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Zusammenfassung

Sprays in praktischen Anwendungen bestehen aus vielen Trépfchen. Das Verhalten eines
Tropfchens héngt stark von den benachbarten Troépfchen ab, wenn der Abstand zwischen
beiden in der Gréfsenordnung des Tropfchendurchmessers liegt. In Spray-Berechnungen wird
die Interaktion zwischen Tropfchen wiahrend Auftheizung, Verdampfung, Ziindung und Ver-
brennung normalerweise vernachlissigt. Diese Anndherung ist unzureichend, da benachbarte
Tropfchen sowohl eine Energiesenke als auch eine Brennstoffquelle fiir das umgebende Gas
darstellen.

Numerische Untersuchungen von Trépfchenwechselwirkungen wurden bisher meist in einer
zweidimensionalen axialsymmetrischen Konfiguration durchgefiithrt. Diese Konfiguration ver-
nachléssigt die Tatsache, dass hydrodynamische Wechselwirkungen meist dreidimensionaler
Natur sind. Auferdem haben numerische Untersuchungen in der Vergangenheit viele wichtige
Eigenschaften wie die Abbremsung der Tropfchen sowie Zirkulationen innerhalb der Trépfchen
vernachldssigt. In einigen Fillen wurden grundlegende Details des numerischen Ldsungver-
fahrens wie die Berechnung der korrekten Gleichungen fiir bewegte Gitter nicht beachtet.
Es wurde eine numerische Methode entwickelt, um die Wechselwirkungen zwischen Tropfchen
wahrend der Ziindung in drei Dimensionen zu untersuchen. Dabei wurden hydrodynamische
Wechselwirkungen, Zirkulationen innerhalb der Tropfchen, Abbremsung durch das umgebende
Gas, detaillierte Chemie, sowie weitere zusétzliche Bedingungen des numerischen Losungsver-
fahrens beriicksichtigt. Die Einzelheiten fiir die Beriicksichtigung der korrekten Gleichungen
fiir bewegte Gitter wurden erliutert. Ein modifiziertes Mehrgitterverfahren wurde fiir die
Berechnung der Verdampfung der Tropfchen angewandt. Nachdem sichergestellt wurde, dass
das Programm die Interaktion zwischen Tropfchen zuverldssig simuliert, wurden diese Effekte
fiir ein einzelnes Ethanol-Tropfchen und fiir zwei gleich grofse Ethanol-Tropfchen in Tandem-
Konfiguration durch numerische Simulation untersucht. Die berechnete Ziindverzdgerung fiir

wechselwirkende Tropfchen stimmt gut mit den experimentellen Daten iiberein.
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Abstract

Practical sprays are composed of many droplets and a typical droplet will be strongly influ-
enced by the neighboring droplets when the average spacing between them is of the order of
a few droplet diameters. In spray computations, typically the interaction of droplets during
heating, vaporization, ignition, and combustion is neglected. This approximation is poor
since neighboring droplets constitute an energy sink and a fuel source to the gas surrounding
the droplets.

Numerical studies of droplet interactions, so far, have been mostly carried out in two dimen-
sional axisymmetric configuration which is hard to justify as hydrodynamic interactions are
in general three dimensional. Moreover, numerical studies in the past often neglected many
important features of the flow like gas phase deceleration, internal circulation in the droplets.
In some cases even essential details of the numerical solution procedure like accounting for
the correct equations on moving grids have been missing.

A numerical method is developed and droplet interactions during ignition are studied in a
three dimensional configuration accounting for hydrodynamic interactions, internal circula-
tion inside the droplets, gas phase deceleration, detailed chemistry and correct equations
on moving grids. The details of accounting for the correct equations on moving grids are
discussed. A modified multigrid technique is applied to the droplet vaporization problem.
After assessing the ability of the code to accurately simulate the interaction between droplets,
interaction effects are studied by numerically simulating ignition of a single ethanol drop and
of a pair of identical ethanol droplets in tandem configuration. The calculated ignition delay

for the interacting droplets case agrees favorably with experiments.
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Nomenclature

Chp

Cr

cp

coefficient in discretized equation [-]

pre-exponential factor in Arrhenius rate equation ([(mol/m3)1="/s] : for a reac-

tion of order n)

molar concentration [kg/m?]

total drag coefficient [-]

total lift coefficient [-]

specific heat capacity at constant pressure [J/(kgK)]
instantaneous droplet diameter [m]

initial droplet diameter [m]

binary diffusion coefficient of species i into species j [m?/s]
activation energy of reaction r [J/mol]

integrand at control volume face [-|

friction drag force [N]

pressure drag force [N]

thrust drag force [N]



Fy, lift force [N]

h specific enthalpy [J/kg]

b 1o standard enthalpy of formation of species ¢ at reference temperature 7° [J /kg|
i unit vector in the main flow direction [-]

I identity tensor [-]

2h restriction operator [-|

n prolongation operator [-]

J unit vector orthogonal to the main flow direction [-|
k thermal conductivity [J/(msK)]

kg forward rate constant for a chemical reaction r [-]
Ky, backward rate constant for a chemical reaction r [-]
k unit vector orthogonal to i and j |-

Lyqp latent heat of vaporization of fuel [J/kg]

m mass-flux due to vaporization [kg/(m?s)]

Me mass-flux across eastern CV face [kg/(m?s)]

M molecular weight [kg]

n outward unit normal vector [-]

Ngr total number of chemical reactions [-]

Ng total number of species [-]

Nu average Nusselt number |[-|

D local pressure [Pa)
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P absolute pressure [Pa)

R universal gas constant [J/(molK)]

Ry residual vector after m iterations on grid with spacing h
Tik molar rate of creation/destruction of species i in reaction k [mol/s|
S CV surface area [m?]

Sh average Sherwood number [-]

t time [s]

tg unit vector in the direction of shear force at a surface [-]
T temperature [K]

U, droplet deceleration velocity [m/s]

\% velocity vector [m/s]

Vi local grid velocity vector [m/s]

X mole fraction [-]

Y mass fraction [-]

Greek Symbols

r stress tensor [N/m?]

Q CV volume [m?]

v diffusion coefficient [m?/s]

ij Kronecker delta [-]

Nir collision efficiency of the i'* species in r"reaction [-]
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,u dynamic viscosity [Ns/m?]

p density [kg/m?]

T viscous part of stress tensor [N/m?|

l/; i stoichiometric coefficient of species ¢ in reaction & [-]
V;/k stoichiometric coefficient of species i in reaction k [-]
A nte effect of third body collision efficiency |[-]

Br dimensionless temperature exponent [-]

0] any scalar variable |-

o surface tension [J/m?]

Subscripts and Superscripts

— interpolated /average value
restricted value

coarse grid approximation

* current estimate of solution
! correction

0 initial conditions

00 free-stream conditions

a air

f fuel

g gas phase
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int

nb

grid level with spacing h

numerical index for species

gas-liquid interface

liquid phase

gaseous mixture of various chemical species
current estimate after m outer iterations
neighboring control volume

numerical index for chemical reactions
transpose

dependent on velocity field

Control volume center
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Chapter 1

Introduction

Sprays occur in a wide variety of industrial and power applications and in materials process-
ing. A liquid spray in air is a two-phase flow with a gas as the continuous phase and a liquid
as the dispersed phase in the form of droplets or ligaments. Practical sprays are composed of
many droplets and a typical droplet will be strongly influenced by the neighboring droplets
when the average spacing between them is of the order of a few droplet diameters. In spray
computations, typically the interaction of droplets during heating, vaporization, ignition, and
combustion is neglected. This approximation has been found to be poor since neighboring
droplets constitute an energy sink and a fuel source to the gas surrounding the droplets.
Therefore, an effort needs to be made to relax this simplification.

A numerical method has been developed to simulate droplet interaction effects during va-
porization and combustion using moving grids with finite volume discretization. Multigrid
technique has been used on moving grids for convergence acceleration. The current status
on droplet interaction problem and on various aspects of the numerical method is briefly

reviewed in the following.



1.1 Interaction Amongst Droplets

Interactions amongst droplets found in sprays have been studied both experimentally and the-
oretically for last many years since the early studies of Cornish (1965) and Fedoseeva (1973).
A very comprehensive review is given by Annamalai and Ryan (1992) which is complemented
by asymptotic studies by Umemura (1994). The early models used many assumptions such
as quasi-steadiness, quiescent ambiance and regularly ordered, fixed droplets to simplify the

problem. Noteworthy of such models are:

1. The method of bispherical coordinates for two droplets by Fedoseeva (1973), Samson
& Deutch (1977) and Twardus & Brzustowski (1977)

2. Method of images by Labowsky (1976) for up to nine droplets

3. Drop-in-a-bubble model which has been used to model a spherical cloud of droplets
by Reiss (1951) and Fuchs (1959) which was modified later by Zung (1967), Tishkoff
(1979), Bellan & Cuffel (1983) and Bellan & Harstad (1987)

4. Point source approximations which can model more than 10 droplets (Annamalai and

Ryan, 1991)

Of the above mentioned approaches the first two methods can only be applied to a few (less
than 10) droplets whereas the point source approximation assumes very large interdroplet
spacing. The drop-in-a-bubble model is actively been used and further developed by various
authors (see for example Sanyal and Sundarajan (1992), Chen and Tong (1988), Tsai and
Sterling (1990), Sripada et al. (1996), Huang et al. (1996) and Mukhopadhyay and Sanyal
(1999)). Although the Drop-in-a-bubble model accounts for droplet interactions through
build-up of vapor fuel concentration and cooling of the gas phase environment, hydrody-
namic interactions are not accounted for in this model. Due to the large amount of literature
available in modeling droplet interactions only those models which account for hydrodynamic
interactions in clouds and studies of individual droplet interactions is focussed in the follow-

ing.



Interactions due to hydrodynamic forces on two freely moving, interacting spheres of differ-
ent radii were studied by Batchelor and Green (1972) in an invisid linear flow. Jeffrey and
Onishi (1984) extended this work by including the inertia forces. Tal and Sirignano (1984)
and Tal et al. (1984, 1983) studied heat and mass transfer in an array of non-evaporating
droplets at a Reynolds number of about 100. Labowsky (1977, 1980), Umemura et al. (1981)
and Xiong et al. (1985) studied interactions amongst evaporating drops however in these
studies convection, internal circulation and transient heating were neglected. Patnaik (1986)
included the effects of convection, internal circulation and transient heating in his study of
droplet interactions. Raju and Sirignano (1987, 1990) and Chiang et al. (1990) extended
the studies of Patnaik (1990) further over a wide range of parameters. Numerical modeling
techniques were further developed by Lafaurie et al. (1994), Rieber and Frohn (1995) and
Nobari and Tryggvason (1996) to study collisions of drops.

However, most of these studies were carried out with two or three droplets placed in tan-
dem (i.e. the line joining the droplets being parallel to the main flow) and data on other
configurations is scarce. Kim et al. (1993) studied the three-dimensional flow interactions
between two fixed identical solid spheres and also between two fixed identical liquid droplets
placed side-by-side such that the line joining them is normal to the direction of flow. They
provided drag, lift and moment coefficients for various separation distances for three different
Reynolds numbers of 50, 100 and 150. They found that the two spheres repel each other when
they are close and the repulsion is stronger the closer they are. However, the two spheres
weakly attract each other at intermediate separation distances (approximately between 7 and
21 droplet diameters) and at large separation distances (greater than about 21 diameters)
they do not interact at all. The maximum separation distance at which repulsion or weak
attraction occurs decreases with increasing Reynolds number. The force distribution around
each sphere was used to explain the flow physics of above described interaction effects. The
same flow structure was found for liquid droplets (external flow structure) too, except that
the magnitude of the lift, torque and drag was lower than that for solid spheres. Silverman

and Sirignano (1994) use the data presented here to develop a correlation, which was used



in their model for droplet interactions. The range of Reynolds numbers and viscosity ratios
investigated along with other factors like neglect of heat and mass transfer in this study
severely restricts the predictive capability of Silverman and Sirignano’s model (1994).

Zhang and Fan (2002) investigated the drag forces of particles aligned in a line parallel to the
direction of relative motion between the fluid stream and the particles. The particle-particle
interactions and wake effects were taken into account for quantitatively describing the drag
force. A semi-analytical expression for the drag force of the trailing particle was formulated
based on the velocity distribution in the far wake region downstream of the leading particle.
The drag force ratio was thus determined for the particle Reynolds number range of 54 to 154
and found to be in agreement with measured values. The model of Silverman and Sirignano
(1994) assumed the form and parameters of the correction functions due to lack of experimen-
tal or theoretical data. Zhang and Fan’s study (2002) could be used as a guideline to improve
the correction function for the tandem case in Silverman and Sirignano’s model (1994). De-
varakonda and Ray (2003) carried out experimental studies of the effect of droplet interactions
on unsteady evaporation in a linear stream. They emphasize that if the time needed for the
droplets to reach steady state is greater than the droplet residence time (in the experiment)
then during the unsteady period the evaporation rate of an interacting droplet may exceed
the steady- state evaporation rate of an isolated droplet leading to a correction factor greater
than unity if the rate is normalized by the steady-state evaporation rate (Fedoseeva (1973)
obtained correction factors greater than 1 for ethanol droplets (see Annamalai and Ryan,
1992)). Thus, during unsteady evaporation, the correction factor should be calculated using
the evaporation rate for an identical isolated droplet under identical conditions. They do this
by using an energy balance at the interface, written in terms of the heat transfer correction
factor and a mass balance at the interface, written in terms of the mass transfer correction
factor, for a droplet in the array. These equations can be used to calculate the mass transfer
correction factor, from the measured instantaneous evaporation rate and surface temperature
of a droplet, and heat transfer correction factor, from the size and temperature history of the

droplets. They found that the correction factors for both heat and mass transfer are almost



identical and that they increase as the inter-droplet separation distance increases (but is less
than unity). To verify that the correction factor is independent of the fuel used, they used
the correction factor obtained from ethanol droplets to calculate the droplet size and surface
temperature for methanol droplets (using the energy/mass balance equations), for a given
separation distance, and found excellent agreement.

Recently, Renaud et al. (2003) carried out experiments on the vaporization of a three-
dimensional cubic centered array of 1-octadecanol droplets at critical pressure and also at
twice the critical pressure. Labowsky (1976) studied this geometry for a sub-critical pressure
and in quiescent ambiance, using the method of images in the past (see Annamalai and Ryan,
1992). The vaporization rate observed by Renaud et al. (2003) for the droplet located at the
center was effected most as compared to the peripheral droplets in agreement with Labowsky
(1976). However, the authors define a mean evaporation rate and use it to draw surprising
conclusions that the evaporation rate of the center droplet increases as the separation distance
decreases and that the corrections factors for the center droplet are greater than unity. It is
possible that the use of mean evaporation rates instead of instantaneous evaporation rates
is responsible for these conclusions as Devarakonda and Ray (2003) conclude that neglecting
unsteady effects can lead to correction factors greater than unity.

Atthasit et al. (2003) experimentally studied the influence of lateral spacing in non-evaporating
droplet streams. They found that in the case of a single stream the droplet drag coeffi-
cient decreases with decreasing separation distance. However, with multiple adjacent droplet
streams, the droplet drag coefficient decreases below a Reynolds number of 45 and increases
very rapidly above this Reynolds number and can even exceed isolated droplet drag coeffi-
cient. Further, they showed that the variation of the drag coefficient with lateral spacing
follows the same qualitative trend as that of Silverman and Sirignano’s model (1994). Unfor-
tunately, a direct comparison based on actual relative drop locations was not made instead
the data from multiple streams was compared to a spatially averaged drag coefficient cor-
rection from Silverman and Sirignano’s model (1994) and the Reynolds numbers for the two

cases were also different.



Experimental studies of droplet interaction effects on ignition were carried out by Reichen-
bach et al. (1962) who studied n-octane droplet arrays without convection. Inuma (1962)
extended the study of Reichenbach et al. (1962) to include convective effects. Sangiovanni
and Kesten (1975) studied ignition delay of interacting furfurly alcohol drops in a high tem-
perature environment with forced convection. Sangiovanni and Kesten (1977) extended their
previous work to study the effect of spacing on ignition delay for furfuryl alcohol and butyl
alcohol drops. Sommer (1986) studied the ignition delay in decane droplet streams in exper-
iment similar to that of Sangiovanni and Kesten (1975). Sato et al. (1986) measured the
ignition delays in an actual spray using high speed photography. Kadowaki et al. (1996)
and Nohara et al. (2000) conducted experiments in microgravity to study the interaction
effects on ignition using ceramic balls soaked with liquid fuel, instead of actual droplets, in
their experiments. Due to the complexity of the problem the data on ignition delays in in-
teractive droplet combustion is relatively scarce compared to that of burning rates and flame
structure. The burning rates in interactive droplet combustion date to the early studies of
Kanevsky (1956) and Rex et al. (1956). Later Sangiovanni and Dodge (1978) and Miyasaka
and Law (1981) studied interactive combustion experimentally whereas Nuruzzaman et al.
(1970, 1971) and Rangel and Sirignano (1987, 1988) studied interactive combustion numeri-
cally. More recently interactive combustion has been studied experimentally in microgravity
by Mikami et al. (1994).

Detailed simulation of droplet interactions, in convective flows, accounting for both hydrody-
namic and non-hydrodynamic interactions done so far have been limited to non combusting
drops. It was extended to combusting drops by Dwyer et al. (2000) who carried out a three-
dimensional numerical simulation of six stationary heptane droplets, placed asymmetrically
in a plane, at two Reynolds numbers of 5 and 30 using the overset or Chimera grids. Their
finite volume formulation used the Navier-Stokes equations, in low Mach number approxi-
mation, in which the convective fluxes are expressed relative to the grid velocity (as moving
grids were used to resolve the regressing drop surface). Internal circulation inside the droplets

was neglected and a one dimensional spherical heat conduction equation was used inside the



drops. A two-stage approach was used for droplet combustion. In the first stage the combus-
tion process of droplet group was calculated using one-step global chemistry to determine the
temperature and fuel concentrations and in the second stage the combustion of representa-
tive single droplets, with averaged local flow effects, was calculated using detailed chemistry.
They provided the variations of Nusselt number, droplet diameter, droplet temperature and
drag and lift coefficients as a function of time. They found that the Chimera grid is efficient
to deal with this kind of problems and that the shape of the reaction zone, evaporation rates
and the forces on the droplets were very dependent on the geometry of the array. Further,
Reynolds number has a strong influence on droplet interactions. At lower Reynolds number
the interactions were much stronger while at higher Reynolds number the array behaved more
like a single entity. Stapf et al. (1998) relaxed the condition of stationary droplets and a
group of ten droplets and was considered. They found that ignition and combustion depend
on specific local conditions of the fuel droplets and thus are different at different locations in
the spray.

Aouina et al. (2001) included spatial temperature variation inside the droplets. They numer-
ically studied convective heating, vaporization, ignition and subsequent combustion of two
equal sized liquid oxygen droplets in hydrogen at high pressures. The initial liquid oxygen
temperature was cryogenic and the pressure was 10 bar. Detailed chemical reaction systems
were used and the physical properties were obtained from NASA polynomials. They found
that the ignition time is considerably shorter for two interacting droplets as compared to
isolated droplets. Also, the ignition time increases and the combustion mode changes from
single droplet flame to an envelope flame as the distance between the droplets decreases.
They found that under convective conditions the location of ignition was not identical for the
droplets, the upstream droplet ignites in the aft region and the downstream droplet ignites
in the fore region.

Although the numerical simulations of Stapf et al. (1998), Dwyer et al. (2000) and Aouina
et al. (2001) included hydrodynamic interactions in convective flows a few important details

were missed. Stapf et al. (1998) neglected internal circulation in the droplets. More impor-



tantly it seems that Stapf et al. (1998) also neglected the convective mass flux contribution
due to grid movement in the governing equations. The convective mass flux contribution
due to grid movement was later included by Dwyer et al. (2000) however it was not clear
if the space conservation law has been satisfied too. Moreover, Dwyer et al. (2000) consid-
ered stationary droplets and thus did not account for droplet deceleration. The calculations
of Aouina et al. (2001) were done in a two dimensional axisymmetric configuration and ne-
glected internal circulation in the droplet and droplet deceleration. The purpose of this thesis
is to develop a numerical model and study the droplet interactions in a three dimensional
configuration accounting for detailed hydrodynamic interactions, internal circulation inside
the droplets, gas phase deceleration, convective mass flux contribution due to grid movement

and the space conservation law.

1.2 Moving Grids and the Space Conservation Law

The technique of Moving Grids is applied to wide variety of problems in computational fluid
dynamics (CFD). One such class of problems, where moving grids are applied, involve fluid
flows in which the computational boundary is moving. Specific examples of the application
of moving grids to these flows are abundant in aerospace, biomedical, Combustion, Plasma
Physics, Materials Science and turbomachinery research. Another class of problems, applying
moving grids, are the moving mesh methods, strategies for adaptive grids which adjust as the
solution evolves to better resolve the underlying flow field (see for example Cao et al. 2002).
Trulio and Trigger (1961) and later Thomas and Lombard (1979) discovered that when mov-
ing grids are used, an equation called the Space Conservation Law (SCL) or Geometric
Conservation Law (GCL) has to be satisfied along with other conservation equations for
mass, momentum and scalars. Demirdzi¢ and Peri¢ (1988) showed that failure to satisfy
the SCL introduces errors in the form of artificial mass sources. More recently, Gulliard and
Farhat (2000) have reemphasized the importance of SCL and proved that satisfying the space
conservation law, in an appropriate discretized form, is a sufficient condition for a numerical

scheme to be at least first-order time-accurate on moving meshes. Numerical methods for sat-



isfying the SCL (or GCL) are presented by Thomas and Lombard (1979) for finite-difference
schemes, Demirdzi¢ and Peri¢ (1988 and 1990) for finite volume schemes, Farhat et al. (2001)
and Geuzaine et al. (2003) for Arbitrary Lagrangian Eulerian (ALE) schemes. In all these
proposed methods for satisfying the SCL, the time integration scheme used for SCL is (and
should be) the same as that for other conservation equations. Perhaps this was not stated
explicitly enough and it is not surprising that Kamakoti and Shyy (2004) found that for a
first-order fully implicit flow solver, and four different time integration schemes for SCL, the
first-order fully implicit time integration of SCL gave the best results.

Although, the importance of SCL has been emphasized many times in the literature (see
Thomas and Lombard 1979, Demirdzi¢ and Peri¢, 1988 and Gulliard and Farhat, 2000) the
exact arguments used to emphasize it require further attention. Thomas and Lombard (1979)
emphasized that satisfying the SCL ensures that if an initially spatially uniform flow (which
is a steady flow and hence not applicable to unsteady flows) is computed on moving grids then
the numerical solution would reproduce that uniform flow. Demirdzi¢ and Peri¢ (1988) also
considered a spatially uniform flow (in this case zero velocities and pressures everywhere)
and showed that by violating SCL the exact initial solution is destroyed. Gulliard and Farhat
2000, too, prove that satisfying the SCL with compute a spatially uniform flow exactly on a
moving grid. However, the situation for unsteady flows is not clear. There is evidence in the
literature pointing to the insufficiency of the SCL. Tamura and Fujii (1993) suspected that
SCL may create problems with unsteady compressible flow simulations, on rapidly distorting
grids, but unfortunately they did not provide any conclusive data to support it. Morton et
al. (1997) found that satisfying or violating the SCL produced the same results. The studies
of Tamura and Fujii (1993) and Morton et al. (1997) suggest that although SCL is important
to prevent artificial mass sources it is inadequate for unsteady flows. In the present study
it is shown that SCL is just one equation out of a set of equations which has to be satisfied
on moving grids and neglecting other equations of this set produces erroneous solutions for

unsteady flows.



1.3 Application of Multigrid Technique on Moving Grids

A wide variety of computationally intensive problems in CFD involve moving boundaries and
are often solved using the moving grid technique. Examples of such, computationally intensive
problems applying moving grid technique, are design and optimization of flows in rotor-stator
configurations found for instance in turbomachinery and stirred reactors, problems involv-
ing phase change like solidification/melting, vaporization/condensation or crystallization and
fluid structure interaction (FSI) problems involving the deformation and/or movement of a
solid body in response to fluid forces acting on it. It is natural to consider the application
of convergence acceleration techniques to reduce the computational costs of these problems.
The multigrid technique is frequently used for convergence acceleration in CFD.

However, the application of multigrid technique on moving grids is not straightforward ex-
cept for the simplest cases when the grid movement is either known a priori as a function of
time or is explicitly calculated from previous time-step values. Quite often, for example in
aircraft wing flutter calculations, the grid movement depends on the flow field and has to be
calculated implicitly in a coupled manner for each iteration at any given time-step.
Multigrid methods have been successfully applied, on moving grids, for the former class of
problems. Arnone et al. (1995) and Bohm et al. (1997) applied the multigrid technique,
on moving grids, to the rotor-stator configuration. The efficiency of the multigrid conver-
gence acceleration, on moving grids, obtained by Bohm et al. (1997) for the rotor-stator
configuration is comparable to that on stationary grids. Crumpton and Giles (1997) applied
the multigrid technique, on moving grids, to bodies undergoing prescribed periodic oscilla-
tions. Schéfer et al. (2001) presented a methodology for the usage of multigrid technique for
coupled fluid-solid problems which can be used when the grid movement is either known a
priori as a function of time or is explicitly calculated from previous time-step values. Schéfer
et al. (2000) used the multigrid method of Schéfer et al. (2001), on moving grids, to the
passing-by of two rectangular objects and to the oscillation of a torsional spring mounted
pendulum in a flow field and obtained multigrid convergence acceleration by approximately

a factor of 100. Sorensen et al. (2003) applied the multigrid technique, on moving grids, to
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objects undergoing prescribed oscillations. The multigrid implementation of Sorensen et al.
(2003) uses an agglomeration technique to generate coarse meshes and local remeshing to
improve mesh quality.

In all the studies mentioned above the motion of the moving boundary (and thus the grid
movement) was either known a priori (prescribed) or calculated explicitly from previous time
step values. However, in many applications the motion of the moving boundary or the grid
movement is not known a priori and depends on the flow field. For such problems the grid
movement has to be calculated implicitly such that for a given time step an initial estimate
of the grid movement is iteratively improved as the initial estimate of the flow field improves
with each iteration. When the solution of the flow field converges for a given time step, the
current estimate of the grid movement also converges. The application of multigrid tech-
nique to such problems involves additional difficulties because the grid movement (and hence
the grid itself) is different for each iteration at any given time step. These difficulties can
be further appreciated by considering an example of the questions which arise in applying
multigrid technique to such problems.

Assuming that the solution on a grid with spacing, h, is restricted to a coarser grid with spac-
ing, 2h, and after a few relaxation sweeps, the coarse grid spacing changes from 2h to on'.
Should the correction to the fine grid solution be prolonged from 2k — h or from 2h" — h or
from 25" — b’ ?

This question as well as other problems arising in the application of multigrid technique when
the grid movement is implicitly calculated and modifications to overcome those problems are
discussed in this study. An application of multigrid technique on moving grids is presented in
which the grid movement is not known a priori and is implicitly calculated for each iteration
at any given time-step. The modified multigrid technique is applied to an example problem
of a liquid drop vaporizing in a convective gas flow whereby moving grids are used to account
for the change in drop size due to vaporization. Problems involving phase change such as
the one under consideration, present additional difficulties (associated with the boundary

conditions) for multigrid implementation which are also discussed.
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Chapter 2

The Mathematical Model

The mathematical model describes the processes of vaporization and combustion of cold
single component fuel droplets placed in a hot convective oxidizing flow field. The model
includes the conservation equations and the boundary conditions that govern these processes
along with the initial conditions used in this study. The governing equations are expressed
in a local non-inertial reference frame moving at droplet velocity Ug such that the droplet
remains stationary in this reference frame. Since the droplet changes its mass (and thus its

size) due to vaporization with time, moving grids are used to capture the interface motion.

2.1 Assumptions

The following assumptions are made in the model:

1. The droplet is assumed to remain spherical in shape implying small Weber numbers
(pu?d/o).
2. Phase equilibrium is assumed to exist at the liquid-gas interface.

3. The gas phase is assumed to follow the ideal gas law.

4. Thermal radiation and Dufour terms in the energy equation and the thermal diffusion

term in the concentration equations are negligible.
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5. The Mach number is low enough to neglect dissipation terms.

6. There are no external body forces like gravity.

2.2 The Governing Equations

The governing equations are identical in both the gas and liquid phase and are given below.

Space Conservation Law

d

7 dQ /Vb ndS = 0. (2.1)

Conservation of Mass

i pd€) + / v—vp) -ndS =0 (2.2)

where p is the fluid density, 2 is the control volume (CV) bounded by a closed surface S, v
is the fluid velocity, v} is the velocity of the CV surface and t is time.

Conservation of Momentum

d Uy

pr pde + pv(v — vp)-ndS = I‘ ndS — p—dQ (2.3)
T’ being the stress tensor defined as

= —pbij + Tij = —pbij + pl(Vv) + (V)] (2.4)

where p is the pressure, p the dynamics viscosity and ¢;; the Kronecker delta.

dU, . . . . . .
The term —% in the gas phase arises because the equations are expressed in a non-inertial

reference frame and it will be discussed in Section 2.6. dUg = 0 in the liquid phase.
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Conservation of Energy

Ng

d

E/pcPTdQ—i—/pcPT(v—vb)-ndS = /kVT-ndS—i—/ g cpmTpD; m VY;dS)
Q S S Qi

Ng Ng
- / > hiMY vy dQ (2.5)
Q=1 k=1

where £ is the diffusion coefficient, ¢, is the specific heat, D; ,, is the diffusion coefficient of
species i into the gas mixture, h; is the specific enthalpy of species ¢, M; is the molecular
weight of species ¢ and r; , is the molar rate of creation/destruction of species i in reaction
k in the gas phase. In the liquid phase the last two terms of the right hand side of equation
2.5 are zero.

Conservation of Species i

Ngr

d

- pY}dQ—l—/pY}(v—vb)-ndS:/pDLmVYi-ndS—i—/Mini7de. (2.6)
Q s s Q 4

This equation is not solved in the liquid phase as single component fuel drops are modeled.

2.3 The Boundary Conditions

Boundary and initial conditions for the gas phase corresponding to the sudden injection of a
cold droplet into a hot uniform flow field need to be given as well along with zero gradient
outflow boundary conditions and liquid/gas interface boundary conditions. At the liquid/gas
interface mass, energy and chemical species are conserved. Additionally, tangential velocity,
stress and temperature are continuous across the liquid/gas interface and phase equlibrium
is assumed to prevail. A schematic of the computational domain identifying the different
boundary conditions is shown in Figure 2.1. The lengths are expressed in terms of the

droplet diameter D in Figure 2.1.
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Symmetry
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Figure 2.1: Schematic of flow configuration

Continuity of Tangential Velocity: No-Slip Condition

(v- tg)l,int =(v- tg)g,int-

Continuity of Stress

[(F : n) ’ tg]l,int = [(F : n) ) tg]g,int-

Continuity of Temperature

Tl,int = Tg,int-
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Conservation of Mass
[ (v = Vi) n]iine = [p (v = vp) - 1gine. (2.10)

Conservation of Energy

—(kVT -10)pint = —(EVT - 1) g int + 11 Lyap. (2.11)

Conservation of Species

D¢, VY5 -
m = — pPfmV Iy -1 ) (2.12)
1-Yy; .

g,int

Mass Fractions at the Interface: Phase Equilibrium
Phase equlibrium between the fuel vapor and liquid fuel in the droplet is assumed to exist at
the interface in order to calculate the partial pressure of the fuel vapor. Fuel mole fraction

is determined by the partial pressure of the fuel at the interface temperature

Py i (T
Xpint = 7f’gt(t tmt) (2.13)
970

where P, ;0 is the total absolute gas side pressure at the interface. Since in the present in-
compressible flow (see Chapter 3) formulation only the pressure differences (gauge pressures)
have significance (the pressure-correction equation has Neumann boundary conditions, see
Ferziger and Peri¢, 1996) the minimum local pressure in the gas phase, pin, is subtracted
from the local pressure and this difference is added to the absolute pressure at infinity, P,
to arrive at the absolute gas pressure. The total absolute gas side pressure at the interface is

then given by Py ot = (Pg,int — Pmin) + Pso- The absolute partial pressure of the fuel in the
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gas-phase is determined using the Antoine equation (Lide 1997)

B

mPryy=A———
" Fint Ent+c

(2.14)

where A, B and C are antonie constants and 7;,; is the liquid temperature at the interface.

and the fuel mass fraction is determined from (Aouina et al. 2001)

Xfint My
Xy intMy + (1 = Xgine) My

Y}int = (2.15)

The mass fractions of all other species than fuel and air (which assumed to be a mixture of

nitrogen and oxygen) is zero at the interface

YVi;ﬁf,Nz‘trogen,O:vygen =0 ;i=1,..,Ng (216)
YOa:ygen = 024(1 - Yf) (217)
YNitrogen = 076(1 - Yf) (218)

Although the actual mass fractions of nitrogen and oxygen in air are 0.767 and 0.232 respec-
tively slightly different values stated above were used in the calculation.

Symmetry Boundary Condition

At a symmetry plane (as shown in Figure 2.1) the convective fluxes of all quantities are zero.
The normal gradients of velocity components parallel to the symmetry plane, v,, and of all

scalars are zero:

0 .
a—ﬁ:(); ¢=vp,T,Y;;i=1, N. (2.19)
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Additionally, the normal velocity component at the symmetry plane is zero:

v-n=0. (2.20)

Inlet Boundary Conditions
Free stream values are prescribed at the inlet boundary (marked Inflow in Figure 2.1) to all

variables.

U = Uso

V= Uso

W = Weo (2.21)
= Do

T = T

}/Z' = }/Z,OO)Z:17 NS

Outlet Boundary Conditions

Zero gradient conditions are specied at the outlet boundary (marked Outflow in Figure 2.1):

o¢ _

o 0; ¢=u,v,w,cyT,Y;;i=1, Ng. (2.22)

Since moving grids are used, mass conservation is enforced by further adjusting the gas-phase

velocities at the outlet boundary as described in section 3.2.2.6.
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2.4 Initial Conditions

An initial guess is needed to start the numerical solution procedure. This initial guess is pro-
vided by initializing all the variables at the begining of the solution procedure. All variables

in the gas phase are initialized with free stream values.

U = Uso

V= Uso

W = Weo (2.23)
= Poc

T = Ty

Yi = Yisit=1, N

The following values were used to initialize variables in liquid phase.

u = 0
v = 0 (2.24)
w = 0
= 0
T = 1,
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2.5 Evaluation of Transport Properties

The calculation of transport properties, for both phases, used in the detailed chemistry
reacting flow computations is described in the following. Variable properties were used for

the gas phase while constant properties were used for the liquid phase.

2.5.1 Gas Phase Properties

The transport properties in the gas phase were evaluated from the kinetic theory of gases

(Hirschfelder et al., 1964).

Specific Heat and Specific Enthalpy
The specific heat, ¢, ;, of species, ¢, in gas phase was calculated from a polynomial fit of the

form

cpi(T) = a1 + aT + a3T? + asT? + asT* (2.25)

where the coefficients aj, as etc. were taken from JANAF tables (Bureau of Standards,
1971). The specific heat of the gas mixture, ¢, ,,, was then determined from the specific

heats of its constituent species as
Ns
pm(T) =Y cpa(T) - V. (2.26)

i=1

The specific enthalpy, h;(T'), of species, i, was calculated by intergrating the specific heat of

species, i, as follows

T
hZ(T) = hZTo + /TO Cp,i(T)dT (227)

where h?., is the standard enthalpy of formation of species, ¢, at reference temperature 7°.
A
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Viscosity
The viscosity, u;, of species, 4, in the gas phase was calculated from Chapman-Enskog the-
ory (see Kee et al. 1983) and the viscosity of the gas mixture, u,,, was evaluated from the

viscosities of the constituent species as

1| Yox\
P = 5 ZXNM + (Z M—Z) : (2.28)

Thermal Conductivity
The thermal conductivity, k;, of species, i, in the gas phase was calculated from kinetic
theory of gases (see Kee et al. 1983) and the thermal conductivity of the gas mixture, k,,

was evaluated from the thermal conductivities of the constituent species as

1| Yox\
= — X,k - ) 2.2
=y |2 k+(zk) (2.29)

Mass Diffusion Coefficients
Binary diffusion coefficient, D;;, of species 7 into species j, was calculated from Chapman-
Enskog theory (see Kee et al. 1983). The diffusion coefficient of species, i, into the gas

mixture D; ,,, was calculated from the binary diffusion coefficients as follows

1-Y;
X;
2j#i D

J

Density
The gas phase mixture was assumed to behave as an ideal gas and the ideal gas law was used

to calculate the density, p,, of the gas phase mixture.
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‘ Property ‘ Value ‘

Density 808.184 kg/m?
Viscosity 4.76 x 10~% kg/ms

Thermal Conductivity 0.162 W/mK
Specific Heat 2.684 x 103 J/kgK
Latent Heat of Vaporization | 1.0246 x 10° J/kgK

Table 2.1: Properties in the liquid phase

PM,,

o iim 2.31
p T (2.31)

Vapour Pressure of the Fuel
Antoines relation (see equation 2.14) was used to determine the vapour pressure of the fuel

(ethanol) in the gas phase with the following constants (see Lide 1997)

A =16.1952, B = 3423.52, C' = —55.7152 (2.32)

which give the partial pressure in kPa.

2.5.2 Liquid Phase Properties

As the variation of liquid properties, with temperature, is not large as compared to gases
constant properties were used in the liquid phase. The liquid phase properties used are listed

in Table 2.1.

2.6 Evaluation of Forces and Reaction Rates

The total drag force is the contribution of pressure, friction and thrust force (Chiang et al.

1990) .

FD:FD,p+FD,F+FD,T (233)
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where

Fpp,=— /Sp(I ‘m) - idS (2.34)
is the pressure drag force
Fpr= /S(T -n) - idS (2.35)
is the friction drag force and
Fpr=-— /S[pv(v —vp) - 1] - idS (2.36)

is the thrust drag force. Thrust drag force arises due to mass loss because of droplet vapor-
ization and is not an external force.

The lift force is evaluated as follows (Kim et al. 1993):

Fr =— /Sp(I n) - jdS + /S(T -n) - jdS — /S[pv(v —vp) - 1] - jdS. (2.37)

The drag and lift forces described above include all forces acting on the droplet like the Basset
force and Oseen force used in modeling the trajectory of spherical particles.

The term fQ %dQ appears in equation 2.3 because a non-inertial reference frame is used.
It is the contribution of the inertial force arising due to the movement of the non-inertial
reference frame with respect to an inertial reference frame. It is evaluated as follows (see

Haywood 1992):
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du, d
F— — ds — — ds? 2.38
S fﬂdeZ vt —vi)nis = & [ pvicy (2.38)

where Y F' is the sum of all external forces acting on the droplet. For a single droplet,
because of problem symmetry only one component (in the main flow direction or # direction)

of this term is non-zero and the equation reduces to

d(Ug - 1) _ 1
dt N fﬂ pdS)

d
[Fp.r + Fp,p+ Fpr — pn / pv - 1dQ]. (2.39)
Q

When more than one droplet is present, then depending on the spatial arrangement the j
and/or k direction, symmetry may be lost, and there would be a net force on the droplets
in these directions. However, the magnitude of these forces is small (about 15 times smaller
in j direction and 200 times smaller in k direction as compared to ¢ direction, see Kim et al.

1993) compared to the total drag forces acting in the i direction. Thus, they are neglected

and only the 2 direction force contribution to the inertial force term dzg is considered even
for multiple droplet configurations.
The drag and lift coefficients are determined by non-dimensionalization of the corresponding

forces using the projected area of the sphere (37d2) (Kim et al. 1993):

Fp
Cp = W (2.40)
and
Fr,
Cp=———. 2.41
P LU (241)

Average Nusselt and Sherwood numbers are defined as follows (see Haywood, 1992):

S kEVT -n
Nu 2.42
fs kds / mt ( )
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and

_h _ d pDﬁmVYf ‘n
JsPDsmdS Js Yoo — Yt

ds. (2.43)

The term 7; ;, appearing in equations 2.5 and 2.6 is the molar chemical rate of creation/destruction

of species 7 in reaction k. If the k" reaction is represented by

Ng Ng
S v = v M (2.44)
i=1 i=1
then r; ;, is evaluated as
Npr Ng ,
rige = Mvgg —vig) [kpr [JIC 2 = kox JTICsa]"% (2.45)
j=1 J=1

/ " . . . . . .. .
where v; . and v, , are the stoichiometric coefficients of species 7 in reaction k, for the reactants
and products respectively, C; ;. is the molar concentration of species j in reaction k, 7, ; is the
/ - . .. . -
forward rate exponent and 1,5 is the backward rate exponent for species j in given reaction

k. A is the net effect of third bodies in the reaction rate given by

Ngr
A=) "XC; (2.46)
j=1

where ;1 is the third body efficiency of species j in reaction k.
The forward rate constants for the r*? reaction are determined using the modified Arrhenius

expression (Poinsot and Veynante, 2001)

E, T,
kp, = A, TP exp(——R’Tf) (2.47)

where A, is the pre-exponential factor for the reaction, [, is the dimensionless temperature
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exponent and F, , is the activation energy for the reaction. The backward rate constants
are also evaluated using equation 2.47 with the corresponding pre-exponential factor and

activation energy for the backward reaction.
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Chapter 3

The Numerical Method

This chapter describes the method used to solve the equations presented in Chapter 2. The
equations are solved numerically using the FASTEST-3D code (see Durst and Schéfer, 1996
and Peri¢, 1985). It employs a fully conservative finite volume method for the solution of the

flow equations. The salient features of this method are:

Non-orthogonal boundary fitted block-structured numerical grids,
e colocated arrangement of dependent variables,

e pressure-correction approach of Semi-IMplicit Pressure Linked Equations (SIMPLE)

type (Patankar and Spalding, 1972) for the coupled system of equations,

e strongly implicit Incomplete LU decomposition method (ILU) of Stone (1968) for solv-

ing the linear equation systems,
e non-linear multigrid scheme for convergence acceleration,
e moving grids for capturing droplet distortion,

e block-structured grid partitioning for parallelization.

Although large density variations occur in reactive flows due to large temperature differences,

the Mach number, M = u/c, defined as the the ratio of fluid velocity, u, to the velocity of
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sound in the medium, ¢, is always small. For the reactive flow calculations in this study,
u <25 m/s, ¢ > 776 m/s and M < 0.04. As the Mach number, M < 0.3, the flow can
be safely treated with incompressible flow formulation (see Muralidhar and Sundararajan,

1995).

3.1 Discretization of the Partial Differential Equations

The partial differential equations (PDEs) described in Chapter 2 are discretized using a finite

volume method as described below.

3.1.1 Discretization in Space

When the conservation equations are applied to each CV to obtain an algebraic equation the

following approximations are made (see Ferziger and Peri¢, 1996):

e Numerical differentiation to approximate the gradients of variables which are required
to obtain diffusive fluxes.

e Numerical approximation of the volume and surface integrals for each CV.

e Interpolation of variable values from CV centers to other locations where they are

needed for the evaluation of above integrals.

3.1.1.1 Approximation of Surface and Volume Integrals

The surface integrals are approximated, using midpoint rule, as the product of cell face area
and the interpolated value of the integrand at cell face center. For example for the eastern

face of a CV (see Figure 3.1)

| ris~Tas. (3.1)
Se
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Figure 3.1: Example of a control volume and notation used

where the overbar denotes the interpolated cell face value, f is the component of the convec-
tive (pod(v — vp) - n) or diffusive (yV¢ - n) fluxes in the direction normal to the eastern CV
face and 05, is the area of the eastern CV face. This approximation of the integral is second
order accurate provided the interpolated value of the integrand at the cell face f,. is second
order accurate.

To enhance the diagonal dominance of the coefficient matrix, the convective fluxes are im-
plemented using a deferred correction approach (Khosla and Rubin, 1974), where only the
first-order upwind parts of the flux approximations contribute to the coeflicient matrix, while

the second-order parts are treated explicitly:

=+ (= (3.2)

where f is the convective flux approximation, f' and f" are the first-order upwind part
and the second-order part of the convective flux and the superscript old stand for previous
iteration values. When the cell Peclet number, pu/AS2/k, is bigger than 10 using an upwind

scheme introduces false diffusion (see Patankar, 1980). However, the deferred correction
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approach described above ensures that for a converged solution (f! = f“°!9) the first-order
upwind parts of the convective fluxes cancel each other from the right hand side of equation
3.2 and the convective flux approximation is second-order accurate.

The volume integrals are also evaluated using the midpoint rule and require no additional
approximations because all unknowns and fluid properties are stored at the CV center. The

CV center value of the integrand is multiplied with the CV volume 62 .

/ £dQ ~ fpoQ (3.3)
Q

where fp is the value of f at the CV center. The above approximation is also second order

accurate.

3.1.1.2 Interpolation Scheme

The value of the integrand at the cell face f, is required in the evaluation of the surface
integrals (see equation 3.1). For non-linear convective fluxes Picard iteration approach (see
Ferziger and Peri¢, 1996) is used to linearize, f., whereby the mass fluxes through the faces

are calculated using previous iteration values

fo= /S6 pP(v —vp) - ndS ~ ¢, /S6 p(v —vp) - ndS = ¢peme. (3.4)

This linearization reduces the task to finding the values of the dependent variable, ¢, at cell
faces for the evaluation of f.. Further, the gradient, in the normal direction, (V¢ - n), of
the dependent variable, ¢, is needed at cell faces for the evaluation of diffusive fluxes. These
values are obtained from interpolation. As noted in section 3.1.1.1 the approximations to
the surface integrals are second order accurate only as long as the interpolated value of the
integrand at the cell face f, is second order accurate. The commonly used linear interpolation
scheme (central difference scheme, CDS) is only first order accurate on distorted grids and
deteriorates the overall accuracy of an otherwise second order discretization scheme. Thus

a multi-dimensional Taylor series expansion based interpolation scheme (Lehnh#user and
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Figure 3.2: Example CV and its neighbours
Schéfer, 2001) is used which preserves second order accuracy on strongly distorted grids

while preserving the CDS type sparsity pattern of the computational molecule.

3.1.2 Discretization in Time

For time discretization a fully implicit second-order accurate three-time-levels scheme (see
Ferziger and Peri¢, 1996) is used. This scheme approximates the time derivative at n + 1th

level, t, 11, over a time-interval At centered around ¢,.1 as

@ B 3¢n+1 _ 4¢n + (bnfl
dt )0 2At

where ¢ denotes the value of the variable, ¢, at n'" time-level.

Thus the overall solution procedure is second-order accurate in space and time.
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3.1.3 Discretized Algebraic Equation System

The spatial domain is subdivided into a finite number of CVs. One algebraic equation per
CV is then obtained by applying the conservation equations to each CV and discretizing
them. Each algebraic equation involves the contributions from the CV center and from 26
neighboring CVs as shown in Figure 3.2. To reduce the computational complexity only 6 of

these neighbouring CVs are treated implicitly and the rest are included in the source term.

Apdp + Y Anpdny = Sp (3.6)
nb

where P denotes the center of the CV at which the equation is being discretized and has nb
neighboring CVs. The coefficients A,; contain contributions from surface integrals over faces
common to the CV centered at P and the corresponding neighbor nb. The coefficient Ap
contains contributions from volume integrals (implicitly treated parts of unsteady terms and
source terms) in addition to contributions from surface integrals. Sp contains all terms which
are treated as known (explicitly treated parts of surface integrals, unsteady terms, and source
terms). The source term is linearized into an implicit part and an explicit part as suggested
by Patankar (1980). For the solution domain as a whole, the system of M such algebraic
equations, where M is the total number of control volumes, can be written in matrix notation

as

[A{¢} = {S} (3.7)

where [A] is a M x M coefficient matrix, {¢} is the column matrix of M dependent variable
unknowns and {S} is a similar column matrix containing known source terms. The coefficients
matrix [A] depends on geometrical quantities, fluid properties, and the dependent variable
values themselves. One such matrix equation is obtained for each dependent variable. Since
the systems of equations (matrix equations of all the dependent variables put together) is
non-linear, an iterative solution method is used in which the coupled equations are solved in

a segregated manner, solving for each variable in turn treating all other variables other than
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the one being solved as known. Furthermore, the coefficient matrix is treated as constant
during “inner iterations” and updated during every “outer iteration”. The linearized system
of equations, thus obtained for each “inner iteration”, is solved using the strongly implicit

procedure (SIP) of Stone (1968).

3.2 The Numerical Grid

This section describes the numerical grid, used in the calculations, and other issues associated

with the grid and the solution method.

3.2.1 Grid Generation

Non-orthogonal body fitted block structured grids made-up of hexahedral control volumes
are used for all calculations. The grids are generated using the commercial package ANSYS
ICEMCFD - HEXA (see ICEM CFD Engineering). An O-grid (see Thompson et al. 1995) is
generated in the droplet interior. The height of the first layer of CVs in the gas-phase adjacent
to the droplet is about 1% of initial droplet radius and the grid stretching factor between
adjacent layers is 1.2. Cell volumes are calculated by decomposing each hexahedral CV into
eight tetrahedra as suggested by Kordula and Vinokur (1983). The calculation of swept
volumes (in equation 3.9) is also done in the same fashion by decomposing the hexahedra
formed by a cell-face as it moves from its old position to its new position (Ferziger and Peri¢,

1996).

3.2.2 Effect of Grid Movement

As the droplet vaporizes it loses mass to its surroundings and its radius keeps decreasing with
time. Moving grids are used to capture the motion of the droplet surface whereby the grid is

fitted to the droplet surface and follows its motion.
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3.2.2.1 Discretization of Space Conservation Law

When moving grids are used the Space Conservation Law (SCL) given by equation 2.1 must
be satisfied otherwise artificial mass sources are introduced which may accumulate and spoil
the solution (Demirdzi¢ and Perié, 1988). Two approaches suggested by Demirdzi¢ and Perié¢
(1988,1990) to satisty the SCL is either to calculate the grid velocities, vy, such that the SCL
is satisfied or alternatively, to define the volume fluxes such that the SCL is satisfied. The
latter approach is used here, as it is more convenient in three dimensions. Using the time

discretization method described above the SCL equation can be written as follows:

3AOM —4AQ" + AQPT n
N = " [(ve m), S (3.8)
k

The difference between the CV volumes at consecutive time-levels can be decomposed as

follows:

AQM - AQ™ =) 50y (3.9)
k

where 0€27 is the volume swept by the k" CV face while moving from its old position to its

new position. Substitution of equation 3.9 into equation 3.8 gives

LAOO0 0L ) 5 v s (3-10)
k

If the volume swept by each face, during one time-interval, §{2;, is calculated using the grid
positions at two consecutive time levels and the volume fluxes, [(vy - n), Si]"t", are defined

as

(3607 — 691
2At

(v -m),, Sp]" ! = (3.11)

then the SCL is identically satisfied.
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3.2.2.2 Generalization of Space Conservation Law

If the Space Conservation Law (SCL) is not satisfied, on moving grids, errors in the form
of artifical mass sources are introduced (Demirdzi¢ and Perié¢, 1988). Nevertheless, SCL is
just one equation out of a set of conservation equations which have to be satisfied on moving
grids. Even though SCL is satisfied, by neglecting other equations of this set, errors in the
form of artificial momentum sources and scalar sources may still accumulate on moving grids,

as described below, and spoil the solution.

3.2.2.3 Grid Velocity as a Counterbalance for Unsteady Term

On stationary grids, the unsteady terms in the governing equations (equations 2.2, 2.3, 2.5,
2.6) are zero if the variable values do not change with time. However, on moving grids, the
volume of a CV changes with time and thus the unsteady terms in the governing equations
are not zero even when the variables do not change with time. The role of the additional
contribution, to the convective fluxes, from moving grids, is to make this unsteady term zero
as explained below.

Consider the equation for the conservation of mass, for a constant density fluid, on stationary

grids

p[%/ﬂd@—i—/gv-ndé’} 0. (3.12)

For a stagnant fluid, in the absence of any fluid motion, v = 0, further, on stationary grids,

the volume of a CV does not change with time, % = 0, and equation 3.12 is identically

satisfied:

d

—/dQ+/v-ndS:0. (3.13)
dt Jo S5

T T/
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Consider the equation for the conservation of mass, for a constant density fluid, on a grid

moving with a non-zero velocity

p [%/ﬂd9+/s(v_vb) -ndS} = 0. (3.14)

For a stagnant fluid, in the absence of any fluid motion, v = 0, further, since the grid is
moving with non-zero velocity, v, # 0, and the volume of a CV will change with time,

% # 0, and equation 3.14 reduces to

d
— [ dQ2— / vy -ndS = 0. (3.15)
—_—
£0 £0

If mass conservation has to be satisfied then the grid velocities have to be such that they
cancel the unsteady term in equation 3.15 and the Space Conservation Law (equation 2.1) is
recovered.

A similar equation can be derived for the general case of any scalar quantity, ¢, in a convective
and diffusive flow as follows. The equation for the conservation of a scalar, for a variable

density fluid on a stationary grid, is given by

d
— pgbdQ—i—/pgbv-ndS:/ny(b-ndS—i—/ qpdS) (3.16)
dt Jo s s 0

where v is the exchange coefficient and ¢4 could be either source or sink or both of ¢. By

taking the convective term to the right hand side equation 3.16 becomes

d
— pgbdQ:/’qub-ndS—//xbv-ndS—i—/q¢dQ. (3.17)
dt Jo s s Q
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By applying Gauss’s divergence theorem to express the surface integrals as volume integrals,

equation 3.17 becomes

CZ ped§) = /V (vV¢)dQ — /v p¢v)dQ+/q¢dQ /S¢dﬂ (3.18)

where Sy = V- (7Vé — ppv) + ¢4. On a stationary grid, Ccll? = 0, the unsteady term becomes
d d(p9)

dQ) = dQ) | ——=. 3.19

it Jyron=([0) 5 319

Thus equation 3.18 can be written as:

< /Q dQ) % = /Q Spd€ (3.20)

which gives the rate of change of the quantity, p¢, as:

d(pd) _ Jgo Sed?
dt  [d2

(3.21)

Assuming that the same flow, as the one above on stationary grids, is now being solved on
moving grids the equation for the conservation of a scalar for a fluid, on a grid moving with

a non-zero velocity, is given by

d

pr pgbdQM—i—/p(b(v vp) - ndSy = /FV(b ndSM+/q¢dQM (3.22)

where the subscript M refers to a moving grid. By applying Gauss divergence theorem as
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above, equation 3.22 can be written as

d
—_ p¢dQM — / p¢Vb . ndSM = / S¢dQM. (323)
dt Jo S Q

The quantity, Sy, at any given point in the flow field, is a property of the vector (velocity)
and scalar fields under consideration, and thus is the same on both moving and stationary
grids. For example, the gradient of a vector field is a property of the vector field and at any
given point is equal to the derivative, of the particular vector field under consideration, in
direction of the maximum rate of change of the vector field at that point. Hence the gradient
is independent of the coordinate system used for its evaluation. Since the same flow, as the
one on stationary grids, is being considered, the rate of change of the quantity, p¢, should
be independent of the grid velocity, vy, and should be the same as that on a stationary grid,

and thus it is given by an expression analogous to equation 3.21 as:

dpd)  Jo Ssdum
d [qdQ

(3.24)

Comparing equation 3.23 with equation 3.24 shows that, for the rate of increase of the
quantity, p¢, on moving grids, to be the same as that on stationary grids, the following

relation should be satisfied

d d
pr ngbdQM—/Spgbvb-ndSM = </Q dQM> % (3.25)

Failure to satisfy this relation can introduce artificial sources or sinks in equation 3.24 and

could lead to an erroneous value of %. The space conservation law can be shown to be a
special case of equation 3.25 as follows. The equation corresponding to the conservation of

mass is obtained by substituting, ¢ = 1, in the above equations for a general scalar, in which
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case equation 3.25 is given by

d dp
pr deM /pvb ndSy = </ﬂ dQM> e (3.26)

Further, for a constant density fluid, equation 3.26 becomes

d

dt dQM /Vb ndSM =0 (3.27)

which is the Space Conservation Law (equation 2.1).
It can be shown that equation 3.25 holds for velocities too, as follows. The equation for the
conservation of momentum for a fluid in the absence of gravity, on a grid moving with a

non-zero velocity, can be written as:

7 pdeM /pvvb ndSy = /S dQr (3.28)

where the subscript M refers to a moving grid and Sy, = V - (I' — pvv), T’ being the stress
tensor. The quantity, Sy, at any given point in the flow field, is a property of the vector
(velocity) and scalar (pressure and temperature) fields under consideration and is same on
both moving and stationary grids (assuming that the same flow is being solved for on both
grids). Equation 3.25 can be derived, for ¢ = v, following the same arguments as above from
equation 3.28 and its counterpart on stationary grids.

Thus, on moving grids, there is a conservation equation corresponding to each governing
equation, which has to be satisfied. When one of these conservation equations is not satisfied
artificial sources or sinks may accumulate, in the corresponding governing equation, and spoil

the solution.
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3.2.2.4 No Unique Grid Velocity

As discussed in section 3.2.2.3, on moving grids, equations 3.25 have to be satisfied simulta-

neously for all conserved variables in the flow under consideration.

d d
— [ popdQd — / povy - ndS = </ dQ) m ;0 =1u,v,w,¢,T,Y; (3.29)

where ¢ is 1 for the continuity equation, v for the momentum equation, c,T" for the energy
equation and Y; for the mass fraction equation.

However, since ¢ can take arbitrary values (at any given point it can be any one of 1, u, v, w, ¢, T
or Y; depending on the equation) a unique grid velocity, v, which satisfies these equations
simultaneously cannot exist. The concept that there exists, at each grid-point, a unique grid
velocity and thus a unique mass flux contribution from moving grids which is the same for
all the governing equations has to be abandoned. Instead, the convective flux contribution
from moving grids, has to be calculated from equations 3.25 where ¢ takes a value depending
upon the governing equation to which it contributes.

The convective flux contribution from moving grids can be directly calculated from equation

3.29 as follows:

d d
/pgbvb -ndS = —/ ppdS) — </ dQ> m ;0 =1u,v,w,c,T,Y;. (3.30)

3.2.2.5 Effect of Grid Movement on the Pressure-Correction Equation

If the continuity equation (equation 2.2) is discretized in a manner consistent with the SCL
equation then, for incompressible flows, the unsteady term and the contribution of the grid

movement to the mass fluxes cancel each other

d d
— de+/p(v—vb)-ndS:p[—/dQ—/vb-ndS} +/,0v-ndS (3.31)
dt Jo s dt Jo s s

SCL
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and the continuity equation reduces to

/ pv-ndS =0 (3.32)
S

which is the same as the continuity equation on stationary grids for incompressible flows.
Thus for present incompressible flow formulation grid movement does not effect the pressure-

correction equation.

3.2.2.6 Adjustment of Mass Flux at Outflow

Apart from the mass inflow at the inlet boundary there is a net mass flux into the gas-
phase due to the vaporization of the droplet and due to mass flux caused by the movement
of the boundaries of the gas-phase computational domain. However, the pressure-correction
equation cannot ensure a net conservation of mass over the computational domain because as
seen above for incompressible flows the continuity equation (equation 3.32) does not involve
grid velocities (or equivalently the mass flux caused by the grid movement). Thus mass
conservation has to be enforced at the boundaries of the computational domain. This is
done by adjusting the net mass outflow to be equal to the net mass inflow as follows. The
total mass inflow m;, into the computational domain is calculated by summing up the mass
flux at the inlet boundary and mass flux due to the movement of the gas-phase domain
boundaries. Similarly, the total mass outflow my,; is calculated by summing up the mass
flux at the outlet. Then the velocities at the outlet boundary are adjusted such that the
difference between total mass inflow and total mass outflow, m;, — Moy, is distributed in a
weighted manner (corresponding to the profile of m,;) at the outflow boundary.

Mass is conserved, in the present study, in the liquid-phase because the rate of decrease of
droplet volume is calculated from the rate of evaporated mass (see section 3.4.2) and thus
the net mass outflow, due to vaporization, from the liquid-phase computational domain is

equal to the net mass inflow, due to the movement of the liquid-phase boundaries.
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3.2.3 The Multigrid Technique

The full approximation scheme (FAS) multigrid method used in the thesis is described below.
In this scheme the full approximation to the fine-grid solution is computed on coarse grids.
On a given grid, with spacing h, the intermediate solution to equation 3.7, obtained after m

outer iterations, satisfies the following equation

[ARTHon' s = {5} = {Ry'} (3.33)

where {R}"} is the residual vector after m iterations. This solution is improved (by reducing
low frequency errors) by iterating on a coarser grid with spacing 2h. The variables, ¢},
and residuals, R}, on the fine grid (with spacing h) are transferred to the coarse grid (with

spacing 2h) by a suitable restriction operator

Gop, = I (3.34)

where [ 2’1 is the restriction operator and (5% are the restricted variables on the coarse grid.
The coefficient matrix, [Asy], and the source term, {Say}, on the coarse grid are then calcu-
lated as usual using the restricted variables, &2;1, and other quantities based on restricted fine
grid solution. The equations which are solved on the coarse grid provide a correction to the
fine-grid solution. Thus, to ensure that equations on the coarse grid are identically satisfied

when the residuals on the fine grid are zero, a correction is added to them

[Agn]{don} — {Son} = [Aon){dan} — {Son} — {Ron} (3.35)

where gz@zh is the full approximation to be computed. The coarse grid coefficient matrix,
[Agy], and source term, {Sop}, are based on ¢op,. Initially, for the first coarse grid iteration,
Ao, = Agp ) Sop = Sy, and (i% = (5%. The first two terms on the right hand side of
equation 3.35 constitute the correction term. If the fine grid residual is zero, the coarse

grid equation (equation 3.35) will be identically satisfied and the coarse grid approximation
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will not change from its initial value, $an, = don. For non-zero fine grid residuals the coarse
grid approximation, ban, will change from its initial value, dop,, and after some iterations the

coarse grid approximation is used to calculate the correction by which b9, has improved

Dop, = Gon — ban. (3.36)

This correction is prolonged from the coarse grid to the fine grid using an appropriate pro-

longation operator

On = I, do, (3.37)

where Igh is the prolongation operator and the fine grid solution, ¢}*, is updated by adding
the correction, ¢;L, to it. Usually more than two grid levels are used, staring at the finest
grid level the above described procedure is recursively repeated to move through the grids
until the coarsest grid is reached (restriction) and then up again until the the finest grid
level is reached (prolongation). This strategy of moving through the grid levels constitutes a
V-cycle. A few such cycles are carried out at each time step until the convergence criteria are
satisfied. Trilinear interpolation (see Press et al. 1992) is used for restriction and prolongation
of variable values. The restricted fine-grid residuals (and mass fluxes through CV faces) on
the coarse grid are the sum of the residuals (and the mass fluxes through CV faces) of the
corresponding fine grid CVs. The mass fluxes on the coarse grid are corrected by using the
difference, u; — w;. If the fine grid mass fluxes satisfy the continuity equation so will the
initial coarse grid mass fluxes and for a converged fine grid solution (u; = u;) the correction
to the coarse grid mass fluxes will be zero. Since the pressure source term is linear, the
coarse-grid pressure variable becomes, p, = p — P, and initially the pressure variable on the
coarse grid starts with zero (p = p initially). Thus pressure is not restricted to the coarse
grid, instead the coarse grid pressure-correction equation gives a correction for the fine grid
pressure correction. Additionally, care must be taken that boundary conditions are treated

in a consistent manner on all grids.
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3.2.3.1 Application of Multigrid Technique to Droplet Vaporization

Numerical simulation of droplet vaporization and ignition is a computationally intensive
problem often tractable only on supercomputers. Convergence acceleration techniques like
multigrids, if applied to this problem, can offer large savings of computational resources. One
possible approach for implementing multigrid technique on moving grids is to keep the grid
distortion constant during the multigrid cycles. To be more specific at each time step the
grid is distorted and iterations are carried out, which may include multigrid cycles, without
further distortion until convergence (one cycle) and then the grid distortion is updated and
the process is repeated again. A few such cycles can be performed during each time step. This
is not very attractive for the problem being studied here since the grid distortion depends
strongly on the flow field and evolves dynamically during the solution and thus keeps changing
from one iteration to the next unless convergence is obtained.

The multigrid technique described above is applied to the problem of droplet vaporization and
combustion with a few modifications. These modifications account for the grid movement,
during multigrid cycles, associated with droplet vaporization and for the consistent treatment
of the interface boundary conditions which involve gradients on both sides of the gas-liquid

interface.

3.2.3.2 Treatment of Secondary Mass Flow due to Grid Movement

In the sequential decoupled solution method adopted here, the convective fluxes are usually
linearized using the Picard iteration approach as described by equation 3.4 in section 3.1.1.2.
Usually when using this method on stationary grids mass fluxes across CV boundaries are
calculated at the beginning of each iteration (using values from the previous iteration) and
these mass fluxes are used for assembling the pressure-correction equation. These mass fluxes
are then corrected after the solution of pressure-correction equation and the corrected mass
fluxes are used for the discretization of the convective fluxes in momentum and scalar trans-

port equations.
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However, on moving grids the motion of CV boundaries leads to a secondary mass flow and
thus the mass fluxes across the CV boundaries have a contribution from the grid movement,
— Js pvi-ndS, in addition to the mass flow due to the bulk motion of the fluid, [ pv - ndS,
in equations 2.2, 2.3, 2.5 and 2.6. Since, for incompressible flows, the pressure-correction
equation remains unchanged due to grid movement (i.e. does not involve the secondary mass
flow contribution from the grid movement to the mass fluxes, see section 3.2.2.1) the following
practice is usually adopted (Demirdzi¢ and Perié¢, 1990). At the beginning of each iteration
mass fluxes are calculated using only the mass flow due to bulk fluid motion, |, g PV - nds,
to assemble the pressure correction equation and after the solution of the pressure-correction
equation and subsequent correction of mass fluxes, the secondary mass flow contribution
from the grid movement, — |, g pvp-ndS, is added to the corrected mass fluxes so that when
they are used for the discretization of convective fluxes in momentum and scalar transport
equations the contribution from the grid movement is included.

The above mentioned practice of adding the secondary mass flow contribution from the grid
movement, — |, ¢ PV -ndS, to the corrected mass fluxes on moving grids entails caution when
multigrid technique is used. In the multigrid procedure the mass fluxes on the coarse grid
are not directly calculated but instead are obtained by restricting the fine grid mass fluxes
(from the previous iteration) to the coarse grid, by summing up the mass fluxes through
all the fine grid CV faces making up the coarse grid CV face. The fine grid mass fluxes
and thus the restricted mass fluxes will have the secondary mass flow contribution from
the grid movement (— |, PV - ndS ). While assembling the pressure-correction equation on
the coarse grid, caution must be exercised to make sure that the restricted mass fluxes
thus obtained do not include the secondary mass flow contribution from the grid movement
(- /. 5 PVy - ndS), however, while discretizing convective fluxes in the momentum and scalar
transport equations the corrected restricted mass fluxes (obtained after the solution of the
pressure-correction equation) should include the secondary mass flow contribution from the
grid movement (— [4pvy - ndS). If the secondary mass flow contribution from the grid

movement (— [ pvy - ndS) is added to the source term instead (rather than to the mass
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fluxes) then the procedure is identical to that on a stationary grid in the following sense. The
fine grid mass fluxes can be directly restricted and the restricted mass fluxes can be used
to assemble the pressure-correction equation. The convective fluxes in the momentum and
scalar transport equations can then be discretized using the corrected restricted mass fluxes

obtained after the solution of the pressure-correction equation.

3.2.3.3 Change in Geometry due to Grid Movement

Grid coarsening effects the approximation of the underlying geometry. For example, in a
two-dimensional plane, if a n—sided regular polygon is used to approximate a circle, then
the errors in the calculation if its surface area depends on n. The errors in calculated surface
area can be decreased by increasing n. Since the calculation of grid distortion depends on
the properties of the underlying geometry (in this study the volume and surface area of the
droplets in equation 3.48) a small difference in the approximation of such properties, between
the coarse and fine grids, can cause the grid distortion calculated on the coarse grid, using
initial (restricted) variable values, to be different from the one calculated on fine grid even
for a converged solution. Further for a non-converged solution the grid distortion changes
for each iteration of the restriction cycle and the underlying geometrical properties (like the
interpolation factors used to determine cell face values) keep changing from their initial value.
To ensure that a converged fine grid solution is not changed in case of small differences in grid
distortion between the fine and coarse grids, the coefficient matrix, [121%], and the source term,
{So}, in equation 3.35 are updated to reflect the change in grid distortion only. Thus for
each iteration of the restriction cycle the coefficient matrix, [Ayy], and the source term, {Sa,},
are recalculated using the restricted values of velocities, pressures, mass fluxes, temperatures,
concentrations etc. in such a way that, [Asp] and {Soy}, differ from their initial value only
because of the change in the underlying geometry if any.

This method will ensure that if the restricted fine grid residuals,{ﬁgh}, in equation 3.35 are
zero, then during any iteration of the restriction cycle, ¢or, = don, [Agh] = [Aap], {Sgh} =

{Sgh}, and the coarse grid approximation will not change from its restricted value even if the
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grid distortions on the coarse and fine grids are different from each other.

Further, while prolonging the corrections from the coarse grid to the fine grid the interpolation
factors corresponding to the the first iteration of the restriction cycle are used. If the solution
on a grid with spacing, h, is restricted to a coarser grid with spacing, 2h, and after a few
relaxation sweeps the coarse grid spacing changes from 2h to 2h" then the correction to the
fine grid solution is prolonged from 2h to h neglecting the change is coarse grid spacing during
the restriction cycle.

This prolongation from 2h to h will ensure that small differences in calculated values of
grid distortion between the fine and coarse grids will not change a converged value of grid

distortion on the fine grid.

3.2.3.4 Treatment of Interface Boundary Conditions

Since the boundary conditions at the interface of the droplet and the gas phase involve gra-
dients (see for example equation 2.8) care must be taken to avoid inconsistency on coarser
grids. The reason for possible inconsistency is the same as that for the boundary conditions
at the symmetry plane (which also involve gradients) and can arise because, in general, a re-
stricted variable, &, will have an arbitrary gradient at the boundary and thus will not satisfy
either the zero gradient condition at the symmetry plane, or, for example, the continuity of
stress condition at the interface. Thus it must be ensured that the restricted variables, gg,
at the interface satisfy the boundary conditions by applying boundary conditions to ¢. This
can be easily done for the velocity boundary conditions, however, the coupled nature of the
conservation of energy boundary condition at the interface poses additional problems. The
velocity boundary conditions (equations 2.7 and 2.8) are not coupled to the mass flux due to
vaporization since, 1, does not appear in equations 2.7 and 2.8. However, m, appears in the
conservation of energy boundary condition (equation 2.11) .

In a problem involving phase change, such as the one under consideration, the rate of change
of mass undergoing phase change (and thus the grid movement) is coupled to the interface

temperature distribution. This is a two-way coupling in which the interface temperature dis-
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tribution depends on the rate of mass undergoing phase change which in turn depends on the
interface temperature distribution. For the droplet vaporization problem under consideration
this coupling is brought through by the conservation of energy condition (involving rate of
mass vaporization and temperature distribution at the interface) together with the conditions
of conservation of species (involving fuel concentration distribution at the interface) and of
phase equilibrium (involving fuel concentration as well as temperature distribution at the in-
terface) which are implemented as boundary conditions at the interface (equations 2.11, 2.12
and 2.13) and must always be satisfied. Owing to this coupling a given grid distortion (or
rate of mass vaporization) corresponds to a specific interface temperature distribution and
any change in the former will cause a change in the latter and vice-versa. Ensuring that the
boundary condition for the conservation of energy (equation 2.11) holds at the interface on
the coarse grid for the restricted variables, &, requires the determination of a restricted inter-
face temperature distribution which along with the corresponding grid distortion predicted
for this interface temperature distribution satisfies this boundary condition. Determination of
such an interface temperature distribution involves the simultaneous solution of the equation
of energy conservation together with equations of mass conservation and phase equilibrium
at the interface (equations 2.11, 2.12 and 2.13). An iterative solution procedure based on
bisection method is used to solve these equations for the initial restricted interface temper-
ature distribution on the coarse grid. In the algorithm for the bisection method the upper
and lower limits of temperature are determined by the initial droplet temperature and the
liquid fuel boiling temperature respectively. An initial estimate of the interface temperature

is iteratively improved until equations 2.11, 2.12 and 2.13 are simultaneously satisfied.

3.2.3.5 Evaluation of Pressure during Multigrid Restriction Cycle

During the multigrid restriction cycle, the fine grid pressure, p, is not restricted to the
coarse grid but instead the fine grid pressure correction, p/ = p — p, is directly used (see
section 3.2.3). Determination of fuel mass fraction at the interface requires the evaluation

of fuel mole fraction which is determined by assuming phase equlibrium to exist at the
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interface. Evaluation of fuel mole fraction in the gas phase at the interface requires the
value of pressure at that point (equation 2.13). On coarse grids, equation 2.13 requires the
coarse grid approximation of pressure, p, at a point. Thus in order to calculate the fuel mole
fraction (and mass fraction) on coarse grid during restriction cycle the restricted pressure, p,

is determined and the pressure at a point is evaluated as p = p + p.

3.3 The Pressure-Correction Equation

Since there is no obvious equation for calculating pressure an equation for pressure-correction
is derived by imposing the continuity constraint. The pressure-correction equation is con-
structed from the discretized momentum and continuity equations using a modified variant of
the SIMPLE algorithm. On non-orthogonal grids with a colocated variable arrangement the
modified algorithm avoids pressure-velocity decoupling. The algorithm is briefly described
in the following and more details can be found in Ferziger and Peri¢ (1996). For a given
outer iteration, during which the coefficient and source matrices are updated, the discretized

equations for velocities are of the following form

5:1%

, . gpm
A 43 Aty = St — ( b )P (3.38)
nb

*

where u;"* is the current estimate of the solution, m is the counter for outer iterations and

m=1 and velocities

S{Z‘l is the source term which is explicitly calculated. The pressure p
u™ calculated from equation 3.38 are provisional values which do not satisfy the continuity

equation and a correction is added to them.

pr=p" 4 p (3.39)
ul' = Ul + u; (3.40)
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In the original SIMPLE algorithm velocity-correction is expressed in terms of the gradient of

the pressure-correction

/ 1 (&
A 41
uz7P— 4“2 (51_1) (3 )

and the pressure-correction equation is derived from the continuity constraint which states
that the net mass flux into each CV must be zero. However, to calculate the mass flux,
velocities at cell faces are needed which are obtained by interpolation on colocated grids.
The interpolated velocities at cell faces are further modified, to yield a compact pressure-
correction equation and avoid oscillatory solutions on non-orthogonal grids, by adding the
difference between the interpolated and actual pressure gradients calculated at the cell face

(Rhie and Chow, 1983).

(c%p) _@] - (3.42)

where the overbar denotes interpolated values. The cell face velocity-correction is expressed

— 1
ufe = ("), — AL (Aﬁf—f'>e

1
AF

’ 1 (Spl
Uje = — <A—zg>e (5_xl> . (3.43)

The mass fluxes calculated using the interpolated velocity do not satisfy the continuity equa-

in terms of the interpolated values of the coefficients instead of equation 3.41.

tion and their sum gives a mass source. In order to satisfy the continuity constraint for each
CV the mass fluxes are corrected by using the velocity-correction expressed in terms of the

gradient of the pressure-correction (equation 3.43):

> S~ (0299), (5 ) (i%) 0 (3.44)

C

where ¢ stands for a CV face in the east, west, north, south, top and bottom directions and
the summation is implied over all these faces. Equation 3.44 when written for all the faces

of all the CVs gives an equation for pressure-correction, .
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3.4 Implementation of Boundary Conditions

Usually, the boundaries are not aligned with the coordinate directions (i, j, k) on non-orthogonal
grids and care must be taken while implementing the boundary conditions. For implementing
boundary conditions a local Cartesian coordinate system (n,tg,s) is used, which is rotated
with respect to the coordinate directions (i,j,k) such that n is the outward unit normal
vector and tg and s are unit vectors tangential to the boundary. Implementation details of
inlet and outlet boundary conditions can be found in Ferziger and Peri¢ (1996), for the sym-
metry boundary condition in Perié¢ (1985) and are briefly summarized here. These boundary

conditions correspond to the following two cases:

e known boundary values (Dirichlet condition)

e known boundary fluxes (Neumann condition).

The first type applies to inlet boundaries where the values of all variables are known. This
condition is incorporated in the solution procedure by assigning the known values to the
boundary nodes. The second type applies to the symmetry and outlet boundaries where
the boundary flux is known. If the boundary flux is known then the boundary values are

evaluated from the discretized flux expressions.

3.4.1 Evaluation of Tangential Gradients

At the interface, implementation of the continuity of stress boundary condition equation 2.8
presents an additional difficulty because gradients in the direction of tangential velocity are
needed at the interface as described below. If the tangential direction tg is chosen to lie in
the direction of the resultant shear-force at the interface then equation 2.8 can be written in

terms of the local coordinate system (n, tg,s) as follows

Ou;  Ouy, Ouy  Ouy,
Zt — 4 " . 4
M<8n " 8t9>gint 'u<8" " atg)lmt (345)
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Implementation of equation 3.45 requires the evaluation of the gradients in the normal and
tangential directions. The evaluation of the normal gradient is described in Ferziger and
Peri¢ (1996) and Peri¢ (1985). The gradient in the tangential direction can be evaluated in
terms of the gradients along the grid-lines lying on the interface. An obvious choice would
be to use linear interpolation to evaluate this derivative in terms of the derivatives along the

grid-lines

0o oo 0
8_tg = (tg ’ tg1) 8_t1 + (tg 'tg2) a_i (3-46)

where tg, and tg, are unit vectors along the non-orthogonal grid-lines lying on the interface
and tg is the unit vector in the direction of resultant shear-force at the interface. Equation
3.46 is exact on orthogonal grids but introduces an error on non-orthogonal grids. For non-

orthogonal grids the derivative is evaluated as follows

99 _ (tg - te1) — (te; - tes) (fe - tey) 00 + (e tga) — (e bes) [ty te1) 00 . (347)
Otg 1— (tg, 'tg2)2 Otg1 1— (tg, 'tg2)2 Otg2

Equation 3.47 reduces to equation 3.46 for orthogonal grids (tg, - tg, = 0).

3.4.2 Evaluation of Grid Distortion and Interface Motion

In the present study droplets are assumed to remain spherical in shape throughout their
life-times. This assumption means that the kinematic condition (used for interface tracking)
is identical at all points on the interface and the problem of determining interface motion
reduces to finding out the droplet diameter after grid movement. The droplet diameter after
distortion, d"™“", is calculated by requiring that the change in droplet mass, due to a change

in its volume, is equal to the amount of mass vaporized from its surface.

d
= dQ = j A4
7/ /S indS (3.48)
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Failure to satisfy equation 3.48 will lead to artificial mass sources or sinks for droplets.
Since the numerical grid merely provides an approximation of the droplet volume or surface
area (which becomes better as the grid is refined but is never exact), equation 3.48 cannot be
solved directly (for example by using the formula for the volume and surface area of a sphere).
Instead one has to find out the volume of the droplet, as approximated by the numerical grid
for a given diameter, by adding up the volumes of all its individual constituent CVs. This
lack of an explicit functional relationship between volume/surface area and droplet diameter
prevents the calculation of droplet diameter directly from equation 3.48. An iterative solution
procedure based on bisection method (see for example Press et al. 1992) is used to solve
equation 3.48 for the droplet diameter. Once the new droplet diameter is known the grid
inside the droplet is moved linearly such that for each grid-point the change in radial distance

from droplet center is given by

r

dold (dnew _ dold) (3'49)

dnew

where is the droplet diameter after distortion, d°¢ is the droplet diameter before dis-

tortion and r is the radial distance of a grid-point from the droplet center. The grid in the

gas phase follows the interface motion.

3.5 Solution Algorithm

The overall solution algorithm is same for both the gas and liquid phase and can be summa-

rized as follows (a flowchart of the outer iteration procedure is shown in Figure 3.3):

e All the variables are initialized at t = ¢y by assigning them initial values (equations

2.23 and 2.24 ) and the time is advanced ¢, = to + At.

e The grid is distorted (as outlined in section 3.4.2) for the current time-level using the

previous iteration value as an initial guess and the coupled non-linear equations are
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iteratively solved for the current time-level by repeatedly carrying out the following

steps:

. An algebraic equation system (section 3.1.3) for each velocity component is obtained by
assembling the momentum equations as outlined in section 3.1. In each such algebraic
equation system values of pressure, fluid properties and velocity components other than
the one being solved for, are taken from the previous iteration and treated as known.
An improved estimate of the velocity at the current time-level is obtained by iteratively

solving these linear equation systems using the Strongly Implicit Procedure of Stone

(1968).

. Mass fluxes through CV faces are calculated using the improved estimate of the velocity
field and the pressure-correction equation is derived by requiring that mass-conservation

is satisfied (section 3.3).

. / . . . . .
. Pressure-corrections, p , are obtained by solving the pressure-correction equation, which
are then used to correct the mass fluxes, velocities and pressures as outlined in section

3.3.

. Energy and species conservation equations are discretized, in a manner similar to step
1, and solved to obtain improved estimates of temperature and mass fractions at the

current time-level.
. The fluid properties are updated.

. An improved estimate of the grid movement is calculated using equation 3.48 and the

grid is moved to fit the new boundaries (as outlined in section 3.4.2).

Steps 1 to 6 are repeated until the residual in each equation becomes sufficiently small.
When all the equations are satisfied to a specified tolerance (< 107%) the solution at
the current time-level is complete and time is advanced by another At (At =107 s) .
The solution of the current time-level serves as an initial guess for the solution at the

new time-level and the above procedure is repeated by returning to step 1.
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Chapter 4

Results and Discussion

The results of numerical calculations are discussed in this chapter. It is divided into four

major parts:

Study of the effect of introducing additional conservation laws on moving grids

Study of convergence acceleration, on moving grids, by application of the multigrid

technique to a problem involving phase change

Study of three-dimensional interaction effects between two solid spheres as a first ap-

proximation to droplets vaporization and ignition

Study of three-dimensional interaction effects between two vaporizing and igniting

droplets.

4.1 Generalization of Space Conservation Law

The effects of introducing additional conservation laws (see section 3.2.2.2), on moving grids,
was studied in a three-dimensional lid driven cavity flow. A schematic of the flow configu-
ration, along with the boundary conditions, is shown in Figure 4.1. Four different test cases

C1, C2, C3, and C4 were chosen as described in Table 4.1.
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Figure 4.1: Schematic of flow configuration

‘ Test Case ‘ Description
C1 Stationary grid calculation on Gridl
C2 Moving grid calculation in which only the SCL (equation 3.27)
is satisfied
C3 Moving grid calculation satisfying the entire set of conserva-
tion equations 3.29
Cc4 Stationary grid calculation on Grid2

Table 4.1: Description of test cases
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For all calculations, lid dimension L = 1, lid velocity w,, = 1, gas density p = 1, gas
viscosity ¢ = 0.01, thermal conductivity of gas k = 0.01, specific heat of gas ¢, = 1, wall
temperature , T,,, was varied linearly from T, =1 at t = 1 to Ty, = 0.5 at ¢t = 7 after which
T, was held constant at 0.5 (by prescribing these values the governing equations are solved
in dimensionless form with the code which discretizes the equations expressed in terms of
physical variables). This gives a Reynolds number, based on wu, and L, of 100 while the
Prandtl number varies from 1 to 2. Initial values of u, = v, = w, = 0 and T, = 1 were
prescribed in the computational domain. The time step, /At = 1 was used for all calculations
and the calculations were performed until ¢ = 14. An O—grid was generated inside the 3D
cavity using the commercial grid-generator ANSYS ICEMCFD-HEXA. The calculations on
the stationary grid (test case C'1) were carried out on Gridl, a cross-section of which is shown
in Figure 4.2. Since an O—grid is used owing to symmetry of the computational domain the
other two cross-sections are identical to the one shown in Figure 4.2. For the calculations
on moving grids (test cases C2 and (C3), grid movement was prescribed such that the grid
changed from its initial configuration, Gridl, to its final configuration, Grid2, with the rate
of change of CV volumes (or grid movement) decaying exponentially with time. Initially, the

Qtot+1_Qto

maximum rate of change of CV volume was approximately 50% (0.5 < ‘ ot <15). A

comparison of the cross-sectional view of Grid2 (obtained at ¢t = 14) with Gridl (at ¢t = 0) is

shown in Figure 4.2(b).

Variable values, at a monitoring point located at the center of the computational domain,
are compared from the three test cases. Figure 4.3 shows the evolution of the maximum
temperature and the temperature at the reference point. It is seen from Figure 4.3 that test
case C2, which satisfies the entire set of conservation equations (equations 3.29), reproduces
the solution on the stationary grid (test case C'1) exactly, while test case C'3, which satisfies

the SCL only, deviates from the stationary grid solution.

Similar observation can be made for the X — velocity components shown in Figure 4.4. The
Y — and Z—components of velocity are compared in Figure 4.5. Test case C2 reproduces the

stationary grid (C'1) results exactly until ¢ = 6 while test case C'3 again deviates from the
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stationary grid solution. There is a discrepancy, between test case C'l and C2, during the
later parts (¢ > 7) of the computations in Figure 4.5 which is explained below. Since the
grid movement decays exponentially with time and is almost negligible when ¢ > 11, one can
conclude that the deviation from the stationary grid values, during the later parts (7 > ¢ < 11)
of the computation, are not due to grid movement. Instead, unlike the temperatures or
X —component of velocity, the Y—and Z— components of velocity are quite sensitive to the
grid used for computation and the deviation occurs because of changes in the underlying
geometrical features of the grid. This is readily confirmed by carrying out computations (test
case C'4) on a stationary grid, Grid2, and comparing it with test cases C1 and C2 (shown
in Figure 4.6). It is evident from Figure 4.6 that the Y—and Z— components of velocity are
indeed sensitive to the grid used. The moving grid calculation, test case C'2, lies intermediate

of C'1 and C'4, and, shifts in proximity from C'1 to C'4 as time progresses, as expected.

To further emphasize the importance of satisfying the entire set of conservation equations
(equations 3.29) another series of computations was performed on very rapidly moving grids.
Except for the rate of grid movement the computations (i.e. the flow geometry, initial and

boundary conditions etc.) are identical to the one described above (section 4.1). The grid
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is moved from its initial configuration, Gridl, at ¢ = 0, to its final configuration, Grid3, at

t = 14. The rate of change of CV volumes again decayed exponentially with time as above

Qtot+1_Qto
ot

and the initial maximum rate of change of CV volume was such that 0.1 < < 10.
The cross-sectional views of the two grids are shown in Figure 4.7 for comparison. It can be
seen from Figure 4.7 that the configuration of the grid changes considerably. Since most of
the grid movement happens during the first few time-steps the rate of grid movement is very

rapid. Figure 4.8 shows the evolution of the maximum temperature in the computational

domain and the temperature at the monitoring point with time.

Since the wall temperature is never greater than unity, 7, < 1, and the initial temperature,
T, = 1, the maximum temperature in the computational domain should never exceed unity.
An inspection of the maximum temperatures in Figure 4.8(a) shows that failure to satisfy
the additional conservation law for temperature gives the unphysical result of temperatures
in excess of unity in the computational domain. The temperature at the monitoring point is
in bad agreement too when the additional conservation law for temperature is not satisfied
(test case C3). Test case C2, which satisfies the additional conservation law for temperature,

produces results in good agreement with those on stationary grid (test case C'1). The remark-
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ably good agreement between predicted temperatures for test cases C'l and C2 is expected

since temperature is the only unsteady variable.

Figures 4.9 and 4.10 show the evolution of velocity components, at the monitoring point,
with time, for the three test cases (C'1, C2 and C3). Test case C2 does not reproduce the
stationary grid computation, test case C'1, results exactly since the grid movement is very
rapid. However, the results for test case C2, which satisfies additional conservation law for
velocity, are much closer to the stationary grid computations, test case C'l, while those of test
case ('3, which does not satisfy the additional conservation law for velocity, are further away.
Particularly, it can be seen that for test case C'3 the difference in the Z—component of velocity
at t = 4 is approximately about 45 percent while test case C2 produces reasonable results.

The large discrepancy in the Z—component of velocity near the end of the computation is

due to its sensitivity on the grid as shown above.
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Parameter ‘ Value ‘ Parameter ‘ Value ‘

Free-stream Temperature 1250 K Initial Drop Temperature 300 K
Molecular Weight of Oxidizer 20.0 kg/mol Free-stream Pressure 10° Pa
Initial Relative Velocity of 25.0 m/s Liquid-phase Prandtl Number | 8.59

Drop

Initial Gas-phase Reynolds 100 Gas-phase Prandtl number 0.74

Number

Molecular Weight of Fuel 114.2 kg/mol | Liquid/Gas phase Viscosity 10.49
Liquid/Gas phase Specific 1.87 Liquid/Gas phase Density 251.93
Heat

Latent Heat/Specific Heat of 135.95 K Gas-phase Schmidt Number 2.36
Liquid

Table 4.2: Initial parameters used in the study

4.2 Convergence Acceleration by Multigrid

The convergence acceleration obtained by applying the multigrid technique on moving grids
is studied for an example problem of a liquid drop vaporizing in a convective gas flow. The
vaporization of a cold n-octane drop suddenly injected into a hot air stream was simulated.
Since the variation of liquid properties with temperature is not large constant physical prop-
erties are used for the liquid phase. The physical parameters used in the study are listed in

Table 4.2.

A schematic of the flow configuration, along with the boundary conditions, is shown in Figure
4.11(a). Two O—grids were generated, the first one inside the drop and the second one around
the drop. A cross-sectional view of the block structure and the grid around the drop is also
shown in Figure 4.11(b). As the droplet decreases in size due to vaporization the grid inside
and around the drop moves to account for the change in droplet size. It can be seen that the
quality of the grid (in terms of angles between grid lines) does not deteriorate much as the

drop size decreases.

The finest grid for all computations is kept same and has about 3.5 x 10 CVs. Computations
have been carried out on a single grid (hereafter designated SG), multigrid with two grid-levels
(MG 2) and multigrid with three grid-levels (M G 3). The corresponding cycle definitions are

shown in Figure 4.12. For all computations the solution for a given time step were taken to
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Figure 4.11: Schematic of flow configuration and the grid around the drop

be converged when the maximal relative residual of all equations fell below 5 x 1076, The
computations were stopped when the mass of the drop fell below 12 % of its initial value at

which point the size of the droplet becomes extremly small to allow further grid movement.

The number of outer iterations on the finest grid, required for convergence, for the single grid
(SG) and multigrid (MG 2 and MG 3), computations are shown in Figure 4.13 for different

time steps.

The oscillations in the number of outer iterations for time steps between 250 and 450 observed
in all the three calculations are believed to be due to the iterative nature of the solution
procedure as the droplet surface reaches its wet bulb temperature. The wet bulb temperature
is reached after about 450 time steps. Figure 4.13(a) clearly shows the reduction in the
number of outer iterations, required on the finest grid, when multigrid technique is used.
The difference becomes more pronounced as the number of multigrid levels increases from 2
to 3. The multigrid convergence acceleration, defined as the ratio of the number of fine grid
iterations on single grid to the number of fine grid iterations on multigrid, is also shown in
Figure 4.13(b). On an average the overall calculation speeds up approximately by a factor of

4 for multigrid with 2 grid-levels while multigrid with 3 grid-levels speeds it up approximately
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by a factor of 10. The total computational time required by multigrid with 2 grid-levels was
about half of that required by single grid and that of multigrid with 3 grid-levels was about

one-fourth of that required by single grid.

Figure 4.14 shows the residuals, of the pressure-correction equation and X —component of
momentum equation, as a function of outer iterations at time step 500 for single grid and
multigrid computations. For multigrid computations with 2 grid-levels (MG 2) the residuals
fall linearly in the beginning but after the residuals fall below a certain value they decrease
more slowly. For the multigrid computations with 3 grid-levels the residuals fall almost lin-
early at a constant rate. However, for the single grid computations, the residuals fall in a
somewhat exponential fashion whereby the residuals decrease more slowly as they get smaller.
It can be seen that if the convergence criterion is made smaller the difference between the
number of iterations required for multigrid with 3 grid-levels (MG 3) and single grid (SG)
computations will increase and very high multigrid convergence acceleration rates can be

obtained.
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For the sake of completeness the residual histories of other equations are shown in Figures
4.15 and 4.16 and they show similar behaviour as discussed for residuals in Figure 4.14. The
rate of decrease of residuals in Figures 4.15 and 4.16 is much faster than that in Figure
4.14 for all computations. The residuals in Figures 4.15 and 4.16 quickly fall below the
convergence criteria, for all computations, and thus are not the convergence rate determining
factors for this particular problem. The residuals of the pressure-correction equation fall
more slowly than those of other equations and the convergence acceleration effect is best
seen in the residual histories of the pressure-correction equation. The multigrid convergence
acceleration factors obtained in this study can be improved further by either using more than
3 grid-levels or using more refined grids or by making the convergence criterion smaller (more
restrictive). The computations presented in this study show that on moving grids, when the
grid movement is not known a priori and is implicitly calculated, the multigrid technique

can be implemented with minor modifications to obtain convergence acceleration.

4.3 Interaction between two Solid Spheres in a Convective Flow

A detailed study is performed to assess the ability of the code to accurately simulate the
interaction between droplets. The major concern here was to see whether the interaction
effects between multiple bluff bodies is accurately reproduced by the code and whether the
introduction of more than one bluff body caused any additional computational difficulties.
For this purpose the interaction between two fixed identical solid spheres is chosen which has

been studied by Kim et al. (1993).

The schematic of the flow configuration is shown in Figure 4.17 in which the physical length
scales are non-dimensionalized using the sphere diameter D. Different conditions were studied
by varying the distance between the centers of the two spheres. Figure 4.17 shows the case
for a separation distance, S = 4.5, defined as the distance between the centers of the two
spheres normalized by the sphere diameter. Symmetry boundary condition was implemented

at the walls by prescribing zero convective fluxes of all quantities and zero normal gradients
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Figure 4.17: Schematic of the flow configuration for S = 4.5 for two cross-sectional views

of velocity components parallel to the symmetry plane (% = 0). On the spheres, the
velocities were set equal to zero. Zero-gradient boundary condition was prescribed at the
outlet boundary. At inlet a constant free-stream velocity, u., parallel to X —axis is prescribed
and all variables are given initial values of zero except at the inlet whereuw =1, v = w =p = 0.
For all calculations the sphere diameter D = 1 m, free-stream velocity u~, = 1 m/s, density

p = 1kg/m3 and viscosity u = 0.01 Ns/m? giving a Reynolds number of 100.

The length of the first row of cells in the immediate vicinity of the sphere surface was about
0.005D. The solution was tested by varying the location of the outflow boundary. When the
outflow boundary was moved from 50D to 100D the drag coefficient changed by 0.92 percent

for a Reynolds number, based on sphere diameter of 100.

4.3.1 Wake Structure

The minimum distance between the two spheres occurs in the X — Y symmetry plane and
hence the interaction between them will be strongest in this plane. The characteristics of
the wake in this plane are presented. Figure 4.18 shows the streamline pattern around a

single sphere in the X —Y plane at a Reynolds number of 100 (see Johnson and Patel, 1999).
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Figure 4.18: Streamline patterns in the X — Y plane at a Reynolds number of 100.

It is well known that the flow past a single sphere at this Reynolds number is steady and
axi-symmetric, the stagnation point is located on the axis of symmetry and two identical

counter-rotating vortices are seen in the wake.

Figure 4.18 also shows the streamlines around the bottom sphere in the X — Y plane at
a Reynolds number of 100. The pattern is similar for the top sphere too. The separation
distance between the two spheres is S = 4.5. A streamline pattern quite different from that
of the single sphere axi-symmetric case is obtained. Although two counter rotating eddies
can still be seen but both eddies are now smaller than those of axi-symmetric flow. The
bottom eddy is attached to the sphere while the top eddy is detached from the sphere. Also,
the bottom eddy is larger than the top eddy and thus both the eddies are not even of the
same strength. The bottom eddy is formed by fluid separating from the bottom of the sphere
and in this sense is similar to the axi- symmetric case. The top eddy on the other hand is
formed not by the separation of fluid from the sphere but rather by the entrainment of the
fluid from the lower eddy. One can also see flow across the axis of geometrical symmetry as
some fluid from the bottom passes between the detached top eddy and the sphere. Thus, the

axi-symmetry is clearly lost due to hydrodynamic interaction between the spheres. These
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Figure 4.19: Streamline patterns in the X — Y plane for bottom sphere at S = 1.5 and
Re = 100.

differences from the axi-symmetric case are because the flow region between the two spheres
is confined and becomes narrower. Thus, the fluid in this narrow region is accelerated and
consequently the pressure decreases due to acceleration. The pressure above the sphere is
lower than the pressure below the sphere and the fluid from the bottom eddy is pushed
upwards. The fluid approaching the sphere from the top left is decelerated, consequently
increasing its pressure. Thus, the pressure in the top left is more than in the bottom left,
as the fluid is not confined at the bottom of the sphere. There is a difference in pressures
between the top and bottom portions of the sphere on left side and at the center with the
pressures on the top being less. The situation will be opposite for the right side of the sphere
where the pressure on the top will be less than on the bottom side. However, due to viscous
effects the pressure does not recover fully and the pressure difference is greater on the left
side and is not quite compensated for by the pressure difference at the right, giving rise to a

repulsive force between the spheres. This is shown later in the pressure plot.

Figure 4.19 shows the streamline pattern around the bottom sphere in the X — Y plane at
a Reynolds number of 100 at a separation distance between the two spheres of S = 1.5.

The streamline pattern in this case is completely different from the axi-symmetric case and
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from that for S = 4.5. The most striking difference is that the upper eddy is absent. Fluid
separating from the top part of the sphere does not undergo recirculation whereas the portions
of fluid separating from the bottom eddy and moving upwards almost reach the top separation
point without recirculation before moving downstream. The size of the bottom eddy is also

smaller, and about half the size, compared to the S = 4.5 case.

4.3.2 Pressure and Shear Stress Distribution

Figure 4.20 shows the non-dimensional pressure coefficient, 2(p — poo)/pu2,, around the bot-
tom sphere in the X — Y plane at a Reynolds number of 100 for § = 4.5 and for S = 1.5.
The change in the relative magnitudes of the pressure between the top and the bottom of
the spheres for the two different separation distances can be clearly seen. While for § = 4.5
the top part has higher pressure, for S = 1.5 the top part has lower pressure as compared to
the bottom part. For S = 4.5 the pressure on the top of the sphere, between # = —7 and
# = —2.2 radians, is seen to be less than the pressure on the bottom and almost of equal
magnitude elsewhere. It thus contributes to a positive lift force, which tends to attract the
spheres. We focus on S = 1.5 in the following discussion. On an average the pressure is higher
on the top, contributing to a negative lift force and thus to a repulsion between the spheres.
The pressure on the bottom of the sphere is lower than that on the top between § = —3.14
and § = —2.5 radians where the angle at the front stagnation point, of the axi-symmetric
flow case, is § = —3.141 and at the rear stagnation point is § = 0. On the bottom of the
sphere the minimum pressure occurs at an angle less than § = —2.4 radians while on the top
it occurs at an angle greater than this value and is lower than the minimum pressure on the
bottom of the sphere. The maximum pressure is shifted a few degrees towards the symmetry
plane measured from 6 = —m. These observations suggest that the front and rear stagnation

points are shifted a few degrees towards the X — Z symmetry plane.

Figure 4.21 shows the shear-stress coefﬁcient,pzu—g , in the same plane as that used for the
pressure coefficient in Figure 4.20, at a Reynolds number of 100 for S = 4.5 and for S = 1.5,

respectively. As in the case for Figure 4.20 the same qualitative trend is observed for both
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Figure 4.20: Distribution of pressure coefficient

S = 4.5 and S = 1.5 separation distances with the difference in the shear forces between
the upper and lower parts of the sphere becoming more pronounced for smaller separation
distances. The change in the relative magnitudes of the shear stresses between the top
and bottom parts of the sphere with separation distance is again observed. The clockwise
direction is considered positive for the shear stress on the top of the sphere and the anti-
clockwise direction is considered positive for the shear stress on the bottom. We focus on
S = 1.5 in the following discussion. On an average, the shear stress is higher on the lower part
of the sphere compared to the upper part, particularly between 6 = —7 to § = —1.8 radians
and between § = —1.3 to § = —0 radians. For these two ranges of angles the Y —component
of the forces will be significant, while for the range of angles for which shear stress on the
upper part is higher the Y —component of the forces will be small. Thus, owing to their
inclinations the with the X —axis, the shear forces on the two lower parts have a significant
component in the Y — direction and thus contribute to both the lift (parallel to the X —axis)
and drag (parallel to the Y —axis), whereas the shear force on the top will have mostly have
a small component in the Y —direction and thus contributes mainly to the drag. Thus, the

shear forces, like the pressure forces, contribute to the repulsion of the two spheres.
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Figure 4.21: Distribution of shear stress coefficient

All the above observations are in agreement with those of Kim et al. (1993) and show that the

computer code accurately reproduces the interaction effects between multiple bluff bodies.

4.4 Single and Interacting Droplet Ignition

Ignition of a single ethanol drop and of a pair of identical ethanol droplets in tandem config-
uration was numerically simulated. The inter-droplet separation distance for the two droplet
case was three times the initial droplet diameter because strong interactions are expected
at this separation (Chiang et al., 1990). The schematic of the flow configuration and the
grid around the drop for the single drop case is similar to that of Figure 4.11. Figure 4.17
closely corresponds to the schematic for the two droplet case except that here the droplets
are placed in tandem configuration (the second droplet is placed downstream behind the
first droplet) rather than side-by-side since in this configuration the downstream droplet will
be more strongly influenced by the wake of the lead droplet. A detailed chemical reaction
mechanism with 342 elementary reactions between 38 different chemical species was used for

both the single droplet and for the interacting droplet cases (Chevalier, 1993). Transport
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‘ Parameter ‘ Value | Parameter ‘ Value ‘

Free-Stream Gas-phase Temperature | 1500 K Initial Drop Diameter 96.26 ym

Free-Stream Gas-phase Pressure 10° Pa, | Initial Drop Temperature 300 K
Free-stream Nitrogen Mass Fraction 0.76 Initial Drop Velocity 25 m/s
Free-stream Oxygen Mass Fraction 0.24

Table 4.3: Initial values used for ethanol droplets

properties in the gas phase are calculated from the kinetic theory of gases (Hirschfelder et
al., 1964) and specific enthalpies and heat capacities are calculated using the polynomial fits
of JANAF tables (Bureau of Standards, 1971). Some of the physical parameters used in the
study are shown in Table 4.3. Three O—grids were generated, the first two inside the drops
and the third one around the drops. A cross-sectional view of the block structure and the

grid around the drop is also shown in Figure 4.22.

These parameters correspond to an initial Reynolds number based on drop diameter of 100.
As the drop decelerates due to drag forces acting on it and its diameter changes due to
vaporization the Reynolds number keeps decreasing with time from its initial value of 100.
Figure 4.22 shows the variation of maximum temperature in the computational domain with
time for the two cases. If the location of the maximum slope of temperature is used as a
criterion for the ignition delay then the ignition delay for the single droplet is 2.5 ms while

for the pair of interacting droplets the ignition delay is 3.5 ms.

Figure 4.23 shows the ignition delay times from Sangiovanni and Kesten (1977) for monodis-
persed streams of 200 ym droplets as a fuction of fuel type and gas phase temperature. In
Figure 4.23 circles refer to a free stream temperature of 1452 K and a free stream velocity of
136 m/s. Squares and triangles refer to a free stream temperature and a free stream velocity
of 1363 K and 134 m/s and 1242 K and 133 m/s respectively. The experiments were carried

out at atmospheric pressure.

The ignition delay for 200 um butyl alcohol droplets at an initial temperature of 1452 K
and at a free-stream gas velocity of 136 m/s is around 3 ms for an interdroplet seperation

distance of 3 droplet diameters. This compares favorably with the present calculation of
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ignition delay time of 3.5 ms. The present computations were carried out for a lighter fuel
(ethanol) at a much higher pressure (10 bar) and both of these factors tend to decrease the
ignition delay (Aggarwal, 1998). However this effect is more than offset by the smaller free
stream velocities used in the present study (25 m/s). Due to smaller free stream velocity the
droplet vaporization rates are smaller and a longer time is required for the fuel concentration
to build up in the gas phase. Thus the smaller free stream velocity, used in the present study,

contributes to a longer ignition delay.

Figure 4.24 shows the variation of droplet radius and drag coefficients as a function of time.
No appreciable difference is found in the variation of droplet radius and drag coefficients
between the single droplet and lead droplet cases. This is expected as the downstream
(trailing) droplet will not influence the flow field upstream. The effect of droplet interaction
will be felt downstream by the trailing droplet. This is clearly seen in Figure 4.24 where
the variation of droplet radius and drag coefficients is different for the trailing droplet as
compared to the lead droplet. The radius of the trailing droplet decreases more slowly as
compared to the lead droplet suggesting lower vaporization rates due to the buildup of fuel
concentration in the wake of the lead droplet. The Reynolds number will also show the
same trend. The Reynolds number of the trailing droplet will be higher and its rate of
decrease will be slower compared to that of the leading droplet. Since the drag coefficient
over solid spheres is inversely proportional to Reynolds number it can be expected that the
drag coefficient for the leading drop will be higher than that of the trailing drop as is readily

confirmed in Figure 4.24.

Figure 4.25 shows the comparison of droplet Nusselt and Sherwood numbers as a function of
time. The difference between the leading and trailing drop Nusselt and Sherwood numbers
decreases with time suggesting that the interaction effects on heat and mass transfer rates
decrease as the droplets continue to vaporize. This is expected because as the droplets
continue to vaporize their size becomes smaller, and since the absolute distance between the
two droplets [ is held constant, the ratio of the relative distance between the droplets [/d

increases. After some time the relative distance [/d is so large that interaction effects are
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Figure 4.26: Zoomed view of contour plots of temperature for single droplet at different time
instants: top left 0.5 ms, top right 1.0 ms, bottom left 1.5 ms and bottom right 2.0 ms

negligible and the droplets behave independent of each other.

Thus it can be seen that interaction effects can cause the trailing droplet heat and mass
transfer rates to be quite different during the initial periods of its lifetime depending on the

relative distance between the leading and trailing droplets.

Figure 4.26 shows the temperature distribution in and around the droplet (for the single
droplet case) in the X — Z plane at different time instants during its initial heatup period. It
is seen that the droplet heats up quickly in about 2 ms. The temperature inside the droplet
evolves from a non-uniform distribution at 0.5 ms to a more or less uniform distribution at
at 2 ms. The temperatures inside the droplet are not exactly symmetric about the centerline

which may be due to numerical diffusion inside the droplets. In all the four time instances
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shown the highest temperatures occur in a thin layer in the rear of the droplet whereas regions
of lowest temperature are concentrated in two lobes near the front of the droplet. A large
portion of the droplet seems to be at more or less at the same temperature at any given

instant of time.

Figure 4.27 shows the temperature distribution in and around the droplets (for the interacting
droplets case) in the X — Z plane at different time instants during its initial heatup period.
The magnification of Figure 4.27 is less than the single droplet case in order to resolve both
the droplets. Overall the same trends as the single droplet case are observed here too. The
temperature of the downstream droplet is less than that of the lead droplet as its rate of heat

transfer is reduced by the wake of the latter.

Figure 4.28 shows the contour plots of temperature in the X — Z plane at the instant of
ignition for the single drop and Figure 4.29 shows the contour plots of temperature in the
X — Z plane at the instant of ignition for the interacting drops cases. The white circles

indicate the droplets.

The instant of ignition is determined from Figure 4.22 to be 2.5 ms for the single drop case
and 3.5 ms for the interacting drops case. The droplet is placed approximately at 1.0 mm
from the inlet for both cases. No appreciable difference is seen between the location of ignition
between the two cases which occurs around 30 droplet diameters downstream. However the
temperature at the ignition location for the interacting drop case is clearly higher compared
to the single drop case. This agrees with Figure 4.22 which shows that higher maximum gas

temperatures are obtained for the interacting drop case as compared to the single drop case.

Figure 4.30 and 4.31 show the distribution of temperature in the X — Z plane at 6.5 ms.
The temperatures are higher in general for the interacting droplet case as compared to the
single droplet case. This is in agreement with Figure 4.22 where the maximum gas phase
temperature or the interacting droplet case is higher than the maximum gas phase tempera-
ture for the single droplet case. It can also be seen from Figures 4.30 and 4.31 that the flame
moves closer to the droplets at 6.5 ms as compared to the instant of ignition at 3.5 ms for the

interacting droplet case (Figure 4.29) and at 3 ms for the single droplet case (Figure 4.28).
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Figure 4.27: Zoomed view of contour plots of temperature for interacting droplets at different
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Figure 4.28: Contour plot of gas temperature at ignition: single droplet
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Figure 4.29: Contour plot of gas temperature at ignition: interacting droplets
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Figure 4.31: Contour plots of gas temperature at 6.5 ms: interacting droplets
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Figure 4.32: Contour plots of OH mass fraction at 6.5 ms: single droplet
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Figure 4.33: Contour plots of OH mass fraction at 6.5 ms: interacting droplets

86



Figures 4.32 and 4.33 show the distribution of OH radical in the X — Z plane at 6.5 ms. The
white circles indicate the droplets. It can be seen from the OH radical distribution that the
flame height is bigger for the interacting droplets case as compared to the single droplet case.
In addition, the concentrations of the OH radical are higher in the interacting droplets case.
Since OH participates in the final oxidation of CO and Hs into COs and H2O, where a large
part of heat release associated with combustion occurs (Glassman, 1996), higher temperatures
are expected in the interacting droplets case. This agrees with higher temperatures found in
Figure 4.29 for the interacting droplets case as compared to Figure 4.28 for the single drop

case.

Figures 4.34 and 4.35 show the distribution of CO and Figures 4.36 and 4.37 show the
distribution of COs in the X — Z plane at 6.5 ms. The distribution of CO is notably different
as compared to that of CO3. At this instance (6.5 ms) the regions of high concentrations
of COy are further downstream of the droplets as compared to that of CO. This may be
expected since the oxidation of CO into COs is a slow reaction which consumes a lot of

energy.

CO + OH = CO, + H. (4.1)

Additionally, since both the OH and CO concentrations in the interacting droplet case are
higher than that for the single droplet case the concentrations of CO5 for the interacting
droplet case would be higher too as confirmed in Figure 4.37. This is also consistent with
the observation that the concentration of OH is also higher in the interacting droplets case

as compared to the single droplet case.

Figures 4.38 and 4.39 show the distribution of formaldehyde in the X — Z plane at 6.5 ms.
In general, higher concentrations of formaldehyde are seen in the interacting droplet case as
compared to the single droplet case. Particularly, a higher concentration of formaldehyde
can be seen between the two droplets in the interacting droplets case. This may form due

to incomplete combustion due to a higher concentration of the fuel vapour in the interacting
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Figure 4.34: Contour plots of CO mass fraction at 6.5 ms: single droplet
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Figure 4.35: Contour plots of CO mass fraction at 6.5 ms: interacting droplets
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Figure 4.36: Contour plots of CO2 mass fraction at 6.5 ms: single droplet
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Figure 4.37: Contour plots of CO5 mass fraction at 6.5 ms: interacting droplets
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Figure 4.38: Contour plots of CH2O mass fraction at 6.5 ms: single droplet
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Figure 4.39: Contour plots of CHyO mass fraction at 6.5 ms: interacting droplets
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droplets case. A higher concentration and a bigger envelope of formaldehyde is also observed
in the wake of the downstream droplet as compared to the single droplet. Since formaldehyde
is a pollutant, high concentrations of formaldehyde are undesirable and should be avoided.
When the interdroplet separation distance is small, higher concentrations of formaldehyde

are likely to occur compared to when the interdroplet separation distance is large.

91



Chapter 5

Conclusions

A numerical method has been developed to simulate droplet interaction effects during vapor-

ization and ignition using moving grids with finite volume discretization.

It is shown that SCL is just one equation, out of a set of additional conservation equations,
which have to be satisfied on moving grids. By computing identical flows on both stationary
and moving grids it is shown that when all the additional conservation equations are satisfied
the moving grid solution is identical to the stationary grid solution while neglecting all ad-
ditional conservation equations except the SCL produces erroneous results on moving grids.
This point is further emphasized by computing flows on very rapidly moving grids and show-
ing that satisfying all the additional conservation equations gives reasonable agreement with
the stationary grid solution while neglecting additional conservation equations may even pro-
duce unphysical solutions. Thus even though SCL is satisfied, by neglecting other equations
of this set, errors in the form of artificial sources/sinks may still accumulate, on moving grids,
leading to erroneous solutions for unsteady computations. In light of the above we recom-
mend using numerical methods, for moving grids, that satisfy all the additional conservation

equations.

A modified algorithm for the application of multigrid technique on moving grids was pre-

sented in which the grid movement is not known a priori and is implicitly calculated for each
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iteration at any given time-step. Problems involving phase change present additional difficul-
ties (associated with the boundary conditions) for multigrid implementation which were also
discussed. The modified multigrid technique was applied to an example problem of a liquid
drop vaporizing in a convective gas flow whereby moving grids are used to account for the
change in drop size due to vaporization. Computational results were presented to show that
on moving grids, when the grid movement is not known a prior: and is implicitly calculated,
the multigrid technique can be implemented with minor modifications to obtain convergence
acceleration.

The ability of the code to accurately simulate the interaction between droplets was assessed.
It was shown that the computer code accurately reproduces the interaction effects between
multiple bluff bodies. Combustion of a single ethanol drop and of a pair of identical ethanol
droplets in tandem configuration was numerically simulated. It was shown that interaction
effects can cause the trailing droplet heat and mass transfer rates to be quite different during
the initial periods of its lifetime. The predicted ignition delay for the interacting droplet case

compares favorably with experiments.

The computer code was developed to enable parametric studies of droplet interactions. It
allows a lot of flexibility in studying three dimensional interactions between droplets. The
number of droplets as well as the spatial arrangement of the droplets can be changed without
any modification of the code. Similarly, the fuel (chemical species of the droplets) and the
detailed chemical reaction mechanism used for a particular fuel-air mixture can be changed
easily. The code is highly optimized to run on a variety of platforms and fully parallelized on
shared memory and distributed memory architectures allowing considerable savings in com-
putational costs. The improved moving grid technique and the extended multigrid algorithm
incorporated in the code gives it a computational advantage for studying droplet vaporization

and ignition problems.

93



Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

Aggarwal, S. K. (1998): A review of spray ignition phenomena: present status and

future research. Prog. Energy Combust. Sci., 24, 565-600

Annamalai, K., Ryan, W. (1991): Evaporation of arrays of drops using the point source
method, Central States Section of the Combustion Institute Conference Proceedings, No.

91-56, 347-354

Annamalai, K. , Ryan, W. (1992): Interactive processes in gasification and combustion.

Part 1: Liquid drop arrays and clouds. Prog. Energy Combust. Sci., 18, 221-295

Aouina, Y., Gutheil, E., Maas, U., Riedel, U. , Warnatz, J. (2001): Mathematical
modeling of droplet heating, vaporization, and ignition including detailed chemistry.

Combust. Sci. and Tech., 173, 1-29

Arnone, A., Pacciani, R., Sestini, A. (1995): Multigrid computations of unsteady rotor-

stator interaction using the Navier-Stokes equations. J. Fluids. Engng., 117, 647-652

Atthasit, A., Biscos, Y. , Lavergne, G. (2003): A rectilinear droplet stream study:
Influence of lateral interaction on droplet dynamical behaviour. Nineth International
Conference on Liquid Atomisation and Spray Systems (ICLASS), July 13-17, Sorrento,

Italy

Batchelor, G. K., Green, J. T. (1972): The hydrodynamic interaction of two small

freely-moving spheres in a linear flow field, J. Fluid Mech., 56, 375-400

94



18]

[9]

[10]

[11]

[14]

[15]

[16]

[17]

Bellan, J., Cuffel, R. (1983): A theory of non-dilute spray evaporation based upon

multiple drop interactions. Combust. Flame, 51, 55-67

Bellan, J., Harstad, K., (1987): Analysis of the convective evaporation of nondilute
clusters of drops. Int. J. Heat Mass Transfer, 30, 125-136

Bureau of Standards, Washington, D. C. (1971): JANAF Thermochemical Tables, 2%

Edition.

Bohm, M., Wechsler, K., Schéfer, M. (1998): A parallel moving grid multigrid method
for flow simulation in rotor-stator configurations. Int. J. Numer. Meth. Engng., 42,

175-189

Cao, W., Huang, W., Russell, R. D. (2002): A moving mesh method based on the

geometric conservation law. SIAM J. Sci. Comput., 24, 118-142

Chen S. J., Tong, A. Y. (1988): Application of elliptic grid generation technique to the
solution of hydrodynamics and heat transfer of droplet arrays at intermediate Reynolds

numbers. Int. J. Heat Mass Transfer, 31, 1063-1072

Chevalier, C. (1993): Entwicklung eines detaillierten Reaktionsmechanismus zur Mod-
ellierung der Verbrennungsprozesse von Kohlenwasserstoffen bei Hoch- und Niedertem-

peraturbedingungen. Ph.D Thesis, Universitat Sttutgart, Sttutgart

Chiang, C. H., Raju, M. S., Sirignano, W. A. (1990): Numerical analysis of convecting,
vaporizing fuel droplet with variable properties. Int. J. Heat Mass Transfer, 35, 1307-
1324

Cornish, A. R. H. (1965): Note on the minimum possible rate of heat transfer from a

sphere when other spheres are adjacent to it. Trans. Inst. Chem. Eng., 43, T332-T333

Crumpton, P. I., Giles, M. B. (1997): Implicit time accurate solutions on unstructured

dynamic grids. Int. J. Numer. Meth. Fluids, 25, 1285-1300

95



[18] Demirdzi¢, I., Peri¢, M. (1988): Space conservation law in finite volume calculations of

fluid flow. Int. J. Numer. Meth. Fluids, 8, 1037-1050

[19] Demirdzi¢, I., Peri¢, M. (1990): Finite volume method for prediction of fluid flow in
arbitrarily shaped domains with moving boundaries. Int. J. Numer. Meth. Fluids, 10,
771-790

[20] Devarakonda, V., Ray, A. K. (2003): Effect of inter-particle interactions on evaporation

of droplets in a linear array. J. Aerosol Sci., 34, 837-857

[21] Durst, F., Schifer, M. (1996): A parallel block-structured multigrid method for the

prediction of incompressible flows. Int. J. Numer. Meth. Fluids, 22, 549-565

[22] Dwyer, H. A., Stapf, P. , Maly, R. (2000): Unsteady vaporization and ignition of a

three-dimensional droplet array. Combust. Flame, 121, 181-194

[23] Farhat, C., Geuzaine, P., Grandmont C. (2001): The discrete geometric conservation
law and the nonlinear stability of ALE schemes for the solution of flow problems on

moving grids. J. Comput. Phys., 174, 669-694

[24] Fedoseeva, N. V. (1973): Kinetics of evaporation of a droplet system. Adv. Aerosol
Phys. 3, 35-42

[25] Ferziger, J.H., Peri¢, M. (1996): Computational methods for fluid dynamics. Springer,

Berlin

[26] Fuchs, N. A. (1959): Ewaporation and droplet growth in gaseous media. Pergamon Press,
New York

[27] Geuzaine, P., Grandmont, C., Farhat, C. (2003): Design and analysis of ALE schemes
with provable second-order time-accuracy for inviscid and viscous flow simulations. J.

Comput. Phys., 191, 206-227

[28] Glassman, I. (1996): Combustion, Third Edition, Academic Press, San Diego, CA

96



[29]

[36]

[37]

Guillard, H., Farhat, C. (2000): On the significance of the geometric conservation law
for flow computations on moving meshes. Comput. Methods Appl. Mech. Engrg., 190,
1467-1482

Haywood, R. J. (1992): Dynamics and energetics of deformable evaporating droplets at

intermediate Reynolds numbers. PhD Thesis, University of Waterloo

Hirschfelder, J. O., Curtiss, C. F., Bird, R. B. (1964): Molecular Theory of Gases and
Liquids. John Wiley & Sons Inc., New York

Huang, L. J., Ayyaswamy, P. S., Sripada, S. S. (1996): Condensation on a spray of
water drops: a cell model study-I transport quantities. Int. J. Heat Mass Transfer, 39,
3781-3790

ICEM CFD HEXA from ICEM CFD Engineering, 2855 Telegraph Ave., 501, Berkeley,
CA 94705

Inuma, K. (1962): Flame propagation in liquid fuel droplet arrays with forced convetion.

Combust. Flame, 6, 127-129

Jeffrey, D. J., Onishi, Y. (1984): Calculation of the resistance and mobility functions for

two unequal rigid spheres in low Reynolds number flows, J. Fluid Mech., 139, 261-290

Johnson, T. A., Patel , V. C. (1999): Flow past a sphere up to a Reynolds number of
300, J. Fluid Mech. 378, 19-70

Kadowaki, T., Maruta, K., Kobayashi, H., Hasegawa, S., Niioka, T. (1996): Ignition

experiment on droplet matrix in microgravity. Microgravity Sci. Tech., 4, 269-274

Kamakoti, R., Shyy, W. (2004): Evaluation of geometric conservation law using
pressure-based fluid solver and moving grid technique. Int. J. Numer. Meth. Heat Fluid
Flow, 14, 849-863

97



[39] Kee, R. J., Warnatz, J., Miller, J. A. (1983): A fortran computer code package for
the evaluation of gas-phase viscosities, conductivities and diffusion coefficients. Report

SANDS83-8209, Sandia National Laboratory, Livermore

[40] Khosla, P.K., Rubin, S.G. (1974): A diagonally dominant second-order accurate im-

plicit scheme. Computer Fluids, 2, 207-209

[41] Kim, I., Elghobashi, S. E., Sirignano, W. A. (1993): Three-Dimensional Flow Over
Two Spheres Placed Side-by-Side. J. Fluid Mech., 246, 465-468

[42] Kordula, W., Vinokur, M. (1983): Efficient computation of volume in flow predictions.

AIAA J., 21, 917-918

[43] Labowsky, M. (1976): The effects of nearest neighbor interactions on the evaporation
rate of cloud particles. Chem. Eng. Sci., 31, 803-813

[44] Labowsky, M. (1977): A formalism for calculating the evaporation rates of rapidly

evaporating interacting particles. Combust. Sci. Technol., 18, 141-145

[45] Labowsky, M. (1980): Calculation of burning rates of interacting fuel droplets, Com-
bust. Sci. Technol., 22, 217-226

[46] Lafaurie B., Nardone C., Scardovelli R., Zaleski S, Zanetti, G. (1994): Modelling merg-
ing and fragmentation in multiphase flows with SURFER. J. Comput. Phys., 113, 134-
147

[47] Lehnh&user, T., Schéfer, M. (2001): Improved linear interpolation practice for finite-

volume schemes on complex grids. Int. J. Numer. Meth. Fluids, 1, 1-21

[48] Lide, D. R. (1997): CRC handbook of chemistry and physics. CRC Press LLC, New
York

[49] Mikami, M., Kato, H., Sato, J., Kono, M. (1994): Interactive combustion of two droplets

in microgravity. Twenty-Fifth Symposium (International) on Combustion 431-438

98



[50]

[51]

[52]

[53]

[54]

[55]

[56]

[59]

Morton, S.A., Melville, R.B., Visbal M.R. (1997): Accuracy and coupling issues of
aeroelastic Navier-Stokes solutions of deforming meshes, AIAA Paper97-1085, 38th
ATAA Structures, presented at Structural Dynamics and Materials Conference, Kissim-

mee, Florida, April 7-10

Mukhopadhyay, A., Sanyal, D. (1999): A study of thin-film quasisteady sphericosym-
metric combustion of multicomponent fuel droplets: part-I modelling for droplet surface

regression and non-unity gas-phase Lewis number. Int. J. Energy Res., 23, 963-977

Mukhopadhyay, A., Sanyal, D. (1999): A study of thin-film quasisteady sphericosym-
metric combustion of multicomponent fuel droplets: part-II parametric studies. Int. J.

Energy Res., 23, 979-987

Muralidhar, K., Sundararajan, T. (1995): Computational fluid flow and heat transfer.
Narosa Publishing House, New Delhi

Nobari, M. R. H., Tryggvason, G. (1996): Head-on collision of drops - A numerical

investigation. Phys. Fluids, 8, 29-42

Nobari, M. R. H., Tryggvason, G. (1996): Numerical simulations of three-dimensional
drop collisions. ATAA J., 34, 750-755

Nohara, H., Maruta, K., Hasegawa, S., Kobayashi, H., Niioka, T. (2000): Microgravity
ignition experiment on a droplet array in high-temperature low-speed airflow. Combust.

Sci. Tech., 153, 169-178

Nuruzzaman, A. S. M., Hedley, A. B., Beer, J. M. (1970): Combustion rates in self-

supporting flames on monosized droplet streams. J. Inst. Fuel, 301-310

Nuruzzaman, A. S. M., Hedley, A. B., Beer, J. M. (1970): Combustion rates in self-
supporting flames on monosized droplet streams. 13th Symposium (International) on

Combustion, 787-799

Patankar, S. V. (1980): Numerical heat transfer and fluid flow. Hemisphere Publishing

Corporation

99



[60]

[61]

[62]

[63]

Patankar, S. V., Spalding D. B. (1972): A calculation procedure for heat, mass and
momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer,

15, 1787-1806

Patnaik, G. (1986): A numerical solution of droplet vaporization with convection. Ph.D

Dissertation, Carnegie-Mellon University, Dept. of Mechanical Engineering

Peri¢, M. (1985): A finite volume method for the prediction of three-dimensional fluid

flow in complex ducts. PhD Thesis, University of London

Poinsot, T., Veynante, D. (2001): Theoretical and numerical combustion. R. T. Edwards
Inc., Philadelphia, USA

Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. (1992): Numerical

recipes in Fortran 77, Second Edition, Cambridge University Press, Cambridge

Raju, M. S., Sirignano, W. A. (1987): Unsteady Navier-Stokes solution for two vapor-

izing droplets. AIAA Aerospace Sciences Meeting, Paper 87-0300

Raju, M. S., Sirignano, W. A. (1990): Interaction between two vaporizing droplets in
an intermediate Reynolds number flow. Phys. Fluids A, 2, 1780-1796

Rangel, R. H., Sirignano, W. A. (1987): Vaporization, ignition and combustion of two
parallel fuel droplet streams, ASME/JSME Thermal Engineering Conference, 1, 27-34

Rangel, R. H., Sirignano, W. A. (1988): Unsteady flame propagation in a spray with
transient droplet vaporization, Twenth-Second Symposium (International) on Combus-

tion, 1931-1939

Renaud, F., Chauveau, C., Gokalp, I., Segawa, D., Kadota, T. (2003): Experimental
study in microgravity of the vaporization of a 3D droplet array in a high pressure and
high temperature environment. Furopean Combustion Meeting, Oct. 25-28, Orleans,

France

100



[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

78]

[79]

Reichenbach, R., Squires, D., Penner, S., S. (1962): Flame propagation in liquid-fuel

droplet arrays. 8th Symposium (International) on Combustion 1069-1973

Reiss, H. (1951): The growth of uniform colloidal dispersions, J. Chem. Phys., 19,
482-489

Rhie, C.M., Chow, W. L. (1983): A numerical study of the turbulent flow past an

isolated airfoil with trailing edge separation. ATAA J., 21, 1525-1532

Rieber, M., Frohn, A. (1995): Three-dimensional Navier-Stokes simulation of binary

collisions between drops of equal size. J. Aerosol Sci., 26, S929-S930

Samson, R., Deutch, J. M. (1977): Exact solutions for the diffusion controlled rate into

a pair of reacting skins. J. Chem. Phys., 67, 847

Sangiovanni, J. J., Kesten, A. S. (1975): A theoretical and experimental investigation
of the ignition of fuel droplets. Joint meeting of CSS/CI and WSS/CI, San Antonio,
TX, April 21-22

Sangiovanni, J. J., Kesten, A. S. (1977): Effect of droplet interaction on ignition in
monodispersed droplet streams. 16th Symposium (International) on Combustion, 577-

992

Sangiovanni, J. J., Dodge, L. G. (1978): Observations of flame structure in the composi-
tion of monodispersed droplet streams. 17th Symposium (International) on Combustion,

455-465

Sanyal, D., Sundararajan, T. (1992): An analytical model of spray combustion for

slowly moving fuel drops. Int. J. Heat Mass Transfer, 35, 1035-1048

Sato, J., Konishi, K., Okada, H., Niioka, T. (1986): Ignition process of fuel spray
injected into high pressure high temperature atmosphere. Twenty-First Symposium

(International) on Combustion, 695-702

101



[80]

[85]

[86]

Schéfer, M., Meynen, S., Sieber, R., Teschauer, I. (2000): Multigrid methods for coupled
fluid-solid problems. presented at Furopean Congress on Computational Methods in

Applied Sciences and Engineering ECCOMAS 2000, Barcelona, September 11-14

Schéfer, M., Teschauer, I. (2001): Numerical simulation of coupled fluid-solid problems.

Comput. Methods Appl. Mech. Engrg., 190, 3645-3667

Silverman, I. , Sirignano, W. A. (1994): Multi-droplet interaction effects in dense
sprays. Int. J. Multiphase Flow, 20, 99-116

Sommer, H. T. (1986): Ignition studies of fuel droplet streams. Twenty-First Sympo-

sium (International) on Combustion, 641-646

Sorensen, K. A., Hassan, O., Morgan, K., Weatherill, N. P. (2003): A multigrid ac-
celerated time-accurate inviscid compressible fluid flow solution algorithm employing

mesh movement and local remeshing. Int. J. Numer. Meth. Fluids, 43, 517-536

Sripada, S. S., Ayyaswamy, P. S., Huang, L. J. (1996): Condensation on a spray of
water drops: a cell model study-I flow description. Int. J. Heat Mass Transfer, 39,
3781-3790

Stapf, P., Dwyer, H. A., Maly, R. (1998): A group combustion model for treating reac-
tive sprays in I.C. Engines. Twenty-Seventh Symposium (International) on Combustion,

The Combustion Institute, Boulder, CO, 1857-1864

Stone, H. L. (1968): Iterative solution of implicit approximations of multidimensional

partial differential equations. SIAM J. Numer. Anal., 5, 530-558

Tal, R., Lee, D. N., Sirignano, W. A. (1983): Hydrodynamics and heat transfer in
sphere of particle asssemblages - cylindrical cell models. Int. J. Heat Mass Transfer,

26, 1265-1273

Tal, R., Lee D. N., Sirignano W. A. (1984): Heat and momentum transfer around a
pair of spheres in viscous flow. Int. J. Heat Mass Transfer, 27, 1953-1962

102



[90]

[96]

[99]

Tal, R., Sirignano, W. A. (1984): Cylindrical cell model for the hydrodynamics of

particle assemblages at intermediate Reynolds numbers. AIChE J., 28, 233-236

Tamura, Y., Fujii, K. (1993): Conservation law for moving and transformed grids.
AIAA 93-3365-CP, presented at AIAA 11 th Computational Fluid Dynamics Confer-
ence, Orlando, Florida, U.S.A., July 6-9 1993.

Thomas, P.D., Lombard, C.K. (1979): Geometric conservation law and its application

to flow computations on moving grids. ATAA J., 17, 1030-1037

Thompson, J. F., Warsi, Z. U. A., Mastin, C. W. (1995): Numerical grid generation:
Foundations and applications. Elsevier Science Publishing Co. Inc. (also available at

thompson http://www.erc.msstate.edu/publications/gridbook/)

Tishkoff, J. (1979): A model for the effect of droplet interactions on vaporization. Int.

J. Heat Mass Transfer, 22, 1407-1415

Trulio, J.G., Trigger, K.R. (1961): Numerical solution of the one-dimensional hydro-
dynamic equations in an arbitrary time-dependent coordinate system. University of

California Lawrence Radiation Laboratory Report UCLR-6522

Tsai, J. S., Sterling, A. M. (1990): The application of an embedded grid to the solution
of heat and momentum transfer for spheres in a linear array. Int. J. Heat Mass Transfer,

33, 2491-2502

Twardus, E. M., Brzustowski (1977): The interaction between two burning fuel droplets.

5th Int. Symposium on combustion processes, Krakow, Poland

Umemura, A., Ogawa, A., Oshiwa, N. (1981): Analysis of the interaction between two

burning droplets. Combust. Flame, 41, 45-55

Umemura, A., Ogawa, A., Oshiwa, N. (1981): Analysis of the interaction between two

burning droplets with different sizes. Combust. Flame, 43, 111-119

103



[100] Umemura, A. (1994): Interactive droplet vaporization and combustion: Approach from

asymptotics. Prog. Energy Combust. Sci., 20, 325-372

[101] Xiong, T. Y., Law, C. K., Miyasaka, K. (1985): Interactive vaporization and combus-
tion of binary droplet system. Twentieth Symposium (International) on Combustion,

Combustion Inst., Pittsburgh, PA, 1781-1787

[102] Zhang, J. , Fan, L. S. (2002): A semianalytical expression for the drag force of an
interactive particle due to wake effect. Industrial €& Engineering Chemistry Research,

20, 5094- 5097

[103] Zung, J. T. (1967): Evaporation rates and lifetimes of clouds and sprays in air - The
cellular model. J. Chem. Phys., 46, 2064-2070

104



Eidesstattliche Erklarung

Ich erkldre hiermit, dass ich die vorliegende Arbeit selbst verfasst und mich dabei keiner

anderen als der von mir ausdriicklich bezeichneten Quellen und Hilfen bedient habe.

Heidelberg, den 26.08.2005

105



