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Abstract

The present thesis is about artificial nanostructures in which the electronic motion is re-
stricted in all spatial dimensions precisely in the regime where quantum effects dominate.
These structures which are called quantum dots can be prepared in the laboratory and offer
a high degree of access to their electronic and transport properties thereby naturally being
established as a prominent candidate for future nanoelectronics. In the present thesis a theo-
retical investigation of the electronic structure and quantum transport properties of quantum
dots has been performed. In addition to the research performed, the theoretical framework
for investigating transport through open and almost isolated quantum dots are reviewed.
Thereby it is natural to divide the present contribution in two parts.

In the first part, which deals with transport in open quantum dot systems, we will con-
tribute a parallel algorithm solving for the Green’s function which goes beyond the triv-
ial parallelization with regard to the external parametersof the transport problem, such as
Fermi energy or magnetic field strength. Combining techniques of parallel linear algebra
and cyclic reduction algorithms, the algorithm proceeds with the parallel treatment of the
decomposed scattering region, thereby giving significant flexibility regarding the handling
of highly demanding numerical problems as those encountered in materials with complex
electronic structure (thereby requiring n-band effectivemass models and atomistic Hamilto-
nians in order to be described). Further on, we apply our formalism to linear artificial crystals
which are formed by quantum dots of various geometries. We review their properties from
the perspective of building novel electronic devices basedon quantum features and how they
could operate at large temperatures.

In the second part of the thesis, we review the physics of almost isolated dots, whose
transport properties are determined solely by their electronic structure. The effects of electron-
electron interactions, anisotropy in the confinement and magnetic field on the electronic
structure of two-electron quantum dots are calculated via aconfiguration interaction ap-
proach, i.e., exact diagonalization of the two-body Hamiltonian matrix. Additionally, we
introduce a stable numerical method for the evaluation of matrix elements containing inte-
grals due to electron-electron (e-e) interactions. In thisrespect we have employed a combi-
nation of Gauss-Hermite and Gauss-Kronrod quadratures, that has allowed for the efficient
and direct evaluation of the e-e matrix elements with large basis sets. Contrary to previous
works, we were able to calculate several hundreds of excitedstates. Subsequently those
were analysed statistically making it possible to trace thequantum chaotic patterns in the
dot-spectrum, which determine the fluctuations of electrontransport coefficients and other
spectroscopic and thermodynamic properties. As a supplementary tool for our investigations,
classical dynamics have been studied in the corresponding classical phase space. Regarding
the application of a magnetic field we introduced new maps of the low-lying excitation pro-
file of the spectrum that allow the interpretation of experiments in few-electron quantum dots
in a simple and straightforward manner. The experimental parameters are the strength of a
homogeneous magnetic field applied vertically to the plane of the dot and the anisotropic
shape of the dot. Many-body features due to strong e-e correlations can be easily identified
by measurements.
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Zusammenfassung
Das Thema dieser Dissertation sind künstliche Nanostrukturen in denen die Elektronen-

bewegung in allen räumlichen Dimensionen eingeschränktist. Diese Strukturen, die als
Quantenpunkte bezeichnet werden, können im Labor hergestellt werden und bieten bre-
ite Zugriffsmöglichkeiten auf ihre elektronische Struktur und ihre Transporteigenschaften.
Das macht sie zu vielsprechenden Kandidaten für zukünftige nanoelektronische Bauteile.
Die vorgelegte Arbeit beinhaltet eine theoretische Untersuchung der elektronischen Struktur
sowie der quantenmechanischen Transporteigenschaften inSystemen von Quantenpunkten.
Wir geben eine Einführung in den theoretischen Rahmen zur Untersuchung von Quanten-
transport in offenen Quantenpunkte sowie in fast isolierten Systemen als Grenzfall. Deshalb
ist die Arbeit in zwei Teile aufgeteilt.

Im ersten Teil behandeln wir Transport in offenen Quantenpunkten mit einer auf Green’s
Funktionen basierenden Methode. Wir präsentieren einen parallelen Algorithmus für den
Transportformalismus, der auf der Zerlegung der mesoskopischen Region beruht und die
Green’s Funktion durch eine Kombination aus Verfahren der parallelen Linearen Algebra
und zyklischer Reduktion berechnet. Dieses parallele Verfahren erlaubt die Behandlung von
komplexen numerischen Problemen z.B. elektronischer Struktur in Materialien, welche eine
Beschreibung durch einen “n-band effektive-mass” oder atomistischen Hamilton Operator
erfordern. Im Anschluss wenden wir den Algorithmus auf künstliche, eindimensionale pe-
riodische Ketten aus Quantenpunkten mit unterschiedlichen geometrischen Charakteristika
an. Wir beobachten einen Zusammenhang zwischen den Transporteigenschaften und der
elektronischen Struktur des periodischen Systems. Dies erlaubt die Erkennung der elek-
tronischen Bandstruktur unseres Systems sowie sein mögliche Funktion als elektronisches
Schaltelement, das nur auf Quanteneffekten basiert.

Im zweiten Teil dieser Arbeit beschäftigen wir uns mit den physikalischen Prozessen
in isolierten Quantenpunkten, in denen die Transporteigenschaften ausschliesslich durch
ihre elektronische Struktur determiniert sind. Die Effekte von Elektron-Elektron Korrelatio-
nen, Anisotropie des harmonischen Potentials sowie eines homogenen Magnetfelds werden
mit einer exakten Konfigurations-Wechselwirkungs-Methode untersucht. Zusätzlich führen
wir ein numerisches Verfahren ein, das es uns erlaubt die numerische Instabilitäten bei der
Berechnung der zwei-Elektronen Integralen zu vermeiden und die Matrix-elemente, sogar
für ein grosses Basissatz, direkt und effizient zu berechnen. Dadurch war es möglich En-
ergien von mehreren hundert aufgeregten Zuständen zu berechnen. Dia statistische Analyse
der Energien hat uns erlaubt quantenchaotische Muster im Spektrum aufzuspüren. Zusätzlich
haben wir eine detaillierte Untersuchung der Klassischen Dynamik beziehungsweise des
klassischen Phasenraumes als Funktion der Anisotropie undder Stärke des Magnetfeldes
durchgeführt. Ausserdem führen wir Abbildungen der energetisch niedrigen angeregten
Zuständen als Funktion des Magnetfeldes und der Anisotropie ein, die ein einfaches und di-
rektes Interpretation von Experimenten mit Quantenpunkten mit wenigen Elektronen ermöglichen.
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Chapter 1

Introduction

The quest for numerical operations executed in an ultrafasttime scale has led to a tremen-
dous exponential increase in the number of the elementary circuits integrated on a chip. The
current state of the art, i.e. the very large scale integration techonology, has allowed for mil-
lions of such circuits to be jammed on the wafer’s surface, thereby arriving at the borders of
reign of the classical Ohmic law. Unavoidably, the continuation of this trend, well known as
the Moore’s law, will lead to hybridization of the existing technology with quantum interfer-
ence effects and ultimately to the design of devices which will be solely based on the latter.
An exploration of the physics and possibilities that arise due to the gradual reduction of the
devices’ dimensions can be found for the non-specialist reader in Ref. [1]. The specialist
reader could pump information from Refs. [2–4]. One of the most prominent candidates for
quantum electronic devices is the quantum dot. The terminology dot is used to refer to a
zero-dimensional structure which can be prepared as follows: a two-dimensional electron
gas is formed by the successive arrangement of different semiconductor layers, i.e. a semi-
conductor heterostructure in the transversal direction. The electronic motion can be further
constrained by applying an electrostatic potential via metal gates. The resulting potential
confines one or more electrons in all three spatial dimensions. In terms of the density of
states (DOS), a three-dimensional electron gas has a density of statesn3D(E) ∼

√
E where

E denotes the energy. In a two-dimensional electron gas the electronic motion is assumed to
be quantized in the tranversal direction but free on the plane leading to a DOS being a sum
of step functions. By further lowering the dimensions, i.e.restricting the electronic motion,
we obtain a quantum wire, in which the DOS isn1D(E) ∼ 1/

√
E and finally a quantum dot

in which the electronic motion is spatially confined, thereby obtaining a discrete spectrum,
and a DOS being a sum ofδ-like peaks.

The confinement of the quantum dot’s electrons takes place inthe mesoscopic regime, i.e.
on intermediate length scales with respect to the macrosopic solid state and the microscopic
atomic regime. In practice the mesoscopic regime translates to dimensions comparable to
the electron’s Fermi wavelengthλF , its mean free pathL0 and its phase relaxation lengthLφ

(for an illuminating discussion on these three length scales we refer the reader to Ref. [5]).
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2 1 Introduction

The scattering of an electron with a time independent scatterer is phase coherent. At low
temperatures, static impurities in the semiconductor likethe boundaries of the sample, can
be treated as phase coherent scatterers. Therefore,Lφ can be significantly larger thanL0,
giving rise to quantum interference effects. A few hallmarks of the latter can be considered
the weak localization [6], the universal conductance fluctuations [7, 8] and the Aharonov-
Bohm effect [9]. A pedagogical discussion of these effects can be found in Ref. [5]. Indeed
phase-relaxation can be induced if the electron accesses a scattering channel that changes its
state. Conceptually by measuring the state after scattering, we have an information about
the electron’s path and quantum interference is suppressed. Sources of phase-randomization
can be attributed to non-stationary (fluctuating) impurities such as electron-phonon (e-p) and
electron-electron (e-e) interactions or spin-flip scattering with magnetic impurities.

Mesoscopic effects can be probed to a large extent in a quantum dot due to the high
degree of access and even manipulation it offers on its internal degrees of freedom. The in-
formation about the physics of the quantum dot comes from itscoupling to the environment,
which in our case are the attached leads. The coupling between the dot and the leads can be
tuned by electrostatic gates, so that it allows us to distinguish between quantum dots which
are strongly or weakly coupled to the leads, and they are called open or closed, respectively.
Let us briefly summarize the meaning of the coupling strength. The coupling of the dot to
the leads introduces a finite level-width in the DOS of the dot. In an open dot, the width
of the lead may accomodate a large number of propagating modes with large transmission
coefficients. Thus, the resonant-type levels of the dot strongly overlap and induce fluctua-
tions in the conductance. On the other hand, for closed dots the transmission coefficients are
very small and the dot’s conductance exhibits peaks which correspond to resonant tunneling
between the leads and the quantum dot’s energy levels.

Quantum dots, intriguing as much as extensively investigated [10], remain a research
field that continues to provide new insights in fundamental questions concerning nature and
their properties are to a large extent the main field of investigation of the present thesis, which
is divided in two parts. The first part provides the basis for understanding quantum transport
through systems of open quantum dots whereas the second one deals with closed quan-
tum dots and provides a detailed overview on the effects of asymmetry in the confinement,
magnetic field and e-e interaction on their electronic properties. The thesis is structured
as follows. In chapter 2 we introduce the Landauer formalismfor treating linear quantum
transport through open quantum dots. In chapter 3 we presenta parallel algorithm for the
numerical evaluation of the formalism derived in the preceding chapter. This technique com-
bines algorithms borrowed from parallel linear algebra andparallel cyclic reduction for the
transfer of the information. This algorithm is used to calculate the transport properties in
systems of open quantum dots. Furthermore it offers a deeperand more practical insight
in the computational aspects of the Landauer theory. Chapter 4 contains an investigation
of quantum transport through open quantum dot arrays. In thelatter quantum transport is
mediated by the formation of artificial energy bands due to the successive repetition of the
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quantum dot cells. By changing the geometry of the coupling media as well as by applying
an external magnetic field of moderate strength we are allowed to observe a magnetically
controlled linear response current which can flow coherently for several tens of Kelvin and
owes to the electronic band structure of the periodic system. Furthermore we will proceed
with the investigation of isolated quantum dots. In chapter5 the weak coupling regime and
the conditions that define it will be discussed, providing a short review of the prominent
phenomena and the wealth of literature that accompanies this regime. At hand of the con-
siderations of the chapter 5, in chapter 6 we are going to perform a detailed investigation of
the electronic properties of a two-electron quantum dot which is confined in an anisotropic
potential. This small system provides a fundamental working Hamiltonian which is also
ideal for a statistical analysis of the spectrum in order to investigate quantum to classical
correspondence effects. Chapter 7 will present the response of the electronic properties of
the system in the presence of an external homogeneous magnetic field. Finally, in chapter 8
we will draw the conclusions of the research we have performed.
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Chapter 2

Theory of linear quantum transport
through quantum dots

2.1 Computational aspects of the single-particle Landauer
theory

In this chapter we are going to present the Landauer formalism which has associated the
quantum-mechanical probability for an electron to transmit through a sample with its quan-
tum transport properties such as conductance [11]. For the purposes of our investigations we
assume that current flow in semicounductor heterostructures can be described in terms of the
Fermi Liquid theory. In this picture, the low-energy excitations (quasiparticles) behave as a
degenerate noninteracting Fermion gas (DNFG) in the sense that the mass of the particles is
renormalized due to screened interactions with the atoms ofthe crystal and the band struc-
ture. In this context let us assume a two-probe setup, i.e. two leads, which act as electronic
reservoirs, are attached to a mesoscopic scattering region. The two-probe setup we describe
is illustrated schematically in Fig.2.1, for an arbitrary scattering region,

y

x

a

a

Figure 2.1: Arbitrary scattering region attached to two reservoirs.

Inside the leads we assume a DNFG that fills the energies up to the Fermi energyEF .

5



6 2 Theory of linear quantum transport through quantum dots

The Hamiltonian of the composite system (leads + scatteringregion) can be described by the
general Hamiltonian in the notation of second quantization[12],

H =
∑

ka∈K

ǫkac
†
kacka + HS(d†

n; dn) +
∑

ka∈K;n

(Vka,nc†kadn + h.c.) (2.1)

in which the operatorsc†ka(cka) create (destroy) an electron in the state with momentum
k and a unique quantum numbera either in the left (K = L) or right (K = R) lead with
a Fermi distributionf(ǫka) = [exp( ǫka−EF

kBT
) + 1]−1. Operatorsd†

n, dn form a complete or-
thonormal creation and annihilation set of the states|n〉 in the scattering region. For our
investigations we restrict to the case of non-interacting electrons inside the scattering re-
gion and we remain with this picture throughout our investigations and definitions. For this
picture the Hamiltonian for the scattering region reduces to HS(d†

n; dn) =
∑

nm

ǫnmd†
ndm.

In the noninteracting picture, the conductance for electrons with Fermi energyEF is
given by the Landauer formula:

G(EF ) =
2e2

hVSD

∞
∫

−∞

T (E)(fL(E) − fR(E))dE (2.2)

whereT (E) is the transmission coefficient and denotes the probabilitythat an electron
with Fermi energyE will transmit through a mesoscopic scatterer. For the explicit evaluation
of T (E), we refer the reader to section 2.2. The leads are modeled by aDNFG with a Fermi
distributionfK(E) = [exp(E−µK

kBT
) + 1]−1, µK = EF ± eVSD

2
being the chemical potential

in the left and right lead, when applying a bias voltageVSD. A large applied bias voltage
VSD causes a modification to the confining potential due to the accumulated charge at the
boundaries of the conductive medium with th leads. The new modified potential profile can
be obtained by solving self-consistenly the Poisson and theSchrödinger equation. The latter
is pedagogically presented in Ref. [2]. An analysis of this situation goes beyond the scope of
the present contribution, in which we do not address such effects, i.e.VSD → 0 and its role
restricts to the one that enforces current flow. In this regime, the so called linear response
regime,

Gl.r.(EF ) = lim
VSD→0

G(EF ) =
2e2

h

∞
∫

−∞

T (E)

(

−∂f0

∂E

)

dE (2.3)

with f0(E) = [exp(E−EF

kBT
) + 1]−1. Hereafter, we will use the notationGl.r.(EF ) ≡

G(EF ). For zero temperature the conductance is given by,
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G(EF ) =
2e2

h
T (EF ) (2.4)

So far, we have introduced the two-probe Landauer formula for non-interacting elec-
trons propagating along a mesoscopic sample. This formalism can take into account elec-
tron/electron interactions in terms of non-interacting particles moving in a mean field, i.e.
the Hamiltonian to be the Fock matrix, or within density functional theory for electrons de-
scribed by the Kohn-Sham Hamiltonian. If one would like to generalize this formalism to
a strongly interacting system beyond mean field theories onehas to proceed with a more
general expression for the conductance which exploits the Keldysh (or Kadanoff-Baym) for-
malism [13]. However, within our approach to quantum transport we are going to deal with
elastic scattering of non-interacting electrons due to theboundaries of a region in the linear
response regime. In the next section, we present the computational aspects for the calculation
of the quantum transport properties in the framework of the Landauer formalism.

2.2 Computational aspects of the Landauer formalism

As we saw in the previous section, the conductance of a mesoscopic sample attached to two
reservoirs (Fig. 2.1) is proportional to the quantum-mechanical probabilityT (E) that an
incoming electron at Fermi energyE in the reservoirs will transmit through it. To evaluate
the transmission probabilityT (E) one has to solve the Schrödinger equation:

lim
η→0+

(E − H(r) + iη)G0(r; r
′) = δ(r − r′) (2.5)

whereH(r) is the Hamiltonian of eq.(2.1) andG0(r; r
′) is the Green’s function operator

of the open system (scatterer + reservoirs). We remark that the above definition holds if
the HamiltonianH can be expressed in terms of single-particle operators. In the following
we restrict ourselves to two-dimensional (2D) quantum transport, as it is shown in Fig.2.1.
Transport in2D can be realised experimentally if the electrons occupy the ground state in
the z- direction and excitations can occur in the other two dimensions, i.e. as in the case
of a 2D electron gas. To proceed with the calculation ofT (E) we discretize the space on a
uniform lattice with constanta. In order to represent the Hamiltonian operatorH(r) we use
the tight-binding model assuming only nearest neighbor interactions [14]. In this case the
Hamiltonian can be written:

H(r) =
∑

r

|r〉ǫr〈r| +
∑

r,∆r

|r〉Vr,∆r〈r + ∆r| (2.6)
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whereǫr is called on-site energy at the positionr = (x, y) with x = na andy = ma,
n, m ∈ N , ∆r represents the vectors fromr to their nearest neighbor sites andVr,∆r is the
nearest neighbor hopping energy. For a constant on-site energy the dispersion relation for
the2D discretized lattice reads:

E2D(k) = 4V − 2V cos(kxa) − 2V cos(kya) (2.7)

Herek = (kx, ky) is the electron’s wavevector andV = ~
2/(2m∗a2) is the matrix hopping

element linking each site to its nearest neighbor. In the limit a → 0 we recover the usual
parabolic relationship of a free particle in a continuum space. In practice, the condition to
converge to the continuum dictates that the number of lattice sites in the transversal direction
that couple the scatterer with the leads is much larger than the number of channels we have
opened with our Fermi energy, timesπ, i.e.:

ND + 1 >> (# of open channels) × π

whereD = (ND + 1)a is the width of the lead andND the number of lattice sites that
couple to the scatterer.

The full tight-binding Hamiltonian of the open system (scatterer + leads) can be then
decomposed in the following block form:

H(r) =







HL VL O
V

†
L HS VR

O V
†
R HR







where the HamiltonianHS is the matrix representation ofHS and the coupling to the
two external reservoirs from the left and right, is described via the semi-infinite matricesVL

andVR, respectively. The matrices of the Hamiltonian operatorsHL andHR are of infinite
size and describe the electronic flow within the reservoirs.

One can accordingly partition the overall Green’s functionoperatorG0(E) of equation
(2.5) such that,







(E + iη)I −HL VL O
V

†
L (E + iη)I − HS VR

O V
†
R (E + iη)I −HR






·





GL GLS GLR

GSL GS GSR

GRL G
†
RS GR



 = I

If we solve the above set of equations forGS(E) we receive the following expression

GS(E) = [EI − HS − ΣR(E) −ΣL(E)]−1 (2.8)
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This is the so called Dyson equation for the Green’s functionof the composite system
(leads + scatterer) which can also be expressed as:

GS(E) = gS(E) + gS(E)Σ(E)GS(E) (2.9)

or alternatively:GS(E) = (gS
−1(E) − Σ(E))−1. The total self-energy matrixΣ(E) =

ΣL(E) + ΣR(E) takes into account the effect of the coupling to the reservoirs, via the so
called self-energy matricesΣK(E) = V

†
KgK(E)VK due to the left (K = L) and right

(K = R) reservoir. The functiongK is the matrix representation of the retarded Green’s
function operator of the reservoirK, i.e.,gK(E) = [(E + iη)I− HK]−1.

We consider that the electrons occupy states at the middle (energetically lowest) point of
a conduction band which is parabolic. In the case that the electrons are freely propagating
along thex-direction and are confined in they-direction then the matrix elements for the
Green’s function at the interface of the lead with the scatterer, let us say at an arbitrary
positionx = xS, can be evaluated analytically using the expression [5],

gK(xS, y; xS, y′) = − 1

V

∑

m

χm(y)χm(y′)eikma (2.10)

in which the transversal mode eigenfunctions satisfy the equation

(

− ~
2

2m

d2

dy2
+ U(y)

)

χm(y) = ǫmχm(y) (2.11)

with U(y) being the confinement potential along they-direction andkm the wavevector
along thex-direction which satisfies the1D dispersion relation. As we can see the expression
for the surface Green’s functions in the leads does not depend on the positionxS along the
x-axis of the interface with the scatterer.

Due to the tight-binding discretization, the space of the scattering region now consists of
n = 1, 2 . . . , N slices along thex-direction each of which consists ofm = 1, 2, . . . , M sites
along they-direction. The matrixA = EI − HS − ΣR(E) − ΣL(E) we want to invert in
order to evaluateGS(E) is aN × N block tridiagonal matrix [14] whose elements are the
blocksAij each of which is of sizeM × M :
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A =

























A11 A12 O · · · O O O
A21 A22 A23 · · · O O O
O A32 A33 · · · O O O
...

...
...

. . .
...

...
...

O O O · · · AN−2,N−2 AN−2,N−1 O
O O O · · · AN−1,N−2 AN−1,N−1 AN−1,N

O O O · · · O AN,N−1 AN,N

























The expression for the evaluation ofT (E) is given in a compact form by the Fisher-Lee
relation [15]:

T (E) = Tr[ΓR(E)GS(E)ΓL(E)G†
S(E)] (2.12)

whereΓK(E) = i[ΣK(E) − Σ
†
K(E)] is the strength of the coupling of the reservoirK

to the scatterer. Due to the fact that the reservoirs are coupled only to the left and right of
the scatterer, the blocks that correspond to the left interface of the scatterer with the lead, i.e.
the upper left blockσL(E) of ΣL(E), and to the right interface of the scatterer with the lead,
i.e. the down right blockσR(E) of ΣR(E), are the nonzero blocks of the matricesΣK(E).
Therefore, the total self-energy due to the right and left reservoir has the following block
structure:

ΣL(E) + ΣR(E) =

























σL(E) O O · · · O O O
O O O · · · O O O
O O O · · · O O O
...

...
...

. . .
...

...
...

O O O · · · O O O
O O O · · · O O O
O O O · · · O O σR(E)

























Due to this structure of the self-energy matrix, only the upper left block of ΓL(E),
γL(E) = i(σL(E) − σ†

L(E)) and the down right block ofΓR(E), γR(E) = i(σR(E) −
σ†

R(E)) are nonzero. Hence, the trace of the product of the four matrices occuring in equa-
tion (2.12) simplifies to:

T (E) = Tr[γR(E)G1,N(E)γL(E)G†
1,N(E)] (2.13)

Equation (2.13) implies that only the upper right block of the inverse ofA, A−1
1,N = G1,N

is necessary for the evaluation ofT (E). The ultimate goal is therefore to computeA−1
1,N. The
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physical interprentation of this result is thatG1,N is the Green’s function containing the in-
formation for the transmission from slice with label1 to slice with labelN . For example
if we would attach an additional lead to slice with label e.g.10 in order to find the trans-
mission from1 to 10 one should calculate the Green’s functionG1,10 and naturally for the
transmission from10 to N the Green’s functionG10,N is required. Since we have in mind
the interpretation for the particular blocks of the Green’sfunction matrix we could proceed
with introducing a multi-probe Landauer formalism, which is particularly useful to interpret
experimental setups or to estimate decoherent components in transport via a model suggested
by Büttiker [16].

2.3 Büttiker model

So far we have addressed a two-probe setup in which only two leads are attached to the scat-
terer at the left and right part of it, i.e. we have a longitudinal symmetry for the current flow
(there are no transversal components of the current). In this section we are going to review a
general setup in whichN maximum additional probes are attached transversally to each slice
that forms the discrete representation of the scatterer thereby breaking the longitudinal sym-
metry in the current flow and introducing transversal components. Figure 2.2 shows such a
setup. In order to avoid confusion with section 2.2 and the same time for convenience, we
note that the symbolG whenever used throughout this section refers to the conductance.

x

y
a

a

1

2
3

4 5

N−1

N

. . .

L R

Figure 2.2: Arbitrary scattering region attachedN probes in the transversal direction.

Multiprobe setups are very common experimentally since they offer a larger degree of
control and possibilities to the experimental quantities.For our purposes we will introduce
them for one single reason. We are going to estimate the effect of phase-breaking processes
in the process of longitudinal current flow due to electron-phonon (e-p) scattering. As we
have previously remarked the electrons propagate in a conductive medium in the vicinity of
the atoms that form the crystal of the material. With increasing temperature, the vibrations
of the lattice couple to the electronic motion thereby changing its electronic state, leading
to a loss of its quantum-mechanical phase. Hence, if one would like to obtain a picture of
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quantum transport at large temperatures he should include such e-p scattering processes. One
way to proceed is to calculate perturbatively the effect of e-p scattering using diagrammatic
theory [5]. A much simpler way to estimate the contribution to decoherence is the so-called
Büttiker model [16] which is based on theN-probe Landauer formalism. According to this
model one could attachN virtual probes along the scatterer, the role of which is solely
restricted to the one that randomizes the phase of the electron. The effect of e-p scattering
could be then simulated in terms of collisions of the electrons with these probes. For these
virtual probes there is no contribution to the current flow and therefore we are led to the
conditionIi = 0 for i = 1 . . .N . Their effect can be estimated by taking into account a self-
energy due to the attachment of the probes to the scatterer and an additional contribution
to the total longitudinal transmission which can be calculated in the following way. If we
label, for the sake of simplicity, the left lead with zero (L ≡ 0) and the right lead withN +1

(R ≡ N + 1) then we have a matrix representationI = GV that links the components
of currentsIi and voltagesVi via their individual conductancesGij and which leads to the
general relationship for the current flow in each probe-lead,

Ii =

N+1
∑

j = 0

j 6= i

Gij(Vi − Vj); i = 0, . . . , N + 1 (2.14)

Hence, the current that flows to the right (N + 1) reservoir is given by the equation,

IN+1 = −GN+1,0V0 −
N

∑

j=1

GN+1,jVj (2.15)

In equation 2.15 we have chosenVN+1 = 0 as a reference for the applied voltages. In
this equationGN+1,0 = 2e2

h
TN+1,0 for zero temperature, i.e. the longitudinal transmission

coefficient from left to right. In order to calculate theVj we exploit the fact thatIi = 0 for
i = 1 . . .N ,

N+1
∑

j = 0

j 6= i

Gij(Vi − Vj) = 0; i = 1, . . . , N (2.16)

If we setgi =
N+1
∑

j = 0

j 6= i

Gij and forVN+1 = 0 the equation 2.16 can be written as,

giVi −
N

∑

j = 1

j 6= i

GijVj = Gi,0V0; i = 1, . . . , N (2.17)
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Now let us define a matrixW the matrix elements of which areWij = giδij − (1 −
δij)Gij. Obviously for i = j the transmission coefficientsGii which translate simply to
backscattering to the same lead are not required. The diagonal elements of this matrix are
the quantitiesgi and the off-diagonal elements correspond toGij . Both indicesi, j = 1 . . . N .
Hence, equation 2.17 can be written in a compact form,

N
∑

j=1

WijVj = Gi,0V0 (2.18)

or in a matrix representationWV = G0V0 whereV corresponds to a column vector
with componentsVj andG0 a column vector with componentsGi,0. Easily by inverting the
matrixW we can evaluate each voltageVj and end up with a final expression for the current
total current flow to the right including simultaneously theeffect of non-current flowing
probes,

IN+1 = −GN+1,0V0 −
N

∑

j=1

N
∑

i=1

GN+1,jW
−1
ji Gi,0V0 (2.19)

The corresponding expression for the transmission coefficients follows readily if we con-
sider thatIN+1 = GtotV0 and assume for zero temperature thatGij = 2e2

h
Tij for all partici-

pating probes. In this regard the total transmission coeffiecient from left to right taking into
account the possibility of collisions of electrons with theprobes is given by,

Ttot = TN+1,0 +
N

∑

j=1

N
∑

i=1

TN+1,jW
′−1
ji Ti,0 (2.20)

in which case the matrixW = 2e2

h
W′ for zero temperature. This expression is the one

used in Ref. [17] in order to describe in a phenomenological way the effect of e-p interactions
in the decoherence of molecular conductors and can be viewedas a generalization of the
single-probe Büttiker model for decoherence [16]. In order to calculate the full longitudinal
transmission coefficient it is clear from equation 2.20 thatone has to calculate the whole
set of transmission coefficients between each attached probe (see matrix elements ofW).
In the case that we have no magnetic field then the following symmetry property holds
Tij = Tji which comes from the fact that the Green’s function matrix istranspose. If we
apply magnetic field then the above symmetry property does not apply. Mathematically,
the Peierls factor introduces a phase which couples the off-diagonal elements of the tight-
binding Hamiltonian leading to the loss of the above mentioned symmetry for the Green’s
functions. This can be interpreted in physical terms by the fact that the path that an electron
has followed can not be time-reversed just like in the absence of the magnetic field. This
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becomes more clear if we think of an electron injected from the left lead to probe with label
1 in figure 2.2. Then the electron is reinjected, sinceI1 = 0, but due to the magnetic field
obviously it will not follow the same path back to the left lead.

This effect is responsible for the destruction of the weak localization’s signature in the
mesoscopic conductance. Briefly, weak localization means that the mesoscopic conductance
is corrected due to coherent backscattering if we sum over all contributions of the paths that
the electron can follow. In the presence of magnetic fields this correction vanishes. For a
pedagogical discussion of this effect we refer the reader toRef. [5].



Chapter 3

Parallel recursive Green’s function
method

3.1 Introduction

The theoretical framework for the description of mesoscopic electronic transport has been es-
tablished within the Landauer formalism, which we introduced in chapter 2. This formalism
relies on the computation of the transmisison coefficient, i.e. the probability that an electron
injected into a mesoscopic sample will transmit through it.To this end, several numerical
techniques have been developed and applied in order to calculate the transmission coeffi-
cient and describe various physical setups. The most efficient method to attack the problem
of quantum transport has proven to be the recursive Green’s function (RGF) approach. The
general framework for this approach can be found in Ref. [14]and depending on the em-
phasis of the individual scattering problem, alternative numerical techniques can be applied.
Therefore, RGF method adapted to the subdivision of transversal modes in a wire allowed for
the efficient simulation of the fully diffusive regime [18] and techniques such as the boundary
element method [19], with an emphasis on the arbitrary geometry of the scattering region, or
the modular Green’s function method [20, 21], in which the scattering region is initially de-
composed in modules which are finally joined via the Dyson equation, have been developed
to take into account the particular geometrical features ofthe scattering problem. Recently,
a RGF technique has been applied to describe scanning probe experiments [22]. This tech-
nique describes tunneling, through the STM tip, which comprises the whole scattering area
but scales equally well with the standard RGF method. As an alternative solution to im-
prove the efficiency and consequently the capability to treat larger systems, approximations
in the Schrödinger eigenvalue problem, as in the contact block reduction method [23, 24],
have been employed to treat multi-terminal three-dimensional problems with relatively good
accuracy.

The aim of this chapter is to present a parallel algorithm forthe computation of the elec-
tronic transmission probability, within the framework of the RGF method. This algorithm

15
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goes beyond the straightforward parallelization of the external parameters of the problem
such as the range of Fermi energies and magnetic fields but divides the scattering region
into subblocks, which are treated in parallel. In this regard, the parallelization will allow us
to reduce the computational time and treat large systems with many degrees of freedom. It
will also be particularly efficient to handle highly complexmodular scattering structures for
which the serial RGF algorithm is not applicable on a reasonable time scale. This chapter
is organized as follows. In section 3.2 we present the parallel algorithm and calculate its
numerical complexity. Section 3.3 contains an analysis of performance and scalability for
certain numerical benchmarks. Within this investigation useful conclusions for the optimal
use of our algorithm will be deduced. Finally, section 3.4 draws our main conclusions.

3.2 The parallel algorithm

The overall scattering problem, as discussed in section 2.2, can be algebraically translated to
a N × N block tridiagonal matrixA = EI − H − ΣR(E) − ΣL(E) of which each block
is of sizeM × M . The goal is to compute the upper right block of the inverse ofA, A−1

1,N.
The inverse of a band matrix is in general a full matrix. Applying a Gaussian elimination
in order to calculateA−1

1,N requires storage and processing of many more blocks ofA−1.
This so called fill-in can be reduced by applying an appropriate permutation to the matrixA
before calculating the inverse. In the following we show, how we can exploit permutations
in order to efficiently evaluateA−1

1,N by introducing an expression ofA−1 via the Schur’s
complement blockS. This expression allows an effective parallelization, because it involves
only the inversion of a block diagonal matrix, products of sparse matrices and finally, at the
last step the inversion ofS, which is even still a full matrix but much smaller thanA itself.

3.2.1 Prerequisites

The algorithm that we pursue should possess the following properties:

1. Storage requirements should be restricted to a small number of blocks of sizeM ×M .

2. The number of inversions and multiplications of theM ×M blocksAij, which are the
dominant contributions to the computational cost because they scale withM3, should
be proportional toN . This corresponds to the numerical complexity of the sequential
RGF technique in the asymptotic limit of largeN andM :

Cseq(N, M) ≈ NM3

3. Exploit the fact that the Hamiltonian matrixHS is Hermitian, leading to a block Her-
mitian matrixA, i.e., for the off-diagonal blocks is claimed thatA

†
ij = Aji.
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4. The algorithm should be parallelizable.

3.2.2 Preparations

Change of the inverse under permutation

Let Pij be an elementary permutation matrix with the following properties:

1. SetÃ = PijA, thenÃ is identical toA except that rowsi andj are interchanged.

2. SetÃ = APij, thenÃ is identical toA except that columnsi andj are interchanged.

3. PT
ij = Pij = Pji.

4. Pij · PT
ij = I, i.e.,Pij is orthogonal and self-inversePij = P−1

ij .

We callP = Pin,jn . . .Pi1,j1 a permutation matrix. ThenP−1 = (Pin,jn · . . . · Pi1,j1)
−1 =

P−1
i1,j1

· . . . · P−1
in,jn

= Pi1,j1 · . . . · Pin,jn = PT. Now if we apply row and column permuta-

tions to the matrixA, Ã = PAPT then for the inverse we have thatÃ−1 = (PAPT)−1 =

P−TA−1P−1 = PA−1PT.
The above imply the following two alternative paths for the computation ofA−1

1,N:
(a) Starting fromA we compute the inverse of it. Then by applying the appropriate row

and column permutations, through operation of the permutation matrices, it is possible to
shift the desired upper right blockA−1

1,N in another position of the inverse. Respectively, the
down left block ofA is also shifted. This first path can be illustrated graphically as follows:

A

compute

inverse ofA

−→ A−1

apply row/col

permutations

−→ PA−1PT

(b) Alternatively, if we start by applying row and column permutations in the initial
matrixA, then we can shift the upper right blockA1,N into another position. If we compute
the inverse of the new matrix then the desired blockA−1

1,N will be located at the same position.
Graphically, this second path implies:

A

apply row/col

permutations

−→ Ã

compute

inverse ofÃ

−→ Ã−1
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Therefore, the diagram implies thatcomputation of the desired block of the inverse matrix
A−1

1,N by following path (a) is equivalent to the computation ofA−1
1,N by following path (b).

Expression of the inverse via the Schur complement

Let any matrixA with a general2 × 2 block structure:

A =

(

A11 A12

A21 A22

)

Then the inverse ofA in block form is:

A−1 =

(

A−1
11 + A−1

11 A12S
−1A21A

−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

)

whereS = A22 −A21A
−1
11 A12 is the so called Schur’s complement block.

Hence, together with the permutation Lemma (section 3.2.1)we arrive at the following
statement:

If the blockA1,N is transfered to the blockA22 via permutation transformation then the
desired blockA−1

1,N of the inverse can be obtained from the inverseS−1 of S.

3.2.3 Parallel recursive algorithm

To construct the parallel recursive algorithm for the computation of A−1
1,N we proceed as

follows. By starting from the matrixA in its original block tridiagonal form, we induce a
virtual additional block structure thereby distributing the domains of the scattering region
to p processors as shown in Figure 3.1. This secondary level block structure, due to the
scatterer’s domain decomposition, consists ofp large internal blocks, which in turn contain
n1, n2, . . . , np blocks respectively. These blocks belong to the individualcomputational sub-
space of each processor. Additionally to these blocks, there arep + 1 elementary blocks
which correspond to the interface slices of the decomposed domains. The position of the
upper right blockA−1

1,N that is required to be computed is indicated in Figure 3.1.
In the next step we reorder rows and columns, formally through permutation matrices,

and we arrive at the reordered matrix with the structure of Figure 3.2. The reordered matrix
has the2 × 2 block structure,
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  *    *

  *     *    *

   *

     *     *    *
       *    *    *

 

  *    *

  *     *    *

   *

     *     *    *
       *    *    *

 *   *

     *     *    *

*     *     *

 

  *    *

  *     *    *

   *

 

  *    *

  *     *    *

   *

 

  *    *

  *     *    *

   *

     *     *    *
      

 *    *    *        

1 1 2 2 3 3 p p p

1

1

2

2

3

3

p

p

p

... ...

..

.

...

 *    *    *

 *     *

AII
pp

AΓΓ
pp

AΓΓ
p+1,p+1

AΓI
pp

AIΓ
pp

AII
11

AII
22

AΓΓ
11

AΓΓ
22

AIΓ
12

AΓI
11

AIΓ
11

AΓI
21

Figure 3.1: Original block tridiagonal matrix with new secondary levelblock structure due to pro-

cessor subdivision.

Ã =

(

AII AIΓ

AΓI AΓΓ

)

In this new block structure the large blocks that correspondto the internal scatterer’s
decomposed domains, belong to the individual computational subspace of each processor,
i.e. they are decoupled between them and all of them are contained in the block labeledAII.
The blocks corresponding to the interface slices are contained in the block labeledAΓΓ.
Here we should remark that the last processor is assigned to have two interface blocks, i.e.
the one that links its own internal domain with the domain of the previous processor and the
interface block with the left lead. The blocks that correspond to the couplings due to the
kinetic energy and couple the interface slices with thep internal blocks are contained in the
block labeledAIΓ.Due to the fact that the Hamiltonian matrix is block Hermitian then the
following property is in orderAΓI = (AIΓ)†. Moreover, the desired block to be computed
is transfered to the upper right corner ofAΓΓ. Therefore, according to the permutation’s
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lemma, in order to computeA−1
1,N, it suffices to computeS = AΓΓ − AΓI(AII)−1AIΓ at a

first step and then extract the upper right block ofS−1. The computation ofS results again
in a block tridiagonal matrix and the algorithm can be applied recursively, i.e., by knowing
S and applying cyclic reduction among the processors which participate inS, we can arrive
recursively at a matrix that is small enough to computeA−1

1,N directly.

*  *

*
**

*  *  *

*  *

*
**

*  *  *

*  *

*
**

*  *  *

*  *

*
**

*  *  *

*  *

*
**

*  *  *

  *
  *

 *

   *
   *

     *
     *

       *
       *

        *

*
*

*

*

*

*

*

* *

*

*

*

*

*

*

*

1 2 1 2 3 p

1

2

3

p

1

2

3

p

 3  p ...

...

...

...

AII
pp

AII
11

AII
22

AΓΓ
11

AΓΓ
22

AΓΓ
33

AΓΓ
pp

AΓΓ
p+1,p+1

AIΓ
11A

IΓ
12

AIΓ
22A

IΓ
23

AIΓ
ppA

IΓ
p,p+1

AΓI
11

AΓI
21 AΓI

22

AΓI
32

AΓI
p,p

AΓI
p+1,p

A
II

A
IΓ

A
ΓI

A
ΓΓ

Figure 3.2: Reordered matrixA after row and column permutations.

Explicitly, the stages to which the parallel RGF algorithm is divided as well as the cor-
responding numerical complexities are the following:

1. First Stage:Scatterer’s domain decomposition and computation ofS

The scatterer is decomposed to internal scatterer’s domains withn1, n2, . . . , nk, . . . , np

blocks. Each domain corresponds to one of the altogetherp processors participating
in the computation and additionally, there arep + 1 elementary interface blocks corre-
sponding to the slices between the internal domains (Fig. 3.1). At this point we have
to note that the last processor stores the two interface blocksAΓΓ

pp andAΓΓ
p+1,p+1. Then

we reorder rows and columns such that the matrixA has the block structure of Fig.
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3.2. Subsequently, the algorithm performs a block Gaussianelimination adapted to the
special sparse block structure of Fig. 3.2, i.e., it proceeds by eliminatingAΓI using
AII. Analytically, the steps of the block Gaussian eliminationapplied hereby:

∀ processork
for (i = 1 . . . nk){

B = (AII
kk)

−1
ii

(AII
kk)i+1,i+1 = (AII

kk)ii − (AII
kk)

†
i,i+1B(AII

kk)i,i+1

(AIΓ
kk)i+1,1 = −(AII

kk)†i,i+1B(AIΓ
kk)i,1

AΓΓ
kk = AΓΓ

kk − (AIΓ
kk)

†
i,1B(AIΓ

kk)i,1
}
B = (AII

kk)
−1
nk,nk

AΓΓ
kk = AΓΓ

kk − (AIΓ
kk)

†
nk,1B(AIΓ

kk)nk,1

AΓΓ
k,k+1 = −(AIΓ

kk)
†
nk,1B(AIΓ

k,k+1)nk,1

The algorithm as it is formulated relies on the block Hermitian structure ofA and can
be performed fully in parallel apart from its last iterationwhere it requires one extra
communication with its neighbouring processor. The last processor does not require
such a communication because it stores additionally the block that corresponds to the
last slice of the scatterer. The numerical cost for each processor scales withnp inver-
sions ofM×M blocks and requires6·np multiplications of matrices (see the algorithm
above), i.e.,7 · np operations that scale withO(M3). At this point we should remark
that the number ofO(M3) operations are counted in a trivial way. This naive strat-
egy will be followed throughout this chapter because it doesnot consider additional
computational specialities using special programming skills. To name a few examples,
one could reduce the number of such operations below seven ifhe would consider the
common multiplications between matrices that exist in the above loop, if he would use
special routines that perform collectively the matrix multiplications or if one considers
the fact that that all off-diagonal blocks that correspond to the kinetic energy coupling
are diagonal. With respect to the storage only a few auxiliary blocks of sizeM × M ,
independent ofnk, are required. Hence, each processor at the end of the first stage
of the computation has stored the diagonalAΓΓ

k,k and off-diagonalAΓΓ
k,k+1 block of the

Schur complement. At this point we note that the notation used in the subscript of
the newly computed blocks ofS is identical to the one of the blocks ofAΓΓ for con-
venience. The last processor computes, in addition to the two previously mentioned
blocks, the last blockAΓΓ

p+1,p+1. The numerical complexity for each processor scales,
in the limit of largeN andM , with:

C1 ≈ 7nkM
3 ≈ 7

N

p
M3
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Here we have neglected the last step of the algorithm that corresponds to the single
communication of each processor with its neighbouring since in the asymptotic limit
it could be absorbed innk. After the completion of the first stage, the Schur’s comple-
ment blockS has been computed. Its blocksAΓΓ

k,k andAΓΓ
k,k+1 are distributed among

the processors. Again,S has a block tridiagonal structure and is block Hermitian:

S =

























AΓΓ
11 AΓΓ

12 O · · · O O O
AΓΓ†

12 AΓΓ
22 AΓΓ

23 · · · O O O
O AΓΓ†

23 AΓΓ
33 · · · O O O

...
...

...
. . .

...
...

...
O O O · · · AΓΓ

p−1,p−1 AΓΓ
p−1,p O

O O O · · · AΓΓ†

p−1,p AΓΓ
p,p AΓΓ

p,p+1

O O O · · · O AΓΓ†

p,p+1 AΓΓ
p+1,p+1

























2. Second Stage:Cyclic reduction of the processors participating in the Schur’s comple-
ment block

To proceed further, we exploit the block tridiagonal structure of S. To this end we
apply a recursive technique called cyclic reduction [25]. The implementation of this
technique requires successive reordering of the processors this time, in such a way that
in each step the Schur’s complement block is half the size as before. The first step of
the cyclic reduction algorithm is shown in Fig. 3.3.

We observe that the reordered block structure possesses again the2×2 structure of the
matrix Ã. Therefore by eliminating the off-diagonal block using theupper-diagonal,
i.e., the procedure of the first stage, we arrive at a new Schur’s complement block
of half the size as the preceding one. By applying this procedure recursively, after
log2(p) steps we arrive at a3 × 3 block matrix, of which the upper-right diagonal
block of the inverse is the desiredA−1

1,N one. At this point we should remark that in
each recursive step, the first and the last processor should always participate in the
new resulting Schur’s complement block, as shown in Fig. 3.3. This condition ensures
that the desired blockA−1

1,N is always located in the upper right corner ofS. In this
second stage of parallelization, each recursive step requires one inversion and four
multiplications for the calculation of the diagonalAΓΓ

kk and the fill-inAΓΓ
k,k+1 blocks

of the resulting Schur’s complement block (see algorithm ofthe first stage applied to
the block structure of Fig. 3.3). The numerical complexity of the second stage scales
as:
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Figure 3.3: Reordering according to the cyclic reduction algorithm fora Schur’s complement block

of size(p + 1) × (p + 1). The size ofS after the applied block Gaussian elimination is reduced to

half of the preceding size.

C2 ≈ 5log2(p)M3

After log2(p) recursive steps operating onS, we are left with a3 × 3 block matrix of
which the first row, i.e., blocksC11 andC12, are stored in the first processor and the
rest two rows, i.e., blocksC22, C23 (second row) andC33 (third row), are stored in
the last processor. The upper right block of the inverse of this 3×3 block matrix is the
desiredA−1

1,N which can be computed directly.

3. Third Stage:Computation of the transmission coefficient

At the last stage, there remain a few multiplicationsc of the blocks that are included
inside the Fisher-Lee relation and are all known for the evaluation ofT (E). These
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operations are performed sequentially by the first processor. The numerical complexity
for this last stage can be evaluated as,

C3 ≈ cM3

and sincec is a small constant, in the limit of largeN , C3 can be absorbed inC1.

The numerical complexity of the parallel algorithm scales as:

Cpar(N, M, p) ≈ C1 + C2 + C3 ≈ 7
N

p
M3 + 5log2(p)M3 (3.1)

and the corresponding sequential (p = 1) one, as:

Cseq(N, M) ≈ 7NM3

We should remark that the algorithm developed here holds equally for scattering regions
with complex boundary conditions, i.e., blocksAij with varying sizes, and can be general-
ized to the geometry of3D scatterers in a straightforward manner. We further remark that
one could reduce the number of numerical operations that scale with M3 at the first stage,
however for the purposes of the present analysis that servesas a tool to identify the sources
of computational cost this is not unique and therefore not necessary.

3.3 Numerical benchmarks

3.3.1 Metrics for the analysis of performance and scalability

In this section an analysis of the performance and scalability for two specific numerical
benchmarks will be pursued. This is required in order to testthe models for the numerical
complexity we derived so far and to demonstrate a measure forthe capabilities and optimized
use of the proposed algorithm. To proceed with such an analysis it is necessary to define
some characteristic quantities for our parallel algorithmfollowing Ref. [26]. Firstly, we
define the problem size:

W (N, M) = 7NM3

which is the number of numerical operations in the sequential algorithm (p = 1), i.e., the
RGF approach, and is also equal to the serial run timeTs if a unit of time corresponds to each
numerical operation. The cost of simulating the parallel algorithm on a single processor is:
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pTp(N, M, p) = pCpar(N, M, p) = 7NM3 + 5 p log2(p)M3

whereTp is the parallel run time corresponding toCpar(N, M, P ) if we assume a unit
of time for each computational step. The overhead functionT0 of the parallel algorithm is
defined as:

T0(M, p) = pTp − W = 5 p log2(p)M3

and determines the part of its cost that is collectively spent by all processors compared
to the sequential algorithm. The sources of overhead of a parallel system can be in general
attributed to interprocessor communication, load imbalance and extra computational time
due to a part of the program that is not parallelizable. In ouralgorithm the dominant contri-
bution to the overhead results from the amount of operationsduring the cyclic elimination of
the processors. The extra computational time required for the evaluation of the Fisher-Lee
relation (this is the only not parallelizable part) can be neglected in the limit of largeN . As
far as load imbalance is concerned, the two numerical benchmarks to be investigated will
show a different significance of this source of overhead. Finally, we define the efficiency of
the parallel algorithm as:

F =
W

pTp

=
7NM3

p
(

7N
p
M3 + 5 log2(p)M3

) =
1

1 + 5 p log2(p)
7N

(3.2)

From this relation, we conclude that the efficiency is independent of the size of blocksM
and depends only on the longitudinal length of the scattererN and the number of processorsp

participating in the computation. Moreover, by scaling appropriatelyN with p, it is possible
to maintain the efficiency fixed, a property met in scalable parallel algorithms. From Eq.
(3.2) we can define the isoefficiency function:

W = KT0

whereK = F/(1 − F ) is given for a specificF . For fixedK we can arrive at the
following relation forN andK:

N =
5

7
Kp log2(p) (3.3)

Therefore, our algorithm can be cost-optimal if we chooseN = 5
7
Kp log2(p) and scal-

able if we increaseN with rateO(p log2(p)). On the other hand, for a fixed size problem,
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i.e., keepingN andM fixed, we observe that the efficiency decreases with increasingp as a
consequence of Amdahl’s law (see Eq. (3.2)). Here some final remarks are in order. In the
quantities defined so far, we have assumed lattices of uniquesizeN × M for the discretiza-
tion of the scattering regions (perfectly load balanced problems). In addition, the time spent
for the interprocessor communications due to message passing is neglected. This is due to
the increased granularity of the block tridiagonal system,resulting in a better efficiency of
the parallel algorithm. Finally, our numerical procedure is validated with results obtained
independently by the numerical code TIMES (Transport In Mesoscopic Systems) used e.g.
in recent studies of normal-superconducting hybrid systems [27].

3.3.2 Billiard in a magnetic field

The first numerical benchmark to test the performance of our algorithm is a rectangular
billiard in a homogeneous magnetic field. Modified billiardsprovide a class of systems for
testing the correspondence between quantum and classical transport. The magnetic field is
included with the Peierl’s substitution and is present onlyin the billiard, so that we end up
with a perfectly load balanced problem with respect to the numerical work loaded to each
processor. This system represents therefore an excellent example for testing the models of
complexity developed in subsection 3.3.1. For the purpose of the current investigation we
avoid, therefore, to use leads as an intermediate step for the application of the magnetic
field [28,29], since this would lead to a load imbalanced system. Figure 3.4 shows the setup.

y = ma

x = na

~B

Figure 3.4: Setup of a rectangular billiard attached to two reservoirs with n = 0, 1, . . . ,N − 1 slices

of m = 0, 1, . . . ,M − 1 sites each, used in the fixed-size efficiency calculations. The ratio of the two

dimensions isN
M

= 8
5 .

The first setup to test the performance of our algorithm uses a400 × 250 lattice for the
discretization of the billiard (ten times resolved compared to the one of Figure 3.4). The
first type of analysis consists of keeping the lattice fixed and studying how the efficiency of
the problem scales with increasing the number of processors. We remind the reader that the
total cost of the parallel algorithm is dominated by the costfor the evaluation of the Schur’s
complement block and the cost due to the cyclic reduction of the processors (see Eq. (3.1)).
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Table 3.1 shows the times measured for the evaluation ofT (E, B) at a fixed energy E and
magnetic fieldB.

Table 3.1: Measured time (Time) and efficiency (F ) as a function of the numberp of the processors

for a rectangular billiard in a magnetic field with fixed sizeN = 400 andM = 250.

p Time (sec) F p Time (sec) F p Time (sec) F

1 1723.58 1.0 14 136.82 0.9 48 53.78 0.668

2 871.94 0.989 16 120.09 0.897 56 49.31 0.624

4 444.75 0.969 20 99.84 0.863 64 45.33 0.594

6 300.57 0.956 24 86.57 0.83 80 39.68 0.543

8 229.18 0.94 28 77.58 0.793 96 38.49 0.466

10 185.61 0.928 32 69.51 0.775 112 35.16 0.438

12 158.46 0.906 40 59.11 0.729 128 34.27 0.393

At this point we note that the system used for the time measurements has been a Linux
cluster of256 nodes with Dual AMD Athlon1.4 GHz processors of2 GB RAM each [30].
Efficiency is1.0 for p = 1 and gradually decreases withp due to the fact that with increasing
p, the term in equation (3.1) proportional tolog2(p), i.e. attributed to interprocessor commu-
nication, dominates with respect to the other term that decreases withN

p
, thereby decreasing

the efficiency of the proposed algorithm.
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Figure 3.5: Efficiency F as a function of the numberp of processors. The dots correspond to the

measured efficiency and the solid curve to the theoretical model employed.

Figure 3.5 shows the efficiencyF as a function of the numberp of processors according
to the performed time measurements (dots) compared to the analytical curve of Eq. (3.2).
We observe that the agreement between the theoretical modeland the measurements is very
good. Therefore, we conclude that the dominant sources of numerical load have been suc-
cesfully identified and weighted. Further sources of overhead, such as the time required for
interprocessors’ communication, could be neglected as thework load is dominated by the
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amount of numerical operations that scale withM3, i.e., multiplications and inversions of
M × M blocks.

The next step in our analysis is to perform a size scaling experiment. The aim of this
test, is to scale the size of the problem such that the efficiency is kept fixed. As we saw
from Eq. (3.2) the efficiency is independent of the size of thetransversal dimensionM and
depends only on the size of the longitudinal dimensionN and the number of processorsp.
Therefore, by scaling appropriatelyN with p it is possible to arrive at a fixed efficiencyF of
the algorithm. According to equation (3.3) forp = 2 processors the efficiency can be0.848

if we chooseN = 8. If we keep increasing the number of processorsp and the size of the
systemN , keepingM fixed, according to the relation:

N ′ = N
p′log2(p

′)

plog2(p)

whereN ′ andp′ are the new size of the system and the new number of processorsre-
spectively, then we expect that the efficiency will stabilize around84.8%. Table 3.2 shows
the efficiency for the scaled size problem.

Table 3.2: Efficiency (F ) as we increase the longitudinal dimensionN of the billiard with the number

of the processorsp according toN = O(plog2(p)). We keepM = 100 fixed.

N ; p Ts (sec) Tp (sec) F

8; 2 1.1 0.68 0.816

32; 4 4.76 1.44 0.826

96; 8 14.27 2.17 0.822

256; 16 38.32 2.82 0.849

640; 32 95.25 3.54 0.841

1536; 64 228.79 4.27 0.837

3584; 128 534.06 5.04 0.828

8192; 256 1222.07 5.82 0.82

We observe that the efficiency is stabilized between0.81 and0.85 thereby confirming
our prediction. The sources of these slight deviations could be attributed to some enhanced
contributions of time spent in interprocessor communications. Therefore our models provide
a reliable source for the estimation of the computational cost. Table 3.2 shows that the larger
the size of the systemN , the larger becomes the efficiency. Therefore, our parallelalgo-
rithm is suitable for large systems, in particular of enhanced longitudinal dimension. Scat-
tering problems with complex structures could be disentangled into modules with arbitrary
complexity, of which the computation could be done efficiently by one processor. Cyclic
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reduction among the processors would join the information of the individual modules. If the
computational complexity of a module is particularly enhanced for one processor, then more
processors could be employed.

3.3.3 Sinai billiard

The second numerical benchmark corresponds to a category ofscatterers with enhanced
complexity. It consists of a Sinai billiard. This setup has been chosen for simulations in
Ref. [31]. The numerical challenge imposed hereby is the exact reproduction of the antidot’s
circular shape in the continuum limit.

(a) (b) (c)
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Figure 3.6: (a) Open scattering geometry of a Sinai billiard. Subfigure (b) shows the isolated scatterer

on a49 × 49 grid of points and widthW = 10a. Subfigure (c) shows the same setup but four times

resolved. The thickness of the border lines in (b) and (c) provide a measure of the lattice constant.

Figure 3.6 shows the discussed geometry. Subfigure 3.6-(a) shows the open geometry
and dimensions of the Sinai billiard, while in 3.6-(b) the isolated Sinai billiard is discretized
on a49 × 49 grid of points. On such a small grid the antidot has, on the scale of Fig. 3.6-
(b), the shape appearance of a polygon. Subfigure 3.6-(c) shows the same setup of the Sinai
billiard but on a grid which is four times resolved compared to 3.6-(b), i.e., a399×399 grid.
The latter is going to be our fixed input size for the time measurements as we increasep.
At this point we remark that the antidot has hard wall boundaries, i.e., the sites which form
the antidot are excluded from the computation, thereby leading to blocksAij with varying
dimensions. Table 3.3 shows the efficiency measured for the evaluation ofT (E) at a fixed
energy E as a function ofp.
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Table 3.3: Measured time (Time) and efficiency (F ) as a function of the numberp of the processors

for a Sinai billiard. The latticeN = 399 andM = 399 is kept fixed.

p Time (sec) F p Time (sec) F p Time (sec) F

1 13490.83 1.0 14 1201.49 0.802 48 417.8 0.673

2 6791.23 0.993 16 1058.31 0.797 56 379.9 0.634

4 3917.2 0.861 20 855.45 0.789 64 343.87 0.613

6 2689.56 0.836 24 734.14 0.766 80 271.07 0.622

8 1974.65 0.854 28 655.5 0.735 96 267.04 0.526

10 1649.51 0.818 32 571.54 0.738 112 226.92 0.531

12 1404.99 0.800 40 462.83 0.729 128 224.37 0.47

The efficiency decreases with increasingp as expected. We should note that for these
measurements equidistant domains, with respect to the longitudinal dimension, have been
distributed among the processors. However, due to the antidot’s boundaries, it becomes
clear that this kind of distribution leads to an inevitable load imbalance. The domains that
include sections of the antidot are described by blocks of smaller size compared to the ones
that are kept aside the antidot, resulting thereby in reduced computational load for the cor-
responding processors. Forp = 2, we observe an efficiency very close to100%. This is a
result of the symmetry of the geometry of the setup, which results in a load balanced prob-
lem for this specific number of processors. If we further increasep then the efficiency falls
abruptly. This result is attributed to the intensive load imbalance for few number of proces-
sors. To remedy this problem we have to choose a non-uniform domain decomposition of the
scattering region, leading, thereby, to a more fair work load for all processors. For a larger
numberp, however, this problem becomes much less intense, since thetotal cost is multiply
distributed in fairly small pieces of numerical load and theinequality among the processors,
with respect to the load they share, significantly reduces. Therefore, for rather largep, load
imbalance is not a significant source of parallel overhead, however, deviations compared to
a load balanced setup are still evident (see below).

To analytically estimate the efficiency of the parallel algorithm for the setup in discus-
sion, it is necessary to take into account the circular shapeof the antidot. For this purpose,
we divide the scatterer in two sections. One section of whichthe numerical cost scales with
N1 × M3 arithmetic operations, whereN1 the number of slices outside the antidot, and a

second one of which its computational load scales with
N2
∑

i=1

M3
i whereMi is the varying size

of the blocks of each of theN2 slices that compose the antidot. Therefore, the size of the
scattering problem is:
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W (N, M) = 7N1M
3 + 7

N2
∑

i=1

M3
i

Moreover, we assume that at the first stage of parallelization, the workW is distributed
uniformly among the processors and that at the second stage the processors that participate
in the cyclic reduction are weighted appropriately, with respect to the load that corresponds
to them. This is translated to the fact that2

5
p processors possess a work load that scales with

N2
∑

i=1

M3
i and 3

5
p processors possess a work load that scales withM3. Therefore, the cost for

the parallel algorithm will be:

pTp = 7N1M
3 + 7

N2
∑

i=1

M3
i + 3plog2(

3p

5
)M3 + 2plog2(

2p

5
)

N2
∑

i=1

M3
i

The efficiency, which is no longer independent of the size of the transversal dimension
M , will be:

F =
W

pTp

=

N1M
3 +

N2
∑

i=1

M3
i

N1M3 +
N2
∑

i=1

M3
i + 3

7
p log2(

3p

5
)M3 + 2

7
p log2(

2p

5
)

N2
∑

i=1

M3
i

(3.4)

Figure 3.7 shows the measured efficiency (dots) as a functionof p. We observe a rather
abrupt decrease ofF for a small number of processorsp < 10 which smoothens for larger
p. The solid curve of Figure 3.7 represents the analytical model of Eq. (3.4), calculated for
the399 × 399 grid of subfigure (3.6)-c.
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Figure 3.7: Efficiency F as a funtion of the numberp of processors. The dots correspond to the

measured efficiency and the solid curve to the theoretical model derived to take into account the

special geometry of the setup.
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The agreement with the measurements is quite well, however,deviations forp > 2 are
evident. Forp = 2 the prediction agrees due to the symmetric load share between the two
processors for this problem. Forp > 2, deviations are apparent due to the assumptions
within the derivation of our model. Namely, neither doesW distribute itself evenly among
the processors (load imbalance) nor is the computational load due to the cyclic reduction
weighted exactly among the processors, as we assumed. To remove the first assumption one
should proceed to an uneven domain decomposition with respect to the processors, which
would vary depending onp. We conclude thereby, that in a scattering problem of complex
geometry, the strategy to be followed in order to optimize the efficiency of the algorithm,
regarding the load that the processors share, should take into account the particular geometric
features of the scatterer.

3.4 Conclusions

A parallel algorithm for the implementation of the RGF method has been presented. The
algorithm calculates the transmission coefficient througha mesoscopic scattering sample for
a certain value of the energy or some other external parameters such as a magnetic field.
The algorithm is suited to treat complex scattering problems that cannot be handled by a
single processor on an affordable time scale. We emphasize that the algorithm goes beyond
the straightforward parallelization with respect to external parameters of the problem such as
e.g. Fermi energy or magnetic field strenth, which is much more efficient when treating prob-
lems of smaller size. For intermediate size problems, a parallelization of the total problem
with respect to the external parameters in combination withthe current proposed scheme,
taking into account its limitations, should be also considered. The structure of the algorithm
is mainly based on an initial domain decomposition of the scattering region due to proces-
sors’ subdivision and recursive computation of the Schur’scomplement block through cyclic
elimination of the processors. The computational cost due to the longitudinal dimension of
the scattering region scales linearly withp. However, the cost due to the cyclic elimina-
tion, prevents us from achieving an efficiency of100%. To demonstrate the efficiency of the
parallel RGF algorithm, we proceeded with an analysis of theperformance, scalability and
sources of overhead for two specific numerical benchmarks. The first numerical benchmark
corresponds to a perfectly load balanced setup, such as a rectangular billiard in a magnetic
field, and the derived model is in very good agreement with themeasurements. The effi-
ciency for a small number of processors is close to 100 % and increases as we increase the
size of the problem while keeping the number of processors fixed. The second numerical
example contained an additional geometrical challenge, being the exact reproduction of the
circular shape of an antidot with hard wall boundaries in a Sinai billiard. The computation
hereby required manipulation of blocks with varying sizes leading to a nonuniform numeri-
cal load for the processors participating in the computation. A model adapted to the special
geometry of this problem has been employed, which exhibitedits geometric peculiarities
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and indicated the additional source of overhead due to load imbalance. The latter is respon-
sible for the drastic decrease of efficiency even for a small number of processors and can
be remedied by a selection of non-uniform decomposed domains distributed to the proces-
sors, based on the numerical cost. From our analysis it became apparent that the parallel
RGF technique developed here, is particularly suitable formodular scattering structures of
high complexity. Parallelization in this context gives thefreedom to decompose the scatterer
into modules, the computation of each can be efficiently performed by one processor. The
optimized distribution of modules to processors depends ontheir individual complexity. In
case their complexity is enhanced, more than one processorscould be employed and the cor-
responding computational load should be shared according to the individual features of the
module.





Chapter 4

Quantum magnetotransport through
open linear quantum-dot crystals

4.1 Introduction

Single quantum dots are the solid state analogue of an atom whereas the properties of
coupled-dots may resemble that of molecules. Arrays of coupled-dots may be considered
as one-dimensional artificial crystals with the dot as repeating unit acting as the lattice basis.
If the coupling between the single quantum dots is strong enough, the electronic structure
uncovers many similarities with the subbands of quasi one-dimensional systems with a much
reduced reciprocal lattice vector in comparison to the one of the semiconductor crystal. It
is also well known that a uniform magnetic field applied to Bloch electrons yields magnetic
subbands with an overall different spectrum [32, 33]. Unlike the lack of any impact in one
dimension, in two dimensions these form the famous Hofstadter butterfly [34]. The question
to which extent there exists an observable magnetic effect for the intermediate dimensional-
ity, as in the case of an array of open quantum dots, remains open. Moreover, experimental
evidence in the literature is scarce [35, 36] and the effect of magnetic subbands is hard to
isolate in the common setup of lateral semiconductor superlattices [37]. Hence, the prospect
of measuring its properties in a simple fashion is quite attractive.

In this chapter we consider small coupled-dot arrays that present distinct spectral prop-
erties regulated via an applied magnetic fieldB. The electronic transport exhibits bright
and dark windows reflecting an electronic structure that is reminiscent of the energy bands
of the corresponding linear artificial crystal. This uniquefeature allows to explore theB-
dependence of the subbands of the quasi one-dimensional Bloch electrons. With varying
magnetic field, our calculations demonstrate qualitative (and quantitative) changes of the
bright and dark transport windows in the suggested array structure, thus, yielding a direct
signature of the magnetic subband formation in the magnetoconductance.

Coupled-dot arrays may also be used as elements in magnetoresistive devices. For ex-
ample, by manipulating Fano (anti)resonances single open quantum dots could form such

35
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building blocks or, as recently suggested, be applied as spin filters [38]. The array structure
allows the formation of wide band gaps. This enables magnetically controlled current flow to
change up to few orders of magnitude even at elevated temperatures despite thermal broad-
ening; an additional advantage is the fine tuning allowed by the coupling parameters possibly
using back gates. Such a design of chaotic and rectangular quantum dots in alignment has
been recently realized with a split-gate technique [39,40]. In the experiments of Ref. [40] the
classical dynamics of the electrons in a magnetic field triggers reflection giving rise to a large
magnetoresistance at a field slightly greater than the magnetic field Bc that corresponds to an
electron cyclotron radius equal to the sizeW of the dot, i.e.,Bc = ~kF /eW (kF is the Fermi
wavevector). However, we show that the quantum mechanical effect of magnetic subband
structure also gives significant magnetoresistance at moremoderate fields.

Furthermore, the coupling between the dots plays a significant role in the formation of
the energy bands and subsequently to the transmission mechanism. In this regard results
for several geometries, corresponding to various couplingregimes, will be exhibited and
useful conclusions on the robustness of current flow with respect to large temperatures will
be extracted. Further possibilities to improve the efficiency of the current flow will be shown
for various parameters of the materials such as electron densities and effective masses.

The chapter is organized as follows. In section 4.2 we will discuss the geometry of the
setup and the working Hamiltonian in the tight-binding representation. We further present
the results and interpret them in terms of several material parameters. The physics for differ-
ent coupling regimes and geometries of the quantum dots are discussed in the corresponding
subsections. Section 4.3 contains a presentation of the effects of decoherence and spin Zee-
man splitting. Finally, in section 4.4 we summarize our conclusions.

4.2 Linear response magnetotransport in coupled-dot ar-
rays

4.2.1 Discussion of the setup and the results

Fig. 4.1(a) shows the setup in discussion. We assume that square quantum dots of sizeW are
laterally confined near the surface of a semiconductor heterostructure by an electrostatic field
which creates effective hard wall boundaries for ballistically propagating electrons whereas
the coupled leads are modeled as discussed in chapter 2. The point contacts bridging the
dots have square geometry of dimensionsLb = D = 0.3W that are of the order of the Fermi
wavelengthλF = 2π/kF . Although quantitative details differ, our main conclusions are
independent of this simplest design.

We model the electronic structure via a single-band effective mass equation of electrons
in a magnetic field, which when discretized on a lattice, is most easily expressed in the
notation of second quantization
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Figure 4.1: (a) Schematic representation of the discussed open array ofquantum dots. (b) Upper

panel: field-free quantum transmission through a single-dot (dashed curve) and the five-dot array of

(a). Lower panel: energy spectrum of the corresponding one-dimensional artificial crystal with lattice

spacingL = W + Lb. Note that flat energy bands do not contribute to transport since electrons

acquire zero group velocity. (c) Same as (b) for a magnetic flux Φ ≈ 4.5φ0 piercing the unit cell. We

recall that the integer part ofkF D/π indicates the number of propagating channels in the leads and q

defines the Bloch vector of the periodic structure.

H(r) =
∑

r

ǫrc
†
rcr +

∑

r,∆r

(V e
2πi

A(r)∆r

φ0 c†rcr+∆r + h.c.). (4.1)

Here,∆r indicates the vector of the position of the nearest neighbors to the siter and
ǫr = 4V is the on-site energy, withV = ~

2/2m∗a2 being the hopping matrix element;
m∗ is the effective mass (fixed to0.05m0 unless otherwise stated; withm0 being the bare
electron mass) anda is the lattice mesh constant of the tight-binding grid. The magnetic field
B = Bz applied to the dot array is introduced via the vector potential A in the Peierls phase
factor;φ0 = h/e is the flux quantum. Charge transport properties are calculated within the
Landauer scattering-matrix formalism (see chapter 2) which expresses the current via eq.
(2.3),

I =
2e

h

∞
∫

−∞

T(E)(fL(E) − fR(E))dE
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in which the factor two accounts for spin degeneracy. We calculateT using the parallel
recursive Green’s functions method developed in chapter 3.As the system size increases one
needs to invert a block-tridiagonal matrix which scales linearly with the array length. For
serial processing this yields an additional cost that we avoid by distributing the scatterer’s
domain over several processors.

The upper panels of Figs. 4.1(b) and 4.1(c) show the field-free andB 6= 0, respectively,
quantum transmission in the first open channel. Transport through a five-dot array is indi-
cated by the solid curves. In contrast to the single-dot transmission spectrum - plotted in
dashed line - bright and dark windows are formed in which transport is either allowed or
suppressed. These compare well to the energy bands and gaps of the electronic structure of
the corresponding infinite linear artificial lattice, whichare shown for zero and finiteB in
the lower panels of Figs. 4.1(b) and 4.1(c), respectively. Also evident in those figures is the
strong dependence of the band structure on the magnetic flux piercing the unit cell. Broad
energy bands contribute electron states that are almost fully transmitted, whereas narrow
sections exhibit weaker transmission signals. The remarkable characteristic is that such a
transmission spectrum is already obtained for a quantum dotarray with just a few unit cells
as can be seen from the comparison of the upper and lower panels of Figs. 4.1(b) and 4.1(c).
In practice, this facilitates the realization of such a device at length scales comparable to the
electronic phase coherence length at finite temperatures sothat the features of the transmis-
sion spectrum do not wash out due to phase breaking processes. The fast convergence of the
transmission with increasing array length has previously been observed in investigations of
the conductance of oligomer-based molecular junctions [41]. Here, however, in a trade-off
with the typical linear dimension of the device it is possible to apply moderate magnetic
fields in order to manipulate the electric response; for the same magnetic fluxΦ through the
dot, the largerW is, the smaller the magnetic field needs to be sinceΦ = BW 2.

1 1.5 2
k

F
D / π

�1
0

1

∆

T=T(B)�T(0)
Figure 4.2: Magnetically controlled flow demonstrated via the profile ofthe difference of the quan-

tum transmission for the field-free andB = 0.3Bc cases.

In Fig. 4.2, we plot the transmission function difference between the field-free structure
and that at a field of strengthξ = B/Bc = 0.3. The positive and negative parts reflect
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the newly formed magnetic subband structure of Bloch electrons in the corresponding one-
dimensional artificial crystal which causes the bright and dark transport windows to occur at
different spectral positions. As discussed later, for a given geometry and Fermi energy (i.e.,
fixedkFD/π) the contrast in current flow due the differing transmissionspectra can also be
traced as a function of magnetic field to yield the evolution of the magnetic subbands. We
note that there exist broad energy ranges over which bright transport windows at non-zero
magnetic field overlap with dark areas at vanishingB, e.g., atkF D/π ≈ 1.5 andkFD/π ≈
1.67. This feature marks a mechanism for magnetically controlled current flow which can
be realized at liquid nitrogen temperatures and above as shown below.
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Figure 4.3: Linear-response magnetoconductance at various temperatures (kF D/π ≈ 1.5). Inset:

magnetic field dependence of the distance between the Fermi energyEF = 74.5meV and the band

edgeEc accounting for the resonant structure of the low-temperature magnetoconductance when

crossing occurs atB ≈ 0.12Bc ≈ 0.45T.

At this point it is instructive to interpret the system of natural units to SI units. Assuming
λF = 30nm withm∗ = 0.05m0 yieldsEF = 33meV andBc = 1.68T. Regarding dimensions
each quantum dot should beW ≈ 75nm wide and the width of the leadD ≈ 22nm at
kFD/π ≈ 1.5. The lattice spacingL is around100nm defining a total array length of
less than500nm for five coupled-dots. In a strict sense, these dimensionsdefine the range
of validity of our results regarding temperature. Apart from the thermal broadening, the
temperature controls the scattering mechanisms determining the electronic phase coherence
length. Since, so far, we have assumed that electrons are propagating coherently, the array
length must be shorter than the latter. More examples are presented in Table 4.1. These show
the interplay between linear dimensions andBc.

In Fig. 4.3, we furnish our observations with the linear-response magnetoconductance
curve at various temperatures. An overall increase of the conductance with increasing mag-
netic field strength is clearly observed. A remarkable feature is the fine peak-structure of the
magnetoconductancedI/dV at very low temperatures which is a consequence of the forma-
tion of the spectrum of Bloch electrons in a magnetic field. This is demonstrated in the inset
of Fig. 4.3. As the band structure modifies with the magnetic field, the edge of a single band
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Table 4.1: SI units atkF D/π = 1.5 assumingm∗ = 0.05m0.

λF (nm) W (nm) EF (meV) Bc(T)
20 50 74.5 3.78
30 74 33 1.68
50 123 11.9 0.6

Ec crosses the Fermi energyEF at B/Bc ≈ 0.12. When the distance|Ec − EF | vanishes
a bright transport window is induced that gives rise to the resonant structure ofdI/dV in
the sub-Kelvin regime (thick line in Fig. 4.3). Due to the well-pronounced peaks one could
think of using these as a probe for the magnetic subband structure. At higher temperatures
thermal broadening causes averaging over a larger part of the spectrum including many adja-
cent minibands and gaps. This increases the low-field conductance whereas simultaneously
decreases the corresponding higher field values.
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Figure 4.4: (Upper panel) RatioIon/Ioff of the current flow in the on (B = 0.3Bc ≈ 1.13T) and off

(B = 0) state as a function of temperature for an array ofN = 2, 3, 5 coupled-dots. (Lower panel)

Temperature dependence of theIon/Ioff ratio for various materials parameterized bym∗. kF D/π

andEF are the same as in Fig. 4.3.

A significant quantity in our design is the enhancement (on) -suppression (off) ratio of
current flowIon/Ioff in the linear response regime. In what follows, we analyze its typ-
ical behavior heading towards finite temperatures for various materials parameterized via
the effective mass by fixingkFD/π ≈ 1.5. In the upper panel of Fig. 4.4, the temperature
dependence of theIon/Ioff ratio is shown for an array with varying numberN of coupled-
dots. Remarkably enough the results hardly modify withN & 3 in support of our previous
remarks. We observe that relatively large ratios in excess of 100 can be achieved for temper-
atures up to∼ 10K and can be preserved toIon/Ioff > 10 for temperatures up to∼ 26K.
Further temperature increase makes the ratio to decay smoothly to Ion/Ioff = 2 at room
temperature. Note that this behavior may be drastically improved with a selective choice
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of materials and geometry. A search in the parameter space for the latter is presented in
the following subsections. Rather, in the lower panel of Fig. 4.4 we show how the effective
mass of common materials can be readily used in order to considerably improve the device
operation sinceIon/Ioff ratios magnify at all temperatures asm∗ decreases. Notably, for
m∗ = 0.01m0 (InSb;Bi), Ion/Ioff > 100 can be obtained up to∼ 50K and rather enhanced
Ion/Ioff > 10 can be preserved for temperatures up to∼ 100K.

So far we have presented an investigation of ballistic transport through a finite array of
coupled-dots from the perspective of a quantum mechanical magnetically tunable mecha-
nism that redefines bright and dark transport windows. The latter have been respectively
identified as the energy bands and gaps of the electronic structure of the corresponding one-
dimensional artificial crystal despite the small number of dots. Thus, by tracing their mag-
netic field dependence we showed that the precursor of magnetic subband formation in the
energy spectrum can be readily observed. The broad energy range of the transport windows
also reveals a well defined mechanism that yields magnetically controlled currents with large
enhancement - suppression ratios which can extend up to several tens of Kelvin depending
on material parameters. With present technology such a device can be realized within a
region of∼ 300 nm at a magnetic field of∼ 0.5T.

In the following let us discuss the role of the geometry of thebuilding blocks of the array,
i.e. the quantum dots and the bridging leads based on our intuition and verified by numerical
results. Firstly, we will concentrate on the role of the coupling strength between the quantum
dot as it is induced by the geometry of the coupling media. Thus, in the following sections
we will show numerical results for the strong and weak coupling regime as it is defined by
the width of the coupling leads. After the discussion of the geometry of the bridging leads
we will show some results concerning rectangular dots.

4.2.2 Strong coupling regime

We remind the reader that the underlying mechanism that induces quantum transport through
quantum-dot arrays is their artificial energy bandstructure. We have observed that broader
energy bands correspond to a transmission mechanism with robust and strong signals in
comparison to thin energy bands which induce a rather weak transmission of electronic sig-
nals. In the light of these observations, one would suggest that the optimal coupling between
the quantum dots would be the strongest possible since broadenergy bands would allow for
transparent transmission signals. Let us simulate such a scenario by increasing the fraction
of the leads’ widthD over the side of the dot toD = 0.5W .
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Figure 4.5: (a) - (b) Quantum transmission coefficients for two values ofmagnetic field and (c)

Ion/Ioff ratio for ξ = 0.7 in a strongly (D = 0.5W ) coupled array of dots withLb = 0.285W . EF

is given in units of open channelskF D/π.

Figure 4.5(a)-(b) shows the transmission coeffcient for such a geometry of leads (Lb =

0.285W ). We observe that the transmission spectra require a ratherstrong magnetic field
(ξ = 0.7) in order to be modified enough such that a sufficient suppression-enhancement
mechanism is imposed. For the setup in discussion and operation typically at1.4 open chan-
nels the magnetic fieldBc ∼ 7.389 T, i.e. a magnetic field of strength∼ 1.4 T is not sufficient
and one should use a stronger field of the order of5 T. Figure 4.5(c) shows theIon/Ioff ratios
for the latter case. Enhanced ratios larger than100 are achieved for temperatures lower of14

K whereas a sufficient portion of current flow larger than ten is preserved up to40 K. These
efficiencies are indeed better than the ones achieved before, however, the large magnetic field
is not so preferable with respect to our switching mechanism.

Further, in Figure 4.6 we present results for leads of the same width but with larger
lengthLb = W . The conclusions that were extracted for shorter leads’ length (Lb = 0.3W )
hold equally for the case presented here, i.e. much strongermagnetic fields are required to
modify the transmission spectra. In subfigure 4.6(c) we present theIon/Ioff ratios which are
comparable to the ones of subfigure 4.5(c) howeverIon/Ioff > 10 extends to44 K.
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Figure 4.6: (a) - (b) Quantum transmission coefficients for two values ofmagnetic field and (c)

Ion/Ioff ratio for ξ = 0.7 in a strongly (D = 0.5W ) coupled array of dots withLb = W . EF is

given in units of open channelskF D/π.

Thus, we conclude that leads that are strongly coupled to thearray correspond to a more
robust transmission mechanism on the expense of a stronger magnetic field required to pro-
voke a sufficient current flow.

4.2.3 Weak coupling regime

On the contrary, thin energy bands induce a a less clear transmission of electrons in the
sense that apart from its small width the transmission coeffcient does not even approach
one (see for example subfigures 4.1 (b) and (c)). Significant changes in the transmission
spectra are indeed invoked by much weaker magnetic fields. Inour simulations the weak
coupling regime corresponds toD = 0.2W and for an operation at typically1.4 open chan-
nelsBc ∼ 2.955 T. The following results hold forLb = 0.3W . In Fig.4.8(a) we observe
that atEF = 1.81 channels there is a bright window forB = 0 T which is suppressed to
dark for alreadyξ = 0.2. Fig.4.8(b) shows theIon/Ioff for this set of parameters; the ef-
ficiency is however rather poor. The result does not significantly modify even if we further
increase the magnetic field toξ = 0.7. In subfigures 4.8(e)-(f) we present the transmission
coefficient (left column) andIon/Ioff ratio (right column) for an intermediate lead which
is considerably longer, namelyLb = W . The results do not show severe modifications in
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comparison to the cases with shorter length and they lead us to conclude that the thin energy
bands provide a transmission and subsequently current flow that is insufficient to provide a
switching mechanism even when we apply rather strong fields.
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Figure 4.7: Quantum transmission coefficients (left column) andIon/Ioff ratios (left column) for

a weakly (D = 0.2W ) coupled array of dots. Subfigures (a)-(d) correspond toLb = 0.3W and

subfigures (e)-(f) correspond toLb = W . EF is given in units of open channelskF D/π.

For the purposes of our study we have investigated so far several geometries of the cou-
pling media that belong either to the strong or to the weak coupling regime. We have seen
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that the former require strong magnetic fields so as to modifyenough, the latter however
provide a mechanism that is insufficient to cause enough portion of current flow. The op-
timal solution has proven to be the regime of intermediate coupling strength, i.e. the one
whereD = 0.3W . Regarding the lengthLb of the coupling leads, analogous changes in the
transmission spectra have been induced by various values ofLb, however the best qualitative
results have been obtained for the chosen value ofLb = D.

4.2.4 Quantum dots of rectangular shape

Concerning the geometry of the quantum dots we have also performed simulations for rect-
angular shaped dots. By reducing the length of the dots and keeping their width constant,
we effectively change the coupling between them, since one of their dimensions becomes
comparable to the width of the leads leading to the strong coupling regime. In Fig.4.8 we
present the transmission coefficients for dots with lengthLd = 0.3W . Subfigure (a) corre-
sponds toD = 0.3W and (b)D = 0.2W . We observe broad bright windows which show
an even more robust behaviour as it has been expected. Our results confirm this statement
and therefore we conclude that rectangular shape quantum dots rather complete than suit to
the purposes of our analysis. The above mentioned argumentshave led us to the choice of
the square geometry for the dots of the array, which we believe gives better response in an
environment of finite temperatures.
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Figure 4.8: Quantum transmission coefficients for quantum dots of rectangular shapeLd = 0.3W

for (a) D = 0.3W and (b)D = 0.2W and several magnetic field strengths.EF is given in units of

open channelskF D/π.

Hence, we conclude that optimal shape for the quantum dots should belong to the square
geometry.
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4.3 Discussion of spin splitting

Some further comments concerning our investigations are inorder. During our calculations
we have neglected the Zeeman energy splitting due to the applied magnetic field. In the
however non-negligible Zeeman term, the two-fold spin degenerate energy bands split and
their positions are symmetrically shifted with respect to with spin up and down electrons.
The energetical shift is given by,

ES = ±1

2
g∗µBB (4.2)

where the Bohr magnetonµB = ~

2m0
and within our calculationsB = ξBc = ξ nch~π

eDW
.

The variablench = kF D
π

denotes the number of open channels. In the system of natural
units that we have introduced,~ = 2m∗ = a = e = 1 and therefore the contribution of the
Zeeman energy term simplifies toES = ±1

2
g∗c∗ξ nchπ

DW
where the dimensions of the physical

system are now given in units of the lattice constanta (m∗ = c∗m0). Let us now estimate
its contribution to the total energy of the system for a GaAs material with effective mass
m∗ = 0.067 and Landé factorg∗ = −0.44. In our calculations the typical strength of the
magnetic field isξ = 0.3. By taking into account these values, the correction to the energy
due to the Zeeman term for operating at the maximalistic value of nch = 2.5 channels is
of the order of10−5V . One up to three open channels correspond to a Fermi energy that
ranges typically between∼ 0.05 − 1.5 in natural unitsV and therefore we are justified in
neglecting the Zeeman contribution to the energy of the system. Although the Zeeman term
turns out to be negligible, we do not consider that spin-selective transport spoils our results.
On the contrary we believe that in the strong magnetic field regime it would much improve
them, in the sense that spin filtering for at least one spin component would become much
more enhanced in comparison to its counterpart that would besuppressed, leading to the
functionality of our array as a spin filtering device. We remark however that the magnetic
field should be particularly stronger, therefore departingfrom the purposes of the present
investigation.

4.4 Conclusions

To summarize, we have presented an investigation of linear quantum transport through an
array of a varying small number of quantum dots. Our results have shown a well defined
enhancement - suppresion current flow mechanism, which is induced by the electronic band
structure of the periodic system and is robust for several tens of Kelvin in a region of∼ 300

nm with a field strength of the order of∼ 0.5 T. The geometries of the array’s ingredient
units have been discussed in the light of robust on/off ratios. We have concluded that the
optimal switching mechanism is provided by an intermediatecoupling between the quantum



4.4 Conclusions 47

dot cells which is translated toD = 0.3W . Stronger or weaker couplings offer various setups
with potential advantages which however cancel in the view of our calculations. Quantum
dots of rectangular shape have shown an effective stronger coupling if one of their dimension
becomes comparable with the dimensions of the leads. Additional possibilities to increase
the efficiency of theIon/Ioff ratios have been investigated for several materials.





Chapter 5

Short review on the field of closed
quantum dots and motivaton

5.1 Electronic structure of quantum dots

So far we have viewed the quantum dots (QDs) in terms of a two-dimensional electron
gas which with applying external electrostatic voltages, one can restrict the space of the
electronic motion thereby imposing hard wall boundary conditions for it. So far we have
investigated ballistic transport with respect to the fact that transmission is defined in by the
sample’s boundaries. In this regard we have used the terminology “open quantum dots” in
order to indicate the fact that the single-electron picturehas provided a reliable description
of the physics in systems strongly coupled to the environment. In the following chapters we
are going to deal with the physics of a system in which a bunch of electrons is severely re-
stricted or ”isolated” from its external environment, i.e.the leads. In these systems, i.e. that
are weakly coupled to the external environment, transport is dominated by their many-body
electronic structure. In order to make the link to the Landauer formalism one could think
that to a first order the effect of the couplingΓ(E) to the external environment broadens
the energy levels. The weaker the coupling is the less overlap between the energy levels is
observed and therefore transport through the quantum dot issolely defined by its electronic
structure. In this sense quantum dots have established fascinating laboratories for the ob-
servation of many kinds of atomic-scale phenomena in a controlled manner due to the fact
that their shape and number of confined electrons can be controlled experimentally. Several
books [42, 43] and reviews [44, 45] have offered detailed insight in the physics of these low
dimensional quantum confined structures at both a theoretical and experimental level.

Electrostatic confinement can be usually well approximatedby a parabolic well, at least
in the few electron regime. So far many theoretical investigations, have assumed a circular
symmetry of the confinement, while the number of electrons ranges from a few to many hun-
dreds. In beautiful analogy to the atomic shell structure a two-dimensional single-particle
harmonic oscillator model has provided a fairly good description of the quantum dot shell

49
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structure [44]. This fact is further supported by experimental measurements in which the
magic numbers, i.e. number of confined electrons belonging to a shell, that are observed in
the addition energy spectra are in good agreement with thosefor circularly symmetric QDs
e.g. in [45–48]. Excitation spectra of QDs can be also probedby single-electron transport
spectroscopy [47, 49]. From a theoretical point of view, oneof the most powerful tools to
study the electronic properties of few-electron quantum dots in a ’clean’ and accurate way,
is the configuration interaction method which has been extensively employed [50–72]. Ad-
ditionally, the few-electron problem allows to apply various other theoretical approaches
such as perturbative techniques [73–76], semiclassical analysis [77–79] and Padé approxi-
mation [80].

Imposing external magnetic fields leads to a variety of new and unexpected properties.
The ground state parity oscillations [81,82] or the magic numbers in the angular momentum
[50,53,83–86] are beautiful manifestations of the response of the interelectronic interaction
to the magnetic field. Experimentally, the magnetic field hasbeen a useful tool for probing
the electronic structure of QDs. Hence, the change of the ground state parity was identified
as a kink in the addition energy spectra [87–91] and the excitation spectrum of a QD could be
probed and compared with exact calculations [45,47]. Moreover, the response of the many-
electron QD to magnetic fields has revealed further rich scenarios. For the low-field regime,
the measurements were explained within the constant-interaction model taking into account
the exchange interaction between electrons with parallel spins [46]. For higher field strengths
the enhanced many-body correlations triggered different mechanisms for the reconstruction
of a stable electronic configuration, the so called maximum density droplet. Examples are
the formation of a hole in the center or at the edge of the QD or aspin texture [92].

For a parabolic confinement which is elliptically deformed,the rotational symmetry is
broken altering the dot’s atomic-like properties [44, 93].The reduction of the symmetry
lifts the degeneracies of the single-particle excitation spectrum and affects the selection
rules by producing coupling effects between the states [94]. Several theoretical investiga-
tions [94–105] have demonstrated the effect of anisotropy.The pattern in the addition en-
ergy spectra is much less pronounced, even for small deformations, and vanishes for stronger
anisotropies. Furthermore, it might affect spin configurations, which are found to obey the
Hund’s rule for small QDs while for larger ones Hund’s rule issupressed to a more Pauli-
like behavior [98, 104]. For example, with increasing deformation, the ground state of four
electrons undergoes a transition from a spin-triplet (due to the Hund’s rule for circular sym-
metry) to a spin-singlet state. Other interesting effects arise from the possibility of tuning
the degree of degeneracy in the single-particle spectrum bychanging the anisotropic har-
monic configuration. At various configurations we encounterin the corresponding spectra
degeneracies and shell structures thereby predicting other sets of magic numbers for the shell
closures. However, the reduced energetical spacing between the shells renders it more com-
plicated to be observed experimentally [93,105,106]. Dynamically, the anisotropy serves as
a rapid path to chaos in the interacting system leading to an interplay of chaos and integrabil-
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ity [107,108]. A variety of numerical approaches has been applied in order to investigate the
lowering of the symmetry in the electronic properties of QDs. These include configuration
interaction [94–97, 107–110], Hartree [111], Hartree-Fock [98] and spin-density functional
theory [100, 103–105, 112, 113]. The effect of the magnetic field on the shell structure of
asymmetric quantum dots has also been discussed both theoretically [114] and experimen-
tally [93, 115]. The investigations performed so far, use mainly a quasi two-dimensional
model for the QD. In three dimensions anisotropies have beenintroduced along the z-axis
of the confinement [116] and symmetries are controlled via anexternal magnetic field [117].
Three dimensional cylindrical [77, 82, 117, 118], ellipsoidal [119–121] or lens-shaped [122]
QDs have also been studied.

In the following two chapters we are going to focus on closed quantum dots which con-
tain two electrons electrostatically confined by a two-dimensional anisotropic harmonic os-
cillator potential. The working Hamiltonian is of fundamental interest since it describes two
interacting charged particles in an anisotropic confinement and beyond the quantum dot it
could equally describe ions that are trapped in external fields. Hence, we are provided with
an ideal laboratory to investigate the effects of electron-electron interaction and anisotropy
in the dynamics, electronic structure and quantum chaos in isolated quantum dots. Due to the
small number of particles, by applying a configuration-interaction approach in combination
with the numerical method introduced for the evaluation of the electron-electron integrals in
appendix A, it is possible to obtain a global view on the excitation spectra. We study many
excited states for the complete range of anisotropies, i.e.from a circular to an elliptically
shaped and in the limit a wire-like dot. An amazing variability and complexity of dynam-
ical and spectral properties occur as a result of various configurations of the confinement.
Quantum manifestations such as energy gaps and level clustering on the one hand and level
repulsion and avoided crossings on the other hand, are accompanied by the interplay of inte-
grability and chaos in the corresponding classical dynamics. The fingerprints of the chaotic
dynamics in the spectra for general anisotropies will be shown. Further quantities such as
charge densities are studied to elucidate the effect of the elliptical confinement on the in-
teracting system. Chapter 6 deals with the situation where no magnetic field is applied. By
imposing an external magnetic field the ground state parity symmetry oscillates between spin
singlet and spin triplet symmetry, a sound effect of the Coulomb interaction between the two
electrons. The deformation of the confinement potential andthe inclusion of the spin Zee-
man splitting in the energy of the ground state causes oscillations’ crossovers which occur
at unique positions in the space of the magnetic field strength and shape of the dot. Usually
these crossovers can easily be identified experimentally bya kink in the conductance. As
a result we have concluded that information about the exact shape of the dot’s confinement
can be extracted if one compares the position of the experimental kink with our theoretical
calculations. The results for finite magnetic field will be presented in chapter 7.





Chapter 6

Electronic properties of two-electron
anisotropic quantum dots

6.1 Introduction

In this chapter we are going to present a detailed investigation of the effects of Coulombic in-
teraction and anisotropy on the electronic structure and dynamical properties of two-electron
quantum dots. The system is found to be integrable for two frequency ratios and the exci-
tation spectra exhibit remarkable spin symmetry properties originating from the symmetries
of the quantum operators belonging to the integrals of motion. The implemented numerical
algorithm for the evaluation of the electron-electron integrals allowed for the efficient and
accurate evaluation of several hundreds of energy levels. Hence, we managed to trace the
chaotic dynamics in terms of a statistical analysis of the fluctuation properties of the energy
levels for a mixed phase space. The structure of the energy level spacings is analyzed in
detail. It shows unique characteristics for several cases:for very strong anisotropies, i.e. for
the wire-like limit, the dynamical properties comprise thecomplete regime from softly in-
teracting to kicked oscillators while the quantum counterpart sustains Wigner crystallization
and exhibits intriguing patterns in the spectral sequence of level spacings. Further quantities
such as the charge density are studied to elucidate the effect of the elliptical confinement on
the interacting system..

This chapter is organized as follows. In Sec. 6.2 we formulate the Hamiltonian of the
electronic motion and discuss its general properties. Additionally, we present our compu-
tational method. In Sec. 6.3 we present and analyze our results on the QD for various
configurations by changing the tunable anisotropy parameter. Finally in Sec. 6.4 we provide
our conclusions.

53
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6.2 Hamiltonian and computational method

Two conduction band electrons confined in a two-dimensionalanisotropic quantum dot in
the effective mass approximation are described by the HamiltonianH = HCM + Hr with

HCM =
1

4me

P2 + meω
2
o

(

cos2φ X2 + sin2φ Y 2
)

(6.1)

Hr =
1

me

p2 +
me

4
ω2

o

(

cos2φ x2 + sin2φ y2
)

+
e2

4πǫǫo |r|
(6.2)

whereme, ǫ, ωo, φ are the electron effective mass, dielectric constant, the characteristic
oscillator frequency and the anisotropy parameter, respectively. Small and capital letters
refer to the relative and center of mass (CM) degrees of freedom, respectively.

Quantization of the CM harmonic oscillator motion given byHCM is straightforward.
Direct observation of the electronic properties due toHr via far infrared spectroscopy is
prohibited, since radiation in the dipole approximation contains only CM degrees of freedom
and decouples from the relative motionHr. This property is discussed in Maksym and
Chakraborty [50], Bakshiet al [123] as well as Peeters [124] and is in principle due to
the Kohn theorem [125–127]. In the following we focus on the non-trivial relative motion
governed byHr.

To simplify our Hamiltonian we apply a canonical transformation, x = lx′, y = ly′,
px = p′x/l, py = p′y/l thereby scalingHr into a dimensionless one, viaHr = ~2

ml2
H′

r. For a
GaAs substrate the effective unit of energy and length translate into: the effective Rydberg
Ry∗ = 11.8meV and the effective Bohr radiusl = 9.8 nm (~ωo = 4.96meV). This scaling
yields the following expression for the dimensionless Hamiltonian of the relative motion,

Hr = − ∂2

∂x2
− ∂2

∂y2
+

1

4
ω2

o

(

cos2φ x2 + sin2φ y2
)

+
1

√

x2 + y2
(6.3)

in which the primes have been dropped for simplicity.Hr belongs to theC2v point-
group with parity (r → −r) as well asx- andy-parity being symmetries. Hence, due to the
Pauli exclusion principle, spin singlet eigenfunctions (even spatial symmetry) can either have
odd-odd (−−) or even-even (++) x-y-parity, and spin triplet eigenfunctions (odd spatial
symmetry) odd-even (−+) or even-odd (+−) x-y-parity.

For the investigation of the properties of the two-electronQD we solve the Schrödinger
equation for the HamiltonianHr using a variational full configuration interaction approach
leading to an algebraic eigenvalue problem. For convenience (see below) we write eq.(6.3)
asHr = (Hr −H0)+H0, whereH0 is the two-dimensional anisotropic harmonic oscillator
Hamiltonian,
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H0 = − ∂2

∂x2
− ∂2

∂y2
+

1

4
ω2

o

(

cos2φ x2 + sin2φ y2
)

(6.4)

In our approach we use the basis set comprising the eigenfunctions ofH0

Ψnxny
=

4
√

ωxωy/4
√

π2nx+nynx!ny!
Hnx

(
√

ωx/2 x)Hny
(
√

ωy/2 y)exp(−ωx

4
x2 − ωy

4
y2) (6.5)

The off-diagonal part of the corresponding Hamiltonian matrix is due to the electron-
electron Coulomb repulsion. The electron-electron integrals can be evaluated analytically
yielding a fourfold series. Unfortunately, and despite theclosed form of the analytical ex-
pressions, their evaluation turns out to be numerically unstable. To remedy instabilities, we
have used an efficient numerical technique for the evaluation of the Coulomb matrix ele-
ments which is described in appendix A. At the same place we provide convergence tests for
comparison of our method with respect to analytical attempts to remedy the instabilities.

6.3 Results and discussion

Figure 6.1 (a) shows the evolution of the energies of the firstone hundred energetically low-
est even-evenx-y-parity states (even parity) with respect to the anisotropyangleφ. For
φ = 45◦ the dot acquires a rotational symmetry and the Hamiltonian is integrable. Electron-
electron interaction lifts the degeneracies in the even-evenx-y-parity states. The energy lev-
els, though non-degenerate, group in clusters and form energy gaps which are particularly
pronounced in the higher excitation spectrum. By departingfrom integrability thereby grad-
ually introducing anisotropies in the shape of the confinement potential the clusters widen
and the energy levels interact thereby showing avoided crossings. The inset in Fig. 6.1(a)
illustrates this for a certain window of energies and anisotropies. In the regime of inter-
mediate anisotropies we observe pronounced clustering of the energy levels specifically for
ωy : ωx = 2 : 1. The width of the energy gaps is however smaller than the one of the
isotropic case. By further increasing anisotropy, we observe an interplay of avoided cross-
ings and level clustering at certain frequency ratios. Figure 6.1(b) portrays the energy levels
at ωy : ωx = n : p, n, p ∈ N ∗, (N ∗ being the set of positive integers) in comparison with
those of the non-interacting system (set of two-dimensional anisotropic harmonic oscilla-
tors). For the ratiosωy : ωx = n : 1, we observe level clustering, particularly forn = 2, 3.
For n > 3 the shell structure is much less pronounced. At ratiosωy : ωx = n : p for
n, p > 1, for which a rather high degree of degeneracy occurs in the non-interacting system,
the shell structure tends to vanish with increasingn, p. In between the angles corresponding
to the low-order ratiosn : p mentioned above, avoided crossings dominate the spectra. In
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Figure 6.1: (a) The spectrum for the first hundred even-evenx-y-parity states of the anisotropic QD

as a function of the anisotropy angleφ. The inset shows an enlargement for a certain subinterval of

energies and angles. (b) Sketch of the shell structure of theenergy levels for several frequency ratios

ωy : ωx = n : p. The first column corresponds to the non-interacting systemwhile the second one is

for the interacting system.

the following subsections we present a detailed investigation of the two-electron dot for the
specific regimes of anisotropy we mentioned above.

6.3.1 Isotropic parabolic confinement

In this case the Hamiltonian of the relative motion of equation 6.3 takes the form, in polar
coordinates (ρ, θ),

Hr = −
(

∂2

∂ρ2
+

1

ρ

∂

∂ρ

)

+
L̂2

z

ρ2
+

1

8
ω2

oρ
2 +

1

ρ
(6.6)

Hr is rotationally symmetric, i.e. it belongs to theC∞v group, andLz is conserved. The
classical Poincaré Surface of Section (PSOS) in Fig. 6.2 demonstrates integrability.
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Figure 6.2: Classical phase space (x, px for y = 0) for φ = 45◦ andE = 55 meV.

The eigenstates of this Hamiltonian have been obtained bothanalytically [73, 118, 128] and
numerically [51,59]. Table 6.1 includes the first low-lyingexcited eigenstates (calculated in
effective units) with their symmetries and their magnetic quantum numbersm.

Table 6.1: The sequence of energetically lowest energy levels for isotropic parabolic confinement.

Spin symmetry is denoted by s (spin singlet) or t (spin triplet) and the spatial symmetries by the

brackets (x-parity,y-parity) where the sign+ stands for even and the sign− for odd parity.

Energy (e.u.) symmetries m Energy (e.u.) symmetries m

0.776 (s) (++) 0 1.668 (s) (++) (−−) ±4
0.907 (t) (+−) (−+) ±1 1.713 (s) (++) (−−) ±2
1.136 (s) (++) (−−) ±2 1.873 (s) (++) 0
1.316 (s) (++) 0 1.947 (t) (+−) (−+) ±5
1.396 (t) (+−) (−+) ±3 1.978 (t) (+−) (−+) ±3
1.471 (t) (+−) (−+) ±1 2.044 (t) (+−) (−+) ±1

We observe an arrangement of states with respect to their parity. Hence, the ground state
is a spin singlet state and the first excited state a spin triplet. Excited states arrange either in
groups of spin singlet (evenm) or spin triplet (oddm) symmetry with an increasing range
of magnetic quantum numberm as the energy increases. The states form 6= 0 are two-fold
degenerate with respect to the sign ofm. In the following we study the discrete energy level
spacing (ELS)∆Ei = Ei+1 − Ei as a function of the energyEi, for the states with even-
evenx-y-parity. Fig. 6.3 shows∆Ei(Ei) for both the non-interacting (inset) and interacting
system.

In Fig. 6.3 (inset) one recognizes the energy gaps that occurbetween the (nx+ny+1)-fold
degenerate states due to the spectrum of the harmonic oscillator. If we include the electron-
electron interaction (Fig. 6.3) well-separated energy gaps persist but the manifold due to
the harmonic oscillator splits. Remarkably enough, the sequence of the spacings typically
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Figure 6.3: Discrete energy level spacing∆Ei(Ei) for the first 100 states with (++) symmetry. The

inset shows the spectral sequence for the non-interacting system.

increases strongly up to the value of the energy gap and then,i.e. for further increasing
energy, ’collapses’ in order to increase again. Therefore we encounter a repeated stretching
phase of the level spacings for the interacting system.

-10 -5 0 5 10
x

-10

-5

0

5

10

y

(a)

-10 -5 0 5 10
x

-10

-5

0

5

10

y

(b)

-15 -10 -5 0 5 10 15
x

-15

-10

-5

0

5

10

15
y

(c)

Figure 6.4: Density plot of the square of the absolute value of the two-electron wave function in the

circular quantum dot for (a) the singlet ground state (m = 0), (b) the first excited singlet state (m = 0)

and (c) a superposition of degenerate states|Φ(m = 10) + Φ(m = −10)|2 (dark regions correspond

to low and the bright ones to high densities).

In Fig. 6.4 we provide two-dimensional density plots of the charge distribution for se-
lected states. For the ground state the charge density formsa circularly symmetric electronic
cloud which contains a central hole due to the pole of the Coulomb repulsion potential.

6.3.2 Transition regime from weak to intermediate anisotropies

The introduction of small anisotropies (with increasingφ) breaks the rotational symmetry
of the confining potential and lifts the degeneracies in the spectrum. The clusters, which
correspond to identical parity, widen and for higher energies (E & 40meV; for a measure the
ground state energy corresponds to∼ 9meV) begin to interact already for small deviations
from the circular shape e.g.φ = 48◦ (ωy

ωx
≈ 1.1). For the symmetry pure spectrum, e.g.
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Fig. 6.1(a) for the (++) states, the non-crossing rule holds and we observe a large number
of avoided crossings. The inset in Fig. 6.1(a) illustrates this for a subinterval of energies and
angles.

Figure 6.5: The Poincaré surfaces of section (x, px for y = 0) for various angles and energies.

Subfigures (a) and (b) correspond toφ = 48◦, (c) and (d) toφ = 53◦ and (e) and (f) toφ = 60◦.

For a further analysis of the effect of anisotropy, let us consider the underlying classical
dynamics. Figure 6.5 shows a series of PSOS for a range of angles in the regime we are
studying and for two significantly different energies (E = 71, 201 meV). Forφ = 48◦

(ωy

ωx
≈ 1.1) the classical phase space shows already a significant portion of chaos (subfigure

6.5(a)). With increasing energyE, the regular parts of the phase space expand. Forφ = 53◦

and E = 71 meV there are two dominating regular islands embedded in a chaotic sea.
This highly regular structure is due to the fact thatφ = 53◦ is close to the frequency ratio
ωy/ωx = 4/3 ⇒ φ = 53.1◦, which, as we shall see later on, leads to certain dynamical and
spectral properties of the system. For higher energies, e.g. E = 201 meV, the portion of
chaos has significantly increased. Forφ = 60◦ the phase space is dominated by chaos for all
the energies considered here.
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Figure 6.6: Discrete energy level spacing∆Ei(Ei) for the non-interacting (inset) and interacting

system, for the first 100 states with (++) symmetry and various angles.

Figure 6.6 shows the ELS for the non-interacting and interacting systems forφ = 48◦,
53◦ and60◦. Forφ = 48◦ and lower energies, the single particle ELS exhibits peaks which
correspond to the energy gaps reminiscent of the isotropic case. With increasing energy,
these gaps become smaller since the lifting of the degeneracies, due to the anisotropy, leads
to widened bunches of clusters, the width of which increaseswith energy thereby decreas-
ing the gaps between the clusters. The equidistant intracluster spacings lead to the pro-
nounced plateaus. Allowing for interaction results in a similar arrangement of the main
peaks concerning the large spacings while we observe an energetical stretching i.e. raise of
the plateaus. Atφ = 53◦ the non-interacting system is, as already indicated, closeto the
rational frequency ratioωy/ωx = 4/3, which corresponds to a high degree of degeneracy
and therefore we observe level clustering, i.e.∆Ei(Ei) comes close to zero, here. The series
of the energy gaps shown in Fig. 6.6 are ascribed to the distance between these level clusters
while the very small spacings explain the fact that at53◦ we are close to the degeneracies.
In this case interaction effects lead to significant changesof the ELS ,i.e., to an overall more
irregular profile. However, major properties such as the repeated occurence of approximate
degeneracies and gaps persist. Forφ = 60◦ the inclusion of interaction results in an even
more irregular profile for the ELS, thereby preserving the decaying envelope behavior of
the non-interacting ELS. In general, one can conclude that the interaction changes the be-
havior of the ELS function significantly and only certain overall features of it are preserved
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compared to the non-interacting case.

An established tool for tracing the fingerprints of chaotic classical dynamics on the ex-
citation spectrum of the corresponding quantum system, is the study of the fluctuation prop-
erties of the excitation spectrum [129–131]. The large number of converged levels (∼ 400),
allowed us to apply the statistical measures to long spectral sequences. Standard quantities
to study are the nearest neighbor spacing distribution (NNSD) and the spectral rigidity (SR).
These universal measures should be applied to the unfolded spectrumεi = 〈N(Ei)〉 where
N(E) =

∑

i

Θ(E −Ei), with {Ei} being the discrete energy level sequence obtained by our

computational method.

For integrable generic systems the NNSD follows a Poisson distribution (PD),PP (s) =

e−s with s being the spacing between two adjacent levelsεi. The Hamiltonian (6.3) of the
relative motion is invariant under time reversal and reflection in the (x, y) plane. For these
symmetries assuming fully chaotic phase space, the statistical properties NNSD and SR of
the energy levels are predicted by real symmetric random matrices [Gaussian Orthogonal
ensemble (GOE)]. For the NNSD the behavior predicted for theGOE spectra is the Wigner
distribution,PW (s) = π

2
se−

π
4
s2

. For mixed phase space, which is typical for our system
(e.g. Fig. 6.5), the statistical distributions should be inbetween the Poisson and Wigner
ones. There are various families of distributions which have been proposed to interpolate the
NNSD for these cases. Among these are the Brody distribution(BD), [132, 133]PB(s) =

a(q + 1)sqe−asq+1
with a = Γ

(

q+2
q+1

)q+1

which interpolates between the Poisson (q = 0) and

Wigner (q = 1) distributions, and the semiclassical approximation, i.e. the Berry-Robnik
distribution (BRD), [134]PB−R(s) = (1 − q)PP (s) + qPW (s) with q being the fraction of
chaos in phase space.

The spectral rigidity∆(L) is a property attributed to the correlations between the level
spacings. For a given substretch[a, a + L] of the spectrum,∆(L) measures the mean
square deviation of the staircase functionN(ε) from the best straight line fit,∆(L) =

1
L

min
A,B

a+L
∫

a

[N(ε)−Aε−B]2dε. For Poisson spectra the spectral rigidity is given by,∆(L) =

L
15

and for GOE spectra it behaves asymptotically (largeL) like, ∆(L) = 1
π2 lnL − 0.007.

The exact formula for∆(L) is more complicated and we refer the reader to Ref.[ [129]] for
the corresponding expression.

Figure 6.7 shows the NNSD and the spectral rigidity for the unfolded spectra for the an-
glesφ = 48◦, 53◦ and60◦. Forφ = 48◦ we encounter a mixed phase space (see subfigures
6.5(a) and (b)) with the fraction of chaos varying smoothly with increasing energy between
80% for the energyE = 50 meV and50% for the energyE = 201 meV. The energy levels
used in the unfolded spectrum correspond to this range of energy. The resulting NNSD de-
viates significantly from the BRD forq = 0.5. Some of the qualitative features of the NNS
data such as the maximum of the histogram, are better described by the BD, in comparison
with the BRD. The mentioned deviation has its origin in the fact that the underlying inte-
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Figure 6.7: Statistical measures NNSD (left column) and spectral rigidity ∆(L) (right column) for

the anglesφ = 48◦, 53◦ and60◦. The spectral sequences{Ei} correspond to sets of converged states

with (++) symmetry.

grable system (without the Coulomb interaction) consists of a set of two-dimensional har-
monic oscillators whose NNS distribution behaves non-generic, i.e. non-Poissonian. [135]
Unexpectedly, the spectral rigidity follows closely the prediction of GOE. Forφ = 53◦ the
classical dot shows a mixed phase space (subfigures 6.5(c) and (d)) being however domi-
nated by two large regular islands. At this ratio (see subsection 6.3.4 for a further analysis
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on the electronic structure at the ratiosωy : ωx = n : p) the level clustering observed in
the spectrum of the non-interacting system (see Fig. 6.1(b)) occurs, in a somewhat modified
way, in the interacting system. This quantum manifestationof the high degree of regularity
in the classical phase space results in the oscillating energy gaps in the ELS’s (see Fig. 6.6
for φ = 53◦). The NNS data show an abnormal behavior compared to the theoretical predic-
tions of the BD and the PD. These two distributions were chosen because they give a better
description of the maximum of the histogram (BD) and the behavior for large spacings (PD).
The spectral rigidity shows major deviations from the theoretical predictions. Forφ = 60◦

the phase space is dominated by chaos and the fraction of chaos is roughly independent of
energy. It varies smoothly between90% and70% for the energies between50 meV and150

meV. The corresponding NNSD agrees quite well with the prediction of BRD for q = 0.8

chaos and also with BD forq = 0.9 (both approach the Wigner distribution). The spectral
rigidity follows closely the prediction from GOE spectra.

From our results we conclude that there is no universal family of distributions to describe
the NNS data for the regime with mixed phase space, except forthe case where chaos is
robust with respect to the variation of energy and in particular strongly dominates the phase
space (φ = 60◦). We ascribe the deviations from the theoretical predictions to the fact
that the non-interacting system is non-generic and leaves its fingerprints in the quantum and
classical dynamic properties of the interacting system. Inparticular the abnormal behavior
in the caseφ = 53◦ is ascribed to the robust highly regular behavior of the interacting system
(level clustering).
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Figure 6.8: Density plot of the square of the absolute value of the two-electron wave function in the

case ofφ = 53◦ for (a) the singlet ground state, (b) the first excited singlet state and (c) the third

excited singlet state (dark regions correspond to low and the bright ones to high densities).

Figure 6.8 shows some charge density plots for three selected states. The gradual in-
troduction of anisotropy, with increasing angleφ, causes a small weakening in the parabolic
confinement along thex-direction (ωx = ωo cosφ) thereby strengthening it in they-direction.
Hence, the two electrons in the ground state are further repelled due to the confinement re-
laxation along thex-axis and obtain a clear spatial orientation.
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6.3.3 Integrable anisotropic configuration

The Hamiltonian (6.3) for the configurationωy : ωx = 2 : 1 of the confining potential is
written explicitly,

Hr = − ∂2

∂x2
− ∂2

∂y2
+

1

4
ω2

x

(

x2 + 4 y2
)

+
1

√

x2 + y2
(6.7)

At this frequency ratio the spectrum in Fig. 6.1 shows level clustering accompanied by well-
pronounced energy gaps. The latter are however of smaller width compared to those of the
circular configuration. In the total spectrum, which contains the states of all four symmetries
(++), (−−), (+−), (−+), we observe groups of energy levels. The classical counterpart
(Fig. 6.9) shows a regular phase space and suggests that the system is integrable. The line
px = 0 consists of infinite number of periodic orbits with period one and separates the regular
islands (Figure 6.9 shows only one quadrant).

Figure 6.9: Phase space forωy : ωx = 2 : 1 andE = 55 meV.

For three-dimensional systems cases of integrability havebeen found in previous works,
[117, 136–139] addressing different physical settings. Inorder to prove integrability for
our system and calculate explicitly the integral of motion we introduce the two-dimensional
parabolic coordinatesx = uv, y = 1

2
(u2 − v2), u ∈ R andv ≥ 0, whereR is the set of the

real numbers. The Hamiltonian (6.7) then transforms to the new coordinates,

Hr = − 1

u2 + v2

(

∂2

∂u2
+

∂2

∂v2

)

+
ω2

x

4

u6 + v6

u2 + v2
+

2

u2 + v2
(6.8)

If we apply a product ansatz for the eigenfunctionsΨ(u, v) = U(u)V (v) the Schrödinger
equationHrΨ(u, v) = εrΨ(u, v) can be separated in two ordinary differential equations of
the form,
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d2W

dw2
+

(

εrw
2 − ω2

x

4
w6 − κ

)

W = 0 (6.9)

whereU(u) = W (u) with κ = λu, V (v) = W (v) with κ = λv, λu + λv = 2; εr denotes
the respective eigenvalues. The separation constantλ = 1

2
(λv − λu) is the eigenvalue of the

operator,

Λ = {Lz, px} +
ω2

x

2
yx2 − y

√

x2 + y2
(6.10)

where{} denotes the anticommutator. By construction, the operatorΛ commutes with
the Hamiltonian (6.7) and is indeed the constant of motion ofthe integrable system. The
eigenfunctionsΨ(u, v) are also eigenfunctions ofΛ. Λ commutes with thex-parity operator
and anticommutes with they-parity operator. These symmetries of the quantum operatorΛ

have interesting consequences on the spectrum of the system(see Table 6.2 and discussion
below). To our knowledge the operatorΛ has no simple geometrical interpretation. We
remark that in both anglesφ = 45◦ andωy : ωx = 2 : 1 we have non-Abelian symmetry
groups which lead to the observed symmetries.

This particular case of integrability of the interacting system can be generalized to in-
clude further frequency ratios. Let us consider a general two-dimensional Hamiltonian of
the form,

Hr = − ∂2

∂x2
− ∂2

∂y2
+

ω2
x

4

(

x2 + β y2
)

+
1

√

x2 + y2
(6.11)

where anisotropy is tuned via the parameterβ = ω2
y/ω

2
x. For the case of the circular

shaped QD the parameterβ = 1 and the constant of motion isLz (section IV.A). For the case
β = 4 of this subsection the constant of motion isΛ in equation (6.10). Forωy : ωx = 1 : 2

andβ = 1/4 the Hamiltonian (6.11) is again integrable, the constant ofmotion being now,

Λ = −{Lz , py} +
ω2

x

8
xy2 − x

√

x2 + y2
(6.12)

The previously mentioned integrals of motion of the Hamiltonian (6.11) for specific val-
ues ofβ can be summarized and generalized via the scalar quantum operator,
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Ξ = ~f

{

2
(

~p × ~L
)

− i~~p + êLz −
ω2

x

6

[(

~r × ~W
)

× ~r
]

+
~r

|~r|

}

(6.13)

with ~f =
(

tan
(

π
3

(β − 1)
)

, tan
(

π
3

(

1
β
− 1

))

, 1
)

, ~W = (x, βy, 0), ~L = (0, 0, Lz),

ê = (1, 1, 1) and~r = (x, y, 0).
For the particular valuesβ = 4, 1, 1/4 the operator (6.13) represents the integral of

motion responsible for the integrability of the Hamiltonian (6.11). In the expression (6.13),
one can identify in the vector multiplied from the right sideby ~f , the generalized Runge-
Lenz vector as being defined by Beims and Gallas [139] but witha different sign for the last
term and additionally some new terms follow, characteristic for our generalized problem.
Let us now return to the analysis of the excitation spectrum.

Table 6.2: A sequence of excited energy levels for the configurationωy : ωx = 2 : 1 of the confine-

ment. The line separates groups of levels with differentx-parity.

Energy (e.u.) spin / reflection symmetries
0.697 (s) (++)
0.732 (t) (−+)
0.971 (s) (++) (t) (+−)
1.070 (t) (−+) (s) (−−)
1.248 (s) (++) (t) (+−)
1.384 (s) (++)
1.408 (t) (−+) (s) (−−)
1.443 (t) (−+)
1.582 (s) (++) (t) (+−)
1.682 (s) (++) (t) (+−)
1.757 (t) (−+) (s) (−−)
1.796 (t) (−+) (s) (−−)

Table 6.2 contains a sequence of low-lying energy eigenvalues. A genuine feature of
this table is the groups of energy levels which belong eitherto (++) and (+−) symmetry
or to (−+) and (−−) symmetry. This is a result of the symmetry of the constant ofmotion
Λ which commutes with thex-parity and anticommutes with they-parity operator. The
states with eigenvalueλ = 0 are non-degenerate and those with eigenvalueλ 6= 0 are doubly
degenerate with respect to the sign ofλ. The ground state of the system is a spin singlet (++)
state which emerges from the isotropic dot, with increasingφ. The next two excited states
in the isotropic case, are doubly-degenerate spin triplet (+−) and (−+) states, followed by
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doubly-degenerate spin singlet (++) and (−−) states (see Table 6.1). With the introduction
of the anisotropy the doubly degenerate states split in two states. The spin triplet (−+) state
forms the first excited state of the system in the caseωy : ωx = 2 : 1 and the spin triplet (+−)
state crosses with the spin singlet (++) state atωy : ωx = 2 : 1 to form a doubly-degenerate
state. With increasing energy the states evolve in groups following the above mentioned
symmetries.
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Figure 6.10: ∆Ei(Ei) for the non-interacting (inset) and interacting system, for the first 100 states

with (++) symmetry andωy : ωx = 2 : 1 anisotropic configuration.

Figure 6.10 shows the ELS forωy : ωx = 2 : 1. The non-interacting system shows
energy gaps which occur due to the

[

N0

2
+ 1

]

-fold degeneracy (the brackets[] indicate the
integer part of the enclosed number) of the energy levels whereN0 = nx +2ny = 0, 1, 2, . . ..
The inclusion of interaction lifts the degeneracies in the single-particle spectrum resulting in
a repeated energetical stretching phase with increasing energy. The well-pronounced energy
gaps follow an oscillatory behavior (see Fig. 6.10).
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Figure 6.11: Statistical measures NNSD and spectral rigidity∆(L) for ωy : ωx = 2 : 1.

In Fig. 6.11 we present the statistical measures NNSD and SR applied to the unfolded
spectrum for the integrable case. The NNSD shows a behavior which deviates significantly
from a Poissonian distribution and possesses a rather rapiddecay. The spectral rigidity∆(L)
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shows again remarkable deviations from the Poissonian prediction. These results show that
the high degree of degeneracy in the underlying non-genericsingle-particle spectrum leads
to this specific type of abnormal statistical behavior of thenumerical data.
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Figure 6.12: Density plot of the square of the absolute value of the two-electron wave function in the

case ofωy : ωx = 2 : 1 for (a) the singlet ground state, (b) the first excited singlet state and (c) the

third excited singlet state (dark regions correspond to lowand the bright ones to high densities).

Fig. 6.12 shows the charge distribution in the case of the well established anisotropy for
ωy : ωx = 2 : 1. This resuts in an electronic cloud for the ground state which is clearly
elongated along thex-axis.

6.3.4 Regime of strong anisotropies

Forφ > 63.4◦, the excitation spectrum shows well-pronounced level clustering for the ratios
ωy : ωx = n : 1, n ∈ N ∗. The energy gaps between the clusters of levels forn ≥ 3 are
however smaller, compared to those forn = 2. The observed clustering might give rise to
the expectation that the corresponding configurations are candidates for integrability. Figure
6.13(a)-(c) shows the PSOS for the angles corresponding ton = 3, 4, 5.

Forn = 3, 4, 5 the phase space is dominated by large elliptic regular islands and a divid-
ing central layer of chaotic dynamics which increases withn. The corresponding quantum
behavior shows a pronounced shell structure which weakens gradually with increasingn
(Fig. 6.1(b)). In the figures of ELS forn = 3 andn = 4 (Fig. 6.14) the non-interacting
system shows the expected behavior of clusters with degenerate levels, separated by equidis-
tant energy gaps, the width of which decreases with increasing n. The introduction of the
anisotropy causes the lifting of the degeneracies leading to the characteristic energetical
stretching phases, similar to the ones observed in the ELS for n = 1 andn = 2. Addition-
ally there is an overall decay superimposed on the oscillatory multi-mode stretching phases.
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Figure 6.13: Phase space (x, px for y = 0) for various anisotropies and energies. Subfigures (a) - (e)

correspond to energyE = 55 meV and (f),(g) to energyE = 47 meV.

For ratiosωy : ωx = n : p, n, p > 1 the spectra, for relatively small integersn, p, shows
in the case of the non-interacting system again level clustering. This feature is apparent in
Fig. 6.1(b) and also in the structure of the corresponding ELS drawn in Fig. 6.14 for the
casen = 3, p = 2. When we turn on interaction the energy gaps reduce, therebyalmost
eliminating the shell structure (see Fig. 6.1(b) for the casesn = 3, p = 2 andn = 4, p = 3).
However, the energy gaps, although smaller, ’perform’ oscillations (Fig. 6.14).
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Figure 6.14: ELS ∆Ei(Ei) for the non-interacting (inset) and interacting system, for the first 100

states with (++) symmetry in the casesωy : ωx = 3, 4, 3/2, 2.747...
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Figure 6.15: Statistical measures NNSD (left column) and spectral rigidity ∆(L) (right column) for

the anglesφ = 70◦ and77◦. The spectral sequences{Ei} correspond to sets of converged states with

(++) symmetry.

The classical counterpart shows a mixed phase space (Fig. 6.13(d)-(f)) of which the chaotic
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portion increases with increasing the integer valuesn, p. The PSOS for higher irrational
frequency ratios is shown in Fig. 6.13(g), (h) for the anglesφ = 70◦ and77◦. The profile of
the ELS (Fig. 6.14 forφ = 70◦) is irregular and remarkably, shows an evolutionary pattern
with increasing energy: apart from the overall decay of the envelope, we observe beats which
finally dissolve and provide an irregular behavior.

In the cases of the irrational frequency ratiosφ = 70◦ and77◦ we applied the statistical
measures NNSD and SR to the corresponding unfolded spectra (see Fig. 6.15). The fraction
of chaos in the PSOS varied for both cases between70% and40% for energies between50

meV and130 meV where the spectral sequences{Ei} converged. Deviations from the the-
oretical models used for fitting the NNS data are again a majorfeature, although the fittings
using the BD are in general better than, in particular, the case of the weak anisotropies. The
spectral rigidity follows a line close to the prediction by the GOE ensemble.

6.3.5 Wire-like dot

The physical picture of this case consists of a very weak confinement along thex- direction
and a very strong one along they-direction (ωx → 0, ωy → ωo). In this limit the Coulomb
force plays an essential role for the motion along thex-axis. This phase in the electronic
matter is the so called Wigner crystallization in which the electrostatic Coulomb repulsion
dominates and localizes electrons in positions that minimize Coulomb repulsion, thereby
almost defining the ground state of the system. In this limiting phase, the electrons tend to
behave classically and therefore the classical to quantum correspondence of the electronic
properties are of particular interest. When we move to higher φ in the confinement space,
approaching90◦, a ballistic channel along thex-axis opens. Hence, we now have a quantum
quasi-wire since the electrons experience intermittently(see below) quasi-free and strongly
interacting phases of motion.

Figure 6.16: PSOS (x, px for y = 0) for two cases of the wire-like dot, for energyE = 20 meV.

Subfigure (a) corresponds to the angleφ = 85◦ (ωy : ωx ≈ 11.43) and (b) to the angleφ = 89.4◦

(ωy : ωx ≈ 95.5).

Figure 6.16 shows the PSOS for the casesφ = 85◦ (ωy

ωx
≈ 11.43) andφ = 89.4◦ (ωy

ωx
≈
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95.5) of the wire-like dot. Forφ = 85◦, apart from the central regular region, the phase space
is dominated by chaos with a large number of small regular islands surviving in it. For very
strong anisotropiesφ = 89.4◦ the PSOS shows a comparatively small central regular region
while the biggest part is dominated by a ’distorted pattern’which corresponds to intermittent
dynamics. The dynamics within the regular islands is that ofa simple harmonic oscillator
slightly perturbed by the Coulomb interaction. The mechanism responsible for the ’distorted
pattern’ in the chaotic part of the phase space is the following. The two electrons are well-
separated for long time periods, performing an oscillatorymotion. Almost periodically, with
an approximate periodT = 2π

ωx
, the electrons come in close proximity and the Coulomb

repulsion causes a sudden momentum transfer of varying magnitude. The latter depends on
the dynamics, i.e. on the detailed collisional approach of the electrons. The observed pattern
is therefore the result of the harmonic oscillator motion combined with Coulomb scattering
events, which shift the otherwise regularly arranged points on the PSOS. The inset in Fig.
6.16(b) shows the transition from the regular islands to thechaotic sea.
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Figure 6.17: ELS ∆Ei(Ei) for the non-interacting (inset) and interacting system, for the first 100

states with (++) symmetry andφ = 85◦.

Figure 6.17 shows the ELS of the quantum system forφ = 85◦. It shows remarkable
patterns with increasing energy. We observe essentially two eyecatching beats separated by
an abrupt transition (E ∼ 23 meV) that take place on different scales of the energy spacing.
After the second beat a transition to an irregular sequence of spacings is observed for high
energiesEi > 35 meV.



6.4 Conclusions 73

-20 -10 0 10 20
x

-20

-10

0

10

20

y

(a)

-30 -15 0 15 30
x

-30

-15

0

15

30

y

(b)

Figure 6.18: Density plot of the square of the absolute value of the two-electron wave function in the

quantum dot for strong anisotropyφ = 85◦ (ωy : ωx ≈ 11.43) for (a) the singlet ground state and (b)

the first excited singlet state (dark regions correspond to low and the bright ones to high densities).

Figure 6.18 shows charge density plots for the ground and thefirst excited singlet state.
The electrons localize along thex-axis in well separated positions due to the dominating
Coulomb repulsion force.

6.4 Conclusions

In this chapter we have presented a review on the effects of the interaction and anisotropy of
two-electron quantum dots from both a dynamical and quantummechanical point of view.
Notably, the employed Hamiltonian is of fundamental interest and equally describes the
situation of two ions harmonically confined in traps createdby external fields.

We briefly summarize our results. For a quantum dot with isotrpoipc parabolic confine-
ment the spectrum shows groups of energy levels which belongeither to spin singlet or to
spin triplet symmetry. The Hamiltonian is integrable and the constant of motion being the
angular momentumLz. The levels are non degenerate (m = 0) or doubly (m 6= 0) degen-
erate. The introduction of an anisotropy in the interactingsystem serves as a rapid path to
classical chaos, with a severe impact on the quantum spectrum. The level clusters widen and
finally overlap and interact obeying, for the pure symmetry spectrum, the non-crossing rule.
For the anisotropic configurationsωy : ωx = n : 1 (n ≥ 2) we again observe level clustering
being most pronounced for the casen = 2. For the latter configuration the system is despite
the interaction integrable. Parity properties of the quantum operator responsible for the inte-
grability result in eigenvalues which forλ 6= 0, pair in singlet - triplet degenerate subspaces
with respect to thex-parity. This symmetry property together with the fact thatsinglet and
triplet states are degenerate, makes the2 : 1 configuration unique. Forωy : ωx = n : 1,
n ≥ 3 the shell structure weakens with increasingn. The underlying classical dynamics
acquires an increasing portion of chaotic dynamics with increasingn, i.e. changes ’slowly’
from integrability to completely mixed phase space. The configurationsωy : ωx = n : p, for
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relatively smalln, p, still show traces of a shell structure. Standard statistical measures such
as NNSD and SR have been applied to certain cases for the wholerange of the spectrum.
The observed major deviations from the theoretical predictions, where the regular structures
in the PSOS dominated, have been assigned to the non-genericnature of the underlying inte-
grable system. In the extreme caseφ → 90◦ the wire-like dot represents a paradigm for the
transition to Wigner crystallization: the classical dynamics comprises the complete regime
from softly interacting to kicked oscillators. The level spacing shows two major beats i.e.
remarkable patterns, which do not occur for the non-interacting counterpart, indicating the
importance of the Coulomb scattering events in this regime.



Chapter 7

Two-electron anisotropic quantum dots
in homogeneous magnetic field

7.1 Introduction

In this chapter, a detailed investigation of the combined effects due to the electronic in-
teraction, anisotropy and the magnetic field on two-electron quantum dots with harmonic
confinement will be performed. The electronic level structure, in particular the low-lying
excitation spectrum, will be studied with varying field strength and anisotropy by employ-
ing an “exact” numerical diagonalisation approach. In addition to this, the magnetisation of
the dot will be derived for the complete deformation regime ranging from weak to strong
fields. The energetic spacing between the energy levels is comparable to the energetic con-
tribution due to the spin Zeeman term and therefore both cases without and with inclusion
of the spin Zeeman interaction will be considered. The latter corresponds to a GaAs semi-
conductor. The ground state exhibits parity oscillations which depend both on the magnetic
field strength as well as on the anisotropy. Therefore the shape of the dot can be mapped
on experimental measurements since these oscillations areesaily identified experimentally.
Finally, the classical dynamics of the interacting electrons will be studied, exhibiting near
integrability for field strengths leading to ratiosω1 : ω2 = 1 : n.

The chapter is organised as follows. In Section 7.2, we provide the Hamiltonian of the
electronic motion and discuss its general symmetries. In Section 7.3, we introduce our basis
set and present the computational approach. Section 7.4 contains our results. In particular,
the low-lying spectrum in a magnetic field and the magnetisation are investigated for the full
deformation regime from circularly symmetric to wirelike dots. The results are discussed
also in the presence of the Zeeman splitting term. Moreover,the dynamics for a specific de-
formation is studied with changing magnetic field and is linked to the single-particle picture.
Finally, in Section 7.5, we summarize the results of our research.

75
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7.2 Hamiltonian and general symmetries

The conduction band electrons confined in a two-dimensionalanisotropic harmonic quantum
dot in a magnetic fieldB = (0, 0, B), within the framework of the effective mass approxi-
mation, are described by the HamiltonianH = HCM + Hr with

HCM =
1

4me

(P + 2eA(R))2 + meω
2
o

(

cos2φ X2 + sin2φ Y 2
)

(7.1)

Hr =
1

me

(p +
e

2
A(r))2 +

me

4
ω2

o

(

cos2φ x2 + sin2φ y2
)

+
e2

4πǫǫo |r|
(7.2)

Due to the harmonic confinement the center of mass (CM) and internal motion separate.
For the vector potential we choose the symmetric gaugeA(r) = 1

2
(B × r ). The constants

e, me, ǫ, ωo, φ are the electron charge, effective mass, dielectric constant, the characteristic
frequency and the anisotropy parameter, respectively. Small and capital letters correspond to
the relative and center of mass degrees of freedom, respectively. In the following we focus
on the non-trivial partHr, describing the relative motion, for the reasons discussedin chapter
6. Parity (r → −r) and spin are interrelated symmetries due to the Pauli exclusion principle
and we encounter spin singlet eigenfunctions with even spatial symmetryΨ(r) = Ψ(−r)

and spin triplet eigenfunctions with odd spatial symmetryΨ(r) = −Ψ(−r).
In order to simplify our Hamiltonian, we apply a canonical transformation:x = lx′,

y = ly′, px = p′x/l and py = p′y/l thereby scalingHr into a dimensionless one, via
Hr = ~

2

mel2
H′

r. In the following we adopt the typical values for a GaAs dot and the scal-
ing yields the effective Bohr radiusl = a∗

B = 9.8 nm, the effective HartreeHa∗ = 11.8

meV and 1 effective unit (e.u.) of field strength correspondsto 6.925 Tesla. The artificial
(electrostatic) confinement has the characteristic frequency ~ωo = 4.96 meV. This scaling
yields the following expression for the dimensionless Hamiltonian of the relative motion (the
primes have been dropped for simplicity),

Hr = − ∂2

∂x2
− ∂2

∂y2
− i

B

2

(

x
∂

∂y
− y

∂

∂x

)

+
1

4

(

B2

4
+ ω2

x

)

x2

+
1

4

(

B2

4
+ ω2

y

)

y2 +
1

√

x2 + y2
(7.3)

The two characteristic frequencies of the confinement areωx = ωo cosφ and ωy =

ωo sinφ. Forφ = 45◦ the dot has a circular shape. With increasingφ it deforms to an elliptic
shape and approaches a wirelike dot forφ → 90◦ (ωx → 0, ωy → ωo).

The spin of the two electrons gives an additional contribution to the energy, i.e., the
Zeeman term,
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ES(B) = g∗µBBSz (7.4)

with µB being the Bohr magneton andg∗ = −0.44 the effective Landé factor for GaAs.ES

splits the threefold degeneracy of the spin triplet states while the energies of the spin singlet
states remain unchanged.

7.3 Computational Approach

To investigate the two-electron QD, we solve the corresponding Schrödinger equation using
a full configuration interaction (CI) approach with the anisotropic harmonic oscillator basis
set

Φnxny
= A(nx, ny)Hnx

(
√

c1 x)Hny
(
√

c3 y)e−
c1
2

x2− c3
2

y2+i(λ− c2
2

)xy (7.5)

leading to an algebraic eigenvalue problem. In Eq. (7.5)A(nx, ny) is the normalization
constant,c1 = M1ω1/c, c3 = M2ω2/c, c2 = 2µM1ω1M2ω2/c, c = µ2M1M2ω1ω2 + 1, µ =

−2L/(meω0p), λ = [meω0L(2 + L2)]/[4(cos(2φ)− p)] , M1,2 = mep/(p − cos(2φ)∓ L2),
ω1,2 = (ω0/

√
2)

√

1 + L2 ∓ p, L = eB/meω0 andp =
√

(1 + L2)2 − sin2(2φ). All the
units are scaled appropriately. The argumentation for the choice of these orbitals is the
following. The single-particle anisotropic harmonic oscillator in a magnetic field, described
by the Hamiltonian (7.3) without the Coulomb interaction term, can be transformed unitarily
such that we arrive at a Hamiltonian for two independent oscillators in their individual one-
dimensional harmonic potentials [140]:

H =
p2

1

2M1
+

p2
2

2M2
+

1

2
M1ω

2
1x

2 +
1

2
M2ω

2
2y

2 (7.6)

with eigenvaluesEn1,n2 = (n1 + 1
2
)~ω1 + (n2 + 1

2
)~ω2 and eigenfunctions of the form,

Ψn1n2 = Nn1,n2e
− c1

2
x2− c3

2
y2+i(λ− c2

2
)xy

×
n1
∑

k=0

n2
∑

l=0

ckl(n1, n2)Hn1−k(α1x + β1y)Hn2−l(α2x + β2y) (7.7)

The exponential part inΨn1n2 is exactly contained in our basis set (see equations (7.5) and
(7.7)). The analytical expressions for the coefficientsckl(n1, n2), α1, β1, α2, β2 in equa-
tion (7.7) can be found in Ref. [140]. The Hermite polynomials Hn1−k(α1x + β1y) and
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Hn2−l(α2x + β2y) in equation (7.7) can be equally described by the Hermite polynomials of
our basis set in equation (7.5). The corresponding relationis given by [141],

Hn1−k(α1x + β1y) =
1√

2n1−k

n1−k
∑

i=0

Hn1−k−i(
√

2α1x)Hi(
√

2β1y)

Therefore, in order to describe exactly the eigenstateΨn1n2 with our basis set, we need to
superimpose Hermite polynomials of equation (7.5) up to maximal ordernx = ny = n1+n2.

The next step is the evaluation of the Hamiltonian matrix belonging to equation (7.3).
For this purpose, we firstly find a Hamiltonian which can be diagonalised exactly and then
subtract it fromHr. To proceed, we write the orbitals,Φnxny

= Φ̃nxny
P whereP =
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2
)xy) is the phase and̃Φnxny
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Hamiltonian,

H̃0 = −1

2

∂2

∂x2
− 1

2

∂2

∂y2
+

1

2
c2
1x

2 +
1

2
c2
3y

2

with eigenvalues̃εnxny
= (nx + 1

2
)~c1 + (ny + 1

2
)~c3. To implement the phase we proceed

as follows,

H̃0Φ̃nxny
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⇒
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whereH0 = PH̃0P−1 is diagonal in the basisΦnxny
. For our QD we have to consider the

HamiltonianH1 = 2H0, with eigenvaluesηnxny
= 2ε̃nxny

, which takes the explicit form,
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The dimensionless Hamiltonian of the relative motionHr can be summarized as,
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Figure 7.1: Schematic diagram of the energy of the ground and first seven excited states forB = 0

with increasingφ. The vertical line indicates the angle for which the system is integrable.
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The eigenvaluesηnxny
will be contained in the diagonal elements of the Hamiltonian matrix.

The matrix elements due to the contribution of the first four terms in equation (7.8) can be
calculated in a straightforward analytical form. The matrix elements due to the Coulomb
repulsion have to be evaluated numerically with the method presented in appendix A.

7.4 Results and Discussion

7.4.1 No magnetic field

The starting point of our analysis is the two-electron anisotropic quantum dot without mag-
netic field, which has been studied in detail in chapter 6. Figure 7.1 presents the low-lying
spectrum ofHr(B = 0) as function of the anisotropyφ. The energy eigenstates follow (with
increasing energy) the symmetries: (m; S) = (0; 0),(±1; 1), (±2; 0),(0; 0),(±3; 1),(±1; 1),. . .,
wherem andS are the magnetic quantum number and the total spin, respectively. The in-
troduction of the anisotropy splits the degeneracies and leads to spin singlet - triplet (ST)
crossings. Atωy : ωx = 2 : 1, Hr(B = 0) becomes integrable and due to the symmetry
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of its constant of motionΛ, the eigenstates of the Hamiltonian are pairwise degenerate with
identicalx-parity. Forφ → 90◦ the eigenstates converge to energetically well-separated
pairs of spin singlet and and spin triplet states.

7.4.2 Spectrum and magnetisation forg∗ = 0 in a magnetic field

Before investigating the general situation of our interacting anisotropic QD in a magnetic
field let us briefly address, the effect of the magnetic field inthe interacting isotropic case,
which possesses particular analytical solutions [118, 128]. Lz is a constant of motion and
the system is integrable. As stated in the introduction, increasing the magnetic field strength
leads to a ground state for the system that changes its spin symmetry, i.e., the well-known
ground state ST oscillations [81]. The symmetries of the ground state with increasing mag-
netic field strength are as follows: (m; S) = (0; 0),(−1; 1),(−2; 0),(−3; 1),. . .. With increasing
field strength, the energy spacing between two neighbouringlevels∆Ei = Ei+1 − Ei (i de-
termines the degree of excitation and takes even valuesi = 0, 2, 4 within our study) oscillates
between zero (at the ST crossing of the states with energiesEi andEi+1) and a maximum
amplitude∆Emax. For strong external fields∆Emax reduces and the energy curves of the
ground and first excited state have a slope approaching the same constant value. A quan-
tity to measure this event is the magnetisation, which, at zero temperature, is defined as
M(B) = −(∂E0

∂B
), whereE0 is the energy of the ground state. Hence, the ST crossings are

apparent as steps in the magnetisation curve whose size decreases for strong magnetic fields
(see figure 3 forφ = 45◦).

Figure 7.2: Domains of spin multiplicity in the (B,φ) plane for (a) the ground state, (b) the second

excited state and (c) the fourth excited state. Brightness indicates the energy difference∆E0, ∆E2

and ∆E4, respectively, on a logarithmic scale. Dark and bright regions correspond to large and

small spacings, respectively. The bright curves form the borders between the different ST-symmetry

domains.

Introduction of the anisotropy breaks the rotational symmetry of the system and a large
number of avoided crossings between the energy curves of states possessing identical sym-
metry occurs. ForB = 0 the level spacing∆E0 will decrease with increasing deformation
(see Figure 7.1). Figure 7.2(a) shows the spin multiplicityS = 0, 1 of the ground state in
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the (B, φ) plane. Forφ = 45◦ we observe the ST ground state oscillations, discussed above.
With increasing deformation we observe a robustness of the first ST crossing, i.e., the curve
B(φ) where the first ST crossing occurs is approximately independent ofφ. For higher mag-
netic fields the domains corresponding to different spin multiplicity widen smoothly with
increasing deformation and the corresponding curvesB(φ) show a significant positive slope
dB
dφ

. As a result the fifth domainS = 0 is suppressed forφ & 54◦ in the range of the
calculated magnetic field strengths.

Figure 7.2(b) shows the spin multiplicity domains for the second excited state (E2) in the
(B, φ) plane. ForB = 0 this state is a spin triplet state and atωy : ωx = 2 : 1 it becomes
degenerate with the spin singlet state corresponding to theenergyE3 (see Figure 7.1 and
discussion in subsection 4.1 for further details). For larger φ the state with energyE2 is a
spin singlet. The border curve corresponding to the first ST crossover for relatively weak
magnetic fields stops atωy : ωx = 2 : 1 atB = 0. The following border curves for stronger
fields show a negative slope and the different symmetry domains slightly widen for stronger
anisotropiesωy : ωx > 2 : 1.

The fourth excited state (E4) shows an even stronger dependence of its spin multiplicity
islands onB andφ. Figure 7.2(c) shows the spin symmetry domains for the fourth excited
state. Initially it is a spin singlet and afterωy : ωx = 2 : 1 it becomes a spin triplet due
to a ST crossing as expected. For stronger anisotropies and due to the higher number of
excited states involved in the spectrum, atφ ≈ 75◦ an ‘accidental‘ crossing occurs and the
fourth excited state restores its initial parity. The first boundary curveB(φ) is suppressed
at φ ≈ 63.4◦ (ωy : ωx = 2 : 1) and the second one atφ ≈ 75◦ as a result of the above
discussed behaviour. For higher field strengths, the corresponding spin multiplicity domains
and border curves show an even stronger dependence onφ than the one observed for the
second excited state.

Another complementary measure in order to study the separate implications of the mag-
netic field and deformation on the ground state is the magnetisationM . It has been shown
that for three and four electronsM depends on both anisotropy and number of electrons
[111]. Figure 7.3 shows the magnetisation for various anisotropies corresponding to the full
deformation regime. Forφ = 45◦ the steps are more pronounced than for any anisotropy.
With increasingφ the overall behaviour of∆E0(B) leads to a decrease of the steps in the
magnetisation signal, despite the fact that the ST oscillations are present according to Figure
7.2(a). Hence, atφ & 54◦ the fourth step is eliminated as predicted by figure 7.2(a) but
also the third step is no more visible on the scale of figure 3 for φ & 54◦, the second step
disappears forφ & 70◦ and the first one disappears forφ & 81◦ resulting in a completely
smooth behaviour forφ = 85◦.
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Figure 7.3: The magnetisationM(B) for g∗ = 0. The various panels correspond to anisotropies

covering the full deformation regime.

7.4.3 Spectrum and magnetisation forg∗ = −0.44

So far, in our discussion, we have neglected the contribution of the Zeeman term (given by
Equation (7.4)) in the calculation of the spectrum. The Zeeman termES splits the threefold
degeneracy of the spin triplet states while it leaves the spin singlet states unchanged. This
additional splitting in the energy of the spin triplet states reduces the amplitude∆Emax in
the oscillations of the level spacing∆E0 and suppresses the ST oscillations in favour of
the spin triplet symmetry. Figure 7.4(a) shows the spin multiplicity of the ground state in
the presence of the Zeeman term. Forφ = 45◦, despite the fact that the first ST oscillation
survives preserving the firstS = 0 domain, the second spin singlet domain is clearly reduced
in comparison with figure 7.2(a) whereas the thirdS = 0 domain in figure 7.2(a) vanishes
completely. The introduction of a deformation results in anelimination of the second spin
singlet island for anglesφ & 48◦. The firstS = 0 domain is preserved up toφ ≈ 65◦ while
for stronger anisotropiesES dominates due the reduced level spacing∆E0(B = 0) and the
S = 0 domain smoothly decreases in size with further increasing deformationφ.

Figure 7.4(b) and 7.4(c) show the ST oscillations for the second (E2) and fourth (E4)
excited state in the (B,φ) plane respectively. It is clear that for lower fields, whereES is
negligible due to the small effective Landé factor of GaAs,the ST oscillations as described
in Figure 7.2(b) and 7.2(c) persist with varyingφ. For stronger external field (note that
figures 7.4(b) and 7.4(c) cover only the weak to intermediatefield regimeB ≤ 0.9 whereas
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Figure 7.4: Domains of spin multiplicity in the (B,φ) plane for (a) the ground state, (b) the second

excited state and (c) the fourth excited state in the presence of spin Zeeman splitting. Brightness

indicates the energy difference∆E0, ∆E2 and ∆E4, respectively, on a logarithmic scale. Dark

and bright regions correspond to large and small spacings, respectively. The bright curves form the

borders between the different ST-symmetry domains.

figures 7.2 cover the rangeB ≤ 2.0) the picture is rather complicated. This owes to the
competition of the existing energy scales belonging toES and the level spacing as well as
the large number of excited states involved in the formationof the spectrum. For a better
illustration of our results, in figure 7.5 we present the low-lying spectrum for two different
anisotropies corresponding to the intermediate (ωy : ωx = 2 : 1) and the wirelike (φ = 81◦)
regime. In both pictures we observe the suppression of the spin singlet states in the ground
state as reproduced in figure 7.4(a) (note that all spin-multiplet components are shown in
figure 7.5). For higher excited states, in the regime of intermediate anisotropy we observe
avoided crossings and the ST oscillations are preserved forthe low field regime while in the
wirelike case the pairing of the states leads to a rapid suppression of the spin singlet states in
this extreme limit.

In order to complete our analysis forg∗ = −0.44, we study the behaviour of the mag-
netisation. Figure 7.6 presents the magnetisation for various anisotropies. Forφ = 45◦ we
observe the first step remaining almost intact in the presence of ES reflecting the robust-
ness of the firstS = 0 domain for the ground state energy. The next two steps are reduced
in height and their location in terms of field strengths is changed significantly compared to
g∗ = 0, as expected from the discussion of figure 7.4(a). Forφ & 48◦ the second and third
steps turn into a hill, due to the suppression of the spin singlet island, which gradually disap-
pears with increasing anisotropy. The first step preserves its position up toφ ≈ 65◦ while for
stronger deformations it shifts towards smaller field strengths due to the competition ofES

and∆E0(B = 0) in the wirelike regime. Forφ = 85◦ the magnetisation shows a completely
smooth diamagnetic behaviour like the one forg∗ = 0.
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Figure 7.5: Low-lying spectrum for (a)ωy : ωx = 2 : 1 and (b)φ = 81◦. Full curves correspond to

spin singlet symmetry while the dashed ones correspond to spin triplet symmetry withSz = ±1, 0.

7.4.4 Dynamics

Before we investigate the dynamics of our interacting dot let us address some features of
the single-particle system, i.e. the Hamiltonian (7.6) which describes the (diagonalised)
anisotropic charged oscillator in a magnetic field. Its eigenvalues areEn1,n2 = (n1+

1
2
)~ω1+

(n2+
1
2
)~ω2. Figure 7.7(a) illustrates the single-particle spectrum at the anisotropic harmonic

configurationωy : ωx = 2 : 1 with varying field strength. ForB = 0 we observe the energy
gaps due to the

[

N0

2
+ 1

]

-fold degeneracy (the brackets[] indicate the integer part of the
enclosed number) of the energy levels whereN0 = n1 + 2n2 = 0, 1, 2, . . .. For finite field
strengths the degeneracies are lifted. For rational frequency ratiosω1 : ω2 = 1 : n, where
n ≥ 3 is integer, the energy levels become

[

N1

n
+ 1

]

-fold degenerate whereN1 = n1+nn2 =

0, 1, 2, . . .. Hence, by varying the magnetic field we can tune the degeneracies of the single-
particle spectrum as it has already been noted in reference [142]. The values of the field
strengths for which we encounterω1 : ω2 = 1 : n are given by the expression,

B = ω0

√

sin2φ

(

n2 + 1

2n

)

− 1

Table 7.1 contains the values of the field strength corresponding to n = 3 − 10. With
increasingn the level spacing between two neighbouring degenerate manifolds reduces. In
the high field limit the energy levels corresponding to states withn2 = 0 cluster to form the
lowest Landau level, the energies corresponding ton2 = 1 the first excited Landau level etc
(see figure 7.7(a) for large values ofB). Another property of the single-particle degenerate
manifolds is that those corresponding to oddn consist exclusively of states that have either
even or odd parity, those corresponding to evenn consist of both even and odd parity.

Let us now discuss the dynamics of the interacting system following the same path as
before when studying the single-particle spectrum, i.e., starting withωy : ωx = 2 : 1 and
increasingB. The parameter characterising the dynamics is the fractionof regular phase
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Figure 7.6: The magnetizationM(B) for g∗ = −0.44. The various panels correspond to anisotropies

covering the full deformation regime.

space defined asf = (Number of regular trajectories)/(Total number of trajectories). The
criterion whether a trajectory is regular or chaotic is, of course, the finiteness of the Lya-
pounov exponent. Figure 7.7(b) showsf as a function of the magnetic field. ForB = 0 the
system, as discussed in subsection 4.1, is integrable and thereforef = 1. Introduction of
the external field serves as a rapid path to chaos. Figure 7.7(c) shows a Poincaré Surface of
Section (PSOS) forB = 0.05. It can be seen that even for such a weak field, the regularity is
dramatically suppressed and the phase space is dominated bychaos. Further increasing the
field strength we are led to an impressive peak forf at B = 0.242487. This field strength
corresponds to the frequency ratioω1 : ω2 = 1 : 3. The next major peak off(B) in figure
7.7(b) occurs atω1 : ω2 = 1 : 4 and consequently atω1 : ω2 = 1 : n for n ≥ 5. We
observe, that the peaks off(B) corresponding to oddn are in general more pronounced than
those corresponding to evenn. However, both cases lead to a similar level clustering for the
quantised system. Although we can not provide a thorough explanation for this, we remark
that the states for a given cluster of levels corresponding to a frequency ratio with oddn
possess the same parity (i.e., either spin - singlet or spin -triplet), while the states of a given
cluster of levels corresponding to evenn involve both parities (i.e., spin - singlet and spin -
triplet). From this behaviour off we conclude that interaction effects of the QD usually de-
stroy the regularity of classical phase space, but at rational frequency ratiosω1 : ω2 = 1 : n

regularity still plays an important role and dominates the phase space (see also figure 7.7(d)
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Table 7.1: Field strengths corresponding to the frequency ratiosω1 : ω2 = 1 : n (~ω0 = 4.96 meV,

ωy : ωx = 2 : 1)

n Magnetic field (e.u.)
3 0.242487
4 0.351397
5 0.436477
6 0.508645
7 0.572364
8 0.63
9 0.682993
10 0.732295

for ω1 : ω2 = 1 : 3). Of course, this behaviour is only well-pronounced for nottoo large
values ofn and the overall tendency off with increasing field strength is to increase, fi-
nally leading to a dominant regular phase space for a very strong field (see figure 7.7(b) and
7.7(e) forB = 2.0). In this limit the magnetic interaction dominates and the anisotropic
confinement due to the geometry of the dot is of perturbative character, i.e., we encounter an
approximate rotational symmetry and we are close to integrability. For B = 0 and changing
φ the property of dominant regular classical phase space at ratios ωx : ωy = 1 : n reflects
itself in the quantum behaviour of the dot as follows. The energy level degeneracies at the
ratiosωx : ωy = 1 : n for the non-interacting system are rather robust with respect to inter-
action effects in the sense that energy level clustering occurs at these ratios (for not too large
n) if the interaction between the electrons is included [107,108]. For finite magnetic field
strengths the above-observed enhanced fraction of regularity in classical phase space for the
ratiosω1 : ω2 = 1 : n of the interacting system reflects itself also in the quantumspectrum,
i.e., we encounter level clustering for higher excited states.

7.5 Conclusions

To conclude, we performed a detailed investigation of the effects of electronic interaction,
anisotropy and magnetic field interaction in the electronicstructure and dynamical properties
of two-electron QDs with harmonic confinement. We have calculated the low-lying energy
spectrum of the two-electron QD in a magnetic field for the full deformation regime from
circular to wirelike dots. The calculation reveals the ground state ST oscillations forφ = 45◦

and their weak dependence on the anisotropy. Despite this robustness of the ground state ST
oscillations the magnetisation is much more sensitive to the anisotropy in the sense that
it smooths, i.e., it looses gradually its step-like structure with increasingφ. Furthermore,
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we study the excited states and reveal their ST oscillationswhich depend not only on the
magnetic field but also significantly on the anisotropy. If weinclude the Zeeman splittingES

contribution to the energy, the picture for the ground stateST oscillations changes as the spin
singlet states are suppressed in favour of the spin triplet ones. The competition of the energy
scales ofES and∆E0 already forφ & 48◦ destroys the second spin singlet island yielding a
bump in the magnetisation whereas the first spin singlet domain is eliminated with increasing
φ. For higher excited states and intermediate field strengthsthe ST oscillations persist as
shown for example for the second and fourth excited states. Finally, we have investigated
the dynamics of the interacting system for the specific deformationωy : ωx = 2 : 1. Despite
the interaction, we find a phase space that is dominated by regularity for rational ratios
ω1 : ω2 = 1 : n. For stronger field strengths the Hamiltonian acquires an approximate
rotational symmetry and approaches integrability.





Chapter 8

Conclusions

We hope that the completion of this thesis leaves the reader with a feeling of satisfaction
due to the wide range of phenomena that have been reported as well as with the question of
what is going to happen next. With respect to the first commentwe would like to remind the
reader with the main stations of our journey. In the first two chapters, an introduction to the
theory of linear quantum transport has been given and the parallel algorithm which has been
developed for the necessary computations has been presented. We believe that these two
chapters supply a short but rather deep and practical overview in this field. Many theoretical
details which are beyond the scope of the present thesis havebeen commented with the nec-
essary references in which they have been extensively analysed. Our journey continued with
investigations of quantum magnetotransport through quantum dot arrays. These systems
have proven to show sound fingerprints of their electronic band structure in their transport
properties as well as substantial current flows for moderatemagnetic fields. The latter have
been “optimized” with respect to the semiconductor material, Fermi energy, geometry and
temperature. We have shown therefore a nice paradigm of an electronic system which could
serve as a potential application in nanoelectronics solelybased on quantum features. In the
second part of the thesis, we have discussed systems of quantum dots possessing tunneling
barriers, which are high and thick enough such that these systems can be considered as prac-
tically isolated. In such systems the transport propertiesare defined from their electronic
structure since interactions with the continuum bath due tothe leads are negligible. We
have investigated two electrons confined in a quantum dot. The response of their electronic
spectrum with respect to an anisotropy in the artificial confinement potential as well as to
an applied magnetic field has been discussed in detail. We have offered a global review of
properties which extends from the quantum up to a classical point of view. The implementa-
tion of an efficient method for the evaluation of the two-electron integrals has offered access
to a very large part of the excitation spectrum thereby allowing us to analyse them statisti-
cally. In addition to this we have discovered an a new two-dimensional integrable system and
we have analytically derived the expression for its constant of motion. The application of
the magnetic field causes an interplay of spin singlet - spin triplet (ST) symmetry of states,

89
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the evolution of which has been investigated as a function ofanisotropy for the low-lying
spectrum. These ST oscillations which can be identified experimentally, could lead to a
prediction of the type of the confinement to few-electron quantum dot experiments.

Regarding the second comment in the introductory sentence of our conclusions this has
to do more with the expectations that have been cultivated throughout our journey. To stress
the situation further with respect to the field of quantum transport we will borrow a comment
from the epilogue of the book of S. Datta [2]. This comment refers to the present status of
knowledge as only the “tip of the iceberg”, thereby implyingthat there is still a lot of research
to be performed in order to obtain a more global view. This mayrequire the development of
novel theoretical approaches that take into account electronic correlations inside the scatter-
ing regions as well as inside the leads. Effects due to large applied source-drain voltage or
electron-phonon interactions should equally be taken intoaccount. During this journey, the
available computational resources and numerical techniques should be rather flexible in or-
der to adapt to the requested numerical problem. Architectures of parallel processors should
play in this sense an important role for the successful and efficient implementation of the
computations. In any case, we will agree that the research inthis field is expected to be at
least fascinating...



Appendix A

Efficient computation of the
electron-electron integrals

A.1 Introduction

In this appendix, we are going to present the various numerical techniques that we have used
in order to calculate the electron-electron integrals. Thestarting point in our evaluation is
the Coulomb integral for our two-dimensional quantum dot which takes the general form,

Im1,m2,n1,n2 =< Φm1,m2 |
1

√

x2 + y2
| Φn1,n2 >=

Am1,m2,n1,n2√
π
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√
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where the normalization constant,

Am1,m2,n1,n2 =

√
c1c3

π2
1
2
(m1+m2+n1n2)

√
m1!m2!n1!n2!

Our scope is to provide a rapid and accurate calculation of the Coulomb matrix elements
for large values of the indecesm, n. The methods are divided in two categories: (i) analyt-
ical attempts using analytical expressions and/or employing reordering techniques and (ii)
numerical techniques. The latter have provided an efficient, accurate and rapid evaluation of
the electron - electron integrals. The results of the employed methods are presented sepa-
rately in the according sections. At the end we discuss an overview of the employed methods
in terms of the stability of our results.
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A.2 Analytical expansion & reordering techniques

The corresponding integrals of eq. A.1 is possible to be evaluated analytically by using the
properties of the Hermite polynomials [143] and standard integration tables [141]. The ana-
lytical result yields a fourfold series which can be summarised in equation A.2,

Im1,m2,n1,n2 = A′
m1,m2,n1,n2

[
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2

]
∑
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a2 + 1

2
)B(

a1 + a2 + 1

2
,
1

2
) ×

2F1(
a1 + 1

2
;
a1 + a2 + 1

2
;
a1 + a2

2
+ 1; 1 − c1

c3

)

The constantsa1 = m1 + n1 − 2(k1 + l1), a2 = m2 + n2 − 2(k2 + l2), B(M, N) =

Γ(M)Γ(N)/Γ(M + N) is the Beta-function and2F1 is the hypergeometric function.
Despite the closed form of the analytical expression of equation A.2 its evaluation turns

out to be numerically unstable, due to the fact that the resulting series possesses alternating
signs, which leads to the subtraction of terms of almost equal absolute values. This problem
becomes particularly hard to solve for large values of the quantum numbers. Table A.1
contains the values computed from the analytical expression of equation A.2 compared with
the exact values. The exact values of the computed integralshave been obtained by using
the mathematical software Mathematica which offers the flexibility to set the precision of
numerical evaluations to a large number of digits such that instabilities due to the above
mentioned problem do not occur. The integrals have been computed for a magnetic field of
1.0 in effective units and anisotropyφ = 60◦. The values of the coefficientsc1 andc3 that
correspond to these specific values ofB andφ can be obtained by the expressions found in
chapter 6.

Already for moderate valuesN & 10 a reliable evaluation of the analytical expressions
for the electron-electron integrals fails to converge whereas for large values larger thanN &
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Table A.1: Comparison of the computed integrals between the analytical expansion and the exact

results for various basis functionsm1 = m2 = n1 = n2 = N . The fourth column contains the

absolute error∆ε. The integrals have been evaluated forB = 1.0 andφ = 60◦. All units are scaled.

N Exact value Analytical expansion ∆ε

0 9.296234032641283e− 01 9.296234032642079e− 01 8.0e − 14

1 3.461664587340224e− 01 3.461664587340197e− 01 2.7e − 15

2 3.390906375609172e− 01 3.390906375609423e− 01 2.5e − 14

3 2.421233479478790e− 01 2.421233479478727e− 01 6.3e − 15

4 2.406804934369633e− 01 2.406804934369568e− 01 6.5e − 15

5 1.966846436200880e− 01 1.966846436202302e− 01 1.4e − 13

6 1.961614412833192e− 01 1.961614412833726e− 01 5.3e − 14

7 1.698500416255150e− 01 1.698500416124770e− 01 1.3e − 11

8 1.696039606554327e− 01 1.696039606027132e− 01 5.3e − 11

9 1.516451318474188e− 01 1.516451320291830e− 01 1.8e − 10

10 1.515112751426992e− 01 1.515112738295054e− 01 1.3e − 09

11 1.382608450645461e− 01 1.382607963909410e− 01 4.9e − 08

12 1.381810564985637e− 01 1.381809618209626e− 01 9.5e − 08

13 1.278888321424660e− 01 1.278863885350074e− 01 2.4e − 06

14 1.278382503991035e− 01 1.278247435483298e− 01 1.3e − 05

15 1.195465733111034e− 01 1.193752973772361e− 01 1.7e − 04

16 1.195130988405291e− 01 1.972873651086735e− 01 2.2e − 03

17 1.126484380737557e− 01 1.119892462372837e− 01 7.2e − 03

18 1.126256047285915e− 01 2.266200485835555e− 01 1.1e − 01

19 1.068208788952894e− 01 −5.039664623646392e− 01 6.1e − 01

20 1.068049777966132e− 01 −2.772799341045502e + 00 2.9e + 00

21 1.018129401242934e− 01 −3.849233597671662e + 01 3.8e + 01

22 1.018017228534539e− 01 −1.211138629801601e + 03 1.2e + 03

23 9.744896431041962e− 02 2.491326570513548e + 03 2.5e + 03

24 9.744100585758125e− 02 6.465158716349043e + 04 6.5e + 04

15 the computed integrals diverge.

To remedy the instability we applied several techniques such as reordering via com-
plex branch recursion relations following the McMurchie-Davidson scheme. This scheme is
mostly used in the calculation of molecular integrals (see ref.[ [144]] and references therein).
These relations follow if we use the generating formula for the Hermite polynomials
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Hn(t − At) = e(t−At)2(
∂

∂At

)ne−(t−At)2

and express the electron-electron integral in the form,

Im1,m2,n1,n2 = Am1,m2,n1,n2D
m1,m2,n1,n2Rk1;k2

0,0,0,0 (A.3)

where the operator,

Dm1,m2,n1,n2 = (
∂

∂At

)m1(
∂

∂As

)m2(
∂

∂Bt

)n1(
∂

∂Bs

)n2

and the integral,

Rk1;k2

0,0,0,0 =

+∞
∫

−∞

dy

+∞
∫

−∞

dx
et2+s2

√
c3t2 + c1s2

tk1sk2e−(t−At)2−(t−Bt)2−(s−As)2−(s−Bs)2

Hence, by evaluating a set of initial integralsRk1;k2

i,j,k,l where in practice the indecesi, j, k, l

form all permutations between the values0 and1 one is possible to construct all higher order
integralsIm1,m2,n1,n2 by using recursive formulas of the operatorDm1,m2,n1,n2. At this point
we note that the set of initial integralsRk1;k2

i,j,k,l can be expressed with respect toRk1;k2

0,0,0,0 by the

general expressionRk1;k2

i,j,k,l = 2i+j+k+lRk1+i+k;k2+j+l
0,0,0,0 . These derivations occur in a straight-

forward manner by the form of the integrals. This approach, essentially reestablished the
instability, which now appears inside the recursive relations, thereby maintaining the prob-
lem instead of canceling it. Table A.2 shows the computed integrals by using the presented
recursive scheme and the exact values of the integrals forB = 1.0 andφ = 60◦.

The results in table show that our computed integrals hardlybenefitted from the recursive
formulas and the efficiency in terms of converged integrals did not improve.

A.3 Numerical integration

In this section we introduce a computational method that is based on numerical integration
of the electron-electron integral. This method allowed forthe efficient and accurate imple-
mentation of integrals even for several hundreds of the quantum numbers. Starting point
in our method is the electron-electron integralIm1,m2,n1,n2 in which the Coulomb repulsion
term being replaced by an auxiliary Gaussian integral, the so-called Singer transform.
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Table A.2: Comparison of the computed integrals between the recursiveMcMurchie-Davidson

scheme and the exact results for various basis functionsm1 = m2 = n1 = n2 = N . The fourth

column contains the absolute error∆ε. The integrals have been evaluated forB = 1.0 andφ = 60◦.

All units are scaled.

N Exact value Recursive scheme ∆ε

0 9.296234032641283e− 01 9.296234032641278e− 01 4.4e − 16

1 3.461664587340224e− 01 3.461664587340228e− 01 3.9e − 16

2 3.390906375609172e− 01 3.390906375609170e− 01 1.6e − 16

3 2.421233479478790e− 01 2.421233479478763e− 01 2.7e − 15

4 2.406804934369633e− 01 2.406804934369557e− 01 7.6e − 15

5 1.966846436200880e− 01 1.966846436200446e− 01 4.3e − 14

6 1.961614412833192e− 01 1.961614412831206e− 01 2.0e − 13

7 1.698500416255150e− 01 1.698500416249788e− 01 5.4e − 13

8 1.696039606554327e− 01 1.696039606548629e− 01 5.7e − 13

9 1.516451318474188e− 01 1.516451318663649e− 01 1.9e − 11

10 1.515112751426992e− 01 1.515112755152837e− 01 3.7e − 10

11 1.382608450645461e− 01 1.382608482167373e− 01 3.2e − 09

12 1.381810564985637e− 01 1.381810716735176e− 01 1.5e − 08

13 1.278888321424660e− 01 1.278888668276617e− 01 3.5e − 08

14 1.278382503991035e− 01 1.278378324125402e− 01 4.2e − 07

15 1.195465733111034e− 01 1.195361544382266e− 01 1.0e − 05

16 1.195130988405291e− 01 1.193803186777891e− 01 1.3e − 04

17 1.126484380737557e− 01 1.122378654349025e− 01 9.7e − 03

18 1.126256047285915e− 01 1.097582838747395e− 01 1.6e − 02

19 1.068208788952894e− 01 1.619270614409117e− 01 5.5e − 02

20 1.068049777966132e− 01 1.237928236906391e + 00 1.1e + 00

21 1.018129401242934e− 01 1.316256588134142e + 01 1.3e + 01

22 1.018017228534539e− 01 1.131245739071058e + 02 1.1e + 02

23 9.744896431041962e− 02 7.674634794295492e + 02 7.7e + 02

24 9.744100585758125e− 02 3.889278613953067e + 03 3.9e + 03

Im1,m2,n1,n2 =
Am1,m2,n1,n2√

π
(A.4)

×
+∞
∫

−∞

dy

+∞
∫

−∞

dx

+∞
∫

−∞

duHm1(
√

c1 x)Hm2(
√

c3 y)Hn1(
√

c1 y)Hn2(
√

c3 x)e−(c1+u2)x2−(c3+u2)y2
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By changing variables,t =
√

c1 + x2 ands =
√

c3 + y2 we can writeIm1,m2,n1,n2 in the
form,

Im1,m2,n1,n2 =
Am1,m2,n1,n2√

π

+∞
∫

−∞

du
1√

c1 + u2

1√
c3 + u2

It(u)Is(u) (A.5)

where the integralsIz(u), with z = t, s are,

Iz =

+∞
∫

−∞

dzHm(

√
c1z√

c1 + u2
)Hn(

√
c1z√

c1 + u2
)e−z2

The set of indeces(m, n) = (m1, n1) for z = t and (m, n) = (m2, n2) for z = s.
The advantage of writing the integralsIm1,m2,n1,n2 in this form is that integralsIz(u) can be
evaluated numerically exactly as a function of the variableu, by employing a Gauss-Hermite
quadrature. In this respect,

Iz =

m1+n1
2

+1
∑

j=1

Hm(

√
c1xj√

c1 + u2
)Hn(

√
c1xj√

c1 + u2
)wj

wherexj are thej-th zeros of the Hermite polynomialsHp(x) andwj = 2p−1p!
√

π

p2H2
p−1(xj)

where

the indexp = m1+n1

2
+ 1 + 1. In order to check the Gauss-Hermite quadrature one can use

an analytical formula for the evaluation of the integralsIz(u),

Iz =
√

π

min{m,n}
∑

k=0

2kk!

(

m

k

)(

n

k

)

(
u2

cz + u2
)

m+n
2

−kHm+n−2k(0) (A.6)

The constantscz = c1 for z = t andcz = c3 for z = s. A natural question that arises
is why we prefer the Gauss-Hermite integration formula instead of the analytical expan-
sion. The main reason for that is that the sum in eq. A.6 converges very slowly. A similar
disadvantage with respect to efficiency has also been met in Ref. [145]. So far we have
transformed our electron-electron integrals in a1d integration with respect to the auxiliary
variableu and have kept additionally our calculation exact. In order to proceed with the
integration left we employ a Gauss-Kronrod quadrature [146] which is a standard numrical
quadrature technique used very often by mathematical libraries. In table A.3 we present the
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results of our numerical technique in comparison with the exact results. We observe that the
computed values converge to the exact ones even for high order Hermite polynomials. We
remark that the proposed method is particularly efficient and can be therefore employed for
the online calculation of the Coulomb matrix elements.

Table A.3: Comparison of the computed integrals between the numericalintegration approach and

the exact results for various basis functionsm1 = m2 = n1 = n2 = N . The fourth column contains

the absolute error|∆ε|. The integrals have been evaluated forB = 1.0 andφ = 60◦. All units are

scaled.

N Exact value Numerical integration |∆ε|
0 9.296234032641283e− 01 9.296234032641276e− 01 6.6e − 16

1 3.461664587340224e− 01 3.461664587340228e− 01 3.9e − 16

2 3.390906375609172e− 01 3.390906375609178e− 01 6.1e − 16

3 2.421233479478790e− 01 2.421233479478788e− 01 1.9e − 16

4 2.406804934369633e− 01 2.406804934369317e− 01 3.2e − 14

5 1.966846436200880e− 01 1.966846436200863e− 01 1.7e − 15

6 1.961614412833192e− 01 1.961614412833195e− 01 3.1e − 16

7 1.698500416255150e− 01 1.698500416255159e− 01 8.9e − 16

8 1.696039606554327e− 01 1.696039606554364e− 01 3.7e − 15

9 1.516451318474188e− 01 1.516451318474189e− 01 1.1e − 16

10 1.515112751426992e− 01 1.515112751426992e− 01 0.0

11 1.382608450645461e− 01 1.382608450645463e− 01 1.9e − 16

12 1.381810564985637e− 01 1.381810564985648e− 01 1.1e − 15

13 1.278888321424660e− 01 1.278888321424663e− 01 3.1e − 16

14 1.278382503991035e− 01 1.278382503991038e− 01 3.1e − 16

15 1.195465733111034e− 01 1.195465733111046e− 01 1.2e − 15

16 1.195130988405291e− 01 1.195130988405286e− 01 5.0e − 16

17 1.126484380737557e− 01 1.126484380737580e− 01 2.3e − 15

18 1.126256047285915e− 01 1.126256047285920e− 01 5.0e − 16

19 1.068208788952894e− 01 1.068208788952800e− 01 9.4e − 15

20 1.068049777966132e− 01 1.068049777966136e− 01 4.0e − 16

21 1.018129401242934e− 01 1.018129401242923e− 01 1.1e − 15

22 1.018017228534539e− 01 1.018017228534560e− 01 2.1e − 15

23 9.744896431041962e− 02 9.744896431042029e− 02 6.7e − 15

24 9.744100585758125e− 02 9.744100585758363e− 02 2.4e − 14

In figure A.1 we plot the logarithm of the absolute error as we increase the order of
the basis functions’ polynomials for the several techniques we presented throughout the ap-
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Figure A.1: Logarithmic dependence of the absolute error for the analytical expansion, the recursive

McMurchie-Davidson scheme and the numerical integration with increasing the order of the basis

functions’ polynomials. A linear regression model has beenapplied to describe all approaches with

dotted, dashed and solid lines respectively.

pendix. The graph shows an exponential increase of the instability for the analytical expan-
sion which hardly improves when employing recursive techniques, thereby maintaining the
exponential trend. By employing the numerical quadrature techniques, the absolute error
oscillates around a very high precision.
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