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Abstract

The aim of this work is to develop numerical methods and software for
simulation and optimization of complex processes in catalytic monoliths to
achieve better understanding of the physic-chemical processes in catalytic
reactors.

The fluid dynamics are modelled by the boundary layer equations (BLEs),
which are a large system of parabolic partial differential equations (PDEs)
with highly nonlinear boundary conditions arising from the coupling of sur-
face processes with the flow field inside the channel. The BLEs are obtained
by simplifying the comprehensive model described by the Navier-Stokes equa-
tions and applying the boundary approximation theory. The surface and
gas-phase chemical reactions are described by detailed models.

The PDEs are semi-discretized using the method of lines leading to a
structured system of differential-algebraic equations (DAEs). The DAEs are
integrated by an implicit method, based on backward differentiation formu-
las (BDF). We develop a new BDF code with tailored efficient and robust
numerical methods by exploiting the structure, and by an appropriate scal-
ing for ill-conditioned iteration matrices, and by computing consistent initial
values. Efficient methods for computation of partial derivatives in the frame-
work of automatic differentiation and of finite differences are introduced and
compared. Our newly developed simulation tool is more stable than the ex-
isting simulation tool, and faster than by a factor of ten to more than 60,
depending on the applications.

To improve the performance of catalytic reactors (e.g., maximizing gas
conversion or selectivity) we can control certain process conditions, such as
temperature at the catalyst wall or the ratio of catalytic active surface area
to the geometric surface area or the gas composition, the temperature, or
the velocity at the inlet of the catalyst. It is the first time that this problem
is generally formulated as an optimal control problem constrained by a sys-
tem of PDEs describing the chemical fluid dynamics process and additional
constraints. The direct shooting approach in combination with sequential
quadratic programming (SQP) method is used for solving the resulting opti-
mal control problem. An efficient numerical method for computation of the
derivatives required by the SQP method is introduced.

In addition, error analysis for the numerical Newton method is investi-
gated in detail. We introduce a new error model. Based on our error model
and analysis, the limiting accuracy of the solution of nonlinear equations by
the numerical Newton method can be obtained.

Our newly developed software package for simulation and optimization
can be applied to different reaction mechanisms and channel settings with dif-
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ferent initial/boundary conditions. This software is applied to two practical
applications: catalytic combustion of methane and conversion of ethane to
ethylene. The numerical results are presented. The simulation software pro-
vides a useful tool for the validation of reactions mechanisms. The software
package allows, e.g., for a better design and operation of the conversion of
natural gas to higher hydrocarbons or the improvement of exhaust treatment
in cars.
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Kurzfassung

Ziel dieser Arbeit ist die Entwicklung numerischer Methoden und Pro-
gramme zur Simulation und Optimierung komplexer Prozesse in katalyti-
schen Monolithen, um die physikalisch-chemischen Prozesse in katalytischen
Reaktoren besser verstehen zu können.

Die Strömungen werden mittels der Grenzschichtgleichungen modelliert.
Sie bilden ein großes System von partiellen Differentialgleichungen (PDEs)
mit hochgradig nichtlinearen Randbedingungen, die sich aus der Kopplung
der Oberflächenprozesse mit dem Strömungsfeld innerhalb des Kanals ergeben.
Die Grenzschichtgleichungen werden abgeleitet, indem das Navier-Stokes-
Modell vereinfacht und die Grenzschichtnäherung angewendet wird. Die
Beschreibung der Gasphasen- und Oberflächenreaktionen erfolgt durch de-
taillierte Modelle.

Die PDEs werden mit der Hilfe der Linienmethode semi-diskretisiert. Da-
raus ergibt sich ein differential-algebraisches Gleichungssystem. Das differen-
tial-algebraische Gleichungssystem wird durch eine implizite Methode in-
tegriert, die auf den ”Backward-Differentiation-Formulae” (BDF) beruht.
Es wird ein neuer BDF-Code mit speziell zugeschnittenen, effizienten und
robusten numerischen Methoden entwickelt, der insbesondere alle Struk-
turen ausnutzt, schlecht-konditionierte Iterationsmatrizen geeignet skaliert
und konsistente Anfangswerte berechnet. Effiziente Methoden zur Berech-
nung der partiellen Ableitungen im Rahmen der automatischen Differen-
zierung und der finiten Differenzen werden eingeführt und miteinander gekop-
pelt. Das neu entwickelte Simulationswerkzeug ist stabiler als das existierende
und in Abhängigkeit der Anwendung 10 bis 60-mal schneller.

Durch Variation bestimmter Prozessparameter lässt sich das Verhalten
katalytischer Reaktoren verbessern (z.B. durch Maximierung von Umsatz
oder Selektivität). Dazu zählen die Temperatur an der Katalysatorwand, das
Verhältnis von katalytisch aktiver und Gesamtoberfläche sowie die Gaszusam-
mensetzung, die Temperatur und die Geschwindigkeit am Eingang des Kataly-
sators. Dieses Problem wird zum ersten Mal als Optimierungsproblem all-
gemein formuliert, das durch ein System von PDEs dargestellt wird. Dabei
beschreiben die PDEs die reaktive Strömung sowie zusätzliche Bedingungen.
Zur Lösung des sich ergebenden Optimierungsproblems wird ein ”direktes
Schießverfahren” in Verbindung mit der Methode der sequentiellen quadratis-
chen Programmierung (SQP) benutzt. Eine effiziente Vorgehensweise zur
Berechnung der für die SQP-Methode erforderlichen Ableitungen wird dar-
gestellt.

Ein neues Modell zur Fehleranalyse der Newton-Methode wird eingeführt.
Dadurch lässt sich die maximal erzielbare Genauigkeit der Lösung von nicht-
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linearen Gleichungen besser abschätzen.
Das neu entwickelte Softwarepaket zur Simulation und Optimierung eignet

sich für verschiedene Reaktionsmechanismen und Kanäle mit verschiedenen
Anfangs- und/oder Randbedingungen. Die Software wird exemplarisch für
zwei Anwendungen eingesetzt: katalytische Verbrennung von Methan und
Umsetzung von Ethan zu Ethylen. Die numerischen Ergebnisse werden
dargestellt. Diese Simulationssoftware ist geeignet zur Validierung von Reak-
tionsmechanismen. Sie ermöglicht die Optimierung chemischer Prozesse, wie
zum Beispiel die Umsetzung von Erdgas in wertvolle Kohlenwasserstoffe oder
die Abgasnachbehandlung in Kraftfahrzeugen.
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Dr. Johannes Schlöder for many fruitful discussions and numerous valueable
advices. His patience and availability for any help whenever needed with his
heavy workload is appreciated.

I wish to thank Prof. Dr. Olaf Deutschman and Dr. Steffen Tischer, In-
stitute for Chemical Technology and Polymer Chemistry, University of Karl-
sruhe, for many stimulating conversations and suggestions, for giving me the
DETCHEM source code, which is partly used in this work, and for introduc-
ing me to many interesting practical applications.

I would like to thank my colleague and former roommate Dr. Stefan
Körkel, for always having an open ear for my questions and for his friendly
help with many problems in my social and study life in Germany. I would
like to thank my colleagues in the group of Prof. Dr. Dr. h.c. Hans Georg
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Nomenclature

Uppercase Latin Characters

Symbol Meaning SI units
Dm
k mixture-averaged difusion coefficient

of thee kth species in the mixture m2 · s−1

DT
k thermal diffusion coefficients kg · m−1 · s−1

Jk diffusion mass flux of the kth species kg · m−2 · s−1

Jk,r the radial component of the mass flux vector J kg · m−2 · s−1

Jk,z the axial component of the mass flux vector J kg · m−2 · s−1

Kg total number of gas-phase reactions
Ks total number of surface reactions
Ng total number of gas-phase species
Ns total number of surface species
Pr Prandtl number
R universal gas constant, R = 8.313 J · mol−1 · K−1

Sck Schmidt number
T temperature K
T0 ambient temperature K
Tgas gas temperature K
Twall wall temperature K
Rer Reynolds number
Xk mole fraction of the kth species
Yk mass fraction of the kth species
Wk molecular weight of the kth species kg · mol−1

W mixture mean molecular weight kg · mol−1
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Lowercase Latin Characters

Symbol Meaning SI units
cp mixture specific heat J · kg−1 · K−1

cpk specific heat at constant pressure of the kth species J · kg−1 · K−1

hk specific heat enthapy of the kth species by surface reactions J · kg−1

p pressure Pa
ṡk rate of production of the kth species by surface reactions mol · m−2 · s
u axial velocity m · s−1

v radial velocity m · s−1

vstef Stefan flow velocity m · s−1

r radial spatial coordinate, independent variable m
z axial spatial coordinate, independent variable m

Uppercase Greek Characters

Symbol Meaning SI units
Γ site density mol/m2

Θk surface coverage of the kth surface species

Lowercase Greek Characters

Symbol Meaning SI units
θ circumferential coordinate
λ thermal/heat conductivity J · m−1 · K−1 · s−1

λk thermal conductivity of the kth species J · m−1 · K−1 · s−1

µ viscosity kg · m−1 · s−1

ρ mass density kg · m−3

χk chemical symbol of the kth species
ω̇k rate of production of the kth mol · m−3 · s−1

species by gas-phase reactions
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Introduction

Catalysis is a viable technology to achieve ultra-low emission of NOx, CO
in applications like gas turbines for electric-power generation and catalytic
burners for heating and drying (e.g., [12] and [106]). Today, catalysts are
increasingly applied in industry in particular due to the concerns for envi-
ronmental protection. A typical application of catalysis is the reduction of
exhaust gas pollution in automotive catalytic converters.

The major concern is the need for better understanding of the physical-
chemical processes in catalytic reactors, which is critical for improving the
performance of catalytic reactors. This leads to the need for the develop-
ment of robust and reliable numerical software which takes into account the
modeling of fluid mechanics and the detailed models of chemical reactions.
However, the use of detailed models for chemical reactions is still very chal-
lenging due to a large number of species involved, due to the nonlinearity, and
due to the multiple time scales arising from the complex reaction systems,
that leads to very large and stiff systems (one mass conservation equation for
each species) of partial differential equations (PDEs) with highly nonlinear
boundary conditions. Figure 1 shows a typical catalytic monolith and the
physical-chemical processes in a single channel of this monolith.
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Figure 1: Catalytic monolith and dynamics processes in a single channel

The most comprehensive model for the coupled fluid mechanics and chem-
ical kinetics in a channel of catalytic monoliths is provided by the steady-state
Navier-Stokes equations coupled with detailed models for the chemical reac-
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tions, which are a large system of elliptic partial differential-algebraic equa-
tions. Even for a medium size problem, the computational time for simulation
is within the range of a few hours [101]. On the other hand, the chemically
reacting flows can be modeled by using boundary layer approximation yield-
ing a system of parabolic partial differential equations, a simplified version
of the Navier-Stokes equations by using the boundary layer approximation
theory. By numerical investigation, it is shown in [101] that the solutions
of boundary layer and Navier-Stokes equations are in excellent agreement
over a wide range of flow conditions. Therefore, in this work we use the
boundary layer equations as our mathematical model along with detailed
models for chemical reactions. For coupling the surface chemistry with the
surrounding flow field we treat the nonlinear boundary conditions directly
as algebraic constraints. Along with the semi-discretization of the PDEs
describing the boundary layer model this results in a system of differential-
algebraic equations (DAEs). The DAEs are solved by an implicit method,
based on backward differentiation formula (BDF). The numerical methods
for the solution of the DAEs are investigated, comprehending in particu-
lar scaling for ill-conditioned iteration matrices, exploiting the structure of
the DAEs, computation of derivatives necessary for the solution of nonlinear
equations arising in the BDF methods.

In addition, the error analysis for the numerical Newton method, which
is used for solving the corrector equations arising in the BDF methods, is
investigated in detail. We introduce a new error model and point out that
some previous error models are inappropriate.

To improve the performance of catalytic reactors (e.g., maximizing gas
conversion or selectivity) we can control certain process conditions, such as
temperature at the catalyst wall Twall or the ratio of catalytic active surface
area to the geometric surface area Fcat/geo or the gas composition, the tem-
perature, the velocity at inlet of the catalyst. It is the first time that this
problem is generally formulated as an optimal control problem constrained by
a system of PDEs describing the chemical fluid dynamics process and addi-
tional constraints. The direct shooting approach combined with a sequential
quadratic programming (SQP) method is used for solving the optimal con-
trol problem. An efficient numerical method for computation of derivatives
required by the SQP method is introduced.

A few software packages for simulation of chemically reacting flows with
detailed models have been developed. A popular one is the software package
CHEMKIN developed at the Sandia National Laboratories in the 1980s and
1990s. It is now commercialized by Reaction Design, Inc [75]. The program
CRESLAF [35] in the CHEMKIN library is designed for simulation of chem-
ically reacting flows with detailed models. In CRESLAF, the boundary layer
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equations are used to describe the fluid dynamics process. Another one is
the software package DETCHEM [46], which was developed at the Interdisci-
plinary Center for Scientific Computing (IWR), University of Heidelberg and
now at the Institute for Chemical Technology and Polymer Chemistry, Uni-
versity of Karlsruhe, for the simulation of reacting gaseous flows including
complex models for heterogeneous reactions on solid surfaces. In particu-
lar, the DETCHEMCHANNEL software uses the boundary layer equations as a
mathematical model for simulation of chemically reacting flows in a channel.

For the solution of DAEs, there are some BDF codes available, e.g,
DAESOL [10], DASSL and DASPK [24], and DDASAC [28]. DAESOL was
developled at the Interdisciplinary Center for Scientific Computing (IWR),
University of Heidelberg. It has been sucessfully used for solving many prac-
tical applications in chemical engineering. Based on the DAESOL code, we
develop a new DAESOLE code, which is tailored for treatment of the struc-
tured DAEs in our problem.

In this work, we focus on developing efficient numerical methods and
software for simulation and optimization of the complex processes in a chan-
nel of catalytic monoliths. We have developed a numerical software package
BLAYER, which consists of two programs BLAYERsim for simulation and
BLAYERopt for optimization. The chemical reaction rates, heat capacities,
entropies, enthalpies, heat conductivity, and diffusion coefficients are evalu-
ated by appropriate calls to the code DETCHEM, which has been developed
over years. To maintain compatibility with DETCHEMCHANNEL, we use
the same formats of reaction mechanisms and thermodynamics data as in
DETCHEMCHANNEL.

BLAYER can be applied to different reaction mechanisms and chan-
nel settings with different initial/boundary conditions. Given conditions
at inlet (velocity, temperature, pressure, mass/mole fraction), the temper-
ature and Fcat/geo at the wall, geometry of the channel (length and radius),
and gas- and surface-phase reaction mechanisms with thermodynamic data,
BLAYERsim computes the flow field in the channel. In numerical investi-
gations BLAYERsim proofed to be more stable and faster than the software
DETCHEMCHANNEL. Based on numerical tests with a medium sized prob-
lem, the speedup is about a factor of 10, for a large problem, the speedup is
about a factor of 66 (see Chapter 5 for more details). Moreover, the solutions
obtained by the software DETCHEMCHANNEL, in particular surface species,
display some abnormal phenomena (see Chapter 5 for more details), which
would not allow the optimization to be realized.

BLAYERopt can be used for optimization with different controls: initial
values (gas temperature, mass/mole fractions at inlet), and/or the tempera-
ture profile at the wall Twall(z), and Fcat/geo(z). The objective to be minimized
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can be the mass fraction of certain species or total amount of catalyst. Based
on BLAYERopt, other objectives and controls (e.g., inlet velocity, radius and
length of the channel) can be easily realized.

The software package BLAYER allows, e.g., for a better design and oper-
ation of the conversion of natural gas to higher hydrocarbon or the improve-
ment of exhaust treatment in cars.

Thesis outline

This is an interdisciplinary work, and thus we have written it in a style
that it can address to different people from different disciplines. This thesis
comprises 6 essentially independent chapters. To facilitate access to the
individual topics, the chapters are rendered as self-contained as possible.
The outline is as follows.

Chapter 1 is devoted to the modeling of fluid dynamics and chemical
kinetics in a channel of catalytic monoliths. Various models from the time-
dependent Navier-Stokes equations to the steady state boundary layer equa-
tions for fluid dynamics are discussed. Detailed models for gas-phase and
surface chemical reactions are also described.

In Chapter 2, we investigate the numerical methods for DAEs arising
from the semi-discretization of the PDE model. In particular, we discuss
the BDF methods used for discretizing the DAEs, the solution of corrector
equations, which is a system of nonlinear equations arising the BDF methods,
automatic scaling of the iteration matrix arising the Newton iteration, error
analysis for the numerical Newton method, and computation of derivatives
and specially tailored methods for DAEs.

Chapter 3 deals with the solution method for the simulation problem.
In particular, we go through the semi-discretization of the PDEs and treat-
ment of nonlinear boundary conditions and numerical methods for solving the
nonlinear equations imposed by the boundary conditions to obtain consistent
initial values of the DAEs.

Chapter 4 concentrates on the treatment of the optimal control problem.
First, practical optimization problems are discussed, then an optimal control
problem is formulated. Numerical methods for the optimal control problem,
in particular, the direct shooting approach combined with a SQP method
is examined in detail. A method for efficient computation of derivatives
necessary for the solution by the SQP method is presented.

In Chapter 5, we apply the our software BLAYERsim and BLAYERopt to
two practical applications: catalytic combustion of methane and conversion
of ethane to ethylene. A numerical comparison of the new simulation software
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BLAYERsim and the existing DETCHEMCHANNEL is presented.
The thesis concludes in Chapter 6 with a summary of the obtained results

and discussion of the contributions made, as well as suggestions for further
research.
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Chapter 1

Modeling of Chemically
Reactive Flows

1.1 Introduction

In this thesis, we focus on modeling fluid flow in a single channel of a catalytic
monolith, which composes of thousands of such channel, as a first step to
study the complex physical-chemical processes in a complete monolith. In
general, the flow field can be modeled by Navier-Stokes equations which are
derived based on the fundamental physical principles from the laws of physics,
e.g., mass is conserved, Newton’s 2nd law, and energy is conserved. The
governing equations have been derived and presented in many textbooks (e.g.,
[58], [124], [120] and [73]). Therefore, in the following sections, we will not re-
derive them again but only present a set of governing equations with a brief
description for readers easy to follow. Solving the Navier-Stokes equations
requires tremendous computing time. Moreover, under our flow conditions
the flow field can be well described by the boundary layer equations, which are
a simplified version of the Navier-Stokes equations by applying the boundary
layer theory. The closeness between the solutions of boundary layer equations
and of Navier-Stokes equations are theoretically studied in [90] and [51] as
cited in [92]. By numerical investigation, it is shown in [101] that the solutions
of the boundary layer equations have an excellent agreement with the solution
of Navier-Stokes equations for our flow conditions while the solution of the
plug flow equations does not. Therefore, in this work we use the boundary
layer equations for modeling the flow field, and in Section 1.6 we present in
detail a derivation of them from the Navier-Stokes equations. We assume
that the channel is axisymmetric, and in order to take the symmetry into
account easily, we write the governing equations in cylindrical coordinates.
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It is noticed that the Navier-Stokes equations and their variants can only
describe fluid flow approximately. Certain assumptions have been made when
deriving the equations. Therefore, under extreme conditions such as very
small scales, the equations may not correctly describe the flows. The Navier-
Stokes equations are essentially derived based on the assumption of the con-
tinuum hypothesis, which assumes that the fluid under consideration is a con-
tinuum. The hypothesis is perfectly reasonable as long as the macroscopic
length and time scales are considerably larger than the largest length and
time scales. However, the continuum hypothesis will eventually break down
as the length and time scales of a particular problem approaches molecular
scales. For example, the order of mean-free-path length is typically about
10−7 meters, and molecular diameters are typically of the order of a few 10−10

meters. Therefore, if the feature sizes is about 10−6 meters and the pressure
is about 10−3 Pa, the continuum hypothesis can be questionable. For more
details, see e.g., [73].

In the following, we use these notations.

– t is the time.

– z, r, and θ are the three components of the cylindrical coordinates.

– u, v, and w are the axial, radial, circumferential components of the
velocity vector.

– p is the pressure.

– T is the temperature.

– Yk is the mass fraction of the kth species.

– µ is the viscosity.

– ρ is the mass density.

– cp is the heat capacity of mixture.

– λ is the thermal conductivity of mixture.

– cpk is the specific heat capacity of the kth species.

– Jk,z, Jk,r, and Jk,θ are the axial, radial, circumferential components of
the mass flux vector.

– ω̇k is the rate of creation of the kth species by the gas phase reactions.
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– hk is the specific heat enthalpy of the kth species.

– Wk is the molecular weight of the kth species.

1.2 Transient three-dimensional Navier–Stokes

equations

The transient three-dimensional Navier–Stokes equations in their general
form, which are written in cylindrical coordinates, are presented. These gov-
erning equations are for time dependent, transient problems. These equations
are derived by applying conservation laws to a certain region, called control
volume or a fluid element. The principle of mass conservation is described
by the overall mass continuity equation which is written in the differential
form as

∂ρ

∂t
+
∂ρu

∂z
+

1

r

∂(rρv)

∂r
+

1

r

∂(ρw)

∂θ
= 0. (1.1)

In the chemically reacting flow of a gas mixture, the mass conservation law
applied to the mass mk of the kth species leads to the following equation:

∂ρk
∂t

+
∂ρku

∂z
+

1

r

∂(rρkv)

∂r
+

1

r

∂(ρkw)

∂θ

+

(
∂Jk,z
∂z

+
1

r

∂rJk,r
∂r

+
1

r

∂Jk,θ
∂θ

)
= ω̇kWk, (1.2)

where ρk is the density of the kth species (the mass of kth species per unit
volume). The term ω̇kWk on the left-hand side of the above equation is
the net mass rate of production of the kth species due to the homogeneous
chemical reactions.

By definition ρk = ρYk, where Yk is the mass fraction of the kth species in
the mixture (Yk = mk/m wherenm is the total mass of fluid), and subtracting
the overall mass continuity equation (1.1) from (1.2), we obtain the following
species mass continuity equation

ρ
∂Yk
∂t

+ ρ

(
u
∂Yk
∂z

+ v
∂Yk
∂r

+
w

r

∂Yk
∂θ

)

+

(
∂Jk,z
∂z

+
1

r

∂rJk,r
∂r

+
1

r

∂Jk,θ
∂θ

)
= ω̇kWk. (1.3)

Here Jk,z, Jk,r and Jk,θ are three corresponding components of the diffusive

mass flux vector
−→
Jk of the kth species.
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Now we sum Equation (1.3) over all Ng species and noting that
∑Ng

k=1 Yk =

1 by definition, and
∑Ng

k=1 ω̇kWk = 0 because chemical reactions neither create
nor destroy mass, we obtain the condition,

Ng∑

k=1

−→
Jk = 0. (1.4)

The diffusive mass flux
−→
Jk are calculated based on the gradient of concen-

tration (Fick’s law) and the gradient of temperature (thermal diffusion), its
three components are calculated as

Jk,z = −ρWk

W
Dm
k

∂Xk

∂z
−DT

k

1

T

∂T

∂z

Jk,r = −ρWk

W
Dm
k

∂Xk

∂r
−DT

k

1

T

∂T

∂r

Jk,θ = −ρWk

W
Dm
k

∂Xk

∂θ
−DT

k

1

T

∂T

∂θ
,

where Dm
k is the mixture-averaged diffusion coefficient of the kth species into

the mixture, Wk and W are the molar masses of the kth species and of the
mixture, respectively, and DT

k is the thermal diffusion coefficient of the kth
species, Xk is the mole fraction of kth species defined by Xk = ck/c where
ck and c are the concentration of the kth species and the total concentration
of the mixture, respectively. One can convert between the mole fraction and
the mass fraction using the following easily derived relations:

Xk =
1

∑Ng

j=1 Yj/Wj

Yk
Wk

=
W

W k
Yk

and

Yk =
Wk

W
Xk =

Wk
∑Ng

j=1XjWj

Xk.

As mass fraction, Yk must satisfy

0 ≤ Yk ≤ 1 (k = 1, . . . , Ng),
Ng∑

k=1

Yk = 1. (1.5)

Newton’s second law says that the net force on the fluid element equals

its mass times the acceleration of the element, i.e.,
−→
F = m−→a , which leads to

the three following equations.
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Axial momentum:

ρ

(
∂u

∂t
+ u

∂u

∂z
+ v

∂u

∂r
+
w

r

∂u

∂θ

)

= −fz −
∂p

∂z
+

∂

∂z

[
2µ
∂u

∂z
+ κ∇ · V

]
+

1

r

∂

∂r

[
µr

(
∂v

∂z
+
∂u

∂r

)]

+
1

r

∂

∂θ

[
µ

(
1

r

∂u

∂θ
+
∂w

∂z

)]
, (1.6)

where ∇ · V is the divergence of the velocity field

∇ · V =
∂u

∂z
+

1

r

∂rv

∂r
+

1

r

∂w

∂θ

and f is the body force, and fz, fr, and fθ are the axial, radial, and circum-
ferential components of f , respectively.

Radial momentum:

ρ

(
∂v

∂t
+ u

∂v

z
+ v

∂v

r
+
w

r

∂v

∂θ
− w2

r

)

= fr −
∂p

∂r
+

∂

∂z

[
µ

(
∂v

∂z
+
∂u

∂r

)]
+

∂

∂r

[
2µ
∂v

∂r
+ κ∇ · V

]

+
1

r

∂

∂θ

[
µ

(
1

r

∂v

∂θ
+
∂w

∂r
− w

r

)]
+

2µ

r

[
∂v

r
− 1

r

∂w

∂θ
− v

r

]
(1.7)

Circumferential momentum:

ρ

(
∂w

∂t
+ u

∂w

∂z
+ v

∂w

∂r
+
w

r

∂w

∂θ
+
vw

r

)

= fθ −
1

r

∂p

∂θ
+

∂

∂z

[
µ

(
1

r

∂u

∂θ
+
∂w

∂z

)]

+
∂

∂r

[
µ

(
1

r

∂v

∂θ
+
∂w

∂r
− w

r

)]

+
1

r

∂

∂θ

[
2µ

r

∂w

∂θ
+ κ∇ · V

]
+

2µ

r

[
1

r

∂v

∂θ
+
∂w

∂r
− w

r

]
(1.8)

The first law of thermodynamics states that energy is conserved, which
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leads to the following equation

ρcp
∂T

∂t
+ ρcp

(
u
∂T

∂z
+ v

∂T

∂r
+
w

r

∂T

∂θ

)

=
∂p

∂t
+

(
u
∂p

∂z
+ v

∂p

∂r
+
w

r

∂p

∂θ

)

+
∂

∂z

(
λ
∂T

∂z

)
+

1

r

∂

∂r

(
rλ
∂T

∂r

)
+

1

r2

∂

∂θ

(
λ
∂T

∂θ

)

−
Ng∑

k=1

cpk

(
Jk,z

∂T

∂z
+ Jk,r

∂T

∂r
+
Jk,θ
r

∂T

∂θ

)
−

Ng∑

k=1

hkω̇kWk. (1.9)

The relation between the density ρ, the pressure p, the molar mass of the
mixture, and the temperature is called the state equation. For gaseous flows,
we can use the ideal gas equation

p =
ρRT

W

where R is the universal gas constant, R = 8.314 [J · mol−1 · K−1]. Although
the above state equation already provides an accurate representation for gases
at low pressure, as in our case. There are also certain circumstances, one
needs to use other relations for real gases, see e.g., [73].

In addition, heat transfer and mass transfer (diffusion of gas species) in
the solid wall (catalyst wall) can also be modeled (see e.g., [52] and [29]).
However, for the adiabatic cases we also solve the heat balance equations at
the wall.

Boundary conditions at a gas-surface interface

The chemical processes at the catalytic surface are coupled with the flow
field inside channel by the following boundary conditions at the gas-surface
interface, which describes the fundamental physical principle that mass is
conserved applied to the control volume Vgas adjacent to the surface.

∫
ρ
∂Yk
∂t

dVgas = −
∫

(
−→
Jk + ρv−→v stefYk)

−→n dA

+
∫
ṡkWkFcat/geodA+

∫
ω̇kWkdVgas (k = 1, . . . , Ng),

(1.10)

where −→n is the outward-pointing unit vector normal to the surface and −→v stef

is the so-called Stefan-velocity, and Fcat/geo is the ratio of catalytic active
surface area to geometric surface area. The first term on the left-hand side
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of (1.10) is the total time rate of change of the mass of the kth species inside
the control volume Vgas. The first term on the right-hand side of (1.10) is the
net mass of the kth species flow out/in of the control volume Vgas through
surface A due to convection and diffusion. The second term on the right-
hand side of (1.10) is the net mass of the kth species due to the creation or
depletion at the surface A by the surface reactions. The third term on the
right-hand side of (1.10) is the net mass of the kth species due to gas-phase
reactions inside the control volume Vgas.

The Stefan-velocity occurs at the surface if there is a net mass flux be-
tween the surface and the gas phase. Taking the sum of (1.10) over k species

(all gas-phase species) and using the identities
∑Ng

k=1 Yk = 1,
∑Ng

k=1

−→
Jk = 0 and

∑Ng

k=1 ω̇kWk = 0 (due to conservation of mass), we obtain

−→v stef
−→n =

1

ρ

Ng∑

k=1

ṡkWk. (1.11)

For modeling a single channel of catalytic monoliths, we assume that the
channel geometry is symmetric around the axial axis z, and also assume
that with certain initial conditions and boundary conditions the flows in the
channel is symmetric around axis z. Therefore, the third components (on the
θ-axis) and partial derivatives with respect to θ of the all quantities, e.g., the
velocity vector and mass flux vector, etc., vanish. Taking into account the
symmetry around the axis z, we obtained a simplifying governing equations
by eliminating terms containing w and θ from the above equations. For ex-
ample, the fourth term of equation (1.1) vanishes, the overall mass continuity
equation becomes

∂ρ

∂t
+
∂ρu

∂z
+

1

r

∂(rρv)

∂r
= 0. (1.12)

Similarly, we obtain the following equations.

Axial momentum:

ρ
(
Du

Dt

)
= ρ

(
∂u

∂t
+ u

∂u

∂z
+ v

∂u

∂r

)

= −fz −
∂p

∂z
+

∂

∂z

[
2µ
∂u

∂z
+ κ∇ · V

]
+

1

r

∂

∂r

[
µr

(
∂v

∂z
+
∂u

∂r

)]
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Radial momentum:

ρ
(
Dv

Dt

)
= ρ

(
∂v

∂t
+ u

∂v

z
+ v

∂v

r

)

= fr −
∂p

∂r
+

∂

∂z

[
µ

(
∂v

∂z
+
∂u

∂r

)]
+

∂

∂r

[
2µ
∂v

∂r
+ κ∇ · V

]

+
2µ

r

[
∂v

r
− v

r

]

Species mass continuity:

ρ
DYk
Dt

= ρ

(
∂Yk
∂t

+ u
∂Yk
∂z

+ v
∂Yk
∂r

)

= −
(
∂Jk,z
∂z

+
1

r

∂rJk,r
∂r

)
+ ω̇kWk

Thermal energy:

ρcp

(
∂T

∂t
+ u

∂T

∂z
+ v

∂T

∂r

)
=

(
∂p

∂t
+ u

∂p

∂z
+ v

∂p

∂r

)

+
∂

∂z

(
λ
∂T

∂z

)
+

1

r

∂

∂r

(
rλ
∂T

∂r

)

−
Ng∑

k=1

cpk

(
Jk,z

∂T

∂z
+ Jk,r

∂T

∂r

)

−
Ng∑

k=1

hkω̇kWk.

1.3 Modeling of chemical reactions

Remember that in the species mass continuity equation (1.2) there is a chem-
ical source term ω̇kWk which is the net mass of production of the kth species
due to the homogeneous chemical reactions. We use detailed models for
describing the gas and surface chemical reactions (see e.g., [118] and [45]).

1.3.1 Gas-phase reactions

A chemical reaction involving Ng species can be represented in the following
general form

Ng∑

k=1

ν ′kχk →
Ng∑

k=1

ν ′′kχk, (1.13)
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where ν ′k and ν ′′k are the stoichiometric coefficients of the kth species and χk
is the chemical symbol for the kth species.

A reaction is called an elementary reaction if it occurs on a molecular level
exactly the same as described by the reaction equation, otherwise the reaction
is called global reaction, overall reaction, complex reaction, or net reaction
[118]. An elementary reaction involves only a small number of molecules or
ions. Another definition of an elementary reaction, which is close to this one,
is given in [88] as follows. “A reaction for which no reaction intermediates

have been detected or need to be postulated in order to describe the chemical
reaction on a molecular scale. An elementary reaction is assumed to occur
in a single step and to pass through a single transition state”. Hence, a
global reaction usually takes place via a series of elementary reactions.

The rate of creation or consumption of a species in a chemical reaction is
called reaction rate and is described by the rate law (empirical differential rate
equation) which is an expression representing the rate of reaction in terms of
concentrations of chemical species and constant parameters (normally rate
coefficients) and partial orders of reactions only. It is written as

dck
dt

= νkkf

Ng∏

i=1

c
a′

i

i , (1.14)

where

νk = ν ′′k − ν ′k,

and ck denotes the concentration of the kth species, kf is the forward rate
coefficient or the rate constant, and a′i is the reaction order with respect to the
ith species. Global reactions have complex rate laws where reaction orders
may be non-integers and depend on time and reaction conditions. On the
other hand, elementary reactions always have integer reaction orders that are
valid for all experimental conditions. For an elementary reaction as (1.13)
we have a′i = ν ′i, then the general rate expression (1.14) now becomes

dck
dt

= νkkf

Ng∏

i=1

c
ν′

i

i . (1.15)

The forward rate constant of the ith reaction kfi is determined using the
following modified Arrhenius equation

kfi = AiT
βi exp

(
− Ei
RT

)
, (1.16)

where
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Ai is the pre-exponential factor of the ith reaction,

βi is the temperature exponent of the ith reaction,

Ei is the activation energy of the ith reaction,

R is the universal gas constant, R = 8.314 [J · mol−1 · K−1],

T is the temperature.

For the reverse reaction of the reaction (1.13)

Ng∑

k=1

ν ′′kχk →
Ng∑

k=1

ν ′kχk, (1.17)

the rate law can be obtained similarly to (1.15)

dck
dt

= −νkkr

Ng∏

i=1

c
a′′

i

i , (1.18)

for elementary reactions a′′i = ν ′′i , where kr is the backward rate coefficient.
The relation between the forward and backward rate coefficients kf and

kr is derived based on the chemical equilibrium. That is at the chemical
equilibrium the forward and backward reactions have the same rate on a
microscopic level,

νkkf

Ng∏

i=1

c
ν′

i

i = νkkr

Ng∏

i=1

c
ν′′

i

i , (1.19)

which means, no net reaction rate can be observed on a macroscopic level.
The ratio

kf

kr
=

Ng∏

i=1

cνi

i

is called the equilibrium constant Kc of the reaction. The equilibrium con-
stant Kc is determined from the thermodynamic properties

Kc =

(
p0

RT

)∑Ng

i=1
νi

Kp,

Kp = exp

(
∆S0

R
− ∆H0

RT

)
(1.20)
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with the molar entropy of the reaction

∆S0 =
Ng∑

i=1

νiS
0
i

and the molar enthalpy of the reaction

∆H0 =
Ng∑

i=1

νiH
0
i .

Here, p0 = 1 bar is the standard pressure, S0
i and H0

i are the standard molar
entropy and standard molar enthalpy, respectively, of the ith species involved
in the reaction.

For a system of Kg (irreversible) elementary reactions involving Ng chem-
ical species, where both the forward and reverse reactions are considered as
individual elementary reactions, the net production rate of the kth species,
denoted by ω̇k, equals the sum of the rate of production of the kth species
for all reactions involving the kth species, that is,

dck
dt

= ω̇k =
Kg∑

i=1

νkikfi

Ng∏

j=1

c
ν′

ji

j . (1.21)

Here, νki = ν ′′ki − ν ′ki is the stoichiometric coefficient of the ith reaction
involving the kth species; the first subscript refers to the reaction number
and the second one refers to the species, this rule is also applied for ν ′ji,
and kfi is the rate coefficient of the ith species. Note that the expression
(1.21) is a general one. In fact an elementary reaction involves only three

or four species. Therefore, the term c
ν′ji

j in (1.21) should be included if the
jth species is involved in the ith reaction otherwise takes the value of one.

Similarly, the term (νkikfi
∏Ng

j=1 c
ν′ji

j ) should only be covered if the kth species
is involved in the ith reaction.

1.3.2 Surface reactions

At the catalytic surface, a gas-phase species may (e.g., O2) be adsorbed on
the surface becoming a surface species (e.g., O2(s)). This process is called
adsorption. The adsorbed species may decompose to yield either gas-phase
products or other surface species, or they may react with the substrate to
yield a specific surface compound. The adsorbed species which are present
on a surface may desorb from the surface and return into the gas phase,
this is called the desorption process. The reactions on the solid surface can
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be between surface species or between surface species and gas-phase species.
The state of the catalytic surface is described by the temperature T and a
set of surface coverages Θk that is the fraction of the surface covered by the
kth surface species. The surface structure is characterized by the surface site
density Γ (in mol/m2) that describes the maximum number of molar species
that can be adsorbed on a unit surface area. Then each surface species, say
the ith species, is characterized by a number σi that is the number of sites
that the ith species occupies.

Similarly to the gas-phase reactions, a chemical reaction which includes
adsorption, surface reaction, desorption, on the surface involving Ng gas-
phase species and Ns surface species, can be represented in the general form

Ng+Ns∑

k=1

ν ′kχk →
Ng+Ns∑

k=1

ν ′′kχk, (1.22)

Also similarly to the gas-phase reactions, the molar net production rate
of the kth species (a gas-phase species or a surface species), denoted by ṡk,
due to the heterogeneous reactions on the solid surface is the sum of the rate
of production for all reactions involving the kth species:

dck
dt

= ṡk =
Ks∑

i=1

νkikfi

Ng+Ns∏

j=1

c
ν′

ji

j . (1.23)

Here, Ks is the number of surface reactions, ck is the molar concentration of
the kth species. For gas-phase species the molar concentration ck (in mol/m3)
can be calculated by using

ck =
ρYk
Wk

, (1.24)

where ρ is the gas-phase mass density, Yk and Wk are the mass fraction and
the molecular weight of the kth species, respectively. For surface species, the
surface molar concentration of the kth species ck (in mol/m2), k = Ng + i, is
computed by using

ck =
ΓΘi

σi
, i = k −Ng. (1.25)

From (1.23) and (1.25), we have

dΘi

dt
=
ṡkσi
Γ

, k = Ng + i, (i = 1, . . . , Ns). (1.26)
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The sum of the surface fractions of all species including the solid surface
species (the solid surface itself that is the uncovered site of the solid surface
is also counted as a surface species) equals to one, that is,

Ns∑

i=1

Θi = 1, 0 ≤ Θi ≤ 1 (i = 1, . . . , Ns). (1.27)

For the forward rate coefficient kfi of the ith reaction, some are calculated
by the modified Arrhenius formula (1.16) as in the gas-phase reactions, some
others are computed by using the following formula (see e.g., [34])

kfi = AiT
βi exp

(
− Ei
RT

) Ns∏

k=1

Θµki

k exp
(
εkiΘk

RT

)
. (1.28)

Here, µki and εki are surface parameters for the kth species in the ith reaction,
which describe the dependence of the rate coefficients on the surface coverage
of the kth species.

Similarly to the gas-phase reactions, the rate coefficient kr of the reverse
reaction is determined by

kr = kf/Kc.

Here, Kc is the equilibrium constant which is calculated by using the following
relation:

Kc = Kp

(
p0

RT

)∑Ng

i=1
νi

Γ
∑Ng+Ns

i=Ng+1
νi

Ng+Ns∏

i=Ng+1

σ−νi

i

with Kp is computed as (1.20) in the gas-phase reactions.

Remark 1.3.1
The rates of gas phase and surface reactions (1.21) and (1.23) depend poly-
nomially on the molar concentrations and exponentially on the temperature
and the surface coverages (see expressions (1.16) and (1.28)). This introduces
nonlinearity into the system.

The detailed chemistry models usually involve many species, many of
them are free radicals which have very small characteristic time scales and
are usually governed by fast reactions, and others have larger time scales and
are governed by relatively slow reactions. This makes the system stiff.

19



1.4 Thermodynamic and transport properties

The viscosity µ, the mixture heat conductivity λ, the enthalpy and heat
capacity of the kth species hk and cpk, and the diffusion coefficients Dm

k ,
appearing in Equations (1.6)–(1.9) are calculated as follows.

The enthalpy and heat capacity of the kth species are determined by a
fitted polynomial of the temperature T as follows

cpk = R(h1,k + h2,kT + h3,kT
2 + h4,kT

3 + h5,kT
4)

hk =
∫ T

0
cpkdT = RT (h1,k + h2,k

T

2
+ h3,k

T 2

3
+ h4,k

T 3

4
+ h5,k

T 4

5
+
h6,k

T
)

and the enthalpy and heat capacity of the mixture are evaluated by

h =
Ng∑

k=1

hkYk, cp =
Ng∑

k=1

cpkYk,

where R is the universal gas constant, hi,k are the polynomial coefficients,
Yk is the mass fraction of kth species. We use two polynomial coefficient
sets hi,k, one for temperatures below 1000 [K], and another for temperatures
greater than or equal 1000 [K].

The pure species viscosity of the kth species is determined based on the
logarithm of its value, which is evaluated by the fourth order fitted polyno-
mial of the logarithm of the temperature

ln(µk) =
5∑

i=1

ai,kln(T )n−1.

Then, the mixture viscosity µ is determined based on the pure species vis-
cosities

µ =
1

2

(∑
Xkµk +

1
∑Ng

k=1Xk/µk

)
,

where ai,k are the coefficients of the fitted polynomial, which must be deter-
mined for each problem, Xk is the mole fraction of the kth species, µk is the
pure species viscosity of the kth species, and µ is the mixture viscosity.

Similarly, the thermal conductivity λ can be determined by

ln(λk) =
5∑

i=1

bi,kln(T )n−1
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and the mixture heat conductivity is determined based on the species heat
conductivities as follows

λ =
1

2

(∑
Xkλk +

1
∑Ng

k=1Xk/λk

)
,

where bi,k are the coefficients of the fitted polynomial, which must be deter-
mined for each problem, Xk is the mole fraction of the kth species, λk is the
heat conductivity of the kth species, λ is the mixture heat conductivity.

Alternatively, the mixture heat conductivity can also be determined by
Wilke’s formula as follows

λ =
Ng∑

k=1

Xkλk

Xk + 1.065
∑Ng

j=1,j 6=kXjΦkj

,

where

Φkj =
1√
8

(
1 +

Wk

Wj

)−1/2

1 +

(
λk
λj

)1/2 (
Wj

Wk

)1/4



2

.

Here, Wk is the molecular weight of kth species, and λk is the monoatomic
part of heat conductivity of the kth species determined by

ln(λk) =
5∑

i=1

ci,kln(T )n−1.

The binary diffusion coefficients Dik are also estimated based on the log-
arithm of its value, which is evaluated by the fourth-order polynomial of the
logarithm of the temperature

lnDik = d1,ik + d2,ik lnT + d3,ik(lnT )2 + d4,ik(lnT )3 + d5,ik(lnT )4 − ln p,

where p is the pressure and dl,ik are the coefficients of the fitted polynomial of
the binary diffusion coefficients. The effective diffusion coefficient Dm

k of the
kth species into a mixture is approximated by the following mixture-averaged
diffusion coefficient formula (see e.g., [74], [117] and [76])

Dm
k =

1 − Yk
∑Ng

j=1,j 6=kXk/Djk

,

where Yk and Xk are the mass fraction and the mole fraction of the kth
species. The diffusion coefficients computed using the above approximation
formula, in general, do not satisfy the condition (1.4). Therefore, the diffu-
sion fluxes must be corrected. There are two approaches for correcting the
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deficiencies (see e.g., [32] and [73]). The first one is that we introduce a
correction velocity, which in turn are applied to the mass fluxes defined by

−→
Jcor = −

Ng∑

k=1

−→
Jk

−→
Jk cor =

−→
Jk + Yk

−→
Jcor.

The second one, which can be applied in case there is one species present in
large excess (such as a carrier gas, say species named Ng), is that we replace
the species mass conservation equation of the species (carrier gas) by

YNg
= 1 −

Ng−1∑

k=1

Yk.

1.5 Steady-state three-dimensional Navier-

Stokes equations

The flow can be laminar or turbulent depending on the flow conditions be-
ing characterized by the Reynolds number Rer. For flow with low Reynolds
number, the flow are laminar and a steady state can be reached. For flow
with high Reynolds number, the flow is turbulent.For example, it is reported
in [58] that for water flows in a pipe, the critical Reynolds number is 1.3×104

with smooth conditions of entry, flows with higher the critical Reynolds num-
ber turn to turbulent. After a certain time interval, the laminar flow comes
to a stable state, each of the physical quantities, e.g., velocity, temperature,
pressure, etc., at each position in the channel does not change in time.It
follows that the partial derivatives of the quantities with respect to time
vanish. Thus, the steady-state equations are obtained by deleting the time-
derivatives in the above transient three-dimensional Navier-Stokes governing
equations. Moreover, we also replace κ by −2µ/3 due to the Stokes hypoth-
esis.

For example, the first term of equation (1.12) vanishes, then the steady
state of overall mass continuity equation becomes

∂ρu

∂z
+

1

r

∂(rρv)

∂r
= 0 (1.29)

Similarly, we obtain the following equations.
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Axial momentum:

ρu
∂u

∂z
+ ρv

∂u

∂r
= − ∂p

∂z
+

∂

∂z

(
2µ
∂u

∂z
− 2

3
µ∇ · V

)

+
1

r

∂

∂r

[
µr

(
∂v

∂z
+
∂u

∂r

)] (1.30)

Radial momentum:

ρu
∂v

∂z
+ ρv

∂u

∂r
= −∂p

∂r
+

∂

∂z

[
ρ

(
∂v

∂z
+
∂u

∂r

)]

+
∂

∂r

(
2µ
∂v

∂r
− 2

3
µ∇ · V

)
+

2µ

r

(
∂v

∂r
− v

r

) (1.31)

Species mass continuity:

ρu
∂Yk
∂z

+ ρv
∂Yk
∂r

= −
(
∂Jk,z
∂z

+
1

r

∂(rJk,r)

∂r

)
+ ω̇kWk (k = 1, . . . , Ng)(1.32)

Thermal energy:

ρcp(u
∂T

∂z
+ v

∂T

∂r
) =

(
u
∂p

∂z
+ v

∂p

∂r

)
+

∂

∂z

(
λ
∂T

∂z

)
+

1

r

∂

∂r

(
rλ
∂T

∂r

)

−
K∑

k=1

cpk

(
Jk,z

∂T

∂z
+ Jk,r

∂T

∂r

)
−

K∑

k=1

hkω̇kWk (1.33)

For a compressible fluid, we need an equation of state, which represents the
relationship among density, temperature, pressure, and species composition.
The equation of state for ideal gas can be used to describe the relations with
accurate enough for gas flow at low pressure [73]. The equation of state is as
follows
State:

p =
ρRT

W
.

In these equations, the independent variables are the axial and radial spatial
coordinates z and r. The dependent variables are: axial velocity u, radial
velocity v, V = (u, v), species mass fractions Yk, temperature T , and pressure
p. Other variables are: mass density ρ, viscosity µ, thermal conductivity λ,
species enthalpies hk, and specific heat cp, species molecular weights Wk,
mean molecular weight W , diffusive mass flux J , more details can be found
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in, e.g., [73], [118] and [124]. The two components of mass flux vector J are
as follows.

Jk,r = −ρWk

W
Dm
k

∂Xk

∂r
− DT

k

T

∂T

∂r
,

Jk,z = −ρWk

W
Dm
k

∂Xk

∂z
−DT

k

1

T

∂T

∂z
.

The quantities, such as mass density ρ, viscosity µ, thermal conductivity
λ, enthalpies of species hk, enthalpy of mixture h, specific heat of mixture
cp, specific heat of species cpk, depend on species composition and tempera-
ture, and the chemical source terms ω̇k are functions of species composition,
temperature. These relations can be represented abstractly as

µ = µ(Y, T ), λ = λ(Y, T ), cp = cp(Y, T ), cpk = cpk(Y, T ),

h = h(Y, T ), ω̇k = ω̇k(Y, T, p), V = (u, v), Y = (Y1, Y2, · · · , YNg
).

For the more detailed relations see Section 1.4.
Boundary conditions
For steady state, the boundary conditions (1.10) become

(
−→
Jk + ρv−→v stefYk)

−→n = ṡkWkFcat/geo (k = 1, . . . , Ng). (1.34)

At a steady state, the Stefan velocity −→v stef vanishes unless there is mass
deposited on the surface, as in case of chemical vapor deposition (CVD).
In this thesis, we assume that −→v stef = 0 which is appropriate for our prob-
lems where the deposition of mass on the surface does not occur or can be
neglected. Therefore, the conditions (1.34) become

−→
Jk
−→n = ṡkWkFcat/geo (k = 1, . . . , Ng). (1.35)

The diffusive and convective fluxes in the gas phase are balanced by ther-
mal radiative and chemically released heat at the surface, which is stated
as

λ∇T −

Ng∑

k=1

(
−→
Jk + ρYk

−→v stef)hk


−→n = σsbεemis(T

4 − T 4
0 ) + λs∇T−→n

+
Ng+Ns∑

k=Ng+1

ṡkWkhk,

(1.36)

where λ and λs are the thermal conductivity of the gas mixture and of the
solid wall, respectively. σsb is the Stefan-Boltzmann constant, εemis is the
emissivity of the surface, and T0 is the ambient temperature.

24



1.6 Boundary layer equations

The Navier-Stokes equations in Section 1.5, which are a large system of
elliptic partial differential equations, require a huge amount of computing
time to a numerical solution. In this section, we derive a simplified version
of the Navier-Stokes equations, called boundary layer equations, which is a
system of parabolic partial differential equations. While it still delivers an
excellent approximation of the flow field of problems under study, it needs
significantly shorter time to solve.[101]. Therefore, we use the boundary layer
equations as our main mathematical model for the subsequent chapters.

The boundary layer theory was first introduced by L. Prandtl [99] at the
International Congress of Mathematicians, Heidelberg, 1904. Basing on re-
sults of experiments of fluid flows along a fixed solid surface, he saw that
there is a small region near the surface, in which the effect of viscosity is im-
portant, even for a fluid of small viscosity. Because in this region, the velocity
is rising rapidly from zero at the wall to its value in the main stream. The
flow can be divided in two regions: the first region is near the solid surface
and the other region, so-called outer flow is next to the first region where the
effect of viscosity is neglected. In the region near the wall, the component
normal to the wall of the velocity is small compared to the component in
the direction of the flow along the wall, and the influence of the viscosity
normal to the wall is dominant, this thin region is called boundary layer and
the boundary layer approximation is used. The outer flow can be consid-
ered as an inviscid flow. At the outer edge of the boundary layer the two
flows are properly matched. The result is that the complicated Navier-Stokes
equations are reduced to a simpler system of equations. Generally speaking,
the boundary layer equations can be applicable for case, where there is a
principal flow direction, and in such direction the convective transport often
dominates over diffusive transport. Under such conditions and some others,
some terms in the Navier-Stokes equations are small compared to others,
thus they are neglected. For more details and references on boundary layer
theory, see [58], [104], [92], [90], and [120].

In the following, we derive the boundary layer equations in three major
steps. At first, the Navier-Stokes equations are re-written in a dimensionless
form. Secondly, the dimensionless form of the Navier-Stokes equations is
simplified by using certain assumptions and conditions of the flow. Finally,
the simplified version of the Navier-Stokes equations is brought back to its
dimensional form.

We introduce the following reference scales for the independent and de-
pendent variables and write the Navier-Stokes equations in its nondimen-
sional form. The reference scales for the axial coordinate and radial coordi-
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nate are zs and rs, respectively. The inlet velocity u0 is used as the reference
scale for the axial velocity, and vs is used as the reference scale for the radial
velocity. We use ρ0 and µ0 at inlet as the reference scale for density and
viscosity, respectively. Using these reference scales, we bring all independent
and dependent variables to order-one variables. The new nondimensional
variables can be written as

ẑ =
z

zs
, r̂ =

r

rs
, û =

u

u0
, v̂ =

v

vs
, ρ̂ =

ρ

ρ0
, µ̂ =

µ

µ0
, p̂ =

p

ρ0u2
0

.

Using these new nondimensional variables, the mass continuity equation
(1.29) becomes

(
ρ0u0

zs

)
∂ρ̂û

∂ẑ
+
(
ρ0vs

rs

)
1

r̂

∂r̂ρ̂v̂

∂r̂
= 0.

If we choose the reference scale value for the radial velocity satisfying

vs =
rsu0

zs
,

then the mass continuity equation in the nondimensional form is as follows.

∂ρ̂û

∂ẑ
+

1

r̂

∂r̂ρ̂v̂

∂r̂
= 0. (1.37)

Similarly, the axial-momentum equation can be written in nondimensional
form as (

ρ0u
2
0

zs

)
ρ̂û
∂û

∂ẑ
+

(
ρ0u0(rsu0/zs)

rs

)
ρ̂v̂
∂û

∂r̂

= −
(
ρ0u

2
0

zs

)
∂p̂

∂ẑ

(
µ0u0

z2
s

)
∂

∂ẑ

[
4

3
µ̂
∂û

∂ẑ
− 2

3
µ̂

1

r̂

∂r̂v̂

∂r̂

]

+

(
µ0(rsu0/zs)

rszs

)
1

r̂

∂

∂r̂

(
µ̂r̂
∂v̂

∂ẑ

)
(1.38)

+

(
∂µ0u0

r2
s

)
1

r̂

∂

∂r̂

(
µ̂r̂
∂û

∂r̂

)
. (1.39)

Let us define the Reynolds number by its conventional form:

Rer =
ρ0u0rs
µ0

.

When both side of Equation (1.38) are multiplied by zs/ρ0u
2
0, the axial-

momentum equation becomes

ρ̂û
∂û

∂ẑ
+ ρ̂v̂

∂û

∂r̂
= −∂p̂

∂ẑ
+
(
zs
rs

1

Rer

)
1

r̂

∂

∂r̂

(
µ̂r̂
∂û

∂r̂

)

+
(
rs
zs

1

Rer

){
∂

∂ẑ

[
4

3
µ̂
∂û

∂ẑ
− 2

3
µ

1

r̂

∂r̂v̂

∂v̂

]
+

1

r̂

∂

∂r̂

(
µ̂r̂
∂v̂

∂ẑ

)}
. (1.40)
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For channels which are narrow compared to their length rs � zs and Rer > 1,
we would have the following relation

zs
rs

1

Rer
� rs

zs

1

Rer
.

Consider three limiting cases for the leading coefficient of the radial-diffusion
term

zs
rs

1

Rer
∼ 0,

zs
rs

1

Rer
∼ 1,

zs
rs

1

Rer
∼ ∞.

For the first case, from Equation (1.40), we have a inviscid flow, in which
viscous effects are neglected. Thus, the no-slip condition at the wall is im-
possible to be satisfied. For the third case, we do not have convective effects.
For the second case, if we choose the channel radius r0 as the characteristic
radial length scale, rs = r0, then zs ∼ r0Rer. We can neglect the last term in
Equation (1.40), and obtain

ρ̂û
∂û

∂ẑ
+ ρ̂v̂

∂û

∂r̂
= −∂p̂

∂ẑ
+
(
zs
rs

1

Rer

)
1

r̂

∂

∂r̂

(
µ̂r̂
∂û

∂r̂

)
. (1.41)

Similarly, the radial momentum equation (1.31) can be made dimensionless
as

(
ρ0u0(rsu0/zs)

zs

)
r̂û
∂v̂

∂ẑ
+

(
ρ0u0(rsu0/zs)

2rs
rs

)
ρ̂v̂
∂v̂

∂r̂

= −
(
ρ0u

2
0

rs

)
∂p̂

∂r̂
+

(
µ0(rsu0/zs)

z2
s

)
∂

∂ẑ

(
µ̂
∂v̂

∂ẑ

)

+
(
µ0u0

zsrs

)
∂

∂ẑ

(
µ̂
∂û

∂r̂

)
+

(
µ0(rsu0/zs)

r2
s

)
∂

∂r̂

(
4

3
µ̂
∂v̂

∂r̂
− 2

3
µ̂
v̂

r̂

)

−
(
µ0u0

rszs

)
∂

∂r̂

(
2

3
µ̂
∂û

∂ẑ

)
+

(
µ0(rsu0/zs)

r2
s

)
2µ̂

r̂

[
∂v̂

∂v̂
− v̂

r̂

]
.

After simplification, we obtain
(
r2
s

z2
s

)
ρ̂µ̂
∂v̂

∂ẑ
+

(
r2
s

z2
s

)
ρ̂v̂
∂v̂

∂v̂
= −∂p̂

∂r̂
+

(
1

Rer

r3
s

z3
s

)
∂

∂ẑ

(
µ̂
∂v̂

∂ẑ

)
(1.42)

+
(
rs
zs

1

Rer

){
∂

∂ẑ

(
µ̂
∂û

∂r̂

)
+

∂

∂r̂

[
4

3
µ̂
∂v̂

∂r̂
− 2

3
µ̂

(
∂û

∂ẑ
+
v̂

r̂

)]
+

2µ̂

r̂

[
∂v̂

∂r̂
− v̂

r̂

]}
.

For channels that have rs � zs and Rer > 1, in equation (1.42), only order-
one term is the pressure gradient. Therefore, the equation (1.42) is reduced
to

∂p

∂r
= 0. (1.43)
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By introducing reference scale for diffusion coefficient Dk,0 as

Jk,z = −ρ0Dk,0

zs
ρ̂
Wk

W
D̂m
k

∂Xk

∂ẑ
, Jk,r = −ρ0Dk,0

zs
ρ̂
Wk

W
D̂m
k

∂Xk

∂r̂
,

i.e.,

Jk,z =
ρDk,0

zs
Ĵk,z, Jk,r =

ρDk,0

rs
Ĵk,r,

with

Ĵk,z = ρ̂
Wk

W
D̂m
k

∂Xk

∂ẑ
, Ĵk,r = ρ̂

Wk

W
D̂m
k

∂Xk

∂r̂
,

and changing the independent variables and the unknown functions as above,
we obtain the energy and species equations in a nondimensional form as
follows

ρ̂û
∂Yk
∂ẑ

+ ρ̂v̂
∂Yk
∂r̂

= −
(
rs
zs

1

RerSck

)
∂Ĵk,z
∂ẑ

−
(
zs
rs

1

RerSck

)
1

r̂

∂r̂Ĵk,r
∂r̂

+
zs
ρ0u0

ω̇kWk, (1.44)

ρ̂ĉpû
∂T̂

∂ẑ
+ ρ̂ĉpv̂

∂T̂

∂r̂
=

u2
0

cp,0∆T
û
∂p̂

∂ẑ
+
(
rs
zs

1

Rer Pr

)
∂

∂ẑ

(
λ̂
∂T̂

∂ẑ

)

+
(
zs
rs

1

Rer Pr

)
1

r̂

∂

∂r̂

(
r̂λ̂
∂T̂

∂r̂

)

−
Ng∑

k=1

[(
rs
zs

1

RerSck

)
ĉpkĴk,z

∂T̂

∂z
+
(
zs
rs

1

RerSck

)
ĉpkĴk,r

∂T

∂r̂

]

− ∆Tzs
ρ0cp,0u0

Ng∑

k=1

hkω̇kWk, (1.45)

where the Prandtl and Schmidt numbers are defined as Pr = µcp/λ, Sck =
µ/(ρDk).

Considering the case

zs
rs

1

Rer Pr
≈ 1,

zs
rs

1

RerSck
≈ 1,

then by multiplying both sides with r2
s/z

2
s we have

rs
zs

1

Rer Pr
≈ r2

s

z2
s

,
rs
zs

1

RerSck
≈ r2

s

z2
s

. (1.46)
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From equations (1.44), (1.45) and (1.46), we see that the axial diffusion terms
are too small compared with other terms as rs/zs → 0. Therefore, the energy
and species equations are reduced to

ρ̂û
∂Yk
∂ẑ

+ ρ̂v̂
∂Yk
∂r̂

=
(
zs
rs

1

RerSck

)
1

r̂

∂r̂Ĵk,r
∂r̂

+
zs
ρ0u0

ω̇kWk, (1.47)

ρ̂ĉpû
∂T̂

∂ẑ
+ ρ̂ĉpv̂

∂T̂

∂r̂
=

u2
0

cp0∆T
û
∂p̂

∂ẑ
+
(
rs
zs

1

Rer Pr

)
∂

∂ẑ

(
λ̂
∂T̂

∂ẑ

)

−
Ng∑

k=1

(
zs
rs

1

RerSck

)
ĉpkĴk,r

∂T

∂r̂

− ∆Tzs
ρ0cp0u0

Ng∑

k=1

hkω̇kWk. (1.48)

Applying the inverse transformation back to the original coordinates to
the reduced set of equations in the nondimensional form (1.37), (1.41), (1.43),
(1.47), and (1.48), we obtain the following set of equations.

Boundary layer equations

Mass continuity:

∂ρu

∂z
+

1

r

∂(rρv)

∂r
= 0. (1.49)

Axial momentum:

ρu
∂u

∂z
+ ρv

∂u

∂r
= −∂p

∂z
+

1

r

∂

∂r

(
µr
∂u

∂r

)
. (1.50)

Radial momentum:

0 =
∂p

∂r
. (1.51)

Species continuity:

ρu
∂Yk
∂z

+ ρv
∂Yk
∂r

= −1

r

∂(rJk,r)

∂r
+ ω̇kWk (k = 1, . . . , Ng). (1.52)

Thermal energy:

ρcp

(
u
∂T

∂z
+ v

∂T

∂r

)
=

1

r

∂

∂r

(
rλ
∂T

∂r

)
−

Ng∑

k=1

cpkJk,r
∂T

∂r
−

Ng∑

k=1

hkω̇kWk, (1.53)
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State equation:

p =
ρRT

W
, (1.54)

where

Jk,r = −Dm
k

Wk

W
ρ
∂Xk

∂r
− DT

k

T

∂T

∂r
,

µ = µ(Y, T ), λ = λ(Y, T ), cp = cp(Y, T ),

cpk = cpk(Y, T ), h = h(Y, T ), ω̇k = ω̇k(Y, T, p), Y = (Y1, Y2, · · · , YNg
).

These relations are discussed in Sections 1.3 and 1.4, more details can be
seen in, e.g., [73] and [101].

Remark 1.6.1
Although the steady-state boundary layer equations do have a full two-
dimensional representation of all the field variables as well as nonlinear behav-
ior of Navier-Stokes equations, it is a system of parabolic partial differential
equations instead of elliptic ones as the Navier-Stokes equations. This is a
huge simplification for numerical treatment.

1.7 Boundary conditions

In this section, we only discuss the boundary conditions needed for the
boundary layer equations.

1.7.1 Conditions at the inlet

At the inlet, the entrance of the channel, the initial profiles of u, Tgas, Yk, p,
surface site fraction Θk, Twall, which are usually referred to as initial condi-
tions, must be specified.

1.7.2 Conditions at the catalytic wall and at the cen-
terline

At the centerline of the cylinder, the cylinder symmetry is used to determine
the boundary conditions

∂u

∂r

∣∣∣∣∣
r=0

= 0,
∂T

∂r

∣∣∣∣∣
r=0

= 0,
∂p

∂r

∣∣∣∣∣
r=0

= 0,
∂Yk
∂r

∣∣∣∣∣
r=0

= 0.
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At the wall, the no-slip boundary condition is assumed, i.e., the axial and
radial velocity vanish

u = 0, v = 0.

The condition for the pressure is

∂p

∂r
= 0,

which is the same as the simplified radial momentum equation (1.51).
The boundary condition for mass species Yk is more complicated. If the

wall is not a catalytic surface, the condition is

∂Yk
∂r

= 0 .

If the wall is a catalytic surface, the boundary conditions at the catalytic
wall require that the gas-phase species mass flux produced by heterogeneous
chemical-reaction must be balanced by the diffusive and convective flux of
that species in the gas, see, e.g., [73] and [101]

ṡkWk = −(Jk,r + ρYkvstef) (k = 1, . . . , Ng), (1.55)

where ṡk is the rate of creation/depletion of the kth gas phase species by
surface reactions. The dependent variables in this expression are tempera-
ture, pressure, mass fractions and surface coverages at the wall, which do not
appear explicitly in this expression, but they apprear implicitly in the term
ṡk and Jk,r, see Section 1.3.2 for more details.

At steady state, the time variation of the surface coverage Θk (see Equa-
tion 1.26) vanishes:

ṡk = 0 (k = Ng + 1, . . . , Ng +Ns). (1.56)

The boundary conditions (1.55) and (1.56) are highly nonlinear and used for
determining the mass fractions Yk and the surface coverages Θi at the wall.
This is unusual case where the values of the variables at the boundary are
not given explicitly. These boundary conditions are sometimes called implicit
boundary conditions.

The condition for temperature depends on adiabatic or isothermal reactor
conditions. For isothermal reactor, we require that the temperature profile
at the wall is specified:

T (z) = Twall(z).

For adiabatic case, the temperature boundary condition (1.36) becomes

−λ∂T
∂r

+
Ng∑

k=1

(Jk,r + ρYkvstef)hk = −λs
∂T

∂r
+

Ng+Ns∑

k=Ng+1

ṡkWkhk. (1.57)
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Here we neglect the thermal radiation term. It follows from (1.55), (1.56)
and (1.57) that

−λ∂T
∂r

= −λs
∂T

∂r
+

Ng∑

k=1

ṡkWkhk. (1.58)

This is also a highly nonlinear equation, because T appears in the exponent
of the rate coefficients (see Section 1.3.2).

1.8 Summary

In this chapter, we examine different models for chemically reacting flows in a
channel of catalytic monoliths. These include time-dependent Navier-Stokes
equations, steady-state Navier-Stokes equations, and steady-state boundary
layer equations. In general, the boundary layer equations can be applicable
for the case, where there is a principal flow direction, and in such a direction
the convective transport often dominates over diffusive transport. Under
such conditions and some others, some terms in the Navier-Stokes equations
are small compared to others, thus they are neglected.

In Section 1.6 the boundary layer equations are obtained by simplifying
the steady-state Navier-Stokes equations under the assumptions

Rer ≈
zs
rs
, and rs � zs,

and
Sck ≈ 1, Pr ≈ 1,

where the Reynolds number Rer, the Schmidt numbers Sck and the Prandtl
number Pr are defined as

Rer =
ρ0u0rs
µ0

, Sck =
µ

ρDk

, Pr =
µcp
λ
.

In words, when the length of the channel is large compared to the channel
radius, and the Reynolds number is at the same order of magnitude of the
ratio between the length and the radius, and the Schmidt numbers and the
Prandtl number are of order one, then the steady Navier-Stokes equations,
which is a system of elliptic partial differential equations, can be simplified to
obtain the boundary layer equations, which is a system of parabolic partial
differential equations. The equation systems are stiff and nonlinear. The
surface and gas-phase chemical reactions are described by detailed chemistry
models.
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Chapter 2

Numerical Methods for
Differential-Algebraic
Equations

The governing model equations mentioned in Chapter 1, which is a systen
of parabolic partial differential equations, is semi-discretized in the spatial
direction ψ, where the semi-discretization is described in Chapter 3, lead-
ing to a large-scale stiff structured system of differential-algebraic equations
(DAEs). The sources of stiffness are arising from the discretization of PDEs
and due to the modeling of chemical processes, in particular using detailed
models.

To solve the stiff DAEs we use an implicit method, based on backward
differentiation formulas (BDF), which has proved to be the best method for
stiff DAEs. For details on theory and numerical methods for DAEs, see e.g.,
[67], [24], [5], and [100].

In this chapter, the solution techniques for BDF methods are discussed.
In Section 2.1 we introduce some basic terms and properties used for DAEs.
Section 2.2, is a brief summary and some definitions for the multistep meth-
ods, of which the BDF methods are members. Section 2.3 is devoted to
the BDF methods. Applying the BDF methods to discretize a DAE system
leads to a system of nonlinear equations. The numerical methods for the
nonlinear equations are discussed in Section 2.4. Section 2.6 concentrates on
error analysis for the solution process in Section 2.4. An automatic scaling
of the linear algebraic equations arising from the solution process of the non-
linear equations is introduced in Section 2.7. Section 2.8 describes automatic
differentiation, a method for computation of derivatives needed for the solu-
tion of nonlinear equations. In Section 2.10, specially tailored methods, in
particular exploiting the structure of the system with efficient methods for
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computation of derivatives which are needed for the solution of the nonlinear
equations in Section 2.4, are presented.

2.1 Basic definitions and properties

Generally, a DAE system can be written as

f(t, x, ẋ) = 0. (2.1)

To describe the property of the DAEs, we use the following definition of
index defined in [24].

Definition 2.1.1 (Differential index)
The minimum number of times that all or part of the DAE system (2.1) must
be differentiated with respect to t in order to determine ẋ as a continuous
function of (t, x), is the index of the DAE. The index defined here is also
referred to as the global index.

The following definitions and results are partially based on [24], [86], [112],
and [95].

Definition 2.1.2 (Consistent initial values)
A set of initial values of x and ẋ is said to be consistent if it satisfies the
original system (2.1) and all systems obtained by differentiating (2.1) with
respect to t.

Definition 2.1.3 (Structural property of matrix)
A square matrix A ∈ � n×n is called structurally singular if every matrix
B ∈ � n×n with Bi,j = 0 if Ai,j = 0 is singular, or structurally nonsingular

otherwise.

Definition 2.1.4 (Structural matrix)
The structural matrix of a matrix A ∈ � m×n, denoted by SA, SA ∈ � m×n,
is defined as

SAi,j =





1 if Ai,j 6= 0

0 otherwise.

Lemma 2.1.1
A square matrix A is structurally nonsingular if and only if there exists at
least one permutation matrix P such that all diagonal elements of PA are
nonzero.
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Definition 2.1.5 (Structural matrix of DAE)
The structural matrix of a DAE system is the structural matrix of the Jaco-
bian matrix of the DAE with respect to the highest-order time derivatives in
the DAE.

In particular for the semi-implicit DAE system

f(t, x, ẋ, y) = 0
g(t, x, y) = 0

(2.2)

where x and y are called differential variable and algebraic variable,
respectively, the structural matrix of the DAE (2.2) is the structural matrix
of the matrix




∂f

∂ẋ

∂f

∂y

0
∂g

∂y


 .

Definition 2.1.6 (Structurally singular DAE)
A DAE system is said to be structurally singular if its structural matrix
is structurally singular, or structurally nonsingular otherwise.

Note that the structural properties of a square matrix A are equivalent
to the same structural properties of its structural matrix SA. Thus, to study
structural properties of a matrix A, one can use its structural matrix SA

instead.

Example 2.1.1 (Structurally singular DAE)
The following DAE is structurally singular

ẋ1 + ẋ2 + y = a(t)
x1 + 2x2 + 3y = b(t)

3x1 + 4x2 + 5y = c(t)

because the structural matrix



1 1 1
0 0 1
0 0 1




is structurally singular.

Lemma 2.1.2 (Sufficient condition for at most index 1)
Sufficient condition for a DAE to be at most index 1 is non-singularity of the
Jacobian matrix of the DAE with respect to the highest-order time deriva-
tives in the DAE.
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In particular for the semi-implicit DAE system (2.2) if the matrix




∂f

∂ẋ

∂f

∂y

0
∂f

∂y




is nonsingular, then the index of the DAE is at most 1.

Note that a structurally singular DAE may have index 1 but it does not
satisfy the sufficient condition, such as the DAE in Example 2.1.1.

A semi-explicit DAE

ẋ = f(t, x, y)
0 = g(t, x, y)

(2.3)

is index one if and only if ∂g/∂y is nonsingular.
In the following, the functions f in the fully-implicit DAE (2.1) or f and

g in the semi-implicit DAE (2.2) or (2.3) or B, f and g in the semi-implicit
quasilinear DAE (2.11) are called model functions.

2.2 Linear multistep methods

A general k-step multistep method with constant step h is given by

k∑

j=0

αixn−j = h
k∑

j=0

βjẋn−j, (2.4)

where αi and βj are the method’s coefficients, α0 6= 0 and |αk| + |βk| 6= 0.
The linear multistep method is explicit if β0 = 0 and implicit otherwise.

2.2.1 Error, order and convergence

The local truncation error of the linear multistep method (2.4) at tn is defined
as the defect obtained when plugging the exact solution x(t) into the formula
(2.4), which is written as

τn =
1

h

k∑

j=0

(αix(tn − jh) − hβjẋ(tn − jh)). (2.5)

It measures how closely the difference operator approximates the differential
operator. This definition of the local truncation error is the same as one
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defined in [5], p. 132. This should not be confused with the truncation error
as defined in [72], which is actually defined in [27] as the local discretization
error or local error for short.

The local discretization errror (see [27], [5], p. 43) (or local error) at tn is
defined as the difference between the exact solution xl(tn) of the differential
equation on the interval [tn−1, tn] at tn with the initial value xl(tn−1) = xn−1,
and the solution xn of the difference equation also at tn,

ln = xl(tn) − xn

= xl(tn) −
1

α0


−

k∑

j=1

αix
l
n−j + h

k∑

j=0

βjẋ
l
n−j


 , (2.6)

where xln−j and ẋln−j are supposed to be the exact values of xl(tn−j) and
ẋl(tn−j) for the true solution xl of the differential equation with xl(tn−1) =
xn−1. x

l(t) should not be confused with x(t), which is the true solution of the
differential equation with x(t0) = x0. This definition of local discretization
error is somewhat similar to the definition of local truncation error defined
in [24]. However, in the this thesis we use the definitions defined above, i.e.,
the local discretization errror refers to ln and the local truncation error refers
to τn.

It is shown that (see e.g., [5] and [24]) under certain assumptions we have
the following relation:

hn‖τn‖ = ‖ln‖(1 +O(hn)).

Definition 2.2.1 (Order of method)
The linear multistep method (2.4) is said to be consistent (or accurate) of

order p if for any C∞ function x(t) : T → � n and any t ∈ �
the condition

τ(t, h) =
1

h

k∑

j=0

(αix(t− jh) − hβjẋ(t− jh)) = O(hp), as h→ 0, (2.7)

holds. A linear multistep method is consistent if it is consistent of order
p ≥ 1.

The necessary and sufficient conditions for consistency of a linear multistep
method are stated in the following theorem [5].

Theorem 2.2.1
The linear multistep method (2.4) is consistent iff

k∑

j=0

αj = 0,
k∑

j=1

jαj +
k∑

j=0

βj = 0.
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To measure the total error (true error) of the approximate solution, the
global error is defined as the difference between the exact solution x(t) and
the approximate solution xn

en = x(tn) − xn, with x(t0) = x0.

Definition 2.2.2 (Order of convergence of method)
The linear multistep method (2.4) is said to be convergent of order p if

en = O(hp).

The convergence of a method ensures that the approximate solution ap-
proaches the true solution (i.e., the global error approaches zero) when the
stepsize approaches zero.

2.2.2 Stability and stiffness

Definition 2.2.3 (Stability of problem)
An initial value problem DAE (2.1) with the initial value x(0), or its exact
solution x(t) for (t ≥ 0), is said to be

• stable if given any ε > 0 there is a δ > 0 such that any other solution
x̂(t) satisfying the DAE and

‖x(0) − x̂(0)‖ ≤ δ

also satisfies
‖x(t) − x̂(t)‖ ≤ ε for all t ≥ 0;

• asymptotically stable if, in addition to be stable,

‖x(t) − x̂(t)‖ → 0 as t→ ∞.

• unstable otherwise.

In particular for linear constant coefficient ODE

ẋ = Ax, (2.8)

the solution of (2.8) is: (a) stable iff all eigenvalues λ of A satisfy either
<(λ) < 0 or <(λ) = 0 and λ is simple, (b) asymptotically stable iff all
eigenvalues λ of A satisfy <(λ) < 0.

Similarly, we define the stability of linear difference equations with con-
stant coefficients

akxn−k + ak−1xn−k+1 + · · · + a0x0 = qn. (2.9)
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The characteristic polynomial of the difference equation (2.9) is defined as

φ(ξ) =
k∑

j=0

ajξ
k−j,

and the equation φ(ξ) = 0 is called characteristic equation. For a small
perturbation of the initial condition of the difference equation not to grow
unboundedly, the bound on the root of φ(ξ) is needed.

Definition 2.2.4
The difference equation (2.9) is stable if all k roots of φ(ξ) satisfy |ξi| < 1 or if
|ξi| = 1, then ξi is a simple root. The difference equation is asymptotically

stable if all k roots of φ(ξ) satisfy |ξi| < 1.

Absolute stability

Consider the Dahlquist test equation

ẋ = λx, x0 = 1. (2.10)

If <λ < 0 then |x(t)| decays exponentially. It means that this problem is
stable if <λ < 0. Therefore, it is required that the solution of a numerical
method, that is used for discretizing (2.10), satisfies the absolute stability
condition

|xn| ≤ |xn−1|, n = 1, 2, . . . .

Definition 2.2.5 (Stability domain of a numerical method)
The region of absolute stability, also called stability domain, of a
numerical method is a region in the complex z-plane such that the numerical
solution, obtained by applying the method to the test equation (2.10) with
z = λh, where h is the step size, from within this region, satisfies the absolute
stability condition.

Definition 2.2.6 (A-stable method)
A numerical method is A-stable if its region of absolute stability contains
the entire left half-plane of z = hλ.

Now applying the multistep method (2.4) to the test equation ẋ = λx,
we obtain the following difference equation:

k∑

j=0

(αi − hλβj)xn−j = 0.
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Its characteristic equation is given by

φ(ξ) =
k∑

j=1

(αj − hλβj)ξ
k−j = ρ(ξ) − hλσ(ξ) = 0,

where ρ(ξ) and σ(ξ) are defined as

ρ(ξ) =
k∑

j=1

αjξ
k−j, σ(ξ) =

k∑

j=1

βjξ
k−j,

and are called generating polynomials. The boundary of the stability domain
is determined by

µ =
ρ(eiθ)

σ(eiθ)
, 0 ≤ θ ≤ 2π,

is called the root locus curve.

Theorem 2.2.2 (Dahlquist 1963)
An A-stable multistep method must be of order p ≤ 2.

Stiffness

The concept of stiffness is usually described using qualitative properties
rather than quantitative terms. It usually refer to problems with multi-
ple time scales, such as in chemical reaction systems stiffness is due to the
fact that some reactions occur much more rapidly than others. The first
definition of stiff equations is given in [38] as: “stiff equations are equations
where certain implicit methods, in particular BDF, perform better, usually
tremendously better, than explicit one”. Alternatively, the stiffness of prob-
lem is also defined in [5] as: “the problem is stiff if the step size needed to
maintain absolute stability of the forward Euler method is much smaller than
the step size needed to represent the solution accurately”.

2.2.3 Stability of BDF methods

The BDF methods are a family of the multistep methods (2.4), where βj = 0
for j = 2, . . . , k. The k-step BDF method with a constant step size h can be
written as

k∑

j=1

1

j
∇jxn = hẋn.

This method has order p = k. The root locus curves is given by

µ =
k∑

j=1

1

j
(1 − 1

ξ
)j =

k∑

j=1

1

j
(1 − e−iθ)j, 0 ≤ θ ≤ 2π.
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Figure 2.1: Stability region of BDF methods up to order 6.

Figure 2.1 shows the stability region of the BDF methods up to order 6.
The stability region of each k-step BDF method is the region outside the
corresponding colored area.

2.3 BDF methods for index-1 DAE

Consider the semi-implicit quasilinear DAE

B(t, x, y)ẋ = f(t, x, y)
0 = g(t, x, y),

(2.11)

where
B : [t0, te] ×

� nd × � na → � nf×nd,
f : [t0, te] ×

� nd × � na → � nf ,
g : [t0, te] ×

� nd × � na → � ng .

In addition, nd ≥ nf and B has full range. Here, x is the differential variables
and y is the algebraic variables.
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The basic idea of BDF discretization is to approximate the derivative
of differential variables ẋ by the derivative of an interpolating polynomial.
Given k values of x(t) at tm−k+1, tm−k+2, . . . , tm. We construct a k-order
corrector polynomial pc

m+1(t) which interpolates x(t) using support points
(tm−k+1, xm−k+1), (tm−k+2, xm−k+2), . . . , (tm, xm), which are already known,
and (tm+1, xm+1). That is,

pc
m+1(tm+1−i) = xm+1−i, i = 0, . . . , k.

Note that pc
m+1(t) is unique and its coefficients also depend on the unknown

xm+1.
Now the unknown derivative ẋm+1 is approximated by the derivative of

the corrector polynomial pc
m+1(t) at tm+1

ẋm+1 = ṗc
m+1(tm+1)

= − 1

hm+1

(
α

(m+1)
0 xm+1 +

k∑

i=1

α
(m+1)
i xm+1−i

)
, (2.12)

where hm+1 = tm+1 − tm and α
(m+1)
i , i = 1, . . . , k, are the coefficients of

the BDF method. For example, using Lagrange interpolation formula, these
coefficients are determined as follows.

The corrector polynomial is determined by

pc
m+1(t; xm+1, xm, . . . , xm−k+1) =

m+1∑

i=m−k+1

xili(t), (2.13)

where li are the Lagrange basis polynomial which are defined as

li(t) =
m+1∏

j=m−k+1

j 6=i

t− tj
ti − tj

, i = m− k + 1, . . . , m+ 1. (2.14)

Then, the coefficients αm+1
0 , . . . , αm+1

k+1 are determined by

αm+1
i = −hm+1 l̇m+1−i(tm+1), i = 0, . . . , k. (2.15)

Let us denote

Bm+1 = B(tm+1, xm+1, ym+1)

fm+1 = f(tm+1, xm+1, ym+1)

gm+1 = g(tm+1, xm+1, ym+1)

βm+1 =
k∑

i=1

α
(m+1)
i xm+1−i.
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Replacing ẋm+1 in (2.11) evaluated at the step (n+ 1) by the right-hand
side of (2.12) we obtain the algebraic equation system

Bm+1
(
α

(m+1)
0 xm+1 + βm+1

)
+ hm+1f

m+1 = 0

gm+1 = 0
(2.16)

This nonlinear equation system is solved by a modified Newton method,
which will be discussed in Section 2.4.

A suitable initial guess w0
m+1, where wm+1 = (xm+1, ym+1), being close

enough to the solution of equation (2.16), is determined by extrapolating
a k-order predictor polynomial pp

m+1(t), which interpolates w(t) using k + 1
already known support points (tm−k, wm−k), (tm−k+1, wm−k+1), . . . , (tm, wm)

pp
m+1(tm+1−i) = wm+1−i, i = 1, . . . , k + 1,

by setting

w0
m+1 = pp

m+1(tm+1).

The predictor polynomial is given by

pp
m+1(t) =

k∑

i=0

pi(t)∇iwm,

where

pi(t) =





1, if i = 0
∏i
j=1(t− tm+1−j), if i = 1, . . . , k + 1

and

∇0wm = wm , (2.17)

∇iwm =
∇i−1wm −∇i−1wm−1

tm − tm−i

.

Remark 2.3.1
The coefficients αm+1

0 , . . . , αm+1
k+1 depend on the order k and step sizes hm+1−i

(i = 0, . . . , k).
If the step sizes do not change, i.e., constant step-size, then the coefficients

only depend on the order k. For a given order k, the coefficients are constant.
Table 2.3 gives the coefficients of BDF methods up to order 6.

In DAESOL the step size and order are changed adaptively, thus the
coefficients are evaluated at each step.
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k α0 α1 α2 α3 α4 α5 α6

1 -1 1
2 -3/2 2 -1/2
3 -11/6 3 -3/2 1/3
4 -25/12 4 -3 4/3 -1/4
5 -137/60 5 -5 10/3 -15/12 1/5
6 -147/60 6 -15/2 20/3 -15/4 6/5 -1/6

Table 2.1: Coefficients of BDF methods up to order 6

2.4 Solution of corrector equation

For solving large scale DAEs, the most time consuming parts are computa-
tion and decomposition of the Jacobian, in addition, the Jacobian usually
changes very little during the Newton iteration and even during several in-
tegration steps. Therefore, to save computing time, the corrector equation
(2.16) are solved by a modified Newton method instead of the standard New-
ton’s method. The corrector equation (2.16) can be written as

h(s) = 0, (2.18)

where s = (xm+1, ym+1) and

h =

[
Bm+1

(
α

(m+1)
0 xm+1 + βm+1

)
+ hm+1f

m+1

gm+1

]
.

Notation used in the remaining of this section is not related to previous
sections.

The iteration scheme of the modified Newton method is defined as

J̃(sk)∆sk = −h(sk), (2.19)

sk+1 = sk + ∆sk.

where J̃(sk) is an approximation to the Jacobian J(sk). The convergence
properties of the modified Newton method can be formulated as follows [19].

Theorem 2.4.1
Let D ⊆ � n, h ∈ C1(D) and J(s) = ∂h(s)/∂s be the Jacobian of h(s) and

J̃−1(s) be the approximate inverse of J(s). For all τ ∈ [0, 1] and all k there
are bounds ω and κ such that

(i) ‖J̃−1(sk+1)(J(sk) − J(sk − τ∆sk))∆sk‖ ≤ ωτ‖∆sk‖2, ω <∞,
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(ii) ‖J̃−1(sk)(h(sk) − J(sk)J̃
−1(sk)h(sk))‖ ≤ κ‖∆sk‖, κ < 1

with ∆si = −J̃−1(si)h(si) and the starting point of the iteration has to fulfill

(iii) δ0 :=
ω

2
‖∆s0‖ + κ < 1,

(iv) The ball D0 := S

(
s0,

‖∆s0‖
1 − δ0

)
⊂ D.

Then the following holds:

• The iteration sk+1 = sk + ∆sk is well-defined and remains in D0.

• There exists s∗ ∈ D0 with J̃−1(s∗)h(s∗) = 0 and sk → s∗ (k → ∞).

• The convergence is linear with

‖∆sk+1‖ ≤
(
ω

2
‖∆sk‖ + κ

)
‖∆sk‖ = δk‖∆sk‖. (2.20)

• For the k-th iteration the following a priori estimate holds

‖sk − s∗‖ ≤ ‖∆s0‖
δk0

1 − δ0
. (2.21)

Remark 2.4.1
• The conditions (i) and (ii) only need to be satisfied for ∆sk = −J̃−1(sk)h(sk)

and not nessarily for arbitrary ∆sk.

• The Lipschitz constant ω in the condition (i) measures the relative
nonlinearity of h. This condition is usually replaced by two conditions:
‖J̃−1‖ ≤ β <∞ and ‖J(y)− J(x)‖ ≤ γ‖y− x‖, γ <∞. And ω can be
thought as βγ. However, βγ grossly over-estimates the weaker bound
ω.

• κ is a measure for the quality of the approximate inverse J̃−1. The
condition (ii) can be replaced by ‖I − J̃−1J‖ ≤ κ < 1.

The main use of Newton’s method in the corrector stage is to compute
a ”good” solution by using a quite good initial value obtaining from the
predictor. Thus, the use of of the Newton’s method in context of predictor-
corrector method is not the same as in the standard procedure for solving
nonlinear equations.
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In DAESOL, after the first iteration, if the weighted norm of ‖∆s0‖ is
less than or equal to the requested iteration tolerance NTOL

‖∆s0‖ ≤ NTOL, (2.22)

then the iteration is considered to be successful. Here ‖ · ‖ is the weighted
root mean square norm defined as

‖e‖WRMS =


1

n

n∑

i=1

(
ei

yscal(i)

)2



1/2

, (2.23)

where e = (e1, e2, . . . , en), yscal(i) = RTOL × |y(i)| + ATOL(i), RTOL is
the relative error tolerance, ATOL(i) is the ith component of absolute error
tolerance, and y(i) is the ith component of the solution vector of the DAEs.
This is one of the scaling schemes implemented in DAESOL, which is used for
the numerical results in this thesis, see [10] for more details. The requested
iteration tolerance is chosen as follows

NTOL = RTOL × RFAC,

where RFAC = 0.08, RTOL is the user requested relative integration toler-
ance. The aim here is to control the error of the solution of the corrector
equation such that it does not effect the local discretization error estimates.
If the condition (2.22) is not satisfied after the first iteration, then another
iteration is taken. The convergence ratio δ is estimated by

δ0 =
‖∆s1‖
‖∆s0‖

. (2.24)

If the convergence ratio is less than 0.25, δ < 0.25, or ‖∆s1‖ < TOL then
we stop the iteration and it is considered as convergent. If the estimated
convergence ratio δ0 is greater than 0.3, δ0 > 0.3, then the iteration is con-
sidered to be unsuccessful and if the Jacobian is old, we restart the iteration
process from beginning with a new updated Jacobian, otherwise we stop the
iteration process and request the step size to be reduced. Otherwise the third
iteration is made, and a new estimate of convergence ratio δ1 is computed

δ1 =
‖∆s2‖
‖∆s1‖

. (2.25)

A new convergence test is performed: if ‖∆s2‖ is less than TOL, then the
iteration is stopped with a successful return. Otherwise, if the estimated
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convergence ratio δ1 is greater than 0.3, δ1 > 0.3, then the iteration is con-
sidered to be unsuccessful and if the Jacobian is old, we restart the iteration
process from beginning with a new updated Jacobian, otherwise we stop the
iteration process with a unsuccessful return. For estimation of the step size
after a rejected step, see [10] and [11].

The estimate of convergence ratio δ0 = ‖∆s1‖/‖∆s0‖ as above is a lower
bound for the δ0 in Theorem 2.4.1, and this should be taken into account.

As proved in [94], p. 301, the root-convergence rate (r-factor) ρ(r) of the
iteration mentioned in Theorem 2.4.1 is the spectral radius of (I − J̃−1J∗),
ρ(r) = ρ(I − J̃−1J∗), with J∗ = ∂h(s∗)/∂s. Actually, the iteration mentioned
in Theorem 2.4.1 can be written as

sk+1 = h(sk), h(sk) = sk − J̃−1h(sk), h
′
(s∗) = I − J̃−1J∗.

Many authors (see [107], [97], [25], [24], [5], [77]) estimate the quotient-
convergence rate (q-factor) ρ(q) as

ρ̃
(q)
k =

‖∆sk‖
‖∆sk−1‖

or ρ̃
(q)
k =

(
‖∆sk‖
‖∆s0‖

)1/k

, (2.26)

which use the same or slightly different formula from the convergence ratio δ
as we mention above (δ0 and δ1), and then these authors use the well known
result that if a sequence {sk} converges to s∗ with a quotient-convergence
rate (q-factor) ρ(q), then

‖sk+1 − s∗‖ ≤ ρ(q)

1 − ρ(q)
‖sk+1 − sk‖,

to estimate how far sk+1 is from the solution s∗.
It is easy to prove that for a contraction mapping c :

� n → � n defined
by ‖c(x) − c(y)‖ ≤ δ‖x − y‖, ∀x, y ∈ � n, δ < 1, then the iteration sk+1 =
c(sk) converges to the unique fixed point of c and its asymptotic quotient-
convergence ρ(q) and root-convergence ρ(r) factors have the upper bound δ

ρ(q) ≤ δ and ρ(r) ≤ δ.

Note that δ here is also an upper bound of δk in Theorem 2.4.1: δk ≤ δ.
Moreover, it is proved in [40] (Lemma 8.2.3, p. 180) that if a sequence

{sk} (sk ∈
� n) converges q-superlinearly to s∗ ∈ � n in some norm ‖ · ‖, then

lim
k→∞

‖sk+1 − sk‖
‖sk − s∗‖ = 1.
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It suggests that one can replace sk−s∗ by ∆sk = sk+1−sk if the convergence
is q-superlinear. However, in the corrector iteration we can obtain linear con-
vergence, thus ∆sk could not be a good approximation for sk−s∗. Therefore,
the estimate (2.26) may be not a good approximation of the q-factor.

Now suppose that ρ(q) < 0.5 and denote ρ
(q)
k and δk as

ρ
(q)
k =

‖sk+1 − s∗‖
‖sk − s∗‖ , δk =

‖sk+2 − sk+1‖
‖sk+1 − sk‖

=
‖∆sk+1‖
‖∆sk‖

,

then

ρ
(q)
k =

‖sk+1 − s∗‖
‖sk − s∗‖

≤ ‖sk+1 − sk+2‖ + ‖sk+2 − s∗‖
‖sk − sk+1‖ − ‖sk+1 − s∗‖

≤
‖sk+1 − sk+2‖ +

ρ(q)

1 − ρ(q)
‖sk+1 − sk+2‖

‖sk − sk+1‖ −
ρ(q)

1 − ρ(q)
‖sk − sk+1‖

=
1

1 − 2ρ(q)

‖sk+2 − sk+1‖
‖sk+1 − sk‖

=
δk

1 − 2ρ(q)
,

and

ρ
(q)
k =

‖sk+1 − s∗‖
‖sk − s∗‖

≥ ‖sk+1 − sk+2‖ − ‖sk+2 − s∗‖
‖sk − sk+1‖ + ‖sk+1 − s∗‖

≥
‖sk+1 − sk+2‖ −

ρ(q)

1 − ρ(q)
‖sk+1 − sk+2‖

‖sk − sk+1‖ +
ρ(q)

1 − ρ(q)
‖sk − sk+1‖

= (1 − 2ρ(q))
‖sk+2 − sk+1‖
‖sk+1 − sk‖

= (1 − 2ρ(q))δk.

Hence,

(1 − 2ρ(q))δk ≤ ρ
(q)
k ≤ δk

1 − 2ρ(q)
.

It follows that if ρ(q) is small enough, say ρ(q) = 0.1, then 0.8 × δk ≤ ρ
(q)
k ≤

1.2 × δk, i.e., δk can be a good approximation of ρ(q).
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Fortunately, as mentioned above, the q-factor estimated using (2.26)
could be an upper bound if one expects δk ≈ δ. In other words, ρ(q) computed
using (2.26) over-estimates the q-factor, and its use to estimate how far the
current point is from the solution is safer because the bigger the q-factor is,
the slower convergence rate is, is used to estimate ‖sk+1−s∗‖. It is emphasize
that we estimate the convergence ratio δ, not the quotient-convergence rate
ρ(q) as others do, and use (2.21) to estimate the distance between the current
point sk and the true solution s∗. This estimate does not depend on how
good ∆sk approximates sk − s∗.

2.5 Error control, order and step size selec-

tion

Because the global error is not easy to obtain and even inefficient, thus, most
available DAE solvers (e.g., DAESOL [10] and DASSL[24]) do not try to
control the global error but control the local error instead. The error is also
referred to as the integration error, which is different from the iteration error
of the solution of the corrector equation. At each integration step, after each
successful corrector iteration we need to check for local error to decide if the
step is accepted or rejected.

Let us denote (x, y) in (2.11) by w. As mentioned in Section 2.2, the local
error lm+1 at tm+1 is defined as

lm+1 = wl(tm+1) − wm+1.

As shown in, e.g., [27] and [24], the local error relates to the difference be-
tween the corrector and predictor values as

lm+1 = ζ × (wm+1 − w0
m+1) +O(hk+2), (2.27)

where ζ only depends on the step sizes and orders, and w0
m+1 is the predictor

value and wm+1 is the (exact) solution of the corrector equation. In DASSL,
the local error is estimated by (2.27).

Alternatively, as we know that the k-step BDF has order k (see e.g., [5],
[24]), i.e, the first k terms of the local error in the Taylor expansion at tm+1

vanish, thus, as in DAESOL, the local error is estimated by taking two major
terms of order k + 1 and k + 2 in local Taylor expansion at tm+1 as

Ek(m+ 1) = hm+1ψ1(m + 1) . . . ψk(m + 1)(
‖∇k+1wm+1‖ + ψk+1(m+ 1) · ‖∇k+2wm+1‖

)
. (2.28)
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After each step the local error estimates using the above formula (2.28) is
evaluated and compared with the user requested tolerance TOL. If the esti-
mated error Ek(m + 1) is greater than TOL, then the step is rejected and
the step size is reduced.

Now assume that the computations are performed using floating-point
arithmetics. We will analyze how this effects the above error estimates.

Denote

• wm+1 be the exact solution of the corrector equation with the computa-
tion using exact arithmetic and solving the corrector equation exactly
(wm+1 denotes the true solution of the corrector equation), which is not
the same as the true solution w(tm+1) because we use the BDF formula
to approximate the differential equation by the difference equation.
The difference here is due to the BDF approximation.

• wn+1 be the numerical computed solution of the corrector equation
by solving the corrector equation inexactly (due to terminating the
iteration earlier) with exact arithmetic,

• ŵm+1 be the approximation of wm+1 with the computation using float-
ing point arithmetic.

We have

lm+1 = (wl(tm+1) − ŵm+1) + (ŵm+1 − wm+1)

= (wl(tm+1) − ŵm+1) + (ŵm+1 − wm+1) + (wm+1 − wm+1).

The term ŵm+1 − wm+1 represents the error due to solving the corrector
equation numerically. It consists of two sources of error, the error from ter-
minating the corrector iteration after a finite number of iterations (iteration
error = wm+1 − wm+1), and the error due to propagation of rounding error
during solving linear system (2.19) at each corrector iteration (roundoff error
= ŵm+1 − wm+1). It is usually assumed that the roundoff error is insignifi-
cant, and the iteration error is controlled to be much smaller than the local
error as in Section 2.4 such that it does not affect the local error estimate.
Then, the local error can be approximated as

lm+1 ≈ wl(tm+1) − ŵm+1.

The bound in (2.21) allows us to control the iteration error based on the
Newton update ∆w0

m+1. We can determine how far from the current point
to the true solution of the corrector equation is. Since what we have is the
numerical computed solution ∆̂w0

m+1 = ∆w0
m+1 + δw0

m+1, where δw0
m+1 is the
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error of the computed solution of the linear system (2.19) due to computation
using floating point arithmetic instead of the exact solution ∆w0

m+1, thus, if

δw0
m+1 � ∆w0

m+1 then one can use ∆̂w0
m+1 as a good approximation of

∆w0
m+1, ∆̂w0

m+1 ≈ ∆w0
m+1. Therefore, we can bound the iteration error based

on the numerical computed Newton update ∆̂w0
m+1. In the next section we

will discuss how to estimate the error of the solution of the linear system and
how it affects the iteration errror.

The error estimates (2.27) or (2.28) depend explicitly or implicitly on the
approximate solution of the corrector equation, which depends on the initial
Newton update ∆w0

m+1 and the estimated convergene ratio (or convergence
rate). These quantities depend on the solution of underlying linear system.
These error estimates are reliable if the error induced by the numerical com-
putations is small compared to the quatities of interest.

For estimation of a new step size and order for the next integration step,
see [10] and [11].

2.6 Error analysis

It is well known that when one uses a digital computer to find a numerical so-
lution of a problem, there will be have a certain error in the obtained solution
due to only finite approximate representatives of numbers and inexact arith-
metic operations in the computer, i.e., floating-point numbers and floating-
point operations. One would expect that numerical computational solutions
cannot be more accurate than machines allow. This fact was pointed out in
[116] as:
”. . . when a problem in pure or applied mathematics is “solved” by numerical
computation, errors, that is, deviations of the numerical “solution” obtained
from the true, rigorous one, are unavoidable. Such a “solution” is therefore
meaningless, unless there is an estimate of the total error in the above sense
. . . ” .
In the rest of this section, at first, major classical results [123] and [59] on
error analysis of linear equation systems are briefed, then we move on to
error analysis for the solution of nonlinear systems by the numerical Newton
method in the BDF methods.
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2.6.1 Error analysis of direct Gaussian elimination for
the solution linear equation systems

Consider the linear system (2.19) arising in solving the corrector equation

J̃(xk)∆xk = −h(xk).

To avoid using complicated notations, we recast the notations as x = ∆sm,
A = J̃ , b = −h(sm), and n = nd + na, then this linear equation becomes

Ax = b. (2.29)

Notation used in the remaining of this section is not related to previous
sections.

We study the problem (2.29) with uncertainty in data A and b. Consider
the equation (2.29) with the right-hand side is changed from b to b + ∆b,
then the exact solution will be changed from x to x+ ∆x, and we have

A(x+ ∆x) = b + ∆b.

The following bound for the relative error is obtained

‖∆x‖
‖x‖ ≤ ‖A−1‖‖∆b‖

‖A‖−1‖b‖
= ‖A‖‖A−1‖‖∆b‖‖b‖ ,

where ‖ · ‖ denotes any vector norm and the corresponding operator norm
(also referred to as induced norm or subordinate matrix norm, see e.g., [39]
p. 22, [110] p. 186, which is consistent with the vector norm).

Define κ(A) = ‖A‖‖A−1‖, called condition number of A with respect to
the given norm, then

‖∆x‖
‖x‖ ≤ κ(A)

‖∆b‖
‖b‖ . (2.30)

The condition number κ(A) measures the relative change ‖∆x‖/‖x‖ in the
solution as a multiple of the relative change ‖∆b‖/‖b‖ in the data. Indeed,
it reflects the maximum relative change in the solution in response to the
relative change in the data. If the condition number is very large, then a
small change in the data could cause a big change in the solution. As proved
in [39] (Theorem 2.1, pp. 33–34), the reciprocal of the condition number
equals the distance to the nearest singular matrix:

min

{
‖∆A‖2

‖A‖2

: A+ ∆A singular

}
=

1

‖A−1‖2‖A‖2

=
1

κ2(A)
,
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and here we assume that A is non-singular. For each norm, we have a
corresponding condition number associated with that norm. For three most
often used norms: 1−, 2−, and ∞−norms; we have the following relations.

‖A‖1 = max
1≤j≤n

n∑

i=1

|aij|,

‖A‖∞ = max
1≤i≤n

n∑

j=1

|aij|,

‖A‖2 = (maximum eigenvalue of ATA)
1
2 ,

= maximum singular value of A,

and

1

n
κ2(A) ≤ κ1(A) ≤ nκ2(A),

1

n
κ∞(A) ≤ κ2(A) ≤ nκ∞(A),

1

n2
κ1(A) ≤ κ∞(A) ≤ n2κ1(A).

The condition number κ2(A), associated with the 2-norm, is called the spec-
tral condition number.

Now we consider the equation (2.29) but the left-hand side matrix A is
changed from A to A + ∆A, then the exact solution will change from x to
x + ∆x and we have

(A+ ∆A)(x + ∆x) = b.

The following bound for the relative error is obtained

‖∆x‖
‖x‖ ≤ κ(A)

1 − κ(A)
‖∆A‖
‖A‖

‖∆A‖
‖A‖ , (2.31)

with the condition that ‖A−1∆A‖ < 1.

Remark 2.6.1
A similar bound for the relative change of the first order approximation δx
of ∆x is obtained in [115]:

δx = −A−1(∆A)x (2.32)

‖δx‖
‖x‖ ≤ κ(A)

‖∆A‖
‖A‖ . (2.33)

It is also shown in [115] that for any positive γ there exists a ∆A with
‖∆A‖ = γ such that the equality sign in (2.33) occurs.
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Now we consider the general case where both A and b are changed. As-
sume that we have

(A + ∆A)(x+ ∆x) = b + ∆b. (2.34)

The following error bound for the relative error is obtained

‖∆x‖
‖x‖ ≤ κ(A)

1 − κ(A)
‖∆A‖
‖A‖

(
‖∆b‖
‖b‖ +

‖∆A‖
‖A‖

)
(2.35)

with the condition that ‖A−1∆A‖ < 1.
Note that the quantity κ(A)/(1 − κ(A)‖∆A‖/‖A‖) in the bounds (2.31)

and (2.35) is close to the condition κ(A) if (κ(A)‖∆A‖/‖A‖) � 1.
If the condition number is very large, this bound is too pessimistic. Using

the componentwise relative perturbation |∆A| ≤ α|A| where the absolute |·| of
a vector or matrix means that the components are replaced by their absolute
values, one can obtain (see, e.g., [39])

‖∆x‖
‖x‖ ≤ ακCR(A), (2.36)

where κCR = ‖ |A−1| |A| ‖ is the componentwise relative condition number
or relative condition number for short.

Remark 2.6.2
The equality sign in (2.30) could happen for special A and/or b. That is ∆b
to be a maximizing vector for A−1, i.e. ‖A‖ = ‖Ax‖/‖x‖, x 6= 0, and x to be
a maximizing vector for A, and b = Ax. For example, with the 2-norm, this
occurs only when b is in the direction of the eigenvector of ATA corresponding
to the largest singular value of A, and ∆b is in the direction of the eigenvector
of ATA corresponding to the smallest singular value of A. Furthermore, if b
is a maximizing vector of A−1, we even have ‖∆x‖/‖x‖ ≤ ‖∆b‖/‖b‖.

However, the equality sign in (2.30) happens only for special A and/or
b (as with 2-norm, b and ∆b are in a 1-dimensional subspace of

� n with
assumption that all singular values are separated). Thus, the probability
that the equality takes place for A, of which all singular values are not the
same, is zero. Moreover, we know no place in the literature where the equality
signs in (2.31) and (2.35) are given explicitly. Following the above derivation,
we see that the equality sign in (2.31) and in (2.35) could be hardly possible,
if not impossible. Therefore, although no sharper bound could be obtained,
but in practice when κ(A) is very large, these bounds are too pessimistic.
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The above defined condition number κ(A) reflects the maximum relative
change in the solution in responding to a relative change in the data, and it
only depends on the matrix of coefficients A, not depends on the right-hand
side b. The above obtained bounds are valid for all values of b, as we discussed
above, they are too pessimistic. On the other hand, one is usually interested
in how is the solution x of Ax = b sensitive to relative small changes of data
(A and/or b). This means that we are interested in how the solution behaves
by small perturbations of A and of b in the locally regions of A and b. This
leads to the definitions of condition numbers which involve A and b or A and
x. Somewhat similar concepts are introduced by Sluis in [115], and by Skeel
in [109] which defines the condition number for a problem with data ξ and
the solution φ(ξ) to be

lim
ξ̃→ξ

relative distance from φ(ξ̃) to φ(ξ)

relative distance from ξ̃ to ξ
, (2.37)

and in [8] Bauer defines a similar quantity ξφ′(ξ)/φ(ξ), called the relative
derivative or the local differential condition number of the scalar function φ
of the scalar ξ. For a linear system, ξ = (A, b) and φ(ξ) = A−1b. Based on
this derivative-based definition of condition number, one can generalize it for
multi-variable vector functions by using appropriate norms.

As shown in [109], the condition number as defined in (2.37) with the
∞-norm applied for a linear system Ax = b equals [109]

κ(S)(A, b; x) =
‖ |A−1| |A| |x| + |A−1| |b| ||∞

‖x‖∞
,

where x = A−1b. When only A is subjected to uncertainty (data ξ = A), the
condition number, as defined in (2.37), is

κ(S)(A; x) =
‖ |A−1| |A| |x| ‖∞

‖x‖∞
.

Note that we have

κ(S)(A; x) ≤ ‖ |A−1| |A| ‖∞ ≤ ‖A‖‖A−1‖∞,

and ‖ |A−1| |A| ‖ is the componentwise relative condition number as defined
in (2.36). By using componentwise relative perturbation for A and b (|∆A| ≤
ε|A|, |∆b| ≤ ε|b|), the following bound is obtained [109]:

‖∆x‖∞
‖x‖∞

≤ ε
‖ |A−1| |A| |x| + |A−1| |b| ‖∞
(1 − ε‖ |A−1| |A| ‖∞)‖x‖∞

,
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where Ax = b and (A + ∆A)(x + ∆x) = b + ∆b and assume that (1 −
ε‖ |A−1| |A| ‖) > 0. However, we will not discuss the componentwise relative
perturbation and its error bounds any more because we think that assump-
tion of the componentwise relative error (|∆A| ≤ ε|A|, |∆b| ≤ ε|b|) would be
inappropriate or impractical for the error analysis in the following. For ex-
ample, if one of entries of A equals zero, Ai j = 0, then due to roundoff errors
in the numerical computation during solving the linear system, it is possible
that the error of A at this location (i, j) does not vanish, i.e., ∆Ai,j 6= 0, thus
the condition |∆A| ≤ ε|A| cannot be satisfied.

As we known from the backward error analysis that the computed solution
x of the equation (2.29) is the exact solution of a perturbed one of the
equation (2.29), i.e.,

(A+ ∆A)x = b + ∆b, (2.38)

where ∆A and ∆b are some perturbation values, which depend on the nu-
merical method used for solving (2.29).

Typically, in a BDF code, one needs to solve many linear systems with
different b but with the same A. This is due to the fact that for efficiency of
the code, a usually used strategy is to keep the iteration matrix (here is A) as
long as possible, which in turn reduces the number of costly derivatives and
iteration matrix evaluations and factorization. Thus, the linear system is not
solved directly in its original form, such as using direct Gaussian elimination,
but instead the matrix A is factored into the product of triangular matrices
and then the backward substitution is used to solve the triangular linear
systems. Note that the cost for factorizing a dense matrix is O(n3), where n
is the dimension of the matrix, while the cost for solving a triangular linear
system is O(n2). The advantage is that we only need to factor A once,
and use it to solve the linear system with different b. In the following we
determine the bounds for ∆A and ∆b when the matrix A is factored into the
LU form, where L is a lower triangular matrix and U is a upper triangular
matrix. This is the approach used in DAESOL. The solution process of the
linear system (2.29) by LU factorization and backward substitution can be
summarized as follows.

LU = A+ E
(L+ δL)y = b
(U + δU)x = y,

(2.39)

where E, δL, and δU are error matrices due to floating point arithmetic.
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From (2.39), it follows that

(L + δL)(U + δU)x = (L+ δL)y = b

(LU + UδL + LδU + δLδU)x = b

(A+ E + UδL + LδU + δLδU)x = b. (2.40)

Hence, the computed solution x is the exact solution of a perturbed equation

(A+ δA)x = b, (2.41)

where
δA = E + UδL + LδU + δLδU.

If pivoting has been used, the |lij| ≤ 1 for all i, j and denote

a = max
k

ak = max
k

max
i,j

|aki,j|,

where aki,j is the (i, j)-th element of A(k) at the k-th step of Gaussian elimi-
nation, then as shown in [122] the following relations hold

‖E‖∞ ≤ 2.01(0.5n+ 1)(n− 1)aεmach

‖δL‖∞ ≤ 0.5(n2 + n+ 2)εmach

‖δU‖∞ ≤ 0.5(n2 + n+ 2)aεmach

‖L‖∞ ≤ 1

‖U‖∞ ≤ an.

Thus,

‖δA‖∞ ≤ (2.005n2 + n3 + 0.25n4εmach)aεmach (2.42)

a = g(n)a0

with
a0 = max

i,j
aij

and g(n) is the growth factor. A theoretical bound for the growth factor
[121] is

g(n) ≤ 2n−1 for partial pivot selection

and

g(n) < (n− 1)1/2[2131/241/3 . . . (n− 1)1/(n−2)]1/2
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for complete pivot selection. A counter example (see, e.g., [121] and [123]) has
been found for partial pivoting with the growth factor as large as 2n−1. The
theoretical bounds for the growth factor may be too pessimistic. For partial
pivoting, as stated in [122] such growth is very rare and it is uncommon for
g(n) greater than 8. If A is not ill-conditioned, it is likely that the elements
of successive A(k) will decrease. For complete pivoting, g(n) could be not
as large as n, but a counter example has been found (see [61] and [49]).
However, we can monitor g(n) during a triangular decomposition.

The bound in (2.42) can be written as

‖δA‖∞ ≤ g(n)(2.005n2 + n3 + 0.25n4εmach)εmach‖A‖∞ (2.43)

This bound is too optimistic and hardly attained in practice and as stated
in [122] and [123] that ‖δA‖∞ is rarely larger than n‖A‖∞εmach. The bound
in (2.43) is rewritten as

‖δA‖∞ ≤ f(n)εmach‖A‖∞, (2.44)

where

f(n) = g(n)(2.005n2 + n3 + 0.25n4εmach).

From (2.35) and (2.44) we obtain the following relative error bound (mea-
sured in the infinity norm) of the computed solution of the linear system by
triangular decomposition LU and substitutions.

‖∆x‖∞
‖x‖∞

≤ κ(A)∞
1 − κ(A)∞f(n)εmach

f(n)εmach. (2.45)

Here, we assume that ‖∆b‖∞/‖b‖∞ � f(n)εmach. Recently, Amodio and
Mazzia [2] are able to obtain a new bound for the relative error of the solution
of linear system by triangular decomposition (LU) and substitutions:

‖∆x‖∞
‖x̂‖∞

≤
(
n(n+ 1)

2
+ 4(n− 1)

)
g(AM)(n)κ(A)∞εmach, (2.46)

where x̂ is the computed solution and g(AM)(n) is a newly-defined growth
factor

g(AM)(n) =
maxk ‖Â(k)‖∞

‖A‖∞
,

where Â(k) is the computed value of A(k).
From the bound (2.45), we see that for a linear system having very large

condition number such that

κ(A)∞f(n)εmach ≥ 1,
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then the computed solution is unreliable and may not have any correct sig-
nificant digits at all. However, the bound (2.45) maybe overestimate the
error for particular cases. Alternatively, to estimate the error bound for a
computed solution x̂0 of Ax = b, we can solve a new system Ax = b̂, where
b̂ = Ax̂0, using the already factorized LU of A to obtain x̂1, then the relative
error can be estimated as ‖x̂1 − x̂0‖/‖x̂1‖. But with this approach, we need
to solve an extra linear system with the same A but a different b.

2.6.2 Error analysis for Newton-like methods

Now, we investigate the behavior of Newton’s method with floating point
computation. The numerical Newton-like methods have been studied in,
e.g., [79], [127], [126], [26], [41] and [111]. The results presented here , with
the exception of [111] involve several assumptions and constants which are
difficult to realized in practice and even using some assumptions we think
that are not appropriate. These assumptions will be discussed later. Based
on the results in [111] but with different interpretations and assumptions,
we explicitly point out the limiting accuracy for the solution of nonlinear
equations. From our analysis, limiting accuracy of certain classes of problems
can also be obtained.

Notation used in the remaining of this section is not related to previous
sections.

Consider Newton’s method applied to the nonlinear equations

f(x) = 0,

where f :
� n → � n is continuously differentiable on

� n. Let J be the
Jacobian matrix ∂f/∂x of f and assume that J is Lipschitz continuous with
constant β in

� n, i.e.,

‖J(x) − J(y)‖ ≤ β‖x− y‖, ∀x, y ∈ � n.

The iteration scheme defined by Newton’s method with exact arithmetic is
as follows

J(xi)∆xi = −f(xi),

xi+1 = xi + ∆xi.

Using the floating point computation, the above iteration scheme becomes

(J(x̂i) + Ei)∆x̂i = −(f(x̂i) + ei)
x̂i+1 = x̂i + ∆x̂i + εi,

(2.47)

where
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• Ei is the error incurred in forming and solving the linear system for
∆x̂i,

• ei is the error appearing in the evaluation of f(x̂i),

• εi is the error generated when adding ∆x̂i to x̂i.

We assume that the error Ei satisfies

‖Ei‖ ≤ εmachφ(f, x̂i, n, εmach). (2.48)

We will describe how to determine the function φ later. According to the
above linear error analysis (see (2.41) and (2.44)), we can safely assume that

‖Ei‖ ≤ ξ(n)‖J(x̂i)‖,

for some small positive quantity ξ(n).
For the error εi we have

‖εi‖ ≤ εmach(‖x̂i‖ + ‖∆x̂i)‖).

For stronger bound, the componentwise norm can be used. On a computer
with a sufficiently accurate accumulator [122], we have

|εi| ≤ εmach|(x̂i + ∆x̂i)|,

here the componentwise norm is used.

The error ei is usually assumed to obey the following error model [26],
[79], [41]:

‖ei‖ ≤ εmach‖f(x̂i)‖.

By using this assumption and others (see [26] for more detailes), Theorem
3.5 in [26] shows that the convergence point x∗ of the numerical iterative
process satisfies

‖x∗ − x‖ ≤ εmach‖x∗‖, (2.49)

where x is the exact solution. We see that this assumption is inappropriate
in particular at points near the solution. Therefore, the result (2.49) could
not be obtained in practice. The following simple example shows that this
assumption would be not appropriate.
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Example 2.6.1
Consider the function f(x) defined by

f(x) = −[(x + 1) − 1 − εmach]ε
−1
mach.

Then the exact value of f(εmach) would be zero f(εmach) = 0, but the numer-
ical computed value of f(εmach) using the floating point arithmetic would be
one, fl(f(εmach)) = 1, where fl(f(x)) denotes the value of f(x) obtained by
using floating point computation. Because with floating point computation
the computed value of (x + 1) would be 1 when x ≤ εmach. Thus, the error
in this case is e = 1.

We see that error models for f(x) using the “relative” relation (the error
of fl(f(x)) to be a factor of f(x)) would be inappropriate. By this relative
model, one would expect the error of fl(f(x)) is always relative smaller than
f(x) even f(x) is very small. As the above example shows this is not always
true.

Therefore, we use the following error model for ei:

‖ei‖ ≤ εmach‖f(x̂i)‖ + ψ(f, x̂i, εmach, ε).

Here, it is our intention to use the same formula for the error ei as in [111]
because we want to use some results in [111]. In [111], it is assumed that f(x̂i)
is computed in the extended precision ε ≤ εmach before rounding back to the
working precision εmach, and δx̂i, x̂i are computed using the precision εmach.
We want to emphasize that the introducing of ψ(f, x̂i, εmach, ε) in the error
model for ei is based on our above observation, and it is not only because
of evaluation of f(x̂i) in the extended precision as in [111]. The behavior of
Newton’s method with floating point arithmetic can be summarized as the
following theorem [111].

Theorem 2.6.1
Assume that there is an x∗ such that f(x∗) = 0, J∗ = J(x∗) is non-singular
and that

‖J−1E‖ ≤ ν < 1.

Then, for all x such that

β‖J−1
∗ ‖‖x− x∗‖ ≤ µ < 1,

x̂1 in (2.47) is well defined and

‖x̂1 − x∗‖ ≤ G‖x̂0 − x∗‖ + g,
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where

G =
1

1 − ν
‖J−1E‖ +

(1 + εmach)
2

2(1 − µ)(1 − ν)
β‖J−1

∗ ‖‖x̂0 − x∗‖

+
εmach(2 + εmach)

(1 − µ)(1 − ν)
κ(J∗) + εmach

and

g =
1 + εmach

(1 − µ)(1 − ν)
‖J−1

∗ ‖ψ(f, x̂0, εmach, ε) + εmach‖x∗‖.

This theorem allows some interpretations. In the following, we assume that
x fulfills all conditions in the theorem.

• If x0 is very far away from the solution x∗ such that ‖x0 − x∗‖ > g,
then the iteration (2.47) can improve x0 to a new point nearer to x∗
than x.

• If x0 is far away from the solution x∗ such that ‖x0 − x∗‖ is still
large enough for the second term in G to be large compared to the
other terms, then one can expect the numerical Newton method with
quadratic improvement.

• If x0 is near x∗ such that ‖x0 − x∗‖ is small enough for the second
term in G to be small compared to other terms, then the third term
could be approximated by εmachκ(J∗). Thus, one can only expect linear
improvement.

The limiting accuracy of the computed solution can be estimated by using
the following corollary based on the above theorem [111].

Corollary 2.6.2
Assume that there is an x∗ such that f(x∗) = 0 and J∗ = J(x∗) is non-singular
and satisfies

εmachκ(J∗) ≤
1

8
.

Assume also that for φ in (2.48),

εmach‖J(x̂i)
−1‖φ(f, x̂i, n, εmach) ≤

1

8
∀i.

Then, for all x0 such that

β‖J−1
∗ ‖‖x0 − x∗‖ ≤ 1

8
,
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Newton’s method in floating point arithmetic generates a sequence x̂i whose
normwise relative error decreases until the first i for which

‖x̂i − x∗‖
‖x∗‖

≈ ‖J−1
∗ ‖

‖x∗‖
ψ(f, x∗, εmach, ε)

Now, we determine ψ(f, x̂i, εmach, ε) for some classes of f(x).
Consider linear systems, Ax = b where A ∈ � n×n is non-singular and b.

To improve a computed solution x̂, the iterative refinement is used, which
computes r = b−Ax̂, then solves A∆x̂ = r for ∆x̂, and compute an improved
solution y = x̂ + ∆x̂. This process could be repeated with x̂ replaced by y.
This is equivalent to Newton’s method with f(x) = b−Ax, with J(x) = −A.
Here, we are interested in determining the function ψ.

Recall that we assumed that f(x̂) is computed in the extended precision
ε ≤ εmach before rounding back to working precision εmach. Following the
standard model of floating point arithmetic in [122], we have

fl(f(x))i = [bi(1 + ξib) −
n∑

i=1

aijxj(1 + ξij)](1 + ξi)

and the ith component e(i) of the error vector e

e(i) = (fl(f(x)) − f(x))i = ξifi(x) +

(
biξib −

n∑

i=1

aijxjξij

)
(1 + ξi),

where |ξi| ≤ εmach, |ξib| < (3/2)nε and |ξij| < (3/2)(n + 1 − j)ε. Denote
γ = (3/2)nε. Hence, it follows that

|e(i)| ≤ εmach|fi(x)| + γ(|bi| +
n∑

i=1

|aijxj|).

Here we take (1 + ξi) ≈ 1, and then for any monotonic norm (see [9], and
[94] p.52, [113]) such as lp-norms (1 ≤ p ≤ ∞) we have

‖e‖ ≤ εmach‖f(x)‖ + γ(‖b‖ + ‖Ax‖)
≤ εmach‖f(x)‖ + γ(‖b‖ + ‖A‖‖x‖).

Thus, we take

ψ(f, x̂, εmach, ε) = γ(‖b‖ + ‖Ax̂‖), or

ψ(f, x̂, εmach, ε) = γ(‖b‖ + ‖A‖‖x̂‖).

This result is similar with the one given in [111]. It follows from Corollary
2.6.2 that iterative refinement could reduce the relative forward error to
2γ‖A−1‖‖b‖/‖x‖ ≤ 2γκ(A).
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Consider the case where f(x) is a polynomial

f(x) =
n∑

i=0

aix
i,

and is evaluated using Horner’s rule as

f(x) = (. . . (((anx + an−1)x+ an−2)x+ an−3)x+ · · · + a1)x + a0.

Then, the value of f(x) computed using floating point arithmetic is

fl(f(x)) =

(
n∑

i=0

(1 + εi)aixi

)
(1 + ε),

where |εi| ≤ 2nε (see [39], p. 16) and |ε| ≤ εmach. It follows that

|fl(f(x)) − f(x)| =

∣∣∣∣∣

(
n∑

i=0

(1 + εi)aixi

)
(1 + ε) −

n∑

i=0

aix
i

∣∣∣∣∣

= |εf(x) + (1 + ε)
n∑

i=0

εiaix
i|

≤ εmach|f(x)| + 2nε(1 + |ε|)
n∑

i=0

|aixi|.

Based on this result, we take

ψ(f, x̂, εmach, ε) = 2nε(1 + |ε|)
n∑

i=0

|aixi|

≈ 2nε
n∑

i=0

|aixi|.

Note that the above obtained error bounds depend on the mechanism used
to evaluate the polynomial (here it is Horner’s rule)

The error bound for the numerical computed value of f(x) can be obtained
if the reverse mode of automatic differentitation (see Section 2.8) is available.
The following error bound can be expected to fulfil

|x̂m − f(x)| ≤
m∑

i=1

|xi|δxi, (2.50)

where x̂m is the computed value of f(x), δxi is assumed to satisfy

|x̂i − fi(x̂j)j∈Ji
| ≤ δxi, i > n.
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Here x̂i (i = n + 1, . . . , m) are the computed value of xi, xi is the derivative
of f(x) with respect to xi, and δxi (i = 1, . . . , n) is the bound for the error of
the input xi, which is usually the machine precision if the input data error is
smaller compared to the machine precision. It is shown in [8] that the bound
(2.50) holds if fi are linear and xi are exact. A similar bound is obtained in
[71].

The conclusion to draw from this analysis is that the limiting accuracy of
the solution of nonlinear equations by the numerical Newton method depends
on the accuracy with which the residual f(x) is computed, and does not
depend on the condition number of the associated linear system as long as
it is not too ill-conditioned (εmachκ(J∗) ≤ 1/8). That is, roughly speaking,
the condition of a nonlinear system is somewhat not related to the condition
of the underlying linear system. The accuracy of the residual f(x) does not
only depend on the precision used for evaluating f(x) but also depends on
the way of which the code for evaluating f(x) is programmed, such as the
order of line codes (the evaluation sequence of the code).

2.7 Scaling ill-conditioned iteration matrices

The nonlinear equation system (2.16) is solved by a modified Newton method.
At each Newton iteration, we need to solve the linear equation system (2.19)
which has the form

Ax = b, (2.51)

where x = ∆sm ∈ � n, b = −h(sk) ∈
� n, and A ∈ � n×n is regular, A = J̃ .

Notation used in the remaining of this section is not related to previous
sections.

For problems under study the corresponding linear systems is likely to be
ill-conditioning. Figures 2.2 and 2.3 show the condition numbers (κ(A)∞ =
‖A‖∞‖A−1‖∞) of the NO2 and METHANE problems (see Chapter 5 for
details) estimated by using LAPACK [3]. As one can see, the estimated con-
dition numbers for unscaled case are very large, from 1014 to 1018, while the
machine precision is about 10−16. It is well known that if the condition num-
ber of a linear system is greater than the reciprocal of machine precision, then
the computed solution is untrustworthy. Hence, it is theoretically possible
that we do not have any reliable digit for the unscaled case. This fact may
cause severe error in the solution of linear system. Consequently, the error
estimates in the DAE solver based on this solution is unreliable. A linear
system is said to be ill-conditioned if a relatively small changes in data (A
and/or b) can produce a relatively large changes in the solution. It is worth
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noting that a linear system which has a high condition number in the sense
of κ(A) = ‖A‖‖A−1‖ is not necessary ill-conditioned but an ill-conditioned
system must have the high condition number. This can be easily seen from
the bounds, such as (2.30), (2.31) and (2.35). On the other hand, with the
condition number in the sense of (2.37) a high condition number means that
the linear system is ill-conditioning and ill-conditioning also implies having
the high condition number. However, to reduce the error of the solution of a
linear system one usually applies an appropriate scaling to the linear system.

As shown in [109], an “optimal” diagonal scaling matrix (row scaling) for a
linear system using Gaussian elimination with column pivoting would depend
on the solution of the linear system itself. This would be impractical because
the solution of the linear system is not available before the scaling. Here the
word “optimal” means that the backward error η bound is minimized, i.e,
η ≤ χ(n)εmach, where χ(n) is a function of n, and η is defined as the smallest
real number such that (A+∆A)x̂ = b for some ∆A with |∆A| ≤ η|A|, and x̂
is a computed solution. Of course, one can estimates the solution in advance
and uses it for determining the scaling matrix. Alternatively, one can also
apply scaling to to reduce its condition number, this has been studied by
many authors (see, e.g., [121], [6], [113], [7], [114], [87], [119], [60] [108], [96],
[93], [1] and [89]), which in turn could reduce the error of the solution of the
linear system.

The pivot selection in the Gaussian elimination with partial pivoting
(colum pivoting—row interchanges) does only guarantee that for any non-
singular matrix the process does not break down due to the fact that some
pivot element vanishes. This pivot selection strategy does not always deliver
a more accurate solution than other pivot selection strategies do, see example
in [110], pp. 191–193. It is worth noting that scaling to reduce the condition
number does not necessarily reduce the error of the numerical computed so-
lution (as shown by examples in [110], pp. 191–193) and also because the
scaled matrix Ã will have a different norm and perturbation matrix ∆Ã (see,
e.g., [115]), i.e., ‖Ã‖ 6= ‖A‖ and ‖∆Ã‖ 6= ‖∆A‖, although one usually ex-
pects that it does so, but it tends to allow us to obtain better error bounds
for the solution of the scaled system, and from this bound we can obtain the
error bound for the solution of the unscaled system. Up to now, no explicit
realistic solution for scaling any matrix, such that partial pivot selection is
numerically stable, is given in the literature.

The scaling scheme applied to the solution of the corrector equation
should satisfy two conditions: (i) it should be cheap, not computational
expensive, (ii) it should not depend on the right-hand side b because the it-
eration matrix A is factorized once and is reused for many iterations. There-
fore, in the following we will focus only on scaling of the matrix A to reduce
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its condition number. Instead of solving the linear system (2.51) directly, we
solve

D1AD2x
′ = D1b, x = D2x

′,

where D1 and D2 are the scaling matrices. The aim here is to determine D1

and D2 such that κ(D1AD2) is smaller than κ(A). To save computing time,
one often chooses diagonal matrices D1 and D2 to scale rows and columns of
the matrix A, respectively. To avoid scaling roundoff error, integer powers
of machine base are chosen for elements of D1 and D2. In fact, if a scaling
number has such a form, then the mantissa of its floating-point representation
is exactly 1., i.e., there arises no roundoff error when converting the original
scaling number into its floating-point form. Moreover, the multiplication is
faster because, to multiply a scaling number with a matrix entry, one has
only to add two integers, namely the exponents of the scaling number and
of the matrix entry. Alternatively, one can implement scaling implicitly (see,
e.g., [109] and [110], p. 193), that means we do not really multiply the scale
matrix but only choose pivoting elements based on the scaling matrices,
so this will not introduce additional roundoff errors due to scaling. The
disadvantage of this approach is that we need to modify the pivoting strategy
in the existing factorization subroutine. Therefore, we choose to multiply the
scaling matrices in advance before factorize it. With this approach we do not
need to modify existing factorization code. We use functions recommended
by the IEEE-754 standard for floating-point arithmetic [31], such as scalb for
multiplying 2n or logb for computing logarithm of base 2. These functions
are efficiently implemented in most programming libraries. How to choose
the two diagonal matrices D1 and D2? Here, D1 scales the equations and D2

scales the unknowns. With this scaling, the relative error bound of x′ of the
scaled system is ‖x̂′−x′‖/‖x′‖ = ‖D−1

2 (x̂−x)‖/‖D−1
2 x‖. In other words, the

relative error is being measured in a different norm.
In the context of BDF-methods, the solution of the linear system is used

to check convergence of the corrector iteration to the solution of the corrector
equations, and also is used to estimate the convergence ratio, etc. Because the
components of the solution vector often have different magnitudes, a weighted
norm (2.23) is used instead of the l2-norm for error control or other purposes.
As discussed in previous sections, we could be able to obtain the error bounds
measured in the ∞-norm of the computed solution of a linear system, which is
solved by direct Gaussian elimination (triangular decomposition) and forward
and backward substitutions. However, as mentioned above we want to obtain
the error bounds of the linear system measured in the scaled norm (2.23).
Therefore, the column scaling diagonal matrix D2 is chosen as

D2 = diag(2α1 , 2α2, . . . , 2αn), αi = [log2 yscal(i)], (i = 1, . . . , n),
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where [a] is the integer closest to a. Then, we have

√
n‖x̂′ − x′‖∞
‖x′‖∞

≥ ‖x̂′ − x′‖2

‖x′‖2

=
‖D−1

2 (x̂− x)‖2

‖D−1
2 x‖2

≈
√
n‖x̂− x‖WRMS√
n‖x‖WRMS

=
‖x̂− x‖WRMS

‖x‖WRMS

where x̂ and x̂′ are the computed solution of x and x′ = D−1
2 x, respectively.

It means that, after column scaling by D2, the error bound of computed
solution x̂′ of scaled system measured in the 2-norm is approximately the
same as the one of computed solution x̂ of the original system measured in
the scaled norm, and less than by a factor of

√
n of the error bound of the

scaled system measured in ∞-norm.
After column scaling, we need to find a diagonal matrix D1 such that the

condition number κ(D1A) is minimal, where A = AD2. As proved in [113],
for the condition number defined as

κ(S)(A) = ‖A‖∞‖A−1‖∗,

where ‖.‖∗ is any Hölder norm or the Frobenius norm, or

κ(S)(A) = ‖A‖/glbpq(A),

where glbpq(A) = minx6=0 ‖Ax‖p/‖x‖q, the condition number κ(S)(D1A) is
minimal if all rows of the matrix D1A have the same 1-norm. Thus, the
diagonal matrix D1 is chosen as follows

D1 = diag(2β1, 2β2, . . . , 2βn), βi = −[log2(
n∑

j=1

|Ai,j|)]
+

(i = 1, . . . , n),

where [a]+ denotes the integer part of a if a ≤ 0 and the integer part of a +
1 if a > 0, e.g., [3.1]+ = 4, [−3.7]+ = −3. This is defined to follow the round
up rule, alternatively the round down can also be used. The matrix obtained
after scaling using D1 and D2 is nearly of row equilibrated.

Let Dn be the class of non-singular n × n diagonal matrices. Let D∗
1 be

defined by

D∗
1 = diag(d∗1, d

∗
2, . . . , d

∗
n), d

∗
i = 1/

n∑

j=1

|Ai,j|,
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then κ(D∗
1A) = min

D̃∈Dn
κ∞(D̃A) because all rows of D∗

1A have equal 1-norm
and equal 1, ‖(D∗

1A)i,.‖1 = 1.
The row scaling matrix D1 defined as above satisfies

min
D̃∈Dn

κ∞(D̃A) ≤ κ∞(D1A) < 2 min
D̃∈Dn

κ∞(D̃A). (2.52)

The first inequality is obvious because D1 ∈ Dn. For the second inequality,
we have

κ∞(D1A) = ‖D1A‖∞‖(D1A)−1‖∞

= d
(1)
i

n∑

k=1

|Ai,k|d(1)
j

−1 n∑

l=1

|A−1
j,l |

< d∗i

n∑

k=1

|Ai,k|2d∗j−1
n∑

l=1

|A−1
j,l |

≤ 2‖D∗A‖∞‖(AD∗)−1‖∞
= 2κ∞(D∗A).

As shown in Figures 2.2 and 2.3, the estimated condition numbers are
reduced a lot after scaling, from in range 1014–1018 to in range 106–108.
Theoretically, one can expect about 5 reliable digits in the solution of the
linear system.

Remark 2.7.1
Since we use integer powers of machine-base for scaling matrix to avoid round-
off errors in multiplication of floating point numbers, the pivot elements with
or without column scaling are the same. Hence, the column scaling with
partial pivot does not affect the solution of the linear system. Nevertheless,
column scaling helps to reduce the condition number in most cases, so that
we can obtain a better error bound of the solution. On the other hand, the
row scaling could affect the computed solution because it possibly changes
the pivot elements, even for mildly ill-conditioned systems.

2.8 Automatic differentiation

The solution of the corrector equation in the BDF methods requires the
partial derivatives of the model functions with respect to the state variables.
Furthermore, later in Chapter 4, for generating the sensitivity equations for
computing derivatives of the solution of the DAEs with respect to parameters
we also need the partial derivatives of the model functions with respect to
the state variables and parameters.

In general, there are four appoaches to computing derivatives:
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Figure 2.2: Estimated condition number of the iteration matrix of NO2 prob-
lem (30 grid points, RTOL=10−5, ATOL=10−14)

• By hand: The derivatives are manually coded, in some cases this could
be a very efficient method. However it is very difficult and tedious for
coding derivatives of very complex functions, and errors in derivative
code are difficult to avoid.

• Divided differences: The derivatives can be approximated by using
finite differences. However, the main drawback is that it may lead to
numerical cancellation and loss of many digits of accuracy. Usually the
best number of precision one can expect is about a half of number of
precision digits of the function of which the derivatives to be computed.

• Symbolic Differentiation: There are a number of symbolic manipu-
lation packages such as Maples, Mathematica, Reduce, and Macsyma,
which can generate exact derivatives for given the definition of a func-
tion. However, the generated derivatives are not very efficient to com-
pute due to a lot of common subexpressions in the different derivative
expressions (see, e.g., [13] and [63]) unless using very a good compiler
which can optimize the derivative codes. It may run into resource
limitations (i.e, out of memory) when the function description is com-
plicated.
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Figure 2.3: Estimated condition number of the iteration matrix of METHAN
problem (12 grid points, RTOL=10−5, ATOL=10−14)

• Automatic differentiation: The derivatives are computed based on
the chain rule applied to the code of the function at elementary level.
The computed derivatives are correct up to the machine precision [66].
We discuss about it further in the following.

Suppose that a scalar function y = f(x), x ∈ � n is defined by a sequential
code which can be written as in the following form.

Function definition
For i = n + 1, n + 2, ..., m

xi = fi(xj), j ∈ Ji

y = xm

Here fi are the elementary functions depending on the already computed
quantities xj and the index set

Ji = {1, 2, . . . , i− 1}, i = n + 1, n + 2, . . . , m.

The gradient of fi
∇fi = ∂fi/∂xj j ∈ Ji
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are assumed to be computable, e.g, by the chain rule and the derivative of
elemenary functions.

There are two approaches in the framework of automatic differentiation
for computing derivatives: forward mode and reverse mode. The forward
mode applied to computing derivative of the above function is as follows.

Derivative by forward mode
For i = 1, 2, ..., n

∇xi = ei
For i = n + 1, n + 2, ..., m

xi = fi(xj), j ∈ Ji

∇xi =
∑

j∈Ji

∂fi
∂xj

∇xj

y = xm
g = ∇xm

The reverse mode derivative code for the above function is as follows

Derivative by reverse mode
For i = n + 1, n + 2, ..., m

xi = fi(xj), j ∈ Ji

xi = 0

y = xm
xm = 1

(xi)
n
i=1 = 0

For i = m, m - 1, ..., n + 1

xj = xj +
∂fi
∂xj

xi, j ∈ Ji

g = (xi)
n
i=1

In the forward mode the derivatives of intermediate values with respect to
the input variables are computed along with their values. Roughly speaking,
the cost of computation of derivative by using forward mode is linear in the
number of input variables. Thus, it is suitable for computation of derivatives
of vector function where the number of components of the function vector
is large compared to the number of input variables. On the other hand,
in the reverse mode the derivative of the final outputs with respect to the
intermediate values are computed. The cost of computation of derivative
by using reverse mode is roughly linear in the number of components of
the output function. Thus, it is efficient for computation of derivatives of
a vector function when the number of components of the output function
vector is much smaller than the number of input variables, e.g., gradient.
However, in the reverse mode usually much more storage is required than
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in the forward mode because in the reverse mode the intermediate values
and their derivatives have to be stored. It is shown in [63] that “under quite
realistic assumptions the evaluation of a gradient requires never more than
five times the effort of evaluating the underlying function by itself”. For the
references, see e.g., [63] and [64] and the references given there.

There are a number of software packages for computation of derivatives
based on automatic differentiation, just to mention a few of them, e.g., AD-
IFOR [16] and [15], JAKEF [68], GRESS [69] and ADOL-C [65]. There are
two main approaches for computations of derivatives by automatic differen-
tiation. The first one is source code translation (also known as precompiler).
The user is required to supply the source code of the function, e.g., in For-
tran, then these tools parse the code into elementary operations and generate
the derivative code. The derivative and source codes can be compiled and
linked together into a single program. The software packages following this
approach include ADIFOR, JAKEF, and GRESS. The second one is based
on the operator overloading, which is available in some programming lan-
guages such as C++, where (for automatic differentiation) the floating-point
operations are redefined (overloading) to include the associate derivatives.
The source codes remain essentially unchanged except new data types for
floating-point variables. The rest of the work is the job of the compiler.
ADOL-C follows this approach.

Since our model would rather be complicated involving many functions
in the DETCHEM [46] library for computations of chemical and physical
quantities of a composition, which have been developed over years of research
and experiences and coded in Fortran and it is still continuously extended,
and thus we think that we should not try to re-implement all these codes
into a new language such as C++, therefore for coding our model the Fortran
language is used so that we can use ADIFOR to generate derivative codes.
Moreover we use ADIFOR because it is easy to use in particular for complex
models involving many functions from different modules and quite efficient.

2.9 Computation of the time derivatives at

the initial point

As mentioned in Sections 3.3 and 3.4, our DAE system (DAE1) can be written
as

B(t, x, y)ẋ = f(t, x, y),
0 = g(t, x, y),

(2.53)
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where
B : [t0, te] ×

� nd × � na → � nf×nd,
f : [t0, te] ×

� nd × � na → � nf ,
g : [t0, te] ×

� nd × � na → � ng .

In addition, nd ≥ nf and B has full range. To solve (2.53), consistent initial
values for x, y and ẋ must be determined. The way to calculate y(t0) was
discussed in the previous section. We now present how to compute ẋ(t0) and
ẏ(t0), which is needed for predicting x(t0 + h) and y(t0 + h), where h is the
step size.

An essential trouble is that our equation system is structurally singular.
To calculate ẋ(t0) and ẏ(t0) when (2.53) is structurally singular and of in-
dex 1, we differentiate the algebraic constraint g(t, x, y) = 0 and obtain the
equation system (applied at t = t0)



B(t, x, y)ẋ− f(t, x, y)
∂g

∂t
+
∂g

∂x
ẋ+

∂g

∂y
ẏ



t=t0

= 0 (2.54)

with the unknown ẋ(t0) and ẏ(t0). Hence, we have to solve the linear system



B(t, x, y) 0

∂g

∂x

∂g

∂y



t=t0

[
ẋ(t0)
ẏ(t0)

]
=



−f(t, x, y)

−∂g
∂t




t=t0

.

For DAE (2.53) with index 1, the matrix on the left is regular. Therefore,
this linear equation system can be solved by standard methods.

2.10 Specially tailored methods for DAEs

Since the old DAESOL code [10] is designed for treating problem in the form

B(t, x, y, p)ẋ = f(t, x, y, p),
0 = g(t, x, y, p),

(2.55)

where t ∈ [t0, tend] is ”time” variable, x ∈ � nd is differential variable, y ∈ � na

is algebraic variables, p ∈ � np is parameter, and B :
� ×Rnd × � na × � np →

� nf×nd, f :
� × Rnd × � na × � np → � nf , g :

� ×Rnd × � na × � np → � ng ,
with non-negative integers, nd, na, np, nf , and ng and assume that nf = nd,
na = ng, B and ∂g/∂y are non-singular. In words, the code is designed and
implemented for solving problems with B to be non-singular square matrix
and its number of rows equals the number of differential variables x, and the
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number of algebraic variables y equals the number of components of g. To
treat our problems, which the resulting DAEs also have the form as (2.55) but
do not satisfy the assumptions, that is, the number of differential equations
does not equal the number of differential variables, nf 6= nd, and the number
of algebraic variables does not equals the number of algebraic constraints,
na 6= ng and B is singular, we develop a new code DAESOLE (extended
features of DAESOL), based on the old DAESOL code, which allows us to
treat problems in a more general form, that is, the new code DAESOLE can
treat problems which does not require nf = nd, na = ng, and B non-singular;
only need nf +ng = nd +na. The new code is tailored to take the advantage
of structured DAEs obtained from discretized PDE systems and treats some
difficulties in solving the DAEs:

(i) realizing the band structure of the iteration matrix (included banded
linear solver and derivative evaluations for banded or block tridiagonal
iteration matrix), and

(ii) treating structurally singular DAEs,

(iii) automatic scaling of the linear system in the corrector iteration as
discussed in Section 2.7.

Solving DAEs systems by the BDF methods, the computing time is
mainly due to evaluation and factorization of the Jacobian matrix, and the
solution of linear equation at each corrector iteration.

Our DAE system obtained from semi-discretization of PDEs has a band
iteration matrix. In general, the bandwidth depends on the discretization
scheme used, such as, the number of points for the finite differences and the
order of the approximation. In our case, we only use at most three points
for the approximation of the derivatives with respect to ψ, then the total
bandwidth of the iteration matrix is 3 × nPDE, where nPDE = Ng + 4 is
the number of PDEs, Ng is the number of gas phase species. However, the
upper and lower bandwidths are 2 × nPDE. Moreover, the iteration matrix
is block diagonal one. (Note that in this thesis, the derivatives with respect
to ψ and ψ-direction are also referred to as the spatial derivatives and the
spatial direction respectively, and the derivatives with respect to the timelike
coordinate z and z-direction are referred to as the time derivatives and the
time direction respectively. Nodes denotes the number of disretization
points (grid points) in the spatial direction, see Chapter 3 for more details).

It is well known that the number of operations to factor and to solve a
band linear system is O(nb × n2) (nb is the bandwidth of the matrix, which
is usually less than n, nb � n, n is the dimension of the variables), while

75



for the dense linear system the number of operations is O(n3). To take into
account the band structure of the iteration matrix, in DAESOLE a band
linear solver is added in addition to the available ones, together with new
options for the user to specify the upper and lower bandwidth.

To illustrate efficiency of the new approaches and the standard approach,
we apply them to the following practical problems.

Example 2.10.1 (Simulation of NO2 oxidation process)
which is referred to as NO2 problem. A gas mixture flows in a channel with
the following setting.

– Channel geometry: the radius rmax = 2.5×10−4 [m], the channel length
zmax = 0.01 [m].

– Initial conditions: at inlet, two species are present XNO2
= 0.10, XN2

=
0.90, the other species are absent at inlet. The initial gas temperature
is Tgas = 300 [K], the initial pressure is p = 105 [Pa], and the initial
velocity is u = 1 [m/s].

– Boundary conditions: the temperature at the wall is Twall = 1200 [K].

– Reaction mechanisms: 5 gas-phase species, 4 surface species, 9 sur-
face reactions, and 8 gas-phase reactions. The gas-phase reactions and
surface reactions are given in the Appendix.

Example 2.10.2 (Catalytic combustion of methane)
which is referred to as METHANE1 problem. A gas mixture flows in the
channel with the following setting.

– Channel geometry: the radius rmax = 2.5×10−4 [m], the channel length
zmax = 0.01 [m].

– Initial conditions: at inlet,three species are present XCH4
= 0.3, XO2

=
0.5, XN2

= 0.2, the other species are absent at inlet. The initial gas
temperature is Tgas = 298 [K], the initial pressure is p = 1.2× 105 [Pa],
and the initial velocity is u = 1 [m/s].

– Boundary conditions: the temperature at the wall is Twall = 1200 [K].

– Reaction mechanisms: 21 gas-phase species, 11 surface species, 23 sur-
face reactions, and 128 gas-phase reactions. The gas-phase and surface
reactions are given in the Appendix.
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Example 2.10.3 (Conversion of ethane to ethylene)
which is referred to as ETHANE problem. A gas mixture flows in the
channel with the following setting.

– Channel geometry: the radius rmax = 2.5×10−4 [m], the channel length
zmax = 0.01 [m].

– Initial conditions: at inlet, three species are present XC2H6
= 0.16,

XO2
= 0.16, and XN2

= 0.68, other species are absent at inlet. The
initial gas temperature is Tgas = 300 [K], the initial pressure is p =
1.2 × 105 [Pa], and the initial velocity is u = 1 [m/s].

– Boundary conditions: the temperature at the wall is Twall = 973 [K].

– Reaction mechanisms: 25 gas-phase species, 20 surface species, 82 sur-
face reactions, and 261 gas-phase reactions. The gas-phase and surface
reactions are given in the Appendix.

Note that in the above examples, the initial and boundary conditions
are the ones given by the user, and these are used to specify the complete
initial and boundary conditions for the numerical problem as discused in the
previous sections. The three above examples in that order are increasing in
the complexity ranging from a simple one with a few species and reactions
to a complex one with many species and reactions. Increasing the number of
reactions and species results in increasing the cost of evaluating the model
functions.

In the following, all computations are performed on a Pentium 4, 2.6Ghz,
Linux with Intel Fortran compiler, and computation using double preci-
sion. The integration error is controlled with the relative error tolerance
RTOL = 10−4 and the absolute error tolerance ATOL = 10−12. FD and AD
are the abbreviations for Finite Differences and Automatic Differentiation,
respectively. LA is the abbreviation for linear solver.

Tables 2.2 and 2.3 show that the computing time is reduced if the band
linear solver (in the BDF code) is used. One would expect that when the
number of nodes (number of grid points) increases, the difference between
computing time with using the dense solver and the banded solver is in-
creased. Here, we only see litle improvement in performance, about 5 per-
cents, due to the fact that the number of nodes is not high enough such that
nb � n for which the band solver is more efficient than the dense solver.

Solving the nonlinear equation system (2.16) using Newton-like methods
requires the partial derivatives

∂f

∂y
,
∂g

∂y
, and

∂B

∂y
v.
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Nodes 30 50 70 90
Standard linear solver (secs) 6.4 28.7 79.4 178.3
Banded linear solver (secs) 5.9 27.9 73.2 152.9

Table 2.2: Timings of NO2 problem with the standard linear solver and
banded linear solver.

Nodes 12 20 28 36
Standard linear solver (secs) 13.6 73.4 216.6 440.5
Banded linear solver (secs) 12.9 70.4 210.5 418.4

Table 2.3: Timings of METHANE1 problem with the standard linear solver
and banded linear solver.

In general, the derivative of a function f(y) :
� n → � n with respect to

y, J = ∂f/∂y ∈ � n×n, can be computed by the finite differences. The ith
column of J can be estimated by the forward finite difference as

J.i = Jei =
∂f(y)

∂yi
=
f(y + ηei) − f(y)

η
, (2.56)

where ei is the ith canonical unit vector, i.e., an n-vector of all zeros except
for an entry of 1 in the ith position, and η is a positive increment. In this
case we need n + 1 function evaluations (evaluation of f) to determine the
full Jacobian J . However, it is well known that the number of function eval-
uations can be reduced if the Jacobian is sparse. Curtis, Powell and Reid
[37] propose a method using finite differences to compute sparse Jacobian
efficiently. The key idea is to identify structurally orthogonal columns of J ,
i.e., columns whose inner product is zero, independent of the values of y, in
other words, these columns do not have non-zeros in the same row position.
Instead of computing the full Jacobian directly, we compute a compressed
Jacobian, whose the number of columns is usually less than n, by taking into
account of the sparsity, then the full Jacobian is extracted from the com-
pressed Jacobian. The structurally orthogonal property of columns allows
that these columns can be computed by only using one directional deriva-
tive. For example, if the columns 1-, 3- and 6-th are structurally orthogonal,
then

J(e1 + e3 + e6) =
f(y + η(e1 + e3 + e6)) − f(y)

η

and the columns 1, 3 and 6 can be extracted from product J(e1 + e3 +
e6). Generally, to compute the full sparse Jacobian J , the columns of J are
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Nodes 30 50 70 90
Standard FD(secs) 6.4 28.7 79.4 178.3

Band FD (secs) 2.4 5.6 11.8 20.5
Blk.Trid. FD (secs) 1.8 5.3 11.3 19.8

Table 2.4: Timings of NO2 problem with the standard FD, band FD and
block tridiagonal FD (FD denotes Finite Differences)

partitioned into groups, such that columns in the same group are structurally
orthogonal, this is called a consistent partition of J . A consistent partition
is said to be optimal if the number of its group is minimal. The number
of groups is the number of function evaluations needed to determine the
Jacobian, in addition to one function evaluation at y, f(y). To determine an
optimal consistent partition of J , the algorithm in [37] scans J column by
column. Each new column is checked if it can be put in one of the available
groups (if it passes the structurally orthogonal check), otherwise it is put in
a new created group. This is a greedy algorithm, and it does not ensure to
generate an optimal partition of J . The problem of determining an optimal
consistent partition of J was proved to be equivalent to the coloring problem
of a graph using minimum number of colors [33], where each vertex of the
graph corresponds to each column of J and there is one edge between two
vertexes if the corresponding columns of the vertexes have nonzeros in the
same row position. The graph coloring problem is NP-hard. Therefore,
to determine an optimal consistent partition of J , a heuristic algorithm is
usually used. Fortunately, for a band matrix J with the total bandwidth nb,
the column partition generated by the algorithm in [37] is optimal, and the
number of groups generated is nb.

Based on the idea in [37], a general finite difference approximation for
the model functions with band iteration matrices is developed and coupled
in DAESOLE. This allows to treat problems with the iteration matrix having
band structure, given the upper and lower bandwidth. For our problem, the
number of function evaluations is 4 × nPDE with nPDE = Ng + 4.

Tables 2.4 and 2.5 show the computing times of the simulation code with
three different options (dense FD, band FD, and block tridiagonal FD). The
block tridiagonal and band FD options are few times faster than the dense
FD option. This is due to a large amount of time for model function calls, for
computing the Jacobian by FD, in the dense case. On the other hand, only a
fixed number of model function calls for the block tridiagonal and band FD
(independent of the number of grid points) is needed for approximation the
Jacobian. The results shown in Tables 2.4 and 2.5 also reflect the prediction
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Nodes 12 20 28 36
Standard FD (secs) 13.62 73.43 216.66 440.55

Band FD (secs) 5.66 16.48 33.19 56.11
Blk.Tri. FD (secs) 4.724 13.892 27.845 47.960

Table 2.5: Timings of METHANE1 problem with the standard FD, band FD
and block tridiagonal FD.

that when the number of grid points is increased, the computing time for the
dense case is much greater then for the block tridiagonal and band FD cases.

Our iteration matrices are not only band matrices, actually they are block
tridiagonal matrices. Therefore, we further develop another general finite dif-
ference approximation for derivatives of model functions for block tridiagonal
matrices, that only need 3 × nPDE number of function evaluations for a full
Jacobian instead of 4 × nPDE as in band cases.

Although the above approaches have improved the performance of the
simulation software, we also investigate a new technique for computation
of derivatives, namely automatic differentiation, which allows evaluation of
derivatives with accuracy up to the machine precision. In particular, we
employ the automatic differentiation tool ADIFOR [14], which can be used
for generating the derivative Fortran code from the Fortran source code of
a function. To compute the derivative J of a function f(y) ∈ � n using
ADIFOR, a so-called seed matrix S ∈ � n×n needs to be supplied. For
computing a full Jacobian matrix, the seed matrix S is the identity matrix.
Indeed, ADIFOR computes directional derivative of f , where the directional
vectors are specified in the seed matrix S. The number of columns of S is the
number of directional derivatives to be computed. The result returned from
ADIFOR is the transpose of the Jacobian times the seed matrix, (J ·S)T . The
number of operations in the derivative code for one directional derivative is
about from 2 to 5 times the number of operations for the function evaluation.
Therefore, for computation of a full Jacobian, we need about O(ny × nof )
operations, where nof is the number of operations for evaluation of f . To use
ADIFOR with DAESOLE, a subroutine for computing required derivatives,
which calls ADIFOR generated subroutines, is provided.

In Tables 2.6, 2.7 and 2.10 computational statistics of the simulation code
applying to NO2, METHANE1 and ETHANE problems (for increasingly the
number of grid points) with standard FD and AD mode are summarized.
Here, the second column, named Nodes & (#DAE), is the number of dis-
retization points in the spatial direction and the number of resulting DAEs,
the third column, named Time, is the total CPU time for one simulation
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run, and the fourth column, named #model funcs. calls, is the number of
the model function calls (included B, f , and g), and the fifth column, named
Time for derivs. calls, is the total time for compution of derivatives (of
model functions w.r.t. the state variables).

It also shows that the time for computing the derivatives generated by
ADIFOR is much smaller than the time for computing the derivatives by
the finite differences. It should not be surprised as one would expect that
computing derivative by the derivative codes is theoretically more expensive
than by the finite differences. But for computing a full Jacobian, in the
forward finite differences case we need n+ 1 function evaluation calls, in the
automatic differentiation case, we only need one derivative code call although
the derivative code contains a loop to compute derivative of all directions but
many terms are being shared between the directional derivatives.

Nodes Time #model funcs. Time for derivs.
& (#DAE) (secs) calls calls (secs)
30 (265) 6.4 3226 4.6

Dense 50 (445) 28.7 5506 23.4
FD 70 (625) 79.4 7549 65.5

90 (805) 178.3 10346 153.3
30 (265) 2.2 590 0.3

Dense 50 (445) 6.3 622 0.6
AD 70 (625) 14.4 671 1.5

90 (805) 23.7 709 2.7

Table 2.6: Computational statistics of simulation of NO2 problem using dense
LA with dense FD and AD.

Similarly to the finite difference approach, the sparsity of the Jacobian
can also be exploited for automatic differentiation (see e.g., [14] and [48]). If
the sparsity structure of the Jacobian is known in advance, one can apply the
CPR algorithm [37] for determining the seed matrix based on a consistent
partition of J . The number of directional derivatives is nb, where nb is the
total bandwidth of the Jacobian, which is independent of the number of dis-
cretization points in ψ. In our case nb = 3×nPDE with nPDE = Ng +4. Using
this seed matrix, one can compute a compressed Jacobian from the deriva-
tive code generated by ADIFOR. The number of operations for computing
the compressed Jacobian is about O(nb × nof) where nof is the number of
operations for computing f , instead of O(n × nof ) as in the standard ap-
proach. Usually, n = (ndis − 1) × nPDE (or n = ndis × nPDE depending on a
particular implementation) where ndis is the number of discretization points
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Nodes Time #model funcs. Time for derivs.
& (#DAE) (secs) calls calls (secs)
12 (286) 13.6 4476 11.2

Dense 20 (486) 73.4 8805 66.0
FD 28 (686) 216.6 13604 204.1

36 (886) 440.5 16567 441.2
12 (286) 3.5 453 1.2

Dense 20 (486) 12.3 550 4.6
AD 28 (686) 27.4 580 9.8

36 (886) 46.6 616 15.1

Table 2.7: Computational statistics of simulation of METHANE1 problem
using dense LA with dense FD and AD.

Nodes Time #model funcs. Time for derivs.
& (#DAE) (secs) calls calls (secs)

Blk. 30 (265) 1.8 839 0.46
Trid. 50 (445) 5.3 908 1.35
FD 70 (625) 11.3 971 2.57

90 (805) 19.8 1010 4.72
Blk. 30 (265) 1.4 453 0.05
Trid. 50 (445) 4.2 550 0.11
AD 70 (625) 8.5 580 0.18

90 (805) 15.6 616 0.33

Table 2.8: Computational statistics of simulation of NO2 problem using band
LA with block tridiagonal FD and AD.

in the spatial direction, but for our problem we have additional Ns algebraic
constraints at the wall, thus n = (ndis − 1)× nPDE +Ns. Tables 2.8, 2.9, and
2.11 present the total computing times, the numbers of model functions calls
and the total times for computing derivatives. These are the best results we
can obtain. For NO2 problem with 90 grid points, 805 DAEs, it take only
19.8 seconds for the block diagonal FD and 15.6 seconds for the block diag-
onal AD, about 10 times faster than the standard FD mode 178.3 seconds;
and for METHANE1 problem with 36 grid points, 886 DAEs, it takes only
24.3 seconds, about 18 times faster than the standard approach, which takes
about 440.5 seconds. Figures 2.4 and 2.5 summarized the performance mea-
sure of the simulation code with different options for NO2 and METHANE1
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Nodes Time #model funcs. Time for derivs.
& (#DAE) (secs) calls calls (secs)

Blk. 12 (286) 4.9 1516 2.7
Trid. 20 (486) 14.4 1818 8.1
FD 28 (686) 29.1 1997 16.7

36 (886) 50.1 2039 26.3
Blk. 12 (286) 2.4 453 0.3
Trid. 20 (486) 7.5 550 0.8
AD 28 (686) 14.2 580 1.4

36 (886) 24.3 616 1.7

Table 2.9: Computational statistics of simulation of METHANE1 problem
using band LA with block tridiagonal FD and AD.

Nodes Time #model funcs. Time for derivs.
& (#DAE) (secs) calls calls (secs)
12 (339) 92.15 18354 80.28

Dense 18 (513) 318.20 27748 291.13
FD 24 (687) 678.46 38242 627.58

30 (861) 1231.31 45916 1147.48
12 (339) 20.78 1079 8.96

Dense 18 (513) 47.76 1116 20.20
AD 24 (687) 81.09 1119 34.50

30 (861) 138.10 1154 55.05

Table 2.10: Computational statistics of simulation of ETHANE problem
using dense LA with dense FD and AD.

problems. In these figures, the three upper case letters are represented for a
chosen combined option. The first letter represents the type of linear solver:
B for band, D for dense; the second letter represents the method for com-
puting derivatives: F for finite differences, A for automatic differentiation;
the last letter represents the computing mode of the derivatives: D for dense
mode, B for band mode, and T for block tridiagonal mode. For example,
BFT represents the case using the band linear solver, with finite differences,
and the block tridiagonal property are exploited.

Let us define the Speedup to be the ratio between the CPU time for
solving a problem using the standard method in DAESOLE (finite differences
for computation of derivatives) which is named as DFD, and the CPU time
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Nodes Time #model funcs. Time for derivs.
& (#DAE) (secs) calls calls (secs)

Blk. 12 (339) 28.77 5599 18.66
Trid. 18 (513) 59.50 5447 37.92
FD 24 (687) 88.89 5478 53.39

30 (861) 143.78 5779 82.05
Blk. 12 (339) 12.71 1086 2.67
Trid. 18 (513) 24.72 1070 4.32
AD 24 (687) 40.36 1135 5.99

30 (861) 63.88 1126 7.12

Table 2.11: Computational statistics of simulation of ETHANE problem
using band LA with block tridiagonal FD and AD.

for solving the problem by an other method. Table 2.12 shows the speed up
gained by different methods applied to three applications: the NO2, which is
a small size problem (5 gas species, 4 surface species, 9 surface reactions, and
8 gas phase reactions); the METHANE1, which is a medium size problem (21
gas species, 11 surface species, 2128 gas reactions, 23 surface reactions); the
ETHANE, which is a large size problem (25 gas species, 20 surface species,
261 gas phase reactions, 82 surface reactions).

2.11 Summary

In this chapter we have discussed numerical methods for differential alge-
braic equations (DAEs). The BDF methods are used for discretizing the
DAEs leading to a system of nonlinear equations at each integration step.
The nonlinear equations are solved by a modified Newton method. An au-
tomatic scaling method is proposed to scale the linear equations arising in
the Newton iteration. The scaling reduces the condition numbers of the
linear equations from a range [1014–1018], that nearly equal the reciprocal
of the machine precision and this do not allow us to obtain an solution of
the linear systems with a few significant digits, to a range [106–108], that
allow us to obtain a solution with a few significant digits. This makes the
estimation of errors of the solutions of DAEs more reliable. Tailored meth-
ods in particular for structured DAEs are presented. Efficient methods for
computation of derivatives required for solving the nonlinear equations are
described. We exploit the structure of the derivative matrices, which are of
block diagonal ones, and derive methods for computation of derivatives in
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Figure 2.4: Total CPU times for solving NO2 problem using FD and AD (see
page 83 for the notations)

Nodes
Prolem & (#DAE) BAT DAD BFT

30 (265) 4.57 2.90 3.55
NO2 50 (445) 6.83 4.55 5.41
(small) 70 (625) 9.34 5.51 7.02

90 (805) 11.42 7.52 9.00
12 (286) 5.66 3.88 2.77

METHANE1 20 (486) 9.78 5.96 5.09
(medium) 28 (686) 15.25 7.90 7.44

36 (886) 28.23 9.45 8.79
12 (339) 7.21 4.43 3.20

ETHANE 18 (513) 12.87 6.66 5.34
(large) 24 (687) 16.81 8.28 7.63

30 (861) 19.27 8.91 8.56

Table 2.12: Speedup gained by different methods
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Figure 2.5: Total CPU times for solving METHANE1 problem using FD and
AD (see page 83 for the notations)

frameworks of finite differences and automatic differentiation. As a result
speedups by a factor of five to more then ten, depending on the applications,
are obtained. For example, for simulation of catalytic combustion of methane
problem, named METHANE1, using 36 spatial discretization points, the re-
sulting speed up is 28.23. The obtained results also show that for solution
of DAE systems computation of the derivatives by automatic differentiation,
here is ADIFOR, always outperforms computation of the derivatives by the
finite differences.
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Chapter 3

Numerical Methods for
Simulation

As mentioned in Chapter 1 we use the boundary layer equations as our math-
ematical model. In this chapter, we will discuss methods to approximate the
partial differential equations (PDEs) by a system of a differential algebraic
equations (DAEs). In particular, we apply the von Mises transformation (see
e.g., [104], [35], [92], and [73]), which eliminates the overall mass continuity
equation and replaces it with an integral. The elimination of the overall
mass continuity equation is particularly important because it allows us to
avoid some difficulties in the numerical computation arising when directly
discretizing the overall mass continuity equation, which is a first-order one
and is of different form than other equations (except the simple radial mo-
mentum equation), which are second-order ones. In addition, all the radial
convective terms along with the radial velocity v are also eliminated. The
obtained system of PDEs are then semi-discretized in the stream direction ψ
by the method of lines [103] with non-uniform grid, which leads to large stiff
structured DAEs. The numerical treatment for the DAEs is discussed, in
particular, the computation of consistent initial values, which partially arise
from the nonlinear boundary conditions, are considered. Some important
properties of the DAEs, such as the index and structural properties, are also
investigated. In the following, these topics are discussed in detail.

3.1 Von Mises transformation

We define the stream function ψ from the following relations

ρur =
∂ψ

∂r
, ρvr = −∂ψ

∂z
, (3.1)
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then the overall mass continuity equation (1.49) is always fulfilled. It means
that this equation is eliminated.

Now we want to transform the boundary layer equations written in coor-
dinate system (z, r) to the coordinate system (z, ψ). Let consider a transfor-
mation from an (x, y) coordinate system to a (η, ξ) system, some dependent
variables f(x, y) can be written as

f(x, y) = f(η(x, y), ξ(x, y)).

Applying the chain-rule of differentiation, we obtain

∂f(x, y)

∂x
=

∂f(x, y)

∂η

∂η(x, y)

∂x
+
∂f(x, y)

∂ξ

∂ξ(x, y)

∂x

∂f(x, y)

∂y
=

∂f(x, y)

∂η

∂η(x, y)

∂y
+
∂f(x, y)

∂ξ

∂ξ(x, y)

∂y
.

Thus the differential operators are transformed as

∂

∂x
=

∂η(x, y)

∂x

∂

∂η
+
∂ξ(x, y)

∂x

∂

∂ξ

∂

∂y
=

∂η(x, y)

∂y

∂

∂η
+
∂ξ(x, y)

∂y

∂

∂ξ
,

and the matrix



∂η(x, y)

∂x

∂ξ(x, y)

∂x
∂η(x, y)

∂y

∂ξ(x, y)

∂y




is called the coordinate transformation matrix. For the von Mises transfor-
mation, where z coordinate is unchanged, the coefficients of the coordinate
transformation matrix are

∂z

∂z
= 1,

∂ψ

∂z
= −ρvr

∂z

∂r
= 0,

∂ψ

∂r
= ρur.

Hence, the differential operators become
(
∂

∂z

)

r

=

(
∂

∂z

)

ψ

− ρvr

(
∂

∂ψ

)

z

(3.2)

(
∂

∂r

)

z

= ρur

(
∂

∂ψ

)

x

. (3.3)
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Note that (∂r/∂z)ψ = v/u, it means that the velocity vector is parallel
to lines of constant ψ.

By applying (3.2) and (3.3), the boundary layer equations, which are now
written in the new coordinate (z, ψ) instead of (z, r), become as follows.
Momentum:

ρu
∂u

∂z
+
∂p

dz
= ρu

∂

∂ψ

(
ρuµr2 ∂u

∂ψ

)
, (3.4)

∂p

∂ψ
= 0. (3.5)

Species:

ρu
∂Yk
∂z

= ω̇kWk − ρu
∂

∂ψ
(rJk,r), (k = 1, . . . , Ng). (3.6)

Energy:

ρucp
∂T

∂z
= ρu

∂

∂ψ

(
ρuλr2∂T

∂ψ

)
−

Ng∑

k=1

ω̇kWkhk − ρur
Ng∑

k=1

Jk,rcpk
∂T

∂ψ
. (3.7)

State:

p =
ρRT

W
. (3.8)

The radial diffusion mass flux Jk,r is given in the new coordinates by

Jk,r = −Dk
Wk

W
ρ2ur

∂Xk

∂ψ
−DT

k

ρur

T

∂T

∂ψ
. (3.9)

In these equations, the independent variables z and ψ represent the axial
coordinate and the stream function, respectively. The radial coordinate r
is a dependent variable and is given in terms of the stream function by
integrating the first of equations (3.1) as follows

r2

2
=
∫ ψ

0

dψ′

ρu

or, in the differential equation form by

∂r2

∂ψ
=

2

ρu
. (3.10)

The dependent variables in the above equation system are

89



• the axial velocity u(z, ψ),

• the temperature T (z, ψ),

• the pressure p(z, ψ),

• the mass fraction Yk(z, ψ), k = 1, . . . , Ng,

• the radial coordinate r(z, ψ), which in the cross-stream coordinate (z, r)
is an independent variable,

• the surface coverage Θi(z), i = 1, . . . , Ns, which apear in the boundary
conditions and are mentioned in the following sections.

Other quantities and terms, such as the mass density ρ, the mixture spe-
cific heat cp, etc., are treated as functions of the above dependent variables.
For example, when we want to compute the mass density ρ, we use the re-
lation (3.8) to compute ρ from T , p, and W , which is also a function of
Yk.

Note that the equations (3.4), (3.6) and (3.7) have parabolic character-
istic with the axial coordinate z being the timelike direction. After semi-
discretization in the ψ direction, these equations will become differential
equations. The other equations (3.5) and (3.10) are considered as algebraic
constraints.

3.2 Initial and boundary conditions

The boundary conditions, which was stated in Section 1.7, have to be trans-
fered to new coordinate accordingly.

3.2.1 Initial conditions

At the inlet, the entrance of the channel, the initial profiles of u, Tgas, Yk, p,
Twall must be specified.

3.2.2 Boundary conditions

At the centerline of cylinder, the symmetric property of cylinder is used to
determine the boundary conditions

r(z, 0) = 0

∂u

∂ψ
=
∂T

∂ψ
=
∂Yk
∂ψ

= 0.
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If the wall is not a catalytic surface, the condition for mass fraction the wall
is

∂Yk
∂ψ

= 0.

The boundary conditions (1.55) for the catalytic wall is repeated in the fol-
lowing for convenience

ṡkWk = −Jk,r (k = 1, . . . , Ng), (3.11)

where ṡk is the rate of creation/depletion of the kth gas phase species by the
surface reactions.

The boundary condition for axial velocity u at the wall is u = 0 (no-slip
condition).

At the steady state, the surface coverage fractions Θi do not depend on
time (as in Section 1.7).

∂Θi

∂t
=
ṡiσi
Γ

= 0 (i = Ng + 1, . . . , Ng +Ns), (3.12)

where Γ is total available site density, Ns is the number of surface species,
Θi is surface coverage fraction.

The boundary condition for the temperature T at the wall depends on a
specific problem, as mentioned in Section 1.7. For isotherm reactors,

T (z) = Twall(z)

or adiabatic cases

−λρur∂T
∂ψ

= −λsρur
∂T

∂ψ
+

Ng∑

k=1

ṡkWkhk. (3.13)

At the wall we have the following boundary condition for r:

r(z, ψmax) = rmax,

where ψmax is defined as

ψmax =
∫ rmax

0
ρ0u0rdr.

Here u0, ρ0 are at the inlet conditions, and rmax is the channel radius.
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3.3 Semi-discretization

Using subscript for denoting partial derivatives and the abbreviations

E =




ρuuz + pz
0

ρucpTz
0

ρuY1z
...

ρuYNgz




, F =




ρu(ρuµr2uψ)ψ
pψ

ρu(ρuλr2Tψ)ψ −
Ng∑

k=1

ω̇kWkhk − ρur
Ng∑

k=1

Jk,rcpkTψ

∂r2

∂ψ
− 2

ρu
ω̇1W1 − ρu(rJ1,r)ψ

...
ω̇Ng

WNg
− ρu(rJNg,r)ψ




,

equations (3.4)- (3.7) and (3.10) can be summarized to the following system

E = F , (3.14)

which forms, along with (3.8), (3.11) and (3.12), our entire mathematical
model.

The solution of the partial differential equations is functions of the axial
coordinate z and the stream coordinate ψ, i.e., u = u(z, ψ), T = T (z, ψ),
p = p(z, ψ), r = r(z, ψ), and Yk = Yk(z, ψ).

A standard numerical procedure for solving the PDEs is to determine the
values of these functional quantities at certain discrete points (zj, ψi). The
whole domain {(z, ψ) : 0 ≤ z ≤ zmax, 0 ≤ ψ ≤ ψmax} is partitioned by a
mesh, consisting of grid points. The partial derivatives in these equations are
replaced by algebraic approximations evaluated at these grid points. This
process leads to a system of linear algebraic equations that approximate the
system of partial differential equations. The system of algebraic equations
can be solved by using any standard linear equation solver to obtain an
approximate numerical solution of the PDEs. This procedure is the basis
for the well-known classical finite difference, finite element and finite volume
methods for PDEs.

In order to take the advantage of available strong DAE solvers, such as
DAESOL [10], that have a variable order and variable step size control, we
use the method of lines that has some differences from the above standard
procedure. Instead of discretizing both in the space and time directions (for
time-dependent problems), we only discretize in the spatial directions. Here,
we have two spatial independent variables z and ψ but do not have the
independent variable ”time” as usual. The axial direction z is now treated
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as the time-like direction. As mentioned in Chapter 2 and repeated here for
convenience: in this thesis the derivatives with respect to ψ and ψ-direction
are referred to as the spatial derivatives and the spatial direction respectively,
and the derivatives with respect to the timelike coordinate z and z-direction
are referred to as the time derivatives and the time direction respectively.

The spatial domain {ψ : 0 ≤ ψ ≤ ψmax} is discretized by an appropriate
grid

ψ1 = 0 < ψ2 < ψ3 < · · · < ψN = ψmax.

The distance between two adjacent points ∆ψi = ψi+1 −ψi may be the same
for all i = 1, 2, . . . , N−1: ∆ψi = ∆ψ, then we have a uniform grid discretiza-
tion; or may be different, then we have a non-uniform grid discretization. We
replace the spatial derivatives (partial derivatives with respect to ψ) in the
PDEs by appropriate finite-difference approximations. Each dependent vari-
able in the PDE is replaced by N dependent variables at each grid point.
For example, u(z, ψ) is replaced by ui(z), i = 1, . . . , N . After this step, the
PDEs are semi-discretized in the spatial direction ψ. This leads to a system
of differential-algebraic equation (DAEs), of which the number of dependent
variables equals the number of grid point times the number of dependent
variables of the PDE, and the number of equations equals the number of
grid point times the number of PDEs.

Let us denote the function section corresponding to ψ = ψi by the sub-
script i. For instance,

ui = ui(z) = u(z, ψi).

This rule is also applied to partial derivatives, e.g.,

uψi = uψi(z) =
∂u(z, ψ)

∂ψ

∣∣∣∣∣
ψ=ψi

and other quantities, such as temperature T , pressure p, radial coordinate r,
and mass fraction Yk.

Let A = (Aj,k) be the matrix defined by

Aj,k =





ρu, if j = k = 1 and 5 ≤ j = k ≤ Ng

1, if j = 1, k = 2

ρucp, if j = k = 3

0, otherwise,

and let
Q =

[
u, p, T, r, Y1, Y2, . . . , YNg

]
.
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Then we have
E = AQT

z . (3.15)

By our convention,

Ei = E|ψ=ψi
, Ai = A|ψ=ψi

, Qi = Q|ψ=ψi
, Qzi = Qz|ψ=ψi

.

With

E =
[
ET1 , ET2 , . . . , ETN−1

]T
,

A = diag(Ai),
Q = [Q1,Q2, . . . ,QN−1] ,
Qz = [Qz1,Qz2, . . . ,QzN−1] ,

(3.15) implies

E = AQT
z ,

which is the discretization result of the left-hand side of equation (3.14).
Note that Ai, i = 1, . . . , N − 1, are band matrices with upper band-

width equal to 1 and lower bandwidth equal to 0. Therefore, A inherits this
property, too.

We use the forward finite difference to approximate pψ:

pψi ≈
pi+1 − pi
ψi+1 − ψi

. (3.16)

The terms including second derivatives are approximated by the central
differences

∂

∂ψ

(
a
∂f

∂ψ

)

i

≈
(

2

ψi+1 − ψi−1

)

[(
ai+1 + ai

2

)(
fi+1 − fi
ψi+1 − ψi

)
−
(
ai + ai−1

2

)(
fi − fi−1

ψi − ψi−1

)]
.

In particular, this scheme is applied to the following terms

(ρuµr2uψ)ψ, (ρuλr2Tψ)ψ, and (rJk,r)ψ. (3.17)

The first derivatives; Tψ in (3.7) and (3.9), and Xkψ in (3.9); are approx-
imated by the central differences as

Tψi =

[
∂T

∂ψ

]

i

≈ Ti+1 − Ti−1

ψi+1 − ψi−1
,

Xkψi
=

[
∂Xk

∂ψ

]

i

≈ Xki+1 −Xki−1

ψi+1 − ψi−1

.
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The fourth component of F is discretized by trapezoidal rule:
[
∂r2

∂ψ
− 2

ρu

]

i

≈ r2
i − r2

i−1

ψi − ψi−1
− 4

ρiui + ρi−1ui−1
(i = 2, . . . , N). (3.18)

For our problems, there is a contact with catalyst wall. The areas near
the wall have high spatial derivatives which require finer grid to resolve than
other areas. Therefore, a non-uniform grid should be used. We use the
approach suggested in [35]. The radial domain {r : 0 ≤ r ≤ rmax} is divided
by grid points from the centerline to the wall of the channel, the location of
the jth grid point is

rj = rmax

(
1 − (N − j)γ

(N − 1)γ

)
(j = 1, . . . , N)

where rmax is the radius of the channel, N is the number of grid points, γ is
a real factor used to control the distribution of grid points. With γ = 1, we
have a uniform grid. The higher the value of γ is, the finer the grid near the
wall is. For approximation of spatial derivatives on a non-uniform grid, see
[54].

Let Fi denote the semi-discretized form of Fi = F|ψ=ψi
by using the above

described approximation schemes. Then

F = [F T
1 , F

T
2 , . . . , F

T
N−1]

T

is the discretization result of the right-hand side of equation (3.14). Hence,
the PDE system (3.14) corresponds to

A(Q)QT
z = F (Q). (3.19)

With

P =




ṡkWk + Jk,r|ψ=ψN

, if 1 ≤ k ≤ Ng

ṡk, if Ng + 1 ≤ k ≤ Ng +Ns

the boundary conditions (3.11)–(3.12) can be written as

P = 0. (3.20)

At channel wall ψ = ψN , u, T , p, and r must fulfill




uN
pN
TN
rN


−




0
pN−1

Twall

rmax


 = 0. (3.21)
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Finally, equations (3.19), (3.20), and (3.21), and r1 = 0 form a DAE
system with the unknowns

[Q1, Q2, . . . , QN ,Θ1, . . . ,ΘNs
],

which satisfy, in addition, conditions (1.5) and (1.27). In the following, the
DAE system is referred to as (DAE1). Note that Θ1,. . . , ΘNs

belong to the
variables of ṡk, i.e., of function P in (3.20).

The (DAE1) is a stiff system. The sources of stiffness are from the inher-
ent stiffness in the chemical system with detailed models and also from the
semi-discretization of the PDE. Therefore, for solving it we use an implicit
method, based on backward differentiation formulas (BDF) with efficient
adaptive step size, order control and efficient monitoring strategies for in-
tegration along the z-direction, which is described in Chapter 2. Roughly
speaking, implicit methods are not restricted by the the well-known CFL (R.
Courant, K. Friedrichs and H. Lewy) condition for stability of an explicit
finite difference discretization as the classical direct method for PDEs, which
limits the time stepsize by the spatial stepsize. For a parabolic PDE, the
CFL number is proportional to ∆t/(∆x)2, where ∆t is the time stepsize and
∆x is the spatial stepsize (for our problem here, the time stepsize is in z
(timelike) direction and spatial stepsize is in ψ direction). Thus, the time
step must be very small for an explicit scheme to be stable.

3.4 Structure and index of the DAEs

Before presenting a numerical method for solving the DAEs obtained in Sec-
tion 3.3, we analyze some important properties of the DAEs. Our DAEs in
Section 3.3 (DAE1) can be written in general form as

B(t, x, y)ẋ = f(t, x, y),
0 = g(t, x, y),

(3.22)

where
B : [t0, te] ×

� nd × � na → � nf×nd,
f : [t0, te] ×

� nd × � na → � nf ,
g : [t0, te] ×

� nd × � na → � ng .

In addition, nd ≥ nf and B has full range. Here, for our formulation, z is
denoted by t, Q and Θ are denoted by x and y.

In the (DAE1); ui, Ti, pi, and Yki (k = 1, . . . , Ng), (i = 1, . . . , N − 1)
are the differential variables; ri (i = 1, . . . , N) and uN , TN , pN , and YkN
(k = 1, . . . , Ng), and Θj (j = 1, . . . , Ns) are the algebraic variables.
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The structural matrix of the DAE system (DAE1) in Section 3.3 is

S =




S11 S12 0

S21 S22 S23
. . . O

0 S32 S33
. . .

...
. . .

. . .
. . .

. . . Si i−1 Si i Si i+1
. . .

...
...

O . . . SN−2N−1 SN−1N−1 SN−1N

. . . SN−1N SN N W1

. . . W2 W3




where Si i is a (Ng + 4) × (Ng + 4) matrix

Si i =

u̇i ṗi Ṫi ri Ẏ1i Ẏ2i Ẏ3i . . . ẎNg i


1 1 0 1 0 0 0 . . . 0
0 0 0 0 0 0 0 . . . 0
0 0 1 1 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
0 0 0 1 1 0 0 . . . 0
0 0 0 1 0 1 0 . . . 0
0 0 0 1 0 0 1 . . . 0
...

...
...

...
...

...
...

. . . 0
0 0 0 1 0 0 0 . . . 1




(i = 1, . . . , N − 2).

In the following, we derive the relation between each equation of (DAE1)
and the algebraic variables and the derivative of the differential variables.

To derive the structural matrix we need to “look at” the equations to see
if the ith equation involves the derivative of the jth differential variables or
the jth algebraic variables, then Sij = 1 otherwise Sij = 0. Alternatively,
one can compute the structural matrix of the DAE as in Chapter 2, i.e.,
first computing the Jacobian matrix of the DAE with respect to highest-
order “time”(z) derivatives and then computing the structure matrix of the
Jacobian.

The first row of Si i reflects the dependency of the momentum equation
(3.4) discretized at the ith grid point on the algebraic variables and derivative
of differential variables. One can see that the momentum equation depends
on uz, pz and r. Here we denote u̇ by uz, ṗ by pz, etc. The second row of Si i
reflects the dependency of the momentum equation (3.5) discretized at the
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ith grid point. The discretization of this equation is (3.16), which depends on
pi+1 and pi, and not on the algebraic variables or derivative of the differential
variables. Therefore, all entries in this row equal zero. Similarly, the third
row represents the dependency of the energy equation (3.7) discretized at the
ith grid point. The 4-th row corresponds to (3.18), and the 5-th row, etc.,
corresponds to the (3.6) discretized at the ith grid point.

SN−1 N−1 =

u̇N−1ṗN−1ṪN−1rN−1Ẏ1N−1Ẏ2N−1 Ẏ3N−1 . . . ẎNg N−1


1 0 1 1 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
0 0 1 1 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
0 0 0 1 1 0 0 . . . 0
0 0 0 1 0 1 0 . . . 0
0 0 0 1 0 0 1 . . . 0
...

...
...

...
...

...
...

. . . 0
0 0 0 1 0 0 0 . . . 1




Si i+1 =

u̇i+1ṗi+1Ṫi+1ri+1Ẏ1i+1Ẏ2i+1 Ẏ3i+1 . . . ẎNg i+1


0 0 0 1 0 0 0 . . . 0
0 0 0 0 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
0 0 0 0 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
...

...
...

...
...

...
...

. . . 0
0 0 0 1 0 0 0 . . . 0




(i = 1, . . . , N − 2),

Si i−1 =

u̇i−1ṗi−1Ṫi−1ri−1Ẏ1i−1̇Y2i−1 Ẏ3i−1 . . . ẎNg i−1


0 0 0 1 0 0 0 . . . 0
0 0 0 0 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
...

...
...

...
...

...
...

. . . 0
0 0 0 1 0 0 0 . . . 0




(i = 2, . . . , N − 1).
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W1 is an (Ng +4)×Ns matrix, which corresponds to the equations (3.21)
and the first part P in (3.20),

W1 =

Θ1Θ2 Θ3 . . . ΘNs


0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
1 1 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . 1




.

The first four rows of W1 represent (3.21) and the rest represents the first
part of P in (3.20).

W3 is an Ns ×Ns matrix, which represents the dependency of the second
part of P in (3.20) on the algebraic variables Θi, i = 1, . . . , Ns,

W3 =

Θ1Θ2 Θ3 . . . ΘNs


1 1 1 . . . 1
1 1 1 . . . 1
1 1 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . 1




,

SN N =

uN pN TN rN Y1N Y2NY3N . . . YNg N


1 0 0 0 0 0 0 . . . 0
0 1 0 0 0 0 0 . . . 0
0 0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
0 0 0 0 1 1 1 . . . 1
0 0 0 0 1 1 1 . . . 1
0 0 0 0 1 1 1 . . . 1
...

...
...

...
...

...
...

. . . 1
0 0 0 0 1 1 1 . . . 1




,
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and W2 is an Ns × (Ng + 4) matrix,

W2 =

uN pN TN rN Y1N Y2NY3N . . . YNg N


0 1 1 0 1 1 1 . . . 1
0 1 1 0 1 1 1 . . . 1
0 1 1 0 1 1 1 . . . 1
0 1 1 0 1 1 1 . . . 1
...

...
...

...
...

...
...

. . . 1
0 1 1 0 1 1 1 . . . 1




.

Because all entries of the second row of Si i, Si i+1 and Si−1 i equal zero,
the consequence is that S is structurally singular. Therefore, (DAE1) is
structurally singular.

If one differentiates all algebraic constraints r1 = 0, (3.20), (3.21) and the
second and the 4-th components of the discretized version of (3.14), then the
resulting equations along with other equations of (DAE1) form an implicit
ODE which can be solved to obtain the first derivatives of all variables of
(DAE1). Thus, (DAE1) is of index 1.

3.5 Solving nonlinear boundary conditions

To integrate (DAE1), a set of consistent initial values (of differential variables
and algebraic variables) is needed. The differential variables are specified as
stated in Section 3.2. The algebraic variables ri (i = 2, . . . , N−1) are supplied
by taking into account of (3.18) and r1 = 0 and rN = rmax. The variables uN ,
pN and TN are given according to (3.21). The remaining algebraic variables
are the mass fractions Yk (k = 1, . . . , Ng) at the catalytic wall ψ = ψN and
the surface coverage fractions Θi (i = 1, . . . , Ns) which are implicitly defined
by the highly nonlinear equations (3.20) and the constraints (1.5) and (1.27).
Due to restrictions (1.5) and (1.27), standard methods are no more suitable,
and methods following feasible paths should be applied instead. Newton’s
method or globalized Newton methods by linesearch fails due to the fact
that with a starting guess the Newton direction at the first step is a ”wrong
direction”, i.e., because with such direction we cannot advance to the next
iteration, which fulfills the constraints (1.5) and (1.27). In the following,
we present a method for solving the nonlinear equations based on a time-
stepping method. This is a standard practice for determining the steady state
of a dynamic system (see e.g., [55]). This method is quite stable and it is
able to obtain a steady state solution if the dynamic system starting with the
initial values leads to the stable steady state. Roughly speaking, in general
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the method guarantees obtaining a steady state if that state is attractive
from any initial condition of the system. However, it is much slower than
the Newton-like methods when they converge. Therefore, in the following a
combination of time-stepping and Newton’s method is employed to speedup
the convergence.

Consider a nonlinear equation

f(x) = 0, (3.23)

where x ∈ � n and f :
� n → � n. Equation (3.20) is a special case of this

one with x = (Y1N , . . . , YNgN
,Θ1, . . . ,ΘNs

) and n = Ng +Ns.
Suppose that the system (3.23) describes the steady state of a system

whose transient state model is given by

Ẋ = f(X ), X = X (t). (3.24)

3.5.1 Properties of Newton’s method and quasi-Newton

methods

Newton’s method is a standard one for solving nonlinear equations. Starting
with x0 ∈ � n, the initial approximation to the solution of (3.23), Newton’s
method tries to improve x0 using the iteration scheme defined as

J(xk)∆xk = −f(xk), xk+1 = xk + ∆xk, (3.25)

where the Jacobian J(xk) = ∂f(x)/∂x|x=xk
. In some modified variants,

called quasi-Newton methods, the Jacobian J(xk) is approximated by finite
differences or update methods. This defines a sequence of approximations
{x0, x1, x2, . . . , xk−1, xk, . . . } to an exact solution. To describe properties of
a sequence, we need to define the following terminologies.

Definition 3.5.1 (Convergence and rates of convergence)
A sequence {xk}, k = 0, 1, 2 . . . is said to converge to x∗ if

lim
k→∞

‖xk − x∗‖ = 0.

A sequence {xk} is said to converge linearly to x∗ if there exists a constant
c ∈ [0, 1) and an integer k̂ ≥ 0 such that for all k ≥ k̂,

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖.

The quotient-convergence rate or q-factor ρ(q) is defined as

ρ(q) = lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ ,
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and root-convergence rate or r-factor ρ(r) is defined as

ρ(r) = lim sup
k→∞

‖xk − x∗‖1/k.

If there is a sequence {ck} that converges to zero, and

‖xk+1 − x∗‖ ≤ ck‖xk − x∗‖, ∀k ≥ k̂,

then {xk} is said to be superlinearly convergent to x∗. A sequence {xk}
is said to be quadratically convergent to x∗ if

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2 ∀k ≥ k̂,

where c is a positive constant.

When the initial guess x0 is chosen close to a solution x∗, and the function
is continuously differentiable, and the Jacobian is nonsingular, the Newton
iteration will converge to x∗. The local convergence properties of Newton’s
method are summarized as follows [21].

Theorem 3.5.1 (Local convergence properties)
Let f : D ⊂ � n → � n be twice continuously differentiable, J(x) be nonsin-
gular for all x ∈ D, and D be a domain. Assume further that

‖J(y)−1(J(x + τ∆x) − J(x))∆x)‖ ≤ ωτ‖∆x‖2, (3.26)

ω <∞,

for all τ ∈ (0, 1], x, y = x + ∆x ∈ D with ∆x = −J(x)−1f(x) 6= 0, i.e. a
global bound ω for the “curvature” exists, and that the initial guess x0 is
sufficiently near to a solution:

δ0 =
ω

2
‖∆x0‖ < 1. (3.27)

Then the following holds:

• if D0 = B(x0, ‖∆x0‖/(1 − δ0)) ⊂ D, then the sequence of iterates
defined by (3.25) remains in D0,

• there exists x∗ ∈ D0 with f(x∗) = 0 and xk → x∗ (k → ∞),

• an a priori error estimate holds

‖xk − x∗‖ ≤ δk0
‖∆x0‖
1 − δ0

, (3.28)
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• and convergence is quadratic with

‖∆xk+1‖ ≤ ω

2
‖∆xk‖2. (3.29)

When the starting guess x0 does not lie close enough to a solution, it is
not guaranteed that the sequence {xk} converges to the solution. To have
globally convergent behavior, these methods can be modified by damping or
under-relaxation. The iteration is defined then by

xk+1 = xk + τk∆xk,

where the step size τk ∈ (0, 1] determined by a line search or trust region
method, which uses an appropriate level function (also sometimes called
merit function) h(x), such as h(x) = ‖f(x)‖2

2, and requires that the sequence
{h(xk)} is strictly monotone decreasing. This ensures global convergence if
the Jacobians are bounded away from singularity. For problems whose the
Jacobian is (mildly) ill-conditioned one should use the natural level function
(see [42] and [43]) instead.

However, Newton’s method or quasi-Newton methods may fail to con-
verge to some solution in some cases, such as, when the Newton direction
∆x0 points in a ”wrong” direction or the nonsingularity of Jacobians are not
guaranteed, therefore, the globalization techniques using the merit function
do not make any sense at all.

It is well known that Newton’s method could fail when the initial point
is far away from a solution. Even the globalized Newton-like methods may
fail if the condition of nonsingularity of Jacobian is violated.

3.5.2 Combining pseudo-time integration and Newton’s

method

Instead of using Newton’s method or a globalized Newton method which will
fail to find a solution of equation (3.23), we integrates the ordinary differential
equation (3.24) with the initial values

X (t0) = X0

to be known, for a long enough time interval. In other words, to find the
solution of the steady state equation, we solve the related transient equation
until it reaches steady state conditions.
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In fact, we have tried to solve (3.20) by methods in [40] and [21] but
without success. At the first step, the search direction points to an infea-
sible region (the region where the conditions (1.5) and (1.27) are not being
fulfilled). This does not allow us to advance to the next step.

Since in our problems the ODEs (3.24) describing the chemical process
modelled using detailed chemistry, are very stiff, we use the BDF method,
which is a implicit one, to solve it. The solution of (3.24) using the BDF
method requires the partial derivative ∂P/∂X , which is generated by auto-
matic differentiation tool ADIFOR 2.0.

If one integrates the ODE over a quite long interval approximating the
time for the physical system reaches the steady state conditions, then the
solution of equation (3.23) is the value of X (t) at the end of the interval.
The implicit-time stepping process is time consuming, because it requires
to solve a nonlinear equation system at each integration step. Instead of
taking a long integration interval, we use a reasonable duration. Then we
apply Newton’s method with the final value of X (tf) = Xf as the starting
guess. This idea is proposed in [55] for the solution of steady, laminar, one-
dimensional, premixed flames. If Xf lies in the local domain of convergence,
we only need a few Newton steps to converge to the solution within an
acceptable tolerance. If it fails to converge, we do another time integration
with a new interval. Now, the solution of the ODE is only used as the
initial value for the subsequent Newton’s method. Therefore, taking high
tolerance value for integrating the ODE is not necessary because to achieve a
high accurate solution the ODE solver usually takes many steps. Moreover,
choosing a high integration tolerance may even leads to failure of the solver
because of stiffness of the ODE.

It is worth noting that care should be taken if one tries to use methods
in [40]: applying linesearch procedure and perturbation of the local model
when the Jacobian J(xk) is ill-conditioned. Actually, we have implemented
the methods in [40] and it fails to converge to the solution after 40 iterations
(for our practical problem) even using a good initial guess obtained from the
time-stepping procedure for our practical problems. This phenomenon is also
discussed in [21].

Now we return back to the above assumption that the nonlinear equation
f(x) = 0 is the steady state equation whose transient state model is as in
(3.24). The original form of the equation f(x) = 0 are

ṡkWk + Jk,r|ψ=ψN
= 0 (k = 1, . . . , Ng) (3.30)

ṡk = 0 (k = Ng + 1, . . . , Ng +Ns). (3.31)

The left-hand side of equation (3.31) ṡk (k = Ng + 1, . . . , Ng + Ns) are the
rate of creation/depletion of the surface coverage of the kth surface species
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multiplied by the site density Γ as described by (3.12), and we repeat it here
for convenience

∂Θi

∂t
=
ṡkσi
Γ

(k = Ng + 1, . . . , Ng +Ns). (3.32)

Similarly, the left-hand side of equation (3.30) can be considered as the mass
rate of creation/depletion of the kth gas species by surface reactions and
diffusion process multiplied by a some length dr, i.e.,

ρdr
∂Yk
∂t

= ṡkWk + Jk,r|ψ=ψN
(k = 1, . . . , Ng). (3.33)

Remark 3.5.1
The constant positive factors 1/Γ and ρdr in Equations (3.32) and (3.33) can
be eliminated without changing the qualitative properties of the system, i.e.
the sign of eigenvalues are not changed. However, we introduce them here to
emphasize that the ODE should be derived based on the physical behavior
of the system, i.e., the ODE should describe the related transient system.

Remark 3.5.2
The iteration matrix of Newton’s method applied to f(x) = 0 is

JNewton =
∂f(x)

∂x
,

and the iteration matrix for the time-stepping method, e.g., using the back-
ward Euler method is

J time−step = I − hJNewton,

where I is the identity matrix. For small integration step h the iteration
matrix J time−step approaches the identity matrix. Thus, the time-stepping
method is very stable even for ill-conditioned (or nearly singular) Jacobian
of the steady-state problem JNewton.

To globalize the convergence of Newton’s method, a linesearch procedure
or trust region method can be applied. On the other hand, globalization
can slow down the convergence speed because it needs extra computation in
the globalized stage and may take small stepsizes in the region of the local
convergence domain. In particular, when the Jacobian matrix of nonlinear
equations is (mildly) ill-conditioned, this is in the case of our problems (3.30)
and (3.31), the standard linesearch with the level function h(x) = ‖f(x)‖2

2)
gives very small stepsize. In [21] an illustrative example for this phenomenon
is given.
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The reason, that the stepsize is very small, is that the search direction
∆x0 and the direction of the steepest decent of the level function h at x0

is nearly orthogonal. To avoid this effect one can: (a) modify the search
direction such as using the Levenberg–Marquardt or trust region variant, in
which the search direction is replaced by

∆xk(γ) = −(J(xk)
TJ(xk) + γI)−1J(xk)

Tf(xk),

or (b) modify the level function by using the natural level function (see [42]
and [43])

h(x) = ‖J(xk)
−1f(x)‖2

2,

which seems to work well in practical applications (see e.g., [42], [43], [4],
[17], [18], and [19]) but no global convergence proof is given because the level
function is changed at each iteration. Recently, in [21] a stepsize strategy
based on the restricted monotonicity test (RMT) is proposed, the stepsize is
controlled by

τk = max τ
subject to τ ≤ 1, τω1(τ)‖∆xk‖ ≤ η, 0 < η < 2,

ω1(τ) = sup
0≤β≤τ

‖J(xk)
−1(J(xk + β∆xk) − J(xk)‖)

β‖∆xk‖
.

(3.34)

In practice, the curvature ω1 is replaced by the weaker estimate ω3

ω3(τ) =
2‖J(xk)

−1(f(xk + τ∆xk) − (1 − τ)f(xk))‖
τ 2‖∆xk‖2

. (3.35)

It is interesting to note that the conditions (1.5) and (1.27) are being
satisfied during the integration of ODE if they are being fulfilled at the initial
and the governing ODE model has certain physical meaning. Specifically for
our problem, the equality constraints

∑Ng

k=1 Yk = 1 and
∑Ns

i=1 Θi = 1, which

become
∑Ng

k=1 Xk(t) = 1 and
∑Ns

k=1 XNg+k(t) = 1 accordingly, are followed

immediately if
∑Ng

k=1 Xk(t0) = 1 and
∑Ns

k=1 X(Ng+k)(t0) = 1, and also

Ns∑

k=1

ṡ(Ng+k)/Γ = 0,
Ng∑

k=1

(ṡkWk + Jk,r|ψ=ψN
) = 0. (3.36)

The two latter restrictions are being implicitly met due to the conservation
law of mass applying to Θi and Yk. The positive constraints Yk ≥ 0 and
Θi ≥ 0 are automatically fulfilled if the ODE interprets physical nature,
meaning that if Yk = 0 then ṡkWk + Jk,r|ψ=ψN

≥ 0 and also if Θi = 0
then ṡ(Ng+i) ≥ 0. It means that if a species does not exist at all then its
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depletion rate cannot be positive. Finally, the conditions Yk ≤ 1 and Θi ≤ 1
are automatically satisfied if the all other ones are being met. However, in
the second stage when we solve f(x) = 0 by Newton’s method, all these
conditions may not be fulfilled. In addition, since (3.36) is implicitly met,
therefore if one uses the original form of f(x) = 0, then the Jacobian of
f(x) is singular. In our implementation, we replace one of equations in

(3.30) by equation
∑Ng

k=1 Yk = 1, and one of equations in (3.31) by equation∑Ns

i=1 Θi = 1 and during the iteration we check for the conditions 0 ≤ Yk ≤ 1
and 0 ≤ Θi ≤ 1. If these are not satisfied, then we try to reduce the step
size αk. If αk is too small, we suspect that the initial guess does not lie in
the domain of convergence, so another time integration is being made to get
a better guess.

To conclude this section, we would like to summarize it as the follows.

– We have nonlinear equations including certain constraints on the un-
known. These constraints make the problem more difficult to solve
and restricts the methods to be used. One should take care of the
constraints and use a tailored method.

– We show some situations where Newton’s method or quasi-Newton
methods fail to converge to a solution. These are the cases when the
initial Newton direction points in a ”wrong” direction.

– A combination of pseudo-time integration and Newton’s method is ap-
plied. The pseudo-time integration is employed for finding a ”good”
initial guess, then Newton’s method is used to obtain a faster conver-
gence to the solution.

– The global convergence of the combining time-integration and New-
ton’s method mainly depends on the existence of steady state of the
underlying physical system. The solution of the nonlinear equation is
the steady state of a some physical system. The steady state system
is the asymptotic limit of corresponding transient system. The conver-
gence to the solution depends on the existence of the steady state. If
the system does not reach a steady state, then obviously the method
would fail. The failure of the method could reflect the non-existence
of a steady state of the system. This is a expected behavior of the
approach, then one should re-consider the mathematical model of the
system.

– For the pseudo-time integration interval, we choose value of 1 for each
time integration. The chosen value of time interval is quite successful
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from numerical experiments with our test problems, this also indicates
that the system is going to reach the steady state after 1 second, but
the chosen value is not a general one and only based on our experiences.

It is worth noting that the above time-integration may fail to converge
to a solution, and care should be taken when one formulates the problem,
especially in the construction of the ODE, otherwise the ODE may be unsta-
ble. The ODE should be derived based on the physical nature of the system,
for example, the process of forming steady state from transient process and
using appropriate initial conditions. By taking care of this, we know that
the system reaches a steady state after a certain interval. In the following,
we construct an example that the above time-integration procedure fails to
obtain the solution.

Consider the following system of equation

f(x) =




−x2

x1

x1 + x2 + x3 − 4


 = 0.

This equation system has a unique solution x1 = 0, x2 = 0, x3 = 4. If one
tries to do time-integration the corresponding ODE, difference solutions of
the ODE are obtained depending on choosing initial values, such as, X1(t) =
cos t, X2(t) = sin t, and X3(t) = 4 − X1(t) − X2(t) = 4 − cos t − sin t for
X1(0) = 1,X2(0) = 0,X3(0) = 3. This solution never reaches a steady state.

3.5.3 Multiple solutions of boundary conditions

It is well know that nonlinear equations in general could have multiple solu-
tions. The aim of this section is to report that the nonlinear equations (3.30)
and (3.31) could have multiple solutions by giving certain problem settings
with which the equations (3.30) and (3.31) have at least two solutions.

Let consider the following example.

Example 3.5.1 (Catalytic combustion of methane)
A gas mixture flows in the channel with the following setting.

– Channel geometry: the radius rmax = 2.5×10−4 [m], the channel length
zmax = 0.01 [m].

– Initial conditions: the initial mole fraction of each species XCH4
= 0.5,

XO2
= 0.4, XN2

= 0.1, other species are absent at inlet. The initial gas
temperature is Tgas = 298 [K], the initial pressure is p = 1.2× 105 [Pa],
and the initial velocity is u = 0.5 [m/s].

108



– Boundary conditions: the temperature at the wall is Twall = 1200 [K].

– Reaction mechanisms: 21 gas-phase species, 11 surface species, 23 sur-
face reactions, and 128 gas-phase reactions. The gas-phase and surface
reactions are given in the Appendix.

– Number of grid points: 12.

(a) Applying Newton’s method with the initial guess (Initial Value column)
as in Table 3.1 and Table 3.2, we obtain a solution (Computed Solution
column) as in Table 3.1 and Table 3.2.

Table 3.1: Initial value and computed solution of the surface coverage Θi (a).
Surface Coverage Θi Surface Coverage Θi

Initial Computed Initial Computed
Species Value Solution Species Value Solution
PT(s) 4.061E-01 4.123E-01 C(s) 7.768E-06 8.119E-06
H2O(s) 8.219E-06 9.116E-06 CH3(s) 1.548E-07 1.576E-07
H(s) 5.899E-06 6.290E-06 CH2(s) 1.548E-07 1.576E-07
O(s) 5.905E-01 5.841E-01 CH(s) 1.548E-07 1.576E-07
OH(s) 2.789E-03 2.899E-03 CO2(s) 6.362E-08 6.585E-08
CO(s) 5.101E-04 5.338E-04

(b) Applying Newton’s method with the initial guess (Initial Value column)
as in Table 3.4 and Table 3.5, we obtain a solution (Computed Solution
column) as in Table 3.4 and Table 3.5.

We apply the linearized analysis at the solutions of the corresponding ODEs.
The solutions of f(x) = 0 are the critical points of the ODE Ẋ = f(X ).
As Table 3.7 shows the solution (a) is unstable because the ODE have one
eigenvalue with positive real part, and the solution (b) is stable.

The conclusion to draw from this is that the nonlinear equations (3.30)
and (3.31) may have multiple steady state solutions in some cases, which
depends on the initial values. Thus, the choice of the initial values has an
important influence on the convergence to a particular solution, which may
be a physically realizable or a nonphysical steady state. Concerning the
initial values, it is also confirmed by experiments [105] that the behavior of
the system, i.e., oscillations, depends on the fact, where a brand new tube
(catalyst) or a tube with aged surfaces is used for the experiment.
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Table 3.2: Initial value and computed solution of the mass fraction Yk at the
wall (a).

Mass Fraction Yk Mass Fraction Yk
Initial Computed Initial Computed

Species Value Solution Species Value Solution
H2 1.636E-09 1.887E-09 O 0 0
O2 4.846E-01 4.733E-01 HO2 0 0
H2O 2.434E-02 2.679E-02 H2O2 0 0
CO 1.122E-03 1.149E-03 CHO 0 0
CO2 4.029E-02 5.004E-02 CH2O 0 0
CH4 3.305E-01 3.295E-01 CH3 0 0
C2H6 0 0 CH3O 0 0
C2H4 0 0 C2H3 0 0
C2H2 0 0 C2H5 0 0
OH 0 0 N2 1.190E-01 1.191E-01
H 0 0

Table 3.3: Newton iterations with initial conditions as in Tables 3.4 and 3.2.

# Iteration ‖f(xk)‖ ‖∆xk‖ (Est. cond)−1

1 3.231E+02 5.033E-02 4.344E-08
2 2.531E+04 2.183E-03 3.908E-08
3 5.531E+01 5.374E-06 3.888E-08
4 3.180E-04 2.822E-11 3.888E-08
5 3.612E-09

3.5.4 Special problems with abnormal solutions and

their numerical treatment

In this section we discuss problems with having special properties, such as sin-
gularity or discontinuity, and propose practical numerical treatments. Gen-
eral theory and numerical treatments for those problems are beyond the scope
of this thesis, we refer to [100] and the references therein for those interested
in. Here, we focus on our practical applications, which is index-1 DAE, and
how they should be treated from a practical point of view. One common
characteristic, which can be observed from numerical computation, of these
problems is the failure of standard software for index-1 DAE when applying
to these problems.

We identify two cases:
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Table 3.4: Initial value and computed solution of the surface coverage Θi (b).
Surface Coverage Θi Surface Coverage Θi

Initial Computed Initial Computed
Species Value Solution Species Value Solution
PT(s) 8.368E-01 8.396E-01 C(s) 1.042E-02 9.553E-03
H2O(s) 7.462E-05 7.488E-05 CH3(s) 3.463E-07 3.448E-07
H(s) 9.602E-04 9.186E-04 CH2(s) 3.463E-07 3.448E-07
O(s) 2.028E-03 2.211E-03 CH(s) 3.463E-07 3.448E-07
OH(s) 6.788E-04 7.098E-04 CO2(s) 6.380E-08 6.859E-08
CO(s) 1.489E-01 1.467E-01

Table 3.5: Initial value and computed solution of the mass fraction Yk at the
wall (b).

Mass Fraction Yk Mass Fraction Yk
Initial Computed Initial Computed

Species Value Solution Species Value Solution
H2 3.317E-05 3.021E-05 O 0 0
O2 3.184E-01 3.167E-01 HO2 0 0
H2O 1.190E-01 1.186E-01 H2O2 0 0
CO 9.600E-02 9.378E-02 CHO 0 0
CO2 4.848E-02 5.209E-02 CH2O 0 0
CH4 3.005E-01 2.970E-01 CH3 0 0
C2H6 0 0 CH3O 0 0
C2H4 0 0 C2H3 0 0
C2H2 0 0 C2H5 0 0
OH 0 0 N2 1.174E-01 1.216E-01
H 0 0

(a) The (true) solution cannot be continued beyond some point t. Here, the
solution is a continuous one, we do not consider discontinuous solutions.

(b) The solution can be continued at a certain point but a numerical solu-
tion may be stopped at that point due to numerical difficulties.

Loosely speaking, these points are usually referred to as impasse points (see
[100], [30] and [102]).

Unlike ODEs ẋ = f(t, x) where the smoothness of the model function f
will ensure the smoothness of the solution, DAEs in general do not have that
property.

To illustrate the case (a), let consider the following example.
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Table 3.6: Newton iterations with initial conditions as in Tables 3.4 and 3.5.

# Iteration ‖f(xk)‖ ‖∆xk‖ (Est. cond)−1

1 8.189E-01 3.641E-02 3.921E-08
2 4.585E+04 1.510E-03 3.834E-08
3 4.984E+01 2.403E-06 3.837E-08
4 8.583E-06 1.700E-12 3.837E-08
5 3.318E-09

Example 3.5.2

ẋ1 = −1

x1 − x2
2 = 0

x(0) = (4, 2).

The solution is x(t) = (−t+4, (−t+4)1/2), the solution cannot be continued
beyond t = 4.

To illustrate the case (b), let consider the following example.

Example 3.5.3

ẋ1 = −2 sin(t + α), 0 < α < π/2

x2
2 + x2

1 + β − 4 = 0, 0 ≤ β < 4

x(0) = (2 cosα,
√

4 − β − 4 cos2 α).

For β = 0, the solution is x(t) = (2 cos(t + α),
√

4 − 4 cos2(t + α)), which
is defined for any value of t. Here, the model functions are smooth, but
the solution is not smooth, i.e, the solution is not differentiable at points
t such that x2(t) = 0 (cos(t + α) = +1 or cos(t + α) = −1). The index-
1 assumption (∂g/∂y at (3.22) with B = I is nonsingular) is violated at
these points (∂g/∂y = 2x2 = 0). Standard software for index-1 DAEs
are usually failed and stopped at those points. To overcome the numer-
ical difficulties, a well know method is transformation of the independent
variable t (see e.g., [100] and [125]). For β > 0, the solution is x(t) =

(2 cos(t+α),
√

4 − β − 4 cos2(t+ α)), and it cannot be continued beyond the

point t (t > 0) where cos(t + α) = −(4 − β)/4.

Now we consider the following practical problem of interest.
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Example 3.5.4
Let us consider the problem of conversion of ethane to ethylene with the
following setting.

– Channel geometry: the radius rmax = 2.5×10−4 [m], the channel length
zmax = 0.01 [m].

– Initial conditions: the initial gas temperature is Tgas = 300 [K], the
initial pressure is p = 1.2 × 105 [Pa], and the initial velocity is u = 0.5
[m/s]. The initial mole fraction of nitrogen is XN2

= 0.3, and the mole
fraction of ethylene and oxygen are varied, which we will discuss later,
other species are absent at inlet.

– Boundary conditions: the temperature at the wall is Twall = 1000 [K].

– Reaction mechanisms: 25 gas-phase species, 20 surface species, 82 sur-
face reactions, and 261 gas-phase reactions. The gas-phase and surface
reactions are given in the Appendix.

– Number of grid points in the radial axis: 12.

– Fcat/geo = 1.

We examine the numerical solutions for 5 cases, where the initial values
of mole fractions of ethylene and oxygen, which are decreased in the mole
fraction of ethylene and increased in the mole fraction of oxygen, and we
keep the sum of mole fraction of ethane and of oxygen at 0.7, as in Table 3.8.
Here, due to space restriction we only show the trajectories of surface species.
Figures 3.1–3.3 show the surface coverages of the solutions corresponding to
the different cases in Table 3.8. For cases (3) and (4), integration stopped
at z = 0.00799 [m] and z = 0.00995 [m], respectively. The code BLAYERsim

runs smoothly with the values of mole fractions of ethane and oxygen at the
inlet as in case (1). The code also works well when we decrease the mole
fraction of ethane (increase the mole fraction of oxygen) until reaching case
(2). Further more decreasing the mole fraction of ethane below the value in
case (2), the code fails as in cases (3) and (4). Furthermore decreasing the
mole fraction of ethane until reaching the same value as in case (5), the code
turns to work fine again. What we observe from Figures 3.1–3.3 (particularly
see surface coverages of OH(s), CO2(s) and C2H3(2s)) and our numerical
computations by using the method of transformation of the independent
variable [100] is that the solution (in cases (3) and (4)) cannot be continued
beyond the point where the code stops, and the boundary conditions (1.55)
and (1.56) cease to have a solution (e.g., ṡk > 0 or ṡk < 0 for some k,
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Ng + 1 ≤ k ≤ Ng + Ns) as illustrated by Examples 3.5.2 and 3.5.3. From
this, we conclude that the system maybe do not have a stable steady state,
or our approximation model is defective, because there is no reason that the
real flow is not defined beyond that point.

3.6 Summary

In this chapter we have discussed techniques for solving the simulation prob-
lem. At first, we describe the von Mises transformation and apply it to the
boundary layer equations. This allows us to eliminate the overall mass con-
inuity equation and replace it with an integral. Then, the resulting PDEs
are semi-discretized by the method of lines, leading to a large stiff structured
DAEs. We show that the DAEs is of index-1 and structurally singular. For
solving the DAEs, consistent initial values are required and are obtained by
solving the nonlinear equations, which are part of the algebraic constraints
arising essentially from the nonlinear boundary conditions. The nonlinear
equations are solved by a time-stepping and Newton’s method. The time-
stepping is used for obtaining a better initial guess before applying Newton’s
method, which is used for speeding up the convergence. By giving some
examples, we also discuss some problems, such as the existence of multi-
ple solutions of the nonlinear equations of the boundary conditions and the
question, whether a stable steady state exists at all.
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Figure 3.1: Surface coverages of the solution of Example 3.5.4 (I)
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Figure 3.2: Surface coverages of the solution of Example 3.5.4 (II)
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Figure 3.3: Surface coverages of the solution of Example 3.5.4 (III)
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Table 3.7: Eigenvalues at the solutions. (*) positive eigenvalue.

Eigenvalues (a) Eigenvalues (b)
−5.574 × 1011 + 2.837 × 109 × i −1.143 × 1012 + 7.974 × 109 × i
−5.574 × 1011 − 2.837 × 109 × i −1.143 × 1012 − 7.974 × 109 × i
−1.865 × 1012 −1.129 × 1012

−5.623 × 1012 −1.281 × 1012

−1.281 × 1012 −1.816 × 1011

−2.345 × 1011 −1.812 × 1010

−1.085 × 1010 −2.886 × 109

−7.328 × 108 −2.198 × 108

−1.936 × 108 −4.743 × 107

−1.537 × 106 −7.182 × 106

−1.347 × 101 −1.690 × 101

−1.019 × 101 −4.380 + 1.411 × i
−3.600 −4.380 − 1.411 × i
−2.652 −2.049
−2.234 −2.560
−1.703 −3.293
−2.037 × 10−2 −8.802 × 10−3

+1.641 × 10−2 (*) −2.732 × 10−2

−1.902 −1.905
−2.075 −2.075
−2.113 −2.113
−3.785 −3.773
−1.434 × 101 −1.415 × 101

−3.852 −3.838
−2.535 −2.538
−2.519 −2.523
−2.170 −2.164
−2.153 −2.148
−2.788 −2.775
−2.113 −2.101
−2.094 −2.094
−1.917 −1.919
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Case XC2H6
XO2

(1) 0.50 0.20
(2) 0.31 0.39
(3) 0.22 0.48
(4) 0.21 0.49
(5) 0.20 0.50

Table 3.8: Initial mole fractions of ethylene and oxygen with different test
cases.
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Chapter 4

Numerical Methods for
Optimization

4.1 Introduction

There are demands for improving performance of catalytic reactors by deter-
mining the process conditions that lead to maximizing the performance of
reactors. To achieve this goal, previous approaches in published works were
manually trying with different process conditions (e.g., [47] and [105]). No
systematic approach had been done for this problem before. In this chapter,
for the first time a systematic approach for optimizing the process conditions
is discussed.

In Section 4.2, we discuss about practical applications and the different
types of optimization variables and objective functions which could be opti-
mized in general. Mathematical formulation of the optimal control problem
is presented in Section 4.3. Section 4.4 is devoted to the solution approach
to the optimal control problem. Sequential Quadratic Programming (SQP)
methods are discussed in Section 4.5. Computation of derivatives, which are
necessary for the solution of SQP methods, are discussed in Section 4.6.

4.2 Practical optimization problems

In catalytic combustions, one usually can control the temperature profile at
the wall Twall(z), or the initial conditions at inlet such as Tgas, u0, and Y k0,
or the ratio of catalytic active surface area to geometric surface area Fcat/geo,
to maximize the gas conversion or maximize the selectivity. The conditions
to be fulfilled and objective function to be optimized are dependent on the
particular application. In the following, we distinguish two types of control
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quantities:

• Control parameters are control variables which do not depend on
“time”. In our case the axial coordinate z is treated as the time-like
independent variable. These include the initial conditions: the inlet gas
temperature Tgas, the inlet velocity u0, and/or the inlet mass fractions
Y k0; and/or the channel length zmax.

• Control functions are control variables which are functions of the
axial coordinate z, such as the temperature profile at the wall Twall(z),
and/or the ratio of catalytic active surface area to geometric surface
area Fcat/geo(z).

In the following the control parameters and control functions sometimes are
referred to as control variables.

For practical reasons, there are often equality and inequality constraints
such as the upper and lower bounds for the wall/gas temperature, or sum of
all mass fractions must be one, or the mass fractions must be between zero
and one, or the bounds for the inlet velocity.

4.3 Formulation of the optimal control prob-

lem

All above optimization problems can be formulated mathematically as a gen-
eral optimization problem which minimizes a certain scalar function subject
to the model equations and maybe additional constraints. In general, this
optimization problem can be stated as

min
w, q

φ(w,q)

subject to PDE Model(w,q)
Initial and Boundary Conditions(w,q)
State and Control Constraints(w,q)

(4.1)

where the PDE model is the system of partial differential equations describing
the fluid dynamical process (1.49)-(1.53), which include gas-phase chemistry
(1.21). The initial and boundary conditions are described in Section 1.7
which includes in particular the surface chemistry (1.23)-(1.28). Here, w
denotes the state vector

w =
(
u, p, T, r, Y1, Y2, . . . , YNg

, θ1, . . . , θNs

)

and q are the control variables.
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One approach used for solving a PDE-constrained optimization problem
is to discretize simultaneously the PDEs and to parameterize the controls
using finite element, or finite volume, or finite differences, . . . . The infinite
dimensional optimization problem is replaced by a very large, finite dimen-
sional, constrained, usually nonlinear, programming problem (NLP). Then,
available methods can be used to solve the NLP. The disadvantage of this
approach is that the NLP is very large, especially in our problems having
large-scale PDEs as the result of modeling using detailed chemistry with
many species. Moreover, numerical methods for large-scale NLPs are cur-
rently active research topics and it is still very difficult to solve large NLPs
from poor initial guesses.

We take another approach, which allows us to take the advantage of
available efficient DAE solvers with adaptive error control strategy. As in
Chapter 3, we semi-discretize the PDE using the method of lines on the grid
ψi, i = 1, . . . , N . This transforms the optimal control problem in a PDE
(4.1) to an optimal control problem in a DAE which can be stated as

min
w,q

Φ(w,q)

subject to DAE Model(w,q)
Initial Conditions(w,q)
State and Control Constraints(w,q),

(4.2)

where the DAE model is described in Chapter 3, Section 3.3, and is repeated
here for convenience (using the same notation of Section 3.3)

DAE Model(w,q) :





A(Q)QT
z = F (Q)

0 = ṡkWk + Jk,r|ψ=ψN
, if 1 ≤ k ≤ Ng

0 = ṡk, if Ng + 1 ≤ k ≤ Ng +Ns

0 = uN
0 = pN − pN−1

0 = TN − Twall

0 = rN − rmax

(4.3)

Here, the vector of state variables is

w = [Q1, Q2, . . . , QN , θ1, . . . , θNs
] .

The initial conditions are described in Section 3.3 and also repeated here
with suitable modification for the optimization problem.

Initial Conditions(w,q) :





u = u0(q)
p = p0(q)
T = T0(q)
Yk = Yk0(q), (k = 1, . . . , Ng)

at z = 0. (4.4)
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In our problems, the state and control constraints are mentioned in Sec-
tion 4.2.

The control vector q are

Control q :





Twall(z)
Fcat/geo(z)
u0

T0

Yk0 (k = 1, . . . , Ng).

Remark 4.3.1
When the control parameters such as the initial values of the state variables,
are included in the control variables, then this is modeled in (4.4). The
boundary conditions in the PDE model is coupled in the DAE model. The
controls Twall(z) and Fcat/geo(z) also appear in the boundary conditions.

4.4 Direct approach

To transform the infinite-dimensional optimal control problem (4.2) to a finite
dimensional optimization problem, we apply the direct shooting approach.
This is accomplished by restricting the control functions to lie in a subspace
of function space that is characterized by a finite number of parameters.
Figure 4.1 describes the general framework for solving the optimal control
problem.

4.4.1 Parameterization of the control functions

The control functions, such as the temperature profile at the wall Twall(z) or
the ratio of catalytic active surface area to geometric surface area Fcat/geo(z),
are treated as control functions in the optimal control problem.

Control functions are discretized on an appropriate user-defined grid

z1 = 0 < z2 < . . . z(nq−1) < znq
= zmax

using any suitable functional basis, and generally approximation q̂i of qi can
be written as

q̂i(z) = ϕi(z, qij), qij ∈
� ncdis (j = 1, 2, . . . , nq). (4.5)

Usually, the controls are approximated by piecewise continuous func-
tions, e.g., piecewise constant or piecewise linear but also other schemes
are applicable. The control functions are described by the coefficients in
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Figure 4.1: General framework for solving the PDE-constrained optimal con-
trol problem

these approximation schemes. By this way, the control functions in infinite-
dimensional spaces are approximated by their piecewise representation in a
finite-dimensional spaces. If the piecewise linear approximation is applied,
then, e.g.,

q̂i(z) = qij + (qij+1 − qij)
z − zj
zj+1 − zj

,

in particular,

Twall(z) = Twall, j + (Twall, j+1 − Twall, j)
z − zj
zj+1 − zj

Fwall/geo(z) = Fcat/geo, j + (Fcat/geo, j+1 − Fcat/geo, j)
z − zj
zj+1 − zj

.

For every control function qi (i = 1, 2 ) nq coefficients qij (j = 1, . . . , nq) are
introduced. Together with the control parameters will be called optimization
variables q and defined as

q = (q1
1, . . . , q

1
nq
, q2

1, . . . , q
2
nq
,q3, . . . ,qm)T . (4.6)

Here, we include all possible controls: q1 and q2 are supposed to be Twall(z)
and Fcat/geo(z), q

3, . . . ,qm are supposed to be u0, T0, and Y k0 (k = 1, . . . , Ng).
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However, in a particular application only one or some controls are to be op-
timized, in our implementation the optimization variables are also modified
accordingly to include only those controls.

Note that by the approximation (4.5) the bounds on the controls are
transformed to bounds on the parameterization coefficients. The optimiza-
tion variables q will be the variable in the nonlinear constrained optimization
problem, which will be discussed in the following sections.

4.4.2 The nonlinear optimization problem

By replacing all the control functions by their approximations, the optimal
control problem (4.2) becomes

min
q

h(q)

subject to e(q) = 0
c(q) ≤ 0,

(4.7)

and the controls q in the DAE model (4.3) and the initial conditions (4.4)
are also replaced by their approximations.

For the evaluations of the objective function and the constraints in (4.7)
with given initial values and control parameters, we solve the DAE initial
value problem (IVP) (4.3).

4.4.3 Optimization methods

To solve constrained nonlinear optimization problems, the method of Sequen-
tial Quadratic Programming (SQP) is the most efficient available method.
It consists of the solution of a sequence of quadratic optimization problems
and can be regarded as a Newton-like method for the optimality conditions
of the problem (4.7). We use the implementation SNOPT [56] which em-
ploys BFGS updates for the approximation of the Hessian and an Active-Set
strategy for the treatment of the inequalities.

As discussed above, a solution of the semi-discretized PDE only makes
sense if the algebraic equations (the boundary condition of the PDE) are con-
sistent. As a consequence, our optimization follows the so-called sequential
approach solving the algebraic constraints in every iteration. Fortunately,
in our case this is not time consuming and the computing time for consis-
tency calculations is negligible compared to the solution time for the whole
discretized PDE.
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4.5 SQP methods

A basic idea of solving a general NLP problem is to replace it by solving
a sequence of appropriate easier subproblems. Such as, to solve a nonlin-
ear equation, one usually solve it by a sequence of linear problems as in
Newton-like methods, or for unconstrained optimization, one usually replace
it by a sequence of quadratic problems, or homotopy methods. Applying this
principle to the nonlinear constrained optimization, sequential quadratic pro-
gramming (SQP methods) have been developed, which are the most powerful
methods we know today for solving nonlinear constrained smooth optimiza-
tion problems. For detailed surveys on the SQP methods, see e.g., [22], [36],
[62], and [80].

4.5.1 SQP algorithm framework

The basic idea of SQP methods is to formulate and solve a quadratic program-
ming (QP) subproblem at each iteration. The QP subproblem is obtained by
using the quadratic approximation of the scalar-valued Lagrangian function

`(q, λ, µ) = h(q) + λT e(q) + µT c(q),

and linearizing the constraints. It is well known that the optimality condi-
tions based on the Lagrangian function ` rather than the objective functions,
thus the local quadratic model here is of the Lagrangian function. For op-
timization, quadratic models are chosen instead of linear ones because in
general linear models do not reflect the nonlinearity of the problem and do
not give a good local approximation of the problems, and linear functions are
unbounded. At the k-th iteration, given qk, an approximation of the solution,
and λk and µk, an approximation of the Lagrangian multipliers, and Bk, an
approximation of the Hessian Hk of the Lagrangian function, then the QP
subproblem is as follows.

min
∆qk

∇q`(qk)
T∆qk + 1

2
∆qk

TBk∆qk

subject to c(qk) + ∇c(qk)T∆qk = 0
e(qk) + ∇e(qk)T∆qk ≤ 0.

Another form of the quadratic subproblem, which is most often used in prac-
tice, is

min
∆qk

∇qh(qk)
T∆qk + 1

2
∆qk

TBk∆qk

subject to c(qk) + ∇c(qk)T∆qk = 0
e(qk) + ∇e(qk)T∆qk ≤ 0.
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These two forms of the quadratic subproblem are equivalent for problems
with only equality constraints, and in general are not equivalent in the in-
equality constrained cases. However, if the current estimate µk is zero for all
inactive constraints, then it is easily to verify that

∇q`(qk)
T∆qk = ∇qh(qk)

T∆qk

for all ∆qk satisfying the linearized active constraints, thus the two forms are
equivalent in this case. A general framework of a SQP algorithm is presented
in the following.

Algorithm 4.5.1 (SQP algorithm framework)
Input: Initial guesses for q0, λ0, µ0, B0, k = 0

Output: Approximate solution q∗, λ∗, µ∗

1. Form and solve (QP) subproblem to obtain (∆qk,∆λk,∆µk):

min
∆qk

∇h(qk)T∆qk + 1
2
∆qk

TBk∆qk

subject to ∇e(qk)T∆qk + e(qk) = 0
∇c(qk)T∆qk + c(qk) ≤ 0

2. Choose step-length α by a line-search method or a trust region method.

3. Compute new estimate

qk+1 = qk + α∆qk

λk+1 = λk + α∆λk

µk+1 = µk + α∆µk

4. Convergence test: Stop if a convergence criterion is met.

5. Compute Bk+1

6. Set k = k + 1, goto 1.

Note that in the step 1 in Algorithm 4.5.1, in addition to the optimal solution
∆qk, we also obtain the optimal multipliers of the (QP), which are denoted

by λ
(qp)
k and µ

(qp)
k . The updates ∆λk and ∆µk are computed as

∆λk = λ
(qp)
k − λk

∆µk = µ
(qp)
k − µk.
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Indeed, with this setting of the Lagrangian multipliers we take the optimal
multipliers of the (QP) as the estimate multipliers for the original NLP.

The step 2 in Algorithm 4.5.1 is to ensure the global convergence of the
algorithm. This is usually done with a merit function φ, whose reduction
implies progress towards a solution. A typical merit function is

φ(q, η) = h(q) + η




m∑

i=1

|ei(q)| +
l∑

j=1

|max(0, cj(q))|

 ,

which is usually known as the l1 exact penalty function.

4.5.2 Hessian approximations

There are two approaches for approximation of the Hessian matrix Hk: full
Hessian approximation and reduced Hessian approximation. Natural meth-
ods for approximation of Hessian are computed analytically such as by au-
tomatic differentiation, or by finite differences. Alternatively, scant approx-
imations can be used as in the unconstrained optimization. Two typical
updating schemes of this class are the PSB formula and BFGS formula

The rank-two PSB update formula for the constrained optimization is as

Bk+1 = Bk +
(yk − Bksk)s

T
k + sk(y −Bks)

T

sTk sk
− (y − Bksk)

T sk
(sTk sk)

2
sks

T
k ,

where

sk = qk+1 − qk

and

yk = ∇q`(qk+1, λk+1, µk+1) −∇q`(qk, λk, µk).

Similarly to the unconstrained case, the rank-two BFGS update formula
for the constrained case is

Bk+1 = Bk +
yky

T
k

sTk yk
− Bksks

T
kBk

sTkBksk
.

Note that with PSB update the matrices Bk are not necessarily positive
definite but with the BFGS update, the matrix Bk+1 is positive definite if
yTk sk > 0 and Bk is positive definite, this condition is satisfied if the Hessian
of Lagrangian is positive definite. However, if the condition yTk sk > 0 is
not satisfied, this could be the case for constrained optimization, then the
positive definite property of Bk+1 cannot ensure. In order to maintain the
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positive definite property of Bk+1, the following modified BFGS update (see
[98]) can be used

Bk+1 = Bk +
rkr

T
k

sTk rk
− Bksks

T
kBk

sTkBksk
,

where

rk = θkyk + (1 − θk)Bksk, 0 < θk ≤ 1,

and

θk =





1 if sTk yk ≥ εθs
T
kBksk

(1 − εθ)s
T
kBksk

sTkBksk − sTk yk
otherwise

and εθ ∈ [0.1, 0.2].

4.5.3 Convergence of the methods

In the local convergence domain, where the initial guess is sufficiently close
to a solution, the active set of the QP subproblem will have the same active
set as the NLP. Thus, in the following, only equality-constrained problem is
studied, in particular, we consider

min h(q)
subject to e(q) = 0.

(4.8)

The Karush-Kuhn-Tucker optimality conditions for the equality-constrained
problem (4.8) are given by

∇q`(q, µ) = ∇qh(q) + ∇e(q)µ = 0
e(q) = 0.

(4.9)

Applying Newton’s method to Equation (4.9), we obtain the following iter-
ation scheme

(
∇2
q`(qk, µk) ∇e(qk)
∇e(qk)T 0

)(
∆qk
∆µk

)
= −

(
∇q`(qk, µk)

e(qk)

)
(4.10)

Substituting

∆µk = µk+1 − µk, ∇`(qk, µk) = ∇hk + ∇ekµk
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into (4.10), we obtain

(
∇2
q`(qk, µk) ∇e(qk)
∇e(qk)T 0

)(
∆qk
µk+1

)
= −

(
∇qh(qk, µk)

e(qk)

)
(4.11)

Now consider the equality-constrained (QP) subproblem

min
∆qk

∇qh(qk)
T∆qk + 1

2
∆qTk∇2

q`k∆q
T
k

subject to e(qk) + ∇e(qk)T∆qk = 0,
(4.12)

the first order conditions for this problem is

∇2
q`k∆qk + ∇qh(qk) + ∇e(qk)µqp = 0

∇e(qk)T∆qk = −e(qk),
(4.13)

which can be rewritten as
(

∇2
q`(qk, µk) ∇e(qk)
∇e(qk)T 0

)(
∆qk
µqp

)
= −

(
∇qh(qk, µk)

e(qk)

)
. (4.14)

This is the same as (4.11) with µqp replaced by µk+1. This means that the
solution of the QP subproblem is exactly the solution of one step Newton
iteration. This result can be formulated formally as the following theorem
[91].

Theorem 4.5.1 (Local Convergence of SQP with exact Hessian)
Suppose that

(a) h(q) and e(q) are twice differentiable, with Lipschitz continuous second
derivatives in a neighborhood of (q∗, µ∗),

(b) At the solution point q∗ with optimal Lagrange multipliers m∗, the
constraint Jacobian ∇e(q∗)T has full row rank, and the Hessian of the
Lagrangian ∇2

q`(q
∗, µ∗) is positive definite on the tangent space of the

constraints.

Then if q0 and µ0 are sufficiently close to q∗ and µ∗, the pair (qk, µk) generated
by the SQP Algorithm 4.5.1 with Hk defined as the Hessian of the Lagrangian
and the step-length α = 1 converge quadratically to (q∗, µ∗).

For the SQP methods using a quasi-Newton approximation, the following
result is obtained [23].

Theorem 4.5.2 (Convergence of SQP with Hessian Approximation)
Suppose that
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(a) At the solution point q∗ with optimal Lagrange multipliers µ∗, the
constraint Jacobian ∇e(q∗)T has full row rank, and the Hessian of the
Lagrangian ∇2

q`(q
∗, µ∗) is positive definite on the tangent space of the

constraints.

(b) The sequence {qk} generated by the Algorithm 4.5.1 with quasi-Newton
approximate Hessian Bk converges to q∗.

Then the sequence {qk} converges superlinearly if and only if the Hessian
approximation Bk satisfies

lim
k→∞

‖Pk(Bk −H∗)(qk+1 − qk)‖
‖(qk+1 − qk)‖

= 0,

where Pk = I −∇ek(∇eTk∇ek)−1∇eTk and H∗ = ∇2`q(q
∗, µ∗).

4.6 Computation of derivatives

As we discuss in previous sections, the solution of the optimization problem
(4.7) by the SQP method requires the solution of the IVP (4.3) and the
derivatives of the objective function and the constraints with respect to the
optimization variables. In our case, this is somewhat intricate because these
functions are implicitly defined from the solution of the DAE system (4.3)
derived from the semi-discretization of the PDE.

Efficient methods for the solution of the IVP are discussed in Chapters 2
and 3, which include fast methods for computing the derivatives and scaling
techniques to improve accuracy for the solution of the IVP.

The derivatives of the objective function and the constraints with respect
to the optimization variables q are obtained by applying the chain rule. For
example,

dh(q)

dq
=
∂Φ

∂w

∂w

∂q
+
∂Φ

∂q
.

This in turn requires the derivatives of the objective and the constraint func-
tions with respect to the state variables w and the optimization variables q,
∂Φ/∂w and ∂Φ/∂q, and the derivatives of the state variables with respect to
the optimization variables ∂w/∂q.

The derivatives of the state variables with respect to the optimization
variables ∂w/∂q are the derivatives of the solution of the DAE (4.3) with
respect to the optimization variables q, which are considered as parameters
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of the DAE (4.3). The derivatives are sometimes also called sensitivities.
The DAE (4.3) with parameters can be written as

B(t, x, y, q)ẋ = f(t, x, y, q)
0 = g(t, x, y, q)

x(t0) = x0.
(4.15)

Here, (x, y) denotes w and t denotes z in (4.3).
The derivatives of the solution of the DAE with respect to the optimiza-

tion variables q can be computed using finite differences

dw(z, q)

dqi
=
w(z, q + ηei) − w(z, q)

η
+ ε, ε = O(η)

where ei is a specified direction and η is an appropriate value. This mean
that we need to solve the DAE (nv + 1) times for computing the required
derivatives dw/dq, using different directional vectors ei. Moreover, the com-
puted numerical solution is the output of an integrator. If the integrator
uses automatic step size and order control strategy, which is usually done in
modern integrators for efficiency, then the output is generally a discontinuous
or undifferentiable function of the input, i.e., the optimization variables, and
has the staircase-like shape, i.e., piecewise constant, and the derivatives are
piecewise zero. For a given integration tolerance TOL, the best accuracy ε
one can expect is

ε = O(
√

TOL) if η =
√

TOL.

Here we assume that the order of q is one. If components of v are at different
orders, then one can choose ηi =

√
TOL × max(|q(i)|,ATOL(i)). It means

that even we employ high accuracy integration only low accuracy derivatives
are obtained. In particular for our problems as mentioned in Chapters 2
and 3, it is very difficult, if not impossible, to integrate the DAE with a
small integration tolerance TOL. This approach is also referred to as External
Numerical Differentiation (END).

Another reliable and efficient approach introduced by Bock [17] is based
on the concept of Internal Numerical Differentiation (IND). The basic idea
of IND is to calculate the “exact” derivative of the approximate solution
of the IVP. Here, we approximate the solution of the IVP by the BDF-
discretization scheme (2.16). We consider the discretization as a mapping
of the parameters to the discretized solution trajectory and differentiate this
mapping by applying the chain rule. According to the implicit function
theorem, the mapping is continuous and differentiable with respect to the
parameters, if we freeze the adaptive grid and all other adaptive decisions
made by the integrator.
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BDF-discretization for DAE

As in Chapter 2, applying the BDF formula (2.12), which is derived in Section
2.3 and are repeated here for convenience

ẋm+1 = − 1

hm+1

(
α

(m+1)
0 xm+1 +

k∑

i=1

α
(m+1)
i xm+1−i

)

to discretize (4.15) at the (m + 1)-th step, similar to Section 2.3, we obtain
the following nonlinear equations

Bm+1
(
α

(m+1)
0 xm+1 +

∑k
i=1 α

(m+1)
i xm+1−i

)
+ hm+1fm+1 = 0

gm+1 = 0,
(4.16)

where Bm+1, fm+1 and gm+1 are now defined as

Bm+1 = B(tm+1, xm+1, ym+1, q)

fm+1 = f(tm+1, xm+1, ym+1, q)

gm+1 = g(tm+1, xm+1, ym+1, q).

The Jacobian matrix, also called iteration matrix of the DAE, for the non-
linear equations (4.16) is

J =

(
α

(m+1)
0 Bm+1 +Bm+1

x cm+1 + hm+1fy Bm+1
y cm+1 + hm+1fy

gm+1
x gm+1

y

)
(4.17)

where

cm+1 = α
(m+1)
0 xm+1 +

k∑

i=1

α
(m+1)
i xm+1−i.

Variational DAE

Differentiating the IVP (4.15) with respect to parameter q, we obtain the fol-
lowing variational DAE (VDAE), sometimes also called sensitivity equations
of (4.15),

(
∂B

∂w
wq +

∂B

∂q

)
ẋ +Bẋq =

∂f

∂w
wq +

∂f

∂q

0 =
∂g

∂w
wq +

∂g

∂q

where w = (x, y), wq = (xq, yq), xq = ∂x/∂q and yq = ∂y/∂q, and B, f , and
g are evaluated at (t, x, y).
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By denoting

Bw =
∂B

∂w
, Bq =

∂B

∂q

fw =
∂f

∂w
, fq =

∂f

∂q

gw =
∂g

∂w
, gq =

∂g

∂q
,

the variational DAE can be rewritten as

Bẋq = fww
q + fq − (Bww

q +Bq)ẋ
0 = gww

q + gq.
(4.18)

Note that the variational DAE (4.18) is linear, and the derivative of the
solution of (4.15) satisfies the variational DAE (4.18) with wq

0 = ∂w0/∂q =
(∂x0/∂q, ∂y0/∂q).

BDF-discretization for the variational DAE

Applying the BDF-formula (2.12) for the variable ẋq to (4.18), i.e.,

ẋqm+1 = − 1

hm+1

(
α

(m+1)
0 xqm+1 +

k∑

i=1

α
(m+1)
i xqm+1−i

)

we obtain

Bm+1(α
(m+1)
0 xqm+1 +

k∑

i=1

α
(m+1)
i xqm+1−i)

+(Bm+1
w wqm+1 +Bm+1

q )(α
(m+1)
0 xm+1 +

k∑

i=1

α
(m+1)
i xm+1−i)

+hm+1(f
m+1
w wqm+1 + fm+1

q ) = 0
gm+1
w wqm+1 + gm+1

q = 0

(4.19)

Here we discretize the variational DAE (4.18) using the same the step-size
and order as in the nominal trajectory, i.e., h and αi are the same as in the
nominal trajectory.

Note that the equation (4.19) is linear in the unknowns wq
m+1, and its

iteration matrix is

J =

(
α

(m+1)
0 Bm+1 +Bm+1

x cm+1 + hm+1fy Bm+1
y cm+1 + hm+1fy

gm+1
x gm+1

y

)
(4.20)

where

cm+1 = α
(m+1)
0 xm+1 +

k∑

i=1

α
(m+1)
i xm+1−i.
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Differentiation of the BDF-discretization for the DAE

Differentiating the discretized DAE system (4.16) with respect to the param-
eter q we obtain

Bm+1(α
(m+1)
0 xqm+1 +

k∑

i=1

α
(m+1)
i xqm+1−i)

+(Bm+1
w wqm+1 +Bm+1

q )(α
(m+1)
0 xm+1 +

k∑

i=1

α
(m+1)
i xm+1−i)

+hm+1(f
m+1
w wqm+1 + fm+1

q ) = 0
gm+1
w wqm+1 + gm+1

q = 0.

(4.21)

The equations (4.19) and (4.21) are the same. It means that when the
VDAE (4.18) is solved using the same BDF-discretization scheme (the same
step-size and order) as in the nominal trajectory (4.15), then the computed
solution for the VDAE is the exact derivative of the nonimal trajectory ap-
proximation. Moreover, the variational DAE (4.18) has the same iteration
matrix as the original system (4.15). There are three major methods solving
the sensitivity equations in the framework of IND: staggered direct method,
simultaneous corrector method, and staggered corrector method.

4.6.1 The staggered direct method

There are two major stages at each integration step in this method (see e.g.,
[28], [78] and [10]). First the nominal trajectory of the DAE system are
computed by solving the nonlinear corrector equations. Once an acceptable
solution is obtained, then the solution of the linear sensitivity equation (4.19)
is computed through the direct solution of the linear system:

J

(
xqm+1

yqm+1

)
= −

(
Bm+1βqm+1 +Bm+1

q cm+1 + hm+1f
m+1
q

gm+1
q

)
, (4.22)

where

βqm+1 =
k∑

i=1

α
(m+1)
i xqm+1−i,

and J is defined as in (4.20).
Although the iteration matrix J is the same as in the nominal trajectory,

we need to re-evaluate the partial derivatives Bw, fw, gw, Bq, fq, and gq
after solving the nominal trajectory to correctly define the VDAE (4.18) at
the newly computed value of the state variables. Thus, J also needs to be
recomputed and factorized. There is a alternative approach, which do not
recompute and factorize J , is discussed later.
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4.6.2 The simultaneous corrector method

This method solves the DAE and the VDAE simultaneously. For easy of
presentation, we rewrite the DAE (4.15) in an implicit form as

F (t, w, ẇ, q) = 0,

where w = (x, y) and

F (t, w, ẇ, q) =

(
B(t, x, y, q)ẋ− f(t, x, y, q)

g(t, x, y, q)

)
,

thus the VDAE can be written as

∂F

∂w

∂w

∂q
+
∂F

∂ẇ

∂ẇ

∂q
+
∂F

∂q
= 0.

Define W = (w,wq
1, w

q
2, . . . , w

q
nq

)T with wqi = ∂w/∂qi and

F =

(
F (t, w, ẇ, q),

∂F

∂w
wq1 +

∂F

∂ẇ
ẇq1 +

∂F

∂q1
, . . . ,

∂F

∂w
wqnq

+
∂F

∂ẇ
ẇqnq

+
∂F

∂qnq

)T
,

the combined system of the DAE and its VDAE can be rewritten as

F(t,W, Ẇ , q) = 0

W (0) =

(
w0,

∂w0

∂q1
, . . . ,

∂w0

∂qnq

)T
.

(4.23)

Discretization of the system (4.23) using the kth order BDF formula (2.12)
for Ẇ yields the following nonlinear equation system

G(Wm+1) = F

(
tm+1,Wm+1,

−1

hm+1

k∑

i=0

αm+1
i Wm+1−i, q

)
= 0, (4.24)

which can be solved by Newton’s method with the iteration

J∆W k
m+1 = −G(W k

m+1)
W k+1

m+1 = W k
m+1 + ∆W k

m+1,

where

J =




J
J1 J
J2 0 J
...

...
...

. . .

Jnq
0 . . . 0 J



, (4.25)
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J =
−αm+1

0

hm+1

∂F

∂ẇ
+
∂F

∂w
, Ji =

∂J

∂w
wqi +

∂J

∂qi
, i = (1, . . . , nq).

The Jacobian J can be approximated by its block diagonal in Newton itera-
tion, and the resulting iteration, as shown in [85], is two-step quadratically
convergent for the full Newton iteration and convergent for modified Newton
iteration. Thus, the Jacobian matrix J can be reused and evaluated and
factored when needed. However, to evaluate G(W k

m+1) at each Newton itera-
tion, we need the derivatives ∂F/∂w, ∂F/∂ẇ, and ∂F/∂q. These derivatives
need to be evaluated at every corrector iteration.

4.6.3 The staggered corrector method

The staggered corrector method [50] is similar to the the staggered direct
method. On each integration step, the state variables are solved first, then
the Newton iteration is used to solve the linear sensitivity equations instead
of solving the linear system directly as in the staggered direct method. Here,
a modified Newton method is used for solving the linear equation. The
modified Newton iteration for the sensitivity variables is

J̃(wq
k+1

m+1 − wq
k

m+1) = −
(
Jwq

k

m+1 +
∂F

∂ẇ
βqm+1 +

∂F

∂q

)
,

where

βqm+1 =
−1

hm+1

k∑

i=1

αm+1
i wqm+1−i.

Here J is the current unfactored Jacobian, and J̃ is a factored Jacobian
from the previous steps. Note that the partial derivatives ∂F/∂w, ∂F/∂ẇ,
and ∂F/∂q only need to be computed once per integration step, after the
corrector iteration of the nominal trajectory and before the corrector iteration
for sensitivity variables.

4.6.4 Comparison of the methods

It is not so easy to give a precise comparison of these methods. Which
method is more efficient than others depending on particular problems. Here
we give qualitative comparison and analysis, for comparison with numerical
experiments see [81].

In the following, the partial derivatives are referred to the partial deriva-
tives of the model functions with respect to the state variables and param-
eters, in particular, ∂F/∂w, ∂F/∂ẇ, and ∂F/∂q for the fully implicit DAE
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form, or ∂B/∂w, ∂f/∂ẇ, ∂g/∂ẇ, ∂B/∂p, ∂f/∂p, and ∂g/∂ṗ for the quasi-
linear form. The corrector iteration is referred to the iteration process for
solving the corrector equations by a modified Newton method.

As mentioned in previous sections, for the staggered direct method the
partial derivatives are evaluated at each integration step, and the Jacobian is
factored at each integration step. For the simultaneous corrector method, the
partial derivatives are evaluated at each corrector iteration and the Jacobian
is reused. For the staggered corrector method, the partial derivatives are
evaluated at each integration step. Table 4.1 shows qualitative comparison
of the methods.

Since the staggered direct method evaluates the partial derivatives and
factorizes the Jacobian matrix at each step, the corrector iteration needs only
one or two iterations to converge because of the good approximation of the
Jacobian, or even it needs least integration steps. In particular, for highly
nonlinear problems, where the Jacobian changes significantly in the course of
the integration, and the cost for factoring the Jacobian is not too large com-
pared to the cost for evaluating the partial derivatives, this method seems to
be more efficient than others. However, our numerical experiments show that
the number of integration steps does not change much—only few integration
steps—when a very good approximation or an acceptable approximation of
Jacobian is used. On the other hand, as the staggered corrector method use
the old factorized Jacobian, the corrector iteration could need more itera-
tions to convergence especially for nonlinear problems, and it may take more
integration steps thus a higher number of step for solving the linear equations
than the staggered direct method. But in total it may need less the number
of Jacobian factorizations than the staggered direct method. For the simul-
taneous corrector method, because the Jacobian J is only approximated by
its block diagonal using the old J , the slow convergence of corrector iteration
may occur. Therefore, the number of Newton iterations per integration step
may increase. In addition, this method evaluates the partial derivatives at
each Newton iteration, thus the total number of partial derivatives could be
higher than others. Finally, if the cost of factor Jacobian dominates, this is in
particular true for very large scale problems, the staggered corrector method
would be more efficient than others. If the linear system of the Newton iter-
ation is solved by iterative methods, then the factorization of the Jacobian
is eliminated, thus the staggered direct method may be favored.
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# Eval. # Fac. # Integ. # Iter.
derivatives J step per step

Stag. direct medium− high low low
Stag. corrector medium+ medium− medium+ medium
Simul. corrector high medium+ high− high

Table 4.1: Qualitative comparison of the computing sensitivity methods

4.7 Performance comparison of different meth-

ods for computation of derivatives

Again as in Section 2.10, to generate the sensitivity equations we use auto-
matic differentiation in addition to the finite difference methods. We apply
the same techniques as in Section 2.10 for computation of derivatives. Here,
we investigate the performance of these methods applied to the solution of
the optimal control prolem. In particular, we compare the performance of
the following methods, which are presented in Section 2.10 and are briefly
included here for convenience.

• DFD: The dense linear solver is used, the derivatives are computed
using the forward finite difference and treated as a dense matrix. This
mode is an adaptively modification for the DAESOLE code from the
DAESOL code.

• DAD: The dense linear solver is used, the derivatives are computed
using automatic differentiation and treated as a dense matrix.

• BFT: The band linear solver is used, the derivatives are computed
using the forward finite difference particular for the block tridiagonal
matrix.

• BAT: The band linear solver is used, the derivatives are computed
using automatic differentiation taking the block tridiagonal structure
into account.

Three modes DAD, BFT and BAT are newly implemented and coupled with
DAESOLE. The optimal control problem is to maximize the efficiency of the
conversion of ethane to ethylene, see Section 5.1.4 for detailed description of
the problem.

Let us define the Speedup to be the ratio between the CPU time for
solving the optimal control problem using the standard model in DAESOLE
(dense finite differences for computation of derivatives), which is named as

140



DFD DAD BFT BAT
Total # model
func. (mf) calls 2510526 35893 610984 41698
Total # mf-calls
for derivs. 2470856 586763
Total CPU times
for derivs. (secs) 51289 1705 2843 814
Total CPU
times (secs) 52309 2461 3352 1553

Table 4.2: Computational statistics of the optimal control problem (conver-
sion of ethane to ethylene) with 12 spatial grid points

DFD DAD BFT BAT
Total # model
func. (mf) calls 3196289 43913 910551 33171
Total # mf-calls
for derivs. 3158544 874904
Total CPU times
for derivs. (secs) 109699 3598 5973 893
Total CPU
times (secs) 111581 5334 7324 2021

Table 4.3: Computational statistics of the optimal control problem (conver-
sion of ethane to ethylene) with 16 spatial grid points

DFD, and the CPU time for solving the same problem by an other method,
e.g., DAD, BFT, or BAT.

Tables 4.2, 4.3 and 4.4 summarize the computational statistics of the
optimal control problem with different methods and the number of spatial
grid points.

Table 4.5 shows the speedup gained by different methods. It shows that
computation of derivatives by automatic differentiation (for solving optimal
control problem) always outperforms computation by finite differences. In
our problem, the Speedup is quite large because the model functions are com-
plicated, and the cost for evaluating it is expensive. Thus, the computation
of derivatives by the finite differences with dense mode takes many model
function calls, and the result is that the computation of derivatives takes a lot
of times. As the number of the spatial disretization points (Nodes) is large
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DFD DAD BFT BAT
Total # model
func. (mf) calls 3995935 46514 677008 40115
Total # mf-calls
for derivs. 3957916 650696
Total CPU times
for derivs. (secs) 214686 5961 5936 1380
Total CPU
times (secs) 217236 8627 7428 3246

Table 4.4: Computational statistics of the optimal control problem (conver-
sion of ethane to ethylene) with 20 spatial grid points

Nodes BAT DAD BFT
12 33.68 21.25 15.69
16 55.21 20.91 15.23
20 66.92 25.18 29.24

Table 4.5: Speedup gained by different methods applied to the optimal con-
trol problem (conversion of ethane to ethylene)

enough (i.e., 20), the speedup by DAD is smaller than by BFT because the
cost for evaluation of derivatives also increases in dense mode even compute
by DFD or DAD.
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Chapter 5

Numerical Results

In this chapter our simulation and optimization software BLAYERsim and
BLAYERopt are applied to several practical applications. In addition, we
make a comparison between the existing DETCHEMCHANNEL and BLAYERsim

with respect to performance and numerical results. In addition, for perfor-
mance comparison of different methods for simulation, see Chapter 2, Section
2.10 and for optimzation, see Chapter 4, Section 4.7, for numerical results of
the scaling method, see Chapter 2, Section 2.7.

In Section 5.1, we present the simulation results obtained by BLAYERsim

of four applications: (1) NO2 oxidation (2) catalytic partial oxidation of
methane (only consider surface reactions) (3) catalytic combustion of methane,
and (4) conversion of ethane to ethylene. Section 5.2 is devoted to compar-
ison of the our simulation software BLAYERsim with the simulation soft-
ware DETCHEMCHANNEL with respect to performance and numerical re-
sults. In Section 5.3, we present some optimization results obtained by using
BLAYERopt software applying to applications: (a) catalytic combustion of
methane and (b) conversion of ethane to ethylene.

In the following, the initial and boundary conditions are the ones given by
the user, and these are used to formulate the complete initial and boundary
conditions for the numerical problem as discussed in the previous chapters.

5.1 Simulation results

5.1.1 NO2 oxidation process

A gas mixture flows in a channel with the following setting.

– Channel geometry: the radius rmax = 2.5×10−4 [m], the channel length
zmax = 0.01 [m].
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– Initial conditions: the initial mole fraction of each species XNO2
=

0.10, XN2
= 0.90, other species are absent at inlet. The initial gas

temperature is Tgas = 300 [K], the initial pressure is p = 105 [Pa], and
the initial velocity u = 1 [m/s].

– Boundary conditions: the temperature at the wall is Twall = 1200 [K].

– Reaction mechanisms: 5 gas-phase species, 4 surface species, 9 sur-
face reactions, and 8 gas-phase reactions. The gas-phase reactions and
surface reactions are given in the Appendix.

– Number of grid points in the radial axis: 30.

Figure 5.1 shows the results of simulation. In this figure, the axial velocity,
the temperature, and the mass fractions of gas phase species as functions
of radial coordinate r and axial coordinate z are shown. In addition, the
pressure and surface coverages of surface species as functions of the axial
coordinate z are also presented.

5.1.2 Catalytic partial oxidation of methane

A mixture of methane CH4, hydrogen H2, oxygen O2, and nitrogen N2 enter
the channel with the following setting.

– Channel geometry: the radius rmax = 9.0×10−4 [m], the channel length
zmax = 0.5 [m].

– Initial conditions: the initial mole fraction of each species XCH4
= 0.03,

XH2
= 0.05, XO2

= 0.19, and XN2
= 0.73, other species are absent at

inlet. The initial gas temperature is Tgas = 298 [K], the initial pressure
is p = 105 [Pa], and the initial velocity is u = 0.8 [m/s].

– Boundary conditions: the temperature at the wall is Twall = 1200 [K].

– Reaction mechanisms: 7 gas-phase species, 11 surface species, 23 sur-
face reactions. The surface reactions are given in the Appendix, the
gas-phase reactions are not considered.

– Number of grid points in the radial axis: 20.

Figures 5.2 and 5.3 show the results of simulation.
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Figure 5.1: Simulation results of NO2 oxidation
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Figure 5.2: Profiles of axial velocity, pressure, temperature and some selected
species from simulation results of catalytic partial oxidation of methane (I)

146



0

0.2

0.4

0
2

4
6

8

x 10
−4

0.5

1

1.5

2

2.5

3

3.5

x 10
−3

z

YH2

r
 98600

 98800

 99000

 99200

 99400

 99600

 99800

 100000

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

P
re

ss
ur

e 
[P

a]

z - axial axis [m]

Pressure

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0  0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008  0.009  0.01

S
ur

fa
ce

 c
ov

er
ag

e

z - axial axis [m]

Surface coverage of surface species

PT(s)
H(s)
O(s)

H2O(s)
C(s)

CO(s)

Figure 5.3: Profiles of axial velocity, pressure, temperature and some selected
species from simulation results of catalytic partial oxidation of methane (II)
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5.1.3 Catalytic combustion of methane

A gas mixture flows in the channel with the following setting.

– Channel geometry: the radius rmax = 2.5×10−4 [m], the channel length
zmax = 0.01 [m].

– Initial conditions: the initial mole fraction of each species XCH4
= 0.5,

XO2
= 0.3, and XN2

= 0.2, other species are absent at inlet. The initial
gas temperature is Tgas = 298 [K], the initial pressure is p = 1.2 × 105

[Pa], and the initial velocity is u = 1 [m/s].

– Boundary conditions: the temperature at the wall is Twall = 1373 [K].

– Reaction mechanisms: 21 gas-phase species, 11 surface species, 23 sur-
face reactions, and 128 gas-phase reactions. The gas-phase and surface
reactions are given in the Appendix.

– Number of grid points in the radial axis: 20.

Figures 5.4, 5.5 and 5.6 show the results of simulation.

5.1.4 Conversion of ethane to ethylene

A gas mixture flows in the channel with the following setting.

– Channel geometry: the radius rmax = 2.5×10−4 [m], the channel length
zmax = 0.01 [m].

– Initial conditions: the initial mole fraction of each species XC2H6
=

0.44, XO2
= 0.26, and XN2

= 0.30, other species are absent at inlet.
The initial gas temperature is Tgas = 650 [K], the initial pressure is
p = 1.2 × 105 [Pa], and the initial velocity is u = 0.5 [m/s].

– Boundary conditions: the temperature at the wall Twall = 1300 [K].

– Reaction mechanisms: 25 gas-phase species, 20 surface species, 82 sur-
face reactions, and 261 gas-phase reactions. The gas-phase and surface
reactions are given in the Appendix.

– Number of grid points in the radial axis: 20.

Figures 5.7, 5.8 and 5.9 show the results of simulation.

148



0

0.005

0.01

0
0.5

1
1.5

2

x 10
−4

0

1

2

3

4

5

6

z

u

r 0

0.005

0.01

0
0.5

1
1.5

2

x 10
−4

400

600

800

1000

1200

z

T

r

0

0.005

0.01

0
0.5

1
1.5

2

x 10
−4

0.05

0.1

0.15

0.2

0.25

0.3

z

YCH4

r 0

0.005

0.01

0
0.5

1
1.5

2

x 10
−4

0.1

0.2

0.3

0.4

z

YO2

r

0

0.005

0.01

0
0.5

1
1.5

2

x 10
−4

0

0.1

0.2

0.3

0.4

0.5

z

YCO

r 0

0.005

0.01

0
0.5

1
1.5

2

x 10
−4

0

0.01

0.02

0.03

0.04

z

YCO2

r

Figure 5.4: Profiles of axial velocity, pressure, temperature and some selected
species from simulation results of catalytic combustion of methane (I)
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Figure 5.6: Profiles of axial velocity, pressure, temperature and some selected
species from simulation results of catalytic combustion of methane (III).
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Figure 5.7: Profiles of axial velocity, pressure, temperature and some selected
species from simulation results of conversion of ethane to ethylene (I).
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Figure 5.8: Profiles of axial velocity, pressure, temperature and some selected
species from simulation results of conversion of ethane to ethylene (II).
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Figure 5.9: Profiles of axial velocity, pressure, temperature and some selected
species from simulation results of conversion of ethane to ethylene (III).
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5.2 Comparison with the software

DETCHEMCHANNEL V.1.1

In this section, we give a comparison between the new developed program
BLAYERsim with the program DETCHEMCHANNEL version 1.1.

The code DETCHEMCHANNEL also uses the same boundary layer model as
we do, but with a different approach and numerical methods: In DETCHEMCHANNEL

code, the PDE model is directly discretized by a finite volume method as the
approach of the method of lines, and use implicit extrapolation code LIMEX
[44] to solve the resulting DAEs. In addition, due to certain difficulties,
a relaxation mechanism is used, and the boundary conditions (1.55) and
(1.56) not solved as algebraic constraints and are relaxed them as differential
equations for the surface species. The boundary conditions (1.55) are not
solved but instead the radial diffusion fluxes Jk,r at the wall are calculated
as Jk,r = −ṙk, where rk is the surface reaction rate.

In the following, all floating-point computations are performed on a Pen-
tium 4, 2.6 GHz, Suse Linux 9.0. Both codes DETCHEMCHANNEL and
BLAYERsim are compiled with GNU Fortran/C compilers version 3.3.1 us-
ing compilers’ optimization flag -O2 on the same computer. The integration
errors are controlled with the relative error tolerance RTOL = 10−3 and
the absolute error tolerance ATOL = 10−9. In the two following sections,
comparison between DETCHEMCHANNEL and BLAYERsim is presented with
respect to numerical results and performance.

5.2.1 Comparison of numerical results

Catalytic combustion of methane

A gas mixture flows into the channel with the following setting.

– Channel geometry: the radius rmax = 2.5×10−4 [m], the channel length
zmax = 0.01 [m].

– Initial conditions: the initial mole fraction of each species XCH4
= 0.5,

XO2
= 0.3, and XN2

= 0.2, other species are absent at inlet. The initial
gas temperature Tgas = 298 [K], and the initial pressure p = 1.2 × 105

[Pa], and the initial velocity u = 1 [m/s].

– Boundary conditions: the temperature at the wall Twall = 1373 [K].

– Reaction mechanisms: 21 gas-phase species, 11 surface species, 23 sur-
face reactions, and 128 gas-phase reactions. The gas-phase and surface
reactions are given in the Appendix.
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– Number of grid points in the radial direction: 12.

This problem is referred to as methane12 .
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Figure 5.10: Surface species and average mass fractions of some selected gases
by BLAYERsim and DETCHEMCHANNEL (methane12).
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Figure 5.11: Gas-phase species by BLAYERsim and DETCHEMCHANNEL

(methane12).

157



 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0  5e-05  0.0001  0.00015  0.0002  0.00025

M
A

S
S

 F
R

A
C

T
IO

N
 A

T
 z

 =
 0

.0
01

r - RADIAL AXIS [m]

MASS FRACTION OF GAS SPECIES

YCO - BLAYER
YCO - DETCHEM

 0.51

 0.52

 0.53

 0.54

 0.55

 0.56

 0.57

 0.58

 0  5e-05  0.0001  0.00015  0.0002  0.00025

M
A

S
S

 F
R

A
C

T
IO

N
 A

T
 z

 =
 0

.0
02

r - RADIAL AXIS [m]

MASS FRACTION OF GAS SPECIES

YCO - BLAYER
YCO - DETCHEM

 0.585

 0.586

 0.587

 0.588

 0.589

 0.59

 0.591

 0  5e-05  0.0001  0.00015  0.0002  0.00025

M
A

S
S

 F
R

A
C

T
IO

N
 A

T
 z

 =
 0

.0
05

r - RADIAL AXIS [m]

MASS FRACTION OF GAS SPECIES

YCO - BLAYER
YCO - DETCHEM

 0.58

 0.582

 0.584

 0.586

 0.588

 0.59

 0.592

 0.594

 0.596

 0  5e-05  0.0001  0.00015  0.0002  0.00025

M
A

S
S

 F
R

A
C

T
IO

N
 A

T
 z

 =
 0

.0
1

r - RADIAL AXIS [m]

MASS FRACTION OF GAS SPECIES

YCO - BLAYER
YCO - DETCHEM

 0.0042

 0.0044

 0.0046

 0.0048

 0.005

 0.0052

 0.0054

 0.0056

 0.0058

 0  5e-05  0.0001  0.00015  0.0002  0.00025

M
A

S
S

 F
R

A
C

T
IO

N
 A

T
 z

 =
 0

.0
01

r - RADIAL AXIS [m]

MASS FRACTION OF GAS SPECIES

YCO2 - BLAYER
YCO2 - DETCHEM

 0.006

 0.0062

 0.0064

 0.0066

 0.0068

 0.007

 0.0072

 0.0074

 0  5e-05  0.0001  0.00015  0.0002  0.00025

M
A

S
S

 F
R

A
C

T
IO

N
 A

T
 z

 =
 0

.0
02

r - RADIAL AXIS [m]

MASS FRACTION OF GAS SPECIES

YCO2 - BLAYER
YCO2 - DETCHEM

 0.008

 0.009

 0.01

 0.011

 0.012

 0.013

 0.014

 0.015

 0  5e-05  0.0001  0.00015  0.0002  0.00025

M
A

S
S

 F
R

A
C

T
IO

N
 A

T
 z

 =
 0

.0
05

r - RADIAL AXIS [m]

MASS FRACTION OF GAS SPECIES

YCO2 - BLAYER
YCO2 - DETCHEM

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

 0  5e-05  0.0001  0.00015  0.0002  0.00025

M
A

S
S

 F
R

A
C

T
IO

N
 A

T
 z

 =
 0

.0
1

r - RADIAL AXIS [m]

MASS FRACTION OF GAS SPECIES

YCO2 - BLAYER
YCO2 - DETCHEM

Figure 5.12: Gas-phase species by BLAYERsim and DETCHEMCHANNEL

(methane12).
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Figure 5.13: Mass fraction of source species profiles: the upper is obtained by BLAYERsim and the lower is obtained
by DETCHEMCHANNEL (methane12).
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Figure 5.14: Mass fraction of product species profiles: the upper is obtained by BLAYERsim and the lower is obtained
by DETCHEMCHANNEL (methane12).
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Figures 5.10–5.14 show the numerical results obtained by DETCHEMCHANNEL

and BLAYERsim. Because of space restriction here we only show some major
product species and source species although as mentioned above, in total this
problem involves 23 gas species and 11 surface species.

The two figures at the top of Figure 5.10 show the profile of surface cov-
erage of surface species along the channel. The solid surface (uncovered site
of the solid surface) PT(s) fractions are much different. The surface coverage
PT(s) obtained by BLAYERsim is smooth along the channel, while PT(s)
obtained by DETCHEMCHANNEL seems to be not smooth and is changed
abnormally along the channel. Other surface species seem to be close be-
tween the two results, although certain difference still show up, for instance,
a typical one is the surface coverage of C(s), and the profiles of surface
species obtained by DETCHEMCHANNEL are not smooth compared to the
corresponding ones obtained by BLAYERsim.

The two figures at the bottom of Figure 5.10 show the average mass
fractions of some selected gas species. The average mass fractions are defined
as

Yk
avg =

∫ rmax

0
Ykdr

rmax
(k = 1, . . . , Ng).

There are some differences between the two results, in particular, at the first
half of the channel. The chemical source species profiles (methane and oxy-
gen) by BLAYERsim are consumed faster than by DETCHEMCHANNEL, this
is because of the fact that BLAYERsim solves the boundary conditions in its
steady state form rather than by a relaxation one as in DETCHEMCHANNEL.
At the second half of the channel, in particular near the outlet, the two
results are nearly the same, only slightly different, and the differences are
below 3 percents for major species products (CO—carbon monoxide and
H2—hygroden).

Figures 5.11 and 5.12 show the mass fractions of gas species at different
locations along the channel. Figures 5.13 and 5.14 show the flow field of
the source species (CH4—methane and O2—oxygen) and the major products
(CO—carbon monoxide and H2—hydrogen). There are differences between
the two results of the source species. At the outlet, the mass fractions of
methane and oxygen obtained by BLAYERsim are 2.59E-7 and 1.07E-11,
while the ones obtained by DETCHEMCHANNEL are 8.31E-4 and 1.13E-6,
respectively. However, the major products—CO and H2—are nearly the
same at the end of outlet, and the differences are below one percent, while
there are a bit differences at the first 2 [mm] of the channel.

161



Conversion of ethane to ethylene

The simulation setting is as follows [20]:

– Channel geometry: the radius rmax = 2.5×10−4 [m], the channel length
zmax = 0.01 [m].

– Initial conditions: the initial mole fraction of each species XC2H6
=

0.44, XO2
= 0.26, and XN2

= 0.3, other species are absence at inlet.
The initial gas temperature Tgas = 650 [K], and the initial pressure
p = 1.2 × 105 [Pa], and the initial velocity u = 0.5 [m/s].

– Boundary conditions: the temperature at the wall Twall = 1300 [K].

– Reaction mechanisms: 25 gas-phase species, 20 surface species, 82 sur-
face reactions, and 261 gas-phase reactions. The gas-phase and surface
reactions are given in the Appendix.

– Number of grid points in the radial axis: 12.

(a) Fcat/geo = 1.

The problem of conversion of ethane to ethylene with the above setting
is referred to as ethane1 .
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Figure 5.15: Surface species and average mass fractions of some selected gases
by BLAYERsimand DETCHEMCHANNEL(ethane1).
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Figure 5.16: Gas-phase species by BLAYERsim and DETCHEMCHANNEL

(ethane1).
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Figure 5.17: Mass fraction of source species profiles: the upper is obtained by BLAYERsim and the lower is obtained
by DETCHEMCHANNEL (ethane1).
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Figure 5.18: Mass fraction of product species profiles: the upper is obtained by BLAYERsim and the lower is obtained
by DETCHEMCHANNEL (ethane1).
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Figures 5.15–5.18 show some parts of the results of the simulation
obtained by BLAYERsim and DETCHEMCHANNEL. Again because of
space restriction, here we only show some major product species and
source species although as mentioned above, in total this problem in-
volves 25 gas species and 20 surface species. The two results are nearly
the same, the differences between the two solutions are below 3 per-
cents, although there are differences shown up as in Figure 5.15. The
surface species profiles obtained by BLAYERsim are smoother than the
corresponding ones obtained by DETCHEMCHANNEL. The chemical
source species profiles (ethane and oxygen) by BLAYERsim are con-
sumed faster than by DETCHEMCHANNEL. Figures 5.17 and 5.18 show
the flow field of the source species (C2H6—ethane and O2—oxygen)
and the major products (C2H4—ethylene and CO—carbon monoxide).
There are differences between the two results of the source species,
in particluar ethane. At the outlet, the mass fractions of ethane and
oxygen obtained by BLAYERsim are 1.25E-2 and 1.68E-12, while the
ones obtained by DETCHEMCHANNEL are 1.98E-2 and 4.17E-12, re-
spectively. However, the major products—C2H4 and CO—are nearly
the same at the end of outlet, and the differences are below 1 percents,
while there are little differences at the first 40 percents of the chan-
nel length. At the outlet, the mass fractions of ethylene and carbon
monoxide obtained by BLAYERsim are 2.61E-1 and 1.70E-1 and by
DETCHEMCHANNEL are 2.59E-1and 1.69E-1, respectively.

(b) Fcat/geo = 0.01.

The problem of conversion of ethane to ethylene with the above setting
is referred to as ethane2 .
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Figure 5.19: Surface species and average mass fractions of some selected gases
by BLAYERsim and DETCHEMCHANNEL (ethane2).
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Figure 5.20: Gas-phase species by BLAYERsim and DETCHEMCHANNEL

(ethane2).
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Figure 5.21: Mass fraction of source species profiles: the first is obtained by BLAYERsim and the next is obtained
by DETCHEMCHANNEL (ethane2).
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Figure 5.22: Mass fraction of product species profiles: the first is obtained by BLAYERsim and the next is obtained
by DETCHEMCHANNEL (ethane2).
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The results obtained BLAYERsim and DETCHEMCHANNEL are similar
in qualitative behavior as in the case ethane1. The two results are
nearly the same.

Stability of the solution with variation in the number of grid points

In this part we study the behavior of the solution when the spatial grid is
refined (grid in the radial direction). In particular, we run the two simu-
lation tools BLAYERsim and DETCHEMCHANNEL with different numbers of
grid points. In accordance to the theory, by refinement of the spatial grid,
i.e., inreasing the number of spatial disretization grid points, the spatial dis-
retization error is reduced. The expected solutions with different grid points
in the radial direction should approach each other, e.g., well behaved.

Here, we investigate two problems, named methane-grids and ethane1-
grids.

(a) The setting for the problem methane-grids is the same as for the methane12
(see page 156) except now the number of grid points in the spatial di-
rection is changed . Figures 5.23 and 5.24 show the results of the
simulation runs.

(b) The setting for the problem ethane1-grids is the same as for the ethane1
(see page 162) problem except now the number of grid points in the
spatial direction is changed . Figures 5.25 and 5.26 show the results of
the simulation runs.

The solutions obtained by BLAYERsim and by DETCHEMCHANNEL are
nearly the same, although the surface species obtained by DETCHEMCHANNEL

are not smooth.
Note that the average mass fraction profile of oxygen in Figure 5.26 ob-

tained by BLAYERsim at the second half of the channel seems to be not
stable but in fact this is a correct behaviour because the simulation run us-
ing the absolute integration error tolerance ATOL = 10−9. Thus, the value
of variables (here the mass fraction of oxygen—YO2), which is below ATOL,
is not controlled by the error control of the integrator and it is treated as
having value of ATOL, and can be considered as numerical noise.

Remark 5.2.1
It is well known that the solution of parabolic partial differential equations
is dominated by the boundary conditions when the “time” (here in our prob-
lem z ) is large. The boundary conditions in our problem are the coupling of
surface chemistry with the surrounding flow field, in addition, the no-slip con-
dition and boundary condition of the temperature. The boundary conditions
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Figure 5.23: Surface species with a different number of grid points in the
radial axis by DETCHEMCHANNEL and BLAYERsim (methane-grids).
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Figure 5.24: Average of mass fraction of gas species with different numbers
of grid points in the radial axis by DETCHEMCHANNEL and BLAYERsim

(methane-grids).
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Figure 5.25: Surface species with different numbers of grid points in the
radial axis for the ethane problem by DETCHEMCHANNEL and BLAYERsim

(ethane1-grids).
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Figure 5.26: Average of mass fraction of gas species with different numbers of
grid points in the radial axis for the ethane problem by DETCHEMCHANNEL

and BLAYERsim (ethane1-grids).
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propagate into the interior region (inside channel) by the finite difference op-
erator in the spatial direction ψ. Therefore, the speed of propagation of the
boundary conditions into the interior region by diffusion (of the numerical so-
lution) depends on how one treats the boundary conditions: loosely coupling
as in DETCHEMCHANNEL or strictly coupling as in BLAYERsim. Loosely
speaking, if a loosely coupling method is applied the influence of the bound-
ary condtions is slower than the influence of the boundary conditions if a
strictly coupling method is applied. This behavior is confirmed by the above
numerical results where the conversions obtained by DETCHEMCHANNEL are
slower than the ones obtained by BLAYERsim. As we see from the numerical
results obtained by DETCHEMCHANNEL and BLAYERsim, in spite of slow
propagation or fast propagation of the boundary conditions, the final major
products (ethylene and carbon monoxide) obtained by DETCHEMCHANNEL

and BLAYERsim are nearly the same because sooner or later if the source
species (oxygen and ethane) do not react at the first few millimeters of the
channel, then they react (i.e., taking into account by the simulation code)
along the remaining part of the channel. The oxygen and ethane (source
species) are exhausted.

5.2.2 Performance comparison

We investigate three problems, namely methane-grids (see page 172) and
ethane1-grids (see page 172) as the above, and ethane2-grids which is the
same as the ethane2 (see page 167) except the number of grid points in the
radial direction is varied. Tables 5.1–5.3 show CPU time and number of steps
and speedup for these problems by BLAYERsim and DETCHEMCHANNEL,
where the speedup is defined as

Speedup =
CPU time by DETCHEMCHANNEL

CPU time by BLAYERsim .

5.3 Optimization results

This is the first time a systematic approach is used to determine the optimal
process conditions for these applications. In the following, the BLAYERopt

software are applied to different practical applications.

5.3.1 Catalytic combustion of methane

The flow conditions are as the following.
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Nodes DETCHEMCHANNEL BLAYERsim Speedup
CPU 12 218.60 3.5 62.45
Time 16 221.85 5.95 37.28
(secs) 20 218.8 9.23 23.70

24 312.11 13.5 23.11
Number 12 1286 145

of 16 1057 154
Steps 20 908 159

24 1067 162

Table 5.1: CPU time and number of integration steps using
DETCHEMCHANNEL and BLAYERsim (methane-grids).

Nodes DETCHEMCHANNEL BLAYERsim Speedup
CPU 12 1059.56 18.1 58.53
Time 16 1413 26.95 52.43
(secs) 20 1880 38.82 48.42

24 2357 53.3 44.22
Number 12 1818 194

of 16 2058 194
Steps 20 2262 201

24 2643 196

Table 5.2: CPU time and number of integration steps using
DETCHEMCHANNEL and BLAYERsim (ethane1-grids).

– Channel geometry: the radius rmax = 2.5×10−4 [m], the channel length
zmax = 0.01 [m].

– Reaction mechanisms: 7 gas-phase species, 11 surface species, 23 sur-
face reactions. The gas-phase and surface reactions are given in the
Appendix.

The initial values at the inlet are kept fixed: XCH4
= 0.2, XO2

= 0.1, XN2
=

0.7, the inlet gas temperature Tgas = 300 [K], the inlet velocity u0 = 0.5
[m/s]. The ratio of catalytic active surface area to geometric surface area are
kept fixed at one, Fcat/geo = 1.

The wall temperature profile is optimized. We use a piecewise linear
parameterization with 8 intervals. The objective is to maximize the mass
fraction of carbon monoxide H2 at the outlet. As constraint the temperature

178



Nodes DETCHEMCHANNEL BLAYERsim Speed up
CPU 12 654.6 19.4 33.74
Time 16 703.2 31.7 22.18
(secs) 20 812.97 45.38 17.91

24 943.98 63.4 14.88
Number 12 1175 199

of 16 1306 203
Steps 20 1119 205

24 1175 204

Table 5.3: CPU time and number of integration steps using
DETCHEMCHANNEL and BLAYERsim (ethane2-grids).

is required to be between 600 [K] and 1800 [K].
The optimization was started with a constant temperature profile of 1200

[K] and the corresponding objective value of 0.011. The optimization run
took 25 minutes computational time on a 2.5 GHz Pentium 4 Linux PC.
In the optimal solution the objective value is 0.030. Figure 5.27 shows the
temperature profile and Figures 5.28 and 5.29 the mass fractions of methane
and carbon monoxide before and after optimization.
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Figure 5.27: Temperature profile at the wall and the average mass fraction
of H2 at the initial and optimal solution.
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Figure 5.28: Mass fraction profiles of CH4 and H2 the initial setting.

Figure 5.29: Mass fraction profiles of CH4 and H2 with the optimial setting.
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5.3.2 Conversion of ethane to ethylene

The flow conditions are as the following [20].

– Channel geometry: the radius rmax = 2.5×10−4 [m], the channel length
zmax = 0.01 [m].

– Reaction mechanisms: 25 gas-phase species, 20 surface species, 82 sur-
face reactions, and 261 gas-phase reactions. The gas-phase and surface
reactions are given in the Appendix.

For our optimization case study we keep the initial values at the inlet
fixed: YC2H6

= 0.44, YO2
= 0.26, YN2

= 0.30, and the inlet velocity u0 = 0.5
[m/s].

(a) Control the wall temperature Twall(z)

The ratio of catalytic active surface area to geometric surface area is kept
fixed at one, Fcat/geo = 1, and the inlet gas temperature Tgas = 650 [K]. The
wall temperature profile is optimized. We use a piecewise linear parameter-
ization with 8 intervals. The objective is to maximize the mass fraction of
ethylene YC2H4

at the outlet. As constraint the temperature is required to
be between 800 [K] and 1500 [K].

The optimization was started with a constant temperature profile of 930
[K] leading to an objective value of 0.132. The optimization run took 30 min
computational time on a 2.5 GHz Pentium 4 Linux PC. In the optimal solu-
tion the objective value is 0.280, which is more than doubled the objective
value with the standard setting. Figure 5.30 shows the temperature profile
and Figures 5.31 and 5.32 show the mass fractions of ethane and ethylene
before and after optimization. The results show that temperatures around
1300 K give maximum yield in the ethylene production. At inlet the temper-
atures only need to be sufficiently high enough for ignition of the combustion
to occur. An autothermal reactor–where the temperature is only controlled
by the exothermic reaction–should therefore maintain a temperature around
1300 K. This is nearly the same temperature as observed in experiments
[70]. The optimal oxygen content can be determined by the amount of heat
necessary to maintain this temperature.
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Figure 5.30: Temperature profile at the wall and the average mass fraction
of C2H4 at the initial and optimal solution.
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Figure 5.31: Mass fraction profiles of C2H6 and C2H4 with the initial setting.

Figure 5.32: Mass fraction profiles of C2H6 and C2H4 with the optimial setting.
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(b) Control Fcat/geo(z)

The ratio of catalytic active surface area to geometric surface area Fcat/geo(z)
is to be optimized. The inlet gas temperature is Tgas = 300 [K], and the wall
temperature Twall(z) is kept fixed at 1000 [K]. The objective is to maximize
the mass fraction of ethylene YC2H4

at the outlet. As constraint the Fcat/geo

is required to be between 0 and 100.
The optimization was started with a constant Fcat/geo(z) profile of 20.0

leading to an objective value of 0.065. In the optimal solution the objective
value is 0.191. Figure 5.33 shows the standard and optimal profiles of Fcat/geo

and average mass fraction profiles of ethylene. Figures 5.34 and 5.35 show the
mass fraction profiles of ethane and ethylene with the standard and optimal
profiles of Fcat/geo(z).
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Figure 5.33: Fcat/geo(z) profile and the average mass fraction of C2H4 at the
initial and at optimal solutions.
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Figure 5.34: Mass fraction profiles of C2H6 and C2H4 with the initial setting.

Figure 5.35: Mass fraction profiles of C2H6 and C2H4 with the optimial setting.
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5.4 Summary

In this chapter, we have presented the simulation and optimization results.
The comparison results between our simulation software BLAYERsim and
DETCHEMCHANNEL shows that the numerical solutions are nearly the same
except little differences in surface coverage profiles. BLAYERsim is more
stable and faster than DETCHEMCHANNEL, the speedup is about a factor of
ten, to more than 60, depending on the applications. The optimization results
obtained by BLAYERopt for two practical problems (a) catalytic combustion
of methane and (b) conversion of ethane to ethylene show that the objective
functions of the solutions with the optimal setting are more than doubled,
to a factor of 3, compared with the solutions with the standard setting.
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Chapter 6

Conclusions and Outlook

Summary and conclusions

The contributions of this thesis are summarized as follows.

• Modeling for simulation and optimization of catalytic mono-
liths

The coupled fluid mechanics and chemical kinetics in a channel of cat-
alytic monoliths are modeled by using the boundary layer approxima-
tion theory, the chemical kinetics are described by detailed chemistry
models. Physically, this is a 3-D stationary problem, by taking ra-
dial symmetry into account, we obtain a 2-D stationary problem. The
governing equations are a large system of parabolic partial differential
equations (PDEs) coupled with highly nonlinear boundary conditions.

To improve the performance of catalytic reactors (e.g., maximizing gas
conversion or selectivity) we can control certain process conditions, such
as temperature at the catalyst wall Twall or the ratio of the catalytic
active surface area to the geometric surface area Fcat/geo or the gas ratio,
temperature, velocity at inlet of the catalyst. This is for the first time
generally formulated as a PDE-constrained optimal control problem.

• Numerical methods for simulation of the chemically reacting
flows in catalytic monoliths

The PDEs are semi-disretized in one direction using a non-uniform
discretization scheme. The use of non-uniform grid is required for the
resolution of high spatial gradients near the catalytic wall, and the
boundary conditions are treated directly as algebraic constraints. This
leads to a large system of stiff structured differential-algebraic equations
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(DAEs). The resulting DAEs are structurally singular, stiff and of index
1.

• Numerical methods for differential-algebraic equations

The DAEs are solved by an implicit method, based on backward dif-
ferentiation formulas (BDF). Based on the BDF code DAESOL [10],
we develop a new code DAESOLE, which allows us to solve DAEs,
appearing in the problem under investigation. In particular, we ex-
ploit the block tridiagonal structure of the iteration matrix, which is
the result of the semi-discretization of PDEs along with an appropriate
ordering of the semi-discretized equations. From this observation, we
apply a band solver for the linear sytem arising in the corrector iter-
ation, and develop efficient methods for computing the derivatives of
the model functions (functions defining the DAEs) with respect to the
state variables. By identifying the structural orthogonal columns, we
develop efficient methods for computation of the derivatives by finite
differences or by automatic differentiation. A significant improvement
in computing time is obtained.

Solution of the DAEs also needs consistent initial values, which in turn
requires the solution of highly nonlinear equations. That mainly arise
from the nonlinear boundary conditions. These equations are solved
by a time-stepping method combined with Newton’s method.

The linear equation systems in the corrector iterations are ill-conditioned.
To treat this, we introduce an automatic scaling method, which allows
us to obtain a better error bound. In particular, the condition numbers
of the iteration matrices are reduced from 1016–1022 to 106–108.

We introduce a new error model for error analysis of numerical New-
ton’s method, and analyze the limiting accuracy of the solution of non-
linear equations by numerical Newton’s method. We also point out
that some previous error models are inappropriate.

• Numerical methods for solving the optimal control problem
for catalytic monolits

To the best of our knowledge, this is the first time that a systematic
approach for optimization of reactor conditions to catalytic monoliths
is introduced. We apply the semi-discretization of one spatial direc-
tion to transform the PDE-constrained optimal control problem into a
DAE-constrained one. We employ the direct shooting approach to ap-
proximate the infinite-dimensional optimal control problem by a finite
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dimensional optimization problem, which is then solved by a sequen-
tial quadractic programming (SQP) method. The solution by the SQP
method requires the derivatives of the objective and constraints with re-
spect to the optimization variables. This in turn needs the derivatives of
the solution of DAEs with respect to the optimization variables. These
derivatives are computed by solving the sensitivity equations based on
internal numerical differentiation (IND)[17], which is more robust and
efficient than using external finite differences.

To obtain the sensitivity equations, we need the derivatives of model
equations with respect to the state variables and the optimization vari-
ables. We apply the approach in [37] to compute these derivatives,
which allows us to reduce dramatically the time for solving the opti-
mization problem. For example, for solving the optimal control problem
of conversion ethane to ethylene with complex reaction mechanisms 1

the computation time by the standard approach is 743 minutes and by
our approach is only 9.2 minutes.

• Software BLAYER

We have developed a software package BLAYER, which consists of two
programs BLAYERsim for simulation and BLAYERopt for optimiza-
tion of catalytic monoliths. The software package can be applied to
different reaction mechanisms and channel settings with different ini-
tial/boundary conditions. Given conditions at inlet (velocity, tempera-
ture, pressure, mass/mole fraction), the temperature and Fcat/geo at the
wall, geometry of the channel (length and radius), and gas- and surface-
phase reaction mechanisms with thermaldynamic data, BLAYERsim

computes the flow field in the channel. BLAYERsim is more stable and
faster than the existing software DETCHEMCHANNEL, with a medium
size problem, the speedup is a factor of 10, for large problem, the
speedup is a factor of 62. We also avoid some abnormal solutions ob-
tained by DETCHEMCHANNEL.

BLAYERopt can be used for optimization with different controls: initial
values (gas temperature, mass/mole fractions at inlet), and/or temper-
ature profile at the wall Twall(z), and Fcat/geo(z). The objective to be
minimized can be the mass fraction of certain species or the distribution
of Fcat/geo(z) at the wall, other objectives and controls (inlet velocity,
radius and length of the channel) can be easily realized.

125 gas-phase species, 20 surface species, 82 surface reactions, and 261 gas-phase re-
actions, leading to 29 PDEs and 49 algebraic constraints, semi-discretizing with 12 grid
points in the radial direction leads to 342 DAEs
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We have developed robust and efficient numerical software for simulation and
optimization of catalytic reaction processes in monoliths. They allow, e.g.,
for a better design and operation of the conversion of natural gas to higher
hydrocarbon or the improvement of exhaust treatment in cars.

Directions for future research

Based on the results of this work, we suggest the following further research
topics:

• Based on the BLAYERopt, where the derivatives of the solution with
respect to parameters are calculated efficiently, a sensitivity analysis
tool can be developed for studying reaction mechanisms [57]. A sen-
sitivity analysis tool would allow us to determine, e.g., which reations
or species play an important role in the processes and how the solution
is sensitive with such reactions or species. It can also identify which
reactions or species are decisive ones. These functions are necessary for
developing new reaction mechanisms.

• Model reductions by using partial-equilibrium assumptions and intrin-
sic low-dimensional manifold methods, see [83] and [84].

• Adaptive mesh methods for spatial discretization. Note that in this
case multi-step methods, e.g., BDF methods, may not be more efficient
than one-step methods, e.g., implicit Runge-Kutta methods, because of
often changing of model equations and discontinuity due to remeshing.
Although it is mentioned in [82] that the singly implicit Runge-Kutta
(SIRK) methods for integration in time of an adaptive grid method
for parabolic systems, which is described in [53], are more costly than
a multistep method. The adaptive mesh methods for parabolic PDEs
based on method of lines and BDF methods are realized in e.g., [82].

• Application of the software to other practical applications.

• Treatment of heat and mass transfer in the solid wall. In the current
work, heat and mass transfer in the solid wall are not treated. However,
this can be done by taking into account the governing equations for
tranfering of heat and mass in porous media , see e.g., [45].

Alternatively, a shape optimization problem, which optimizes the shape of
monoliths, e.g., distribution of holes (channel), could be an interesting prob-
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lem 2.
In our opinion, the deterministic approach for modeling using detailed

chemistry can be used for studying problems with hundreds of species. For
problems with thousands of species (e.g., biochemical systems), stochas-
tic models or a combination of stochastic models and deterministic models
should be used instead because it is difficult, if not impossible, to obtain
an accurate solution, and it is very inefficient. Moreover, the diffusion laws
(Fick’s law or similar ones) for species with very small amounts are suspected
to be good approximations.

2Thanks to Prof. Dr. Dr. h. c. mult. Willi Jäger for suggesting this problem when I
gave a talk at the annual meeting of the Graduiertenkolleg (post-graduate college)
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Schlöder, S. Tischer, and J. Warnatz. Optimization of reactive flows
in a single channel of a catalytic monolith: conversion of ethane to
ethylene. In R. Rannacher et al, editor, Reaktive Flows, Diffusion and
Transport. Springer Verlag, 2005.

196



[21] H. G. Bock, E. Kostina, and J. P. Schlöder. On the role of natural level
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Appendix
Reaction Mechanisms

Reaction mechanisms in this appendix are taken from Prof. Dr. Olaf Deutschmann
and Dr. Steffen Tischer, Institut für Technische Chemie und Polymerchemie, Uni-
versitt Karlsruhe.

A-1 Gas-Phase Reaction Mechanisms

Table 1: Gas-phase reaction mechanism of the NO-O2 reaction(P. Klaus
1997). M(1) is third body. A, β, E are Arrhenius parameters for the rate
constants written in the form: k = AT β exp(−E/RT ). The units of A are
given in terms of moles, cubic meters, and seconds. E is in J/mol

Reaction A β E
20 + M(1) → 02 + M(1) 2.90E+05 -1.00E+00 0.00E+00
O2 + M(1) → 2O + M(1) 6.77E+12 -1.00E+00 4.96E+05
NO2 + M(1) → NO + O + M(1) 1.10E+10 0.00E+00 2.75E+05
NO + O + M(1) → NO2 + M(1) 1.39E+02 0.00E+00 -2.58E+04
NO2 + O → NO + O2 1.00E+07 0.00E+00 2.51E+03
NO + O2 → NO2 + O 2.96E+06 0.00E+00 1.97E+05
2NO2 → 2NO + O2 1.60E+06 0.00E+00 1.09E+05
2NO + O2 → 2NO2 6.01E-03 0.00E+00 2.12E+03

Table 2: Gas-phase reaction mechanism of the methane oxidation. M(i) is third body. A, β, E
are Arrhenius parameters for the rate constants written in the form: k = AT β exp(−E/RT ). The
units of A are given in terms of moles, cubic meters, and seconds. E is in J/mol.
(∗) is non-Arrhenius reactions, Troe reactions .

Reaction mechanism A β E
1. O2 + H → OH + O 0.00E+00 0.00E+00 0.00E+00
2. OH + O → O2 + H 0.00E+00 0.00E+00 0.00E+00
3. H2 + O → OH + H 0.00E+00 0.00E+00 0.00E+00
4. OH + H → H2 + O 0.00E+00 0.00E+00 0.00E+00
5. H2 + OH → H2O + H 0.00E+00 0.00E+00 0.00E+00
6. H2O + H → H2 + OH 0.00E+00 0.00E+00 0.00E+00
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Table 2: continued

Reaction mechanism A β E
7. OH + OH → H2O + O 0.00E+00 0.00E+00 0.00E+00
8. H2O + O → OH + OH 0.00E+00 0.00E+00 0.00E+00
9. O2 + H + M(2) → HO2 + M(2) 0.00E+00 0.00E+00 0.00E+00
10. HO2 + M(2) → O2 + H + M(2) 0.00E+00 0.00E+00 0.00E+00
11. H + HO2 → OH + OH 0.00E+00 0.00E+00 0.00E+00
12. OH + OH → H + HO2 0.00E+00 0.00E+00 0.00E+00
13. H + HO2 → H2 + O2 0.00E+00 0.00E+00 0.00E+00
14. H2 + O2 → H + HO2 0.00E+00 0.00E+00 0.00E+00
15. H + HO2 → H2O + O 0.00E+00 0.00E+00 0.00E+00
16. H2O + O → H + HO2 0.00E+00 0.00E+00 0.00E+00
17. O + HO2 → O2 + OH 0.00E+00 0.00E+00 0.00E+00
18. O2 + OH → O + HO2 0.00E+00 0.00E+00 0.00E+00
19. OH + HO2 → O2 + H2O 0.00E+00 0.00E+00 0.00E+00
20. O2 + H2O → OH + HO2 0.00E+00 0.00E+00 0.00E+00
21. HO2 + HO2 → O2 + H2O2 0.00E+00 0.00E+00 0.00E+00
22. O2 + H2O2 → HO2 + HO2 0.00E+00 0.00E+00 0.00E+00
23. OH + OH + M(2) → H2O2 + M(2) 0.00E+00 0.00E+00 0.00E+00
24. H2O2 + M(2) → OH + OH + M(2) 0.00E+00 0.00E+00 0.00E+00
25. H + H2O2 → H2 + HO2 0.00E+00 0.00E+00 0.00E+00
26. H2 + HO2 → H + H2O2 0.00E+00 0.00E+00 0.00E+00
27. OH + H2O2 → H2O + HO2 0.00E+00 0.00E+00 0.00E+00
28. H2O + HO2 → OH + H2O2 0.00E+00 0.00E+00 0.00E+00
29. CO + OH → CO2 + H 0.00E+00 0.00E+00 0.00E+00
30. CO2 + H → CO + OH 0.00E+00 0.00E+00 0.00E+00
31. CO + HO2 → CO2 + OH 0.00E+00 0.00E+00 0.00E+00
32. CO2 + OH → CO + HO2 0.00E+00 0.00E+00 0.00E+00
33. CO + O + M(2) → CO2 + M(2) 0.00E+00 0.00E+00 0.00E+00
34. CO2 + M(2) → CO + O + M(2) 0.00E+00 0.00E+00 0.00E+00
35. O2 + CO → CO2 + O 0.00E+00 0.00E+00 0.00E+00
36. CO2 + O → O2 + CO 0.00E+00 0.00E+00 0.00E+00
37. CHO + M(2) → CO + H + M(2) 0.00E+00 0.00E+00 0.00E+00
38. CO + H + M(2) → CHO + M(2) 0.00E+00 0.00E+00 0.00E+00
39. O2 + CHO → CO + HO2 0.00E+00 0.00E+00 0.00E+00
40. CO + HO2 → O2 + CHO 0.00E+00 0.00E+00 0.00E+00
41. CH2O + M(2) → H + CHO + M(2) 0.00E+00 0.00E+00 0.00E+00
42. H + CHO + M(2) → CH2O + M(2) 0.00E+00 0.00E+00 0.00E+00
43. H + CH2O → H2 + CHO 0.00E+00 0.00E+00 0.00E+00
44. H2 + CHO → H + CH2O 0.00E+00 0.00E+00 0.00E+00
45. O + CH2O → OH + CHO 0.00E+00 0.00E+00 0.00E+00
46. OH + CHO → O + CH2O 0.00E+00 0.00E+00 0.00E+00
47. OH + CH2O → H2O + CHO 0.00E+00 0.00E+00 0.00E+00
48. H2O + CHO → OH + CH2O 0.00E+00 0.00E+00 0.00E+00
49. HO2 + CH2O → H2O2 + CHO 0.00E+00 0.00E+00 0.00E+00
50. H2O2 + CHO → HO2 + CH2O 0.00E+00 0.00E+00 0.00E+00
51. CH2O + CH3 → CH4 + CHO 0.00E+00 0.00E+00 0.00E+00
52. CH4 + CHO → CH2O + CH3 0.00E+00 0.00E+00 0.00E+00
53. O2 + CH2O → HO2 + CHO 0.00E+00 0.00E+00 0.00E+00
54. HO2 + CHO → O2 + CH2O 0.00E+00 0.00E+00 0.00E+00
55. O + CH3 → H + CH2O 0.00E+00 0.00E+00 0.00E+00
56. H + CH2O → O + CH3 0.00E+00 0.00E+00 0.00E+00
57. CH4 + M(3) → H + CH3 + M(3) 1.14E+06 0.00E+00 0.00E+00(∗)

58. H + CH3 + M(3) → CH4 + M(3) 1.99E+08 0.00E+00 2.86E+05(∗)
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Table 2: continued

Reaction mechanism A β E
59. OH + CH3 → H + CH3O 0.00E+00 0.00E+00 0.00E+00
60. H + CH3O → OH + CH3 0.00E+00 0.00E+00 0.00E+00
61. O2 + CH3 → OH + CH2O 0.00E+00 0.00E+00 0.00E+00
62. HO2 + CH3 → OH + CH3O 0.00E+00 0.00E+00 0.00E+00
63. OH + CH3O → HO2 + CH3 0.00E+00 0.00E+00 0.00E+00
64. HO2 + CH3 → O2 + CH4 0.00E+00 0.00E+00 0.00E+00
65. O2 + CH4 → HO2 + CH3 0.00E+00 0.00E+00 0.00E+00
66. CH3 + CH3 → H2 + C2H4 0.00E+00 0.00E+00 0.00E+00
67. CH3 + CH3 + M(2) → C2H6 + M(2) 1.40E+06 0.00E+00 0.00E+00(∗)

68. C2H6 + M(2) → CH3 + CH3 + M(2) 4.12E+08 0.00E+00 2.62E+05(∗)

69. CH3O + M(2) → H + CH2O + M(2) 0.00E+00 0.00E+00 0.00E+00
70. H + CH2O + M(2) → CH3O + M(2) 0.00E+00 0.00E+00 0.00E+00
71. H + CH3O → H2 + CH2O 0.00E+00 0.00E+00 0.00E+00
72. H2 + CH2O → H + CH3O 0.00E+00 0.00E+00 0.00E+00
73. O2 + CH3O → HO2 + CH2O 0.00E+00 0.00E+00 0.00E+00
74. HO2 + CH2O → O2 + CH3O 0.00E+00 0.00E+00 0.00E+00
75. O + CH3O → O2 + CH3 0.00E+00 0.00E+00 0.00E+00
76. O2 + CH3 → O + CH3O 0.00E+00 0.00E+00 0.00E+00
77. CH4 + H → H2 + CH3 0.00E+00 0.00E+00 0.00E+00
78. H2 + CH3 → CH4 + H 0.00E+00 0.00E+00 0.00E+00
79. CH4 + O → OH + CH3 0.00E+00 0.00E+00 0.00E+00
80. OH + CH3 → CH4 + O 0.00E+00 0.00E+00 0.00E+00
81. CH4 + OH → H2O + CH3 0.00E+00 0.00E+00 0.00E+00
82. H2O + CH3 → CH4 + OH 0.00E+00 0.00E+00 0.00E+00
83. CH4 + HO2 → H2O2 + CH3 0.00E+00 0.00E+00 0.00E+00
84. H2O2 + CH3 → CH4 + HO2 0.00E+00 0.00E+00 0.00E+00
85. C2H3 + M(2) → C2H2 + H + M(2) 1.40E+03 1.50E+00 3.11E+04(∗)

86. C2H2 + H + M(2) → C2H3 + M(2) 2.91E+01 1.50E+00 5.19E+04(∗)

87. OH + C2H3 → H2O + C2H2 0.00E+00 0.00E+00 0.00E+00
88. H2O + C2H2 → OH + C2H3 0.00E+00 0.00E+00 0.00E+00
89. H + C2H3 → H2 + C2H2 0.00E+00 0.00E+00 0.00E+00
90. H2 + C2H2 → H + C2H3 0.00E+00 0.00E+00 0.00E+00
91. O2 + C2H3 → CHO + CH2O 0.00E+00 0.00E+00 0.00E+00
92. CHO + CH2O → O2 + C2H3 0.00E+00 0.00E+00 0.00E+00
93. C2H4 + M(2) → H2 + C2H2 + M(2) 0.00E+00 0.00E+00 0.00E+00
94. H2 + C2H2 + M(2) → C2H4 + M(2) 0.00E+00 0.00E+00 0.00E+00
95. C2H4 + M(2) → H + C2H3 + M(2) 0.00E+00 0.00E+00 0.00E+00
96. H + C2H3 + M(2) → C2H4 + M(2) 0.00E+00 0.00E+00 0.00E+00
97. C2H4 + H → H2 + C2H3 0.00E+00 0.00E+00 0.00E+00
98. H2 + C2H3 → C2H4 + H 0.00E+00 0.00E+00 0.00E+00
99. C2H4 + O → CHO + CH3 0.00E+00 0.00E+00 0.00E+00
100. CHO + CH3 → C2H4 + O 0.00E+00 0.00E+00 0.00E+00
101. C2H4 + OH → H2O + C2H3 0.00E+00 0.00E+00 0.00E+00
102. H2O + C2H3 → C2H4 + OH 0.00E+00 0.00E+00 0.00E+00
103. C2H4 + H + M(2) → C2H5 + M(2) 1.00E+03 1.50E+00 2.44E+04(∗)

104. C2H5 + M(2) → C2H4 + H + M(2) 9.18E+00 1.50E+00 3.73E+04(∗)

105. H + C2H5 → CH3 + CH3 0.00E+00 0.00E+00 0.00E+00
106. CH3 + CH3 → H + C2H5 0.00E+00 0.00E+00 0.00E+00
107. O2 + C2H5 → C2H4 + HO2 0.00E+00 0.00E+00 0.00E+00
108. C2H4 + HO2 → O2 + C2H5 0.00E+00 0.00E+00 0.00E+00
109. CH3 + C2H5 → CH4 + C2H4 0.00E+00 0.00E+00 0.00E+00
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Table 2: continued

Reaction mechanism A β E
110. CH4 + C2H4 → CH3 + C2H5 0.00E+00 0.00E+00 0.00E+00
111. C2H5 + C2H5 → C2H6 + C2H4 0.00E+00 0.00E+00 0.00E+00
112. C2H6 + C2H4 → C2H5 + C2H5 0.00E+00 0.00E+00 0.00E+00
113. C2H6 + H → H2 + C2H5 0.00E+00 0.00E+00 0.00E+00
114. H2 + C2H5 → C2H6 + H 0.00E+00 0.00E+00 0.00E+00
115. C2H6 + O → OH + C2H5 0.00E+00 0.00E+00 0.00E+00
116. OH + C2H5 → C2H6 + O 0.00E+00 0.00E+00 0.00E+00
117. C2H6 + OH → H2O + C2H5 0.00E+00 0.00E+00 0.00E+00
118. H2O + C2H5 → C2H6 + OH 0.00E+00 0.00E+00 0.00E+00
119. C2H6 + HO2 → H2O2 + C2H5 0.00E+00 0.00E+00 0.00E+00
120. H2O2 + C2H5 → C2H6 + HO2 0.00E+00 0.00E+00 0.00E+00
121. O2 + C2H6 → HO2 + C2H5 0.00E+00 0.00E+00 0.00E+00
122. HO2 + C2H5 → O2 + C2H6 0.00E+00 0.00E+00 0.00E+00
123. C2H6 + CH3 → CH4 + C2H5 0.00E+00 0.00E+00 0.00E+00
124. CH4 + C2H5 → C2H6 + CH3 0.00E+00 0.00E+00 0.00E+00

Table 3: Catalytic conversion of ethane to ethylene. M(i) is third body. A, β, E are Arrhenius
parameters for the rate constants written in the form: k = AT β exp(−E/RT ). The units of A
are given in terms of moles, cubic meters, and seconds. E is in J/mol.
(∗) is non-Arrhenius reactions, Troe reactions .

Reaction mechanism A β E
1. H2 + OH → H + H2O 2.14E+02 1.52E+00 1.44E+04
2. H + H2O → H2 + OH 9.53E+02 1.52E+00 7.78E+04
3. O + OH → H + O2 2.02E+08 -4.00E-01 0.00E+00
4. H + O2 → O + OH 2.76E+09 -4.00E-01 6.82E+04
5. H2 + O → H + OH 5.06E-02 2.67E+00 2.63E+04
6. H + OH → H2 + O 2.24E-02 2.67E+00 1.85E+04
7. H + O2 + M(2) → HO2 + M(2) 3.00E+07 0.00E+00 0.00E+00(∗)

8. HO2 + M(2) → H + O2 + M(2) 9.70E+08 0.00E+00 7.47E+05(∗)

9. H2 + H + O2 → H2 + HO2 3.29E+15 -3.30E+00 1.20E+04(∗)

10. H2 + HO2 → H2 + H + O2 4.15E+16 -3.30E+00 2.65E+05(∗)

11. H + O2 + H2O → HO2 + H2O 3.29E+15 -3.30E+00 1.20E+04(∗)

12. HO2 + H2O → H + O2 + H2O 2.78E+11 -3.30E+00 3.52E+05(∗)

13. OH + HO2 → O2 + H2O 2.13E+22 -4.83E+00 1.46E+04
14. O2 + H2O → OH + HO2 2.59E+23 -4.83E+00 3.18E+05
15. OH + HO2 → O2 + H2O 9.10E+08 0.00E+00 4.59E+04
16. O2 + H2O → OH + HO2 1.11E+10 0.00E+00 3.49E+05
17. H + HO2 → OH + OH 1.50E+08 0.00E+00 4.18E+03
18. OH + OH → H + HO2 1.33E+07 0.00E+00 1.68E+05
19. H + HO2 → H2 + O2 8.45E+05 6.50E-01 5.19E+03
20. H2 + O2 → H + HO2 2.31E+06 6.50E-01 2.45E+05
21. H + HO2 → O + H2O 3.01E+07 0.00E+00 7.20E+03
22. O + H2O → H + HO2 2.68E+07 0.00E+00 2.42E+05
23. O + HO2 → O2 + OH 3.25E+07 0.00E+00 0.00E+00
24. O2 + OH → O + HO2 3.93E+07 0.00E+00 2.32E+05
25. OH + OH → O + H2O 3.57E-02 2.40E+00 -8.84E+03
26. O + H2O → OH + OH 3.59E-01 2.40E+00 6.24E+04
27. H + H + M(3) → H2 + M(3) 1.00E+06 -1.00E+00 0.00E+00
28. H2 + M(3) → H + H + M(3) 3.88E+12 -1.00E+00 4.36E+05
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Table 3: continued

Reaction mechanism A β E
29. H2 + H + H → H2 + H2 9.20E+04 -6.00E-01 0.00E+00
30. H2 + H2 → H2 + H + H 3.57E+11 -6.00E-01 4.36E+05
31. H + H + H2O → H2 + H2O 6.00E+07 -1.25E+00 0.00E+00
32. H2 + H2O → H + H + H2O 2.33E+14 -1.25E+00 4.36E+05
33. H + OH + M(4) → H2O + M(4) 2.21E+10 -2.00E+00 0.00E+00
34. H2O + M(4) → H + OH + M(4) 3.82E+17 -2.00E+00 4.99E+05
35. H + O + M(4) → OH + M(4) 4.71E+06 -1.00E+00 0.00E+00
36. OH + M(4) → H + O + M(4) 8.08E+12 -1.00E+00 4.28E+05
37. O + O + M(1) → O2 + M(1) 1.89E+01 0.00E+00 -7.48E+03
38. O2 + M(1) → O + O + M(1) 4.44E+08 0.00E+00 4.89E+05
39. HO2 + HO2 → O2 + H2O2 4.20E+08 0.00E+00 5.01E+04
40. O2 + H2O2 → HO2 + HO2 1.69E+09 0.00E+00 2.25E+05
41. HO2 + HO2 → O2 + H2O2 1.30E+05 0.00E+00 -6.82E+03
42. O2 + H2O2 → HO2 + HO2 5.24E+05 0.00E+00 1.68E+05
43. OH + OH + M(1) → H2O2 + M(1) 1.01E+15 -3.30E+00 6.31E+03(∗)

44. H2O2 + M(1) → OH + OH + M(1) 3.31E+17 -3.30E+00 7.82E+05(∗)

45. H + H2O2 → H2 + HO2 1.98E+00 2.00E+00 1.02E+04
46. H2 + HO2 → H + H2O2 1.34E+00 2.00E+00 7.53E+04
47. H + H2O2 → OH + H2O 3.07E+07 0.00E+00 1.76E+04
48. OH + H2O → H + H2O2 8.19E+06 0.00E+00 3.10E+05
49. O + H2O2 → OH + HO2 9.55E+00 2.00E+00 1.66E+04
50. OH + HO2 → O + H2O2 2.86E+00 2.00E+00 7.39E+04
51. OH + H2O2 → HO2 + H2O 2.40E-06 4.04E+00 -9.04E+03
52. HO2 + H2O → OH + H2O2 7.25E-06 4.04E+00 1.19E+05
53. CH3 + CH3 + M(5) → C2H6 + M(5) 7.28E+13 -2.54E+00 7.57E+03(∗)

54. C2H6 + M(5) → CH3 + CH3 + M(5) 7.66E+14 -2.54E+00 7.50E+05(∗)

55. H + CH3 + M(5) → CH4 + M(5) 1.29E+14 -3.30E+00 1.19E+03(∗)

56. CH4 + M(5) → H + CH3 + M(5) 5.23E+13 -3.30E+00 3.06E+05(∗)

57. H + CH4 → H2 + CH3 2.20E-02 3.00E+00 3.66E+04
58. H2 + CH3 → H + CH4 7.70E-04 3.00E+00 3.28E+04
59. CH4 + OH → CH3 + H2O 4.19E+00 2.00E+00 1.07E+04
60. CH3 + H2O → CH4 + OH 6.53E-01 2.00E+00 7.02E+04
61. CH4 + O → CH3 + OH 6.92E+02 1.56E+00 3.55E+04
62. CH3 + OH → CH4 + O 1.07E+01 1.56E+00 2.38E+04
63. CH4 + HO2 → CH3 + H2O2 1.12E+07 0.00E+00 1.03E+05
64. CH3 + H2O2 → CH4 + HO2 5.78E+05 0.00E+00 3.41E+04
65. CH3 + HO2 → OH + CH3O 7.00E+06 0.00E+00 0.00E+00
66. OH + CH3O → CH3 + HO2 2.67E+07 0.00E+00 1.12E+05
67. CH3 + HO2 → CH4 + O2 3.00E+06 0.00E+00 0.00E+00
68. CH4 + O2 → CH3 + HO2 2.34E+08 0.00E+00 2.44E+05
69. CH3 + O → H + CH2O 8.00E+07 0.00E+00 0.00E+00
70. H + CH2O → CH3 + O 1.11E+09 0.00E+00 2.92E+05
71. CH3 + O2 → O + CH3O 1.45E+07 0.00E+00 1.22E+05
72. O + CH3O → CH3 + O2 4.57E+07 0.00E+00 1.66E+03
73. CH3 + O2 → CH2O + OH 2.51E+05 0.00E+00 6.13E+04
74. CH2O + OH → CH3 + O2 2.55E+05 0.00E+00 2.85E+05
75. H + CH3O → CH3 + OH 1.00E+08 0.00E+00 0.00E+00
76. CH3 + OH → H + CH3O 2.32E+06 0.00E+00 5.23E+04
77. CH3 + OH → H2O + 3CH2 3.00E+00 2.00E+00 1.05E+04
78. H2O + 3CH2 → CH3 + OH 2.43E+00 2.00E+00 5.27E+04
79. CH3 + OH → H2 + CH2O 5.48E+07 0.00E+00 1.25E+04
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Table 3: continued

Reaction mechanism A β E
80. H2 + CH2O → CH3 + OH 1.72E+09 0.00E+00 3.13E+05
81. CH3 + OH → H2 + CH2O 2.25E+07 0.00E+00 1.80E+04
82. H2 + CH2O → CH3 + OH 7.07E+08 0.00E+00 3.18E+05
83. H + CH3 → H2 + 3CH2 9.00E+07 0.00E+00 6.32E+04
84. H2 + 3CH2 → H + CH3 1.64E+07 0.00E+00 4.21E+04
85. CH3 + M(1) → H + 3CH2 + M(1) 1.96E+10 0.00E+00 3.82E+05
86. H + 3CH2 + M(1) → CH3 + M(1) 9.19E+02 0.00E+00 -7.47E+04
87. H + CH2O + M(6) → CH3O + M(6) 4.00E+07 0.00E+00 0.00E+00(∗)

88. CH3O + M(6) → H + CH2O + M(6) 1.34E+10 0.00E+00 2.57E+05(∗)

89. H + CH3O → H2 + CH2O 2.00E+07 0.00E+00 0.00E+00
90. H2 + CH2O → H + CH3O 1.46E+07 0.00E+00 3.53E+05
91. OH + CH3O → CH2O + H2O 1.00E+07 0.00E+00 0.00E+00
92. CH2O + H2O → OH + CH3O 3.24E+07 0.00E+00 4.16E+05
93. O + CH3O → CH2O + OH 1.00E+07 0.00E+00 0.00E+00
94. CH2O + OH → O + CH3O 3.22E+06 0.00E+00 3.45E+05
95. O2 + CH3O → CH2O + HO2 6.30E+04 0.00E+00 1.09E+04
96. CH2O + HO2 → O2 + CH3O 1.68E+04 0.00E+00 1.23E+05
97. CH2O + OH → CHO + H2O 2.00E+07 0.00E+00 0.00E+00
98. CHO + H2O → CH2O + OH 6.47E+06 0.00E+00 1.23E+05
99. H + CH2O → H + CH2O 2.00E+08 0.00E+00 0.00E+00
100. H + CH2O → H + CH2O 2.00E+08 0.00E+00 0.00E+00
101. CH2O + O → H + H + CO2 5.00E+07 0.00E+00 0.00E+00
102. H + H + CO2 → CH2O + O 3.35E+02 0.00E+00 8.69E+04
103. CH2O + O → H + CO + OH 3.00E+07 0.00E+00 0.00E+00
104. H + CO + OH → CH2O + O 1.45E+00 0.00E+00 -1.03E+04
105. CH2O + O2 → H + CO2 + OH 5.00E+06 0.00E+00 0.00E+00
106. H + CO2 + OH → CH2O + O2 2.45E+00 0.00E+00 1.87E+04
107. CH2O + O2 → CO2 + H2O 3.00E+07 0.00E+00 0.00E+00
108. CO2 + H2O → CH2O + O2 2.54E+08 0.00E+00 5.18E+05
109. OH + 3CH2 → H + CH2O 2.50E+07 0.00E+00 0.00E+00
110. H + CH2O → OH + 3CH2 4.32E+09 0.00E+00 3.21E+05
111. CO2 + 3CH2 → CH2O + CO 1.10E+05 0.00E+00 4.18E+03
112. CH2O + CO → CO2 + 3CH2 1.37E+05 0.00E+00 2.28E+05
113. O + 3CH2 → H + H + CO 5.00E+07 0.00E+00 0.00E+00
114. H + H + CO → O + 3CH2 4.17E+02 0.00E+00 3.11E+05
115. O + 3CH2 → H2 + CO 3.00E+07 0.00E+00 0.00E+00
116. H2 + CO → O + 3CH2 9.70E+08 0.00E+00 7.47E+05
117. O2 + 3CH2 → CH2O + O 3.29E+15 -3.30E+00 1.20E+04
118. CH2O + O → O2 + 3CH2 4.15E+16 -3.30E+00 2.65E+05
119. O2 + 3CH2 → H + H + CO2 3.29E+15 -3.30E+00 1.20E+04
120. H + H + CO2 → O2 + 3CH2 2.78E+11 -3.30E+00 3.52E+05
121. O2 + 3CH2 → H2 + CO2 1.01E+15 -3.30E+00 6.31E+03
122. H2 + CO2 → O2 + 3CH2 3.31E+17 -3.30E+00 7.82E+05
123. O2 + 3CH2 → CO + H2O 7.28E+13 -2.54E+00 7.57E+03
124. CO + H2O → O2 + 3CH2 7.66E+14 -2.54E+00 7.50E+05
125. O2 + 3CH2 → CHO + OH 1.29E+14 -3.30E+00 1.19E+03
126. CHO + OH → O2 + 3CH2 5.23E+13 -3.30E+00 3.06E+05
127. CH3 + 3CH2 → H + C2H4 4.00E+07 0.00E+00 0.00E+00
128. H + C2H4 → CH3 + 3CH2 1.34E+10 0.00E+00 2.57E+05
129. 3CH2 + 3CH2 → H + H + C2H2 4.00E+07 0.00E+00 0.00E+00
130. H + H + C2H2 → 3CH2 + 3CH2 2.23E+03 0.00E+00 1.03E+05
131. 3CH2 + HCCO → CO + C2H3 3.00E+07 0.00E+00 0.00E+00
132. CO + C2H3 → 3CH2 + HCCO 1.90E+09 0.00E+00 3.95E+05
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Table 3: continued

Reaction mechanism A β E
133. CH2O + OH → CHO + H2O 3.43E+03 1.18E+00 -1.87E+03
134. CHO + H2O → CH2O + OH 1.11E+03 1.18E+00 1.21E+05
135. H + CH2O → H2 + CHO 2.19E+02 1.77E+00 1.26E+04
136. H2 + CHO → H + CH2O 1.59E+01 1.77E+00 7.18E+04
137. CH2O + M(1) → H + CHO + M(1) 3.31E+10 0.00E+00 3.39E+05
138. H + CHO + M(1) → CH2O + M(1) 6.20E+02 0.00E+00 -3.79E+04
139. CH2O + O → CHO + OH 1.80E+07 0.00E+00 1.29E+04
140. CHO + OH → CH2O + O 5.79E+05 0.00E+00 6.43E+04
141. CHO + O2 → CO + HO2 7.58E+06 0.00E+00 1.72E+03
142. CO + HO2 → CHO + O2 1.61E+07 0.00E+00 1.36E+05
143. CHO + M(7) → H + CO + M(7) 1.86E+11 -1.00E+00 7.11E+04
144. H + CO + M(7) → CHO + M(7) 2.79E+05 -1.00E+00 9.47E+03
145. CHO + OH → CO + H2O 1.00E+08 0.00E+00 0.00E+00
146. CO + H2O → CHO + OH 2.59E+09 0.00E+00 4.38E+05
147. H + CHO → H2 + CO 1.19E+07 2.50E-01 0.00E+00
148. H2 + CO → H + CHO 6.93E+07 2.50E-01 3.74E+05
149. CHO + O → CO + OH 3.00E+07 0.00E+00 0.00E+00
150. CO + OH → CHO + O 7.73E+07 0.00E+00 3.67E+05
151. CHO + O → H + CO2 3.00E+07 0.00E+00 0.00E+00
152. H + CO2 → CHO + O 1.07E+10 0.00E+00 4.64E+05
153. CO + OH → H + CO2 9.42E-03 2.25E+00 -9.84E+03
154. H + CO2 → CO + OH 1.31E+00 2.25E+00 8.74E+04
155. CO + O + M(1) → CO2 + M(1) 6.17E+02 0.00E+00 1.26E+04
156. CO2 + M(1) → CO + O + M(1) 1.47E+11 0.00E+00 5.38E+05
157. CO + O2 → CO2 + O 2.53E+06 0.00E+00 2.00E+05
158. CO2 + O → CO + O2 2.57E+07 0.00E+00 2.28E+05
159. CO + HO2 → CO2 + OH 5.80E+07 0.00E+00 9.60E+04
160. CO2 + OH → CO + HO2 7.12E+08 0.00E+00 3.57E+05
161. CH3 + C2H6 → CH4 + C2H5 5.50E-07 4.00E+00 3.47E+04
162. CH4 + C2H5 → CH3 + C2H6 3.27E-07 4.00E+00 5.93E+04
163. H + C2H6 → H2 + C2H5 5.40E-04 3.50E+00 2.18E+04
164. H2 + C2H5 → H + C2H6 1.12E-05 3.50E+00 4.26E+04
165. O + C2H6 → OH + C2H5 3.00E+01 2.00E+00 2.14E+04
166. OH + C2H5 → O + C2H6 2.76E-01 2.00E+00 3.43E+04
167. OH + C2H6 → H2O + C2H5 7.23E+00 2.00E+00 3.61E+03
168. H2O + C2H5 → OH + C2H6 6.69E-01 2.00E+00 8.77E+04
169. H + C2H5 → H2 + C2H4 1.25E+08 0.00E+00 3.35E+04
170. H2 + C2H4 → H + C2H5 7.65E+08 0.00E+00 3.16E+05
171. H + C2H5 → CH3 + CH3 3.00E+07 0.00E+00 0.00E+00
172. CH3 + CH3 → H + C2H5 3.01E+06 0.00E+00 4.63E+04
173. H + C2H5 → C2H6 7.00E+07 0.00E+00 0.00E+00
174. C2H6 → H + C2H5 1.31E+16 0.00E+00 4.15E+05
175. OH + C2H5 → H2O + C2H4 4.00E+07 0.00E+00 0.00E+00
176. H2O + C2H4 → OH + C2H5 1.09E+09 0.00E+00 3.46E+05
177. O + C2H5 → CH3 + CH2O 1.00E+08 0.00E+00 0.00E+00
178. CH3 + CH2O → O + C2H5 1.39E+08 0.00E+00 3.39E+05
179. HO2 + C2H5 → CH3 + CH2O + OH 3.00E+07 0.00E+00 0.00E+00
180. CH3 + CH2O + OH → HO2 + C2H5 2.16E+00 0.00E+00 7.46E+04
181. O2 + C2H5 → HO2 + C2H4 3.00E+14 -2.86E+00 2.83E+04
182. HO2 + C2H4 → O2 + C2H5 6.71E+14 -2.86E+00 7.05E+04
183. O2 + C2H5 → HO2 + C2H4 2.12E-12 6.00E+00 3.97E+04
184. HO2 + C2H4 → O2 + C2H5 4.74E-12 6.00E+00 8.19E+04
185. H + C2H4 → H2 + C2H3 3.36E-13 6.00E+00 7.08E+03
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Table 3: continued

Reaction mechanism A β E
186. H2 + C2H3 → H + C2H4 1.87E-14 6.00E+00 -5.86E+03
187. OH + C2H4 → H2O + C2H3 2.02E+07 0.00E+00 2.48E+04
188. H2O + C2H3 → OH + C2H4 5.01E+06 0.00E+00 7.52E+04
189. O + C2H4 → CH3 + CHO 1.02E+01 1.88E+00 7.48E+02
190. CH3 + CHO → O + C2H4 1.69E-01 1.88E+00 1.16E+05
191. O + C2H4 → H + CH2CHO 3.39E+00 1.88E+00 7.48E+02
192. H + CH2CHO → O + C2H4 8.51E-01 1.88E+00 5.49E+04
193. CH3 + C2H4 → CH4 + C2H3 6.62E-06 3.70E+00 3.97E+04
194. CH4 + C2H3 → CH3 + C2H4 1.05E-05 3.70E+00 3.06E+04
195. H + C2H4 + M(5) → C2H5 + M(5) 4.00E+07 0.00E+00 0.00E+00(∗)

196. C2H5 + M(5) → H + C2H4 + M(5) 2.23E+03 0.00E+00 1.03E+05(∗)

197. C2H4 + M(1) → H2 + C2H2 + M(1) 3.00E+07 0.00E+00 0.00E+00(∗)

198. H2 + C2H2 + M(1) → C2H4 + M(1) 1.90E+09 0.00E+00 3.95E+05(∗)

199. H + C2H3 + M(6) → C2H4 + M(6) 3.43E+03 1.18E+00 -1.87E+03(∗)

200. C2H4 + M(6) → H + C2H3 + M(6) 1.11E+03 1.18E+00 1.21E+05(∗)

201. H + C2H3 → H2 + C2H2 4.00E+07 0.00E+00 0.00E+00
202. H2 + C2H2 → H + C2H3 8.44E+07 0.00E+00 2.74E+05
203. O + C2H3 → H + CH2CO 3.00E+07 0.00E+00 0.00E+00
204. H + CH2CO → O + C2H3 4.36E+08 0.00E+00 3.62E+05
205. O2 + C2H3 → CHO + CH2O 1.70E+23 -5.31E+00 2.72E+04
206. CHO + CH2O → O2 + C2H3 1.16E+23 -5.31E+00 3.88E+05
207. O2 + C2H3 → O + CH2CHO 3.50E+08 -6.11E-01 2.20E+04
208. O + CH2CHO → O2 + C2H3 2.60E+08 -6.11E-01 2.87E+04
209. O2 + C2H3 → HO2 + C2H2 2.12E-12 6.00E+00 3.97E+04
210. HO2 + C2H2 → O2 + C2H3 1.63E-12 6.00E+00 7.33E+04
211. OH + C2H3 → H2O + C2H2 2.00E+07 0.00E+00 0.00E+00
212. H2O + C2H2 → OH + C2H3 1.88E+08 0.00E+00 3.37E+05
213. CH3 + C2H3 → CH4 + C2H2 2.00E+07 0.00E+00 0.00E+00
214. CH4 + C2H2 → CH3 + C2H3 1.21E+09 0.00E+00 2.78E+05
215. C2H3 + C2H3 → C2H2 + C2H4 1.45E+07 0.00E+00 0.00E+00
216. C2H2 + C2H4 → C2H3 + C2H3 5.48E+08 0.00E+00 2.87E+05
217. OH + C2H2 → H + CH2CO 2.18E-10 4.50E+00 -4.18E+03
218. H + CH2CO → OH + C2H2 3.40E-09 4.50E+00 9.23E+04
219. OH + C2H2 → H + CH2CO 2.00E+05 0.00E+00 0.00E+00
220. H + CH2CO → OH + C2H2 3.12E+06 0.00E+00 9.65E+04
221. OH + C2H2 → CH3 + CO 4.83E-10 4.00E+00 -8.37E+03
222. CH3 + CO → OH + C2H2 8.97E-10 4.00E+00 2.29E+05
223. O + C2H2 → CO + 3CH2 6.12E+00 2.00E+00 7.95E+03
224. CO + 3CH2 → O + C2H2 9.16E-01 2.00E+00 2.16E+05
225. O + C2H2 → H + HCCO 1.43E+01 2.00E+00 7.95E+03
226. H + HCCO → O + C2H2 3.46E+00 2.00E+00 8.61E+04
227. O2 + C2H2 → OH + HCCO 4.00E+01 1.50E+00 1.26E+05
228. OH + HCCO → O2 + C2H2 7.06E-01 1.50E+00 1.36E+05
229. H + C2H2 + M(5) → C2H3 + M(5) 2.19E+02 1.77E+00 1.26E+04(∗)

230. C2H3 + M(5) → H + C2H2 + M(5) 1.59E+01 1.77E+00 7.18E+04(∗)

231. H + CH2CHO → H2 + CH2CO 4.00E+07 0.00E+00 0.00E+00
232. H2 + CH2CO → H + CH2CHO 1.29E+08 0.00E+00 2.95E+05
233. O + CH2CHO → CHO + CH2O 1.00E+08 0.00E+00 0.00E+00
234. CHO + CH2O → O + CH2CHO 9.18E+07 0.00E+00 3.54E+05
235. OH + CH2CHO → H2O + CH2CO 3.00E+07 0.00E+00 0.00E+00
236. H2O + CH2CO → OH + CH2CHO 4.31E+08 0.00E+00 3.59E+05
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Table 3: continued

Reaction mechanism A β E
237. O2 + CH2CHO → CH2O + CO + OH 3.00E+04 0.00E+00 0.00E+00
238. CH2O + CO + OH → O2 + CH2CHO 3.02E-03 0.00E+00 2.24E+05
239. CH3 + CH2CHO → H + CO + C2H5 4.90E+08 -5.00E-01 0.00E+00
240. CH2CHO → H + CH2CO 3.95E+38 -7.65E+00 1.89E+05
241. H + CH2CO → CH2CHO 3.29E+32 -7.65E+00 4.80E+04
242. O + CH2CO → CO2 + 3CH2 1.75E+06 0.00E+00 5.65E+03
243. CO2 + 3CH2 → O + CH2CO 2.33E+06 0.00E+00 2.14E+05
244. H + CH2CO → CH3 + CO 7.00E+06 0.00E+00 1.26E+04
245. CH3 + CO → H + CH2CO 8.34E+05 0.00E+00 1.53E+05
246. H + CH2CO → H2 + HCCO 2.00E+08 0.00E+00 3.35E+04
247. H2 + HCCO → H + CH2CO 7.01E+06 0.00E+00 2.30E+04
248. O + CH2CO → OH + HCCO 1.00E+07 0.00E+00 3.35E+04
249. OH + HCCO → O + CH2CO 1.55E+05 0.00E+00 1.51E+04
250. OH + CH2CO → H2O + HCCO 1.00E+07 0.00E+00 8.37E+03
251. H2O + HCCO → OH + CH2CO 1.56E+06 0.00E+00 6.12E+04
252. CO + 3CH2 + M(6) → CH2CO + M(6) 3.31E+10 0.00E+00 3.39E+05(∗)

253. CH2CO + M(6) → CO + 3CH2 + M(6) 6.20E+02 0.00E+00 -3.79E+04(∗)

254. O + HCCO → H + CO + CO 8.00E+07 0.00E+00 0.00E+00
255. H + CO + CO → O + HCCO 4.13E+02 0.00E+00 4.41E+05
256. O2 + HCCO → CHO + CO + O 2.50E+02 1.00E+00 0.00E+00
257. CHO + CO + O → O2 + HCCO 3.66E-05 1.00E+00 6.37E+03
258. O2 + HCCO → CHO + CO2 2.40E+05 0.00E+00 -3.57E+03
259. CHO + CO2 → O2 + HCCO 8.36E+06 0.00E+00 5.28E+05
260. HCCO + HCCO → CO + CO + C2H2 1.00E+07 0.00E+00 0.00E+00
261. CO + CO + C2H2 → HCCO + HCCO 2.13E+02 0.00E+00 3.63E+05

A-2 Surface Reaction Mechanisms

Table 5: Surface-reaction mechanism of the catalytic combustion of methane over plat-
inum M(i) is third body. A, β, E are Arrhenius parameters for the rate constants writ-
ten in the form: k = AT β exp(−E/RT ) or in a modified Arrhenius expression kfk

=

AkT
βk exp

(
−Eak

RT

) Ns∏

i=1

Θµik

i exp

(
εikΘi

RT

)
. The units of A are given in terms of moles, cubic

meters, and seconds. E is in J/mol.
(∗) stick, non-Arrhenius reaction, modified Arrhenius rate expression is used.

Reaction mechanism A β E
1. H2 + 2PT(s) → 2H(s) 1.59E+09 5.00E-01 0.00E+00 (∗)

2. O2 + 2PT(s) → 2O(s) 1.80E+11 -5.00E-01 0.00E+00
3. O2 + 2PT(s) → 2O(s) 1.99E+08 5.00E-01 0.00E+00
4. CH4 + 2PT(s) → CH3(s) + H(s) 1.22E+08 5.00E-01 0.00E+00 (∗)

5. H2O + PT(s) → H2O(s) 2.36E+05 5.00E-01 0.00E+00
6. CO + PT(s) → CO(s) 2.12E+05 5.00E-01 0.00E+00 (∗)

7. 2H(s) → H2 + 2PT(s) 3.70E+17 0.00E+00 6.74E+04 (∗)

8. 2O(s) → O2 + 2PT(s) 3.70E+17 0.00E+00 2.13E+05 (∗)

9. H2O(s) → H2O + PT(s) 1.00E+13 0.00E+00 4.03E+04
10. CO(s) → CO + PT(s) 1.00E+13 0.00E+00 1.25E+05
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Table 5: continued

Reaction mechanism A β E
11. CO2(s) → CO2 + PT(s) 1.00E+13 0.00E+00 2.05E+04
12. O(s) + H(s) → OH(s) + PT(s) 3.70E+17 0.00E+00 1.15E+04
13. OH(s) + PT(s) → O(s) + H(s) 1.02E+18 0.00E+00 7.96E+04
14. OH(s) + H(s) → H2O(s) + PT(s) 3.70E+17 0.00E+00 1.74E+04
15. H2O(s) + PT(s) → OH(s) + H(s) 3.66E+17 0.00E+00 7.36E+04
16. 2OH(s) → O(s) + H2O(s) 3.70E+17 0.00E+00 4.82E+04
17. O(s) + H2O(s) → 2OH(s) 1.32E+17 0.00E+00 3.62E+04
18. CO(s) + O(s) → CO2(s) + PT(s) 3.70E+17 0.00E+00 1.05E+05
19. C(s) + O(s) → CO(s) + PT(s) 3.70E+17 0.00E+00 6.28E+04
20. CO(s) + PT(s) → C(s) + O(s) 1.00E+14 0.00E+00 1.84E+05
21. CH3(s) + PT(s) → CH2(s) + H(s) 3.70E+17 0.00E+00 2.00E+04
22. CH2(s) + PT(s) → CH(s) + H(s) 3.70E+17 0.00E+00 2.00E+04
23. CH(s) + PT(s) → C(s) + H(s) 3.70E+17 0.00E+00 2.00E+04

Table 6: Surface-reaction mechanism of conversion of ethane to ethylene M(i) is third body. A,
β, E are Arrhenius parameters for the rate constants written in the form: k = AT β exp(−E/RT )

or in a modified Arrhenius expression kfk
= AkT

βk exp

(
−Eak

RT

) Ns∏

i=1

Θµik

i exp

(
εikΘi

RT

)
. The units

of A are given in terms of moles, cubic meters, and seconds. E is in J/mol.
(∗) stick, non-Arrhenius reaction, modified Arrhenius rate expression is used.

Reaction mechanism A β E
1. H + PT(s) → H(s) 1.33E+06 5.00E-01 0.00E+00 (∗)

2. H2 + 2PT(s) → 2H(s) 1.59E+09 5.00E-01 0.00E+00 (∗)

3. H2 + C(s) → CH2(s) 3.77E+04 5.00E-01 2.97E+04 (∗)

4. O + PT(s) → O(s) 3.34E+05 5.00E-01 0.00E+00 (∗)

5. O2 + 2PT(s) → 2O(s) 1.89E+11 -5.00E-01 0.00E+00
6. OH + PT(s) → OH(s) 3.24E+05 5.00E-01 0.00E+00 (∗)

7. H2O + PT(s) → H2O(s) 2.36E+05 5.00E-01 0.00E+00 (∗)

8. CO + PT(s) → CO(s) 2.12E+05 5.00E-01 0.00E+00 (∗)

9. CO2 + PT(s) → CO2(s) 1.01E+03 5.00E-01 0.00E+00 (∗)

10. CH3 + PT(s) → CH3(s) 3.45E+05 5.00E-01 0.00E+00 (∗)

11. CH4 + C(s) → C2H4(2s) 2.34E-03 5.00E-01 2.30E+04 (∗)

12. CH4 + 2PT(s) → CH3(s) + H(s) 1.10E+07 5.00E-01 7.22E+04 (∗)

13. CH4 + O(s) + PT(s) → CH3(s) + OH(s) 5.00E+08 7.00E-01 4.20E+04
14. CH4 + OH(s) + PT(s) → CH3(s) + H2O(s) 1.23E+10 5.00E-01 1.00E+04 (∗)

15. C2H2 + PT(s) → C2H2(1s) 1.31E+04 5.00E-01 0.00E+00 (∗)

16. C2H4 + PT(s) → C2H4(1s) 3.79E+03 5.00E-01 0.00E+00 (∗)

17. C2H5 + PT(s) → C2H5(s) 2.48E+05 5.00E-01 0.00E+00 (∗)

18. C2H6 + 2PT(s) → C2H6(2s) 1.34E+08 5.00E-01 0.00E+00 (∗)

19. H(s) → H + PT(s) 6.00E+13 0.00E+00 2.54E+05
20. 2H(s) → H2 + 2PT(s) 3.70E+17 0.00E+00 6.74E+04
21. CH2(s) → H2 + C(s) 7.69E+13 0.00E+00 2.51E+04
22. O(s) → O + PT(s) 1.00E+13 0.00E+00 3.59E+05
23. 2O(s) → O2 + 2PT(s) 3.70E+17 0.00E+00 2.27E+05
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Table 6: continued

Reaction mechanism A β E
24. OH(s) → OH + PT(s) 5.00E+13 0.00E+00 2.51E+05
25. H2O(s) → H2O + PT(s) 4.50E+12 0.00E+00 4.18E+04
26. CO(s) → CO + PT(s) 2.50E+16 0.00E+00 1.46E+05
27. CO2(s) → CO2 + PT(s) 1.00E+13 0.00E+00 2.71E+04
28. CH3(s) → CH3 + PT(s) 1.00E+13 0.00E+00 1.63E+05
29. CH3(s) + H(s) → CH4 + 2PT(s) 1.50E+16 0.00E+00 5.00E+04
30. CH3(s) + H2O(s) → CH4 + OH(s) + PT(s) 2.50E+16 0.00E+00 2.30E+04
31. CH3(s) + OH(s) → CH4 + O(s) + PT(s) 3.70E+17 0.00E+00 8.59E+04
32. C2H2(1s) → C2H2 + PT(s) 1.00E+12 0.00E+00 5.86E+04
33. C2H4(1s) → C2H4 + PT(s) 1.00E+13 0.00E+00 5.02E+04
34. C2H4(2s) → CH4 + C(s) 1.00E+10 0.00E+00 2.55E+04
35. C2H5(s) → C2H5 + PT(s) 1.00E+13 0.00E+00 1.73E+05
36. C2H6(2s) → C2H6 + 2PT(s) 1.00E+13 0.00E+00 2.09E+04
37. O(s) + H(s) → OH(s) + PT(s) 1.28E+17 0.00E+00 1.12E+04
38. OH(s) + PT(s) → O(s) + H(s) 7.39E+15 0.00E+00 7.73E+04
39. OH(s) + H(s) → H2O(s) + PT(s) 2.04E+17 0.00E+00 6.62E+04
40. H2O(s) + PT(s) → OH(s) + H(s) 1.15E+15 0.00E+00 1.01E+05
41. 2OH(s) → H2O(s) + O(s) 7.40E+16 0.00E+00 7.40E+04
42. H2O(s) + O(s) → 2OH(s) 1.00E+16 0.00E+00 4.31E+04
43. C(s) + O(s) → CO(s) + PT(s) 3.70E+15 0.00E+00 0.00E+00
44. CO(s) + PT(s) → C(s) + O(s) 3.70E+15 0.00E+00 2.36E+05
45. CO(s) + O(s) → CO2(s) + PT(s) 3.70E+15 0.00E+00 1.18E+05
46. CO2(s) + PT(s) → CO(s) + O(s) 3.70E+15 0.00E+00 1.73E+05
47. CO(s) + OH(s) → CO2(s) + H(s) 2.00E+15 0.00E+00 3.87E+04
48. CO2(s) + H(s) → CO(s) + OH(s) 2.00E+15 0.00E+00 2.83E+04
49. CH3(s) + PT(s) → CH2(s) + H(s) 1.26E+18 0.00E+00 7.03E+04
50. CH2(s) + H(s) → CH3(s) + PT(s) 3.09E+18 0.00E+00 0.00E+00
51. CH2(s) + PT(s) → CH(s) + H(s) 7.31E+18 0.00E+00 5.89E+04
52. CH(s) + H(s) → CH2(s) + PT(s) 3.09E+18 0.00E+00 0.00E+00
53. CH(s) + PT(s) → C(s) + H(s) 3.09E+18 0.00E+00 0.00E+00
54. C(s) + H(s) → CH(s) + PT(s) 1.25E+18 0.00E+00 1.38E+05
55. C2H6(2s)+ O(s) → C2H5(s) + OH(s) + PT(s) 3.70E+17 0.00E+00 2.51E+04
56. C2H5(s) + OH(s) + PT(s) → C2H6(2s)+ O(s) 1.35E+22 0.00E+00 7.74E+04
57. C2H4(1s) → C2H4(2s) 1.00E+13 0.00E+00 8.33E+04
58. C2H4(2s) → C2H4(1s) 1.00E+13 0.00E+00 7.53E+04
59. C2H5(s) + H(s) → C2H6(2s) 3.70E+17 0.00E+00 4.18E+04
60. C2H6(2s) → C2H5(s) + H(s) 7.00E+12 0.00E+00 5.77E+04
61. 2CH3(s) → C2H6(2s) 1.00E+17 0.00E+00 1.45E+04
62. C2H6(2s) → 2CH3(s) 1.00E+13 0.00E+00 8.90E+04
63. C2H5(s) + PT(s) → C2H4(2s)+ H(s) 1.00E+18 0.00E+00 5.44E+04
64. C2H4(2s)+ H(s) → C2H5(s) + PT(s) 1.00E+17 0.00E+00 2.93E+04
65. C2H4(2s)+ PT(s) → C2H3(1s)+ H(s) 2.00E+18 0.00E+00 9.91E+04
66. C2H3(1s)+ H(s) → C2H4(2s)+ PT(s) 3.70E+17 0.00E+00 7.53E+04
67. C2H4(2s)+ PT(s) → C2H3(2s)+ H(s) 3.70E+17 0.00E+00 1.28E+05
68. C2H3(2s)+ H(s) → C2H4(2s)+ PT(s) 3.70E+17 0.00E+00 5.73E+04
69. C2H4(1s)+ PT(s) → C2H3(2s)+ H(s) 3.70E+17 0.00E+00 1.13E+05
70. C2H3(2s)+ H(s) → C2H4(1s)+ PT(s) 3.70E+17 0.00E+00 3.35E+04
71. C2H3(2s)+ PT(s) → C2H2(3s)+ H(s) 3.70E+17 0.00E+00 1.21E+05
72. C2H2(3s)+ H(s) → C2H3(2s)+ PT(s) 3.70E+17 0.00E+00 5.17E+04
73. C2H3(1s)+ PT(s) → CH3(s) + C(s) 3.70E+17 0.00E+00 4.69E+04
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Table 6: continued

Reaction mechanism A β E
74. CH3(s) + C(s) → C2H3(1s)+ PT(s) 3.70E+17 0.00E+00 4.60E+04
75. C2H2(1s) → C2H2(3s) 1.00E+13 0.00E+00 6.15E+04
76. C2H2(3s) → C2H2(1s) 1.00E+13 0.00E+00 4.20E+03
77. C2H3(1s) → C2H3(2s) 1.00E+13 0.00E+00 1.76E+05
78. C2H3(2s) → C2H3(1s) 1.00E+13 0.00E+00 1.29E+05
79. C2H2(1s)+ PT(s) → C2H(1s) + H(s) 3.70E+17 0.00E+00 1.34E+05
80. C2H(1s) + H(s) → C2H2(1s)+ PT(s) 3.70E+17 0.00E+00 6.69E+04
81. C2H(1s) + PT(s) → CH(s) + C(s) 3.70E+17 0.00E+00 1.25E+05
82. CH(s) + C(s) → C2H(1s) + PT(s) 3.70E+17 0.00E+00 1.21E+05
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Table 4: Surface-reaction mechanism of the NO-NO2. A, β, E
are Arrhenius parameters for the rate constants written in the form:
k = AT β exp(−E/RT ) or in a modified Arrhenius expression kfk

=

AkT
βk exp

(
−Eak
RT

) Ns∏

i=1

Θµik

i exp
(
εikΘi

RT

)
. The units of A are given in terms

of moles, cubic meters, and seconds. E is in J/mol.
(∗) is non-Arrhenius reaction, modified Arrhenius reaction

Reaction mechanism A β E
1. O2 + 2PT(s) → 2O(s) 6.08E+08 5.00E-01 0.00E+00
2. NO + PT(s) → NO(s) 2.07E+05 5.00E-01 0.00E+00
3. NO2 + PT(s) → NO2(s) 1.77E+05 5.00E-01 0.00E+00
4. O + PT(s) → O(s) 3.34E+05 5.00E-01 0.00E+00
5. 2O(s) → O2 + 2PT(s) 3.70E+17 0.00E+00 2.13E+05 (∗)

6. NO(s) → NO + PT(s) 1.00E+16 0.00E+00 9.00E+04
7. NO2(s) → NO2 + PT(s) 1.00E+13 0.00E+00 6.00E+04
8. NO(s) + O(s) → NO2(s) + PT(s) 3.70E+17 0.00E+00 9.63E+04 (∗)

9. NO2(s) + PT(s) → NO(s) + O(s) 3.70E+17 0.00E+00 7.95E+04
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