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 ABSTRACT                     I

  

TIME SERIES RESEARCH IN PSYCHOLOGY: 

CONTENTS AND METHODOLOGICAL ISSUES 

The objectives of this paper are (1) demonstrate the superiority of the time series analysis over 

the traditional methods in dealing with dynamical phenomena; (2) discuss various possible 

research applications of time series procedures in psychology; and (3) solve some 

methodological problems occurring in applied settings. After a brief introduction into time- 

and frequency-domain analyses, a range of applications of time series procedures in 

psychology was discussed; theories and empirical studies from different fields of psychology 

employing time-series terminology and methods were presented. Three simulation studies 

designed to solve methodological problems typical for time series research in psychology, 

such as handling of instationary time series, identifying of appropriate dynamical models and 

reliable detection of long-range dependencies between successive observations in a series, 

represented the main field of the paper.  

 

Keywords: time series, time-and frequency domain analyses, ARFIMA, unit root tests, 

automated methods for ARIMA model identification, 1/f noise 
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1 INTRODUCTION 

Time series analysis is widely used in econometrics, physic, astronomy, or seismology. To 

most psychologists, this methodology remains unfamiliar despite the fact that Glass, Willson, 

and Gottman (1975), McCleary and Hay (1980), and Gottman (1981) introduced time series 

procedures to social and behavioral sciences three decades ago. The standard research strategy 

in psychology consists in the attempt to infer general models from the average behavior of a 

large sample of individuals. As a result, employing classical statistics ignoring the dimension 

of time is characteristic of psychological research. This neglect of variation in time is rather 

surprising, since change, development, or growth represent typical signatures of most 

psychological phenomena. Traditionally, psychologists assess evolution or development 

through repeated measurements using mean and variance. By this procedure however, 

possible dependences between subsequent values remain indiscernible. Comparing means and 

standard deviations does not reveal the true nature of variability or change. In contrast, time 

series analysis is able to provide profound insight into properties of dynamical concepts. In 

the last few years, more and more researchers from different fields of psychology seem to 

recognize advantages of time series methods and increasingly apply these techniques in their 

empirical studies. The objectives of this thesis are to demonstrate the superiority of the time 

series analysis over the traditional methods in dealing with dynamical phenomena; discuss 

various possible research applications of time series procedures in psychology; and solve 

some methodological problems occurring in applied settings.   

 This paper is divided in six parts. Chapter 2 introduces two major approaches of the 

time series paradigm, time- and frequency-domains analyses, and describes their basic 

concepts. Chapter 3 discusses a range of applications of time series procedures in psychology, 
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such as process analysis, time series experiment, and forecasting. Chapter 4 focuses on 

theories and empirical studies from different fields of psychology employing time-series 

terminology and methods. Chapter 5 represents the main field of this thesis, introducing three 

simulation studies designed to solve methodological problems typical for time series research 

in psychology, such as handling of instationary time series; identifying of appropriate 

dynamical models; and reliable detection of long-range dependencies between successive 

observations in a series. General discussion with outlook and perspectives of the time series 

analysis in psychology completes the paper.  
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2 BASIC CONCEPTS 

There are two major approaches in the study of time series processes, time-domain and 

frequency-domain analyses. Although time and frequency domains are mathematically 

equivalent, they examine time-series data from different perspectives and pursue different 

goals. In the time domain, the central concept is the memory of the series: to what extend is 

the present of the series predictable from its past. Memory is assessed by the so-called 

autocorrelation and the partial autocorrelation functions. The main goal of the frequency-

domain analysis is to detect cycles in the data by means of spectral decomposition. The 

analysis consists of attempting to identify frequencies that explain variance in an observed 

time series. McCleary and Hay (1980) provide a comprehensive introduction to the time-

domain analysis for social and behavioral scientists. Bloomfield (2000) gives a detailed 

description of the frequency-domain techniques. Warner (1998) introduces spectral analysis to 

the practicing researcher. For a detailed treatment and comparison of both time-domain and 

frequency-domain approaches, consult Gottman (1981). The objectives of this chapter are, 

based on the above-mentioned textbooks, to provide a brief introduction to the time- and 

frequency-domain analyses and to discuss the concept of stationarity.  

Time-Domain
Analysis

Frequency-Domain
Analysis

Stationarity

CHAPTER 2

  



CHAPTER 2 BASIC CONCEPTS                     4

2.1 Time-Domain Analysis 

In the time domain, a visual plot of the data is usually the first step in the analysis of any time 

series. As Figure 2.1.1 illustrates, a time series is a sequence of values ordered by a time 

parameter (t). The primary goal of time series analysis is to infer from a sample of data points 

to the process that may have generated the sample. The terms process and time series are 

equivalent to the concepts of population and sample in classical statistics. A process under 

study can consist of deterministic and stochastic components. Deterministic components are 

trends and deterministic cycles. A pure stochastic process is a collection of random variables 

ordered in time. Suppose the series in Figure 2.1.1 is a realization of a stochastic process, this 

implies that we observe realizations of 120 random variables ordered in time. In the majority 

of cases, time ordered variables can not be assumed independent, which results in the problem 

of correlated data. Within the scope of time series analysis, dependency is expressed by 

means of the autocorrelation and partial autocorrelation functions. 
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Figure 2.1.1. Perceptual speed of a schizophrenic patient for 120 successive days (Holtzman, 1963). 
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2.1.1 Autocorrelation and Partial Autocorrelation Functions 

Kendall and Buckland (1971) define autocorrelation as correlation between members of series 

of observations ordered in time or in space. In the time-domain analysis, this implies 

correlation of a series with itself at different lags. The lag k autocorrelation is calculated as  
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, where T is the length and Y  is the mean of the series. 

A plot of rk against the lag length k is called the correlogram of the time series and gives its 

autocorrelation function. Since any observed series is a realization or a sample of some 

process, rk is called the sample autocorrelation function. The population autocorrelation 

function (ACF) is defined as 

ρk =covariance at lag k / variance 

 In addition to the ACF, another function, called the partial autocorrelation function 

(PACF), is employed to describe the memory of a series or a process. The PACF ρkk measures 

correlations between observations that are k time periods apart after controlling for 

correlations at intermediate lags. In other words, partial autocorrelation is the correlation 

between Yt and Yt-k after removing the effects of intermediate Y’s. Analogous to the ACF, we 

can plot ρkk or its sample equivalent rkk against k.  

 Within the scope of the time-domain analysis, the autocorrelation and partial 

autocorrelation functions are used to define various time-series models with different memory 

properties or dependency structures.  
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2.1.2 Time-Domain Models 

Each stochastic time series can be described by means of three types of mathematical models: 

autoregressive (AR), moving-average (MA) and integrated (I). In an AR model, the value of 

the current observation depends on the values of the previous observations,  

 , tptptt uY...YY +φ++φ= −−11

where the magnitude of the dependence is quantified by φ, p specifies the order of the 

dependence und ut is a sequence of purely independent and identically distributed random 

variables or innovations. A moving-average process is described by 

qtqttt uθ...uθuY −− −−−= 11 . 

Here performance at time t depends on a combination of the current and past error terms. A 

process containing both autoregressive and moving-average components is called mixed. An 

integrated process is represented by an equation 

ttt aYY += −1  , 

where the random part at can be generated by any ARMA process. The term “integrated” 

implies that the impact of the random component on the series does not dissipate over time. 

As a result, the process shows instability in level. That is why the integrated process with 

at∼iid N (0, σ2) is also called random walk.  

Therefore, each time series can be represented as an Auto-Regressive Integrated 

Moving-Average (ARIMA) model with three parameters p, d and q. The value of the 

autoregressive parameter p reflects how many preceding observations influence the current 

observation Yt. The value of the moving average term q describes how many previous random 

shocks must be taken into account to capture the dependency present in the time series. The 

parameter d refers to the order of differencing that is necessary to stabilize the time series. 

Each ARIMA model can be defined through its theoretical ACF and PACF pattern.  
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Table 2.1.1 and Figure 2.1.2 show the ACF and PACF patterns of some common ARIMA 

processes. 

Table 2.1.1. Theoretical ACF and PACF patterns. 

Model ACF  PACF 
(0, 0, 0) 0  0 

(p, 0, 0) Decays exponentially or with damped 
sine wave or both  Significant spikes through lags p, 0 

after p 

(0, 0, q) Significant spikes through lags q, 0 
after q  Declines exponentially 

(p, 0, q) Declines exponentially  Declines exponentially 
(0, d, 0) Does not decay  Does not decay 

 

 ACF PACF 

A 

  
 
 

   

B 

  
 
 

Figure 2.1.2. Theoretical ACF and PACF of selected stochastic processes: (A) AR(1) with φ=0.9,  

(B) MA(1) with θ=-0.9. 

The main goal of the time-domain analysis is to provide an insight into properties of 

the underlying stochastic process of the series under study fitting an appropriate model to it. 

Once the process has been inferred, it can be used either to test some hypothesis about its 

generating mechanism, to forecast future values of the series, or to remove dependency from 

the data series so that it meets the assumptions of the general linear model for further 

statistical tests. There exist a number of methods for fitting suitable models to a given time 

series. One of the most widespread techniques is the Box-Jenkins methodology. 
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2.1.3 Box-Jenkins ARIMA Methodology 

The ARIMA strategy proposed by Box and Jenkins (1970) is based on a three-step iterative 

cycle of model identification, model estimation, and diagnostic checks in model accuracy.  

At the identification stage one chooses type and order of the model examining the 

behavior of the sample autocorrelation and the sample partial autocorrelation functions and 

comparing their shape and value with the theoretical ARIMA patterns.  

At the estimation stage of the model building cycle, the parameters of the identified 

model are estimated. Estimates can be obtained through conditional least squares (CLS), 

unconditional least squares (ULS) or full maximum likelihood (ML) algorithms. In all three 

methods, the estimation procedure is based on the minimization of the difference between the 

observed time series and the model calculated for different values of the ARMA parameters; φ 

or θ values minimizing this difference serve as the estimators. The CLS method is based on 

the principle of simple least squares and called conditional because of the assumption that the 

initial unobserved error terms are equal to null (Box et al., 1994, p. 226). Least squares fitting 

turns out to be a maximum likelihood fit if distribution assumptions about the data are made. 

For example, if we assume normal errors in the ARMA equation. The ML algorithm 

maximizes the probability of the data for the given ARMA model. The maximum likelihood 

estimators for autoregressive and moving-average parameters are obtained by minimizing the 

so-called log likelihood function. In contrast to the CLS, the ULS approach includes the error 

term in the estimation function. That is why it is also referred to as the exact least-squares 

(ELS) method. The ULC technique is a compromise between CLS and ML methods where 

the unconditional sum of squares is minimized instead of the log likelihood function. Ansley 

and Newbold (1980, 1981) show that these three estimators are asymptotically equivalent and 

describe special cases, in which a particular method may be preferable. ML estimates are 

more expensive to compute than ULS and CLS estimates. In a recent study, Fang (2005) 
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compares the performance of the estimation algorithms for different models and parameter 

values and concludes that tests based on either ULS or ML yield more reliable inferences than 

CLS tests.   

After the estimation stage, diagnostic checks are applied to determine whether or not 

the chosen model adequately represents the given set of data. The simplest check is to see if 

the residuals estimated from the fitted model are uncorrelated. Using the Box-Pierce Q or its 

variant the Ljung-Box (LB) statistic, we can test the joint hypothesis that all the 

autocorrelation functions up to certain lags are simultaneously equal to zero. Both Q and LB 

statistics are approximately chi-square distributed with m=lag length degrees of freedom. The 

LB statistics is more powerful in small-samples than the Q statistic.  

Box et al. (1994), Bowerman and O’Connell (1993), Brockwell and Davis (2002) and 

Makridakis et al. (1998) provide a detailed treatment of the Box-Jenkins technique.  

 

To summarize, in the time-domain analysis the primary goal is to infer from an 

observed time series to the process that may have generated this series. Stochastic processes 

can be described by means of ARIMA models. Different ARIMA models are distinguished by 

their memory properties or dependency structures assessed by the autocorrelation and partial 

autocorrelation functions. The Box-Jenkins methodology is a popular strategy for fitting 

ARIMA models to the data.  
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2.2 Frequency-Domain Analysis 

The frequency-domain analysis aims to discover cyclicity in the time series data by means of 

spectral decomposition, in which a series is represented as a sum of independent cycles of 

different frequency. In time series analysis, the term frequency describes how rapidly things 

repeat themselves. Thus, there exist fast and slow frequencies. The frequency-domain analysis 

can be seen as a form of ANOVA where the overall variance of time series is divided into 

variance components due to independent cycles of different length. In frequency-domain, the 

variance is also called power. Spectral density function gives an amount of variance 

accounted for by each frequency we can measure. The theoretical spectral density function 

can be estimated from either the periodogram or the power spectrum depending on whether 

cycles composing the series are deterministic or stochastic. If the data are cyclic, there are a 

few so-called major frequencies that explain a great amount of the series variance (i.e., all 

series power is concentrated at one or some few frequencies). The major frequencies of 

deterministically periodic time series are fixed. Stochastically periodic series are characterized 

by random changes of major frequencies within certain bounds. For nonperiodic series, the 

variance is equally distributed across all possible frequencies. As Figure 2.2.1 shows, time 

series with different periodic properties cannot be distinguished visually.  
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Figure 2.2.1. Time series with different periodicity: (A) deterministically periodic; (B) stochastically 

periodic; (C) nonperiodic. 
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Figure 2.2.2. Graph of the function . )620/2sin(35 +π+= ttY

2.2.1 Modeling Repeating Phenomena 

Periodic functions of the form )()( tftf += τ  are used to model repeating phenomena, where 

τ denotes the period or the length of a cycle. In the frequency-domain, the sine wave of the 

trigonometric sine or cosine functions serves as a model for various cycles. Different sine 

waves can be obtained by varying the following parameters: the mean (µ), the angular 

frequency (ω), the phase (ϕ) and the amplitude (A). 

 )2sin()/2sin()sin( ϕ+π+µ=ϕ+τπ+µ=ϕ+ω+µ= ftAtAtAYt  

As Figure 2.2.2 shows, the period τ is the time from peak to peak. The angular frequency ω 

represents the number of complete cycles in 2π time units or in radians. The period and the 

angular frequency are linked by the equation 
τ
πω 2

= . In time series analysis the frequency (f) 

is given by 
π
ω

τ 2
1
==f  and measures the number of cycles per unit time.  

According to the Fourier theorem any time series with a given length can be 

approximated as a finite sum of sine waves of different frequencies. The series length (T) 

determines the number of the frequencies. For series with odd number of observations, there 

exist (T-1)/2 different frequencies: 
T
jf j = , j = 1, 2, 3, …, 

2
)1( −T . These correspond to 

  



CHAPTER 2 BASIC CONCEPTS                     12

cycles of period T, T/2, T/3,…, 2 time units and imply that the fastest frequency we can detect 

is  or 5.02/1 ==f πππω =⋅== 22/12f .  

A sum of sine waves can be written in two ways1:   

)sin( jjj
j

tA ϕω +∑    or  ,  ∑ +
j

jjjj tbta )sincos( ωω

where  and . Sine and cosine functions of the same 

period are independent to each other. Thus, any time series2 can be approximated as a set of 

orthogonal functions:  

2/122 )( jjj baA += 1cossin 22 =+ jj ϕϕ

t
j

jjjjt utbtaY ++= ∑ )sincos( ωω , where  ut ∼iid (0,1). 

The unknown parameters of the series, the amplitude and the phase for each frequency wj, can 

be calculated from the least-square estimates for aj and bj: 

 ∑
−

=

=
1

0
cos2ˆ

T

t
jtj tY

T
a ω    ∑

−

=

=
1

0
sin2ˆ

T

t
jtj tY

T
b ω , 

which are the covariances of the series with cos ωjt and sin ωjt. 

2.2.2 Detecting Deterministic Cycles: Periodogram 

The periodogram is designed to fit a model to a time series that is the sum of deterministic 

waves plus noise (ut). Figure 2.2.3 (A) illustrates the data generated by adding two sine waves 

with frequencies f1=1/20=0.05 and f2=1/10=0.1. Figure 2.2.3 (B) shows the same data where 

the deterministic cycles are masked by noise. The time series appears as in Figure 2.2.3 (C) if 

only 50 instead of 100 observations are available. The periodogram allows detecting hidden 

cycles.

                                                 

1 tbtattAA ω+ω=ϕω+ϕω=ϕ+ω sincos)cossinsin(cos)sin( . 

  
2 Note that time series with a zero or subtracted mean are used to simplify the equations. 
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Figure 2.2.3. Example of a time series with two deterministic cycles τ1=20 and τ2=10 

: (A) without noise, (B) with a noise part ut, (C) T=50. )10/2sin(5)620/2sin(35 tttY π++π+=

As Figure 2.2.4 illustrates, the periodogram gives the total sum of squares of the series 

distributed across either (T)/2+1 or (T-1)/2+1 different frequencies depending whether T is 

even or odd. The additional frequency is f=0, this is a frequency that never repeats which 

implies an infinite period. As noted previously, the fastest frequency we can detect is f=0.5. 

For these reasons, the frequencies in the periodogram always range between 0 and 0.5 (or 0 

and π in radians). The total sum of squares of the series, also called the energy, is proportional 

to the number of observations ( ). The energy divided by T gives the power or the 

variance. For series containing deterministic cycles, the peaks of the periodogram occur at 

corresponding frequencies [see Figure 2.2.4 (A) and (B)]. The heights of the peaks are related 

to the amplitudes of the respective frequencies. As Figure 2.2.5 visualizes, the height of each 

peak is equal to half the square of the amplitude of each frequency (weighted with T). If the 

time series is a set of completely independent random numbers, also called white noise, then 

the total energy or the variance of the series is approximately equally distributed across all 

possible frequencies as in Figure 2.2.4 (C).   
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Figure 2.2.4. Periodograms: (A) T=100, ; (B) T=50, 

; (C) ut ∼iid (0,1), T=50. 

tutttY +π++π+= )10/2sin(5)620/2sin(35

tutttY +π++π+= )10/2sin(5)620/2sin(35
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Figure 2.2.5. Periodograms of series with T=100: (A) ;  

(B) . 

tutttY +π+π= )10/2sin(5)20/2sin(3

tutttY +π+π= )10/2sin(3)20/2sin(5

 The sum of squares at each frequency can be obtained through  
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T
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b π .  

Because a and b at each frequency are independent and normal [and ut ∼iid(0,1)], their sum of 

squares is a chi-square with two degrees of freedom1, under the null hypothesis aj=bj=0 at that 

frequency. Thus, the significance of periodogram values for each frequency fj can be 

determined. 
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The periodogram can also be derived from the autocovariance function 
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k fkccfI  where c0, …, cT-1 are estimates of the autocovariance. 

The last equation is called the Fourier transform and serves as a connecting link between 

time- and frequency-domain representations of time series.  

                                                 

1 df=2 except for the slowest and highest frequencies f=0 and f=0.5. 

  
2 In exponential form of the periodogram e is the basis for natural logarithms and 1−=i . 
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2.2.3 Detecting Probabilistic Cycles: Spectral Analysis 

The objective of the spectral analysis is the identification of the frequencies that explain the 

variance in an observed time series. The spectral decomposition aims to find out how much 

variance is accounted for by each frequency in the series. The spectral density function gives 

the basic frequencies that compose the time series. The periodogram is one estimate of the 

spectral density where Fourier frequencies are used to approximate the real frequencies in the 

data. Periodogram analysis is a powerful tool for detecting a strong cyclic component. 

Deterministic cycles appear in the periodogram as clear peaks whose height increases with the 

sample size. For time series that are not strictly periodic, which implies random changes of 

frequencies, the periodogram analysis is associated with several problems.   

 The most serious failure of the periodogram is the large sampling error associated with 

the estimates of the sum of squares. Figure 2.2.6 shows the periodogram of white noise for 

different sample sizes. The theoretical spectral density of white noise is a straight line. As the 

figure illustrates, the variance of the sample periodogram estimates does not decrease as the 

number of observations increases. As a result, the peaks of the periodogram do not smooth 

out with increasing T.  
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Figure 2.2.6. Spectral density function of white noise ut ∼iid(0,1) estimated from the periodogram, the 

flat line is the theoretical spectral density: (A) T=100; (B) T=300. 
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Figure 2.2.7. Periodograms of AR(2)-Process : (A) T=100; (B) T=300. tutYtYtY +−−−= 24.016.0

 Figure 2.2.7 visualizes another problem of the periodogram analysis. Both 

periodograms A and B are estimates for the spectral density function of the AR(2)-process 

with φ1=0.6 and φ2=-0.4. For T=100, the periodogram result suggests one cyclic component at 

frequency f=0.13, which implies a cycle length of about 7.7 time units. Increasing the sample 

size to 300 observations gives two major frequencies 0.19 and 0.13 or the periods about 5.3 

and 7.7 time units, respectively. The autocorrelation function of the series 

 shows that the underlying autoregressive process is 

nondeterministically periodic (see Figure 2.2.8). The theoretical spectral density of the AR(2) 

model can be computed as 

tttt uYYY +−= −− 21 4.06.0

ff
fp u

πφ−πφ−φ−φ+φ+π
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=
4cos22cos)1(2)1(
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, 

where 
π

σ
2

2
u is the spectral density of noise. The spectral density of an AR(2) process can have 

only one peak at ⎥
⎦

⎤
⎢
⎣

⎡

φ−

φ

π
= 2/1

2

1

)(2
arccos

2
1f  (Gottman, 1981, p. 233). For the process with 

φ1=0.6 and φ2=-0.4, this implies the true frequency f≈0.17 or the period of about 5.9 time 

units. The above example is designed to illustrate two points. First, the cyclic component in 

the AR(2) series is not fixed which means random changes in frequencies within certain 

bounds. Second, the periodogram analysis breaks down when applied to time series with 

stochastic cycles. The power spectrum technique reduces the described problems.  
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Figure 2.2.8. (A) Realization of the AR(2) process with φ1=0.6 and φ2=-0.4; (B) its ACF.  

 The power spectrum is employed to estimate the spectral density function of time 

series with stochastic cycles. The power spectrum is a smoothed version of the periodogram. 

In a spectrum the sum of squares of neighboring frequencies of a periodogram are averaged 

together to provide a more reliable estimate for this frequency band. Therefore, for 

nondeterministically periodic series, spectral density provides an estimate of the proportion of 

variance that is accounted for by a particular frequency band. There exist various smoothing 

functions, also called windows, which differ in the number of averaged frequencies and the 

weights used for computations. The total number of neighboring frequencies included in the 

weighted average is called the width of the window. The window is always symmetrical 

around some central frequency. That is why the width is 2m+1, where m is the number of 

terms on each symmetrical half of the window. The choice of m represents a basic dilemma in 

employing spectral windows. On the one hand, the sampling error decreases as m increases. 

On the other hand, using wide windows can prohibit detecting distinct cyclic components. 

The weights used for smoothing can be equal for all included frequencies such as in the 

Daniell window. Some procedures, as for example the Tukey-Hamming smoothing, give more 

weight to frequencies near the center of the window.  

 When a spectral window is used, significance tests for the spectral density estimates 

are performed employing “equivalent degrees of freedom” abbreviated EDF. In the Daniell 

case EDF=4m+2, this is the degrees of freedom of the sum of 2m+1 df=2 random variables.  2χ
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Figure 2.2.9. Spectral densities of (A) white noise series with T=100 estimated using Tukey-Hamming 

window with m=10, the flat line is the theoretical spectral density; (B) AR(2)-series  with φ1=0.6,  

φ2=-0.4 and T=100 estimated using Daniell smoothing with m=5; (C) AR(2)-series with φ1=0.6,  

φ2=-0.4 and T=300 estimated using Daniell window with m=10. 

Figure 2.2.9 shows that employing the power spectrum instead of the periodogram 

gives either a smoother estimate for the spectral density function of white noise or provides 

quite good estimates for the true stochastic frequency f=0.17 in the AR(2) series with φ1=0.6 

and φ2=-0.4.  

 

To summarize, the main goal of the frequency-domain analysis is the identification of 

major cyclic components that explain variance in an observed time series. The spectral 

density function gives these basic frequencies. For series containing deterministic cycles, the 

periodogram is an appropriate estimate of the spectral density where either (T)/2+1 or  

(T-1)/2+1 Fourier frequencies are used to approximate the real frequencies in the data. If time 

series are nondeterministically periodic, the power spectrum, which is a smoothed version of 

the periodogram, provides a more reliable estimate of the spectral density function.  
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2.3 Stationarity 

The concept of stationarity is central for time-series modeling. Stationarity means stability of 

a process or a series. Assumption of stationarity is essential for inference and forecasting, 

because the absence of stability prohibits any reasonable prediction. Thus, stationarity 

conditions require the studied process to be stable over time in some statistical sense. One 

distinguishes between strictly and weakly stationary assumptions. A process is said to be 

strictly stationary if all its moments are invariant over time. Stationarity is called weak or 

second-order if just the first moments of the probability distribution of a process under study, 

mean and variance, are constant over time. Most nonstationary series in psychology have a 

time-varying mean or a time-varying variance or both (see Figure 2.3.1).  

For further statistical analyses, nonstationary time series have to be transformed to 

make them stationary. (Another possibility for larger samples is to examine separate pieces of 

the studied series, each of which is stationary). The transformation method depends on the 

cause of nonstationarity. Special procedures called unit root tests were developed to test 

stationarity conditions (see Chapter 5.1 for details). Before formal testing, it is always 

advisable to plot the time series under study against time. As Figure 2.3.1 shows, such a plot 

can reveal the nature of the observed series. Instability in level can be also detected by means 

of the correlogram or the power spectrum.  
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Figure 2.3.1. Nonstationary processes: (A) time-varying variance; (B) time-varying mean;  

(C) time-varying mean and variance. 
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Figure 2.3.2. Autocorrelation functions of nonstationary time series: (A) time series with a linear 

trend , T=100; (B) integrated time series , T=100. tuttY += 2.0 tutYtY +−= 1

 As Figure 2.3.2 illustrates, the correlogram of nonstationary series is characterized by 

large or significant autocorrelation coefficients up to a lag of about one-quarter the length of 

the time series. Figure 2.3.3 shows that the power of series with a changing mean is 

concentrated at zero frequency implying an infinite period, which makes sense for series with 

a trend component. Further properties of instationary series are discussed in Chapter 3. 
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Figure 2.3.3. Spectral density of nonstationary time series obtained using Tukey-Hamming window 

with m=10: (A) time series with a linear trend tt utY += 2.0 , T=100; (B) integrated time series 

, T=100. ttt uYY += −1
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3 RESEARCH APPLICATIONS 

This chapter discusses a range of applications of time series analysis in psychology or other 

behavioral sciences. For longitudinal designs generating repeated observations on a single 

unit, time series analysis is the appropriate statistical methodology allowing either to 

understand the process under investigation or to measure different forms of intervention 

effects occurring in experimental designs. In the first place, time series analysis provides an 

insight into properties of the underlying stochastic process of the variable under study. Once 

the process has been inferred, it can be used either to test some hypothesis about its generating 

mechanism or to forecast future values of the series. Thus, there are three major research 

applications of time series analysis: (1) inference about the data generating process, (2) time-

series-experiments, and (3) forecasting. Velicer and Fava (2003) discuss time series analysis 

as it is commonly employed in psychological research. Glass et al. (1975), Gottman (1981) 

and McCleary and Hay (1980) provide a comprehensive introduction into time-series 

experiments for social scientists. Bowerman and O’Connell (1993) and Makridakis et al. 

(1998) describe various forecasting techniques for the practicing researcher. The above-

mentioned books build the basis for this chapter. 

Process Analysis Time-Series-Experiment Forecasting

CHAPTER 3
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3.1 Process Analysis 

Time series analysis always aims at a basic understanding of the process under investigation. 

Various processes can be described and categorized using the following dimensions: stability, 

memory, and dependency structure.  

3.1.1 Stability 

As noted earlier, within the scope of time series analysis stable processes are called stationary. 

Unstable or instationary processes are characterized by changes in mean or variance or 

covariance structure with historical time.  The nature of instability can be deterministic or 

stochastic.  

 Time series with a deterministic change in level are said to have a trend. This usually 

implies a linear trend, but it could be quadratic or a polynomial of higher order. Trends can be 

detected and analyzed employing regression techniques where time serves as the explanatory 

variable. Figure 3.1.1 shows realizations of three processes with the same linear trend 

component but different disturbance terms at and their estimated regression lines. The 

estimated equations prove that the ordinary least square estimation method ensures good 

estimates of both the intercept and the slope for series with either independent or 

autocorrelated error terms1.   
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Figure 3.1.1. Time series with a linear trend  with T=100: (A) at ∼iid(0,1);  

(B) ; (C)  with ut ∼iid(0,1). 

tattY ++= 2.010

tutata +−= 15.0 15.0 −+= tututa

                                                 

  
1 Note that significance tests require uncorrelated error terms. 
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Figure 3.1.2. Integrated time series with T=100: (A) ARIMA (0, 1, 0); (B) ARIMA (0, 2, 0); 

 (C) ARIMA (0, 1, 0) with the drift parameter α=0.5. 

Integrated processes exhibit stochastic or random changes in level [see Figure 3.1.2 (A) 

and (B)]. The ARIMA parameter d denotes the order of integration. Most psychological time 

series are integrated of order 1. That is, they generally become stationary or stable after taking 

their first differences. As noted previously, the random walk series  is an example 

of an integrated series. After differencing 

ttt uYY += −1

ttt uYYY =−=∆ −1 it becomes white noise or a 

stationary series. Integrated processes can also exhibit a positive or a negative stochastic trend. 

In the time series literature, a stochastic trend is called drift. The name drift comes from the 

fact that if we modify the random walk equations as follows: 

ttt uYY ++α= −1 ,  ttt uYYY +α=−=∆ −1 , 

it shows that Yt drifts upward or downward, depending on the parameter α being positive or 

negative [see Figure 3.1.2. (C)].  

 In the case of the deterministic trend, the deviations from the trend line are purely 

random and dissipate quickly; they do not contribute to the long run development of the series. 

In the case of the stochastic trend, on the other hand, the random component affects the long-

run course of the series. In practice, we usually deal with relatively short realizations of 

processes, therefore it is difficult to distinguish visually between deterministic and stochastic 

trends, or even between stationary and instationary time series. The so-called unit root tests are 

designed to answer the question whether a process under study is stationary or not and to 

reveal the nature of instability for nonstationary series (see Chapter 5.1 for details). 

  



CHAPTER 3  RESEARCH APPLICATIONS                     24

3.1.2 Memory 

In time-series analysis, memory means predictability from the past of a series to its current 

values. Memory properties of each process can be described employing the following 

dimensions: persistence and strength.  Persistence describes whether a series has a long or a 

short memory. Strength quantifies the magnitude of the dependence and reflects which 

proportion of the previous component still affects the current observation.  

 In the time-domain, memory characteristics of a process are inferred from the 

autocorrelation function. Within the scope of ARIMA terminology, the parameter d, p and q 

reflect whether the process has a long or a short memory. The autoregressive and moving 

average prediction weights φ and θ quantify the memory strength1. In the case of the ARIMA 

(0, 0, 0) or white noise, we deal with a process without memory. This implies that knowledge 

of the value of a white noise series at any point in time does not improve prediction. Integrated 

processes (p, 1, q) can be represented as the sum of random terms . As a result, we 

observe a strong persistence of random errors in the autocorrelation function, which means that 

the impact of a particular random term does not dissipate with the time. Thus, the ARIMA  

(p, 1, q) processes have an infinite memory. ARIMA (p, 0, q) models with small p or q possess 

a short memory and are predictable only from their immediate past. Their autocorrelations 

decay quickly as the number of intervening observations increases. If p or q are large, we deal 

with persistent autocorrelations implying a long memory of the data generating process or, in 

other words, statistical dependence between observations separated by a large number of time 

units. Long-range dependencies can be parsimoniously captured through the differencing 

parameter d, if we allow it to take any real value between 0 and 1. Time series with continuous 

∑= tt aY

  

                                                 

1 In some cases, however, the value of φ determines the memory persistence. For instance, AR(1) model with 
φ=.99 can generate autocorrelations over hundreds of trials. (Recall that ARIMA (0, 1, 0) can be represented as a 
AR(1) model with φ=1). 
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d values are called fractionally integrated or ARFIMA. Processes with the finite long memory 

have d between 0 and 0.5 (see Chapter 5.3 for further details). 

In the frequency domain, the power spectrum plotted on a log-log scale provides an 

insight into the memory properties of a series under study. For a purely random process, the 

power spectrum is an approximately straight line with a slope of zero. In random walk, also 

called brown noise because of its relation to Brownian motion, low frequency components 

predominate (see Chapter 2.3). Therefore its power falls off rapidly with increasing frequency. 

As a result, the log-log power spectra of the random walk series are linear and have negative 

slopes. Theoretically, random walks follow a power spectrum function 1/f 2, which implies a 

straight line with a slope of -2. Generally, differencing increases the power spectrum slope by 

2, and integrating decreases the slope by 2. Differencing of a random walk gives white noise. 

Thus, a power spectrum of white noise is 1/f 0. Time series with a long memory are called pink, 

flicker or burst noise. Their log-log power spectrum follows a straight line with slope –1 

implying a power spectrum function of 1/f. Denoting the power spectrum function 1/f a, where 

a is called the power exponent, we obtain for processes without memory a=0, for process with 

an infinite memory a=2. In the case of a long memory, a can vary from 0.5 to 1.5. For short-

memory processes, the log-log power spectrum in not a straight line because the linear relation 

between power and frequency breaks down at the low frequencies where random variation 

appears. As a result, a flat plateau (the zero slope of white noise) dominates low frequencies in 

spectral plots. Figure 3.1.3 shows theoretical power spectra for processes with different 

memory properties.  
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Figure 3.1.3. Theoretical power spectra: (A) 1/f 0; (B) 1/f 2; (C) 1/f ; (D) AR(1) with φ=0.7. 
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Figure 3.1.4. ACF and log-log power spectra (logarithms are base 10) for series with T=500. 

For empirical time series, the regression slope of a linear function on a log-log plot can 

serve as an estimate of the power exponent. Beran (1994), Gilden (2001), Handel and Chung 

(1993), Kasdin (1995), and Pilgram and Kaplan (1998) provide a detailed description of the 

technique. Figure 3.1.4 depicts autocorrelation functions and log-log power spectra of 

empirical time series with different memory properties. Wagenmakers et al. (2004; 2005) and 

Thornton and Gilden (2005) point out that the log-log power spectrum of an ARMA(1, 1) 

series can resemble the spectrum of 1/f  noise (compare Figure 3.1.4 C and D). This implies 

that, in frequency domain, short memory time series may mimic the statistical properties of 

the long memory process. To solve this problem, several procedures have been proposed for 

rigorous distinguishing of series with different memory properties. Wagenmakers et al. (2004) 

present a method in which the ARMA model, representing short-range processes, are 

competitively tested against the ARFIMA model, representing long-memory processes. 

Specifically, Wagenmakers et al. suggest determining the maximum likelihood of a time 

series under the ARMA and ARFIMA models, and then selecting the appropriate 

representation using Akaike’s information criterion (AIC). Thornton and Gilden (2005) 

propose a spectral classifier procedure, in which the likelihood of a time series is estimated by 
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comparing its power spectrum with spectra of the competing memory models. Farrell et al. 

(2006; in press) conduct simulation experiments comparing the spectral classifier method of 

Thornton and Gilden with the ARFIMA approach of Wagenmakers et al.. Both procedures 

prove to be equally effective in discriminating between long- and short memory series. 

Despite the vast similarity of the approaches, Farrell et al. advocate the ARFIMA method on 

the following reasons. First, the ARFIMA modeling is commonly available in statistical 

packages such as Ox, R or S-Plus, whereas the spectral classifier is not freely available. 

Furthermore, the ARFIMA procedures are easily extended to different sample sizes and 

higher order models, whereas the spectral classifier requires generation of a new library for 

each new model or time series length. Finally, the theoretical properties of the ARFIMA 

models are well known, whereas those of the spectral classifiers have yet to be explored.  

3.1.3 Dependency Structure  

Time-series analysis distinguishes two types of processes with different dependency 

structures: autoregressive and moving-average. The MA(q) process is called q-dependent, 

because the dependency only lasts for q successive time units, and is zero thereafter. This is 

different from the autoregressive process, where the dependency, expressed as 

autocorrelations on different lags, decreases exponentially (see Figure 3.1.5). Autoregressive 

models are characteristic of systems containing internal temporal regularity, whereas moving 

average models are typical for unstable systems depending on external and occasional events. 

 Autoregressive and moving-average models are dual. This implies that most stationary 

time series can be approximated as either a MA or an AR model. The conditions needed to 

guarantee that we can transform from an autoregressive to a moving-average representation of 

a series are called stationarity conditions, and from MA to AR representations are called 

invertibility conditions. The AR(1) model can be written as an MA(∝) model under 
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stationarity conditions ( 1<φ ). The MA(1) is the AR of infinite order under the invertibility 

condition that 1<θ . Therefore, the same dependency structure can be approximated using 

different models. In practice, the parsimonious representation is preferred.  

 In time-series analysis, one distinguishes positive and negative dependencies. If 

autocorrelations are positive the ACF shows exponential decay as in Figure 3.1.5 (A). For a 

negative dependency, the autocorrelation function still decays, but it oscillates around zero 

[see Figure 3.1.5 (B)]. Time series with positive autocorrelation move upward or downward 

over extended time periods as in Figure 3.1.6 (A). Negative autocorrelations cause a constant 

up-and down movement such as in Figure 3.1.6 (B). Bürgy and Werner (2005) and Velicer 

and Fava (2003) discuss psychological models for positive and negative dependency 

structures (see also Chapter 4.1 for details). 

 Autoregressive and moving-average processes with positive and negative weights can 

also be distinguished employing the power spectrum function. The moving-average process is 

a linear filter of white noise (ut). The spectral density of the MA(1) process is thus derived 

from the spectral density function of white noise (
π

σ
2

2
u ):

π
σ

πθθ
2

)2cos21
2

2 uf++ . As Figure 

3.1.5 (C) and (D) shows, the negatively weighted moving average positively weights lower 

frequencies, the negatively weighted moving-average does exactly the opposite1. The spectral 

density function of an AR(p) process can be derived from the moving-average spectrum. For 

an AR(1)-process, the equation 
λφ−φ+π

σ
cos21

1
2 2

2

 with fπ=λ 2 gives the theoretical power 

spectrum function. As Figure 3.1.5 (A) and (B) illustrates, the shape of this function is similar 

to the spectrum of the MA(1) process but much steeper. For further details, consult Gottman 

(1981), pp. 228-235. 
                                                 

1 Note that here moving-average equation is written as qtqttt uθ...uθuY −− −−−= 11 . 
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(A) AR(1) φ=0.7 (B) AR(1) φ=-0.7 (C) MA(1) θ=0.7 (D) MA(1) θ=-0.7 
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Figure 3.1.5. ACF and power spectra (Tukey-Hamming window with m=20) for series with T=500. 

To summarize, processes are usually described employing three dimensions: stability, 

memory, and dependency. Stable stochastic processes are called stationary. One distinguishes 

between stochastic and deterministic causes of instability or instationarity. Memory properties 

of time series can be captured using either the autocorrelation function of the log-log power 

spectrum. Autoregressive models are characteristic of systems containing internal temporal 

regularity, whereas moving average models are typical for unstable systems depending on 

external and occasional events. Both AR(1) and MA(∞) models are appropriate 

approximations of high dependency stationary processes. Positive and negative dependencies 

have different impact on time series development. 

A 

1 4 7 10 13 16 19

t

-3,00

-2,00

-1,00

0,00

1,00

2,00

Y

 

B 

1 4 7 10 13 16 19

t

-1,50

-1,00

-0,50

0,00

0,50

1,00

1,50

Y

 

Figure 3.1.6. AR(1) series with T=20: (A) φ=0.7; (B) φ=-0.7. 
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3.2 Time-Series Experiment 

One of the enduring tasks for social and behavioral scientists is to measure the effects of some 

planned or not planned intervention occurring in experiments or quasi-experiments. Many 

intervention effects can be detected only in longitudinal designs where a dependent variable is 

studied over time. According to Glass et al. (1975), the most important advantage of the time-

series experiment over other designs is the possibility to account for different intervention 

effects. Figure 3.2.1 illustrates that the time-series design actually “offers a unique perspective 

on the evaluation of intervention (or “treatment”) effects” (Glass et al., 1975, p. 4). 

In longitudinal designs, we deal with repeated measurements on a single research unit 

producing autocorrelated data. Crosbie (1993) compares different possibilities to measure 

intervention effects in longitudinal designs: visual inference, ANOVA, Box-Jenkins 

intervention analysis and Interrupted Time-Series Experiment (ITSE). 

 

 Figure 3.2.1. Different forms of intervention effects (Glass et al., 1975, p. 44). 
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Figure 3.2.2. Time series with abrupt change in level at t=60: (A) ARIMA(0, 1, 1) with estimated 

intervention effect –21.83; (B) simulated ARIMA(0, 1, 0) with true intervention effect –5. 

Some researchers (e.g., Kazdin, 1982) propose visual inference as a conservative test 

for assessing change in longitudinal designs.  They argue that strong, robust and reliable 

intervention effects ought to be seen with the “naked eye”.  Figure 3.2.2 (A) shows that even a 

very strong effect is not always visually obvious. Furthermore, it is also important to be able 

to detect small but significant effects. Gottman (1981) points out that in social sciences we 

always deal with settings producing a lot of noise in the data. Thus, one of the most frequent 

tasks for researcher is “to see a change in the “signal” over and above the noise present in the 

data” (p. 58). Figure 3.2.2 (B) is designed to illustrate that it is impossible to detect the stable 

downward shift in level of –5 from t=60 present in the random walk series visually. 

Moreover, several studies have shown that visual inference is unreliable and cannot control 

Type I error (Glass et al., 1975; Jones et al., 1977; Matyas & Greenwood, 1990; Ottenbacher, 

1986). 

 Huitema (1985) argues for the use of traditional t tests and ANOVA models when 

testing for the presence of intervention effects within typical behavioural data, which are low 

autocorrelated. Sharpley and Alavosius (1988) show, however, that Huitema’s suggestion is 

based on two incorrect premises: (a) low levels of autocorrelation can be neglected; (b) time-

series procedures are inapplicable with short data series. Glass et al. (1975), Gottman (1981) 

and Sharpley and Alavosius (1988) demonstrate that the use of traditional ANOVA is 
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unjustified when there is any autocorrelation at all in the data, because even very low levels of 

dependency can lead to unacceptable distortion of F values from traditional procedures.  As a 

result, ANOVA cannot control Type I error and is, consequently, invalid with autocorrelated 

data.  

 The Box-Jenkins intervention analysis is the most common methodology to measure 

intervention effects in time-series experiments. The procedure consists of several consecutive 

steps. First, the ARIMA model for the data is identified, and p, d and q parameters are 

estimated (see Chapter 2.1.3). Accurate model identification is necessary to determine the 

specific transformation matrix to be used to remove dependency from the series so that it 

meets the assumptions of the general linear model. Then, the GLM t tests are employed for 

uncorrelated residuals to determine whether the post-intervention scores differ significantly in 

slope and level from the pre-intervention scores. The main difficulty with the Box-Jenkins 

approach is that the accurate ARIMA model identification requires times series with at least 

50 observations both before and after intervention, which can be prohibitive in applied 

settings.  

 Some researchers point out that accurate model identification is not always necessary 

for time-series experiments (Algina & Swaminathan, 1977, 1979; Crosbie, 1993; Harrop & 

Velicer, 1985; Simonton, 1977; Velicer & McDonald, 1984). In experimental settings, the 

ARIMA modeling is used to remove dependency from the data. It has been shown that an 

autoregressive model with one to five parameters can capture successfully all autocorrelations 

in most empirical series. Therefore, the model identification step can be successfully 

abandoned in interrupted time series analysis. As a result, different alternatives to the Box-

Jenkins procedure, which can be used with short series of 10 to 20 observations per phase, 

have been proposed.  The following techniques prove to be simple and reliable for assessing 

change with short autocorrelated series: the ITSE of Gottman (1981), the ITSACORR of 
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Crosbie (1993), and the General Transformation Approach of Velicer and McDonald (1984, 

1991). 

To summarize, accurate measurement of intervention effects in time-series experiments 

implies control of autocorrelation in the data. Interrupted time-series experiments do not 

require very long series. Larger samples of 50 to 100 observations are necessary for accurate 

model identification and forecasting. When testing for intervention effects, even very short 

time-series with 20 to 40 data points can be successfully used.   

3.3 Forecasting 

Forecasting is one of the most important parts of econometric analysis. For economists, 

prediction of variables such as stock prices, unemployment rates or inflation is an every day 

task. For psychologists, however, forecasting seems to be less in demand compared to both 

research applications described earlier. In some research fields, for example, in clinical 

psychology, prediction of those phenomena as headache pain for migraine patients, depressive 

or psychotic episodes for patients with psychic disorders can represent an important issue. 

Gujarati (2003) distinguishes five forecasting approaches based on time series data: 

exponential smoothing, single-equation regression methods, simultaneous-equation regression 

models, ARIMA approach, and vector autoregression. The Box-Jenkins ARIMA 

methodology is the most popular technique, which has been increasingly used among 

psychologists. Unlike regression models, in which k regressors explain a dependent variable 

Yt, the Box-Jenkins models explain Yt by past values of Y itself and stochastic error terms. In 

other words, the future values of the series are predicted from its past values. 

The Box-Jenkins forecasting strategy just extends the three-stage model identification 

cycle, as described in Chapter 2.1.3, to the fourth step used for forecasting. As usual, the 

procedure begins by examining the series for stationarity. Instationary series are transformed 



CHAPTER 3  RESEARCH APPLICATIONS                     34

to stabilize them. The ACF and PACF of the stationary series are employed for identification 

of a tentative ARMA(p, q) model.  Parameters of the tentative model are then estimated. As 

the next step, the residuals from the tentative model are examined to find out if they are white 

noise. If the residuals are independent, the tentative model is accepted as an appropriate 

approximation to the underlying stochastic process. For autocorrelated residuals, the model 

identification and estimation steps are started again. Therefore, the Box-Jenkins method is 

called iterative. The model finally selected is used for forecasting.  Figure 3.3.1 summarizes 

the Box-Jenkins iterative process.  
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Figure 3. 3. 1. The Box-Jenkins forecasting procedure. 
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4 TIME-SERIES RESEARCH IN PSYCHOLOGY 

The standard research strategy of most psychologists is primarily nomothetic and in the 

majority of cases consists in the attempt to infer general models from the average behavior of 

a large sample of individuals. This procedure has been recently challenged in different fields 

of psychology. An increasing number of cognitive, social and clinical psychologists employ 

an alternative experimental strategy obtaining their knowledge from time-series data of some 

few subjects. Emphasizing common dynamics in human behavior, time-series analysis opens 

a new perspective for psychological research, where the understanding of development and 

change of psychological processes are in the focus of attention. Delignières et al. (2004) point 

out that, in this dynamical approach, the quality of individual time-series data is more 

important then the number of individuals in a particular sample. In various research cases, 

some few time-series can provide a deeper insight into phenomena under study than averages 

from a large amount of independent observations. The aim of this chapter is to introduce 

theories and empirical studies from different fields of psychology employing time-series 

terminology and methods. The chosen theoretical models and studies are designed to illustrate 

the advantages of the time-series approach for psychological research. First examples show 

how to model and to assess change in addictive behavior using longitudinal data. Next, 

dynamical view on self-esteem is discussed. Finally, studies from the 1/f noise paradigm 

challenging traditional models in cognitive and social psychology are presented.  

  

Modeling and
Assessing Change

in Addictive Behavior

Self-Esteem as
Dynamical Concept

Long-Range
Dependencies in

Psychological Time Series

CHAPTER 4
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4.1 Modeling and Assessing Change in Addictive Behavior 

In health and clinical psychology, the efficacy of a treatment is often measured employing 

longitudinal data (Crosbie, 1993; Velicer & Colby, 19997; Velicer & Fava, 2003). The 

following examples aim to show that, in these research fields, time-series analysis is not 

limited to the evaluation of intervention effects but also enables testing psychological theories 

explaining development and maintenance of problematic behaviors.  

4.1.1 Testing Theories Explaining Smoking Habits 

An empirical study of Velicer, Redding, Richmond, Greeley and Swift (1992) provides an 

excellent example how time-series methods can be used in theory testing. The study is 

designed to determine which of three popular tobacco-consumption models best represent 

most smokers. The alternative theoretical models used in the study are the fixed effect model, 

the nicotine regulation model, and the multiple regulation model (Leventhal & Cleary, 1980).  

 The fixed effect model assumes that smoking maintenance is primarily due to positive 

effects of nicotine. According to this model, nicotine simulates specific reward inducing 

centers of the nervous system. The inhalation of nicotine causes either autonomic arousal or a 

feeling of mental alertness and relaxation or both. This implies that occasional above-

averaged nicotine consumption at time t must cause an increasing smoking at time t+1. In 

terms of time-series analysis, the described dependency structure means positive 

autocorrelation in the first lag or AR(1) model with a positive φ value.  

 The nicotine regulation model assumes the optimal personal nicotine level. This stable 

set point is under biological control and determines tobacco consumption of an individual. 

According to this model, all variations in smoking are random and due to the environment. 

This means that there is no dependency between subsequent smoking occasions and smokers 
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differ only in their set points. In terms of time-series analysis, no dependency implies a white 

noise model. 

 The main assumption of the multiple regulation model is that smoking behavior 

reflects the attempts of the smoker to regulate emotional states. The smoker is balancing 

between positive and negative (craving) reactions caused by nicotine. According to this 

model, an occasional increase in smoking rate at time t implies a subsequent decrease at time 

t+1, and vice versa. For time-series data, this means a negative autocorrelation at the first lag 

(between observations at t and t+1) and alternating positive and negative autocorrelations at 

subsequent lags. 

  Velicer et al. (1992) studied smoking habits of 4 male and 6 female subjects.  The 

data were collected by means of self-monitoring twice daily for 2 months. Number of 

cigarettes served as the main dependent measure. Employing the traditional ARIMA 

methodology as well as different automated procedures for model selection, a first-order 

autoregressive model with a moderate to high degree of negative dependence (–0.3 to –0.8) 

was identified in seven cases. Three individuals demonstrated either a zero or low positive 

dependence. The results indicate that smoking behavior of the majority of the participants is 

consistent with the multiple regulation model.  

 Rosel and Elósegui (1994) conducted a similar study examining the daily cigarette-

consumption of 9 male and 20 female smokers over a 12-week period. 75% of the series were 

identified as the first order autoregressive models. This is an indication of internal regularity 

in smoking, which is expected for subjects who have smoked for a long period of time. 

Moving average models were not found in this sample. MA patterns indicate the presence of 

external influence on the subject behavior and are typical for occasional smokers. The 

behavior of 13 subjects contained a seasonal cycle of 7 days. The majority of the time series 

(21) exhibited positive autocorrelation supporting the fixed effect model. In the data of 7 
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participants, no significant autocorrelation was detected which implies a nicotine regulation 

model. In contrast to Velicer et al. (1992), only one subject fit the multiple regulation model.  

According to Velicer and Fava (2003), the main reason for the discrepancy in the 

results of the two studies is the different time intervals used (twice daily or daily): a negative 

autocorrelation at the first lag turns out to be a positive autocorrelation at the second lag, since 

1. Thus, r2 values of Velicer et al. (1992) and r1 coefficients of Rosel and Elósegui 

(1994) reflect the same time period; contrasting these statistics would provide a more direct 

comparison of the studies. Subsequent analysis of the r1 and r2 values revealed that the two are 

both positive and of comparable magnitude. Therefore, for the daily cigarette-consumption 

both studies indicate the fixed effect model. Velicer and Fava (2003) point out that these 

results highlight an important methodological issue of the choice of the “correct” time interval 

between observations. The conclusion about the appropriate nicotine regulation model turned 

out to be affected by the frequency of measurement. Therefore, it is critical to pay attention to 

the time interval when interpreting time series studies.  

2
2

1 rr =

4.1.2 Assessing Change in Addictive Behavior 

Time is an essential part of theories analyzing dynamics of human behavior. Thus, in the 

Transtheoretical Model (Velicer, DiClemente, Rossi & Prochaska, 1990) explaining change 

in health behavior, the time component represents the crucial factor. The model postulates 

four different stages of change for different theoretical constructs labeled the processes of 

change. Both behavioral dependent measures, such as abstinence, and hypothetical constructs, 

such as self-efficacy or decisional balance, are proposed to describe the process of change in 

addictive behavior. Precontemplation, Contemplation, Action, and Maintenance constitute the 

  

                                                 

1 The autocorrelation function of AR(1) process is given by ρj = φj with j = lag, which implies ρ1=0.5 and ρ2=0.52 
for φ=0.5 (Hamilton, 1994, pp. 53-56); see also Chapter 2.1. 
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stages of change. The model postulates different levels of dependent measurements for each 

stage of change. In addition to the process of change, the model assumes the existence of 

external and internal independent variables specific to the problem area. According to the 

model, any intervention or changes in the natural environment can serve as external variables. 

Personality characteristics, cognitive abilities, or available recourses are possible internal 

factors.  

 Evaluation of the model using time-series methods confirmed clear stage differences 

for various processes of change (DiClemente et al., 1991; Fava et al., 1994). Furthermore, 

time-series analysis revealed the dynamics of different processes of change across the stages 

of change. For example, Prochaska et al. (1991) showed that cognitive processes predominate 

in the Contemplation Stage and behavioral processes in the Action and Maintenance Stages. 

The greatest empirical support for the model comes from the area of smoking cessation. 

Prochaska et al. (1994) demonstrated, however, that the same pattern of change across the 

stages is typical for a broad range of problem behaviors including weight control, sun 

exposure, or HIV risk reduction.  

Velicer, Rossi, Prochaska and DiClemente (1996) extended the Transtheoretical 

Model to the Three Construct Model using Positive Evaluation Strength, Negative Evaluation 

Strength and Habit Strength as dependent measurements. The first two constructs are 

designed to measure the cognitive aspects and the last one the behavioral aspects of 

phenomena under study. The hypothesized pattern of change for each construct is described 

across four stages of change. The model postulates two thresholds representing the ability of 

the environment to modify the processes of change: Asthenic Threshold and Abstention 

Threshold. The following example illustrates the hypothesized pattern of change for the 

behavioral aspects of smoking. The Habit Strength in smoking is modeled as an 

autoregressive process of order one. The autoregressive pattern reflects internal regularity in 
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addictive behavior of long-term smokers. Two thresholds symbolize the influence of the 

environment on smoking. If the level of the series is above the Asthenic Threshold, the person 

will smoke regardless of the environment and make efforts to control it. Buying an adequate 

number of cigarettes and avoiding no smoking situation are possibilities for controlling the 

environment. If the level of the series is below the Abstention Threshold, the person will 

avoid smoking regardless of the environment. People between the two thresholds will be 

influenced by their personal and physical environments. The model relates the level of the 

time series to the stage of change. In the Precontemplation stage, it is located above the 

Asthenic Threshold. In the Contemplation stage (thinking about quitting smoking), the level is 

between the two thresholds. According to the model, people in the Action stage remain at 

about the same level as people in the Contemplation stage even though they are not smoking. 

The authors point out that the cessation of smoking is often the result of environmental 

control, rather than a lack of desire. People in the Maintenance stage have a reduced Habit 

Strength. They are at level lower then the Abstention Threshold, which means that they 

generally are not at risk. Figure 4.1.1 summarizes the model assumptions for the construct 

Habit Strength.  

 

 

 

 

 

Figure 4.1.1. Model for Habit Strength (Velicer et al., 1996, p. 563). 
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Velicer, Rossi, Prochaska and DiClemente (1996) demonstrated that empirical profiles 

of various addictive behaviors are in accordance with those of their Three Construct Model. 

Furthermore, time series analysis for different dependent measures including number of 

cigarettes, craving, or carbon monoxide proved an ARIMA (1, 0, 0) as the underlying model 

for processes of change. This autoregressive pattern proves internal regularity in addictive 

behavior. 

Once again, understanding development and change in behavior or cognition is 

impossible without regard to the time component. Time-series methods allow modeling 

different dependency structures for constructs under study and comparison of theoretical and 

empirical change profiles. Furthermore, hypothesized stage differences in theoretical models 

can be tested by means of the time-series experiment. 

4.2 Self-Esteem as Dynamical Concept 

From the classical viewpoint, self-esteem (i.e., a favorable global evaluation of oneself) is a 

stable personality trait not greatly affected by daily events (Mischel, 1969). Empirical 

research, comparing repeatedly measured means of individuals, supports a relative stability of 

self-esteem level for various psychological phenomena, including anger or hostility proneness 

(see Greenier, Kernis, & Waschull, 1995, for review).  

It has been widely recognized, however, that some specific life events such as 

professional success or failure can cause meaningful short-term instabilities in self-esteem, 

and that such aspects of self-esteem as self-worth incline especially strong to fluctuations 

(Rosenberg, 1986). Kernis (1993) accentuates self-esteem lability and argued that people 

differ not only in level but also in stability of their self-esteem. Nezlek and Plesko (2001) 

showed daily fluctuations in self-esteem. Greenier et al. (1999) demonstrated that negative 

and positive events have a greater impact on the self-feelings of individuals with unstable as 
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opposed to stable self-esteem. In these studies, standard deviation is used for assessing the 

stability of self-esteem.  

The so-called hierarchical models of self-concept combine the ideas from theories 

focused on trait stability with concepts of cross-situational variability of self-esteem (Brown, 

1998; Fox, 1997; Marsh & Craven, 1997). According to these models, self-esteem constitutes 

the apex of the hierarchical system. Diverse domains of competence such as social, physical 

or familial with their more specific subdomains build the subordinate levels of the hierarchy 

(see, for example, Figure 4.2.1). The hierarchical concepts imply either linear dependencies or 

nonlinear influences between levels. Fox (1997) assumes higher stability for global dimension 

of the hierarchy and stronger variability for the more specific subdomains. Marsh and Yeung 

(1998) and Amorose (2001) demonstrated, however, that global self-concept measures were 

less stable than more specific scales.  

 

 

 

 

 

 

 

 

 

 

Figure 4.2.1. Hierarchical model of self-esteem  (Ninot et al., 2001, p. 206). 
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New conceptions of the self define self-esteem as a transitory state, depending 

simultaneously on previous states and current disturbances (Marks-Tarlow, 1999, 2002; 

Nowak et al, 2000; Vallacher et. al., 2002). From this dynamical viewpoint, understanding of 

self-esteem is impossible without the analysis of its evolution (Fortes et al., 2005).  In other 

words, the mechanism underlying the development of self-esteem over time are more 

important than it’s level or the magnitude of variability. Considering self-esteem as a 

dynamical construct requires a special methodological approach, based on time-series 

analysis. For this purpose, Ninot et al. (2001) developed a new assessment tool, allowing 

continuous monitoring of self-esteem and physical self. The Physical-Self Inventory is 

composed on six single items, measuring global self-esteem, physical self-worth and its four 

subdomains: physical condition, sport competence, physical strength and attractive body. 

Therefore, the inventory assesses all three levels of the hierarchical model of self-esteem 

(compare Figure 4.2.1). Daily or twice daily completion of this instrument over a long period 

allows the collection of time series.  

In the recent study, Fortes, Delignières and Ninot (2004) analyzed psychological 

processes that underline the dynamics of global self-esteem and physical self over time.  For 

228 consecutive days, seven participants completed twice daily the Physical-Self Inventory. 

Each of six individual series was then modeled by means of ARIMA procedures. The analysis 

revealed large inter-individual differences in the global shape of time series. Global self-

esteem development of two subjects looked rather stationary. Time series of the majority of 

participants were characterized by marked instability in level or variance. Figure 4.2.2 

illustrates the seven individual time series collected for global self-esteem. 
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Figure 4.2.2. Time series for global self-esteem (Fortes et al., 2004, p. 741). 

The analysis of the ACF of the series showed the presence of significant positive 

autocorrelations for more than 10 lags. Fortes et al. (2004) point out that this result invalidates 

the use of means and standard deviation in dynamical self-esteem research because the use of 

these statistics supposes uncorrelated data. Most of the series (83%) were identified as the 

ARIMA(0, 1, 1) with a positive moving-average term ranging from 0.44 to 0.88. In seven 

from 42 cases (7 subjects x 6 items), (0, 1, 2) or (0, 1, 3) models were fitted. The identified 

ARIMA structures were quite similar among the six dimensions of each subject.  
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In short, the main result of the study is that a differenced first-order moving-average 

model represents the best fit in most cases. According to Spray and Newell (1986), this model 

is typical for time series that exhibit noisy fluctuations around a slowly varying mean. The 

time series from different levels of self-esteem (global, domain and subdomain) were not 

stationary implying the instability of the studied dimensions. Fortes et al. (2004) suggest that 

the observed dynamics of self-esteem reflect a combination of two opposite processes: 

preservation, which tends to restore the previous value after a disturbance, and adaptation, 

which tends to inflect the series in the direction of the perturbation. As stated previously, 

autoregression is characteristic for internal regularity, whereas moving-average pattern 

reflects external influences. In combination with φ=1, the positive moving average coefficient 

θ determines the balance between the preservation and adaptation processes. Based on the 

results of their study, Fortes et al. argue that the dynamics of self-esteem processes can be 

understood as organized around a locally stable reference value, which evolves progressively 

under the influence of life events. 

The main conclusion from the presented study is that analysis of dynamical concepts 

such as self-esteems requires the adequate methodological approaches. Traditionally, 

psychologists assess evolution or development through repeated measurements. By this 

procedure, however, possible dependences between subsequent values remain indiscernible. 

According to Slifkin and Newell (1998), classical statistics such as mean or standard 

deviation are not able to reflect the true nature of variability or change in living systems. 

Revealing the autocorrelation structure of dynamical concepts, the time-series methods allow 

to conceive the development of various psychological phenomena.  
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4.3 Long-Range Dependencies in Psychological Time Series  

In traditional psychological research, autocorrelations in the data are often ignored. This 

reflects the implicit assumption that most psychological phenomena can be viewed as 

randomly distributed in time around a more or less stable mean. Researchers who paid 

attention to serial correlations in human performance considered them to be small and 

transient (Laming, 1968; Huitema, 1985). Recent empirical studies from cognitive, social, and 

biological psychology are questioning this popular view. Employing time-series methods such 

as the log-log power spectrum or the ARFIMA modeling (see Chapter 3.2.1), persistent long-

range dependencies have been detected in various psychological time series. These very 

slowly decaying autocorrelations are known as 1/f noise. The objectives of this chapter are: to 

review empirical studies on 1/f noise and to discuss theoretical models accounting for long-

range dependencies in psychological time series. 

4.3.1 Review of Empirical Findings 

Time series exhibiting persistent autocorrelations have been observed in physics, biology, 

hydrology, economics, sociology, and other disciplines. A summary of interdisciplinary 1/f 

noise literature can be found under: http://www.nslij-genetics.org/wli/1fnoise/. The 

bibliography contains more than 800 publications demonstrating 1/f noise in a wide range of 

natural phenomena such as heart beat rhythmus, brain activity, human coordination, music, or 

speech. The primary objective of the bibliography is, therefore, to show the ubiquity of 1/f 

noise. 

In psychology, correlated noise was initially detected in controlled cognitive 

performances (Gilden, Thornton & Mallon, 1995). Using spectral analysis techniques, Gilden 

and his colleagues demonstrated in experiments including mental rotation, lexical decision, 

shape and color discrimination, or visual search that persistent autocorrelations account for 

http://www.nslij-genetics.org/wli/1fnoise/
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even more variability in the data than most standard manipulations in cognitive psychology 

(Gilden, 1997, 2001; Gilden & Wilson, 1995; Gilden et al., 1995). Serial correlations 

observed in these studies were not only persistent but also relatively large in absolute 

magnitude. Wagenmakers et al. (2004) confirmed these findings employing in their analysis 

the ARFIMA methodology.  

Van Orden et al. (2003), Wagenmakers et al. (2004), and Ward and Richard (2001) 

found long-range dependencies in automatic cognitive performances such as word naming or 

simple reaction times. The intensity of the dependence was here lower than in tasks requiring 

cognitive control. This implies that the persistence and magnitude of serial dependence is not 

based purely on temporal contiguity. According to Wagenmakers et al. (2005), empirical 

support for the existence of persistent autocorrelations in automatic tasks is not so strong as 

for controlled cognitive performance. Therefore, competitive assumption of short-range 

dependencies cannot be definitely excluded from consideration.  

Chen et al. (1997, 2001), Delignières et al. (2004) and Ding et al. (2002) observed 

persistently correlated noise in human rhythmic activities such as tapping or other tasks 

requiring coordination or synchronization of motor and cognitive activities. The evidence for 

the long-range pattern was rather strong with estimated power exponents1 ranging from 0.49 

to 0.87 (Ding et al., 2002) or even from 0.61 to 1.68 (Delignières et al., 2004). Moreover, the 

log-log power spectra of most series were fitted with quite perfect straight lines reflecting 

pink noise in the data. These results are inconsistent with the assumption of a simple 

autoregressive error correction model for synchronization tasks proposed by Pressing and 

Jolley-Rogers (1997). Specifically, the model postulates that linear autoregressive error 

correction processes of order 1 predominate in interactive human performance requiring 

synchronization. In other words, the noise component of rhythmical performance arises 

 

1 Recall that, for a long memory, the power exponent a in 1/f a can vary from 0.5 to 1.5 (see also Chapter 3.1.2). 
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primarily from an AR(1) process, a second order process may be used if task demands of 

coordination and speed require greater accuracy. In synchronized tapping experiments, 

Pressing and Jolley-Rogers (1997) observed exponential spectral patterns typical for short-

range dependencies. According to Pressing and Jolley-Rogers, the interplay of cognitive and 

motor components in tapping produces these spectral curves. The motor component 

concentrates its power at higher frequencies, whereas the cognitive component is dominant 

for lower frequencies. Recall that concentration of the power at zero frequency implies 

instationarity. Thus, for AR(1) series, more power at low frequencies implies φ coefficients 

near 1. Predominance of high frequencies is typical for AR(1) models with negative φ values 

(see Chapter 3.1.3). Therefore, the findings concerning dependency structure of rhythmic 

activities are contradictory: Chen et al. (1997, 2001), Delignières et al. (2004) and Ding et al. 

(2002) observed a strong evidence for 1/f noise, whereas Pressing and Jolley-Rogers (1997) 

found only short-range dependencies in their data. Gilden (2001) points out that the pink 

noise spectrum (1/f) can result from a combination of white noise (1/f 0) and random walk  

(1/f 2) spectra. It is possible that cognitive processes in tapping are instationary due to 

fluctuations in attention or fatigue, and simple motor responses such as key pressing introduce 

white noise into the data. The interplay of these factors can simulate the 1/f like behavior. 

Therefore, further research is required to answer the question whether time series from 

rhythmic activities are the real pink noise or if we deal here with 1/f type effects due to 

fluctuations in speed of performance or attention. New methodologies such as the spectral 

classifier procedure of Thornton and Gilden (2005) and the ARFIMA approach of 

Wagenmakers et al. (2004) can help to solve this problem. 

Aks and Sprott (2003) detected 1/f noise in visual perception. The timing of perceptual 

reversals of Necker cubes served as an independent variable. While viewing the Necker cube, 

subjects pressed a key each time they perceived a change in the cube’s orientation. 
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Experiments were performed under three sets of binocular disparity conditions. Viewing 

duration was extended, moderate, or brief (60, 30, or 15 minutes). Spectral analysis of 40 

series detected 1/f noise in 80% of the cases. Regression slopes in log-log plots varied from –

0.6 to –0.9. More disparity and reduced viewing time produced steeper slopes in the spectra 

(larger power exponents). According to Aks and Sprott (2003), the last finding reveals the 

stabilizing function of binocular disparity in perception. Disparity may either filter out 

extraneous information or signal the system to rely more on previous percepts. More studies 

and methodologies employing rigorous testing of alternative hypotheses to 1/f noise are 

necessary to verify this assumption.   

Delignières, Fortes and Ninot (2004) reported long-range dependencies in time series 

of self-esteem and physical self. Twice a day for 512 consecutive days, four adults completed 

Physical-Self Inventory (Ninot et al., 2001). Persistent autocorrelations were detected 

employing different methods. For example, spectral analysis revealed for each series a 

straight line in the double logarithmic plot of power against frequency. No traces of flattening 

of the plot in the low-frequency region, as expected for short memory processes, were found. 

The power exponent values appeared close to 1, suggesting that the series behaved like 1/f 

noise.  

Fractal analysis, accounting for the degree of self-similarity in time series, represents 

another methodology used in the study. This approach differentiates two types of series with 

long-range dependencies: persistent and anti-persistent. The series is said to be persistent if an 

increasing trend in the past is likely to be followed by an increasing trend in the future. In 

anti-persistent series, an increasing trend in the past is followed by a decreasing trend. 

Mathematically, processes with different autocorrelation properties can be characterized using 

the following scaling law: <∆Y>∝ ∆tH, implying that the expected increment <∆Y> is a power 
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function of the time interval (∆t) over which this increment is observed1. H is called the 

scaling, fractal or Hurst exponent and can be any real number in the range 0<H<1. 

(Mandelbrot & van Ness, 1968; Torre, Delignières, & Lemoine, in press). The aim of fractal 

analysis is to check whether this scaling law holds for experimental series. A theoretical 

scaling exponent of random walk is 0.5; this value constitutes the frontier between anti-

persistent (H<0.5) and persistent (H>0.5) series. For 1/f noise, fractal exponents lower than 

0.5 are expected. The estimates of H obtained by Delignières et al. were located in a quite 

narrow range, between 0.18 and 0.40, suggesting an anti-persistent long-range correlation 

process. Delignières et al. compared their findings with the results obtained by Fortes, 

Delignières and Ninot (2004) for shorter time series. (Recall that observations of this study 

were collected twice daily for 228 days). They found that the moving average coefficients of 

shorter series are negatively related to H estimates. According to Delignières et al., this 

suggests that 1/f noise and the moving average model possess similar properties, characterized 

by a subtle balance between the preservation of a reference value and an adaptation to events. 

This balance is not simply achieved over the short term, as implied by the ARIMA models, 

but occurs at multiple time scales, in a self-similar way. Delignières et al. formulated an 

interesting hypothesis concerning the relationship between moving average coefficients and 

the scaling exponent: low moving average coefficients are related to weakly anti-correlated 

series close to the random walk pattern with H values about 0.5, and higher coefficients 

correspond to series closer to 1/f noise with lower H exponents. Empirical evidence for the 

postulated relationship between moving average values and fractal exponents could be of 

great practical importance in applied settings, since, in contrast to spectral methods or the 

ARFIMA methodology, ARIMA procedure can work with relatively short times series.  

  

                                                 

1 Recall that successive increments of random walk ttt uYYY =−=∆ −1 are uncorrelated. 
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Long-range dependencies are also found in human gait (Hausdorff et al., 1997; 1999); 

force production tasks (Pressing, 1999); brain activity (Linkenkaer-Hansen, 2002); heart rate 

fluctuations or other biological phenomena (Hausdorff & Peng, 1996). Table 4.3.1 presents an 

overview of the studies. 

Table 4.3.1. Overview of empirical studies reporting 1/f noise. 

Controlled Cognitive 

Performance 

Gilden, Thornton & Mallon (1995) 

Gilden & Wilson (1995) 

Gilden (1997, 2001) 

Wagenmakers et al. (2004) 

Automatic Cognitive 

Performances 

Van Orden et al. (2003) 

Wagenmakers et al. (2004)  

Ward & Richard (2001) 

Rhythmic Activities Chen et al. (1997, 2001) 

Delignières et al. (2004)  

Ding et al. (2002) 

Visual Perception Aks & Sprott (2003) 

Self-Esteem and Physical Self Delignières, Fortes & Ninot (2004) 

Human Gait Hausdorf, Zemany, Peng, & Goldberger (1999) 

Force Production Tasks Pressing (1999) 

Brain Activity Linkenkaer-Hansen (2002) 

Heart Rate Fluctuations  Hausdorff & Peng, 1996 
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4.3.2 Explanations for Long-Range Dependencies 

Numerous explanations for the observed long-range dependencies in psychological time 

series have been proposed. Roughly, two different approaches can be distinguished. One 

perspective is characterized by the idea that 1/f noise patterns can arise from aggregation of 

more simple models. Another perspective is embedded in the framework of the nonlinear 

dynamical system theory.  

 As describes previously, a combination of white noise and random walk spectra can 

imitate the 1/f noise behavior. Thus, long-range dependencies in psychological time series can 

be caused by instationarity in time series due to fluctuations in attention or shifts in the 

strategy. Busey and Townsend (2001), Gilden (2001), and Wagenmakers et al. (2004) use this 

explanation.  

 Chen et al. (2001), Ding et al. (2002), and Wagenmakers et al. (2005) argue that the 

mathematical model of the long memory process proposed by Granger (1980) for economic 

measures can also work for psychological data. Granger hypothesized that pink noise can 

arise via aggregation of multiple component processes that separately generate transient 

correlations. In other words, a simple summation of independent AR(1) processes results in 

persistent serial correlations of 1/f type. This model can be applied to human cognition if we 

assume that the observed series is an aggregation of the behavior of many independent groups 

of neurons, each with their own different autoregressive parameter.  

A similar idea for biological systems comes from Hausdorff and Peng (1996). Their 

multiscaled randomness model assumes that 1/f noise pattern can result from summation of 

short-range processes with different characteristic time scales. Hausdorff and Peng argued 

that in many biological series overall behavior is influenced by systems operating on widely 

different time scales. For example, heart rate fluctuations are short-term regulated via the 
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autonomic nervous system; long-term influences come from circadian rhythm via hormonal 

systems.  

 The assumption that the presence of multiple time scales can yield 1/f noise effects is 

also shared by Pressing (1999). According to Pressing, multiple time scales explain long-

range correlations in human cognitive control and attentional fluctuations. 1/f spectra are 

typical for systems that feature multiple discrete time scales, as in relaxation, processing, or 

production. Simulation experiments evaluating this model demonstrated that summation of 

random processes with different time scales can yield 1/f spectra with exponents ranging from 

0.5 to 1.5; three or even two series are sufficient for this effect. To achieve a 1/f like spectrum, 

slow process must have greater amplitude (weight) than faster process (Pressing, 1999, p. 6). 

 Another perspective associates 1/f noise with deterministic nonlinearity operating in 

intermittency or chaotic regimes (Schuster, 2005). The most popular model from this 

approach is the Self-Organized Criticality (SOC), introduced by Bak, Tang and Wiesenfeld 

(1987). Using a pile of sand as a metaphor, Bak et al. explain the large-scale dynamics of 

various phenomena. In the same way as grains of sand added slowly and randomly to a 

sandpile cause avalanches, barely detectable movements of the earth’s crust can cause the 

devastating earthquakes, or small random changes in stock prices can lead to financial crashes 

(Bak, 1996; Jensen, 1998). A system is said to be self-organized when its structure emerges 

without explicit influences from outside the system. To state it differently, non-randomness in 

the system emerges from random initial condition and random input. The term self-organized 

implies this internal dynamic. The term criticality is analogous to the critical point of 

equilibrium systems. Thus, SOC characterizes systems that naturally evolve to a critical state 

in which a minor event starts a chain reaction that can affect any number of elements in the 

system. Such systems are said to have a critical point as an attractor. Long-range 

autocorrelations (pink noise, fractal dynamics) constitute the typical signature of complex 

http://en.wikipedia.org/wiki/Critical_point_%28physics%29
http://en.wikipedia.org/wiki/Attractor
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systems in a critical self-organized state. The important feature of 1/f noise is its scale-

invariance or self-similarity across different levels of the system structure. In other words, 

self-similar processes look roughly the same when viewed at different levels of magnification. 

From this viewpoint, the rare events such as financial crashes or devastating earthquakes are 

the consequence of the same mechanism, causing small changes to stock prices every minute 

or harmless movements of the earth’s crust every day.  

 From the nonlinear perspective, the 1/f behavior is conceived as the typical intrinsic 

dynamics of complex systems acting at the edge of chaos, a transitional state between 

unpredictability and predictable order. Thus, as an intermediate between white noise and 

brown noise, 1/f noise is an indication of both stability and adaptability of a system. The 

intrinsic stability of 1/f noise is primarily due to the relative independence of the underlying 

processes acting at different time scales. Hence, 1/f noise behavior is more adaptive to 

endogenous and exogenous perturbations and can be viewed as the typical signature of young, 

healthy, and adaptive systems (West & Shlesinger, 1990). Marks-Tarlow (1999) argued that 

psychological health resides at the edge of chaos. In this state systems possess enough 

stability to maintain consistency but sufficient randomness to ensure adaptability and 

creativity. The behavior of disabled systems is, to the contrary, either more unpredictable or 

rigid. Marks-Tarlow expects, for instance, the white noise pattern for behavior of hysterical 

patients and brown noise for people with obsessive-compulsive disorder. There is empirical 

evidence providing an indirect support for this assumption. Hausdorf et al. (1997) observed 

1/f noise in the gait of healthy adults. For elderly people or patients with Huntington’s 

disorder, behavior close to white noise was typical. Ninot, Delignières and Varray (2003) 

showed that the variability of self-esteem time series was more random in patients suffering 

from chronic pulmonary disease than in healthy subjects (see also Delignières et al., 2004). 

Gottschalk, Bauer and Whybrow (1995) demonstrated that mood variation of patients with 
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bipolar disorder was more organized and characterized by a loss of complexity compared to 

the mood pattern of healthy participants. 

 To put it briefly, from the nonlinear perspective self-organized criticality is assumed to 

be a typical state of dynamical complex systems acting at the edge of chaos. Scale-invariant 

1/f behavior representing a balance between stability and adaptability is characteristic of such 

systems. 

 Van Orden, Holden and Turvey (2003; 2005) and Van Orden, Moreno and Holden 

(2003) suggest SOC as an alternative to the current paradigms in cognitive psychology. They 

argue that pink noise observed in psychological time series suggests processes of mind and 

body that change each other’s dynamics. According to Van Orden and his colleagues, self-

organized criticality supplies a very plausible metaphor for self-control. “Near critical points, 

interaction-dominant dynamics coordinate activity across the multiple time scales of 

embodied fluctuations. Context sensitivity near critical points situates behavior within the 

flow of circumstances. An actor situated in this sense reflects previous and oncoming 

circumstances directly as purposive behavior” (Van Orden, Holden & Turvey, 2003, p.347). 

Moreover, self-organized criticality points out the internal dynamics of human behavior and 

characterizes “human beings as intentional beings”.  

Aks and Sprott (2003) share the ideas of SOC and explain the observed 1/f noise in 

visual tasks as an expression of complexity and adaptability of the human perceptual system. 

They argue, for example, that depth information guides the perceptual system into a self-

organized state to assist us in resolving ambiguous information.  

 According to Delignières et al. (2004), the evidence of 1/f noise in self-esteem 

supports dynamical conceptions of the self proposed by Nowak et al. (2000) or Vallacher et 

al. (2002). These models consider self-esteem as a self-organized dynamical system. 

Delignières et al. (2004) point out the discovered self-similarity in behavior of different levels 
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of self-esteem and hypothesize that this fractal pattern reflects the intrinsic dynamics of global 

self-esteem for healthy adults.  

  In sum, long-range dependencies or 1/f noise have been observed in time-series 

representing cognitive, motor, perceptual, and biological processes or self-esteem 

development. Some researchers explain this phenomenon linear as a result of aggregation of 

different simpler models. Another perspective conceives 1/f noise nonlinear as a signature of 

complex dynamic self-organized systems. Argumentation and exchange of views between 

advocates of these two paradigms can be found in articles of Wagenmakers et al. (2005) and 

Van Orden et al. (2005). 
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5 METHODOLOGICAL ISSUES 

Analysis of empirical research employing time-series techniques revealed several 

methodological issues remaining to be clarified. The main goal of this thesis is to treat some 

of them. This chapter introduces three simulation studies dealing with the following topics: 

transformation of instationary time series; model estimation; and sample size requirements for 

reliable detection of long-range dependencies or 1/f noise. The objectives of the first study are 

to develop testing strategies allowing to distinguish between different causes of instationarity 

and to evaluate these strategies by means of Monte Carlo experiments. The second study 

compares the performance of ESACF and SCAN, automated methods for ARMA model 

identification commonly available in current versions of SAS for Windows, as identification 

tools for various integrated processes. The last study examines sample size requirements for 

the accurate estimation of the long-memory parameter d, and documents the quality of the 

conditional sum of squares estimates for time series of different length in various (0, d, 0) and 

(1, d, 1) models. 

STUDY 1
Deterministic or Stochastic

Trend: Decision on the Basis
of the ADF-Test

STUDY 2
Model Identification
of Integrated ARMA

Processes

STUDY 3
Sample Size and Accuracy

of Estimation of the Fractional
Differencing Parameter

CHAPTER 5
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5.1 Study 1: Deterministic or Stochastic Trend: Decision on 

the Basis of the Augmented Dickey-Fuller Test  

5.1.1 Introduction 

In social and behavioral sciences, the goal of time series analysis is usually to measure the 

effects of an intervention, as in an interrupted time series experiment, to forecast future values 

of the series under consideration, or to determine the nature of the process that describes an 

observed behavior. In the first two cases, stationarity of the series under study is required. A 

process is said to be stationary if all its moments are constant over time. Most nonstationary 

series in psychology have a time-varying mean or a time-varying variance or both. 

Nonstationary time series have to be transformed to make them stationary. The proper 

transformation method depends on the cause of nonstationarity. The consequences of a false 

treatment can be rather serious. Unfortunately, the last issue is not emphasized in the time 

series textbooks used among psychologists (Glass et al., 1975; Gottman, 1981; McCleary & 

Hay, 1980, and Warner, 1998). Some descriptions even suggest that two popular methods for 

stabilizing nonstationary series, differencing and ordinary least squares regression, are 

interchangeable, and that the choice of the transformation method is simply a matter of 

researcher’s preferences (see, for example, Warner, 1998, p. 39). One of the objectives of this 

chapter is to demonstrate the importance of the proper stationarity transformation for 

empirical time-series research. 

 Figure 5.1.1 shows three common nonstationary processes and their autocorrelation 

and partial autocorrelation functions (ACF and PACF, respectively).  
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Figure 5. 1. 1. Nonstationary processes and their autocorrelation and partial autocorrelation functions: 

(A) pure random walk, (B) random walk with drift, (C) deterministic time trend. 

As described previously, the process ttt uYY += −1  with ut ∼ IIDN (0, σ2) is called a 

pure random walk. The mean of this process is equal to its initial value but its variance 

increases indefinitely over time. A pure random walk process can also be represented as the 

sum of random shocks . As a result, the impact of a particular shock does not 

dissipate, and the random walk remembers the shock forever. That is why a random walk is 

said to have an infinite memory. If a constant term is present in the equation 

, Yt is called random walk with drift, where α is known as the drift 

parameter. Depending on α being negative or positive, Yt exhibits a negative or positive 

stochastic trend. For a random walk with drift, the mean as well as the variance increase over 

∑= tt uY

ttt uYY ++α= −1
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time. Random walk processes are nonstationary, but their first differences 1−−=∆ ttt YYY  are 

stationary. Hence, both types of random walks are called difference stationary (DS) processes. 

Random walk models are also known in the time series literature as unit root processes. A 

situation of nonstationarity is called the unit root problem, if in the first order autoregressive 

model  ρ is 1. The name unit root is due to the fact that ρ=1. (The 

autoregressive model can also be written as 

ttt uYY +ρ= −1

tt uYL =− )1( . The term unit root refers to the 

root of the polynomial in the lag operator1.) Random walk is a specific case of a more general 

class of stochastic models known as integrated processes. An integrated process of first order 

is represented by an equation ttt aYY ++α= −1 , where any stationary ARMA (p, q) process 

can generate the random part at. Therefore, random walk processes are integrated of order 1, 

denoted as I(1) or (0, 1, 0) in terms of Box-Jenkins ARIMA methodology. In general, if a 

time series has to be differenced d times to make it stationary, that series is called integrated 

of order d. In the time series literature the terms nonstationarity, random walk and unit root 

are often treated as synonymous.  

 The development of the third process in Figure 5.1.1, represented by the equation 

 with ttt aYtY ++= −12.01.0 ttt uaa += −15.0 , is determined by a deterministic time trend. This 

process has a constant variance and a changing mean. In a more simple case of the 

deterministic trend without a stationary AR(1) component tt utY +β+β= 21 , the mean is 

. If we subtract this mean from Yt, the resulting series will be stationary (this 

procedure is known as polynomial detrending). Hence, processes of this type are called trend 

stationary (TS). In contrast to integrated series, processes with a deterministic trend do not 

exhibit an infinite memory. The deviations from the trend line do not contribute to the long-

t21 β+β

                                                 

1 Lag operator L: LYt =Yt-1, L2Yt =Yt-2 and so on.  If (1-L)=0, we obtain, L=1, hence the name unit root 
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run development of the series. In the case of a stochastic trend, however, the random 

component at affects the long-run course of the series.  

Therefore, the proper transformation method of nonstationary data crucially depends 

on the data generating process (DGP). If an empirical time series is a realization of the 

random walk process, the solution here is to take the first differences of the time series. If a 

series is stationary around the trend line, the correct way to transform such a time series is to 

regress it on time. The residuals from this regression will then be stationary. As Figure 5.1.1 

shows, realizations of DS and TS processes can appear very similar. It is especially difficult to 

decide whether the trend in a time series is stochastic or deterministic (cases B and C in 

Figure 5.1.1). As a result inappropriate transformations are not unusual in practice. Different 

studies have shown that consequences of mis-specifying trend characteristics of the data can 

be rather serious.  

 Chan, Hayya and Ord (1977) analyzed the effects of a wrong transformation on the 

autocorrelation and the power spectral density functions. The authors showed that the ACF of 

residuals from linear regression of a random walk series on time are not stationary and tend to 

exhibit cycles of increasing length and amplitude around a fitted trend line as sample size gets 

larger. That is why erroneous detrending of DS series is also called underdifferencing. The 

residuals of inappropriate differenced TS series follow a noninvertible moving-average 

process. This is known as overdifferencing. There has been some debate in the literature 

arguing that overdifferencing is a less serious error than underdifferencing (see Maddala & 

Kim, 1998, for an overview). Nelson and Kang (1981, 1984) detected artificial periodicity in 

inappropriately detrended time series and presented several ways in which investigators could 

obtain misleading results using underdifferenced series. Diebold and Senhadji (1996) showed 

that applying difference stationary and trend stationary models to the same time series could 

result in very different predictions. Schenk-Hoppè (2001) and Psaradakis and Sola (2003) 

demonstrated dramatic consequences of inappropriate detrending within the scope of business 
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cycle research. In a recent paper, Dagum and Giannerini (2006) investigated the impact of 

erroneous transformations on tests detecting non-linearity and a unit root. The authors 

concluded that either a wrong differencing or a wrong detrending lead to biased results. 

Ashley and Verbrugge (2004, 2006) studied the effects of false transformations in the context 

of ordinary parameter inference in simple linear models. Underdifferencing yielded seriously 

over-sized tests. Overdifferencing, in its turn, produced very distorted estimated impulse 

response functions. Distortions became increasingly severe as sample size gets larger. 

The following example demonstrates the impact of inappropriate detrending on the 

outcome of an interrupted time series experiment. Consider a time series with a stochastic 

trend as presented in Figure 5.1.1 (B). Suppose that at t=50 an intervention takes place 

causing an abrupt change in level (+3 units) of the series. As Figure 5.1.2 illustrates, the 

intervention effect cannot be detected by means of visual inference because the original series 

drifts slightly downward just at t=50. Table 5. 1. 1 contains the results of the statistical 

analysis obtained applying the methodology proposed by Glass, Willson and Gottman (1975).  

In the case of differencing, the ARIMA (0, 1, 0) model accounts for the observed dependency 

in the series. In the case of detrending, the dependency is captured through the following 

model:  taty ++= 24.097.6 , ttt uaa += −18.0 , ut ∼ iid N(0, 1). As Table 5.1.1 shows, 

applying the appropriate transformation to the time series allows detecting the actual change 

in level  (t=2.28, df=97, p<.05). After the erroneous detrending, however, the change in level 

is heavily underestimated 1.24 (t=1.58, df=97, n.s.) 

Table 5.1.1. Example of an interrupted time series analysis. 

Method 
Estimated Change 

in Level t df 

Differencing 2.49 2.28* 97 

Detrending 1.24 1.58 97 

     * p<.05
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Figure 5.1.2. DS Process ttt uYY ++= −12.0 with and without intervention at t=50. 

 To summarize, memory characteristics and long-range development of a time series 

crucially depend on whether its trend component is deterministic or stochastic. A 

deterministic trend is completely predictable and not variable, a stochastic trend is not 

predictable. Series with a stochastic trend have to be differenced to make them stationary. For 

series with a deterministic trend, polynomial detrending is a correct transformation to achieve 

stationarity. Inappropriate transformation is consequential for subsequent analysis and should 

be avoided. It is impossible to distinguish between stochastic and deterministic alternatives 

visually or analyzing ACF and PACF of the series under consideration. The objectives of this 

study are to develop unit root testing strategies allowing to determine whether an observed 

time series is TS or DS and to evaluate them by means of Monte Carlo experiments. 
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5.1.2 Unit Root Testing 

Testing for stationarity with unit root tests is common practice in econometrics. In the popular 

time-series textbooks designed for social and behavioral scientists, this topic is not treated.   

Therefore, the basic concepts of the unit root approach are presented at the beginning (see 

Gujarati, 2003, for an introduction; see Maddala & Kim, 1998, for an overview; consult 

Hamilton, 1994, at the advanced level).  

There exist numerous unit root tests, one of the most popular among them is the 

Augmented Dickey-Fuller (ADF) test. In the simplest case of an uncorrelated error term, the 

test begins by estimating the equation ttt uYY +ρ= −1 . For theoretical reasons, this equation is 

written in the form ttttt uYuYY +δ=+−ρ=∆ −− 11)1(  with 1−−=∆ ttt YYY . The null hypothesis 

is δ=0, that means ρ=1 or there is a unit root, implying the time series under consideration is 

nonstationary. Dickey and Fuller (1981) have shown that under the null hypothesis the 

estimated t value of δ follows the τ statistics and computed the critical τ values on the basis of 

Monte Carlo simulations. The authors also introduced a competing F test with the usual F 

statistic but using special critical values. Elder and Kennedy (2001a) showed in their recent 

paper, however, that, in testing for stationarity, the t test is preferable. 

The actual procedure of implementing the ADF test involves several decisions. To 

allow for various possibilities of nonstationarity, the ADF test is estimated in three different 

forms: 

(1) Yt is a random walk  ttt uYY +δ=∆ −1  

(2) Yt is a random walk with drift ttt uYY +δ+α=∆ −1  

(3) Yt is a random walk with drift around a deterministic trend ttt uYtY +δ+β+α=∆ −1 . 
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In each case, the null hypothesis is δ=0. The alternative hypothesis is that δ is less than zero, 

that is the time series is stationary. If the null hypothesis is rejected, it means in the first case 

that Yt is a stationary series with zero mean. In the second case, Yt is stationary with nonzero 

mean, and in the third case, Yt is stationary around a deterministic trend. The critical τ values 

are different for each of the three preceding specifications of the ADF test. If the error term in 

the model is autocorrelated, the ADF test is conducted by “augmenting” the preceding three 

equations by adding the lagged values of the dependent variable tY∆ . Therefore, the third 

model from the ADF family is written as 

∑
=

−− +∆γ+δ+β+α=∆
p

i
tititt aYYtY

1
1 .  

The number of lagged differenced terms (p) is determined empirically using information 

criteria such as the AIC and the BIC, the idea being to include enough terms so that the error 

part at is serially uncorrelated. In general, a small p is adequate for autoregressive errors or 

ARMA processes with small moving-average components. For error terms with moving-

average coefficients near ±1, a large p is necessary (see Ng & Perron, 1995, 2001; Lopez, 

1997; Stock, 1994, for further details). 

 As the majority of the unit root procedures, the ADF test suffers from size distortion 

through misspecification of H0 or an inappropriate selection of lagged terms (the true 

significance level exceeds the usual nominal level of α error such as .05 or .01).  Another 

drawback is the low power in smaller samples and in cases of ρ near 1 (the probability of the 

erroneous maintenance of H0 or the β error is very large).  
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5.1.3 Deterministic or Stochastic Trend 

This study focuses on a special issue of growing time series. As noted previously, such 

growth could occur due to a deterministic or a stochastic trend. In the former case, there is no 

unit root, meaning the series under consideration is I(0). In the latter case, we have a unit root 

with drift or, in other words, the I(1) process. The simultaneous existence of a unit root and a 

deterministic trend is thought to be unrealistic (see Elder & Kennedy, 2001b; Holden & 

Perman, 1994; Perron, 1988, for explanations). Therefore, the first hypothesis from the ADF 

family (a pure random walk) can be ruled out because it implies that the DGP is not growing. 

Hence, we have to decide between two competing hypotheses: (1) there is a unit root with 

drift δ=0 (ρ=1), α≠0, and (2) there is a time trend without unit root δ<0 (ρ<1), β≠0.  

 An informal testing strategy used among practitioners is to reject a unit root when at 

least one of the ADF tests rejects. In other words, the null hypothesis of the unit root is 

dismissed if a test with an intercept does not reject the null, and one including an additional 

time trend term does (Kim et al., 2004). Perron (1988) introduced a sequential testing strategy 

and recommended to start from the most general trend specification and to test down to more 

restricted specifications. Ayat and Burridge (2000) also advocate a sequential testing starting 

with the highest trend degree maintained. Elder and Kennedy (2001b) propose to begin with 

the hypothesis of a unit root with drift δ=0 (ρ=1), α≠0. If this null is not rejected, there is a 

stochastic trend. In case of rejection, the series under study is probably stationary around a 

deterministic time trend because two other possibilities (δ≠0, β=0 or δ=0, β≠0) are 

unreasonable and could be ruled out. There exist reasonable doubts, however, that the last 

strategy works. West (1987) demonstrated that if a linear trend term is incorrectly avoided 

from the estimating equation, the rejection probability of H0 converges to 0. In other words, 

one almost never rejects a unit root hypothesis. It is noteworthy that the inclusion of a 
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redundant time trend parameter leads to a considerable loss in power of the test if the series 

under consideration is stationary about an intercept alone (Dickey, 1984). For purposes of the 

present study, however, this case is irrelevant because the H1 implies that the DGP is not 

growing.  

 In general, there are two competing testing strategies. Both procedures require testing 

of hypotheses (2) and (3) from the ADF family. The first strategy suggests starting with the 

most specific H0 of unit root with drift around a deterministic trend (3) and then continuing 

testing with a more general H0 of a unit root with drift component only (2). If this strategy 

works, the ADF test for simulated TS series will reject the third null hypothesis because the 

series are stationary around a deterministic trend. In other words, a small Type II error 

probability β or a high power (1-β) of the ADF test is expected. Testing of the second H0 

serves as a check. No power at all is expected in this case because the ADF test is known to 

treat the growth in the series as a signature of the random walk (West, 1987). For simulated 

random walks with drift, the correct test decision is to maintain the both null hypotheses 

because the series contain a unit root. Thus, the frequency of the false rejection of the null 

hypotheses (2) and (3) (i.e., test size) is expected to correspond with the nominal Type I error 

level. In sum, for TS series different test powers and for DS series similar test sizes in two 

subtests are expected.  

The second strategy proposes to begin with the hypothesis of a unit root with drift (2). 

For TS series, the rejection and, for DS series, the maintenance of the null hypothesis 

represents the correct test decisions. Therefore, the percentage of significant ADF tests 

(rejection of H0) not greater than the nominal significance level (e.g., 5%) is expected for 

simulated DS series. For series with a linear trend, this percentage reflects the power of the 

test and should be considerably higher. Within the scope of this strategy, testing of the third 

null hypothesis serves as a check. For the simulated DS series, the percentage of H0 rejections 
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is expected to remain on the same level because the series contain a unit root. For the 

simulated TS series, a large amount of significant ADF tests is predicted in both trials. In 

sum, similar test sizes for DS series and comparable powers for TS series are expected in two 

subtests. Table 5.1.2 presents an overview of the testing strategies.  

The following Monte Carlo experiments are designed to evaluate the proposed testing 

strategies. 

Table 5.1.2. Choosing one of two competing models for growing time series: (1) a unit root with drift 

δ=0 (ρ=1), α≠0 and (2) a time trend without unit root δ<0 (ρ<1), β≠0. 

STRATEGY I STRATEGY II 

Start with H0 (3): δ=0 (ρ=1), α≠0, β≠0 

∑
=

−− +∆γ+δ+β+α=∆
p

i
tititt aYYtY

1
1  

Continue with H0 (2): δ=0 (ρ=1), α≠0 

∑
=

−− +∆γ+δ+α=∆
p

i
tititt aYYY

1
1  

Start with H0 (2): δ=0 (ρ=1), α≠0 

∑
=

−− +∆γ+δ+α=∆
p

i
tititt aYYY

1
1  

Continue with H0 (3): δ=0 (ρ=1), α≠0, β≠0 

∑
=

−− +∆γ+δ+β+α=∆
p

i
tititt aYYtY

1
1  

EXPECTED TEST PERFORMANCE FOR TS SERIES (no unit root):  

ttt aYtY +ρ+β= −1  [δ<0 (ρ<1), β≠0] 

Rejection of H0 (3)  high power 

Maintenance of H0 (2)  low power 

Distinct change in power 

Rejection of H0 (2) 

Rejection of H0 (3) 

No considerable change in power 

EXPECTED TEST PERFORMANCE FOR DS SERIES (unit root):  

ttt aYY +ρ+α= −1  [δ=0 (ρ=1), α≠0] 

Maintenance of H0 (3) 

Maintenance of H0 (2) 

Test size close to the nominal significance level

Maintenance of H0 (2) 

Maintenance of H0 (3) 

Test size close to the nominal significance level 
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5.1.4 Method 

The null hypotheses of a unit root with drift (δ=0, α≠0) and of the unit root with drift around a 

stochastic trend (δ=0, α≠0, β≠0) from the family of ADF tests are examined on 6 DS and 12 

TS models. The results are computed for the first 6 lags to demonstrate the influence of the 

lag length selection on the performance of the ADF test. Series with a stochastic trend are 

generated applying the following DGP: ttt aYY ++α= −1  with two different values of the drift 

parameter α=0.2 and α=0.5. The DGP of series with a deterministic trend is 

 with ρ equal to 0, 0.2, 0.5 and 0.8 to account for different possible 

degrees of serial dependency. To limit the scope of the study, only three types of the error 

term at [white noise or ARMA(0, 0); a first order autoregressive model with φ=0.5 or 

ARMA(1, 0), and a first order moving-average model with θ=-0.5 or ARMA(0, 1)] are used 

in DS and TS cases. Such simple error structures are most common in practice. Each 

simulated time series consists of 100 observations and is replicated 1000 times. Within the 

scope of the ARIMA methodology, samples of 100 observations represent an optimum length. 

For effects of sample size on the performance of the ADF test, consult DeJong et al. (1992). 

The percentage of significant decisions of the ADF test serves as a dependent measurement.  

ttt aYtY +ρ+= −11.0

All computations and the generation of independent N(0, 1) innovations ut are 

performed with the SAS System for Windows Version 9.1. For the ADF test, the following 

statement of PROC ARIMA is used: “identify var=name stationarity= (adf=6)”. The 5 percent 

critical τ values for the null hypotheses δ=0, α≠0 and δ=0, α≠0, β≠0 are –2.89 and  

–3.45, respectively.  
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5.1.5 Results 

Results obtained for models with a stochastic trend are considered first. In this case, the DGP 

contains a unit root. Thus, a correct test decision is to maintain the null hypotheses in the both 

subtests. Table 5.1.3 presents the rejection percentages of the ADF test at a nominal 

significance level of 5%. Although the inclusion of a redundant time trend parameter (β) in 

the estimating equation enhances the number of false test decisions, for all simulated models, 

however, the frequency of H0 rejections or the test size is close to the nominal level of 

significance, provided a correct lag length is selected. Recall that for models containing error 

terms with a moving-average part employing larger lags is appropriate. This explains the 

values greater than 5% for lags 1 to 5 in the moving-average case (0, 1). The obtained results 

are in accordance with the both testing strategies since they expect for DS series the 

adherence to the nominal level of significance and no noticeable discrepancies in the sizes of 

the two subtests. 

Table 5.1.4 contains the percentage of significant ADF tests for models with a 

deterministic trend. In this case, the DGP does not contain a unit root, therefore the rejection 

of H0 represents a correct test decision.  It can be seen from the left sections of Table 5.1.4 

that omitting a time trend term from the estimating regression leads to the lack of any test 

power. In other words, there is no possibility to reject the null hypothesis of a unit root. 

Including a deterministic parameter, on the other hand, ensures quite good results. This 

enormous discrepancy in the power of the two subtests serves as a distinct evidence in favor 

of the first strategy. In addition to this, the right section of Table 5.1.4 shows that the quality 

of test decisions is better for low than for high ρ values. As expected, the worst results are 

obtained for ρ near 1. Recall that ρ=1 implies a unit root. For all TS models, the power of the 

ADF test decreases with the number of lagged terms used.  
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Table 5.1.3. Percentage of significant decisions of the ADF-Test at the nominal 5%-level of 

significance for difference stationary series with DGP: ttt aYY ++α= −1 ; T=100; 1000 replications. 

 H0: δ=0 (ρ=1) α≠0  

unit root with drift 

 H0: δ=0 (ρ=1) α≠0 β≠0 
unit root with drift around  

a deterministic trend 
at    Lag: 1 2 3 4 5 6  1 2 3 4 5 6 

 α=0.2 

(0, 0) 2.6 2.4 2.0 2.3 3.0 2.7  4.5 5.7 5.0 4.6 4.5 5.3 

(1, 0) 4.2 4.0 4.2 4.7 5.1 4.7  5.5 5.6 5.5 4.5 5.1 5.5 

(0, 1) 0.2 0.8 0.7 0.6 0.8 0.9  29.0 12.0 7.8 6.2 6.1 4.7 

 α=0.5 

(0, 0) 0.6 0.2 0.4 0.6 0.8 0.8  4.5 5.7 5.0 4.6 4.5 5.3 

(1, 0) 1.9 1.6 1.7 2.1 2.5 2.3  5.5 5.6 5.5 4.5 5.1 5.5 

(0, 1) 0 0.4 0.5 0.3 0.5 0.2  29.0 12.0 7.8 6.2 6.1 4.7 
 

Table 5.1.4. Percentage of significant decisions of the ADF-Test at the nominal 5%-level  

of significance for trend stationary series with DGP: ttt aYtY +ρ+= −11.0 ; T=100; 1000 replications. 

 H0: δ=0 (ρ=1) α≠0  H0: δ=0 (ρ=1) α≠0 β≠0 
at    Lag: 1 2 3 4 5 6  1 2 3 4 5 6 

 ρ=0.0 

(0, 0) 0 0 0 0 0 0  100 100 99.1 96.4 86.4 69.0 

(1, 0) 0 0 0 0 0 0  99.9 97.2 89.3 75.7 62.6 47.3 

(0, 1) 0 0 0 0 0 0  99.9 99.0 98.0 89.9 79.1 62.7 

 ρ=0.2 

(0, 0) 0 0 0 0 0 0  100 100 98.4 92.1 80.4 63.7 

(1, 0) 0 0 0 0 0 0  99.5 94.5 84.6 69.6 57.4 43.4 

(0, 1) 0.2 0 0 0 0 0  99.9 98.2 96.6 84.4 72.8 56.9 

 ρ=0.5 

(0, 0) 0 0 0 0 0 0  99.9 97.2 89.3 75.7 62.6 47.3 

(1, 0) 1.9 0.2 0.3 0.1 0 0  92.0 78.9 68.2 52.1 43.6 32.6 

(0, 1) 2.8 0 0 0 0 0  99.7 87.1 86.4 65.9 56.8 44.8 

 ρ=0.8 

(0, 0) 0 0 0 0 0 0  56.8 41.8 35.6 29.8 24.0 18.0 

(1, 0) 11.5 7.9 6.0 4.9 4.5 3.5  38.6 30.7 27.2 21.4 18.6 15.7 

(0, 1) 11.9 2.2 2.8 1.9 2.7 1.3  76.2 28.0 39.5 24.8 25.8 20.9 
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5.1.6 Conclusions 

In this study the ADF test has been applied to determine whether a trend component in a time 

series is deterministic or stochastic. Testing for a unit root always implies a testing strategy 

and not a mere calculation of a single test statistic. The first step in the strategy is to plot data 

against time and to rule out unreasonable hypotheses on the basis of theoretical considerations 

(see Elder & Kennedy, 2001b). In the case of growing time series, there exist two plausible 

competing hypotheses: a unit root with drift and a time trend without a unit root. According to 

the simulation results, the recommended algorithms is to begin testing with the third most 

general hypothesis from the ADF family (a unit root with drift and a time trend) and then to 

continue with the more restricted case of a unit root with drift.  The rejection of the null 

hypothesis in the first test can be treated as a strong evidence for a deterministic trend. If the 

null is not rejected in both tests, the growth in the observed series is probably due to a 

stochastic trend. Furthermore, the reported findings confirm that the choice of lag length 

represents an important issue in the unit root testing. 

The presented analysis is limited to rather simple models. Using more complex error 

structures or data generating processes with nonlinear or broken trends could lead to divergent 

results (see Kim et al., 2004). 
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5.2 Study 2: Model Identification of Integrated ARMA 

Processes 

5.2.1 Introduction 

There exist a number of methods for fitting suitable models to a given time series. One of the 

most widespread techniques is the Box-Jenkins methodology. As described previously 

(Chapter 2.1.3), this strategy is based on a three-step iterative cycle of model identification, 

model estimation, and diagnostic checks in model accuracy. Recall that at the identification 

stage one chooses type and order of the model examining behavior of the sample 

autocorrelation and the sample partial autocorrelation functions (ACF and PACF). Within the 

scope of the Box-Jenkins methodology, this step is the most important and problematic issue. 

Model identification represents the primary goal of the analysis, if the eventual aim of 

researchers is to construct a model from the empirical data that has similar properties to those 

of the underlying stochastic process. If the goal of research is to determine the efficacy of a 

specific intervention, as in interrupted time series analyses, model identification is necessary 

to remove dependency from the data series so that it meets assumptions of the general linear 

model. 

Table 5.2.1. Theoretical ACF and PACF patterns 

Model ACF PACF 

(0, 0, 0) 0 0 

(p, 0, 0) Decays slowly 0 after p 

(0, 0, q) 0 after q Decays slowly 

(p, 0, q) Decays slowly Decays slowly 

(0, d, 0) Does not decay Does not decay 
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Figure 5.2.1. ACF and PACF of simulated models with T=100. 
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Table 5.2.1 describes theoretical ACF and PACF patterns of some common ARMA 

processes. Figure 5.2.1 illustrates that estimates of the ACF and PACF, received from finite 

samples, can be rather ambiguous, even under ideal conditions. Furthermore, the quality of 

empirical ACF und PACF crucially depends on the number of observations in a series and is 

sensitive to outliers or other departures from ideal assumptions. As can be seen from Figure  

5.2.1(E), the Box-Jenkins method is not very useful for identifying mixed ARMA models if p 

and q are unequal 0. The reason for the difficulty is that the ACF and PACF of mixed models 

tail off to infinity rather than cut off at a particular lag. Therefore, model identification using 

the Box-Jenkins approach is a complicated and problematic task requiring many data points 

and a great deal of expertise from a researcher.   

Velicer and Harrop (1983) evaluated the performance of the Box-Jenkins model 

identification technique employing 12 extensively trained subjects and found a 

disappointingly low overall accuracy rate of 28%. The factors affecting the quality of 

identification were the length of a time series (the increase from 40 to 100 observations 

improved the percentage of correct identification from 20 to 36), the degree of dependency 

(higher dependency was favorable) and the complexity of an examined model (accuracy was 

better for simple models). Identifying integrated models turned out to be the most 

complicated issue. Extensively trained judges were only able to correctly identify ARIMA  

(0, 1, 0) and (0, 1, 1) models 4% and 13% of the time, respectively. 

As a response to the described drawbacks of the Box-Jenkins technique, alternative 

procedures for removal of dependency from the data series have been proposed (Algina & 

Swaminathan, 1977, 1979; Simonton, 1977; Velicer & McDonald, 1984). It has been shown 

that the model identification step can be successfully abandoned in interrupted time series 

analysis (see Chapter 3.2). In various research cases, however, model identification represents 

the primary goal of the analysis and cannot be avoided (see studies of Fortes et al., 2004; 
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Rosel & Elósegui, 1994, and Velicer et al., 1992, from Chapter 4). Recall that autoregressive 

models are characteristic of systems containing internal temporal regularity, whereas moving 

average models are typical for unstable systems depending on external and occasional events. 

In a study analyzing travel behavior of different population groups, Fraschini and Axausten 

(2001) found out that the AR models predominated in the age classes between 35 and 65 

years old, reflecting a more regular behavior probably caused by a fixed employment and a 

more settled lifestyle. On the other hand, the MA patterns were mainly identified for younger 

participants, indicating the presence of external influences on the subject behavior.  

Integrated series constitute a widespread phenomenon among behavioral or 

psychological series. Glass et al. (1975) reported that out of 95 time series taken from a wide 

range of application in the social sciences 44 were nonstationary in level. Recall that the 

ARIMA (0, 1, 1) is characteristic of time series exhibiting noisy fluctuations around a slowly 

varying mean (Spray & Newell, 1986). In combination with a unit root, the positive moving 

average coefficient θ seems to determine the balance between the preservation and adaptation 

processes (Fortes et al., 2004). Integrated models are typical for processes with an infinite 

memory. 

For integrated processes, the identifying procedure consists of two stages. The first 

step is to decide whether differencing is necessary or not. As Figure 5.2.2 illustrates, it can be 

a rather distressing task since a unit root series (φ=1) is scarcely distinguishable from a 

stationary autoregressive series with φ=0.9. Depending on the outcome of the first stage, the 

next step is to infer the ARMA model by inspecting ACF and PACF of either the original or 

the differenced series. 
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Figure 5.2.2. ACF and PACF of stationary and integrated processes: (A) Autoregressive Process with 

φ=0.9, (B) Random Walk Process. 

Numerous automated alternatives to the Box-Jenkins approach have been developed 

during the last three decades in order to make the model identification process more accurate 

and less subjective. Choi (1992) published a survey cataloguing many of the procedures 

proposed in the literature. Some of the described techniques, such as Extended Sample 

Autocorrelation Function (ESACF) and Smallest Canonical Correlation Method (SCAN) 

proposed by Tsay and Tiao (1984; 1985), can be applied for identifying both stationary and 

nonstationary models. This means that using ESACF and SCAN eliminates the need to 

determine the order of differencing necessary to produce stationarity in ARIMA modeling. 

Besides, SCAN and ESACF are commonly available in current versions of SAS for 

Windows. 
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Table 5.2.2.Theoretical ESACF table for ARIMA (1, 1, 1)1.  

Moving-Average Order (q) 
Autoregressive 
Order (p+d) 0 1 2 3 4 

0 X X X X X 

1 X X X X X 

2 X 0 0 0 0 

3 X X 0 0 0 

4 X X X 0 0 

X = significant value, 0 = insignificant value. 

The idea behind the standard ESACF approach is to identify the orders of an ARMA 

process employing iterated least squares estimates of the autoregressive parameters. First, 

estimates for the autoregressive components are obtained and removed from the data. Then 

the order of the remaining moving average component is determined from the transformed 

series. Since the order of the autoregressive component is never known in advance, an array 

of autocorrelations from series for which AR (m) components have been removed must be 

calculated. These autocorrelations are termed extended sample autocorrelations (ESAC). The 

order of the time series is tentatively determined from the shape of the zero and nonzero 

elements in an overall ESAC array. The vertex of the triangle of zero values identifies the 

order of the process. Table 5.2.2 depicts the theoretical pattern associated with an ARIMA  

(1, 1, 1) series. If an empirical ESACF table contains more than one triangular region in 

which all elements are insignificant (zero values), SAS gives out several recommendations 

ordered by the number of insignificant terms contained in the triangle. The first 

                                                 

1 The same pattern applies to ARIMA (2, 0, 1), since both ARIMA (1, 1, 1) and ARIMA (2, 0, 1) represent the 

same ARMA [P=p+d; q]: [2, 1] model (see p. 78 for further explanations). 
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recommendation is a model with a maximal triangular pattern. For a detailed description of 

the ESACF method, see Choi (1992), Tsay and Tiao (1984, 1990), and SAS (1999). 

The SCAN method of Tsay and Tiao (1985) employs canonical correlation for ARMA 

model identification. The procedure consists in analyzing eigenvalues of the correlation 

matrix of the ARMA process. The first step is to compute the (m+1) x (m+1) matrix 

containing covariances and variances of the vectors ym,t and ym,t-j-1 , where t ranges from 

j+m+2 to T.  m = pmin, …, pmax is the autoregressive test order,  j = qmin, …, qmax is the 

moving-average test order. ym,t= )~,...,~,~( 1 ′−− mttt YYY , where tY~  is a mean corrected series 

µ−= tt YY~  with 1≤ t ≤T.  The smallest eigenvalue of this matrix serves as the squared 

canonical correlation estimate for model (m, j). Finding a rectangular pattern in which the 

canonical correlation estimates are insignificant for all specified test orders (m ≥ p+d, j ≥q) 

then identifies the ARMA model. Table 5.2.3 shows the theoretical pattern associated with an 

ARIMA (1, 1, 1) process. If there is more than one zero rectangular in an empirical SCAN 

table, parsimony and the number of insignificant items in the rectangular pattern determine 

the model order. For more details about the SCAN method, consult Box et al. (1994), Choi 

(1992), Tsay and Tiao (1985), Werner (2005) and SAS (1999). 

Table 5. 2. 3. Theoretical SCAN table for ARIMA (1, 1, 1). 

Moving Average Order (q) 
Autoregressive 
Order (p+d) 0 1 2 3 4 

0 X X X X X 

1 X X X X X 

2 X 0 0 0 0 

3 X 0 0 0 0 

4 X 0 0 0 0 

X = significant value, 0 = insignificant value. 
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For integrated series, both ESACF and SCAN can be applied to the original 

nondifferenced data. As a consequence, an ARIMA (p, d, q) process is identified as an 

ARMA [P, q]1 model with P=p+d. This implies that different ARIMA processes such as  

(1, 1, 1) and (2, 0, 1) represent the same ARMA [2, 1] model in terms of ESACF and SCAN. 

To decide whether a series is stationary or not, Tsay and Tiao (1984; 1985) suggest examining 

the iterated AR estimates for given specified values of p and q. Suppose [2, 0] model is 

identified, then one can obtain the estimates of the autoregressive parameters. For example, 

the parameters φ1=1.81 and φ2=-0.82 strongly indicate the presence of a unit root in the series 

or the (1, 1, 0) model (Tsay & Tiao, 1984, p. 88). Wei (1990, 1994) argues, however, that 

identifying nonstationarity through this approach is generally difficult and recommends to 

apply ESACF and SCAN to a properly transformed stationary series.  

In addition to ESACF and SCAN, another method called MINIC is available in SAS 

for automated ARMA model selection. MINIC follows an algorithm suggested by Hannan 

and Rissanen (1982). It combines the regression technique and the penalty functions AIC and 

BIC for modeling stationary and invertible ARMA (p, q) processes. This implies that the 

integrated series must be differenced before applying MINIC to it. The MINIC procedure 

consists of three steps. The first step is to fit a high order AR model to the observations. The 

choice of the autoregressive parameter is determined by the order that minimizes the AIC. 

The second step is to apply the OLS method to the series and the estimated innovations of the 

fitted AR model. As a result, m autoregressive and j moving average OLS estimates are 

obtained (m = pmin, …, pmax is the autoregressive test order,  j = qmin, …, qmax is the moving-

average test order). As the last step, the BIC is computed for each of m x j ARMA models. A 

model with the smallest BIC is used as a MINIC recommendation. For a detailed treatment of 

 

1 In the following square brackets are used for [P, q] models where P=p+d. 
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the Hannan and Rissanen’s method, consult Choi (1992), Hannan and Rissanen (1982), and 

SAS (1999). 

Dickey (2004) compared the performance of ESACF, SCAN, and MINIC on 600 

stationary ARIMA (1, 0, 1) series each of length T=500. SCAN showed the best results with 

461 correctly identified series. ESACF did slightly worse (441 correct identifications). Both 

SCAN and ESACF were superior to MINIC (252 correct classifications). The methods almost 

never underestimated p or q when T=500. The same experiment with series of length 50 

resulted in 203, 65, and 53 correct identification for SCAN, ESACF, and MINIC, 

respectively. Besides, the simulation study showed that the complexity of the model affected 

the performance of the identification methods. For 600 replicates of the ARMA model with 

φ4=0.5 and θ1=-0.3 using T=50, the correct model was rarely chosen by any technique. The 

number of correct selections was 10 for MINIC, 52 for ESACF, and no correct choices for 

SCAN. 

Koreisha and Yoshimoto (1991) conducted Monte Carlo experiments with three 

identification procedures including ESACF, the Corner Method, and the Autoregressive Order 

Determination Criterion (ARCRI), an approach similar to MINIC. Only stationary models 

were considered. The ARCRI outperformed the other two methods regardless of sample size 

and model structure. The ESACF method performed poorly and showed the tendency to 

overestimate the order of the process. The results were better for MA than for AR models. 

ESACF’s power in selecting the order of mixed processes was low, the percentage of correct 

identifications was between 21 and 62. The increase in number of observations did not 

improve the performance of the ESACF approach.  In many of the cases the percentage of 

correctly identified structures was even higher for smaller sample sizes.  

Stadnytska, Braun and Werner (2006) compared the performance of SCAN, ESACF, 

and MINIC for stationary models with different parameterizations, degrees of dependency, 
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and sample sizes.  For autoregressive models, MINIC achieved the best results. SCAN was 

superior to the other two procedures for mixed models. For moving-average processes, 

ESACF obtained the most correct selections. For all three methods, model identification was 

less accurate for low dependency than for medium or high dependency processes. The effect 

of sample size was more pronounced for MINIC than for SCAN and ESACF. MINIC and 

SCAN had difficulty in identifying moving-average models. ESACF demonstrated low power 

in autoregressive cases. SCAN and ESACF showed the tendency to select higher order mixed 

structures. For autoregressive processes of second order, both SCAN and ESACF performed 

better in narrowband than in broadband cases. All three methods were superior to subjective 

judgments as reported by Velicer and Harrop (1983). As Table 5.2.4 shows, the superiority of 

automated methods was especially pronounced for autoregressive models of second order.  

To my knowledge, there are no studies evaluating the performance of SCAN, ESACF 

and MINIC for integrated models.  

Table 5.2.4. Percentage of correct model identifications.   

 Automated Methods* Type of 
Model T 

Subjective 
Judgments  MINIC SCAN ESACF 

40 19  47 64 54 

100 46  79 72 50 (1, 0, 0) 

mean 32  63 68 52 
       

40 46  25 46 61 

100 67  51 63 78 (0, 0, 1) 

mean 56  38 54 69 
       

40 0  50 55 62 

100 4  82 69 54 (2, 0, 0) 

mean 2  66 62 58 

  30  56 61 60 

* Only similar models and parameterizations are considered. 
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To summarize, the model identification is one of the most challenging issues in the 

ARIMA modeling, especially if the analyzed series is integrated. Two automated procedures, 

SCAN and ESACF, can be used for identifying both stationary and nonstationary models. The 

aims of this study are: (a) to evaluate SCAN and ESACF as model identification tools for 

integrated processes, (b) to compare the performance of SCAN and ESACF with the results of 

MINIC for differenced (i.e. stationary) series, (c) to examine the influence of sample size, 

complexity of a model and degree of dependency in a time series on the efficiency of these 

methods. 

5.2.2 Method 

The performance of the identification procedures is studied on six types of nonstationary 

ARMA models: first and second order autoregressive, first and second order moving-average, 

mixed processes and random walk. Higher order series are not considered in the Monte Carlo 

experiments because they have been rarely found in the social and behavioral sciences (Glass 

et al., 1975; Marsh & Shibano, 1984; Rankin & Marsh, 1985; Revenstorf et al., 1980). In the 

first order models, φ or θ values of ±0.2, ±0.5 and ±0.8 are used to represent different possible 

degrees of dependency. The parameter values of the second order models are the ones used in 

the evaluation study of Koreisha and Yoshimoto (1991). The parameters φ and θ of the 

simulated mixed models have opposite signs, so that the corresponding autoregressive and 

moving-average terms in the equation 

1111 −− θ−+φ= tttt uuaa  

do not approach cancellation. For example, at φ=0.8, θ=0.8 cancellation would take place and 

the apparent ARMA (1, 1) process would be in fact ARMA (0, 0). In cases of near-

cancellation, the process may be well approximated by a parsimonious equivalent 

mathematical representation leading to difficulty in evaluating the model identification 
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methods. Such cases are ruled out by our design. The length of the simulated time series is 

varied between 50 and 200. The traditional Box-Jenkins approach recommends as a guideline 

a minimum sample size of 50 observations (Box & Pierce, 1970; Glass et al., 1975; Granger 

& Newbold, 1986; Ljung & Box, 1978; McCleary & Hay, 1980; Velicer & Fava, 2003). 

Within the scope of the ARIMA methodology samples of 100 or 200 observations represent 

an optimum length. Each simulated model is replicated 1000 times.  

The identification procedure is applied to both nonstationary and differenced series. 

As a quality criterion, the percentage of correct model selections is computed. In addition, a 

detailed analysis of incorrect model identifications is conducted. For SCAN and ESACF, only 

first recommendations in SAS output table are considered.  

All computations and the generation of independent N(0, 1) innovations ut are 

performed with SAS System for Windows Version 9.1. In the IDENTIFY statement of PROC 

ARIMA default dimensions of SAS are used.  

5.2.3 Results 

Tables 5.2.5 and 5.2.6 display the percentage of correct model selections of SCAN and 

ESACF for (1, 1, 0) and (0, 1, 1) processes. In the first place, two observations can be made. 

One is that the performance of both methods is less accurate for low dependency than for 

medium or high dependency models. Second, the accuracy of SCAN and ESAC does not 

appear to be strongly dependent on sample size. For positive and negative parameterizations, 

similar results are obtained.  

 As Table 5.2.6 shows, the performance of ESACF is better in moving-average than in 

autoregressive cases. There is no manifest distinction between integrated and differenced 

models. For SCAN, however, the interaction of the independent variables is apparent (see 

Table 5.2.5). For high-valued parameterizations, the percentage of correct selections is about 
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70% for both differenced and integrated models independent of the ARMA structure. For low 

and medium degrees of dependency, differencing is favorable in autoregressive cases. In 

moving-average cases, on the contrary, better results are achieved for integrated than for 

differenced models.  

Table 5.2.5. Accuracy (percentage correct) of SCAN, based on 1000 replications. 

Differenced Models  Integrated Models Type of 
Model T φ,θ: -0.2 -0.5 -0.8  -0.2 -0.5 -0.8 

50  24.4 70.7 73.9  4.0 18.9 67.1 

100  42.8 73.8 72.5  5.3 40.9 73.8 (1, 1, 0) 

200  62.1 74.0 71.9  9.9 66.0 72.1 

          

50  8.8 31.1 63.1  29.9 71.1 74.0 

100  7.2 50.2 73.3  42.9 75.9 75.8 (0, 1, 1) 

200  10.7 67.6 76.0  62.7 77.8 79.1 

 

Table 5.2.6. Accuracy (percentage correct) of ESACF, based on 1000 replications. 

Differenced Models  Integrated Models Type of 
Model T φ,θ: -0.2 -0.5 -0.8  -0.2 -0.5 -0.8 

50  10.6 42.9 65.3  8.6 33.6 56.4 

100  7.7 35.2 57.7  5.9 30.3 51.9 (1, 1, 0) 

200  7.5 29.8 52.2  8.4 28.6 50.7 

          

50  10.8 51.7 78.2  17.5 54.4 78.8 

100  29.5 71.7 78.4  31.3 71.7 75.6 (0, 1, 1) 

200  53.8 77.9 78.0  52.8 75.6 74.8 
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Table 5.2.7 illustrates the accuracy of MINIC for differenced models of first order. 

The percentage of correct selections is distinctly higher for structures with medium and large 

parameter values. Furthermore, the performance of MINIC is better in autoregressive than in 

moving-average cases. For all models and parameterizations, the increase in number of 

observations has a much more pronounced effect for MINIC than for SCAN or ESACF. 

Table 5.2.8 compares the accuracy of the identification methods for different first-

order series with T=100. For autoregressive series, better results are achieved for differenced 

than for integrated models: MINIC and SCAN outperformed ESACF (34%) with more than 

60 % of correct selections (average value for low, medium and high degrees of dependency). 

In the moving-average case, the best accuracy is obtained by ESACF, the results are similar 

for integrated and differenced models. 

Table 5.2.7. Accuracy (percentage correct) of MINIC for differenced models,  

based on 1000 replications. 

Degree of Dependency Type of 
Model T Low (-0.2) Medium (-0.5) High (-0.8) 

50 18.2 52.9 66.1 
100 31.0 74.7 83.4 (1, 1, 0) 

200 46.1 87.2 90.9 
     

50 9.1 31.4 33.9 
100 17.3 49.5 53.0 (0, 1, 1) 

200 32.7 66.3 64.2 

Table 5. 2. 8. Percentage of correct model identifications for first-order models with T=100, 

based on 1000 replications. 

Differenced Models  Integrated Models Type of 
Model Dependency MINIC SCAN ESACF  SCAN ESACF 

low  31.0 42.8 7.7  5.3 5.9 
medium 74.7 73.8 35.2  40.9 30.3 (1, 1, 0) 

high  83.4 72.5 57.7  73.8 51.9 
        

low  17.3 7.2 29.5  42.9 31.5 
medium  49.6 50.2 71.7  75.9 71.7 (0, 1, 1) 

high  53.0 73.3 78.4  75.8 75.6 
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It can be seen from the upper section of Table 5.2.9 that SCAN and ESACF are 

relatively accurate in identifying the random walk process.  On the average, the percentage of 

correct selections is about 70%. As Table 5.2.9 shows, there is no manifest distinction 

between integrated and differenced models for the (2, 1, 0) processes. It is noteworthy that the 

performance of MINIC for differenced (2, 1, 0) models visibly improves with the increase in 

sample size. For T=200, MINIC is distinctly superior to both SCAN and ESACF with more 

than 90% of correct selections. The accuracy of MINIC and SCAN in the (0, 1, 2) cases is 

disappointing regardless of sample size and parameterization (maximum 17% and 31.7 % of 

correct selections for MINIC and SCAN, respectively). The performance of ESACF for the  

(0, 1, 2) processes is better for differenced than for integrated models and appears to be 

dependent on sample size. In the (1, 1, 1) case the results are similar for both 

parameterizations. SCAN and ESACF perform slightly better for differenced than for 

integrated series. For mixed models, SCAN yields the best accuracy.  

Figure 5.2.3 visualizes the performance of SCAN and ESACF in differenced and 

integrated cases. On the average, similar results are obtained for integrated and differenced 

series.  
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Figure 5.2.3. Comparison results for differenced and integrated models, T=200. 
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Table 5.2.9. Comparison results (percentage correct) for random walk, second-order,  

and mixed models, based on 1000 replications. 

Differenced Models  Integrated Models 

Type of Model T MINIC SCAN ESACF  SCAN ESACF 

50 67.4 67.0 80.0  67.8 70.8 

100 84.2 67.6 74.6  68.3 67.5  (0, 1, 0) 

200 92.1 69.4 73.3  70.6 70.3 
        

50 65.7 73.9 71.6  68.6 67.7 

100 81.3 73.3 65.9  73.9 63.7 
(2, 1, 0) 

φ1=1.8 φ1=-0.9 
200 91.5 71.8 61.7  71.7 58.5 

        
50 61.7 66.8 57.8  24.6 52.7 

100 84.3 75.0 48.0  60.7 45.3 
(2, 1, 0) 

φ1=1.42 φ2=-0.73 
200 91.3 71.5 44.5  71.8 40.9 

        
50 2.0 7.6 13.2  2.0 0.8 

100 2.2 10.3 47.4  7.0 6.5 
(0, 1, 2) 

θ1=1.8 θ2=-0.9 
200 2.1 11.1 69.1  15.0 31.3 

        

50 5.0 10.3 15.7  5.7 5.0 

100 8.7 19.3 60.3  13.4 27.7 
(0, 1, 2) 

θ1=1.42 θ2=-0.73 
200 17.0 31.7 75.7  24.0 52.8 

        
50 22.0 70.9 60.7  69.9 51.5 

100 47.6 79.0 66.2  75.0 60.0 
(1, 1, 1) 

φ=0.8 θ=-0.7 
200 63.8 77.0 60.1  76.9 57.4 

        
50 25.7 77.4 68.5  20.5 36.8 

100 48.0 80.2 66.9  67.9 58.3 
(1, 1, 1) 

φ=-0.8 θ=0.7 
200 64.2 79.0 60.6  79.6 58.0 
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Figures 5.2.4 to 5.2.5 present the frequency distribution of identified models for 

integrated processes. In addition to the correct identifications, the figures provide a detailed 

analysis of incorrect selections. As can be seen from the left section of Figure 5.2.4, the most 

common error of both SCAN and ESACF for the ARIMA(1, 1, 0) with low-valued 

parameterizations is the underestimation of P=p+d. Recall that in terms of SCAN and 

ESACF the [2, 0] model represents the correct identification for the (1, 1, 0) process. In the 

(1, 1, 0) case with φ=±0.2, about 70% of the simulated series are identified as either [1, 0] or 

[1, 1] models. For φ=±0.5, the [1, 1] model serves as the most frequent incorrect selection. In 

the (1, 1, 0) case with φ=±0.8, both SCAN and ESACF show the tendency to 

overparametrization with [2, 1] and [3, 1] models as the most frequent incorrect selections. 

For the (0, 1, 1) process with θ=±0.2, both methods select the [1, 0] structure as the most 

common identification alternative to the true model. Note that in the moving-average case, 

this structure does not underestimate the order of P, since the correct selection is [1, 1]. For 

medium and high degrees of dependency, both SCAN and ESAC show the tendency to 

overestimate the order of P with [P=2, q] structures as the most frequent incorrect selections.  

It can be seen from the bottom of Figure 5.2.5 that the performance of SCAN and 

ESACF for the random walk process appears to be very similar. The most incorrect selections 

for both methods are [1, 1] or [2, 1] structures. As Figure 5.2.5 shows, SCAN outperformed 

ESACF in the (1, 1, 1) case. For SCAN, the [2, 2] model represents the most frequent 

incorrect selection. Depending on sample size, ESACF selected [1, 1], [2, 2] or [3, 2] 

structures as the most common identification alternatives to the true model. For the second 

order models, SCAN performs better in the autoregressive than in the moving-average case. 

For the (2, 1, 0) model, increasing the number of observation markedly improves the accuracy 

of SCAN. In smaller samples, the most widespread incorrect selections are either [1, 2] or  

[2, 2] structures. For T=200, the overestimation of P represents the most common error. In the 
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moving-average case (0, 1, 2), the accuracy of SCAN appears to be extremely low. The 

majority of series from samples of 50 and 100 observations is incorrectly identified as either 

[0, 1] or [1, 1] structures. About 30% of series with T=200 are classified as [2, 1] models. 

Increasing time series length has a positive impact on the performance of ESACF in the  

(0, 1, 2) case. Identification of the correct structure improves dramatically from 5.0% to 

52.8%. The most frequently selected incorrect model is [0, 1]. For the (2, 1, 0) process, 

however, the effect of sample size is much less pronounced: the increase in the number of 

observations reduces the percentage of correct identifications from 57.8% to 44.5%. 

Depending on sample size ESACF selected [2, 1], [3, 1] and [3, 2] or [4, 1] structures as the 

most common identification alternatives to the true model. 
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Figure 5.2.4. Results for integrated models of first-order, based on 1000 replications. 
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Figure 5.2.5. Results for various integrated models, based on 1000 replications. 

 Figures 5.2.6 to 5.2.9 present the frequency distribution of identified models for 

differenced series. As Figure 5.2.6 illustrates, all three methods have difficulty in identifying 

autoregressive structures with low-valued parameterizations. The procedures select either 

white noise or a MA(1) process as identification alternatives to the simulated structure. Note 

that white noise and a moving-average process of first order are parsimonious nearly 

equivalent mathematical representations of an AR(1) model with φ values near zero. 

Increasing the sample size visibly refines the accuracy of MINIC and SCAN. The 
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performance of ESACF, however, remains disappointing. It is noteworthy that the number of 

observations exercises an influence on the type of incorrect selections of ESACF. For 

instance, in smaller samples (T=50) 60% of series are identified as white noise and only 14% 

as MA(1) models.  For T=200, the MA (1) model represents the most widespread incorrect 

selection (55%) followed by white noise (14%). For autoregressive processes with large 

parameter values, MINIC and SCAN outperform ESACF. As compared to MINIC, SCAN 

and ESACF select a distinctly larger percentage of higher order mixed structures. 
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Figure 5. 2. 6. Results for differenced (1, 1, 0) models, based on 1000 replications.  
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  As Figure 5.2.7 shows, in the moving-average case ESACF outperforms the two other 

procedures for differenced series. For θ=-0.2, MINIC and SCAN select in the majority of the 

cases either white noise or an AR(1) process to describe the behavior of the data. For 

processes with medium and large parameter values, all approaches identify pure 

autoregressive structures of higher order as the most common alternatives to the (0, 0, 1) 

model. For larger samples, SCAN and ESACF show the tendency to select mixed structures.  
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Figure 5. 2. 7. Results for differenced (0, 1, 1) models, based on 1000 replications.  
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Figure 5.2.8 presents results for differenced models of second order. All procedures 

perform better in autoregressive than in moving-average cases. For the AR(2) process, MINIC 

is superior to both SCAN and ESACF. The quality of model identifications of the MINIC 

approach becomes more exact with increasing sample size, the number of incorrect selections 

practically vanished.  The accuracy of SCAN and ESACF does not appear to be dependent on 

sample size. Both methods demonstrate the tendency to overparametrization. In the MA(2) 

case, ESACF outperforms two other procedures. The MA(1) model represents the most 

frequent incorrect selection of ESACF. In smaller samples SCAN identifies the majority of 

(0, 0, 2) series as (0, 0, 1) models. The most widespread incorrect selection of SCAN for 

T=200 is the ARIMA(1, 0, 1). MINIC tends to select autoregressive structures of higher order 

in place of the MA(2) model.  
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Figure 5.2.8. Results for differenced models of second-order, based on 1000 replications.  
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Type of 
Model MINIC SCAN ESACF 
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Figure 5.2 9. Results for differenced (1, 1, 1) and (0, 1, 0) models, based on 1000 replications.  

As Figure 5.2.9 illustrates, SCAN is superior to both MINIC and ESACF in the 

ARMA (1, 1) case. Pure autoregressive models of higher order represent the most frequent 

incorrect selections of MINIC. SCAN and ESACF tend to select higher order mixed 

structures. For the white noise process, MINIC outperforms two other procedures. In samples 

of 200 observations the MINIC approach correctly identifies the (0, 0, 0) process above 90% 

of the time.  

5.2.4 Conclusions 

 

The performance of SCAN and ESACF as identification tools for various integrated processes 

has been empirically evaluated by means of Monte Carlo simulations. On the average, both 

procedures either correctly identify the simulated integrated structures or select parsimonious 

nearly equivalent mathematical representations in about 70% of the trials conducted. SCAN 

performs better than ESACF in pure autoregressive cases. ESACF is superior for MA(2) 

models. The results of MINIC, SCAN and ESACF for differenced models are consistent with 
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the findings for stationary processes reported in the literature. For all three procedures, model 

identification is less accurate for low dependency than for medium or high dependency 

models. MINIC and SCAN have difficulty in identifying moving-average models. ESACF 

demonstrates low power in autoregressive cases. SCAN and ESACF show the tendency to 

select higher order mixed structures. For some structures and parameterizations, this tendency 

is especially conspicuous in larger samples. For SCAN and ESACF, no manifest distinction 

between integrated and differenced models has been observed.  

 The effect of sample size is more pronounced for MINIC than for SCAN and ESACF. 

The increase in the number of observations refines the performance of MINIC. For SCAN and 

ESACF, however, in some of the cases studied (e.g. (1, 1, 0) and (2, 1, 0)) the increase in 

sample size reduces the percentage of correctly identified structures. The decrease is stronger 

for ESACF than for SCAN. To investigate this effect, additional tests were performed on 

some of the simulated structures using samples of 500 and even 10000 observations. The 

performance of SCAN remained stable, neither substantial worsening nor improvement was 

observed. For ESACF, the stabilization was not achieved until T=1000. The reduction in 

performance from T=200 to T=1000 was in the most cases not large, but nevertheless quite 

noticeable, depending on models and parameterizations. Koreisha & Yoshimoto (1991) 

reported a similar tendency of ESACF for stationary time series. For some simulated 

structures, even rather strong effects emerged. In the ARIMA (1, 0, 1) case, for instance, the 

decrease in the percentage of correct identifications changed from 58% when T=50 to 13% 

when T=1000 (Koreisha & Yoshimoto, 1991, p. 51).  

If we estimate the value of some parameter, consistent statistics tend to be closer to the 

population value as the sample size increases. Consistency is an important and desirable 

property of an estimator. It is noteworthy that model identification methods cannot be 

unequivocally characterized in terms of consistency. The point is that the same dependency 
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structure can be approximated using different models. Note that notwithstanding the fact that 

the percentage of correct selections of SCAN and ESACF for ARIMA (1, 1, 0) with φ=±0.2 is 

extremely low, the performance of the automated procedures can be classified as good, since 

the most alternatives to the correct model selection [2, 0] are the following two parsimonious 

nearly equivalent mathematical representations: [1, 0] or [1, 1]. In other words, the decrease 

in the percentage of correctly identified structures with the increase in sample size is for the 

model identification less problematic than for the parameter estimation. An efficient model 

selection procedure, however, should improve its performance with an increasing number of 

observations. Therefore, the failure of SCAN and ESACF to refine their identification with 

increasing T can be viewed as a drawback of these methods. As noted previously, SCAN and 

ESACF exhibit the tendency to select higher order mixed models in larger samples. This 

effect is probably due to the fact that the ESACF or SCAN tables only provide information on 

the maximum values of p and q (Tsay & Tiao, 1984, p. 95). The identified overparametrized 

structures are not necessarily incorrect, since they may possess characteristics similar to those 

of the original formulation. However, including irrelevant parameters reduces estimation 

efficiency and raises the probability of selecting senseless models. 

Despite of the described shortcomings of SCAN and ESACF, all evaluated methods 

are superior to subjective judgments as reported in the literature. For instance, in the study of 

Velicer and Harrop (1983) extensively trained judges were only able to correctly identify  

(0, 1, 0) and (0, 1, 1) models 4% and 13% of the time, respectively. 

The reported findings could help to choose an appropriate identification procedure, 

especially if some knowledge about properties of the stochastic process under study is 

available. In economics and engineering sciences, for example, mixed models predominate 

(see Granger & Newbold, 1986, for explanations). Physiological processes such as heart rate 

or brain activity are often autoregressive. In the social and behavioral sciences, the most 
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widespread processes are autoregressive and moving average of first or second order  (Glass 

et al., 1975; Marsh & Shibano, 1984; Revenstorf et al., 1980). For a researcher using SCAN 

and ESACF, the choice of an ARIMA structure hidden behind the identified [P=p+d, q] 

model remains the most difficult task. The decision whether differencing is necessary or not, 

however, appears to be an equally complicated issue, especially for series with roots close to 

the unit circle. 
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5.3 Study 3: Sample Size and Accuracy of Estimation of the 

Fractional Differencing Parameter1 

5.3.1 Introduction 

As described in Chapter 4.3.1, long-range dependencies have been observed in various 

psychological time-series representing cognitive, motor, perceptual and biological processes 

or self-esteem development. Persistent autocorrelations imply a long memory of the data 

generating process or, in other words, statistical dependence between observations separated 

by a large number of time units. In contrast, if a time series has a short memory and is 

predictable only from its immediate past, autocorrelations decay quickly as the number of 

intervening observations increases. Recall that a sequence of time-ordered uncorrelated 

random variables ut, sometimes termed random shocks or innovations, is called white noise or 

the process without memory. Its counterpart, the process with an infinite memory, is known as 

random walk. A random walk process can be represented as the sum of random 

shocks . As a result, the impact of a particular shock does not dissipate, and random 

walk remembers the shock forever. Figure 5.3.1 shows time series with different memory 

characteristics and their autocorrelation functions.  

∑= tt uY

There exist a number of methods for modeling and estimating the memory property of 

an observed time series (see Chapter 3.1.2). As described in Chapter 4.3.1, the long-range 

dependence in psychological time series was initially detected using the spectral method 

(Gilden et al., 1995). It has been recently argued, however, that this method does not enable 

precise discrimination between the long- and short-memory processes and is inadequate for 

time series exhibiting both long- and short-term dependence (see Farrell et al., 2005; 

 

                                                 

1 The results of this study are published in: Stadnytska, T., & Werner, J. (2006). Sample size and accuracy of 
estimation of the fractional differencing parameter. Methodology, 4, 135-141. 
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Wagenmakers et al., 2004, for further details). In contrast to the spectral analysis, 

Autoregressive Fractionally Integrated Moving Average (ARFIMA) methodology suggested 

by Granger and Joyeux (1980) and Hosking (1981) allows rigorous discrimination and 

simultaneous estimation of short- and long-memory components of a time series by means of 

just three parameters p, d and q. ARFIMA (p, d, q) modeling is a straightforward extension of 

the Box-Jenkins ARIMA method.  
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Figure 5.3.1. Processes with different memory properties and their autocorrelation functions (ACF):  

(A) White Noise, (B) Random Walk, (C) Short-Memory ARMA (1, 1) Process with φ=0.4 and θ=-0.1,  

(D) Long-Memory ARFIMA (0, d, 0) Process with d=0.3. 
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 Within the scope of the ARFIMA methodology the short-memory components of a 

time series can be modeled through the autoregressive (AR) parameters p and the moving-

average (MA) parameters q. Long-range dependencies can be captured through the fractional 

differencing parameter d, which can take any real value between 0 and 1. Within the Box-

Jenkins ARIMA framework, d is an integer and refers to the order of differencing that is 

necessary to stabilize a time series. The ARFIMA modeling extends the traditional Box-

Jenkins approach by allowing the differencing parameter d to take on continuous values. This 

enables ARFIMA models to give parsimonious descriptions of any long-range dependencies 

in time series. The finite long memory as expected in psychological time series can be 

modeled with 0 < d < 0.5. For 0.5 ≤ d ≤ 1, the process is nonstationary with noninvertible 

ARMA representations. For a detailed treatment of the ARFIMA model, see Baillie (1996), 

Brockwell and Davis (1991), Granger and Joyeux (1980) and Hosking (1981). 

 Different estimation procedures have been suggested for ARFIMA models. Some of 

them, such as the exact maximum likelihood (EML) method proposed by Sowell (1992a) or 

the conditional sum of squares (CSS) approach introduced by Chung (1996), allow the joint 

estimation of the short-memory ARMA and long-memory d parameters, and solve a potential 

finite-sample problem of the biased overestimation of d in time series which contain both 

long-range and short-range components (see Sowell, 1992b, for details). 

 To summarize, the memory property of an ARFIMA process depends crucially on the 

value of the fractional differencing parameter d. The process displays short memory for d=0. 

For 0<d<0.5 the process is said to exhibit long memory. In light of the recent interest in 

exploring long-term dependencies in psychological time series and considering the restricted 

range of possible values of d, accurate estimation of the fractional differencing parameter d is 

of great practical relevance. The aim of this study is to examine sample size requirements for 
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the precise estimation of d. The quality of the long memory estimates as a function of time 

series length is investigated by means of Monte Carlo experiments.  

5.3.2 Method 

First, samples from a selection of ARFIMA (0, d, 0) and (1, d, 1) processes are generated, and 

then the quality of estimates of the long memory parameter d obtained with different sample 

sizes (T) is examined. The number of observations in simulated time series is varied between 

100 and 2500. In both models four different values of d are used: d=0.1 for “weak long 

memory”, d=0.2 for “moderate long memory”, d=0.3 for “strong long memory” and d=0.4 for 

“very strong long memory”. In the multiple-parameter case, the same value of the MA 

parameter θ=0.3 is combined with four values of the AR parameter φ=0.2, φ=0.4, φ=0.6 and 

φ=0.8. Note that the short-memory parameters φ and θ have the same sign in the equation 

 1111 −− ++= tttt uuYY θφ . 

Recall that cancellation would take place and the apparent ARFIMA (1, d, 1) process would 

be in fact ARFIMA (0, d, 0) for φ and θ with opposite signs. In cases of near-cancellation, the 

process may be well approximated by models with substantially different parameter values 

leading to difficulty in evaluating estimates.  

For the estimation method, the conditional sum of squares procedure as proposed by 

Chung (1996) is employed. In one case the CSS results are compared with estimates obtained 

from the exact maximum likelihood approach as suggested by Sowell (1992a). The 

computational cost of the repeated inversion of T x T covariance matrices associated with 

EML becomes prohibitive for more comparisons (see Baillie, 1996; Sowell, 1992a, for further 

details). Each simulated model is replicated 1000 times. In the pure fractionally integrated 

case, estimates obtained from two different fitting models (0, d, 0) and (1, d, 1) are compared. 

To the series generated by the (1, d, 1) process, an ARFIMA (1, d, 1) model is fitted. The 
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mean (M), the standard error (SE) and the mean square error (MSE) computed from 1000 

estimates serve as quality criteria. Additionally the percentage of estimates, which deviate 

more then +/-0.1 from the corresponding true parameter, is calculated. 

All computations and the generation of independent N (0,1) innovations ut are 

performed with IML subroutines FARMASIM and FARMAFIT from SAS for Windows 

Version 9.1. 

5.3.3 Results 

The pure fractionally integrated case is considered first. Tables 5.3.1 to 5.3.4 contain results 

for the ARFIMA (0, d, 0) processes. In the first place two observations can be made. One is 

that the results do not differ greatly between models with varying values of the long-memory 

parameter, the estimates are only slightly worse at d=0.4. Second, the quality of the estimates 

obtained from the same sample sizes depends on the fitted model.  

It can be seen from the right sections of the Tables 5.3.1 to 5.3.4 that fitting the  

(0, d, 0) model to the pure fractionally integrated process already leads to excellent results in 

moderately long time series. For example, a sample size of 300 observations provides 

standard errors not greater than 0.048, MSE values about 0.002 and less than 5% of estimates 

that deviate more than +/-0.1 from the true values of d. Note that standard error values less 

than 0.051 confine the width of the 95% confidence interval to 0.2. If the long memory is 

“weak” or “moderate”, the extension of time series length to 400 leads to the SE=0.039 and 

MSE=0.0016, which limits the width of the 99% confidence interval to 0.2 and allows only 

about 1% of estimates differ more than +/-0.1 from the true parameter value. In the cases with 

“strong” and “very strong” long memory 500 observations are needed for the same estimation 

accuracy.  
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Table 5.3.1. Results for model (0, d, 0) with d=0.1, based on 1000 replications. 

 Fitted Model (1, d, 1)  Fitted Model (0, d, 0) 

T d̂
M  

d̂
SE  

d̂
MSE  1.0d̂d% >−  d̂

M  
d̂

SE  
d̂

MSE  1.0d̂d% >−

100 .073 .360 .1303 60.9  .090 .083 .0070 22.9 

200 .046 .298 .0914 47.3  .093 .056 .0032 8.2 

300 .085 .189 .0359 41.0  .094 .046 .0021 3.1 

400 .087 .149 .0225 34.0  .098 .039 .0016 1.2 

500 .094 .116 .0136 25.6  .097 .036 .0013 1.1 

600 .080 .139 .0197 25.0  .097 .032 .0010 0.4 

700 .083 .102 .0107 25.9  .102 .028 .0008 0 

800 .090 .096 .0093 21.8  .099 .029 .0008 0 

900 .088 .079 .0063 16.4  .099 .027 .0007 0 

1000 .090 .077 .0060 16.2  .100 .025 .0006 0 

 
Table 5.3.2. Results for model (0, d, 0) with d=0.2, based on 1000 replications.  

 Fitted Model (1, d, 1)  Fitted Model (0, d, 0) 

T d̂
M  

d̂
SE  

d̂
MSE  1.0d̂d% >−  d̂

M  
d̂

SE  
d̂

MSE  1.0d̂d% >−

100 .180 .350 .1227 60.6  .194 .083 .0069 22.9 

200 .148 .301 .0931 48.4  .195 .056 .0031 7.8 

300 .189 .186 .0348 42.4  .196 .046 .0021 3.2 

400 .195 .143 .0205 34.9  .200 .039 .0016 1.2 

500 .200 .116 .0135 24.2  .198 .036 .0013 1.1 

600 .193 .124 .0155 26.7  .198 .032 .0010 0.4 

700 .191 .099 .0099 25.2  .203 .028 .0008 0 

800 .195 .087 .0076 17.7  .200 .029 .0008 0 

900 .197 .076 .0060 17.4  .200 .027 .0007 0 

1000 .199 .072 .0055 16.6  .201 .025 .0006 0 
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The comparison of the CSS and the EML estimators presented in Table 5. 3. 3 shows 

that EML estimates are slightly better at d=0.3. However, d is constrained by the EML 

optimization algorithm to be not greater than 0.5, whereas CSS is not restricted in this way. 

EML estimation requires that the process be stationary, or transformed to stationarity. EML 

therefore benefits in models with “strong long memory” from being constrained to lie in a 

region around the true value, which is fairly tightly bounded on one side. In general, both 

techniques provide quite similar results.  

Although the congruence of the fitted model with the data generating process ensures 

the best results, in practice the true model is unknown and must be identified from an 

observed time series. Determination of the correct model order to use is one of the most 

important and difficult practical considerations in application of ARFIMA models. An 

ARFIMA(1, d, 1) is the more plausible fitting model for the rigorous discrimination of short- 

and long-memory components, since it accounts for any possible short-range dependencies in 

a series and isolates them from the estimate of d. Fitting (1, d, 1) instead of (0, d, 0) model to 

the data implies, however, two additional parameter to estimate. This requires more 

observations for the same precision of parameter estimation. Clearly, the greater the number 

of parameters we have to estimate, the larger sample size we need for an adequate 

representation of the process generating a time series. As Tables 5.3.1 to 5.3.4 show, in the  

(1, d, 1) case an acceptable precision of the estimates (SE 077.≤ , MSE ) is not attained 

for times series shorter than 900-1000 observations. MSE

006.≤

006.≤ provides at least 80% of 

estimates within the interval [d-0.1, d+0.1] and SE 077.≤  confines the width of the 95% 

confidence interval to 0.3. Considering a restricted range for the fractional differencing 

parameter d, a confidence interval larger than [ - 0.15, + 0.15] implies an unacceptable 

amount of uncertainty about the true parameter value. 

d̂ d̂
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Table 5.3.3. Results for model (0, d, 0) with d=0.3, based on 1000 replications.   

 Fitted Model (1, d, 1)  Fitted Model (0, d, 0) 
     CSS estimation  EML estimation 
T d̂

M  
d̂

SE  
d̂

MSE   
d̂

M  
d̂

SE
d̂

MSE  
d̂

M  
d̂

SE  
d̂

MSE  

100 .302 .353 .1248  .302 .083 .0069  .286 .073 .0055 

200 .273 .289 .0844  .300 .056 .0032  .291 .052 .0028 

300 .303 .178 .0316  .300 .046 .0021  .293 .043 .0019 

400 .300 .142 .0201  .303 .040 .0016  .297 .038 .0014 

500 .300 .120 .0145  .300 .036 .0013  .296 .034 .0012 

600 .303 .114 .0129  .300 .032 .0010  .296 .030 .0009 

700 .298 .100 .0099  .305 .029 .0008  .298 .030 .0009 

800 .302 .085 .0073  .303 .029 .0008  .297 .027 .0007 

900 .301 .077 .0060  .301 .027 .0007  .298 .025 .0006 

1000 .300 .070 .0054  .302 .025 .0006  .298 .024 .0006 

 

Table 5. 3. 4. Results for model (0, d, 0) with d=0.4   

 Fitted Model (1, d, 1)  Fitted Model (0, d, 0) 

T d̂
M  

d̂
SE  

d̂
MSE  1.0d̂d% >−  d̂

M  
d̂

SE  
d̂

MSE  1.0d̂d% >−

100 .430 .341 .1170 64.0  .421 .086 .0078 26.6 

200 .397 .283 .0801 52.4  .412 .059 .0036 9.7 

300 .427 .165 .0279 39.2  .410 .048 .0024 4.9 

400 .422 .147 .0222 39.2  .411 .041 .0018 1.5 

500 .422 .113 .0132 29.1  .407 .037 .0014 1.2 

600 .415 .111 .0126 27.1  .407 .032 .0011 0 

700 .419 .098 .0101 28.9  .410 .030 .0010 0 

800 .412 .109 .0121 21.7  .408 .029 .0009 0 

900 .421 .085 .0076 20.1  .406 .028 .0008 0 

1000 .405 .076 .0062 17.2  .407 .026 .0007 0 
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077.

Tables 5.3.5 to 5.3.8 present results for the simulated ARFIMA (1, d, 1) models. The 

results reveal that a type of short-memory component influences the estimation of the long-

memory parameter. In particular, the combination of low values of d with low autoregressive 

parameters provides much faster accurate estimation than the cases with high d and φ values. 

The pattern of SE’s and MSE’s for (0.2, 0.1, 0.3) and (0.4, 0.2, 0.3) models is broadly similar 

to that observed in the (0, d, 0) cases. SE≤  and MSE 006.≤  require at least 800-1100 

observations. In the (0.6, 0.3, 0.3) case, however, the same estimation accuracy is not reached 

until the time series length of 1500-1700 observations, and in the  

(0.8, 0.4, 0.3) model even not before 2400. 

Table 5.3.5. Results for model (1, d, 1) with d=0.1 φ=0.2 θ=0.3, based on 1000 replications.  

T d̂
M  

d̂
SE  

d̂
MSE  1.0d̂d% >−  φ̂

M  
φ̂

MSE  
θ̂

M  
θ̂

MSE  

100 .015 .338 .1215 63.1 .251 .1638 .319 .1196 

200 .030 .201 .0453 45.6 .233 .0857 .331 .0296 

300 .048 .168 .0309 36.7 .234 .0587 .316 .0175 

400 .071 .122 .0157 25.1 .213 .0368 .313 .0126 

500 .074 .111 .0129 22.4 .224 .0318 .303 .0106 

600 .080 .085 .0076 15.6 .212 .0205 .305 .0078 

700 .084 .079 .0064 14.9 .209 .0192 .307 .0077 

800 .085 .065 .0045 12.0 .208 .0159 .305 .0062 

900 .094 .059 .0035 9.3 .206 .0138 .301 .0060 

1000 .091 .052 .0030 6.3 .206 .0106 .302 .0046 

1100 .090 .052 .0028 5.6 .206 .0100 .303 .0044 

1200 .091 .049 .0025 5.1 .206 .0097 .302 .0040 

1300 .095 .049 .0024 4.4 .206 .0093 .300 .0040 

1400 .095 .046 .0021 3.5 .202 .0076 .304 .0034 

1500 .093 .044 .0020 2.6 .206 .0079 .301 .0036 
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Table 5.3.6. Results for model (1, d, 1) with d=0.2 φ=0.4 θ=0.3, based on 1000 replications.  

T 
d̂

M  
d̂

SE  
d̂

MSE  1.0d̂d% >−  φ̂
M  

φ̂
MSE  

θ̂
M  

θ̂
MSE  

100 .107 .299 .0981 68.8 .418 .1209 .356 .0544 

200 .132 .211 .0489 52.5 .419 .0626 .341 .0160 

300 .137 .190 .0400 46.6 .435 .0447 .323 .0095 

400 .163 .150 .0239 33.0 .415 .0299 .318 .0065 

500 .168 .134 .0190 30.2 .421 .0248 .311 .0052 

600 .176 .112 .0131 23.6 .411 .0173 .310 .0041 

700 .178 .108 .0121 22.9 .411 .0164 .310 .0040 

800 .183 .088 .0080 18.7 .406 .0127 .308 .0030 

900 .191 .084 .0071 14.9 .407 .0115 .303 .0029 

1000 .188 .078 .0061 12.2 .406 .0097 .305 .0025 

1100 .189 .069 .0049 10.5 .405 .0082 .305 .0023 

1200 .190 .066 .0045 9.4 .404 .0078 .304 .0019 

1300 .194 .064 .0041 9.7 .404 .0074 .302 .0020 

1400 .195 .057 .0033 6.4 .401 .0059 .305 .0018 

1500 .193 .055 .0030 6.3 .403 .0059 .303 .0018 

1600 .193 .052 .0028 6.3 .403 .0053 .303 .0016 

1800 .197 .049 .0024 4.0 .400 .0046 .302 .0015 

2000 .196 .045 .0021 3.0 .402 .0041 .301 .0012 
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Table 5.3.7. Results for model (1, d, 1) with d=0.3 φ=0.6 θ=0.3, based on 1000 replications. 

T 
d̂

M  
d̂

SE  
d̂

MSE  1.0d̂d% >−  φ̂
M  

φ̂
MSE  

θ̂
M  

θ̂
MSE  

100 .294 .281 .0790 70.7 .542 .0909 .345 .0453 

200 .278 .205 .0424 63.3 .573 .0468 .340 .0119 

300 .260 .185 .0359 55.1 .607 .0294 .328 .0073 

400 .281 .156 .0247 45.9 .594 .0221 .320 .0051 

500 .282 .140 .0198 43.1 .603 .0173 .315 .0039 

600 .286 .127 .0163 36.6 .596 .0140 .313 .0031 

700 .279 .128 .0167 34.5 .605 .0135 .314 .0032 

800 .287 .114 .0132 32.0 .598 .0114 .312 .0023 

900 .290 .111 .0124 30.2 .603 .0106 .307 .0021 

1000 .289 .103 .0107 25.7 .600 .0097 .309 .0019 

1100 .290 .096 .0092 22.3 .600 .0081 .308 .0017 

1200 .291 .093 .0088 21.8 .600 .0078 .307 .0014 

1300 .294 .090 .0082 20.3 .601 .0073 .305 .0014 

1400 .297 .080 .0063 16.4 .597 .0059 .306 .0013 

1500 .296 .078 .0060 15.4 .599 .0057 .305 .0012 

1700 .299 .072 .0053 14.5 .597 .0052 .304 .0010 

1900 .297 .068 .0046 13.1 .598 .0044 .305 .0008 

2000 .296 .066 .0044 11.2 .600 .0042 .302 .0008 

2400 .298 .058 .0034 8.4 .598 .0034 .303 .0007 

2500 .301 .056 .0031 7.2 .597 .0032 .302 .0007 
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Table 5.3.8. Results for model (1, d, 1) with d=0.4 φ=0.8 θ=0.3, based on 1000 replications. 

T 
d̂

M  
d̂

SE  
d̂

MSE  1.0d̂d% >− φ̂
M  

φ̂
MSE  

θ̂
M  

θ̂
MSE  

100 .609 .301 .1340 75.8 .583 .1578 .296 .0508 

200 .546 .234 .0758 70.7 .644 .0919 .306 .0141 

300 .493 .189 .0442 62.2 .710 .0389 .295 .0074 

400 .479 .171 .0357 58.6 .726 .0281 .293 .0054 

500 .459 .155 .0274 54.1 .750 .0178 .293 .0045 

600 .463 .146 .0253 53.0 .744 .0166 .291 .0038 

700 .446 .132 .0196 50.0 .760 .0117 .295 .0035 

800 .446 .128 .0184 44.4 .759 .0116 .294 .0028 

900 .440 .123 .0168 43.7 .769 .0094 .292 .0027 

1000 .441 .112 .0143 39.6 .766 .0085 .293 .0023 

1100 .438 .110 .0136 39.5 .768 .0075 .294 .0022 

1200 .436 .108 .0130 38.2 .770 .0071 .293 .0020 

1300 .431 .103 .0116 33.9 .776 .0061 .293 .0020 

1400 .432 .097 .0104 32.4 .775 .0054 .295 .0018 

1600 .424 .090 .0086 28.9 .780 .0043 .296 .0016 

1800 .429 .085 .0080 25.7 .778 .0042 .294 .0014 

2000 .424 .081 .0071 23.4 .782 .0034 .293 .0013 

2400 .422 .076 .0062 20.1 .783 .0031 .295 .0011 

2500 .422 .072 .0057 18.6 .784 .0028 .295 .0010 

To explore this issue further, time series with different combinations of d and ARMA 

values are simulated. For all models, a sample size of 1000 observations is used. The results 

presented in Table 5.3.9 reveal that higher autoregressive coefficients complicate the 

estimation of the fractionally differencing parameter. Regardless of the values of d, models 

with φ=0.2 or φ=0.4 provide much better estimates of d as time series with φ=0.6 or φ=0.8. It 

is noteworthy that the opposite is true for the quality of the estimates of the short-memory 
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parameters. Models with φ=0.6 or φ=0.8 provide better estimates of autoregressive and 

moving-average parameters than models with φ=0.2 or φ=0.4. In general, the higher the value 

of φ, the worse is the quality of the estimates of d. The observed phenomenon is not surprising 

in finite samples, since φ=1 implies d=1 or an integrated process with an infinite memory. 

Therefore, the long-memory parameter and the short-memory autoregressive terms near 1 can 

both contribute to similar patterns of autocorrelation. This explains the difficulty in 

discriminating these two components at smaller samples.   

Table 5.3.9. SE’s and MSE’s of CSS estimates of the ARFIMA parameters from series of length 

1000, received from 500 replications. 

Simulated Model 
(d, φ, θ) d̂

SE  
d̂

MSE   φ̂
SE  

φ̂
MSE  θ̂

SE  
θ̂

MSE  
0.1, 0.2, 0.1 .058 .0035  .164 .0268  .128 .0167 

0.1, 0.4, 0.1 .071 .0052  .174 .0404  .103 .0108 

0.1, 0.6, 0.1 .108 .0121  .097 .0093  .053 .0029 

0.1, 0.8, 0.1 .117 .0138  .074 .0055  .061 .0039 
         
0.2, 0.2, 0.1 .058 .0034  .163 .0268  .129 .0168 

0.2, 0.4, 0.1 .080 .0065  .110 .0121  .070 .0050 

0.2, 0.6, 0.1 .106 .0117  .096 .0093  .053 .0029 

0.2, 0.8, 0.1 .118 .0139  .075 .0056  .061 .0039 
         
0.3, 0.2, 0.1 .058 .0034  .168 .0285  .132 .0178 

0.3, 0.4, 0.1 .080 .0064  .110 .0121  .070 .0051 

0.3, 0.6, 0.1 .104 .0108  .095 .0091  .052 .0028 

0.3, 0.8, 0.1 .121 .0146  .076 .0060  .063 .0040 
         
0.4, 0.2, 0.1 .061 .0038  .171 .0307  .134 .0188 

0.4, 0.4, 0.1 .082 .0068  .112 .0131  .072 .0053 

0.4, 0.6, 0.1 .102 .0106  .095 .0094  .053 .0029 

0.4, 0.8, 0.1 .127 .0168  .081 .0072  .065 .0043 
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5.3.4 Conclusions 

The accuracy of estimates of the fractional differencing parameter d has been empirically 

investigated as a function of sample length. The conditional sum of squares methodology 

proposed by Chung (1996) allowing the joint estimation of the short- and long-memory 

parameters has been employed as estimation method. This method provided consistent und 

sufficient estimates for d and showed good finite-sample performance, comparable to that of 

EML. CSS estimation is computationally much easier and more convenient in choosing 

starting values compared to techniques such as ML. Moreover, the CSS method does not 

require knowledge of an appropriate transformation to apply and is available in the current 

versions of the SAS software for Windows.  

 Although fitting the (0, d, 0) model to the pure fractionally integrated process already 

provided very accurate estimates in moderate sample sizes of 400-500 observations, the  

(1, d, 1) case appears to be the more plausible fitting model for any observed times series, 

since it accounts for possible short-range dependencies in a series and isolates them from the 

estimate of d. The reported simulation results suggest that applying ARFIMA (1, d, 1) as a 

fitting model to the data requires at least 1000-1600 observations for acceptable estimation 

accuracy.  
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6 GENERAL DISCUSSION 

The emphasis of this paper is certainly on methodological issues. The primary research tasks 

of the thesis were: (1) to develop and evaluate testing strategies revealing the nature of 

growing time series, (2) to analyze the efficiency of automated procedures for ARMA model 

identification commonly available in current versions of SAS for Windows, and (3) to 

examine sample size requirements for the accurate estimation of the long-memory parameter 

d in ARFIMA models. Besides, the initial chapters have aimed to demonstrate broad 

possibilities of time series procedures to deal with dynamical psychological phenomena.  

Time series approach allows ambitious handling of those indispensable features of 

dynamical concepts such as memory, stability or dependency structure. Systems containing 

internal temporal regularity can be distinguished from unstable systems depending on external 

and occasional events. Complex behavior such as balancing between preservation and 

adaptation or nonlinear dynamic of hierarchical structures can be represented by means of 

rather simple time series models. Processes with different memory properties become 

distinguishable. These examples make clear that in most research cases time series methods 

cannot be viewed as substitutes or alternatives to the traditional statistical procedures. Time 

series analysis rather opens a new perspective for psychological research, where the 

understanding of development and change of psychological processes are in the focus of 

attention. 

 Within the scope of experimental settings, time series techniques represent the proper 

analysis tools for longitudinal designs producing dependent measurements. In this case, time 

series analysis is an alternative to the traditional methods such as ANOVA. It is important to 

understand that the classical statistical procedures assume independent and uncorrelated data.  

That is why they are no longer relevant for autocorrelated data. The widespread opinion that 
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time series analysis requires a lot of points is not valid for time series experiments. By the 

way, the sample size problem is not unique for time series analysis. For classical methods 

such as analysis of variance, larger samples imply more power to detect differences between 

means. Nobody hopes seriously to reveal existing distinctions between treatments using only, 

say, five subjects in each cell. For time series data, more points permit identification of more 

sophisticated models and allow detecting smaller departures from the process after 

intervention (see also Gottman, 1981, pp. 57-59).  

 This paper has focused on analysis of a single time series. Handling of interrelations of 

multiple processes represents another interesting research field for psychologists. Transfer 

functions enable to reveal the relationship pattern of two or more interacting subjects. For 

example, we can study whether one of two playing children is dominant or whether a mother 

tries to adjust her behavior to the infant’s behavior in social interactions. Cross-spectral 

methods allow to reveal cyclicity in social interplay and to assess the mother’s sensitivity to 

her child’s rhythms of attention and inattention. Cointegration analysis enables researcher to 

detect a meaningful relation between two or more integrated series such as income and 

consumption in economics or mood patterns of a married couple in psychology. 

Distinguishing between cointegration and spurious regression (i.e., meaningless relation 

between integrated series) represents a challenging methodological issue.  

 Solving methodological problems occurring in applied settings was the main objective 

of this thesis. One of the most difficult and important tasks in psychological time series 

research is to determine the cause of instationarity in growing time series. Testing strategy 

developed and evaluated in this paper is one possibility to distinguish between trend and 

difference stationary processes. The Augmented Dickey-Fuller test was employed in the study 

because it is commonly available in current versions of SAS for Windows. Developing and 

incorporating in software packages new testing procedures with more power, appropriate for 
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smaller samples and using the null hypothesis of no unit root remain to be solved. 

Furthermore, the presented strategy was designed for rather simple models characteristic of 

the majority of time series in psychology. Procedures for more specific cases such as models 

with complex error structures or nonlinear and broken trends are still necessary.  

 Results obtained for SCAN and ESACF as identification tools for integrated processes 

demonstrated the pronounced superiority of the automated procedures over subjective 

judgments. The reported findings could help to choose an appropriate identification procedure 

in cases where some knowledge about properties of the stochastic process under study is 

available. It is noteworthy that, for some models and parameterizations, the performance of 

SCAN and ESACF was disappointing.  This strongly supports the recommendation of Box, 

Jenkins and Reinsel (1994) to use automated methods as supplementary guidelines in the 

model selection process and not as a substitute for critical examination of the ACF, PACF, 

and the model residuals. In other word, model identification implies a strategy consisting of 

different consecutive steps; employing automated procedures is one of these steps.  

 Despite of the contributions of Thornton and Gilden (2005) and Wagenmakers et al. 

(2004; 2005), rigorous discrimination of processes with different memory properties remains 

one of the most urgent methodological issues. The findings reported in this paper revealed 

sample size requirements on the accurate estimation on the long memory parameter d within 

the scope of the time domain analysis. It makes sense to assume that, depending on the error 

structure of the studied processes, up to 1600 observations are necessary in the frequency 

domain as well for reliable distinguishing between long-range and short-range dependency 

processes. For parsimonious planning of psychological experiments, it is important to clarify 

how the spectral classifier method of Thornton and Gilden (2005) and the ARFIMA 

procedure of Wagenmakers et al. (2004; 2005) respond to sample size variations.  
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 Handling of missing values and performance of tests or automated procedures for 

model identification in the presence of outliers or with non-metric data represent further 

methodological topics relevant for applied time series research. 
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APPENDIX 

Study 1: Deterministic or Stochastic Trend: Decision on the Basis 

of the Augmented Dickey-Fuller Test 

Simulation of 1000 series with T=100 where DGP is ttt eYY ++= −12.0  with et ∼ IIDN (0, σ2) 

*************************************************************************** 
data probe; 
keep a3; 
do i=1 to 1000; 
 a1=ranuni (54893); 
 a2=a1*71474839; 
 a3=round(a2); 
 output; 
end; 
run; 
proc transpose data=probe out=seeds; 
run; 
 
data dat.dswn02; 
set seeds; 
keep t y1-y1000; 
array cols (1000) col1-col1000;  
array y (1000) y1-y1000; 
array a (1000) a1-a1000; 
array e (1000) e1-e1000; 
 
do i=1 to 1000; 
 a(i)=0; y(i)=0; e(i)=0; 
end; 
do t=-5 to 100;  

do i=1 to 1000;  
 call rannor (cols(i), e(i)); 
  

y(i)= 0.2+a(i) +e(i); 
a(i)=y(i); 

 end; 
if t gt 0 then output; 
end; 
run; 
*************************************************************************** 
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Simulation of 1000 series with T=100 where DGP is ttt eYY ++= −12.0  with et=0.5et-1+ut 

 and ut ∼ IIDN (0, σ2) 

*************************************************************************** 

data probe; 
keep a3; 
do i=1 to 1000; 
 a1=ranuni (54893); 
 a2=a1*71474839; 
 a3=round(a2); 
 output; 
end; 
run; 
proc transpose data=probe out=seeds; 
run; 
 
data dat.ds02ar; 
set seeds; 
keep t y1-y1000; 
phi=0.5; 
array cols (1000) col1-col1000;  
array y (1000) y1-y1000; 
array a (1000) a1-a1000; 
array e (1000) e1-e1000; 
array b (1000) b1-b1000; 
array c (1000) c1-c1000; 
do i=1 to 1000; 
 a(i)=0; y(i)=0; e(i)=0; b(i)=0;c(i)=0; 
end; 
do t=-5 to 100;  

do i=1 to 1000;  
 call rannor (cols(i), e(i)); 
 b(i)=phi*c(i)+e(i); 
 c(i)=b(i); 

y(i)= 0.2+a(i) +b(i); 
a(i)=y(i); 

 end; 
if t gt 0 then output; 
end; 
run; 
*************************************************************************** 
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Simulation of 1000 series with T=100 where DGP is ttt etyy ++= − 1.02.0 1  with et=0.5et-1+ut 

and  ut ∼ IIDN (0, σ2) 

*************************************************************************** 
data probe; 
keep a3; 
do i=1 to 1000; 
 a1=ranuni (54893); 
 a2=a1*71474839; 
 a3=round(a2); 
 output; 
end; 
run; 
proc transpose data=probe out=seeds; 
run; 
 

data ar05; 
set seeds; 
keep t x1-x1000; 
phi=0.5; 
array cols (1000) col1-col1000;  
array x (1000) x1-x1000; 
array a (1000) a1-a1000; 
array e (1000) e1-e1000; 
array b (1000) b1-b1000; 
array c (1000) c1-c1000; 
do i=1 to 1000; 
 a(i)=0; x(i)=0; e(i)=0; b(i)=0;c(i)=0; 
end; 
do t=-5 to 100;  

do i=1 to 1000;  
 call rannor (cols(i), e(i)); 
 b(i)=phi*c(i)+e(i); 
 c(i)=b(i); 
     x(i)= phi*a(i) +b(i); 

a(i)=x(i); 
end; 

if t gt 0 then output; 
end; 
run; 
 
data dat2.tsar08; 
set ar08; 
keep t y1-y1000; 
array x (1000) x1-x1000; 
array y (1000) y1-y1000; 
 
do i=1 to 1000; 
y(i)=0.1*t+x(i); 
end; 
run; 
 
*************************************************************************** 
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Simulation of 1000 series with T=100 where DGP is ttt etyy ++= − 1.02.0 1  with et=ut -0.5ut-1 

and  ut ∼ IIDN (0, σ2) 

 
*************************************************************************** 
data probe; 
keep a3; 
do i=1 to 1000; 
 a1=ranuni (54893); 
 a2=a1*71474839; 
 a3=round(a2); 
 output; 
end; 
run; 
proc transpose data=probe out=seeds; 
run; 
 
data dat.dsma02; 
set seeds; 
keep t y1-y1000; 
teta=0.5; 
array cols (1000) col1-col1000;  
array y (1000) y1-y1000; 
array a (1000) a1-a1000; 
array e (1000) e1-e1000; 
array b (1000) b1-b1000; 
 
do i=1 to 1000; 
 a(i)=0; y(i)=0; e(i)=0; b(i)=0; 
end; 
do t=-100 to 100;  

do i=1 to 1000;  
 call rannor (cols(i), e(i)); 

y(i)= 0.2+a(i) +e(i)-teta*b(i); 
b(i)=e(i); 
a(i)=y(i); 
 

 end; 
if t gt 0 then output; 
end; 
run; 
 
***************************************************************************
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Performing ADF test 

*************************************************************************** 
options nonumber center nodate label pagesize=100 ls=64; 
filename routed 'C:\...\dswn.dat'; 
 
%macro adf; 
%do ii=1 %to 1000; 
 proc printto print=routed; 
 run; 

ods select StationarityTests; 
ods noproctitle;  
 
proc arima data=dat.dswn; 
 identify var=y&ii stationarity=(adf=6);  
run; 
proc printto print=print;   run; 

%end; 
%mend adf; 
%adf; 
 
data dswn;       
infile routed;       
input word1 $ 1-11 @;        
if word1='Trend' then  do;             
input  

lag0 rho0 prob0 tau0 probt0 
lag1 rho1 prob1 tau1 probt1 
lag2 rho2 prob2 tau2 probt2 
lag3 rho3 prob3 tau3 probt3 
lag4 rho4 prob4 tau4 probt4 
lag5 rho5 prob5 tau5 probt5 
lag6 rho6 prob6 tau6 probt6 
; 

keep tau1 tau2 tau3 tau4 tau5 tau6;  
output;          
end;    
run; 
 
data adf.dswn; 
set dswn; 

if tau0< -3.45 then sig0='sig'; 
else sig0='n.s'; 
if tau1< -3.45 then sig1='sig'; 
else sig1='n.s'; 
if tau2< -3.45 then sig2='sig'; 
else sig2='n.s'; 
if tau3< -3.45 then sig3='sig'; 
else sig3='n.s'; 
if tau4< -3.45 then sig4='sig'; 
else sig4='n.s'; 
if tau5< -3.45 then sig5='sig'; 
else sig5='n.s'; 
if tau6< -3.45 then sig6='sig'; 
else sig6='n.s'; 

keep sig0 sig1 sig2 sig3 sig4 sig5 sig6; 
run; 
*************************************************************************** 
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Study 2: Model Identification of Integrated ARMA Processes 

Simulated series with T=200  

*************************************************************************** 
Random Walk ARIMA (0,1,0) 

data bib.rw; 
keep y e; 
Y=0; e=0;u=0; a=0;g=0; 
do t=-50 to 200; 
e=rannor(59837); 
y=a+e; 
a=y; 
if t gt 0 then output; 
end;  
run; 

ARIMA (1,1,1) 
data bib.arima; 
keep y e a; 
Y=0; e=0; teta=0.7; phi=-0.8;u=0; a=0;g=0;b=0;  
do t=-50 to 200; 
e=rannor(59837); 
y=b+a; 
a=phi*u+e-teta*g; 
g=e; 
u=a; 
b=y; 
if t gt 0 then output; 
end;  
run; 

ARIMA (1,1,0) 
data bib.ari; 
keep y e a; 
Y=0; e=0;phi=0.5;u=0; a=0;g=0;b=0;  
do t=-50 to 200; 
e=rannor(59837); 
y=b+a; 
a=phi*u+e; 
u=a; 
b=y; 
if t gt 0 then output; 
end;  
run; 
 
***************************************************************************
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*************************************************************************** 

ARIMA (0,1,1) 
data bib.ima; 
keep y e a; 
Y=0; e=0; teta=0.5;u=0; a=0;g=0;b=0;  
do t=-50 to 200; 
e=rannor(59837); 
y=b+a; 
a=e-teta*g; 
g=e; 
b=y; 
if t gt 0 then output; 
end;  
run; 

ARIMA (2,1,0) 
data bib.ari_2; 
keep y e a; 
Y=0; e=0; phi1=1.8; phi2=-0.9;u=0; a=0;g=0;b=0;  
do t=-50 to 200; 
e=rannor(59837); 
y=b+a; 
a=phi1*u+phi2*g+e; 
g=u; 
u=a; 
b=y; 
if t gt 0 then output; 
end;  
run; 

ARIMA (0,1,2) 
data bib.ima_2; 
keep y e a; 
Y=0; e=0; teta1=1.8; teta2=-0.9;u=0; a=0;g=0;b=0;  
do t=-50 to 200; 
e=rannor(59837); 
y=b+a; 
a=e-teta1*g-teta2*u; 
u=g; 
g=e; 
b=y; 
if t gt 0 then output; 
end;  
run; 
 

*************************************************************************** 
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Analysis steps 

*************************************************************************** 

1. Step 
proc arima data=bib.ari_2; 
identify var=y(1) minic esacf scan; 
run; 

2. Step 
proc arima data=bib.ari_2; 
identify var=y minic esacf scan; 
run; 
*************************************************************************** 

Macros 

*************************************************************************** 
%macro scan_eig(datei); 
options nonumber center nodate label pagesize=15 ; 
%do ii=1 %to &wdh;  

proc arima data=&datei; 
identify var= col&ii(1) scan p=(0:5) q=(0:5); 
ods select TentativeOrders; 
ods output TentativeOrders = rscan&ii;  
data rscan&ii; 
set rscan&ii; 
t+1; 
run; 
proc append base =ar02.rsca&tt  data=rscan&ii ; 
run; 
quit; 

%end;  
%mend scan_eig; 
 
%macro esac_eig(datei); 
options nonumber center nodate label pagesize=15 ; 
%do ii=1 %to &wdh;  

proc arima data=&datei; 
identify var= col&ii(1) esacf p=(0:5) q=(0:5); 
ods select TentativeOrders; 
ods output TentativeOrders = resac&ii;  
data resac&ii; 
set resac&ii; 
t+1; 
run; 
proc append base =ar02.resa&tt  data=resac&ii ; 
run; 
quit; 

%end;  
%mend esac_eig; 
 
*************************************************************************** 
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Study 3: Sample Size and Accuracy of Estimation of the 

Fractional Differencing Parameter 

Simulation of 1000 (0, 0.2, 0) series with T ranging from 600 to 1200 and estimating d 

*************************************************************************** 
proc iml; 
%macro wn; 
%mend wn; 
%macro ar; 
p=1; 
%mend ar; 
%macro ma; 
q=1; 
%mend ma; 
%macro arma; 
p=1 q=1; 
%mend arma; 
      %let modell = %wn; 
      %let d = (.2);  
 %let phi = 0.0;  
 %let theta = 0.0;    
      %let seed = 1235;     
 %let wdh = 1000;          
 %let tmin = 600;    
 %let tmax = 1200;         
 %let tstep = 100;        
 %let yt = yt; 
 
%macro fit; 
 seed = -&seed;; 
 %do i = 1 %to &wdh; 
   n=&ii; 
   ods output D_AR_MA_S_N =est&i&ii;       
      print 'D-Wert vor call farmasim', &d; 
      call farmasim (yt, &d, &phi, &theta) n=n seed = seed;      
      call farmafit (d, ar, ma, s, yt) &modell opt=0;   
      print d  ar ma s  N; 
%end;   
%mend fit; 
 
%macro wdh; 

%do ii = &tmin %to &tmax %by &tstep; 
  %fit; 
%end; 

%mend wdh; 
%wdh; 
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%macro data; 
%do ii = &tmin %to &tmax %by &tstep; 

%do i=1 %to &wdh; 
data est&i&ii; 

     set est&i&ii; 
     Dspez=&d; ARspez= &phi; MAspez= &theta; 

run; 
proc append base=dat.par&ii data=est&i&ii force;   

%end; 
%end; 
%do ii = &tmin %to &tmax %by &tstep; 
    proc means data =dat.par&ii maxdec=4; 
     var d ar ma;  

ods output summary=means&ii; 
 data means&ii; 
     set means&ii;   
 rename D_N = wdh; label D_N=wdh; 
 label D_mean=D_mean; label D_StdDev = D_StdDev;  
     label D_min=D_min; label D_max= D_max;  
 MSE_D=(&d-D_mean)**2 + D_StdDev**2; 
 label AR_mean=AR_mean; label AR_StdDev = AR_StdDev;  
     label AR_min=AR_min; label AR_max= AR_max;  
 MSE_MA=(&theta-MA_mean)**2 + MA_StdDev**2; 
 label MA_mean=MA_mean; label MA_StdDev = MA_StdDev;  
     label MA_min=MA_min; label MA_max= MA_max;  
 drop AR_N MA_N  VName_D VName_AR VName_MA; 
 MSE_AR=(&phi-AR_mean)**2 + AR_StdDev**2; 
 Dspez=&d; ARspez= &phi; MAspez= &theta; t=&ii;  
 drop AR_N MA_N  VName_D VName_AR VName_MA; 
     proc append base=gesamt data=means&ii force;    
%end; 
 data gesamt; 
 retain t wdh Dspez ARspez MAspez  
 D_mean D_StdDev MSE_D D_min D_max 
 AR_mean AR_StdDev MSE_AR AR_min AR_max 
 MA_mean MA_StdDev MSE_MA MA_min MA_max; 
 set gesamt; 
 run; 
 data dat.d02_2; 
 set gesamt; 
 keep t wdh Dspez  
 D_mean D_StdDev MSE_D D_min D_max; 
 run; 
   
%mend data; 
%data; 
 
 
*************************************************************************** 
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