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Abstract

Previous research has established that a smooth surface has not necessarily minimal drag:
Many experiments by different laboratories, e.g. NASA and DLR Berlin, indicate that an
extra surface layer with tiny grooves aligned in the stream-wise direction can be used to
reduce the drag. The aim of this project is to find the optimal shape of such microstruc-
tures on surfaces of submerged bodies. We assume that these microstructures remain
in the viscous sublayer where the flow equations are the 3D incompressible, steady state
Navier-Stokes equations with a Couette in- and outflow determinated through two bound-
ary conditions, the no-slip condition on the lower boundary and the friction condition on
the upper one. The objective function of our optimization problem is the tangential
drag force, which we want to minimize. Solving this problem is difficult because of the
rough boundary, which causes a big amount of data. We apply homogenization theory
and replace the rough boundary by a smooth one, where the right boundary conditions
have been determined. Furthermore, our optimization problem can be simplified using
this approximation and we end up minimizing a scalar size, the Navier constant, which
is calculated using the velocity of an auxiliary boundary layer equation. To solve the
optimization problem we use sensitivity-based optimization methods. The sensitivity is
calculated analytically and we use it to determine the gradient of the cost function with
respect to the design variable. A minimum is sought by using the steepest descent algo-
rithm with step size according to Armijo rule. The necessary optimality conditions are
derived and a sequence of admissible domains is built which tends to the optimal solution.
The state equations are solved numerically using finite elements on unstructured grids and
multigrid algorithms. The results obtained with this approach give us a drag reduction
of approximately 2-6% relative to the drag of the smooth configuration.

Zusammenfassung

Bisherige Forschung hat gezeigt, dass eine glatte Oberflache eines in Fliissigkeit einge-
tauchten Korpers nicht die minimale Widerstandskraft haben muss: So kann eine hauch-
diinne Folie mit Rillen, die in Stromungsrichtung ausgerichtet sind, als widerstands-
minimierende Oberfliche dienen. Dieser Ansatz resultierte aus den Forschungsergebnissen
der NASA und der DLR Berlin. Das Ziel dieses Projekts besteht darin, die optimale Form
der Mikrostrukturen auf der Oberflache zu finden, so dass die Widerstandskraft minimal
wird. Bei der Modellierung miissen wir uns darauf beschrénken, dass die Rillen aus der
viskosen Grenzschicht nicht herausragen. Die Stromungsgleichungen kénnen dann durch
die inkompressiblen stationdren Navier-Stokes Gleichungen beschrieben werden. Als Ein-
und Ausstromung ist eine Couette Stromung festgelegt, die am unteren Rand durch die
Haft- und am oberen Rand durch die Reibungsbedingung gegeben ist. Das Zielfunktional
unseres Optimierungsproblems ist die tangentiale Widerstandskraft. Die Losung dieses
Problems gestaltet sich schwierig, da der untere rauhe Rand eine Handhabung grofler Da-
tenmengen erfordert. Durch Anwendung von Homogenisierung kéonnen wir diesen rauen
Rand durch einen glatten ersetzen, wobei die Informationen der Rauheiten durch andere
Randbedingungen mitgegeben werden. Nach einer Reihe von Approximationen wird das



urspriingliche Optimierungsproblem so vereinfacht, dass die Zielfunktion durch eine skala-
re Grofle, der Navier Konstanten, und die Nebenbedingungen durch die Grenzschichtglei-
chungen gegeben sind. Zur Losung des Optimierungsproblems verwenden wir die auf Sensi-
tivitdten basierenden Optimierungsmethoden. Die Sensitivitéiten, die zur Bestimmung des
Gradienten des Zielfunktionals beziiglich der Designvariablen dienen, werden analytisch
bestimmt. Ein Minimum wird durch das Verfahren des steilsten Abstiegs mit regulierter
Schrittweite nach der Armijo Regel gesucht. Die notwendigen Optimalitdtsbedingungen
werden abgeleitet, und eine Minimalfolge zuléssiger Gebiete gebildet. Die Nebenbedingun-
gen, die durch die Grenzschichtgleichungen gegeben sind, werden nummerisch durch eine
Finite-Elemente-Diskretisierung auf unstrukturierten Gittern mittels Mehrgitterverfahren
gelost. Die so erhaltenen Ergebnisse weisen eine Widerstandsminimierung zwischen 2 und
6% relativ zum Widerstand der glatten Oberfliche auf.
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Es gibt keine groflen Entdeckungen und
Fortschritte, solange es noch ein
ungliickliches Kind auf Erden gibt.

Albert Einstein (14.03.1879 - 18.04.1955)
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Introduction

Shape optimization is nowadays very important in industry and science. It is used to
improve technical properties of materials and devices to obtain higher profit at an in-
creased or at least equal level of reliability. In the general context of shape optimization
we have to distinguish three branches of optimization: size, classical shape and topology
optimization. In the first branch, the size optimization, a typical size of an object is used
as optimization parameter, e.g. a thickness distribution, whereas other dimensions are
kept fix; several examples can be found in [26]. In the second branch, the classical shape
optimization, the shape of a given domain is altered, keeping the topology unchanged. In
the third branch, the topology optimization, the topology and the shape are allowed to
change. Considering beam structures, the topology can be changed by varying the num-
ber of the beams, or considering continuous structures, by adding holes to the domain
(see [15] for both cases).

Problems of shape optimization are typically of interdisciplinary character: At first, a
model has to be crafted thoroughly, which requires knowledge of the physical background;
then a solution to the equations has to be found. Since most of the solutions can not be
found analytically, a numerical approximation has to be supplied. The following mathe-
matical areas come together in this process: the theory of partial differential equations (or
of ordinary differential equations), approximation of these partial differential equations
(for example using finite elements), and the theory of mathematical programming. In
this thesis we present a shape optimization problem in the field of fluid mechanics with
practical applications. A further area of mathematics, the theory of fluid dynamics, plays
an important role to handle the state problem. An additional difficulty appears in our
problem where we want to optimize a rough boundary of very small size, on the so-called
micro scale. Models with different scales are difficult to handle numerically. Homoge-
nization has to be used to approximate the oscillating model by a smooth one, where the
coefficients of the smooth model are obtained through a limiting process. In literature (see
[26], [41] and [48]) we find several examples of shape optimization with fluid dynamical
applications, and we find homogenization applied to riblets in [1], [5]. We want to combine
all these fields in this thesis applying shape optimization to a homogenized model after a
complex process of modeling and approximations.

It was first observed by Walsh that rough surfaces can have a lower drag than a smooth
one: In [8], [9], [10], [11], [58] experiments on flows over rough surfaces are presented. The
authors chose three or more possible shapes of rough surfaces and compared the values
for the drag. The idea how to choose the shapes are given by a shark skin model. Sharks
belong to one of the oldest species, are fast and silent swimmers, and have evolved such
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that their shape is adapted to their environment. The rough structure on their surface,
well-investigated in [53], is nowadays of great interest. The most durable materials, such
as fiberglass, are built based upon the same principles. The most important property of
this rough structure is its contribution to drag reduction. The longitudinal riblets impede
the vortices of the cross flow and thus reduce drag. An artificial shark skin was build by
DLR Berlin. The model was enlarged significantly for manufacturing reasons and tested in
an oil channel. An artificial shark skin of small size was developed by NASA laboratories
to test the drag reduction capability. This thin plastic film was then produced by the
company 3M and applied to the surface of an Airbus A340 and to the hull of the sailboat
Stars and Stripes. The turbulent shear stress reduction obtained was about 7-8%. This
means for the case of the aircraft a saving of 3% of the total fuel per flight. The same
amount of drag reduction was obtained by testing the swimming suit Fastskin developed
by the company Speedo, this swimming suit imitates the shark skin too. The structure
of shark skin is known not only as a drag reducing tool but also as modern protective
coating replacing the toxic anti-fouling used before 2003. The costs of shipping companies
are so reduced by an artificial shark skin acting as anti-fouling and with this the drag can
be reduced indirectly up to 15%.

The experiments carried out by Walsh, Bechert and co-workers, the results obtained from
the different laboratories (NASA, DLR), and tests of rough surfaces on aircrafts, ships
and swimming suits, are the motivation for this thesis. We solve the following problem:
Find the optimal shape of microstructures on a submerged body such that its tangential
drag force is minimized. Our considerations are based upon Schlichting’s boundary layer
theory for microstructures within the viscous sublayer of the boundary layer, and upon the
homogenization results obtained by W. Jéger and A. Mikeli¢ in [32], [33]. The contribution
of this thesis is to model and to solve the three-dimensional shape optimization problem
using these homogenization results and to find a connection between the theory developed
here and the experimental results. From the set objectives, we achieved the following
results: From our calculations we obtained a shape of microstructures which is up to 6%
better than the smooth surface. Calculating the sensitivity analytically we could improve
the cost function of our optimization problem by a sequence of shrinking domains. The
optimal shape found is a thin peak represented by cubic spline functions. Enlarging the
class of admissible shapes by imposing less regularity, the calculations done on the slit
domain in two dimensions and on blade like riblets in three dimensions gave the best
results. One connection to the experiments mentioned above is that the spacing of the
ridges is twice their height. This structure is found also on the shark skin. An important
result is the validity of the homogenized model resulting from the comparison with direct
calculations on the rough boundary.

This thesis consists of three parts: Modeling the flow equations in the two-dimensional
rough channel, solving the two-dimensional shape optimization problem, and modeling
and solving the flow equations in the three-dimensional rough channel with longitudinal
riblets, similar to those found on shark skin, using results from the two-dimensional
problem.

The first part deals with the mathematical modeling of the two-dimensional optimization
problem which means finding the optimal shape of the periodically distributed roughness
at the bottom of the channel in order to minimize the tangential drag force. To model the
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flow over very small rugosities we have to consider the boundary layer theory developed
by Schlichting (see [54]). Because analysis in the buffer layer is out of reach until now, we
restrict our model by keeping the roughness within the viscous sublayer of this boundary
layer. In this regime the fluid motion can be described by the incompressible steady state
Navier-Stokes equation with a Couette flow profile prescribed at the in- and out-flow
boundary and given by the boundary conditions, the velocity U on the upper boundary
and the no-slip condition at the lower boundary, which is fixed at the in- and outflow
through the maximal height of the microstructure. This system has oscillating coefficients
which makes it hard to solve it numerically. We apply homogenization to approximate
this system with one having smooth coefficients. Because the small rugosities do not
influence the main flow the limiting equations will also be given by the incompressible
steady state Navier-Stokes equation with a perturbed Couette flow profile. This profile
is given by a different boundary condition on the artificial smooth boundary, called wall
law. Wall laws are an approach where the no-slip condition at rough surfaces are replaced
by the non-penetration condition plus a relation between the tangential velocity and the
shear stress, the slip condition. In [32] W. Jager and A. Mikeli¢ justified the wall laws
by multiscale expansions. In numerous former papers the flow over a porous medium was
studied, and in [31] the effective boundary conditions at the contact interface between a
porous medium and a viscous incompressible fluid were derived rigorously. The interface
condition of Beavers and Joseph was replaced by the condition of Saffman, because the
filtration velocity is much smaller:

ou,; -1
5 = a(k®) 2u, + O(e).

For the case of flow over rough boundaries an analogous wall law was found with different
parameters called Navier slip condition:
eff

i
8332
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where the Navier constant Cy is calculated from an auxiliary boundary layer problem.
Usually this wall laws are determined empirically and differ in each problem. Mostly they
are given by a non-linear function of the tangential velocity. In [42], O. Pironneau an-
nounced a rigorous result for the approximation of the Stokes flow over a rough boundary,
and in [2] the authors obtained the effective wall laws for a flow over a rough surface at
high Reynolds numbers, proportional to %, constructing an asymptotic expansion with the
help of boundary layer correctors, but only a numerical validation is presented therein. In
[32] and [33] convergence results are proved for the asymptotic expansion of the velocity,
for the mass-flow and for the tangential drag force, and the constants in the wall law
were determined. The solution of the so-called effective equations of our model can be
given analytically, it is the effective Couette flow determined by the boundary condition
on the upper boundary, the prescribed velocity U and the Navier slip condition. With
this effective solution we can approximate the oscillating tangential drag force with the
so-called effective tangential drag force accurately:

U
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The resulting simplified optimization problem consists of finding the optimal shape of a
microstructure in one cell of roughness which minimizes the effective drag and with this
the Navier constant C},. The state equations of this problem are then reduced to the
boundary layer equations, the Stokes equation with additional boundary condition on the
interface. Before solving this problem we compare the drag of the smooth configuration
with the rough one and conclude that the rough one has a lower drag indeed so that our
optimization problem is justified. To have a well-posed optimization problem we have to
impose some constraints on the shape. We are interested in comparing shapes of riblets
with the same height. To fix it correctly in the cell problem we analyze first the effect of
different spacing on the cost function.

In the second part of this thesis we solve the two-dimensional optimization problem.
The theory which deals with the differentiation of functionals with respect to the design
variables is called sensitivity analysis and is a very important ingredient of the optimiza-
tion process. To calculate the sensitivities, the gradient information, it is important to
parametrize the shape function and to establish the design parameters. In our model the
part of the boundary to be determined is described by the graph of a smooth function
which is twice continuously differentiable. This makes the analysis and the numerical
realization much easier. The change in geometry is described as a normal variation of the
domain: 'y = {s+ Aa(s)n(s)|s € I'}. To guarantee that the regularity of the boundary I'
will not get lost after some iterations, the function a must be small and twice continuously
differentiable. After having an analytical representation of the sensitivities

57 — / o (5)[0n 8" () 2ds + o( [l [c2p0.1)

it is obvious how to determine the optimal states by using optimization algorithms which
require gradients. For the optimization routine we choose the steepest descent with Armijo
line search. To solve the state equations we can use a tool box for solving partial differen-
tial equations which is able to capture the rough boundary. First, the state problem has
to be approximated on a finite domain, i.e. the infinite boundary layer has to be cut at
a position k and boundary conditions have to be imposed on this new boundary. We use
the package FEMLISP developed by N. Neuss from the technical simulation group of the
IWR in order to solve a boundary layer equation of fluid flow over a porous bed. For our
model of fluid flow over a rough boundary we had the advantage that with this program
the Navier constant could be calculated directly and the output could be reduced to the
gradient of the velocities on the rough boundary. We were able to find corresponding
results in the approximation techniques. For the discretization, finite elements on un-
structured grids and multigrid algorithms are used. In the important last section of part
two we compare the calculations for the homogenized problem with calculations on the
original oscillating problem. These calculations, which we refer to as direct simulations,
are a contribution of R. Rannacher in order to validate our calculations done on the ho-
mogenized model. The direct calculations evaluating the tangential drag force on the
rough boundary can be performed at larger scales (0.02 — 0.3mm) and are more accurate
for them. Nevertheless, at smaller scales the results from both models are nearly the same.
The importance of homogenization is highlighted when we consider very small scales (<
0.0lmm). Due to the spectacular progress in the last decades, important analytical tools
were developed in this field. Our effective model and the effective tangential drag force,
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derived using these tools, replace the oscillating model and drag force which can not be
calculated anymore with direct simulations. Using special limiting behavior of asymp-
totic expansions we are able to give statements about these very small scales which would
never be possible by numerics only. But even for larger scales the homogenized model
can be used to get first results. It is much easier to implement and the calculations are
less complex and therefore much cheaper because the domain of computations is reduced
to one cell of roughness with artificial boundary conditions on the smooth interface. This
cell is only a small part of the whole rough channel. The calculations can be performed on
a normal personal computer, whether the direct simulations requires special algorithms
to capture the complicated structure of the rough boundary. These direct calculations are
needed if one is interested in the exact values for the solutions or the drag force for larger
scales. We used them also to compare the drag reducing effect of the microstructures
with the results obtained in the experiments and found that microstructures with height
of 0.15mm reduce the tangential drag force with 12% compared to the smooth surface.
This result is close to the one obtained from Bechert and his co-authors in [10], where he
found an drag reduction of 10%. The direct calculations presented in this section were
done by Th. Richter using Gascoigne.

In the third part the three-dimensional model of a rough channel is presented: This
model describes the rough shark skin of fast swimming sharks. First, the homogenization
results for an arbitrary rough geometry obtained by W. Jager and A. Mikeli¢ in [33] are
presented. Here, the Navier slip condition has a matrix coefficient in front of the effective
shear stress:

This comes from the boundary condition on the upper boundary, the prescribed velocity
U = (Uy, Uy, 0), which is imposed to model the correct viscous sublayer. Even if the stream
velocity is chosen only in the x-direction, we will have a velocity in the y-direction because
of the vortices which occur in the upper layer. The Navier matrix M is calculated using
again an auxiliary boundary layer problem and its structure depends on the shape of the
microstructure. Because of the physiognomy of sharks, the applications and experiments
we restrict the three-dimensional shape of our layer of roughness to longitudinal riblets.
This simplifies the problem significantly: On the one hand, because the Navier matrix is
then not only negative definite but also diagonal and, on the other, because we will be able
to decompose the three-dimensional boundary layer equation into two two-dimensional
ones. One of them is the cross flow, which we solved already in part two, and the second
one is the longitudinal flow, the two-dimensional Laplace equation, which has to be solved
additionally. Due to this decomposition, we will be able to use the optimization results
from part two and have to calculate only the values for the corresponding longitudinal
Navier constant, and hereby the tangential drag force given by

( ]:teﬁ) v 1 U,

1~ 7 71 _ € bl
Ly 1= £
and

(}_teﬁ) v 1

= _—EUQ.
2 L3 1-— L_3031

XV



Cﬁl and CY! are the entries of the Navier matrix M, the so called longitudinal and cross
Navier constant. The contribution to the drag reduction will be much higher in the three-
dimensional case because the Navier constant from the longitudinal flow will be minimized
more than the one from the cross flow.

We conclude the thesis with discussions of the obtained results. We will point out the
reduced complexity of our numerical calculations due to the application of homogeniza-
tion. We will justify the advantages of the chosen parametrization, methods and routines,
and will discuss the results obtained in both simulations, the direct and the one on the
homogenized model, in detail. We will close with an outlook for future projects.
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Chapter 1

Modeling of flow over 2D rough
surfaces

1.1 Rough surfaces and their industrial importance

It is well known, that the golf ball would never fly as far as it does with a smooth surface
instead of the dimpled one. Taking a closer look to the surface we see that the indentations
in the center are slightly deeper than those at the poles. This simple design with its proper
backspin helps the ball flying farther and we can conclude: A rough surface can have a
lower drag than a smooth one.

During the last decade we could observe an increasing scientific interest in fluid dynamic
effects caused by biological surfaces. The two most well-known examples are lotus leaves
and shark skin. In both examples microstructures on the surface play an important role.
The perfect cleaning characteristic of the lotus leaf, discovered by Abramson, Barthlott
and co-workers (see [6], [7]), works only due to a certain surface microstructure, whereby
impurity particles have a reduced contact area so that the water droplets can easily
overcome the difficulty of releasing them from the surface. The microscopic wax crystals
on the leaf surface lead to an extremely low surface energy, so that the particles are bound
to the water droplet surface (see Figure 1.1.3). How microstructures on shark skin reduce
drag was first pointed out by Walsh in [58], Bechert, Hoppe and Reif in [11] after the
detailed examination of the skin structure of sharks by Reif and Dinkelacker (see [53]).
But also today shark skin is of great interest in the modern technological biology. This
is pointed out in Nachtigalls book ‘Bionik’ ([43]). In a reacent BMBF project (see [36])
researches from the University of Bremen presented their idea to reduce costs of shipping
companies by using shark skin as bio-antifouling. The natural cover on the boat’s hull
consists of shells and barnacles which increase the drag of the boat significantly and
destroy its painting very fast. They found out that coating with an artificial shark skin
reduces this fouling about 70% and hereby an drag reduction of 15% is obtained.

As sharks belong to one of the oldest species in nature they have optimized their shape
for more than 200 million years, i.e. they evolved such that they minimize their energy
consumption during movement, they reduce drag. On the skin of fast swimming sharks
tooth-like microstructures called dermal denticles (‘tiny skin teeth’) were found (see Figure
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CHAPTER 1. MODELING OF FLOW OVER 2D ROUGH SURFACES

1.1.4). They are between 0.1 and a few millimeters high and typically have a broad basal
plate, a narrow stalk and a broad ridged crown. From [39] we know that dermal denticles
are built on the same high level engineering principles as the most durable materials
nowadays, such as fiberglass. This principle concerns the embedding of a hard material
inside a softer one, this technique combines the best properties of both, rigidity without
brittleness and plasticity without distortion. Here, these two materials are apatite, a
hard crystalline mineral, which is embedded in collagen, a soft protein. Due to these
components dermal denticles are as hard as granite and as strong as steel but are anchored
elastically. Globally seen they have a mushroom like shape with tips on one side pointing
towards the shark tail, which is why a shark feels relatively smooth if stroked from head-to-
tail, but sand-papery coarse if stroked the other way. The crowns of the dermal denticles
on fast swimming sharks are smooth and almost ridgeless on the tip of the snout and
leading edges of the fins, but elsewhere on the body they have ridges with depths one-
half to two-thirds their width. The crowns overlap tightly and the alignment of these
ridges on their top varies along the body, they form a path of least flow resistance over
the surface, a streaky structure in the downstream direction (see figure 1.1.5). Speaking
about microstructures from now on we refer only to those ridges on the crown and do
not consider the whole dermal denticles because there is no fluid circulation between
them. The scales are tiny (0.01-0.1mm) and their number is between 3 and 7 ridges on
one denticle of a fast shark. The lateral spacing of the ridges is between 0.035-0.1mm.
Calculated with the body length, the Reynolds number of fast sharks is high (Re =~
10% —107). Different laboratories (NASA, DLR) tested artificial surfaces with this kind of
scales in a turbulent boundary layer, and they found a drag reduction of about 7%. A fluid
dynamical explanation is given by many authors: The most important theory says that
the alignment of crown ridges with the ‘natural’ flow direction of water over the shark’s
body can be expected to maximize drag reduction by reducing turbulence, preventing eddy
formation or dampening them. The results of our research stays in agreement with this
theory. Bone has suggested in [17] that the ridges work like longitudinal vortex generators
which enhance mixing in the turbulent boundary layer and keep the flow attached there.
This second theory is exactly the opposite one than the one mentioned above. Enhanced
mixing means an increasing shear stress. In this case drag reduction is obtained only due
to avoiding flow separation. This is also one of the tricks behind the dimples in the golf
ball. But here we have to consider the whole structure of the dermal denticle at an angle
of attack and not only the scales on their crown which together form the riblets and a
turbulent boundary layer which can not be considered in analysis of flow until now. It
is also assumed, that the scales on the shark skin are elastically anchored on the skin of
living sharks, which can not be established on a dead piece of shark skin. But it has been
shown experimentally that an increasing angle of attack enhances mixing and thus delays
the flow separation. Another theory is that low speed streaks of the viscous sublayer
occur in regions of low pressure, and this low pressure is utilized to inject fluid through
the slits between the scales in the downstream direction. This theory has been analyzed
and tested successfully especially for aircraft wings in order to delay the separation of
the boundary layer (see [9]). We will not consider flow separation in this thesis. Another
utility for fluid dynamical drag reduction in water is of course the production of mucus of
bony fish (see [28]). But sharks produce less mucus than other fishes, so we will not pay
any attention to this fact in this work.



1.1. ROUGH SURFACES AND THEIR INDUSTRIAL IMPORTANCE
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How strategic roughness yield aero- and hydrodynamic benefits is a great deal of research
nowadays. This new technique is used also by airplanes, ships and swimming suits to
reduce drag. The grooves must be very closely spaced to obtain the drag reducing effect.

Turbulent shear stress reduction of 7-8% below the value of smooth surfaces has been
demonstrated in several laboratories: The NASA developed a thin film, where riblets had
been molded for the coating of means of transportation like airplanes and ships. This
film was produced by the company 3M. The results from testing on the surface of an
Airbus A340 assure a drag reduction of 7-8% after coating only 75% of the surface due
to technical reasons. This 8% drag reduction involved a fuel saving of 2.4 tons per flight
which is 3% of the total consumption, which amounts to either a cost saving or a better
profit provided by increasing the number of passengers by 15. A ship called ’Stars and
Stripes” which took part in America’s Cup in 1987 was also coated with this film. After
this ship won the Cup there were a lot of discussions concerning the rules, and they become
stricter afterwards. Generally in sports surface microstructures are becoming more and
more important. The company Speedo produces a swimmer suit called "Fast Skin’ which
imitates the shark skin. Different tests provided that this suit is 7.5% faster than other
suits tested and has 3% lower surface resistance. The imitated shark skin suit could also
be interesting for cycling, skiing and other sports.

Of course, a direct application like the one on airplanes is not easy. There are a lot of
difficulties to overcome: for the application of the thin film on the surface of an airplane
the airplane has to be on the ground which means a decrease in profit for the company, due
to the film an inspection of the airplane can be difficult, a small crack under the film can
hardly be discovered, the effects of contaminations have to be checked and the film must
be renewed after 2—3 years. Due to these difficulties this attempt failed, but the interest in
microstructures is high and it remains a task to better understand their function and also
their manufacturing (polymer films) (see [40]). Since 2002 a new technique in producing
such kind of microstructures on aircraft wings is taken into account: perforated aircraft
wings where millions of tiny holes are drilled in the leading edges of the wing. Researchers
at Heriot-Watt University and the aerospace company BAE SYSTEMS have carried out
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Figure 1.1.4: Microstruc-
ture on the shark skin (see

[56]).

dusky shark sandbar shark blacktip reefshark

Figure 1.1.5: Together the microstructures from the
shark skin form a striped structure in the stream line
direction(see [56]).

the studies on drilling such holes using laser beams.

In this thesis we will focus on how the shape of microstructures should look like to reduce
skin friction. Drag reducing mechanisms derived from shark skin have been considered
e.g. by Bechert, Bartenwerfer, Hoppe and Reif in [8]. They claim the microstructures
which give a drag reduction of about 7-8% below the smooth surface, which are also used
in the examples mentioned above, are small longitudinal riblets. The dimension of the
spacing and height are comparable to the dimensions of the viscous sublayer of a turbulent
boundary layer. These tiny riblets are also found on all species of fast sharks.

How do the microstructures work? There are small streamline vortices in the viscous
sublayer of a turbulent boundary layer, which produce a local upwash of slow fluid away
from the surface and the other way around. These longitudinal vortices are responsible
for the streaky structure of the boundary layer and thus for the production of low speed
streaks. The streaky structure of the viscous boundary layer shows that the velocity profile
is highly unstable and this causes the high fluctuations in the layer above. The vortices
are also responsible for the momentum exchange and thus for turbulent skin friction.
The development of these longitudinal vortices requires cross-flow in the viscous sublayer.
To reduce the turbulent skin friction Bechert found out in [11] that one has to hamper
the cross-flow in order to decrease turbulent mixing and turbulent shear stress, and this
happens if the spacing of the riblets is small enough and if the ridges have sharp edges.

Whereas the authors of [8] build on a theory of the viscous Couette type flow on surfaces

4
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Figure 1.1.6: The shark skin of
spiny dogfish or bramble shark, a
slower swimmer (see [33]).

VRN
A4

Figure 1.1.7: Artificial skin pro-
duced with laser technology.

with small longitudinal riblets of different shapes, including sawtooth, blade-like, scal-
loped and convex riblet cross sections, we will calculate the optimal shape of periodically
distributed riblets using the approximation theory of the oscillating viscous Couette flow
due to the theory of homogenization developed by Jager and Mikeli¢ in [33].

1.2 The viscous sublayer in two dimensions

To model the flow over small microstructures on the surface of a swimming body we
consider at first the so-called boundary layer of a turbulent flow which consists of the
flow within a thin layer. According to the theory of Schlichting, a turbulent boundary
layer consists of three parts, a viscous sublayer, which is relative small (y™ < 5, where
y* = 2 is the characteristic wall coordinate), the buffer layer (5 < y* < 20), and the
logarithmic or overlap layer (y* > 20). Tt is assumed that in each sublayer the velocity of
the flow is described by a different profile: In the viscous one where U ~ /v the profile
is linear, and in the logarithmic layer a logarithmic profile u™ = £ In(y™) + C* is used,
where ut = % is the rescaled velocity, @ the mean velocity in the pure viscous layer and
C™ is a characteristic constant (C*t = 5 for the smooth wall). The riblets used on the
surface of aircrafts extend into the buffer layer. Their height is about h = 156, where
0 is the thickness of the viscous sublayer. With this kind of riblets a drag reduction of
about 8-10% was obtained in the experiments. To consider the analysis of flow in the
buffer layer is out of reach until now. In this thesis we have to restrict ourselves to riblets

that remain in the viscous sublayer of the turbulent boundary layer, which means they

5
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are about 15 times smaller than the riblets used on the aircraft.

Prandtl already introduced the notion of boundary layer in 1904. He divided the flow
surrounding a body in two domains: a layer subject to friction in the neighborhood of
the body and a frictionless region outside of this layer.

A special property of this boundary layer is that under some circumstances reverse flow
occurs in the immediate proximity of the surface. Then, in connection with this reverse
flow, a separation of the boundary layer takes place together with a more or less strong
formation of vortices in the flow behind the body. This change in pressure distribution
gives rise to the form drag. The boundary theory therefore offers an approach to the
calculation of this form drag. It is believed that riblets delay this flow separation and
thus minimize turbulent drag, but we will not consider this issue in this thesis.

The flow in this viscous sublayer of thickness § is the same flow considered between two
parallel plates with a distance ¢ from each other, where the lower plate is kept fix and
the upper one moves with velocity U uniformly and parallel to the lower one. Due to this
parallel moving the transverse velocity component in y-direction is equal to zero. Because
of the adherence of the fluid to the surfaces a linear velocity distribution between the
two plates, the so-called Couette flow, describes the model. A flow where no transverse
velocity occurs is called simple shear flow. The shear stress is given by the ratio

tangential force  F; du
T = = — =

area A 'M@’

where g is the dynamic viscosity, v = ‘—Q‘ the kinematic viscosity and o is the density of
the fluid. For our model, for water, v = 1.01 x 1075m?/s. The dimensionless Reynolds
number is given by
_ inertiaforce  Ud  oUd
©~ iction force v 7

Inserting the data for our model: gwater = 103kg/m3, p = 1072 Pas, the size of the
viscous sublayer being § ~ /v = 1072 m and the shear velocity |U| = r = 1073, we

calculate the Reynolds number of our model which in this case is Re=1. The boundary
layer thickness and the velocity component parallel to the surface are independent of x,
they do not vary along the wall.

Another characteristic measure for the boundary layer is the ratio between displacement
thickness 0* and momentum thickness 1. The first variable is a size for the deflection of
the stream lines from the surface by the boundary layer and the second one measures the
momentum loss in the boundary layer,

*

)
— = 2.218.
0

The drag consists of the contribution of the pressure drag (form drag) and the surface
friction drag. The pressure drag, also called form drag, is caused by the difference between
the front and rear of the body. The amount of this drag depends on the size and shape of
its object. If the shape is streamlined, i.e. the flow is allowed to decelerate along its back
part, then the boundary layer is prevented or delayed in separating from the object. This
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decreases the pressure drag. But this depends of course also on the size of the object. On
a very big object flow separation occurs even if the shape is streamlined. If the shape is
not streamlined, then purposely situated so called ‘vortex generators’ (microstructures)
cause the boundary layer to be turbulent. This keeps the energy level high and reduces
the risk of flow separation. Compared with the amount of pressure drag, the skin friction
is only a small percentage of the total drag. It occurs because of the viscosity of the fluid
and is created within the boundary layer. Its amount is obtained by integrating the wall
shear stress over the entire surface. We conclude pointing out that a turbulent boundary
layer causes more skin friction than a laminar one, but the reduction in pressure drag is
much greater (golf ball).

In this thesis we model only the viscous sublayer of a turbulent flow over a rough surface,
that means we analyze only the local effect of microstructures on the skin friction which
we want to reduce by finding the optimal shape of these microstructures. We do not
consider flow separation and do not consider the form drag.

Our model (see figure 1.3.8) describes a two dimensional channel P = (0, Ly) x (0, L) of
height of the viscous sublayer Ly = § = 1072 m with a rough surface bottom, the so-called
layer of roughness R® = (Ue(Y + (k1, —b2))) N ((0, Ly) x (—ebe,0)) which consists of the
periodically repetition of one cell of roughness Y = {y € Z = (0,b1) x (0,b2) | by > ya >
max{0,7v(y1)}}. The rough boundary is denoted by B° = e(Uy + (k1, —bs)) and describes
periodically distributed humps of characteristic length and amplitude. The domain where
the fluid flows is thus given by 2 = PUXUR®. The flow itself can be described with the
incompressible steady state Navier-Stokes equations with a Couette Flow profile (Re=1)
with Dirichlet boundary conditions on the rough boundary, the so-called no-slip condition:

;

—vAV* + (V) 4+ Vp? = 0, in Q°
div v¢ = 0, in Q°

v® = 0, on B* (1.2.1)
v® = U, on s

{v¢,p°} — 1 periodic.

Proposition 1.2.1. If |U|Ly < 2v, there is a solution {v%,p°} € H?*(Q°) x H'(QF) of
(1.2.1).

The proof can be found in [33], where it is done for the general case of three dimensions.

To calculate the solution {v%, p°} of this system numerically is difficult. Because of the
rough boundary we need a huge amount of data and a very fine mesh to capture the rough
boundary as exact as possible. To reduce the numerical effort we first apply homogeniza-
tion, where the rough boundary is replaced by a smooth artificial one with new boundary
conditions as proposed by Jager and Mikeli¢ in [33], the so-called Navier slip condition.
This Navier slip condition is obtained by the authors constructing an asymptotic expan-
sion with help of so-called boundary layer correctors. A similar ansatz was presented

7
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before by O. Pironneau in [2] for high Reynolds numbers, but only a numerical validation
was given. The new equations on the smooth domain, the so-called effective equations,
are calculated by the authors as a limit process, where the characteristic length ¢ tends
to zero. We will use the results from [32] and [33] in order to approximate our oscillating
system (1.2.1) in the next section.

1.3 Homogenization applied to the incompressible
steady state Navier-Stokes equation in
the viscous sublayer

In this section we briefly describe the process of homogenization applied to the incom-

pressible steady state Navier-Stokes equation. As mentioned before this process has been
studied in detail by Jager and Mikeli¢ in [33].

2y

Figure 1.3.8: Visualization of the process of homogenization.

In figure 1.3.8 we explain geometrically the process: The left picture shows the rough
channel filled with water. With red we mark the rough boundary, with yellow the solid
part of the microstructure and the green line indicates the linear profile of the Couette
flow given by the boundary condition U at the upper boundary and by zero on the top of
the microstructure. Doing homogenization we replace this complicated structure with a
simple one shown in the right picture where the red line represents the artificial smooth
boundary S on which the new boundary conditions which describe the influence of the
roughness have to be determined. It is clear that we will have no zero boundary condition
on S that means that our velocity profile differs from the left one. The new profile is
the yellow line and the green one represents vy, the Couette flow in P with the no-slip
condition on S. In the case where S is situated directly on the top of the microstructures
the two green lines from both figures coincides. How the new profile is constructed will
be explained in the next steps.

The Couette flow in P, satisfying the no-slip condition at X, is given by

0
S —0.
Ly’ p

If |U|Ly < 2v then v° is unique. This is true in our case, because Re = 1 < 2. The idea of
the authors was to extend the velocity v° to Q°\ P by zero and to construct the solution

8
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of (1.2.1) as a small perturbation to this Couette flow. They present a convergence result
and the error estimates for the approximation. Let us emphasize the important results:

Theorem 1.3.1. Let |U|Ly < 2v and let

v Ul 5
R() - _W L1b2
2

L2V_

Then for e < £ the problem (1.2.1) has a solution {v°,p°} € H?()* x H'(Q°), eb, -
periodic in ;7 and satisfying

||V(U6 — UO)||L2(QE)4 S R()\/E
Moreover,

b
H’U5| |L2(Qs\p)2 < \/—%R()E\/g

1
101320y < 27 v/baRoe
1p" = P°ll2p) < CVE.

Furthermore, the solution is C*° in P.

Proof. see [33].

Theorem 1.3.2. Let |U|Ly < vand e < C(by, by, L1)v11. Then v° € H2(¥), constructed
in Theorem 1.3.1, is a unique solution to (1.2.1) and p* € H*(£2) is unique up to a constant.

Proof. see [33].

The authors obtained the uniform a priori estimates for v, p* which we do not want to
mention here again. We recommend [32] and [33] to the reader. We just point out here
that they have found that Couette’s flow v° is an O(e?) approximation of v* in L2(P),
where:

= e (D) 20 e (Dhes 4 ) Him) + 0(E), (1:3.1)

and where d* corresponds to the counterflow generated by the boundary condition on the
artificial interface, and, restricted to S, an O(e) approximation of v¢|g in L*(S):

€ 0
3@1_%<1 0B

L) 40()

0o 0y 0y
1. (%? bl T
gvl__agn 1 (€)+O(5>-

After averaging these equations on S and neglecting higher order terms the familiar form
of the Navier slip condition is found:

8ueff

8!E2

= —eCy

To calculate the effective coefficient in this wall law, the Navier constant, the approaches
from [30] and [31] were followed.
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The solution {v°, p*} was constructed formally as an asymptotic expansion which is shown
in (1.3.1). For a better understanding we have to explain briefly the terms in this expan-
sion: the first one is the Couette flow, the second term is the first order boundary layer
correction to obtain the correct boundary condition on the artificial smooth boundary S.
This correction is a constant of order €. This means that the linear profile is shifted to the
right by this amount which gives the wrong boundary condition on the upper boundary
where the velocity U is prescribed. To correct this boundary condition we have to add
the third term which contains the counter flow and the resulting profile is again a linear
one with a lower origin.

In the homogenization process we are interested in the limit of this oscillating solution for
€ — 0. Here we will not specify in what kind of limit process we are interested, the details
can be found in [33] or in the literature ([3], [16], [20], [27]). The limit equations, the
so-called effective equations, are obtained due to this limit process where the asymptotic
expansion of v is inserted in the equations and the limit process is executed. It is clear
that in P, far away from the irregularities, the flow will not be influenced much. It will still
be governed by the incompressible steady state Navier-Stokes system. The presence of
the irregularities will only contribute to the effective boundary conditions at the artificial
smooth boundary S. This contribution is found exactly in the Navier slip condition, in
the coefficient Cy,, the so-called Navier constant. This constant is calculated using an
auxiliary boundary layer equation solved by {3, w"} which will be given in the next
section.

The effective Couette Navier flow is given by:
(

—vAut + (uitV)ut + Vpt = 0, in P
div e = 0, in P

ut = (U,0), on %y

1.3.2
eff dugt ( )
u; = —€Ob18—;2, on S
u = 0, on S
{ueft peft} x1 — periodic,

\

where P is the rectangle where the fluid flows, the viscous sublayer in two dimensions,
Y is the upper boundary, where the flow velocity reaches the value U, and S' is the lower
boundary of P, the so-called artificial smooth boundary, where the Navier slip condition
holds (see figure 1.3.8).

Proposition 1.3.3. If |U|Ly < 2v, there is a unique solution of (1.3.2):
ult = (U4 (B -D1-£00)7'0,0), z€P
pt = 0, zeP

Proof. see [33].

10
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Further we would like to replace the oscillating solution {v®,p®} by the effective one
{uef pef}. Therefore the following error estimates hold:

Corollary 1.3.4. Under the assumptions of theorem 1.3.1 we have
||V(U€ — UeH)HLl(p) S 05,

Vel — a2 py + [[v° — u|| ) < CE%

1.4 The shape optimization problem

In this thesis we want to analyze the effect of the microstructures on the drag. As
mentioned before, the drag consists of two parts, the drag form and the skin friction. We
focus our attention to the skin friction, and suppose that a uniform pressure gradient
is maintained in the longitudinal direction in the channel. Under these assumptions the
normalized tangential drag force on S is given by

1
Fe=— o -end
h Ll/synaelxl,

2;; + gizj) — pd;; is the total stress
tensor, consisting of the viscous shear stress, due to viscous forces in the fluid, and of the

fluid pressure p. The normalized formula for the drag is then

where n = e, is the normal vector to S and o;; = 5(

1 (10, 9 .
F = L—I/S§y<a—x2u1(a:1,0)+ axluz(:cl,O))dxl. (1.4.1)

In the last section we have seen that we are able to replace {v°, p*} by {u°f p°} in order
to reduce the calculation costs. With these effective parameters we take a look at the
so-called effective tangential drag force, given by

1 1 0 0 1 1 0
eff eff eff eff
F = — — P ,O -+ —3 ,O ) == [ ) 70 :
t s 21/( x2u1 (.’L’l ) m Uy (331 ) d.%'l s 21/ x2u1 (Z’l )

The last equation holds because we know that the Couette flow depends only on x5 and
not on ;.

Now we reached the main issue of this thesis which is to solve the following optimization
problem: Find the optimal rough structure v € G, where G is the set of all admissible
shapes of microstructures I'; which we will specify later, such that the effective tangential
drag force or the skin friction acting on the artificial smooth boundary S is minimized

) o 1 0 .
min, g ]:tﬁzz—Ll Sya—@ulﬂ(xl,())dxl,

and vt is calculated from the effective Navier-Stokes flow which models the flow in the
viscous sublayer of a turbulent flow:

11
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(
—vAuT + (V) + Vpf = 0, in P
divuf® = 0, in P

Ueﬂ = (Ul,O), on 22

Ausft
utt = _5Cbla_£27 on S
ut = 0, on S
{uett peff} x1 — periodic.

If we insert the solution of the effective Couette flow from Proposition 1.3.3 in the formula
for the effective tangential drag, we get

U

14
]_‘6ff L
¢ 2 Lg —erl

(1.4.2)
which means that our optimization problem depends only on the Navier constant C}; =
— [, |VB" (21,0)[°dz which is defined by the solution of the auxiliary boundary layer
problem 3" (see (1.4.3)). This boundary layer problem describes the concentration of the
changes of the velocity and pressure field around the interface S and their rapidly decay
with increasing distance from S.

Considering the tangential drag force corresponding to the effective velocity uf instead
of the oscillating skin friction, we make following approximation error:

Theorem 1.4.1. Let the skin friction F; be defined by (1.4.1). Then we have

U? v
e _ reff| < 2 1 '

Proof. see [33].

The formula (1.4.2) is of great importance to the theory of flows over rough surfaces. It
says that the presence of any periodic roughness diminishes the tangential drag, because
Chy is negative and thus {I — L%Cbl}_l < I %

Being able to solve the effective equations analytically, we can do a few simplifications
which have a significant impact on our optimization problem. As we see in (1.4.2), our
calculation are reduced to the determination of the so-called Navier constant Cy;. In
our resulting optimization problem we only need to solve the boundary layer equation, no
longer the Navier-Stokes equation, which is of less computational effort. The optimization
problem reads as follows:

min,eg Cp = — / . V3" (v)[*dy
VA

subject to the boundary layer equations

12
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—AB 4 VWP = 0, in ZTUY
div g = 0, in Z"

8”4 (,0) = 0, on S

(1.4.3)
[{V3M — wblf}eg]s (,0) = e, on S
g = 0, onT
\ {8 WPt} x1 — periodic,
where S = (0,1), ZT = (0,1) x (0,00), and Z" = Zt U SUY.
The detailed equations are:
—aa—g; Py, m9) — aa—gjgﬁ?l(xl,xg) + a%lwbl = 0, in ZTUY
—88—;% P2y, 20) — %ﬁgl(xl,xg) + a%lwbl = 0, in ZTUY
aizl 'fl(xl,xg)—i-a%z Pl(ry,25) = 0, in Z"
167'](-,0) = [63'](-,0) = 0, on S (1.4.4)
[% M(,0) = 1, on S
[8%2 Pl WP(-,0) = 0, on S
Pl=pl = 0 on .

Let V={z€ L} (Z")?:V,z € L*(Z")*; 2 =0 on T'; div, z = 0 in Z; 2 y; - periodic}.

loc
Using test functions from this space we get the following weak formulation of the problem:

/ VMV — / V3 on — / WP div g + / Wwlon =0 (1.4.5)
Z+ruy A(Z+uY) Z+uy a(Z+uY)

fz+uy vﬁblv@ = fZ+Uy wP! div w+ faz+<vﬁbl - wbl)mp + faf/(vﬁbl - Wbl)90€2
= — [{{VB = wPltes]e
= — [seap
(1.4.6)
We are working in the space of divergence free functions, that means that the integral

over the whole domain from the right hand side will disappear. For the weak formulation
of our problem we get:

lev: /bl VA"V = — / we; YoeV. (1.4.7)
Z S

13
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Proposition 1.4.2. Problem (1.4.7) has a unique solution " € V. Furthermore, there
exists w” € L% _(Z") such that (1.4.7) holds in the sense of distributions. Finally,

loc

{BPLWP e VNC®(ZTUY)? x C®(ZTUY).
Proof.

Using the Lax-Milgram lemma there is a unique S € V satisfying (1.4.7), using De

Rhams theorem we obtain wP € L2 _(ZP'), which is unique up to a constant, satisfying

(1.4.7). By the elliptic theory the pair {3”, WP} € VN C®(ZTUY)? x C*(ZTUY) is
the solution of the boundary layer equation (1.4.3).

]

In the next lemma we recall some properties of the solution of the boundary layer equation
(1.4.3) from [32] which we will need for further proofs.

Lemma 1.4.3. Any solution {3 wP'} of (1.4.3) satisfies

fol Yy, a)dyy = 0, vV a€ (0, +00);

fol WPl(yy,ar)dy;, = fol WPy, a0)dyy, Y ap > ag > 0; (148

I Bw,a)dyr = ) B (yas)dyr, Y ar > as > 0; a
Co= [y By0)dyr = — [V (y)*dy.

1.4.1 A rough surface has lower drag than a smooth one

In this subsection we will describe geometrically the Navier constant Cy,;, will specify
where to fix the position of the smooth boundary and will evaluate the drag force for the
rough and the smooth configuration. We will be able to prove that the drag is smaller for
the rough configuration.

First we do some further simplification of the cost function of our optimization problem
which was given as

v £
= L_2(1 — L_zcbl)_lU' (1.4.9)

Since the parameters v, Ly and U are fixed in the model, we focus our attention only on
the expression in the parenthesis. (1.4.9) is equivalent to

. F
min,eq Fy

max,cq 1— Licbl' (1.4.10)
2

The variable ¢ is the scaling parameter of the cell problem and remains fix for any height
h € [0,1] of the microstructure inside the cell. The real height of the microstructure
enters in the model through the product of the scaling parameter ¢ and the height of the
microstructure in the macroscopic cell h, eh. (1.4.10) is equivalent to

minveg Cbl' (1411)

For a fixed shape ~ of microstructure, which is given in one single cell of roughness because
of the periodicity, we analyze the effect of the height of this microstructure to the cost

14



1.4. THE SHAPE OPTIMIZATION PROBLEM

function. The results of the calculations for a fix €, ¢ = 1 x 10™* m, are listed in table
1.4.1. The lower the height h of the microstructure in the cell the lower the value for the
Navier constant or the higher its absolute value. The product ¢ - Cy; reaches its minimum
for the smooth situation, if we consider no microstructures on the shark skin. This means
that a thinner fish has lower drag which is well known.

Table 1.4.1: The Navier constant depends
linearly on the height of the microstructure.

h | e-Cy [1074 | |h-Cyl [1077]
0 [-1.0 0
0.11]-0.935 0.0935
0.2 | -0.850 0.17
0.3 | -0.7569 0.22707
0.4 | -0.661 0.2644
0.5 | -0.5638 0.2819
0.6 | -0.4659 0.2795
0.7 | -0.3675 0.257
0.8 | -0.2689 0.215
0.9 | -0.1700 0.153

We want to compare the rough structure with a smooth one. Therefore we have to fix
our artificial surface S in the model such that it is always clear where the effective drag is
evaluated. We will see later that it makes sense to fix S in the macroscopic model above the
microstructures in a distance twice their height. Independent from this, S will always be
located at y» = %2 = 0, where (y1,92) denote the macroscopic coordinates in the cell and
(1, x9) the microscopic coordinates in the realistic model. Removing the whole layer of
roughness, we obtain the smooth configuration without any riblets at y, = 2 = —1. This
smooth structure corresponds to a model for a thinner fish. In the simulations of (1.4.3)
we have to situate S always above the boundary I' such that the boundary conditions can
be fulfilled. Mathematically, it is not of interest to compare the rough configuration with
a smooth one which models a thinner or a thicker fish. We want to compare a smooth
surface, like a wing of an airplane, with the same surface with tiny holes, or the shark
skin, where riblets were formed during evolution, with a fish skin without riblets but the
same thickness.

The Navier constant, which is calculated by solving the boundary layer equation (1.4.3),
describes the distance of the origin of the effective Couette flow to the smooth surface
S. It was already shown in [33] that we have freedom in fixing S, a transposition of this
interface of order O(g) implies a perturbation in the solution of order O(e?). By changing

15
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the position of the smooth boundary the value of the Navier constant and the thickness of
the smooth channel P changes. To compare our two configurations, we need to evaluate
the effective drag, and therefore to measure the Navier constant C},, directly on the top
of the microstructures. In this case we are interested in the distance between the top of
the microstructure and the origin of the effective Couette flow which we will denote by
Cbz,ai

Lemma 1.4.4. Let h — 1 < a, where h is the height of the microstructure and let 3°%*
be the solution of the boundary layer problem (see (1.4.3)) with .S = [0, 1] x {0} replaced
by S =10,1] x {a}. Then

1
Chla = / B2 (yy, a)dy, = Cy — a.
0

This lemma is a generalization of Lemma 2 from ([32]), where the condition a > 0 was
posed. In our case, where the height of the microstructure does not reach our artificial
smooth boundary, the lemma is also valid for h — 1 < a < 0.

Proof. From Lemma 1.4.3 we know, that

1
Chia = / AP (g1, e)dyr, Ye>a>h—1
0
and respectively
1
Cin = / B0 (y1, d)dy:, Vd = 0.
0

We choose a region [0, 1] X [c1, ¢a], where h — 1 < ¢; < a < 0 < ¢, and integrate the first
component of the boundary layer equation (1.4.3) over it:

1 c2 82 bl 82 bl O bl
/ / [— o5 + 2 ]dyldyg =0
0 c1 ay

Oyt O3 1
= /2 [—%ﬂf(l, y2) + aaif(()? yz)] dys
B L R S L S
+ [ G - 0w =0
The first and the third integral of the equation above vanish because of the periodicity.

The jump of %ig(yl, y2) at the interface S is given by the boundary layer equation by 1.

So that we can conclude that
0

1
8_y2/0 [ﬁ]fl(yl,@) — B y1,e1)|= —1,

which is equivalent with

0

1
_/ ﬁ?l(ylay2>dyl:_1 for h/—lSCl < Yo SO’
0y Jo

16



1.4. THE SHAPE OPTIMIZATION PROBLEM

because for 0 < y, < ¢ the integral vanishes. Now we are able to set
1
/ By, y0)dyy = —ya + C for h—1 < ¢; <y, < 0.
0

The constant C we calculate using the definition of CY, as fol B (yy, 0)dy,. Tt follows that

1
/ 5?1(91, yz)dyl = —ys+ Cy
0
and

/5 Y1, a)dy; = —a + Chy.

We now take a look at the variational equation of gPh* — b

1
/ V(3™ — Ve = — / e1(y1,a) — ¢1(y1,0)
Zbl 0

and testing with ¢ = 3°%* — 3! we obtain

[ v -] = - / (37 (1, @) = B n, @) = BE (11, 0) + 57 (11, 0))
Zbl 0

/ —B (y1, ) = B (y1,0) = —(a = Cuy + i) = —a. (1.4.12)
On the other hand

2
[ @)= [ v@ps [ v@ oo [ v

To calculate the last integral we use the variational formulation for 3b42:

vy = - [ e

Zbl Sa,

Testing with ¢ = 8" we obtain
vty bl = / B (y1,a) = a — Cy. (1.4.13)
Zbl

From (1.4.12) and (1.4.13) we obtain
_Cbl,a — Cbl — 2(& — Cbl) = —q < Cbl,a = Obl —a.

O

In our boundary layer cell we fixed the top of the admissible shapes at yo = —0.5 and
the artificial smooth boundary S at y, = 0. To evaluate the drag directly on the top of
the microstructures we have to translate S by 0.5 downwards. For the comparison of the
rough structure with the smooth one we obtain the following theorem:

17
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Theorem 1.4.5. The effective tangential drag force measured directly on the tip of the
microstructures is given by

f-eff,a _ Z U
¢ 2 L2 — 50]31‘

and the tangential drag for the smooth surface in this case is given by

U

f-smooth — z '
’ 2 Ly +0.5e

Proof. The effective velocity u® is a linear function in x5 and its derivative is constant.
If we have to evaluate the integral for the effective tangential drag for different positions
of S, we have to consider the change in L,. In this case Ly has to be replaced by Ls + %6:

-1 v € 1711
o [1——5 C } Uz—[l——c +] U
¢ LQ—F%E LQ‘F%E b, L2+%€ LQ—F%E( bl 2>
fFa v[ 3 ]1
<= = —1|1-—C U.

For the smooth plate the same considerations hold: by moving the interface downwards
by %6 we have to add this amount to the boundary layer thickness Lo, so we obtain

U
fsmooth — v ]
¢ Lo+ 0.5¢

]

The next theorem predicts that a rough surface has a smaller drag and that it is useful
to look at a shape optimization problem to minimize it.

Theorem 1.4.6. If we compare the smooth surface with the same surface where holes
are drilled in, we can say that

eff smooth
Fo < F )

Proof.
-1 vU
Feffa _ i[l—ic ] U < Fomeoth — VY
¢ L, L, ™ i Lo + 0.5¢
1 1 1
— — —¢(Cy+=) >0,

<
Ly—eCu Lo+ ie 2

which is true because the parenthesis is always negative.
O

For further calculations we keep the height of the microstructure A = 0.5 fix and minimize
only the Navier constant C},; where € remains the scaling parameter not to confuse with
the height of the microstructure.

18



1.4. THE SHAPE OPTIMIZATION PROBLEM

1.4.2 Optimal spacing

In this subsection we discuss the effect of spacing of the microstrucures on the skin friction.
Therefore we keep the shape and the height of the microstructure fix and compare the
skin friction for different spacing. The period of our cell model is fixed by one. We obtain
different spacing keeping the height constant using different scaling factors e (see figure
1.4.11). We have to pay attention to the fact that scaling with a different factor means
that also the position of our artificial smooth boundary changes. To obtain comparable
numbers for the Navier constant C},; we have to evaluate them at the same position using
the formula from lemma 1.4.4

Ch = Cbl,a = Cp — a,

where (), is the Navier constant evaluated at the position a, where h — 1 < a, and Cy,
is the Navier constant evaluated at the position zero (y = 0) on the cell model.

We compare the geometries given in figure 1.4.9. Here we have the microscopic represen-
tation of the rough bottom of the channel to visualize the different spacing. Here we use
the same function to represent B° but with different spacing coefficient 7. The function
is:

3 2 3T
= 1074 [sin(7= - 10z + =) + 1.
1 (1 3 LE )+
The values for the Navier constants Cy; and C; are listed in table 1.4.2. We want to
compare the skin friction on the same position for all geometries, that means we have to
compare the values in the last column.

Table 1.4.2: The Navier constant for
different spacing (shape 1).

S N ébl Cbl

0.75 x 107 | 16 | -0.519 | -0.519
1.5 x 107* | 16 | -0.5353 | -0.5353
3x 107" |16 | -0.5638 | -0.5638
6.0 x 107* | 32 | -0.8043 | -0.304
9.0 x 107* | 48 | -0.88 -0.2133

In figures 1.4.10 — 1.4.13 we see the first component of the boundary layer velocity but
only in the cell of roughness (—1,0) x (0, 1), the lower part of our macroscopic cell model
which additionally consists of the domain Z; = (0, 1) x (0, 1) where the first component of
the solution of the boundary layer equation stabilizes to a constant value. The coloured
region represents the domain Y, the part of the cell of roughness which is filled with fluid.
The domains presented here are visualized with the different scaling used to obtain the
different spacing of the microstructures with constant heights.
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Figure 1.4.9: Riblets of the same height and shape
with period a) s = 0.75 x 107™*m b) s = 1.5 x 10™*m
c)s=3x10""md)s=6x10""me)s=9x10"*m.
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Figure 1.4.10: Riblets given by v(z) = }lsz’n(ﬂm + 37“) — % with spacing
a) T =8 and s = 0.75 x 107*m, b) 7 = 4 and s = 1.5 x 107™*m and
c) T =2 and s = 3 x 107*m. The colours represent the velocity in

x-direction in the range 0 — 0.6.

Figure 1.4.11: Riblets given by a) y(z) = 1sin(2rz+2) — 2 with spacing

s =3x10""m, b) y(z) = gsin(2mz + ) — L with spacing 6 x 10~*m

and c) v(z) = Ssin(2rz + 3) — 2 with spacing s = 9 x 107*m. The

colours represent the velocity in x-direction in the range 0 — 0.6.
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We analyze this behavior also with a different shape of microstructure which we obtained
in our optimization. Here the microscopic representation is no longer the same shape
function. We want to see the effect of the spacing if the shape of the thin peak is kept
constant. This means that the shape function of the thin peak is the same but the distance
between the peaks get wider in each calculation. The representation of the macroscopic
shape function v is more difficult because we have to calculate the right values for the
different scaling to keep the height of the microscopic peak fix. The numerical values for
the transformed shapes v for each cell problem are given in table 1.4.3. The lines in the
table mark the end of one cell. The function is then the interpolation of these points with
cubic splines. The results of the calculations are shown in figures 1.4.12 and 1.4.13, where
we also observe that the best structure is the one where the spacing is the double height.

Figure 1.4.12: Riblets given by a cubic spline interpolation of the nume-
rical values listed in table 1.4.3 a) shape a with s = 1.5x 107*m, b) shape
b with s = 3 x 107*m. The colours represent the velocity in z-direction
i the range 0 — 0.6.

Figure 1.4.13: Riblets given by a cubic spline interpolation of the nume-
rical values listed in table 1.4.3 a) shape b with s = 3 x 10~*m, b) shape
c with s = 4.5 x 107*m, ¢) shape d with s = 6 x 10~*m, d) shape e with
s = 9 x 107*m. The colours represent the velocity in x-direction in the
range 0 — 0.6.
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Table 1.4.3: The numerical values for the riblets tested
and scaled to the cell problem.

shape a | shape b | shape ¢ | shape d | shape e
N | (=) V(z) V(z) V(z) V(z)
0 -1.0 -1.0 -1.0 -1.0 -1.0
1 -0.98 -1.0 -1.0
2 -0.91 -1.0 -1.0
3 -0.5 -1.0 -1.0
4 -0.91 -0.98 -1.0
5 -0.98 -0.95 -1.0
6 -1.0 -0.5 -1.0
7 -0.98 -0.95 -0.997
8 -0.91 -0.98 -0.94
9 -0.5 -1.0 -0.66 -1.0
10 | -0.91 -1.0 -0.94 -0.99
11| -0.98 -1.0 -0.997 | -0.955
12 -1.0 -1.0 -1.0 -0.75
13| -0.98 -1.0 -1.0 -0.955
14 | -0.91 -1.0 -1.0 -0.99
15 -0.5 -1.0 -1.0 -1.0 -1.0
16 | -0.91 -0.98 -1.0 -0.993
17| -0.98 -0.91 -1.0 -0.983
18] -1.0 -0.5 ~-1.0 -0.833
19| -0.98 -0.91 -0.983
20 | -0.91 -0.98 -0.993
21 -0.5 -1.0 -1.0
22 | -091 -1.0
23 | -0.98 -1.0
24 -1.0 -1.0 ~-1.0
25 | -0.98 -1.0
26 | -0.91 -1.0
27 -0.5 -1.0
28 | -0.91 -0.98
29 | -0.98 -0.91
30| -1.0 -0.5
31| -0.98 -0.91
32| -0.91 -0.98
33 -0.5 -1.0
34| -0.91 -1.0
35| -0.98 -1.0
36 -1.0 -1.0 -1.0
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Table 1.4.4: The Navier constant for
different spacing (shape 2).

S N | Cy Ch

1.5x 1074 | 12| -0.54 | -0.54
3.0x107* [ 12 | -0.58 | -0.58
4.5 x 107 | 18 | -0.738 | -0.488
6.0 x 107* | 24 | -0.828 | -0.328
9.0 x 107* | 36 | -0.908 | -0.24

The calculated Navier constants ém are listed in table 1.4.4. To be able to compare them
we have to evaluate them again at the same position. The transformed Navier constants
Ch, are listed in the last column.

Now we want to analyze the dependence of the Navier constants for both shapes shown
in the figures above on the spacing. The values are evaluated in the next figure. We see
that we have an optimal situation for both shapes: the Navier constants are minimal for
the case when the heights of the riblets are half of their spacing.

S+
0 2 4 ] 8 10 12
7. AP SO SRR PR SO AP
o1
02]
03]
0.4
0. 55

Cblg

Figure 1.4.14: The cost function with respect
to the spacing of shape 1 and shape 2.

The results are again comparable with the experiments by Bechert and Walsh (see [11],[58]):
Closely spaced riblets work better as drag reducing surfaces. After evaluating the values
for shapes obtained by the optimization process (see figure 1.4.12 and 1.4.13) we conclude
that very widely spaced riblets do not reduce the skin friction so much. And if we look
at the total drag which was evaluated in the experiments, we see that they even increase
it. This is because if the riblets are spaced so widely they dampen the cross flow less
and do not act as a cross flow shield for their neighbors anymore. The cross flow in the
valley of isolated riblets is stronger. This phenomenon plays a more important role when
the riblets reach the turbulent boundary layer, the buffer layer. There the cross flow is
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much stronger and thus the riblets would act much more as drag reducing devices than in
the viscous sublayer. We will see that with this restriction of riblets being in the viscous
sublayer the contribution to drag reduction will not be as high as tested for higher riblets.
Concerning the spacing we obtain an optimality for the case where the height of the riblet
is half its spacing. This conclusion stays in agreement with experimental results obtained
by Bechert and co-workers in [9] and with the physiognomy of the shark skin analyzed
by Reif and Dinkelacker in [53]. They observed that the height of the microstructures on
fast swimming sharks is between one half and two third of their spacing. In our situation
the skin friction tends to zero for larger spacing of the riblets.
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Chapter 2

Optimal Design Problem

2.1 Setting of the shape optimization problem

Our shape optimization problem is a typical one in fluid mechanics. It consists of finding
the profile of a microstructure on the surface of a submerged swimming body such that
the tangential drag is minimized. This means in our case that the cost functional is
the effective tangential friction and the boundary layer equations are the state problem.
With all the simplifications from the last section we come to the following minimization

problem:

Find the domain which minimizes the skin friction J(Z", ") with respect to a part of
its boundary I' € §Z' subject to the constant height of the microstructure h:

minee J(Z%, %) =% = — /

bl

subject to

SAWCALE SV

div, 4"

(8”4 (0)

[{V,8" = w'T}es] 4 (-,0)
g

{6% ™}

\

V™ (y)[*dy
0, in ZtUY
0, in Zy
0, on S
er, on S
0, on I
periodic,

where G = {7:[0,1] — [~1, -0.5] ]7 e C2([0,1]), 7(0) = (1) = —1,

The solution v* € G satisfies

J(v, B7(v) < J(y, B Wy € G
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A fundamental property, ensuring the existence of optimal solutions, is the continuous
dependence of the solutions of the state problem on the design variables. After imposing
appropriate continuity or lower semi-continuity assumptions on the cost functional we will
obtain an existence result:

Theorem 2.1.1. Assuming

(B1) compactness of G = {(+, 8(1)), 7 € G, B(7) € V}:

for any sequence (7, 5 (7,)), where 7, € G and 3"(v,,) € V is the solution of the bound-
ary layer problem (1.4.7) with boundary =,, there exists a subsequence (7,,, 3°(7,,)) and
an element (v, 3”'(7)) € G such that

Y, — 7V, for k — oo

ﬁbl(’ynk) - ﬁbl(’Y)a for k — oo

and

(B2) lower semi-continuity of J, i.e.

Yo, — 7, fork— o0
k . bl bl
= lm J(y, B, ) = J(v,8).

5101(%%) — B°Y(y), fork — oo

Then, (2.1.1) has at least one solution.

Hence it is sufficient for our optimization problem to have a solution, if the conditions (B1)
and (B2) for the solution of the boundary layer equation and respectively for our cost func-
tion are fulfilled. Before checking these conditions, we have to specify the parametrization
of the boundary and the way how our sequence of shapes is constructed.

2.2 Sensitivity Analysis

To solve an optimization problem two properties are important for the solution of the
state problem: As we have seen for the existence of an optimal solution, the continuous
dependence to the design variables is one of these properties. The second one is the differ-
entiability with respect to the design and control variables. The discipline in optimization
which deals with such information is sensitivity analysis. Sensitivities tell what changes
are effected in the state, when the control variables or the design parameters are changed.
From results obtained concerning the sensitivities we are able to derive the necessary op-
timality conditions and we are able to describe how to change the geometry to obtain a
minimizing sequence of domains.

In our work we describe the change in geometry as a normal variation of the domain.
Let I' be the part of the boundary of the domain 2 which describes the shape of the
microstructures and I'y respectively the part of the boundary of the deformed domain
denoted by Q, with I'y = {s + Aa(s)n(s)| s € I'}. The exact characterization of the
functions I'(z) and a(x) will be given in the next subsection.
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2.2.1 Parametrization

In this section we describe the parametrization of the function which describes the shape
of the microstructures on the surface of the submerged body. In the microscopic model
the rough boundary was given by B¢ in the coordinates (z1,z3), which consists of the
periodically distribution of a hump I'(z;). In the macroscopic model this hump cor-
responds to I'(y;) with ¢y = % and y; € [0,1]. We choose I'(y;) from the class of
continuous functions with the first and second derivative beeing continuous too, I'(y;) €
C?([0,1]). The parametrized function will be the interpolated function with cubic splines,

v e 8%P00,1] = {p e C?0,1] : p|;, € Ps(I})}, i = 0,..., N, where N is the total number
of points y¢ which divide the interval [0,1] in N — 1 intervals I; = [y}, %], i = 1,.., N
of length H = % Let ¢; be the basis of the space SS’Q) [0,1] given by the condition

©i(y1) = 0;;. The parametrized function + can be described in the following way:

N

V) = TWhei(n). (2.2.1)

1=0

For this kind of parametrization the following error estimate holds:

1
maxy, cjoq] [I'(y1) — v(y1)| < §H2 max,, (0,1 [T® (y1)]-

Let us consider an example:

3
[(y1) = 0.25sin(27my; + g) — 0.75.

For this case, the fourth derivative exists and is given by I'(y;) = 47 sin(2my; + 37”)
The error is then max,, e, [T'(y1) — v(y1)| < 16.23H*.

With this parametrization we now want to analyze the change in geometry. We already
mentioned that our boundary I' should change in the normal direction to T'y = {s +
Aa(s)n(s)|s € T}, where a(s) € C*(T') to guarantee the smoothness of the deformed
boundary. For the parametrized function it means:

Yaly1) = (Y1) + Aa(y(y))n(v(y1)).

In computations we always use functions which belong to a finite dimensional space which
approximates our continuous space instead of continuous functions. This finite space is
spanned by functions &i,...,&y, where N is the dimension of the finite space. Then
the coefficients of the linear combination of {&,}2_, form a vector of the discrete design
variables «;:

a(s) = Z a;&i(s).

For our model of the periodic rough boundary layer we have to keep the two endpoints
of 7(y1) and the height h of the roughness fix. We will restrict our model to geometries
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where the maximal height of the roughness is in the middle of the interval. The change
in geometry looks as follows:

N N
W) =Y Teimn) + A aibi(s)ni,  ag = ay = ay =0,
=0 =0

where n; are the discrete values of the normal on I'. Because a(s) € C?(T") we choose
the same basis functions for « as for v, characterized by ¢;(s;) = d;;. The new boundary
~a(y1) is then given by

N

N(y) = Z<F(yi)90¢(y1) + )\aigoi(v(yﬂ)ni),

1=0

with ©;(v(y1)) = v(v1) + ¢i(y1). Tt follows, that

N N
M) = (F(Z/li) + )\Oémz') pily1) + A D ay(y)ni.
i=0 i=0
Using the representation of y(y;) we get
N A N
w(y) = Z [F(yi) (1 + A Z aknk> +)\am,~] ©i(y1). (2.2.2)
i=0 k=0

Comparing this result with equation (2.2.1) we see that, as expected, our new boundary
is also a spline function which can be represented with the same basis functions ¢;(x).
The new coefficients are:

N
Ta(y1) = T(y1) <1 +AY ak”k) +Aa;n;.

k=0

2.2.2 Sensitivity

In this subsection we will present the main result obtained for the variation of the cost
function:

Theorem 2.2.1. If " € H%(Z") and if the geometry of the domain Z" changes only on
one part of the boundary, denoted by T', in the normal direction by a(s), s € T', a € C*(T)
and small, then the change in the cost function is

6J:/O‘(S)|3nﬁbl(8)l2d8+0(||04||02[0,1])7
r

where 9,4 is the derivative of the speed distribution, the weak solution of the boundary
layer equation (1.4.3), along the outward normal n to I
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Before proving this theorem we have to specify the variation of the cost function in the
following way:

The cost function of our optimization problem is given by
min,eqg J(Z") = —/ IV 3M2.
zbl
The change in the cost function is then
57 = 7@ - g2 = [ e [,
bl bl

where 3" is the solution of the boundary layer problem in the domain Z™ = Z+ U
S U (Y = boes) and Bvbl is the solution of the boundary layer problem in the domain
7" = Z+ U S U (Y — byey), where Y = {y € Z| by > o > max{0,v(y1)}}, Y = {y €
Z| by > yo > max{0,¥(y1)}} and Y(y1) = v(y1) + als)n(s).

We can extend % in the domain Z\ (2% 1 ZP1) and B in 2P\ (Z°' 0 ZP) by zero (see
[37]). Further we denote the difference of the two solutions by 53P = ﬁﬁ/bl 3P, where
56" € Z" U ZP, and the difference of the two domains Z”, ZP by 62 = ZP\ (Zb
Z0) — ZP\ (7 A ZP), which is a very small domain.

Lemma 2.2.2. 63" is the solution of the following system:

/

—Ay5ﬁbl+vy5wbl — 0, in Z*UY

div, 68" = 0, in Z"

68" (0) = 0, on S
[{V,66" — 6P I}es] ( (0) = 0, on S (2.2.3)

i = —a0,B", on T

{06, 0w} (1) — periodic,

Proof.

The only non-obvious relation is the boundary condition on (v — byes). We get it using
the Taylor expansion for P =0 on I':

B (s + an) = B¥(s) + ad,B(s) + o(|a]) =0, seT

jﬁbl}r: _O‘anévm‘r'

For the difference of the two solutions we then get
6ﬁbl|r: 6b1|r_ﬁbl‘rz _O‘anﬁbllr'
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The last equation is fulfilled, because anévbl(m)‘r is weakly continuous in « (see Lemma
2.2.3).

[l
Proof. (of the theorem)

With these assumptions we can transform the variation of the object function in the
following way:

6T = J(ZY) = T(2%) = [l VAP — [ V(5" + 56
= S VB = [ VB = [ VOB =2 [ VB Vs
= [fzu VP — [ VBY } ~2 [ VAYVEAY + 0(627, 53™)
= — [ VB2 =2 [, VAYVEY + o(6 27, 56).

Now we calculate the two terms in the above equation separately.

To the first term we apply a change in coordinates. Let ¢ be the continuous function
which maps (y1,y2) € 62" into (s,t(s)) € T x [0,a(s)]: é(x) = s + t(s)n(s), where
t € [0, a(s)] is the coordinate in the normal direction. Then,

a(s)
MLy Pdy = Plis, t(s) 25 (s, t(s 5 2.
|V @R = [ [ ea s )Pl o aras, 24

where j(s,t(s)) is the determinant of the Jacobian J(s,t(s)) of the map ¢, which in this
case is 1 + O(k), where k is the curvature of the boundary I' which has to be in C?(0, 1])
to assure the existence of the normal field. Because I' is compact and connected, V3 is
continuous and [j(s,t(s))| > 0, we can apply the mean value theorem of the integration
theory to (2.2.5). That means, it exists an t*(s) € [0, a(s)] such that

a(s) a(s)
/F / V8 (5, (5)) P (s, 8(s)) | deds = / VB (5, () / (s, £(s))|dtds.

All admissible a are small, so that we can write the Taylor expansion for V3P (s,t*(s)):

[ IV B8P (s, t%(s))]? fa(s 7 (s,t(s))|dtds = [.|V(s,0)[ fa(s 17 (s, t(s))|dtds

e [0V s, 1P| () J5 s, 1) e + ..

Inserting the determinant of the Jacobian of our mapping ¢ we get

a(s)
blj2 bl |2 0) — bl |2 5). 2.
/ VA —// V2 4 of]al|c2) /Falanﬁ 2t o(llallcs).  (22.5)

For the second term we use the corresponding boundary layer equation which in this case
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2.2. SENSITIVITY ANALYSIS

is the Stokes equation which is self-adjoint:
bel VﬁblV(Sﬂbl — bel (—Aﬂbl)éﬁbl + faZbl (8nﬂbl)5ﬁbl
— bel o (vwbl)éﬂbl + fazbl (8nﬁb1>(5ﬁbl

— bel u)blv . (Sﬁbl _ faZbl n - wbl . (Sﬁbl + fazbl(anﬁbl)éﬁbl

(2.2.6)
_ faZbl(anﬁbl _ wbln)(Sﬂbl
= Jp(0.8" = wPn)(=a(0,5™))
= —fFa|8nﬁbl|2.
The last equation is true because
n-0,8" =0onT,
and we get this using
aﬁbl aﬁbl
0= di bl _ 1 2 )
IVB 8x1 + 8:132
We rotate the coordinate system such that we have a decomposition of 4" in the normal

86 . The tangential part lies along I" where B = 0.

and tangential coordinates: 88*6" +
It follows that n - 9,3 =0 on I

Adding the two integrals (2.2.5) and (2.2.6) the variation of our object function can be
written as

57 = / a0, + oflallce) (22.7)

which completes our proof.
O

In the proof of the previous lemma we used the weakly continuity of &LEEI(:C) ‘r in a.. For
completeness we will give here the proof of this statement:

Lemma 2.2.3. Let 8! (y1,y2) be the solution of the boundary layer equation for the
domain ZP' which is obtained by moving the boundary T' of Z" in the normal direction

by an admissible function o. Then V3! (z)| . is weakly continuous in a.

Ir

Proof. From the definition of derivatives in the distribution sense it suffices to show that

5bl(y1, Y2) converges weakly to B (y1, y2) when o — 0 or 4 — ~ uniformly in [0,1]. Let

Bl eV = {z € LIOC(Z'Dl)2 :Vyz € LQ(EEI)‘*; z=0onT;div,z=0in 70 y1 - periodic}

be the solution of

- VBVMVQO = — / pe; Vo e V. (2.2.8)
S

Zbl

Let B‘i{and ¢ be the extension of 8 and ¢ by zero in Z"\ (Z blﬂggl) (see [37]). Replacing
¢ by (Plin (2.2.9) we obtain

/ |V5vb1’2 = —/@61
Zblyzbl S
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which implies (see [37]) that {Bvbl} is bounded in H}(Z" U 251). As every bounded set is

weakly compact, we can extract a subsequence {3P'} which converges weakly to 3. It
remains to prove that 4 is a solution of

VEIVp = — / ey Vo € HY)(ZM). (2.2.9)
S

Zbl

Suppose, it is not. Then there exists an ¢ > 0 and a ¢ € H}(ZM) with ¢| = 0 and
r
divp = 0 in Z", such that

> e (2.2.10)

VPV + / wey
S

‘ Zbl

As seen before, we can extend 8 and ¢ in ZP! \ (ZP'n ZM) by zero. Then, (2.2.10) is

equivalent to
€
[ e [ a2
Zblyzbl S 2

From the weak convergence of {@vbl} to B° in H}(ZP'U 2‘31) we obtain a contradiction to
the above inequality.

O

With this proof we also checked condition (B1) from theorem 2.1.1, the continuous de-
pendence of the solution of the state problem on the design variable. Imposing the lower
semicontinuity condition on our cost function, we arrive to an existence result of our
optimization problem.

2.2.3 Optimality Condition

On the basis of the previous results we can now formulate necessary optimality conditions
satisfied by optimal solutions. Their interpretation may reveal some important properties
and may give a hint how to choose the geometry deformation.

Let
O = {Qopen set in R*: Q= Z" with the part of the boundary v € G}.

Theorem 2.2.4. If the solution of (2.1.1) is smooth, it satisfies the first order necessary
condition
10,8 = const on T.

Proof. If the domain 2 € O, with I being the part of the boundary which describes
the shape of the roughness is optimal, then 6.7 = 0 holds for every admissible a. Thus,
inserting the results of the previous theorem, and applying the well known Lagrange
multiplier rule, there exists a constant A (Lagrange multiplier) such that

10,8”?=X on T.

34



2.2. SENSITIVITY ANALYSIS

We say that « is admissible, if

- / ol = oo c2).

This is the condition by which 2 € O implies 2, € O.

2.2.4 Boundary modification

In this subsection we will propose two possibilities of changing the boundary iteratively.
We start with a given profile with smooth boundary I'. As explained before we change
the boundary in its normal direction by an admissible function «(s), s € I'. The main
question is how to choose «(s) such that after a few iterations we reach the optimality
condition as close as possible in our calculations.

1st Method: Special choice of a:

The authors in [41], [46], [48] and [47] consider the optimization of the shape of a body
(e.g. wing of an airplane) to reduce drag. To minimize the drag in absence of lift and
gravity, they minimize the energy of the system for Stokes and Navier-Stokes flow with
the restriction that the volume of the body should be kept fix. Our optimality condition
obtained in the previous subsection coincides with the optimality conditions in their case.
They proposed to choose the function « to be the factor under the integral in the change
of the cost function (see 2.2.7) minus its mean value and multiplied by a constant to fulfill
the constraint. In our case we choose «a(s) as

0 if s ={0;0.5;1}
afs) = (2.2.11)
—}8,151’1(3)‘2 else.

Using this rule for the modification of our domain we restrict the deformation in one
direction because }&Lﬁbl(s)’Q > 0. This means our microstructure can not grow, it can
only shrink. Of course it will be interesting to answer the question, if the optimal mi-
crostructure will be the one with the smallest possible volume or not. We will answer this
question later, where we will present the numerical results.
Lemma 2.2.5. Choosing «(s) as in (2.2.11) and moving the boundary I" from an initial
profile to

'y ={s+ Xa(s)n(s)| s € '},
we obtain a solution of our optimization problem (2.1.1).

Proof. The modified profile is a solution of our minimization problem (2.1.1), if

I - T(I,5) = /Foz|8nﬁbl|2 - —/F\(Mbll‘* <0
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2nd Method: Sensitivity information method

To be more general we want to allow a change in both directions of the boundary I'" to
let one part of the boundary shrink and another part, if necessary, grow. This property
is not included in the first method, since a(s) = —|8nﬁbl(s)}2 < 0Vs €T, and the so
constructed new boundary is obtained by shrinking the original one.

In the subsection 2.2.2, we calculated the Gateau derivative of the cost function with
respect to the boundary. Our second ansatz consists of the information coming from
these sensitivities. First of all let us discretize our continuous design parameter «(s):

s) = Z ppr(s)

where a4, are now the N + 1 discrete design variables and ¢ (s) the N + 1 basis functions
for our admissible deformation. We choose the discrete design variables as follows:

g = /F ()]0 6" (s)|*ds (2.2.12)

Lemma 2.2.6. Choosing «(s) as in (2.2.12) and moving the boundary I' from an initial
profile to

I'y={s+ Xa(s)n(s)| s € '},
we obtain a solution of our optimization problem (2.1.1).

Proof. We insert the chosen deformation function «(s) in the formula for the change of
the cost function:

J@,N -TT,8) = [ alo.s
= fr(ZkO‘k‘Pk >|anﬁ |d$
Jo S (e o1(9)]0u8(5) ds o4(5) ) |05(5) ds

Let us consider the sign of this expression: ’(f)nﬂ ’ ds > 0Vs e€I'. The integral can only

be negative if the basis functions where |0,,3(s )|2 is very big are negative, @(s) < 0, this
is again the situation of shrinking domains.

[
We learn that for a growing microstructure we obtain a growing cost function and for a
shrinking microstructure a shrinking cost function. For the change in geometry we can

choose any smooth small function o which exploits the information from the sensitivity
so that we can handle the optimization problem with a gradient based method.
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2.3 Sensitivity-based optimization method

Most of the problems resulting from shape optimization in fluid mechanics are not possible
to be solved with the well known one-shot approach, where the coupled optimality system
is solved through computational methods and the optimal states and controls are obtained
without solving an optimization iteration. Instead, optimization algorithms can be used
to determine the optimal states and controls. Many optimization algorithms require the
gradient or at least an approximation of the gradient of the functional which has to be
minimized with respect to the controls or design variables. We will use sensitivities to
help to determine the gradient of the functional. Alternatively it is possible to use the
solution of an adjoint system to determine the gradient of the functional.

2.3.1 The gradient of the cost functional through sensitivities

We consider following minimization method

min.eq J (3 (7),7),

where 8P!() is the solution of our state problem, the boundary layer equation. To de-
termine the gradient of the functional for the optimization algorithm, we can apply the
chain rule:

DJ| 9g | dp*| oJ

Dy lyi 0pP lyi dy 1yi 0 Oy 1y
where (-) o denotes the evaluation at the current boundary inside the iteration. Here,
0T

35 and %Z are usually easy to determine, where the sensitivity of the solution of the
state equation has to be specified, mostly through a difference quotient approximation:

d ﬁbl

& (7' () (7' (s) = 7' (s) = B (4" () = B”(7'(5)) for small o

To calculate this sensitivity we have to run the code for the state equation twice with
different inputs.

Due to our calculations in the previous section we are able to calculate the gradient for the
optimization routine more elegant: we use the difference quotient approximation directly
to the cost function. Then we have

%(vi(S))(vi_l(S) =7 (s) = T(B"(v71()), 77 (8)) = T(B”(7'(5)),7'(s)) for small o

And now we have the big advantage to insert the analytical expression for the variation
of the cost function in this formula and obtain:

DJ

—4ﬂ@z/ﬂwmummmammmm. (2.3.1)
D~ r
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2.3.2 Optimization method: steepest descent

After we know how the gradient of the functional looks like, we can choose our favorite
optimization method to compute the new shape for the next iteration. We choose a
gradient method, the steepest descent with line search to calculate an optimal step size.

The basis of gradient methods is the Taylor expansion of the cost function, which is
continuously differentiable:

J:HY(0,1]) = R
J(y) = J(T,5"),
which is
Ty +6v) =T () + T ()67 + ol||6v]]) Yoy € H'([0,1]),

where J' : H' — R is a linear operator. From the sensitivity analysis, we know that in
our case

< grad,J,0y >=J'a = /a|8nﬁ\2 Vo admissible .
r
By choosing «a(s), s € I', as proposed in the last section, the sequence defined by:
" = 4" 4 a(s)n(s) (2.3.2)

makes J decreasing. Following well known result holds

Theorem 2.3.1. If 7 is continuous differentiable, bounded from below and infinite at
infinity, then all accumulation points 7* of 4™ generated by (2.3.2) satisfy

grad, J (v") = 0.
In our case J is bounded from below because the dissipated energy is bounded and
bounded from above by zero. This property is more restrictive than the one needed in the

theorem. So that we are sure that every accumulation point will be a stationary point.
The optimization problem reads as follows:

i e oy~ [ (198 (233)
Z

subject to the variational formulation of the boundary layer equation:

1
VAPV = —/ erp Yo e V.
0

Zbl

To apply the gradient method we need to formulate an unconstrained optimization prob-
lem. Therefore we have to construct the Lagrangian of (2.3.3):

1
L(%ﬁbl,@)z—/ IVﬁbl\Q—/ Vﬁblvso—/ eryp
Zbl Zbl 0

and (2.3.3) is equivalent to the min-max problem

min,, go {maX@ L(y, 8™, go)} (2.3.4)
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From the theorem of min-max, we know that at the solution {3, ¢} of the min-max:

T (v, %) = L., (v, 8", ).
The pair {3, ¢} is a saddle point of L, if:

(7, B + A3, 90)’ =

= limy %(L(% B+ NG, o) — L(y, B, @))

= lima § (= Sy IV +ABNE = [ V(8 + ATV - [ erp
+ [ VB2 + [0 VBV + [ 6190>

= limy %(— L VB2 = X2 [0 VB2 = 2 [ VAPV — [, VAPV
N S VIV 4 [ VAL + [0 V5" V)

— limy_g A( A2 [ L VB ) —2 [, VAIVEY — [ VIV

)

— 2| vpglvpty [ Vhlve=0 vitleV (2.3.5)

Zbl Zbl

L, 8% +28)| =

= lim>\—>0 %(L(’% ﬁbl, Y+ /\QE) - L<’y7 ﬁbl) §0)>
= limy_o %<_ fzbl |Vﬁbl|2 - fzbl Vﬁblv<90 + >\<,Z>) - fol €1 (90 + >\95)
+ bel ‘V6b1|2 + fzbl Vﬁblvgp + f()l 6190)
= limy—o (= fu VOV = A [ VAVE = A [ e+ [ VAV
= 0
1
= V'V @ +/ eip=0 VpeV. (2.3.6)
AL 0

Stationarity with respect to the boundary I is

limy o  (L(y + A0, B, ) = L3, 8%, ) ) =
= limao % <_ fgﬁl |ng1’2 o féﬁ nglVg) - fol eryp + bel |V5bl|2
+ fzbl Vﬁblvﬂp + fol elgo)

= limao $(A6T (1.8) = [ VBV + [ VEVp).
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We already know the sensitivity of the cost function from a former section and need only
to calculate the sensitivity of [, V3V:

Corollary 2.3.2. If 7P is the domain resulting by moving the boundary I' € 9Z" in the
normal direction by Aa(s) admissible, then

Vv — /N VBMV@ = /Aa@nﬂblanga Vo admissible.

bl Zbl T

Proof. For proving this statement we use the tools from the former chapter, i.e. we
extend the solution S € Z to the domain ZP!\ (ZP' N ZP) and write the solution of
the boundary layer equation in this domain as Bbl = P+ 5% where 05 solves (2.2.3).
Then, we have

S VBV — [ V(8" + 8" Ve =
S VBV — [ V'V — [ Vi Ve

From the mean value theorem of integration we get

VﬁbIVgD:/ /VﬁbIV<p:/Aa@nﬁblﬁngo—ko(HvH). (2.3.7)
57! o Jr r

Further we need to evaluate the second integral, fZ”u V3PV, where ¢ solves equation

(2.3.5). We have
VBNV = VBV +o(6 2™, 58,

Zbl Zbl
so that we are looking only at the domain Z"':

Jom VigiVe = — Jom o8 A + fazbl 08" Ontp
= [ 08" ALY + [, 0670
= 2 [ 08" (=VW) + [, 08" 0np
= 2 [, VBN 2 [ 6B+ [, 6870,
= [om (8ng0 - waln) 5P
= 2[5 wPlniao, BPds — Jr Ono A0, 3"

= — [p Xad,¢0,.

The last equality holds because nd, 3 = 0 on I' as shown already using the divergence
free and the boundary condition for 5.

]
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For the stationarity with respect to I' following condition must be true:
1 ~
fi 5 (B0 20, F0) = 23,8 ) = [ alon s =0
- r

We have shown following theorem:

Theorem 2.3.3. The variation of J, which is defined in (2.3.3), with respect to the shape
deformation ' = {x + a(z)n(x) : © € '} is

0T =T, B") = T (7, 8") = /FOé|3nﬁ'°1|2 +o([le])-

The concept of our gradient method is the following one:

Conceptual gradient method with Armijo Rule

Step 1: Choose I'’, 0 < ¥ < B < 1, set i = 0;

Step 2: Solve the boundary layer equation (1.4.3) with T' = T'%;
Step 3: Calculate o' on I', if it is small enough STOP;

Step 4: Find a A\* such that

=N Blla'[]* < 6T () < =X9|[a’|[*;

Step 5: Set I =T + Xa'n® and go to Step 2.

2.4 Numerical Simulation

As already mentioned, from the sensitivity analysis we know how to deform our boundary
to build a sequence of domains which tend to an optimal solution of our problem. This is
one reason to compute the solutions of the stationary equations separately with an external
code for partial differential equations which can handle rough boundaries. We chose a
package called FEMLISP which was developed by N. Neuss from the technical simulation
group of the IWR to solve such kind of boundary layer problems for the model of flow
over a porous media (see [34]). We wanted to use this existing software package because
it could be adapted to our problem of rough domains, where the infinite cell problem
is replaced by a semi-infinite one. Because of the special behavior of the solution of the
boundary layer problem, the exponentially stabilization to a constant value away from the
boundary, FEMLISP provides efficient solvers for our problem (high order approximation,
mesh adaptivity, multigrid solvers, see [45]) and the information where to cut the infinite
domain. We couple the existing software package for solving the state equation with an
optimization code written in C4++. The connection of these two parts, the interface for
the data transfer, is realized with a TCP/IP socket communication.

At first, a few approximations have to be done: the infinite domain of the boundary
layer problem has to be approximated by a finite one, i.e. we have to cut it at a posi-
tion y = k£ and to impose additional boundary conditions on that part of the domain.
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The position of cutting has to be chosen in such a way that the resulting finite domain
describes a good approximation of the original infinite domain. This bounded domain
is sent to the state equation solver. An important step in solving the state equation is
the generation of an adequate mesh. A rectangular grid with uniform refinement shows
significantly anisotropies and produces a greater discretization error because of the com-
plicated geometry of our roughness. With triangles and local refinement we get better
results. For our state equations an automatic grid generator called Triangle is used. To
solve the Stokes equation finite elements for the discretization in space are used. Because
of the incompressibility we need a stable discretization. We have chosen the Taylor-Hood
finite element which approximates the velocity piecewise with a continuous polynomial of
degree k and the pressure piecewise with a continuous polynomial of degree k-1 on the
generated mesh. In our calculations we use k=4. The created mesh on the finite domain
can be refined successively where the refinement rules on the reference cells are supposed
to be regular or it can be refined locally using hanging nodes. The degree of refinement
of two neighbor cells does not differ with more than two. Standard interpolation error
estimates (see [21]) and standard a-priori error estimates for the finite element approx-
imation can be used if we exclude the interface, where the solutions are discontinuous,
from the domain. This can be done only if the interface is smooth and aligned with the
mesh. The a-priori error estimates give us information about how good the solution on
the refined mesh is compared to the solution on the sparser mesh. In the case of global
refinement the discretization error can be estimated using the asymptotic behavior of the
a-priori error. If local refinements are used, the a-posteriori error estimates are described
in [45]. To solve the discretized problem FEMLISP offers the possibility to use direct
sparse solvers (UMFPACK) or a multigrid solver. Until now the multigrid solver runs
only with uniform refinement, adaptive refinement can be implemented in future. The
direct solver runs with uniform and adaptive refinement. The multigrid solver and the
smoothing step uses subspace corrections. For our situation a V-cycle with Vanka-VC-
SSC-smoothing ( Vanka-vertezx centered-successive subspace correction-smoothing) is used.
The Vanka-smoothing (see [57]) uses overlapping blocks for the degrees of freedom. In
this case for the pressure vertex centered blocks are used with all velocities appearing in
that block. The robust convergence of this method was not yet proved theoretically but
tested numerically successfully. We have to point out, that for our optimization problem
we need high accuracy for the numerical calculations because of the changing structure of
the rough boundary in each iteration. For the 2D-calculations we are able to do maximal
three levels of refinement using the direct solver, with the multigrid solver there are more.

In the next subsections we will describe the steps for the numerics in more details.

42



2.4. NUMERICAL SIMULATION

2.4.1 Approximation of the boundary layer problem on a finite
domain

The state equations of our optimization problem are given by:
—A S+ V! = 0, in ZTUY
div, g = 0, in Z"
[ﬁbl}s (,0) = 0, on S (2.41)
{V,5" — wbll}eg}s (,0) = e, on S N
B = 0, onT
{8", WP} y1 — periodic,

where S = (0,b1), Z* = (0,b1) x (0,+00) and the infinite boundary layer is Z" =
ZTuSuy.

The first step in the numerical realization consists of the approximation of the solution
of (2.4.1) with solutions 3! (y1,%2) of problems defined on finite domains: Z' := ZP' N
((0,b1) x (—ba, k)), while the unit cell is given by Z;" UY, with Z; = (0,1) x (0,k)
and Y being the fluid part of the cell of roughness defined in section 1.2. This solutions
Pl(y1,y2) fulfill the following equations:
—ABP+ V! = 0, in ZFUY

div, gt = 0, in ZP

(B4 (,0) = 0, on S
[{Vy pl w}gll}eg}s (,0) = e, on S (2.4.2)

Pl = 0, on T
bl

(BP)y = OB _

e g — 0, onyy= k,

{51?17 W}gl} (y1) — periodic,

The additional boundary conditions on y; = k are the standard boundary conditions at

a solid wall: the fluid is not allowed to penetrate the wall, (3), = 0, and the derivative
(B
Y2

= 0. The requirement for the pressure field to be

/w,?ldy =0.
r
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Let Vi = {2z € L2 (ZP")?*: V2 € L2 (Z)* 2 =0 on I; div, 2 = 0 on Z}'; z y; - periodic},

loc

then the weak formulation of (2.4.2) is given through
PLe Vi VBV = — / per Yo € V. (2.4.3)
zZp S

With (2.4.2) we are able to calculate the approximation Cf, of the Navier constant Ci,
which was defined in section 1.4:

cl = /S (8 (91, 0)dys.

Doing approximations we have to control the error which occurs in this process. To
calculate the error in the cost function we first have to prove the following proposition:

Proposition 2.4.1. Let {8}, wP'} be the solution of (2.4.2). Then, for every § < 27, a
constant C exists such that

VB = V8| pazmy < Ce™". (2.4.4)

Proof. Let & := " — 3Pl and ¢ := w"™ — WP Then (,4) is y; - periodic, vanishes on T
and solves following equations:

“AEHVY = 0 in 2

(2.4.5)
divé = 0 in Z,?l.
Testing this equation with the function & we obtain
1
/ V¢ :/ (V€ —pl)exldy : (2.4.6)
Zp! 0 y2=k

It follows
IVl By < |(VE, k) = 0y, k)T eal |6y, ).

The desired inequality can be obtained using Lemma 10 from [34], where an explicit rep-
resentation for SP! is given. This representation was obtained applying the curl-operator
to the boundary layer equation and making a variation of the constants from the solution
of the resulting Laplace equation. From here we have also the condition 6 < 27. Using
this representation of SP! the authors from [34] were able to prove the exponential decay
of BY' — Cui, 85, DB, W — Cy (C := [4w" (y1,0)dy1) and respectively (6p') — CP,
( I?I)Q’ Daﬁl?? w]l:;l - Olg)l, k (CE}], k= fs wllc)l(yb O)dyl):

|8° — (O, 0)] < Cla,d)e %% V yo>a>0

\ﬁ,‘gl - (C’ﬂfl,O)\ < (C(a, 5)6_592 YV yo>a>0

|DgM| < Cla,d,a)e™®2 V yy>a>0
|Degl| < Cla,d,)e™® ¥V yp>a>0
W =Gyl < et Vo oy >0
Wl = Cg | < Cemowe V. >0

44



2.4. NUMERICAL SIMULATION

Applying this to (2.4.6) we obtain

and with this (2.4.4).

O
The approximation error in the objective function Cy;, can be estimated as follows:
Corollary 2.4.2. For every § < 27 there is a constant C such that
|Cb1 - Ctljll < Ce 2k,
Proof. We have )
G — Gyl = ’/ B (y1,0) — (B3 (y1,0))1 . (2.4.7)
0

From lemma 1.4.3 we can write

Cu—il=|[ 87—,

where with Z' we denote only one cell (Z' = Y). Using the inequalities of Holder and
Poincaré we obtain

|G = CHI <118 = (B 1ll 2y < CHVB = VB[ L2z (2.4.8)
From proposition 2.4.1 we have
|C — CF | < Ce™ . (2.4.9)

O

In order to obtain the approximation error for the pressure difference we have first to
construct suitable test functions following the idea from the case of porous media:
Lemma 2.4.3. For each F' € L*(Z}") satisfying fz}glF = 0, there exists a function
o € HY(ZPM) with ¢ = 0 on I" and {y, = k} and satisfying — div ¢ = F together with the
stability estimate

Vel L2 zmy < (B + DCF] 1220 (2.4.10)

Proof. We search for a function ¢ which can be written in the form
¢ = Vn+curl v, (2.4.11)

where the second term is only used as a correction term correcting the non-zero boundary
values from divn. Now, 7 is the solution of following equation

—-An = F, in Z} (2412)

S = 0, on {y» =k}.
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Testing the Laplace equation from above with 1 we get

1
/ |v77|2:/ Fnz/ Fn = | ) (2.4.13)
Zp zp! zZp! | k | zp

which holds because |, o F'=0. We apply the Poincaré¢ inequality and obtain
k
VIl L2z < (K + DCIF || L2z (2.4.14)

]

With the help of this lemma we obtain following error estimate for the pressure field:

Proposition 2.4.4. Let w and wP' be the pressure fields determined by (2.4.1) and
(2.4.2). Then, for every § < 27, there exists a constant C such that

[lw™ = WPl 2z < (k+ VE + 1)Ce™*. (2.4.15)
Proof. Let
_ 1 bl bl
. _ 2.4.16
@ 7 " (w wr) ( )

and F := WP — w}?l —w. Since f g F'=10, the lemma from above guarantees the existence
k

of a function ¢ which can be used as a test function in the following equation:
~A(B =B + V(W =) = 0. (2.4.17)

Integrating by parts we obtain

V(" - Ve + / (W — W) dive = 0. (24.18)

bl bl
Zk Zk

= V(5" - EI)WP:/ (wbl—cu}i’l)Fz/ F?, (2.4.19)
zP z!

bl
Zk

where we inserted w. From proposition 2.4.1 and lemma 2.4.3 we obtain
1F ]2z < (k + 1)Ce™. (2.4.20)
It remains to estimate w: From theorem 3.7 of [29] we have
o] < CVEIIV (B = B2z (2.4.21)
Applying the triangle inequality, (2.4.20) and (2.4.21) we obtain

[l — WEHL?(Z};I) < F2zey + |l L2z < C(k + Vi +1)e”".
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2.4.2 Discretization of the boundary layer problem

For the discretization of the boundary layer equation the package FEMLISP uses Taylor-
Hood finite elements on triangular or quadrilateral meshes. For our computations we have
chosen P,/ Py on triangular meshes, where P, is the space of polynomial functions of order
p. That means that we approximate the velocity with a continuous polynomial function
of degree four and the pressure with a continuous polynomial function of degree three (for
the notation see [52]). With this element FE = P,/ P5 following space is defined:

Sy = {v € HY(Z")| 1 y1 - periodic AVe:¢od, € FEY,

where 7}, is the partition of ZP' in subsets e called elements, where each element e is the
image of a reference element é under a mapping ®. : é — e, where é is the reference
triangle T = {(z1,x2)|x1 > 0,29 > 0,27 + 25 < 1}. The following standard interpolation
error can be used in this case (see [18]):

Theorem 2.4.5. Let ZP', 7, and S), be as above with the generalized element FE =
Py/Ps . Forpm,l € N,p>1,0<1I<p+1and 0 < m < min(l,1) an operator
Il: L*(Z}') — Sy, exists such that

||ﬁi§1 - HﬁEIHHM(ZQI\S) < C(Tn, 1, m7p)hl_m||ﬁ£1|‘ﬂl(z,§1\5) V@El € HZ(ZIEI \ S).
Additionally, if 82! has zero boundary values on some component of 9Z}, then also BE},Z
can be chosen such that it has zero boundary values on that boundary component.

In all cases the upper bounds only depend on the smoothness of the domain and the
quality of the domain partition 7.

The ansatz space of the velocity field is defined as

Hy, = {¢n € Sil (en)2 = 0yp—r}

and the ansatz space for the pressure field as

Ln = {vn € Sl /whdy=0}.

We now search for (8¢}, wp),) € Hj, x Ly being the solution of

fZEI VB2V erndy + legl Varhoendy = — [gprner

(2.4.22)
fZElh diVﬁ]E}th,h =0
for all (@k,h:Xk,h) € Hy, x Ly,
For the discretization chosen, following standard error estimate can be used from [19]:

Proposition 2.4.6. Let 7, Hy,, L, be defined as above with the generalized element
FE& = P,/ Fy_,. Assume that the interior boundary S = {y, = 0} is aligned with the sides
of elements of 7y, let (3!, wp') be the solution of (2.4.1) and let (5.}, wy),) € Hy X Ly be
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the solution of (2.4.22). Then we have an error estimate in the viscous energy norm of
the form

IV (37— E}hﬂ|L2(Z,§'\S)+h|’V(WIEI—WE,Ih)HL%Zgl\S) < Chp(||51]31||Hp+1(z};l\5)+‘|W1?1HHP(Z,51\S);
where the constant C depends only on k and not of h.

The discrete approximation of the Navier constant is defined as follows

Ckh = /( IE}h)l
S

and following estimate holds (see [34]):
Proposition 2.4.7. For the discrete Navier constant C}jh given above, we have

[Cn — CR < ClR)R*.

Proof. To show this inequality, we use the variational formulation for the finite domain
(see (2.4.3)) and use the functions 37" € Vi and 3, € H, C Vi as test functions:

Ol = O = [0 — f)erds

o VTG — B + [ TG — )
legl V(6 — l?}h)’Qdm + fz}gl vﬁl?,lhv( P — Elh)d
o VB

Further we use both variational formulations, the one on the finite domain (see 2.4.3) and
the one for the discretized problem (see 2.4.22), and test both with 5};}h. Then

OB = CP = [ IV (B = B[P — [ V() — i, )0, da

+ fzgl vw}cﬂ( El - l?lh)d

From the second equation of (2.4.22) we know that

S VR (B = Beh)dr = [ V(wp' = w@h ) (B2 = B )dz + [ Var, B
— Jy Vb (2.4.23)
= [ V@' =) (B = Bn)de

Now, we look at
—/ Viwg —wph)B dx—/ V(w o) (B — B dx (2.4.24)
zp
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Adding the two equations (2.4.23) and (2.4.24), we obtain
8 = OB < IV = iz + 2] [ VOl — ol - oty
Using the Holder and Poincaré inequality we get
fzbl Wk - W}cﬂh)( 1]31 - ,E}h)dx < ||V(Wk — W h)HL2 Zbl)||5kh ﬁ}sle(z};l)

< Clk+ DIV} = w2z IV (B2 = B2 r2z)-

From proposition 2.4.6 it follows that
|Cl?,lh - Ol?l| < ||V( E,lh - ﬁl?lﬂlL?(Z,?l\S)(Hv( E}h - 6}?1>||L2(Z}31\S)

+ |V (wy! h EI)HL?(Z}QI\S))S C(k)n*r~1.

Further details concerning FEMLISP can be found in [44] and [45].

2.4.3 Discretization of the optimization problem

Usually an exact solution of an optimization problem can not be found by hand such that
an approximation is often necessary. This appropriate discretization is a transformation
of the original problem into a new one which has only a finite number of degrees of
freedom. The discretization must be done in such a way that the resulting problem is a
good approximation to the original one.

We start with the discretization of GG, the set of admissible shapes, defined in section 2.1.
Let 0 =yo <11 < ..<yn =1, N € N be an equidistant partition of [0, 1] with the step
size H = % Instead of general functions from G we consider now piecewise cubic splines:

Gr = {vm € C*([0,1)) ‘thy €SP i=1,.,N}nG.

73/2
The discretized cost function of our optimization problem defined in section 2.1 is a
function:
J:Gp CRY >R
J(vu) = J(VH,ﬁJS}h)a
where 3%, € Hj, is the solution of the discretized state equation (2.4.22).
We define now the discretization of our optimization problem as follows:

r
min'YHEGH j(VH)

subject to the discretized boundary layer equation:

(2.4.25)
le‘gl Vﬁ;?}hvw,hdy + fZEI sz}h@kyhdy = - fs Pk,h€1

kayhdiVﬁE}thﬁ = O
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Under the above assumptions, problem (2.4.25) has a solution for any H > 0.

After all the simplifications done in the former sections we know that the Navier constant
for a configuration vy is our object function:
. . kh
My eGy j(VH) = My, e@y C1b1 (fVH)a (2426>

and we observed that with the discretization chosen we made an approximation error of
order h?’~1. For the total error done cutting the domain and discretizing for a given
configuration v approximated by vy we have

T(y) = T(vm)| = |C—Ci"

< |Cu = Gl + CE — G (2.4.27)

< Ce™™ + Ch» 1.

2.4.4 Some comments on the optimization routine

We presented already in section 2.2.1 our concept for the minimization algorithm. Here
we want to comment the single steps after we have presented all the details about the
numerical approximations.

The optimization routine is written in C+4. With exception of the starting shape, the
rough boundary I' is known only in the discretization points. To assure the regularity
I’ € C?, the boundary will be represented with a cubic spline interpolation. The formulas
for this interpolation assure the smoothness of the first derivative and the continuity of the
second one, both within the interval [0, 1] and at its boundary. Cubic splines are practical
because using additional boundary conditions (i.e. natural cubic splines) the resulting
equations for the second derivatives are a tridiagonal system which can be solved in O(N)
operations by a tridiagonal algorithm. With this cubic spline interpolation we get also
the values for the first derivative of I' and with this the values for the normals on this
boundary:

-1
ny = ————
S/
1
Ng =

The discrete values for the rough boundary are sent to the software package FEMLISP
which calculates the solution of the state equation. This transfer is realized by a TCP/IP
socket connection. TCP called Transmission Control Protocol is one of the two important
transport protocols set up with the IP-protocol. It guarantees a secure data transfer
while re-sending the data packages if they do not reach the listener after some time and
guarantees a correct order. We can send command lines to FEMLISP which can be
directly executed. We have to create the client program which initiates the connection
with the server, where a server program has to accept the connection. After this, data
can be send in both directions until the connection is closed. The server send us back the
gradient of the solution of the state equation evaluated on the rough boundary.
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Having now the gradient along the boundary the next step in our optimization routine
is to calculate the normal derivative on the boundary. It follows the calculation of the
sensitivities and of a. Then a function is implemented which calculates the new shape in
the normal direction with an optimal step size (Armijo rule) taking care not to violate
the constraints. Because of the normal variation we need further evaluations of the new
shape, its derivatives and normals on the same grid points as before. This is again done
by cubic spline interpolation. We implemented the Armijo line search here because there
the optimal step size can be established in a finite number of steps. Of course each step
needs one additional solution of the state problem but with this the total number of the
iterations of the optimization algorithm shrinks and we reach the optimal shape much
faster.

2.5 Numerical Results

We will give some examples of the numerical calculations. As mentioned before we tested
the calculations on the rough boundary layer first with rectangular elements and uni-
form refinement. Because of the curved structure of the microstructure it turns out
that adaptive triangles given through a mesh generator give us better results. In table
2.5.1 the discretized cost function and its a posteriori error are listed for & = 1 (the
case of two coarse cells) and for the shape of the microstructure given by the function
0.25(sin(2mz 4+ 37)) — 0.75. We see that in this case it is enough to refine twice. The used
grids for the calculations are shown in figure 2.5.1. In figure 2.5.2 we see the mesh for the
domain where the microstructure is a very thin peak.

Table 2.5.1: Numerical results and their error.

level 1| CFEM(1) | CEM(1) -CEM(1—1) | cells

0 0.563828769 - 20
1 0.563840156 1.1387 - 107° 200
2 0.563840304 1.48 - 1077 800

The figures 2.5.3, 2.5.4 and 2.5.5 show the results of our optimization applied to cell
problem. The left pictures present the values of the solution of the boundary layer problem
(2.4.22) for the starting shape of microstructure and the right ones the values of the
solutions for the optimized structure. The color black describes the microstructure itself
and the color space blue to red represents the calculated values where blue means the
lowest value and red the highest. We plotted each calculated component in the same range
for a better comparability. That means that in every two pictures one color represents
the same value. The range of this values is given under the corresponding pictures. For
the two components of the velocity blue describes the velocity zero. The gray domain is
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Figure 2.5.1: The generated grid over a sinus shaped microstructure at
level of refinement 0,1,2 and 3.
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Figure 2.5.2: The grid for the opti-
mized shape.
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the region where the velocity reaches negative values so that we can see where we have a
back flow but anyway this back flow is very slow. For the case of the starting structure
the flow between the microstructures is nearly standing and the gray region is larger than
for the optimized structure. For the case of the optimized structure the region of positive
flow is smaller so that the flow reaches higher velocities on S which is the proof that the
structure is better. In figure 2.5.4 we can see that the second component of the boundary
layer velocity is a cavity type flow. The values are very small as expected because the
flow movement is the z;-direction. The microscopic flow over the optimized structure
is greater than on the starting structure which again indicates a higher circulation. We
see a region of cavity type flow over the microstructures and a region of cavity flow
between the microstructures. In the last figure we see the pressure distribution. Here we
used the color blue for the lowest negative value and red for the highest positive value.
Because of the symmetry of the structure these values have the same absolute value.
In the picture we see mostly a constant distribution of the pressure except of a region
in front and behind the microstructure. This pressure difference depends of course on
the shape of the microstructure: the higher the slope of the shape function the higher
the pressure difference. The pressure contribution in the optimized structure is higher
and concentrated directly on the tip of the roughness. This fact does not influence our
homogenized calculations much because we calculate the tangential drag on a smooth
boundary above the roughness and the pressure term disappears because the normal of
this smooth boundary is e; which is perpendicular to the tangential direction e;. To have
a better understanding of this pressure effect we will compare our calculation with direct
calculations on the microscopic rough model which were done from Th. Richter from the
numerical simulation group of R. Rannacher from Heidelberg. We will present the results
obtained there in the next section.

Next, we give an interpretation of the results obtained for the boundary layer velocity to
our cost function

T () = Cin = /S (B2

We have seen above that on the optimized profile the first component of the boundary
layer velocity reaches higher values than on the starting profile. The greater the velocity
on S the lower the value for the cost function C},;. This stays in agreement with our
assumption that the effective velocity profile is linear in the macroscopic variable x5 and
that the Navier constant C},; describes the origin of the effective velocity profile. The
deeper this origin rises into the microstructure the better its shape. How much our cost
function is minimized we see in figure 2.5.6. The values rise from -0.56 to -0.578. Typically
for a gradient-based method the improvement of the cost functional in the first iterations
is greater and then the values converge to an optimal value. Because of the choice of
the parametrization of our microstructure, a smooth function constructed with piecewise
cubic polynomials, no better shape could be found. But from the sensitivity analysis and
also from the observations, how the sequence of solutions develop, we are able to claim
that the slit domain, which does not belong anymore in this class, is even better. Several
numerical tests confirm this conclusion and also the fact that the optimality conditions
are fulfilled in this situation. The cost function for the slit domain is C},; = —0.582 which
is the minimal value we obtained in our simulations.
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Figure 2.5.3: The z-velocity in the range: 0 — 0.6,
a) starting shape, b) optimized shape.

Figure 2.5.4: The y-velocity in the range: 0 — 0.036,
a) starting shape, b) optimized shape.

Figure 2.5.5: The pressure distribution in the
range: -1.5 — 1.5, a) starting shape, b) optimized
shape.
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Figure 2.5.6: Minimization of the
cost function.

In the next table we see the effect of our minimization results from the macroscopic
cell to the tangential drag force for the microscopic problem. Because of the numerous
simplifications of our optimization problem the numbers obtained in our optimization
are not the numbers for our initial size of interest, the tangential drag force. To see the
contribution of our minimization to this quantity of interest we have to go back in the
simplifications and insert the obtained values for the cost function C},; in the formula for
the tangential drag force which is

eff v L
Flrs—— 2.5.1
' Ly1 [ZCbl ( ’ )

In this formula our calculated cost function appears with the coefficient €, our scaling
parameter. This indicates that the effect of minimization on the drag will be the smaller
the smaller the scaling parameter is. The table 2.5.2 lists the values for the smooth,
starting and optimized structure for different scaling parameters, for different sizes of
microstructures.

Table 2.5.2: The two-dimensional optimization results in dependence
of the scaling.

e (Ly:h) | Fomeoth | Feff gtarting shape (rel.) | Fe opt. (rel.)

0.15 (1:13) | 1.081 1.0786 (0.2%) 1.067 (1.3%)
0.3 (1:6) 1.1765 | 1.1707 (0.5%) 1.1416 (2.7%)

The values for the tangential drag decay from left to right. The numbers for the smooth
structure are highest which means that microstructures do reduce drag and the values
for the optimized structure are lower than for the starting structure which confirms our
optimization process. How much the drag is reduced is given in percents in the parenthesis
near the respective values. In the first row the microstructures are 0.075 mm high and the
effect of our optimization is only slightly higher than 1% which is not so much. For higher
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microstructures (0.15mm) the calculated shape is about 2.2% better than the starting
structure. We conclude that for the two dimensional model which can be seen as a cross
flow model over microstructures we can not obtain big advantages of rough surfaces which
can be comparable to the ones obtained in the three dimensional experiments and test
mentioned at the beginning. To obtain comparable results we have to consider three
dimensional microstructures and a three dimensional flow model. This three dimensional
case will be described in the next chapter and we will see that for the case of three
dimensional riblets, which were used on the airplane, ships and on the swimmer suits, all
the calculations done in this chapter can be used.
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2.6 Direct simulations

In this section we compare our results with the data obtained by direct simulation of
the oscillating incompressible steady state Navier-Stokes equation (1.2.1) with one of the
powerful codes developed by the numerical group of R. Rannacher from Heidelberg. The
calculations have been done by Th. Richter using the simulation toolkit Gascoigne, which
combines error control, adaptive mesh refinement and a fast solution algorithm based on
multigrid methods. The discretization of the oscillating state equations, the Navier-Stokes
equations, is here done by stabilized finite elements on locally refined rectangular meshes
what allows the treatment of the complex oscillating boundary. For the discretization
in space finite elements of second order (Q2/Q2) are used. This finite element space is
not stable in the sense of the inf-sup condition, a LPS (local projection stabilization) with
respect to the stable (Q2/Q1) Taylor-Hood element was used introduced by R. Becker
and M. Braack (see [12]). Due to the easy structure, the equal order ansatz, an efficient
implementation is possible which leads to a significant reduction of the computational
effort. Error control and mesh adaptation is applied following the framework of the DWR
(dual weighted residual method) by R. Becker and R. Rannacher (see [13] and [14]). The
discretized problem provides 300 000 degrees of freedom on the refined mesh (up to level
8). After applying the Newton method the resulting linear system is solved with GMRES
(generalized minimal residual method) which uses a V-cycle multigrid method as pre-
conditioner. First results are in table 2.6.3. There we compare four different shapes from
our optimization process (see picture 2.6.7) with constant height of 0.15 mm and constant
spacing. Shape 1 describes the starting shape, shape 2 and 3 are shapes picked out from
the sequence of shapes constructed in our optimization problem and shape 4, the slit
domain, has been tested as a candidate for our optimal solution. The values obtained for
the skin friction are not direct comparable to the ones obtained with the homogenized
formula (1.4.1) because the skin friction was measured in different heights of the channel.
In the direct simulation the skin friction is measured directly on the rough skin, where in
the homogenized formula the skin friction is measured on the artificial smooth boundary
S which lies double as high as the height of the microstructure. The total drag calculated
with the direct simulations is given by the sum of the skin friction F;. and the form drag
or pressure drag Fp.s on the oscillating boundary B°:

D:-,/tt = ffric+fpres

= Ja v [ S @i, 22) + (5, 2) + 5 (w4, 3) a1, 22)]

— [ P (@1, mo)n (1, 7)€y
(2.6.1)

This direct two-dimensional calculations from table 2.6.3 confirm that we indeed reduce
the total drag and the skin friction in our optimization problem. In agreement with our
two-dimensional simulation on one cell of roughness (see figure 2.5.5) we observe that the
pressure term of the drag increases, as sharper the bump as higher the contribution to the
pressure drag. We recall that in our simulations the pressure term vanished because of
the artificial smooth boundary. It remains to clarify in this section how we can compare
the results of these two simulations. For shape four it was possible to obtain only two
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shape 2

shape 3

shape 4

Figure 2.6.7: The pressure distribution on different shapes of mi-
crostructures calculated with direct simulations (Th. Richter). The
microstructures have the same height and spacing.
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Table 2.6.3: The total drag and its components for different shapes tested with direct
simulation (Th. Richter).

length shape 1 shape 2 shape 3
[1073m] | drag  fric. pres. | drag fric. pres. | drag fric.  pres.

0.333 | 0.125 0.065 0.060 | 0.100 0.0025 0.075 | 0.100 0.0155 0.085
1.333 | 0.315 0.185 0.130 | 0.275 0.065 0.205 | 0.270 0.0365 0.235
5.320 | 1.085 0.680 0.405 | 0.885 0.230 0.755 | 0.875 0.1185 0.855
21.312 | 4.160 2.650 1.510 | 3.825 0.890 2.835 | 3.800 0.4500 3.350

shape 4

drag  fric.  pres.

n.a.
028 -0.01 0.29
0.98 -0.075 1.045

1n.a.

results because of the complexity of the mesh and the resulting big error. In these two
results the skin friction is very small but negative. This comes from the big region of
back circulation where the velocity profile has a negative derivative. In the first raw of
the table the values for the drag reduction are much smaller than on the last raw where
the length of the channel is much larger. In the simulations for the homogenized problem
we calculated always the normalized tangential drag what we have to take into account in
the comparison of the results, and also if we compare the results with the values obtained
from the experiments.

We have to mention here that the values in the above table were obtained by modeling a
two-dimensional channel with smooth parts at the beginning and at the end of the bottom.
The rugosities were placed in the middle part. As inflow and outflow condition a Couette
flow profile was used with zero boundary condition on the lower part of the boundary
and the prescribed velocity U on the upper part of the boundary. This is the reason for
the higher pressure difference in front and at the end of the rugosities which can be seen
clearly in the first picture of figure 2.6.7 where all of the microstructures are captured.
This pressure difference becomes smaller if we make the channel longer. We observe also
that this configuration is not suitable if we want to compare the rough channel with a
smooth one where the lower boundary is situated on the top of the microstructures. We
are able to compare the values obtained only with the smooth configuration where the
boundary is at the bottom of the microstructures which gives a better result the viscous
sublayer is then thicker. To obtain a comparable model for our homogenized structure
we have to change the geometry and the boundary conditions in the direct simulation.

59



CHAPTER 2. OPTIMAL DESIGN PROBLEM

Figure 2.6.8: The pressure distribution on the correct two-
dimensional model calculated with direct simulations.

We recall that the width of the channel was Imm. In our second simulation we choose
the length of the channel three times larger than the width which is than 3mm and the
bottom should be completely rough starting and ending with the maximum value of the
shape function which describes the roughness (see figure 2.6.8). With this geometry it
makes sense to choose the origin of the Couette flow for the inflow directly on the top of
the microstructure and we get now comparable values to our homogenized problem and
also to the correct smooth one.

For the smooth structure the pressure drag F, is zero because the normal to the smooth
boundary is e; which is perpendicular to the tangential direction e;. Because the velocity
profile is a pure Couette profile which means that g—;i(xl, x9) is zero the drag which we
calculate in our homogenization process is:

1 oust

feff: -
t 2V S 81'2

(1, T2). (2.6.2)
The velocity profile for the corresponding smooth structure is

U 1
smooth
= — 2.6.3
N Lo+ 0.5¢ (“”C2 + 25) (2:6.3)

and with this the normalized drag is reduced to

1 U

Fpmeoh = —py—————. 2.6.4
‘ 2 Ly +0.5¢ (2:6:4)
To compare the results obtained with the direct simulation with the results obtained with
the homogenized model first we choose the same shape function in both simulations:

V@) = 15104 [1 (1 sin(Za- 1037rx))]2, (2.6.5)
A 2 3

where ) is an additional scaling factor This shape function describes a sinus shaped mi-
crostructure with height of % -0.15 mm and spacing of % mm. Then we are able to describe
the behavior of the calculated drag with respect to the scaling of the microstructures. We
compare the values for the drag on the rough boundary B¢ with the values for the drag on
the smooth boundary S, situated above the microstructures in a distance of their double
height, obtained both with direct simulation denoted by F%, with the values obtained
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from the homogenized system denoted by F¢T and with the values obtained from the
smooth configuration F5m°°™ The results are presented in table 2.6.4.

In the last two columns where the values are evaluated on the same boundary first by
direct simulation and second by our simulation, we observe how close our calculations
from the homogenized system are to the direct ones and that the small error decreases
with the scaling parameter which in this case is ¢ = % -107%. This stays in agreement
with the homogenization theory which describes the behavior of an oscillating system for
e — 0. Comparing the third and fourth column in the table we can conclude that for
small € we can replace the tangential drag on the oscillating boundary with the tangential
drag on an artificial smooth boundary. We observe again that the contribution to the
drag reduction decrease with the size of the microstructures. The minimization effect in
this two-dimensional simulation is very small but we will see in the next chapter that for
the three-dimensional simulations we will get a higher contribution.

Table 2.6.4: The numerical results obtained from the homogenized problem
in comparison with the results obtained from direct simulations.

height of microstructure [mm] | Fomeott | 7= on B | Ffon S | Fefon S
0.15000 3.529 3.088 3.35 3.43
0.03750 3.117 2.995 3.05 3.09
0.01875 3.057 2.991 3.01 3.04
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Chapter 3

The shark skin as drag reducing
surface

In this chapter we consider the three-dimensional model of a submerged body with a
rough surface and we want to know how the shape of this roughness must look like to
obtain a smaller drag than the one of the corresponding smooth surface. The resulting
model describes the shark skin. As mentioned at the beginning, the shark skin is not
smooth. The microstructures found on the surface are similar all over the trunk, their
shape differs only in regions like fins and on the places where flow separation has to
be avoided like on the snout and on the ends of the fins - there no microstructures are
found. This is why we are firstly interested in modeling the shark skin as a straight
rough surface. For simplicity we do not consider any curvature to be able to apply the
analysis results from [33]. Our resulting model is a three-dimensional channel with a
rough bottom. The main flow direction is chosen to be parallel to the x-axis and is
called the longitudinal flow. The way to model the Couette flow in the viscous sublayer
would be to prescribe the velocity on the upper boundary with U = (U,0,0) and the
no-slip condition on the top of the microstructures. Then we can examine how the linear
profile in the x-direction is disturbed by the microstructures. Recently it turned out that
this is not the correct model. The latest theory is to consider both longitudinal flow
and cross flow in a three dimensional channel. The longitudinal flow is the stream flow
and the cross flow is generated by the turbulent motion in the layer above the viscous
sublayer. So that the correct model for the viscous sublayer is a deflected Couette flow,
deflected from the main stream velocity. The correct boundary condition on the top of
the channel is therefore the velocity U = (Uy, Us,0). There is a qualitative explanation
of why three dimensional riblets do contribute to drag reduction given by Bechert in
[10]. He explains that the corrugations interfere with the secondary cross flow associated
with the longitudinal vortices which randomly appear in the turbulent flow. Due to this
interference these vortices and with them the level of turbulence itself is dampened. The
resulting reduction in the rate of turbulent diffusion is responsible for the lower eddy
viscosity and thus for the reduction of drag. The quantity of this drag reduction could
be given only if we would consider turbulent flow. But this leads beyond the aim of this
thesis. We analyze in this chapter only the effect of microstructures which remain within
the viscous sublayer of the turbulent flow on the tangential drag force calculated with a
homogenized model.
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3.1 Modeling of the viscous sublayer of a turbulent
Couette flow in 3D

The steady state incompressible Navier-Stokes equation for the three-dimensional viscous
sublayer reads as follows:

)
—vAV® + (vVV)o* +Vp* = 0, in Q°
dive® = 0, in QFf

v® = 0, on B (3.1.1)

v® = U, on 9

{v¢,p°} — (x1,29) periodic.

\

To introduce the domains in this case we start with the so-called canonical cell of roughness
Z = (0,b1) x (0,bg) x (0,b3) which is plotted in figure 3.1.2. Because of the periodicity
the arbitrary geometry of one microstructure denoted by v(y1, y2), where y1, y2 € (0,b1) X
(0, b2) are the macroscopic variables, stays in this domain.

The fluid part of this cell is denoted by Y = {y € Z| b3 > y3 > max{0,vy(y1,v2)}}

Then the bottom of our three-dimensional channel consists of the layer of roughness
given through the periodical repetition of one basic cell of roughness scaled with our
scaling parameter € to obtain the microscopical description. Mathematically the layer of
roughness is R® = (Ue(Y + (K1, ko, —b3))) N ((0, Ly) x (0, Ly) x (—€bs,0)). We recall the
connection between the macroscopic and microscopic variables: y; = %, with ¢ = 1,2, 3.
The rough boundary B® = e(Uy + (k1, ko, —bs)) consists of a large number of periodically
distributed humps of characteristic length ¢ but variable height ¢h with h € [0,1]. The
region above the layer of roughness is the cuboid P = (0,Ly) x (0, Ls) x (0, L3), and
the interface which separates this region from the layer of roughness is denoted by S =
(0, Ly) x (0, Lg) x (0). It is the artificial smooth interface whit what we will replace the
rough boundary applying homogenization. Thus the region where the fluid flows is Q2 =
PUSUTRS (see figure 3.1.1). With S, we denote the upper interface (0, L) x (0, La) x { L3},
where the velocity is prescribed. The position of S can be fixed arbitrary because a

perturbation in its position of order O(g) implies a perturbation in the solution of order
O(£?) (see [33]).

Numerical simulations for (3.1.1) are even more difficult than for the two-dimensional
problem especially when the microstructures are very small. To simplify this huge system
we will first apply homogenization and then numerical algorithms to solve the resulting
system. This process of homogenization was already described in subsection 1.3, even
more details can be found in [33]. The rough boundary B¢ will be replaced by an artificial
smooth one on which new boundary conditions have to be imposed to take into account
the information from the roughness. For the oscillating velocity v* following ansatz will
be considered: v° is constructed as a perturbed Couette flow v° € P which is extended in
Q\ P by zero. This perturbed Couette flow is written as an asymptotic expansion which
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= A
v.A

! ¥
Figure 3.1.1: The  three- Figure 3.1.2: The  three-
dimensional viscous sublayer. dimensional canonical cell of

roughness.

tends in some sense which we will not specify here to the so-called effective solution for
e — 0. This effective solution is the solution of the resulting effective equations on the
smooth domain (see figure 3.1.3) which are:

(
—vAut + (vl + Vpt = 0, in P
divuf® = 0, in P

Ueﬁ = (Ul,UQ,O), on SQ

< . (3.1.2)
ulf = —e¥? Mu%=, j=12oS
ut = 0, on S
{Ueﬂa Peﬂ} (x1,29) — periodic.

We observe that the new boundary condition on the artificial smooth boundary S is
similar to the one from the two-dimensional case, it is the Navier slip condition on the
two-dimensional surface S. Instead of the Navier constant C}; we have here the Navier

matrix which is also defined by the solutions of an auxiliary boundary layer problem (see
(3.1.5)):

Definition 3.1.1. Let {3* w*} be the solution for (3.1.5) and {37, w’} be the solutions
of (3.1.5) for A =e;, j = 1,2. Then the Navier matrix is defined by

1

M;; = — | Bldy,dys.
b1b2/35@ y1dyo

In [33] the authors proved the existence and uniqueness of an effective solution:
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xs‘

Y

Figure 3.1.3: The three-dimensional
homogenized channel.

Proposition 3.1.2. If |U|L3 < 2v, there is a unique solution of (3.1.2)

u = (U+(2-1)I - £M)"'U,0), z€P

(3.1.3)
pf = 0 zeP

and obtained the uniform a priori estimates for {v®, p°}:

Proposition 3.1.3. The Couette flow v is in O(e2) as approximation of v° in L2(P)
and, restricted to S, in O(g) as approximation of v° in L?(S5).

The asymptotic expansion for the oscillating Couette flow is

vt =" — fS?:lUj(ﬁj(f) — (Mj1, M;5,0)H (x3))

3

— 59U (1= () = (M1, Mj2,0)H(23)) + O(£?)

L3

(3.1.4)

and on the artificial smooth boundary S following equations hold:

81}? = ﬂ — iSZ?:lU 85;

drs Ly Ly jays

+ O(e)

L. 1 o il
;U' - L3Si:1U16j(8) + 0(5)'

The three-dimensional auxiliary problem which plays the crucial role for calculating the
Navier matrix reads as follows:
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For a given constant vector A € R? find {$*, w*} that solve

;

A+ Vwt = 0, in ZTUY
div, g = 0, in Z"
A —
8] 4(-,0) = 0, on S

{V,6*— w)‘I}eg]S (,0) = A, on S

(3.1.5)

B = 0, onT

{8*,w} (y1,y2) — periodic,

where S = (0,b1) x (0,b2), Z+ = (0,b1) x (0,b) x (0,4+00) and ZP = ZT USUY (see
wh =

figure 3.1.4). Note that 8* = szzlﬁj)\j, szzle)\j, where {3, w’} is the solution
of the boundary layer problem with A = e;.

?
|

]

-by

Figure 3.1.4: The three-dimensional
boundary layer Z°.

Theorem 3.1.4. If V = {z € L} (Z")? : V,z € L*(Z")% 2 =0onI; divyz = 0 on

loc
ZP z(y1,ye) - periodic}, then there exists an unique solution $* € V satisfying

VB Vaody = — / PNy dys VP EV
Zvl s
and w* € L2 _(Z*) is unique up to a constant.

loc

Proof.
The proof uses the Lax-Milgram lemma and De Rham’s theorem (see chapter 2 or [33]).
In the neighborhood of S we have Vq € [1,00) that

2
B = (A ha, 0) (s — L )e P Hys) € W
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and
wr e Wha,

Then following lemma holds:

Lemma 3.1.5. Let A\ € R? and let {3* w*} be the solution of (3.1.5) satisfying
Jowrdyrdy, = 0. Then 3* = 23:1 BIN and W = 25:1 WM, where {3, 0} €
V x Ly (Z"), [qwidyidys = 0, is the solution of (3.1.5) for A =e;, j = 1,2.

loc

We already used this lemma to define the components of the Navier matrix. Now we want
to associate a corresponding Navier constant to the Navier matrix M which we will define
as follows:

Definition 3.1.6. The Navier constant Cyy is defined as

Y = /b V3 (y)|2dy < 0. (3.1.6)
Zbl

From [33] we know that

i = / VA (y) Py = / B Adyadys.
Zbl S

Lemma 3.1.7. Let M be the Navier matrix defined above. Then M is negatively definite.

Proof. There is a relation between the Navier matrix and the Navier constant given by

1 1
MM = —C}) = ——/ IV y)2dy < 0, (3.1.7)
b1ba biba Jg
where ) is a given constant vector in R2.
m

3.2 Modeling of longitudinal riblets

Motivated from nature through the skin of fast swimming sharks we are first interested
in a special kind of three-dimensional microstructures, in longitudinal riblets (see figure
3.2.5). This streamlined longitudinal riblets are formed on the surface of the skin by
microstructures on the crown of each dermal denticle. This special geometry is believed
to reduce drag by damping the cross flow and with this the level of turbulence in the upper
layer. It was used also in the experiments mentioned before and tested on aircrafts, ships
and swimming suits. The longitudinal riblets are interesting not only from the practical
point of view but also because they simplify the three-dimensional equations significantly:
The three-dimensional boundary layer equation can be divided in two two-dimensional
ones.
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Lemma 3.2.1. Let us suppose that the shape of the boundary does not depend on
which is the main flow direction. Then for A = e; the system (3.1.5) has the solution
B = (8i(y2,93),0,0) and w* = 0, where 3] is determined by

PO T8 — 0 in (0,by) x (0,00) U (Y N {y1 = 0})

T
[B1](-,0) = 0 on (0,by) x {0}
22](,0) = 1 on (0,82) x {0} (3.2.1)

Oys3
A1 = 0on(I'n{y =0}
Bl —  yo periodic.

Furthermore for A = e, the system (3.1.5) has the solution 3% = (0, 33(y2, y3), 32 (Y2, y3))
and w? = wW?(ys, y3) satisfying

0% 0% | o

= 01in (0,b2) x (0,00) U (Y N{y; = 0})

~0y3 dy3 Oy
9’3 9*p3 w2 .
—GF = GE 4+ %2 = 010 (0,b;) x (0,00) U (Y N {yr = 0})

0% ¢ 0% = 0 in (0,by) x (0,00) U (Y N {y1 = 0})

](-;0) = 0 on (0,b) x {0}

](,0) = 0 on (0,b) x {0} (3.2.2)
[22](0) = 1 on (0,5,) x {0}

[3—@ —w2](-,0) — 0 on (0,by) x {0}

2=p32 = 0on(I'N{y =0}

{63, 32,w*} — 1y, periodic.

Comparing these last equations (3.2.2) with the ones from the two dimensional problem
from chapter 2 (see (1.4.4)) we observe that they are exactly the same. We are able to use
the results already obtained for the cross flow and have to solve only the flow equations
for the longitudinal flow, the Laplace equation (see (3.2.1)).

3.3 The protrusion height

Bechert defined the protrusion height h, in [8] as the distance of the riblet tips from the
virtual origin of the velocity profile. Important is the fact that the origin of the cross flow
differs in its location from the origin of the longitudinal flow (see figure 3.2.5). We denote
the protrusion height of the longitudinal or parallel flow with h,| and the protrusion
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Experiments on drag-reducing surfaces
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Figure 3.2.5: Viscous longitudinal and cross flow on a ribbed surface (from

[9))-

height of the cross flow with h,,. To calculate the protrusions heights in our situation, we
have to set the first component of the effective velocity to zero for the parallel protrusion
height and the second component to zero for the cross flow. The first two components of
the effective velocity are

= (Ui + (2 =) = — M), i =12
Ly Ly

For this special geometry of longitudinal riblets the Navier matrix M has a special struc-
ture:

Lemma 3.3.1. If the shape of the boundary does not depend on y; then the Navier
matrix M is diagonal with the following elements:

b
My = éfOQﬁll(yg,O)dyg

M12 - M21:0 (331)
My = %f0b253(y2,0)dy2-

Proof. M5 = Ms; = 0 follows directly from the definition of M and Lemma 3.2.1. From
(3.1.7) we have

1

MAX = NI My + A3 Mag + M Ao(Miy + M) = —
1vV2

A
Cbl )

Ch = [oBNyidys = [(A281 (Y2, ys) + A2B3(Ya, y3) + A da(52 + 53))

= A} [ B (y2, 0)dyadys + N* [ 53 (y2, 0)dyadys (3.3.2)
= A fob2 B1(ya2,0)dyz + N? fob2 B35 (y2, 0)dys.
The last equation holds because of the periodicity of the solutions. n
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We introduce a new definition:

Definition 3.3.2. C}Ul is the Navier constant from the parallel flow

1 b
Cl|o|l = E/o B1 (Y2, 0)dys

and C"'the Navier constant from the cross flow

b

Cyp = b 33 (y2, 0)dys.
2 Jo

For the three-dimensional longitudinal riblets we have then
MM\ = NCl + 2304

and
My =Cl My =C.

(3.3.3)

(3.3.4)

To come back to the calculation of the protrusion heights we have to calculate the origin
of the effective velocity profile. For the first component of the effective flow we have

Z'3

bl
and it follows
O+ 21
Ut =0 <= blg ﬁs =0 < 3= —C})
1= 7Cy

For the second component we have
!
L3
(s BL)
1— L%Cﬁ
and it follows

1- £CH+8 -1

—_ 04+
1 L3Obl

ufl =0 —
Definition 3.3.3. The protrusion height of the parallel flow is given by
) Il
hyl := €Chy
and the protrusion height of the cross flow is given respectively by
hp 1 = ECﬁi

71

=0 <= 3= —eCy.

(3.3.5)

(3.3.6)
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The protrusion heights are a length which depends only on the chosen reference length
and not on the reference velocity. The ratio of the protrusion height to the period of
the corrugations h?p is called the normalized protrusion height l_zp and depends only on
the shape of the microstructures and neither on their size nor on the actual speed of the
fluid. Bechert (in [10]) and Luchini (in [38]) claimed that the only parameter on which
the behavior of the turbulent boundary layer depends is the difference between the two
protrusion heights Ah = hy — hy,1, the distance between the two virtual plain walls,
where the velocity is zero, seen by the longitudinal and cross flow. We will see that the
origin of the cross flow lies always higher than the one of the longitudinal flow, and thus
Ah is a measure of how much the microstructures impede the cross flow more than the
longitudinal flow. The higher the difference between the two protrusion heights is the
greater the contribution to the drag reduction.

Projecting these results to our theory we found out that the quantitative parameter

which characterizes how much the microstructures reduce drag are here again the Navier

constants Cb|l and Cfj. Let us calculate the normalized difference between the protrusion

heights:

byt — Iy _ £(CY — Cy)
s B £

Ah = BPL - l_lpl\ - =CY — Cllo|l'

Luchini, Manzo and Pozzi found out in [38] that the maximum possible difference between
the heights of the two origins is Ah = 0.132s, which means Ah = 0.132. Then for the
Navier constants the following condition holds: 0 < Cb1 C’ < 0.132 for all possibles
shapes.

3.4 The three-dimensional optimization problem

For the three-dimensional rough channel the tangential drag force on the artificial smooth
surface S is a two-dimensional vector, where

(_7:5)1 - ﬁfsuaneldmd?ﬂ

- L1L2 Jsv ((8 (21, 2,0) = p)ny + § ( ($1,$270)+8 (131,372,0))n2

+3 (gﬁ? (21, %2,0) + dr1 ($1,$270))n3)dx1d:c2

(3.4.1)

(ﬂE)Q = ﬁfsyanegdyldyg
= 2 s (S5, 22,0) + 2 (1, 2,0))ma

+(gx (ZL’l,l’Q,O) )TL2+ ( (3171,.132,0) + %(xl,xg,()))n;;)dxld:(:g.
(3.4.2)

For our geometry the normal to S is n = ez, then we get

£

S | ovy ovs
(ft)l_ELlLQ/ (5, e 0+ 5

1

($1,$2,0)>d$1dﬂ?2 (343)
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and

11 ovs ov§
FE) = * (  2,0) + 253 (), ,o)d ds. 3.4.4

( t)2 2L1L2/ ag(ml T2 )+8I2<m1 ) ) 14T ( )
Applying homogenization we consider the effective tangential drag force replacing the
oscillating velocity with the effective one taking into account that the effective velocity
depends only on z3 and we get

. 1 1 aueff
(ftﬂ)]_: 2L a T3 ($17x270>dx1d$2 (345)
and ot
1 1 ¢
(F1),= = (1, 29, 0)dz1ds. (3.4.6)

2 5 L1 L2 S v 81’3
Inserting the formulas for each component of the effective velocity (see (3.3.5) and (3.3.6))
we get following simplification of the components of the effective tangential drag force:

o At L
(7, = L3(1 L o) 't = > o cl (3.4.7)
and U
eff\ __ L . i 1\—1 _ z 1
(Ft )2_ Ls (1 LgObl) U, 5 —L3 — ECﬁ (3.4.8)

The approximation error which is done in this process is

e|lU
|‘rltteff F€‘<CF( | |)
Ls
In our optimization problem we want to find the shape of microstructures which minimizes

the tangential drag force:

: € . off\ 2 off\ 2
min,eq |71 <= minee  (FT)]+(FT), (3.4.9)
Due to our simplifications from above the resulting optimization problem is
min,eq Ol + C (3.4.10)

which can be decomposed into two optimization problems: In the first one we minimize
the longitudinal Navier constant

(

min,eg 01!1 <~ minveg by f B1(y2,0)dys
subject to
52 9231 .
85; _ Wﬁgl = 01in (0,b2) x (0,00) U (Y N{y1 = 0})
3.4.11
[61](-,0) = 0 on (0,by) x {0} ( )
1
{%](.,0) = 1 on (0,b) x {0}
Bi = 0on(yn{y =0}
Bt — 1y periodic

73



CHAPTER 3. THE SHARK SKIN AS DRAG REDUCING SURFACE

and in the second one the Navier constant for the cross flow:

(

. . 1 b
min,eq Cff <= min,cq i Jo B3 (y2, 0)dys

subject to
SOR PO % = 0 i (0,hy) X (0,00) U (Y N1 {y, = 0})
SOB PO % = 0 i (0,hy) X (0,00) U (Y N {y, = 0})
51O = 0 (0,by) % (0,00) U(Y N {1n =0})
< [82](~0) = 0 on (0,by) x {0} (3.4.12)

[63](-,0) = 0 on (0,b) x {0}

2] (,0) = 1 on(0,55) x {0}

(92 -22)(,0) = 0o (0,02) x {0}

=0 = 0on(yNn{y =0}
{63,050y — Yo periodic,

where G := {v:[0,b1] X [0,b5] — [—1,—0.5] |y € C*([0,b1] X [0, ba]), v(y1,0) = Y(y1,b2) =
—1, y(y1, %2) = —0.5, v(y1, y2) constant in y; Vy; € [0,b1]}.

In the last section we observed that the greater the difference between the two Navier
constants is the greater the contribution to the drag minimization. The geometrically
interpretation of this statement is that we have to minimize the virtual origin for the
longitudinal flow and we have to maximize the virtual origin for the cross flow:

max-eq |C’,$ — C']|3|1| < {min,cq C’l‘)‘l} A {max,eq Cﬁ}.

But this would mean in the case of the cross flow that we have to do the opposite operation
than described in our optimization problem (3.4.12). But we should not forget that we can
not solve both optimization problems independently because the two Navier constants are
connected to each other by the three dimensional geometry. Changing the shape of v to
minimize CL'I has a consequence to the Navier constant of the cross flow and changing the
shape of v to minimize Cfj has a consequence to the Navier constant of the longitudinal

flow. The values for C’Lll changes during the optimization process (3.4.12). We know from
the two-dimensional problem that a worser microstructure for the cross flow is the one
with a bigger cross section, with more material, smooth and flat tips. Exactly this type
of microstructure dampen the longitudinal flow more because the valleys are too narrow.
To solve the three-dimensional optimization problem we have to minimize the Navier
constant from the cross flow which is already done in chapter 2, use the results obtained
there and calculate the corresponding values for the longitudinal Navier constant. Solving
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(3.4.12) we automatically solve (3.4.11) where the Navier constant from the longitudinal
flow is minimized even more than the one from the cross flow, and the difference between
the two, Ah, gets greater.

3.5 Numerical results for cross and longitudinal flow

In this section we will present our numerical calculations for the three-dimensional longi-
tudinal riblets. As we have seen we can use our results from the two-dimensional calcula-
tions: The starting and resulting three-dimensional geometry in the optimization process
is constructed by using the starting and calculated optimal shape from chapter 2 as the
cross section for the three-dimensional riblets in the coordinates (y2,ys), forcing the ad-
ditional coordinate y; to be constant. Then we have only to calculate the solution of the
additional boundary layer equation, the Laplace problem (see (3.2.1)) for this geometry
which is done by using the software FEMLISP. Due to our work for the two-dimensional
situation we need not to solve here an optimization problem. We need only to discretize
the cross section of the microstructures, to cut the infinite domain of the boundary layer,
transfer the data to the software which creates a mesh for the given domain and dis-
cretizes the boundary layer equations, in this case the Laplace equation, on the resulting
mesh using finite elements (for more details see chapter 2). Analyzing the results for
the longitudinal flow we will see that it is minimized more than the cross flow so that
we expect that the effect of minimization of the tangential drag force will be here much
greater than in the two-dimensional situation. To calculate how much percents we re-
duced the drag doing shape optimization we have to insert the calculated values for the
Navier constants in the formulas for the tangential drag. Therefore we have to choose our
scaling parameter e. We will list the calculations for different values of € and will analyze
their dependence on the size of the microstructures. All the numbers are obtained with
the boundary condition U = (Uy, Us, 0) on the upper boundary, where U; = U, = 10*3%.

Using the starting shape from chapter 2 (see figure 3.5.6) we get the following Navier
constants: C% = —0.514 and C’,Lll = —0.5280. The normalized difference of the protru-
sion heights is thus Ah = 0.014. The optimized shape calculated in the former chapter
(see figure 3.5.7) gives us following numbers: C® = —0.580 and Cllo‘1 = —0.68855. The
normalized difference of the protrusion heights is thus Ah = 0.1086. We recall that the
optimized shape obtained with our optimization procedure must be the slit domain. This
domain was not possible to obtain directly through optimization because of the regularity
conditions imposed on the shape of the microstructures I' and on o which describes the
variation of this boundary. We made further calculation for shapes which we believed to
give better results: a thinner peak and the slit domain. For the thinner peak (see figure
3.5.8) we get CP' = —0.582, 01!1 = —0.69898 and Ah = 0.117. For the slit domain which is

believed to be the optimum in this case we get following values: C%' = —0.582, C’l‘)ll =—0.7
and Ah = 0.118. We recall that in experiments it was observed that Ah < 0.132 which
is close to our calculations.
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CHAPTER 3. THE SHARK SKIN AS DRAG REDUCING SURFACE

Figure 3.5.6: Mesh of
level 3 created over the
cross section of the
starting shape to cal-
culate the solution of

Figure 3.5.7: Mesh of
level 3 created over the
cross section of the
shape obtained from
the optimization pro-

Figure 3.5.8: Mesh of
level &8 created over
a thinner peak with
more discretization
points.

the Laplace equation. cess.

To evaluate the effect of the microstructures on the drag we compare the values for the
drag force for the different structures:

Theorem 3.5.1. The effective tangential drag force measured directly on the tip of the
microstructures is given by

o 14 U1
f:c}:lf = 5 K
14 U2
f'eff =—-—
t2 2 L3 — 5C§

and the tangential drag for the smooth surface is in this case

Uy
f‘smooth — z
&1 2 L3+ 0.5¢’
< v U2
Pmooth — .
o2 2 Ly +0.5¢

Proof. We insert the corresponding components of u® in Ff and of v%in Fmooh where
vY was the Couette flow in P specified through the boundary conditions on the upper,
v’(Ls) = U, and lower boundary, v°(—%) = 0:

o) = Lgli : (#+5)

]

With this, following theorem is true:

Theorem 3.5.2. A rough surface with three-dimensional longitudinal riblets has a lower
drag than the corresponding smooth one where holes are drilled in:

FI] < et
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3.5. NUMERICAL RESULTS FOR CROSS AND LONGITUDINAL FLOW

This statement corresponds to the claim that under the same conditions the shark is able

to swim faster than another fish of the same size and form but with smooth skin.

In our model the riblets are restricted to stay within the viscous sublayer because otherwise
a turbulent flow model has to be considered. This is why the size of the sublayer and the
size of the microstructures gives the amount how much the drag is reduced. The size of the
viscous sublayer is fixed by L3 = \/(1/) ~ 1072 m so that we can vary only the sizes of the
riblets in changing the scaling parameter €. Here are some values for the drag for different
scaling parameters: For ¢ = 310" m we have Fpooth = Fppeoth — 0,588 - 107° and
Fel = 05821076, Fef = 0.585- 1075, Thus, |F™°"] = 0.825-107¢ and |F| = 1.1867,

which is 3.5% better than the smooth structure. Further evaluations are listed in table

3.5.1.

Table 3.5.1: The three-dimensional optimization results in dependence of the height

of the microstructure.

h (1074 | Ly [1073] | £ | |Fgmeoth] || Fef] non-optimized | |FET| optimized
0.25 0.95 0.05 0.725 0.724 (0.14%) 0.720 (0.7%)
0.5 0.9 0.10 0.744 0.7428 (0.16%) 0.731 (1.3%)
0.75 0.85 0.15 | 0.7644 | 0.7618 (0.34%) 0.748 (2.1%)
1.0 0.8 0.20 0.785 0.7819 (0.4%) 0.763 (2.8%)
1.5 0.7 0.30 | 0.8319 | 0.825 (0.8%) 0.7946 (4.5%)
2.0 0.65 0.35 0.857 0.849 (0.9%) 0.811 ( 5.4%)
2.5 0.6 | 040 | 0884 |0.875 (1%) 0.829 (6.2%)
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Conclusion

It was our aim to solve the following shape design problem on periodically distributed
microstructures: Find the optimal shape of microstructures on the surface of a submerged
body such that the tangential drag force is minimized.

This optimization problem was solved by the following approach: The domain of opti-
mization was a channel with the height of the viscous sublayer of a turbulent flow with
a rough bottom. The flow equations therein were described by the incompressible steady
state Navier-Stokes equation with a Couette flow profile prescribed at the in- and outflow
boundary and given by two boundary conditions, by the no-slip condition on the lower
boundary and the friction velocity U ~ /v on the upper boundary. These state equations
have rapidly oscillating coefficients for small microstructures and are hard, or even impos-
sible, to solve directly without special software. Therefore, in the first part of this thesis,
we described the approximation process of these state equations via homogenization, and,
in the second part, we solved the optimization problem of the resulting simplified model.
This approach is done for two and three dimensions, where the optimization problem in
three dimensions was solved only for a special geometry that involves longitudinal riblets,
which were observed on the skin of fast swimming sharks.

Homogenization theory facilitates our numerical computations of physical phenomena
in which microscopic irregularities arise. The macroscopic (averaged) model is derived
by describing the limiting behavior (where the period tends to zero) of the solutions of
an elliptic boundary value problem with periodic coefficients. These effective equations
have smooth coefficients and solutions. We used the results of W. Jager and A. Mikeli¢
from [32] and [33] who justified the wall law on the artificial smooth boundary by mul-
tiscale expansion, the so-called Navier friction law and proved convergence results for
the asymptotic expansion of the velocity, for the mass flow and for the tangential drag
force. Deriving the effective solutions analytically was of great impact to our optimization
problem. The objective could be replaced by a scalar size, the so-called Navier constant,
which was calculated from an auxiliary boundary layer problem, the Stokes equation with
additional boundary conditions on the smooth interface. With the developed formula
for the effective drag force we were able to prove that a rough surface has smaller drag
than the corresponding smooth one. A numerical validitation is given for the optimal
step size of microstructures which is twice their height. This result was motivated by
the physiognomy of shark skin which was researched by Dinkelacker and Reif in [53], and
by experimental results obtained from Bechert and his co-authors in [10], where they
measured the optimal groove depth for a rib surface in an oil channel. For blade ribs
they obtained an optimal groove depth of half of the lateral rib spacing and for scalloped
riblets, an optimal depth which is located near two-third of the spacing.

For the definition of our optimization problem state variables, design parameters, an
objective and constraints have to be specified. In our fluid mechanics setting the state
variables were the velocity and pressure, first of the incompressible steady state Navier-
Stokes equation, and second of the boundary layer equation. The design parameters were
given by the parameters which determine the shape of the microstructure; hence, the class
of admissible shapes had to be specified. The result obtained by the optimization process
depends, among other factors, on the size of the chosen set of admissible shapes. We chose
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this set in such a way that the shape function of the microstructures can be represented
as a cubic spline function with prescribed height. The objective functional is first the
tangential drag force acting on the rough surface, and second the effective tangential
drag force acting on the artificial smooth surface which replaces the rough one in the
homogenized model. Inserting the formula for the velocity of the effective flow, we end
up in minimizing a scalar size, the so-called Navier constant. The main constraints were
the governing flow equations, the incompressible steady state Navier-Stokes equation, and
the boundary layer equations, the Stokes equation with additional boundary conditions
on the smooth interface. The side constraint in our problem was the fixed height of the
microstructures.

The smoothness restriction of our parametrization was a necessary assumption consider-
ing sensitivity analysis which deals with computations of derivatives of solutions of state
problems and cost functionals with respect to shape variations. We considered very small
shape variations in the normal direction of the boundary of the microstructure. The most
important results obtained here are the analytical representation of the sensitivity, which
is given by a boundary integral, which shows a linear dependence in the domain varia-
tion, and the proof, that the solutions of the state problem depend continuously on the
design variables. The latter together with lower semicontinuity assumptions on the cost
functional gives us an existence result of our optimization problem. From the sensitivity,
the necessary optimality conditions could be derived and a sequence of admissible shapes
which converges to an optimal solution could be constructed.

The optimization problem was therefore solved with a sensitivity-based optimization
method, where we chose the steepest descent with Armijo line search for the optimization
process. In each iteration the state equation had to be solved several times until the con-
ditions imposed by the Armijo rule are fulfilled. With this choice of algorithms not many
iterations are needed to reach an optimal solution. Solving the state equations is much
more time consuming than to realize a minimization step. We used an external software
for solving partial differential equations on rough boundaries. In our case it was conve-
nient to use the package FEMLISP, developed by N. Neuss for boundary layer problems
resulting from modeling the flow over porous media. We were able to transform some
approximation results and error estimates to our problem with rough boundary. For the
discretization finite elements on unstructured grids and multigrid algorithms were used.
An optimal shape was found with this algorithm; it is a thin peak represented with cubic
spline functions.

We compared the computed results for the effective tangential drag force with values for
the tangential drag force on the smooth configuration, on the rough boundary and on
the smooth artificial boundary obtained with direct simulations of the microscopic model.
This direct simulations on the rough boundary could be performed with special methods
developed in the group of R. Rannacher for bigger scales. The results obtained emphasize
on one hand the power of the used simulation toolkit Gascoigne, which could handle
microstructures larger than 0.0lmm with a period twice their height. On the other hand,
the results emphasize the advantage of the homogenized model. For larger scales it can
be used as a predictor for the correct model, for the right boundary conditions or even
for the choice of shapes. For very small scales the homogenized model becomes more and
more accurate whereas direct simulations cannot be performed anymore. Compared to
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the software used for the direct simulations, the numerics for the homogenized method is
much easier to implement and the calculations can be performed on a normal PC. The
computing technics differ and are optimized to each problem. In the direct simulations
the big data are handled with unstable finite elements of equal quadratic order to reduce
the implementation effort whereas in FEMLISP higher order stable finite elements on a
small part of the domain are used.

In this thesis we were able to motivate the influence of the shape of riblets on the viscous
sublayer of a turbulent flow, as laboratories have examined in experiments. The most
important contribution of the microstructures to the drag minimization seems to be that
the cross flow is dampened compared to the smooth case which has the effect that the
vortices in the buffer layer loose intensity. The amount of drag reduction depends on the
ratio: scaling parameter to width of the viscous sublayer. In our analysis the width of
the model is fixed. If we would enlarge it, other state equations for turbulent flow had
to be considered. The scaling parameter can be varied: The smaller it is, the smaller the
contribution to the drag force.

By changing our parametrization of the shape of the microstructures, i.e. imposing less
regularity, we would enlarge our set of admissible shapes. This would create the possibility
to find more interesting shapes. Nevertheless, we calculated the cost function for the
solution to the state equations on the slit domain, and got an only slightly better result.

To conclude, there remain interesting questions to answer in the future: Would a general-
ized parametrization with a different methodology in the optimization algorithm lead to
a different optimal shape? Is it really necessary to consider generalized three-dimensional
structures instead of longitudinal riblets, which leads to a three-dimensional optimization
routine and three-dimensional state equations? How can we model the state equations if
the riblets reach the buffer layer? And, how big would the amount of drag reduction be
in this turbulent flow?
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