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ABSTRACT I

TIME SERIES RESEARCH IN PSYCHOLOGY:
CONTENTS AND METHODOLOGICAL ISSUES

The objectives of this paper are (1) demonstrate the superiority of the time series analysis over
the traditional methods in dealing with dynamical phenomena; (2) discuss various possible
research applications of time series procedures in psychology; and (3) solve some
methodological problems occurring in applied settings. After a brief introduction into time-
and frequency-domain analyses, a range of applications of time series procedures in
psychology was discussed; theories and empirical studies from different fields of psychology
employing time-series terminology and methods were presented. Three simulation studies
designed to solve methodological problems typical for time series research in psychology,
such as handling of instationary time series, identifying of appropriate dynamical models and
reliable detection of long-range dependencies between successive observations in a series,

represented the main field of the paper.

Keywords: time series, time-and frequency domain analyses, ARFIMA, unit root tests,

automated methods for ARIMA model identification, 1/f noise
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CHAPTER 1 INTRODUCTION 1

1 INTRODUCTION

Time series analysis is widely used in econometrics, physic, astronomy, or seismology. To
most psychologists, this methodology remains unfamiliar despite the fact that Glass, Willson,
and Gottman (1975), McCleary and Hay (1980), and Gottman (1981) introduced time series
procedures to social and behavioral sciences three decades ago. The standard research strategy
in psychology consists in the attempt to infer general models from the average behavior of a
large sample of individuals. As a result, employing classical statistics ignoring the dimension
of time is characteristic of psychological research. This neglect of variation in time is rather
surprising, since change, development, or growth represent typical signatures of most
psychological phenomena. Traditionally, psychologists assess evolution or development
through repeated measurements using mean and variance. By this procedure however,
possible dependences between subsequent values remain indiscernible. Comparing means and
standard deviations does not reveal the true nature of variability or change. In contrast, time
series analysis is able to provide profound insight into properties of dynamical concepts. In
the last few years, more and more researchers from different fields of psychology seem to
recognize advantages of time series methods and increasingly apply these techniques in their
empirical studies. The objectives of this thesis are to demonstrate the superiority of the time
series analysis over the traditional methods in dealing with dynamical phenomena; discuss
various possible research applications of time series procedures in psychology; and solve

some methodological problems occurring in applied settings.

This paper is divided in six parts. Chapter 2 introduces two major approaches of the
time series paradigm, time- and frequency-domains analyses, and describes their basic

concepts. Chapter 3 discusses a range of applications of time series procedures in psychology,



CHAPTER 1 INTRODUCTION 2

such as process analysis, time series experiment, and forecasting. Chapter 4 focuses on
theories and empirical studies from different fields of psychology employing time-series
terminology and methods. Chapter 5 represents the main field of this thesis, introducing three
simulation studies designed to solve methodological problems typical for time series research
in psychology, such as handling of instationary time series; identifying of appropriate
dynamical models; and reliable detection of long-range dependencies between successive
observations in a series. General discussion with outlook and perspectives of the time series

analysis in psychology completes the paper.

Introduction

Basic concepts

— Time-domain analysis

—— Frequency-domain analysis

—— Stationarity

Research applications

— Process analysis

—— Time series experiment

—— Forecasting

Time series research in
psychology

— Modeling and assessing change in addictive behavior

—— Self-esteem as dynamical concept

—— Long-range dependencies in psychological time series

Methodological issues

— Deterministic or stochastic trend

—— Model identification of integrated ARMA processes

—— Sample size and accuracy of estimation of
the fractional differencing parameter

General discussion
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2 BASIC CONCEPTS

There are two major approaches in the study of time series processes, time-domain and
frequency-domain analyses. Although time and frequency domains are mathematically
equivalent, they examine time-series data from different perspectives and pursue different
goals. In the time domain, the central concept is the memory of the series: to what extend is
the present of the series predictable from its past. Memory is assessed by the so-called
autocorrelation and the partial autocorrelation functions. The main goal of the frequency-
domain analysis is to detect cycles in the data by means of spectral decomposition. The
analysis consists of attempting to identify frequencies that explain variance in an observed
time series. McCleary and Hay (1980) provide a comprehensive introduction to the time-
domain analysis for social and behavioral scientists. Bloomfield (2000) gives a detailed
description of the frequency-domain techniques. Warner (1998) introduces spectral analysis to
the practicing researcher. For a detailed treatment and comparison of both time-domain and
frequency-domain approaches, consult Gottman (1981). The objectives of this chapter are,
based on the above-mentioned textbooks, to provide a brief introduction to the time- and

frequency-domain analyses and to discuss the concept of stationarity.

CHAPTER 2

Time-Domain Frequency-Domain Stationarity
Analysis Analysis
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2.1 Time-Domain Analysis

In the time domain, a visual plot of the data is usually the first step in the analysis of any time
series. As Figure 2.1.1 illustrates, a time series is a sequence of values ordered by a time
parameter (¢). The primary goal of time series analysis is to infer from a sample of data points
to the process that may have generated the sample. The terms process and time series are
equivalent to the concepts of population and sample in classical statistics. A process under
study can consist of deterministic and stochastic components. Deterministic components are
trends and deterministic cycles. A pure stochastic process is a collection of random variables
ordered in time. Suppose the series in Figure 2.1.1 is a realization of a stochastic process, this
implies that we observe realizations of 120 random variables ordered in time. In the majority
of cases, time ordered variables can not be assumed independent, which results in the problem
of correlated data. Within the scope of time series analysis, dependency is expressed by

means of the autocorrelation and partial autocorrelation functions.
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Figure 2.1.1. Perceptual speed of a schizophrenic patient for 120 successive days (Holtzman, 1963).
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2.1.1 Autocorrelation and Partial Autocorrelation Functions

Kendall and Buckland (1971) define autocorrelation as correlation between members of series
of observations ordered in time or in space. In the time-domain analysis, this implies

correlation of a series with itself at different lags. The lag k& autocorrelation is calculated as

T-k

DX =), ~Y)

(=1
T —
D, -Y)
t=1

, where T'is the length and Y is the mean of the series.

l’k:

A plot of 7, against the lag length £ is called the correlogram of the time series and gives its
autocorrelation function. Since any observed series is a realization or a sample of some
process, 7 is called the sample autocorrelation function. The population autocorrelation
function (ACF) is defined as
Pr =covariance at lag k / variance

In addition to the ACF, another function, called the partial autocorrelation function
(PACF), is employed to describe the memory of a series or a process. The PACF py measures
correlations between observations that are k£ time periods apart after controlling for
correlations at intermediate lags. In other words, partial autocorrelation is the correlation
between Y, and Y, after removing the effects of intermediate Y’s. Analogous to the ACF, we
can plot py or its sample equivalent 7y against k.

Within the scope of the time-domain analysis, the autocorrelation and partial
autocorrelation functions are used to define various time-series models with different memory

properties or dependency structures.
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2.1.2 Time-Domain Models

Each stochastic time series can be described by means of three types of mathematical models:
autoregressive (AR), moving-average (MA) and integrated (I). In an AR model, the value of
the current observation depends on the values of the previous observations,

Y, =¢,Y,_ +"'+¢le‘—p +u,,

where the magnitude of the dependence is quantified by ¢, p specifies the order of the
dependence und u, is a sequence of purely independent and identically distributed random
variables or innovations. A moving-average process is described by

Y =u -0u,, —..—0u

My
Here performance at time ¢ depends on a combination of the current and past error terms. A
process containing both autoregressive and moving-average components is called mixed. An
integrated process is represented by an equation

Y=Y +a,,
where the random part a, can be generated by any ARMA process. The term “integrated”
implies that the impact of the random component on the series does not dissipate over time.
As a result, the process shows instability in level. That is why the integrated process with
a~iid N (0, 6?) is also called random walk.

Therefore, each time series can be represented as an Auto-Regressive Integrated
Moving-Average (ARIMA) model with three parameters p, d and ¢g. The value of the
autoregressive parameter p reflects how many preceding observations influence the current
observation Y;. The value of the moving average term ¢ describes how many previous random
shocks must be taken into account to capture the dependency present in the time series. The
parameter d refers to the order of differencing that is necessary to stabilize the time series.

Each ARIMA model can be defined through its theoretical ACF and PACF pattern.
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Table 2.1.1 and Figure 2.1.2 show the ACF and PACF patterns of some common ARIMA

Processcs.

Table 2.1.1. Theoretical ACF and PACF patterns.

Model ACF PACF
(0,0,0) 0 0
(. 0, 0) Decays exponentially or with damped Significant spikes through lags p, 0
P, T sine wave or both after p
0,0, q) :}iﬁlglcam spikes through lags g, 0 Declines exponentially
(,0,q) Declines exponentially Declines exponentially
0, d, 0) Does not decay Does not decay
ACF PACF
B |>‘|||IIEI|IIIII|I|

+

Figure 2.1.2. Theoretical ACF and PACF of selected stochastic processes: (A) AR(1) with ¢=0.9,
(B) MA(1) with 6=-0.9.

The main goal of the time-domain analysis is to provide an insight into properties of
the underlying stochastic process of the series under study fitting an appropriate model to it.
Once the process has been inferred, it can be used either to test some hypothesis about its
generating mechanism, to forecast future values of the series, or to remove dependency from
the data series so that it meets the assumptions of the general linear model for further
statistical tests. There exist a number of methods for fitting suitable models to a given time

series. One of the most widespread techniques is the Box-Jenkins methodology.
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2.1.3 Box-Jenkins ARIMA Methodology

The ARIMA strategy proposed by Box and Jenkins (1970) is based on a three-step iterative
cycle of model identification, model estimation, and diagnostic checks in model accuracy.

At the identification stage one chooses type and order of the model examining the
behavior of the sample autocorrelation and the sample partial autocorrelation functions and
comparing their shape and value with the theoretical ARIMA patterns.

At the estimation stage of the model building cycle, the parameters of the identified
model are estimated. Estimates can be obtained through conditional least squares (CLS),
unconditional least squares (ULS) or full maximum likelihood (ML) algorithms. In all three
methods, the estimation procedure is based on the minimization of the difference between the
observed time series and the model calculated for different values of the ARMA parameters; ¢
or 0 values minimizing this difference serve as the estimators. The CLS method is based on
the principle of simple least squares and called conditional because of the assumption that the
initial unobserved error terms are equal to null (Box et al., 1994, p. 226). Least squares fitting
turns out to be a maximum likelihood fit if distribution assumptions about the data are made.
For example, if we assume normal errors in the ARMA equation. The ML algorithm
maximizes the probability of the data for the given ARMA model. The maximum likelihood
estimators for autoregressive and moving-average parameters are obtained by minimizing the
so-called log likelihood function. In contrast to the CLS, the ULS approach includes the error
term in the estimation function. That is why it is also referred to as the exact least-squares
(ELS) method. The ULC technique is a compromise between CLS and ML methods where
the unconditional sum of squares is minimized instead of the log likelihood function. Ansley
and Newbold (1980, 1981) show that these three estimators are asymptotically equivalent and
describe special cases, in which a particular method may be preferable. ML estimates are

more expensive to compute than ULS and CLS estimates. In a recent study, Fang (2005)
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compares the performance of the estimation algorithms for different models and parameter
values and concludes that tests based on either ULS or ML yield more reliable inferences than
CLS tests.

After the estimation stage, diagnostic checks are applied to determine whether or not
the chosen model adequately represents the given set of data. The simplest check is to see if
the residuals estimated from the fitted model are uncorrelated. Using the Box-Pierce Q or its
variant the Ljung-Box (LB) statistic, we can test the joint hypothesis that all the
autocorrelation functions up to certain lags are simultaneously equal to zero. Both Q and LB
statistics are approximately chi-square distributed with m=lag length degrees of freedom. The
LB statistics is more powerful in small-samples than the Q statistic.

Box et al. (1994), Bowerman and O’Connell (1993), Brockwell and Davis (2002) and

Makridakis et al. (1998) provide a detailed treatment of the Box-Jenkins technique.

To summarize, in the time-domain analysis the primary goal is to infer from an
observed time series to the process that may have generated this series. Stochastic processes
can be described by means of ARIMA models. Different ARIMA models are distinguished by
their memory properties or dependency structures assessed by the autocorrelation and partial
autocorrelation functions. The Box-Jenkins methodology is a popular strategy for fitting

ARIMA models to the data.
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2.2 Frequency-Domain Analysis

The frequency-domain analysis aims to discover cyclicity in the time series data by means of
spectral decomposition, in which a series is represented as a sum of independent cycles of
different frequency. In time series analysis, the term frequency describes how rapidly things
repeat themselves. Thus, there exist fast and slow frequencies. The frequency-domain analysis
can be seen as a form of ANOVA where the overall variance of time series is divided into
variance components due to independent cycles of different length. In frequency-domain, the
variance is also called power. Spectral density function gives an amount of variance
accounted for by each frequency we can measure. The theoretical spectral density function
can be estimated from either the periodogram or the power spectrum depending on whether
cycles composing the series are deterministic or stochastic. If the data are cyclic, there are a
few so-called major frequencies that explain a great amount of the series variance (i.e., all
series power is concentrated at one or some few frequencies). The major frequencies of
deterministically periodic time series are fixed. Stochastically periodic series are characterized
by random changes of major frequencies within certain bounds. For nonperiodic series, the
variance is equally distributed across all possible frequencies. As Figure 2.2.1 shows, time

series with different periodic properties cannot be distinguished visually.

1500 4,004 3,00
1000 3,00 2,00
2,00 1,00
5,00
1,00 0,00
> 0,00 >
0,00 1,00
5009 1,00 2,00

10,00 2,00 3,00

-15,00 3,00 4,00
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1 12 23 34 45 56 67 78 100 1 12 23 34 45 56 67 78 89 100 1 12 23 34 45 56 67 78 89 100

Figure 2.2.1. Time series with different periodicity: (A) deterministically periodic; (B) stochastically

periodic; (C) nonperiodic.
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Figure 2.2.2. Graph of the function Y, =5+ 3sin(2nz/20 + 6) .

2.2.1 Modeling Repeating Phenomena

Periodic functions of the form f(¢) = f (7 +¢) are used to model repeating phenomena, where
7 denotes the period or the length of a cycle. In the frequency-domain, the sine wave of the
trigonometric sine or cosine functions serves as a model for various cycles. Different sine
waves can be obtained by varying the following parameters: the mean (u), the angular
frequency (w), the phase (@) and the amplitude (4).

Y =p+ Asin(of + @) = p+ Asin(2nt/ 1+ @) = pu + Asin(2nft + ¢)
As Figure 2.2.2 shows, the period 7 is the time from peak to peak. The angular frequency @

represents the number of complete cycles in 27 time units or in radians. The period and the

angular frequency are linked by the equation @ = 2—7[ In time series analysis the frequency (f)
T

L 1 o oy
isgivenby f=—= Py and measures the number of cycles per unit time.
T 2z

According to the Fourier theorem any time series with a given length can be
approximated as a finite sum of sine waves of different frequencies. The series length (7)

determines the number of the frequencies. For series with odd number of observations, there

=123, . @

exist (7-1)/2 different frequencies: f; :%, j T These correspond to
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cycles of period 7, 7/2, T/3,..., 2 time units and imply that the fastest frequency we can detect
is f=1/2=050rw=f2r=1/2-2n=r.

. . . 1
A sum of sine waves can be written in two ways :

Z A;sin(wt+ @) or Z(aj cosw;t+b;sinw;t),
J j

where 4, = (a? erf)”2 and sin’ ®; +cos’ @; =1. Sine and cosine functions of the same

period are independent to each other. Thus, any time series” can be approximated as a set of

orthogonal functions:

Y, = Z(aj cosw,t+b;sinw;t) +u,, where u, ~iid (0,1).
J

The unknown parameters of the series, the amplitude and the phase for each frequency w;, can

be calculated from the least-square estimates for a; and b;:

2 T-1 n
a, =FZY, cosw;t by =
t=0

~

Y snot,

NN

IS
o

which are the covariances of the series with cos @it and sin wjt.

2.2.2 Detecting Deterministic Cycles: Periodogram

The periodogram is designed to fit a model to a time series that is the sum of deterministic
waves plus noise (u,). Figure 2.2.3 (A) illustrates the data generated by adding two sine waves
with frequencies f;=1/20=0.05 and f>=1/10=0.1. Figure 2.2.3 (B) shows the same data where
the deterministic cycles are masked by noise. The time series appears as in Figure 2.2.3 (C) if
only 50 instead of 100 observations are available. The periodogram allows detecting hidden

cycles.

" Asin(o®+ @) = A(cos ot sin @ + sin oz cos Q) = a cos ¢ + bsin ot .
% Note that time series with a zero or subtracted mean are used to simplify the equations.
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T T T T T T T T T T T T T T T T T T 1T 10
1 12 23 34 45 5 67 78 89 100 1 12 23 34 45 56 67 78 89 100 T T T T T T T T T
17 13 19 25 31 37 43 49

Figure 2.2.3. Example of a time series with two deterministic cycles 7;=20 and 7,=10
Y, =5+ 3sin(2nt/20 + 6) + 5sin(2nt /10) : (A) without noise, (B) with a noise part u,, (C) 7=50.

As Figure 2.2.4 illustrates, the periodogram gives the total sum of squares of the series
distributed across either (7)/2+1 or (7-1)/2+1 different frequencies depending whether T is
even or odd. The additional frequency is /=0, this is a frequency that never repeats which
implies an infinite period. As noted previously, the fastest frequency we can detect is /=0.5.

For these reasons, the frequencies in the periodogram always range between 0 and 0.5 (or 0

and 7 in radians). The total sum of squares of the series, also called the energy, is proportional

to the number of observations (SS = 7c”). The energy divided by T gives the power or the
variance. For series containing deterministic cycles, the peaks of the periodogram occur at
corresponding frequencies [see Figure 2.2.4 (A) and (B)]. The heights of the peaks are related
to the amplitudes of the respective frequencies. As Figure 2.2.5 visualizes, the height of each
peak is equal to half the square of the amplitude of each frequency (weighted with 7). If the
time series is a set of completely independent random numbers, also called white noise, then
the total energy or the variance of the series is approximately equally distributed across all

possible frequencies as in Figure 2.2.4 (C).
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Figure 2.2.4. Periodograms: (A) 7=100, Y; =5+ 3sin(2n¢/20 + 6) + 5sin(2nz /10) + u, ; (B) T=50,

Y; =5+ 3sin(2nt /20 + 6) + 5sin(2nt /10) + uy ; (C) u, ~1id (0,1), 7=50.
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Figure 2.2.5. Periodograms of series with 7=100: (A) Y; = 3sin(2nz/20) + 5sin(27z /10) + u, ;

(B) Y; = 5sin(2mz/20) + 3sin(2nz /10) +uy .

The sum of squares at each frequency can be obtained through

A

52 2 T-1

T 7’+7j with d; =?§Y, cos27f ;t and l;j 2%2‘1@ sin27f ;1.
Because dand b at each frequency are independent and normal [and u, ~1id(0,1)], their sum of
squares is a chi-square with two degrees of freedom', under the null hypothesis a=b=0 at that
frequency. Thus, the significance of periodogram values for each frequency f; can be
determined.

There exist different expressions for the periodogram?, the most widely used are

7-1 2

z yte—i2nﬁ

t=0

T-1 1

1(f) =4in2(&cos2nﬁ+z5sin 2nft)? and  1(f)=——

The periodogram can also be derived from the autocovariance function

1 = . .
I(f)= %[co +2 E ¢, cosk(2nf )] where cy, ..., cr.; are estimates of the autocovariance.
k=1

The last equation is called the Fourier transform and serves as a connecting link between

time- and frequency-domain representations of time series.

! df=2 except for the slowest and highest frequencies /=0 and £=0.5.
? In exponential form of the periodogram e is the basis for natural logarithms and i = +/—1 .
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2.2.3 Detecting Probabilistic Cycles: Spectral Analysis

The objective of the spectral analysis is the identification of the frequencies that explain the
variance in an observed time series. The spectral decomposition aims to find out how much
variance is accounted for by each frequency in the series. The spectral density function gives
the basic frequencies that compose the time series. The periodogram is one estimate of the
spectral density where Fourier frequencies are used to approximate the real frequencies in the
data. Periodogram analysis is a powerful tool for detecting a strong cyclic component.
Deterministic cycles appear in the periodogram as clear peaks whose height increases with the
sample size. For time series that are not strictly periodic, which implies random changes of
frequencies, the periodogram analysis is associated with several problems.

The most serious failure of the periodogram is the large sampling error associated with
the estimates of the sum of squares. Figure 2.2.6 shows the periodogram of white noise for
different sample sizes. The theoretical spectral density of white noise is a straight line. As the
figure illustrates, the variance of the sample periodogram estimates does not decrease as the
number of observations increases. As a result, the peaks of the periodogram do not smooth

out with increasing 7.
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Figure 2.2.6. Spectral density function of white noise u, ~iid(0,1) estimated from the periodogram, the
flat line is the theoretical spectral density: (A) 7=100; (B) 7=300.
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Figure 2.2.7. Periodograms of AR(2)-Process Y; = 0.6Y,_| —0.4Y,_, +u;: (A) T=100; (B) 7=300.

Figure 2.2.7 visualizes another problem of the periodogram analysis. Both
periodograms A and B are estimates for the spectral density function of the AR(2)-process
with ¢;=0.6 and ¢,=-0.4. For 7=100, the periodogram result suggests one cyclic component at
frequency f=0.13, which implies a cycle length of about 7.7 time units. Increasing the sample
size to 300 observations gives two major frequencies 0.19 and 0.13 or the periods about 5.3
and 7.7 time units, respectively. The autocorrelation function of the series

Y =0.6Y,_ ,-04Y ,+u, shows that the wunderlying autoregressive process is
nondeterministically periodic (see Figure 2.2.8). The theoretical spectral density of the AR(2)

c. 1
2n (1+¢7 +¢2)—2¢,(1—d,)cos 2nf — 24, cosdnf

model can be computed as p(f)=

2
u

T

where

is the spectral density of noise. The spectral density of an AR(2) process can have

only one peak at f = %arccos{%} (Gottman, 1981, p. 233). For the process with
T —b,

$:=0.6 and ¢»=-0.4, this implies the true frequency f=0.17 or the period of about 5.9 time
units. The above example is designed to illustrate two points. First, the cyclic component in
the AR(2) series is not fixed which means random changes in frequencies within certain
bounds. Second, the periodogram analysis breaks down when applied to time series with

stochastic cycles. The power spectrum technique reduces the described problems.
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Figure 2.2.8. (A) Realization of the AR(2) process with ¢;=0.6 and ¢,=-0.4; (B) its ACF.

The power spectrum is employed to estimate the spectral density function of time
series with stochastic cycles. The power spectrum is a smoothed version of the periodogram.
In a spectrum the sum of squares of neighboring frequencies of a periodogram are averaged
together to provide a more reliable estimate for this frequency band. Therefore, for
nondeterministically periodic series, spectral density provides an estimate of the proportion of
variance that is accounted for by a particular frequency band. There exist various smoothing
functions, also called windows, which differ in the number of averaged frequencies and the
weights used for computations. The total number of neighboring frequencies included in the
weighted average is called the width of the window. The window is always symmetrical
around some central frequency. That is why the width is 2m+1, where m is the number of
terms on each symmetrical half of the window. The choice of m represents a basic dilemma in
employing spectral windows. On the one hand, the sampling error decreases as m increases.
On the other hand, using wide windows can prohibit detecting distinct cyclic components.
The weights used for smoothing can be equal for all included frequencies such as in the
Daniell window. Some procedures, as for example the Tukey-Hamming smoothing, give more
weight to frequencies near the center of the window.

When a spectral window is used, significance tests for the spectral density estimates

are performed employing “equivalent degrees of freedom” abbreviated EDF. In the Daniell

case EDF=4m+2, this is the degrees of freedom of the sum of 2m+1 Xz de= random variables.
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Figure 2.2.9. Spectral densities of (A) white noise series with 7=100 estimated using Tukey-Hamming
window with m=10, the flat line is the theoretical spectral density; (B) AR(2)-series with ¢;=0.6,
#,=-0.4 and 7=100 estimated using Daniell smoothing with m=5; (C) AR(2)-series with ¢;=0.6,

$,=-0.4 and 7=300 estimated using Daniell window with m=10.

Figure 2.2.9 shows that employing the power spectrum instead of the periodogram
gives either a smoother estimate for the spectral density function of white noise or provides
quite good estimates for the true stochastic frequency /=0.17 in the AR(2) series with ¢;=0.6

and ¢,=-0.4.

To summarize, the main goal of the frequency-domain analysis is the identification of
major cyclic components that explain variance in an observed time series. The spectral
density function gives these basic frequencies. For series containing deterministic cycles, the
periodogram is an appropriate estimate of the spectral density where either (7)/2+1 or
(T-1)/2+1 Fourier frequencies are used to approximate the real frequencies in the data. If time
series are nondeterministically periodic, the power spectrum, which is a smoothed version of

the periodogram, provides a more reliable estimate of the spectral density function.
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2.3 Stationarity

The concept of stationarity is central for time-series modeling. Stationarity means stability of
a process or a series. Assumption of stationarity is essential for inference and forecasting,
because the absence of stability prohibits any reasonable prediction. Thus, stationarity
conditions require the studied process to be stable over time in some statistical sense. One
distinguishes between strictly and weakly stationary assumptions. A process is said to be
strictly stationary if all its moments are invariant over time. Stationarity is called weak or
second-order if just the first moments of the probability distribution of a process under study,
mean and variance, are constant over time. Most nonstationary series in psychology have a
time-varying mean or a time-varying variance or both (see Figure 2.3.1).

For further statistical analyses, nonstationary time series have to be transformed to
make them stationary. (Another possibility for larger samples is to examine separate pieces of
the studied series, each of which is stationary). The transformation method depends on the
cause of nonstationarity. Special procedures called unit root tests were developed to test
stationarity conditions (see Chapter 5.1 for details). Before formal testing, it is always
advisable to plot the time series under study against time. As Figure 2.3.1 shows, such a plot
can reveal the nature of the observed series. Instability in level can be also detected by means

of the correlogram or the power spectrum.
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Figure 2.3.1. Nonstationary processes: (A) time-varying variance; (B) time-varying mean;

(C) time-varying mean and variance.
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Figure 2.3.2. Autocorrelation functions of nonstationary time series: (A) time series with a linear
trend ¥; = 0.2t +u,, 7=100; (B) integrated time series ¥; =Y, ; +u,, T=100.

As Figure 2.3.2 illustrates, the correlogram of nonstationary series is characterized by
large or significant autocorrelation coefficients up to a lag of about one-quarter the length of
the time series. Figure 2.3.3 shows that the power of series with a changing mean is
concentrated at zero frequency implying an infinite period, which makes sense for series with

a trend component. Further properties of instationary series are discussed in Chapter 3.
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Figure 2.3.3. Spectral density of nonstationary time series obtained using Tukey-Hamming window

with m=10: (A) time series with a linear trend Y, = 0.2¢ +u, , 7=100; (B) integrated time series

Y, =Y, +u,, T=100.
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3 RESEARCH APPLICATIONS

This chapter discusses a range of applications of time series analysis in psychology or other
behavioral sciences. For longitudinal designs generating repeated observations on a single
unit, time series analysis is the appropriate statistical methodology allowing either to
understand the process under investigation or to measure different forms of intervention
effects occurring in experimental designs. In the first place, time series analysis provides an
insight into properties of the underlying stochastic process of the variable under study. Once
the process has been inferred, it can be used either to test some hypothesis about its generating
mechanism or to forecast future values of the series. Thus, there are three major research
applications of time series analysis: (1) inference about the data generating process, (2) time-
series-experiments, and (3) forecasting. Velicer and Fava (2003) discuss time series analysis
as it is commonly employed in psychological research. Glass et al. (1975), Gottman (1981)
and McCleary and Hay (1980) provide a comprehensive introduction into time-series
experiments for social scientists. Bowerman and O’Connell (1993) and Makridakis et al.
(1998) describe various forecasting techniques for the practicing researcher. The above-

mentioned books build the basis for this chapter.

CHAPTER 3

Process Analysis Time-Series-Experiment Forecasting
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3.1 Process Analysis

Time series analysis always aims at a basic understanding of the process under investigation.
Various processes can be described and categorized using the following dimensions: stability,

memory, and dependency structure.

3.1.1 Stability

As noted earlier, within the scope of time series analysis stable processes are called stationary.
Unstable or instationary processes are characterized by changes in mean or variance or
covariance structure with historical time. The nature of instability can be deterministic or
stochastic.

Time series with a deterministic change in level are said to have a trend. This usually
implies a linear trend, but it could be quadratic or a polynomial of higher order. Trends can be
detected and analyzed employing regression techniques where time serves as the explanatory
variable. Figure 3.1.1 shows realizations of three processes with the same linear trend
component but different disturbance terms @, and their estimated regression lines. The
estimated equations prove that the ordinary least square estimation method ensures good
estimates of both the intercept and the slope for series with either independent or

autocorrelated error terms’.

Estimated regression 10.2+0.196t 30,00 30,00~

Estimated regression 10.4+0.192t Estimated regression 10.3+0.195t

30,00
25,00 25,00
25,00
20,00 20,00
> 20,00 >
1500

A e B .

10,00

1500
C 1000

5,00 5,00

T T 1T 1T T T T 1T 1T 1T rrrrrrT T 111111111 rTrT T 1T T T 1T 1T 1T T 11 1T 1117
1 7 1319 25 31 37 43 49 55 61 67 73 79 85 91 97 1 7 1319 25 31 37 43 49 55 61 67 73 79 85 91 97 1 7 1319 25 31 37 43 49 55 61 67 73 79 85 91 97

t t t

Figure 3.1.1. Time series with a linear trend ¥, =10 + 0.2¢ + a, with 7=100: (A) a, ~iid(0,1);

(B) a; =05a, | +u;;(C) a; =u; +0.5u,_ with u, ~1id(0,1).

! Note that significance tests require uncorrelated error terms.
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Figure 3.1.2. Integrated time series with 7=100: (A) ARIMA (0, 1, 0); (B) ARIMA (0, 2, 0);
(C) ARIMA (0, 1, 0) with the drift parameter a=0.5.

Integrated processes exhibit stochastic or random changes in level [see Figure 3.1.2 (A)
and (B)]. The ARIMA parameter d denotes the order of integration. Most psychological time
series are integrated of order 1. That is, they generally become stationary or stable after taking

their first differences. As noted previously, the random walk series Y, =Y, | +u, is an example
of an integrated series. After differencing AY =Y, —Y, , =u,it becomes white noise or a

stationary series. Integrated processes can also exhibit a positive or a negative stochastic trend.
In the time series literature, a stochastic trend is called drift. The name drift comes from the

fact that if we modify the random walk equations as follows:
Y =0+Y , +u,, AY =Y -Y ,=o+u,,

it shows that Y; drifts upward or downward, depending on the parameter o being positive or
negative [see Figure 3.1.2. (C)].

In the case of the deterministic trend, the deviations from the trend line are purely
random and dissipate quickly; they do not contribute to the long run development of the series.
In the case of the stochastic trend, on the other hand, the random component affects the long-
run course of the series. In practice, we usually deal with relatively short realizations of
processes, therefore it is difficult to distinguish visually between deterministic and stochastic
trends, or even between stationary and instationary time series. The so-called unit root tests are
designed to answer the question whether a process under study is stationary or not and to

reveal the nature of instability for nonstationary series (see Chapter 5.1 for details).
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3.1.2 Memory

In time-series analysis, memory means predictability from the past of a series to its current
values. Memory properties of each process can be described employing the following
dimensions: persistence and strength. Persistence describes whether a series has a long or a
short memory. Strength quantifies the magnitude of the dependence and reflects which
proportion of the previous component still affects the current observation.

In the time-domain, memory characteristics of a process are inferred from the
autocorrelation function. Within the scope of ARIMA terminology, the parameter d, p and ¢
reflect whether the process has a long or a short memory. The autoregressive and moving
average prediction weights ¢ and 0 quantify the memory strength'. In the case of the ARIMA
(0, 0, 0) or white noise, we deal with a process without memory. This implies that knowledge

of the value of a white noise series at any point in time does not improve prediction. Integrated

processes (p, 1, g) can be represented as the sum of random terms Y, = Za, . As a result, we

observe a strong persistence of random errors in the autocorrelation function, which means that
the impact of a particular random term does not dissipate with the time. Thus, the ARIMA
(p, 1, g) processes have an infinite memory. ARIMA (p, 0, ¢) models with small p or g possess
a short memory and are predictable only from their immediate past. Their autocorrelations
decay quickly as the number of intervening observations increases. If p or g are large, we deal
with persistent autocorrelations implying a long memory of the data generating process or, in
other words, statistical dependence between observations separated by a large number of time
units. Long-range dependencies can be parsimoniously captured through the differencing

parameter d, if we allow it to take any real value between 0 and 1. Time series with continuous

" In some cases, however, the value of ¢ determines the memory persistence. For instance, AR(1) model with
$=.99 can generate autocorrelations over hundreds of trials. (Recall that ARIMA (0, 1, 0) can be represented as a
AR(1) model with ¢=1).
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d values are called fractionally integrated or ARFIMA. Processes with the finite long memory
have d between 0 and 0.5 (see Chapter 5.3 for further details).

In the frequency domain, the power spectrum plotted on a log-log scale provides an
insight into the memory properties of a series under study. For a purely random process, the
power spectrum is an approximately straight line with a slope of zero. In random walk, also
called brown noise because of its relation to Brownian motion, low frequency components
predominate (see Chapter 2.3). Therefore its power falls off rapidly with increasing frequency.
As a result, the log-log power spectra of the random walk series are /inear and have negative
slopes. Theoretically, random walks follow a power spectrum function 1/f 2, which implies a
straight line with a slope of -2. Generally, differencing increases the power spectrum slope by
2, and integrating decreases the slope by 2. Differencing of a random walk gives white noise.
Thus, a power spectrum of white noise is 1//°. Time series with a long memory are called pink,
flicker or burst noise. Their log-log power spectrum follows a straight line with slope —1
implying a power spectrum function of 1//. Denoting the power spectrum function 1//°*, where
a is called the power exponent, we obtain for processes without memory a=0, for process with
an infinite memory a=2. In the case of a long memory, a can vary from 0.5 to 1.5. For short-
memory processes, the log-log power spectrum in not a straight line because the linear relation
between power and frequency breaks down at the low frequencies where random variation
appears. As a result, a flat plateau (the zero slope of white noise) dominates low frequencies in
spectral plots. Figure 3.1.3 shows theoretical power spectra for processes with different

memory properties.

(A) WHITE NOISE (B) BROWN NOISE (C) PINK NOISE (D) AR(1)-PROCESS

=\

Log frequency Log frequency Log frequency Log frequency
Figure 3.1.3. Theoretical power spectra: (A) 1/£°; (B) 1/f%; (C) 1/f; (D) AR(1) with ¢=0.7.

Log power
Log power
Log power
Log power
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Figure 3.1.4. ACF and log-log power spectra (logarithms are base 10) for series with 7=500.

For empirical time series, the regression slope of a linear function on a log-log plot can
serve as an estimate of the power exponent. Beran (1994), Gilden (2001), Handel and Chung
(1993), Kasdin (1995), and Pilgram and Kaplan (1998) provide a detailed description of the
technique. Figure 3.1.4 depicts autocorrelation functions and log-log power spectra of
empirical time series with different memory properties. Wagenmakers et al. (2004; 2005) and
Thornton and Gilden (2005) point out that the log-log power spectrum of an ARMA(1, 1)
series can resemble the spectrum of 1/f noise (compare Figure 3.1.4 C and D). This implies
that, in frequency domain, short memory time series may mimic the statistical properties of
the long memory process. To solve this problem, several procedures have been proposed for
rigorous distinguishing of series with different memory properties. Wagenmakers et al. (2004)
present a method in which the ARMA model, representing short-range processes, are
competitively tested against the ARFIMA model, representing long-memory processes.
Specifically, Wagenmakers et al. suggest determining the maximum likelihood of a time
series under the ARMA and ARFIMA models, and then selecting the appropriate
representation using Akaike’s information criterion (AIC). Thornton and Gilden (2005)

propose a spectral classifier procedure, in which the likelihood of a time series is estimated by



CHAPTER 3 RESEARCH APPLICATIONS 27

comparing its power spectrum with spectra of the competing memory models. Farrell et al.
(2006; in press) conduct simulation experiments comparing the spectral classifier method of
Thornton and Gilden with the ARFIMA approach of Wagenmakers et al.. Both procedures
prove to be equally effective in discriminating between long- and short memory series.
Despite the vast similarity of the approaches, Farrell et al. advocate the ARFIMA method on
the following reasons. First, the ARFIMA modeling is commonly available in statistical
packages such as Ox, R or S-Plus, whereas the spectral classifier is not freely available.
Furthermore, the ARFIMA procedures are easily extended to different sample sizes and
higher order models, whereas the spectral classifier requires generation of a new library for
each new model or time series length. Finally, the theoretical properties of the ARFIMA

models are well known, whereas those of the spectral classifiers have yet to be explored.

3.1.3 Dependency Structure

Time-series analysis distinguishes two types of processes with different dependency
structures: autoregressive and moving-average. The MA(q) process is called g-dependent,
because the dependency only lasts for ¢ successive time units, and is zero thereafter. This is
different from the autoregressive process, where the dependency, expressed as
autocorrelations on different lags, decreases exponentially (see Figure 3.1.5). Autoregressive
models are characteristic of systems containing internal temporal regularity, whereas moving
average models are typical for unstable systems depending on external and occasional events.
Autoregressive and moving-average models are dual. This implies that most stationary
time series can be approximated as either a MA or an AR model. The conditions needed to
guarantee that we can transform from an autoregressive to a moving-average representation of
a series are called stationarity conditions, and from MA to AR representations are called

invertibility conditions. The AR(1) model can be written as an MA(ex) model under
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stationarity conditions (|¢| <1). The MA(1) is the AR of infinite order under the invertibility

condition that |6| < 1. Therefore, the same dependency structure can be approximated using

different models. In practice, the parsimonious representation is preferred.

In time-series analysis, one distinguishes positive and negative dependencies. If
autocorrelations are positive the ACF shows exponential decay as in Figure 3.1.5 (A). For a
negative dependency, the autocorrelation function still decays, but it oscillates around zero
[see Figure 3.1.5 (B)]. Time series with positive autocorrelation move upward or downward
over extended time periods as in Figure 3.1.6 (A). Negative autocorrelations cause a constant
up-and down movement such as in Figure 3.1.6 (B). Biirgy and Werner (2005) and Velicer
and Fava (2003) discuss psychological models for positive and negative dependency
structures (see also Chapter 4.1 for details).

Autoregressive and moving-average processes with positive and negative weights can
also be distinguished employing the power spectrum function. The moving-average process is

a linear filter of white noise (u,). The spectral density of the MA(1) process is thus derived

2 2
from the spectral density function of white noise (;-—"):1+(92 +260cos2nf) ;" . As Figure
T T

3.1.5 (C) and (D) shows, the negatively weighted moving average positively weights lower
frequencies, the negatively weighted moving-average does exactly the opposite'. The spectral

density function of an AR(p) process can be derived from the moving-average spectrum. For

2
an AR(1)-process, the equation o 5 ! with A = 2rf gives the theoretical power
2n1+¢" —2dcosA

spectrum function. As Figure 3.1.5 (A) and (B) illustrates, the shape of this function is similar
to the spectrum of the MA(1) process but much steeper. For further details, consult Gottman

(1981), pp. 228-235.

' Note that here moving-average equation is writtenas ¥, =u, —=Ou, , —...—0u, , .
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Figure 3.1.5. ACF and power spectra (Tukey-Hamming window with m=20) for series with 7=500.

To summarize, processes are usually described employing three dimensions: stability,
memory, and dependency. Stable stochastic processes are called stationary. One distinguishes
between stochastic and deterministic causes of instability or instationarity. Memory properties
of time series can be captured using either the autocorrelation function of the log-log power
spectrum. Autoregressive models are characteristic of systems containing internal temporal
regularity, whereas moving average models are typical for unstable systems depending on
external and occasional events. Both AR(1) and MA(x) models are appropriate
approximations of high dependency stationary processes. Positive and negative dependencies

have different impact on time series development.
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Figure 3.1.6. AR(1) series with 7=20: (A) ¢$=0.7; (B) ¢=-0.7.
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3.2 Time-Series Experiment

One of the enduring tasks for social and behavioral scientists is to measure the effects of some
planned or not planned intervention occurring in experiments or quasi-experiments. Many
intervention effects can be detected only in longitudinal designs where a dependent variable is
studied over time. According to Glass et al. (1975), the most important advantage of the time-
series experiment over other designs is the possibility to account for different intervention
effects. Figure 3.2.1 illustrates that the time-series design actually “offers a unique perspective
on the evaluation of intervention (or “treatment”) effects” (Glass et al., 1975, p. 4).

In longitudinal designs, we deal with repeated measurements on a single research unit
producing autocorrelated data. Crosbie (1993) compares different possibilities to measure
intervention effects in longitudinal designs: visual inference, ANOVA, Box-Jenkins

intervention analysis and Interrupted Time-Series Experiment (ITSE).

A. Abrupt change in level. F. Delayed change in direction.
M L \

B. Delayed change in level. G. Temporary change in direction.

T TN
—— (D)

C. Temporary change in level. H. Accelerated change in direction.
(1)_\_ (1 J

D. Decaying change in level, I. "“Evoluticnary operations" effect.

E. Abrupt change in direction, J. Change in variability.
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Figure 3.2.1. Different forms of intervention effects (Glass et al., 1975, p. 44).
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Figure 3.2.2. Time series with abrupt change in level at =60: (A) ARIMA(0, 1, 1) with estimated
intervention effect —21.83; (B) simulated ARIMA(O, 1, 0) with true intervention effect —5.

Some researchers (e.g., Kazdin, 1982) propose visual inference as a conservative test
for assessing change in longitudinal designs. They argue that strong, robust and reliable
intervention effects ought to be seen with the “naked eye”. Figure 3.2.2 (A) shows that even a
very strong effect is not always visually obvious. Furthermore, it is also important to be able
to detect small but significant effects. Gottman (1981) points out that in social sciences we
always deal with settings producing a lot of noise in the data. Thus, one of the most frequent
tasks for researcher is “to see a change in the “signal” over and above the noise present in the
data” (p. 58). Figure 3.2.2 (B) is designed to illustrate that it is impossible to detect the stable
downward shift in level of -5 from /=60 present in the random walk series visually.
Moreover, several studies have shown that visual inference is unreliable and cannot control
Type I error (Glass et al., 1975; Jones et al., 1977; Matyas & Greenwood, 1990; Ottenbacher,
1986).

Huitema (1985) argues for the use of traditional ¢ tests and ANOVA models when
testing for the presence of intervention effects within typical behavioural data, which are low
autocorrelated. Sharpley and Alavosius (1988) show, however, that Huitema’s suggestion is
based on two incorrect premises: (a) low levels of autocorrelation can be neglected; (b) time-
series procedures are inapplicable with short data series. Glass et al. (1975), Gottman (1981)

and Sharpley and Alavosius (1988) demonstrate that the use of traditional ANOVA is
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unjustified when there is any autocorrelation at all in the data, because even very low levels of
dependency can lead to unacceptable distortion of F values from traditional procedures. As a
result, ANOVA cannot control Type I error and is, consequently, invalid with autocorrelated
data.

The Box-Jenkins intervention analysis is the most common methodology to measure
intervention effects in time-series experiments. The procedure consists of several consecutive
steps. First, the ARIMA model for the data is identified, and p, d and ¢ parameters are
estimated (see Chapter 2.1.3). Accurate model identification is necessary to determine the
specific transformation matrix to be used to remove dependency from the series so that it
meets the assumptions of the general linear model. Then, the GLM ¢ tests are employed for
uncorrelated residuals to determine whether the post-intervention scores differ significantly in
slope and level from the pre-intervention scores. The main difficulty with the Box-Jenkins
approach is that the accurate ARIMA model identification requires times series with at least
50 observations both before and after intervention, which can be prohibitive in applied
settings.

Some researchers point out that accurate model identification is not always necessary
for time-series experiments (Algina & Swaminathan, 1977, 1979; Crosbie, 1993; Harrop &
Velicer, 1985; Simonton, 1977; Velicer & McDonald, 1984). In experimental settings, the
ARIMA modeling is used to remove dependency from the data. It has been shown that an
autoregressive model with one to five parameters can capture successfully all autocorrelations
in most empirical series. Therefore, the model identification step can be successfully
abandoned in interrupted time series analysis. As a result, different alternatives to the Box-
Jenkins procedure, which can be used with short series of 10 to 20 observations per phase,
have been proposed. The following techniques prove to be simple and reliable for assessing

change with short autocorrelated series: the ITSE of Gottman (1981), the ITSACORR of



CHAPTER 3 RESEARCH APPLICATIONS 33

Crosbie (1993), and the General Transformation Approach of Velicer and McDonald (1984,
1991).

To summarize, accurate measurement of intervention effects in time-series experiments
implies control of autocorrelation in the data. Interrupted time-series experiments do not
require very long series. Larger samples of 50 to 100 observations are necessary for accurate
model identification and forecasting. When testing for intervention effects, even very short

time-series with 20 to 40 data points can be successfully used.

3.3 Forecasting

Forecasting is one of the most important parts of econometric analysis. For economists,
prediction of variables such as stock prices, unemployment rates or inflation is an every day
task. For psychologists, however, forecasting seems to be less in demand compared to both
research applications described earlier. In some research fields, for example, in clinical
psychology, prediction of those phenomena as headache pain for migraine patients, depressive
or psychotic episodes for patients with psychic disorders can represent an important issue.

Gujarati (2003) distinguishes five forecasting approaches based on time series data:
exponential smoothing, single-equation regression methods, simultaneous-equation regression
models, ARIMA approach, and vector autoregression. The Box-Jenkins ARIMA
methodology is the most popular technique, which has been increasingly used among
psychologists. Unlike regression models, in which k regressors explain a dependent variable
Y,, the Box-Jenkins models explain Y; by past values of Y itself and stochastic error terms. In
other words, the future values of the series are predicted from its past values.

The Box-Jenkins forecasting strategy just extends the three-stage model identification
cycle, as described in Chapter 2.1.3, to the fourth step used for forecasting. As usual, the

procedure begins by examining the series for stationarity. Instationary series are transformed
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to stabilize them. The ACF and PACEF of the stationary series are employed for identification
of a tentative ARMA(p, ¢) model. Parameters of the tentative model are then estimated. As
the next step, the residuals from the tentative model are examined to find out if they are white
noise. If the residuals are independent, the tentative model is accepted as an appropriate
approximation to the underlying stochastic process. For autocorrelated residuals, the model
identification and estimation steps are started again. Therefore, the Box-Jenkins method is
called iterative. The model finally selected is used for forecasting. Figure 3.3.1 summarizes

the Box-Jenkins iterative process.

Model identification

!

Estimation of the chosen

p, d, g parameters

v

Diagnostic checking

(Are residuals uncorrelated?)

yes v no

Forecasting

Figure 3. 3. 1. The Box-Jenkins forecasting procedure.
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4 TIME-SERIES RESEARCH IN PSYCHOLOGY

The standard research strategy of most psychologists is primarily nomothetic and in the
majority of cases consists in the attempt to infer general models from the average behavior of
a large sample of individuals. This procedure has been recently challenged in different fields
of psychology. An increasing number of cognitive, social and clinical psychologists employ
an alternative experimental strategy obtaining their knowledge from time-series data of some
few subjects. Emphasizing common dynamics in human behavior, time-series analysis opens
a new perspective for psychological research, where the understanding of development and
change of psychological processes are in the focus of attention. Deligniéres et al. (2004) point
out that, in this dynamical approach, the quality of individual time-series data is more
important then the number of individuals in a particular sample. In various research cases,
some few time-series can provide a deeper insight into phenomena under study than averages
from a large amount of independent observations. The aim of this chapter is to introduce
theories and empirical studies from different fields of psychology employing time-series
terminology and methods. The chosen theoretical models and studies are designed to illustrate
the advantages of the time-series approach for psychological research. First examples show
how to model and to assess change in addictive behavior using longitudinal data. Next,
dynamical view on self-esteem is discussed. Finally, studies from the 1/f noise paradigm

challenging traditional models in cognitive and social psychology are presented.

CHAPTER 4

Modeling and
Assessing Change
in Addictive Behavior

Self-Esteem as
Dynamical Concept

Long-Range
Dependencies in
Psychological Time Series
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4.1 Modeling and Assessing Change in Addictive Behavior

In health and clinical psychology, the efficacy of a treatment is often measured employing
longitudinal data (Crosbie, 1993; Velicer & Colby, 19997; Velicer & Fava, 2003). The
following examples aim to show that, in these research fields, time-series analysis is not
limited to the evaluation of intervention effects but also enables testing psychological theories

explaining development and maintenance of problematic behaviors.
4.1.1 Testing Theories Explaining Smoking Habits

An empirical study of Velicer, Redding, Richmond, Greeley and Swift (1992) provides an
excellent example how time-series methods can be used in theory testing. The study is
designed to determine which of three popular tobacco-consumption models best represent
most smokers. The alternative theoretical models used in the study are the fixed effect model,
the nicotine regulation model, and the multiple regulation model (Leventhal & Cleary, 1980).

The fixed effect model assumes that smoking maintenance is primarily due to positive
effects of nicotine. According to this model, nicotine simulates specific reward inducing
centers of the nervous system. The inhalation of nicotine causes either autonomic arousal or a
feeling of mental alertness and relaxation or both. This implies that occasional above-
averaged nicotine consumption at time ¢ must cause an increasing smoking at time ¢+1. In
terms of time-series analysis, the described dependency structure means positive
autocorrelation in the first lag or AR(1) model with a positive ¢ value.

The nicotine regulation model assumes the optimal personal nicotine level. This stable
set point is under biological control and determines tobacco consumption of an individual.
According to this model, all variations in smoking are random and due to the environment.

This means that there is no dependency between subsequent smoking occasions and smokers
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differ only in their set points. In terms of time-series analysis, no dependency implies a white
noise model.

The main assumption of the multiple regulation model is that smoking behavior
reflects the attempts of the smoker to regulate emotional states. The smoker is balancing
between positive and negative (craving) reactions caused by nicotine. According to this
model, an occasional increase in smoking rate at time ¢ implies a subsequent decrease at time
t+1, and vice versa. For time-series data, this means a negative autocorrelation at the first lag
(between observations at ¢ and #+1) and alternating positive and negative autocorrelations at
subsequent lags.

Velicer et al. (1992) studied smoking habits of 4 male and 6 female subjects. The
data were collected by means of self-monitoring twice daily for 2 months. Number of
cigarettes served as the main dependent measure. Employing the traditional ARIMA
methodology as well as different automated procedures for model selection, a first-order
autoregressive model with a moderate to high degree of negative dependence (—0.3 to —0.8)
was identified in seven cases. Three individuals demonstrated either a zero or low positive
dependence. The results indicate that smoking behavior of the majority of the participants is
consistent with the multiple regulation model.

Rosel and Elosegui (1994) conducted a similar study examining the daily cigarette-
consumption of 9 male and 20 female smokers over a 12-week period. 75% of the series were
identified as the first order autoregressive models. This is an indication of internal regularity
in smoking, which is expected for subjects who have smoked for a long period of time.
Moving average models were not found in this sample. MA patterns indicate the presence of
external influence on the subject behavior and are typical for occasional smokers. The
behavior of 13 subjects contained a seasonal cycle of 7 days. The majority of the time series

(21) exhibited positive autocorrelation supporting the fixed effect model. In the data of 7
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participants, no significant autocorrelation was detected which implies a nicotine regulation

model. In contrast to Velicer et al. (1992), only one subject fit the multiple regulation model.
According to Velicer and Fava (2003), the main reason for the discrepancy in the

results of the two studies is the different time intervals used (twice daily or daily): a negative

autocorrelation at the first lag turns out to be a positive autocorrelation at the second lag, since

K =r, ! Thus, r; values of Velicer et al. (1992) and r| coefficients of Rosel and Elésegui

(1994) reflect the same time period; contrasting these statistics would provide a more direct
comparison of the studies. Subsequent analysis of the 7, and ; values revealed that the two are
both positive and of comparable magnitude. Therefore, for the daily cigarette-consumption
both studies indicate the fixed effect model. Velicer and Fava (2003) point out that these
results highlight an important methodological issue of the choice of the “correct” time interval
between observations. The conclusion about the appropriate nicotine regulation model turned
out to be affected by the frequency of measurement. Therefore, it is critical to pay attention to

the time interval when interpreting time series studies.
4.1.2 Assessing Change in Addictive Behavior

Time is an essential part of theories analyzing dynamics of human behavior. Thus, in the
Transtheoretical Model (Velicer, DiClemente, Rossi & Prochaska, 1990) explaining change
in health behavior, the time component represents the crucial factor. The model postulates
four different stages of change for different theoretical constructs labeled the processes of
change. Both behavioral dependent measures, such as abstinence, and hypothetical constructs,
such as self-efficacy or decisional balance, are proposed to describe the process of change in

addictive behavior. Precontemplation, Contemplation, Action, and Maintenance constitute the

! The autocorrelation function of AR(1) process is given by pi= ¢ with j = lag, which implies p;=0.5 and p,=0.5"
for ¢=0.5 (Hamilton, 1994, pp. 53-56); see also Chapter 2.1.
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stages of change. The model postulates different levels of dependent measurements for each
stage of change. In addition to the process of change, the model assumes the existence of
external and internal independent variables specific to the problem area. According to the
model, any intervention or changes in the natural environment can serve as external variables.
Personality characteristics, cognitive abilities, or available recourses are possible internal
factors.

Evaluation of the model using time-series methods confirmed clear stage differences
for various processes of change (DiClemente et al., 1991; Fava et al., 1994). Furthermore,
time-series analysis revealed the dynamics of different processes of change across the stages
of change. For example, Prochaska et al. (1991) showed that cognitive processes predominate
in the Contemplation Stage and behavioral processes in the Action and Maintenance Stages.
The greatest empirical support for the model comes from the area of smoking cessation.
Prochaska et al. (1994) demonstrated, however, that the same pattern of change across the
stages is typical for a broad range of problem behaviors including weight control, sun
exposure, or HIV risk reduction.

Velicer, Rossi, Prochaska and DiClemente (1996) extended the Transtheoretical
Model to the Three Construct Model using Positive Evaluation Strength, Negative Evaluation
Strength and Habit Strength as dependent measurements. The first two constructs are
designed to measure the cognitive aspects and the last one the behavioral aspects of
phenomena under study. The hypothesized pattern of change for each construct is described
across four stages of change. The model postulates two thresholds representing the ability of
the environment to modify the processes of change: Asthenic Threshold and Abstention
Threshold. The following example illustrates the hypothesized pattern of change for the
behavioral aspects of smoking. The Habit Strength in smoking is modeled as an

autoregressive process of order one. The autoregressive pattern reflects internal regularity in
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addictive behavior of long-term smokers. Two thresholds symbolize the influence of the
environment on smoking. If the level of the series is above the Asthenic Threshold, the person
will smoke regardless of the environment and make efforts to control it. Buying an adequate
number of cigarettes and avoiding no smoking situation are possibilities for controlling the
environment. If the level of the series is below the Abstention Threshold, the person will
avoid smoking regardless of the environment. People between the two thresholds will be
influenced by their personal and physical environments. The model relates the level of the
time series to the stage of change. In the Precontemplation stage, it is located above the
Asthenic Threshold. In the Contemplation stage (thinking about quitting smoking), the level is
between the two thresholds. According to the model, people in the Action stage remain at
about the same level as people in the Contemplation stage even though they are not smoking.
The authors point out that the cessation of smoking is often the result of environmental
control, rather than a lack of desire. People in the Maintenance stage have a reduced Habit
Strength. They are at level lower then the Abstention Threshold, which means that they
generally are not at risk. Figure 4.1.1 summarizes the model assumptions for the construct

Habit Strength.

SMOKER
DESPITE
ENVIRONMENT

ASTHENIC THRESHOLD ‘l ' Hl—
SMOKER ,

DETERMINED
BY
ENVIRONMENT

ABSTENTION THRESHOLD

NONSMOKER
DESPITE
ENVIRONMENT

PRECONTEMPLATION CONTEMPLATION ACTION MAINTENANCE

Figure 4.1.1. Model for Habit Strength (Velicer et al., 1996, p. 563).
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Velicer, Rossi, Prochaska and DiClemente (1996) demonstrated that empirical profiles
of various addictive behaviors are in accordance with those of their Three Construct Model.
Furthermore, time series analysis for different dependent measures including number of
cigarettes, craving, or carbon monoxide proved an ARIMA (1, 0, 0) as the underlying model
for processes of change. This autoregressive pattern proves internal regularity in addictive
behavior.

Once again, understanding development and change in behavior or cognition is
impossible without regard to the time component. Time-series methods allow modeling
different dependency structures for constructs under study and comparison of theoretical and
empirical change profiles. Furthermore, hypothesized stage differences in theoretical models

can be tested by means of the time-series experiment.

4.2 Self-Esteem as Dynamical Concept

From the classical viewpoint, self-esteem (i.e., a favorable global evaluation of oneself) is a
stable personality trait not greatly affected by daily events (Mischel, 1969). Empirical
research, comparing repeatedly measured means of individuals, supports a relative stability of
self-esteem level for various psychological phenomena, including anger or hostility proneness
(see Greenier, Kernis, & Waschull, 1995, for review).

It has been widely recognized, however, that some specific life events such as
professional success or failure can cause meaningful short-term instabilities in self-esteem,
and that such aspects of self-esteem as self-worth incline especially strong to fluctuations
(Rosenberg, 1986). Kernis (1993) accentuates self-esteem lability and argued that people
differ not only in level but also in stability of their self-esteem. Nezlek and Plesko (2001)
showed daily fluctuations in self-esteem. Greenier et al. (1999) demonstrated that negative

and positive events have a greater impact on the self-feelings of individuals with unstable as
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opposed to stable self-esteem. In these studies, standard deviation is used for assessing the
stability of self-esteem.

The so-called hierarchical models of self-concept combine the ideas from theories
focused on trait stability with concepts of cross-situational variability of self-esteem (Brown,
1998; Fox, 1997; Marsh & Craven, 1997). According to these models, self-esteem constitutes
the apex of the hierarchical system. Diverse domains of competence such as social, physical
or familial with their more specific subdomains build the subordinate levels of the hierarchy
(see, for example, Figure 4.2.1). The hierarchical concepts imply either linear dependencies or
nonlinear influences between levels. Fox (1997) assumes higher stability for global dimension
of the hierarchy and stronger variability for the more specific subdomains. Marsh and Yeung
(1998) and Amorose (2001) demonstrated, however, that global self-concept measures were

less stable than more specific scales.

General Self-Esteem Apex level
Professional Physical Self-Worth .
Competence o Social Competence Doraain [evel

) N

Physical Sport Physical Attractive
Condition Competence Strength Body

Subdomain level

Figure 4.2.1. Hierarchical model of self-esteem (Ninot et al., 2001, p. 206).
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New conceptions of the self define self-esteem as a transitory state, depending
simultaneously on previous states and current disturbances (Marks-Tarlow, 1999, 2002;
Nowak et al, 2000; Vallacher et. al., 2002). From this dynamical viewpoint, understanding of
self-esteem is impossible without the analysis of its evolution (Fortes et al., 2005). In other
words, the mechanism underlying the development of self-esteem over time are more
important than it’s level or the magnitude of variability. Considering self-esteem as a
dynamical construct requires a special methodological approach, based on time-series
analysis. For this purpose, Ninot et al. (2001) developed a new assessment tool, allowing
continuous monitoring of self-esteem and physical self. The Physical-Self Inventory is
composed on six single items, measuring global self-esteem, physical self-worth and its four
subdomains: physical condition, sport competence, physical strength and attractive body.
Therefore, the inventory assesses all three levels of the hierarchical model of self-esteem
(compare Figure 4.2.1). Daily or twice daily completion of this instrument over a long period

allows the collection of time series.

In the recent study, Fortes, Deligniéres and Ninot (2004) analyzed psychological
processes that underline the dynamics of global self-esteem and physical self over time. For
228 consecutive days, seven participants completed twice daily the Physical-Self Inventory.
Each of six individual series was then modeled by means of ARIMA procedures. The analysis
revealed large inter-individual differences in the global shape of time series. Global self-
esteem development of two subjects looked rather stationary. Time series of the majority of
participants were characterized by marked instability in level or variance. Figure 4.2.2

illustrates the seven individual time series collected for global self-esteem.
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Figure 4.2.2. Time series for global self-esteem (Fortes et al., 2004, p. 741).

The analysis of the ACF of the series showed the presence of significant positive
autocorrelations for more than 10 lags. Fortes et al. (2004) point out that this result invalidates
the use of means and standard deviation in dynamical self-esteem research because the use of
these statistics supposes uncorrelated data. Most of the series (83%) were identified as the
ARIMA(O, 1, 1) with a positive moving-average term ranging from 0.44 to 0.88. In seven
from 42 cases (7 subjects x 6 items), (0, 1, 2) or (0, 1, 3) models were fitted. The identified

ARIMA structures were quite similar among the six dimensions of each subject.
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In short, the main result of the study is that a differenced first-order moving-average
model represents the best fit in most cases. According to Spray and Newell (1986), this model
is typical for time series that exhibit noisy fluctuations around a slowly varying mean. The
time series from different levels of self-esteem (global, domain and subdomain) were not
stationary implying the instability of the studied dimensions. Fortes et al. (2004) suggest that
the observed dynamics of self-esteem reflect a combination of two opposite processes:
preservation, which tends to restore the previous value after a disturbance, and adaptation,
which tends to inflect the series in the direction of the perturbation. As stated previously,
autoregression is characteristic for internal regularity, whereas moving-average pattern
reflects external influences. In combination with ¢=1, the positive moving average coefficient
0 determines the balance between the preservation and adaptation processes. Based on the
results of their study, Fortes et al. argue that the dynamics of self-esteem processes can be
understood as organized around a locally stable reference value, which evolves progressively
under the influence of life events.

The main conclusion from the presented study is that analysis of dynamical concepts
such as self-esteems requires the adequate methodological approaches. Traditionally,
psychologists assess evolution or development through repeated measurements. By this
procedure, however, possible dependences between subsequent values remain indiscernible.
According to Slifkin and Newell (1998), classical statistics such as mean or standard
deviation are not able to reflect the true nature of variability or change in living systems.
Revealing the autocorrelation structure of dynamical concepts, the time-series methods allow

to conceive the development of various psychological phenomena.
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4.3 Long-Range Dependencies in Psychological Time Series

In traditional psychological research, autocorrelations in the data are often ignored. This
reflects the implicit assumption that most psychological phenomena can be viewed as
randomly distributed in time around a more or less stable mean. Researchers who paid
attention to serial correlations in human performance considered them to be small and
transient (Laming, 1968; Huitema, 1985). Recent empirical studies from cognitive, social, and
biological psychology are questioning this popular view. Employing time-series methods such
as the log-log power spectrum or the ARFIMA modeling (see Chapter 3.2.1), persistent long-
range dependencies have been detected in various psychological time series. These very
slowly decaying autocorrelations are known as 1/f noise. The objectives of this chapter are: to
review empirical studies on 1/f noise and to discuss theoretical models accounting for long-

range dependencies in psychological time series.

4.3.1 Review of Empirical Findings

Time series exhibiting persistent autocorrelations have been observed in physics, biology,
hydrology, economics, sociology, and other disciplines. A summary of interdisciplinary 1/f
noise literature can be found under: http://www.nslij-genetics.org/wli/lfnoise/. The
bibliography contains more than 800 publications demonstrating 1/f noise in a wide range of
natural phenomena such as heart beat rhythmus, brain activity, human coordination, music, or
speech. The primary objective of the bibliography is, therefore, to show the ubiquity of 1/f
noise.

In psychology, correlated noise was initially detected in controlled cognitive
performances (Gilden, Thornton & Mallon, 1995). Using spectral analysis techniques, Gilden
and his colleagues demonstrated in experiments including mental rotation, lexical decision,

shape and color discrimination, or visual search that persistent autocorrelations account for
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even more variability in the data than most standard manipulations in cognitive psychology
(Gilden, 1997, 2001; Gilden & Wilson, 1995; Gilden et al., 1995). Serial correlations
observed in these studies were not only persistent but also relatively large in absolute
magnitude. Wagenmakers et al. (2004) confirmed these findings employing in their analysis
the ARFIMA methodology.

Van Orden et al. (2003), Wagenmakers et al. (2004), and Ward and Richard (2001)
found long-range dependencies in automatic cognitive performances such as word naming or
simple reaction times. The intensity of the dependence was here lower than in tasks requiring
cognitive control. This implies that the persistence and magnitude of serial dependence is not
based purely on temporal contiguity. According to Wagenmakers et al. (2005), empirical
support for the existence of persistent autocorrelations in automatic tasks is not so strong as
for controlled cognitive performance. Therefore, competitive assumption of short-range
dependencies cannot be definitely excluded from consideration.

Chen et al. (1997, 2001), Deligni¢res et al. (2004) and Ding et al. (2002) observed
persistently correlated noise in human rhythmic activities such as tapping or other tasks
requiring coordination or synchronization of motor and cognitive activities. The evidence for
the long-range pattern was rather strong with estimated power exponents' ranging from 0.49
to 0.87 (Ding et al., 2002) or even from 0.61 to 1.68 (Deligniéres et al., 2004). Moreover, the
log-log power spectra of most series were fitted with quite perfect straight lines reflecting
pink noise in the data. These results are inconsistent with the assumption of a simple
autoregressive error correction model for synchronization tasks proposed by Pressing and
Jolley-Rogers (1997). Specifically, the model postulates that linear autoregressive error
correction processes of order 1 predominate in interactive human performance requiring

synchronization. In other words, the noise component of rhythmical performance arises

" Recall that, for a long memory, the power exponent a in 1/£* can vary from 0.5 to 1.5 (see also Chapter 3.1.2).
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primarily from an AR(1) process, a second order process may be used if task demands of
coordination and speed require greater accuracy. In synchronized tapping experiments,
Pressing and Jolley-Rogers (1997) observed exponential spectral patterns typical for short-
range dependencies. According to Pressing and Jolley-Rogers, the interplay of cognitive and
motor components in tapping produces these spectral curves. The motor component
concentrates its power at higher frequencies, whereas the cognitive component is dominant
for lower frequencies. Recall that concentration of the power at zero frequency implies
instationarity. Thus, for AR(1) series, more power at low frequencies implies ¢ coefficients
near 1. Predominance of high frequencies is typical for AR(1) models with negative ¢ values
(see Chapter 3.1.3). Therefore, the findings concerning dependency structure of rhythmic
activities are contradictory: Chen et al. (1997, 2001), Deligniéres et al. (2004) and Ding et al.
(2002) observed a strong evidence for 1/f noise, whereas Pressing and Jolley-Rogers (1997)
found only short-range dependencies in their data. Gilden (2001) points out that the pink
noise spectrum (1/f) can result from a combination of white noise (1/f°) and random walk
(1/f ?) spectra. It is possible that cognitive processes in tapping are instationary due to
fluctuations in attention or fatigue, and simple motor responses such as key pressing introduce
white noise into the data. The interplay of these factors can simulate the 1/f like behavior.
Therefore, further research is required to answer the question whether time series from
rhythmic activities are the real pink noise or if we deal here with 1/f type effects due to
fluctuations in speed of performance or attention. New methodologies such as the spectral
classifier procedure of Thornton and Gilden (2005) and the ARFIMA approach of
Wagenmakers et al. (2004) can help to solve this problem.

Aks and Sprott (2003) detected 1/f noise in visual perception. The timing of perceptual
reversals of Necker cubes served as an independent variable. While viewing the Necker cube,

subjects pressed a key each time they perceived a change in the cube’s orientation.
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Experiments were performed under three sets of binocular disparity conditions. Viewing
duration was extended, moderate, or brief (60, 30, or 15 minutes). Spectral analysis of 40
series detected 1/ noise in 80% of the cases. Regression slopes in log-log plots varied from —
0.6 to —0.9. More disparity and reduced viewing time produced steeper slopes in the spectra
(larger power exponents). According to Aks and Sprott (2003), the last finding reveals the
stabilizing function of binocular disparity in perception. Disparity may either filter out
extraneous information or signal the system to rely more on previous percepts. More studies
and methodologies employing rigorous testing of alternative hypotheses to 1/f noise are
necessary to verify this assumption.

Deligniéres, Fortes and Ninot (2004) reported long-range dependencies in time series
of self-esteem and physical self. Twice a day for 512 consecutive days, four adults completed
Physical-Self Inventory (Ninot et al., 2001). Persistent autocorrelations were detected
employing different methods. For example, spectral analysis revealed for each series a
straight line in the double logarithmic plot of power against frequency. No traces of flattening
of the plot in the low-frequency region, as expected for short memory processes, were found.
The power exponent values appeared close to 1, suggesting that the series behaved like 1/f
noise.

Fractal analysis, accounting for the degree of self-similarity in time series, represents
another methodology used in the study. This approach differentiates two types of series with
long-range dependencies: persistent and anti-persistent. The series is said to be persistent if an
increasing trend in the past is likely to be followed by an increasing trend in the future. In
anti-persistent series, an increasing trend in the past is followed by a decreasing trend.
Mathematically, processes with different autocorrelation properties can be characterized using

the following scaling law: <AY>oc A", implying that the expected increment <AY> is a power
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function of the time interval (Af) over which this increment is observed'. H is called the
scaling, fractal or Hurst exponent and can be any real number in the range 0<H<I.
(Mandelbrot & van Ness, 1968; Torre, Deligniéres, & Lemoine, in press). The aim of fractal
analysis is to check whether this scaling law holds for experimental series. A theoretical
scaling exponent of random walk is 0.5; this value constitutes the frontier between anti-
persistent (H<0.5) and persistent (/4>0.5) series. For 1/f noise, fractal exponents lower than
0.5 are expected. The estimates of H obtained by Deligniéres et al. were located in a quite
narrow range, between 0.18 and 0.40, suggesting an anti-persistent long-range correlation
process. Delignieres et al. compared their findings with the results obtained by Fortes,
Deligniéres and Ninot (2004) for shorter time series. (Recall that observations of this study
were collected twice daily for 228 days). They found that the moving average coefficients of
shorter series are negatively related to H estimates. According to Deligniéres et al., this
suggests that 1//noise and the moving average model possess similar properties, characterized
by a subtle balance between the preservation of a reference value and an adaptation to events.
This balance is not simply achieved over the short term, as implied by the ARIMA models,
but occurs at multiple time scales, in a self-similar way. Deligni¢res et al. formulated an
interesting hypothesis concerning the relationship between moving average coefficients and
the scaling exponent: low moving average coefficients are related to weakly anti-correlated
series close to the random walk pattern with H values about 0.5, and higher coefficients
correspond to series closer to 1/f noise with lower H exponents. Empirical evidence for the
postulated relationship between moving average values and fractal exponents could be of
great practical importance in applied settings, since, in contrast to spectral methods or the

ARFIMA methodology, ARIMA procedure can work with relatively short times series.

! Recall that successive increments of random walk AY = Y, —Y, | = u, are uncorrelated.
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Long-range dependencies are also found in human gait (Hausdorff et al., 1997; 1999);
force production tasks (Pressing, 1999); brain activity (Linkenkaer-Hansen, 2002); heart rate
fluctuations or other biological phenomena (Hausdorff & Peng, 1996). Table 4.3.1 presents an

overview of the studies.

Table 4.3.1. Overview of empirical studies reporting 1/f noise.

Controlled Cognitive Gilden, Thornton & Mallon (1995)
Performance Gilden & Wilson (1995)
Gilden (1997, 2001)

Wagenmakers et al. (2004)

Automatic Cognitive Van Orden et al. (2003)

Performances Wagenmakers et al. (2004)

Ward & Richard (2001)

Rhythmic Activities Chen et al. (1997, 2001)
Deligniéeres et al. (2004)

Ding et al. (2002)

Visual Perception Aks & Sprott (2003)

Self-Esteem and Physical Self | Deligniéres, Fortes & Ninot (2004)

Human Gait Hausdorf, Zemany, Peng, & Goldberger (1999)
Force Production Tasks Pressing (1999)
Brain Activity Linkenkaer-Hansen (2002)

Heart Rate Fluctuations Hausdorff & Peng, 1996
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4.3.2 Explanations for Long-Range Dependencies

Numerous explanations for the observed long-range dependencies in psychological time
series have been proposed. Roughly, two different approaches can be distinguished. One
perspective is characterized by the idea that 1/f noise patterns can arise from aggregation of
more simple models. Another perspective is embedded in the framework of the nonlinear
dynamical system theory.

As describes previously, a combination of white noise and random walk spectra can
imitate the 1/fnoise behavior. Thus, long-range dependencies in psychological time series can
be caused by instationarity in time series due to fluctuations in attention or shifts in the
strategy. Busey and Townsend (2001), Gilden (2001), and Wagenmakers et al. (2004) use this
explanation.

Chen et al. (2001), Ding et al. (2002), and Wagenmakers et al. (2005) argue that the
mathematical model of the long memory process proposed by Granger (1980) for economic
measures can also work for psychological data. Granger hypothesized that pink noise can
arise via aggregation of multiple component processes that separately generate transient
correlations. In other words, a simple summation of independent AR(1) processes results in
persistent serial correlations of 1/f type. This model can be applied to human cognition if we
assume that the observed series is an aggregation of the behavior of many independent groups
of neurons, each with their own different autoregressive parameter.

A similar idea for biological systems comes from Hausdorff and Peng (1996). Their
multiscaled randomness model assumes that 1/f noise pattern can result from summation of
short-range processes with different characteristic time scales. Hausdorff and Peng argued
that in many biological series overall behavior is influenced by systems operating on widely

different time scales. For example, heart rate fluctuations are short-term regulated via the
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autonomic nervous system; long-term influences come from circadian rhythm via hormonal
systems.

The assumption that the presence of multiple time scales can yield 1/f noise effects is
also shared by Pressing (1999). According to Pressing, multiple time scales explain long-
range correlations in human cognitive control and attentional fluctuations. 1/f spectra are
typical for systems that feature multiple discrete time scales, as in relaxation, processing, or
production. Simulation experiments evaluating this model demonstrated that summation of
random processes with different time scales can yield 1/f spectra with exponents ranging from
0.5 to 1.5; three or even two series are sufficient for this effect. To achieve a 1/flike spectrum,
slow process must have greater amplitude (weight) than faster process (Pressing, 1999, p. 6).

Another perspective associates 1/f noise with deterministic nonlinearity operating in
intermittency or chaotic regimes (Schuster, 2005). The most popular model from this
approach is the Self~-Organized Criticality (SOC), introduced by Bak, Tang and Wiesenfeld
(1987). Using a pile of sand as a metaphor, Bak et al. explain the large-scale dynamics of
various phenomena. In the same way as grains of sand added slowly and randomly to a
sandpile cause avalanches, barely detectable movements of the earth’s crust can cause the
devastating earthquakes, or small random changes in stock prices can lead to financial crashes
(Bak, 1996; Jensen, 1998). A system is said to be self-organized when its structure emerges
without explicit influences from outside the system. To state it differently, non-randomness in
the system emerges from random initial condition and random input. The term self-organized
implies this internal dynamic. The term criticality is analogous to the critical point of
equilibrium systems. Thus, SOC characterizes systems that naturally evolve to a critical state
in which a minor event starts a chain reaction that can affect any number of elements in the
system. Such systems are said to have a critical point as an attractor. Long-range

autocorrelations (pink noise, fractal dynamics) constitute the typical signature of complex


http://en.wikipedia.org/wiki/Critical_point_%28physics%29
http://en.wikipedia.org/wiki/Attractor
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systems in a critical self-organized state. The important feature of 1/f noise is its scale-
invariance or self-similarity across different levels of the system structure. In other words,
self-similar processes look roughly the same when viewed at different levels of magnification.
From this viewpoint, the rare events such as financial crashes or devastating earthquakes are
the consequence of the same mechanism, causing small changes to stock prices every minute
or harmless movements of the earth’s crust every day.

From the nonlinear perspective, the 1/f behavior is conceived as the typical intrinsic
dynamics of complex systems acting at the edge of chaos, a transitional state between
unpredictability and predictable order. Thus, as an intermediate between white noise and
brown noise, 1/f noise is an indication of both stability and adaptability of a system. The
intrinsic stability of 1/f noise is primarily due to the relative independence of the underlying
processes acting at different time scales. Hence, 1/f noise behavior is more adaptive to
endogenous and exogenous perturbations and can be viewed as the typical signature of young,
healthy, and adaptive systems (West & Shlesinger, 1990). Marks-Tarlow (1999) argued that
psychological health resides at the edge of chaos. In this state systems possess enough
stability to maintain consistency but sufficient randomness to ensure adaptability and
creativity. The behavior of disabled systems is, to the contrary, either more unpredictable or
rigid. Marks-Tarlow expects, for instance, the white noise pattern for behavior of hysterical
patients and brown noise for people with obsessive-compulsive disorder. There is empirical
evidence providing an indirect support for this assumption. Hausdorf et al. (1997) observed
1/f noise in the gait of healthy adults. For elderly people or patients with Huntington’s
disorder, behavior close to white noise was typical. Ninot, Deligniéres and Varray (2003)
showed that the variability of self-esteem time series was more random in patients suffering
from chronic pulmonary disease than in healthy subjects (see also Delignicres et al., 2004).

Gottschalk, Bauer and Whybrow (1995) demonstrated that mood variation of patients with
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bipolar disorder was more organized and characterized by a loss of complexity compared to
the mood pattern of healthy participants.

To put it briefly, from the nonlinear perspective self-organized criticality is assumed to
be a typical state of dynamical complex systems acting at the edge of chaos. Scale-invariant
1/f behavior representing a balance between stability and adaptability is characteristic of such
systems.

Van Orden, Holden and Turvey (2003; 2005) and Van Orden, Moreno and Holden
(2003) suggest SOC as an alternative to the current paradigms in cognitive psychology. They
argue that pink noise observed in psychological time series suggests processes of mind and
body that change each other’s dynamics. According to Van Orden and his colleagues, self-
organized criticality supplies a very plausible metaphor for self-control. “Near critical points,
interaction-dominant dynamics coordinate activity across the multiple time scales of
embodied fluctuations. Context sensitivity near critical points situates behavior within the
flow of circumstances. An actor situated in this sense reflects previous and oncoming
circumstances directly as purposive behavior” (Van Orden, Holden & Turvey, 2003, p.347).
Moreover, self-organized criticality points out the internal dynamics of human behavior and
characterizes “human beings as intentional beings”.

Aks and Sprott (2003) share the ideas of SOC and explain the observed 1/f noise in
visual tasks as an expression of complexity and adaptability of the human perceptual system.
They argue, for example, that depth information guides the perceptual system into a self-
organized state to assist us in resolving ambiguous information.

According to Delignieres et al. (2004), the evidence of 1/f noise in self-esteem
supports dynamical conceptions of the self proposed by Nowak et al. (2000) or Vallacher et
al. (2002). These models consider self-esteem as a self-organized dynamical system.

Delignieres et al. (2004) point out the discovered self-similarity in behavior of different levels
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of self-esteem and hypothesize that this fractal pattern reflects the intrinsic dynamics of global

self-esteem for healthy adults.

In sum, long-range dependencies or 1/f noise have been observed in time-series
representing cognitive, motor, perceptual, and biological processes or self-esteem
development. Some researchers explain this phenomenon /inear as a result of aggregation of
different simpler models. Another perspective conceives 1/f noise nonlinear as a signature of
complex dynamic self-organized systems. Argumentation and exchange of views between
advocates of these two paradigms can be found in articles of Wagenmakers et al. (2005) and

Van Orden et al. (2005).



CHAPTER 5 METHODOLOGICAL ISSUES 57

5 METHODOLOGICAL ISSUES

Analysis of empirical research employing time-series techniques revealed several
methodological issues remaining to be clarified. The main goal of this thesis is to treat some
of them. This chapter introduces three simulation studies dealing with the following topics:
transformation of instationary time series; model estimation; and sample size requirements for
reliable detection of long-range dependencies or 1/fnoise. The objectives of the first study are
to develop testing strategies allowing to distinguish between different causes of instationarity
and to evaluate these strategies by means of Monte Carlo experiments. The second study
compares the performance of ESACF and SCAN, automated methods for ARMA model
identification commonly available in current versions of SAS for Windows, as identification
tools for various integrated processes. The last study examines sample size requirements for
the accurate estimation of the long-memory parameter d, and documents the quality of the
conditional sum of squares estimates for time series of different length in various (0, d, 0) and

(1, d, 1) models.

CHAPTER 5
I I
STUDY 1 STUDY 2 STUDY 3
Deterministic or Stochastic Model Identification Sample Size and Accuracy
Trend: Decision on the Basis of Integrated ARMA of Estimation of the Fractional
of the ADF-Test Processes Differencing Parameter
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5.1 Study 1: Deterministic or Stochastic Trend: Decision on

the Basis of the Augmented Dickey-Fuller Test

5.1.1 Introduction

In social and behavioral sciences, the goal of time series analysis is usually to measure the
effects of an intervention, as in an interrupted time series experiment, to forecast future values
of the series under consideration, or to determine the nature of the process that describes an
observed behavior. In the first two cases, stationarity of the series under study is required. A
process is said to be stationary if all its moments are constant over time. Most nonstationary
series in psychology have a time-varying mean or a time-varying variance or both.
Nonstationary time series have to be transformed to make them stationary. The proper
transformation method depends on the cause of nonstationarity. The consequences of a false
treatment can be rather serious. Unfortunately, the last issue is not emphasized in the time
series textbooks used among psychologists (Glass et al., 1975; Gottman, 1981; McCleary &
Hay, 1980, and Warner, 1998). Some descriptions even suggest that two popular methods for
stabilizing nonstationary series, differencing and ordinary least squares regression, are
interchangeable, and that the choice of the transformation method is simply a matter of
researcher’s preferences (see, for example, Warner, 1998, p. 39). One of the objectives of this
chapter is to demonstrate the importance of the proper stationarity transformation for
empirical time-series research.

Figure 5.1.1 shows three common nonstationary processes and their autocorrelation

and partial autocorrelation functions (ACF and PACEF, respectively).
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Figure 5. 1. 1. Nonstationary processes and their autocorrelation and partial autocorrelation functions:

(A) pure random walk, (B) random walk with drift, (C) deterministic time trend.

As described previously, the process ¥, =Y, +u, with u, ~ IIDN (0, 6°) is called a

t
pure random walk. The mean of this process is equal to its initial value but its variance
increases indefinitely over time. A pure random walk process can also be represented as the

sum of random shocks Y, = ZLtt . As a result, the impact of a particular shock does not

dissipate, and the random walk remembers the shock forever. That is why a random walk is
said to have an infinite memory. If a constant term is present in the equation

Y =o0+Y  +u,, Y, is called random walk with drift, where o is known as the drift

parameter. Depending on o being negative or positive, ¥, exhibits a negative or positive

stochastic trend. For a random walk with drift, the mean as well as the variance increase over
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time. Random walk processes are nonstationary, but their first differences AY, =Y, -V _, are

stationary. Hence, both types of random walks are called difference stationary (DS) processes.
Random walk m