residues 46-51), and some coil regions for which the fluctuations
vary non-monotonically with the simulation length.

Additionally, the convergence properties of the atomic displacement cross-correlation matrix,
Ciirr have been determined here as a function of the length of the simulations. In molecular sim-
ulations, collective properties often converge on longer timescales than single-particle properties,
and poor sampling of the displacement correlation matrix in protein MD has been previously
noted [99, 136]. Here, it is found that parts of the protein-internal inter-atomic displacement
correlation matrix converge on the nanosecond timescale while other parts do not. A crucial
factor is the atomic separation. For atoms separated by <7 A more than 50% of C} converge on
the nanosecond timescale in the simulations. The magnitude of the converged matrix elements
decays on average approximately exponentially with distance with a decay length of 10.6 A.
Furthermore, convergence is seen between the strands comprising the (-barrel of the protein
and between some neighbouring a-helices, but not between the a and ( regions of the protein.

For intra-protein motion, the converged fraction of Cy grows logarithmically with the simula-
tion length, cf. Fig. 3.6, a finding consistent with the logarithmic decay of the diffuse scattering
R factor with time (Fig. 3.3), which is determined by the convergence of the variance-covariance
matrix. A physical model consistent with this logarithmic time dependence is as follows, cf.
Fig. 3.10. For the variance-covariance matrix to converge the system must fully sample the ac-
cessible protein energy landscape. For proteins, the energy landscape consists of multiple minima
separated by a distribution of barrier heights [8, 46]. The number, Nj; of minima sampled is a
measure of the fraction of the energy landscape sampled and thus the degree of convergence of
the variance-covariance matrix. The configurational sampling within a single minimum is very
fast, whereas transition rates between minima are slower and depend exponentially on the barrier
height AFE, occurring with an average transition time, t7 ~ exp(AE/kpT). If the neighbouring
minima are of higher energy than the original minimum the system will return to the original
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minimum within a time shorter than ¢7. Therefore, the sampling of neighbouring minima will
converge on a timescale t7 given by the maximum barrier height crossed between the original
and neighbouring minima. The observation that the variance-covariance matrix converges on a
logarithmic timescale therefore implies that Nj; increases proportionally to, or as a polynomial
function of, the maximum barrier height crossed i.e., Ny ~ AE ~ log(t).

Finally, the present results allow to estimate how long an MD simulation might have to be in
order to fully sample the collective motions within crystalline proteins. The protein collective
motions are described by the displacement variance-covariance matrix, which in turn determines
the X-ray diffuse scattering. Hence, the comparison with X-ray diffuse scattering experiments
allows to estimate the simulation length required for the variance-covariance matrix to converge.
Convergence of the diffuse scattering, and thus the variance-covariance matrix, can be defined as
occurring when the agreement factor between simulation and experiment reaches R 5; <€, where
€ accounts for systematic and experimental errors. The required simulation length depends on
the choice of € and the system size. Estimates for the convergence time At* are given in Table 3.2
for the entire Staphylococcal nuclease unit cell and two e-values. For a realistic value of e=0.04
the convergence time is of the order 1 us for the tetragonally-constrained simulations, i.e., 100
times longer than the present simulations.






CHAPTER 4

COLLECTIVE DYNAMICS

Intra-molecular protein dynamics is of potential functional importance and therefore has been
the focus of intense research. Correlated intra-molecular displacements give rise to strongly
delocalised features in the diffuse scattering pattern that are not associated with the reciprocal
lattice. The variety of intra-molecular motions present in a protein renders an analytical descrip-
tion of the diffuse scattering cumbersome. However, molecular dynamics simulation provides
a powerful means of describing the intra-molecular motions leading to diffuse scattering. For
example, MD simulations of orthorhombic crystals of lysozyme have been shown to reproduce
features of the scattering pattern [27, 80]. Furthermore, it was demonstrated that the motions
of groups of rigid bodies, composed on average of five residues, also reproduce the prominent
features of the scattering pattern [27]. However, it has also been demonstrated that calculated
diffuse scattering does not converge for nanosecond MD simulations [99, 100], cf. Section 3.1.3.

A full analytical description of the diffuse scattering due to intra-molecular motions can be
given using the atomic displacement variance-covariance matrix, cf. Section 2.3.2. Unfortu-
nately, this is non-trivial due to the potentially high number of parameters (cross-correlations
in displacements), which is of O(N?) where N is the number of atoms in the unit cell and,
therefore, the variance-covariance matrix must be approximated using models with significantly
smaller numbers of parameters. The difficulty in unambiguously doing this becomes clear when
noticing that, depending on the model used for analysis, in earlier research the protein mo-
tion determining diffuse scattering was contrastingly found to be either liquid-like (diffusive) or
vibrational [76, 80].

However, a limitation of the early investigations was the rather incomplete experimental sam-
pling in reciprocal space of the X-ray diffuse scattering. In this thesis, the use of the compre-
hensive, three-dimensional X-ray diffuse scattering map for SNase reported in Ref. [101], cf.
Section 2.3.4, allows for qualitatively and quantitatively more precise tests of protein dynamical
models.

In Chapter 3, MD trajectories of crystalline SNase were analysed in terms of the atomic fluc-
tuations and displacement correlations and the convergence properties of these quantities were
investigated. The inter-atomic displacement correlations are related to the variance-covariance
matrix which determines the X-ray diffuse scattering. In this chapter, the simulation-derived
X-ray diffuse scattering is analysed in detail. Firstly, the scattering from the whole unit cell

Results of this chapter will be published as Meinhold € Smith; submitted to Phys Rev Lett, cf. Ref. [160]
and Meinhold & Smith; to be submitted to Biophys J, cf. Ref. [161].
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Figure 4.1: X-ray diffuse scattering intensities plotted against the magnitude, ¢ of the scat-
tering vector for all simulations of Set 1 (T1-3 and O1). The top panel shows the unit cell
and protein scattering for all g-vectors for simulation T1. For clarity, in all other panels
intensities are shown as isotropic averages. Shown is the simulation-derived scattering due
to the complete unit cell (solid blue lines), the proteins only ( ) and the
crystal solvent only (green dashed lines) and the experimental scattering from Ref. [101] (red
solid lines) which corresponds to scattering of the complete unit cell, i.e. proteins and crys-
tal solvent. The scattering calculated from the pure-water simulation (WB) is also shown
(magenta dotted line). The area shows the distribution of the 55,691
q-vectors.

is decomposed into protein and crystal solvent contributions. A qualitative interpretation of
the diffuse scattering is presented using the structure factor of the electronic radial distribution
functions calculated from the simulations.
terised. In particular, two seemingly-contrasting models for the protein motion, one liquid-like
and one collective, are compared. The collective motions are investigated using principal com-
ponent analysis. The potential of mean-force associated with each principal component mode
is analysed and the damping coefficient computed. Subsequently, individual three-dimensional
features in the protein diffuse scattering are assigned to specific collective motions in the protein,
and some of these explicitly involve potentially functional active-site deformations.

4.1

Then, the protein contribution is further charac-

DECOMPOSITION OF THE UNIT-CELL DIFFUSE SCATTERING

In Fig. 4.1 the isotropically-averaged X-ray diffuse scattering profiles, I4i¢(q), computed from
four MD simulations (T1-3 and O1) are shown. The experimental profile from the data reported
in Ref. [101] is also shown along with the distribution of the scattering vectors. The unit cell
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Figure 4.2: Agreement factor, R,: between the simulated and the experimental diffuse
scattering reported in Ref. [101] for the complete unit cell, i.e. proteins and crystal solvent,
including all atoms (solid lines) or only the non-hydrogen atoms (dashed lines). The inset
shows Luzzati plots of the R factors for the all-atom scattering and At=10ns.

scattering qualitatively agrees with the experimental profile. In both experiment and simulation

Ig?f(f’tein exhibits a pronounced peak at ¢~ 0.28 AN At higher ¢, Ig?f(f’tein exhibits a shoulder at

q~0.45 A_l, which is of somewhat higher intensity in the simulation than in the experiment.

The dependence of the agreement factor, R on the simulation length, At is shown in Fig. 4.2 for
all four simulations. The agreement with experiment improves with increasing At, as indicated
by a continuous decrease of the R factor, which reaches values between 8.1% and 8.3% for the
tetragonally-constrained simulations. For timescales below 1ns the orthogonally-constrained
simulation shows better agreement with experiment than the Tx-simulations (x=1,2,3), but for
longer times its agreement is slightly poorer, due possibly to the asymmetric sampling of the
unit-cell shape: instead of a = b the average unit-cell edge parameters are a = (49.9 &+ 0.7) A
and b = (47.6 £ 0.3) A, cf. Table (3.1)

Fig. 4.2 also indicates the usefulness of including the scattering from the hydrogen atoms, which
improves the R factor by ~0.7%. Indeed, the hydrogens, due to their large abundance in
protein crystals, contribute significantly to the electron density: ~12% in the present system.
Furthermore, hydrogen atoms smooth out the electron density in the unit cell. This has an effect
on the fluctuations in the simulation-derived diffuse scattering, which are visible in the top-panel
of Fig. 4.1, which shows the non-averaged diffuse scattering profiles. Adding hydrogens reduces
the average variations in the diffuse scattering by ~4% (Fig. 4.3), leading to an improved R
factor. The inset to Fig. 4.2 shows that the R factors for all simulations on average improve
with increasing resolution. The R factors slightly increase around ¢=:0.2 A" and q~04 A_l,
consistent with the results of Fig. 4.1.

In contrast to experiment, in a simulation the scattering of the protein and crystal solvent
components can be separately examined by setting the atomic form factors, f; of the remaining
components to zero. The results of this exercise are also shown in Fig. 4.1. It is instructive to

compare the crystal solvent scattering, I (ﬁ‘i’flf"(q) with the scattering calculated from the simulation
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Figure 4.3: Change in the relative variations of the isotropically-averaged unit cell
scattering due to the inclusion of hydrogens. The values shown are calculated as
(a1ngpB— AT/ A T3 where A Lyig = 0,/ (Iaie) with o denoting the standard devia-
tion, and the superscripts all and nonH refer to the all atom and non-hydrogen atom scat-
tering, respectively; all quantities are g-dependent. In the graph, the ¢-range was divided
into 50 equi-sized bins.

of the pure water-box, IXYHB (q). For ¢ = 0.23 A7 the two intensities are the same except

for a scaling factor. However, for ¢ < 0.23 A7 the g-dependence of the diffuse intensities is
very different: Ic\fivﬂB(q) increases with ¢ while Ifﬁ’flf"(q) decreases. This can be understood by
considering the scattering arising from a homogeneous disordered system. For such a system

the scattered intensity is given by

I(q) = f*(q)S(q), (4.1)

where f(q) is the atomic form factor and S(g) is the structure factor which is given by

0o .
S(q) =1+ n/ dr 47r7"2M [g(r) — 1], (4.2)
0 qr

where n is the average density and g(r) is the radial distribution function of the system of
scatterers [1]. g¢(r) can be directly computed from the trajectories and S(g) then calculated
using Eq. (4.2). For the calculation of g(r) here the contribution of each atom was weighted
by its number of electrons to obtain an S(gq) corresponding to X-ray scattering. The resulting
S(q) for the trajectories T1 and WB are shown together with ¢(r) in Fig. 4.4. Comparison
with Fig. 4.1 shows that the diffuse scattering intensity profiles for the crystal solvent and pure-
water diffuse scattering resemble S(g). In particular, the peak location at ¢ = 0.35 A7 s well
reproduced.

The low-g part of the structure factor arises from long-range spatial modulations of g(r), cf. the
inset to Fig. 4.4. These originate from the inhomogeneity of the crystal solvent volumes within
the unit cell, since the protein molecules act as voids in the crystal solvent scattering density.
Therefore, the crystal solvent g(r) exhibits variations on the length scale of the unit cell which
give rise to increased low-gq scattering intensity.
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Figure 4.4: Structure factors, S(g) for the unit cell, protein, crystal solvent and pure water
scattering calculated from the radial distribution functions, g(r) using Eq. (4.2). The unit
cell, protein and crystal solvent scattering were computed from trajectory T1, the pure-
water scattering from trajectory WB. The inset shows g(r) for the crystal solvent and pure
water.

Fig. 4.4 also shows that the protein structure factor is closely similar to the protein diffuse
scattering intensities, Igirf(f)tem shown in Fig. 4.1, and the peaks at ¢ = 0.21 A" and q~0.45 A
are present in both. Also shown in Fig. 4.4 is the unit cell structure factor. Although the unit
cell S(q) is similar to I4g(q), i.e., the peak at ¢ = 0.28 A s present in both, the shoulder at

q~0.45 A" is more pronounced in S(q). This is due to the atomic form factor, f; which relates
Igirf})tem to S(q), cf. Eq. (4.1). fi decreases with increasing ¢ with an approximately Gaussian

dependence and, therefore, attenuates the high-g scattering intensity.

To investigate the origins of the peaks in S(q), again the pure-water structure factor is considered
first. SWB(q) exhibits a single peak at ¢ = 0.35 A corresponding to a real-space distance of
2.86 A which equals the radius of the first hydration shell of liquid water at 25°C [162, 163].
g(r) for the pure water-box is shown in Fig. 4.5 and indeed possesses a broad peak centred at
~ 2.8 A. A smaller peak, located at 1.8 A (non-bonded interaction O---H), also contributes to
S(q) in the high-¢g range. Also, Fig. 4.5 shows that the short-range g(r) of the crystal solvent is
similar to that of pure water, differing by a scaling factor due to the different average densities.

Fig. 4.5 also shows g(r) for the protein and the unit cell. For proteins, due to the presence of
different covalent bonds, the short-range order is rather heterogeneous, giving rise to several
peaks in ¢(r) for small 7 which can be attributed to 1-3 covalent interactions (r = 1.8 A: H-C-H,
r=22A: C-C-H, r = 2.5 A: C-C-C, C-C=C, C-C=0) and lead to the broad peak in S(q) at
q = 0.47 A_l, cf. Fig. 4.4. However, of particular interest is the peak located at ¢ = 0.21 A
(in the following denoted §¢) because in this g-range the three-dimensional experimental diffuse
scattering map exhibits detailed structure, cf. Figs. 4.1 and 4.15, which may provide information
about collective protein motions present. This peak corresponds to real-space modulations of
g(r) on a length scale of ~5 A, which corresponds to the inter-strand distance in 3-sheets and
the pitch of an a-helix. To examine the origin of this peak S(g) for the protein was recomputed



46 Collective Dynamics

3 \
— unit cell
L ) protein -
g(r) - crystal solven
/ pure water
2 | ) -
17
0 \ \ \ \ \
2 3 4 5 6
r[A]

Figure 4.5: Radial distribution function, g(r) for the unit cell, protein, crystal solvent and
pure water calculated from the simulations T1 and WB.

with and without only the secondary structural elements. The results of this are shown in
Fig. 4.6. If no secondary structural elements are included (Fig. 4.6 A) the ¢-peak is absent.
If either a-helices or (-strands are excluded, the §-peak is present but of somewhat smaller
intensity due to the increased low-g scattering (which is caused by the additional voids in the
protein structure) which also causes a slight shift of the ¢-peak towards lower ¢. S(q) for only
the secondary structural elements (Fig. 4.6 B) exhibits the same profile as the protein S(gq) but
with a significantly increased ¢-peak. Therefore, it can be concluded that the ¢-peak indeed
originates from the secondary structural elements. To assign it to the a-helix pitch and the
inter-(-strand distance it remains to show that the peak is present for a single a-helix and a
double (-strand, and absent for a single g-strand. That this is indeed the case is shown in
Fig. 4.6 C.

To illustrate the relation between S(g) and I52"™in Fig. 4.6 the decomposition of the diffuse
scattering ¢-peak is also shown and re-confirms the above decomposition of S(g). Differences
arise from the heterogeneity of the system, i.e. from the different atomic form factors, and from
dynamical disorder present, reflected in non-zero Debye-Waller factors, as is apparent from a
term-wise comparison of Egs. (2.71) and (4.2), bearing in mind Eq. (4.1).

The results presented in the preceding paragraphs can be utilised to decompose the diffuse
scattering of the unit cell. In particular, Figs. 4.1 and 4.4 demonstrate that the pronounced
peak at ¢ ~ 0.28 A~1, which is a general feature of protein X-ray scattering and is often referred
to as the ‘solvent ring’ (more precisely, the ‘solvent shell’), in fact originates from both the
protein and the solvent scattering. The position of this peak depends on the relative intensities
of the protein and solvent scattering which are determined by the ratio of protein to solvent
electrons. In the system studied here, this ratio is 48:52 and therefore the protein and crystal
solvent scattering contribute approximately equally to the total intensity. The peak of I4r(q)
is therefore located almost exactly inbetween the peaks of I (};ir&)teln and I(Sl‘i’flf"ent.

Fig. 4.1 also demonstrates that the diffuse scattering intensity of the protein cannot be easily
obtained from the unit cell scattering by subtracting the scattering from a sample of pure solvent,
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Figure 4.6: Left: Decomposition of the protein structure factor of trajectory T1. The pro-
tein S(q) is compared with A: S(q) of the protein without secondary structural elements, B:
S(q) of all secondary structural elements, and C: S(q) of selected, single secondary struc-

tural elements.  Right: Decomposition of the protein X-ray diffuse scattering intensity of

trajectory T3. IX*™ is compared with a: I of the protein without secondary structural

elements, b: Iy of secondary structural elements, and c: Iqif of selected, single secondary
structural elements. For clarity, I} ¢""" has been scaled in b and c.

i.e., here pure water. For the isotropically averaged I gir&)tem this subtraction is valid only in the

large-g/small-r range (¢ 2 0.23 A_l) where the inhomogeneity of the protein and the crystal
solvent volumes in the unit cell can be neglected. In the low-gq/large-r range, i.e., the range of
potentially interesting collective motions, the inhomogeneity of the unit cell must be taken into
account and, therefore, the subtraction of pure solvent scattering from the unit cell scattering
does not yield the protein scattering.

4.2 PROTEIN X-RAY DIFFUSE SCATTERING

Molecular dynamics simulation provides a convenient means to obtain the protein contribution
to the diffuse scattering. If the scattering computed for the complete unit cell agrees reasonably
well with experiment, then similar agreement is likely for the protein scattering. In this section
the types of motion giving rise to the protein X-ray diffuse scattering are investigated. In
particular, models of liquid-like [76] and collective [80] dynamics are discussed.
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Figure 4.7:  Simulation-derived average correlation coefficients Cpipr  (thin lines)
plotted against the inter-atomic distance g for intra-protein (A) and inter-
protein (B) atom pairs. The magenta thick lines represent least-squares fits of
C(rrrr; Co, A Ao) = Co(1 — Xo) exp (—7xe’/A) + Ao to the data of simulation T1. In panel
B the fits are shown for both Models B and C. The parameters Cy and A\ are explained in
the text. Ag accounts for artefactual anticorrelations due to removal of the centre-of-mass
translation and rotation of the unit cell, cf. Fig. 3.4 [100]. For A\ = 0 the equation fitted
reduces to Eq. (4.4). For intra- and inter-protein correlations Ay = —0.11 and —0.12, respec-
tively, consistent with the findings in Section 3.2. The values of Cy and X for all simulations
and all models are given in Table 4.1.

4.2.1 MOoODEL OF LiQUID-LIKE PROTEIN MOTION

First, a model of isotropic, liquid-like motion (LLM) is studied. If the atomic displacements
are isotropic the projection of u, onto q is independent of the direction of q and the term
q’ (u,ul))q in Eq. (2.70) can be simplified to [164]

a’ (upup)a = ¢*\/(u2)(u) Crp, (4.3)

where O}, denotes the correlation coefficient between the displacements of atoms k and k', cf.
Eq. (3.5), and (u?) is the mean-square fluctuation of atom k. To obtain a suitable description
of the functional form of Cj the simulation-derived average C}s values are plotted against
inter-atomic distance, ryx in Fig. 4.7. This shows that, for both intra-protein and inter-protein
atom pairs, Cp decreases approximately exponentially with increasing rpy . However, Fig. 4.7
also shows that, on average, intra-protein motions are significantly more strongly correlated

Table 4.1: Correlation lengths A and the scaling factor Cy derived directly from the MD
simulations by least-squares fits, see text and caption to Fig. 4.7.

Model A Model B Model C
)\p [A] )\int [A] )\ext [A] )\int [A] )\ext [A] C’0
T1 11.02 11.02 3.54 11.02 14.07 0.43
T2 10.54 10.54 4.35 10.54 12.53 0.49
T3 11.29 11.29 3.65 11.29 18.38 0.40

01 10.87 10.87 3.13 10.87 11.04 0.38
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solvent

Figure 4.8: Graphical illustration of the liquid-like motion models, see text and Eq. (4.4).
The correlation length, A is different for intra-protein and inter-protein atom pairs. Atoms
are symbolised by e, the solvent is not explicitly included in the model but is drawn for
convenience.

than inter-protein motions. In particular, while for intra-protein motions Cyp (rpr =~ OA) — 1
for inter-protein motions Ciy (rgr = OA) — (g < 1. Therefore, the functional form of Cy; was
chosen to be

Tk
Cotr (Tir) = Co exp (— 3 ) ; (4.4)
with 74y = ||rg — rg/l|, A being a correlation length and Cjy being a scaling factor for the

magnitude of inter-protein correlations!. For intra-protein atom pairs Co = 1. The values of

<uz> were taken from the simulations, although <uz> could, in principle, also be obtained from
X-ray crystallographic B factors.

Three different models based on Eq. (4.4) and illustrated in Fig. 4.8 are examined and the as-
sociated parameters directly derived from the simulations. The results are compared with the
values of the same parameters obtained by fitting the model-derived X-ray diffuse scattering
to that calculated directly from the simulation trajectories using Eq. (2.58) — a similar type
of comparison was made in work determining the effect of anisotropy and anharmonicity on
protein crystallographic refinement and R factors [165, 166]. The description of intra-protein
correlations is the same in all three models, differences existing only in the treatment of the pro-
tein:protein correlations. Model A is a minimalistic description, in which only motions within
the same protein are correlated and there are no correlations between atoms belonging to dif-
ferent proteins. In this case, the correlation length is A = A, if the atoms k and &’ belong to
the same protein and A = 0 otherwise. In Model B the description is made more realistic by
using two different correlation lengths, A = Ajy for intra-protein correlations and A = Ayt for
atoms belonging to different proteins. Additionally, in this model the constraint Cy = 1 is set.
In Model C Ajnt and Aeyt are defined as in Model B but Cy # 1 if the atoms belong to different
proteins.

The parameters for Models A, B and C were derived directly from the simulation as described in
the caption to Fig. 4.7, in which the fitted C(r) functions are shown for the three models. The
fitted parameters are given in Table 4.1. The intra-protein correlation lengths are approximately
the same for all simulations, the average being (10.9 + 0.3) A. For the inter-protein correlation
lengths Models B and C yield significantly different results, A2, = (3.7 £ 0.5) A and \{, =

(14.0 £ 3.2) A. This is due to the fact that Model B does not adequately describe the inter-
protein Cjp/-values, as can be clearly seen in Fig. 4.7 B — this is due to the scaling factor for

!The distance 75, was calculated using the minimum-image convention introduced in the caption to Fig. 3.5.
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the correlation strength (Cp). The average value of Cp from all simulations is (0.43 + 0.05),
indicating that the short-range correlations between atoms belonging to different proteins are
approximately 57% weaker than the short-range intra-protein correlations. For larger separations
differences in the correlation lengths Aj and Aexy become important.

The parameters for Models A, B and C were also determined directly from the MD X-ray diffuse
scattering patterns. To do this the following scheme was used. First, the protein diffuse scatter-
ing patterns were calculated directly from the MD trajectory using Eq. (2.58) and subsequently
used as the reference in Eq. (3.4), in which the background, ¢, is in this case zero. The diffuse
scattering patterns of the liquid-like models were calculated using Eq. (2.70) with qT<uku£,>q
given by Egs. (4.3) and (4.4), rx and (u2) being taken from the simulation. The results are
shown in Table 4.2.

The correlation lengths obtained from Model A, i.e. for intra-protein correlations only, are
very similar for the tetragonally constrained simulations Tx (x=1,2,3), with the average being
(14.4%0.6) A. The correlation length obtained from the simulation O1 is somewhat higher, being
17.4 A. The R factors, representing the goodness-of-fit between the model and the simulation, are
approximately 12% for all simulations. Including protein:protein interaction, i.e. Model B, the
intra-protein correlation lengths (Ajn¢) do not change significantly. The inter-protein correlation
lengths (Aext) are significantly smaller than A, ranging from 81A to 9.5 A, and show no
difference between the simulations Tx and O1l. Including the protein:protein interaction via
Model B reduces the R factors for all simulations by ~0.12% and therefore does not significantly
improve the description of the diffuse scattering. This may be due to the fact that, for any given
rLE, ON average intra-protein correlations are larger than inter-protein correlations, cf. Fig. 4.7
and Section 3.2 [100]. This hypothesis was tested using Model C which scales the magnitude of
the inter-protein correlations. Using this model, Aoy increases, except for simulation T3, and
is significantly different between the simulations, ranging from 7.5 A to 19.4 A. The magnitudes
of the protein:protein correlations, Cy, decrease relative to intra-protein correlations by a factor
between 0.38 and 0.89 for all simulations except T3, for which Cy = 1.4. The average reduction
in R factor from Model B to C is smaller than 0.01% for the simulations Tx and is 0.045% for
the simulation O1.

The correlation lengths A and the scaling factor Cy derived from the LLM model fits to the
simulation-derived diffuse scattering patterns can now be compared to the values derived directly

Table 4.2: Correlation lengths A and the scaling factor Cy for the models of liquid-like motion,
cf. Eq. (4.4). To obtain optimal model parameters, i.e. parameters {\, Co} that optimally
reproduce the diffuse scattering calculated directly from the simulation using Eq. (2.58), a
conjugate-gradient minimisation method [111] was used to optimise the agreement factors
R between the model-derived and simulation-derived diffuse scattering patterns. The model
parameters were calculated on an adaptive grid with a relative accuracy of 4-10~% or better.

Model A Model B Model C
Ao [A] R [%)] At [A] Aext [A] R [%] At [A] Aext [A]  Co R [%]
T1 13.80 11.94 13.75 8.11 11.85 13.89 11.06 0.62 11.84
T2 1490 12.04 14.84 9.29 11.88 14.87 9.99 0.89 11.88
T3 14.56 12.06 14.76 9.56 11.91 14.52 7.54 1.43 11.90

O1 1735 11.60 17.35 9.44 11.50 17.55 19.43 0.38 11.45
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Figure 4.9: Comparison of the LLM model scattering with that calculated directly from the

simulation T1. ~ A-C: Cross-sections through the ¢, =0 A! plane of the three-dimensional
protein X-ray diffuse intensities (in [a.u.] on the same scale in each plot) due to the full
trajectory (A) and calculated from LLM Model A (graph B) and Model C (graph C). D:
Isotropic averages of the complete diffuse map corresponding to A-C.

from the simulations. For all simulations the simulation-derived intra-protein correlation length
is significantly shorter than that derived from the model fits. Moreover, the correlation lengths
for the inter-protein motions obtained directly from the simulations are also significantly smaller
(Model B) or larger (Model C, except simulation O1) than the values obtained from the LLM
model fits. Furthermore, the scaling factor Cy is, on average, overestimated by the LLM model
fits. Also, the R factor results for the LLM models show that the description of the protein X-ray
diffuse scattering does not significantly improve from Model B to C, although one additional
parameter (C() was introduced. Together with the small improvement of the R factors from
Model A to B these results indicate that the LLM model in the given form does not yield a
satisfying description of the diffuse scattering.

In Fig. 4.9 cross-sections of the LLM model-derived diffuse scattering are shown and compared
with the scattering pattern derived directly from the simulation. It can be seen that, although the
LLM model reproduces the location of the intense protein scattering shell at ¢ ~ ¢ (Fig. 4.9D),
the detailed fine structure present in the MD-derived I gf&’tem is not present in the LLM model
scattering, cf. Section 4.2.4. In particular, the low-q scattering is significantly overestimated
by the LLM model scattering, with the results of Model C being slightly better, i.e. less low-g
intensity, than those of Model A. Furthermore, the shoulder present in the MD scattering at
q~0.45 A" is absent in the scattering derived using the LLM model, indicating that the small-
scale local dynamics cannot be adequately described using only <uz> (B factors) and an average
correlation length.

The disagreement between the LLM models and experiment, ¢.e. MD simulation, might be due
to the isotropic assumption made and to the fact that the LLM model neglects long-range,
anisotropic correlations, due, for example, to the covalent bonding structure. Furthermore,
since the atomic dynamics are included only via (u%}, the LLM model cannot fully describe
collective motions because the <uz> do not provide any information about the relative phases
between atomic displacements. This phase information is, however, contained in the principal
components of the protein motion.
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4.2.2 MODEL OF VIBRATIONAL PROTEIN MOTION

In this section, a model of protein motion based on principal component analysis is investi-
gated. In particular, the dependence of the diffuse scattering pattern on the number of included
principal component modes is determined. Of particular interest is the contribution of the
large-amplitude modes, which potentially are related to protein function.

The analysis utilises the following definitions and considerations.

PriNciPAL COMPONENT ANALYSIS (PCA)

PCA is a method of determining the collective motions present in an MD trajectory [26, 167,
168]. 1In principle, in PCA the variance-covariance matrix is diagonalised. However, for a
physically meaningful description (uku;‘f,> must be mass-weighted prior to diagonalisation, i.e.,
V = MY (uku£/>M1/2 where M is the diagonal matrix with My, = m; being the mass of the
k' atom. Diagonalisation of V yields the eigenvectors v,, and their associated eigenvalues
Am, which are related to the eigenfrequencies by v, = (kBT/)\m)l/ ®, where kg is the Boltzmann
constant. The displacements, u; can then be expressed as a sum over collective variables,

1
u, = N zm: OmVimk, (4.5)

where the projection o, is defined as the scalar product
Om = (M1/2uT) V- (4.6)

Note that the o,,, and thus ug, depend on the displacements u of all atoms. The dimension
of o, is massxdistance?. The functional form of o, is a priori unknown. In particular, for
low-frequency PCA modes o, is anharmonic and possibly correlated with o,,,. To calculate
the scattering due to the PCA-mode interval [ng, ng + Npoqes — 1] for a given trajectory a new
trajectory was generated by applying Eqgs. (4.5) and (4.6) for each time step. From this new
trajectory (ugul,) was calculated and the diffuse scattering was then computed using Eq. (2.70).

The above definitions and considerations are now applied to the trajectories T1-3 and O1, and
the results are compared to those of the LLM model.

PCA was performed for all 4732 non-hydrogen protein atoms, giving rise to 14190 vibrational
and 6 translational-rotational modes. From the distribution of the PCA eigenfrequencies, v,, the
vibrational densities of states, g(v) were calculated for all simulations and are shown in Fig. 4.10.
g(v) shows a pronounced peak around v = 1.4 THz, which is in accord with previous theoretical
studies [169-171] and corresponds to motions on the picosecond timescale (1 THz=33.36 cm~1).
In all simulations the 15 lowest-frequency modes have frequencies below 0.1 THz and account for
~80% of the fluctuations present. g(r) has a high-frequency cutoff at ~52 THz corresponding
to the maximal frequency of non-hydrogen atom bond vibrations. Several smaller peaks can
be assigned to local vibrations in side chains (out-of-plane bending motions at ~20THz and
~25THz) and to localised bond-stretching vibrations (single-bond vibrations at ~37 THz and
double-bond vibrations at ~42THz). A more detailed characterisation of the PCA modes is
given later in Section 4.2.3. Recent experiments on globular proteins observed a similar profile
of g(v) but with the maximum located at ~2.2 THz [172, 173] or ~3.7 THz [174].
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Figure 4.10: Vibrational density of states, g(v) directly obtained from PCA for the simula-
tions T1-3 and O1. g(v) is almost the same for all simulations; for clarity that for trajectory
T1 is highlighted (solid line). The inset shows the low-frequency regime in more detail.
Also shown in the inset is the average g(v) for the Brownian motion (BM) model given by
Eqgs. (4.9), cf. Section 4.2.3. Note the conversion factor, 1 THz=33.36 cm 1.

X-ray diffuse scattering due to the PCA modes in the interval [ng, ns+ Npodes — 1] was computed
as described above. The dependence of the R factor, calculated with the full simulation non-
hydrogen protein scattering as the reference, on the number of PCA modes included is shown
for trajectory T1 with ng = 1,...,10 and Nyodes = 1,...,7000 in Fig. 4.11. For ng = 1, i.e. for
the Npodes lowest-frequency modes, the R factor rapidly reduces, to 10%, when including the
twelve lowest-frequency modes and then continues to decrease at a slower rate when more modes
are included, reaching 1% for the first 1000 modes. At Npoges = 7000 the R factor is essentially
zero. Thus, the scattering is dominated by the lowest-frequency PCA modes, particularly the
first &10. Therefore, the influence of the first ten modes was further investigated. To do this the
scattering was computed for the same number of modes, Nyodes but with ng = 2,..., 10, i.e. with
the (ng — 1) lowest-frequency modes excluded. These results are also shown in Fig. 4.11. For all
ng the dependence of the R factor on Nyodes is similar to the ng=1 curve but the change of slope
in R versus Nyodes &b Nmodes = 10 is less pronounced, and the plot is shifted to larger values
of Nodes: The R factor curves for different ng run approximately parallel over the full Ny,odes
range. In particular, for ng > 1 the R factor does not converge to zero but to a value ansin >0
which increases with increasing ng. R?in = 0.05 shows that the first PCA mode accounts for 5%
of the converged R factor. An additional 5% is contributed by the modes 2,...,9 as indicated
by Riy™ =0.1.

4.2.3 PRINCIPAL COMPONENTS OF THE PROTEIN MOTION

The R factor results of Fig. 4.11 suggest that the motions along protein PCA modes can be
successfully used to describe the protein diffuse scattering pattern and thus the collective motions
present. Therefore, it is of interest to investigate in more detail the type of motions described
by these PCA modes. In this section it is determined which modes are harmonic and then, for
the harmonic modes, the damping characteristics are determined.
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Figure 4.11: Dependence of the agreement factor R on the number Ny oqes of included PCA
modes and the first included mode, ng, i.e., a data point corresponds to the scattering due to
a block of PCA modes starting with mode ng and having Np,oqes modes. The inset presents
the results on a larger range of Npyodes On a logarithmic horizontal scale. Results shown
are for trajectory T1 and the reference pattern comprised 5,000 g-vectors randomly chosen
from the full g-range.

The analysis utilises the following definitions and considerations.

EFrECTIVE FREE ENERGY LANDSCAPE OF PCA MODES
The dynamics along the m'™" PCA mode was investigated by analysing the time series o, (t), cf.
Eq. (4.6). The effective free energy along the mode is given by

Gm(o) =—kgTlnp,,, (4.7)

where p,, do is the probability that o,,(t) adopts a value in the interval [o,0 + do). If the
motion is harmonic, then G,, (o) is also harmonic and the probability density, p,,, is Gaussian.
However, the largest-amplitude PCA modes significantly deviate from harmonicity. A measure
of the anharmonicity is

—+00 2
Fapg = / do (pam - pg}m) ) (48)
—00

where pSY is a Gaussian fit to p,,,. Similar measures for anharmonicity have been used by
other authors [52, 167]. However, in Ref. [52] the integral in Eq. (4.8) was calculated only on
an interval of three standard deviations around the mean of o,,.

BRrROwWNIAN MOTION ALONG PCA MODES

If G, (o) is approximately harmonic o,,(t) can be approximated as Brownian motion in a har-
monic potential using the set of Langevin equations,

o=, @:—Fv—wga+£, (4.9)
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Figure 4.12: Anharmonicity factor, Fapg as defined in Eq. (4.8) plotted against the PCA
mode number. Note the logarithmic y-scale. Simulation names are indicated and the insets
show Fapy for the low-frequency modes.

where I' is the damping frequency, wg the eigenfrequency and £ is a random force given by a
Gaussian white noise process. I' and & are related by the fluctuation-dissipation theorem. The
power spectral density (PSD) S,,, can be calculated analytically [132],

ATkpTw?
Spw(w) = , 4.10
(@) (wE — 20w + w?)(wE + 20w + w?) (4.10)
§ = w2 —T2, (4.11)

and can be compared to the PSD S,, = w™2S,, obtained from the simulation. S,, was com-
puted from o, (t) using the fast Fourier transform routine fft of MATLAB [175]. Subsequently
the non-linear fitting routine 1sqcurvefit of MATLAB was used to fit the analytical S, to the
simulation-derived w?S,, to determine the parameters wg and I' in Eqgs. (4.9).

The above definitions and considerations are now applied to the trajectories T1-3 and O1.

The mode harmonicity was investigated by calculating the anharmonicity factor, Fag given
in Eq. (4.8). The results for all simulations are shown in Fig. 4.12. Fap on average rapidly
reduces with increasing mode number over the first 500 modes, and then remains approximately
constant, fluctuating below 10~#. The effective free energy profiles, G, of the PCA modes were
calculated using Eq. (4.7) and are displayed in Fig. 4.13 for the mode numbers m=1, 10, 50 and
500. Fig. 4.13 A demonstrates that the first, m = 1 PCA mode of each trajectory is strongly
anharmonic, possessing multiple minima separated by barriers of 2 — 11 kJ mol~!, corresponding
to approximately 1 — 4 kgT300k. Furthermore, the inset to Fig. 4.13 A shows that the first PCA
mode is not vibrational but describes a drift of the system through the energy landscape. With
increasing m the modes initially remain anharmonic, but the number of minima reduces until
only a single minimum remains for m 2 5. Examples are shown in Fig. 4.13B for m = 10. G
possesses a flat energy landscape over a large range of 0. o1¢(t) for trajectory T1 is shown in the
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Figure 4.13: Effective free energy profiles, G,, plotted against the projection onto each
mode, o,,. Values of G, are shifted by a constant such that min{G,,} = 0kJmol™! for
each mode. Note that kpT300x = 2.5 kJmol~!. Results are shown for PCA modes 1 (A), 10
(B), 50 (C) and 500 (D) for trajectories T1-3 and O1. The insets show the timeseries oy, ()
([a-u.]) for trajectory T1 for the full trajectory (A and B), and for the last 1ns (C) and last
0.51ns (D) of the trajectory, respectively.

inset to Fig. 4.13 B. In the flat part of G1¢ the system seemingly freely propagates as indicated by
the segments of linear slope of 01¢(t). However, at the boundaries of the potential (i.e., at small
and large values of ) the motion is reflected, as indicated by the inversion of the slope between
the linear segments of o1g(t). Also, for a 1.4 ns period of the simulation, o1¢(t) is restricted to
a shallow local minimum which is indicated by the arrows in Fig. 4.13 B. In Figs. 4.13C and D
it can be seen that the energy profiles of the higher-frequency PCA modes tend towards more
harmonic potentials. In the range m = 30, ...,100 the PCA modes possess a defined minimum
but significantly deviate from harmonicity: these modes are ‘quasi-harmonic’ [29, 167]. For
m 2 100 G, becomes close to harmonic.

From Figs. 4.12 and 4.13 it can be concluded that, except for the first ~100 modes, all PCA
modes describe motion in a harmonic potential. The motion of the harmonic modes, 7,,>109 is
qualitatively closely similar to the motion of o509(¢) shown in the inset to Fig. 4.13 D, resembling
Brownian motion in a harmonic potential. This type of motion can be well described using
Langevin equations, Eq. (4.9). To determine the eigen- and damping frequencies, wg and T,
respectively, for a given mode the theoretical power spectral density, calculated using Eq. (4.10),
was fitted to the simulation-derived power spectral density as explained above. The results are
shown in Fig. 4.14. The eigenfrequencies, w increase with increasing mode number and resemble
the g(v) obtained directly from PCA, cf. the inset to Fig. 4.10. The damping frequencies decrease
for the first ~250 modes and then slowly increase with increasing mode number. For the low-
frequency modes wy < I' and therefore the motions are overdamped. Although many of the
modes in this range are not harmonic (m < 100) and therefore Eq. (4.10) will not strictly hold,
estimates for the quasi-harmonic modes (m = 30,...,100) should be reasonable. At around
mode number m ~ 175 wg and I' have approximately the same value and the motions in this
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Figure 4.14: Eigenfrequencies wq (red) and damping frequencies I' (blue) for PCA modes of
the simulations T'1-3 and O1 obtained from fitting the theoretical PSD given by Eq. (4.10)
to the PSD calculated for each mode. The insets show the low-frequency regime in more
detail.

range, with frequencies around 0.6 THz, are critically damped. This result is in good agreement
with previous theoretical studies on single protein molecules in which overdamped motions have
been found for modes with frequencies below 0.7 THz [174, 176]. For higher-frequency PCA
modes the eigenfrequencies are significantly larger than the damping frequencies and, therefore,
these modes exhibit underdamped vibrations.

4.2.4 IDENTIFYING SPECIFIC COLLECTIVE MOTIONS

In this section, three-dimensional (3D) features in the protein diffuse scattering are examined.
In Fig. 4.15A is shown a cross-section through the 3D protein scattering pattern. The high
average intensity of the protein shell at scattering vectors ||q|| ~ ¢ is again evident. However, in
addition, intense 3D features in [ girf(f)tem are seen, superposed on the g = ¢ shell.

To determine which collective motions present in the MD trajectories contribute to the 3D fea-
tures in Ig%’tem again use was made of principal component analysis and the diffuse scattering
was computed as described in Section 4.2.3. The comparison between Fig. 4.15A and B shows
that the intense 3D fine structure in Ie'" is dominated by the five largest-amplitude PCA
modes. In contrast, the PCA modes 6-7000 yield a less structured, smoother and more delo-
calised scattering pattern (Fig. 4.15 C). Therefore, it can be concluded that the motions giving

rise to the most intense features in [ gir&)tem are captured by a very small number of PCA modes.

Visual examination showed that the five lowest-frequency PCA modes all describe collective
dynamics involving both inter- and intra-protein motions. In all simulations performed and for
all four proteins the intra-protein motion due to the first mode was similar in form and was
dominated by a combined screw and hinge-like relative motion of two domains of the protein,
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Figure 4.15: A-F: Cross-sections through the ¢, = 0A™" plane of the simulation-derived
three-dimensional non-hydrogen atom protein X-ray diffuse intensities (in [a.u.] on the same
scale in each plot) due to the full trajectory (A), due to the PCA modes 1-5 (B) and 6-
7000 (C), and due to the full trajectory but excluding all intra-protein cross-correlations (D),
or excluding only those intra-protein cross-correlations between the a and 3 secondary struc-
tural elements (E), or between the C and N termini and the O and R loops (F). G-H:
q. =0 A" cross-sections through the all-atom unit cell scattering of the simulation (F) and
experiment (H) on arbitrary intensity scales. All patterns contain inversion symmetry, con-
sistent with the space-group symmetry. Intense 3D features are labelled in A and discussed
in the text. The data for graphs A-G are taken from trajectory T3 and that for graph H
from Ref. [101].

one containing the B-barrel and «q-helix, and the other being formed by the as-helix and major
loops — the ao-helix is the hinge fulcrum and screw axis, cf. Fig. 3.9B.

The experimental X-ray diffuse scattering, Fig. 4.15H, is somewhat smoother than the all-
atom unit cell simulation scattering, Fig. 4.15G. This is consistent with the finding that the
3D fine structure in the scattering is dominated by the five largest-amplitude, slowly-varying,
unconverged PCA modes, cf. Figs. 3.3 and 4.2, Table (3.2) and Sections 3.3 and 4.2.3.

It is now determined which elements of (ukuip,), i.e. covariances between which parts of the
proteins, determine the intense 3D features in 127%™ (indicated by F1-5 in Fig. 4.15A). In
Fig. 4.15D is shown Igirf?tein calculated using Eq. (2.70) with all elements of (ujul,) involving
intra-protein cross-correlations set to zero (the diagonal elements, (uju}) are kept as setting
these to zero would imply (u%) = 0 and thus the absence of any motion for atom k). The
comparison between Figs. 4.15 A and D shows that this exclusion removes the intense 3D features
and diminishes the intensity of the average, isotropic shell at ¢ ~ ¢. Thus, combining the above
results demonstrates that the intense 3D features originate almost exclusively from those parts
of the first five PCA modes that describe protein intra-molecular cross-correlations. Therefore,
these are now analysed in more detail. Intra-protein cross-correlations within or between a-
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binding site

Figure 4.16: Two typical relative displacements between the flexible R and O loops (indicated
in B) of different protein molecules due to the five lowest-frequency PCA modes. Shown are
the structures after equilibration (green) and after 10ns (orange).

helices and (-strands do not significantly contribute to the 3D features F1-5 (Fig. 4.15E).
Exclusion of these cross-correlations only results in a reduction of the average intensity of the
isotropic shell at g ~ §, cf. Fig. 4.62. This is consistent with the above finding that the PCA
modes 1-5 determining these features describe large-scale domain motions of the secondary
structural elements, which scatter into the low-g range, but do not change the a-helix pitch or
the inter-3-strand distance.

Specific large-amplitude intra-protein motions give rise to individual intense 3D features. For
example, F1 and F3 on Fig. 4.15 A arise from cross-correlations between the C terminus (residues
136-149) and two of the a-helices, i.e. o1 and aw. Similarly, F4 contains a large contribution
from correlations between two groups of atoms, one comprising the C and N (residues 1-9)
termini together with two loop regions spanning residues 37-53 (O loop) and 107-120 (R loop),
and the other comprising the a, § secondary structural elements. F4 also contains a contribution
from cross-correlations between two proteins, which are located at the space-group symmetric
positions (z,y, z) and (—z, —y, z + 0.5), respectively, and have a common interface.

The largest mean-square fluctuations, (u%> in the protein originate from the above mentioned
C and N termini and O and R loops. The scattering arising from cross-correlations between
these very flexible segments is shown in Fig. 4.15F. The very intense 3D features F2 and F5
vanish. Thus, these features of the calculated diffuse scattering pattern can be directly assigned
to motions involving these distinct parts of the protein. The R loop forms the lining of the
substrate binding pocket and is surrounded by the O loop, which contains parts of the enzyme
catalytic active site, and the C and N termini, cf. Fig. 4.17. Typical R and O loop displacements
are shown in Fig. 4.16. The distance between the two loops significantly increases and decreases,
corresponding to active site opening or closing motions: large-scale collective displacements that
are of potential functional relevance for substrate binding.

4.3 DiscussioON AND CONCLUSIONS

Four 10 ns molecular dynamics simulations of crystalline SNase have been analysed in terms of
the X-ray diffuse scattering and models describing protein motion.

ZNote that in the calculations for Fig. 4.6 the complete secondary structural elements were removed, thus
implicitly assuming (uﬁ) = 0 for these elements, whereas in the calculations for Fig. 4.15 only the cross-correlations
were set to zero.
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The MD simulated X-ray diffuse scattering patterns of the complete unit cell, i.e. the proteins
and crystal solvent, are qualitatively similar to experiment, cf. Fig. 4.1. Furthermore, the
agreement factor R with experiment continuously improves with increasing simulation lengths,
cf. Figs. 3.3 and 4.2. Since the diffuse scattering is determined by the variance-covariance ma-
trix, cf. Eq. (2.70), this suggests that MD is capable of properly describing protein collective
motions in the crystal unit cell if long-enough timescales are sampled. For the present sys-
tem, the variance-covariance matrix has been estimated to converge on the /1 us timescale, cf.
Chapter 3, i.e. 2100 times longer than the present simulation lengths [100]. Further lengthening
the simulation time may lead to improved agreement with experiment. Furthermore, Fig. 4.2
also demonstrates that the incorporation of hydrogens improves the simulated X-ray diffuse
scattering pattern.

The protein and crystal solvent contributions to the unit-cell diffuse scattering pattern have
been determined. The isotropically-averaged intensities I girf(f)tem were found to be closely similar
to the structure factors S(g) calculated from the radial distribution functions g(r). The a-helix
pitch and the (-sheet inter-strand distance, were found to be the origin of the pronounced peak
in 12" (g) at ¢ = 0.21 A~'. The most-intense three-dimensional features in I5e'" are also
located around this g-value (Figs. 4.1 and 4.15) and, therefore, this g-range is a prominent target

to determine protein collective motions, cf. Section 4.2.4 [160].

The ‘very diffuse’ X-ray scattering from protein crystals, which probes mostly intra-molecular
motions and is that examined here, has hitherto been interpreted using models of liquid-like
motion [76, 79, 96, 97, 101], rigid-body motion [27, 74, 78, 81, 98] or intra-molecular normal
mode vibrations [80]. Here, models of liquid-like and collective motion have been investigated.
Fach of these are discussed in turn.

Previous studies using models of liquid-like motion yielded decay lengths over which short-range
intra-molecular motion is correlated to be ~6 A for insulin [76], ~6 A for lysozyme in various
crystal forms [76, 79], ~3 A for yeast initiator tRNA [96], ~10 A for Staphylococcal nuclease [101]
and ~5 A for calmodulin [97]. These values can be compared with A, or Aip¢ given in Tables 4.1
and 4.2. The average intra-protein correlation length obtained directly from the simulations,
(10.9 + 0.3) A, is in good agreement with the experimental results for Staphylococcal nuclease
obtained by Wall et al. in Ref. [101]. This is likely to be serendipitous as the value obtained by
fitting the model scattering to that calculated from the trajectories is significantly higher, being
(14.440.5) A averaged over Models A, B and C. This disagreement with the results of Ref. [101]
may partially be due to the fact that in Ref. [101] (and in other previous work [76, 79, 97]) the
simplifying assumption was made that the atomic root-mean-square fluctuation, /(u?), is the
same for all atoms. /(u2?) = 0.36 A was obtained in Ref. [101] whereas the present simulation
models incorporate individual atomic fluctuations taken directly from the simulations, the most
probable value being 0.82 A. However, the disagreement may also be due to insufficiencies of
the liquid-like model itself. This is indicated by the strong differences between the parameters
obtained from the model fits to the simulation-derived scattering (Table 4.2) and those calcu-
lated directly from the simulation trajectories (Table 4.1). Furthermore, Model A (modified
to also refine 1/(u?)) was used to describe the scattering pattern of the pure-water simulation
and obtained an exceptionally large A=15.2 A, V{(u2)=0.71 A and a poor R factor, being 12.9%.
Moreover, the assumption of isotropic correlations may not be suitable [83]. Although gener-
alisation to anisotropic models, in accord with the space group symmetry, is straight forward,
the increased number of parameters may render an unambiguous interpretation of the results
difficult. In particular, in the present work an increasing number of LLM fit parameters did not
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significantly improve the diffuse scattering, as is indicated by a negligible reduction in the R
factor. Therefore it is concluded that the protein dynamics may only be qualitatively described
using the liquid-like motion model, and a quantitative description seems unachievable.

A theoretical description of diffuse scattering due to collective motions has been derived using
normal mode analysis in Ref. [164] and the diffuse scattering of lysozyme has been interpreted
using the 15 lowest-frequency normal modes [80]® However, the normal-mode model possesses
three major problems. The first is technical in that a normal mode analysis requires large
amounts of computer memory. Present-day computers enable all-atom normal modes to be
computed for proteins of up to approximately 300 amino acids, although approximations have
been developed, e.g. the block normal-mode approach [177, 178], to enable treatment of much
larger systems. Unit cells of protein crystals, in general, contain more than one protein molecule
and a variable (but usually large) amount of solvent, all of which contribute to the diffuse scatter-
ing. The second difficulty arises from the normal modes themselves which, due to the harmonic
approximation, cannot describe barrier crossing. However, as most diffuse scattering patterns
are collected at non-cryogenic temperatures diffusive motion exists. As shown in this chapter
diffusive motion significantly contributes to the scattering intensity, cf. Figs. 4.11 and 4.13.
Third, the variance-covariance matrix, constructed using the displacements uj expressed as a
sum over collective variables, cf. Eq. (4.5), converges only slowly with the number of normal
modes included. This is due to the fact that, for normal modes, o, o v,,,! and hence the sum in
Eq. (4.5) converges only if the frequencies increase faster than m'/2. In the present system, this
holds true only for m = 500. Also, the normal modes are orthogonal only in mass-weighted but
not in real space and the scattering intensities due to each mode are not additive, cf. Egs. (2.70),
(4.5) and (4.6).

Here, the problem of harmonicity was circumvented by using the principal components of protein
motion for which all non-hydrogen atoms of the four proteins in the unit cell were considered. It
was found that the motions due to the ~10 lowest-frequency modes dominate the protein diffuse
scattering. If the lowest-frequency mode is (the nine lowest-frequency modes are) excluded the R
factor reaches only 5% (10%), cf. Fig. 4.11. However, for the scattering pattern to fully converge,
i.e. for the R factor to be essentially zero, the first approximately 7000 modes, corresponding to
~50% of the total number of modes, must be included, cf. Fig. 4.11. This number is significantly
larger than that obtained in Ref. [80] using a normal mode analysis for lysozyme.

The energy landscapes and dynamics of the PCA modes were also investigated. The lowest-
frequency modes are strongly anharmonic. The associated effective free energy landscapes are
rather flat and, for the first ~5 modes, possess multiple substates separated by barriers with
heights up to ~4 kgT300k. Barriers of this height can be crossed by fluctuations of the ki-
netic energy contained in each mode. The timeseries of the projection of the trajectory onto
the low-frequency modes, i.e. O'milo(t)a is similar to cosines with m/2 periods, cf. the inset to
Figs. 4.13 A and B — this behaviour was reported for high-dimensional random diffusion in a
harmonic potential due to an undersampling of collective motions [168, 179]. Therefore, it can
be concluded that the ~10 lowest-frequency modes are purely diffusive. With increasing mode
number the effective free energy profiles of the modes become close to harmonic and the associ-
ated timeseries o,,>30(t) are vibrational, cf. Figs. 4.13 C and D. The motion along these modes
are described by Brownian motion in a harmonic potential and the damping characteristics are

3The description in Ref. [80] may in parts be erroneous as the total diffuse scattering intensity was expressed
as a sum of contributions from individual normal modes. However, the scattering due to individual modes is not
additive, as discussed at the end of the paragraph.
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Figure 4.17: Substrate binding site and enzymatically active residues of SNase with the
coordinates taken from 2SNS [125].  A: The SNase nucleotide binding site complexed with
a small ligand, thymidine 3’,5’-biphosphate ( ), and a calcium ion ( ). The protein
surface is shown with the colour coding symbolising the distance from the protein core
(ranging from red to blue).  B: The active-site residues are highlighted as volume-filling
solid surfaces surrounding the inhibitor, which is shown in a ball-stick representation. The
protein secondary structure is indicated using the cartoon representation.

determined. For the quasi-harmonic modes (m = 30, ...,100) the damping frequency, I is larger
than the eigenfrequency, wg and therefore these modes perform overdamped vibrations. For the
harmonic modes in the range m < 200, I' and wg are of comparable magnitude 0.5 — 0.6 THz,
corresponding to critical damping. The remaining majority of modes (m 2 200) is harmonic
and performs underdamped vibrations.

In Section 4.2.4 it was demonstrated that the largest-amplitude, slowly-varying unconverged
PCA modes dominate the 3D fine structure of the diffuse scattering and describe motions delo-
calised over all four protein molecules in the unit cell. Furthermore, individual 3D features in
the diffuse scattering were directly assigned to originate from cross-correlations between specific
protein segments. In particular, some of the 3D features were found to arise from active-site
motions of potential functional relevance. This is illustrated in Fig. 4.17 which shows the sub-
strate binding site and enzymatically active residues of the protein. The opening and closing
motions of the R and O loops, cf. Fig. 4.16, potentially restrict access of the substrate to the
binding groove (Fig. 4.17 A) and conformational changes in the O loop are likely to affect the
accurate steric alignment of the enzymatically active residues (Fig. 4.17B).



CHAPTER 5

PRESSURE-DEPENDENT DYNAMICAL TRANSITION

The temperature dependence of internal protein dynamics has been much studied and has yielded
valuable information on the energy landscape underlying protein function [46, 181, 182]. In
comparison, relatively few studies have been performed investigating the dependence of protein
dynamics on pressure [183-185]. Pressure-induced structural changes have been reported for
deoxymyoglobin [186], lysozyme [187-189], BPTI [190], myoglobin [191] and ubiquitin [192],
and pressure-induced unfolding in solution has been reported for Staphylococcal nuclease [193—
196], myoglobin [197], a-lactalbumin [198] and various other proteins [199]. Hydration water has
been suggested to play a key role in high-pressure protein unfolding, as indicated by structural
and dynamical changes in the protein:water interface and the penetration of water molecules
into the hydrophobic core [190, 196, 197, 200, 201]. Pressure-induced dynamical changes have
hitherto been relatively neglected, although in early molecular dynamics simulations of small
proteins a reduction of positional fluctuations of protein atoms was found upon the application
of pressure [190, 200, 202].

In this chapter, results from MD simulations (Set 2, cf. Section 2.2) of crystalline SNase in
the pressure range 1bar to 15 kbar are presented. The advantage of the crystalline state over
solution is that steric constraints imposed by the crystalline environment hinder denaturation,
as has been demonstrated for orthorhombic crystals of lysozyme, which remain stable up to
10kbar [203]. SNase was chosen here as it is experimentally well characterised and because
crystals of the protein remain structurally stable at pressures at which SNase in solution is
partly unfolded [204]. In solution or a close-to-native environment, however, proteins denature
upon the application of pressure of a few kbar.

In the following section, the stability of the MD simulations is verified. In particular, the
protein and unit-cell compressibilities are compared with experimental data and the root mean-
square deviations between the crystallographic, ambient-pressure structure and the high-pressure
simulation structures are determined. The solvent structure is also examined. In the subsequent
section, the focus is on dynamical properties. The analysis includes the study of the atomic mean-
square displacements, which are one-particle properties, and the study of collective dynamics
using X-ray diffuse scattering and principal component analysis.

Results of this chapter will be published as Meinhold & Smith; submitted to Phys Rev E, cf. Ref. [180].
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Figure 5.1: A: Pressure-dependence of the average unit cell sides and volume. The data is
normalised to the values at ambient pressure, P = 1bar.  B: Pressure-dependence of the
unit-cell compressibility, 5. The solid line represents a least-squares fit of the mechanical
non-linearity index, u = 9371 /0P, see text. Error bars denote the standard deviation. Here
and henceforth in all graphs, P denotes the reference pressure set in the simulation around
which the instantaneous pressure values fluctuate with a standard deviation of ~0.8 kbar.

5.1 STRUCTURAL RELAXATIONS

MD force fields for protein simulations have been calibrated for ambient pressure and temper-
ature and have been shown to be less accurate in some respects at elevated temperatures and
pressures [184, 205, 206]. However, the work on the T-dependent dynamical transition [48, 207]
is in quantitative agreement with experiment and has demonstrated that MD provides a quali-
tative understanding outside the range over which the force field was parameterised.

In this section the structural response of the system to the applied pressure is investigated. This
validation of the MD simulations is required as crystalline relaxation processes have been shown
to be present on timescales much larger than the present simulation length of 7 = 1ns. For
example, the unit-cell sides in MD simulations of a double unit-cell of ubiquitin were found to
deform slowly and reached convergence only after 5-10ns [140]. This particular difficulty was
partially circumvented here by using the final configuration of simulation T1, i.e. a structure
equilibrated at ambient pressure for 10.2 ns. However, at higher values of the pressure the system
may further relax into a configuration different from that adopted at ambient pressure.

In Fig. 5.1 A is shown the pressure-dependence of the unit cell sides and volume. The unit cell
sides shrink with increasing pressure, the reduction at 15 kbar relative to 1 bar being 5.1 +0.1%
and 5.8 £ 0.2% for a and ¢, respectively. The unit-cell volume decreases non-linearly with
increasing P, the reduction from 1bar to 15kbar being 15%. The pressure-dependence of the
unit-cell compressibility,

d(InV)
oP
is shown in Fig. 5.1B. 3 reduces from 28 + 11 Mbar ! at 1bar to 6.6 + 2.8 Mbar ' at 15 kbar
with the mechanical non-linearity index, defined as

_ 057!

/"L - 8P 9
being ©r = 9.1 £ 0.4. These values are within the experimental ranges of estimates for 5 (10—
20 Mbar~1!) and g (0-10) reported for the P-dependence of the unit-cell volume in lysozyme

f= (5.1)

(5.2)
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Figure 5.2: A: Pressure-dependence of the radius of gyration, Ry, calculated over the full
trajectories for all four protein molecules in the unit cell.  B: Pressure-dependence of the
root mean-square deviation, RMSD between the ambient-pressure experimental structure
2SNS and the single-protein structures from the simulations. The RMSD is calculated for
only the C,-atoms (filled circles) and for all non-hydrogen atoms (open circles) for the
experimentally-resolved residues 1-141, the colour-coding is the same as in graph A. Error
bars denote the standard-deviation.

crystals [203, 208, 209]. Furthermore, the ambient-pressure value for the unit-cell compress-
ibility is between estimates for protein compressibilities (2-15 Mbar 1) and that of pure water
(45.8 Mbar—1) [183].

The compressibility of the protein can be roughly estimated from the radius of gyration, Rgy,.
Rgyr can be measured experimentally by small-angle X-ray and neutron scattering and provides a
convenient measure to detect folding/unfolding transitions [194, 196]. Here, Ry, was calculated
directly from the trajectories using

> mil[ri — o||?
Ry = t 5.3
gyr \/ ZZ mi i ( )
where the protein centre of mass, rg is given by
T
rg = 21T (5.4)

CoXm
In Fig. 5.2 A the time average of Ry, of all four proteins is plotted against P. Averaged over
all four proteins, Rgy, decreases by 3.6 £ 0.4 % from 1bar to 15 kbar, and the average protein
volume, estimated using V,, = 4”/3ngr, thus reduces by 10.3 &= 1.0 %. Therefore, the protein
compressibility is significantly smaller than that of the unit cell, cf. Fig. 5.1 A, and thus also the

water compressibility, which is again consistent with previous findings [183].

The decrease of protein and solvent volumes is also evident from the radial distribution functions,
g(r) shown in Fig. 5.3. For both protein and solvent, at large values of r the high-pressure g(r)
is slightly larger than the ambient-pressure g(r), reflecting the increased density at higher P.
This effect is smaller for the protein, which is consistent with the above finding of a smaller
protein compressibility relative to that of water. Except for the small increase at larger values
of r, the functional form of the protein g(r) (Fig. 5.3 A) shows no variation upon the application
of pressure, indicating that the local protein structure is not affected at higher values of P.

The decrease of solvent volume is manifested by a shift to shorter distances of the nearest-
neighbour peak in the solvent radial distribution function (Fig. 5.3 B), corresponding to a de-
crease in the average nearest-neighbour distance of 0.7% from 1bar to 15kbar. Additionally,
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Figure 5.3: Radial distribution functions, g(r) calculated over the full trajectories for the
protein (A, all atoms) and the crystal water (B, O-O distance) at two values of P. For
convenience, g(r) is not normalised by the density.

upon the application of pressure a second peak occurs at ~5.4 A in the solvent g(r), indicating
a pressure-induced change in the water structure. The ambient-temperature ambient-pressure
water structure possesses a tetrahedral order due to hydrogen bonds between neighbouring water
molecules. In liquid water, the hydrogen-bond energy is 23.3kJmol ~'* [214], being approxi-
mately ten times the average thermal energy at 300 K. Using the mechanical work, —PdV, and
assuming equi-partition of that energy, the increase of the internal energy due to the application
of pressure is estimated to be 0.29kJmol~! and 0.8kJmol~! for the crystal water at 5kbar
and 10kbar, respectively'. This increase in the internal energy effectively lowers the barrier
for hydrogen bond breaking and thus influences the water dynamics, which will be discussed in
more detail in the next section, cf. the discussion of Fig. 5.5 B.

At the end of this section it is investigated whether the protein conformations adopted at higher
values of P remain close to the native structure. The average root mean-square deviations of
the single-protein simulation structures from the experimental (300 K, 1bar) crystal structure
2SNS [125] are depicted in Fig. 5.2B and showed little variation with increasing P, the av-
erage over all four proteins in the unit cell being 1.9540.36 A (2.5240.29 A) and 1.89+0.53 A
(2.4440.41 A) at 1bar and 15kbar, respectively, for the C,-atoms (all non-hydrogen atoms).
Also, the secondary structural elements were conserved throughout the simulations. Further-
more, no penetration of water molecules into the protein hydrophobic core was observed, al-
though in some simulations water molecules did enter or leave cavities located inside the protein.
In the crystal structure 1ISTN [126] most of these cavities were also occupied by water molecules.

The ensemble of the above findings indicate that the protein and simulation system were stable
at all pressures and that pressure-related structural features agree within error with experiment.
This warrants a more probing analysis of the simulation data in the next section, in which the
protein and solvent dynamics are investigated.

*That value corresponds to the energy required for breaking the bond and completely separating the molecules.
Just breaking the hydrogen bond and leaving the molecules approximately at the same position requires only 27%
of this energy, recently estimated at 6.3 kJmol ™! [210-213].

In a system with an inhomogeneous compressibility the mechanical work, —PdV is not equi-partitioned.
Here, since the water compressibility is larger than that of the proteins, a larger fraction of —PdV is stored in the
water, leading to even larger estimates for the increase in water internal energy upon the application of pressure.
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Figure 5.4: A: Mean-square displacement, (u?) averaged over all protein hydrogen atoms
on two timescales, t. The lines show linear fits performed over the ranges P < 3kbar
and P > 4kbar. The shape of (u?)(P) is similar for t=100ps (data not shown) and for
non-hydrogen protein atoms (shown in the inset).  B: (u?)(P) for t = 1ps averaged over
all solvent hydrogens and oxygens, respectively. For the oxygens, the decomposition into
translation and rotation, (u?) = (u?)1 + (u?)g, is also shown. The lines represent linear fits
performed in the low-P regime.

5.2 (CHANGE IN PROTEIN AND SOLVENT DYNAMICS

A convenient measure for the overall motion present in a protein molecule is provided by the
time-dependent mean-square displacement,

(u?)(t) = < e (r) — rx(r 1 1)) >

(5.5)

where rj(7) is the coordinate vector of atom k at time 7, - is the time average and (-) the
ensemble average, i.e. over all protein atoms k. In Fig. 5.4A (u?)(t) for the internal motion
is plotted against P for two values of ¢: 1ps and 10ps. On both timescales (u?) significantly
decreases with increasing pressure, with the reduction between 1bar and 15 kbar for hydrogens
being 46% and 40% for t = 1 ps and 10 ps, respectively. For non-hydrogen atoms, shown in the
inset to Fig. 5.4 A, the reduction is larger, being 56% for ¢t = 10 ps. The slope of (u?)(P) is linear
in two distinct ranges of P, with a broad transition around P* ~ 4 kbar. In the regimes below
and above P*, referred to in the following as ‘low-P’ and ‘high-P’, respectively, linear regressions
were performed and are also shown in Fig. 5.4 A. For both values of ¢, in the low-P regime the
slope is higher by a factor of ~2 than in the high-P regime. This non-linearity in (u?2)(P)
indicates a qualitative change in protein dynamics upon pressurisation and is reminiscent of the
much-studied transition in (u?)(T), which involves a solvent-driven activation of anharmonic
protein dynamics with increasing T' at =200 K, leading to a non-linear increase in the average
atomic mean-square displacement, (u?)(T) [48, 51, 52].

The solvent (u?)(P) (Fig. 5.4 B) is dominated by translational diffusion. Both the translational
and rotational (u?) decrease linearly with P below P* and nonlinearly, at a lower rate, above
P*. At all pressures, (u?)(t) o< t* with a < 1, indicating subdiffusion [215]. « exhibits no
significant P-dependence, the average calculated over all simulations being 0.86 + 0.01, a value
intermediate between that of protein hydrational water, for which o = 0.6 [67], and bulk water
(a=1).

To examine which protein and solvent motions are affected by the pressure increase the P-
dependence of the X-ray diffuse scattering intensity, Iq4;¢ was calculated, cf. Egs. (2.58) and (2.70).
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Figure 5.5: Protein (A) and solvent (B) X-ray diffuse scattering intensities, Iiot integrated
over two ranges of the magnitude, ¢ of the scattering vector. Iio; was calculated from the full
trajectories (1ns) and is normalised such that I;o¢(1bar)=1. The fluctuations in the protein
Iiot (P) are relatively large due to the fact that calculated protein X-ray diffuse scattering
does not converge on the ns-timescale, cf. Section 3.1.3 [100].  A: The solid (dashed) line
is a linear fit to the data on the full P-range with ¢ < 0.3A~1 (¢ > 0.3A~!).  B: The lines
show linear fits in the low- and high- P regimes, respectively.

Iyig indicates the amplitude of collective motion present on the length scale, ¢~!. Here, Igig was
calculated for the same distribution of scattering vectors, q as in the preceding chapters, i.e.
for 55,691 values in the range ||q|| < 0.62 A~'. This range was divided into a low-q range,
g < 0.3A~1, probing large-scale collective motions, and a high-¢ range, ¢ > 0.3 A~!, probing
more local dynamics. I4ig was integrated over each range to yield the total intensity, Iiot which
is plotted against P in Fig. 5.5 A.

Iiot(P) for the protein decreases faster in the low-¢ range (with the gradient being —0.030 +
0.002kbar—!) than in the high-¢ range (with the gradient being —0.019 4 0.002 kbar~!), in-
dicating that, upon the application of pressure, large-scale collective displacements are more
strongly suppressed than local dynamics. Iio(P) calculated for the crystal solvent is shown in
Fig. 5.5B. In the low-q range the solvent I (P) strongly decreases with increasing P, the rate
of decrease being larger in the low-P regime. At low ¢, the large-scale collective displacements,
Lot (P) of the protein and the solvent reduce approximately equally, reaching 0.49 and 0.53,
respectively at P = 15kbar. This indicates that large-scale collective motions of the protein
and collective translational solvent dynamics are similarly affected by high pressure, consistent
with previous work suggesting strong coupling between solvent dynamics and large-scale protein
motion [64, 66, 216, 217]. In contrast, the P-dependence of the high-¢, short length-scale motion
differs significantly between the protein and the solvent: whereas the protein [io; reaches 0.68
at P = 15 kbar that of the solvent reduces to only 0.86. Furthermore, the change in the solvent
Lot is negligible up to =4 kbar, indicating that the local dynamics of water remains roughly
unchanged in the low-P regime. This is consistent with previous work indicating that, at am-
bient temperature and low P, water mobility is controlled by the tetrahedral ordering due to
hydrogen bonds whereas, at higher P, the tetrahedral ordering breaks down and the dynamics
is controlled by the van der Waals repulsion of neighbouring molecules [218-220].

The protein collective motions were further dissected using principal component analysis, cf.
Section 4.2.2. PCA was performed individually on all four proteins in the unit cell, thus analysing
only intra-molecular motions. From the eigenfrequencies, v, the protein vibrational density of
states, g(v) was calculated and averaged over all four proteins in each simulation. The change
in g(v) upon application of pressure is illustrated in Fig. 5.6. With increasing P the number
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Figure 5.6: Change in the vibrational density of states, Ag(v) for selected pressure values.
Ag(v) was calculated as the difference gp(v)—gp, (v), with the reference pressure Py = 1 bar.
The inset shows the number of modes with v < 2 THz with a linear fit to the high- P regime.
The gradient in the low- and high-P regime is —2.6 4 0.2kbar~! and —1.99 £ 0.06 kbar~!,
respectively. Results shown are averaged over all four proteins in each simulation. Error
bars denote the standard deviation.

of modes with frequencies v < 2THz strongly decreases, the rate of decrease exhibiting a
small non-linearity at P* (inset to Fig. 5.6). Low-frequency modes are thus shifted into the
higher-frequency range. These low-frequency modes have been shown to be mostly collective,

anharmonic and distributed over the whole protein [52, 167], cf. Chapter 4.

It is of interest to investigate the form of the effective free energy profiles associated with the
PCA modes and, in particular, whether the P-dependent dynamical transition found above is
accompanied by a loss of anharmonic motions similar to that seen in the T-dependent dynamical
transition. In Fig. 5.7 are shown the effective free energy profiles, GG, for selected PCA modes
(mode numbers m=1, 5, 30 and 100) at various pressure values (P=1bar and 2, 4, 8 and 15 kbar).
At all values of P the lowest-frequency, largest-amplitude principal component mode is anhar-
monic and possesses multiple substates separated by barriers with heights up to approximately
10kJmol~!. Also, for all values of P the timeseries of the projection, oy(t) of the trajectory
onto the first principal mode is similar to a half-period cosine (data not shown, similar to that
shown in Fig. 4.13), indicating that the lowest-frequency PCA mode is purely diffusive and did
not converge in the simulations, cf. Section 4.3 [168, 179]. With increasing mode number m,
the change in G, is similar to that described in Fig. 4.13 for the ambient-pressure simulations,
i.e. the modes initially remain anharmonic but with the number of substates reducing until G,
becomes quasi-harmonic or harmonic at m ~ 10 or m = 30, respectively. The effect of elevated
pressure is similar for all modes. Upon the application of pressure the width of G,, reduces,
corresponding to an increase of the effective force constant associated with each mode.
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Figure 5.7: Pressure-dependence of the effective free energy profiles, G, of selected PCA
modes at various values of P, indicated in each graph. G,, was calculated using Eq. (4.7)
on pg. 54, cf. Fig. 4.13. For clarity, in each plot the profiles are separated by a constant
(10 kJ mol~! for Mode 1 and 5kJmol~! for the other modes) along the y-direction.

5.3 DiscussioN AND CONCLUSIONS

The present MD simulations of a crystalline protein in the pressure range 1 bar to 15 kbar have
revealed the existence of a pressure-dependent transition in internal protein dynamics at ~4 kbar.
The transition is manifested by the existence of two linear regimes in (u2)(P). The major effect
of pressure is a loss, with increasing pressure of large-amplitude, collective modes below 2 THz
effective frequency.

The crystalline environment used here may strongly influence the protein dynamics and, in
particular, prevents pressure-induced unfolding at medium pressure values. Therefore, further
investigations are required to elucidate whether the pressure-induced changes in the protein
dynamics found here are also present in a more native environment, e.g. a single solvated protein.
However, convergence of these simulations may be poor due to slow relaxation processes, i.e.
protein unfolding, estimated to occur on the timescale of minutes for SNase [194]. Also, as
an increasing number of high-pressure non-native protein structures becomes available it is of
interest to perform a similar study to investigate whether the pressure-induced changes in protein
dynamics found here are limited to a close-to-native region of the energy landscape.

Further characterisation of the dynamics below and above the pressure dynamical transition
using a variety of experimental scattering and spectroscopic techniques promises to shed further
light on the physics of protein energy landscapes.



CHAPTER 6

CONCLUDING REMARKS AND OUTLOOK

In this thesis, various aspects of protein dynamics in a crystalline environment have been investi-
gated using molecular dynamics simulations of Staphylococcal nuclease. The following questions
have been addressed:

Did the simulation sufficiently sample the relevant regions of phase space, i.e., did
the quantities of interest converge during the simulation?

What is the origin of the X-ray diffuse scattering intensity from a protein crystal?

How does the application of pressure change the internal protein dynamics?

Each of these questions has been discussed in Chapters 3 to 5 and relevant conclusions presented.
The synopsis of the major results is presented here along with some concluding remarks and an
outlook towards possible directions of future investigations.

MOLECULAR DYNAMICS SIMULATIONS

Computer simulations have developed into an indispensable tool to bridge the gap inbetween
theory and experiment. Restricted by computational resources, simulation techniques allow
highly-complex theoretical models to be tested against experimental data and processes that are
not accessible experimentally to be investigated. However, as access to computational resources
is limited by technological constraints there is always a trade-off between the implemented model
accuracy and simulation speed.

In molecular dynamics, the simulation technique used in this thesis, speed is gained by replac-
ing an explicit quantum mechanical description of atoms with empirical force fields, rendering
possible the treatment of systems comprising more than 100,000 atoms, such as the membrane
water-channel aquaporin [221], but prohibiting the description of certain processes relevant for
biological protein function, such as chemical reactions and light absorption. However, hybrid
quantum/classical methods have been developed and provided important insight into biological
processes, such as the photon absorption and proton transport in bacteriorhodopsin [222, 223].

When using the Born-Oppenheimer framework, the accuracy of the approximation of the real
energy landscape by the empirical force field must be part of the discussion. In particular, a
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commentary is required if non-standard conditions are investigated by the simulations, as is the
case in the present high-pressure study. Molecular dynamics force-fields for protein simulations
have been calibrated for ambient pressure and temperature and have been shown to be less
accurate in some respects at elevated temperatures and pressures [184, 205, 206]. However,
the work on the temperature-dependent dynamical transition is in quantitative agreement with
experiment and has demonstrated that molecular dynamics provides a qualitative understanding
outside the range over which the force-field was parameterised.

X-RAY DIFFUSE SCATTERING

The central theme of this thesis has been X-ray diffuse scattering. Although it was shown that
the protein diffuse scattering did not converge on the 10 ns timescale of the present simulations, it
was possible to draw a set of important conclusions concerning the dynamical origin of the X-ray
diffuse scattering from protein crystals. The following paragraphs summarise these findings.

A smooth, nearly-isotropic scattering shell originates from equal contributions from correlations
in nearest-neighbour water molecule dynamics and from internal protein motions, the latter
consisting of a-helix pitch and inter-3-strand fluctuations. Superposed on the shell are intense,
three-dimensional scattering features. For the first time, these individual features have been
assigned to specific collective motions in the protein, and some of these explicitly involve po-
tentially functional active-site deformations. However, the presence of these deformations in
the real crystal cannot be inferred from the present simulations due to the limited convergence
reached.

Models of protein motion and their predicted diffuse scattering have also been investigated. The
critical analysis of a model of diffuse scattering due to liquid-like protein motions [164], such as
commonly used for the analysis of experimental diffuse scattering [76, 79, 97, 101], has shown
that this model yields dissatisfying quantitative results. In particular, the length over which
atomic motions are correlated is incorrectly estimated by this model. An alternative model, in
which the protein motions are decomposed into a set of collective principal component modes,
has also been characterised. In this model, a very small number of slowly-varying (>10ns),
large-amplitude collective modes was found to describe most of the intense three-dimensional
diffuse scattering features.

The logarithmic time-dependence of the agreement R factor between the simulated and experi-
mental diffuse scattering, which is determined by the displacement variance-covariance matrix,
has been extrapolated to predict a convergence time for the diffuse scattering, and thus the
whole variance-covariance matrix, on the 1 us timescale, .e. 100 times longer than the presented
simulations. Assuming the validity of Moore’s law and algorithmic improvements of molecular
dynamics simulations, e.g. those allowing the use of larger integration timesteps, for the system
size described here the microsecond timescale is expected to be within reach in approximately
five years. Currently, in an attempt that is commonly termed brute-force computing, one of the
present simulations (T1) is being extended to 100ns, in total requiring approximately 180,000
CPU hours. Besides the improved reproduction of diffuse scattering such an extended trajectory
is essential to verify/falsify the convergence estimates made in thesis. Furthermore, the improved
sampling of the low-frequency collective motions is likely to furnish insight into the shape of the
essential subspace of the protein energy landscape [25]. Moreover, slow structural rearrange-
ments of protein molecules in the crystal and the coupling between slow and fast protein motions
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can be investigated.

As computational resources increase, it is also of interest to perform similar studies on a system
composed of several unit cells. Correlated motions between unit cells commonly produce diffuse
scattering streaks associated with the reciprocal lattice. In the present simulations of a single
unit cell, these correlations are suppressed due to the imposition of periodic boundary conditions.
In a recent simulation study of a double unit cell of ubiquitin only little correlation between
the motions of the proteins in the two unit cells has been observed [140]. However, this study
only determined the correlation coefficient between the protein centre-of-mass displacements.
Covariances in the atomic displacements, which determine the diffuse scattering, or other more
general correlation measures have not been analysed.

Furthermore, it is important to determine the diffuse scattering due to lattice vibrations which is
centred at, and thus contaminates, the Bragg peaks. Experimentally, lattice vibrations have been
determined for the heme group in myoglobin using the phonon-assisted Mossbauer effect [224]
and for lysozyme using Brillouin scattering [225]. Diffuse scattering due to lattice vibrations
has been calculated for crystalline rigid-body naphtalene [226] and the collective dynamics in L-
alanine crystals have been determined by both neutron scattering and normal mode calculations
in the full configurational space [227]. However, phonons in protein crystals have not yet been
determined from dynamical calculations in the full configurational space. In addition to an
improved description of diffuse scattering (and similar techniques, e.g. neutron and Raman
scattering), improved information on phonons in protein crystal is likely to provide insight into
thermodynamical and transport properties, phase stability and phase transitions.

X-RAY BRAGG SCATTERING

In X-ray crystallography, isotropic B factors are widely used to derive atomic fluctuations during
the refinement of a protein structure against diffraction data. Here, the question has been dis-
cussed as to whether an unambiguous description of the dynamics involved can be derived from
the B factor data in the absence of detailed additional information. As a variety of fundamen-
tally different models reproduce experimental B factor distributions, it has been concluded that
additional information must be supplied. In the present thesis, this additional information has
been furnished by the molecular dynamical equations of motion and the associated atomic model
and force field. In agreement with previous investigations [136-138, 144], the simulation-derived
atomic fluctuations qualitatively resemble, but are significantly larger than, those derived from
the experimental B factors. Although part of the difference between simulated and experimental
fluctuations is due to the harmonic assumption made in deriving B factors, most of the difference
has other origin. For example, the presence of crystallisation agents, ligands and/or large-size
ions present in the crystal potentially reduce protein fluctuations due to steric hindrance. Molec-
ular dynamics is a suitable technique to investigate the effect of these extra atoms/molecules on
crystalline protein fluctuations. Furthermore, the use of anisotropic instead of isotropic B factors
provides direction-dependent atomic fluctuations and is likely to improve results for structural
refinement. For example, it has been shown that the use of anisotropic B factors significantly
decreases R factors [166]. However, whether anisotropy can be used to reduce the ambiguity
in the dynamical description of atomic fluctuations derived from B factors remains an open
question.
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PROTEIN CRYSTALLOGRAPHY

The present-day objective of protein crystallography is to determine the physiological three-
dimensional structure of the protein as precisely as possible and to provide insight into its func-
tional mechanism. Increasingly brilliant synchrotron X-ray sources allow both high-resolution
and time-resolved structures to be determined [47, 228]. However, in order to prevent radiation
damage the crystals have to be held at cryogenic temperatures, with potential temperature-
induced structural changes [229, 230]. Furthermore, cryogenic temperatures significantly reduce
the fluctuations and, in particular, freeze the protein molecules into an ensemble of conforma-
tional substates, thus prohibiting transitions between these substates which may be present at
ambient temperature. These considerations argue for additional experiments at ambient temper-
ature to verify the low-temperature structural and dynamical findings and to have direct access
to the dynamics at physiological temperatures. Diffuse scattering is likely to contribute to the
understanding of the motions within and, at physiological temperatures, transitions between
conformational substates as it provides direct information on the collective dynamics involved.
Furthermore, the physics underlying diffuse scattering may be helpful in the interpretation of
future experiments on (single) biomolecules using fourth generation X-ray sources, e.g. free
electron lasers with significantly increased brilliance [231].

COLLECTIVE DYNAMICS

Collective protein dynamics can be thought of as a voyage over a complex energy landscape. In
this thesis, collective motions have been determined by the decomposition of molecular dynam-
ics trajectories into collective modes using principal component analysis. The lowest-frequency,
largest-amplitude modes are strongly anharmonic. The associated effective free energy land-
scapes are rather flat and, for the first five modes, possess multiple substates. Analysis of the
timeseries of the projection of the trajectory onto the modes have revealed that approximately
the ten lowest-frequency modes are purely diffusive and unconverged. With increasing mode
number the effective free energy profiles of the modes become close to harmonic and the associ-
ated dynamics vibrational. The eigen and damping frequencies associate with each mode have
been determined using a model of Brownian dynamics. Critical damping was found for modes
in the range 0.5 — 0.6 THz effective frequency, approximately 200 modes were overdamped and
the rest (98.6%) performed underdamped vibrations.

The vibrational density of states has also been determined here and was found to be maximal
around 1.4 THz. Upon protein function, changes in the vibrational partition function may sig-
nificantly contribute to the thermodynamics of the process, e.g. in the binding and unbinding of
a substrate or ligand. For example, very recently the change in the vibrational density of states,
i.e. a change in the collective dynamics, upon the complexation of the protein dihydrofolate re-
ductase with the ligand methotrexate has been determined using incoherent neutron scattering
and was found to significantly contribute to the free energy of binding [173]. In particular, this
change involved a softening of low-frequency collective modes with frequencies below 0.5 THz.
More research is needed to understand how ligands and/or the environment trigger changes in
the collective motions and, thus, in the protein energy landscape. Molecular simulation is an
excellent technique to study these processes. Furthermore, terahertz spectroscopy [232] has re-
cently been used to examine low-frequency collective vibrations in DNA, bovine serum albumin
and collagen [233] and may provide information complementary to that obtained by inelastic
neutron scattering.
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PROTEINS UNDER PRESSURE

The effect of the environmental variable pressure on the protein dynamics has been investigated
in this thesis. Pressure is one of the major thermodynamic variables and its importance is com-
parable to that of temperature, chemical potential, electric and magnetic fields etc. The finding
reported in this thesis of a pressure-induced transition in the protein-internal dynamics opens
up a whole new research field in protein physics that may well be as extensively investigated
as the temperature-dependent protein dynamical transition has been. Experimental techniques
such as NMR spectroscopy, X-ray crystallography and neutron scattering can now be applied to
characterise the protein energy landscapes explored in the two dynamical regimes revealed here.
It is only recently, that these techniques have been made available for studying protein structural
and dynamical changes upon the application of pressure. For neutron scattering experiments,
in which dynamical properties such as the mean-square displacement can be directly detected,
high-pressure setups suitable for protein studies are currently being installed (for example at
the ILL in Grenoble or the FRM2 in Munich).

Of particular interest is the understanding of pressure-induced structural changes and unfolding.
Protein hydration water has been suggested to play a key-role in pressure-induced unfolding and,
therefore, is a prominent subject of further investigations. These investigations should include
the determination of the pressure-dependence of dynamical properties of the hydration water,
such as diffusion constants and surface-bulk exchange rates, and protein—water interaction, such
as hydrogen bonding and slaving [216]. Furthermore, pressure-induced changes in the protein
and solvent volumes, and thus changes in free energy, are likely to provide insight into the
ensemble of populated substates on a protein energy landscape.

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

Thomas Stearns Eliot
Little Gidding






CHAPTER A

TRANSCRIPT OF SELECTED CHARMM INPUT

In this appendix, the relevant input to the CHARMM program is given to allow full reproduction
of all results presented in this thesis. As the information provided here aims at CHARMM users,
a description of the individual keywords and parameters will not be given.

A.1 MD SIMULATION SET 1

CRYSTAL SETUP

T1-3,WB: crystal define tetragonal 48.5 48.5 63.4 90.0 90.0 90.0
crystal build cutoff 16.5 noper O

O1: crystal define orthogonal 48.5 48.5 63.4 90.0 90.0 90.0
crystal build cutoff 16.5 noper O

ENERGY FUNCTION

T1-3,01,WB: energy elec atom fswitch vdw vatom vfswitch cdie eps 1.0 -
CUTNB 14.0 CTONNB 10.0 CTOFNB 13.0 WMIN 1.5 -
cutim 16.0 imgfrq 50 inbfrq -1 -
ewald pmewald kappa 0.38 order 6 fftx 48 ffty 48 fftz 64 spline

DyNnaMIcSs CALL

T1,01,WB: DYNAMICS CPT reSTART NSTEP 50000 TIMESTEP 0.001 -
IHTFRQ O IEQFRQ O NTRFRQ 1000 -
IPRFRQ 50 ISVFRQ 1000 NPRINT 50 NSAVC 50 NSAVV 50 -
IMGFRQ 50 INBFRQ -1 IHBFRQ -1 IXTFRQ 500 -
IUNREA 30 IUNWRI 31 IUNCRD 32 IUNVEL 33 KUNIT 34 -
FIRSTT 300.0 FINALT 300.0 TEMINC 0.0 ECHECK 99999.0 -
IASORS O IASVEL 1 ISCVEL O ICHECW O TWINDH 10.0 TWINDL -10.0 -
PCONS PINT PMASS 500.0 PREF 1.0 PGAMMA 25.0 -
HOOVER REFT 300.0 TMASS 2000.0 TBATH 300.0 TSTRUC 300.0
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T2,T3: DYNAMICS CPT reSTART NSTEP 50000 TIMESTEP 0.001 -
IHTFRQ 0 IEQFRQ O NTRFRQ 1000 -
IPRFRQ 50 ISVFRQ 1000 NPRINT 50 NSAVC 50 NSAVV 50 -
IMGFRQ 50 INBFRQ -1 IHBFRQ -1 IXTFRQ 500 -
IUNREA 30 IUNWRI 31 IUNCRD 32 IUNVEL -1 KUNIT -1 -
FIRSTT 300.0 FINALT 300.0 TEMINC 0.0 ECHECK 999999.0 -
IASORS 0 IASVEL 1 ISCVEL O ICHECW O TWINDH 10.0 TWINDL -10.0 -
PCONS PINT PMASS 500.0 PREF 1.0 PGAMMA 25.0 -
HOOVER REFT 300.0 TMASS 2000.0 TBATH 300.0 TSTRUC 300.0 QCOR 0.0

A.2 MD SIMULATION SET 2

All settings (except for the reference pressure) are the same for all trajectories of Set 2.

CRYSTAL SETUP

crystal define tetragonal 48.5 48.5 63.4 90.0 90.0 90.0
crystal build cutoff 16.5 noper 0

ENERGY FUNCTION

energy elec atom fshift vdw vatom vshift cdie eps 1.0 -
CUTNB 14.0 CTONNB 10.0 CTOFNB 13.0 WMIN 1.5 -
cutim 16.0 imgfrq 50 inbfrq -1 -
ewald pmewald kappa 0.38 order 6 fftx 48 ffty 48 fftz 64 spline

DyNAMICS CALL (PRESSURE INCREASE)

DYNAMICS CPT reSTART NSTEP 100000 TIMESTEP 0.001 -
THTFRQ O IEQFRQ O NTRFRQ 10000 -
IPRFRQ 100000 ISVFRQ 100000 NPRINT 100 NSAVC 100 NSAVV O -
IMGFRQ 50 INBFRQ 25 IHBFRQ 25 IXTFRQ 500 -
TUNREA 30 IUNWRI 31 IUNCRD 32 IUNVEL -1 KUNIT -1 -
FIRSTT 300.0 FINALT 300.0 TEMINC 0.0 ECHECK 999999.0 -
TASORS O TASVEL 1 ISCVEL O ICHECW O TWINDH 10.0 TWINDL -10.0 -
PCONS PINT PMASS 500.0 PREFI P; PREFF P;;; PGAMMA 25.0 -
HOOVER REFT 300.0 TMASS 2000.0 TBATH 300.0 TSTRUC 300.0 QCOR 0.0

P; and P41 = P; + 1000 are specified in units of [1 bar]
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DyNAMICS CALL (CONSTANT PRESSURE)

A.3 PROTONATION STATES

DYNAMICS CPT reSTART NSTEP 100000 TIMESTEP 0.001 -
THTFRQ O IEQFRQ O NTRFRQ 111111 -
IPRFRQ 100000 ISVFRQ 100000 NPRINT 100 NSAVC 100 NSAVV 100 -
IMGFRQ 50 INBFRQ 25 IHBFRQ 25 IXTFRQ 500 -
TUNREA 30 IUNWRI 31 IUNCRD 32 IUNVEL 33 KUNIT -1 -
FIRSTT 300.0 FINALT 300.0 TEMINC 0.0 ECHECK 999999.0 -
TASORS O TASVEL 1 ISCVEL O ICHECW O TWINDH 10.0 TWINDL -10.0 -
PCONS PINT PMASS 500.0 PREF P; PGAMMA 25.0 -
HOOVER REFT 300.0 TMASS 2000.0 TBATH 300.0 TSTRUC 300.0 QCOR 0.0

P; is specified in units of [1 bar]

The following protonation states were used throughout (using CHARMM nomenclature):

(N terminus, patch NTER)

ALA
VAL
LYS
GLU
LEU
VAL
LYS

THR
LYS
HSE
ASN
ALA
ALA
LYS

SER
LEU
PRO
ALA
TYR
TYR
GLU

THR
MET
LYS
LYS
ILE
VAL
LYS

LYS
TYR
LYS
LYS
TYR
TYR
LEU

LYS
LYS
GLY
ILE
ALA
LYS
ASN

(C terminus, patch CTER).

LEU HIS
GLY GLN
VAL GLU
GLU VAL
ASP GLY
PRO ASN
ILE TRP

LYS
PRO
LYS
GLU
LYS
ASN
SER

GLU
MET
TYR
PHE
MET
THR
GLU

PRO
THR
GLY
ASN
VAL
HIS
ASP

ALA
PHE
PRO
LYS
ASN
GLU
ASN

THR LEU
ARG LEU
GLU ALA
GLY GLN
GLU ALA
GLN HIS
ALA ASP

ILE
LEU
SER
ARG
LEU
LEU
SER

LYS
LEU
ALA
THR
VAL
ARG
GLY

ALA
VAL
PHE
ASP
ARG
LYS
GLN

ILE ASP GLY ASP THR
ASP THR PRO GLU THR
THR LYS LYS MET VAL
LYS TYR GLY ARG GLY
GLN GLY LEU ALA LYS
SER GLU ALA GLN ALA
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