
Numeri
al simulation of growth of an atheros
leroti
 lesionwith a moving boundaryJens P. Eberhard� Peter Frolkovi�
�May 22, 2006Abstra
tWe 
onsider a mathemati
al model of the formation of an atheros
leroti
 lesion that isbased on a simpli�
ation of Russell Ross paradigm of atheros
lerosis as a 
hroni
 in
ammatoryresponse. Atheros
lerosis is 
hara
terized by the a

umulation of lipid-laden 
ells in the arterialwall that 
an result in lesions within the artery. Su
h lesions 
an 
ause an o

lusion of theartery resulting in heart atta
k.The presented mathemati
al model des
ribes, among others, a response of immune andsmooth mus
le 
ells to bio
hemi
al signals of 
hemoattra
tants and a build up of debris. Itresults in a 
oupled system of four nonlinear rea
tion-
onve
tion-di�usion equations in
ludinga free inner boundary that is permitted to move due to an additional evolution equation.We perform a numeri
al study of the problem using fully impli
it �nite volume dis
retizationmethods. The moving boundary is des
ribed impli
itly using an evolution of a level set fun
-tion. In su
h a way, a grid used in numeri
al simulation 
an remain �xed during the whole
omputations.In this report, we present preliminary results that demonstrates that our numeri
al model
aptures 
ertain observed features su
h as the lo
alization of immune 
ells, the build-up ofdebris, the isolation of a lesion by smooth mus
le 
ells, and an o

lusion of the artery.1 Introdu
tionIn this report we deal with a mathemati
al model of atheros
leroti
 lesion formation in
ludingan intrusion into the lumen that was introdu
ed in [7℄. The problem is stated there in terms ofa 
oupled system of nonlinear paraboli
 partial di�erential equations on a domain with a mov-ing boundary. For numeri
al simulation of this model problem we propose here a �nite volumedis
retization method 
ombined with a level set formulation.In the presented mathemati
al model of atheros
lerosis, the fo
us lies on physi
al and 
hemi
alaspe
ts of the disease. In parti
ular, the model a

ounts for the pro
ess by whi
h immune response
ells travel into the arterial wall from the lumen in response to 
hemi
al signals se
reted by adeveloping atheros
leroti
 lesion. In this pro
ess, some immune 
ells be
ome 
orrupted as theytake on lipid mole
ules. While a healthy ma
rophage 
an aid in the elimination of foreign bodiesfrom the tissue, a lipid laden ma
rophage is in
apable of performing this task and be
omes partof the build up of debris forming a lesion. More immune 
ells are then summoned by 
hemi
alsignals and an in
ammatory pro
ess results. The 
hemoattra
tants 
an also invoke the 
hemotaxisof smooth mus
le 
ells (SMCs), re
ruited primarily from the medial layer of the arterial wall, whi
hlayer over the lesion 
ore to form a 
ap.To des
ribe this pro
ess, a mathemati
al model was introdu
ed in [8, 7℄, where three generalized
ellular spe
ies and three generalized 
hemi
al spe
ies elemental to the pro
ess were identi�ed. Weuse here a simpli�ed version of this model, see [8, 7℄, using assumptions that the 
on
entrations of�Simulation in Te
hnology, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany(eberhard�uni-hd.de) 1



native and oxidized low-density lipoproteins are �xed and high enough to 
oin
ide with a diseasedstate.We follow the notation given in [8, 7℄. The following three generalized 
ellular spe
ies and onegeneralized 
hemi
al spe
ie are 
onsidered:� Immune 
ells n1 (number density). These are primarily ma
rophages, T-lympho
ytes, andother immune response 
ells.� Smooth mus
le 
ells n2 (number density). These 
ells also in
lude any 
ells that are inherentin the produ
tion of the extra 
ellular matrix.� Debris n3 (number density). Debris is de�ned as dead 
ells, apopti
 
ells and foam 
ells.� Chemoattra
tant 
1 (
on
entration). We make no distin
tion between various types of
hemoattra
tants, i.e., 
1 refers to any 
hemi
al whi
h indu
es positive 
hemotaxis.Following [7℄ the system of equations reads�n1�t = �1�n1 � �011r ��n1
1 r
1�� d1n1n3 (1)�n2�t = �2�n2 � �021r ��n2
1 r
1�+ Ær � �n2n3rn3�� d2n2n3 (2)�n3�t = �3�n3 + d1n1n3 + d2n2n3 (3)�
1�t = �1�
1 � �1n1
1 � �2n2
1 + 
n3 : (4)Considering this system of partial di�erential equations on an annular �xed domain in R2, one 
animpose the following initial and boundary 
onditions. For x 2 
n1(0; x) = 0 n2(0; x) = 0 (5)n3(0; x) = �3 exp(�Q3jx0 � xj2) 
1(0; x) = 
01 ; (6)for the inner boundary, x 2 �0,�n1�� = �12 �̂0(
1 � 
�1) �n2�� = 0 (7)�n3�� = 0 �
1�� = 0 ; (8)and for the outer boundary, x 2 �1,�n1�� = 0 �n2�� = ��̂1(
1 � 
��1 ) (9)�n3�� = 0 �
1�� = 0 (10)where �̂j(x) = �jH(x)x2=(�j + x2) and H(x) denotes the Heaviside fun
tion. �j , �j are positive
onstants.We remark that the nonzero 
ux 
ondition for n1 at the inner boundary shows that immune
ells enter into the intima at a rate �̂0(
1 � 
�1) provided that the amount of 
hemoattra
tantis above a threshold value 
�1. Sin
e the smooth mus
le 
ells migrate from the media there is ananalogous 
ondition on these 
ells at the outer boundary. We assume a small uniform distribution of
hemoattra
tant initially. The domain is "seeded" with a small amount of debris at the arbitrarily
hosen point x0. All other spe
ies are assumed to be absent initially. Furthermore, di, i = 1; 2,denote positive 
onstants, and the di�usion 
oeÆ
ients �i, i = 1; 2; 3, and �1 are 
onstant. �0ijdenote the various 
hemota
ti
 sensitivity values.2
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Figure 1: Sket
h of the annulus and the domain. Left: The �xed domain and the a
tive part atthe initialization. Right: The annulus showing the moving inner boundary of the a
tive part ofthe domain.2 Free boundary problemInstead of a �xed inner 
ir
le boundary �0 we 
onsider in the following a freely moving innerboundary whi
h is denoted by �(t). The domain is therefore time-dependent and is denoted by
(t). The outer boundary �1 of 
(t) is still a �xed 
ir
le of radius r1. The inner boundary isinitially a 
ir
le, �0 = �(0), with radius r0 < r1. The system must be supplemented with anequation pres
ribing the evolution of the inner boundary �(t) as it responds to the growing lesion.To re
e
t the moving boundary in the model problem, it has to be reformulated, as shown in [7℄,to in
orporate the native tissue. To do so, one 
an introdu
e �0(t; x) as the mass per unit area ofthe native tissue at the point x 2 
(t) at a time t. Let ��0 denote the mass density of native tissuein the absen
e of any of the lesion 
omponent spe
ies. Further, ea
h 
ellular 
omponent is taken asme
hani
ally in
ompressible with a 
onstant referen
e mass density ��j , j = 1; 2; 3, that is, ��j is themass per unit area of the jth 
omponent if none of other 
omponents is present. Thus, �j(t; x)=��jare the fra
tion o

upied by the jth 
omponent at the point x, where �j(t; x) := mjnj(t; x) denotesthe mass density of the jth 
omponent spe
ies, and mj denotes the 
orresponding mass per unit
ell.We also de�ne the relative total mass density of the 
ells af (t; x) by af (t; x) :=P3j=1 �j(t; x)=��j(note that 1� af 
orresponds to the "
ell mobility"). As it is shown in [7℄, the following equalityholds true, 1� af (t; x) = 1��0 �0(t; x) : (11)The full system of equations reads now for x 2 
(t)��1�t = �1��1 � �011r ��(1� af )�1
1r
1�� d1�1�3 (12)��2�t = �2��2 � �021r ��(1� af )�2
1r
1�+ Ær ���2�3r�3�� d2�2�3 (13)��3�t = �3��3 + d1�1�3 + d2�2�3 (14)�
1�t = �1�
1 � �1�1
1 � �2�2
1 + 
�3 : (15)The modi�ed boundary 
onditions are for the inner boundary, x 2 �(t),��1�� = �12 �̂0(
1 � 
�1)(1� af ) ��2�� = 0 (16)��3�� = 0 �
1�� = 0 ; (17)3



and for the outer boundary, x 2 �1,��1�� = 0 ��2�� = ��̂1(
1 � 
��1 )(1� af ) (18)��3�� = 0 �
1�� = 0 : (19)The previous initial 
onditions are applied un
hanged to the governing equations.In order to determine the evolution of the inner boundary �(t), it is useful to represent itparametri
ally with a family of 
urves 
(t; �) = (x(t; �); y(t; �)) for 0 � � � 2�. Correspondingly, �1is represented parametri
ally with the 
urve 
1(�) = r1(
os(�); sin(�)) and the initial lo
ation of theinner intimal boundary �0 = �(0) has the parametri
 representation 
0(�) = r0(
os(�); sin(�)) =
(0; �).To des
ribe the evolution of the inner moving boundary �(t), we introdu
e the speed fun
tions(t; �) that des
ribes the 
urve movement in the dire
tion of outward unit normal ve
tor withrespe
t to �(t). Note that s(t; �) 
an be either positive or negative depending upon whether theintimal boundary is moving inward or outward.The velo
ity of the inner intimal boundary �(t) is then given bys(t; �) = �1 �̂0�
1(
(t; �); t) � 
�1� + �2 1� af (
1(t; �); t)1� af (
(t; �); t) r1j��
(t; �)j �̂1�
1(
1(�); t) � 
��1 � ; (20)see [7℄. Note that (20) pres
ribes a nonlo
al and nonlinear dependen
e of the speed s on all fourunknown fun
tions from the system (12) - (15).3 Numeri
al methodsTo des
ribe methods how to solve numeri
ally the system of partial di�erential equations (12) -(15), we introdu
e a representative s
alar equation of the form���t = ����r � �~V ��+ F ; (21)where � = �(t; x) is an unknown fun
tion to be found. The equation (21) is a 
onve
tion-di�usion-rea
tion equation, where the di�usion is 
hara
terized by a 
onstant parameter �, the velo
ity isgiven by ~V = ~V (t; x; �) and rea
tions are represented by F = F (t; x; �).Ea
h equation of the system (12) - (15) 
an be formally viewed in the form (21), for instan
e,the equation (12) is obtained from (21) by 
onsidering� = �1 ; � = �1 ; ~V (t; x; �) = �011(1� af )r
1(t; x)
1(t; x) ; F (t; x; �) = �d1�1�3 : (22)A nonlinear 
oupling of all four equations in (12) - (15) is realized through 
orresponding velo
ities~V and rea
tion terms F .The diÆ
ulty of solving the problem on a time-dependent domain 
(t) will be resolved by
onsidering a �xed domain D that 
ontains the evolving boundary �(t) � D for the whole timeinterval of the interest. In su
h a way, the equation (21) will be dis
retized on a �xed domain withan \a
tive" and \ina
tive" part.The position of �(t) will be des
ribed impli
itly using a level set method, see a des
riptionlater. Any nonzero boundary 
onditions of the form~N(
) � r�(t; 
) = f(t; 
; �) ; 
 2 
(t) (23)will be implemented as a sour
e or sink term that 
an be formally involved in the de�nition ofF . Here ~N is a unit outward normal ve
tor with respe
t to 
(t). Note that (23) 
an be usedfor the 
omputations of di�usive 
uxes at the boundary, the 
onve
tive 
uxes have to be de�nedadditionally using some standard (in
ow, out
ow, or no
ow) boundary 
onditions.4



3.1 Finite volume dis
retizatonTo approximate the partial di�erential equations of type (21), we 
hoose the so 
alled vertex-
entered �nite volume method. This method was used su

essfully for 
onve
tion-di�usion-rea
tionsystems in [4℄ using the software toolbox UG [1℄. The most important advantages of this methodis its simpli
ity even for unstru
tured grids and a 
lose relation of the numeri
al model to theanalyti
al (or \physi
al") model.Firstly, some standard triangulation of the domain D � R2 is required. The domain is �xedand no �tting of the boundary �(t) is ne
essary. In our implementation, the triangulation 
onsistsof triangles T e � D, e = 1; 2; : : : ; E with the verti
es xi, i = 1; 2; : : : ; I . The 
urved part of theboundary �D will be only approximated by ea
h parti
ular triangulation, i.e., Dh � D, whereDh = E[e=1 T eand h = hE is some representative parameter (a \dis
retization" step) of the triangulation. Of
ourse, ea
h su

essive re�nement of the triangulation must produ
e a more a

urate approximationof D.Having the triangulation, we approximate the analyti
al fun
tion � for ea
h dis
rete time tn,n = 0; 1; : : : by a set of nodal values �ni � �(tn; xi). The values �0i = �(0; xi), i = 1; 2; : : : ; I aregiven by initial 
onditions.Having the triangulation and the nodal values, a pie
ewise linear interpolation �n(x), well-known from standard �nite element methods, 
an be used, and, 
onsequently, a 
onstant gradientr�n(x) for x 2 T e 
an be 
omputed.The basi
 idea of �nite volume methods is to integrate the di�erential equation (21) over a timeinterval (tn; tn+1) and a �nite volume 
i � Dh to obtainZ
i ��(tn+1; x) � �(tn; x)� dx = tn+1Ztn Z�
i ~N � ��r�� ~V �� d
dt+ tn+1Ztn Z
i F dxdt ; (24)where ~N = ~N(
) is a normal unit ve
tor at 
 2 �
i pointing outward with respe
t to 
i.The vertex-
entered �nite volumes 
i will be asso
iated with the nodes xi by 
onstru
ting adual mesh with respe
t to the primal mesh of triangles. The basi
 idea is to 
reate polygonalboundaries �
i \ T e by 
onne
ting the midpoints of edges with the bary
enters of triangles T e.For xi 2 �D, the boundary �
i 
ontains 
orresponding halves of edges lying on the boundary�Dh, see Figure 2 for an illustration or [3℄ for more details. Moreover, the following notations willbe used for i = 1; : : : ; I , j = 0; : : : ; I , and e = 1; : : : ; E,�ei0 := �
i \ �Dh \ T e ; �eij := �
i \ �
j \ T e ) �
i =[e [j �eij : (25)
  i

x
x k

  ij
x j

i

T e

ΩΓ
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Figure 2: The dual �nite volume mesh 
onstru
ted with respe
t to primal triangular mesh.5



Applying some basi
 numeri
al integration rules to (24), one obtains the dis
rete s
hemej
ij ��n+1i � �ni ���tnXe Xj j�eij j ~N(
eij) � ��r�� ~V �� (tn+1; 
eij) = �tnj
ijFn+1i ; (26)where (�) (tn+1; 
eij) means the evaluation of fun
tions in parentheses (�) for t = tn+1 and x =
eij with 
eij 2 �eij being an integration point, e.g., the middle point of �eij . Finally, Fn+1i :=F (tn+1; xi; �n+1i ).The boundary 
onditions (23) for 
 2 �D 
an be naturally in
luded in the dis
rete s
heme(26) by using (23) evaluated at (tn+1; 
ei0) to repla
e the di�usive 
ux at boundary for (tn+1; 
ei0).Analogously, the dis
rete 
onve
tive 
ux ~N � ~V � must be repla
ed using some standard boundary
onditions.Note that if dis
rete equations (26) are derived for the system (12) - (15), they form a fully
oupled nonlinear algebrai
 system that must be solved by some iterative method.The time dis
retization used in (26) 
an be viewed as the impli
it Euler (ba
kward) method.The so 
alled Crank-Ni
holson time dis
retization, that is formally se
ond order a

urate, 
an beobtained analogously.3.2 Upwind s
hemeCon
erning the approximation of 
onve
tive-di�usive 
ux, the s
heme (26) 
an be seen as a se
ondorder a

urate approximation. Unfortunately, for the 
ase of 
onve
tion-dominated transport it
an produ
e numeri
al solutions with non-physi
al os
illations. Moreover, iterative solvers usedto solve the resulting algebrai
 systems 
an fail in su
h a 
ase. To avoid these diÆ
ulties, the so
alled partial upwind s
heme 
an be applied.To introdu
e su
h an upwind s
heme, the 
omputation of gradients r�n(x) shall be des
ribedin more details. If three verti
es of T e are xi0 , xi1 and xi2 , the 
onstant gradient r�n(x) for x 2 T e
an be obtained from r�n(x) = (�ni1 � �ni0)~Gei1i0 + (�ni2 � �ni0)~Gei2i0 ; (27)where the 
onstant ve
tors ~Gei1i0 and ~Gei2i0 are obtained using an inverse of the so 
alled Ja
obian2� 2 matrix,~Gei1i0 = � xi1 � xi0 j xi2 � xi0 ��1 � � 10 � ; ~Gei2i0 = � xi1 � xi0 j xi2 � xi0 ��1 � � 01 � : (28)Following [2℄, the so 
alled lo
al Pe
let numbers jP j 
an be de�ned byP = P (tn; 
eij) := 1� j�eij j ~N(
eij) � ~V (tn; 
eij)(j�eij j ~N(
eij) + j�eikj ~N(
eik)) � ~Geij (29)where the index k denotes the third vertex xk of the triangle T e additionally to xi 2 T e andxj 2 T e. The value �(tn+1; 
eij) in the 
onve
tive 
ux ~V � of (26) 
an now be approximated by thevalue �e;n+1ij , i.e., �e;n+1ij = 8><>: � 1P �n+1i + (1 + 1P )�n+1j P < �20:5(�n+1i + �n+1j ) �2 � P � 2(1� 1P )�n+1i + 1P �n+1j P > 2 : (30)Repla
ing the values �(tn+1; 
eij) in (26) by �e;n+1ij , a more stable dis
retization s
heme isobtained. In fa
t, it is useful to 
ompute ea
h example on a 
hosen grid with and without usingthe upwind method (if possible) and to 
ompare obtained numeri
al results.6



3.3 Approximation of the moving boundaryTo des
ribe the features of our model related to the moving boundary �(t), a numeri
al level setfun
tion with the following properties will be used.Firstly, for ea
h time level t = tn, a dis
rete set of nodal values �ni will be available. Theproperty �ni < 0 indi
ates that at t = tn the node xi does not belong to 
(tn), and, analogously,if �ni > 0 then xi 2 
(tn). The 
ase �ni = 0 indi
ates that xi 2 �(tn).Supposing a standard linear interpolation in spa
e of the nodal values �ni and sear
hing for azero 
ontour line of su
h an interpolation, a polygonal approximation �h(tn) � �(tn) 
an be easilyobtained. This approximation has the property that �h(tn) \ T e is either an empty set, a 
ornerof T e, or a line in T e. Consequently, one 
an use the notation�ni;e := �h(tn) \ 
i \ T e ) �h(tn) =[i [e �ni;e : (31)The approximative time-dependent domain 
h(tn) is now de�ned by its boundaries �h(tn) and�Dh.Now we des
ribe the implementation of the dis
rete s
heme (26) for the approximation ofequation (21) with boundary 
onditions (23) on an impli
itly given boundary �h(tn).Firstly, if j�ni;ej 6= 0, one has to add the 
ontribution of boundary 
onditions (23) de�ned on�ni;e to the i-th dis
rete equation in (26). This 
an be realized formally by rede�ning Fn+1i in (26)taking Fn+1i = F (tn+1; xi; �n+1i ) + 1j
ijXe j�ni;ej�f(tn+1; 
ni;e; �n+1(
ni;e)) ; (32)where 
ni;e 2 �ni;e is an integration point, e.g., the middle point of the line �ni;e. An analogoustreatment is ne
essary for dis
rete 
onve
tive 
uxes.Next, we des
ribe how the dis
rete s
heme (26) shall be treated if �ni < 0 or �nj < 0 for at leastone index i or j o

urring in (26). The simplest variant is to require that � � 0 and ~V � ~0 forea
h triangle T e su
h that one has �nij < 0 for all three 
orners xij . This means that no di�usive-
onve
tive 
ux is allowed in T e that lies 
ompletely in the ina
tive part of Dh. Consequently, ifthis is true for all triangles T e su
h that xi 2 T e, the dis
rete equation (26) takes the trivial form�n+1i = �ni .On the other hand, if one has �nj > 0 for at least one 
orner xij , a standard approximationfor the di�usive-
onve
tive 
ux 
an be used as de�ned in (26). This means that the i-th dis
reteequation 
an adopt some \non-trivial" form even for nodes xi that lies outside of 
h(tn), but thereexists at least one neighbour xj su
h that xj 2 
h(tn).Note that in our numeri
al s
heme (26), the �nite volumes 
i are always �xed. Therefore, the(approximative) mass in 
h(tn), if ne
essary, shall be 
omputed by Pi j
i \ 
h(tn)j�ni .4 Level set methodFinally, we des
ribe brie
y how the numeri
al level set fun
tion 
an be obtained. The speed s(t; 
)of the evolution of �(t) from (20) 
an be used to de�ne the adve
tive level set equation��(t; x)�t + s(t; x)jr�(t; x)j = 0 ; (33)see standard referen
e books [11, 10℄ on this topi
. Analogously, several level set methods to �nd anapproximative solution of (33) 
an be found there, or a �nite volume dis
retization 
losely relatedto vertex-
entered �nite volume meshes 
an be found in [9℄. Note that the equation (33) shall besolved on D, and, 
onsequently, the velo
ity s must be formally de�ned on (or extended to) thewhole domain D. 7



We implement the so 
alled \
ux-based" level set method, see [5℄, in whi
h the equation (33)is formally rede�ned to ���t +r � �~Q�� = �r � ~Q ; (34)where ~Q = sr�=jr�j. The dis
rete s
heme then takes the form [5℄j
ij ��n+1i � �ni �+�tnXe Xj j�eij jminf0; ~N(
eij) � ~Q(tn; 
eij)g(�ni � �nj ) = 0 : (35)The dependen
e of ~Q on r�(tn; 
eij) for 
eij 2 T e is resolved by 
omputing the gradient of � usingthe standard linear interpolation of nodal values �ni for verti
es xi of a triangle T e.The s
heme (35) is formally a �rst order a

urate approximation of the level set equation (33),a se
ond order a

urate form 
an be found in [6℄.5 Numeri
al resultsThe 
urrent se
tion is intended to show some preliminary numeri
al results and to demonstratesome behavior of the numeri
al solutions that is expe
ted by the system governed by (12) - (15).For the numeri
al investigations we use the software toolbox UG [1℄. For all numeri
al simulationsthe initial 
onditions and boundary 
onditions are given by (16) - (19) and the parameter valuesare listed in Table 1 (also given in [8℄). The fun
tion af is 
omputed by af = P3j=1 �j , that is,��j � 1, j = 1; 2; 3, for all numeri
al 
omputations.�1 0.005 �011 3.0 d1 1.0 Æ 0.01�2 0.005 �021 3.0 d2 0.01 �1 0.1�3 0.005 �1 0.1 
 30 �2 0.05�1 0.1�1 �2 0.1�2 
�1 0.1 
��1 0.1
01 0.1 �3 0.01 Q3 25Table 1: Parameter valuesWe remark that the initial 
onditions 
an be interpreted as follows: At the interfa
e betweenthe lumen and the intima, there is a small radially symmetri
 
on
entration of immune 
ells. Weseed the intima with a small 
on
entration of debris at some arbitrarily �xed point x (x = (0:8; 0))within the intima. Furthermore, we assume a small uniform distribution of 
hemoattra
tants.The initial 
ondition on the smooth mus
le 
ells is similar to the initial 
ondition on the immune
ells and 
orresponds to a small axisymmetri
 
on
entration of smooth mus
le 
ells (SMCs) on theouter boundary where the intima meets the media. The boundary 
ondition on this outer boundaryre
e
ts the migration{positive 
hemotaxis of SMCs from the media as dis
ussed in Se
tion 2.3 and3.2 of Ibragimov et al. [8℄.Figure 3 shows an initial evolution of all spe
ies for this example (after a se
ond time step).Further temporal behavior of the 
on
entrations 
an be seen from Fig. 4 and Fig. 5.There, one 
an observe time evolution of the 
on
entration of immune 
ells from an axisymmet-ri
 initial distribution to a highly lo
alized dense a

umulation near the point whi
h was seededwith a small amount of debris at time zero. Similarly, the SMCs enter into the region of the lesionthrough the outer boundary 
orresponding to the media. The temporal evolution given by thenumeri
al results also shows that the artery wall dilates �rst, and, eventually, the lesion bulgesinto the lumen.One of the primary interests in the �nal numeri
al solutions is a situation when there is a regionof lower density of SMCs. Su
h a situation 
an 
orrespond to points of the highest 
on
entrationof immune 
ells, i.e., to the 
ap intended to isolate the lesion. An eviden
e of su
h a 
ap formation,as des
ribed in [8℄, is of great interest. 8



Figure 3: Con
entration plots after two time steps. From left to right: �1, �2, �3, and 
1. Addi-tionally, the 
ontours of the level set fun
tion are shown in the �rst and third plot, and the velo
ityr
1=
1 is shown in the fourth plot.

Figure 4: Con
entration plots after 100 time steps, for a des
ription see Figure 3.

Figure 5: Con
entration plots after 200 time steps, for a des
ription see Figure 3.
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Finally, Figure 6 and Figure 7 show the maximal 
on
entration for di�erent 
ell spe
ies and
hemoattra
tants as fun
tions of time. As it is shown in Figure 7, the 
on
entration of debris�rstly de
reases before it starts to grow later. This shows 
learly that the healing impa
t of theimmune 
ells and the SMCs is too weak.

00.10.20.3
0.40.50.60.7
0.80.91

0 50 100 150 200 250
C oncent rati on

Timesteps

Immune cellsSMCsChemoattractants

Figure 6: Maximal 
on
entration of the immune 
ells �1, smooth mus
le 
ells �2, and the 
hemoat-tra
tants 
1 as a fun
tion of time.
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C oncent rati on
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Figure 7: Maximal 
on
entration of the debris �3 as a fun
tion of time.Note that the presented example was 
hosen only to 
he
k if des
ribed numeri
al methods are
apable of solving the mathemati
al model and if an expe
ted qualitative behavior of numeri
alsolutions 
an be 
on�rmed. Both aspe
ts of numeri
al methods were 
on�rmed for this example,nevertheless, further signi�
ant improvements are planned for the future that will be reportedelsewhere.
10



6 SummaryIn this paper we 
onsider a free boundary problem modeling the growth of an atheros
leroti
lesion. We perform numeri
al simulations using fully impli
it �nite volume dis
retization method.The moving boundary problem is solved within the framework of a level set formulation thatenables an appli
ation of �xed grids. Analogously to previous numeri
al studies [8℄, the simulationsdemonstrate that our numeri
al model 
aptures 
ertain observed features su
h as the lo
alizationof immune 
ells, the build-up of lipids and debris, and the isolation of a lesion by smooth mus
le
ells. Additionally, the numeri
al simulations exhibit that the artery wall is remodeled by dilatingand that, eventually, the lesion bulges into the lumen 
ausing some degree of o

lusion of theartery.Referen
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