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Zusammenfassung

Quanteninterferenzen und Kohérenzeffekte in der Wechselwirkung von Atomen mit
dem quantisierten elektromagnetischen Feld werden theoretisch untersucht. Ein all-
gemeine Mastergleichung zur Beschreibung der Wechselwirkung von Atomen mit
dem Strahlungsfeld wird vorgestellt. Das Zusammenspiel von Komplementaritét
und Interferenz in Bezug auf Energie und Zeit wird anhand des Fluoreszenzlichts
eines einzelnen, lasergetriebenen Atoms diskutiert. Hierbei fithrt die Kohérenz der
spontanen Prozesse zur Quanteninterferenz im Resonanzfluoreszenzspektrum. Die
vakuum-induzierte Dipol-Dipol Wechselwirkung wird in Systemen bestehend aus
zwei Mehrniveau-Atomen analysiert. Es wird gezeigt, dass die Wechselwirkung
zwischen orthogonalen Dipolmomenten verschiedener Atome nicht nur die System-
dynamik entscheidend beeinflufit, sondern auch bewirkt, dass benachbarte, nahezu
entartete Zeeman-Unterzustiande des atomaren Niveauschemas im Allgemeinen nicht
vernachléssigt werden konnen. Potentielle Anwendungen von Dipol-Dipol wech-
selwirkenden Mehrniveau-Atomen fiir die Realisierung von dekohérenzfreien Un-
terraumen und die Erzeugung von Verschrankung zwischen atomaren Zustdnden
werden aufgezeigt. Die Erzeugung eines verschriankten Zustandes des Strahlungs-
feldes mit einer makroskopischen Zahl von Photonen wird anhand eines Ein-Atom
Lasers diskutiert.

Abstract

Quantum interference and coherence effects in the interaction of atoms with the
quantized electromagnetic field are investigated theoretically. A general master
equation for the description of atom-field interactions is introduced. The inter-
play of the concepts of complementarity and interference in the time-energy domain
are studied on the basis of the fluorescence light emitted by a single laser-driven
atom, where the coherence of spontaneous processes gives rise to quantum interfer-
ence in the spectrum of resonance fluorescence. The vacuum-induced dipole-dipole
interaction in pairs of multi-level atoms is analyzed. It is shown that the interaction
between orthogonal transition dipole moments of different atoms does not only in-
fluence the system dynamics crucially, but implies that the few-level approximation
in general cannot be applied to near-degenerate Zeeman sublevels of the atomic level
scheme. Potential applications of dipole-dipole interacting multi-level atoms for the
implementation of decoherence-free subspaces and the generation of entanglement
between atomic states are examined. The generation of an entangled state of the
radiation field with a macroscopic number of photons is discussed on the basis of a
single-atom laser.
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Introduction

The development of quantum mechanics at the beginning of the 20th century was
initiated by a series of failures of classical physics. A number of experiments revealed
that Maxwell’s theory of classical electrodynamics can neither account for the cor-
puscular properties of the radiation field nor the stability of atoms. On the other
hand, classical mechanics was unable to explain the wavelike behavior of matter, and
a variety of other examples could be added. The establishment of a comprehensive
quantum theory took several decades and was complicated by the counterintuitive
and peculiar nature of the quantum phenomena.

The interpretation of the emerging theory of quantum mechanics was facilitated by a
thorough investigation of interference experiments. For example, a series of famous
thought experiments based on Young’s two-slit experiment were designed to shed
new light on the apparent contradictions in connection with the wave-particle duality
of matter and light [1, 2]. The problem of seemingly inconsistent predictions of
quantum mechanics was then resolved within the famous Einstein-Bohr dialogue [2],
where Heisenberg’s uncertainty relation was employed to show that the wave- and the
particle features of the interfering quantities can never be observed simultaneously.
This striking result is the most famous example for the principle of complementarity.
According to Niels Bohr [2], complementarity in general encompasses a class of
phenomena where a set of observables cannot be measured precisely under the same
experimental conditions. Since complementarity is one of the most salient features of
quantum mechanics, it has been investigated in various experimental and theoretical
studies and continues to challenge our understanding of the quantum world.

Interference phenomena did not only play a crucial role during the early days of the
quantum theory, but remained in the focus of interest until now. While the dis-
cussion and interpretation of quantum interference effects is sometimes an involved
task, it was often rewarded by an improved understanding of physical processes. In
some cases, new interference experiments continued to initiate further development
of the theory. An example is the famous Hanbury-Brown and Twiss experiment,
which provided evidence for second-order correlations in a thermal field [3]. This
experiment gave rise to a systematic investigation of the quantum nature of the
radiation field, and caused the development of the quantum theory of optical co-
herence [4]. Eventually, the invention of the laser and its technical improvement
made the various aspects of this theory accessible to the experiment, and the field
of quantum optics was launched.
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INTRODUCTION

During the last decades, the field of atom-laser interactions evolved at a stunning
pace and opened up a rich variety of new and intriguing physical phenomena. A
lot of excitement was created by interference effects like electromagnetically induced
transparency, the stopping of light and lasing without inversion, for example. These
phenomena can be attributed to laser-induced coherences between atomic states.
Further, it has been shown that quantum optical systems can provide tests for
fundamental concepts of quantum mechanics like the principle of complementarity
or Bell’s inequalities. Remarkable success has also been achieved in the field of
high-precision measurements. A prominent example is the development of atomic
clocks which serve as a time standard and are at the heart of the global positioning
system (GPS). Moreover, the invention of sophisticated laser cooling and trapping
methods allowed to study ultra-cold quantum gases and culminated in the realization
of Bose-Einstein condensates and the trapping of single atoms and ions.

The general trend of the tremendous progress in quantum optics can be described
by the increasing ability to control single quantum systems. This achievement does
not only provide new insight into fundamental processes, but constitutes a neces-
sary requirement for the fields of quantum computation and quantum information
theory [5]. This flourishing field of quantum physics aims at a speedup of classical
computations and at secure communication via quantum cryptography. An impor-
tant resource for many schemes in quantum computation and quantum information
is entanglement, which was first discussed in a thought experiment by Einstein,
Podolsky and Rosen [6]. Einstein described the strange correlations that occur
in the context with non-separable states as a “spooky action at a distance,” and
the counterintuitive implications of entanglement are still puzzling and fascinating
nowadays. In particular, there is still an ongoing debate about general criteria which
allow to quantify the degree of entanglement in a quantum system unambiguously.

While the physical implementation of small quantum processors and basic quantum
algorithms has been achieved recently [7], the scaling of these schemes to larger
systems is a challenging and as yet unresolved task. A major difficulty arises from
the interaction of a quantum system with its environment, which leads to decoher-
ence [8, 9]. In atomic systems, a crucial source of decoherence is represented by
spontaneous emission which results from the interaction of the atom with the in-
finitely many field modes of the quantized electromagnetic field. Several schemes
for the control and modification of spontaneous emission have been investigated,
and many of them are based on quantum interference effects in single atoms or in
collective systems. In the ideal case, these control mechanisms would allow for a
complete suppression of spontaneous emission such that the decohering processes
are avoided. Fortunately, this very ambitious goal is not a necessary requirement
for the implementation of quantum computing schemes. For most applications, it
suffices to suppress spontaneous emission in a subspace of the total state space of
the system, and these subspaces are termed decoherence-free subspaces (DFS).
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INTRODUCTION

In this thesis, several interference and coherence effects in the interaction of atoms
with the vacuum are put forward. On the one hand, fundamental aspects like
the intimate connection between the concepts of interference and complementarity
are addressed. On the other hand, the role of vacuum-induced processes for the
generation of entanglement and the possibility to realize decoherence-free subspaces
are discussed. More specifically, the general model for atom-field interactions which
is the basis for all calculations in subsequent chapters is presented in part I. In
part II, we demonstrate that the interplay of the concepts of complementarity and
interference can be transferred from the familiar position-momentum domain to the
time-energy domain. In particular, we show that the fluorescence light emitted
by a single laser-driven atom displays a clear signature of quantum interference.
While the mere presence of the interference effect is a surprising and counterintuitive
result, it is additionally enabled by spontaneous processes which usually destroy the
coherence in the system. In part III, the vacuum-induced dipole-dipole interaction
between multi-level atoms is discussed. This coupling is mediated via the exchange
of photons between dipole transitions of different atoms and is of second order in the
atom-field interaction [10, 11]. Any analysis which goes beyond the simple model
of a pair of two-level atoms involves the interaction between orthogonal dipoles
of different atoms. While these coupling terms have frequently been neglected in
previous works, we show that these terms do not only influence the system dynamics
crucially (chapter 3), but imply that the few-level approximation cannot be applied
to near-degenerate Zeeman sublevels of the atomic level scheme (chapter 4). As a
potential application, we show that a pair of dipole-dipole interacting multi-level
atoms exhibits a decoherence-free subspace and can be prepared in a long-lived
entangled state (chapter 5). In this setup, entanglement of the atomic states is
created by the coherent part of the dipole-dipole interaction. From a conceptual
point of view, it is interesting to ask whether the role of the atoms and the radiation
field can be reversed, i.e., can an atomic system act as a source of entangled light?
This question is investigated in part IV, where we show that a single-atom laser
can give rise to an entangled state of the field inside a doubly resonant cavity. After
this brief overview, we now provide a more detailed description of the individual
chapters.

In chapter 1, a mathematical model for the interaction of a collection of atoms
with the quantized electromagnetic field is presented. Each atom is modeled by two
near-degenerate multiplets that may consist of an arbitrary but finite number of
states. These multiplets correspond to the angular momentum eigenstates of the
atoms. We employ the master equation approach and provide a detailed derivation
of the equation of motion for the reduced density operator of the atoms. All essen-
tial approximations that enter the calculation are discussed in detail. The master
equation derived in this chapter is quite general and encompasses various physical
phenomena. For single-atom systems, it accounts for spontaneous emission on indi-
vidual dipole transitions as well as for vacuum-induced quantum interference effects
associated with the cross-decay of two dipole transitions (see chapter 2). In sys-
tems comprised of more than one atom, additional coupling terms occur. Some of
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INTRODUCTION

these terms are collective decay rates which account for a modification of sponta-
neous emission of one atom due to the presence of the other atoms. In addition,
the vacuum-induced coupling between the atoms gives rise to a coherent interaction
which results in energy shifts of the collective states. These collective parameters are
in the focus of part III of this thesis. In particular, the master equation derived in
chapter 1 accounts for the coupling between orthogonal transition dipole moments
of different atoms that have frequently been neglected in the previous literature (see
chapter 3). Finally, the master equation can be extended such that the reduced
density operator does not only describe the atomic degrees of freedom, but also the
quantum state of a finite number of field modes, for example. This situation is in-
vestigated in chapter 6. Note that the master equation derived in chapter 1 is not
only the starting point for all calculations in subsequent chapters, but in our general
form an advancement of previous work.

The interplay of the concepts of complementarity and interference in the time-energy
domain are studied in chapter 2. Here we present a system where different tem-
poral paths lead to interference in the energy domain. The analysis is carried out
on the basis of the resonance fluorescence of a single four-level atom in an exter-
nal magnetic field. Two dipole transitions that are only coupled by spontaneous
emission are driven by a monochromatic laser field. We find that the spectrum of
resonance fluorescence exhibits a clear signature of quantum interference between
photons emitted on two different dipole transitions of the atomic level scheme. Since
the two transitions in question start and end up in different atomic states, the mere
presence of this interference effect is a surprising result which needs to be explained.
In addition, the degree of interference in the fluorescence spectrum can be controlled
by means of the external magnetic field to a large extend. For a suitably chosen
magnetic field strength, the relative weight of the Rayleigh line can be completely
suppressed, even for low intensities of the coherent driving field. The second ob-
servable is total fluorescence intensity emitted by the atom, and we find that is
not affected by interference. In order to explain our results, we employ the prin-
ciple of complementarity, applied to time and energy. For the system considered
here, it claims that it is impossible to observe the temporal and the energy aspect
of the radiative cascade of the atom at the same time. If the fluorescence spec-
trum is observed, the photon emission times are indeterminate. The interference in
the fluorescence spectrum can thus be explained in terms of interferences between
transition amplitudes that correspond to different time orders of photon emissions.
Since the considered atomic level scheme can be found, e.g., in "8 Hg™ ions, our
model system turns out to be an ideal candidate for the experimental verification of
vacuum-induced interference effects. These effects have been studied extensively by
theoretical means in V-type three-level atoms, but could not be confirmed experi-
mentally in atomic systems due to the stringent conditions of near-degenerate levels
and non-orthogonal dipole moments [11].

The third part of this thesis consists of three chapters and deals with the vacuum-
induced dipole-dipole coupling in pairs of multi-level atoms. In chapter 3, two
nearby three-level atoms in A-configuration are considered. If the distance of the
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INTRODUCTION

two atoms is small on a scale given by the relevant transition wavelength, the dipole-
dipole interaction between transitions of different atoms gives rise to a collective
quantum dynamics of the system. We show that in general, the dipole-dipole in-
teraction does not only couple transitions with parallel dipole moments. On the
contrary, even transitions with perpendicular dipole moments may interact via the
exchange of photons. We give an interpretation of this effect and show that it may
crucially influence the system dynamics. As an example observable, we study the
resonance fluorescence intensity emitted by the atoms that are driven by two laser
fields with different frequencies. For a fixed setup of driving fields and detectors,
the spatial orientation of the two-atom pair decides if the system reaches a true
constant steady state or if it exhibits periodic oscillations in the long-time limit.
These oscillations are directly observable in the fluorescence intensity emitted by
the atoms. The geometry-dependent dynamics of the system can be traced back to
the interaction between orthogonal dipoles of different atoms. Potential applications
of this effect include three-dimensional precision measurements of relative positions
and distances of the two atoms.

An important consequence of the results in chapter 3 is investigated in chapter 4,
where the validity of the few-level approximation in dipole-dipole interacting collec-
tive systems is discussed. As an example system, we consider a pair of dipole-dipole
interacting four-level atoms, each modelled by two complete sets of angular momen-
tum multiplets. The ground state of each atom is a Sy singlet state, and the excited
state multiplet is a P; triplet which consists of three Zeeman sublevels. Here we
show that the otherwise ubiquitous few-level approximation in general leads to in-
correct results if it is applied to the magnetic sublevels of this system. For this, we
prove that the dipole-dipole induced energy shifts between collective two-atom states
depend on the length of the vector connecting the atoms, but not on its orientation,
if complete and degenerate multiplets are considered. On the contrary, the artificial
omission of Zeeman sublevels breaks the rotational symmetry and leads to incorrect
eigenenergies of the system. We find that the breakdown of the few-level approxima-
tion can be traced back to the dipole-dipole coupling of transitions with orthogonal
dipole moments that were studied in chapter 3. A careful analysis of the nature
of the dipole-dipole coupling enables us to identify special geometries in which one
or two of the excited states of each atom can be neglected, such that the few-level
approximation is recovered. Our results are relevant for future experimental and
theoretical studies of dipole-dipole interacting few-level systems.

In chapter 5, a decoherence-free subspace (DFS) in a system of two dipole-dipole
interacting multi-level atoms is investigated. For this, we consider the two-atom
system introduced in chapter 4, where each four-level atom is modeled by two com-
plete sets of angular momentum multiplets. We first establish conditions which
warrant the existence of a DFS in the two-atom system of interest. It is shown
that the collective state space of this system contains a four-dimensional DFS if the
distance between the atoms approaches zero. In the following, possible applications
of this DFS for the storage and processing of quantum information are discussed.
For this, the coherent and incoherent system dynamics is analyzed in detail. We
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determine the eigenstates and energies of the collective system and provide explicit
expressions for the dipole-dipole induced energy shifts of these states. It is found
that our results are in agreement with the general findings established in chapter 4.
The evaluation of the decay rates of the antisymmetric collective states shows that
spontaneous emission of states inside the DF'S is strongly suppressed, provided that
the separation of the atoms is sufficiently small. For potential applications of this
DFS in quantum information processing, it must be possible to prepare the system
inside the DFS. We show that the antisymmetric states can be populated selectively
by means of an external laser field. Further, the possibility to induce a controlled
quantum dynamics between a pair of antisymmetric states is investigated. While a
static magnetic field can only induce a limited dynamics, any single-qubit operation
can be performed within the DFS if a radiofrequency field is applied. Finally, we
employ the concurrence as a measure of entanglement and show that the symmetric
and antisymmetric collective states are entangled. This entanglement is created by
the coherent part of the dipole-dipole interaction and originates from the interaction
of the atoms with the vacuum.

The quantum state of the radiation field created by an atomic system is analyzed
in Chapter 6. While we have seen in chapter 5 that the atom-field interaction can
give rise to entangled atomic states, we now demonstrate that a single atom can
act as a source for an entangled state of the radiation field. For this, we consider
a laser where the gain medium consists of a single atom trapped inside a cavity.
The atom interacts with two (nondegenerate) cavity modes on separate transitions.
In addition, two other transitions of the atomic four-level system are driven by
laser fields. The complete system consists of the atomic degrees of freedom and
the cavity modes, and its dynamics is described by a master equation. We then
derive an equation of motion for the quantum state of the two cavity modes alone
and include cavity losses into our model. An inequality based on the correlation of
the field operators serves as a sufficient criterion for the entanglement of the cavity
field. We find that the single-atom laser is a source of entangled light over a wide
range of control parameters and initial states of the cavity field. In contrast to other
schemes like parametric down-conversion, an entangled state with a macroscopic
number of photons can be created. Our system may find applications in the fields
of quantum computation and quantum information which require entanglement as
a key resource.

16



Part 1

Mathematical model
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Chapter 1

Master equation for a collection
of interacting multi-level atoms

1.1 Introduction

All physical phenomena that are discussed in subsequent chapters of this thesis
require a model for the interaction of atoms with the quantized electromagnetic
field. Thus in this chapter, we describe the underlying mathematical method that
allows to determine the physical observables we are interested in. Here we employ
the master equation approach which is a standard technique in the description of
atom-field interactions. The master equation describes the time evolution of the
reduced density operator of the atomic system, and the infinite number of field
modes of the quantized electromagnetic field act as a reservoir which changes only
slightly due to the presence of the atoms. For a variety of physically relevant initial
states of the radiation field, it is justified to introduce a number of approximations
which simplify the equation of motion for the atomic system considerably.

The master equation technique has been applied to various atomic systems. For
example, the master equation for a single two-level atom is a standard component
of most textbooks on quantum optics, and the more general case of a single multi-
level atom has been considered, e.g., in [11]. The master equation for M identical
two-level atoms coupled to the vacuum was introduced by Lehmberg [12, 13], and its
derivation can also be found in a textbook by Agarwal [10]. A generalization of this
system to the case of M non-identical two-level atoms that are placed in a thermal
field or in a squeezed vacuum was considered in [11] and [14], respectively. A large
number of physical phenomena in systems of M two-level atoms were investigated
theoretically and experimentally (see Sec. 3.1).

On the contrary, systems that are comprised of two or more atoms with more than
two internal states are much less common in the literature. A master equation
for M identical multi-level atoms can be found in [15, 16], for example. Here the
states within the excited and ground state multiplet were assumed to be degenerate.
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CHAPTER 1: Master equation for a collection of interacting multi-level atoms

A system of two three-level atoms with non-degenerate multiplets was considered
in [17], where the emphasis was on a new type of vacuum-induced coupling terms
between transitions with orthogonal dipole moments. These coupling terms were
frequently neglected in previous studies, and will be discussed in detail in chapters 3
and 4.

In this chapter, we consider a collection of M identical multi-level atoms, and each
atom is modeled by two near-degenerate multiplets with an arbitrary number of
states. Note that we explicitly allow the states within each multiplet to be non-
degenerate. The multiplets correspond to the angular momentum eigenstates of
the atoms, and the level splitting within each manifold can be identified with the
Zeeman splitting of the magnetic sublevels. Since the master equation for this quite
general multi-atom multi-level system is not part of the standard literature yet, we
provide a detailed derivation of its explicit form in Secs. 1.2 and 1.3. In particular,
we illustrate all approximations that enter the calculation to clarify its scope of
validity.

Since the master equation only describes the dynamics of the reduced atomic density
operator, the quantum state of the radiation field is inaccessible. Fortunately, phys-
ical observables which involve correlation functions of the electromagnetic field can
be expressed in terms of correlation functions of atomic operators. This procedure
is illustrated in chapters 2 and 3, where we discuss the resonance fluorescence of a
single atom and a pair of atoms, respectively. Since the atomic correlation functions
can be evaluated via the master equation, it is generally not required to determine
the quantum state of the radiation field.

On the contrary, in some physical problems one is especially interested in the quan-
tum state of the radiation field created by the atomic system. This situation is
considered in chapter 6, where the quantum state inside a two-mode cavity is de-
termined. In this case, the two cavity modes of interest are separated from the
reservoir, and the density operator of the system describes the quantum state of the
atoms and the two cavity modes.

The derivation process of the master equation for M identical multi-level atoms is
split in two parts. In Sec. 1.2, we give a detailed description of the system and set
up its Hamiltonian. Starting from Zwanzig’s exact master equation for the reduced
density operator of the atoms, we recall the major steps which lead to the general
master equation in Born approximation. The derivation of the explicit form of the
master equation for M identical multi-level atoms is provided in Sec. 1.3. Some
calculations are deferred to Appendix 1.A.

1.2 Description of the system and general approach

We consider a collection of M identical atoms that are located at different positions
r, (p € {l,...,M}) in space. An example for a geometrical setup of five atoms is
shown in Fig. 1.1(a). Each atom is modeled by a finite number of L atomic states,
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1.2. Description of the system and general approach
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Figure 1.1: (a) Geometrical setup of M = 5 atoms. We neglect the center of mass motion
of the atoms and assume their positions to be fixed. (b) Level scheme with L = 8 states.
The ground and excited state multiplets consist of three and five states, respectively. In
order to keep the drawing concise, only those dipole transitions which involve the ground
state |6,,) are indicated by red arrows, and the transition frequencies are labeled by w;. Note
that the splitting of the excited and ground state multiplets is not to scale. In particular,
all frequency differences (w; — w;) are assumed to be much smaller than the frequencies w;
themselves.

and the k-th state of atom g is labeled by |k,) (k € {1,...,L}). Since we consider
a collection of identical atoms, we assume that the states |k,) and |k,) for u # v
represent the same physical state. The subscript p indicates that |k,) belongs to
the state space of atom p, and the energy of state |k,) is denoted by Ej.

We assign to each dipole transition of the atomic level scheme a number ¢ and a
transition frequency w;. This assignment can be chosen at will, but must be kept
fixed throughout the derivation. The total number of dipole transitions is denoted
by D. To the i-th dipole transition of atom p corresponds a pair of raising and
lowering operators that are labeled by Si(” ) and SW

v ;. , respectively. These transition
operators are defined as

SH = 1)k and  S® = k) (1, (1.1)

where |k,) is the ground state and |l,,) is the excited state of the i-th dipole transition.

Although the number of the relevant atomic states L is arbitrary, we assume that
the atomic levels can be divided into a group of ground states and a group of excited
states. In particular, we suppose that the ground and excited state multiplets are
near-degenerate. This means that the frequency splitting between any two states
that belong to the same multiplet is much smaller than all transition frequencies
w;. It follows that all possible differences (w; —w;) are much smaller than the mean
transition frequency wy,

D
1 .
(wi —wj) € wgp, where wozﬁélwi and 4,5 €{l,...,D}. (1.2)
1=
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CHAPTER 1: Master equation for a collection of interacting multi-level atoms

An example for an atomic level scheme with L = 8 states is shown in Fig. 1.1(b).
Here the ground and excited state multiplets consist of three and five states, respec-
tively.

Note that our approach can easily be generalized to systems with more than two
near-degenerate multiplets. If the difference between the mean transition frequencies
of the various multiplet transitions is much larger than the inverse lifetimes of the
atomic states, each pair of an excited and ground state multiplet can be treated
independently. It follows that the contributions from all pairs of ground and excited
state multiplets can be added to obtain the total master equation.

After the introduction of these definitions, we can establish the Hamiltonian of the
complete system which is comprised of the atoms and the quantized electromagnetic
field. We begin with the Hamiltonian Ha which governs the free time evolution of
the atoms,

kk , (1.3)

||M§
Mh

1k=1

where A,(;Z) = |ku) (k|- The free Hamiltonian of the radiation field is given by

Hyp = Z hwral, aks (1.4)
ks

and ags (CL};S) are the annihilation (creation) operators that correspond to a field
mode with wave vector k, unit polarization vector exs (s € {1,2}) and frequency
wg. In electric-dipole approximation, the interaction between the atoms and the
radiation field is described by [18, 19]

o o(0)
> "d" E(r,), (1.5)
pn=1
where ci(u) is the electric-dipole moment operator of atom g,
W _ <
d" =3 [dis{) + Hel. (1.6)
i=1

The complex vector d; denotes the dipole moment of the i-th dipole transition, and
the electric field operator E is defined as

E(r) = ihz Ugs(Ty)aks + Hee. . (1.7)
ks

In this equation, the mode function ugs(r) reads

Ups (1) = ,Uekse' , (1.8)
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where v is the quantization volume and €g, is the unit polarization vector that
corresponds to the wave vector k (s € {1,2}).

The time evolution of the quantum state ¢ of the atoms and the radiation field is
determined by Schrodinger’s equation,

00 =71, (1.9

where the complete Hamiltonian is H = Ha + Hp + V. The Schrodinger equa-
tion (1.9) can be transformed into an exact equation of motion for the reduced
density operator g = Trp[g] of the atoms [4, 10, 20]. This equation is known as
Zwanzig’s master equation,

t

/dTL[QQ(T)QE'PQ(t—T) . (1.10)
0

ihd,Polt) = PLPo+PLO | Uoo(t) Qo(0) — %

Here the time-independent projection operator P is defined as

Po(t) = or(0) @ Trelo(t)] = or(0) @ oa(t), (1.11)

and gp(0) = Tra[o(0)] denotes the reduced density operator of the radiation field
at t = 0. The projection operator P satisfies P2 = P, and Py is essentially given
by the reduced density operator pa of the atoms that we are interested in. The
projection operator @ = 1 — P is complementary to P and obeys Q% = Q. The
Liouville operator of the system is defined as

L(-)=[Ha+Hp+V, ], (1.12)
and the centered dot denotes the position of the argument of £. With the definitions
ﬁA('):[HAv'L ER('):[HPW']? Eint('):[v7']7 (1'13)

L can be written as L5 + Lg + Lint- Since the total Hamiltonian in Eq. (1.9) and
hence the Liouville operator in Eq. (1.12) are time-independent, the time evolution
operator reads

UQQ(t) =exp [—1QLOt/A] . (1.14)

Basic assumptions. In order to simplify the exact master equation (1.10), we
assume that the total density operator factorizes into a product state at ¢t = 0,
0(0) = or(0) ® 04(0). It follows that the term Qp(0) in Eq. (1.10) vanishes. Here
we suppose that the radiation field is initially in the vacuum state pr(0) = |0p)(Op|.
This state is a stationary state with respect to Hr,

[HF, 0r(0)] =0, (1.15)

and the expectation value of the interaction Hamiltonian V' with respect to op(0)
vanishes,

Trr [or(0)V] = 0. (1.16)

23



CHAPTER 1: Master equation for a collection of interacting multi-level atoms

With Egs. (1.15) and (1.16), one can show that the superoperators in Eq. (1.13)
satisfy

PLA =LAP, PLr=LgP =0 and PLyP =0. (1.17)
It follows that the master equation (1.10) can be written as [4, 10]
. ¢
8 Polt) = —%cmg - %mim / d7Ugo(T) Lint Polt — 7). (1.18)
0

Born approximation. We now introduce the first approximation which is known
as the Born approximation. The second term in Eq. (1.10) is at least of second
order in the interaction Hamiltonian V. Higher orders arise since the time evolution
operator Ugg also contains L. If the coupling between the atoms and the radiation
field is sufficiently weak, it is justified to restrict the analysis to the leading order in
V such that the interaction term Li,; in Ugg can be neglected,

Ugo(t) ~ exp [—iQ (La + Lr) Ot/H] . (1.19)

This approximation means that an emitted photon does not react back on the atom.
The general master equation in Born approximation then reads

t

; 1

0;Po(t) = —%ﬁAPQ - ﬁpﬁim / dr U(1) [LintPo(t — 7)] UT(T) ) (1.20)
0

where
U(t) = exp[—i(Ha + Hp)t/h]. (1.21)

With the definition of the projection operator P in Eq. (1.11) and the short-hand
notation gp(0) = gp, we obtain from Eq. (1.20) the equation of motion for the
reduced atomic density operator oa,

i

0roA = 7

[Ha, 0a] - % / ar g ([V,U(D) [V, or @ oalt = 7)]UT(0)] ) .|| (1:22)
0

This equation has been derived under quite general conditions and does not only
apply to a collective system of multi-level atoms. On the contrary, the interaction
Hamiltonian V' is only constrained by Eq. (1.16), but its explicit form has not been
employed so far. In addition, the assumption that V is time-independent is not
essential and can be relaxed [4, 10], which leads to a slight modification of Eq. (1.22).

1.3 Derivation of the master equation

We now derive from Eq. (1.22) the explicit form of the master equation for a collec-
tion of M multi-level atoms. We begin with the evaluation of the double commutator
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1.3. Derivation of the master equation

in Eq. (1.22). To this end, we introduce the operator
V() = U VU(t) = ~ih Y | Dis(t)ans () — Dl Dk, ()] | (1.23)
ks

which is the interaction Hamiltonian transformed into the interaction picture with
respect to Ha + Hp. In this equation, the operators Dys(t), ags(t) and CNL};S(t) are
given by
M D
D) =3t

p=1

[diSi(’_f_)ei“it + H.c.} } )

=1

s (t) = aps ekt and d;rcs(t) = aLs et (1.24)

With the definition in Eq. (1.23) and the relation U(7) = UT(—7), the commutator
in Eq. (1.22) can be written as

[V(0),[V(=7), 0r ® da(t — 7)]] =V (O)V (~7)er ® da(t — )

—V(=7)or @ oa(t —7)V(0) + Hee.,  (1.25)

where ga(t — 7) = exp [—iHAT/h] oa(t — 7)exp [iHa7/h]. Note that only the first
two terms on the right hand side of Eq. (1.25) have to be determined, the remaining
parts can be obtained by Hermitian conjugation. In the master equation (1.22), the
first term in Eq. (1.25) gives rise to the following expression,

(L) = —% /dTTl“F <f/(0)f/(—7)9F ® 0A(t — 7)) . (1.26)
0

Next we evaluate the trace over the vacuum modes in Eq. (1.26). Since the initial
state of the radiation field pp is the vacuum, the various field correlation functions
are found to be

Tt (ks (£ gy (') 0F] = Trla, (t)al, (') or] = Trlak, (H)aw o (t') or] = 0,
Tfaigs (£)al, (1) 0F] = OppeSssre =1, (1.27)

With these relations, Eq. (1.26) can be written as

(L) = — / dr 3" Dio(0) DL (=7)oa(t — 7)e 4. (1.28)
0 ks

Rotating-wave approximation. We proceed with our second approximation
which is known as the rotating-wave approximation (RWA). According to the defini-
tion (1.24) of Dys(t), the expression (A) contains all possible products of the atomic
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CHAPTER 1: Master equation for a collection of interacting multi-level atoms

raising and lowering operators SZ-(i) and Sl(’i ). If we transformed (A) into the inter-
action picture with respect to Hp, all terms proportional to S(“ st Jz and Sl(’i )S](-V_)
would oscillate at a frequency +(w; + w;). On the contrary, the terms proportional
to Sl(’jr) S J(V_) and Sl(’i 'S ]('2 would oscillate at a frequency +(w; —w;). Since we assumed
that the differences (w; — wj) between the resonance frequencies are much smaller
than the frequencies w; themselves, it is justified to keep only the resonant terms in

(A) which are proportional to Sf‘_fSJ(V) and S( )Sj(l,

Z Z [SU st (1) + sW sy )] (1.29)

wr=11,5=1

where the operators ijy(t) and ngw(t) are defined as

XA (t / dT ks (ry) - di] [ups(ry) - di] @97 gp(t - 7)

t

ViU (t /d Z Ups (1) - df] [ufy (1) - dj] e @O G (1 — 7). (1.30)
0

We emphasize that the RWA performed in Eq. (1.28) is not equivalent to a RWA
on the level of the interaction Hamiltonian V' [10]. In particular, we would miss
important terms that contribute to the energy shifts of collective states in multi-
atom systems if we had performed the RWA already in Eq. (1.5).

If we proceed with the remaining terms in Eq. (1.22) in a similar fashion, the master
equation can be written as

Dron(t) = — L [Ha, 0r (1)

h
M D

r 2 3 {lorse] [, (o)’ ]
wv=14j5=1

+ [sve s8] + [s§ 2 (v 5}@]}. (1.31)

We continue with the evaluation of the operators ijy and ngw in Eq. (1.30). First,
we introduce a cutoff in the summation on the wave vectors k since the interaction
Hamiltonian V' in Eq. (1.5) does not correctly describe the interaction of the atom
with high-frequency field modes which lead to relativistic effects [19]. Here we
only consider wave vectors which obey |k| < k¢, where ckc = wc is the cutoff
frequency. This frequency is much larger than all relevant transition frequencies w;
of the atoms, but smaller than m.c? /h, where m, is the electron mass. It follows
that quasi-resonant absorption and emission processes are still correctly described,
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1.3. Derivation of the master equation

but virtual emissions and reabsorbtions of “relativistic” high-frequency photons are
not taken into account [19]. Next we replace the summation over the discrete wave
vectors k in Eq. (1.30) by an integral over the continuum modes,

D ﬁ/dwkwg/dakz. (1.32)
0 S

ks

Here we expressed the integral over the three-dimensional k-space in terms of spher-
ical coordinates and changed the integration over k into an integral over frequencies
wg = ck. The operators X} and Y} in Eq. (1.30) then become

X“V /dTX“V T)oa(t —7) and Y“" /dry“” T)oa(t —7), (1.33)
where

wc
1 , '
i o9 (9.3 3 ik-Ry. -d: * ¥ Si(wj—we)T
XZ] ( ) 26071(27‘(’6)3 /dwkwk/dgkze " [eks dz] [ekrs dj] e\WIiTk ,
0 s

we
v 1 3 ik-Ry,, * * —i(wjtwg)T
yg (T) :W/dwkwk/koZe w [Gks dl] [eks . dj]e () k) .
0 s
(1.34)

In this equation, the vector R, = r, — r, denotes the relative coordinates of atom
u with respect to atom v. Note that the integrals in Eq. (1.34) would be divergent
if we had not introduced the cutoff frequency wc.

Markov approximation. As a consequence of the exponential factor exp[—iw7]
in Eq. (1.34), the functions &}”(7) and Y;(7) tend very rapidly to zero when
T increases. We assume here that these two functions are approximately zero if
T > 7, where 7. is the width of A}”(7) and Y/’(7) in 7. The parameter 7.
can be identified as the correlation time of the vacuum fluctuations of the free
electromagnetic field [18, 19]. This correlation time is shorter than the period 27 /w;
of all relevant transitions. In particular, 7, is much smaller than the lifetimes T =
1/~ of the atomic levels which determine the time scale of the evolution of ga(t).
The existence of the two very different time scales 7. < T allows us to simplify
the integrals in Eq. (1.33) considerably. First, we can assume that the interaction
with the radiation field does not change the atomic state pa(t) appreciable during
the correlation time 7.. Therefore, we can replace ga(t — 7) by oa(t) in Eq. (1.33),

oa(t —7) =exp|[—iHAT/h] oa(t — T) exp [iHAT/B] = 0a(t), (1.35)

which means that the time evolution of g (t) is governed by the unperturbed Hamil-
tonian Ha for short times. In addition, it is justified to extend the upper bound in
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CHAPTER 1: Master equation for a collection of interacting multi-level atoms

the integration over 7 in Eq. (1.33) to infinity,

X (t) = / dr Xl (T)oa(t) and Y/¥(t) = / dr Y} (1)oa(t) . (1.36)
0 0

The two approximations which led from Eq. (1.33) to Eq. (1.36) are known as the
Markov approximation [4, 10, 18]. We now employ the relation fooo e*Tdr = 7é(z)+
iPc1/x (here P, denotes the Cauchy principal part) and evaluate the integrals over
7 in Eq. (1.36). This yields

X () = (T +iMh) oat) and Y20 =—i (P) oalt),  (1.37)
where
wg
F/;ju _ m /dwkwi’ [dZT;’ (wi/c, Ru) d;} d(wg — wo) , (1.38)
0
wc _ .
Pl = g [ st |4 /e R & o (139)
0
wcC _ .
Mi;;_l/ _ mﬂ;/dwkwg d?; (w/c, Ryy) d;_ o i o (1.40)
0

In these definitions, we approximated the frequencies w; and w; by the mean fre-
quency wg = 1/D ZZD: 1 w;. This is justified since we assumed that the differences
(wi —wj) are much smaller than the mean transition frequency wy. The components

of the tensor F which enters Egs. (1.38)-(1.40) are given by (p,q € {1,2,3})
Foo(k, R) = / 2% S e R (] [l (1.41)

and the explicit form of these tensor components is presented in Appendix 1.A. Since
the range of integration extends over the complete solid angle, the tensor in Eq. (1.41)
depends only on the absolute value of k. In addition, the components of this tensor
are real, which has already been employed in the derivation of Eq. (1.37). We find
that the parameters in Eqgs. (1.38)-(1.40) obey the following symmetry relations,
v = (), P = (Pr) M= (M) (1.42)

Ji Jiu Ji
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1.3. Derivation of the master equation

These relations together with Eq. (1.37) allow us to cast the master equation (1.31)
into the following form,

M D D

droa(t) = — % [Ha,on(®)]+i > Y > ol |:S7,(i S, oa(t) (1.43)

mr=1 g=1 1
n#V i=

D
> (S5 0a(t) + a (0S5 25 0a(0)S1Y)

F
N
Il
—_
ST w)
—
<.

S e [s, 0utn)] - (1) [55.0a00]}

=
Il
—
.
I
—_

<.
Il
—_

The parameters ij” =Pl — MZV which occur in the second term of the first line
in Eq. (1.43) will be discussed below. Here we first concentrate on the two terms
in the last line of Eq. (1.43) which depend on Mi’;” = M;; and PZ’]‘” = P,;. Note
that we omitted the index p since the parameters in Egs. (1.39) and (1.40) depend
only on the indices ¢ and j if u = v. In order to give an interpretation for the
parameters M;; and P;; for ¢ = j, let S = |ku)(l,| be the transition operator from

state |l,,) of atom p to state |k,) of the same atom. Since S(”)S(“ k) (k| = Al(i)

and S; (1 )S (” ) = Al(l” ), the parameters M;; and P;; represent a frequency shift of the
atomic levels which is related to the Lamb shift.

However, we emphasize that the correct values for the Lamb shift of the atomic levels
cannot be obtained within the framework of the present theory. A rigorous treatment
of this effect requires a fully relativistic theory and renormalization procedures. Here
we assume that the correct values for the atomic level shifts have been incorporated
into the energies of the atomic states.

We proceed with a short discussion of the parameters M;; and P;; for i # j. In this
case, the terms proportional to M;; and F;; represent a coherent coupling between
two atomic levels of the same atom. However, these terms only contribute if two
conditions are simultaneously fulfilled. First, the dipole moments d; and d; must
be non-orthogonal since M;;, P;; ~ d; - d;. Second, at least one of the operators

Sl(’jr) SJ(» " or S(” )SJ(. 42 must be different from zero (for i # j). However, these two
conditions can usually not be fulfilled at the same time in atomic systems [11]. In
particular, they are never fulfilled simultaneously for the atomic systems considered

in this thesis, and hence we omit these terms.

In conclusion, we can remove all terms in the last line of Eq. (1.43) if the Lamb
shifts are incorporated into the energies of the atomic levels. We thus arrive at the
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CHAPTER 1: Master equation for a collection of interacting multi-level atoms

master equation in its final form,
M D D

Bioalt) = — + [Ha,on(] +1 32 S-S0 [, on (1) (1.44)

=1 =1 1
uFV I=

M D D
=33 i (S5 oatt) + eal) S s — 250 0a (1))

M D D
-3 33 (sf WS on(t) + oalt) S S — 2S§”_>QA(t)s§’f) :

In the second line of Eq. (1.44), we introduced the parameters

d d*
=V 1.4

where
= 7 (1.46)

The derivation of the expressions for 7;; and ~; can be found in Appendix 1.A. For
1 =J, Vi = ¥ is the half-decay rate of the i-th atomic dipole transition. The param-
eters 7;; for i # j describe the cross-damping between a pair of transitions i and j
of the same atom. According to Eq. (1.45), the cross decay rates 7;; depend on the
mutual orientation of the associated dipole moments d; and d;. These parameters
describe the decay-induced coherence between atomic dipole transitions and will be
discussed in detail in chapter 2. In particular, we show that these spontaneously
created coherences give rise to quantum interference effects. Note that the cross
decay rates vy;; contribute to the master equation provided that the dipole moments

d; and d; are non-orthogonal. Due to the term S(-“ ) oA(t )Sl(i) in the second line

of Eq. (1.44), it is not required that one of the operators SZ(JF)SJ( " or S(“)S(“) is

different from zero at the same time. This is in contrast to the parameters M,J and
P;j (i # j) which were discussed below Eq. (1.43).

The parameters in the third line of the master equation (1.44) are given by
jo% 1 T *
L = 3 |df Xim(Ruw) 5 (1.47)

and a derivation of this result is presented in Appendix 1.A. In this equation, }_()im

denotes the imaginary part of the tensor y whose components for p, g € {1,2,3} are
given by

Vool ) = —— {m P ]leikoR
e 0Pt 9R,0R,| R

I 1 i 1 [R],R], (1 3i 3 .
_ o (=4 = — =) Eple (2 20 2 ) i 1.48
dreg [ r (n TP 773) o \y e p) e
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1.3. Derivation of the master equation

and n = kgR. In the first line of Eq. (1.48), the derivatives are taken with respect to
the Cartesian components R, = [R], of the vector R. Note that in the last line of
Eq. (1.44), terms with u = v are excluded in the summation over the atomic indices
w and v. The parameters Ffj” are thus only present in collective systems and can be
interpreted as collective decay rates. They arise from the interaction between two
dipole transitions which belong to different atoms and describe the modification of
spontaneous emission of one atom due to the presence of the other atoms. A more
detailed discussion of these terms is provided in chapters 3-5 of part III.

Next we discuss the parameters
wy _ puv Vi
Qij - Pij ]

17 e )
- 7 |:d;r Xre(RuV) dj (149)

St

which occur in the second term of the first line in Eq. (1.44). Here Y, denotes the
real part of the tensor x in Eq. (1.48), and the derivation of Eq. (1.49) can be found
in Appendix 1.A. As for the parameters I'j;’, the terms proportional to € only
contribute to the master equation (1.44) in collective systems and arise from the
interaction between a pair of dipoles which belong to different atoms. In contrast to
the collective decay rates I‘fj”, the parameters ij” give rise to a coherent coupling
between two dipole transitions of different atoms. This is a remarkable result, since
this coherent interaction arises solely from the vacuum-mediated coupling between
different atoms. The influence of the coherent part of the dipole-dipole interaction on
the quantum dynamics of collective systems is investigated in depth in chapters 3-5
of part III.

The parameters I';;" and ;" obey an important symmetry property which allows
to reduce the number of independent parameters in the master equation (1.44).
According to their definitions in Eqgs. (1.47) and (1.49), Fé‘j” and ij’/ depend on the
atomic indices y, v via the atomic separation vector R, = r,—7,. Since the tensor

X(R) in Eq. (1.48) does not depend on the sign of the vector R,
X(—R)=X(R), wehave T! =T}/ and QI =Q/. (1.50)
Together with Eq. (1.42) we can establish the following relations,
W = % = (Fg-ﬁ-”> - (er.5> 7
QY — QU — (gw)* - <Q’?4‘>* : (1.51)

In particular, this shows that the parameters I';;” and Qf are real. In part III of this
thesis, we focus on systems that consist of two atoms. Since their relative position
is described by a single separation vector R, we can omit the superscripts g and v
and denote the parameters Fé‘j” and Qé‘;’ by I';;(R) and §2;;(R), respectively.
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CHAPTER 1: Master equation for a collection of interacting multi-level atoms

So far, we only considered the interaction of M atoms via the vacuum field. In the
presence of external laser fields, an additional term

L
h

has to be added to the right hand side of Eq. (1.44). Here the time-dependent Hamil-
tonian Hi,(t) describes the interaction between the atoms and the laser fields (see
chapters 2-6). In the following, we assume that the Rabi frequencies and detunings
that are associated with the laser fields are much smaller than the mean transition
frequency wg. In this case, it is justified to assume that the other terms in Eq. (1.44)
which arise due to the atom-vacuum coupling are not affected by the presence of the

laser fields [18].

[HL(t), o(t)] (1.52)
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1.A  Calculation of the parameters I'j;" and

Here we outline the calculation of the generalized decay rates and collective energy
shifts which enter the master equation (1.44) derived in Chapter 1. We begin with
the general expression for the decay rates in Eq. (1.38) and obtain

wc

vo_ ™ 3| 4T x
0

kg T 5 *

Note that kg = wp/c is the mean wavenumber of all dipole transitions, see Eq. (1.2).
In order to derive explicit expressions for the parameters Ffj”, we determine the

tensor F (k, R) which has been defined in Eq. (1.41). Since the polarization vectors
of the radiation field satisfy the relation [19]

kpkq

Z [ekS]p [EZS]q = 51711 - ? ) (154)
we arrive at
2 T bk
Fp(k,R) = / doy, / By sin Ope* B <5pq - %) : (1.55)
0 0

where k = k(sin 6 cos ¢y, sin O sin ¢, cos ;). For R = 0, the evaluation of the
integral yields

. 8
Fp(k,R=0) = gﬂépq. (1.56)
Since we have R, = 0 for u = v, we obtain from Eq. (1.53)
W

' =

i d 1.57
” 6807171’(33 J ( )

Together with the definition of the half-decay rates «; in Eq. (1.46), we can establish
the result presented in Eq. (1.45).

The general expression of the tensor F' for R # 0 is found to be

Foq(k, R) =4x {% K% - %) sin ¢ + écos g} (1.58)
R] [R
—7[ ]pRg ly K% - %) sin ¢ + %COSC}} )

1 ' 1 R, R 1 3 3 .
:47T1m{[5pq (Z—Fé_F) _[];;#<Z+C_;_@>} e’c},
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CHAPTER 1: Master equation for a collection of interacting multi-level atoms

where ¢ = kR. Note that the general expression (1.58) reduces to the special result
in Eq. (1.57) in the limit R — 0. If Eq. (1.58) is plugged in Eq. (1.53), we obtain
(n = koR)

v 3 Vi { |:<1 1) . 1
e == di-d;||———]sinn+ —cosn 1.59
TN G AV 7 (159
— wa Kﬁ_?) smn—kﬁcosn} .

This rather complicated expression can be cast into a compact form via the tensor
;im, which denotes the imaginary part of the tensor ; that has been introduced in
Eq. (1.48). With Eq. (1.53) and the relation

KBo-
= F(ky, R 1.
167T2€(] ( 0 )7 ( 60)

;im(R)

we arrive at Eq. (1.47).

We now turn to the evaluation of the parameters ij’/ = PZ’]“' - Mi‘;y,

1 T = wi
e p— R R £ R,)d: k 1.61
ij EQFL(27TC)3P / Wi |: i (wk/c7 (Z ) j w}% — wg ( 6 )
0
With the identity
2 2
Wi “o
=14+ -, 1.62
Z-g tooa: (1.62)
we split the integral in two parts,
1 o
[ 2 2 T *
0
we - 9
Wi Pe / dwy, [diTF (wi/c, Ry) d;} kY (1.63)
; Wi~ Wo

We begin with the evaluation of the first integral in Eq. (1.63). Note that we dropped
the symbol P, in front of this integral since there are no poles in this expression. If
we change the integration from wy to k and employ Eq. (1.55), we find

ko

1 —
E / dkk? [diTF (k, R,) d;]

(D) - 605(271‘
0

_ %_l Z [di], [dj-]q (2i)3 /d3kez’k~R;w <5pq - %) O(ke — k).  (1.64)
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In the last line of Eq. (1.64), we introduced the unit step function ©(k. — k) which
is equal to one for k < k. and zero if k > k.. The presence of this function allows
to extend the range of integration over the complete k space. Here we replace the
unit step function ©(k. — k) by the smooth step function k2/(k? + k2) which is
approximately equal to unity for k¥ < k. and approximately zero for k > k.. With
this replacement, the integral in the second line of Eq. (1.64) can be expressed in
terms of the regularized transverse § function (see, e.g., Complement Ay in [19]),

kyk k2
J_ ik-R c
5 ke < pg — qu> k2 + k2
1 (3[R],[R]
= gpq(R) + Py < é)2 1 — 5pq> f(R), (1.65)

where

k2 ([R],[R] _
Ipg(R) = STR < pR2 1 +5pq> e ket

f(R)=1-— <1 + ko R+ %kﬁm) e kel (1.66)

Since the cutoff frequency w, is on the order of m.c?/h, the inverse wave number
1/k. is of the order of the spatial extend of a single atom. From the definitions in
Eq. (1.66), it follows that we can set gpq(R) ~ 0 and f(R) ~ 1 for R > 1/k.. Since
we assume that the interatomic distance between any two atoms is much larger than
1/k., we obtain

©) = |aVR] 1.67)
where
- R] [R
Vig(R) = é% <3H§%7[2]q - 6pq> : (1.68)

It follows that the contribution (OJ) in Eq. (1.64) represents the interaction potential
of two static dipoles.

We now turn to the second term in Eq. (1.63),

2
Wi

(0) = 4775071 2772037) /dwk [ F(wi/c, Ry) d; ] - (1.69)

Note that the integrand exhibits a pole at wp = wqg. Since the cutoff frequency w. is
much larger than the mean transition frequency wgy, we can extend the upper limit
of integration to infinity. The relevant principal value integrals can be evaluated via
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the residue theorem and are given by (7 > 0)

o
1
Pc/dwk 2wkw2 sin(wyT) = 37 cos(woT) ,
0

W — o
o
P [ a o~ sin(wir) = — 5 [1 — cos(wi)]
Wi ————=< sin(wy7) = ——= [1 — cos(woT)] ,
A er e :
o0
1 T
Pe | dwp—5—— cos(wiT) = —5— sin(woT) . (1.70)
Wi, — W 2wo
0

If these relations are substituted in Eq. (1.69), we arrive at
1 o - .
(0) = 7 {d;r |:Xre (Ruw) — V(Ruu)} dj} ) (1.71)

where }?re is the real part of the tensor Y in Eq. (1.48). Finally, the combination of
Egs. (1.67) and (1.71) yields

s, 1 - .

O = = [dF Noe(B) a5 - (1.72)

This is the result presented in Eq. (1.49), and can be written as (n = kgR)

v 3 { [(1 1 > 1.

QLY =— di-d:||———)cosn— —sinny 1.73

s 2l g Y [\ T 7 ()

- f P cosn—?smn .
v
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Part 11

Quantum interference enforced
by time-energy complementarity
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Chapter 2

Interference in the resonance
fluorescence of two incoherently
coupled transitions

2.1 Introduction

Since the emergence of quantum mechanics, quantum interference has been regarded
as one of the most exciting and intriguing aspects of quantum theory [11]. In gen-
eral, quantum interference occurs whenever an initial state of a quantum system is
connected to a final state by several indistinguishable transition amplitudes. These
transition amplitudes are frequently identified with the various pathways or “his-
tories” connected with the time evolution of the quantum system. Although inter-
ference effects are present in almost all areas of quantum mechanics, some of them
particularly attracted the attention of many scientists.

As a first example, we would like to mention vacuum-induced interference effects,
where the interfering pathways are realized by atom-vacuum interactions. A stan-
dard representative for a physical system that displays vacuum-induced coherence
and interference effects is the so-called V-system. This atomic level scheme is com-
prised of two near-degenerate excited levels and one ground state (see Fig. 2.1).
Many authors demonstrated that a rich variety of interference effects should be
observable in this system, and most of them are potentially interesting for applica-
tions. These effects include the modification and quenching of spontaneous emis-
sion [10, 21-23], and several schemes to control spontaneous emission by means
of external fields have been suggested [24-27]. Furthermore, it has been shown
that quantum interference leads to strong modifications of the spectrum of res-
onance fluorescence, and for suitable parameters the complete suppression of reso-
nance fluorescence is achievable [28-31]. The emitted fluorescence light also displays
highly nonclassical features like extremely strong intensity-intensity correlations and
squeezing [32, 33].
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Figure 2.1: The level scheme in V-configuration is comprised of two excited states
and one ground state. Each excited state can decay spontaneously to the ground
state |0), and the decay rates are labeled by 7 and 72. The parameter § denotes
the frequency splitting of the excited states. For non-orthogonal dipole moments
dy = (1/d|0) and dy = (2|d|0), this system displays a rich variety of vacuum-induced
interference effects.

We emphasize that all these schemes rest on two stringed conditions. First, the
excited states must be near-degenerate, i.e., the frequency splitting & of the upper
levels must not exceed the natural linewidth of the transitions which is determined by
the spontaneous decay rates 71, 72. Second, the dipole moments d; and ds associated
with the |1) < |0) and |2) < |0) transitions must be at least non-orthogonal. If
these two requirements are fulfilled, the interference terms

d. - d*
= VT t 2.1
’Y] ’Y’Y]’dz‘ ’dj’ ( )

for i # j will contribute to the master equation (1.44) and change the system
dynamics. All the interference effects cited above can be traced back to the cross-

decay rates proportional to |/7;7;.

However, the requirements of near-degenerate levels and non-orthogonal dipole tran-
sitions are very hard to meet in an experiment, and appropriate atomic systems are
not known up to now. In order to circumvent this problem, an experiment with a
molecular system has been performed [34], but the experimental results could not
be reproduced yet [35]. A recent experiment demonstrates the existence of sponta-
neously generated coherences between spin states in quantum dots [36].

One of the most famous interference effects is certainly Young’s double-slit experi-
ment [1, 4, 11]. A beautiful realization of this experiment was performed by Eich-
mann et. al. [37] and subsequently discussed by several authors [38-40]. In this
experiment, the slits are represented by two "®Hg™ ions in a trap that are irradi-
ated by a coherent laser field, and the interference pattern formed by the scattered
light was observed. Starting from the early days of quantum mechanics, the two-
slit experiment has been employed to explore fundamental concepts of quantum
mechanics such as the principle of complementarity. According to Niels Bohr [2],
complementarity arises from the inseparability of detector and object. This leads to
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mutually exclusive observables that cannot be measured precisely under the same
experimental conditions. Here we adopt this point of view and say that two ob-
servables are complementary if the experimental conditions that allow for an exact
measurement of one of them eliminate the possibility to determine the other ob-
servable precisely. In the case of wave-particle duality in a two-slit experiment, one
can decide to observe either the interference pattern exposing wave-like features, or
particle properties by measuring the path taken. The interference pattern is ob-
served under conditions where it is principally impossible to know through which
of the two slits each object has moved. On augmenting the experiment by any
means which in principle allow to measure the path taken, the interference pattern
vanishes. Celebrated thought experiments like Feynman’s light microscope [41] and
Einstein’s recoiling slits [2] employ the position-momentum uncertainty relation to
demonstrate that it is impossible to observe the wave and the particle nature of
the interfering quantities (for example, electrons or photons) at the same time. In
recent years, a proposal by Scully et. al. [42] rose the question whether the principle
of complementarity is always enforced by the uncertainty relation. This touches
the delicate question if the principle of complementarity is more fundamental than
the uncertainty relation. In [42], a two-slit experiment with Rydberg atoms was
proposed, and the authors claimed that the loss of interference due to which-way
information cannot be explained in terms of the position-momentum uncertainty
relation. This interpretation was challenged by Storey et. al. [43] who argued that
the momentum transfer in the proposed experiment [42] is in agreement with the
position-momentum uncertainty relation if which-way information is obtained. A
lively debate on the interrelation between the principle of complementarity and the
position-momentum uncertainty relation followed [44-49]. According to a recent
which-way experiment with an atom interferometer [50], the principle of comple-
mentarity and the position-momentum relation are indeed not equivalent. Here
the authors claim that the loss of interference due to which-way information can
only be explained in terms of correlations between the which-way detector and the
atomic motion, but not in terms of the momentum transfer associated with the path
detection.

Up to now, the discussion of complementarity was focused on spatially separated
pathways resulting in an interference pattern in position space. Here, we demon-
strate that quantum optical experiments can reveal complementarity of time and
energy. In this class of setups, different temporal paths lead to interference in the
energy domain. An attempt to extend interference and complementarity to the time-
energy domain raises several questions. First, it is not obvious what the equivalence
is of (spatial) pathway interference in the time-energy domain. How can paths differ-
ing “in time” be realized, and what makes these paths indistinguishable in principle,
as required for interference? Finally, what is the role of the time-energy uncertainty
relation, which is special in that time is a parameter rather than an operator in
quantum mechanics?

In the following, we discuss these questions on the basis of the resonance fluorescence
of a single laser-driven atom with a J = 1/2 to J = 1/2 transition as found, e.g., in
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Figure 2.2: Schematic representation of the four-level atom of interest. The two
upper and lower levels are Zeeman sublevels with m, = i%. Each upper state can
decay by dipole allowed transitions to both ground states. The coupling between
the laser field and the 7 transitions is characterized by the Rabi frequency €. ~1, o
and v, are spontaneous decay rates. The Zeeman splitting of the magnetic sublevels
is not to scale.

19%8Hg* ions [51-53]. A schematic representation of this four-level system is shown
in Fig. 2.2. The transitions |2) <> |3) and |1) < |4) couple to ¢ and o~ polarized
light, respectively, and will be referred to as the o transitions. By contrast, the 7
transitions |1) < |3) and |2) < |4) couple to light linearly polarized along e,, and
the frequency difference § between the two 7 transitions can be adjusted by means
of an external magnetic field. The schematic setup of the discussed experiment is
shown in Fig. 2.3. An atom is located at the point of origin and irradiated by a
monochromatic laser beam that couples only to the 7 transitions, and the detector
records either the spectrum of resonance fluorescence or the total intensity. With a
suitable polarization filter in front of the detector, only the light emitted on the m
transitions or the the light emitted on the ¢ transitions is measured.

Our main findings can be summarized as follows. We show that complementarity en-
forces a signature of interference in the spectrum of resonance fluorescence emitted
on the 7 transitions, whereas the total fluorescence intensity exhibits no interfer-
ence. The results can be described quantitatively via the time-energy uncertainty
relation, but no conclusion about the hierarchy between the uncertainty relation and
complementarity can be drawn from our results. Further, we demonstrate that the
interference in the fluorescence spectrum results from vacuum-induced coherences.
This result can be traced back to the fact that the dipole moments associated with
the two 7 transitions are antiparallel. Since the level scheme with antiparallel dipole
moments in Fig. 2.2 can be found in real atoms, we provide a realistic experimental
setup to verify the presence of vacuum-induced interference effects.

However, it cannot be expected that this four-level system displays the same inter-
ference effects that were predicted for the V-system with parallel dipole moments
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e
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Figure 2.3: Considered experimental setup showing the atom interacting with the
laser field. Either the total intensity or the spectrum of resonance fluorescence is
observed. With a suitable polarization filter in front of the detector, only the light
emitted on the 7 transitions or the the light emitted on the o transitions of the
atomic level scheme is measured (see Fig. 2.2).

since there is a striking difference between them. In the case of the V-system, both
transitions from the upper levels end up in the same ground state, while the two
7 transitions of our four-level system start and end up in different states that are
orthogonal to each other. In view of this, it is surprising that the system in Fig. 2.2
displays interference effects at all. The detailed explanation of this result is provided
with the discussion of all our results (see Sec. 2.5).

This chapter is organized as follows. In Sec. 2.2, we discuss the master equation for
the laser-driven four-level atom in Fig. 2.2 and describe the polarization-dependent
detection scheme which allows to discriminate between the fluorescence light that
stems from the 7~ and the o transitions. The fluorescence light emitted on the w
transitions is discussed in Sec. 2.4, where we show that the total intensity emitted
on the 7 transitions is not affected by interference. On the other hand, a formal ar-
gument immediately clarifies that the spectrum of resonance fluorescence emitted on
the 7 transitions does show a signature of quantum interference. The coherent and
incoherent spectrum of resonance fluorescence is examined in Secs. 2.3.1 and 2.3.2,
respectively, and Sec. 2.3.3 demonstrates how the interference terms alter the fluo-
rescence spectrum for different regimes of the driving field strength. We then turn
to the fluorescence spectrum emitted on the o transitions that only consists of an
incoherent part (see Sec. 2.4).

A detailed discussion of all our results is provided in Sec. 2.5. In particular, the
interference effect in the spectrum of resonance fluorescence is explained in terms of
interferences between transition amplitudes that correspond to different time orders
of photon emissions. Our interpretation is supported by a formal argument and
a thorough study of the continuous transition from perfect frequency resolution to
perfect temporal resolution of the detector. Finally, a summary of our results is
given in Sec. 2.6.
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2.2 Equation of motion and detection scheme

We now return to the level scheme in Fig. 2.2. Note that we allow the Zeeman
splitting of the excited and the ground state magnetic sublevels to be different,
since the Landé g factors will not necessarily be the same for these two multiplets.
For example, in the case of the 6525, /2 — 6p2 P, /2 transition in 198Hg™ the g factor
for the excited states is given by 2/3, and for the ground states it takes on its
maximum value of 2. The matrix elements of the electric-dipole moment operator
d can be found from the the Wigner-Eckart theorem [54] and are given by

- 1 N
dl = <1‘d‘3> = —ﬁDez, d2 = (2’d‘4> = —dl
o 2 _ - %
ds — (2|d]3) = \/;Dé o dy = (dd) = d . (2.2)

In this equation, the circular polarization vector is defined as €= = (e, —ie,) /v2
and D denotes the reduced dipole matrix element. We assign to each of the four
dipole-allowed transitions a resonance frequency w; (i € {1,2,3,4}). If the splitting
between the magnetic sublevels vanishes (i.e. B = = 0), these four frequencies are
equal.

We are interested in the time evolution of our four level system driven by a monochro-
matic field of frequency wy, that is linearly polarized along the z axis,

E(t) = Eje “t'e, + cc., (2.3)

and c.c. stands for the complex conjugate. With this choice of polarization, the
electric field couples only to the two antiparallel dipole moments dy and ds. In the
rotating wave approximation, the interaction Hamiltonian takes the form

V= (A13 — A24) hQ e~ WLt + h.c., (24)

where the atomic transition operators are defined as A;; = |i)(j|, and the Rabi
frequency is given by Q = EyD/(v/3h). The atomic Hamiltonian can be written as

Hy = hwy A1 + h(we + B) Agg + hB Ayy (2.5)

where wy stands for the resonance frequency of the 1 < 3 transition and wy = wy +9
is the resonance frequency on the 2 < 4 transition. In a rotating frame defined by
the unitary transformation

W =exp [( A1 + Aos ) ith] s (26)

the master equation for the density operator o = W oW reads

1

b=—7 1M, + Ly6. 27)
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In this equation, the Hamiltonian is given by
H=—h[AAp + (A —0) Az — B(Agz + Asa) |
+ [(Alg — Aoy ) RO + h.C.] , (2.8)

A = wp — w is the detuning of the driving field from resonance with the 1 < 3
transition, and A—d is the detuning on the 2 < 4 transition. According to Eq. (1.44)
of Chapter 1 and with the dipole moments in Eq. (2.2), the damping term L. 0 takes
the form

2
L = —% > i (SrS7o+ oSSy —28785] )
i, j=1
4
- ; (S7s70+ 88757 — 257687 ). (2.9)

Since we are dealing with a single-atom system, we introduced a simplified notation
for the atomic transition operators Sii. These operators are defined as

St =A13, S =A0, Sf=A93, Sf=A41, (2.10)

and S, = (S:r )f. The decay constant on each of the ¢ transitions is denoted by 7,
the parameters v;; are determined by

d; - d; -
Vi = amg Vs ba € {2, (2.11)
|di |d;]

and 7, and 7, are the decay constants of the 7 transitions (see Fig. 2.2). Note
that in contrast to Chapter 1, the parameters v,, y1 and -9 are full decay rates
rather than half-decay rates. This explains the factor 1/2 in Eq. (2.9). For ¢ = j,
the parameters «;; in Eq. (2.9) are equal to the decay rates of the 7 transitions,
Y11 = 71 and Y99 = 7. Although 77 and 5 are equal in our setup, we will continue
to label them differently to facilitate the physical interpretation later on. Since dy
and dy are antiparallel, the cross-damping terms are given by 12 = 721 = — \/7172.
These terms allow for the possibility of coherence transfer from the excited to the
ground state doublet.

The decay rates v1, 72, V- can be related to the total decay rate v = y1+7, = 2+
of each of the two excited states through the branching probabilities b, and b,,
Y1="72="bry and v, =bs7. (2.12)

According to the Clebsch-Gordan coefficients, we have b, = 1/3 and b, = 2/3.
Although we will keep the symbols b, and b, in formulas, we will always assume
these values whenever a concrete evaluation is performed, e.g. in figures.

Next we employ the normalization condition Tr(g) = 1 to eliminate the matrix ele-
ment g4 from the master equation (2.7) that can be cast into the form

OR(t) = MR(t) + I. (2.13)
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Here M represents a generalized 15 x 15 Bloch matrix, the vector I is an inhomo-
geneity with components

1=10,0,0,0,0,0,0,i9,0,0,0,0,0, i *,0) " (2.14)
and the vector R contains the matrix elements g;; = (i|g[j) of the density operator,

NG
R = (011, 012, 013, 014, 021, 022, 023, 024, 031, 032, 033, 034, 041, 042, 043) - (2.15)

The stationary solution of Eq. (2.13) is formally given by Ry = —M™'I, and an
evaluation of the latter equation yields

i 1 02

Ou = 5 /a4 (A—8/22 L2OP (2.16)
1 /44 A%+ Q)

033 T 9241 6%)4+ (A —0/2)2 1 20

1 Y24+ (A —0)? +|Qf

e T 92 6% )4+ (A —6/2)2 + 2|0

1 (A —iv/2)Q

013 = 90241 6%)4+ (A —0/2)2 1 2]QF

1 (6 — A+iv/2)Q

O T 9021 0% /4+ (A —6/2)% + 2

The remaining non-zero components of Ry are determined by

011 = 022 , 031 =013 and Q42 = 0y - (2.17)

In the case of the degenerate system, the population of the two ground levels will
be equal and we have 913 = —024. Note that the minus sign arises since the dipole
moments d; and dy are antiparallel, and the coherences 914 and g93 are equal to
zero because the driving field does not couple to the o transitions.

In this chapter we focus on the total intensity and the spectral distribution of the
fluorescence light emitted by the atom in steady state. The total intensity

Li = (BT (1) BV (r, 1)) (2.18)

st

is given by the normally ordered first-order correlation function of the electric field,
and the spectrum of resonance fluorescence is determined by the Fourier transform
of the two-time correlation function of the electric field [18],

[e.9]

Sw) = - / e (Bt ) B 1)) dr (2.19)

— o0
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(=)

In these equations, E

(E(+)

the electric field operator. At a point » = r# in the far-field zone, the negative
frequency part of the electric field operator is found to be [10]

) denotes the negative (positive) frequency part of

(=)
E ( ) Efroe

ﬁld

4
Z x d; ) SiF(f) ert (2.20)

where £ =t — L is the retarded time, n = 1/(47rgoc?) and SE(t) = exp(Fiwrt) SE(2).
The first term stands for the negative frequency part of the free field. It does not
contribute to the normally ordered correlation functions in Egs. (2.18) and (2.19) as
long as the point of observation lies outside the driving field [55]. The second term
describes the retarded dipole field generated by the atom situated at the point of
origin.

Throughout this chapter we assume that the point of observation lies in the y di-
rection, where the z and x axes are defined by the polarization and the direction
of propagation of the laser beam, respectively. An evaluation of the cross products
in Eq. (2.20) shows then that the light emitted on the 7 transitions is linearly po-
larized along e, whereas the light emitted on the ¢ transitions is linearly polarized
along e;. The advantage of this detection scheme is that one can easily discriminate
between the light emitted on the m and o transitions by means of a polarization fil-
ter. For this reason we will discuss the fluorescence light of the 7- and o transitions
separately.

2.3 Spectrum of resonance fluorescence — 7 transitions

We begin with a brief discussion of the steady-state intensity recorded by a broad-
band detector that observes the light emitted on the 7 transitions. According to
Egs. (2.18) and (2.20), we have

I, = n Z %5 {5757 Vst » (2.21)

i, 5=1

where it was assumed that w; =~ wy to obtain a common prefactor ¢, that we
set equal to one in the following. The terms v;; are defined in Eq. (2.11), and
Y12 = Y21 = — /7172 describe the cross-damping between the 7 transitions that
arises as a consequence of quantum interference. However, these interference terms
do not contribute to the total intensity, regardless of what the steady state solution
might be, because the ground states are orthogonal,

(5185 )se = (11)(3]14)(2] ), =0 (2.22)

Consequently, the intensity emitted on the 7 transitions is not altered by interference
terms and simply proportional to the population of the excited states,

IG = bry(011 + 022) - (2.23)
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We now turn to the the spectrum of resonance fluorescence emitted on the 7 tran-
sitions. With the help of Egs. (2.19) and (2.20) we arrive at

2 o0
1 L -
S™(Q) = - E Vij Re/e_WT(S;'(t +7)

T() st dr (2.24)

where @ = w — wy, is the difference between the observed frequency and the laser fre-
quency. In contrast to Eq. (2.22), the terms proportional to 12 are now determined
by the two-time averages { S;(t 4 7)S5 (f) )5t rather than by the one-time averages.
Indeed, we find that the correlation function

Gra(7) = =72 (57 (E+7)85 (1) st (2.25)

is different from zero for 7 > 0; a plot of GG15 is shown in Fig. 2.4. But this implies
that there is quantum interference in the spectrum of the light emitted on the 7
transitions, although there is no interference in the total intensity. To illustrate
this result we decompose the transition operators in Eq. (2.25) in mean values and
fluctuations according to

SE = (8F )l + 655 . (2.26)
The correlation function G2(7) becomes then
Ga(7) = —vArz [(8ST (E+7)055 (8) )st + (ST )se (155 st ] - (2.27)

The two-time average of the fluctuations can be calculated from the generalized
Bloch equations and the quantum regression theorem (see the Appendix). It decays
exponentially with a time constant on the order of ¥~ and does not contribute to
G12 in the long-time limit 7 — oco. The mean values (S’f )st = 031 and (5’5r st = 042
are given by matrix elements of the steady-state density-operator in Eq. (2.16) and
are both different from zero. This is obvious from a physical point of view since the
laser field creates a coherence on both transitions 1 < 3 and 2 < 4. Consequently,
the long-time limit of G2 reads Ga2(00) = — /7172 S )s(Sy Yst- Tt follows that
the interference terms will affect the coherent and incoherent spectrum of resonance
fluorescence.

Before we give expressions for the spectral distribution of the emitted light, we
calculate the respective contributions of coherent and incoherent scattering to the
intensity I7. To this end we apply the decomposition of the transition operators
Eq. (2.26) to Eq. (2.21). This allows us to write I as the sum of four terms,

I5, = Tggp + Legiy + Tine + Tine - (2.28)
The first two terms account for the contribution of coherent scattering (subscript
“coh”) and are given by

Igoh = N ’<Sf_ >st’2 + 72 ‘(5’;‘ >st‘2= (2-29)
I = —2/7 Re( 5] )st(Sy )st - (2.30)
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0 2.5 5 75 10 125 15 175
Time [units of v~ 1]

Figure 2.4: Plot of the correlation function (Gi2 in relation to its long-time limit
Gia(00) = — 717257 )st( Sy )5t for the degenerate system. The parameters are
N=3x10"s"1 A=5x10s"1 and v = 107 s~1. G415 has to vanish at 7 = 0 since
the ground states are orthogonal.

In this equation, I (?Oh stands for the contribution of terms proportional to «11 and 22,
and 1, é‘g% is the weight of the interference terms that can be positive or negative. By
contrast, the sum of [ (?Oh and I égfl is the weight of the Rayleigh line that is always
positive. The last two terms in Eq. (2.28) denote the contribution of incoherent
scattering (subscript “inc”),

. = 71 (655557 Vst +72 (355855 Vst s (2.31)
% = —2./717 Re (85] 65y ) - (2.32)

Since the ground states are orthogonal, Eq. (2.26) allows to establish the relation
(657685 )st = —(SF )st (S5 Dst - (2.33)

If this expression is applied to Eq. (2.32), it follows from Eq. (2.30) that the inter-
ference terms Iég‘fl and I'™ are of opposite sign, i.e.,

Ieoh = —Iine - (2.34)
This relation clarifies that the interference terms alter the weights of the coherent and
the incoherent part of the spectrum, whereas the total intensity remains unchanged.
Note that this is in contrast to the V-system with nonorthogonal transition dipole
moments mentioned in the introduction, where both the fluorescence spectrum and
the total intensity show a signature of interference [11, 21, 30, 31].

We now turn to the spectral distribution of the fluorescence light and employ
Eq. (2.26) to write the spectrum of resonance fluorescence in Eq. (2.24) as the sum
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of the coherent and the incoherent spectrum, S™(w) = ST, (@) + ST (@), where
on(@) = (Lon + Leoh) 0(@) (2.35)
She(@) = — Z 7ij Re / TET(SST(E+7)6S; (F) )t dr (2.36)
z ,7=1

These two contributions will be discussed in the following sections.

2.3.1 Coherent spectrum of resonance fluorescence

The coherent part of the fluorescence spectrum consists of the Rayleigh peak centered
at w = wr. In order to get a better understanding of how the weight of this line is
affected by interference, we write it as

Teon + Lok = V15T )st — vA2( 55 )t - (2.37)

In this equation, <5‘f )st is proportional to the scattering amplitude on the 1 < 3
transition and —( S )g corresponds to the scattering amplitude on the 2 < 4 tran-
sition. Note that the minus sign arises since the dipoles d; and dy are antiparallel.
Depending on the relative phase and the absolute values of the coherences <§f Dst
and <5§r )st, there will be constructive or destructive interference in the coherent
part of the spectrum. We will now demonstrate that the degree of interference in
the coherent spectrum can be controlled by means of the difference & between the
resonance frequencies of the 7 transitions. Therefore, we write Eq. (2.37) as

Icoh + Iégh - I((:)oh [1 + C] 9 (238)
where C' = égfl con 18 the relative weight of the interference terms. An explicit

expression for C' can be found with the help of the definitions in Eq. (2.30) and the
steady-state solution for ¢ in Eq. (2.16),
Y2 /4 + A(A - 6)
v2/4 4 6% /4+ (A —§/2)?

(2.39)

The absolute value of this quantity can be regarded as the degree of interference
in the coherent spectrum. Figure 2.5 shows a plot of C' as a function of § for two
different (negative) detunings A. It is evident that C' is equal to one in the case
of the degenerate system. Therefore, we have perfect constructive interference for
6 = 0. In this case, the detunings on both 7 transitions are equal and hence we have
(Sf’ st = —(5; )st, the two transitions are now perfectly equivalent. In addition,
the weight of the Rayleigh line is then, apart from the branching probability b,
identical to the corresponding expression for a two-level atom [56].

As |6] increases, C(8) decreases monotonically and becomes zero at §p = A[l +
2/ (4A2)]. Note that dp can be either positive or negative, depending on the
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() 1

0.5

Figure 2.5: Plot of the relative weight of the interference terms C(J) for different
values of the detuning A of the laser field from the 1 < 3 transition. The parameters
are given by v = 107571, A = —4 x 10757 (solid line) and A = —5 x 10%s~! (dashed
line).

sign of A. In the case of A2 > 42, we have dy ~ A. This implies that the in-
terference term vanishes if the laser field is resonant with the 2 < 4 transition.
The minimum of the curve is reached at &y, = 2A(1 +~+2/(4A2)) and given by
C(6min) = —1/(1 +~2/(2A%)). Consequently, C(6min) tends to —1 provided that
A? > ~2. The weight of the Rayleigh peak becomes then zero as a consequence of
destructive interference, and the emitted radiation is solely incoherent. Note that
this situation occurs if the detunings on the 1 «+» 3 and 2 « 4 transitions are approx-
imately equal and of opposite sign. In this case, the coherences (S] ) and (S5 )
cancel each other in Eq. (2.37). Finally, C tends to zero as || becomes much larger
than |A| and ~. This is due to the fact that the interference term in Eq. (2.30)
consists of the product of <§f )st and (S;’ )st- If the detuning on one of the two
7 transitions becomes very large, [ ég]tn tends to zero, whereas [ goh remains different
from zero.

2.3.2 Incoherent spectrum of resonance fluorescence

It is possible to evaluate the expression for ST in Eq. (2.36) analytically, an outline
of the calculation can be found in the Appendix. However, the general result is too
bulky to present it here. We just mention that the spectrum does only depend on
the difference ¢ between the Zeeman splittings of the ground and excited states, but

not on the parameter B (see Fig. 2.2). In the case of the degenerate system, we find

P H20P+0* 29
v2/4+ A% +2|Q2 |P(—iw)|?’

T o) =b L
Sinc(w) - b7T T (240)
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CHAPTER 2: Interference in the resonance fluorescence of two incoherently ...

where P(z) is a cubic polynomial as a function of z that is defined as

1
P(2) = 7(z +7)[(22 +7)* +44%] +2(2z + )| . (2.41)
Apart from the branching probability b,, this result is ezactly the same as the
incoherent spectrum of resonance fluorescence of a two-level atom [56].

As soon as § becomes different from zero, the incoherent spectrum differs consider-
ably from the two-level spectrum. This is demonstrated in Fig. 2.6(a) which displays
St for 6 = 0 (dashed line) and § = —4 x 105s~! (solid line). For & # 0, an addi-
tional central peak occurs whose width is much smaller than the decay rate ~.

Section 2.3.1 provides a detailed discussion of the weight of the interference term
Iégfl in the coherent spectrum. These results can also be applied to the weight of
the interference term II™ in the inelastic spectrum by means of Eq. (2.34). For
example, it follows that the weight of the interference term Illrrllg in the inelastic
spectrum vanishes for § = Jp. This situation is shown in Fig. 2.6(b), where the
width and the weight of the additional peak is larger than in (a). For § = dyi, and
the parameters of Fig. 2.6, we know from Sec. 2.3.1 that the weight of the Rayleigh

line is approximately zero. The corresponding incoherent spectrum is shown in

Sthe
L5 x1074 (@) | 40 x107* (b)
30
1
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0 0
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Figure 2.6: Incoherent spectrum of resonance fluorescence according to Eq. (2.36).
Plot (a) shows ST for the degenerate system (dashed line) and for § = —4 x 10°s~!
(solid line), the other parameters are v =10"s"!, A= -4x10"s"! and
Q=6 x10°"1. In (b) and (c) the values of § are given by § = dp and & = Sppin,
respectively, the other parameters are the same than in (a). Plot (d) shows the
incoherent spectrum for the set of parameters A = —5 x 10657, Q =6 x 107571,
v=10"s"1and § = -8 x 10757,
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Figure 2.7: Dressed state analog of the bare state system in Fig. 2.2. The frequency
of the laser field is labeled by wy. For § # 0, the detuning of the laser field will be
different on each of the 7 transitions. There are thus two effective Rabi frequencies
Q1 and € involved. The splitting of the dressed states for fixed N is not to scale.

Fig. 2.6(c). Instead of the elastic delta-peak in the coherent spectrum we thus have
a very narrow peak that occurs in the incoherent spectrum.

Finally, Fig. 2.6(d) shows ST for a strong laser field. In this case, the weight of
the interference terms is negligible as can be verified with the help of Eq. (2.30).
However, the incoherent spectrum still deviates from the Mollow spectrum if § # 0.
This can be easily understood with the aid of the dressed states [18, 57] of the
system. If N denotes the number of laser photons of frequency wy, the dressed

states can be expressed in terms of the bare states as follows,

[1(N)) = €“sin©;|1, N)+cos©; |3, N +1),

2(N)) = €?cosO;|l, N) —sin®; |3, N +1), (2.42)
where tan 20, = 2|Q|/A and

I3(N)) = €“sin©y]2, N) —cos Oy |4, N + 1),

|4(N)) = €“cosO9]2, N) +5sin@y 4, N + 1), (2.43)
with tan 20, = 2|Q|/(A —§) (0 < ©1, O3 < 7/2, € = Q/|Q]). Figure 2.7 shows
the relative position of the dressed states for two manifolds with N and (N — 1)
laser photons, respectively. Note that |[1(N)) and |2(N)) are separated by a fre-

quency interval of Q = 1/4]|Q]? + A2, whereas the spacing between |3(N)) and
|4(N)) is given by Qo = 1/4|Q|2 + (A — §)2. The sidebands in the spectrum of the
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7 transitions result from the transitions [1(N)) — [2(N — 1)), |2(NV)) — |[I(N — 1)),
I3(N)) — [4(N — 1)) and |4(N)) — |3(N —1)). Consequently, they will be located
at the frequencies wy, + 1 and wy £ Qy. For § # 0, we thus expect four sideband
peaks symmetrically placed around the laser frequency wy, precisely as in Fig. 2.6(d).

2.3.3 Influence of the interference terms on the fluorescence spec-
trum

In this Section we investigate how the interference terms alter the fluorescence spec-
trum emitted on the 7 transitions. Here we only consider the degenerate system that
is distinguished by maximal constructive (destructive) interference in the coherent
(incoherent) part of the fluorescence spectrum, see Sec. 2.3. If the interference terms
in Eq. (2.24) are omitted, the fluorescence spectrum reads

2 o
1 .~ ~ ~ ~ A
S§(@) = —> " i Re / e (S (E + 1) ST (8) Vst dr - (2.44)
=1 0

The fluorescence spectra with and without the interference terms according to
Egs. (2.24) and (2.44) are shown in Fig. 2.8 for different parameters of the laser
field. If the saturation parameter defined in Eq. (2.49) is much larger than unity,
the weight of the interference terms goes to zero. However, Fig. 2.8(a) demonstrates
that the interference terms still alter the shape of the fluorescence spectrum in the
region of the sideband peaks. The spectrum S” with interference terms is iden-
tical to the fluorescence spectrum of a two-level atom (see Sec 2.3), and thus the
ratio between the central and the sideband peaks reads 1: 3 : 1. For the spectrum
without the interference terms and a branching probability of b, = 1/3, this ratio
reads 7:15: 7.

Figure 2.8(b) shows S™ and S for low saturation. In this case, the spectrum without
interference terms is distinguished by a narrow peak centered at the laser frequency
that occurs in addition to the elastic Rayleigh peak. A numerical analysis shows
that Sj can be written as
~\ 70 ~ ~ ~
Sg(W) ~ Icoh 5(W) + Sglc(w) + geak(w) : (245)
In this equation, the first term represents the Rayleigh peak whose weight misses the
interference term I'™! that is present in Eq. (2.35). The second term stands for the
incoherent spectrum according to Eq. (2.40). The last term describes a Lorentzian
of weight I'™ and width I'; that is centered at the laser frequency,
iy k(~) — Iég‘lcn FW .
pea T 02+T12

(2.46)

The weight of the extra peak Sgoak is determined by the constraint that the total
intensity is independent of the interference terms (see Sec. 2.3). Therefore, Peak
has to compensate for the reduced weight of the Rayleigh line of Sf as compared
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Figure 2.8: Fluorescence spectrum for the degenerate system according to Eq. (2.24).
The solid line (dashed line) shows the spectrum with (without) the interference terms
proportional to 712, 721. The Rayleigh peak (the vertical line at w = wy) is present
both with and without interference terms. Note that its weight is larger if the inter-
ference terms are taken into account. However, the sums of the integrated coherent
and incoherent spectra with and without the interference terms are identical, mak-
ing the total intensity independent of the interference terms. In (a), the parameters
are @ = 5x107s7!, A = 0 and v = 10"s~!. For (b), we have Q = 10757,
A=2x10"s"1and y=10"s"1

to the spectrum with interference terms. In general, the width I'; of the extra peak
Sgcak is smaller than the decay rate . If the saturation parameter s is much smaller

than unity, we find (b, = 1/3)

i~ l(l —2s)s and I'z=~2

. 13 (3 —5s)s. (2.47)

©|=2

Figure 2.8(b) allows to summarize the effect of the interference terms on the fluo-
rescence spectrum in the case of low saturation as follows. The spectrum without
interference terms displays a narrow peak Sgcak of finite width at the laser frequency
that is absent if the interference terms are taken into account. Therefore, quantum

interference cancels the incoherent response of the atom at the laser frequency wy,.

In conclusion, the experimental observation of the fluorescence spectrum confirming
the solid lines in Fig. 2.8 would give evidence for vacuum-mediated interference
effects as described by terms proportional to 715. So far, interference effects of this
kind have not been observed in atomic systems.

2.4 Spectrum of resonance fluorescence — o transitions

This Section is concerned with a brief discussion of the fluorescence spectrum emitted
on the o transitions. Since the laser field does not couple to these transitions, the
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spectrum contains only an incoherent part. We arrive at
by T 3
S (w) = ¢U$ ZRe /e_WT(éSZ-"' (t + T)0S; (t) ) dr (2.48)

where ¢, is a geometrical factor that we set equal to one in the following. It has
been pointed out in Sec. 2.2 that the light emitted on the ¢ transitions is linearly
polarized along e, if the point of observation lies in the y direction. Therefore,
the cross terms (S5 (£ + )05 (£) )st and (8S] (4 7)3S5 (f) )st will, in principle,
contribute to the spectrum in Eq. (2.48). However, we find that the latter two-time
averages are equal to zero. For different driving schemes where the laser field couples
to the o transitions, the cross-correlation terms have to be taken into account as is
the case in the work of Polder et. al. [51]. The exact analytical expression for S7 is
too bulky to display it here. Instead we will discuss S in the case of the degenerate
system (B = § = 0) and for different regimes of the driving field strength that will
be characterized by means of the saturation parameter

2102

In the range from a weak to a moderately strong laser field (s < 1), a numerical
analysis reveals that S? can be written as

S7(@) = by /br Sfic(@) + Speak (@) - (2.50)

In this equation, the first term stands for the incoherent spectrum of a two-level atom
according to Eq. (2.40). The prefactor b, /b, accounts for the different branching
probability of the ¢ transitions as compared to the 7 transitions. The second term
represents a narrow peak that is centered at the laser frequency w = wy. It can be
modeled as a Lorentzian of weight W, and width I',,

Wy Tg

ERE el (251)

peak (@) =
The weight of Sgeak is determined by the total intensity emitted on the o transitions,
I = boy(011 + 022) (2.52)

and the weight of b, /b, ST .. We arrive at

W, = 4byy|o13|*, (2.53)

where 913 is given in Eq. (2.16). The width T, of the additional peak is smaller than
the decay rate . If s is much smaller than unity, the width and the weight of S?

peak
are given by
W, =~ bog(l — 2)s,
T, ~ bog [2— (24 by)s]s . (2.54)
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Figure 2.9: Spectrum of resonance fluorescence emitted on the o transitions (solid
line) in comparison with the fluorescence spectrum of a two-level atom (dotted line).
The parameters in (a) are Q =5 x 10571, A =6 x 10657  and v = 10" s7*. In (b),
the parameters are 2 =6 x 107 s™!, A =0 and v = 107 s~ L. Note that S deviates
slightly from the Mollow triplet in the region of the sideband peaks in (b).

At the same time, the contribution of ST _ b, /b, to S? is small such that the spectrum
is dominated by the central narrow peak Sgeak. If the field strength is increased, the
weight of the extra peak S7 ., gets smaller. Figure 2.9(a) shows S7 (solid line) and
ST . bs/bx (dotted line) for a moderately strong laser field, the saturation parameter
is on the order of unity. Nevertheless, the spectrum S? is still dominated by the
sharp peak Sgeak that exceeds the central peak of the two-level spectrum by one

order of magnitude.

For a strong driving field (s > 1), the weight of Speak goes to zero and the central
peak of S coincides with the corresponding peak of the Mollow spectrum. However,
the sideband peaks of S differ from those of a two-level atom as can be seen from
Fig. 2.9(b). In the secular limit, it is advantageous to employ the dressed state
picture in order to obtain analytic expressions for the sideband peaks, being well
separated from the central peak whose analytic form can be taken over from the
well-known results for a two-level atom [18, 56]. The fluorescence spectrum for a
resonant driving field can be achieved by a tedious but straightforward calculation
that follows the procedure of Chapter VL.E in [18],

~ bo I‘sb
S Noy— 2.55
ba 7/2 ba Ist

Tin 24+ o2 % T2 + (0 +0)2’

where Q1 = 1/4|Q]2 + A2. A comparison of the latter equation with the correspond-
ing expression for the Mollow spectrum reveals that the weights of the sideband
peaks differ only by the branching probability b,. For the width of the sideband
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peaks in Eq. (2.55) we find

1 1
Dy = VA2 + 5 = 18— b (2.56)

Note that the second equality is obtained by virtue of Eq. (2.12) . The ratio between
the heights of the central peak at @ = 0 and the sideband peaks at @ = 42 is found
to be 3 — b,. For b, = 2/3, the peak ratio is thus 3 : 7 : 3. By contrast, the peak
ratio of the Mollow spectrum reads 1 : 3 : 1. A precise measurement of the peak
ratio would thus provide a means of determining the branching probability b, of the
degenerate system experimentally.

Note that the width of the sideband peaks in Eq. (2.56) depends on the cross-
damping terms /7172 that appear in the master equation through the spontaneous
emission term £,0 in Eq. (2.9). If these interference terms were not present, the
peak ratio would not depend on the branching probabilities and would be given by
1:2:1. The spectrum emitted on the o transitions shows thus an indirect signature
of interference.

2.5 Discussion

In Section 2.3 we have shown that the interference terms proportional to 12 con-
tribute only to the spectrum of resonance fluorescence, but not to the total intensity
in Eq. (2.21). In the following, we demonstrate that this result is a consequence of
the principle of complementarity, applied to time and energy.

If the total intensity is measured, complementarity does not impose any restrictions
on the time resolution of the measurement since the photon energies are not observed.
It is thus possible to observe the temporal aspect of the radiative cascade, i.e. one
could determine the photon emission times. The time evolution of the driven atom
is then most suitably described in the bare state basis. For example, assume that
the atom is initially in ground state |3). The laser field will induce Rabi oscillations
between the excited state |1) and |3). Immediately after the spontaneous emission of
a photon, the atom is found in ground state |3) (7 transition) or |4) (o transition).
Subsequently, this sequence of Rabi oscillations and a spontaneous emission event
is repeated. In this description, each emission process on one of the 7 transitions
is independent of the other m transition. In particular, the transition amplitudes
associated with the emission of a single m photon on one transition do neither share
a common initial state nor a common final state with the transition amplitudes
associated with the other 7 transition. Since quantum interference does only occur
if various indistinguishable transition amplitudes connect a common initial state to
a common final state, we must conjecture that the total intensity is not affected by
interference.

The lack of interference in the total intensity can also be explained by drawing an
analogy to the two-slit experiment. It is well known that the interference pattern
vanishes as soon as it is principally possible to know through which of the two slits

o8



2.5. Discussion

each object (electrons or photons) has moved. Similarly, the internal states of our
atom can be regarded as a which-way marker. Since the experimental conditions
allow, at least in principle, to determine the atomic ground state immediately after
the detection of a m-photon, one could decide on which of the two m-transitions the
photon was emitted. Consequently, the observer could reveal the quantum path
taken by the system and hence there is no signature of interference. Note that this
argument requires that the retardation between the times of emission and detection
is much smaller than the time between successive emissions. This condition can
typically be achieved in atomic systems.

A totally different situation arises if the detector measures the spectrum of resonance
fluorescence and hence the energy of the emitted photons. Since time and energy
are complementary observables, the temporal aspect of the radiative cascade is not
accessible simultaneously. In order to illustrate this point, we consider a quantitative
description of time-energy complementarity that can be achieved via the time-energy
uncertainty. If the photon energies are determined with a precision of Aw, the time-
energy uncertainty relation enforces that the time of observation has to be at least on
the order of 1/Aw. Since the observer can only notice the detection of a photon after
the observation time has elapsed, the photon emission times are indeterminate within
a time interval of At = 1/Aw. For the moment we envisage an ideal measurement of
the fluorescence spectrum. In this case, the atom will emit (infinitely) many photons
during the (infinite) time of observation. In addition, the photon emission times are
indeterminate, and thus the time order in which these photons have been emitted
is unknown. It follows that the transition amplitudes corresponding to the various
time orderings of the photons will interfere.

The energy aspect of the cascade of spontaneously emitted photons is most suitably
described in the dressed state picture rather than in the bare state picture. We
illustrate the interference mechanism on the basis of Fig. 2.10 that shows a cascade
of only two photons in the dressed state picture, one emitted on a 7 transition and
the other on a o transition. Assume that the atom is initially in the dressed state
|4(N)). In one of the two cascades, the atom decays first to the state |[4(N — 1)) by
the emission of a m photon on the bare state transition |2) — |4). The subsequent
emission of a o photon takes the atom to the state |1(/N — 2)) within the manifold
with NV — 2 laser photons. In the second cascade, the time order of the two photons
is reversed. The atom decays now first to the state |[L(N —1)) by the emission of a ¢
photon, and then to the final state |1(/N — 2)) under the emission of a 7 photon. In
contrast to the first cascade, this 7 photon is now emitted on the bare state transition
|1) — |3). Since the two cascades in Fig. 2.10 have the same initial and final states,
and since it is in principle impossible to determine the quantum path taken by
the system, the two transition amplitudes corresponding to different time orders of
photon emissions interfere. In one of the transition amplitudes the m photon stems
from the |2) — |4) transition, and in the other from the |1) — |3) transition. Exactly
this mechanism gives rise to the interference effects in the fluorescence spectrum that
are mediated by the cross-damping terms in Eq. (2.24). Note that the difference
6 between the resonance frequencies of the 7 transitions enters the definition of
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Figure 2.10: Radiative cascade in the dressed states of the system [see Egs. (2.42)
and (2.43)]. The splitting of the dressed states for a fixed number of laser photons
N is not to scale. Each of the two indicated cascades involves the emission of a 7
photon and a ¢ photon with wave vector k, and k., respectively. Depending on the
time order of their emission, the m photon is either emitted on transition [4(N)) —
|[4(N — 1)) or |1(N — 1)) — |1(INV — 2)), corresponding to the bare state transitions
|2) — |4) and |1) — |3), respectively. Since the final and initial states of the two
cascades are identical, the corresponding transition amplitudes may interfere.

the dressed states Egs. (2.42) and (2.43) asymmetrically, giving rise to different
probabilities for the two cascades. This explains why the degree of interference is
maximal only for 6 = 0 and decreases with increasing |J| (see Sec. 2.3).

The provided explanation can also be employed to illustrate why there is no interfer-
ence in the fictitious situation of perpendicular dipole moments d; and ds. In this
case, a photon can either stem from d; or do, but not from both transitions. It is
then impossible to realize both cascades in Fig. 2.10, and hence there is no interfer-
ence. Moreover, it becomes now clear why the spectrum emitted on the o transitions
depends on the interference terms 12 and s1. For antiparallel dipole moments d;
and ds there are two transition amplitudes that involve the emission of a ¢ photon |,
and for perpendicular dipole moments there would be only one. We emphasize that
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the discussion has been restricted to a cascade of only two photons for the sake of
simplicity. In principle, all possible cascades with an arbitrary number of photons
have to be considered, but the general idea remains the same.

It is also possible to provide an explanation for the interference in the coherent
spectrum, but the elastic scattering events cannot be visualized in the dressed state
basis. However, in the case of low saturation (s < 1) the process of elastic scattering
can be illustrated in the bare state basis such that the atom hops from one ground
state to another by the absorption of a laser photon and the emission of a scattered
photon. The excited states act as intermediate states and can be adiabatically
eliminated. Since it is impossible to tell on which of the two m transitions the
photon was scattered, it is plausible that one has to sum the scattering amplitudes
first and then take the absolute value squared in order to obtain the weight of the
Rayleigh line in Eq. (2.38).

Next we demonstrate how the interfering transition amplitudes that correspond to
different time orders of photon emissions enter the expression for the spectrum of
resonance fluorescence in Eq. (2.24). Let ar (a;rr) be the annihilation (creation)
operator of a photon in a mode of the radiation field that is actually observed by
the detector, being sensitive only to photons emitted on the 7 transitions. The rate
at which the photon number in this particular mode changes is given by

Re(t) = 0 (al(t)ax(t)) . (2.57)

If one follows the lines of Chapter 7 in [10], one can show that the steady-state value
of R, is proportional to the spectrum of resonance fluorescence,

tlim R:(t) ~ S™(c|lkr| —wrL) - (2.58)

In this equation, k, denotes the wave vector that corresponds to the observed mode
ar, and c is the speed of light. In order to evaluate the left hand side of Eq. (2.58),
we will label the basis states |i(N); {n}) of the total system (atom + laser field +
vacuum modes) by three quantum numbers, namely the dressed states ¢, the number
of laser photons N and the state of the vacuum modes {n}. The mean value on the
right hand side of Eq. (2.57) becomes then

(af(Bax(®)) =D > IOy Ne({n}) , (259)
i=1 N,{n}
where |C%, (n} (t)|? is the probability to find the system at time ¢ in state [i(N); {n})

and N, ({n}) is the expectation value of ala, in this state. We assume that the
system is in some initial state |1)p) at time ¢ = 0 with all vacuum modes being
empty. If the time evolution operator is labeled by U(¢,0), the transition amplitude
from the initial state |¢)g) to the final state |[i(N); {n}) can be written as

Cvy (8) = (((N); {n}|U (¢, 0)[o) - (2.60)
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Let us assume that the final state contains q scattered photons that are characterized
by their wave and polarization vectors, {n} = {kr€, ko€a, ..., kse,}. We do not
attempt to evaluate Eq. (2.60) explicitly, but in principle one would introduce ¢ — 1
intermediate states and arrange the ¢ scattered photons into a certain order. But
since there is no distinguished time order of the scattered photons, there are, in
principle, ¢! transition amplitudes involved in the evaluation of Eq. (2.60) that will
all interfere.

In conclusion, we demonstrated that the interference in the spectrum from the
transitions can be explained in terms of interference between transition amplitudes
that correspond to different time orders of photon emissions. If the spectrum of
resonance fluorescence is observed, the principle of complementarity enforces that
these transition amplitudes are indistinguishable. If the total intensity is recorded by
a broadband detector, the temporal aspect of the radiative cascade can in principle
be observed. Consequently, the possibility of interference between different time
orders of photon emissions is ruled out. The preceding discussion of our results
also implies that the experimental setup—potentially after the photon emissions—
decides if interference takes place, a feature that is also known from quantum eraser
schemes [49, 58].

We now refine our analysis and consider a detector with a finite frequency resolu-
tion Aw that allows us to study the continuous transition from perfect frequency
resolution to perfect time resolution. For simplicity, we consider only the degenerate
system (B =6 = 0). If a filter of bandwidth A and setting frequency w is placed in
front of a broadband detector, the spectrum can be determined with an accuracy of
A, and the temporal resolution is on the order of A~!. The spectrum of resonance
fluorescence emitted on the 7 transitions reads then [59]

2 o0
1 " . ..
S(@2) =~ 3 qyRe / 7T GH(E 4 7) S (1) )t d (2.61)

In the absence of interference terms the spectrum will be denoted by Sf (@, A) and is
obtained from Eq. (2.61) by omitting the terms proportional to 712 and 79;. For the
rest of this Section we assume that the saturation parameter s is much smaller than
unity. To a first approximation, the incoherent contribution to the spectrum with
interference terms can then be neglected. In the presence of the filter, the coherent
d-peak becomes a Lorentzian of width A and weight Igoh +1 égfl, and thus we obtain

C

el A
T @2+ \2

S™(@, \)

(2.62)

Similarly, we neglect the contribution of S to the spectrum without interference
terms in Eq. (2.45), the d-peak becomes a Lorentzian of width A and weight Igoh,
and S7,, 1s replaced by a Lorentzian of width I'x + A and weight I nt

coh?

IO A Iint T + A
ST(H.\) ~ coh coh ™ )
(@A~ e T T T e

(2.63)
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Figure 2.11: The solid lines show the fluorescence spectra recorded with a finite
frequency resolution A. The dashed curves are the spectra without the interference
terms proportional to 12, Y21 in Eq. (2.61). The parameters are Q = 7x10s71, A =
2x107s71, v = 10"s7! and B = § = 0. This corresponds to a saturation parameter of
s = 0.235 and a mean number of photons per unit time of approximately 9.4x 1055~
The filter bandwidths are given by (a) A = 102571, (b) A = 10*s7!, (c) A = 1.9 x
105571 and (d) A = 107s7L.

Figure 2.11 shows the fluorescence spectrum according to Eq. (2.61) (solid lines) for
different values of the filter bandwidth A and for low saturation. The dashed lines
are the spectra without the interference terms. In Fig. 2.11(a), the bandwidth A
is much smaller than I';. Therefore, the widths of the lines S™(@, \) and S§(w, \)
are clearly distinct. If A is increased, the differences between the spectra with and
without the interference terms diminish until both curves are virtually identical for
A = [Fig. 2.11(d)].

These results can be understood as follows. With an increasing filter bandwidth A,
the smallest time interval At that can be resolved by the detector without violating
the time-energy uncertainty gets shorter. Therefore, the observer can in principle
obtain more information about the quantum path taken by the atom. Consequently,
we expect that the signature of interference in the fluorescence spectrum diminishes
for increasing A. This is in agreement with Fig. 2.11 and completely analogous to
a two-slit experiment, where the visibility of the interference pattern is reduced at
the cost of which-path information and vice versa [60].

Furthermore, we demonstrate that the time-energy uncertainty relation allows to
estimate the smallest filter bandwidth A\ for which the spectra with and without
interference terms should be indistinguishable. Since the total number of photons
emitted per unit time is equal to v(g911 + 022), the mean time between successive
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photon emissions is determined by © = 1/[y(g11 + d22)]. If the bandwidth \ is
chosen such that the temporal resolution could be much better than the mean time
between successive photon emissions, i.e. A=t < © = 1/[y(d11 + 022)], we have

A > v(011 + 022) ~ (1 — 8)s7v/2. (2.64)

Under these conditions, the radiative cascade of photons could be observed in a time
resolved way and it is extremely unlikely that more than one spontaneous emission
takes place during the time of observation. Since this rules out the interference
mechanism as described in Sec. 2.5, the signature of interference in the fluorescence
spectrum should disappear. But if inequality (2.64) holds, it follows that A >
Iz, and in this case S™(@, A) and S§(w, \) are indeed indistinguishable as can be
seen from Egs. (2.62) and (2.63). This is confirmed by Fig. 2.11(d) that shows
S§(@,A) and S™(w, ) for a bandwidth A that is about ten times larger than the
mean number of photons emitted per unit time. The two spectra are now virtually
indistinguishable.

It remains to explain the sharp peaks in the incoherent spectrum. To this end
we return to Fig. 2.6 that shows the incoherent spectrum S7 = for several values of
the parameter 6. A narrow central peak occurs only in case of the non-degenerate
system (& # 0), and thus only if the weight of the Rayleigh line deviates from
its maximal value attained at 6 = 0. Therefore, the narrow central peak in the
incoherent spectrum may be regarded as a (partially) broadened coherent peak. This
broadening can be understood as follows. Except for § = 0, the two 7 transitions are
not equivalent since the absolute value and the phase of the coherences <5‘f )st and
(S5 Vs will be different. The time that the atom spends on the 1 « 3 transition
can thus be regarded as a dark period with respect to the 2 < 4 transition and
vice versa. This suggests that the sharp peaks in the incoherent spectrum can be
explained in terms of electron shelving [61-63]. This explanation is also applicable
to the sharp peak in the spectrum from the o transitions. Figure 2.12 illustrates
the scattering events that give rise to this peak. If the atom is initially in state
|3), a scattering event can bring it to state |4) (solid arrows). The scattered photon
has then been emitted on one of the ¢ transitions. Before the next photon can be

L s

Figure 2.12: Schematic representation of elastic scattering events into the 3 — 1 — 4
(solid arrows) and 4 — 2 — 3 channels (dotted arrows). These processes account
for the sharp peak in the fluorescence spectrum S emitted on the o transitions.
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scattered on that same transition, a similar scattering process has to take place into
the 4 — 2 — 3 channel (dotted arrows). Consequently, every emission on one of the
o transitions is followed by a dark period on that same transition.

It should be mentioned that related interference effects between transition ampli-
tudes corresponding to different time orders of photon emissions do also play a role
in other systems. A discussion of these effects in the fluorescence spectrum of a two-
level atom can be found in [64] and in Sec. 2.2.3 of [65], for example. In addition,
it was shown that interference in the time-energy domain can occur in the intensity
correlations between different spectral components of the fluorescence light emitted
by a two-level atom [66-68]. However, the distinguished feature of the system pre-
sented here is that this mechanism gives rise to interference effects between the two
m transitions that do not share a common state.

We would also like to point out that the work presented here is related to recent
double-slit experiments in the time-energy domain [69, 70]. In these experiments,
ultra-short laser pulses of atto- or femtosecond duration open different time windows
for the photoionization of an atom. If the energy spectrum of the photoelectrons
is measured, these time-slits are indistinguishable and an interference pattern is
observed.

2.6 Summary

We have shown that the system in Figs. 2.2 and 2.3 exhibits a signature of quantum
interference in the spectrum of resonance fluorescence under conditions of no inter-
ference in the total intensity, being enforced by the principle of complementarity.
For the system considered here, it claims that it is impossible to observe the tempo-
ral and the energy aspect of the radiative cascade of the atom at the same time. If
the fluorescence spectrum is observed, the photon emission times are indeterminate.
The interference in the fluorescence spectrum can thus be explained in terms of in-
terferences between transition amplitudes that correspond to different time orders
of photon emissions.

It has been shown that the degree of interference in the fluorescence spectrum emit-
ted on the 7 transitions can be controlled by means of an external magnetic field.
In particular, the degree of interference in the coherent part of the spectrum can be
adjusted from perfect constructive to perfect destructive interference. Under condi-
tions of perfect destructive interference, the weight of the Rayleigh line is completely
suppressed. If the difference § between the resonance frequencies of the 7 transitions
is different from zero, the incoherent spectrum emitted on the 7 transitions contains
a very narrow peak whose width is smaller than the decay rate v. This peak has
been identified as a partially broadened coherent peak and can be explained in terms
of electron shelving.

The spectrum emitted on the ¢ transitions contains only an incoherent part. In the
case of a weak driving field and for the degenerate system, the fluorescence spec-
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trum displays a narrow peak that can be regarded as broadened coherent peak. For
a strong driving field, the widths of the sideband peaks differ from the Mollow spec-
trum. We have shown that the ratio between the peak heights of the central and
the sideband peaks display an indirect signature of interference. In addition, a mea-
surement of the relative peak heights allows to determine the branching probability
b, of the spontaneous decay of each excited state into the o channel.
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2.A Calculation of the two-time averages

In this section we outline how the functions

S,;(@) = Re / e (5 (F + )05 (1) Jo d (2.65)
0

can be evaluated by means of the quantum regression theorem [71, 72]. To this end
we introduce the operators A;; that are connected to the atomic transition operators
A;; (taken in the Schrédinger picture) by

Aij = WIAG;W | (2.66)

where ~the unitary transformation W is defined in Eq. (2.6). In particular, the oper-
ators S introduced in Sec. (2.2) can be identified with the operators A;; according
to

St=Ais, Sf=Au, Sj=Ay, S§=Au. (2.67)

The corresponding Heisenberg operators are then defined as
Aii(t) = UT(t,0) A; U(t,0) (2.68)

and the time evolution operator has been labeled by U. A straightforward calculation
shows that the mean values of the these Heisenberg operators are directly related to
the matrix elements of the reduced density operator ¢ in the rotating frame,

(Ai(t)) = Tra[As;0(t)] = 0j:(t) - (2.69)

In this equation, Tra[-] denotes the trace over atomic degrees of freedom. Next we
arrange the operators 4;; in a column vector

L = (A1, Ao1, A1, Aty Avg, Ao, Asg, Ada, Ars, Aoz, Ass, Az, Arg, Asa, Azg) T

such that ( L(t)) coincides with the Bloch vector R(t) of Eq. (2.15), i.e. (L(t)) =
R(t). It follows that the mean values (L(t)) obey the generalized Bloch Equa-
tion (2.13). If we decompose each component of L in mean values an fluctuations
according to A;; = 6. A;; + (\Ajij )st1, we can cast (L) into the form

(L(t)) = (OL(t)) + (L)st (2.70)

where (L)g = Ry = —M™1I. If Eq. (2.70) is plugged into Eq. (2.13) we obtain a
homogeneous equation of motion for the fluctuations,

B {SL(t)) = M (SL(t)) . (2.71)

The two-time correlation functions (SL;(f + 7)0L;(t)) for i € {1,...,15} and fixed
j can be written in vector notation as g’(¢,7) = (SL(t + 7)0L;(£)). According to
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the quantum regression theorem, g’ obeys the same equation of motion than the
one-time averages (0L(t) ),

0,g° =Mg’ for 7>0. (2.72)
If G’(t,2) denotes the Laplace transform of g7 (#,7) with respect to 7, it follows
Gi(t,z) = [z1 — M| ' g7(4,0) . (2.73)

We need the Laplace transform at z = i@ in steady state to determine the functions
Sij(@) of Eq. (2.65). With the definitions

R’ = lim ¢/(£,0) and K’(@)= lim G({,z = i®) (2.74)

t—o00 t—o00

we arrive at _ '
K@) =[io1 - M] 'R (2.75)

The relevant correlation functions that are needed for the evaluation of Eq. (2.36)
and (2.48) are then given by

Sll(Q)ZRe [Kg( )]9 521(
SQQ((:))ZRG [K8( )] 14 512(
533(@) =Re [K7(t:))] 544(@) =Re [K4(

)=Re [Kg(&))] 1
)=Re [K®(@)], (2.76)
)13 -

Finally, we remark that Eq. (2.61) can be evaluated if one replaces i@ in Eq. (2.75)
by i© + A.
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Chapter 3

Geometry-dependent dynamics
via vacuum-induced coherences

3.1 Introduction

In collections of nearby atoms, the various particles can interact via the common
vacuum radiation field in a process where a (virtual) photon emitted by one of the
atoms is re-absorbed by another atom. This process is illustrated in Fig. 3.1 for a pair
of two-level atoms with excited state |e) and ground state |g). If the distance between
two particles does not significantly exceed the involved transition wavelength, this
exchange of photons gives rise to a collective quantum dynamics of the system, which
can significantly deviate from a corresponding single-particle dynamics. Collective
effects have been studied in various physical systems. Apart from larger ensembles
of nearby quantum objects which require a statistical treatment [10-12, 73-83],
also few-particle quantum systems have attained considerable interest [14, 17, 84—
97]. These systems reveal interesting cooperative effects, but are still small enough
such that the constituents can be treated individually. Sub- and superradiance
was studied, e.g., in [10, 12, 73, 78], while two-atom resonance fluorescence was
discussed in [84]. Other studies include frequency shifts [87], collective quantum
jumps [89, 90], two-photon resonances [88], or entanglement [91-93]. Some of these
effects have been verified experimentally [94-97]. Further references on collective
two-atom systems can be found, e.g., in [14, 75]. Most of these works have focussed
on two-level systems, often restricted to somewhat special geometries. For example,
the alignment of the transition dipole moments, the interatomic distance vectors,
the laser field wave vectors and the observation direction are often assumed fixed
and parallel or perpendicular to each other.

The exchange of photons between a pair of atoms as depicted in Fig. 3.1 requires
that the polarization of the emitted photon matches the absorbing transition [10, 11].
Thus usually this dipole-dipole interaction is thought to couple only non-orthogonal
transition dipole moments. This restriction is in complete analogy to the stringent
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Figure 3.1: Illustration of the dipole-dipole interaction for a pair of two-level atoms.
(a) Atom A deexcites and emits a photon with energy fuww. Atom B is in its ground
state. (b) Atom B is excited to the state |e) by the absorption of the photon
previously emitted by atom A. The total process in which the excitation of one atom
is transferred to the other atom is of second order in the atom-field interaction.

conditions for the appearance of spontaneous-emission interference in single-particle
systems, which was studied in chapters 1 and 2.

Recently, a collection of two nearby three-level systems in V-configuration was stud-
ied in a more general geometric setup [17], with the emphasis on vacuum-mediated
couplings. Interestingly, the authors found a new type of vacuum-induced coher-
ences, which arises from dipole-dipole coupling of transitions with orthogonal dipole
moments. In [17], however, only little physical interpretation of the effect is given,
and no external driving field but the vacuum was considered.

Thus in this chapter, we study two nearby laser-driven three-level systems in A-
configuration as shown in Fig. 3.2. We demonstrate that the vacuum-induced dipole-
dipole coupling of orthogonal transition dipole moments can crucially influence the
dynamics of the laser-driven system. For otherwise fixed parameters and experi-
mental setup, the relative position of the two atoms alone can decide whether the
system has a stationary steady state or not. The non-stationary steady states occur
even though each of the involved atomic transitions is driven by a single laser field
only. As an example observable, we discuss the total fluorescence intensity emitted
by the composite system, which is either stationary or “blinks” at a characteristic
frequency in the long-time limit. In the final part, we give a physical interpretation
for the new coherences, and show that the coupling of orthogonal dipole moments
can be explained in terms of the dipole radiation pattern.

Our results are of relevance for experimental realizations of collective few-level sys-
tems. If the system geometry is not fixed to one of few special cases, then additional
interactions between the considered transitions lead to a non-trivial modification
of the dynamics. Furthermore, unwanted couplings to additional transitions can
occur via the vacuum, even if no laser field is applied to the unwanted transitions.
Then, for example, a few-level approximation of the system may break down (see
chapter 4). Finally, the geometry-dependent effects provide an extended set of ob-
servables in the study of samples of nearby atoms. Potential applications include
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Figure 3.2: The system setup. Atom A is located in the coordinate origin, atom
B at 712, as shown in the left part of the figure. In our coordinate system, the
atomic separation vector is parameterized by the length rio and the angles 6, ¢.
Internally, both atoms (A,B) are three-level systems in A configuration as shown in
the right subfigure. ©; (€2) is the Rabi frequency of the driving laser field coupling
to transition 1 «» 3 (2 < 3) with detuning A; (Ag). The two lower states have
frequency difference §. The spontaneous decay rates are -1, vo.

three-dimensional precision measurements of relative positions and distances of the
involved particles.

This chapter is organized as follows. In Sec. 3.2, we introduce the system of interest
and analytically derive the expressions for the emitted fluorescence intensity. In the
following Sec. 3.3, we numerically solve the master equation and present our results.
In Sec. 3.4, we provide a physical interpretation of the new coherences and explain
why orthogonal transition dipoles can be coupled. Finally, our results are discussed
and summarized in Sec. 3.5.

3.2 Analytical considerations

We consider two three-level systems in A-configuration as shown in Fig. 3.2. We place
the origin of the coordinate system at the location of the first atom, ry = (0,0,0)T,
and the second atom is located at ro = 719 = r12 (sin 6 cos ¢, sin 6 sin ¢, cos H)T. Thus
the atomic separation vector is r12. The two lower states of the atomic level scheme
in Fig. 3.2(a) have an energy separation §. The two transition dipole moments of
each individual atom are orthogonal to each other as, e.g., for the case of Zeeman
sublevels. For simplicity, we assume real dipole moments. The dipole moment d;
of the 1 «» 3 transition is taken to be identical for both atoms, and aligned in the
x direction. The second dipole moment do corresponding to the 2 <+ 3 transition is
oriented along the y direction for both atoms. The free time evolution of the two
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atoms is described by the Hamiltonian

HA_EZZw] AW (3.1)

p=1j=1

where Ag-’;) = |ju)(jul, and hw; is the energy of state |j) of each of the atoms.
The atoms interact with two classical laser fields that are characterized by their
frequencies v;, polarization unit vectors €; and amplitudes &;. Both fields propagate
in z direction. In rotating-wave approximation (RWA), the interaction of the two
atoms with the driving laser fields is governed by

ny [Ql(m)e—iwts@ + Qo(r,)e ™t SY) f He| (3.2)
p=1
where the atomic transition operators are defined as
P =Bl P =11, (3.3)
SY =132, S = 12,34l (3.4)
The Rabi frequencies in Eq. (3.2) are given by
Qji(r) = Qjexplik; - r], where Q; = (d;-€;)&/h (3.5)

and k; = vje,/c are the wave vectors of the laser fields.

In a suitable interaction picture, the master equation for the atomic density operator
o can be written as (see chapter 1)

2 2 2
8tQ:—iZZ|:AAJ,Q] ZZZ[(S(“ i(ru) —|—Hc> ] (3.6)
pn=1j=1 p=1j=1
2 2
S (s sl - asest)
pn=1j5=1

'Mw

<
Il
—

{rdd (5<2)s( Do+ 0525 250 95§2+)) n H.c.}

M)

{rit (581510 + 08008 — 251 08Y)) ' 4 Hee. |

w,v=1
nFAV
2 2
+ ; {iage [ s, o] + 1.} + %_: [t [s251),o] e 1)

In this equation, we have A = § + Ay — A1 = v5 — 11, Where § = w9, A; = 1; — w3,
and w;; = w; —wj. Note that the fourth and fifth lines of Eq. (3.6) contain a
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time-dependent exponential factor that oscillates with A. Thus the residual time
dependence can be traced back to the frequency difference of the two driving laser
fields, even though each atomic transition is driven by a single laser field only. The
first term on the right hand side of Eq. (3.6) contains the detunings A; of the driving
laser fields and is due to the chosen interaction picture. The second contribution
with €;(r,) contains the interaction with the driving laser fields. The term with ~;
describes the usual individual spontaneous decay on each of the transitions, where
the spontaneous emission rate on transition 3 < j is given by 2v;. The term
proportional to F?d contains the dipole-dipole cross-decay between a dipole of one of
the atoms and the corresponding parallel dipole of the other atom. The contribution
with Q;-ld is the corresponding dipole-dipole energy shift. Finally, 1'% and Q9 are
the cross-coupling and the energy shift related to dipole-dipole interaction between
a dipole of one of the atoms and the perpendicular dipole of the other atom. These
are due to the peculiar vacuum-coupling of transitions with perpendicular dipole
moments, which do not occur in single-atom systems. The physical interpretation of
these terms will be given in section 3.5. The explicit expressions for the dipole-dipole
coupling constants are given by (see chapter 1)

rft = Iy = % [d]T Xim(T12) dj} ; (3.7)
Q= Q= % {dgT Xre(T12) dj] , (3.8)
Lie = T = % [dzT Xim(712) dl] ; (3.9)
e = Qm= % [d2T Xre(r12) d1} : (3.10)

Note that we assumed real dipole moments d; and do.

In the following, we will investigate the fluorescence intensity emitted by the pair
of atoms and measured by a detector at point R = RR. It is proportional to the
normally ordered correlation function

I= <E(_)(R,t) E(+)(R,t)> , (3.11)

where E(r,t) = E(+)(r,t) + E(_)(r,t) and E

frequency parts of the vacuum field with [E(+) (r, 0] = E(_)(r,t). We write the
positive frequency part of the electric field operator as

B (r,1) = i Uk (T) Qs (3.12)
ks

+ " .
( )(r, t) are the positive and negative

where the mode function ugs(7) is defined in Eq. (1.8). The Heisenberg equation of
motion for the annihilation operator ag, is given by

d 1
L gs = —|ags, Hy + Hp + H
dtaks Z-h[aksy A+ O + L+V]

I~ +§; s (500 + 57) + ay (542 + 59) | wta(r), - 813)
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where Ha and Hj, are given in Egs. (3.1) and (3.2), respectively. Hy is the free
Hamiltonian of the radiation field which is defined in Eq. (1.4), and

22: [(dls + d25§+)> E(r,)+He. ] (3.14)

p=1

describes the interaction of the atoms with the quantized modes of the radiation
field. By formally integrating the expression for ags, the electric field operator in
the far field limit R > r12 can be derived. It can be split up in a source part and a
free part, where the latter can be neglected if the detector is placed outside of the

laser field. The source part Egr) (R,t) of the electric field operator evaluates to

2 2
(+)
(R t 471'60 Z::Z::

Here, we have ignored retardation effects [98]. Then the intensity can be written as

R x d;)SW (t) eihiferu (3.15)

g —

2
1= w2 3 (ssi?) eitsRirumr) (3.16)

Jj=1 pv=1

_ @, @ 2 <<S§’f2521/_)> (iR (kiru—kary) | <5§J25(u)> (kg'ru—kl'r,,)) 7

p,v=1

with prefactors w; = a;sing; and w; = a; cos ;, where oj = (w?z’jdj)/(4ﬂ€002R).
The angle between the observation direction R and the dipole moment d; is p;j.
Note that the expectation values in Eq. (3.16) should be evaluated with respect to
the Schrodinger picture density matrix of the system. The first line of Eq. (3.16)
contains the individual emission of each of the two transitions 1 «+» 3 and 2 < 3 from
both of the atoms. The other two lines are cross terms which contain contributions
of both transitions. In the following, we assume our detector to be placed on the y
axis, i.e. R= (0,1,0)T. Then sin s = 0 = cos 1, and the intensity reduces to

2
I, =w} Y (SPsf)) etflrire), (3.17)

p,v=1

3.3 Numerical results

In this section, we numerically integrate the density matrix Eq. (3.6) for the con-
figuration outlined in the previous section. Thus the first atom is at the coordinate
origin, the second atom is at position 712, the laser fields propagate in the z direc-
tion, and the detector is placed in the y direction. We fix all parameters except for
the angles 6 and ¢ which determine the 3D orientation of the two-atom system. As
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Figure 3.3: The time-dependent fluorescence intensity I,. The parameters chosen
are 01 =37y, Qo =57, 0 =0, Ay =0, Ay =27, 112 = 0.1\, and ¢ = w/4. The solid
line corresponds to § = /2, the dashed line is for # = 0. (a) Short-time evolution,
(b) long-time limit. The oscillatory behavior of the intensity for § = 7/2 remains
undamped in the long-time limit.

initial conditions, we choose both atoms to be in the excited state |3). Our main
observable is the total fluorescence intensity I, given in Eq. (3.17).

Fig. 3.3 shows the intensity I, for Q; = 3v, Q2 = 57, § = 0, Ay = 0, Ay = 2,
ri2 = 0.1\, ¢ = 7/4, and for two different values of #: 6 = 0,7/2. It can be seen
that after an initial phase of rapid changes in the intensity, the sample comes to
a time-independent steady state for § = 0, whereas it undergoes periodic changes
for § = 7/2. These changes persist undamped in the dynamics, as can be seen in
Fig. 3.3(b), which shows the intensity for same parameters as in Fig. 3.3(a), but for
times ¢ > 1000y,

The interpretation of this effect is straightforward: For # = 0, the dipole-dipole
cross-couplings T'% and Q94 are zero. Thus the coefficients on the right hand side

0.5 T T T T

0.4 .

0.3 - 4

0.2 | .

0.1 4

0 5 10 15 20 25

Figure 3.4: Same as in Fig. 3.3, but with § = —2v and thus A = 0. In this case,
both for # = 0 and § = 7/2, the long-time limit intensity is time-independent.

7



CHAPTER 3: Geometry-dependent dynamics via vacuum-induced coherences

ver

Qe
0.25 T T T T T T T 10

N ] T\
AAAAAL T

o1 :\/ V‘V V‘\/‘

005 b)  (c) (de) ]

0 I I I I I I I ~10
10 12 14 16 18 20 22 24 -0.4-0.2 O 0.2 0.4 0.6 0.8 1

t-y ¢ (units of )

Iy Fdd

4
M\ X250 ¢
td

Se-

Figure 3.5: Dependence of the modula- Figure 3.6: Dependence of the coupling
tion of the fluorescence in the long-time  constants T'% and Q% on the angle ¢. The
limit on the angle ¢. (a) ¢ = 0.257, (b) parameters are as in Fig. 3.5. The solid
¢ = 0.1m, (¢) ¢ = 0.4m, (d) ¢ =0, () curve shows Q% the dashed curve is for

¢ = 0.57. The other parameters are as 250 x I'%. The vertical lines indicate the
in Fig. 3.3 with § = 7/2. phase values shown in Fig. 3.5.

of the master equation Eq. (3.6) are time-independent, and the system approaches
a time-independent steady state. For § = 7/2, the dipole-dipole cross-couplings Fgg
and fogl are non-zero, and induce an explicit time-dependence in the master equation
coefficients, which accounts for the non-stationary long time behavior. This effect is
somewhat similar to a two-level system driven by a bichromatic field. Also in this
case, the long-time limit is non-stationary. In our system under conditions where
the dipole-dipole cross-couplings are non-zero, each transition is driven both by a
laser field and by the cross coupling contribution. In general, these two contributions
have different detunings, and thus induce the non-stationary behavior. This inter-
pretation can easily be verified. The interaction picture in Eq. (3.6) is chosen such
that the only time dependence that may occur is exp(+iAt), where A = §+Ag— Ay
is a combination of the laser field detunings and the frequency difference of the two
lower states. If the non-stationary behavior is due to this time dependence, then
the system should approach a constant steady state for any geometry if A = 0.
This is indeed the case, as can be seen in Fig. 3.4. Here, the same parameters as
in Fig. 3.3 are shown except for 6 = —2+v, such that A = 0. Both for § = 0 and
0 = m/2, the system approaches a true steady state. Note that the one may also
rewrite the frequency of the time dependence as A = vy — 14, i.e., the difference of
the two driving field frequencies. This further substantiates the interpretation along
the lines of a bichromatic driving of each of the atomic transitions.

Next we study the dependence of the long-time limit on the angle ¢. For this, we
take parameters as in Fig. 3.3 with 0 = 7/2 and ¢ = 0;0.17; 0.257; 0.47;0.57. The
result is shown in Fig. 3.5. It can be seen that the angle ¢ modifies the depth of
the intensity modulations. For ¢ = 0 and ¢ = 0.57, there a no modulations, as
then the dipole-dipole cross coupling vanishes. The maximum modulation occurs
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Figure 3.7: Dependence of the modula-  Figure 3.8: Dependence of the coupling
tion of the fluorescence in the long-time  constants T'% and Q% on the angle 6. The
limit on the angle 6. (a) § = 0.257, (b) parameters are as in Fig. 3.7. The solid
6 = 0.17, (¢) § = 0.4, (d) = 0, (e) curve shows Q% the dashed curve is for
0 = 0.5m. The other parameters are as 250 x ', The vertical lines indicate the
in Fig. 3.3 with ¢ = 7/4. phase values shown in Fig. 3.7.

for ¢ = 0.257, intermediate modulations are obtained for ¢ = 0.1¢ and ¢ = 0.47.

The dependence on ¢ can be understood by looking at the ¢-dependence of the
vacuum-induced coupling constants T'% and Q%4 see Fig. 3.6. The total fluores-
cence intensity has a time independent long-time behavior for phase values where
the coupling constants vanish. For maximum coupling constants, the intensity mod-
ulation is maximum. The modulation amplitude cannot, however, be understood
in terms of the coupling constants only. For ¢ = 0.17 and ¢ = 0.4w, the coupling
constants have identical values, while the fluorescence intensity has different modu-
lation amplitudes. The reason for this is that the angle ¢ also enters the fluorescence
intensity via the exponential of the cross terms in Eq. (3.17), where the two ¢ values

yield different results.

The dependence on 6 is shown in Fig. 3.7, with the dependence of the corresponding
vacuum-induced couplings in Fig. 3.8. As for the angle ¢, the modulation vanishes
for vanishing couplings I'% and Q2. The interpretation in terms of the magnitude of
the coupling constants, however, is difficult as a change of 6 also has impact on other
variables. This arises mainly from the fact that 6 determines the relative position
of the two atoms with respect to the laser propagation direction, such that the Rabi
frequencies €2; depend on 6.

The study of the influence of the various detunings is somewhat complicated by the
fact that for equal detunings of the driving fields, the system moves into a dark
state due to coherent population trapping, such that the intensity is zero. Thus in
Fig. 3.9, we show the dependence of the intensity long-time limit modulation on the
lower-level splitting 6 for Ay = —A; = ~. Thus one has A = § + 2v, and it is not
surprising that the frequency of the modulation decreases with decreasing § until
there is no modulation for § = —2~.
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Figure 3.9: Dependence of the modulation of the fluorescence in the long-time limit
on the lower-state splitting §. Parameters are as in Fig. 3.3 with 6 = 7/2, but with
A =—yand Ag=7. (a) 0 =27, (b) 0 =—7,(c) 0 =0, (d) d =1, (e) § = 2.

3.4 Physical interpretation of the new coherences

In this section we investigate the physical origin of the cross-coupling terms I'% and
Qdd that arise from the interaction between a dipole of one of the atoms and the
perpendicular dipole of the other atom.

In general, vacuum-mediated interactions arise from an emission of a photon on one
transition and the absorption of the photon on the same or another transition. In a
single atom, such interactions where the absorbing and the emitting transition are
the same lead to the complex Lamb shift. Any dipole-dipole interaction between
different dipole moments, however, for a single atom in plain vacuum strictly requires
the dipoles to be non-orthogonal (see chapters 1 and 2). This is clearly the case since
the dipole moments must couple to a common set of modes.

In contrast, in the present case of two atoms separated by a distance rio, the cross-
coupling terms I'% and Q% can be different from zero although the two involved
dipole moments are orthogonal. As in a single atom, a coupling between dipole
moments of different atoms is only possible if the involved transitions couple to a
common set of modes, i.e. photons emitted by one transition can be absorbed on a
transition of the other atom. Here we illustrate why this condition can be fulfilled
even between orthogonal dipole moments belonging to different atoms. For this, we
return to the equation of motion Eq. (3.12) for the field modes ags and keep only
the source contribution from the transition 1 < 3 of atom 1. The corresponding
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electric field operator reads then

t
Eiill)(r,t) :Zuks(r) /dTe_i““
0

ks
o (W, _ W
x [dy - ul,(r1)] [sl_(t N+ 50¢—7)] +He.. (3.18)

The aim is to evaluate Eq. (3.18) at the position 72 of atom 2. In contrast to the
derivation of Eq. (3.15), the calculation has to be performed without taking the far
field limit since the atoms are close to each other. We follow the steps outlined in
chapter 8 of [10] and obtain

~ (1 o
BY (r2,t) =S (1) N(r12) - di + H.c. (3.19)

di-rio)r
=5 (1) [fl(k‘o,rm) dy — fa(ko,r12) %} +He.,  (3.20)

12
where
ok (1 i 1N
fl(k()’?qlz)_M(Z_‘_F_ﬁ) e,
k3 (1 30 3\ ,

ko,ria) = == [~ 4+ 5 — = | € 21
fa(ko,712) dreg (77 + 7 773> e, (3.21)

and n = kgris. Egl) (ra,t) can be regarded as the field radiated by the dipole d;
of atom 1 at the position of atom 2. Note that a similar expression is obtained
in the case of a classical radiating dipole at 71 (see, e.g., chapter 2.2.3 in [99]).

. . . ~ (1 . . .
Obviously, the polarization of Eill) (r2,t) depends on the relative orientation of the

atoms. In particular, from Eq. (3.20) it follows that Efill) (r2,t) contains not only

a contribution along di, but also a term proportional to r12. Therefore, a photon
emitted by atom 1 on the 1 « 3 transition can be absorbed by atom 2 on the 2 < 3
transition, provided that the projection of r15 onto ds is different from zero, i.e.
712 -do # 0. The dipole moment dy of atom 1 can thus be coupled to the orthogonal
dipole moment ds of atom 2 since the field radiated by the former dipole moment
may exhibit a component along the latter dipole moment.

In order to verify the consistency of this explanation, we consider the projection
of Efill)(rg, t) onto dy. This expression should exhibit the same dependence on the
relative position 712 of the two atoms as the cross-coupling terms I'% and Q4. In
fact, with the help of Egs. (3.9), (3.10) and (3.19) we arrive at
~ (1 .

dy - B (ra,t) = htd (5{1_) (t) + 5{2(75)) iR (5{1_) (t) — sﬂ(t)) . (3.22)
It follows that the real and imaginary parts of ds - Efill) (r2,t) show indeed the same
dependence on 119, # and ¢ as the coupling coefficients Qgg and T, respectively.

ver
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From another point of view, the preceding discussion shows that for certain relative
positions of the atoms each dipole of atom 2 interacts with both dipoles of atom 1
and vice versa. We finally perform a thought experiment and replace atom 2 by a
photodetector with a polarization filter in front of it. The question is now if this
detector is able to discriminate between photons that stem from dipole moments
d; and ds of atom 1. Surprisingly, the answer is no since the fields radiated by dy
and dy are never orthogonal to each other at any position where ' and Q99 are
different from zero. In this sense, the orthogonal dipole moments of different atoms
are forced to interact, since the absorbing atom cannot distinguish between photons
originating from the two transitions of the emitting atom.

3.5 Summary and discussion

In the previous Sec. 3.4, we have shown that the peculiar vacuum-induced coupling
of orthogonal transition dipole moments can be understood in terms of the dipole
radiation pattern. For certain geometries, the field emitted by one transition of the
first atom has components parallel to each of the transition dipole moments of the
second atom, even if the emitting and absorbing dipoles are orthogonal. Thus the
second atom cannot decide on which transition the photon was emitted by the first
atom.

Speaking generally, this result is of relevance for experimental realizations of col-
lective few-level systems. In real atoms, the realization of simple level schemes like
a A system or even a two-level system typically involves the omission of Zeeman
sublevels. The usual justification for this few-level approximation is that the rele-
vant transitions can be selected via the polarization of the driving fields. Since the
vacuum-induced coupling of orthogonal dipole moments may populate unwanted
extra energy levels, even if they are not driven by the laser field, the few-level ap-
proximation may lead to incorrect results (see chapter 4).

The collective effects in samples of atoms arise from vacuum-induced dipole-dipole
couplings between transitions in different atoms. These couplings are analogous
to virtual interactions of a single transition and the vacuum, which gives rise to
the complex Lamb shift, and to virtual interactions between different transitions in
a single atom, responsible for spontaneously generated coherences between a pair
of atomic states. The coupling of orthogonal dipole moments by the exchange of
photons discussed here, however, is not possible in single atoms interacting with
the plain isotropic vacuum. Therefore the vacuum-coupling of orthogonal dipole
moments observed here is a collective effect.

In summary, we have discussed the dynamics of a pair of nearby three-level systems
in A-configuration. We have shown that in contrast to the single-atom case, tran-
sitions in the two atoms can be dipole-dipole coupled via the vacuum field even if
the transition dipole moments are orthogonal. This additional coupling can strongly
affect the system dynamics. For otherwise fixed parameters, the relative position of
the two atoms alone can decide whether the system has a stationary steady state
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3.5. Summary and discussion

or not. As a consequence, the total fluorescence intensity emitted by the composite
system is either stationary or “blinks” at a characteristic frequency in the long-time
limit, depending on the alignment of the two atoms. The coupling of orthogonal
dipole moments occurs if the absorbing atom is unable to distinguish between pho-
tons emitted by the two transitions of the other atom.
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Chapter 4

Breakdown of the few-level
approximation in collective
systems

4.1 Introduction

The theoretical analysis of any non-trivial physical problem typically requires the
use of approximations. A key approximation facilitated in most areas of physics
reduces the complete configuration space of the system of interest to a smaller set of
relevant system states. In the theoretical description of atom-field interactions, the
essential state approximation entails neglecting most of the bound and continuum
atomic states [1, 10, 11]. The seminal Jaynes-Cummings-Model [100] takes this re-
duction to the extreme in that only two atomic states are retained. Obviously, it
is essential to in detail explore the validity range of this reduction of the configu-
ration space. The few-level approximation usually leads to theoretical predictions
that are well verified experimentally [1, 11], and is generally considered as under-
stood for single-atom systems. It fails, however, to reproduce results of quantum
electrodynamics, where in general all possible intermediate atomic states need to
be considered in order to obtain quantitatively correct results [101]. The situation
becomes even less clear in collective systems, where the individual constituents in-
teract via the dipole-dipole interaction, despite the relevance of collectivity to many
areas of physics. Examples for such systems can be found in ultracold quantum
gases [102-104], trapped atoms [94, 96, 105], or solid state systems [97, 106], with
possible applications, e.g., in quantum information theory [91, 107-109].

Therefore, we discuss the validity of the few-level approximation in dipole-dipole
interacting collective systems. For this, we study the archetype case of two dipole-
dipole interacting atoms, see Fig. 4.1(a). Experiments of this type have become
possible recently [94, 96, 106]. In order to remain general, each atom is modelled
by complete sets of angular momentum multiplets, as shown in Fig. 4.1(b). We
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(a) z (b)
atom 2 |1u>
R
atom 1 P‘
o7 y
T

Figure 4.1: (a) The system under consideration is comprised of two atoms that are
located at r1 and 7o, respectively. The relative position R = ro — 1 of atom 2 with
respect to atom 1 is expressed in terms of spherical coordinates. (b) Internal level
structure of atom p € {1,2}. The ground state of each of the atoms is a S state, and
the three excited levels are Zeeman sublevels of a P; triplet. The states |1,,), |2,,) and
|3,,) correspond to the magnetic quantum numbers m; = —1, 0 and 1, respectively.
The frequency splitting of the upper levels is denoted by § = w3 — wy = wo — wy,
where hw; is the energy of state |i,).

find that the few-level approximation in general leads to incorrect predictions if it is
applied to the magnetic sublevels of this system. For this, we first establish a general
statement about the system behavior under rotations of the atomic separation vector
R. As a first conclusion from this result, we derive the intuitive outcome that the
dipole-dipole induced energy shifts between collective two-atom states are invariant
under rotations of the separation vector R if complete and degenerate multiplets
are considered. This result can only be established if also dipole-dipole interactions
between orthogonal transition dipole moments are included in the analysis. From
this, we conclude that the artificial omission of any of the Zeeman sublevels of a
multiplet leads to a spurious dependence of the energy shifts on the orientation, and
thus to incorrect predictions.

For example, if in the well-known two-level approximation only one excited state
le) and the ground state |g) are retained, then we recover the position-dependent
energy splitting between the entangled two-particle states (|e,g) £ |g,€))/v/2 that
has previously been reported for a pair of two-level systems [10, 11]. This geometry-
dependence is at odds with the rotational invariance of the collective energy splitting
expected for the degenerate system with all Zeeman sublevels. Therefore, in general
the few-level approximation cannot be applied to this system.

This chapter is organized as follows. In Sec. 4.2, we describe the master equation for
the system depicted in Fig. 4.1. A motivation for our work is provided in Sec. 4.3,
where we show on the basis of an example that the few-level approximation may
fail. The rigorous analysis of this result is carried out in Sec. 4.4, and a discussion
and summary of our findings is given in Sec. 4.5.
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4.2 Equation of motion

We describe each atom by a Sy < P; transition shown in Fig. 4.1(b) that can be
found, e.g., in ¥°Ca atoms. We choose the z axis as the quantization axis, which
is dlstlngulshed by an external magnetic field that induces a Zeeman splitting ¢
of the excited states. The orientation of R is defined relative to this quantization
axis. We begin with the introduction of the master equation which governs the
atomic evolution of the system shown in Fig. 4.1. The internal state [i,) of atom
1 is an eigenstate of JZ(“ ), where J® is the angular momentum operator of atom
w (n € {1,2}). In particular, the P; multiplet with J = 1 corresponds to the
excited states |1,), |2,) and |3,) with magnetic quantum numbers m = —1, 0 and
1, respectively, and the Sy state is the ground state [4,) with J =m = 0.

The free time evolution of the of the two identical atoms is governed by the Hamil-
tonian

A—hZZwZS(“ Sz(li 5 (41)

=1 p=1

where hw; is the energy of state |i,,) and we choose hw, = 0. The raising and lowering
operators on the |4,) < |i,) transition of atom p are (i € {1,2,3})

S(i) = |i) (4, and Si(;i) = |4) iy - (4.2)

(2

We determine the electric-dipole moment operator of atom p via the Wigner-Eckart
theorem [54] and arrive at

3
d" =3 [ds™ +Hel], (4.3)
=1

where the dipole moments d; = (i|d|4) are given by

d1 = D6(+), d2 = Dez,
=) () 1 ' (“44)
d3;= —-De'7/); €F) = ﬁ(ew +iey),

and D is the reduced dipole matrix element.

According to Eq. (1.44) in chapter 1, the master equation for the reduced atomic
density operator ¢ of the system shown in Fig. 4.1 can be written as

0= — ~[Hg, 0] + L0 (4.5)

LA

h

The coherent evolution of the atomic states is determined by Ha + Hq, where Hp is
defined in Eq. (4.1). The Hamiltonian Hgq arises from the vacuum-mediated dipole-
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dipole interaction between the two atoms and is given by

Ho = —hZ{Q S5 + Hee |
—n {6 (SELS(Y + s s + e}
—h{le (5(2)5( )+ 5(”5(2)) + H.c.}
—h{932 (5(2) s +5(1)5(2)) + H.c.} . (4.6)

The coefficients €;; cause an energy shift of the collective atomic levels (see Sec. 5.3)

and are defined as )

h
The vector R denotes the relative coordinates of atom 2 with respect to atom 1 (see
Fig. 4.1), and n = kgR. In the derivation of Eq. (4.6), the three transition frequencies
w1, we and w3 have been approximated by their mean value wy = ckq (see chapter 1).
This is justified since the Zeeman splitting § is small as compared to the resonance
frequencies w;. For i = j, the coupling constants in Eq. (4.6) account for the coherent
interaction between a dipole of one of the atoms and the corresponding dipole of the
other atom. Since the three dipoles of the system depicted in Fig. 4.1(b) are mutually
orthogonal [see Eq. (4.4)], the terms €;; for ¢ # j reflect the interaction between
orthogonal dipoles of different atoms. The physical origin of these cross-coupling
terms has been explained in chapter 3.

Qij = - |df XeoR) &3] - (4.7)

The last term in Eq. (4.5) accounts for spontaneous emission and reads

2 3

0= (S50 + o5t — 250 51))
p=1i=1

B 23: {F ( 5(1 ot 95(?52'(1—) _ 25@@95}?) + H.c.}

2
— Z {F21< 2_‘_5%1/_)@4‘@55_25( v) 25( V) Sé )>

p,v=1

n#V
Tar (541510 + 08§51 — 25(” 0541
+ Ty ({25800 + 08§ S8 — 25008y ) + e} (48)

The total decay rate of the exited state |i) of each of the atoms is given by 2;,

where
1 2ldiPwd
 dmey  3he3 -

(4.9)
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and we again employed the approximation w; ~ wg. The collective decay rates I';;
result from the vacuum-mediated dipole-dipole coupling between the two atoms and

are determined by
1

h
The parameters I';; arise from the interaction between a dipole of one of the atoms
and the corresponding dipole of the other atom, and the cross-decay rates I';; for
1 # j originate from the interaction between orthogonal dipoles of different atoms
(see chapter 3). Note that if the master equation (4.5) is transformed into the
interaction picture with respect to Hp, terms proportional to the parameters €2;; and
I';; with ¢ # j rotate at frequencies +6 or £2¢. Similar to the usual rotating-wave
approximation, the cross terms are negligible as compared to terms proportional to
Qi and T'y; if the level splitting ¢ is large, i.e. [0] > |Q;], |Ti;| (3 # 7).

Ly = |dF Xim(R) dj] - (4.10)

In order to evaluate the expressions for the various coupling terms €2;; and the decay
rates I';; in Eqgs. (4.7) and (4.10), we express the relative position of the two atoms
in spherical coordinates (see Fig. 4.1),

R = R (sinf cos ¢, sinfsin ¢, cos )T . (4.11)
Together with the definition of the tensor y in Eq. (1.48) and Eq. (4.4), we obtain
3 .
Q31 = R [(772 — 3) cosn — 3nsin 77] sin? g% |
n

O = 3# [(3n* =1+ (n* — 3) cos26) cosn — n (1 + 3cos 20) sinn) |

Qo1 = —v2cot leei¢,
Qoo = Q1 — (2 cot? 6 — 1)93162i¢,
Q32 = —Qo1, Q33 =01, (4.12)

and the collective decay rates are found to be

3 .
I3 = V3 [(n* — 3) sinn + 3n cos 7] sin® e,
Ul
e
8
o1 = —V2cot 8 Tg1e™®

F22 == FH — (2 CO'E2 0 — 1)F3162i¢,

;=3 [(3772 -1+ (772 —3) cos26) sinn + n (1 + 3cos 20) cosn]

Pag =—T91, T'sz3=TI1. (4.13)
The coupling terms 41, Q231 and the collective decay rates I'11, I's; are shown in

Fig. 4.2 as a function of the interatomic distance R.

Finally, we consider the case where the two atoms are driven by an external laser
field,
Ep = [E.e, + Eyey] R eIl o cc, (4.14)
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Figure 4.2: (a) Plot of the vacuum-induced coupling terms 1; and Q37 according
to Eq. (4.12). Ao is the mean transition wavelength. If the interatomic distance
R approaches zero, the parameters €2;; and €3; diverge. (b) Plot of the collective
decay rates I'1; and T's; according to Eq. (4.13). T'y; and I's; remain finite in the
limit R — 0. The parameters in (a) and (b) are given by # = 7/2 and ¢ = 0.

where &, £, and e;, e, denote the field amplitudes and polarization vectors, re-
spectively, wy, is the laser frequency and c.c. stands for the complex conjugate.
The wave vector k; = kre, of the laser field points in the positive z direction. In
the presence of the laser field and in a frame rotating with the laser frequency, the
master equation (4.5) becomes

)

010 = h[f:[L + Ha, 9]

7

plHo, 0] + Ly0. (4.15)

In this equation, H4 is the transformed Hamiltonian of the free atomic evolution,
. 2
Ay=-hY S As#st . (4.16)

The detunings with the state [i) are labeled by A; = wy —w; (i € {1,2,3}), and
we have A1 = Ay + 6, A3 = Ay — ¢. The Hamiltonian Hy, describes the atom-laser
interaction in the electric-dipole and rotating-wave approximation,

= =0 Y {[0u(ry) + 9y ()] SYL + [~ S(r) + 19y (r)] S8 + He}

pn=1
(4.17)
and the position-dependent Rabi frequencies are defined as
Qu(r) = DE,/(V2h) exp [iky - 7] ,
Q,(r) = DE,/(V2h) expliky - 7] . (4.18)
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4.3 Physical motivation

In the following section 4.4, we will provide a rigorous treatment of the behavior
of our model system under rotations of the atomic separation vector in order to
study the geometrical properties of the different coupling terms in the master equa-
tion (4.5). In order to motivate this analysis, we first discuss a simple example for
our results. This example employs an external laser field driving the atoms. On the

other hand, our main results starting from Sec. 4.4 will not rely on external driving
fields.

We consider the geometrical setup shown in Fig. 4.3, where the atoms with internal
structure as in Fig. 4.1(b) are aligned along the y axis. Each atom interacts with
a ot polarized laser beam with frequency wy, that propagates in z direction. Since
the laser polarization is o™, it couples only to the transition [3) < |4) in each
atom. To describe this setup, one might be tempted to employ the usual few-level
approximation, and thus neglect the excited states |1) and |2) in each atom, since
they are not populated by the laser field. If this were correct, the seemingly relevant
subsystem would be

C = Span(|[4,4), |3,3), |3,4), [4,3)). (4.19)

However, it is easy to prove that the state space of the two atoms can not be reduced
to the subspace C, i.e., that the few-level approximation cannot be applied in its usual
form. In order to show this, we solve the master equation (4.15) numerically with
the initial condition g(t = 0) = [4,4)(4,4], i.e. it is assumed that both atoms are
initially in their ground states.

z
A
. atom 2
R
atom 1
H—} Y
o T-polarized
. laser field

Figure 4.3: Setup considered in Sec. 4.3, where the breakdown of the few-level
approximation is illustrated by means of an example. The atoms are aligned along
the y axis, and the o polarized laser field propagates in z direction. Note that our
main results starting from Section 4.4 do not rely on external driving fields.
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Figure 4.4: (a) Population in the seemingly relevant subspace C [see Eq. (4.19)] for
the setup shown in Fig. 4.3. The common parameters are § = 7/2, ¢ = 7/2, and
d =0. In I, we have Q,(r1) = Qu(r2) = v, Qy(r1) = Qy(r2) =iy, R = 0.3\, and
A = 0.58v. Curve II shows the case Q,(71) = Qu(r2) = 2.7y, Qy(1r1) = Qy(r2) =
2.7y, R = 0.1)\g, and A = 5.2. (b) Population in the subspace D [see Eq. (4.21)]
for the same parameters than in (a). Note that the population in C 4+ D remains
unity for all times.

Figure 4.4(a) shows the total population confined to the subspace C,

(Pe)="Tx [ot) P (4.20)

where P¢ is the projector onto the subspace C. It can easily be seen that for both
sets of parameters, population is lost from the subspace C. Since all states but the
excited states |1) and |2) are contained in C, it is clear that it is not sufficient to
take only the excited state |3) into account in the usual few-level approximation.

The explanation of this outcome is straightforward. According to Eq. (4.6), the
dipole transition |3) < |4) of one atom is coupled by the cross-coupling term 3,
to the |1) <> |4) transition of the other atom. This coupling results in a population
of state |1), even though the transition dipoles of the two considered transitions are
orthogonal. Consequently, the dipole-dipole interaction between transitions with
orthogonal dipole moments will result in the (partial) population of the states |1, 1),
I1,3), [3,1), |1,4), |4,1), although none of these states is directly coupled to the laser
field.

The numerical verification of these statements is shown in Figure 4.4(b), which
depicts the population of the subspace

D= Span(|1>1>’ |173>7 |37 1>7 |174>7 |471>) (421)

Pp is the projector onto the subspace D, and the parameters are the same as above.
Note that we have verified that all population is contained in the subspace C + D,
ie. <Pc > =+ <Pp> =1 at all times.
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4.4. Breakdown of the few-level approximation

It is important to note that the sufficient subspace S + D still does not contain
all possible states of the two atoms, because the excited state |2) of each atom is
neglected. The justification for this is that in the chosen geometry, the cross-coupling
terms 91, I'y1 and 39, '3 vanish such that the transition |2) < |4) of one atom
is not coupled to the transitions |1) < [4) and |3) < |4) of the other atom, see
Egs. (4.12) and (4.13). This is important since it demonstrates that it is also not
correct to simply state that all atomic states have to be taken into account for all
parameter configurations.

The above example clearly demonstrates that the few-level approximation is ren-
dered impossible by the coupling terms between transitions with orthogonal dipole
moments. Therefore, it is the nature of the dipole-dipole coupling itself which en-
forces that generally all Zeeman sublevels have to be taken into account, and not
the orientation external laser fields, as one may be tempted to assume in the usual
few-level approximation.

A physical interpretation for the origin of the vacuum-induced coupling of transi-
tions with orthogonal dipole moments has been given in chapter 3. In essence, these
couplings occur if the polarization of a (virtual) photon emitted on one of the tran-
sitions in the first atom has non-zero projection on different dipole moments of the
second atom.

4.4 Breakdown of the few-level approximation

For the remaining parts of this chapter, we omit the laser fields considered in Sec. 4.3
and return to our original setup in Fig. 4.1. We first derive a general statement about
the behavior of the master equation (4.5) under rotations of the separation vector
R. This will provide the theoretical foundation for our central results and physical
interpretations that follow after the formal proof of the statement.

4.4.1 Central theorem

In addition to a given relative position R of the two atoms, we consider a different
geometrical setup where the separation vector P is obtained from R by a rotation,
P =R, (a)R. Here, R,(«) is an orthogonal 3 x 3 matrix that describes a rotation
in the three-dimensional real vector space R? around the axis u by an angle . We
show that there exists a unitary operator W such that

Hqo(P) = WHo(R)WT, (4.22a)
L (P)o=W £ (R)yWT QW] wi, (4.22b)

where W = W, («) is given by
We() = exp[—icc JY - w/h] exp[—ia JP) - u/h]. (4.23)
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Here the operator exp|—ia J )y /h] describes a rotation around the axis u by an
angle « in the state space of atom p. The notation Ho(R) and £, (R) means that
the coupling constants and collective decay rates in Eqgs. (4.7) and (4.8) have to be
evaluated at R.

Before we turn to the proof of Eq. (4.22), we recall the general master equation in
Born approximation (see chapter 1),

1

Oro = 7

(Had) - 35 [ arTee (V.UM Vier 0 ot - D)0 (]), (@20
0

where U(7) = exp[—i(Ha + Hy)7/h] and Hy denotes the free Hamiltonian of the
radiation field [see Eq. (1.4)]. For the system shown in Fig. 4.1, the free Hamiltonian
of the atoms Hy is given in Eq. (4.1). The interaction of the atoms with the vacuum
modes is described by

v=—d" B@)—d? Er), (4.25)

the dipole operator d" of atom 1 is given in Eq. (4.3) and E(r) is the electric field
operator [see Eq. (1.7)]. If we apply the Markov- and the rotating-wave approxima-
tions, and ignore all terms associated with the Lamb shift of the atomic levels, the
master equation (4.5) is obtained. These steps were carried out explicitly in Sec. 1.3.

We proceed with the proof of Eq. (4.22). In a first step, we introduce the auxiliary
operator Agp = WVRWT, where Vg is the interaction Hamiltonian for a relative
position of the atoms given by R, and W = Wy («) is defined in Eq. (4.23). The
evaluation of Ag involves only the transformation of the dipole operator of each
atom. Since the matrix elements of vector operators transform like classical vectors
under rotations (see, e.g., Sec. 3.10. in [54]), we find

3
wi=3"1[d; s +Hel, (4.26)
i=1

W d(u)

where d; = Ry, (a)d;. This shows that the only difference between the auxiliary
operator Ar and Vg is that the dipole moments of the former are determined by
d; instead of d;. In a second step, we employ the tensor properties of <)_<) to find the
following expression for the parameters Q;;(P) and I';;(P) [see Egs. (4.7) and (4.10)],

_ T < - "
194;(P) = [Ry ! (a)di] Xyo(R) [Ry' ()d]] (4.27)
_ T < - %
i(P) = [Ry (@)di] Xim(R) [Ry' (@)d]] . (4.28)
This important result shows that a rotation of the dipole moments d; by Ry (c) is

formally equivalent to a rotation of R by R, («) in the master equation (4.5). From
the combination of the results obtained in step one and two, we conclude that the
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4.4. Breakdown of the few-level approximation

exchange of Vg by Ag in the integral of Eq. (4.24) is equivalent to a rotation of the
separation vector from R to P =R, ()R,

1= / arTre ([Ar, [U(1)ARU' (7). 0(7)]]) (4.20)
0
= —%[HQ(P), ol+ Ly(P)o, (4.30)

where 7 =t — 7 and
o(#) =U(7) [or ® o(F)] UT(7). (4.31)

Note that the equality of Eqgs. (4.29) and (4.30) holds under the same assumptions
that led from Eqs. (4.24) to (4.5).

In the second part of the proof we evaluate the integral in Eq. (4.29) in a different
way. In the discussion following Eq. (4.7), we justified that £, and Hgq depend
only on the mean transition frequency wg. Here we employ exactly the same ap-
proximation and replace the frequencies w; appearing in U(7)ARUT(7) by wg. The
equivalence of these approximations becomes apparent by a detailed study of the
derivation of the master equation in Sec. (1.3). Since Hx commutes with J*) if all
frequencies w; are replaced by the mean transition frequency wyp, we have [W, U] =0
and hence

U(T)ARU (1) = U(r)WVRWTUT (1) = WU (r)VRU T (1)WT. (4.32)
It follows that the argument of the trace in Eq. (4.29) can be written as
W Vg, [U@)VRU (1), Wia(s)W]]WT. (4.33)

In contrast to Eq. (4.29), the double commutator contains now the original interac-
tion Hamiltonian Vg that corresponds to a setting with separation vector R. We
thus obtain ;
h
Finally, the comparison of Eqs. (4.34) and (4.30) establishes Eq. (4.22) which con-
cludes the proof.

[ = L WHoRW', o + W [E,Y(R)WT QW] wt. (4.34)

4.4.2 Implications of the theorem
Diagonalization of Hg

We now turn to the discussion of Eq. (4.22), which will lead to our central results.
The Hamiltonian H¢ describes the coherent part of the dipole-dipole interaction
between the atoms. From Eq. (4.22a), it is immediately clear that the eigenvalues
of Hq depend only on the interatomic distance, but not on the orientation of the
separation vector R. The reason is that the spectrum of two operators, which
are related by a unitary transformation, is identical. In our case, the Hamiltonian
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Hq(R) and Hq(P) for different orientations R and P are related by the unitary
transformation W, and since P is obtained from R by an arbitrary rotation, the
eigenvalues of Hq are identical for any orientation.

Next we re-obtain this result in a more explicit way and derive symbolic expressions
for the eigenvalues and eigenstates of Hg. This Hamiltonian can be written as

3 3
Ho = ) (ailHolaj)|ai){(a;| + ) {silHals;)ls:) (5] (4.35)
i,j=1 t.j=1

where the symmetric and antisymmetric states are defined as

Isi) = (]i,4) + [4,i))/V2, (4.36a)
lai) = (|3, 4) —|4,3))/V2, (4.36b)

and |i,j) = [i1) ® |j2). Since all matrix elements (s;|Hq|a;j) of Hg between a sym-
metric and an antisymmetric state vanish, the set of eigenstates decomposes into a
symmetric subspace S and an antisymmetric subspace A. The matrix elements of
Hg, in the subspace S spanned by the symmetric states {|s1), |s2), |s3)} are

Qu 0y Q3
[Haols = —h | Qa1 Q2 Q3 |, (4.37)
Q31 Q32 Q3

and the representation of Hg in the subspace A spanned by the antisymmetric states
{la1), |az), las)} is given by [Hqola = —[Hqls. Note that the collective ground
state |4,4) and the states |i,7) (4,7 € {1,2,3}) where each atom is in an excited
state are not influenced by the dipole-dipole interaction and thus not part of the
expansion (4.37).

In Section 4.4.1, we have derived a general relation between any two orientations
of the atomic separation vector. In order to apply this result, we define the vector
R, to be parallel to the z axis, i.e. R, = Re,. This corresponds to the choice
0 = 0 in Eq. (4.11). Any separation vector P can then be obtained from R, as
P =7R,(a)R; by a suitable choice of the rotation axis u and the angle a.

We then proceed with the diagonalization of the Hamiltonian Ho(R,) with atomic
separation vector R,. The explicit calculation of the coupling constants €2;; shows
that the off-diagonal elements in Eq. (4.37) vanish if the atoms are aligned along the z
axis, see Egs. (4.12) and (4.13) with 8 = 0. It follows that the Hamiltonian Hq(R,) is
already diagonalized by the symmetric and antisymmetric states Eq. (4.36), and the
eigenvalues of [Hgls and [Hq] 4 are given by A\ = —hQ;(R,) and A = hQ;(R,),
respectively.

According to Eq. (4.22a), the Hamiltonian Hq(P) is the unitary transform of
Hq(R,) by W. The normalized eigenstates of Hq(P) are thus determined by Ws;)
and Wla;), and their eigenvalues are again )\f and )\;4 , respectively. Since the ori-
entation of P is arbitrary, the eigenvalues of Hq(P) depend only on the interatomic
distance |P| = |R,| = R, but not on the orientation of the separation vector.
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4.4. Breakdown of the few-level approximation

Thus, it follows from our theorem in Sec. 4.4.1 that the eigenvalues of Hq(P) are
invariant under rotation of the atomic separation vector.

Diagonalization of Hp + Hg

An additional conclusion can be drawn from Eq. (4.22) if the operator Hy commutes
with the transformation W = Wy (a), i.e.,

[Ha, W] =0. (4.38)

Then, Eq. (4.22a) implies that Ha + Hq(P) is the unitary transform of Hy + Ho(R)
by W. A straightforward realization of this is the case of vanishing Zeeman splitting
4, in which the relation holds for an arbitrary orientation of P. Then, the energy
levels of the full system Hamiltonian Ha + Hq do not depend on the orientation of
the separation vector.

This result can be understood as follows. In the absence of a magnetic field (6 = 0),
there is no distinguished direction in space. Since the vacuum is isotropic in free
space, one expects that the energy levels of the system are invariant under rotations
of the separation vector R.

By contrast, the application of a magnetic field in z direction breaks the full rota-
tional symmetry. For § # 0, the atomic Hamiltonian Ha only commutes with trans-
formations Wy, (a) that correspond to a rotation of the separation vector around
the z axis, u = e,. If we express the atomic separation vector in terms of spheri-
cal coordinates as in Eq. (4.11), this means that the eigenvalues of the full system
Hamiltonian Ha + Hq do only depend on the interatomic distance R and the angle
f, but not on the angle ¢. This result reflects the symmetry of our system with
respect to rotations around the z axis.

Unitary equivalence of time evolution in different orientations

If the operator Hy commutes with the transformation W = W, («), another conclu-
sion can be drawn. Then, the result in Eq. (4.22) implies that the density operator
Wo(R)WT obeys the same master equation than o(P) for P = R, (a)R. It follows
that P is the unitary transform of o(R) by W, i.e.

o(P) = Wo(R)WT. (4.39)

As discussed above, the free atomic Hamiltonian Ha commutes with W, («) for an
arbitrary choice of the rotation axis u and angle « if the Zeeman splitting § vanishes.

We thus conclude that it suffices to determine the solution of the master equa-
tion (4.5) for only one particular geometry if § = 0. Any other solution can then be
generated simply by applying the transformation W = W, («) with suitable values
of u and « to the solution for the particular geometry.
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Establishment of the breakdown

The breakdown of the few-level approximation for collective systems is established
by noting that the result in Eq. (4.22) and all its just discussed implications cannot
be recovered if any of the Zeeman sublevels of the P; triplet are neglected. In this
case, the unitary operator W does not exist since it is impossible to define an angular
momentum or vector operator in a state space where magnetic sublevels have been
removed artificially. For example, an artificially reduced sublevel scheme will exhibit
eigenenergies with a spurious dependence on the orientation of the atomic separation
vector. This is in contrast to our finding that the energy levels of the collective
states are invariant under rotations of the atomic separation vector if complete and
degenerate multiplets are considered. We thus conclude that all Zeeman sublevels
generally have to be taken into account.

The intuitive explanation of this has already been hinted at in Sec. 4.3. For a more
formal discussion, we return to the matrix representation of [Hgls in Eq. (4.37). The
diagonal elements proportional to €); account for the coherent interaction between
a dipole of one of the atoms and the corresponding dipole of the other atom. By
contrast, the off-diagonal terms proportional to €2;; with ¢ # j arise from the vacuum-
mediated interaction between orthogonal dipoles of different atoms (see chapter 3).
It is the presence of these terms that renders the simplification of the atomic level
scheme impossible since they couple an excited state |i) of one atom to a different
excited state |j) (i # j) of the other atom. A similar argument applies to the collec-
tive decay rates I';; appearing in £, 0. Thus, if any Zeeman sublevel of the excited
state multiplet is artificially removed, then some of these vacuum-induced couplings
;; and I';; with ¢ # j are neglected, which leads to incorrect results. Now, it is also
apparent why the breakdown of the few-level approximation appears exclusively in
collective systems. For single atoms in free space, a coupling of orthogonal transition
dipole moments via the vacuum is impossible.

Recovery of the few-level approximation in special geometries

The identification of the vacuum-induced couplings €2;; and I';; between orthogonal
transition dipole moments as the cause of the breakdown enables one to conjecture
that few-level approximations are justified if some or all of the cross-coupling terms
can be neglected. As we pointed out in the discussion below Eq. (4.10), the influence
of the cross-coupling terms in the master equation (4.5) is negligible if the Zeeman
splitting is large such that the inequality |0] > [€;;],|I";;| (¢ # j) holds. Independent
of the actual value of §, some or all of the cross-coupling terms are exactly equal to
zero for particular geometrical setups.

For example, we mentioned earlier that all cross-coupling terms vanish if the atoms
are aligned along the z axis. This corresponds to the case # = 0 in Eqgs. (4.11)-(4.13).
Then, the Sy « P; transition may be reduced to a two-level system, formed by an
arbitrary sublevel of the P; triplet and the ground state Sy.
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As a second example, we assume the atoms to be aligned in the z-y plane, i.e.,
0 = 7/2 in Eq. (4.11). Then the terms a1, I's; and Q39, '3 vanish, see Eqs. (4.12)
and (4.13). In effect, the excited state |2) may be disregarded such that the atomic
level scheme simplifies to a V-system formed by the states |1) and |3) of the P
multiplet and the ground state Sp.

4.5 Discussion and summary

In this chapter, we have studied the properties of various parts of the system Hamil-
tonian as well as the full density operator under rotations of the atomic separation
vector. This discussion was based on a general theorem in Sec. 4.4.1 which relates
the master equations for different orientations of the atomic separation vector.

First, we have discussed the Hamiltonian Hq, which describes the coherent coupling
between different transitions in the two atoms induced by the vacuum field. Armed
with our main theorem, it is possible to first diagonalize H in a special geometry,
where the eigenvectors and eigenenergies assume a particularly simple form. The
eigenvectors and eigenenergies for an arbitrary system geometry are then derived via
the theorem. Our main result of this first part of Sec. 4.4.2 is that the eigenvalues
of Hq are invariant under rotations of the atomic separation vector.

In a second step, we have studied the eigenenergies of the full system Hamiltonian
H 4+ Hq, which in general are not invariant under rotations of the atomic separation
vector. The invariance, however, is recovered if Hy commutes with the transforma-
tion W = Wy, (), which is given in explicit form as a result of our theorem. Most
importantly, this additional condition is fulfilled for a degenerate excited state mul-
tiplet, i.e., if the Zeeman splitting 6 vanishes. Then, there is no preferred direction
in space, such that the invariance of the eigenenergies, which are observables, can
be expected.

We then conclude the breakdown of the few-level approximation, since our results of
the previous sections are violated if any of the excited state multiplet sublevels are
artificially removed. Possible consequences are, for example, a spurious dependence
of the eigenenergies on the orientation of the atomic separation vector, and thus of all
observables that depend on the transition frequencies among the various eigenstates
of the system. In experiments, in addition, a loss of population from the subspace
considered in the few-level approximation would be observed. We have identified the
vacuum-induced dipole-dipole coupling between transitions with orthogonal dipole
moments as the origin of the breakdown. On the one hand, this explains why the
breakdown exclusively occurs in collective systems, since such orthogonal couplings
are impossible in single atoms in free space. On the other hand, the interpretation
enables one to identify special geometries where some of the Zeeman sublevels can
be omitted. This also allows to connect our results to previous studies involving
dipole-dipole interacting few-level systems. In these studies involving the few-level
approximation, typically a very special geometry was chosen, e.g., with atomic sep-
aration vector and transition dipole moments orthogonal or parallel to each other.
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These results remain valid if a geometry can be found such that the full Zeeman
sublevel scheme reduces to the chosen level scheme as discussed in Sec. 4.4.2. It
should be noted, however, that there are physical realizations of interest which in
general do not allow for a particular system geometry that leads to the validity of a
few-level approximation, such as quantum gases.

On a more technical side, our results can also be applied to considerably simplify
the computational effort required for the treatment of such dipole-dipole interacting
multilevel systems with arbitrary alignment of the two atoms. First, our theorem
both allows for a convenient evaluation of eigenvalues and eigenenergies for arbitrary
orientations of the atomic separation vector based on the results found in a single,
special alignment. Second, we have found in Sec. 4.4.2 that for the degenerate
system, the density matrices for different orientations are related to each other by
the unitary transformation W defined in our theorem. Thus the solution for any
orientation can be obtained from a single time integration simply by applying this
transformation.

Finally, we point out that the theorem derived in Sec. 4.4 does not only apply to a
pair of atoms with internal level structure as shown in Fig. 4.1(b). On the contrary,
the theorem and its implications can easily be generalized to systems where the level
scheme of each atom is comprised of other angular momentum multiplets than the
Sy < P; transition considered here.
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Chapter 5

Coherent control in a
decoherence-free subspace of a
collective multi-level system

5.1 Introduction

The fields of quantum computation and quantum information processing have at-
tracted a lot of attention due to their promising applications such as the speedup of
classical computations [5, 110, 111]. Although the physical implementation of basic
quantum information processors has been achieved recently [7], the realization of
powerful and useable devices is still a challenging and as yet unresolved problem.
A major difficulty arises from the interaction of a quantum system with its envi-
ronment, which leads to decoherence [8, 9]. One possible solution to this problem
is provided by the concept of decoherence-free subspaces (DFS) [112-117]. Under
certain conditions, a subspace of a physical system is decoupled from its environ-
ment such that the dynamics within this subspace is purely unitary. Experimental
realizations of DFS have been achieved with photons [118-121] and in nuclear spin
systems [122-124]. A decoherence-free quantum memory for one qubit has been
realized experimentally with two trapped ions [125, 126].

The physical implementation of most quantum computation and quantum informa-
tion schemes involves the generation of entanglement and the realization of quantum
gates. It has been shown that dipole-dipole interacting systems are both a resource
for entanglement and suitable candidates for the implementation of gate operations
between two qubits [14, 91, 93, 107109, 127]. The creation of entanglement in
collective two-atom systems is discussed in [14, 93]. Several schemes employ the
dipole-dipole induced energy shifts of collective states to realize quantum gates, for
example, in systems of two atoms [91, 107, 108, 127] or quantum dots [109]. In order
to ensure that the induced dynamics is fast as compared to decoherence processes,
the dipole-dipole interaction must be strong, and thus the distance between the par-
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ticles must be small. On the other hand, it is well known that a system of particles
which are closer together than the relevant transition wavelength displays collective
states which are immune against spontaneous emission [4, 10, 11, 14, 73]. The space
spanned by these subradiant states is an example for a DF'S, and hence the question
arises whether qubits and gate operations enabled by the coherent part of the dipole-
dipole interaction can be embedded into this DFS. In the simple model of a pair
of interacting two-level systems, there exists only a single subradiant state. Larger
DFS which are suitable for the storage and processing of quantum information can
be found, e.g., in systems of many two-level systems [128, 129].

Here, we pursue a different approach and consider a pair of dipole-dipole interacting
multi-level atoms (see Fig. 4.1). The level scheme of each of the atoms is modeled
by a So <« P; transition that can be found, e.g., in “°Ca atoms. The excited state
multiplet P; consists of three Zeeman sublevels, and the ground state is a Sy singlet
state. We consider arbitrary geometrical alignments of the atoms, i.e. the length
and orientation of the vector R connecting the atoms can be freely adjusted. In
this case, the analysis in chapter 4 shows that all Zeeman sublevels of the atomic
multiplets have to be taken into account. Experimental studies of such systems have
become feasible recently [94, 96, 106].

As our main results, we demonstrate that the state space of the two atoms contains
a four-dimensional DFS if the interatomic distance R approaches zero. A careful
analysis of both the coherent and the incoherent dynamics reveals that the anti-
symmetric states of the DFS can be populated with a laser field, and that coherent
dynamics can be induced within the DFS via an external static magnetic or a radio-
frequency field. Finally, it is shown that the system can be prepared in long-lived
entangled states.

More specifically, all features of the collective two-atom system will be derived from
the master equation for the two atoms which we discussed in Sec. 4.2. To set
the stage, we prove the existence of the four-dimensional DFS in the case of small
interatomic distance R in Sec. 5.2.

Subsequent sections of this chapter address the question whether this DFS can be
employed to store and process quantum information. In a first step, we provide a
detailed analysis of the coherent and incoherent system dynamics (Sec. 5.3). The
eigenstates and energies in the case where the Zeeman splitting § of the excited
states vanishes are presented in Sec. 5.3.1. In Sec. 5.3.2, we calculate the decay
rates of the collective two-atom states which are formed by the coherent part of
the dipole-dipole interaction. It is shown that spontaneous emission in the DFS is
strongly suppressed if the distance between the atoms is small as compared to the
wavelength of the Sy <~ P; transition. The full energy spectrum in the presence of
a magnetic field is investigated in Sec. 5.3.3.

The DFS is comprised of the collective ground state and three antisymmetric col-
lective states. In Sec. 5.4, we show that the antisymmetric states can be populated
selectively by means of an external laser field. The probability to find the system
in a (pure) antisymmetric state is 1/4 in steady state. In particular, the described
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method does not require a field gradient between the position of the two atoms.

We then address coherent control within the DFS, and demonstrate that the coherent
time evolution of two states in the DF'S can be controlled via the Zeeman splitting §
of the excited states and therefore by means of an external magnetic field (Sec. 5.5).
Both static magnetic fields and radio-frequency (RF) fields are considered. The time
evolution of the two states is visualized in the Bloch sphere picture. While a static
magnetic field can only induce a limited dynamics, any single-qubit operation can
be performed by an RF field.

In Sec. 5.6, we determine the degree of entanglement of the symmetric and antisym-
metric collective states which are formed by the coherent part of the dipole-dipole
interaction. We employ the concurrence as a measure of entanglement and show that
the symmetric and antisymmetric states are entangled. The degree of entanglement
of the collective states is the same as in the case of two two-level atoms. But in
contrast to a pair of two-level atoms, the symmetric and antisymmetric states of our
system are not maximally entangled. A brief summary and discussion of our results
is provided in Sec. 5.7.

5.2 Decoherence-free subspace

In this section we show that the system described in Sec. 4.2 exhibits a decoherence-
free subspace. By definition, a subspace V of a Hilbert space H is said to be
decoherence-free if the time evolution inside V is purely unitary [113, 114, 117].
For the moment, we assume that the system initially is prepared in a pure or mixed
state in the subspace V. The system state is then represented by a positive semi-
definite Hermitian density operator gy € End(V) with Tr(gy) = 1. It follows that V
is a decoherence-free subspace if two conditions are met. First, the time evolution
of oy can only be unitary if the decohering dynamics is zero, and therefore we must
have [see Eq. (4.5)]

Lyoy =0 (5.1)

for all density operators gy that represent a physical system over V. Second, the
unitary time evolution governed by Ha + Hq must not couple states in V to any
states outside of V. Consequently, V has to be invariant under the action of Hx+ Hgq,

) €V = (Ha+ Hq)lY) € V. (5.2)

Note that since (Ha + Hq) is Hermitian, this condition also implies that it cannot
couple states outside of V to states in V.

In a first step we seek a solution of Eq. (5.1). To this end we denote the state space of
the two atoms by Hsys and choose the 16 vectors |i, j) = |i1) ®|j2) (4, j € {1,2,3,4})
as a basis of Hgys. The density operator ¢ can then be expanded in terms of the 256
operators

’17]><k7l‘7 ia j7 k? ! € {1727374}7 (53)
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that constitute a basis in the space of all operators acting on Hsys,

4 4
= Z Z 0ij k|, 7) (K, 1| . (5.4)
ivj: =1

It follows that ¢ can be regarded as a vector with 256 components g;;; and the
linear superoperator £, is represented by a 256 x 256 matrix. Equation (5.1) can
thus be transformed into a homogeneous system of linear equations which can be
solved by standard methods.

For a finite distance of the two atoms, the only exact solution of Eq. (5.1) is given
by [4,4)(4, 4|, i.e. only the state |4,4) where each of the atoms occupies its ground
state is immune against spontaneous emission. A different situation arises if the
interatomic distance R approaches zero. In this case, the collective decay rates obey
the relations

lim Fgl = lim F32 = lim Fgl =0
R—0 R—0 R—0

IF—IF:I'F:. 5.5
lim iy = lim Ty = lim gz = v (5.5)
In order to characterize the general solution of Eq. (5.1) in the limit R — 0, we
introduce the three antisymmetric states

1. . .
\ai>:ﬁ“z,4>—]4,z>], i€{1,2,3}, (5.6)

as well as the 4 dimensional subspace
V= Span(|474>7 |a1>7 |a2>7 |a3>) . (57)

The set of operators acting on V forms the 16 dimensional operator subspace End(V).
We find that the solution of Eq. (5.1) in the limit R — 0 is determined by

L£L,0=0 <= OcEnd(V). (5.8)

In particular, any positive semi-definite Hermitian operator gy € End(V) that rep-
resents a state over V does not decay by spontaneous emission provided that R — 0.

We now turn to the case of imperfect initialization, i.e., the initial state is not entirely
contained in the subspace V. Then, states outside of V spontaneously decay into
the DFS [117]. This strictly speaking disturbs the unitary time evolution inside the
DFS, but does not mean that population leaks out of the DFS. Also, this perturbing
decay into the DFS only occurs on a short timescale on the order of y~! at the
beginning of the time evolution.

These results can be understood as follows. In the Dicke model [14, 73] of two
nearby 2-level atoms, the antisymmetric collective state is radiatively stable if the
interatomic distance approaches zero. In the system shown in Fig. 4.1, each of the
three allowed dipole transitions in one of the atoms and the corresponding transition
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5.2. Decoherence-free subspace

in the other atom form a system that can be thought of as two 2-level atoms. This
picture is supported by the fact that the cross-decay rates originating from the
interaction between orthogonal dipoles of different atoms vanish as R approaches
zero [see Eq. (5.5)]. Consequently, the suppressed decay of one of the antisymmetric
states |a;) is independent of the other states.

In contrast to the cross-decay rates, the coherent dipole-dipole interaction between
orthogonal dipoles of different atoms is not negligible as R goes to zero. It is thus
important to verify condition (5.2) that requires V to be invariant under the action
of Hx + Hgq. To show that Eq. (5.2) holds, we calculate the matrix representation
of Hg in the subspace A spanned by the antisymmetric states {|a1), |a2), |as)},

Qe Q3 Q3
[HQ]A =h| Qo1 Qo 39 . (5.9)
Q31 Q32 Qa3

Similarly, we introduce the symmetric states

1
|si) = ﬁ

and the representation of Hg on the subspace S spanned by the states {|s1), |s2), |s3)}
is described by

[li,4) +|4,4)], i€{1,2,3}, (5.10)

Q11 31 §1
[Hols = —h | Qo1 Qoo 39 . (5.11)
Q31 Q32 Q33
It is found that Hg can be written as
3 3
Ho =Y {ailHalaj)lai){az| + > (silHals;)|si)(s;], (5.12)
i,j=1 hj=1

i.e., all matrix elements (a;|Hqls;) between a symmetric and an antisymmetric state
vanish. This result implies that Hg couples the antisymmetric states among them-
selves, but none of them is coupled to a state outside of A. Moreover, the ground
state |4,4) is not coupled to any other state by Hg. It follows that the subspace V
is invariant under the action of Hg.

It remains to demonstrate that V is invariant under the action of the free Hamiltonian
Hp in Eq. (4.1). With the help of the definitions of |a;) and |s;) in Egs. (5.6)
and (5.10), it is easy to verify that Hp is diagonal within the subspaces A and S.
In particular, Hy does not introduce a coupling between the states |a;) and |s;),

(silHalas) = = [(i,4[Hali,4) — (4,1 Ha|4,1)]

(wi (1118 Dir) — wi (a2l 52 i) )

S IS N

(5.13)
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CHAPTER 5: Coherent control in a decoherence-free subspace of a collective ...

Note that these matrix elements vanish since we assumed that the two atoms are
identical, i.e. we suppose that the energy hw; of the internal state |i,) does not
depend on the index p which labels the atoms.

In conclusion, we have shown that the system of two nearby four-level atoms exhibits
a four-dimensional decoherence-free subspace V C Hsys if the interatomic distance R
approaches zero. However, in any real situation the distance between the two atoms
remains finite. In this case, condition Eq. (5.1) holds approximately and spontaneous
emission in V is suppressed as long as R is sufficiently small. In Sec. 5.3.2, we
demonstrate that the decay rates of states in V are smaller than in the single-atom
case provided that R < 0.43 x A.

5.3 System dynamics — eigenvalues and decay rates

The aim of this section is to determine the energies and decay rates of the eigen-
states of the system Hamiltonian Ha + Hg. We demonstrated in chapter 4 that this
diagonalization procedure is facilitated by the implications of the theorem derived
in Sec. 4.4. However, here we find the eigenvalues and eigenvectors with conven-
tional methods and compare our results with the predictions of the theorem. In a
first step (Sec. 5.3.1), we determine the eigenstates and eigenvalues of Hg. It will
turn out that the eigenstates of Hq are also eigenstates of Hp, provided that the
Zeeman splitting of the excited states vanishes (§ = 0). Section 5.3.2 discusses the
spontaneous decay rates of the eigenstates of Hq, and Sec. 5.3.3 is concerned with
the full diagonalization of Hp 4+ Hq for 6 # 0.

5.3.1 Diagonalization of Hg
We find the eigenstates and eigenenergies of Hg by the diagonalization of the two
3 x 3 matrices [Hq]a and [Hgqls which are defined in Eq. (5.9) and Eq. (5.11),

respectively. The eigenstates of Hq in the subspace A spanned by the antisymmetric
states are given by

[Wa) = sinflas) —cosflyy),

Wz = W),

[03) = cosBlag) + sinblp; ), (5.14)
where

6E) = —=[®]ay) £ e @ag) ] (5.15)

V2

We denote the eigenvalue of the state |12) by A2 and find
M =X =nmr, A=hmy, (5.16)

106



5.3. System dynamics — eigenvalues and decay rates

where
Qp = —72% [(1 = 7?) cos(n) +nsin(n)] ,
Qv = ’y% [cos(n) +nsin(n)] , (5.17)

and n = kgR. The parameters 2 and {2 are shown in Fig. 5.1 as a function of the
interatomic distance R.

The eigenstates of Hg in the subspace S spanned by the symmetric states are found
to be

[¥s) = sin]ss) —cosflyy),

Wi = i,

[W3) = cosf|sy) +sinfi), (5.18)
where ]

9e) = —=[e?s1) £ e ) ] (5.19)

V2

and the corresponding eigenvalues read
M=M= -npr, \X=-hy. (5.20)

Next we discuss several features of the eigenstates and eigenenergies of Hq. First,
note that two of the symmetric (antisymmetric) states are degenerate. Second, we
point out that the matrices [Hol4 and [Hgls consist of the coupling terms €2;;
which depend on the interatomic distance R and the angles 6 and ¢ [see Fig. 4.1

0.6
0.4
0.2

— Qr/v

--=- Qu/y

R/Xo

Figure 5.1: Plot of the vacuum induced energy shifts Qr and 2 as a function of the
interatomic distance R according to Eq. (5.17). These shifts enter the expressions
for the eigenvalues of Hq in Egs. (5.16) and (5.20). Note that Qp decreases with
1/R for large values of R, while Qy vanishes with 1/R2.
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CHAPTER 5: Coherent control in a decoherence-free subspace of a collective ...

and Eq. (4.12)]. On the contrary, the eigenstates [¢/¢) and [¢)?) depend only on the
angles # and ¢, but not on the interatomic distance R. Conversely, the eigenvalues
of Hq are only functions of the atomic separation R and do not depend on the
angles 6 and ¢. This remarkable result is consistent with the theorem that has been
derived in Sec. 4.4. The theorem states that the dipole-dipole induced energy shifts
between collective two-atom states depend on the length of the vector connecting
the atoms, but not on its orientation, provided that the level scheme of each atom
is modelled by complete sets of angular momentum multiplets. Since we take all
magnetic sublevels of the Sy <~ P; transition into account, the theorem applies to
the system shown in Fig. 4.1.

In Sec. 5.3.3, we show that the eigenstates |¢%) and |¢!) of Hg are also eigenstates
of Hp, provided that the Zeeman splitting § of the excited states vanishes. This
implies that the energy levels of the degenerate system (§ = 0) do not depend on
the angles 6 and ¢, but only on the interatomic distance R. From a physical point
of view, this result can be understood as follows. In the absence of a magnetic field
(6 = 0), there is no distinguished direction in space. Since the vacuum is isotropic
in free space, one expects that the energy levels of the system are invariant under
rotations of the separation vector R.

5.3.2 Decay rates

In order to find the decay rates that correspond to the Eigenstates |¢%) and |1¢) of
the Hamiltonian Hg, we project Eq. (4.8) onto these states and arrive at

0, (Elol) = 2T (uhloluf) + Cite)

Oy (Wilolvs) = —2T% (Pglelg) + Cs() .- (5.21)
In these equations, 2T% and 2T'% denote the decay rates of the states |¢%) and |¢¢),
respectively. The time-dependent functions CZ(t) and C%(t) describe the increase
of the populations (% |o[w?) and (1)%|o[)) due to spontaneous emission from states
li,7) (1,7 € {1,2,3}) where both atoms occupy an excited state. The explicit ex-
pressions for the coefficients T and T as a function of the parameter n = koR are
given by

1

F}l = I‘?L = 72—773 [2173 —3ncos(n) +3 (1 — 772) sin(n)] ,

1 .
rs = 8 (7 + 3ncos(n) — 3sin(n)] ,

1 .
F; = 1“§ = 72—773 [2773 + 3ncos(n) — 3 (1 — 772) sm(n)] ,

1 .
FZ’ = ’yﬁ [773 — 3ncos(n) + 3s1n(77)] . (5.22)

These functions do not depend on the angles 6 and ¢, but only on the interatomic
distance R. As for the dipole-dipole induced energy shifts of the states [1)?) and |t/%)
(see Sec. 5.3.1), this result is in agreement with the theorem derived in Sec 4.4.1.
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Figure 5.2: Dependence of the parameters I'. and I' on the interatomic distance
R according to Eq. (5.22). (a) In the limit R — 0, the I'’ tend to zero, and the
antisymmetric states |1 ) are subradiant. (b) The symmetric states |%) decay twice
as fast as compared to two independent atoms if R approaches zero.

While A} and A2 tend to —oo in the limit R — 0, A2 tends to +oco. The frequency
splitting of the excited states is § = 7. In (d), the A’ are shown as a function of the
interatomic distance R, the parameters are § = w/2 and 0 = ~.

Figure 5.2(a) shows the parameters I, as a function of R. The oscillations of I'} and
I'2 around v are damped with 1/R as R increases, and those of '3 decrease with
1/R%. Note that the oscillations of the frequency shifts \! display similar features
for R > Ao (see Sec. 5.3.1). It has been shown in Sec. 5.2 that any state within the
subspace A of antisymmetric states is completely stable for R — 0. Consequently,
the decay rates 2I") of the states |¢)}) tend to zero as R approaches zero. It can
be verified by numerical methods that I'} and I'? are smaller than the parameter
7 provided that R < 0.44 x \g, and I'3 does not exceed v if R < 0.72 x \g. For
R = 0.1 x \g, the coefficients I'? are smaller than 0.1 x . Although R is larger than
zero in an experiment, the states [¢%) decay much slower as compared to two non-
interacting atoms if R is sufficiently small. This shows that spontaneous emission
can be strongly suppressed within the subspace A of the antisymmetric states, even
for a realistic value of the interatomic distance R.

The parameters I'% are depicted in Fig. 5.2(b). In the limit R — 0, the coefficients I'
tend to 2. The symmetric states within the subspace S display thus superradiant
features since they decay faster as compared to two independent atoms.

5.3.3 Non-degenerate system

Here we discuss the diagonalization of Hx + Hq in the most general case where the
Zeeman splitting § of the excited states is different from zero. The matrix repre-
sentation of this Hamiltonian with respect to the states {|v}), [42), [43)} defined in
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Eq. (5.14) reads

wo+ Qp dcosb 0
[Hy + Hola=h| dcosf  woy+Qp —dsinf . (5.23)
0 —0sinf  wo+ Qn

In general, the eigenvalues of this matrix can be written in the form

El = h (wo -+ Acll) ,
Eg = h (wo + Az) ,
E} = h(wy+AY), (5.24)

where the frequency shifts A% depend only on the interatomic distance R and the
azimuthal angle 6, but not on the angle ¢. To illustrate this result, we consider a
plane spanned by e, and e, = (cos ¢,sin ¢,0), see Fig. 5.3. Within this plane, the
vector R = z e, + l ey is described by the parameters z and [, and Fig. 5.4(a)-(c)
shows A%(l,z) as a function of these variables. Since the A’ do not depend on ¢,
the energy surfaces shown in Fig. 5.4(a)-(c) remain the same if ey is rotated around
the z axis. This result follows from the fact that the Hamiltonian Ha in Eq. (4.1)
is invariant under rotations around the z axis (see Sec. 4.4.2).

In Sec. 5.5, we will focus on the geometrical setup where the atoms are aligned in
the -y plane (6 = 7/2). In this case, the frequency shifts A% of the antisymmetric
states are found to be

AL = QF,
Ag = (QF + QN)/2 — wB/2,
Ag = (QF—I-QN)/Q—I-WB/Q, (5.25)
where the Bohr frequency is given by
wp = \/452 + (QF — QN)2 . (526)
z
atom 2
atom 1 Y
=2
T

Figure 5.3: The atoms are aligned in a plane spanned by the unit vectors e, and
ey = (cos¢,sin$,0). Within this plane, the relative position of the two atoms
R = ze.+l ey is described by the parameters z and [. The energies of the eigenstates
of Hx + Hq depend only on z and [, but not on ¢.
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Figure 5.4: Plot of the energy shifts that determine the energy levels of the antisym-
metric states according to Eq. (5.24). In (a)-(c), the parameters A’ are shown in a
plane spanned by e, and eg = (cos ¢,sin ¢,0). The relative position R = ze, +leg
of the atoms in this plane is parameterized by z and [ (see also Fig. 5.3). Since the
A? do not depend on ¢, the energy surfaces shown in (a)-(c) do not change if ey is
rotated around the z axis.

A plot of the frequency shifts AY as a function of the interatomic distance R and
for @ = 7/2 is shown in Fig. 5.4(d). Note that the degeneracy and the level crossing
of the eigenvalues A} is removed for § # 0 (see Sec. 5.3.1). The eigenstates that
correspond to the frequency shifts in Eq. (5.25) read

lpe) = la2),
p2) = €e®sindg i) + cosValYy ),
lp2) = —e®cosWa|t) +sind, iy ), (5.27)

where § = |§]e® (&€ € {0,7}), the states |[¢pF) are defined in Eq. (5.15), and the angle
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¥, is determined by

9]

20y = =———=—,
tan 29 0 v

0<d, < g (5.28)
If the distance between the atoms is small such that R < 0.63Xx Ag, we have Qp < Q.
In this case, we find lims_q|p%) = [1%) and lims_g A%, = X!, where the eigenstates

|4¢) and the frequency shifts A/ of the degenerate system are defined in Eqs. (5.14)
and (5.16), respectively.

The matrix representation of Ha + Hq with respect to the symmetric states
{lvh), |02, |¢3)} defined in Eq. (5.18) is found to be

wo — QF dcosb 0
[Hpo + Hols=h| dcos  wog—Qp —0sinfb . (5.29)
0 —0sinf  wp— QN

Just as in the case of the antisymmetric states, the eigenvalues of [Hp + Hg|s are
written as

Esl h (u)o + A;) ,
Eg = h (wo + Ag) s
E} = n(wo+A2), (5.30)

and the frequency shifts A% depend only on the interatomic distance R and the
azimuthal angle 6.

If the atoms are aligned in the z-y plane (§ = 7/2), the frequency shifts A% of the
symmetric states are given by

A; = _QF7
Ag = —(QF—i-QN)/Q—l-wB/Q,
A2 = —(Qr+Qn)/2 -wB/2, (5.31)

and the corresponding eigenstates are

lph) = |s2),
—e* cos Is|T) + sindg|s ),

|2
p2) = esindpf) + cos Vsl ). (5.32)

The states |1)F) are defined in Eq. (5.19), 6 = [6]e® (¢ € {0,7}), and the angle ¥
is determined by

_ 1 m
v 0y O<198<2. (5.33)

For small values of the interatomic distance R such that Qp < Qy, we find
limg_q %) = |[¢%) and lims_g AL = X%, where the eigenstates [1/1) and the frequency
shifts AL of the degenerate system are defined in Eqgs. (5.18) and (5.20), respectively.
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Figure 5.5: Complete level scheme of the non-degenerate system (§ # 0). For the
special geometrical setup where the atoms are aligned in the z-y plane (6 = 7/2),
the analytical expressions for the states |¢%), |p%) and the frequency shifts A%, AL
are given in Egs. (5.27), (5.32), (5.25) and (5.31), respectively. The frequency shifts
Al (AY) of the antisymmetric (symmetric) states and the splitting of the excited
states are not to scale. Note that the frequency shifts A2 and A% depend on the
relative position of the atoms.

Finally, we note that the ground state |4,4) and the excited states |i,j) (i,j €
{1,2,3}) are eigenstates of Hx + Hq. These states together with the symmetric and
antisymmetric eigenstates of Ha + Hq form the new basis of the total state space
Hsys. The complete level scheme of the non-degenerate system is shown in Fig. 5.5.

5.4 Population of the decoherence free subspace

In this section we describe a method that allows to populate the subspace A spanned
by the antisymmetric states. For simplicity, we restrict the analysis to the degenerate
system (§ = 0) and show how the states |1)}) can be populated selectively by means
of an external laser field. However, a laser field cannot induce direct transitions
between the ground state |4,4) and |¢!) as long as the electric field at the position of
atom 1 is identical to the field at the location of atom 2. By contrast, a direct driving
of the antisymmetric states is possible provided that one can realize a field gradient
between the positions of the two atoms. Since we consider an interatomic spacing R
that is smaller than A\g/2 such that the states in A are subradiant, the realization of
this field gradient is an experimentally challenging task. Several authors proposed
a setup where the atoms are placed symmetrically around the node of a standing
light field [14, 107], and this method also allows to address the states of our system
individually. Other methods [11, 14, 130] rest on the assumption that the atoms
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2w 4 11,2)  12,1)  [13) I3,1)  [23) 3,2
wo+QF 4 -
[vz)

0 Jo o _____
[4,4)

Figure 5.6: Laser-induced coupling of [¢2) to the excited states |i,j) (i,j € {1,2,3})
in the case of the degenerate system. States that are not directly coupled to |t/2)
have been omitted (except for the ground state). The laser polarization that couples
the antisymmetric state |1)2) to a state |i, ) (4,7 € {1,2,3}) is indicated next to the
respective transition. |¢)2) is completely decoupled from a y-polarized laser field.

are non-identical and cannot be applied to our system comprised of two identical
atoms.

Here we describe a method that allows to populate the states |1?) individually and
that does not require a field gradient between the positions of the two atoms. It rests
on a finite distance between the atoms and exploits the fact that the antisymmetric
states may be populated by spontaneous emission from the excited states |i, ) (i,7 €
{1,2,3}). For a given geometrical setup, we choose a coordinate system where the
unit vector e, coincides with the separation vector R. In this case, we have § = /2
and ¢ = 0. The z direction is determined by the external magnetic field and can
be chosen in any direction perpendicular to R. The polarization vector of the laser
field propagating in z direction lies in the z-y plane and can be adjusted as needed,
see Eq. (4.14). In the presence of the laser, the atomic evolution is governed by
the master equation (4.15). We find that the coupling of the states [1%) to the
excited states |i,7) (4,7 € {1,2,3}) depends on the polarization of the laser field
(see Table 5.1 and Fig. 5.6). In particular, it is found that |¢)}) does not couple to
z-polarized light, |42) does not couple to y-polarized light and |¢3) does not couple
to a-polarized light. At the same time, the states |%) are populated by spontaneous
emission from the excited states. This fact together with the polarization dependent
coupling of the antisymmetric states allows to populate the states [%) selectively.
In order to populate state [)2), for example, one has to shine in a y-polarized field.
Since the spontaneous decay of |2) is slow and since |¢)2) is decoupled from the
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o) | W2 | 102)
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)
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Table 5.1: Polarization of the external laser field that couples an antisymmetric state
|48) to an excited state |i,7) (4,7 € {1,2,3}) for § = 0. Note that |[¢)}) does not
couple to z-polarized light, |1)2) does not couple to y-polarized light and |+/!) does
not couple to xz-polarized light. See also Fig. 5.6.

laser, population can accumulate in this state. On the other hand, the states |¢})
and |13) are depopulated by the laser coupling to the excited states. This situation
is shown in Fig. 5.7(a) for two different values of the interatomic distance R. The
initial state at ¢ = 0 is |4,4), and for ¢-v = 20 the population of [¢)2) is approximately
1/4. Since all coherences between [)2) and any other state are zero, the probability
to find the system at ¢t = 20/v in the pure state [¢)2) is given by 1/4.

The exact steady state solution of Eq. (4.15) is difficult to obtain analytically.
However, one can determine the steady state value of (12|p[1)2) with the help of
Eq. (5.21),

(W2owlu?) = | lim C2()] /(22). (5.34)

The population of [¢)2) in steady state is thus limited by the population of the
relevant excited states that are populated by the y-polarized laser field and that
decay spontaneously to [1/2). Furthermore, it is possible to gain some insight into
the time evolution of (1)2|o|12). For a strong laser field and for a small value of R,
C? reaches the steady state on a timescale that is fast as compared to 1/(2I'2). We
may thus replace C? by its steady state value in Eq. (5.21). The solution of this
differential equation is

(Wilolv) ~ A==

and reproduces the exact time evolution of (¢2|g[1)2) according to Fig. 5.7(a) quite
well. Moreover, it becomes now clear why it takes longer until the population of
|9h2) reaches its steady state if the interatomic distance R is reduced since the decay
rate 2I'2 approaches zero as R — 0.

So far, we considered only the population of |[¢)2), but the treatment of |¢}) and
|43} is completely analogous. The population of |¢/3) by a z-polarized field is shown
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Figure 5.7: Time-dependent population of the states |%) for different polarizations
of the driving field. The initial state at ¢t = 0 is |4,4). The parameters are 6 = 7/2,
¢ = 0,6 =0 and Ay = 0. (a) Population of |¢2) for Q,(r1) = Qy(rs) = 5.
The states [) and |43) are not populated. (b) Population of [12) for Q,(r1) =
Q. (r9) = 5. The states |h}) and |12) are not populated.

in Fig. 5.7(b). The differences between plot (a) and (b) arise since the decay rates
of |12) and [h3) are different for the same value of R (see Sec. 5.3.2). In general,
the presented method may also be employed to populate the antisymmetric states
of the non-degenerate system selectively. In this case, the polarization of the field
needed to populate a state |’) is a function of the detuning 6.

In conclusion, the discussed method allows to populate the antisymmetric states
selectively, provided that the interatomic distance is larger than zero. If the inter-
atomic distance is reduced, a longer interaction time with the laser field is required
to reach the maximal value of (1¢|o[%) ~ 1/4. Note that a finite distance between
the atoms is also required in the case of other schemes where the atoms are placed
symmetrically around the node of a standing light field [14, 107]. While the latter
method allows, at least in principle, for a complete population transfer to the anti-
symmetric states, its experimental realization is difficult for two nearby atoms. By
contrast, our scheme does not require a field gradient between the atoms and is thus
easier to implement. It has been pointed out that the population transfer to the
antisymmetric states is limited by the population of the excited states that spon-
taneously decay to an antisymmetric state [¢%). Although this limit is difficult to
overcome, an improvement can be achieved if the fluorescence intensity is observed
while the atom is irradiated by the laser. As soon as the system decays into one
of the states |t/%), the fluorescence signal is interrupted for a time period that is on
the order of 1/(2I'%) (see Sec. 5.3.2). The dark periods in the fluorescence signal
reveal thus the spontaneous emission events that lead to the population of one of
the antisymmetric states.
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5.5 Inducing dynamics within the subspace A

In this Section we assume that the system has been prepared in the antisymmetric
state [1)2), for example by one of the methods described in Sec. 5.4. The aim is to
induce a controlled dynamics in the subspace A of the antisymmetric states. We
suppose that the atoms are aligned along the x axis, i.e. § = 7/2 and ¢ = 0.
According to Eq. (5.23), the state [2) is then only coupled to |¢3). Apart from a
constant, the Hamiltonian Hg that governs the unitary time evolution in the space
Q spanned by {|[42), |¥3)} can be written as

_ —(Qn —Qp)/2 =6
Hg‘h< 5 (QN—QF)/2>

where the vector o = {0,,0,,0.} consists of the Pauli matrices o;, and the unit
vector v is defined as
ﬁ:—(2(5,0,QN—QF)/wB. (537)

The Bohr frequency wp is the difference between the eigenvalues of Hg and is given
in Eq. (5.26) of Sec. 5.3.3. Equation (5.36) implies that the parameter 6 which can
be adjusted by means of the external magnetic field introduces a coupling between
the states [02) and [3). If the initial state is [1/2), the final state |¢)z) reads

[Wr(t)) = U(t,0)[¢2), (5.38)

where U = exp(—iHgt/h) is the time evolution operator. The time evolution in-
duced by Hg can be described in a simple way in the Bloch sphere picture [5]. The
Bloch vector of the state |[¢p(t)) is defined as

B(t) = (Yr(t)|o|dr(t)) - (5.39)

Initially, this vector points into the positive z direction. The time evolution operator
U rotates this vector on the Bloch sphere around the axis nn by an angle wpt.
According to Eq. (5.37), the axis of rotation lies in the x-z plane and its orientation
depends on the parameter § which can be controlled by means of the magnetic field.
In order to demonstrate these analytical considerations, we numerically integrate
the master equation (4.5) with the initial condition o(t = 0) = [)2)(1)2|. We define
a projector onto the space spanned by {|y2), [1/3)},

P = 2) (2] + [y (W3] (5.40)

The generalized Bloch vector is then defined as
Bn(t) = Tr [aﬁg(t)ﬁ} . (5.41)

In contrast to B, By is not necessarily a unit vector, but its length can be smaller
than unity due to spontaneous emission from |12) and [¢3) to the ground state.
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Figure 5.8: Bloch sphere representation of the system dynamics in the subspace Q
spanned by the states {[1/2), |¢3)}. At t = 0, the system is in the pure state [¢2) and
a static magnetic field is switched on. The Bloch vector is rotated around an axis
in the z-z plane, and the tilt of this axis in = direction increases with the magnetic
field strength. The value of the parameter 0 is (a) 6 = 3.15 x 7, (b) § = 4.83 x v
and (c¢) 6 =6.22 x 7, and we chose R = 0.1 X A.

Figure 5.8 shows the evolution of By for different values of the parameter § which
depends on the magnetic field strength. Let S = {S5;,S5,,5.} be a point on the
Bloch sphere that lies not in the y-z plane (S, # 0). If one chooses the parameter
6 according to

1-—

5=
2|5, |

‘QF QN‘ Sign(Sx) s (5.42)

then S lies on the orbit of the rotating Bloch vector B if spontaneous emission is
negligible. According to Eq. (5.42), any point close to the y-z plane requires large
values of § since |§| diverges for S, — 0. The dynamics that can be induced by a
static magnetic field is thus restricted, particularly because we are only considering
the regime of the linear Zeeman effect.

These limitations can be overcome if a radio-frequency (RF) field is applied instead
of a static magnetic field. If the RF field oscillates along the z axis, the Hamiltonian
Hy in Eq. (4.1) has to be replaced by

= hwp ZZ SHSH 4 Vie(t) (5.43)

i=1 p=1

where

2
=215(t) Y ( ﬂs(“)) (5.44)

p=1

118



5.5. Inducing dynamics within the subspace A

Figure 5.9: Complete population transfer from [¢)2) to [1/2) by means of a resonant
RF field. At t = 0, the Bloch vector By points into the positive z direction.
At t = 7/Q, the state of the system is [¢3) and By points into the negative z
direction. Note that the length of By is slightly smaller than unity for ¢ > 0 due to
the small probability of spontaneous emission to the ground state. The parameters
are R =0.05 x Ay, 0o =, ¢t = 7 and Ay = 0.

describes the interaction with the RF field and
5(t) = 0 cos(wret + Prf) - (5.45)

In this equation, the magnitude of do(> 0) depends on the amplitude of the RF field,
and w,r and ¢,¢ are the frequency and phase of the RF field, respectively. We assume
that the interatomic distance of the atoms is smaller than R = 0.63 X Ag. In this
case, the dipole-dipole interaction raises the energy of |¢2) with respect to [1/2), and
the frequency difference between these two states is Qny — Qg > 0. Furthermore, we
suppose that the detuning Ay = wy— (Qy —Qr) of the RF field with the [12) « [/3)
transition and the parameter Jp are small as compared to (Q2x — Q) such that the
rotating-wave approximation can be employed. In a frame rotating with w,¢, the
system dynamics in the subspace Q spanned by {[1/2), [¢)3)} is then governed by the
Hamiltonian

Her _5 ( Arf/2 ' _50 eXp(i¢rf) >
_50 eXp(_qurf) _Arf/2
= hQrf ﬁrf : 0/2 ) (546)
where
ﬁrf = (_250 COs ¢rf7 _250 sin ¢rf7 Arf) /Qrf (547)

and Q. = \/Aff—l— 4|6p|2. For a resonant RF field (A, = 0), the axis 7i,¢ lies in
the x-y plane of the Bloch sphere, and its orientation can be adjusted at will by
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the phase ¢, of the RF field. Any single-qubit operation can thus be realized by a
sequence of suitable RF pulses [5]. In particular, a complete transfer of population
from [12) to [1)3) can be achieved by a resonant RF pulse with a duration of 7/
and an arbitrary phase ¢.¢.

Next we demonstrate that the Hamiltonian H er in Eq. (5.46) describes the system
dynamics quite well if the atoms are close to each other such that spontaneous emis-
sion is strongly suppressed. For this, we transform the master equation (4.5) with
Hff instead of Ha in a frame rotating with w,s. The resulting equation is integrated
numerically without making the rotating-wave approximation. We suppose that the
system is initially in the state |¢)2), and the phase of the resonant RF field has
been set to ¢, = m. Figure 5.9 shows the time evolution of the Bloch vector B .
As predicted by Eq. (5.46), the Bloch vector is rotated around the z axis and at
t = 7/, By points in the negative z direction. Due to the small probability of
spontaneous emission to the ground state, the length of By is slightly smaller than
unity (|By| =0.95) at t = 7/Qy.

Finally, we briefly discuss how the final state [¢p(t)) could be measured. In principle,
one can exploit the polarization-dependent coupling of the states [)2) and |12) to
the excited states (see Sec. 5.4). For example, one could ionize the system in a two-
step process, where [1)2) (|13)) is first resonantly coupled to the excited states |i, )
(i,7 € {1,2,3}). A second laser then ionizes the system, and the ionization rate is a
measure for the population of state [4)2) (|#3)). Another possibility is to shine in a
single laser whose frequency is just high enough to ionize the system starting from
|93). Since the energy of [13) is higher than those of |1/2), the ionization rate is a
measure for the population of state |¢3).

5.6 Entanglement of the collective two-atom states

In Sec. 5.3.1, we determined the collective two-atom states |1) and [i?) that are
formed by the coherent part of the dipole-dipole interaction. Here we show that these
states are entangled, i.e. they cannot be written as a single tensor product |11) ® |1)2)
of two single-atom states. In order to quantify the degree of entanglement, we
calculate the concurrence [131, 132] of the pure states [¢)%) and |¢%). The concurrence
for a pure state |112) of the two-atom state space Hgys = H1 ® Hz is defined as [132]

C(lth12)) = \/2[1 — Tr(e})] (5.48)

Here p; = Try(p) denotes the reduced density operator of atom 1. The concurrence
C of a maximally entangled state in Hgys is Cryax = \/m, and C'is zero for product
states [132]. We find that the antisymmetric and symmetric states [%) and |¢¢) are
entangled, but the degree of entanglement is not maximal,

C(lg)) = C(195)) = 1 < Crmax - (5.49)

Next we compare this result to the corresponding results for a pair of interacting
two-level systems with ground state |g) and excited state |e). In this case, the
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exchange interaction gives rise to the entangled states [11, 14, 73]

) = %(\e,w + |g,e)) (5.50)

with C(|£)) = 1. It follows that the degree of entanglement of the states |£) is the
same than the degree of entanglement of the symmetric and antisymmetric states of
two four-level systems. On the other hand, the states |+) are maximally entangled
in the state space of two two-level systems. This is in contrast to the states |¢7)
and [¢!) which are not maximally entangled in the state space of two four-level
atoms. Note that the system of two four-level atoms shown in Fig. 4.1 may be
reduced to a pair of two-level systems if the atoms are aligned along the z axis.
For this particular setup, all cross-coupling terms €);; and I';; with ¢ # j vanish
[see Egs. (4.12) and (4.13)] such that an arbitrary sublevel of the P; triplet and the
ground state Sy form an effective two-level system.

In Sec. 5.5, we showed that a static magnetic or RF field can induce a controlled
dynamics between the states |)2) and |)3). We find that the degree of entanglement
of an arbitrary superposition state

[Yup) = alvd) + bY3) (5.51)

with |a|? + [b|> = 1 is given by C(|thsup)) = 1. It follows that the degree of en-
tanglement is not influenced by the induced dynamics between the states [1/2) and
¥3)-

Finally, we point out that the antisymmetric states [1) can be populated selectively,
for example by the method introduced in Sec. 5.4. Since the spontaneous decay of the
antisymmetric states is suppressed if the interatomic distance is small as compared
to mean transition wavelength Ay, we have shown that the system can be prepared
in long-lived entangled states.

5.7 Summary and discussion

We have shown that the state space of two dipole-dipole interacting four-level atoms
contains a four-dimensional decoherence-free subspace (DFS) if the interatomic dis-
tance approaches zero. If the separation of the atoms is larger than zero but small
as compared to the wavelength of the Sy <» P transition, the spontaneous decay of
states within the DFS is suppressed. In addition, we have shown that the system
dynamics within the DFS is closed, i.e., the coherent part of the dipole-dipole inter-
action does not introduce a coupling between states of the DFS and states outside
of the DFS.

In the case of degenerate excited states (6 = 0), we find that the energy levels depend
only on the interatomic distance R, but not on the angles ¢ and ¢. This result
reflects the fact that each atom is modelled by complete sets of angular momentum
multiplets (see Sec. 4.4.1). We identified two antisymmetric collective states (|t/2)
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and [¢2)) within the DFS that can be employed to represent a qubit. The storing
times of the qubit state depend on the interatomic distance R and can be significantly
longer than the inverse decay rate of the Sy <= P; transition. Moreover, any single-
qubit operation can be realized via a sequence of suitable RF pulses. The energy
splitting between the states |12) and [+)3) arises from the coherent dipole-dipole
interaction between the atoms and is on the order of 10y = (10 — 1000) MHz in the
relevant interatomic distance range. The coupling strength between the RF field
and the atoms is characterized by the parameter §y which is on the order of up By,
where pp is the Bohr magneton and By is the amplitude of the RF field. Since up
is about 3 orders of magnitude larger than the nuclear magneton, typical operation
times of our system may be significantly shorter than for a nuclear spin system.
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Non-classical states of the
radiation field
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Chapter 6

Two-mode single-atom laser as
a source of entangled light

6.1 Introduction

Quantum entanglement is known to be the key resource in many applications of
quantum information and quantum computing [5]. These phenomena range from
quantum teleportation [133, 134] and quantum cryptography [135] to quantum im-
plementation of Shor’s algorithm [136] and quantum search [137]. It is therefore
not surprising that there has been a great deal of interest in the generation and
measurement of entanglement in recent years.

Entangled states have been considered traditionally between individual qubits. How-
ever, it has been shown that continuous variable entanglement can offer an advantage
in some situations in quantum information science [138]. One reason for this is that
continuous variable entanglement often can be prepared unconditionally, whereas
the preparation of discrete entanglement usually relies on an event selection via
coincidence measurements. The classic scheme for the generation of continuous
variable entanglement is the parametric down-conversion. Starting with the first
demonstration by Ou et al. [139], the generation of entanglement in such systems
has been achieved in several experiments [138]. It still remains, however, a chal-
lenge to generate entanglement in macroscopic light rather than on the few photon
level. Promising candidates for the generation of macroscopic light entanglement
are optical amplifiers [140-144]. For example, it was shown recently that a two-
mode correlated spontaneous emission laser (CEL) [145, 146] can lead to two-mode
entanglement even when the average photon number in the field modes are very
large [143, 144]. In this setup, the gain medium can be thought of as a stream of
suitably prepared atoms.

From a conceptual point of view, a much simpler system relates to a single atom
laser, where the gain medium is replaced by a single trapped atom. Such a laser has
recently been experimentally demonstrated by Kimble’s group [147], where a sin-
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gle atom interacts with a single cavity mode. Thus the interesting question arises,
whether a two-mode generalization of the single-atom laser also enables one to gen-
erate entanglement in macroscopic light.

Therefore, here we consider a single atom that interacts with two quantized modes
of a doubly resonant cavity via two lasing transitions. In our model, the atomic
level scheme is based on the single-atom laser experiment performed by Kimble’s
group [147], where dipole transitions between four hyperfine levels of atomic caesium
were considered. In contrast to their experiment, we do not work in the strong
coupling regime since we are interested in the generation of large photon numbers.
We show that, under certain realizable conditions, a two-mode single-atom laser can
serve as a source of macroscopic entangled light. Macroscopic entanglement can be
achieved over a wide range of control parameters and initial states of the cavity field.

An important technical question in the generation of continuous variable entangle-
ment in quantum optical systems is the way such entanglement can be measured
experimentally. This is a hotly discussed subject in recent years. Several inequali-
ties involving the correlation of the field operators have been derived that are based
on the separability condition of the field modes [148-155]. A violation of these in-
equalities provides an evidence of entanglement. These inequalities can, in general,
provide only a sufficient condition for entanglement and only, in some very specific
instances, lead to sufficient and necessary conditions for entanglement. In this chap-
ter we employ the inequality based on quadrature measurement of the field variables
for the test of entanglement.

6.2 Master equation for the density operator of the cav-
ity modes

We consider a single four-level atom trapped in a doubly resonant cavity (see
Fig. 6.1). The atom interacts with two (nondegenerate) cavity modes and two
classical laser fields. The intensities and frequencies of the two laser fields can be
adjusted independently. The aim of this section is to derive an equation of motion
for the reduced density operator gr of the two cavity modes.

We begin with a detailed description of the system shown in Fig. 6.1. The first
cavity mode with frequency vy couples to the atomic transition |a) < |c), and the
second mode with frequency vy interacts with the atom on the |b) < |d) transition.
In rotating-wave approximation (RWA), the interaction of the atom with the cavity
modes is described by the Hamiltonian

Hc = hgiai|a)(c| + hgaaz2|b)(d| + H.c.. (6.1)

Here a; (a;r-) is the annihilation (creation) operator of the cavity mode with frequency
vj and coupling constant g; (j € {1,2}). The detuning of the first cavity mode with
the |a) < |c) transition is denoted by Aj, and Ay is the detuning of the second
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1’74
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x x |d>

Figure 6.1: A single four-level atom is trapped in a doubly resonant cavity and
interacts with two cavity modes and two classical laser fields. The inset shows
the atomic level scheme. The laser field with frequency ws and Rabi frequency
Q3 couples to the |a) < |d) transition, and the cavity mode with frequency v and
coupling constant g; interacts with the |a) < |c) transition. A, is the detuning of the
fields 3 and g1 with state |a). The laser field with frequency wy and Rabi frequency
Q4 drives the |b) < |c) transition, and the second cavity mode with frequency v
and coupling constant go interacts with the |b) < |d) transition. Ay is the detuning
of the fields Q4 and go with state |b). Spontaneous emission is denoted by dashed
arrows, and the parameters -; are the decay rates of the various transitions.

mode with the |b) < |d) transition,
Al = V] — Wqce, Ag = V9 — Wpd - (62)

The resonance frequencies on the |a) < |¢) and |b) < |d) transitions have been la-
beled by wg. and wyy, respectively. In addition, the atom interacts with two classical
laser fields. The first laser field with frequency w3 and Rabi frequency 23 couples to
the |a) < |d) transition, and the second field with frequency wy and Rabi frequency
Q4 coherently drives the |b) < |c) transition. In rotating-wave approximation, the
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atom-laser interaction reads
Hy, = —hQ3a)(d|e” 3t — hQy|b)(cle™™** + H.c.. (6.3)

Note that the Rabi frequencies Q3 = Q3] exp(i¢3) and Q4 = || exp(i¢4) are com-
plex numbers, and ¢3 and ¢4 are determined by the phase of the laser fields. The
detuning of the laser fields with the corresponding atomic transitions are

A3 =w3 —Wed, As4=ws— wy, (6.4)

where w,q and wyp, are the resonance frequencies on the |a) < |d) and |[b) < |c)
transitions, respectively.

The free time evolution of the cavity modes is governed by
Hg = hl/la;al + hl/Q(I;ag, (6.5)
and Hp is the free Hamiltonian of the atomic degrees of freedom,
Hy = hwala)(al + huwp|b) (b] + hwe|c)(c| + hwqld)(d] . (6.6)

With these definitions, we arrive at the master equation for the combined system of
the atomic degrees of freedom and the two cavity modes,

. 7
Qz—ﬁ[HR+HA+HL+H079]+EwQ- (6.7)

The last term in Eq. (6.7) accounts for spontaneous emission and is given by (see
chapter 1)

4
1
Lyo=—5 > % (S8 o+ 0SS — 287 0S]) (6.8)
i=1
where the atomic transition operators are defined as
ST =la)(d], S5 = la)(¢|,
S5 =1b)(cl, SF=o)dl, S =(SH (6.9)
The parameters 7; are the decay rates of the various atomic transitions (see Fig. 6.1).

Note that the presence of the cavity may change the analytical expression in Eq. (1.46)
for the decay rates [11]. In addition, we have neglected all cross-decay terms.

In a next step, we derive from Eq. (2.7) the master equation for the density operator
or of the cavity modes,

or = Trao = 0aa + 0bb + Occ + 0dd (6.10)

and g, denotes (v|p|v). To this end, we apply a unitary transformation W =
Wgr®@ W to Eq. (2.7), where Wg = exp[iHrt/h] acts only on the cavity modes, and

W =expli(Ha + hiAs|a)(a] + hAg|b) (b])t/H] (6.11)
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acts only on the atomic degrees of freedom. As indicated in Fig. 6.1, we assume that
the condition of two-photon resonance is fulfilled, i.e.

Ap=Ar =Nz, Ay=Ay=A,. (6.12)

The density operator in the new frame is denoted by § = WpW ' and obeys the
equation of motion ‘
i

h

0 [Ho + Hc, 8) + £43, (6.13)

where
Hy = —hAla)(a] — hA|b)(b] — B (Qs]a)(d| + Q4|b){c| + H.c.) . (6.14)

The two-photon condition Eq. (6.12) ensures that the Hamiltonian Hy + Hc in
Eq. (6.13) is time-independent. The master equation for the transformed density

operator gp of the cavity modes is obtained if we trace over the atomic degrees of
freedom in Eq. (6.13),

or = —igi[al, Gac] — ig2lal, apa) + Hee. . (6.15)

In order to eliminate the coherences g4, and gpg from Eq. (6.15), we apply the
standard methods of laser theory (see, e.g., Chapter 14 in [1]). We restrict the
analysis to the linear theory and solve Eq. (6.13) to first order in the coupling
constants g; and go. To this end, we expand the density operator g in Eq. (6.13)
as 0 = o9 + oc and retain only terms up to first order with respect to Hg. This
procedure yields two uncoupled equations for g9 and oc,

00 =L000 (6.16)

7
HCvQO] ’ (617)

g
oc =Looc h[

and the superoperator Ly is defined as

i
Lo() = —ﬁ[Ho, T+ Ly(). (6.18)
Here the centered dot denotes the position of the argument of £y. The zeroth-order
equation (6.16) describes the interaction of the atom with the classical laser fields to
all orders, and Eq. (6.17) is the first-order equation. The steady state solution for g4
and gpg can be obtained if the steady-state solution for gy is plugged in Eq. (6.17).
We find

191 0ac = Q11G10F + aua;éF + B110ra1 + 612§Fa£ ;
1g20pd = Qi22020F + a2laJ{§F + [a20raz + (21 @FGJ{ ; (6.19)

and the coefficients «;; and (;; are defined in Appendix 6.A. Next we substitute
Eq. (6.19) in Eq. (6.15) to obtain the equation of motion for gp. Finally, we transform
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or back with respect to Wgr and obtain the equation of motion for the density
operator g of the cavity modes,

gr = —ivi|alar, oF) — i vofalas, op] (6.20)
- [allaialgF + oy oralar — (11 + ofy)aroral
—Biaialor — Brioraral + (Bu + ﬁn)%QFm]
- [ama;am + abyorabag — (aga + aby)asoral

—ﬁmaza;@F - ﬁzwmzag (B2 + ﬁm)agQF@]

— [(0412 + 0421)61105@ — (Bi2 + ﬁzl)QFaIag

—(az1 — fr2)al oral — a1z — ﬁm)a;QFaI] exp|[—i(vy + v2)t]
- [(071‘2 + aby)oraraz — (Biy + B31)a1a20r

— (a1 — Bi)asgrar — (afy — B)areraz | expli( + )t

— K1 <GJ{(11QF + orajar — 2a19FaD — K2 <a£a29F + orajaz — 2a29Fa£) :
In the last line of Eq. (6.20), we included the damping of the cavity field. The
damping constants of the cavity modes are denoted by 1 and ko, respectively.

In the master equation (6.20), the two classical laser fields are taken into account
to all orders in the Rabi frequencies Q23 and 4. On the contrary, the two quantum
fields inside the cavity are only treated to second order in the coupling constants g;
and go. This approximation means that we ignore saturation effects and operate in
the regime of linear amplification. It is justified if the Rabi frequencies associated
with the quantum fields are small as compared to other system parameters which
dominate the time evolution.

6.3 Entanglement of the cavity field

In this Section we show that the system depicted in Fig. 6.1 can serve as a source
of macroscopic entangled light. We employ the sufficient inseparability criterion
derived in [149] to provide evidence for the entanglement of the two field modes.

By definition, the quantum state g of the cavity field is said to be entangled if and
only if it is nonseparable, and gr is separable if and only if it can be written as

oF = Zp]@ 0. (6.21)

130



6.3. Entanglement of the cavity field

Here Q§-1) and Q§-2) are normalized states of the modes 1 and 2, respectively, and

the parameters p; > 0 comply with > .p; = 1. The criterion derived in [149]
states that the system is in an entangled quantum state if the total variance of two
Einstein-Podolsky-Rosen (EPR) type operators @ and © of the two modes satisfy the
inequality

{ (A9)* + (AD)* ) < 2, (6.22)

where
=21+ s, U =p1 —Pa. (623)

Here 2, and p; are local operators which correspond to mode k& with frequency vy.
They must obey the commutation relation

[k, 1] = 6kt » (6.24)

but are otherwise arbitrary. For the physical system considered here, it turns out
that the following quadrature operators

Bp = (b +bL)/V2 and  pr = (b — bl)/(v/20) (6.25)
are the best choice, where
bi(t) = ay explivgt] and b;i(t) = aL exp[—ivgt] . (6.26)

With the help of Egs. (6.23) and (6.25), we express the total variance of the operators
. and 0 in terms of the operators b, and bL,

( (Ad)? + (AD)? ) =2 [1 4 (blb ) + (Bhbo ) + (biby) + (b]b)) (6.27)

— (D1 ){B]) = (b2 )(BE) — (b1 )(ba) — (b])(B})] -

In Appendix 6.A, we outline the calculation of the mean values that enter Eq. (6.27).

Next we classify several parameter regimes for which the inequality (6.22) is fulfilled.
In a first step, we consider the case where the Rabi frequency |Q23| and the detuning
Ay are much larger than the parameters |Ag|, [Q4], v (¢ € {1,2,3,4}), i.e.

’93‘7 ’Ab‘ > ’Aa’7 ‘94‘7 Vi - (628)

If these conditions are fulfilled, the parameters «;; and (3;; in Eqgs. (6.36)-(6.43) of
Appendix 6.A reduce to

a1 =0, az ~0, B11 =0, B2 ~0,

a1 =0, B2 = 0, a1z = fo1 = —iaexpli(Ps + da)t],

o= gigy 1
2I0s0A,

(6.29)
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Figure 6.2: (a) Time evolution of ( (Ad)? + (A?)?). The mean value of the total
number of photons ( N') is shown in (b) on a logarithmic scale. At ¢ = 0, the
cavity field is assumed to be in the vacuum state. The dashed curves were obtained
with the density operator of the parametric oscillator in Eq. (6.30), and the solid
curves correspond to the full density operator in Eq. (6.20). The parameters are
g1 =92 =g, || = 259, [Q| =29, 1 =2 =13 =1 =59, Au =0, Ay = 40g,
k1 = kg = 1073g and ¢3 + ¢4 = /2.

In these equations, ¢3 and ¢4 are the phases of the classical laser fields with Rabi
frequencies Q3 = |Qs]exp(i¢s) and |Q4]exp(igs), respectively (see Sec. 6.2). If
the approximate parameters in Eq. (6.29) are plugged in Eq. (6.20), we obtain the
equation of motion for the density operator gp of the cavity modes in the limit (6.28),

or = —ivilalay, or] — ivaadas, oF] + i[Hp, or]

—K (aialgp + gpaial — 2a1gFaJ{ + a%aggp + gpa;ag — 2a29pa;> ,  (6.30)

where

Hp :aaiag expli(¢s + ¢a)t] exp[—i(v1 + 12)t]

+ aajag exp[—i(¢ps + ¢4)t] expli(vy + vo)t]. (6.31)

Here we assumed for the sake of simplicity that the decay rates of the cavity modes
are equal, k1 = ko = k. We identify Eq. (6.30) as the master equation for a
nondegenerate parametric oscillator in the parametric approximation [1]. Note
that this parametric limit was also obtained in the case of a two-mode correlated
spontaneous emission laser discussed in [143]. Next we evaluate the total vari-
ance of the operators @ and ¢ in Eq. (6.27) and the mean number of photons
(N)={( Ial + a£a2> = (bibl + b£b2> with the approximate density operator gr in
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Eq. (6.30). If the sum of the laser phases obeys ¢3 + ¢4 = 7/2, we obtain [143]

(802 + (807 )0 = |{ (80 + (80 J0) - 2] ey 2 o)
. ) o2
(N)(t) = [<N>(0) - m} cosh(2at)e 2t
ak o?
- [m + (aaz + alal >(O)} sinh(2at)e™ 2 + poppE (6.33)

It follows from Eq. (6.32) that the entanglement criterion in Eq. (6.22) is satisfied
for any initial state of the cavity field if (o + k)t > 1 and a > 0 [143] . The time
evolution of the total variance of the operators @ and ¢ is shown in Fig. 6.2(a). The
dashed curve shows ((Ad)? 4+ (A0)?) according to Eq. (6.32), and the solid line
corresponds to the general case where the mean values in Eq. (6.27) are evaluated
with the full density operator gr in Eq. (6.20). The cavity modes are assumed to
be in the vacuum state initially, and the parameters comply with condition (6.28).
It follows from Fig. 6.2 that the approximate result in Eq. (6.32) is only in good
agreement with the exact solution if gt < 300. While the light field remains in an
entangled state in the parametric case, the exact solution demonstrates that the
entanglement of the cavity field exists only for a finite period of time.

Next we discuss the time evolution of the mean number of photons ( N ). According
to Eq. (6.33), (]\7 ) grows exponentially with time for any initial state of the cavity
field, provided that (o — k)t > 1 and o > & [143]. The time evolution of (N') is
shown in Fig. 6.2(b) on a logarithmic scale. In contrast to { (Ad)?+(A0)?), the result
for (N) in the parametric approximation (dashed line) is in good agreement with
the exact solution (solid line) even for gt > 300. Moreover, Fig. 6.2(b) shows that
the mean number of photons grows exponentially if the scaled time gt is sufficiently

large.

According to Fig. 6.2, the entangled state of the cavity field contains up to (N ) =~
110 photons on average. It follows that the single-atom laser depicted in Fig. 6.1 can
give rise to an entangled quantum state of the two cavity modes if the parameters
are in agreement with condition (6.28). If this condition holds, level |b) is almost
not excited due to the large detuning A;, and states |c¢) and |d) are coupled via a
two-photon process. In contrast, the transitions |d) < |a) and |c) < |a) are driven
resonantly. In this situation, the structure of the Hamiltonian Hp in Eq. (6.31)
implies that the system can only emit photons into the cavity fields in pairs, where
one photon is emitted in mode 1 and the other photon in mode 2. If the cavity field
is initially in the vacuum state |0,0), it will evolve under the influence of Hp into
the entangled state

al0,0) +b|1,1) +¢|2,2) +..., (6.34)

where a, b and ¢ are complex coefficients. If the complicated master equation (6.20)
can be reduced under certain conditions to the parametric equation (6.30), it is thus
clear that a macroscopic entangled state is generated.
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Figure 6.3: (a) Time evolution of ( (A@)? + (A9)?). The mean value of the total
number of photons ( N ) is shown in (b) on a logarithmic scale. At t = 0, the cavity
field is assumed to be in the vacuum state, and we set 1 = v = 3 = 74 = by,
g1 =¢2 =9, k1 = ko = 1073g and ¢35 + ¢4 = 7/2. The parameters for the curves
labeled with T are |Q3]| = 25¢, |Q4| = 9.89, A, = 0, Ay = 43¢g, and for II we have
’Qg‘ = 159, ’94’ = 69, Aa = 0, Ab = 32.59.

Due to the symmetry in the atomic level scheme, it is possible to reverse the role
of the transitions |d) < |a) < [¢) and |¢) < |b) <> |d). In this case, the detun-
ing A, is large and the transitions |d) < |b) and |c) < |b) are driven resonantly.
Condition (6.28) then has to be replaced by

€], [Aa] > [As], [Qs], i, (6.35)

and the only nonvanishing coefficients in Eq. (6.20) are now determined by o ~
P12 ~ —ia expli(p3+4)t], where o = g192|Q3|/(|Q2]A,). Tt follows that the results
in Egs. (6.30), (6.32) and (6.33) are also valid if condition (6.35) holds, provided that
a is replaced by o’.

We now demonstrate that it can be advantageous to consider parameters which
do not comply with conditions (6.28) or (6.35). Since the approximate results
in Egs. (6.32) and (6.33) do not apply in this case, we evaluate the mean values
((AQ)? + (AD)?) and (N) only with the exact density operator gp in Eq. (6.20).
The time evolution of ( (Aa)? 4+ (A0)?) is shown in Fig. 6.3(a) for two sets of pa-
rameters. As compared to the parameters chosen for Fig. (6.2), the magnitude of
the Rabi frequency Q4 has been increased such that || is still larger, but not
much larger than |4]. It follows from Fig. 6.3(a) that the entanglement criterion in
Eq. (6.22) is fulfilled for shorter times as compared to the solid line in Fig. 6.2(a).
On the other hand, Fig. 6.3(b) shows that the mean number of photons can be
much larger as compared to Fig. 6.2(b). For curve I of Fig. 6.3(a), the maximum
mean number of photons for which the entanglement criterion (6.22) is still ful-
filled is (N ) & 10.2 x 10*. The same number for the parameters of curve II reads
(N ) =~ 6100. As compared to Fig. 6.2, the maximum mean number of photons can
be enhanced by several orders of magnitude.
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Figure 6.4: (a) Time evolution of ( (A@)? + (A)?). The mean value of the total
number of photons ( N') is shown in (b) on a logarithmic scale. At ¢t = 0, the cavity
field is assumed to be in the coherent state [100,—100), and we set v;3 = 2 = 73 =
Y4 =29, g1 = g2 =g, k1 = kg = 1072g and ¢3 + ¢4 = m/2. The parameters for the
curves labeled with I are |Q3] = 10g, |Q24] = 5g, Ay = 0, Ay = 159, and for II we
have |Q3] = 10g, |Q4] = 29, Ay =0, Ap = 15g.

Finally, we consider the case where the quantum state of the cavity field is initially
the coherent state [100, —100). The time evolution of ( (A@)* + (A9)?) and (N ) is
shown in Fig. 6.4 for two sets of parameters. All mean values were evaluated with
the exact density operator in Eq. (6.20). For curve I, the magnitude of the Rabi
frequency €4 is larger as compared to curve II. All other parameters are the same
for curve I and II. It can be seen from Fig. 6.4(a) that the entanglement criterion
is fulfilled for shorter times if |4 is increased. In contrast, the mean number of
photons can be greatly enhanced if the value of (4] is increased, as can be seen from
Fig. 6.4(b). Similar conclusions can be drawn from Fig. 6.3, where the initial state
of the cavity field is the vacuum. The comparison of Figs. 6.3 and 6.4 shows that
the mean number of photons can be much larger than in Fig. 6.3 if the cavity field
is initially prepared in a coherent state. Due to the large mean number of photons
in the cavity modes, the system may leave the regime of linear amplification such
that saturation effects modify the curve progression in Fig. 6.4. These effects are
described by terms that go beyond the second-order expansion of the atom-cavity
coupling and are neglected here. According to the linear theory, the maximum
mean number of photons for which the entanglement criterion (6.22) is still fulfilled
is (N) & 6.5 x 10° in the case of curve II of Fig. 6.4, and in the case of curve I the
entangled cavity field contains up to (N ) ~ 5.4 x 107 photons.

6.4 Summary

We have shown that a two-mode single-atom laser can serve as a source of macro-
scopic entangled light. We identified two parameter regimes for which the quantum
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state of the cavity field is entangled for a long period of time. For these parameters,
the master equation for the density operator of the two cavity modes can be approx-
imately reduced to the master equation for a nondegenerate parametric oscillator in
the parametric approximation.

The mean number of photons in the cavity field can be strongly increased if parame-
ters beyond the parametric limit are chosen. This enhancement of the mean photon
numbers is accompanied by a shortening of the time slice for which the entangle-
ment criterion is fulfilled. As the initial state of the cavity field, we chose either the
vacuum or a coherent state. We demonstrated that the mean number of photons of
the entangled cavity field can increase by several orders of magnitude if a coherent
state instead of the vacuum is chosen as an initial state.
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6.A Coefficients «;;, §;; and field correlation functions

Here we give the explicit definitions of the coefficients «;; and 3;; which enter the
master equation (6.20) for the density operator gp of the two cavity modes

:29%72 Q23] |

[4(P5 -+ 4i) [ + P (4196 + P (P PD)|

P3Py
(6.36)
20274 |Q3]? [Q4)?
g = - 2L UL g 0,24 by (seuP + PR+ PD)] . (637)
P3Py
2 Q304 [Q3)?
gy = — 291970200 [ 4Py 19s] + P (P + Py) — 410 (2P + P5)|
P3Py ( )
6.38
2 Q304 [Q4)?
i = — 2L [ ) PP+ 4104 P+ 40 (P - 408)].
(6.39)
29374 |Q23]% Q4] 2 2
= [4(PF +4i80) [0 + P5 (410 + P (P2 + P)) |
Py Ps
(6.40)
2027 |Qs]? [Q4)?
b = - 2RI UL [ 02y by (sl + PR+ PD)] . (6aD)
P3P
2
gy =~ IV [y 0, 4 23 (P, 4 1)~ ai0s 2P + )]
345
(6.42)
2 Q304 [Q3)?
Boy = — 91927;3;:' d [(P2+P1*)|P1|2+4|§23|2P1+4|Q4|2(P2—4z’Ab)}.
(6.43)
The parameters Py, Py, P35, P, and P5 in Egs. (6.36)-(6.43) are defined as
Py =v3 + 74 + 2, (6.44)
Py =y + 7 + 2iAA, (6.45)
Py =32 | P Q3% + 74 | Pof” Q] + 819 Q] (2 +74) (6.46)
2
Py=4 (108> = () + P (PL+ P3) 196 + P (P B, (647)
2
Py =4 (|Q3|2 — |Q4|2) + P} (Py+ P} Q3] + Py (P + PY) Q4] . (6.48)

In the following, we outline the calculation of the mean values that enter the total
variance of the operators @ and v in Eq. (6.27). We begin with the mean values of
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the quadrature operators defined in Eq. (6.25) with respect to the density operator
or of the two cavity modes. With the help of Eq. (6.20), we derive the following
system of differential equations for the mean values (b; ) and <b; )

(b1) Cn+r1 Crz (b1)
oy : =— ; ) (6.49)
(b3) &5 O3y + K2 (by)
and Cj; = ay; + Bi;. The solution to this set of coupled equations is
(bl > w2t [COSh(wlt)<b1>0 (650)
1 _ o/t )
2 Wy << > (C22 011 K1+ Hg) 2<b2>0012) smh(wlt)}
(b} =ewet [cosh(wlt)w Yo (6.51)
1
5. (080 (€11 = Gy + w1 = k2) = 2(b1)oC31 ) sinh(wlt)} ,
1

where

1
w1 =5/4C02C + (Cia = Cy + 11— 2)?,

1
Wy = — _(Cll + C59 + K1 + K2) , (652)

and (-)o = ()
Values <b]; ) and (by) can be obtained from (b ) and <b£> by complex conjugation,
ie. (bl)=(b1)* and (by) = (b})*.

The remaining mean values in Eq. (6.27) involve products of the operators b; and

bZT-. With the aid of Eq. (6.20), we obtain the following set of differential equations,
OR=MR+1T, (6.53)

(t = 0) denotes the initial mean value at ¢ = 0. Note that the mean

where R = ((b{bl>, (bgbz>, (b1b2), <bib£>) and

Dy 0 Cly Ch2 B + By
0 Dy C5 Oy B2 + B39
M=— . I=— . (6.54)
Cox Ci2 Dia 0 a2 + o
3 Cfy 0 D7y ajy +ay

The elements of the matrix M are defined as
Cij = agj + Bij
Di; = i + oy + Bii + B + 2k,
D1y = Cii+ Coz + K1 + k2. (6.55)
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The differential equation Eq. (6.53) can be solved numerically without difficulties.
Analytic results can be obtained, for example, by means of the Laplace transform
method which yields the following results for the components R; of the vector R,

4
Ri =" [Res(fi, \&) + Res(gi, A)] e + Res(gi, 0) . (6.56)
=1

In this equation, expressions of the type Res(h, z) denote the residue of the function
h evaluated at z, and the functions f = (f1, fo, f3, f1) and g = (g1, 92, g3, g4) are
determined by

fls)=[sly—M]""Ry and  g(s)=[s Ly — M]""(I/s), (6.57)

respectively. Here 1, denotes the 4 x 4 identity matrix, and the vector Ryq is the
initial value of R at t = 0, Ry = (<b§b1 Yo, {B5b2 Yo, (Brba o, (b{b§>0>. Finally, the

parameters \j are the four (complex) eigenvalues of the matrix M which is defined
in Eq. (6.54).
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Summary

In this thesis we studied a number of fundamentally different interference and co-
herence effects in the interaction of atoms with the quantized electromagnetic field.
The common foundation for our analysis is a rather general master equation that
applies to an arbitrary number of multi-level atoms located at different positions in
the isotropic vacuum. This master equation has been derived in chapter 1, and the
different contributions arising from the interaction of the atoms with the surround-
ing electromagnetic vacuum field have been identified and investigated in detail. For
single-atom systems, it accounts for spontaneous emission on individual dipole tran-
sitions as well as for vacuum-induced quantum interference effects associated with
the cross-decay of two dipole transitions (see chapter 2). In addition, the master
equation encompasses collective effects that occur in systems with more than one
atom. Various parameters like collective decay rates and coherent coupling terms
that give rise to energy shifts of collective states have been investigated in detail in
part III of this thesis. A point of particular importance is that our master equation
accounts for the coupling between orthogonal transition dipole moments of different
atoms. While these terms were frequently neglected in the previous literature, our
detailed analysis in part III demonstrates the evident significance of these unusual
coupling terms.

In chapter 2, we focused on vacuum-induced coherence effects in a single-atom sys-
tem. For this, we investigated the fluorescence light emitted by a four-level system
in JJ =1/2 to J = 1/2 configuration driven by a monochromatic laser field and in
an external magnetic field. The distinguished feature of this level scheme is that
the dipole moments of the two 7 transitions are antiparallel. We investigated two
standard observables of the system, namely the total intensity and the spectrum
of resonance fluorescence emitted by the atom. A polarization dependent detection
scheme served to distinguish between the contributions of the m and the o transi-
tions to these photodetection signals. It was found that the spectrum of resonance
fluorescence emitted on the 7 transitions exhibits a clear signature of quantum in-
terference, whereas the total intensity is not affected by interference. Since the 7
transitions do neither share a common initial nor a common final state, the presence
of the interference effect in the fluorescence spectrum is a surprising and counter-
intuitive result. We have shown that our findings can be explained in terms of the
principle of complementarity, applied to time and energy. For the system considered
here, it claims that it is impossible to observe the temporal and the energy aspect
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of the radiative cascade of the atom at the same time. If the fluorescence spec-
trum is observed, the photon emission times are indeterminate. The interference in
the fluorescence spectrum can thus be explained in terms of interferences between
transition amplitudes that correspond to different time orders of photon emissions.
This interpretation was supported by a detailed study of the measured fluorescence
spectrum in dependence on the frequency resolution of the detector. An additional
consistency check of our interpretation follows from the possibility to control the
degree of interference in the fluorescence spectrum emitted on the 7 transitions by
means of an external magnetic field. In particular, we found that the degree of
interference in the coherent part of the spectrum can be adjusted from perfect con-
structive to perfect destructive interference. Under conditions of perfect destructive
interference, we found the remarkable result that the weight of the Rayleigh line is
completely suppressed, despite of the coherent driving by the laser field. Moreover,
we also discussed the spectrum emitted on the o transitions that contains only an
incoherent part, and it was shown that this spectrum displays an indirect signature
of the quantum interference effect.

Finally, we point out that the interference terms in the expression for the fluores-
cence spectrum emitted on the 7 transitions are proportional to \/y172. Here v,
and -5 represent the spontaneous emission rates of the respective 7 transition. The
factor /7172 can be assessed as the formal signature of vacuum induced interference
effects, and terms proportional to it only contribute to the fluorescence spectrum
since the dipole moments of the 7 transitions are antiparallel. While vacuum-induced
interference effects have been studied extensively by theoretical means, e.g., in V-
type three-level atoms, they could not be confirmed experimentally in atomic sys-
tems due to the stringent conditions of near-degenerate levels and non-orthogonal
dipole moments that are not fulfilled for V-type systems in real atoms. Since the
four-level system with antiparallel dipole moments can be found, e.g., in '9¥Hg™
ions, our model system turns out to be an ideal candidate to provide evidence for
vacuum-induced interference effects. In particular, we point out that an experiment
with individual laser-driven '®*Hg™ ions was already performed [37], and the precise
measurement of the fluorescence spectrum of a single atom can be achieved with
present technology [156].

In the third part of this thesis, we extended our analysis to collective systems where
the vacuum-induced dipole-dipole interaction gives rise to a collective quantum dy-
namics. The interaction between the individual atoms is reflected by additional
contributions to the master equation that are absent in the single-atom case, and
the analysis of these collective parameters and their implications are the topic of
this part.

In chapter 3, we investigated a novel type of vacuum-induced coupling that is impos-
sible in single-atom systems and that has mostly been neglected in the previous liter-
ature. In particular, we considered two nearby three-level systems in A-configuration
and investigated the dependence of the dipole-dipole coupling on the mutual orien-
tation of the dipole moments associated with the atomic transitions. We have shown
that transitions of different atoms can be coupled via the dipole-dipole interaction
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even if their dipole moments are perpendicular. This counterintuitive result was
explained in terms of the dipole radiation pattern. A coupling between transitions
with orthogonal dipole moments occurs if the field radiated by the dipole of one
atom has a non-zero projection on the orthogonal dipole of the other atom. This
novel type of coupling depends strongly on the geometric alignment of the atoms
and may crucially influence the system dynamics. In order to demonstrate this, the
resonance fluorescence intensity emitted by the two atoms was discussed. For a fixed
setup of driving fields and detectors, the spatial orientation of the two-atom pair
decides if the system reaches a true constant steady state or if it exhibits periodic
oscillations in the long-time limit. We have shown that these oscillations are directly
observable in the total intensity emitted by the two-atom system.

In real atoms, the realization of few-level systems like A- or two-level systems usually
involves the omission of Zeeman sublevels that belong to the same atomic angular
momentum multiplets. Since the analysis in chapter 3 suggests that the interaction
between orthogonal dipoles of different atoms may introduce additional couplings
to unwanted transitions involving the omitted Zeeman sublevels, we reassessed the
validity of the few-level approximation in a pair of dipole-dipole interacting atoms
in chapter 4. In order to remain general, each atom is modelled by complete angular
momentum multiplets. As a concrete example, we assumed that the ground state
of each atom is a Sy singlet state, and the excited state multiplet is a P; triplet
which consists of three Zeeman sublevels. In a first step, we employed an example
to show that in contrast to single-atom systems, the adjustment of the polarization
of an external laser field is not sufficient to select the relevant atomic states in
each atom. In particular, we demonstrated that the dipole-dipole interaction can
transfer population even to atomic states that are not populated by the laser field. In
a second step, we established a general statement about the system behavior under
rotations of the atomic separation vector. For the derivation of this statement, we
assumed that the atoms are placed in the isotropic vacuum and omitted all external
laser fields. Finally, several important conclusions about the system properties were
drawn from this statement. As an intuitive result, we found that the energies of
the collective states depend on the length of the vector connecting the atoms, but
not on its orientation, if complete and degenerate multiplets are considered. We
then concluded that the artificial omission of any of the Zeeman sublevels leads to a
spurious dependence of the energy levels on the orientation of the atomic separation
vector, and thus to incorrect predictions. The careful analysis of our results revealed
that this breakdown of the few-level approximation can be traced back to the dipole-
dipole coupling of transitions with orthogonal dipole moments that were studied in
chapter 3. Our interpretation enabled us to identify special geometries in which one
or two of the excited states of each atom can be neglected, such that the few-level
approximation is recovered.

On the one hand, the breakdown of the few-level approximation in collective systems
entails a definite complication of the theoretical treatment of such systems due to the
significantly enlarged number of relevant states. On the other hand, this extended
number of degrees of freedom opens the path for new physical phenomena. As an
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example for the advantages of dipole-dipole interacting atoms with complete angu-
lar momentum multiplets, we investigated the possibility to realize decoherence-free
subspaces (DFS) in such systems in chapter 5. Our analysis was based on the sys-
tem of two dipole-dipole coupled four-level atoms introduced in chapter 4. We have
shown that the state space of the two interacting atoms contains a four-dimensional
DFS if the interatomic distance approaches zero. This is a strong improvement as
compared to a pair of two-level atoms, where only the collective ground state and
a single antisymmetric state are immune against spontaneous emission. Since the
separation of the two atoms is always larger than zero in an experiment, we demon-
strated that the spontaneous decay of states within the DFS is strongly suppressed if
the interatomic distance is small as compared to the wavelength of the Sy «» P; tran-
sition. In addition, we verified that the system dynamics within the DFS is closed,
i.e., the coherent part of the dipole-dipole interaction does not introduce a coupling
between states of the DFS and states outside of the DFS. Possible applications of
this DFS for the storage and processing of quantum information were discussed. For
this, we described a method that allows to populate the antisymmetric states of the
DFS by means of a laser field without the need of a field gradient between the atoms.
Two antisymmetric collective states within the DFS were employed to represent a
qubit. The storing times of the qubit state depend on the interatomic distance and
can be significantly longer than the inverse decay rate of the Sy «» P; transition.
Moreover, any single-qubit operation can be realized via a sequence of suitable radio-
frequency pulses. Typical operation times of our system may be significantly shorter
than for a nuclear spin system due to the stronger coupling between the electronic
states and the radio-frequency field. Finally, we demonstrated that the symmetric
and antisymmetric collective states are entangled, and this entanglement is created
by the coherent part of the dipole-dipole interaction.

While the atom-field interaction in the system considered in chapter 5 gives rise
to entanglement between atomic states, several schemes of quantum information
and quantum computation theory are based on an entangled state of the radiation
field [5]. Therefore, we investigated the possibility to create entanglement between
the field modes of the electromagnetic field in chapter 6. For this, we considered
a single atom trapped inside a two-mode cavity as the gain medium. Our model
system can be regarded as a generalization of the setup employed in a recent ex-
periment [147], where a single-atom laser was realized. In order to prove that the
quantum state of the cavity field created by the atom is entangled, we employed an
inequality based on the correlation of the field operators. Note that this inequality
is only one of several known sufficient criteria for continuous variable entanglement.
We demonstrated that a single atom is a source for an entangled state of the radi-
ation field over a wide range of control parameters and initial states of the cavity
field. In contrast to other schemes like parametric down-conversion, a quantum state
with a macroscopic number of photons can be generated. Two parameter regimes
for which the quantum state of the cavity field is entangled for a long period of time
were identified. For these parameters, the master equation for the density operator
of the two cavity modes can be approximately reduced to the master equation for
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a nondegenerate parametric oscillator in the parametric approximation. The mean
number of photons in the cavity field can be strongly increased if parameters beyond
the parametric limit are chosen. This enhancement of the mean photon numbers is
accompanied by a shortening of the time slice for which the entanglement criterion
is fulfilled. As the initial state of the cavity field, we chose either the vacuum or a
coherent state. We demonstrated that the mean number of photons of the entangled
cavity field can be significantly increased if a coherent state instead of the vacuum
is chosen as an initial state.

In conclusion, we presented several examples that demonstrate the rich variety of
physical phenomena emerging from the interaction of atoms with the electromag-
netic radiation field. In particular, these phenomena do not only allow for studies of
fundamental concepts like interference and complementarity that aim at an improved
understanding of quantum mechanics, but prove to be valuable for applications, e.g.,
in quantum information and quantum computation theory. Throughout the thesis
we focused on some of the elementary physical processes occurring in atom-field
interactions on the basis of single-atom and two-atom systems. But our results are
well-suited for generalizations in several directions. For example, it can be expected
that our interpretation of the interference effect discussed in chapter 2 in terms of
time-energy complementarity also applies to other systems. Besides the obvious
extension to other emission spectra, variations of the interference mechanism may
also play a crucial role in absorption phenomena like electromagnetically induced
absorption. It is also interesting to examine how the interference between different
time orders of photon emissions affects higher-order correlation functions of the field
emitted by the system considered in chapter 2.

Furthermore, the general structure of the master equation derived in chapter 1
suggests the extension to systems comprised of many atoms. Potential systems of
interest include regular structures of atoms that could exhibit interesting spatial
interference effects in the emitted light. In addition, these systems could turn out to
be useful for the storage and the controlled transport of quantum information, e.g.,
along a line of atoms. On the other hand, it could be promising to extend the analysis
to quantum gases. Here the dipole-dipole interaction gives rise to long-range interac-
tion potentials that are frequently derived by an average over the spatial orientation
of a pair of atoms [102]. In particular, it could be interesting to investigate whether
the coupling terms between orthogonal dipole moments discussed in part III aver-
age out, or give rise to new features of the resulting potentials between the atoms.
While we have shown in chapter 3 that the coupling between orthogonal dipole mo-
ments affects the fluorescence intensity emitted by a two-atom system, a natural
extension is to consider other observables like absorption profiles, the propagation
of electromagnetic pulses or other quantities related to the dispersive properties of
a dipole-dipole interacting system.

An important but presumably difficult generalization of our results is to consider
the possibility to create higher-dimensional decoherence-free subspaces (DFS) with
many dipole-dipole interacting multi-level atoms. Due to the intricate nature of the
dipole-dipole interaction, it is not obvious how the dimension of the DF'S scales with
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the number of atoms. In addition, the computational effort increases dramatically if
more complex systems are considered. While the system of two four-level atoms in
chapter 5 is large but still controllable, calculations involving five four-level atoms,
for example, would be almost impracticable.

Finally, the generation and characterization of entanglement are two of the strongest
ambitions of current research in quantum optics. While the strange features of en-
tanglement are known since the early days of quantum mechanics, an unambiguous
and comprehensive measure of entanglement is still not available, and it will be
exciting to see if there ever will be.
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