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Abstract

In the present thesis the flow of a viscous Newtonian fluid in a bifurcation of thin
three-dimensional pipes with a diameter-to-length ratio of order O(ǫ) is studied. The
model is based on the steady-state Navier-Stokes equations with pressure conditions on
the in- and outflow boundaries. Existence and local uniqueness is proven under the
assumption of small data represented by a Reynolds number Reǫ of order O(ǫ).
Our aim is to construct an asymptotic expansion in powers of ǫ and Reǫ for the solu-
tion of this Navier-Stokes problem. In the first part of the thesis we therefore present
a formal method of computing the pressure drop and the flux based on Poiseuille flow.
In contrast to the existing literature, we also analyze the influence of the bifurcation
geometry on the fluid flow by introducing local Stokes problems in the junction. We
show that the solutions of these Stokes problems in the junction of diameter O(M) ap-
proximate the solutions of the corresponding Leray problems in the infinite bifurcation
up to an error decaying exponentially in M .
In the second part of the thesis, the construction of the approximation for the Navier-
Stokes solution is presented and its properties are discussed. The approximation is
based on the idea of a continuous matching of the Poiseuille velocity to the solution of
the junction problem on each pipe-junction interface.
The main result of our analysis is the derivation of error estimates for the approxima-
tion in powers of ǫ and Reǫ according to the designated approximation accuracy. The
obtained results generalize and improve the existing ones in literature. In addition, our
results show that Kirchhoff’s law of the balancing fluxes has to be corrected in O(ǫ) in
order to obtain an adequate error estimate for the gradient of velocity.





Zusammenfassung

Die vorliegende Arbeit behandelt die Strömung einer viskosen Newtonschen Flüssigkeit
in einer Verzweigung dreidimensionaler Kapillaren, deren Verhältnis von Durchmesser
zu Länge von Ordnung O(ǫ) ist. Ausgangspunkt des Modells sind die stationären
Navier-Stokes-Gleichungen mit Druckrandbedingungen an den Zu- bzw. Abflußrändern.
Unter der Annahme kleiner Daten, d.h. einer Reynolds-Zahl Reǫ von Ordnung O(ǫ),
wird ein Existenz- und lokales Eindeutigkeitsresultat bewiesen.
Ziel ist die Konstruktion einer asymptotischen Entwicklung in Potenzen von ǫ und
Reǫ, um die Lösung dieses Navier-Stokes-Problems zu approximieren. Im ersten Teil
der Arbeit stellen wir dazu eine formale Methode zur Berechnung von Druckabfall
und Durchfluß basierend auf Poiseuille-Strömungen vor. Im Gegensatz zu bisheri-
gen Ergebnissen in der Literatur untersuchen wir dabei auch den Einfluß der Geome-
trie der Verzweigung auf die Strömung durch die Einführung lokaler Stokes-Probleme
im Verzweigungsbereich. Wir zeigen, daß die Lösungen dieser Stokes-Probleme in
der Verzweigung von Durchmesser O(M) die Lösungen der entsprechenden Leray-
Probleme in der unendlichen Verzweigung bis auf einen in M exponentiell abfallenden
Fehler approximieren.
Im zweiten Teil der Arbeit werden der Aufbau der Approximation für die Navier-
Stokes-Lösung dargestellt und ihre Eigenschaften diskutiert. Die Approximation basiert
dabei auf der Idee, die Poiseuille-Geschwindigkeiten jeder Röhre auf den Grenzflächen
mit der Verzweigung stetig an die Lösung des Stokes-Problems anzufügen.
Als Hauptresultat unserer Analyse werden Fehlerabschätzungen in Potenzen von ǫ und
Reǫ gemäß der verwendeten Approximationsgenauigkeit abgeleitet. Die erzielten Ergeb-
nisse verallgemeinern und verbessern die bisher in der Literatur existierenden Resul-
tate. Weiterhin wird gezeigt, daß das Kirchhoffsche Gesetz des Gleichgewichts der
Flüsse in Ordnung O(ǫ) korrigiert werden muß, um eine hinreichend genaue Approx-
imation für den Geschwindigkeitsgradienten zu erhalten.
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j)Ck,l
j ej

1 Poiseuille velocity of order ǫkRel
ǫ in the jth pipe

P k,l
j := Ck,l

j (xj
1 − Lj) Poiseuille pressure of order (k, l) in the jth pipe

(V 0
j , P

0
j ) ≡ (V 0,0

j , P 0,0
j ) Zero-order Poiseuille flow in the jth pipe

xi



List of notations and abbreviations (contd)

Junction flow (cf. chapters 4, 5)

(ωk,l, πk,l) Stokes flow in the junction of order (k, l)

(ω0, π0) ≡ (ω0,0, π0,0) Zero-order junction flow

(ω̃k,l, π̃k,l) Inertial (nonlinear) correction of order (k, l)

Effective pressure quantities (cf. chapter 5)

Leading order

q0 ≡ q0,0 :=

∑

j cj pj
∑

j cj
Weighted mean value of the pressures pj

C0
j ≡ C0,0

j :=
pj − q0

Lj

Zero-order Poiseuille pressure profile

in the jth pipe

τ 0
j ≡ τ 0,0

j := π0 − C0
j y

j
1 Difference of zero-order junction pressure

and Poiseuille pressure profile in jth pipe

Higher order (k, l) (recursively)

τk,l
j := πk,l − Ck,l

j yj
1 Difference of junction pressure and

Poiseuille pressure profile in jth pipe

〈τk,l
j 〉 := |Sj|−1

∫

γM
j

τk,l
j Mean value of τk,l

j on γM
j

〈π̃k,l〉j := |Sj|−1

∫

γM
j

π̃k,l Mean value of π̃k,l on γM
j

qk,l := −
∑

j cj (〈τk−1,l
j 〉+ 〈π̃k−1,l〉j)
∑

j cj
Weighted mean value of order (k, l),

k ≥ 1, l ≥ 0 (for l = 0 no inertial term)

Ck,l
j := −

qk,l + 〈τk−1,l
j 〉+ 〈π̃k−1,l〉j

Lj
Poiseuille pressure profile of

order (k, l), k ≥ 1, l ≥ 0

(for l = 0 no inertial term)

xii



Chapter 1

Introduction

1.1 Fluid flow in branching structures

The study of fluid flow through branching structures is of special interest in many ap-
plications from different sciences, like e.g. biology, physiology, and engineering. Water
and nutrients in plants are transported through complex networks of vessels. The
arterial-venous system or the structure of the lungs in the human body are typical
physiological examples. The water supply in big cities occurs through complex net-
works of pipes.
Very often different scales are inherent in these systems as shown in Fig. 1.1 (cf. e.g.
[J], [MLA]). The extension in one space direction can be much larger than in the other
ones. In such a case the ratio of these different lengths defines a small parameter ǫ.
This is e.g. the case for large arteries, like the carotid artery, and partially also for
small ones, which in general have to be treated separately (cf. [CPS] and [O]). Here
we encounter one of the main problems in modeling complex physiological systems:
There are many different scales in different parts of the system, making a global de-
scription very difficult or even impossible. The circulation system shown in Fig. 1.2 is
an example in this respect.

Fig. 1.1. Different scales of the vessels in a leaf (taken from [J])
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CHAPTER 1. INTRODUCTION

The subject of the present work is the analysis of the flow of a viscous Newtonian fluid
in a three-dimensional network of capillaries. The network consists of long and thin
pipes with a diameter-to-length ratio of order O(ǫ) which are connected to each other
by junction domains of diameter O(ǫ). The fluid flow is modeled by the Navier-Stokes
equations which physically describe the conservation of mass and momentum. On the
in- and outflow boundaries of the network the pressure is supposed to be given.
Describing such a network as a one-dimensional graph, the junction domains and the
pipes correspond to the node points and the lines, respectively. The transition from
thin channels and junctions of diameter O(ǫ) to lines and nodes obviously means a
reduction of the three-dimensional structure to a one-dimensional graph.

Fig. 1.2. The arterial tree of human body (taken from [SSA])
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1.1. FLUID FLOW IN BRANCHING STRUCTURES

The corresponding 1d-model for the fluid flow is based on a linear relation between flux
and pressure drop in-between each pair of node points of the network. The Kirchhoff
law states the balance of the fluxes at each node point, thus providing a linear system
of equations (cf. chapter 2). In order to compute the node pressures and the fluxes,
the conductance of each channel has to be known. The conductance is the effective
quantity which contains the information of the three-dimensional geometric structure.
If the channels are cylindrical pipes of constant cross-sections, the conductance can
be computed assuming a Poiseuille flow in each pipe for which velocity and pressure
can be given explicitly (cf. section 2.3).
Our aim is to relate the three-dimensional exact description based on the Navier-
Stokes equations to the effective one based on Kirchhoff’s law. We show that the
Navier-Stokes solution can be approximated by Poiseuille flows which are driven by a
linear pressure drop in each pipe according to Kirchhoff’s law. In particular, the fluxes
computed from the 1d-model are adequate approximations if the diameter-to-length
ratio ǫ of the channels is sufficiently small (cf. chapters 2 and 6). In order to simplify
the analysis, we consider the case of one bifurcation, consisting of at least two pipes
connected by a junction domain. Away from the junction we expect Poiseuille flow.
We particularly aim at analyzing how this Poiseuille flow is influenced by the flow
through the junction and at which distance from the junction it represents an appro-
priate approximation. Therefore, we solve a Stokes problem in the junction domain
(called junction problem in the following) and construct an approximation matching
its solution to the Poiseuille flows inside the pipes (cf. chapters 4 and 5). We thereby
assume the nonlinear terms to be of higher order in ǫ and analyze them separately,
using additional correction problems in the junction.

The development of a Poiseuille velocity profile in the pipes can also be confirmed
numerically. Fig. 1.3 and 1.4 show the velocity components of a two-dimensional flow
in a symmetric and a non-symmetric junction, respectively, obtained by solving nu-
merically the Navier-Stokes equations (cf. [C]).

Fig. 1.3. Flow in a symmetric junction
(taken from [C])
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CHAPTER 1. INTRODUCTION

At the upstream exit (bottom of Fig. 1.3 and Fig. 1.4) a Poiseuille velocity profile is
prescribed, i.e. the transversal velocity component U1 (left figure) equals zero and the
axial velocity component U2 is parabolic. As usual, the no-slip condition is posed on
the lateral boundary of the junction. The downstream exits are somehow artificial
assuming the channels to continue further and therefore the do nothing-condition is
chosen. It relates the normal derivative of the velocity U and the pressure P on the
outflow boundary in the following way: µ∇U n−P n = 0 , where µ denotes the viscos-
ity of the fluid (cf. [HRT]). This condition is also called natural boundary condition
as long as no further information is known on the continuation of the flow behind the
exit.
The Poiseuille profile in the downstream branchings can be recognized clearly, both in
the symmetric and in the asymmetric bifurcation. As expected, the flux through the
small side channel of the asymmetric bifurcation is considerably lower as in the main
branch.

Fig. 1.4. Flow in a non-symmetric junction
(taken from [C])

In homogenization theory for fluid flow in periodic porous media local cell problems
are solved in order to prove the effective filtration law, i.e. Darcy’s law, which has
been established empirically according to physical considerations (cf. [H] and the ref-
erences therein). The situation we consider in the present work is similar: The linear
flux-pressure relation combined with Kirchhoff’s law is the one-dimensional analogon
to Darcy’s law and the incompressibility condition. Our aim is to trace back this
effective description to the Navier-Stokes equations. In particular, we do not know
how the fluid flow is affected by the junction part of the bifurcation. Furthermore,
corrections due to the nonlinearity occur in powers of a local Reynolds number similar
to those established for Darcy’s law in porous media, cf. [BMM].

We conclude this section by giving an overview of the literature on viscous fluid flow

4



1.2. OUTLINE OF THE THESIS

in thin channels as far as it is related to our analysis. The starting point of the present
work is [MP3], where the Navier-Stokes equations with pressure boundary condition in
the junction of thin pipes are considered. An approximation based on infinite junction
problems (called Leray’s problem, cf. chapter 3) is constructed therein. In contrast,
we show that the solution of Leray’s problem can be approximated on finite junction
domains (cf. chapter 4) thus avoiding an additional matching of the Poiseuille flow in
the pipes to the Leray flow in the junction.

The Stokes and Navier-Stokes equations in tubelike structures are also discussed in
[BGP] (construction of a Poiseuille flow approximation for Dirichlet boundary con-
ditions), [MP2] (flow in curved pipes), [MM1] (flow in a periodic network of thin
channels), [MM2] (Poiseuille flow approximation in thin pipes via two-scale conver-
gence) and [A] (analysis of Leray’s problem). In particular, our analysis of Leray’s
problem is based on [G] where Stokes flow in infinite channels is discussed in detail
summarizing the previous results in literature (cf. the references therein).
The question of existence and uniqueness of the solution of the steady-state Navier-
Stokes equations with pressure boundary condition has been studied in [CMP]. There,
the dynamic pressure (p+1/2 v2) is prescribed and the existence of a solution is proved
without constraint on the data. But in order to get uniqueness, a sufficiently large vis-
cosity or, equivalently, sufficiently small pressure values on the boundary are required.
Prescribing boundary values for the static pressure p, we are not able to prove existence
in general, but only for sufficiently small data (cf. the discussion in section 2.2). In
case of the unsteady problem with static pressure boundary conditions, existence and
uniqueness can be assured in a (possibly very small) time interval from the initial time
t0 to t0 + T , for some T > 0 (cf. [JM2]). Regularity of solutions of such non-standard
Navier-Stokes problems has been considered in [B], extending the results from [CMP].

1.2 Outline of the thesis

In this section we give an overview of the main ideas and results of our analysis, which
are then presented in detail in the next chapters. The structure of this section is the
following: We start with a short description of the geometry and specify the governing
equations. Then we present the main result of our work. Next, the major steps in the
construction of the approximation of the Navier-Stokes solution based on Poiseuille
flow are enumerated. In the last part of the section we give the motivation for our
construction and specify the properties of the approximation.

1.2.1 Mathematical model

We consider a three-dimensional branching structure consisting of several pipes and
a junction domain (cf. section 2.1 for a detailed definition of the geometry). The
pipes have (possibly different) constant cross-sections of diameter O(ǫ) and lengths
O(1), and are connected to each other by the junction. In the junction domain, we do
not distinguish between different scales, meaning that its diameter is of order O(ǫ).

5



CHAPTER 1. INTRODUCTION

Summarizing, the branching Ωǫ, assumed to be smooth except of the edges at the in-
and outflow boundaries Σǫ

j , can be divided into the pipes Ωǫ
j (j = 1, ..., N) of length Lj

and cross-section Sǫ
j = ǫSj , and the junction domain Ωǫ

0 = ǫΩ0. The lateral boundary
of Ωǫ is denoted by Γǫ.
We also define the infinite bifurcation Ω∞ consisting of pipes Ω∞

j of infinite length and
cross-section Sj connected by the junction Ω0.
Furthermore, we introduce the extended junction domain ΩM,ǫ consisting of the junc-
tion Ωǫ

0 prolongated by the cylinders ZM,ǫ
j of length ǫM . The interface between the

pipes Ωǫ
j and the extended junction domain ΩM,ǫ is denoted by γM,ǫ

j .

In Ωǫ we consider the following Navier-Stokes system for velocity vǫ and pressure
pǫ (cf. section 2.2):

(1.1)



















−µ0ǫ
2∆vǫ + ǫReǫ(v

ǫ · ∇)vǫ +∇pǫ = 0 in Ωǫ,

div vǫ = 0 in Ωǫ,

vǫ = 0 on Γǫ,

vǫ × nj = 0, pǫ = pj on Σǫ
j ,

where pj ∈ R are given constants and nj denotes the outer normal vector on Σǫ
j .

Since the diameter of the pipes is of order O(ǫ), we scale the viscosity by a factor
ǫ2 to obtain velocity and pressure of order O(1). In order to analyze the influence
of the nonlinearity, we define the Reynolds number Reǫ, which indicates the order of
magnitude of the convective nonlinear term compared to the viscous one. We then
formally have ǫReǫ(v

ǫ · ∇)vǫ = O(Reǫ). Pressure boundary conditions are considered
on the in- and outflow cross-sections of the pipes. We prove existence and local unique-
ness of the solution (vǫ, pǫ) ∈ (H1 × L2)(Ωǫ) under the condition Reǫ ≤ O(ǫ), using
Banach’s fixed point theorem.

For the solution (vǫ, pǫ) of (1.1) we aim at constructing an approximation (uǫ
k,l, q

ǫ
k,l)

in powers of ǫ and Reǫ, which is based on Poiseuille flow in the pipes away from the
junction. The Poiseuille flow is characterized by a parabolic velocity profile, which
does not change along the axial direction of the cylindrical pipe, and a linear pressure
drop between the ends of the pipe, the pressure being constant in the cross-sectional
direction (cf. section 2.3). The zero-order Poiseuille flow in the jth pipe is driven by
the pressure drop (q0 − pj), where q0 is the weighted mean value of the pressures pk,
k = 1, . . . , N , the weights being the conductances of the pipes (cf. equation (2.7)).
In the extended junction domain ΩM,ǫ, we establish a Stokes flow which is matched
continuously to the Poiseuille flow on the interfaces γM,ǫ

j .

These ideas are generalized in order to include higher order corrections. The approx-
imation (uǫ

k,l, q
ǫ
k,l) then is an expansion in powers of ǫ and Reǫ, including correction

terms up to the order O(ǫkRel
ǫ) (cf. the discussion below).

6



1.2. OUTLINE OF THE THESIS

1.2.2 Main result

The main result of our analysis is summarized in the following theorem. It compares
the approximation (uǫ

k,l, q
ǫ
k,l) with the solution (vǫ, pǫ) of the Navier-Stokes system

(1.1). The proof of the error estimates is given in section 6.2 (cf. Theorem 6.1 and
Corollary 6.3).

Theorem. If Reǫ ≤ O(ǫ), then the following estimates hold for the approximation
(uǫ

k,l, q
ǫ
k,l): There exist constants C, σ̃ > 0, independent of ǫ and M, ρǫ := |Ωǫ|1/2, such

that

1

ρǫ

∥

∥∇
(

vǫ − uǫ
k,l

)∥

∥

L2(Ωǫ)
≤ C ǫ−

1

2 max
{

e−σ̃M , ǫk, Rel+1
ǫ

}

,(1.2)

1

ρǫ

∥

∥vǫ − uǫ
k,l

∥

∥

L2(Ωǫ)
≤ C ǫ

1

2 max
{

e−σ̃M , ǫk, Rel+1
ǫ

}

,(1.3)

1

ρǫ

∥

∥pǫ − qǫ
k,l

∥

∥

L2(Ωǫ)/R
≤ C ǫ

1

2 max
{

e−σ̃M , ǫk, Rel+1
ǫ

}

,(1.4)

for all M ≥ 1 and every k, l ∈ N0.

Remark. In section 6.2 we show that the inequalities (1.2)-(1.4) actually hold for
Reǫ ≤ O(ǫ1/2) if the solution vǫ of (1.1) satisfies

(1.5) ‖∇vǫ‖L2(Ωǫ) ≤ O(ǫ
1

2 Re−1
ǫ ).

In section 2.2 we prove the existence of a unique solution such that (1.5) holds if
Reǫ ≤ O(ǫ).

1.2.3 Construction of the approximation

The construction of the approximation (uǫ
k,l, q

ǫ
k,l) is based on the analysis of two dif-

ferent types of junction problems in the domain ΩM (cf. section 4.1), namely:

(i) The Poiseuille junction problem, which is a homogeneous Stokes equation with
prescribed Poiseuille velocities as in- and outflow boundary conditions on the
cross-sections γM

j . The solution of this problem is denoted in zero-order by
(ω0, π0) and analogously by (ωk,l, πk,l) according to the order ǫkRel

ǫ, k, l ∈ N0.

(ii) The inertial correction problem, which is a Stokes problem with the right-hand
side f := −(ω0 · ∇)ω0 and zero velocity on the whole boundary of ΩM . The
solution is denoted by (ω̃0,1, π̃0,1). It is generalized to higher orders in chapter 4.

We then introduce for the problems (i) and (ii) the scaled functions

ω0,ǫ(x) := ω0(
x

ǫ
), π0,ǫ(x) := q0 + ǫπ0(

x

ǫ
),

7
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and
ω̃0,1,ǫ(x) := Reǫ ω̃

0,1(
x

ǫ
), π̃0,1,ǫ(x) := ǫReǫ π̃

0,1(
x

ǫ
),

respectively, defined on ΩM,ǫ = ǫΩM . The scaled functions solve the corresponding
Stokes systems (with a scaling of viscosity by ǫ2) in ΩM,ǫ and represent the approxi-
mation of the flow in the junction domain.

Having established Poiseuille flow in the pipes and Stokes flow in the junction, the
zero-order approximation then reads (cf. chapter 5):

(1.6)























uǫ
0(x) :=

∑

j

V 0
j (
x̃j

ǫ
)χǫ

j + ω0(
x

ǫ
)χǫ,

qǫ
0(x) :=

∑

j

P 0
j (xj

1)χ
ǫ
j +

(

q0 + ǫπ0(
x

ǫ
)

)

χǫ.

Here xj = (xj
1, x̃

j) denotes the coordinates of the jth pipe (cf. section 2.1).

This zero-order approximation is not appropriate for the Navier-Stokes solution (vǫ, pǫ)
and some additional corrections are necessary, taking into account the pressure stabi-
lization constants and the inertial terms. We give a short description of these correc-
tions:

Pressure decay correction

We define the difference between the zero-order junction pressure and the Poiseuille
pressure profile by

τ 0
j (y) := π0(y)− C0

j y
j
1.

Its mean value over the cross-section γM
j is defined by

(1.7) 〈τ 0
j 〉 :=

1

|γM
j |

∫

γM
j

τ 0
j .

Then, the first-order Poiseuille flow correction is:

V 1,0
j (ỹj) := −wj(ỹ

j)C1,0
j ej

1, ỹj =
x̃j

ǫ
,(1.8)

P 1,0
j (xj

1) := q1,0 + 〈τ 0
j 〉+ C1,0

j xj
1,(1.9)

where C1,0
j := −

q1,0 + 〈τ 0
j 〉

Lj
and q1,0 = −

∑

k ck 〈τ 0
k 〉

∑

k ck
. This Poiseuille flow is balanced

by the junction flow (ω1,0, π1,0), i.e. by the solution of the corresponding junction
problem of type (i).

Inertial Correction

We take into account the nonlinear term of the Navier-Stokes equation (1.1)1 by sol-
ving the junction problem of type (ii). We then proceed analogously to the pressure

8



1.2. OUTLINE OF THE THESIS

decay correction: The pressure π̃0,1 has mean value 〈π̃0,1〉j on γM
j . We define q1,1

in such a way that the weighted mean value of
(

q1,1 + 〈π̃0,1〉j
)

, j = 1, ..., N , equals

zero. The Poiseuille flow in the jth pipe, (Ṽ 1,1
j , P̃ 1,1

j ), is driven by the pressure drop
(q1,1 + 〈π̃0,1〉j) . The Stokes flow in the junction domain then is corrected by solving

a problem of type (i), imposing the velocities Ṽ 1,1
j on γM

j . Its solution is denoted by
(ω1,1, π1,1).

The approximation (uǫ
1,1, q

ǫ
1,1) is thus composed of the following parts:

Approximation term Poiseuille flow in jth pipe Stokes flow in junction

Zero order (V 0
j , P

0
j ) (ω0, q0 + ǫπ0)

Pressure correction I ǫ(V 1,0
j , P 1,0

j ) ǫ(ω1,0, q1,0 + ǫπ1,0)

Nonlinear correction Reǫ(ω̃
0,1, ǫπ̃0,1)

Pressure correction II ǫReǫ(Ṽ
1,1
j , P̃ 1,1

j ) ǫReǫ(ω
1,1, q1,1 + ǫπ1,1)

Higher order terms (k ≥ 1, l ≥ 0) can be established recursively, repeating the proce-
dures of pressure decay and inertial correction as above (cf. section 5).

1.2.4 Motivation and approximation properties

Our approach is based on the physical assumption of a fast (exponential) decay of
velocity and pressure to the Poiseuille flow inside the pipes with increasing distance
from the junction. The corresponding mathematical confirmation is the analysis of
Leray’s problem, which is a Stokes problem in Ω∞ with prescribed Poiseuille velocities
at infinity (cf. section 3.1).

The Stokes flow in the junction decays to different Poiseuille flows in the pipes. But
the pressure drop which drives these Poiseuille flows and the distance from the junc-
tion at which Poiseuille flow represents an adequate approximation are not a priori
known. Therefore, we consider an extended junction domain ΩM,ǫ in which we solve
the junction problems (i) and (ii) specified in subsection 1.2.3. Our aim is to establish
error estimates for the approximation (uǫ

k,l, q
ǫ
k,l) which depend explicitly on the para-

meter M . Having set up these estimates, we are then able to choose M for numerical
computations such that the difference between the exact solution of the Navier-Stokes
system and its approximation is below a given tolerance.
From a one-dimensional point of view it seems reasonable to use the weighted mean
value q0 to define the Poiseuille flows, and we impose the corresponding velocities at
the outflow boundaries of ΩM in order to obtain a continuous velocity across the inter-
faces γM

j . But we want to point out that q0 in general does not provide an appropriate

9
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approximation for the pressure drop if the unscaled junction Ω0 has strictures (unless
ǫ is sufficiently small, cf. the discussion in section 2.4).

We now discuss the properties of the approximation. Being continuous on the in-
terfaces γM,ǫ

j = ǫγM
j , the zero-order approximation velocity uǫ

0 is a solenoidal function
in H1(Ωǫ). But a jump in the normal derivative of uǫ

0 and in the pressure occurs on
γM,ǫ

j . Therefore, the zero-order approximation solves the Navier-Stokes system (1.1)
only up to an error term, consisting of the jumps

(1.10)
[

µ0ǫ
2∇uǫ

0 nj − qǫ
0 nj

]

on γM,ǫ
j , with nj the normal vector,

and the nonlinearity of order Reǫ. This fact is analyzed in detail in chapter 6.

The key point of our approximation is the following: All jump terms decay expo-
nentially with growing M . In order to show this exponential decay, we compare the
solutions of the junction problems to those of the corresponding Leray problems in the
domain Ω∞ (cf. chapter 4). We obtain the following result: The solution of the junc-
tion problem on the finite domain ΩM approximates the solution of the corresponding
Leray problem on the infinite domain Ω∞ up to an error decaying exponentially in M .

Now we return to the approximation (uǫ
1,1, q

ǫ
1,1) and discuss the correction terms which

appear therein.

The additional pressure correction of order O(ǫ) (pressure correction I ) is connected
with the decay properties of the solution of Leray’s problem (cf. chapter 3). There
we encounter additional pressure stabilization constants, i.e. the pressure in each pipe
tends to the linear Poiseuille profile, which has to be prescribed in order to solve
Leray’s problem, plus some constants, which in general are different for each pipe.
These constants overrule the exponential decay since they show up in the same order
of ǫ. Therefore, we consider the difference τ 0

j between the junction pressure and the
linear Poiseuille pressure profile. In order to approximate these stabilization constants
we define the mean value of τ 0

j on γM
j . The Poiseuille flow correction (V 1,0

j , P 1,0
j ) is

constructed such that its pressure is zero on Σǫ
j since the pressure boundary condition

in (1.1) is already fulfilled in zero-order. On γM,ǫ
j we have P 1,0

j = q1,0 + 〈τ 0
j 〉+O(ǫM).

Due to the scaling, the Poiseuille flow correction is of order O(ǫ). Therefore, in order
O(ǫ) the pressure jump (τ 0

j |γM
j
− 〈τ 0

j 〉) occurs on the pipe-junction interface γM
j . In

section 6.1 we establish the exponential decay for this type of pressure jumps which
we do not have without the correction. Therefore it turns out that the zero-order
approximation (uǫ

0, q
ǫ
0) does not provide an adequate estimate for the velocity gradient

∇vǫ in L2(Ωǫ) (cf. section 6.2).

By solving the inertial correction problem (junction problem of type (ii)), we aim
at reducing the approximation error by the factor Reǫ (cf. chapters 5 and 6). An
additional jump of type (1.10) then occurs on γM

j and a further pressure correction
(pressure correction II ) is necessary. As in the case of the Poiseuille junction prob-
lem, the pressure π̃0,1 approximates the corresponding Leray pressure π̃0,1

L up to an
exponentially decreasing error (cf. chapter 4). Therefore, the decay properties of π̃0,1

L

apply to the junction pressure π̃0,1. In each pipe, the function π̃0,1
L tends to some

10



1.2. OUTLINE OF THE THESIS

stabilization constant at infinity. In order to reduce the approximation error, these
stabilization constants have to be removed (cf. chapter 6). This is done in the same

way as in the first order pressure correction, defining the Poiseuille flow (Ṽj
1,1
, P̃j

1,1
)

and the junction flow (ω1,1, π1,1).

1.2.5 Corrections to Kirchhoff’s law

We conclude this section with some remarks concerning Kirchhoff’s law (cf. subsection
6.3.3).

According to the first-order approximation (uǫ
1,1, q

ǫ
1,1), the Poiseuille flow in the reduced

pipes Ωǫ
j \ ZM,ǫ

j is given by

V ǫ
j ( x̃j

ǫ
) := wj(

x̃j

ǫ
)
〈qǫ

j〉 − pj

Lj
ej
1,

P ǫ
j (x

j
1) :=

pj − 〈qǫ
j〉

Lj

xj
1 + 〈qǫ

j〉,

where
〈qǫ

j〉 := q0 + ǫ
(

q1,0 + 〈τ 0
j 〉
)

+ ǫReǫ

(

q1,1 + 〈π̃0,1〉j
)

.

The effective junction pressure 〈qǫ
j〉 consists of the weighted mean value q0 (cf. (2.7))

expected from Kirchhoff’s law and a higher order correction, which is determined
by the solution of the Stokes problems (i) and (ii) and reflects the geometry of the
junction.
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Chapter 2

Fluid flow in pipes and junctions

2.1 Geometry of the bifurcating channels

In this section we characterize the geometry of the bifurcation domains. We start with

Definition 2.1. (Junction, pipes, and bifurcation) A junction is a domain
Ω0 ⊂ R

3 (or R
2) of diameter O(1) which has N ≥ 2 cylindrical outlets of (smooth)

cross-sections Sj, j = 1, ..., N . The junction is assumed to be smooth, except of
the outflow boundary edges. The scaled junction Ωǫ

0 of diameter O(ǫ) is defined by
Ωǫ

0 = ǫΩ0.

The junction domain Ωǫ
0 connects the pipes (called channels in two dimensions)

Ωǫ
j := {0 < xj

1 < Lj, x̃
j = (xj

2, x
j
3) ∈ Sǫ

j}

of constant cross-sections Sǫ
j = ǫSj and length Lj = O(1). For every pipe we fix a

local coordinate system {Oj, (e
j
k)k=1,2,3}, obtained from the global system by rotation

of the basis and translation of the origin.

Lj

Sj

Fig. 2.1. The junction domain Ω0 and the pipes Ωj

γ0
1

γ0
2

γ0
3

Γ0
ց

The bifurcation (or branching) Ωǫ is defined as the union of the pipes Ωǫ
j and the

junction Ωǫ
0 (including the interfaces γ0,ǫ

j at xj
1 = 0).

13
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Fig. 2.2. The bifurcation Ωǫ

Ωǫ
0Ωǫ

1

Ωǫ
2

Ωǫ
3

Σǫ
1

Σǫ
2

Σǫ
3

γ0,ǫ
1 γ0,ǫ

2

γ0,ǫ
3

↓
Γǫ

1

The lateral boundary of Ωǫ is denoted by Γǫ :=
⋃

k Γǫ
k, where Γǫ

k, k = 0, 1, ..., N , is the
lateral boundary of the pipe Ωǫ

k and the junction Ωǫ
0, respectively. The in- and outflow

boundaries, respectively, are defined by

Σǫ
j := {xj = (Lj , x̃

j), x̃j ∈ Sǫ
j}.

Furthermore, we define the interfaces

γM
j := {yj = (M, ỹj), ỹj ∈ Sj}, γM,ǫ

j = ǫγM
j

and the cylinders

ZM
j := {0 < yj

1 < M, ỹj = (yj
2, y

j
3) ∈ Sj}, ZM,ǫ

j = ǫZM
j .

The domain consisting of the junction part Ω0 (Ωǫ
0) and the cylinders ZM

j (ZM,ǫ
j ),

including the interfaces γ0
j (γ0,ǫ

j ), is denoted by ΩM (ΩM,ǫ).

In order to analyze Leray’s problem, we consider the following infinite bifurcation
domains:

Definition 2.2. (Infinite branching) An infinite bifurcation

Ω∞ := Ω0 ∪
⋃

j

Ω∞
j

consists of a junction Ω0 and infinitely long pipes

Ω∞
j := {0 ≤ yj

1 <∞, ỹj = (yj
2, y

j
3) ∈ Sj}.
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2.2 Navier-Stokes equations with pressure bound-

ary conditions

We establish a model for viscous fluid flow in bifurcating pipes which is based on the
Navier-Stokes equations with pressure boundary conditions. The fluid flow is assumed
to be stationary with constant pressure on the in- and outflow boundaries in order
to relate the three-dimensional model to the situation of stationary flux and pressure
drop in the corresponding one-dimensional network. We introduce scalings of viscos-
ity and pressure, generalizing the model presented in [MP3], in order to analyze the
effects of the nonlinear convective term on the effective flow. Furthermore, we prove
an existence and uniqueness result.

We consider the following Navier-Stokes problem with a scaling of viscosity and pres-
sure:

(2.1)



















−µ0ǫ
β∆vǫ + (vǫ · ∇)vǫ +∇pǫ = 0 in Ωǫ,

div vǫ = 0 in Ωǫ,

vǫ = 0 on Γǫ,

vǫ × nj = 0, pǫ = ǫγpj on Σǫ
j ,

where nj := ej
1 is the outer normal vector on Σǫ

j , pj ∈ R, j = 1, ..., N , are given
constants, and β, γ ∈ R.

In pipes of diameter O(ǫ) the velocity vǫ of a fluid of viscosity O(ǫβ), which is driven
by a pressure gradient of order O(ǫγ), (formally) is of order O(ǫ2−β+γ). By rescaling,
i.e. vǫ = ǫ2−β+γ ṽǫ, pǫ = ǫγ p̃ǫ, we get velocity and pressure of order O(1). We define
the Reynolds number Reǫ := ǫ3−2β+γ which reflects the order of magnitude of the
nonlinear term. Rewriting vǫ instead of ṽǫ, system (2.1) then reads

(2.2)



















−µ0ǫ
2∆vǫ + ǫReǫ(v

ǫ · ∇)vǫ +∇pǫ = 0 in Ωǫ,

div vǫ = 0 in Ωǫ,

vǫ = 0 on Γǫ,

vǫ × nj = 0, pǫ = pj on Σǫ
j.

The weak (variational) formulation of problem (2.2) is

(2.3) µ0 ǫ
2

∫

Ωǫ

∇vǫ∇φ+ ǫReǫ

∫

Ωǫ

(vǫ · ∇)vǫ φ+
N
∑

k=1

pk

∫

Σǫ
k

φ · nk = 0

for all φ ∈ V ǫ, where

V ǫ :=
{

u ∈ H1(Ωǫ)3 : div u = 0, u|Γǫ = 0, u× nj |Σǫ
j
= 0, j = 1, ..., N

}

.
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We first show an existence and uniqueness result:

Theorem 2.1. (Existence and Uniqueness) There exists a constant C > 0, de-
pending on µ0 and pj , j = 1, ..., N , such that for all Reǫ ≤ Cǫ the Navier-Stokes system
(2.2) has a weak solution vǫ ∈ V ǫ.

The solution is unique in the ball

(2.4) Bǫ :=
{

ϕ ∈ V ǫ : ‖∇ϕ‖L2(Ωǫ) ≤ Kǫ
1

2Re−1
ǫ

}

,

where K :=
µ0

3C2
L4,H1

(cf. (B.3)).

Remark: The condition Reǫ ≤ Cǫ can be reformulated in terms of the scaling powers
β and γ of viscosity and pressure as γ ≥ 2β − 2 + ln C

ln ǫ
.

Proof. We proceed as in [MP3], using a fixed point argument.

The proof consists of several steps:

(1) We define for v ∈ Bǫ the bilinear form

av(u, φ) := µ0 ǫ
2

∫

Ωǫ

∇u∇φ + ǫReǫ

∫

Ωǫ

(v · ∇)u φ

for u, φ ∈ V ǫ and show:

(i) av is V ǫ-elliptic, i.e.

av(u, u) = µ0 ǫ
2

∫

Ωǫ

|∇u|2 + ǫReǫ

∫

Ωǫ

(v · ∇)u u ≥ 2

3
µ0 ǫ

2 ‖∇u‖2L2(Ωǫ).

(ii) Estimate for the boundary values:

We use the definition d :=
(

∑

j |pj − q|2
)

1

2

(also possible d := maxj |pj − q|). The

value of d is minimal if q is taken as the arithmetic mean q = 1
N

∑

j pj .

Then the following estimate holds:
∣

∣

∣

∣

∣

∑

j

pj

∫

Σǫ
j

φ · nj

∣

∣

∣

∣

∣

≤ C0 ǫ
3

2

(

maxj |Σj |
1

2

)

d ‖∇φ‖L2(Ωǫ) for all φ ∈ V ǫ.
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CONDITIONS

Proof. (i) Applying the embedding H1 →֒ L4 (cf. Lemma B.2(i)) we obtain, since
v ∈ Bǫ,

ǫReǫ

∣

∣

∣

∣

∫

Ωǫ

(v · ∇)u u

∣

∣

∣

∣

≤ ǫReǫ ‖v‖L4(Ωǫ) ‖∇u‖L2(Ωǫ) ‖u‖L4(Ωǫ)

≤ C2
L4,H1 ǫ

3

2Reǫ ‖∇u‖2L2(Ωǫ) ‖∇v‖L2(Ωǫ)

≤ µ0

3
ǫ2 ‖∇u‖2L2(Ωǫ).

(ii) For φ ∈ V ǫ we have div φ = 0, therefore

∑

j

pj

∫

Σǫ
j

φ · nj =
∑

j

(pj − q)
∫

Σǫ
j

φ · nj

for all constants q ∈ R. We estimate

∣

∣

∣

∣

∣

∑

j

(pj − q)
∫

Σǫ
j

φ · nj

∣

∣

∣

∣

∣

≤ d

(

∑

j

|Σǫ
j | ‖φ‖2L2(Σǫ

j)

)1/2

≤ d ǫ
(

maxj |Σj|
1

2

)

∑

j

‖φ‖L2(Σǫ
j)
,

since Σǫ
j = ǫΣj . Using the trace estimate (cf. Lemma B.3)

‖φ‖L2(Σǫ
j)
≤ C0

√
ǫ ‖∇φ‖L2(Ωǫ

j)
,

we get the result.

(2) We define the mapping T : Bǫ → V ǫ by T (v) := u, where u is solution of the
equation

(2.5) av(u, φ) +
∑

j

pj

∫

Σǫ
j

φ · nj = 0 for all φ ∈ V ǫ.

There exists a unique solution u due to (1) and Lax-Milgram’s theorem.

(3) We now prove the existence of a fixed point for the mapping T :

(i) T maps Bǫ into itself, i.e. T (Bǫ) ⊂ Bǫ.

(ii) T is a contractive mapping on Bǫ.

Banach’s fixed point theorem (also known as contraction mapping theorem) then yields
the existence and uniqueness of the solution in the ball Bǫ.
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Proof. (i) We estimate the L2-norm of ∇T (v):

‖∇T (v)‖2L2(Ωǫ) = ‖∇u‖2L2(Ωǫ) ≤
3

2µ0 ǫ2
av(u, u)

≤ 3

2µ0
ǫ−

1

2 d
(

maxj |Σj |
1

2

)

C0 ‖∇T (v)‖L2(Ωǫ)

⇒ ‖∇T (v)‖L2(Ωǫ) ≤
3

2µ0

ǫ−
1

2 d
(

maxj |Σj |
1

2

)

C0.

Therefore, T maps Bǫ into itself if

3

2µ0
ǫ−

1

2 d
(

maxj |Σj |
1

2

)

C0 ≤
µ0

3C2
L4,H1

ǫ
1

2Re−1
ǫ ,

or, equivalently, Reǫ ≤ Cǫ where

C = 2µ2
0

[

9C2
L4,H1 d

(

maxj |Σj |
1

2

)

C0

]−1

,

depending in particular on the viscosity µ0 and the given pressures pj, j = 1, ..., N .

(ii) Let v, w ∈ Bǫ and T (v), T (w) the corresponding solution of (2.5). We then esti-
mate as follows:

µ0 ǫ
2‖∇(T (v)− T (w))‖2L2(Ωǫ)

= −ǫReǫ

∫

Ωǫ

((v − w) · ∇)T (v) (T (v)− T (w))

− ǫReǫ

∫

Ωǫ

(w · ∇)(T (v)− T (w)) (T (v)− T (w))

≤ C2
L4,H1 ǫ

3

2Reǫ

(

‖∇(v − w)‖L2(Ωǫ) ‖∇T (v)‖L2(Ωǫ) ‖∇(T (v)− T (w))‖L2(Ωǫ)

+ ‖∇w‖L2(Ωǫ) ‖∇(T (v)− T (w))‖2L2(Ωǫ)

)

≤ µ0

3
ǫ2
(

‖∇(v − w)‖L2(·)‖∇(T (v)− T (w))‖L2(·) + ‖∇(T (v)− T (w))‖2L2(·)

)

,

using w, T (v) ∈ Bǫ in the last estimate.

Therefore

‖∇(T (v)− T (w))‖L2(Ωǫ) ≤
1

2
‖∇(v − w)‖L2(Ωǫ),

which concludes the proof.
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CONDITIONS

Remark 2.1. Even for small data (i.e. small Reynolds number Reǫ) we are only able
to prove that the solution is unique in the ball Bǫ. The radius of this ball increases
for ǫ → 0, but there possibly could exist solutions with larger norms outside Bǫ. We
do not have the appropriate a priori -estimates to remove this deficiency.
In the two-dimensional situation the result can be improved: Theorem 2.1 holds for
all Reǫ ≤ O(ǫ1/2) and the factor ǫ1/2 in definition (2.4) of the ball Bǫ cancels. This
is due to the improvement of the power of ǫ in the embedding H1 →֒ L4 on Ωǫ, cf.
Remark B.1.

We now turn to

Theorem 2.2. (Existence of the pressure) There exists a pressure pǫ ∈ L2(Ωǫ)
such that equation (2.2)1 holds in the sense of distributions. It is unique up to an
additive constant.
Furthermore, the boundary condition pǫ = pj on Σǫ

j holds in the dual space

H−1/2
n (Σǫ

j) = (H1/2
n (Σǫ

j))
′,

where

H1/2
n (Σǫ

j) :=

{

φ ∈ H1/2(Σǫ
j)

3 : φ× nj = 0

}

.

Proof. The construction of the pressure is the same as in [MP3] (cf. Theorem 2 therein).
We briefly sketch the main steps.

As in the case of Dirichlet boundary conditions there exists pǫ ∈ L2(Ωǫ) such that

−µ0ǫ
2∆vǫ + ǫReǫ(v

ǫ · ∇)vǫ = −∇pǫ in (V ǫ)′.

We define

Zǫ :=

{

(u, q) ∈ V ǫ × L2(Ωǫ) : σ := −µ0ǫ
2∇u+ qI ∈ L2(Ωǫ)3×3, div σ ∈ L6/5(Ωǫ)3

}

.

For φ ∈ H
1/2
n (Σǫ

j) (j = 1, ..., N), there exists an extension φ̃ ∈ H1(Ωǫ), such that

φ̃|Σǫ
j

= φ and φ̃|∂Ωǫ\Σǫ
j

= 0. Then we can define a normal trace operator tr : Zǫ →
H

−1/2
n (Σǫ

j), tr(σ) := nj · σnj, characterized by

〈tr(σ), φ · nj〉H−1/2
n , H

1/2
n

=

∫

Ωǫ

div σ φ̃+

∫

Ωǫ

σ∇φ̃.

In addition, the following estimate holds:

‖tr(σ)‖
H

−1/2
n (Σǫ

j)
≤ C

(

‖σ‖L2(Ωǫ) + ‖div σ‖L6/5(Ωǫ)

)

.
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Since in three dimensions the Sobolev embedding H1 →֒ Lr holds for r ≤ 6, we require
at least div σ ∈ L6/5(Ωǫ) in order to define the normal trace for σ ∈ L2(Ωǫ).

For (u, q) ∈ Zǫ we have div u = 0 and u×nj = 0, therefore we get tr(σ) = nj ·σnj = q
since the boundary Σǫ

j is flat. Taking (u = vǫ, q = pǫ) ∈ Zǫ, we obtain

σǫ = −µ0ǫ
2∇vǫ + pǫI ∈ L2(Ωǫ)3×3

and div σǫ = −ǫReǫ(v
ǫ · ∇)vǫ ∈ L3/2(Ωǫ)3 and thus there exists the trace tr(σǫ) = pǫ

in H
−1/2
n (Σǫ

j). As usual, the variational formulation (2.3) then implies pǫ = pj on Σǫ
j .

2.3 Poiseuille flow and Kirchhoff’s law

Our aim is to approximate the solution (vǫ, pǫ) of the Navier-Stokes system (2.2) by
a Poiseuille flow far away from the junction. In particular, the meaning of the word
far has to be specified. Roughly speaking, the distance from the junction has to be
sufficiently large, otherwise Poiseuille flow is not appropriate. For quantitative results
we refer to the error estimates proved in section 6.2. In this section we give the defini-
tion of the Poiseuille flow and discuss the Kirchhoff law for flow in a one-dimensional
network.

In the pipes Ωk of constant cross-section Sk and length Lk, the Poiseuille profile
wk = wk(y2, y3) is given by

(2.6)

{

−µ0∆wk = 1 in Sk,

wk = 0 on ∂Sk.

The corresponding flux through the kth pipe is described by the conductance

ck :=
〈wk〉
Lk

, where 〈wk〉 :=

∫

Sk

wk,

and the pressure drop in the pipe, cf. equation (2.8) below. We define q0 as mean
value of the outflow boundary values pk, weighted with the conductances ck, i.e.

(2.7) q0 :=

∑

k ck pk
∑

k ck
.

Poiseuille velocity and pressure then read
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Vk(ỹ
k) := wk(ỹ

k)
q0 − pk

Lk
ek
1,

Pk(y
k
1) :=

pk − q0

Lk
yk

1 + q0.

Fig. 2.3. Sketch of the parabolic
Poiseuille velocity profile

2.3.1 The Kirchhoff Law

We consider a network of one-dimensional pipes, as e.g. Fig. 2.4. It represents a
diverging-converging network (or arterial-venous network, cf. [M]). Between the flux
Fi and the pressure drop (pi− qi) in the ith pipe exists a linear relation, which can be
seen as the one-dimensional analogon to Darcy’s law:

(2.8) Fi = ci(pi − qi).

Here, pi and qi denote the pressure values at the end and node points of the network,
respectively. Kirchhoff’s law then states that

∑

i Fi = 0 in each node point, corre-
sponding to the incompressibility of the fluid. The sum is thereby taken over all fluxes
Fi which meet at the node i. Given the values pi at the end points of the network,
one can compute the unknown pressures qi at the nodes by means of a linear system
of equations. In the simplest case of only one branching node we obtain the weighted
mean value q0 as defined in (2.7).

In [M] a computational algorithm for the pressure and flow-rate distributions in tree-
like networks is presented.

Fig. 2.4. Example of a diverging-converging network

The approximation of the Navier-Stokes flow in a domain of branching pipes by such
an algebraic system of equations means a reduction of the three-dimensional geometry
to a network of one-dimensional pipes by means of the Kirchhoff law. In the following,
we analyze to what extend the geometry of the junction and the nonlinear character of
the Navier-Stokes equations effect the Poiseuille flows in the pipes and thus Kirchhoff’s
law concerning the fluxes.
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CHAPTER 2. FLUID FLOW IN PIPES AND JUNCTIONS

2.4 The pressure drop in the pipes

In this section we formally analyze the pressure drop which drives the Poiseuille flow
in the pipes, in dependence of the diameter of the junction domain. It turns out that
not only the diameter but also the flux inside the junction has an important influence.
The detailed computation is given in appendix A.

We consider a junction Ωδ
0 connecting the pipes Ωδ

1 and Ωδ
2 (cf. Fig. 2.5). The idea

now is to solve two Stokes problems for velocity ωk and pressure πk in the rescaled
junction Ω0 with the pressure boundary condition πk = δjk on the pipe-junction in-
terfaces γj, j, k = 1, 2 (cf. 2.9). Due to the linearity of the Stokes problem we obtain
the solution for prescribed constant pressure values qj on γj as a linear combination
of the functions ωk and πk. The scaled functions (ωδ, πδ) then solve the corresponding
Stokes problem on the domain Ωδ

0 (cf. (A.2)).

(2.9)































−∆yωk +∇yπk = 0 in Ω0,

divy ωk = 0 in Ω0,

ωk = 0 on Γ0,

ωk × nj = 0 on γj ,

πk = δjk on γj ,

In the pipes Ωδ
j we assume a Poiseuille flow (V δ

j , P
δ
j ) such that P δ

j = pj on the in- and
outflow boundaries of the pipes. In order to compute the unknown pressure values qj
on γδ

j we have to establish a relation between the Poiseuille flow in the pipes and the
Stokes flow in the junction. This is done by two physical assumptions : The pressure
has to be continuous on the interfaces γδ

j and the fluxes have to be balanced.

Ωδ
0

Ωδ
1

Ωδ
2

p1

p2

↑
γδ

1

↑
γδ

2

Fig. 2.5. A constricted junction

We then get the following system of linear equations:

(2.10)
∑

j

F δ
ij qj = −cipi,

where

F δ
ij :=

∫

Si

ωj · nj − δ ciδij for i, j = 1, 2.
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The unknown pressure values qj can be computed from (2.10) if the dimensionless

parameter α :=
c1c2
c1 + c2

δ

F
6= 1:

(2.11) qj = δ−1

(

c1p1 + c2p2

c1 + c2
− αpj

)

(1− α)−1 , j = 1, 2.

Here c1, c2 are the conductivities of the pipes (cf. section 2.3) and F is the flux through
the junction Ω0 if the pressure drop between the interfaces γ1 and γ2 is equal to 1, i.e.

F :=

∫

γ1

ω1 · n1.

Expanding with respect to α, the results of the formal computation can be summarized
as follows:

Lemma 2.1. If α := δ
c1c2
c1 + c2

F−1 ≪ 1, then the pressure drop in each pipe is deter-

mined by the mean value

q0 :=
c1p1 + c2p2

c1 + c2
.

If α≫ 1, then the pressure drop is of order O(α−1):

(2.12) δqj − pj = α−1(pj − q0) +O(α−2).

We conclude the discussion with some remarks:

(i) For α = 1, the linear system of equations (2.10) has no solution since

det (F δ
ij)ij = δ [c1 c2 δ − (c1 + c2)F ]

vanishes if c1c2 δ = (c1 + c2)F .

(ii) A junction domain can be characterized by the length

λ :=
c1 + c2
c1c2

F.

The computation shows that the ratio α = δ/λ is the important quantity in or-
der to decide whether the pressure drop in the pipes is given by the mean value
q0 or not. For a given junction domain, the value of F is fixed by its geometric
structure. The conductances cj are determined by the diameter and length of
the pipes. Therefore, for all α0 > 0, δ0 = α0 λ, we have α ≤ α0 if δ ≤ δ0. In
other words, for sufficiently small diameter δ, the mean value q0 is an appropri-
ate approximation.
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CHAPTER 2. FLUID FLOW IN PIPES AND JUNCTIONS

(iii) There are different limits to be distinguished here: The first one is δ → 0 for fixed
λ, corresponding to remark (ii). The second one is the limit λ → 0 (or F → 0,
resp.) for a fixed diameter δ, describing, roughly speaking, the pinching of some
parts of the junction domain: For a pressure drop from 1 to 0 in-between the
outflow boundaries of the junction, the flux is reduced by deforming the unscaled
junction Ω0, such that it exerts increasing resistance on the fluid flow. Clearly, in
this case the mean value approximation of the pressure drop is not adequate and
the pressure qj at the pinched subdomain tends to the given boundary pressure
pj at the end of the pipe (cf. (2.12)).
If δ → 0 and λ → 0 simultaneously, the ratio α of these parameters determines
the pressure drop in the pipes. In particular,

– if δ/λ = o(1), then the mean value-approximation is appropriate. The
junction does not exert essential influence on the fluid flow in the pipes if
its diameter δ is small enough.

– if λ/δ = o(1), the flow through the junction is highly reduced and the
pressure drop in the pipes decreases to zero.

2.5 How to construct an approximation ?

We discuss two different approaches of building an approximation for the solution
(vǫ, pǫ) of the Navier-Stokes problem (2.2). The first one is motivated by the formal
computation performed in the previous section, describing the fluid flow using normal-
ized pressure values on the pipe-junction interfaces. We briefly sketch the main ideas
and the problems which occur therein in subsection 2.5.1.
In contrast, the second approach is based on the mathematical theory of Leray’s prob-
lem, prescribing a Poiseuille velocity on the pipe-junction interfaces. Our subsequent
analysis is based on this Leray-Problem approach (cf. subsection 2.5.2).

Ωδ
0

Ωδ
1

Ωδ
2

Σδ
1

Σδ
2

Fig. 2.6. The extended junction ΩM,δ (shaded)

↓
γM,δ

1

ց
γM,δ

2

տ
ZM,δ

1

տ
ZM,δ

2

To fix the main ideas, we refer as in the previous section to the following simplified
situation: Two pipes Ωδ

1 and Ωδ
2 are connected by a junction domain Ωδ

0. Fig. 2.6 shows
the extended junction ΩM,δ consisting of the junction Ωδ

0 and the cylinders ZM,δ
j ⊂ Ωδ

j

of length δM , j = 1, 2.
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2.5. HOW TO CONSTRUCT AN APPROXIMATION ?

2.5.1 The normalized pressure approach

In our problem the pressure values on the outflow boundaries of the pipes are given,
being of order O(1). Assuming Poiseuille flow in the pipes, i.e. in particular a linear
pressure drop in each pipe, we have pressure values qj = O(1) on the interfaces γ0,δ

j .
The flow through the junction is influenced by its geometric structure. A pressure
drop from 1 to 0 between the outflow boundaries γ0,δ

j of the junction causes different
fluxes for different junction domains. If e.g. some parts are pinched, then the flux is
essentially reduced compared to the case of a larger diameter.

The main idea of this approach is to solve Stokes problems in the junction domain with
normalized pressures (or normal forces, resp.) on the interfaces γM

j , M ≥ 0, k = 1, 2
(cf. (A.1)):

(2.13)



















−∆yωk +∇yπk = 0 in ΩM ,

divy ωk = 0 in ΩM ,

ωk = 0 on ΓM ,

−∇yωknj + πknj = δjk nj on γM
j , j = 1, 2.

This approach involves some difficulties concerning the transition from Poiseuille flow
in the pipes to Stokes flow in the junction: By construction, the normal force is con-
tinuous on the interfaces γM

j , but a jump of velocity occurs there, which is a major
obstacle in the construction of an appropriate approximation. We require the velocity
to be a function in the space H1, therefore a correction of these jumps is needed. Fol-
lowing the ideas of [JM2], boundary layer problems on infinite pipes including jumps
of velocity have to be considered (cf. also [JM1] and [JMN]). The correction velocity
tends exponentially to zero and the corresponding pressure tends to some stabiliza-
tion constants at infinity. The problem coming up then is to construct a correction
for these constants in such a way that no further jumps of velocity occur.

Besides these velocity and pressure corrections, we have to be aware of the fact that the
linear system of equations (2.10) does not always have a solution. There are combina-
tions of pipe conductivities cj and junction geometries (represented by the flux value
F , cf. section 2.4) for which the pressure values qj do not exist (or become arbitrarily
large which is physically impossible). This e.g. can happen if the diameter-to-length
ratio δ of the pipes is not small but of order O(1). It can be interpreted physically
in such a way that the length of the pipes is not sufficiently large to fully develop a
Poiseuille flow away from the junction. Regarding the computation of the previous
section the assumption of Poiseuille flow is only adequate in case of sufficiently small or
large values of the parameter α, cf. Lemma 2.1. This means that either the diameter-
to-length-ratio of the pipes or the flux through the junction (e.g. due to constriction)
is small; in both cases the velocity is small as well (with respect to viscosity of order
O(1)).

Summarizing, the normalized pressure approach poses the following severe problems:
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CHAPTER 2. FLUID FLOW IN PIPES AND JUNCTIONS

⊲ Velocity jumps on the pipe-junction interfaces have to be corrected in order to
get H1-estimates.

⊲ The pressure values qj cannot be computed for any combination of pipes and
junctions.

We now discuss the second approach which circumvents these difficulties. It is based
on the theory of Leray’s problem and carried out in detail in the following chapters.

2.5.2 The Leray-Problem approach

Our aim is to construct an approximation which is continuous in velocity in order to
avoid the correction problems mentioned above. Therefore, we take the Poiseuille flow
in the pipes as in-/outflow boundary condition for the Stokes problem in the junction.
The main difficulty then is the following: We do not know the pressure drop (or flux,
resp.) in each pipe, only the pressures at the end of the pipes are given. In this
respect, dealing with velocity or flux boundary conditions is simpler. Regarding the
computation in section 2.4, we assume the pressure drop in the pipes to be determined
by the weighted mean value q0 of the boundary pressures pk, cf. equation (2.7).
From (2.11) we can expect this value to be an appropriate approximation if the
diameter-to-length ratio δ is sufficiently small and the junction domain is not changed
(i.e. the flux F is fixed) as δ tends to zero (α≪ 1). We then use the results concern-
ing Leray’s problem on infinite junction domains, i.e. Stokes equations with a given
Poiseuille velocity profile at infinity (cf. chapter 3). Its solution tends exponentially to
Poiseuille flow, therefore an approximation can be build with exponentially decaying
error terms. This is discussed in detail in the chapters 4 - 6, including the derivation
of error estimates.
In this approach, a Poiseuille velocity is prescribed on the pipe-junction interfaces
instead of the normal force as it is the case in the normalized pressure approach. This
leads then to a jump of the normal force (instead of a jump of velocity) which can be
made exponentially small due to the properties of the Leray solution. Since the velo-
city is continuous on the pipe-junction interfaces, we do not need further corrections
in order to get H1-estimates.

We proceed as follows:

⊲ We analyze Leray’s problem in chapter 3, in particular the exponential decay of
its solution to Poiseuille flow.

⊲ We then introduce the corresponding junction problems, i.e. Stokes problems
with Poiseuille velocity on the pipe-junction interfaces (section 4.1).

⊲ In the next part of our analysis, we show that the solution of Leray’s problem
can be approximated by the solution of the corresponding junction problem up
to an exponentially decaying error (section 4.2).
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⊲ Finally, these results allow to build an approximation for the solution of the
Navier-Stokes system (2.2) and to prove adequate error estimates (chapters 5
and 6).
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Chapter 3

Leray’s problem and related
equations on infinite domains

In this chapter we summarize the theory of Leray’s problem on the domain Ω∞, con-
sisting of the junction Ω0 and infinitely long pipes Ω∞

k , k = 1, ..., N , of constant
cross-sections Sk (cf. Definition 2.2). We thereby follow [G], chapter VI.1 and VI.2.
Furthermore, we analyze a related Stokes problem extending the results of [G]. For
simplicity we assume the domain Ω∞ to be of class C∞.

3.1 Leray’s problem

In the domain Ω∞ we consider a Stokes problem with asymptotic Poiseuille velocities
Vk carrying the fluxes Fk, such that the total flux

∑N
k=1 Fk is zero. This type of

problem is called Leray’s problem in the literature:

(3.1)



























−µ0∆ω +∇π = 0 in Ω∞,

div ω = 0 in Ω∞,

ω = 0 on ∂Ω∞,

lim
xk
1
→∞

ω(x) = Vk(x) in Ω∞
k .

We first discuss existence and uniqueness of the solution.

3.1.1 Existence and uniqueness of the solution

The solution of (3.1) can be written in the form ω = u + a, where a ∈ H2
loc(Ω

∞
) is a

solenoidal extension of the Poiseuille velocity fields Vk (cf. subsection 3.1.3) and the
function u ∈ H1

0 (Ω∞), div u = 0, is the solution of the equation

(3.2)

∫

Ω∞

∇u∇φ =

∫

Ω∞

∆a φ for all φ ∈ C∞
0 (Ω∞), div φ = 0.
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CHAPTER 3. LERAY’S PROBLEM AND RELATED EQUATIONS ON INFINITE

DOMAINS

The extension a is constructed in such a way that a = Vk in the pipes Ω∞
k,R defined as

follows:
Ω∞

k,R := {x ∈ Ω∞
k : xk

1 > R}, for some R > 0.

Therefore we have

(3.3)



























−µ0∆u+∇τk = 0 in Ω∞
k,R,

div u = 0 in Ω∞
k,R,

u = 0 on ∂Ω∞
k,R \ Σk,R,

∫

Σk,R

u · n = 0,

where τk = π − Ck x
k
1 and Σk,R := {x ∈ Ω∞

k : xk
1 = R}. The constant Ck is given by

the flux of the Poiseuille flow, namely Fk = −Ck

∫

Sk

wk (cf. section 2.3).

We now state the existence and uniqueness result established in [G] (Theorem VI.1.2):

Theorem 3.1. For any Poiseuille velocities Vk, satisfying the compatibility condition
∑N

k=1 Fk = 0, problem (3.1) admits a unique solution ω ∈ C∞(Ω′), π ∈ C∞(Ω′) for
every bounded subset Ω′ of Ω∞. Furthermore, for each multi-index α with |α| ≥ 0,

|Dαu(x)| → 0 as |x| → ∞ in Ω∞
k

and
|Dα∇τk(x)| → 0 as |x| → ∞ in Ω∞

k .

In other words, the velocity ω and the pressure gradient ∇π, together with all their
derivatives of arbitrary order, tend to the corresponding Poiseuille flow (Vk, Ck e

k
1) in

Ω∞
k as |x| → ∞.

This theorem provides an estimate for the pressure gradient, but for later purpose we
also need the decay property of the pressure function itself. Since ∇τk tends to zero
in Ω∞

k for |x| → ∞, we can deduce that τk itself stabilizes to some constant τ∞k using
the mean value theorem, cf. [G], Remark VI.2.1. These constants τ∞k , k = 1, ..., N ,
are uniquely determined up to one additional constant which can be chosen such that
e.g. τ∞1 = 0. But in general the remaining constants are non-zero, i.e. τ∞j 6= 0,
j = 2, ..., N . Therefore, they have to be taken into account in the construction of an
approximation for the junction flow (cf. the discussion in section 5.2). For the proof of
the pressure decay we also refer to [MP1] (Theorem 5.1 therein) where Leray’s problem
is generalized to non-newtonian fluids.

We summarize:

Corollary 3.1. (Decay of the pressure) There exist constants τ∞k ∈ R, k =
1, ..., N , such that |τk(x)− τ∞k | → 0 as |x| → ∞.

We now establish the exponential decay of the solution to Poiseuille flow.
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3.1.2 Exponential decay to Poiseuille flow

The next theorem states the exponential decay of Leray’s solution to Poiseuille flow
(cf. [G], Theorem VI.2.2). This result is the main key to our further analysis.

We first define the notion of a regular solution of problem (3.3).

Definition 3.1. A solution (u, τk) of (3.3) is called a regular solution, if it is infinitely
differentiable in the closure of any bounded subset of Ω∞

k,R.

Since u vanishes on the boundary of any cross-section Σk of Ω∞
k , there exists a constant

cP = cP (Σk) > 0 such that the Poincaré inequality holds on Σk:

(3.4) ‖u‖2L2(Σk) ≤ cP ‖∇u‖2L2(Σk).

We state the main result on the decay of Leray’s solution:

Theorem 3.2. Let (u, τk) be a regular solution of (3.3) satisfying

lim inf
xk
1
→∞

(

∫ xk
1

0

∫

Σk

∇u · ∇u
)

e−αkxk
1 = 0,

where

αk :=

[(

c0 +
1

2

)√
cP

]−1

.

Then ‖∇u‖L2(Ω∞
k,R) <∞ and for all r > 0 and m ≥ 0 the following inequality holds:

(3.5) ‖u‖Hm+2(Ω∞
k,R+r+1

) + ‖∇τ‖Hm(Ω∞
k,R+r+1

) ≤ C1 ‖u‖H1(Ω∞
k,R) e

−σkr,

with

(3.6) (C1)
2 = c(m,Σk)

(c20 + 2)1/2

(c20 + 2)1/2 − c0
, σk =

1

2cP

(

√

c20 + 2− c0
)

.

The constant c0 = c0(k) is specified by the following problem on the domain

Ωk
s,s+1 := Ω∞

k,R ∩
{

x : s < xk
1 < s+ 1

}

, s ≥ R,

(cf. [G], Proof of Theorem VI.2.1):

(3.7)











∇ · w = u · ek
1 in Ωk

s,s+1,

w ∈ H1
0 (Ωk

s,s+1),

‖∇w‖L2(Ωk
s,s+1

) ≤ c0 ‖u · ek
1‖L2(Ωk

s,s+1
).

In particular, c0 is independent of s.
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Clearly, if (ω, π) is the solution of Leray’s problem and a is an extension of the Poiseuille
flows Vk, then (u := ω− Vk, τk := π−Ck x

k
1) is a regular solution of (3.3) and satisfies

the assumption of the theorem.

From inequality (3.5) we obtain the pointwise exponential decay of (u, τk) from the
Sobolev embeddings on the semi-infinite cylinder Ω∞

k . Since Ω∞
k can be divided into

cylinders Zk,s := {x ∈ Ω∞
k : s < xk

1 < s + 1}, s ≥ 0, the Sobolev embedding can be
applied for Hm(Zk,s), m ≥ 0, with constants independent of s (due to the constant
cross-section, the estimates are invariant under translation of the xk

1-coordinate.)

Corollary 3.2. For every x ∈ Ω∞
k,R with xk

1 ≥ R + 1 and every |α| = m ≥ 0 the
following inequality holds:

(3.8) |Dαu(x)|+ |Dα∇τk(x)| ≤ C2 ‖u‖H1(Ω∞
k,R) e

−σk(xk
1
−R−1).

The constant C2 only depends on m and the cross-section Σk of Ω∞
k .

Regarding inequality (3.8), it remains to establish an estimate for the H1-norm of u
on the domain Ω∞

k,R. We cannot obtain this estimate directly from problem (3.3), since
we do not know the trace of u on Σk,R. Therefore, we have to derive from (3.2) an esti-
mate on the whole domain Ω∞, which clearly dominates the norm on Ω∞

k,R. In order to
do this, we first take a closer look on the extension a of the Poiseuille velocity fields Vk.

We briefly sketch the main steps of the construction, following [G].

3.1.3 Construction of the extended Poiseuille velocity

(i) The Poiseuille velocity Vk in the kth pipe is cut off at some distance R > 0 in
the coordinate system of the corresponding pipe. We set

V :=
∑

k

ηkVk

with smooth cut-off functions ηk.
Then V ∈ C∞(AR), where AR := Ω∞ \(

⋃

k Ω
∞

k,R) consists of the junction domain
and the shortened pipes of length R. Without loss of generality we can set R = 1.

(ii) We consider the problem

(3.9)











∇ · w = −∇ · V in AR,

w ∈ H2
0 (AR),

‖w‖H2(AR) ≤ c ‖∇ · V ‖H1(AR).
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We have ∇ · V ∈ H1
0(AR) and

∫

AR

∇ · V = 0, thus the theory of the divergence

problem yields existence of a solution w (cf. [G], ch. III.3). Extending w by zero
outside AR, we get w ∈ H2(Ω∞).
Then a := V +w is a solenoidal extension of the Poiseuille velocities in H2

loc(Ω
∞

).

(iii) Estimate for the constant c in (3.9): The domain AR is bounded and locally
lipschitzian, therefore it admits the following decomposition:

AR =
I
⋃

i=1

Ai
R, I ≥ 1,

where each Ai
R is star-shaped with respect to some open ball Bi of radius ri with

Bi ⊂ Ai
R. This property holds in general even for domains only satisfying a cone

condition (cf. [G], Remark III.3.3).
The smallest radius of these balls is denoted by rmin := mini ri. Then the
following estimate holds (cf. [G], Lemma III.3.2 and III.3.4):

(3.10) c ≤ C0

(

diam(AR)

rmin

)n (

1 +
diam(AR)

rmin

)

,

the constant C0 > 1 depending on the space dimension n ≥ 2 and the decompo-
sition of AR in star-shaped subdomains.

We finally obtain the following estimate:

Corollary 3.3. There exists a constant C > 0, depending only on the Poincaré con-
stant of Ω∞, such that

‖u‖H1(Ω∞) ≤ C

[

1 + C0

(

diam(AR)

rmin

)n (

1 +
diam(AR)

rmin

)]

‖V ‖H2(AR).

Proof. We analyze the right-hand side of (3.2):

(3.11)

∫

Ω∞

∆a φ =

∫

AR

∆a φ+
∑

k

∫

Ω∞
k,R

∆a φ

for all φ ∈ C∞
0 (Ω∞), div φ = 0 (by definition of AR).

In the pipes Ω∞
k,R the extension a coincides with the Poiseuille velocity Vk. Since

Vk = −wk Ck e
k
1 and −µ0∆wk = 1 (cf. section 2.3) we get
∫

Ω∞
k,R

∆a φ =
Ck

µ0

∫

Ω∞
k,R

φ · ek
1 =

Ck

µ0

∫ ∞

R

∫

Σk

φ · ek
1 = 0,
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due to the fact that φ carries no flux.
The solution u of (3.2) in particular is an element of the completion of the set

{φ ∈ C∞
0 , div φ = 0}

in the seminorm of H1(Ω∞). Therefore, from (3.11) and the Poincaré inequality on
Ω∞ (with the constant CP = CP (Ω∞) > 0) we obtain the estimate

‖∇u‖L2(Ω∞) ≤ CP ‖∆a‖L2(AR).

From (3.9), (3.10) and the Poincaré inequality we finally get the result.

We conclude this section summarizing the main results on Leray’s problem from the
subsections 3.1.1 - 3.1.3.

Theorem 3.3. Problem (3.1) has a unique weak solution (ω, π), which is infinitely dif-
ferentiable on any bounded subset of Ω∞. It decays pointwise exponentially to Poiseuille
flow:

(3.12) |Dα (ω(x)− Vk(x))|+
∣

∣Dα∇
(

π(x)− Ck x
k
1

)∣

∣ ≤ CL e
−σkxk

1

for every x ∈ Ω∞
k,R with xk

1 ≥ R+ 1 (k = 1, ..., N) and every |α| = m ≥ 0.

The constants σk are specified in Theorem 3.2, cf. (3.6), and there exists a constant
C = C(m,R, σj |Nj=1,Σj |Nj=1, CP ) such that

(3.13) CL ≤ Cmaxj |Fj|
[

1 + C0

(

diam(AR)

rmin

)3 (

1 +
diam(AR)

rmin

)

]

.

In particular, there exists C̃L > 0 such that

(3.14) |ω(x)− Vk(x)| + |∇ω(x)− ∇Vk(x)| + |π(x)− Ck x
k
1 − τ∞k | ≤ C̃L e

−σkxk
1

for every x ∈ Ω∞
k,R with xk

1 ≥ R+ 1, where the constant C̃L admits an estimate of type
(3.13). The asymptotic pressure profile is linear, shifted by the stabilization constant
τ∞k (cf. Corollary 3.1).

Remark 3.1. In the following, all constants which allow an estimate of type (3.13)
are denoted by CL. For simplicity, we define

(3.15) σL := mink σk

and replace σk (cf. (3.6)) by σL in the corresponding decay estimates.
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3.2 A generalization of Leray’s problem

We extend the results of the previous section to Stokes flow in infinite bifurcation
domains Ω∞ driven by a force f ∈ L2(Ω∞) having some decay properties (cf. the
assumptions below):

(3.16)



































−µ0∆ω̃ +∇π̃ = f in Ω∞,

div ω̃ = 0 in Ω∞,

ω̃ = 0 on ∂Ω∞,
∫

Σ

ω̃ · n = 0 for any cross-section Σ of Ω∞,

lim|x|→∞ ω̃(x) = 0 in Ω∞
k , k = 1, ..., N.

Extending the Poiseuille velocities Vk as shown in the previous section, we can rewrite
Leray’s problem (3.1) in the form (3.16) for an appropriate function f . In this respect,
problem (3.16) is a generalization of Leray’s problem (3.1).

3.2.1 Existence and regularity of the solution

For the present section we fix the following assumptions:

(i) The domain Ω∞ has a smooth boundary.

(ii) Regularity of the force f :

(3.17) f ∈ C∞(Ω
′
) for any bounded subset Ω′ ⊂ Ω∞.

(iii) Decay property of the force f :

There exist constants σf , Cf , R > 0 such that

(3.18) |Dαf(x)| ≤ Cf e
−σf xk

1

for all x ∈ Ω∞, xk
1 ≥ R, k = 1, ..., N , and every m = |α| ≥ 0, the constant Cf

possibly depending on m and R.

Proposition. From assumption (iii) we particularly obtain f ∈ Hm(Ω∞) and C̃f > 0
such that

(3.19) ‖f‖Hm(Ω∞
k,s) ≤ C̃f e

−σf s

for all m ≥ 0 and s ≥ R, where Ω∞
k,s := {x ∈ Ω∞

k : xk
1 > s}.
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Proof. Taking into account the definition of the Hm-norm and the decay property
(3.18), we have

‖f‖2Hm(Ω∞
k,s)

=
∑

0≤|α|≤m

‖Dαf‖2L2(Ω∞
k,s)(3.20)

≤ |Σk|





∑

0≤|α|≤m

(Cf(|α|))2





∫ ∞

s

e−2σf xk
1 dxk

1

=
|Σk|
2σf

(

∑

(Cf(|α|))2
)

e−2σf s for all s ≥ R.

In the following we discuss

◦ Existence, uniqueness, and smoothness of the solution, and

◦ Exponential decay of the solution.

We give detailed proofs in case of remarkable differences to those of the analogous
results for Leray’s problem. In particular, we show exponential decay of the solution
generalizing the ideas from [G].

As in the case of Leray’s problem analyzed in section 3.1 we have

Theorem 3.4. (Existence and uniqueness of weak solution) There exists a
unique function ω̃ ∈ H1

0 (Ω∞), (weakly) divergence-free in Ω∞, such that

(3.21) µ0

∫

Ω∞

∇ω̃∇φ =

∫

Ω∞

f φ for all φ ∈ C∞
0 (Ω∞), div φ = 0.

Additionally, there exists a pressure function π̃ ∈ L2
loc(Ω

∞) (unique up to an additive
constant) such that

(3.22) µ0

∫

Ω∞

∇ω̃∇ψ =

∫

Ω∞

π̃∇ · ψ +

∫

Ω∞

f ψ for all ψ ∈ C∞
0 (Ω∞).

In fact, the weak solution ω̃ and the corresponding pressure π̃ are smooth, since the
domain and the data are assumed to be smooth.

Theorem 3.5. (Regularity) Let (ω̃, π̃) be the weak solution of (3.16) as specified in

Theorem 3.4. Then ω̃, π̃ ∈ C∞(Ω
′
) for any bounded subset Ω′ ⊂ Ω∞.
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3.2.2 Exponential decay of the solution

In order to establish exponential decay, we first note that the solution actually decays
pointwise to zero. From [G], Lemma VI.1.2, we conclude

Theorem 3.6. (Decay property) The velocity ω̃, together with all its derivatives of
arbitrary order, asymptotically tends to zero:

(3.23) |Dαω̃(x)| → 0 as |x| → ∞ in Ω∞
k

for each multi-index α with |α| ≥ 0.

The same is true for the pressure gradient ∇π̃, i.e.

(3.24) |Dα∇π̃(x)| → 0 as |x| → ∞ in Ω∞
k .

In analogy to Corollary 3.1 we have the pointwise decay of π̃ to possibly different
stabilization constants in each pipe Ω∞

k .

The following result concerning differential inequalities generalizes Lemma VI.2.2 from
[G]. It is the essential tool in order to show that the decay is exponential.

Lemma 3.1. Let y ∈ C0[0,∞) ∩ C1(0,∞), y(t) ≥ 0 for all t ∈ [0,∞) and
lim
t→∞

y(t) = 0. Furthermore, y satisfies the integro-differential inequality

(3.25) y′(t) + a

∫ ∞

t

y(s)ds ≤ b y(t) + c e−dt for all t ∈ (0,∞),

with a > 0 and b, c, d ≥ 0.

Let δ :=
1

2

(

b+
√
b2 + 4a

)

and σ := δ − b.

(i) If d 6= σ, then

(3.26) y(t) ≤
(

σ + δ

σ
y(0) + c

(

δ

σ(d+ δ)
− 1

σ − d

))

e−σt +
c

σ − d e
−dt

for all t ∈ (0,∞).

(ii) If d = σ, then

(3.27) y(t) ≤
(

σ + δ

σ
y(0) +

c δ

σ(σ + δ)
+ ct

)

e−σt

for all t ∈ (0,∞).
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Proof. (i) For d 6= σ and β ≤ ∞, we set

(3.28) F (t) := ψ(t) + δ

∫ β

t

e−b(t−s) ψ(s)ds− c

σ − d e
−(b+d)t,

where

(3.29) ψ(t) := y(t) e−bt.

With this change of variable, inequality (3.25) reads

ψ′(t) + a

∫ β

t

ψ(s) e−b(t−s)ds ≤ c e−(b+d)t.

From (3.28) we obtain by differentiation with respect to t

F ′(t) + δF (t) =ψ′(t) + a

∫ β

t

ψ(s) e−b(t−s)ds

+ (δ2 − bδ − a)
∫ β

t

ψ(s) e−b(t−s)ds− c e−(b+d)t.

Since δ is chosen such that
δ2 − bδ − a = 0,

we have F ′(t) + δF (t) ≤ 0. Integrating this differential inequality, we get

(3.30) F (t) ≤ F (0) e−δt.

Replacing F in (3.30) by its definition (3.28) and taking into account the change of
variable (3.29), we obtain

(3.31) y(t) + δ

∫ β

t

y(s)ds ≤ F (0)e−σt +
c

σ − d e
−dt.

Next we establish an estimate for F (0) in terms of y(0): From (3.31) we get

− d

dt

[

e−δt

∫ β

t

y(s)ds

]

=

(

y(t) + δ

∫ β

t

y(s)

)

e−δt

≤ F (0) e−(σ+δ)t +
c

σ − d e
−(d+δ)t,

and integration from 0 to β yields

∫ β

0

y(s)ds ≤
∫ β

0

(

F (0) e−(σ+δ)t +
c

σ − d e
−(d+δ)t

)

dt

≤ F (0)
1− e−(σ+δ)β

σ + δ
+

c

(σ − d) (d+ δ)

(

1− e−(d+δ)β
)

.
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For the special case β =∞ we thus obtain

(3.32)

∫ ∞

0

y(s)ds ≤ F (0)

σ + δ
+

c

(σ − d) (d+ δ)
.

Returning to (3.28) we have for t = 0:

F (0) = y(0) + δ

∫ ∞

0

y(s)ds− c

σ − d.

Using inequality (3.32), F (0) can be estimated as follows (note that σ > 0 since a > 0
by assumption):

F (0) ≤ σ + δ

σ
y(0) + c

(

δ

σ(d+ δ)
− 1

σ − d

)

.

Introducing this estimate for F (0) in (3.31) then yields inequality (3.26), since y is a
non-negative function on (0,∞).

(ii) In case of d = σ, we set

F̃ (t) := ψ(t) + δ

∫ β

t

e−b(t−s) ψ(s)ds− c t e−δt.

Making the same computations as above, we obtain

F̃ ′(t) + δF̃ (t) ≤ 0,

and by integration

(3.33) y(t) + δ

∫ β

t

y(s)ds ≤
(

F̃ (0) + ct
)

e−σt.

We estimate F̃ (0) (for β = ∞) in the same way as above, first establishing the in-
equality

∫ ∞

0

y(s)ds ≤ F̃ (0)

σ + δ
+ c

∫ ∞

0

t e−(σ+δ)tdt

=
F̃ (0)

σ + δ
+

c

(σ + δ)2
.

Thus we get

F̃ (0) ≤ σ + δ

σ
y(0) +

c δ

σ(σ + δ)
,

and finally inequality (3.27) follows by inserting this estimate into (3.33).
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Remark 3.2. If inequality (3.25) holds for all t ≥ R with some R > 0 (instead of
t > 0) we introduce the change of variable t̃ := t−R, t̃ ≥ 0, and define ỹ(t̃) := y(t̃+R)
for which

(3.34) ỹ′(t̃) + a

∫ ∞

t̃

ỹ(s̃) ds̃ ≤ b ỹ(t̃) + c̃ e−dt̃ for all t̃ > 0,

where c̃ := c e−dR. Applying Lemma 3.1 we then obtain (3.26) and (3.27), respec-
tively, for the function ỹ, where the constant c is replaced by c̃. Reversing the change
of variable leads to the following estimates for the function y:

(i) If d 6= σ, then

(3.35) y(t) ≤
[

σ + δ

σ
y(0) + c̃

(

δ

σ(d+ δ)
− 1

σ − d

)]

e−σ(t−R) +
c

σ − d e
−dt

for all t ≥ R.

If d = σ, then

(3.36) y(t) ≤
(

σ + δ

σ
y(0) eσR +

c δ

σ(σ + δ)
+ c (t− R)

)

e−σt

for all t ≥ R.

By means of these results we are now able to prove

Theorem 3.7. (Exponential decay) For every pipe Ω∞
k , k = 1, ..., N , we define

c1 := 2c0c
1/2
P

(

1 +
1

2
c0c

3/2
P

)

,(3.37)

c2 :=

(

cP
2µ0σf

+ 1

)

C2
f

2µ0σf

|Σk|,(3.38)

σ̃k :=
1

2





√

(

c1
cP

)2

+
4

cP
− c1
cP



(3.39)

δ̃k := σ̃k +
c1
cP
.(3.40)

Then the velocity ω̃, specified in the Theorems 3.4-3.6, has the following additional
decay properties:

(i) If 2σf 6= σ̃k, then

(3.41) ‖ω̃‖2
H1(Ω∞

k,R+r)
≤
(

C1 ‖ω̃‖2H1(Ω∞
k ) + C2

)

e−σ̃kr + C3 e
−2σf r for all r ≥ 0,
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where Ω∞
k,s := {x ∈ Ω∞

k : xk
1 > s}, s ≥ 0, and the constants are given by

C1 :=
σ̃k + δ̃k
σ̃k

eσ̃kR,(3.42)

C2 :=
c2
cP

(

δ̃k

σ̃k (2σf + δ̃k)
− 1

σ̃k − 2σf

)

e(σ̃k−2σf )R,(3.43)

C3 :=
c2

cP (σ̃k − 2σf )
.(3.44)

(ii) If 2σf = σ̃k, then

(3.45) ‖ω̃‖2
H1(Ω∞

k,R+r)
≤
(

C1 ‖ω̃‖2H1(Ω∞
k ) + C̃2 + C̃3 r

)

e−σ̃kr for all r ≥ 0,

where

C̃2 :=
c2 δ

cP σ̃k(σ̃k + δ)
and C̃3 :=

c2
cP
.

Proof. The idea of the proof is to establish an inequality of type (3.25) for

(3.46) H(t) :=

∫ ∞

t

(
∫

Σ(τ)

|∇ω̃|2dΣ
)

dτ

and to apply Lemma 3.1.

We multiply equation (3.16)1 with ω̃ and integrate from xk
1 = x0 to xk

1 = x1 on Ω∞
k ,

denoting by Σ(ξ) ≡ Σk the constant cross-section of the pipe at position ξ. Applying
partial integration leads to

µ0

∫ x1

x0

∫

Σ(ξ)

|∇ω̃|2 =

∫

Σ(x1)

(µ0∇ω̃ n · ω̃ − π̃ ω̃ · n)(3.47)

+

∫

Σ(x0)

(π̃ ω̃ · n− µ0∇ω̃ n · ω̃) +

∫ x1

x0

∫

Σ(ξ)

f ω̃

where n = ek
1 is the normal vector on Σk.

Proposition. The first integral on the right-hand side of (3.47) tends to zero as x1

tends to ∞, i.e.

∫

Σ(x1)

(µ0∇ω̃ n · ω̃ − π̃ ω̃ · n)→ 0 as x1 →∞.
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Proof of proposition. Due to Theorem 3.6 we have ω̃ and all its derivatives of arbitrary
order tending to zero as |x| → ∞. Therefore

∫

Σ(x1)

∇ω̃ n · ω̃ → 0 as x1 →∞.

In order to estimate the pressure term we define the mean value of π̃ on Σ(x1) as

〈π̃〉 :=
1

|Σk|

∫

Σk

π̃(x1, x̃) dx̃.

From (3.16)4 and the Poincaré inequality

‖π̃ − 〈π̃〉‖L2(Σ) ≤ cP ‖∇π̃‖L2(Σ)

we obtain
∫

Σ(x1)

(π̃ − 〈π̃〉) ω̃(x1, x̃) · n dx̃ ≤ cP ‖∇π̃‖L2(Σ(x1))‖ω̃‖L2(Σ(x1)),

which tends to 0 due to (3.23) and (3.24).

Using the result of the proposition and the definition (3.46) of the function H , equation
(3.47) can be rewritten as follows:

µ0H(x0) =

∫

Σ(x0)

(π̃ω̃ · n− µ0∇ω̃ n · ω̃) +

∫ ∞

x0

∫

Σ(ξ)

f ω̃.

Integrating this equation from x0 = t+ l to x0 = t+ l + 1, l ∈ N0, yields

µ0

∫ t+l+1

t+l

H(x0) =

∫ t+l+1

t+l

∫

Σ(x0)

π̃ ω̃ · n−
∫ t+l+1

t+l

∫

Σ(x0)

µ0∇ω̃ n · ω̃(3.48)

+

∫ t+l+1

t+l

∫ ∞

x0

∫

Σ(ξ)

f ω̃.

We denote the integrals on the right-hand side of (3.48) by Ij (j = 1, 2, 3), i.e.

µ0

∫ t+l+1

t+l

H(x0) = I1 + I2 + I3,

and estimate each term separately. We first establish the

(1) Estimate for I3: We define

G(x0) :=

∫

Ωx0

f ω̃ =

∫ ∞

x0

∫

Σ(ξ)

f ω̃,
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where Ωx0
:= {x ∈ Ω∞

k : xk
1 > x0}. Then we have

|G(x0)| ≤ ‖f‖L2(Ωx0
) ‖ω̃‖L2(Ωx0

)

≤ ǫ

2
‖ω̃‖2L2(Ωx0

) +
1

2ǫ
‖f‖2L2(Ωx0

),

using the Cauchy inequality 2ab ≤ ǫa2 + b2

ǫ
, for all a, b ≥ 0, ǫ > 0.

The Poincaré inequality (3.4) can be extended to Ωx0
:

(3.49) ‖ω̃‖2L2(Ωx0
) ≤ cP (Σk) ‖∇ω̃‖2L2(Ωx0

).

Since H(x0) = ‖∇ω̃‖2L2(Ωx0
), we obtain

|G(x0)| ≤
ǫ

2
cP H(x0) +

1

2ǫ
‖f‖2L2(Ωx0

).

Finally,

(3.50) I3 ≡
∫ t+l+1

t+l

G(x0) ≤
ǫ

2
cP

∫ t+l+1

t+l

H(x0) +
1

2ǫ

∫ t+l+1

t+l

‖f‖2L2(Ωx0
).

The last integral in (3.50) can be estimated using the decay property of f , cf. assump-
tion (iii) above. It yields

(3.51)

∫ t+l+1

t+l

‖f‖2L2(Ωx0
) ≤

C2
f

4σ2
f

|Σk|
(

e−2σf (t+l) − e−2σf (t+l+1)
)

for all t ≥ R.

In order to absorb the first term on the right-hand side of (3.50) into the left-hand

side of (3.48), we choose ǫ =
µ0

cP
. Therefore, we have for all t ≥ R

(3.52) I3 ≤
µ0

2

∫ t+l+1

t+l

H(x0) + cP
C2

f

8µ0 σ2
f

|Σk|
(

e−2σf (t+l) − e−2σf (t+l+1)
)

.

(2) Estimate for I1: In order to estimate

I1 ≡
∫ t+l+1

t+l

∫

Σ(x0)

π̃ ω̃ · n,

we consider the following problem:

(3.53)











∇ · u = ω̃ · n in Ωt+l,

u ∈ H1
0 (Ωt+l),

‖∇u‖L2(Ωt+l) ≤ c0 ‖ω̃ · n‖L2(Ωt+l),
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where

Ωt+l := Ω∞
k ∩

{

x : t+ l < xk
1 < t+ l + 1

}

.

Due to the constant cross-section of the pipe Ω∞
k , the constant c0 is independent of t

and l. We rewrite I1 using (3.53) and get

I1 = −
∫

Ωt+l

∇π̃ · u.

Testing equation (3.16)1 with the solution u ∈ H1
0 (Ωt+l) of (3.53), we obtain for all

t ≥ R:

I1 ≤ µ0

∫

Ωt+l

∇ω̃∇u−
∫

Ωt+l

f u

≤ µ0 c0 ‖∇ω̃‖L2(Ωt+l) ‖ω̃ · n‖L2(Ωt+l) + ‖f‖L2(Ωt+l) ‖u‖L2(Ωt+l)

≤ µ0 c0 ‖∇ω̃‖L2(Ωt+l) ‖ω̃ · n‖L2(Ωt+l) +
1

2

(

‖f‖2L2(Ωt+l)
+ ‖u‖2L2(Ωt+l)

)

≤ µ0 c0 c
1/2
P

(

1 +
1

2
c0 c

3/2
P

)

‖∇ω̃‖2L2(Ωt+l)
+
C2

f

4σf
|Σk|

(

e−2σf (t+l) − e−2σf (t+l+1)
)

.

Here we use the Poincaré inequality (cf. (3.49)) on Ωt+l for ω̃ and u, respectively, the
Cauchy inequality with ǫ = 1, and the decay property of f .

(3) We rewrite the second integral:

I2 ≡ −µ0

∫ t+l+1

t+l

∫

Σ(x0)

∇ω̃ n · ω̃ = −µ0

2

∫ t+l+1

t+l

∫

Σ(x0)

∂ω̃2

∂xk
1

= −µ0

2

∫

Σ(t+l+1)

ω̃2 +
µ0

2

∫

Σ(t+l)

ω̃2.

From (1), (2) and (3) we thus get

∫ t+l+1

t+l

H(x0) ≤ c1‖∇ω̃‖2L2(Ωt+l)
+

∫

Σ(t+l)

ω̃2 −
∫

Σ(t+l+1)

ω̃2(3.54)

+ c2
(

e−2σf (t+l) − e−2σf (t+l+1)
)

,

for all t ≥ R, where

c1 := 2c0c
1/2
P

(

1 +
1

2
c0c

3/2
P

)

,(3.55)

c2 :=

(

cP
2µ0σf

+ 1

)

C2
f

2µ0σf
|Σk|.(3.56)
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We sum up both sides of inequality (3.54) from l = 0 to l = ∞. Since (cf. Theorem
3.6)

lim
|x|→∞

∫

Σ(x)

ω̃2 = 0,

we have
∞
∑

l=0

(
∫

Σ(t+l)

ω̃2 −
∫

Σ(t+l+1)

ω̃2

)

=

∫

Σ(t)

ω̃2,

In the same way we have

∞
∑

l=0

(

e−2σf (t+l) − e−2σf (t+l+1)
)

= e−2σf t.

We thus obtain
∫ ∞

t

H(x0) ≤ c1H(t) +

∫

Σ(t)

ω̃2 + c2 e
−2σf t.

The Poincaré inequality (3.4) yields

∫

Σ(t)

ω̃2 ≤ cP

∫

Σ(t)

|∇ω̃|2 = −cP H ′(t),

and we finally get the following inequality of type (3.25):

(3.57) H ′(t) +
1

cP

∫ ∞

t

H ≤ c1
cP
H(t) +

c2
cP
e−2σf t, for all t ≥ R.

The decay result now follows from Lemma 3.1 and the related Remark 3.2.

From inequalities (3.41) and (3.45) we get, as in the case of Leray’s problem in the
previous section (cf. Theorem 3.2 and Corollary 3.2), the exponential decay of higher
order Hm-norms and the pointwise exponential decay:

Corollary 3.4. (i) Exponential decay of Hm-norms:

If 2σf 6= σ̃k, then there exist constants K1, K2 > 0, such that

(3.58) ‖ω̃‖Hm+2(Ω∞
k,R+r+1)

+ ‖∇π̃‖Hm(Ω∞
k,R+r+1)

≤ K1 e
−

σ̃k
2

r +K2 e
−σf r,

for all r ≥ 0 and every m ≥ 0. In particular, the constants K1, K2 depend on m.
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If 2σf = σ̃k, then the following inequality holds:

(3.59) ‖ω̃‖Hm+2(Ω∞
k,R+r+1)

+ ‖∇π̃‖Hm(Ω∞
k,R+r+1)

≤
(

K3 +K4

√
r
)

e−
σ̃k
2

r,

for all r ≥ 0 and every m ≥ 0.

The explicit forms of the constants K1, K2, K3, and K4 are given below.

(ii) Pointwise exponential decay:

If 2σf 6= σ̃k, we have

(3.60) |Dαω̃(x)| + |Dα∇π̃(x)| ≤ C
(

K1 e
−

σ̃k
2

(xk
1
−R−1) +K2 e

−σf (xk
1
−R−1)

)

for every x ∈ Ω∞
k , xk

1 ≥ R + 1 and every m = |α| ≥ 0. The constant C (from the
corresponding Sobolev embedding) only depends on m and the cross-section Σk of Ω∞

k .

If 2σf = σ̃k such a pointwise estimate holds analogously.

Proof. We apply Lemma VI.1.2 and inequality (VI.1.19) from [G], estimating higher
derivatives:

‖ω̃‖Hm+2(Ω∞
k,R+r+1)

+ ‖∇π̃‖Hm(Ω∞
k,R+r+1)

≤ Cm

(

‖ω̃‖H1(Ω∞
k,R+r)

+ ‖f‖Hm(Ω∞
k,R+r)

)

.

Regarding inequality (3.19) and Theorem 3.7, it remains to establish an estimate for
‖ω̃‖H1(Ω∞

k ), cf. (3.41), (3.45). The Poincaré inequality (3.49) and equation (3.21) yield

‖ω̃‖2H1(Ω∞
k ) ≤ (1 + cP ) ‖∇ω̃‖2L2(Ω∞

k ) ≤ (1 + cP )
cP
µ2

0

‖f‖2L2(Ω∞).

From Theorem 3.7 and the decay property of f we thus get, if 2σf 6= σ̃k,

‖ω̃‖Hm+2(Ω∞
k,R+r+1)

+ ‖∇π̃‖Hm(Ω∞
k,R+r+1)

≤ K1 e
−

σ̃k
2

r +K2 e
−σf r

where

K1 := Cm

(

C1 (1 + cP )
cP
µ2

0

‖f‖2L2(Ω∞) + C2

)1/2

,

K2 := Cm

(

√

C3 + C̃f

)

.

Analogously, if 2σf = σ̃k, then

‖ω̃‖Hm+2(Ω∞
k,R+r+1)

+ ‖∇π̃‖Hm(Ω∞
k,R+r+1)

≤ (K3 +K4

√
r) e−

σ
2
r
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where

K3 :=Cm

{

(

C1 (1 + cP )
cP
µ2

0

‖f‖2L2(Ω∞) + C̃2

)1/2

+ C̃f

}

,

K4 :=Cm

√

C̃3.

The pointwise exponential decay of (ii) now follows immediately from (i) using the
Sobolev embedding on the cylinders Ω∞

k (cf. section 3.1).
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Chapter 4

Approximation of Leray-type
problems on finite domains

The exponential decay of Leray’s solution to Poiseuille flow allows to cut off the infinite
bifurcation and to consider analogous Stokes problems on finite junction domains ΩM

prescribing Poiseuille velocities on the in- and outflow boundaries. With the help
of general regularity estimates established in section 4.1 we prove the corresponding
approximation property in section 4.2.
The approximation of Leray’s solution on finite junction domains of length O(M) can
also be interpreted as a method for numerical computations.

4.1 Stokes equations in the junction

On the extended junction domain ΩM , consisting of the junction Ω0 and pipes ZM
j

of length M (cf. definition of the geometry in section 2.1), we consider the Stokes
equations with force f and given velocities gj on the in-/outflow boundaries γM

j :

(4.1)







































−µ0∆v +∇p = f in ΩM ,

div v = 0 in ΩM ,

v = 0 on ΓM ,

v = gj on γM
j ,

∑

k

∫

γM
k

gk · ek
1 = 0,

under the following regularity assumptions on the data:

(i) f ∈ L2(ΩM).

(ii) There exists an extension g ∈ H2(ΩM ) of the boundary values of v, i.e. g|ΓM = 0
and g|γM

j
= gj . For this it is necessary to have gj ∈ H3/2(γM

j ), gj = 0 on ∂γM
j .

Additionally, in order to provide regularity of the solution (v, p), we assume
div g ∈ H1

0 (ΩM), i.e. in particular div g = 0 on the cylinder edges ∂γM
j (cf.

[D2]).
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Existence and uniqueness of the solution v ∈ H1(ΩM) and p ∈ L2(ΩM) is evident from
the theory of Stokes equations, cf. e.g. [G] and [T]. Actually, the solution (v, p) is of
higher regularity since the boundary of the domain ΩM is assumed to be smooth apart
from the edges ∂γM

j of the cylinders ZM
j at the in-/outflow boundaries and the data

is of higher regularity as well. Therefore, on any subdomain of ΩM having positive
distance from these edges the solution is smooth (cf. Lemma 4.1 below).
For regularity near the boundary we refer to the general results of [D2] for zero bound-
ary values, stated in Theorem B.1 and applied to the case of non-zero boundary con-
ditions in Corollary B.1.

Theorem 4.1. (Existence and uniqueness) Under the assumptions (i) and (ii)
the Stokes system (4.1) has a unique solution v ∈ H2(ΩM) and p ∈ H1(ΩM) with
∫

ΩM

p = 0.

4.1.1 Definition of the junction problems

We consider the following types of junction problems:

(i) Poiseuille junction problem

For given in-/outflow Poiseuille velocities gj = Vj and f ≡ 0, there exists a
unique solution ωM ∈ H2(ΩM), πM ∈ H1(ΩM ) (with smooth cut-off functions ηj

we can define g :=
∑

j ηjVj as a suitable extension satisfying assumption (ii)).
We show that it approximates the solution of the corresponding Leray problem
with Poiseuille velocities Vj at infinity up to an exponentially decaying error.

(ii) Inertial correction problem

The Stokes problem (4.1) with gj ≡ 0 and f := (u·∇)w, where u, w are such that
f ∈ L2(ΩM), is called inertial correction problem. It admits a unique solution
(ω̃M , π̃M) ∈ (H2 ×H1)(ΩM).
Since ωM ∈ H2(ΩM ) and due to the embedding H1 →֒ L4(ΩM) (cf. Lemma
B.2), the convective term (ωM · ∇)ωM of the solution of the Poiseuille junction
problem (i) is a function in L2(ΩM). Taking f = −(ωM ·∇)ωM as the right-hand
side, this type of junction problem is used in order to correct the leading order
nonlinear term when building an approximation for the solution of the Navier-
Stokes problem (2.2) in chapter 5.
In higher order approximations there occur inertial terms of three different types:
(ωM

i · ∇)ωM
j , (ω̃M

i · ∇)ωM
j + (ωM

i · ∇)ω̃M
j and (ω̃M

i · ∇)ω̃M
j , where the functions

ωM
k are the solutions of (possibly different) Poiseuille junction problems and ω̃M

k

are the solutions of inertial correction problems of lower order (cf. definitions
(5.23)-(5.25) of section 5.3).

Then, the right-hand side of (4.1) is fM := −
∑

i,j

(ωM
i · ∇)ωM

j , where each ωM
k is
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either the solution of a Poiseuille junction or an inertial correction problem.
The corresponding Leray-type problem on the infinite domain is (3.16) with

right-hand side fL := −
∑

i,j

(ωi · ∇)ωj , where for each function ωM
k we denote

by ωk the solution of the corresponding Leray problem (cf. (4.28) for the decay
estimate of fL).

4.1.2 Regularity estimates

In addition to the existence and uniqueness result, we later need regularity estimates
of the solution by the given data. The constants involved therein depend in general
on the domain, in particular they may depend on its diameter. Our aim is the ap-
proximation of the solution of Leray’s problem by the solution of the junction problem
in dependence of the parameter M . Therefore we have to establish estimates without
constants implicitly depending on this length.

We start with the following

Lemma 4.1. For the solution (v, p) of problem (4.1) the following estimates hold:

(a) Inside the junction domain: Assume the lateral boundary ΓM and the in-/outflow
boundaries γM

j of the branching domain ΩM to be smooth (at least of class C2). Let
Ω′ ⊂ ΩM be a subset having a positive distance from the cylinder edges ∂γM

j , i.e.
dist(∂Ω′, ∂γM

j ) > 0 (j = 1, ..., N), and denote Σ := ∂Ω′ ∩ ∂ΩM , v|Σ =: v∗.

Then, there exists a constant C > 0 such that

‖v‖H2(Ω′′) + ‖p‖H1(Ω′′) ≤ C
(

‖f‖L2(Ω′) + ‖v∗‖H3/2(Σ) + ‖v‖H1(Ω′) + ‖p‖L2(Ω′)

)

(4.2)

for all Ω′′ ⊂ Ω′, such that ∂Ω′′ is a strictly interior subset of Σ, the constant C de-
pending on Ω′ and Ω′′.

(b) Near the in-/outflow boundaries:

Let 0 < s < M , Zs
j := {x ∈ ZM

j : M − s < xj
1 < M}. Then, for 0 < l < M − 1, there

exists a constant C = C(Z l+1
j ) such that

(4.3)

‖v‖H2(Zl
j)

+ ‖p‖H1(Zl
j)
≤ C

(

‖f‖L2(Zl+1

j ) + ‖g‖H2(Zl+1

j ) + ‖v‖H1(Zl+1

j ) + ‖p‖L2(Zl+1

j )

)

.

Proof. (a) Cf. [G], Theorem IV.5.1.

(b) We define a smooth cut-off function ηj = ηj(x
j
1), which is identical 1 for xj

1 ≥M− l
and identical 0 in ΩM \ Z l+1

j . In particular there are constants Cj > 0 such that
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maxxj
1

|Diηj(x
j
1)| ≤ Cj, i = 0, 1, 2.

For vj := ηjv, pj := ηjp and g̃j := ηjg the following equations hold:











−µ0∆vj +∇pj = f ηj − µ0(v∆ηj + 2∇v∇ηj) + p∇ηj in Z l+1
j ,

div vj = v∇ηj in Z l+1
j ,

vj = g̃j|∂Zl+1

j
on ∂Z l+1

j .

From Corollary B.1 we get

‖vj‖H2(·)+‖pj‖H1(·)/R ≤ C
(

‖f‖L2(·) + ‖g‖H2(·) + ‖v‖H1(·) + ‖p‖L2(·)/R

)

with a constant C = C(Z l+1
j ), all norms being taken on Z l+1

j .

Since ‖pj‖L2(·)/R ≤ ‖pj‖L2(·) and ‖pj‖L2(·) + ‖pj‖H1(·)/R ≥ ‖pj‖H1(·), we obtain (with a

constant C̃ > 0)

‖vj‖H2(Zl
j)

+ ‖pj‖H1(Zl
j)
≤ C̃

(

‖f‖L2(Zl+1

j ) + ‖g‖H2(Zl+1

j ) + ‖v‖H1(Zl+1

j ) + ‖p‖L2(Zl+1

j )

)

By construction we have vj = v and pj = p in Z l
j which yields the result.

We are now able to prove

Theorem 4.2. (Regularity estimates) If the pressure mean value on ΩM is fixed

to zero, i.e.

∫

ΩM

p = 0, then there exists C(r) > 0 independent of M such that

(4.4) ‖v‖H2(ΩM ) + ‖p‖H1(ΩM ) ≤ C(r)M
(

‖f‖L2(ΩM ) + ‖g‖H2(ΩM )

)

for all M ≥ 1.

Remark 4.1. (i) Without normalizing the pressure, we have from (4.4)

(4.5) ‖v‖H2(ΩM ) + ‖p‖H1(ΩM )/R ≤ C(r)M
(

‖f‖L2(ΩM ) + ‖g‖H2(ΩM )

)

for all M ≥ 1.

(ii) If the boundary values gj carry no flux, i.e.

(4.6)

∫

γM
j

gj · ej
1 = 0, j = 1, 2, ..., N,

then there exists a constant Cr > 0 independent of M such that

(4.7) ‖v‖H1(ΩM ) ≤ Cr

(

‖g‖H1(ΩM ) + ‖f‖L2(ΩM )

)

for all M ≥ 1.
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Proof. Without loss of generality we restrict to the case of values M ∈ N; otherwise
M = N + r, with N ∈ N, r ∈ [0, 1), and we can substitute Ω0 by Ωr, i.e. by the
extended junction with pipes Zr

j of length r.

Idea: We first prove the estimate

(4.8)
‖v‖H2(ΩM ) + ‖p‖H1(ΩM ) ≤ C

(

‖f‖L2(ΩM ) + ‖g‖H2(ΩM ) + ‖v‖H1(ΩM ) + ‖p‖L2(ΩM )

)

,

with a constant independent of M . In a second step we then estimate ‖v‖H1(ΩM ) and
‖p‖L2(ΩM ).

(1) We use (4.2) from Lemma 4.1 on subcylinders of length 1 and 1 + 2δ, 0 < δ < 1,
respectively, defined as follows (cf. Fig. 4.1):

Zj,k := {x ∈ ZM
j : k ≤ xj

1 ≤ k + 1} for j = 1, ..., N, k = 0, 1, ...,M − 1

and

Zδ
j,k := {x ∈ ZM

j : k − δ ≤ xj
1 ≤ k + 1 + δ} for j = 1, ..., N, k = 1, 2, ...,M − 2.

Taking Ω′ = Zδ
j,k, Ω′′ = Zj,k in Lemma 4.1(a), we get

(4.9) ‖v‖H2(Zj,k) + ‖p‖H1(Zj,k) ≤ Cj

(

‖f‖L2(Zδ
j,k) + ‖v‖H1(Zδ

j,k) + ‖p‖L2(Zδ
j,k)

)

,

for k = 1, 2, ...,M − 2, with a constant Cj = Cj(δ, Sj) independent of k:
The above estimate is invariant under the change of variable xj

1 → xj
1−ξ, ξ ≥ 0, due to

the constant cross-section Sj of the cylinder ZM
j . Therefore, inequality (4.9) for k = 1

already yields the estimate for all k ≥ 1 and the constant Cj is thus independent of k.

k − δ k k + 1

Zδ
j,k

←−Zj,k

−→ xj
1k + 1 + δ

Fig. 4.1 The cylinders Zj,k (hatched) and Zδ
j,k

From (4.2) we also get such an estimate on the junction part Ω0 ∪
(

⋃

j Zj,0

)

. For the

remaining cylinders Zj,M−1 at the end of the pipes we apply inequality (4.3) for l = 1.
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By adding up all these inequalities we obtain estimate (4.8) on the whole domain ΩM ,
the constant being independent of M . Note that for k ≥ 2 only the cylinders Zδ

j,k−1

and Zδ
j,k+1 have non-empty intersection with Zj,k.

Remark: Inequality (4.8) remains unaffected if we replace p by p + c, for any c ∈ R.
Taking infc∈R

on both sides, we obtain

(4.10)
‖v‖H2(ΩM ) + ‖p‖H1(ΩM )/R ≤ C

(

‖f‖L2(ΩM ) + ‖g‖H2(ΩM ) + ‖v‖H1(ΩM ) + ‖p‖L2(ΩM )/R

)

with ‖p‖L2(ΩM )/R ≡ infc∈R
‖p+ c‖L2(ΩM ).

(2) We now establish an estimate for (v, p) in (H1 × L2)(ΩM).

At first, we construct a divergence-free extension of the boundary values of v. By
regularity assumption (ii) there exists an extension g ∈ H2(ΩM) for which in general
div g 6= 0. Thus we define W := g + g̃, where g̃ is a solution of (cf. Lemma B.4)

(4.11)











div g̃ = −div g in ΩM ,

g̃ = 0 on ∂ΩM ,

‖g̃‖H1(ΩM ) ≤ CM ‖div g‖L2(ΩM ).

Then W ∈ H1(ΩM) is a solenoidal extension of the boundary values of v and

(4.12) ‖W‖H1(ΩM ) ≤ CM‖g‖H1(ΩM ).

The (unique) solution of (4.1) can now be written in the form v = w + W , where
w ∈ H1

0 (ΩM), div w = 0, such that

(4.13) µ0

∫

ΩM

∇w∇φ =

∫

ΩM

f φ− µ0

∫

ΩM

∇W ∇φ

for all φ ∈ H1
0 (ΩM), div φ = 0.

According to the theorem of Lax-Milgram there exists a unique function w with these
properties. Using the Poincaré inequality

‖w‖L2(ΩM ) ≤ Cp ‖∇w‖L2(ΩM )

(cf. Lemma B.1(ii), Cp independent of M) we then get the estimate

‖∇w‖L2(ΩM ) ≤ µ−1
0 Cp ‖f‖L2(ΩM ) + ‖∇W‖L2(ΩM )

and from (4.12)

‖w‖H1(ΩM ) ≤ µ−1
0 Cp ‖f‖L2(ΩM ) + CM ‖g‖H1(ΩM ).
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The results shown up to now immediately yield

(4.14) ‖v‖H1(ΩM ) ≤ CM
(

‖g‖H1(ΩM ) + ‖f‖L2(ΩM )

)

.

Remark: If the boundary values gj in (4.1) carry no flux, i.e.

∫

γM
j

gj · ej
1 = 0, we

can easily construct a solenoidal extension W ∈ H1(ΩM ) which is zero outside the
cylinders Z1

j (cf. definition in Lemma 4.1(b)), cutting off the extension g and solving
(4.11) on Z1

j . Then (4.11)3 holds on Z1
j without the factor M . Extending the solution

g̃j by zero outside Z1
j we then have W := g +

∑

j g̃j which admits an estimate of type
(4.12) independent of M . Therefore, also inequality (4.14) does not depend on M (cf.
Remark 4.1(ii)).

We now establish an estimate for the L2-norm of the pressure in ΩM . For this purpose,
we consider the problem

(4.15)











div ψ = p in ΩM ,

ψ = 0 on ∂ΩM ,

‖ψ‖H1(ΩM ) ≤ C0 ‖p‖L2(ΩM ).

If

∫

ΩM

p = 0, there exists at least one solution ψ ∈ H1
0 (ΩM ) due to Lemma B.4.

Testing equation (4.1)1 with such a function ψ yields

(4.16) ‖p‖L2(ΩM ) ≤ C0

(

µ0‖∇v‖L2(ΩM ) + CP‖f‖L2(ΩM )

)

where Cp > 0 is the Poincaré constant in (B.2) (independent of M). From Lemma
B.4 we have C0 = O(M). Combining inequality (4.16) and (4.14) we obtain

‖v‖H1(ΩM ) + ‖p‖L2(ΩM ) ≤ CM
(

‖f‖L2(ΩM ) + ‖g‖H1(ΩM )

)

and together with (4.8) we finally get the result of the theorem.

Remark: It is not possible to get estimate (4.15)3 with a constant independent of
M since the compatibility condition of zero pressure mean value cannot be satisfied
on every Zj,k, j = 1, ..., N , k = 0, ...,M − 1, at the same time (cf. proof of Lemma
B.4).

4.2 The approximation result

In this section we show that the solution of the Stokes problem in the extended junction
domain ΩM approximates the solution of the corresponding Leray-type problem with
an exponentially decaying error.
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4.2.1 Error estimates for the Poiseuille junction problem

The solution (ω, π) of Leray’s problem, restricted to the domain ΩM , solves the fol-
lowing equations:

(4.17)



















−µ0∆ω +∇π = 0 in ΩM ,

div ω = 0 in ΩM ,

ω = 0 on ΓM ,

ω = ωj on γM
j .

where ωj := ω|γM
j

.

Defining uj := ωj − Vj, with Vj the Poiseuille flow in the jth pipe, we have

(4.18)

∫

γM
j

uj · ej
1 = 0, j = 1, ..., N,

since ω carries the flux of the Poiseuille flow in each pipe.

Furthermore, we can easily extend uj to the whole domain ΩM . Let ηj = ηj(x
j
1)

be a smooth cut-off function, i.e. ηj(x
j
1) = 1 for xj

1 ≥ M − δ for some 0 < δ < 1,
ηj(x

j
1) = 0 for xj

1 ≤M − 1, such that maxxj
1

|Diηj(x
j
1)| ≤ Cj = O(1), i = 0, 1, 2. Then

U :=
∑

j

ηj (ω − Vj) is a smooth extension of the boundary values, vanishing outside

the cylinders Zj,M−1 :=
{

x ∈ ZM
j : M − 1 < xj

1 < M
}

, j = 1, ..., N .

The difference (v := ω − ωM , p := π − πM) between the solutions of Leray’s problem
(ω, π) and the corresponding Poiseuille junction problem (cf. section 4.1) then solves

(4.19)



















−µ0∆v +∇p = 0 in ΩM ,

div v = 0 in ΩM ,

v = 0 on ΓM ,

v = uj on γM
j .

From the regularity results for Stokes equations, shown in the previous section, the
functions v ∈ H2(ΩM) and p ∈ H1(ΩM ) can be estimated by the extension U of the
boundary values. Since the solution of Leray’s problem decays exponentially to the
corresponding Poiseuille flows (cf. Theorem 3.2), this yields: There exists CL > 0 such
that

‖U‖H2(ΩM ) =
∑

j

‖ηj (ω − Vj)‖H2(Zj,M−1)(4.20)

≤
∑

j

Cj ‖ω − Vj‖H2(Zj,M−1) ≤ CL e
−σLM
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4.2. THE APPROXIMATION RESULT

for all M ≥ 1, where the constant CL > 0 admits an estimate of type (3.13).

Remark: More precisely, the results of section 3.1 at first yield that for some M0 > 1
there is C > 0 (independent of M0) such that

(4.21) ‖ω − Vj‖H2(Zj,M−1) ≤ C e−σL (M−M0)

for all M ≥ M0. With R > 0 as defined in section 3.1 (cf. (3.3)) inequality (4.21)
holds for M0 ≥ R+ 2.
Since ‖ω − Vj‖H2 is bounded on Zj,M−1 for 1 ≤ M ≤ M0, inequality (4.21) also holds
for 1 ≤M ≤M0, taking the constant sufficiently large. For simplicity, we include the
factor eσLM0 in the constant C. In the following, we always proceed in this way when
applying the corresponding decay results of chapter 3.

From Theorem 4.2 and (4.20) we get the following

Theorem 4.3. (Approximation estimates for Poiseuille junction problem)
The solution (ωM , πM) of the Poiseuille junction problem (i.e. gj = Vj and f ≡ 0 in
(4.1)) approximates the solution (ω, π) of Leray’s problem (3.1) in the following sense:

If

∫

ΩM

(

πM − π
)

= 0, then

(4.22) ‖ωM − ω‖H2(ΩM ) + ‖πM − π‖H1(ΩM ) ≤ CaM e−σLM

for all M ≥ 1, where Ca := C(r)CL. The constants CL, σL and C(r) are specified in
(3.13), (3.15) and (4.4).

Remark: Since (ω − ωM) carries no flux we have due to (4.7)

‖ω − ωM‖H1(ΩM ) ≤ Cr CL e
−σLM(4.23)

for all M ≥ 1.

4.2.2 Error estimates for the inertial correction problem

We now consider the case of the inertial correction problem. Let ωM
k , k ∈ I (where I is

any finite index set), be the solutions of different Poiseuille junction problems and ωk

the solutions of the corresponding Leray problems. Then (ω̃M , π̃M) is the solution of
the inertial correction problem as defined in the previous section with the right-hand

side fM := −
∑

i,j∈I

(ωM
i · ∇)ωM

j . We denote by (ω̃, π̃) the solution of the corresponding

generalized Leray problem (3.16) with fL := −
∑

i,j∈I

(ωi · ∇)ωj.
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The difference (ṽ := ω̃M − ω̃, π̃ := π̃M − π̃) in (H2 ×H1)(ΩM) then is the solution of
the Stokes problem

(4.24)



















−µ0∆ṽ +∇p̃ = f̃ in ΩM ,

div ṽ = 0 in ΩM ,

ṽ = 0 on ΓM ,

ṽ = ω̃j on γM
j ,

where ω̃j := −ω̃|γM
j

and f̃ := fM−fL. We now establish an estimate for this difference

between the inertial terms.

Lemma 4.2. Let f̃ :=
∑

i,j

(

(ωi · ∇)ωj − (ωM
i · ∇)ωM

j

)

where ωM
k are the solutions of

Poiseuille junction problems and ωk the solutions of the corresponding Leray problems.
Then there exists a constant Cf̃ > 0 independent of M such that

(4.25) ‖f̃‖L2(ΩM ) ≤ Cf̃ M
1/2 e−σLM

for all M ≥ 1.

The constant σL determines the exponential decay of Leray’s solution and is specified
in section 3.1, cf. (3.15).

Proof. With the embedding H1(ΩM ) →֒ L4(ΩM) (cf. Lemma B.2 (ii)) we get

‖(ωi · ∇)ωj−(ωM
i · ∇)ωM

j ‖L2(4.26)

≤ ‖ωi · ∇ (ωj − ωM
j )‖L2 + ‖(ωi − ωM

i ) · ∇ωM
j ‖L2

≤ ‖ωi‖L∞ ‖∇(ωj − ωM
j )‖L2 + ‖ωi − ωM

i ‖L4 ‖∇ωM
j ‖L4

≤ ‖ωi‖L∞‖∇(ωj − ωM
j )‖L2 + C2

L4,H1 ‖ωM
j ‖H2 ‖ωi − ωM

i ‖H1 ,

where all norms are taken on ΩM .

For our estimates we use the following properties:

• From (4.22)-(4.23) we obtain for any k ∈ I

(i) ‖ωk − ωM
k ‖H1(ΩM ) ≤ Cr CL,k e

−σLM

and

(ii) ‖ωk − ωM
k ‖H2(ΩM ) ≤ C(r) CL,kM e−σLM

for all M ≥ 1.

• Since ωk, together with all its derivatives, tends pointwise exponentially to
Poiseuille flow, we have
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(iii) ‖Dαωk‖L∞(ΩM ) ≤ Cα
k , with Cα

k independent of M , for all |α| ≥ 0,

and

(iv) ‖ωk‖H2(ΩM ) ≤ Ck |ΩM |1/2, where Ck is independent ofM and |ΩM | = O(M).

Returning to the definition of f̃ and considering (4.26), we obtain

(4.27) ‖f̃‖L2(ΩM ) ≤
∑

i,j

Ci,j

(

‖ωi‖L∞ + ‖ωM
j ‖H2

)

e−σLM

for M ≥ 1, which together with the properties (iii)-(iv) yields the result (4.25).

It remains to establish an estimate for the extension of the boundary values ω̃j in (4.24).
Therefore, we have to take a closer look on the decay of the right-hand side fL of the
generalized Leray problem (3.16) since it determines the decay of ω̃ (cf. Corollary 3.4).

The exponential decay of Leray’s solution ω to Poiseuille flow (cf. Theorem 3.3)
yields the following estimate in the kth pipe, k = 1, ..., N :

(4.28) |fL(x)| =
∣

∣

∣

∣

∣

∑

i,j

(

(ωi − V i
k ) · ∇ωj(x) + (V i

k · ∇)(ωj − V j
k )(x)

)

∣

∣

∣

∣

∣

≤ C e−σLxk
1

for all x ∈ Ω∞
k , xk

1 ≥ 1, the constant C > 0 depending on fL. Here we use the fact
that for Poiseuille flow (V i

k · ∇)V j
k ≡ 0 for all i, j ∈ I. Analogous estimates hold for

any |DαfL|, |α| ≥ 0.

Using cut-off functions ηk as above for uk and applying Corollary 3.4 with σfL
= σL

we finally have

Lemma 4.3. Let fL = −
∑

i,j∈I

(ωi ·∇)ωj where the functions ωi, i ∈ I, are the solutions

of Leray problems (3.1) for different Poiseuille velocities at infinity. Then, there are
constants Ck = Ck(fL, σ̃k), k = 1, ..., N , such that

if σ̃k 6= 2σL : ‖ηk ω̃‖H2(Zk,M−1) ≤ Ck

(

e−
σ̃k
2

M + e−σLM
)

;(4.29)

if σ̃k = 2σL : ‖ηk ω̃‖H2(Zk,M−1) ≤ Ck M
1/2 e−σLM ,(4.30)

for all M ≥ 1.

Having established these estimates, inequality (4.4) of Theorem 4.2 now implies the
following approximation result:
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Theorem 4.4. (Approximation estimates for inertial correction problem)
The solution (ω̃M , π̃M) of the inertial correction problem (i.e. gj ≡ 0 and f ≡ fM in
(4.1)) approximates the solution (ω̃, π̃) of the generalized Leray problem (3.16) with

f ≡ fL and

∫

ΩM

(

π̃M − π̃
)

= 0 in the following sense:

There exists C̃a > 0 such that

‖ω̃M− ω̃‖H2(ΩM ) + ‖π̃M − π̃‖H1(ΩM ) ≤ C̃aM
3/2 e−σ̃M(4.31)

for all M ≥ 1, where σ̃ := mink(σL, σ̃k/2) and C̃a depends on Cf̃ , C
(r) and on the

constants Ki of Corollary 3.4.

4.2.3 Generalization of the approximation results

We conclude this section with a generalization of the approximation results established
so far. This is necessary in order to estimate inertial terms of higher order occurring
in the construction of the approximation for the solution of the Navier-Stokes prob-
lem (2.2), cf. sections 5.3 and 6.1. To this aim we set fM,0 := fM and f 0

L := fL,
with fM , fL defined above, and denote by (ω̃M,0, ω̃0) the solutions of the correspond-
ing junction problem (4.1) and Leray’s problem (3.16), respectively. We then define

fM,1 := −
∑

i,j

(ωM
i · ∇)ωM

j , where each function ωM
k , k ∈ I, is either the solution of

a Poiseuille junction problem (as above) or in addition may be equal to ω̃M,0; the
function f 1

L is defined analogously:

f 1
L := −

∑

i,j

(ωi ·∇)ωj, where each function ωk is either the solution of a Leray problem

or equal to ω̃0. The solutions of the corresponding junction and Leray problems with
right-hand side fM,1 and f 1

L, are denoted by ω̃M,1 and ω̃1, respectively.

In order to show that ω̃M,1 is an adequate approximation for ω̃1, we proceed as above
in the zero-order case, first generalizing Lemma 4.2 :

The following estimate holds for f̃ 1 := fM,1 − f 1
L:

(4.32) ‖f̃ 1‖L2(ΩM ) ≤ Cf̃1 M
2 e−σ̃M

for all M ≥ 1, the constant Cf̃1 being independent of M . The proof follows the same
lines as those of Lemma 4.2, applying the results of Theorem 4.4 (ii).

We now have to distinguish three different cases concerning the decay rates. Let
σ̃l := mink σ̃k, where l ∈ {1, ..., N}.

(i) If σ̃l > 2σL: From Lemma 4.3 we get, since σ̃k 6= 2σL for all k = 1, ..., N ,

‖ηk ω̃
0‖H2(Zk,M−1) ≤ C0

k e
−σLM for all k.

60



4.2. THE APPROXIMATION RESULT

Thus, f 1
L decays exponentially with rate σL and from Corollary 3.4 we obtain

‖ηk ω̃
1‖H2(Zk,M−1) ≤ C1

k e
−σLM for all k.

Then, proceeding recursively, we define ω̃j, j ≥ 1, as the solution of the generalized
Leray problem with the right-hand side f j

L which includes all the functions up to ω̃j−1,
j ≥ 1. Then f j

L decays exponentially with rate σL for all j ≥ 1 and we get

(4.33) ‖ηk ω̃
j‖H2(Zk,M−1) ≤ Cj

k e
−σL M for all k = 1, ..., N, j ≥ 1.

(ii) If σ̃l = 2σL: In this case inequality (4.30) applies (at least) for k = l and thus the
decay of f 1

L is not purely exponential but an additional growth factor M1/2 occurs. In
order to apply Corollary 3.4 on the decay of Leray’s solution ω̃1, which is proven under
the assumption (3.18) of purely exponential decay of the right-hand side f , we reduce
the exponential decay rate in order to absorb this growth factor: For any 0 < σ′ < σL

there is C = C(σ′) such that

(4.34) |f 1
L(x)| ≤ C e−σ′xk

1 .

The same arguments as in case (i) then yield recursively for all j ≥ 1 the following
estimate: For all 0 < σ′ < σL there are constants Cj

k = Cj
k(σ

′) such that

(4.35) ‖ηk ω̃
j‖H2(Zk,M−1) ≤ Cj

k e
−σ′M for all k = 1, ..., N.

(iii) If σ̃l < 2σL: From Lemma 4.3 we obtain that any ηk ω̃
0, k = 1, ..., N , decays

exponentially (at least) with the rate σ̃l/2, which implies as above the same decay
rate for f 1

L. Applying Corollary 3.4 with 2σf1
L

= σ̃l yields

‖ηl ω̃
1‖H2(Zl,M−1) ≤ C1

l M
1/2 e−

σ̃l
2

M .

Since the next order f 2
L may include a term with the function ω̃1, its decay is thus not

anymore purely exponential and we reduce the decay rate as in case (ii), cf. (4.34).
This leads to an estimate similar to (4.35): For all j ≥ 1 and all 0 < σ′ < σ̃l/2 there
exist constants Cj

k = Cj
k(σ

′) such that

(4.36) ‖ηk ω̃
j‖H2(Zk,M−1) ≤ Cj

k e
−σ′M for all k = 1, ..., N.

Summarizing, we thus have established an approximation result for (ω̃M,1, π̃M,1) anal-
ogous to Theorem 4.4: The solution (ω̃M,1, π̃M,1) of the inertial correction problem in
the junction ΩM approximates the corresponding Leray’s solution (ω̃1, π̃1) up to an
error decaying exponentially with the junction length M .

Proceeding recursively, we define fM,j := −
∑

k,l

(ωM
k · ∇)ωM

l , j ∈ N, where each func-

tion ωM
i , i ∈ I, is either the solution of a Poiseuille junction problem or one of the
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solutions ω̃M,k, k = 0, 1, ..., j − 1, of the inertial correction problems with right-hand
side fM,k.

The results obtained so far allow a generalization of (4.32) for f̃ j := fM,j − f j
L, j ≥ 2:

For all 0 < σ′ < σ̃l/2 and all j ≥ 2, there are constants rj > 0 and C̃j = C̃j(σ
′) > 0

such that the following estimate holds:

If mink σ̃k > 2σL : ‖f̃ j‖L2(ΩM ) ≤ C̃j M
rj e−σLM ,(4.37)

If mink σ̃k ≤ 2σL : ‖f̃ j‖L2(ΩM ) ≤ C̃j e
−σ′M ,(4.38)

for all M ≥ 1, the constants C̃j being independent of M .

Thus, we have shown the following generalization of Theorem 4.4:

Corollary 4.1. The solution (ω̃M,j, π̃M,j), j ≥ 1, of the inertial correction problem
with fM ≡ fM,j in (4.1) approximates the solution (ω̃j, π̃j) of the generalized Leray

problem (3.16) with fL ≡ f j
L and

∫

ΩM

(

π̃M,j − π̃j
)

= 0 in the following way:

(i) If mink σ̃k > 2σL, then there exist constants sj, Cj > 0 such that

‖ω̃M,j− ω̃j‖H2(ΩM ) + ‖π̃M,j − π̃j‖H1(ΩM ) ≤ Cj M
sj e−σLM(4.39)

for all M ≥ 1.

(ii) If mink σ̃k ≤ 2σL, then for any 0 < σ′ < mink σ̃k/2 there exist constants Cj > 0,
depending on σ′, such that

‖ω̃M,j− ω̃j‖H2(ΩM ) + ‖π̃M,j − π̃j‖H1(ΩM ) ≤ Cj e
−σ′M(4.40)

for all M ≥ 1.

Remark: The exponents rj and sj in (4.37) and (4.39), respectively, are related by

rj = sj−1 + 1
2
, j ≥ 1. They can be given explicitly: sj =

3

2
(1 + j) and rj =

1

2
+

3

2
j

for all j ≥ 0.
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Chapter 5

Approximation of the
Navier-Stokes solution

In this chapter we construct the approximation for the Navier-Stokes system (2.2).
First, we fix its general structure and define the leading order terms. Then, due to
the decay properties of Leray’s pressure to a linear profile shifted by some additional
stabilization constant (cf. section 3.1), we establish a higher order correction which
is necessary to approximate the gradient of velocity. We finally take into account
the nonlinear term of the Navier-Stokes system (2.2) by adding further corrections in
powers of the Reynolds number Reǫ.

5.1 General structure and leading order terms

We start this section by summarizing the strategy, referring to the discussion in section
2.5 (Leray-Problem approach).
In the pipes we assume a Poiseuille flow, driven by the pressure drop which is computed
from Kirchhoff’s law (pressure mean value q0). Thus, we have satisfied the velocity
and pressure conditions on the in-/outflow boundaries. On the interfaces γM,ǫ

j , which

are at distance ǫM from the in-/outflow cross-sections γ0,ǫ
j of the junction Ωǫ

0, we
match the Poiseuille velocity continuously to the (scaled) junction velocity, i.e. to
the solution of the Poiseuille junction problem. We show that such an approximation
fulfills system (2.2) up to an error consisting of two parts: the jumps of the normal
forces on the interfaces γM,ǫ

j and the inertial terms. Since Reǫ ≤ O(ǫ) (cf. Theorem
2.1), the nonlinear term of (2.2) is of higher order. Therefore, the error is determined
by the jump terms which we estimate by using the decay properties of the solution of
Leray’s problem. We can apply them directly to the solution of the junction problem
due to the approximation results of section 4.2.

We first define the general structure of the approximation: The zero-order approx-
imation is given by

uǫ
0,0 := Vǫ

0,0 + Wǫ
0,0,(5.1)

qǫ
0,0 := Pǫ

0,0 + Πǫ
0,0,(5.2)
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and the approximation of order (k, l), k ∈ N, l ∈ N0, is defined by

uǫ
k,l := uǫ

0,0 +
k
∑

κ=1

l
∑

λ=0

ǫκReλ
ǫ

(

Vǫ
κ,λ + Wǫ

κ,λ

)

+
k
∑

κ=1

l
∑

λ=1

ǫκ−1Reλ
ǫ W̃ǫ

κ−1,λ,(5.3)

qǫ
k,l := qǫ

0,0 +

k
∑

κ=1

l
∑

λ=0

ǫκReλ
ǫ

(

Pǫ
κ,λ + Πǫ

κ,λ

)

+

k
∑

κ=1

l
∑

λ=1

ǫκ−1Reλ
ǫ Π̃ǫ

κ−1,λ,(5.4)

where (Vǫ
κ,λ,Pǫ

κ,λ) is the Poiseuille flow of order ǫκReλ
ǫ , (Wǫ

κ,λ,Π
ǫ
κ,λ) denotes the solu-

tion of the corresponding junction problem and (W̃ǫ
κ,λ, Π̃

ǫ
κ,λ) includes the velocity and

pressure corrections for the inertial terms:

(i) Poiseuille flow:

Vǫ
κ,λ(x) :=

N
∑

j=1

V κ,λ
j (

x̃j

ǫ
)χǫ

j(x),(5.5)

Pǫ
κ,λ(x) :=

N
∑

j=1

P κ,λ
j (xj

1)χ
ǫ
j(x),(5.6)

where (V κ,λ
j , P κ,λ

j ) is defined recursively by (5.39)-(5.40).

(ii) Junction flow:

Wǫ
κ,λ(x) := ωκ,λ(

x

ǫ
)χǫ(x),(5.7)

Πǫ
κ,λ(x) :=

(

qκ,λ + ǫ πκ,λ(
x

ǫ
)
)

χǫ(x),(5.8)

where (ωκ,λ, πκ,λ) is the solution of the Poiseuille junction problem with in- and
outflow velocities V κ,λ

j , j = 1, ..., N . The constants qκ,λ are defined as weighted
mean values (in analogy to (2.7)) in order to balance the flux through the junc-
tion (cf. sections 5.2 and 5.3 below). The additional factor ǫ in (5.8) reflects the
O(ǫ)-diameter of the junction domain Ωǫ

0.

(iii) Inertial corrections:

W̃ǫ
κ,λ(x) := ω̃κ,λ(

x

ǫ
)χǫ(x),(5.9)

Π̃ǫ
κ,λ(x) := ǫ π̃κ,λ(

x

ǫ
)χǫ(x),(5.10)

where (ω̃κ,λ, π̃κ,λ) is the solution of the inertial correction problem (5.33) corre-
sponding to the order (κ, λ).
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5.2. PRESSURE DECAY CORRECTION

The characteristic functions χǫ
j and χǫ are defined as follows:

χǫ
j := χΩǫ

j\Z
M,ǫ
j

on the jth pipe Ωǫ
j without the cylinder ZM,ǫ

j of length ǫM and

χǫ := χΩM,ǫ on the extended junction ΩM,ǫ, consisting of Ωǫ
0 and the cylinders ZM,ǫ

j ,
j = 1, ..., N .

Remark: Since by definition ω̃κ,λ carries no flux through the junction, we do not
need a balancing Poiseuille flow for it in the pipes. Therefore, in (5.10) there are
no constants q̃κ,λ analogous to qκ,λ in (5.8). Actually, there are orders for which no
Poiseuille and junction flow are present: (Vǫ

0,λ,Pǫ
0,λ) ≡ 0 and (Wǫ

0,λ,Π
ǫ
0,λ) ≡ 0 for all

λ ≥ 1. For l = 0 the inertial correction term is omitted.
Due to an additional pressure correction the approximation of order (k, l) includes
inertial corrections only up to the order k − 1 (cf. section 5.3).

We define the leading order terms of the approximation as follows:

Definition. (Zero-order approximation) The leading order Poiseuille flow is de-
fined as

V 0,0
j (ỹj) = wj(ỹ

j)
q0,0 − pj

Lj
ej
1, ỹj =

x̃j

ǫ
,(5.11)

P 0,0
j (xj

1) = q0,0 +
pj − q0,0

Lj

xj
1,(5.12)

where q0,0 ≡ q0 is the weighted mean value of the (constant) pressure values pk,
k = 1, ..., N (cf. equation (2.7)). The corresponding solution of the junction problem
(4.1) with in-/outflow velocities V 0,0

k is denoted by (ω0,0, π0,0).

We thus have as zero-order approximation

uǫ
0,0(x) :=

∑

j

V 0,0
j (

x̃j

ǫ
)χǫ

j(x) + ω0,0(
x

ǫ
)χǫ(x),(5.13)

qǫ
0,0(x) :=

∑

j

P 0,0
j (xj

1)χ
ǫ
j(x) +

(

q0,0 + ǫπ0,0(
x

ǫ
)
)

χǫ(x).(5.14)

5.2 Pressure decay correction

In this section we construct velocity and pressure corrections to the zero-order approx-
imation (uǫ

0,0, q
ǫ
0,0), taking into account the stabilization constants which occur in the

exponential pressure decay of Leray’s problem, cf. equation (3.14). These corrections
are necessary in order to obtain an approximation for the solution of problem (2.2)
which allows appropriate error estimates for velocity and pressure including the velo-
city gradient.
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CHAPTER 5. APPROXIMATION OF THE NAVIER-STOKES SOLUTION

We do not know a priori the flux through the pipes since we deal with pressure
boundary conditions. Therefore, we apply the weighted mean value of the given out-
flow pressures to approximate the flux, simplifying the pipe-junction network as a
one-dimensional structure. Having neglected the real three-dimensional geometry of
the junction, which is of diameter O(ǫ) compared to the lengths of the pipes, we get
an appropriate approximation for the flux only in leading order. Thus, we expect an
error of order O(ǫ) in velocity which yields an error of order O(1) in its gradient (since
the pipes are of diameter O(ǫ)). We refer to chapter 6 for the detailed discussion of
the error estimates.

On the interface γM,ǫ
j (j = 1, ..., N) there is a jump from the junction pressure π0 ≡ π0,0

to the linear Poiseuille pressure profile. Due to the approximation results of section
4.2, π0 approximates the corresponding Leray pressure π0

L which tends to the Poiseuille
pressure profile plus some stabilization constant in each pipe. In order to obtain the
exponential decay of the pressure jump on γM,ǫ

j we have to add a correction for these
pressure constants (cf. Lemma 6.2 and the corresponding Remark 6.2).

The first-order pressure decay correction is constructed as follows: The functions
τ 0
L,j(y) = π0

L(y) − C0
j y

j
1, denoting the difference between the Leray pressure π0

L and

the linear Poiseuille profile in the jth pipe Ω∞
j given by C0

j :=
pj − q0

Lj
, tend to some

stabilization constants τ∞j as yj
1 → ∞. Since π0

L is approximated by the junction

pressure π0 (cf. section 4.2), we define τ 0
j (y) := π0(y)−C0

j y
j
1 and take its mean value

over the cross-section γM
j , i.e.

(5.15) 〈τ 0
j 〉 :=

1

|γM
j |

∫

γM
j

τ 0
j .

Due to the approximation properties of π0 the constants τ∞j can be corrected by 〈τ 0
j 〉

up to an exponentially decreasing error (for the corresponding estimates see section
6.1).

Since the mean values 〈τ 0
j 〉, j = 1, ..., N , are non-zero in general, we have to introduce

an additional Poiseuille flow of the following type:

V 1,0
j (ỹj) := −wj(ỹ

j)C1,0
j ej

1, ỹj =
x̃j

ǫ
,(5.16)

P 1,0
j (xj

1) := q1,0 + 〈τ 0
j 〉+ C1,0

j xj
1,(5.17)

where C1,0
j := −

q1,0 + 〈τ 0
j 〉

Lj
and q1,0 is taken such that the fluxes in the pipes are

balanced, i.e. q1,0 := −
∑

k ck 〈τ 0
k 〉

∑

k ck
. The pressure boundary conditions of (2.2) are

already fulfilled by the leading order term, therefore we have set P 1,0
j (Lj) = 0. Since

the pressures π0
L and π0 are unique only up to an additive constant, we can choose
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5.3. INERTIAL CORRECTIONS

them such that the mean value q1,0 equals zero, which simplifies the approximation.

The Poiseuille flow (V 1,0
j , P 1,0

j ) has to be balanced by the junction flow (ω1,0, π1,0),
i.e. by the solution of the junction problem

(5.18)



















−µ0∆yω
1,0 +∇yπ

1,0 = 0 in ΩM ,

divy ω
1,0 = 0 in ΩM ,

ω1,0 = 0 on ΓM ,

ω1,0 = V 1,0
j on γM

j .

Summarizing, we have

Definition. (First order approximation)

uǫ
1,0(x) := uǫ

0,0(x) + ǫ

(

∑

j

V 1,0
j (

x̃j

ǫ
)χǫ

j(x) + ω1,0(
x

ǫ
)χǫ(x)

)

,(5.19)

qǫ
1,0(x) := qǫ

0,0(x) + ǫ

(

∑

j

P 1,0
j (xj

1)χ
ǫ
j(x) + ǫπ1,0(

x

ǫ
)χǫ(x)

)

.(5.20)

The same arguments as above now apply to the pressure π1,0 and the corresponding
Leray pressure π1,0

L , which tends in the jth pipe to the linear profile given by C1,0
j

plus some stabilization constant. Recursively, we thus can define for any higher order
(κ, 0), κ ≥ 1, the pressure function τκ,0

j (y) := πκ,0(y)− Cκ,0
j yj

1 in Ω∞
j , where

Cκ,0
j := −

qκ,0 + 〈τκ−1,0
j 〉

Lj
, κ ≥ 1.

In the same way as above all weighted mean values qκ,0, κ ≥ 1, can be set to zero.
The Poiseuille flow of order (κ, 0), κ ≥ 1, then reads

V κ,0
j (ỹj) := −wj(ỹ

j)Cκ,0
j ej

1, ỹj =
x̃j

ǫ
,(5.21)

P κ,0
j (xj

1) := 〈τκ−1,0
j 〉+ Cκ,0

j xj
1,(5.22)

and the corresponding junction flow (ωκ,0, πκ,0) solves (5.18) with boundary condition
ωκ,0 = V κ,0

j on γM
j .

5.3 Inertial corrections

In order to define recursively the correction terms, we first analyze formally the non-
linear term ǫReǫ(u

ǫ
k,l · ∇)uǫ

k,l. Since for Poiseuille flow these convective terms are
identical zero, only the junction flow remains. The following three types of inertial
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CHAPTER 5. APPROXIMATION OF THE NAVIER-STOKES SOLUTION

terms gi,j
m = gi,j

m (y), m = 1, 2, 3, occur in the order O(ǫiRej+1
ǫ ), for (k, l) ∈ N0 × N0,

with 0 ≤ i ≤ 2k, 0 ≤ j ≤ 2l:

gi,j
1 :=

∑

0≤κ,κ′≤k

∑

0≤λ,λ′≤l

(ωκ,λ · ∇y)ω
κ′,λ′

,(5.23)

with κ+ κ′ = i, λ+ λ′ = j, and if i = 0 then j = 0,

gi,j
2 :=

∑

0≤κ≤k
1≤κ′≤k

∑

0≤λ≤l
1≤λ′≤l

(

(ωκ,λ · ∇y)ω̃
κ′−1,λ′

+ (ω̃κ′−1,λ′ · ∇y)ω
κ,λ
)

,(5.24)

with κ+ κ′ − 1 = i, λ+ λ′ = j, j ≥ 1,

gi,j
3 :=

∑

1≤κ,κ′≤k

∑

1≤λ,λ′≤l

(ω̃κ−1,λ · ∇y)ω̃
κ′−1,λ′

,(5.25)

with κ+ κ′ − 2 = i, λ+ λ′ = j, j ≥ 2.

Note that if i = 0 then only the term g0,0
1 is present and no g0,j

1 -terms with j ≥ 1
occur. The terms gi,j

2 and gi,j
3 are defined for j ≥ 1 and j ≥ 2, respectively.

Due to the regularity properties of the junction flows and the inertial correction ve-
locities the functions gi,j

m are in L2(ΩM).

In order to remove the leading nonlinear (inertial) term g0,0
1 = (ω0,0 · ∇)ω0,0 of or-

der O(Reǫ), we add the solution (ω̃0,1, π̃0,1) of the following junction problem to the
approximation:

(5.26)











−µ0∆yω̃
0,1 +∇yπ̃

0,1 = −(ω0,0·∇)ω0,0 in ΩM ,

divy ω̃
0,1 = 0 in ΩM ,

ω̃0,1 = 0 on ∂ΩM .

The situation now is similar to the case of the Poiseuille junction problem: Due to
the approximation results of section 4.2, the decay properties of the corresponding
Leray pressure π̃0,1

L (cf. section 3.2) apply directly to the junction pressure π̃0,1. In
each pipe, the function π̃0,1

L tends to some stabilization constant at infinity. Since in
general these constants are non-zero and different from each other, they have to be
corrected, otherwise the approximation error is not improved by including the solution
of (5.26) (cf. chapter 6).

We proceed as in the previous section and establish an additional Poiseuille flow in the
pipes and the corresponding junction flow. To this end, we define the pressure mean
values

(5.27) 〈π̃0,1〉j :=
1

|γM
j |

∫

γM
j

π̃0,1, j = 1, ..., N,
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5.3. INERTIAL CORRECTIONS

and the weighted mean value q1,1 of the (−〈π̃0,1〉j)’s in analogy to q0, cf. (2.7).

As above, we define a Poiseuille flow correction which is driven by the pressure drop
(q1,1 + 〈π̃0,1〉j):

Ṽ 1,1
j (ỹj) = wj(ỹ

j)
q1,1 + 〈π̃0,1〉j

Lj
ej
1, ỹj =

x̃j

ǫ
,(5.28)

P̃ 1,1
j (xj

1) = q1,1 + 〈π̃0,1〉j −
q1,1 + 〈π̃0,1〉j

Lj
xj

1.(5.29)

This Poiseuille flow generates an additional flux through the junction, therefore we
have to solve a junction problem with in-/outflow velocities Ṽ 1,1

j :

(5.30)



















−µ0∆yω
1,1 +∇yπ

1,1 = 0 in ΩM ,

divy ω
1,1 = 0 in ΩM ,

ω1,1 = 0 on ΓM ,

ω1,1 = Ṽ 1,1
j on γM

j .

The improved approximation now is defined as follows:

Definition. (Approximation including first order nonlinear corrections)

uǫ
1,1(x) := uǫ

1,0(x) +Reǫ

{

∑

j

ǫṼ 1,1
j (

x̃j

ǫ
)χǫ

j(x) +
(

ω̃0,1(
x

ǫ
) + ǫ ω1,1(

x

ǫ
)
)

χǫ(x)

}

,(5.31)

qǫ
1,1(x) := qǫ

1,0(x) + ǫReǫ

{

∑

j

P̃ 1,1
j (xj

1)χ
ǫ
j(x) +

(

π̃0,1(
x

ǫ
) + ǫπ1,1(

x

ǫ
)
)

χǫ(x)

}

,(5.32)

where we have set q1,1 = 0, being possible due to the fact that π̃0,1 is uniquely deter-
mined only up to an additive constant.

Higher order terms are established recursively: The approximation of order (k, l),
k, l ∈ N, includes inertial correction terms up to the order O(ǫk−1Rel

ǫ), i.e. for all
terms gi,j

m , m = 1, 2, 3, in (5.23)-(5.25) where i ≤ k − 1, j ≤ l − 1. Generalizing
problem (5.26), the solution (ω̃κ,λ, π̃κ,λ), 0 ≤ κ ≤ k−1, 1 ≤ λ ≤ l, is defined such that
it corrects all inertial terms of order O(ǫκReλ

ǫ ), or, in other words, all gi,j
m for which

i = κ and j = λ− 1:

(5.33)











−µ0∆yω̃
κ,λ +∇yπ̃

κ,λ = −gκ,λ−1 in ΩM ,

divy ω̃
κ,λ = 0 in ΩM ,

ω̃κ,λ = 0 on ∂ΩM ,

where gi,j :=

3
∑

m=1

gi,j
m .
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CHAPTER 5. APPROXIMATION OF THE NAVIER-STOKES SOLUTION

In analogy to the first order correction above we define for each solution (ω̃κ,λ, π̃κ,λ) of
(5.33) the following Poiseuille flow in order to correct the pressure decay:

Ṽ κ+1,λ
j (ỹj) = wj(ỹ

j)
〈π̃κ,λ〉j
Lj

ej
1, ỹj =

x̃j

ǫ
,(5.34)

P̃ κ+1,λ
j (xj

1) = 〈π̃κ,λ〉j −
〈π̃κ,λ〉j
Lj

xj
1.(5.35)

As above we have set without loss of generality the weighted mean values qκ+1,λ = 0.

Finally, the junction flow (ωκ+1,λ, πκ+1,λ) balances this Poiseuille flow in the pipes in
analogy to (5.30).

Remark: For the correction of the inertial term of order O(ǫκReλ
ǫ ) a Poiseuille/junction

flow in O(ǫκ+1Reλ
ǫ ) is needed in order to remove the pressure decay constants. There-

fore, the approximation of order (k, l) only corrects inertial terms up to the order k−1.

Applying the pressure decay correction as described in section 5.2 to (ω1,1, π1,1), we
get a Poiseuille flow analogous to (5.16)-(5.17) in order O(ǫ2Reǫ). On the other hand
there occurs an additional Poiseuille flow in the same order due to the pressure decay
correction for the solution (ω̃1,1, π̃1,1) of (5.33). In order to summarize these terms we
define τκ,λ

j := πκ,λ − Cκ,λ
j yj

1 for all κ ∈ N, λ ∈ N0, where

Cκ,0
j := −

qκ,0 + 〈τκ−1,0
j 〉

Lj

, κ ≥ 1,(5.36)

C1,λ
j := −q

1,λ + 〈π̃0,λ〉j
Lj

, λ ≥ 1,(5.37)

Cκ,λ
j := −

qκ,λ + 〈τκ−1,λ
j 〉+ 〈π̃κ−1,λ〉j

Lj
, κ ≥ 2, λ ≥ 1.(5.38)

Without loss of generality we can fix qκ,λ = 0 for all κ ∈ N, λ ∈ N0.

Thus, the Poiseuille flow for any order κ ∈ N, λ ∈ N0 is defined by

V κ,λ
j (ỹj) := −wj(ỹ

j)Cκ,λ
j ej

1, ỹj =
x̃j

ǫ
,(5.39)

P κ,λ
j (xj

1) := Cκ,λ
j (xj

1 − Lj).(5.40)

Remark: The correction terms (ω̃0,1, π̃0,1) (cf. equation (5.26)) have been computed
numerically in [C].
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Chapter 6

The approximation error

We prove error estimates for the approximations defined in the previous chapter,
proceeding in two steps: At first we show that the Navier-Stokes system (2.2) is
satisfied up to an error consisting of jumps of the normal force on the pipe-junction
interfaces and inertial terms due to the nonlinearity. We then establish the required
estimates (cf. section 6.1). In the second part we are then able to prove estimates
comparing the approximation (uǫ

k,l, q
ǫ
k,l) with the solution (vǫ, pǫ) of system (2.2).

6.1 Approximation properties and jump estimates

6.1.1 Jumps and inertial terms

We start with the definition of the error terms.

Definition 6.1. (Jump terms) For the approximation of order (k, l) the following
jumps of the normal force occur on the pipe-junction interfaces γM

j , j = 1, ..., N with

normal vector nj = ej
1:

(i) Jumps of the normal force due to the transition from junction flow to Poiseuille
flow:

(6.1) fκ,λ
j (y) := −µ0∇yω

κ,λ(y)nj|γM
j

+ τκ,λ
j (y)nj|γM

j
,

for κ, λ = 0 and 1 ≤ κ ≤ k, 0 ≤ λ ≤ l.

(ii) Jumps of the normal force due to the inertial correction:

(6.2) f̃κ,λ
j (y) := −µ0∇yω̃

κ,λ(y)nj|γM
j

+
(

π̃κ,λ(y)− 〈π̃κ,λ〉j
)

nj |γM
j
,

for 0 ≤ κ ≤ k − 1 and 1 ≤ λ ≤ l.

Furthermore, summing over all j, we define

fκ,λ :=

N
∑

j=1

fκ,λ
j δǫ

j , f̃κ,λ :=

N
∑

j=1

f̃κ,λ
j δǫ

j .
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Including the pressure decay correction, we define

fκ,λ
τ :=

N
∑

j=1

(

fκ,λ
j − 〈τκ,λ

j 〉nj

)

δǫ
j.

Here δǫ
j := δγM,ǫ

j
denotes the Dirac distribution on the interface γM,ǫ

j defined by

〈δǫ
j, φ〉 :=

∫

γM,ǫ
j

φ for all φ ∈ H1(Ωǫ).

Due to the H2×H1-regularity of the junction flow (ωκ,λ, πκ,λ) and the inertial correc-
tion (ω̃κ,λ, π̃κ,λ), we have fκ,λ

j , f̃κ,λ
j ∈ H1/2(γM

j ).

The total error due to these jump terms is given by (cf. Lemma 6.1 below)

F ǫ
0,0(x) := ǫf 0,0(

x

ǫ
),(6.3)

F ǫ
1,0(x) := ǫ

(

f 0,0
τ (

x

ǫ
) + ǫf 1,0(

x

ǫ
)
)

,(6.4)

F ǫ
1,l(x) := F ǫ

1,0 + ǫ
∑

1≤λ≤l

Reλ
ǫ

(

f̃ 0,λ(
x

ǫ
) + ǫf 1,λ(

x

ǫ
)
)

, l ≥ 1,(6.5)

and

F ǫ
k,l(x) := ǫf 0,0

τ +
∑

2≤κ≤k
0≤λ≤l

ǫκReλ
ǫ f

κ−1,λ
τ (

x

ǫ
) + ǫk+1

∑

0≤λ≤l

Reλ
ǫ f

k,λ(
x

ǫ
)(6.6)

+
∑

1≤κ≤k
1≤λ≤l

ǫκReλ
ǫ f̃

κ−1,λ(
x

ǫ
),

for k ≥ 2, l ≥ 0, the last sum being omitted for l = 0.

Remark: Note that the pressure decay correction 〈τk,l
j 〉 for the Poiseuille junction flow

first occurs in the term Fk+1,l whereas the term 〈π̃k,l〉j for the inertial correction is

already included in the jump term f̃k,l
j .

Definition 6.2. (Inertial terms) With the definitions (5.23)-(5.25) of the inertial

terms gi,j
m and gi,j :=

3
∑

m=1

gi,j
m the total error is given by (cf. Lemma 6.1 below)

(6.7) Gǫ
k,0(x) := Reǫ

∑

0≤i≤2k

ǫigi,0
1 (

x

ǫ
)χǫ(x) for k ≥ 0,

and

(6.8) Gǫ
k,l := G1,ǫ

k,l +G2,ǫ
k,l for k, l ≥ 1,
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where

G1,ǫ
k,l(x) := Reǫ

∑

k≤i≤2k

∑

0≤j≤2l

ǫiRej
ǫ g

i,j(
x

ǫ
)χǫ(x),(6.9)

G2,ǫ
k,l(x) := Reǫ

∑

0≤i≤k−1

∑

l≤j≤2l

ǫiRej
ǫ g

i,j(
x

ǫ
)χǫ(x).(6.10)

The total error Gǫ
k,l only includes terms gi,j where i ≥ k or j ≥ l, i.e. all terms with

0 ≤ i ≤ k − 1 and 0 ≤ j ≤ l − 1 are corrected.

In particular, we have for the zero and first-order approximations

Gǫ
0,0(x) := Reǫ g

0,0
1 (

x

ǫ
)χǫ(x),(6.11)

Gǫ
1,0(x) := Reǫ

2
∑

i=0

ǫigi,0
1 (

x

ǫ
)χǫ(x),(6.12)

Gǫ
1,1(x) := Reǫ

2
∑

i,j=0

i+j≥1

ǫiRej
ǫ g

i,j(
x

ǫ
)χǫ(x).(6.13)

6.1.2 Approximation properties

The following lemma now states the main properties of the approximations defined in
chapter 5.

Lemma 6.1. The approximation (uǫ
k,l, q

ǫ
k,l), k, l ∈ N0, defined in the previous chapter,

is a function of the space (H1 × L2)(Ωǫ) and satisfies the Navier-Stokes system (2.2)
with an error term Eǫ

k,l on the right-hand side of equation (2.2)1. This error consists

of jumps in the normal force on the pipe-junction interfaces γM,ǫ
j and inertial terms

in the domain ΩM,ǫ: Eǫ
k,l := F ǫ

k,l +Gǫ
k,l.

Proof. By construction, all approximations are in (H1×L2)(Ωǫ) since uǫ
k,l is continuous

on the pipe-junction interfaces. We consider the approximation (uǫ
k,l, q

ǫ
k,l) for which

the following equation holds in distributional sense:

(6.14) −µ0ǫ
2∆uǫ

k,l + ǫReǫ(u
ǫ
k,l · ∇)uǫ

k,l +∇qǫ
k,l = Eǫ

k,l in Ωǫ.

The error is given by

Eǫ
k,l =

∑

j

[

µ0ǫ
2∇uǫ

k,l nj − qǫ
k,l nj

]

γM,ǫ
j

δǫ
j +Gǫ

k,l

where [h]Σ denotes the jump (h+ − h−) of the traces of a function h ∈ H1(Ωǫ
j \ Σ) on

the cross-section Σ of the jth pipe from the positive and negative side (with respect
to nj). Due to the regularity of Poiseuille and junction flow we have ∇uǫ

k,l and qǫ
k,l in
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H1(Ωǫ \
⋃

j γ
M,ǫ
j ). By a simple calculation we then get the jumps as defined in (6.1)

and (6.2).

For almost every x ∈ ΩM,ǫ we have

ǫReǫ (uǫ
k,l · ∇)uǫ

k,l(x) = Reǫ

∑

0≤i≤2k

∑

0≤j≤2l

ǫiRej
ǫ g

i,j(
x

ǫ
).

The approximation of order (k, l), k, l ≥ 1, includes corrections for all terms gi,j,
0 ≤ i ≤ k − 1, 0 ≤ j ≤ l − 1. Therefore, only the error terms k ≤ i ≤ 2k, 0 ≤ j ≤ 2l
and 0 ≤ i ≤ k − 1, l ≤ j ≤ 2l remain, summarized in Gǫ

k,l. For l = 0 there is no
inertial correction and the error is given by (6.7).

Since uǫ
k,l consists of divergence-free functions and is continuous on γM,ǫ

j , j = 1, ..., N,
its divergence is zero on the whole domain Ωǫ. Finally, the boundary conditions of
problem (2.2) hold by construction (cf. chapter 5).

For test functions φ ∈ H1(Ωǫ) we define the error terms as follows:

〈F ǫ
0,0, φ〉 := ǫ

∑

j

∫

γM,ǫ
j

f 0,0
j (

x

ǫ
)φ,(6.15)

〈F ǫ
1,0, φ〉 := ǫ

∑

j

∫

γM,ǫ
j

(

f 0,0
j (

x

ǫ
)− 〈τ 0,0

j 〉nj + ǫf 1,0
j (

x

ǫ
)
)

φ,(6.16)

〈F ǫ
1,l, φ〉 := 〈F ǫ

1,0, φ〉+ ǫ
∑

1≤λ≤l

Reλ
ǫ

∑

j

(

f̃ 0,λ
j (

x

ǫ
) + ǫf 1,λ

j (
x

ǫ
)
)

φ, l ≥ 1,(6.17)

〈F ǫ
k,l, φ〉 := ǫ

∑

j

∫

γM,ǫ
j

(

f 0,0
j (

x

ǫ
)− 〈τ 0,0

j 〉nj

)

φ(6.18)

+
∑

2≤κ≤k
0≤λ≤l

ǫκReλ
ǫ

∑

j

∫

γM,ǫ
j

(

fκ−1,λ
j (

x

ǫ
)− 〈τκ−1,λ

j 〉nj

)

φ

+ ǫk+1
∑

0≤λ≤l

Reλ
ǫ

∑

j

∫

γM,ǫ
j

fk,λ
j (

x

ǫ
)φ

+
∑

1≤κ≤k
1≤λ≤l

ǫκReλ
ǫ

∑

j

∫

γM,ǫ
j

f̃κ−1,λ
j (

x

ǫ
)φ, k ≥ 2, l ≥ 0,

〈Gǫ
k,l, φ〉 :=

∫

Ωǫ

Gǫ
k,l χ

ǫφ, k, l ∈ N0(6.19)

〈Eǫ
k,l, φ〉 := 〈F ǫ

k,l, φ〉+ 〈Gǫ
k,l, φ〉, k, l ∈ N0.(6.20)

The weak formulation corresponding to (6.14) with the boundary conditions of (2.2)
then reads

(6.21) µ0ǫ
2

∫

Ωǫ

∇uǫ
k,l∇φ+ ǫReǫ

∫

Ωǫ

(uǫ
k,l · ∇)uǫ

k,l φ+
∑

k

pk

∫

Σǫ
k

φ · nk =
〈

Eǫ
k,l, φ

〉
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for all φ ∈ V ǫ, where

V ǫ =

{

ψ ∈ H1(Ωǫ) : div ψ = 0, ψ|Γǫ = 0, ψ × nj |Σǫ
j = 0, j = 1, ..., N

}

.

We now establish estimates for the jumps and inertial terms occurring on the right-
hand side of (6.21). At first, we have for any φ ∈ H1(Ωǫ)

∣

∣

〈

F ǫ
0,0, φ

〉∣

∣ ≤ ǫ
∑

j

∣

∣

∣

∣

∣

∫

γM,ǫ
j

f 0,0
j (

x

ǫ
)φ(x)dx

∣

∣

∣

∣

∣

≤ ǫ2
∑

j

‖f 0,0
j ‖L2(γM

j )‖φ‖L2(γM,ǫ
j ),

and analogous estimates for higher order terms, including the L2-norms of the jumps
fκ,λ

j , (fκ,λ
j − 〈τκ,λ

j 〉nj) and f̃κ,λ
j on γM

j (cf. (6.4)-(6.6)). The additional factor ǫ occurs

due to the rescaling of the cross-section γM,ǫ
j = ǫ γM

j .

For the inertial error term we obtain, abbreviating the notation of (6.7)-(6.10),

‖Gǫ
k,l‖L2(Ωǫ) ≤

∑

i,j

ǫiRej+1
ǫ

(∫

ΩM,ǫ

|gi,j(
x

ǫ
)|2dx

)1/2

=
∑

i,j

ǫi+3/2Rej+1
ǫ

(
∫

ΩM

|gi,j(y)|2dy
)1/2

.

Thus we have
∣

∣〈Gǫ
k,l, φ〉

∣

∣ ≤ ‖Gǫ
k,l‖L2(Ωǫ) ‖φ‖L2(Ωǫ)

≤
∑

i,j

ǫi+3/2Rej+1
ǫ ‖gi,j‖L2(ΩM ) ‖φ‖L2(Ωǫ).

Using the Poincaré inequality (cf. Lemma B.1)

‖φ‖L2(Ωǫ) ≤ C ǫ ‖∇φ‖L2(Ωǫ)

and the trace estimate (cf. Lemma B.3)

‖φ‖L2(γM,ǫ
j ) ≤ C

√
ǫ ‖∇φ‖L2(Ωǫ)

for φ ∈ H1(Ωǫ), φ = 0 on Γǫ, we finally get the following estimate of the total error :

(6.22)
∣

∣

〈

Eǫ
k,l, φ

〉∣

∣ ≤ C ǫ5/2
(

Iǫ
k,l + J ǫ

k,l

)

‖∇φ‖L2(Ωǫ),

for all φ ∈ H1(Ωǫ), φ = 0 on Γǫ.

Here the total inertial error is denoted by

(6.23) Iǫ
k,0 :=

∑

0≤i≤2k

ǫi‖gi,j
1 ‖L2(ΩM ) for k ≥ 0,
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and

(6.24) Iǫ
k,l :=

∑

k≤i≤2k

∑

0≤j≤2l

ǫiRej+1
ǫ ‖gi,j‖L2(ΩM ) +

∑

0≤i≤k−1

∑

l≤j≤2l

ǫiRej+1
ǫ ‖gi,j‖L2(ΩM ),

for k ≥ 1, l ≥ 0 (cf. (6.7)-(6.10)).

The total jump error is given by

J ǫ
0,0 :=

∑

j

‖f 0,0
j ‖L2(γM

j )(6.25)

J ǫ
1,0 :=

∑

j

‖f 0,0
j − 〈τ 0,0

j 〉nj‖L2(γM
j ) + ǫ

∑

j

‖f 1,0
j ‖L2(γM

j )(6.26)

J ǫ
1,l :=J ǫ

1,0 +
∑

1≤λ≤l

Reλ
ǫ

∑

j

(

‖f̃ 0,λ
j ‖L2(γM

j ) + ǫ‖f 1,λ
j ‖L2(γM

j )

)

, l ≥ 1,(6.27)

and for k ≥ 2, l ≥ 0

J ǫ
k,l :=

∑

j

‖f 0,0
j − 〈τ 0,0

j 〉nj‖L2(γM
j ) +

∑

2≤κ≤k
0≤λ≤l

ǫκ−1Reλ
ǫ

∑

j

‖fκ−1,λ
j − 〈τκ−1,λ

j 〉nj‖L2(γM
j )

(6.28)

+ ǫk
∑

0≤λ≤l

Reλ
ǫ

∑

j

‖fk,λ
j ‖L2(γM

j ) +
∑

1≤κ≤k
1≤λ≤l

ǫκ−1Reλ
ǫ

∑

j

‖f̃κ−1,λ
j ‖L2(γM

j ).

6.1.3 Estimates for the jumps and inertial terms

The next aim is to estimate the L2-norms of the jumps and of the inertial terms. In
section 4.2 we have shown that Leray’s solution can be approximated by the solution of
a finite junction problem up to an error term which decays exponentially with growing
distance from the junction. Applying the Theorems 4.3 and 4.4, Corollary 4.1 and
Lemma B.3 (ii) we obtain

Corollary 6.1. (Trace estimates)

(i) Poiseuille junction problem:

For the solution (ωκ,λ, πκ,λ), κ, λ ∈ N0, of the Poiseuille junction problem of order
(κ, λ) and the solution (ωκ,λ

L , πκ,λ
L ) of the corresponding Leray problem the following

estimate holds:

If

∫

ΩM

(

πκ,λ − πκ,λ
L

)

= 0, then there exist constants Cκ,λ > 0 independent of M (cf.

Theorem 4.3) such that

(6.29) µ0‖(∇ωκ,λ −∇ωκ,λ
L )nj‖L2(γM

j ) + ‖πκ,λ − πκ,λ
L ‖L2(γM

j ) ≤ Cκ,λM e−σLM

for all M ≥ 1.
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(ii) Inertial correction problem:

There exist constants 0 < σ̃ < σL and C̃κ,λ > 0, κ ∈ N0, λ ∈ N, independent of M (cf.
Theorem 4.4 and Corollary 4.1) such that

(6.30) µ0‖(∇ω̃κ,λ −∇ω̃κ,λ
L )nj‖L2(γM

j ) + ‖π̃κ,λ − π̃κ,λ
L ‖L2(γM

j ) ≤ C̃κ,λ e
−σ̃M

for all M ≥ 1, where (ω̃κ,λ, π̃κ,λ) is determined by (5.33), (ω̃κ,λ
L , π̃κ,λ

L ) is the solution of

the corresponding generalized Leray problem, and

∫

ΩM

(

π̃κ,λ − π̃κ,λ
L

)

= 0.

Remark 6.1. (i) Due to Theorem 4.3 and (3.13) the constants Cκ,λ in (6.29) depend

on the fluxes of the Poiseuille flows V κ,λ
j , j = 1, ..., N , which are determined by the

pressure mean values 〈τκ−1,λ
j 〉 and 〈π̃κ−1,λ〉j on γM

j , respectively (cf. (5.39)). These

quantities can be bounded independent of M if τκ−1,λ
j and π̃κ−1,λ approximate the

corresponding Leray pressures τκ−1,λ
j,L and π̃κ−1,λ

L in the previous order. This means
that the estimates (6.29)-(6.30) are established inductively: Starting in zero-order, the
constant C0,0 being independent of M , the approximation property carries forward to
all higher orders κ, λ ∈ N0.

(ii) For further application we have simplified the approximation result of Corollary
4.1 summarizing the two different cases therein. Using the precise statement, we have,
if minj σ̃j > 2σL (j = 1, ..., N),

µ0‖(∇ω̃κ,λ −∇ω̃κ,λ
L )nj‖L2(γM

j ) + ‖π̃κ,λ − π̃κ,λ
L ‖L2(γM

j ) ≤ C̃κ,λM
sλ e−σLM

or, if minj σ̃j ≤ 2σL,

µ0‖(∇ω̃κ,λ −∇ω̃κ,λ
L )nj‖L2(γM

j ) + ‖π̃κ,λ − π̃κ,λ
L ‖L2(γM

j ) ≤ C̃κ,λ(σ
′) e−σ′M

for any 0 < σ′ < minj σ̃j/2.

We now apply these results in order to establish

Lemma 6.2. (Jump estimates)

There exist constants Cκ,λ > 0, κ, λ ∈ N0, such that

(6.31) ‖fκ,λ
j − 〈τκ,λ

j 〉nj‖L2(γM
j ) ≤ Cκ,λM e−σLM

for all M ≥ 1 and all j = 1, ..., N .

An analogous result holds for the jumps of the nonlinear correction f̃κ,λ
j , κ ≥ 0, λ ≥ 1:

(6.32) ‖f̃κ,λ
j ‖L2(γM

j ) ≤ C̃κ,λ e
−σ̃M

for all M ≥ 1 and all j = 1, ..., N .
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Proof. In order to show inequality (6.31), we take into account definition (6.1) for fκ,λ
j

and insert the solution (ωκ,λ
L , πκ,λ

L ) of Leray’s problem. We obtain

‖fκ,λ
j − 〈τκ,λ

j 〉nj‖L2 ≤ µ0 ‖(∇ωκ,λ −∇ωκ,λ
L )nj‖L2 + ‖πκ,λ − πκ,λ

L ‖L2

(6.33)

+ µ0 ‖∇ωκ,λ
L nj‖L2 +

∥

∥

∥
πκ,λ

L − Cκ,λ
j M − 〈τκ,λ

j 〉
∥

∥

∥

L2
,

where all norms are taken on γM
j .

From (6.29) we get the exponential decay of the first and second term. The expo-
nential decay of the third term is evident: The velocity gradient of Leray’s solution
tends (pointwise) exponentially to the gradient of the Poiseuille velocity which has a
vanishing normal component (cf. chapter 3).

In order to apply the decay property of Leray’s pressure πκ,λ
L (cf. inequality (3.14)),

we estimate the last term of (6.33) as follows:

∥

∥

∥
πκ,λ

L − Cκ,λ
j M − 〈τκ,λ

j 〉
∥

∥

∥

L2
≤
∥

∥

∥
πκ,λ

L − Cκ,λ
j M − τ∞,κ,λ

j

∥

∥

∥

L2
+
∥

∥

∥
τ∞,κ,λ
j − 〈τκ,λ

j 〉
∥

∥

∥

L2
.

By definition, τ∞,κ,λ
j is the limit of τκ,λ

j,L := πκ,λ
L −Cκ,λ

j yj
1 for yj

1 →∞ (cf. section 5.2).

In (3.14) we have the pointwise exponential decay of τκ,λ
j,L to τ∞,κ,λ

j , in particular

∥

∥

∥
τ∞,κ,λ
j − 〈τκ,λ

j,L 〉
∥

∥

∥

L2(γM
j )

= O(e−σLM),

where 〈τκ,λ
j,L 〉 denotes the mean value of τκ,λ

j,L on γM
j . Thus we have

∥

∥

∥
τ∞,κ,λ
j − 〈τκ,λ

j 〉
∥

∥

∥

L2(γM
j )
≤
∥

∥

∥
τ∞,κ,λ
j − 〈τκ,λ

j,L 〉
∥

∥

∥

L2(γM
j )

+
∥

∥

∥
〈τκ,λ

j,L 〉 − 〈τκ,λ
j 〉
∥

∥

∥

L2(γM
j )

(6.34)

≤ C e−σLM +
∥

∥

∥
〈πκ,λ

L 〉 − 〈πκ,λ〉
∥

∥

∥

L2(γM
j )
.

The second term on the right-hand side of (6.34) can be estimated by (6.29) since

∥

∥

∥
〈πκ,λ

L 〉 − 〈πκ,λ〉
∥

∥

∥

L2(γM
j )

= |γM
j |1/2|〈πκ,λ

L − πκ,λ〉| ≤
∥

∥

∥
πκ,λ

L − πκ,λ
∥

∥

∥

L2(γM
j )
.

Thus inequality (6.31) is proved.

The proof of inequality (6.32) follows the same lines inserting the corresponding solu-
tion of the generalized Leray problem and using the decay and approximation estimates
of section 3.2 and Theorem 6.1 (ii).
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Remark 6.2. In particular, we get from (6.31) the estimate

(6.35) ‖fκ,λ
j ‖L2(γM

j ) ≤ |〈τκ,λ
j 〉| |γM

j |1/2 + Cκ,λM e−σLM .

Since in general 〈τ 0,0
j 〉 6= 0, the zero-order jump f 0,0

j does not get exponentially small
with increasing distance M from the junction. Therefore, the error F ǫ

0,0 is of order
O(ǫ) (cf. (6.3)) which is not sufficient in order to get an adequate error estimate for
the gradient of velocity (cf. section 6.2).

We now establish estimates for the inertial terms.

Lemma 6.3. (Inertial terms) For all i, j ∈ N0 there exist constants Ci,j > 0,
independent of M , such that

(6.36) ‖gi,j‖L2(ΩM ) ≤ Ci,j

for all M ≥ 0.

Proof. Since all inertial terms are L2-functions it is clear that their norms are bounded
on ΩM . We only have to ensure that these bounds, i.e. the constants Ci,j, are inde-
pendent of M .
Let (ω1 ·∇)ω2 be any inertial term occurring in (5.23)-(5.25). By comparison with the
corresponding term from Leray’s solution we get

‖(ω1·∇)ω2‖L2(ΩM ) ≤ ‖(ω1 · ∇)ω2 − (ω1
L · ∇)ω2

L‖L2(ΩM ) + ‖(ω1
L · ∇)ω2

L‖L2(ΩM ),(6.37)

where all norms are taken on ΩM .

For the first term on the right-hand side of (6.37) we proceed as in section 4.2 where
we have established recursively an exponential decay estimate (cf. Lemma 4.2 and its
generalization in subsection 4.2.3). Therefore it can be bounded independent of M .

For the second term we use the exponential decay of Leray’s solution to Poiseuille
flow: Since for any two Poiseuille flows V 1

j , V
2
j the inertial term (V 1

j · ∇)V 2
j vanishes,

we have

(ω1
L · ∇)ω2

L = (ω1
L − V 1

j ) · ∇ω2
L + (V 1

j · ∇)(ω2
L − V 2

j )

which is bounded independent of M (cf. section 4.2).
If ω1

L or ω2
L is the solution of a generalized Leray problem corresponding to an inertial

correction problem in the junction, then it exponentially tends to zero and the second
term on the right-hand side of (6.37) is bounded independent of M as well.

We summarize the results of this section in the following
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Corollary 6.2. The total error Eǫ
k,l, k, l ∈ N0, can be estimated as follows: There

exist constants 0 < σ̃ < σL and C(k, l) > 0 such that

(6.38)
∣

∣

〈

Eǫ
k,l, φ

〉∣

∣ ≤ C(k, l) ǫ5/2 max
(

e−σ̃M , ǫk, Rel+1
ǫ

)

‖∇φ‖L2(Ωǫ)

for all M ≥ 1 and any φ ∈ H1(Ωǫ).

Remark: The constant C(k, l) in (6.38) can be bounded independent of (k, l) if ǫ is
sufficiently small, i.e. there exists ǫ0 = ǫ0(k, l) > 0 and C > 0 such that C(k, l) ≤ C
for all k, l ∈ N0 if ǫ, Reǫ ≤ ǫ0(k, l).

6.2 Main result

In section 2.2 we have established the existence and local uniqueness of the solution
(vǫ, pǫ) of Navier-Stokes system (2.2) under the assumption of a sufficiently small non-
linear term (i.e. Reǫ ≤ O(ǫ)). Due to the results of the previous sections we are now
able to prove error estimates for the velocity and pressure approximations defined in
chapter 5.

We use the following notation: For ai ∈ R, i = 1, ..., n, let

{a1, ..., an} := max{a1, ..., an}

and ρǫ := |Ωǫ|1/2 denote the volume measure of the domain. Since the domain Ωǫ

shrinks as ǫ tends to zero, we have to weight the L2-norm with the factor (ρǫ)−1.

The following theorem states the main result of our analysis:

Theorem 6.1. (Error estimates) Let (vǫ, pǫ) in (H1 × L2)(Ωǫ) be a solution of the
Navier-Stokes system (2.2) such that (cf. Theorem 2.1 and Remark 6.3 below)

(6.39) ‖∇vǫ‖L2(Ωǫ) ≤ Kǫ
1

2 Re−1
ǫ .

For every k, l ∈ N0 there exists a constant CRe = CRe(k, l) > 0 such that the following
estimates hold if Reǫ ≤ CRe ǫ

1/2:

There exist constants 0 < σ̃ < σL and C = C(k, l) > 0, independent of ǫ and M, such
that

1

ρǫ

∥

∥∇
(

vǫ − uǫ
k,l

)∥

∥

L2(Ωǫ)
≤ C ǫ−

1

2

{

e−σ̃M , ǫk, Rel+1
ǫ

}

,(6.40)

1

ρǫ

∥

∥vǫ − uǫ
k,l

∥

∥

L2(Ωǫ)
≤ C ǫ

1

2

{

e−σ̃M , ǫk, Rel+1
ǫ

}

,(6.41)

1

ρǫ

∥

∥pǫ − qǫ
k,l

∥

∥

L2(Ωǫ)/R
≤ C ǫ

1

2

{

e−σ̃M , ǫk, Rel+1
ǫ

}

,(6.42)

for all M ≥ 1.
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Remark 6.3. Due to Theorem 2.1 we know that there exists a unique solution of (2.2)
such that (6.39) holds if Reǫ ≤ O(ǫ). For higher Reynolds numbers the question of
existence (and uniqueness) for the Navier-Stokes system (2.2) is unsolved (cf. [MP3]
and the references therein).
In two dimensions the result of Theorem 6.1 holds for Reǫ ≤ O(1) if

(6.43) ‖∇vǫ‖L2(Ωǫ) ≤ K Re−1
ǫ ,

cf. Remark 2.1.

Proof. We proceed in two steps, first establishing (6.40) and (6.41). The estimate
(6.42) for the pressure then follows using an appropriate test function (cf. [MP3]).

(i) We subtract equation (6.14) from equation (2.2)1, test with φ ∈ V ǫ, and integrate
by parts:

(6.44) µ0ǫ
2

∫

Ωǫ

∇(vǫ − uǫ
k,l)∇φ+ ǫReǫ

∫

Ωǫ

(

(vǫ · ∇)vǫ − (uǫ
k,l · ∇)uǫ

k,l

)

φ = −〈Eǫ
k,l, φ〉.

We take φ = (vǫ − uǫ
k,l) ∈ V ǫ and obtain

µ0ǫ
2

∫

Ωǫ

|∇(vǫ − uǫ
k,l)|2 ≤

∣

∣〈Eǫ
k,l, (v

ǫ − uǫ
k,l)〉

∣

∣(6.45)

+ ǫReǫ

∣

∣

∣

∣

∫

Ωǫ

(

(vǫ · ∇)vǫ − (uǫ
k,l · ∇)uǫ

k,l

)

(vǫ − uǫ
k,l)

∣

∣

∣

∣

.

For the first term we have already established an estimate in section 6.1, cf. Corollary
6.2. The nonlinear term of (6.44) can be separated into

∫

Ωǫ

(

(vǫ · ∇)vǫ − (uǫ
k,l · ∇)uǫ

k,l

)

(vǫ − uǫ
k,l)(6.46)

=

∫

Ωǫ

(vǫ − uǫ
k,l) · ∇uǫ

k,l (v
ǫ − uǫ

k,l) +

∫

Ωǫ

(vǫ · ∇)(vǫ − uǫ
k,l) (vǫ − uǫ

k,l).

According to the proof of Theorem 2.1 (cf. (1(i)) therein), the second term on the
right-hand side of (6.46) can be absorbed into the left hand side of (6.45) (due to
(6.39)). For the first term, we use the Hölder inequality and the Sobolev embedding
H1 →֒ L4 (cf. (B.3)) and obtain:

ǫReǫ

∫

Ωǫ

(vǫ − uǫ
k,l) · ∇uǫ

k,l (v
ǫ − uǫ

k,l)(6.47)

≤ C2
L4,H1 ǫ3/2 Reǫ‖∇(vǫ − uǫ

k,l)‖2L2(Ωǫ)‖∇uǫ
k,l‖L2(Ωǫ)

≤ C2
L4,H1 C0 ǫ

3/2 Reǫ‖∇(vǫ − uǫ
k,l)‖2L2(Ωǫ),

where we use the estimate

(6.48) ‖∇uǫ
k,l‖L2(Ωǫ) ≤ C0,
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which follows directly from the construction of uǫ
k,l, the constant C0 possibly depending

on (k, l). For Reǫ ≤ CRe ǫ
1/2 with

(6.49) CRe :=
µ0

2C2
L4,H1 C0

,

the first term on the right-hand side of (6.46) can also be absorbed into the left hand
side of (6.45).

We now have established the estimate for the velocity gradient. Applying the Poincaré
inequality (B.1), we immediately get the L2-estimate for the velocity.

(ii) In order to estimate the pressure, we proceed as in [MP3]. First, the a priori
estimate for the velocity gradient ∇vǫ of the solution of (2.2), is improved with the
help of the approximation result. From (6.40) and (6.48) we get the existence of a
constant C > 0 such that

(6.50) ‖∇vǫ‖L2(Ωǫ) ≤ C.

We define wǫ ∈ H1
0 (Ωǫ) as solution of

(6.51)

{

div wǫ = pǫ − qǫ
k,l − 〈pǫ − qǫ

k,l〉 in Ωǫ,

wǫ = 0 on ∂Ωǫ,

where

〈pǫ − qǫ
k,l〉 :=

1

|Ωǫ|

∫

Ωǫ

(pǫ − qǫ
k,l)

denotes the mean value of (pǫ − qǫ
k,l) on Ωǫ. According to Lemma B.5 (cf. (B.23)) we

have

(6.52) ‖wǫ‖H1(Ωǫ) ≤ C ǫ−1 ‖pǫ − qǫ
k,l − 〈pǫ − qǫ

k,l〉‖L2(Ωǫ).

As in the first step of the proof we subtract equation (6.14) from (2.2)1, test with wǫ

and integrate by parts:

‖pǫ − qǫ
k,l − 〈pǫ − qǫ

k,l〉‖2L2(Ωǫ) = µ0 ǫ
2

∫

Ωǫ

∇(vǫ − uǫ
k,l)∇wǫ(6.53)

+ ǫReǫ

∫

Ωǫ

(

(vǫ · ∇)vǫ − (uǫ
k,l · ∇)uǫ

k,l

)

wǫ + 〈Eǫ
k,l, w

ǫ〉.

The first term on the right-hand side of (6.53) can be estimated due to (6.40) and
(6.52):

µ0 ǫ
2

∫

Ωǫ

∇(vǫ − uǫ
k,l)∇wǫ

≤ C ǫ
3

2

{

e−σ̃M , ǫk, Rel+1
ǫ

}

‖pǫ − qǫ
k,l − 〈pǫ − qǫ

k,l〉‖L2(Ωǫ).
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6.2. MAIN RESULT

The last term of (6.53) can be estimated according to Corollary 6.2 and (6.52) by
∣

∣

〈

Eǫ
k,l, w

ǫ
〉∣

∣ ≤ C ǫ
5

2

{

e−σ̃M , ǫk, Rel+1
ǫ

}

‖∇wǫ‖L2(Ωǫ)

≤ C ǫ
3

2

{

e−σ̃M , ǫk, Rel+1
ǫ

}

‖pǫ − qǫ
k,l − 〈pǫ − qǫ

k,l〉‖L2(Ωǫ).

Finally, we show an estimate for the inertial term (cf. (6.46) and (6.47)):

ǫReǫ

∫

Ωǫ

(

(vǫ · ∇)vǫ − (uǫ
k,l · ∇)uǫ

k,l

)

wǫ

= ǫReǫ

∫

Ωǫ

(

(vǫ − uǫ
k,l) · ∇uǫ

k,l + (vǫ · ∇)(vǫ − uǫ
k,l)
)

wǫ

≤ C ǫ3/2 Reǫ‖∇(vǫ − uǫ
k,l)‖L2(Ωǫ)

(

‖∇uǫ
k,l‖L2(Ωǫ) + ‖∇vǫ‖L2(Ωǫ)

)

‖∇wǫ‖L2(Ωǫ)

≤ C ǫReǫ

{

e−σ̃M , ǫk, Rel+1
ǫ

}

‖pǫ − qǫ
k,l − 〈pǫ − qǫ

k,l〉‖L2(Ωǫ),

using (6.40), (6.48), (6.50) and (6.52). Since, by assumption we have Reǫ ≤ O(ǫ1/2),
the pressure estimate (6.42) is proved.

Remark 6.4. The exponential decay rate σ̃ is bounded from above by the decay rate
σL of the solution of Leray’s problem given in (3.15).
We have simplified the exponential decay term in the estimates (6.40)-(6.42). It can
be specified precisely as follows (cf. chapters 3 and 4): If minN

j=1 σ̃j > 2σL, then
we actually have a decay of the type Mα e−σL M for some α > 0 depending on l. If
minj σ̃j ≤ 2σL, then the decay is faster than any e−σ′M with 0 < σ′ < minj σ̃j/2.

The constants C = C(k, l) in (6.40)-(6.42) and CRe defined by (6.49) possibly depend
on the approximation order (k, l) but can be uniformly bounded if ǫ is sufficiently
small: There exists ǫ0(k, l), C > 0 such that C(k, l), CRe ≤ C for all k, l ∈ N0 if
ǫ, Reǫ ≤ ǫ0(k, l).

In particular, we have for the zero- and first-order approximation:

Corollary 6.3. Under the assumptions of Theorem 6.1 the following estimates hold:
(i) Zero-order approximation:

(6.54)
1

ρǫ

∥

∥vǫ − uǫ
0,0

∥

∥

L2(Ωǫ)
+

1

ρǫ

∥

∥pǫ − qǫ
0,0

∥

∥

L2(Ωǫ)/R
≤ C ǫ

1

2 .

The approximation of the velocity gradient ∇vǫ fails since equation (6.40) shows an
error of O(ǫ−1/2).

(ii) First-order approximation including inertial corrections:

1

ρǫ

∥

∥∇
(

vǫ − uǫ
1,1

)∥

∥

L2(Ωǫ)
≤ C ǫ−

1

2

{

e−σ̃M , ǫ
}

,(6.55)

1

ρǫ

∥

∥vǫ − uǫ
1,1

∥

∥

L2(Ωǫ)
+

1

ρǫ

∥

∥pǫ − qǫ
1,1

∥

∥

L2(Ωǫ)/R
≤ C ǫ

1

2

{

e−σ̃M , ǫ},(6.56)

for all M ≥ 1.
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In the following section we now discuss these results.

6.3 Some remarks concerning the estimates

6.3.1 Pressure decay correction

As already pointed out in section 5.2, an additional higher order correction is necessary
in order to establish an adequate estimate for the velocity in H1(Ωǫ), cf. Corollary
6.3. This is due to the fact that the jump error includes the pressure decay constants
of each pipe: The pressure from Leray’s problem decays to a linear profile plus some
stabilization constant in each pipe of the bifurcation, cf. [G] and [MP1]. In general
these constants are non-zero and different for each pipe. Thus it is not possible to
take them as zero by adding just one normalization constant for Leray’s pressure. The
approximation presented in [MP3] neglects this correction.

6.3.2 Approximation via the solution of Leray’s problem

Instead of constructing the approximation (5.3)-(5.4) using the solution (ωM , πM) on
the finite junction ΩM , it is also possible to use the solution of Leray’s problem on
the infinite domain Ω∞. From the theory of section 3.1 one immediately obtains the
exponential decay to Poiseuille flow. The error of such an approximation is then given
by the nonlinear term of order Reǫ, since the jumps of the normal forces decrease
exponentially with growing distance from the junction if the stabilization constants
are corrected.
In [MP3] this approach is carried out. The problem coming up there is the matching
of Poiseuille flow and Leray’s solution on the interfaces γM,ǫ

j . An additional correction
has to be introduced on each pipe in order to remove the jump of velocity on these
interfaces. Otherwise the approximation velocity is not in H1 and thus an estimate for
the velocity gradient would be ruled out. Our approach avoids these difficulties by con-
structing an approximation for the velocity which is continuous on the pipe-junction
interfaces γM,ǫ

j , using Poiseuille flow as boundary condition in the finite junction prob-
lem. We thus get an approximation which consists only of Poiseuille flow away from
the junction and does not need an additional correction, which is indeed small but
cannot be neglected in order to get H1-regularity.

Clearly, the solution of the Stokes equations can only be computed numerically on
finite branching domains. The junction problem of type (4.1) provides an approxi-
mation of Leray’s problem on finite domains of length O(M). Fixing the parameter
ǫ = ǫ0 as the diameter-to-length ratio of the domain under consideration, the pa-
rameter M = M(ǫ0) can be chosen such that the exponential decaying part of the
approximation error is less than the two other error terms (M = O(ln(1/ǫ0))). De-
pending on the approximation order, the error is then determined in powers of ǫ0 and
Reǫ0 (cf. Theorem 6.1).
The estimates (6.40)-(6.42) are of qualitative character, showing the asymptotic behav-
ior for large M(→ ∞) and small ǫ(→ 0), since we do not have quantitative estimates
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6.3. SOME REMARKS CONCERNING THE ESTIMATES

for the constants C(k, l) and σ̃. In particular, we are not able to relate their order of
magnitude to the geometry of the junction. In this respect it should be noted that in
order to get convergence of the approximation to the solution of Navier-Stokes system
(2.2) for ǫ→ 0, we have to consider junction problems on infinite domains (”M →∞”)
since for finite M an error of order O(e−σ̃M) remains.

6.3.3 Corrections to Kirchhoff’s law

In the pipes Ωǫ
j \ZM,ǫ

j the first-order approximation (uǫ
1,1, q

ǫ
1,1) consists of the Poiseuille

flow

V ǫ
j (x̃j) := wj(

x̃j

ǫ
)
〈qǫ

j〉 − pj

Lj

ej
1,

P ǫ
j (x

j
1) :=

pj − 〈qǫ
j〉

Lj
xj

1 + 〈qǫ
j〉,

where 〈qǫ
j〉 := q0 + ǫ

(

〈τ 0
j 〉+Reǫ〈π̃0,1〉j

)

, fixing q1,0 = q1,1 = 0.

The Poiseuille flow is thereby determined by the weighted mean value q0 (cf. (2.7))
and a higher order correction due to pressure decay (cf. section 5.2) and inertial terms
(cf. section 5.3).
Regarding the Kirchhoff law for one-dimensional networks (cf. section 2.3) the esti-
mates of Theorem 6.1 can be interpreted in the following way: If the diameter-to-
length ratio ǫ of the pipes is sufficiently small, then the flux through any cross-section
Sǫ

j = ǫSj of the jth pipe Ωǫ
j \ ZM,ǫ

j is given by

ǫ−2F̃ ǫ
j : = ǫ−2

∫

Sǫ
j

V ǫ
j · ej

1 = cj
(

〈qǫ
j〉 − pj

)

= cj (q0 − pj) + ǫ cj
(

〈τ 0
j 〉+Reǫ〈π̃0,1〉j

)

with the conductivities cj , cf. section 2.3. Comparing F̃ ǫ
j with the flux

F ǫ
j :=

∫

Sǫ
j

vǫ · ej
1

of the solution of (2.2) we obtain from Corollary 6.3 and the trace inequality (cf.
Lemma B.3)

|F ǫ
j − F̃ ǫ

j | =
∣

∣

∣

∣

∣

∫

Sǫ
j

(vǫ − V ǫ
j ) · ej

1

∣

∣

∣

∣

∣

≤ ǫ |Sj|1/2‖vǫ − V ǫ
j ‖L2(Sǫ

j )

≤ Cǫ3/2‖∇(vǫ − V ǫ
j )‖L2(Ωǫ

j\Z
M,ǫ
j ) ≤ C ǫ2max{e−σ̃M , ǫ}.

Summarizing, the weighted mean value q0, computed from Kirchhoff’s law, admits
an adequate approximation of the flux through a junction of thin or long pipes in
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leading order O(1). If approximations of higher accuracy are needed, then q0 has to
be corrected by taking into account local Stokes problems in the junction of diameter
O(ǫ). In this way, the influence of the geometric structure of the junction on the fluid
flow is resolved.

In analogy to V ǫ
j the Poiseuille flow of order (k, l), k ∈ N, l ∈ N0, is given by

V ǫ
j,(k,l)(x̃

j) := V 0,0
j (

x̃j

ǫ
) +

k
∑

κ=1

l
∑

λ=0

ǫκReλ
ǫ V

κ,λ
j (

x̃j

ǫ
), x̃j ∈ Ωǫ

j .

Proceeding as above we then get for the corresponding flux F̃ ǫ
j,(k,l) :=

∫

Sǫ
j

V ǫ
j,(k,l) · ej

1 the

following estimate:

(6.57) |F ǫ
j − F̃ ǫ

j,(k,l)| ≤ C ǫ2 max{e−σ̃M , ǫk, Rel+1
ǫ }.

Therefore, the flux F ǫ
j of the Navier-Stokes velocity in the jth pipe can be approximated

in any order (k, l), k, l ∈ N0, by the flux of the Poiseuille velocities V ǫ
j,(k,l).
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Chapter 7

Summary

In this chapter we resume the main results of our analysis and give some concluding
remarks. An outlook on some open problems related to the present work completes
the thesis.

The following enumeration summarizes the key points of the chapters 2-6.

In chapter 2 a model for viscous fluid flow in bifurcating pipes based on the Navier-
Stokes equations with pressure boundary conditions is presented. Existence and local
uniqueness are proven under the assumption of small data (i.e. Reynolds number Reǫ

of higher order), using a fixed point argument (cf. section 2.2). Flux and pressure
drop of the Poiseuille flow in the pipes are analyzed by means of a formal computation,
taking into account the geometry of the junction domain (cf. section 2.4).

In chapter 3 Leray’s problem is discussed by generalizing the results from [G] and the
exponential decay of the solution to Poiseuille flow is shown.

In chapter 4 the solution of Leray’s problem is approximated by the solution of the
corresponding Stokes problem on finite subdomains of diameter O(M) up to an error
decaying exponentially in M .

In chapters 5 and 6 an approximation procedure for the solution of the Navier-Stokes
model is presented, which is based on Poiseuille flow in the pipes and Stokes flow in
the junction domain. Using the decay properties of the solution of Leray’s problem
error estimates in powers of ǫ and Reǫ are established, depending on the junction
length M . Higher order corrections for pressure decay and inertial terms are included
such that any order of approximation accuracy can be achieved (cf. section 6.2).

Conclusion

Our analysis of viscous fluid flow in bifurcating pipes allows the following conclusions:

◮ An accurate model of viscous fluid flow in branching channels and pipes requires
the analysis of local Stokes problems in the junction domain (junction problems),
coupling the different Poiseuille flows in the pipes.
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◮ Poiseuille flow is an appropriate approximation in the pipes for the solution
of the Navier-Stokes problem, the error decaying exponentially with increasing
distance M from the junction.

◮ For given constant pressure values on the in- and outflow boundaries of the pipes,
the flux in the bifurcation can be computed from Kirchhoff’s law in zero-order
approximation only if the diameter-to-length ratio ǫ of the pipes is sufficiently
small. If e.g. the junction domain has constrictions, then the weighted mean
value from Kirchhoff’s law does not provide an appropriate approximation for
the flux unless ǫ is sufficiently small.

◮ The pressure decay from Leray’s problem to possibly different constants in the
pipes plays an important role in the construction of the approximation. In con-
trast to previous results in literature, we show that higher order corrections due
to this pressure stabilization are necessary in order to obtain an appropriate ap-
proximation for the solution of the Navier-Stokes problem including the gradient
of velocity.
The nonlinearity of the Navier-Stokes problem generates inertial terms of higher
order. Their correction requires an additional type of junction problem and the
generalization of Leray’s problem.

◮ The presented approximation scheme for the Navier-Stokes equations based on
finite junction problems is adequate for numerical computations.

Outlook

We finally give a short overview on some open problems concerning viscous fluid flow
in bifurating channels and pipes.
As far as the modeling is concerned, branchings with pipes of variable diameter or
bifurcations including curved pipes have to be considered in order to describe fluid
flow in complex structures as e.g. the arterial-venous system of the human body.
Furthermore, elastic boundaries have to be taken into account and the model for the
fluid flow has to be coupled to the equations describing the displacement of the wall of
the pipes. In these situations the Poiseuille flow approach is not appropriate and other
types of effective laws have to be deduced from microscopic fluid-structure models.
In order to describe the fluid flow in a network consisting of many bifurcations, the
local junction problems presented in this work have to be coupled. A further difficulty
arises from the fact that in physiological networks, as e.g. the circulatory system, many
different length scales occur. The problem of constructing a global approximation for
the fluid flow in such networks still remains unsolved.
From the mathematical point of view the question of existence and uniqueness of the
solution of the Navier-Stokes problem with pressure boundary conditions remains open
unless the pressure data is assumed to be sufficiently small. If the nonlinear term is of
leading order, i.e. Reǫ = O(1), then we do not have a Stokes problem in the junction
anymore. Since in this case the nonlinear effects are dominating, it is not clear how
to realize the construction of an asymptotic approximation.
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Appendix A

Computation of the pressure drop
in the pipes

In order to simplify the computation, we consider a domain Ωδ consisting of a junction
Ωδ

0 = δΩ0 with only two outlets, linking the pipes Ωδ
1 and Ωδ

2. The diameter of the
junction is chosen to be of order O(δ), the pipes are of length O(1) and cross-section
O(δ2) (cf. Fig. 2.5). The computation can be carried out for the junction of N ≥ 3
pipes in the same way. We assume given constant pressure values pj on the outflow
boundaries of the pipes Ωδ

j .

We now consider the following Stokes systems (k = 1, 2) on the rescaled junction Ω0,
prescribing normalized pressure values on the in-/outflow boundaries γj (j = 1, 2):

(A.1)































−∆yωk +∇yπk = 0 in Ω0,

divy ωk = 0 in Ω0,

ωk = 0 on Γ0,

ωk × nj = 0 on γj,

πk = δjk on γj,

where Γ0 denotes the lateral boundary of Ω0.

For k = 1 we have π1 = 1 on γ1, π1 = 0 on γ2; for k = 2 we have π2 = 0 on γ1, π2 = 1
on γ2. Due to the linearity of the equation, ω := q1 ω1 + q2 ω2 and π := q1 π1 + q2 π2

is the solution for prescribed constant pressure values q1 and q2 on the in-/outflow
boundaries γj. The scaled functions ωδ(x) := ω(x

δ
) and πδ(x) := δ π(x

δ
) then solve the

following Stokes problem on the domain Ωδ
0:

(A.2)































−δ2∆ωδ +∇πδ = 0 in Ωδ
0,

div ωδ = 0 in Ωδ
0,

ωδ = 0 on Γδ
0,

ωδ × n = 0 on γδ
j ,

πδ = δqj on γδ
j .
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APPENDIX A. COMPUTATION OF THE PRESSURE DROP IN THE PIPES

Remark: Due to the scaling of the junction domain Ωδ
0 = δΩ0, the factor δ also occurs

in the scaling of the pressure πδ = δπ(x
δ
).

In the pipes Ωδ
j we assume the Poiseuille flow

V δ
j (x) := wj(

x̃j

δ
)
q̃j − pj

Lj
ej
1,

P δ
j (x) :=

pj − q̃j
Lj

xj
1 + q̃j ,

where wj denotes the Poiseuille velocity profile (cf. (2.6)) and q̃j represents the pres-
sure value on γδ

j . The flux in the jth pipe is given by F P
j = cj (q̃j − pj), with the

conductivity cj :=
1

Lj

∫

Sj

wj .

The pressure values pj are assumed to be given, but the pressures q̃j are unknown. In
order to compute these values, we have to establish a relation between the Poiseuille
flow in the pipes and the Stokes flow in the junction.

From physical considerations, we assume the following:

(1) Continuity of the pressure at the interfaces γδ
j : q̃j = δqj (j = 1, 2).

(2) Balance of the fluxes: F P
i = F S

i , where F S
i is the flux through the junction,

given by

F S
i :=

∑

j

qjFij :=
∑

j

qj

∫

Si

ωj · nj .

We define the flux matrix F := (Fij)i,j=1,2.

From these assumptions, we obtain a system of two linear equations for the unknown
pressure values qj:

(A.3)
∑

j

F δ
ij qj = −cipi, i = 1, 2,

where F δ
ij :=

∫

Si

ωj · nj − δ ci δij . With C := (ciδij)i,j=1,2 we define

F δ := (F δ
ij)i,j=1,2 := F − δ C.

The matrix F has a special structure:

• The sum of the elements in each row equals 0, i.e.
∑

j Fij = 0 for i = 1, 2:
Since (ω1 +ω2, π1 +π2) is the solution of the Stokes problem (A.1) with pressure
equal to 1 on γ1 and γ2, we have ω1 + ω2 = 0 due to the uniqueness of the
solution. Therefore, the sum of the fluxes vanishes as well.
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• The sum of the elements in each column equals 0:
∑

i Fij = 0 for j = 1, 2, due
to the incompressibility of the flow (div ωj = 0).

Therefore, we have

(A.4) F =

(

F −F
−F F

)

where F := F11 =

∫

S1

ω1 · n1.

The matrix F δ is the difference between the singular matrix F and the regular matrix
δ C, i.e. there are combinations of values F, c1, c2 and δ, such that the determinant of
F δ vanishes. Assuming detF δ 6= 0, we can easily compute its inverse

(F δ)−1 =

[

−δ(c1 + c2)F + δ2c1c2

]−1(
F − δc2 F
F F − δc1

)

.

Finally, the solution of (A.3) is given by

(A.5) qj = δ−1 c1p1 + c2p2 − δ c1 c2 F−1 pj

c1 + c2 − δ c1 c2 F−1
, j = 1, 2.

We rewrite this expression in the following way:

(A.6) qj = δ−1

(

c1p1 + c2p2

c1 + c2
− αpj

)

(1− α)−1 ,

where α :=
c1c2
c1 + c2

δ

F
is a dimensionless parameter.

Without loss of generality we can assume F > 0, therefore we also have α > 0.

Expanding with respect to α, we get

qj = δ−1

(

c1p1 + c2p2

c1 + c2
− αpj

)

(1 + α +O(α2)), j = 1, 2.
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Appendix B

Technical results

B.1 Inequalities and trace theorem

Lemma B.1. (Poincaré inequality)

(i) There exists a constant C > 0 independent of ǫ, such that

(B.1) ‖φ‖L2(Ωǫ) ≤ C ǫ ‖∇φ‖L2(Ωǫ)

for all φ ∈ H1(Ωǫ), φ = 0 on Γǫ.

(ii) There exists a constant C > 0 independent of M , such that

(B.2) ‖φ‖L2(ΩM ) ≤ C ‖∇φ‖L2(ΩM )

for all φ ∈ H1(ΩM ), φ = 0 on ΓM .

Proof. (i) Cf. Lemma 7 in [MP1] and Lemma A.1 in [MP2].

(ii) In order to show that the constant is independent of M , we decompose the do-
main ΩM into the junction part Ω0 and the pipes ZM

j and apply the Poincaré
inequality on each of these subdomains, where the occurring constants are inde-
pendent of M . Summing up all contributions gives the result.

Lemma B.2. (Embedding theorem)

(i) There exists a constant CL4,H1 > 0 independent of ǫ, such that

(B.3) ‖φ‖L4(Ωǫ) ≤ CL4,H1 ǫ
1

4 ‖∇φ‖L2(Ωǫ)

for all φ ∈ H1(Ωǫ), φ = 0 on Γǫ.

(ii) There exists C > 0 independent of M , such that

(B.4) ‖φ‖L4(ΩM ) ≤ C ‖φ‖H1(ΩM )

for all φ ∈ H1(ΩM ), M ≥ 1.
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Proof. (i) We use the interpolation inequality for Lp-spaces (cf. Lemma 8 in [MP2]):

(B.5) ‖φ‖L4(Ωǫ) ≤ ‖φ‖
1

4

L2(Ωǫ) ‖φ‖
3

4

L6(Ωǫ).

The second factor is to be estimated. On every pipe Ωǫ
j , j = 1, ..., N , we can extend

φ such that the extension φ̃ ∈ H1(Ω1
j ) (i.e. ǫ = 1). The embedding H1(Ω1

j ) →֒ L6(Ω1
j )

then is independent of ǫ, i.e.

‖φ̃‖L6(Ω1
j ) ≤ Cj ‖∇φ̃‖L2(Ω1

j ),

the constants Cj > 0 being independent of ǫ, where we use the Poincaré inequality
in order to estimate the H1-norm (as well independent of ǫ). The norms of φ̃ on Ω1

j

coincide with those of φ on Ωǫ
j . For the junction domain Ωǫ

0 = ǫΩ0 we obtain by change
of variable the estimate

‖φ̃‖L6(Ωǫ
0
) ≤ C0 ǫ

1/3 ‖∇φ̃‖L2(Ωǫ
0
),

the constant C0 > 0 independent of ǫ. The additional factor ǫ1/3 is due to the O(ǫ)-
diameter of the junction and cannot be obtained for the estimates in the pipes Ωǫ

j ,
j = 1, ..., N , cf. Remark B.1 below. Finally, we get the claim from (B.5) using the
Poincaré inequality (B.1).

(ii) Without loss of generality we assume M ∈ N (cf. proof of Theorem 4.2). The
domain ΩM consists of the junction Ω0 and the pipes ZM

j , j = 1, ..., N . In Ω0 we have
the H1 →֒ L4-embedding with a constant clearly independent of M . The pipes ZM

j

can be divided into subcylinders Zj,k := {x ∈ ZM
j : k ≤ xj

1 ≤ k+1}, k = 0, 1, ...,M−1,
for each of which the inequality

‖φ‖L4(Zj,k) ≤ Cj ‖φ‖H1(Zj,k)

holds. The constant Cj is independent of k since the inequality is invariant under
translation of the xj

1-variable (due to the constant cross-section of the pipe). Summing
over all k we thus get ‖φ‖L4(ZM

j ) ≤ Cj ‖φ‖H1(ZM
j ) for all j, which together with the

estimate for Ω0 yields the result.

Remark B.1. The power of ǫ occurring in (B.3) is optimal. In the three-dimensional
case the Sobolev embedding H1 →֒ Lp holds for all p ∈ [2, 6]. The exponent of the
L2-norm in the interpolation inequality (B.5) then is maximal. In two dimensions we

have H1 →֒ Lp for all p ∈ [2,∞) and estimate (B.3) then can be improved to ǫ
1

2 .

Lemma B.3. (Trace theorem)

(i) There exists a constant C0 > 0 independent of ǫ, such that

(B.6) ‖φ‖L2(Σǫ
j)
≤ C0

√
ǫ ‖∇φ‖L2(Ωǫ)

94



B.1. INEQUALITIES AND TRACE THEOREM

for all φ ∈ H1(Ωǫ), φ = 0 on Γǫ.

An analogous estimate holds for ‖φ‖L2(γM,ǫ
j ), M ≥ 1, with a constant independent

of ǫ and M .

(ii) There exists a constant C1 > 0 independent of M , such that

‖φ‖L2(γM
j ) ≤ C1 ‖φ‖H1(ΩM )

for all φ ∈ H1(ΩM ) and M ≥ 1.

Proof. We consider the cross-section σǫ
j = ǫσj at xj

1 = ǫlj , 1 ≤ lj ≤ Lj/ǫ and show
that there is C > 0 independent of ǫ and lj , such that

‖φ‖L2(σǫ
j)
≤ C
√
ǫ ‖∇φ‖L2(Ωǫ).

Let φ̃(y) := φ(ǫy) with y ∈ Zj := (lj − δ, lj) × Sj , 0 < δ < 1 fixed, Zǫ
j := ǫZj. The

trace theorem for σj and Zj yields

(B.7) ‖φ̃‖L2(σj) ≤ C ‖∇φ̃‖L2(Zj)

with C > 0 independent of lj, the inequality being invariant under translation of the
yj

1-variable; in order to get the constant independent of j we simply can take the max-
imum for all pipes.

We compute

‖∇φ̃‖2L2(Zj)
=

∫

Zj

|∇yφ̃(y)|2dy = ǫ−1

∫

Zǫ
j

|∇xφ(x)|2dx = ǫ−1 ‖∇φ‖2L2(Zǫ
j ),(B.8)

‖φ̃‖2L2(σj)
=

∫

σj

|φ̃(y)|2dy = ǫ−2

∫

σǫ
j

|φ(x)|2dx = ǫ−2 ‖φ‖2L2(σǫ
j)
.(B.9)

From (B.7), (B.8) and (B.9) we get the estimates in (i).

The estimate in (ii) follows analogously, using the trace estimate

‖φ‖L2(σj) ≤ C ‖φ‖H1(Zj),

the constant being independent of lj due to the translation invariance.
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B.2 Regularity results for Stokes equations

We state the main regularity results from [D2] for Stokes equations in domains with
edges and corners, right-hand side f , non-zero divergence g and vanishing velocity on
the boundary.

Theorem B.1. (Regularity of Stokes equations in cylindrical domains)

Let Ω be any bounded cylinder with constant and smooth cross-section (or a bounded
smooth domain with cylindrical outlets). Then, for data f ∈ Hs−1(Ω), g ∈ Hs(Ω),
0 ≤ s < 2, the solution of the Stokes system

(B.10)



























−µ0∆v +∇p = f in Ω,

div v = g in Ω,

v = 0 on ∂Ω,
∫

Ω

g = 0,

has the regularity v ∈ Hs+1(Ω), p ∈ Hs(Ω), provided g vanishes on the cylinder edges
of the boundary (if s ≥ 1).

Furthermore, the following inequality holds:

(B.11) ‖v‖Hs+1(Ω) + ‖p‖Hs(Ω)/R ≤ C(Ω)
(

‖f‖Hs−1(Ω) + ‖g‖Hs(Ω)

)

.

In the case of non-zero boundary conditions we have the following

Corollary B.1. Let Ω be as in Theorem B.1, the data f ∈ L2(Ω), g ∈ H1(Ω) vanishing
on the cylinder edges, and Ṽ ∈ H2(Ω) an extension of the boundary values V such
that div Ṽ = 0 on the cylinder edges. Then the Stokes problem

(B.12)



























−µ0∆v +∇p = f in Ω,

div v = g in Ω,

v = V on ∂Ω,
∫

Ω

g =

∫

∂Ω

V · n,

has a unique solution v ∈ H2(Ω), p ∈ H1(Ω) and the following estimate holds with a
constant C = C(Ω):

(B.13) ‖v‖H2(Ω) + ‖p‖H1(Ω)/R ≤ C
(

‖f‖L2(Ω) + ‖g‖H1(Ω) + ‖Ṽ ‖H2(Ω)

)

.
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Proof. We set v0 = v − Ṽ and obtain a Stokes problem with homogeneous boundary
values:

(B.14)











−µ0∆v0 +∇p = f + µ0∆Ṽ in Ω,

div v0 = g − div Ṽ in Ω,

v0 = 0 on ∂Ω.

Note, that
∫

Ω

(g − div Ṽ ) = 0

due to the compatibility condition of the boundary values V .

Applying Theorem B.1 to system (B.14) yields the result.

We conclude this section with some remarks concerning the regularity results listed
above. They are based on the corresponding regularity theory for elliptic boundary
value problems developed in [D1]. The problem of regularity is thereby related to
some general Fredholm properties of the elliptic operator. Characteristic conditions
are given for the domain and the operator in order to have these properties. If e.g.
the domain Ω is a two-dimensional polygon, then such conditions are related to the
angle openings of Ω.
In [D2] these conditions are specified also for three-dimensional domains with edges
and corners (such as e.g. a polyhedron or a cylinder) and are extended to the Stokes
operator

Sn : [(H1
0 ∩H2)(Ω)]n ×H1(Ω)→ L2(Ω)n ×H1(Ω),

(v, p) 7−→ (f, g),

given by (B.10) with Dirichlet boundary conditions (where n = 2, 3 denotes the space
dimension).

This type of regularity results for Stokes equations on polygonal or polyhedral domains
can also be found in [GR].

B.3 The divergence-problem in the junction

Lemma B.4. For f ∈ L2(ΩM), M ≥ 1,

∫

ΩM

f = 0, the divergence-problem

(B.15)

{

div u = f in ΩM ,

u = 0 on ∂ΩM ,

admits (at least) one solution u ∈ H1
0 (ΩM ) which can be estimated as follows: There

exists C > 0 independent of M such that

(B.16) ‖u‖H1(ΩM ) ≤ CM ‖f‖L2(ΩM ).
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Remark B.2. From the theory of the divergence-problem (cf. [G], ch. III.3) we obtain
the following estimate:

(B.17) ‖u‖H1(ΩM ) ≤ CMn+1 ‖f‖L2(ΩM ),

where n = 2, 3 is the space dimension and C > 0 depends on the cross-sections Σj of
the pipes ZM

j and the geometry of the junction domain Ω0. Note that the power of
M is worse compared to (B.16).

Proof. Without loss of generality we assume M ∈ N (cf. proof of Theorem 4.2 and
Remark B.3 below).

We decompose the cylinders ZM
j into M subcylinders

Zj,k :=
{

x ∈ ZM
j : k ≤ xj

1 ≤ k + 1
}

, k = 0, 1, ...,M − 1.

We then consider the following divergence-problems on Zj,k:

(B.18)























div u = f in Zj,k,

u = 0 on ∂Zj,k ∩ ∂ΩM ,

u = − 1

|Sj |

(

M−1
∑

l=m

∫

Zj,l

f

)

ej
1 on Σj,m, m = k, k + 1,

where
Σj,k :=

{

x ∈ ZM
j : xj

1 = k
}

, k = 0, 1, ...,M − 1.

It is known (cf. e.g. [G], ch. III.3 and [MP2], Lemma 9) that there is a solution
u ∈ H1(Zj,k) with

(B.19) ‖u‖H1(Zj,k) ≤ Cj

(

M−1
∑

l=k

‖f‖L2(Zj,l)

)

.

The constant Cj > 0 is independent of k due to the translation invariance of the in-
equality (constant cross-section of the cylinder ZM

j ).

In the junction Ω0 we choose u ∈ H1(Ω0) as solution of

(B.20)























div u = f in Ω0,

u = 0 on ∂Ω0 ∩ ∂ΩM ,

u = −
(

1

|Sj|

∫

ZM
j

f

)

ej
1 on Σj,0.

Since

∫

ΩM

f = 0, we have

∫

Ω0

f =
∑

j

∫

Σj,0

u|Σj,0
· ej

1 = −
∑

j

∫

ZM
j

f
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and thus problem (B.20) is well-posed. Furthermore,

(B.21) ‖u‖H1(Ω0) ≤ C(Ω0) ‖f‖L2(ΩM ).

By construction, u is well matched on the interfaces Σj,k and thus an element of
H1(ΩM). Summing up the estimates (B.19) and (B.21) we finally have

‖u‖H1(ΩM ) = ‖u‖H1(Ω0) +
∑

j,k

‖u‖H1(Zj,k)

≤ C(Ω0) ‖f‖L2(ΩM ) + (maxj Cj)
∑

j,k

(

M−1
∑

l=k

‖f‖L2(Zj,l)

)

≤ C(Ω0) ‖f‖L2(ΩM ) + (maxj Cj)M
∑

j

‖f‖L2(ZM
j )

≤ CM ‖f‖L2(ΩM ).

Remark: If the mean value of f is zero on each cylinder Zj,k, then we can solve
the divergence problem (B.18) with zero boundary conditions on the whole boundary
∂Zj,k. Then, the sum in (B.19) can be replaced by ‖f‖L2(Zj,k) and therefore we obtain
the H1-estimate for the solution u of (B.15) independent of M .

Remark B.3. If M = N + r with some N ∈ N, r ∈ [0, 1), the junction Ω0 can be
replaced by Ω1+r, i.e. the prolongated junction with pipes of length 1 + r. Due to
the theory of the divergence problem, the constant C(Ω1+r) then occuring in estimate
(B.21) admits an estimate of type (3.10) (cf. [G]) and in particular can be bounded
independent of r.

In a similar way the following result concerning the divergence-problem in Ωǫ can be
shown (cf. Lemma A.3 from [MP3]):

Lemma B.5. For f ∈ L2(Ωǫ),

∫

Ωǫ

f = 0, the divergence-problem

(B.22)

{

div u = f in Ωǫ,

u = 0 on ∂Ωǫ,

admits at least one solution u ∈ H1
0 (Ωǫ) which can be estimated as follows: There

exists a constant C > 0 independent of ǫ such that

(B.23) ‖u‖H1(Ωǫ) ≤
C

ǫ
‖f‖L2(Ωǫ).
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