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13:26  Restate my assumptions. 

 One: Mathematics is the language of nature. 

 Two: Everything around us can be represented and understood through numbers. 

 Three: If you graph the numbers of any system, patterns emerge. 

 Therefore: There are patterns everywhere in nature. 

10:18  Press return. 

 

π (1998), screenplay by Darren Aronofsky 
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1.2 English summary 
 
Systems biology aims at understanding how living organisms function in health and fail 

in disease by studying how new properties arise from dynamic interactions. Beyond 
qualitatively analyzing static data of individual components, dynamic quantitative data are 
combined with mathematical modeling to elucidate systems properties that determine cellular 
decisions. Such cell fate decisions are taken during erythropoiesis, when erythroid progenitor 
cells mature to erythrocytes by tightly regulated proliferation and differentiation processes, 
which are dependent on the cytokine erythropoietin (Epo) and the signaling transduction 
network activated by its receptor (EpoR). 

A major bottleneck in systems biology is the lack of high-quality quantitative data. 
Therefore, we developed strategies for error reduction and algorithms for automated data 
processing, establishing the widely used techniques of immunoprecipitation and 
immunoblotting as highly precise methods for the quantification of protein levels and 
modifications. By randomized gel-loading we prevented correlated errors and further 
improved our data using housekeeping proteins or adding purified proteins to 
immunoprecipitation in combination with criteria-based normalization, enabling the 
generation of large and accurate sets of quantitative data. 

Dysfunctional signaling in erythroid progenitor cells is associated with diseases such as 
anemia and leukemia, but the effects of interfering with the MAP-kinase signaling network 
are unknown. To causatively understand cell fate decisions and be able to predictably 
manipulate growth and maturation of erythroid progenitor cells, we applied a systems biology 
approach. We monitored components of the Epo-induced MAP-kinase network after 
stimulation of primary murine erythroid progenitor cells by quantitative immunoblotting. A 
dynamic mathematical model was compiled and kinetic parameters were estimated by multi-
parameter fitting algorithms. We predicted that an increase in expression of a single ERK 
isoform would lead to feedback-mediated rerouting of signaling, which was confirmed by 
isoform-specific protein overexpression. The model was extended based on two hypotheses 
of negative feedback mechanisms. We experimentally confirmed feedback inhibition by 
phosphorylation as expressing a kinase-defective ERK isoform resulted in similar 
phenotypes as overexpression of the wild-type isoform. We demonstrated the influence of 
the integrated response of activated ERK on erythroid proliferation and differentiation, 
demonstrating that hyperactivation of the MAP-kinase signaling network leads to accelerated 
erythropoiesis but surprisingly to reduced hemoglobinization. 

The input for signaling is critically dependent on the receptor presence on the cell 
surface. Endocytosis of cell surface receptors was thought to be responsible for long-term 
adaptation of a cell to a continuous stimulus. However, it remained to be identified what 
induces the rapid decline in signal transduction after activation of a cell surface receptor. We 
performed dynamic modeling of EpoR endocytosis, showing that the majority of internalized 
Epo is recycled to the medium. Sensitivity analysis revealed that the constant turnover of the 
receptor on the plasma membrane and ligand-induced internalization determine the sharp 
peak of EpoR activation. Furthermore, we predicted that the binding kinetics, but not the 
binding affinity determine the strength of EpoR signaling. Surprisingly, receptor 
internalization is crucial for rapid activation and deactivation of signaling, but irrelevant for 
long-term desensitization of cells. 

In conclusion we employed mathematical modeling based on high-quality quantitative 
data, providing computational models of Epo-induced receptor endocytosis and MAP-kinase 
activation. Our systems biology approaches provided counterintuitive results that could not 
be obtained by conventional methods. For example, overexpression of an ERK isoform leads 
to rerouting of signaling and endocytosis of the EpoR is not required for long-term 
termination, but for rapid activation and deactivation of signaling. Furthermore, the 
mathematical models enable the identification of general systems properties and the 
sensitivity analyses predict targets for efficient interventions. In the future, this information 
can be used for drug design, opening new possibilities for treatments of anemia and 
leukemia. 
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1.3 Deutsche Zusammenfassung 
 
Im Rahmen der Systembiologie werden neue Eigenschaften untersucht, die durch dynamische 

Wechselwirkungen von Einzelkomponenten entstehen. Dazu werden nicht nur qualitative statische 
Daten von Einzelmolekülen eingesetzt, sondern dynamische quantitative Daten in Kombination mit 
mathematischen Modellen untersucht. Auf diese Weise können entscheidungsbestimmende 
Systemeigenschaften identifiziert werden und Einblick in die Funktionsweisen von Lebewesen und in 
die Entstehung von Krankheiten erhalten werden. Präzise regulierte Proliferations- und 
Differenzierungsprozesse ermöglichen während der Erythropoese eine Expansion und Reifung der   
erythroiden Vorläuferzellen zu Erythrozyten. Diese Prozesse werden entscheidend von dem Zytokin 
Erythropoietin (Epo) und dem Signaltransduktionsnetzwerk des dazugehörigen Rezeptors (EpoR) 
bestimmt. 

Gegenwärtig mangelt es in der Systembiologie an qualitativ hochwertigen quantitativen Daten. 
Wir haben Strategien zur Fehlerreduktion und Algorithmen zur automatischen Datenverarbeitung 
entwickelt und Immunpräzipitation und Immunoblot als hochpräzise Quantifizierungsmethoden für 
Proteinmengen und Proteinmodifikationen etabliert. Das randomisierte Laden der Proben auf 
Proteingele verhindert korrelierte Fehler. Die Datenqualität konnte durch kriteriengestützte Normierung 
basierend auf konstant exprimierten Proteine oder hinzugefügten Proteinstandards deutlich verbessert 
werden. Auf diese Weise können umfangreiche und genaue quantitative Datensätze erzeugt werden. 

Eine defekte Signalleitung in erythroiden Vorläuferzellen kann Krankheiten wie Anämien und 
Leukämien auslösen. Ein Eingreifen in das MAP-Kinase-Signalleitungsnetzwerk könnte 
unvorhersehbare Effekte hervorrufen. Um zelluläre Entscheidungsfindungen ursächlich zu verstehen 
und um gezielt Wachstum und Reifung von erythroiden Vorläuferzellen beeinflussen zu können, 
haben wir einen systembiologischen Ansatz zur Analyse des von Epo aktivierten MAP-Kinase-
Signalleitungsnetzwerk eingesetzt. Nach Stimulation von primären murinen erythroiden 
Vorläuferzellen wurden Bestandteile des MAP-Kinase-Signalweges mittels quantitativem Immunoblot 
untersucht. Ein dynamisches mathematisches Modell wurde etabliert und die kinetischen Parameter 
durch Mehrparameter-Anpassungsalgorithmen geschätzt. Modellverhersagen ergaben, dass eine 
Erhöhung des Expressionslevels einer einzelnen Isoform von ERK zu einer 
rückkoppelungsvermittelten Umleitung des Signalweges führen würde. Dies konnte durch isoform-
spezifische Proteinüberexpression experimentell bestätigt werden. Das datenbasierte Modell wurde 
um zwei Hypothesen über den negativen Rückkoppelungsmechanismus erweitert. Die 
Rückkoppelungsinhibierung durch Phosphorylierung konnte experimentell bestätigt werden, da die 
Überexpression von ERK-Isoformen sowohl ohne als auch mit Kinaseaktivität zu gleichartigen 
Phänotypen bezüglich erythroider Proliferation und Differenzierung führte. Dabei konnten wir 
nachweisen, dass eine Überaktivierung des MAP-Kinase-Signalleitungsnetzwerkes zu schnellerer 
Differenzierung, überraschenderweise aber auch zu einer reduzierten Hämoglobinisierung führt. 

Die Signalumsetzung hängt entscheidend von der Rezeptoranzahl an der Zelloberfläche ab. Es 
wird angenommen, dass die Endozytose von Zelloberflächenrezeptoren verantwortlich für die 
langfristige Anpassung einer Zelle an einen anhaltenden Stimulus ist. Durch dynamische Modellierung 
der Endozytose des EpoR konnte nachgewiesen werden, dass der Grossteil des internalisierten Epo 
in das Medium zurückgeschleust wird. Sensitivitätsanalysen zeigten, dass der konstante Umsatz des 
Rezeptors an der Plasmamembran und die ligandeninduzierte Internalisierung den steilen Anstieg und 
die schnelle Abnahme der Rezeptoraktivität in der Anfangsphase bestimmen. Außerdem wurde 
vorausgesagt, dass die Bindungskinetik und nicht die Bindungsaffinität die Signalstärke das EpoR 
ausmachen. Da der internalisierte Rezeptor nach anfänglicher Abnahme in erheblichem Ausmaß 
wieder an die Oberfläche zurückkehrt, ist die Rezeptorinternalisierung überraschenderweise 
ausschlaggebend für die rasche Signalaktivierung und –deaktivierung, aber unerheblich für die 
langfristige Desensibilisierung  der Zelle. 

Zusammenfassend wurden qualitativ hochwertige quantitative Daten mit mathematischen 
Modellen kombiniert und dabei Computermodelle der Epo-induzierten Endozytose und MAP-Kinase 
Signalaktivierung erstellt. Die systembiologischen Ansätze lieferten überraschende Resultate, die  
nicht mit herkömmlichen Methoden erzielt werden konnten: Die Überexpression einer ERK-Isoform 
führt zur Umleitung des Signalweges und die Endozytose des EpoR beeinflusst die rasche Aktivierung 
und Deaktivierung der Signalleitung. Die datenbasierten Modelle ermöglichen außerdem die 
Identifizierung von allgemeingültigen Systemeigenschaften und durch Sensitivitätsanalysen die 
Vorhersage von Angriffspunkte für effiziente Interventionen. In Zukunft können solche datenbasierte 
Modelle für die gezielte Entwicklung von Medikamenten eingesetzt werden und eröffnen auf diese 
Weise neue Möglichkeiten zur Therapie von Anämien und Leukämien. 
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1.4 Summary of the results 
 

1.4.1 Systems biology 
 

Systems biology aims at understanding how living organisms function in health and fail 

in disease. The new insight is that the important properties of life occur as a result of the 

connections between individuals, from molecules to cells. Thus, systems biology studies how 

new properties that are functionally important for life, arise in interactions (Alberghina and 

Westerhoff 2005). 

The term ‘systems’ is derived from the general systems theory (von Bertalanffy 1968) 

or more specifically from systems dynamics. Attempts for system-level understanding have a 

long tradition, dating back to Norbert Wiener (Wiener 1948). This level of understanding has 

gained new interest due to the explosive progress of genome sequencing projects and the 

massive amounts of data generated by high-throughput experiments in genomics, 

proteomics, and metabolomics. It is becoming increasingly evident that certain aspects of 

biology can only be understood at the system-level (Kitano 2001). While an understanding of 

genes and proteins is the basis for systems biology, the focus is on understanding the 

network’s structure and dynamics. Because a system is not just an assembly of genes and 

proteins, its properties cannot be fully understood merely be drawing diagrams of their 

interconnections (Kitano 2002). Or, as Olaf Wolkenhauer put it in a modified quote by Henri 

Poincaré: “A cell is built up of molecules, as a house is with stones. But a soup of molecules 

is no more a cell than a heap of stones is a house” (Wolkenhauer et al. 2005). To understand 

how a particular system works, knowing the components and interactions is merely the first 

step. More importantly, the strength of the interactions, the mode of signal encoding and the 

robustness of the signal against noise and perturbations have to be determined. And, the 

way the system reacts if a malfunction occurs as in cancer or other diseases has to be 

identified. The techniques employed include quantitative measurements, modeling, 

reconstruction and theory (Kirschner 2005). If we know the design principles and circuit 

patterns, we can learn how to modify the network to improve system performance and 

interfere against malfunctions.  

To understand a biological network at the systems-level, four key properties can be 

analyzed: (I) System structure. The analysis of gene interactions networks, the protein 

interactosome and biochemical pathway interactions and of the mechanisms these 

interactions regulate. (II) System dynamics. The analysis of a network behavior over time. 

Methods include metabolic analysis, sensitivity analysis, phase plane and bifurcation 

analysis. (III) Control method. By identifying mechanisms that control the state of a cell, 
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potential drug targets can be identified. Also known as metabolic control analysis (MCA). (IV) 

Design method. The modification and construction of biological systems having desired 

properties based on design principles and simulations. Also known as synthetic biology, an 

area of research that combines science and engineering in order to design and build novel 

biological functions and systems. 

These properties can be analyzed by hypothesis-driven research (Fig. 1). Through 

close collaborations between theoreticians and experimentalists, an iterative research 

process is established. This iterative cycle begins with a review of biological knowledge and 

the selection of contradictory issues. Then, new experiments are devised by hypothesis-

driven experimental design generating quantitative data of pathway components. 

Mathematical models are built that can describe the data. Using this model, in silico 

predictions are obtained that are validated or falsified experimentally. If the predictions are 

not fulfilled, the model has to be changed accordingly. Based on the mathematical model, 

new experiments are designed, creating novel biological knowledge.  

 
A property of biological system that has gained new interest is robustness. Robustness 

is an essential property of biological systems (Csete and Doyle 2002). Three phenomena 

can be classified that are a result of robustness: (I) Adaptation, the ability to cope with 

environmental changes. This allows the cell to respond to relative changes in stimuli from the 

medium. (II) Parameter insensitivity, the ability to cope with changes in internal kinetic 

parameters. This also comprises robustness against intracellular noise, i.e. variance in the 

expression level of system components. Furthermore, threshold behavior against low 

stimulus concentrations prevent signaling in the absence of ligand. (III) Fault-tolerance, also 

known as graceful degradation. This property allows the system to continue operating 

properly in the event of the failure of some of its components. If the system’s performance 

Biological knowledge
Contradictory issues

Generation of
Quantitative
Data

Predictions

Mathematical
Modelling

Experimental
Validation 

Design
of New
Experiments

Figure 1: Systems biology approaches 
consist of an iterative process between 
experiments and modeling. In a close 
collaboration between experimentalists and 
theoreticians, contradictory issues in biology 
are answered in an iterative cycle of 
quantitative data generation, mathematical 
modeling, in silico predictions, experimental 
validation and design of new experiments. The 
advancement of research in computational 
science, analytical methods, technologies for 
measurements and improved high-throughput 
methodologies will gradually transform 
biological research to become a more 
systematic and hypothesis-driven science, as 
represented by this iterative cycle process. 
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drops, the decrease is proportional to the severity of the failure, as opposed to minor 

fluctuations causing complete breakdown. 

In engineering science, robustness is critical for operation of the system and obtained 

using the following strategies (I) Negative feedback and feed-forward control stabilizing the 

system. (II) Redundancy, several components sharing the same function act as backup. (III) 

Structural stability, intrinsic mechanisms promote robustness. (IV) Modularity, subsystems 

are functionally or physically separated, in order to prevent failure in one subsystem from 

spreading to other parts of the system. 

These tactics employed in engineering are discovered in biological systems as well. 

Bacterial chemotaxis is a good example, featuring several of the phenomena and strategies 

conferring robustness (Kollmann et al. 2005). It is a perfect adaptation system, intrinsically 

insensitive to intracellular noise and features several feedback loops stabilizing the system. 

Systems biology promises new biological insights by mathematical modeling of 

complex cellular networks based on experimental data. Currently, this branch of science still 

suffers from a lack of quantitative data. Technical innovations in experimental devices and 

data processing are critical aspects of systems biology research. Furthermore, standardized 

computational tools for data acquisition, storage and analysis are needed. 

Mathematical models integrating various signal transduction cascades and molecules 

will provide pharmaceutical industries with mechanism-based drug discovery strategies 

(Noble 2002). Using this models, the effects of drugs as well as side effects can be 

predicted. This may lead to unforeseen results. For example, pharmaceutical industries have 

focused their research on oncogenes. However, if an oncogene is mutated, its activity or 

expression level are elevated to an extent that inhibiting this protein has little effect on the 

system. On the other hand, some of the nonmutated genes may become more important 

compared to the healthy situation. This implies that signaling proteins encoded by 

nonmutated genes should represent better drug targets against cancer (Hornberg and 

Westerhoff 2006). Thus, although systems biology is still in its infancy, its potential benefits 

are considerable in both basic and translational research. By combining quantitative data 

with mathematical modeling, systems biology can provide new insights for biology and 

medicine. 
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1.4.2 Erythropoietin and the hematopoietic lineage 
 

The process of hematopoiesis is highly regulated by both humoral growth factors and 

cytokines as well as intracellular contacts in the stem cell niche in bone marrow. Besides 

erythrocytes, the hematopoietic stem cell gives rise to the other blood cells of the lymphoid 

and myeloid lineage (Weissman et al. 2001). Several highly adaptive developmental 

processes are regulated by cytokines and their cognate receptors, the cytokine receptor 

superfamily. A well-studied example of cytokine signaling is erythropoietin (Epo) signaling 

through the erythropoietin recepeptor (EpoR) involved in erythropoiesis, the continuous 

renewal of red blood cells from hematopoietic stem cells.  

Erythrocytes provide the important function of oxygen transport from the lung into 

tissue. Multi-level control of erythropoiesis ensures both constant replenishment of 

erythrocytes and fast adaptation in case of blood loss. Failure of these control processes 

leads to anemia or leukemia. Red blood cell production in the mouse is classified into distinct 

stages in development. Primitive erythropoiesis occurs in the yolk sac 7.5 days post 

conception, producing large nucleated erythrocytes. At day 12, production of red blood cells 

shifts to the fetal liver and enucleated definitive erythrocytes are generated. Around day 15 to 

16 post conception, definitive erythropoiesis is relocated to the bone marrow and spleen 

where it occurs for the remaining life of the mouse (Hoffman et al. 1995). Mice are born at 19 

to 21 days post conception. In human embryos, the yolk sac serves as the initial site of 

primitive erythropoiesis from week 3 to 6 post conception. The fetal liver functions as the site 

of definitive erythropoiesis from week 6 to 22. After week 22 of gestation, the bone marrow 

becomes the predominant and lifelong site of blood cell production (Palis and Yoder 2001). 

Humans are usually born around 40 weeks post conception. 

The definitive erythropoietic lineage in mice is depicted in Fig. 2. Hematopoietic stem 

cells in the bone marrow give rise to colony forming units granulocytes, erythrocytes, 

monocytes, macrophages (CFU-GEMM) that commit to the erythroid lineage by 

differentiating into burst forming units erythroid (BFU-E). These cells develop into colony 

forming units erythroid (CFU-E), which express erythropoietin receptors (EpoR) on their 

surface and require erythropoietin (Epo) for survival and differentiation. This has been 

verified by EpoR knockout mice that show severe anemia due to a block in maturation of 

CFU-E cells and thus die at midgestation (Wu et al. 1995). Triggered by Epo, CFU-E mature 

into proerythroblasts and erythroblasts, gradually downregulating EpoR expression, 

increasing hemoglobin content and the expression of surface markers such as Ter119 and 

reducing cell size. After ejecting the nucleus, reticulocytes enter the blood stream and 

terminally differentiate into the typical oxygen-transporting doughnut-shaped erythrocytes. 
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The murine EpoR, which was isolated from an expression library of murine 

erythroleukemia cells (D'Andrea et al. 1989), is a member of the type I cytokine receptor 

superfamily with a single transmembrane domain. Crystallographic studies demonstrated 

that the EpoR exists as a preformed dimer at the cell surface (Livnah et al. 1999). Binding of 

an Epo molecule to the receptor induces a conformational switch (Remy et al. 1999) that 

activates the associated kinase Janus kinase (JAK) 2. JAK2 is prebound to the receptor 

dimer by the proline-rich EpoR motifs Box 1 and Box 2. Upon Epo-binding, JAK2 undergoes 

transphosphorylation and thereby gets activated. Activated JAK2 phosphorylates eight 

tyrosine residues within the EpoR cytoplasmic domain that serve as docking sites for Src 

homology 2 (SH2)-containing signaling proteins. JAK2 is essential for definitive 

erythropoiesis, as revealed by the analysis of JAK2 knock-out mice having similar 

phenotypes as EpoR knock-out mice (Neubauer et al. 1998). 

The most direct pathway to induce gene expression is represented by signal 

transducer and activator of transcription (STAT) 5. STAT5 binds to phosphorylated tyrosines 

Y343 and Y401, and to a minor extent Y429 and Y431 (Klingmüller et al. 1996). STAT5 is 

phosphorylated by JAK2, dimerizes, translocates into the nucleus and activates target gene 

expression, including the anti-apoptotic protein Bcl-XL (Socolovsky et al. 1999) and the 

negative regulator cytokine-inducible SH2 domain-contain (CIS) protein (Matsumoto et al. 

1997). STAT5 cycles between nucleus and cytoplasm, thereby acting as a remote sensor 

constantly monitoring receptor activation (Swameye et al. 2003). 

Another protein network activated after Epo stimulation is the phosphoinositide 3-

kinase (PI3K) pathway. The regulatory subunit p85 of PI3K can either bind to phosphorylated 

Y429 of the EpoR (Klingmüller et al. 1997) or to GRB2 associated binding protein (Gab) 1 

and 2, which are associated with the phosphorylated EpoR via the scaffold proteins GRB2 

and SHC (Ravichandran et al. 1995). PI3K signaling leads to phosphorylation of protein 

Hematopoietic
stem cell

CFU-E

colony forming unit erythroid

Proerythroblast Erythroblast Reticulocyte ErythrocyteBFU-E

Erythropoietin receptor (EpoR) expression
and dependence on Erythropoietin (Epo)

Figure 2: Erythropoietic lineage in mice. Hematopoietic stem cells give rise to erythrocytes 
undergoing several developmental stages. Erythropoietin (Epo) is the key regulator of red blood 
cell production, being necessary for survival and differentiation of erythroid progenitor cells from the 
colony forming unit erythroid to the erythroblast stage. At the late erythroblast stage, cells eject 
their nucleus and successively maturate into erythrocytes with their characteristic doughnut-shaped 
appearance. 



 1.4 Summary of the results 13 
 ___________________________________________________________________  

kinase B (PKB/Akt) and protein kinase C (PKC) ε. PI3K activation was proposed to trigger 

proliferation of primary erythroid cells (Zhang and Lodish 2004). 

 
The recruitment of the complex GRB2 - son of sevenless (SOS) to the receptor triggers 

activation of the mitogen-activated protein (MAP)-kinase pathway (Fig. 3). GRB2 directly 

interacts with phosphorylated Y464 of the EpoR (Barber et al. 1997) or indirectly by binding 

to either SH2 inositol 5-phosphatase (SHIP)1 (Mason et al. 2000) or SH2 containing 

phosphatase (SHP)-2 (Tauchi et al. 1996). Futhermore, SHC can bind to phosphorylated 

JAK2 (He et al. 1995) and serve as adaptor protein for GRB2. In every case, EpoR activation 

leads to recruitment of the guanine-nucleotide exchange factor SOS to the membrane. Ras 

is loaded with GTP, which leads to activation of Raf, the first protein of the MAP-kinase 

cascade (see next chapter). An alternative route for MAP-kinase activation has been 

proposed through activation of PKC via the PI3K pathway (Karnitz et al. 1995). 

Signal termination is mediated by negative feedback loops. Activated SHP-1 inhibits 

JAK2 activity when bound to phosphorylated Y429 of the EpoR. ERK1/2 activation leads to 

phosphorylation of SOS, triggering dissociation of the Grb2-SOS complex from the receptor. 

Furthermore, endocytosis of activated receptor complexes was proposed to terminate 

signaling by depleting the cell surface of receptors. 

The MAP-kinase cascade is critical for the differentiation of erythroid progenitor cells as 

K-ras-/- mice die between 12 and 14 days of gestation with fetal liver defects and evidence of 

anemia (Johnson et al. 1997). Furthermore, c-Raf knock-out studies suggested that Raf 

delays terminal differentiation (Kolbus et al. 2002) and overexpression of constitutively active 
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Figure 3: The erythropoietin-induced MAP-kinase signaling network. Phosphorylated EpoR 
leads to the recruitment of the GRB2-SOS complex to the plasma membrane. Activation of Ras 
triggers the Raf/MEK/ERK phosphorylation cascade. Activated ERK can dimerize, enter the 
nucleus and induce gene transcription. SHP1 and ERK act as negative feedback loops, inhibiting 
JAK2 and GRB2-SOS, respectively. 
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Ras blocks terminal erythroid differentiation (Zhang and Lodish 2004) in cells stimulated with 

both Epo and tyrosine receptor kinase ligands. 

 

1.4.3 The MAP-kinase signaling network 
 

The mitogen activated protein (MAP)-kinase pathway is one of the best studied signal 

transduction pathway. It is conserved from yeast to humans. The MAP-kinase cascade 

consists of three modules. Upon a certain stimulus, a MAP-kinase kinase kinase (MAPKKK) 

is activated that phosphorylates a MAP-kinase kinase (MAPKK) on two serine residues. 

MAPKK is a dual specific kinase, phosphorylating MAP-kinase (MAPK) on a threonine and a 

tyrosine residue. Now, MAPK can serine/threonine phosphorylate several target proteins, 

eliciting a specific biological response (Fig. 4 left panel). 

 
In budding yeast, five MAP-kinase modules are known, controlling various biological 

responses including mating, filamentation, osmolyte synthesis, cell wall remodeling and 

sporulation (Pouyssegur and Lenormand 2003). In mammalian cells (Fig. 4), besides the 

Figure 4: MAP-kinase modules in mammals. A stimulus leads to activation of a small G protein, 
which activates a MAPKKK. Subsequently, MAPKK and MAPK are phosphorylated. 
Phosphorylation of several substrate proteins elicits various biological responses. In mammals, five 
MAP-kinase modules are known, of which the Raf/MEK/ERK cascade is best studied. See 
appendix for abbreviations. 
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classical Raf/MEK/ERK module, JNK/SAPK, p38 and the MEK5/ERK5 cascade have been 

described (Chen et al. 2001).  

Considering the multitude of MAP-kinase modules, the question arises how specificity 

can be assured and cross talk between these conserved proteins can be prevented. This 

issue is particularly important in yeast, where e.g. the MAPKKK STE11 is involved in the 

mating, osmolarity as well as filamentation pathways. One explanation lies in scaffolding 

proteins. The scaffold STE5 binds the MAP-kinases responsible for mating, while the 

MAPKK PBS2 binds STE11 and the MAPK HOG1, triggering osmolyte synthesis (Elion 

1998). In mammals, the role of scaffolding proteins is less obvious. Several scaffolding 

proteins have recently been described, including kinase suppressor of Ras (KSR), MEK-

partner 1 (MP1) and β-arrestins for the Ras/MEK/ERK pathway, β-arrestin-2 and JNK 

interacting proteins (JIP1/2/3) for the JNK cascade, and JIP2, JIP4 and osmosensing 

scaffold for MEKK3  (OSM) for the p38 MAPK module (Dard and Peter 2006). Besides the 

functions described for yeast, these scaffolds are likely to increase signaling efficiency by 

orienting the kinases and restrict signaling to specific subcellular locations. 

MAP-kinase activation has a prominent role in cancer as it frequently promotes cellular 

proliferation. Indeed, the MAP-kinase pathway is hyperactivated in 30% of human cancers. 

Ras and Raf are both well-known proto-oncogenes, Ras mutations were found in 90% of 

pancreas adenocarcinoma, 50% of thyroid tumors and 30% of myeloid leukemia (Bos 1989). 

Constitutive activation of ERK1/2 has been found in 20 – 45% of human tumor cell lines and 

solid tumors (Hoshino et al. 1999). Many attempts have been made to target this pathway for 

cancer therapy. Promising results were obtained in vitro with the second-generation MEK1/2 

inhibitor PD184352 (CI-1040) (English and Cobb 2002) and its derivative PD0325901. Since 

the results in the clinic were disappointing, combinations with other therapeutics or targeting 

genetically defined tumor subtypes that are MEK-dependent (Solit et al. 2006) might be a 

solution. 

In the rat pheochromocytoma cell line PC12, the MAP-kinase pathway is activated by 

both EGF and NGF or FGF. However, upon EGF stimulation, these cells proliferate, while 

upon NGF or FGF, the cells differentiate into neuronal-like cells with neurites (Tsuji et al. 

2001). It was demonstrated that the same pathway can elicit two fundamentally different 

responses by using different activation kinetics (Marshall 1995). EGF leads to a transient 

MAP-kinase activation, whereas NGF/FGF triggers sustained MAPK activation (Yamada et 

al. 2004). Only sustained MAP-kinase activation can induced nuclear translocation of ERK 

(Pouyssegur and Lenormand 2003) and induce gene transcription. A set of immediate early 

gene products contain docking site for ERK, FXFP (DEF) domains. These proteins are post-

translationally stabilized by activated ERK, thus sensing sustained MAP-kinase activation 

(Murphy et al. 2004). 
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Activation of the classical Raf/MEK/ERK MAP-kinase pathway involves the following 

steps. Upon binding of a ligand to a cytokine receptor or a receptor tyrosine kinase, the 

receptor is phosphorylated on tyrosine residues. The SH2-domain containing adaptor 

molecules SHC and GRB2 can bind, recruiting the guanine exchange factor SOS to the 

plasma membrane. SOS catalyzes the exchange of Ras-bound GDP for GTP, leading to Raf 

activation. Raf activates MEK, which in turn phosphorylates ERK. ERK can dimerize and 

activate transcription factors (Fig.5).  

 
Several positive and negative feedback loops fine-tune this system. Activated MEK1 

mediates hyperphosphorylation of c-Raf, which increases c-Raf kinase activity (Fig. 5a) 

(Zimmermann et al. 1997).  ERK2 phosphorylates serine/threonine residues at the C-

terminus of B-Raf, thereby reducing its biological activity (Fig. 5b) (Brummer et al. 2003). 

Activation of MAP kinases through Ras results in phosphorylation of SOS, uncoupling the 

Figure 5: Feedback loops in MAP-kinase signaling. Positive and negative 
feedback loops include a) activation by phosphorylation, b) inhibition by 
phosphorylation, c) disruption of protein interaction by phosphorylation, d) 
competitive disruption of protein interaction and e) inactivation by 
dephosphorylation. 
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SOS/GRB2 complex from tyrosine kinase substrates (Fig. 5c) (Buday et al. 1995). RKIP 

competitively disrupts the interaction between c-Raf and MEK (Fig 3d) (Yeung et al. 1999) 

and NGF-stimulation of PC12 cells induces expression of MKP3, a dual specificity 

phosphatase that inactivates ERK1/2 (Fig. 5) (Camps et al. 1998). MKP3/DUSP6 is among 

the genes showing the highest transcriptional upregulation after prolonged ERK activation by 

constitutive active Ras (Nils Blüthgen, personal communication). 

There is a wide variety of mathematical models of the MAP-kinase pathway which have 

led to novel insights and predictions as to how this system functions (Orton et al. 2005). The 

first task for modeling is to determine the stoichiometry and concentration of signaling 

molecules, an important information that has often been neglected. Fig. 6 summarizes the 

data compiled by Ferrell (1996) for frog oocytes and isoform-specifc data of CFU-E and 

BaF3 cells that were obtained by us using the methods described in the next chapter. It 

became evident from this data that the cytoplasmic proteins MEK and ERK are much more 

abundant in the cell than the membrane associated proteins Ras and Raf. 

 
By a combination of quantitative experimental data and mathematical modeling, 

several systems properties of the MAP-kinase pathway were demonstrated. Ultrasensitivity 

and positive feedback loops can trigger switch-like responses in Xenopus oocytes (Ferrell 

and Machleder 1998). In some mammalian cells, the MAP-kinase signaling network can 

switch from a bistable system with a sharp threshold to a monostable proportional response 

system (Bhalla et al. 2002). As switch-like response systems are intrinsically sensitive to 

noise, the robustness of the MAP-kinase was analyzed, revealing that the building cascades 

composed of molecules activated by multisite phosphorylation provides a robust method to 

obtain switch-like behavior and that this kind of cascade is robust to changes of most 

parameters (Blüthgen and Herzel 2003). The combination of negative feedbacks and 

Figure 6: Stoichiometry of the MAP-kinase cascade. Several hundred molecules of MAP-kinase 
signaling components are present per yeast cell. In the large frog oocytes, billions of molecules of 
each proteins have been determined. In mammalian cells, signaling components range from 
thousand to more than a million molecules per cell. 1 Ferrell (1996) 2 Schilling et al, manuscript in 
preparation 
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ultrasensitivity could induce oscillations in the MAP-kinase pathway, a theory that was 

demonstrated theoretically (Kholodenko 2000) but awaits experimental validation. 

Computational MAP-kinase models including receptor activation have revealed novel 

insights into cellular signaling. For PC12 cells, an ODE-based mathematical model of the 

EGF signal-transduction pathway was developed to investigate the factors influencing the 

kinetics of ERK cascade activation. The model consisted of 30 reactions involving 29 species 

(Brightman and Fell 2000). The kinetic constants of reactions and initial concentrations of 

molecules were largely based on a range of measured or estimated values published in the 

existing scientific literature. The analysis of this model indicated that negative feedback 

inhibition of the ERK cascade by phosphorylation of SOS was the most important factor in 

determining whether the cascade activation was transient or sustained. Sustained activation 

of ERK was achieved by increasing SOS dephosphorylation. This differences in feedback 

regulation were likely to explain the characteristic patterns of EGF- and NGF-induced ERK 

activation in PC12 cells.  

An ODE-based mathematical model describing the dynamics of the EGF-induced 

signal-transduction pathway consisting of 125 reactions involving 94 species was proposed 

by Schoeberl et al. (2002). They included receptor internalization via two distinct routes in 

this model. Kinetic parameters were again based on values published in the scientific 

literature, and initial concentrations were either compiled from the literature or based on 

laboratory experiments. A major conclusion of the modeling process predicted that the 

velocity of receptor activation, which depends on ligand binding kinetics, determines the 

cellular response to EGF. Therefore, a ligand with higher affinity would result in faster ERK 

activation than a ligand with lower affinity. 

An extensive ODE-based model of EGF- and NGF-induced MAP-kinase activation in 

PC12 cells was published by Sasagawa et al. (2005). The model consisted of 22 molecules 

and 106 rate constants and is among the most comprehensive to date, as it includes both the 

Ras and Rap1 pathways to ERK activation and combines theoretical predictions with 

experimental validation. The model was used to investigate how EGF encodes transient ERK 

activation, while NGF encodes sustained dynamics of ERK activation. The analysis indicated 

that transient activation of ERK was dependent on the change of EGF levels rather than the 

absolute concentration of EGF. In contrast, NGF-induced sustained ERK activation was 

dependent on the final concentration of NGF, but not on relative changes in NGF levels. 

Thus, the signaling networks can distinguish between absolute ligand abundance or changes 

in ligand concentrations. EGF leads to the activation of Ras, while NGF primarily activates 

Rap1. Whereas Ras is inactivated by Ras-GAP, which is recruited to the membrane upon 

receptor activation, Rap1 is inactivated by constitutively active Rap1-GAP. Therefore, EGF 

leads to transient signaling, whereas NGF triggers sustained ERK activation. Thus, systems 
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biology could provide an answer to the long-lasting questions regarding MAP-kinases 

induced proliferation versus differentiation in PC12 cells. 

 

1.4.4 New strategies for quantitative immunoblotting 
 

Accurate quantitative data are the basis for mathematical models. A major bottleneck in 

current systems biology is generation of high quality quantitative data. While new high-

throughput technologies have produced large amounts of data, the quality of these data sets 

are often insufficient for mathematical modeling because many high-throughput methods 

sacrifice specificity for scale (Troyanskaya et al. 2003). Therefore, new strategies to improve 

data quality are needed. 

Cellular signals are transduced by changes in amount and modifications of proteins. 

The most common used method for protein detection is immunoblotting, also known as 

Western blotting. For immunoblotting, the protein mixture is separated in an SDS 

polyacrylamide gel by electrophoresis (SDS-PAGE). The proteins are subsequently 

transferred to a membrane and the protein of interest is revealed with specific antibodies. 

The protein amount can be determined if the antibody is detectable by fluorescence or 

chemiluminescence. However, conventional chemiluminescence detection by x-ray films 

offers only limited linearity. Therefore, CCD-camera based detection with a high linear 

dynamic range is preferable. The relative protein amount can be calculated from the light 

intensity, being directly proportional to the amount of the epitope recognized by the antibody. 

The most common strategy for normalization of blotting data involves the determination 

of the ratio of the protein of interest relative to a constant protein (Albeck et al. 2006). 

However, this often increases the error, since both proteins are not exactly quantifiable and 

are present in different concentrations and molecular weights. 

We have shown that the errors of immunoblotting data are not randomly distributed, 

but, due to the structure of the acrylamide polymer, appear as correlated errors on the 

membrane. This becomes manifest in a wavelike concentration gradient for intrinsically 

constant proteins. The reason for this are irregularities in the polyacrylamide gel and 

inhomogeneities in transfer to the membrane. Furthermore, we could demonstrate that the 

data quality improves if the samples of a time series experiment are not loaded chrono-

logically onto the electrophoresis gel, but in a randomized fashion (Schilling et al. 2005b). 

This does not prevent the errors, but eliminates their autocorrelation. The blotting error is 

therefore transformed into Gaussian noise, which can be corrected using mathematical 

methods (Fig. 7). 
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The best way to classify the errors is using a smoothing spline, a mathematical function 

consisting of joined polynomials and representing the approximate characteristics of a data 

series. For error determination we use e.g. proteins of the cytoskeleton, assuming these 

proteins to be in constant concentration in the cell and not to be modified upon stimulation. 

We termed these proteins ‘normalizers’. A spline is calculated, smoothing the data of the 

normalizer. Since the blotting error is not only apparent in horizontal, but also vertical 

direction on the membrane, it is crucial that the normalizer has similar molecular weight than 

the protein of interest. The protein data are corrected using this spline (Fig. 8). 

Figure 7: Randomized immunoblotting prevents error correlations. BaF3 cells 
expressing the erythropoietin receptor were stimulated for 10 min with erythropoietin 
(Epo). Every 30 s samples were taken and loaded on a SDS polyacrylamide gel in a 
randomized order, separated and transferred to a membrane. The quantified data of 
the protein ERK1 are depicted both in gel-loading and temporal order. Displaying the 
data in gel-loading order leads to a pseudo-dynamic that is caused by a blotting 
error. This can be eliminated with a smoothing spline if the data is displayed in 
temporal order.
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The protein of interest frequently needs to be enriched prior to immunoblotting by 

immunoprecipitation (IP). The protein bound to an antibody is linked to a Protein A-

sepharose matrix that can be separated from the cellular lysate by centrifugation. Indications 

for an IP include proteins of low cellular concentrations or the application of generic phospho-

specific antibodies for detection. These antibodies recognize the phosphorylation of several 

proteins; IP allows the identification of a specific phosphorylated protein. No normalizers are 

present after IP. To circumvent this problem, we developed recombinant proteins harboring 

the same epitope as the precipitated protein, but differing slightly in molecular mass. We 

termed this proteins ‘calibrators’.  They can be added to the lysate prior to IP, therefore being 

Figure 8: Normalization of immunoblotting data. The immunoblot depicted in Fig. 7 
was incubated with an antibody against the cytoskeletal protein β-actin, serving as 
normalizer. A smoothing spline for the quantified data was calculated and used to 
normalize the ERK1 data. The distance of the data points to the spline is reduced and as 
expected a straight line for the time course arises. 
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subjected to the same treatment as the protein of interest. On the immunoblot, the calibrator 

appears above or below the protein band and is used for data normalization. The 

concentration of the calibrator can be easily determined, allowing us to quantify the absolute 

amount of the protein of interest. Converted by the number of lysed cells, the number of 

proteins per cell and the stoichiometry of cellular components can be obtained, an important 

information for mathematical modeling and for the analysis of systems properties. 

 
To automate our methods we developed the computer software GELINSPECTOR 

(Schilling et al. 2005a). This program imports the quantified data of the measured proteins 

and normalizers / calibrators, calculates smoothing splines and performs data normalization. 

GELINSPECTOR is able to integrate data of several immunoblots. This is an important feature 

if the number of samples to be analyzed exceeds the number of lanes on the gel. For an 

unbiased data correction we introduced criteria. GELINSPECTOR calculates a first estimate of 

the data. For time series, the first estimate can be obtained by a smoothing spline. For 

samples analyzed in replicates, the mean of the data is used, while for dose response 

experiments a linear or sigmoidal relationship of stimulation dose and signal is calculated. 

Normalization is valid if the distance of the data to the first estimate is reduced after 

randomized immunoblotting

quantification of protein

quantification of normalizer / calibrator

first estimate is calculated
normalization of raw data using
spline of normalizer / calibrator

criterion

deviation of raw data to
first estimate is calculated

deviation of normalized data to
first estimate is calculated

raw data

normalized data
are used

raw data 
are used

invalid valid

experiment

graphical display 
and saving of

processed data

Figure 9: Automated data processing by GELINSPECTOR. The computer program 
imports quantified blotting data, performs data processing and verifies the 
normalization. Subsequently the processed data are saved. 
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normalization. Otherwise, the original data are retained. Thereby we can prevent 

deterioration of the data, as e.g. by a inaccurate measurement of the normalizer. The 

processed data are saved both as spreadsheet and diagram (Fig. 9). 

Automatic data normalization and processing is crucial for quantitative data generation. 

Furthermore, to ensure transferability of data and to avoid problems due to heterogeneity of 

the biological background, standardization of the biological system under investigation and 

the methods applied is absolutely critical (Klingmüller et al. 2007). By developing quantitative 

immunoblotting as a robust and reliable technique for quantitative data acquisition under 

standardized conditions, we established an easy to handle and cost-effective method that 

permits the assembly of large data sets with high temporal resolution. 

 

1.4.5 Modeling of the Epo-induced MAP-kinase network 
 

To causatively understand Epo-induced MAP-kinase activation and to be able to 

predictably manipulate erythroid differentiation of progenitor cells, we performed 

mathematical modeling. A dynamic pathway model of the Epo-induced MAP-kinase signaling 

network was compiled comprising activation cascades and negative feedback loops 

(Schilling et al. 2007). A major challenge in establishing computational models is the frequent 

discrepancy between the number of parameters that have to be estimated and the amount of 

measured data points. To deal with this, we made use of the strategies discussed in the last 

chapter, measuring as many time points and proteins as feasible after continuous stimulation 

of primary murine erythroid progenitor cells. Furthermore, total concentrations of several 

proteins were measured. Using saturation binding assays with radiolabeled Epo as 

discussed in the next chapter, we determined the amount of cell surface EpoR. Additional 

concentrations were determined by quantitative immunoblotting using calibrators or standard 

proteins. Thus, the number of parameters to be estimated was decreased. Finally, we 

determined dependent parameters in our model by iterative rounds of parameter estimation 

and identifiability testing. Parameter dependencies detected include directly correlated and 

hyperbolically dependent parameters as well as parameter triplets describing a two-

dimensional surface. We therefore could fix non-identifiable parameters to estimated values, 

enabling us to identify the remaining parameters with a standard deviation of less than 10%. 

Using our model, we could describe our immunoblotting data with sufficient accuracy. The 

analysis of the model variables revealed that the two negative feed-back loops delayed 

activation of the phosphatase SHP1 and inhibitory phosphorylation of SOS by activated 

ERK1/2 was responsible for fast deactivation of signaling despite continuous stimulation with 

Epo. 
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We performed sensitivity analysis to identify the parameters having the profoundest 

impact on signal propagation. Further simulations predicted that overexpression of a single 

ERK isoform would lead to feedback-mediated signal rerouting. This could be verified by 

isoform-specific overexpression, demonstrating that overexpression of an ERK isoform 

increases the negative feedback on SOS, which results in decreased activation of upstream 

molecules and the other ERK isoform. In contrast, overexpression of Raf was predicted to 

increase signaling of both ERK isoforms. 

To investigate the impact of overexpressing MAP-kinase components on differentiation 

and proliferation of erythroid progenitor cells, we established protocols for preparation, 

retroviral transduction and sorting of primary murine CFU-E cells (Fig. 10).  

 
Primary CFU-E cells were prepared from fetal livers of Balb/c mouse embryos 13.5 

days post conception as described (Ketteler et al. 2002a). CFU-E cells were retrovirally 

transduced with supernatants of Phoenix eco cells transfected with vectors harboring the 

gene of interest under control of the retroviral promoter and the cDNA coding for a truncated 

human low affinity nerve growth factor receptor (hLNGFR) under control of an SV40 

promoter. Cells were cultivated overnight to allow for expansion and expression of the gene 

of interest. To enrich for transduced cells, positive selection was performed using magnetic 

cell sorting (MACS) with anti-hLNGFR beads. 

To analyze the effect of overexpression of MAP-kinase components on proliferation of 

erythroid progenitor cells, CFU-E transduced with c-Raf, ERK1 or vector control were 
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Figure 10: Preparation, retroviral transduction and sorting of erythroid progenitor cells. 
CFU-E cells are prepared from fetal livers and enriched by lineage depletion. After transduction 
with retroviral supernatants, cells are cultured overnight and positively selected by MACS sorting. 
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cultivated for 16 h and positively sorted. Cells were incubated with Epo concentrations 

ranging from 10-3 to 10 U/ml and cultivated for 4 h. [3H]-thymidine was added and cells were 

grown overnight. To measure proliferation, the amount of incorporated [3H]-thymidine was 

determined (Fig. 11, left panel). As expected, vector control transduced cells showed a 

sigmoidal Epo-dependent proliferation curve as reported previously for the myeloid cell line 

32D (Klingmüller et al. 1995). However, ERK1 and c-Raf transduced cells showed reduced 

Epo-dependent proliferation. In accordance with our model prediction, the effect of 

overexpressing c-Raf was stronger than overexpressing of ERK1. The phenotypes correlated 

with the simulated integrated response of ppERK1/2, defined as the combined area under 

the curve of activated ERK1 and ERK2. To investigate whether this effect is due to 

accelerated differentiation or increased apoptosis, we determined the apoptotic fraction of 

transduced and sorted erythroid progenitor cells using the TdT-mediated dUTP-FITC nick-

end labeling (TUNEL) assay (Ketteler et al. 2003). It became apparent that a very low 

number of cells were apoptotic, independent of the vectors transduced (Fig. 11, right panel). 

Thus, hyperactivation of the MAP-kinase pathway reduces proliferation of erythroid 

progenitor cells without inducing apoptosis. 

 
We extended the model to predict the effect of expressing kinase-defective ERK based 

on two hypotheses. In the first model, SOS activity is inhibited by complexation with ERK 

followed by phosphorylation; in the second model, phosphorylation is necessary to inhibit 

SOS signaling. If the first model was correct, overexpression of kinase-defective ERK would 

lead to reduced ERK signaling. Conversely, the second model predicted that overexpressing 

a kinase-defective ERK isoform would lead to reduced negative feedback signaling, resulting 

in similar phenotypes as overexpression of the wild-type isoform. 

Figure 11: Overexpression of MAP-kinase components reduces proliferation of erythroid 
progenitor cells without inducing apoptosis. CFU-E were prepared and transduced with vector 
control, c-Raf or ERK1. Cells were cultivated overnight and proliferation was measured using 
thymidine incorporation, showing reduced proliferation for c-Raf and ERK1 transduced cells. 
Apoptosis was determined using TUNEL assay with low numbers of apoptotic cells for each 
transduction. 
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 Differentiation of murine erythroid progenitor cells can be analyzed using two cell surface 

markers. Ter119 is gradually upregulated, while CD71, the transferrin receptor, is 

downregulated during maturation from proerythoblasts to erythrocytes (Dumitriu et al. 2006). 
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Figure 13: Overexpression of MAP-kinase components accelerates differentiation of 
erythroid progenitor cells. Differentiation of murine erythroid progenitor cells is characterized 
by increasing Ter119 and decreasing CD71 expression. CFU-E cells were prepared and 
transduced with vector control, c-Raf, wild type or kinase defective ERK. Differentiation was 
measure by FACS analysis directly after transduction and after two days, showing accelerated 
differentiation for c-Raf and ERK transduced cells.
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To distinguish between the two models predicted, we transduced CFU-E with c-Raf, ERK1, 

ERK2, the kinase defective mutants ERK1 K71R and ERK2 K52R as well as vector control 

and measured differentiation by surface flow cytometry using antibodies against Ter119 and 

CD71. The fraction of cells expressing low levels of CD71 and high levels of Ter119 were 

counted directly after transduction and after culture in serum-free medium with 0.5 U/ml Epo 

for 48 h. Overexpression of MAP-kinase components resulted in larger fractions of 

differentiated cells, both for wild type and kinase defective ERK constructs (Fig 13). Thus, the 

second model is correct, demonstrating that phosphorylation, but not complexation of SOS 

inhibits signaling. Furthermore, we showed that hyperactivation of the MAP-kinase signaling 

network leads to accelerated partial differentiation in murine erythroid progenitor cells. 

The function of erythrocytes critically depends on their hemoglobin concentration. 

Hemoglobin is accumulated during terminal maturation of erythroblasts. To investigate 

hemoglobinization in erythroid progenitor cells, we transduced CFU-E cells with c-Raf, ERK1, 

ERK2, the kinase defective mutants ERK1 K71R and ERK2 K52R as well as vector control. 

Hemoglobinization was measured by intracellular flow cytometry using antibodies against 

hemoglobin α. Cells were cultured in serum-free medium with 0.5 U/ml Epo for 48 h. 

Increased expression of hemoglobin was visible in all cells. However, overexpression of 

MAP-kinase components reduced hemoglobinization, both for wild type and kinase defective 

ERK constructs (Fig. 12). Thus, MAP-kinase hyperactivation leads to reduced 

hemoglobinization in primary erythroid cells. 

 

Figure 12: Overexpression of MAP-kinase components reduces hemoglobinization of 
erythroid progenitor cells. CFU-E were prepared and transduced with vector control, c-Raf, wild 
type or kinase-defective ERK. Hemoglobinization was measure by FACS analysis directly after 
transduction and after two days, showing reduced hemoglobinization for c-Raf and ERK 
transduced cells. 
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Therefore, hyperactivation of the Epo-induced MAP-kinase pathway in primary murine 

CFU-E by overexpression of signaling components accelerates differentiation and thereby 

reduces proliferation of erythroid progenitor cells. This does not induce apoptosis, but 

reduces hemoglobinization, possibly by restricting the time window cells can express the 

globin genes. Contrary results were obtained with gene knock-out studies, as c-Raf deficient 

erythroblasts were shown to differentiate much faster than their wild-type counterparts and 

cells expressing a kinase-dead c-Raf differentiated faster in vitro (Rubiolo et al. 2006). C-Raf 

deficient embryos are growth-retarded and anemic and die at midgestation. It was 

speculated that this anemic phenotype is due to premature erythroblast differentiation at the 

expense of renewal, depleting the fetal liver of erythroid precursors (Kolbus et al. 2002). 

However, these results were obtained with heterogeneous population of erythroid progenitor 

cells cultivated in presence of receptor tyrosine kinase ligands that strongly activate the 

MAP-kinase pathway. Our results were obtained using a pure population of CFU-E cells 

cultivated with Epo as the only growth factor, showing that hyperactivation of the Epo-

induced MAP-kinase pathway in erythroid progenitor cells directly accelerates differentiation 

and reduces hemoglobinization 

In conclusion, by combining mathematical modeling with the generation of a large set 

of quantitative data in primary erythroid progenitor cells, we provided a computational model 

of the Epo-induced MAP-kinase signaling network. The systems biology approach applied 

provided unexpected and counterintuitive results such as feedback-mediated signal rerouting 

and overexpression of kinase-defective and kinase-active isoforms leading to similar 

phenotypes. These predicted effects were validated by stimulation of transduced primary 

murine erythroid progenitor cells with Epo and by the analysis of the differentiation and 

hemoglobinization of these cells. Additionally, the sensitivity analysis provided novel targets 

for efficient and predictable interventions. These targets can be evaluated in the future using 

mathematical models, opening new possibilities for the treatment of anemia and leukemia. 

 

1.4.6 Endocytosis of the Epo receptor 
 

The first steps in activation of a signal transduction pathways such as the MAP-kinase 

signaling network depends on ligand binding to its cognate receptor. The responsiveness of 

a cell to a specific ligand is determined by the amount and specificity of receptors on the 

plasma membrane. Receptor surface expression is a function of maturation and 

internalization kinetics of the receptor and crucial for activation of signal transduction. 

Recruitment of inhibitory molecules to the receptor such as phosphatases and the activation 

of negative feed-back loops contribute to signal termination (Hilton 1999; Schlessinger 2000). 

In addition, ligand-induced receptor endocytosis of receptor tyrosine kinases has been 
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proposed to be involved in downregulation of cell surface receptors, thereby reducing the 

cellular responsiveness towards the ligand (Waterman and Yarden 2001). The erythropoietin 

receptor (EpoR) is produced in the endoplasmic reticulum, processed and matured in the 

Golgi complex as a preformed dimer and translocated to the plasma membrane, where it can 

bind to its ligand, erythropoietin (Epo). Both free EpoR and Epo-bound receptors can be 

internalized to early or recycling endosomes, the latter allowing return to the cell surface. 

After trafficking to late endosomes, ligand and receptor are degraded in lysosomes (Fig 14). 

 
Ligand-induced EpoR internalization has been shown to depend on cytoplasmic 

residues of the EpoR (Levin et al. 1998). EpoR endocytosis independent of JAK2 activation 

or receptor tyrosine phosphorylation was documented (Beckman et al. 1999). Furthermore, 

the steady state of cell surface EpoR can be perturbed by inhibiting cysteine proteinases, 

resulting in reduced degradation and increased amounts of the receptor at the plasma 

membrane (Neumann et al. 1996). Internalization and degradation kinetics of recombinant 
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Figure 14: Schematic representation of maturation and internalization of the erythropoietin 
receptor (EpoR). Preformed receptor dimers mature in the endoplasmic reticulum (ER) and Golgi 
complex and traffic to the plasma membrane, where they can bind to their ligand, erythropoietin 
(Epo). Receptors on the plasma membrane are subject to constant turnover by constitutive and 
ligand-induced internalization to early and recycling endosomes. After internalization, both receptor 
and ligand can get processed to late endosomes, followed by degradation in lysosomes. 
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human Epo was determined by kinetic modeling, showing that about 40% of internalized Epo 

is degraded, while 60% is resecreted in a biologically active form (Gross and Lodish 2006). 

Since it was proposed that internalization of plasma membrane receptors is 

responsible for adaptation to stimulation and thereby for termination of signaling, we 

performed data-based mathematical modeling of the dynamic behavior of EpoR activation 

and endocytosis. To first step in modeling of receptor activation was to determine the amount 

of binding sites on the plasma membrane and the affinity of the ligand to its receptor. 

Saturation binding assays with radiolabeled ligands can be used to determine the following 

two parameters: KD, the affinity of the ligand to the receptor, which is the ratio of the off-rate 

koff divided by the on-rate kon, and Bmax, the amount of maximally bound ligand. Knowing Bmax, 

the amount of cell surface receptors can be calculated, as each Epo molecule is supposed to 

be bound by an EpoR dimer. 

We performed saturation binding assays with three types of cells. First, cells of the 

murine pro B cell line BaF3 were retrovirally transduced with HA-tagged EpoR (Ketteler et al. 

2002b) and selected with puromycin. Second, CFU-E cells were isolated from murine fetal 

livers using the methods described in the previous chapter. Third, CFU-E cells were 

cultivated in serum-free medium containing 0.5 U/ml Epo for 16 h. These cells resemble the 

early proerythroblast differentiation stage, as they have already slightly increased 

hemoglobin content without yet having reduced their size (see Fig. 2 for erythroid lineage in 

mice). 

To determine maximal binding and binding affinity, cells were incubated with increasing 

concentration of [125I]-Epo, free from cell-bound [125I]-Epo was separated and radioactivity 

was measured using a gamma counter. Unspecific binding was determined by incubating the 

cells with excess unlabeled Epo. Specifically bound Epo was plotted against free Epo and a 

one-site regression analysis was performed. Bmax and KD were calculated, indicating maximal 

specific binding and free Epo concentration for half-maximal specific binding, respectively 

(Fig. 15, upper panel). To visualize the results in a linear way, data was displayed according 

to Scatchard (Scatchard 1949). The ratio of specifically bound to free Epo was plotted 

against specifically bound Epo and the regression curves were linearized, with Bmax 

representing the intercept on the abscissa and KD the negative reciprocal of the slope (Fig 4, 

lower panel). As expected, Scatchard plots showed a linear relationship, indicating a single 

Epo binding site. 

Both BaF3 HA-EpoR and freshly isolated CFU-E cells express a receptor with an 

affinity of about 150 pM, consistent with published data. CFU-E cells cultivated for 16 h, 

however, express a receptor with much weaker affinity. According to the values for Bmax, 

BaF3 HA-EpoR cells express about 15000 molecules of EpoR on their surface, freshly 

isolated CFU-E cells about 2900 molecules and CFU-E cells cultivated for 16 h about 18000 
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molecules per cell. Interestingly, CFU-E cells seem to decrease the affinity but increase the 

expression of the EpoR during cultivation in Epo. 

 
To analyze ligand-induced and constitutive EpoR endocytosis, we performed data-

based mathematical modeling. We determined the kinetics of EpoR-bound [125I]-Epo in BaF3 

HA-EpoR cells at 37°C (Becker et al. 2007). To measure the kinetics of constitutive EpoR 
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Figure 15: Saturation binding and Scatchard analysis for specifically 
bound [125I]-Epo. BaF3 HA-EpoR cells, freshly isolated CFU-E cells and 
CFU-E cells cultivated for 16 h were incubated with increasing 
concentrations of [125I]-Epo and specifically bound Epo was plotted versus 
free Epo. Bmax and KD were calculated using one-site saturation regressions. 
Data was plotted according to Scatchard with solid lines representing the 
Bmax and KD values calculated by one-site saturation regression. 
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internalization, we expressed streptavidin binding peptide tagged (SBP)-EpoR in BaF3 cells. 

BaF3 SBP-EpoR cells were treated with [125I]-streptavidin at 37°C and constitutive EpoR 

endocytosis was measured. Two ordinary differential equation (ODE)-based models were 

compiled and parameters were estimated. The parameters revealed that ligand binding to 

the EpoR increases receptor internalization by a factor of 3.5. Approximately 80% of 

internalized Epo are recycled to the medium intact, while only 20% are degraded. The 

trajectories of receptor-bound Epo, both on the surface and within the cell, describe a sharp 

peak in the first minutes followed by a rapid decrease with the concentration rising gradually 

again. We performed sensitivity analysis to examine in silico which parameters determine 

this intriguing kinetics. A larger on-rate kon results in a higher, sharper and faster peak, while 

varying the affinity constant KD had little effect. Therefore, it is more informative to determine 

the on-rate kinetics than to measure the affinity of the ligand to the receptor for designing 

efficient Epo derivatives. Furthermore, our simulations predicted that higher turnover of the 

receptor on the plasma membrane would result in a slightly higher, but shallower peak. On 

the other hand, faster internalization of ligand-bound receptor would lead to a smaller but 

sharper peak. The parameters values we determined in cells allow a steep rise with a rapid 

decline of Epo-bound receptor. As this represents the signaling-competent receptor 

complexes, we compared the kinetics of phosphorylated EpoR with the trajectory of the sum 

of plasma membrane and internalized Epo-bound EpoR of our model. Interestingly, the 

curves match in the first 45 min of simulation with Epo. At later times, EpoR signaling is 

terminated, probably by the activation of negative feedback loops. Thus, EpoR internalization 

is not responsible for long-term attenuation, but determines a sharp signaling peak by rapid 

endocytosis of ligand-bound receptors. 

Thus, by applying a systems biology approach, we uncovered the parameters 

determining the kinetics of ligand-induced receptor complex formation and therefore signal 

activity of the receptor. We further determined that 80% of internalized Epo recycles to the 

medium. This allows EpoR activation without depleting Epo in extracellular space, being 

especially important for potentially low Epo levels in the hematopoietic stem cell niche (Noe 

et al. 1999). We additionally realized that the parameters controlling EpoR endocytosis 

permit fast activation as well as rapid deactivation of receptor complexes. In conclusion, by 

data-based mathematical modeling we determined receptor and ligand kinetics, uncovering 

unexpected systems properties such as the importance of both receptor turnover and 

recycling for plasma membrane prevalence. Furthermore, we identified the parameters 

determining early phase kinetics of EpoR activation. The data-based mathematical model 

provides an important basis for the targeted design of more potent Epo derivatives. 
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Systems biology holds great promise for the targeted

development of therapies and more cost-effective drug

development. By combining experimental data with

mathematical modeling of the dynamic behavior of

complex biological networks [1,2], systems biology

aims to identify systems properties and to predict per-

turbation-sensitive targets. However, the major limita-

tion at present is the lack of reliable quantitative data.

To determine, test and validate the quantitative accu-

racy of models, and to capture the characteristic

dynamic behavior of systems, techniques that quantita-

tively and selectively measure biochemical reactions

within the cell must be developed [3]. Additionally, a

comprehensive set of quantitative and time-resolved

data is required to conduct a systems-level analysis [4].

Recent reports show that by analyzing quantitative

data generated using fluorescence microscopy [5], elec-

trophoretic mobility shift assays [6] or immunoblotting

[7,8], new biological insights can be obtained. How-

ever, before this approach can be used for biomedical

applications, standardized procedures for data acquisi-

tion, reliable normalization methods and generally

applicable algorithms for data processing have to be

developed.

Cellular responses are regulated by complex signaling

networks, and subtle changes in protein concentration
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High-quality quantitative data generated under standardized conditions is

critical for understanding dynamic cellular processes. We report strategies

for error reduction, and algorithms for automated data processing and for

establishing the widely used techniques of immunoprecipitation and immu-

noblotting as highly precise methods for the quantification of protein levels

and modifications. To determine the stoichiometry of cellular components

and to ensure comparability of experiments, relative signals are converted

to absolute values. A major source for errors in blotting techniques are in-

homogeneities of the gel and the transfer procedure leading to correlated

errors. These correlations are prevented by randomized gel loading, which

significantly reduces standard deviations. Further error reduction is

achieved by using housekeeping proteins as normalizers or by adding puri-

fied proteins in immunoprecipitations as calibrators in combination with

criteria-based normalization. Additionally, we developed a computational

tool for automated normalization, validation and integration of data

derived from multiple immunoblots. In this way, large sets of quantitative

data for dynamic pathway modeling can be generated, enabling the identifi-

cation of systems properties and the prediction of targets for efficient inter-

vention.
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or protein modification can trigger the onset of diseases.

For the analysis of proteins in complex mixtures, one of

the most widely used techniques is immunoblotting,

which is based on electrophoresis and transfer to a

membrane. The presence of specific proteins on the

membrane is detected by antibodies in combination

with the utilization of chemiluminescent substrates and

exposure to X-ray films. However, because the linear

range of X-ray films is very limited, quantification by

charged-coupled device (CCD) camera detection is pref-

erable [9]. For rare proteins (such as certain signaling

components), prepurification by immunoprecipitation

(IP) is required prior to immunoblotting, potentially

increasing the overall error owing to additional steps

involved in the procedure. To date, only relative values

that are difficult to compare between independent

experiments have been generated by immunoblotting.

Thus, reliable algorithms for error reduction and data

processing are required to employ immunoblotting for

the generation of high-quality quantitative data.

Another problem in normalization of data from dif-

ferent sources arises from the fact that signaling path-

ways have been primarily studied in the context of

propagatable cell lines. However, as such cell lines

have lost restrictive growth control mechanisms, it is

of great importance to analyze the behavior of signa-

ling pathways in primary cells. As material that can be

isolated from animals or patients is very limited, it is

of pressing importance that existing data be combined

and compared. Mammalian cells grow either in sus-

pension or attached to a support. Suspension cells are

primarily cells of hematopoietic origin and are partic-

ularly suited for biochemical studies on cell popula-

tions with high temporal resolution because they

permit bulk stimulation and rapid sampling. For bio-

chemical studies in adherent cells, separate stimulations

are required for each time-point, potentially resulting

in a higher sample-to-sample variation. Even more dif-

ficult is the analysis of proteins in patient samples. To

eliminate errors introduced by the measurement pro-

cess and to ensure comparability of results, we have

developed robust normalization procedures for bio-

chemical data.

We use the erythropoietin receptor (EpoR)-induced

activation of ERK1 in the hematopoietic suspension

cell line, BaF3-hemaglutinin-tagged (HA)-EpoR, and

the interleukin-6 (IL-6)-induced activation of the signal

transducer and activator of transcription (STAT)3 in

adherent primary hepatocytes, as model systems to

establish a robust procedure for error reduction and to

develop reliable algorithms for data processing, facili-

tating the generation of high-quality data by quantita-

tive immunoblotting.

Results

Standardized generation of absolute values

The reliable generation of large data sets depends on

the strategies used to achieve comparable results

among individual experiments. To achieve this, we

convert the relative signals, which are usually gener-

ated by immunoblotting, to absolute numbers, such as

molecules per cell. As an example, the abundance of

the mitogen-activated protein (MAP)-kinase family

members, ERK1 and ERK2, in cytoplasmic lysates

from BaF3-HA-EpoR cells, was determined by analyz-

ing, in parallel, a serial dilution of purified recombin-

ant ERK2 protein (Fig. 1A, upper panel). The CCD

camera-based quantification of recombinant ERK2

was plotted against the number of molecules loaded on

the gel. As demonstrated by a linear regression passing

through the origin (Fig. 1A, lower panel) and extensive

additional studies (see the Supplementary material) the

detection was linearly proportional to protein concen-

tration over at least two orders of magnitude. By using

a linear regression model (detailed in the Supplement-

ary material) relative signals of endogenous ERK1 and

ERK2 were converted to molecules per cell, indicating

that in the cytoplasm of an BaF3-HA-EpoR cell,

107 000 ERK1 molecules and 318 000 ERK2 mole-

cules are present. This determination requires the

recombinant and the endogenous proteins to be ana-

lyzed on the same immunoblot and to share the same

antibody epitope. As the CCD camera-based detection

is proportional to the number of epitopes, it can even

be applied to proteins of different molecular mass,

such as isoforms or partial fusion proteins, thus per-

mitting the concomitant determination of multiple

signaling components. In addition to ensuring compar-

ability of independent experiments, absolute values can

be used to determine the stoichiometry of cellular com-

ponents, critical for obtaining insights into the quanti-

tative behavior of biological networks.

Error determination of the measurement process

To estimate the inherent noise of data generated by

the immunoblotting technique, error determinations

were performed. A serial dilution of purified recombin-

ant ERK2 protein was analyzed eight times by immu-

noblotting using an anti-ERK immunoglobulin

(Fig. 1B, upper panel) and quantified by CCD camera-

based detection. The estimated error was calculated

as the standard deviation of the CCD camera-based

measurements. Plotting signal strength vs. estimated

error revealed that the expected error behavior of a
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conventional CCD camera-based photon counting pro-

cess cannot be recovered. The systematic error inherent

in this technique can phenomenologically be described

by a sublinear function. Within our measurement

range, � 20% error for each data point is estimated,

whereas for weaker signals this percentage is increased

(Fig. 1B, lower panel). This noise consists of two dif-

ferent contributions: pipetting errors, which are con-

stant within a lane but uncorrelated from lane to lane;

and blotting errors, which are highly correlated from

lane to lane. Pipetting errors arise from differences in

cell number, gel loading and antibody detection, while

blotting errors are caused by inhomogeneities of the

gel or the blot.

Eliminating correlated errors by randomized

sample loading

To determine steps predominantly contributing to the

error obtained by quantitative immunoblotting analy-

sis, we monitored a time-course of erythropoietin

(Epo)-induced activation of ERK1 in BaF3-HA-EpoR

cells. Identical samples of cytoplasmic lysates were

loaded, in a randomized manner, onto two gels, trans-

ferred to membranes (blot 1 and blot 2) and analyzed

by three repetitive cycles of ERK immunoglobulin

reprobing and application of the chemiluminescent

substrate (Fig. 2A). Quantification of the signals

(Fig. 2B, upper panel) showed that the data obtained

by the two blots differed significantly. To reduce the

effects of uncorrelated errors, we employed a cubic

spline, the smoothness of which is determined by gen-

eralized cross-validation. It has been shown previously

that time-course behavior can be estimated from noisy

data by smoothing splines [10–12]. We emphasize that

a sufficiently dense grid of time-points is necessary to

keep the bias of this method small. Smoothing of the

data is performed to average over the errors contribu-

ted by pipetting, electrophoresis and transfer, and

other sources of noise.

Surprisingly, uncorrelated errors resulting from anti-

body detection and reprobing had little effect on the

results, as the splines smoothing the data obtained by

A

B

Fig. 1. Conversion of relative values to absolute protein concentra-

tions and error estimation of quantitative immunoblotting. (A) A

dilution series of recombinant ERK2 protein, as well as 100 lg of

total cellular lysate prepared from BaF3-HA-EpoR cells, were ana-

lyzed by quantitative immunoblotting with anti-ERK immunoglob-

ulin. The biomedical light unit (BLU) values of the dilution series

were plotted against the number of molecules loaded onto the gel

[amount (g)/MWERK2 (gÆmol)1) · NA (moleculesÆmol)1)] and a linear

regression through the origin was applied. The slope was used for

converting the signals of the total cellular lysate to molecules per

cell. Error bars represent estimated errors of the total ERK2 dilution

series, as determined in (B). (B) A dilution series of purified ERK2

was separated eight times by SDS ⁄PAGE (10% acrylamide) and

transferred to a membrane that was probed with anti-ERK immuno-

globulin and subsequently developed with enhanced chemilumines-

cence (ECL) or ECL advance substrate. The estimated error of the

quantified signals was calculated as the standard deviation of the

data. To determine the noise inherent in this technique, the signal

strength was plotted vs. estimated error and was described by a

sublinear function showing a 20% error for each data point within

our measurement range.

Strategies for standardizing quantitative data M. Schilling et al.
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B

A

Fig. 2. Randomized sample loading ensures uncorrelated errors. (A) BaF3-HA-EpoR cells were starved and stimulated with 50 unitsÆmL)1

erythropoietin (Epo) for 9.5 min, with samples of 1 · 107 cells taken every 30 s. Cells were lysed, and 75 lg of the total cellular lysate at

each time-point was separated by two 17.5% SDS polyacrylamide gels using two distinct randomized sample loading orders. Each immuno-

blot was analyzed by three repetitive cycles of detection with anti-ERK immunoglobulin and subsequent removal of the antibodies by treat-

ment with b-mercaptoethanol and SDS. The obtained signals for ERK1 were quantified by LumiImager analysis. (B) The data show strongly

correlated errors when arranged in gel loading order, which are specific for a particular blot but are not affected by reprobing procedures. By

arranging the data in chronological order, these correlations are eliminated and the data can be smoothed by spline approximations, as indi-

cated by solid lines. Randomization reduced the standard deviation of the smoothing splines by a factor of 14.
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successive reprobing of the same blot were nearly iden-

tical. However, the analysis revealed that the data

obtained for neighboring lanes was strongly correlated.

The apparently different results obtained for identical

samples showed that the blotting error leads to aber-

rant dynamic behavior. Detailed analysis of large data

sets revealed a strong correlation between neighboring

lanes in immunoblotting analysis, resulting in substan-

tial systematic errors. To separate this spatial correla-

tion from true temporal dynamics in time-course data,

we developed standard operating procedures for rand-

omized sample loading, separating consecutive time-

points by a minimum number of lanes. This loading

scheme was varied from experiment to experiment to

minimize gel border effects. The procedure thereby

ensures uncorrelated errors (Fig. 2B, lower panel) and

thus facilitates the detection of true dynamic behavior.

In this case, randomization reduced the standard devi-

ation of the smoothing splines from 18.6% to 1.4%

and thus significantly improves the data quality.

Data correction using normalizers

To reduce the effect of the blotting error and improve

the data quality, we used endogenous proteins as

normalizers. The time-course of Epo-induced phos-

phorylation of ERK1 was detected by immunoblotting

using a phosphospecific anti-pERK immunoglobulin

(Fig. 3A). Subsequently, the antibody was removed

and the blot was reprobed, first with an anti-ERK

immunoglobulin to determine the total amount of

ERK1 in the cytoplasmic lysates and, second, with a

mixture of antibodies against endogenous proteins.

These proteins, which we termed normalizers, are

highly expressed, their levels are not changed during

the course of the experiment and antibodies are avail-

able that permit efficient detection. As shown in

Fig. 3A, the blotting error is strongly influenced by the

position of a protein within a blot, as evidenced by the

analysis of bActin (42 kDa), protein disulfide iso-

merase (PDI; 58 kDa), and heat shock cognate protein

70 (Hsc70; 73 kDa) covering the entire separation

range of the polyacrylamide gel. Therefore, the signal

of a normalizer of similar molecular mass to the pro-

tein of interest has to be used to distinguish blotting

error from the true protein concentration. The levels

of pERK1 and ERK1 were normalized with a smooth-

ing spline applied to the bActin signal. As shown in

Fig. 3B, this procedure enabled us to correct for blot-

ting errors in our signals. As expected, the normalized

data shows a constant concentration of ERK1 over

the entire observation time. By employing purified

ERK2 as standard, relative signals for ERK1 were

converted to molecules per cell and the proportion of

phosphorylated ERK1 was determined by analyzing

the fraction of protein that was detected by the anti-

ERK immunoglobulin at a higher position in the blot.

This ensures the comparability of normalized data

derived from independent experiments.

Recombinant proteins as calibrators for IP

For certain proteins, immunoblotting is not capable of

generating quantitative data. This problem can be

caused by antibodies with weak affinity to the protein,

cross-reaction with other proteins resulting in a high

background, or by the use of generic phosphotyrosine

antibodies. In such cases, the protein of interest has to

be prepurified by IP, prior to electrophoresis.

As normalizers are not captured by the antibodies

used for the IP, we have established a method to cor-

rect for blotting errors as well as inaccuracies in the

multistep IP procedure, and to normalize the results

obtained. We generated proteins (which we termed

calibrators) that share the same epitope as the protein

of interest, but differ in molecular mass. Adding a

defined amount of calibrator to the lysate prior to IP

permits normalization of the results obtained by CCD

camera-based detection. We fused the protein domain

containing the epitope of the antibody used for IP to a

affinity tag for purification (Fig. 4A). Using only part

of the protein, calibrators of large proteins or trans-

membrane proteins could easily be expressed in

Escherichia coli and purified using affinity beads. We

determined the concentration of the calibrators by ana-

lyzing a BSA dilution series and the calibrator in a

Coomassie Blue-stained gel and quantifying the sig-

nals. To define the optimal amount of calibrator that

should be added to the IP while still avoiding satura-

tion of the antibodies, increasing concentrations of the

calibrator, glutathione S-transferase-tagged (GST)-

EpoR, were added to lysates of BaF3-HA-EpoR cells

prior to IP (Fig. 4B). Plotting the concentration of cal-

ibrator added to the lysates vs. signals for HA-EpoR

and GST-EpoR showed that the calibrator signal

increased linearly in a range between 2.5 and 100 ng.

This suggested that the use of a calibrator not only

permits quantitative data generation, but also conver-

sion of relative values to absolute protein concentra-

tions. The addition of the calibrator had no effect on

the signal for the HA-EpoR up to concentrations of

500 ng of GST-EpoR, indicating that the antibody was

in large excess compared with HA-EpoR. Using this

data, we calculated that 40 ng of GST-EpoR should

be added to lysates to obtain comparable signals for

HA-EpoR and the calibrator (Fig. 4C).
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Using calibrators for error reduction

The impact of calibrators on data quality is exempli-

fied by an EpoR time-course experiment with

randomized gel loading. We stimulated BaF3-HA-

EpoR cells with Epo for up to 10 min and added

40 ng of GST-EpoR to each cytoplasmic lysate to con-

trol for errors during the IP procedure (Fig. 5A). In

B

A

Fig. 3. Correction of phosphorylated and total ERK1 signals using normalizers. (A) BaF3-HA-EpoR cells were starved and stimulated with 50

unitsÆmL)1 erythropoietin (Epo) for 9.5 min, with samples of 1 · 107 cells taken every 30 s. Cells were lysed and 75 lg of total cellular lysate

at each time-point was separated by electrophoresis on a 17.5% SDS polyacrylamide gel. The immunoblot was analyzed with anti-pERK

immunoglobulin, and then reprobed, first with anti-ERK immunoglobulin and second with an anti-heat shock cognate protein 70 (Hsc70) ⁄
anti-protein disulfide isomerase (PDI) ⁄ anti-(bActin) immunoglobulin mixture. All signals were quantified by LumiImager analysis. (B) The

bActin signal was spline-smoothed and used to normalize pERK1 and ERK1 signals, having similar molecular masses. pERK1 and ERK1 sig-

nals were converted to number of molecules per cell using the protein standard depicted in Fig. 1. Smoothing spline curves through original

and normalized data are shown as solid lines.
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addition, the calibrator was used to correct for blotting

errors, thereby significantly improving data quality.

However, correction steps can be detrimental to the

data if a calibrator yields noisy signals or is exposed to

different gel ⁄ transfer inhomogenieties as the protein of

interest owing to a large difference in molecular mass.

We therefore developed criteria for automated data

correction in IP experiments, as described in the

Supplementary material. One necessary condition for

these criteria is randomized sample loading. As shown

in the Supplementary material, by combining random-

ized sample loading with calibrators, the standard

deviation of immunoblotting data can be improved by

more than twofold. The corrected data (Fig. 5B) show

the expected behavior of a continuous increase in

phosphorylated HA-EpoR and a constant level of total

HA-EpoR for 10 min after stimulation with Epo.

Computational data processing using

GELINSPECTOR

For automated data processing and to permit data

merging of samples analyzed on separate blots, we

developed the computer algorithm gelinspector. This

algorithm calculates smoothing splines for the normal-

izers or calibrators and normalizes blotting data using

these splines. Furthermore, the program verifies the

normalization, integrates multiple data sets and visual-

izes the results. To validate our approach, we investi-

gated the effect of our algorithm on time-course data

generated from primary hepatocytes. We combined

sample randomization with criteria-mediated error

reduction using Calnexin and Hsc70 as normalizers.

By loading time-points alternating on two gels, the

number of data points that could be analyzed together

was increased beyond the capacity of a single gel

(Fig. 6A). Applying gelinspector enabled us to nor-

malize the signals and significantly decrease the stand-

ard deviation from a smoothing spline, resulting in

time-course data with a high temporal resolution

(Fig. 6B). The high reproducibility of the time-course

dynamics for phosphorylated and total cytoplasmic

STAT3 obtained by immunoblotting of cytoplasmic

lysates, as well as immunoprecipitates (data not

shown), demonstrated that our automated computa-

tional data processing is robust and reliably applicable

for both methods. These tools facilitate the standard-

ized and automated generation of quantitative data

and permit the cost-effective assembly of large, high-

quality data sets.

Discussion

Quantitative data generation is becoming increasingly

important for obtaining insight into the dynamic

behavior of complex biological networks, to elucidate

systems properties and to predict targets for biomedi-

cal applications. We show that by randomized sample

loading and computational data processing, including

criteria-based normalization, high-quality quantitative

data can reliably be generated by immunoblotting, a

C

B

A

Fig. 4. Titration of the glutathione S-transferase tagged-erythropoie-

tin receptor (GST-EpoR) calibrator in immunoprecipitation. (A) The

domain structure of hemaglutinin-tagged HA-EpoR is schematically

depicted and the binding epitope for the anti-EpoR immunoglobulin is

indicated. The calibrator, GST-EpoR, consists of the protein domain

containing the antibody-binding site fused to an affinity tag for purifi-

cation. (B) BaF3-HA-EpoR cells were starved, stimulated with 50

unitsÆmL)1 erythropoietin (Epo) for 5 min and lysed. Increasing

amounts of recombinant GST-EpoR were added to the lysates and

both the GST-EpoR calibrator and the HA-EpoR were immunoprecipi-

tated with anti-EpoR immunoglobulin. The samples were separated

on a 10% SDS polyacrylamide gel. The immunoblot was analyzed

with anti-EpoR immunoglobulin and quantified by LumiImager analy-

sis. (C) Concentrations of the calibrator were plotted vs. the signals

obtained for the HA-EpoR and the GST-EpoR calibrator. A red line

depicts the linear relationship between the calibrator concentration

added to the lysate and the detected signal within a range of

2.5–100 ng of calibrator addition. The blue line depicting the average

signal of the HA-EpoR intersects at 40 ng of GST-EpoR, indicating

comparable signals for the calibrator and the HA-EpoR.
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widely applied technique. By systematically determin-

ing steps contributing to the variability of the experi-

mental data, we identified gel and transfer

inhomogeneities as the major source for correlated

errors. These correlations could be eliminated by

randomized sample loading, and error reduction was

achieved by the use of normalizers or calibrators in

combination with computational data processing. By

converting relative signals to absolute values, compar-

able results can be obtained from independent

A

B

Fig. 5. Correction of hemagglutinin-tagged-erythropoietin receptor (HA-EpoR) signals with the glutathione S-transferase (GST)-EpoR calibra-

tor. (A) BaF3-HA-EpoR cells were starved and stimulated with 50 unitsÆmL)1 erythropoietin (Epo) for the indicated time. A total of 1 · 107

cells was lysed and 40 ng of GST-EpoR was added to each lysate. Immunoprecipitation was performed using anti-EpoR immunoglobulin,

followed by separation on a 10% SDS polyacrylamide gel with randomized sample loading. The immunoblot was analyzed with anti-pTyr and

anti-EpoR immunoglobulin and quantified by LumiImager analysis. (B) Time after Epo stimulation was plotted against the signals of HA-EpoR

and the calibrator GST-EpoR. A spline smoothing the calibrator signal was used to correct pEpoR signals, whereas the EpoR signal was

corrected and converted to molecules per cell. Splines are depicted as solid lines.
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experiments and used for the assembly of large sets of

quantitative data.

Randomized sample analysis is a general strategy to

prevent correlated errors, for example in double-blind

comparative clinical studies [13] and in the design of

DNA microarray experiments [14]. Here, we use this

approach to separate spatial blotting effects from real

changes in protein levels (i.e. their true dynamic behav-

ior). By simulations of typical time-course experiments,

we demonstrated that randomization reduces the

standard deviation of immunoblotting data by more

than twofold (see the Supplementary material for

simulations). Sample randomization is thus a simple

procedure that significantly improves data quality

without increasing experimental efforts.

To reduce errors inherent in blotting techniques,

such as inhomogeneities in the gel as well as transfer,

normalizers are used that are present at a similar

position in the blot as the molecule of interest and

which are detectable with a strong constant signal. We

identified several housekeeping proteins of different

molecular mass that can be reliably used as normaliz-

ers. The normalization procedure cannot be applied if

a normalizer differs too much in molecular mass from

the protein of interest because it is exposed to different

gel ⁄ transfer inhomogenieties and therefore does not

permit an adequate estimation to be made of the blot-

ting error. To ensure accuracy of data normalization,

we applied spline approximation and developed data

processing criteria. The resulting computer algorithm,

gelinspector, compares the standard deviation of

both the normalized and the unprocessed data to a

first estimate of the values. Only if the normalized val-

ues are closer to the estimate, is normalization by

computational data processing accurate and results in

significantly improved data quality.

A

B

Fig. 6. Quantitative data generation of primary hepatocytes using the computer algorithm GELINSPECTOR. (A) Primary mouse hepatocytes

were prepared from mouse livers. A total of 2 · 106 cells for each time-point was cultured on collagen-coated dishes and starved. Interleu-

kin-6 (IL-6) was added (40 ngÆmL)1) and the cells were lysed at the indicated time-points. Cytoplasmic lysates were separated by two 10%

SDS polyacrylamide gels. Sample loading was randomized with every second time-point on the second gel. Quantitative immunoblotting was

performed with anti-phosphorylated signal transducer and activator of transcription 3 (pSTAT3), anti-signal transducer and activator of transcrip-

tion (STAT3), and an anti-Calnexin ⁄ anti heat shock cognate protein 70 (Hsc70) mixture. (B) Immunoblotting data were automatically processed

by GELINSPECTOR using Calnexin ⁄Hsc70 signals as normalizers, and the data points were spline-smoothed, as indicated by solid lines.
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In the case of grouped data, such as mutant to wild-

type comparisons used in diagnostic approaches, the

first estimate is the mean value of the same sample loa-

ded in replicates. In other cases, where a continuous

dependency exists (such as in time-course or in dose–

response experiments), the first estimate is a regression

curve if the functional relationship is known or a

smoothing spline if unknown. These functions are

implemented in gelinspector.

Our method is not only applicable to proteins con-

centrated by IP, but also, as we show in Fig. 6A, for

the detection of proteins in total cellular lysates of pri-

mary hepatocytes. Furthermore, our data processing

procedures permit the quantification of low abundance

proteins, or modifications, as demonstrated for the

Epo-induced phosphorylation of ERK1 ⁄ 2 (Fig. 3A).

The EpoR, a member of the hematopoietic cytokine

receptor family, activates the MAP kinase signaling

cascade to a much lesser extent than receptor tyrosine

kinases, such as the epidermal growth factor receptor

or the platelet derived growth factor receptor.

Similarly to normalizers, calibrators added in IP

experiments permit criteria-based data normalization.

Importantly, calibrators, in addition, facilitate the con-

version of relative signals to absolute values, such as

molecules per cell. For the analysis of cellular lysates,

this can be achieved by coloading known amounts of

recombinant proteins onto the gel, which are detected

by the same antibody as the protein of interest. Using

microscopic techniques, the volume of a cell can be

estimated, allowing conversion of molecules per cell to

protein concentrations. The generation of absolute val-

ues provides additional information regarding absolute

protein concentrations that cannot only be used to

compare signals derived from independent immunoblot

experiments, but also to identify the amount of a given

protein in a single cell and to determine the stoichiom-

etry of cellular components [15].

The proposed methods can be applied to other blot-

ting techniques, such as northern and Southern blot-

ting analysis, as inhomogeneities in gel and transfer

are likely to cause correlated errors in all blotting data.

Similarly, correlations can be eliminated by randomi-

zation and the errors can be reduced by criteria-based

normalization.

Recently developed strategies for quantitative deter-

mination of protein levels and modifications include

mass spectrometry techniques based on isotope-coded

affinity tags [16] and isotope-coded protein labels [17].

By labeling different samples with distinct isotopes, rel-

ative changes can be quantified using mass spectrome-

try. It is even possible to determine absolute values by

the addition of synthesized peptides of known quanti-

ties as standards. However, these methods are still very

expensive, technically demanding and have the dis-

advantages of requiring large amounts of cellular

material.

By developing quantitative immunoblotting as a

robust and reliable technique for quantitative data

acquisition under standardized conditions, we establish

an easy to handle and cost-effective alternative that

permits the assembly of large data sets with high tem-

poral resolution. This provides an important tool for

diagnostic purposes and the targeted development of

novel therapeutic applications.

Experimental procedures

Cell lines and primary cell cultures

The retroviral expression vector, pMOWS, containing

HA-EpoR cDNA, was introduced into BaF3 cells by retro-

viral transduction. Cell lines stably expressing HA-EpoR

(BaF3-HA-EpoR) were selected and maintained in RPMI

1640 (Invitrogen, Carlsbad, CA, USA) in the presence of

puromycin.

Primary hepatocytes were isolated from male Black-6

mice (6–8 weeks old) (Charles River, Wilmington, MA,

USA). Livers were perfused with Hanks buffer supplemen-

ted with collagenase II (Biochrom, Berlin, Germany).

Experiments were carried out in accordance with the

German Animal Welfare Act of 12 April 2002 and the

European Council Directive of 24 November 1986. Intact

liver capsules were transferred into Williams’ medium

(Biochrom) supplemented with fetal bovine serum, insulin,

l-glutamine and dexamethasone. Hepatocytes were

removed from the capsules, enriched by centrifugation and

cultured on collagen I-coated dishes (BD Biosciences,

Franklin Lakes, NJ, USA) in Williams’ medium E (Bioch-

rom) supplemented with l-glutamine and dexamethasone.

Expression, purification and quantification of

recombinant proteins

Unphosphorylated purified ERK2 was purchased from Cell

Signaling Technologies (Beverly, MA, USA). The cytoplas-

mic domain of the EpoR was cloned into pGEX-2T (Amer-

sham Biosciences, Piscataway, NJ, USA) and expressed in

E. coli BL21 CodonPlus-RIL bacteria (Stratagene, La Jolla,

CA, USA). Proteins were extracted by lysozyme lysis and

sonication. Glutathione agarose beads (Sigma-Aldrich, St

Louis, MO, USA) were added to lysates and proteins were

eluted by the addition of reduced glutathione (Sigma-

Aldrich). For the quantification of purchased and purified

proteins, dilution series of purified BSA (Sigma-Aldrich)

and the recombinant proteins were separated by 10%

SDS ⁄PAGE and stained with Coomassie Brilliant Blue.
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The gel was documented using the trans-illumination mode

of a LumiImager (Roche Diagnostics, Mannheim,

Germany). Proteins were quantified using lumianalyst

software (Roche Diagnostics).

Time-course experiments

BaF3-HA-EpoR cells were starved for 5 h in RPMI 1640

(Invitrogen) supplemented with 1 mgÆmL)1 BSA (Sigma-

Aldrich) and then stimulated with 50 unitsÆmL)1 Epo

(Cilag-Jansen, Bad Homburg, Germany). For each time-

point, 107 cells were taken from the pool of cells and lysed

by the addition of 2 · Nonidet P-40 lysis buffer, thereby

terminating the reaction.

A total of 2 · 106 primary hepatocytes were cultured for

24 h after plating on collagen I-coated 60 mm dishes (BD

Biosciences) in Williams’ medium E (Biochrom) supple-

mented with l-glutamine and dexamethasone. Cells were

starved for 5 h in Williams’ medium E supplemented with

l-glutamine. Each dish was stimulated with 40 ngÆmL)1 IL-6

in Williams’ medium E containing l-glutamine. The medium

was removed from the cells, 1 · Nonidet P-40 lysis buffer

was added, and cells were collected using a cell scraper.

Immunoprecipitation and quantitative

immunoblotting

For IP, cytosolic lysates were incubated with anti-EpoR

immunoglobulin (Santa Cruz, La Jolla, CA, USA) or

anti-STAT3 immunoglobulin (Cell Signaling Technologies).

Immunoprecipitated proteins and total cellular lysates

were separated by SDS ⁄PAGE and transferred to

poly(vinylidene difluoride) (PVDF) or nitrocellulose mem-

branes. Proteins were immobilized with Ponceau S solu-

tion (Sigma-Aldrich) followed by immunoblotting analysis

using the anti-phosphotyrosine mAb, 4G10 (Upstate Bio-

technology, Lake Placid, NY, USA), the anti-(tyrosine

phosphorylated STAT3) immunoglobulin or the anti-(dou-

ble phosphorylated p44 ⁄ 42 MAP kinase) immunoglobulin

(both Cell Signaling Technologies). Antibodies were

removed by treating the blots with b-mercaptoethanol and

SDS, as described previously [18]. Reprobes were per-

formed using anti-EpoR (Santa Cruz), anti-STAT3 or

anti-(p44 ⁄ 42 MAP kinase) (both Cell Signaling Technol-

ogies) immunoglobulins. For normalization, antibodies

against bActin (Sigma-Aldrich), PDI, Hsc70 and Calnexin

(all Stressgen, Victoria, Canada) were used. Secondary

horseradish peroxidase (HRP)-coupled antibodies (anti-

rabbit HRP, anti-mouse HRP, protein A HRP) were pur-

chased from Amersham Biosciences. Immunoblots against

phosphorylated EpoR and total EpoR were incubated

with enhanced chemiluminescence (ECL) substrate (Amer-

sham Biosciences) for 1 min, and exposed for 10 min on a

LumiImager (Roche Diagnostics). All other immunoblots

were incubated with ECL Advance substrate (Amersham

Biosciences) for 2 min, and exposed for 1 min on a Lu-

miImager (Roche Diagnostics). For quantifications,

lumianalyst software (Roche Diagnostics) was used.

Spline approximation and signal normalization

Smoothing splines were applied to the noisy data to esti-

mate the actual values. Their smoothness was determined

by generalized cross-validation, minimizing the mean square

error between the estimated time-course and the data

[10,12]. Splines were used for criteria-mediated error reduc-

tion by gelinspector, as described in the Supplementary

material.

Computational data processing by

GELINSPECTOR

The computer algorithm gelinspector requires matlab 6.5

and the freely available statistics environment R1.9 or above.

It visualizes the blotting error in a gel domain, rearranges

randomized gel loadings into chronological order, applies the

presented criteria-mediated normalization procedure, and

merges data deriving from one experiment measured on sev-

eral gels. Choices to calculate a first estimate include con-

stant, sigmoidal and spline functions. Splines are calculated

using the mgcv library [11] from R or the matlab spline tool-

box. After specifying proteins of interest, normalizers, cali-

brators, the measurement files and some global options (such

as the preferred figure format pdf, eps, jpg or png), gelin-

spector works completely automatically. Figures of all

important steps, and files with the processed data, are cre-

ated. gelinspector is available from the authors.
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I. ERROR CLASSIFICATION

Immunoblotting as a technique for quantitative analy-
sis of protein concentrations has several sources of noise,
which can be divided into three classes:

(i) pipetting errors f(j) change the amount of each
protein in the j-th lane by the same factor, reflect-
ing, e.g., the different amount of lysate loaded on
each gel lane

(ii) blotting errors g(j, m), observed as brighter and
darker areas, arise from inhomogeneities of the gel
and transfer to the membrane. They are highly
correlated for neighboring lanes, j, and rows, m.

(iii) contributions independent from the loaded protein
concentrations. They are modeled as Gaussian
noise, η(j, m).

As shown in the main text, error contributions from
pipetting are small compared to the highly correlated
errors of the blotting technique (see Fig. 2b, main
text). Figure 7 gives an example of a blotting error
and Figure 1 displays the mean autocorrelation function
(ACF) for 13 gels of the normalizer protein βActin and
for 8 gels of the calibrator GST-EpoR depending on the
lane distance.

The effects on the concentration x∗(tj) of a given pro-
tein in the lysate at time tj , resulting in the measured
concentration x(tj), can be described by

x(tj) = [1 + g(j, m)] [1 + f(j)] x∗(tj) + η(j, m). (1)

Here, the time point tj after stimulation corresponds to
lane j, the smooth systematic error g depends on the
lane index j and on the molecular weight m, measured
in kD. The pipetting error f depends only on the lane
number j, since it changes the amount of all proteins in
a lane by the same factor. Errors arising from (i) and
(iii) are uncorrelated among different lanes, resulting in
〈f(j)f(j′)〉 = 0 and 〈η(j,m)η(j′,m)〉 = 0 for j �= j′.

In the following we use normalizers and calibrators
and a randomized, non-chronological loading of the

lanes, to identify and reduce the highly correlated
blotting errors, g(j,m).

II. ELIMINATION OF THE BLOTTING ERROR

The highly correlated errors arising from the blotting
technique vary gradually over the lanes and make
it difficult to extract the actual values. To elim-
inate the correlations among the lanes we employ
non-chronological gel loading. Here, the subsequent
time-points after stimulation are loaded randomized on
the gel under the condition that consecutive time points
are separated by minimum number of 4 lanes for 20
time points (compare loading example in Figure 7). By
applying this method, the errors between consecutive
time points are uncorrelated. We are able to estimate
the true time-course from the data by rearranging the
time points in chronological order. As shown in Figure
2C, we employ a cubic spline whose smoothness is de-
termined by generalized cross-validation. This technique
demands statistical independent errors as generated
by the randomized gel loading. The estimation of a
time-course from noisy data by smoothing splines has
been worked out in detail in Refs. [1–4]. We emphasize
that a sufficiently dense grid of time-points is necessary
to keep the bias of this method small.

For the case that a normalizer protein, xn(j), can be
measured with a similar molecular weight as the protein
of interest, it is possible to estimate the blotting error
g(j,m) as x∗

n(j) = const by definition. The true signal is
then given by

x̂∗(tj) ≈ xi(tj)
x̄n(tj)

. (2)

Here, x̄n(t), denotes the smoothing spline generated
from the date set {xn(tj)} by keeping the lane ordering
of the randomly loaded gels. Smoothing of the data is
performed in oder to average over error contributions
arising from pipetting, f(j), and other sources of noise,
η(j,m). We further denote by x̃∗(t) and x̃(t) the
time-courses of the smoothing splines generated from
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FIG. 1: Autocorrelation of the normalizer protein βActin (A) and the calibrator protein GST-EpoR (B) in the gel domain.
The two-sided 95% confidence interval for the averaged autocorrelation function of a purely random process is in both cases
not preserved, indicating a strong correlation of neighbored gel lanes.

the chronological ordered data sets {x̂∗(tj)}, {x(tj)}.
The residuals |x̃∗(tj)− x̂∗(tj)|, are expected to be signif-
icantly smaller than the residuals without employing a
normalizer, |x̃(tj) − x(tj)|, as we have readily accounted
for the blotting errors in the first case. This in turn
gives us a reliable measure for the quality of the used
normalizer protein.

III. ERROR REDUCTION VIA
RANDOMIZATION AND NORMALIZERS -

SIMULATION STUDY

Simulations of typical immunoblotting experiments
were performed by generating a simulated signal with
quadratic rise and exponential decay and a maximum
at half lane number, equidistantly sampled (Figure 2B).
This simulates a typical time-course experiment after
stimulation with a hormone. The true signal x∗(tj) was
processed with the two main sources of errors as de-
scribed in the previous section, a pipetting and a blotting
error. In detail:

1. A multiplicative, uncorrelated pipetting error was
applied as shown in Figure 2A representing errors
derived from unequal cell number or errors in pipet-
ting the cellular lysates:

x′(tj) = x∗(tj) · (1 + σε(j)) ε(j) ∈ N(0, 1)).

2. A multiplicative, strongly correlated blotting error
was applied, representing errors from differences in
migration in the SDS polyacrylamide gel or unequal

transfer to the membrane:

x(tj) = x′(tj) · (1 + g(j)),

with the blotting error g(j) represented by a sine
function with mean zero and phase, amplitude and
frequency consistent with experimental observa-
tions.

The processing was applied to a chronological and to
a randomized true signal, x∗

rand and x∗
chron, respectively,

leading to ”measurements” like in Figure 2B. Note that
the chronological signal is rather smooth but changes the
characteristic of the true signal: The maximum occurs
earlier and a new minimum is observed at t = 15. The
randomized signal on the other hand is very noise, but
does not introduce systematic effects. The smoothed
processed randomized signal x̃rand is very close to
the true time-course, whereas the smoothed processed
chronological signal x̃chron still keeps correlated devia-
tions from the true signal (Figure 2C). The correlation
structure of the deviations can be investigated via the
autocorrelation function (Figure 2D). For uncorrelated
errors, the autocorrelation function should drop from 1
at τ = 0 into the 95% confidence interval for τ > 0. This
is not the case for the processed chronologically signal,
which can lead to misleading conclusions if methods are
applied which assume uncorrelated noise.

Besides visual inspection of the autocorrelation func-
tion, the improvement of data quality by means of a ran-
domized gel loading can be quantified by the error reduc-
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FIG. 2: Effect of randomization on immunoblotting data. (A) Simulated uncorrelated pipetting error and highly correlated,
sine-like blotting error. (B) Simulated signal perturbed with the pipetting and blotting error in a chronological and randomized
manner. Only the randomized procedure does not change the characteristics of the true signal, as the smoothed data show (C).
(D) The residuals of the perturbed to the true signal exhibit a strong autocorrelation for the chronological procedure, which is
not agreeable with white noise. This can be achieved by randomizing.

tion factor :

α =

√∑
j (x̃rand(tj) − x∗(tj))

2

√∑
j (x̃chron(tj) − x∗(tj))

2

For the illustrated data set the achieved reduction of
the standard deviation was α ≈ 0.4. The reduction
can only be quantified when the actual values are avail-
able, which is not the case in experimental measurements.
Hence, the question arises whether a general error reduc-
tion factor can be established by randomizing or whether
it depends on experimental parameters like the number
of lanes, strength of signal maximum, blotting error or
pipetting error. A simulation study showed that for small
pipetting errors an error reduction factor of 0.45 ± 0.1
could be established independently from other parame-
ters. Details of the study follow in the next section.

A. Quantifying the Error Reduction using
Randomization and Calibrators

To determine the usefulness of randomization for the
improvement of data quality, several parameters were
varied including the number of lanes (10 to 100, Fig.
3A), the number of sine periods of the blotting error (0.8
to 2.2, Fig. 3B), the strength of the blotting error (ratio
of smallest to largest value ranging from 1.5 to 10, Fig.
3C), the maximum signal strength (0.1 to 20, Fig. 3D),
and the strength of the pipetting error (σ ranging from
0 to 1, Fig. 4). During the variation of one parameter,
the other parameters were fixed:

• Number of lanes: 20

• Number of sine periods of the blotting error: 1

• Strength of the blotting error (max/min): 3

• Maximum signal strength: 2

 



 2.1 Strategies for standardizing quantitative data 55 
 ___________________________________________________________________  

4

10 20 30 40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1

Number of Lanes

E
rro

r R
ed

uc
tio

n 
Fa

ct
or

Variation of Lane Number

Mean Error Reduction Factor: 0.53 +/− 0.26

A

0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.2

0.4

0.6

0.8

1

Number of Sine Periods of the Blotting Error

E
rro

r R
ed

uc
tio

n 
Fa

ct
or

Variation of Blotting Error Characteristic

Mean Error Reduction Factor: 0.45 +/− 0.13

B

1 2 3 4 5 6 7 8 9 10 11
0

0.2

0.4

0.6

0.8

1

Strength of Blotting Error (max/min)

E
rro

r R
ed

uc
tio

n 
Fa

ct
or

Variation of Blotting Error Strength

Mean Error Reduction Factor: 0.48 +/− 0.14

C

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Maximum Signal Strength

E
rro

r R
ed

uc
tio

n 
Fa

ct
or

Variation of Signal Strength

Mean Error Reduction Factor: 0.47 +/− 0.12

D

FIG. 3: Reduction of standard deviation of smoothed simulated blotting data by randomization. (A) For gels with more
than 15 gel lanes randomization reduces robustly standard deviation by 50%. This holds also for variation of blotting error
characteristics like number of periods (B) or error strength (C) and for a wide range of signal maximum (D).

• Standard deviation of the pipetting error: 0.1

Figures 3 and 4 display the error reduction factor for all
parameter variations. At least 20 lanes should be used
to achieve an optimal improvement. For the other in-
vestigated parameter ranges no strong effect is observed
for all variations except for the strength of the pipetting
error (Fig. 4). Since pipetting errors are uncorrelated,
they cannot be reduced by randomization - if the frac-
tion of the pipetting errors increases, the randomization
takes less effects. In general, randomization decreases the
standard deviation in quantitative immunoblotting to ca.
0.45 of the value without randomization, as long as the
pipetting error is not too large. An approach to control
the pipetting error in experiments is sampling the same

number of cells for each time point or measuring and
adjusting total protein concentration.

B. Criteria for Employing Normalization with
Normalizers and Calibrators

Calibrators and normalizers possess a constant con-
centration. Fluctuations occur only as measurement
errors. Since the blotting error changes slowly from
lane to lane and other errors like the pipetting error are
rather uncorrelated, the blotting error can be estimated
by smoothing the calibrator or normalizer signal, e.g.
with a smoothing spline. Based on this blotting error
estimate, the protein of interest can be normalized.
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FIG. 4: Reduction of standard deviation of smoothed sim-
ulated blotting data by randomization for variation of the
pipetting error strength. Increasing the pipetting error – blot-
ting error ratio decreases the error reduction factor, since only
blotting errors are tackled by randomization.

However, since the blotting error is a local property of
the gel, normalizers and calibrators are required with
a similar molecular weight as the protein of interest.
If the molecular weight of the normalizer is different
it does not reflect the blotting error for the protein of
interest. We therefore developed criteria for employing
normalizers and calibrators.

Figure 5A shows a simulated blotting error and a good
estimation, corresponding to the smoothed signal of an
appropriate normalizer in a real experiment. Smoothing
the processed randomized signal leads to an acceptable
estimation of the true signal. Smoothing the normalized
signal yields virtually the true signal itself, as shown
in Figure 5C. Even the correlation structure of the
estimation error in the gel domain is improved.

The estimation of the blotting error displayed in
Figure 6A is inaccurate: A strong phase shift can
be observed, corresponding to a skewed gradient of
the blotting error depending on the position on the
blot. In this situation, normalizing the data increases
the deviation of the estimated signal from the true
signal. Hence, a criterion whether a normalization is
applicable would be a decreased standard deviation of
the estimated signal. This, though, requires knowledge
of the true time course, which is not available. Instead,
the smoothed curve of the randomized but not yet
normalized signal is used as preliminary estimator of
the true signal. If the normalizer is applicable, a new
estimate can be calculated based on the randomized and

normalized data, otherwise the former estimate is kept.

The shown simulated data sets have the following stan-
dard deviations:

• Figure 5:

– Randomized (true): 0.533

– Randomized (estimation): 0.722

– Randomized, normalized (true): 0.157

– Randomized, normalized (estimation): 0.515

• Figure 6:

– Randomized (true): 0.533

– Randomized (estimation): 0.722

– Randomized, normalized (true): 1.208

– Randomized, normalized (estimation): 1.068

The estimated error decreases in case of Figure 5 and
increases in case of Figure 6 if a normalizer is used.
Hence, the normalization procedure is only applicable in
the first case, reducing the true standard deviation from
0.533 to 0.157. In the other case it would increase the
standard deviation from 0.533 to 1.208. This procedure
works robustly for normalizers and calibrators, as long as
randomized gel loading is applied.

C. Application to Stimulation Experiment

The randomizing and normalization procedure was ap-
plied on an erythropoietin (Epo)-induced time-course
experiment resulting in phosphorylation of ERK1 and
ERK2. Samples were loaded randomized and separated
on 17.5% SDS polyacrylamide gel, and transferred to
membranes that were developed with chemiluminescent
substrates and quantified with the Lumi-Imager (Figure
7). We calculated the standard deviation of the sig-
nals to their spline approximation to 2.524 for pERK1
and 0.455 for pERK2. Normalization with βActin re-
duced the standard deviation to the spline approxima-
tion to 1.878 for pERK1 and 0.262 for pERK2. The re-
duced lane-correlation for the normalized data confirms
the quality of data processing. In this case the correla-
tion structure of the systematical blotting error could be
disrupted validating the normalization.

IV. CALCULATION OF MOLECULES PER
CELL

A. Linearity of imaging unit

Quantification of a protein P measured by im-
munoblotting is performed via chemiluminescence detec-
tion yielding total intensities Pblu which are proportional
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FIG. 5: Normalization of simulated time-course data depicting a valid procedure according to our criteria. (A) The blotting error
is very well estimated corresponding to a suitable normalization protein. The perturbation of a simulated signal (B) is strongly
reduced after normalization (C). Even the correlation in gel domain of the residuals is improved (D). The autocorrelation, i.e.,
the correlation in time domain, agrees for both randomized signals with white noise (not shown).

to the total number of molecules Ptmlc on the blot (Fig.
8. The linear relationship reads

Ptmlc = a Pblu

with a proportionality factor a and 0 y-axis interception.
The factor a has to be determined for each protein species
and for every blot, since the amount of antibody added
varies for different blots and the antibody affinity differs
for different proteins.

B. Requirements for the standard/calibrator
protein

The reference protein R realized by a standard or cal-
ibrator protein should

• contain the same epitope binding to the antibody
as the protein of interest,

• have a known molecular weight Rmw,

• be added to the lysate with a known amount Rg.

C. Calculation of the proportionality factor

The total number of reference proteins in the lysate is
given as

Rtmlc =
NA Rg

Rmw
,

with Avogadro constant NA = 6.022 · 1023. If the imag-
ing unit measures the intensity Rblu, the proportionality
factor can be calculated as

a =
Rtmlc

Rblu
=

Rtmlc NA Rg

Rblu Rmw
.

If possible, one should measure the reference protein
several times and estimate a by linear regression. This
provides also a standard deviation for a.
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FIG. 6: Normalization of simulated time-course data depicting a rejected procedure according to our criteria. (A) The blotting
error estimate is phase shifted, corresponding with a too distant normalization protein. The perturbation of a simulated signal
(B) cannot be reduced with normalization (C) and the lane-to-lane correlation is not improved (D).

D. Calibrators

Calibrator proteins harbor the same antibody epitope
as the protein of interest, P , yet possess a different molec-
ular weight than P resulting in a distinct band in the im-
munoblot analysis. If analysis of total cellular lysates are
performed, a few lanes of the immunoblot have to be used
for the standard protein to facilitate parallel detection.

E. Calculation of molecules per cell

Ptmlc is the total number of molecules of the inves-
tigated lysate. If the number of cells in the lysate is

available, the molecule number per cell can be calculated
as

Pmlc =
Ptmlc

# cells
.
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FIG. 7: Randomization and normalization of an Erythropoietin-induced time-course experiment. BaF3-EpoR cells are stim-
ulated with 50 units/ml Epo resulting in ERK phosphorylation. Gel electrophoresis has been applied with a randomized,
non-chronological gel loading with βActin as normalizer protein (upper panel). (A) Smoothed measurements of βActin serve
as estimate of the strong, sine-like blotting error. (C, D) Normalization reduces significantly standard deviation of pERK1/2
measurements compared to a spline-smoothed pERK1/2 signal (cont. line), which serves as first estimate of the true signal.
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Quantitative data generation for systems biology:
the impact of randomisation, calibrators and
normalisers

M. Schilling, T. Maiwald, S. Bohl, M. Kollmann, C. Kreutz, J. Timmer and U. Klingmüller

Abstract: Systems biology is an approach to the analysis and prediction of the dynamic behaviour
of biological networks through mathematical modelling based on experimental data. The current
lack of reliable quantitative data, especially in the field of signal transduction, means that new
methodologies in data acquisition and processing are needed. Here, we present methods to
advance the established techniques of immunoprecipitation and immunoblotting to more accurate
and quantitative procedures. We propose randomisation of sample loading to disrupt lane corre-
lations and the use of normalisers and calibrators for data correction. To predict the impact of
each method on improving the data quality we used simulations. These studies showed that ran-
domisation reduces the standard deviation of a smoothed signal by 55%+ 10%, independently
from most experimental settings. Normalisation with appropriate endogenous or external proteins
further reduces the deviation from the true values. As the improvement strongly depends on the
quality of the normaliser measurement, a criteria-based normalisation procedure was developed.
Our approach was experimentally verified by application of the proposed methods to time
course data obtained by the immunoblotting technique. This analysis showed that the procedure
is robust and can significantly improve the quality of experimental data.

1 Introduction

Blotting techniques are widely used to analyse components
in biological systems. They are based on the separation of
components according to the molecular weight within a
gel and transfer to a membrane followed by a detection
process. The presence of proteins and/or their modifications
in complex mixtures is examined by immunoblotting using
specific antibodies in combination with chemiluminescence
detection. So far, the data generated by immunoblotting have
been primarily qualitative but the recent report of data-based
mathematical modelling of the JAK-STAT signalling path-
way [1] demonstrates the potential of using quantitative
immunoblotting for systems biology approaches.
Here, we suggest new methodologies to improve data

acquisition and data processing for quantitative immuno-
blotting. We propose randomised gel loading to transform
correlated blotting errors into uncorrelated blotting errors by
loading samples on the gel in a non-chronological order:
Neighbouring lanes on the gel are used, not for consecutive
time points, but in a randomised way. Furthermore, we
suggest normalisation using data of calibrators (purified
proteins of a different molecular weight from that of the
protein of interest and the same antibody binding epitope
added to cell lysates prior to immunoprecipitation) and

normalisers (endogenous proteins quantified by reprobing
the immunoblot). Smoothing splines of the normaliser or
calibrator signals were employed to correct immunoblotting
data in an unbiased, criteria-mediated framework.

In addition, we present a quantitative analysis of the
effects of these improvements by assessing the influence
of each method on the standard deviation and correlation
structure of simulated data and measurement processes.
By applying our procedures to a data set comprising five
independent experiments, each measuring eight protein
species with 20 time points, we validated the performance
of our approach method under experimental conditions.

2 Randomisation reduces standard deviation
of immunoblotting data more than two-fold

Simulations of typical immunoblotting experiments
were performed by generating a simulated signal x� with
quadratic rise and exponential decay and a maximum at
half gel slot number, equidistantly sampled (Fig. 1b). This
simulates a typical time course experiment after stimulation
with a hormone. The true signal x� was processed as follows:

First, a multiplicative, uncorrelated pipetting error of
strength s was applied, as shown in Fig. 1a, representing
errors derived from unequal cell number or errors in pipet-
ting the cellular lysates:

x0 ¼ x� � ð1þ 1Þ 1 � N ð0;sÞ
Secondly, a multiplicative, strongly correlated blotting error
was applied, representing errors from differences in
migration in the SDS polyacrylamide gel or unequal trans-
fer to the membrane, a common and probably underesti-
mated problem in immunoblotting (compare the estimated
blotting error in Figs. 4a and 6a and d)

x ¼ x0 � g
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with the blotting error g represented by a sine function with
mean 1 and varied phase, amplitude and frequency.
The processing was applied to a chronological signal and

to a randomised true signal, respectively, leading to simu-
lated measurements such as in Fig. 1b. Note that the chrono-
logical signal is rather smooth but changes the characteristic
of the true signal: the maximum occurs earlier, and a new
minimum is observed at t ¼ 15. The randomised signal,
on the other hand, is very noisy, but does not introduce
misleading effects. The smoothed, processed, randomised
signal is very close to the true one, whereas the smoothed,
processed, chronological signal conserves the correlated
deviations from the true signal (Fig. 1c).
The correlation structure of the deviations can be inves-

tigated through the autocorrelation function (Fig. 1d). For
uncorrelated errors, the autocorrelation function should drop
from 1 at t ¼ 0 into the 95% confidence interval for t . 0
[2]. This is not the case for the processed chronological
signal, which can lead to incorrect conclusions if methods
assuming uncorrelated noise are applied. Besides visual
inspection of the autocorrelation function, the improvement
of data quality can be quantified by the error reduction
factor by randomisation, defined as the reduction of the
standard deviation of the smoothed signal by means of
randomisation

error reduction factor by randomisation

¼ standard deviation ðsmoothed chronological dataÞ
standard deviation ðsmoothed randomised dataÞ

For the illustrated data set, an error reduction factor of
0.4 was calculated, i.e. the standard deviation could be
decreased by 60%. The reduction can only be quantified
when the true data are available, which is certainly not
the case in real measurements. Hence, the question arises
whether a general reduction factor can be established by
randomising or whether it depends on experimental para-
meters such as the number of lanes, maximum signal
strength, blotting error or pipetting error. We performed a
simulation study showing that, for small pipetting errors,
a reduction to 45%+ 10% could be established indepen-
dently from other parameters.

3 Simulation study

Several parameters were varied quantitatively to assess the
effect of randomisation. This included the number of lanes
(10–100), the number of sine periods of the blotting error
(0.8–2.2), the strength of the blotting error (ratio of smallest
to largest value ranging from 1.5 to 10), the strength of the
pipetting error (s ranging from 0 to 1) and the maximum
signal strength (0.1–20).

During the variation of one parameter, the other para-
meters were fixed:

† number of lanes: 20
† number of sine periods of the blotting error: 1
† strength of the blotting error (max/min): 3
† standard deviation of the pipetting error: 0.1
† maximum signal strength: 2.

Fig. 1 Effect of randomisation on immunoblotting data

a Simulated uncorrelated pipetting error and highly correlated, sine-like blotting error
b Simulated signal perturbed with pipetting and blotting error in chronological and randomised manner
c Only randomised procedure does not change characteristics of true signal, as smoothed data show
d Residuals of perturbed to true signal exhibit strong autocorrelation for chronological procedure, which is not agreeable with white noise.
Randomisation prevents this autocorrelation
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 2.2 Quantitative data generation for systems biology 64 
 ___________________________________________________________________  

 

Figure 2 displays the error reduction factor for all
parameter variations. Variation of lane number (Fig. 2a)
showed that randomisation is recommended for 15 or
more lanes. For the other investigated parameter ranges,
no strong effect could be observed for all variations
(Figs. 2b–d), except for the strength of the pipetting error
(Fig. 2e).

As pipetting errors are uncorrelated, they cannot be
reduced by randomisation: if the fraction of the pipetting
errors increases, the randomisation has less effect. In
general, randomisation decreases the standard deviation in
quantitative immunoblotting by 55%+ 10% of the value
without randomisation, as long as the standard deviation
of the pipetting error does not exceed 20%. An approach

Fig. 2 For gels with more than 15 gel lanes, randomisation reduces standard deviation robustly by 50%

a Variation of lane number
b Variation of blotting error characteristics
c Variation of error strength
d Variation of signal strength
e Variation of pipetting error
Increasing pipetting error to blotting error ratio decreases error reduction factor, as only blotting errors are tackled by randomisation

IEE Proc.-Syst. Biol., Vol. 152, No. 4, December 2005 195
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Fig. 3 Normalisation of simulated time course data

Left panel: valid procedure according to our criteria
a Blotting error is well estimated corresponding to suitable normalisation protein
b Perturbation of simulated signal
c Perturbation is strongly reduced after normalisation
d Correlation in gel domain of residuals is improved
Autocorrelation, i.e. correlation in time domain, agrees for both randomised signals with white noise (not shown)

Right panel: procedure rejected according to our criteria
e Blotting error estimate is phase shifted, corresponding to too distant normalisation protein
f Perturbation of simulated signal
g Perturbation cannot be reduced with normalisation
h Lane-to-lane correlation is not improved

IEE Proc.-Syst. Biol., Vol. 152, No. 4, December 2005196

 



 2.2 Quantitative data generation for systems biology 66 
 ___________________________________________________________________  

 

to control the pipetting error in experiments is sampling the
same number of cells for each time point or measuring and
adjusting total protein concentration.

4 Criteria for employing calibrators and
normalisers further to improve quantitative
immunoblotting data

Calibrators and normalisers possess a constant concen-
tration. Fluctuations occur only as measurement errors. As
the blotting error changes gradually from lane to lane, and
other errors such as the pipetting error are rather uncorre-
lated, the blotting error can be estimated by smoothing of
the calibrator or normaliser signal, e.g. with a smoothing
spline [3]. The smoothing is carried out with a cubic

spline approximation, the smoothness being determined
by generalised cross-validation. Based on this blotting
error estimate, the protein of interest can be normalised
by division. However, as the blotting error is a local prop-
erty of the gel, normalisers and calibrators with a similar
molecular weight to that of the protein of interest are
required. If the position of the normaliser is too distant on
the blot, or its signal is too noisy, the normalisation pro-
cedure can even be detrimental to the data. We therefore
developed criteria for employing normalisers and calibra-
tors. The following discussion applies equally well to
normalisers and calibrators.

Figure 3a shows a simulated blotting error and a good
estimation, corresponding to the smoothed signal of an
appropriate normaliser in a real experiment. Smoothing
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Fig. 4 Randomisation and normalisation of erythropoietin-induced time course experiment

BaF3-EpoR cells are stimulated with 50 units ml21 Epo resulting in ERK phosphorylation. Gel electrophoresis has been performed with randomised,
non-chronological gel loading with bActin as normaliser protein (upper panel)
a Smoothed measurements of bActin serve as estimate of strong, sine-like blotting error
b Normalisation destroys autocorrelation

Normalisation significantly reduces standard deviation of pERK1/2 measurements compared with spline-smoothed pERK1/2 signal (solid line),
which serves as first estimate of true signal
c pERK1
d pERK2
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the processed randomised signal leads to an acceptable esti-
mation of the true signal (Fig. 3b). Smoothing the normal-
ised signal yields virtually the true signal itself, as shown
in Fig. 3c. Even the correlation structure of the estimation
error in the gel domain is improved (Fig. 3d). The esti-
mation of the blotting error displayed in Fig. 3e is inaccur-
ate: a strong phase shift can be observed, corresponding to a
normaliser measurement of a different molecular weight
from the protein of interest. The blotting error can be simu-
lated by a sine wave surface plot covering the entire blot
area, resulting in a phase shift of the blotting error estimate
when moving vertically away from the position of the
protein of interest. In this situation, normalising the data
increases the deviation of the estimated signal from the
true one (Fig. 3g). Hence, a criterion for whether normalisa-
tion is applicable would be a decreased standard deviation
of the estimated signal. Unfortunately, this requires knowl-
edge of the true curve, which is not given. Instead, the
smoothing spline curve of the randomised but not yet nor-
malised signal is used as first estimate of the true signal.
If the normalisation procedure is valid, a new spline curve
can be calculated based on the randomised and normalised
data; otherwise, the former values are kept. The error
reduction factor by normalisation is defined as

error reduction factor by normalisation

¼ standard deviation of data from first estimate

standard deviation of normalised data from
first estimate

The shown simulated data sets posses the following stan-
dard deviations:

(a) Case 1 (Figs. 3a–d):

† standard deviation of the data from the true signal: 0.533
† standard deviation of the data from first estimate: 0.722
† standard deviation of the normalised data from the true
signal: 0.157
† standard deviation of the normalised data from first
estimate: 0.515
† error reduction factor: 0.515/0.722 ¼ 0.7133

(b) Case 2 (Figs. 3e–h):

† standard deviation of the data from the true signal: 0.533
† standard deviation of the data from first estimate: 0.722
† standard deviation of the normalised data from the true
signal: 1.208
† standard deviation of the normalised data from first
estimate: 1.068
† error reduction factor: 1.068/0.722 ¼ 1.4792

The estimated standard deviation improves in case 1 (error
reduction factor ,1) but becomes worse in case 2 (error
reduction factor .1). Hence, the normalisation procedure
is only applicable in the first case, reducing the true standard
deviation from 0.533 to 0.157, i.e. to 30%. This procedure
works robustly for normalisers and calibrators, as long as
the immunoblot is randomised.

5 Application to experimental time course

The randomisation and normalisation procedure was
applied on an erythropoietin-induced time course experi-
ment resulting in phosphorylation of ERK1 and ERK2.
Samples were loaded in a randomised order and separated
on a 17.5% SDS polyacrylamide gel. Membranes were
developed with chemiluminescent substrates and quantified
with a CCD camera (Fig. 4). We calculated the standard

deviation of the signals from their spline approximation as
2.524 for pERK1 and 0.455 for pERK2. Normalisation
with bActin reduced the standard deviation to the spline
approximation to 1.878 (74%) for pERK1 and 0.262
(58%) for pERK2. The reduced lane correlation for the
normalised data confirms the quality of data processing.
In this case, the correlation structure of the systematic
blotting error could be disrupted, thus validating the
normalisation.

6 First estimates used for criteria-mediated
error reduction

The proposed criterion for error reduction needs a first
estimate, which is compared with the measured and the
normalised data, respectively. Above, we discussed time
course data, where a smoothing spline adequately describes

Fig. 5 First estimates used for criteria-mediated error reduction

a In grouped data, such as mutant to wild type comparisons, first esti-
mate is calculated as mean value of samples loaded in replicates
b If known continuous dependency between data points exists, first
estimate is calculated as regression function; for example, sigmoidal
regression estimates dose-response experiment
c In cases where function is unknown, including time course exper-
iments, first estimate consists of smoothing spline
These are artificial data for illustration purposes

IEE Proc.-Syst. Biol., Vol. 152, No. 4, December 2005198

 



 2.2 Quantitative data generation for systems biology 68 
 ___________________________________________________________________  

 

the unknown functional dependency between samples.
However, our procedures can also be applied to other exper-
imental settings. Therefore we developed three categories
for first estimates, as shown in Fig. 5

(i) In grouped data, as in mutant-to-wild type comparisons,
the first estimate is the mean value of replicates.
(ii) In experiments with a known continuous functional
dependency between time points and known function,
such as dose response assays, the first estimate is calculated
by a regression function.
(iii) For experiments with an unknown continuous func-
tional dependency between time points, including time
course analysis, the first estimate is represented by a
smoothing spline.

Using this approach, we are able to process data derived
from any immunoblotting experiment robustly. Care has

to be taken if a regression is used as a first estimate. It is
important to show in advance that the signal behaves as
expected to prevent incorrect use of the criterion. If there
is uncertainty, a smoothing spline might be more appropri-
ate, the only prerequisite being a smooth signal behaviour.

7 Data processing of time course experiments
in murine cell lines

To analyse the robustness of our data processing methods,
we applied the standard operating procedures and data nor-
malisation criteria to a large, yet noisy, data set obtained
by quantitative immunoblotting of mouse cellular lysates.
The murine BaF3 cell line was transfected with five different
HA-tagged EpoR variants and stimulated for 1 h with
50 units ml21 Epo. A total of 20 samples were taken at
regular intervals so that the changes in phosphorylation and

Fig. 6 Normalisation of experimental quantitative immunoblotting data

Left panel: valid procedure according to our criteria
a Data points of bActin and smoothing spline serving as blotting error estimate
b Smoothing spline (dashed line) serves as first estimate for data points of pERK1, which are normalised using blotting error estimate shown in a
c As normalised values are closer to first estimate (error reduction factor ¼ 0.9227), normalised values are kept, and new smoothing spline is
calculated (solid line)

Right panel: procedure rejected according to our criteria
d Data points of bActin and smoothing spline serving as blotting error estimate
e Smoothing spline (solid line) serves as first estimate for data points of pERK2, which are normalised using blotting error estimate shown in d
f As normalised values are not closer to first estimate (error reduction factor ¼ 2.0799), normalisation is rejected, and original data are retained
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total amount of four different proteins (the Epo receptor
(EpoR), Janus kinase 2 (JAK2) and extracellular regulated
kinase 1 (ERK1) and 2 (ERK2)) could be followed. EpoR
and JAK2 were enriched by immunoprecipitation, and
ERK1 and ERK2 were analysed from total cellular lysates.
SDS gel electrophoresis was performed with randomised
sample loading, and phosphorylation levels were measured
using quantitative immunoblotting with phospho-specific
antibodies. Furthermore, total amounts of these proteins
were determined by reprobing of the membranes with the
respective antibodies. Calibrators of EpoR and JAK2
added to the lysates prior to immunoprecipitation were quan-
tified in parallel. The membranes used for measuring ERK1
and ERK2 were reprobed once more, and bActin was
measured, serving as normaliser for these proteins.
After quantification of all proteins with the LumiImager

system, we applied criteria-mediated normalisation pro-
cedures to the data. As the data generated were very
noisy, we tested whether our methods could improve their
quality. We calculated the error reduction factor of the stan-
dard deviation of the values compared with a smoothing
spline, which served as first estimate. In 33% of all cases,
the error reduction factor was smaller than 1, resulting in
a valid normalisation procedure. In all other instances, the
error reduction factor was larger than 1. In these cases, nor-
malisation was rejected and the original data were retained.
Figure 6 shows two examples of criteria-mediated error

reduction. In the left panel, the normalisation was valid,
with the corrected values closely following the smoothing
spline (Fig. 6c). In the right panel, normalisation was
rejected, and the original data were kept. The most
common reason for rejected normalisation was poor
quality of the normaliser or calibrator measurement, as evi-
denced by the deviation of data points of the normaliser
bActin from the blotting error estimate (Fig. 6d).
However, as immunoblotting was performed by randomised
gel loading, no misleading effects occurred that could lead
to false interpretation. For visual investigation, the
numbers were approximated with a smoothing spline, dis-
playing convincing time course dynamics (Fig. 6f ). By
comparing the data obtained with previous experiments,
we could show that our data processing methods substan-
tially improved the reliability of measurements in an
unbiased manner.

8 Conclusions

We show that, by the suggested data processing procedures,
the standard deviations of data generated by quantitative
immunoblotting can be decreased to approximately 55%,
thereby increasing data quality substantially. This is
largely independent of the experimental setting and quality
of the immunoblotting procedure. In contrast to traditional
chronological sample loading, we demonstrate the benefit
of randomised immunoblots. Randomisation is most useful
if the signal and blotting error are in the same frequency
range. As the number of measurements is often highly

limited in biochemical experiments, the sampling of time
courses is rather coarse. This leads to similar frequencies
of the signal and the blotting error. By quantification and
plotting of the signal intensity against time, the same infor-
mation is obtained as with chronological immunoblots;
however, as the correlation between neighbouring lanes is
disrupted, the standard deviation of the smoothed signal is
reduced more than two-fold, leading to data of higher
quality and therefore to fewer experiments being necessary
for novel biological insight.

Furthermore we demonstrate that calibrators and normali-
sers allow for correction of immunoblot data, provided there
is a good estimate of the blotting error. By generating criteria
for data correction, we developed a robust method to enhance
data quality further. The application to a large set of exper-
imental data validated our approach. The normalisation cri-
terion not only validates normalisation procedures, but also
assesses the quality of the immunoblotting experiment.
Valid normalisation criteria and decreased standard devi-
ation to the first estimate are indicators of adequate measure-
ments. If our standard operating procedures for experimental
design and data processing are employed, many aspects of
quantitative immunoblotting can be automated.

Subtle parameter changes in biological systems can
change the state of a cell and trigger the onset of diseases.
Therefore quantitative measurements with the highest resol-
ution possible are necessary so that we can understand,
predict and interfere with these networks. The limitation
of current systems biology is often the lack of data to test
the quantitative accuracy of mathematical models, requiring
new measurement techniques [4]. With the presented
procedure, the established technique of quantitative
immunoblotting is developed into a robust and reliable
method to generate high-quality quantitative data for
systems biology.
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Running title: Cellular decisions predicted by MAPK modeling 

The cells of the hematopoietic system are continuously renewed in a tightly regulated 

proliferation and differentiation process. Key regulator of the erythroid lineage is the 

hormone erythropoietin (Epo) that binds to the erythropoietin receptor (EpoR) triggering 

activation of several signal transduction pathways including the MAP-kinase signaling 

network. To analyze this network by a systems biology approach we monitored pathway 

components after stimulation of primary murine erythroid progenitor cells by quantitative 

immunoblotting. An isoform-specific mathematical model of the signaling network was 

established and kinetic parameters were estimated by parameter fitting approaches. 

Sensitivity analysis revealed parameters having the profoundest impact on signal 

propagation and simulations predicted that overexpression of a single ERK isoform would 

trigger feedback-mediated rerouting of signaling, which was confirmed by isoform-specific 

overexpression. To predict the effect of expressing kinase-defective ERK isoforms, the 

model was extended based on feedback inhibition of SOS by complexation or by 

phosphorylation. The latter model predicted that expressing kinase-defective ERK 

isoforms would lead to reduced negative feedback signaling, resulting in similar 

phenotypes as overexpression of the wild-type isoform. We verified the predictions 

experimentally by demonstrating that the integrated response of activated ERK directly 

correlates with accelerated differentiation of primary erythroid progenitor cells. Thus, the 

developed mathematical model allows for a quantitative analysis of this important signaling 

network and predicts targets for modulation and intervention. 
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Introduction
Erythrocytes are continuously renewed from a small number of pluripotent stem cells in a 

stringently controlled process of differentiation and proliferation. Erythropoietin (Epo) is the 

key regulator of red blood cell production (Krantz 1991). The importance of Epo signaling 

has been shown by targeted inactivation of Epo and its cognate receptor (EpoR), both 

being necessary and irreplaceable for definitive erythropoiesis in vivo (Wu et al. 1995; Lin 

et al. 1996). Erythropoiesis is the process by which multipotent hematopoietic stem cells 

differentiate into mature, non-nucleated erythrocytes. Hematopoietic stem cells 

differentiate first into myeloid stem cells and then into CFU-GEMM cells (colony forming 

unit-granulocyte, erythrocyte, monocyte, megakaryocyte). The cytokines interleukin (IL)-3 

and GM-CSF trigger development into BFU-E cells (burst forming unit-erythroid) and 

eventually CFU-E cells (colony forming unit-erythroid) (Richmond et al. 2005). These cells 

express the EpoR and depend on Epo for survival and proliferation as well as terminal 

differentiation (Wu et al. 1995; Lin et al. 1996). Beyond the late basophilic erythroblast 

stage, the level of EpoR expression declines and the cells differentiate independently of 

Epo (Koury and Bondurant 1988). The cells then eject their nuclei, entering the reticulocyte 

stage and terminally differentiate into erythrocytes. 

The EpoR is expressed on the plasma membrane as a preformed dimer (Livnah et al. 

1999) with its associated tyrosine kinase Janus kinase 2 (JAK2). Upon Epo-binding, JAK2 

trans-phosphorylates and activates itself (Witthuhn et al. 1993). Subsequently, JAK2 

phosphorylates tyrosine residues in the cytoplasmic tail of the EpoR. These 

phosphotyrosine residues serve as docking sites for several Src-homology 2 (SH2) 

domain-containing proteins. Hereby, several important signal transduction networks are 

activated, triggering survival, proliferation and differentiation of erythroid progenitor cells. 

The signaling networks responding to Epo include signal transducer and activator of 

transcription (STAT) 5a/b (Klingmüller et al. 1996), phosphatidylinositol (PI) 3-kinase 

activating protein kinase B (PKB)/AKT (Klingmüller et al. 1997) and protein kinase C (PKC) 

ε, as well as the mitogen activated protein (MAP)-kinase cascade. 

The MAP-kinase pathway is activated upon Epo-stimulation by recruitment of the complex 

of growth factor receptor-bound protein (Grb) 2 and son of sevenless (SOS) to the 

receptor. Grb2 can interact with the EpoR directly by binding to Y464 (Barber et al. 1997) 

or indirectly by binding either to SHIP1 (Mason et al. 2000) or SHP2 (Tauchi et al. 1996). 

Alternatively, SHC can interact with phosphorylated JAK2 (He et al. 1995), serving as an 

adaptor protein for Grb2. Furthermore, it was suggested that activation of PKCε by PI 3-
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kinase can activate Raf and MEK (Klingmüller et al. 1997) independently of SHC/Grb2. In 

each case, EpoR activation leads to the recruitment of the guanine-nucleotide exchange 

factor SOS to the membrane, triggering activation of Ras and Raf, culminating in the 

activation of the MAP-kinase cascade (Chen et al. 2001). The dual-specific MAP kinase 

kinases MEK1 and MEK2 are serine phosphorylated by Raf, in turn threonine / tyrosine 

phosphorylating ERK1 and ERK2. ERK1/2 can dimerize (Khokhlatchev et al. 1998), 

translocate into the nucleus and activate transcription factors. The role of MAP-kinase 

activation in primary erythroid cells remains to be identified. Studies analyzing the blood of 

c-Raf knock-out mice or c-Raf-deficient cells cultivated in serum-free medium 

supplemented with Epo, stem cell factor, dexamethasone and insulin-like growth factor 

(Kolbus et al. 2002) suggested that Raf delays differentiation. Furthermore, 

overexpression of constitutively active Ras blocked terminal erythroid differentiation in 

erythroid progenitor cells cultivated in medium supplemented with fetal calf serum (Zhang 

and Lodish 2004). These experiments were performed in the presence of receptor tyrosine 

kinase (RTK) ligands that strongly activate the MAP-kinase pathway. It is therefore 

uncertain whether the observed phenotypes are a consequence of EpoR- or RTK-

signaling

A pathway is weakly activated if its component kinases are phosphorylated to a low 

degree, while strong activation occurs if one ore more kinases are converted essentially 

completely to the phosphorylated state. It was shown that weakly activated pathways 

display higher amplification potential and shorter signal duration (Heinrich et al. 2002). 

Mathematical modeling of MAP-kinase pathways has provided insight into various aspects 

of this important signaling network (reviewed in Orton et al. 2005). However, so far only 

strongly activated receptor tyrosine kinase-dependent MAP-kinase cascades were 

modeled. Cytokine receptors such as the EpoR are weak activators of the MAP-kinase 

pathway.

Here, we present the first data-based mathematical model of a weakly activated MAP-

kinase signaling network and demonstrate the inherent high amplification and short signal 

duration properties. We identified the parameters in control of the amplitude and duration 

of signaling and show how they can be modified. We classified the MAP-kinase network as 

an independent module and demonstrated the function of the negative feedbacks in the 

system. And finally we determined whether the amplitude of signaling, the duration or the 

combination of both is responsible for cellular decisions such as differentiation or 

proliferation.
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Results
Mathematical modeling
We developed a mathematical model of the Epo-induced MAP-kinase signaling network 

(Fig. 1a). The Epo concentration is used as input function, leading to phosphorylation of 

JAK2, which in turn phosphorylates cell surface EpoR. Receptor activation leads to 

recruitment of inactive SHP1 to the membrane. After a delay, membrane-associated SHP1 

is activated and dephosphorylates the EpoR and JAK2. We modeled the recruitment of 

SOS to the membrane to be only dependent on phosphorylated EpoR, treating the 

receptor complex with SHC and GRB2 as a single compound. Membrane-associated SOS 

can be released from the membrane or can trigger GDP to GTP exchange of Ras, which 

subsequently leads to phosphorylation of Raf. Again, we treated this as a single step, 

represented by Raf (see Supplementary Fig. S3). Subsequently, phosphorylated Raf 

activates the MAP-kinase phosphorylation cascade. We used a two step phosphorylation 

and dissociation model for the isoforms MEK2, MEK1, ERK1 and ERK2. Phosphorylation 

parameters were chosen as specific for the substrate isoform. Phosphatases were 

assumed to be constant in the time window analyzed (70 min) and unspecific for both 

isoforms. Additionally, we incorporated a negative feedback loop from activated ERK1/2 to 

SOS. Several negative feedbacks are proposed in the MAP-kinase signaling network, 

including inhibitory phosphorylation of Raf or SOS (Buday et al. 1995). In our system the 

main negative feedback is phosphorylation of SOS, increasing the apparent molecular 

weight of SOS, which can be seen as a shift in the immunoblot (see Supplementary Fig. 

S2). Phosphorylation of SOS leads to dissociations of the GRB2-SOS complex from the 

activated receptor. A constant phosphatase can remove the phosphorylation. Our 

mathematical model consists of a set of 32 ordinary differential equations (ODE) with 24 

parameters and 9 species (Supplementary Fig. S1).

Data acquisition and parameter estimation 
Data were acquired using primary murine erythroid cells continuously stimulated with Epo 

for 70 min and 30 time points were subjected to quantitative immunoblotting 

(Supplementary Fig. S2). Data for phosphorylated and total EpoR, JAK2, MEK2, MEK1, 

ERK1, ERK2 and SOS were quantified, normalized using calibrator or normalizer proteins 

and merged as described (Schilling et al. 2005a). Total levels of the proteins were roughly 

constant during the time investigated, thus enabling us to use mass conservation in our 

model. The antibodies used recognize only double-phosphorylated MEK and ERK. We 

therefore could define 8 observables, notably pEpoR, pJAK2, ppMEK2, ppMEK1, ppERK1, 
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ppERK2, pSOS and SOS + mSOS, the latter being the fraction of SOS that did not shift in 

the SDS-PAGE. As the results for the phosphorylated proteins were only relative values, 

we needed to include a scaling factor for each species, increasing the number of 

parameters by 5. Total protein levels could be determined for several components. We 

calculated molecules per cell for surface EpoR by saturation binding assay with [125I]-

labeled Epo and for the total amount of JAK2 as well as the MEK and ERK isoforms using 

quantitative immunoblotting (Schilling et al. 2005a and data not shown). Furthermore, the 

fraction of double-phosphorylated ERK could be determined by analyzing the fraction with 

an increased apparent molecular weight in the immunoblot. This reduced the parameter 

space by 7 parameters. The remaining 31 parameters were estimated using PottersWheel 

(www.potterswheel.de, Maiwald et al., submitted). To reduce the model to an identifiable 

one, we performed iterative cycles of parameter estimation and detection of dependent 

parameters (Supplementary Fig. S3). We identified 10 groups of parameter doublets or 

triplets that were dependent (Supplementary Fig. S4) and fixed the corresponding 

parameters accordingly. Finally, we succeeded in identifying 21 parameters with a 

standard deviation of less than 10%. Fig. 1b depicts the immunoblotting data with the 

corresponding fit trajectory for the 8 observables. χ2-values indicate good agreement of 

the model with the data, as they are comparable to the number of data points. Indeed, we 

could calculate a p-value of 0.96 that our model is sufficient for describing the data.

Mechanism for fast adaptation to a change in ligand concentrations 
The trajectories show that the proteins observed are rapidly activated after stimulation with 

Epo, reaching basal levels again after 30 – 40 min. Thus, signaling is only transient and 

the cells show a fast adaptation to a change in ligand concentrations. Interestingly, the 

activation and deactivation of MEK and ERK describe a much sharper peak than 

phosphorylation and dephosphorylation at the receptor level. Plotting the trajectories for 

the variables (Supplementary Fig. S5a) indicates that this effect is caused by the negative 

feedback of ppERK1/2 to SOS, leading to a very narrow time window for activation of Raf, 

namely the first 10 min. On the other hand, it takes 20 min before SHP1 is completely 

activated. This negative feedback reduces phosphorylation levels of EpoR and JAK2. 

Signal amplification is important to transform small changes at the receptor level into 

cellular decisions (Sourjik and Berg 2002). We therefore calculated signal amplification as 

a function of total activated molecules at signal maximum (Supplementary Fig. S5b). As 

expected, the cytokine receptor EpoR activates the MAP-kinase pathway only weakly, 

leading to a substantial signal reduction between EpoR and the membrane associated 
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factors SOS and Raf. The cytoplasmic proteins MEK and ERK amplify this weak signal 

massively by virtue of the two-step phosphorylation and dephosphorylation mechanisms. 

Interestingly, total protein concentrations differ only by a factor of 3.5, while the 

concentrations of activated proteins vary by a factor of 5000. Signal amplification, which is 

a key feature of most signal transduction systems (Heinrich et al. 2002), is thus achieved 

at the level of activated molecules. 

Identification and modification of parameters in control of signal amplitude and 
duration
To analyze which reactions in the pathway control activation of the MAP-kinases, we 

performed a sensitivity analysis. We determined control coefficients for peak amplitude, 

integrated response (area under the curve), peak time and duration of the activation of 

double-phosphorylated ERK1 and ERK2. We calculated the control coefficients for the 

initial protein concentrations (Fig. 2a and Supplementary information, Fig S6) of our model. 

The initial concentrations where either determined experimentally or by parameter 

estimation and the values are in physiologically meaningful ranges that are consistent with 

published concentrations. Initial concentrations of EpoR, SOS and Raf control peak 

amplitude for ppERK1/2. The level of SHP1 had virtually no control over ppERK1/2. 

Interestingly, ERK1 had major positive control over the peak amplitude of ppERK1 and 

minor negative control over ppERK2 while the control coefficients of ERK2 were 

reciprocal. Control over peak time and duration was small compared to amplitude and 

integrated response, indicating that the negative feedback wiring of the Epo-induced MAP-

kinase pathway prevents sustained signaling. We also calculated control coefficients for 

the parameters of our model (Supplementary Fig. S6). As some parameters were non-

identifiable, we concentrated our analysis on the identifiable ones.  Positive control over 

the peak amplitude and integrated response of ppERK1 and ppERK2 was distributed 

among the parameters associated with activation of SOS, Raf and ERK. Highest negative 

control was associated with dephosphorylation of Raf, followed by the first 

dephosphorylation step of MEK and ERK. Dephosphorylation of Raf and MEK were also 

the only parameters significantly controlling peak time and duration of ppERK1/2, 

supporting the theory that phosphatases have the strongest influence on duration of 

signaling. As can be shown by summation theorems, the sum of all control coefficients for 

the parameters is equal to 0 for peak amplitude and to -1 for the other quantities analyzed 

(Hornberg et al. 2005b). The large control coefficients of parameters associated with Raf 
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phosphorylation and dephosphorylation are consistent with the oncogenic properties of 

Raf.

The MAP-kinase network acts as an independent module 
As the control coefficients were calculated for infinitesimal changes, we tested whether the 

results are also applicable for larger variations of initial parameter values. Therefore, we 

performed overexpression simulations using our mathematical model. The effect on the 

time course of double-phosphorylated ERK1 and ERK2 was analyzed for three-fold 

elevated concentrations of SHP1, Raf and ERK1 (Fig 2b). As predicted by the sensitivity 

analysis, increasing the concentration of Raf led to higher amplitudes of both double-

phosphorylated ERK1 and ERK2, while elevating the level of SHP1 had virtually no effect 

on these molecules, indicating that the MAP-kinase module is independently regulated by 

the negative feedback from ppERK1/2 to SOS. Thus, prolonged receptor activation does 

not lead to sustained ERK signaling. Furthermore, overexpression of ERK1 resulted in an 

increase in activated ERK1, but a decrease in activated ERK2. To determine the cause of 

this observation, we analyzed the change in activation of the signaling proteins 

(Supplementary Fig. S7a). Overexpression of ERK1 increases the negative feedback on 

SOS, slightly reducing the activation of SOS and Raf. This change in amplitude is 

increased by the signal amplification mechanisms and reduces the activation of the 

downstream molecules MEK and ERK. Thus overexpression of an ERK isoform leads to 

diversion of the signal towards this isoform by feedback-mediated rerouting. To 

experimentally validate this finding, we overexpressed c-Raf and ERK1 by retrovirally 

transducing erythroid progenitor cells. After positive sorting of the cells, overexpression 

levels were in the same range as the concentrations assumed in the simulations. We 

analyzed phosphorylation levels after stimulation with Epo for 7 min by quantitative 

immunoblotting (Supplementary Fig. S7b). Activated molecules per cell at peak time are 

depicted in Fig. 2c. The levels agree with our model predictions, showing that indeed 

overexpression of Raf enhances signaling, while overexpression of an ERK isoform leads 

to feedback-mediated rerouting of signaling. 

Function of the negative feedback 
As signal rerouting by ERK depends on the negative feedback to SOS, we speculated on 

the effect of expressing a kinase-defective isoform of ERK. Thus, we extended our model 

to accommodate expression of the kinase-defective isoforms ERK1 K71R or ERK2 K52R 

(Robbins et al. 1993). As it is unclear whether complexation of activated ERK1/2 is 

sufficient for inhibiting SOS activity or if the subsequent phosphorylation is necessary, we 
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extended our model in two different ways. In the first model (Fig 3a), activated ERK1/2 or 

kinase-defective ERK1 can bind to membrane-associated SOS, inhibiting signaling. Only 

kinase-functional ERK1/2 can subsequently catalyze phosphorylation of SOS. The 

additional parameters kon, koff and kcat were estimated while fixing the remaining 

parameters of the model to the determined values, resulting in a affinity constant in the 

micromolar range for the association (Supplementary Fig. S7c). We simulated the 

trajectories of ppERK1/2 for control cells, cells additionally expressing ERK1 twice the 

endogenous level of ERK1, cells additionally expressing ERK1 K71R twice the 

endogenous level of ERK1 as well as cells additionally expressing Raf twice the 

endogenous level of Raf. Using this information, we calculated the integrated response for 

ppERK1 and ppERK2. In the first model, the combined integrated response is increased 

by overexpression of ERK1 but decreased by expression of ERK1 K71R. Overexpression 

of Raf increased the integrated response even more. 

In the second model (Fig 3b), activated ERK1/2 phosphorylates membrane-associated 

SOS, thereby inhibiting signaling. Kinase-defective ERK1 can associate to and dissociate 

from membrane-associated SOS without inhibiting its function. Both reactions are 

dependent on the same kinetic parameter that was used for the phosphorylation reaction. 

We simulated the trajectories of ppERK1/2 for control cells, cells additionally expressing 

ERK1 twice the endogenous level of ERK1, cells additionally expressing ERK1 K71R twice 

the endogenous level of ERK1 as well as cells additionally expressing Raf twice the 

endogenous level of Raf and calculated the integrated response for ppERK1/2. The 

combined integrated response is increased both by overexpression of ERK1 and 

expression of ERK1 K71R. This is due to the reduction of free membrane-associated SOS 

by activated kinase-defective ERK1 that can be phosphorylated by activated kinase-

functional ERK1/2. Overexpression of Raf increased the integrated response to the same 

extent as in the first model. 

Thus, we can distinguish between the two models by analyzing the effect of expressing 

kinase-defective ERK isoforms. If the first model was correct, expression of kinase-

functional or kinase-defective ERK1/2 would result in opposite effects. On the other hand, 

if the second model was correct, expression of kinase-functional or kinase-defective 

ERK1/2 would result in similar phenotypes. 

The integrated signal response is responsible for cellular decisions 
To analyze the effect of hyperactivating the MAP-kinase pathway on proliferation and 

differentiation of erythroid progenitor cells, we retrovirally transduced primary erythroid 
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progenitor cells with c-Raf, ERK1 or vector control and measured Epo-dependent 

proliferation by thymidine incorporation (Fig. 4a). Hyperactivation of the MAP-kinase 

pathway resulted in strongly reduced proliferation. In accordance with our model 

prediction, overexpression of Raf had a stronger effect than overexpression of ERK1. To 

distinguish between the two models suggested, we retrovirally transduced erythroid 

progenitor cells with c-Raf, ERK1, ERK2, the kinase-defective mutants ERK1 K71R and 

ERK2 K52R as well as vector control. Cells were cultivated for 48 h in serum free medium 

supplemented with Epo and differentiation was determined by surface flow cytometry 

analyzing the fraction of cells expressing low levels of CD71 (transferrin receptor) and high 

levels of the erythropoiesis marker Ter119 (Fig 3b). Remarkably, overexpression of c-Raf 

and both wild type and kinase-defective ERK1/2 accelerated differentiation substantially. 

We next examined hemoglobinization in these cells by intracellular flow cytometry using 

antibodies against hemoglobin α (Dumitriu et al. 2006). In cells transduced with vector 

control, hemoglobin expression was greatly increased after cultivation in serum free 

medium supplemented with Epo (Fig. 3b). However, overexpression of c-Raf or both wild 

type and kinase-defective ERK constructs significantly reduced hemoglobinization in 

erythroid progenitor cells treated with Epo. As predicted by the second model, expression 

of kinase-defective ERK isoforms resulted in similar phenotypes as overexpressing wild-

type ERK isoforms. Thus, we can rule out the first model, demonstrating that membrane-

associated SOS needs to be phosphorylated to prevent signaling. The phenotypes of 

differentiation of primary erythroid cells directly correlates with the predicted integrated 

response of double-phosphorylated ERK1/2, demonstrating the predictive power of the 

computational model. Thus, hyperactivation of the MAP-kinase pathway leads to 

accelerated partial differentiation and reduced hemoglobinization of erythroid progenitor 

cells.
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Discussion
We compiled an isoform-specific dynamic model of the Epo-induced signaling network and 

discovered novel systems properties. A major challenge in mathematical modeling is the 

frequent discrepancy between the number of parameters and experimentally measured 

data points. We addressed this issue in several ways. We measured as many data points 

and proteins as possible during a single stimulation experiment by quantitative 

immunoblotting, making use of recently developed methodologies for data normalization 

and integration (Schilling et al. 2005a). By determining initial concentrations of several 

proteins the parameter space could be decreased. The stoichiometry of signaling 

components is a vital information that has often been neglected. Finally, by iterative 

rounds of parameter estimation and identifiability testing, we could determine dependent, 

non-identifiable parameters. This allowed us to fix non-identifiable parameters and also 

enabled us to recognize over-parameterization of one step facilitating model reduction. 

Thus, we were able to create a mathematical model with identifiable parameters 

describing Epo-induced MAP-kinase activation and feedback-mediated deactivation. 

By sensitivity analysis, we discovered that overexpression of an upstream kinase, i.e. Raf, 

leads to increased signaling, while overexpression of a single isoform, i.e. ERK1, leads to 

diversion of signaling towards this isoform by feedback-mediated rerouting. When 

qualitatively analyzing these results, one might speculate that the reason for this 

phenomenon might be competition of the ERK isoforms for the same upstream kinase, i.e. 

activated MEK. If this was the case, the sum of activated ERK would stay constant when 

one isoform was elevated. However, the phosphorylation levels of ERK1 and ERK2 

demonstrate that this is not the case, as the total amount of activated ERK1 and ERK2 is 

increased if ERK1 is overexpressed. We further identified the phosphorylation level of the 

MAP-kinases as being independent of the expression level of SHP1. The MAP-kinase 

signaling network therefore acts as a autonomous module with a feedback regulating 

signal termination even in the case of prolonged receptor activation. Thus, SHP1-

dependent phenotypes are most likely independent of Epo-induced MAP-kinase signaling. 

To qualitatively predict the effect of expressing kinase-defective ERK mutants, we 

extended the model based on two different hypotheses. Feedback inhibition of SOS was 

accomplished either by complexation and subsequent phosphorylation or by 

phosphorylation only. The two models predicted the same outcome for overexpressing a 

wild-type protein, but divergent effects for expressing a kinase-defective mutant. We 

therefore hyperactivated the MAP-kinase pathway in primary murine erythroid progenitor 
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cells by overexpression of signaling components. Expression of kinase-defective ERK 

resulted in similar phenotypes as overexpression of wild-type ERK, supporting our model 

of inhibition of membrane-associated SOS by phosphorylation, demonstrating that 

complexation is insufficient for inhibiting SOS. The notion that expression of a kinase-

defective protein would lead to a similar phenotype as overexpression of the wild-type 

protein is a very counterintuitive result, but can qualitatively and quantitatively be explained 

by the negative feedback. Several studies have been performed expressing both kinase-

defective ERK and constitutively active Ras or Raf. In that case, the negative feedback 

loop on SOS cannot regulate signaling. This explains the transformation potential of 

constitutively active Ras and Raf. In healthy cells, hyperactivation of ERK1/2 is directly 

counteracted by the negative feedback on SOS, reducing signaling. If Ras or Raf are 

constitutively active, the negative feedback is futile.  

Hyperactivation of the MAP-kinase pathway reduced proliferation, accelerated 

differentiation and reduced hemoglobinization of erythroid progenitor cells, possibly by 

restricting the time window cells can express the globin genes. Contrary results were 

obtained with gene knock-out studies, as c-Raf deficient erythroblasts were shown to 

differentiate faster than their wild-type counterparts and cells expressing a kinase-

defective c-Raf differentiated faster in vitro (Kolbus et al. 2002). c-Raf deficient embryos 

are growth-retarded and anemic and die at midgestation. It was speculated that this 

anemic phenotype is due to premature erythroblast differentiation at the expense of 

renewal, depleting the fetal liver of erythroid precursors (Rubiolo et al. 2006). However, in 

these studies, the differentiation of a heterogeneous population of erythroid progenitor 

cells was analyzed in the presence of receptor tyrosine kinase ligands that strongly 

activate the MAP-kinase pathway. In contrast, we analyzed a pure population of CFU-E 

cells stimulated with Epo as the only growth factor. Using this approach, we could identify 

the effect of altered Epo-dependent MAP-kinase signaling, demonstrating that 

hyperactivation of the Epo-induced MAP-kinase pathway in erythroid progenitor cells 

directly reduces hemoglobinization and accelerates differentiation. 

In conclusion, we combined a large set of quantitative data derived from primary murine 

cells with mathematical modeling, providing a computational model of Epo-induced MAP-

kinase signaling. Our systems biology approach provided counterintuitive results that could 

not be obtained by conventional methods, such as the isoform-specific effects of ERK 

overexpression, the lack of control of SHP1 on MAP-kinase activation, and the realization 

that expression of a kinase-defective ERK isoform hyperactivates MAP-kinase signaling by 
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reducing the negative feedback on SOS. Furthermore, sensitivity analysis provided targets 

for efficient interventions. We aim to use our computational model in the future for 

systems-oriented drug design (Kitano 2007), opening new possibilities for treatments of 

anemia and leukemia. 
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Materials and methods 

Primary Cell Cultures 

Colony-forming units erythroid (CFU-E) were prepared from fetal livers of 13.5-day-old 

embryos from Balb/c mice as described (Ketteler et al. 2002). Briefly, isolated fetal livers 

were resuspended in ice-cold phosphate-buffered saline (PBS) supplemented with 0.3% 

bovine serum albumin (BSA) and passed through a 40 μm cell strainer (BD Biosciences, 

Franklin Lakes, NJ), treated with Red Blood Cell Lysing Buffer (Sigma-Aldrich, St. Louis, 

MO) to remove erythrocytes and washed by centrifugation through 0.3% BSA/PBS. For 

negative depletion, fetal liver cells were incubated with rat antibodies against the following 

surface markers: GR1, CD41, CD11b, CD14, CD45, CD45R/B220, CD4, CD8 (all 

purchased from BD Pharmingen), Ter119  (gift from Dr Albrecht Müller, Julius-Maximilians-

University, Würzburg, Germany) and with the rat monoclonal antibody YBM/42 (gift from 

Dr S. Watt) for 30 minutes at 4°C. Cells were washed 3 times in 0.3% BSA/PBS and were 

incubated for 30 minutes at 4°C with anti–rat antibody–coupled magnetic beads and 

negative sorted with MACS columns according to the manufacturer's instructions 

(MACSbeads; Miltenyi Biotech, Bergisch-Gladbach, Germany). 

CFU-E cells were cultivated for 16 h in Iscove's Modified Dulbecco's Medium, 30% fetal 

calf serum, 50 μM β-mercaptoethanol supplemented with 0.5 unit/ml Epo. 

Time-course Experiments 

CFU-E cells cultivated for 16 h were starved in Panserin 401 (PAN Biotech, Aidenbach, 

Germany) supplemented with 1 mg/ml BSA (Sigma-Aldrich, St. Louis, MO) for 1 h and 

were stimulated with 50 U/ml Epo (Cilag-Jansen, Bad Homburg, Germany). For each time 

point, 8×106 cells were taken from the pool of cells and lysed by the addition of 2× Nonidet 

P-40 lysis buffer, thereby terminating the reaction. 

Immunoprecipitation and Quantitative Immunoblotting 

For immunoprecipitation, 40 ng of GST-EpoR and 50 ng of GST-JAK2 were added as 

calibrator to each cytosolic lysate. The lysates were incubated with anti-EpoR antibodies 

(Santa Cruz, La Jolla, CA) and anti-JAK2 serum (Upstate Millipore, Billerica, MA). For 

cellular lysates, protein concentrations were measured using BCA assay (Pierce, 

Rockford, IL). Immunoprecipitated proteins and 50 μg of cellular lysates were loaded in a 

randomized fashion on a SDS polyacrylamide gel as described (Schilling et al. 2005b), 

separated by electrophoresis and transferred to PVDF or nitrocellulose membranes. 
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Proteins were immobilized with Ponceau S solution (Sigma-Aldrich, St. Louis, MO) 

followed by immunoblotting analysis using the anti-phosphotyrosine monoclonal antibody 

4G10 (Upstate Biotechnology, Lake Placid, NY), the anti-doublephosphorylated MEK1/2 

antibody (Cell Signaling Technologies, Beverly, MA) or the anti-SOS-1 antibody (Santa 

Cruz). Antibodies were removed by treating the blots with β-mercaptoethanol and SDS as 

described (Klingmüller et al. 1995). Reprobes were performed using anti-EpoR antibody 

(Santa Cruz), anti-JAK2 serum (Upstate), anti-doublephosphorylated p44/42 MAPK, anti-

p44/42 MAPK, and anti-MEK1/2 antibodies (all Cell Signaling). For normalization, 

antibodies against β−actin (Sigma-Aldrich, St. Louis, MO) and Clathrin HC (Santa Cruz) 

were used. Secondary horseradish peroxidase coupled antibodies (anti-rabbit HRP, anti-

goat HRP, protein A HRP) were purchased from Amersham Biosciences, Piscataway, NJ. 

Immunoblots were incubated with ECL substrate (Amersham) for 1 min and exposed for 

10 min on a LumiImager (Roche Diagnostics, Mannheim, Germany) or with ECL Advance 

substrate (Amersham) for 2 min and exposed for 1 min on a LumiImager. For 

quantifications, LumiAnalyst software (Roche) was used. 

Computational Data Processing 

Quantitative immunoblotting data was processed using GelInspector software (Schilling et 

al. 2005a). The following normalizers were used: GST-JAK2 for pJAK2 and JAK2, GST-

EpoR for pEpoR and EpoR, β-actin for ppERK1, ppERK2, ERK1 and ERK2, and Clathrin 

for pSOS and SOS. For first estimates, csaps – splines were used with a smoothness of 

0.2 for pJAK2, JAK2, pEpoR and EpoR, 0.5 for ppERK1, ppERK2, ERK1 and ERK2, and 

0.3 for pSOS and SOS. As the values for ppMEK1, ppMEK2 and pSOS had a rather high 

background, the lowest value of the timecourse was subtracted from all data points. 

For the calculation of phosphorylation levels after overexpression of c-Raf and ERK1, we 

scaled the raw values of ppERK1 and ppERK2 to the values of the shifted fraction of 

ERK1 and ERK2. Data were normalized with the sum of phosphorylated and 

unphosphorylated ERK2 and scaled to the number of phosphorylated molecules per cell 

as calculated for control cells. 

Mathematical modeling, parameter estimation and simulations 

Modeling was performed using the Matlab toolbox PottersWheel (www.potterswheel.de, 

Maiwald et al., submitted). Parameters were estimated in logarithmic parameter space 

using a trust region optimization approach. For each fit, 100 iterations were performed with 

a χ2 tolerance of 10-7 and fit parameters tolerance of 10-7. Using the best fit as starting 
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value, 1000 fits were performed, each time varying all parameters with a disturbance 

strength s of 0.4 corresponding to pnew = pold × 10(s × e), with e being normally distributed 

with variance 1 and mean 0. Initial values for EpoR, JAK2, MEK1, MEK2 were fixed to the 

values determined by saturation binding or quantitative immunoblotting divided by 104. To 

determine the scaling factor of ppERK, we scaled the raw values of the 9 strongest 

ppERK1 and ppERK2 levels to the values of the shifted fraction of ERK1 and ERK2. Then, 

we calculated the fraction of phosphorylated to total protein for these 9 time points. These 

values were multiplied with the total concentration of ERK1 and ERK2. The scaling factor 

was defined as the mean of these values divided by the values of the 9 strongest ppERK1 

and ppERK2 signals. Simulations of different input scenarios were performed by 

temporarily overwriting the driving functions of the model and calculating the derived 

variables using the driving input designer of PottersWheel. Similarly, the initial values of 

SHP1, Raf and ERK1 were multiplied three-fold and variables of ppERK1 and ppERK2 

were obtained. 

Non-identifiability and sensitivity analysis 

Sensitivity analysis was applied to investigate relative changes of derived system 

quantities K as a result of relative changes in parameter values pi

i

iK
p p

K
K
p

S
i ∂

∂⋅= (1)

We analyzed the following quantities: Peak amplitude is defined as the concentration at 

the maximum, integrated respnse is the area under the curve from stimulation start to the 

time when the curve drops to 10% of its maximum, peak time is the time at the maximum 

and duration is the distance between the time when the curve first reaches 10% of its 

maximum and the time it drops to 10% of its maximum. 

Hornberg et al. (2005a) derived summation laws for sensitivies of derived system 

quantities like signal amplitude, signal duration, and integrated response. The proofs for 

the summation laws (Hornberg et al. 2005b) can easily be extended to show the existence 

of summation laws for the system quantities investigated in our approach. 
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−=
i

pi
S 1duration (5)

Most models are non-identifiable, i.e., there exist model parameters that cannot be 

determined unambiguously. Often, non-identifiability manifests itself in functionally related 

parameters (see linear relationships, hyperbolas and two-dimensional surfaces in 

Supplementary Fig. S4). However, sensitivity analysis is a local approach, because 

derivations are evaluated at a certain point in parameter space (local sensitivity analysis). 

Thus, without prior knowledge, it can in principle not be determined statistically at which 

point in parameter space sensitivity analysis has to be performed. To deal with this 

problem, we take the following approach: The model is fitted N-times to data (N=1000). 

Each fit yields different estimates for the non-identifiable parameters. Non-identifiabilities 

are detected by non-parametric bootstrap-based identifiability testing with the mean 

optimal transformation approach (MOTA, Hengl et al., submitted) and sensitivies (1) are 

calculated at the actual point along the non-identifiability, here the linear relationships, the 

hyperbolas and the two-dimensional surfaces. As the derived system variables are 

invariant to changes along the non-identifiabilities, the results of the sensitivity analysis do 

not depend on the values we chose for the non-identifiable parameters. 

Plasmids and retroviral transduction 

To generate retroviral expression vectors, a multiple cloning site with the restriction sites 

BamHI, PacI, PmlI, EcoRI, NdeI and BclI was introduced into the BamHI EcoRI locus of 

pMOWS (Ketteler et al. 2002). Furthermore, the puromycin resistance cassette was 

replaced by HindIII AfeI digestion with the LNGFR cDNA (Miltenyi Biotech, Bergisch-

Gladbach, Germany), resulting in the vector pMOWSnrMCS. 

The cDNA of ERK1 was cloned into pMOWSnrMCS by digesting pGEX-ERK1 (Klingmüller 

et al. 1997) with BamHI and EcoRI resulting in pMOWSnr-ERK1. pMOWSnr-ERK1 K71R 

was created by PCR mutagenesis, changing position 71 from AAG to AGG. The cDNA of 

ERK2 and ERK2 K52R was cloned into pMOWSnrMCS by PCR amplification of pcDNA3-

HA-ERK2 (kind gift of John Blenis, Harvard Medical School) and p3XFLAG-CMV7-ERK2

K52R (kind gift of Melanie Cobb, University of Texas) and digestion with BamHI and NdeI 

resulting in pMOWSnr-ERK2 and pMOWSnr-ERK2 K52R, respectively. ERK cDNAs are 

from rat origin, with 100% amino acid identity to mouse. pMOWSnr-cRaf was created by 

digesting pCMV-cRaf (kind gift of Michael Reth, University of Freiburg) with BamHI EcoRI 

and subcloning into pMOWSnrMCS digested with BamHI and BclI. c-Raf cDNA is from 

human origin, with 97% identity to mouse. 
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Retroviral expression vectors were transiently transfected into Phoenix-eco cells using the 

Calcium-phosphate method (Ketteler et al. 2002). 6 hours after transfection of Phoenix 

cells, the medium was changed to Iscove's Modified Dulbecco's Medium containing 50 μM 

β-mercaptoethanol and 30% fetal calf serum (IMDM). Twenty-four hours after transfection, 

the virus-containing supernatant was harvested and filtered through a 0.45-μm filter. For 

spin infection, 4.5 ml of supernatant containing 8 μg/ml Polybren (Sigma-Aldrich) was 

added to 5 × 106 CFU-E in 500 μl Panserin 401 (PAN Biotech, Aidenbach, Germany) and 

centrifuged for 2 h in an Heraeus centrifuge with 2500 rpm at room temperature. The cells 

were washed three times with Panserin 401 and seeded in Panserin 401 supplemented 

with 0.5 U/ml Epo and cultured for 16 or 24 h. 

MACS selection, thymidine incorporation and FACS analysis 

For proliferation assays, transduced CFU-E cells cultivated for 16 h were positive selected 

using MACSelect LNGFR selection kit (Miltenyi Biotech, Bergisch-Gladbach, Germany) 

according to the manufacturer's instructions. 1.5 × 104 LNGFR positive cells were 

cultivated in Panserin 401 supplemented with 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1 and 5 

U/ml Epo for 4 h. [3H]-thymidine was added and cells were cultivated for 20 h. Cells were 

harvested and incorporated radioactivity was measured using a scintillation counter. 

For FACS analysis, transduced CFU-E cells cultivated for 24 h were positive selected 

using MACSelect LNGFR selection kit (Miltenyi Biotech, Bergisch-Gladbach, Germany) 

according to the manufacturer's instructions. LNGFR positive cells were cultivated in 

Panserin 401 for another 24 h. Cells were stained with APC-conjugated anti-Ter119 

antibody (eBioscience, San Diego, CA) and a Biotin-conjugated anti-CD71 antibody (BD 

Pharmingen, Franklin Lakes, NJ) in combination with PerCP-conjugated streptavidin (BD 

Pharmingen). For hemoglobin content, cells were permeabilized and stained with an anti-

hemoglobin α antibody (Santa Cruz, La Jolla, CA) in combination with a FITC-conjugated 

anti-goat secondary antibody (DakoCytomation, Hamburg, Germany). Gated cells were 

analyzed for hemoglobin α and CD71/Ter119 surface marker expression by a 

FACSCalibur (BD Biosciences, Franklin Lakes, NJ) and analyzed with CellQuest Software 

(BD Biosciences).
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Figure legends 

Figure 1: Mathematical modeling of the Erythropoietin-induced MAP-kinase 
signaling network. (a) The dynamic signaling network model consists of 34 reactions 

(solid arrows) with enzymatic (E), mass action (MA) or delay (D) kinetics. Dashed arrows 

indicate enzymes catalyzing the particular reaction. Erythropoietin (Epo) is used as input 

function (U1) of the system. (b) Experimental data are depicted with circles and error bars 

indicating standard deviations calculated with smoothing splines. Trajectories of the fitted 

model variables are indicated by solid lines. χ2-values comparable to the number of data 

points indicate good agreement of the model with the data. The rapid adaptation of the 

system to the continuous stimulus is seen at the receptor level and, with an even faster 

kinetics, at the level of the MAP-kinase cascade. 

Figure 2: Prediction and validation of MAP-kinase signaling control by protein 
levels.  (a) Control coefficients of the model initial concentrations for peak amplitude of 

ppERK1 and ppERK2 were calculated. While ERK1 has positive control over the peak 

amplitude of its own double-phosphorylation, it negatively controls double-phosphorylation 

of ERK2. The reciprocal case applies to ERK2. Raf has positive effect on both isoforms 

while SHP1 has none. 

(b) The effect of three-fold elevated concentrations of SHP1, Raf and ERK1 were 

simulated in silico and trajectories of double-phosphorylated ERK1 and ERK2 were 

plotted. Overexpression of SHP1 was predicted to have virtually no effect, Raf increased 

phosphorylation of both isoforms, whereas overexpression of ERK1 increased ERK1 

phosphorylation but decreased ERK2 phosphorylation. The peak amplitude at 7 min is 

indicated by a vertical dashed line. (c) Murine erythroid progenitor cells retrovirally 

transduced with c-Raf, ERK1 or vector control were stimulated with Epo or left untreated 

and subjected to quantitative immunoblotting with antibodies specific for double-

phosphorylated and total ERK1/2. The data was quantified and converted to 

phosphorylated molecules per cell. The experimental results agree with the predictions, 

showing that overexpression of Raf triggers enhanced signaling, while overexpression of 

an ERK isoform leads to feedback-mediated signal rerouting. 
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Figure 3: Model extensions predicting the effect of expressing kinase-defective ERK 
isoforms. (a) To model SOS inhibition by complexation, the reaction mechanism of SOS 

phosphorylation was extended to contain a binding step and a reaction step. Activated 

kinase-defective ERK (ppERK1 K71R) can bind to membrane-associated SOS, inhibiting 

activation of Raf. The trajectories of ppERK1/2 are predicted for control cells as well as 

cells overexpressing Raf, ERK1 or ERK1 K71R. The combined integrated response was 

calculated, which was increased for overexpressed ERK1 and reduced for overexpressed 

ERK1 K71R. (b) To model SOS inhibition by phosphorylation, binding of activated kinase-

defective ERK (ppERK1 K71R) to membrane-associated SOS was included in the model. 

The complex is still able to activate Raf and reduces the level of free membrane-

associated SOS that can be phosphorylated. The trajectories of ppERK1/2 are predicted 

for control cells as well as cells overexpressing Raf, ERK1 or ERK1 K71R. The combined 

integrated response was calculated, which was increased for both overexpressed ERK1 

and overexpressed ERK1 K71R. 

Figure 4: Hyperactivation of the MAP-kinase pathway in erythroid progenitor cells 
leads to accelerated partial differentiation and reduced hemoglobinization. (a)

Erythroid progenitor cells were retrovirally transduced, cultivated for 16 h and sorted to 

achieve a homogeneous population. Cells were incubated with increasing Epo 

concentrations for 24 h and proliferation was measured by thymidine incorporation. 

Overexpression of c-Raf and ERK resulted in reduced Epo-dependent proliferation. Error 

bars represent standard deviations of triplicates. Lines depict sigmoidal regression curves.

(b) Erythroid progenitor cells were retrovirally transduced and cultivated for 48 h in serum-

free medium supplemented with Epo. Differentiation was determined by analyzing the 

fraction of erythroid progenitor cells expressing low levels of CD71 and high levels of 

Ter119 surface marker using flow cytometry. Error bars represent standard deviations of 

triplicates. Differentiation was strongly accelerated for cells transduced with c-Raf, ERK1/2 

as well as kinase-defective ERK1/2 as predicted by the inhibition of SOS by 

phosphorylation model. (a) Hemoglobinization was determined by analyzing the amount of 

intercellular hemoglobin α using flow cytometry. Error bars represent standard deviations 

of triplicates. Cells transduced with c-Raf, ERK1/2 as well as kinase-defective ERK1/2 

showed reduced levels of hemoglobinization. Hyperactivation of the MAP-kinase pathway 

therefore leads to accelerated partial differentiation and reduced hemoglobinization of 

erythroid progenitor cells. 
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Supplementary figure legends 

Figure S1: Ordinary differential equations, parameters, observables and scaling 
factors for the mathematical model. Ordinary differential equations (ODE) are shown for 

the mathematical model of the Epo-induced MAP-kinase pathway. Delayed activation of 

membrane-associated SHP1 was modeled using a 9-step compartmentalization reaction 

(linear chain trick). Parameters, observables and scaling factors are shown with the 

respective descriptions. 

Figure S2: Quantitative immunoblotting data of primary erythroid progenitor cells 
stimulated with erythropoietin. Murine erythroid progenitor cells of the CFU-E stage 

were stimulated with 50 U/ml Epo and samples were taken up to 70 min after addition of 

Epo. Cellular lysates were either first subjected to immunoprecipitation (IP) or separated 

directly (TCL) in a randomized order by SDS-PAGE followed by quantitative 

immunoblotting (IB). GST-JAK2 and GST-EpoR were added prior to IP acting as 

calibrators. These calibrators as well as the normalizers β-actin and Clathrin HC were 

used for normalization of data.

Figure S3: Iterative rounds of parameter estimation and identifiablility testing result 
in accurate determination of identifiable parameters. Parameters, initial concentrations 

and scaling factors are displayed in red for standard deviations larger than 10% and in 

green for standard deviations smaller than 10%.  For each iterative round, 1000 fits were 

performed and the mean values and standard deviation of each parameter was calculated 

on the basis of the best 50% of fits. Non-parametric bootstrap-based identifiability testing 

with the mean optimal transformation approach (MOTA) revealed dependent parameter 

doublets or triplets. One parameter of each doublet and two parameters of each triplet 

were fixed to the value of the best fit and parameter estimation was performed again. After 

restraining the parameter space to 25 parameters, 6 parameters related to Ras and Raf 

were unidentifiable. Therefore, we condensed the reactions, treating the activation of Raf 

by membrane-associated SOS as a single step. With two additional round of parameter 

testing and MOTA, we could identify all of the remaining 21 parameters. 
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Figure S4: Parameter doublets and triplets analytically dependent as identified with 
the mean optimal transformation approach (MOTA). Analytically dependent parameters 

identified by MOTA are shown, with lower case letters corresponding to the dependent 

parameter doublets or triplets in Supplementary Fig. S3. Data points (black diamonds) 

represent the estimated parameter values of the best 500 fits of the specific parameter 

estimation round. The data points describe either a straight line (c, g), a hyperbola (b, f, j)
or a two-dimensional surface (a, d, e, h, i). In the first two cases, fixing one parameter 

identifies the second parameter, in the latter case, two parameters have to be fixed. 

Figure S5: Kinetics of the mathematical model variables. (a) Trajectories are depicted 

for all protein states of the dynamic pathway model. Data are shown for the observation 

period of 70 min after stimulation with Epo. As the number of molecules per cell were 

determined for several molecules, parameter estimation revealed the absolute 

concentration of the rest of the proteins. Thus, absolute phosphorylation levels of all 

proteins are determined. The activation of the negative feedback proteins activated SHP1 

and phosphorylated SOS critically determines the kinetics of the other signaling molecules. 

(b) The time and the number of activated molecule at peak maximum for pathway 

components are shown. As expected, the cytokine receptor EpoR activates the MAP-

kinase pathway only weakly. Thus, very few molecules at the plasma membrane are 

involved in signaling. However, the cytoplasmic proteins MEK and ERK amplify the signal 

impressively.

Figure S6: Sensitivity analysis demonstrates that most parameters control the 
amplitude of the Epo-induced MAP-kinase pathway. Control coefficients of the model 

parameters for peak amplitude, integrated response, peak time and duration of ppERK1 

and ppERK2 are depicted. Positive control coefficients indicate higher values for the 

derived systems quantities for increasing parameters, while negative control coefficients 

indicate decreasing values for the quantities for increasing parameter values. Whereas 

control of peak amplitude and integrated response is shared by activation and deactivation 

parameters, peak time and duration is virtually only controlled by dephosphorylation steps. 

Note the large control of the steps associated with the oncogene Raf. As expected by the 

summation theorems, the sum for parametric control coefficients equals to 0 for peak 

amplitude and -1 for the other quantities. Control coefficients for initial concentrations 
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shows that control is distributed among EpoR, SOS, Raf and ERK1/2 and that the 

integrated response is mostly determined by the amplitude of signaling. 

Figure S7: Feedback-mediated signal rerouting. (a) The first 7 min of the activated 

molecules are depicted for the dynamic pathway model (red dashed lines) and for three-

fold overexpressed ERK1 (green solid line). Elevated ERK1 concentrations enhances the 

negative feed-back on membrane-associated SOS, but leaves pJAK2 and pEpoR 

unaffected. The slight reduction in activation of SOS and Raf is propagated and amplified 

to MEK and ERK, thus reducing ppERK2 levels. (b) Murine erythroid progenitor cells 

retrovirally transduced with c-Raf, ERK1 or vector control were stimulated with Epo for 7 

min or left untreated and subjected to quantitative immunoblotting with antibodies specific 

for double-phosphorylated and total ERK1/2. Compared to total concentrations of ERK2, 

overexpression of Raf increased levels of both double-phosphorylated ERK1 and ERK2, 

while overexpression of ERK1 increased the levels of ppERK1 but reduced the levels of 

ppERK2. (c) Kinetic parameters determined for the SOS inhibition by complexation model. 

Rate constants for association, dissociation and phosphorylation reaction were estimated 

based on quantitative immunoblotting data. The dissociation constant was in the 

micromolar range.

Figure S8: Flow cytometric analysis of differentiation and hemoglobinization of 
primary erythroid progenitor cells. Erythroid progenitor cells were retrovirally 

transduced with ERK1 (green) or empty vector control and cultivated for 48 h in serum-free 

medium supplemented with Epo. (a) Differentiation was determined by analyzing the 

fraction of erythroid progenitor cells expressing low levels of CD71 and high levels of 

Ter119 surface marker using flow cytometry. An overlay of the measurements is shown. 

(b) Hemoglobinization was determined by analyzing the amount of intercellular 

hemoglobin α using flow cytometry. An overlay of the measurements is shown. 
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Figure S1, Schilling et al., 2007a
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Figure S3, Schilling et al., 2007a

34 parameters estimated MOTA 28 parameters estimated MOTA 25 parameters estimated 22 parameters estimated MOTA 21 parameters estimated Parameters

JAK2 phosphorylation by Epo [min-1(U/ml)-1] 0.012  0.000 (3%) 0.012  0.000 (0%) 0.012  0.000 (0%) 0.012  0.000 (1%) 0.012  0.000 (1%) 0.0122229

EpoR phosphorylation by pJAK2 [min-1(104molecules) -1] 3.474  1.655 (48%) a 2.625  0.015 (1%) 2.632  0.020 (1%) 2.598  0.025 (1%) 2.601  0.026 (1%) 2.57635

SHP1 activation by pEpoR [min-1(104molecules) -1] 0.411  0.011 (3%) 0.415  0.002 (0%) 0.415  0.001 (0%) 0.416  0.001 (0%) 0.416  0.001 (0%) 0.415126

actSHP1 deactivation [min-1(104molecules) -1] 0.020  0.003 (12%) 0.021  0.000 (1%) 0.021  0.000 (1%) 0.020  0.000 (2%) 0.020  0.000 (2%) 0.0202363

pEpoR dephosphorylation by actSHP1 [min-1(104molecules) -1] 1.256  1.589 (127%) a fixed 1.30893

pJAK2 dephosphorylation by actSHP1 [min-1(104molecules) -1] 0.351  0.440 (125%) b 0.470  0.004 (1%) 0.471  0.003 (1%) 0.458  0.004 (1%) 0.457  0.004 (1%) 0.460926

SOS recruitment by pEpoR [min-1(104molecules) -1] 0.100  0.004 (4%) 0.102  0.001 (1%) 0.103  0.001 (1%) 0.099  0.001 (1%) 0.100  0.002 (2%) 0.09871

mSOS release from membrane [min-1] 18.284  13.500 (74%) 14.379  8.389 (58%) g fixed 27.6573

Ras GDP exchange by mSOS [min-1(104molecules) -1] 25.761  29.323 (114%) 22.374  14.837 (66%) 30.824  22.057 (72%) removed -

Ras_GTP hydrolysis [min-1] 13.765  13.355 (97%) 8.003  2.888 (36%) 5.665  0.736 (13%) removed -

GTP_Ras / mSOS induced Raf phosphorylation [min-1(104molecules) -1] 0.032  0.104 (326%) 0.008  0.008 (93%) 0.014  0.010 (70%) 0.653  0.416 (64%) j 0.172  0.006 (4%) 0.176785

pRaf dephosphorylation [min-1] 0.274  0.037 (13%) 0.302  0.272 (90%) 0.320  0.371 (116%) 0.254  0.002 (1%) 0.254  0.002 (1%) 0.254708

1st MEK2 phosphorylation by pRaf [min-1(104molecules) -1] 29.464  41.491 (141%) 13.769  9.164 (67%) h 7.174  0.360 (5%) 10.639  0.697 (7%) 10.643  0.711 (7%) 10.6134

2nd MEK2 phosphorylation by pRaf [min-1(104molecules) -1] 240.093  177.937 (74%) 283.526  195.209 (69%) i 175.909  10.424 (6%) 114.769  8.573 (7%) 114.743  8.769 (8%) 114.297

1st MEK1 phosphorylation by pRaf [min-1(104molecules) -1] 3.055  3.898 (128%) 1.631  0.925 (57%) h, i fixed 0.96932

2nd MEK1 phosphorylation by pRaf [min-1(104molecules) -1] 967.853  824.087 (85%) 1135.051  639.526 (56%) h, i fixed 691.72

1st MEK dephosphorylation [min-1] 0.265  0.129 (49%) 0.231  0.008 (3%) 0.231  0.003 (2%) 0.250  0.003 (1%) 0.250  0.004 (1%) 0.249181

2nd MEK dephosphorylation [min-1] 0.068  0.019 (27%) 0.070  0.004 (6%) 0.071  0.001 (1%) 0.068  0.001 (1%) 0.068  0.001 (2%) 0.0674336

1st ERK1 phosphorylation by ppMEK [min-1(104molecules) -1] 141.518  112.735 (80%) 93.226  3.317 (4%) 94.146  3.543 (4%) 62.159  1.337 (2%) 61.993  1.510 (2%) 62.8869

2nd ERK1 phosphorylation by ppMEK [min-1(104molecules) -1] 66.706  58.235 (87%) c 60.324  0.116 (0%) 60.353  0.136 (0%) 59.677  0.170 (0%) 59.669  0.151 (0%) 59.6234

1st ERK2 phosphorylation by ppMEK [min-1(104molecules) -1] 56.724  45.363 (80%) e 41.077  0.990 (2%) 41.410  1.088 (3%) 30.403  0.467 (2%) 30.330  0.520 (2%) 30.6693

2nd ERK2 phosphorylation by ppMEK [min-1(104molecules) -1] 54.240  47.600 (88%) c, d fixed 48.7469

1st ERK dephosphorylation [min-1] 39.721  38.468 (97%) d 24.593  0.080 (0%) 24.622  0.109 (0%) 23.233  0.082 (0%) 23.217  0.093 (0%) 23.2891

2nd ERK dephosphorylation [min-1] 2.017  2.349 (116%) e fixed 1.00149

ppERK neg feedback on mSOS [min-1(104molecules) -1] 1886.884  1626.068 (86%) 1275.571  685.335 (54%) g 2355.684  85.459 (4%) 3043.851  94.007 (3%) 3024.169  104.049 (3%) 3116.04

pSOS dephosphorylation [min-1] 0.125  0.006 (5%) 0.126  0.001 (1%) 0.127  0.001 (1%) 0.122  0.001 (1%) 0.122  0.002 (1%) 0.121478

JAK2 [×10
4
 molecules] determined 2

EpoR [×10
4
 molecules] determined 1

SHP1 [×10
4
 molecules] 22.805  20.568 (90%) a, b fixed 7.8493

SOS  [×10
4
 molecules] 2.545  2.544 (100%) f 2.615  0.001 (0%) 2.614  0.001 (0%) 2.619  0.002 (0%) 2.619  0.003 (0%) 2.61825

GDP_Ras  [×10
4
 molecules] 69.043  30.690 (44%) 67.056  24.072 (36%) 65.126  23.940 (37%) removed -

Raf [×10
4
 molecules] 0.756  1.061 (140%) 0.220  0.148 (67%) 0.222  0.162 (73%) 1.529  1.075 (70%) j fixed 3.98858

MEK2 [×10
4
 molecules] determined 11

MEK1 [×10
4

molecules] determined 24

ERK1 [×10
4
 molecules] determined 7

ERK2 [×10
4
 molecules] determined 21

scale pEpoR  [×10
4
 molecules/a.u.] 0.498  0.009 (2%) 0.500  0.001 (0%) 0.500  0.001 (0%) 0.505  0.001 (0%) 0.505  0.001 (0%) 0.504791

scale pJAK2 [×10
4
 molecules/a.u.] 0.210  0.002 (1%) 0.210  0.000 (0%) 0.210  0.000 (0%) 0.210  0.000 (0%) 0.210  0.000 (0%) 0.209815

scale ppMEK  [×10
4
 molecules/a.u.] 38.975  12.672 (33%) d, e fixed 49.9407

scale ppERK  [×10
4
 molecules/a.u.] determined 3

scale SOS [×10
4
 molecules/a.u.] 2.307  2.327 (101%) f fixed 1.05574

Best total 2 - value 178.329 178.312 178.308 180.229 180.230

p-value for 'model is sufficient' based on degrees of freedom 0.884 0.933 0.950 0.955 0.960
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Figure S5, Schilling et al., 2007a
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Figure S6, Schilling et al., 2007a
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Internalization controls early phase kinetics of Epo receptor activation 

Verena Becker1,3, Marcel Schilling1,3, Julie Bachmann1, Stefan Hengl2, Thomas Maiwald2,

Jens Timmer2, and Ursula Klingmüller1

1Systems Biology of Signal Transduction, German Cancer Research Center, 69120 Heidelberg, Germany 
2Freiburg Center for Data Analysis and Modeling, University of Freiburg, 79104 Freiburg, Germany 
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Running head: Internalization determining Epo receptor activation kinetics 

Initiation of signal transduction is critically determined by the amount of ligand-
accessible receptor on the cell surface. We analyzed ligand-induced and constitutive 
endocytosis of the erythropoietin receptor (EpoR) by mathematical modelling based 
on quantitative data. The rapid decline of initial EpoR signalling is mediated by 
receptor internalization, while the amount of ligand-receptor complexes at the plasma 
membrane recovers after prolonged stimulation. Modelling revealed that ligand 
binding to the EpoR substantially increases receptor internalization. Sensitivity 
analysis demonstrated that the receptor turnover, the association rate of ligand 
binding as well as internalization critically shape the early phase kinetic behaviour of 
signalling-competent ligand-receptor complexes. We conclude that EpoR 
internalization is not responsible for long-term receptor attenuation, but induces rapid 
deactivation of EpoR signalling by accelerated endocytosis of ligand-bound receptors.  
Furthermore, to determine the potency of Epo derivatives and mimetics, it is more 
informative to measure the association kinetics rather than the ligand affinity. Thus, 
the data-based model provides an important basis for the targeted design of more 
potent Epo derivatives for the use in clinical applications. 
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INTRODUCTION
The amplitude of signal transduction initiation is critically determined by the amount of 

specific receptor on the plasma membrane. The duration of signalling is limited by 

recruitment of phosphatases and the activation of negative feedback loops1,2. Furthermore, 

ligand-mediated internalization of receptors is proposed to control the signal duration by 

lysosomal degradation and downregulation of cell surface receptors, thus providing a 

mechanism for long term attenuation of signals emanating from the cell surface3. As cell 

surface receptors are present at low concentrations, the concept of signalling endosomes 

has recently been discussed to mediate amplification of signal transduction cascades 

through receptor tyrosine kinases (RTK)4. Thus, both the temporal as well as the spatial 

organization of signal transduction play a key role in shaping cellular responses to external 

stimuli.

Cytokines regulate the fine-tuned balance of self-renewal and fast adaptation in the 

hematopoietic system. Erythropoietin (Epo) and its cognate receptor (EpoR) are the key 

regulators of definitive erythropoiesis by promoting proliferation, survival, and terminal 

differentiation of erythroid progenitor cells at the colony forming unit-erythroid (CFU-E) 

stage5. The EpoR is expressed at low levels on the cell surface6. Upon ligand binding, the 

preformed homodimeric EpoR7 undergoes a conformational switch leading to activation of 

the associated Janus kinase (JAK) 28, which phosphorylates cytoplasmic tyrosine residues of 

the EpoR. These phosphotyrosines serve as docking sites for signal-promoting molecules 

such as the signal transducer and activator of transcription (STAT) 5 as well as for negative 

regulators including the protein tyrosine phosphatase SHP-1 and members of the suppressor 

of cytokine signalling (SOCS) family9,10.

Additionally, Epo binding induces internalization of the EpoR. Ligand-mediated EpoR 

internalization depends on motifs within the extracellular domain11 and cytoplasmic domain of 

the receptor12,13 but does not strictly depend on receptor tyrosine phosphorylation or JAK2 

activity14. Studies applying inhibitors of protein synthesis have suggested that Epo binding 

accelerates receptor internalization15.

The cellular function of EpoR internalization remains unclear. Endocytosis of the EpoR has 

been proposed to terminate signalling by lysosomal degradation of activated receptor 

complexes in UT-7 cells15. Alternatively, receptor endocytosis can target activated ligand-

receptor complexes to sites of phosphatase activity as demonstrated for the interaction 

between internalized epidermal growth factor (EGF) receptor and the protein tyrosine 

phosphatase PTP-1B on the surface of the endoplasmic reticulum (ER)16.

Recently, internalization and degradation kinetics of recombinant human Epo (rhEpo) as well 

as of the hyperglycosylated darbepoetin alfa bound to the human EpoR have been 

determined by kinetic modelling, showing that about 40% of ligand is degraded after uptake, 
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while 60% of internalized Epo is resecreted intact17. However, so far little is known about how 

ligand-induced internalization influences cellular responsiveness and signal transduction 

through the EpoR.  

To address this, we applied a systems biology approach by employing dynamic 

mathematical modelling of ligand-induced and constitutive EpoR internalization based on 

quantitative data. Unexpectedly, the amount of ligand-receptor complexes at the plasma 

membrane recovered after prolonged stimulation, although EpoR activation was not further 

detectable. Sensitivity analysis of Epo-EpoR internalization modelling identified the 

parameters receptor turnover and internalization as critical for the early kinetics of signalling-

competent ligand-receptor complexes. Furthermore, we uncovered that the amount of bound 

Epo is largely determined by association kinetics rather than ligand affinity.  
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RESULTS 
Dynamic mathematical model of ligand-mediated EpoR internalization 
To gain insight into the kinetics of Epo-stimulated EpoR internalization, we reviewed the 

principle steps of ligand-mediated receptor endocytosis and translated them into a dynamic 

ordinary differential equations (ODE)-based mathematical model comprising 10 reactions 

and 8 species (Fig. 1a). Free cell surface EpoR is subjected to constant turnover, with 

production and plasma membrane transport being dependent on the turnover rate and the 

maximal amount of receptor on the cell surface Bmax. Constitutive endocytosis and 

degradation of the EpoR depend on the amount of receptor on the cell surface and on the 

turnover rate. Therefore, in absence of ligand, the amount of cell surface EpoR is constant 

and equal to Bmax. Free functional Epo in the medium binds to the EpoR with the on-rate kon

and dissociation occurs with the off-rate koff. As the dissociation constant KD can be 

determined experimentally, koff is expressed as kon × KD. Epo bound to its receptor is 

internalized and finally dissociates from the EpoR due to the pH-change during trafficking 

through endosomal and lysosomal compartments. Internalized receptor can recycle to the 

surface with a delay. Internalized Epo can proceed by two routes. It is either recycled back to 

the medium or degraded in the cell and released to the medium afterwards, unable to re-bind 

to the receptor. This is the minimal model that can both describe our data and is consistent 

with biological knowledge. The delay for EpoR recycling is absolutely necessary, while 

delays at other steps in the model including Epo binding and internalization as well as Epo 

recycling and release proved to be unnecessary to describe our data. Additionally, 

degradation and release of Epo are inevitably serial, not parallel steps. 

To determine the parameters Bmax and KD, BaF3-HA-EpoR cells were treated with increasing 

concentrations of [125I]-Epo and the free as well as the specifically bound [125I]-Epo was 

measured (Fig. 1b). We calculated parameters by a one-site saturation regression analysis, 

revealing a dissociation constant KD = 164 ± 28 pM that is comparable to published data18. A 

kinetic measurement of Epo-induced EpoR internalization was performed for BaF3-HA-EpoR 

cells at 37°C. Cells were stimulated with [125I]-Epo for up to 240 min. Unbound [125I]-Epo in 

the medium was removed and surface-bound [125I]-Epo was separated from internalized 

[125I]-Epo by acid stripping (Fig. 1c). Ligand-receptor complexes were rapidly internalized, 

while [125I]-Epo in the medium was not depleted within the time observed. Remarkably, after 

a first decline, the extent of cell surface-bound [125I]-Epo recovered at 240 min, indicating that 

the amount of EpoR at the plasma membrane is not depleted for prolonged ligand 

stimulation. Measurements were performed in triplicates, the standard deviations being small 

enough for parameter estimation techniques. 
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Dynamic mathematical model of constitutive EpoR internalization
To determine Epo-independent internalization, we established BaF3 cells expressing a 

streptavidin-binding peptide tagged (SBP)-EpoR. Since streptavidin does not induce EpoR 

phosphorylation (Supplementary Information, Fig S1), this approach allowed us to follow 

constitutive EpoR endocytosis by incubation with radiolabelled streptavidin. The model for 

constitutive receptor internalization is analogous to the Epo-induced receptor internalization 

model (Fig. 2a), the main difference being that the receptor is internalized with a turnover

rate that is independent of bound streptavidin. As the amount of cell surface EpoR is 

constant, it is not important whether the receptor is recycled to the surface or newly 

produced. Internalized streptavidin undergoes the same reactions as internalized Epo. The 

parameter release was assumed to be the same for both Epo and streptavidin, as parameter 

estimation resulted in very similar values and one can assume that degraded peptides are 

processed with similar reactions within intracellular compartments. To determine the rates for 

Bmax_strep and KD_strep, BaF3-SBP-EpoR cells were treated with increasing concentrations 

of [125I]-streptavidin. [125I]-Streptavidin did not efficiently bind to SBP-EpoR, therefore the 

dissociation constant KD = 2964 ± 1189 pM showed a high standard deviation (Fig. 2b). 

However, the binding affinity of [125I]-streptavidin was within the reported nanomolar range19.

A kinetic measurement of constitutive EpoR internalization was performed for BaF3-SBP-

EpoR cells. Cells were stimulated with [125I]-streptavidin at 37°C for up to 60 min. Free [125I]-

streptavidin in the medium was measured, while [125I]-streptavidin on the surface was 

separated by acid stripping from intracellular [125I]-streptavidin (Fig. 2c). The amount of cell 

surface-bound [125I]-streptavidin increased within the observed time, indicative of the 

inefficient binding to the receptor. Measurements were performed in triplicates, showing 

standard deviations being small enough for parameter estimation techniques. 

Parameter estimation of combined EpoR internalization models 
We performed simultaneous parameter estimation using the two ODE-based models (see 

Supplementary Information, Fig. S2). EpoR delay was modelled using a 10-step 

compartmentalization reaction. All initial concentrations were set to 0, except for EpoR set to 

Bmax or Bmax_strep, as well as Epo and strep, which were set to the initial concentrations 

± 100 pM used for the experiments. Bmax or Bmax_strep were fixed to the determined values. 

Parameters for both models were estimated simultaneously, with two shared parameters 

turnover and release. Parameter estimation was performed 500 times with different starting 

conditions. The trajectories for the best fit are depicted in Fig. 3. The model captures the 

dynamics of the system very well, including the steep initial decrease of  a minor fraction of 

Epo in the medium, the rapid peak of Epo bound on the cell surface followed by a decrease 

before rising again and the saturation kinetics-like accumulation of internalized Epo. The data 
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for constitutive internalization are equally well represented. Low χ2-values compared to the 

number of data points indicate accurate explanation of the data by the dynamic mathematical 

models. To gain insight into the systems properties, we additionally plotted the trajectories of 

all variables of the Epo-induced EpoR internalization model (see Supplementary Information, 

Fig. S3) and uncovered interesting properties. Free Epo is in large excess, however, free 

EpoR on the surface is not completely occupied by Epo. Rather, it is rapidly reduced to about 

one third of the initial receptor concentration and then slowly replenished by receptor 

recycling. Receptor-bound Epo, both on the cell surface and within the cell, displays a 

remarkable kinetics. A sharp peak in the first minutes is followed by a rapid decline and the 

receptor concentration rises again after two hours. Finally, a rather substantial part of 

internalized Epo is degraded and released into the medium. 

To investigate the identifiability of the estimated parameter values, we calculated the 

standard deviation of the parameters for the best 65% of the 500 fits (see Supplementary 

Information, Fig. S4). Five of 16 parameters exhibited standard deviations larger than 25%. 

As these parameters are divided in two groups of highly dependent parameters, we could fix 

two of these parameters and then re-estimate the parameters. By this procedure, all 

parameter exhibited standard deviations smaller than 25%. Comparing the parameters 

turnover and internalization, it became evident that Epo-binding increases EpoR 

internalization by a factor of 3.5. Moreover, approximately 80% of Epo are recycled to the 

medium intact, while only 20% are degraded. 

Sensitivity analysis of ligand-receptor complex formation 
To analyze parameters determining the intriguing kinetics of receptor-bound Epo, we 

performed a sensitivity analysis. The sum of surface and internalized ligand-receptor 

complexes that are capable of initiating signal transduction was investigated. Three 

quantities were defined for the analysis. The peak amplitude is the concentration of ligand 

receptor complexes at the first maximum, the peak time is the time at the first maximum, and 

the extrema amplitude is the concentration at the first maximum minus the concentration at 

the first minimum (Fig. 4a). The control coefficients of the parameters of the Epo-induced 

EpoR internalization model for these quantities were determined. Positive control coefficients 

indicate that values for peak amplitude, extrema amplitude and peak time increase with 

higher parameter values, while negative control coefficients indicate that higher parameters 

lead to lower values for these quantities. Higher absolute values of control coefficients 

thereby represent a larger influence of the parameter (Fig. 4b). The turnover rate has a minor 

positive impact on peak amplitude and peak time, but a massive negative effect on extrema 

amplitude. The effect of kon is positive for both peak and extrema amplitude and negative for 

peak time, indicating that faster binding leads to faster and thus probably more pronounced 
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signalling. On the other hand, KD has little control on all parameters, demonstrating that the 

binding kinetics is more important than the affinity of Epo binding to its receptor. 

Internalization possesses negative control on peak amplitude, minor positive control on 

extrema amplitude, and strong negative control on peak time. Dissociation has a minor 

negative impact on all quantities. The rest of the parameters have essentially no control on 

the kinetics of EpoR-bound Epo. As can be shown by summation theorems, the sum of all 

control coefficients is 0 for peak and extrema amplitude and -1 for peak time20. As the control 

coefficients were calculated for infinitesimal changes, we tested whether the results are also 

applicable for larger parameter variations. Therefore, trajectories for the sum of surface and 

internalized EpoR-bound Epo were plotted depending on changes in the parameters turnover

and internalization (Fig. 4c). As predicted by the sensitivity analysis, increased turnover led 

to a slightly higher peak but a shallower kinetic, while increased internalization caused a 

sharper but lower peak. Thus, sensitivity analysis allowed identification of the factors that 

cause the steep rise and rapid decline of EpoR-bound Epo in cells. 

Time-course analysis of long-term EpoR activation 
The kinetic measurements showed that the cell surface population of ligand-bound EpoR 

recovers after approximately 240 min. Therefore, unless negative regulators prevent signal 

initiation one would assume that EpoR and JAK2 activation would follow this kinetic 

behaviour and phosphorylated proteins would be detectable upon prolonged ligand 

stimulation. To examine the kinetics of receptor activation, BaF3 cells stably expressing HA-

EpoR were stimulated with 5 U/ml Epo for up to 240 min and the amount of activated 

receptor and JAK2 were quantified (Fig. 5a). Phosphorylated EpoR showed peak intensity at 

10 min, followed by a rapid decrease that reflects the kinetics of ligand-bound receptor 

complexes. EpoR activation was reduced to basal levels between 60 and 120 min (Fig. 5a). 

Despite recovery of the plasma membrane pool of receptor-ligand complexes at 240 min of 

stimulation, phosphorylated EpoR could not be detected at later time points. Analysis of 

JAK2 revealed that the activated kinase exhibits similar kinetics to phosphorylated EpoR 

(Fig. 5b). Thus, ligand-induced receptor internalization does not mediate long-term 

attenuation of EpoR activation but rather shapes the initial kinetics of ligand-receptor 

complex formation. Probably, negative regulators are responsible for termination of EpoR 

signalling upon prolonged stimulation. 
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DISCUSSION
The extent of cell surface expression regulates the sensitivity of receptors to external ligands. 

By quantitative measurement we determined that long-term attenuation of receptor activation 

is not mediated by downregulation of the receptor pool at the plasma membrane. By applying 

a systems biology approach, we uncovered the parameters that determine the kinetics of 

ligand-receptor complex formation and thus activation of EpoR signalling. 

Receptor endocytosis has been proposed to control downregulation of activated receptor 

complexes and thus terminate signals emanating from the plasma membrane. For example, 

while the EGFR is rapidly internalized depending on autophosphorylation of the cytoplasmic 

domain and subsequently downregulated by lysosomal degradation21, ErbB3 endocytosis 

exhibits a significantly slower kinetics and the receptor recycles to the plasma membrane22.

These studies indicate the existence of different strategies for receptor trafficking, even 

within one family of structurally related receptors. For the human myeloid cell line UT-7 

expressing high levels of EpoR, downregulation of the activated receptor is proposed to be 

mediated by both proteasomal and lysosomal degradation15. However, our observations 

revealed that despite recovery of ligand-receptor complexes at the cell surface, EpoR 

activation is restrained upon prolonged stimulation, arguing against the assumption that long-

term attenuation of EpoR signalling is mediated by internalization and downregulation of the 

receptor plasma membrane pool. 

Therefore, other mechanisms terminate EpoR signalling, probably including the recruitment 

of phosphatases to the EpoR, the induction of negative feedback proteins, as well as 

degradation of the receptor-associated JAK2. A prominent phosphatase involved in negative 

regulation of EpoR signalling is SHP-1 that is recruited to the phosphorylated EpoR and 

subsequently inhibits JAK2 activation23,24. Since the induction of negative feedback proteins 

requires gene transcription, recruitment of the SOCS family members CIS25 and SOCS-326 to 

tyrosine-phosphorylated EpoR is likely to occur at later time points after EpoR activation. An 

alternative mechanism proposed suggested that upon Epo stimulation, JAK2 is 

autophosphorylated on a negatively regulating tyrosine within the receptor-binding FERM 

domain, which leads to dissociation from the EpoR and subsequent kinase degradation27.

This indicates that JAK2 activity may be the limiting factor for sustained EpoR 

phosphorylation. As the amount of SHP-1 remains constant after Epo stimulation 

(unpublished data), we speculate that the decreased ratio of JAK2 to SHP-1 favours 

dephosphorylation over phosphorylation of the receptor. 

We identified recycling of the ligand and the receptor as key systems properties of EpoR 

trafficking. Approximately 80% of Epo recycles to the medium and therefore allows EpoR 

activation without depleting the ligand in the extracellular space, which is important in 

particular in the hematopoietic stem cell niche showing potentially low Epo concentrations28.
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Thus, Epo recycling enables erythroid progenitor cells to respond to Epo without affecting 

ligand concentration in the extracellular environment for adjacent cells. Recovery of the 

amount of ligand-receptor complexes at the plasma membrane upon prolonged stimulation 

critically depends on EpoR recycling. Association of JAK2 with the EpoR in the ER was 

reported to be necessary for receptor maturation by a chaperone-like mechanism and cell 

surface expression of newly synthesized proteins29. As the overall intracellular receptor pool 

is depleted upon Epo stimulation (data not shown), we speculate that the decline in total 

receptor expression during ligand stimulation might correlate with decreased JAK2 levels, 

possibly resulting in an accelerated degradation of unprocessed EpoR protein. 

Our modelling approach revealed that three parameters receptor turnover, the association 

rate kon for ligand binding to the receptor, as well as receptor internalization determined the 

sharp peak of ligand-receptor complex formation. We suggest that these parameters values 

are a prerequisite to allow both rapid formation of signalling-competent receptor complexes 

and an immediate decline after peak levels. Analysis of EpoR and JAK2 phosphorylation 

levels indicated that rapid receptor internalization restricts the initial kinetics of signalling at 

the receptor level. 

The majority of the EpoR resides within the ER and the Golgi complex, while only a minor 

part is transported to the cell surface6. In contrast to a recent study modelling Epo trafficking 

and degradation for human EpoR17, our modelling approach includes the turnover rate of the 

receptor, revealing that receptor turnover is critical for the early phase of ligand-receptor 

complex formation. This observation indicates that the continuous exchange of the EpoR 

plasma membrane pool and sampling of the extracellular environment is essential for signal 

transduction.

Sensitivity analysis of parameters describing the ligand-stimulated EpoR internalization 

demonstrated that kon but not KD is critical for both the extent as well as the rate to form 

signalling-competent ligand-receptor complexes. Thus, for designing efficient Epo derivatives 

such as darbepoetin alfa30 or continuous erythropoietin receptor activator (CERA)31 used in 

clinical applications it would be more informative to determine the kinetics rather than the 

affinity of ligand binding. 

In conclusion, by data-based mathematical modelling we determined receptor and ligand 

kinetics, uncovering unexpected systems properties such as the importance of both receptor 

turnover and recycling for plasma membrane prevalence. Furthermore, we identified the 

parameters determining early phase kinetics of EpoR activation. Thus, insights gained by the 

data-based mathematical model provides an important new basis for the targeted design of 

more potent Epo derivatives. 
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METHODS 
Cells, plasmids, and antibodies
If not stated otherwise, chemicals were obtained from Sigma and cell culture media were 

purchased from Gibco. For streptavidin assays, stably transduced BaF3 cells were washed 

six times with biotin-free RPMI 1640 (PAN Biotech) and the experiment was performed in 

streptavidin binding medium (biotin-free RPMI 1640 supplemented with 2 mM L-Glutamine 

and 25 mM HEPES pH 7.4). 

Phoenix eco and BaF3 cells were cultured as described32. Retroviral expression vectors 

were pMOWS puro32. To yield pMOWS-HA-EpoR, a EcoRI and BamHI fragment from the 

vector pMX-EpoR-HA-IRES-GFP (provided by S. Constantinescu, Ludwig Institute for 

Cancer Research, Brussels, Belgium) was inserted into the PacI and BamHI restriction sites 

of pMOWS-EpoR33 and a consensus Kozak sequence was introduced 5’ of the EpoR cDNA. 

To generate pMOWS-SBP-EpoR, the HA-tag from pMOWS-HA-EpoR was exchanged with 

an SBP-tag19. All clones were verified by sequence analysis. 

The following antibodies were used: anti-EpoR (M-20) and anti-JAK2 (HR-758) (for 

immunoprecipitation) were purchased from Santa Cruz, anti-JAK2 (24B11) (for 

immunoblotting) was purchased from Cell Signaling, and anti-phosphotyrosine (clone 4G10) 

was purchased from UBI. 

Transfection and transduction
Transfections were performed by calcium phosphate precipitation as described32.

Transducing supernatants were generated 24h after transfection and supplemented with 8 

μg/ml polybrene. BaF3 cells stably expressing EpoR variants were selected in 1.5 μg/ml

puromycin 48 hours after transduction. 

Binding assays 

BaF3 cells (1×106) stably expressing HA-EpoR were incubated with 10 pM, 100 pM, 250 pM, 

500 pM, or 2000 pM [125I]-Epo (GE Healthcare) in 100 μl RPMI 1640 supplemented with 10% 

FCS for 4 h at RT. To separate free [125I]-Epo, cells were centrifuged through a layer of FCS 

and cell-bound as well as free [125I]-Epo was measured in a Cobra gamma counter 

(Packard). Specific binding was determined by subtracting the mean value of radioactivity of 

cells incubated with both [125I]-Epo and 250 U/ml unlabelled Epo (Janssen-Cilag) (n=3) from 

the radioactivity of cells incubated in the absence of unlabelled Epo. Results are presented 

either with fitting a one-site saturation curve or as a Scatchard plot. 

For determining the affinity of streptavidin to SBP-EpoR, BaF3 cells stably expressing SBP-

EpoR (1×106) were incubated with 100 pM, 250 pM, 1000 pM, 2500 pM, or 5000 pM [125I]-

streptavidin (GE Healthcare) in 100 μl streptavidin binding medium for 4 h at RT. Cells were 
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washed three times with 500 μl biotin-free RPMI 1640 and pooled supernatants as well as 

the cells were measured in a gamma counter. To determine specific binding of [125I]-

streptavidin, control cells were additionally incubated with 2.5 μM unlabelled streptavidin. 

Internalization assays 

BaF3 cells (4×106) expressing HA-EpoR were washed and starved in RPMI 1640 

supplemented with 1 mg/ml BSA for 3 h and stimulated with 2100 pM [125I]-Epo

(approximately equal to 5 U/ml) (GE Healthcare) in 100 μl RPMI 1640 for the indicated time 

at 37°C. After stimulation, cells were immediately transferred to ice and free [125I]-Epo was 

separated from the cells by centrifugation through a layer of FCS. Cell surface bound [125I]-

Epo was stripped by incubation with 4% acetic acid for 5 min on ice and centrifugation 

through FCS. The efficiency of acid stripping was about 95% and membrane integrity after 

acid stripping was confirmed by Trypan blue exclusion. Cell surface bound as well as 

internalized [125I]-Epo was measured in a Cobra gamma counter (Packard). Specific binding 

was determined by subtracting values obtained with 500 U/ml unlabeled Epo (Janssen-

Cilag).

To access constitutive receptor internalization, stably transduced BaF3-SBP-EpoR cells 

(1×106) were washed and starved for 1 h in streptavidin binding medium supplemented with 

1 mg/ml BSA. Cells were subsequently incubated with 1000 pM [125I]-streptavidin (GE 

Healthcare) in 100 μl streptavidin binding medium for the indicated time at 37°C. After 

stimulation, cells were immediately transferred to ice and washed three times with 500 μl

biotin-free RPMI 1640 to separate unbound [125I]-streptavidin from the cells. Cell surface 

bound [125I]-streptavidin was stripped by incubation with 4% acetic acid for 5 min on ice and 

subsequent washing. Cell surface bound as well as internalized [125I]-streptavidin was 

measured in a gamma counter. Specific binding was determined by subtracting values 

obtained with an excess of unlabeled streptavidin. 

Immunoprecipitation and immunoblotting

Stably transduced BaF3 cells (1×107) were washed and starved in RPMI 1640 (Gibco) 

supplemented with 1 mg/ml BSA (Sigma) for 3 h. Cells were stimulated with 5 U/ml Epo 

(Janssen-Cilag) for the times indicated at 37°C and lysed with NP-40 lysis buffer (1% NP-40, 

150 mM NaCl, 20 mM Tris pH 7.4, 10 mM NaF, 1 mM EDTA pH 8.0, 1 mM ZnCl2 pH 4.0, 1 

mM MgCl2, 1 mM Na3VO4, 10% glycerol) supplemented with aprotinin and AEBSF (Sigma). 

Immunoprecipitates were eluted, separated by 10% SDS-PAGE, and transferred to a 

nitrocellulose membrane. Detection was performed using enhanced chemiluminescence (GE 

Healthcare). Quantitative immunoblotting data was processed using GelInspector software34.
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The following normalizers were used: GST-JH2JH1 for pJAK2 and JAK2 and GST-EpoR for 

pEpoR and EpoR. For first estimates, csaps – splines were used with a smoothness of 0.3.

Mathematical modeling 
Modeling was performed using PottersWheel (Maiwald et al., unpublished). Parameter 

estimation was performed in logarithmized parameter space using trust region optimization 

method. For each fit, 100 iterations were performed with χ2 tolerance of 10-7 and fit 

parameters tolerance of 10-7. Using the best fit as starting value, 500 fits were performed, 

each time varying all parameters with a disturbance strength of 0.4. The boundaries for KD

and KD_strep were confined by the standard deviations of the measurements, and Bmax and 

Bmax_strep were fixed to the measured values. All other parameters were estimated with 

boundaries between 10-7 and 103, and none of the estimated parameters lay on these 

boundaries. The initial values for EpoR were set to the experimentally determined Bmax or

Bmax_strep, while the initial values for Epo and strep were set to the concentrations ± 100 pM 

used for experimental setup. 

Sensitivity Analysis 
Sensitivity analysis was applied to investigate relative changes of derived system quantities 

K (see Fig. 3) as a result of relative changes in parameter values pi

Spi

K = pi

K
⋅ ∂K
∂pi

(1)

Hornberg et al.35 derived summation laws for sensitivies of derived system quantities like 

signal amplitude, signal duration, and area under curve. The proofs for the summation laws20

can easily be extended to show the existence of summation laws for the system quantities 

investigated in our approach. 

Spi

 peak amplitude = 0
i

 (2) 

Spi

 peak time = −1
i

(3)

Spi

 extrema amplitude = 0
i

 (4) 

Sensitivity analysis is a local approach, because derivations are evaluated at a certain point 

in parameter space (local sensitivity analysis). 

Most models, however, are non-identifiable, i.e., there exist model parameters that cannot be 

determined unambiguously. Often, non-identifiability manifests itself in functionally related 

parameters (see linear relationship and hyperbola in Supplementary information, Fig. S3b,c). 

For example, the output functions of the constitutive EpoR internalization model are invariant 

under parameter variations along the hyperbola. Thus, without prior knowledge, it can in 
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principle not be determined statistically at which point in parameter space sensitivity analysis 

has to be performed. To deal with this problem, we take the following approach: The model is 

fitted N-times to data (N=500). Each fit yields different estimates for the non-identifiable 

parameters. Non-identifiabilities are detected with NBI and sensitivies (1) are calculated at 

the actual point along the non-identifiability, here the linear relationship and the hyperbola, 

respectively. As the derived system quantities (peak amplitude, peak time and extrema 

amplitude) are invariant to changes along the non-identifiabilities (linear and hyperbolic 

relationship), the results of the sensitivity analysis do not depend on the values we chose for 

the non-identifiable parameters. This is always the case for analytical non-identifiabilities. 

Sensitivities for the non-identifiable parameters are not determinable, yet in our model, the 

non-identifiable parameters had essentially no control over the derived system variables 

independent of their values. Therefore, the control coefficients we determined varied by less 

than 10-4, which is due to numerical reasons. 
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FIGURE LEGENDS 
Figure 1 Dynamic mathematical model describing ligand-induced EpoR internalization. (a)

Graphical representation of the Epo-induced EpoR internalization model. Measured 

observables are represented by orange shading (Epo in medium), blue shading (Epo on 

surface), and green shading (Epo in cells). (b) BaF3-HA-EpoR cells (1×106) were incubated 

with increasing concentrations of [125I]-Epo and specifically bound [125I]-Epo was plotted 

versus free [125I]-Epo (solid triangles). A one-site saturation regression was fitted to the data 

set (solid line) to determine Bmax (maximal binding, long dash) and KD (free [125I]-Epo

concentration for half-maximal binding, short dash). Scatchard analysis shows a linear 

relationship (inset). (c) BaF3-HA-EpoR cells (4×106) were incubated with 2100 pM Epo 

(approximately equal to 5 U/ml) [125I]-Epo at 37°C for the times indicated. Unbound [125I]-Epo

was measured (Epo in medium, orange). Cells were acid-stripped to remove cell surface-

bound [125I]-Epo and supernatants (Epo on surface, blue) as well as cell pellets (Epo in cells, 

green) were measured. Error bars represent standard deviations of triplicates. 

Figure 2 Dynamic mathematical model of constitutive EpoR internalization. (a) Graphical 

representation of constitutive EpoR internalization. Measured observables are represented 

by orange shading (streptavidin in medium), blue shading (streptavidin on surface), and 

green shading (streptavidin in cells). (b) BaF3-SBP-EpoR cells (1×106) were incubated with 

increasing concentrations of [125I]-streptavidin and specifically bound [125I]-streptavidin was 

plotted versus free [125I]-streptavidin (solid triangles). A one-site saturation regression was 

fitted to the data set (solid line) to calculate Bmax_strep (maximal binding) and KD_strep (free 

[125I]-streptavidin concentration for half-maximal binding). (c) BaF3-SBP-EpoR cells (1×106)

were incubated with 1000 pM [125I]-streptavidin at 37°C for the times indicated. Unbound 

[125I]-streptavidin was measured (streptavidin in medium, orange). Cells were acid-stripped to 

remove surface-bound [125I]-streptavidin and supernatants (streptavidin on surface, blue) and 

cell pellets (streptavidin in cells, green) were measured. Error bars represent standard 

deviations of triplicates. 

Figure 3 Parameter estimation for mathematical models of Epo-induced and constitutive 

EpoR internalization. Experimental data are represented (hollow symbols) with standard 

deviations and data trajectories of the best fit are shown (solid lines). Parameter estimation 

was performed simultaneously for both ligand-induced and constitutive EpoR internalization 

models, with common parameters having the same value. χ2-values lower than the number 

of data points indicate good agreement of the model with the experimental values for both 

ligand-induced (a, b, c) and constitutive EpoR internalization (d, e, f).
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Figure 4 Sensitivity analysis reveals impact of turnover and internalization on kinetics of 

ligand-receptor complex formation. (a) The trajectory for the sum of cell surface and 

internalized EpoR-bound Epo is represented by a solid line. The three quantities analyzed 

are peak amplitude (concentration at first maximum, orange), extrema amplitude 

(concentration at first maximum minus concentration at first minimum, green) and peak time 

(time at first maximum, blue). (b) Control coefficients for the parameters of the Epo-induced 

internalization model on the sum of cell surface and internalized EpoR-bound Epo. Positive 

control coefficients indicate higher values for peak amplitude (orange), extrema amplitude 

(green) and peak time (blue) for increasing parameters, while negative control coefficients 

indicate decreasing values for the quantities for increasing parameter values. Higher 

absolute values of control coefficients represent larger control. (c) Time course simulations 

for the sum of cell surface and internalized EpoR-bound Epo are shown in green for 

increased parameters, in black for unchanged parameters and in orange for decreased 

parameters.

Figure 5 Long-term EpoR activation is restrained despite ligand-receptor complex 

prevalence. BaF3-HA-EpoR cells (1×107) were starved and stimulated with 5 U/ml Epo for up 

to 240 min. Immunoprecipitates with anti-EpoR antibodies (a) or anti-JAK2 antibodies (b)

were separated by 10% SDS-PAGE and analysis of activated receptor was performed by 

immunoblotting with anti-phosphotyrosine antibodies. 
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1

Internalization controls early phase kinetics of Epo receptor activation 

Verena Becker1,3, Marcel Schilling1,3, Julie Bachmann1, Stefan Hengl2, Thomas Maiwald2,

Jens Timmer2, and Ursula Klingmüller1

SUPPLEMENTARY INFORMATION 

SUPPLEMENTARY RESULTS 
Streptavidin does not induce EpoR phopshorylation 
To determine the turnover rate of the EpoR in unstimulated cells, we made use of a 

streptavidin-binding peptide-tagged EpoR (SBP-EpoR) and incubation with [125I]-streptavidin 

in medium devoid of biotin. To test whether the biotin-free medium in the experimental setup 

is comparable to the standard medium, we assessed the amount of receptor at the plasma 

membrane of BaF3 cells expressing HA-EpoR using anti-HA-antibodies. Flow cytometry 

analysis revealed no difference in viability and EpoR cell surface expression of cells washed 

and starved either in standard cultivation medium (+ biotin) or in biotin-free medium (- biotin) 

(Fig. S1a). Furthermore, while SBP-EpoR was activated upon Epo stimulation, streptavidin 

was binding to the receptor without inducing EpoR phosphorylation even at high 

concentrations (Fig. S1b). Therefore, the use of streptavidin allows determination of 

constitutive receptor internalization and turnover. 
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2

SUPPLEMENTARY METHODS 
Flow cytometry  
To analyze cell surface expression, BaF3 cells expressing HA-EpoR were stained as 

described1 and analyzed by flow cytometry using a FACSCalibur (Becton Dickinson). Live 

cells were gated by forward and side scatter. 

Immunoprecipitation and immunoblotting

Stably transduced BaF3 cells (1×107) were washed and starved in streptavidin binding 

medium supplemented with 1 mg/ml BSA (Sigma) for 3 h. After stimulation with either 50 

U/ml Epo (Janssen-Cilag) or rising concentrations of streptavidin for 20 min at 37°C, cells 

were lysed with NP-40 lysis buffer (1% NP-40, 150 mM NaCl, 20 mM Tris pH 7.4, 10 mM 

NaF, 1 mM EDTA pH 8.0, 1 mM ZnCl2 pH 4.0, 1 mM MgCl2, 1 mM Na3VO4, 10% glycerol) 

supplemented with aprotinin and AEBSF (Sigma). Immunoprecipitates were eluted, 

separated on 10% SDS-PAGE, and transferred to a nitrocellulose membrane. Detection was 

performed using enhanced chemiluminescence (GE Healthcare). 
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Chem 277, 26547-52 (2002). 
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4

SUPPLEMENTARY FIGURE LEGENDS
Figure S1 Biotin-free medium does not change EpoR cell surface expression and 

streptavidin does not induce EpoR phosphorylation. (a) BaF3-HA-EpoR cells were washed 

and starved for 1 h in standard RPMI 1640 (+ biotin; blue shading) and biotin-free medium (-

biotin; red line). HA-EpoR cell surface expression was determined by FACS analysis using 

anti-HA antibodies as first antibody and Cy5-coupled secondary antibodies. Life cells were 

gated by forward and side scatter and a representative overlay is shown. Analysis revealed 

that cell surface expression of the EpoR is independent of biotin in the medium. (b) Mock-

transduced BaF3 cells (ctrl) or BaF3-SBP-EpoR cells (1×107) were stimulated with 50 U/ml 

Epo or with increasing concentrations of streptavidin or left unstimulated. 

Immunoprecipitations were performed with anti-EpoR antibodies. Samples were separated 

by 10% SDS-PAGE and activated receptor analyzed by immunoblotting with anti-

phosphotyrosine antibodies revealing phosphorylated EpoR after Epo stimulation, while 

streptavidin had no effect. Blots were reprobed with anti-EpoR antibodies. 

Figure S2 Ordinary differential equations (ODE), parameter values, initial values and 

observables for the mathematical models. (a) ODE are shown for the ligand-induced EpoR 

internalization model. EpoR recycling is modeled with a 10-step compartmentalization 

reaction. (b) ODE are shown for the constitutive EpoR internalization model. 

Figure S3 Unobserved variables of the ligand-induced EpoR internalization model.  

Figure S4 Non-parametric bootstrap-based identifiability testing (NBI) reveals dependent 

parameters. (a) Box plots of all estimated parameters are shown for the best 65% of 500 fits. 

Five parameters show a standard deviation larger than 25%. (b,c) NBI revealed parameter 

dependencies for a set of two and a set of three parameters. Epo_recycling and 

Epo_degradation are directly correlated (b), while strep_dissociation, strep_recycling, and 

strep_degradation are described by a skew hyperbola in space (c). (d) The parameters 

Epo_degradation and strep_dissociation were fixed and parameter estimation was repeated. 

Box plots of all estimated parameters are shown for the best 65% of 500 fits. All parameters 

show a standard deviation smaller than 25%. 
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Figure S2, Becker, Schilling et al., 2007

Ordinary differential equations

EpoR: x1  = k1·k2 k1·x1 k3·x2·x1 + k3·k4·x3 + k7·x 17
Epo: x2  = k3·x2·x1 + k3·k4·x3 + k8·x5
Epo_EpoR: x3  = k3·x2·x1 k3·k4·x3 k5·x3
Epo_EpoR_internalized: x4  = k5·x3 k6·x4
Epo_internalized: x5 = k6·x4 k8·x5 k9·x5
EpoR_internalized: x6 = k6·x4 k7·x6
Epo_degraded: x7 =  k9·x5 k10·x7
Epo_released: x8 = k10·x7
EpoR_recyclingdelay1: x9 = k7·x6 k7·x9
EpoR_recyclingdelay2: x10 = k7·x9 k7·x10
EpoR_recyclingdelay3: x11 = k7·x10 k7·x11
EpoR_recyclingdelay4: x12 = k7·x11 k7·x12
EpoR_recyclingdelay5: x13 = k7·x12 k7·x13
EpoR_recyclingdelay6: x14 = k7·x13 k7·x14
EpoR_recyclingdelay7: x15 = k7·x14 k7·x15
EpoR_recyclingdelay8: x16 = k7·x15 k7·x16
EpoR_recyclingdelay9: x17 = k7·x16 k7·x17

Parameters

turnover: k1
Bmax: k2
kon: k3
KD: k4
internalization: k5
dissociation: k6
EpoR_recycling: k7
Epo_recycling: k8
Epo_degradation: k9
release: k10

Initial values

EpoR: x1
Epo: x2

Observables

Epo in medium: y1 = x2 + x8
Epo on surface: y2 = x3
Epo in cells: y3 = x4 + x5 + x7

·
·
·
·
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Ordinary differential equations

EpoR: x1  = k1·k2 k1·x1 k3·x2·x1 + k3·k4·x3
strep: x2  = k3·x2·x1 + k3·k4·x3 + k6·x5
strep_EpoR: x3  = k3·x2·x1 k3·k4·x3 k1·x3
strep_EpoR_internalized: x4  = k1·x3 k5·x4
strep_internalized: x5  = k5·x4 k6·x5 k7·x5
strep_degraded: x6  = k7·x5 k8·x6
strep_released: x7  = k8·x6

Parameters

turnover: k1
Bmax_strep: k2
kon_strep: k3
KD_strep: k4
strep_dissociation: k5
strep_recycling: k6
strep_degradation: k7
release: k8

Initial values

EpoR: x1
strep: x2

Observables

streptavidin in medium: y1 = x2 + x7
streptavidin on surface: y2 = x3
streptavidin in cells: y3 = x4 + x5 + x6
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Figure S3, Becker, Schilling et al., 2007
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3. APPENDIX 
 

3.1 Abbreviations 
 

ACF autocorrelation function 

ASK apoptosis signal regulating kinase 

ATF activating transcription factor 

Bcl B-cell leukemia/lymphoma 

BFU-E burst forming unit erythrocyte 

CCD charge-coupled device 

CFU-E colony forming unit erythrocyte 

CFU-GEMM colony forming unit granulocyte erythrocyte monocyte 

macrophage 

CIS cytokine-inducible SH2-domain containing 

DEF docking site for ERK, FXFP 

DNA deoxyribonucleic acid 

DUSP dual specificity phosphatase 

ECL enhanced chemiluminescence 

EGF epidermal growth factor 

Epo erythropoietin 

EpoR erythropoietin receptor 

ER endoplasmic reticulum 

ERK extracellular signal-regulated kinase 

FGF fibroblast growth factor 

FITC fluorescein-5-isothiocyanat 

Gab GRB2 associated binding protein 

GDP guanine diphosphate 

GRB growth factor receptor-bound protein 

GST glutathione-S-transferase 

GTP guanine triphosphate 

HA hemaglutinin-tagged 

hLNGFR human low affinity nerve growth factor receptor 

HOG high osmolarity/glycerol 

HRP horseradish peroxidase 

Hsc cellular heat shock cognate protein 

IB immunoblot 

IL interleukin 

IP immunoprecipitation 

IRS insulin receptor substrate 

JAK Janus kinase 

JIP JNK interacting protein 
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JNK c-Jun N-terminal kinase 

KSR kinase suppressor of Ras 

MACS magnetic cell sorting 

MAP mitogen-activated protein 

MAPK MAP kinase 

MAPKAP MAP kinase-activated protein kinase 

MAPKK MAP kinase kinase 

MAPKKK MAP kinase kinase kinase 

MCA metabolic control analysis 

MEF myocyte-enhancing factor 

MEK MAPK/ERK kinase 

MEKK MEK kinase 

MKP MAP-kinase phosphatase 

Mnk MAP kinase-interacting kinase 

Mos Moloney sarcoma oncogene 

MP MEK-partner 

Msk mitogen- and stress-activated protein 

NGF nerve growth factor 

ODE ordinary differential equation 

OSM osmosensing scaffold for MEKK3 

PDI protein disulfide isomerase 

PerCP peridinin chlorophyll protein 

PI3K phosphoinositide 3-kinase 

PKC protein kinase C 

PVDF polyvinylidene difluoride 

Rac Ras-related C3 botulinum substrate 

Rap Ras-related protein 

Ras rous avian sarcoma homologue 

RKIP Raf-kinase inhibitor protein 

Rsk ribosomal S6 kinase 

SAPK stress-activated protein kinase 

SBP streptavidin binding peptide 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SH2 Src homology 2 

SHIP SH2 inositol 5-phosphatase 

SHP SH2-containing phosphatase 

SOS son of sevenless 

STAT signal transducer and activator of transcription 

STE sterile yeast mutants 

TAK TGFβ-activated kinase 

TAO thousand and one amino acid kinase 

TCF ternary complex factor 

TPA 12-O-tetradecanoylphorbol-13-acetate 
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TUNEL terminal deoxynuclotidyl transferase-mediated 

deoxyuridine 5'-triphosphate-FITC nick-end labeling 

UV ultraviolet radiation 

Y tyrosine 
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