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It is an old question to characterize those differential equations or differential
modules, respectively, whose solution spaces consist of functions which are alge-
braic over the base field. The most famous conjecture in this context is due to
A. Grothendieck and relates the algebraicity property with the p-curvature which
appears as the first integrability obstruction in characteristic p. Here we prove a
variant of Grothendieck’s conjecture for differential modules with vanishing higher
integrability obstructions modulo p - these are iterative differential modules - and
give some applications.

1. PSEUDO PICARD-VESSIOT RINGS OVER NUMBER FIELDS

To fix our notation let F//K be a function field of one variable over a number
field K with a derivation 0 normalized by O (t) = 1 for some ¢t € F. Then F/K (t)
is a finite field extension, and Or is the unique extension of §; := % to F. Any
linear differential equation over F' defines a finite dimensional differential module
(D-module) M over F. This is an F-vector space equipped with a derivation
Oy : M — M which is an additive map with

Om(z-a)=0pu(z)-a+z-0Fp(a) for x € M,a € F.

With respect to some basis B = {b1,...,by} of M the derivation is given by a
matrix A € Fm*™,

Now we are interested in finding a minimal differential extension field E/F
such that the solution space Solg(M) of M in E, defined by 0g(y) = A -y for
y = (y1,--. ,Yym)¥ € E™, has dimension m. Such a field can be constructed in
the following way (compare [7], Ch. 1.3): The coordinate ring of the affine group
GL,, over F’

U .= F[GLm] = F[.’I}z’j, det(a:ij)_l];’”jzl
becomes a differential ring (D-ring) by defining 0y (X) = A- X for X = (z:;)7%_;-
Then the residue ring R of U by a maximal differential ideal P « U is a D-ring
and a domain containing a matrix Y € GL,,(R) with 0r(Y) = A-Y and 9Ogr
obtained from Oy. Thus R contains a fundamental solution matrix of M, and for
E := Quot(R) holds dimg (Solg(M)) = m.

In order to find an R without new constants we assume that F/K contains a
prime p of degree one which is regular for M, i. e., p is a regular point. Since M
has only finitely many singular points, such a g always exists in the case F' = K (t)
or after a finite extension by constants. Choosing a local parameter u € F for
p, the D-module M possesses a fundamental solution matrix ¥ € GL,,(K[[u]])
which can be normalized by Y(p) € GL;,(K). Denoting by P the kernel of
the differential homomorphism 7 : U — K((u)) defined by n(X) = Y, the D-
ring R := U/P is regular over K. Obviously all fundamental solution matrices
Y € GL,,,(K][[u]]) with Y(p) € GL,,,(K) only differ by matrices C € GL,(K).
Hence R is uniquely determined up to differential isomorphisms by the property
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above. It further depends neither on the chosen local parameter nor on the chosen
regular rational point p. In the following the D-ring (R, dg) is called a pseudo
Picard-Vessiot ring (PPV-ring) and its field of fractions (E,dg) a PPV-field.

The F-automorphisms of E commuting with 0 form a group Autp(E/F) and
define an affine group scheme G < GL,, over K with G(K) = Autp(E/F), called
the Galois group scheme of E/F. In case the fixed field E9(%) equals F, the ring
R/F or E/F respectively are called Picard-Vessiot ring (PV-ring) or PV-field, and
G(K) =: Galp(E/F) is the differential Galois group of E/F. It is well known
that for connected groups the notion of a PPV-ring and a PV-ring coincide.

By the assumptions above we obtain the following variant of T. Dyckerhoff of
the differential Galois correspondence due to E. Kolchin valid over number fields:

Theorem 1. ([2]): Let (F,0r) be a D-field of one variable over a number field K
and (M,0x) be a D-module over F' with regular rational point o in F. Then the
following hold:

(a) There exists a PPV-field E/F for M without new constants. E/F is
uniquely determined by Y (p) € GL,,,(K) up to differential isomorphisms.

(b) There exists a Galois correspondence between the subgroup schemes of the
Galois group scheme G and the differential intermediate fields of E/F.

2. GROTHENDIECKS p-CURVATURE CONJECTURE

By the first section the algebraicity of the solutions of a D-module, the algebraic-
ity of the corresponding PPV-field E/F and the finiteness of Galp (E/F') are equiv-
alent. In case E/F and thus E/K (t) are algebraic, the property 8 = 0 (mod p) of
K (t) implies 8% = 0 (mod p) for almost all primes. According to A. Grothendieck
(1970), this property should be characteristic. To be more precise, let (M, 9xr) be
a D-module over F. Then the p-curvature of M is the p-th iterate 9%, of dar. It
is called trivial in the case 84, = 0 (mod p).

P-Curvature Conjecture. Let (F,0r) be a D-field of one variable over a
number field K and (M,0r) be a D-module over F. Then the following are equiv-
alent:

(1) M admits a full system of algebraic solutions.
(2) The p-curvature of M is trivial for almost all primes p.

An equivalent condition has been detected by P. Cartier using reduction. For
this purpose let p denote a prime divisor (place) dividing p in K, p; its Gauss
extension to K(t) and B a place F extending p;. Then the reduction Fip of F'
modulo B is a function field with finite field of constants. In case (M,0y) is a
D-module over F' with representing matrix A € F™*™ of 9y, for almost all 3 the
reduced matrix Agp € F(g”m exists and defines the derivation of a D-module Mgy
over Fip. The same procedure works for any of the matrices A®) corresponding to
the higher derivation 61(\,1? = %8]’@[ Fortunately these can be computed iteratively
using the so-called Taylor recursion:

A = 1 AW = 4 g A® = 5 (A(’“*l)) 4+ AR 4,
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In the case 87, = 0 (mod p), the formulas above show that

p—1
Yy o= (O AR (—u)*) ! € GLn (Fyp)
k=0

is a fundamental solution matrix of the reduced D-module My, i.e., Mgy is trivial
over Fip.

Lemma of Cartier: Let (F,0r) be a D-field of one variable over a number
field K and (M,0p) be a D-module over F. Then (2) is equivalent to:

(3) The reduced D-module My is trivial for almost all B.

The Lemma, of Cartier shows that in this way D-modules over F' with algebraic
solutions are reduced to D-modules over Fip with rational (=trivial) solutions.
Comparing with algebraic field extensions this property looks quite unnatural.

3. ITERATIVE DIFFERENTIAL MODULES

In order to preserve by reduction the degree of algebraicity we have to use in
addition higher derivations. But then we have to work with infinitely many 8}’“)
and A®) and thus to give more care on our D-rings. For this purpose let P C Pg
be a cofinite set of primes p in K and O} the intersection of their valuation rings
O,. Further let P}, be the set of all places P in F' extending the Gauss valuation
pe in K(t) for p € P%. Then O := [ Ogp is a Dedekind ring in F. It is called

PP,
a global iterative differential ring (ID-ring) if

M (0%) C O and 8 () C P for all k € N and P € Py.

Obviously any function field of one variable F/K contains infinitely many such

global ID-rings. In a similar way we define global ID-modules M to be free O-

modules of finite rank with higher derivations 83y := 1%, : M — M.

Under these assumptions we can follow Section 1 in order to construct a PPV-
ring R for M now over the global ID-ring O% with a fundamental solution matrix
Y € GL,,(R) and with Y (p) € GL,,(O%) for some regular prime p of degree one

of F/K. Since by definition all matrices A®) belong to (O%)™*™, this PPV-ring
R is equipped with an iterative derivation (Bgc)) and thus is itself an ID-ring.
In all we obtain the following ID-analogue of Thécoerlim 1.

Theorem 2. ([4]): Let (O%,0r) be a global ID-ring and (M,0r) be a global ID-
module over Of with reqular rational prime p in O%/O%. Then there ezists a
PPV-ring Ry over Oy with ring of constants O% . Moreover Ry is unique up to
D-isomorphisms by assuming Y (p) € GL,, (O%).

If in addition the spezialized matrix A(p) belongs to (O%)™>*™ - this can be
reached by removing a finite set of primes 9 from P} - then A% () € (O )™*™
holds for all k¥ € N by Taylor recursion. This leads to
Corollary 1. Assuming in addition A(p) € (O%)™*™, the Taylor expansion of

Y for a local parameter u for p belongs to GLy, (O%|[[u]])-
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In particular, the Taylor expansions in u of the entries y;; of Y are globally
bounded in the sense of G. Christol (compare [1], Ch. 4.1). It should be mentioned
that any finite Galois extension E/F without new constants can be obtained as
field of fractions of a PPV-ring Rys of some global ID-module M over a global
ID-ring O%. Thus any finite group appears as differential Galois group of such a
global ID-module.

4. REDUCTION OF GLOBAL ID-MODULES.

Let (M,0nr) be a global ID-module over a global ID-ring (O%,dr). Then by
Theorem 2 there exists a PPV-ring R /O% for M. As before, for all 9 € P%, the
residue field Fip := O /P is a function field of one variable over the finite field
K, := O%/p and the residue ring (Ry)sp := Ry /Ru®P is an Fig-algebra.

On the other side the reduced matrices Ag) € ngm define an iterative deriva-

tion (81(\23) ren on some Fip-vector space Mgp. Thus Mg is an ID-module over Fip
as studied for example in [5], Ch. 5. By [5], Prop. 6.1, there exists a PV-ring for
Mg ®k, K, over Fp ®k, K. In case Fip contains a regular point ¢ of degree one
for My , an argument like the one given in Section 1 shows that there exists an
iterative PPV-ring R Mgy OvVer Fyp without new constants. Further R My 18 uniquely
determined up to ID-isomorphisms by the property that a fundamental solution
matrix Yo of My in R, at § has initial values in GL,(K,). The next theorem
shows that for almost all 8 € Py the reduced PPV-ring (R )p and the PPV-ring

Ry

Theorem 3. ([4]): Let (M,0n) be a global ID-module over a global ID-ring
(OF%,0r). Then for almost all P € P the reduced PPV-ring (Ry)yp and the
PPV-ring of the reduced ID-module My are isomorphic as ID-rings.

constructed from the reduced matrices A%) coincide.

The proof of Theorem 3 relies on the compatibility of the Taylor expansions
in different characteristics based on the globally boundedness. By the Generic
Flatness Lemma then follows

Corollary 2. For almost all B € Pt holds
dim(RMm) = dlm(RM) —-1= dlm(RM/O})
Thus Corollary 2 proves the last conjecture statet in [5]. A D-module is called

algebraic if it admits a full system of algebraic solutions over the base ring.

Theorem 4. ([4]): Let (M,0n) be a global ID-module over a global ID-ring
(O%,0r). Then the following hold:

(a) M/O% is algebraic if and only if the reduced ID-modules My /Fy are al-
gebraic for almost all P € P'p.

(b) Galp(Rax/O%) is a finite group G if and only if Galip(Rary, /Fip) = G for
almost all P € Pl

For global ID-modules this theorem refines Cartier’s Lemma in Section 2
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5. THE LINK WITH GROTHENDIECK’S CONJECTURE

According to Grothendieck’s conjecture the following conjecture should be true:

Conjecture 1. Any global ID-module (M, 8yr) over a global ID-ring (O%,0F) is
algebraic.

To prove Conjecture 1, by Theorem 4 it would be enough to show that reduc-
tions modulo P lying in K, [[u]] of globally bounded solutions of linear differential
equations at a regular point are algebraic over K, (u).

The truth of Conjecture 1 would already imply an interesting algebraicity cri-
terion for formal power series over number fields.

Eisenstein’s Algebraicity Criterion. Let f =Y, .y axrt” be a formal power
series over a number field K. Then the following are equivalent:
(a) f is algebraic over K(t),
(b) f is regularly differentially finite and globally bounded.
Here an element f € K[[t]] is called regularly differentially finite if it is a solution
of a linear differential equation over K (t), which is regular at 0. The proof that (a)
implies (b) is due to G. Eisenstein (reported in [3]). Eisenstein’s intention was to
develop at least a necessary condition for the algebraicity of solutions of differential
equations. The converse implication (b) to (a) would follow from Conjecture 1.
It is known that the property being globally bounded is not sufficient at singular
points.
The link with Grothendieck’s p-curvature conjecture would then be given by
the following second conjecture:

Conjecture 2. Let (M,0p) be a global D-module over a global D-ring (O%, OF)
with vanishing p-curvature for almost all primes p € Z. Then the solutions of M
near a non singular prime p of degree one in F' for M are given by locally bounded
power series over the field of constants K of F.

Obviously Grothendieck’s p-curvature conjecture follows from Conjecture 1 and
2. Thus these two conjectures could indicate a way of approaching its proof.



S

REFERENCES

André, Y.: G-functions and Geometry. Vieweg, Wiesbaden 1989.

Dyckerhoff, T.: Picard—Vessiot Eztensions over Number Fields. Diplomarbeit, Heidelberg
2005.

Eisenstein, G.: Uber eine allgemeine Eigenschaft der Reihen-Entwicklungen algebraischer
Funktionen (Bericht von 1852). Mathematische Werke II, S. 765-767, Chelsea Publ. Comp.,
New York 1975.

Matzat, B. H.: Differential equations and finite groups. J. Algebra, to appear.

Matzat, B. H.; van der Put, M.: Iterative differential equations and the Abhyankar conjecture.
J. reine angew. Math. 257 (2003), 1-52.

Matzat, B. H.; van der Put, M.: Constructive differential Galois theory. Pp. 425-467 in L.
Schneps (Ed.): Galois Groups and Fundamental Groups, MSRI Publications 41, Cambridge
Univ. Press 2003.

van der Put, M.; Singer, M.F.: Galois Theory of Linear Differential Equations. Springer-
Verlag, Berlin etc. 2003.



