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Abstract

The present thesis is about artificial nanostructures irchvthie electronic motion is re-
stricted in all spatial dimensions precisely in the reginteere quantum effects dominate.
These structures which are called quantum dots can be paepathe laboratory and offer
a high degree of access to their electronic and transpopiepties thereby naturally being
established as a prominent candidate for future nanoetgcs. In the present thesis a theo-
retical investigation of the electronic structure and quamtransport properties of quantum
dots has been performed. In addition to the research pegfihrthe theoretical framework
for investigating transport through open and almost igalajuantum dots are reviewed.
Thereby it is natural to divide the present contributiorviio parts.

In the first part, which deals with transport in open quantwhsystems, we will con-
tribute a parallel algorithm solving for the Green’s fuoctiwhich goes beyond the triv-
ial parallelization with regard to the external parametdrthe transport problem, such as
Fermi energy or magnetic field strength. Combining techesqof parallel linear algebra
and cyclic reduction algorithms, the algorithm proceedthwhe parallel treatment of the
decomposed scattering region, thereby giving significaxilllity regarding the handling
of highly demanding numerical problems as those encouhterenaterials with complex
electronic structure (thereby requiring n-band effecthass models and atomistic Hamilto-
nians in order to be described). Further on, we apply ourdtism to linear artificial crystals
which are formed by quantum dots of various geometries. Wiewetheir properties from
the perspective of building novel electronic devices basequantum features and how they
could operate at large temperatures.

In the second part of the thesis, we review the physics of stinsolated dots, whose
transport properties are determined solely by their edaatrstructure. The effects of electron-
electron interactions, anisotropy in the confinement andretc field on the electronic
structure of two-electron quantum dots are calculated vargiguration interaction ap-
proach, i.e., exact diagonalization of the two-body Hamnilan matrix. Additionally, we
introduce a stable numerical method for the evaluation dfimalements containing inte-
grals due to electron-electron (e-e) interactions. Inrbspect we have employed a combi-
nation of Gauss-Hermite and Gauss-Kronrod quadraturashts allowed for the efficient
and direct evaluation of the e-e matrix elements with larggidsets. Contrary to previous
works, we were able to calculate several hundreds of exsitaigs. Subsequently those
were analysed statistically making it possible to traceghantum chaotic patterns in the
dot-spectrum, which determine the fluctuations of electransport coefficients and other
spectroscopic and thermodynamic properties. As a supjplamygool for our investigations,
classical dynamics have been studied in the correspontisgical phase space. Regarding
the application of a magnetic field we introduced new maps@®iadw-lying excitation pro-
file of the spectrum that allow the interpretation of expennts in few-electron quantum dots
in a simple and straightforward manner. The experimentamaters are the strength of a
homogeneous magnetic field applied vertically to the plani® dot and the anisotropic
shape of the dot. Many-body features due to strong e-e atioets can be easily identified
by measurements.



Zusammenfassung

Das Thema dieser Dissertation sind kiinstliche Nanostraktin denen die Elektronen-
bewegung in allen raumlichen Dimensionen eingeschrétkt Diese Strukturen, die als
Quantenpunkte bezeichnet werden, konnen im Labor helgeserden und bieten bre-
ite Zugriffsmoglichkeiten auf ihre elektronische Struwkund ihre Transporteigenschatften.
Das macht sie zu vielsprechenden Kandidaten fur zukgmftianoelektronische Bauteile.
Die vorgelegte Arbeit beinhaltet eine theoretische Untelnsing der elektronischen Struktur
sowie der quantenmechanischen Transporteigenschaf&stemen von Quantenpunkten.
Wir geben eine Einfuhrung in den theoretischen Rahmen nierduchung von Quanten-
transport in offenen Quantenpunkte sowie in fast isolie8gstemen als Grenzfall. Deshalb
ist die Arbeit in zwei Teile aufgeteilt.

Im ersten Teil behandeln wir Transport in offenen Quantakpan mit einer auf Green’s
Funktionen basierenden Methode. Wir prasentieren eieallplen Algorithmus fur den
Transportformalismus, der auf der Zerlegung der mesoskbpn Region beruht und die
Green’s Funktion durch eine Kombination aus Verfahren deealfelen Linearen Algebra
und zyklischer Reduktion berechnet. Dieses paralleleateein erlaubt die Behandlung von
komplexen numerischen Problemen z.B. elektronischek&itrin Materialien, welche eine
Beschreibung durch einem*band effektive-mass” oder atomistischen Hamilton Opmerat
erfordern. Im Anschluss wenden wir den Algorithmus aufdtiiohe, eindimensionale pe-
riodische Ketten aus Quantenpunkten mit unterschiedligemmetrischen Charakteristika
an. Wir beobachten einen Zusammenhang zwischen den Tragigenschaften und der
elektronischen Struktur des periodischen Systems. Diasl@rdie Erkennung der elek-
tronischen Bandstruktur unseres Systems sowie sein amggkunktion als elektronisches
Schaltelement, das nur auf Quanteneffekten basiert.

Im zweiten Teil dieser Arbeit beschaftigen wir uns mit ddrysikalischen Prozessen
in isolierten Quantenpunkten, in denen die Transporteigeaten ausschliesslich durch
ihre elektronische Struktur determiniert sind. Die Efeeibn Elektron-Elektron Korrelatio-
nen, Anisotropie des harmonischen Potentials sowie eioe®benen Magnetfelds werden
mit einer exakten Konfigurations-Wechselwirkungs-Methadtersucht. Zusatzlich fuhren
wir ein numerisches Verfahren ein, das es uns erlaubt dieerisome Instabilitaten bei der
Berechnung der zwei-Elektronen Integralen zu vermeidehdie Matrix-elemente, sogar
fur ein grosses Basissatz, direkt und effizient zu berathiadurch war es moglich En-
ergien von mehreren hundert aufgeregten Zustanden zalexe. Dia statistische Analyse
der Energien hat uns erlaubt quantenchaotische Musteraktsin aufzuspuren. Zusatzlich
haben wir eine detaillierte Untersuchung der Klassischgnalmik beziehungsweise des
klassischen Phasenraumes als Funktion der Anisotropieden&tarke des Magnetfeldes
durchgefuhrt. Ausserdem fuhren wir Abbildungen der gagsch niedrigen angeregten
Zustanden als Funktion des Magnetfeldes und der Anis@tiEp, die ein einfaches und di-
rektes Interpretation von Experimenten mit Quantenpuniktié wenigen Elektronen ermoglichen.
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Chapter 1

Introduction

The quest for numerical operations executed in an ultrafast scale has led to a tremen-
dous exponential increase in the number of the elementanyits integrated on a chip. The
current state of the art, i.e. the very large scale integmagchonology, has allowed for mil-
lions of such circuits to be jammed on the wafer’s surfacerghy arriving at the borders of
reign of the classical Ohmic law. Unavoidably, the contimraof this trend, well known as
the Moore’s law, will lead to hybridization of the existingahnology with quantum interfer-
ence effects and ultimately to the design of devices whidhb&isolely based on the latter.
An exploration of the physics and possibilities that arige tb the gradual reduction of the
devices’ dimensions can be found for the non-specialistaean Ref. [1]. The specialist
reader could pump information from Refs. [2—4]. One of theshpyominent candidates for
guantum electronic devices is the quantum dot. The terragyotiot is used to refer to a
zero-dimensional structure which can be prepared as fell@two-dimensional electron
gas is formed by the successive arrangement of differeniceactuctor layers, i.e. a semi-
conductor heterostructure in the transversal directidre dlectronic motion can be further
constrained by applying an electrostatic potential viaaingates. The resulting potential
confines one or more electrons in all three spatial dimessidm terms of the density of
states (DOS), a three-dimensional electron gas has a ylefsitatessp (E) ~ v/ E where
E denotes the energy. In a two-dimensional electron gas ¢#ogrehic motion is assumed to
be quantized in the tranversal direction but free on theglaading to a DOS being a sum
of step functions. By further lowering the dimensions, restricting the electronic motion,
we obtain a quantum wire, in which the DOSiig, (E) ~ 1/+/E and finally a quantum dot
in which the electronic motion is spatially confined, therelbtaining a discrete spectrum,
and a DOS being a sum éflike peaks.

The confinement of the quantum dot’s electrons takes plabeimesoscopic regime, i.e.
on intermediate length scales with respect to the macrosmiid state and the microscopic
atomic regime. In practice the mesoscopic regime trarstateimensions comparable to
the electron’s Fermi waveleng#ty., its mean free path, and its phase relaxation length
(for an illuminating discussion on these three length scale refer the reader to Ref. [5]).

1



2 1 Introduction

The scattering of an electron with a time independent seatte phase coherent. At low
temperatures, static impurities in the semiconductor tileeboundaries of the sample, can
be treated as phase coherent scatterers. Therdigrean be significantly larger thah,,
giving rise to quantum interference effects. A few hallnsaok the latter can be considered
the weak localization [6], the universal conductance flatans [7, 8] and the Aharonov-
Bohm effect [9]. A pedagogical discussion of these effeats lee found in Ref. [5]. Indeed
phase-relaxation can be induced if the electron accessadtaring channel that changes its
state. Conceptually by measuring the state after scagtenie have an information about
the electron’s path and quantum interference is suppreSgeaces of phase-randomization
can be attributed to non-stationary (fluctuating) impastsuch as electron-phonon (e-p) and
electron-electron (e-e) interactions or spin-flip scattgwith magnetic impurities.

Mesoscopic effects can be probed to a large extent in a guadai due to the high
degree of access and even manipulation it offers on itsnatetegrees of freedom. The in-
formation about the physics of the quantum dot comes frooitpling to the environment,
which in our case are the attached leads. The coupling battheedot and the leads can be
tuned by electrostatic gates, so that it allows us to disistgbetween quantum dots which
are strongly or weakly coupled to the leads, and they aredtalben or closed, respectively.
Let us briefly summarize the meaning of the coupling strengjtie coupling of the dot to
the leads introduces a finite level-width in the DOS of the datan open dot, the width
of the lead may accomodate a large number of propagating snetlle large transmission
coefficients. Thus, the resonant-type levels of the donglsooverlap and induce fluctua-
tions in the conductance. On the other hand, for closed Hetsansmission coefficients are
very small and the dot’s conductance exhibits peaks whickespond to resonant tunneling
between the leads and the quantum dot’s energy levels.

Quantum dots, intriguing as much as extensively invesd§t0], remain a research
field that continues to provide new insights in fundamentegsgions concerning nature and
their properties are to a large extent the main field of ingatibn of the present thesis, which
is divided in two parts. The first part provides the basis fuderstanding quantum transport
through systems of open quantum dots whereas the secondeatse with closed quan-
tum dots and provides a detailed overview on the effectsyhasetry in the confinement,
magnetic field and e-e interaction on their electronic proge The thesis is structured
as follows. In chapter 2 we introduce the Landauer formaligntreating linear quantum
transport through open quantum dots. In chapter 3 we prespatallel algorithm for the
numerical evaluation of the formalism derived in the préisgd@hapter. This technique com-
bines algorithms borrowed from parallel linear algebra parhllel cyclic reduction for the
transfer of the information. This algorithm is used to cédoel the transport properties in
systems of open quantum dots. Furthermore it offers a despemore practical insight
in the computational aspects of the Landauer theory. Chdptentains an investigation
of quantum transport through open quantum dot arrays. Ifatiter quantum transport is
mediated by the formation of artificial energy bands due &sirccessive repetition of the
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guantum dot cells. By changing the geometry of the coupliegimas well as by applying
an external magnetic field of moderate strength we are atlaewvebserve a magnetically
controlled linear response current which can flow coheydntl several tens of Kelvin and
owes to the electronic band structure of the periodic systemnthermore we will proceed
with the investigation of isolated quantum dots. In chaptére weak coupling regime and
the conditions that define it will be discussed, providinghars review of the prominent
phenomena and the wealth of literature that accompanissagime. At hand of the con-
siderations of the chapter 5, in chapter 6 we are going topara detailed investigation of
the electronic properties of a two-electron quantum dotiing confined in an anisotropic
potential. This small system provides a fundamental waykitamiltonian which is also
ideal for a statistical analysis of the spectrum in ordemiegestigate quantum to classical
correspondence effects. Chapter 7 will present the regpointhe electronic properties of
the system in the presence of an external homogeneous rafiglet Finally, in chapter 8
we will draw the conclusions of the research we have perfdrme
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Chapter 2

Theory of linear quantum transport
through quantum dots

2.1 Computational aspects of the single-particle Landauer
theory

In this chapter we are going to present the Landauer formahl$ich has associated the
guantum-mechanical probability for an electron to traigshtbugh a sample with its quan-

tum transport properties such as conductance [11]. Forutpopes of our investigations we

assume that current flow in semicounductor heterostrustiae be described in terms of the
Fermi Liquid theory. In this picture, the low-energy extibas (quasiparticles) behave as a
degenerate noninteracting Fermion gas (DNFG) in the séaséite mass of the particles is

renormalized due to screened interactions with the atontiseofrystal and the band struc-

ture. In this context let us assume a two-probe setup, i.e léads, which act as electronic

reservoirs, are attached to a mesoscopic scattering regimantwo-probe setup we describe
is illustrated schematically in Fig.2.1, for an arbitracagering region,

Figure 2.1 Arbitrary scattering region attached to two reservoirs.

Inside the leads we assume a DNFG that fills the energies upetbdrmi energyr.

5



6 2 Theory of linear quantum transport through quantum dots

The Hamiltonian of the composite system (leads + scatteegipn) can be described by the
general Hamiltonian in the notation of second quantizgti@),

H= Z €kaCl Cra + Hs(dl; d,) + Z (VeamCl dn + h.c.) (2.1)

kaeK kaceK;n

in which the operatorsza(cka) create (destroy) an electron in the state with momentum
k and a unique quantum numbeeither in the left { = L) or right (KX = R) lead with
a Fermi distributionf (ex,) = [exp(g’“l‘;%TEF) + 1]~1. Operatorsi}, d,, form a complete or-
thonormal creation and annihilation set of the statesin the scattering region. For our
investigations we restrict to the case of non-interactilegteons inside the scattering re-
gion and we remain with this picture throughout our investiigns and definitions. For this

picture the Hamiltonian for the scattering region reduce §(d; d,) = >_ €pmd! d,n.

In the noninteracting picture, the conductance for elestraith Fermi energyFr is
given by the Landauer formula:

GEr) = o [ TN fu(E) ~ fulE))aE @2

—0o0

whereT'(E) is the transmission coefficient and denotes the probaliiay an electron
with Fermi energyF will transmit through a mesoscopic scatterer. For the exgvaluation
of T(F), we refer the reader to section 2.2. The leads are modeled®biF& with a Fermi
distribution fx (E) = [exp(Ek;’ffK) +1]7Y, ux = Er £ <52 being the chemical potential
in the left and right lead, when applying a bias voltdge,. A large applied bias voltage
Vsp causes a modification to the confining potential due to theractated charge at the
boundaries of the conductive medium with th leads. The newifieal potential profile can
be obtained by solving self-consistenly the Poisson an&ameddinger equation. The latter
is pedagogically presented in Ref. [2]. An analysis of thisation goes beyond the scope of
the present contribution, in which we do not address sudteffi.e.Vsp — 0 and its role
restricts to the one that enforces current flow. In this regithe so called linear response

regime,

Vsp—0
—Oo

with fo(E) = [exp(5=7) + 1]7". Hereafter, we will use the notatiof, . (Er) =

G(FEr). For zero temperature the conductance is given by,
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2e?
G(Er) = =-T(Er) (2.4)

So far, we have introduced the two-probe Landauer formulanfm-interacting elec-
trons propagating along a mesoscopic sample. This formalen take into account elec-
tron/electron interactions in terms of non-interactingtisles moving in a mean field, i.e.
the Hamiltonian to be the Fock matrix, or within density ftional theory for electrons de-
scribed by the Kohn-Sham Hamiltonian. If one would like tomgealize this formalism to
a strongly interacting system beyond mean field theorieshaseto proceed with a more
general expression for the conductance which exploits #ldysh (or Kadanoff-Baym) for-
malism [13]. However, within our approach to quantum tramspre are going to deal with
elastic scattering of non-interacting electrons due tdothéndaries of a region in the linear
response regime. In the next section, we present the cotignabaspects for the calculation
of the quantum transport properties in the framework of taedauer formalism.

2.2 Computational aspects of the Landauer formalism

As we saw in the previous section, the conductance of a megimssample attached to two
reservoirs (Fig. 2.1) is proportional to the quantum-meatal probability7'(E) that an
incoming electron at Fermi enerdy in the reservoirs will transmit through it. To evaluate
the transmission probabilit}/( E') one has to solve the Schrodinger equation:

nliré1+(E — H(r) +in)Go(r;r") = 6(r — 1) (2.5)

whereH (r) is the Hamiltonian of eq.(2.1) an@,(r; r’) is the Green’s function operator
of the open system (scatterer + reservoirs). We remark kteagbove definition holds if
the HamiltonianH can be expressed in terms of single-particle operatorshdriallowing
we restrict ourselves to two-dimensional{) quantum transport, as it is shown in Fig.2.1.
Transport in2D can be realised experimentally if the electrons occupy them state in
the z- direction and excitations can occur in the other two dinmms i.e. as in the case
of a2D electron gas. To proceed with the calculatior7@f') we discretize the space on a
uniform lattice with constani. In order to represent the Hamiltonian operaltbfr) we use
the tight-binding model assuming only nearest neighba@radtions [14]. In this case the
Hamiltonian can be written:

H(r) =) [)e(r|+ ) [0)Voar(r + Ar| (2.6)

r,Ar
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wheree, is called on-site energy at the position= (z,y) with x = na andy = ma,
n,m € N, Ar represents the vectors fromto their nearest neighbor sites aVida, is the
nearest neighbor hopping energy. For a constant on-sitgyetige dispersion relation for
the2D discretized lattice reads:

Esp(k) =4V — 2V cos(kya) — 2V cos(kya) (2.7)

Herek = (k,, k,) is the electron’s wavevector and = 1%/(2m*a?) is the matrix hopping
element linking each site to its nearest neighbor. In thé lim— 0 we recover the usual
parabolic relationship of a free particle in a continuumcgpan practice, the condition to
converge to the continuum dictates that the number of &aslites in the transversal direction
that couple the scatterer with the leads is much larger thamamber of channels we have
opened with our Fermi energy, timesi.e.:

Np +1>> (# of open channels) x

whereD = (Np + 1)a is the width of the lead and/, the number of lattice sites that
couple to the scatterer.

The full tight-binding Hamiltonian of the open system (seedr + leads) can be then
decomposed in the following block form:

Hy VvV, O
H(I‘) = V}: HS VR
O VI Hgy

where the Hamiltoniadg is the matrix representation @fs and the coupling to the
two external reservoirs from the left and right, is desdti@ the semi-infinite matrice¥y,
andVg, respectively. The matrices of the Hamiltonian operatdfsandHg are of infinite
size and describe the electronic flow within the reservoirs.

One can accordingly partition the overall Green’s functiperatorGy(E£) of equation
(2.5) such that,

(E —+ ZT])I — HL VL O GL C;'LS GLR
V£ (E -+ ZT/)I — Hs VR . GSL GS GSR =1
@ VI{ (E -+ ZT})I — HR GRL G}{S GR

If we solve the above set of equations f8g (F) we receive the following expression

Gs(E) = [EI - Hs — Zg(FE) — Zp(E)] (2.8)
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This is the so called Dyson equation for the Green’s functibthe composite system
(leads + scatterer) which can also be expressed as:

Gs(E) =gs(E) +gs(E)X(E)Gs(E) (2.9)

or alternatively:Gs(E) = (gs ' (E) — 3(E))!. The total self-energy matriX(E) =
YL(F) + Xr(F) takes into account the effect of the coupling to the resesyeia the so
called self-energy matriceSk (F) = Vi gk(E)Vk due to the left K = L) and right
(K = R) reservoir. The functiogk is the matrix representation of the retarded Green’s
function operator of the reservdi, i.e.,gk(F) = [(E +in)I — Hg] .

We consider that the electrons occupy states at the midaéedetically lowest) point of
a conduction band which is parabolic. In the case that thetreles are freely propagating
along thez-direction and are confined in thedirection then the matrix elements for the
Green’s function at the interface of the lead with the scattdet us say at an arbitrary
positionz = x5, can be evaluated analytically using the expression [5],

1 4
9k (Ts,y;75,y') = v > X () xm (Y (2.10)

in which the transversal mode eigenfunctions satisfy theggn

<—%d—y2 + U(y)) Xm(Y) = €mXm(Y) (2.11)

with U(y) being the confinement potential along theirection andk,, the wavevector
along ther-direction which satisfies thieD dispersion relation. As we can see the expression
for the surface Green’s functions in the leads does not dkperthe position:g along the
x-axis of the interface with the scatterer.

Due to the tight-binding discretization, the space of tretsting region now consists of
n=1,2..., N slices along the-direction each of which consistsof = 1,2, ..., M sites
along they-direction. The matrixA = FI — Hg — Xr(F) — X (£) we want to invert in
order to evaluatéss(E) is aN x N block tridiagonal matrix [14] whose elements are the
blocksA;; each of which is of sizé/ x M:
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Ay Ay O - (@) @) @
Azr Azz Apz - 0 @ @
O Az Asz @ (@) O
A= : : : . : : :
O O O - Axoan: Anana O
o 0 0 An_in-2 Anoinoi Anoin
o o o0 .. O Anno: Ann

The expression for the evaluation’5{E) is given in a compact form by the Fisher-Lee
relation [15]:

T(E) = Tr[Tr(E)Gs(E)T1(E)GL(E) (2.12)

wherel'k (E) = i[Ex(E) — L (E)] is the strength of the coupling of the reserviir
to the scatterer. Due to the fact that the reservoirs areledugmnly to the left and right of
the scatterer, the blocks that correspond to the left iaterdf the scatterer with the lead, i.e.
the upper left blockr, (E) of 31,(E), and to the right interface of the scatterer with the lead,
i.e. the down right blockgr (E£) of Xg(FE), are the nonzero blocks of the matrideg (F).
Therefore, the total self-energy due to the right and lefereoir has the following block
structure:

o(E) O O o0 0
o o0 0
9 o0 0

- 330G

O
O
SL(E) +3r(E) = : P e :
o oo ---0 0 O
o oo .-..0 0 O
O 0O 0 -+ 0 0O or(E)

Due to this structure of the self-energy matrix, only the empfeft block of I'y,(E),
w(E) = i(on(E) — o} (E)) and the down right block oF g (E), Yr(E) = i(ogr(E) —
ol (E)) are nonzero. Hence, the trace of the product of the four oeatioccuring in equa-
tion (2.12) simplifies to:

T(E) = Trlyr(E)G1in(E)w(E)Gl  (B)] (2.13)

Equation (2.13) implies that only the upper right block af thverse ofA, A;}N =GN
is necessary for the evaluation BfE). The ultimate goal is therefore to compu{g . The
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physical interprentation of this result is that  is the Green’s function containing the in-
formation for the transmission from slice with labketo slice with labelN. For example

if we would attach an additional lead to slice with label el§.in order to find the trans-
mission from1 to 10 one should calculate the Green’s functi@s 1o and naturally for the
transmission fron10 to NV the Green’s functiorGz,, v IS required. Since we have in mind
the interpretation for the particular blocks of the Greduatsction matrix we could proceed
with introducing a multi-probe Landauer formalism, whishparticularly useful to interpret
experimental setups or to estimate decoherent compomemdssport via a model suggested
by Buttiker [16].

2.3 Buttiker model

So far we have addressed a two-probe setup in which only &dslare attached to the scat-
terer at the left and right part of it, i.e. we have a longihadisymmetry for the current flow
(there are no transversal components of the current). $retfgtion we are going to review a
general setup in whichh maximum additional probes are attached transversallydio slece
that forms the discrete representation of the scatteregltgdoreaking the longitudinal sym-
metry in the current flow and introducing transversal congms. Figure 2.2 shows such a
setup. In order to avoid confusion with section 2.2 and tmestime for convenience, we
note that the symbal whenever used throughout this section refers to the coadoet

Figure 2.2 Arbitrary scattering region attached probes in the transversal direction.

Multiprobe setups are very common experimentally sincg tifeer a larger degree of
control and possibilities to the experimental quantitiést our purposes we will introduce
them for one single reason. We are going to estimate theteffghase-breaking processes
in the process of longitudinal current flow due to electrdwoion (e-p) scattering. As we
have previously remarked the electrons propagate in a @brdumedium in the vicinity of
the atoms that form the crystal of the material. With incneg$emperature, the vibrations
of the lattice couple to the electronic motion thereby chiaggts electronic state, leading
to a loss of its quantum-mechanical phase. Hence, if onednddd to obtain a picture of
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guantum transport at large temperatures he should incluateesp scattering processes. One
way to proceed is to calculate perturbatively the effect-pfseattering using diagrammatic
theory [5]. A much simpler way to estimate the contributiordecoherence is the so-called
Buttiker model [16] which is based on thé-probe Landauer formalism. According to this
model one could attachV virtual probes along the scatterer, the role of which islgole
restricted to the one that randomizes the phase of the eteclihe effect of e-p scattering
could be then simulated in terms of collisions of the elewrwith these probes. For these
virtual probes there is no contribution to the current flovd dinerefore we are led to the
condition/; = 0fori = 1... N. Their effect can be estimated by taking into account a self-
energy due to the attachment of the probes to the scattedearaadditional contribution
to the total longitudinal transmission which can be calmdan the following way. If we
label, for the sake of simplicity, the left lead with zeio € 0) and the right lead withV + 1

(R = N + 1) then we have a matrix representatibr= GV that links the components
of currents/; and voltaged/; via their individual conductances;; and which leads to the
general relationship for the current flow in each probe-lead

N+1
L= > Gy(Vi-V;); i=0,....N+1 (2.14)
j=0

J#

Hence, the current that flows to the righ€ (+ 1) reservoir is given by the equation,

N
Inyi = —GnyoVo — Z Gny1,V; (2.15)

j=1

In equation 2.15 we have chos&R ., = 0 as a reference for the applied voltages. In
this equationGy 10 = %TNH,O for zero temperature, i.e. the longitudinal transmission
coefficient from left to right. In order to calculate thé we exploit the fact that; = 0 for
1=1...N,

N+1
> G(Vi-Vy)=0; i=1,...,N (2.16)
o
N+1
If we setg; = > G,; and forVy; = 0 the equation 2.16 can be written as,
iei
N
gVi— Y GyVi=GigVp; i=1,...,N (2.17)

j=1
J#
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Now let us define a matriW the matrix elements of which afé’;; = g;6;; — (1 —
9;j)Gi;. Obviously fori = j the transmission coefficients;; which translate simply to
backscattering to the same lead are not required. The didgtaments of this matrix are
the quantitieg; and the off-diagonal elements correspondtn Bothindices,j =1... V.
Hence, equation 2.17 can be written in a compact form,

N
> Wi,V = Gioo (2.18)

j=1

or in a matrix representatioWV = Gy, whereV corresponds to a column vector
with component$/; andG, a column vector with components; ,. Easily by inverting the
matrix W we can evaluate each voltaggand end up with a final expression for the current
total current flow to the right including simultaneously te#ect of non-current flowing
probes,

N N
Inyi = —Gny10Vo — Z Z GNJrl,jW;ilGi,OVO (2.19)

j=1 i=1

The corresponding expression for the transmission coefiisifollows readily if we con-
sider that/y; = G,V and assume for zero temperature that = %Tij for all partici-
pating probes. In this regard the total transmission cardfieg from left to right taking into
account the possibility of collisions of electrons with grebes is given by,

N N
Tiot = Tny10 + Z Z TN+1,jW/]-_i17},o (2.20)

j=1 i=1

in which case the matridyv = %W’ for zero temperature. This expression is the one

used in Ref. [17] in order to describe in a phenomenologiegl thie effect of e-p interactions
in the decoherence of molecular conductors and can be vieawedgeneralization of the
single-probe Buttiker model for decoherence [16]. In otdecalculate the full longitudinal
transmission coefficient it is clear from equation 2.20 thia¢ has to calculate the whole
set of transmission coefficients between each attacheck sae matrix elements V).

In the case that we have no magnetic field then the followingrsgtry property holds
T;; = T;; which comes from the fact that the Green’s function matrikasspose. If we
apply magnetic field then the above symmetry property do¢sapply. Mathematically,
the Peierls factor introduces a phase which couples thdiaffenal elements of the tight-
binding Hamiltonian leading to the loss of the above memttbaymmetry for the Green’s
functions. This can be interpreted in physical terms by #u¢ that the path that an electron
has followed can not be time-reversed just like in the abserfidhe magnetic field. This
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becomes more clear if we think of an electron injected froenlé&ft lead to probe with label
1 in figure 2.2. Then the electron is reinjected, sidgce= 0, but due to the magnetic field
obviously it will not follow the same path back to the lefttka

This effect is responsible for the destruction of the wealalization’s signature in the
mesoscopic conductance. Briefly, weak localization meaeishe mesoscopic conductance
is corrected due to coherent backscattering if we sum oleoatributions of the paths that
the electron can follow. In the presence of magnetic fields ¢brrection vanishes. For a
pedagogical discussion of this effect we refer the readBefo[5].



Chapter 3

Parallel recursive Green'’s function
method

3.1 Introduction

The theoretical framework for the description of mesoscefgctronic transport has been es-
tablished within the Landauer formalism, which we introéldan chapter 2. This formalism
relies on the computation of the transmisison coefficieat,the probability that an electron
injected into a mesoscopic sample will transmit throughri. this end, several numerical
techniques have been developed and applied in order tolatddhe transmission coeffi-
cient and describe various physical setups. The most eftimiethod to attack the problem
of quantum transport has proven to be the recursive Greeniion (RGF) approach. The
general framework for this approach can be found in Ref. fiit] depending on the em-
phasis of the individual scattering problem, alternatiuenerical techniques can be applied.
Therefore, RGF method adapted to the subdivision of trasalmodes in a wire allowed for
the efficient simulation of the fully diffusive regime [18pd techniques such as the boundary
element method [19], with an emphasis on the arbitrary géyméthe scattering region, or
the modular Green’s function method [20, 21], in which thatsring region is initially de-
composed in modules which are finally joined via the Dysoreéiqu, have been developed
to take into account the particular geometrical featureh@fscattering problem. Recently,
a RGF technique has been applied to describe scanning pxpbaraents [22]. This tech-
nique describes tunneling, through the STM tip, which casgs the whole scattering area
but scales equally well with the standard RGF method. As terrative solution to im-
prove the efficiency and consequently the capability ta tisger systems, approximations
in the Schrodinger eigenvalue problem, as in the contamtkbteduction method [23, 24],
have been employed to treat multi-terminal three-dimeraiproblems with relatively good
accuracy.

The aim of this chapter is to present a parallel algorithnttiercomputation of the elec-
tronic transmission probability, within the framework detRGF method. This algorithm

15
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goes beyond the straightforward parallelization of theeexdl parameters of the problem
such as the range of Fermi energies and magnetic fields hidiedithe scattering region
into subblocks, which are treated in parallel. In this reig#ne parallelization will allow us
to reduce the computational time and treat large systentsmainy degrees of freedom. It
will also be patrticularly efficient to handle highly complerodular scattering structures for
which the serial RGF algorithm is not applicable on a reaktenme scale. This chapter
is organized as follows. In section 3.2 we present the mralyorithm and calculate its
numerical complexity. Section 3.3 contains an analysisesfqggmance and scalability for
certain numerical benchmarks. Within this investigatiseful conclusions for the optimal
use of our algorithm will be deduced. Finally, section 3.d4vas our main conclusions.

3.2 The parallel algorithm

The overall scattering problem, as discussed in sectigrcarbe algebraically translated to
aN x N block tridiagonal matrixA = EI — H — Xg(F) — X(E) of which each block
is of sizeM x M. The goal is to compute the upper right block of the inversAoAilN.
The inverse of a band matrix is in general a full matrix. Apptya Gaussian elimination
in order to calculateA;}N requires storage and processing of many more blocks df.
This so called fill-in can be reduced by applying an appraeermutation to the matrix
before calculating the inverse. In the following we showwhee can exploit permutations
in order to efficiently evaluatekilN by introducing an expression ¢! via the Schur’s
complement bloclS. This expression allows an effective parallelization,shese it involves
only the inversion of a block diagonal matrix, products odige matrices and finally, at the
last step the inversion &, which is even still a full matrix but much smaller thanitself.

3.2.1 Prerequisites
The algorithm that we pursue should possess the followingegaties:
1. Storage requirements should be restricted to a small auaflblocks of sizeéll x M.

2. The number of inversions and multiplications of thex M blocksA;;, which are the
dominant contributions to the computational cost becausg $cale with\/3, should
be proportional taV. This corresponds to the numerical complexity of the setjalen
RGF technique in the asymptotic limit of largé and M

Cieq(N, M) ~ NM?

3. Exploit the fact that the Hamiltonian matriXs is Hermitian, leading to a block Her-
mitian matrixA, i.e., for the off-diagonal blocks is claimed th&fj = Aj.
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4. The algorithm should be parallelizable.

3.2.2 Preparations
Change of the inverse under permutation

Let P;; be an elementary permutation matrix with the following mues:

1. SetA = P;;A, thenA is identical toA except that rows and; are interchanged.

2. SetA = AP, thenA is identical toA except that columnaand; are interchanged.
3. P} =Py =Py

4. P;; - PE =1, i.e., Py is orthogonal and self-inverde;; = P;;*.

WecallP =Py, ... P;, ;, apermutation matrix. TheR™ ' = (P; ;. -...- Py, j,) ' =
Pl -PLL =Py ... Py, = PT. Now if we apply row and column permuta-
tions to the matrixA, A = PAPT then for the inverse we have that! = (PAPT)"! =
P-TA-'P~! = PA'PT.

The above imply the following two alternative paths for tloenputation ofA;}N:

(a) Starting fromA we compute the inverse of it. Then by applying the approgniatv
and column permutations, through operation of the pernmntanatrices, it is possible to
shift the desired upper right bIook;}N in another position of the inverse. Respectively, the

down left block ofA is also shifted. This first path can be illustrated graphycad follows:

compute D apply row/col
inverse ofA permutations
-1 —1pT
A ., A R PA1]

(b) Alternatively, if we start by applying row and column pertations in the initial
matrix A, then we can shift the upper right blodk n into another position. If we compute
the inverse of the new matrix then the desired blagk will be located at the same position.
Graphically, this second path implies:

D apply row/col compute
permutations B inverse ofA B
—1
A . A N A
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Therefore, the diagram implies th@mputation of the desired block of the inverse matrix
AI,llv by following path (a) is equivalent to the computationéop‘j\I by following path (b)

Expression of the inverse via the Schur complement

Let any matrixA with a general x 2 block structure:

Air Aqp )
A pu—
( Azr Ay

Then the inverse oA in block form is:

A—l — AIll + AIIIAIZS_1A21AI]:_[ _AI]:_I'A12S_1
—SilAZIAIII Sfl

whereS = A,y — A21A;11A12 is the so called Schur’'s complement block.

Hence, together with the permutation Lemma (section 3\2€elarrive at the following
statement:

If the blockA; x is transfered to the blocR . via permutation transformation then the
desired bIockA;}N of the inverse can be obtained from the inve$seé of S.

3.2.3 Parallel recursive algorithm

To construct the parallel recursive algorithm for the cotapian ofA;}N we proceed as
follows. By starting from the matriA in its original block tridiagonal form, we induce a
virtual additional block structure thereby distributingetdomains of the scattering region
to p processors as shown in Figure 3.1. This secondary levek lsitvacture, due to the
scatterer's domain decomposition, consistg tdrge internal blocks, which in turn contain
ni,ne, ..., n, blocks respectively. These blocks belong to the individoahputational sub-
space of each processor. Additionally to these blocksethegp + 1 elementary blocks
which correspond to the interface slices of the decomposethdths. The position of the
upper right bIockAilN that is required to be computed is indicated in Figure 3.1.

In the next step we reorder rows and columns, formally thinopgrmutation matrices,
and we arrive at the reordered matrix with the structure gtifé 3.2. The reordered matrix
has the2 x 2 block structure,
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1 1 2 2 3 3 p p p
1A Al
. e
1Al Nai\ Al
2 A5l x| A
.

2 \%z

N
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« AET] & rI

p Ao App
* * *
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p PP APQ
* * *
* WETD

p Aot pi

Figure 3.1 Original block tridiagonal matrix with new secondary lewbck structure due to pro-
cessor subdivision.

~ AII AII‘
A= ( AL AT )

In this new block structure the large blocks that corresptanthe internal scatterer’s
decomposed domains, belong to the individual computatsumaspace of each processor,
i.e. they are decoupled between them and all of them areioedtan the block labeled ™.
The blocks corresponding to the interface slices are coedain the block labeled\!™ .
Here we should remark that the last processor is assigneavttivo interface blocks, i.e.
the one that links its own internal domain with the domainh&f previous processor and the
interface block with the left lead. The blocks that corregpdo the couplings due to the
kinetic energy and couple the interface slices withjiheternal blocks are contained in the
block labeledA™ .Due to the fact that the Hamiltonian matrix is block Heranitithen the
following property is in ordeA™ = (A™)T. Moreover, the desired block to be computed
is transfered to the upper right corner AfT. Therefore, according to the permutation’s
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lemma, in order to computd v, it suffices to comput& = A™" — AT(A™)"1AT" at a
first step and then extract the upper right blockSot. The computation o$ results again
in a block tridiagonal matrix and the algorithm can be apphecursively, i.e., by knowing
S and applying cyclic reduction among the processors whictigy@ate inS, we can arrive
recursively at a matrix that is small enough to compﬂ{g}\‘ directly.

1 2 3 p 12 3 ..p
k% *
kK * *
AN
1 yx Al
\ *
= * % :
* * %
N
? N gl
\ *
* * *
k% *
A I
3 L A
*
= * % :
* * %
AN
* * *
ko ok *
kK * *
WhN
p Wil
11)1)\ * A;;;»l;} 41
* % *
1k Al AL
2| AN xpr AN 45
3 Ay *FATI s A
. A * , %
: o 5
All)erP * ‘4;Ji 1p+1

Figure 3.2 Reordered matriA after row and column permutations.

Explicitly, the stages to which the parallel RGF algorithsrdivided as well as the cor-
responding numerical complexities are the following:

1. First StageScatterer's domain decomposition and computatiofi of

The scatterer is decomposed to internal scatterer’s demainn,, ny, ..., g, ..., 0y
blocks. Each domain corresponds to one of the altogetipeocessors participating
in the computation and additionally, there are 1 elementary interface blocks corre-
sponding to the slices between the internal domains (Fip. &t this point we have
to note that the last processor stores the two interfac&sldf” andATY, ;. Then
we reorder rows and columns such that the maiikas the block structure of Fig.
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3.2. Subsequently, the algorithm performs a block Gausdiarination adapted to the
special sparse block structure of Fig. 3.2, i.e., it prosdageliminatingA™! using
A, Analytically, the steps of the block Gaussian eliminatipplied hereby:

V processok
for i =1...nk){
B = (Al
(AB)isis = (AR — (AB)L L B(AL i
(AR)ir11 = (AP BAR)ia
AL = AL — (A BARi
}
B = (Ald)ns

Ny, Ny

Al = AL~ (AL 1B(An

ng,1

Al = —(ARLBAG nea
The algorithm as it is formulated relies on the block Heramtstructure oA and can
be performed fully in parallel apart from its last iteratimhere it requires one extra
communication with its neighbouring processor. The lastpssor does not require
such a communication because it stores additionally theklileat corresponds to the
last slice of the scatterer. The numerical cost for eachgm®ar scales with,, inver-
sions of M x M blocks and require n,, multiplications of matrices (see the algorithm
above), i.e.7 - n, operations that scale with(1/3). At this point we should remark
that the number o) (1/3) operations are counted in a trivial way. This naive strat-
egy will be followed throughout this chapter because it dogtsconsider additional
computational specialities using special programmintisskio name a few examples,
one could reduce the number of such operations below selenwbuld consider the
common multiplications between matrices that exist in theva loop, if he would use
special routines that perform collectively the matrix nplitations or if one considers
the fact that that all off-diagonal blocks that correspamthe kinetic energy coupling
are diagonal. With respect to the storage only a few auyildocks of sizeM x M,
independent ofi;, are required. Hence, each processor at the end of the &gt st
of the computation has stored the diagoAgl, and off-diagonaA}}, , ; block of the
Schur complement. At this point we note that the notatiordusethe subscript of
the newly computed blocks & is identical to the one of the blocks #f'™" for con-
venience. The last processor computes, in addition to tbept@viously mentioned
blocks, the last bIocIAgfLLpH. The numerical complexity for each processor scales,
in the limit of large N and M, with:

N
Cy ~ Tnp M3 ~ 7—M?
p
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Here we have neglected the last step of the algorithm thaésponds to the single
communication of each processor with its neighbouringesindhe asymptotic limit

it could be absorbed in,.. After the completion of the first stage, the Schur’s comple-
ment blockS has been computed. Its blochg} and AL’ , are distributed among
the processors. Agai, has a block tridiagonal structure and is block Hermitian:

AIT AT 0 : O @) @)
AT AT AT .. O O @)
O  AIT" AIT O O @

S = : . : : :
T T
o oo e e O
O O o - Apfl,p ér&p é¥’p+1
o o o .- o App+1 Apiipi

. Second Stage€yclic reduction of the processors participating in the @thcomple-

ment block

To proceed further, we exploit the block tridiagonal stunetofS. To this end we
apply a recursive technique called cyclic reduction [25he Tmplementation of this
technique requires successive reordering of the procgtssitime, in such a way that
in each step the Schur’'s complement block is half the sizeettsda The first step of
the cyclic reduction algorithm is shown in Fig. 3.3.

We observe that the reordered block structure possesseslagax 2 structure of the
matrix A. Therefore by eliminating the off-diagonal block using thmper-diagonal,
i.e., the procedure of the first stage, we arrive at a new Slkomplement block
of half the size as the preceding one. By applying this procedecursively, after
logs(p) steps we arrive at & x 3 block matrix, of which the upper-right diagonal
block of the inverse is the desireﬁd;}N one. At this point we should remark that in
each recursive step, the first and the last processor shbwdysaparticipate in the
new resulting Schur’'s complement block, as shown in Fig. Bts condition ensures
that the desired bIoclAilN is always located in the upper right cornerSf In this
second stage of parallelization, each recursive step nexjoine inversion and four
multiplications for the calculation of the diagonal and the fill-in A{} ,, blocks
of the resulting Schur’'s complement block (see algorithrtheffirst stage applied to
the block structure of Fig. 3.3). The numerical complexityi® second stage scales
as:



3.2 The parallel algorithm 23

) 4 -1 1 3 p—2 p
2] Ay AT AR
, i
4 ALT ALy
—1 vy rri Ny
p Ay)fl,p 1 Apflp-» p—1p
1 | AT Aip
3| AT AT Ass
p—2
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T
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Figure 3.3 Reordering according to the cyclic reduction algorithmdd8chur's complement block
of size(p+ 1) x (p + 1). The size ofS after the applied block Gaussian elimination is reduced to
half of the preceding size.

Cy ~ 5l0g2(]D)M3

After logs(p) recursive steps operating & we are left with & x 3 block matrix of
which the first row, i.e., block€>,; andC,,, are stored in the first processor and the
rest two rows, i.e., block€,2, C23 (second row) ands5 (third row), are stored in
the last processor. The upper right block of the inverseiefitk 3 block matrix is the
desiredA | 3, which can be computed directly.

3. Third StageComputation of the transmission coefficient

At the last stage, there remain a few multiplicatiers the blocks that are included
inside the Fisher-Lee relation and are all known for the watédn of T'(F). These
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operations are performed sequentially by the first proece3d@ numerical complexity
for this last stage can be evaluated as,

Cg ~ CM3
and since: is a small constant, in the limit of larg¥, C3 can be absorbed if; .

The numerical complexity of the parallel algorithm scalss a

N
Coar(N, M, p) = C; + Cy + C3 = 7;M3 + 5logs (p) M? (3.1)

and the corresponding sequentjak 1) one, as:

Cieq(N, M) ~ TN M?

We should remark that the algorithm developed here holdalgdgor scattering regions
with complex boundary conditions, i.e., blocAs; with varying sizes, and can be general-
ized to the geometry a§D scatterers in a straightforward manner. We further remzak t
one could reduce the number of numerical operations théa sath /3 at the first stage,
however for the purposes of the present analysis that sasvagool to identify the sources
of computational cost this is not unique and therefore noessary.

3.3 Numerical benchmarks

3.3.1 Metrics for the analysis of performance and scalabity

In this section an analysis of the performance and scatalidr two specific numerical
benchmarks will be pursued. This is required in order tottestmodels for the numerical
complexity we derived so far and to demonstrate a measutiedaapabilities and optimized
use of the proposed algorithm. To proceed with such an asatyis necessary to define
some characteristic quantities for our parallel algoritfutiowing Ref. [26]. Firstly, we
define the problem size:

W(N,M) =7TNM?

which is the number of numerical operations in the sequiesigarithm (p = 1), i.e., the
RGF approach, and is also equal to the serial run fifriea unit of time corresponds to each
numerical operation. The cost of simulating the parallgbathm on a single processor is:



3.3 Numerical benchmarks 25

pT,(N, M, p) = pCpar(N, M, p) = TNM? + 5 plogs(p) M?

whereT, is the parallel run time corresponding €9, (N, M, P) if we assume a unit
of time for each computational step. The overhead functipof the parallel algorithm is
defined as:

To(M,p) = pT, — W = 5plogs(p) M*

and determines the part of its cost that is collectively spgrall processors compared
to the sequential algorithm. The sources of overhead of @lphsystem can be in general
attributed to interprocessor communication, load imbetaand extra computational time
due to a part of the program that is not parallelizable. Inadgorithm the dominant contri-
bution to the overhead results from the amount of operationsg the cyclic elimination of
the processors. The extra computational time requiredhietaluation of the Fisher-Lee
relation (this is the only not parallelizable part) can bglaeted in the limit of largeV. As
far as load imbalance is concerned, the two numerical beadtsrio be investigated will
show a different significance of this source of overheadallinwe define the efficiency of
the parallel algorithm as:

w TNM? 1
F:—:

pT N 3 3 - 1+M (32)
p p (75 M+ 5loga(p)M N

From this relation, we conclude that the efficiency is indef@nt of the size of blocks!
and depends only on the longitudinal length of the scatt€rand the number of processgrs
participating in the computation. Moreover, by scaling@ppiately N with p, it is possible
to maintain the efficiency fixed, a property met in scalablelba algorithms. From Eq.
(3.2) we can define the isoefficiency function:

W - KTO
where K = F/(1 — F) is given for a specifi¢z. For fixed K we can arrive at the
following relation for N and K:
5
N = ;KPZOED(Z?) (3.3)

Therefore, our algorithm can be cost-optimal if we chodse- %KplogQ(p) and scal-
able if we increaseV with rateO(plogs(p)). On the other hand, for a fixed size problem,
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i.e., keepingV and M fixed, we observe that the efficiency decreases with inargasas a
consequence of Amdahl’s law (see Eqg. (3.2)). Here some famaarks are in order. In the
quantities defined so far, we have assumed lattices of uisigaéV x M for the discretiza-
tion of the scattering regions (perfectly load balancedlams). In addition, the time spent
for the interprocessor communications due to messagenggissneglected. This is due to
the increased granularity of the block tridiagonal systegaulting in a better efficiency of
the parallel algorithm. Finally, our numerical procedwsevalidated with results obtained
independently by the numerical code TIMES (Transport In ddespic Systems) used e.g.
in recent studies of normal-superconducting hybrid systg@].

3.3.2 Billiard in a magnetic field

The first numerical benchmark to test the performance of ¢gorighm is a rectangular
billiard in a homogeneous magnetic field. Modified billiaptsvide a class of systems for
testing the correspondence between quantum and clagsioaport. The magnetic field is
included with the Peierl’s substitution and is present anlthe billiard, so that we end up
with a perfectly load balanced problem with respect to theatical work loaded to each
processor. This system represents therefore an excelantpte for testing the models of
complexity developed in subsection 3.3.1. For the purpdskeocurrent investigation we
avoid, therefore, to use leads as an intermediate step éoapplication of the magnetic
field [28,29], since this would lead to a load imbalancedeaystFigure 3.4 shows the setup.

Y = ma
X
B

xr=na

Figure 3.4: Setup of a rectangular billiard attached to two reservoita w=0,1,..., N — 1 slices
ofm=0,1,..., M — 1 sites each, used in the fixed-size efficiency calculatioh® r&tio of the two
dimensions isf; = £.

The first setup to test the performance of our algorithm usi¥) a« 250 lattice for the
discretization of the billiard (ten times resolved comphte the one of Figure 3.4). The
first type of analysis consists of keeping the lattice fixed studying how the efficiency of
the problem scales with increasing the number of proces¥éesemind the reader that the
total cost of the parallel algorithm is dominated by the dosthe evaluation of the Schur’s
complement block and the cost due to the cyclic reductioh@fptrocessors (see Eq. (3.1)).
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Table 3.1 shows the times measured for the evaluatidh(éf, B) at a fixed energy E and
magnetic fieldB.

Table 3.1 Measured time (Time) and efficiency’] as a function of the numberof the processors
for a rectangular billiard in a magnetic field with fixed sixe= 400 and M = 250.

p Time(sec) _F_| p Time(sec) _F_| p Time(sec) _F _
1 1723.58 1.0 |14 136.82 09 | 48 53.78 0.668
2 871.94 0.989 | 16 120.09 0.897 | 56 49.31 0.624
4 444.75 0.969 | 20 99.84 0.863 | 64 45.33 0.594
6
8

300.57 0.956 | 24 86.57 0.83 | 80 39.68 0.543
229.18 0.94 | 28 77.58 0.793 | 96 38.49 0.466
10 185.61 0.928 | 32 69.51 0.775 | 112 35.16 0.438
12 158.46 0.906 | 40 59.11 0.729 | 128 34.27 0.393

At this point we note that the system used for the time measemés has been a Linux
cluster of256 nodes with Dual AMD Athlonl.4 GHz processors df GB RAM each [30].
Efficiency is1.0 for p = 1 and gradually decreases witldue to the fact that with increasing
p, the term in equation (3.1) proportionalltey,(p), i.e. attributed to interprocessor commu-
nication, dominates with respect to the other term thateseses witHg, thereby decreasing
the efficiency of the proposed algorithm.
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Figure 3.5 Efficiency F' as a function of the number of processors. The dots correspond to the
measured efficiency and the solid curve to the theoreticalainemployed.

Figure 3.5 shows the efficiendy as a function of the numberof processors according
to the performed time measurements (dots) compared to digtaal curve of Eq. (3.2).
We observe that the agreement between the theoretical mndéhe measurements is very
good. Therefore, we conclude that the dominant sourcesroknaal load have been suc-
cesfully identified and weighted. Further sources of ovadhsuch as the time required for
interprocessors’ communication, could be neglected asvthrk load is dominated by the
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amount of numerical operations that scale witH, i.e., multiplications and inversions of
M x M blocks.

The next step in our analysis is to perform a size scaling riaxygat. The aim of this
test, is to scale the size of the problem such that the eftigienkept fixed. As we saw
from Eq. (3.2) the efficiency is independent of the size oftthasversal dimensioil/ and
depends only on the size of the longitudinal dimensioand the number of processars
Therefore, by scaling appropriately with p it is possible to arrive at a fixed efficiencéyof
the algorithm. According to equation (3.3) fpr= 2 processors the efficiency can ©&48
if we chooseN = 8. If we keep increasing the number of procesgoesd the size of the
system/, keepingM fixed, according to the relation:

N/ — Np,l0g2<p,>
ploga(p)
where N’ andp’ are the new size of the system and the new number of procassors
spectively, then we expect that the efficiency will stalgilaroundi4.8%. Table 3.2 shows

the efficiency for the scaled size problem.

Table 3.2 Efficiency (£) as we increase the longitudinal dimensigrof the billiard with the number
of the processorg according taV = O(ploga(p)). We keepM = 100 fixed.

_N;p_ T, (sec) T, (sec) _F_
8;2 1.1 0.68 0.816
32:4 4.76 1.44 0.826
96; 8 14.27 2.17 0.822
256; 16 38.32 2.82 0.849
640; 32 95.25 3.54 0.841
1536; 64 228.79 4.27 0.837
3584; 128 534.06 5.04 0.828
8192; 256 1222.07 5.82 0.82

We observe that the efficiency is stabilized betw8esi and0.85 thereby confirming
our prediction. The sources of these slight deviationsatbel attributed to some enhanced
contributions of time spent in interprocessor communacegi Therefore our models provide
a reliable source for the estimation of the computationat.cbable 3.2 shows that the larger
the size of the systenV, the larger becomes the efficiency. Therefore, our paraltg-
rithm is suitable for large systems, in particular of entehlongitudinal dimension. Scat-
tering problems with complex structures could be diserthmto modules with arbitrary
complexity, of which the computation could be done effidiely one processor. Cyclic
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reduction among the processors would join the informatidh@individual modules. If the
computational complexity of a module is particularly enteshfor one processor, then more
processors could be employed.

3.3.3 Sinai billiard

The second numerical benchmark corresponds to a categasgatierers with enhanced
complexity. It consists of a Sinai billiard. This setup hasb chosen for simulations in
Ref. [31]. The numerical challenge imposed hereby is thetaeproduction of the antidot’s
circular shape in the continuum limit.
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Figure 3.6 (a) Open scattering geometry of a Sinai billiard. Subfigbjestiows the isolated scatterer
on a49 x 49 grid of points and widti? = 10a. Subfigure (c) shows the same setup but four times
resolved. The thickness of the border lines in (b) and (cyigea measure of the lattice constant.

Figure 3.6 shows the discussed geometry. Subfigure 3.6x(a)ssthe open geometry
and dimensions of the Sinai billiard, while in 3.6-(b) theleged Sinai billiard is discretized
on a49 x 49 grid of points. On such a small grid the antidot has, on théesziaFig. 3.6-
(b), the shape appearance of a polygon. Subfigure 3.6-(e)ssthe same setup of the Sinai
billiard but on a grid which is four times resolved compare®16-(b), i.e., 899 x 399 grid.
The latter is going to be our fixed input size for the time measents as we increage
At this point we remark that the antidot has hard wall bouredai.e., the sites which form
the antidot are excluded from the computation, therebyihgamb blocksA;; with varying
dimensions. Table 3.3 shows the efficiency measured forvhle&ion of7'(E) at a fixed
energy E as a function ¢f
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Table 3.3 Measured time (Time) and efficiency’] as a function of the numberof the processors
for a Sinai billiard. The latticeV = 399 and M = 399 is kept fixed.

p Time(sec) _F_| p Tme(sec) _F_| p Time(sec) _F _
1 13490.83 1.0 | 14 1201.49 0.802 | 48 417.8 0.673
2 6791.23  0.993 | 16 1058.31  0.797 | 56 379.9 0.634
4 3917.2 0.861 | 20 855.45 0.789 | 64 343.87 0.613
6
8

2689.56 0.836 | 24 734.14 0.766 | 80 271.07 0.622
1974.65 0.854 | 28 655.5 0.735 | 96 267.04 0.526
10 1649.51 0.818 | 32 071.54 0.738 | 112 226.92 0.531
12 1404.99 0.800 | 40 462.83 0.729 | 128 224.37 0.47

The efficiency decreases with increasings expected. We should note that for these
measurements equidistant domains, with respect to thetloligal dimension, have been
distributed among the processors. However, due to theaistidoundaries, it becomes
clear that this kind of distribution leads to an inevitalmad imbalance. The domains that
include sections of the antidot are described by blocks @fllemsize compared to the ones
that are kept aside the antidot, resulting thereby in redigoenputational load for the cor-
responding processors. For= 2, we observe an efficiency very closet@0%. This is a
result of the symmetry of the geometry of the setup, whichltesn a load balanced prob-
lem for this specific number of processors. If we further @asep then the efficiency falls
abruptly. This result is attributed to the intensive loadatance for few number of proces-
sors. To remedy this problem we have to choose a non-unifomath decomposition of the
scattering region, leading, thereby, to a more fair workdlt& all processors. For a larger
numberp, however, this problem becomes much less intense, sindetddecost is multiply
distributed in fairly small pieces of numerical load and ifequality among the processors,
with respect to the load they share, significantly reducéréfore, for rather large, load
imbalance is not a significant source of parallel overheadigver, deviations compared to
a load balanced setup are still evident (see below).

To analytically estimate the efficiency of the parallel altfon for the setup in discus-
sion, it is necessary to take into account the circular slofpiee antidot. For this purpose,
we divide the scatterer in two sections. One section of wthelnumerical cost scales with
N x M? arithmetic operations, whem®; the number of slices outside the antidot, and a

Na
second one of which its computational load scales With/? where); is the varying size

i=1
of the blocks of each of thé/, slices that compose the antidot. Therefore, the size of the
scattering problem is:
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No
W(N, M) =TNM* + 7> M}

i=1

Moreover, we assume that at the first stage of parallelizatiee work!V is distributed
uniformly among the processors and that at the second dtagadcessors that participate
in the cyclic reduction are weighted appropriately, witbgect to the load that corresponds
to them. This is translated to the fact t@@tprocessors possess a work load that scales with

N2
>° M? and %p processors possess a work load that scales With Therefore, the cost for

=1
the parallel algorithm will be:

No Na
3p 2p
_ 3 3 3 3
pT, = TN\ M? +7 E M? + 3plogg(€)M + 2pl092(€) ;1 M;

i=1

The efficiency, which is no longer independent of the sizenefttansversal dimension
M, will be:

No
N, M3 M3
W MM,
— = (3.4)
Pip

Na

F =
Na
Ny M3 + Zjl M} + 2plogs(22) M3 + 2plogs(22) ; M?

Figure 3.7 shows the measured efficiency (dots) as a funofipn\We observe a rather
abrupt decrease df for a small number of processars< 10 which smoothens for larger
p. The solid curve of Figure 3.7 represents the analyticalehofiEq. (3.4), calculated for
the399 x 399 grid of subfigure (3.6)-c.
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Figure 3.7. Efficiency F' as a funtion of the number of processors. The dots correspond to the
measured efficiency and the solid curve to the theoreticalainderived to take into account the
special geometry of the setup.
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The agreement with the measurements is quite well, howdegrations forp > 2 are
evident. Forp = 2 the prediction agrees due to the symmetric load share bettireetwo
processors for this problem. Fer> 2, deviations are apparent due to the assumptions
within the derivation of our model. Namely, neither dd&sdistribute itself evenly among
the processors (load imbalance) nor is the computatioma thue to the cyclic reduction
weighted exactly among the processors, as we assumed. dweehe first assumption one
should proceed to an uneven domain decomposition with cespehe processors, which
would vary depending op. We conclude thereby, that in a scattering problem of corple
geometry, the strategy to be followed in order to optimize ¢fficiency of the algorithm,
regarding the load that the processors share, should tekadoount the particular geometric
features of the scatterer.

3.4 Conclusions

A parallel algorithm for the implementation of the RGF methwas been presented. The
algorithm calculates the transmission coefficient throaiglesoscopic scattering sample for
a certain value of the energy or some other external parasngtieh as a magnetic field.
The algorithm is suited to treat complex scattering prolsiéhat cannot be handled by a
single processor on an affordable time scale. We emphdsazéhte algorithm goes beyond
the straightforward parallelization with respect to ertdiparameters of the problem such as
e.g. Fermi energy or magnetic field strenth, which is muchenedficient when treating prob-
lems of smaller size. For intermediate size problems, alphzration of the total problem
with respect to the external parameters in combination wiéhcurrent proposed scheme,
taking into account its limitations, should be also consde The structure of the algorithm
is mainly based on an initial domain decomposition of thétecag region due to proces-
sors’ subdivision and recursive computation of the Scteafaplement block through cyclic
elimination of the processors. The computational cost dube longitudinal dimension of
the scattering region scales linearly wjth However, the cost due to the cyclic elimina-
tion, prevents us from achieving an efficiencyl6f%. To demonstrate the efficiency of the
parallel RGF algorithm, we proceeded with an analysis ofpgsdormance, scalability and
sources of overhead for two specific numerical benchmarks.fifst numerical benchmark
corresponds to a perfectly load balanced setup, such asaamgedar billiard in a magnetic
field, and the derived model is in very good agreement withntieasurements. The effi-
ciency for a small number of processors is close to 100 % arr@éases as we increase the
size of the problem while keeping the number of processoesifixrhe second numerical
example contained an additional geometrical challengegtibe exact reproduction of the
circular shape of an antidot with hard wall boundaries inreaBbilliard. The computation
hereby required manipulation of blocks with varying sizesding to a nonuniform numeri-
cal load for the processors participating in the computat model adapted to the special
geometry of this problem has been employed, which exhibiseedeometric peculiarities
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and indicated the additional source of overhead due to lmédliance. The latter is respon-
sible for the drastic decrease of efficiency even for a smathlver of processors and can
be remedied by a selection of non-uniform decomposed danthstributed to the proces-
sors, based on the numerical cost. From our analysis it be@gparent that the parallel
RGF technique developed here, is particularly suitablexfodular scattering structures of
high complexity. Parallelization in this context gives thsedom to decompose the scatterer
into modules, the computation of each can be efficientlygseréd by one processor. The
optimized distribution of modules to processors dependthein individual complexity. In
case their complexity is enhanced, more than one processoidbe employed and the cor-
responding computational load should be shared accorditigetindividual features of the
module.






Chapter 4

Quantum magnetotransport through
open linear quantum-dot crystals

4.1 Introduction

Single quantum dots are the solid state analogue of an atoemeat the properties of
coupled-dots may resemble that of molecules. Arrays of lealigots may be considered
as one-dimensional artificial crystals with the dot as répgaunit acting as the lattice basis.
If the coupling between the single quantum dots is strongighpthe electronic structure
uncovers many similarities with the subbands of quasi aneedsional systems with a much
reduced reciprocal lattice vector in comparison to the drn@ semiconductor crystal. It

is also well known that a uniform magnetic field applied to@i@lectrons yields magnetic
subbands with an overall different spectrum [32, 33]. Umlike lack of any impact in one

dimension, in two dimensions these form the famous Hofstdulitterfly [34]. The question

to which extent there exists an observable magnetic effe¢he intermediate dimensional-
ity, as in the case of an array of open quantum dots, remai@s. ddoreover, experimental

evidence in the literature is scarce [35, 36] and the efféchagnetic subbands is hard to
isolate in the common setup of lateral semiconductor safies [37]. Hence, the prospect
of measuring its properties in a simple fashion is quiteaative.

In this chapter we consider small coupled-dot arrays theggmt distinct spectral prop-
erties regulated via an applied magnetic fiéld The electronic transport exhibits bright
and dark windows reflecting an electronic structure thagminiscent of the energy bands
of the corresponding linear artificial crystal. This unideature allows to explore thB-
dependence of the subbands of the quasi one-dimensioneth Blectrons. With varying
magnetic field, our calculations demonstrate qualitatared(quantitative) changes of the
bright and dark transport windows in the suggested arraicire, thus, yielding a direct
signature of the magnetic subband formation in the magpathactance.

Coupled-dot arrays may also be used as elements in magsistve devices. For ex-
ample, by manipulating Fano (anti)resonances single opantgm dots could form such

35
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building blocks or, as recently suggested, be applied asfigrs [38]. The array structure
allows the formation of wide band gaps. This enables magaléticontrolled current flow to
change up to few orders of magnitude even at elevated tetopesadespite thermal broad-
ening; an additional advantage is the fine tuning allowedhbycbupling parameters possibly
using back gates. Such a design of chaotic and rectangudautigqu dots in alignment has
been recently realized with a split-gate technique [39,#0fhe experiments of Ref. [40] the
classical dynamics of the electrons in a magnetic field énggeflection giving rise to a large
magnetoresistance at a field slightly greater than the miagietd B.. that corresponds to an
electron cyclotron radius equal to the sizeof the dot, i.e.B. = hkp/eW (kr is the Fermi
wavevector). However, we show that the quantum mechanifsadteof magnetic subband
structure also gives significant magnetoresistance at moderate fields.

Furthermore, the coupling between the dots plays a significde in the formation of
the energy bands and subsequently to the transmission misghaln this regard results
for several geometries, corresponding to various couplaggmes, will be exhibited and
useful conclusions on the robustness of current flow witpeesto large temperatures will
be extracted. Further possibilities to improve the efficieof the current flow will be shown
for various parameters of the materials such as electrositiesiand effective masses.

The chapter is organized as follows. In section 4.2 we wdtdss the geometry of the
setup and the working Hamiltonian in the tight-binding esgentation. We further present
the results and interpret them in terms of several mateai@rmeters. The physics for differ-
ent coupling regimes and geometries of the quantum dotdstessed in the corresponding
subsections. Section 4.3 contains a presentation of thetefbf decoherence and spin Zee-
man splitting. Finally, in section 4.4 we summarize our dosions.

4.2 Linear response magnetotransport in coupled-dot ar-
rays

4.2.1 Discussion of the setup and the results

Fig. 4.1(a) shows the setup in discussion. We assume thatesquantum dots of siZ& are
laterally confined near the surface of a semiconductor bstiercture by an electrostatic field
which creates effective hard wall boundaries for ballaticpropagating electrons whereas
the coupled leads are modeled as discussed in chapter 2. dlifitecpntacts bridging the
dots have square geometry of dimensidps= D = 0.3W that are of the order of the Fermi
wavelengthA\r = 27/kpr. Although quantitative details differ, our main conclussoare
independent of this simplest design.

We model the electronic structure via a single-band effeatiass equation of electrons
in a magnetic field, which when discretized on a lattice, isstreasily expressed in the
notation of second quantization
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Figure 4.1 (a) Schematic representation of the discussed open arrgyasitum dots. (b) Upper
panel: field-free quantum transmission through a singte(dimshed curve) and the five-dot array of
(a). Lower panel: energy spectrum of the correspondingdimensional artificial crystal with lattice
spacingl. = W + L. Note that flat energy bands do not contribute to transpardeselectrons
acquire zero group velocity. (c) Same as (b) for a magnetic#la: 4.5¢ piercing the unit cell. We
recall that the integer part éf- D /7 indicates the number of propagating channels in the leadig an
defines the Bloch vector of the periodic structure.

.A(r)Ar
Hr) =Y acle+ S (V™0 clevyar + huc). (4.1)

r r,Ar

Here, Ar indicates the vector of the position of the nearest neighbmthe siter and
e = 4V is the on-site energy, with’ = h?*/2m*a* being the hopping matrix element;
m* is the effective mass (fixed t@05m, unless otherwise stated; with, being the bare
electron mass) andis the lattice mesh constant of the tight-binding grid. Tregmetic field
B = Bz applied to the dot array is introduced via the vector po&mtiin the Peierls phase
factor; o = h/e is the flux quantum. Charge transport properties are catulaithin the
Landauer scattering-matrix formalism (see chapter 2) lexpresses the current via eq.
(2.3),
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in which the factor two accounts for spin degeneracy. Weutale T using the parallel
recursive Green’s functions method developed in chaptAs3he system size increases one
needs to invert a block-tridiagonal matrix which scalegdirly with the array length. For
serial processing this yields an additional cost that wedalg distributing the scatterer’s
domain over several processors.

The upper panels of Figs. 4.1(b) and 4.1(c) show the field-d&r@dB # 0, respectively,
guantum transmission in the first open channel. Transpostih a five-dot array is indi-
cated by the solid curves. In contrast to the single-dotstrassion spectrum - plotted in
dashed line - bright and dark windows are formed in whichgpamt is either allowed or
suppressed. These compare well to the energy bands andfghpsetectronic structure of
the corresponding infinite linear artificial lattice, whiahe shown for zero and finitB8 in
the lower panels of Figs. 4.1(b) and 4.1(c), respectivelgovident in those figures is the
strong dependence of the band structure on the magneticiéwing the unit cell. Broad
energy bands contribute electron states that are almdgttfahsmitted, whereas narrow
sections exhibit weaker transmission signals. The renbdekeharacteristic is that such a
transmission spectrum is already obtained for a quanturarday with just a few unit cells
as can be seen from the comparison of the upper and lowerspairielgs. 4.1(b) and 4.1(c).
In practice, this facilitates the realization of such a de\at length scales comparable to the
electronic phase coherence length at finite temperaturdgsthe features of the transmis-
sion spectrum do not wash out due to phase breaking procdsseast convergence of the
transmission with increasing array length has previousnbobserved in investigations of
the conductance of oligomer-based molecular junctionk [Hi&re, however, in a trade-off
with the typical linear dimension of the device it is possilb apply moderate magnetic
fields in order to manipulate the electric response; for #mesmagnetic flux through the
dot, the largefV is, the smaller the magnetic field needs to be sihce B2

T(B) - T(0)
o
\
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Figure 4.2 Magnetically controlled flow demonstrated via the profildted difference of the quan-
tum transmission for the field-free aitl= 0.3 B, cases.

In Fig. 4.2, we plot the transmission function differencéween the field-free structure
and that at a field of strength = B/B. = 0.3. The positive and negative parts reflect
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the newly formed magnetic subband structure of Bloch edestin the corresponding one-
dimensional artificial crystal which causes the bright aakdransport windows to occur at
different spectral positions. As discussed later, for @gigeometry and Fermi energy (i.e.,
fixed krD/m) the contrast in current flow due the differing transmissipactra can also be
traced as a function of magnetic field to yield the evolutibthe magnetic subbands. We
note that there exist broad energy ranges over which brighsport windows at non-zero
magnetic field overlap with dark areas at vanishihge.g., atkp D /7 ~ 1.5 andkpD /7 ~
1.67. This feature marks a mechanism for magnetically conuiadierrent flow which can
be realized at liquid nitroaen temperatures and above asrshelow.
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Figure 4.3 Linear-response magnetoconductance at various tempesety-D /7 ~ 1.5). Inset:
magnetic field dependence of the distance between the FeergyeFr = 74.5meV and the band
edge E. accounting for the resonant structure of the low-tempegatnagnetoconductance when
crossing occurs aB ~ 0.12B, ~ 0.45T.

At this point it is instructive to interpret the system of miat units to Sl units. Assuming
Ar = 30nmwithm* = 0.05m, yields Er = 33meV andB, = 1.68T. Regarding dimensions
each quantum dot should B& ~ 75nm wide and the width of the leal) ~ 22nm at
kpD/m ~ 1.5. The lattice spacind. is around100nm defining a total array length of
less tharb00nm for five coupled-dots. In a strict sense, these dimensiefiae the range
of validity of our results regarding temperature. Apartnfirohe thermal broadening, the
temperature controls the scattering mechanisms detargiihe electronic phase coherence
length. Since, so far, we have assumed that electrons gpageng coherently, the array
length must be shorter than the latter. More examples asepted in Table 4.1. These show
the interplay between linear dimensions dsd

In Fig. 4.3, we furnish our observations with the linearp@sse magnetoconductance
curve at various temperatures. An overall increase of thelectance with increasing mag-
netic field strength is clearly observed. A remarkable fesisithe fine peak-structure of the
magnetoconductaneH /dV at very low temperatures which is a consequence of the forma-
tion of the spectrum of Bloch electrons in a magnetic fieldsThdemonstrated in the inset
of Fig. 4.3. As the band structure modifies with the magnetid fithe edge of a single band



40 4 Quantum magnetotransport through open linear quadutrorystals

Table 4.1 Sl units atcp D /7 = 1.5 assumingn* = 0.05m.

Arp(nm) W (nm) Ep(meV) B.(T)

20 50 74.5 3.78
30 74 33 1.68
50 123 11.9 0.6

E. crosses the Fermi enerdyr at B/B,. ~ 0.12. When the distanc&. — Er| vanishes
a bright transport window is induced that gives rise to trenant structure ofl/dV in
the sub-Kelvin regime (thick line in Fig. 4.3). Due to the iw@lonounced peaks one could
think of using these as a probe for the magnetic subbandtsteucAt higher temperatures
thermal broadening causes averaging over a larger paré aftbctrum including many adja-
cent minibands and gaps. This increases the low-field cédadoe whereas simultaneously
decreases the corresponding higher field values.
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Figure 4.4 (Upper panel) Ratid,, /I, of the current flow in the onf = 0.35, ~ 1.13T) and off
(B = 0) state as a function of temperature for an arrayvof= 2, 3,5 coupled-dots. (Lower panel)
Temperature dependence of thg /1, ratio for various materials parameterizedy. krD /7
andEr are the same as in Fig. 4.3.

A significant quantity in our design is the enhancement (@yppression (off) ratio of
current flow1,, /1, in the linear response regime. In what follows, we analyzeyip-
ical behavior heading towards finite temperatures for verimaterials parameterized via
the effective mass by fixing-D/m ~ 1.5. In the upper panel of Fig. 4.4, the temperature
dependence of thg,, /s, ratio is shown for an array with varying numh&rof coupled-
dots. Remarkably enough the results hardly modify vt 3 in support of our previous
remarks. We observe that relatively large ratios in excé$sdcan be achieved for temper-
atures up to~ 10K and can be preserved 19,/1,¢; > 10 for temperatures up te 26K.
Further temperature increase makes the ratio to decay biydot/,,/l,;y = 2 at room
temperature. Note that this behavior may be drasticallyravgd with a selective choice
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of materials and geometry. A search in the parameter spadbddatter is presented in
the following subsections. Rather, in the lower panel of Big we show how the effective
mass of common materials can be readily used in order to @eraily improve the device
operation sincd,,, /I, ratios magnify at all temperatures as decreases. Notably, for
m* = 0.01mg (INSb;Bi), 1,,,/ 1,5 > 100 can be obtained up t& 50K and rather enhanced
I,,/1,;s > 10 can be preserved for temperatures up-to00K.

So far we have presented an investigation of ballistic parishrough a finite array of
coupled-dots from the perspective of a quantum mechaniegnetically tunable mecha-
nism that redefines bright and dark transport windows. Therldave been respectively
identified as the energy bands and gaps of the electronictsteuof the corresponding one-
dimensional artificial crystal despite the small numberatsd Thus, by tracing their mag-
netic field dependence we showed that the precursor of magadtband formation in the
energy spectrum can be readily observed. The broad enargg @ the transport windows
also reveals a well defined mechanism that yields magnigtmahtrolled currents with large
enhancement - suppression ratios which can extend up teaséses of Kelvin depending
on material parameters. With present technology such acel@an be realized within a
region of~ 300 nm at a magnetic field of 0.5T.

In the following let us discuss the role of the geometry oftthéding blocks of the array,
i.e. the quantum dots and the bridging leads based on outiamand verified by numerical
results. Firstly, we will concentrate on the role of the dgpstrength between the quantum
dot as it is induced by the geometry of the coupling media.sThuthe following sections
we will show numerical results for the strong and weak coupliegime as it is defined by
the width of the coupling leads. After the discussion of tkemetry of the bridging leads
we will show some results concerning rectangular dots.

4.2.2 Strong coupling regime

We remind the reader that the underlying mechanism thateglguantum transport through
guantum-dot arrays is their artificial energy bandstrietive have observed that broader
energy bands correspond to a transmission mechanism witistr@nd strong signals in
comparison to thin energy bands which induce a rather wealsinission of electronic sig-
nals. In the light of these observations, one would suggestihe optimal coupling between
the quantum dots would be the strongest possible since leready bands would allow for
transparent transmission signals. Let us simulate suckreso by increasing the fraction
of the leads’ widthD over the side of the dot t® = 0.5WV.
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Figure 4.5. (a) - (b) Quantum transmission coefficients for two valuesnafgnetic field and (c)

Ion/Ios¢ ratio for§ = 0.7 in a strongly O = 0.5W) coupled array of dots witlh, = 0.285WW. Er

is given in units of open channels-D /7.

Figure 4.5(a)-(b) shows the transmission coeffcient fahsa geometry of leaddf, =
0.285W). We observe that the transmission spectra require a ratlerg magnetic field
(& = 0.7) in order to be modified enough such that a sufficient supesshancement
mechanism is imposed. For the setup in discussion and apetgpically at1.4 open chan-
nels the magnetic fiel®. ~ 7.389 T, i.e. amagnetic field of strength 1.4 T is not sufficient
and one should use a stronger field of the ordérbfFigure 4.5(c) shows thg,, /I, s, ratios
for the latter case. Enhanced ratios larger th&hare achieved for temperatures lowen af
K whereas a sufficient portion of current flow larger than tepreserved up t¢0 K. These
efficiencies are indeed better than the ones achieved béfmrever, the large magnetic field
is not so preferable with respect to our switching mechanism

Further, in Figure 4.6 we present results for leads of theesamdth but with larger
length L, = W. The conclusions that were extracted for shorter leadgjtle(l., = 0.31/)
hold equally for the case presented here, i.e. much stranggnetic fields are required to
modify the transmission spectra. In subfigure 4.6(c) wegnethel,,, /I, ratios which are
comparable to the ones of subfigure 4.5(c) howéyefl,;; > 10 extends tol4 K.
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Figure 4.6. (a) - (b) Quantum transmission coefficients for two valuesnafgnetic field and (c)

Ion/Ios¢ ratio for & = 0.7 in a strongly O = 0.5W) coupled array of dots witlh, = W. Ep is

given in units of open channels-D /7.

Thus, we conclude that leads that are strongly coupled tartiag correspond to a more
robust transmission mechanism on the expense of a stroraggretic field required to pro-
voke a sufficient current flow.

4.2.3 Weak coupling regime

On the contrary, thin energy bands induce a a less clearntias®n of electrons in the
sense that apart from its small width the transmission ceeft does not even approach
one (see for example subfigures 4.1 (b) and (c)). Significhahges in the transmission
spectra are indeed invoked by much weaker magnetic fieldsuldrsimulations the weak
coupling regime corresponds 1o = 0.2 and for an operation at typically4 open chan-
nels B. ~ 2.955 T. The following results hold for,, = 0.3W. In Fig.4.8(a) we observe
that at £ = 1.81 channels there is a bright window fét = 0 T which is suppressed to
dark for alreadyt = 0.2. Fig.4.8(b) shows thé,, /I, for this set of parameters; the ef-
ficiency is however rather poor. The result does not sigmflganodify even if we further
increase the magnetic field o= 0.7. In subfigures 4.8(e)-(f) we present the transmission
coefficient (left column) and,, /I, ratio (right column) for an intermediate lead which
is considerably longer, namely, = W. The results do not show severe modifications in
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comparison to the cases with shorter length and they leaale@mclude that the thin energy
bands provide a transmission and subsequently current flaing insufficient to provide a
switching mechanism even when we apply rather strong fields.

a) b)
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Figure 4.7. Quantum transmission coefficients (left column) dpgl/ /s ratios (left column) for
a weakly @ = 0.2WW) coupled array of dots. Subfigures (a)-(d) correspond o= 0.3 and
subfigures (e)-(f) correspond 1o, = W. EF is given in units of open channels-D /.

For the purposes of our study we have investigated so faraleyeometries of the cou-
pling media that belong either to the strong or to the wealpling regime. We have seen
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that the former require strong magnetic fields so as to maghifyugh, the latter however
provide a mechanism that is insufficient to cause enoughopoof current flow. The op-
timal solution has proven to be the regime of intermediatgptog strength, i.e. the one
whereD = 0.3WW. Regarding the length, of the coupling leads, analogous changes in the
transmission spectra have been induced by various values bbwever the best qualitative
results have been obtained for the chosen valug,ef D.

4.2.4 Quantum dots of rectangular shape

Concerning the geometry of the quantum dots we have alsorpegtl simulations for rect-
angular shaped dots. By reducing the length of the dots aeplitkg their width constant,
we effectively change the coupling between them, since dribexr dimensions becomes
comparable to the width of the leads leading to the stronglooy regime. In Fig.4.8 we
present the transmission coefficients for dots with length= 0.31/. Subfigure (a) corre-
sponds taD = 0.3W and (b)D = 0.2IW. We observe broad bright windows which show
an even more robust behaviour as it has been expected. Qiisresnfirm this statement
and therefore we conclude that rectangular shape quanttswatber complete than suit to
the purposes of our analysis. The above mentioned argurhamsled us to the choice of
the square geometry for the dots of the array, which we belgves better response in an
environment of finite temperatures.
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Figure 4.8 Quantum transmission coefficients for quantum dots of regtkar shapd.; = 0.3W
for (8) D = 0.3W and (b)D = 0.2W and several magnetic field strengthsg is given in units of
open channel&rD /.

Hence, we conclude that optimal shape for the quantum dotdébelong to the square
geometry.
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4.3 Discussion of spin splitting

Some further comments concerning our investigations aoedar. During our calculations
we have neglected the Zeeman energy splitting due to theedpplagnetic field. In the
however non-negligible Zeeman term, the two-fold spin degate energy bands split and
their positions are symmetrically shifted with respect tithvepin up and down electrons.
The energetical shift is given by,

1
Es = i_§Q*MBB (4.2)

where the Bohr magnetgng = % and within our calculation® = ¢B,. = g%.
The variablen,, = % denotes the number of open channels. In the system of natural
units that we have introducetl,= 2m* = a = e = 1 and therefore the contribution of the
Zeeman energy term simplifies f& = +1g*c*¢ 5T where the dimensions of the physical
system are now given in units of the lattice constaltn* = ¢*mg). Let us now estimate
its contribution to the total energy of the system for a GaAstenal with effective mass
m#* = 0.067 and Landé factop* = —0.44. In our calculations the typical strength of the
magnetic field i< = 0.3. By taking into account these values, the correction to trexgy
due to the Zeeman term for operating at the maximalisticevaliu., = 2.5 channels is
of the order ofl0~>V. One up to three open channels correspond to a Fermi eneagy th
ranges typically betweern 0.05 — 1.5 in natural unitsV and therefore we are justified in
neglecting the Zeeman contribution to the energy of theesyslthough the Zeeman term
turns out to be negligible, we do not consider that spines®ie transport spoils our results.
On the contrary we believe that in the strong magnetic figyghne it would much improve
them, in the sense that spin filtering for at least one spinpmrmant would become much
more enhanced in comparison to its counterpart that woulsluppressed, leading to the
functionality of our array as a spin filtering device. We reknhowever that the magnetic
field should be particularly stronger, therefore deparfiogn the purposes of the present

investigation.

4.4 Conclusions

To summarize, we have presented an investigation of lineantym transport through an
array of a varying small number of quantum dots. Our resudtgetshown a well defined
enhancement - suppresion current flow mechanism, whicldigced by the electronic band
structure of the periodic system and is robust for seversl ¢¢ Kelvin in a region of- 300
nm with a field strength of the order of 0.5 T. The geometries of the array’s ingredient
units have been discussed in the light of robust on/off satdd/e have concluded that the
optimal switching mechanism is provided by an intermediatgpling between the quantum
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dot cells which is translated O = 0.31//. Stronger or weaker couplings offer various setups
with potential advantages which however cancel in the vieaup calculations. Quantum
dots of rectangular shape have shown an effective stroongetiag if one of their dimension
becomes comparable with the dimensions of the leads. Additipossibilities to increase
the efficiency of thd,,, /I, s, ratios have been investigated for several materials.






Chapter 5

Short review on the field of closed
guantum dots and motivaton

5.1 Electronic structure of quantum dots

So far we have viewed the quantum dots (QDs) in terms of a twisional electron
gas which with applying external electrostatic voltagese @an restrict the space of the
electronic motion thereby imposing hard wall boundary ¢tows for it. So far we have
investigated ballistic transport with respect to the faett transmission is defined in by the
sample’s boundaries. In this regard we have used the telogy6open quantum dots” in
order to indicate the fact that the single-electron pictuas provided a reliable description
of the physics in systems strongly coupled to the envirorimarthe following chapters we
are going to deal with the physics of a system in which a buriciextrons is severely re-
stricted or "isolated” from its external environment, itee leads. In these systems, i.e. that
are weakly coupled to the external environment, transgatbminated by their many-body
electronic structure. In order to make the link to the Lareaormalism one could think
that to a first order the effect of the coupliigF) to the external environment broadens
the energy levels. The weaker the coupling is the less quéawveen the energy levels is
observed and therefore transport through the quantum dote$y defined by its electronic
structure. In this sense quantum dots have establishemddisg laboratories for the ob-
servation of many kinds of atomic-scale phenomena in a ol@tkr manner due to the fact
that their shape and number of confined electrons can beotiedtexperimentally. Several
books [42,43] and reviews [44, 45] have offered detailedyimsn the physics of these low
dimensional quantum confined structures at both a theatetnel experimental level.
Electrostatic confinement can be usually well approximéated parabolic well, at least
in the few electron regime. So far many theoretical invegians, have assumed a circular
symmetry of the confinement, while the number of electrongea from a few to many hun-
dreds. In beautiful analogy to the atomic shell structurei@dimensional single-particle
harmonic oscillator model has provided a fairly good dgdmn of the quantum dot shell

49
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structure [44]. This fact is further supported by experitabmeasurements in which the
magic numbers, i.e. number of confined electrons belongiragshell, that are observed in
the addition energy spectra are in good agreement with floosgrcularly symmetric QDs
e.g. in [45-48]. Excitation spectra of QDs can be also prdbesdingle-electron transport
spectroscopy [47,49]. From a theoretical point of view, ohéhe most powerful tools to
study the electronic properties of few-electron quantuns doa 'clean’ and accurate way,
is the configuration interaction method which has been extely employed [50-72]. Ad-
ditionally, the few-electron problem allows to apply varsoother theoretical approaches
such as perturbative techniques [73—-76], semiclassi@ysis [77—79] and Padé approxi-
mation [80].

Imposing external magnetic fields leads to a variety of ned/ @amexpected properties.
The ground state parity oscillations [81, 82] or the magimbars in the angular momentum
[50, 53, 83-86] are beautiful manifestations of the resparighe interelectronic interaction
to the magnetic field. Experimentally, the magnetic field basn a useful tool for probing
the electronic structure of QDs. Hence, the change of thergrstate parity was identified
as a kink in the addition energy spectra [87-91] and the &xait spectrum of a QD could be
probed and compared with exact calculations [45,47]. Magedhe response of the many-
electron QD to magnetic fields has revealed further rich@ges. For the low-field regime,
the measurements were explained within the constantaictien model taking into account
the exchange interaction between electrons with pargllesg46]. For higher field strengths
the enhanced many-body correlations triggered differesthranisms for the reconstruction
of a stable electronic configuration, the so called maximemsiy droplet. Examples are
the formation of a hole in the center or at the edge of the QDsmimtexture [92].

For a parabolic confinement which is elliptically deforméuk rotational symmetry is
broken altering the dot’'s atomic-like properties [44, 93]he reduction of the symmetry
lifts the degeneracies of the single-particle excitatipecsrum and affects the selection
rules by producing coupling effects between the states [$4)eral theoretical investiga-
tions [94-105] have demonstrated the effect of anisotrdje pattern in the addition en-
ergy spectra is much less pronounced, even for small defmnsaand vanishes for stronger
anisotropies. Furthermore, it might affect spin configiors, which are found to obey the
Hund’s rule for small QDs while for larger ones Hund’s rulesigpressed to a more Pauli-
like behavior [98,104]. For example, with increasing defation, the ground state of four
electrons undergoes a transition from a spin-triplet (dufé Hund's rule for circular sym-
metry) to a spin-singlet state. Other interesting effedtsearom the possibility of tuning
the degree of degeneracy in the single-particle spectrurchbyging the anisotropic har-
monic configuration. At various configurations we encouimehe corresponding spectra
degeneracies and shell structures thereby predicting s¢tieof magic numbers for the shell
closures. However, the reduced energetical spacing bettheeshells renders it more com-
plicated to be observed experimentally [93, 105, 106]. Dyically, the anisotropy serves as
arapid path to chaos in the interacting system leading tatenglay of chaos and integrabil-
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ity [107,108]. A variety of numerical approaches has begalia@ in order to investigate the
lowering of the symmetry in the electronic properties of QDhese include configuration
interaction [94-97,107-110], Hartree [111], Hartreed 98] and spin-density functional
theory [100, 103-105, 112, 113]. The effect of the magnetici fon the shell structure of
asymmetric quantum dots has also been discussed bothtibellyg114] and experimen-

tally [93, 115]. The investigations performed so far, usantyaa quasi two-dimensional

model for the QD. In three dimensions anisotropies have b@erduced along the z-axis
of the confinement [116] and symmetries are controlled viexaarnal magnetic field [117].

Three dimensional cylindrical [77,82,117,118], ellip$ali[119-121] or lens-shaped [122]
QDs have also been studied.

In the following two chapters we are going to focus on closeanum dots which con-
tain two electrons electrostatically confined by a two-disienal anisotropic harmonic os-
cillator potential. The working Hamiltonian is of fundantehinterest since it describes two
interacting charged particles in an anisotropic confindraed beyond the quantum dot it
could equally describe ions that are trapped in externaldidHence, we are provided with
an ideal laboratory to investigate the effects of elecet@ttron interaction and anisotropy
in the dynamics, electronic structure and quantum chas®lated quantum dots. Due to the
small number of particles, by applying a configuration4iatgion approach in combination
with the numerical method introduced for the evaluatiorhefé¢lectron-electron integrals in
appendix A, it is possible to obtain a global view on the eataiin spectra. We study many
excited states for the complete range of anisotropies fricen a circular to an elliptically
shaped and in the limit a wire-like dot. An amazing variapiand complexity of dynam-
ical and spectral properties occur as a result of variousigunations of the confinement.
Quantum manifestations such as energy gaps and levelrihgstan the one hand and level
repulsion and avoided crossings on the other hand, are @asoead by the interplay of inte-
grability and chaos in the corresponding classical dynamite fingerprints of the chaotic
dynamics in the spectra for general anisotropies will bexshaFurther quantities such as
charge densities are studied to elucidate the effect of lthti@al confinement on the in-
teracting system. Chapter 6 deals with the situation whemnagnetic field is applied. By
imposing an external magnetic field the ground state payitynsetry oscillates between spin
singlet and spin triplet symmetry, a sound effect of the Gl interaction between the two
electrons. The deformation of the confinement potentialtaednclusion of the spin Zee-
man splitting in the energy of the ground state causes asoitls’ crossovers which occur
at unique positions in the space of the magnetic field streagtl shape of the dot. Usually
these crossovers can easily be identified experimentally kink in the conductance. As
a result we have concluded that information about the exeqtes of the dot’s confinement
can be extracted if one compares the position of the expatahkink with our theoretical
calculations. The results for finite magnetic field will begented in chapter 7.






Chapter 6

Electronic properties of two-electron
anisotropic quantum dots

6.1 Introduction

In this chapter we are going to present a detailed invesbigaf the effects of Coulombic in-
teraction and anisotropy on the electronic structure amauhycal properties of two-electron
guantum dots. The system is found to be integrable for twguieacy ratios and the exci-
tation spectra exhibit remarkable spin symmetry propedigginating from the symmetries
of the quantum operators belonging to the integrals of mofidhe implemented numerical
algorithm for the evaluation of the electron-electron gngds allowed for the efficient and
accurate evaluation of several hundreds of energy levedsicé] we managed to trace the
chaotic dynamics in terms of a statistical analysis of thetdlation properties of the energy
levels for a mixed phase space. The structure of the enevgy $pacings is analyzed in
detail. It shows unique characteristics for several casesery strong anisotropies, i.e. for
the wire-like limit, the dynamical properties comprise tteemplete regime from softly in-
teracting to kicked oscillators while the quantum courdetrpustains Wigner crystallization
and exhibits intriguing patterns in the spectral sequeht®vel spacings. Further quantities
such as the charge density are studied to elucidate the effée elliptical confinement on
the interacting system..

This chapter is organized as follows. In Sec. 6.2 we forneulaé Hamiltonian of the
electronic motion and discuss its general properties. #aldlly, we present our compu-
tational method. In Sec. 6.3 we present and analyze ourtsesnlthe QD for various
configurations by changing the tunable anisotropy paraméiteally in Sec. 6.4 we provide
our conclusions.
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6.2 Hamiltonian and computational method

Two conduction band electrons confined in a two-dimensian&otropic quantum dot in
the effective mass approximation are described by the Han@nH = Hcy, + H, with

1

Hoy = 1 P? + mow? (0052q5 X? + sin’¢ Y2) (6.1)
me
L 5 me 4 2,2 2,2 e?
H, = —p +—wo(cos¢x +szn¢y)+7 (6.2)
Me 4 dree, |r|

wherem,, €, w,, ¢ are the electron effective mass, dielectric constant, tiaeacteristic
oscillator frequency and the anisotropy parameter, rés@ie Small and capital letters
refer to the relative and center of mass (CM) degrees of tneedespectively.

Quantization of the CM harmonic oscillator motion givenHy:, is straightforward.
Direct observation of the electronic properties dugHtovia far infrared spectroscopy is
prohibited, since radiation in the dipole approximationtains only CM degrees of freedom
and decouples from the relative motiéfy.. This property is discussed in Maksym and
Chakraborty [50], Bakshet al [123] as well as Peeters [124] and is in principle due to
the Kohn theorem [125-127]. In the following we focus on tlo@trivial relative motion
governed byH,.

To simplify our Hamiltonian we apply a canonical transfotioa, x = 2/, y = [y,

Pz = P,/1, py = p),/1 thereby scalingt, into a dimensionless one, vid, = TZ—;H;. For a
GaAs substrate the effective unit of energy and length kaéato: the effective Rydberg
Ry* = 11.8meV and the effective Bohr radids= 9.8 nm (iw, = 4.96meV). This scaling
yields the following expression for the dimensionless Heonian of the relative motion,

1

in which the primes have been dropped for simplicify,. belongs to the’s, point-
group with parity ¢ — —r) as well asc- andy-parity being symmetries. Hence, due to the
Pauli exclusion principle, spin singlet eigenfunctiongf@spatial symmetry) can either have
odd-odd &—) or even-even{-+) z-y-parity, and spin triplet eigenfunctions (odd spatial
symmetry) odd-even{+) or even-odd{—) z-y-parity.

For the investigation of the properties of the two-elect@id we solve the Schrodinger
equation for the Hamiltonia#, using a variational full configuration interaction apprioac
leading to an algebraic eigenvalue problem. For converi¢see below) we write eq.(6.3)
asH, = (H, — Ho) + Ho, WhereH, is the two-dimensional anisotropic harmonic oscillator
Hamiltonian,

0? 0?1
H, = —= — = + -w? (cos’¢ 2 + sin’p y°) +

or2  oy? 4 (6.3)
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0? 9?1
Hom —ny = o 2w

022~ 0y? (0052¢ 2 + sin’¢ y2) (6.4)

In our approach we use the basis set comprising the eigardas©fH,

v/ Wew, /4 Wy w
U, = Y 'an(\/ww/Z x)H, (1 wy/2 y)exp(—ZxQ — Zny) (6.5)

m2netun, In, |

The off-diagonal part of the corresponding Hamiltonian niat due to the electron-
electron Coulomb repulsion. The electron-electron irdgkgcan be evaluated analytically
yielding a fourfold series. Unfortunately, and despite ¢tesed form of the analytical ex-
pressions, their evaluation turns out to be numericallyabis. To remedy instabilities, we
have used an efficient numerical technique for the evalnaifahe Coulomb matrix ele-
ments which is described in appendix A. At the same place wége convergence tests for
comparison of our method with respect to analytical attengptemedy the instabilities.

6.3 Results and discussion

Figure 6.1 (a) shows the evolution of the energies of thedimsthundred energetically low-
est even-ever-y-parity states (even parity) with respect to the anisotrapgle . For

¢ = 45° the dot acquires a rotational symmetry and the Hamiltorsantegrable. Electron-
electron interaction lifts the degeneracies in the evesnevy-parity states. The energy lev-
els, though non-degenerate, group in clusters and fornggrgaps which are particularly
pronounced in the higher excitation spectrum. By depaftiom integrability thereby grad-
ually introducing anisotropies in the shape of the confingnpetential the clusters widen
and the energy levels interact thereby showing avoidedsorgs. The inset in Fig. 6.1(a)
illustrates this for a certain window of energies and amguées. In the regime of inter-
mediate anisotropies we observe pronounced clusterinttgeogiiergy levels specifically for
wy : wy = 2 : 1. The width of the energy gaps is however smaller than the drieeo
isotropic case. By further increasing anisotropy, we olesan interplay of avoided cross-
ings and level clustering at certain frequency ratios. Fagul(b) portrays the energy levels
atw, : w, = n:p,n,p e N*, (N* being the set of positive integers) in comparison with
those of the non-interacting system (set of two-dimengianaotropic harmonic oscilla-
tors). For the ratios), : w, = n : 1, we observe level clustering, particularly for= 2, 3.
Forn > 3 the shell structure is much less pronounced. At ratips w, = n : p for
n,p > 1, for which a rather high degree of degeneracy occurs in themracting system,
the shell structure tends to vanish with increasing. In between the angles corresponding
to the low-order ratios : p mentioned above, avoided crossings dominate the spectra. |



56 6 Electronic properties of two-electron anisotropic quamtiots

(b)

64 {% wewy = 11| 12| 13| 14| 15 2

100_ 60 LIS T O I

w
w
N

80 —

Energy (meV)
D
o
l

Wy =1:2 1:3
0 ||||||||||||||||||'||||||||'||||||||||||||

45 50 55 60 65 70 75 80 85
¢ (degrees)

Figure 6.1 (a) The spectrum for the first hundred even-exemparity states of the anisotropic QD
as a function of the anisotropy angle The inset shows an enlargement for a certain subinterval of
energies and angles. (b) Sketch of the shell structure cdribegy levels for several frequency ratios
wy : wy = n : p. The first column corresponds to the non-interacting systéite the second one is
for the interacting system.

the following subsections we present a detailed investgatf the two-electron dot for the
specific regimes of anisotropy we mentioned above.

6.3.1 Isotropic parabolic confinement

In this case the Hamiltonian of the relative motion of equa.3 takes the form, in polar
coordinatesg, 0),

P 10 X 1,, 1
= — =)+ 2242 = 6.6
" <0p2+p8/))+p2 g +p (6.6)

'H, is rotationally symmetric, i.e. it belongs to tlie_, group, andL. is conserved. The
classical Poincaré Surface of Section (PSOS) in Fig. 6n2othstrates integrability.
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Figure 6.2 Classical phase space, {,. for y = 0) for ¢ = 45° andE = 55 meV.

The eigenstates of this Hamiltonian have been obtaineddmwilytically 73,118, 128] and
numerically [51,59]. Table 6.1 includes the first low-lyiagcited eigenstates (calculated in
effective units) with their symmetries and their magnetiaigtum numberss.

Table 6.1 The sequence of energetically lowest energy levels fordpat parabolic confinement.
Spin symmetry is denoted by s (spin singlet) or t (spin tt)péad the spatial symmetries by the
brackets ¢-parity, y-parity) where the siga- stands for even and the sighfor odd parity.

Energy (e.u.) _symmetries m | Energy (e.u.) _symmetries m
0.776 (s) &+) 0 1.668 S)¢+)(——) L4
0.907 OG- (—+ +1 1.713 (s) +) (—) =2
1.136 S)¢+)(——) =*2 1.873 (s) ¢+) 0
1.316 (s) ¢+) 0 1.947 ) ¢—)(—+) +5
1.396 O &)+ =3 1.978 O &)+ =3
1.471 ) ¢—) (—+) =1 2.044 OG-+ +1

We observe an arrangement of states with respect to thdéty.ddence, the ground state
is a spin singlet state and the first excited state a spiretrifixcited states arrange either in
groups of spin singlet (evem) or spin triplet (oddm) symmetry with an increasing range
of magnetic quantum number as the energy increases. The statesiiof 0 are two-fold
degenerate with respect to the sigmafin the following we study the discrete energy level
spacing (ELSAFE; = E;,, — F; as a function of the energl;, for the states with even-
evenz-y-parity. Fig. 6.3 showsa\ E;( E;) for both the non-interacting (inset) and interacting
system.

In Fig. 6.3 (inset) one recognizes the energy gaps that d=tween ther(,+n,+1)-fold
degenerate states due to the spectrum of the harmonicabscillf we include the electron-
electron interaction (Fig. 6.3) well-separated energysgagrsist but the manifold due to
the harmonic oscillator splits. Remarkably enough, theaisage of the spacings typically
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Figure 6.3 Discrete energy level spacilyF;(E;) for the first 100 states withi{+) symmetry. The
inset shows the spectral sequence for the non-interacstgra.

increases strongly up to the value of the energy gap and tleenfor further increasing
energy, ‘collapses’ in order to increase again. Theref@encounter a repeated stretching
phase of the level spacings for the interacting system.
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Figure 6.4: Density plot of the square of the absolute value of the tveatebn wave function in the
circular guantum dot for (a) the singlet ground state< 0), (b) the first excited singlet state:(= 0)
and (c) a superposition of degenerate stabésr = 10) + ®(m = —10)|? (dark regions correspond
to low and the bright ones to high densities).

In Fig. 6.4 we provide two-dimensional density plots of tiaige distribution for se-
lected states. For the ground state the charge density fainsularly symmetric electronic
cloud which contains a central hole due to the pole of the @ablrepulsion potential.

6.3.2 Transition regime from weak to intermediate anisotrgies

The introduction of small anisotropies (with increasigbreaks the rotational symmetry
of the confining potential and lifts the degeneracies in fecgum. The clusters, which
correspond to identical parity, widen and for higher eresdly > 40meV; for a measure the
ground state energy correspondsstd@meV) begin to interact already for small deviations
from the circular shape e.gh = 48° (Z_Z ~ 1.1). For the symmetry pure spectrum, e.g.
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Fig. 6.1(a) for the {+) states, the non-crossing rule holds and we observe a largéer
of avoided crossings. The inset in Fig. 6.1(a) illustrabes for a subinterval of energies and
angles.

@E=71meV (b) E=201 meV

\ t
0 10 0 10 20 30

(¢) E=71 meV

(d) E=201 meV

() E=71 meV

() E=201 meV

40

Figure 6.5 The Poincaré surfaces of section %, for y = 0) for various angles and energies.
Subfigures (a) and (b) correspondgte= 48°, (c) and (d) top = 53° and (e) and (f) t@> = 60°.

For a further analysis of the effect of anisotropy, let ussider the underlying classical
dynamics. Figure 6.5 shows a series of PSOS for a range oéamnglthe regime we are
studying and for two significantly different energies = 71, 201 meV). For¢ = 48°
(:—Z ~ 1.1) the classical phase space shows already a significanbpaftichaos (subfigure
6.5(a)). With increasing energy, the regular parts of the phase space expand¢Fob3°
and £ = 71 meV there are two dominating regular islands embedded inaatthsea.
This highly regular structure is due to the fact thiat= 53° is close to the frequency ratio
wy/wy, = 4/3 = ¢ = 53.1°, which, as we shall see later on, leads to certain dynamichl a
spectral properties of the system. For higher energies, B.g- 201 meV, the portion of
chaos has significantly increased. ko 60° the phase space is dominated by chaos for all
the energies considered here.



60 6 Electronic properties of two-electron anisotropic quamtiots

@=48 g ¢=52%

E; (meV)

Figure 6.6. Discrete energy level spaciny E;(E;) for the non-interacting (inset) and interacting
system, for the first 100 states with{) symmetry and various angles.

Figure 6.6 shows the ELS for the non-interacting and intergsystems for) = 48°,
53° and60°. For¢ = 48° and lower energies, the single particle ELS exhibits pedkishwv
correspond to the energy gaps reminiscent of the isotragse.c With increasing energy,
these gaps become smaller since the lifting of the degelesratue to the anisotropy, leads
to widened bunches of clusters, the width of which increas#s energy thereby decreas-
ing the gaps between the clusters. The equidistant instalspacings lead to the pro-
nounced plateaus. Allowing for interaction results in aiEmarrangement of the main
peaks concerning the large spacings while we observe agedita stretching i.e. raise of
the plateaus. At = 53° the non-interacting system is, as already indicated, diogbe
rational frequency ratio,/w, = 4/3, which corresponds to a high degree of degeneracy
and therefore we observe level clustering, id7; ( ;) comes close to zero, here. The series
of the energy gaps shown in Fig. 6.6 are ascribed to the distagtween these level clusters
while the very small spacings explain the fact thabait we are close to the degeneracies.
In this case interaction effects lead to significant chargése ELS ,i.e., to an overall more
irregular profile. However, major properties such as theaggd occurence of approximate
degeneracies and gaps persist. &oe 60° the inclusion of interaction results in an even
more irregular profile for the ELS, thereby preserving theagyéng envelope behavior of
the non-interacting ELS. In general, one can conclude tiairtteraction changes the be-
havior of the ELS function significantly and only certain caléfeatures of it are preserved
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compared to the non-interacting case.

An established tool for tracing the fingerprints of chaotassical dynamics on the ex-
citation spectrum of the corresponding quantum systermgistudy of the fluctuation prop-
erties of the excitation spectrum [129-131]. The large nemal converged levels< 400),
allowed us to apply the statistical measures to long sdesgpuences. Standard quantities
to study are the nearest neighbor spacing distribution ([D)Nd the spectral rigidity (SR).
These universal measures should be applied to the unfopedrams; = (N (E;)) where
N(E) =>_06(F - E;), with { E;} being the discrete energy level sequence obtained by our

computational method.

For integrable generic systems the NNSD follows a Poissstniblition (PD),Pp(s) =

e~* with s being the spacing between two adjacent leyglsThe Hamiltonian (6.3) of the
relative motion is invariant under time reversal and reitectn the (, y) plane. For these
symmetries assuming fully chaotic phase space, the statiproperties NNSD and SR of
the energy levels are predicted by real symmetric randomiceat[Gaussian Orthogonal
ensemble (GOE)]. For the NNSD the behavior predicted foGRdE spectra is the Wigner
distribution, Py (s) = gse_%52. For mixed phase space, which is typical for our system
(e.g. Fig. 6.5), the statistical distributions should béeatween the Poisson and Wigner
ones. There are various families of distributions whichenla@en proposed to interpolate the

NNSD for these cases. Among these are the Brody distribBay), [132, 133]Pg(s) =

1 . +1 . . .
a(g+1)s%e~ " witha =T Z% " which interpolates between the Poissgr+0) and
Wigner (¢ = 1) distributions, and the semiclassical approximation, tree Berry-Robnik
distribution (BRD), [134}Ps_r(s) = (1 — ¢)Ppr(s) + ¢Pw (s) with ¢ being the fraction of

chaos in phase space.

The spectral rigidityA(L) is a property attributed to the correlations between thellev
spacings. For a given substretgha + L] of the spectrumA(L) measures the mean

square deviation of the staircase functidifc) from the best straight line fitA(L) =
a+L

1 11141%1 | [N(e) — Ae — B]*de. For Poisson spectra the spectral rigidity is givenbyl.) =

% and for GOE spectra it behaves asymptotically (lakydike, A(L) = #lnL — 0.007.

The exact formula foA(L) is more complicated and we refer the reader to Ref.[ [129]] fo

the corresponding expression.

Figure 6.7 shows the NNSD and the spectral rigidity for thiolaed spectra for the an-
gles¢ = 48°,53° and60°. For ¢ = 48° we encounter a mixed phase space (see subfigures
6.5(a) and (b)) with the fraction of chaos varying smoothlthvincreasing energy between
80% for the energyF = 50 meV and50% for the energyE = 201 meV. The energy levels
used in the unfolded spectrum correspond to this range oggn&he resulting NNSD de-
viates significantly from the BRD fof = 0.5. Some of the qualitative features of the NNS
data such as the maximum of the histogram, are better deddojpthe BD, in comparison
with the BRD. The mentioned deviation has its origin in thet fdnat the underlying inte-
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Figure 6.7. Statistical measures NNSD (left column) and spectral itigich (L) (right column) for
the angles) = 48°,53° and60°. The spectral sequencég’; } correspond to sets of converged states

with (++) symmetry.

grable system (without the Coulomb interaction) consi$ta set of two-dimensional har-
monic oscillators whose NNS distribution behaves non-genee. non-Poissonian. [135]
Unexpectedly, the spectral rigidity follows closely thegiction of GOE. For) = 53° the

classical dot shows a mixed phase space (subfigures 6.5{dd@nbeing however domi-
nated by two large regular islands. At this ratio (see suims®6.3.4 for a further analysis
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on the electronic structure at the ratiog : w, = n : p) the level clustering observed in
the spectrum of the non-interacting system (see Fig. 6.b@murs, in a somewhat modified
way, in the interacting system. This quantum manifestaticthe high degree of regularity
in the classical phase space results in the oscillatingygrgaps in the ELS’s (see Fig. 6.6
for ¢ = 53°). The NNS data show an abnormal behavior compared to theetes predic-
tions of the BD and the PD. These two distributions were chdszause they give a better
description of the maximum of the histogram (BD) and the bairdor large spacings (PD).
The spectral rigidity shows major deviations from the tledical predictions. Fop = 60°
the phase space is dominated by chaos and the fraction o chaoughly independent of
energy. It varies smoothly betwe80% and70% for the energies betweéi® meV and150
meV. The corresponding NNSD agrees quite well with the @tezh of BRD forq = 0.8
chaos and also with BD fay = 0.9 (both approach the Wigner distribution). The spectral
rigidity follows closely the prediction from GOE spectra.

From our results we conclude that there is no universal fagfitlistributions to describe
the NNS data for the regime with mixed phase space, excepghécase where chaos is
robust with respect to the variation of energy and in paldicstrongly dominates the phase
space ¢ = 60°). We ascribe the deviations from the theoretical predndito the fact
that the non-interacting system is non-generic and leasdmgerprints in the quantum and
classical dynamic properties of the interacting systenpdriicular the abnormal behavior
in the case» = 53° is ascribed to the robust highly regular behavior of therateng system
(level clustering).

-10 -5

0
X

Figure 6.8 Density plot of the square of the absolute value of the tvemtebn wave function in the
case of¢p = 53° for (a) the singlet ground state, (b) the first excited sihgtate and (c) the third
excited singlet state (dark regions correspond to low aadthght ones to high densities).

Figure 6.8 shows some charge density plots for three sdlettétes. The gradual in-
troduction of anisotropy, with increasing anglecauses a small weakening in the parabolic
confinement along the-direction (v, = w, cos¢) thereby strengthening it in thedirection.
Hence, the two electrons in the ground state are furthetlegpgue to the confinement re-
laxation along ther-axis and obtain a clear spatial orientation.
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6.3.3 Integrable anisotropic configuration

The Hamiltonian (6.3) for the configuratian, : w, = 2 : 1 of the confining potential is
written explicitly,

0? 0? 1 5, 5 9
Hr——@—a—?ﬂ+zwx(l‘ +4y)+

1

At this frequency ratio the spectrum in Fig. 6.1 shows lelgtering accompanied by well-
pronounced energy gaps. The latter are however of smaltihwompared to those of the
circular configuration. In the total spectrum, which consathe states of all four symmetries
(++), (==), (+-), (—=+), we observe groups of energy levels. The classical copater
(Fig. 6.9) shows a regular phase space and suggests thasstleenss integrable. The line
p. = 0 consists of infinite number of periodic orbits with perioce@and separates the regular
islands (Figure 6.9 shows only one quadrant).

(6.7)

Figure 6.9. Phase space for, : w, = 2:1andE = 55 meV.

For three-dimensional systems cases of integrability baes found in previous works,
[117, 136—-139] addressing different physical settings.order to prove integrability for
our system and calculate explicitly the integral of motiomwtroduce the two-dimensional
parabolic coordinates = wv,y = 3(u® — v?), u € R andv > 0, whereR is the set of the
real numbers. The Hamiltonian (6.7) then transforms to #ve coordinates,

r =

2 2 2,6 1 6
1 <8 0 ) w2 u®+wv 2 (6.8)

w2 2 ﬁ—i_ﬁ Zu2+02+u2+v2

If we apply a product ansatz for the eigenfunctidn(s, v) = U(u)V (v) the Schrodinger

equationH,. ¥ (u,v) = &,V (u,v) can be separated in two ordinary differential equations of
the form,
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d2 2
il + <5rw2 e P /{) W = (6.9)

whereU (u) = W (u) with k = A\, V(v) = W(v) with k = A\, Ay + A\, = 2; &, denotes
the respective eigenvalues. The separation conStam%()\v — \) is the eigenvalue of the
operator,

2
A={Lap} + Sye® - — (6.10)

where{} denotes the anticommutator. By construction, the operattsmmutes with
the Hamiltonian (6.7) and is indeed the constant of motiothefintegrable system. The
eigenfunctionsl (u, v) are also eigenfunctions of. A commutes with the-parity operator
and anticommutes with theparity operator. These symmetries of the quantum operator
have interesting consequences on the spectrum of the syséenTable 6.2 and discussion
below). To our knowledge the operatdrhas no simple geometrical interpretation. We
remark that in both angles = 45° andw, : w, = 2 : 1 we have non-Abelian symmetry
groups which lead to the observed symmetries.

This particular case of integrability of the interactingsgm can be generalized to in-
clude further frequency ratios. Let us consider a generatdimensional Hamiltonian of
the form,

0? 0? w2, 9
—@—a—yQ—Fz(l’ +By)+

1

where anisotropy is tuned via the parametes wg/wg. For the case of the circular
shaped QD the parametér= 1 and the constant of motion Is, (section IV.A). For the case
B3 = 4 of this subsection the constant of motiomisn equation (6.10). Fav, : w, =1 : 2
andj = 1/4 the Hamiltonian (6.11) is again integrable, the constamhofion being now,

H, = (6.11)

2
w X
IZL‘ 2

8 vy = /x2+y2

The previously mentioned integrals of motion of the Hammiém (6.11) for specific val-
ues off can be summarized and generalized via the scalar quanturaitope
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(1]

~rl2(pxr)—mren - [(rn) <]+ 2L

17

with 7 — (tan(g (3—1)),tan (g (% _ 1)) ,1), W = (z,0y,0), L = (0,0,L.),
é=(1,1,1)andr = (x,y,0).

For the particular values = 4,1,1/4 the operator (6.13) represents the integral of
motion responsible for the integrability of the Hamiltomigs.11). In the expression (6.13),
one can identify in the vector multiplied from the right sitiyef, the generalized Runge-
Lenz vector as being defined by Beims and Gallas [139] but avidhferent sign for the last
term and additionally some new terms follow, characterifdr our generalized problem.
Let us now return to the analysis of the excitation spectrum.

Table 6.2 A sequence of excited energy levels for the configuratign w, = 2 : 1 of the confine-
ment. The line separates groups of levels with differeptarity.

Energy (e.u.) spin / reflection symmetries
0.697 (s) ¢+)
0.732 ®) +)
0.971 (s) ¢+) () (+-)
1.070 O EH) () )
1.248 (s) ¢+) ) (+-)
1.384 (s) ¢+)
1.408 ® &+ (s) =-)
1.443 t) +)
1.582 (s) ¢+) ) (+-)
1.682 (s) ¢+) () (+-)
1.757 ®) &+) () )
1.796 &+ 6) )

Table 6.2 contains a sequence of low-lying energy eigeegallA genuine feature of
this table is the groups of energy levels which belong eitbdr-+) and (-—) symmetry
or to (—+) and —) symmetry. This is a result of the symmetry of the constamhofion
A which commutes with the-parity and anticommutes with thgparity operator. The
states with eigenvalue = 0 are non-degenerate and those with eigenvalue0 are doubly
degenerate with respect to the sigmofThe ground state of the system is a spin singlet)
state which emerges from the isotropic dot, with increaging he next two excited states
in the isotropic case, are doubly-degenerate spin triplet)(and (-+) states, followed by
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doubly-degenerate spin singlet{) and (——) states (see Table 6.1). With the introduction
of the anisotropy the doubly degenerate states split in tates. The spin triplet{+) state
forms the first excited state of the systemin the egsew, = 2 : 1 and the spin triplet-{—)
state crosses with the spin singlet{) state atv, : w, = 2 : 1 to form a doubly-degenerate
state. With increasing energy the states evolve in groul®afimg the above mentioned

symmetries.
4,
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Figure 6.10 AFE;(E;) for the non-interacting (inset) and interacting system ttie first 100 states
with (+4) symmetry andv, : w, = 2 : 1 anisotropic configuration.

Figure 6.10 shows the ELS far, : w, = 2 : 1. The non-interacting system shows
energy gaps which occur due to tIﬁ%b + 1]-fo|d degeneracy (the brackeisindicate the
integer part of the enclosed number) of the energy levelsewig = n, +2n, =0,1,2, .. ..
The inclusion of interaction lifts the degeneracies in tingle-particle spectrum resulting in
a repeated energetical stretching phase with increasirgenTlhe well-pronounced energy
gaps follow an oscillatory behavior (see Fig. 6.10).
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Figure 6.11 Statistical measures NNSD and spectral rigidityl) for w,, : w, = 2 : 1.

In Fig. 6.11 we present the statistical measures NNSD andppked to the unfolded
spectrum for the integrable case. The NNSD shows a behavimhvadeviates significantly
from a Poissonian distribution and possesses a ratherdapay. The spectral rigiditx (L)
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shows again remarkable deviations from the Poissoniangii@a These results show that
the high degree of degeneracy in the underlying non-gesergie-particle spectrum leads
to this specific type of abnormal statistical behavior ofrinenerical data.

-10 -5

5 10 -15 -10 -5 5 10 15

0 0 0
X X X
Figure 6.12 Density plot of the square of the absolute value of the tveztebn wave function in the
case ofw, : w, = 2 : 1 for (a) the singlet ground state, (b) the first excited singtate and (c) the

third excited singlet state (dark regions correspond todad the bright ones to high densities).

Fig. 6.12 shows the charge distribution in the case of théegthblished anisotropy for
wy * wy = 2 : 1. This resuts in an electronic cloud for the ground state iscclearly
elongated along the-axis.

6.3.4 Regime of strong anisotropies

For¢ > 63.4°, the excitation spectrum shows well-pronounced leveltehirgg for the ratios
wy t w, =n : 1,n € N*. The energy gaps between the clusters of levels:for 3 are
however smaller, compared to those fore= 2. The observed clustering might give rise to
the expectation that the corresponding configurationsamrdidates for integrability. Figure
6.13(a)-(c) shows the PSOS for the angles correspondingta, 4, 5.

Forn = 3,4, 5 the phase space is dominated by large elliptic regulardsland a divid-
ing central layer of chaotic dynamics which increases witiThe corresponding quantum
behavior shows a pronounced shell structure which weakeaduglly with increasing:
(Fig. 6.1(b)). In the figures of ELS fot = 3 andn = 4 (Fig. 6.14) the non-interacting
system shows the expected behavior of clusters with degtrlerels, separated by equidis-
tant energy gaps, the width of which decreases with inangasi The introduction of the
anisotropy causes the lifting of the degeneracies leadinipe characteristic energetical
stretching phases, similar to the ones observed in the EL& fo 1 andn = 2. Addition-
ally there is an overall decay superimposed on the osaijlatwlti-mode stretching phases.
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(a)tang =3 (b) tangp =4

(c)tang =5

(e) tang = 4/3

) ¢=77"

(20=70

Figure 6.13 Phase space:(p, for y = 0) for various anisotropies and energies. Subfigures (a) - (e)
correspond to energlf = 55 meV and (f),(g) to energyy = 47 meV.

For ratiosw, : w, = n : p, n,p > 1 the spectra, for relatively small integersp, shows
in the case of the non-interacting system again level alugte This feature is apparent in
Fig. 6.1(b) and also in the structure of the corresponding Btawn in Fig. 6.14 for the
casen = 3, p = 2. When we turn on interaction the energy gaps reduce, thakhgst
eliminating the shell structure (see Fig. 6.1(b) for theesas= 3, p = 2 andn = 4, p = 3).
However, the energy gaps, although smaller, 'perform’lzmns (Fig. 6.14).
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Figure 6.14 ELS AE;(E;) for the non-interacting (inset) and interacting system,tffie first 100
states with {-+) symmetry in the cases, : w, = 3,4,3/2,2.747...
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Figure 6.15 Statistical measures NNSD (left column) and spectral itigid (L) (right column) for
the angles) = 70° and77°. The spectral sequencég’; } correspond to sets of converged states with

(++) symmetry.

The classical counterpart shows a mixed phase space (E®@ydg-(f)) of which the chaotic
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portion increases with increasing the integer valugs. The PSOS for higher irrational
frequency ratios is shown in Fig. 6.13(g), (h) for the angles 70° and77°. The profile of
the ELS (Fig. 6.14 forp» = 70°) is irregular and remarkably, shows an evolutionary patter
with increasing energy: apart from the overall decay of thestope, we observe beats which
finally dissolve and provide an irregular behavior.

In the cases of the irrational frequency ratips- 70° and77° we applied the statistical
measures NNSD and SR to the corresponding unfolded spsegd(g. 6.15). The fraction
of chaos in the PSOS varied for both cases betw@éhand40% for energies betweesD
meV and130 meV where the spectral sequendés } converged. Deviations from the the-
oretical models used for fitting the NNS data are again a nifagiure, although the fittings
using the BD are in general better than, in particular, trse cd the weak anisotropies. The
spectral rigidity follows a line close to the prediction hetGOE ensembile.

6.3.5 Wire-like dot

The physical picture of this case consists of a very weak genfent along the- direction
and a very strong one along thalirection (v, — 0, w, — w,). In this limit the Coulomb
force plays an essential role for the motion along thaxis. This phase in the electronic
matter is the so called Wigner crystallization in which thec&ostatic Coulomb repulsion
dominates and localizes electrons in positions that mzen@oulomb repulsion, thereby
almost defining the ground state of the system. In this liigipphase, the electrons tend to
behave classically and therefore the classical to quantmespondence of the electronic
properties are of particular interest. When we move to higha the confinement space,
approachin@0°, a ballistic channel along theaxis opens. Hence, we now have a quantum
guasi-wire since the electrons experience intermittgisty below) quasi-free and strongly
interacting phases of motion.

(b) 0 =89.4° 0.1

(@) 0=85°
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Figure 6.16 PSOS ¢, p, for y = 0) for two cases of the wire-like dot, for enerdy = 20 meV.
Subfigure (a) corresponds to the angle= 85° (w, : w, =~ 11.43) and (b) to the angle = 89.4°
(wy : wy = 95.5).

Figure 6.16 shows the PSOS for the cages 85° (7% ~ 11.43) and¢ = 89.4° (3 ~
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95.5) of the wire-like dot. Fory = 85°, apart from the central regular region, the phase space
is dominated by chaos with a large number of small regulangs surviving in it. For very
strong anisotropies = 89.4° the PSOS shows a comparatively small central regular region
while the biggest part is dominated by a 'distorted pattedm’ch corresponds to intermittent
dynamics. The dynamics within the regular islands is tha simple harmonic oscillator
slightly perturbed by the Coulomb interaction. The mechiamiesponsible for the 'distorted
pattern’ in the chaotic part of the phase space is the foligwirhe two electrons are well-
separated for long time periods, performing an oscillatoogion. Almost periodically, with

an approximate period’ = i—” the electrons come in close proximity and the Coulomb
repulsion causes a sudden momentum transfer of varyingitodgn The latter depends on
the dynamics, i.e. on the detailed collisional approachefectrons. The observed pattern
is therefore the result of the harmonic oscillator motiombmed with Coulomb scattering
events, which shift the otherwise regularly arranged goamt the PSOS. The inset in Fig.
6.16(b) shows the transition from the regular islands tactieotic sea.
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Figure 6.17. ELS AE;(E;) for the non-interacting (inset) and interacting system,tfie first 100

states with -+) symmetry andy = 85°.

Figure 6.17 shows the ELS of the quantum systemgfee 85°. It shows remarkable
patterns with increasing energy. We observe essentiathyeyecatching beats separated by
an abrupt transitionf ~ 23 meV) that take place on different scales of the energy spacin
After the second beat a transition to an irregular sequefisparings is observed for high
energiesk; > 35 meV.
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Figure 6.18 Density plot of the square of the absolute value of the tveatebn wave function in the

quantum dot for strong anisotropy= 85° (w, : w, =~ 11.43) for (a) the singlet ground state and (b)

the first excited singlet state (dark regions correspondwodnd the bright ones to high densities).

Figure 6.18 shows charge density plots for the ground anfirgteexcited singlet state.
The electrons localize along theaxis in well separated positions due to the dominating
Coulomb repulsion force.

6.4 Conclusions

In this chapter we have presented a review on the effectsohthraction and anisotropy of
two-electron quantum dots from both a dynamical and quamt@ohanical point of view.
Notably, the employed Hamiltonian is of fundamental insérand equally describes the
situation of two ions harmonically confined in traps credigaxternal fields.

We briefly summarize our results. For a quantum dot with mjpc parabolic confine-
ment the spectrum shows groups of energy levels which beddhgr to spin singlet or to
spin triplet symmetry. The Hamiltonian is integrable and tdonstant of motion being the
angular momentuni,. The levels are non degenerate & 0) or doubly ¢ # 0) degen-
erate. The introduction of an anisotropy in the interacsggtem serves as a rapid path to
classical chaos, with a severe impact on the quantum specirae level clusters widen and
finally overlap and interact obeying, for the pure symmegprgcdrum, the non-crossing rule.
For the anisotropic configurations, : w, = n : 1 (n > 2) we again observe level clustering
being most pronounced for the case- 2. For the latter configuration the system is despite
the interaction integrable. Parity properties of the quambperator responsible for the inte-
grability result in eigenvalues which for £ 0, pair in singlet - triplet degenerate subspaces
with respect to the:-parity. This symmetry property together with the fact thiaiglet and
triplet states are degenerate, makes2hel configuration unique. Fap, : w, = n : 1,

n > 3 the shell structure weakens with increasing The underlying classical dynamics
acquires an increasing portion of chaotic dynamics witheasingn, i.e. changes 'slowly’
from integrability to completely mixed phase space. Thefigomationsw, : w, = n : p, for
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relatively smalh, p, still show traces of a shell structure. Standard stasibtieeasures such
as NNSD and SR have been applied to certain cases for the wdrale of the spectrum.
The observed major deviations from the theoretical premist where the regular structures
in the PSOS dominated, have been assigned to the non-gaaarre of the underlying inte-
grable system. In the extreme case~ 90° the wire-like dot represents a paradigm for the
transition to Wigner crystallization: the classical dynesncomprises the complete regime
from softly interacting to kicked oscillators. The levelaging shows two major beats i.e.
remarkable patterns, which do not occur for the non-intergcounterpart, indicating the
importance of the Coulomb scattering events in this regime.



Chapter 7

Two-electron anisotropic quantum dots
IN homogeneous magnetic field

7.1 Introduction

In this chapter, a detailed investigation of the combinddot$ due to the electronic in-
teraction, anisotropy and the magnetic field on two-electyoantum dots with harmonic
confinement will be performed. The electronic level struefun particular the low-lying
excitation spectrum, will be studied with varying field stg¢h and anisotropy by employ-
ing an “exact” numerical diagonalisation approach. In &ddito this, the magnetisation of
the dot will be derived for the complete deformation regiraeging from weak to strong
fields. The energetic spacing between the energy levelsnipamble to the energetic con-
tribution due to the spin Zeeman term and therefore bothscagout and with inclusion
of the spin Zeeman interaction will be considered. The laiteresponds to a GaAs semi-
conductor. The ground state exhibits parity oscillatiomsolv depend both on the magnetic
field strength as well as on the anisotropy. Therefore thepeslodthe dot can be mapped
on experimental measurements since these oscillatioresarly identified experimentally.
Finally, the classical dynamics of the interacting eleatravill be studied, exhibiting near
integrability for field strengths leading to raties : w, =1 : n.

The chapter is organised as follows. In Section 7.2, we peothe Hamiltonian of the
electronic motion and discuss its general symmetries. tti@e7.3, we introduce our basis
set and present the computational approach. Section 7tdinsrour results. In particular,
the low-lying spectrum in a magnetic field and the magneteaire investigated for the full
deformation regime from circularly symmetric to wireliketd. The results are discussed
also in the presence of the Zeeman splitting term. Moreoherdynamics for a specific de-
formation is studied with changing magnetic field and iséidko the single-particle picture.
Finally, in Section 7.5, we summarize the results of ouraese

75
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7.2 Hamiltonian and general symmetries

The conduction band electrons confined in a two-dimensemabtropic harmonic quantum
dot in a magnetic fiel® = (0,0, B), within the framework of the effective mass approxi-
mation, are described by the Hamiltonih= H¢ s + H, with

How = 7—(P + 2¢eA(R))? + mew? (cos’¢ X* + sin’¢ Y?) (7.1)
me
1 e m e?
= (P4 AN+ Ze? (cos?d 22 + sind y?) + ——— 7.2
H me(p+2 (1) + 7w (cos’d +Sm¢y)+4mo|r| (7.2)

Due to the harmonic confinement the center of mass (CM) amdnak motion separate.
For the vector potential we choose the symmetric gaAige = % (B x r). The constants
e, Me, €, W,, ¢ are the electron charge, effective mass, dielectric cahstiae characteristic
frequency and the anisotropy parameter, respectivelyll@mécapital letters correspond to
the relative and center of mass degrees of freedom, regglyctin the following we focus
on the non-trivial part,., describing the relative motion, for the reasons discusseldapter
6. Parity ¢ — —r) and spin are interrelated symmetries due to the Pauli siaiprinciple
and we encounter spin singlet eigenfunctions with evenapatmmetry¥(r) = VU(—r)
and spin triplet eigenfunctions with odd spatial symmdify) = —W(—r).

In order to simplify our Hamiltonian, we apply a canonicartsformation:z = [/,
y = Iy, p. = p,/l andp, = p, /I thereby scalingH, into a dimensionless one, via
H, = %H;. In the following we adopt the typical values for a GaAs dod &ne scal-
ing yields the effective Bohr radius= a}; = 9.8 nm, the effective Hartreé/a* = 11.8
meV and 1 effective unit (e.u.) of field strength correspotnds.925 Tesla. The artificial
(electrostatic) confinement has the characteristic frequéw, = 4.96 meV. This scaling
yields the following expression for the dimensionless Hamian of the relative motion (the
primes have been dropped for simplicity),

H — 8_2 8_2 E g 2 +1 22 + 2 2
T T Ta o 2 \Toy Yor) Taly THe)7
1 /B> )\ , 1

The two characteristic frequencies of the confinementuare= w, cos¢ andw, =
w, sing. For¢ = 45° the dot has a circular shape. With increasingdeforms to an elliptic
shape and approaches a wirelike dotdor 90° (w, — 0, w, — w,).

The spin of the two electrons gives an additional contrdiutio the energy, i.e., the
Zeeman term,
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Eg(B) = g*upBS, (7.4)

with g being the Bohr magneton ard = —0.44 the effective Landé factor for GaA%is
splits the threefold degeneracy of the spin triplet stateidathe energies of the spin singlet
states remain unchanged.

7.3 Computational Approach

To investigate the two-electron QD, we solve the correspan8chrodinger equation using
a full configuration interaction (CI) approach with the anrspic harmonic oscillator basis
set

@, = A(ng, ny) Hn, (V1 @) ny(\/_ yle —F PO ey (7.5)

leading to an algebraic eigenvalue problem. In Eq. (A8).,n,) is the normalization
constante, = Myw;/c, c3 = Mows/c, o = 2uMiwi Mows/c, ¢ = p> My Mowyws + 1, =
—2L/(mewop), A = [mewoL(2 + L*)]/[4(cos(2¢) — p)] , My o = m.p/(p — cos(2¢) F L?),
wip = (wo/V2)\/1+L2Fp, L = eB/mewo andp = /(1 + L?)% — sin2(2¢). All the
units are scaled appropriately. The argumentation for tiwce of these orbitals is the
following. The single-particle anisotropic harmonic distor in a magnetic field, described
by the Hamiltonian (7.3) without the Coulomb interactiomtecan be transformed unitarily
such that we arrive at a Hamiltonian for two independentliagors in their individual one-
dimensional harmonic potentials [140]:

H = p2+p2+1M“+1M“ (7.6)
oM, oM, Tt T oiheal '

with eigenvalues,,, ,, = (n1 + 3)hw; + (n2 + 1)hw, and eigenfunctions of the form,

\I/nlnz = an,ngef%ﬁfis v (A= F)zy
ni n2
X cri(n1, ng) Hyy —k(nx + B1y) H, (o + (2y) (7.7)
k=0 =0

The exponential part iv,,,,,, IS exactly contained in our basis set (see equations (7d) an
(7.7)). The analytical expressions for the coefficieni$n,, n2), a1, £, a2, f2 in equa-
tion (7.7) can be found in Ref. [140]. The Hermite polynomial,, (a;z + (1y) and
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H,, (asx + (oy) in equation (7.7) can be equally described by the Hermitgrohials of
our basis set in equation (7.5). The corresponding relasigiven by [141],

1 ni1—k

Tk ; Hnlfkfi(\/ialsti(\/iﬁly)

Hm*k<a1x + ﬁ1y> =

Therefore, in order to describe exactly the eigensiafg,, with our basis set, we need to
superimpose Hermite polynomials of equation (7.5) up toimakordern, = n, = n;+n..

The next step is the evaluation of the Hamiltonian matrixobging to equation (7.3).
For this purpose, we firstly find a Hamiltonian which can begdizalised exactly and then
subtract it from’H,. To proceed, we write the orbital®,,,,, = énwnyP whereP =
exp(i(A — 2)xy) is the phase anénzny are the eigenfunctions of the dimensionless scaled
Hamiltonian,

oo 18 18 1,, 1,
7 2022 20y ' 2 2

with eigenvalues,,,,, = (n, + 3)kci + (ny + 3)hcs. To implement the phase we proceed
as follows,

~ = ~ P ~ =
HOanwny - gnwnyq)nxny = 7D,]_{O,P P(I)nxny - gnxnquDnzny =

HO(I)nxny - 5nxny (I)nxny

whereH, = PH P! is diagonal in the basi$,,,,,. For our QD we have to consider the
HamiltonianH, = 2H,, with eigenvaluesy,,,,, = 2¢,,,,, Which takes the explicit form,

Hi=  —Z-Z+2(0-9) (+2+y2)
(=9 ]+ [0 -2+ ]

The dimensionless Hamiltonian of the relative motigncan be summarized as,
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Figure 7.1 Schematic diagram of the energy of the ground and first sexeited states folB = 0
with increasingp. The vertical line indicates the angle for which the systsiimtegrable.
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The eigenvalues,,,, will be contained in the diagonal elements of the Hamiltamzatrix.
The matrix elements due to the contribution of the first faunts in equation (7.8) can be
calculated in a straightforward analytical form. The magiements due to the Coulomb
repulsion have to be evaluated numerically with the mettredgnted in appendix A.

7.4 Results and Discussion

7.4.1 No magnetic field

The starting point of our analysis is the two-electron amemc quantum dot without mag-
netic field, which has been studied in detail in chapter 6ufdg .1 presents the low-lying
spectrum ofH,.(B = 0) as function of the anisotropy. The energy eigenstates follow (with
increasing energy) the symmetriest;(S) = (0; 0),(£1; 1), (+2; 0),(0; 0),(£3; 1),(+1; 1),. . .,
wherem andS are the magnetic quantum number and the total spin, resphctiThe in-
troduction of the anisotropy splits the degeneracies aadsléo spin singlet - triplet (ST)
crossings. A, : w, = 2 : 1, H,(B = 0) becomes integrable and due to the symmetry
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of its constant of motior\, the eigenstates of the Hamiltonian are pairwise degemernéh
identical z-parity. For¢ — 90° the eigenstates converge to energetically well-separated
pairs of spin singlet and and spin triplet states.

7.4.2 Spectrum and magnetisation fog* = 0 in a magnetic field

Before investigating the general situation of our intarag@anisotropic QD in a magnetic
field let us briefly address, the effect of the magnetic fielthminteracting isotropic case,
which possesses particular analytical solutions [118].128 is a constant of motion and
the system is integrable. As stated in the introductiorrgasing the magnetic field strength
leads to a ground state for the system that changes its spimsyry, i.e., the well-known
ground state ST oscillations [81]. The symmetries of thaigdbstate with increasing mag-
netic field strength are as followsn{ S) = (0; 0),(—1; 1),(—2; 0),(—3; 1),. . .. With increasing
field strength, the energy spacing between two neighbolevelsAFE; = E; ., — E; (i de-
termines the degree of excitation and takes even values, 2, 4 within our study) oscillates
between zero (at the ST crossing of the states with enefgiesd F;. ;) and a maximum
amplitudeAFE,,,... For strong external fieldAE,,,. reduces and the energy curves of the
ground and first excited state have a slope approaching the sanstant value. A quan-
tity to measure this event is the magnetisation, which, &b remperature, is defined as
M(B) = —(%), wherekE) is the energy of the ground state. Hence, the ST crossings are
apparent as steps in the magnetisation curve whose sizeadesrfor strong magnetic fields
(see figure 3 for = 45°).

2

(a)
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0.5

(AS 50 55 60 65 70 75 80 85 915 50 55 60 65 70 75 80 85 915 50 55 60 65 70 75 80 85
 (dogrees) ¢ (degrees) ¢ (degrees)
Figure 7.2 Domains of spin multiplicity in the B, ¢) plane for (a) the ground state, (b) the second
excited state and (c) the fourth excited state. BrightnediEates the energy differendeEy, AE,
and AFEy, respectively, on a logarithmic scale. Dark and bright aagicorrespond to large and
small spacings, respectively. The bright curves form theléxs between the different ST-symmetry
domains.

Introduction of the anisotropy breaks the rotational syrmnef the system and a large
number of avoided crossings between the energy curvestekgtassessing identical sym-
metry occurs. FoB = 0 the level spacing\ E, will decrease with increasing deformation
(see Figure 7.1). Figure 7.2(a) shows the spin multiplisity= 0, 1 of the ground state in
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the (B, ¢) plane. Forp = 45° we observe the ST ground state oscillations, discussedeabov
With increasing deformation we observe a robustness of tsieST crossing, i.e., the curve
B(¢) where the first ST crossing occurs is approximately indepenaff¢. For higher mag-
netic fields the domains corresponding to different spintiplidity widen smoothly with
increasing deformation and the corresponding cuies) show a significant positive slope
fl—i. As a result the fifth domaity = 0 is suppressed fop > 54° in the range of the
calculated magnetic field strengths.

Figure 7.2(b) shows the spin multiplicity domains for them®d excited state,) in the
(B, ¢) plane. ForB = 0 this state is a spin triplet state andugt: w, = 2 : 1 it becomes
degenerate with the spin singlet state corresponding ternleegy F; (see Figure 7.1 and
discussion in subsection 4.1 for further details). Fordargthe state with energy, is a
spin singlet. The border curve corresponding to the first @Esover for relatively weak
magnetic fields stops at, : w, = 2 : 1 at B = 0. The following border curves for stronger
fields show a negative slope and the different symmetry dasraightly widen for stronger
anisotropies, : w, > 2 : 1.

The fourth excited statef{;) shows an even stronger dependence of its spin multiplicity
islands onB and¢. Figure 7.2(c) shows the spin symmetry domains for the foexcited
state. Initially it is a spin singlet and aftet, : w, = 2 : 1 it becomes a spin triplet due
to a ST crossing as expected. For stronger anisotropies @adodthe higher number of
excited states involved in the spectrumgat: 75° an ‘accidental’ crossing occurs and the
fourth excited state restores its initial parity. The fireubhdary curveB(¢) is suppressed
at¢ ~ 63.4° (wy : w, = 2 : 1) and the second one at~ 75° as a result of the above
discussed behaviour. For higher field strengths, the qooreing spin multiplicity domains
and border curves show an even stronger dependengetioain the one observed for the
second excited state.

Another complementary measure in order to study the sepangiications of the mag-
netic field and deformation on the ground state is the magpgigin\/. It has been shown
that for three and four electron® depends on both anisotropy and number of electrons
[111]. Figure 7.3 shows the magnetisation for various aragies corresponding to the full
deformation regime. Fap = 45° the steps are more pronounced than for any anisotropy.
With increasingy the overall behaviour oA £y (B) leads to a decrease of the steps in the
magnetisation signal, despite the fact that the ST oscoillatare present according to Figure
7.2(a). Hence, ap = 54° the fourth step is eliminated as predicted by figure 7.2(a) bu
also the third step is no more visible on the scale of figurer3fg; 54°, the second step
disappears fop = 70° and the first one disappears for=> 81° resulting in a completely
smooth behaviour fop = 85°.
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Figure 7.3 The magnetisatio/(B) for g* = 0. The various panels correspond to anisotropies
covering the full deformation regime.

7.4.3 Spectrum and magnetisation foy* = —0.44

So far, in our discussion, we have neglected the contribudfdhe Zeeman term (given by
Equation (7.4)) in the calculation of the spectrum. The ZaetermFEs splits the threefold
degeneracy of the spin triplet states while it leaves the spiglet states unchanged. This
additional splitting in the energy of the spin triplet seateduces the amplitud®F,,,... in

the oscillations of the level spaciny £, and suppresses the ST oscillations in favour of
the spin triplet symmetry. Figure 7.4(a) shows the spin iplidity of the ground state in
the presence of the Zeeman term. Boe 45°, despite the fact that the first ST oscillation
survives preserving the first = 0 domain, the second spin singlet domain is clearly reduced
in comparison with figure 7.2(a) whereas the thitd= 0 domain in figure 7.2(a) vanishes
completely. The introduction of a deformation results ineéimination of the second spin
singlet island for angles > 48°. The firstS = 0 domain is preserved up to~ 65° while

for stronger anisotropiess dominates due the reduced level spacifj,(B = 0) and the

S = 0 domain smoothly decreases in size with further increasefgrchatione.

Figure 7.4(b) and 7.4(c) show the ST oscillations for theoedc(F;) and fourth ¢,)
excited state in theK,¢) plane respectively. It is clear that for lower fields, whéfg is
negligible due to the small effective Landé factor of Gathg, ST oscillations as described
in Figure 7.2(b) and 7.2(c) persist with varyigg For stronger external field (note that
figures 7.4(b) and 7.4(c) cover only the weak to intermediatd regimeB < 0.9 whereas
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Figure 7.4: Domains of spin multiplicity in the B, ¢) plane for (a) the ground state, (b) the second
excited state and (c) the fourth excited state in the presefspin Zeeman splitting. Brightness

indicates the energy differencd FEy, AE> and AFE,, respectively, on a logarithmic scale. Dark

and bright regions correspond to large and small spaciegpectively. The bright curves form the

borders between the different ST-symmetry domains.

figures 7.2 cover the rangB < 2.0) the picture is rather complicated. This owes to the
competition of the existing energy scales belongindstoand the level spacing as well as
the large number of excited states involved in the formatibthe spectrum. For a better
illustration of our results, in figure 7.5 we present the ligimg spectrum for two different
anisotropies corresponding to the intermediatg:(w, = 2 : 1) and the wirelike ¢ = 81°)
regime. In both pictures we observe the suppression of timesgpylet states in the ground
state as reproduced in figure 7.4(a) (note that all spinipieltcomponents are shown in
figure 7.5). For higher excited states, in the regime of mestiate anisotropy we observe
avoided crossings and the ST oscillations are preservatiddow field regime while in the
wirelike case the pairing of the states leads to a rapid g3pon of the spin singlet states in
this extreme limit.

In order to complete our analysis fot = —0.44, we study the behaviour of the mag-
netisation. Figure 7.6 presents the magnetisation foouaranisotropies. Faf = 45° we
observe the first step remaining almost intact in the presend’s reflecting the robust-
ness of the firs& = 0 domain for the ground state energy. The next two steps ateeed
in height and their location in terms of field strengths israfed significantly compared to
g* = 0, as expected from the discussion of figure 7.4(a). #qr 48° the second and third
steps turn into a hill, due to the suppression of the spinsimgjand, which gradually disap-
pears with increasing anisotropy. The first step presetsgm®sition up tap ~ 65° while for
stronger deformations it shifts towards smaller field gitba due to the competition diy
andAFEy(B = 0) in the wirelike regime. Fop = 85° the magnetisation shows a completely
smooth diamagnetic behaviour like the one §or= 0.
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Figure 7.5 Low-lying spectrum for (a), : w, = 2 : 1 and (b)¢ = 81°. Full curves correspond to
spin singlet symmetry while the dashed ones correspondndrilet symmetry withS, = +1, 0.

7.4.4 Dynamics

Before we investigate the dynamics of our interacting doukaddress some features of
the single-particle system, i.e. the Hamiltonian (7.6) eckhdescribes the (diagonalised)
anisotropic charged oscillator in a magnetic field. Its pigdues are”,,, ,,, = (n;+ %)hwl +
(ng—i—%)th. Figure 7.7(a) illustrates the single-particle spectrath@anisotropic harmonic
configurationw, : w, = 2 : 1 with varying field strength. FoB = 0 we observe the energy
gaps due to thé% + 1]-fo|d degeneracy (the brackefisindicate the integer part of the
enclosed number) of the energy levels whate= n, + 2n, = 0,1,2,.... For finite field
strengths the degeneracies are lifted. For rational frequeatiosw, : ws = 1 : n, where

n > 3isinteger, the energy levels becm{rﬂ%‘1 + 1}-fo|d degenerate wher®¥; = ni+nny =
0,1,2,.... Hence, by varying the magnetic field we can tune the degeiesraf the single-
particle spectrum as it has already been noted in refereidtd.[ The values of the field
strengths for which we encounter : wy = 1 : n are given by the expression,

2+1
B:wo\/sm2¢> (n + )—1
2n

Table 7.1 contains the values of the field strength corredipgnton = 3 — 10. With
increasingn the level spacing between two neighbouring degeneratefoldd®ireduces. In
the high field limit the energy levels corresponding to statéh n, = 0 cluster to form the
lowest Landau level, the energies correspondingpte- 1 the first excited Landau level etc
(see figure 7.7(a) for large values B). Another property of the single-particle degenerate
manifolds is that those corresponding to eddonsist exclusively of states that have either
even or odd parity, those corresponding to exaonsist of both even and odd parity.

Let us now discuss the dynamics of the interacting systetawailg the same path as
before when studying the single-particle spectrum, itartiag withw, : w, = 2 : 1 and
increasingB. The parameter characterising the dynamics is the fractioegular phase
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Figure 7.6 The magnetizatiod/ (B) for g* = —0.44. The various panels correspond to anisotropies
covering the full deformation regime.

space defined as = (Number of regular trajectories)/(Total number of tragects). The
criterion whether a trajectory is regular or chaotic is, oticse, the finiteness of the Lya-
pounov exponent. Figure 7.7(b) shoysas a function of the magnetic field. FBr= 0 the
system, as discussed in subsection 4.1, is integrable anefdine f = 1. Introduction of
the external field serves as a rapid path to chaos. Figure)&f@¢ws a Poincaré Surface of
Section (PSOS) foB = 0.05. It can be seen that even for such a weak field, the regularity i
dramatically suppressed and the phase space is dominatdthby. Further increasing the
field strength we are led to an impressive peakff@at B = 0.242487. This field strength
corresponds to the frequency ratip : w, = 1 : 3. The next major peak of (B) in figure
7.7(b) occurs alv; : wy = 1 : 4 and consequently at; : w, = 1 : nforn > 5. We
observe, that the peaks HfB) corresponding to odd are in general more pronounced than
those corresponding to even However, both cases lead to a similar level clusteringHer t
guantised system. Although we can not provide a thorougltaeagion for this, we remark
that the states for a given cluster of levels corresponding frequency ratio with odd
possess the same parity (i.e., either spin - singlet or dpiplet), while the states of a given
cluster of levels corresponding to evennvolve both parities (i.e., spin - singlet and spin -
triplet). From this behaviour of we conclude that interaction effects of the QD usually de-
stroy the regularity of classical phase space, but at ratimaquency ratios); : w, =1:n
regularity still plays an important role and dominates thage space (see also figure 7.7(d)
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Table 7.1 Field strengths corresponding to the frequency ratipsws = 1 : n (fiwy = 4.96 meV,
Wy Wy =2:1)

Magnetic field (e.u.)
0.242487
0.351397
0.436477
0.508645
0.572364

0.63
0.682993
0.732295

© 0o ~NO U M WS

[EY
o

for w; : wy = 1 : 3). Of course, this behaviour is only well-pronounced for tout large
values ofn and the overall tendency gf with increasing field strength is to increase, fi-
nally leading to a dominant regular phase space for a veoyngtiield (see figure 7.7(b) and
7.7(e) forB = 2.0). In this limit the magnetic interaction dominates and thesatropic
confinement due to the geometry of the dot is of perturbatneegacter, i.e., we encounter an
approximate rotational symmetry and we are close to intelijsa For B = 0 and changing
¢ the property of dominant regular classical phase spacdiasta, : w, = 1 : n reflects
itself in the quantum behaviour of the dot as follows. Thergndevel degeneracies at the
ratiosw, : w, = 1 : n for the non-interacting system are rather robust with ressgeinter-
action effects in the sense that energy level clusteringrscat these ratios (for not too large
n) if the interaction between the electrons is included [1@B]. For finite magnetic field
strengths the above-observed enhanced fraction of rétyutaclassical phase space for the
ratiosw, : wy = 1 : n of the interacting system reflects itself also in the quanspectrum,
i.e., we encounter level clustering for higher excitedestat

7.5 Conclusions

To conclude, we performed a detailed investigation of tiieces of electronic interaction,
anisotropy and magnetic field interaction in the electrastigcture and dynamical properties
of two-electron QDs with harmonic confinement. We have dated the low-lying energy
spectrum of the two-electron QD in a magnetic field for thé deformation regime from
circular to wirelike dots. The calculation reveals the grdstate ST oscillations f@r = 45°
and their weak dependence on the anisotropy. Despite thistoess of the ground state ST
oscillations the magnetisation is much more sensitive éahisotropy in the sense that
it smooths, i.e., it looses gradually its step-like stroetwith increasingp. Furthermore,
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Figure 7.7: (a) Single-particle spectrum. Full curves correspondatestof even parity and dashed
curves to states of odd parity, (b) fractigrof regular phase spase as a function of the magnetic field
for the interacting dot and (c) - (e) Poincaré Surfaces atie (x,p, for y = 0 and E = 55 meV)

for various magnetic fields.(, : w, = 2 : 1, hwy = 4.96meV for all subfigures).

we study the excited states and reveal their ST oscillatrdmish depend not only on the
magnetic field but also significantly on the anisotropy. Ifingude the Zeeman splittings
contribution to the energy, the picture for the ground s&ftescillations changes as the spin
singlet states are suppressed in favour of the spin triples.oThe competition of the energy
scales off's andA £ already forp = 48° destroys the second spin singlet island yielding a
bump in the magnetisation whereas the first spin singlet doimaliminated with increasing
¢. For higher excited states and intermediate field strentiga<$ST oscillations persist as
shown for example for the second and fourth excited statewll{;, we have investigated
the dynamics of the interacting system for the specific defdionw, : w, = 2 : 1. Despite
the interaction, we find a phase space that is dominated hyamty for rational ratios
w1 @ wy = 1 : n. For stronger field strengths the Hamiltonian acquires gragimate
rotational symmetry and approaches integrability.






Chapter 8

Conclusions

We hope that the completion of this thesis leaves the readbraneeling of satisfaction
due to the wide range of phenomena that have been reporteellesswvith the question of
what is going to happen next. With respect to the first commeniould like to remind the
reader with the main stations of our journey. In the first tlWwamters, an introduction to the
theory of linear quantum transport has been given and tredlekalgorithm which has been
developed for the necessary computations has been préseie believe that these two
chapters supply a short but rather deep and practical axeiithis field. Many theoretical
details which are beyond the scope of the present thesisdearecommented with the nec-
essary references in which they have been extensivelysathlYDur journey continued with
investigations of quantum magnetotransport through qumardot arrays. These systems
have proven to show sound fingerprints of their electroniodbstructure in their transport
properties as well as substantial current flows for moderetgnetic fields. The latter have
been “optimized” with respect to the semiconductor makeFarmi energy, geometry and
temperature. We have shown therefore a nice paradigm okatr@hic system which could
serve as a potential application in nanoelectronics stlaged on quantum features. In the
second part of the thesis, we have discussed systems ofugualats possessing tunneling
barriers, which are high and thick enough such that thedersgscan be considered as prac-
tically isolated. In such systems the transport propedresdefined from their electronic
structure since interactions with the continuum bath duthéoleads are negligible. We
have investigated two electrons confined in a quantum da.résponse of their electronic
spectrum with respect to an anisotropy in the artificial gmrhient potential as well as to
an applied magnetic field has been discussed in detail. We difered a global review of
properties which extends from the quantum up to a classaiat pf view. The implementa-
tion of an efficient method for the evaluation of the two-&len integrals has offered access
to a very large part of the excitation spectrum thereby algwis to analyse them statisti-
cally. In addition to this we have discovered an a new twoeatisional integrable system and
we have analytically derived the expression for its cortstdmotion. The application of
the magnetic field causes an interplay of spin singlet - sypfet (ST) symmetry of states,
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the evolution of which has been investigated as a functicanigotropy for the low-lying
spectrum. These ST oscillations which can be identified ex@atally, could lead to a
prediction of the type of the confinement to few-electronrquen dot experiments.

Regarding the second comment in the introductory senteinoeraconclusions this has
to do more with the expectations that have been cultivateditthout our journey. To stress
the situation further with respect to the field of quantumsgort we will borrow a comment
from the epilogue of the book of S. Datta [2]. This commeneérgfto the present status of
knowledge as only the “tip of the iceberg”, thereby implythgt there is still a lot of research
to be performed in order to obtain a more global view. This megire the development of
novel theoretical approaches that take into account eleictcorrelations inside the scatter-
ing regions as well as inside the leads. Effects due to lgpgéenl source-drain voltage or
electron-phonon interactions should equally be takenactmunt. During this journey, the
available computational resources and numerical teclesighould be rather flexible in or-
der to adapt to the requested numerical problem. Architestof parallel processors should
play in this sense an important role for the successful aficiezit implementation of the
computations. In any case, we will agree that the researdfsrfield is expected to be at
least fascinating...



Appendix A

Efficient computation of the
electron-electron integrals

A.1 Introduction

In this appendix, we are going to present the various numleechniques that we have used
in order to calculate the electron-electron integrals. $tating point in our evaluation is
the Coulomb integral for our two-dimensional quantum dotolthakes the general form,

Am m2,n1,n
| q>n1,n2 >: e (Al)

Im1,m2,n1,n2 =< (I)ml,mz | W \/7_1'

+oo  Hoo
e ¢l z2 763y2

x / dy / o, (V5 1) Ho 5 ) o (7 ) (65 ) e

-0 —00

where the normalization constant,

v/ C1C3

7T2%(m1+m2+n1n2) mq !mg !n1 'nz'

Amhmz,m,m =

Our scope is to provide a rapid and accurate calculationeo€ulomb matrix elements
for large values of the indeces, n. The methods are divided in two categories: (i) analyt-
ical attempts using analytical expressions and/or emptpyeordering techniques and (ii)
numerical technigues. The latter have provided an efficeatdurate and rapid evaluation of
the electron - electron integrals. The results of the engdayethods are presented sepa-
rately in the according sections. At the end we discuss arviewe of the employed methods
in terms of the stability of our results.
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92 A Efficient computation of the electron-electron integrals

A.2 Analytical expansion & reordering techniques

The corresponding integrals of eq. A.1 is possible to beuatatl analytically by using the
properties of the Hermite polynomials [143] and standatelgration tables [141]. The ana-
Iytical result yields a fourfold series which can be summsediin equation A.2,

k1+k2+11+l2

Im17m27n17n2 = m1 m2,n1,n2 Z Z Z Z kllkglll'lz X (A2)

k1=0ko=011=012=0

omi1+ma+ni+na —2(k1+ka+li+12)

"l — 2k0)(ma — 2ka)(ny — 2001 (19 — 215)!

Xgl(mla mo, M1, No, kl) k:27 ll) l2)

where,

/ - \/C1 \/—
Aml,mz,m,nz - 1 ) ml!mg!nlan!
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Cligi, 1 +1 as+1 ar+ay+11
gl(m17m27n17n27k17k2ullal2> - (_1) 1F( L )F< 2 )B( ! 2 7_) X
cs 2 2 2 2
ap+1 ay+ax+1 a+as i
F : : 11— 2
2 1( 9 ) 9 ) 9 + ) 03)

The constants; = my + ny — 2(ky + 11), aa = ma + ny — 2(ky + l3), B(M,N) =
I'(M)T'(N)/T'(M + N) is the Beta-function angF] is the hypergeometric function.

Despite the closed form of the analytical expression of egna\.2 its evaluation turns
out to be numerically unstable, due to the fact that the tieguseries possesses alternating
signs, which leads to the subtraction of terms of almost legpsolute values. This problem
becomes particularly hard to solve for large values of thantium numbers. Table A.1
contains the values computed from the analytical exprassiequation A.2 compared with
the exact values. The exact values of the computed intelyaais been obtained by using
the mathematical software Mathematica which offers thalflity to set the precision of
numerical evaluations to a large number of digits such thsiiabilities due to the above
mentioned problem do not occur. The integrals have been etadgor a magnetic field of
1.0 in effective units and anisotropy = 60°. The values of the coefficients andc; that
correspond to these specific valuesibaind¢ can be obtained by the expressions found in
chapter 6.

Already for moderate value¥ > 10 a reliable evaluation of the analytical expressions
for the electron-electron integrals fails to converge wsrfor large values larger than >
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Table A.1: Comparison of the computed integrals between the anadlhdiqaansion and the exact
results for various basis functions; = ms = ny = ny = N. The fourth column contains the
absolute erroe. The integrals have been evaluated Boe= 1.0 and¢ = 60°. All units are scaled.

N Exactvalue__ __ Analytical expansion . __ Ae__
0 9.296234032641283e — 01 9.296234032642079¢e — 01 8.0e — 14
1 3.461664587340224e — 01 3.461664587340197e — 01 2.7e — 15
2 3.390906375609172e — 01 3.390906375609423e — 01 2.5e — 14
3 2.421233479478790e — 01 2.421233479478727e — 01 6.3e — 15
4 2.406804934369633e — 01 2.406804934369568e — 01 6.5e — 15
5 1.966846436200880e — 01 1.966846436202302¢ — 01 1.4e — 13
6 1.961614412833192¢ — 01 1.961614412833726e — 01 5.3e — 14
7 1.698500416255150e — 01 1.698500416124770e — 01 1.3e — 11
8 1.696039606554327e — 01 1.696039606027132e — 01 5.3e — 11
9 1.516451318474188e — 01 1.516451320291830e — 01 1.8¢ — 10
10 1.515112751426992¢ — 01 1.515112738295054e — 01 1.3e — 09
11 1.382608450645461e — 01 1.382607963909410e — 01 4.9e — 08
12 1.381810564985637e — 01 1.381809618209626e — 01 9.5e — 08
13 1.278888321424660e — 01 1.278863885350074e — 01 2.4e — 06
14 1.278382503991035¢ — 01 1.278247435483298e — 01 1.3e — 05
15 1.195465733111034e — 01 1.193752973772361e — 01 1.7¢ — 04
16 1.195130988405291e — 01 1.972873651086735e — 01 2.2e — 03
17 1.126484380737557e — 01 1.119892462372837e — 01 7.2e — 03
18 1.126256047285915e — 01 2.266200485835555¢ — 01 1.1e = 01
19 1.068208788952894e — 01  —5.039664623646392e — 01  6.1e — 01
20 1.068049777966132¢ — 01 ~ —2.772799341045502¢ + 00  2.9e 4 00
21 1.018129401242934e — 01  —3.849233597671662¢ + 01  3.8e + 01
22 1.018017228534539%9¢ — 01  —1.211138629801601e + 03  1.2e 4 03
23 9.744896431041962¢ — 02 2.491326570513548¢ 4 03 2.5e + 03
24 9.744100585758125e — 02 6.465158716349043¢ 4 04 6.5¢ + 04

15 the computed integrals diverge.

To remedy the instability we applied several technique$ aag reordering via com-
plex branch recursion relations following the McMurchieanldson scheme. This scheme is
mostly used in the calculation of molecular integrals (&4 [144]] and references therein).
These relations follow if we use the generating formula fier Hermite polynomials
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0 2
H —A) = (t*At)2 n —(t—A¢)
n(t t) € <8At) €

and express the electron-electron integral in the form,

_ mi,ma,n1,n2 pkik
Im17m27n1,n2 - Am1,m2,n17n2D R 0,0 0 0 (A3)

where the operator,

0 0 0 0
Dm17m27n17n2 — mi m2 ni n2
(8At> (8As> (8Bt> (883)
and the integral,
400 +4oo
t2+s
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Hence, by evaluating a set of initial |ntegr£§1’k2 where in practice the indeceg, &, [
form all permutations between the valleand1 one is possible to construct all higher order
integralsl,,,, m,.n,.n, DY USINg recursive formulas of the operafot'-2:"1."2, At this point
we note that the set of initial integralg’’, can be expressed with respectif;z, by the
general expressioR; 13 = 27tk R SRR These derivations occur in a straight-
forward manner by the form of the integrals. This approasisestially reestablished the
instability, which now appears inside the recursive relai thereby maintaining the prob-
lem instead of canceling it. Table A.2 shows the computegbirals by using the presented
recursive scheme and the exact values of the integralB fer1.0 and¢ = 60°.

The results in table show that our computed integrals hédoeihefitted from the recursive

formulas and the efficiency in terms of converged integralsdt improve.

A.3 Numerical integration

In this section we introduce a computational method thatised on numerical integration
of the electron-electron integral. This method allowedtfa efficient and accurate imple-
mentation of integrals even for several hundreds of the fgmamumbers. Starting point
in our method is the electron-electron integfal ., 1, .n, iIN Which the Coulomb repulsion
term being replaced by an auxiliary Gaussian integral, theadled Singer transform.
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95

Table A.2. Comparison of the computed integrals between the recuidisilurchie-Davidson
scheme and the exact results for various basis functions= ms = n; = ny = N. The fourth
column contains the absolute ertde. The integrals have been evaluated e 1.0 and¢ = 60°.

All units are scaled.

N Exact value Recursive scheme . __ Ae__
0 9.296234032641283¢e — 01 9.296234032641278e — 01 4.4e — 16
1 3.461664587340224¢e — 01 3.461664587340228e — 01 3.9e — 16
2 3.390906375609172¢ — 01 3.390906375609170e — 01 1.6e — 16
3 2.421233479478790e — 01 2.421233479478763e — 01 2.7e — 15
4 2.406804934369633¢ — 01 2.406804934369557¢ — 01 7.6e — 15
5 1.966846436200880e — 01 1.966846436200446e — 01 4.3e — 14
6 1.961614412833192¢ — 01 1.961614412831206e — 01 2.0e — 13
7 1.698500416255150e — 01 1.698500416249788e — 01 5.4e — 13
8 1.696039606554327¢ — 01 1.696039606548629¢ — 01 5.7e — 13
9 1.516451318474188e — 01 1.516451318663649¢ — 01 1.9e — 11
10 1.515112751426992¢ — 01 1.515112755152837e¢ — 01 3.7e — 10
11 1.382608450645461e — 01 1.382608482167373e — 01 3.2e — 09
12 1.381810564985637¢ — 01 1.381810716735176e — 01 1.5e — 08
13 1.278888321424660e — 01 1.278888668276617¢ — 01 3.9e — 08
14 1.278382503991035¢ — 01 1.278378324125402¢ — 01 4.2e — 07
15 1.195465733111034e — 01 1.195361544382266¢e — 01 1.0e — 05
16 1.195130988405291e — 01 1.193803186777891e — 01 1.3e — 04
17 1.126484380737557¢ — 01 1.122378654349025¢ — 01 9.7¢ — 03
18 1.126256047285915¢ — 01 1.097582838747395¢ — 01 1.6e — 02
19 1.068208788952894¢ — 01 1.619270614409117¢ — 01 5.0e — 02
20 1.068049777966132¢ — 01 1.237928236906391e + 00 1.1e + 00
21 1.018129401242934¢ — 01 1.316256588134142¢ + 01 1.3e+ 01
22 1.018017228534539e — 01 1.131245739071058¢ + 02 1.1e 4+ 02
23 9.744896431041962¢ — 02 7.674634794295492¢ + 02 7.7e + 02
24 9.744100585758125e — 02 3.889278613953067¢e + 03 3.9e 4+ 03
[ — Am17m27n17n2

+oo 400 +4o0

) /dy/dx/d“Hml(\/a ) Hona(v/5 y) Hyy (V1 y) Hog (/05 w)e” (rher (ot

-0 -0 —0

(A.4)



96 A Efficient computation of the electron-electron integrals

By changing variables,= v/c; + 22 ands = \/c3 + y? we can Writel,,,, ., n, n, iN the
form,

+o0o
A 1 1
Lot ooy = — 202 [ g, Ii(w) I (u A.5
1,M2,11,n2 \/— \/cl+u2\/03+u2 t( ) ( ) ( )

—00

where the integral$, (u), with z = ¢, s are,

_+OO \/_Z \/_Z 2
o e el

— o0

The set of indeceém,n) = (my,ny) for z = t and (m,n) = (mg,ny) for z = s.
The advantage of writing the integralg, ., », », iN this form is that integralg,(«) can be
evaluated numerically exactly as a function of the variahley employing a Gauss-Hermite
quadrature. In this respect,

mi+ny 1
Z+ o Vet Vari g Vaz; VA,
m( vep + u? Ve + u?

wherez; are thej-th zeros of the Hermite polynomial$,(x) andw; = % where
1
the indexp = ™™ + 1 + 1. In order to check the Gauss-Hermite quadrature one can use

an analytical formula for the evaluation of the integralg:),

min{m,n} 9
m n u m+n
L= Y 20 (1) ) a0 (A6)
k=0

c, + u?

The constants, = ¢; for z = t andc, = ¢3 for z = s. A natural question that arises
is why we prefer the Gauss-Hermite integration formulagadt of the analytical expan-
sion. The main reason for that is that the sum in eq. A.6 cgasevery slowly. A similar
disadvantage with respect to efficiency has also been meein[R45]. So far we have
transformed our electron-electron integrals ihdaintegration with respect to the auxiliary
variableu and have kept additionally our calculation exact. In oraeptoceed with the
integration left we employ a Gauss-Kronrod quadrature Jivtich is a standard numrical
guadrature technique used very often by mathematicakidzaln table A.3 we present the
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results of our numerical technique in comparison with thecéxesults. We observe that the
computed values converge to the exact ones even for high Biefenite polynomials. We
remark that the proposed method is particularly efficiet @m be therefore employed for
the online calculation of the Coulomb matrix elements.

Table A.3: Comparison of the computed integrals between the numentagration approach and
the exact results for various basis functiongs = ms = n; = ny = N. The fourth column contains
the absolute errofAc|. The integrals have been evaluated Br= 1.0 and¢ = 60°. All units are

scaled.

N Exactvalue____ _ Numerical integration.  _ |Ag| _
0 9.296234032641283e — 01 9.296234032641276e — 01 6.6e — 16
1 3.461664587340224e — 01 3.461664587340228e — 01 3.9e — 16
2 3.390906375609172e — 01 3.390906375609178e — 01 6.1e — 16
3 2.421233479478790e — 01 2.421233479478788¢e — 01 1.9e — 16
4 2.406804934369633e — 01 2.406804934369317e¢ — 01 3.2e — 14
5 1.966846436200880e — 01 1.966846436200863e — 01 1.7¢ — 15
6 1.961614412833192¢e — 01 1.961614412833195¢e — 01 3.1e — 16
7 1.698500416255150e — 01 1.698500416255159¢ — 01 8.9e — 16
8 1.696039606554327e — 01 1.696039606554364e — 01 3.7e — 15
9 1.516451318474188e — 01 1.516451318474189¢ — 01 1.1e — 16
10 1.515112751426992¢ — 01 1.515112751426992¢e — 01 0.0

11 1.382608450645461e — 01 1.382608450645463e — 01 1.9e¢ — 16
12 1.381810564985637e — 01 1.381810564985648e — 01 1.1e — 15
13 1.278888321424660e — 01 1.278888321424663e — 01 3.1e — 16
14 1.278382503991035¢ — 01 1.278382503991038e — 01 3.1e — 16
15 1.195465733111034e — 01 1.195465733111046e — 01 1.2e — 15
16 1.195130988405291e — 01 1.195130988405286e — 01 5.0e — 16
17 1.126484380737557e — 01 1.126484380737580e — 01 2.3e — 15
18 1.126256047285915e — 01 1.126256047285920e — 01 5.0e — 16
19 1.068208788952894e — 01 1.068208788952800e — 01 9.4e — 15
20 1.068049777966132e — 01 1.068049777966136e — 01 4.0e — 16
21 1.018129401242934e — 01 1.018129401242923e — 01 1.1e — 15
22 1.018017228534539% — 01 1.018017228534560e — 01 2.1e =15
23 9.744896431041962e — 02 9.744896431042029¢ — 02 6.7e — 15
24 9.744100585758125e — 02 9.744100585758363¢ — 02 24e —14

In figure A.1 we plot the logarithm of the absolute error as werease the order of

the basis functions’ polynomials for the several technggue presented throughout the ap-
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Figure A.1. Logarithmic dependence of the absolute error for the aicalyéxpansion, the recursive
McMurchie-Davidson scheme and the numerical integratidth imcreasing the order of the basis
functions’ polynomials. A linear regression model has bapplied to describe all approaches with
dotted, dashed and solid lines respectively.

pendix. The graph shows an exponential increase of thebitistdor the analytical expan-
sion which hardly improves when employing recursive teghas, thereby maintaining the
exponential trend. By employing the numerical quadratechniques, the absolute error
oscillates around a very high precision.
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Pages 1-5. (2004)

e P.S. [ROUVELIS, P. SSHMELCHER AND F. K. DiIAKkONOS: Effects of anisotropy
and magnetic fields on two-electron parabolic quantum disrnal of Physics: Con-
densed Matter, Volume 16, Pages 3633-3646. (2004)

e P.S. DROUVELIS, P. SSHMELCHER AND P. BASTIAN: Parallel implementation of
the recursive Green’s function methodournal of Computational Physics, Volume
215, Pages 741-756. (2006)

e D. BUCHHOLZ, P.S. DROUVELIS AND P. SCHMELCHER: Single-electron quantum
dot in a spatially periodic magnetic fieldPhysical Review B, Volume 73, Article
235346, Pages 1-16. (2006)

e P.S. ROUVELIS, G. FAGAS, AND P. SCHMELCHER: Magnetically controlled cur-
rent flow in coupled-dot arrays.
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C.2 Contributions to conferences

e Two-electron anisotropic quantum doRIN AND CHARGE TRANSPORT INNANOS-
TRUCTURES September 1-5, Braga, Portugal. 2003

e Two-electron anisotropic quantum do%16. WE HERAEUS SEMINAR: CORRELA-
TION, DECOHERENCE ANDSPIN EFFECTS INSIMPLE AND COMPLEX QUANTUM
DoT SYsSTEMS, October 23 - 25, Physikzentrum Bad Honnef, Germany. 2003

e Two-electron anisotropic quantum do&9. ANNUAL MEETING OF THEDEUTSCHE
PHYSIKALISCHE GESELLSCHAFT(DPG), March 4 - 9, Berlin, Germany. 2005

e Parallel recursive Green’s function metho@TH INTERNATIONAL WILHELM AND
ELSE HERAEUS SUMMER SCHOOL ON SPINELECTRONICS August 1 - 12, Witten-
berg, Germany. 2005

e Parallel recursive Green'’s function metho@oMPUTATIONAL NANOSCIENCE Do
IT YOURSELH, NIC WINTER SCHOOL, February 14 - 22, Julich, Germany. 2006

e Parallel recursive Green’s function methodPG -SPRING MEETING OF THEDIVI -
SION CONDENSED MATTER, March 26 - 31, Dresden, Germany. 2006

o Parallel recursive Green’s function methodWCE-11 INTERNATIONAL WORK-
SHOP ONCOMPUTATIONAL ELECTRONICS May 25 - 27, Dresden, Austria. 2006

C.3 Invited Speeches

¢ Interplay of regularity and chaos in two-electron anisgitoquantum dotsDEPART
MENT OF PHYSICS, UNIVERSITY OF ATHENS, January 10, Athens, Greece. 2003

e Two-electron anisotropic quantum dotBEPARTMENT OF PHYSICS, UNIVERSITY
OF HAMBURG, April 20, Hamburg, Germany. 2004

e Two-electron anisotropic quantum dotBEEPARTMENT OF PHYSICS, UNIVERSITY
OF NAPOLI, May 3, Napoli, Italy. 2004

e Mathematical modeling and simulation of quantum mesosciwansport. ANNUAL
COLLOQUIUM OF THE INTERNATIONAL GRADUATE COLLEGE (IGK 710), Decem-
ber 3, Academy of Sciences, Heidelberg, Germany. 2004

¢ Quantum magnetotransport through quantum dot arrays ugagallel computing
techniquesNATIONAL HELLENIC RESEARCHFOUNDATION, April 10, Athens, Greece.
2006
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¢ Quantum magnetotransport through quantum dot arrays ugagallel computing
techniguesDEPARTMENT OFPHYSICS, UNIVERSITY OF ATHENS, April 13, Athens,
Greece. 2006
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