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Probability Density Function Modeling of

Turbulent Non–reactive and Reactive Spray Flows

Gutachter: Prof. Dr. Eva Gutheil

Prof. Dr. Jürgen Wolfrum





Abstract

Turbulent spray flows are frequently encountered in practical combustion systems.

The features of turbulent spray flows such as droplet size distribution and mixing pro-

cess of fuel and air are very important for combustion efficiency, combustion stability,

and pollutant emission. Turbulent spray flow is a very complex process which includes

turbulence, heat and mass transfer, and phase change. For reactive cases, chemical

reactions need to be considered. All processes are strongly coupled. Many aspects in

such processes are unsolved.

In the present thesis, turbulent spray flows are investigated using probability den-

sity function (PDF) methods. Two methodologies are used: the presumed and the

transported PDF method. The presumed PDF methods adopt empirical distributions.

The parameters of the distributions are computed from the first several moments which

are determined by solving the transport equations of these moments. The transported

PDF methods directly solve the transport equation of the single/joint PDF. The statis-

tics are determined from the solutions.

A PDF of the mixture fraction for turbulent spray flows is proposed. The PDF

transport equation is deduced. The molecular mixing is described using an extended

Interaction-by-Exchange-with-the-Mean (IEM) model. The PDF transport equation is

closed through coupling with an extended k − ǫ model, and is solved using a hybrid fi-

nite volume/Lagrangian Monte-Carlo particle method. A turbulent non-reactive spray

jet is simulated. The numerical results of the transported PDF method are in good

agreement with experimental data from the literature, and they improve the results

from the moment closure method. Furthermore, the shapes of the PDF of the mixture

fraction at different positions, which are computed by the transported PDF method,

are presented and analyzed. It appears that the spray source changes the value of the

mean mixture fraction, but it does not change the shape of its PDF. A comparison of

the results of the transported PDF method with the standard β function shows that

the standard β function fails to describe the shape of the PDF of mixture fraction.

With the definition of appropriate local maximum and minimum values of the mixture

fraction, a modified four-parameter β function is suitable to reflect the shape of the

PDF very well.

A joint velocity-scalar PDF for turbulent spray flows is proposed. Its transport

equation is deduced and modeled. The simplified Langevin model is extended to model

the gas velocity. The molecular mixing is modeled using the extended IEM model.

The simulation of a turbulent non-reactive spray flow shows that the profiles of the gas

velocity are well predicted by this joint PDF model.

A joint enthalpy-mixture fraction PDF for turbulent spray flames is proposed.
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Its transport equation is deduced. The molecular mixing is modeled using the ex-

tended IEM model. A turbulent methanol/air spray flame is simulated. A detailed

methanol/air combustion mechanism consisting of 23 species and 168 elementary re-

actions is implemented through a spray flamelet model. The numerical results of the

gas velocity, the gas temperature, the mass fraction of fuel vapor, and the Sauter mean

radius are compared with experimental data from the literature and with results from

the moment closure method. Good agreement with the experiment is observed. The

transported PDF method improves the results of the moment closure method with

respect to the mass fraction of the methanol vapor. The presumed PDFs of mixture

fraction used in the moment closure method are compared with the computed PDFs

of the mixture fraction from the transported PDF method. The results show that the

latter ones are more accurate.

The applications of the presumed PDF methods in turbulent spray flows are dis-

cussed. The normal distribution, log-normal distribution, Nukiyama-Tanasawa distri-

bution, Rosin-Rammler distribution, standard β distribution, and the modified four-

parameter β distribution are discussed and analyzed. The relationships between them

are pointed out.

A turbulent ethanol/air spray flow is simulated using k − ǫ model. A conventional

Eulerian/Lagrangian formulation is used. The numerical results of the non-reactive

case are compared with the measurements obtained by phase Doppler anemometry.

The Sauter mean radius, mean droplet velocity as well as droplet size distribution in

the non-reactive case are well predicted. For the reactive case, the detailed chemistry

is implemented in the simulation through a spray flamelet model, in which 38 species

and 337 elementary reactions are considered. The profiles of the gas temperature are

compared with the experimental data which is measured using 2D NO-LIF. Good

agreement with the experimental data is found.

Especially, an implicit scheme is designed to compute the particle velocity in con-

vective environment. A numerical test shows that the implicit scheme is more robust,

accurate and efficient than the conventional explicit scheme.

Keywords: turbulent spray flow, Monte-Carlo method, PDF method, probability

density function, flamelet model
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Zusammenfassung

Turbulente Sprays werden häufig im praktischen Verbrennungsystem angetroffen.

Die Eigenschaften der turbulenten Sprays, wie Verteilung der Tröpfchengrößen und

die Vermischung von Kraftstoff und Luft sind für die Effizienz, die Stabilität, und

das Emissionsverhalten der Verbrennungprozesse sehr wichtig. Dies stellt ein sehr

komplexes Problem dar. Die Prozesse Turbulenz, Wärme- und Stoffübertragung und

Phasenänderung müssen dazu behandelt werden. Für reagierende Stömungen müssen

chemische Reaktionen berücksichtigt werden. Diese Prozesse sind stark mit einander

gekoppelt und viele Aspekte dieser Prozesse sind bislang unbekannt.

In dieser Arbeit werden turbulente Sprays mit Hilfe einer Wahrscheinlichkeitsdichte-

funktion (Probability Density Function, PDF) dargestellt. Zwei Ansätze werden dabei

verwendet, angenommene und transportierte PDF Methoden.

Zunächst wird eine PDF für die Mischungsbrüche des turbulenten Sprays vorge-

schlagen. Die PDF Transportgleichung wird dazu abgeleitet. Das molekulare Mischen

wird mit einem erweitertem (Interaction-by-Exchange-with-the-Mean, IEM) Modell

behandelt. Die PDF Transportgleichung wird mit einem erweiterten k − ǫ Modell

geschlossen. Es wird durch eine hybride Finite-Volumen/Lagrange Monte-Carlo Me-

thode gelöst. Ein turbulentes, nicht reagierenden Sprays wird damit simuliert. Die nu-

merischen Resultate der PDF Methode sind in guter Übereinstimmung mit den experi-

mentellen Daten aus der Literatur und verbessern die des Momentenmodells. Außer-

dem werden die mittels der Monte-Carlo Methode berechneten Formen der Wahrschein-

lichkeitsdichtefunktion des Mischungsbruchs in unterschiedlichen Positionen dargestellt

und analysiert. Es ergibt sich, dass die Sprayquelle den Wert des mittleren Mischungs-

bruchs ändert, aber sie ändert nicht die Form seiner PDF. Ein Vergleich der Monte-

Carlo PDF mit der Standard-Betafunktion zeigt, dass die Standard-Betafunktion die

Form der PDF nicht beschreiben kann. Mit der Definition von geeigneten lokalen

Maxima und Minima des Mischungsbruchs ist eine modifizierte Betafunktion mit vier

Parametern sehr gut geeignet, die Form der Monte-Carlo PDF darzustellen.

Weiterhin wird eine gebundene Wahrscheinlichkeitsdichteverteilung zwischen Ge-

schwindigkeit und skalaren Größen für turbulente Sprays vorgeschlagen. Die Transport-

gleichung hierfür wird abgeleitet und modelliert. Ein vereinfachtes Langevin-Modell

wird erweitert, um die Gasgeschwindigkeit zu modellieren. Das molekulare Mischen

wird mit dem erweiterten IEM-Modell beschrieben. Simulationen des turbulenten

nicht-reaktiven Sprays zeigen, dass die numerischen Resultate für die Gasgeschwin-

digkeit durch dieses Modell verbessert werden.

Des Weiteren wird eine gebundene Enthalpie-Mischungsbruch-PDF für turbulente

Sprayflammen vorgeschlagen. Die entsprechende Transportgleichung wird hergeleitet.
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Das molekulare Mischen wird mit dem modifizierten IEM-Modell beschrieben. Eine

turbulente Methanol/Luft Sprayflamme wird simuliert. Der verwendete Methanol-

Luft-Mechanismus umfasst 23 Spezies und 168 Elementarreaktionen. Er wird durch

ein Sprayflammen-Schichtenmodell integriert. Die numerischen Resultate für die Gas-

geschwindigkeit, die Gastemperatur, den Massenbruch des Kraftstoffdampfs und den

Sauterradius werden mit experimentellen Daten aus der Literatur und den Resul-

taten der Momentenmethode verglichen. Es ergibt sich eine gute Übereinstimmung

mit den experimentellen Daten. Die verwendete Methode verbessert die Resultate

des Momentenmodells in Bezug auf den Massenbruch des Methanoldampfes. Die

angenommene PDF des Mischungsbruchs, die im Momentenmodell verwendet wird,

wird mit den berechneten-PDFs des Mischungsbruchs aus der transportierten PDF-

Methode verglichen. Die Resultate zeigen, dass die letztere zuverlässiger ist. So sind

die Zusammensetzung des Gemischs, die durch die verwendete PDF-Methode berech-

net wird, genauer.

Die Anwendungen der angenommene PDF Methode in den turbulenten Sprays wer-

den diskutiert. Die Normalverteilung, logarithmisch-normal-Verteilung, Nukiyama-

Tanasawa-Verteilung, Rosin-Rammler-Verteilung, Standard-Beta-Verteilung, modifi-

zierte Vierparameter Beta-Verteilung werden besprochen und analysiert. Die Ver-

bindungen zwischen ihnen werden dargestellt.

Eine turbulente Ethanols/Luft-Spray wird sowohl experimentell, als auch durch

numerische Simulation untersucht. Ein herkömmliches Euler/Lagrange Modell wird

verwendet. Der mittlere Sauterradius, die mittlere Tröpfchengeschwindigkeit sowie die

Verteilung der Tröpfchengrößen werden gut vorausgesagt. Der detaillierte Reaktions-

mechanismus wird in der Simulation der Sprayverbrennung durch ein Sprayflammen-

Schichtenmodell behandelt, in dem 38 Spezies und 337 Elementarreaktionen betrachtet

werden. Es ergibt gute Übereinstimmung zu den experimentellen Daten.

Zusätzlich wird ein implizites Schema entworfen, um die Partikelgeschwindigkeit des

Sprays zu berechnen. Ein numerischer Test zeigt, dass der implizite Schema robuster,

genauer und leistungsfähiger ist als ein herkömmliches explizites Schema.

Schlüsselwörter: turbulente Sprays, Monte-Carlo-Methode, PDF-Methode, Wahr-

scheinlichkeitsdichtefunktion, Flamelet-Modell
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1. Introduction

1.1 Background

Combustion is presently the major source of mechanical and electrical energy and it

will remain the major source in the foreseeable future. Currently, more than 90% of the

primary energy is provided by combustion [1]. According to the World Energy Council

the energy demand will increase by 65% until 2020. Therefore, it is of utmost interest

to make economic use of the available resources. The impact of pollutant emission and

other detriments should be minimized.

Liquid fuels occupy a large portion of modern energy supplement, because of its

convenience in transport, flexibility in storage, and availability. In 2002, oil occupied

34.9% of the total primary energy supply [1]. Combustion of liquid hydrocarbon fuels

occurs in many practical combustion systems, such as gas turbines, automotive engines,

industrial furnaces, and liquid-fueled rockets. The liquid fuels are injected as a spray

into the combustion chamber. Almost all the flows in practical devices are turbulence.

The resulting turbulent non-reactive and reactive spray flows are very complex. Diverse

complex phenomena are involved, such as the hydrodynamic characteristics of fuel

injection and spray formation, the transport characteristics of droplets, the interaction

between phases, the interaction of heat and mass transfer with turbulence and chemical

reactions. These factors have significant effect on the performance of the combustion

system. The liquid atomization, droplet size distribution in the spray, spray angle,

spray pattern, and mixing of fuel and air are crucial for combustion efficiency, stability,

and pollutant emission in spray combustion.

Modern combustion systems are designed with the following goals: high combus-

tion efficiency, high reliability, and minimum emission of the air pollutants. Numerical

prediction is a feasible and economic way to establish the criteria for designing the com-

bustors under these detriments. Application of numerical simulation in industry has

grown rapidly during the last half century. The numerical simulations are now truly on

par with experiment and theory as a research tool for fluid dynamics. The numerical

simulations bridge the gaps between the theory and experiment. The weaknesses of

each method are complemented by the strengths of the others. The numerical simu-

lation complements the theoretical investigations where the nonlinearity, high degrees
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of freedom, or lack of symmetry are of importance, and complements the experiment

where the devices are expensive, the data is inaccessible, or the phenomenon is very

complex. For the study of combustion, numerical simulations improve our under-

standing of flame structures and dynamics. The numerical results provide multi-scale

information of the flows that is not available using any other technique. The influences

of individual parameters in the combustion processes can be established via numerical

simulations. Now the numerical simulations are widely used in the design and opti-

mization of the practical combustion system. Compared to the experimental testing

and prototyping, the development costs of numerical simulation are very low. Today,

no real progress in design or optimization can be made without numerical simulations.

In the present work, turbulent non-reactive and reactive spray flows are investigated

by numerical simulations and theoretical analysis with the help of the available exper-

imental data. The transported PDF method and moment closure method are used to

simulate the turbulent non-reactive and reactive spray flows. The numerical results are

compared with the experimental data and numerical results from the literature. The

results of statistical distributions are analyzed using the presumed PDF method. In

the following three sections, the numerical simulations of turbulent spray flows, PDF

methods, and turbulent combustion models are reviewed. In Chapter 2, the governing

equations and physical models are presented, including the gas phase, liquid phase,

as well as the transported PDF method, presumed PDF method, and spray flamelet

model. Chapter 3 presents the numerical methods solving the governing equations.

Chapter 4 shows the numerical results and the discussions. Turbulent methanol/air

and ethanol/air spray flows as well as spray flames are simulated. Numerical results

are compared with the experimental data and other results available in the literature.

Finally, conclusions and perspectives are given in Chapter 5.

1.2 Numerical Simulations of Turbulent Spray

Flows in Air

The status of spray and droplet modeling has been reviewed in [2, 3, 4, 5, 6, 7, 8]. In

this section, numerical methods to simulate the turbulent spray flows are reviewed.

There are several ways to couple the carrier phase and the dispersed phase. The

simplest way is a one-way coupling which predicts the dispersion behavior of trans-

ported discrete particles within a given turbulent gas flow (carrier phase → dispersed

phase). The effects of dispersed particles on the carrier phase are neglected. However,

such effects should not be neglected in many cases. The turbulence modifies dispersed

particles behavior, which in return modifies turbulence, because micro turbulence is

produced due to the presence of the particles. At the interface of the particles, gas-
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phase boundary layers and wakes develop because of relative motion between the par-

ticle center and the carrier phase. If there is heat and mass transfer between particles

and carrier phase, two-way coupling should be used (carrier phase ↔ dispersed phase).

Furthermore, when the particle number density is sufficiently large and the effect of

the particle-particle interaction cannot be neglected, four-way coupling must be used

(carrier phase ↔ dispersed phase ↔ dispersed phase). In the present work, only di-

lute spray flows are considered. The droplet interactions are neglected. The effects of

two-way coupling are taken into account.

The locally homogeneous flow (LHF) model neglects the slip effect between the

liquid phase and gas phase. The two phases are in dynamic and thermodynamic equi-

librium. At each point in the flow field, they have the same velocity and temperature.

LHF condition is the limiting case with infinitely small droplets.

To take into account the effects of the finite rate transportation between the two

phases, the separated flow (SF) model is proposed. In general, there are three different

approaches in the SF model: discrete-droplet model (DDM); continuous droplet model

(CDM); continuous formulation model (CFM). CDM is applicable only when a few

phenomena must be considered. Otherwise, the computational cost will be very high.

CFM treats the two phases as continuous phases and solve both of them with an

Eulerian formulation. It is referred to as an “Eulerian approach” in mathematics,

distinguishing it from the “Lagrangian approach”. Both of them will be discussed

later. It is inconvenient when a range of droplet sizes, and effects of droplet heat-

up, etc. must be considered. It is also difficult to establish the representation of the

turbulent stresses and transport in liquid phase. DDM corresponds to another category

of approach: the “Lagrangian approach”. In DDM, the spray is represented by a finite

number of droplet groups. The motion and transport of these droplet groups are

tracked through flow field using a Lagrangian formulation. The mean quantities of the

liquid phase are computed through the statistical methods. An Eulerian formulation or

a Lagrangian formulation is employed to solve the gas phase. The effects of the liquid

phase are considered by introducing appropriate spray source terms into the governing

equations of the gas phase. DDM eliminates errors due to the numerical diffusion in

the solution of liquid phase. It is convenient for DDM to construct physical model

and numerical algorithm. Thus it is widely used in current numerical simulation of

multiphase flows [2, 7]. Considering turbulent dispersion, DDM is further subdivided

into deterministic separated-flow (DSF) models and stochastic separated-flow (SSF)

models. DSF models neglect the droplet-turbulence interaction which is not satisfying

in the most cases. They give unphysical results with laminar-like behavior. Therefore,

SSF models dominate this field [2, 7]. In present work, only SSF models are considered.

The mathematical approaches for multiphase flow are usually divided into two
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main categories: Eulerian approach (or two-fluid model) and Lagrangian approach (or

particle-tracking method) [9, 10, 11]. They are categorized by the way of description

of the dispersed phase. Eulerian approach takes the dispersed phase as a continuous

fluid. It introduces several continuous scalar fields to represent the particles. The

particle characteristics are defined at nodes, which are generally coincident with those

used for the continuous-phase grid. The mean field equations are derived for both

phases. Therefore, the dispersed phase is modeled at the macroscopic level by this

way. The Lagrangian approach is performed at a mesoscopic level. In the Lagrangian

approach, the mean field equations are only used for the continuous phase. The particle

characteristics are defined along the particle path lines. The particles are tracked

individually by using a set of equations which describe their dynamical behaviour.

The stochastic particles are tracked to reproduce the same statistics as the real one.

The time evolution of the variables of interest is described by stochastic differential

equations (SDEs).

The Eulerian approach relies more on the physical models while the Lagrangian

approach remains closer to the physics. The computational cost of the Eulerian ap-

proach is lower than the Lagrangian approach. The Eulerian approach is well suited

to simulate the dense multiphase flow. However, it is less general because of the as-

sumption of a dispersion tensor. It is difficult for the Eulerian approach to account

for complex phenomena. The previous studies [9, 10, 11] show that the Lagrangian

approach is well suited for the simulation of complex phenomena, for instance, vapor-

ization, combustion, particle/wall interaction, coalescence, break up. Compared to the

Eulerian approach, the Lagrangian approach avoids a significant increase of the model

constants [9]. The non-physical numerical diffusion of Eulerian particle density in re-

gions of high gradients can be eliminated because of Lagrangian particles’ point-wise

spatial accuracy. In the present work, the Lagrangian approach with point-volume

model is used.

In both the classical Eulerian and Lagrangian approach, the continuous phase is

described using the Navier-Stokes equations. Direct numerical simulation (DNS), large

eddy simulation (LES), Reynolds-averaged numerical simulation (RANS) method, and

probability density function (PDF) method are widely used to solve the continuous

phase. Direct numerical simulation (DNS) resolves all time and length scales of the

flows [12, 13, 14]. Each simulation produces a single realization of the flow. DNS

is a powerful research tool. It is extremely valuable in helping us understand the

dynamics because of it unrivaled accuracy. DNS was first used for multiphase flow in

1970’s [15]. Many aspects of the multiphase flows are investigated by DNS, including

particle dispersion [16, 17, 18, 19, 20], turbulence modification [21, 22, 23, 24], particle

interaction [25, 26]. The heat transfer [27, 28, 29, 30], mass transfer [31, 32, 33, 34,
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35, 36, 37, 38, 39], multicomponent effects [40, 41], supercritical effects [42, 43, 44],

Soret and Dufour effects [44] and heterogeneous reaction [45, 46, 47, 48, 49, 50] were

considered in DNS since the end of the last century. However, the application range of

DNS is severely limited, because the computational cost of DNS increases as Re3. A

large number of degrees of freedom have to be considered in turbulent non-reactive or

reactive flows. This problem becomes much more serious for the turbulent multiphase

flows. A full DNS of a practical system is extremely difficult for current computational

facilities. Therefore, averaging techniques and simplification are necessary to reduce

the computational costs. As a result, unclosed terms arise. Special models are then

developed to close the problems. Reynolds averaged numerical simulation (RANS)

method only describes the time averaged quantities of the flow field. The effects of the

fluctuating variables are described through a turbulent viscosity model or Reynolds-

stress model. In the turbulent viscosity models, the turbulent viscosity is obtained from

an algebraic relation or from turbulent quantities such as turbulent kinetic energy and

its dissipation rate, which is solved using a modeled transport equation. Among the

turbulent viscosity model, the two-equation k − ǫ model is the most frequently used.

In the Reynolds-stress models, the modeled transport equations are solved for each

component of the Reynolds stress and for the dissipation rate which provides a length

or time scale of the turbulence [51]. Therefore, the turbulent viscosity hypothesis is

not needed any longer. For the compressible flows, the density cannot be taken as a

constant. Therefore, we must consider the density in the same statistical fashion as the

other fluid-mechanical quantities. If we directly apply the time-averaging on the Navier-

Stokes equation, a wide variety of quantities involving density fluctuation occur in the

averaged equations. Favre (mass) weighted averaging is used to solve this problem. In

Favre averaging, all fluid-mechanical quantities except the pressure are mass averaged.

The correlations with the density fluctuation are eliminated. RANS methods are widely

used in the simulation of engineering flows because of their computational simplicity.

Unfortunately, many unsteady behavior cannot be captured by the RANS methods. For

turbulent combustion, the knowledge of steady statistical means is not always sufficient.

An alternative is to use large eddy simulation (LES). LES explicitly computes the large

structures of the flows, usually the ones larger than the grid size. The effects of the

smaller one are modeled using a subgrid-scale (SGS) model. The large structures in

turbulent flows generally depend on the geometry of the system, while the small ones are

more universal. Therefore, the models for LES may be more efficient and more global.

LES is a powerful tool to predict the unsteady phenomena in turbulent flow which is

connecting to the combustion instability, turbulent mixing, and turbulence-chemistry

interaction. LES has been applied to the complex flows that occur in engineering

applications [52, 53, 54, 55, 56]. LES was applied to multiphase flow in last decade
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[57]. To simplify the problem, the effects of particles on the carrier phase and the effects

of carrier phase subgrid fluctuations on the particles are neglected in the simulation

[57, 58]. Two-way coupling was considered later in [59, 60, 61, 62, 63]. Recently, LES

has been used to simulate secondary breakup [64].

PDF method provides an attractive alternative. It will be discussed in detail in the

following section.

1.3 Probability Density Function Methods

Suppose a certain physical phenomenon is of interest, and an experiment is conducted

to obtain an observed value of this phenomenon. It may be possible to develop a

deterministic mathematical model to predict the outcome with the known conditions.

However, the outcome cannot be determined on the basis of the available knowledge

of the physical phenomenon. Or the outcome is very sensitive to the initial conditions

and boundary conditions. This is very common in the fluid dynamics in which the non-

linear effects play a very important role. Theoretically, the flows will be the same if they

have exactly the same initial conditions and boundary conditions. Unfortunately, in

most practical flows, the conditions cannot be exactly controlled. A small perturbation

will be enlarged by the nonlinear effects, which will lead to a completely different flow

field. A flow exhibiting such properties is called as a turbulent flow. All the phenomenal

properties of the turbulent (multi-phase) flows fluctuate in a non-deterministic manner

due to the fluctuations in the initial conditions and boundary conditions. If we measure

one physical variable in a turbulent flow with the variation of time, we may get a result

like the one illustrated in Fig. 1.1 (left). For such cases, deterministic models are too

complex to develop. This is the motivation for modeling the turbulent (multi-phase)

flow as a random medium and describing it with probabilistic mathematical model.

The probability theory and statistical theory are the basis of judgement when cer-

tainty is not available or not possible. The main object of the probability method is

to generalize from a given set of data to a more broadly applicable statement. The

main object of the statistical theory is to estimate the properties of a population from

tests on the samples drawn from that population. In statistical analysis, the physi-

cal variables can take on many possible values, like the one shown in Fig. 1.1 (left).

With the knowledge of the statistical theory, the original time-dependent coordinate is

transformed into a PDF coordinate (Fig. 1.1) by dividing the whole range of this fluid

variable into several class intervals. The class frequency in each interval is counted.

The PDF at the ith class interval is evaluated by:

f =
Ni

Ntotal
· 1

∆xi
, (1.1)
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where Ni is the frequency of class i; Ntotal is the total number of the available data;

∆xi is the width of the ith class interval. Therefore, PDF is theoretically independent

of the choice of the width of class interval while the frequency distribution function is

not. When evaluating one PDF, identical class interval is not necessary. The unit of

the PDF is the reciprocal of this variable’s unit, [x]−1.

Giving a joint PDF of N independent variables Ψ1, Ψ2, ...ΨN , the integral of the

PDF in whole space is normalized to unity:

∫

Ψ1,Ψ2,...ΨN

f(Ψ1, Ψ2, ...ΨN)dΨ1dΨ2...dΨN = 1. (1.2)

The mean of an arbitrary function Q defined in Ψ-space can be calculated from the

PDF:

〈Q〉 =
∫

Ψ1,Ψ2,...ΨN

Q(Ψ1, Ψ2, ...ΨN)f(Ψ1, Ψ2, ...ΨN)dΨ1dΨ2...dΨN . (1.3)

The joint PDF contains all the required information to describe the flow fields. These

PDFs can be extracted from experimental data, or the numerical results of direct

numerical simulations, LES, transported PDF method.
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Fig. 1.1: Transformation from time-dependent coordinate (left) to PDF coordinate

(right)

Now, the next step is to describe the shape of the PDF with mathematical tools.

There are two different ways to do it. One way is to use probability theory. We pre-

sume an empirical expression which fits the real PDF. This is the so-called “presumed

PDF method”. Since the shape of the PDF usually depends on the local physical

conditions, a few parameters of the PDF are computed at each location based on the

balance equations of the first several moments [65], usually the mean and variance.

The presumed PDF method is often used to model one variable. It will become much

more difficult to model more than one variable with a presumed joint PDF. For such
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problem, people usually assume that they are statistical independent and model the

single variable with presumed PDF:

f(Ψ1, Ψ2, ...ΨN ) ≈ f1(Ψ1)f2(Ψ2)...fN(ΨN). (1.4)

The presumed PDF method for fluid dynamics is briefly presented in Section 2.2.2.

Several popular presumed PDFs are discussed. The relationships between them are

analyzed.

Another way is to use statistical theory. We derive the transport equation of this

PDF, and solve it numerically. This method is the “transported PDF method” (in

many situations, it is referred to as the “PDF method”). When complex processes are

involved in the continuous phase, for instance, compressible turbulent reactive flow,

this method is a better choice for simulation.

With the PDF method, the local instantaneous variables are simulated explicitly

and writing closure laws directly at the macroscopic level is avoided. PDF methods

take full account of the stochastic nature of turbulence by describing the flow at each

point in terms of the joint PDF of fluid variables, such as velocity, temperature, com-

positions. Because of this complete description, the most important processes can

be modeled without any assumptions, including the terms of convection, body force,

mean pressure gradient, chemical reaction source, and spray source for turbulent spray

flows. Especially, the PDF methods exactly treat the arbitrary complex chemistry,

which makes the PDF methods very attractive in the research of reactive flows. The

spray source terms appear in closed forms in the PDF transport equation. In this

sense, PDF methods have the potential to be efficient simulating tools for turbulent

non-reactive/reactive spray flows.

The joint PDF provides much more information than the conventional method. The

independent turbulent fluctuation of all considered fluid variables can be completely

represented. All the moments of fluid variables can be determined from the joint PDF,

if the moments exist. However, in general, the joint PDF cannot be determined from

a finite number of moments. The turbulence-chemistry interaction, turbulence-droplet

interaction, chemistry-droplet interaction can be well modeled through the solution of

the transport equation for this joint PDF [66].

The models developed for PDF methods are more universal. They depend little on

the external conditions, such as combustor configuration, inflow conditions. The PDF

methods can handle many different inflow streams of unrelated velocities, temperature

and compositions. For instance, the combustion in the gas turbine engines cannot

be simply categorized into classical premixed or non-premixed combustion. Most of

the turbulent combustion models are designed for special flame type, for instance, the

flamelet models for turbulent diffusion flames [67], flame surface density models for
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premixed flame [68]. The conventional methods meet the difficulties of deciding which

models to be used. Whereas for the PDF methods, this is not a problem. Therefore, the

PDF methods have the potential to be novel methods for the computation of turbulent

flows.

The multi-time Lagrangian joint PDF completely describes the past history of all

fluid particles, which motivates the application of PDF method for unsteady problem

[69, 70]. The computational cost of the PDF method compared to direct numerical sim-

ulations is considerably lower and affordable for modern computers [71, 72]. Sometimes

their computational costs are even lower than the presumed PDF methods [72].

Hopf [73] proposed a PDF transport equation for turbulent flow first in 1952. In

some literature, the PDF transport equation is referred to as “Hopf’s functional differ-

ential equation”. Several attempts were made to give an asymptotic solution for the

PDF transport equation of simplified cases [74, 75]. Lundgren [76, 77] derived, modeled,

and solved a transport equation of the joint PDF of velocity for turbulent flow. Dopazo

and O’Brien [78, 79, 80], and Pope [81] derived, modeled and solved the transport

equation for the joint PDF of composition. The PDF methods became very popular

in numerical simulation of turbulent flow since Pope’s work [71, 82, 72, 51, 83, 84].

PDF methods for turbulent single-phase flows have reached the level of maturity.

They have become a very active and fruitful research area [84]. The transport equa-

tion of the joint velocity-turbulent frequency-composition PDF of turbulent flows has

been derived and modeled [85]. A complete closure is provided by the resulting mod-

eled transport equation [86]. Advanced mixing model, including Euclidean minimum

spanning tree (EMST) model [87], has been developed. The change in particle compo-

sition is determined by particle interactions along the edges of a Euclidean minimum

spanning tree constructed in composition space. A new near-wall model has been devel-

oped [88, 89]. A fully consistent hybrid finite volume/Monte-Carlo algorithm has been

developed to solve the transport equation of the joint velocity-turbulent frequency-

composition PDF on structured meshes [90, 91, 92] and unstructured meshes [93, 94].

The computational efficiency of the PDF method is improved significantly by using

the consistent hybrid algorithm. Multiple mapping conditioning (MMC) approach

has been developed in the context of the turbulent mixing by combining conditional

moment closure and amplitude mapping closure [95]. The MMC model represents a

logical combination of the PDF method and the conditional moment closure method.

The mapping between Gaussian reference fields and species fields is constructed to

yield a one-point joint PDF. The statistics of the species fields are determined from

the joint PDF and the mapping. The detailed chemical reaction has been adopted

through computationally efficient numerical schemes [96, 97, 98] or laminar flamelet

model [99, 100, 101]. Turbulent-radiation interactions have been modeled through a
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joint velocity-composition PDF [102] and a composition PDF [103]. The concept of the

transported PDF method has been introduced into the context of LES, which led to

the filtered density function (FDF) method [104]. The FDF method has become a very

popular topic in combustion community because of its ability to deal with unsteady

phenomena [105, 106, 107, 108, 109, 56]. The PDF method has also been coupled

with unsteady Reynolds averaged numerical simulation (U-RANS) to investigate the

unsteady phenomena in turbulent non-reactive/reactive flows [69, 70]. Recently, Mura

and Borghi [110] proposed a partial PDF concept, in which the whole PDF is de-

composed into several partial PDFs. Each PDF has a relative weight. The transport

equation of the partial PDFs and the weighting coefficients were deduced.

However, there are still significant areas requiring careful research in PDF methods,

especially in application to the multi-phase flows. PDF methods were introduced into

the field of multiphase flow at the beginning of 1990’s. PDF methods were used to

describe the dispersed phase. Derevich and Zaichik [111] derived the joint PDF trans-

port equation of particle’s velocity and temperature. Assuming that the fluctuation

of the gas velocity seen by particles is a Gaussian random process, the conditional

average of the gas fluctuation velocity is closed using the Furutsu-Novikov-Donsker

formula. Nevertheless, the assumption of Gaussian random process lacks a solid foun-

dation. Reeks and his co-workers [112, 113] derived the PDF transport equation of

particle’s velocity in analogy with the kinetic theory. The effects of velocity fluctua-

tion of carrier phase were modeled using Kraichnan’s direct interaction approximation

(DIA) and Lagrangian history direct interaction (LHDI) approximation. Hyland et al.

[114] modeled the PDF equation of particle’s velocity using Furutsu-Novikov-Donsker

formula and obtained an equation that is identical to the one obtained by Reeks [115]

in LHDI framework. Pandya and Mashayek [116] used Van Kampen’s cumulant ex-

pansion method to obtain an approximate equation of PDF to predict the droplet

evaporation in isothermal and isotropic turbulent flows. Consequently, the macro-

scopic equations of the moments for interesting particle properties were derived from

the particle PDF equations [115, 117, 118, 119, 120, 121, 122, 123, 124, 125]. Jones

and Sheen [126] deduced a joint PDF of particle’s velocity, temperature, and mass

(size). The effects of turbulent fluctuation were taken into account using a Wiener

process. The PDF transport equation is solved using a Monte-Carlo method. Simonin

[127] described the dispersed phase in terms of a particle PDF of velocity, temperature

and mass obeying a kinetic equation including the effects from the fluid turbulence

and inter-particle collisions. The quantities of the continuous phase occurring in the

particle PDF transport equation are replaced with so-called “particle-seen” quantities.

The particle-seen quantities are determined by introducing appropriate physical mod-

els. The particle-seen fluid velocity is modeled by using a Langevin equation, which
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is identical to the one used in the stochastic trajectory models and the one used in

the PDF equation of single-phase flows [71]. The resulting closed form of the kinetic

equation is used to derive an Eulerian transport equation for the mean and turbulent

correlations of the dispersed phase variables [128]. Minier and Pozorski [129, 130, 131]

followed Simonin’s idea and improved the coefficients in the Langevin equations. The

corresponding stochastic model is still in development [129, 130, 131, 132]. Combining

with second-order moment closure of fluid turbulence, Liu et al. [133, 134] solved the

joint PDF transport equation of droplets and droplet-seen gas properties with a hybrid

finite-volume and Monte-Carlo method. The crossing-trajectory effect and the conti-

nuity effect is taken into account by the Langevin equation proposed by Simonin [127].

A well-specified case of spray evaporation in a sudden-expansion chamber is simulated

for validation.

On the other hand, PDF methods were used to describe the carrier phase in multi-

phase flows. Raju [135, 136, 137] deduced and solved joint composition PDF transport

equation of turbulent spray flows. Interaction-by-exchange-with-the-mean (IEM) mix-

ing model was used to account the effects of molecular mixing. A single-step mechanism

was used for the reactive cases. The PDF transport equation was solved using a hy-

brid finite-volume and Monte-Carlo method on unstructured meshes. Taut et al. [138]

deduced and solved joint composition PDF transport equation of the turbulent spray

flows too. Modified Curl’s model was used for molecular mixing. Detailed chemistry

was implemented using intrinsic low-dimensional manifolds (ILDM) method. Monte-

Carlo method was implemented into the KIVA III code to solve the PDF transport

equation. Durand et al. [139] suggested a joint composition PDF for Diesel engine

combustion. Modified Curl’s model was extended to account the effects of vaporiz-

ing droplets. The PDF transport equation was solved using an Eulerian Monte-Carlo

method which was implemented into KIVA II code. Ge and Gutheil deduced, modeled,

and solved a single scalar (mixture fraction) PDF [140] and a joint velocity-scalar PDF

[141] for the turbulent spray flows. IEM model was extended to take into account the

effects of molecular mixing. For the joint velocity-scalar PDF, Langevin model was

extended to model the gas velocities. A hybrid finite volume and Lagrangian Monte-

Carlo method was used to solve the PDF transport equation. Recently, Ge and Gutheil

[142] deduced joint mixture fraction-enthalpy PDF for turbulent spray flame. Detailed

chemistry was implemented through spray flamelet model.

Zhu et al. [143, 144] deduced and solved a single joint PDF transport equation of

all liquid-phase and gas-phase random variables. A phase-indicator function was used

to capture the interface of the multiphase flow. The effects of turbulent fluctuation

were neglected. Rumberg and Rogg [145] suggested to describe the multiphase flow

with two separate density function. Both phase density functions and their transport
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equations were defined in the overall two-phase flow field. Effects of interfacial sur-

faces interaction, including heat and mass transfer, on the overall flow were taken into

account by source terms in the transport equation. Following this idea, Roekaerts and

his co-workers [146, 147] adopted a joint velocity-composition PDF for the continuous

phase and the joint PDF of droplet velocity, droplet temperature, droplet-seen gas ve-

locity, and droplet-seen gas composition for dispersed phase. A Reynolds-stress model

was used to close the problem. A turbulent spray flow with evaporation was simulated

in which the effects of two-way coupling were neglected [148].

1.4 Turbulent Combustion Models

Combustion processes in gaseous phase evolve many complex physical and chemi-

cal phenomena: reaction chemistry, turbulence transportation, diffusion of heat and

species, and thermodynamics. These processes are strongly coupled. The interaction

between them cannot be neglected, especially the turbulent-chemistry-interaction. The

chemical reaction rates are strongly coupled to molecular diffusion at the smallest scales

of turbulence. The heat release from the chemical reactions affects the turbulent flow,

both from variations in density field and from the effects of local dilatation. The study

of turbulence-chemistry interaction is one of the most important topics in combustion

community. To reduce its complexity, a simplified chemistry of single-step reaction or

two-step reaction is often used in engineering simulation. The mean heat release rate

and the species mass fraction are of great practical interest. Because either RANS or

LES, the combustion occurs at the unresolved scales of the computations, the mean

reaction rates should be approximated using combustion models. The simplest and

direct approach is to develop the chemical rate in taylor series as a function of species

mass fraction and temperature [149]:

¯̇ωF = −Aρ̄2T̃ bỸF ỸO exp
(
−TA

T̃

)

×

1 +

˜Y ′′
F Y ′′

O

ỸF ỸO

+ (P1 + Q1)




˜Y ′′
F T ′′

ỸF T̃
+

˜Y ′′
OT ′′

ỸOT̃


+ ...


 . (1.5)

This equation leads to various difficulties. Because of strong non-linearities, large errors

exist if only few terms of the series expansion are retained. Many new unclosed quan-

tities arise that must be modeled using algebraic expressions or additional transport

equations.

Due to the growing awareness concerning combustion related pollutant emissions

and global warming, detailed chemistry is necessary for the numerical simulation. On

the other hand, if the detailed chemistry is implemented, the computational cost be-

comes very high because of the high degree of freedom of the system. In the most
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common formulation, a time-dependent differential equation is used to calculate the

concentration of each chemical species. These coupled equations are characterized

with widely disparate characteristic time scale, which increase the difficulties in com-

putation. Such character, referred as “stiffness”, needs special numerical treatment

[150, 151]. Actually, Eq. (1.5) is only valid for a simple irreversible reaction. When

a detailed chemical reaction mechanism is considered, the expression involving hun-

dreds of species will be extremely complicated. Models with solid physical meanings

are required. These models must be designed to describe turbulent flames and have to

provide an estimation of the mean production/consumption rates of chemical species.

They should base on the known quantities or on the quantities which may be easily

modeled or obtained from closed balance equations. Basic concepts include the mixture

fraction for non-premixed flames and progress variable for premixed combustion.

The simplest approach is the “no model” (Arrhenius) approach, which neglects the

effects of turbulence on combustion and retains only the first term in the Eq. (1.5). In

other words, it assumes that the chemical time scales are larger than turbulent time

scales (τc ≫ τ + t, Da→ ∞).

The eddy breakup (EBU) model [152] is based on a phenomenological analysis

of turbulent combustion assuming high Re number (Re ≫ 1) and high Da number

(Da ≫ 1). EBU model assumes a homogeneous and isotropic turbulence. The reaction

zone is viewed as a collection of fresh and burnt gas pockets. The mean reaction rate is

mainly controlled by the turbulent mixing time and does not depend on the chemical

characteristics. The mean reaction rate is written as a function of known quantities

without any additional transport equations. However, it contains limited information

about kinetics and ignores turbulent fluctuations. The EBU model is widely used in

engineering simulation because of its simplicity. It is available in most commercial

CFD codes. Eddy dissipation concept (EDC) [153] is directly extended from EBU. It

cannot be used in premixed flame and cannot describe any ignition mechanism.

Another category of modeling strategy is statistical approach. The statistical prop-

erties of intermediate states are described using a probability density function. With

the joint composition PDF f̃(ρ, Y ∗
1 , ..., Y ∗

N , T ∗; x, t), the mean burning rate can be es-

timated as

¯̇ωYi
(x, t) =

∫

ρ

∫

Y1

...
∫

YN

∫

T
ω̇Yi

(ρ∗, Y ∗
1 , ..., Y ∗

N , T ∗)

×f̃ (ρ∗, Y ∗
1 , ..., Y ∗

N , T ∗; x, t)dρ∗dY ∗
1 . . . dY ∗

NdT ∗. (1.6)

Then the turbulent flame is fully described by this joint PDF. Similar to the problem

described in Section 1.3, the PDF here can be determined by presumed PDF method

or transported PDF method.

Theoretically, the transported PDF method can treat the arbitrary complex chem-
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istry without any assumption. However, computing ω̇Yi
(ρ∗, Y ∗

1 , ..., Y ∗
N , T ∗) is still a

difficult task for current computers. Special numerical strategies are developed to re-

duce the computational time in calculating the mean reaction rate. Two methodologies

are often used, the storage-retrieval algorithm and the dimension reduction method.

The storage-retrieval algorithm bases on the fact that two close points in the compo-

sition space will evolve to the new points which are very close, too. If one composition

vector is close enough to another one whose new state has been computed directly

and has been stored in a structured library, then the new state of this composition

vector is retrieved from the library. Otherwise, the new state is computed directly and

stored in the library. The storage-retrieval algorithm includes in situ adaptive tabu-

lation (ISAT) [97], artificial neural networks (ANN) [154, 98], repro-modelling [155],

piecewise implementation of solution mapping [156], etc. The dimension reduction

method aims to reduce the number of differential equations to be solved directly. Some

species are assumed to be in steady state or some reactions to be in particle equilib-

rium. The concentration of these species are determined from the algebraic equations.

The dimension reduction method includes quasi-steady state approach [157, 158], in-

trinsic low-dimensional manifolds (ILDM) [96], trajectory-generated low-dimensional

manifolds (TGLDM) [159], computational singular perturbation (CSP) [160], flamelet

generated manifolds [161], flame prolongation of ILDM [162], Roussel and Fraser al-

gorithm [163], rate-controlled constrained equilibrium (RCCE) [164, 165], pre-image

curves [166] etc..

On the other hand, great efforts have been taken to simplify the expression of the

joint PDF f̃(ρ∗, Y ∗
1 , ..., Y ∗

N , T ∗; x, t). For instance, the composition space Y ∗
1 , ..., Y ∗

N is

replaced with a conserved scalar; the joint PDF is presumed to a empirical expression.

Bray-Moss-Libby model [167] combines a statistical approach (presumed PDF) and

a physical analysis. It corresponds to an infinitely thin flame front. It has evidenced

some special features of turbulent premixed combustion.

Another group of combustion model assumes that the chemical reaction occurs in

thin layers separating fresh gases from fully burnt ones (high Damköhler number limit).

The reaction zone is viewed as a collection of laminar flamelets. Coherent flamelet

and flame surface density models are introduced for turbulent premixed combustion

[168, 169, 68, 84]. For non-premixed flames, hypotheses formulated to construct models

may be organized into three groups [68]:

• mixed is burnt: assuming infinitely fast chemistry;

• flamelet assumption: finite rate chemistry assuming a local diffusive-reactive layer

similar to the one observed in laminar flames;

• PDF method: finite rate chemistry with the treatments of molecular and heat
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transport separated from the chemical reactions. The chemical reaction is treated

without any assumption while molecular diffusion is modeled through a micro-

mixing model.

In many turbulent reactive flows, departures from chemical equilibrium appear at con-

ditions where the characteristic turbulent mixing time scalar is comparable with the

characteristic chemical reaction time scale. Modeling these highly turbulent flames

with the fast chemistry assumption may fail to predict the concentrations of the free

radicals that are considerably higher than their equilibrium values. In this sense, the

first group is questionable.

Flamelet assumption takes into account the non-equilibrium effects. Instead of cal-

culating the reaction rate, the composition space is determined from a pre-calculated

laminar flamelet library. The coupling between non-equilibrium chemistry and turbu-

lence is achieved by the statistical description of two parameters: the mixture fraction

and the instantaneous scalar dissipation rate. The mean compositions are calculated

by [67]

Ỹi =
∫

ξC

∫

χ
Y SLFM

i (ξC , χ)f̃(ξC , χ; x, t)dξCdχ. (1.7)

Here f̃(ξC , χ; x, t) is the joint PDF of the mixture fraction and the scalar dissipation

rate. Usually, we assume that these two parameters are statistically independent [67]:

f(ξC, χ; x, t) = fξC
(ξC ; x, t)fχ(χ; x, t). (1.8)

A β function [170] and a log-normal function [171] are used to describe the mixture

fraction and scalar dissipation rate, respectively. It is well-known that the assumption

of the mixture fraction and scalar dissipation rate being statistical independent is

incorrect. In this sense, the assumption of statistical independence is questionable.

An alternative way to avoid such assumption is to solve the transport equation of

f̃(ξC , χ; x, t).

Conditional moment closure (CMC) was proposed in 1990’s [172, 173, 174]. The

basic concept is that the fluctuations in temperature and composition that occur in

turbulent combustion can be closely cross-linked to the fluctuations in one or two key

variables. With CMC, the conservation equations for species and enthalpy can be

reformulated in terms of conditional averages, which is the average of all these scalars

having the same value of the key variable(s). The PDF f̃ in Eq. (1.6) is replaced by

a conditional PDF. For the non-premixed combustion, the mixture fraction is the key

variable of interest. CMC has been used to simulate spray auto-ignition [175].

For the turbulent spray flame, the combustion model is few. Musculus and Rutland

[176] extended the coherent flamelet model to diesel combustion. The mean reaction

rate is calculated from the transport equation of the flame area density. The effects
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of turbulence are taken into account in the formation of the flame area. Gutheil and

co-workers [177, 178] and Chang et al. [179] extended the classical flamelet model for

the spray combustion. Gutheil and co-workers [180] developed spray flamelet model

which takes into account the effects of droplets on the flamelet. The flamelet library is

built up from the results of counter-flow spray combustion with detailed transport and

detailed chemistry [181, 182, 183]. The spray flamelet model has been applied in the

simulation of the turbulent methanol/air spray flames [180] and turbulent ethanol/air

spray flames [184]. Recently, it has been implemented into the PDF code for spray

combustion [142].



2. Governing Equations and Models

In this chapter, the governing equations of gas-phase and liquid-phase are presented as

well as the transported PDF formulation. Physical models used in the present thesis

are described. Presumed PDF method for fluid dynamics is discussed.

2.1 Gas Phase Flow

2.1.1 Thermo-Chemistry

We assume the gas flow to be an ideal gas mixture. In this section the thermo-chemistry

of an ideal gas mixture is described.

Thermo-chemical state of the gas mixture is characterized by the pressure, p, tem-

perature, T , and the mass fraction, Y = (Y1, Y2, . . . , YNs
)T of the Ns species. The

molecular weight of species α is Wα. Its gas constant is

Rα =
R
Wα

, (2.1)

where R = 8.31451J/(mol·K) is the universal gas constant.

Specific total stagnant enthalpy consists of the kinetic energy, sensible enthalpy, hs,

and chemical enthalpy (the enthalpy of formation), ∆h0
f [185],

h =
1

2
UiUi + hs + ∆h0

f . (2.2)

The specific sensible enthalpy of species α is given by

hs,α(T ) = h0
s,α +

∫ T

298.15K
cpα(T ′)dT ′, (2.3)

where h0
s,α is the sensible enthalpy of species α at the reference temperature T0 =

298.15 K. The value of h0
s,α is taken from the thermodynamic data table [186]. The

constant-pressure specific heat cpα(T ) is given by a polynomial function of T :

cpα(T ) = a0,α + a1,αT + a2,αT 2 + a3,αT 3 + a4,αT 4. (2.4)

The coefficients an,i is taken from the literature [187].
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The specific sensible enthalpy of a gas mixture is

hs =
Ns∑

α=1

hs,αYα. (2.5)

The chemical reaction energy source term Q̇ is

Q̇ = −
Ns∑

α=1

∆h0
f,αSα. (2.6)

Here Sα is the net chemical reaction rate for species α:

Sα = Mαω̇α. (2.7)

Assumed as a Newtonian fluid, the viscosity coefficient µ is given as a function of

temperature. Effect of bulk viscosity is neglected. The dynamic viscosity of species α

is

ln µα =
3∑

i=0

ai,α(ln T )i. (2.8)

The coefficients an,i is taken from the table in [188]. The dynamic viscosity of a gas

mixture is given as [188]

µ =
1

2

[
Ns∑

α=1

Xαµα + (
Ns∑

α=1

Xα

µα
)−1

]
, (2.9)

where Xα is the mole fraction of the species α.

Similarly, thermal conductivity λα is given as a function of temperature, too, and

is determined from a polynomial form with the coefficients di,α [188]:

ln λα =
4∑

i=1

di,α(ln T )i−1. (2.10)

The coefficients di,α is taken from the table in [188]. The thermal conductivity of a gas

mixture is determined using

λ =
1

2

[
Ns∑

α=1

Xαλα + (
Ns∑

α=1

Xα

λα
)−1

]
. (2.11)

Binary diffusion coefficient Dαβ depends on the temperature and is evaluated from

a polynomial form with the coefficients bi,αβ [188]:

ln Dαβ =
4∑

i=1

bi,αβ(ln T )i−1. (2.12)

The coefficients bi,αβ is taken from the table in [188]. The diffusion coefficient of species

α in a mixture is estimated from Hirschfelder-Curtiss (or zeroth-order) approximation

[189]:

Dα,M =
1 − Yα∑
β 6=α

Xα

Dαβ

. (2.13)



2.1. Gas Phase Flow 19

2.1.2 Conservation Equations

For compressible multiphase flows, the Navier-Stokes equations are written in conser-

vation form:

Continuity Equation
∂ρ

∂t
+

∂(ρUj)

∂xj
= Sl,1; (2.14)

Momentum Equation

∂(ρUi)

∂t
+

∂(ρUiUj)

∂xj
= − ∂p

∂xi
+

∂τij

∂xj
+ ρgi + Sl,Ui

; (2.15)

Conservation Equation of the Total Stagnant Enthalpy

∂(ρh)

∂t
+

∂(ρUjh)

∂xj

=
∂p

∂t
+

∂(τijUj)

∂xi

− ∂Jd
q,j

∂xj

− ∂Jc
q,j

∂xj

+ qr + Sl,h; (2.16)

Conservation Equation of Species

∂(ρYα)

∂t
+

∂(ρUjYα)

∂xj
− ∂

∂xj

(
ρDα

∂Yα

∂xj

)
= Sα + Sl,Yα

. (2.17)

ρ,U, h, p are the density, velocity, enthalpy and pressure of the gas flows. g = 9.8m/s2

is the acceleration of gravity. Subscript α = 1, 2, . . . , Ns indicates the species. Sl,1,

Sl,Ui
, Sl,h, Sl,Yα

are the source term due to spray evaporation. τij is the viscous stress

tensor:

τij = µ

(
∂Ui

∂xj
+

∂Uj

∂xi
− 2

3

∂Uk

∂xk
δij

)
, (2.18)

where δ is the tensorial Kronecker symbol

δij =





1 : i = j

0 : i 6= j.
(2.19)

The viscous and pressure tensor are often combined into a tensor σij defined as

σij = τij − pδij . (2.20)

In the energy equation (2.16), the term due to friction heating and Dufour effect

are neglected. The terms on the right-hand side are the change rate of the pressure, the

viscous heating source term, the heat diffusion term, the transport of different sensible

enthalpies by individual species, the radiative heat flux, qr, and the source term due

to spray evaporation, Sl,hs
, respectively. The head diffusion term is expressed by the

Fourier’s Law:

Jc
q,j = −λ

∂T

∂xj
=

λ

C̄p

(
∂h

∂xj
−

Ns∑

α=1

hα
∂Yα

∂xj

)
. (2.21)
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Jd
q,j is written as

Jd
q,j =

Ns∑

α=1

hαJm
α = −

Ns∑

α=1

ρhs,αDα,M
Yα

∂xj

. (2.22)

Assuming a unity Lewis number (Le=1) and equal diffusibility of all species, the total

heat flux is

Jq = Jc
q,j + Jd

q,j = − λ

C̄p

(
∂h

∂xj
−

Ns∑

α=1

hα
∂Yα

∂xj

)
−

Ns∑

α=1

ρhs,αDα,M
Yα

∂xj

= − λ

C̄p

∂h

∂xj
= −Γh

∂h

∂xj
. (2.23)

In the present work, qr, and the viscous heating source term are neglected. Eq.

(2.16) can be simplified as

∂ρh

∂t
+

∂(ρUjh)

∂xj
=

∂p

∂t
+

∂

∂xj

(
Γh

∂h

∂xj

)
+ Sl,h. (2.24)

The terms on the right-hand side of Eq. (2.17) are the diffusive flux described in

terms of Fick’s law and the source term due to the spray evaporation. A conserved

scalar formulation has been used following [67]. With this formulation, the instanta-

neous thermo-chemical state of the fluid is related to a single conserved scalar quantity,

the mixture fraction, ξC . It is defined as

ξC =
ZC − ZC,min

ZC,max − ZC,min

, (2.25)

where Zj is the mass fraction of element j in the mixture and is defined as

Zj =
n∑

i=1

aijMj

Mi

Yi. (2.26)

Here the reference element is carbon C 1. With the assumption of equal diffusibility of

all species, the conservation equation of the mixture fraction can be deduced from the

conservation equation of species:

∂(ρξC)

∂t
+

∂(ρUjξC)

∂xj
=

∂

∂xj

(
ΓM

∂ξC

∂xj

)
+ Sl,1, (2.27)

where ΓM = ρDM is the mass diffusion coefficient of the mixture.

1 Besides, the reference element can be H or O. However, the element O appears in both fuel and

oxidizer. The Lewis number of the hydrogen is too low. Thus, the element C is usually preferred.
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2.1.3 Turbulent Viscosity Models

Because of their simplicity, Reynolds-averaged numerical simulation methods are widely

used in engineering simulation. The conservation equations in the previous section are

transformed into time-averaged formulations. For compressible flow, it is convenient

to introduce a density-weighted average, so-called “Favre-average”. The Favre-average

of a function Φ is defined as

Φ̃ =
ρΦ

ρ̄
. (2.28)

The fluctuating components are defined as

Φ′′ = Φ − Φ̃ (2.29)

with

Φ̃′′ = 0. (2.30)

Applying Favre-average on Eq. (2.14) and (2.15), we obtain

∂ρ̄

∂t
+

∂(ρ̄Ũj)

∂xj

= S̄l,1; (2.31)

∂(ρ̄Ũj)

∂t
+

∂(ρ̄ŨiŨj)

∂xj
+

∂(ρ̄ũ
′′

i u
′′

j )

∂xj
= − ∂p̄

∂xi
+

∂τ̄ij

∂xj
+ ρ̄gi + S̄l,Ui

. (2.32)

The Reynolds stress tensor ρ̄ũ
′′

i u
′′

j is unknown. It can be modeled following turbulent-

viscosity hypothesis. The Reynolds stress anisotropy aij ≡ ρ̄ũ
′′

i u
′′

j − 2
3
ρ̄k̃δij is determined

by the gradients of the mean velocity through a specific relationship. Zero-equation

model (Prandtl mixing length model [190]) use a deterministic expression to determine

the Reynolds stress. One-equation models, for instance, Prandtl-Kolmogorov model

[191], Spalart-Allmaras model [192], introduce an equation to calculate the Reynolds

stress. The most widely used is the k − ǫ model because of its simplicity and effective-

ness [193]. k − ǫ model is one of the two-equation models. Two additional transport

equations are solved for the turbulent kinetic energy k and its dissipation rate ǫ. The

length scale and time scale are determined by

L =
k3/2

ǫ
, tτ =

k

ǫ
. (2.33)

k − ǫ model assumes the isotropic turbulence. By introducing a kinematic eddy

viscosity µt, the Reynolds stress tensor is written as

ρ̄ũ
′′

i u
′′

j =
2

3
µt

∂Ũk

∂xk
δij − µt

(
∂Ũi

∂xj
+

∂Ũj

∂xi

)
. (2.34)
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Turbulent viscosity µt is related to the turbulent kinetic energy, k̃, and its dissipation

rate, ǫ̃, via

µt = cµρ̄
k̃2

ǫ̃
, (2.35)

where cµ is a model constant listed in Table (2.1). k̃ is the Favre-averaged turbulent

kinetic energy:

k̃ =
1

2
ũ

′′

j u
′′

j . (2.36)

Eeffective viscosity is given by

µeff = µt + µl, (2.37)

where µl is the laminar viscosity of the fluid.

Substituting Eqs. (2.34) and (2.37) into Eq. (2.32), the modeled momentum equa-

tion is obtained

∂(ρ̄Ũj)

∂t
+

∂(ρ̄ŨiŨj)

∂xj

= − ∂p̄

∂xi

+
∂

∂xj

[
µeff

(
∂Ũi

∂xj

+
∂Ũj

∂xi

− 2

3

∂Ũk

∂xk

δij

)]
+ ρ̄gi + S̄l,Ui

. (2.38)

In the present work, an extended k−ǫ model is used [194]. The extended k−ǫ model

is based on the standard k − ǫ model for gas-phase flow. It has been applied to spray

flow. The effects of the spray source are taken into account by introducing appropriate

source terms into the transport equations of k and ǫ [178]. The new equations are

written as
∂ρ̄k̃

∂t
+ ∇ · (ρ̄Ũk̃) = ∇ ·

(
Γk,eff∇k̃

)
+ Gk − ρ̄ǫ̃ + S̄l,k; (2.39)

∂ρ̄ǫ̃

∂t
+ ∇ · (ρ̄Ũǫ̃) = ∇ · (Γǫ,eff∇ǫ̃) + cǫ,1

ǫ̃

k̃
Gk − cǫ,2ρ̄

ǫ̃

k̃
ǫ̃ + S̄l,ǫ; (2.40)

where the effective exchange coefficients Γk,eff and Γǫ,eff are given as

Γk,eff =
µeff

σk
; (2.41)

Γǫ,eff =
µeff

σǫ
. (2.42)

σk and σǫ are the effective Schmidt numbers for k and ǫ. They are assumed to be

constants as shown in Table 2.1. Other model constants cǫ,1, cǫ,2 are listed in Table

2.1, too. The values of these model constants are take from the literature [191]. The

generation term for the turbulent kinetic energy is given by

Gk = µt

[(
∂Ũi

∂xj

+
∂Ũj

∂xi

)
− 2

3

∂Ũk

∂xk

δij

]
∂Ũi

∂xj

. (2.43)

S̄l,k and S̄l,ǫ are the mean spray source terms, which are determined by

S̄l,k = S̄
′′

l,Uj
u

′′

j +
1

2
S̄l,1ũ

′′

j u
′′

j (2.44)
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cµ σk σǫ cǫ,1 cǫ,2

0.09 1.0 1.3 1.44 1.92

Tab. 2.1: Constants in the k − ǫ model.

and

S̄l,ǫ = CsS̄l,k. (2.45)

The model constant Cs is set to 1.50 [195].

Scalar fluxes are modeled using gradient-diffusion hypothesis. The Favre-averaged

energy equation is written

∂ρ̄h̃

∂t
+

(ρ̄Ũj h̃)

∂xj
=

∂p̄

∂t
+

∂

∂xj

(
Γh

∂h̃

∂xj
− ρ̄ũ

′′

j h
′′

)
+ S̄l,h, (2.46)

where the thermal diffusion coefficient Γh = ρ̄DM = λ/c̄p indicates the molecular

transport of the specific enthalpy. The term for the turbulent transport of specific

enthalpy is modeled as

ρ̄ũ
′′

j h
′′ = −Γh,t

∂h̃

∂xj
. (2.47)

By introducing the effective thermal diffusion coefficient Γh,eff = Γh + Γh,t, Eq. (2.46)

can be written as

∂ρ̄h̃

∂t
+

(ρ̄Ũj h̃)

∂xj
=

∂p̄

∂t
+

∂

∂xj

(
Γh,eff

∂h̃

∂xj

)
+ S̄l,h. (2.48)

According to Eq. (2.27), the mean conservation equation for mixture fraction is

deduced:
∂ρ̄ξ̃C

∂t
+

(ρ̄Ũj ξ̃C)

∂xj
=

∂

∂xj

(
ΓM

∂ξ̃C

∂xj
− ρ̄ũ

′′

j ξ
′′

C

)
+ S̄l,1, (2.49)

where the term of turbulent transport of mixture fraction is modeled as

ρ̄ũ
′′

j ξ
′′

C = −ΓM,t
∂ξ̃C

∂xj
. (2.50)

Similarly, by introducing the effective diffusion coefficient ΓM,eff = ΓM + ΓM,t, Eq.

(2.49) can be written as

∂ρ̄ξ̃C

∂t
+

(ρ̄Ũj ξ̃C)

∂xj
=

∂

∂xj

(
ΓM,eff

∂ξ̃C

∂xj

)
+ S̄l,1. (2.51)

It should be mentioned that both experiment [196] and theoretical analysis [197]

have shown the existence of the counter-gradient scalar turbulent transport in certain

situations where the sign in Eq. (2.47, 2.50) is reverse. It could be due to the differential
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buoyancy effects on cold, heavy fresh gases and on hot, light burnt gases. Despite these

evidences, gradient hypothesis is widely used in practical simulation.

We can determine the Reynolds stress by solving the transport equation for its

each component. This method is Reynolds-stress modeling. The length and time scale

of the turbulence are determined from the dissipation rate which is computed from a

modeled transport equation. Thus, the turbulent viscosity hypothesis is not needed.

Recently, the Reynolds-stress model has been extended to multiphase flow [198].

2.2 Probability Density Function Methods

2.2.1 Transported PDF Methods

In this section the PDF transport equation is explained. The consequent models used

in the transported PDF method are described.

Basic idea of the transported PDF method is to describe the state of the flow at

the location x = (x1, x2, x3) at the time t in terms of a probability density function f .

This f is a one variable PDF or a joint multi-variable PDF. The variables are physical

variables of the flow such as velocity, composition, or turbulent frequency. The trans-

port equation of the PDF is deduced from the Navier-Stokes equations [71]. Unclosed

conditional expectation are modeled using appropriate physical models. The PDF

transport equation is solved using a Monte-Carlo method. The PDF is represented

by a large number of gas particles, which form a sample space. The development of

the particles in sample space is described by a set of stochastic differential equations,

which is transformed from the modeled PDF transport equation. Thus, the gas par-

ticles exhibit the same PDF as the solution of the modeled PDF transport equation.

Statistics of the flow fields are determined by integration the particle properties in

the whole sample space. In the present work, a single-scalar PDF (mixture fraction),

a joint scalar PDF (mixture fraction and enthalpy), and a joint velocity-scalar PDF

(velocities and mixture fraction) are considered.

2.2.1.1 Single-Scalar PDF Transport Equation

We define a one-point one-time Eulerian mass weighted PDF of mixture fraction by

f̃(ζC ; x, t) =
ρ(ζC)〈δ(ξC − ζC)〉

ρ̄
, (2.52)

where ζc is the mixture fraction in the sample space, while ξC is the mixture fraction

in the physical space. Therefore, the PDF is a bridge connecting the sample space and

physical space. All communication processes between the sample space and physical
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space are based on this PDF. According to the conservation equation of mixture frac-

tion in turbulent spray flow (2.27), the PDF transport equation of mixture fraction is

deduced following the way suggested by Pope [71]:

ρ̄
∂f̃

∂t
+ ρ̄Vi

∂f̃

∂xi

+
∂(S̄l,1f̃)

∂ζC

= − ∂

∂ζC

[〈
∂

∂xj

(
ΓM

∂ξC

∂xj

) ∣∣∣∣∣ζc

〉
f̃

]
. (2.53)

The terms on the left-hand side can be solved exactly. The first term is the time

derivative of f̃ . The second term is the evolution of f̃ in the physical space. The third

term is the evolution of f̃ in mixture fraction space due to spray evaporation. The

term on the right-hand which represents evolution of f̃ in mixture fraction space by

molecular fluxes has to be modeled.

2.2.1.2 Joint Scalar PDF Transport Equation

A joint scalar PDF for the turbulent spray flames is proposed. The scalars considered

here are mixture fraction and enthalpy. The one-point one-time Eulerian mass weighted

joint PDF of mixture fraction and total enthalpy is defined as

f̃(ζC , η; x, t) =
ρ(ζC)〈δ(ξC − ζC)δ(h − η)〉

ρ̄
. (2.54)

Here η is the enthalpy in sample space. Following the similar way in Section (2.2.1.1),

the transport equation of this joint PDF can be deduced from Eq. (2.27) and (2.16):

ρ̄
∂f̃

∂t
+ ρ̄Vi

∂f̃

∂xi

+
∂(S̄l,1f̃)

∂ζC

+
∂f̃

∂η

(
S̄l,h + Q̇ +

∂p

∂t

)
=

− ∂

∂ζC

[〈
∂

∂xj

(
ΓM

∂ξC

∂xj

) ∣∣∣∣∣ζc, η

〉
f̃

]
− ∂

∂η

[〈
∂

∂xj

(
Γh

∂h

∂xj

) ∣∣∣∣∣ζc, η

〉
f̃

]
. (2.55)

The fourth to sixth terms on the left-hand side are the evolution of f̃ in enthalpy space

due to spray evaporation, heat release from the chemical reaction, and pressure change,

respectively. The term on the right-hand which represents evolution of f̃ in mixture

fraction space and enthalpy space by molecular fluxes has to be modeled.

2.2.1.3 Joint Velocity-Scalar PDF Transport Equation

In the scalar PDFs, we postulate that the fluid particle velocity and scalar are statis-

tically independent. The joint velocity-scalar PDF is decomposed into two marginal

PDFs:

fUξCχ(V, ζC; x, t) = fU(V; x, t) · fξC
(ζC ; x, t). (2.56)

PDF of the fluid particle velocity is usually assumed as a Gaussian distribution with

the mean Ũ and variance 2
3
k̃. However, such assumptions are not always true. The
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conditional PDF should be considered. In this section, a joint velocity-mixture fraction

PDF is proposed. Here we define a one-point one-time Eulerian mass-weighted joint

velocity-scalar PDF f̃ of U(x, t) and ξC(x, t) by

f̃(V, ζC; x, t) =
ρ(ζC)〈δ(U − V)δ(ξC − ζC)〉

ρ̄
. (2.57)

According to the conservation equation of momentum and mixture fraction of turbulent

spray flow (Eqs. (2.15) and (2.27)), the transport equation of f̃(V, ζC; x, t) can be

deduced:

ρ̄
∂f̃

∂t
+ ρ̄Vi

∂f̃

∂xi
+

∂f̃

∂Vi

(
ρ̄gi −

∂p̄

∂xi
+ S̄l,Ui

)
+

∂

∂ζC

(
S̄l,1f̃

)
(2.58)

=
∂

∂Vi

[〈
−∂τij

∂xj
+

∂p′

∂xi

∣∣∣∣∣V, ζC

〉
f̃

]
+

∂

∂ζC

[〈
∂

∂xj

(
ΓM

∂ξC

∂xj

) ∣∣∣∣∣V, ζC

〉
f̃

]
.

The third to fifth terms on the left-hand side are the evolution of f̃ in velocity space

due to body force, mean pressure gradient, and spray evaporation, respectively. The

first and second terms on the right-hand side are the evolution of f̃ in velocity space

due to viscous stress tensor and fluctuating pressure gradient, respectively.

2.2.1.4 Numerical Viewpoint of PDF Method

In the PDF transport equation (Eqs. (2.53, 2.55, 2.58)), the terms on the left-hand

side are treated exactly. The terms on the right-hand side are unclosed. Appropriate

physical models are needed to close these terms. The resulting modeled PDF transport

equation is usually a high-dimensional equation. It is infeasible to solve it with a finite

difference method or finite volume method. As an alternative, Monte-Carlo method

is widely used to solve the high-dimensional problem since the computational costs

increase only linearly with the number of dimensions. Therefore Monte-Carlo method

(particle method) is feasible to solve the PDF transport equations.

There are two different type of particle method: Eulerian particle method and

Lagrangian particle method. The latter is more frequently used, because it is easier

to construct physical models in Lagrangian frame, and the history of the turbulence is

fully included in the Lagrangian PDF.

In Lagrangian particle method, the flow is represented by a large number of fluid

particles. Each particle has a set of properties. In the present work, it includes m∗,

x∗, U∗, ξ∗C , h∗, where m∗ is the mass, x∗ the position, U∗ the velocity, ξ∗C the mixture

fraction, h∗ the total enthalpy of the particle (the superscript ‘*’ indicates the particle’s

property). These particles form a sample space. The PDF transport equations are

converted into a set of stochastic differential equations (SDEs). The properties of the

particles evolve in the sample space following the corresponding stochastic differential
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equations. In the following sections, the models used in PDF method are described.

The resulting SDEs are presented.

2.2.1.5 Velocity Model

In the PDF methods, the fluid particle velocity U+(t) is represented by the stochastic

particle velocity U∗(t). Various models are available to model the evolution of the

particles in the velocity sample space. The Langevin equation remains the basis for

stochastic model of turbulent dispersion [51]. Stochastic process generated by the

Langevin equation is called “Ornstein-Uhlenbeck (OU) process”. Its PDF evolves by

the Fokker-Planck equation. The generalized Langevin model [199] can be written as

dU∗
i (t) =

1

ρ

∂〈p〉
∂xi

dt + Gij(U
∗
j (t) − 〈Uj〉)dt + (C0ǫ)

1/2dWi(t). (2.59)

The first term on the right-hand side is for the acceleration due to the mean pressure

gradient. The second term on the right-hand side is for the effects of viscous stress

tensor. The last term is a Wiener process representing the effects of fluctuating pressure

gradients. Coefficient Gij(x, t) depends on the local values. When Gij is given by

Gij = −
(

1

2
+

3

4
C0

)
ǫ

k
δij , (2.60)

it is the simplified Langevin model (SLM) [51]. Another model, the isotropization-of-

production model, takes the Gij as

Gij = −1

2
CR

ǫ

k
δij + C2

∂〈Ui〉
∂xj

, (2.61)

with

CR = 1 +
3

2
C0 − C2

P
ǫ

. (2.62)

Further study of this topic could refer to [199, 200, 201, 51].

In the present work we extend the simplified Langevin model to the turbulent

multiphase flows. In SLM, the effect of the mean velocity gradient is neglected. The

stochastic particle velocity advances with

dU∗
i (t) =

1

ρ̄

(
ρ̄gi −

∂p̄

∂xi

+ S̄l,Ui

)
dt

−
(

1

2
+

3

4
C0

)
ǫ̃

k̃

(
U∗

i (t) − Ũi

)
dt + (C0ǫ̃)

1/2 dWi(t), (2.63)

where C0 = 2.1 is the model constant [51]. The first term on the right hand side is for

the acceleration due to the body force (gravitational force). The second term is for the

acceleration due to the mean pressure gradient. The third term is the source term from
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spray flows. The fourth term is the viscous stress tensor. The last term represents the

diffusion process in which W(t) is a Wiener process. dWi(t) = Wi(t + dt) − Wi(t) is

a normal distribution with the mean 〈dWi(t)〉 = 0 and the variance 〈dWi(t)dWj(t)〉 =

dtδij [51].

2.2.1.6 Mixing Model

Effects of the molecular diffusion are taken into account through a mixing model. There

are some models available, including the interaction-by-exchange-with-the-mean (IEM)

[202], modified Curl’s model [203], Euclidean minimum spanning tree (EMST) mixing

model [87]. In the present thesis, the simplest model–the IEM model is employed.

Good predictions with IEM model were reported [204]. With the IEM model, the

mixture fraction and enthalpy of the particle evolve by

dξ∗C(t)

dt
= −1

2
Cφ

ǫ̃

k̃
(ξ∗C(t) − ξ̃C) +

S̄l,1

ρ̄
; (2.64)

dh∗
s(t)

dt
= −1

2
Cφ

ǫ̃

k̃
(h∗

s(t) − h̃s) +
S̄l,hs

ρ̄
. (2.65)

Here Cφ = 2.0 is the standard model constant [51]. The first term on the right-hand

side represents the mixing process. The last term is for the source term due to the

spray evaporation.

2.2.2 Presumed PDF methods

Presumed PDF methods have been widely used in fluid dynamics. Most of the fluid

processes are stochastic processes. The presumed PDF methods provide simple em-

pirical mathematical tools to describe such complex processes. The presumed PDF

methods enable us to describe a collection of data in a more concise and convenient

way. The data becomes easier to be comprehended and be communicated. The pre-

sumed PDF methods provide some practical insights into the way that the variable

seems to behave. It becomes easier to choose an appropriate theoretical model for the

random variables.

Usually, the procedure of the presumed PDF method is:

1. to collect the samples from experiment, the numerical results of DNS or LES or

transported PDF method, or other resources;

2. to present the samples in a distribution;

3. to calculate a few sample statistic(s), for instance, mean, variance;

4. to choose an appropriate PDF to represent the empirical data;
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5. to estimate the parameter(s) of this PDF from the calculated sample statistic(s);

6. to assess the predictive ability by applying it to a particular test.

Valid samples should be independent and identically distributed.

In this section, the most frequently used presumed PDFs in fluid dynamics are

presented, including the normal distribution (Gaussian distribution), log-normal dis-

tribution, Nukiyama-Tanasawa distribution, Rosin-Rammler distribution, β distribu-

tion, modified (four-parameter) β distribution. Their applications in the engineering

simulation are analyzed.

x
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(-5.,1.)
(5.,1.)

(0.,2.)

P(x) 1

Fig. 2.1: Typical normal distributions with different parameters (µ, σ).

2.2.2.1 Normal Distribution

Normal distribution, sometimes referred as Gaussian distribution, is the best-known

and the most frequently used presumed PDF in engineering simulation. Because of its

curved flaring shape, the normal distribution is often referred as the “bell curve”. It

was used by Laplace in 1783 to study the experimental errors and by Gauß in 1809 in

the analysis of the astronomical data.

Normal distributions have many convenient properties. They represent the dis-

tribution of the random errors in many kinds of measurements. Many sets of the
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Fig. 2.2: Typical log-normal distributions with different parameters (µlog, σlog).

experimental results in practice turn out to follow the normal distribution. The cen-

tral limit theorem states that given a distribution with a mean µ and variance σ2,

the sampling distribution of the mean approaches a normal distribution with a mean

µ and a variance σ2/N as the sample size N increases, even if the parent population

is not normal. Therefore, the random variables with unknown distributions are often

assumed to be normal, especially in physics. Although this might be a dangerous as-

sumption, it is often a good approximation due to a surprising result known as the

central limit theorem. Many common attributes, such as test scores and height, follow

roughly normal distributions. In fluid dynamics, the velocity follows roughly normal

distribution [205]. Other physical variables, which are defined in (−∞, +∞), could be

approximated by normal distribution, too.

A normal distribution in a variable x with mean µ and variance σ2 is a statistic

distribution with probability function

P (x) =
1

σ
√

2π
exp

[
−(x − µ)2

2σ2

]
, (2.66)

on the domain x ∈ (−∞, +∞). The normal distributions with different means and

variances are illustrated in Fig. 2.1. The values in brackets are the mean µ and the

root of the variance σ. The standard normal distribution is a special case of the general

normal distribution by taking the mean µ = 0 and variance σ2 = 1 .
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Variables Xi with a normal distribution can be generated from variables Yi having

a uniform distribution in (0, 1) via

Xi = σ
√

2erfc−1(2Yi − 1) + µ. (2.67)

A simpler way to obtain numbers with a normal distribution is to use the Box-Muller

transformation [206]. In the present work, the fluctuating velocity in Eq. (3.31) is

generated using Box-Muller transformation [207]. We take a random point (x1, x2)

inside the unit circle around the origin, R = x2
1 + x2

2 < 1. A pair of random numbers

with zero mean and unit variance are generated:

v1 = x1

√

−2 ln R

R
; (2.68)

v2 = x2

√

−2 ln R

R
. (2.69)

2.2.2.2 Log-Normal Distribution

Log-normal distribution is a continuous distribution in which the logarithm of a variable

has a normal distribution:

P (x) =
1

σlog

√
2πx

exp

[
−(ln x − µlog)2

2σ2
log

]
. (2.70)

It is defined on the domain x ∈ (0, +∞). The mean and variance are given by

µ = exp
(
µlog +

1

2
σ2

log

)
; (2.71)

σ2 =
[
exp

(
σ2

log

)
− 1

]
exp

(
2µlog + σ2

log

)
, (2.72)

where ln µlog represents the logarithmic mean value of the distribution. Typical log-

normal distributions with different values of µlog and σlog are illustrated in Fig. 2.2.

Small values of σlog are associated with broad distribution, and large values of σlog are

associated with narrow distributions. By taking µlog = 0 and σlog = 1, it turns to a

Gibrat’s distribution:

P (x) =
1√
2πx

exp

[
−(ln x)2

2

]
. (2.73)

Examples of variables which have approximately log-normal distributions include

the turbulent scalar dissipation rate, the size of small droplet in the spray flows, the

size of silver particles in a photographic emulsion, acidity by pH, noise intensity, fatigue

life of some materials, volume of air traffic, daily water flow, rainfall, flood discharge,

survival time of bacteria in disinfectants, weight and blood pressure of humans, and

number of words written in sentences by George Bernard Shaw [208].
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Random numbers following log-normal distribution can be generated from a unit

normal variable. The log-normal variable with mean µ and variance σ2, denoted by

Logn (µ, σ2), is related to unit normal variable N(0, 1) by

Logn
(
µ, σ2

)
∼ µ · exp [σ · N(0, 1)] . (2.74)

This method is implemented into the code to generate the random number for the

dissipation rate of the mixture fraction (see Eq. (2.148)).

2.2.2.3 Nukiyama-Tanasawa Distribution

Nukiyama-Tanasawa distribution was introduced by Nukiyama and Tanasawa in 1939

[209]. It has been used to describe the number distribution of drops in the sprays from

a pneumatic atomizer. The function is

P (x) = axp exp (−bxq) , (2.75)

for x ∈ [0,∞), where b, p, q are adjustable parameters, and a is the normalizing con-

stant. Sometimes p is fixed to 2 [210].

Obviously, a presumed PDF for droplet size distributions should be defined in

[0,∞). It must be zero at the lower and upper end of the range:

P (0) = 0, P (∞) = 0. (2.76)

The Nukiyama-Tanasawa distribution fulfills this condition.

In practice the maximum droplet size is not infinite. Thus, a more accurate restric-

tion should be:

P (0) = 0, P (x|x > rmax) = 0. (2.77)

Nukiyama-Tanasawa distribution is the generalized form of many popular distribu-

tions. Maxwell distribution, which describes the distribution of the molecule speeds in

thermal equilibrium in statistical mechanics, is defined as

P (x) =

√
2

π
a

3

2 x2 exp

(
−ax2

2

)
, (2.78)

for x ∈ [0,∞). It is a special form of the Nukiyama-Tanasawa distribution with p = 2,

q = 2, and b = a/2. Rayleigh distribution, which is defined as

P (x) = a−2x exp

(
− x2

2a2

)
, (2.79)

for x ∈ [0,∞), is also a special form of the Nukiyama-Tanasawa distribution with

p = 1, q = 2, and b = 1/(2a2). Rosin-Rammler (two-parameter Weibull) distribu-

tion described in the following section is a special form of the Nukiyama-Tanasawa

distribution, too.
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2.2.2.4 Rosin-Rammler (Two-Parameter Weibull) Distribution

Rosin-Rammler distribution is referred as “two-parameter Weibull distribution” in

mathematical literature. The Weibull distribution was primarily derived as the third

asymptotic distribution of extreme values [211]. The two-parameter Weibull distribu-

tion was originally proposed to analyze the breaking strengths [212, 213]. The distri-

bution of the lifetimes of objects is often described using Weibull distribution. It has

been widely used to analyze the systems with a weakest link, such as fatigue failure in

structures, ball-bearing failure, failure of electronic components, breaking strengths of

a ceramic, traffic flow [214]. In these cases, the problem becomes to find the weakest

element. It is very interesting for the spray systems. The breakup processes of the liq-

uid jets and droplets are of great interest. Such processes are similar to the problem of

material strength, but much more complex. The properties of liquid jets and droplets

change a lot during their lifetime. Additionally, the liquid jets and droplets undergo

other processes such as evaporation and coalescence.

Rosin-Rammler distribution was introduced to describe the cumulative volume dis-

tribution of coal particles by Rosin and Rammler [215]. The function is

P (x) = qd−qxq−1 exp
[
−
(

x

d

)q]
, (2.80)

for x ∈ [0,∞) and q > 0. The mean and variance of this distribution are

µ = dΓ(1 +
1

q
); (2.81)

σ2 = d2[Γ(1 +
2

q
) − Γ2(1 +

1

q
)]. (2.82)

Typical shapes of Rosin-Rammler distributions with different parameters of d and q are

illustrated in Fig. 2.3. Actually, it is a special form of Nukiyama-Tanasawa distribution

with p = q − 1 and b = d−q.

The Rosin-Rammler distribution has been widely used in the spray literature. It is

mainly due to its mathematical simplicity.

2.2.2.5 β Distribution

The β distribution is defined as

P (x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1, (2.83)

for x ∈ [0, 1]. Γ is the Gamma function. The mean and variance are given by

µ =
α

α + β
; (2.84)

σ2 =
µ(1 − µ)

α + β + 1
=

αβ

(α + β)2(α + β + 1)
. (2.85)
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Fig. 2.3: Typical Rosin-Rammler distributions with different parameters (d, q).
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Fig. 2.4: Typical β distributions with different parameters (α, β).
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Typical shapes of the β distributions with different α and β are illustrated in Fig. 2.4.

When the variance is small, the β distribution shows unimodal shape. It shows bimodal

shape when the variance is large (see the one with α = β = −1). The β distribution

is often used to describe the mixture fraction or mass fraction of species in turbulent

single-phase flows [170].

2.2.2.6 Modified β Distribution

In the practical application, the properties are valid only in a certain range, [xmin, xmax].

For instance, the maximum value of the mixture fraction in turbulent spray flows is

smaller than the unity. The distribution of mixture fraction in the turbulent spray

flows cannot be reproduced using the standard β distribution (Eq. (2.83)). Modified

β distribution, is a general form of the β distribution [140]. The definition range of

the modified β distribution relaxes to [xmin, xmax]. Thus, many boundedness random

properties defined in [xmin, xmax] can be described using modified β distribution. It is

a four-parameter function:

P (x) =
Γ(α + β)

Γ(α)Γ(β)
(xmax − xmin)1−α−β(x − xmin)α−1(xmax − x)β−1. (2.86)

for x ∈ [xmin, xmax]. The mean and variance are given by

µ = xmin +
α

α + β
(xmax − xmin); (2.87)

σ2 =
(µ − xmin)(xmax − µ)

α + β + 1
=

αβ

(α + β)2(α + β + 1)
(xmax − xmin)2. (2.88)

When xmax = 1 and xmin = 0, the modified β function is turned into the standard β

function (Eq. (2.83)). If we define

x′ =
x − xmin

xmax − xmin

, (2.89)

x′ follows a standard β function. Thus, the modified β distribution has the same basic

shapes as the ones of standard β distribution (see Fig. 2.4). When the variance is

much smaller than the width of definition, say,

σ2 << (µ − xmin)(xmax − µ), (2.90)

the modified β distribution is identical to a normal distribution. Fig. 2.5 shows the

comparison of modified β function (indicated by “MBeta”) and normal distribution

with the same mean (µ = 1) and variance (σ = 1). Here the parameters xmax and xmin

of modified β function are set to 20 and −20, respectively. The solid line indicates the

modified β distribution. The symbols indicate the normal distribution. Therefore, the
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processes following normal distribution can be described by modified β distribution too.

In such cases, the parameters xmax and xmin are set to the upper and lower limitation.

When the property is defined in [0,∞), the parameter xmin is zero, and xmax equals

to +∞. We have

µ − xmin ≪ xmax − µ, σ2 ≪ (µ − xmin)(xmax − µ), (2.91)

which will lead to

α ≪ β, α + β + 1 ≫ 1. (2.92)

In this case, the shape of the modified β distribution is close to the ones of log-normal

distribution. Fig. 2.6 shows the comparison of modified β distribution with the log-

normal distribution as well as the Rosin-Rammler distribution. All of them have the

same mean (µ = 2) and variance (σ = 1). Here the parameter xmin in the modified β

distribution is set to zero. Squares indicate the log-normal distribution. The circles are

the Rosin-Rammler distribution. The solid line indicates the modified β distribution

with xmax = 10. The dashed line indicates the modified β distribution with xmax = 100.

They are very close to each other. Therefore, the log-normal distribution and the

Nukiyama-Tanasawa-class distribution can be reproduced or estimated by the modified

β distribution.
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Fig. 2.5: Comparison of modified β distribution with the normal distribution.
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Fig. 2.6: Comparison of modified β distribution with the log-normal distribution and

the Rosin-Rammler distribution.

2.3 Liquid Phase Flow

Spray flow is described by a droplet density function fd which follows the famous

Williams’ spray equation [216]. Assuming dilute spray, both droplet-droplet interaction

and coalescence are neglected. The droplet’s position xd, velocity Ud, equilibrium

radius rd, temperature Td are considered in fd. A droplet density function is defined

as

fd(Vd, ιd, θd; xd, t) = 〈δ(Ud −Vd)δ(rd − ιd)δ(Td − θd)〉, (2.93)

where Vd, ιd, θd are the sample space variables corresponding to Ud, rd, Td. The trans-

port equation of fd is written as

∂fd

∂t
+ Ud,j

∂fd

∂xj
= − ∂

∂Vd,j
(fd 〈Fj |Vd, ιd, θd〉) −

∂

∂ιd
(fd 〈 ṙd|Vd, ιd, θd〉)

− ∂

∂θd

(
fd

〈
Ṫd

∣∣∣Vd, ιd, θd

〉)
. (2.94)

The first term is the time derivative of fd. The second term represents the evolution

of fd in the physical space. The terms on the right-hand side are the evolution of

fd in the droplet velocity space, droplet radius space, and droplet temperature space,

respectively. With this droplet density function, the mean value of an arbitrary function
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Φ can be determined by

〈Φ〉 =
∫

fdΦdVddιddθd. (2.95)

It is worthwhile to mention that Subramaniam [217] clarified the statistical infor-

mation contained in the droplet distribution function (DDF). The connections between

the physical phenomena and mathematical descriptions were pointed out. He derived

the transport equation of DDF using an alternative way. The unclosed terms in the

transport equation were precisely defined.

Droplets move in the physical space according to its instantaneous velocity:

dxd

dt
= Ud. (2.96)

To determine the trajectories of individual droplets, Fj , ṙd, Ṫd should be evaluated.

The effect of gas-phase turbulence on droplet velocities is modeled with SSF (Stochastic

Separated Flow) model. The acceleration of a droplet is written as [8]

Fj =
dUd,j

dt
=

3

8

ρ̄

ρl
Cd(Red)

|Ur,j|
rd

Ur,j + Fe,j −
1

ρl

∂p

∂r
nr

+
1

2

ρ

ρl
CI

dUr,j

dt
+

9

2ρlrd

√
ρµ

π
CB

∫ t

t0

dUr,j√
t − τdτ

dτ, (2.97)

The first term on the right-hand-side is the drag force including skin friction and form

drag. The second term is the external force (body force). The third term is due to

the static pressure gradient. In the present work, only the spray jets in atmospheric

air are considered. This term is negligible. The fourth term is the virtual-mass term

being due to the inertia of adjacent fluid displaced by its motion. It is negligible when

the gas density is much smaller than the liquid density which is usually the case. The

last term is the Bassett force. It is also negligible when the gas density is much smaller

than the liquid density. In the present work, only the drag force and the gravitational

force are considered. Eq. (2.97) is simplified as

dUd,j

dt
=

3

8

ρ̄

ρl

Cd(Red)
|Ur,j|
rd

Ur,j +
ρl − ρ

ρl

gj, (2.98)

where ρl is the density of liquid phase. The relative velocity between the gas phase

and liquid phase is

Ur = U − Ud. (2.99)

The parameter Cd depends on the droplet Reynolds number Red [218]:

Cd =





24
Red

(
1 + 1

6
Re

2

3

d

)
: Red < 1000

0.424 : Red > 1000.
. (2.100)
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The droplet Reynolds number Red is defined according to the droplet diameter, the

relative velocity and the mean dynamic viscosity in the film surrounding the droplet:

Red = 2ρ̄rd
|Ur|
µ̂(T̂ )

. (2.101)

The symbol “̂” here indicates the properties of the film between the droplet surface

and gas phase which are evaluated according to the “1/3 rule” [219]. The reference

temperature T̂ is calculated by:

T̂ =
T̃ + 2Td

3
. (2.102)

Effects of turbulent dispersion is modeled using a Monte-Carlo method [6]. The in-

stantaneous gas velocity U in Eq. (2.99) is the sum of the mean velocity and fluctuating

velocity:

U = Ũ + u′′. (2.103)

Here we assume the gas velocity follows a Gaussian distribution. The fluctuating

velocity is sampled from a Gaussian distribution with the mean of zero and variance

of 2
3
k 2. The droplet-eddy interaction time is established by taking the minimum of

the characteristic lifetime of the eddy and the time for the droplet to traverse the eddy

[220]

tcorr = min(tτ , ttr), (2.104)

with

tτ =
k̃

ǫ̃
; (2.105)

ttr = ctr
k

3

2

ǫ
. (2.106)

ctr is the empirical constant with the value of 0.16432 [195].

Two-film model in a convective surrounding (so-called “Abramzon-Sirignano model”)

[221] is used to calculate the evaporation rate of droplets:

ṁd = 2πρ̂DrdSh∗ ln(1 + BM), (2.107)

and

ṁd = 2π
λ̂

Ĉp

rdNu∗ ln(1 + BT ), (2.108)

2 The turbulent kinetic energy is k = 1

2

(
u′′2

1
+ u′′2

2
+ u′′2

3

)
. Assuming an isotropic turbulence,

k = 3

2

(
u′′2

1

)
= 3

2

(
u′′2

2

)
= 3

2

(
u′′2

3

)
. Therefore, the variance of the fluctuating velocity is 2

3
k.
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where Ĉp is the mean vapor specific heat in the film. Sh∗ and Nu∗ are the modified

Sherwood number and modified Nusselt number which are written as

Sh∗ = 2 +
Sh0 − 2

F (BM)
; (2.109)

Nu∗ = 2 +
Nu0 − 2

F (BT )
, (2.110)

with

F (B) = (1 + B)0.7 ln(1 + B)

B
. (2.111)

The Sherwood number and Nusselt number are evaluated following Clift’s correlation

[222]:

Sh0 = 1 + (1 + RedPr)1/3f(Red); (2.112)

Nu0 = 1 + (1 + RedSc)1/3f(Red). (2.113)

Function f(Red) depends on the droplet Reynolds number:

f(Red) =





Re0.077
d : 1 ≤ Red ≤ 400

1 : Red < 1.
(2.114)

Prandtl number Pr and Schmidt number Sc of the film are calculated by

Pr = µ̂
Ĉp

λ̂
(2.115)

Sc =
µ̂

ρ̂D
. (2.116)

BM is the Spalding mass transfer number [223] defined as:

BM =
YFs − YF∞

1 − YFs
, (2.117)

where YFs and YF∞ are the mass fractions of vapor at the droplet surface and outer

boundary of the film, respectively. YFs is calculated according to Clausius-Clapeyron

equation:

YFs =
MF

MF + M̄(p̄/pF − 1)
, (2.118)

where MF is the molecular weight of the fuel and M̄ is the mean molecular weight

of the surrounding gas. p̄ is the mean pressure of surrounding gas. pF is the vapor

pressure of the fuel which is calculated from the critical temperature, critical pressure

and droplet temperature [224]:

pF = pcrit exp

(
f(Td,ref)

1 − Td,ref

)
, (2.119)
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with

Td,ref = 1 − Td

Tcrit
; (2.120)

f(T ) = −8.54796T + 0.76982T 1.5 − 3.1085T 3 + 1.54481T 6. (2.121)

BT is the Spalding heat transfer number [223]. Substituting Eq. (2.107) into Eq.

(2.108), we obtain

ρ̂DSh∗ ln(1 + BM) =
λ̂

Ĉp

Nu∗ ln(1 + BT ). (2.122)

Thus, BT can be calculated from BM using

BT = (1 + BM)Φ − 1, (2.123)

with

Φ =
Ĉpρ̂D

λ̂

Sh∗

Nu∗ . (2.124)

The change rate of the droplet radius is obtained from Eq. (2.107),

ṙd =
ṁd

4πρlr2
d

=
ρ̂DrdSh∗ ln(1 + BM)

2ρlr2
d

. (2.125)

With infinite-conductivity model [221], the evolution equation of droplet tempera-

ture is written as:

Ṫd =
dTd

dt
=

ṁd

(
Ĉp(T∞ − Td)/BT − Lv(Td)

)

4
3
πρlCp,lr

3
d

. (2.126)

The latent heat of vaporization of the fuel with droplet temperature Td is related to

the latent heat of the fuel at the boiling point with the following relationship [224]:

Lv(Td) =

(
1 − Td/Tcrit

1 − Tb/Tcrit

)κ

Lv(Tb), (2.127)

where Tb is the boiling point of liquid; and

κ =

(
0.00264Lv(Tb)

RTb
+ 0.8794

)10

. (2.128)

The latent heat of the fuel at the boiling point is estimated using Riedel estimation

method [224]:

Lv(Tb) =
1.093RTb log(pcrit/pref − 1.103)

0.930 − Tb/Tcrit
, (2.129)

with pref = 1.0 bar.

The infinite-conductivity model is appropriate for small droplets and for the fuel

with its relatively high volatility at atmospheric pressure.
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2.4 Flamelet Model

Flamelet models are constructed from an asymptotic view of diffusive-reaction layers.

The idea was proposed in 1970 in the field of chemical engineering [225] and in 1972

in the field of combustion [226]. The flamelet concept views the turbulent diffusion

flame as an ensemble of stretched flamelets attached to the instantaneous position of

the flame surface. By assuming the terms involving transients and gradients parallel to

the instantaneous surface of the constant mixture fraction to be small, and assuming

equal diffusibility of all species, the species conservation equations can locally and

instantaneously be transformed into the stationary laminar flamelet equation [169]:

ρ
∂Yi

∂t
=

ρχ

2

∂2Yi

∂ξ2
C

+ ω̇i; (2.130)

ρ
∂T

∂t
=

ρχ

2

∂2T

∂ξ2
C

+
1

Cp

Q̇, (2.131)

where the instantaneous scalar dissipation rate χ depends on the details of the char-

acteristics of the turbulence. It is defined as

χ = 2D

(
∂ξC

∂xi

)2

= 2D



(

∂ξC

∂x1

)2

+

(
∂ξC

∂x2

)2

+

(
∂ξC

∂x3

)2

 . (2.132)

The underlying concept is that the flame reaction zones are very thin. The only

two control parameters are the mixture fraction ξC and its dissipation rate χ. The

mixture fraction indicates the progress of the chemical reaction, while its dissipation

rate indicates the effects of the turbulence. With the scalar dissipation rate χ, the

effects of finite rate chemistry are included. For a given state of the turbulent flow

with certain value of ξC and χ, the flamelet models assume that the local balance

between diffusion and reaction is similar to the one in a prototype laminar flame with

the same value of ξC and χ. The balance equations of species are then replaced with

the conservation equation of the mean and variance of the mixture fraction.

The solutions may be available either in form of steady state flamelet libraries or in

form of unsteady flamelet libraries [227]. The results are stored in a structured table.

The composition state space can be determined by looking up the table according

to the mixture fraction and its dissipation rate. The mean values of the scalars are

obtained usually through a presumed PDF approach. Eq. (1.6) is then changed to

Ỹi =
∫

ξC

∫

χ
Y SFLM

i (ξC , χ)f̃(ξC , χ; x, t)dξCdχ, (2.133)

where SFLM stands for “steady flamelet model”. The flamelet structure is pre-calculated

by solving the one-dimensional flamelet equations. Usually the counter-flow structure

is used to build the flamelet library [67, 181]. Y SFLM
i (ξC , χ) is usually tabulated from
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the flamelet library. Then the calculation of the turbulent flow and mixture fields is

separated from the calculation of the chemistry. Detailed chemical reaction mechanisms

and molecular diffusion processes can be included in these flamelet libraries.

Recently, unsteady laminar flamelet models (Lagrangian flamelet models) were de-

veloped to take into account the effects of the transients [228, 227, 229]. They incorpo-

rate a Lagrangian viewpoint associated with the treatment of the strong fluctuations

that can occur in scalar dissipation. They accommodates the effects of the convection

terms parallel to the surfaces of the constant mixture fraction. History effects were

taken into account using a Lagrangian time measured along the stoichiometric line.

Mean scalar dissipation rate is defined as

χ̃ = 2D(
∂ξ̃C

∂xj
)2, (2.134)

and modeled as

χ̃ = cχ
ǫ̃

k̃
ξ̃
′′2
C . (2.135)

The scalar dissipation rate directly indicates the decaying speed of fluctuations via

turbulent micro-mixing. Since the burning rate depends on the contact between the

reactants, the scalar dissipation rate enters directly or indirectly the expression for the

mean burning rate. It is a very important concept for turbulent combustion. The main

stumbling block in turbulent combustion modeling and bridges between the various

modeling concepts emerge through the scalar dissipation rate [68].

Another important quantity is the scalar dissipation rate χ̃st at the stoichiometric

conditions which should be modeled. However the CFD code cannot provide this

conditional scalar dissipation rate. It only can determine the unconditional one through

Eq. (2.135). For the counter-flow, assuming constant density and diffusivity, the scalar

dissipation rate is approximated by

χ =
a

π
exp(−2[erfc−1(2ξC)]2), (2.136)

where erfc−1 is the inverse of the complementary error function. The above equation

implies that the scalar dissipation rate depends on the mixture fraction. The condi-

tional scalar dissipation rate can be related to the unconditional one by

χ(ξC) = χ(ξC,st)
f(ξC)

f(ξC,st)
, (2.137)

where f is the exponential term in Eq. (2.136). Taking an average of χ, we obtain

χ̃ =
∫ 1

0
χ(ξC)P (ξC)dξC = χ(ξC,st)

∫ 1

0

f(ξC)

f(ξC,st)
P (ξC)dξC. (2.138)
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Coupling with eq. (2.135), the stoichiometric scalar dissipation rate is determined by

χ(ξC,st) =
cχ

ǫ̃
k̃
ξ̃
′′2
C

∫ 1
0

f(ξC)
f(ξC,st)

P (ξC)dξC

. (2.139)

Mixture fraction and dissipation rate are the two most important scalars. The

dissipation rate χ can be related to the strain rate of the local flamelet. χ describes

the deviations from chemical equilibrium. It is possible to add the effects of the strain

into combustion models if the shape of the joint PDF of mixture fraction and the

dissipation rate is known. Experimental study showed that the scalar dissipation rate

follows log-normal distribution [230, 231, 232].

In the turbulent spray diffusion flame, the liquid phase affects the flame structure

significantly even for dilute sprays [178]. Fluctuations of the equivalence ratio and

temperature induced by the presence of fuel droplets may not be neglected, even when

the flow is premixed on a large scale [181]. Additional parameters should be taken into

account in the flamelet library, including initial droplet radius rl0, initial spray velocity

for fixed strain rate at the inlet vl0, and the equivalence ratio at the spray inlet Er

[180]. Thus, Eq. (2.133) becomes

Ỹi =
∫

ξC

∫

χ
Y SFLM

i (ξC, χ, rl0, vl0, Er)

× f̃(ξC, χ, rl0, vl0, Er; x, t)dξCdχdrl0dvl0dEr. (2.140)

New flamelet model includes the effects of the liquid phase through these additional

parameters. Here all the parameters are assumed to be statistically independent:

f(ξC , χ, rl0, vl0, Er; x, t) = fξC
(ξC; x, t)fχ(χ; x, t)

× frl0
(rl0; x, t)fvl0

(vl0; x, t)fEr
(Er; x, t). (2.141)

Following the ideas of the flamelet model for gas phase combustion, the turbulent

fluctuation of the mixture fraction is modeled using a presumed β distribution [178]:

fξC
(ξC) = P1(ξC) =

Γ(α + β)

Γ(α)Γ(β)
ξα−1
C (1 − ξC)β−1. (2.142)

The parameters α and β are determined from the mean and the variance of the local

mixture fraction:

α = ξ̃C


 ξ̃C(1 − ξ̃C)

ξ̃
′′2
C

− 1


 ; (2.143)

β = (1 − ξ̃C)


 ξ̃C(1 − ξ̃C)

ξ̃
′′2
C

− 1


 . (2.144)
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It has been proven that this presumed β function is questionable in the presence of a

spray [45, 233, 140]. A modified β function is a better choice [140]. It is defined as

P2(ξC) =
Γ(α + β)

Γ(α)Γ(β)
(ξC,max − ξC,min)1−α−β(ξC − ξC,min)α−1(ξC,max − ξC)β−1. (2.145)

The parameters ξC,min and ξC,max represent the minimum and maximum value of mix-

ture fraction. Their values depend on the local conditions. The parameters α and β

are determined from the mean and variance of the local mixture fraction, and ξC,min,

ξC,max:

α =
ξ̃C − ξC,min

ξC,max − ξC,min


(ξ̃C − ξC,min)(ξC,max − ξ̃C)

ξ̃
′′2
C

− 1


 ; (2.146)

β =
ξC,max − ξ̃C

ξC,max − ξC,min


(ξ̃C − ξC,min)(ξC,max − ξ̃C)

ξ̃
′′2
C

− 1


 . (2.147)

Another alternative is to replace the presumed PDF with the marginal PDF computed

using a transported PDF method [142].

Scalar dissipation rate is modeled using a log-normal distribution:

fχ(χ) = P3(χ) =
1

σlog

√
2πx

exp

[
−(ln x − µlog)2

2σ2
log

]
. (2.148)

The parameter σlog is set to 2 [194]. The parameter µlog is computed from the mean

dissipation rate:

µlog = ln(χ̃) − 1. (2.149)

Since there are no guidelines from experiments or from DNS for the evaluation of

the PDFs for rl0, vl0, and Er, simple approaches are used. Dirac delta functions are

used for the initial spray velocity, equivalence ratio at the spray inlet, and the initial

droplet size.
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3. Numerical Methods

In the numerical simulation, the governing equations are discretized and solved by com-

puter programs. Appropriate numerical algorithms are required. An ideal numerical

algorithm should

• be linearly stable for all cases of interest;

• mirror the conservation properties of the physics;

• ensure the positivity property when appropriate;

• be reasonably accurate;

• be computationally efficient;

• be independent of specific properties of one particular application.

Stability, conservation, and positivity generally relate to the accuracy. None of them

can guarantee any of the others.

There are several numerical methods available for the fluid mechanics. The methods

ranging from the most discrete (or particulate) in nature to the most continuous (or

global) include:

• particle methods

• characteristic methods

• Lagrangian finite difference/finite volume method

• Eulerian finite difference/finite volume method

• finite element method

• spectral methods

Each method has advantages and disadvantages, consequently has the preferable appli-

cation fields. Usually, it is difficult or inefficient for a stand-alone method to simulate

a complex system. Hybrid method, which is like a bootstrapping process, combines
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Fig. 3.1: Flowchart of the computation code.

the advantages of the multiple methods and minimizes their disadvantages. The dis-

advantage of hybrid method is that the consistency problem is more serious. Special

strategies are needed to keep consistent between the multiple methods.

In the present work, a finite volume method based on the SIMPLE-algorithm is

used to solve the mean conservation equation of the gas flow; a Lagrangian Monte-

Carlo/particle method is used for the PDF transport equation of the gas flow; a La-

grangian stochastic droplet parcel method is used for the spray flow. The flowchart of

the computational code is illustrated in Fig. 3.1. In this chapter, the detailed descrip-

tions of these three methods are presented as well as the information exchange between

the different numerical methods.
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3.1 Finite Volume Method

Basic laws of the fluid mechanics are the conservation laws. They are the statements

that express the conservation of mass, momentum, and energy in a volume enclosed by

a surface. To represent the conservation laws, the most natural way is to solve the weak

forms of the governing equations, i.e., the integral forms of the equations. The integral

forms can be discretized by the finite volume method. The whole computational domain

is subdivided into a set of non-overlapping cells (control volume). The conservation

laws are applied on each cell to determine the flow field variables stored in the nodes.

If we write the Navier-Stokes Equations as

∂W

∂t
+ ∇ · (F(W) −N(W)) = S(W), (3.1)

where W = (ρ, ρU, ρh)T is the vector of the conserved variables; F, N and S are the

convective, viscous, and source terms, respectively. Let Ω be the control volume, and

its surface area is A. Integrating Eq. (3.1) in the control volume, we obtain
∫

Ω

∂W

∂t
dΩ +

∮

∂Ω
(F(W) − N(W)) · ndA =

∫

Ω
S(W)dΩ. (3.2)

Using an explicit time integration, Eq. (3.2) leads to the form of

Wn+1 = Wn − ∆t

Ω

∮

∂Ω
(F(Wn) − N(Wn)) · ndA + ∆t · S(Wn), (3.3)

where n indicates the time step. Substituting the formula of F, N and S into Eq.

(3.3), we get a large number of equations with independent variables W. Solutions of

the flows are obtained by solving these equations.

Finite volume method combines advantages of the finite element method (geomet-

ric flexibility) and of the finite difference method (flexibility in defining the discrete

flow field). The finite volume method automatically fulfills the conservation laws. The

numerical results of the finite volume method are relatively smooth. It can be adapted

to complex geometries. The numerical solution is relatively simple with low computa-

tional cost comparing to other numerical methods. It is easy to construct high-order

discretized formulation and to treat the boundary conditions.

In the present work, the mean conservation equations of gas flows are solved by

a finite volume method which is based on the SIMPLE algorithm. For a steady, axi-

symmetry problem, all the conservation equations can be written in a uniform equation

as the following [194]:

L(Φ̃) ≡ ∂(ρ̄ŨiΦ̃)

∂xi

− ∂

∂xi

(
ΓΦ,eff

∂Φ̃

∂xi

)
= S̄g,Φ + S̄l,Φ. (3.4)

The corresponding description for each term is listed in Table 3.1 [194]. The evaluation

of the mean spray source terms Sl,Φ will be discussed in the Section 3.3.
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Φ̃ S̄g,Φ S̄l,Φ

1 0
Np∑
k=1

(nṁd)p,k

Ũx − ∂p̄
∂x

− 2
3

∂
∂x

[
µeff

(
∂Ũx

∂x
+ 1

r

∂(rŨr)
∂r

)]
+ ρ̄g

Np∑
k=1

(nṁdUd,x)p,k

Ũr − ∂p̄
∂r

− 2
3

∂
∂r

[
µeff

(
∂Ũx

∂x
+ 1

r

∂(rŨr)
∂r

)]
− 2µeffŨr

r2

Np∑
k=1

(nṁdUd,r)p,k

h̃ 0
Np∑
k=1

(nṁdhd)p,k

k̃ Gk − ρ̄ǫ̃
Np∑
k=1

−→
u′′(nṁdUd)p,k

ǫ̃ (C1Gk − C2ρ̄ǫ̃)ǫ̃ / k̃ Csǫ̃/k̃ S̄l,k

ξ̃C 0 S̄l,1

ξ̃′′2C 2Γ
ξ̃′′2
C

t
div2ξ̃C − 2ρ̄ǫ̃ / k̃ ξ̃′′2C S̄l,k ξ̃′′2C

(
1 − 2ξ̃C

)
/ ξ̃C

Tab. 3.1: Governing equations of the gas phase flow with a dilute spray.

3.1.1 Staggered Grid

In the present work, a staggered grid technique is employed. Staggered grids for de-

pendent variables in a flow field were first used in 1965 [234]. They are illustrated in

Fig. 3.2 [235]. The control volume of the node (i, j) is indicated by the dashed line. All

the information is stored in the node, except the velocity. The location of the velocity

components are at the center of the cell faces to which they are normal. The pressure

difference between two adjacent cells is the driving force for the velocity component

located between the interfaces of these cells. This prevents the appearance of oscil-

latory solutions, particularly for the pressure, p, that can occur if centered difference

scheme are used to discretize all derivatives on a non-staggered grid. The convective

fluxes across the faces of the control volumes can be computed without interpolation

of velocity components. With the staggered grid, the Poisson equation for the pressure

(Eq. (3.20)) automatically satisfies the discrete form of the integral boundary condi-

tion [236]. This avoids additional adjustments to the right-hand side of the Poisson

equation.

The use of staggered grid has some disadvantages [236]. The structure of computer

program using a staggered grid is more complex than the one using a non-staggered

grid, because the velocity U and V cannot be stored in the same array as other vari-

ables. Generally boundary conditions are more difficult to impose consistently with a

stagger grid, since at least one dependent variable, U or V , will not be defined on a

particular boundary. If non-rectangular grid and generalized coordinates are used, the

incorporation of a staggered grid is more complicated.
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Fig. 3.2: Staggered grids in two dimensions: →= Ũ ; ↑= Ṽ ; • = other variables.
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Fig. 3.3: Control volume of the grid nodes.
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3.1.2 Discretized Formulation

A five-node formula is employed to solve the energy equation and the transport equa-

tions for the mixture fraction, variance of mixture fraction, turbulent kinetic energy,

and dissipation rate. The value of one independent variable φp at a node p is con-

nected with those of its two neighbors in x-direction, φe and φw, and its two neighbors

in y-direction, φs and φn. Eq. (3.3) can be written as

apφp =
∑

l=e,w,n,s

alφl + b, (3.5)

where b is the source term. l = e, w, n, s indicate the directions. The neighbor coef-

ficients al represent the convection and diffusion influence of four faces of the control

volume in terms of flow rate Fl and conductance Dl. The expression of al and b are

derived by integrating the differential equation (3.4) over a control volume surrounding

the node p (see Fig. 3.3 [235]).

al = DlA(|Pl|) +
1

2
(|Fl| − Fl) , l = e, n; (3.6)

al = DlA(|Pl|) +
1

2
(|Fl| + Fl) , l = w, s; (3.7)

ap =
∑

I

al; (3.8)

b = Sc∆x∆y. (3.9)

P is the cell Peclet number which is the square of the ratio between the cell size and

the diffusion length:

Pl =
Fl

Dl
. (3.10)

Function A(|P|) depends on discretization schemes. In the present work, an upwind

scheme is employed. A is set to unity:

A(|Pl|) = 1. (3.11)

Fl are expressed as

Fl = (ρ̄Ũ)l∆y, l = e, w; (3.12)

Fl = (ρ̄Ṽ )l∆x, l = n, s. (3.13)

The upwind scheme is the only approximation that unconditionally satisfies the bound-

edness criterion. With upwind scheme, oscillations in the solutions are avoided, i.e. the

the computation is more stable. However, the upwind scheme introduces numerical dif-

fusion as a result of the first-order truncation.
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Fig. 3.4: Control volume of axial velocity (left) and radial velocity (right).

A central-difference scheme is used to calculate the diffusion flux. Dl are expressed

as

Dl = Γl
∆y

(δx)l
, l = e, w; (3.14)

Dl = Γl
∆x

(δy)l
, l = n, s. (3.15)

The discretized momentum equation is different from the ones for other variables

because of the usage of staggered grid technique. The staggered control volume for

velocity U is shown in Fig. 3.4 [235]. The control volume is staggered in relation to

the normal control volume around the grid point P and E. The difference pp −pe is the

pressure force acting on the control volume for the velocity U . The calculation of the

diffusion coefficient and the mass flow rate at the faces of the control volume requires

a calculation similar to Eq. (3.5). The resulting discretization equation can be written

as

aeUe =
∑

albUlb + b + (pp − pe)Ae; (3.16)

anVn =
∑

albVlb + b + (pp − pn)An. (3.17)

The neighbor coefficients alb account for the combined convection-diffusion influences

at the control volume faces. The source term b is defined in the same manner as the

one in Eq. (3.5).

3.1.3 SIMPLE Algorithm

SIMPLE algorithm is used to calculate the pressure and to ensure the satisfaction of

the continuity equation. The acronym “SIMPLE” stands for “Semi-Implicit Method
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for Pressure-linked Equations”. The SIMPLE-type algorithm dominated the entire

field of numerical simulation of fluid flows in the last century. Some modifications to

the SIMPLE algorithm have been suggested in [237].

SIMPLE algorithm is based on the finite volume discretization on the staggered

grids which the present work employed. It describes the iterative procedure by which

the solutions of the discretized equations are obtained. The iterative procedure can be

interpreted as a pseudo-transient treatment of the unsteady momentum conservation

equations in discrete form to obtain the steady-state solution. The momentum equation

(2.15) can be transformed to a Poisson equation:

∂2p̄

∂x2
i

= − ∂

∂xi

(
∂

∂xj

(
ρ̄ŨiŨj − τij

)
+

ρUi

∂t
− ρgi − Sl,Ui

)
. (3.18)

Substituting the continuity equation (2.14) into the above equation, we obtain:

∂2p̄

∂x2
i

= − ∂

∂xi

(
∂

∂xj

(
ρ̄ŨiŨj − τij

)
− ρgi − Sl,Ui

)
+

∂2ρ̄

∂t2
+

∂S̄l,1

∂t
. (3.19)

For the steady case, the viscous and unsteady terms disappear leaving:

∂2p̄

∂x2
i

= − ∂

∂xi

(
∂

∂xj

(
ρ̄ŨiŨj

)
− ρgi − Sl,Ui

)
. (3.20)

Its discretized form is

apδpp =
∑

I

(aδp)I + b, (3.21)

with the coefficients and source term:

al = ρ̄ldlAl, l = e, w, n, s,

ap =
∑

l

al,

b =
[(

ρ̄Ũ∗
)

w
−
(
ρ̄Ũ∗

)
e

]
Ae +

[(
ρ̄Ṽ ∗

)
s
−
(
ρ̄Ṽ ∗

)
n

]
As + (ρgi + S̄l,Ui

)∆V,

dl = Al/al.

The procedure can be summarized as the follows:

1. a pressure field p∗ is estimated at first;

2. the velocity U∗ and V ∗ are calculated using

aeU
∗
e =

∑
anbU

∗
nb + b + (p∗p − p∗e)Ae, (3.22)

anV
∗
n =

∑
anbV

∗
nb + b + (p∗p − p∗n)An; (3.23)

3. δp is obtained from Eq. (3.21);
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4. the corrected velocity U c and V c is calculated from

U c
e = U∗

e +
Ae

ae

(δpp − δpe), (3.24)

V c
n = V ∗

n +
An

an
(δpp − δpn); (3.25)

5. pn+1 is obtained from pn+1 = pn + δp;

6. check whether the source term b in Eq. (3.21) is zero. If not, return to the step

2 and repeat until convergence is achieved.

The resulting nonlinear algebraic equations are solved by the line-by-line tri-diagonal-

matrix algorithm (TDMA). A relaxation method is used to accelerate the convergence.

Large change in the variables could cause numerical instability. Therefore, we allow

Φn+1,r to change only a fraction αΦ of the would-be difference:

Φn+1,r = (1 − αΦ)Φn + αΦΦn+1. (3.26)

For the pressure, only a fraction of the pressure-correction is added to the guessed

pressure field:

pn+1,r = pn + αpδp. (3.27)

The relaxation parameters αΦ and αp are a constant lying between 0 and 1. The

relaxation method can improve the stability of the computation.

3.1.4 Boundary Conditions

Precision and potential applications of the numerical schemes are constrained by the

boundary conditions.

In the present finite volume method, the velocity, enthalpy, composition, and tur-

bulent properties of gas flow are fixed to the initial values at the inlet plane.

At the symmetry axis and outside boundary, the convection and diffusion fluxes in

the normal direction are zero. The velocity components normal to the boundary are

set to zero. Other properties at the boundary nodes are set to their values at the node

next to boundary.

At the exit plane, the gradients of fluid properties in the normal direction are zero.

The values at the exit plane are set to their values at the internal nodes which are the

node next to boundary.
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3.2 Lagrangian Monte-Carlo Particle Method for

the Gas Flow

Particle method provides a suitable discrete form wherever the system is by nature

particle or is described by a Lagrangian formulation. It is widely used in physics,

chemistry, and engineering. Successful examples include electronics, condensed matter

study, dynamics of the large biological molecules, evolution of the spiral structure

in galaxies, plasma, hot gas plasmas in the fusion machines, molten salts, aqueous

solutions, phase change, and flows of electrons in semiconductor devices. In fluid

mechanics, the particle methods are very helpful. The PDF transport equations are

usually solved by particle methods, where the particles represent “fluid elements”. The

dispersed phase in the multiphase flow is often solved by particle methods too, where

the particles represent droplets, bubbles, or solid particles.

In the present work, the PDF transport equation is solved by a Lagrangian Monte-

Carlo particle method. The one point PDF is represented by a finite number of gas

particles. Each gas particle has a set of properties. The properties may be mass m∗,

position x∗, velocity U∗, mixture fraction ξ∗C , enthalpy h∗ in different PDF formulations.

The gas particle with the position x∗ evolves according to

dx∗

dt
= U∗(x∗), (3.28)

where U∗(x∗) is the instantaneous velocity of the particle. For the scalar PDFs, the

instantaneous velocity of the particle is written as

U∗(x∗) = Ũ(x∗) + u(x∗, t), (3.29)

where Ũ is computed by the finite volume method and is interpolated into the particle’s

position x∗. In the present work, first-order interpolation is used. If the particle locates

in the cell e whose four nodes are (i, j),(i+1, j),(i, j+1), and (i+1, j+1), then the value

of function φ at the particle position (x, y) is interpolated from the values stored at

the nodes:

φ∗(x, y) = gi,j(x, y)φi,j + gi+1,j(x, y)φi+1,j

+ gi,j+1(x, y)φi,j+1 + gi+1,j+1(x, y)φi+1,j+1, (3.30)

where gi,j(x, y) is the linear basis function coefficient of node (i, j) to the particle

position (x, y) in the cell e. The linear basis function coefficient is defined as

gi,j(x, y) =
(xi+1 − x)(yi+1 − y)

(xi+1 − xi)(yi+1 − yi)

gi+1,j(x, y) =
(x − xi)(yi+1 − y)

(xi+1 − xi)(yi+1 − yi)
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gi,j+1(x, y) =
(xi+1 − x)(y − yi)

(xi+1 − xi)(yi+1 − yi)

gi+1,j+1(x, y) =
(x − xi)(y − yi)

(xi+1 − xi)(yi+1 − yi)

The sum of these four coefficients equals to unity:

4∑

α=1

gα(x, y) = 1.

If the gas particle is not in the cell e, then the linear basis function coefficients equal

zero:

gα(x, y) = 0.

The fluctuating velocity u is assumed to follow a Gaussian distribution with the

mean of zero and the variance of 2k/3:

f(u) =
(

4

3
πk̃
)− 1

2

exp
(
− 3

4k̃
u2
)

. (3.31)

The value of the fluctuating velocity is determined through a Monte-Carlo method.

The turbulent kinetic energy is interpolated from grids into the gas particle’s position

using Eq. (3.30). For the joint velocity-scalar PDF, the velocity of the gas particle is

calculated from the Eq. (2.63).

A second-order algorithm is used to solve Eq.(3.28) [91]. The mid-point x∗
n+ 1

2 is

computed by

x∗
n+ 1

2 = x∗n

+
∆t

2

(
Ũn(x∗n

) + un
)
. (3.32)

The superscript n denotes the nth time step. Then the new mean velocity Un(x∗
n+ 1

2 )

and fluctuating velocity un+1 at position x∗
n+ 1

2 are computed. The particle’s position

at (n + 1)th time step is calculated by

x∗n+1

= x∗n

+ ∆t
(
Ũn(x∗

n+ 1
2 ) +

1

2
(un + un+1)

)
. (3.33)

To solve Eq. (2.63) numerically, we define

ai = g − 1

ρ̄

(
∂p̄

∂xi
− S̄l,Ui

)
;

b = −
(

1

2
+

3

4
C0

)
ǫ̃

k̃
; (3.34)

c = C0ǫ̃.

Then Eq. (2.63) becomes

dU∗
i (t) = aidt + bU∗

i dt + c1/2dWi. (3.35)
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The second-order scheme is applied to solve Eq. (3.35) [199, 91]:

∆U∗
i = (ai + bU∗

i ) ∆t + (c∆t)1/2ξi; (3.36)

U∗n+1

i = U∗n

i + ∆U∗
i +

1

2
b∆U∗

i ∆t.

For the k-th particle, the IEM model is expressed as

dφ∗
k = −1

2

Cφ

tτ (x∗
k)

(φ∗
k − φ̃(x∗

k))dt, (3.37)

which is the first term on the right-hand side of Eqs. (2.64) and (2.65). The local

turbulent fluctuating time scale tτ (x∗
k) is interpolated from the grid nodes. Frozen tτ

and φ̃, the exact increment in φ∗
k over time ∆t is

∆φ∗
k = −dk(φ∗

k − φ̃(x∗
k)) (3.38)

with

dk = 1 − e−
1

2
Cφ∆t/tτ . (3.39)

φ̃(x∗
k) is interpolated from the grid node by

φ̃(x∗
k) =

∑

α

gα(x∗
k)φ̂α, (3.40)

where gα(x∗
k) is the linear basis function coefficient of node α to the particle position

x∗
k with

∑

α

gα(x∗
k) = 1. (3.41)

Thus

∆φ∗
k = −dk(φ∗

k −
∑

α

gα(x∗
k)φ̂α). (3.42)

The global change in φ must be zero during the whole mixing process. However,

if the value of φ̂ is directly taken from φ̃ which is stored in the grid nodes, the global

change may not be zero. Thus, the value of φ̂ must be estimated by setting the global

change to zero,

0 = ∆G ≡
∑

k

m∗
k∆φ∗

k = −
∑

k

m∗
kdk

(
φ∗

k −
∑

α

gα(x∗
k)φ̂α

)

= −
∑

k

m∗
kdk

(∑

α

gα(x∗
k)φ∗

k −
∑

α

gα(x∗
k)φ̂α

)

= −
∑

k

∑

α

(
gα(x∗

k)m∗
kdk

(
φ∗

k − φ̂α

))

=
∑

α

(
−
(∑

k

gα(x∗
k)m∗

kdkφ
∗
k

)
+ φ̂α

(∑

k

gα(x∗
k)m∗

kdk

))
. (3.43)
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Therefore, φ̂α is determined by :

φ̂α =

∑
k gα(x∗

k)m∗
kdkφ

∗
k∑

k gα(x∗
k)m∗

kdk

, (3.44)

which is the CIC (Cloud-In-Cell) mean with particle weighting m∗
kdk.

The mean values are evaluated from the results of the transported PDF method

at each node. The computation is via the linear basis function coefficient. For an

arbitrary function Φ, its mean value at the node α is calculated from its value of the

gas particles:

Φ̃ =

∑
e

∑
k gα(x∗

k)Φ∗
k∑

e

∑
k gα(x∗

k)m∗
k

. (3.45)

The first sum is over the cells e one of whose nodes is α.

Time step is restricted by Courant-Friedrichs-Lewy (CFL) condition [93]. Physi-

cally, the CFL condition indicates that a fluid particle should not travel more than one

control volume in one time step. The global time step is computed by the following

formula:

∆t = CCFL · min

{
∆xi

|Ũi|
,

∆yi

|Ṽi|
,
k̃i

ǫ̃i

, . . .

}
, i = 1, . . . , Ng, (3.46)

where Ng is the total number of the grids; ∆xi and ∆yi are the length of the control

volume of node i in axial and radial direction, respectively; U and V are the axial

and radial gas velocity, respectively; k and ǫ are the turbulent kinetic energy and its

dissipation rate. The constant CCFL should not be larger than 1 to satisfy the von

Neumann stability condition. Here, CCFL is set to 0.5. The resulting time step is used

both in the finite volume method and the particle method.

In the particle method, the boundary conditions are necessary, too. Figure 3.5

shows the sketch of the computational domain. At the inlet plane, the Monte-Carlo

gas particles are created and activated according to the local flow properties. The total

mass of the new gas particles of one control cell is set to be the mass flux during the

current time step:

M∗
tot = ρ0Ux,0S0∆t, (3.47)

where S0 is the area of the control cell at inlet profile; ρ0, Ux,0 are from experimental

data.

When the gas particle moves across the axis of symmetry, the particle is reflected

from the boundary without change in their properties except for the velocity and

position in the direction normal to the boundary.

When the gas particle moves across the exit plane or outside boundary, the particle

is discarded.

It is well-known that the statistical error is proportional to N−1/2, where N is

the sample number. In transported PDF method, the statistics of the flow field are
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Fig. 3.5: Sketch of the computational domain

evaluated at each cell. When the total number of gas particles in one cell is too low,

the corresponding statistical errors will be very large, and may prevent the code from

convergence. Contrarily, if the total number of gas particles in one cell is too large, it

may exceed the limitation of the array storing the properties of gas particles. To avoid

such cases, special strategy [238] is needed to keep the gas particle number of every cell

in a certain range, [Nmin, Nmax]. In the present work, a split/discard algorithm is used

[94]. When the total particle number in one cell is smaller than Nmin, the largest gas

particle in this cell is split into two identical gas particles. Both of them have the same

properties as the original one, except half of the mass. This split operation is repeated

until the total particle number in this cell equal to Nmin. Though the new “twin”

gas particles have exactly all the same properties, the random terms in the governing

equations will lead them to different futures. They will become valid samples after one

time step. When the total particle number in one cell is larger than Nmax, the smallest
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gas particle is discarded. This discard operation is repeated until the total particle

number in this cell equal to Nmax. In the present work, Nmin and Nmax are set to 60

and 100, respectively.

3.3 Lagrangian Stochastic Parcel Method for the

Droplets

Continuous distribution of droplets is represented by a finite number of the droplet

parcels. Each parcel contains a number of droplets with identical position in physical

space and size, velocity, and temperature in state space. Therefore, one parcel can

be described as (Ṁp,xd, rd,Ud, Td). Ṁp indicates the liquid flux represented by this

droplet parcel. It evolves linearly with the droplet volume:

Ṁp(t) = Ṁp,0
r3
d(t)

r3
d,0

. (3.48)

Droplet position is determined by Eq. (2.96), which is discretized as

xn+1
d = xn

d + Un
d∆t. (3.49)

Eq. (2.98) is solved by a new implicit scheme described in Section 3.3.1. The instanta-

neous velocity of gas flow U in Eq. (2.99) is deformed into two parts: mean velocity Ũ

and fluctuating velocity u. The Favre-averaged velocity is computed by the finite vol-

ume method, and is linearly interpolated into the droplet’s position using Eq. (3.30).

Assuming that the fluctuating velocity follows an isotropic Gaussian distribution (see

Eq. (3.31)), the fluctuating velocity is determined from the local turbulent kinetic

energy using the same method described in the Section 3.2.

A second-order Runge-Kutta method is used to solve the Eq. (2.125) and (2.126):

rn+1
d = rn+1

d + ∆t
drd

dt

∣∣∣
n+ 1

2

, (3.50)

T n+1
d = T n+1

d + ∆t
dTd

dt

∣∣∣
n+ 1

2

. (3.51)

When the droplet radius is small enough, say,

rd < max{0.1rd, 1µm}, (3.52)

the droplet is assumed to have evaporated completely.

Spray source terms are evaluated according to the Particle-Source-In-Cell (PSI-

Cell) model [239] (see Fig. 3.6 [194]). According to Eq. (2.95), the mean of function

Φ can be approximated by

〈Φ〉 =
∫

fdΦdVddιddθd =
Np∑

k=1

np,kΦ, (3.53)
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(i,j)

Fig. 3.6: Particle-Source-in-Cell (PSI-Cell) model

where np,k is the droplet number of kth parcel. Therefore, for one certain control

volume V, the spray source term can be written as

S̄l,Φ =
ṀdΦ

V

=
1

V

Np∑

k=1

[(Ṁd,kΦk)in − (Ṁd,kΦk)out]. (3.54)

3.3.1 Implicit Scheme for the Computation of the Droplet

Velocity

Eq. (2.98) is usually solved by explicit integration [195]:

Un+1
d = Un

d + RHS · ∆t. (3.55)

In this section, this explicit scheme will be assessed. A new implicit scheme to com-

pute the droplet velocity is proposed. This scheme can be applied to other types of

multiphase flows, for instance, bubble flows, and gas/solid flows.
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Without loss of generality, we take the direction of the acceleration of gravity as the

positive x-axis. The droplet velocity in the z-direction is zero. The droplet velocities

in the x- and y-directions are

Ud = Ud,0, Vd = Vd,0 (3.56)

at the time t = t0. We take

C =
3

8

ρ̄

ρl

Cd

rd
,

a =

√
g

C
,

which are positive constants.

On the x-axis (parallel to the direction of gravity), the Eq. (2.98) can be written

as
dUd

dt
= −C|Ud − U |(Ud − U) + Ca2. (3.57)

There are two possible cases. First, the drag force is in the same direction as the

acceleration of gravity. In this case, the droplet velocity must be smaller than the gas

velocity, Ud < U . Eq. (3.57) turns to be

dUd

dt
= C(Ud − U)2 + Ca2. (3.58)

Integrating the above equation, the droplet velocity at the time t = t0 + ∆t can be

determined with the initial condition:

Ud = U + a · tan
(

arctan
(

Ud,0 − U

a

)
+ aC∆t

)
. (3.59)

Eqs. (3.58, 3.59) hold only when Ud < U . Therefore, ∆t should be smaller than the

“lifetime” of this case:

tl = − 1

aC
arctan

(
Ud,0 − U

a

)
. (3.60)

When t = t0 + tl, the droplet velocity equals to the gas velocity, Ud = U , and the

drag force is zero. Because of gravitational force, the droplet velocity keeps increasing,

which leads to the second case. In this case, the drag force is in the opposite direction

of the acceleration of gravity (Ud > U). Eq. (3.57) turns to be

dUd

dt
= −C(Ud − U)2 + Ca2. (3.61)

Integrating the above equation, the droplet velocity at the time t = t0 + ∆t can be

determined from the initial condition:

Ud = U + a +
2a

Ud,0−U+a

Ud,0−U−a
exp(2aC∆t) − 1

. (3.62)
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When ∆t → ∞, the droplet velocity Ud approaches to U + a. When Ud = U + a, the

gravitational force is balanced by the drag force. Obviously, the direction of the drag

force will not change. The variable Ud − U − a has the same sign during the whole

procedure:

(Ud − U − a)(Ud,0 − U − a) ≥ 0. (3.63)

In the y-direction (perpendicular to the direction of gravity), the Eq. (2.98) can be

written as
dVd

dt
= −C|Vd − V |(Vd − V ). (3.64)

Integrating the above equation, the droplet velocity at the time t = t0 + ∆t can be

determined from the initial condition:

Vd =
Vd,0 + C∆t|Vd,0 − V |V

1 + C∆t|Vd,0 − V | . (3.65)

When ∆t → ∞, the droplet velocity Vd approaches to the gas velocity V . The direction

of the drag force will not change in this case, too. The variable Vd − V has the same

sign during the whole procedure:

(Vd − V )(Vd,0 − V ) ≥ 0. (3.66)

Comparing to the explicit scheme, the computational complexity of the present

implicit scheme is only slightly increased.

To assess the proposed implicit scheme, a numerical test is conducted in a simplified

case. The droplets move in a steady and homogeneous 2D flow field. The velocities of

gas-phase flow are set to U = V = 1.0 m/s. Without loss of generality, C is taken as a

constant, 4.5 m−1. The evaluation of the droplet velocity is calculated by the present

implicit scheme and the explicit scheme (Eq. (3.55)). In Case I, the initial velocities of

the droplet are Ud,0 = Vd,0 = 10.0 m/s. In Case II, the initial velocities are Ud,0 = Vd,0

= -10.0 m/s. The time step is set to be a constant in each computation. Time steps

chosen are ∆t = 0.001 s, 0.01 s, 0.02 s, 0.025 s, 0.1 s.

As mentioned previously, the Eqs. (3.58, 3.59) are valid only when Ud < U . If the

time step ∆t is larger than the lifetime tl, the droplet velocity is calculated by the Eq.

(3.62) with the initial droplet velocity U and the time step (∆t − tl),

Ud = U + a − 2a

exp[2aC(∆t − tl)] + 1
. (3.67)

Figures 3.7 show the comparisons of the results of the implicit scheme and explicit

scheme with the time steps ∆t = 0.001 s. Lines indicate the results from the implicit

scheme; symbols indicate the results from the explicit scheme. Both cases show that

the results of implicit scheme and explicit scheme are identical. Since the time step
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Fig. 3.7: Comparison of the results from the implicit and explicit scheme with time step

∆t = 0.001 s. Left: U; Right: V

is very small, and both schemes give the identical results, these results can be taken

as the “exact solution”. The effects of the time step on the numerical results can be

investigated by comparing with these exact solutions.

Figures 3.8–3.9 show the effects of the time steps on the results of the implicit

scheme. The solid lines indicate the results with time step ∆t = 0.001 s. The symbols

indicate the results of other time steps, 0.01 s, 0.02 s, 0.025 s, and 0.1 s, respectively.

All the results of other time steps coincide with the exact solutions (the results of time

step ∆t = 0.001 s). It implies that the present implicit scheme is very stable and

robust. The size of time step does not affect the accuracy of the results.

Figures 3.10–3.11 show the effects of time steps on the results of explicit scheme.

The solid lines indicate the results with time step ∆t = 0.001 s. The symbols indicate

the results of other time steps, 0.01 s, 0.02 s, and 0.025 s, respectively. The numerical

results from the explicit scheme strongly depend on the size of time step. The explicit

scheme gives accurate results only when the time step is small enough. Increasing the

time step, discrepancy shows up between the exact solutions and the results of larger

time steps. Here we define a time scale for the drag force:

tdrag =
1

C|Ud − U | . (3.68)

According to the initial condition, the characteristic time of drag force is about 0.0247 s

for Case I and 0.0202 s for Case II. When the time step is set to 0.025 s, the explicit

scheme gives non-physical results because the numerical results do not satisfy the Eqs.

(3.63) and (3.66). Keep increasing the time step (0.1 s), the explicit scheme gives a

divergent result, while the implicit scheme still produces stable results. Therefore, the
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Fig. 3.8: Effects of the time steps on the results from implicit scheme: Case I. Left: U;

Right: V

explicit scheme is unstable.

To sum up, the numerical tests show that the proposed implicit scheme for the

computation of droplet velocity is very robust and accurate. In this scheme, the errors

induced by the time discretization are minimized. The accuracy of the implicit scheme

does not depend on the size of time step. The implicit scheme still gives reliable results

when the time step is larger than the drag force time scale (∆t >> tdrag).

3.3.2 Boundary Conditions for Droplet Parcel Method

Boundary conditions of the stochastic parcel method [194] is similar to the Lagrangian

Monte-Carlo particle method. When the droplets move across the axis of symmetry, the

droplets are reflected from the boundary without change in their properties except for

the velocity and position in the direction normal to the boundary. When the droplets

move across the outlet plane or the outside boundary, they are discarded.
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4. Results and Discussion

4.1 Turbulent Methanol/Air Spray Flows

4.1.1 Experimental Setup

Steady, two-dimensional, axi-symmetric, both non-reactive and reactive turbulent liq-

uid jets are modeled. A dilute methanol spray is injected into a turbulent air flow.

Experiments were conducted by McDonell and Samuelsen [240, 241]. Figure 4.1 illus-

trates the overall geometry of the methanol/air spray burner [241]. Figure 4.2shows

the outline of the fuel injector [241]. We mark the section of the fuel injector’s exit

as x = 0 mm. The gas and droplet velocities, droplet size distribution, liquid flux,

and concentration of methanol vapor are measured at the axial location x = 7.5 mm,

25 mm, 50 mm, 100 mm, and 150 mm. The gas velocity, droplet velocity and droplet

size are measured using phase Doppler interferometry (PDI). The concentration of the

methanol vapor is measured using infrared extinction/scattering (IRES). In the reac-

tive case, the gas temperature is measured. The experimental data at x = 7.5 mm are

taken as the inlet profiles for numerical computations. Mass flow rate of the liquid fuel

is 1.32 g/s. The air flow results in a pressure drop of 3.73 kPa. In the PDF simulation,

the Dirac delta profile is prescribed for the particles’ mixture fraction at the inlet. Liu’s

[242] study of numerical accuracy in transported PDF methods shows that the number

of particle per cell, Npc, should not be smaller than 50 to keep the bias error below 5%

. In the present transported PDF method, Npc is set to 80, so that the bias error is

kept below 4%.

Calculations of the spray and gas flow are sensitive to the initial conditions. In the

present work, the inlet for computation locates near the nozzle (x = 7.5 mm), where

the flow structure is very complex. Little disturbance of the initial conditions in spray

or gas flow may result in a quite different field. The interaction between spray and gas

flow is very strong. The coarse measurements of the droplet size distribution at the

inlet profile cause uncertainties in the results of spray and consequently in the results

of gas flow. In the non-reactive case, the lack of information about the initial gas

temperature causes some uncertainties both in gas flow and spray, too.
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Fig. 4.1: Schematic of the methanol/air spray

burner.

Fig. 4.2: Outline of the fuel injec-

tor.
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Fig. 4.3: Contour plot of the mean methanol vapor mass fraction computed by the

transported PDF method. PDFs of single point are studied at marked posi-

tions.
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4.1.2 Single-Scalar PDF for the Turbulent Non-Reactive

Methanol/Air Spray Flows

The statistical distribution of the mixture fraction in a single-phase mixing layer is

usually described by a standard (two-parameter) β function [170]. The β function

gives good numerical results for the gas-phase flows [67, 169]. However, results from

direct numerical simulations (DNS) [45] show that it fails in the evaporation region

of the gas-liquid flow. The distribution of the mixture fraction does not follow the

β function in regions where vaporization exists. Therefore, the presumed β function

should be assessed before being used in the turbulent spray flows. On this purpose, a

turbulent non-reactive methanol/air spray flow is simulated using a PDF of the mixture

fraction. Details about the PDF transport equation and models are found in Section

2.2.1. The numerical algorithms being used to solve the PDF transport equation are

found in Section 3.2.

Figure 4.3 shows the contour plot of the mean fuel vapor mass fraction computed

by the transported PDF method. The positions A-H marked in the figure are used

to evaluate the PDFs of the mixture fraction discussed in Figs. 4.7–4.11. The major

vaporization occurs near the nozzle where the temperature and velocity differences

between droplets and gas flow are relatively large. The vaporization becomes weak

downstream. The highest concentration of the mass fraction of fuel vapor occurs near

the centerline, It implies that most of the methanol vapor is transported along the axis

of symmetry by the jet while the rest develops into radial direction.

Figures. 4.4–4.6 show the radial profiles of the gas velocity and mass fraction of

the methanol vapor at the first three positions where the experiments [240, 241] are

compared to the results from the moment closure method [180] and the results from

the present transported PDF method. Triangles indicate the experimental data of the

axial gas velocity; squares indicate the experimental data of mass fraction of methanol

vapor; dashed lines indicate the axial gas velocity computed with the present method;

dash-dotted lines indicate the mass fraction of methanol vapor computed using moment

closure method; solid lines indicate the mass fraction of methanol vapor computed using

the transported PDF method. The results of the transported PDF method are in

good agreement with the experimental data, and they improve the results obtained by

moment closure method in the initial region, c.f. Figs. 4.4–4.5. In the moment closure

method, the mixture fraction is calculated by solving the Favre-averaged conservation

equation (see Eq. (3.4) and Tab. 3.1). The effects of the turbulent transportation are

modeled using a gradient-diffusion hypothesis (see Eq. (2.50)). In the PDF transport

equation, the effects of turbulent transportation are taken into account through the

Monte-Carlo method, which represents the physical mechanism better. It is well-known

that the k− ǫ model always over-predicted the spreading rate of the jet. As a result in
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Fig. 4.4: Radial profiles of the gas velocity and mass fraction of the methanol vapor at

the section x = 25 mm.
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Fig. 4.5: Radial profiles of the gas velocity and mass fraction of the methanol vapor at

the section x = 50 mm.
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Fig. 4.6: Radial profiles of the gas velocity and mass fraction of the methanol vapor at

the section x = 75 mm.

velocity field, the axial velocity at the axis of symmetry is under-predicted (see Figs.

4.4–4.6), especially in the region close to nozzle (see Fig. 4.4). This implies that the

methanol vapor transported to the axis of symmetry is under-predicted. The droplets

occurring near the axis of symmetry are also under-predicted. These effects result in

the under-prediction of the mass fraction of methanol vapor near the axis of symmetry.

This phenomenon becomes stronger downstream as seen in Fig. 4.6 because of the

cumulation of these effects. Therefore, the results of the transported PDF method can

be improved if the velocity field is more accurate.

Figures 4.7–4.8 show the PDFs of the mixture fraction at different positions, which

are marked in Fig. 4.3. Along the axial line, all of the PDFs show a bimodal shape (see

Fig. 4.7). The PDFs get narrow along the axial line, which means that the variance of

the mixture fraction becomes smaller. The fluctuation of the scalar is larger upstream

because of the stronger turbulent fluctuation there. As a result, the left peak gets

weaker downstream (see Fig. 4.7 positions C and D). When the local fluctuation is

small enough, the PDF will have a Gaussian-like shape. It will become a Dirac delta

function when the variance is close to zero. Along the radial line (see Fig. 4.8), the

positions A, F, G locate in the region of the main vaporization zone, weak vaporization

and pure air. The fluctuation of the mixture fraction is weaker in the outer region than

in the inner region. The variance of the mixture fraction along the radial line decreases
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Fig. 4.7: PDFs of the mixture fraction, positions at the central line; dashed lines indi-

cate the case when the spray source terms are set to zero.

with increasing the radial distance r. As a consequence, the PDF of the mixture

fraction evolves from bimodal to unimodal shape, and to a Dirac delta function in the

region of pure air (position G). The value of the PDF at the position G extends to

a very high value (about 1.6×106) to satisfy the normalization condition of the PDF,

and it is cut off in the figure. Similar results were obtained by LES of solid-fuel ramjet

combustors [243]. The PDF of passive scalars in the turbulent gas-phase flows shows

similar statistical behavior [244].

4.1.2.1 Effects of the Spray Source

The effects of the spray source on the PDF of the mixture fraction are studied. The

same calculation is conducted where the spray source terms are set to zero. All other

flow characteristics including density, velocity, turbulent kinetic energy and its dissi-

pation rate are retained. The PDFs along the central line indicated by the dash-line is

presented in Fig. 4.7. Compared to the case with spray source (solid line in Fig. 4.7),
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the principal shape of the PDFs does not change. The mean value of the mixture frac-

tion is reduced. According to Eq. (2.64), the difference of the mean mixture fraction

is

∆ξ̃C = − 2

Cφ

k̃

ǫ̃
S̄l,1, (4.1)

compared to the case with the spray source.

4.1.2.2 Comparison of the PDFs

The results of the present transported PDF method are compared with the results

from the presumed PDFs. The presumed PDFs used here are the standard β function

(see Eq. (2.142)) and the modified β function (see Eq. (2.145)). The comparisons are

illustrated in Figs. 4.9–4.11. Solid lines indicate the results of the transported PDF

method. Dash-dotted lines indicate standard β function (β1). Dashed lines indicate

the modified β function (β2). The symbol ξ̃C in the figures indicates the position of

the mean value of mixture fraction computed using the transported PDF method. The

values of ξC,max and ξC,min are indicated on the axis of mixture fraction by arrows in

Figs. 4.9–4.11. With the mean of the mixture fraction ξ̃C and the variance of mixture

fraction ξ̃
′′2
C computed using the transported PDF method, the α and β in the standard

β function (Eq. (2.142)) can be determined from the Eqs. (2.143-2.144).

However, as shown in the figures, the standard β function always shows a Gaussian-
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computed by Monte-Carlo method (MC), position H. The positions of ξc,max
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computed by the transported method (MC), position F. The positions of

ξc,max and ξc,min are used in the modified β function.

like (unimodal) distribution for the conditions of the current flow field. This shape does

not represent the results of the transported PDF method, in particular when the PDF

of mixture fraction shows a bimodal shape (see Figs. 4.9–4.10). With the same mean

and variance of mixture fraction from the transported PDF method, and the local

maximum and minimum values of mixture fraction ξC,max and ξC,min, the α and β in

the modified β function (c.f. Eq. (2.145)) can be determined from the Eqs. (2.146–

2.147).

With appropriate values of ξC,max and ξC,min, the modified β function represents

the results computed using the transported PDF method very well. Even when the

results of the transported PDF method shows a Gaussian-like shape (see Fig. 4.11),

the modified β function still fits it very well. It has been mentioned that the standard

β function is a special form of the modified β function with ξC,max = 1 and ξC,min = 0

in Section 2.2.2.6. The predictive ability of the standard β function in turbulent spray

flow mainly depends on the value of (1 − ξC,max) and (ξC,min − 0). In the current sit-

uation, these deviations are quite large. Assuming that the spray stream has reached

the saturation, the maximum mass fraction of methanol vapor at the droplet surface

is roughly 0.1. The corresponding mixture fraction is 0.1 which is considerably smaller

than 1. Therefore, the standard β function is far away from the results of the trans-

ported PDF method. When the value of the local ξC,max and ξC,min are close enough

to unity and zero, respectively (which is the case in the turbulent gas-phase flows),
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the standard β function is reasonable to give good estimations to the results of the

transported PDF method. This is the reason why standard β function works well in

the turbulent gas-phase flows.

If the local maximum and minimum values of the mixture fraction ξC,max and ξC,min

is close enough to a constant in the whole computational domain, say,

∣∣∣∣∣
ξC,max − ξC,1

ξC,max − ξC,min

∣∣∣∣∣ ≤ ε (4.2)

or ∣∣∣∣∣
ξC,min − ξC,0

ξC,max − ξC,min

∣∣∣∣∣ ≤ ε (4.3)

the unknown parameters ξC,max (or ξC,min) can be replaced by the constant ξC,1 (or

ξC,0). When either Eq.(4.2) or Eq.(4.3) holds, the 4-parameter β function reduces to

a 3-paramter β function. Here ε is the tolerant error. If Eqs.(4.2) and (4.3) are both

true, it will reduce to a 2-parameter β function. In this case, the left two parameters

α and β can be determined from the local value of the mean and variance of mixture

fraction directly.

4.1.3 Joint Velocity-Scalar PDF for the Turbulent

Non-Reactive Methanol/Air Spray Flows

A joint velocity-scalar PDF is proposed in [141]. Its definition and transport equation

are presented in Section 2.2.1.3. The velocity model and mixing model are described in

Section 2.2.1.5 and 2.2.1.6, respectively. The same numerical method is used to solve

its transport equation.

A turbulent non-reactive methanol/air spray flow is simulated using this joint

velocity-scalar PDF formulation. Figure 4.12 shows the radial profiles of the mean

axial gas velocities at four different cross sections: x = 25 mm, 50 mm, 75 mm, and

100 mm. Symbols indicate the experimental data [240]; solid lines indicate the results

of the present transported PDF method; dashed lines indicate the results of former

moment closure modeling [178]. The results of the transported PDF method are in

very good agreement with experimental data. The transported PDF method improves

the results of the moment closure method particularly for the velocity near the center-

line which is shown in Fig. 4.13. The present extended simplified Langevin model is

suitable for use in turbulent spray flows. This simplified Langevin model neglects the

effects of the mean velocity gradient, which is mean source of the discrepancies found

in the current simulation. In the region close to the nozzle, the mean velocity gradient

is large and should not be neglected. Therefore, the results at the section x = 25 mm

do not fit the experimental data very well. Excellent agreement is found downstream
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Fig. 4.12: Radial profiles of the mean axial gas velocity at x = 25 mm, 50 mm, 75 mm,

and 100 mm.
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where the mean velocity gradient is relatively smaller and its effects are negligible. The

generalized Langevin model [199] takes into account the effects of the mean velocity

gradient. In this sense, the generalized Langevin model could offer better results of the

gas-phase velocity.

Figure 4.14 shows the radial profiles of the Sauter mean radius at sections x =

25 mm and 100 mm. Both the transported PDF method and the moment closure

method are in qualitative agreement with the measurements. The results from the two

models are almost identical. For the non-reactive case, the gas temperature gradients

and concentration gradients in the flow field are very small. The improvements in the

results of the transported PDF method do not affect the liquid phase very strongly.
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Fig. 4.13: Axial profile of the gas-phase mean axial velocity along the centerline.

4.1.4 Joint Enthalpy-Mixture Fraction PDF for the

Turbulent Methanol/Air Spray Flames

A joint mixture fraction-enthalpy PDF is proposed for the turbulent spray combustion

[142]. Its definition and transport equation are presented in Section 2.2.1.2. The same

models are used as the single-scalar PDF. A turbulent methanol/air spray flame is mod-

eled using this joint mixture fraction–enthalpy PDF. A detailed methanol/air combus-

tion mechanism is implemented through a spray flamelet model [180]. The mechanism

[245] consists of 23 species and 168 elementary reactions. The spray flamelet library
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Fig. 4.14: Radial profiles of the Sauter mean radius at x = 25 mm (left) and 100 mm

(right).

is pre-calculated from laminar counterflow spray flame. The library [180] consists of

the data with two different initial droplet radius of rl0 = 25 µm and 10 µm, and one

equivalence ratio Er = 3, one initial spray velocity v0 = 0.44 m/s. The species concen-

trations of a gas particle are determined from the spray flamelet library. The droplet

size r∗ is determined by interpolating the local Sauter mean radius at the nodes into

the gas particle’s position. The instantaneous dissipation rate of the gas particle, χ∗,

is sampled from a log-normal distribution using a Monte-Carlo method [99]. The pa-

rameter µlog in the log-normal distribution (c.f. Eq. (2.148)) is calculated from the

mean of the dissipation rate, which is computed from the local variance of the mixture

fraction. The composition vector of the gas particle, Y∗(ξ∗C, χ∗, r∗, El0, vl0), are com-

puted by interpolating the data from the spray flamelet library. The temperature of

the gas particle is computed from the composition vector and the enthalpy h∗
s. The

mean values at the node are obtained using the Eq. (3.45).

Figure 4.15 shows the contour plot of the mean gas temperature computed using

the present transported PDF method. The points A–H indicate the monitor positions,

where the PDFs of the mixture fraction, gas temperature, and enthalpy are analyzed.

The coordinates of these points (x, r) in mm are: A(50, 0), B(50,5), C(50, 10), D(50,

15), E(150, 0), F(150, 20), G(150, 40), H(150, 60).

Figure 4.16 shows the radial profiles of the mean axial gas velocity at the section

x = 25 mm, 50 mm, 100 mm, and 150 mm. Symbols are the experimental data [240].

Solid lines indicate the results from the present transported PDF method. Dashed

lines indicate the results from the moment closure method using k − ǫ model [180].

The results of the transported PDF method are in good agreement with experimental

data. Compared to the results of the moment closure method, the velocity profiles are
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Fig. 4.16: Radial profiles of the mean axial gas velocity at sections x = 25 mm, 50 mm,

100 mm, and 150 mm.
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slightly improved by the transported PDF method. The velocity field is also computed

using the k − ǫ model in the present PDF simulation. More accurate composition

fields enable the current transported PDF method to give a little better results in the

velocity field. This improvement would be even better if the joint velocity-mixture

fraction PDF is used [141].
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Fig. 4.17: Radial profiles of the mean gas temperature at section x = 150 mm.

Figure 4.17 shows the radial profile of the mean gas temperature at the section

x = 150 mm. The same captions are used as the Fig. 4.16. The profile obtained using

the transported PDF method improves the moment closure method between about 0.02

and 0.05 m from the centerline. At the centerline itself, both methods underpredict

the experimental value which may be due to the inappropriate initial distribution of

the liquid flux. The k − ǫ model yields some better agreement compared to the PDF

model, however, experimental error may also contribute to the discrepancies here.

Figure 4.18 shows the radial profiles of the mean mass fraction of methanol vapor at

the sections x = 25 mm, 50 mm, 100 mm, and 150 mm. The same captions in figures

are the same as the Fig. 4.16. The results of the transported PDF method are in

good agreement with the experimental data, whereas the moment closure method over-

predicts the methanol vapor mass fraction. In the moment closure method, the mixture

fraction is assumed to follow a standard β distribution. In the present method, the

presumed PDF of mixture fraction is replaced by the marginal PDF of mixture fraction

from Eq. (2.54), f̃ξC
(ξC ; x, t). This PDF of the mixture fraction, which is computed by
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Fig. 4.18: Radial profiles of the methanol vapor mass fraction at sections x = 25 mm,

50 mm, 100 mm, and 150 mm.
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solving the PDF transport equation, is more physical in the area where both chemical

reactions and evaporation occur. Unfortunately, there are no experimental values of

the fuel vapor mass fraction at higher distances of the centerline where the simulations

predict a second peak.
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Fig. 4.19: PDFs of the mixture fraction at sections x = 50 mm (left) and 150 mm

(right).

Figure 4.19 shows the PDFs of the mixture fraction at the monitor positions in the

present transported PDF method. The PDFs at the points A and E are cut off in

the figures. Their maximum value are about 1160 and 1820, respectively. Figure 4.19

(left) shows that the shape varies from a bivariate to a unimodal PDF as the positions

C–D–B–A are passed which extend from the mixing layer of the jet to the centerline

at x = 50 mm from the exit nozzle. The mean value of the mixture fraction in these

positions varies from about 0.26 at C to 0.04 at A. The figure reveals that the mixture

fraction profile in radial direction is non-monotonic, and it attains a maximal value of

approximately 0.32 at about 2 mm from the centerline. The shape of the PDF varies

also at higher distances from the exit nozzle as may be seen from Fig. 4.19 (right).

Figure 4.20 shows the comparison of the PDFs of the mixture fraction at selected

monitor positions in the present transported PDF method and the moment closure

method. Solid lines indicate the results of the present transported PDF method.

Dashed lines indicate the presumed standard β PDFs used in the moment closure

method [180]. All the PDFs used in the moment closure method show unimodal

shapes, while the PDFs computed by the present method show bimodal, unimodal,

or Dirac delta distributions. The standard β PDFs assume that the maximum mixture

fraction in spray flow is unity, which is not true [233, 140]. Thus, the PDFs of the

mixture fraction computed by the present method are more accurate. That is the rea-

son why the present method gives better predictions with respect to the mass fraction
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Fig. 4.20: Comparison of the PDFs of mixture fraction with the presumed β function.

of methanol vapor. The moment closure method can give a better prediction with an

improved presumed PDF for the mixture fraction.

Figure 4.21 shows the PDFs of the enthalpy at the monitor positions computed by

the present transported PDF method. The PDF at the point E is cut off in the figure,

whose maximum value is about 0.17. The basic shapes of these PDFs are bimodal

(point H) and unimodal (points E, F, G) shapes. The fluctuation in the enthalpy is

weaker near the centerline than at other positions. The PDF of the enthalpy is close

to a Dirac delta distribution at the point E.

Figure 4.22 shows the PDFs of the gas temperature at the monitor positions com-

puted by the present transported PDF method. The PDFs at the points E and F are

cut off in the figure. Their maximum values are about 0.16 and 0.067, respectively.

The gas temperature is a nonlinear function of the enthalpy and the mixture fraction.

Therefore, the PDFs of the gas temperature are more complicate than the PDFs of the

mixture fraction and the PDFs of the gas temperature. Bi- and tri-modal shapes are

observed in the PDFs of the gas temperature.

Figure 4.23 shows the radial profiles of the Sauter mean radius at the sections

x = 50 mm and 100 mm, respectively. Squares are the experimental data. Circles

indicate the results of the transported PDF method. Triangles indicate the results

of the moment closure method. The numerical results are in good agreement with

the experimental data. The results of the transported PDF method are close to the



4.1. Turbulent Methanol/Air Spray Flows 87

Enthalpy [J/g]

P
D

F
of

E
nt

ha
lp

y
[g

/J
]

-1000 -500 0
0

0.01

0.02

0.03

E

F

G H

Fig. 4.21: PDFs of the enthalpy at section x = 150 mm.

Gas Tempearture [K]

P
D

F
of

G
as

T
em

pe
ra

tu
re

[1
/K

]

500 1000 1500 2000
0

0.01

0.02

0.03

E

H
G

F

Fig. 4.22: PDFs of the gas temperature at section x = 150 mm.



88 4. Results and Discussion

Radial Position [m]

S
au

te
r

M
ea

n
R

ad
iu

s
[

m
]

0 0.05 0.1
0

10

20

30

40

50
EXP

µ

PDF
εk-

Radial Position [m]

S
au

te
r

M
ea

n
R

ad
iu

s
[

m
]

0 0.05 0.1
0

10

20

30

40

50

60

70
EXP

µ

PDF
k-ε

Fig. 4.23: Radial profiles of Sauter mean radius at sections x = 50 mm (left) and 100 mm

(right).

results from the moment closure method. It implies that the dynamics of droplets

are controlled by their inertia, and the effects of the gas-phase flow on the droplets is

small. Two different initial droplet radius, rl0 = 25 µm and 10 µm, are considered in the

present spray flamelet library. When the local Sauter mean radius is larger than 10 µm,

the library with rl0 = 25 µm is used. When the local Sauter mean radius is smaller

than 10 µm and larger than 1 µm, the library with rl0 = 10 µm is used. Referring

to the Fig. 4.18, the fluctuation in the profiles of the methanol vapor mass fraction is

observed. According to Fig. 4.23, the fluctuations in the results of both transported

PDF method and moment closure method are observed just at the positions when the

Sauter mean radius equals to 10 µm. Thus, such fluctuation must result from the

insufficient resolution of initial droplet radius in current flamelet library. More data

of laminar spray flame with different initial droplet radius should be included into the

flamelet library in the future. Furthermore, it implies that the effects of droplets are

very important for spray flame.

4.2 Turbulent Ethanol/Air Spray Flows

4.2.1 Experimental Setup

Recently, a novel spray jet flame burner has been set up at the Institute of Physical

Chemistry, University of Heidelberg [246]. The burner is developed in cooperation with

the University of California at Berkeley. The burner consists of a central fuel nozzle

(Delavan 67700-5), a perforated brass plate that provides a homogeneous air co-flow

on the top of the central burner bowl (see Fig. 4.24). The nozzle has a diameter of
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Fig. 4.24: Schematic set-up of the spray burner.

10 mm and produces a hollow-cone spray. It is fixed about 80 mm above the center

of the plate. The geometric Reynolds number Re = 19,565 of the non-reactive flow

is calculated from the mean droplet velocity which is measured by particle imaging

velocimetry (PIV) measurements [247]. As an improvement to the conventional simple

jet flame burner, there is no bluff body in this burner, and obscurations caused by the

fluid mechanics are avoided. The burner in Berkeley uses vitiated co-flows. The oxygen

rich combustion products from the co-flows ignite and stabilize the central jet flame.

The droplet size distribution and liquid volume fraction of a methanol/air spray in a

vitiated co-flow are measured using ensemble light diffraction (ELD) technique [248].

The burner in the present work uses air co-flows. An igniter is needed to initiate

the flame. Ethanol is heated to 45◦C before injection into quiescent air at room tem-

perature. The resulting flame has two flame zones. The inner flame is located 1 mm

above the nozzle exit while the outer flame position depends on the fuel pressure and

is located 5 – 15 mm above the nozzle. The fuel pressure was varied between 1.4 and

2.6 bar. The resulting liquid flow rate varies between 0.39 g/s and 0.54 g/s. The air

co-flow velocity was varied between 0 and 0.64 m/s. The Sauter mean radius in an

ethanol/air spray flame is measured using a combined LIF/Mie technique [249]. Fuel

tracers with different volatilities have been tested in planar LIF/Mie dropsizing mea-

surements [249]. Droplet size and velocity distributions of a non-reactive ethanol/air



90 4. Results and Discussion

spray flow were measured using phase Doppler anemometry (PDA) [246]. Imaging

of the gas-phase temperature in and around the spray flame was performed based on

multi-line laser-induced fluorescence measurements with seeded NO [250, 251]. The

temperature of the liquid phase is measured using two-color LIF thermometry [252].

4.2.2 Turbulent Non-Reactive Ethanol/Air Spray Flows

PDA measurements provide a set of amenable data for the numerical simulation. The

well-known Eulerian/Lagrangian formulation is adopted to model the turbulent non-

reactive ethanol/air spray flow. The conventional droplet parcel method [194] is used

to solve the droplet evolution equation. The computed ensemble-averaged droplet

velocities, the Sauter mean radius (SMR), as well as the droplet size distribution are

compared with the experimental data.
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Fig. 4.25: Radial profiles of the spray injection angle at different sections.

Droplet size and droplet velocity distributions in a non-reactive spray without co-

flow were measured close to the nozzle exit. Cabra’s [248] experiment shows that the

droplet sizes do not change considerably before the droplets reach the flame front.

Therefore, the differences of the droplet sizes between reactive and non-reactive cases

are expected to be small for the position close to the nozzle. Both droplet sizes and

velocities were measured using phase Doppler anemometry (PDA). The droplet velocity

perpendicular to the plane defined by the laser beams is measured. The droplet velocity
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parallel to the plane is calculated from the perpendicular component and the injection

angle. In the present work, the axial component of droplet velocity, Ux is measured.

The radial component is calculated using

Ur = Ux tan θ, (4.4)

where θ is the spray injection angle estimated from the data provided by the nozzle

producer. The radial profiles of the spray injection angle at different sections are

illustrated in Fig. 4.25.

The droplet radius and its axial velocity are measured at three different axial sec-

tions: x = 2.0 mm, 5.0 mm, and 7.5 mm. Three cases with different injection pressures

p = 1.4 bar, 2.0 bar, and 2.4 bar are investigated. In the case of p = 2.0 bar, spray

breakup occurs closer to the nozzle. Thus, the overall number of non-spherical droplets

is smaller and the PDA data is more reliable [246]. Therefore, this case is used for the

comparison between experiment and simulation.

Figure 4.26 shows the simulated vector plot of the ensemble-averaged droplet ve-

locity. The marked points indicate the experimental positions. The first section where

experimental data are available is x = 2 mm, which is taken as the inlet profile for the

computation.

Figure 4.27 shows the radial profiles of the Sauter mean radius and ensemble-
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averaged droplet velocity at the two different axial positions x = 5 mm and 7.5 mm.

Considering the fact that there is no measurement about the gas-phase, the agreement

of the computed results and the experimental data is good. The simulated droplet

velocities are systematically higher than the measured values by up to 30%. This

causes a higher droplet evaporation rate leading to smaller droplet radius compared

to the experimental values by up to 10%. The discrepancies between experiment and

simulation in the droplet velocities can be attributed from the imprecise approximation

of the radial droplet velocity, unknown initial gas flow properties for the simulation and

the coarse initial droplet size in the experiment. All spray calculations are very sensitive

to the initial conditions of both, the gas and the liquid phase. The experimental data of

the droplet distribution at x = 2 mm have a coarse spatial resolution in radial direction.

Therefore, there is some ambiguity in determining appropriate initial conditions for the

computations. Moreover, the PDA measurements discard droplets that deviate from

spherical symmetry as well as measurements with, too low droplet density. Therefore,

the experimental data also have a certain error range. Moreover, the radial velocity

component has been extrapolated from the spray angle given by the nozzle producer

again causing some uncertainties.

Figures 4.28–4.29 show the comparison of the droplet size distributions from the

numerical simulation and experiment. The droplet size distributions at the positions

(5.0, 1.0), (5.0, 2.0), (7.5, 3.0), and (7.5, 3.5) are illustrated. The size of the droplet

radius ranges from 0 to 300 µm. In the present computation, the droplet size range

is split into 50 equal-sized class intervals. The number fraction of each class interval

is calculated, and then the PDFs of the droplet radius are evaluated. In general,
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Fig. 4.28: Droplet size distribution at the positions (5.0 mm, 1.0 mm) (left) and

(5.0 mm, 2.0 mm) (right). Symbols: experimental data. Lines: simulation.
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(7.5 mm, 3.5 mm) (right). Symbols: experimental data. Lines: simulation.
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the numerical results agree reasonably well with experimental data. Comparing the

sections at x = 5 mm and 7.5 mm, the peak values of the droplet size distribution shift

towards larger drop radius, which indicates the progress of evaporation. The probability

of small droplets at the positions (5.0, 2.0) and (7.5, 3.0) are under-predicted. This

may result from an inappropriate guess of the gas velocity and liquid flux at the inlet

profile. More experimental studies in this direction are encouraged.

4.2.3 Turbulent Ethanol/Air Spray Flames

Gas temperature of the turbulent ethanol/air spray flame is measured using multi-line

NO-LIF thermometry. 1000 ppm of NO is seeded to the co-flow gas and therefore allow

measurements in both co-flow and flame.

The gas temperatures in the co-flow are 300±4 K (±1%). For the case with injection

pressure 2.0 bar and co-flow velocity 0.32 m/s, we find 1775±75 K (±4%) in the center

of the flame 20 mm above the nozzle exit. The accuracy of the present technique has

been proven by comparisons to thermocouple measurements at ambient temperature

[251] and by CARS at flame temperatures in [250]. The turbulent ethanol/air spray

flame is simulated using Eulerian/Lagrangian formulation. The same physical models

and numerical methods are used as Section 4.2.2. A spray flamelet model [180] is

used to include the detailed ethanol/air combustion mechanism. The mechanism [245]

consists of 38 species and 337 elementary reactions. The spray flamelet library has

been built up from the results of laminar counterflow spray flame [183].

The case with injection pressure 2.0 bar and assistant gas velocity 0.32 m/s is

simulated. The gas velocity is estimated from the volume flux of the assistant gas.

The section at x = 2 mm is taken as the inlet profile. The gas temperature profile

at the inlet is taken from the measurements of 2D NO-LIF [253]. The gas velocity

at the inlet is set to 0.32 m/s. Assuming that the difference in dropsize and velocity

between reactive and non-reactive spray is small, the droplet size distribution and

droplet velocity distribution at the inlet are taken from the measurements of PDA, in

which the injection pressure is 2.0 bar, too [254].

Figure 4.30 shows the radial profiles of gas temperature at the section x = 6 mm,

10 mm, 20 mm, and 30 mm. Symbols are the experimental data [253]. The lines

indicate the numerical results. The numerical results are in good agreement with the

experimental data, especially near the center line. However, the present simulation

fails to predict the hot wings of the spray flame that were found in the experiment for

x = 20 and 30 mm. The discrepancies are mainly from the unknown local liquid flux,

coarse droplet size distribution and droplet velocity distribution, and many unknown

gas-phase properties at the inlet. The numerical results are very sensitive to these

variables. In the present simulation, we assume a homogeneous distribution of the
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Fig. 4.30: Radial profiles of the mean gas temperature at section x = 6 mm, 10 mm,

20 mm, and 30 mm.
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liquid flux at the inlet, which may not be true. On the section close to the nozzle

(x = 2 mm), the simulated gas temperature profile is broader than the experimental

one. It may be partly due to the k − ǫ model used in the present work, because the

k− ǫ model always over-predicts the spread rate of the round jet flow. Another reason

may be the inappropriate guess of the gas-phase properties, particularly the turbulent

kinetic energy and its dissipation rate.

Next step, the turbulent ethanol/air spray flame will be simulated using the trans-

ported PDF method. More quantities of the spray flame need to be measured, especially

the local liquid flux.
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In this dissertation, turbulent spray flows are investigated using probability density

function (PDF) methods. Two methodologies are used: the presumed PDF method and

the transported PDF method. The turbulent non-reactive spray flows are simulated

using the transported PDF method. The numerical results are analyzed by comparing

with the experimental data, the numerical results available in the literature, and the

presumed PDFs.

A PDF of mixture fraction for turbulent spray flows is proposed. The PDF trans-

port equation is deduced. The unclosed term of molecular mixing is described using

an extended Interaction-by-Exchange-with-the-Mean (IEM) model. The PDF trans-

port equation is closed through coupling with an extended k − ǫ model for turbulent

multi-phase flows. The PDF transport equation is solved using a hybrid finite vol-

ume/Lagrangian Monte-Carlo particle method. A turbulent non-reactive spray flow is

simulated using this method. The numerical results of the PDF method are in good

agreement with experimental data [241] and improve the results from the moment

closure method [180]. Furthermore, the shapes of the PDFs of mixture fraction at dif-

ferent positions, which are computed by the transported PDF method, are presented

and analyzed. It appears that the spray source changes the value of the mean mixture

fraction, but it does not change the shape of its PDF. A comparison of the transported

PDF results with the standard β function shows that the standard β function fails

to describe the shape of the PDF. With the definition of appropriate local maximum

and minimum values of the mixture fraction, a modified four-parameter β function is

suitable to reflect the shape of the Monte-Carlo PDF very well [140].

A joint velocity-scalar PDF for turbulent spray flows is proposed. Its transport

equation is deduced and modeled. The simplified Langevin model is extended to model

the gas velocity. The molecular mixing is modeled using the extended IEM model.

Simulations of a turbulent non-reactive spray flow show that the profiles of gas velocity

are well predicted by this joint PDF model [141].

A joint enthalpy-mixture fraction PDF for turbulent spray flames is proposed. Its

transport equation is deduced. The molecular mixing is modeled using the extended

IEM model. A turbulent methanol/air spray flame is simulated. Detailed chemistry

consisting of 23 species and 168 elementary reactions is implemented through a spray

flamelet model [180]. The numerical results of gas velocity, gas temperature, mass
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fraction of fuel vapor, and Sauter mean radius are compared with experimental data

[241] and the results from the moment closure method [180]. Good agreements with

experiment are observed. The present method improves the results of the moment

closure method with respect to the mass fraction of methanol vapor. The presumed

PDFs of mixture fraction used in moment closure method are compared with the

computed PDFs of mixture fraction from the transported PDF method. The results

show that the latter ones are more accurate. Thus, the composition spaces computed

by present transported PDF method are more accurate [142].

Applications of the presumed PDF method in turbulent spray flows are discussed.

The normal distribution, log-normal distribution, Nukiyama-Tanasawa distribution,

Rosin-Rammler distribution, standard β distribution, and modified four-parameter β

distribution are discussed and analyzed. The relationships between them are pointed

out. Comparisons of modified β distribution with normal distribution, log-normal

distribution, and Rosin-Rammler distribution show that modified β distribution can

reproduce these distributions.

A turbulent ethanol/air spray flow is simulated using second moment closure mod-

eling. A conventional Eulerian/Lagrangian formulation is employed. The numerical

results of the non-reactive case are compared with the measurements obtained by phase

Doppler anemometry [184]. The Sauter mean radius, mean droplet velocity, as well as

droplet size distribution are well predicted [246]. For the reactive case, the detailed

chemistry is implemented through a spray flamelet model [183]. The ethanol/air com-

bustion mechanism consists of 38 species and 337 elementary reactions. The profiles

of gas temperature are compared with the experimental data which is measured using

2D NO-LIF [251]. Good agreement to the experimental data is found [184].

An implicit scheme is designed to compute the particle velocity in the convective

environment. A numerical test shows that the implicit scheme is more robust, accurate

and efficient than conventional explicit scheme.

This work shows that transported PDF methods are feasible for the simulation

of turbulent non-reactive and reactive spray flows. The results of the transported

PDF method are in good agreement with the experimental data. Improvements to the

conventional moment closure methods are found. The statistical distribution of the

mixture fraction in the turbulent spray flows are exerted from the results of transported

PDF methods and are compared with the presumed PDFs.

There are still many unsolved problems associating with the transported PDF meth-

ods for the turbulent spray flows. Great efforts should be paid on them. Physical mod-

els, including the mixing model and Langevin model, need to be validated in benchmark

cases. Advanced models should be implemented into the code, such as EMST mixing

model, generalized Langevin model. The effects of liquid phase, for instance, volume
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fraction, fluctuating in the spray source terms, should be taken into account in the PDF

models. The joint velocity-scalar PDF coupling with the spray flamelet model will be

employed to simulate the turbulent spray flames. Joint velocity-turbulent frequency-

composition PDF might be an interesting topic. The turbulent frequency provides a

turbulent time scale for the PDF transport equation. The resulting PDF transport

equation appears a closed form. Therefore, the turbulent spray flows can be simu-

lated without turbulent viscosity model or Reynolds-stress model. However, a physical

model for the turbulent frequency needs to be developed at first. Numerical accuracy

issues deserve our attention. The effects of grid size and gas particle number on the

results should be investigated.
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A. Nomenclature

Symbol Unit Description

A m2 Surface area of control volume

BM Spalding mass transfer number

BT Spalding heat transfer number

C0 Constant in Langevin model

CCFL Constant in Courant–Friedrichs–Lewy condition

Cd Coefficient in spray model

Cpα Constant-pressure specific heat of species α

Cs Constant in extended k − ǫ model for spray flows

Cφ Constant in IEM model

ctr Constant in spray model

cǫ,1 Constant in k − ǫ model

cǫ,2 Constant in k − ǫ model

cµ Constant in k − ǫ model

D m2/s Diffusion coefficient

D(x) Cumulative distribution function

DM m2/s Mean diffusion coefficient of mixture

Er Equivalence ratio in counterflow spray flame

erfc(x) Error function

F m/s2 Acceleration of droplet

F Vector of convective terms

f Probability density function

fd droplet density function

∆h0
f J/g Specific enthalpy of formation

hs,α J/g Specific sensible enthalpy of species α

ht J/g Specific total non-chemical enthalpy

ht,c J/g Specific total enthalpy

Jc
q J/(m2s) Heat flux due to thermal conductivity

Jd
q J/(m2s) Heat flux due to molecular diffusion

k m2/s2 Turbulent kinetic energy

L m Turbulent length scalar
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Lv J/g Latent heat of fuel

Ṁd,k g/s Liquid mass flux represented by k-th droplet parcel

N Particle number, sample number

N Vector of viscious terms

Nmax Maximum particle number in one cell

Nmin Minimum particle number in one cell

Ns Species number

Nu∗ Modified Nusselt number

Nu0 Nusselt number

p Pa Pressure

P Presumed probability density function

pcrit Pa Critical pressure of liquid phase

pF Pa Vapor pressure

Pr Prandtl number

Q̇ J/s Chemical production rate of heat

rd m Droplet radius

Rα J/(mol·K) Gas constant of species α

Re Reynolds number

Red Droplet Reynolds number

rl0 m Initial droplet radii in counterflow spray flame

S Vector of source terms

Sg Source term due to gas phase

Sl Source term due to liquid phase

Sα g/s Chemical production rate of species α in mass

Sc Schmit number

Sh∗ Modified Sherwood number

Sh0 Sherwood number

T K Temperature

Tb K Boiling temperature of liquid phase

Tcrit K Critical temperature of liquid phase

t s Time

tcorr s Droplet-eddy interaction time scalar

tdrag s Time scalar for drag force

ttr s Time scalar for droplet to traverse the eddy

tτ s Turbulent time scalar

U m/s Velocity

Ud m/s Droplet velocity

Ur m/s Relative velocity between liquid phase and gas phase
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V m/s Velocity in sample space

Vd m/s Droplet velocity in sample space

vl0 m/s Initial droplet velocity in counterflow spray flame

W Vector of conservation variables

dWi s1/2 i–component of an increment of a Wiener process

Wα g/mol molecular weight of species α

Xα Mole fraction of species α

x m Coordination

YFs Mass fraction of fuel vapor at droplet surface

YF∞ Mass fraction of fuel vapor at outer boundary of film

Yα Mass fraction of species α

ZC Mass fraction of element carbon

ǫ m2/s3 Dissipation rate of turbulent kinetic energy

ζC Mixture fraction in sample space

ηs Sensible enthalpy in sample space

θd K Droplet temperature in sample space

ιd m Droplet radius in sample space

λ J/(msK) Thermal conductivity

µ g/(ms) Viscosity coefficient

µ Mean of a distribution

µt g/(ms) Turbulent viscosity coefficient

µl g/(ms) Laminar viscosity coefficient

µeff g/(ms) Effective viscosity coefficient

ξC Mixture fraction

ξC,st Mixture fraction at stoichiometric condition

ρ kg/m3 mass density

σ Variance of a distribution

σk Effective Schmit number for k

σǫ Effective Schmit number for ǫ

χ s−1 Dissipation rate of mixture fraction

χst s−1 Dissipation rate of mixture fraction at stoichiometric condi-

tion

ω̇α s−1 Chemical production rate of species α

Γ(x) Gamma function

Γh g/(ms) Thermal diffusion coefficient

Γh,eff g/(ms) Effective thermal diffusion coefficient

Γh,t g/(ms) Turbulent thermal diffusion coefficient
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Γk,eff g/(ms) Effective exchange coefficient for k

Γǫ,eff g/(ms) Effective exchange coefficient for ǫ

ΓM g/(ms) Mean mass diffusion coefficient of the mixture

ΓM,eff g/(ms) Effective mean mass diffusion coefficient of the mixture

ΓM,t g/(ms) Turbulent mean mass diffusion coefficient of the mixture

∆t s Time step

Ω Control volume

Subscripts and Superscripts
Symbol Quantity

d Droplet

F Fuel

l Liquid phase

O Oxygen

s Species, sensible

˜ Favre average

Time average
′′ Fluctuating component in Favre average
′ Fluctuating component in time average

∗ Sample properties

〈 〉 Ensemble average

̂ Estimated property

Physical Constants
Symbol Quantity

R = 8.31451 J/(mol·K) Universal gas constant

g = 9.8 m/s2 Gravitational acceleration
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Kuttanikkad, and Yi-Lin Liu who helped to correct my English in the thesis. Special
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Talks in Workshops

1. Numerical simulation of non-reactive and reactive turbulent spray

flows. 3rd Fall Workshop on “Complex processes: modelling, simu-

lation and optimization”, Warsaw, Poland, Dec. 5–8, 2003.

2. Stochastic Stochastic Modeling of Turbulent Spray Flows. Joint

Workshop on “Modeling, Simulation and Control in Chemical En-

gineering”, Warsaw, Poland, Apr. 14–17, 2005.

3. PDF modeling of turbulent non-reactive and reactive flows. Work-

shop on “Understanding and Control of Complex Chemical Pro-

cesses”, Heidelberg, Oct. 10–11, 2005.



Bibliography

[1] International Energy Agency Paris: Key Word Energy Statistic (2003)

[2] G. M. Faeth: Evaporation and combustion of sprays. Prog. Energy Combust.

Sci., 9, 1–76 (1983)

[3] C.-K. Law: Heat and mass transfer in combustion: Fundamental concepts and

analytical techniques. Prog. Energy Combust. Sci., 10, 295–318 (1984)

[4] K.-K. Kuo: Principles of combustion, New York: John Wiley & Sons (1986)

[5] G. M. Faeth: Mixing, transport and combustion in sprays. Prog. Energy Combust.

Sci., 13, 293–345 (1987)

[6] C. T. Crowe, J. N. Chung, T. R. Trout: Particle mixing in free shear flows. Prog.

Engery Combust. Sci., 14, 171–194 (1988)

[7] G. M. Faeth: Spray combustion phenomena. Proc. Combust. Inst., 26, 1593–1612

(1996)

[8] W. A. Sirignano: Fluid dynamics and transport of droplets and sprays, Cam-

bridge: Cambridge University Press (1999)

[9] G. Gouesbet, A. Berlemont: Eulerian and Lagrangian approaches for predicting

the behaviour of discrete particles in turbulent flows. Prog. Energy Combust. Sci.,

25, 133–159 (1999)

[10] F. Mashayek, R. V. R. Pandya: Analytical description of particle/droplet-laden

turbulent flows. Prog. Energy Combust. Sci., 29, 329–378 (2003)

[11] E. Loth: Numerical approaches for motion of dispersed particles, droplets and

bubbles. Prog. Energy Combust. Sci., 26, 161–223 (2000)

[12] T. Baritaud, T. Poinsot, M. Baum: Direct numerical simulation for turbulent

reacting flows, Paris: Editions Technip (1996)

[13] P. K. Yeung, S. B. Pope: Lagrangian statistics for direct numerical simulations

of isotropic turbulence. J. Fluid Mech., 207, 531–586 (1989)



ii Bibliography

[14] P. Moin, K. Mahesh: DNS: a tool for turbulence research. Annu. Rev. Fluid

Mech., 30, 539–578 (1998)

[15] J. J. Riley, G. Patterson: Diffusion experiments with numerically integrated

isotropic turbulence. Phys. Fluids , 17, 292–297 (1974)

[16] K. D. Squires, J. K. Eaton: Measurements of particle dispersion obtained from

direct numerical simulations of isotropic turbulence. J. Fluid Mech., 226, 1–35

(1991)

[17] C.-Y. Yang, U. Lei: Role of the turbulent scales in the settling velocity of heavy

particles in homogeneous isotropic turbulence. J. Fluid Mech., 371, 179–205

(1998)

[18] F. Mashayek, F. A. Jaberi, R. S. Miller, P. Givi: Dispersion and polydispersity of

droplets in stationary isotropic turbulence. Int. J. Multiphas. Flow , 23, 337–355

(1997)

[19] W. Ling, J.-N. Chung, T. R. Troutt, C. T. Crowe: Direct numerical simulation

of a three-dimensional temporal mixing layer with particle dispersion. J. Fluid

Mech., 358, 61–85 (1998)

[20] I. Iliopoulos, Y. Mito, T. J. Hanratty: A stochastic model for solid particle

dispersion in a nonhomogeneous turbulent field. Int. J. Multiphas. Flow , 29,

375–394 (2003)

[21] K. D. Squires, J. K. Eaton: Particle response and turbulence modification in

isotropic turbulence. Phys. Fluids A, 2, 1191–1203 (1990)

[22] S. Elghobashi, G. C. Truesdell: On the two-way interaction between homogeneous

turbulence and dispersed solid particles, I: turbulence modification. Phys. Fluids ,

5, 1790–1801 (1993)

[23] M. Boivin, O. Simonin, K. D. Squires: Direct numerical simulation of turbulence

modulation by particles in isotropic turbulence. J. Fluid Mech., 375, 235–263

(1998)

[24] A. M. Ahmed, S. Elghobashi: On the mechanisms of modifying the structure

of turbulent homogeneous shear flows by dispersed particles. Phys. Fluids , 12,

2906–2930 (2000)

[25] S. Sundaram, L. R. Collins: Collision statistics in an isotropic particle-laden

turbulent suspension. Part 1: direct numerical simulations. J. Fluid Mech., 335,

75–109 (1997)



Bibliography iii

[26] T. Tsuji, R. Narutomi, T. Yokomine, S. Ebara, A. Shimizu: Unsteady three-

dimensional simulation of interactions between flow and two particles. Int. J.

Multiphas. Flow , 29, 1431–1450 (2003)

[27] Y. Sato, E. Deutsch, O. Simonin: Direct numerical simulation of heat transfer

by solid particles suspended in homogeneous isotropic turbulence. Int. J. Heat

Fluid Flow , 19, 187–192 (1998)

[28] F. A. Jaberi: Temperature fluctuations in particle-laden homogeneous turbulent

flows. Int. J. Heat Mass Tran., 41, 4081–4093 (1998)

[29] F. A. Jaberi, F. Mashayek: Temperature decay in two-phase turbulent flows. Int.

J. Heat Mass Tran., 43, 993–1005 (2000)

[30] R. V. R. Pandya, F. Mashayek: Non-isothermal dispersed phase of particles in

turbulent flow. J. Fluid Mech., 475, 205–245 (2003)

[31] F. Mashayek: Droplet-turbulence interactions in low mach number homogeneous

shear two-phase flows. J. Fluid Mech., 367, 163–203 (1998)

[32] F. Mashayek: Direct numerical simulation of evaporating droplet dispersion in

forced low mach number turbulence. Int. J. Heat Mass Tran., 41, 2601–2617

(1998)

[33] F. Mashayek: Dynamics of evaporating drops. Part I: formulation and evapora-

tion model. Int. J. Heat Mass Tran., 44, 1517–1526 (2001)

[34] F. Mashayek: Dynamics of evaporating drops. Part II: free oscillations. Int. J.

Heat Mass Tran., 44, 1527–1541 (2001)

[35] R. S. Miller, J. Bellan: Direct numerical simulation of a confined three-

dimensional gas mixing layer with one evaporating hydrocarbon-droplet-laden

stream. J. Fluid. Mech., 384, 293–338 (1999)

[36] R. S. Miller, J. Bellan: Direct numerical simulation and subgrid analysis of a

transitional droplet laden mixing layer. Phys. Fluids , 12, 650–671 (2000)

[37] H. Abdel-Hameed, J. Bellan: Direct numerical simulations of two-phase laminar

jet flows with different cross-section injection geometrie. Phys. Fluids , 14, 3655–

3674 (2002)

[38] N. A. Okong’o, J. Bellan: Consistent large-eddy simulation of a temporal mixing

layer laden with evaporating drops. Part 1. Direct numerical simulation, formu-

lation and a priori analysis. J. Fluid Mech., 499, 1–47 (2004)



iv Bibliography

[39] A. Leboissetier, N. A. Okong’o, J. Bellan: Consistent large-eddy simulation of a

temporal mixing layer laden with evaporating drops. Part 2. A posteriori mod-

elling. J. Fluid Mech., 523, 37–78 (2005)

[40] P. C. L. Clercq, J. Bellan: Direct numerical simulation of gaseous mixing layers

laden with multicomponent-liquid drops: liquid-specific effects. J. Fluid Mech.,

533, 57–94 (2005)

[41] K. K. Varanasi, H. L. Clack, R. S. Miller: On preferential diffusion of binary com-

ponent liquid droplets evaporating in a two-phase mixing layer. Int. J. Multiphas.

Flow , 30, 1235–1257 (2004)

[42] N. A. Okong’o, J. Bellan: Direct numerical simulation of a transitional super-

critical binary mixing layer: heptane and nitrogen. J. Fluid Mech., 464, 1–34

(2002)

[43] R. S. Miller, K. G. Harstad, J. Bellan: Direct numerical simulations of supercrit-

ical fluid mixing layers applied to heptane - nitrogen. J. Fluid. Mech., 436, 1–39

(2001)

[44] H. Lou, R. S. Miller: On the scalar probability density function transport equa-

tion for binary mixing in isotropic turbulence at supercritical pressure. Phys.

Fluids , 13, 3386–3399 (2001)

[45] R. S. Miller, J. Bellan: On the validity of the assumed probability density function

method for modeling binary mixing/reaction of evaporated vapor in gas/liquid-

droplet turbulent shear flow. Proc. Combust. Inst., 27, 1065–1072 (1998)

[46] R. S. Miller: Turbulence-flame modification in particle laden reacting shear flow.

AIAA paper , 2001–0193 (2001)

[47] F. Mashayek: Simulations of reacting droplets dispersed in isotropic turbulence.

AIAA J., 37, 1420–1425 (1999)

[48] F. Mashayek: Numerical investigation of reacting droplets in homogeneous shear

turbulence. J. Fluid Mech., 405, 1–36 (2000)

[49] F. Mashayek: Velocity and temperature statistics in reacting droplet-laden ho-

mogeneous shear turbulence. J. Propul. Power , 17, 197–202 (2001)
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[149] R. Borghi: Réactions chimiques en milieu turbulent. PhD Thesis, Université
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[184] I. Düwel, H.-W. Ge, H. Kronemayer, R. Dibble, E. Gutheil, C. Schulz, J. Wol-

frum: Experimental and numerical characterization of a turbulent spray flame.

Proc. Combust. Inst., (2005), submitted

[185] T. Poinsot, D. Veynante: Theoretical and numerical combustion, Philadelphia:

Edwards (2001)



Bibliography xv

[186] M. W. Chase, C. A. Davis, J. R. Downey, D. J. Frurip, R. A. McDonald, A. N.

Syverud: JANAF Thermochemical Tables, 3rd ed. J. Phys. Chem. Ref. Data, 14

(1985)

[187] A. Burcat, B. McBride: 1994 ideal gas thermodynamic data for combustion and

air-pollutant use. Tech. Rep. Report TAE 697 TECHNION - Israel Institute of

Technology Haifa, Israel (1993)

[188] R. J. Kee, J. Warnatz, J. A. Miller: A FORTRAN computer-code package for

the evaluation of gas-phase viscosities, conductivities, and diffusion coefficients.

Tech. Rep. Report SAND 83-8209 Sandia Laboratory (1983)

[189] J. O. Hirschfelder, C. F. Curtiss, R. B. Bird: Molecular theory of gases and

liquids , New York: John Wiley & Sons (1954)

[190] L. Prandtl: Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew.

Math. Meth., 5, 136–139 (1925)

[191] B. E. Launder, D. B. Spalding: Mathematical models of turbulence., London/New

York: Academic Press (1972)

[192] P. P. Spalart, S. R. Allmaras: A one-equation turbulence model for aerodynamics

flows. Rech. Aerospatiale, 1, 5–21 (1994)

[193] W. P. Jones, B. E. Launder: The prediction of laminarization with a two-equation

model of turbulence. Int. J. Heat Mass Tran., 15, 301–314 (1972)

[194] C. Hollmann: Modellierung turbulenter Sprayflammen unter Verwendung detail-

lierter chemischer Reaktionsmechanismen. PhD Thesis, University Heidelberg,

Heidelberg (1997)

[195] A. A. Amsden, P. J. O’Rourke, T. D. Butler: KIVA-II: A computer program for

chemically reactive flows with sprays. Tech. Rep. UC-96 Los Alamos National

Laboratory (May 1989)

[196] K. N. C. Bray, P. A. Libby, G. Masuya, J. B. Moss: Turbulence production in

premixed turbulent flames. Combust. Sci. Technol., 25, 127–140 (1981)

[197] K. N. C. Bray, M. Champion, P. A. Libby: The interaction between turbulence

and chemistry in prexmied turbulent flames. P. A. Libby, F. A. Williams (Eds.),

Turbulent Reactive Flows , New York: Springer (1989)



xvi Bibliography

[198] M. Vogelgesang: Entwicklung eines Reynolds-Spannungs-Modells zur Model-

lierung turbulenter Sprayflammen. PhD Thesis, University Heidelberg, Heidel-

berg (2005)

[199] D. C. Haworth, S. B. Pope: A generalized Langevin model for turbulent flows.

Phys. Fluids , 29, 387–405 (1986)

[200] S. B. Pope: Stochastic Lagrangian models of velocity in homogeneous turbulent

shear flow. Phys. Fluids , 14, 1696–1702 (2002)

[201] S. B. Pope: A stochastic Lagrangian model for acceleration in turbulent flows.

Phys. Fluids , 14, 2360–2375 (2002)

[202] C. Dopazo: Probability density function approach for a turbulent axisymmetric

heated jet. Centerline evolution. Phys. Fluids , 18, 397–404 (1975)

[203] J. Janicka, W. Kolbe, W. Kollmann: Closure of the transport equation for the

probability density function of turbulent scalar fields. J. Non-Equilib. Thermo-

dyn., 4, 47–66 (1979)

[204] V. Raman, R. O. Fox, A. D. Harvey: Hybrid finite-volume/transport PDF simu-

lations of a partially premixed methane-air flame. Combust. Flame, 136, 327–350

(2004)

[205] S. Tavoularis, S. Corrsin: Experiments in nearly homogeneous turbulent shear

flows with a uniform mean temperature gradient. Part 1. J. Fluid Mech., 104,

311–347 (1981)

[206] G. E. P. Box, M. E. Muller: A note on the generation of random normal deviates.

Ann. Math. Stat., 29, 610–611 (1958)

[207] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling: Numerical

recipes, Cambridge: Combridge University Press (1986)

[208] J. B. Kennedy, A. M. Neville: Basic statistical methods for engineerings and

scientists., New York: Harper & Row Publishers, Inc. (1986)

[209] S. Nukiyama, Y. Tanasawa: Experiments on the atomization of liquids in an air

stream. Report 3: on the droplet-szie distribution in an atomized jet. Trans. Soc.

Mech. Engrs. Jpn., 5, 62–67 (1939)

[210] E. Babinsky, P. E. Sojka: Modeling drop size distribution. Prog. Energy Combust.

Sci., 28, 303–329 (2002)



Bibliography xvii

[211] R. A. Fisher, L. M. C. Tippett: Limiting forms of the frequency distribution

of the largest or smallest member of a sample. Proc. Cambridge Phil. Soc., 24,

180–190 (1928)

[212] W. Weibull: A statistical theory of the strenth of materials. Ing. Velemskaps

Akas. Handl., 151, 1–45 (1939)

[213] W. Weibull: A statistical distribution of wide applicability. J. Applied Mech., 18,

293–297 (1951)

[214] L. J. Bian: Statistical analysis of reliability and life-testing mdels , New York:

Marcel Dekker, Inc. (1978)

[215] P. Rosin, E. Rammler: The laws governing the fineness of powdered coal. J. Inst.

Fuel , 7, 1933 (29-36)

[216] F. A. Williams: Spray combustion and atomization. Phys. Fluids , 1, 541–545

(1958)

[217] S. Subramaniam: Statistical representation of a spray as a point process. Phys.

Fluids , 12, 2413–2431 (2000)

[218] G. M. Faeth: Current status of droplet and liquid combustion. Prog. Energy

Combust. Sci., 3, 191–224 (1977)

[219] G. L. Hubbard, V. E. Denny, A. F. Mills: Droplet evaporation: effects of transient

and variable properties. Int. J. Heat Mass Tran., 18, 1003–1008 (1975)

[220] A. D. Gosman, E. Ioannides: Aspects of computer simulation of liquid-fueled

combustors. AIAA paper , 81–0323 (1981)

[221] B. Abramzon, W. A. Sirignano: Droplet vaporization model for spray combustion

calculation. Int. J. Heat Mass Transfer , 32, 1605–1618 (1989)

[222] R. Clift, J. R. Grace, M. E. Weber: Bubbles, drops and particles, New York:

Academic Press (1978)

[223] D. B. Spalding: The combustion of liquid fuels. Proc. Combust. Inst., 4, 1952

(847-864)

[224] N. B. Vargaftik: Handbook of physical properties of liquids and gases: Pure sub-

stances and mixtures., Washington: Hemisphere Publ. Corp. (1986)

[225] K. W. Mao, H. L. Toor: A diffusion model for reactions with turbulent mixing.

AIChE J., 16, 49–52 (1970)



xviii Bibliography

[226] C. H. Gibson, P. A. Libby: On turbulent flows with fast chemical reaction. Part

II–The distribution of reactants and products near a reacting surface. Combust.

Sci. Technol., 8, 29–35 (1972)

[227] H. Pitsch: Unsteady flamelet modeling of differential diffusion in turbulent jet

diffusion flames. Combust. Flame, 123, 358–374 (2000)

[228] H. Pitsch, M. Chen, N. Peters: Unsteady flamelet modeling of turbulent

hydrogen-air diffusion flames. Proc. Combust. Inst., 27, 1057–1064 (1998)
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