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Abstract 
 
 
Ets1 and USF1 are transcription factors, which were shown to play a role in 

regulation of transcription on different viral and cellular promoters.  
Ets1 has a conserved 85 amino acids DNA binding domain termed as ETS 

domain surrounded by two autoinhibitory regions. Autoinhibition is released when 
Ets1 is bound to the DNA. 

Ets1 binds cooperatively to two Ets1-binding sites located on the human 
stromelysin-1 promoter and transactivate it (Baillat et. al., 2002). Stromelysin-1 
(matrix metalloproteinase-3) is a major matrix metalloproteinase of connective tissue 
and is important for tissue remodeling during tissue development, growth, and wound 
repair (Sternlicht et. al., 1999). Since, stromelysin-1 misregulation can lead to 
pathological processes development and the Ets1 protein is involved in regulation of 
stomelysin-1 promoter, understanding of the mechanism of Ets1/Ets1/DNA complex 
formation is of interest. 

Small angle X-ray scattering (SAXS) model for Ets1/Ets1/DNA complex was 
built. The complex was crystallized. The data set was collected to a resolution of 2.58 
Å. The structure was solved by molecular replacement. SAXS model is in a good 
agreement with crystal structure.  

 
 
The distal enhancer region of the human immunodeficiency virus 1 (HIV1) 

long terminal repeat LTR (-130 to -160) is known to be important for transcriptional 
activity and viral replication in T cells (Sieweke et. al., 1998). The DNA sequence of 
this region contains binding sites for the transcription factor USF1 (E-box) and for the 
transcription factor Ets1.  

It has been shown that besides the E-box in the distal enhancer, USF1 can bind 
to two initiator-type elements near the transcription start site of the HIV1 LTR (Du et. 
al., 1993). Based on spectroscopic and biochemical evidence it has been proposed that 
USF1 can form homotetramers when bound to two recognition sequences (Ferre-
D’Amare et. al., 1994). It was proposed that formation of the bivalent homotetramer 
may lead to the DNA looping recruiting USF1 and other factors from the distal region 
of the promoter to the initiator element. 

USF1 and USF1/DNA complex were investigated in SAXS experiments. Low 
resolution ab initio model of USF1 monomer was reconstructed using GASBOR 
program. The tentative model of USF1/DNA bivalent homotetramers was built. It 
displayed  the dimers arrangement similar to the crystallographic structure of Myc-
Max heterotetramer (Nair et. al., 2003).  

In order to validate tetrameriation two other methods were used. They were 
fluorescence resonance energy transfer (FRET) and rotary shadowing electron 
microscopy (EM). USF1 tetramerization was not proved by FRET experiment and by 
rotary shadowing EM.  

Based on yeast one-hybrid screen assay the E-box binding protein USF1 was 
identified as an interaction partner of Ets1 (Sieweke et. al., 1998). The interaction 
between USF1 and Ets1 was claimed to be important for full transcriptional activity 
of HIV1 LTR in T cells.  Structural studies on Ets1/USF1/DNA ternary complex were 
done. Unfortunately, no crystals were obtained.  
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Zusammenfassung 
 
Ets1 und USF1 sind Transkriptionsfaktoren, die in der Regulierung der 

Transkription unter der Kontrolle von viralen und zellulären Promotoren eine 
wichtige Rolle spielen. 

Ets1 besitzt eine 85 Aminosäuren lange konservierte Domäne, die eine DNA 
Bindedomäne ist und Ets Domäne genannt wird. Diese ist von zwei autoinhibierenden 
Regionen umgeben. Die Autoinhibition findet statt, wenn Ets1 an DNA gebunden ist.   

Est1 bindet an zwei Ets1-Bindemotive auf dem Stromelysin-1 Promotor und 
und bedingt so eine Transaktivierung. Stromelysin-1 (auch genannt Matrix-
metalloproteinase-3) gehört zu den Matrix Metalloproteinasen, die wichtige Rollen 
bei  Gewebegenerierung, Wachstum und Wundheilung (Sternlicht et. al., 1999) 
spielen. Weil die Missregulierung von Stromelysin-1 pathologische Prozesse 
hervorruft  und Ets1 eine Rolle in der Regulation des Stromelysin-1 Promotor spielt, 
ist es von hohem Interesse, den Mechanismus der Ets1/Ets1/DNA Komplex bildung 
zu verstehen.       

Ein Modell des Ets1/Ets1/DNA-Komplexes basierend auf Daten erhalten aus 
einem Röntgenkleinwinkelstreuexperiments (SAXS) konnte erstellt werden. 
Weiterhin wurde der Komplex wurde mit Hilfe der Dampfdiffusionsmethode 
kristallisiert. Ein Röntgenstreudatensatz mit einer Auflösung von 2.58 Å konnte 
aufgenommen werden. Die dreidimensionale Struktur des Komplexes wurde dann mit 
der Methode des Molekularen Ersatzes gelöst. Das SAXS Modell ist vergleichbar mit 
der Kristall Struktur. 

 
Von der distalen Verstärker-Region des humanen Immunschwäche Virus 1 

(HIV1) des langen terminalen Repeat LTR (-130 to -160) weiss man, dass es wichtig 
für die Transkriptionsaktivität und für die virale Replikation in T-Zellen ist (Sieweke 
et. al., 1998). Die DNA Sequenz der Region besitzt Bindungsstellen für den 
Transkriptions faktor USF1 (E-box) und für den Transkriptionsfaktor Ets1.  

Es gibt mehrere E-boxen auf HIV1 LTR, die USF1 an zwei 
Initiationselementen in der Nähe des Transkriptionstartelements auf HIV1 LTR 
binden kann (Du et. al., 1993). Es wurde vorgeschlagen, dass USF1 Homotetramere 
ausbilden kann (Ferre-D’Amare et. al., 1994). Außerdem wurde vorgeschlagen, dass 
die Bildung der bivalenten Homotetramere kann eine DNA Loop-Bildung 
provozieren kann. Dies wiederum kann zur Rekrutierung von USF1 und anderen 
Transkriptionsfaktoren der distalen Region des Promotor zum Initiatorelement  
führen.  

Der USF1 und USF1/DNA Komplex wurde mittels SAXS Experimenten 
untersucht. Ein ab initio Modell bei niedriger Auflösung des USF1 Monomers wurde 
mit Hilfe des Programms GASBOR erstellt. Ein vorläufiges Modell eines bivalenten 
Homotetramers wurde ebenfalls gebaut. Die Komplex weist die gleiche Position der 
Moleküle wie in der Struktur des Myc-Max Heterotetramers auf (Nair et. al., 2003).  

Um die USF1 Tetramerisierung experimentall zu überprüfen, wurden zwei 
weitere Methoden eingesetzt: Fluoreszenz Resonanz Energie Trransfer (FRET) und 
rotary shadowing Elektronenmikroskopie (EM). Allerdings konnte die USF1 
Tetramerisierung weder mittels  FRET noch mittels rotary shadowing EM bestätigt 
werden.  

Das E-box Bindeprotein USF1 wurde wie auch der Wechselwirkungspartner 
für Ets1 mit dem Hefe one-hybrid Screen Assay gefunden (Sieweke et. al., 1998). Die 
Wechselwirkung zwischen Ets1 und USF1 ist vermutlich für die 
Transkriptionsaktivität des HIV1 LTR in T-Zellen wichtig. Strukturelle 
Untersuchungen des Ets1/USF1/DNA wurden durchgeführt, allerdings wurden  keine 
Kristalle erhalten. 

 



 8   

Abbreviations 
 
 
 
HIV1                  human immunodeficiency virus 
LTR                   long terminal repeat 
dsDNA              double-stranded DNA 
BHLHZip          basic-helix- loop-helix- leucine zipper 
USF1                 upstream stimulatory factor 1 
SAXS                small angle X-ray scattering 
FRET                fluorescence resonance energy transfer 
EM                    electron microscopy  
MW                  molecular weight 
CTD                  C-terminal domain 
RT                     reverse transcriptase 
UAS                  upstream activating sequences 
HLH                  helix- loop-helix motiv 
Zip                     leucine zipper motif 
b                        basic region 
VEGF               vascular endothelial growth factor 
kDa                   kilo-Dalton 
DR                    dummy residues 
Inr                     Initiator element 
WT                   wild type 
BSA                  bovine serum albumin   
bp                     base pairs 
AUS                 upstream activating sequence 
LEF 1               lymphoid enhancer factor 1 
TAD                 transactivation domain 
USR                 USF-specific region 
ds DNA            double-stranded DNA 
EBS                  Ets1-binding site 
Sp1                   specificity protein 1 
NF-kB              nuclear factor kB 
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1. Introduction 

 

1.1 Initiation of transcription 

 

Transcription defines the process in which RNA is synthesised by RNA-

polymerase on the matrix of DNA. The important feature about transcription is the 

choice of fixed positions where the synthesis starts (transcription initiation) and where 

it finishes (transcription termination). Transcription starts upstream of the initial 

transcription sequence and the starting point of transcription is labelled +1. A 

promoter is located at the 5’-end of starting point. The promoter is defined as the 

piece of matrix DNA required for the initial binding of RNA-polymerase and 

transcription initiation complex prior to transciption.  

The following is a brief overview of transcription initiation by eukaryotic 

RNA-polymerase. The eukaryotic promoters can have two basic elements functioning 

together or independently. The first of them is a TATA-box situated 25 base pairs 

(bp) along from the 5’-end  of the initiation point, having the consensus sequence 

TATAa/tAa/t. The second is an initiator element (Inr), a pyrimidine–rich sequence 

having consensus YYANt/aYY (where Y is a pyrimidine, and N is any base). The 

initiator element is situated close to starting point of transcription (fig. 1). 

The strongest promoters have both elements, but some contain only one of 

them. These elements (TATA and Inr) are called core promoter elements because they 

are required for the proper initiation of the transcription by RNA-polymerase in cell-

free system.  

RNA-polymerases by themselves are not able to recognise the promoters. For 

proper transcription initiation, basal transcription factors are required. Each of 3 

RNA-polymerases has its own set of basal transcription factors. RNA-polymerase II, 

for example, contains transcription factors TFIID, TFIIB, TFIIE, TFIIF and TFIIH. 

These factors bind sequentially to the promoter together with RNA-polymerase and 

form pre- initiation complex. The amount of basal transcription factors in the cell is 

much higher than the amount of RNA-polymerase. Fig. 1 illustrates how the pre-

initiation complex is formed on the TATA-box containing promoters (Kalinin 2001 p. 

27).  
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                                                                           •  +1                               •  +30 

                              TATA                                                    Inr                                                                                                              

                                                                                                                                                                  

DNA 

                                                                                    ↓    TBP or TBP + TFIID 

                                                                                    ↓    TFIIB 

                                                                                    ↓    TFIIF + RNA-polymerase II (POLII) 

                                                                                    ↓    TFIIE 

                                                                                    ↓    TFIIH                            

                                                                                                               

                                                        

 

                                                                                                                                               

                                                                                                                                                                                                                                                                                                                                                              

                                        CTD 

                                                                          

Fig. 1 Initiation of transcription 

(CTD is C-terminal domain of RNA-polymerase) 

 

TFIID is the first transcription factor, which binds to the promoter. This factor 

contains TBP (TATA-binding protein) binding specifically to the TATA-box and 

TAFII (TBP-associated factors). TBP induces DNA bending when bound to its minor 

groove.  

The next transcription factor in the pre- initiation complex is TIIB. Its N-

terminal domain binds to TFIIF/RNA-polymerase II complex, its C-terminal domain 

binds to the DNA and to TBP. TFIIB does not change the structure of the TFIID/DNA 

complex but stabilises it. After the formation of TFIIB/TFIID/DNA complex, the 

promoter is ready to bind RNA-polymerase II. 

RNA-polymerase II usually forms a complex with the TFIIF transcription 

factor. The most important function of TFIIF is to support the interaction between 

RNA-polymerase II and TFIIB.  

The fourth transcription factor is TFIIE, which interacts with RNA-polymerase 

II and probably with TFIIF.  

DNA 

 TFIIB                                       

 TBP 

TAF 
TFIID 

TFIIH   
TFIIE 

TFIIF 
TFIIA    POLII (from ? ) 
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Another transcription factor playing a role in the initiation of transcription is 

TFIIA.  It has three functions: it stabilises the TBP interaction, enhances the 

interaction between TAF and DNA and has a coactivation function.  

The last step in the formation of the pre- initiation complex is binding of TFIIH 

transcription factor. TFIIH has several enzymatic activities. It can play the role of 

ATP-dependent helicase. In the presence of ATP, formation of pre- initiation complex 

leads to melting of the DNA in the region close to transcription starting point. After 

this TFIIH phosporylates the C-terminal domain of RNA-polymerase II, activating 

elongation. As a result of phosporylation, the interaction between RNA-polymerase II 

and specific initiation transcription factors becomes weaker and RNA-polymerase II 

is able to leave the promoter and to start the elongation, TFIID stays on the promoter 

and can initiate the transcription again (fig. 1).  

 

 

1.2 Regulation of transcription  

 

On the basis of estimates of the intracellular concentrations of RNA-

polymerase II and basal transcription factors, it can be concluded that they are 

constant and not dependent on the cell-type. In the absence of an additional regulation 

of transcription all the genes would be transcribed at the same speed equal to the 

power of their promoters. This would lead to a loss of the cell’s ability to regulate 

different processes and differentially express the genes. The differential expression is 

determined by epigenetic information present in the each cell type and dependent on 

the internal and external factors. In the regulation of differential expression, the 

system of transcription factors transmitting the signals to the specific genes plays a 

crucial role. These factors can either decrease or increase the transcription level of 

certain genes in comparison to the basal level. If activation occurs transcription 

factors are called transcription activators, whereas for repression they are called 

transcription repressors. In both cases they are special proteins, which bind to 

regulatory elements.  

The sequences recognized by transcription activators are often situated at the 

5’-end of the promoter and called 5’-upstream activating sequences (UAS). Usually, 

they are placed between positions –100 and –150 for eukaryotes. Apart from the 
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proximal activator sequences eukaryotes also have  enhancers. The enhancers have 

also specific sites where transcription factors can bind, and can regulate the promoter 

from large distances (up to several thousand base pairs) and are not dependant on the 

promoter orientation and can be situated either at the 5’-end of the promoter or at the 

3’-end (Kalinin 2001 p. 42).  

The ability of the enhancers to stimulate transcription when they are situated at 

a distance from the promoter, is possible by the formation of DNA loops. Many 

transcription factors can bend DNA. For example, when TBP is bound to TATA-box 

the DNA bends by 70-800. There are also some proteins which do not play a role as 

transcription activators but can bend DNA, and as a result distant DNA pieces come 

in close contact. This leads to the formation of the enhancosome where different 

proteins-activators bound to the enhancer are placed close to each other and close to 

the promoter region. An example of such a protein is lymphoid enhancer factor 1 

(LEF-1), which belongs to the high mobility protein group and recognises the 

consensus sequence CCTTTGAA. As a result of the LEF-1 binding, DNA bends by 

1300 (Kalinin 2001 p. 58). Such a bending can lead to the activation of the promoter 

because it allows direct contact between the transcription factors bound to the 

enhancer and these bound to the promoter.   

 

This PhD thesis focused on transcription factors Ets1 and USF1. Both of the 

transcription factors have binding sites on different promoter and play a role in the 

regulation of those promoters. 

 

 

1.3 USF1 transcription factor 

 

USF1 (upstream stimulatory factor 1) belongs to the basic helix- loop-helix 

leuzine zipper (bHLHZip) transcription factor family. This family of eukaryotic 

transcription factors characterised by a highly conserved DNA binding domain 

composed of a basic region (b), followed by helix- loop-helix (HLH) and leucine 

zipper (Zip) motifs (fig. 2). 

 The contiguous presence of the HLH and the leucine zipper, two dimerization 

interfaces, distinguishes these proteins from both the bHLH and b/Zip transcription 



 13   

172 197 31042 194
260 224

factors. b/HLH/Zip family members occur widely, ranging from the mammalian 

nuclear proteins Myc (Murre et. al., 1989), Mad (Ayer et. al., 1993), Max (Blackwood 

and Eisenman, 1991), Mxi1 (Zervos et. al., 1993), USF (Gregor et. al., 1990), TFEB 

(Carr and Sharp, 1990), TFE3 (Beckman et. al., 1990) and AP-4 (Hu et. al., 1990), to 

the yeast protein CBF-1 (Cai and Davis, 1990), among many others. All of these 

proteins bind to the common CANNTG element known as the E-box. 

USF1 was first characterized as a transcription factor, which binds to an 

upstream element of the adenovirus major late promoter in HeLa cell nuclei (Carthew 

et. al., 1985; Miyamoto et. al., 1985; Sawadogo and Roeder, 1985) stimulating 

transcription possibly by direct interaction with the basal factor TFIID (Sawadogo, 

1988; Bungert et. al., 1992). Extensive purification of the HeLa nuclear extract 

yielded two polypeptides (Sawadogo et. al., 1988), the smaller of which has been 

cloned and sequenced revealing a protein of molecular mass 44 kDa with a highly 

conserved b/HLH/Zip DNA binding domain near its C-terminal (Gregor et. al., 1990). 

The recombinant protein expressed from this cDNA clone (which shall be henceforth 

referred to as USF) homo-oligomerized efficiently, bound DNA containing a 

CACGTG E-box motif with nanomolar affinity and activated transcription in a 

manner undistinguishable from that of material purified from HeLa nuclear extracts 

(Pognonec and Roeder, 1991).  

The domain structure of USF1 is presented at fig. 2. 

 

 

 

 

Fig. 2 The domains of the USF1 protein 

(TAD – transactivation domains, USR – USF specific region) 

 

USF1 has two transactivation domains: one situated at the N-terminal part of 

the protein and another one situated in the middle of the protein called USF-specific 

region (USR). 

The crystal structure of USF1 bHLH domain bound to DNA from adenovirus 

major late promoter was solved (Ferre D’Amare et. al., 1994) to a resolution of 2.9 Å 

(fig. 3). The (bHLH)2-DNA complex folds into a parallel, left-handed four-helix 

TAD USR b HLH Zip 
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bundle, which has a topology identical to the structure of another bHLHZip 

transcription factor Max bound to DNA from adenovirus major late promoter (Ferre-

D’Amare et. al., 1993) (fig. 4).  

 
 

Fig. 3 Structure of USF1 bHLH bound to DNA (Ferre D’Amare et. al., 1994) 

USF1 protein contained amino acid residues 197-260. dsDNA sequence is shown 

below (core binding element is colored in red). 

 
                               5’   CACCCGGTCACGTGGCCTACA 
                                        TGGGCCAGTGCACCGGATGTG   5’ 
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Fig. 4 Structure of Max bound to DNA (Ferre D’Amare et. al., 1994)  

Max protein contained amino acid residues 22-113.  Double-stranded DNA (dsDNA) 

sequence is shown below (core binding element is colored in red). 

 
                               5’   CACCCGGTCACGTGGCCTACAC 
                                     GTGGGCCAGTGCACCGGATGTG   5’ 

 

USF-1 is expressed in a variety of tissues and therefore it has been shown to 

act on a variety of cellular and viral promoters.  

USF1 is highly abundant in the eukaryotic nuclei. In the HeLa nuleus the USF 

concentration can be estimated as 0.5 µM, assuming homogeneous distribution 

throughout a spherical nucleus of radius 2.5 µm with 20000 molecules/cell 

(Sawadogo et. al., 1988). 

 

 

1.4 Ets1 transcription factor 

 

The Ets1 proto-oncoprotein is a member of the Ets family of transcription 

factors that share a unique DNA binding domain, the Ets domain. The name “Ets” 

stems from a sequence that was detected in an avian erythroblastosis virus, E26, 

where it formed a transforming gene together with ? gag and c-myb. The newly 

discovered sequence was called E26 transforming specific sequence or Ets. Later, a 
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cellular homologue to the viral ets (v-ets), was found suggesting that v-est derived 

from c-ets1 (Watson et. al., 1985; Ghysdael et. al., 1986). 

Up to now more than 45 members of the Ets family have been characterized as 

transcriptional activators and inhibitors in eukaryotes.  

The Ets1 protein is produced by a variety of tissues. Ets1 is expressed in 

lymphoid tissues (Ghysdael et. al., 1986). Ets1 is also detected in other tissues. The 

two main blood vessel forming types, endothelial cells and vascular smooth muscle 

cells, transiently produce Ets1 upon activation by angiogenic factors. Ets1 is produced 

by a variety of solid tumors, including epithelial tumors, sarcomas and astrocytomas. 

In addition to advanced solid tumors, high Ets1 expression has also been found in 

leukemic T-cells. Ets1 is expressed in certain cells of ovary, in hepatic stellate cells as 

well as in glandular epithelial cells and stromal cells of the endometrium during 

menstrual cycle. Ets1 is expressed in a variety of tissues throughout the embryonal 

development. 

The human ets1 gene contains eight exons (A, III-IX). Only two proteins are 

generated from RNAs, p54c-ets1 (full length Ets1) and p42c-ets1 (?VII-Ets1) (fig. 5).  

The Ets1 protein has pointed domain, transcativation domain (TAD), DNA-

binding domain (ETS) surrounded by two autoinhibitory regions (amino acid residues 

301-331 and 415-441) (fig. 5).  

 

 

 

 

 

 

 

 

 

Fig. 5 The domains of the Ets1 protein 

A. p54c-ets1 (full length Ets1) 

B. p42c-ets1 (natural isoform of Ets1 where exon ? VII was deleted) 

 

 Pointed   TAD          Exon       VII      ETS  VII 

301 54 135 243 331 415 441 

 Pointed   TAD          Exon       VII      ETS  VII 
 

54 135 243 331 415 441 

p54ets1  

p42ets1  

  HI-1/2                              H4 A 

B 
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The Ets domain, composed of 85 amino acids, comprises three a-helixes and 

four ß-strands that are arranged in the order H1-S1-S2-H2-H3-S3-S4 (fig. 6 A). The 

Ets domain specifically recognizes DNA sequences that contain a GGAA/T core 

element (Nye et. al., 1992). However, Ets proteins differ significantly in their 

preference for the sequence flanking the GGAA/T core motif. 

 

 

 

 

 
Fig. 6 A model of the autoinhibition mechanism of the Ets1 protein  

A. Ets domain surrounded by two autoinhibitory regions (Lee et. al., 2003) 

B. Structure of the Ets1 protein (residues 301-440) without DNA 

 

In the Ets1 protein, the Ets domain stretches from residue 331 to residue 415. 

Ets domain is surrounded by two autoinhibitory regions and autoinhibition is released 

when Ets1 is bound to the DNA. There are three inhibitory helixes: HI-1 and HI-2 

within exon VII domain (301-331 amino acid residues) and H4 at the C-terminus 

A 

B 

H3 

H2 

H5 

H1 

HI-1 

HI-2 
 

H4 

N HI-1 HI-2 H1 H2 H3 H4 H5 S1 S2 S4 S3 C 

280 301 331 415 Ets domain 

Autoinhibitory regions 
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(415-440 amino acid residues) (fig. 6 A). These helixes cooperatively block Ets DNA 

binding activity by interacting with H1-helix and, thereby, freeze the Ets domain in a 

closed conformation. Fig. 6 B shows NMR structure of Ets1 (residues 301-441) in an 

autoinhibited conformation. The blockage is transient and can be relieved when Ets1 

binds to DNA and the HI-1 helix unfolds to form a random coil. 

The structure of the Ets1 protein bound to DNA was (fig. 6C). The helix H3 of 

Ets1 binds to the major groove and leads to DNA bending. The “wing” is formed by 

the loop between strands 3 and 4 of the ß-sheet, makes contacts with the 5’ minor 

groove (Werner et. al., 1997). The distantly related Ets factor PU.1 binds in a similar 

way to DNA (Kodandapani et. al., 1996) demonstrating that the Ets domain/DNA 

interaction is highly conserved.  

 
Fig. 6C Ets domain-DNA interaction (Garvie et. al., 2001) 

Ets1 protein contained amino acid residues 331-440. dsDNA sequence is shown 

below (core binding element is colored in red)  

 

                    5’   TAGTGCCGGAAATGT 
                             TCACGGCCTTTACAA   5’ 
 

H3 

H2 

H5 

H1 

H4 
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Recently, the structure of Ets1 (residues 297-441) without DNA was solved. 

This structure shows domain swapping in which N-terminal parts of the protein are 

involved (fig. 7). 

 
Fig. 7 Structure of Ets1 dimer in the absence of DNA (Tahirov et. al., 2002 to be 

published) 

Ets1 dimer structure demonstrates domain swapping (one Ets1 molecule is coloured 

in cyan, another one is coloured in magenta). 

 

Ets1 interacts with a variety of transcription factors, other proteins and with 

itself.  In the presence of the palindromic Ets binding site on the DNA, the exon VII 

domain also mediates homodimerization of Ets1 proteins (Baillat et. al., 2002). The 

dimerization blocks the autoinhibitory mechanism allowing these proteins to mutually 

increase  their DNA binding activities and to bind cooperatively to DNA. The Ets1 

binding sequence was shown to be situated 12 bp apart from the E-box sequence 

which binds USF1 in the distal enchancer of HIV1 LTR and direct interaction 

between the two proteins was demonstrated (Sieweke et. al., 1998). 

N 

N C 

C 
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1.5 Stromelysin-1 promoter and Ets1/Ets1/DNA complex 

 

Stromelysin-1 (matrix metalloproteinase-3) is a major matrix 

metalloproteinase of connective tissue and is important for tissue remodeling during 

tissue development, growth, and wound repair (Sternlicht et. al., 1999). Stromelysin-1 

misregulation can lead to the development of the diseases such as rheumatoid and 

osteoarthritis (Flannery et. al., 1992; Malemud et. al., 1999), Alzheimer’s disease 

(Yoshiyama et. al., 2000), tumor invasiveness, and metastasis (Zucker et al., 2000; 

Nelson et. al., 2000; Liu et. al., 2001). In addition, it was recently reported (Sternlicht 

et. al., 1999; Sternlicht et. al., 2000) that stromelysin-1 by itself promoted mammary 

carcinogenesis in a mouse model system. Stromelysin-1 expression is mainly 

controlled at the transcription level. A number of specific DNA elements in the 

human stromelysin-1 promoter have been shown to be important for the regulation of 

its transcription (Ye et. al., 1999; Rekdal et. al., 2000). Many cytokines and growth 

factors such as interlikin-1ß, tumor necrosis factor-a activate stromelysin-1 gene 

transcription.  

Two palindromic head to head Ets1-binding sites (EBS) with a 5’-GGA(A/T)-

3’ core motif at the positions -216 to -209 and at -208 to -201 were found to be 

important for stromelysin-1 promoter regulation. Ets1, Ets2 and PEA3 (members of 

Ets transcription factor family) were reported to activate stromelysin-1 promoter 

(Wasylyk et. al., 1991). Nevertheless, in a heterologous system Ets1 and Ets2 showed 

no cooperative binding to the palindrome (Wasylyk et. al., 1991). In contrast, other 

studies proved that the functional EBS palindromes present in GATA-1 and p53 

promoter (Seth et. al., 1993; Venanzoni et. al., 1996) cooperatively bound Ets1 and 

Ets2. 

Increased level of coexpression of both Ets1 and stromelysin-1 has been 

shown for rheumatoid arthritis, glomerylonephritis, angiogenesis and tumor invasion. 

This leads to the hypothesis that misregulation of stromelysin-1 could be mediated by 

Ets1 (Bajllat et. al., 2002). 

The mechanism of Ets1 binding to two palindromic Ets1-binding sequences 

located on the stromelysin-1 promoter (positions -216 to -209 and at -208 to –201) 

was investigated (Bajllat et. al., 2002) by several methods: by surface plasmon 

resonance,  by electrophoretic mobility shift assay and by photo-crosslinking 
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experiments. It was shown that the full- length human Ets1 protein (p51) binds with a 

positive cooperativity to the EBS palindrome of the human stromelysin-1 promoter. 

This cooperativity is due to head to head topology of Ets-1 binding sites. Different 

topology of the binding sites abolish cooperativity. Studies with N-terminal deletion 

mutants of Ets1 revealed that the 245–330-residue region of the protein encoded by 

the exon VII of the gene is important for the cooperativity and it was proposed that 

autoinhibitory regions of Ets1 are important for the cooperativity as well. 

The p42 (natural isoform of Ets1), lacking exon VII, is unable to bind 

cooperatively to the palindrome, despite a better binding to each individual EBS. 

Transient transfection experiments show for p51 a good correlation between DNA 

binding and promoter transactivation. In contrast, p42 shows a poorer transactivation 

reinforcing the significance of cooperative binding for a full Ets1-mediated 

transactivation of the promoter. This is the first time that Ets1 is shown to be able to 

counteract its own autoinhibition (Baillat et. al., 2002). 

Based on kinetic and equilibrium analyses of Ets-1 interaction with the EBS 

palindrome of the stromelysin-1 promoter, the model of the mechanism by which Ets1 

cooperative binds to the stromelysin-1 promoter was proposed (fig. 8) (Baillat et. al., 

2002).

 
 

Fig. 8 Proposed model for ETS-1 cooperative binding to the stromelysin-1 

promoter. N and C represent the N-terminal and C-terminal part of Ets-1, 

respectively. DBD is Ets1-binding domain, VII is Ets1 domain encoded by exon 7. It 

was proposed that after binding to DNA, the first Ets-1 molecule facilitates the 

binding of the second one by positioning and helping it to reach its uninhibited state 

through a contact involving the exon VII-encoded region. The intermediary state 

where the first Ets-1 molecule contacts the second one before the complete formation 

of the ternary complex is represented by square brackets. After formation of the 

complex, Ets-1 molecules are able to adopt a relaxed conformational state. (Figure is 

taken from Bajllat et. al., 2002). 
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It was proposed that it could be a conformational change between the exon 

VII-encoded regions in the initial stages of the Ets1/Ets1/DNA complex formation 

and some rearrangments could occur once again when the ternary complex is formed. 

It was proposed that during Ets1/Ets1/DNA complex formation, first one Ets1 

molecule binds to the promoter and facilitate the binding of the second Ets1 molecule 

(fig. 8). 

However, there is no experimental evidence of direct protein-protein 

interaction. It is predicted that protein-protein interaction should involve an 

autoinhibition counteraction process and could lead to conformational change in Ets1 

protein. 

Since, stromelysin-1 misregulation can lead to pathological processes 

development and the Ets1 protein is involved in regulation of stomelysin-1 promoter, 

understanding of the mechanism of Ets1/Ets1/DNA complex formation is of 

biological interest.  

X-ray crystallography gives a possibility to inverstigate protein-protein 

interaction in Ets1/Ets1/DNA complex and conformational change which could occur 

in DNA or in one of Ets1 molecules or in both of them when Ets1/Ets1/DNA complex 

is formed. It can help to understand the mechanism of the complex formation and to 

answer the question why Ets1 (p51) bind cooperatively to stromelysin-1 promoter 

when p42 (natural isoform of Ets1 lacking exon VII) can not, more precisely, how 

domain encoded by exon VII can facilitate cooperative interaction between two Ets1 

molecules. The last can have a biological significance because p42, in contrast to full-

length Ets1, can poorly transactivate stromelysin-1 promoter.  

 

Aim of the project: 

Thus, the aim of this project was to obtain structural information on 

Ets1/Ets1/DNA complex and to understand the mechanism of Ets1/Ets1/DNA 

complex formation.  

 

 

 

 

 



 23   

1.6 Transcription factors Ets1 and USF1 on HIV1 LTR 

 

The distal enhancer region of the human immunodeficiency virus 1 (HIV1) 

long terminal repeat LTR (-130 to -160) is known to be important for transcriptional 

activity for the transcriptional regulation of HIV1 and viral replication in T-cells.  

Several transcription factors were shown to interact with and regulate HIV1 

promoter (fig. 9). Among them there specificity protein 1 (Sp1) (Perkins et. al., 1993) 

and nuclear factor kB (NF-kB) which are located in proximal promoter element (Duh 

et. al., 1989, Israel et. al., 1989, Osborn et. al., 1989). Sp1 has three binding sites and 

NF-kB has two binding sites in the proximal part of HIV1. Both Sp1 and NF-kB 

activate HIV1 promoter. 

  

  

  

  

 

 

 

 

Fig. 9 Transcription factors on HIV1 LTR  

(Figure is taken from Sieweke et. al., 1998) 

 

It was shown that distal part of HIV1 LTR  is also important for HIV1 

promoter activation. Mutations in this region (–130 to –166 bp) completely prevent 

virus replication (Kim et. al., 1993) and reduce the activity of LTR-reporter constructs 

in transient transfection assays (Zeichner et. al., 1991). Binding sites for USF1, Ets1 

and LEF1 transcription fators were found in this region. LEF1 is known as DNA-

bending transcription factor. The DNA-bending by LEF1 factor could recruit the 

factor from the distal part of HIV1 LTR to the initiator region. Both Ets1 and LEF1 

are highly expressed in T-cells, and in vitro transcription assays with reconstituted 

chromatin revealed that these two transcription factors in conjunction with Sp1 

transcription factor could relieve nucleosomal repression of the HIV1 LTR (Sheridan 

et. al., 1995).  
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It was suggested that interaction of Ets1 with other transcription factor could 

be important for HIV1 promoter regulation (Sieweke et. al., 1998). The study was 

made to search for interaction partners of Ets1. This was done by yeast one-hybrid 

screen assay developed by M. Sieweke (Sieweke et. al., 1996). USF1 was identified 

as an interaction partner of Ets1. It was shown that these proteins interact via their 

DNA-binding domains in the absence of DNA (Sieweke et. al., 1998). By band  shift 

assay binding of Ets1 and USF1 to distal part of HIV1 LTR was demonstrated 

(Sieweke et. al., 1998). Using reporter gene assay it was shown that both of the 

proteins Ets1 and USF1 transactivate HIV1 promoter. The level of activation was 

higher when both proteins were used in the study than for the individual proteins.    

A physical and functional interaction between Ets1 and USF1 transcription 

factors was identified. The two proteins form a specific ternary complex on the 

adjacent E-box and Ets binding site of the distal enhancer region of the HIV-1 LTR 

and synergize in both DNA binding and transcriptional activation. The interaction 

appears to be important for T-cell expression of the HIV-1 LTR since mutations of 

each individual DNA binding site drastically reduce the activity of the enhancer 

element in these cells. 

 Since it was shown that transcription factors Ets1 and USF1 play a role in 

activation of HIV1 LTR, the question would be to understand the mechanism by 

which these two transcription factors can participate in the regulation of HIV1 

transcription.  

However, little is known about atomic details of interaction between Ets1 and 

USF1 when both proteins are bound to DNA. The distance between Ets1 and USF1 

binding sites is 12 bp which is a bit more than one helical turn on DNA. Thus, the 

interaction between two proteins should involve either DNA bending or huge 

conformation change in the proteins or both. The crystal structure of the ternary 

complex could describe how these two proteins could interact and what happens with 

DNA conformation when the ternary complex is formed. 

 

Aim of the project: 

The aim of this project was to obtain structural information on ternary 

complex formed by USF1, Ets1 and DNA in order to understand atomic details of the 
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ternary complex formation, which could lead to understanding of the mechanism of 

HIV1 transcription regulation by transcription factors Ets1 and USF1. 

 

 

1.7 USF1 tetramerization 

 

The HIV1 E-box sequence binds USF1 protein as a homodimer, is situated in 

the distal enhancer region of HIV1 LTR. The mutations in the E-box showed 93% 

reduction in activity of the reporter in Jukat cells in the reporter gene assay (Sieweke 

et. al., 1998). It was shown that apart the E-box USF1 can also bind to initiator 

elements of HIV1 (Du et. al., 1993). Two binding sites for USF1 were discovered in 

this region: Inr1 (positions from –5 to +9) and Inr2 (positions from +29 to +42). 

By gel retardation assay specific binding of USF1 to Inr1 and Inr2 was proven. 

Inr1 and Inr2 are conserved. Similar elements were found in the adenovirus major late 

promoter. They are situated at the positions –3 to +20 for Inr1 and at the positions +35 

to +60 for Inr2. Series of Inr1 and Inr2 mutations were generated in order to assay the 

role of these 2 conserved DNA sequences (Du et. al., 1993). Mutated templates were 

compared with the wild-type samples both by in vivo transfection assay and by in 

vitro transcription assays to determine effects on both promoter strength and accuracy 

of initiation. In the transfection assay most of the mutations in the Inr1 and the Inr2 

sites reduced the level of stimulation by USF1.   

Another example of multiple USF1 binding sites is human telomerase reverse 

transcriptase promoter. There are two E-boxes: upstream (positions –165 to –160) and 

downstream (positions +44 to +49), USF binds to the E-boxes primary as a 

homodimer USF1/USF2. Mutations of each of these E-boxes significantly decreased 

promoter response to USF and mutations in both sites further impaired the ability of 

USF to activate the hTERT promoter (Goueli et. al., 2003).  

 Steady state fluorescence spectroscopy demonstrated that the b/HLH/Zip 

domain of USF binds its DNA targets with high affinity and specificity, whereas 

removal of the leucine zipper yielding the b/HLH minimal DNA binding region 

reduces both affinity and specificity (Sha et. al., 1995). Stopped flow kinetics 

provided evidence for a two-step binding process involving rapid formation of a 

protein-DNA intermediate followed by a slow isomerization step, which is consistent 
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with the basic region undergoing a random coil to α-helix transition on specific DNA 

recognition (Sha et. al., 1995). The leucine zipper is also necessary for USF to 

function as a bivalent homotetramer, capable of binding two distinct recognition sites 

simultaneously and mediating DNA looping under physiological conditions. Titration 

studies revealed that the first binding event has an equilibrium constant Keq = (2.2 ±  

0.8) x 109 M-1 for major late promoter DNA, whereas the second binding event occurs 

with remarkably reduced affinity, Keq = (1.2 ± 0.8) x 108 M-1. This anticooperative 

feature of DNA binding by homotetramer suggests that USF stimulates transcription 

by mediating DNA looping between nearby recognition sites located in nuc lear and 

viral gene promoters. The model for the unusual anticooperative is shown on fig. 10. 

The proposed model suggests DNA looping and mismatch correction in the 

transcription system (Sha et. al., 1995).  

 

 
 

 

Figure 10. Model of selectivity for looped DNA/USF1 complex formation by 

anticooperative binding during transcription activation (Figure is taken from Sha 

et. al., 1995) 

 

DNA with two E-boxes (        ) 

USF tetramer 

E-box mismatch (no activation) DNA looping activation 

Dissociation of second DNA 

DNA looping (activation) 
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Furthermore, a LEF1 binding site located between USF1 binding sites on 

HIV1 LTR leads to DNA bending, and the DNA bending produced by LEF1 factor 

could be stabilized by USF1 bivalent homotetramer formation. This could bring 

together transcription factors on the HIV1 LTR and recruit transcriptional machinery. 

It seems that if bivalent homotetramer is formed USF1 could play a role of 

scaffold protein bringing together distant transcription factors, provide a platform for 

multiprotein complex formation, and regulate transcription in this way. Also it could  

be a general mechanism of transcription regulation via USF1 homotetramer formation 

and DNA loop formation because multiple USF1 binding sites situated far from each 

other were found on several human and viral promoters transcribed by RNA-

polymerase II. An example is the Myc-Max tetramer. Its crystal structure was solved 

(Nair et.al., 2003). Both Myc and Max proteins are homologs proteins for USF1, 

which bind E-box sequence and belong to b/HLH/Zip transcription factor family. The 

structure is shown at fig. 11. It could be that tetramer formation is an artefact of 

crystal packing due to high protein concentration.  

 

 
Fig. 11 Myc-Max tetramer structure  

Myc molecule is colored in grey, Max molecule is colored in yellow 
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This project was focused on getting structural information of USF1 tetramer 

bound to HIV1 LTR. The tetramer formation could lead to DNA looping which could 

explain the regulation of HIV1 transcription by transcription factors binding to the 

distal enhancer element. There is no structural information of USF1 tetramer bound to 

DNA. Since, the USF1 tetrmar bound to DNA could be potentially difficult to 

crystallize, the method of choice was small angle X-ray scattering (SAXS). However, 

this method requires high sample concentration and USF1 tetramerization could be 

due to high concentration. In order to check USF1 tetramerization under physiological 

concentrations fluorescence resonance energy transfer (FRET) experiment was 

planned. In order to visualize DNA loop, rotary shadowing electron microscopy (EM) 

was planned.  

 

Aim of the project: 

The aim of this project was to study USF1 homotetramer formation upon 

DNA binding. In more details, this project involves structural investigations on USF1 

tetramer formation and DNA loop formation which was proposed (Ferre D’Amare et. 

al., 1994) but was not shown. Three different methods were applied: small-angle X-

ray scattering (SAXS) to get low-resolution structural information on USF1 tetramer, 

fluorescence resonance energy transfer (FRET) to validate SAXS model of USF1 

tetramer and rotary shadowing electron microscopy to visualize DNA loop. 
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2. Results and discussions 

 

2.1 USF1 expression and purification 

 

USF1 (residues 194-310) corresponding to the bHLHZ region was provided by 

Francisco Fernandez (former PhD student at EMBL-Hamburg). In this construct both 

cysteines were mutated to serines in order to avoid oxidation. 

The expression and purification protocol provided by Fransisco Fernandez was 

modified at several steps and can be found in “Materials and Methods” chapter.   

 

2.2 Ets1 expression and purification 

 

Three constructs for Ets1 (residues 280-441, 301-441 and 335-441) were provided 

by Francisco Fernandez (former PhD student at EMBL-Hamburg) on the plasmid 

pProExHTb. In these constructs both cysteines were mutated to serines in order to 

avoid oxidation. 

The soluble protein could be expressed from the Ets1 construct containing 

residues 301-441 and 280-441 and purified by affinity chromatography followed by 

TEV-protease cleavage. Up to 80% of the protein precipitated after TEV cleavage. In 

order to overcome this problem different buffer conditions were tested, however, none 

of them gave satisfactory results.  

In order to improve solubility the constructs (residues 335-441, 301-441 and 280-

441) were subcloned into pETM10 expression vector which has a noncleavable N-

terminal His-tag (described in “Material and Methods” chapter).  

Ets1 protein from the shortest construct corresponding to residues 335-441 was 

found in insoluble fraction, although different buffers were tested (see “expression 

and solubility test” in  “Materials and methods” chapter). The Ets1 proteins (residues 

280-441, 301-441) were found to be expressed in soluble fraction (10-15 mg protein 

for 1 liter of bacterial culture).  

Ets1 proteins (residues 301-441 and 280-441) were expressed and purified as 

described in “Material and methods” chapter.  
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2.3 Ets1/Ets1/DNA complex formation 

 

For the DNA binding experiment a dsDNA fragment was used:  

 

WT    5’-ACCAAGACAGGAAGCACTTCCTGGAGATTA-3’    

M1    5’-ACCAAGACAAAAAGCACTTCCTGGAGATTA-3’       X 

 

The core binding sequences for Ets1 is colored in red, orientation of binding sites 

is shown by arrows. The Ets1/Ets1/DNA complex was formed with a 2:1 molar ratio 

(protein to DNA). The complex formation was demonstrated by native gel. As an 

additional control (in order to prove that 2 molecules of Ets1 binds to DNA) the 

complex was formed between Ets1 and DNA (M1), where one Ets1 binding site was 

mutated (Baillat et. al., 2002). This experiment was a repeat of the experiment done 

by Baiilat et. al., 2002, and the results were the same (data not shown).    

In order to further examine Ets1/Ets1/DNA complex formation, dsDNA with 

different lengths (from 15 bp to 21 bp) were tested to establish the minimum length of 

DNA required for complex formation.  This was done by “band shift assay”. For this 

purpose two native gels were made and one of them was stained with coomassie blue 

and another with ethidium bromide in order to visualize protein and DNA 

respectively. The results are illustrated in fig. 48. 

One can see that the complexes with higher molecular weight migrate faster on 

native gel than those with smaller molecular weight. It is known that migration on a 

native gel depends on the molecule shape and on the charge. When the DNA is 

getting longer the complex has a higher  negative charge. This could explain that the 

complexes with higher molecular weight migrate faster. Another explanation could be 

that when longer pieces of DNA are used the complex is  more elongated, and could 

migrate faster.  

As shown on fig. 12, the complex is not formed when 15 bp dsDNA is used. 

Relatively weak binding can be observed when 17 bp dsDNA is used. For 19 bp, 21bp 

and 23 bp dsDNA one can see strong bands corresponding Ets1/Ets1/DNA complex. 
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A                                                      B 

 

 

 

 

 

 

 

 

 

Fig. 12 Native gel of Ets1/Ets1/DNA complexes formed with dsDNA having 

different length 

A. Gel stained with Coomassie blue 

B. Gel stained with Ethidium Bromide 

Lane 1 – molecular weight marker for native electrophoresis, lane 2 – Ets1 (280-441) 

+ 15 bp DNA fragment, lane 3 - Ets1 (280-441) + 17 bp DNA fragment, lane 4 - Ets1 

(280-441) + 19 bp DNA fragment, lane 5 - Ets1 (280-441) + 21 bp DNA fragment, 

lane 6 - Ets1 (280-441) + 23 bp DNA fragment 

 

 

2.4 Ets1/Ets1/DNA complex purification 

 

In order to purify Ets1/Ets1/DNA complex (Ets1 280-441) from Ets1/DNA 

complex and free DNA, gel filtration was used. Initially, after Ni-NTA column, gel 

filtration was used for the Ets1 protein, then the Ets1/Ets1/DNA complex was formed 

and purified by gel filtration. Subsequently, the gel filtration purification step for Ets1 

protein was shown to be unnecessary. The results are illustrated on fig. 13.  
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A                                                                                    B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Gel filtration of Ets1/Ets1/DNA complex 

A. Gel filtration of Ets1/Ets1/DNA complex  

B. Low molecular weight gel filtration standard (Amersham) 

 

 

After gel filtration the samples corresponding peak 1, peak 2 and peak 3 and peak 

4 were analyzed by  “band shift assay”.  Fig. 14 demonstrates that peak 2 corresponds 

to Ets1/Ets1/DNA complex.  
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A                                                       B 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 Native gel of Ets1/Ets1/DNA complex before and after gel filtration 

A. Gel stained with Coomassie blue 

B. Gel stained with Ethidium Bromide 

Lane 1 – molecular weight marker for native electrophoresis, lane 2 – sample before 

gel filtration, lane 3 – sample after gel filtration (peak 2) 
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2.5 Ets1/Ets1/DNA SAXS experiment 

 

 After purification by gel filtration, samples of Ets1/Ets1/ WT DNA (wild 

type), Ets1/M1 DNA (one of Ets1 binding sites was mutated) complexes and DNA 

alone (as a negative control) were concentrated and used for SAXS measurements in 

the concentration range of 1 mg/ml to 10 mg/ml. Ets1 corresponding to the residues 

280-441 and 30 bp DNA were used. Ets1 binding site is shown in red. 

WT               accaagacaGGAAgcacTTCCtggagatta 
                     tgg tt ctgt CCTT cgtgAAGGacctctaat 
 
M1               accaagacaAAAAgcacTTCCtggagatta 
                     tgg tt ctgt TTTT cgtg AAGGacctctaat 
 
 Higher concentrations could not be measured due to aggregation. The samples were 

monodisperse. The experimental curves are shown on fig. 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 Experimental SAXS data of Ets1/Ets1/DNA complex and Ets1/M1 DNA 

complex at the concentration 5 mg/ml 

curve 1 – experimental SAXS data of Ets1/M1 DNA complex 

curve 2 – experimental SAXS data of Ets1/Ets1/DNA complex 

This graphic demonstrates dependence of scattering intensity logarithm on absolute 

value of scattering vector.  

1 
2 
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The shapes of the curves are different, which corresponds to the different shapes 

of the complexes Ets1/Ets1/DNA and Ets1/M1 DNA. Extrapolated intensities at zero 

scattering angle, which are proportional to molecular weights of the complexes 

pointed out to the difference in molecular weight of the particles.   

The crystal structure of Ets1 (residues 309-441) bound to DNA as a monomer was 

received by extraction of Pax5 molecule from the crystal structure of ternary complex 

Ets1/Pax5/DNA (PDB code 1MDM) and by making DNA shorter. Using program 

MASSHA (Konarev et. al., 2001), tentative models of Ets1 dimer bound to DNA 

were built. During modeling process it was taken under consideration that the distance 

on the DNA between two Ets1-binding sites is 4 bp, which would correspond a turn of 

137° (one DNA helical turn 360° is 10.5 bp) if the Ets1 binding sites would be located 

on the same DNA strand. In the example of the stromelysin-1 promoter they are 

located on the complementary strands (see above the stromelysin-1 promoter DNA 

sequence), which would correspond to a turn of 180°+137°=317°.  Thus, the angle 

between two Ets1 molecules could be 43°. In the calculation the DNA was considered 

to be unbent. Modeling process is illustrated on fig. 16.  

 

 

 

 

 

 

 

 

 

Fig. 16 Schematic representation of modeling process 

Molecule 2 was rotated along the axis X and therefore different models of 

Ets1/Ets1/DNA complex were created. 

 

10 different models (with different angles between Ets1 molecules) of the Ets1 

dimer on the DNA were built. The theoretical scattering intensities of the models were 

calculated using program CRYSOL (Svergun et. al., 1995) and compared to the 

experimental one. Based on the fit the best tentative model was chosen and 

 
 Molecule 1 Molecule 2 

X 
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investigated further. The best tentative model and the fit to the experimental data are 

shown in fig. 17. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17 The best tentative model of Ets1/Ets1/DNA complex and the fit to the 

experimental data 

A. The best tentative model of Ets1/Ets1/DNA complex 

B. Fit of the experimental data  

Curve 1 – experimental data from Ets1/Ets1/DNA complex 

Curve 2 – theoretical curve of the tentative model calculated by the program 

CRYSOL 

This graphic demonstrates dependence of scattering intensity logarithm on absolute 

value of scattering vector.  

 

The construct for Ets1 used in SAXS experiment corresponded to amino acid 

residues 280-441 and had a N-terminal His-tag. The crystal structure of Ets1/DNA 

(PDB code 1MDM) used to build tentative model of Ets1/Ets1/DNA complex showed 

no electron density for residues 280-308. This could explain the difference in the 

beginning of the theoretical curve calculated from the model and the experimental 

curve. In order to a build more accurate model the program BUNCH was used (D. 

Svergun and M. Petoukhov, to be published). This program automatically build 

models of macromolecular complexes from high resolution structures or homology 

models of their subunits or domains against SAXS data. In the case of the 

Ets1/Ets1/DNA complex the missing N-terminal residues were added. 20 different 

A B 
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models were built by the program BUNCH (Petoukhov et. al., 2005). The overlay of 

two representative models and the fit are illustrated in fig. 18.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18 The overlay of two representative models built by BUNCH and the fit to 

the experimental data 

A. The overlay of two representative models built by BUNCH. The tentative model of 

Ets1/Ets1/DNA complex is colored in magenta. The N-terminal parts of Ets1 built by 

BUNCH are colored in green and cyan.  

B. Theoretical curve calculated from one of the models built by BUNCH and the 

experimental curve 

Curve 1 – experimental data from Ets1/Ets1/DNA complex 

Curve 2 – theoretical curve of the tentative model calculated by the program 

CRYSOL 

This graphic demonstrates dependence of scattering intensity logarithm on absolute 

value of scattering vector. 

 

From fig. 18 it can be seen that the N-terminal parts from different models 

look different, which could be due to flexibility of these regions.     

Based on the model built by BUNCH for Ets1/Ets1/DNA complex, the model 

of Ets1/M1 DNA was built by subtraction of one Ets1 molecule. The model of 

Ets1/M1 DNA and the fit are illustrated in fig. 19. 

 

A B 
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Fig. 19 Model of Ets1/M1 DNA and the fit to the experimental data 

A. Model of Ets1/M1 DNA 

B. The fit of Ets1/M1 DNA model to the experimental curve 

Curve 1 – experimental data from Ets1/M1 DNA complex 

Curve 2 – theoretical curve of the tentative model calculated by the program 

CRYSOL 

This graphic demonstrates dependence of scattering intensity logarithm on absolute 

value of scattering vector. 
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2.6 Ets1/Ets1/DNA complex crystallization 
 

 
Ets1/Ets1/DNA complexes (Ets1 280-441) were formed using different DNA 

length with and without a  TA-overhang, purified by gel- filtration, analyzed on native 

and SDS gels, concentrated up to 10 mg/ml and used for crystallization.  

 DNA contacts are very important for crystal packing, so a number of DNA 

length were used. TA-overhang can help to establish DNA contacts.  

 DNA used for crystallization is shown below. Ets1 binding sites are colored in 

red and TA-overhangs are colored in green. 

 
21 TA     TgacaGGAAgcacTTCCtgga 
                  ctgt CCTT cgtg AAGGacctA 
 
22 TA     TagacaGGAAgcacTTCCtgga 
                  tctgt  CCTT cgtgAAGGacctA 
 
23 TA     TagacaGGAAgcacTTCCtggag 
                  tctgt  CCTT cgtgAAGG acctcA 
 
25 TA     TaagacaGGAAgcacTTCCtggaga 
                  ttctgt  CCTT cgtgAAGGacc tctA 
 
26 TA     TcaagacaGGAAgcacTTCCtggaga 
                 gttctgt  CCTT cgtg AAGGacc tctA 
 
27 TA     TcaagacaGGAAgcacTTCCtggagat 
                 gttctgt  CCTT cgtg AAGGacc tctaA 
 
28 TA     TccaagacaGGAAgcacTTCCtggagat 
                 ggttctgt  CCTT cgtg AAGGacctc taA 
 
30           accaagacaGGAAgcacTTCCtggagatta 
               tgg tt ctgt CCTT cgtgAAGGacctctaat 
 
 

 Initially, 30bp DNA (Baillat et al., 2002) was used for crystallization and no 

crystals were obtained. Then 26 bp DNA with TA-overhang was used. This DNA was 

chosen based on the theory that protein-DNA complexes are better crystallized when 

DNA length is equal to 1, 1.5, 2, 2.5 (Batchelor et. al. 2002) and etc helical turns on 

the DNA. A length of 26 bp corresponds to 2.5 helical turns. Crystals were grown by 

sitting drops vapor diffusion method. Temperatures 20º C and 4º C were tested in 
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crystallization trials. The commercial crystallization screens were used. Crystals 

appeared under 5 different conditions at 20º C  after 1-2 months. Crystals pictures are 

shown on fig. 20.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20 Picture of the crystals obtained for the complex of Ets1 dimer and 26 bp 

DNA with TA-overhang 

A, B, C – three different conditions where the crystals were formed.   

 

 

After optimization these crystals diffracted to a resolution of 5-6 Å. For one of 

the crystals (conditions from fig. 56 C) a full data set was collected (fig. 21) in order 

to try to get some structural information and to validate SAXS model.  However, the 

data quality was poor. 

When PEG 4000 (for the conditions shown on fig. 20 A) was changed to PEG 

1500 small needles were grown. They are shown on fig. 22. However, the attempts to 

improve these crystals failed. 

 

 

 

0.2 M CaCl2 
0.1 M HEPES-NaOH pH 7 
25% PEG 4000 

0.2M Mg Acetate 
0.1 M MES pH 6.4 
20% PEG 8000 

0.2 M Ca Acetate  
0.1 M MES pH 6.5 
18% PEG 8000 

A B C 
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Fig. 21 Picture of the crystal of the complex of Ets1 dimer and 26 bp DNA with 

TA-overhang formed under the same conditions as shown on fig. 20 C and its 

diffraction pattern 

A. Crystal picture 

B. Diffraction pattern of the crystal.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 22 Picture of the crystals of the complex of Ets1 dimer and 26 bp DNA with 

TA-overhang grown with PEG 1500 

 

 

 

A B 

0.2 M CaCl2 
0.1 M HEPES-NaOH pH 7 
20% PEG 1500 
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Fig. 23 Picture of the crystals of the complex of Ets1 dimer and 26 bp DNA with 

TA-overhang after optimization and their diffraction pattern 

A. Crystal picture 

B. Diffraction pattern of these crystals. 

 

When the salt was changed from calcium acetate to ammonium phosphate 

long thin needles were obtained. They and their diffraction pattern are shown on fig. 

23. 

In spite of the fact that different crystal forms were grown under different 

conditions, optimization did not improve the resolution of the crystals. It was decided 

to work with a different DNA construct. The work was continued in two different 

directions. The first direction was to vary the DNA length around 26 bp. Therefore, 

the following DNA lengths were tried: 25 bp with TA-overhang, 27 bp with TA-

overhang and 28 bp with TA-overhang. The second approach was to use as short 

DNA piece for crystallization as possible in order to avoid the flexibility given by 

DNA ends which are not involved in binding. Based on the results of binding assay 

(see above, fig. 12), the following DNA lengths were chosen: 21 bp with TA-

overhang, 22 bp with TA-overhang and 23 bp with TA-overhang and used for 

crystallization. 

 

0.2 M (NH4)H2PO4 
25% PEG 8000 
0.1 M MES 6.4 

 

7 Å 

 

A 
B 
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The DNA lengths 25 bp with TA-overhang and 28 bp with TA-overhang did 

not give any crystals. But the crystals were grown with the DNA length 27 bp with 

TA-overhang under 3 different conditions. All the conditions were similar to the 

previous one when the DNA length 26 bp with TA-overhang was used.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24 Picture of the crystals of the complex of Ets1 dimer and 27 bp DNA with 

TA-overhang after optimization and their diffraction pattern 

A. Crystal picture 

B. Diffraction pattern of these crystals. 

 

Fig. 24 shows how one type of the  crystals grown for the complex of Ets1 

dimer and 27 bp DNA with TA-overhang after 2-4 weeks at 20º C. They diffracted to 

a resolution of 7 Å. In comparison to the crystals grown with 26 bp DNA with TA-

overhang the spots on the diffraction pattern do not looked diffused. But the 

resolution was similar to previously observed for the DNA length 26 bp with TA-

overhang .  

On the fig. 23 and 24 ice rings can be seen. In order to check that low 

diffraction was not due to the freezing, crystals were mounted in the capillary or used 

with a cryo solution, but it did not improve the resolution.   

0.2 M Ca Acetate  
0.1 M MES pH 6.5 
16% PEG 8000 

7 Å 

 

A B 
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Another type of crystals was obtained after 2-4 weeks at 20º C for the DNA 

length 27 bp with TA-overhang. The crystal picture is illustrated on fig. 25. 

 

 

 

 

 

 

 

Fig. 25 Picture of another crystal type of the complex of Ets1 dimer and 27 bp 

DNA with TA-overhang after optimization 

 

The crystal illustrated on fig. 25 diffracted up to 3.7 Å.  The full dataset was 

collected for this crystal. Initial trials to work with this data set were made but then 

better crystals were obtained. 

For shorter pieces of DNA the crystals could be obtained for the complex of 

Ets1 dimer and 22 bp, 23 bp DNA with TA-overhang, no crystals appeared for the 

complex of Ets1 dimer and 21 bp DNA with TA-overhang. For the complex of Ets1 

dimer and 22 bp DNA with TA-overhang the crystals (needles) were grown at 20º C  

after 5-10 days. The crystals are shown on fig. 26.  

 

 

 

 

 

 

 

Fig. 26 Picture of the crystals of the complex of Ets1 dimer and 22 bp DNA with 

TA-overhang after optimization 

 

 Change of PEG molecular weight, percentage of PEG, buffer did not make the 

crystals bigger. But change of salt from KCl to CaCl2 enlarged the size of the crystals.  

CaCl2 was chosen based on previous experience with 26 bp DNA with TA-overhang 

0.15 M (NH4)2SO4 
0.1 M Na Citrate pH 6.1 
30% PEG 8000 

0.2 M KCl 
0.05 M MES 5.6 
5% PEG 8000 
0.01 M MgCl2 
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when the crystals were obtained under conditions containing 200 mM CaCl2. The 

crystals appeared always as a bundles of thin needles. The crystals are shown on fig. 

27.  

 

 

 

 

Fig. 27 Picture of the crystals of the complex of Ets1 dimer and 22 bp DNA with 

TA-overhang when KCl was changed to CaCl2 

  

These crystals diffracted up to 5-6 Å. But they were very difficult to 

manipulate because they were very thin and easy to break.  

 After increasing the concentration of additive (MgCl2) to 90 mM the crystals 

become bigger and the best of them diffracted up to 3.5 Å. But the intensities of the 

spots were very weak and data collection was not possible because of this reason.  

The crystals and their diffraction pattern are shown on fig. 28. 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 28 Picture of the crystals of the complex of Ets1 dimer and 22 bp DNA with 

TA-overhang grown in presence of 90 mM MgCl2 and their diffraction pattern 

A. Crystal picture 

B. Diffraction pattern of these crystals. 

 

0.2 M CaCl2 
0.05 M MES 5.6 
5% PEG 8000 
0.09 M MgCl2 

 

3.5 Å 
A B 

0.2 M CaCl2 
 MES 5.6 
5% PEG 8000 
0.01 M MgCl2 
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In order to make crystal manipulation easier the crystals were cross- linked 

using 0.25% of glutaraldehyde for 5 hours. After cross- linking the crystals became 

very stable but they lost their diffraction properties. The best diffraction observed for 

cross- linked crystals was 6 Å. Annealing was tried on these crystals as well but it just 

dropped the resolution from 4 to 6-7 Å. All further attempts to improve the crystals 

quality did not lead anywhere.  

 In order to make sure that the crystals corresponds to the Ets1/Ets1/DNA 

complex, some crystals were dissolved and analyzed on native gel. It was done for the 

crystals grown with 22 bp with TA-overhang and 27 bp with TA-overhang DNA. The 

results are shown on fig. 29.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 29 Native gel of dissolved crystals when 22 bp and 27 bp DNA with TA-

overhang were used (silver staining) 

Lane 1 – molecular weight marker for native electrophoresis, lane 2 , 3 – 

Ets1/Ets1/27TA DNA - washing of the crystals, lane 4 - Ets1/Ets1/27TA DNA – 

dissolved crystals, lane 5 - Ets1/Ets1/22TA DNA – 1st wash and partially dissolved 

crystals, lane 6 - Ets1/Ets1/22TA DNA – dissolved crystals 

 

On lane 4 one can see dissolved crystals of Ets1/Ets1/27 bp with TA-overhang 

DNA complex, the complex was partially degraded. Lane 5 corresponds to the first 

wash of the crystals of Ets1 dimer on 22 bp DNA but at this stage the crystals were 

partially dissolved. These crystals were small and thin needles making bundles and 

they are difficult to manipulate. As a result many of the crystals were left in the 

       1            2            3           4             5           6 

232 kDa 

67 kDa 

140 kDa 

440 kDa 
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washing solution and dissolved and only some of them were transferred to a fresh 

drop with the buffer solution used for protein purification and dissolved there. The 

manner in which the crystals were treated explains why the band on the lane 5 is 

thicker than on the lane 6.   

After all the trials to work with the needles produced from the Ets1 dimer and 

22 bp DNA with TA-overhang complex which did not give satisfactory results it was 

decided to try 23 bp DNA with TA-overhang for crystallization. The initial crystal 

screens were done at 20º C in EMBL high thought put crystallization facility in sitting 

drops. Crystals from 5 different conditions were obtained. The crystal pictures and 

crystallization conditions are shown on fig. 30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30 Crystal pictures and crystallization conditions for the complex of Ets1 

dimer and 23bp DNA with TA-overhang 

A-E Crystal pictures 

 

 

0.2 M ammonium acetate 
0.1 M sodium citrate 5.6 
30% PEG 4000 
 

0.2 M ammonium sulfate 
0.1 M  MES 6.5 
30% PEG MME 5000 

 0.2 M ammonium sulfate
0.1 M sodium cacodylate 6.5
30% PEG 8000 

0.1 M CaCl2 
0.1 M MES 6.5 
15% PEG 4000 

0.1 M Li2SO4 

0.1 M MES 6.0 
20% MPEG 2000 

B C 

D E 

A 
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The crystals presented on fig. 30 A diffracted to a resolution of 3.1 Å and the 

full dataset was collected. The resolution obtained for the other conditions is 

summarized in table 1. Needles were grown for the complex of Ets1 dimer and 23 bp 

DNA with TA-overhang under similar conditions as for the complex of Ets1 dimer 

and 22 bp DNA with TA-overhang. 

In order to prove that the crystals grown under conditions illustrated on fig. 

30A indeed are the crystals of Ets1 dimer and 23 bp DNA with TA-overhang 

complex, the crystals were dissolved and analyzed on native gel (fig. 31). One can see 

that dissolved crystals are the crystals of Ets1 dimer and 23 bp DNA with TA-

overhang complex. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31 Native gel of dissolved crystals of  Ets1 dimer and 23 bp DNA with TA-

overhang complex (silver staining) 

Lane 1  - molecular weight marker for native electrophoresis, lane 2 – Ets1/Ets1/23 bp 

DNA with TA-overhang (positive control), lane 4 – dissolved crystals, lane 5 – crystal 

wash 
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Table 1 – summary of crystallization conditions  
conditions 

   DNA length crystals 
salt buffer    precipitant         additive 

resolution 

21 TA;pl No  -   -  

Very small 
needles 

0.2 M KCl 
 0.05 M MES 5.6 

 
5% PEG 8000 
 

0.01 M MgCl2 to small for the beam-line 

needles 
 
0.2 M CaCl2  
 

0.05 M MES 5.6 
 

5% PEG 8000 
 

0.01 M MgCl2 
 

Up to 5-6 Å 
 

22 TA 

needles 0.2 M CaCl2 0.05 M MES 5.6 5% PEG 8000 0.09 M MgCl2 3.5 Å 
very weak intensities 

small needles 
Sigma/PEG A3 

0.1 M CaCl2 0.1 M MES 6.5 15% PEG 4000 - to small for the beam-line 

needles 
Sigma/PEG H1 

0.1 M Li2SO4 0.1 M MES 6.0 20% MPEG 2000 - not tried yet  

Nextal F9 0.2 M  
ammonium sulfate 

0.1 M  
sodium cacodylate 6.5 30% PEG 8000 - 7 Å 

 

Nextal G11 0.2 M  
ammonium acetate 

0.1 M  
tri-sodium citrate 5.6 

30% PEG 4000 - 7 Å 
 

PEG/Ion A5 0.2 M  
sodium sulfate 

- 20% PEG 3350 - 6 Å 
 

Hampton G2 0.2 M  
ammonium sulfate 

0.1 M  
sodium cacodylate 6.5 

30% PEG 8000 - 4.1 Å 
 

Hampton B10 0.2 M  
ammonium sulfate 

0.1 M MES 6.5 30% PEG MME 
5000 

- 5 Å 
 

Hampton A2 0.2 M 
ammonium acetate 

0.1 M  
sodium citrate 5.6 

30% PEG 4000  3.1 Å 
 

23 TA 

optimization 0.2 M 
ammonium acetate 

0.1 M  
sodium citrate 5.6 

28% PEG 2000  2.58 Å 
 

25 TA  No - - 

 
 
0.2 M CaCl2 
 

0.1 M  
HEPES-NaOH 7.0 25% PEG 4000 - 6 Å 

 
 
0.2M Mg Acetate 
 

 
0.1 M MES 6.4 
 

20% PEG 8000 - 6 Å 

 
 
0.2 M Ca Acetate  
 

 
0.1 M MES 6.5 
 

18% PEG 8000 - 5.5 Å 

optimization 
0.2 M 
(NH4)H2PO4 
 

0.1 M MES 6.4 25% PEG 8000 - 7 Å 

26 TA 

Very small 
needles 

0.2 M CaCl2 
 

0.1 M  
HEPES-NaOH 7.0 
 

20% PEG 1500 - to small for the beam-line 

 
 
0.2 M Ca Acetate  
 

0.1 M MES 6.5 16% PEG 8000 - 7 Å 

 
 
0.2 M Ca Acetate  
 

0.1 M MES 6.5 16% PEG 4000 - 7 Å 27 TA 

 
 
0.15 M (NH4)2SO4 
 

 
0.1 M  
sodium citrate 6.1 
 

30% PEG 8000 - 3.7 Å 

28 TA - - - 
30 - - - 
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Conclusions on the crystallization conditions of Ets1 dimer and DNA  complex: 

 

1. All the crystals were obtained in PEG in pH range from 5.6 to 6.5. 

2. The crystals usually required 200 mM salt which could be decreased to 150 

mM or even 100 mM. As cations Ca, Mg, Li and ammonim were used as 

anions acetate, sulfate, chloride or phosphate were used. Sometimes MgCl2 

was used as an additive.   

3. All the crystals were grown at 20º C. Decrease of the temperature to 4º C leads 

to formation of very small crystals or even crystalline precipitate. Increase of 

the temperature to 25º C gave smaller crystals that obtained at 20º C and 

decrease their diffraction properties. 

4. Annealing of the crystals did not help to improve diffraction properties for any 

type of crystals. 

5. DNA used for crystallization is an important parameter. For instance, only 

DNA length 22 bp with TA-overhang , 23 bp with TA-overhang, 26 bp with 

TA-overhang and 27 bp with TA-overhang leads to the formation of the 

crystals when the DNA length 21 bp with TA-overhang, 25 bp with TA-

overhang, 28 bp with TA-overhang and 30 does not. However, the DNA 

length in terms of helical turns is not the only parameter. One helical turn is 

10.5 bp that 21 bp corresponds exactly to two helical turns when 23 bp does 

not but the complex with the DNA 23 bp gives crystals. However, the solvent 

used, DNA sequence and the way how protein and DNA are interacting, etc 

are important for the crystallization of protein-DNA complexes. Different 

conditions and different DNA length have to be tested in order to obtain good 

quality crystals.       
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2.7 Ets1/Ets1/DNA structure determination 

 

Crystals of Ets1 dimer complex formed with DNA length 23 bp with TA-

overhang grown under the following conditions: 0.2 M ammonium acetate, 0.1 M  

sodium citrate 5.6, 28% PEG 2000. These crystals did not require cryo-protection. 

Crystals were mounted in a loop and transferred into a stream of nitrogen at 100 K. A 

native data set was collected on beam line ID 29 ESRF Grenoble at 0.98 Å 

wavelength. The crystal picture and their diffraction pattern shown on fig. 32. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 32 Crystals obtained for the complex of Ets1 dimer on 23 bp DNA with TA-

overhang and diffraction pattern for one of them 

A. Crystal picture 

B. Diffraction pattern of the crystal   

 

The crystals were obtained for the complex formed by two Ets1 molecules 

(residues 280-441) and 23 bp dsDNA fragment, which had two Ets1 binding sites. 

The DNA sequence is shown below. 

 

               TagacaGGAAgcacTTCCtggag 
                  tctgt  CCTT cgtgAAGG acctcA 

 

Ets1 binding sites are shown in red and TA-overhangs are shown in green. 

A B 
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Data set was autoindexed, reduced and scaled with HLK suite of programs 

(DENZO and SCALEPACK). An overview of data and processing statistics for 

Ets1/Ets1/DNA complex is given in Table 2.   

 

Table 2. Data collection statistics for Ets1 dimer bound to 23 bp DNA 

Wavelenght (Å)  0.9756 

Resolution range (Å) 20.0-2.58 

N0 of observations 56173 

N0 of reflections 20507 

Completeness (%) 95.8 (75.4) 

Redundancy 2.7 

<I/sI> 20.45 (2.12) 

Rmerge 0.08 (0.66) 

Space group P21212 

? (Å) 93.556     

b (Å) 100.838 

c (Å) 69.810 

 

Systematic absences of axial reflection uniquely assign the crystal to the 

orthorhombic space group P21212 with unit cell parameters shown in  Table 2. The 

solvent content amount is estimated as 58.2% and the Matthews coefficient is 3.0 

Å3/Da. The crystals contain one complex in the asymmetric unit.  

The structure was solved by molecular replacement using MOLREP program.  

The solutions are presented in Table 3. 

As a search model the structure of Ets1 monomer (residues 333-436) bound to 

DNA fragment with one Ets1 binding site was used. The DNA in the model was cut 

to 11 bp. The DNA sequence is shown below. Ets1 binding site is shown in red.  

 

gtgccGGAAat 
cacggCCTTta 

 

The structure of Ets1 monomer bound to 11 bp DNA fragment with one Ets1 

binding site in the text below is called “monomer”.   
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The complex of Ets1 dimer on 23 bp DNA fragment has non-crystallographic 

symmetry. In the MOLREP program it was searched for two “monomers” in 

asymmetric unit (which would correspond to one complex of Ets1 dimer on 23 bp 

DNA) because it was expected to have one complex according to Matthews 

coefficient determination (see above).  

 

Table 3. Solutions for two “monomers” found by MOLREP program 

 

Solutions           a          ß          ?           tx        ty        tz       Rfac   Corr 

Solution 1      120.34 -155.55 -170.00 -0.048  0.249 -0.250  0.575  0.437  

Solution 2      120.34  155.55   10.00   -0.390  0.254 -0.310  0.551  0.521   

 

Two “monomers” in the asymmetric unit were found by the program 

MOLREP. However, they belonged to two different complexes. This happened 

because the program was trying to find the closest position for the protein but not for 

DNA. In order to check that the solution found by the program MOLREP makes 

sense contacts between the complexes in the crystal were investigated. It was done in 

the program O where the complexes were generated according to the symmetry 

operators. It was found that the re was no overlapping between the complexes. The 

DNA was making layers, which is typical for protein-DNA complexes. When the 

contact between two “monomers” within one complex occurred the DNA was not 

disrupted but was making continuous chains of dsDNA from two “monomers”. The 

real complex is Ets1 dimer on 23 bp DNA. The model of complete complex was 

constructed in program O. For this purpose, symmetry-related “monomers” were 

generated,  two “monomers” belonging to the same molecule and making continuous 

DNA were selected and new model (pdb file) was created. This file containing 

coordinates of Ets1 dimer on 22 bp DNA was used for further studies. Four 

complexes were found in the unit cell. The position of the complexes in the unit cell is 

illustrated on fig. 33. 
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Fig. 33 Unit cell 

 

The next step was refinement. First, rigid body refinement was done treating 

each protein and each DNA chain as a single rigid body. Second, restrained 

refinement was done. The results are shown in Table 4. 

 

Table 4. Refinement statistics 

 

Resolution limits                    =     19.964     2.580 

Number of used reflections           =      19446 

Overall R factor                     =     0.3196 

Free R factor                        =     0.4002 

Overall correlation coefficient      =     0.8828 

Free correlation coefficient         =     0.8303 

 

R-factor decreased and correlation coefficient increased, but still the value of 

R-factor is too high. This is due to the fact that in initial model found by MOLREP 

sixty N-terminal amino acid residues are missing for Ets1 protein and it is necessary 

to built them. 
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After initial refinement electron density maps (2F0-Fcalc and F0-Fcalc) were 

calculated. The model after molecular replacement and refinement and electron 

density maps are illustrated on fig. 34 and 35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 34 The model of the complex of Ets1 dimer on 23 bp DNA 

 

 

 

This work is in progress now. The missing N-terminal part of Ets1 protein has 

to be manually built. Some bases for DNA have to be modified.  
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Fig. 35 Electron density map 2F0-Fcalc with s level 1.5  

A. DNA 

B. Ets1 protein 

 

 

 

 

2.8 Comparison of SAXS model and crystallographic model 

 

 The models for Ets1 dimer bound to DNA obtained from SAXS and X-ray 

crystallography were compared by LSQ program. The results are illustrated on fig. 

36.  

 

 

 

 

 

A B 
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Fig. 36 Overlay of the tentative model of Ets1/Ets1/DNA complex from SAXS 

and the crystal structure of Ets1/Ets1/DNA complex 

The crystal structure of Ets1/Ets1/DNA complex is colored in cyan, the tentative 

model of Ets1/Ets1/DNA complex from SAXS is colored in magenta.  

 

Figure 72 demonstrated that the X-ray crystallography model and tentative 

SAXS model are in a good agreement. The angle between Ets1 molecules in the 

tentative SAXS model is slightly larger than in X-ray crystallography model, but the 

shape is correct.  

 

 

2.9 Comparison of crystal structure of Ets1/Ets1/DNA complex and Ets1 dimer 

 

The models for Ets1 dimer bound to DNA and Ets1 dimer without DNA 

(Tahirov et. al., 2002) were compared by LSQ program. The results are illustrated on 

fig. 37.  

Fig. 37 demonstrated that Ets1 conformation in dimer when Ets1 is bound to 

DNA and when Ets1 is without DNA is different.   
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Fig. 37 Overlay of the crystal structure of Ets1/Ets1/DNA complex and Ets1 

dimer (Tahirov et. al., 2002) 

The crystal structure of Ets1/Ets1/DNA complex is colored in cyan, the crystal 

structure of Ets1 dimer is colored in magenta.  

 

 

2.10 Preliminary conclusions  

 

The structure for Ets1 dimer and DNA complex was solved to a resolution of 

2.58 Å by molecular replacement. In the current structure N-terminal parts of Ets1 

protein is missing and has to be built manually. However, according to the electron 

density maps, preliminary conclusion can be made that protein-protein interaction 

could take place. 

The tentative SAXS model of Ets1/Ets1/DNA complex is in a good agreement 

with the crystallographic model. 

Ets1 conformation in dimer when Ets1 is bound to DNA and when Ets1 is 

without DNA is different.   

 

2.11 Future perspectives 

 

 Future perspectives for the project focused on structure determination of 

Ets1/Ets1/DNA complex would be to finish the structure and to understand the 

mechanism of Ets1/Ets1/DNA complex formation. 
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 2. 12 USF1/DNA complex formation and purification 

 

For the DNA binding experiment a dsDNA fragment was used:  

 tcatCACGTGgcccg 
 agtaGTGCACcgggc 
  

The core binding sequence is a palindrome of 6 bases (colored in red). USF1/DNA 

complex was formed with molar ratio 2:1 (protein to DNA) and purified using gel 

filtration. Complex formation was established by “band shift assay”. Identical bands 

for protein/DNA complexes were observed on these gels. Two bands corresponding to 

the protein/DNA complexes were found on the native gel (fig. 38 A, B), whereas only 

one band was found in SDS-PAGE (fig. 38 C), suggesting that USF1 binds to the 

DNA as a homodimer and as a homotetramer.  

 

A                                                 B 

    

                       

 

 

 

 

 

 

 

 

Fig. 38 Native gel and SDS-PAGE of USF1/DNA complex  

A. Gel stained with Coomassie blue 

B. Gel stained with Ethidium Bromide 

Lanes 1, 2 – USF1/DNA complex, upper bands correspond to homotetramer, lower 

bands to dimer. On the ethidium bromide stained gel the bottom band corresponds to 

free DNA. 

C. SDS-PAGE of USF1/DNA complex 

Lane 1 – molecular weight marker, lane 2 – USF1 
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In order to check that USF1 bound to DNA forms bivalent homotetramers and 

to show that the upper band in fig. 38 indeed corresponds to bivalent tetramers and 

not to a contamination 2D gel was run.   A native gel was run first and subsequently a 

lane containing USF1/DNA complexes was applied on the SDS PAGE. The result 

demonstrated that the upper band indeed corresponds to USF1/DNA bivalent 

homotetramer (data not shown). 

The USF1/DNA complex was purified by gel filtration to eliminate free DNA. 

USF1/DNA dimers and tetramers elute in the same broad peak and all attempts to 

separate them or to shift the equilibrium in the direction of dimers or tetramers failed. 

 

 

2.13 SAXS experiment on USF1/DNA complexes 

 

After purification by gel filtration samples of USF1/DNA complexes were 

concentrated and used for SAXS measurements in the concentration range of 1 mg/ml 

to 8 mg/ml. Higher concentrations could not be measured  due to aggregation.  The 

experimental curve of the sample with the concentration 6 mg/ml is shown on fig. 39. 

The samples were polydisperse and USF1/DNA dimer, USF1/DNA tetramer and 

free DNA, were detected by native gel electrophoresis.  

The crystal structure of USF1 (without leucine zipper) dimer/DNA complex 

(Ferre-D’Amare et. al., 1994) and of the homologous protein Max (with leucine 

zipper) on its cognate DNA are known (Ferre-D’Amare et. al., 1993). USF1/DNA 

structure was complemented using the leucine zipper fragment taken from a 

Max/DNA complex (fig. 40). This was done using program MASSHA (Konarev et. 

al., 2001), which allows the subunits to be translated and rotated as rigid bodies while 

observing corresponding changes in the fit to the experimental data. 
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Fig. 39 Experimental SAXS data from USF1/DNA complex at a concentration of 

6 mg/ml 

Curve 1 – experimental data 

Curve 2 – errors 

This graphic demonstrates dependence of scattering intensity logarithm on absolute 

value of scattering vector. 
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Fig. 40 Modeling of USF1/DNA dimer 

A. USF1/DNA - crystallographic data 

B. Leucine zipper Max/DNA - crystallographic data 

C. Model of USF1/DNA with leucine zipper 
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Based on the USF1/DNA dimer model, a set of different models for USF1 

bivalent homotetramer were constructed and analyzed using the program 

OLIGOMER (Konarev et. al., 2003), which is designed to analyze the experimental 

scattering curves from polydisperse solutions. The program determines volume 

fractions of the mixture components. USF1/DNA tetramer, USF1/DNA dimer and 

free DNA were taken as components of the mixture. Different USF1/DNA tetramer 

models were investigated. The Oligomer data, which is giving the best results, is 

shown on fig. 41.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 41 Data obtained by OLIGOMER program 

Curve 1 – experimental data from USF1/DNA complex at a concentration of 6 mg/ml  

Curve 2 – theoretical curve calculated for the mixture of USF1/DNA tetramer, 

USF1/DNA dimmer and free DNA according to OLIGOMER program 

This graphic demonstrates dependence of scattering intensity logarithm on absolute 

value of scattering vector. 

 

The best tentative model of the USF1 bivalent homotetramer displays a dimer 

arrangement similar to the crystallographic structure of Myc-Max heterotetramer 

(Nair et. al., 2003) (fig. 42). Both Myc and Max proteins are homologues of USF1.  
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Fig. 42 Comparison of USF1/DNA tetramer model from SAXS and Myc-Max 

tetramer crystal structure  

A. The best tentative model of USF1/DNA tetramer obtained from SAXS data 

B. Comparison of the best tentative model of USF1/DNA tetramer obtained from 

SAXS data and Myc-Mac tetramer structrure done by SUBCOMB program. Tentative 

model of USF1/DNA tetramer from SAXS datais coloured in magenta, Myc-Mac 

tetramer crystal structure is coloured in green. 

B 
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2.14 USF1 without DNA - SAXS model 

 

USF1 was concentrated and used for SAXS measurements without DNA. In 

some samples protein was found to be polydisperse and in some monodisperse. The 

work was continued with monodisperse samples. The experimental curve for the 

USF1 monomer at a concentration 3 mg/ml is shown in fig. 43. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 43 Experimental curve from USF1 monomer at a concentration of 3 mg/ml 

The graphic shows dependence of scattering intensity logarithm on scattering vector 

 

Twenty models of USF1 were created with the GASBOR program (Svergun 

et. al., 2001). Two representative models are shown on fig. 44.  
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A                                                                                     B 

 

 

 

 

 

 

 

 

 

Fig. 44 Two representative models of USF1 calculated by GASBOR program 

 

The average model was calculated by the program SUPCOMB and compared 

with a model of USF1 monomer created by extracting one USF1 molecule from 

USF1/DNA dimeric model built by the program MASSHA. The comparison is shown 

in figure 45. 
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Fig. 45 Comparison of the average USF1 model with the crystallographic model 

A. average model of USF1 monomer 

B. USF1 monomer – crystallographic model  

 

Thus, models for USF1 monomer without DNA, USF1/DNA dimer and 

USF1/DNA tetramer were obtained from SAXS. Biologically, the most interesting is 
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the model of USF1/DNA tetramer because it could potentially explain the regulation 

of HIV1 promoter by transcription factors binding to distal enhancer region. It could 

be that initially DNA is bent by LEF1 transcription factor and then, due to USF1 

tetramerization, the loop is stabilized. However, SAXS experiment was done using 

high concentrations of USF1/DNA complex and tetramerization could occur due to 

high concentration. In the SAXS study polydisperse solution was used and it made 

data analysis less trivial.  

 In order to confirm USF1 tetramerization two other methods were used: 

fluorescence resonance energy transfer (FRET) and rotary shadowing electron 

microscopy (EM). This was done for DNA fragment from HIV1 LTR containing two 

and three USF1 binding sites. The data is shown for the studies with DNA fragment 

containing two USF1 bind ing sites.  

 

 

2.15 FRET experiment 

 

In order to validate the USF1 tetramer model from the SAXS data and to 

demonstrate USF1 bivalent tetramer formation at physiological concentration a FRET 

experiment was performed. FRET was chosen because this method allows distances 

to be measured. The aim was to measure the distances between labeled DNA in the 

presence of USF1 (protein could not be labeled because USF1 exists in different 

oligomerization stages). In the case of USF1 tetramer formation, two distant 

fragments of DNA coming close to each other and FRET will occurs, when the 

tetramer does not form FRET can not be detected because the distances will be too 

large (fig. 46). Two different experiments were performed: one with two short 

fragments of DNA and another one with long fragment of DNA, containing two USF1 

binding site. The experiment with the long fragment of DNA is more physiological, 

but it has some disadvantages because the loop formation could potentially be 

unstable in vitro conditions (DNA fragments used in this study are listed in “Materials 

and methods” chapter).  

In the nucleus USF1 concentration was estimated as 0.5 µM, assuming 

homogeneous protein distribution (Sawadogo et. al., 1988), as a result the minimal 

concentration used in FRET experiment was 0.5 µM. In order to perform FRET 
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experiment with two short fragments of DNA, DNA was labeled with fluorescent  

donor fluorescein and fluorescent acceptor CY3. In case of the long fragment of DNA 

containing two USF1 binding sites, PCR using fluorescent labeled primers 

(fluorescein and CY3) was done. The majority of experiments were performed with 

short fragments of DNA. Initially, the emission spectrum of dsDNA labeled with 

donor was measured. Then dsDNA labeled with donor was mixed with dsDNA 

labeled with acceptor and emission spectrum was measured. This was done ensure 

that the dyes do not interact. USF1 was then titrated in equimolar concentrations. As a 

negative controls buffer titration and BSA (bovine serum albumin) titration were 

performed.  

In order to check whether FRET happens, the ratio Fd/Fa for each USF1 

concentration was calculated, where Fd is the intensity of donor in the presence of 

acceptor and USF1 and Fa is the intensity of acceptor in the presence of donor and 

USF1. If FRET occurs, the ratio Fd/Fa should decrease upon increasing USF1 

concentration during titration and then reach equilibrium. If FRET does not occur, 

then the ratio Fd/Fa does not change for the different USF1 concentrations and the 

changes of the emission spectra happens due to dilution.  

No reproducible FRET signal was observed. Similar experiment was 

performed for long fragment of DNA with two USF1 binding sites, and again no 

FRET signal was detected. 

 

A                                                                                                                       B 

 

 

 

 

 

 

Fig. 46 Scheme of FRET experiment 

A. with two short pieces of DNA  

B. with long piece of DNA containing two USF1 binding sites 

 

 

Donor fluorescein 

Aceptor CY3  
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FRET can be applied when the distance between donor and acceptor is in the 

range of 10-100 Å. The distance estimation from USF1 tetramer SAXS model was 

80-90 Å. The most probable explanation why no FRET signal was obtain would be a 

large distance between donor and acceptor (as labels were on the DNA, the distance 

between them could be larger then the distances estimated as a size of USF1 

tetramer).   

 

 

2.16 Rotary shadowing electron microscopy 

 

A number of techniques are available for visualizing isolated proteins and 

protein-DNA complexes in the electron microscope. The most commonly used are 

negative staining and metal shadowing. But in spite of the fact that negative stating 

could potentially be used for protein-DNA complexes, this method has disadvantages. 

The most important of them is aggregation of protein-DNA complexes or DNA in the 

present of heavy metals. That’s why the method of choice for protein-DNA 

complexes investigation by electron microscopy should be metal shadowing. 

Formation of the bivalent homotetramer may lead to the DNA looping 

recruiting USF1 from the distal region of the promoter to the initiator element (Inr) 

(Ferre D’Amare et. al., 1994). In order to investigate the DNA loop formation 

electron microscopy experiment was performed. The DNA fragment containing E-box 

and Inr element was amplified via PCR and had a length of 525 bp which corresponds 

to approximately 300 kDa and can be visualized by EM. The smaller fragment which 

would corresponds to HIV1 promoter region and distal initiator element (100 kDa) 

could be difficult to visualize. The DNA fragment used in EM studies had USF1 

promoter binding site on one end and USF1 binding site in the middle from distal 

enhancer region (fig. 47). The complex between DNA and USF1 was formed and the 

complex formation was demonstrated by “band-shift assay” (fig. 48 illustrating only 

Ethidium Bromide staining). USF1 was titrated and it can be seen that molecular 

weight of the complexes formed between USF1 and DNA is increased, but it is 

difficult to say what kind of complexes were formed because migration of the 

molecules on native gel not only depends on the molecular weight but also on the 

shape and charge of the molecule. Different types of the complexes which could be 
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formed between USF1 and DNA are illustrated on fig. 49. It is known from the 

literuture (Du et. al., 1993) that USF1 binds to E-box situated in distal enhancer 

region of HIV1 LTR with a higher affinity than to Inr element, but the binding 

constants were not determined. Fig. 49 demonstrates only some of the complexes 

which could be formed between USF1 and DNA fragment containing E-box and Inr 

element.   

 

 

 

 

 

 

Fig. 47 The DNA fragment used in EM studies  

USF1 binding sites are indicated by arrows 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 48 Native gel of USF1 and DNA complexes stained with ethidium bromide  

Lane 1- 100 bp DNA ladder plus, lane 2 - 1 kb DNA ladder, lanes 3-5 - PCR (HIV 

LTR) + USF1  

(with increased protein concentration). The lower band on the lane 3 corresponds to 

free DNA fragment, all the upper bands on lanes 3-5 corresponds to different protein-

DNA complexes. 

USF1 binding sites 

2000 bp 
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Fig. 49 Different complexes which could be formed between USF1 and DNA 

A. USF1 bound to E-box  

B. USF1 bound to E-box and Inr element 

C. USF1 formed tetramer and brought to DNA fragments together 

D. USF1 formed tetramer leading to loop formation 

 

 After the complexes were formed and analyzed on native gel they were 

prepared for rotary shadowing electron microscopy. As a negative control free DNA 

was used. The results for USF1/DNA complexes are shown on fig. 50. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 50 Rotary shadowing EM images for USF1/DNA complex  

A. two loops indicated by arrows (corresponds to fig. 49 D)           

B. two DNA fragments bound together indicated by arrow (corresponds to fig. 49 C) 

 

 

 

A C 

B 
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No loops or other interesting formations were observed for the control samples 

(free DNA). However, for USF1/DNA complexes the loops were a minor product and 

they could be artifacts (because the DNA could bend on its own without protein). It is 

difficult to draw conclusions and to distinguish between real loop formation and 

artifact. 

 

 

2.17 Crystallization of USF1/DNA complex 

 

The attempts to crystallize USF1/DNA complex were made. Only tiny needles 

were obtained so far which could not be optimized. 

 

 

2.18 Conclusions 

 

A SAXS model for USF1-monomer bHLHZip region without DNA was built. 

It was compared with the crystallographic model. There is no crystal structure for 

USF1 without DNA. The structural model for USF1-monomer bHLHZip region was 

made by extraction of the USF1 monomer from the USF1/DNA dimer model from 

SAXS containing Zip region. The crystallographic model is similar to the SAXS 

model calculated by GASBOR (fig. 45).  

SAXS models of USF1 containing bHLHZip region bound to the E-box DNA  

fragment, of the USF1/DNA dimer and of the USF1 tetramer were built. USF1/DNA 

tetramer showed similar dimers arrangement as in Myc-Max tetramer structure (fig. 

42). But tetramer formation could be an artifact due to the high concentrations used in 

SAXS experiments. USF1 tetramer formation was not demonstrated by FRET 

experiment or by rotary shadowing EM.  

 

 

2.19 Future perspectives 

 

Since, no good quality crystals were obtained up to now for USF1/DNA complex 

it is reasonable to continue crystallization trials of the USF1/DNA complex. 
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2.20 Ets1/USF1/DNA complex formation and purification  

 

For the DNA binding experiment a dsDNA fragment was used:  

tcatCACGTGgcccgagagctgCATCCGgagta 
AgtaGTGCACcgggctctcgacGTAGGCctcat 

 

The core binding sequences for Ets1 and for USF1 are colored in red. 

USF1/Ets1/DNA complex was formed with molar ratio 2:1:1 (USF1 : Ets1 : DNA). 

Complex formation was established by “band shift assay” (fig. 51). Fig. 52 

demonstrates SDS-PAGE of USF1, Ets1 (301-441 and 280-441) and ternary 

complexes. 

Ternary complex purification protocol provided by Fransisco Fernandez was 

modified in the following way: native protein Ets1 was used for the complex 

formation and purification, ternary complex was formed by mixing Ets1, USF1 and 

DNA in equimolar ratio in contrast to the protocol provided by Fransisco Fernandez 

where denatured Ets1 protein was refolded by dilution in the presence of USF1/DNA 

complex. 

 

 

 

 

 

 

 

 

 

 

Fig. 51 Native gel of USF1, Ets1 and DNA complexes 

A. gel stained with coomassie blue 

B. gel stained with Ethidium Bromide 

Lane 1 – molecular weight marker, lane 2 – USF1/DNA, lane 3 – Ets1 (301-

441)/DNA, lane 4 – ternary complex Ets1 (301-441)/USF1/DNA, lane 6 – Ets1 (280-

441)/DNA, lane 7 – ternary complex Ets1 (280-441)/USF1/DNA 
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Fig. 52 SDS-PAGE of USF1, Ets1 and ternary complexes 

Lane 1 – molecular weight marker, lane 2 – USF1, lane 3 – Ets1 (301-441), lane 4 – 

Ets1 (280-441), lane 5 – ternary complex Ets1 (301-441)/USF1/DNA, lane 6 – ternary 

complex Ets1 (280-441)/USF1/DNA 

 

As illustrated in fig. 51, binary complexes Ets1/DNA and USF1/DNA were 

always present in addition to ternary complex. In order to purify the ternary complex 

and eliminate binary complexes gel filtration was used. However, it was not possible 

to separate ternary complex from binary complexes on gel filtration column. This was 

due to the fact that USF1/DNA complex has molecular weight 48 kDa and elongated 

shape and migrate faster on gel filtration column. The molecular weight for ternary 

complex formed with Ets1 (301-441) is 64 kDa and with Ets1 (280-441) is 68 kDa. 

 

 

2.21 Crystallization of Ets1/USF1/DNA ternary complex 

 

The crystallization attempts were mostly focused on the ternary complex formed 

with Ets1 (280-441). In crystallization screens two temperatures were tested (room 

temperature and 4°C) and 960 different conditions were tried. For the ternary complex 

formed with Ets1 (301-441) two temperatures were tested (room temperature and 

4°C) and 480 different conditions were tried. 

Attempts to crystallize the ternary complex only yielded DNA crystals, indicating 

that the ternary complex was of limited stability. The fact that no crystals for the 

ternary complex were obtained can have several explanations: 

1. The DNA used for crystallization has length 32 bp which is quite long and can 

be flexible.  
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2. The ternary complex used for crystallization was not pure, it always has 

USF1/DNA complex in addition. 

  

 

2.22 Conclusions 

 

The ternary complex Ets1/USF1/DNA was formed and purified. All the attempts 

to crystallize the ternary complex did not give crystals. 
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3. Materials and Methods 
 
 
3.1 Materials 

 
3.1.1 Chemicals  
All commonly used chemicals were purchased from either Mersk, Sigma, 

Roth, Fluka, Qiagen, Amersham-Biotech or BioRad.  
 

3.1.2 Buffers 
 A list of most commonly used buffers during this experimental work is shown 
below.   
 
10X ligase buffer (NEB) 
100 mM Tris-HCl pH 7.8, 100 mM MgCl2, 100 mM DTT, 10 mM ATP, 250 mg/ml 
BSA 
 
TAE-buffer (running buffer for agarose gel electrophoresis) 
50X TAE buffer contained 242 g Tris base, 57.1 ml of glacial acetic acid and 18.61 g 
of EDTA, and adjusted to 1 L solution with Milli Q H2O. 
 
Running buffer for SDS-PAGE 
20X MES SDS-PAGE running buffer contained 390 g MES, 242 g Tris Base, 10% 
(w/v) SDS, 12 g EDTA and adjusted to 2 L solution with Milli Q H2O. 
 
Running buffer for native gel (TBE buffer) 
10X TBE buffer contained 108 g Tris Base, 55 g boric acid, 20 ml of 0.5 M EDTA 
pH 8 and adjusted to 1 L solution with Milli Q H2O. 
 
UV-cocktail 
6 M guanidine hydrochloride, 0.02 M phosphate buffer pH 7.5 
 

 
3.1.3 Media 
SOB media 
20 g/L bacto-tryptone,  5 g/L yeast extract, 0.5 g/L mM NaCl, 0.186 g/L KCl, 10 mM 
MgCl2* were adjusted to 1 L solution with Milli Q H2O. 
* was added just before use 

SOC media 
SOB medium, containing 20 mM glucose 
20 ml of sterilized 1 M glucose to 1 L of SOB media added just before use 
 
Luria-Bertani media (LB) 
10 g bacto-tryptone, 5 g yeast extract, 10 g NaCl were adjusted to 1 L solution with 
Milli Q H2O. pH was adjusted to 7.4 
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3.1.4 Expression vectors  
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pProExHTb expression vector 
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3.1.5 Oligonucleotides  
 

Oligonucleotides used for FRET 
 
E-box CY3 (forward primer) 5’- CY3-TTCATCACGTGGCCCGAGAG-3’ 

compl E-box CY3 5’- CTCTCGGGCCACGTGATGAA-3’ 

E-box fluorescein  5’ – Fluorescein-TCATCACGTGGCCCG – 3’ 

compl E-box fluorescein 5’ – CGGGCCACGTGATGA – 3’ 

Inr-Oregon green (reverse primer) 5’ – Oregon green – ACCAGAGAGACCCAGTACAGGC – 3’ 

 
 
Oligonucleotides used for rotary shadowing EM 
 
forward primer 5’ – ATCCTTGATCTGTGGATCTA – 3’ 

reverse primer 5’ – TTTACCAACAGTACCGGAAT – 3’ 

 
 

 
3.2 Methods 

 

3.2.1 Sub-cloning 

 Ets1 constructs (residues 335-441, 301-441 and 280-441) were subcloned into 

pETM10 expression vector, which has a noncleavable N-terminal His-tag. For this 

purpose, pETM10 vector and vector containing Ets1 DNA sequence were cut by NcoI 

and KpnI restriction enzymes, digested insert DNA and digested vector were purified 

and ligated together. The detailed procedure is described below (the protocols are 

taken from EMBL-Hamburg web-page and made by Arie Geerlof). 

  

3.2.1.1 Digestion of insert or vector DNA 

Mix in 500-µl microfuge tubes: 

5 µl 10X restriction enzyme buffer 1 (NEB) 
0.5 µl 100X BSA 
 DNA (7.5 µg of plasmid DNA containing the fragment of interest or of 

expression vector) 
2.5 µl restriction enzyme KpnI (10-20 units/µl) 
2.5 µl restriction enzyme NcoI (10-20 units/µl) 
 add sterile water to a volume of 50 µl 
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1. Add the restriction enzymes last. 

2. Mix gently by tapping the tube or pipetting the solution up and down. 

3. Incubate the reaction mixtures at 37°C for 2-4 h. 

 

3.2.1.2 Purification of digested insert DNA or digested vector 

To separate the digested vector or the insert DNA from other DNA fragments 

generated by digestion, the samples is purified using preparative agarose gel 

electrophoresis. The vector DNA or insert DNA is extracted from the agarose gel 

using a commercial gel extraction kit from QIAGEN. 

 

3.2.1.3 Ligation of DNA fragments with sticky ends 

For a standard ligation reaction of DNA fragment with 2-4 base sticky ends, we 

set-up reactions under the following conditions: 

• 100 ng of digested vector DNA. 

• Digested insert to vector DNA in a molar ratio of 1:1, 2:1, and 3:1. 

• Two control reactions with only digested vector or insert DNA to determine 

the background of non-recombinants. 

The concentration of insert and vector DNA can be determined by measuring the 

absorbance at 260 nm, assuming that a solution of 50 ng/µl gives an A260 of 1. 

Ligation reactions  

Mix in 500-µl microfuge tubes: 

2 µl 10X ligase buffer 
2 µl digested vector DNA (50 ng/µl) 

 the appropriate amount of digested insert 
DNA (see above) 

1 µl T4 DNA ligase (20 NEB units/µl) 
 add sterile water to a volume of 20 µl 
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1. Add the ligase last. 

2. Mix gently by pipetting the solution up and down. 

3. Incubate the reaction mixtures at 16°C for 2 h to overnight. 

 

3.2.1.4 Transformation of plasmid DNA to chemically competent E. coli cells 

   

1. Thaw the appropriate amount of competent cells on ice. Also pre-chill the 

required number of empty 1.5 ml microcentrifuge tubes. 

2. Pipet 200 µl aliquots of cells into the pre-chilled tubes. 

3. Add max. 20 µl of a ligation reaction mix or 5 ng of pure plasmid DNA to each 

tube. Mix gently. 

4. Incube the tubes of ice for 30 min. 

5. Heat shock the cells for 60 sec at 42°C. 

6. Place the tubes immediately on ice for at least 2 min. 

7. Add 800 µl of SOC medium to each tube, transfer the suspensions to 15 ml Falcon 

tubes, and incubate for 1 hour at 37°C. When pure plasmid DNA was used for the 

transformation, plate out 1, 10 and 100 µl of the suspensions directly on LB agar 

plates containing the appropriate antibiotic. To facilitate the speading of the 

sample, add the 1 and 10 µl aliquots to 100 µl of SOC medium. 

8. Transfer the cultures to 1.5 ml microcentrifuge tubes and spin for 1 min at 6000 

rpm. 

9. Remove 800 µl of the supernatant and resuspend the pellet. 

10. Plate out the suspension on a LB agar plate containing the appropriate antibiotic. 

11. Incubate the plates overnight at 37°C. 

 

3.2.1.5 Colonies selection 

 Agar plates should be used with appropriate antibiotic that’s why only 

colonies containing the vector with the insert should grow. The DNA is isolated from 

colonies and analyzed by restriction to prove that the insert is present and sequenced.  
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3.2.2 Expression and Solubility studies 

Preparation of soluble/insoluble protein from cells 

Jeanne Perry (Molecular Biology Institute, UCLA, Los Angeles, USA) 

The solubility of a protein depends strongly on the composition of the lysis buffer. 

Using the procedure described below the solubility of a specific protein can be tested 

under many different conditions. 

1. Grow the cells and induce protein expression using 1 mM IPTG 

2. Take so many 1 ml-samples from the cell culture at OD600 of 1 as experiments you 

would like to carry out. 

3. Spin down the cells for 5 min at 6000 rpm in a microfuge. 

4. To each cell pellet, add 100 µl of the appropriate buffer (see below) 

For a first screen use the buffer described in below: 

7.5N 50 mM Tris pH 7.5, 50 mM NaCl, 5 mM EDTA, 1 mg/ml lysozyme 
2S 50 mM Tris pH 7.5, 2 M NaCl, 5 mM EDTA, 1 mg/ml lysozyme 
0.5U 50 mM Tris pH 7.5, 50 mM NaCl, 5 mM EDTA, 0.5 M urea, 1 mg/ml lysozyme 
D 20 mM Tris pH 7.5, 50 mM NaCl, 0.2% NP 40, 1 mg/ml lysozyme 

5. Vortex to resuspend the cells. 

6. Sonicate (using a microtip) or Freeze-thaw (see below for protocol) to lyse cells. 

Freeze-thaw protocol: 

o freeze quickly on dry ice and leave for 3 min.  

o thaw immediately at 42 °C. Vortex vigorously to mix well.  

o Repeat the two previous steps for three more times (4 freeze-thaw-

vortex cycles in all). 

7. Spin the tubes for 5 min at maximum speed in a microfuge. 

8. Separate the supernatant (contains soluble protein) from the pellet (contains 

insoluble protein) by pipetting out the supernatant to a clean tube. 

9. Label the supernatant "S__" (fill in with the buffer name, e.g. "S7N"). 
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10. Label the pellet "P__" (fill in with the buffer name, e.g. "P7N"). 

11. To each supernatant, add 1 ml acetone and vortex. Freeze or leave on ice for 15 

min. Spin 5 min at maximum speed. Remove the acetone by pipetting it out, being 

careful not to disturb the pellet. 

12. Dry at 37 °C. 

13. To the acetone-treated pellet, add 15 µl SDS-Page loading buffer. 

14. To the cell pellet, add 25 µl SDS-Page loading buffer. 

15. Heat all samples to 95 °C (or greater) for 5 minutes. 

16. Vortex and centrifuge 5 min at maximum speed. 

17. Load 10 µl on a SDS-PAGE gel, taking sample from the top and avoiding any 

pellet. 

Based on results, follow up by trying another set of screens and then continue with 

combinations. 

 

pH solubility screens  

5N 50 mM Na Acetate pH 5, 50 mM NaCl, 5 mM EDTA, 1 mg/ml lysozyme 
6N 50 mM MES pH 6, 50 mM NaCl, 5 mM EDTA, 1 mg/ml lysozyme 
7N 50 mM Tris pH 7, 50 mM NaCl, 5 mM EDTA, 1 mg/ml lysozyme 
8N 50 mM Tris pH 8, 50 mM NaCl, 5 mM EDTA, 1 mg/ml lysozyme 
9N 50 mM Tris pH 9, 50 mM NaCl, 5 mM EDTA, 1 mg/ml lysozyme 

 

Salt solubility screen 

0.1S 50 mM Tris pH 7.5, 0.1 M NaCl, 5 mM EDTA, 1mg/ml lysozyme 
0.5S 50 mM Tris pH 7.5, 0.5 M NaCl, 5 mM EDTA, 1mg/ml lysozyme 
1S 50 mM Tris pH 7.5, 1 M NaCl, 5 mM EDTA, 1mg/ml lysozyme 
0.1KS 50 mM Tris pH 7.5, 0.1 M KCl, 5 mM EDTA, 1mg/ml lysozyme 
1KS 50 mM Tris pH 7.5, 1 M KCl, 5 mM EDTA, 1mg/ml lysozyme 
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Urea solubility screen 

0.5U 50 mM Tris pH 7.5, 0.5 M Urea, 50 mM NaCl, 5 mM EDTA, 1 mg/ml 
lysozyme 

1U 50 mM Tris pH 7.5, 1 M Urea, 50 mM NaCl, 5 mM EDTA, 1 mg/ml lysozyme 
2U 50 mM Tris pH 7.5, 2 M Urea, 50 mM NaCl, 5 mM EDTA, 1 mg/ml lysozyme 
3U 50 mM Tris pH 7.5, 3 M Urea, 50 mM NaCl, 5 mM EDTA, 1 mg/ml lysozyme 
4U 50 mM Tris pH 7.5, 4 M Urea, 50 mM NaCl, 5 mM EDTA 
5U 50 mM Tris pH 7.5, 5 M Urea, 50 mM NaCl, 5 mM EDTA 
6U 50 mM Tris pH 7.5, 6 M Urea, 50 mM NaCl, 5 mM EDTA 

 

Detergents solubility screen 

D 20mM Tris HCl pH 7.5, 50 mM NaCl, 0.2% NP 40, 1 mg/ml lysozyme 
X 20mM Tris HCl pH 7.5, 50 mM NaCl, 0.2% triton X-100, 1 mg/ml lysozyme 
T 20mM Tris HCl pH 7.5, 50 mM NaCl, 0.2% Tween-20, 1 mg/ml lysozyme 

M 20mM Tris HCl pH 7.5, 50 mM NaCl, 0.2% dodecylmaltoside, 1 mg/ml 
lysozyme 

 

Stabilizer 

10G 20mM Tris HCl pH7.5, 50 mM NaCl, 10% glycerol, 1 mg/ml lysozyme 
50G 20mM Tris HCl pH7.5, 50 mM NaCl, 50% glycerol, 1 mg/ml lysozyme 

 

The procedure for expression and solubility study was the following: first 

expression test was curried out (for this purpose the protocol for solubility study was 

used with one exception: in N4 the most common buffer (20 mM Tris pH 8, 0.3 M 

NaCl, 5 mM Imidazole, 1mg/ml lysozyme) and different temperatures and different 

times after induction were used). If after expression study the protein was found to be 

expressed then solubility test was curried out if it was necessary.  

Based on the results of the solubility study lysis buffers for Ets1 and USF1 

were chosen. Expression and initials lysis conditions for Ets1 and USF1 are described 

in “Results and discussions” chapter.  
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3.2.3 Protein purification 

 The way of purification varies for different proteins and based on their 

properties. For recombinant proteins, which have His-tag, the first step of purification 

is affinity chromatography Ni-NTA, which normally gives relatively pure protein. If 

His-tag can be removed it is done using certain enzyme (quite often TEV-protease is 

used). Further purification procedure can be presented by ion exchange 

chromatography, and the last step is gel filtration, which allows to get pure protein 

suitable for crystallization trials.  

 

3.2.4 USF1 expression and purification 

 

Bacterial culture was grown at 37°C up to an OD600 = 0.6 and then induced with 

1mM IPTG for 1.5 hours. The cells were harvested by centrifugation at 6000 rpm for 

30 mins. The bacterial pellet was resuspended in lysis buffer (20 mM Tris-HCl, pH 8, 

300 mM NaCl, 5 mM imidazole) by addition of 30 ml buffer for each 4g of  pellet. 

EDTA-free protease inhibitor mix (Roche), 1mg of lysosyme and 100µg Dnase I were 

added for each 30 ml of lysis buffer and the reaction was incubated on ice for 30 

mins. The sample was sonicated and centrifuged for 1 hour at 18000 rpm in order to 

separate the soluble and unsoluble fractions. The soluble fraction containing USF1 

protein (10-15mg protein for 1 liter of bacterial culture) was filtered and applied to a 

Ni-NTA column equilibrated in lysis buffer. The column was washed with lysis 

buffer and the protein was eluted with lysis buffer containing an additional 400mM 

imidazole (fig. 53). 

After Ni-NTA affinity chromatography TEV protease was added in the ratio w/w 

1:50 (TEV protease: protein) and the sample was incubated overnight at 4°C. 

Cleavage was checked by SDS-PAGE (fig. 54). 

The next purification step was cation exchange chromatography using a Mono S 

column (fig. 55). USF1 protein was dialyzed against buffer (50mM NaCl, Tris-HCl 

pH=7.5, 1mM EDTA) and eluted on a gradient of 0.05 - 1M NaCl. USF1 eluted 

between 0.4-0.5M NaCl.  
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Fig. 53 Metal affinity chromatography (Ni-NTA) of USF1 protein  

Lane 1 – protein marker 12, lane 2 – lysate, lane 3 – flow through, lane 4 – wash, 

lanes 5 and 6 – elution fractions 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 54 SDS-PAGE of USF1 cleaved by TEV-protease 

Lane 1 – protein marker 12, lane 2 – USF1 cleaved by TEV protease 
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Fig. 55 Cation exchange chromatography of USF1 

A. SDS-PAGE of USF1 after cation exchange chromatography 

Lane 1 – protein marker 12, lanes 2-8 – elution fractions 

B – chromatogram of USF1 purification by cation exchange chromatography 

 

The last purification step by size-exclusion chromatography – gel filtration in a 

buffer containing 200mM NaCl, 20mM Tris-HCl pH=8, 2mM EDTA (fig. 56), 

yielded pure protein. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 56 Gel-filtration of USF1 (Superdex 75 16/60) 

Lane 1 – molecular weight marker, lanes 6-9 – USF1 protein after gel filtration 
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3.2.5 Ets1 expression and purification  

 

For Ets1 protein from the constructs corresponding to residues 301-441 and 280-

441 the same expression and purification procedure were used. The experimental data 

is shown for Ets1 construct corresponding to the residues 280-441. 

Bacterial culture was grown at 25°C up to OD600 = 0.6-0.8 and then induced with 

1mM IPTG overnight. The cells were harvested by centrifugation at 6000 rpm during 

30 mins. The bacterial pellet was resuspended in lysis buffer (20 mM Tris-HCL, pH 

8, 300 mM NaCl, 5 mM imidazole) by addition of 30 ml buffer for each 4g of pellet. 

EDTA-free protease inhibitor mix (Roche), 1mg lysosyme and 100µg Dnase I were 

added for each 30 ml of lysis buffer and the reaction was incubated on ice for 30 

mins. The sample was sonicated and centrifuged for 1 hour at 18000 rpm in order to 

separate the soluble and insoluble fractions. The soluble fraction containing Ets1 

protein (circa 10 mg protein for 1 liter of bacterial culture) was filtered and applied to 

a Ni-NTA column previously equilibrated with lysis buffer. The column was washed 

with lysis buffer and the protein was eluted with lysis buffer containing 400mM 

imidazole (fig. 57). 

The next purification step was gel filtration. Ets1 protein was dialyzed against 

buffer (200 mM NaCl, 20 mMTris-HCl pH=8.0), after dialysis the protein solution 

was diluted one to one with the buffer containing 20 mM Tris-HCl pH=8 and 20% 

glycerol (in order to prevent protein aggregation), the sample was concentrated and 

applied on the column. The gel filtration profile for Ets1 from the construct 

corresponding to residues 280-441 and the standard are illustrated on the fig. 58. After 

gel filtration the samples were analyzed on SDS gel and the protein was found to be 

more than 99% pure as examined by SDS-PAGE (fig. 59). 

 

 

 

 

 

 

 



 88   

 

 

 

 

 

 

 

 

 

Fig. 57. Ni-NTA affinity chromatography for Ets1 from the construct 

corresponding to the residues 280-441 

Lane 1 – molecular weight marker, lane 2 – before column, lane 3 – flow though, lane 

4 – wash, lane 5-9 – elution fractions 
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Fig. 58 A. Gel filtration of Ets1 from the construct corresponding to residues 280-441  

B. Low molecular weight gel filtration standard (Amersham)  
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Fig. 59 SDS gel of Ets1 (after gel filtration) 

Lane 1 – molecular weight marker, lane 7 – Ets1 280-441 before gel filtration, lane 8 - 

Ets 280-441 after gel filtration (peak 1), lane 9 - Ets 280-441 after gel filtration 

(peak2)  

 

3.2.6 Ets1/Ets1/DNA complex formation and purification by gel filtration 

 

The procedure for Ets1/Ets1/DNA complex formation was as followings: after 

Ni-NTA column, Ets1 protein was dialyzed against buffer containing 200 mM NaCl, 

20 mM Tris-HCl pH=8. After dialysis the protein was diluted one to one with the 

buffer containing 20 mM Tris-HCl pH=8 and 20% glycerol. Glycerol was added to 

prevent aggregation and the protein was diluted to decrease the salt concentration, 

which may influence protein/DNA complex formation. DNA was added to the diluted 

protein and the reaction was incubated on ice for 1 hour. The complex was 

concentrated and applied to a gel filtration column. The following buffer was used: 20 

mM Tris-HCl pH=8, 100 NaCl and 10% glycerol. 

 

3.2.7 SDS-PAGE 

 

 Gels for SDS-PAGE were prepared according to the guidelines of Molecular 

Cloning. 10% and 12% separation gels were used. After electrophoresis, the gels were 

stained with Commassie blue or silver stating was used (silver staining kit is available 

from Novex).  
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3.2.8 Native gels 

 

Commercially available 4-20 % gradient native gels in TBE buffer were used 

(Novagen). They were run in 1XTBE buffer. 

 

3.2.9 Protein concentration 

 

Protein samples were concentrated in an different devices. For USF1 protein 

and USF1/DNA complex a Centriprep device (20 ml) with membrane 10 kDa was 

used. For Ets1 and Ets1/Ets1/DNA complex a Vivaspin device (20 ml) with 

membrane 10 kDa was used. Protein concentration was performed at 4º C. 

 

3.2.10 Protein or protein/DNA complex concentration determination 

 

Absorbance assay 280 nm 

Protein concentrations were measured according to absorbance assay at 280 

nm (Layne et. al., 1957). Proteins in solution absorb ultraviolet light with absorbance 

maxima at 280. Amino acids with aromatic rings are the primary reason for the 

absorbance peak at 280 nm. Secondary, tertiary, and quaternary structure all affect 

absorbance, because of this reason the protein concentration was determined for 

denatured protein. The spectrophotometer was calibrated to zero absorbance with UV-

cockail only. 10 µl of protein sample was diluted with 90 µl of UV-coctail and the 

absorbance at 280 nm was measured. The protein concentration was calculated 

according to extinction coefficient. 

 

Bradford assay 

For protein/DNA complexes the concentrations can not be measured by 

absorbance assay (280 nm) because DNA absorbs at this wavelength as well. Since 

there is no appropriate method for protein/DNA complexes concentration 

determination, the concentrations were determined by Bradford assay (Bradford 

1976), which allows to measure protein concentration only.  1 µl of protein sample 

was added to 999 µl of diluted Bradford solution (Bradford solution was diluted with 

water four times). The reaction was left for 5 minutes, followed by measurement of 
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absorbance at 595 nm. Protein concentration was determined according to the graphic 

showing dependence of BSA  absorbance on the BSA concentration. BSA protein was 

used as a standart for protein concentration determination. Set of different BSA 

concentrations was measured in order to draw the reference graphic (1 mg/ml, 2.5 

mg/ml, 5mg/ml, 7.5 mg/ml, 10 mg/ml, 15 mg/ml).      

 

3.2.11 Fluorescence resonance energy transfer (FRET) 

 

 The long fragment of DNA containing two USF1 binding sites was amplified 

via PCR using the primers listed above. 

The principle of FRET is explained in Appendix. For the FRET experiment 

%E (efficiency of energy transfer) was planned to be measured by the approach based 

on the decrease in the fluorescence intensity of the donor (the first approach explained 

in Appendix). Emission spectra for buffer, donor labeled dsDNA, acceptor labeled 

dsDNA, mixture of donor and acceptor labeled dsDNA (to make sure that FRET does 

not happen) were measured. Then USF1 was titrated to the mixture of donor and 

acceptor labeled dsDNA. As a negative controls buffer titration and BSA titration 

were used. 

 

3.2.12 Rotary Shadowing Electron Microscopy 

  

 The DNA was amplified via PCR using primers listed above. After PCR DNA 

was purified using PCR purification kit (QIAGEN), concentrated by ethanol 

precipitation and solubilised. USF1 and DNA were mixed in equimolar ratio and the 

complexes were analyzed on the native gel and stained with Ethidium bromide. 

The basic technique of metal shadowing involves: preparing a protein solution 

in high concentration of glycerol; spraying the solution onto mica; evaporating the 

solvent under vacuum; rotary shadowing by electron bombardment of 

tantalum/tungsten; cabon coating the shadowed preparation. A basic description of 

metal shadowing is given in ref. Sommerville 1987.    
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5. Appendix 

 

5.1 Fluorescence resonance energy transfer 

 

Fluorescence resonance energy transfer can be used to determine molecular 

distances in biological macromolecules the range of 10-100 Å. The technique is based 

on the theories of Förster who proposed that electronic excitation energy can be 

efficiently transferred through dipole-dipole interactions from a donor fluorophore to 

an acceptor fluorophore in a distance dependent manner (Golemis 2002). 

Several factors determine how efficiently the energy is transferred. For a given 

donor-acceptor pair the distance at which energy transfer is 50% is called Ro. When 

these fluorophores are placed at specific sites in the macromolecule of interest, the 

distance between them is quantified by measuring the efficiency of energy transfer 

(%E) which then relates to the distance between the probes (R) by the following 

equation: 

 

%E = Ro6/(Ro6+ R6) 

 

So if the molecular distance was Ro, the equation shows that the %E would be 

50%, which is how Ro is defined. The %E can be measured by three slightly different 

approaches. The first two monitor the quenching of the donor and the third monitors 

the enhanced fluorescence of the acceptor. 

1. Decrease in the fluorescence intensity of the donor. Where Fda is the intensity of the 

donor in the presence of the acceptor and Fd is the intensity of the donor in the 

absence of the acceptor. (%E = 1- Fda/Fa) 

2. Decrease in the excited state lifetime of the donor. Where tda is the lifetime of the 

donor in the presence of the acceptor and td is the lifetime of the donor in the absence 

of the acceptor. %E = 1- tda/td 

3. An increase in the fluorescence of the acceptor, if the acceptor happens to be 

fluorescent. (A fluorescent acceptor is not necessarily a requirement for energy 

transfer; the acceptor must only be able to absorb the light given off by the donor. 

There are several different, and rather complex formulations for quantifying %E by 

this method). 
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5.2 Small-angle X-ray scattering 

 

Small angle X-ray scattering is used for the analysis of low resolution 

structure. Given that the resolution of the method is lower than the X-ray wavelength, 

it is sufficient to record the scattering of small (low degrees) angles. The most useful 

feature of the method is the possibility to analyze systems, which are not ordered. 

Imagine a protein as an assemble of a number of nuclei nd electrons. Both 

nucleus and electrons can be treated as small scattering centers. Scattering ability of 

such an object when it is exposed to X-rays can be characterized by scattering density 

ϕ (r), which is at the same time electron distribution density (fig. 60). 

The wave interacts with all scattering centers, which are becoming sources of 

spherical waves. The superposition of these waves is the first approximation to the 

real scattering. The scattered wave is scattered further on the scattering centers, which 

gives the second approximation and so on. When the interaction between the 

scattering wave and the object is not very strong, the approximations are going to the 

certain resulting wave. If the interaction is weak, only the first approximation can be 

taken into account (Svergun, Feigin, 1986). 

 

 

 

 

 

 

 

 

 

 

Fig. 60 Scattering of the object with scattering density ϕ  (r) 
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The resulting scattered wave is a solution of the wave equation (1), 

 

[∆+ k2
0 + v ϕ(r)] ψ(r) = 0    (1) 

 

where ψ(r) is the wave scattered by the field ϕ(r) ,  k0 is a wave number, ∆ is 

Laplacian, v is a parameter which characterize the interaction intensity of the wave 

with the matter. 

The solution (2) is the sum of the incoming wave and the first approximation to the 

resulting scattered wave (when the others can be neglected).  

 

ϕ0(r) + ϕ1(r) = A0 exp(ik0r) + (A0 v exp(ik0r)) / 4πr ∫ ϕ(r′) exp(isr′) dr′,    (2) 

 

where s = k – k0 is a scattering vector ( |s| = 4π  sinθ / λ, 2θ is scattering angle). 

f(s) can be introduced (3) which is the amplitude of the scattering on the field ϕ(r). 

 

f(s) = v / 4π  r ∫ ϕ(r) exp(isr) dr     (3) 

 

The equation (3) is a Fourier integral and ϕ(r) can be written as in (4) 

 

ϕ(r) = 1 / 2π2 v ∫ f(s) exp(- isr) ds    (4) 

 

Thus, Fourier transformation is the basis for the calculation of the amplitudes from the 

field ϕ(r) and vice versa. Fourier transformation connects the function in the real 

space (r – space of the object) with the function in the reciprocal space (s – space of 

the reflection).  

Another important definition connected to Fourier transformation function 

convolution, which finds an important application in the diffraction theory. Fourier 

integral from the scattering intensity gives a convolution of ϕ(r) with inself inverted 

in the coordinate start point. This function is called autocorrelation function P(r) (5) 

P(r) = ∫ I(s) exp(-2πisr) ds,    

 

I(s) = ∫ P(r) exp(2πi sr) dr     (5)    
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In case of X-ray scattering of atoms, the scattering is mostly due to electrons. 

Whereas the scattering of the nuclei is negligible. The object is not ordered and in a 

SAXS experiment the average intensity is measured. That’s why it is necessary to use 

a statistical function of atom distribution in the object.     

Let us assume that the system contains N identical molecules with scattering 

amplitude (form-factor) f(s). 

 

I(s) = ∑∑ fi(s) fj(s) exp[is(ri  – rj)]   (6), 

 

where ri   and rj are coordinates of the molecules.  

The average intensity when s>2π/D where D≈V1/3 (V – irradiated sample volume) is 

(7) 

 

<I(s)> = <N> {<f2(s)> - <f(s)>2/v1 ∫ [1- P(r)] (sin sr)/sr 4πr2 dr}   (7) 

 

If <f2(s)> = <f(s)>2, then (7) can be written 

 

<I(s)> = <N> F2(s) {1 - 1/v1 ∫ [1- P(r)] (sin sr)/sr 4πr2 dr}   (8), 

 

where v1 =  V/<N>, F(s) is the average form-factor.  

The equation means that when F2(s) is known one can find P(r) and vice versa. 

In case of the system containing different types of molecules F2(s) the scattering is 

given by the average of form-factors of different types of molecules. 

In the above considerations, the scattering properties of the buffer have not 

been taken into account. If ρs is scattering density of the buffer and the scattering 

density of each molecule is ρ(r) than 

  

g(r) = ρ(r) - ρs   (9), 

 

where g(r) is effective density, which will be used below to represent of the object. 

In the case of a diluted sample the average intensity of the molecule is 

proportional to the average intensity of the sample.  
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Important characteristics 

 

One of the most important particle parameters, which can be directly 

computed from the scattering data, is radius of gyration with respect to its center of 

electron density.  

 

Radius of gyration is 

Rg
2 =  v∫ ρ(r) r2 dr / v∫ ρ(r) dr    (10) 

 

The value of Rg can be calculated using Guinier law, which is valid for the very 

beginning of the curve I(s) (s<1/Rg). 

 

I(s) = I(0) exp (-s2 Rg
2 / 3)       (11) 

 

The maximum radius is calculated from the correlation function, which is average 

selfconvolution of the scattering density. γ(r) is correlation function. Rmax is a 

maximum distance within the particle. 

 

γ(r) = 1 / 2π2 0∫∝ I(s) (sin sr) / sr s2 ds   (12) 

 

γ(r) ≡ 0, when r > Rmax and Rmax = 2 / γ(0) 0∫D γ(r) dr    (13) 

 

 

SAXS programs 

 

CRYSOL 

 

CRYSOL (Svergun et. al., 1995) is a program for evaluating the solution 

scattering from macromolecules with known atomic structure. Given the atomic 

coordinates it can either predict the solution scattering curve or fit the experimental 

scattering curve to the solution scattering curve calculated from crystallographic 

model.  
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Program MASSHA 

 

A program, MASSHA (Konarev et. al., 2001), is made for three-dimensional 

rendering and rigid-body refinement. The program allows display and manipulation of 

high-resolution atomic structures and low-resolution models represented as smooth 

envelopes or ensembles of beads. 

 

Program PRIMUS 

 

A program suite for one-dimensional small-angle scattering data processing. 

The main program, PRIMUS (Konarev et. al., 2003), has a menu-driven graphical 

user interface calling computational modules to perform data manipulation and 

analysis. 

 The program allows buffer extraction and data extrapolation to zero speciment 

concentration in the sample. It allows as well calculations of radius of gyration and 

Porod volume.  

 For computation of characteristic functions of dilute monodisperse or 

polydisperse systems, PRIMUS provides an interface to the indirect transformation 

program GNOM (Semenyuk & Svergun, 1991; Svergun, 1992).  

 

Program GASBOR 

 

Program GASOR (Svergun et. al., 2001) presents an ab initio method for 

building structural models of proteins from x-ray solution scattering data. 

Proteins typically cons ist of folded polypeptide chains composed of amino 

acid residues separated by ∼0.38 nm between adjacent Cα atoms in the primary 

sequence. At a resolution of 0.5 nm, a protein structure can be considered as an 

assembly of dummy residues (DR) centered at the  Cα positions. A three-dimensional 

model of the protein may therefore be constructed from solution scattering data by 

finding a chain-compatible spatial arrangement of the DRs that fits the experimental 

scattering pattern. That such a model adequately describes scattering patterns of 

proteins was verified by simulations.  
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5.3 Protein crystallization 

The properly purified and prepared protein samples are the first prerequisite 

for obtaining crystals suitable for X-ray analysis. The sample has to be pure. The 

usual concentration of the sample for handling is from 10 to 30 mg/ml. Initial protein 

crystallization is mainly a trial-and-error procedure in which the protein is slowly 

precipitated from its solution. The classical procedure for inducing proteins to 

separate from solution and produce a solid phase is to gradually increase the level of 

saturation by addition of a precipitant. Very often the protein separates as a 

precipitate, but with appropriate care protein crystals can be grown. The precipitation 

point or solubility minima are usually dependent on the pH, temperature, the chemical 

composition of the precipitant, and the properties of both the protein and the solvent 

(McPherson, 1990).  

A common precipitation method involves increasing the effective 

concentration of the protein, usually by adding a salt (salting-out) or polyethilenglycol 

(PEG), or by taking away a salt (salting- in). The salt ions and macromolecules 

compete for the solvent molecules (water) because both, salt ions and protein 

molecules, require hydration layers to maintain their solubility. When competition 

between them becomes intense, the protein molecules begin to self associate (Fig. 61). 

 

 

 

 

Fig. 61 A solubility curve for a protein, as a function of the salt concentration or 

other parameter 

The other common precipitation methods involve changes in pH and 

temperature at constant ionic strength. Proteins may exhibit a number of different 

solubility minima as a function of the variables, and each of this minima may afford 

the opportunity for crystal formation. In practice it is possible to vary pH and 
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temperature and keep the constant concentration of precipitating solution, or to 

increase concentration of precipitating agent at constant pH and temperature. The 

precipitating agent may be a salt such as ammonium sulphate, an organic solvent such 

as ethanol or methylpentanediol, or a highly soluble synthetic polymer such as 

polyethylene glycol (PEG). 

The most commonly used methods for initial crystal trials are: the hanging 

drop and sitting drop vapour-diffusion methods, dialysis and batch method. The 

hanging and sitting drop methods relies on the transport of either water or some 

volatile agent between a micro-drop of mother liquor and much larger reservoir 

solution. 

In hanging drop method drops are prepared on a siliconized microscope glass 

cover slip by mixing 1~3 µL of protein solution with the same volume of precipitant 

solution (Drenth, p. 5). The cover slip is placed over a small well containing 1 ml of 

the precipitating solution (Fig. 62). 

 

 

 

 

Fig. 62 A schematic drawing of the hanging drop method for protein 

crystallisation. 

  In the sitting drop method the samples are placed in transparent containers, 

which hold in additions 1 ml of the precipitating solution.  
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5.4 Principles of X-ray crystallography 

A crystal arranges huge numbers of molecules in the same orientation, so that 

scattered waves can add up in phase and raise the signal to a measurable level. A 

crystal consists of an infinite number of copies of one object. The objects must form a 

regular pattern, the “crystal lattice”.  

Unit cell and asymmetric unit 

In every crystal there is always a smallest box, defined by its edges a, b, and c, 

and the angles they enclose, a, ß, and ? , from which one can create the whole crystal 

solely by integer translations along its sides. This is called the unit cell. 

 

 

 

 

 

 

A unit cell consists itself of a smallest unit from which one can create the unit 

cell by applying all symmetry operators that belong to the crystals space group. This 

is called the asymmetric unit. 

 

Seven Lattice Types 

The lattice is an infinite repetition of one “box”, the unit cell. It is defined by 

the lengths of three edges a, b, c, and the angles a, ß, and ?. There are 7 different 

lattice types that allow to fill an infinite space. 
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Space Groups  

In a three dimensional lattice, symmetry operations cannot be combined 

arbitrarily. Together with translations, there are 230 allowed combinations, the 230 

space groups. Of those, only 65 are chiral, i.e. suitable for macromolecules like 

proteins, RNA, or DNA.  

 

Matthews coefficient 

The Matthews coefficient allows to estimate this number. The Matthews 

coefficient (Vm) is easily calculated as  

___________volume of your unit cell__________  

the molecular weight of your macromolecule * Z * X  

Where Z is the number of asymmetric units in the unit cell (i.e. the number of 

symmetry operators in the space group). The unknown variable, X, is the number of 

molecules in the asymmetric unit. A series of Matthews coefficients with X= 0.5, 1.0, 

2.0, etc are calculated. The most probable values of X are those, which give Matthews 

coefficients within the empirically observed range (Matthews, 1968). 
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Theory of X-ray diffraction by crystal 

The electrons in a crystal are emitters of waves. When the emitted waves emit 

add up, they interfere with one another. The total path does not depend on the 

direction of the incoming and outgoing waves and the positions of the electrons 

relative to each other. A crystal amplifies the diffraction pattern in certain directions, 

where the various unit cells diffract in phase, and eliminates it in other directions. The 

relationship between scattering angle and the interplanar spacing is given by Bragg's 

law: 

2d sinθ = nλ  

 

 

Ewald sphere with radius 1/λ is a geometrical construction to help visualize 

which Bragg planes are in the correct orientation to diffract (fig. 63). The vectors of 

the incoming ray (labelled 1) and the diffracted ray (labelled 2) are both at an angle θ 

from a set of Bragg planes in the crystal. The diffracted ray has its base at the center 

of the sphere (the origin of the crystal). The vector of the difference (shown in red) 

between the direct beam passing undeflected through the crystal (labelled 3) and the 

diffracted ray is perpendicular to the Bragg planes. In the small internal triangles, 

each side corresponding to the halve of the difference vector of sinθ/λ length  is equal 

to 1/2d. Such a construction could be made for any set of planes for incoming ray, and 

the corresponding reciprocal space vector would be seen to go from the position of the 

undeflected direct beam to the tip of the vector representing the diffracted ray. All of 

these reciprocal space vectors start from the same point, which is defined as the origin 

of reciprocal space. 
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Fig. 63 Ewald sphere construction 

If a set of planes is in the diffracting condition, the corresponding reciprocal 

space vector has to end on the surface of the Ewald sphere. Conversely, if the direct 

beam does not strike the planes with the correct angle θ, the reciprocal space vector 

will not be on the surface of the Ewald sphere. 

The intensities of the reflections (h, k, l) measured by an X-ray diffraction 

experiment are proportional to the square modulus of the structure factors (F(h, k, l)). 

The structure factors are related to the electron density distribution within the 

unit cell by an expression called Fourier transformation: 

 

 

 

 

 

 

and its inversion 
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If all structure factors are known, one could calculate the electron density in 

the whole unit cell. A major effort of crystallography lies in the determination of as 

many and as accurate structure factors as possible. 

Phase problem 

The phase problem arises because we need to know both the amplitude and the 

phase of the diffracted waves to compute the inverse Four ier transform. During the 

experiment the intensities of each reflection is measured, but there is no practical way 

of measuring the relative phase angles for the different reflections, and the phase has 

been lost.  

There are different technics to solve the  phase problem in protein X-ray 

crystallography: the isomorphous replacement method, the multiple wavelength 

anomalous diffraction method, the molecular replacement method and the direct 

methods (Drenth 1999). 

The multiple isomorphous replacement method (MIR) requires the crystal 

of the protein containing one or more heavy atom derivatives of the protein. This 

method uses the differences observed in the diffraction intensities, upon incorporating 

heavy atoms into the crystals. The first step of this method requires the determination 

of the coordinates of these heavy atoms in the unit cell. The positions and occupancies 

of heavy atoms are the starting point for the determination of the protein phase angles 

(Drenth, 1999). 

The multiple wavelength anomalous diffraction method (MAD) is based 

on the idea of using the anomalous scattering of protein crystal containing heavy atom 

derivatives at different wavelengths. The idea of separating out the normal scattering 

of the atoms from any anomalous scattering is used.  

The molecular replacement method (MR) requires the existence of the 

homologous protein structure. The first identification of the suitable model (known 

structure) can be based on sequence homology with the protein for which the structure 

must be determined. To find a correct orientation of the model molecule in the target 

unit cell two steps (rotation and translation) are used. In the rotation step the spatial 
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orientation of the known molecule in the unknown unit cell is determined, while in 

the translation step the correctly oriented molecule is positioned with respect to the 

symmetry elements in the unknown cell.  

Electron density maps, model bilding 

To build the model and fit into the map an interactive computer graphics 

program, such as the program named 'O' or Coot are used. 

Refinement 

The success of an atomic model is often judged through the standard 

crystallographic R-factor, which is simply the average fractional error in the 

calculated amplitude compared to the observed amplitude of the structure factors 

(Drenth, 1999). Another important parameter is free R-factor. 

R-factor:  

"residual-factor" or agreement factor:  

 

Free R-factor:  

an R-factor calculated on a partial data set (5%) that is not used in the refinement of a 

structure.  

Refinement is the process of adjusting the model to find a closer agreement 

between the calculated and observed structure factors by least-squares methods or 

molecular dynamics. The method of least squares is an iterative process in which the 

parameters to be refined change. When the changes in the parameters become small 

enough the refinement has then converged to the final parameter set. The radius of 

convergence is the maximum distance, which can be achieved by the atoms to move 

to their ideal positions and is limited by the resolution of data employed. 

There are two types of crystallographic refinement :  rigid body and restrained 

refinement.   In rigid body refinement, big parts of the protein, such as subunits, are 
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refined as rigid bodies.  In the simplest case, the entire protein is treated as one rigid 

body. Rigid body refinement is useful in the early stages of structure determination 

and it is usually done with low resolution data (15-3Å).  In restrained refinement, 

the stereochemical parameters are allowed to vary around a standard value, controlled 

by an energy term. The atomic coordinates are the variables and the restraints are on 

the bond length, bond angles, torsion angles and van der Waals contacts. This allows 

an easy movement of small parts of the structure, but it is difficult to move large parts, 

for instance, an entire molecule or domain (Drenth, 1999).  
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