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Abstract

We consider a mathematical model of the formation of an atherosclerotic lesion that is
based on a simplification of Russell Ross paradigm of atherosclerosis as a chronic inflammatory
response. Atherosclerosis is characterized by the accumulation of lipid-laden cells in the arterial
wall that can result in lesions within the artery. Such lesions can cause an occlusion of the
artery resulting in heart attack.

The presented mathematical model describes, among others, a response of immune and
smooth muscle cells to biochemical signals of chemoattractants and a build up of debris. It
results in a coupled system of four nonlinear reaction-convection-diffusion equations including
a free inner boundary that is permitted to move due to an additional evolution equation.
We perform a numerical study of the problem using fully implicit finite volume discretization
methods. The moving boundary is described implicitly using an evolution of a level set func-
tion. In such a way, a grid used in numerical simulation can remain fixed during the whole
computations.

In this report, we present preliminary results that demonstrates that our numerical model
captures certain observed features such as the localization of immune cells, the build-up of
debris, the isolation of a lesion by smooth muscle cells, and an occlusion of the artery.

1 Introduction

In this report we deal with a mathematical model of atherosclerotic lesion formation including
an intrusion into the lumen that was introduced in [7]. The problem is stated there in terms of
a coupled system of nonlinear parabolic partial differential equations on a domain with a mov-
ing boundary. For numerical simulation of this model problem we propose here a finite volume
discretization method combined with a level set formulation.

In the presented mathematical model of atherosclerosis, the focus lies on physical and chemical
aspects of the disease. In particular, the model accounts for the process by which immune response
cells travel into the arterial wall from the lumen in response to chemical signals secreted by a
developing atherosclerotic lesion. In this process, some immune cells become corrupted as they
take on lipid molecules. While a healthy macrophage can aid in the elimination of foreign bodies
from the tissue, a lipid laden macrophage is incapable of performing this task and becomes part
of the build up of debris forming a lesion. More immune cells are then summoned by chemical
signals and an inflammatory process results. The chemoattractants can also invoke the chemotaxis
of smooth muscle cells (SMCs), recruited primarily from the medial layer of the arterial wall, which
layer over the lesion core to form a cap.

To describe this process, a mathematical model was introduced in [8, 7], where three generalized
cellular species and three generalized chemical species elemental to the process were identified. We
use here a simplified version of this model, see [8, 7], using assumptions that the concentrations of
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native and oxidized low-density lipoproteins are fixed and high enough to coincide with a diseased
state.

We follow the notation given in [8, 7]. The following three generalized cellular species and one
generalized chemical specie are considered:

e Immune cells ny (number density). These are primarily macrophages, T-lymphocytes, and
other immune response cells.

e Smooth muscle cells ny (number density). These cells also include any cells that are inherent
in the production of the extra cellular matrix.

e Debris n3 (number density). Debris is defined as dead cells, apoptic cells and foam cells.

e Chemoattractant ¢; (concentration). We make no distinction between various types of
chemoattractants, i.e., ¢; refers to any chemical which induces positive chemotaxis.

Following [7] the system of equations reads
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Considering this system of partial differential equations on an annular fixed domain in R?, one can
impose the following initial and boundary conditions. For z €

n1(0,2) =0 ns(0,2) =0 (5)
n3(0,z) = e3 exp(—Qs|zo — z|*) c1(0,z) =2, (6)

for the inner boundary, = € Ty,
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and for the outer boundary, z € T'y,
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where f3;(z) = 8, H(z)z?/(aj + 22) and H(z) denotes the Heaviside function. §;, a; are positive
constants.

We remark that the nonzero flux condition for n; at the inner boundary shows that immune
cells enter into the intima at a rate By(ci — ¢f) provided that the amount of chemoattractant
is above a threshold value ¢j. Since the smooth muscle cells migrate from the media there is an
analogous condition on these cells at the outer boundary. We assume a small uniform distribution of
chemoattractant initially. The domain is ”seeded” with a small amount of debris at the arbitrarily
chosen point xy. All other species are assumed to be absent initially. Furthermore, d;, i = 1,2,
denote positive constants, and the diffusion coefficients u;, i = 1,2,3, and v, are constant. X?j
denote the various chemotactic sensitivity values.



Figure 1: Sketch of the annulus and the domain. Left: The fixed domain and the active part at
the initialization. Right: The annulus showing the moving inner boundary of the active part of
the domain.

2 Free boundary problem

Instead of a fixed inner circle boundary I'y we consider in the following a freely moving inner
boundary which is denoted by I'(£). The domain is therefore time-dependent and is denoted by
Q(t). The outer boundary I'; of Q(t) is still a fixed circle of radius ry. The inner boundary is
initially a circle, 'y = I'(0), with radius 79 < r;. The system must be supplemented with an
equation prescribing the evolution of the inner boundary I'(¢) as it responds to the growing lesion.

To reflect the moving boundary in the model problem, it has to be reformulated, as shown in [7],
to incorporate the native tissue. To do so, one can introduce po(t,x) as the mass per unit area of
the native tissue at the point z € Q(t) at a time ¢. Let p§ denote the mass density of native tissue
in the absence of any of the lesion component species. Further, each cellular component is taken as
mechanically incompressible with a constant reference mass density pj, j = 1,2,3, that is, pj is the
mass per unit area of the jth component if none of other components is present. Thus, p;(t,z)/p}
are the fraction occupied by the jth component at the point z, where p;(t, z) := m;n;(t, z) denotes
the mass density of the jth component species, and m; denotes the corresponding mass per unit
cell.

We also define the relative total mass density of the cells as(t, z) by ay(t,z) := Z?Zl pi(t,z)/p}
(note that 1 — ay corresponds to the ”cell mobility”). As it is shown in [7], the following equality
holds true,

1—as(t,z) = p—lapg(t,x). (11)

The full system of equations reads now for z € Q(t)
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The modified boundary conditions are for the inner boundary, z € T'(t),
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and for the outer boundary, = € T'y,
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The previous initial conditions are applied unchanged to the governing equations.

In order to determine the evolution of the inner boundary I'(¢), it is useful to represent it
parametrically with a family of curves y(¢,0) = (z(t,0),y(t,0)) for 0 < 8 < 27. Correspondingly, 'y
is represented parametrically with the curve v, (8) = r1(cos(8), sin(6)) and the initial location of the
inner intimal boundary Ty = T'(0) has the parametric representation vo(0) = ro(cos(d), sin(6)) =
7(0,6).

To describe the evolution of the inner moving boundary I'(t), we introduce the speed function
s(t,0) that describes the curve movement in the direction of outward unit normal vector with
respect to ['(t). Note that s(t,6) can be either positive or negative depending upon whether the
intimal boundary is moving inward or outward.

The velocity of the inner intimal boundary I'(¢) is then given by

1- af(71 (t,9),t) 1 ~ . e
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see [7]. Note that (20) prescribes a nonlocal and nonlinear dependence of the speed s on all four
unknown functions from the system (12) - (15).
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3 Numerical methods

To describe methods how to solve numerically the system of partial differential equations (12) -
(15), we introduce a representative scalar equation of the form

P .
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where p = p(t, z) is an unknown function to be found. The equation (21) is a convection-diffusion-
reaction equation, where the diffusion is characterized by a constant parameter u, the velocity is
given by V =V (¢, z, p) and reactions are represented by F = F(t, z, p).

Each equation of the system (12) - (15) can be formally viewed in the form (21), for instance,

the equation (12) is obtained from (21) by considering
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p=pi, mw=pi, V(tz,p) =x}(1-ay)
A nonlinear coupling of all four equations in (12) - (15) is realized through corresponding velocities
V and reaction terms F.

The difficulty of solving the problem on a time-dependent domain Q(¢) will be resolved by
considering a fixed domain D that contains the evolving boundary T'(t) C D for the whole time
interval of the interest. In such a way, the equation (21) will be discretized on a fixed domain with
an “active” and “inactive” part.

The position of T'(t) will be described implicitly using a level set method, see a description
later. Any nonzero boundary conditions of the form

N(y)-Vp(t,7) = f(t,7,0), 7€ Q) (23)

will be implemented as a source or sink term that can be formally involved in the definition of
F. Here N is a unit outward normal vector with respect to Q(t). Note that (23) can be used
for the computations of diffusive fluxes at the boundary, the convective fluxes have to be defined
additionally using some standard (inflow, outflow, or noflow) boundary conditions.



3.1 Finite volume discretizaton

To approximate the partial differential equations of type (21), we choose the so called vertex-
centered finite volume method. This method was used successfully for convection-diffusion-reaction
systems in [4] using the software toolbox UG [1]. The most important advantages of this method
is its simplicity even for unstructured grids and a close relation of the numerical model to the
analytical (or “physical”) model.

Firstly, some standard triangulation of the domain D C R? is required. The domain is fixed
and no fitting of the boundary I'(¢) is necessary. In our implementation, the triangulation consists
of triangles T¢ C D, e = 1,2,...,FE with the vertices x;, i = 1,2,... ,I. The curved part of the
boundary 0D will be only approximated by each particular triangulation, i.e., D ~ D, where

E
D), = U T¢
e=1

and h = hg is some representative parameter (a “discretization” step) of the triangulation. Of
course, each successive refinement of the triangulation must produce a more accurate approximation
of D.

Having the triangulation, we approximate the analytical function p for each discrete time ¢",
n = 0,1,... by a set of nodal values p' ~ p(t",z;). The values p? = p(0,z;), i = 1,2,...,I are
given by initial conditions.

Having the triangulation and the nodal values, a piecewise linear interpolation p™(z), well-
known from standard finite element methods, can be used, and, consequently, a constant gradient
Vp™(z) for x € T can be computed.

The basic idea of finite volume methods is to integrate the differential equation (21) over a time
interval (#",#"*1) and a finite volume ; C D}, to obtain

gt trtt
/ (p(t™ ! 2) — p(t",2)) dz = / / N - (qu - ‘7,0) drydt + / /Fd:ndt, (24)
Q; t™ 0Q; tm Q;

where N = N (v) is a normal unit vector at v € 9€); pointing outward with respect to ;.

The vertex-centered finite volumes (2; will be associated with the nodes x; by constructing a
dual mesh with respect to the primal mesh of triangles. The basic idea is to create polygonal
boundaries 0€2; NT° by connecting the midpoints of edges with the barycenters of triangles T°.
For x; € 0D, the boundary 0f); contains corresponding halves of edges lying on the boundary
0Dy, see Figure 2 for an illustration or [3] for more details. Moreover, the following notations will
beused fori=1,...,I,7=0,...,I,ande=1,...  E,

T5 = 00;N0D, NTe, T¢:=00;n00,;nT* = 0= JJTy. (25)
e j

Figure 2: The dual finite volume mesh constructed with respect to primal triangular mesh.



Applying some basic numerical integration rules to (24), one obtains the discrete scheme

UCERTIREDY Z TN () - (590 = Vo) (874, 7) = At || P, (26)

where (-) (t"*!,4f;) means the evaluation of functions in parentheses (-) for + = ¢"*"' and x
v with vj; € T'f; being an integration point, e.g., the middle point of I'j;. Finally, Fi”"'1 =
F(tm w“sz-l)

The boundary conditions (23) for v € dD can be naturally included in the discrete scheme
(26) by using (23) evaluated at (t"*',~5) to replace the diffusive flux at boundary for (t"*',7%).
Analogously, the discrete convective flux N ‘7/) must be replaced using some standard boundary
conditions.

Note that if discrete equations (26) are derived for the system (12) - (15), they form a fully
coupled nonlinear algebraic system that must be solved by some iterative method.

The time discretization used in (26) can be viewed as the implicit Euler (backward) method.
The so called Crank-Nicholson time discretization, that is formally second order accurate, can be
obtained analogously.

3.2 Upwind scheme

Concerning the approximation of convective-diffusive flux, the scheme (26) can be seen as a second
order accurate approximation. Unfortunately, for the case of convection-dominated transport it
can produce numerical solutions with non-physical oscillations. Moreover, iterative solvers used
to solve the resulting algebraic systems can fail in such a case. To avoid these difficulties, the so
called partial upwind scheme can be applied.

To introduce such an upwind scheme, the computation of gradients Vp™(z) shall be described
in more details. If three vertices of T are z;,, z;, and z;,, the constant gradient Vp"(z) for x € T*°
can be obtained from

Vo' (z) = (o — pP)GS i + (o1 — p)GE s (27)

where the constant vectors G7 ; and G ; are obtained using an inverse of the so called Jacobian
2 X 2 matrix,

-1 1 -1 0
Gfllg = ( Tiy — Tig | Tiy — Tig ) . ( 0 > ’ Gzegzo = ( Tiy — Tig | Tiy — Tig ) . ( 1 > - (28)
Following [2], the so called local Peclet numbers |P| can be defined by

]- |F | (77,]) V(tnaf)/f])
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P =P(t",~5) = (29)

where the index k denotes the third vertex xj of the triangle T¢ additionally to x; € T° and
xj € T°. The value p(t"*',~f;) in the convective flux Vp of (26) can now be approximated by the

value pj; e,

—Lpi T+ 1+ )t P< -2
P =0 0Pt + p ) —2<P<2 (30)
=5 + o™t P>2.

Replacing the values p(t"*',~f;) in (26) by pf; "+ a more stable discretization scheme is

obtained. In fact, it is useful to compute each example on a chosen grid with and without using
the upwind method (if possible) and to compare obtained numerical results.



3.3 Approximation of the moving boundary

To describe the features of our model related to the moving boundary I'(¢), a numerical level set
function with the following properties will be used.

Firstly, for each time level ¢ = t", a discrete set of nodal values ¢} will be available. The
property ¢ < 0 indicates that at ¢ = t” the node z; does not belong to ("), and, analogously,
if o7 > 0 then z; € Q(t"). The case ¢! = 0 indicates that z; € T'(t").

Supposing a standard linear interpolation in space of the nodal values ¢} and searching for a
zero contour line of such an interpolation, a polygonal approximation 'y (t") & T'(t") can be easily
obtained. This approximation has the property that ', (¢™) N T*¢ is either an empty set, a corner
of T¢, or a line in T°. Consequently, one can use the notation

I =TR{t")NQNTe = Ty(t") :UUF : (31)

The approximative time-dependent domain Q (") is now defined by its boundaries I'; (") and
ODy,.

Now we describe the implementation of the discrete scheme (26) for the approximation of
equation (21) with boundary conditions (23) on an implicitly given boundary T'j, (™).

Firstly, if [['},| # 0, one has to add the contribution of boundary conditions (23) defined on
I['?. to the i-th discrete equation in (26). This can be realized formally by redefining E" 1 in (26)
taking

Frl = F(E oy, o) + IQ | Z ICFe | f (" e, P (1)) (32)

where 7', € T'?, is an integration point, e.g., the middle point of the line I'?,. An analogous
treatment is necessary for discrete convective fluxes.

Next, we describe how the discrete scheme (26) shall be treated if ¢ < 0 or @7 <0 for at least

one index i or j occurring in (26). The simplest variant is to require that g = 0 and V = 0 for
each triangle T'° such that one has qi)” < 0 for all three corners x;;. This means that no diffusive-
convective flux is allowed in T¢ that lies completely in the 1nact1ve part of Dj. Consequently, if
this is true for all triangles T such that z; € T¢, the discrete equation (26) takes the trivial form
pitt = pp.

On the other hand, if one has ¢7 > 0 for at least one corner z;;, a standard approximation
for the diffusive-convective flux can be used as defined in (26). This means that the i-th discrete
equation can adopt some “non-trivial” form even for nodes z; that lies outside of € (¢"), but there
exists at least one neighbour z; such that z; € Qp(t").

Note that in our numerical scheme (26), the finite volumes 2; are always fixed. Therefore, the
(approximative) mass in Qj(t"), if necessary, shall be computed by >_. [Q; N Q(t")|p}.

4 Level set method

Finally, we describe briefly how the numerical level set function can be obtained. The speed s(¢,7)
of the evolution of I'(¢) from (20) can be used to define the advective level set equation

Oo(t,x)
ot

+ s(t,z)|Vo(t,x) =0, (33)

see standard reference books [11, 10] on this topic. Analogously, several level set methods to find an
approximative solution of (33) can be found there, or a finite volume discretization closely related
to vertex-centered finite volume meshes can be found in [9]. Note that the equation (33) shall be
solved on D, and, consequently, the velocity s must be formally defined on (or extended to) the
whole domain D.



We implement the so called “flux-based” level set method, see [5], in which the equation (33)
is formally redefined to

0¢ =\ =
S+ V- (o) =ev-d, (34)
where § = sV¢/|V¢|. The discrete scheme then takes the form [5]

1] (67 — @) + At Y |0E minf{0, N(v5;) - Q(t", ) Hol — ¢7) = 0. (35)
e j

The dependence of  on Vo(t",~5;) for +f; € T¢ is resolved by computing the gradient of ¢ using
the standard linear interpolation of nodal values ¢} for vertices x; of a triangle T°.

The scheme (35) is formally a first order accurate approximation of the level set equation (33),
a second order accurate form can be found in [6].

5 Numerical results

The current, section is intended to show some preliminary numerical results and to demonstrate
some behavior of the numerical solutions that is expected by the system governed by (12) - (15).
For the numerical investigations we use the software toolbox UG [1]. For all numerical simulations
the initial conditions and boundary conditions are given by (16) - (19) and the parameter values
are listed in Table 1 (also given in [8]). The function a; is computed by a; = 2221 pj, that is,
p; =1, j=1,2,3, for all numerical computations.

i 0005 |y, 30 |d 10] o 001
> 0.005 | x3, 30 |d» 001] a; 01
3 0005 | »1 01 | v 30 | as 0.05
B Ol | B2 Odpy | ¢ 01 | e 01
C[l) 0.1 €3 0.01 Qg 25

Table 1: Parameter values

We remark that the initial conditions can be interpreted as follows: At the interface between
the lumen and the intima, there is a small radially symmetric concentration of immune cells. We
seed the intima with a small concentration of debris at some arbitrarily fixed point = (z = (0.8,0))
within the intima. Furthermore, we assume a small uniform distribution of chemoattractants.
The initial condition on the smooth muscle cells is similar to the initial condition on the immune
cells and corresponds to a small axisymmetric concentration of smooth muscle cells (SMCs) on the
outer boundary where the intima meets the media. The boundary condition on this outer boundary
reflects the migration—positive chemotaxis of SMCs from the media as discussed in Section 2.3 and
3.2 of Ibragimov et al. [8].

Figure 3 shows an initial evolution of all species for this example (after a second time step).
Further temporal behavior of the concentrations can be seen from Fig. 4 and Fig. 5.

There, one can observe time evolution of the concentration of immune cells from an axisymmet-
ric initial distribution to a highly localized dense accumulation near the point which was seeded
with a small amount of debris at time zero. Similarly, the SMCs enter into the region of the lesion
through the outer boundary corresponding to the media. The temporal evolution given by the
numerical results also shows that the artery wall dilates first, and, eventually, the lesion bulges
into the lumen.

One of the primary interests in the final numerical solutions is a situation when there is a region
of lower density of SMCs. Such a situation can correspond to points of the highest concentration
of immune cells, i.e., to the cap intended to isolate the lesion. An evidence of such a cap formation,
as described in [8], is of great interest.
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Figure 3: Concentration plots after two time steps. From left to right: py, pa, p3, and c¢;. Addi-
tionally, the contours of the level set function are shown in the first and third plot, and the velocity
Vei /e is shown in the fourth plot.

Figure 4: Concentration plots after 100 time steps, for a description see Figure 3.

Figure 5: Concentration plots after 200 time steps, for a description see Figure 3.



Finally, Figure 6 and Figure 7 show the maximal concentration for different cell species and
chemoattractants as functions of time. As it is shown in Figure 7, the concentration of debris
firstly decreases before it starts to grow later. This shows clearly that the healing impact of the
immune cells and the SMCs is too weak.
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Figure 6: Maximal concentration of the immune cells p;, smooth muscle cells p», and the chemoat-
tractants ¢; as a function of time.
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Figure 7: Maximal concentration of the debris p3 as a function of time.

Note that the presented example was chosen only to check if described numerical methods are
capable of solving the mathematical model and if an expected qualitative behavior of numerical
solutions can be confirmed. Both aspects of numerical methods were confirmed for this example,
nevertheless, further significant improvements are planned for the future that will be reported
elsewhere.
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6 Summary

In this paper we consider a free boundary problem modeling the growth of an atherosclerotic
lesion. We perform numerical simulations using fully implicit finite volume discretization method.
The moving boundary problem is solved within the framework of a level set formulation that
enables an application of fixed grids. Analogously to previous numerical studies [8], the simulations
demonstrate that our numerical model captures certain observed features such as the localization
of immune cells, the build-up of lipids and debris, and the isolation of a lesion by smooth muscle
cells. Additionally, the numerical simulations exhibit that the artery wall is remodeled by dilating
and that, eventually, the lesion bulges into the lumen causing some degree of occlusion of the
artery.
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