
I N A U G U R A L – D I S S E R T A T I O N

zur

Erlangung der Doktorwürde

der

Naturwissenschaflich-Mathematischen Gesamtfakultät

der

Ruprecht-Karls-Universität

Heidelberg

vorgelegt von

Diplom Mathematiker Dirk Oliver Theis

aus Schwalmstadt

Tag der mündlichen Prüfung: 20.12.2005

Thema

Polyhedra and algorithms for the General Routing Problem

Gutachter: Prof. Dr. Gerhard Reinelt
Prof. Dr. Dr. h. c. Hans Georg Bock

Zusammenfassung

Das General Routing Problem ist ein auf ungerichteten Graphen definiertes NP-schweres kom-
binatorisches Optimierungsproblem. Es handelt sich um eine geringfügige Verallgemeinerung des
besser bekannten Rural Postman Problem (siehe z.B. Garey & Johnson 1979, [GJ79]), zu dem
es tatsächlich sowohl theoretisch als auch was die praktische Lösung betrifft äquivalent ist. Der
Unterschied in der Namensgebung ist nur historisch bedingt.

Ein erfolgreicher Ansatz, um kombinatorische Optimierungsprobleme dieser Art praktisch zu
lösen, d.h. unter der Menge der möglichen Lösungen die beste zu finden, ist der folgende. Die
Menge der Lösungen einer konkreten Probleminstanz wird mit den Ecken eines konvexen Poly-
eders in einem euklidischen Vektorraum identifiziert. Ein konvexes Polyeder ist der Schnitt endliche
vieler Halbräume. Ist eine Beschreibung des Polyeders durch lineare Ungleichungen gegeben, kann
dann mit Standardmethoden der linearen Optimierung schnell die beste Lösung gefunden werden.

Um diesen Ansatz zu benutzen, müssen zwei Fragestellungen angegangen werden. Erstens
müssen polyedrische Untersuchungen der Struktur des kombinatorischen Optimierungsproblems
vorgenommen werden. Sowohl die Dimension des umgebenden euklidischen Raumes als auch
die Struktur des Polyeders selber hängen nämlich ab von den Daten, welche die Probleminstanz
definieren. In unserem Fall ist das der Graph. Ziel der Untersuchungen ist es, Klassen von
Ungleichungen zu finden, die benötigt werden, um die Polyeder zu beschreiben. Diesen Zweig der
diskreten Optimierung nennt man polyedrische Kombinatorik. Zweitens müssen die Klassen von
linearen Ungleichungen, die man identifiziert hat, algorithmisch nutzbar gemacht werden. Das
führt zur Entwicklung von Algorithmen, die das folgende Problem bearbeiten: Gegeben einen
Punkt des umgebenden Raumes, stelle fest, ob er in dem Polyeder liegt, das durch die vorliegende
Probleminstanz definiert wird, und falls das nicht der Fall ist, erzeuge eine Hyperebene in Form
einer linearen Ungleichung, die den Punkt vom Polyeder trennt.

Diese Arbeit widmet sich sowohl der polyedrischen Kombinatorik als auch der algorithmischen
Nutzbarmachung von Ungleichungen im Zusammenhang mit dem General Routing Problem. Zum
ersten Punkt tragen wir strukturelle Eigenschaften der Polyeder sowie eine Reihe von bisher nicht
bekannten Klassen von Ungleichungen bei. Für den zweiten Punkt stellen wir Algorithmen vor,
die die oben beschriebenen Trennungsprobleme sowohl theoretisch als auch in der Praxis besser
lösen. Wir haben unsere Ergebnisse genutzt, um eine Software zu entwickeln, die das General
Routing Problem löst, und wir stellen Rechenergebnisse vor.

Abstract

The General Routing Problem is an NP-hard combinatorial optimization problem defined on
undirected graphs. It is a minor generalization of the better-known Rural Postman Problem (see,
for example, Garey & Johnson 1979, [GJ79]), to which it is, both theoretically and practically,
actually equivalent, although the names are historically different.

A widely successful approach to the practical solution of combinatorial optimization problems
of this kind is to identify the set of feasible solutions for a particular instance of the problem with
the extreme points of a convex polyhedron in an Euclidean vector space. A convex polyhedron is
the intersection of a finite number of half spaces. Given a description of the polyhedron in terms
of linear inequalities, standard methods of linear optimization can then be used to find the best
solution quickly.

Using this approach, two main problems, one theoretical and one algorithmic, have to be
attacked. Firstly, polyhedral investigations of the structure of the combinatorial optimization
problem are required. Both the dimension of the ambient Euclidean spaces and the structure of
the polyhedra themselves depend on the data which define the instance, in our case the graph.
The goal is to find classes of linear inequalities which are necessary to describe the polyhedra. This
branch of discrete optimization is commonly called polyhedral combinatorics. Secondly, the classes
of linear inequalities have to be made usable algorithmically, which leads to the development of
algorithms to solve the following problem: given a point in the ambient space, decide if it lies
outside of the polyhedron defined by the instance, and if so, produce a hyperplane in the form of
a linear inequality which separates the point from the polyhedron.

This thesis is dedicated to both the polyhedral combinatorics of the General Routing Problem
and the algorithmic exploitation of polyhedral results. To the first issue, we contribute structural
properties of the polyhedra and a number of formerly unknown classes of inequalities. To the
algorithmic issue, we contribute both theoretically and practically improved separation algorithms.
Finally, having applied our findings in the development of a piece of software which solves the
General Routing Problem, we give computational results.

vi

To Samuel

Preface

The General Routing Problem is an NP-hard combinatorial optimization problem defined on
undirected graphs. It is a minor generalization of the better-known Rural Postman Problem (see,
for example, Garey & Johnson [GJ79]), to which it is, both theoretically and practically, actually
equivalent, although the names are historically different.

A widely successful approach to the practical solution of combinatorial optimization problems
of this kind is to identify the set of feasible solutions for a particular instance of the problem with
the extreme points of a convex polyhedron in

� m. A convex polyhedron is the intersection of a
finite number of half spaces. Given a description of the polyhedron in terms of linear inequalities,
standard methods of linear optimization can then be used to find the best solution quickly.

Using this approach, two main problems, one theoretical and one algorithmic, have to be
attacked. Firstly, polyhedral investigations of the structure of the combinatorial optimization
problem are required. Both the dimension of the ambient spaces

� m and the structure of the
polyhedra themselves depend on the data which define the instance, in our case the graph. The
goal is to find classes of linear inequalities which are necessary to describe the polyhedra. This
branch of discrete optimization is commonly called polyhedral combinatorics. Secondly, the classes
of linear inequalities have to be made usable algorithmically, which leads to the development of
algorithms to solve the following problem: given a point in the ambient space, decide if it lies
outside of the polyhedron defined by the instance, and if so, produce a hyperplane in the form of
a linear inequality which separates the point from the polyhedron.

This thesis is concerned with both the polyhedral combinatorics of the General Routing Prob-
lem, and the algorithmic exploitation of polyhedral results. To the first issue, our contributions
include

• the solution of an open question about the structure of the polyhedra when there are only
two so-called R-sets in Chapter 2,

• a structural result which allows extending known classes of inequalities in Chapter 3,

• the solution of an open question about lifting of facet-defining inequalities and the facet-
defining property of known inequalities in Chapter 4, and

• the solution of an open question about the relationship of GTSP polyhedra (a subset of
General Routing Problem polyhedra) with the polyhedra associated with the well-known
Symmetric Traveling Salesman Problem, and deep insights into the relationship of the two
kinds of polyhedra in Chapter 5.

An extended abstract of a subset of the results of Chapter 5, which was found in cooperation
with M. Oswald, appeared in the proceedings of the 11th conference on Integer Programming and
Combinatorial Optimization [ORT05]. Our contributions to the algorithmic issue include

• a new1 algorithm for the so-called minimum odd cut problem, which, in practice, runs
considerably faster than the known one,

1We acknowledge that the basic core idea of the algorithm was developed independently by Rizzi [Riz03].

vii

viii

• a new algorithm for the so-called blossom separation problem which improves the theoretical
running time of the known algorithms for this problem in Chapter 7, and

• a number of results on polynomial time separation algorithms for some classes of inequalities
in Chapter 8.

An extended abstract of an earlier version of the results on blossom separation, which were co-
operatively developed with A. Letchford, appeared in the proceedings of the 10th conference on
Integer Programming and Combinatorial Optimization [LRT04].

Finally, we also contribute to the practical solution of the General Routing Problem. We
developed a so-called Branch-and-Cut software, which solves General Routing Problem instances,
designed and implemented various heuristic separation algorithms described in Chapter 9, and we
present computational results for General Routing Problem instances on graphs with up to and
exceeding 2000 nodes in Chapters 11 and 12. The vast majority of the instances with up to more
than 1000 nodes can be solved quickly by our software program.

For some obscure reason, theses are written in “we”-form, and this paragraph is the only
exception to this rule in this thesis. I would like to thank my PhD supervisor Professor Gerhard
Reinelt for financing my position and for his support. Adam Letchford and Marcus Oswald deserve
particular thanks for their contributions to the results of Chapters 7 and 5, respectively. Thanks
also to the physicist Tania Robens, who wrote code for the transformation of data files of problem
instances and the extraction of statistical data. John Beasley, Angel Corberán, Richard Eglese,
and Gerhard Reinelt contributed data files containing problem instances. Last but not least,
thanks to my colleagues Dino Ahr, Cara Cocking (thanks for proof reading!), Marcus Oswald,
Hanna Seitz (thanks for proofreading!), Chotiros Surapholchai (thanks for all the cookies!), and
Klaus Wenger at the Discrete Optimization Group of the University of Heidelberg, and to the
secretaries Catherine Proux-Wieland and Karin Tenschert. I dedicate this thesis, particularly my
favourite Chapter 5, to my son, Samuel.

Contents

0 Preliminaries and notation 1

0.1 Affine geometry and polyhedra . 1

0.2 Graphs . 2

0.3 Algorithms and complexity . 4

0.4 Combinatorial optimization . 4

1 Rural Postman Problem and General Routing Problem 9

1.1 Definition . 9

1.2 A short summary of known results . 10

I Polyhedra 13

2 Polyhedra associated with the GRP 15

2.1 The unbounded polyhedron . 15

2.2 The Ghiani-Laporte tree and bounded polyhedra 19

2.3 Results on polyhedra for few R-sets . 21

2.4 An even smaller polytope . 24

3 Transformation and symmetry 25

3.1 Symmetry and isomorphism of GRP polyhedra . 25

3.2 Relaxation of valid inequalities . 27

3.3 Examples . 27

4 Dimension and lifting 33

4.1 Join structures . 33

4.2 Dimension and complete system of equations . 38

4.3 Lifting . 42

4.4 Facet-defining property for the polyhedra with bounds 44

5 The GTSP polyhedron 49

5.1 How GRP is a face of GTSP . 49

5.2 Notation, terminology, and known facts for GTSP polyhedra 50

5.3 Vertices, shortcuts, and faces . 54

5.4 Existence of non-NR facets with codimension 2 in STSP 59

5.5 Tilting complexes . 61

5.6 An algorithmic perspective . 70

5.7 Application to complete descriptions . 71

5.8 Intermediate polyhedra . 73

5.9 0-Node lifting . 76

ix

x CONTENTS

6 Understanding LP-solutions 79
6.1 Blocks and connected components . 79
6.2 Flipping variables and merging R-sets . 80
6.3 Shrinking . 82

II Separation and related algorithms 85

7 Odd cuts and related concepts 87
7.1 Terminology, notation, and known facts . 88
7.2 The Minimum T -odd cut problem . 91
7.3 Blossom minimization . 95

8 Exact separation algorithms 103
8.1 Known results . 103
8.2 Switched PBs . 104
8.3 Some results about KC- and PB-separation . 107

9 Separation heuristics 113
9.1 KC-heuristic based on circular partitions . 113
9.2 Path-bridge heuristics . 113
9.3 A note on HC-separation . 116

III Branch & Cut 119

10 Strategies inside Branch-and-Cut 121
10.1 Core iteration, feasibility test, and first separation routines 121
10.2 Heuristics for feasible solutions . 123
10.3 Minimum odd cuts and blossoms in practice . 123
10.4 Selecting inequalities and variable bounds . 126
10.5 Branching . 128

11 Performance of separation algorithms 129
11.1 The core minimum odd-cut algorithm . 129
11.2 The blossom minimization core . 131
11.3 Cactus based heuristic for KCs . 131
11.4 “Path-finder” heuristic for path-bridges . 132
11.5 Cactus cycles based heuristic for PBs . 132
11.6 Cactus cut-nodes based heuristic for PBs . 132

12 Solution of the GRP 133
12.1 Instances . 133
12.2 A direct comparison to previous work . 134
12.3 Comparison of lower bounds . 134
12.4 Solution by Branch-and-Cut . 136

A Figures for Chapter 11 139
A.1 The core minimum odd-cut algorithm and the blossom-minimization core 139
A.2 Cactus based heuristic for KCs . 142
A.3 “Path-finder” heuristic for path-bridges . 147
A.4 Cactus cycles based heuristic for PBs . 153
A.5 Cactus cut-nodes based heuristic for PBs . 156

B Data of the instances 161

CONTENTS xi

C Figures for Chapter 12 167
C.1 Sizes and Ghiani-Laporte gap . 167
C.2 Gap closures . 169
C.3 Relative changes of lower bounds . 172
C.4 Total running times . 175
C.5 Number of LPs . 178
C.6 Solution by Branch-and-Cut . 181

List of symbols 199

xii CONTENTS

Chapter 0

Preliminaries and notation

In this chapter, we explain terminology and notation which we use, and we direct the reader to
the mathematical preliminaries which we require. All symbols are also explained in the list of
symbols at the end of this thesis.

0.1 Affine geometry and polyhedra

For sets X,Y ⊆
� m, we frequently write X + Y for the set of all elements x+ y with x ∈ X and

y ∈ Y . We define X − Y in the same fashion, and, in order to avoid confusion, we particularly
direct the reader to the notation X −X = {x− y | x, y ∈ X}.

Let L be a real vector space. We recall the definition of an affine subspace, which is a set
A ⊆ L satisfying λa + µb ∈ A for all a, b ∈ A and λ, µ ∈

�
with λ + µ = 1. Let A be an affine

subspace of a vector space. Then we say that the set A−A is the linear space defined by A. Given linear space
defined by Aany non-empty set X ⊆ L, we denote by affX the affine hull of X , which is the smallest affine

affXsubspace containing X . We also call aff X − affX = lin(X −X) the linear space defined by X ,
where linZ denotes the linear hull of a set Z. The dimension dimX of a non-empty set X is the linZ

dimension of the linear space defined by X . In particular, the dimension of an affine subspace is
the dimension of the linear space it defines. We agree that dim ∅ = −1.

Let L be a real vector space with inner product 〈· | ·〉. A half space is a set of the form
{x ∈ L | 〈x | a〉 ≥ α}, where a ∈ L \ 0 and α ∈

�
. We say that the half space is defined by

the inequality (a, α). For the notation (a, α) we allow a = 0. In
� m, we use the notation xy (a, α)

for the standard inner product, thus (a, α) represents the inequality ax ≥ α. Note that in the
general context, it is customary to use less-than-or-equal inequalities, but in our context, the
greater-than-or-equal inequalities are more natural.

We denote by convX the convex hull of a set X . A (convex) cone is a set which is closed with
respect to addition and scalar multiplication with non-negative reals. The conic hull coneX of
the set X is the smallest cone containing X . A (convex) polyhedron is an intersection of a finite
number of half spaces. Equivalently, it is the Minkowski sum of a convex hull of a finite set X
and the conic hull of a finite set Y , namely convX + coneY. A bounded polyhedron is called a
polytope.

If P is a polyhedron, an inequality (a, α) is said to be valid for P , if 〈a | x〉 ≥ α for all x ∈ P . valid
inequalityFor non-zero a, this is equivalent to P being contained in the half space defined by (a, α). A face

faceof a polyhedron is the intersection of P with the set {x ∈ L | 〈a | x〉 = α}, which is equal to
the hyperplane in L defined by the equation if a is non-zero. A face of dimension zero is called a vertex, edge,

facetvertex, a face of dimension one is called an edge. By the codimension of a face F of a polyhedron
P we mean the number codimF := dimP − dimF . A face with codimension one is called a facet, codimension

a face with codimension at least one is called proper. proper face

In Chapter 5, a slightly deeper understanding of convex polyhedra will be necessary, for which
we refer to any text book on the subject (e.g., [Brø83, Grü03, Zie98]). We denote the face lattice

1

2 CHAPTER 0. PRELIMINARIES AND NOTATION

of a polyhedron P by L (P), and for x ∈ P , we denote by F (x) the set of all facets of P whichL (P), F (·)

contain x.

0.1.1 Polyhedra of blocking type

We recall (see e.g. [Sch86]) that a polyhedron P ⊆
� m is said to be of blocking type, if P =

convX +
� m

+ , where X ⊆
� m

+ is a finite set. For a polyhedron P ⊆
� m, we define

B(P) :=
{

a ∈
� m

+ | ax ≥ 1 ∀x ∈ P
}

.

The set B(P) is a polyhedron of blocking type. If P is of blocking type, then B(P) is calledblocking
polyhedron the blocking polyhedron of P . P is of blocking type if and only if B(B(P)) = P holds. Obviously,

the non-negativity inequalities xj ≥ 0 define faces of P which are either empty or facets. We call
facets which are defined by non-negativity inequalities non-negativity facets. For convenience, innon-negativity

facets the following proposition, we say that a face of P or B(P) is trivial, if it is proper and non-empty
trivial face and only contained in non-negativity facets.

0.1.1 Proposition The canonical mapping B(P) 7→
� m ×

�
: a 7→ (a, 1) which maps members of

the blocking polyhedron to valid inequalities for P has the following properties.

(a). For all a ∈
� m \ {0}, a is a vertex of B(P) if and only if (a, 1) defines a facet of P .

(b). Let a ∈
� m \ {0} and d ≥ −1. Then a is a relative interior point of a non-trivial face of

B(P) with codimension d+ 1 if and only if (a, 1) is valid and defines a face of dimension d
of P .

(c). Let L denote the face lattice of P and let N ⊆ L be the set of all trivial faces of P .
Further let Let L B denote the face lattice of B(P) and let N B ⊆ L be the set of all trivial
faces of B(P). Then the posets L \N and L B \N B are anti-isomorphic. We denote this
anti-isomorphism by �] : F 7→ F].�]

(d). A face F] of B(P) is bounded if and only if F is not contained in a trivial face.

Proof. (a) See (b).
(b) For any a 6= 0, we define

Q := {(x, 1) | x ∈ P ∧ ax = 1}, and F := {x ∈ P | ax = 1}.

Clearly, F = ∅ is equivalent to Q = ∅, and, using lin ∅ = {0}, we have dimF = dim linQ− 1.
Let a 6= 0 be a relative interior point of a face F] of codimension d + 1 of B(P). Since

B(B(P)) = P , if F] is non-trivial, then for all d ≥ −1 the linear space of all equations satisfied
by F] is generated by Q. On the other hand, clearly, the face defined by (a, 1) is F .

For the other direction, let (a, 1), with a 6= 0, be a valid inequality defining the face F with
dimension d. Then a is contained as a relative interior point in a face F] of P . Again linQ is the
space of equations satisfied by F] and hence dimF] = dim linQ.

(c) Follows from (b), with ∅] := B(P).
(d) Obvious.

0.2 Graphs

For all the standard terminology related to graphs, we refer to any of the common text books, for
example [BM76, Die00]. In this section we mainly explain the deviations from standard notation
which are convenient and common in our context.

In this thesis we deal with two kinds of (abstract) graphs: simple graphs and loopless multi-
graphs. For a graph G, we denote by V (G) its node set. By E(G) we denote the edge (multi)set,V (G)

E(G) which is a sub-(multi-)set of the set of two-element subsets of V (G). We will denote by uv an

0.2. GRAPHS 3

edge with end nodes u and v, i.e., in the case of (simple) graphs, uv is shorthand for {u, v}. If
uv ∈ E(G), we sometimes write u ∼ v, meaning that u and v are adjacent. u ∼ v

For a node set U , we follow [GR00] in denoting by ∂(U) the coboundary1 of U , i.e., the set of ∂(U)

edges with precisely one end node in U . We abbreviate ∂({u}) by ∂(u). An index ∂H(·) means
that we take the edge set in the graph H . If ∅ (U (V (G), we usually say that ∂(U) is a cut

cut in the graph, but in Chapter 7, for convenience, we will say that (U, V (G) \ U) is a cut. In shore

any case, we will call U and V (G) \ U the shores of the cut. We will also use the abbreviations (U : V),
(u : v)(U : V) := ∂(U) ∩ ∂(V) and (u : v) := ({u} : {v}).

We denote by G[U] the subgraph induced by the node set U ⊆ V (G). G[U]

Recall that a block of G is a maximal connected subgraph which does not contain a cut-node
of G. The reverse operation to decomposing G into blocks is the 1-sum operation. 1-sum

0.2.1 Deletion, contraction, shrinking, and identification

Let F be a set of edges of a graph G. We denote by G \ F the graph which results if the edges in G \ F

F are deleted from G. For a set U ⊆ V (G), we denote by G − U the graph which results if the G− U

nodes in G along with their incident edges are deleted from G.
We denote by G/F the graph obtained from G by contracting the edges in F , where, depending G/F

on the context, the result of the contraction is either a loopless multigraph, i.e., loops are deleted
but parallel edges are kept, or a simple graph. The abbreviation G/e := G/{e} is customary.
Let H denote the subgraph of G induced by F . If H is connected, then G/F is called the graph
obtained from G by shrinking H , or by shrinking V (H), and it is also denoted by G/V (H). In shrinking

the general case, if U1, . . . , Uk are the node sets of the connected components of H , then the
contraction operation replaces each set Ui by a node ui, and we say that ui is the node which
results from shrinking Ui.

We assume that the nodes (edges) of G which are not changed by the contraction form a subset
of the node set (edge set) of G/F . For example, if uv ∈ E(G), then V (G/uv) ⊇ V (G) \ {u, v}. In
the case of loopless multigraphs, E(G/uv) = E(G) \ (u : v), or, more generally, if H denotes the
subgraph of G induced by F , then E(G/F) = E(G) \E(H).

For U ⊆ V (G) we denote by G/U the graph obtained by identifying the nodes in U to a single identifying

node. In terms of contraction, this is the graph which results if for every 2-element subset {u, v}
of U with uv 6∈ E(G), an edge uv is added to G, and then the set of all edges with both end nodes
in U is contracted. In other words, V (G/U) = V (G) \U ∪ {u} and the edge set of G/U is defined
in the obvious way, depending on whether we speak of simple graphs or loopless multigraphs. We
say that u is the node which results from identifying U . If U1, . . . , Uk are disjoint subsets of V (G),
then we can construct the graph which results from G by identifying each set Ui to a single node
ui. This means that the new graph has node set {u1, . . . , uk} ∪ V (G) \

⋃

i Ui.

0.2.2 Vector notations

We denote by 0 the all-zeroes vector, and by 1 the all-ones vector with appropriate index set. 0, 1

For a set F , we denote by χF the characteristic vector for the set F , i.e., χFe = 1, if e ∈ F , and χF , χe

χFe = 0, otherwise. We abbreviate χj := χ{j}.
Let x : M → X , and F ⊆M . we denote by xF the restricted function F → X . xF

Let G be a graph and X a set. We do not distinguish between a vector x ∈ XE(G) and a
function x : E(G) → X : e 7→ xe. Now let x : E(G) →

�
. For any set of edges F ⊆ E(G), we x(F)

abbreviate x(F) :=
∑

f∈F xf . We also let E(x) := {e | xe 6= 0}, and if not otherwise stated, G(x) E(x)

G(x)denotes the spanning subgraph of G with edge set E(x). The graph G(x) is naturally equipped
with edge the weights xe, e ∈ E(x).

For x : E(G) →
�

and F ⊆ E(G), we define the vector x/F : E(G/F) →
�
. If the contraction x/F

takes place in the context of loopless multigraphs, and F̄ denotes the edge set of the subgraph H
of G induced by F , then x/F := xE(G)\F̄ .

1Using ∂ instead of δ is somewhat counterintuitive, but we want to keep the symbol δ free of other purposes.

4 CHAPTER 0. PRELIMINARIES AND NOTATION

If the contraction takes place in the context of simple graphs, then, if U1, . . . , Uk are the node
sets of the connected components of H , and ui is the node which results from shrinking Ui, thenmerging of

edges

(x/F)vw :=

x(Ui : Uj) if v = ui and w = uj

x(v : Uj) if v 6∈ {u1, . . . , uk} and w = uj and

xvw if v, w 6∈ {u1, . . . , uk} .

We say that the edges (Ui : Uj) (or (v : Uj) resp.) are merged. The corresponding notation applies
to node-identification.

0.2.3 Miscellany

We denote by Kn the complete graph with n nodes. Given a graph G and a non-negative vector
c, we denote by dist(G,c)(u, v) the length of a shortest path in G with respect to c between u anddist(u, v)

v. We abbreviate distG(u, v) := dist(G,1)(u, v) and we omit the index G if it cannot be confused.
Let t : V (G) → {0, 1} with

∑

v t(v) = 0 mod 2. A t-join is a vector y : E(G) → {0, 1} with thet-join, T-join

property that y(∂(v)) = t(v) mod 2 holds for all v ∈ V (G) (see, e.g., [Cat92]). We will identify y
with the edge set J := {e | ye = 1}. In the area of combinatorial optimization, it is more common
to call J a T-join with set of odd nodes {v | t(v) = 1}, or a T -join, where T := {v | t(v) = 1}.

0.3 Algorithms and complexity

We give a very brief and very informal introduction to algorithms and complexity, which is mainly
adopted from [Coo] and [Sch03].

We call a problem polynomially solvable, or simply polynomial, if there exists a polynomial
time algorithm for the problem, i.e., an algorithm whose running time in terms of number of
“elementary” steps is bounded by a fixed polynomial in the size of the input.

Informally the class P is the class of decision problems which are polynomially solvable. NP
is defined as the class of decision problems for which each input with positive answer has a
polynomial-time checkable “certificate” of correctness of the answer [Sch03]. The class coNP
consists of all decision problems, for which the complementary problem, i.e., the problem with
positive and negative answer exchanged, is in NP. A decision problem P in NP is NP-complete,
if every problem in P ′ ∈ NP can be polynomially reduced to P , i.e., there exists a function T
from the domain of P ′ to the domain of P , which can be computed in polynomial time, such that
the answer to x′ is positive if and only if the answer to T (x′) is positive.

An optimization problem (or, to be precise, a minimization problem) is a problem of the form
min{f(x) | x ∈ X}, where X is a set derived from the input of the problem, and f is a rational-
valued function on X . It can usually be reduced to the following decision problem: “Given a
r ∈ � , is there an x ∈ X with f(x) ≤ r?” Obviously, the decision problem can be polynomially
reduced to the optimization problem. On the other hand, if an upper bound β on the size of the
minimum value of f is known such that β is bounded by a polynomial in the input size, then, by
binary search, the optimization problem can be polynomially reduced to the decision problem.

An optimization problem P is called NP-hard, if every decision problem in NP can be reduced
to P in the manner just described.

0.4 Combinatorial optimization

We repeat some facts from the area of combinatorial optimization.

0.4.1 Minimum cuts and cactus representation

Given a set V , a function 2V → � is called submodular, if for each U,W ⊆ V we have f(U ∩W)+submodular
function

0.4. COMBINATORIAL OPTIMIZATION 5

f(U ∪W) ≤ f(U) + f(W). It can easily be seen that, if G is a graph and c ∈ � E(G)
+ , then the

function

c(�) : 2V (G) → � : U 7→ c(U) := c(∂(U))

is submodular. The minimum value which c(�) attains over 2V (G) \{∅, V (G)} is denoted by λc(G),
and for a set U on which the minimum is attained, ∂(U) is called a c-minimum cut, or just
minimum cut. In Chapter 7, we will call the pair (U, V (G) \ U) a (minimum) cut, instead of the
edge set. If G is not connected, then λc(G) = 0, and for the case that G consists of a single node,
we agree on λc(G) = ∞.

A circular partition A0, . . . , AK is a partition of V (G), which satisfies c(Ai : Ai+1) = λc(G)/2 circular
partitionfor each i, where i + 1 is computed modulo K. All circular partitions of can be retrieved from

the so-called cactus representation of all minimum cuts of G. A cactus is a graph in which every
block is a K2 or a circle. The cactus representation of all minimum cuts of a graph is a cactus K cactus

representationtogether with a mapping π : V (G) → V (K) with the property that every cut in K consisting of one
or two edges induces, by the application of π−1 to the node sets of the shores, a c-minimum cut
in G. A cactus representation of all minimum cuts exists for all graphs (with at least two nodes)
and all c : E(G) → � + [NK94]. It can be computed in time in time O(nm log(n

2
/m)) [Fle99].

Let s and t be two distinct nodes of G. An (s, t)-cut is a cut ∂(S), separating the nodes s and
t, i.e., with s ∈ S and t ∈ V (G) \ S, and a minimum (s, t)-cut is an (s, t)-cut which minimizes
the submodular function c(�) subject to this condition. By λc(G, s, t), we denote the value of
a c-minimum (s, t)-cut in G, where we omit G and c if possible. For Chapter 7, we assume
that the reader is familiar with the basics of maximum (s, t)-flows, minimum (s, t)-cuts, and the
residual network of a flow. When we talk of an (s, t)-cut (X,V (G) \X), we mean that s ∈ X and
t ∈ V (G) \X .

We recall some essential facts about the algorithm of Hao & Orlin [HO92] for computing a
minimum cut in a graph. For j = 1, . . . , n − 1, where n := |V (G)|, the algorithm computes a
minimum (sj , tj)-cut in the graph Gj := G/Sj , where S1 ⊆ . . . ⊆ Sn−1 ⊆ V (G), |Sj | = j, and
sj is the node of Gj which results from identifying Sj to a single node. The minimum over the
computed minimum (sj , tj)-cut values equals λ(G). While the idea is simple and goes back to
[PR90b], the contribution of [HO92] lay in showing how all the minimum (sj , tj)-computations
can be performed in total running time of O(nm log n

2
/m).

0.4.2 Cutting-planes, separation, and Branch-and-Cut

A successful method for solving combinatorial optimization problems is to formulate them as an
Integer-Linear-Programming (IP-) problem

min cx, subject to

Ax ≥ b

x integer.

(0.1)

and then use cutting-plane and Branch-and-Cut techniques, which we will now describe.
By omitting the condition that x must be integer from the system (0.1), one obtains a so-called

LP-relaxation of the IP. Its solution by, for example, the Simplex method, gives a lower bound for LP-relaxation

the optimal solution of the combinatorial optimization problem. We assume a certain low-level
familiarity with the Simplex method. The LP-relaxation is then successively strengthened by
adding more inequalities to the system Ax ≥ b. To be precise, suppose that x∗ is a vector which
satisfies Ax∗ ≥ b. The problem of deciding whether there exists an inequality (a, α) separating
x∗ from the set P := conv{x ∈ � m | Ax ≥ b}, and if so, producing one, is called the separation
problem for P . It is a famous theorem in combinatorial optimization that, under some technical separation

conditions, the combinatorial optimization problem can be solved in polynomial time if and only
if the separation problem is polynomial [GLS93]. See Algorithm 0.1 for a generic cutting-plane
procedure based on the Simplex method (for the sake of brevity, we excluded the case that the
LP is unbounded). This is the way how cutting-plane approaches are usually used in practice. An

6 CHAPTER 0. PRELIMINARIES AND NOTATION

iteration of the loop 1–8 is called an iteration of the cutting-plane algorithm. Theoretically, it is
not guaranteed that the algorithm terminates after a polynomial number of iterations (or even a
finite number, unless conditions on the (a, β) are demanded).

Algorithm 0.1 Cutting-plane algorithm

Input:
System of linear inequalities (A, b) and cost vector c such that x 7→ cx is bounded on
{x | Ax ≥ b}.

Output:
Solution to min cx subject to Ax ≥ b, x integer, if such an x exists.

1: Loop
2: Solve the LP-relaxation min cx subject to Ax ≥ b using the dual simplex method.
3: If the LP is infeasible, output “no lattice point”, Stop.
4: Let x∗ denote the LP solution.
5: Separation routine: Produce inequalities (a, β) which are valid for

P := conv{x ∈ � m | Ax ≥ b}, but violated by x∗, i.e., ax∗ < β.
6: If none could be found, output “x∗ is an optimal solution”, Stop
7: Add the inequalities (a, β) to the system (A, b).
8: End loop

From the above mentioned polynomial equivalence of separation and optimization it follows
that, for an NP-hard optimization problem, the running time expense required for the exact
resolution of the separation problem may not be feasible.

Although the cutting-plane algorithm could theoretically be used to solve an IP, in practice,
the method is combined with branch-and-bound techniques to form the so-called Branch-and-Cut
(B&C) approach, cf. [PR87]. Fig. 1 displays2 the core algorithm. The algorithm maintains a rootedBranch-and-

Cut,
B&C

tree of subproblems, called nodes. The B&C-process starts with one (root) subproblem. In the
cutting-plane phase, the loop between “solve LP” and “new constraints”, the local lower bounds
(llb) for the subproblems are determined and increased by cutting-plane generation (“separate”).
If “separate” fails to find valid inequalities violated by the current LP-solution, or if the local
lower bound does not increase for a number of iterations of the cutting plane phase (“tailing off”),
then the subproblem is split into two new subproblems (“branch”), in the sense that the unionbranching

of the sets of integer solutions in both subproblems equals the set of integer solutions in the split
subproblem. Then a subproblem in the tree is selected (“select”) for further treatment. Whenever
during the cutting plane phase an LP turns out to be infeasible, a local lower bound (llb) of a
subproblem exceeds the upper bound (ub), or if the subproblem is solved to optimality (“feasible”)
the subproblem can be pruned from the tree. The approach also incorporates the idea of exploiting
the solution of the LP-relaxation to find integer feasible solution, by which the upper bounds can
be improved, i.e., reduced (“feasible” and “exploit LP”).

The process finishes as soon as there is no remaining node in the tree (“tree empty”).
A global lower bound (glb) can be defined as the minimum of all local lower bounds of sub-

problems in the tree. The number
ub − glb

glb

is then called the gap. It is common praxis to terminate the B&C-process after a certain timegap

limit has been reached, and measure its success by the gap it achieved.
In the separation phase, it is customary to invoke a number of algorithms which are dedicated

to finding a violated valid inequality of a certain class. We call this a separation algorithm for a
class of inequalities, and we speak of exact separation, if the algorithm finds a violated inequality
iff one exists. It is customary to use separation heuristics, which may find violated inequalities ofexact/heuristic

separation the respective class, but may also fail to do so, even if the solution of the LP-relaxation violates
inequalities of the class.

2Thanks to Chotiros Surapholchai for the drawing, which is adopted from [JT98].

0.4. COMBINATORIAL OPTIMIZATION 7

new node

feasible

n

y
n

y

n

y

n

y y

tailing off
y

y

n

n

n

y

n

initialize

infeasible LP

exploit LP

separate

new constraints

output

select

branch

solve LP
stop

start

prune

tree empty

llb < ub

llb < ub

llb < ub

Figure 1: Branch-and-Cut flowchart

8 CHAPTER 0. PRELIMINARIES AND NOTATION

To avoid unnecessary growth of the number of rows in the LP, rows are removed from time to
time. For example, a row might be removed whenever it is not contained in the dual basis, or if the
respective inequality (a, α) has a negative slack α− ax∗, where x∗ is the solution of the LP. Thepool

separation removed rows are stored in a so-called pool, and after a number of iterations of the cutting-plane
phase, the inequalities in the pool can be checked, if they have become violated again after they
were removed from the LP. This checking is called pool separation.

0.4.3 The Traveling Salesman Problem

The Symmetric Traveling Salesman Problem, STSP, is the NP-hard optimization problem whichSTSP

asks for a minimum cost Hamiltonian cycle in a complete graphKn with edge weights c : E(Kn) →
� +. A successful Branch-and-Cut approach to solve the STSP is based on the Integer-Programm-
ing-formulation usually attributed to [DFJ54]:

min cx

x(∂(u)) = 2 for all u ∈ V (Kn) (0.2a)

x(∂(U)) ≥ 2 for all ∅ (U (V (Kn) (0.2b)

x ≥ 0 (0.2c)

x integer.

The equations (0.2a) are called degree equations, the inequalities (0.2b) are refereed to as subtour
elimination constraints. The LP-relaxation can be strengthened by adding the so-called comb
inequalities,

x(∂(H)) +

t
∑

j=1

x(∂(T)) ≥ 3t+ 1,

where ∅ 6= H (V (Kn), and ∅ 6= Tj (V (Kn), for j = 1, . . . , t, the Tj are pairwise disjoint and
Tj ∩H,Tj \H 6= ∅. In order for the inequality to make sense, t must be greater than or equal to
three an odd number.

We denote by STSP(n) the Symmetric Traveling Salesman Polytope on n nodes, which is definedSTSP(n)

as the convex hull of the integer points satisfying (0.2), i.e., the incidence vectors of edge sets of
Hamiltonian cycles of the complete graph Kn.

Chapter 1

Rural Postman Problem and

General Routing Problem

1.1 Definition

1.1.1 Classical definition

Given a connected loopless multigraph G, a vector c ∈
� E(G)

+ of non-negative edge costs, a set of
required nodes VR ⊆ V (G) and a set of required edges ER ⊆ E(G), the General Routing Problem required edges

ER(GRP) consists of finding a closed walk in G containing the required nodes and edges, such that
the sum of the edge costs is minimized [Orl74, LR76].

The General Routing Problem includes as a special case the Rural Postman Problem (RPP), RPP

namely if VR = ∅. However, the GRP and RPP are not essentially different, and a GRP-instance
can be “modeled” as an RPP-instance by simply adding a new node and a single edge for each node
in VR which is not adjacent to a node in ER. The definition of the General Routing Problem is
more natural than the original definition of the Rural Postman Problem for a number of reasons.
For example, the definition of the GRP is closed to block-decompositions: If a GRP-instance
is defined on a graph which is not 2-connected, then the solution of the instance is equivalent
to solving the GRP on each block. For the RPP, the relationship is an unnecessary bit more
complicated, since the instances on the blocks may be RPPs, but they may also be genuine GRPs.
We would like to advocate at this point, to amend the definition of the Rural Postman Problem
to match that of the General Routing Problem.

If ER = ∅ and VR = V (G), we obtain the Graphical Traveling Salesman Problem (GTSP). The GTSP

GRP, RPP, and GTSP are NP-hard combinatorial optimization problems [LR76, CFN85].

There exists a preprocessing procedure for the GRP which allows us to assume without loss
of generality that VR = V (G) [CCCM81]. The modification is straight forward, and we do not
repeat it here. In this thesis we exclusively consider the case VR = V (G).

A semitour [CS94, CS98] is a vector x ∈ � E(G)
+ , with the property that x+χER corresponds to

the edge multiset of a spanning closed walk in G (which is equivalent to being a feasible solution
to the GRP because VR = V (G)). Clearly, finding a minimum cost feasible solution to the GRP
is equivalent to finding a semitour x with minimum cost cx :=

∑

e∈E(G) cexe.

To characterize the set of semitours, we introduce some more terminology. First we define the
parity of a node u ∈ V (G) as

t(u) := |∂(u) ∩ ER| mod 2.

Hence, t(u) = 1 if there is an odd number of required edges incident to u and t(u) = 0 if the
number is even. Further, let C = {C1, . . . , Ck} denote the node sets of the connected components
of the spanning subgraph of G with edge set ER. The sets Ci form a partition of the node set V (G).

9

10 CHAPTER 1. RURAL POSTMAN PROBLEM AND GENERAL ROUTING PROBLEM

The following system characterizes the set of semitours [CS94, CS98]

x(∂(u)) = t(u) mod 2 for all u ∈ V (G) (1.1a)

x(∂(S)) ≥ 2 for all S =
⋃

C∈S
C, ∅ 6= S (C (1.1b)

xe ≥ 0 for all e ∈ E(G) (1.1c)

x ∈ � E(G)
+ , (1.1d)

The (modular) equations (1.1a) are called parity constraints and the inequalities (1.1b) are called
connectivity inequalities.

1.1.2 Our more general definition

For the characterization of semitours in (1.1), we only need the R-set partition C and the parityR-set
partition C

parity
function t

function t, but not the required edges. In fact it will prove useful to restrict the attention to some
axioms on the triple (G,C, t), and forget about required edges in most places. We call a triple

GRP-
structure,

Γ = (G,C, t)

Γ := (G,C, t) a GRP-structure, if

1. G is a connected loopless multigraph, C is a partition of V (G), and t is a mapping to the
2-element group {0, 1}

t : V (G) → {0, 1},

2. for each C ∈ C, the induced subgraph G[C] is connected,

3. for each C ∈ C, the set C is R-even,

where we define the R-parity, or just parity, t(U) of a set U to bet(U)

t(U) :=
∑

u∈U

t(u) mod 2,

and we say that a set is R-even (R-odd) if its parity is zero (one).R-even/odd
set The sets C ∈ C are called R-sets. If an R-set consists of a single node, then we say that this

R-sets node is R-isolated. We define the loopless multigraph Gm

C , which results from shrinking each R-set
R-isolated

Gm
C

,Gs
C

to a single node. The node of Gm

C which results from the R-set C is again denoted by C, i.e., we
assume that the node set of Gm

C is C. The simple graph which results from shrinking each R-set to
a node is denoted by Gs

C. The edge set of Gm

C is a subset of E(G), consisting of all edges which haveR-external

their end nodes in different R-sets. We call these edges R-external, and we call edges of G withR-internal
Eint both end nodes in the same R-set R-internal. The set of R-internal edges is denoted by Eint(Γ).

If Γ is a GRP-structure, a solution x to (1.1) is again called a semitour. We denote the set ofsemitour

all semitours, i.e., the set of all solutions to (1.1), by S(Γ).
Note that, with this definition, we can assume that G is a simple graph, if the context requires

this. If the graph on which the GRP instance is defined is not simple, we can delete from each
set of parallel edges all but the edge with least cost, even if that involves the deletion of required
edges. This is possible because we define the GRP-structure without using required edges. Thus
every GRP-instance defines a GRP-structure with a simple graph and every GRP-structure with
a simple graph can be derived from at least one GRP-instance, but duplication of edges may
be necessary. There may be many different sets of required edges which define the same GRP-
structure. However, in the context of lifting in Chapter 4, we will need to maintain parallel edges,
because the coefficients of an inequality may differ on parallel edges.

1.2 A short summary of known results

We briefly summarize what is known about the Rural Postman Problem and General Routing
Problem in terms of polyhedra and cutting-plane algorithms. Some papers were dedicated to the

1.2. A SHORT SUMMARY OF KNOWN RESULTS 11

study of the polyhedron which is the convex hull of all semitours, conv S(Γ). If ER = ∅, then the
semitours are just the feasible solutions of the GTSP, so the GRP polyhedron is a generalization
GTSP polyhedron, which was comparatively well understood [CFN85, NR88, NR91, NR93].

In [CS94] the RPP polyhedron conv S(Γ) was first introduced, and basic classes of facet-
defining inequalities, namely connectivity and R-odd cut inequalities, were presented. This paper
also introduced the class of the so-called KC-inequalities, which define facets of the polyhedron
under certain mild conditions. In [Let96], the so-called path inequalities [CFN85] for the GTSP
were transferred to the GRP, where they have been called path-bridge inequalities. Further a
polynomial time separation routine for a small subclass was introduced. The paper [CS98] studied
the relationship between the GTSP and the GRP polyhedra, and it introduced the class of the
facet-defining so-called honeycomb inequalities. It also transferred results of [NR91] about com-
position of facet-defining inequalities to the GRP. [Let99] proposed to view the GRP-polyhedron
as a face of the GTSP-polyhedron, and helped to understand facets of the GRP in terms of facets
of the GTSP. The PhD thesis of J. Sanchis [San90] is about RPP polyhedra and separation issues,
and the PhD thesis of A. Letchford [Let97] deals in parts with the RPP and GRP polyhedra.

A new direction in the research on the RPP was ushered in by Ghiani & Laporte [GL00], who
were the first to give an IP-formulation which only uses variables for edges of the graph, but it
requires that a certain number of edges must be duplicated beforehand. They introduced the
cocircuit inequalities for their polytope, but they failed to prove sufficient conditions for the facet-
defining property of all basic valid inequalities except for the non-negativity and upper bound
inequalities 0 ≤ xe ≤ 1. In [GL00], computational results for a B&C-algorithm are given, which
uses the basic set of classes of valid inequalities proposed in [GL00].

Corberán, Letchford and Sanchis [CLS01] have described separation heuristics for KC-, hon-
eycomb, and so-called regular path-bridge inequalities, and they gave computational results for a
cutting-plane algorithm for the GRP which does not use the cocircuit inequalities of [GL00].

A line of research which has not been taken up by other researchers was proposed by Fernandez
et al. [FMGO03]. Their approach requires to work on an almost complete graph, in which every
edge is assigned the cost of the shortest path with respect to the original costs between the end
nodes. Thus one reason why their results have not found much response is due to the loss of
structural information, and the increase of running time required for the solution of the Linear
Programs, both of which are consequences of the modifications on the graph. Another reason for
the fact that the paper [FMGO03] has not been received very well is perhaps that the core of
the IP-formulation it proposed is a flow-formulation which requires a number of additional flow
inequalities and constraints. However, it is quite easy to see that if the connectivity inequalities
are separated, then these additional variables and constraints are redundant in the sense that they
do not improve the value of the LP-relaxation. In the cutting-plane algorithm which was proposed
in [FMGO03], both the connectivity inequalities and the flow variables are used.

We finally state an easy result of [Fre79] about the complexity of the RPP. It is easy to see
that, if tGC

is the number of spanning trees in Gm

C , then the GRP can be solved by computing tGC

T-joins in the graph G. If k := |C| and l := |E(Gm

C)|, then tGC
≤ lk−1kk−2. Thus, there exists

an exact algorithm for the RPP which is exponential in the number of R-sets, but which grows
only polynomially with the number of nodes and edges of G if the number of R-sets is fixed. This
fact must be kept in mind when considering computational results for the GRP. The instances for
which [GL00] gives computational results have up to 350 nodes, but much fewer than 100 R-sets.
In [CLS01], graphs with up to about 200 nodes and 100 R-sets are considered. As a rule of thump,
the instances which are more difficult for cutting plane and Branch-and-Cut algorithms are more
frequently found among those which have a relatively high number of R-sets. (In the last two
chapters of this thesis, we will present computational results for instances with up to 2500 nodes
and 2000 R-sets.)

12 CHAPTER 1. RURAL POSTMAN PROBLEM AND GENERAL ROUTING PROBLEM

Part I

Polyhedra

13

Chapter 2

Polyhedra associated with the

GRP

We refer to a vector b ∈
(

� ∗
+ ∪ {∞}

)E(G)
as a bound vector. For a GRP-structure Γ and a bound bound vector

vector b we define

S(Γ, b) :=
{

x ∈ � E(G)
+ | x satisfies (1.1) and x ≤ b

}

GRP(Γ, b) := conv
(

S(Γ, b)
)

Part I of this thesis will be concerned with these polyhedra. The unbounded polyhedron, which
we denote by GRP(Γ,∞), was introduced in [CS94]. Two further polytopes described in 2.2.1
below were introduced by Ghiani & Laporte [GL00], who showed that with certain conditions on
b, which depend on the cost function, optimizing over GRP(Γ, b) gives an optimal solution for
the General Routing Problem. In this chapter we give an introduction to basic properties of the
polyhedra. In the first section we survey the unbounded polyhedron, namely structural properties
and known classes of facet-defining inequalities. The second section explains the result of Ghiani
& Laporte [GL00], to which we contribute the fact that facet-defining inequalities of GRP(Γ, b)
with b finite do not necessarily have “configuration” form in 2.2.2. In the Section 2.3 we give
results on polyhedra for GRP-structures with one or two R-sets, in particular we present some
new classes of facet-defining inequalities for the unbounded polyhedron in this case.

In the last section of this chapter, we introduce a new polytope for the GRP which is the
convex hull of a subset of the set S(Γ,bT) of semitours used in [GL00]. What distinguishes this
polytope from the polyhedra GRP(Γ, b) is that the number of integer solutions depends only on
|V (G)| and |E(G)|, and they can easily be enumerated.

2.1 The unbounded polyhedron

In this section we deal with the well-studied polyhedron GRP(Γ,∞) [CS94, San90, Let96, CS98,
Let97, Let99]. We repeat only the facts which are necessary to understand the remainder of this
thesis. For a more complete summary of known results we refer to [EL00]. In 2.3.1 we contribute
some new classes of facets for GRP(Γ,∞), which refer to the easiest non-trivial case, namely if
there are precisely two R-sets. For one R-set the polyhedron is the T-join polyhedron, which is
known (see Section 2.3 below).

It is easy to see that GRP(Γ,∞) is of blocking type. As a consequence (see 0.1.1), a non-
negativity inequality (1.1c) xe ≥ 0 defines a facet of GRP(Γ,∞), iff there exists an x ∈ GRP(Γ,∞)
with xe = 0, which is the case if e is not a cut-edge of G or, if it is, e is R-internal and the cut is
even [CS94].

15

16 CHAPTER 2. POLYHEDRA ASSOCIATED WITH THE GRP

2.1.1 Configurations and 0-node lifting

We start with some structural results about GRP(Γ,∞), which are discussed in [CS94]. Let
Γ = (G,C, t) be a GRP-structure. Some definitions are necessary.

2.1.1 Definition We say that a vector a ∈
� E(G)

+ satisfies the generalized triangle inequality, ifgeneralized
triangle

inequality
for each uv ∈ E(G) the a-lengths the u, v-paths are at most auv , i.e., the path u,e,v is a shortest
u, v-path with respect to a.

The following result is quite easy to see.

2.1.2 Proposition ([NR91, CS94, CS98]) If a valid inequality (a, α) for GRP(Γ,∞) does not
satisfy the generalized triangle inequality, then it is dominated by a non-negativity inequality.

2.1.3 Definition A configuration [CS94] is a pair (U, A) consisting of a partition U of V (G)configuration

together with a symmetric U×U-matrix A such that AUV = 0 if and only if U = V . We say that
an inequality (a, α) is a configuration inequality, if there exists a configuration (U, A) such thatconfiguration

inequality for all uv ∈ E(G)

auv = AUV whenever u ∈ U and v ∈ V.

An immediate consequence of Proposition 2.1.2 is the following.

2.1.4 Corollary ([NR91, CS94, CS98]) A valid inequality which is not a configuration in-
equality is dominated by a non-negativity inequality.

We show that contraction preserves facet-defining property of configuration inequalities. Before
we can give the exact statement, we have to make precise how the R-set partition is defined for
the contracted graph.

2.1.5 Definition Let D be a partition of the node set of a graph G, and let uv = f ⊆ E(G).
We let D/f denote the partition of V (G/f) which results from D by taking the union of the setsD/f

containing u and v and replacing in this set the nodes u and v by the new node vf which results
from contracting f . For an edge set F ⊆ E(G), we define D/F by successively contracting theD/F

edges in F .

Now let (a, α) be a configuration inequality for GRP(Γ,∞) with configuration (U, A), and(a•, α), Γ •

consider the simple graph G• which results from contracting the set E0 of all edges e with ae = 0,
or, more precisely, V (G•) = U and E(G•) = {UV | (U : V) 6= ∅}. We emphasize the fact that
for polyhedra without bounds, GRP(Γ,∞), we contract to a simple graph. Let t•(U) = t(U) for
U ∈ V (G•), and C• := C/E0. Denote Γ • := (G•,C•, t•) and, for all U, V , let a•UV := AUV . The
proof of the following fact is elementary.

2.1.6 Lemma If (a, α) defines a facet of GRP(Γ,∞), then the inequality (a•, α) is facet-defining
for GRP(Γ •,∞).

The reverse process to the contraction of edges with zero coefficient is the so-called 0-node
lifting. It is a common approach for proving facet-defining property for a class of inequalities:
prove it for small graphs G and then use 0-node lifting, which means that validity and facet-
defining property are inherited to graphs G◦ which can be contracted to G. To be precise, letΓ ◦, (a◦, α)

Γ ◦ = (G◦,C◦, t◦) be a GRP-structure and b◦ a bound vector. Let a partition U of the node set
of G◦ be given such that the induced subgraphs G◦[U], U ∈ U, are connected. Let G denote the
simple graph which results if each of the sets U ∈ U is shrunk to a single node. Further, abbreviate
C := C◦/F , with F :=

⋃

U E(U), and b := b◦/F . Note that the bounds on the merged edges are
added (cf. the definition in 0.2.2 on page4). Suppose that Γ = (G,C, t) is again a GRP-structure

2.1. THE UNBOUNDED POLYHEDRON 17

which satisfies t(U) = t◦(U) =
∑

u∈U t◦(u) mod 2 for all U ∈ V (G) = U. Finally, let (a, α) be a
valid inequality for GRP(Γ, b). Define the coefficients a◦ on E(G◦), by

a◦e =

{

aUV if there are U, V ∈ U with e ∈ (U : V)

0 if e ∈ E(U) for an U ∈ U.

It is easy to see that the inequality (a◦, α) is valid for GRP(Γ ◦, b◦). We call it the inequality
obtained by 0-node lifting (a, α). The following fact is both easy and well-known.

2.1.7 Proposition ([NR91, CS94]) If (a, α) is facet-defining for GRP(Γ,∞), then (a◦, α) is
facet-defining for GRP(Γ ◦,∞).

2.1.2 Known classes of facet-defining inequalities

In this section we review the most prominent constructions of facet-defining inequalities for the
unbounded polyhedron GRP(Γ,∞).

Connectivity and R-odd-cut inequalities

In [CS94], the most basic classes of facet-defining inequalities for the GRP were introduced: the
non-negativity inequalities, the connectivity inequalities (1.1b) and the so-called R-odd-cut in-
equalities. Using 0-node lifting (see 2.1.1), it is easy to see that connectivity inequality x(∂(S)) ≥ 2
defines facets of GRP(Γ,∞), if and only if the cut is a cocircuit, i.e., minimal with respect to in-
clusion [CS94]. This is equivalent to both shores of the cut being connected. To define R-odd-cut
inequalities, we introduce some terminology.

2.1.8 Definition A cut ∂(U) is called R-odd (R-even), if U is an R-odd (R-even) set. R-odd cut

Using 0-node lifting (see 2.1.1), it is easy to see that for an R-odd cut ∂(U) the R-odd-cut R-odd-cut
inequalityinequality

x(∂(U)) ≥ 1 (2.1)

is valid for GRP(Γ,∞), and that it defines a facet of the polyhedron if and only if the cut is a
cocircuit [CS94]. We now come to more subtle inequalities.

Path-bridge (PB-)inequalities

The path inequalities known from the TSP [CFN85] were introduced into the context of the GRP
by Letchford [Let96] under the name of path-bridge inequalities, or PB-inequalities for short. They path-bridge,

PB; KCcontain as a special case (when there is only one path) the KC-inequalities of [CS94]. We describe
the path-bridge inequalities without invoking the notion of required edges. Let P ≥ 0 and np ≥ 2,
p = 1, . . . , P , be integers and let there be a partition of the node set of G into sets Bj

p, j = 1, . . . , np,
p = 1, . . . , P , and A, Z, where the last two sets are allowed to be empty. The following conditions
must hold:

1. Each of the Bpj , j = 1, . . . , np, p = 1, . . . , P , is a non-empty union of R-sets.

2. For the parities we require P +t(A) = 1 mod 2. If A is a union of R-sets (which implies that
so is Z), then we require P ≥ 3.

For ease of notation we let Bp0 := A and Bpnp+1 := Z for all p = 1, . . . , P ; but note that these sets

can be empty. We say that Bp1 , . . . , B
p
np

is the p-th path of the configuration. See Fig. 2.1(a) for path

an illustration. The coefficients on the edges are defined as follows.

18 CHAPTER 2. POLYHEDRA ASSOCIATED WITH THE GRP

ce :=

1, if e ∈ (A : Z)
|l−j|
np−1 , if e ∈ (Bpj : Bpl), for (j, l) 6= (0, np), (np, 0)

1
np−1 + 1

nq−1 +
∣

∣

∣

j−1
np−1 − l−1

nq−1

∣

∣

∣
, if e ∈ (Bpj : Bql), for p 6= q

and (j, l) 6= (0, nq), (np, 0)

0, if e ∈ E(Bpj), for all j, p.

(2.2)

The right hand side of the inequality is γ := 1+
∑P
p=1

np+1
np−1 . Under these conditions, the inequality

(c, γ) is facet-defining for GRP(Γ,∞), if each of the induced subgraphs G[Bp
j], p = 1, . . . , P ,

j = 0, . . . , np + 1, are non-empty and connected [Let96, CS94]. If the sets A and Z are empty,
then some additional conditions are required, in particular P ≥ 2, see also [CFN85].

We note that, since we allow P = 0, the class of PB-inequalities includes the class of R-odd
cut inequalities. A path-bridge inequality is called n-regular (or simply regular) if np = n forregular

p = 1, . . . , P . It is called simple, if
∣

∣Bpj
∣

∣ = 1 for all j = 1, . . . , np, p = 1, . . . , P .simple

As mentioned above, if P = 1, we obtain the class of KC-inequalities. We then omit the upperKC-inequality

index, write K := n+ 1, and denote the sets by B0, . . . , BK . KCs are only valid if B0 ∪ BK 6= ∅.

Honeycomb (HC-) inequalities

Honeycomb inequalities were first discussed in [CS98]. We briefly review the definition, but we
avoid the notion of required edges and instead will only speak of the R-set partition and parity
function. The following terminology will be generally helpful.

2.1.9 Definition Let D be an arbitrary partition of a set V , and let U be a set of subsets of V .
We define the D-graph of U as follows: its node set is U, and two U ∼ U ′ holds iff there exists
a D ∈ D with U ∩ D,U ′ ∩ D 6= ∅ or U ∩ U ′ 6= ∅. We say that the set U is D-connected, if theD-connected

D-graph is connected.

Let numbers K > L > 0 and nk ≥ 2, k = 1, . . . ,K be given and a partition of V (G) into sets

Bkr for r = 1, . . . , nk and k = 1, . . . , L,

Bk1 for k = L+ 1, . . . ,K.

We construct a simple graph GB by shrinking in G each of the sets Bkr into one node which we
will again denote by Bkr . Thus GB has K − L + n1 + · · · + nL nodes. Now let T be a spanning
tree in GB . See Fig. 2.1(b) for an illustration. The following conditions are expected to hold:

1. The leaves of the tree T are precisely the nodes Bk
r , r = 1, . . . , nk, k = 1, . . . , L.

2. For any k = 1, . . . , L, the distance distT(Bkr1 , B
k
r2) between any two distinct nodes Bkr1 and

Bkr2 in the tree T is greater than or equal to three.

3. Each of the sets
⋃nk

r=1B
k
r , for k = 1, . . . , L, and Bk1 , k = L+ 1, . . . ,K, is a union of R-sets.

4. The sets Bkr are even, i.e., t(Bkr) = 0.

5. For all k ∈ {1, . . . , L} the set {Bki | i = 1, . . . , nk} of node sets is C-connected.

The condition in [CS98] which uses required edges is replaced by 4 and 5. A node partition and
tree of this kind is called a honeycomb configuration. The coefficients are defined as follows:honeycomb,

HC

ce :=

distT(Bkr1 , B
k
r2) − 2, if e ∈ (Bkr1 : Bkr2), with r1 6= r2

distT(Bk1r1 , B
k2
r2), if e ∈ (Bk1r1 : Bk2r2), with k1 6= k2

0, otherwise, i.e., if e ∈ E(Bkr).

2.2. THE GHIANI-LAPORTE TREE AND BOUNDED POLYHEDRA 19

A

Z

B1
1

Bp
1

B1
2

Bp
npB1

n1

(a) Path-bridge configuration.

= union of R-sets

B5
1

B6
1

B7
1

B2
3

B2
1

B2
2

B3
1

B4
1

B1
1

B1
3

B1
2

B1
4

(b) Honeycomb configuration with L = 2 and K = 7.

Figure 2.1: Definition of honeycomb and path-bridge configurations.

Corberán and Sanchis [CS98] proved the validity and facet-defining property for GRP(Γ,∞) of
the honeycomb inequality (c, 2(K−1)). We note that the definition in [CS98] is more general: the
condition 1 is weakened, but sequential lifting is required to obtain the coefficients on some edges.
We have included the condition 1 because it greatly reduces the technicality of the definition.

Facets from the Graphical Traveling Salesman Polyhedron

Invoking 0-node lifting 2.1.1, it is easy to see the truth of the following proposition.

2.1.10 Proposition ([CS98]) Any facet-defining inequality for GTSP(Gs

C) can be made into a
facet-defining inequality of GRP(Γ,∞) applying 0-node lifting in the following way: every node C
of Gs

C is replaced by the set of nodes C of G.

2.2 The Ghiani-Laporte tree and bounded polyhedra

Let c be a vector of edge costs for G, and denote by T the edge set of any minimum spanning tree of
Gm

C , with respect to the cost vector c restricted to the R-external edges. Ghiani & Laporte [GL00]
showed that min{cx | x ∈ S(Γ,∞)} = min{cx | x ∈ S(Γ,∞), x ≤ bT}, where bT := 1 + χT is a
vector of upper bounds. This means that, without changing the optimum solution value, we can
bound the number of times an edge is contained in a semitour by 1, if the edge is not in the tree
T , and by 2 if it is.

2.2.1 Theorem Let Γ be a GRP-structure b a bounds vector and c a vector of edge costs. If
{e ∈ E(G) | be ≥ 2} contains the edge set of a c-minimum spanning tree of Gm

C , then optimizing
over GRP(Γ, b) gives an optimal solution to the General Routing Problem instance given by Γ and
c.

2.2.2 Definition If Γ = (G,C, t) is a GRP-structure and T is the edge set of a spanning tree of Ghiani-
Laporte tree,
GL-GRP-
structure

Gm

C , we say that the quadruple (G,C, t, T) is a Ghiani-Laporte GRP-structure or GL-GRP-structure
for short. If a specific GRP instance is under consideration and T is a minimum spanning tree as
just described, we say that T is a Ghiani-Laporte tree.

20 CHAPTER 2. POLYHEDRA ASSOCIATED WITH THE GRP

2.2.3 Remark When optimizing a non-negative cost function over a relaxation of one of the
bounded polyhedra GRP(Γ, b), only inequalities which are valid and facet-defining for GRP(Γ,∞)
are needed to achieve the optimal lower bound.

2.2.1 The Ghiani-Laporte polytope

Let T be a Ghiani-Laporte tree. Denote by GT := G+ T the loopless multigraph which results if,
for every edge e ∈ T , we add a “duplicate” edge e∼ with the same end nodes. Hence V (GT) = V (G)
and

E(GT) = E(G) ∪ {e∼ | e ∈ T}.

If the duplicates e∼ are assigned the same cost as e, i.e., ce∼ := ce, then, by considering semitours
on GT instead of on G, we can restrict our attention to semitours x with x ≤ 1. The convex
hull of all semitours x on GT with x ≤ 1 is a 0/1-polytope which was introduced in [GL00].Ghiani-

Laporte
polytope
GL(Γ, T)

Therefore we call it the Ghiani-Laporte polytope and denote it by GL(Γ, T). Note that if we let
Γ̃ := (GT ,C, t), then GL(Γ, T) = GRP(Γ̃ ,1). [GL00] gave an IP-formulation for optimizing over
GL(Γ, T). Besides the non-negativity inequalities x ≥ 0 and the upper bounds x ≤ 1, it consists
of the connectivity inequalities (1.1b) and the so-called cocircuit inequalities:cocircuit

inequality

x(∂GT (U) \ F) − x(F) ≥ 1 − |F |

for U (V (G), U 6= ∅ and F ⊆ ∂GT (U) with |F | + t(U) odd.

(2.3)

These inequalities are valid for GL(Γ, T) [GL00]. Strictly speaking, we should require that ∂GT (U)
really be a cocircuit. For the IP-formulation, only the cocircuit inequalities with |U | = 1 are
needed.

In [GL00] this IP-formulation was used in a Branch-and-Cut algorithm which produced promis-
ing computational results. In that paper, an attempt was made to study the the polytope GL(Γ, T),
too. However, little is known about its theoretical properties. Thus, while the polytope GL(Γ, T)
has proven very useful in practice, little is known about its theoretical properties, or any of the
polyhedra GRP(Γ, b). These polyhedra are at the focus of interest of the following two chapters.

Note that the polytope GL(Γ, T) has a redundant symmetry: for each e ∈ T if we take a point
x ∈ GL(Γ, T) and exchange the values of xe and xe∼ , we get “essentially” the same point. It
turns out that this extra symmetry of the polytope makes its study more difficult than necessary.
However, it turns out that this difficulty can be avoided by examining the polytope GRP(Γ,bT),
and then transferring the results back to GL(Γ, T).

2.2.2 Configuration inequalities

Now we contribute some basic facts about the general polyhedra GRP(Γ, b), where Γ = (G,C, t)
and b : E(G) → � ∗

+∪{∞}. We start by showing that for the polyhedra with bounds, Corollary 2.1.4
need not hold: Not every facet-defining inequality for GRP(Γ, b) is a configuration inequality.
Fig. 2.2 shows the coefficients of an inequality which defines a facet, in which two parallel edges
have distinct (and even non-zero) coefficient. The right hand side is −4. The graph is K5 plus one
edge, all R-sets have cardinality one, and all nodes are even. In order for the inequality to define
a facet, some of the edges with coefficient two or minus two must have upper bound two, and the
remaining edges must have upper bound one.

We come back to 0-node lifting for the case of finite bounds. An alternative definition to the
one on page 16 would be to shrink G◦ to a loopless multigraph G := G◦/F , and define

b := b◦E(G) , and a◦ such that a◦E(G) = a, a◦F = 0. (2.4)

At present, if b <∞, we do not have the tools at our hands to understand the relationship between
the two concepts, or the facet-defining property of a◦. These issues will be addressed in Chapter 4.

Lemma 2.1.6 has a counterpart for polyhedra with bounds, whose prove can be accomplished
with the elementary methods which we have at our hands in this chapter. (We will develop

2.3. RESULTS ON POLYHEDRA FOR FEW R-SETS 21

1

1

1
−1

−1

2

2

−2 −2

1
3

Figure 2.2: Non-configuration inequality defining a facet of GRP(Γ, b).

more subtle tools for questions of this kind in Chapter 4.) Let (a, α) be a valid configuration
inequality for GRP(Γ, b), and denote by Γ • = (G•,C•, t•) the GRP-structure which results from
contracting each edge in e with ae = 0, where the contraction is in the class of loopless multigraphs.
Further, let a• := aE(G•) , and b := bE(G•) . For the case that the polyhedron GRP(Γ, b) is full-
dimensional, since contraction preserves this property (see Chapter 4), the following lemma shows
that configuration inequalities are 0-node lifted from smaller GRP-structures.

2.2.4 Lemma If (a, α) is a configuration inequality, then every inequality which dominates (a•, α),
when 0-node lifted, dominates (a, α) .

2.3 Results on polyhedra for few R-sets

In this section, we summarize results on the bounded and unbounded T-join polyhedra, which are
identical to GRP(Γ, b) if there is only one R-set, i.e., C = {V }. Then we give results on the case
where there are two R-sets. For the following proposition, see, e.g., [Sch03].

2.3.1 Proposition ([Edm65, EJ77, Pul73]) If there is only one R-set, then we have the fol-
lowing complete description of GRP(Γ, b):

x(∂(U) \ F) − x(F) ≥ 1 − b(F) (2.5a)

where ∅ 6= U (V (G) and F ⊆ ∂(U) ∩ E(G) with t(U) + b(F) odd

b ≥ x ≥ 0 (2.5b)

The inequalities (2.5a) are called blossom inequalities, and they are of course valid for GRP(Γ, b) blossom
inequalitieswithout restrictions on the R-set partition. We note that they contain the cut upper-bound con-

straints x(∂(U)) ≤ b(U) − 1 if U is a union of R-sets and b(∂(U)) odd, which by were introduced
to the GRP by Letchford [Let03].

2.3.1 Some new facets

Since the one R-set polyhedra are fairly simple in terms of classes of facets, it is believed or
hoped that this might be true for the 2-R-set polyhedra, too. A conjecture [Let05a] inspired by
[CS94, San90] says that non-negativity, R-odd cut, and the unique connectivity inequality might
form a complete description of the polyhedron. This is not at all the case: the polyhedra for
GRP-structures with two R-sets can, in general, be very complicated.

We contribute to the area of “polyhedral botany” for the General Routing Problem, i.e., we
exhibit some families of new, strange, and apparently useless facet-defining inequalities. We give

22 CHAPTER 2. POLYHEDRA ASSOCIATED WITH THE GRP

U0 U0 Uk+1U2

≥ 2(k + 1)≥ 4

2 2k

U1 . . .U1 Uk

. . .W1W1 W2 Wk+1

Figure 2.3: Facets of GRP(Γ,∞) with two R-sets: M-configurations.

two general families and three individuals of facet-defining inequalities for GRP(Γ,∞) with |C| = 2.
There is no reason to believe that there is only a small variety of facets of this polyhedron.

Given that the General Routing Problem is solvable in polynomial time if |C| = 2 (see 1.2), it
is surprising that the polyhedra have so many apparently completely different facets. It might be
intriguing to search for a complete set of facets for these polyhedra.

Let a configuration of the following form be given. For an integer k ≥ 1, suppose that the
node set of G is partitioned into sets U0, . . . , Uk+1,W1, . . . ,Wk+1, such that the two sets

⋃

Uj and
⋃

Wj are both unions of R-sets, and

t(U0) = t(Uk+1) = 1 mod 2

t(Uj) = 0 mod 2 for j = 1, . . . , k

t(Wj) = 0 mod 2 for j = 1, . . . , k + 1.

(2.6)

Suppose that the set {U0, . . . , Uk+1} of subsets of V (G) is C-connected (see Def. 2.1.9) and the
same holds for the set {W1, . . . ,Wk+1}. See Fig. 2.3 for an illustration. We define the coefficients
by

ae =

0 if e ∈ E(Uj) or e ∈ E(Wj)

1 if e ∈ (Uj : Wj+1) ∪ (Wj : Uj)

2k if e ∈ (U0 : Uk+1);

the coefficients of the remaining edges are the lengths of the shortest paths with respect to these
coefficients (cf. Def. 2.1.1). We call such a configuration an M-configuration and the inequality
(a, 2(k+ 1)) an M-inequality. We have the following fact, which is proved by standard argumentsM-inequality

which we omit.

2.3.2 Proposition M-inequalities are valid for GRP(Γ,∞). If the induced subgraphs G(Uj) and
G(Wj) are connected, then they are facet-defining for GRP(Γ,∞),

Now we define another new family of facet-defining inequalities for GRP(Γ,∞). See Fig. 2.4
for an illustration. Let k ≥ 1 be an integer, and let U0, . . . , Uk+1, W1, . . . ,Wk+1, V be a the
sets of a partition of V (G). Suppose that both sets V ∪

⋃

Uj and
⋃

Wj are unions of R-sets,
that V is an R-even set and (2.6) holds. Further, suppose that the two sets {V, U0, . . . , Uk+1}
and {W1, . . . ,Wk+1} of subsets of V (G) are both C-connected. We define the coefficients of an
inequality by

ae =

0 if e ∈ E(V) or e ∈ E(Uj) or e ∈ E(Wj)

1 if e ∈ (Uj : Wj+1) ∪ (Wj : Uj)

k if e ∈ (U0 : V) or e ∈ (V : Uk+1)

k + 2 − 2 min(l, k + 1 − l) if e ∈ (V : Uj) with j ∈ {1, . . . , k}.

2.3. RESULTS ON POLYHEDRA FOR FEW R-SETS 23

≥ 2(k + 1)

kk

.

. . .
≥ 4

k k

. . .

V

U0

U1

V

U0 Uk+1

al := k + 2 − 2 min(l, k + 1 − l)

≥ 2(k + 1)
. . .

W1W1 W2

U2

Wk+1

aj
Uj

. . . W(k+1)/2

Figure 2.4: Facets of GRP(Γ,∞) with two R-sets: M-bounce inequalities.

odd odd

≥ 4

Figure 2.5: Facets of GRP(Γ,∞) with two R-sets: M-top inequalities.

If k is even, then the coefficients of the remaining edges are the lengths of the shortest-path with
respect to the coefficients of these edges. If k is odd, then

ae = 1 if e ∈ (V : W(k+1)/2),

and the then remaining edges get shortest paths lengths. We call such a configuration an M-
bounce configuration, and we call the inequality (a, 2(k+1)) an M-bounce inequality. We have the M-bounce

inequalityfollowing result, again we spare the reader the proof.

2.3.3 Proposition M-bounce inequalities are valid for GRP(Γ,∞), and they are facet-defining if
the induced subgraphs G(V), G(Uj), and G(Wj) are connected.

We close this section with some more examples of facet defining inequalities for the two-R-set
case, which we display in Figures 2.5 and 2.6. In both figures, the edges which are drawn have
coefficient 1 in the corresponding inequality, and the edges which are not drawn have shortest-
paths lengths. As in the M- and M-bounce families, the M-top-inequality of Fig. 2.5 has only two
R-odd sets, while the N1- and N2-inequalities of Fig. 2.6 have four R-odd sets.

24 CHAPTER 2. POLYHEDRA ASSOCIATED WITH THE GRP

≥ 4

odd

odd

odd

odd

(a) N1

odd

≥ 4
oddodd

odd

(b) N2

Figure 2.6: Facets of GRP(Γ,∞) with two R-sets: N-inequalities.

2.4 An even smaller polytope

In this section, we show how the set of feasible solutions can be reduced to a number of 2m−n+1,
where n := |V (G)| and m := |E(G)|. Though theoretically, this polyhedron appears to be be
even more complex than GRP(Γ,1), it has the advantage that the number of feasible solutions
is known and they can be easily enumerated in O(m2m−n+1) time. The idea is based on the
following extension of Theorem 2.2.1.

2.4.1 Proposition Let x be an optimal solution to the GRP-instance defined on Γ with costs
c ≥ 0 which is minimal under the condition x ∈ S(Γ,∞) with respect to component-wise vector
comparison. Then

(a). x ∈ {0, 1, 2}E(G),

(b). the edges with xe = 1 form a T -join in G, with T the set of odd nodes,

(c). the edges with xe = 2 are R-external and bridges in G(x), and

(d). if all R-internal edges and all edges e with xe = 1 are contracted, then the edges with xe = 2
form a c-minimum spanning tree in the resulting graph.

Let us assume, for the sake of the simplicity of the formulation, that there are no two edges
with the same cost. Then, for every T -join x′, with T the set of R-odd nodes, there exists a unique
set of edges E2 such that x′ + 2χE2 satisfies (a-d). On the other hand, every minimal optimal
solution can be decomposed into x′ and χE2 , as the lemma shows. Since the number of T-joins of
a connected graph is 2m−n+1, we obtain the same number of semitours.

Chapter 3

Transformation and symmetry

3.1 Symmetry and isomorphism of GRP polyhedra

We now introduce a transformation method which allows one to create new facets from known
ones. Let E be a set and b : E → � ∗

+ ∪ {∞} be a bound vector. For y ∈ {0, 1}E with ye = 0 for
all e with be = ∞ we define the following mapping:

flip[b;y]

flip[b;y] :
� E →

� E : x 7→ y � b+ x[y]

where, for all e ∈ E,
x� y,x[y]

(

y � b
)

e
:= yebe, and

(

x[y]
)

e
:=

{

xe if ye = 0

−xe if ye = 1,

or, in other words, if ye = 0 then (flip[b;y](x))e = xe, and if ye = 1 then (flip[b;y](x))e = be − xe.

3.1.1 Remark The mapping flip[b;y] is an affine isomorphism. For two vectors y1, y2 ∈ {0, 1}E , if

⊕ denotes addition modulo two, flip[b;y1⊕y2] is equal to the composition of the mappings flip[b;y1]

and flip[b;y2], while flip[b;0] is the identity mapping.

Let Γ = (G,C, t) be a GRP-structure, b a bound vector, and y ∈ {0, 1}E(G)
such that

ye = 0 whenever e 6∈ Eint(G) or be = ∞. (3.1)

Define
tyty : v 7→ t(v) ⊕ (y � b)(∂(v)) = t(v) ⊕

⊕

e∈∂(v)
be odd

ye

and Γy := (G,C, ty). Then Γy is a GRP-structure and we have Γy

x ∈ S(Γ, b) if and only if flip[b;y](x) ∈ S(Γy, b) (3.2)

Note that Γ0 = Γ and Γy1⊕y2 = (Γy1)y2 . A consequence is the following proposition.

3.1.2 Proposition Let y and Γy be as just described. The mapping flip[b;y] is an isomorphism
between the polyhedra GRP(Γ, b) and GRP(Γy, b).

Proof. Since flip[b;y] is an affine isomorphism, the statement follows from the fact that, by (3.2),
it maps S(Γ, b) onto S(Γy, b).

25

26 CHAPTER 3. TRANSFORMATION AND SYMMETRY

We can apply the proposition in two ways. If

(y � b)(∂(v)) = 0 for every v ∈ V (G), (3.3)

then the parities remain unchanged and we can study symmetries of the polyhedron GRP(Γ, b).

3.1.3 Corollary Let m0
int denote the number of R-internal edges e with be even, and let H denote

the subgraph induced by the R-internal edges e with be odd. Let m1
int := |E(H)|, and denote by c1

the number of connected components of H. The symmetry group of GRP(Γ, b) includes a subgroup

isomorphic to {0, 1}m
0
int+m

1
int−c

1

.

Proof. The subgroup of {0, 1}E(G)
consisting of all y ∈ {0, 1}E(G)

which satisfy (3.1) and (3.3)
is the cycle space of H . The dimension of this space is m1

int − c1.

If we drop condition (3.3), then we have isomorphisms between polyhedra arising from different
parity functions.

3.1.4 Corollary Let G be a graph and C be a partition of its node set. Further, let b be a bound
vector satisfying the conditions that, for every R-set C ∈ C, the set of edges e ∈ E(C) with be odd
spans C. Then all polyhedra GRP(Γ, b), with Γ = (G,C, t) for an arbitrary parity function t, are
isomorphic.

In terms of required edges, this last corollary states that if two sets of required edges define
the same R-sets, then their polyhedra are isomorphic (if, for example, all R-internal edges have
upper bound one).

3.1.1 Transformation of valid inequalities

The practical value of Proposition 3.1.2 is the following. Given an inequality (a, α) and a vector y
as above, consider the inequality (a[y], α− (b� y)a). We say that the inequality (a, α) is switchedswitched

inequality to obtain the inequality (a[y], α − (b� y)a). The slacks of the two inequalities are related by the

isomorphism flip[b;y]. For any x ∈
� E(G) we have

α− (b� y)a − a[y] flip[b;y](x) = α− ax. (3.4)

With this relation, we obtain the following proposition as an immediate consequence of Propo-
sition 3.1.2.

3.1.5 Proposition We abbreviate α′ := α− (b� y)a.

(a). The inequality (a, α) is valid for GRP(Γ, b) if and only if (a[y], α′) is valid for GRP(Γy , b).

(b). The mapping flip[b;y] is an isomorphism between the face of GRP(Γ, b) induced by (a, α) and
the face of GRP(Γy, b) induced by (a[y], α′).

In particular, the inequality (a, α) is facet-defining for GRP(Γ, b), if and only if (a[y], α′) is facet-
defining for GRP(Γy , b).

If y ranges over all elements of {0, 1}E(G)
which satisfy (3.1) and (3.3) then the switched

inequalities (a[y], α− (b� y)a) form a symmetry class of the original inequality (a, α).
If, more generally, (b, β) is any inequality, and there exists a y with (3.1) and an inequality

(a, α) which is valid (facet-defining) for GRP(Γy, b) such that b = a[y] and β = α− (b� y)a, then
we know that (b, β) is valid (facet-defining) for GRP(Γ, b). In particular, when examining the
polyhedron and facets, we can assume without loss of generality that all nodes have even parity,
i.e., t(u) = 0 for all u ∈ V (G).

3.2. RELAXATION OF VALID INEQUALITIES 27

3.2 Relaxation of valid inequalities

We start with a definition which will be useful in Chapter 6, too.

3.2.1 Definition Let U be a partition of V (G), and let f = vw ∈ E(G). If Uv and Uw denote
the sets which contain v and w respectively, we define a partition U} f by replacing in U the sets U } f , U } F

Uv and Uw by their union Uv ∪ Uw. In other words,

U} f := (U \ {Uv, Uw}) ∪ {Uv ∪ Uw}.

For a set F = {f1, . . . , fk} ⊆ E(G), we define U} F := U} f1 } . . .} fk.

This section is based on the following observation.

3.2.2 Remark We have S(Γ, b) ⊆ S(G,C } F, t, b). Hence the transition from C to C } F is a
relaxation.

Now, if bf <∞ for all f ∈ F , abbreviate y := χF ∈ {0, 1}E(G)
and define ΓF := (G,C}F, ty).

Suppose that (a, α) is a valid inequality for GRP(ΓF , b). Then it follows from Proposition 3.1.5
that the inequality (a[y], α− (b� y)a) is valid for GRP(G,C} F, t, b). By the remark above, it is
also valid for GRP(Γ, b).

We still say that the derived inequality (a[y], α − (b � y)a) is obtained by switching the valid switched
inequalityinequality (a, α). The switching method of Section 3.1 clearly is the special case when F ⊆ Eint.

Only in this case do we get the facet-defining property of (a[y]α − (b � y)a) for free if (a, α) is
facet-defining. If F contains an R-external edge, it is not guaranteed that the switched inequality
defines a face of high dimension. However, we note that there are cases when the classical form
of the so-called Path-Bridge inequalities, which we will define in Section 3.3.2, is dominated by
a switched variant [Let03]. Moreover, in [RT06], we show that switched Path-Bridge inequalities
even dominate connectivity inequalities (1.1b) in certain situations. We will address the issue of
facet-defining property of switched forms of some classes of valid inequalities in the next section.

3.2.3 Remark Using the notion of required edges and assuming that the edges in F are not
required, the switching process can be described as follows:

1. Make the edges in F required.

2. Find an inequality (a, α) which is valid in this new situation.

3. Switch the inequality (a, α) according the Section 3.1. The resulting inequality is valid for
the polyhedron defined with the original set of required edges.

The analogy fails if F ∩ ER 6= ∅.

All the classical inequalities discussed in this paper have in common that they require a GRP-
structure with at least some non-trivial R-sets, i.e., R-sets C with |C| ≥ 2. However, if the set F
is chosen appropriately, the resulting inequalities are valid for the 0/1-polytope of the Graphical
TSP, i.e., the polytope which is defined as the convex hull of all incidence vectors of spanning
(connected) Eulerian subgraphs of the graph G. Thus our results have consequences for polytopes
associated with TSP.

3.3 Examples

In this section we give examples. We start with two trivial ones. First, the bound inequalities
are related by switching: xe ≤ be can be obtained by switching the inequality xe ≥ 0. Second, all
blossom inequalities (see (2.5a) on page 21) are switched R-odd cut inequalities.

28 CHAPTER 3. TRANSFORMATION AND SYMMETRY

b1(f)

b2(f)

odd

f

Figure 3.1: Switched honeycomb

3.3.1 Switched honeycombs

For the definition of the switched honeycomb (HC-) inequalities, in addition to the partition ofswitched HCs

the node set into sets Bkr , as defined in 2.1.2 on page 18, we need sets of edges F k, k = 1, . . . ,K,
such that bf < ∞ for all f ∈ F k, k = 1, . . . , L. Further, we require that for each f ∈ F k there
exist two distinct numbers r1(f), r2(f) ∈ {1, . . . , nk} with f ∈ (Bkr1(f) : Bkr2(f)). See Fig. 3.1. We
replace items 4 and 5 of the definition on page 18 by

4a. The relation t(Bkr)+b(F k ∩∂(Bkr)) = 0 mod 2 holds for each r = 1, . . . , nk and k = 1, . . . , L.

5a. For all k ∈ {1, . . . , L} the set {Bki | i = 1, . . . , nk} of node sets is C} F k-connected.

We give the coefficients of the switched honeycomb inequality:

ce :=

distT (Bkr1 , B
k
r2) − 2 if e ∈ (Bkr1 : Bkr2) \ F

k, for r1 6= r2

2 − distT (Bkr1(f), B
k
r2(f)) if e ∈ F k

distT (Bk1r1 , B
k2
r2) if e ∈ (Bk1r1 : Bk2r2), for k1 6= k2

0 otherwise.

(3.5)

The right hand side is

γ := 2(K − 1) + 2
∑

k

b(F k) −
∑

k

∑

f∈Fk

bf distT (Bkr1(f), B
k
r2(f)). (3.6)

The switched honeycomb inequality (c, γ) is valid for GRP(Γ, b). By Proposition 3.1.5, the in-
equality defines a face of GRP(Γ, b) which has the same dimension as the face of GRP(ΓχF∩Eint , b)

induced by the inequality (c′, γ′), where c′ and γ′ are defined as in (3.5) and (3.6), but with F k

replaced by F k \ Eint for all k. Hence, if F ⊆ Eint, then Proposition 3.1.5 shows that the in-
equality defines a facet of the polyhedron with bounds under similar conditions as are required for
the classical honeycomb inequalities to define facets (we will address this topic in 4.4.3). For the
case that F \Eint 6= ∅, it can be shown that the switched honeycomb inequalities define facets of
GRP(Γ, b) under the same conditions.

3.3.2 Switched path-bridge inequalities

We come to the description of switched path-bridge inequalities. Let P , np, A, Z, Bpj be as in 2.1.2,switched PBs

and F ⊆ (A : Z), but with the condition 2 replaced by

2a. P + t(A) + b(F) = 1 mod 2, and if A is a union of R-sets, then P + b(F) ≥ 3 must hold.

3.3. EXAMPLES 29

Let c be the vector of coefficients as defined in (2.2) on page 18, but with the coefficients on edges

f ∈ F changed from 1 to −1. Then (c, 1 − b(F) +
∑P

p=1
np+1
np−1) is a switched PB-inequality and

hence valid for GRP(Γ, b). If we allow P = 0, then the definition includes the blossom inequalities
(2.5a) (see page 21) as a subclass. We note that the simplest form of switched PB-inequalities,
namely the switched 2-regular PBs with b = 1, were found independently by Letchford [Let03].

It can be shown that the switched PB-inequalities define facets under similar conditions which
are sufficient for the classical PB-inequalities to define facets of the polyhedron with bounds, see
4.4.2. We will give a stronger result for the facet defining property of switched PB-inequalities
based on a more elegant argument. We can assume that the set F does not include R-internal edges,
because we can use Proposition 3.1.5 for these edges. Further, for simplicity of the presentation,
we restrict the exposition to the case that bf = 1 for all f ∈ F .

The idea of the following theorem is to turn one edge f ∈ F into a path. It can be used
inductively on |F |. Let P , np, A, Z, Bpj , and F as just defined and let (c, γ) be the corresponding
switched PB-inequality. Let f ∈ F be an R-external edge.

Construct a graph Gf out of G in the following manner. Denote the end nodes of f by w0 and
w3, and subdivide the edge f twice by adding new nodes w1 and w2.

1 In other words, the edge f
is replaced by two new nodes w1 and w2 and three edges

e0 = w0w1 e1 = w1w2 e2 = w2w3.

This means that the edge ei has the end nodes wi and wi+1, for i = 0, 1, 2. See Fig. 3.2 for an
illustration. Define a partition Cf of the node set of Gf by

Cf := C ∪ {{w1}, {w2}} ,

and a parity function by letting tf (v) := t(v) for all v ∈ V (G) and tf (wi) := 0 for i = 1, 2. Let
Γ f := (Gf ,Cf , tf), and define bounds by bfe = be for all e ∈ E(Gf) \ {e0, e1, e2} and bfei

= 2.
We modify the path-bridge configuration on Γ to obtain a path-bridge configuration on Γ f by

adding an extra path P + 1:

BP+1
0 := A, BP+1

1 := {w1}, BP+1
2 := {w2}, BP+1

3 := Z.

Let (cf , γf) denote the modified switched PB-inequality.

3.3.1 Theorem If GRP(Γ, b) is full-dimensional, then the original switched PB-inequality (c, γ)
is facet-defining for GRP(Γ, b) if the modified switched PB-inequality (cf , γf) is facet-defining for
GRP(Γ f , b).

It may be said that the conditions imposed in this theorem are fortunate, since for classical
PB-inequalities to define facets the condition that b(Bp

j : Bpj+1) ≥ 2, for j = 0, . . . , np, is sufficient
(see 4.4.2).

The proof of Theorem 3.3.1 relates the faces induced by the two inequalities (c, γ) and (cf , γf)
geometrically. This relation uses the following mapping and is established in the lemma below.
Define the affine mapping

h :
� E(G)\{f}∪{e0,e1,e2} →

� E(G)

by letting, for all e ∈ E(G),

(

h(y)
)

e
:=

{

4 − y({e0, e1, e2}), if e = f,

ye, if e ∈ E(G) \ {f}.

3.3.2 Lemma The affine mapping h maps the face of GRP(Γ f , b) induced by the modified switched
path-bridge inequality (cf , γf) onto the face of GRP(Γ, b) induced by the original switched path-
bridge inequality (c, γ).

1It may be worth mentioning the similarity of the construction of subdividing an edge twice to the one used by
Letchford [Let99] in a different context for the unbounded GRP polyhedron conv(S ∞).

30 CHAPTER 3. TRANSFORMATION AND SYMMETRY

A

Z

.

B1
1

Bp1
B1

2

BpnpB1
n1

w0

w3

w2

w1

e0

e2

e1f

Figure 3.2: Illustration for Theorem 3.3.1.

Proof. First of all we show that for all y ∈
� E(Gf), if x := h(y), we have γ− cx = γf − cfy . Note

that for all edges in e ∈ E(G) \ {f} = E(Gf) \ {e0, e1, e2} the coefficients of the two inequalities
are equal, ce = cfe , and xe = ye holds, too. For i = 0, 1, 2, we have cfei

= 1. For the right hand
sides we have γf = γ + 4. From xf = 4 − y({e0, e1, e2}) it follows that

γ − cx = γ −
∑

e∈E(G)\{f}

cexe + xf

= γ −
∑

e∈E(Gf)\{e0,e1,e2}

cfeye + 4 − y({e0, e1, e2}) = γf − cfy.

Now we prove that, if y ∈ S(Γ f , b) satisfies the modified inequality with equality, i.e., cfy = γf ,
then x := h(y) ∈ S(Γ, b). We have the following implications:

y ({e0, e1, e2}) = 3 =⇒ xf = 1

y ({e0, e1, e2}) = 4 =⇒ xf = 0

This would imply x = h(y) ∈ {0, 1}E(G), if no other values of y({e0, e1, e2}) occurred. But firstly
y({e0, e1, e2}) ≥ 3 is a consequence of

y(∂(w1)) ≥ 2, y(∂(w2)) ≥ 2, and y(∂({w1, w2})) ≥ 2.

And secondly, if y({e0, e1, e2}) = 6 (the value 5 is impossible for parity reasons), then cfy = γ
cannot hold, since the “cheapest” way to connect the remaining sets Bp

j , p 6= P + 1 would be to
select exactly the two edges with the smallest coefficient out of ∂(Bp

j). This is possible by taking

exactly one edge in each of the sets (Bpj : Bpj+1), j = 0, . . . , np, which adds up to
∑

p6=P+1
np+1
np−1 .

Even if all edges g ∈ F \ {f} have in yg = bg, it follows that

cfy ≥
P

∑

p=1

np + 1

np − 1
+ 6 − b(F \ {f}) >

P
∑

p=1

np + 1

np − 1
+ 3 + 1 − b(F \ {f}) = γf ,

which proves that y({e0, e1, e2}) ∈ {3, 4} and hence x ∈ {0, 1}E(G).
We come to show that x satisfies the parity constraints. From y({e0, e1, e2}) = 3 it follows

that y(ei) = 1 for all k, and y({e0, e1, e2}) = 4 implies y(ei) ∈ {0, 2} for all k. Consequently the
relation

y(∂(v)) = x(∂(v)) mod 2

holds for all v ∈ V (G).

3.3. EXAMPLES 31

To see that x is a semitour, the connectivity condition remains to be shown. Let S be a union
of R-sets in C. We have to show x(∂(S)) ≥ 2. If f 6∈ ∂(S), then x(∂(S)) = y(∂(S)) ≥ 2. Otherwise
we can find S′ ⊆ V (Gf) with ∂(S′) \ {e0, e1, e2} = ∂(S) \ {f} and ∂(S ′) ∩ {e0, e1, e2} 6= ∅. From
y(∂(S′)) ≥ 2 it then follows that x(∂(S)) ≥ 2.

Finally, it is easy to see that the image of the restriction of h to the face defined by (cf , γf) is
just the face defined by (c, γ). This completes the proof of the lemma.

Now we can tackle the proof of Theorem 3.3.1. Let P be the face of GRP(Γ, b) defined by (c, γ),
and let P f be the facet of GRP(Γ f , b) defined by (cf , γf). Since, by Lemma 3.3.2, h(P f) = P ,
and since the dimension of the kernel of the matrix M which defines the affine mapping h is two,
we have

dimP = dimh(P f) ≥ dimP f − 2 = |E(G) \ {f} ∪ {e0, e1, e2}| − 1 − 2 = |E(G)| − 1.

Hence, (c, γ) defines a facet of GRP(Γ, b), if the polyhedron is full-dimensional.
To complete the proof, we give the argument which shows that GRP(Γ f , b) has full dimension.

If we contract the edges e1, e2 we again obtain the GRP-structure Γ , but we have the bound-vector
b′ := b+χf . Clearly, GRP(Γ, b′) has full dimension, because it contains GRP(Γ, b). Now it is easy
to see that GRP(Γ f , b) is full-dimensional, too (it also follows from the general Proposition 4.1.8
in the next chapter).

32 CHAPTER 3. TRANSFORMATION AND SYMMETRY

Chapter 4

Dimension and lifting

Ghiani & Laporte [GL00] gave necessary and sufficient conditions under which the polytope
GL(Γ, T) is full-dimensional. Further, they investigated the facial structure of the polytope under
the condition that it is full-dimensional. They proved necessary and sufficient conditions for the
trivial inequalities to define facets of the polytope, and they gave necessary conditions for the
facet-defining property of connectivity (1.1b) and cocircuit (2.3) inequalities.1

In this chapter we will answer some of the remaining questions about the bounded polyhedra
GRP(Γ, b), and obtain results for GL(Γ, T) as consequences. First of all, we prove a node-lifting
theorem, which allows us to give sufficient conditions for the facet-defining property of facets of
GRP(Γ, b), including connectivity and cocircuit inequalities. Further, we give a complete system of
equations for GRP(Γ,bT) and GL(Γ, T), and show that if GRP(Γ,bT) is not full-dimensional, it is
affinely isomorphic to a full-dimensional polyhedron GRP(Γ/F,bT \ F), where the GRP-structure
Γ/F can be obtained from Γ by edge contractions. Since full-dimensional polyhedra are much
easier to study than polyhedra which have a non-trivial space of linear equations, of possibly
unknown dimension, our contribution greatly facilitates the further theoretical investigation of
polyhedra of this kind.

We introduce some notation which we use in this chapter. First of all we note that in this
chapter we will exclusively deal with loopless multigraphs, so all contractions and identifications
operate in this class. Let e = u1u2 be an edge e of a graph G. Let we the node of the (loopless
multi-) graph G/e which results from contracting e. For a mapping t : V (G) → {0, 1}, we define t/e

t/e : V (G/e) → {0, 1} : v 7→

{

t(u1) + t(u2) mod 2 if v = we

t(v) otherwise.

For a graph G and a partition U of its node set, we denote by GU the graph which results GU

from identifying each set U to a single node. We agree on V (GU) = U; in other words, the node
resulting from identifying the set U is denoted by U . Note that this is the way how we defined
Gm

C for a graph G and an R-set partition C.
To simplify notation, in this chapter we will restrict to bound vectors b : E(G) → � ∗

+, which
means that in this chapters, all edges have finite bounds. Recall the definition of λb(G) from
Section 0.4. We abbreviate λ bE(G

U
)
(GU) to λb(GU). λb(GU)

4.1 Join structures

Let G,G◦ be two graphs. In the first part of this section, we will consider partitions of the node
set of G◦ into sets {Uv | v ∈ V (G)} = U, with the property that the graph G◦

U is isomorphic to
G. We introduce the notion of “fatness” as an abstract condition on the structure of the induced

1In fact, they conjectured that these conditions were necessary. We were able falsify their conjecture in [RT06],
but we do not repeat the construction in this thesis.

33

34 CHAPTER 4. DIMENSION AND LIFTING

subgraphs G◦[Uv], which assures that the facet-defining property is inherited. When dealing with
node identifications, we have to consider the whole structural information Γ = (G,C, t), and even
the bounds b. We also treat “merging” of parallel edges. In the second part, we will give sufficient
conditions for fatness, and conjecture a characterization in terms of easy conditions which are
both necessary and sufficient.

4.1.1 Definition A join structure is a triple Ξ = (H,D, b) consisting of a graph H , a partitionjoin structure

D of V (H), and a vector of (finite) bounds b : E(H) → � ∗
+ on H . Given a join structure Ξ and a

parity function t, a vector x : E(H) → � + is called Ξ, t-feasible, ifΞ, t-feasible
vector

1. it is a t-join,

2. it connects the sets in D, i.e., if we delete from the graph HD all the edges e with xe = 0,
then the remaining subgraph is connected, and

3. it satisfies the bounds, that is, x ≤ b.

Clearly, if (G,C, t, T) is GL-GRP-structure, then Ξ := (G,C,bT) is a join structure, and t is a
parity function on G. The semitours in S(Γ,bT) are precisely the Ξ, t-feasible vectors.

4.1.2 Definition We call a join-structure Ξ collapsible, if either H has only one node, or for everycollapsible

parity function t on H there exists a Ξ, t-feasible vector. A join-structure Ξ is called fat, if eitherfat

H has only one node, or for every parity function t the set of all Ξ, t-feasible vectors has affine
dimension |E(H)|, i.e., the affine hull of this set is equal to the full space

� E(H).

Note that fatness implies collapsibility. The term “collapsible” was defined in [Cat88] for the
case that D = {{v} | v ∈ V (G)}.

4.1.3 Remark Suppose that H has at least three nodes and is not two-connected. It is easy to
see that the set of all Ξ, t-feasible vectors is the direct product of the feasible vectors on the blocks
of H , where the partitions and parity functions for the blocks are defined in a straight forward
manner (see 6.1.1). The same relation holds for the affine hulls of the sets of feasible vectors, and
also their convex hulls.

The first thing we will study about join structures is what happens if parallel edges are merged.
We make precise what we mean by this.

4.1.4 Definition Let H be a graph, b be a vector of bounds, and e1, . . . , er, r ≥ 2, be parallel
edges of H , i.e., e1, . . . , er ⊆ (u : v) for two nodes u, v ∈ V (H). Suppose that bei

= 1 for
i = 1, . . . , r. Denote H∗ := H \ {e2, . . . , er} and define bounds b∗ by lettingH∗

b∗e =

{

r, if e = e1,

be, otherwise.

We say that H∗ and b∗ result from H and b by merging the edges e1, . . . , er. We say that the joinmerging edges

structure Ξ∗ arises from a Ξ by merging of edges, if that is the case for the two graphs and the
bound vectors and if their node partitions are the same.

The following lemma will be needed below and in Section 4.2.1.

4.1.5 Lemma Let Ξ∗ be the join structure which arises from the join structure Ξ by merging
the edges e1, . . . , er, and let t be a parity function. Denote by A the affine hull of all Ξ, t-feasible
vectors, and by A∗ the affine hull of all Ξ∗, t-feasible vectors. Then

codimA∗ ≥ codimA.

If r ≥ 3 or (H∗,D, b∗ − χe1) is collapsible, then equality holds. In this case, in particular, A =
� E(H) if and only if A∗ =

� E(H∗).

4.1. JOIN STRUCTURES 35

Proof. Consider the linear mapping f :
� E(H) →

� E(H∗) defined by

(

f(x)
)

e
=

{

x({e1, . . . , er}), if e = e1,

xe, otherwise.

Clearly f maps A onto A∗. The dimension of the kernel ker f of f is r − 1. Hence we have
dimA∗ ≥ dimA − (r − 1). In this inequality, equality holds if and only if kerf is contained in
the linear space A − A = {y − x | y, x ∈ A} define by A. Since ker f is generated by the vectors
χej − χej+1 , for j = 1, . . . , r − 1, it suffices to show that, for each j = 1, . . . , r − 1, there exist
Ξ, t-feasible vectors x, y such that

yej
= 1, xej

= 0, yej+1 = 0, xej+1 = 1,

ye = xe, for e 6= ej , ej+1.

For r ≥ 3, this is easy. Let r = 2. For j = 1, the collapsibility of (H \ e1,D, bE(H)\e1) implies
the existence of an appropriate vector x, and the collapsibility of (H \ e2,D, bE(H)\e2) implies the
existence of a vector y.

If Γ ∗ and b∗ arise from Γ and b by merging, then GRP(Γ ∗, b∗) is a projection of GRP(Γ, b).
The following lemma gives details on this relationship. It helps in the practical application of The-
orem 4.3.1 below, and it also gives a better understanding of the relationship between GRP(Γ,bT)
and GL(Γ, T).

4.1.6 Lemma Let Γ = (G,C, t) be a GRP-structure and b a vector of bounds, and suppose that
G∗, b∗ is obtained by merging a set of parallel edges {e1, . . . , er}. Define Γ ∗ := (G∗,C, t). Let
a ∈

� E(G) with ae1 = . . . = aer
and α ∈

�
, and define a∗ := aE(G∗) ∈

� E(G∗).

(a). The inequality (a, α) is valid for GRP(Γ, b) if and only if (a∗, α) is valid for GRP(Γ ∗, b∗).

(b). If (a, α) is facet-defining for GRP(Γ, b), then (a∗, α) is facet-defining for GRP(Γ ∗, b∗).

(c). Suppose that (a∗, α) is facet-defining for GRP(Γ ∗, b∗). Then (a, α) is facet-defining for
GRP(Γ, b), if

there exists x ∈ S(Γ, b) with ax = α and 0 < x({e1, . . . , er}) < r. (c∗)

If the equation xe1 = xe2 is not valid for the polytope GRP(Γ, b), then condition (c∗) is also
necessary. It is satisfied, for example, if r ≥ 3, or if e1 is R-internal and ae1 6= 0, or if
x({e1, . . . , er}) = 2 is not a valid equation and ae1 < 0.

Proof. The first item is obvious. For item (b), let the hyperplane defined by the equation c∗x = γ
contain the face of GRP(Γ ∗, b∗) induced by (a, α). The vector c∗ can be prolonged to a c ∈

� E(G)

by letting cer
:= . . . := ce1 , and then cx = γ holds for all x on the face of GRP(Γ, b) defined

by (a, α). Hence (c, γ) is a linear combination of (a, α) and valid equations for GRP(Γ, b). Since
ce1 = . . . = cer

and ae1 = . . . = aer
, it follows easily that (c∗, γ) must also be a linear combination

of (a∗, α) with a valid equation for GRP(Γ ∗, b∗).

For item (c), it is easy to check that the condition (c∗) implies that an equation cx = γ
which defines a hyperplane which contains the face of GRP(Γ, b) defined by (a, α) must satisfy
ce1 = . . . = cer

. This implies that c∗x = γ holds for all x on the face of GRP(Γ ∗, b∗) induced
by (a∗, α). Hence (c∗, γ) is a linear combination of (a∗, α) and valid equations for GRP(Γ ∗, b∗),
which immediately implies that the same holds for (c, γ).

The remaining statements of item (c) are easily verified.

36 CHAPTER 4. DIMENSION AND LIFTING

4.1.1 Characterizing fat join structures

From now on, for the rest of this section, we restrict ourselves to the case that H is 2-connected
or has at most two nodes, using Remark 4.1.3. The same argument which is used in [GL00] (see
equations (4.2) and (4.3) below) to give necessary conditions for the full-dimensionality of the
polytope GL(Γ, T) shows that if a join structure Ξ = (H,D, b) is fat, then

λb(H) ≥ 3, and (4.1a)

λb(HD) ≥ 4. (4.1b)

We will use the following condition for proving sufficient conditions for fatness.

H [D] is connected for each D ∈ D. (4.1c)

In the case that H has two nodes, it is easy to check that these conditions are also sufficient.
For completeness, we state some facts which are easily verified.

4.1.7 Lemma Let a join structure Ξ = (H,D, b) be given.

(a). If (H \ e,D, b) or (H,D, b− χe) is fat, then so is Ξ.

(b). For two graphs H1, H2, construct the graph H by adding to H1∪H2 a set of edges F each of
which having one end node in H1 and one in H2. If Ξ1 = (H1,D1, b1) and Ξ2 = (H2,D2, b2)
are fat, and Ξ = (H,D1∪D2, (b1, b2, bF)>) where bF ∈ � F+ satisfies 1bF ≥ 4, then Ξ is fat.

Now we prove the following proposition, which relates to the special property of GL-GRP-
structures, where there are “many” edges with upper bound 2. We define contraction for a join
structure Ξ = (H,D, b). If e ∈ E(H) has no parallel edge, then define Ξ/e := (H/e,D/e, bE(H)\e).

4.1.8 Proposition Let a join structure Ξ = (H,D, b) be given which satisfies (4.1b) and (4.1c),
and let e ∈ E(H) be an edge with be ≥ 2, which has no parallel edge and its ends are contained in
two different sets in D. If Ξ/e is fat, then so is Ξ.

To prove the proposition, we need the following three lemmas. The first one is well-known. It
also allows to derive the condition of Lemma 4.1.5 that (H∗,D, b∗−χe1) be collapsible from (4.1b)
and (4.1c). Hence, the condition of Proposition 4.1.8 that e has no parallel edge is only technical
and no loss of generality.

4.1.9 Lemma (Folklore) If a graph G is 2k-edge connected then for every edge set F with |F | ≤
k, there exist k edge disjoint spanning trees in G \ F .

As a tool, we introduce a way to construct Ξ, t-feasible vectors, which is adapted from the
theory of supereulerian graphs [Cat92]. We first note this trivial lemma for easy reference.

4.1.10 Lemma Let H be a graph, b a vector of bounds, and t a parity function. Let a vector

y ∈ � E(H)
+ be given which satisfies y ≤ b. Consider the graph H(b−y), i.e., the spanning subgraph

of H with edge set {e ∈ E(H) | be − ye > 0}. If H(b − y) is connected, then there exists t-join

x ∈ � E(H)
+ with y ≤ x ≤ b.

Suppose that D is a partition of V (H). We define a “finer” partition Dc of V (H): the
elements of Dc are the node sets of the connected components of the spanning subgraph H c

of H which results if we delete from H all edges with end nodes in different sets D ∈ D, i.e.,
E(Hc) = E(H) \E(HD) =

⋃

D∈D
E(D). The partition Dc is finer than D in the sense that each

D ∈ D is a union the elements of D′ ∈ Dc with D′ ⊆ D. Note that E(HDc) = E(HD).

4.1. JOIN STRUCTURES 37

4.1.11 Lemma Let Ξ = (H,D, b) be a join structure. Suppose that the following condition holds:

There exist edge sets T1, T2 ⊆ E(HD) such that T1 is a spanning tree in HDc and T2 is
a spanning tree in HD, and χT1 + χT2 ≤ b.

(∗)

Then Ξ is collapsible.

Proof. Let t be a parity function. Define y := χT2 . The graph H(b− y) is connected, because it
contains T1. Hence, Lemma 4.1.10 can be applied and yields a Ξ, t-feasible vector x.

Proof of Proposition 4.1.8. Let u1, u2 be the end nodes of e. Let t be a parity function on H ,
and let ax = α be an equation which holds for all Ξ, t-feasible vectors x.

Claim. There exists a Ξ, t-feasible vector x0 with x0
e ≤ be − 2.

We will construct x0 below. Now we note that this implies

ax0 = α = a(x0 + 2χe),

and hence ae = 0. Every Ξ/e, t/e-feasible vector y can be prolonged to a Ξ, t-feasible vector x
with xG(E)\{e} = y in the following way. Since y(∂({u1, u2})) = t({u1, u2}) mod 2, we know that
y(∂(u1))− t(u1) = y(∂(u2))− t(u2) mod 2, and we set xe = 1 if this number is odd and xe = 2, if
it is even.

But this implies that aE(H/e) y = α holds for all Ξ/e, t/e-feasible vectors y. Hence, we have
a = 0 and α = 0.

Proof of the claim. We construct a Ξ, t-feasible vector x0 with x0
e ≤ be−2. By Lemma 4.1.9, we

know that there exist two trees, T1, T2, such that χT1 +χT2 ≤ b−2χe. By invoking Lemma 4.1.11,
we know that there exists a Ξ, t-feasible vector as desired.

If |D| = 1 and b = 1, then the Ξ, t-feasible vectors are precisely the t-joins in H . From [BG86]
we know that the convex hull of all t-joins is full-dimensional if the graph is 3-edge connected
(4.1a). Using this fact, we obtain the following corollary using Proposition 4.1.8 inductively. The
case of GL(Γ, T) occurred in [GL00].

4.1.12 Corollary Let (G,C, t, T) be a GL-GRP-structure. If the conditions (4.1a–b) hold for
(G,C,bT), then the polytopes GRP(Γ,bT) and GL(Γ, T) are full-dimensional.

Finally, we give a result which works in the absence of condition (4.1c).

4.1.13 Proposition Let a join structure Ξ = (H,D,1) be given, and let T be the edge set of a
spanning tree of HD. If H \ T is 3-edge connected then Ξ = (H,D,1) is fat.

Proof. The proof is by induction on |D|. For |D| = 1, as already mentioned, the convex hull of
t-joins is full-dimensional if the graph is 3-edge connected 4.1a.

Let |D| ≥ 2. Suppose that the claim is true for join structures where the partition has at most
|D| − 1 sets, and let t be a parity function. Let f ∈ T .

First, we show that there exists a Ξ, t-feasible vector x with xf = 0. Deleting the edge f
from the tree with edge set T induces a bipartition of the node set V (G). Let e 6= f be any
edge in the cut induced by this bipartition. To define x with xf = 0, we apply Lemma 4.1.10 to
y := χT∪{e}\{f} = 1.

Second, we use induction. Define H ′ := H \ f . Let u1, u2 be the end nodes of f and let
D1, D2 ∈ D such that ui ∈ Di, for i = 1, 2. Define D′ := D} f , and

t′ : V (H ′) → {0, 1} : u 7→

{

1 − t(u) mod 2 if u = u1, u2

t(u) otherwise.

Finally let T ′ := T \ {f}. If xE(H′) is a Ξ′, t′-feasible vector, then xf := 1 makes x a Ξ, t-feasible
vector, hence, by induction, there exist |E(H)|−1 affinely independent Ξ, t-feasible vectors x with
xf = 1. Together with at least one feasible vector x with xf = 0, the proposition follows.

38 CHAPTER 4. DIMENSION AND LIFTING

We direct the reader to the possibility to apply Lemma 4.1.5 after this proposition. To complete
the picture, we state a conjecture which characterizes fatness.

4.1.14 Conjecture The obvious necessary conditions for fatness are also sufficient: Every join
structure which satisfies (4.1a) and (4.1b) is fat.

4.2 Dimension of and complete systems of equations for

GRP polytopes

Now we consider the dimensions of the polytopes GRP(Γ,bT) and GL(Γ, T). We note that the
codimensions of the two polytopes are equal, and we give a complete system of equations for
both polytopes. We show that if GRP(Γ,bT) is not full-dimensional, then Γ and T can be
modified so that the result is a GL-GRP-structure (Γ ′, T ′) with the property that GRP(Γ ′,bT ′

)
is full-dimensional an isomorphic to GRP(Γ,bT). As a result, we characterize all facet-defining
inequalities of GL(Γ, T) through those of the full-dimensional polytope GL(Γ ′, T ′). These results
settle the issue of non-full-dimensionality of GL(Γ, T), which was raised in [EL00] who assert that
the polytope is “typically not full-dimensional”. An updated statement would be: By contraction
of some edges, which can be efficiently identified, and a modification of the cost vector, we can
assume without loss of generality that the polytope GL(Γ, T) is full-dimensional.

4.2.1 Constructing an isomorphic full-dimensional GRP-polytope

We will now prove that there exists a set F ⊆ E(G) such that GRP(Γ/F,bT\F) is full-dimensional
and

GRP(Γ,bT) ∼= GRP(Γ/F,bT\F)

in the sense of affine isomorphism of polytopes. From this we will derive a complete system
of valid equations for GRP(Γ,bT) and GL(Γ, T), and we show how to gain a complete de-
scription of GRP(Γ,bT) and GL(Γ, T) out of a complete descriptions for GRP(Γ/F,bT\F) and
GL(Γ/F, T \ F). We will briefly point out how these results can be used in a preprocessing of
GRP-instances to the effect that the optimization takes place over a full-dimensional polytope.

We begin by listing the known valid equations for GRP(Γ, b), which were given in [GL00] for
the special case of GL(Γ, T). Because of Remark 4.1.3 (and because the case when G has only
two nodes is trivial), for the rest of this section, we assume the case that G is 2-connected, and
hence 2-edge connected. For {e1, e2} = ∂(U) and be1 = be2 = 1, we have the equations

xe1 − xe2 = 0, if U is even, or (4.2a)

xe1 + xe2 = 1, if U is odd. (4.2b)

If S is a union of R-sets, and b(∂(S)) ≤ 3, then

x(∂(S)) = 2. (4.3)

For general bound vectors b there are examples where these equations do not form a complete
system. However, for GRP(Γ,bT) and GL(Γ, T), they do, as we will show. It will be necessary to
treat this issue a bit more general. For the rest of this section, we make the following assumptions
on G, Gm

C and b.

λb(G) ≥ 2 λb(G
m

C) ≥ 3 (4.4)

b(∂(U)) = 2 =⇒ |∂(U)|= 2 for all node sets U

b(∂(S)) = 3 =⇒ |∂(S)|= 2 for all unions of R-sets S
(4.5)

They are satisfied in the case of GRP(Γ,bT) but also if we take GT and merge some of the edge
sets {e, e∼} with e ∈ T . We summarize the main result of this section in the following theorem.

4.2. DIMENSION AND COMPLETE SYSTEM OF EQUATIONS 39

4.2.1 Theorem There exist a k ≥ 0 and edges e1, . . . , ek and f1, . . . , fk with the following prop-
erties.

(a). The fj , j = 1, . . . , k, are distinct and {e1, . . . , ek} ∩ {f1, . . . , fk} = ∅.

(b). The edge set Dj := {ej , fj} is a cut in G for j = 1, . . . , k.

(c). For j = 1, . . . , k, we have bej
= 1, and either is fj R-internal and bfj

= 1, or bfj
= 2 and

ej , fj ∈ E(Gm

C).

(d). We abbreviate F := {f1, . . . , fk}. Either the loopless multigraph G/F consist of a single
node, or E(G/F) = E(G) \ F and

λ bE(G)\F
(G/F) ≥ 3 and λ bE(G)\F

((G/F)C/F) ≥ 4. (4.6)

(e). The following statements are equivalent:

(i) G/F has only one node

(ii) G is a circle with k + 1 nodes and E(G) = {e1, f1, . . . , fk}.

In this case, GRP(Γ, b) is completely described by 0 ≤ xe1 ≤ 1 and the equations c(j)x = γ(j),
j = 1, . . . , k, where

(c(j), γ(j)) :=

(χej + χfj , 2), if fj ∈ E(Gm

C)

(−χej + χfj , 0), if fj 6∈ E(Gm

C) and Dj even

(χej + χfj , 1), if fj 6∈ E(Gm

C) and Dj odd.

(4.7)

If G/F has at least two nodes, then the following statements hold.

(f). GRP(Γ, b) is isomorphic to GRP(Γ/F, bE(G)\F).

(g). If GRP(Γ/F, bE(G)\F) is full-dimensional, then every equation ax = α which is valid for
GRP(Γ, b) satisfies

(

a
α

)

=

k
∑

j=1

afj

(

c(j)

γ(j)

)

.

Note that the equations (4.7) are trivially linearly independent because of item (a). In the case
of the following corollary the condition of item (g) that GRP(Γ/F, bE(G)\F) be full-dimensional
is implied by (4.6) because of Proposition 4.1.8.

4.2.2 Corollary Suppose that (in addition to the conditions (4.4) and (4.5)) there exists an edge
set T of a spanning tree of Gm

C such that for all e ∈ T we have that be ≥ 2 or e has a parallel edge.
Then dim GRP(Γ, b) = |E(G)| − k, and the equations of types (4.2) and (4.3) form a complete
system of equations for GRP(Γ, b). This holds in particular for GRP(Γ,bT).

4.2.3 Corollary We have dim GL(Γ, T) =
∣

∣E(GT)
∣

∣ − k, and the following complete system of
equations:

xe1 − xe2 = 0, for {e1, e2} = ∂(U) with U is even

xe1 + xe2 = 1, for {e1, e2} = ∂(U) with U is odd

xf + xf∼ + xe = 2 for {f, f∼, e} = ∂(S) with S a union of R-sets.

(4.8)

Proof. It is easy to check the conditions of Lemma 4.1.5 for merging the edge sets {e, e∼} be-
cause of the presence of T and the fact that G is 2-connected. Applying it |T | times, we obtain
dim GL(Γ, T) = dim GRP(Γ,bT) + |T |. The result follows from the previous corollary.

40 CHAPTER 4. DIMENSION AND LIFTING

In preparation of the proof of Theorem 4.2.1, we give some structural results.

4.2.4 Lemma Let D = ∂(U) be given with b(D) = 2. Then there exists an R-internal edge
f ∈ D. Let D = {e, f} with f R-internal. Note that E(G/f) = E(G) \ {f}. The linear projection
mapping

ϕ :
� E(G) →

� E(G/f) : x 7→ xE(G)\{f}

is a bijection between the sets S(Γ, b) and S(Γ/f, bE(G)\{f}), and an isomorphism of the polytopes
GRP(Γ, b) and GRP(Γ/f, bE(G)\{f}).

Proof. The existence of such an f ∈ D follows by (4.4). Now consider the following affine
mapping:

ψ :
� E(G/f) →

� E(G) : x 7→
(

ψh(x)
)

h∈E(G)
, where

ψh(x) :=

xh, if h 6= f,

xe, if h = f and U is even,

1 − xe, if h = f and U is odd.

We prove that ϕ : S(Γ, b) → S(Γ/f, bE(G)\{f}) and ψ : S(Γ/f, bE(G)\{f}) → S(Γ, b) are in-
verses to each other. Because both ϕ and ψ are affine mappings, this implies that ϕ and ψ are
isomorphisms of the polytopes.

Let x ∈ S(Γ, b). Then xE(G)\{f} ∈ S(Γ/f, bE(G)\{f}). Because xf = xe if U is even and
xf = 1 − xe if U is odd, it follows that x = ψ(xE(G)\{f}) = (ψ ◦ ϕ)(x).

Now let u, v denote the end nodes of f , where u ∈ U . We show that if y ∈ S(Γ/f, bE(G)\{f}),
then ψ(y) ∈ S(Γ, b). Obviously ψ(y) connects all R-sets, because y does. The parities of all nodes
of G, except for, perhaps, u and v, are satisfied by ψ(y). This implies

ψ(y)(D) − t(U) =
∑

w∈U

(

ψ(y)(∂(w)) − t(w)
)

= ψ(y)(∂(u)) − t(u) mod 2

and hence the parities of u and v are satisfied if and only if ψ(y)(D) = t(U) mod 2. But this is
an immediate consequence of the definition of ψf (y). Hence ψ(y) ∈ S(Γ, b).

This completes the proof because the relation (ϕ ◦ ψ)(y) = y is obvious.

4.2.5 Lemma Let D = ∂(S) with b(D) = 3 be given, where S is a union of R-sets. Then there
exists an R-external edge f ∈ D with bf = 2. Let D = {e, f} with f R-external and bf = 2. Note
that E(G/f) = E(G) \ {f}. Then the linear mapping

ϕ :
� E(G) →

� E(G/f) : x 7→ xE(G)\{f}

is a bijection between the sets S(Γ, b) and S(Γ/f, bE(G)\{f}), and an isomorphism of the polytopes
GRP(Γ, b) and GRP(Γ/f, bE(G)\{f}).

Proof. It follows from (4.5) that the edge f exists. Define the mapping

ψ :
� E(G/f) →

� E(G) : x 7→
(

ψh(x)
)

h∈E(G)
, where

ψh(x) :=

{

xh, if h 6= f ,

2 − xe, if h = f.

As in the proof of the previous Lemma, we will show that ϕ : S(Γ, b) → S(Γ/f, bE(G)\{f}) and
ψ : S(Γ/f, bE(G)\{f}) → S(Γ, b) are inverses to each other, which again implies the isomorphism
of the polytopes, because ϕ and ψ are affine mappings.

For x ∈ S(Γ, b), we have xE(G)\{f} ∈ S(Γ/f, bE(G)\{f}). Since b(D) = 3 and x(D) ≥ 2, it
follows that x(D) = 2 and consequently xe = 2 − xf , and hence x = (ψ ◦ ϕ)(x).

4.2. DIMENSION AND COMPLETE SYSTEM OF EQUATIONS 41

Now let u, v denote the end nodes of e, where u ∈ S. We show that if y ∈ S(Γ/f, bE(G)\{f}),
then ψ(y) ∈ S(Γ, b). By an argument similar to the one in the previous lemma the parities are
easily seen to be satisfied by ψ(y). For the connectivity condition, let S ′ be a non-trivial union of
R-sets. Since y satisfies the connectivity condition for G/f,C/f , if the cut ∂(S ′) does not separate
the R-sets containing u and v, we have ψ(y)(∂(S ′)) = y(∂(S′)) ≥ 2. But any cut separating u and
v contains e, and hence ψe(y) ≥ 1 implies that the connectivity condition is satisfied. It follows
that ψ(y) ∈ S(Γ, b).

Again the proof is finished by the remark that (ϕ ◦ ψ)(y) = y is obvious.

We will have to monitor what happens to valid inequalities or equations. To do this, let
{e, f} = D be a cut as in Lemma 4.2.4 or 4.2.5. The following lemma is an immediate consequence
of these two lemmas if, for any a ∈

� E(G) and α ∈
�
, we define a′ ∈

� E(G/f) and α′ ∈
�

as follows: a′

a′h :=

ah, if h 6= e

ae − af , if h = e and D ⊆ E(Gm

C),

ae − af , if h = e and D is odd,

ae + af otherwise;

α′ :=

α− 2af , if D ⊆ E(Gm

C)

α− af , if D odd

α, otherwise.

(4.9)

4.2.6 Lemma The inequality (a, α) is valid for GRP(Γ, b) if and only if (a′, α′) is valid for
GRP(Γ/f, bE(G)\{f}). Let P be the (possibly trivial) face of GRP(Γ, b) induced by (a, α), and
P ′ the (possibly not proper or empty) face of GRP(Γ/f, bE(G)\{f}) induced by (a′, α′). Then ϕ
induces an isomorphism P ∼= P ′ and hence dimP = dimP ′.

To use the above lemmas inductively, we only lack one easy technical result.

4.2.7 Lemma Let f be an edge of G as in Lemma 4.2.4 or 4.2.5. If G is not a triangle, then
G/f is still 2-connected.

Proof. Remember that we assumed that G is 2-connected. Let {e, f} = D be the cut in G.
Denote by u, v the end nodes of f . To show that G/f is 2-connected, we first treat the case that
e and f have a common end node. In this case the common end node must have degree two and
G/f is 2-connected if G is not a triangle.

Now suppose that e and f do not have a common end node. There exist precisely two internally
node disjoint u, v-paths, namely one consisting of just the edge f and one containing the edge e.
Assume that B is a connected component of G \ {u, v}, which does not contain e. There must
be neighbors of both u and v in B, because G is 2-connected. But this means that there exists a
path in B from a neighbor of u to a neighbor of v. This can be prolonged to a third u, v-path in
G, a contradiction.

Now we are ready to finish the proof of Theorem 4.2.1. It is a well-known fact that every
2-edge cut of G is either part of a circular partition or it is disjoint from all other 2-edge cuts. In a
circular partition, there can be at most one R-external edge e with be = 1. If that is the case, we
take all the other edges of the circular partition as the edges f1, . . . , fl, and let e1 := . . . := el := e,
and if the only edges e with be = 1 are R-internal, we take for e, f1, . . . , fl all the edges in the
circular partition with bf = 1. If a 2-edge cut {e, f} is disjoint from every other 2-edge cut, we just
let e and f be as in Lemma 4.2.4 or 4.2.5, if the conditions apply. This gives the edges e1, . . . , ek
and f1, . . . , fk as in items (a) and (b) of the theorem. Clearly, contracting F either gives a graph
with a single node or it produces the condition (4.6). The other statements of the theorem are
proved by applying the above Lemmas 4.2.4, 4.2.5, 4.2.6, and 4.2.7 inductively.

4.2.2 Characterization of the facets of non-full-dimensional polytopes

We will show how a complete description of the non-full-dimensional polytope can be gained from
a complete description of the one associated with Γ/F and T \F . In this subsection F will always
be the edge set from Theorem 4.2.1, and we assume that G/F has at least two nodes.

42 CHAPTER 4. DIMENSION AND LIFTING

4.2.8 Proposition The facets of GRP(Γ, b) are precisely the faces induced by inequalities (a, α)
with the property that (aE(G\F) , α) is facet defining for GRP(Γ/F, bE(G\f)) and aF = 0.

Proof. Let f ∈ F and let ā ∈
� E(G\f), α ∈

�
be given. Then, if we define a ∈

� E(G) by
aE(G\f) := ā and af := 0, we have a′ = ā and α′ = α, where a′ and α′ as in (4.9). Hence (a, α)
is facet-inducing if and only if (ā, α) is. Repeated application of this fact yields the claim.

4.2.9 Corollary A facet of GL(Γ, T) is induced either by an upper-bound inequality

xf ≤ 1 or xf∼ ≤ 1, where f ∈ F ∩ T , (4.10)

or by an inequality (a, α) with the property that (aE(G\F) , α) is facet defining for GL(Γ/F, T \ F)
and aF = 0. All inequalities of the latter kind are facet-inducing for GL(Γ, T).

Proof. Define F̃ := {f∼ | f ∈ F ∩ T}. Let Ĝ := GT \ F̃ , and define b := 1 + χF∩T . Then G and
b satisfy conditions (4.4) and (4.5). Let Γ̂ := (Ĝ,C, t).

Claim. The projection mapping a 7→ aE(G)\F̃ :
� E(GT) →

� E(Ĝ) defines a bijection between

the set of facet-defining inequalities of GL(Γ, T) which are not equivalent to an upper-bound
inequality (4.10) and the set of facet-defining inequalities of GRP(Γ̂ , b).

Once this claim is proven, the statement immediately follows from that of the previous propo-
sition.

Proof of the claim. Let {e, f} = D be as in Lemma 4.2.5, i.e., f ∈ T . We will prove that every
inequality (a, α) which is valid for GL(Γ, T) but which does not satisfy af = af∼ is dominated by
or equivalent to an upper-bound inequality. Once we know that af = af∼ holds for an inequality
(a, α) which is facet-defining for GL(Γ, T), we conclude that (aE(G\f∼) , α) is facet-defining for

GRP(Γ̂ , b) by Lemma 4.1.6-(b).
Assume af < af∼ . If x lies on the face, then we have the following implication

xf∼ = 1 ⇒ xf = 1 ⇒ xe = 0.

Hence the equation xf∼ + xe = 1 is valid for all x on the face. This equation is equivalent to
xf = 1. Now either the inequality (a, α) is dominated by or equivalent to xf ≤ 1, or the equation
xf = 1 is valid for the polytope. But the latter case cannot occur, because then (χf , 1) would be
a linear combination of equations (4.8), each of which satisfies cf = cf∼ .

It remains to show that (a, α) is facet inducing if (aE(G\f∼) , α) is. This is a consequence of
Lemma 4.1.6, since condition (c∗) of is a consequence of the fact that xe = 0 is not a valid equation
for GRP(Γ̂ , b), because of Theorem 4.2.1-(g).

The following proposition completes the picture. It shows that the inequalities with aF = 0
have a “configuration-like” form, in the sense that there exists a partition U of V (G), such that
F =

⋃

U E(U) for a U ∈ U.

4.2.10 Proposition If the case (e) of Theorem 4.2.1 is not given, the connected components of
the graph with node set V (G) and edge set F := {f1, . . . , fk} are induced subgraphs of G.

Proof. If the end nodes of an edge e are connected by a path P using only edges in F , then e
forms a cut with each of the edges of the path. Hence, if G is 2-connected it must be a circle as
in (e)ii. But this case is excluded in this subsection.

4.3 Lifting

4.3.1 0-Node lifting

Now we give the intended result on 0-node lifting for GRP(Γ, b). For this, we use the definition
for 0-node lifting as described in (2.4) on page 20. For a subset U ⊆ V (G), we define C ∩ U to be
the partition of U consisting of sets C ′ ⊆ U with C ′ = C ∩ U for a C ∈ C. We have the following
fact.

4.3. LIFTING 43

4.3.1 Theorem Suppose that for each U ∈ U the join structure ΞU := (G◦[U],C ∩ U, b◦E(U)) is
fat. If (a, α) defines a non-empty face of codimension r of GRP(Γ, b), then the inequality (a◦, α)
obtained by 0-node lifting (a, α) defines a face of codimension r of GRP(Γ ◦, b◦).

Proof. Let x ∈ S(Γ, b). Define x◦ ∈ � E(G◦)
+ by first letting x◦E(G) := xE(G) . Then define for

each U ∈ U with |U | > 1 a parity function tU by

tU (v) := t(v) + x◦(∂(v)) mod 2 for each v ∈ U .

Finally, for each U ∈ U with |U | > 1, let x◦E(U) be a ΞU , tU -feasible vector, which is possible
because ΞU is collapsible. Clearly x◦ ∈ S(Γ ◦, b◦) and a◦x◦ = ax hold.

Now let P be the face of GRP(Γ, b) induced by ax = α and let P ◦ be the face of GRP(Γ ◦, b◦)
induced by a◦x = α. Writing down all the semitours x◦ ∈ S(Γ ◦, b◦) which can be obtained by
the above construction, the fact that all the ΞU are fat implies that

dim GRP(Γ ◦, b◦) ≥ dim GRP(Γ, b) +
∑

U∈U
|E(U)| and

dimP ◦ ≥ dimP +
∑

U∈U
|E(U)|.

But the inequality ‘≤’ is trivial for both the polytopes and the faces. Combining the two equations
using dimP = dim GRP(Γ, b) − r, we see that dimP ◦ = dim GRP(Γ ◦, b◦) − r.

The graph G in the theorem may have a big number of parallel edges. This can be remedied
by merging edges, see Def. 4.1.4 on page 34.

4.3.2 Parallel edges

We now give some results about lifting on single edges. This is necessary since facet-defining
inequalities for GRP-polyhedra with bounds do not necessarily have configuration form (see 2.2.2).

4.3.2 Proposition Let Γ = (G,C, t) be a GRP-structure and suppose that GRP(Γ, b) has full
dimension. Let (a, α) be a facet-defining inequality for GRP(Γ, b) which is not equivalent to an
inequality of the form xe ≥ 0 or xe ≤ be. Let u,v two nodes in the same R-set with (u : v) 6= ∅,
such that be = 1 for all e ∈ (u : v). Suppose G′ is obtained from G by adding an edge f 6∈ E(G)
with end nodes u and v to G, Let Γ ′ := (G′,C, t) and b′ a vector of bounds on the edges of G′ with
bE(G) = b and bf = 1. Define a′e := ae for all e ∈ E(G) ⊆ E(G′) and, fixing a g ∈ (u : v), let

a′f := |ag |.

The inequality (a′, α) is facet-defining for GRP(Γ ′, b′).

We note that, by Lemma 4.1.6, the condition be = 1 for all e ∈ (u : v) is no restriction to
generality.

Proof. For the validity, let x be a semitour in S(Γ ′, b′) with xf = 1. If xg = 0, then a′x ≥
a′(x− χf + χg) ≥ α. Otherwise, we have a′x ≥ a′(x− χf − χg) ≥ α.

For the facet-defining property, we need to show that there exists a semitour x with xf = 1
satisfying a′x = α. Suppose first that af = ag . Since the equality xg = 0 does not hold for all
the semitours x in S(Γ, b) satisfying ax = α, we can select a semitour x such that xg = 1. Now
x − χg + χf is a semitour and satisfies a′x = α. In the case that af = −ag , take a semitour
satisfying xg = 0 and use x+ χg + χf .

To deal with negative coefficients in the case of Proposition 4.3.2, we refer to Section 3.1. If
the nodes u and v are contained in distinct R-sets, we have similar results.

4.3.3 Proposition Suppose that GRP(Γ, b) has full dimension and let (a, α) be a facet-defining
inequality for GRP(Γ, b), which is not equivalent to an inequality of the form xe ≥ 0 or xe ≤ be.
Let u,v two nodes in distinct R-set C with |(u : v)| ≥ 2 and be = 1 for all e ∈ (u : v).

44 CHAPTER 4. DIMENSION AND LIFTING

(a). Suppose Γ ′ is obtained from Γ by replacing the graph G by the graph G′ which results from
G by adding an edge f 6∈ E(G) with end nodes u and v to G. Let b′E(G) = b and b′f = 1.
Define a′e := ae for all e ∈ E(G) ⊆ E(G′) and

a′f := max
e∈(u:v)

|ae|.

The inequality (a′, α) is facet-defining for GRP(Γ ′, b).

(b). Suppose that there are edges g, ǧ ∈ (u : v) such that ag < 0 and ag ≤ −aǧ and that G′ is
obtained from G by adding two edges f1, f2 6∈ E(G) with end nodes u and v to G. Denote
the resulting GRP-structure by Γ ′. Again, let b′E(G) = b and b′f1 = b′f2 = 1. Define a′e := ae
for all e ∈ E(G) ⊆ E(G′), and

a′f1 := a′f2 := ag .

The inequality (a′, α+ 2ag) is facet-defining for GRP(Γ ′, b).

Proof. (a). For the validity, assume that x ∈ S(Γ ′, b′) with xf = 1. If x(u : v) ≤ 2, then there
exists an edge g ∈ (u : v) with xg = 0, thus we have a′x ≥ a′(x − χf + χg) ≥ α. If x(u : v) ≥ 3,
then taking away to edges in (u : v) from the semitour does not endanger connectivity, so that, if
g is any edge in (u : v) \ f with xg = 1, we have a′x ≥ a′(x− χf − χg) ≥ α.

The facet defining property is proved in the same way as in the previous proposition.
(b). For the validity, let us first consider all semitours x ∈ S(Γ ′, b′) with xf1 = xf2 = 1. If

y := x − χ{f1,f2} satisfies the connectivity constraints, then it is a semitour on G and we have
ax = ay + 2ag ≥ α + 2ag . If that is not the case, then yg = yǧ = 0 and z := y + χ{g,ǧ}

is a semitour on G, which satisfies az ≥ α and consequently, because ag + aǧ ≤ 0, we have
a′x = ay + 2ag ≥ az + 2ag ≥ α+ 2ag.

Now, consider semitours with xf1 = 1 and xf2 = 0 (w.l.o.g.). If xg = 0, we can replace x by
y := x − χf1 + χg , and obtain ax = ay ≥ α ≥ α + 2ag. Otherwise, if xg = 1, we replace x by
x+ χf2 − χg , which results in the case discussed above.

For the facet-defining property, take |E(G)| affinely independent semitours in S(Γ, b) satisfying
the inequality (a, α) with equality and add χ{f1,f2} to each of them to obtain semitours in S(Γ ′, b′).
Then, since xg = 1 is not a valid equation for the facet defined by (a, α), we can take a semitour
x ∈ S(Γ, b) satisfying xg = 0 and ax = α. The two vectors y1 := y+χg+χf1 and y2 := y+χg+χf2

are semitours on G′. We have constructed |E(G′)| = |E(G)| + 2 affinely independent semitours
on G′ satisfying the inequality (a′, α+ 2ag) with equality.

4.4 Facet-defining property for the polyhedra with bounds

In this section we will apply Theorem 4.3.1 and Lemma 4.1.6 to prove sufficient conditions for
some valid inequalities to define facets of GRP(Γ,bT) and GL(Γ, T). Unless otherwise stated,
from now on for the rest of this section, we assume that G is 2-connected or has only two nodes.
As we have seen in the previous section, the assumption that the polytope is full-dimensional is
not a restriction in the case of the polytopes GRP(Γ,bT) and GL(Γ, T). Hence, from now on, we
will assume that GRP(Γ, b) is full-dimensional. Let H be a subgraph of G. We informally say
that H is fat, if the join structure Ξ := (H,C ∩ V (H), bE(H)) is fat.

4.4.1 Connectivity and blossom facets

4.4.1 Proposition Let Γ be a GRP-structure and b : E(G) → � ∗
+ ∪ {∞} a vector of bounds.

(a). A connectivity inequality (1.1b) defines a facet of GRP(Γ, b), if b(∂(S)) ≥ 4 and both shores
of the cut are fat.

(b). A blossom inequality (2.5a)

x(∂(U) \ F) − x(F) ≥ 1 − b(F), where t(U) + b(F) is odd,

4.4. FACET-DEFINING PROPERTY FOR THE POLYHEDRA WITH BOUNDS 45

defines a facet of GRP(Γ, b), if both shores are fat and b(F) ≥ 3 holds in the case that U is
a union or R-sets.

Proof. By Theorem 4.3.1, we may assume that the shores of the cuts are single nodes. Clearly,
the inequality defines a facet if G has a single edge e with be ≥ 4. The result follows from applying
Lemma 4.1.6-(c), which is possible because r ≥ 3, and then Lemma 4.1.6-(b) for the edges e ∈ ∂(S)
with be ≥ 2.

The proof for the blossom inequalities is similar, except that it requires a number of merely
technical case distinctions.

4.4.2 Path-bridge facets

Now we deal with the path-bridge inequalities, see 2.1.2.

4.4.2 Proposition Suppose that GRP(Γ, b) is full-dimensional. A path-bridge inequality defines
a facet of GRP(Γ, b), if each of the induced subgraphs G[A], G[Z], G[Bp

j], . . . , G[BPnP
] is fat and

b(Bpj : Bpj+1) ≥ 2 for each j = 0, . . . , np, p = 1, . . . , P .

Proof. After invoking Theorem 4.3.1 and restricting to the case that each of the edge sets (Bp
j :

Bpj+1), j = 0, . . . , np − 1, consists of a single edge e (by Lemma 4.1.6), the proof of the following
proposition is essentially a combination of those in [CFN85] and [CS94] for GRP(Γ,∞).

We also give a result in the opposite direction: which path-bridge inequalities do not define
facets of the polyhedra with bounds. The proposition and its proof are generalizations of an
observation of Letchford [Let03].

4.4.3 Proposition Suppose that in a path-bridge configuration, there exists a path consisting of
only two beads Bp1 , B

p
2 . If b(Bp1 : Bp2) ≤ 1, then the (switched) path-bridge inequality does not

define a facet of GRP(Γ, b).

Proof. For the case b(Bp1 : Bp2) = 1, it is easily checked that the (switched) path-bridge inequality
is dominated by the connectivity inequalities for the sets Bp

1 and Bp2 and the switched path-bridge
inequality which results if the pth path is replaced by a flipped edge. The case that b(Bp

1 : Bp2) = 0
is trivial.

4.4.3 Honeycomb facets

We come to the honeycomb inequalities. In addition to the conditions in 2.1.2 on page 18, the
following condition is required to hold:

6. If in the tree T each node set {Bk1 , . . . , B
k
nk
} is identified to a single node Bk, the resulting

graph must be 2-connected.

4.4.4 Proposition Suppose that GRP(Γ, b) is full-dimensional. A honeycomb inequality defines
a facet of GRP(Γ, b), if each of the induced subgraphs G[Bi

j] is fat and b(B : B′) ≥ 2 for each edge
{B,B′} of the tree T.

Proof. After invoking Theorem 4.3.1 and restricting to the case that each of the edge sets (B : B ′)
for each edge {B,B′} of the tree T consists of a single edge e with be ≥ 2, the proof is completely
analogous to the one in [CS98] for GRP(Γ,∞).

However, the application of Lemma 4.1.6 is non-trivial. The condition (c∗) must be proved for
edges in (B : B′) for {B,B′} in the tree T. This can be done by a nice inductive argument.

Suppose that Bkj = {vkj }. Let e be an edge in any of the sets (vkj1 : vkj2), with j1 6= j2. Consider

the path P in T from Bkj1 to Bkj2 ; let g1, . . . , gq be the set of its edges. Because the nodes Bkj , for
k = 1, . . . , L, have degree 1 in T (condition 1 in the description of HC-inequalities in Section 2.1.2),
all except the first and the last nodes of P are in {Bk

′

| k′ = L + 1, . . . ,K}. This means that

46 CHAPTER 4. DIMENSION AND LIFTING

P ◦ := P \ {Bkj1 , B
k
j2} can be viewed as a path in TA \Bk. Because TA is two-connected, TA \Bk

is connected, and thus we can find a spanning tree in TA \ Bk containing P ◦. Consequently, we
have K edges g1, . . . , gK (with g1, . . . , gq from above) connecting all the sets

⋃

j B
k′

j , k′ = 1, . . . , L

and Bk
′

1 , k = L + 1, . . . ,K. If we chose xe = 1, xf1(gj) = 1 for j = 1, . . . ,K and xf2(gj) = 1
for j = q + 1, . . . ,K, we have constructed a semitour x which satisfies the HC-inequality with
equality: cx = 2(K − 1).

What we will show now, is that for each edge g of T there exist Bk
j1

and Bkj2 with (vkj1 : vkj2) 6= ∅,

such that g lies on the path in T connecting the nodes Bkj1 and Bkj2 of T . The following argument
proves this statement.

Let g be an edge in T . It induces a cut in T . Because TA is two-edge-connected, there exists
an k ∈ {1, . . . , L} such that identifying the nodes Bk1 , . . . , B

k
nk

of T to the node Bk of TA connects

the two shores of the cut. Thus there exist nodes Bk
i and Bkj in T such that g lies on the path

P connecting them in T . But we require a pair such that (vki : vkj) 6= ∅. We use an induction
argument. Because of the condition 5 of the definition of Honeycomb configurations in 2.1.2, there
exists a path Q in the induced subgraph Gk defined above, which connects the nodes i and j of
Gk. The induction is on the length of Q. If the length of Q is one, we are finished. Otherwise,
let i′ be the node incident to i on Q. There exists a path P̄ in T connecting Bki′ to Bki . If g lies
on that P̄ , we take P̄ instead of P and we are finished. In the other case, because Bk

i has degree
one in T , the two paths P and P̄ meet at a node different from Bki . We replace P by the path
which connects Bki′ and Bkj in P ∪ P̄ , and Q by the sub-path of Q connecting i′ and j. Thus, by

induction, we have proved that there exists a path P such that the nodes vkj1 and vkj2 are connected
by an edge in G.

Without any other than a technical difficulty, the same proof can be adapted to switched
honeycomb inequalities as defined in 3.3.1.

4.4.4 New facets

We now introduce two new types of valid inequalities. The key idea occurs in [RT06]. It is
unlikely that they are of any practical importance, but they are noteworthy for three reasons.
First, although they have non-negative coefficients, they are not valid for GRP(Γ,∞). Second,
they are not configuration inequalities (see 2.1.1), as all non-trivial facet defining inequalities
of GRP(Γ,∞) are. The third reason why we give these inequalities (4.11) and (4.12) is that
the proof of the facet-defining property of the inequality (4.12) can be done by an intriguing non-
standard lifting argument based on Sections 4.1 and 4.3, but not on Theorem 4.3.1. In other words,
inequality (4.12) can be obtained by “lifting” the ostensibly completely different inequality (4.11)
in a new way.

Let a partition of V (G) into sets P1, . . . , P10, U be given. Denote this partition by U and
suppose that the following properties hold (see Fig. 4.1(a)):

1. The sets U and P1 are odd.

2. The loopless multigraph GU −U is isomorphic to the Petersen graph, and be = 1 for the 15
edges of this graph. Note that, by our convention, U ∈ V (GU).

3. b(P1 : U) ≥ 2, and if equality holds, then there is only one edge in (P1 : U).

4. b(Pj : U) ≥ 1 for j 6= 1.

The inequality

x
(

P2 ∪ · · · ∪ P10 : U
)

≥ 1 (4.11)

is valid for GRP(Γ, b). This is so because, if x
(

P2∪· · ·∪P10 : U
)

= 0 then, to achieve connectivity
in H := GU − U , x must contain a spanning Eulerian subgraph of H . Since H is the Petersen
graph, which is 3-regular and not Hamiltonian, this cannot be the case.

4.4. FACET-DEFINING PROPERTY FOR THE POLYHEDRA WITH BOUNDS 47

P1

Petersen graph

U

(a) Illustration for inequality (4.11).

P 1
1 P 2

1

(b) Illustration for inequality (4.12).

Figure 4.1: Two new types of facet defining inequalities for GRP(Γ, b)

4.4.5 Proposition If GRP(Γ, b) is full-dimensional, and the induced subgraphs G[P1], . . . , G[P10],
G[U] are fat, then the inequality (4.11) is facet-defining for GRP(Γ, b).

Proof. The statement can be proved by enumeration after shrinking the sets P1, . . . , P10, and U ,
using Theorem 4.3.1.

The proposition is not true if b(P1 : U) = |(P1 : U)| = 2. This is an example where Lemma 4.1.6
cannot be applied. Now we come to the second new type of valid inequalities. Let a partition of
V (G) into sets P 1

1 , . . . , P
1
10, P

2
1 , . . . , P

2
10 be given. Denote U := {P 1

1 , . . . , P
1
10, P

2
1 , . . . , P

2
10}, and

suppose that the following conditions hold (see Fig. 4.1(b), the edges in the Petersen graphs are
omitted in the figure):

1. Each of the sets P ij is a union of R-sets.

2. The subgraph of the loopless multigraph GU induced by the nodes P i1 , . . . , P
i
10 is isomorphic

to the Petersen graph for i = 1, 2. We have be = 1 for each edge {e} = (P ij : P ik), i = 1, 2,
j, k = 1, . . . , 10.

3. (P 1
j : P 2

k) = ∅ if j 6= 1 ∧ k 6= 1.

4. b(P 1
k : P 2

1) ≥ 2 and b(P 1
1 : P 2

k) ≥ 1 for all k = 1, . . . , 10.

5. b(P 1
1 :

⋃

k≥2
P 2
k) ≥ 12.

By the same argument as above for inequality (4.11), we see that the following inequality is valid
for GRP(Γ, b):

x
(

P 1
2 ∪ · · · ∪ P 1

10 : P 2
1

)

≥ 1. (4.12)

4.4.6 Proposition If GRP(Γ, b) is full-dimensional and the induced subgraphs G[P ij], i = 1, 2,
j = 1, . . . , 10 are fat, then the inequality (4.12) is facet-defining for GRP(Γ, b).

Proof. First, we invoke Theorem 4.3.1, i.e., w.l.o.g., we assume that the node sets are singletons
P ij = {pij}. It can easily be verified that Lemma 4.1.6-(c∗) is applicable, even in the case when

b(P 1
1 : P 2

1) =
∣

∣(P 1
1 : P 2

1)
∣

∣ = 2.
We will invoke Proposition 4.4.5. Consider the graphs H1 := G[{p1

1, . . . , p
1
10, p

2
1}] and H2 :=

G[{p1
1, p

2
1, . . . , p

2
10}] \ (p1

1 : p1
2), see Fig. 4.2. Assign parities t1, t2 to the nodes of H1 and H2,

respectively, by letting ti(u) := 1 if u ∈ {p1
1, p

2
1}, and ti(u) := 0 otherwise. For i = 1, 2, we

define a partition of V (H i) by Ci :=
{

{pi1, p
2−i
1 }, {pi2}, . . . , {p

i
10}

}

. Now we have a GRP-structure

48 CHAPTER 4. DIMENSION AND LIFTING

p2
1p1

1

(a) H1

p2
1p1

1

(b) H2

Figure 4.2: Illustration for the proof of Proposition 4.4.6

Γ 1 := (H1,C1, t1) and a join structure Ξ2 := (H2,C2, bE(H2)). The crucial observation now is
this: if x ∈ S(Γ 1, bE(H1)) and y is a Ξ2, t2-feasible vector, then (xy) ∈ S(Γ, b).

Proposition 4.4.5 states that there exist
∣

∣E(H1)
∣

∣ affinely independent vectors in S(Γ 1, bE(H1)),

which satisfy x({p1
2, . . . , p

1
10} : p2

1) = 1. If we can prove that there exist
∣

∣E(H2)
∣

∣ + 1 affinely
independent Ξ2, t2-feasible vectors, then the proposition is true. But we apply Proposition 4.1.13,
to show that Ξ2 is fat. Namely, we choose

T :=
(

p1
1 : {p2

2, . . . , p
2
10}

)

= ∂H2(p1
1)

as the edge set of a tree. Because of condition 5 above and the fact that the Petersen graph is
3-edge connected, Proposition 4.1.13 is applicable and the proof is completed.

Chapter 5

A focus on the Graphical

Traveling Salesman Polyhedron

As mentioned before, the Graphical Traveling Salesman Problem is a special case of the General
Routing Problem, and the same holds for the associated polyhedra. In this chapter we particu-
larly address the Graphical Traveling Salesman Polyhedron. For ease of notation, we abbreviate
GTSP(n) := GTSP(Kn) := GRP(Γ,∞), with Γ := (Kn, V (Kn),0), and we denote Vn := V (Kn) GTSP(n), Vn,

En, mand En := E(Kn). We will also fix m := |En| =
(

n
2

)

.
There are three reasons for focusing on the special case. The first reason is simply Propo-

sition 2.1.10: every facet defining inequality of GTSP(Gs

C) becomes a facet-defining inequality of
GRP(Γ,∞) by 0-node lifting. The second reason is an elegant result of Letchford [Let99], who
showed that for every Γ there exists a graph GΓ such that GRP(Γ,∞) is a face of GTSP(GΓ),
which again, of course, is a face of GTSP(nΓ), where nΓ := |V (G)|. This implies that every face
of GRP(Γ,∞) can be derived from a facet of GTSP(GΓ) and hence of GTSP(nΓ). Using this,
Letchford transferred a number of known facet-defining inequalities for the Symmetric Traveling
Salesman Polytope STSP(nΓ) to the GRP.

Hence we see that the GTSP and GRP polyhedra are very closely related, way beyond the
fact that the former is a special case of the latter. However, the structure of GRP polyhedra is in
general much more complex than that of GTSP polyhedra. Hence, the third reason for focusing
on the GTSP polyhedron is that it is possible to address some polyhedral issues more easily in
the context of GTSP(n), and obtain results which would be overly complex in the general case.

In this chapter we will first repeat Letchford’s result. Then we will address issues of the
Graphical Traveling Salesman Polyhedron, focusing on vertices, edges and other faces, then on the
relationship of GTSP(n) with the much better studied Symmetric Traveling Salesman Polytope.

5.1 How GRP is a face of GTSP

A facet of GTSP(G) defined by a connectivity inequality for a single node, i.e. x(∂(u)) ≥ 2 with degree facet

u ∈ Vn, is called a degree facet. Recall that the inequality defines a facet if and only if u is not a
cut-node.

In [Let99], a method is proposed to identify GRP(Γ,∞) with a face of GTSP(nΓ). We repeat
the construction here. Let ER be a multi-set of required edges for Γ = (G,C, t), i.e., ER ⊆ EC and
t(u) is equal modulo 2 to the number of edges in ER incident to u, for all nodes u ∈ V (G). We
construct a graph GΓ in the following manner. For each element uv ∈ ER, add to G a uv-path of
length 3, denoting the two new nodes by w1(uv) and w2(uv). Using this construction, Letchford
obtained the following result.

5.1.1 Theorem ([Let99]) Let V := V (G) ⊆ V (GΓ) and E := E(G) ⊆ E(GΓ). Let F denote
the face of GTSP(GΓ) defined by the intersection of the degree facets for all nodes in E(GΓ) \ E

49

50 CHAPTER 5. THE GTSP POLYHEDRON

and the connectivity facets defined by x(∂(w1(uv), w2(uv))) ≥ 2 for uv ∈ ER. Then the mapping
x 7→ xE is an affine isomorphism from F to GRP(Γ,∞).

A consequence of this fact is that the relationship between the GRP polyhedron and the GTSP
polyhedron is very close. While it is both obvious and well known (see Section 2.1.1 or [CS98] resp.)
that every GTSP-facet can be seen as a facet of GRP(Γ,∞) for appropriate Γ , Theorem 5.1.1
shows that the reverse holds in a very general manner: every facet of GRP(Γ,∞) can be found
among the facets of GTSP(n) for appropriately chosen n. A conjecture implicit in the work of
Naddef & Rinaldi [NR93] said that every facet of GTSP(n) arises from a facet of STSP(n), which
would have meant that to know GTSP(n) (and hence, in a way, GRP(Γ,∞)), it would be enough to
study the STSP polytope, which has been done extensively. As a matter of fact, all facet-defining
inequalities listed in Section 2.1.2 can be derived from well-known STSP facets: odd-cuts from
2-matching, KCs and path-bridges from path inequalities. Many honeycomb inequalities can be
derived from binested inequalities.

In the remainder of this chapter, we will dig into the polyhedra GTSP(n) and the relationship
between STSP(n) and GTSP(n).

5.2 Notation, terminology, and known facts for GTSP poly-

hedra

On page vi, a picture of GTSP(3) is shown. The polyhedron is unbounded: all six facets and the
three pairs of parallel rays extend infinitely. The picture was created with the help of Maple, and
then “artistically improved.” GTSP(3) has four vertices, the one in the middle is the Hamiltonian
cycle (1, 1, 1)>, the three others are permutations of (2, 2, 0)>. The three non-negativity facets are
the triangle-shaped surfaces, the remaining three facets are degree facets. The intersection of the
degree facets is the unique Hamiltonian cycle.

The definitions and facts in this section are elementary. They are extensions of ideas which
can be found in [NR93], some of them implicitly. Many of them are also geometrically intuitive,
and we encourage the reader to check whether examples for them can be found in the picture on
page vi.

5.2.1 Definition For a node u ∈ Vn and an edge e = vw ∈ En which forms a triangle with u,
i.e., u 6∈ e holds, we define the shortcut su,e := χe − χuv − χuw ∈ {0,±1}En. Let a ∈

� En . Weshortcut su,e

triangle
slacks t̄

define the vector t̄(a) := (t̄u,e(a))u6∈e of triangle slacks by t̄u,e(a) := −su,e a. We will also use the
vectors t̄u(a) : {e | u 6∈ e} →

�
, for u ∈ Vn. A vector a ∈

� En is called metric, if it satisfies the
metric vector triangle inequality, i.e., if t̄(a) ≥ 0. For all u ∈ Vn we define the TT-set by
TT-set ∆u(a)

∆u(a) :=
{

e ∈ En | u 6∈ e ∧ t̄u,e(a) = 0
}

.

If F is a face of GTSP(n), we say that a shortcut su,e is feasible for F , if it is contained in thefeasible
shortcut linear space defined by F , i.e., if su,e ∈ lin(F −F). For u ∈ Vn, we denote by ∆u(F) the set of all
∆u(F) edges forming a triangle with u such that the corresponding shortcut is feasible for u, i.e., ∆u(F)

is the set of all e 63 u for which su,e ∈ lin(F − F).

See Fig. 5.1 for a shortcut which can be written as the difference between the two simplest
kinds of vertices of GTSP(n), namely the Hamiltonian cycles and the so-called 1-cacti. We will
show later (see Lemma 5.3.8) that every feasible shortcut can be written in this way.

Note that the mapping t̄ : a 7→ t̄(a) is linear. The following lemma justifies the last part of the
definition.

5.2.2 Lemma Let F be a face of GTSP(n) and let (a, α) be a valid inequality defining F . Then
∆u(F) ⊆ ∆u(a) for all u. If F is not contained in a non-negativity facet, then equality holds, and
the TT-sets do not depend on the inequality defining F .

5.2. NOTATION, TERMINOLOGY, AND KNOWN FACTS FOR GTSP POLYHEDRA 51

−1

+1
e

u

−1

(a) su,e

u

e

(b) A 1-cactus with shortcut.

Figure 5.1: A shortcut arising from the difference of a 1-cactus and a Hamiltonian cycle.

Proof. Let e ∈ ∆u(F). Clearly su,e ∈ lin(F − F) implies a su,e = 0, i.e., e ∈ ∆u(a). On the
other hand, let e ∈ ∆u(a), and suppose that there exists an x ∈ F ∩ � En with xe ≥ 1. Then
y := x− su,e ∈ GTSP(n) and ay = α, and hence su,e = x− y ∈ lin(F − F).

5.2.3 Lemma If F,G are faces of GTSP(n) such that F ∩G is not contained in a non-negativity
facet, then ∆u(F ∩G) = ∆u(F) ∩ ∆u(G).

Proof. If F is defined by (a, α) and G by (b, β) then F ∩G is defined by (a+ b, α+β). The result
follows from t̄(a), t̄(b) ≥ 0, the linearity of t̄ and the previous lemma.

5.2.4 Definition A vector a ∈
� En is said to be in TT-form, if it is metric and ∆u(a) 6= ∅ for all TT-form

u ∈ Vn.

5.2.5 Definition A face F of GTSP(n) is called metric, if for every x ∈ F and every shortcut su,e metric face

with x + su,e ∈ GTSP(n) we have e ∈ ∆u(F). In other words, F is closed to taking shortcuts in
GTSP(n).

Examples of metric faces include faces which can be defined by metric inequalities. The
following lemma is an extension of a result in [NR93].

5.2.6 Lemma ([NR93]) Let F be a face of GTSP(n) defined by the inequality (a, α). If F is not
contained in a non-negativity facet, then a is metric, which implies that F is metric.

If F is metric and ∆u(F) = ∅ holds for a node u, then F is contained in the degree facet for
the node u.

We come to the central definition of this chapter. We note that, for any face F of GTSP(n), if
F is contained in the degree facet for a node u, then ∆u(F) = ∅.

5.2.7 Definition Let F be a proper face of GTSP(n). We say that F is of TT-type, if it is not TT-type

contained in a non-negativity or a degree facet.

5.2.8 Remark We summarize that a face which is not contained in a non-negativity facet is of
TT-type if and only if ∆u(F) 6= ∅ for all u.

Thus, if F is not contained in a non-negativity facet, and F is defined by (a, α), then F is a TT-
type face if and only if a is in TT-form. We can now repeat a theorem of Naddef & Rinaldi [NR93]
which follows easily from these facts. Fig. 5.2 shows the relationships between the properties of
faces of GTSP(n) which we have defined.

5.2.9 Theorem ([NR93]) The facets of GTSP(n) fall into precisely three types: non-negativity
facets, degree facets, and facets defined by TT-form inequalities.

52 CHAPTER 5. THE GTSP POLYHEDRON

(∗) not contained in
non-neg. facet

��

TT-type

��

not contained in
degree facet for u

if metric
��

defined by metric ieq.

��

def. by TT-form ieq.

if (∗)

KS

∆u(F) 6= ∅

��

KS

metric
defined by (a, α) with

∆u(a) 6= ∅

if (∗)

KS

Figure 5.2: Relationships between face properties

5.2.1 The Graphical Relaxation

Clearly, the intersection of all degree facets of GTSP(n) is STSP(n). Thus, for every facet H of
STSP(n), there exists a facet G of GTSP(n) with H = G ∩ STSP(n). In [NR93], it is shown that
the relationship between STSP(n) and GTSP(n) is much closer than what could be expected from
this trivial fact. The findings in [NR93] even lead to the conjecture1 that every TT-type facet G
of GTSP(n) induces, by intersection, a facet H of STSP(n). We call a TT-type facet G of GTSP(n)
with the property that G ∩ STSP(n) is a facet of STSP(n), a Naddef-Rinaldi facet or NR-facet forNR-facet

short. A TT-type facet which is not an NR-facet is said to be non-NR or a non-NR facet. We alsonon-NR

speak of the NR property or non-NR property of a TT-type facet. The above mentioned conjecture
thus reads: there are no non-NR facets; or: every TT-type facet is Naddef-Rinaldi. For ease of
reference, we call it the “GR-conjecture”, where GR stands for Graphical Relaxation, which is theGraphical

Relaxation term used for the relationship between the STSP polytope and the GTSP polyhedron.
It is known from [NR93] that if H := G ∩ STSP(n) is a facet of STSP(n) then the facet G

is uniquely determined by H—thus the GR-conjecture would imply a one-to-one correspondence
between the facets of STSP(n) and those of GTSP(n). Taking into account the introductory remarks
at the beginning of this chapter, and the fact that the polytope STSP(n) is certainly one of the best
studied polytopes in the area of combinatorial optimization, this conjecture is of great importance
for the study of General Routing Polyhedra. Unfortunately, the conjecture turned out to be false
(see Section 5.4 below).

From a merely polyhedral point of view, the GR-conjecture was fairly daring anyway. Given
a “random” polyhedron of dimension m and a face of dimension m − n, few would be inclined
to guess that the two polyhedra have essentially the same set of facets. However, despite the
intense research on the STSP and GTSP polyhedra, the apparent2 relevance of the problem, and
the fact that it has been open some 15 years, no counterexample has ever been encountered.
Moreover, in [ORT05], with computer aid, we were able to prove that the GR-conjecture is true
for n ≤ 8. Finally, it turns out that among the 42,105,161 TT-type facets of GTSP(9), there are
only 9! = 362880 (all equal modulo permutation of nodes), which are non-NR, a surprisingly small
number. (We were able to prove the complete outer description of GTSP(9), see Section 5.7, with
computer aid and relying heavily on the tilting complexes which we introduce in Section 5.5.)
For n = 10, we found 288 non-NR facets which are distinct modulo permutation of nodes, in
comparison to a (conjectured, see [AP01, CR01]) total number of 15,379 modulo permutation
distinct NR-facets. The common sense conclusion to these observations is that the relationship
between STSP(n) and GTSP(n) must be exceptionally close, notwithstanding the fact that the
GR-conjecture, in its “naive” form, is false. As a central contribution of this chapter we establish
this close connection in the form of the theory of tilting complexes.

In the remainder of this section, we review the known facts about the Graphical Relaxation,

1We find it necessary to make clear that Naddef & Rinaldi [NR93] as well as Naddef in [Nad02] call this conjecture
only a question, while it was called a “conjecture implicit in the work of Naddef & Rinaldi” by Applegate et
al. [ABCC98, ABCC01]. Carr [Car04] stated it as a conjecture.

2The relevance is actually even more apparent in the context of polyhedral combinatorics for the Symmetric

TSP.

5.2. NOTATION, TERMINOLOGY, AND KNOWN FACTS FOR GTSP POLYHEDRA 53

which are prerequisites for understanding the remainder of this chapter, and which lead to the
establishment of the GR-conjecture.

5.2.10 Definition ([NR93]) We define a mapping λ̄ :
� En →

� Vn by letting
λ̄

λ̄u(a) := min
e63u

t̄u,e(a) (5.1)

for a ∈
� En and all u ∈ Vn. Further, we abbreviate

δuδu := 1
2χ

∂(u) (5.2)

and define the following matrix

matrix DD :=

(

δ0 . . . δn−1

)

∈ � (En × Vn). (5.3)

It is a long-known fact (see e.g. [GP79]) that rkD = n, and that dim STSP(n) = m−n, whence
the degree equations x(∂(u)) = 2, or in our notation δux = 1, for u ∈ Vn, form a complete system degree

equationsof equations for STSP(n). The next lemma is implicit in [NR93]. We will need the second part of
it in Section 5.5.

5.2.11 Lemma For every a ∈
� En there exists precisely one TT-form vector in the set a+ImD,

namely a−D λ̄(a), and if a−Dξ is in TT-form, then ξ = λ̄.

Proof. Let a′ := a −D λ̄(a). The following simple calculation shows that t̄(a′) ≥ 0. For v ∈ Vn
we have

t̄v(a−D λ̄(a)) = t̄v(a) −
∑

u

λ̄u t̄v(δu) = t̄v(a) − λ̄v(a)t̄v(δv) = t̄v(a) − λ̄v(a) · 1 ≥ 0.

In the last inequality, equality holds for the edges e in which the minimum in (5.1) is attained,
hence, ∆v(a) 6= ∅. We have proven that a′ is in TT-form. For the second statement, it suffices to
note that D has full column-rank.

The vector a−D λ̄(a) is sometimes called the TT-form representative of a. The next theorem TT-form
representativeis one of the cornerstones of the Graphical Relaxation.

5.2.12 Theorem ([NR93]) Let H be a facet of STSP(n). The facet G of GTSP(n) with the
property that G ∩ STSP(n) = H is uniquely determined. If G is not a non-negativity facet and H
is defined by the inequality (a, α), then G is defined by the following inequality

(a, α) −
(

D
1
>

)

λ̄(a).

For the fact that a TT-form inequality (a, α), which defines a facet H of STSP(n) which is
not a non-negativity facet, defines a facet of GTSP(n) (which is implicit in our formulation of
the theorem), the paper [NR93] gives a proof similar to the one we use for Proposition 5.3.15
below, but a much simpler argument can be used: There exists a facet G of GTSP(n) which
contains H , it is defined by a TT-form inequality by Theorem 5.2.9, and since the TT-form is
unique by Lemma 5.2.11, it must be equal to (a, α) except for a strictly positive scalar multiple.
The following corollary will be helpful in later sections. We denote the blocking polyhedron for B(n)

GTSP(n) by B(n) := B(GTSP(n)).

5.2.13 Corollary Let (a, 1) define an NR-facet of GTSP(n). Then the face a∨
∨

u∈Vn
δu of B(n)

is an n-simplex.

54 CHAPTER 5. THE GTSP POLYHEDRON

The corollary of the last proposition of this section implies that the intersection of a TT-type
face of GTSP(n) with STSP(n) is never contained in a non-negativity facet, which is the starting
point of our results on the Graphical Relaxation.

We denote by H (n) the set of all incidence vectors of (edge sets of) Hamiltonian cycles ofH(n)

the complete graph Kn, and for x ∈
� En

+ we let |x|1 stand for the value
∑

e xe. We note that in|·|1
[NR93], the following proposition and corollary are given only for facets, but we find it insightful
to look at lower dimensional faces, too.

5.2.14 Proposition ([NR93]) Let F be a metric face of GTSP(n). Let x ∈ F ∩ � En , u ∈ Vn
with x(∂(u)) ≥ 4, and f ∈ En with xf ≥ 1. Then there exists a shortcut su,e which is feasible for
F , i.e., such that y := x+ su,e ∈ F , and yf ≥ 1. Note also that the length of the vector decreases:
|x|1 = |y|1 + 1.

5.2.15 Corollary ([NR93]) Let F be a face of GTSP(n) not contained in a non-negativity in-
equality. For every e ∈ En, there exists an x ∈ H (n)∩F with xe = 1. In other words, F ∩STSP(n)
is not contained in a non-negativity facet.

5.3 Vertices, shortcuts, and faces

This section contains preliminary results which are of fairly minor interest in themselves. Thus
we feel obliged to give some motivation to the reader to commit himself to it. This section deals
with vertices mainly. The set of vertices of GTSP(n) (or even GRP(Γ,∞)) has, to our knowledge,
not been studied at all. It is not our intention to indulge in this line of research more than
necessary. In 5.3.1, we give some basic facts about vertices. We name the most intuitive class
of vertices, which correspond to polygonal cacti with bridges. In 5.3.2 we show that shortcuts
are edges of GTSP(n) and propose an inductive algorithm to enumerate all vertices of GTSP(n).
We note that not even the complexity of the recognition problem for GTSP vertices is known,
i.e., the question of deciding whether a given vector x ∈ � En

+ is a vertex of GTSP(n). Obviously,
invoking Caratheodory’s theorem, the problem is in coNP, but nothing is known beyond that.
In 5.3.3, we give some facts about the relationship between vertices of GTSP(n) and shortcuts.
It might be worthwhile to read this subsection, because it helps in understanding the theory of
tilting complexes in the Sections 5.5, 5.8, and the results on 0-node lifting in Section 5.9. We
also obtain a result which states that, for many purposes, it is enough to look at a small subset
of the vertices, namely the Hamiltonian cycles and so-called 1-cacti, which are called “almost
Hamiltonian cycles” in [NR93]. For computational purposes it is particularly important to reduce
the number of vertices. For example the fact that two TT-type facets are adjacent on GTSP(n)
if they are adjacent on the polytope defined by the Hamiltonian cycles and 1-cacti has proven
very useful: this special case was used for [ORT05] and the computational part of 5.7.3. Finally,
in 5.3.4, we turn to the question of adjacency of facets on the GTSP polyhedron, which, being a
more intuitive, geometric, and important topic, does not require a vindication.

5.3.1 Vertices

In this section we deal with the vertices of GTSP(n).

5.3.1 Definition We denote by E(n) the set of vertices of GTSP(n). Further, for l ≥ 0, we letE(n)

E
l(n) :=

{

x ∈ E(n)
∣

∣ |x|1 = n+ l
}

,

and E ≤l(n) :=
⋃l
j=0 E j(n).

5.3.2 Remark We note some trivial facts about vertices of GTSP(n).

(a). If x ∈ E(n), then xe = 2 iff e is a cut-edge of the graph (Vn, E(x)).

5.3. VERTICES, SHORTCUTS, AND FACES 55

n |C(n)|
1 1
2 1
3 4
4 31
5 362
6 5676
7 111982
8 2666392
9 74433564

10 2384579440
11 86248530296
12 3476794472064
13 154579941792256
14 7514932528712896
15 396595845237540600

Table 5.1: Number of cacti [Slo05]

(b). Vertices of GTSP(n1) and GTSP(n2) can be glued together by 1-sum operations to form
vertices of GTSP(n1 + n2 − 1). There are other “sum”-operations by which vertices can be
glued together.

(c). An edge e of the graph (Vn, E(x)) for a vertex x with xe = 1 can be subdivided, and the
new vector is a vertex of GTSP(n+ 1).

(d). Given any Eulerian multigraph, by subdividing each edge with at least two new nodes, taking
the incidence vector and filling in zeros, we obtain a GTSP vertex [Let05b].

Now we address the most fundamental type of vertices.

5.3.3 Definition A graph of which every block is an edge or a circle is called a polygonal cactus cactus

with bridges, or just cactus for short. We identify a cactus C on the node set V (C) = Vn with a
vector zC := χE(C) + χB ∈

� En where B shall denote the set of bridges of C. This means that
zCe = 0 if e is not an edge of the cactus, zCe = 1 if e is contained in a circle of C and zCe = 2 if
e ∈ E(C) is not contained in a circle of C. We denote by C(n) the set of all (vectors of) cacti with C(n)

node set Vn. For l ≥ 0 we let C l(n) := {zC ∈ C(n) |
∣

∣zC
∣

∣

1
= n + l}, and we call the elements of

this set l-Cacti. Further we define C ≤l(n) :=
⋃l
j=0 C j(n). l-Cacti

Clearly C(n) ⊆ GTSP(n). Note that H (n) = C 0(n). The set of Naddef & Rinaldi’s [NR93]
so-called almost Hamiltonian cycles is just C 1(n). The items (b) and (c) of Remark 5.3.2 imply
that C(n) ⊆ E(n). Moreover, it is easy to see that E 0(n) = C 0(n) = H (n) and E 1(n) = C 1(n)
holds.

The number of polygonal cacti with bridges on a given number of nodes is known [FU56]. If
cn := |C(n)|, n ∈ � , denotes the sequence of numbers of cacti then for all n

cn = e
2ncn−(ncn)2

2−2ncn .

Table 5.1 shows the number of cacti for n = 1, . . . , 15. We have already noted that C(n) is a subset
of E(n). Using computational methods, we were able to determine |E(n)| for n = 1, . . . , 7, and we
found that |E(n)| = |C(n)| holds in this range. For n ≥ 8 there are vertices of GTSP(n) which
are not cacti. See for example the non-cactus vertex of GTSP(8) displayed in Fig. 5.3, which is
determined as a vertex by the non-negativity, connectivity and comb-inequalities which it satisfies
with equality. We summarize these results in the following proposition.

56 CHAPTER 5. THE GTSP POLYHEDRON

•

jjjjjjjjjjjjjjjjjjjj

oooooooooooooo

��
��

��
�

• • •

• • •

•

UUUUUUUUUUUUUUUUUUUU

OOOOOOOOOOOOOO

@@@@@@@

Figure 5.3: Non-cactus vertex of GTSP(8)

5.3.4 Proposition E(n) ⊇ C(n), and equality holds if and only if n ≤ 7.

5.3.2 Some edges of GTSP(n)

We now briefly deal with the most obvious edges of the polyhedron GTSP(n).

5.3.5 Proposition Let x ∈ GTSP(n) and u ∈ Vn with x(∂(u)) ≥ 4 such that x+ su,e ∈ GTSP(n).
If x is a vertex, then x+ su,e is a vertex and the line segment [x, x+ su,e] is an edge of GTSP(n).

Proof. Let (A, b) be the system of facet-defining inequalities which are satisfied with equality by
x, except for the non-negativity inequality (χe, 0).

By the first part of Lemma 5.2.6, for t ∈
�

+, the vector xt := x + tsu,e satisfies Axt = b,
hence, since x is a vertex, the line segment [x, x + su,e] must be contained in an edge. We only
need to show that x1 is the other end vertex of the edge. Let us denote by v, v′ the end nodes
of e. If xuv = 1 or xuv′ = 1, then xt 6∈

� En

+ ⊇ GTSP(n) for t > 1, and thus x1 is a vertex.
If xuv , xuv′ ≥ 2, then, since x is a vertex, we have xuv = xuv′ = 2, and, by Remark 5.3.2-(a),
the graph (Vn, E(x) \ {uv, uv′}) is not connected. Let U denote the node set of the connected
component of this graph containing u. Then x1 satisfies the connectivity inequality x(∂(U)) ≥ 2
with equality, and xt violates it for t > 1. Hence, x1 is the other-end vertex of the edge.

It can be seen from Table 5.1 that the number of vertices of GTSP(n) is quite high. To our
knowledge, no practicable is known to enumerate a superset of the vertices in reasonable time. We
propose a method based on Proposition 5.3.5, which involves the solution of large LP-feasibility
problems, as displayed in Algorithm 5.3.2. The proof that the algorithm produces all and only
vertices of GTSP(n) can easily be done. Given that the combinatorial knowledge about the set
of vertices of GTSP(n) is virtually nonexistent, a practicable algorithm is very likely to rely on
LP-feasibility, but it might adapt step 12 of Algorithm 5.3.2 to reduce the number of LP-feasibility
problems as far as possible, for example by recognizing all vectors which are composed from vertices
of GTSP(k), k < n, by, e.g., 1-sum operations (they are vertices).

By adapting step 1 and restricting the set of shortcuts considered in steps 4–10, Algorithm 5.3.2
can also be used to enumerate all vertices on a face defined by a given metric inequality. We used
it this way for the computational part of the proof of a complete description of GTSP(9), see
Section 5.7.

5.3.3 Relationship between vertices and faces

5.3.6 Lemma Let F be a face of GTSP(n) defined by a metric inequality (a, α). Then F is
uniquely determined by the sets H (n) ∩ F and ∆u(a), u ∈ Vn. In other words, if (a′, α′) is
another metric valid inequality such that ∆u(a) = ∆u(a

′) for all u, and the face F ′ defined by
(a′, α′) satisfies F ′ ∩ H (n) = F ∩ H (n), then F = F ′.

5.3. VERTICES, SHORTCUTS, AND FACES 57

Algorithm 5.1 Iterative vertex enumeration for GTSP

Input: n ≥ 3
Output: List of all vertices of GTSP(n)
1: Enumerate the set E 0(n) of all Hamiltonian cycles of the complete graph Kn.
2: For l = 0, . . . do
3: L := ∅
4: For x ∈ E l(n) do
5: For u ∈ Vn and e ∈ En with u 6∈ e do
6: If x− su,e ∈ GTSP(n) then
7: L := L ∪ {x− su,e}
8: End if
9: End for

10: End for
11: For y ∈ L do
12: If y can be written in the form

∑

i ξixi + ζeχ
e, where ξ, ζ ≥ 0, 1ξ = 1, and

xi ∈ E l(n) ∪ L \ {y} then
13: Remove y from L
14: End if
15: End for
16: If L = ∅ then
17: Stop: all vertices have been constructed.
18: End if
19: E l+1(n) = L.
20: End for

Proof. Every vertex of F is either in H (n), or it can be constructed from a Hamiltonian cycle
by successively subtracting shortcuts in ∆u(a), u ∈ Vn. Further,

�
+ · χuv is a ray of F iff auv = 0

iff vw ∈ ∆u(a) ∧ uw ∈ ∆v(a) for w 6∈ {u, v}.

5.3.7 Remark If x ∈ E(n), and su,vw is a shortcut, then x + su,vw 6∈ GTSP(n) is caused by one
of the following obstructions:

(a). xuv = 0 or xuw = 0.

(b). We have xuv = xuw = 1, and there exists a block of the graph (Vn, E(x)) which contains u,
v, and w, and such that v and w are the only neighbors of u in that block.

5.3.8 Lemma Let F be a metric face of GTSP(n). The set of feasible shortcuts of F is determined
solely by the Hamiltonian cycles and the 1-cacti in F . To be precise, if we let F 0 := F ∩ H (n)
and F 1 := F ∩ C 1(n), then, for all u,

∆u(F) =
{

e
∣

∣ u 6∈ e ∧ su,e ∈ F 0 − F 1
}

.

Proof. Let su,e be a feasible shortcut for F , where e =: v′v. Then there exist z ∈ F ∩ � m with
ze ≥ 1, and we have z′ := z − su,e ∈ F ∩ � m. Now let z = y0, . . . , yr be a sequence of maximal
length consisting of vectors in GTSP(n) such that for j = 0, . . . , r − 1, the difference yj − yj+1 is
a shortcut and yj + su,e ∈ GTSP(n) holds for all j = 0, . . . , r. We claim that y := yr is a 1-cactus.
If this claim is true, then, since x := y + su,e ∈ GTSP(n), x must be a Hamiltonian cycle and we
have su,e = x− y ∈ F 0 − F 1.

To prove the claim, we show that, if y is not a 1-cactus, then there exists a shortcut sw,f with
y′ := y+ sw,f ∈ GTSP(n) and y′ + su,e ∈ GTSP(n). Suppose that y is not a 1-cactus, i.e., we have
to distinguish two cases:

1. there exists a node w 6= u with y(∂(w)) ≥ 4, or

58 CHAPTER 5. THE GTSP POLYHEDRON

2. y(∂(u)) ≥ 6.

We make use of the remark above. Let C denote the block of the graph (Vn, E(y)) which contains
u and v. If v′ 6∈ C, then the existence of a y′ is easy to see. Thus, we assume v′ ∈ C. Since
y + su,e ∈ GTSP(n), we have y(∂(C \ {u})) ≥ 4. In the first case, we have two sub-cases, namely
w ∈ e or w 6∈ e. If w ∈ e, assuming w.l.o.g. that w = v, if there exists an edge ww′ ∈ E(C) with
yww′ 6= 0, then a shortcut sw,f can easily be found. Otherwise we note that δ := y(∂(C)\∂(u)) ≥ 3.
Any shortcut sw,f can reduce δ by at most two, so any sw,f which does not use the edge uv has
the desired property. The sub-case w 6∈ e is easy, as well as the second major case.

When looking at an affine space which is the affine hull of some set of vertices of GTSP(n)
possibly plus rays

�
+ · χe, we will want to distinguish between the Hamiltonian cycles, and the

“rest”, i.e., the vertices “modulo” the Hamiltonian cycles. To be precise, if A is such an affine
space and AH := aff(A∩H (n)), let us denote by L := A−A the linear space defined by A, and by
LH := AH −AH = L∩kerD> (the matrix D is defined in (5.3) on page 53) the linear subspace of
L corresponding to the Hamiltonian cycles. Clearly A and L are isomorphic as affine spaces, the
isomorphism takes AH onto LH , and the intuitive notion “A modulo AH ” corresponds to L/LH .
The next lemma will make clear that in the case that A = aff F for a metric face F , the “vertices
modulo the Hamiltonian cycles” are just the shortcuts viewed modulo LH . This point of view will
be useful later.

5.3.9 Lemma Let F be a metric face of GTSP(n). The space L is generated by members of LH

and by shortcuts. In other words, the linear space L/LH is generated by the set of (projected
images of) feasible shortcuts of F . To be precise, if π : L → L/LH is the canonical projection,
then L/LH is generated by

{

π(su,e)
∣

∣ e ∈ ∆uF
}

.

Proof. Let z, z′ ∈ F . By the previous lemma, there exist Hamiltonian cycles x and x′ as well as
shortcuts si, i = 0, . . . , k, and s′j , j = 0, . . . , l with z = x+

∑

si and z′ = x′ +
∑

s′j . Hence z′ − z
is in the space generated by elements of LH and shortcuts.

As a result we obtain the following proposition, which is an extension of a result in [ORT05].

5.3.10 Proposition Let F be a metric face of GTSP(n). Then we have

dimF = dim C
≤1(n) ∩ F,

or, in other words, the Hamiltonian cycles and the 1-cacti suffice to determine the dimension of a
face of GTSP(n) which can be defined by a metric inequality.

Proof. Let A := aff F , L := A−A, and A1 := aff(F ∩ C ≤1(n)), L1 := A1 −A1. By the previous
lemmas, we have L/LH = L1/LH , and hence

dimF = dimL = dimLH + dimL/LH = dimLH + dimL1/LH = dimL1 = dim C
≤1(n) ∩ F,

which proves the proposition.

In this context, we also note the following useful fact, which is implicit in [NR93].

5.3.11 Lemma Let su = su,eu
, u ∈ Vn be a family of shortcuts. The su are linearly independent

modulo kerD>.

Proof. Let
∑

u ξusu ∈ kerD>. For any v ∈ Vn, by applying ·(∂(v)), this implies that −2ξv = 0,
whence ξ = 0. Thus the su are linearly independent modulo kerD>.

5.4. EXISTENCE OF NON-NR FACETS WITH CODIMENSION 2 IN STSP 59

5.3.4 Adjacency of facets

We recall that two facets F,G of a polyhedron P are said to be adjacent, if their intersection is a
ridge of the polyhedron, and that a ridge is a face with codimension two. As a first statement on
adjacency of facets of the GTSP polyhedron, we note that Corollary 5.2.13 implies that any two
degree facets are adjacent and that every NR-facet is adjacent to every degree facet.

5.3.12 Definition We say that a set of TT-type facets H is TT-disjoint at a node u, if TT-disjoint

⋂

H∈H
∆u(H) = ∅.

The facets in H are called nowhere TT-disjoint, if they are not TT-disjoint at any node u ∈ Vn.

5.3.13 Proposition Let H0, . . . , Hk be TT-type facets of GTSP(n) such that
⋂

j Hj is not con-
tained in a non-negativity facet. The facets are nowhere TT-disjoint if and only if

⋂

j Hj is a
TT-type face.

Proof. This follows immediately from Lemma 5.2.3 and Remark 5.2.8.

5.3.14 Corollary If G and H are adjacent TT-type facets of GTSP(n), then they are nowhere
TT-disjoint.

The following lemma plays a central role for the graphical relaxation. It is a generalization of
the Theorem 5.2.12.

5.3.15 Proposition Let H be a set of NR-facets of GTSP(n) such that F := STSP(n) ∩
⋂

H H is
a face of codimension c in STSP(n). Suppose that F is not contained in a non-negativity facet. If
the facets in H are nowhere TT-disjoint, then F̄ :=

⋂

H H is a TT-type face of codimension at
most c in GTSP(n).

Proof. For all u, let eu ∈
⋂

H ∆u(H), and abbreviate su := su,eu
. Denote by LH := lin(F −F) ⊆

kerD>, L := lin(F̄ − F̄) and LVn
:= lin{su | u ∈ Vn}. We have to show that dim(LVn

+LH)/LH ≥
n. We show the stronger statement that the dimension of the vector space LVn

+ kerD>/ kerD>

is at least n, by noting that the su are linearly independent modulo kerD> by Lemma 5.3.11.

Let G and H be NR- or non-negativity facets of GTSP(n). We say that G and H are adjacent adjacent on
STSPon STSP, if the facets G ∩ STSP(n) and H ∩ STSP(n) of STSP(n) are adjacent.

5.3.16 Corollary Let G, H be NR-facets which are adjacent on STSP. If G and H are nowhere
TT-disjoint, then they are adjacent as facets of GTSP(n).

The two corollaries of this section give rise to the question of what happens in GTSP(n) “be-
tween” two facets which are adjacent on STSP, but which are TT-disjoint at some node (if such a
combination exists at all—well, it does). Obviously, there must be something “between” two such
facets since they cannot be adjacent. This question will be answered in the next section.

5.4 Existence of non-NR facets with codimension 2 in STSP

We now give a mere proof of existence of a non-NR facet of GTSP(n), under the condition that
there exists a ridge of STSP(n) which satisfies certain conditions. An extended abstract of parts
of this section appeared in the proceedings of the 11th conference Integer Programming and
Combinatorial Optimization, IPCO [ORT05]. We are indebted to Marcus Oswald for contributing
to some key results of this section. The extended abstract [ORT05] also included a method to
extract an inequality defining a non-NR facet of GTSP(n) out of the inequalities which define facets
of STSP(n) containing the ridge. This method is made obsolete by the tilting complexes which we
will introduce in the next section.

60 CHAPTER 5. THE GTSP POLYHEDRON

5.4.1 Remark Let (c, γ) define a TT-type facet F of GTSP(n) which is non-NR. There exist
inequalities (a1, α1), . . . , (al, αl) defining facets of GTSP(n) and STSP(n) (i.e., NR-facets), and
µ1, . . . , µl ≥ 0 such that

(c, γ) =

l
∑

j=1

µj(aj , αj) −
n−1
∑

u=0

λ̄u · (δu, 1), (5.4)

where we abbreviate λ̄ := λ̄
(
∑l

j=1 µjaj
)

. In other words, (c, γ) is the TT-form representative of
∑l

j=1 µj(aj , αj). The vector λ̄ is non-negative, and there exists u with λ̄u > 0. If codimF = 2,
then the (aj , αj) are unique up to scaling.

5.4.2 Definition A good face of STSP(n) is a proper face which is not contained in a non-good face

negativity facet.

Corollary 5.2.15 shows that for any TT-type facet G of GTSP(n), the intersection G∩ STSP(n)
is a good face of STSP(n). We will now take the reverse point of view and consider good faces of
STSP(n). Let F be a fixed good face of STSP(n), and let {H0, . . . , Hk} be the set of NR-facets of
GTSP(n) containing F . This means that {STSP(n) ∩H0, . . . , STSP(n) ∩Hk} is the set of facets of
STSP(n) containing F . For j = 0, . . . , k, let (aj , αj) be an inequality defining Hj . We define the
following matrix

matrix A

A :=

a0 . . . ak

α0 . . . αk

 ∈ �
(

(En × {rhs}) × ({0, . . . , k})
)

. (5.5)

For u ∈ Vn and e ∈ En with u 6∈ e we define
t, tu,e

tu,e :
� k+1 →

�
: µ 7→ t̄(prEn

Aµ) =

k
∑

j=0

µj t̄u,e(aj) =

(

t̄u,e(a0) . . . t̄u,e(ak)

)

µ.

For u ∈ Vn we define the tilting functions λu bytilting
function λ

λu :
� k+1 →

�
: µ 7→ min

e63u
tu,e(µ),

and we let λ := (λ0, . . . , λn−1)
> :

� k+1 →
� Vn . The following fact is an immediate consequence of

the definitions. (We recall that a mapping f is called positive homogeneous, if f(αx) = αf(x) for
all α ∈

�
+ and all x.)

5.4.3 Lemma λ is continuous, piecewise linear and positive homogeneous, and the λu, u ∈ Vn,
are concave.

The key idea now is to consider the following mapping
µ 7→ (cµ, γµ)

� k+1 →
� En ×

�
: µ 7→ (cµ, γµ) := Aµ−

(

D
1
>

)

λ(µ).

5.4.4 Lemma For all µ ≥ 0 the inequality (cµ, γµ) is valid for GTSP(n).

Proof. Since cµ is metric, the validity of (cµ, γµ) for GTSP(n) follows from its validity for STSP(n),
which is given because it is a sum of valid inequalities.

For µ ≥ 0, let Gµ denote the face of GTSP(n) defined by (cµ, γµ). The proof of the followingGµ

lemma is identical to that of Proposition 5.3.15. I am indebted to M. Oswald for contributing to
the first version of the proof.

5.4.5 Lemma The inequality (cµ, γµ) defines a face of codimension at most codimF of GTSP(n).
In other words: codimGTSP(n)Gµ ≤ codimSTSP(n) F

5.5. TILTING COMPLEXES 61

Proof. As cµ is in TT-form, we can choose, for each node u, a shortcut su := su,eu
with eu ∈

∆u(cµ) = ∆u(Gµ). The result then follows from Lemma 5.3.11.

It is easy to see that γµ 6= 0 for all µ, see Lemma 5.5.15 below. Thus, we note that 1
γµ
cµ ∈ B(n).

To be more precise, 1
γµ
cµ is in the (codimF − 1)-skeleton of B(n), i.e., the union of all faces of

B(n) with dimension at most codimF − 1. Here is an only slightly less obvious fact.

5.4.6 Lemma 1
γµ
cµ is a convex combination of vertices of B(n) corresponding to TT-type facets

of GTSP(n). It is a relative interior point of a bounded face of B(n).

Proof. Since F is a good face, no non-negativity summand ζχe with ζ > 0 can occur in a
representation of cµ/γµ ∈ convB + cone{χe | e ∈ En}. No degree vertex δu can occur in a convex
combination of cµ/γµ, because a sum of TT-form left-hand-sides satisfies the triangle inequality
and cµ/γµ is in TT-form.

Note that the fact that the face of B(n) of which 1
γµ
cµ is a relative interior point is bounded

also follows from (d).

H0 H1

H1 ∩ STSP(n)H0 ∩ STSP(n)
In STSP(n):

In GTSP(n):

ϕ

Figure 5.4: Curve on the boundary of B(GTSP(n)) defined by adjacent facets of STSP(n).

Now we restrict ourselves to the case that F is a ridge, i.e., codimF = 2 = k+ 1. We consider
the mapping

ϕ : [0, 1] 7→ B(n) : s 7→
1

γ(1−s,s)
c(1−s,s).

It is a continuous curve by Lemma 5.4.3, which starts in the vertex of B(n) corresponding to H0,
walks along the graph of B(n), and ends in the vertex corresponding to H1. If H0 and H1 are
TT-disjoint at at least one node, then, by Corollary 5.3.14, H0 and H1 are not adjacent, and hence
ϕ must hit another vertex along the way. See Fig. 5.4 for an illustration. This additional vertex
corresponds to a TT-type facet, which, clearly, cannot be NR. Hence, to falsify the GR-conjecture,
we “only” have to establish two adequate facets H0 and H1. For n = 9, inequalities defining such
facets are displayed in Tab. 5.2.

The process of moving a point continuously along the boundary of B(n) can also be visualized
as continuously tilting a valid supporting hyperplane, see Fig. 5.5.

5.5 Tilting complexes

Let F be a proper face of STSP(n) which is not contained in a non-negativity facet. Denote by
{H̄0, . . . , H̄k} the set of all facets of STSP(n) containing F , and by (aj , αj) an inequality in TT-
form defining H̄j . Let Hj be the NR-facet of GTSP(n) defined by (aj , αj). In this section we
explain how, using only the information contained in the coefficients and right hand sides of the
inequalities (aj , αj), we can construct the geometry of all TT-type faces of GTSP(n) which contain
F .

62 CHAPTER 5. THE GTSP POLYHEDRON

In STSP(n) In GTSP(n)

Gµ
G

H0

H1

H1

H0

{x | cµx = γµ}

Figure 5.5: Tilting a hyperplane

ϕ

H2
H1

H3 H0

F♦ with T(F) “GTSP(10)”B(10)

a2

a1

H]
2 H]

1

H]
0H]

3

a3

a0

G]
G

(a) k = 3

F♦ with T(F) “GTSP(10)”

G01

H1

G12

H2 H0

a01

a1

a0a2

a12

a012

G012

(b) k = 2

Figure 5.6: Tilting complex for two faces F of STSP(10) with codimF = 3.

5.5. TILTING COMPLEXES 63

0 1 2 3 4 5 6 7 8
0 0 4 3 3 2 3 5 1 2
1 4 0 1 3 2 5 3 3 2
2 3 1 0 2 3 4 4 2 3
3 3 3 2 0 1 4 4 2 3
4 2 2 3 1 0 3 5 3 4
5 3 5 4 4 3 0 2 4 5
6 5 3 4 4 5 2 0 4 3
7 1 3 2 2 3 4 4 0 1
8 2 2 3 3 4 5 3 1 0

≥ 18; SMAPO # 47

0 1 2 3 4 5 6 7 8
0 0 6 4 4 6 4 6 2 3
1 6 0 2 6 4 6 4 4 3
2 4 2 0 4 6 8 6 6 5
3 4 6 4 0 2 8 6 6 5
4 6 4 6 2 0 6 8 6 7
5 4 6 8 8 6 0 2 4 5
6 6 4 6 6 8 2 0 4 3
7 2 4 6 6 6 4 4 0 1
8 3 3 5 5 7 5 3 1 0

≥ 28; SMAPO # 121

Table 5.2: Two inequalities defining NR-facets of GTSP(9), which are adjacent on STSP and
TT-disjoint at 0 (the bold numbers are the tight triangles for node 0).

Our main result is the following. Using only (aj , αj), j = 0, . . . , k, we can construct a polytopal
complex T(F) which subdivides F♦ and a continuous, injective, piecewise projective mapping
ϕ : F♦ →

� En , such that P 7→ ϕ(P) defines a combinatorial isomorphism3 between the polytopal
complex T(F) and the subcomplex of the boundary complex of B(GTSP(n)), which consists of
faces of the blocking polyhedron corresponding to the TT-type faces of GTSP(n) containing F .

We will detail the construction of T(F) and ϕ in the remainder of this section. For now, let us
look at some examples for STSP(10). Fig. 5.6(a) refers to a face F of STSP(10) with codimension
3 which is the intersection of four facets of STSP(10). On the left, F ♦ with the tilting complex
T(F) is displayed. The labeling of the vertices of F♦ with a0, . . . , a3 is informal. The middle
picture shows the subcomplex of the boundary complex of B(GTSP(10)) which corresponds to the
TT-type faces of GTSP(10) containing F . The picture on the right is merely illustrative, since
GTSP(10) has dimension 45. It shows the adjacency and intersection relations between the facets
of GTSP(10), which really have dimension 44 instead of 2. It can be read from the tilting complex
T(F) that the face F is the intersection of a non-NR facet G of GTSP(10) with STSP(10), and that
G is adjacent to each of the four facets H0, . . . , H3. It can also be seen that Hi is adjacent to Hi+1

(where the index is taken modulo 4) in GTSP(10), and that Hi ∩Hi+1 ∩G is a face of codimension
3 of GTSP(n), which is not contained in any other facet of GTSP(10).

Fig. 5.6(b) refers to a face F of STSP(10) with codimension 3 which is the intersection of three
facets, H0, H1, H2 of STSP(10). The corresponding face F♦ of the polar of STSP(10) is a triangle,
which is displayed on the left, together with the tilting complex T(F). It can be read from T(F)
that there are three non-NR facets of GTSP(10) which contain F . In fact, the intersection of G012

with STSP(10) is equal to F , while the intersection of Gi j with STSP(10) equalsHi∩Hj∩STSP(10).
G012 is adjacent to H0, G01, G12, and H2, but not to H1. H0 is adjacent to H2 and G01. The
intersection of H0 and H1 is not a TT-type face. The face G012 ∩G01 ∩H1 ∩G12 of GTSP(n) has
codimension 3 and is not contained in any other facet of GTSP(n). Similar statements can be read
for the other adjacency and intersection relations. As far as possible by reducing the dimension
to 3 of GTSP(n), the relationships are illustrated by the picture on the right.

5.5.1 Some technical prerequisites

In this section, we let x∗ be an arbitrary relative interior point of STSP(n). Let D be as in (5.3).
We denote by P :

� En → kerD> the orthogonal projection. By choosing an orthonormal basis of
kerD> with respect to the scalar product inherited from

� En , we construct an isometric linear
isomorphism Ψ: kerD> →

� m−n. Now denote S := Ψ
(

STSP(n) − x∗
)

. This is a full-dimensional
polytope in

� m−n which contains 0 as an interior point. It is affinely isomorphic to STSP(n). Let
SM := {a ∈

� m−n | ∀x ∈ S : ax ≤ 1} be the polar polytope of S.

3We direct the reader to a variant in our terminology: a “combinatorial isomorphism” establishes the fact that
two polytopal complexes are what is frequently called “combinatorially equivalent”.

64 CHAPTER 5. THE GTSP POLYHEDRON

5.5.1 Definition Let (a, α) be an inequality which is valid for STSP(n). If ax∗ − α = 1, we saystandard
scaling that (a, α) is in standard scaling with respect to x∗ (we will omit mentioning the x∗).

It is obvious that the standard scaling is unique in
� ∗

+ · (a, α) and that if a valid inequality (a, α)
is scaled by 1/(ax∗−α), then the resulting inequality is in standard scaling. The following trivial
lemma is the reason for the construction. We let P− := −Ψ ◦ P .P−

5.5.2 Lemma If (a, α) is in standard scaling then P−a ∈ SM. If F is the face of STSP(n) defined
by (a, α), then Ψ(F − x∗) is the face of S corresponding to P−a.

Proof. For every y := x − x∗ with x ∈ STSP(n), the following simple calculation shows that the
slack of the inequality 〈P−a | Ψy〉 ≤ 1 is equal to the slack of the inequality ax ≥ α.

1 −
〈

P−a | Ψy
〉

= 1 + 〈Pa | y〉 = 1 + 〈Pa+ (Id − P)a | y〉 − 〈(Id − P)a | y〉

= 1 + 〈a | y〉 = 1 − ax∗ + ax = ax− α.

Now let F be a good face of STSP(n), let {H0, . . . , Hk} be the set of NR-facets containing
F and let Hj be defined by the TT-form inequality (aj , αj) in standard scaling. With A as
defined in (5.5), let L ⊆

� k+1 ×
� Vn be the vector space of solutions (ϑ, ξ) of the linear system

Aϑ−
(

D
1
>

)

ξ = 0. With pr1 : (ϑ, ξ) 7→ ϑ, denote by Θ := pr1(L) the projection of L to
� k+1. SinceΘ

the zero-vector 0 is in TT-form, for every (ϑ, ξ) ∈ L we have (ϑ, λ(ϑ)) ∈ L. Since
(

D
1
>

)

has full
row rank, this implies ξ = λ(ϑ) for all (ϑ, ξ) ∈ L, whence we have L = GrΘ λ. The same argument
yields, by the following simple calculation, that λ is linear on Θ:

A(η1ϑ1 + η2ϑ2) −
(

D
1
>

)

λ(η1ϑ1 + η1ϑ2) = 0 = η1
(

Aϑ1 −
(

D
1
>

)

λ(ϑ1)
)

+ η2
(

Aϑ2 −
(

D
1
>

)

λ(ϑ2)
)

= A(η1ϑ1 + η2ϑ2) −
(

D
1
>

)

(η1λ(ϑ1) + η2λ(ϑ2))

The following lemma makes clear which role the space Θ plays in the construction of non-NR
facets.

5.5.3 Lemma Let µ, ν ∈
� k+1. For an η ∈

�
, if (cµ, γµ) = η(cν , γν), then µ = ην modulo Θ, i.e.,

µ+ Θ = ην + Θ.
For η > 0 the reverse implication holds: if µ = ην modulo Θ then (cµ, γµ) = η(cν , γν).

Note that we do not require µ, ν ∈
� k+1

+ .

Proof. In the first situation, we have

0 = (cµ, γµ) − η · (cν , γν) = Aµ−
(

D
1
>

)

λ(µ) − ηAν + η
(

D
1
>

)

λ(ν)

= A(µ− ην) −
(

D
1
>

)

(λ(µ) − ηλ(ν)) = A(µ− ην) −
(

D
1
>

)

λ(µ− ην).

Note that the last equation holds because the left hand side is in TT-form. If, on the other hand,
µ = ην mod Θ with η > 0, then letting ϑ := ην − µ we have Aϑ−

(

D
1
>

)

λ(ϑ) = 0 and hence

(cµ, γµ) = Aµ−
(

D
1
>

)

λ(µ) +Aϑ−
(

D
1
>

)

λ(ϑ)

= A(ην) −
(

D
1
>

)

(λ(µ) + λ(ϑ)) =
(∗)

A(ην) −
(

D
1
>

)

(λ(ην)) =
(∗∗)

η
(

Aν −
(

D
1
>

)

λ(ν)
)

= η (cν , γν) ,

where the equation (∗) holds because cµ is in TT-form (cf. 5.2.11), and equation (∗∗) holds because
λ is positive homogeneous by Lemma 5.4.3.

5.5. TILTING COMPLEXES 65

Let π :
� k+1 →

� k+1/Θ denote the canonical projection mapping. We define the following
mapping

ρ

ρ :
� k+1 → linF♦ : µ 7→

k
∑

j=0

µjP
−aj .

5.5.4 Lemma Let � k/Θ := π(� k) denote the image of � k under π. There exists an affine isomor-
phism Φ: � k/Θ → aff F♦ which maps the projection � k/Θ := π(� k) of the k-dimensional standard Φ

simplex � k onto F♦, i.e., the two polytopes are affinely isomorphic. Furthermore, the following
diagram commutes:

� k/Θ Φ // aff(F♦)

� k

π

OO

ρ

::uuuuuuuuuu

This means that we have Φ ◦ π = ρ on � k, or, in other words, Φ(π(µ)) =
∑

j µjP
−aj for all

µ ∈ � k.

Proof. Consider the mapping

ρ1 :
� k+1 → lin(F♦ × 1) : µ 7→

k
∑

j=0

µj

(

P−aj
1

)

.

Claim 1. ker ρ1 ⊆ Θ.
If the claim is is true, there exists a mapping Φ1 :

� k+1/Θ → lin(F♦ × 1) with the property

that Φ1(π(µ)) =
∑

j µj
(

P−aj

1

)

, i.e., the following diagram commutes:

� k+1/Θ
Φ1 // lin(F♦ × 1)

� k+1

π

OO

ρ1

88qqqqqqqqqq

The next step in the proof is then the following:
Claim 2. Φ1 is a linear isomorphism. Or, equivalently, ker ρ1 = Θ.
If the second claim is true, we can complete the proof of the lemma by noting that Φ1 maps

� k/Θ onto aff(F♦ × 1), which is easily seen from the equation

Φ1(� k/Θ) = ρ1(π
−1(� k/Θ)) = ρ1(� k + Θ) =

(∗)
ρ1(� k) = aff(F♦ × 1).

Note that we used Θ ⊆ ker ρ1 for (∗). The last detail in the proof, namely that aff(F ♦×1) ∼= aff F♦,
hardly deserves mentioning. We define Φ to be the composition of Φ1 with this isomorphism.

� k/Θ
Φ1 //oo

Φ

��
aff(F♦ × 1) oo

∼= // aff F♦

� k
π

eeLLLLLLLLLLL

ρ1

OO

ρ

88rrrrrrrrrrrr

Now we prove the claims.

66 CHAPTER 5. THE GTSP POLYHEDRON

Proof of Claim 1. Let ϑ ∈ ker ρ1, i.e.,
∑

j ϑjP
−aj = 0 and

∑

j ϑj = 0. The first equation is

equivalent to
∑

j ϑjaj ∈ kerP− but clearly kerP− = kerP = (ImP)⊥ = ImD. Thus there exists

ξ ∈
� Vn with

k
∑

j=0

ϑjaj −Dξ = 0.

This means that there exists an α ∈
�

with Aϑ−
(

D
1
>

)

ξ =
(

0

α

)

. To prove ϑ ∈ Θ it suffices to show
that α = 0. This follows of course from the second equation

∑

j ϑj = 0 above: since the (aj , αj)
are in standard scaling with respect to x∗, we have 0 =

∑

j ϑj · 1 = (
∑

j ϑjaj)x
∗ −

∑

j ϑjαj . This

means that Aϑ and hence also Aϑ−
(

D
1
>

)

ξ is satisfied by x∗ with equality, which implies α = 0.
Proof of Claim 2. This proof can be done in two ways, the first being simply to understand that

Θ ⊆ ker ρ1 holds because applying
(

P− 0
x∗> −1

)

to the equation Aϑ−
(

D
1
>

)

ξ = 0 yields
∑

j ϑj
(

P−aj

1

)

=

0. The second way to prove Claim 2 is by comparing the dimensions. Since the rank of
(

A D
1
>

)

is equal to m− dimF = n+ codimF , we have

dim Θ = dim ker
(

A D
1
>

)

= k + 1 + n− (n+ codimF) = k + 1 − codimF.

On the other hand, since dimF♦ = codimF−1, we have dim lin(F♦×1) = codimF = dim
� k+1/Θ,

whence it follows that Φ1 is an isomorphism.

5.5.5 Corollary Θ is parallel to � k, i.e., 1ϑ = 0 holds for all ϑ ∈ Θ.

Proof. One way to see this is to use the fact that Θ = ker ρ1, as defined and proved in the proof
of the previous lemma: clearly ϑ ∈ ker ρ1 implies

∑

j ϑj = 0. Another way to prove the corollary

is to use the statement of the lemma, because, with � k := � k − 1, we have

k − dim(Θ ∩ � k) = dim � k/Θ = dimF♦ = codimF − 1

= k + 1 − dim ker
(

A D
1
>

)

− 1 = k − dim Θ.

5.5.6 Corollary Let µ, ν ∈ � k. If (cµ, γµ) and (cν , γν) are collinear, then µ = ν mod Θ.

Proof. Suppose that (cµ, γµ) = η(cν , γν). From Lemma 5.5.3, we know that µ − ην ∈ Θ. Now,
by Corollary 5.5.5, we conclude that

0 = 〈1 | µ− ην〉 = 1µ− η1ν = 1 − η,

whence η = 1, i.e., µ− ν ∈ Θ.

5.5.7 Proposition The mapping µ 7→ (cµ, γµ) : � k →
� m ×

�
factors along ρ, i.e., there exists a

mapping
(c̄, γ̄) (c̄, γ̄) : aff F♦ →

� m ×
�

: a 7→
(

c̄(a), γ̄(a)
)

with the property that (c̄, γ̄) ◦ ρ = (c�, γ�), i.e., the following diagram commutes

aff F♦
(c̄, γ̄)

// � m ×
�

� k

ρ

OO

(c�, γ�)

66mmmmmmmmmmmmmmm

In other words, for all µ ∈ � k we have
(

c̄
(
∑

j µjP
−aj

)

, γ̄
(
∑

j µjP
−aj

)

)

= (cµ, γµ).

Furthermore, if a, b ∈ aff F♦ such that
(

c̄(a), γ̄(a)
)

and
(

c̄(b), γ̄(b)
)

are collinear, then a = b.

5.5. TILTING COMPLEXES 67

Proof. From Lemma 5.5.3 for µ, ν ∈ � k we know that if (cµ, γµ) = (cν , γν), then µ− ν ∈ Θ, i.e.,
π(µ) = π(ν). Since ρ = Φ ◦ π on � k, this implies ρ(µ) = ρ(ν). From this, the existence of (c̄, γ̄)
follows.

The last statement follows from Corollary 5.5.6.

5.5.2 A subdivision of F ♦

5.5.8 Lemma Let u ∈ Vn. If µ, ν ∈ � k with ρ(µ) = ρ(ν) and e 63 u then tu,e(µ) = λu(µ) if and
only if tu,e(ν) = λu(ν).

Proof. This follows directly from Proposition 5.5.7, since tu,e(µ) = λu(µ) is equivalent to e ∈
∆u(cµ) = ∆u(c̄(ρ(µ))).

This lemma justifies the following key definition (recall the definition of F (·) from page 2).

5.5.9 Definition Let u ∈ Vn. For a = ρ(µ) ∈ F♦ we define a set of edges
Eu(a)

Eu(ρ(µ)) := {e 63 u | tu,e(µ) = λu(µ)},

and the following subsets of F♦

Pu(a)
P ◦

u(a)Pu(a) := {b ∈ F♦ | F (b) ⊇ F (a) ∧ Eu(b) ⊇ Eu(a)}

P ◦
u (a) := {b ∈ F♦ | F (b) = F (a) ∧ Eu(b) = Eu(a)}.

5.5.10 Lemma Let u ∈ Vn and a ∈ F♦.

(a). Pu(a) is a polytope.

(b). P ◦
u (a) = relintPu(a), i.e., P ◦

u (a) is the relative interior of Pu(a).

(c). Let a, b ∈ F♦. The following statements are equivalent:

(i) Pu(a) = Pu(b)

(ii) a is a relative interior point of Pu(b)

(iii) b is a relative interior point of Pu(a).

(d). If P ′ is a face of Pu(a), and b a relative interior point of P ′, then P ′ = Pu(b).

(e). For a, b ∈ F♦, the intersection Pu(a) ∩ Pu(b) is a face of both Pu(a) and Pu(b).

Proof. (a) Let a = ρ(µ), and P := P (a) := ρ(Q(a)) where

Q := Q(a) :=
{

ν ∈ � k ∀e ∈ Eu(a) ∀f 63 u : tu,e(ν) ≤ tu,f (ν)
}

. (5.6)

Q is the intersection of � k with the set of solutions to a system of linear inequalities. Thus, Q and P
are polyhedra. We show that Pu(a) = P ∩F♦ ∩

⋂

X∈F(a) X . Let ρ(ν) = b ∈ P ∩F♦ ∩
⋂

X∈F(a) X .

Clearly F (b) ⊇ F (a), and for all e ∈ Eu(a) we have tu,e(ν) = λu(ν), i.e., by Lemma 5.5.8,
e ∈ Eu(b). On the other hand, let ρ(ν) = b ∈ Pu(a). Then, obviously, b ∈ F♦ ∩

⋂

X∈F(a)X . But

for e ∈ Eu(a) we also have tu,e(ν) = λu(ν) and hence tu,e(ν) ≤ tu,f (ν) for all f 63 u, i.e., ν ∈ Q
and hence b ∈ P .

(b) We will use the notation of (a). Additionally, for all a ∈ F ♦, e ∈ Eu(a) and f 63 u, define

Qe,f := Qe,f (a) := {ν ∈ Q(a) | tu,e(ν) = tu,f (ν)}.

Now note that either Qe,f is empty, or Θ is contained in the linear space defined by Qe,f , since, if
ν0 ∈ Qe,f , then tu,f (ν0) = λu(ν0) = tu,e(ν0), and, by Lemma 5.5.8, tu,f (ν) = λu(ν) = tu,e(ν), for
all ν ∈ ν0 +Θ. Hence, from ρ = Φ ◦π, we see that every facet of P is the image under ρ of a facet

68 CHAPTER 5. THE GTSP POLYHEDRON

of Q. Therefore, b = ρ(ν) ∈ F♦ is in the relative interior of Pu(a) iff the following three conditions
hold: F (b) = F (a), tu,e(ν) = tu,f (ν) for all e, f ∈ Eu(a) and for every f 63 u, f 6∈ Eu(a) we have
tu,e(ν) < tu,f (ν). This is equivalent to b ∈ P ◦

u (a).
(c) It is clear by (b) that both (ii) and (iii) imply (i). On the other hand, Pu(a) = Pu(b)

implies Eu(a) = Eu(b) and F (b) = F (a), whence (ii) and (iii) follow.
(d) The proof can be carried on by induction on codimP ′. We thus assume that P ′ is a facet

of Pu(a). Since every facet of P is the image under ρ of a facet of Q, P ′ is the intersection with
Pu(a) of facets of F♦ and of images of sets Qe,f with e ∈ Eu(a). The set of facets of F♦ which
contain P ′ is of course just F (b), and P ′ ⊆ ρ(Qe,f) holds iff tu,f (µ) = tu,e(µ) = λu(µ), where
µ ∈ � k is chosen such that ρ(µ) = b. Consequently for c ∈ F ♦ we have c ∈ P ′ iff F (c) ⊇ F (b)
and Eu(c) ⊇ Eu(b), which proves the assertion.

(e) Suppose that Pu(a) 6= Pu(b). Then, by (b), Pu(a)∩Pu(b) cannot contain a relative interior
point of both Pu(a) and Pu(b).

We summarize the main statement of the lemma in the following proposition.

5.5.11 Proposition The set Tu(F) := {∅}∪{Pu(a) | a ∈ F♦} is a pure (finite) polytopal complexTu

of dimension dimF♦ whose underlying space is F♦.

Proof. The finiteness follows from the fact that there are only finitely many possible choices for
the sets F (·) and Eu(·).

The fact that the complex is pure follows from elementary topological arguments (like that
the complement in F♦ of the union of finitely many polytopes of dimension dimF♦ is an open
subset of F♦, hence empty or of dimension F♦, and that the union of finitely many polytopes of
dimension strictly less than dimF♦ is nowhere-dense in an open subset of F♦).

5.5.12 Definition The polytopal complex T(F) which is defined as the set of all intersections oftilting
complex T members of Tu(F), u ∈ Vn, the union of which is F♦. It is a subdivision of F♦. We call T(F) the

tilting complex for F .

5.5.13 Lemma Let P ∈ T(F) and a ∈ relintP . Then P =
⋂

u Pu(a).

Proof. Let Pu(b) ⊇ P . Then either P is contained in a face of Pu(b), in which case we do not
need to look at Pu(b), or relintP ⊆ relintPu(b), whence Pu(b) = Pu(a) by Lemma 5.5.10.(b).

5.5.3 Looking at B(n)

It will be convenient to expand the term “TT-type” to faces of the blocking polyhedron B(n).
We say that a non-empty face X of B(n) is of TT-type if it is not trivial in the sense of Proposi-TT-type face

of B(n) tion 0.1.1, and X] (cf. Proposition 0.1.1) is a TT-type face of GTSP(n). Equivalently, a non-empty
face X is of TT-type, if it is bounded and does not contain a degree vertex. Consequently, we call
a vertex a of B(n) an NR-vertex, if {a} is a TT-type face, and the face x ∨

∨

u∈Vn
δu of B(n) is a

simplex.

5.5.14 Lemma Let P ∈ T(F) be a polytope in the tilting complex. (c̄, γ̄) is affine on P .

Proof. We first show that λu is linear on ρ−1(Pu(a)) ∩ � k for all u, a. To see this, let e ∈ Eu(a),
and note that for all µ ∈ � k with ρ(µ) ∈ Pu(a) we have tu,e(µ) = λu(µ).

The linearity of λu for all u on ρ−1(Pu(a)) ∩ � k implies that λ is linear on ρ−1(P) ∩ � k, for
P ∈ T(F). Hence, (c�, γ�) is linear on ρ−1(P) ∩ � k. Since (c, γ) ◦ ρ = (c�, γ�), the statement of the
lemma follows.

5.5.15 Lemma γ̄ never vanishes, or, in other words, (c̄, γ̄) (F ♦) ⊆
� En ×

� ∗
+.

Proof. Suppose γ̄(ρ(µ)) = 0. Then either cµ = 0, whence F = STSP(n), or (cµ, γµ) is the sum of
non-negativity inequalities. Both conclusions contradict the fact that F is a good face.

5.5. TILTING COMPLEXES 69

We now consider the continuous mapping ϕ := c̄/γ̄, i.e.,

ϕ : F♦ → B(n) : a 7→
1

γ̄(a)
c̄(a).

The mapping ϕ is piecewise projective, or to be precise, it is projective on every polytope in
T. A consequence of this is the following fact, for which we give a direct proof.

5.5.16 Lemma If P ∈ T(F) then ϕ(P) is a polytope of dimension dimP in
� En .

Proof. By Lemma 5.5.14 P ′ := (c̄, γ̄) (P) is a polytope, which, since (c̄, γ̄) is injective, has di-
mension dimP . By the second part of Proposition 5.5.7, the cone C :=

�
+ · P ′ has dimension

dimP + 1 and is contained in
� En ×

� ∗
+ ∪ {0} by Lemma 5.5.15. Consequently, C ∩

� En × {1}
and hence ϕ(P) have dimension dimP .

We note the following direct consequence of the second part of Proposition 5.5.7 explicitly.

5.5.17 Lemma ϕ is injective.

5.5.18 Remark For all P ∈ T(F) we have ϕ(relintP) = relintϕ(P). This follows from topologi-
cal or geometric ingredients, as you prefer.

For the following lemma, for an a ∈ F♦, we define ham(a) to be the set of all x ∈ F ∩ H (n) ham(a),
ham(P)which, in the order of the face-lattice of the polar of STSP(n), are greater than or equal to all

X ∈ F (a). If a ∈ relintP , we let ham(P) := ham(a).

5.5.19 Lemma Let P ∈ T(F). For all a ∈ relintP the same face of GTSP(n) is defined by
(ϕ(a), 1).

Proof. By Lemma 5.5.13 we have P =
⋂

u Pu(a). Hence

relintP =
⋂

u

relintPu(a) =
{

b ∈ F♦ | F (b) = F (a)
}

∩
⋂

u

{

b ∈ F♦ | Eu(b) = Eu(a)
}

.

Now F (a) determines the set of vertices of STSP(n) which are satisfied with equality by the
inequality (ϕ(a), 1), namely this is just the set ham(a). The same holds for F (b) and (ϕ(b), 1).
Further, Eu(a) = ∆u(ϕ(a)), and the same holds for b. Hence the assertion of the lemma follows
by Lemma 5.3.6.

The main result of this section is the following theorem.

5.5.20 Theorem ϕ : F♦ → B(n) induces a combinatorial isomorphism of the polytopal complex
T(F) to the subcomplex of the boundary complex of B(n) which consists of all TT-type faces of
B(n) which are contained in F] (or, in other words, it is the image under �] of all all TT-type
faces of GTSP(n) containing F). For all P =

⋂

u∈U Pu(a) ∈ T(F) (cf. Lemma 5.5.13), ϕ(P)] is
the unique face G of GTSP(n) which satisfies G ∩H (n) = ham(a), and ∆u(G) = Eu(a) for all u.

Proof. The mapping P 7→ ϕ(P) clearly defines a combinatorial isomorphism of some polytopal
complexes. We have to make sure that ϕ(P) is a member of the boundary complex of B(n) for
all P , i.e., we show that for P ∈ T(F), the image ϕ(P) is a face of B(n).

We claim that for all P the image ϕ(P) is contained in a face of B(n) with dimension dimP .
The proof of the claim is by induction on dimF♦ − dimP . Note that we rely on the fact that the
tilting complex T(F) is pure.

If dimP = dimF♦, it follows by Lemma 5.4.5 that ϕ(P) is contained in a union of dimP -
dimensional faces of B(n). By Lemma 5.5.19, we know that ϕ(P) is entirely contained in all faces
which intersect relintϕ(P) = ϕ(relintP), and by Lemma 5.5.16, we know that a face containing
ϕ(P) has dimension at least dimP . Hence ϕ(P) is contained in a face of dimension dimP of B(n).

70 CHAPTER 5. THE GTSP POLYHEDRON

Now suppose that P ′ is contained in a face Q′ of B(n) with dimP ′ = dimQ′, and let P be
a facet of P ′. Let a′ ∈ relintP ′ and a ∈ relintP and let Ra′ , Ra denote the face of GTSP(n)
defined by (ϕ(a′), 1), (ϕ(a), 1). Then F (a) ⊇ F (a′) and ∀u : Eu(a) ⊇ Eu(a

′) holds, but, by
Lemma 5.5.10-(b), at least one of F (a)) F (a′) or ∃u : Eu(a)) Eu(a

′) is true. This means that
there exists an x ∈ Ra \ Ra′ , whence Ra′ is a proper face of Ra. Consequently ϕ(a) is a relative
interior point of a face Q which is a proper face of Q′. By Lemma 5.5.19, ϕ(P) is contained in Q
and by Lemma 5.5.16, Q must be a facet of Q′.

This completes the proof of the claim.
The claim implies that for P ∈ T(F), the image ϕ(P) is actually equal to a face of B(n) by

the topological invariance of the boundary (or use a geometric argument if you must).

5.5.21 Corollary The image under �] of the set all TT-type faces of GTSP(n) which contain F
form a pure subcomplex of dimension codimF −1 of the boundary complex of B(n). Topologically,
it is a closed ball.

5.6 An algorithmic perspective

We now sketch how T(F) can be constructed algorithmically. For this we use a different approach
to the construction of T(F) which is based on the following proposition.

5.6.1 Proposition Tu(F) is the image under ρ of the regular subdivision of the simplex � k which
can be obtained from the piecewise linear concave tilting function λu.

Proof. Picking up the notation of the proof of Lemma 5.5.10 on page 67, it is apparent from the
definitions that λu is linear on each polyhedron Q := Q(a). But as Pu(a) = F♦ ∩P ∩

⋂

X∈F(a) X ,

and F♦ ∩ P = ρ(� k ∩Q), we see that the subdivision of � k defined by λu is just Tu(F).

Algorithm 5.2 Tilting complex

Input:
All STSP-facet defining inequalities (aj , αj), j = 0, . . . , k, containing a good face F in
TT-form.

Output:
Polytopal complex T with union � k and linear space Θ with T/Θ ∼= T(F).

1: Scale (aj , αj) into standard scaling with respect to x∗ := 1/(n−1) 1.
2: Compute the rank r := rk

(

A D
1
>

)

and Θ.

3: Compute the triangle defects t̄j := t̄(aj), define t∗u,e := (t̄0u,e, . . . , t̄
k
u,e)

>.
4: For all u, let T ′

u be a maximal set of edges e 63 u such that the t∗u,e, e ∈ T ′
u, are distinct.

5: Build the sets Tu consisting of all e ∈ T ′
u for which there exists no ζ ≥ 0 with

∑

f 6=e

ζf

(

−t∗u,f

1

)

≤

(

−t∗u,e

1

)

.

6: Compute the face lattices of the polytopes
Qu := {(µ, λ) ∈

� k+1 ×
�
| µ ∈ � k ∧ 0 ≤ λ ≤ µ>t∗u,e}.

7: Using trivial Fourier-Motzkin elimination, project all proper faces of the Qu onto µ-space,
obtaining a system similar to (5.6).

8: Again using Fourier-Motzkin elimination, project all faces onto the orthogonal complement
Θ⊥ of the linear space Θ.

9: For each n-tuple of projected faces, compute their intersection by solving an LP-feasibility
problem and Gaussian elimination.

Algorithm 5.2 gives a rough sketch of the construction of T(F) using this proposition. It
assumes the (aj , αj), j = 0, . . . , k, as input. The output is a subdivision of � k/Θ, which is affinely

5.7. APPLICATION TO COMPLETE DESCRIPTIONS 71

isomorphic to the tilting complex T(F). Here, the algorithm relies on the fact that � k/Θ ∼= F♦ from
Lemma 5.5.4. There may be more elaborate algorithms to compute T(F). With this algorithm
we intend to illuminate the theory of tilting complexes from a different perspective.

5.7 Application to computation of complete descriptions of

GTSP polyhedra

We now give an application of tilting complexes. A computational technique to find a complete
list of facets of a polyhedron is the following. Start with a list containing a single (known) facet.
While there are “untreated” facets in the list, take one of those, mark it as “treated”, compute all
facets adjacent to it, and append the adjacent facets to the list if they are not already contained
in it. This method is called adjacency decomposition in [Chr97, CR01], and it is equivalent to
methods enumerating the vertices of a polyhedron by walking along edges.

With today’s hardware and software (e.g. Intel Pentium IV, 2.8GHz, PortaForte [Chr98]), and
using knowledge of the GTSP-polyhedron, it is possible to compute the neighbors of all TT-type
facets of GTSP(9) except for the connectivity facets. It is also possible to compute the neighbors
of connectivity facets on STSP(9) [CR96, Chr97]. The question is whether the computation of the
neighbors of connectivity facets in GTSP(9) is dispensable. In this section, relying on the theory
of tilting complexes, we will answer this question in the affirmative. More generally we establish
a relationship between sets of facets which, when interpreted as an LP-relaxation of GTSP(n),
satisfy the so-called parsimonious property of Goemans & Bertsimas [GB93] and the structure of
the ridge graph of GTSP(n). Recall that the ridge graph of a polyhedron P has as its node set the
set of all facets of P , and as its edge set the set of ridges of P .

5.7.1 Parsimonious property linked to complete descriptions

An LP-relaxation for GTSP(n) containing all degree inequalities has the parsimonious property parsimonious
propertyif, for all metric cost functions, forcing the degree inequalities to equations does not increase the

minimum.
Let B be a set of inequalities defining NR-facets of GTSP(n). Suppose that the relaxation of B

GTSP(n) consisting of non-negativity inequalities, degree inequalities, and B has the parsimonious
property. Let G denote the graph which results from the ridge graph of GTSP(n) if all nodes G

corresponding to non-negativity and degree facets and facets defined by inequalities in B are
deleted.

5.7.1 Theorem Every connected component of G contains an NR-facet.

The proof of Theorem 5.7.1 is geometric and invokes the tilting complexes. We first need the
following fact.

5.7.2 Lemma Let B be a set of inequalities defining NR-facets of GTSP(n). Suppose that the
relaxation of GTSP(n) consisting of

• all non-negativity inequalities,

• all degree inequalities, and

• the inequalities in B

has the parsimonious property. A non-NR facet (c, γ) cannot be written in the form (5.4), defined
on page 60, with all the (aj , αj) ∈ B.

Proof. Suppose that (c, γ) can be written as a sum of degree equations and inequalities defining
facets in B. Then minimizing the cost function c over the relaxation consisting of degree equations,
non-negativity inequalities, and B produces γ as the minimum. If the degree equations are relaxed

72 CHAPTER 5. THE GTSP POLYHEDRON

to degree inequalities, then, by the parsimonious property, the minimum is still γ. This implies
that (c, γ) is dominated by non-negativity and degree inequalities, and inequalities in B. This
is impossible since (c, γ) defines a non-NR facet of GTSP(n) and all facets in B have the NR
property.

We are now ready to prove the main theorem. I am indebted to M. Oswald for a contribution
to the proof.

Proof of Theorem 5.7.1. Suppose that F is a face of STSP(n) which is the intersection of a
non-NR facet with STSP(n). Let B denote the set of vertices of F ♦ which correspond to facets
defined by inequalities in B. We prove that, for every vertex in the graph (1-skeleton) of T(F),
there exists a path connecting it to a vertex of F ♦, which does not use a vertex from B. If
B = ∅, we are done. Otherwise Q := convB ⊆ F ♦ is a non-empty polytope. We first note that
Lemma 5.7.2 implies that a vertex in T(F) which is not a member of B cannot be contained in Q.

Let c be a vertex in T(F) which is not a member of B. If c is a vertex of F ♦, then we are
done. Otherwise, we assume w.l.o.g. that c is in the relative interior of F ♦. If that is not the
case, instead of F we can treat the face of STSP(n) which is the intersection with STSP(n) with
the facet of GTSP(n) defined by (ϕ(c), 1). Let (p, π) define a hyperplane separating c from Q, i.e.,
〈q | p〉 < π for all q ∈ Q, and 〈c | p〉 > π. Since the union of the faces with codimension at least
one in T(F) is nowhere dense in F♦, we can assume that p is not parallel to any such face. Hence,
there exists an ε > 0 such that the line segment c+]0, ε[·p is contained in the relative interior of a
dimF♦-dimensional polytope P ∈ T(F), of which c is a vertex. By standard polytope theory, P
must have a vertex c′ adjacent to c with 〈c | p〉 < 〈c′ | p〉. Clearly c′ 6∈ B.

To use this argument inductively, we distinguish three cases.

1. If c′ is a vertex of F♦, we are done.

2. Otherwise, if c′ is a relative interior point of F♦ we replace c by c′ and use induction on the
length of the path.

3. Otherwise, we revert to a face of F♦ and use induction on dimF♦.

This concludes the proof of the theorem.

5.7.2 Complete description of GTSP(9)

The so-called subtour relaxation, i.e., the relaxation consisting of degree inequalities, non-negativity
inequalities, and connectivity inequalities, has the parsimonious property for all n [GB93]. In Sec-
tion 5.4, we prove that there exists a non-NR facet for n = 9. In [ORT05], the inequality defining
the facet was constructed using a method which we do not repeat here. We obtain the following
corollary.

1 2 3 4 5 6 7 8
0 9 6 6 7 6 10 2 4
1 3 9 6 11 7 7 5
2 6 9 12 10 8 8
3 3 12 10 8 8
4 9 13 9 11
5 4 8 10
6 8 6
7 2

Table 5.3: Coefficients of the unique non-NR facet of GTSP(9), the right hand side is 44.

5.7.3 Corollary There exist precisely 9! non-NR facets of GTSP(n). They can all be obtained by
permutation of nodes from the one defined by the inequality shown in Table 5.3.

5.8. INTERMEDIATE POLYHEDRA 73

In [ORT05], we also proved that, for n ≤ 8, there do not exist any non-NR facets of GTSP(n).
In order to prove complete descriptions for GTSP(n) for increasing values of n, it will be necessary
to check the parsimonious property for other relaxations. The relaxations obtained by the addition
of comb inequalities with few teeth is of particular practical importance.

5.8 Intermediate polyhedra

It is intuitively obvious that Tu(F) is isomorphic as a poset to the poset of all “TT-like” faces of the
vertex figure for the vertex δu of B(n). We now make this relationship precise. The constructions
and proofs in this section rely only partly on the results of 5.5.3, which they generalize. Instead,
in this section, a slightly different perspective on the results of 5.5.3 is offered.

In the context of blocking type polyhedra, we define a vertex figures as an intersection of
an appropriate hyperplane with the polyhedron. A face figure is an iterated vertex figure, or,
an intersection of an appropriate affine subspace with the polyhedron. Combinatorially, the face
lattice of a face figure for a face G is a sub-lattice of the face lattice of the polyhedron consisting
of all faces which contain G. For U ⊆ Vn we denote by B(n)/Ū the face figure of B(n) for the face B(n)/Ū

Ū :=
∨

v 6∈U

δv .

We will identify the faces of the face figure B(n)/Ū with the corresponding faces of the blocking
polyhedron B(n). We denote by κ

κU : L (B(n)) → L (B(n)/Ū)

the mapping which assigns to every face X of B(n) the face of the face figure B(n)/Ū , which
corresponds to the face X ∨

∨

v 6∈U δv of B(n). We omit the index U on κ if this does not lead to
confusion.

5.8.1 Definition Let U ⊆ Vn. The complex which is defined as the set of all intersections of local tilting
complex TUmembers of Tu(F) for u ∈ U , is called the local tilting complex for U , and is denoted by TU (F).

A face of GTSP(n) (resp. of B(n)) is said to be of TT-type at u, if it is not contained in a TT-type at u

non-negativity facet (resp. it is bounded) and it is not contained in the degree facet (resp. it does
not contain the degree vertex) for node u.

We denote the mapping P 7→ ϕ(P), which associates a member of the face lattice of B(n) to ev-
ery member of the face lattice of T(F) by ϕ(�). Let F (TU) denote the set of facets of the polytopal
complex. The following lemma is a generalization of Theorem 5.2.12 or Proposition 5.3.15.

5.8.2 Lemma Let X be a TT-type face of B(n), and denote F := X] ∩ STSP(n). If dimX =
codimF − 1, then κU (X) is a face of dimension dimX in B(n)/Ū .

We define the mapping s : T(F) → TU (F), which assigns to each face P of T(F) the smallest s : T → TU

face of TU (F) with contains P , i.e., s(P) = minQ∈T,Q⊇P Q.

5.8.3 Lemma There exists a unique mapping ψ : TU (F) → L (B(n)/Ū) such that the following
diagram commutes

TU (F)
ψ // L (B(n)/Ū)

T(F)

s

OO

�

�

ϕ(�)
// L (B(n)).

κ

OO
(5.7)

The mapping ψ is an injective morphism of the posets. Moreover, it maps the facets of TU (F) to
the faces of dimension codimF − 1 of B(n)/Ū .

74 CHAPTER 5. THE GTSP POLYHEDRON

Proof. Let P, P ′ be faces of T such that κ(ϕ(P)) = κ(ϕ(�)(P ′)), and let a ∈ relintP , a′ ∈
relintP ′. Since ϕ(P) ∨

∨

v 6∈U δv = ϕ(P ′) ∨
∨

v 6∈U δv, we know that for all u ∈ U

∆u(ϕ(a)) = ∆u(ϕ(P)]) = ∆u(ϕ(P ′)]) = ∆u(ϕ(a′)).

But this implies, with the notation of Definition 5.5.9 in 5.5.2, that Eu(a) = Eu(a
′) for all u ∈ U .

Since we also have F (a) = F (a′), we can conclude, by Lemma 5.5.10-(c), that s(P) = s(P ′).
This shows that the mapping ψ exists. The uniqueness is a trivial consequence of the surjectivity
of s.

We show ψ honors the order of the two posets. Suppose that s(P) ⊆ s(P ′). Then ∆u(ϕ(P)]) =
Eu(a) ⊇ Eu(a

′) = ∆u(ϕ(P ′)]) for all u ∈ U , and ϕ(P)]∩H (n) = F (a) ⊇ F (a′) = ϕ(P ′)]∩H (n).
From this we see that

(

ϕ(P) ∨
∨

v 6∈U
δv

)]
⊇

(

ϕ(P ′) ∨
∨

v 6∈U
δv

)]
.

Thus, the opposite relation holds for the faces ψ(s(P)), ψ(s(P ′)) of B(n)/Ū . A similar argument
proves that ψ is injective. Namely, if s(P) 6= s(P ′), then F (a) 6= F (a′), or there exists a u ∈ U
such that Eu(a) 6= Eu(a

′), whence ψ(P) 6= ψ(P ′).

The statement about the facets of TU (F) follows from the previous lemma.

We now state the main result of this section.

5.8.4 Theorem The mapping ψ is a combinatorial isomorphism between TU (F) and the subcom-
plex of the boundary complex of B(n)/Ū consisting of all faces which are of TT-type at each u ∈ U
and which are contained in F] ∈ B(n)/Ū .

Proof. We need to show that the image of ψ is the named subcomplex. Since for every P ∈ TU (F),
there exists a Q ∈ T(F) with s(Q) = P and ψ(P) = κ(ϕ(Q)), it is clear that ψ(P) is of TT-type
at each u ∈ U , and that it is contained in F]. On the other hand, let G ∈ B(n)/Ū be a face which
is of TT-type at each u ∈ U and which is contained in F]. Then there exists a TT-type face G′ of
B(n) which is contained in F] and such that κ(G′) = G. There also exists a face P ′ of T(F) with
ϕ(P) = G′, and hence ψ(s(Q)) = ϕ(κ(P ′)) = G. This completes the proof of the theorem.

5.8.5 Corollary The subcomplex of the boundary complex of B(n)/Ū consisting of all faces which
are of TT-type at each u ∈ U and which are contained in F] ∈ B(n)/Ū (i.e., the antistar of Ū in
the complex of F]) is pure of dimension codimF − 1 and it is topologically a closed ball.

Let U ⊆ Vn. For each a ∈ F♦, we define the linear spaceLU (a)

LU (a) := LU/(LU ∩ LH) = (LH + LU)/LH ,

where LH := lin(ham(a) − ham(a)) and LU := lin{su,e | u ∈ U , e ∈ Eu(a)}. (We admit that
writing LU/(LU ∩ LH) = (LH + LU)/LH is somewhat sloppy.)

5.8.6 Corollary Let U ⊆ Vn. For all P ∈ TU (F) and a ∈ relintP , we have

dimF + |U | + codimP = dimψ(P)] = dim ham(a) + dim LU (a)

and

dimP = m− |Vn \ U | − 1 − dim ham(a) − dim LU (a).

Proof. Apply Lemma 5.3.9.

5.8. INTERMEDIATE POLYHEDRA 75

5.8.1 An application

We give an application of Theorem 5.8.4. We repeat a definition from [NR93].

5.8.7 Definition Let F be a metric face of GTSP(n) and u ∈ Vn. We define an adjacency relation
on ∆u(F) by saying that e ∼ f iff there exists a point x ∈ F ∩ E 1(n) such that both x+ su,e and
x+ su,f are in GTSP(n). The resulting graph is denoted by G∆

u (F).

The following fact is easily seen by induction on the distance of the edges in G∆
u (G). Actually

the proof is the same as that of Lemma 2.14 in [NR93].4

5.8.8 Lemma If e and f are adjacent in G∆
u (G) then their corresponding shortcuts are equal

modulo G ∩ H (n).

We see here that the definition of the graph is too weak to reveal much about the relationship
between STSP(n) and GTSP(n). However, it can be used as a technical tool to aid bounding the
number of different shortcuts modulo F ∩ H (n).

5.8.9 Proposition Let G be a non-NR facet of GTSP(n) and F := G ∩ STSP(n). Let u ∈ Vn
and denote by p the number of facets of Tu(F) which contain the point of F♦ corresponding to G.
Further let q denote the maximum number of G-feasible shortcuts at u which are linear independent
modulo G∩H (n) and let c denote the number of connected components of G∆

u (G). Then p ≤ q ≤ c
holds.

Proof. The first inequality follows from Corollary 5.8.6, the second from the lemma above.

We apply this proposition and Theorem 5.8.4 to 0-node lifting. For simplicity we repeat the
definition of 0-node lifting for a special case (it is essentially equivalent to the definition in 2.1.1).
Let c ∈

� En . We can identify c with a symmetric n×n-matrix C with zeros in the diagonal. If we
duplicate the (n− 1)th row and column of this matrix, we obtain a symmetric (n+ 1) × (n+ 1)-
matrix C◦ with zeros in the diagonal, which can be identified with a vector c◦ ∈

� En+1 . We say c◦

that c◦ is obtained by 0-node lifting of c. If c is a TT-type vertex of B(n), then c◦ is a TT-type 0-node lifting

vertex of B(n+ 1) [NR91].

Queyranne & Wang [QW93] proved a result on 0-node lifting for the STSP. In our terminology,
it states that if c is an NR-vertex, and c◦◦ is obtained by 0-node lifting c twice, then the vertex c◦◦

of B(n + 2) is an NR-vertex. We extend their result to the following theorem. Note that, while
the statement [QW93] is only about c◦◦ itself, the statement of the following theorem is about all
non-NR facets which are in the same “area” of B(n), i.e., in the image under the mapping ϕ of
the tilting complex.

5.8.10 Theorem Let c be a TT-type vertex of B(n) and c◦◦ be obtained from c by 0-node lifting c
twice. If c◦◦ is non-NR vertex and (c◦◦, 1) defines the non-NR facet G, then, with F := G∩STSP(n),
the local tilting complexes Tu(F) at u = n−1, n, n+1 are trivial, i.e., they are equal to the complex
of the polytope F♦.

Proof. It is easy to see that the graph G∆
u (G) is connected. Let a ∈ F♦ with ϕ(a) = c, and

u ∈ {n − 1, n, n + 1}. By the proposition, a is contained in only one facet of Tu(F). Since
a ∈ relintF♦, this implies that Tu(F) is trivial.

4At this point we might add that it is possible to show that the sufficient condition in Lemma 2.15 of [NR93] is
also necessary.

76 CHAPTER 5. THE GTSP POLYHEDRON

5.9 0-Node lifting

As in the other chapters of the theoretical part of this thesis, we deal with lifting in this chapter,
too. We start with a remark which views non-NR facets slightly differently than before.

5.9.1 Remark Let c be a TT-type vertex of B(n). Let C := c + cone{δu − c | u ∈ Vn} denote
the cone with apex c which is spanned by the degree vertices δu, u ∈ Vn. Further, let P denote
the convex hull of all TT-type vertices of B(n) except for c. Then (c, 1) defines a non-NR facet if
and only if C intersects P . To see this, let A denote the matrix whose columns are the TT-type
vertices of B(n), except for c. The inequality (c, 1) defines a non-NR facet if and only if there
exists a vector µ ≥ 0 with 1µ = 1 and a vector λ0 ≥ 0 such that

(1 − 1λ0)

(

c
1

)

=

(

A
1>

)

µ−

(

D
1>

)

λ0.

This can be rewritten as
c+

∑

u∈Vn

λ0
u · (δu − c) ∈ convA.

From this remark we see again that, if c is not adjacent to a degree vertex δu, then it must
correspond to a non-NR facet, as the half line which starts at c and runs through δu intersects the
face c ∨ δu of B(n), which contains other TT-type vertices of B(n). The question remains open,
whether there is a non-NR-facet which is adjacent to all degree facets. In all examples of non-NR
facets which we found, there were non-adjacent degree facets.

Now we introduce our result.

5.9.2 Theorem Let c be an NR-vertex of B(n) and let c◦ be the vertex of B(n+1) obtained from
c by 0-node lifting. Then for every U ⊆ Vn with |U ∩ {n− 1, n}| ≤ 1, the face c◦ ∨

∨

u∈U δu of
B(n+ 1) is a |U |-simplex.

For the proof of the theorem, we are happy to be able to introduce a geometrically intuitive
lemma. We denote by B̂(n) the complex of all bounded faces of B(n), and by B̂0(n + 1) theB̂(n),

B̂0(n+ 1) complex of all bounded faces of B(n+ 1) which are contained in the non-negativity facet for the
edge {n− 1, n}.

5.9.3 Lemma The mapping �◦ : G 7→ G◦ := {a◦ | a ∈ G} induces an affine isomorphism of theG◦

complex B̂(n) to the complex B̂0(n+ 1).

Proof. Clearly, �◦ is a bijection of the vertices of the two complexes. It remains to be shown
that for a set of vertices M of B(n), M is the set of vertices of a bounded face of B(n) if and only
if �◦(M) is the set of vertices of a bounded face of B(n+ 1). This can be done by some technical
arguments which we omit.

5.9.4 Lemma If (c◦, 1) defines a non-NR facet G of GTSP(n+ 1) which is 0-node lifted, i.e.,
c◦{n−1,n} = 0, then, with F := G ∩ STSP(n+ 1), for all P ∈ T(F)

dim L{n−1,n}(a) = dim Ln−1(a) + 1 = dim Ln(a) + 1.

Proof. We show the first equation. By Lemma 5.3.11, we have dim L{n−1,n}(a) ≥ dim Ln−1(a)+1.
For the reverse inequality, we prove the following two claims.

Claim 1. If e ∈ ∆n(G) then there exists f ∈ ∆n(G)∩∂(n− 1) with sn,e = sn,f in L{n−1,n}(a).
Claim 2. If e, f ∈ ∆n(G), then sn,e − sn,f ∈ Ln−1.
From the second claim, it follows that the vector space L{n−1,n}(a)/Ln−1(a) has dimension at

most one, and hence the dimension differs by at most one.
Proof of Claim 1. Let uv = e ∈ ∆n(G) \ ∂(n− 1). It is easy to see that there exists an

x ∈ C 1(n+ 1) and an f for which x+ sn,e, x+ sn,f ∈ G ∩ H (n+ 1). This proves the claim.

5.9. 0-NODE LIFTING 77

Proof of Claim 2. By Claim 1, we only need to show that Claim 2 holds for e, f ∈ ∆n(G) ∩
∂(n− 1). With e = {u, n− 1} and f = {u′, n− 1}, and g := {n− 1, n}, we compute

sn,e − sn,f =
(

χe − χun − χg
)

−
(

χf − χu
′n − χg

)

= sn−1,u′n − sn−1,un.

Since u′n, un ∈ ∆n−1(G), the statement of the claim is true.

We extend the terminology defined in Section 5.8 a bit. For a face G of B(n) which is not an
intersection of non-negativity facets, and U ⊆ Vn, we let LH (G) denote the linear space defined LH (G),

LU (G),
LU (G)

by STSP(n) ∩G], and denote by LU (G) the linear space generated by the set of feasible shortcuts
for G]. Then, we define

LU (G) := LU (G)
/ (

LU (G) ∩ LH (G)
)

=
(

LH (G) + LU (G)
) /

LH (G).

5.9.5 Lemma Let X be a bounded face of B(n). For all U ⊆ Vn with n − 1 ∈ U , we have
dim LU (X) − dim Ln−1(X) ≥ dim LU (X◦) − dim Ln−1(X

◦).

Proof. We abbreviate LU := LU (X) and L◦
U := LU (X◦), and the same for U replaced by H or

n− 1. We construct a surjective linear mapping LU/Ln−1 → L◦
U/L

◦
n−1. By elementary algebra,

this means finding a surjective mapping f such that the following diagram commutes:

(LH + LU)
/

(LH + Ln−1)
f // (L◦

H
+ L◦

U)
/

(L◦
H

+ L◦
n−1)

LU

OO

�

�

ı
// L◦
U ,

π

OO

where ı :
� En ↪→

� En+1 maps according to the inclusion En ⊆ En+1, and the vertical arrows
designate the canonical projections. Now it is possible to show that ı maps sums of Hamiltonian
cycles

∑

r ξrx
r with xr ∈ H (n) and

∑

r ξr = 0 to sums of Hamiltonian cycles in H (n + 1)
and shortcuts in L◦

n−1. Hence, a linear mapping f exists. To show that f is surjective, let
s ∈ L◦

U \ ı(LU). We distinguish three cases.

1. s = sn−1,vn for v ∈ Vn \ {n− 1},

2. s = su,vn for u ∈ U \ {n− 1}, v ∈ Vn \ {n− 1}, and

3. s = su,{n−1,n}.

In the first case, we have π(s) = 0 ∈ Im f . In the second case, we can write s = su,{n−1,v} +
sn−1,vn − sn−1,un, whence π(s) ∈ Im f . But the third case, it is possible to show that s is equal,
modulo L◦

H
, to a shortcut treated in one of the other cases.

Now we have all the ingredients to prove the theorem of this section.

Proof of Theorem 5.9.2. We prove that c◦∨
∨

u∈Vn+1\{n−1} δu is a simplex in B(n+1). Let F :=

G ∩ STSP(n+ 1), and a ∈ relintF♦ with ϕ(a) = c◦. With γ := dimF♦, and using Lemma 5.9.5,
we compute

n− 1 ≥ dim LVn
(c) − dim Ln−1(c)

≥ dim LVn
(c◦) − dim Ln−1(c

◦) =
(∗)

n+ 1 + γ − 1 − dim Ln−1(c
◦),

where the equation (∗) follows from Lemma 5.9.4. Hence, dim Ln−1(c
◦) ≥ γ+1. By Corollary 5.8.6,

if P is the face of Tn−1(F) containing a as a relative interior point, we have

0 ≤ dimP ≤

(

n+ 1

2

)

− n− 1 − dimF − (γ + 1) = 0.

78 CHAPTER 5. THE GTSP POLYHEDRON

This implies that P = {a} is a vertex. Invoking Theorem 5.8.4 with U := Vn+1 \ {n− 1}, we see
that the image of a is a vertex of the face figure, which implies the statement of the theorem by
a standard uniqueness argument in the style of Theorem 5.2.12.

Chapter 6

Understanding LP-solutions

In this chapter we aim to understand which properties of a vertex x of a relaxation of GRP(Γ, b)
are not characteristic for the fact of being outside the polyhedron. We will identify structures
which can be changed or replaced without changing the fact that x 6∈ GRP(Γ, b). This issue has
been treated in the context of so-called “safe shrinking” operations, where the results are applied
to vertex LP-solutions in a Branch-and-Cut-algorithm to reduce the size of the support graph G(x).
For the STSP, this has been studied in the paper by Padberg & Rinaldi [PR90a].

We introduce a collection of modifications which can be performed on x without changing
the property x 6∈ GRP(Γ, b). Although some of these modifications have been implemented (see,
e.g., 10.1.1 or Section 10.5), our aim is mainly to increase the understanding of what makes an
LP-solution “broken”, i.e., what causes x 6∈ GRP(Γ, b).

6.0.1 Terminology

In this chapter we will deal with tuples (Γ, b, x) consisting of a GRP-structure Γ = (G,C, t), a
vector of upper bounds b : E(G) → � ∗

+, and a vector x ∈
� E(G) satisfying x ≤ b. We study

modification operations (Γ, b, x) 7→ (Γ ′, b′, x′), which are safe, i.e., x 6∈ GRP(Γ, b) if and only safe operation

if x′ 6∈ GRP(Γ ′, b′). In the opposite direction, we will give operations for pulling back valid pulling back

inequalities separating x′ from GRP(Γ ′, b′) to valid inequalities separating x from GRP(Γ, b).
Sometimes an operation will offer a set of possible modifications. In that case, we speak of safe

alternative
operation

a safe alternative operation, if x 6∈ GRP(Γ, b) holds if and only if there exists an i such that
xi 6∈ GRP(Γi, bi), and we use the symbolic notation (Γ, b, x) 7→ {(Γ ′

1, b
′
1, x

′
1), . . . , (Γ

′
k, b

′
k, x

′
k)}.

In this chapter, unless otherwise stated, all graphs are simple, and the node identification
operations produce simple graphs. In this process, vectors x or b are adopted as described in
0.2.2. We abbreviate Gs

C(x/Eint) to GC(x).

6.1 Blocks and connected components

We start with the the following fact. Suppose that GC(x) is connected. Let F be a set of R-internal
edges such that in the graph G(x)∪F the subgraph induced by each R-set is connected. Further,
let G1, . . . , Gb be a block decomposition of G(x). For j = 1, . . . , b define a parity function tj on
Gj by shrinking the other blocks into their respective cut-nodes in Gj , and define a partition Cj
into R-sets by restricting C to the node set of Gj . Let Γj := (Gj ,Cj , tj).

6.1.1 Proposition With these notations, x 6∈ GRP(Γ, b) if and only if there exists a j ∈ {1, . . . , b}
such that xE(Gj) 6∈ GRP(Γj , bE(Gj)).

Inequalities on a block Gj are pulled back by 0-node lifting, where each cut-node u contained
in Gj is replaced by the set of nodes of G contained in blocks which are connected to G via u.
It is known from [CLS01] that this reduction is safe both for the class of PBs and 2-PBs, which

79

80 CHAPTER 6. UNDERSTANDING LP-SOLUTIONS

means that, if, for GRP(Γ, b), there exists a violated inequality in such a class, then, for one of
the blocks, there still exists a violated inequality in the same class.

A second simple modification allows to decompose into connected components under certain
conditions. Let H be a connected component of G(x), such that V (H) ⊆ C for an R-set C ∈ C.
Let G′ := G − V (H), and denote by C′ the R-set partition with C replaced by C \ V (H). Let
Γ ′ := (G′,C′, tV (G)\V (H)).

6.1.2 Proposition With the above notations, x 6∈ GRP(Γ, b) if and only if x violates a blossom
inequality (2.5a) with U ⊆ V (H) or xE(G′) 6∈ GRP(Γ ′, bE(G′)).

Proof. The conditions are clearly sufficient for x 6∈ GRP(Γ, b). Suppose that no such blossom
inequality is violated; in particular V (H) is an even set. Then xE(H) is a convex combination of
T-joins:

xE(H) =
∑

k

λky
k.

If xE(G′) ∈ GRP(Γ ′, bE(G′)), then xE(G′) is a convex combination of semitours in S(Γ ′, bE(G′)):

xE(G′) =
∑

l

µlz
l.

For every pair k, l, we have (yk,0, zl)> ∈ S(Γ). Hence,

x =
∑

k,l

λkµl

yk

0
zl

,

which means that x is a convex combination of semitours in S(Γ, b), and the proof is completed.

6.2 Flipping variables and merging R-sets

Let f = uv ∈ E(G) satisfy bf <∞, and suppose that u and v are contained in the same set C ∈ C.

Let Γχ{u,v} as defined in Section 3.1 on page 25, and define x′ := flip[b;χf](x). See Section 3.1 for

the definitions of flip[b;·], a′
[χf]

, and α′ − (b� χf)a′.

6.2.1 Proposition The operation (Γ, b, x) 7→ (Γχ{u,v} , b, x′) is safe. If (a′, α′) is a valid inequality
for GRP(Γχ{u,v} , b), then a pulled back inequality (with the same amount of violation) is defined

by
(

a′[χ
f], α′ − (b� χf)a′

)

.

Proof. This is an easy consequence of Propositions 3.1.2 and 3.1.5.

6.2.2 Corollary Let F := {f = uv ∈ Eint(Γ) | xf = bf}. If the parities t are modified accord-
ingly, then the set of edges F can safely be removed from the support graph.

To understand the benefit of the next propositions, let the reader be reminded of the fact that
the GRP is polynomial if the number of R-sets is bounded by a fixed constant, see Section 1.2. By
the polynomial equivalence of separation and optimization [GLS93], we could heuristically argue
that the separation problem becomes computationally easier if the number of R-sets is reduced.
Let f = uv ∈ E(G) be an R-external edge with bf < ∞ and xf = bf . Recall the definition of
C} f from Section 3.2, namely if u ∈ Cu ∈ C, v ∈ Cv ∈ C, then C} f := C \ {Cu, Cv}∪{Cu ∪Cv}.
Let Γ ′ := (G,C} f, t).

6.2.3 Proposition If xf = bf , then the operation (Γ, b, x) 7→ (Γ ′, b, x) is safe, i.e., the two R-sets
can safely be “merged”. Violated inequalities can be pulled back without changing them.

6.2. FLIPPING VARIABLES AND MERGING R-SETS 81

Note that the vector x is not changed.

Proof. The fact that x ∈ GRP(Γ, b) implies x ∈ GRP(Γ ′, b′) is a consequence of Remark 3.2.2
on page 27.

It remains to show that if x 6∈ GRP(Γ, b) then we also have x 6∈ GRP(Γ ′, b′). Suppose that x
is a convex combination of semitours z1, . . . , zr ∈ S(Γ ′, b), i.e.,

x =
∑

j

λjz
j

Since xf = bf < ∞ we have zjf = bf for all j. But this implies that the zj connect all the sets

C ∈ C, i.e., zj ∈ S(Γ, b).

By combining Propositions 6.2.3 and 6.2.1, we obtain the following corollary.

6.2.4 Corollary If the partition C and the parities t are modified accordingly, then all edges f
for which the upper bound inequality xf ≤ bf is satisfied with equality, can safely be removed from
the support graph G(x).

The condition bf <∞ can be avoided by requiring that certain connectivity inequalities must
be tight. Let f = uv be an R-external edge and let Su, Sv be unions of R-sets with u ∈ Su and
v ∈ Sv. The proof of the following proposition is a mixture of the proof of Propositions 6.2.3 and
6.2.6 below.

6.2.5 Proposition Suppose that xf = 1 and x(∂(Su)) = x(∂(Sv)) = 2. If there is at least one
R-set which is not contained in either Su or Sv, and the connectivity inequality for the union of
R-sets Su ∪ Sv is not violated, then C can be replaced by C} f .

Under the same conditions, the bound of the edge f can be reduced to one. Define a new
vector of upper bounds by b′e = be for all e 6= f and b′f = 1. What is peculiar about this operation
is that there is no obvious way to pull back a violated inequality.

6.2.6 Proposition Under the conditions of Proposition 6.2.5 the operation (Γ, b, x) 7→ (Γ, b′, x)
is safe.

Proof. Clearly, if x ∈ GRP(Γ, b′) then x ∈ GRP(Γ, b). On the other hand, suppose that x ∈
GRP(Γ, b). Let z1, . . . , zr be a family of semitours in S(Γ, b), and λ1, . . . , λr ≥ 0 numbers such
that x =

∑r
j=1 λjz

j , and
∑

λj = 1. Clearly, we have zj(∂(Su)) = zj(∂(Sv)) = 2 for all j. Since
there are R-sets which are not contained in Su or Sv, we have x(Su : Sv) = xf = 1. From this it

follows that zjf = 1 for all j, because zjf ≥ 2 is impossible. Thus we have zj ∈ GRP(Γ, b′), which
implies x ∈ GRP(Γ, b′).

The last operation in this section is based on circular partitions. Let k be an integer ≥ 1 and
let U0, . . . , Uk+1 be a partition of the node set of G into unions of R-sets. Suppose that Uj ∈ C

for j = 1, . . . , k, i.e., U1, . . . , Uk are single R-sets.

6.2.7 Proposition If

x(∂(Uj)) = 2 for j = 0, . . . , k + 1, and (∗)

x(Uj : Uj+1) = 1 for j = 0, . . . , k, and x(Uk+1 : U0) = 1, (∗∗)

then the R-set U1, . . . , Uk can be safely merged to form one single R-set U1 ∪ · · · ∪ Uk.

82 CHAPTER 6. UNDERSTANDING LP-SOLUTIONS

Proof. Denote by C′ the new set of R-sets. Let z be a semitour for C′ which is in a family whose
convex sum equals x. We show that z is also a semitour for C. This can be done by a parity
argument. For each of the cuts Fj := ∂(U0 ∪ · · · ∪ Uj) for j = 0, . . . , k the value z(Fj) must be an
even number. Because of (∗) above,

z(∂(U0)) = z(∂(Uk+1) = z(∂(U1 ∪ · · · ∪ Uk)) = 2

must hold, so that z(U0 : Uk+1) = 1. But then z(Fj) ≥ 2, which implies z(Uj : Uj+1) ≥ 1, because
x(Ui : Ul) = 0 for i ∈ {0, . . . , j} and l 6∈ {0, . . . , j} if (i, j) 6∈ {(0, k+1), (j, j+1)}. Thus z connects
all the (original) R-sets Uj , j = 1, . . . , k, to their respective predecessors and successors.

6.3 Shrinking

In this section we will deal with safe shrinking operations. For the Symmetric TSP, conditions
under which shrinking operations are safe are discussed by Padberg & Rinaldi [PR90a]. Up to
now, no comparable results are known for the GTSP, or the GRP.

For the remainder of the section, we will assume that x violates no connectivity inequality.

6.3.1 Shrinking based on tightness of connectivity inequalities

We start by showing how, under similar conditions as those in [PR90a], we can obtain safe shrinking
operations for the GRP. We follow [PR90a] in speaking of “shrinking”, instead of node identifica-
tion, although in the case of the GRP, the subgraphs which we identify to single nodes need not
be connected.

For a union of R-sets U , we define the GRP-structures Γ/U by identifying the node set U to
a new node, in the sense of node identification in simple graphs. The R-set partition is changed
as in Definition 2.1.5, the parity of the new node is the parity of the set U . The bound vector
b : E(G) → � ∗

+ is treated as described in 0.2.2; the bound vector on the graph G/U is denoted by
b/U . The same applies to the vector x.

Now, let a partition of the node set of V (G) into three sets U,W, {v} be given, such that v is
an R-isolated node, and U and W are unions of R-sets. The proof of the following proposition is
almost the same as that for Theorem 6.7 in [PR90a]. We do not repeat it here.

6.3.1 Proposition If x(v : U) = x(U : W) = x(W : v) = 1, then we have the following operation:
at least one of U or W can safely be identified to a single node, i.e., we have the safe alternative
operation (Γ, b, x) 7→ {(Γ/U, b/U, x/U), (Γ/W, b/W, x/W)}.

Note that after each of the alternatives, Proposition 6.2.5 can be applied, so that {v, u} (or {v, w}
respectively) form a new R-set.

Following [PR90a], we call a path u0, e1, u1, . . . , ek, uk+1 with xei
= 1 for all i, and such that

the ui for i = 1, . . . , k are R-isolated (required) nodes with x(∂(ui)) = 2 a 1-path.

6.3.2 Corollary Let u0, e1, u1, . . . , ek, uk be a 1-path, and suppose

x(∂(u0)) = x(∂(uk+1)) = 2

holds. If u0 and uk+1 are R-isolated, then it is safe to shrink the 1-path to a single edge linking
u0 to uk+1.

Proof. Define U := {u1, . . . , uk+1} and W := V (G) \ {u0, . . . , uk+1}. Then Proposition 6.3.1 can
be applied with v := u0. But if we shrink the set W , we get a semitour, so that if x 6∈ GRP(Γ, b),
we must have x/U 6∈ GRP(Γ/U, b/U).

6.3. SHRINKING 83

Now we give a new shrinking condition, tailored for the GRP. Let a partition of the node
set of V (G) into two sets U,W be given, such that U and W are unions of R-sets, and let
f = u0w0 ∈ (U : W), where u0 ∈ U and w0 ∈ W . Define the GRP-structure ΓW on the
graph G/U . The nodes resulting from identifying U to a single node is again denoted by u0.
The R-set partition shall be CW := C/E(U) } f and the parities are defined by tW (v) = t(v) if
v ∈ W \ {w0}, tW (w0) = 1 − t(w0) and tW (u0) = 1. Further, we let (xW)e := (x/U)e for all
e 6= uw and (xW)vw := 0. The GRP-structure ΓU and vector xU are defined in the same way, and
when w0 denotes the node of G/W which results from the identification of W , tU (w0) = 1 and
tU (u0) = 1 − t(u0).

6.3.3 Proposition Suppose that x(u0 : W) = 1 = x(U : w0); in other words, the neighbors of u0

and w0 in G(x), except w0 and u0, are all on the same side of the cut (U : W). If xf = bf = 1
and x(U : W) = 2 hold, then the alternative operation (Γ, b, x) → {(ΓW , b/U, xW), (ΓU , b/W, xU)}
is safe.

Proof. Let Y ⊆ S(ΓU , b/W) and Z ⊆ S(ΓW , b/U) such that we have the following convex
combinations:

xU =
∑

y∈Y

λyy and xW =
∑

z∈Z

µzz.

Every y ∈ Y satisfies the R-odd cut inequality y(U) ≥ 1 with equation, hence there exists a unique
u ∈ U with yuw0 6= 0. For u ∈ U , let Ξ(u) be the set of y ∈ Y with yuw0 6= 0. The sets Ξ(u),
u ∈ U , are pairwise disjoint and their union is Y . Similarly, for w ∈ W , let Ξ(w) be the set of
all z ∈ Z with zu0w 6= 0. Again, The sets Ξ(w), w ∈ W , are pairwise disjoint and their union is
Z. If u ∈ U , w ∈ W with uw ∈ E(G), and y ∈ Ξ(u), z ∈ Ξ(w), then we can define a semitour
y on z ∈ S(Γ, b) by letting, for all e ∈ E(G),

(y on z)e =

ye if e ∈ E(U)

ze if e ∈ E(W)

1 if e ∈ {u0w0, uw}.

Now, following [PR90a], for u ∈ U and w ∈ W with uw ∈ E(G), and y ∈ Ξ(u), z ∈ Ξ(w), define

νuwyz :=
λyµzxuw

x(u : W)x(U : w)
.

It is easy to see that

x =
∑

u∈U,w∈W
uw∈E(G)
y∈Ξ(u)
z∈Ξ(w)

νuwyz · (y on z)

is a convex combination.

Applying this proposition, we obtain the following corollary.

6.3.4 Corollary Let a partition of the node set of V (G) into two sets U,W be given, such that
U and W split precisely one R-set C, i.e. C ∩ U 6= ∅ and C ∩W 6= ∅ but C ′ ⊆ U or C ′ ⊆ W for
all C ′ ∈ C, C ′ 6= C.

Under each of the following two conditions, at least one of U or W can be safely shrunk into
a node with odd parity which shall be made a member of the R-set C.

1. t(U) = 1 mod 2, x(U : W) = 1, and there exist nodes u ∈ U ∩ C, w ∈ W ∩ C with
x(u : W) = x(U : w) = 0.

2. t(U) = 0 mod 2, x(U : W) = 2 and there exists an edge f = uw ∈ (C ∩ U : C ∩W) with
bf = xf = 1, and x(u : W) = x(U : w) = 1.

In the second case, the edge f is deleted, and the parity of its end node in the set which is not
shrunk is flipped.

84 CHAPTER 6. UNDERSTANDING LP-SOLUTIONS

6.3.2 Shrinking operations involving other inequalities

Not only connectivity inequalities can be used for safe shrinking. We now describe how safe
shrinking can be based on R-odd cuts or even more subtle inequalities like KCs.

6.3.5 Proposition Let U ⊆ V (G) be an odd set which is entirely contained in an R-set, i.e.,
there exists C ∈ C with C ⊇ U . Let x satisfy the odd-cut inequality defined by U with equality:
x(U) = 1. Suppose that there does not exist a violated blossom inequality of the form

x(∂(W) \ F) − x(F) ≥ 1 − b(F), where W ⊆ U and F ⊆ ∂(W) ∩ {e | be <∞}.

Then it is safe to identify the set U to a single node.

Proof. The proof is similar to the one of 6.3.1. Let H denote the loopless multigraph which
results after identifying the set W := V (G) \U to a single node. By Proposition 2.5a on page 21,
xE(H) is a convex combination of T-joins:

xE(H) =
∑

y∈Y

λyy.

Now we assume that x/U is also a convex combination of semitours for the shrunk GRP-structure:

x/U =
∑

z∈Z

µzz.

Now,for u ∈ U , we define Ξ(u) as the set of all y ∈ Y with yuw0 = 1, where w0 denotes the node
which results from identifying the set W . For w ∈ W , we let Ξ(w) be the set of all z ∈ Z with
zu0w = 1, where u0 denotes the node which results from identifying the set U . For uw ∈ E(G),
and y ∈ Ξ(u), z ∈ Ξ(w), we define y on z ∈ S(Γ, b) by

(y on z)e =

ye if e ∈ E(U)

ze if e ∈ E(W)

1 if e = uw

for all e ∈ E(G),

and we let

νuwyz :=
λyµzxuw

x(u : W)x(U : w)
.

Again, it is easy to see that

x =
∑

u,v,y,z

νuwyz · (y on z)

is a convex combination.

Last not least we give a result for shrinking R-sets to nodes which is safe for GRP(Γ,∞).
The conditions can be checked by a separation routine for KC-inequalities (see page 18) which we
propose in 8.3.1.

6.3.6 Proposition Let C ∈ C with x(∂(C)) = 2, let there be node sets A, B with x(∂(A)) =
x(∂(B)) = 2 and nodes u0, v0 ∈ C such that x(C : A)x(u0 : A) = x(C : B) = x(v0 : B) = 1.
If there does not exist a violated R-odd cut inequality x(∂(U)) ≥ 1 with U ⊆ C or a violated
KC-inequality with K = 3, B1 = A, B2 = B, and B0 ∪BK = C, then it is safe for GRP(Γ,∞) to
shrink C to a node.

Proof. It will become clear in Section 8.3, that, if no such R-odd cut or KC-inequality exists,
then xE(C) lies inside the T-join polyhedron for the graph G[C], where a node u ∈ C is odd iff

t(u) + χ{u0,v0} is odd. If we also assume that x/U is a convex combination of semitours for the
shrunk GRP-structure, then it is easy to see that x can be expressed as a convex combination of
semitours in S(Γ,∞).

Part II

Separation and related algorithms

85

Chapter 7

Odd cuts and related concepts

In their seminal 1982 paper, Padberg & Rao [PR82] introduced separation algorithms for two kinds
of so-called blossom inequalities, namely the capacitated and the uncapacitated cases. In this
chapter we improve on both algorithms. The Padberg-Rao algorithm for uncapacitated blossom
separation is a generic algorithm to compute a minimum T -odd cut. In this chapter we identify
a cut by a pair (U, V (G) \ U) where ∅ (U (V (G), and for an even cardinality set T ⊆ V (G) a
cut (U, V (G) \ U) is called T -odd or just odd, if |T ∩ U | = |T \ U | = 0 mod 2, and the minimum T -odd cut

T -odd cut problem asks for a T -odd cut whose weight (or capacity) is minimum with respect
to a non-negative vector c of edge costs. The algorithm which Padberg & Rao [PR82] propose
for this problem produces a so-called Gomory-Hu cut-tree ([GH61]) by a sequence of |T | − 1
max-flow computations, and then selects the best odd cut among |T | − 1 candidates which are
stored in the cut-tree. It has been noted repeatedly that the computational effort required by this
procedure is quite high. We improve on this algorithm in the following way: we propose a simple
recursive algorithm with the same worst-case running time, i.e., it also solves |T | − 1 max-flow
problems in the worst case. (We note that the core recursive algorithm was found independently,
though earlier, by Rizzi [Riz03].) However, avoiding the computation of a cut-tree allows us to use
shrinking operations, which in practice greatly reduce the number of max-flows which are actually
computed – and thus the running time. In Section 7.2, we explain the algorithm. Computational
results can be found in Section 11.1 in the chapter on the performance of separation algorithms,
where we give numbers on the performance of the algorithm when applied to the separation of the
R-odd-cut inequalities (2.1).

Padberg-Rao’s algorithm for capacitated blossom separation works by invoking their minimum
odd cut algorithm for a so-called split graph, which is created from the graph G by subdividing
every edge by the insertion of an extra node. As the running time of this algorithm is quite
high, namely O(m3 logn) (where n := |V (G)| and m := |E(G)|), the attempt to speed it up has
attracted some attention: Grötschel & Holland [GH87] were able to reduce the running time to
O(nm2 log(n

2
/m)) by an easy idea which is difficult to implement, and Padberg & Rinaldi [PR90a]

proposed an O(n2m log(n
2
/m)) heuristic algorithm. Letchford suggested to us to consider an

algorithm which deviates only very slightly from the heuristic proposed in [PR90a], and which has
the same worst case running time. We were able to prove that Letchford’s algorithm is an exact
blossom separation algorithm. An extended abstract of this result appeared in the proceedings of
the 10th conference on Integer Programming and Combinatorial Optimization, IPCO [LRT04]. We
deal with this algorithm in Section 7.3, where we give results on what we call blossom minimization.
A blossom is a cut (U, V (G)\U) together with a subset F of the edge set ∂(U) of the cut, such that
|T ∩ U |+ |F | is an odd number. We propose an uncrossing result which proves the correctness of
Letchford’s algorithm, and we also propose a new, recursive algorithm for blossom minimization.

Applications of uncapacitated and capacitated blossom separation are numerous. The Padberg-
Rao [PR82] algorithms are frequently used on separation. The minimum odd cut problem occurs in
the separation of various kinds of “odd cut” constraints for routing problems among which are the
Mixed Chinese Postman Problem, the Windy Postman Problem, the Mixed Postman Problem,

87

88 CHAPTER 7. ODD CUTS AND RELATED CONCEPTS

the General Routing Problem, which is a generalization of the Rural Postman Problem, and
the Capacitated Arc Routing Problem. The prominent application of the capacitated blossom
algorithm is the separation of the 2-matching inequalities of the STSP, and constraints whose
separation reduces to this problem also occur in routing problems, among them the cocircuit, and
simple 2-PB inequalities mentioned in the previous chapters.

In this chapter, we also deal with the problem of finding all all minimum blossoms and with
finding a blossom which is minimum subject to the condition that it separates two given nodes
(s, t). We emphasize that all blossom algorithms have the same worst-case running time as their
odd-cut counterparts.

7.1 Terminology, notation, and known facts particular to

this topic

Let G be a simple undirected graph. In this chapter, we abbreviate n := |V (G)| and m := |E(G)|.n, m

Let T ⊆ V (G) be a set of even cardinality. The members of T are called odd nodes, the nodesodd/even
nodes in its complement, V (G) \ T , are called even. A set of nodes U is called T -odd (resp. T -even) if

|U ∩ T | is an odd (resp. even) number. Hence, a T -odd cut is a cut (U, V (G) \ U) such that the
sets U and V (G) \ U are T -odd, and a minimum T -odd cut is an odd cut which minimizes the
submodular function

U 7→ c(U) :=
∑

e∈∂(U)

ce, U ⊆ V (G),

over all T -odd sets U , where c ∈ � E(G)
+ is a vector of (strictly positive) capacities defined on the

edges of G. The capacity c(U) of a minimum capacity T -odd cut is denoted by λ1
c(G, T), or just

λ1(G) if the c and T cannot be confused (the one stands for “odd”). We will just speak of odd or
even sets or cuts without mentioning the set T , which will be clear from the context. T -odd cuts
are called T -cuts by many authors [GLS93, CCPS98].

An odd minimum (s, t)-cut is a minimum (s, t)-cut which is odd, i.e., a cut (S, V (G)\S) which
is odd and satisfies c(S) = λ(s, t). A minimum odd (s, t)-cut is a cut which is odd and separates
s and t, and which has minimum capacity subject to these conditions.

In the context of blossoms separation (or minimization), we have two capacities associated

with each edge, i.e., we have c, c′ ∈ � E(G)
+ . We say that ce is the normal capacity of the edge e,

and that c′e is the flipped capacity. A blossom is a cut (U, V (G) \ U) together with a subset F ofblossom

the edge set ∂(U) of the cut, such that |T ∩ U | + |F | is an odd number. An (s, t)-blossom is a
blossom (U, F) such that the cut (U, V (G) \ U) separates s and t.

We will have to shrink the graphs we are dealing with. In the context of odd cuts, the capacities
are treated in the usual additive manner described in 0.2.2. In the context of blossoms, if in the
process of shrinking, the edges {e1, . . . , er} are merged to form the edge e of the shrunk graph, we
define the normal (flipped) capacity of e to be

min
{

r
∑

i=1

(1 − εi)cei
+ εic

′
ei

∣

∣

∣ ε ∈ {0, 1}r,
∑

iεi even (odd)
}

,

which effectively means picking the smallest weights subject to the condition that the number of
flipped weights chosen is even (odd). See also Lemma 7.3.2 below. We write G/st for G/{s, t}.

7.1.1 Equivalent flow trees and cut-trees

7.1.1 Definition ([Gus90]) An equivalent flow tree for a simple graph G with weights c ∈
� E

+equivalent
flow tree and set of terminal nodes T ⊆ V (G) is a tree T with node set V (T) = T and edge weights

fs,t = λc(G, s, t) for each {s, t} ∈ E(T).

7.1. TERMINOLOGY, NOTATION, AND KNOWN FACTS 89

Algorithm 7.1 Gomory-Hu cut-tree core step

Input:
undirected graph G, with edge capacities c : E → � +,
non-empty set of terminal nodes T (V (G) (|T | not necessarily even),
cut-tree T with terminal node set T ,
node t 6∈ T .

Output:
A Gomory-Hu cut-tree T′ for G with terminal node set T ′ := T ∪ {t}.

1: Find the supernode R of T containing t and its representative r.
2: Construct the shrunk graph GR.
3: Compute a minimum (r, t)-cut in GR, denote it by (X, X̄).
4: Construct the two new supernodes R ∩X and R ∩ X̄ with representatives r and t resp.
5: Construct the tree T′ from T in the following way. Replace the supernode R of T by the two

supernodes R ∩X and R ∩ X̄ in T′. The two new supernodes are joined by an edge with
weight λ(GR, r, t). For every edge SiR of T, add an edge between Si and R ∩X , if si ∈ X , or
between Si and R ∩ X̄ , if si ∈ X̄ .

7.1.2 Definition ([GH61]) A Gomory-Hu cut-tree for a graph G with capacities c and set of cut-tree,
supernodeterminal nodes T is a tree T with edge weights f , whose nodes, called supernodes, are non-empty

subsets of the node set of G which form a partition of V (G) such that each set contains a unique
terminal node, called the representative of the supernode. We denote the supernodes by capital
letters. Every edge AB of T, would partition the node set of G into two parts if it were removed.
We say that the edge induces a cut. We require that for each edge AB of T with weight fAB ,
the terminal nodes s ∈ A and t ∈ B satisfy fAB = λ(G, s, t) and that AB induces a minimum
(s, t)-cut.

Algorithm 7.1 is an incremental variant of the algorithm of Gomory & Hu [GH61] to compute
a cut-tree. The algorithm performs |T | − 1 max-flow computations on different graphs, which
can be considerably smaller than the graph the algorithms started with. We sketch the proof of
correctness of Algorithm 7.1. The underlying basic fact is the following uncrossing idea.

7.1.3 Lemma ([GH61]) Let (X, X̄) be a minimum (x, y)-cut, let s, t ∈ X, and (S, S̄) be a
minimum (s, t)-cut. Then one of the two cuts (S ∩ X, S̄ ∪ X̄), (S ∪ X̄, S̄ ∩ X), is a minimum
(s, t)-cut.

Using this lemma, it is easy to prove the correctness of Algorithm 7.1. Let R be a supernode
of T and let RS1, . . . , R Sl be the edges of T which are incident to R. For i = 1, . . . , l, let
(Ui, V (G) \ Ui) denote the cut in G induced by the cut-tree edge RSi, where Ui is chosen to
contain Si. Further, let GR denote the graph which results from G by identifying the node sets
Ui, i = 1, . . . , l, to single nodes each, which we denote by si, i = 1, . . . , l.

7.1.4 Theorem ([GH61]) Let T be a cut-tree with terminal node set T 6= V (G) and let t ∈
V (G) \ T , let R be the supernode which contains t and let r ∈ T be its representative. If (X, X̄) is
a minimum (r, t)-cut in GR, then construct a new tree T′ from T in the following way. Construct
the tree T′ from T by replacing the supernode R by the two supernodes R1 := R∩X and R2 := R\X
of T linked by an edge with weight

fR1R2 := λ(GR, r, t) = λ(G, r, t).

For i = 1, . . . , l, add an edge R1 Si, if si ∈ X, or R2 Si, if si ∈ X̄, to T. The weight of this edge
is fRSi

. Then the resulting tree T′ is a cut-tree with terminal node set T ′ := T ∪ {t}.

Below we will need the following easy lemma.

90 CHAPTER 7. ODD CUTS AND RELATED CONCEPTS

s3

X
t s1

s2

s4

r

R ∩X

S2

R ∩ X̄

S3

S4

S3

S2

S1

r
t

S4 S1

cut-tree T

t
R

new cut-tree T′

graph GR with
minimum (r, t)-cut

cut-tree edge

representative r

non-terminal nodes

Figure 7.1: Core step of the Gomory-Hu cut-tree algorithm

7.1.5 Lemma Let T be a cut-tree for G, AB an edge of T and s and t the representatives of A
and B respectively. Let (S, V (G) \S) be the minimum (s, t)-cut induced by AB (with s ∈ S). The
component of T \ AB which contains A (B) is a cut-tree for G/(V (G) \ S) (G/S) with terminal
node set T ∩ S (T \ S).

7.1.2 Equivalent flow trees and minimum (s, t)-cuts

Now we will briefly describe an algorithm due to Gusfield & Naor [GN93], which produces a data
structure which contains, for any two nodes s, t ∈ T , all minimum (s, t)-cuts, and it only takes the
time required to compute |T | − 1 max-flows. The data structure has O(|T |n) space requirement.

The question of finding and storing all minimum (s, t)-cuts for a fixed pair s, t was treated
by Picard & Queyranne [PQ80]: if all strongly connected components in the residual network of
a maximum (s, t)-flow are shrunk, we obtain a directed acyclic graph. We call the components
SCCs, and we call the shrunk directed acyclic graph DAG. We note the following well-known fact.SCC,DAG

7.1.6 Lemma ([PQ80]) Let DAG(s,t) be the directed acyclic graph of a maximum (s, t)-flow.
Then an (s, t)-cut (S, V (G) \ S) is minimum if and only if each strongly connected component of
the residual network is contained in either S or V (G)\S and there are no arcs in D crossing from
S to V (G) \ S.

Consequently, we call DAG(s,t) the DAG-representation of all minimum (s, t)-cuts in G. Note
that in some definitions of DAG-representation the direction of the arcs is reversed.

For finding the minimum (s, t)-cuts for all pairs s, t, the central result is the following lemma,
which relates it to equivalent flow trees. A consequence of the lemma is that Algorithm 7.2 solves
that problem of finding all minimum (s, t)-cuts for all pairs s, t.

7.1.7 Lemma ([GN93]) Let (S, V (G) \ S) be a minimum (s, t)-cut, and let T be an arbitrary
equivalent flow tree for G. There exists an edge (u, v) on the path from s to t in T with the property
that (S, V (G) \ S) is a minimum (u, v)-cut.

7.2. THE MINIMUM T -ODD CUT PROBLEM 91

Algorithm 7.2 Gusfield-Naor

Input: Undirected connected graph G with positive edge weights and a set of terminal nodes
T ⊆ V (G).

Output: Equivalent flow tree T, and for every edge {r, s} of T the DAG representation of all
minimum (r, s)-cuts, DAG(r,s).

1: Find an order of the nodes in T : t0, . . . , t|T |−1.
2: Let T be a star with t0 at the center and leaves t1, . . . , t|T |−1.
3: For k = 1, . . . , |T | − 1 do
4: Let r be the (unique) neighbor r of tk in T.
5: Compute DAG(tk,r), associate it to the edge {tk, r} of T.
6: For j = k + 1, . . . , |T | − 1 do
7: If the (unique) neighbor of tj is r, and tj is in the tk-set of DAG(tk,r) then
8: Disconnect tj from r, and connect it to tk.
9: End if

10: End for
11: End for
12: Output T and the DAGs associated to its edges.

7.1.3 Representability of minimum odd cuts and minimum odd (s, t)-
cuts

We say that a cut (S, V (G) \ S) is representable, if there exists a pair of nodes s, t such that
(S, V (G) \ S) is a minimum (s, t)-cut. We note the following facts for easy reference.

7.1.8 Lemma Let (U, V (G)\U) be a minimum odd cut. The following statements are equivalent:

(i). (U, V (G) \ U) is representable.

(ii). There exists a node s ∈ T ∩ U and a node t ∈ T \U such that there exists an odd minimum
(s, t)-cut.

(iii). There exists a node s ∈ T ∩ U and a node t ∈ T \ U such that λ(s, t) = c(U) holds.

The following theorem is an immediate and well-known consequence of the correctness of the
Padberg-Rao minimum odd cut algorithm [PR82].

7.1.9 Theorem Every minimum odd cut is representable.

A similar statement holds for minimum odd (s, t)-cuts again. By Lemma 7.1.7 and the fol-
lowing Lemma 7.1.10, Algorithm 7.2 can be used to compute a minimum T -odd (s, t)-cut in time
O(|T |nm log(n

2
/m)).1 The result will also be needed in the context of minimum (s, t)-blossoms.

7.1.10 Lemma [GR95] Let x, y ∈ V (G) and (U, V (G) \ U) be a T -odd (T -even) cut separating
x and y with minimal capacity among these cuts. Then there exist s ∈ U and t ∈ V (G) \ U such
that (U, V (G) \ U) is a minimum (s, t)-cut.

7.2 The Minimum T -odd cut problem

The following basic lemma is a variant of the uncrossing lemma in [PR82]. We recall that two
cuts (X,V (G) \ X) and (Y, V (G) \ Y) are said to cross, if none of the four sets X ∩ Y , Y \ X , crossing cuts

X \ Y , V (G) \ (X ∪ Y) is empty.

1But see 10.3.3 in the chapter on the adaption of algorithmic techniques to the Branch-and-Cut environment.

92 CHAPTER 7. ODD CUTS AND RELATED CONCEPTS

7.2.1 Lemma If (U, V (G) \ U) is a minimum odd cut and (S, V (G) \ S) a minimum (s, t)-cut,
for arbitrary s, t in V (G), and U crosses S, then one of the following four sets is a minimum odd
cut: S ∩ U , S \ U , U \ S, V (G) \ (S ∪ U).

Proof. By renaming the sets, we can assume that S ∩ U is odd. If t 6∈ U , we can conclude by
submodularity that S ∩ U is a minimum odd cut:

c(S ∩ U) ≤ c(S) + c(U) − c(S ∪ U) ≤ c(U).

If t ∈ U and S \ U is odd, then the same argument holds for S \ U . Thus assume that t ∈ U
and V (G) \ (S ∪ U) is odd. If s ∈ U , then the argument works for V (G) \ (S ∪ U). Otherwise,
(S ∪ U, V (G) \ (S ∪ U)) is an odd cut and (U, V (G) \ U) is an (s, t)-cut, hence

c(S ∩ U) ≤ c(S) + c(U) − c(S ∪ U) ≤ c(S) ≤ c(U).

As a consequence of this lemma we obtain the key idea of the Padberg-Rao method for com-
puting a minimum odd cut.

7.2.2 Theorem ([PR82]) Let T be any cut-tree with a terminal node set T ′ containing all odd
nodes. Then there exists an edge AB of T whose removal induces a minimum odd cut in G.

Proof. The proof is by induction on |T |. If |T | = 2, then the statement is obviously correct. For
|T | ≥ 4, we chose any edge AB of T, let s, t be the representatives of its end nodes, and denote by
(S, V (G) \ S) the minimum (s, t)-cut induced by AB. By Lemma 7.2.1, there exists a minimum
odd cut not crossing (S, V (G) \ S). Further, if (S, V (G) \ S) is odd, then either the edge AB
induces a minimum odd cut, or no minimum odd cut separates s and t. In the latter case, or if the
cut (S, V (G)\S) is even, we conclude by induction, invoking Lemmas 7.1.5, where, if (S, V (G)\S)
is odd, the node s (s̄) in G/S (G/(V (G) \ S)) is even.

7.2.1 A new algorithm for minimum odd cuts

The starting point of our new algorithm is the following easy fact.

7.2.3 Lemma Let s,t be two nodes such that there exists an odd minimum (s, t)-cut. Then

λ1(G) = min
(

λ(G, s, t), λ1(G ◦ {s, t})
)

.

Given the DAG-representation of all minimum (s, t)-cuts, it is easy to decide if there exists an
odd minimum (s, t)-cut. The following easy lemma gives the correspondence.

7.2.4 Lemma There exists an odd minimum (s, t)-cut if and only if there is an odd SCC in the
DAG-representation of the minimum (s, t)-cuts.

By applying Lemma 7.2.1 inductively, we can refine it to the SCCs in the DAG-representation.

7.2.5 Lemma Let (U, V (G) \ U) be a minimum odd cut, and let S0, . . . , Sk be the SCCs in the
DAG-representation of all the minimum (s, t)-cuts in reverse topological order. Suppose that none
of the SCCs is odd. There exists an l ∈ {1, . . . , k} for which Sl ∩ U and Sl \ U are odd sets. For
each such l, there exists a minimum odd cut (U ′, V (G) \ U ′) with the following two properties:

1. U ′ ∩ Sl = U ∩ Sl and Sl \ U ′ = Sl \ U , and

2. for all j 6= l either Sj ⊆ U ′ or Sj ⊆ V (G) \U ′.

7.2. THE MINIMUM T -ODD CUT PROBLEM 93

Algorithm 7.3 Recursive min odd cut

Input: Graph G, capacities c, and set of odd nodes T , |T | ≥ 2 and even.
Output: A minimum odd cut.

1: Initialize the value of the best cut found so far φ := ∞.
2: Loop
3: Let s and t be two distinct odd nodes.
4: Compute a minimum (s, t)-cut.
5: Create the DAG-representation of all minimum (s, t)-cuts. Sort it reverse topologically

and search it for an odd minimum (s, t)-cut.
6: If an odd minimum (s, t)-cut is found then
7: If it is the best cut found so far, store it and update φ.
8: Shrink s and t into a single node. If no odd nodes remain, return the best odd cut found

and Stop.
9: Else

10: Leave the loop.
11: End if
12: End loop
13: Let S0, . . . , Sk denote the sets of the DAG in topological ordering.
14: For l = 0, . . . , k do
15: If Sl contains at least two odd nodes then
16: Construct a graph G′ by shrinking in G each of the two node sets

⋃l−1
i=0 Si and

⋃k
i=l+1 Si

to single nodes.
17: By recursion, compute a minimum odd cut in G′.
18: If a minimum odd cut with value < φ was found then
19: Store the odd cut and update φ.
20: End if
21: End if
22: End for
23: Return the best odd cut.

.

G′

S0 SkSl

Figure 7.2: Recursive minimum odd cut computation for SCCs

94 CHAPTER 7. ODD CUTS AND RELATED CONCEPTS

Algorithm 7.4 Simple min odd cut with shrinking

Input: Graph G, capacities c, and set of odd nodes T , |T | ≥ 2 and even, upper bound φ.
Output: The value λ1c(G, T), if it is strictly less than φ.

1: While odd nodes left do
2: Shrink edges (see 7.2.2) as long as possible. If all odd nodes have vanished, leave the loop.
3: Choose odd nodes s and t and compute a minimum (s, t)-cut (S, V (G) \ S).
4: If (S, V (G) \ S) is an odd cut or λ(s, t) ≥ φ then
5: Update φ := λ(s, t).
6: Identify s and t.
7: Else
8: Recursively apply the algorithm to G/S and G/(V (G) \ S), update φ if necessary.
9: Leave the loop.

10: End if
11: End while
12: If the value of φ was improved by the algorithm, return it.

These three lemmas together prove the correctness of Algorithm 7.3. It works by selecting
a pair of odd nodes s, t, constructing the DAG-representation of all minimum (s, t)-cuts, and
checking if one of the SCCs is odd. If that is the case, s and t are identified to a new even node.
Otherwise the algorithm is recursively applied to each SCC Sl, with the SCCs Si, i ≤ l−1, and Si,
i ≥ l+1 identified to two single nodes. See Fig. 7.2. A variant of this algorithm is to compute only
one minimum (s, t)-cut instead of the DAG-representation. In Algorithm 7.4, we give a full-fledged
algorithm which also uses shrinking techniques which we now describe.

7.2.2 Shrinking and minimum odd cuts

The shrinking rules we propose can be implemented to be very fast if the graph has few edges.
The following shrinking rules are adopted from [PR90b].

7.2.6 Lemma Let uv be an edge of G. Under any of the following conditions, the edge uv can be
contracted without increasing the value of the minimum odd cut.

(a). u is even, and c(∂(u)) ≤ 2cuv, or

(b). both u and v are even, and there is a node w ∈ N(u) ∩N(v) such that

c(∂(u)) ≤ 2cuv + 2cuw, and c(∂(v)) ≤ 2cuv + 2cvw.

Proof. If an odd cut contains the edge uv, then an odd cut with smaller capacity can be con-
structed by moving u or v to the other side.

These simple rules could be generalized, but they turn out to be effective in practice. The first
one can be checked in time O(n + m), the second requires

∑

u(degu)2 steps. We now come to
shrinking rules which are based on the value of the best odd cut found so far, which is recorded
by the Algorithm 7.4 in the variable φ. The following lemma gives the simple idea.

7.2.7 Lemma Let u, v be two nodes and qu,v be a lower bound on the capacity of a minimum
(u, v)-cut in G. If qu,v ≥ φ, then u, v can be identified without increasing the capacity of the
minimum odd cut.

As an example, define γ := 0, if u and v are not connected by an edge and γ := cuv , otherwise.
Then γ +

∑

w∈N(u)∩N(v) min(cuw, cwv) is a lower bound on λ(u, v). For another way to apply

Lemma 7.2.7, we build on results of [NOI94].

7.3. BLOSSOM MINIMIZATION 95

7.2.8 Definition A legal ordering of the node set of a graph G is an ordering v1, . . . , vn with the
property that the edge vkvk+1 is a minimum capacity edge in the cut ∂({v1, . . . , vk}).

A legal ordering can be constructed by an algorithm in [NOI94], called MCAP, in time
O(n log n). It has the following property, which makes it useful in the context of minimum (odd)
cuts.

7.2.9 Lemma Let v1, . . . , vn be a legal ordering. Then qk := c({v1, . . . , vk}) ≤ λ(vk , vk+1), and
qn−1 = λ(vn−1, vn).

In our minimum odd cut algorithm, we invoke MCAP as a shrinking mechanism. MCAP works
by iteratively selecting for vk+1 the node which minimizes ce, e ∈ ∂({v1, . . . , vk}). The algorithm
also computes the numbers qk, which are checked for the condition of Lemma 7.2.7. The version
of MCAP which is most useful for minimum odd cuts will prefer even nodes in the selection of
vk+1 if the minimum is attained in more than one value, in the hope that the node vn is odd,
which would allow vn−1 and vn to be identified (Lemma 7.2.3). If during the iteration one of the
sets {v1, . . . , vk} is odd and c({v1, . . . , vk}) happens to be smaller than φ, a new best odd cut is
found. A drawback of the use of MCAP is that it cannot be assured that one of the successful
cases occurs, i.e., the time spent on an individual call to MCAP might be in vain. In Chapter 11,
we give computational results which show that this does not happen too often.

Given that both the core minimum odd cut algorithm and the shrinking operations are fairly
simple, it is astounding how far an only moderately fine-tuned implementation outperforms the
fastest cut-tree algorithms known to us. We refer to Section 11.1.

7.3 Blossom minimization

In this section we define what we call the “blossom minimization” problem, and variants. Given
a graph G and an even cardinality set T ⊆ V (G), a blossom is a pair (U, F) consisting of a non- blossom

empty node set U (V (G), together with a set of flipped edges F ⊆ ∂(U) with the property that flipped edges

the number |T ∩ U | + |F | is odd. Given two weight functions E(G) → � +, the normal weight c normal/flipped
weightand the flipped weight c′, the value of a blossom (U, F) is defined to be c(∂(U) \ F) + c′(F). We

can now consider the problems of finding a minimum (i.e., minimum value) blossom, or a blossom
which is minimum under the additional constraint that it must separate two given nodes, i.e., a
minimum “(s, t)-blossom”. In this section we consider these two problems, and we also touch on the
subject of finding all minimum blossoms. Blossom minimization is a natural extension of the so-
called (capacitated) blossom separation problem [PR82], which historically requires characteristic
conditions, namely that c and c′ satisfy ce + c′e ≥ 1 for all e ∈ E(G), and that only blossoms
of value strictly less than 1 are of interest. The possibility of dropping these conditions turns
out to be useful in practice: in 8.2.1 we can abandon the requirement that, prior to invoking
the separation routine for (switched) simple 2-regular PB-inequalities, we must make sure that
no violated connectivity inequality exist. We start with a survey of known results on blossom
separation.

7.3.1 Known results on blossom separation

We recall the definition for the (capacitated) blossom separation problem from [PR82]. The input
is a multigraph G, an even cardinality set T ⊆ V (G), and two vectors x : E(G) → � + and
u : E(G) → � ∗

+, where it can be assumed that x ≤ u holds. The objective is to find a cut ∂(U)
with U ⊆ V (G) and a set of flipped edges F ⊆ ∂(U) such that |T ∩ U |+ |u|(F) is an odd number,
and x(∂(U)\F)+(u−x)(F) < 1 holds—or to prove that no such cut exists. In their seminal paper,
Padberg & Rao [PR82] give a polynomial time combinatorial algorithm for blossom separation.
We say that xe is the normal value of the edge e, and ue − xe is the flipped value.

The Padberg-Rao algorithm produces the so-called split graph Ĝ by subdividing each edge e of
G by a splitting node. Of the two edges, one gets weight xe and even parity, while the other gets

96 CHAPTER 7. ODD CUTS AND RELATED CONCEPTS

weight ue−xe and odd parity. The algorithm then proceeds by computing a minimum T̂ -odd cut
in Ĝ, where

T̂ := TM4e∈E(Ĝ)
odd

ε(e)

(here, ε(e) is the two-element set consisting of the end-nodes of e). The running time amounts to
|T̂ |−1 max-flow computations on Ĝ, i.e., O(|T̂ ||V (Ĝ)||E(Ĝ)| log(|V (Ĝ)|

2

/|E(Ĝ)|)) = O(|T̂ |m2 logn).
The cardinality of T̂ depends on u and T , but can be Θ(m) (if, for example, u = 1), and hence
the worst-case running time of the Padberg-Rao algorithm is O(m3 log n).

Grötschel & Holland [GH87] found an easy way to speed up the Padberg-Rao algorithm (how-
ever, according to the remarks in [GH87], it is quite difficult to implement): when computing
a minimum odd cut, before computing each max-flow, the subdivision of the edges can be un-
done, or, more generally, one of two edges incident to a node with degree two can be contracted
(the one with bigger weight). It was noted by Letchford (see [LRT04]) that this modification
reduces the worst case running time to |T̂ | − 1 max-flows on G (rather than Ĝ), which results in
O(nm2 log(n

2
/m)).

Padberg & Rinaldi [PR90a] proposed a heuristic algorithm for blossom separation which runs in
O(n2m log(n

2
/m)) time. In a personal communication to us, Letchford conjectured the correctness

of an algorithm which is a very slight modification (which is actually even easier) of the heuristic
in [PR90a], and which has the same worst case running time. In [LRT04] we were able to prove
the correctness of this algorithm based on the construction of Padberg & Rao [PR82], while here
we give a proof which is based on uncrossing, and which shows that Letchford’s algorithm can be
used for blossom minimization. Our proof is analogous to the natural proof of correctness of the
min T -odd cut algorithm in Section 7.2.

7.3.2 Blossom minimization

Algorithm 7.5 Blossom minimization

Input:
Multigraph G, set T ⊆ V (G), and weights c, c′ : E(G) → � +.

Output:
A set U minimizing (7.1)

1: Initialize the variable mmin := ∞. It holds the value β(U) of the best set U found so far.
2: Set w := min(c, c′).
3: Compute a cut-tree for the graph G with set of terminal nodes V (G) by using any cut-tree

algorithm.
4: For each of the n− 1 edges of the cut-tree do
5: Let ∂(U) denote the cut induced by the cut-tree edge.
6: Compute β(U).
7: If β(U) < mmin then
8: Store U , set mmin := mU .
9: End if

10: End for
11: Output U .

7.3.1 Definition Let G be a graph, T ⊆ V (G) with |T | even, and c, c′ weight functions E(G) →
� +. We define the function

β

β : 2V (G) \ {∅, V (G)} → � + :

U 7→ β(U) := min
{

c(∂(U) \ F) + c′(F)
∣

∣ F ⊆ ∂(U) ∧ |T ∩ U | + |F | odd
}

(7.1)

The blossom minimization problem is the following. Given G, T and c, c′ as above, find a set U
which minimizes β.

7.3. BLOSSOM MINIMIZATION 97

We note that β is not in general submodular. Clearly, the blossom separation problem can be
solved via blossom minimization (for the issue of parallel edges see Lemma 7.3.2 below).

Letchford conjectured that Algorithm 7.5 solves the blossom minimization problem. The al-
gorithm is illustrated on an example in Fig. 7.3. The input graph is displayed in 7.3(a), 7.3(b)
shows G with the weights constructed in step 2. The cut-tree is shown in 7.3(c). Two example
iterations of the loop in steps 4–10 are illustrated in 7.3(d)–7.3(f), and 7.3(g)–7.3(h).

1

2/3

1/3

0

(a) Graph G with weights c;
c′ := 1 − c.

(b) Graph G with
weights
min(c, c′).

1

2/3

1/3

1/3

2/3

2/3

1/3
1/3

2/3

(c) Cut-tree for G with
weights min(c, c′).

� � � �� � � �� � � �
� � � �� � � �� � � �

� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �
1/3

(d) An edge of the
cut-tree induces a
cut W .

� � � � �� � � � �� � � � �� � � � �

� � � � �� � � � �� � � � �� � � � �

(e) The cut W in the
graph G.

� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �

-1

-1

-1
1/3

(f) The blossom (W,F)
where F (bold) is
the arg-min in
(7.1).

��	
	

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �
1/3

(g) Another cut W ′

induced by a cut-tree
edge.

� � � �� � � �� � � �� � � �� � � �

-1

-1

-2/3

(h) Another blossom
(W ′, F ′) with
minimum F ′.

Figure 7.3: Illustration for Algorithm 7.5

Because of Lemma 7.3.3 for step 6, its running time is dominated by the computation of a
cut-tree for G with terminal node set V (G), which can be done by n− 1 max-flow computations
[GH61]. Hence, the running time of Algorithm 7.5 is O(n2m log(n

2
/m)). With the focus on blossom

separation, this is not only an improvement over the previously best known algorithm by Grötschel
et al. [GH87], which has running time O(nm2 log(n

2
/m)), but Algorithm 7.5 is also very simple

and easy to implement (compared to the admittedly difficult to implement algorithm in [GH87]).

In what follows, we will prove that Algorithm 7.5 does in fact solve the blossom minimization

98 CHAPTER 7. ODD CUTS AND RELATED CONCEPTS

problem.

7.3.3 Preparatory facts

The following simple results are implicit in [PR90a].

7.3.2 Lemma Given a set of edges E, the two values

min
{

∑

e∈E\F
ce +

∑

f∈F
c′f

∣

∣

∣
F ⊆ E, |F | even/odd

}

(7.2)

and their argument sets F can be computed in time O(|E|).

Proof. One of the two sets is F := {e ∈ E | c′e < ce}, and the other is FM{f}, where f minimizes
|c′e − ce| over all e ∈ E.

7.3.3 Lemma Given U , β(U) can be computed in time O(|∂(U)|).

7.3.4 Lemma We may assume w.l.o.g. that c ≤ c′ holds.

Proof. If necessary, for e = uv, exchange ce and c′e while replacing T by TM{u, v}.

7.3.5 Lemma Suppose that c ≤ c′. If U (V (G) with U 6= ∅ is a T -even set, then there exists an
edge f ∈ ∂(U) such that β(U) = c(∂(U) \ {f}) + c′f . Or, in other words, for all U (V (G) with
U 6= ∅ (even or odd) we have

β(U) =

{

minf∈∂(U) c(∂(U) \ {f}) + c′f if U is T -even,

c(U) if U is T -odd.
(7.3)

7.3.4 All minimum blossoms

Now we give some arguments which lead to an O(n2m log(n
2
/m))-time algorithm to identify all

minimizers of β. However, it is much more complicated than Algorithm 7.5. We first prove
the following fact. For convenience, we use the abbreviation c(f) := c + (c′f − cf)χ

f for an edgec(f)

f ∈ E(G).

7.3.6 Lemma Let U minimize β. There exists s ∈ U and t ∈ V (G) \ U such that U is a w-
minimum (s, t)-cut.

Proof. We may assume that c ≤ c′. If minU β(U) = λ1c(G), then the statement follows from
Theorem 7.1.9. If minU β(U) < λ1c(G), then there is an f ∈ ∂(U) such that (U, V (G) \ U) is a
minimum odd cut in G with respect to the weights c(f), and hence, there exist s ∈ U , t ∈ V (G)\U
such that (U, V (G) \ U) is a c(f)-minimum (s, t)-cut with f ∈ ∂(U). This implies

λc(s, t) ≥ λc(f)(s, t) − c′f + cf = c(U),

and hence (U, V (G) \ U) is a c-minimum (s, t)-cut.

Note that we cannot assume that s, t ∈ T . Given a DAG representation DAG(s,t) of all w-
minimum (s, t)-cuts, the sets U minimizing β subject to (U, V (G) \ U) separating s and t can be
found in the following way. First all parities of SCCs of DAG(s,t) must be computed, and if one is
odd, then every odd cut stored in DAG(s,t) minimizes β over all minimum (s, t)-cuts. Otherwise,
iteratively take an edge f ∈ E(G) which crosses between different SCCs and compute the value
λc(s, t)−cf +c′f . If it is small enough, then every cut stored in DAG(s,t) which is odd if the parities
of the SCCs containing the end nodes of f are flipped minimizes β over all minimum (s, t)-cuts.

7.3. BLOSSOM MINIMIZATION 99

Clearly all minimizers can be found in this way. We note that, from the arguments of [GN93] (see
Lemma 7.1.7), it follows that, to identify all sets U which minimize β without the restriction that
a particular pair of nodes must be separated, it is sufficient to check n− 1 DAGs.

In Algorithm 7.5, we do not have all minimum (s, t)-cuts per pair, we just have one. To
prove the correctness of Algorithm 7.5, we need an uncrossing argument which is stronger than
Lemma 7.3.6.

7.3.5 An uncrossing result

7.3.7 Lemma Let U minimize β, and for two nodes s, t of G let (S, S̄) be a c-minimum (s, t)-cut
in G. With Ū := V (G) \ U , (at least) one of the following five sets minimizes β:

S,
S ∩ U, S ∩ Ū ,

S̄ ∩ U, S̄ ∩ Ū .

Proof. Clearly, we can assume that S and U are crossing. Suppose first that U is odd. Then U
is a minimum odd cut, and the statement of the lemma follows from Lemma 7.2.1.

Now let U be even. We assume w.l.o.g. that (7.3) holds, i.e., c ≤ c′. Let f be an edge which
minimizes the term c(∂(U) \ {f}) + c′f in (7.3). We have to distinguish cases.

1. s, t ∈ U : Since S ∩ U is even iff S̄ ∩ U is, and the same holds for U replaced by Ū , this
case is entirely symmetric w.r.t. exchanging S and S̄ (and s and t). We have the following
sub-cases.

(a) S ∩ U , S̄ ∩ U , S ∩ Ū , S̄ ∩ Ū even:

i. f ∈ E(S): Since S ∩ Ū is even and c(S) ≤ c(S ∪ Ū), we have by submodularity of
c(f)(·)

β(S ∩ Ū) ≤ c(f)(S ∩ Ū) ≤ c(f)(S) + c(f)(Ū) − c(f)(S ∪ Ū)

= c(S) + c(f)(Ū) − c(S ∪ Ū) ≤ c(f)(Ū).

(7.4)

ii. f ∈ (S ∩ U : S̄ ∩ Ū): Let f = uv, where u ∈ U . We claim that (S : S̄) is a c(f)-
minimal ({s, u}, {t, v})-cut. If this is proven, then, by submodularity, and because
∂((S̄ ∪ Ū)) is a ({s, u}, {t, v})-cut, it follows that S̄ ∩ Ū is a set minimizing β:

β(S̄ ∩ Ū) ≤ c(f)(S̄ ∩ Ū) ≤ c(f)(S̄) + c(f)(Ū) − c(f)(S̄ ∪ Ū) ≤ c(f)(Ū). (7.5)

We now prove the claim. Let λ denote the value of a c(f)-minimal ({s, u}, {t, v})-cut.
Clearly λ ≤ c(f)(S). For every ({s, u}, {t, v})-cut (R, R̄) we have

c(S) ≤ c(R) = c(f)(R) − c′f + cf .

which implies c(S) ≤ minR(c(R) − c′f + cf) = λ − c′f + cf , and hence c(f)(S) ≤ λ,
which proves the claim.

(b) S ∩ U , S̄ ∩ U even, S ∩ Ū , S̄ ∩ Ū odd: We have

β(S̄ ∩ Ū) ≤ c(S̄ ∩ Ū) ≤ c(S̄) + c(Ū) − c(S̄ ∪ Ū) ≤ c(Ū) ≤ c(f)(Ū). (7.6)

This implies that the odd set S̄ ∩ Ū minimizes β.

(c) S ∩ U , S̄ ∩ U odd, S ∩ Ū , S̄ ∩ Ū even:

i. f ∈ E(S): Analogous to the case 1(a)i.

ii. f ∈ (S ∩ U : S̄ ∩ Ū): Analogous to the case 1(a)ii.

(d) S ∩ U , S̄ ∩ U , S ∩ Ū , S̄ ∩ Ū odd: Analogous to the case 1b.

2. s ∈ U , t ∈ Ū :

100 CHAPTER 7. ODD CUTS AND RELATED CONCEPTS

(a) S ∩ U , S̄ ∩ U , S ∩ Ū , S̄ ∩ Ū even:

i. f ∈ E(S): The argument is the same as in 1(a)i but with S ∩ Ū replaced by S ∩U .

ii. f ∈ E(T): The argument is the same as in 1(a)i but with S ∩ Ū replaced by S̄ ∩ Ū .

iii. f ∈ (S ∩ U : S̄ ∩ Ū): Analogous to the case 1(a)ii.

iv. f ∈ (S ∩ Ū : S̄ ∩ U): Since (U : Ū) is an (s, t)-cut, we have c(S) ≤ c(U). Since
f ∈ ∂(S) ∩ ∂(U), it follows that

c(f)(S) = c(S) − cf + c′f ≤ c(U) − cf + c′f = c(f)(U). (7.7)

Since S is even, we have β(S) ≤ c(f)(S) ≤ c(f)(U), whence S is a set minimizing β.

(b) S ∩ U , S̄ ∩ U even, S ∩ Ū , S̄ ∩ Ū odd: Since ∂(U) is an (s, t)-cut, we have

c(S) ≤ c(U) ≤ c(f)(U) = β(U),

whence S is an odd set minimizing β.

(c) S ∩ U , S̄ ∩ U odd, S ∩ Ū , S̄ ∩ Ū even: The same as in the previous case 2b.

(d) S ∩ U , S̄ ∩ U , S ∩ Ū , S̄ ∩ Ū odd: Analogous to 1b.

7.3.8 Theorem Algorithm 7.5 is correct, i.e., it minimizes β over 2V (G) \ {∅, V (G)}.

Proof. First note again that we can w.l.o.g. assume that c ≤ c′, i.e, w = c. The proof is by
induction on n := |V (G)|. The case that n = 2 is trivial.

To conclude n n+ 1, let {A,B} be any edge of the cut-tree, where A =: {s} B =: {t}, and
(S, S̄) the corresponding c-minimum (s, t)-cut. If S minimizes β, we are done.

Otherwise, by Lemma 7.3.7, there exists a set U minimizing β, which is contained, w.l.o.g., in
S, whence |S| ≥ 2. We construct the loopless multigraph GS := G ◦ (S̄ ∪ {s}). We denote the
node replacing S̄ ∪ {s} by ŝ, and the restricted weights by cS and c′S . It is easy to see that the
cut-tree resulting by replacing the part of the cut-tree on the B-side of the edge {A,B} by the
single supernode {ŝ} is a cut-tree for GS with set of representatives S ∪ {ŝ} \ {s} and weights
min(cS , c

′
S). By induction, steps 4–10 of Algorithm 7.5 find a set minimizing β on this graph. But

for each set U ⊆ V (GS) with U 63 ŝ the value of β when computed with respect to cS and c′S in
GS coincides with the value β(U) when computed with respect to c, c′ in G. Hence the induction
is complete, and the correctness of Algorithm 7.5 follows.

7.3.6 Consequences

We note the proof of correctness via Lemma 7.3.7 is completely analogous to the natural proof of
the correctness of the Padberg-Rao minimum odd cut algorithm (the proof in [PR82] is a bit less
direct). Thus, our result not only puts capacitated blossom separation on the same theoretical
running time level as uncapacitated blossom separation (which coincides with minimum odd cut),
but it also shows that capacitated blossom separation (or blossom minimization) is in fact “the
same” as uncapacitated blossom separation (or minimum odd cut), except that the parities of the
nodes or edges are not known a priori. Hence it is not surprising that Algorithm 7.5 is in direct
analogy with the Padberg-Rao minimum odd cut algorithm.

Another parallel is that there is a “blossom variant” of the minimum odd cut Algorithm 7.3.
Namely, the uncrossing result implies the correctness of Algorithm 7.6 for blossom minimization,
which is not based on a cut-tree. In this recursive algorithm, nodes are marked, and it is first
invoked with all nodes unmarked. Theoretically, shrinking mechanisms as in Algorithm 7.4 are
possible, though they appear to be less promising.

7.3. BLOSSOM MINIMIZATION 101

Algorithm 7.6 Recursive blossom minimization

Input:
Multigraph G, set T ⊆ V (G), weights c, c′ with c ≤ c′, and set of marked nodes.

Output:
A set U minimizing (7.1)

1: While there exist at least two unmarked nodes do
2: Let s, t be two unmarked nodes of G.
3: Compute a minimum (s, t)-cut (S, S̄) in G.
4: If (S, S̄) is an odd cut then
5: If λ(s, t) is small enough, store the blossom (S, ∅).
6: Identify s, t to a new unmarked node.
7: Else
8: Compute β(S).
9: Construct the graph GS̄ by identifying the node set S to a new node vs. Parallel edges

are merged (see Section 7.1). The node vs is marked, and it inherits the parity of the
set S. Recursively compute a minimum blossom in GS̄ .

10: Do the same with the set S̄.
11: Store the one of the three blossoms of steps 9–11 with the smallest value of β.
12: Leave the while-loop.
13: End if
14: End while
15: Return the best blossom stored.

7.3.7 Minimum (s, t)-blossoms

Now we propose the problem of finding a minimum blossom separating two given nodes and
show that the problem can be solved in time O(n2m log(n

2
/m)). The algorithm will be applied

in Section 8.3 for the separation of certain subclasses of (switched) path bridge inequalities. Our
construction is based on the following simple fact.

7.3.9 Proposition Let w := min(c, c′). For x, y ∈ V (G), there exists s ∈ U and t ∈ V (G) \ U
and a w-minimum (s, t)-cut (U, V (G) \ U) such that U minimize β among all cuts separating x
and y. Given a DAG-representation of all minimum (s, t)-cuts, such a U can be found in time
O(nm). Further, only the n− 1 DAGs computed by Algorithm 7.2 need to be considered.

Proof. We may assume that c ≤ c′. Let U be any set separating x and y and minimizing β
subject to this condition. If minU β(U) = λ1c(G), then the statement follows from Lemma 7.1.10.
If minU β(U) < λ1c(G), then (U, V (G)\U) is a minimum odd cut in G with respect to the weights
c(f), and hence, there exist s ∈ U , t ∈ V (G)\U such that (U, V (G)\U) is a c(f)-minimum (s, t)-cut
with f ∈ ∂(U). This implies

λc(s, t) ≥ λc(f)(s, t) − c′f + cf = c(U),

and hence (U, V (G) \ U) is a c-minimum (s, t)-cut.
To identify a set U in a DAG-representation of all minimum (s, t)-cuts, we first compute the

parities of all SCCs in DAG(s,t). Any odd cut separating both s and t and x and y minimizes
β. After O(n + m) preprocessing, we can find such a cut, if one exists, in time O(n). If none
exists, we iterate over all edges f ∈ E(G) which cross between different SCCs of DAG(s,t), flip the
parities of the SCCs containing the end nodes of f , and check for an odd cut separating both s
and t and x and y, which can again be done in O(n). Among the odd (x, y)-cuts found in this
way, we take one for which the value λc(s, t) − cf + c′f is minimum.

The fact that only n− 1 DAGs have to be considered follows from Lemma 7.1.7.

7.3.10 Corollary There exists an O(n2m log(n
2
/m)) algorithm to compute a minimum (s, t)-

blossom.

102 CHAPTER 7. ODD CUTS AND RELATED CONCEPTS

Chapter 8

Exact separation algorithms

In this chapter we mainly apply the results of the previous chapter to some of the separation
problems occurring in cutting-plane approaches to the General Routing Problem. In the first
section we briefly review some known results on separation for the GRP. The following sections
contain our contributions. In Section 8.2, we deal with switched path bridges and in particular
improve a polynomial time separation algorithm for the simple 2-PB inequalities of Letchford
[Let96] in three ways: we extend it to a bigger class of inequalities, namely the switched simple
2-PB, we improve the running time by a factor of m/n, and we obtain the practical advantage that
the algorithm can be used without the precondition that the point x∗ must satisfy all connectivity
inequalities (when the precondition is violated, we are not guaranteed to find a violated inequality if
one exists). In Section 8.3 we give polynomial time separation algorithms for subsets of (switched)
path bridge inequalities in the presence of special conditions on x∗, in particular we present an
algorithm for KC-separation relying on the cactus representation of all minimum cuts of a graph.

In this chapter, Γ = (G,C, t) will denote a GRP-structure, b : E(G) → � + ∪ {∞} a vector
of upper bounds, and x∗ : E(G) → � a rational vector. We will always assume that x∗ satisfies
all non-negativity and upper bound inequalities 0 ≤ x∗ ≤ b. We denote by G(x∗) the spanning
subgraph of G with edge set {e ∈ E(G) | x∗e 6= 0}. We always implicitly use the restriction of x∗

as edge weights on G(x∗). By Gs

C(x∗) (and Gm

C (x∗) resp.) we denote the simple graph (or loopless
multigraph, resp.) which results from G(x∗) by identifying the R-sets to nodes while merging (or
keeping, resp.) parallel edges; its edge weights are defined by x∗ in the way described in 0.2.2.
Further, unless otherwise stated, we will use the abbreviations n := |V (G)|, m := |E(G(x∗))|,
ṅ := |V (GC)| and ṁ := |E(Gs

C(x∗))|.

8.1 Known results

It is well-known that connectivity inequalities (1.1b) can be separated exactly by computing a
minimum cut in the graph Gs

C(x∗), and it is also completely apparent that the separation problem
for odd-cut inequalities can be solved by computing a minimum odd cut in G(x∗) [CS94]. This
is typically performed by the uncapacitated blossom separation algorithm of Padberg & Rao
[PR82] (or avoided due to the computational effort of the procedure, cf. [GL00]), but clearly
our Algorithm 7.4 described in Section 7.2 can be used. There is no need to discuss the issue
at this time; instead we refer to 10.3.1, where we relate some details of the implementation of
Algorithm 7.4 and to Section 11.1, where we report on computational results.

A polynomial time exact separation routine for simple 2-regular PB-inequalities is introduced
by Letchford in [Let96]. It is a variant of the capacitated blossom separation algorithm of Pad-
berg & Rao [PR82]. Using the Grötschel & Holland [GH87] modification of the Padberg-Rao
algorithm, Letchford’s separation routine can be implemented to run in time O(nm2 log(n

2
/m)).

The Padberg-Rao algorithm requires that x0 + x1 ≥ 1. If that is not the case, the algorithm
may produce results which cannot be interpreted as violated inequalities, in our case, simple 2-

103

104 CHAPTER 8. EXACT SEPARATION ALGORITHMS

regular PB-inequalities. In the way [Let96] applies the Padberg-Rao algorithm, the condition
x0 + x1 ≥ 1 is satisfied if the connectivity inequality x(∂(U)) ≥ 2 is satisfied for all sets U = {u},
U = {v} and U = {u, v}, for any pair of adjacent R-isolated nodes u, v. If shrinking operations are
performed prior to invoking the separation procedure, the conditions can become more restrictive.
Whenever they fail to hold, the separation of simple 2-regular path bridge inequalities must be
skipped, which can become a notable drawback.

8.2 Switched PBs

In this section we first show how any separation algorithm for classical path-bridge inequalities can
be used to separate the class of switched path-bridge inequalities with F ⊆ Eint(G) (Section 3.1).
Then we give a new exact polynomial time separation algorithm for the subclass of switched simple
PBs. We start with a lemma.

8.2.1 Lemma If x∗ satisfies all connectivity inequalities (1.1b) and violates a classical PB-
inequality, then x∗(A : Z) < 1 holds, where A and Z refer to the sets of the PB-configuration
as defined in 3.3.2.

Proof. For p = 1, . . . , P , let Ep be the set of edges of G which cross between different sets Bp
i ,

Bpj , 1 ≤ i < j ≤ n and define Tp :=
⋃n
j=1 B

p
j . We have

2x(Ep) + 2x(∂(Tp)) =
n

∑

j=1

x∗(∂(Bpj)) + x∗(∂(Tp)) ≥ 2(np + 1).

Following [Nad02], for l = 1, . . . ,
∏

p(np − 1), let

Hl :=
⋃

p=1,...,P,
j=1,...,np,

(j−1)(np−1)≤l

Bpj .

The path bridge inequality can be written as
∑

l x(δ(Hl))+
∑

p

∏

q 6=p(nq−1)x(δ(Tp)) ≥
∏

p(np−
1) +

∑

p(np + 1)
∏

q 6=p(nq − 1). We have

∑

l

x∗(∂(Hl)) +
∑

p

∏

q 6=p

(nq − 1)x∗(∂(Tp))

≥
∑

l

x∗(∂(Hl) \Ep) +
∑

p

∏

q 6=p

(nq − 1)
(

x∗(∂(Tp)) + x∗(Ep)
)

≥
∑

l

x∗(∂(Hl) \Ep) +
∑

p

(np + 1)
∏

q 6=p

(nq − 1).

Since x∗ violates the PB-inequality, and noting that (A : Z) ⊆ ∂(Hl) \ Ep holds for all p, j, we
summarize

∏

p

(np − 1) +
∑

p

(np + 1)
∏

q 6=p

(nq − 1) >
∑

l

x∗(∂(Hl)) +
∑

p

∏

q 6=p

(nq − 1)x∗(∂(Tp))

≥
∏

p
(np − 1)x∗(A : Z) +

∑

p

(np + 1)
∏

q 6=p

(nq − 1),

whence x∗(A : Z) < 1.

From the GRP-structure Γ = (G,C, t) and a vector x∗ satisfying all connectivity inequalities,

we can derive a GRP-structure Γ̂ = (Ĝ, Ĉ, t̂) and a vector x̂∗, which satisfies all connectivity

8.2. SWITCHED PBS 105

inequalities on Γ̂ , with
∣

∣

∣V (Ĝ)
∣

∣

∣ ≤ |V (G)| + |Eint(Γ)| and
∣

∣

∣E(Ĝ)
∣

∣

∣ ≤ |E(G)| + |Eint(Γ)| which has

the property that x∗ violates a switched PB-inequality with F ⊆ Eint(Γ) if and only if x̂∗ violates
a classical PB-inequality defined on Γ̂ . Thus we can use any separation algorithm (even heuristic)
on Γ̂ and x̂∗ to produce a violated switched PB-inequality.

For every e ∈ Eint(Γ), we denote by ψ0(e), ψ1(e) ∈ V (G) the two end nodes of e. We construct
the graph Ĝ from G by splitting every edge e ∈ Eint(Γ) by replacing it with a new node ke and two
edges {ψ0(e), ke}, {ke, ψ1(e)}. We let x̂∗{ψ0(e),ke}

= x∗e and x̂∗{ke,ψ1(e)} = be − x∗e . For e 6∈ Eint(Γ),

we define x̂∗e = x∗e . The R-sets Ĉ are constructed from C by inserting every split node ke in the
same set which contains the end nodes of e. Fig. 8.1 gives an illustration.

x∗e

x∗e
ke be − x∗e

ψ1(e)

ψ1(e)Ĝ

G ψ0(e)

ψ0(e)
parity:

even

parity:

be mod 2

Figure 8.1: Construction of Ĝ from G

Next we assign parities to the edges of Ĝ. We call the edge {ke, ψ1(e)} odd for all e ∈ Eint(Γ)
for which be is odd. All other edges are called even. A node receives odd parity iff it is incident
to an odd number of odd edges. In other words, if for v ∈ V (G) we let rv denote the number of
odd edges incident to v in Ĝ, we define the new parities by

t̂(v) :=

{

t(v) + rv mod 2, if v ∈ V (G),

be mod 2, if v = ke for an e.

We have defined a GRP-structure Γ̂ , and x̂∗ satisfies all connectivity constraints.

8.2.2 Proposition A switched path-bridge inequality with F ⊆ Eint(Γ) on Γ is violated by x∗ if
and only if x̂∗ violates a classical path-bridge inequality on Γ̂ .

Proof. Let Â, Ẑ, B̂pj be a PB-configuration on Γ̂ and âz ≥ α̂ be the corresponding PB-inequality

which is violated by x̂∗. We let A := Â∩V (G), Z := Ẑ ∩V (G), and Bpj := B̂pj ∩V (G). Further we

denote by F the set of edges of G such that the edge {ke, ψ1(e)} of Ĝ is in (Â : Ẑ). By virtue of the
previous lemma, a switched PB-inequality is defined in this way, and the slack of the inequality
equals α̂− âx̂∗.

On the other hand, if x∗ violates a switched PB-inequality, a PB-inequality on Ĝ violated by
x̂∗ can be constructed in the same straightforward manner.

Using the algorithm mentioned in Section 8.1, the class of the switched simple 2-regular PB-
inequalities with F ⊆ Eint(Γ) can be separated in polynomial time if there exists no violated
connectivity inequality. Letchford’s algorithm yields a running time of O(n̂m̂2 log(n̂2/m̂))), where
n̂ is the number of nodes and m̂ is the number of edges of Ĝ. In the next section, we will show how
the class of all switched simple 2-regular PB-inequalities, i.e., without restriction on the set F , can
be separated in even better worst case time, and without the precondition that all connectivity
inequalities must be satisfied.

8.2.1 Switched simple 2-PBs

We now propose a separation algorithm for switched simple 2-regular PB-inequalities, see Fig. 8.2.
It runs in time O(n2m log(n

2
/m)). Let a handle H ⊆ V (G), and teeth T1, . . . , TP ⊆ V (G), p ≥ 0,

and a set of edges F ⊆ ∂(H) be given. Assume that the following conditions hold

106 CHAPTER 8. EXACT SEPARATION ALGORITHMS

Figure 8.2: Switched simple 2-regular path bridge inequality (bold edges are switched).

1. t(H) + P + |F | = 1 mod 2.

2. Tp = {u, v} for R-isolated nodes u ∈ H and v ∈ V (G) \H , and E(Tp) 6= ∅.

3. The P + 1 sets F , E(Tp), p = 1, . . . , P are pairwise disjoint.

The inequality

x(∂(H) \ F) − x(F) +

P
∑

p=1

x(∂(Tp)) ≥ 3P + 1 − b(F) (8.1)

is valid for GRP(Γ, b). The inequalities of this type include the switched 2-regular PB-inequalities.
By a technical but standard uncrossing argument, it is possible to obtain a violated switched 2-
regular PB-inequality or connectivity inequality from a violated inequality (8.1).

For the separation of (8.1), we define a simple graph Gs by removing from G all but one edge in
each set of parallel edges of G. This means that Gs has node set V (Gs) = V (G) and uv ∈ E(Gs)
if and only if u and v are neighbors in G. Suppose that u, v ∈ V (G) are adjacent. We define

θuv :=

{

max
(

0, x∗(∂({u, v})) + x∗(u : v) − 3
)

, if u and v are both R-isolated, and

∞ otherwise.

As pointed out in [Let96], x∗(∂({u, v})) + x∗(u : v) − 3 ≥ 0 holds if all connectivity inequalities
are satisfied. Now we let

c0uv := min F⊆(u:v)
b(F) even

(

x∗
(

(u : v) \ F
)

+ b(F) − x∗(F)
)

,

c1uv := min
(

θuv , minF⊆(u:v)
b(F) odd

(

x∗((u : v) \ F) + b(F) − x∗(F)
)

)

.
(8.2)

As an immediate consequence of these definitions, we have the following proposition.

8.2.3 Proposition Every blossom (W,F) with c0(∂(W)\F)+c1(F) < 1 gives a violated switched
simple 2-regular PB inequality. If for every two adjacent R-isolated nodes u, v each of the tree
values x∗(∂(u)), x∗(∂(v)), x∗(∂({u, v})) is at least two, then the reverse direction also holds, i.e., if
there exists a violated switched simple 2-regular PB inequality, then there exists such a blossom.

We note that c0uv+c
1
uv ≥ 1 for all uv ∈ E(G). We could use the blossom separation algorithm for

capacitated matching problems of Padberg & Rao [PR82], which requires computing O(|E(Gs)|)
maximum flows on a graph with O(|E(G)|) edges in the worst case. Using the algorithm described
in Section 7.3, this problem can be solved in the time which is required to perform n max-flow
computations on Gs.

8.2.4 Corollary The switched simple 2-regular path-bridge inequalities can be separated in time
O(n2m log(n

2
/m)).

8.3. SOME RESULTS ABOUT KC- AND PB-SEPARATION 107

In practice, we would not expect to find many pairs u, v with more than one edge in b(u : v) ≥ 2.
This may be different, if, prior to invoking the separation routine, shrinking operations have been
performed on the graph, for example those described in [CLS01] for the classical simple 2-regular
PB-inequalities. Another possibility is to separate switched simple 2-regular path inequalities,
which are the special case of switched simple 2-regular PB-inequalities when both A and Z are
unions of R-sets (compare [CFN85, CS98]). By using the above algorithm after shrinking each
R-set into a single node, we obtain the following result.

8.2.5 Corollary The class of switched simple 2-regular path inequalities can be separated in time
O(ṅ2ṁ log(ṅ

2
/ṁ)).

8.3 Some results about KC- and PB-separation

In this section we will apply the results of the previous chapter to the separation of path bridge
and KC-inequalities. Our results will also prove useful for the heuristic separation of path bridge
inequalities in the following chapter.

8.3.1 Definition We say that a tuple P = (B1, . . . , Bn), with n ≥ 2, consisting of disjoint unions
of R-sets is an oriented path of length n. When we talk of non-oriented paths, we identify the (non-)oriented

pathtuples (B1, . . . , Bn) and (Bn, . . . , B1).
A path is called a simple 2-path, if its length is two, and the two sets B1, B2 consist of one simple

2-path/toothR-set each, which in turn consists of one node each, in other words, if |B1| + |B2| = 2 holds. We
also speak of a simple tooth.

8.3.1 Separation of 2-PBs with a bounded number of “big” teeth

As a first application we transfer a result of Carr [Car97] for the separation of comb inequalities
with a fixed number of teeth for STSP to the GRP. We also enlarge the class of inequalities which
are separated, and we improve the running time. We start with a definition which improves the
one in [Car97].

8.3.2 Definition Let H , T1, . . . , Tk, . . . , TP be the handle and teeth of a (switched) 2-regular PB-
inequality, where Tk+1, . . . , TP are simple teeth (possibly k = P). A backbone of the inequality with
respect to x∗ is a set of k pairs of adjacent R-sets, which can be ordered (C1, D1), . . . , (Ck, Dk),
such that Cj ⊆ Tj ∩H and Dj ⊆ Tj \H for each j = 1, . . . , k.

The crucial observation for the improvement of the running time is the following.

8.3.3 Remark If a violated (switched) 2-regular PB inequality with handle H which has a tooth
T such that (T ∩ H : T \H) = ∅, then there must exist violated connectivity or non-negativity
(or upper-bound) inequalities.

As a consequence, if x∗ satisfies all connectivity and bound inequalities, then every (switched)
2-regular PB-inequality violated by x∗ has a backbone with respect to x∗. Further, there exist
less than 2k−1

(

ṁ
2

)

backbones which belong to violated (switched) 2-regular PB-inequalities with
k non-simple teeth (note exchanging Cj with Dj for all j gives a backbone of the same 2-PB
inequality).

Now let x∗ satisfy all connectivity and bound inequalities, and let a violated (switched) 2-
regular PB-inequality be given. Following [Car97] we let (C1, D1), . . . , (Ck, Dk) be any of its
backbones with respect to x∗, in the ordering mentioned in the definition. For each j, let ∂(Sj)
be a cut with Cj , Dj ⊆ Sj and Ci, Di ⊆ V (G) \ Sj for i = 1, . . . , k, i 6= j, and for which the value
x∗(∂(Sj)) is minimum with respect to these conditions. These sets can be obtained by performing
k minimum (s, t)-cut computations if k ≥ 2, or one minimum cut computation if k = 1. Note that

108 CHAPTER 8. EXACT SEPARATION ALGORITHMS

x∗(∂(Sj)) ≤ x∗(∂(Tj)). As is shown in [Car97], it can be assumed w.l.o.g., that the Sj are pairwise
disjoint, since the value

∑

j x
∗(∂(Sj)) does not increase by the obvious uncrossing operation.

At this point we again take a different road than [Car97]. Namely, we let (W ′, F) denote a
minimum (s, t)-blossom in the graph G′ obtained from G by shrinking the R-sets contained in
the sets Sj to single nodes each, and then identifying the nodes obtained by shrinking the R-sets
C1, . . . , Ck to a single new node s, the nodes obtained by shrinking the R-sets D1, . . . , Dk to a
new node t. The nodes s and t are declared odd, all other nodes keep their parities from Γ . The
weights c0 and c1 for the edges which are not adjacent to s or t are defined as in (8.2), the c0 for
the edges adjacent to s or t are the x∗-values while their c1 values are set to ∞. We denote by H ′

the node set of G′ defined by H , and we note again that c0(W \F)+ c1(F) ≤ β(H ′). Hence, when
we define W := W ′∪{s1, . . . , sk}\{s}, we see that the handle W and the teeth S1, . . . , Sk together
with the teeth defined by edges in the set F define a violated switched 2-regular PB-inequality.
We have proven the following result.

8.3.4 Proposition Let x∗ satisfy all connectivity (and bound) inequalities. The class of all
(switched) 2-regular path bridge inequalities with at most k ≥ 2 non-simple teeth can be sepa-
rated in the time which is required to perform k

(

ṁ
k

)

max-flow (minimum (s, t)-cut) computations

on Gs

C(x∗) and 2k−1
(

ṁ
k

)

minimum (s, t)-blossom computations on G(x∗).

For the special case of (switched) KC-inequalities, we have the following consequence.

8.3.5 Corollary (Switched) KC-inequalities with K = 3 can be separated in time
O(n2m2 log(n

2
/m)).

8.3.2 Separation of PBs with a fixed set of paths

Let ~P be a set of pairwise disjoint oriented paths, i.e., no two sets Bi of distinct paths intersect. It
is easy to see that, by computing a minimum odd (s, t)-cut, we can test if there exists a violated
PB-inequality using precisely these paths in their orientations, and, if possible, produce a set
A which completes the PB-configuration. By computing a minimum (s, t)-blossom instead of a
minimum (s, t)-cut, we can test for the existence of a violated switched PB-inequality which uses
all these paths, and possibly some simple 2-paths. Both of these algorithms work by deleting from
G all nodes belonging to one of the paths, and adding two new nodes s and t. The weights of
the edges in this graph can be chosen such that the odd (s, t)-cuts (or (s, t)-blossoms) with value
strictly less than one correspond to violated PB-inequalities.

What is more interesting is that, if we impose restrictions on the LP-solution x∗, we can drop
both the condition that the orientation of the paths is fixed, and the condition that the PB-
configuration of a violated inequality must contain all paths. Let P be a set of pairwise disjoint
non-oriented paths. Denote by C (P) the class of path bridge inequalities on configurations C with
the following property:

(a). The set of paths of C is a subset of P.

(b). If P ∈ P is not a path of C then P is entirely contained in either the set A or the set Z of C.

Further, let C∗(P) denote the set of path bridge inequalities on configurations C, for which (b)
holds, and (a) holds only for the paths of C which are not simple 2-paths. The classes which
result from C (P) and C∗(P) by allowing switching of edges in (A : Z) will be referred to as the
switched classes, and denoted by C ′(P) and C ′

∗(P). We note that the class C (P) contains R-odd
cut inequalities and C∗(P) contains simple 2-PB-inequalities.

8.3.6 Proposition Let a set of non-oriented paths P = {(Bp
1 , . . . B

p
np

), p = 1, . . . , P} be given.
Suppose that x∗ satisfies all connectivity inequalities. If

x∗(Bpi : Bqj) = 0 for all p, q, i, j with p 6= q ∧
(

2 ≤ i ≤ np − 1 ∨ 2 ≤ j ≤ nq − 1
)

(8.3)

8.3. SOME RESULTS ABOUT KC- AND PB-SEPARATION 109

then the subclass C (P) of path bridge inequalities can be separated by an algorithm with worst-case
running-time O(n2m log(n

2
/m)), and the same holds for the classes C∗(P), C ′(P) and C ′

∗(P).

Proof. Algorithm 8.1 shows how the class C (P) is separated. It can easily be blended with
the constructions in 8.2.1 to separate over the other classes. Since x∗ satisfies all connectivity
inequalities, the edge weights computed in step 2 are non-negative. The weights are chosen in
such a way that the minimum odd cuts correspond to violated inequalities in the class C (P), if
the value of a minimum odd cut is strictly less than one.

Note that in contrast to [CS94], our definition of KC-inequality allows a “degenerate” KC-
configuration in which the set A (or, equivalently, Z) is empty. However, such an inequality
cannot be defined by a minimum odd cut, if there is no violated connectivity inequality.

We now turn to the special case of KC-inequalities.

8.3.3 Circular KCs

A variant of Algorithm 8.1 is Algorithm 8.2, which checks a single path for a violated (switched)
KC-inequality. This algorithm too can be used to check for a violated switched KC in the same
worst-case running time, if the minimum odd (s, t)-cut computation in step 6 is replaced by a
minimum (s, t)-blossom computation; see Proposition 7.3.9. Since the condition (8.3) is vacuous
for KCs, the only question is how candidate paths can be found. We now deal with the special
case of what we call circular (switched) KCs.

8.3.7 Definition Let x∗ ∈ � E(G)
+ . We say that a (switched) KC-inequality on the beads B0, . . . , circular KC

BK is circular (with respect to x∗), if A0 := B0 ∪ BK , A1 := B1, . . . , AK−1 := BK−1 forms a
circular partition of Gs

C(x∗), (see 0.4.1).

The circular KCs include what one might call “maximally violated” KCs, which are circular
KCs with the additional properties that x∗(B0 : B1) = x∗(BK−1 : BK) = 1 and x∗(B0 : BK) = 0.
If there does not exist a violated connectivity inequality, i.e., if λx∗(Gs

C(x∗)) = 2, we can use
the cactus representation of all minimum cuts of Gs

C(x∗) for separation of circular (switched)
KC-inequalities. Algorithm 8.3 displays the algorithm for circular KC-inequalities. We will use
the idea of this algorithm for the design of a separation heuristic for KC-inequalities in the next
chapter.

110 CHAPTER 8. EXACT SEPARATION ALGORITHMS

Algorithm 8.1 Check list of non-oriented paths for a violated (switched) PB-inequality

Input:
GRP-structure Γ , LP-solution x∗ satisfying all connectivity inequalities, and a list of paths
(Bp1 , . . . , B

p
np

), p = 1, . . . , P .
Output:

May produce a violated PB-inequality using a subset of the paths.

1: Let V0 be the set of nodes of G which are not contained in a path. Construct the subgraph
of G induced by V0, and add to this graph 2P new nodes s1, t1, . . . , sP , tP . Denote the
resulting graph by H . The weight of an edge of H is the x∗-value of the edge.

2: Add edges sp tp to H with weights

−
np + 1

np − 1
+

1

np − 1
x∗(∂(

⋃

jB
p
j)) +

∑

1≤i<j≤np

j − i

np − 1
x∗(Bi : Bj),

for p = 1, . . . , P .
3: For all p and v ∈ V0 for which (

⋃

j B
p
j : v) is not empty do

4: Add edges spv and tpv to H , with weights

np
∑

j=1

np − j

np − 1
x∗(Bpj : v) and

np
∑

j=1

j − 1

np − 1
x∗(Bpj : v) resp.

5: End for
6: For all edges e ∈ E(Gm

C) which cross between different paths do
7: Suppose that Bpj and Bq1 are the beads containing the end nodes of e. (The case Bq

nq
is

symmetric.)
8: If there are not yet edges spsq and sptq in H , add the missing edges, and initialize their

weights to zero.
9: To the weight of the edge spsq add the number

∑

j

np − j

np − 1
x∗(Bpj : Bq1).

For the edge sp tq this is symmetric.
10: End for
11: Assign to each node v ∈ V0 the parity t(v). The nodes sp and tp are all odd.
12: Compute a minimum odd cut in H . If λ1(H) < 1, then every minimum odd cut corresponds

to a violated inequality in the class C (P).

8.3. SOME RESULTS ABOUT KC- AND PB-SEPARATION 111

Algorithm 8.2 Check a path for a violated (switched) KC-inequality

Input:

GRP-structure Γ , LP-solution x∗ ∈ � E(G)
+ , and a path (B1, . . . , BK−1), i.e. an ordered list of

pairwise disjoint sets.
Output:

A violated KC-inequality (possibly degenerate, if violated connectivity inequalities exist)
using the path, iff one exists.

1: Denote V0 := V (G) \
⋃

Bi.
2: Construct the subgraph H of G(x∗) induced by V0.
3: Add two new nodes s and t to H . Add an edge st with weight −1+

∑

1≤i<j≤K−1 x
∗(Bi : Bj).

4: For every edge uv ∈ (Bi : V0) with u ∈ Bi and v ∈ V0, add an edge sv, with weight K−i
K−2x

∗
e ,

and an edge tv with weight i
K−2x

∗
e .

5: Let T := {s, t} ∪ {v ∈ V0 | t(v) = 1}.
6: Compute a minimum T -odd (s, t)-cut in H
7: There exists a violated KC-inequality if and only if λ1(G, s, t) < 1, and the sets B0 and BK

can be constructed from a minimum T -odd (s, t)-cut in the obvious way.

Algorithm 8.3 Circular KC-separation

Input:

GRP-structure Γ , LP-solution x∗ ∈ � E(G)
+ satisfying all connectivity inequalities and cactus

representation of all minimum cuts of Gs

C(x∗).
Output:

A violated circular (switched) KC-inequality, if one exists.

1: For all circles of the cactus do
2: Let A0, . . . , Al−1 be the beads of the circular partition.
3: For k = 1, . . . , l− 2 do
4: For i = 0, . . . , l − 1 do
5: Check the path (Ai+k+1, . . . , Ai−1), where indices are taken modulo l.
6: If a violated KC-inequality is found, Stop.
7: End for
8: End for
9: End for

10: There exists no violated circular KC-inequality.

112 CHAPTER 8. EXACT SEPARATION ALGORITHMS

Chapter 9

Separation heuristics

In our search for separation heuristics, we considered the classes of inequalities which have proven
to be useful by both theoretical analyses and practical experience: path bride and honeycomb
classes and their intersection, the KCs. For the theoretical value of path bridge inequalities, we
refer to the result of Goemans [Goe95], which was transferred to the GRP by Letchford [Let04].
The practical value of KCs and honeycombs has been demonstrated in [CLS01]. It is also known
that the addition of path bridge inequalities can improve the lower bounds in a cutting plane
approach considerably [Let04].

Separation heuristics for KCs in which B0 ∪ BK consists of one or two R-sets, for regular
PB-inequalities, and for honeycombs with L = 1 and where B0 ∪ . . . ∪ Bn1 consists of one or
two R-sets are described and tested in [BCS00, CLS01]. According to a personal communication
from A. Letchford and A. Corberán, the KC- and HC-algorithms work extremely well, while the
PB-algorithm leaves much to be desired. All these heuristics first find R-sets (or pairs of R-sets)
which are split into two or more parts, and then try to construct the paths which complete the
path bridge or honeycomb inequalities.

In this chapter we propose a number of new separation algorithms for KC-, HC-, and (not
necessarily regular) PB-inequalities. Our aim was to pursue new ideas rather than to work on
existing approaches. We pursue an opposite strategy to that of [BCS00, CLS01]: we first search for
paths and then find matching sets A (for path bridges and KCs) or B1

1 , . . . , B
1
n (for honeycombs).

The algorithms we propose follow one or both of the following basic intuitive guidelines.

1. Split the separation problem into two subproblems, where one can be solved quickly and
exactly by a polynomial time algorithm. One of the two parts produces “raw material”,
while the other part tries to put together the pieces.

2. Instead of looking at the LP-solution only, let the algorithm be guided by the structure
which is exposed in a cactus representation of all minimum cuts.

9.1 KC-heuristic based on circular partitions

This heuristic for KC-separation is based on Algorithm 8.3 for circular KCs in the previous chapter.
With the results of this section we contribute to the search for practicable algorithms for KC-
separation in which the set (B0 : BK) splits more than one R-set.

This heuristic has proven to be extraordinarily effective, and also quite fast. See Chapter 11.

9.2 Path-bridge heuristics

We propose three heuristics for the separation of PB-inequalities. They have in common that
they first find a list of non-oriented paths which are then checked for violated PB-inequalities.

113

114 CHAPTER 9. SEPARATION HEURISTICS

Algorithm 9.1 KC-heuristic based on cactus cycles

Input:

GRP-structure Γ , LP-solution x∗ ∈ � E(G)
+ satisfying all connectivity inequalities and cactus

representation of all x∗-minimum cuts of Gs

C.
Output:

May find violated (switched) KC-inequalities.

1: For each cycle C of the cactus do
2: Let B0, . . . , Bl−1 be the sets of the circular partition defined by C.
3: For i = 0, . . . , l − 1 do
4: Using Algorithm 8.2, check for a violated (switched) KC-inequality using the path

(Bi+1, . . . , Bi−1), where the indices are taken modulo l.
5: End for
6: End for

Before we sketch the three algorithms, we introduce a (heuristic) variant of Algorithm 8.1, which
is suitable for checking lists of paths which do not satisfy the condition (8.3) on page 108. There
is no way to find weights for the edges in the complete graph with node set {si, ti, sj , tj}, such
that all seven possible positions of the two involved paths in the PB-configuration obtain the
correct values for the minimum odd cut computation – the system of linear equations simply has
no solution. The heuristic modification we chose is the following. For any choice of coefficients
there can be a strictly positive deviation of the contribution of the edges in a odd cut from the
true contribution of the position of the paths defined by the cut to the slack of the PB-inequality.
Hence, from the perspective of the odd cut, a certain position of the two paths might have a
positive (or negative) contribution to the slack of the inequality, but the true contribution can be
different. We simply chose the coefficients of the six edges such that the maximum over all seven
possible positions of this deviation is minimized.

When in the remainder of this section and the following section we refer to Algorithm 8.1, we
mean this variant.

9.2.1 Path-finder

The first heuristic, which we called path-finder, searches for simple paths, i.e., each bead on each
path consists of a single R-set. The algorithm also extends the basic search/check-approach by
computing even cuts. By this we mean that the possibility that some paths in the list are not used
in a PB-configuration, but are divided into two even parts each by (A : Z) is, to a certain extent,
allowed. However, some extra care needs to be taken to make this compatible with the modeling
of the path by the addition of two nodes to the subgraph induced by the nodes which are not
contained in any path. In particular, there is no way to find the weights for some of the edges of
this graph if the path split by an even cut has three or more beads. Hence, for each path of length
two in the list, we compute a minimum even (s, t)-cut in the graph induced by the nodes of the
graph. In our description of the path-finder in Algorithm 9.2, we do not indulge in the details of
this part, instead we focus on the way the paths are found.

The search for paths is guided by a number of parameters εi, which are small positive rationals.
Algorithm 9.2 cannot make sure that all found inequalities are really violated: edges uv with u ∈ Bj
and v 6∈

⋃

i Bi for a path P = (B1, . . . , Bn) and 1 < j < n, may decrease the amount of violation.
This is the rationale behind the parameter ε2, which, if small, makes this less likely.

9.2.2 Circular partitions

This heuristic constructs a set of path-candidates by identifying segments of circular partitions
from the cactus. We recall that the block graph of a graph H is a tree whose node set is the union
of the set of blocks of H with the set of cut-nodes of H , and whose edges reflect the containment
relation. The leaves of the block graph are blocks of H . Algorithm 9.3 computes the block graph

9.2. PATH-BRIDGE HEURISTICS 115

Algorithm 9.2 PB path-finder heuristic

Input:

GRP-structure Γ with bounds b on the variables, LP-solution x∗ ∈ � E(G)
+ .

Output:
Violated PB-inequalities.

1: Let all R-sets be unmarked. Initialize the list of suitable paths, L, to be empty.
2: While there exist unmarked R-sets do
3: Let C be an unmarked R-set.
4: Find a path consisting of unmarked R-sets by walking along edges of Gs

C(x∗) with x∗-value
at least 1 − ε1, avoiding R-sets D with x∗(∂(D)) ≥ 2 + ε2 as interior nodes and
x∗(∂(D)) ≥ 3 − ε3 as end nodes.

5: If such a path is found then
6: Add it to the list of suitable paths L, mark all its nodes.
7: End if
8: End while
9: For each path P in the list L do

10: If P = (B1, B2) has length two then
11: Construct the subgraph HP of G induced by the nodes in P . Add two extra nodes s, t

to HP , and for each edge uv ∈ ∂(B)1 \ ∂(B)2 with v ∈ B1 add an edge sv with weight
two. The end nodes of the edges in ∂(B)1 \ ∂(B)2 are connected to t in the same way.
Make the nodes s and t odd. All other nodes get the parity t.

12: Compute a minimum odd (s, t)-cut in HP , and let λ0(P) denote its value.
13: Else
14: Set λ0(P) := ∞.
15: End if
16: End for
17: Construct the subgraph H of G induced by the nodes which are not contained in a path.
18: For each path P = (B1, . . . , Bn) do
19: Add two nodes sP , tP to H . Connect them with an edge which gets the weights

c0sP tP := λ0(P) and c1sP tP := −1 + 1
n−1x(∂(

⋃

)Bi) +
∑

1≤i<j≤n x(Bi : Bj).
20: For all v ∈ V (H), if there are edges uv in G with u ∈ B1, add to H an edge sP v with

weight c0sP v := x∗(B1 : v) and c1sP v := ∞. Similarly for Bn and tP .
21: End for
22: If there are edges uu′ with u ∈ B1 for a path P = (B1, . . . , Bn) and v ∈ B′

1 for a path
P ′ = (B′

1, . . . , B
′
n′), add to H an edge sP sP ′ with weights c0sP sP ′

:= x∗(B1 : B′
1) and

c1sP sP ′
:= ∞. Similarly for pairs B1, B

′
n′ and Bn, B

′
n′ .

23: For each edge e in G(x∗) with both end nodes in V (H), the edge e ∈ E(H) is given the
weights c0e := x∗e and c1e := be − x∗e .

24: The parities of the nodes sP , tP are odd; all other nodes of H get the parity t.
25: Compute a minimum blossom in H . For each blossom with value strictly less than one,

construct the corresponding PB-inequality.

116 CHAPTER 9. SEPARATION HEURISTICS

Algorithm 9.3 PB-heuristic based on cactus cycles

Input:

GRP-structure Γ , LP-solution x∗ ∈ � E(G)
+ satisfying all connectivity inequalities and cactus

representation of all x∗-minimum cuts of Gs

C.
Output:

May find violated (switched) PB-inequalities.

1: L is a list of paths, initialized to be empty.
2: Compute the block graph T of the cactus graph K.
3: Let all cut-nodes of K be unmarked.
4: While T is not empty do
5: Select a leaf of T , preferring leaves which represent cut-edges of K. (If T consists of a

single node, we consider this node as a leaf.)
6: If the selected leaf represents a cycle of the cactus then
7: Unless T consists of only one node, let B′ denote the cactus cut-node adjacent to the

leaf in T .
8: Identify all inclusion maximal segments of the cycle not containing B ′ or a marked

cactus node. For every segment whose length is at least two, store the path it defines in
L. If any such exists, mark the cut-node B′.

9: End if
10: Unless T consists of only one node, if B′ is not marked, check if one of the cactus nodes of

the block is marked, and if so, mark B′.
11: Delete the selected leaf from T . If by the deletion of the leaf a cut-node of the cactus K

has become a leaf of T , delete this leaf too.
12: End while
13: Using Algorithm 8.1, check the list of paths L.

T of the cactus graph, and modifies it, maintaining as an invariant of the loop in steps 4 to 12 that
the leaves are blocks of the cactus.

9.2.3 Cactus without cut-nodes

Finally, we introduce the most expensive heuristic. The basic idea is the following. In Gs

C(x∗)
delete all nodes which are contained in cut-nodes of the cactus, and shrink the contents of each
cactus node which is not a cut-node. This leaves us with a graph, in which every node has the
property that x∗-values of its incident edges sum up to at most two. This concept combines the
circular-partition strategy of the Algorithm 9.3 with the path-finder strategy of Algorithm 9.3.
However, we avoid some of the disadvantages of the latter, for example that each node consists of
only one R-set. It turns out that this heuristic finds important PB-structures, which are “hidden”
in the cactus.

The way the paths are formed by Algorithm 9.4 differs from the approach of Algorithm 9.3.
Let H denote the graph obtained from Gs

C(x∗) in the way described above, and let δ0 denote
the minimum value such that deleting every edge of H with x∗-value less than δ0 results in a
graph with maximum degree two. Now select a δ in the interval [δ0, 1], and delete all edges with
x∗-value less than δ, and, further, from every circle the edge with minimal x∗-value. This results
in a set of paths of H . These paths are the candidates which are checked for violated KC- and
PB-inequalities. The process is repeated for different values δ ∈ [δ0, 1].

9.3 A note on HC-separation

Honeycomb inequalities are “more difficult” to separate than PBs. Firstly, a result resembling
Proposition 8.3.6 for HC-inequalities with L = 1 (see 2.1.2 for the notation) would involve an
algorithm to partition the node set of a graph into n1 odd subsets, such that a sum of the form

9.3. A NOTE ON HC-SEPARATION 117

Algorithm 9.4 PB-heuristic based on cactus cut-nodes

Input:

GRP-structure Γ , LP-solution x∗ ∈ � E(G)
+ satisfying all connectivity inequalities and cactus

representation of all x∗-minimum cuts of Gs

C.
Output:

May find violated (switched) PB-inequalities.

1: Construct the graph H whose node set is the set of all non-cut-nodes of the cactus, with an
edge between two cactus nodes B′ if x∗(B : B′) > 0. The edge weight wBB′ is the value
x∗(B : B′).

2: Compute the minimum value δ0 with the property that every node in H has at most two
edges with weight greater than or equal to δ0.

3: Repeat
4: Select δ ∈ [δ0, 1].
5: Construct the graph Hδ which results from H by deleting all edges with weight strictly

less than δ are deleted.
6: In every circle of Hδ delete the edge with smallest weight.
7: Let L denote the list of paths in G defined by the set of all paths of Hδ.
8: Check each path in L for a violated (switched) KC-inequality, using Algorithm 8.2.
9: Check the list of paths L for violated (switched) PB-inequalities using Algorithm 8.1.

10: Until a termination condition is satisfied.

∑

i6=j cijw(Xi : Xj) is minimized. Apparently, this cannot be done by min-odd-cut techniques.
Secondly, if based on a cactus, there is no promising way to connect the neighboring beads of a
cactus node to the sets Xi such that the conditions in the definition of HCs are satisfied. The best
approach to this problem seems to be to start with a partition B1

i , i = 1, . . . , n1, and then to try
to construct the neighboring beads. This is just the approach proposed in by Corberán et al. in
[CLS01]. In our Branch-and-Cut implementation, we use their code.

118 CHAPTER 9. SEPARATION HEURISTICS

Part III

Branch & Cut

119

Chapter 10

Strategies inside Branch-and-Cut

In this chapter we discuss how the theoretical knowledge about the General Routing Problem
guided our design of a computer code to solve the GRP by Branch-and-Cut. Before we proceed, a
note on the support graphs G(x∗) and GC(x∗) is due. They are always simple graphs, but to each
edge, there may be associated a set of variables. We say that the variable belongs to the edge.
In the case of G(x∗), this may be caused by shrinking operations, or by the presence of duplicate
variables for each edge of a Ghiani-Laporte tree (see Section 2.2). Technically, the sets of variables
belonging to edges are visible to the separation modules.

10.1 Core iteration, feasibility test, and first separation rou-

tines

In this section we explain the core iteration of the B&C process, namely how the LP-solution x∗

is treated after the solution of a Linear Programming relaxation. It is first checked for feasibility,
which amounts to a quick separation of connectivity and R-odd cut inequalities. If x∗ is integer
and no violated connectivity or R-odd cut inequalities have been found, it is necessary to check
the parity of each node.

Algorithm 10.1 displays a core iteration. The reader will notice the extensive test for violated
connectivity inequalities, as displayed in Algorithm 10.2. The exact separation routine, namely
the min-cut computation, is even repeated a couple of times after a random permutation of the
nodes, to produce more violated connectivity inequalities. This is to ensure, as early as possible
in the B&C process, that all connectivity inequalities are satisfied and the separation heuristics
based on the cactus representation of all minimum cuts can be used. However, some of the steps
of Algorithm 10.2 are omitted if the edge weights of GC(x∗), i.e., the values x∗(C : D) for each
pair of adjacent R-sets C,D, are integer. The reader might also notice that comparatively few
energy is spent on the first search for violated R-odd cut inequalities in Algorithm 10.3. The
rationale behind this is the fact that adding too many R-odd cut inequalities has the side effect
of destroying nice and usable structures,1 for example many or big cycles in the cactus. In fact
we even refrain from executing steps 2 to 6 in every cutting plane iteration.

10.1.1 Block decomposition

Before further time-consuming separation routines are started, we perform a block decomposition,
see Proposition 6.1.1. In this, we follow the approach of [CLS01] for the separation of simple
2-PBs, who propose to add to G(x∗), prior to computing the blocks, all required edges, and then
computing a block decomposition.

We modify the standard way of performing a block decomposition in two ways, with the aim
of increasing the number of blocks. Prior to invoking the block decomposition algorithm, we first

1The negative effect of the R-odd cut inequalities was also observed by A. Corberán [Cor04].

121

122 CHAPTER 10. STRATEGIES INSIDE BRANCH-AND-CUT

Algorithm 10.1 Core iteration of the B&C algorithm for the GRP

Input:
GRP-structure Γ , LP-solution x∗.

1: Check if x∗ is integer.
2: Do a thorough global search for violated connectivity inequalities (see Algorithm 10.2).
3: Do a quick-and-dirty search for violated odd-cut inequalities (see Algorithm 10.3).
4: If x∗ is integer and no violated inequality was found then
5: Test the parity of each node.
6: End if
7: If x∗ is a feasible solution then
8: Store the feasible solution and prune this branch of the branch-and-bound tree.
9: Else if GC(x∗) is connected then

10: Invoke a heuristic to produce a feasible GRP solution from x∗ (see Section 10.2). Most of
the times the quick Algorithm 10.5 is used, occasionally Algorithm 10.4.

11: Do a block decomposition (see 10.1.1).
12: For each block do
13: Test if the restricted x∗-values represent a feasible GRP-solution on the block.
14: If that is not the case, invoke more subtle separation procedures (see Section 10.3).
15: End for
16: If no violated inequality was found then
17: Try to tighten the upper bound constraints (see Section 10.4), or initiate a branching

step (see Section 10.5).
18: End if
19: End if

Algorithm 10.2 Global separation of connectivity inequalities

Input: Graph GC(x∗).
Output: Violated connectivity inequalities (many of them), if any exist.

1: Test for connected components of GC(x∗).
2: Test each R-set C for x∗(∂(C)) ≥ 2.
3: Test each pair {C,D} of adjacent R-sets for x∗(∂(C ∪D)) ≥ 2.
4: Check the connected components of the graph GC(x∗) \E0, where E0 := {e | x∗e < 1/3}.
5: Find the smallest value ε such that the sum of all R-external edges with value ≤ ε is greater

than or equal to 3, and check the connected components of the graph GC(x∗) \E0, where
E0 := {e | x∗e < ε}.

6: For each connected component of GC(x∗) do
7: Compute a minimum cut using the Hao-Orlin algorithm [HO94]; in each iteration (i.e.,

after each min (S, t)-cut computation, see 0.4.1) of the the Hao-Orlin procedure, store a
violated connectivity inequality if λ(S, t) < 2.

8: Repeat the Hao-Orlin min-cut computation after a random permutation of the nodes, until
no new inequalities are found, or at most max(1, log(|np|) − 2) times, where np is the
number of nodes in the connected component.

9: End for

10.2. HEURISTICS FOR FEASIBLE SOLUTIONS 123

Algorithm 10.3 Quick-and-dirty search for violated R-odd cut inequalities

Input: Graph G(x∗), parities.
Output: Possibly some violated R-odd cut inequalities.

1: Test for odd connected components of G(x∗).
2: Test each odd node for x∗(∂(u)) ≥ 1.
3: Test each edge {u, v} with t(u) 6= t(v) for x∗(∂({)u, v}) ≥ 1.
4: Check the connected components of the graph G(x∗) \E0, where E0 := {e | x∗e < 1/3}.
5: Find the smallest value ε such that the sum of all edges with value ≤ ε is greater than or

equal to 3/2.
6: Check the connected components of the graph G(x∗) \E0, where E0 := {e | x∗e < ε}.

delete all R-internal edges e with x∗e ≥ 1 and then add a minimal set of edges such that each R-set
is connected (instead of adding all required edges). This is justified by Proposition 6.2.1. After
the block decomposition is computed, we restore the deleted edges (with their proper values) to
the blocks.

The feasibility test is repeated locally on each block, which allows to avoid invoking time
consuming separation routines on blocks which represent feasible solutions, a situation which
frequently occurs.

10.2 Heuristics for feasible solutions

When an LP is computed in the Branch-and-Cut process, after testing the solution for feasibility
and before separation, we invoke an algorithm to produce a feasible solution. The idea is to
use “information” contained in the LP-solution x∗ to find a good upper bound. We use two
algorithms. One very simple algorithm runs in time O(m logn), another has a worst case running
time of O(n3), or, to be precise, the time to compute a minimum weight perfect matching in a
complete graph with |V (G)| nodes. The idea of this algorithm goes back to a 3/2-approximation
heuristic for the RPP described in [BCCM85, Jan93]. The algorithm computes an x∗-maximum
spanning tree in Gm

C (x∗). However, this part of the algorithm is randomized, so that a tree can
be found, which is not maximum. Then a minimum T-join is computed with respect to the cost
data of the instance. This guarantees that all nodes obtain the correct parity in the solution.
The minimum T-join computation is quite time consuming. A set of trees for which a T-join has
already computed is stored, in order to avoid repeatedly computing the same T-join. The shortest
path computations which are necessary to reduce the T-join problem to a matching problem are
also only performed once during the B&C procedure.

The T-join based heuristic is quite expensive computationally. The second algorithm we pro-
pose runs in time n logn. It starts by computing a maximum spanning tree in Gm

C (x∗), but to
make sure that every node obtains the right parity in the solution, it simply computes a second,
edge disjoint spanning tree, which is minimum with respect to the edge costs of the instance.
In this second tree, the unique T-join can be found in linear time. Algorithm 10.5 displays this
approach. It works very fast, but it does not improve the upper bound very often.

In fact, our algorithms are a bit more elaborate than Algorithms 10.4 and 10.5, since they
allow to honor upper bounds on the variables.

10.3 Minimum odd cuts and blossoms in practice

The separation heuristics described in Chapter 9 and the (switched) simple 2-PB separation of
Section 8.2 all use either minimum odd cuts or blossom minimization, possibly with the restriction
of separating a pair of nodes s, t. In this section, we explain the implementation of the modules
which perform these tasks.

124 CHAPTER 10. STRATEGIES INSIDE BRANCH-AND-CUT

Algorithm 10.4 GRP upper bound heuristic based on T-join

Input:

GRP-structure Γ , and LP-solution x∗ ∈ � E(G)
+ .

Output:
May produce a feasible solution x for Γ .

1: If this is the first call to this algorithm during the B&C procedure, initialize the set Y of
spanning trees which have already been treated to ∅.

2: Create a random cost vector w for Gm

C such that |x∗e − we| ≤ 1/10 for all e ∈ E(Gm

C).
3: Compute a w-minimum spanning tree in Gm

C . Denote the characteristic vector of its edge set
by y.

4: If y 6∈ Y then
5: Let Y := Y ∪ {y}.
6: Let T be the set of all nodes u of G for which t(u) + y(∂(u)) is odd.
7: Compute a minimum T -join in G, denote its characteristic vector by z.
8: Return x := y + z.
9: End if

Algorithm 10.5 GRP upper bound heuristic “Double-Tree”

Input:

GRP-structure Γ , and LP-solution x∗ ∈ � E(G)
+ .

Output:
Feasible solution x for Γ .

1: Create a random cost vector w for Gm

C such that |x∗e − we| ≤ 1/10 for all e ∈ E(Gm

C).
2: Compute a w-minimum spanning tree in Gm

C . Denote the characteristic vector of its edge set
by y.

3: Compute a c-minimum spanning tree H in G where c denotes the cost vector of the GRP
instance.

4: Let T be the set of all nodes u of G for which t(u) + y(∂(u)) is odd.
5: Find the unique T -join in H , denote its characteristic vector by z.
6: Return x := y + z.

10.3. MINIMUM ODD CUTS AND BLOSSOMS IN PRACTICE 125

Algorithm 10.6 Blossom minimization module

Input: Graph G, set T ⊆ V (G), and weights c, c′ : E(G) → � +.
Output: Blossoms (U, F) with value strictly less than 1, if one exists.

1: Set w := min(c, c′).
2: Compute connected components of the spanning subgraph of G with edge set and check

them for small blossoms.
3: For all connected components H do
4: If V (H) is an odd set then
5: Store the blossom.
6: Check nodes of H for small blossoms.
7: Using the Hao-Orlin algorithm [HO94], compute a minimum cut in H . In the process,

check all computed minimum (S, t)-cuts (see 0.4.1) for small blossoms.
8: Else /* H is even */
9: Compute a block decomposition of H .

10: For all blocks H ′ of H do
11: Examine the cut-nodes of H which are contained in H ′ for small blossoms.
12: Invoke a variant of Algorithm 7.5, which examines all edges of the cut-tree and store

the blossom if its value is < 1.
13: End for
14: End if
15: End for

A folklore rule of thumb in the design of B&C algorithms is to produce many violated inequali-
ties in each call of a separation algorithm. This is achieved by adopting the modules for computing
minimum odd cuts, minimum odd (s, t)-cuts and minimum blossoms.

10.3.1 The minimum odd cut module

The module for the computation of a minimum T -odd cut in a graph H starts exactly as Algo-
rithm 10.3 and then invokes a variant of Algorithm 7.4, which stores every odd cut with value
strictly less than a given upper bound (usually 1). It operates in three phases. The computation
can be interrupted, if (enough) odd cuts with small value have been found.

I. Compute connected components, check if they are odd.

II. In each even connected component, use the heuristics of steps 4 to 6 of Algorithm 10.3.

III. In each even component, invoke Algorithm 7.4.

10.3.2 Adapting the blossom minimization algorithm

We use blossom minimization for the separation of (switched) simple 2-PBs in 8.2.1 and for the
path-bridge heuristic in Algorithm 9.2. In particular for the latter application, we want to find
many blossoms with small value, in the hope of finding many different path bridge inequalities.
To meet this requirement we have designed a blossom minimization module which is displayed as
Algorithm 10.6. It uses decompositions of H into connected components and blocks. To obtain a
large number of small blossoms, odd connected components are treated by computing minimum
cuts.

10.3.3 Computation of minimum odd (s, t)-cuts and (s, t)-blossoms

Many of our algorithms, including 8.1, 8.2, 9.1, 9.2, 9.3, and 9.4, require to find a odd (s, t)-cut (or
(s, t)-blossom) with value strictly less than one. However, the computation of a minimum odd (s, t)-
cut involves the computation of O(n) maximum flows, plus the associated DAG-representations of

126 CHAPTER 10. STRATEGIES INSIDE BRANCH-AND-CUT

all minimum (x, y)-cuts. In practice, this is considerably more time consuming than just computing
minimum (x, y)-cuts.2 Further, the max-flows cannot be computed on shrunk graphs as in the
Gomory-Hu cut-tree procedure or Algorithm 7.4. Even the number of required max-flow and DAG
computations in case of the minimum odd (s, t)-cuts is in practice a lot higher than for a minimum
odd cut computation using Algorithm 7.4 (see the following chapter, in particular Table 11.3).

The good news is that, in the application within a B&C algorithm for the GRP, if there exists
no violated R-odd cut (or cocircuit) inequality, then the only odd cut with value strictly less than
one must be the one separating the two “artificial” nodes s, t in the auxiliary graphs constructed
by Algorithms 8.2 and 8.1. However, we do not want to wait so many iterations of the cutting-
plane algorithm until no violated R-odd cut inequalities exist; and for the cocircuit inequalities,
this is a really time-consuming task. Moreover, as we will will describe in the next section, it
is common experience among those working on cutting-plane algorithms for the GRP that the
presence R-odd cut inequalities and, to an even greater extend, cocircuit inequalities in the LP
make it more difficult for other separation heuristics to find violated inequalities.

Thus, the way we actually search for a small odd (s, t)-cut (or small (s, t)-blossoms) in the
separation of variants of path bridge and KC-inequalities, regardless of whether violated R-odd
cuts exist or not, is to compute as many small odd cuts (or blossoms) in the graph as possible,
in the hope that some of them might be (s, t)-cuts. In practice, this works very well. Violated
inequalities are very often found in the phases I and II of the minimum odd cut module, because the
violated R-odd cut inequalities which could be identified this way are separated at the beginning
of each core iteration, see Algorithms 10.1 and 10.3.

In order to make it more likely that odd (s, t)-cuts are found, our minimum odd (s, t)-cut
module treats even connected components of the graph H depending on whether they contain
one, both, or none of the nodes s and t, and whether s and t are contained in two distinct (even)
connected components. For example, any odd cut in a component containing either s or t can be
used to produce an odd (s, t)-cut of the same value. If the nodes s and t are contained in distinct
(even) connected components, then an odd cut in a component not containing s or t can be used
to form an odd (s, t)-cut with the same value.

10.4 Selecting inequalities and variable bounds

Obtaining good dual bounds by a cutting-plane algorithm based on heuristic separation routines
is heavily subject to random effects. The inclusion of a quick exact separation routine for a simple
class of inequalities into each cutting-plane iteration does not guarantee better dual bounds. On
the contrary—it is a common experience that it has the opposite effect. Furthermore, after adding
a new separation routine to a cutting-plane code, the dual bounds will improve for some instances,
and for some they will get worse. In our work, we have not undertaken to fine-tune a list of
separation routines to produce best average gap over a small set of mildly difficult instances. We
grant, though, that this type of fine tuning can have a considerable effect. For example, we were
unable to reproduce the results of [CLS01] even with the source code of the separation routines
which were used in that paper. However, we might add that our lower bounds, based on our
new classes of inequalities, an improved understanding of the LP-solutions, our own separation
routines and some other techniques which we will describe in this section, considerably improve
on those in [CLS01, GL00], even without fine tuning.

10.4.1 Gather ye rosebuds while ye may

It has been observed [CLS01] that the presence of the upper bounds xe ≤ 1 and, more strikingly,
the adding of cocircuit inequalities to the LP have a devastating effect on usable structure of the
LP-solution. If cocircuit inequalities are separated early in a cutting-plane algorithm for the GRP,
then, on difficult instances, the final lower bound will be considerably worse than if this class of
inequalities had been postponed to the point where none of the “larger” structures, namely PBs,

2K. M. Wenger has made computational tests in this issue and communicated the result to us.

10.4. SELECTING INEQUALITIES AND VARIABLE BOUNDS 127

KCs, and HCs, can be found. However, it has also been observed that cocircuit inequalities improve
the lower bound: for many of the GRP instances proposed in [CLS01], it is easy to achieve the
optimal lower bound or a very small gap using only connectivity and cocircuit inequalities. R-odd
cut inequalities have the same tendency as cocircuit inequalities, though not as strong. Before we
used the strategy which we will describe below, the lower bounds for two instances widely-known
to be difficult, namely GRP04 and GRP10 increased considerably if the separation of R-odd
constraints was turned off completely until the point when no other violated inequalities were
found. (Needless to say that the lower bounds for many other instance deteriorated dramatically.)

Not only R-odd cut and cocircuit inequalities are dangerous. Theoretical results on the strength
of inequalities indicate that configurations with long paths have the potential to increase the lower
bounds more than those with short paths, like for example 2-PBs [Goe95, Let04]. It has also been
observed that adding 2-regular PB-inequalities to the LP makes it more difficult to find PBs with
long paths later in the cutting-plane process. The separation of 2-PBs which are not simple is
quite difficult though.

The conclusion of the above is that there is a category of inequalities which are hazardous to
the separation of other inequalities. The question is: how can all inequalities which are found by
delicate heuristics be used in the cutting plane process, but at the same time destroying as little
structure as possible. We propose the following strategy for the problem. As long as the LP-
solution has easily recognizable structure, we invest much time to find as many path-inequalities
as possible. The list of paths of each of these inequalities are stored. Then, for every inequality,
we make a guess as to whether it is dangerous to the structure of the next LP-solution. If we
decide to the positive, we simply discard the inequality, but we keep the stored list of paths.
At a later point in the B&C-algorithm, for example just before branching or after the B&B-tree
exceeds a certain depth, we scan through the set of stored list of paths, and try to find a violated
PB-inequality which uses a subset of the list of paths. For this last step, we invoke a min-odd-cut
based algorithm in the fashion of Algorithms 9.3 and 9.4.

Storing the set of all list of paths is also used to improve pool separation. Inequalities which
have been found to be violated at some point in the of the B&C process are checked from time
to time if they are again violated. Pool separation checks each inequality, while our techniques
allow to search a whole “neighborhood” of the inequality. This is inspired by the tightening and
teething ideas of [ABCC03, ABCC].

Storing the paths-lists independently from the inequalities has the additional advantage of
reducing the memory requirement of the B&C-program, as there are usually many violated PB-
inequalities with the same list of paths.

10.4.2 Upper bounds on the variables and the Ghiani-Laporte tree

For the upper bounds of the variables [CLS01] propose the strategy to not add the upper bound
inequalities until late in the cutting-plane process. The upper bounds bT depend on the Ghiani-
Laporte tree T . The question how the selection of the tree, if there exist more than one, influences
the cutting-plane progress, and how the best tree can be selected was raised by A. Corberán.
Table 10.1 shows the lower bounds of the relaxation using only connectivity and switched 2-PB
inequalities can change for different trees. For some trees, the lower bound is extremely good or
optimal, for others, it is far worse.

We propose the following strategy. We start with no “dangerous” upper bounds, i.e., the upper
bound is two or ∞ on the R-external edges, and one or ∞ on the R-internal edges. At a certain
point in the progress of the B&C-algorithm, for example just before branching or if the B&B-
tree reaches a certain height, we invoke the cocircuit separation, pretending that we had added
the upper bound xe ≤ 1 for all edges e, which is not feasible for the GRP, of course. Then, for
increasing values of k = 1, 2, . . . , we consider all cocircuit inequalities x(∂(W)\F)−x(F) ≥ 1−|F |
among all we found, for which the set F consists of k edges. We then try to find a set of edges
E1, such that E(Gm

C) \ E1 still contains a minimum spanning tree for Gm

C , and such that some
violated blossom inequalities will be found when these inequalities are present. For those edges
which might or might not be in a minimum spanning tree of Gm

C , we make the upper bound

128 CHAPTER 10. STRATEGIES INSIDE BRANCH-AND-CUT

instance lower bounds for different trees opt.
GRP04 4807 4817 4840 4845 4855 5186
GRP08 6800 6814 6814
GRP09 4494 4498 4506 4506
GRP10 4711 4721 4744 4749 4759 5122

Table 10.1: How the choice of the Ghiani-Laporte tree influences the lower bound for a relaxation

inequalities local to the current subproblem of the branch-&-bund procedure, and its predecessors
in the branch-&-bound tree. This of course implies that the blossom and switched PB-inequalities
which use such edges in their sets F are also local to these subproblems.

10.5 Branching

For branching we use two different strategies, one based on parity the other on connectivity. For
the parity part, we search for even cuts (U, V (G) \ U) with x∗(∂(U)) ≈ δ, where δ is an odd
integer. Then we take the branches x(∂(U)) ≤ δ − 1 and x(∂(U)) ≥ δ + 1. This approach has
been in use for a while for the TSP. We prefer sets U which are unions of R-sets. To search for
these cuts, we use the blossom minimization algorithm, which is a new approach.

For the connectivity based branching, we rely on Proposition 6.2.3. Starting withH := Gm

C (x∗),
for every variable with value greater than or equal to one which belongs to an e ∈ E(H), we
contract the edge e in H . Then we consider all variables belonging to fractional edges of the
resulting multigraph. In other words, we consider the set of variables belonging to edges e of G
which are R-external and have their end nodes in different connected components of the spanning
subgraph of G with edge set Eint ∪ {e ∈ E(G) | xe ≥ 1}.

After building a set of candidate branching decisions, we use the well-known strong branching
method to select one of them. This means that, for each branch in each of the candidates, the
corresponding inequality is tentatively added to the LP, a number of dual simplex iterations are
performed (actually the LP is solved), and the resulting dual bound is stored. Then the candidate
is selected for which the worst bound is best.

Chapter 11

Performance of separation

algorithms

In this chapter we present computational results for the separation algorithms in terms of running
times and number of inequalities found. Before we do that a word on the computer platform. We
used the GNU C/C++ compile gcc in Version 3.3. We heavily use the Standard C++ Library. For
the graph data structures, we rely on our own code framework, called Heidegger. All running times
refer to Intel Xeon PCs with 2.8 GHz running LINUX. All running times are given in seconds.

11.1 The core minimum odd-cut algorithm

We start with comparing the data of our implementation of Algorithm 7.4, which we called HeMOC

(Heidelberg Min-Odd-Cut) to three alternative algorithms, namely a min-odd-cut program based
on the cut-tree algorithm by Gusfield [Gus90] from the Konrad-Zuse Zentrum für Information-
stechnik (ZIB) in Berlin implemented by G. Skorobohatyj, which we refer to as“ZIB”, our own
implementation of the core of Algorithm 7.4, i.e., without shrinking, which we refer to as “Core”,
and the Gomory-Hu cut-tree module which is part of Concorde, Version 99.12.15, the TSP software
by Applegate et al., which we refer to as “Concorde”. We note that the cut-tree code of this version
is identical to that of the latest Version 03.12.19.

We implemented the Algorithm 7.4 in C++, using parts of the code described in the paper
[JRT00], in particular the graph data structure, shrinking and the MCAP function. We used the
minimum (s, t)-cut code which is part of Concorde, Version 99.12.15, which is identical to that
of the latest Version 03.12.19. The fact that “HeMOC”, “Core”, and “Concorde” use the same
minimum (s, t)-cut code facilitates a comparison. All the codes are optimized to find only one

minimum odd cut. For the comparison, we use practical instances which arouse in the separation
of R-odd cut inequalities in our GRP-solver. The sizes are between 300 and ca. 3400 nodes. The
results are displayed in the tables 11.1–11.4. The first column of all tables denotes the number of
nodes, averaged over a set of instances of approximately the same size. The average number of
odd nodes in the set is denoted by |T |.

We start with some information about the effectiveness of the shrinking mechanisms of Al-
gorithm 7.4. Table 11.1 displays how many calls to the MCAP-procedure were successful: the
column “# MCAP total” contains the average total number of calls, while the column “# MCAP
successful” contains the average number of calls which resulted in an updated value of φ or a
possibility to shrink. It can be seen that there is no great risk to lose much time in unfruitful
MCAP calls. Table 11.1 compares the number of max-flow computations (column “# max flow
HeMOC”) to the total number of calls to the MCAP-procedure. Table 11.3 compares the number
of max-flow computations of Algorithm 7.4 when shrinking is enabled (HeMOC) or disabled (Core).
The averaged absolute values are displayed as well as the percentage of max-flow computations
relative to the number of max-flows which need to be computed by the Padberg-Rao algorithm

129

130 CHAPTER 11. PERFORMANCE OF SEPARATION ALGORITHMS

n |T | m # MCAP # MCAP
total successful

317.27 178.35 386.21 3.71 3.41
973.22 512.51 1152.01 3.32 3.06

1475.68 584.55 1613.56 19.33 18.65
1788.17 542.32 1826.20 30.81 27.99
2180.39 756.91 2328.54 22.39 19.82
2497.23 1070.16 2811.82 15.91 13.46
3023.34 1205.04 3446.06 14.46 11.58
3325.80 866.41 3404.10 40.53 34.52

Table 11.1: Numbers of successful MCAP computations of Algorithm 7.4 (HeMOC)

n |T | m # MCAP # max-flow
total HeMOC

317.27 178.35 386.21 3.71 0.02
973.22 512.51 1152.01 3.32 0.00

1475.68 584.55 1613.56 19.33 0.02
1788.17 542.32 1826.20 30.81 1.37
2180.39 756.91 2328.54 22.39 1.20
2497.23 1070.16 2811.82 15.91 1.45
3023.34 1205.04 3446.06 14.46 1.99
3325.80 866.41 3404.10 40.53 2.71

Table 11.2: Number of MCAPs vs. number of max-flows of Algorithm 7.4 (HeMOC)

n |T | # max-flow % max-flow # max-flow % max-flow
Core Core HeMOC HeMOC

317.27 178.35 124.70 70.31% 0.02 0.01%
973.22 512.51 355.17 69.43% 0.00 0.00%

1475.68 584.55 398.77 68.33% 0.02 0.00%
1788.17 542.32 356.39 65.83% 1.37 0.25%
2180.39 756.91 506.03 66.94% 1.20 0.16%
2497.23 1070.16 728.40 68.12% 1.45 0.13%
3023.34 1205.04 815.32 67.71% 1.99 0.16%
3325.80 866.41 567.21 65.54% 2.71 0.31%

Table 11.3: Numbers of max-flow computations of the Min-Odd-Cut core (HeMOC)

n |T | HeMOC Core ZIB Concorde

317.27 178.35 0.00 0.02 0.07 0.01
973.22 512.51 0.00 0.15 0.55 0.05

1475.68 584.55 0.01 0.31 1.15 0.15
1788.17 542.32 0.01 0.55 1.45 0.37
2180.39 756.91 0.01 0.70 2.28 0.41
2497.23 1070.16 0.01 0.78 3.06 0.40
3023.34 1205.04 0.02 0.97 3.89 0.43
3325.80 866.41 0.02 1.62 4.47 0.90

Table 11.4: Running times of the different minimum odd cut algorithms

11.2. THE BLOSSOM MINIMIZATION CORE 131

[PR82], namely |T | − 1.
Finally we give the running times for the four minimum odd cut algorithms in Table 11.4. As

in the other tables, the numbers are averaged over the instances in the sets of similar size.

The conclusion is that the Gusfield based algorithm “ZIB” is not competitive, the core of
Algorithm 7.4, without shrinking, performs surprisingly well, and that the only true competitor
is the Gomory-Hu based algorithm which is part of Concorde.

We have made additional tests comparing “HeMOC” with “Concorde” on bigger instances. For
them, we glued together graphs taken from the other tests, to obtain graphs for which the number
of nodes was in either the range 2000, . . . , 4000, or 10000, . . . , 18000. We randomly added edges
until the minimum degrees exceeded a certain value. The costs of the original edges were slightly
perturbed, the costs of the new edges were randomly chosen. We tested the two algorithms on
ca. 540 instances with average degree between 3.5 and 3.7, see Fig. A.1, ca. 540 instances with
average degree between 4.1 and 4.3, see Fig. A.2, and ca. 830 instances with average degree between
6.3 and 6.5. The odd nodes were chosen randomly with probability 1/2. In the three figures, the
number of nodes is on the horizontal and the running times in seconds is on the vertical. All points
in the area n ≥ 4000, t ≥ 50s belong to Concorde. We also tried instances with average degree
between 11.5 and 11.7, but Concorde could not solve such instances when n ≥ 4000 (while HeMOC

showed no problems with the sizes n = 15000, . . . , 18000. We would like to note that we did
not undertake the effort to fine tune our implementation of HeMOC to optimize its performance.
Hence, there can be no doubt that it is the introduction of Algorithm 7.4 which improves the
practical solvability of the minimum odd cut problem.

11.2 The blossom minimization core

We now compare our implementation of the blossom minimization Algorithm 7.5 with the im-
plementation of the Padberg-Rao algorithm which is part of Concorde, Version 99.12.15. As the
theoretical improvement of the running time is a factor of O(n/m), and m ∈ O(n) holds for the
separation problems where we apply the algorithms, we may hope for a constant factor improve-
ment.

Our implementation of Algorithm 7.5 is in C++ and relies on its standard library. For the
computation of the cut-tree, it uses the Concorde code. The instances on which we tested the per-
formance are described in the last paragraph of the previous section. The expected improvement
can be seen from the running time results shown in Fig. A.4.

11.3 Cactus based heuristic for KCs

In this and the following sections, we give data showing the running times and effectiveness in terms
of average numbers of inequalities produced and average time required to find one inequality of the
separation algorithms 9.1, 9.2, 9.3, and 9.4. We have implemented these algorithms in C++. The
algorithms which rely on a cactus representation of all minimum cuts use K.M. Wenger’s cactus
implementation [Wen99, Wen03].

First we give results to estimate the effectiveness and efficiency of Algorithm 9.1. Fig A.5
shows the running times of the algorithm on the vertical for the sizes of the support graphs after
shrinking, which are in the horizontal direction. Fig A.6 gives the running times in relation to the
number of R-sets, also after shrinking. In both figures, for each run of the separation routine, a
dot has been plotted with the respective coordinates. Approximately 10000 runs were made; runs
in which the cactus did not have a cycle have not been counted in this number or included in the
figures. It can be seen that the running times increase only moderately with the number of nodes
or number of R-sets.

Figures A.7 and A.8 give, for each instance, the ratio of the number of inequalities per call
averaged over the B&C-computation of one instance on the vertical, and the size of the input graph
on the horizontal. It can be seen that for the big instances, in average, quite few inequalities are

132 CHAPTER 11. PERFORMANCE OF SEPARATION ALGORITHMS

found in each run. However, this is probably caused by a time limit which we imposed on the
B&C-solver: In the case of the big instances, the computation does not reach the point where the
algorithm works best.

Fig. A.9 shows the average time required to produce one inequality on the vertical, and the
size of the input graph on the horizontal, and thus gives the “cost” of an inequality produced by
this separation routine. For most instances, the inequalities are relatively cheap, only in some
instances the production of inequalities with this algorithm is of questionable value. Runs of
the B&C-software in which the number of inequalities found by the algorithm was zero are not
included in the figure.

The effect of the inequalities produced with Algorithm 9.1 on the LP lower bounds are dealt
with in the next chapter.

11.4 “Path-finder” heuristic for path-bridges

The heuristic in Algorithm 9.2 is the simplest of our separation routines. We give results for
two different selection of parameters. The parameter selection A avoids short paths, i.e., paths
with only two beads. This means that it prefers to partition the R-sets into longer paths. The
parameter settings B punishes short paths only moderately. Figures A.10, A.11, and A.12 give
the results for the parameters A, A.13, A.14, and A.15 refer to the parameter selection B. It can
be seen that it is a bit less costly to produce the inequalities without avoiding short paths too
much. This heuristic is the fastest of all the separation heuristics which we propose.

11.5 Cactus cycles based heuristic for PBs

Algorithm 9.3 was also implemented and its performance tested. Figures A.16, A.17, and A.18
show running times, inequalities per call and time per inequality averaged over each run of the
B&C-algorithm. Algorithm 9.3 is the algorithm which produces the smallest number of inequal-
ities. Again, see the next chapter for the gap closures which we were able be obtain using this
algorithm.

11.6 Cactus cut-nodes based heuristic for PBs

Algorithm 9.4 is the separation routine which is the most costly in terms of running times, see
Fig. A.19. For many instances, it produces a huge number of violated inequalities, see Fig. A.20.
However, with increasing size of the instances, this effect is destroyed (see Fig. A.21) by the few
calls which are possible within a reasonable time limit. The increase of the time which is required
to produce a single inequality is considerable, see Fig. A.22. On the other hand, the algorithm
produces inequalities in the cases when the cactus cycles based algorithms fail.

Chapter 12

Solution of the GRP

12.1 Instances

For our computational tests, we have compiled a set of instances of various origins, whose sizes
range up to more than 5000 nodes. We describe the groups now.

ALBA Albaida RPP instances described in [CS94]. These instances are all defined on the same
graph.

MADR Madrigueras GRP instances, described in [CLS01]. These instances are all defined on
the same graph.

GRP See [CLS01]; the underlying graph is that from the ALBA instances.

WPP Instances defined on the basis of Windy Postman Problem instances created by A. Cor-
berán. We created GRP instances from these by selecting one of the two edge costs and a
random set of required edges.

dv, stein, vrpfeas A number of instances created by randomly selecting a set of required edges
in graphs from various Vehicle Routing and Steiner Tree Problem instances from the OR-
Library of J. Beasley.

egl Capacitated Arc Routing instances contributed by R. Eglese. We ignored the demands and
capacities to obtain GRP instances.

uni GRP instances created out of electronic circuit board plotting instances contributed by
G. Reinelt [Rei94].

alb The graphs for these instances are taken from the Hamiltonian graph testing problems in the
TSPLIB [Rei91]. The required edges and costs were selected in a random manner.

h1 Random instances generated by the Type I method described in [HLNH99]. Thanks to Tania
Robens for implementing the random instance generator software.

To estimate how well our code is capable of solving the GRP, from the whole set of instances
we selected a number of 254 difficult instances of moderate sizes. They are listed in the tables
in Appendix B. By difficult we mean that the LP-relaxation of the Ghiani-Laporte polytope
consisting of the non-negativity x ≥ 0, upper bound x ≤ 1, connectivity (1.1b), and cocircuit
(2.3) inequalities, using a fixed, arbitrarily chosen Ghiani-Laporte tree does not yield an optimal
solution for the instance. We chose instances with |V (G)| not much greater than 2000 to keep the
running time and, more importantly, memory requirements moderate.

The data of the instances are displayed in the tables in Appendix C. We note that from the
ALBA, MADR, and GRP-sets, all instances are listed, for which the relaxation just described did

133

134 CHAPTER 12. SOLUTION OF THE GRP

not yield an optimal solution. Some of the instances have name suffixes describing the parameters
with which they were created. The name suffix “rq.p” indicates that the probability with which
an edge was chosen to be required was p/10, and the name part “infty-metr” or “1-metr” refers
to the way how the edge costs were computed when the nodes were given as points in the plane:
either with the maximum-norm |·|∞ or with the sum-norm |·|1. For the “alb”-set, the “c0-r0” and
“c1-r2”indicate the method with which the required edges and the costs for the edges were chosen.

12.2 A direct comparison to previous work

Corberán, Letchford, and Sanchis [CLS01] gave computational results for a cutting-plane algorithm
with a subsequent branch-&-bound phase. They used the ALBA, GRP, MADR, and a number of
Hertz et al. [HLNH99] randomly generated instances. We start the description of the performance
of our B&C-algorithm by comparing our lower bounds to results of [CLS01], for the ALBA, GRP,
and MADR instances (the Hertz et al. instances were not available to us). Tab. 12.1 lists the
names of the instances for which our results differ from those in [CLS01]. The second column
shows the lower bound which could be obtained by our code. If the instance could be solved by
mere cutting plane generation without branching, we just write “opt”. The second column shows
the lower bound obtained by [CLS01]. The third column gives the value of the optimum solution.

Instance this thesis [CLS01]
root lb root lb optimum

ALBA-3-1 5730 5703 5732
ALBA-3-2 opt 6699 6716
ALBA-3-3 6199 6189 6201
ALBA-5-4 opt 4714 4719

GRP04 5091 5119 5186
GRP10 opt 5029 5122

MADR-3-1 opt 8672 8680
MADR-3-3 8552 8526 8555
MADR-3-4 8672 8665 8680
MADR-3-5 opt 8745 8755
MADR-5-3 6948 6949 6955
MADR-5-5 6772 6765 6790

Table 12.1: Comparison on instances of [CLS01]

With our B&C-algorithm, some of the formerly very difficult instances can be solved to opti-
mality without branching, in particular GRP10 and MADR-3-1. We direct the reader to the big
gap which the relaxation based on the Ghiani-Laporte polytope with fixed tree leaves for these
instances. For the instance GRP04, the lower bound produced by our code was not as good as
that in [CLS01].

12.3 Comparison of lower bounds

We start with a theoretical consideration comparing known relaxations of GL(Γ, T) to those of
GRP(Γ,bT).

12.3.1 Lemma The LP-relaxations of GL(Γ, T) and GRP(Γ,bT) consisting of non-negativity,
upper bound, connectivity, and switched path-bridge (including blossoms (2.5a)) inequalities result
in the same lower bound. The same is true for the LP-relaxation consisting of non-negativity,
upper bound, connectivity, and blossom inequalities.

Proof. We show that for any x : E(G) → � which satisfies all the named inequalities, the vector
x′ : E(GT) → � defined by x′e := xe for all e 6∈ T and x′e := x′e∼ := 1

2xe for all e ∈ T also

12.3. COMPARISON OF LOWER BOUNDS 135

satisfies all the named inequalities. To see this, we assume that (a′, α′) is an inequality of one
of the classes which is violated by x′, and show that x is also violated by an inequality of one of
the classes. By construction of x′, this clearly holds for the upper bound constraints, and also
for all inequalities (a′, α′) for which a′e = a′e∼ for every e ∈ T . Thus let (a′, α′) be a switched
PB- or cocircuit-inequality satisfying, a′e = −a′e∼ for some edges e ∈ T , which in particular means
that, w.l.o.g., ae = 1 (by scaling (a, α) accordingly), and if (a, α) is a switched PB-inequality,
then e, e∼ ∈ (A : Z). For each such edge e, precisely one of e, e∼ is in the set F , which implies
a′ex

′
e + a′e∼(1 − x′e∼) = 1. By an argument similar to the one used to prove Lemma 8.2.1, this

implies that (a′, α′) is not violated.

Obviously, the statement of the lemma also holds for switched inequalities which flip only R-
internal edges. Thus we see that, given the current set of classes of inequalities which we use in our
B&C-algorithm, the IP-formulation proposed by Ghiani & Laporte offers no practical advantage,
but increases the number of variables.

12.3.1 Comparison of lower bounds for a mere cutting-plane approach

For the remainder of this section, we will give computational results for various relaxations obtained
by the separation routines which we introduced in Chapter 9. We use the late selection of the
tree T , see 10.4.2, and the strategy described in 10.4.1. We investigate to what extent the Ghiani- Ghiani-

Laporte lower
bound

Laporte gap can be closed in this way. By Ghiani-Laporte gap, we mean the gap of the Ghiani-
Laporte lower bound, which is obtained by optimizing, for a fixed T , over the LP-relaxation given
by the connectivity (1.1b), non-negativity (1.1c), and blossom inequalities (2.5a). For some very
difficult instances, the value of an optimal solution is not known, so the gaps are defined in terms
of the best known upper bounds.

We use the Branch-and-Cut software framework ABACUS [JT98] for all generic B&C-mech-
anisms such as storing the tree of subproblems, selecting a subproblem, interfacing the LP-solver
(Cplex).

We have chosen the following way to visualize the data. The 254 instances are on the horizontal
of 2-D plots. For each piece of data we want to visualize, we plot a point above the respective
instance, in the height determined by the piece of data. The instances are arranged in a sorted
way, so that the sizes of the instances increase from left to right. Fig. C.1 graphically displays the
sizes of the 254 instances: the upper line designates the number of nodes n := |V (G)|, the lower
line gives the number of R-sets |C|. All graphs are sparse (see the tables Appendix C).

The Ghiani-Laporte gap of the set of instances is graphically visualized in Figures C.2 and C.3.
The vertical axis shows the gap in per cent between the lower bound and the best known upper
bound, namely the value

100
ub− lb

lb
.

where ub denotes the value of the best known upper bound, and lb is the value of the lower bound.
Figures C.4 to C.8 show the gap closure

ub − lb

ub − gllb
,

where gllb denotes the Ghiani-Laporte lower bound of the instance, and lb the lower bound which
could be achieved within a time limit of 3000 seconds. The case gllb = ub is visualized by plotting
the dot in the negative half of the vertical axis (value -5). Values exceeding 109 are plotted with
vertical coordinate 109.

Figures C.9 to C.13 shows the relative change of the lower bound with respect to the Ghiani-
Laporte lower bound in per cent, i.e., the value 100lb/gllb. Only the interesting region between -1
and 5 per cent is shown.

A note on the lower bounds is in place. The time limit imposed on the optimization might be
reached or the code may crash because of memory exhaustion before the separation of blossom

136 CHAPTER 12. SOLUTION OF THE GRP

inequalities catches on. In this way, having not added important blossom inequalities to the
relaxation might result in a deterioration of the gap.

For difficult instances, the code occasionally crashes for one of the following two reasons:
(a) memory exhaustion—this is caused mainly by the huge numbers of path inequalities which
are found; (b) the cactus construction code [Wen03] fails to produce a cactus due to floating
point precision problems (this is not a bug in the cactus code)—when that happens, the cactus
construction code aborts the entire program execution. These crashes (and sometimes the time
limit) are the reason why, for very difficult instances, the lower bounds are sometimes quite bad,
worse in fact than the Ghiani-Laporte lower bound.

Figures C.14 to C.18 give the running times in which the bound was achieved and Figures C.19
to C.23 give the number of LPs which had to be solved in the process. In these figures, a code
crash is indicated by a negative vertical value of a dot.

All separation heuristics which we have discussed produce a huge number of violated inequal-
ities. The question which we now address is, which heuristics produce the more import cuts.

The KC-algorithm 9.1 turns out to be very successful in increasing the lower bound. Fig-
ures C.4, C.9, C.14, and C.19, show the computational results for the attempt to produce the
best possible lower bound using only this separation routine on top of the Ghiani-Laporte bound.
Despite its simplicity, the KC-heuristic appears to produce very good cutting planes. In may
cases, using it alone and omitting the other separation heuristics produces as good upper bound
improvements as using it together with the PB-separation routines. These good lower bounds can
even be achieved in relatively short time, and only a moderate number of LPs need to be solved.

The “path-finder” heuristic, Algorithm 9.2, and the PB-heuristic based on the cactus, Algo-
rithm 9.3, are the ones which produce the weakest cuts, when compared to the other heuristics
discussed in Chapter 9. This can be seen in the Figures C.5, C.10, C.15, and C.20, for the path-
finder heuristic, and Figures C.6, C.11, C.16, and C.21 for the cactus based PB-heuristic. We
would like to point out that even though these heuristics are less effective as the others, they allow
to reduce the gap of many of the instances to zero. Even for the instances with 1000 nodes and
more, the gap which remains between the Ghiani-Laporte lower bound and the optimum can be
significantly reduced. Also remember that these two heuristics are considerably faster (per call)
than the other two (as discussed in the previous chapter).

Figures C.7, C.12, C.17, and C.22 display the results for the cactus cut-nodes based PB-
heuristic 9.4. On its own, it does not produce enough of the important KC-inequalities which
are required to increase the lower bound. However, it turns out to be very useful for many
of the instances when used together with the KC-heuristic, because it can detect path-bridge
configurations in support graphs without having to rely on the presence of cycles in the cactus.

Figures C.8 and C.13 show how much the lower bounds can be increased using simultaneously
all the separation routines and techniques which we have discussed, and also the KC- and HC-
separation routines described in [CLS01]. There is only a small average improvement over the
results of the KC-heuristic, but there are a number of instances for which the lower bounds
increase significantly or which can even be solved to optimality in the root node. This may in
part be caused by the usage of the HC-inequalities, and by the fact that the PB-inequalities show
their strength when used on top of the KC-inequalities.

12.4 Solution by Branch-and-Cut

Up to now we have only considered cutting-plane generation. Now we present computational
results for the full B&C-algorithm. Figures C.24 to C.30 refer to a single run of our B&C-code
with a fixed setting of parameters for all 254 instances. Again, a time limit of 3000 seconds was
imposed. In contrast to the five runs of our code as cutting-plane algorithm, we used the upper
bound heuristic 10.4. Fig. C.24 shows the gap closure relative to the Ghiani-Laporte gap. It can
be seen that the majority of instances can be solved to optimality within the time limit. For
some instances, the gap can be reduced significantly. On a number of instances, no improvement
was possible, or the Ghiani-Laporte lower bound could not even be reached (see the comments

12.4. SOLUTION BY BRANCH-AND-CUT 137

in Section 12.3 above). Fig. C.25 gives the change of the lower bound in per cent relative to the
Ghiani-Laporte lower bound.

Figures C.26 to C.29 show the running times in seconds of the B&C-code. If the code crashed
on the instance, a negative value is plotted, and the points in the line near the top frame indicate
that the computation took longer than the time limit given in the caption. All except 7 of the
110 instances on graphs with up to 400 nodes could be solved within 100 seconds. Recall that the
biggest instances which have been considered for the solution by B&C by [GL00] had at most 350
nodes.

In Fig. C.30, the number of subproblems which were generated in the B&C-process are dis-
played. Except for two instances, uni3.1.1-metr 4 and uni3.1.infty-metr 4, which required 35 and
37 subproblems to before they could be solved to optimality (not within the time limit, though),
the number of subproblems hardly exceeds 20 for any of the instances. This is a result of the
strategies described in Chapter 10, namely the attempt to produce many and good cuts early in
the cutting plane process, the storing and checking of the paths which were found, and the addi-
tion of some of the upper bounds for the edges when no other inequalities were found. Fig. C.31
shows the number of LPs which were computed in the B&C-process. In both figures, a crash of
the code is again indicated by a negative value.

Out of the 254 instances, 55 could not be solved to optimality in our B&C-code run within
3000 seconds. For another 12 instances, the optimal lower bound was found, but no upper bound
with the same value. The smallest instance which could not be solved, uni2.1.1-metr 6, has 477
nodes and is a GTSP instance. The second smallest instance, steinc7.rq.066, has 500 nodes and
430 R-sets.

We have compiled a list of instances which remain challenging, see Table C.1. This table
contains the 61 instances which could not be solved to optimality by our B&C-code run within 1500
seconds, either because the solution took longer or because the code crashed, see also Fig. C.26.
The first column indicates the index of the instance in the figures, i.e., the horizontal position
in the figures. The columns “best lb” and “best ub” indicate the best lower and upper bounds
respectively for the instance which we know. A star “*” in the “best lb” column indicates that
upper and lower bound are optimal. The word “opt” in the “best ub” column indicates that the
B&C-code could find the optimal lower bound, possibly with the help of branching. In the last
column, the running time of the B&C-code is indicated if it was below the 3000 seconds limit. The
entry “time limit” indicates that this limit was exceeded, and “mem/flt” indicates that the code
crashed due to memory exhaustion or floating point precision problems in the cactus construction.

12.4.1 Conclusion of the computational part

There are 31 instances out of the 254, for which we could not find an optimal solution. For all
others, both the optimal lower bound and the optimal upper bound were found in one of the six
runs which we have described in the previous chapter, though possibly not both upper and lower
bound in the same run. Of the 54 instances with 1000 nodes or more, only 21 remain, for which we
could not find and prove an optimal solution with the code runs described in the previous chapter.
The region of sizes of challenging instances moved from between 200 ([CLS01]) and 350 ([GL00])
to above 850, and we could solve many instances in the magnitude of 1000 nodes and more.

These results show that there is a considerable potential in the inequalities, separation methods,
and other strategies we propose in this thesis. Challenges remain above all in the area of software
engineering. A number of promising ways to improve the running times and robustness of our
code can be named.

1. The memory management should be improved, in particular the way in which inequalities
are stored. The storage of the path lists could be improved. Applegate et al. [ABCC03]
propose a way to store inequalities for the STSP. It might be worth while to implement their
ideas for the GRP.

2. When the cactus construction fails due to floating point precision problems, the B&C-
algorithm should be able to continue. Klaus Wenger’s cactus construction code should

138 CHAPTER 12. SOLUTION OF THE GRP

be changed so that it does not abort the program execution in this case.

3. The order in which the separation routines are invoked could be optimized to find the order
which is best for the majority of instances in the testbed.

4. Parameters could be fine tuned with the aim of improving running time of the separation
routines. In particular of the very slow Algorithm 9.4 and the checking of path inequalities
could be greatly improved this way.

5. An item which is closely related to memory usage is the possibility to select only a subset
of the huge amount of inequalities produced by some separation algorithms for many of the
instances, while the other inequalities could be immediately removed from the memory. To
do this, the difficult question of deciding which violated inequalities of the same kind are
more important than others must be attacked. It is comparatively well understood which
kinds of inequalities are to prefer, e.g., PBs and KCs with long paths and many edges on the
paths. However, we guess that the question which inequalities of the same kind are more
important is much more difficult.

6. In 10.4.2, we propose a strategy for the late selection of the Ghiani-Laporte tree. While the
idea of delaying the choice of edges which receive upper bound one is promising, different
heuristic strategies to perform the selection could be invented and compared. Also, currently,
the running time of our selection method is quite high, and it could possibly be reduced by
fine tuning parameters.

Appendix A

Figures for Chapter 11

A.1 The core minimum odd-cut algorithm and the blossom-

minimization core

0

50

100

150

200

250

300

350

400

450

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

t

n

Figure A.1: Running times of HeMOC and Concorde/Gomory-Hu, average degree 3.6

139

140 APPENDIX A. FIGURES FOR CHAPTER 11

0

100

200

300

400

500

600

700

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

t

n

Figure A.2: Running times of HeMOC and Concorde/Gomory-Hu, average degree 4.4

A.1. THE CORE MINIMUM ODD-CUT ALGORITHM AND THE BLOSSOM-MINIMIZATION CORE141

0

100

200

300

400

500

600

700

800

900

1000

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

t

n

Figure A.3: Running times of HeMOC and Concorde/Gomory-Hu, average degree 6.4

0

10

20

30

40

50

60

70

80

90

100

110

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800

t

n

+

+

+

+
+

+ +
+

+

+

+ + +
+

+ +
+

+

+++

+ + +
+

++ ++
+ +

+ +
+

+
+

+
+ +

+ +
+
+

+
+ + +

+ +++++
+

+

+

+ ++ +
+

+

++

+

++
+

+
+ +

+
+

+

+ ++
+
+
+

+++

+

+
+ +

++
++

+
++++

++
+
+

++
+

+

++
++
+++ +++

+ +++++
+
+ +

+
+++

+
++
++

+
+
++++

+
+
++

+
++++

+
+
+
++
+

++
++
+
+
+
+
++

+

+

+
+ +++

+
+

+
+

+
++

+

+
++

+ +
+
+
+
+
+
+
+
+

+++ ++
+

+++
+

+
+
+

+

++ ++

+
+

+ +
+

+

++
+ +

+
+ +

++
++

+

+
+
+
+

+
+

+

+
+

+

+
++ +

+
+

++

+ +
+

+ +

+ +

+

��

��

��

��
�	

�
�

�� ��

��

�� ��
��

��

�� ��
 !

"#

$%
&'

()
*+

,-
./

01
2345

67

89

:;

<=

>?

@A BC
DE

FG HI JK
LM NO

PQ

RS TU
VW

XY

Z[

\] ^_
`a bc

de

fg

hi
jk lm

no

pq
rs tu vw

xy

z{ |}

~�

�� ����

��

��

�� �� �� ��

��
�� �� ��

�� ��

��
 ¡

¢£

¤¥

¦§
¨©

ª« ¬
®¯

°± ²³

´µ

¶· ¸¹
º»

¼½
¾¿

ÀÁ
ÂÃ

ÄÅ

ÆÇ

ÈÉ

ÊËÌÍ
ÎÏ

ÐÑ
ÒÓ

ÔÕ

Ö× ØÙ

ÚÛ ÜÝ
Þßàá âã

äå æç

èé

êëìí îï

ðñ
òó

ôõ

ö÷

øù

úû üý þÿ

��

��
�� �� �	
�

�

��

��

��

��

��

�� ��

��
��

 !

"#
$%&' ()

*+

,-

./

01

23

45 67
89

:;<= >? @A

BC DE
FG

HI

JK

LM NO
PQ

RS

TU VW

XY

Z[\]
^_

`a

bc de fg hi jk
lm no
pq

rs

tu

vwxy

z{

|}
~�

��
��

��

��

��

��
��

��

�� ��

��

�� ��
��

��
��

 ¡

¢£¤¥

¦§ ¨©
ª«

¬

®¯ °±²³

´µ
¶·¸¹ º» ¼½

¾¿
ÀÁ

ÂÃ

ÄÅ ÆÇ

ÈÉ ÊË ÌÍ
ÎÏ

ÐÑ

ÒÓ

ÔÕ
Ö×

ØÙ

ÚÛ ÜÝÞß àá âã
äå

æç

èé

êë ìí

îï
ðñ

òó

ôõ ö÷

øù

Figure A.4: Running times of Algorithm 7.5 and Concorde

142 APPENDIX A. FIGURES FOR CHAPTER 11

A.2 Cactus based heuristic for KCs

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500 3000 3500 4000

t

n

Figure A.5: Cactus based KC-heuristic: running time, n := |V (G(x∗))|

A.2. CACTUS BASED HEURISTIC FOR KCS 143

 0

 10

 20

 30

 40

 50

 0 500 1000 1500 2000 2500 3000 3500 4000

t

k

Figure A.6: Cactus based KC-heuristic: running time, k := |C|

144 APPENDIX A. FIGURES FOR CHAPTER 11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500

#
/
c
a
l
l

n

Figure A.7: Cactus based KC-heuristic: inequalities per call, n := |V (G)|

A.2. CACTUS BASED HEURISTIC FOR KCS 145

 0

 2

 4

 6

 8

 10

 0 1000 2000 3000 4000 5000

#
/
c
a
l
l

n

Figure A.8: Cactus based KC-heuristic: inequalities per call, zoomed, n := |V (G)|

146 APPENDIX A. FIGURES FOR CHAPTER 11

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 500 1000 1500 2000 2500

t

n

Figure A.9: Cactus based KC-heuristic: time per inequality, n := |V (G)|

A.3. “PATH-FINDER” HEURISTIC FOR PATH-BRIDGES 147

A.3 “Path-finder” heuristic for path-bridges

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

t

n

Figure A.10: “Path-finder” PB-heuristic, parameters A: running time, n := |V (G(x∗))|

148 APPENDIX A. FIGURES FOR CHAPTER 11

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

#
/
c
a
l
l

n

Figure A.11: “Path-finder” PB-heuristic, parameters A: inequalities per call, n := |V (G)|

A.3. “PATH-FINDER” HEURISTIC FOR PATH-BRIDGES 149

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 1000 2000 3000 4000 5000

t

n

Figure A.12: “Path-finder” PB-heuristic, parameters A: time per inequality, n := |V (G)|

150 APPENDIX A. FIGURES FOR CHAPTER 11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

t

n

Figure A.13: “Path-finder” PB-heuristic, parameters B: running time, n := |V (G(x∗))|

A.3. “PATH-FINDER” HEURISTIC FOR PATH-BRIDGES 151

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

#
/
c
a
l
l

n

Figure A.14: “Path-finder” PB-heuristic, parameters B: inequalities per call, n := |V (G)|

152 APPENDIX A. FIGURES FOR CHAPTER 11

 0

 0.005

 0.01

 0.015

 0.02

 0 1000 2000 3000 4000 5000

t

n

Figure A.15: “Path-finder” PB-heuristic, parameters B: time per inequality, n := |V (G)|

A.4. CACTUS CYCLES BASED HEURISTIC FOR PBS 153

A.4 Cactus cycles based heuristic for PBs

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000 2500 3000 3500 4000

t

n

Figure A.16: Cactus cycles based PB-heuristic: running time, n := |V (G(x∗))|

154 APPENDIX A. FIGURES FOR CHAPTER 11

 0

 50

 100

 150

 200

 250

 300

 350

 0 1000 2000 3000 4000 5000

#
/
c
a
l
l

n

Figure A.17: Cactus cycles based PB-heuristic: inequalities per call, n := |V (G)|

A.4. CACTUS CYCLES BASED HEURISTIC FOR PBS 155

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 1000 2000 3000 4000 5000

t

n

Figure A.18: Cactus cycles based PB-heuristic: time per inequality, n := |V (G)|

156 APPENDIX A. FIGURES FOR CHAPTER 11

A.5 Cactus cut-nodes based heuristic for PBs

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000

t

n

Figure A.19: Cactus cut-nodes based PB-heuristic: running time, n := |V (G(x∗))|

A.5. CACTUS CUT-NODES BASED HEURISTIC FOR PBS 157

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

t

n

Figure A.20: Cactus cut-nodes based PB-heuristic: inequalities per call, n := |V (G)|

158 APPENDIX A. FIGURES FOR CHAPTER 11

 0

 2

 4

 6

 8

 10

 0 1000 2000 3000 4000 5000

#
/
c
a
l
l

n

Figure A.21: Cactus cut-nodes based PB-heuristic: inequalities per call, zoomed, n := |V (G)|

A.5. CACTUS CUT-NODES BASED HEURISTIC FOR PBS 159

 0

 0.05

 0.1

 0.15

 0.2

 0 1000 2000 3000 4000 5000

t

n

Figure A.22: Cactus cut-nodes based PB-heuristic: time per inequality, n := |V (G)|

160 APPENDIX A. FIGURES FOR CHAPTER 11

Appendix B

Data of the instances

name |V (G)| |C| |E(G)| GL-lb GL-gap best ub

ALBA 3 1 116 66 174 5698 0.59 5732
ALBA 3 2 116 71 174 6704 0.17 6716
ALBA 3 3 116 72 174 6164 0.60 6201
ALBA 3 4 116 67 174 5924 0.03 5926
ALBA 3 5 116 62 174 5855 0.01 5856
ALBA 5 4 116 33 174 4707 0.25 4719

name |V (G)| |C| |E(G)| GL-lb GL-gap best ub

MADR 3 1 196 111 316 8621 0.68 8680
MADR 3 2 196 88 316 8140 0.18 8155
MADR 3 3 196 95 316 8490 0.76 8555
MADR 3 4 196 95 316 8648 0.37 8680
MADR 3 5 196 103 316 8728 0.30 8755
MADR 5 2 196 47 316 6535 0.38 6560
MADR 5 3 196 53 316 6893 0.89 6955
MADR 5 5 196 53 316 6730 0.89 6790

name |V (G)| |C| |E(G)| GL-lb GL-gap best ub

GRP04 116 48 174 4796 8.13 5186
GRP08 116 47 174 6799 0.22 6814
GRP10 116 48 174 4700 8.97 5122

name |V (G)| |C| |E(G)| GL-lb GL-gap best ub

WPP-A3101 116 44 174 5648 0.67 5686
WPP-A3112 116 44 174 19621 0.65 19750
WPP-A3201 116 44 174 5490 0.21 5502
WPP-A3205 116 44 174 5344 1.25 5411
WPP-A3207 116 44 174 3669 0.10 3673
WPP-A3209 116 44 174 6794 0.27 6813
WPP-A3211 116 44 174 15741 1.84 16031
WPP-A3212 116 44 174 15741 1.84 16031
WPP-A5103 116 44 174 5360 0.55 5390
WPP-A5108 116 44 174 3462 0.75 3488
WPP-A5109 116 44 174 7915 0.46 7952
WPP-A5152511 265 85 1136 89194 0.31 89473
WPP-A5205 116 44 174 5463 0.25 5477
WPP-A5208 116 44 174 3651 0.08 3654
WPP-A5209 116 44 174 7455 1.00 7530
WPP-A5211 116 44 174 16880 0.39 16947
WPP-A7101 116 44 174 5346 1.29 5415
WPP-A7103 116 44 174 5674 0.70 5714

161

162 APPENDIX B. DATA OF THE INSTANCES

name |V (G)| |C| |E(G)| GL-lb GL-gap best ub

WPP-A7104 116 44 174 5735 0.15 5744
WPP-A7107 116 44 174 3385 0.82 3413
WPP-A7109 116 44 174 8077 0.65 8130
WPP-A7112 116 44 174 16999 0.09 17015
WPP-A7205 116 44 174 5184 0.00 5184
WPP-A7206 116 44 174 5465 0.09 5470
WPP-A7207 116 44 174 3337 0.11 3341
WPP-A7208 116 44 174 3256 1.19 3295
WPP-A7210 116 44 174 7181 1.32 7276
WPP-A7212 116 44 174 16276 2.19 16633
WPP-B351 453 133 811 9206 1.01 9299
WPP-B352 453 133 811 9016 0.08 9024
WPP-B371 490 142 873 10208 0.46 10255
WPP-B372 490 142 873 10663 0.49 10716
WPP-B421 357 109 884 7483 0.65 7532
WPP-B422 357 109 884 7390 0.67 7440
WPP-B451 465 136 1055 8246 1.58 8377
WPP-B452 465 136 1055 8052 0.01 8053
WPP-B471 498 144 1114 8181 0.13 8192
WPP-B472 498 144 1114 8087 0.81 8153
WPP-B521 388 117 1106 7530 0.92 7600
WPP-B551 488 141 1318 7969 0.95 8045
WPP-B571 498 144 1326 7977 0.18 7992
WPP-B572 498 144 1326 8071 0.40 8104
WPP-B621 409 122 1392 7770 0.52 7811
WPP-B622 409 122 1392 7485 0.90 7553
WPP-B651 491 142 1532 7987 0.17 8001
WPP-B652 491 142 1532 7664 0.95 7737
WPP-B671 498 144 1537 8425 0.48 8466
WPP-B672 498 144 1537 8189 0.17 8203
WPP-C321 502 145 1013 9758 0.52 9809
WPP-C322 502 145 1013 10106 0.38 10145
WPP-C351 691 189 1236 11113 0.71 11193
WPP-C352 691 189 1236 10538 1.92 10741
WPP-C371 737 200 1319 11235 0.34 11274
WPP-C372 737 200 1319 11047 0.87 11144
WPP-C421 534 152 1339 8975 0.26 8999
WPP-C451 711 194 1605 10060 0.48 10109
WPP-C452 711 194 1605 9890 0.30 9920
WPP-C471 746 202 1693 10328 0.61 10392
WPP-C521 582 164 1705 8994 0.23 9015
WPP-C522 582 164 1705 8887 0.15 8901
WPP-C551 718 196 1920 9292 1.17 9401
WPP-C552 718 196 1920 9422 0.61 9480
WPP-C571 749 203 2005 9925 0.36 9961
WPP-C572 749 203 2005 9638 0.22 9660
WPP-C621 622 173 2080 8850 0.47 8892
WPP-C622 622 173 2080 8833 0.27 8857
WPP-C651 739 200 2288 9168 0.30 9196
WPP-C652 739 200 2288 9124 0.16 9139
WPP-C671 750 203 2269 9444 0.51 9493
WPP-C672 750 203 2269 9248 0.15 9262

163

name |V (G)| |C| |E(G)| GL-lb GL-gap best ub

WPP-D321 661 182 1297 10594 0.74 10673
WPP-D322 661 182 1297 11240 0.32 11276
WPP-D351 902 238 1611 13045 0.13 13063
WPP-D352 902 238 1611 13001 0.14 13020
WPP-D371 979 255 1738 12647 0.46 12706
WPP-D372 979 255 1738 12615 0.07 12625
WPP-D421 708 193 1867 9581 0.25 9605
WPP-D422 708 193 1867 9454 0.71 9522
WPP-D451 947 248 2161 10990 1.10 11111
WPP-D452 947 248 2161 10965 0.10 10977
WPP-D471 996 258 2182 11450 0.48 11506
WPP-D472 996 258 2182 11301 58.38 17899
WPP-D521 783 211 2361 9509 0.22 9530
WPP-D522 783 211 2361 9826 0.85 9910
WPP-D551 965 252 2643 10814 0.12 10827
WPP-D552 965 252 2643 10817 56.05 16880
WPP-D571 999 259 2678 10759 0.26 10788
WPP-D572 999 259 2678 10602 0.52 10658
WPP-D621 817 218 2793 10064 0.13 10078
WPP-D622 817 218 2793 9985 0.22 10007
WPP-D651 985 256 3036 10551 49.90 15817
WPP-D652 985 256 3036 10577 70.01 17982
WPP-D671 999 259 3073 10902 61.87 17648
WPP-D672 999 259 3073 10520 0.04 10525

name |V (G)| |C| |E(G)| GL-lb GL-gap best ub

dv160.rq.1 24 160 130 240 26553 0.18 26601
dv160.rq.1 30 160 120 320 17200 0.24 17242
dv160.rq.1 31 160 120 320 18369 0.01 18371
dv160.rq.1 33 160 120 320 17486 0.38 17553
dv160.rq.1 34 160 120 320 17241 0.00 17242
dv160.rq.1 47 160 130 240 22591 0.04 22601
dv160.rq.1 48 160 130 240 22317 0.02 22322
dv160.rq.1 49 160 130 240 21803 0.25 21859
dv160.rq.1 55 160 120 320 15859 0.01 15862
dv160.rq.1 57 160 120 320 16201 0.30 16251
dv160.rq.1 59 160 120 320 15547 0.04 15554
dv160.rq.1 5 160 120 320 21668 0.06 21682
dv160.rq.1 7 160 120 320 21841 0.01 21845
dv160.rq.1 81 160 120 320 15678 0.04 15685
dv160.rq.1 95 160 130 240 18374 0.00 18375
dv320.rq.1 16 320 265 480 53523 0.01 53531
dv320.rq.1 18 320 265 480 52285 0.08 52332
dv320.rq.1 19 320 265 480 53372 0.14 53449
dv320.rq.1 26 320 252 640 34534 0.02 34543
dv320.rq.1 28 320 252 640 35045 0.08 35076
dv320.rq.1 36 320 265 480 43530 0.32 43670
dv320.rq.1 38 320 265 480 42174 0.18 42252
dv320.rq.1 48 320 252 640 31123 0.02 31130
dv320.rq.1 49 320 252 640 30860 0.06 30880
dv320.rq.1 55 320 265 480 37693 0.15 37752
dv320.rq.1 56 320 265 480 39091 0.06 39116
dv320.rq.1 58 320 265 480 39691 0.11 39735
dv320.rq.1 59 320 265 480 36727 0.14 36782
dv320.rq.1 5 320 252 640 43177 0.00 43178

164 APPENDIX B. DATA OF THE INSTANCES

name |V (G)| |C| |E(G)| GL-lb GL-gap best ub

dv320.rq.1 65 320 252 640 31203 0.01 31208
dv320.rq.1 66 320 252 640 30844 0.07 30866
dv320.rq.1 75 320 265 480 37585 0.14 37638
dv320.rq.1 77 320 265 480 38005 0.01 38011
dv320.rq.1 79 320 265 480 39498 0.04 39517
dv320.rq.1 7 320 252 640 41237 0.01 41245
dv320.rq.1 8 320 252 640 42154 0.13 42212
dv320.rq.1 9 320 252 640 41673 0.00 41675

name |V (G)| |C| |E(G)| GL-lb GL-gap best ub

steinb08.rq.066 75 67 94 545 0.18 546
steinb11.rq.066 75 65 150 279 0.35 280
steinb13.rq.066 100 90 125 719 0.00 719
steinb13.rq.1 100 86 125 713 0.42 716
steinb15.rq.066 100 90 125 688 0.29 690
steinb17.rq.1 100 76 200 376 0.53 378
steinb18.rq.1 100 76 200 416 0.72 419
steinc01.rq.066 500 459 625 3755 0.07 3758
steinc01.rq.1 500 435 625 3616 0.11 3620
steinc02.rq.066 500 459 625 3506 0.14 3511
steinc02.rq.1 500 435 625 3360 0.20 3367
steinc03.rq.066 500 459 625 3551 0.02 3552
steinc03.rq.1 500 435 625 3447 0.05 3449
steinc04.rq.066 500 459 625 3618 0.11 3622
steinc04.rq.1 500 435 625 3514 0.11 3518
steinc05.rq.066 500 459 625 3663 0.08 3666
steinc05.rq.1 500 435 625 3556 0.16 3562
steinc06.rq.066 500 430 1000 2215 0.13 2218
steinc07.rq.066 500 430 1000 2245 0.75 2262
steinc08.rq.066 500 430 1000 2156 0.00 2156
steinc08.rq.1 500 396 1000 2091 0.14 2094
steinc09.rq.1 500 396 1000 1903 0.21 1907
steinc10.rq.1 500 396 1000 2075 0.04 2076
steind01.rq.066 1000 913 1250 6886 0.07 6891
steind01.rq.1 1000 878 1250 6777 0.04 6780
steind02.rq.066 1000 913 1250 6979 0.11 6987
steind02.rq.1 1000 878 1250 6813 0.10 6820
steind03.rq.066 1000 913 1250 7333 0.01 7334
steind03.rq.1 1000 878 1250 7228 0.04 7231
steind04.rq.066 1000 913 1250 6983 0.14 6993
steind05.rq.066 1000 913 1250 7369 0.10 7377
steind05.rq.1 1000 878 1250 7234 0.17 7247
steind06.rq.066 1000 859 2000 4374 0.11 4379
steind06.rq.1 1000 807 2000 4257 0.11 4262
steind07.rq.066 1000 859 2000 4400 0.02 4401
steind07.rq.1 1000 807 2000 4217 0.02 4218
steind08.rq.066 1000 859 2000 4261 0.14 4267
steind09.rq.066 1000 859 2000 4394 0.09 4398
steind09.rq.1 1000 807 2000 4194 33.21 5587
steind10.rq.066 1000 859 2000 4373 0.04 4375
steind10.rq.1 1000 807 2000 4147 0.04 4149
steine01.rq.066 2500 2286 3125 17339 0.14 17365
steine01.rq.1 2500 2204 3125 16985 13.77 19324

165

name |V (G)| |C| |E(G)| GL-lb GL-gap best ub

steine02.rq.066 2500 2286 3125 18261 0.12 18284
steine02.rq.1 2500 2204 3125 17848 0.07 17862
steine03.rq.066 2500 2286 3125 18243 13.83 20767
steine03.rq.1 2500 2204 3125 17887 0.09 17904
steine04.rq.066 2500 2286 3125 17903 0.15 17930
steine04.rq.1 2500 2204 3125 17603 0.11 17624
steine05.rq.066 2500 2286 3125 18513 0.09 18531
steine05.rq.1 2500 2204 3125 18083 0.07 18097

name |V (G)| |C| |E(G)| GL-lb GL-gap best ub

vrpfeas1.infty-metr.rq.1 51 28 187 244 0.81 246
vrpfeas3.infty-metr.rq.1 101 57 387 370 0.00 370
vrpfeas6.infty-metr.rq.1 120 70 461 306 0.65 308
vrpfeas7.infty-metr.rq.1 101 55 379 266 1.12 269
vrpfeas8.infty-metr.rq.1 857 542 3403 11780 0.47 11836

name |V (G)| |C| |E(G)| GL-lb GL-gap best ub

egl-e1-A 77 27 98 1370 1.16 1386
egl-e2-A 77 11 98 1082 0.27 1085
egl-s1-A 140 66 190 2324 0.81 2343

name |V (G)| |C| |E(G)| GL-lb GL-gap best ub

uni1.1.1-metr 0 55 49 78 611304 23.21 753237
uni1.1.1-metr 2 2152 2152 4311 6619256 48.76 9847250
uni1.1.1-metr 3 1120 569 7582 4270944 70.48 7281269
uni1.1.1-metr 4 1416 693 5122 3037489 81.58 5515489
uni1.1.infty-metr 0 55 49 165 539329 12.30 605683
uni1.1.infty-metr 2 2152 2152 16000 6352333 55.75 9894261
uni1.1.infty-metr 3 1120 569 8350 3110545 74.03 5413426
uni1.1.infty-metr 4 1416 693 10757 2368218 89.47 4487088
uni2.1.1-metr 4 136 136 367 2121322 1.65 2156454
uni2.1.1-metr 6 477 477 2261 3897829 40.88 5491462
uni2.1.1-metr 8 1817 1817 3652 6003737 45.12 8713112
uni2.1.infty-metr 4 136 136 912 1825313 1.02 1844047
uni2.1.infty-metr 6 477 477 3484 2875126 0.71 2895611
uni2.1.infty-metr 8 1817 1817 13916 5600121 41.86 7944401
uni3.1.1-metr 2 516 258 2362 4199913 0.00 4200200
uni3.1.1-metr 3 174 87 396 3245000 0.77 3270000
uni3.1.1-metr 4 1432 1432 2838 15860000 0.37 15920000
uni3.1.infty-metr 2 516 258 3602 3117825 0.50 3133450
uni3.1.infty-metr 3 174 87 867 2465000 0.20 2470000
uni3.1.infty-metr 4 1432 1432 6146 14795000 0.10 14810000
uni4.1.1-metr 0 159 159 448 4920000 0.81 4960000
uni4.1.1-metr 1 2319 2319 4539 23650000 0.04 23660000
uni4.1.infty-metr 1 2319 2319 8830 23280000 0.00 23280000
uni5.1.1-metr 0 1184 584 6339 14608108 85.80 27143193
uni5.1.1-metr 1 1060 1060 5315 27303250 51.19 41279940
uni5.1.infty-metr 0 1184 584 13024 10558502 91.27 20195764
uni5.1.infty-metr 1 1060 1060 12074 19589275 47.90 28974319

name |V (G)| |C| |E(G)| GL-lb GL-gap best ub

alb1000.c0-r0-rq.1 1000 807 1998 2541 0.11 2544
alb1000.c1-r2-rq.15 1000 697 1998 1912 0.15 1915
alb2000.c0-r0-rq.1 2000 1630 3996 5264 0.01 5265
alb2000.c1-r2-rq.15 2000 1402 3996 3896 0.12 3901

name |V (G)| |C| |E(G)| GL-lb GL-gap best ub

h1.n0100.rq.125 100 43 529 41878 0.53 42100
h1.n0200.rq.125 200 96 873 74986 0.20 75142

166 APPENDIX B. DATA OF THE INSTANCES

name |V (G)| |C| |E(G)| GL-lb GL-gap best ub

h1.n0300.rq.125 300 155 1260 89661 0.05 89710
h1.n0400.rq.125 400 173 1795 90268 0.18 90439
h1.n0500.rq.125 500 180 2807 94919 0.31 95222
h1.n0600.rq.125 600 201 3235 101576 0.33 101914
h1.n0700.rq.125 700 116 5507 82750 0.37 83059
h1.n0800.rq.125 800 268 4604 116764 0.59 117453
h1.n0900.rq.125 900 375 4662 127225 62.28 206463
h1.n1000.rq.125 1000 338 5756 127770 0.09 127885
h1.n1100.rq.125 1100 320 6967 124798 0.35 125242
h1.n1200.rq.125 1200 568 5306 158550 69.50 268746
h1.n1300.rq.125 1300 582 6228 155803 74.68 272164
h1.n1400.rq.125 1400 588 7224 157020 63.34 256477
h1.n1500.rq.125 1500 572 8294 160960 79.83 289466
h1.n1600.rq.125 1600 710 7548 178032 65.89 295341

Appendix C

Figures for Chapter 12

C.1 Sizes and Ghiani-Laporte gap

0

500

1000

1500

2000

2500

0 50 100 150 200 250

Figure C.1: Sizes of the instances: n and |C|

167

168 APPENDIX C. FIGURES FOR CHAPTER 12

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250

Figure C.2: Ghiani-Laporte gap for fixed tree

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

Figure C.3: Ghiani-Laporte gap for fixed tree, zoomed

C.2. GAP CLOSURES 169

C.2 Gap closures

0

20

40

60

80

100

0 50 100 150 200 250

%

instances

Figure C.4: KC-cactus heuristic: Gap closure

0

20

40

60

80

100

0 50 100 150 200 250

%

instances

Figure C.5: Path-finder heuristic: Gap closure

170 APPENDIX C. FIGURES FOR CHAPTER 12

0

20

40

60

80

100

0 50 100 150 200 250

%

instances

Figure C.6: Cactus based PB heuristic: Gap closure

0

20

40

60

80

100

0 50 100 150 200 250

%

instances

Figure C.7: Cactus cut-nodes PB heuristic: Gap closure

C.2. GAP CLOSURES 171

0

20

40

60

80

100

0 50 100 150 200 250

%

instances

Figure C.8: All heuristics: Gap closure

172 APPENDIX C. FIGURES FOR CHAPTER 12

C.3 Relative changes of lower bounds

-1

0

1

2

3

4

5

0 50 100 150 200 250

%

instances

Figure C.9: KC-cactus heuristic: Relative change of lower bound

-1

0

1

2

3

4

5

0 50 100 150 200 250

%

instances

Figure C.10: Path-finder heuristic: Relative change of lower bound

C.3. RELATIVE CHANGES OF LOWER BOUNDS 173

-1

0

1

2

3

4

5

0 50 100 150 200 250

%

instances

Figure C.11: Cactus based PB heuristic: Relative change of lower bound

-1

0

1

2

3

4

5

0 50 100 150 200 250

%

instances

Figure C.12: Cactus cut-nodes PB heuristic: Relative change of lower bound

174 APPENDIX C. FIGURES FOR CHAPTER 12

-1

0

1

2

3

4

5

0 50 100 150 200 250

%

instances

Figure C.13: All heuristics: Relative change of lower bound

C.4. TOTAL RUNNING TIMES 175

C.4 Total running times

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

t

instances

Figure C.14: KC-cactus heuristic: Total running times

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

t

instances

Figure C.15: Path-finder heuristic: Total running times

176 APPENDIX C. FIGURES FOR CHAPTER 12

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

t

instances

Figure C.16: Cactus based PB heuristic: Total running times

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

t

instances

Figure C.17: Cactus cut-nodes PB heuristic: Total running times

C.4. TOTAL RUNNING TIMES 177

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

t

instances

Figure C.18: All heuristics: Total running times

178 APPENDIX C. FIGURES FOR CHAPTER 12

C.5 Number of LPs

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200 250

instances

Figure C.19: KC-cactus heuristic: Number of LPs

0

500

1000

1500

2000

2500

0 50 100 150 200 250

instances

Figure C.20: Path-finder heuristic: Number of LPs

C.5. NUMBER OF LPS 179

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250

instances

Figure C.21: Cactus based PB heuristic: Number of LPs

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250

instances

Figure C.22: Cactus cut-nodes PB heuristic: Number of LPs

180 APPENDIX C. FIGURES FOR CHAPTER 12

-100

0

100

200

300

400

500

600

700

0 50 100 150 200 250

instances

Figure C.23: All heuristics: Number of LPs

C.6. SOLUTION BY BRANCH-AND-CUT 181

C.6 Solution by Branch-and-Cut

0

20

40

60

80

100

0 50 100 150 200 250

%

instances

Figure C.24: Gap closure

-1

0

1

2

3

4

5

0 50 100 150 200 250

%

instances

Figure C.25: Relative change of lower bound

182 APPENDIX C. FIGURES FOR CHAPTER 12

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

t

instances

Figure C.26: Solution times t ≤ 3000s

0

5

10

15

20

0 50 100 150 200 250

t

instances

Figure C.27: Solution times t ≤ 20s

C.6. SOLUTION BY BRANCH-AND-CUT 183

0

20

40

60

80

100

0 50 100 150 200 250

t

instances

Figure C.28: Solution times t ≤ 100s

0

200

400

600

800

1000

0 50 100 150 200 250

t

instances

Figure C.29: Solution times t ≤ 1000s

184 APPENDIX C. FIGURES FOR CHAPTER 12

-5

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250

instances

Figure C.30: Total number of subproblems

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250

instances

Figure C.31: Total number of LPs

C.6. SOLUTION BY BRANCH-AND-CUT 185

name n |C| m best lb best ub
117 uni2.1.1-metr 6 477 477 2261 3918200 5491462 mem/flt
135 steinc7.rq.066 500 430 1000 2251 2262 mem/flt
159 WPP-C351 691 189 1236 *11193 11193 mem/flt
166 WPP-C551 718 196 1920 9369 9401 mem/flt
182 vrpfeas8.infty-metr.rq.1 857 542 3403 *11836 opt 11836 time limit
183 h1.n0900.rq.125 900 375 4662 127868 206463 mem/flt
186 WPP-D451 947 248 2161 *11111 opt 11111 time limit
189 WPP-D552 965 252 2643 10864 16880 mem/flt
190 WPP-D371 979 255 1738 *12706 12706 mem/flt
192 WPP-D651 985 256 3036 10631 15817 mem/flt
193 WPP-D652 985 256 3036 10618 17982 mem/flt
194 WPP-D471 996 258 2182 *11506 opt 11506 time limit
195 WPP-D472 996 258 2182 11449 17899 mem/flt
198 WPP-D671 999 259 3073 10940 17648 mem/flt
201 alb1000.c1-r2-rq.15 1000 697 1998 *1915 1915 time limit
202 alb1000.c0-r0-rq.1 1000 807 1998 *2544 opt 2544 time limit
203 steind10.rq.1 1000 807 2000 *4149 opt 4149 time limit
204 steind6.rq.1 1000 807 2000 *4262 opt 4262 2782s
205 steind7.rq.1 1000 807 2000 *4218 opt 4218 2083s
206 steind9.rq.1 1000 807 2000 4198 5587 mem/flt
207 steind10.rq.066 1000 859 2000 *4375 4375 mem/flt
208 steind6.rq.066 1000 859 2000 *4379 opt 4379 2290s
209 steind7.rq.066 1000 859 2000 *4401 opt 4401 2090s
210 steind8.rq.066 1000 859 2000 *4267 opt 4267 time limit
211 steind9.rq.066 1000 859 2000 *4398 opt 4398 1963s
212 steind1.rq.1 1000 878 1250 *6780 opt 6780 1747s
220 steind5.rq.066 1000 913 1250 *7377 7377 mem/flt
221 uni5.1.1-metr 1 1060 1060 5315 27420151 41279940 mem/flt
222 uni5.1.infty-metr 1 1060 1060 12074 19686407 28974319 mem/flt
223 h1.n1100.rq.125 1100 320 6967 *125242 125242 mem/flt
224 uni1.1.1-metr 3 1120 569 7582 4289010 7281269 mem/flt
225 uni1.1.infty-metr 3 1120 569 8350 3120472 5413426 mem/flt
226 uni5.1.1-metr 0 1184 584 6339 14611261 27143193 mem/flt
227 uni5.1.infty-metr 0 1184 584 13024 10553362 20195764 mem/flt
228 h1.n1200.rq.125 1200 568 5306 159554 268746 mem/flt
229 h1.n1300.rq.125 1300 582 6228 156436 272164 time limit
230 h1.n1400.rq.125 1400 588 7224 157231 256477 mem/flt
231 uni1.1.1-metr 4 1416 693 5122 3037739 5515489 mem/flt
232 uni1.1.infty-metr 4 1416 693 10757 2368318 4487088 mem/flt
233 uni3.1.1-metr 4 1432 1432 2838 *15920000 opt 15920000 time limit
234 uni3.1.infty-metr 4 1432 1432 6146 *14810000 opt 14810000 time limit
235 h1.n1500.rq.125 1500 572 8294 161130 289466 mem/flt
236 h1.n1600.rq.125 1600 710 7548 178198 295341 mem/flt
237 uni2.1.1-metr 8 1817 1817 3652 6036004 8713112 mem/flt
238 uni2.1.infty-metr 8 1817 1817 13916 5615486 7944401 mem/flt
239 alb2000.c1-r2-rq.15 2000 1402 3996 *3901 3901 time limit
240 alb2000.c0-r0-rq.1 2000 1630 3996 *5265 5265 time limit
241 uni1.1.1-metr 2 2152 2152 4311 6638484 9847250 mem/flt
242 uni1.1.infty-metr 2 2152 2152 16000 6370613 9894261 mem/flt
243 uni4.1.1-metr 1 2319 2319 4539 *23660000 opt 23660000 time limit
244 uni4.1.infty-metr 1 2319 2319 8830 *23280000 opt 23280000 time limit
245 steine1.rq.1 2500 2204 3125 17005 19324 mem/flt
246 steine2.rq.1 2500 2204 3125 *17862 17862 time limit
247 steine3.rq.1 2500 2204 3125 17903 17904 mem/flt
248 steine4.rq.1 2500 2204 3125 *17624 17624 mem/flt
249 steine5.rq.1 2500 2204 3125 *18097 opt 18097 time limit
250 steine1.rq.066 2500 2286 3125 *17365 17365 time limit
251 steine2.rq.066 2500 2286 3125 *18284 18284 time limit
252 steine3.rq.066 2500 2286 3125 18263 20767 mem/flt
253 steine4.rq.066 2500 2286 3125 17923 17930 time limit
254 steine5.rq.066 2500 2286 3125 *18531 opt 18531 time limit

Table C.1: 61 Challenge instances

186 APPENDIX C. FIGURES FOR CHAPTER 12

List of Figures

1 Branch-and-Cut flowchart . 7

2.1 Definition of honeycomb and path-bridge configurations. 19
2.2 Non-configuration inequality defining a facet of GRP(Γ, b). 21
2.3 Facets of GRP(Γ,∞) with two R-sets: M-configurations. 22
2.4 Facets of GRP(Γ,∞) with two R-sets: M-bounce inequalities. 23
2.5 Facets of GRP(Γ,∞) with two R-sets: M-top inequalities. 23
2.6 Facets of GRP(Γ,∞) with two R-sets: N-inequalities. 24

3.1 Switched honeycomb . 28
3.2 Illustration for Theorem 3.3.1. 30

4.1 Two new types of facet defining inequalities for GRP(Γ, b) 47
4.2 Illustration for the proof of Proposition 4.4.6 . 48

5.1 A shortcut arising from the difference of a 1-cactus and a Hamiltonian cycle. . . . 51
5.2 Relationships between face properties . 52
5.3 Non-cactus vertex of GTSP(8) . 56
5.4 Curve on the boundary of B(GTSP(n)) defined by adjacent facets of STSP(n). . . . 61
5.5 Tilting a hyperplane . 62
5.6 Tilting complex for two faces F of STSP(10) with codimF = 3. 62

7.1 Core step of the Gomory-Hu cut-tree algorithm . 90
7.2 Recursive minimum odd cut computation for SCCs 93
7.3 Illustration for Algorithm 7.5 . 97

8.1 Construction of Ĝ from G . 105
8.2 Switched simple 2-regular path bridge inequality (bold edges are switched). 106

A.1 Running times of HeMOC and Concorde/Gomory-Hu, average degree 3.6 139
A.2 Running times of HeMOC and Concorde/Gomory-Hu, average degree 4.4 140
A.3 Running times of HeMOC and Concorde/Gomory-Hu, average degree 6.4 141
A.4 Running times of Algorithm 7.5 and Concorde . 141
A.5 Cactus based KC-heuristic: running time, n := |V (G(x∗))| 142
A.6 Cactus based KC-heuristic: running time, k := |C| 143
A.7 Cactus based KC-heuristic: inequalities per call, n := |V (G)| 144
A.8 Cactus based KC-heuristic: inequalities per call, zoomed, n := |V (G)| 145
A.9 Cactus based KC-heuristic: time per inequality, n := |V (G)| 146
A.10 “Path-finder” PB-heuristic, parameters A: running time, n := |V (G(x∗))| 147
A.11 “Path-finder” PB-heuristic, parameters A: inequalities per call, n := |V (G)| 148
A.12 “Path-finder” PB-heuristic, parameters A: time per inequality, n := |V (G)| 149
A.13 “Path-finder” PB-heuristic, parameters B: running time, n := |V (G(x∗))| 150
A.14 “Path-finder” PB-heuristic, parameters B: inequalities per call, n := |V (G)| 151

187

188 LIST OF FIGURES

A.15 “Path-finder” PB-heuristic, parameters B: time per inequality, n := |V (G)| 152
A.16 Cactus cycles based PB-heuristic: running time, n := |V (G(x∗))| 153
A.17 Cactus cycles based PB-heuristic: inequalities per call, n := |V (G)| 154
A.18 Cactus cycles based PB-heuristic: time per inequality, n := |V (G)| 155
A.19 Cactus cut-nodes based PB-heuristic: running time, n := |V (G(x∗))| 156
A.20 Cactus cut-nodes based PB-heuristic: inequalities per call, n := |V (G)| 157
A.21 Cactus cut-nodes based PB-heuristic: inequalities per call, zoomed, n := |V (G)| . . 158
A.22 Cactus cut-nodes based PB-heuristic: time per inequality, n := |V (G)| 159

C.1 Sizes of the instances: n and |C| . 167
C.2 Ghiani-Laporte gap for fixed tree . 168
C.3 Ghiani-Laporte gap for fixed tree, zoomed . 168
C.4 KC-cactus heuristic: Gap closure . 169
C.5 Path-finder heuristic: Gap closure . 169
C.6 Cactus based PB heuristic: Gap closure . 170
C.7 Cactus cut-nodes PB heuristic: Gap closure . 170
C.8 All heuristics: Gap closure . 171
C.9 KC-cactus heuristic: Relative change of lower bound 172
C.10 Path-finder heuristic: Relative change of lower bound 172
C.11 Cactus based PB heuristic: Relative change of lower bound 173
C.12 Cactus cut-nodes PB heuristic: Relative change of lower bound 173
C.13 All heuristics: Relative change of lower bound . 174
C.14 KC-cactus heuristic: Total running times . 175
C.15 Path-finder heuristic: Total running times . 175
C.16 Cactus based PB heuristic: Total running times . 176
C.17 Cactus cut-nodes PB heuristic: Total running times 176
C.18 All heuristics: Total running times . 177
C.19 KC-cactus heuristic: Number of LPs . 178
C.20 Path-finder heuristic: Number of LPs . 178
C.21 Cactus based PB heuristic: Number of LPs . 179
C.22 Cactus cut-nodes PB heuristic: Number of LPs . 179
C.23 All heuristics: Number of LPs . 180
C.24 Gap closure . 181
C.25 Relative change of lower bound . 181
C.26 Solution times t ≤ 3000s . 182
C.27 Solution times t ≤ 20s . 182
C.28 Solution times t ≤ 100s . 183
C.29 Solution times t ≤ 1000s . 183
C.30 Total number of subproblems . 184
C.31 Total number of LPs . 184

List of Tables

5.1 Number of cacti [Slo05] . 55
5.2 Two inequalities defining NR-facets of GTSP(9), which are adjacent on STSP and

TT-disjoint at 0 (the bold numbers are the tight triangles for node 0). 63
5.3 Coefficients of the unique non-NR facet of GTSP(9), the right hand side is 44. . . . 72

10.1 How the choice of the Ghiani-Laporte tree influences the lower bound for a relaxation128

11.1 Numbers of successful MCAP computations of Algorithm 7.4 (HeMOC) 130
11.2 Number of MCAPs vs. number of max-flows of Algorithm 7.4 (HeMOC) 130
11.3 Numbers of max-flow computations of the Min-Odd-Cut core (HeMOC) 130
11.4 Running times of the different minimum odd cut algorithms 130

12.1 Comparison on instances of [CLS01] . 134

C.1 61 Challenge instances . 185

189

190 LIST OF TABLES

List of Algorithms

0.1 Cutting-plane algorithm . 6
5.1 Iterative vertex enumeration for GTSP . 57
5.2 Tilting complex . 70
7.1 Gomory-Hu cut-tree core step . 89
7.2 Gusfield-Naor . 91
7.3 Recursive min odd cut . 93
7.4 Simple min odd cut with shrinking . 94
7.5 Blossom minimization . 96
7.6 Recursive blossom minimization . 101
8.1 Check list of non-oriented paths for a violated (switched) PB-inequality 110
8.2 Check a path for a violated (switched) KC-inequality 111
8.3 Circular KC-separation . 111
9.1 KC-heuristic based on cactus cycles . 114
9.2 PB path-finder heuristic . 115
9.3 PB-heuristic based on cactus cycles . 116
9.4 PB-heuristic based on cactus cut-nodes . 117
10.1 Core iteration of the B&C algorithm for the GRP 122
10.2 Global separation of connectivity inequalities . 122
10.3 Quick-and-dirty search for violated R-odd cut inequalities 123
10.4 GRP upper bound heuristic based on T-join . 124
10.5 GRP upper bound heuristic “Double-Tree” . 124
10.6 Blossom minimization module . 125

191

192 LIST OF ALGORITHMS

Bibliography

[ABCC] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding cuts for the TSP. Chapter
of a book on the TSP which is currently being prepared.

[ABCC98] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. On the solution of the Traveling
Salesman Problem. In Doc. Math. J. DMV (Extra Volume ICM), pages 645–656, 1998.

[ABCC01] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. TSP cuts which do not conform
to the template paradigm. In M. Jünger and D. Naddef, editors, Computational
Combinatorial Optimization, pages 261–303. Springer-Verlag Berlin Heidelberg, 2001.

[ABCC03] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Implementing the Dantzig-
Fulkerson-Johnson algorithm for large Traveling Salesman Problems. Math. Program.
Ser. B, 97(1–2):91–153, 2003.

[AP01] D. Alevras and M. W. Padberg. Linear optimization and extensions: problems and
solutions. Springer-Verlag Berlin Heidelberg, 2001.

[BCCM85] E. Benavent, V. Campos, A. Corberán, and E. Mota. Analisis de heuristicos para
el problema del cartero rural. Trabajos de Estadistica e Investigacion Operativa,
36(2):27–38, 1985.

[BCS00] E. Benavent, A. Corberán, and J. M. Sanchis. Linear programming based methods
for solving arc routing problems. In M. Dror, editor, Arc Routing: Theory, Solutions,
and Applications, pages 231–275. Kluwer Academic Publishers, 2000.

[BG86] F. Barahona and M. Grötschel. On the Cycle Polytope of a Binary Matroid. J. Comb.
Theory Ser. B, 40:40–62, 1986.

[BM76] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. London, Macmillan,
1976.

[Brø83] A. Brøndsted. An introduction to convex polytopes. Springer, 1983.

[Car97] R. Carr. Separating clique trees and bipartition inequalities having a fixed number of
handles and teeth in polynomial time. Math. Oper. Res., 22(2):257–265, 1997.

[Car04] R. Carr. Separation algorithms for classes of STSP inequalities arising from a new
STSP relaxation. Math. Oper. Res, 29(1):80–91, 2004.

[Cat88] P. A. Catlin. A reduction method to find spanning Eulerian subgraphs. J. Graph
Theory, 12:29–45, 1988.

[Cat92] P. A. Catlin. Supereulerian Graphs: A Survey. J. Graph Theory, 16(2):177–196, 1992.

[CCCM81] N. Christofides, V. Campos, A. Corberán, and E. Mota. An algorithm for the Rural
Postman Problem. Technical report, Imperial College London, 1981.

193

194 BIBLIOGRAPHY

[CCPS98] W. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial
Optimization. John Wiley & Sons, 1998.

[CFN85] G. Cornuéjols, J. Fonlupt, and D. Naddef. The Traveling Salesman Problem on a
Graph and some related Integer Polyhedra. Math. Program., 33:1–27, 1985.

[Chr97] T. Christof. Low-Dimensional 0/1-Polytopes and Branch-and-Cut in Combinatorial
Optimization. PhD thesis, University of Heidelberg, Germany, 1997.

[Chr98] T. Christof. Porta Forte. Software, 1998.

[CLS01] A. Corberán, A. N. Letchford, and J. M. Sanchis. A cutting plane algorithm for the
General Routing Problem. Math. Program. Ser A, 90:291–316, 2001.

[Coo] S. Cook. The P versus NP problem. www.claymath.org/millennium/P vs NP/.

[Cor04] A. Corberán. Personal communication, 2004.

[CR96] T. Christof and G. Reinelt. Combinatorial optimization and small polytopes. Top,
4(1):1–53, 1996.

[CR01] T. Christof and G. Reinelt. Decomposition and parallelization techniques for enumer-
ating the facets of combinatorial polytopes. Int. J. Comput. Geom. Appl., 11:423–437,
2001.

[CS94] A. Corberán and J. M. Sanchis. A polyhedral approach to the Rural Postman Problem.
Eur. J. Oper. Res., 79:95–114, 1994.

[CS98] A. Corberán and J. M. Sanchis. The General Routing Problem polyhedron: Facets
from the RPP and GTSP polyhedra. Eur. J. Oper. Res., 108:538–550, 1998.

[DFJ54] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale Traveling Salesman
Problem. Oper. Res., 2:393–410, 1954.

[Die00] R. Diestel. Graph Theory. GTM. Springer-Verlag New York, 2000.

[Edm65] J. Edmonds. Maximum matching and a polyhedron with 0-1 vertices. J. Res. Nat.
Bur. Standards, 69B:125–130, 1965.

[EJ77] J. Edmonds and E. L. Johnson. Matching, Euler tours and the Chinese Postman
Problem. Math. Program., 5:88–124, 1977.

[EL00] R. W. Eglese and A. N. Letchford. Polyhedral theory for arc routing problems. In
M. Dror, editor, Arc Routing: Theory, Solutions, and Applications, pages 199–230.
Kluwer Academic Publishers, 2000.

[Fle99] L. Fleischer. Building Chain and Cactus Representations of All Minimum Cuts from
Hao-Orlin in the Same Asymptotic Run Time. Journal of Algorithms, 33:51–72, 1999.

[FMGO03] E. Fernández, O. Meza, R. Garfinkel, and M. Ortega. On the Undirected Rural Post-
man Problem: Tight bounds for based on a new formulation. Oper. Res., 51(2):281–
291, 2003.

[Fre79] G. N. Frederickson. Approximation Algorithms for Some Postman Problems. Journal
of the Association for Computing Machinery, 26(3):538–554, July 1979.

[FU56] G. W. Ford and G. E. Uhlenbeck. Combinatorial problems in the theory of graphs III.
In Proc. Nat. Acad. Sci. USA, volume 42, pages 529–535, 1956.

[GB93] M. X. Goemans and D. J. Bertsimas. Survivable networks, linear programming relax-
ations and the parsimonious property. Math. Program., 60(2):145–166, 1993.

BIBLIOGRAPHY 195

[GH61] R. E. Gomory and T. C. Hu. Multi-terminal network flows. J. Soc. Ind. Appl. Math.,
9:551–570, 1961.

[GH87] M. Grötschel and O. Holland. A cutting plane algorithm for minimum perfect 2-
matching. Computing, 39:327–344, 1987.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[GL00] G. Ghiani and G. Laporte. A branch-and-cut algorithm for the Undirected Rural
Postman Problem. Math. Program. Ser. A, 87(3):467–481, 2000.

[GLS93] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial
optimization, volume 2 of Algorithms and Combinatorics. Springer, 2nd edition, 1993.

[GN93] D. Gusfield and D. Naor. Extracting Maximal Information About Sets of Minimum
Cuts. Algorithmica, 10:64–89, 1993.

[Goe95] M. X. Goemans. Worst-case comparison of valid inequalities for the TSP. Math.
Program., 69(2):335–349, 1995.

[GP79] M. Grötschel and M. W. Padberg. On the Symmetric Travelling Salesman Problem
I: inequalities. Math. Program., 16:265–280, 1979.

[GR95] Michel X. Goemans and V. S. Ramakrishnan. Minimizing Submodular Functions over
Families of Sets. Combinatorica, 15(4):499–513, 1995.

[GR00] C. D. Godsil and G. Royle. Algebraic graph theory. Springer-Verlag New York, 2000.

[Grü03] B. Grünbaum. Convex Polytopes. Springer-Verlag New York, 2nd edition, 2003.

[Gus90] D. Gusfield. Very Simple Methods for all Pairs Network Flow Analysis. SIAM J.
Comput., 19(1):143–155, February 1990.

[HLNH99] A. Hertz, G. Laporte, and P. Nanchen-Hugo. Improvement procedures for the Undi-
rected Rural Postman Problem. INFORMS Journal on Computing, 11:53–62, 1999.

[HO92] J. Hao and J. B. Orlin. A Faster Algorithm for Finding the Minimum Cut in a Graph.
In Greg Frederickson, editor, Proceedings of the third annual ACM-SIAM Symposium
on Discrete Algorithms, pages 165–174, 1992.

[HO94] J. Hao and J. B. Orlin. A Faster Algorithm for Finding the Minimum Cut in a Directed
Graph. Journal of Algorithms, 17:424–446, 1994.

[Jan93] K. Jansen. Bounds for the General Capacitated Routing Problem. Networks, 23:165–
173, 1993.

[JRT00] M. Jünger, G. Rinaldi, and S. Thienel. Practical Performance of Efficient Minimum
Cut Algorithms. Algorithmica, 26:172–195, 2000. Springer-Verlag New York.

[JT98] M. Jünger and S. Thienel. Introduction to ABACUS—A Branch-And-CUt System.
Oper. Res. Lett., 22:83–95, 1998.

[Let96] A. N. Letchford. New inequalities for the General Routing Problem. Eur. J. Oper.
Res., 96:317–322, 1996.

[Let97] A. N. Letchford. Polyhedral results for some Arc Routing problems. PhD thesis,
Lancaster University Management School, 1997.

[Let99] A. N. Letchford. The general routing polyhedron: A unifying framework. Eur. J.
Oper. Res., 112:122–133, 1999.

196 BIBLIOGRAPHY

[Let03] A. N. Letchford. Personal communication, 2003.

[Let04] A. N. Letchford. Personal communication, 2004.

[Let05a] A. N. Letchford. Personal communication, 2005.

[Let05b] A. N. Letchford. Personal communication, 2005.

[LR76] J. K. Lenstra and A. H. G. Rinnooy Kan. On general routing problems. Networks,
6:273–280, 1976.

[LRT04] A. N. Letchford, G. Reinelt, and D. O. Theis. A faster exact separation algorithm for
blossom inequalities. In D. Bienstock and G. Nemhauser, editors, Integer Programming
and Combinatorial Optimization 10, volume 3064 of LNCS, pages 196–205. Springer-
Verlag Berlin Heidelberg, 2004.

[Nad02] D. Naddef. Polyhedral Theory and Branch-and-Cut Algorithms for the Symmteric
TSP. In Gregory Gutin and Abraham P. Punnen, editors, The Traveling Salesman
Problem and Its Variations, pages 29–116. Kluwer Academic Publishers, 2002.

[NK94] H. Nagamochi and T. Katmeda. Canonical cactus representation for all minimum
cuts. Japan J. Indus. App. Math., 11:343–361, 1994.

[NOI94] H. Nagamochi, T. Ono, and T. Ibaraki. Implementing an efficient minimum capacity
cut algorithm. Math. Program. Ser. A, 67(3):325–341, 1994.

[NR88] D. Naddef and G. Rinaldi. The Symmetric Traveling Salesman Polytope: New facets
from the graphical relaxation. Technical Report R. 248, IASI-CNR Rome, 1988.

[NR91] D. Naddef and G. Rinaldi. The Symmetric Traveling Salesman Polytope and its
graphical relaxation: Composition of valid inequalities. Math. Program., 51:359–400,
1991.

[NR93] D. Naddef and G. Rinaldi. The graphical relaxation: A new framework for the Sym-
metric Traveling Salesman Polytope. Math. Program., 58:53–88, 1993.

[Orl74] C. S. Orloff. A fundamental problem in vehicle routing. Networks, 4:35–64, 1974.

[ORT05] M. Oswald, G. Reinelt, and D. O. Theis. Not every GTSP facet induces an STSP
facet. In M. Jünger and V. Kaibel, editors, Integer Programming and Combinato-
rial Optimization 11, volume 3509 of LNCS, pages 468–482. Springer-Verlag Berlin
Heidelberg, 2005.

[PQ80] J.-C. Picard and M. Queyranne. On the structure of all minimum cuts in a network
and applications. Math. Program. Study, 13:8–16, 1980. North-Holland Publishing
Company.

[PR82] M. W. Padberg and M. R. Rao. Odd minimum cut-sets and b-matchings. Math. Oper.
Res., 7(1):67–80, 1982.

[PR87] M. W. Padberg and G. Rinaldi. Optimization of a 532-city symmetric traveling sales-
man problem by branch and cut. Oper. Res. Lett., 6:1–7, 1987.

[PR90a] M. Padberg and G. Rinaldi. Facet identification for the Symmetric Traveling Salesman
Polytope. Math. Program., 47:219–257, 1990.

[PR90b] M. W. Padberg and G. Rinaldi. An efficient algorithm for the minimum capacity cut
problem. Math. Program., 47:19–36, 1990.

[Pul73] W. R. Pulleyblank. Faces of matching polyhedra. PhD thesis, University of Waterloo,
1973.

BIBLIOGRAPHY 197

[QW93] M. Queyranne and Y. Wang. Hamiltonian path and Symmetric Travelling Salesman
polytopes. Math. Program., 58(1):89–110, 1993.

[Rei91] G. Reinelt. TSPLIB – A Traveling Salesman Problem Library. ORSA J. Comput.,
3:376–384, 1991.

[Rei94] G. Reinelt. The Traveling Salesman — Computational Solutions, volume 840 of LNCS.
Springer-Verlag Heidelberg, 1994.

[Riz03] R. Rizzi. A simple minimum T -cut algorithm. Discrete Appl. Math., 129(2–3):539–544,
2003.

[RT06] G. Reinelt and D. O. Theis. A note on the Undirected Rural Postman Problem
polytope. To appear in Math. Program. (DOI: 10.1007/s10107-005-0640-1), 2006.

[San90] J. M. Sanchis. El poliedro del problema del cartero rural. PhD thesis, University of
Valencia, 1990.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

[Sch03] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer-Verlag
Berlin Heidelberg, 2003.

[Slo05] N. J. A. Sloane. The on-line encyclopedia of integer sequences. www.research.att.

com/~njas/sequences/, 2005.

[Wen99] K. M. Wenger. Kaktus-Repräsentation der minimalen Schnitte eines Graphen und
Anwendung im Branch-and-Cut Ansatz für das TSP. Master’s thesis, University of
Heidelberg, Germany, October 1999.

[Wen03] K. M. Wenger. Generic Cut Generation Methods for Routing Problems. PhD thesis,
University of Heidelberg, 2003.

[Zie98] G. M. Ziegler. Lectures on Polytopes. Springer-Verlag New York, 1998.

198 BIBLIOGRAPHY

List of symbols

[α, β],]α, β[,

[α, β[,]α, β] intervals in
�

(a, α) inequality ax ≥ α (sometimes equation)

〈· | ·〉 inner product

F ∨G join, i.e., smallest upper bound of two elements F and G of a lattice

x⊕ y addition modulo two

(U : V) (U : V) := ∂(U) ∩ ∂(V)

∂(U) coboundary of the node set U : edges with precisely one end node in U

|·|1 1-norm of a vector x ∈
� n, defined by |x|1 :=

∑

i |xi|

0 all-zeroes vector defined on appropriate index set

1 all-ones vector defined on appropriate index set

2X power set of set X , i.e., set of all subsets of X

� k k-dimensional standard simplex in
� k+1: conv{χj | j = 0, . . . , k}

χF incidence vector of appropriate length of the set F , i.e., χFi = 1 if i ∈ F

and χFi = 0 otherwise.

χj shorthand for χ{j}

199

200 LIST OF SYMBOLS

� k affine space of dimension k: set of all points x ∈
� k+1 satisfying the

equation
∑k
j=0 xj = 1

affX affine hull

codimF codimension of a face of a polyhedron P (dimP − dimF) or pure

polyhedral complex C (dimC − dimF)

coneX conic hull

convX convex hull

dimX dimension of a set: dimX := dim lin(X −X)

distG(u, v) distance between nodes u and v in graph G

En set of all 2-element subsets of Vn = {0, . . . , n− 1}; edge set of Kn

E(G) edge set of graph G

E(x) set of all edges e of a graph with xe 6= 0

F (x) set of facets of a polyhedron containing the vertex x

G[U] subgraph induced by node set U

G \ F graph with edges in F deleted

G− U graph with nodes in U deleted

GrX f graph of the mapping f defined on X , i.e., {(x, f(x)) | x ∈ X}

Id (linear) identity mapping

Kn complete graph on n nodes, with V (Kn) = Vn and E(Kn) = En

ker f kernel of a linear mapping: ker f := {x | f(x) = 0}

linX linear hull

prI projection onto space with index set I , e.g., prI :
� I∪J →

� I

� rational numbers (� + non-negative, � ∗ non-zero, � ∗
+ strictly positive)

�
the reals (

�
+ non-negative,

� ∗ non-zero,
� ∗

+ strictly positive)

Vn the set {0, . . . , n− 1}; node set of Kn

V (G) node set of graph G

x(F) x(F) :=
∑

f∈F xf

xF restriction of function/vector x to set F (see 0.2.2)

x/F (merged) vector on shrunk graph (see 0.2.2)

� the integers (� + non-negative, � ∗ non-zero, � ∗
+ strictly positive)

