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Abstract. Similarly to quasidifferential equations of Panasyuk, the so-called mutational equa-
tions of Aubin provide a generalization of ordinary differential equations to locally compact metric
spaces. Here we present their extension to a nonempty set with a possibly nonsymmetric distance.
In spite of lacking any linear structures, a distribution–like approach leads to so–called right–hand
forward solutions.
These extensions are mainly motivated by compact subsets of the Euclidean space whose evolution is
determined by the nonlocal properties of both the current set and the normal cones at its topological
boundary. Indeed, simple deformations such as isotropic expansions exemplify that topological bound-
aries need not evolve continuously in time and thus, Aubin’s original concept cannot be applied directly.
Here neither regularity assumptions about the boundaries nor the inclusion principle are required.
The regularity of compact reachable sets of differential inclusions is studied extensively instead.
This example of nonlocal set evolutions in the Euclidean space serves as an introductory motivation
for extending ordinary differential equations (and evolution equations) beyond the traditional border of
vector spaces – and for combining it with other examples in systems.
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1 Introduction

Whenever different types of evolutions meet, they usually do not have an obvious vector space structure
in common providing a basis for differential calculus. In particular, “shapes and images are basically
sets, not even smooth” as Aubin stated [2]. So he regards this obstacle as a starting point for extending
ordinary differential equations to metric spaces – the so–called mutational equations [2, 3, 4].
In fact, similar concepts have been developed independently, e.g. the quasidifferential equations of
A.I. Panasyuak [45, 46, 47], quasi-flows of P.E. Kloeden et al. and the mostly ellipsoidal approaches of
A.B. Kurzhanski et al. [36, 37, 38]. Here we seize Aubin’s concept though and extend it significantly
for the first time (since its initial presentation in 1992/93).

Considering the example of time–dependent compact sets in RN , Aubin uses reachable sets of dif-
ferential inclusions for describing a first–order approximation with respect to the Pompeiu–Hausdorff
distance dl. However this approach (also called morphological equations) can hardly be applied to geo-
metric evolutions depending on the topological boundary explicitly. Indeed, roughly speaking, “holes”
of sets might disappear while evolving along differential inclusions and thus, analytically speaking, the
topological boundary need not be continuous with respect to time.
In this paper, this difficulty is the essential motivation for

• extending mutational equations to a set E 6= ∅ with an ostensible metric, i.e. distance function
q : E × E −→ [0,∞[ satisfying just the triangle inequality and q(x, x) = 0 for each x ∈ E

(In particular, it need not be symmetric any longer.)

• introducing a concept of distribution–like solutions in ostensible metric spaces (although linear
forms are not available beyond vector spaces)

• investigating the reachable sets of differential inclusions and their regularity at the boundary.

In other words, we focus on a new generalization of evolution equations beyond vector spaces (§ 3)
and verify the required preliminaries in detail for nonlocal geometric evolutions up to first order (§ 4),
i.e. compact subsets of RN whose evolution depend on nonlocal properties of both the sets and their
limiting normal cones at the topological boundary.
This geometric example uses compact reachable sets of differential inclusions in the Euclidean space
and requires new results about their topological boundaries and their normal cones (see Appendix).
In particular, we specify sufficient conditions on the differential inclusions such that every compact set
with C1,1 boundary preserves this regularity for a short time and evolves reversibly during this period.

Some earlier approaches to set evolutions

Many approaches to set evolutions are based on level sets of an auxiliary function. Being introduced in
numerical context by Osher and Sethian [44], this notion has a solid analytical basis in form of so-called
viscosity solutions that were first defined by Crandall and Lions [23, 24]. Applying this concept to
set evolutions with prescribed normal velocity, an essential advantage is that many forms of geometric
singularities can be handled quite easily (see e.g. [25, 26, Evans, Spruck 91/92], [18, Chen, Giga, Goto 91],
[7, Barles, Soner, Souganidis 93], [8, Barles, Souganidis 98], [1, Ambrosio 2000]).
Recently, some results about viscosity solutions of nonlocal problems have been published by Barles and
Ley [6] but they are restricting to the case that the normal velocity of all level sets preserves its sign
(i.e. either permanently nonnegative or nonpositive).
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Viscosity solutions (in all their variants so far) are always based on the maximum principle. This implies
two features that our approach is to overcome: Firstly, there is no general theory about viscosity solu-
tions of systems and secondly, all set evolutions resulting from viscosity solutions of partial differential
equations satisfy the so-called inclusion principle, i.e. if a compact initial set is contained in another
one, then this inclusion is be preserved while the sets are evolving.
In fact, several further approaches use this principle as a geometric starting point for extending analy-
tical tools from sets with smooth boundaries to nonsmooth subsets. An excellent geometric counterpart
of the classical Perron method is De Giorgi’s theory of barriers formulated in [27, De Giorgi 94] and elab-
orated in [11, 10, Bellettini, Novaga 97/98]. Another elegant approach to front propagation problems
with nonlocal terms has been presented in [16, 15, Cardaliaguet 2000/01]. However, there is no obvious
way of applying these earlier concepts to the easy example that the normal velocity at the boundary is

1
1 + set diameter > 0 .
Geometric measure theory lays the basis of further approaches for dealing with geometric singularities
(see e.g. [31, Federer 69], [12, Brakke 78]). Using measures, however, implies that the information about
all subsets with measure 0 is definitely lost. Coping with problems in shape optimization, Delfour and
Zolésio suggest using the (classical or oriented) distance from the current set – instead of the corre-
sponding characteristic function being either 0 or 1 [28, 29]. Then the choice of the functional space,
however, has a significant influence on the regularity of sets that can be handled (see e.g. [29, § 5.6.3]).

Three challenges for nonlocal evolutions of compact sets in RN

Considering the time–dependent compact subsets of RN , t 7−→ K(t), it is not directly evident how
to define their “rate of change” (as counterpart of “velocity”). The mutational concept of Aubin lays
the foundation of specifying an answer. In particular, it extends the notion of time derivative without
any regularity conditions on its topological boundary ∂ K(t) ⊂ RN .
Considering the previous approaches to set evolutions, we are now facing three further challenges mo-
tivating our generalization of Aubin’s theory:

• Evolution of K(t) via prescribed feedback depending on nonlocal properties “up to first order”,
i.e. the compact set K(t) ⊂ RN and the graph of its limiting normal cones NK(t)(·) – as a whole –
are taken into consideration for determining the evolution. (So no subsets of measure 0, for
example, are neglected. The concept here will not cover boundary properties of second order like
mean curvature, though.)

• No restricting to geometric evolutions obeying the inclusion principle.

• The analytical concept can also handle systems with several evolving sets simultaneously.

Extending the traditional horizon: Evolution equations beyond vector spaces

In fact, we regard nonlocal first–order geometric evolutions just as an example for applying general-
ized mutational equations and, it is not the only application, indeed. Minor modifications (concerning
the number of distance functions) have already led to similar results for semilinear evolution equations
in reflexive Banach spaces (see [43, § 4.5]) and, a forthcoming paper will focus on the nonlinear transport
equation for positive Radon measures on RN [40].
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Introducing mutational equations in metric spaces, Aubin’s motivation was to extend ordinary dif-
ferential equations to compact subsets of the Euclidean space. This approach, however, has a much
larger potential. Indeed, the main goal here is a common analytical framework for dynamic systems
beyond the traditional border of vector spaces.
Whenever a component proves to fit in this framework (like the first-order geometric evolutions here),
the mutational theory immediately opens the door to existence results about systems with other suitable
components – no matter whether their mathematical origins are completely different. So a nonlocal geo-
metric evolution can be combined, for example, with an ordinary differential equation and a semilinear
evolution equation. This is the main advantage of mutational equations – in comparison to more popular
concepts like viscosity solutions and thus, all our generalizations here are to preserve this feature. It is
to lay the foundations of new future results about free boundary problems.

Aubin’s initial notion: Consider suitable “deformations” instead of affine-linear maps.

The step from the Euclidean space to a metric space is based on a very simple idea: In RN , each
vector v ∈ RN induces a continuous map describing the deformation of RN after finite time. For mainly
historic reasons, this map is usually assumed to be affine-linear: [0, 1]×RN −→ RN , (h, x) 7−→ x+h ·v.
Considering now a curve x(·) : [0, T ] −→ RN , the popular definitions of time derivative (at time t ∈ [0, T ])
are all based on choosing the vector v ∈ RN such that the corresponding affine-linear map provides a
first–order approximation of x(t+ ·).
The notion of a first-order approximation, however, requires only a distance function – but not affine
linearity. So considering a metric space (E, d) instead of the Euclidean vector space RN , Aubin sug-
gested to introduce a so-called transition ϑ : [0, 1] × E −→ E. In a word, such a transition determines
to which point ϑ(h, x) ∈ E the initial point x ∈ E is moved at time h ∈ [0, 1]. If it is sufficiently regular
with respect to both arguments, then exactly the same track can be followed in the metric space (E, d)
as for ordinary differential equations in RN — up to the existence theorems of Cauchy–Lipschitz and
Nagumo [2, 3]. A more detailed summary of this approach is presented in § 2.
In regard to set evolutions, Aubin’s typical example is the set K(RN ) of nonempty compact subsets of
RN supplied with the classical Pompeiu-Hausdorff metric dl and, transitions are induced by reachable
sets of differential inclusions (with bounded and Lipschitz continuous right-hand side).

Obstacles to set evolutions: Boundaries need not evolve continuously.

A simple attempt of applying Aubin’s original theory to first-order set
evolutions seems foredoomed to failure. Indeed, consider the example of
an annulus expanding isotropically at a constant speed. After a finite
period, the “hole” in the center of the annulus is suddenly disappearing.

So in particular, the topological boundary of the expanding annulus does not evolve continuously (in the
classical sense of Painlevé–Kuratowski). The same phenomenon (of the boundary and its normal cones)
causes analytical difficulties also when comparing the evolution of two initial compact sets (see § 3.1).
This effect has motivated our two main generalizations of Aubin’s mutational equations:

Firstly, the basic set E 6= ∅ is not supplied with a metric (as before), but with a distance function
q : E×E −→ [0,∞[ satisfying only the triangle inequality and q(x, x) = 0 for all x ∈ E. In particular,
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q need not be symmetric. Here such a distance function is called ostensible metric. Dispensing with the
symmetry of distance functions, we are now free to compare only the normal cones of later sets with the
normals of earlier sets – but not necessarily vice versa because roughly speaking, the latter information
might have been “lost” in a “disappearing hole” meanwhile. So the ostensible metric on K(RN ) used in
the main geometric example in § 4 is

qK,N : K(RN )×K(RN ) −→ [0,∞[, (K1, K2) 7−→ dl(K1,K2) + dist
(
Graph [NK2 , Graph [NK1

)
with NK(x) denoting the limiting normal cone of K⊂RN at x∈∂K and

[NK(x) := NK(x) ∩ B1 = {v ∈ NK(x) : |v| ≤ 1}.
The second aspect is to specify a weaker notion of “solutions”. Roughly speaking, distribution–like

solutions are introduced in sets without any vector space structure. As the general key idea of distri-
butions, we regard : “Select an important property and then try to preserve it (at least) for all ’test
elements’ specified before.” In the classical sense, this feature is partial integration. For an ostensible
metric space (E, q), however, we have chosen the estimate of the distance h 7→ q

(
ϑ(h, x), τ(h, y)

)
between two transitions ϑ, τ starting in any points x, y ∈ E. Now the first point x is to be restricted
to a given “test set” D ⊂ E.

These notions lead to so–called forward transitions on an ostensible metric space and right–hand forward
solutions of generalized mutational equations. All the details (up to an existence theorem) are presented
in §§ 3.2, 3.3 and, Aubin’s concept of mutational equations proves to be a special case.

The key geometric tool: Reachable sets of differential inclusions — and their regularity.

All analytical obstacles here result from the geometric effect that “holes” of compact sets might
disappear while evolving along differential inclusions. So it plays an important role to specify sufficient
conditions on both the initial compact set and the differential inclusion for excluding this effect during
a (maybe just very short) period.
Considering nonlinear differential inclusions in RN , investigations about the boundaries of reachable
sets are very rare indeed. Bressan’s paper [13] exemplifies early results about reachable sets (of a single
point) with C1 boundary in affine-linear control systems with constant smooth control sets. Recently,
Cannarsa and Frankowska published sufficient conditions on control systems for the interior sphere
property of their reachable sets [14]. As a consequence, they obtain even sufficient conditions on control
system and initial convex set such that its reachable set has C1,1 boundary at all small positive times [14,
Corollary 3.12]. Independently from them, the author specified other sufficient conditions for preserving
a similar property (called positive erosion) of the compact initial set [42].

Further results are presented in the Appendix and to the best of my knowledge, they are new.
The proofs here are based on the corresponding Hamilton equations of the boundary trajectories and
their adjoints, respectively. In contrast to Rzeżuchowski’s papers [51, 52], we draw some conclusions
without assuming the Hamiltonian function to be C2 and, all our results hold for initial sets consisting
of more than a single point.

Proposition 1.1 Let F : RN ; RN be a set-valued map satisfying the following conditions:
(i) F has nonempty compact convex values,
(ii) Hamiltonian HF (·, ·) ∈ C1,1(RN× (RN \ {0})),
(iii) ‖HF ‖C1,1(RN× ∂B1)

Def.= ‖HF ‖C1(RN× ∂B1) + Lip DHF |RN× ∂B1 < ∞ .
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For every compact N–dimensional C1,1 submanifold K of RN with boundary, there exist a time τ > 0
and a radius ρ > 0 such that for all t ∈ [0, τ [,

1. both ϑF (t,K) and its closed complement have positive reach of radius ≥ ρ.

So in particular, the boundary ∂ϑF (t,K) ⊂ RN is a (N − 1)–dimensional C1,1 submanifold.

2. K = RN
∖
ϑ−F (t, RN \ ϑF (t,K)).

So the evolution of K is “reversible” up to any time t ∈ ]0, τ [.

Proposition 1.2 Suppose for the set-valued map F : RN ; RN :
(i’) there is a radius ρ > 0 such that for each x ∈ RN , the compact convex set F (x) ⊂ RN

has the form F (x) = Bρ(Mx)
Def.= {y ∈ RN | dist(y,Mx) ≤ ρ} with some Mx ∈ K(RN ),

(ii’) Hamiltonian HF (·, ·) ∈ C2(RN× (RN \ {0})),
(iii) ‖HF ‖C1,1(RN× ∂B1)

Def.= ‖HF ‖C1(RN× ∂B1) + Lip DHF |RN× ∂B1 < λ <∞ .

For any nonempty compact set K ⊂ RN , there exist a positive constant σ and a time τ̂ ∈ ]0, 1]
(depending only on λ, ρ,K) such that for any time t ∈ ]0, τ̂ [ and initial point x0 ∈ K, the reachable
set ϑF (t, x0) ⊂ RN has the form ϑF (t, x0) = Bσ t(Mt,x0) with some closed set Mt,x0 ⊂ RN .
As an immediate consequence, ϑF (t,K1) has the same property for all times t ∈ ]0, τ̂ [ and each initial
subset K1 ∈ K(RN ) of K.

This paper has the following structure : § 2 is a summary of Aubin’s mutational equations in a
metric space specifying the terms “transition”, “solutions” and stating his main existence theorem (as
a counterpart of the Cauchy–Lipschitz theorem about ODEs).
In § 3.1, we specify some more obstacles in detail when applying Aubin’s concept to geometric evolu-
tions depending on the topological boundary. They provide the motivation for generalizing mutational
equations in § 3.2. After introducing forward transitions, we coin the term of “right–hand forward solu-
tions” of a generalized mutational equation and give sufficient conditions of its existence (corresponding
to Peano’s theorem about ODEs). In § 4, this concept is applied to compact subsets of the Euclidean
space whose evolution is determined by their own nonlocal properties “up to first order”.
The appendix provides all the results (and their proofs) about the boundary of reachable sets.
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2 Ordinary differential equations in metric spaces:

A summary of Aubin’s mutational equations

An approach to evolution problems in metric spaces is the mutational analysis of Jean–Pierre Aubin
presented in [2, 3]. It proves to be the more general background of “shape derivatives” introduced by
Jean Céa and Jean–Paul Zolésio and has similarities to “quasidifferential equations” of Panasyuk [47].

Roughly speaking, the starting point consists in extending the terms “direction” and “velocity” from
vector spaces to metric spaces. Then the basic idea of first–order approximation leads to a definition of
derivative for curves in a metric space and step by step, we can follow the same track as for ordinary
differential equations.

Let us now describe the mutational approach in more detail : In a vector space like RN , each vector
v 6= 0. defines a continuous function [0,∞[× RN −→ RN , (h, x) 7−→ x+ h v

mapping the time h and the initial point x to its final point — similar to the topological notion of
a homotopy. This concept does not really require addition or scalar multiplication and thus can be
applied to every metric space (E, d) instead :

Definition 2.1 ([2, Aubin 99]) Let (E, d) be a metric space.
A map ϑ : [0, 1]× E −→ E is called transition on (E, d) if it satisfies

1. ϑ(0, x) = x for all x ∈ E,

2. lim sup
h ↓ 0

1
h · d

(
ϑ(h, ϑ(t, x)), ϑ(t+ h, x)

)
= 0 for all x ∈ E, t < 1,

3. α(ϑ) := sup
x 6= y

lim sup
h ↓ 0

(d(ϑ(h, x), ϑ(h, y)
)
− d(x, y)

h d(x, y)

)+

< ∞,

4. β(ϑ) := sup
x∈E

lim sup
h ↓ 0

1
h · d

(
x, ϑ(h, x)

)
< ∞

with the abbreviation (r)+ := max(0, r) for r ∈ R.

Condition (1.) guarantees that the second argument x represents the initial point at time t = 0.
Moreover condition (2.) can be regarded as a weakened form of the semigroup property. Finally the
parameters α(ϑ), β(ϑ) imply the continuity of ϑ with respect to both arguments. In particular,
condition (4.) together with Gronwall’s Lemma ensures the uniform Lipschitz continuity of ϑ with
respect to time : d

(
ϑ(s, x), ϑ(t, x)

)
≤ β(ϑ) · |t− s| for all s, t ∈ [0, 1], x ∈ E.

Obviously the function [0, 1] × RN −→ RN , (h, x) 7−→ x + h v mentioned before fulfills the
conditions on a transition on (RN , | · |). Let us give some further examples :

1.) Leaving vector spaces like RN , we consider the set K(RN ) of all nonempty compact subsets of
RN supplied with the so–called Pompeiu–Hausdorff distance

dl(K1,K2) := max
{

sup
x∈K1

dist(x,K2), sup
y ∈K2

dist(y,K1)
}

It has the advantage that every closed bounded ball in (K(RN ), dl) is compact (see e.g. [2], [49]).
Supposing f : RN −→ RN to be bounded and Lipschitz, transitions are defined as reachable sets
of the vector field f,

ϑf : [0, 1]×K(RN ) −→ K(RN )

(t, K0) 7−→
{
x(t)

∣∣ ∃ x(·) ∈ C1([0, t],RN ) : d
dt x(·) = f(x(·)), x(0) ∈ K0

}
.
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The Theorem of Cauchy–Lipschitz ensures that ϑf is a transition on (K(RN ), dl) and, α(ϑf ) ≤
Lip f, β(ϑf ) ≤ ‖f‖L∞ (see [2, Proposition 3.5.2]). In this regard, we find a close relation to
the velocity method of Céa et al. in shape optimization.

2.) Now more than one velocity is admitted at every point of RN , i.e. strictly speaking, we consider
the differential inclusion d

dt x(·) ∈ F (x(·)) (a.e.) with a set–valued map F : RN ; RN instead
of the ODE d

dt x(·) = f(x(·)). For every bounded Lipschitz map F : RN ; RN with convex
values in K(RN ),

ϑF : [0, 1]×K(RN ) −→ K(RN )

(t, K0) 7−→
{
x(t)

∣∣ ∃ x(·) ∈ W 1,1([0, t],RN ) :
d
dt x(·) ∈ F (x(·)) a.e., x(0) ∈ K0

}
is a transition on (K(RN ), dl) — as a consequence of Filippov’s Theorem (see [2, Aubin 99:
Proposition 3.7.3]). For any λ > 0, LIPλ(RN ,RN ) abbreviates the set of bounded λ–Lipschitz
continuous maps F : RN ; RN with nonempty compact convex values.

In contrast to example (1.), the reachable set ϑF (t,K0) of a
set–valued map F might change its topological properties. F (·) :=
B1

Def.= { v ∈ RN | |v| ≤ 1}, for example, leads to the expansion
with constant speed 1 in all directions and makes the “hole” of
the annulus K0 := {x | 1 ≤ |x| ≤ 2 } ⊂ RN disappear at time 1.

........

..
.........
.
..........

..........
..................................................

..........
..........
..........
.................... .......... .......... .......... .....

.....
..........
.........
.
........
..ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp.........
..................... ..........
... 1 2

K0
ϑF ( 1

2
, K0)

RN

This effect cannot occur in the examples of ordinary differential equations (with Lipschitz right–
hand side) since their evolutions are reversible in time.

A transition ϑ : [0, 1]×E −→ E provides a first–order approximation of a curve x(·) : [0, T [−→ E

at time t ∈ [0, T [ if lim sup
h ↓ 0

1
h · d

(
ϑ(h, x(t)), x(t+ h)

)
= 0.

Naturally ϑ need not be unique in general and thus,

Definition 2.2 Let (E, d) be a metric space and x(·) : [0, T [−→ E a curve.
The so–called mutation of x(·) at time t ∈ [0, T [, abbreviated as

◦
x (t), consists of all transitions ϑ

satisfying lim sup
h ↓ 0

1
h · d

(
ϑ(h, x(t)), x(t+ h)

)
= 0.

Remark 2.3 As an immediate consequence of Definition 2.1 (2), every transition ϑ belongs to its
own mutation in the sense of ϑ ∈ ◦

x(t) for x(·) := ϑ(·, x0) with any x0 ∈ E, t ∈ [0, 1[.

A mutational equation is based on a given function f of time t ∈ [0, T [ and state x ∈ E whose values
are transitions on (E, d), i.e. f : E × [0, T [ −→ Θ(E, d), (x, t) 7−→ f(x, t), and, we look for a
Lipschitz curve x(·) : [0, T [ −→ (E, d) such that f(x(t), t) belongs to its mutation

◦
x (t) for almost

every time t ∈ [0, T [ (see [2, Definition 1.3.1]).

The Theorem of Cauchy–Lipschitz and its proof suggest Euler method for constructing solutions of
mutational equations. In this context we need an upper estimate of the distance between two points
while evolving along two (different) transitions.
First of all, a distance between two transitions ϑ, τ : [0, 1]×E −→ E has to be defined and, it is based
on comparing the evolution of one and the same initial point :
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Definition 2.4 ([2, Definition 1.1.2]) Let (E, d) be a metric space. For any two transitions ϑ, τ

on (E, d), define D(ϑ, τ) := sup
x∈E

lim sup
h ↓ 0

1
h · d

(
ϑ(h, x), τ(h, x)

)
.

As an immediate consequence of triangle inequality, D(ϑ, τ) ≤ β(ϑ) + β(τ) < ∞.

Considering the preceding example of (K(RN ), dl) and reachable sets ϑF , ϑG of bounded Lipschitz
maps F,G : RN ; RN , Filippov’s Theorem implies D(ϑF , ϑG) ≤ supx∈RN dl(F (x), G(x)) (see [2,
Proposition 3.7.3]). In general, these definitions lead to the substantial estimate :

Lemma 2.5 ([2, Lemma 1.1.3]) For any transitions ϑ, τ on a metric space (E, d) and initial
points x, y ∈ E, the distance at each time h ∈ [0, 1] satisfies

d
(
ϑ(h, x), τ(h, y)

)
≤ d(x, y) · eα(ϑ) h + h D(ϑ, τ) · eα(ϑ) h − 1

α(ϑ) h . (∗)

The proof of this inequality provides an excellent insight into the basic technique for drawing global
conclusions from local properties : Due to the definition of transitions, the distance ψ : [0, 1] −→ [0,∞[,
h 7−→ d

(
ϑ(h, x), τ(h, y)

)
is a Lipschitz continuous function of time and satisfies

lim
h ↓ 0

ψ(t+h)− ψ(t)
h = lim

h ↓ 0

1
h ·
(
d
(
ϑ(t+h, x), τ(t+h, y)

)
− d

(
ϑ(t, x), τ(t, y)

))
≤ lim sup

h ↓ 0

1
h ·
(
d
(
ϑ(t+h, x), ϑ(h, ϑ(t, x))

)
+

d
(
ϑ(h, ϑ(t, x)), ϑ(h, τ(t, y))

)
− d

(
ϑ(t, x), τ(t, y)

)
+

d
(
ϑ(h, τ(t, y)), τ(h, τ(t, y))

)
+

d
(
τ(h, τ(t, y)), τ(t+h, y )

) )
≤ 0 + α(ϑ) · ψ(t) + D(ϑ, τ) + 0

for almost every t ∈ [0, 1[ (i.e. every t at which the limit on the left–hand side exists). So the estimate
results from well–known Gronwall’s Lemma about Lipschitz continuous functions. In fact, Gronwall’s
Lemma proves to be the key analytical tool for all these conclusions of mutational analysis and, its
integral version holds even for continuous functions (see [2, Lemma 8.3.1]).

Considering now mutational equations, Lemma 2.5 is laying the foundations for proving the conver-
gence of Euler method. It leads to the following mutational counterpart of the Theorem of Cauchy–
Lipschitz (quoted from [2, Aubin 99: Theorem 1.4.2]) – ensuring existence, uniqueness as well as conti-
nuity with respect to the right–hand side.

Theorem 2.6 ([2]) Assume that the closed bounded balls of the metric space (E, d) are compact.
Let f be a function from E to a set Θ(E, d) of transitions on (E, d) satisfying

1. ∃ λ > 0 : D(f(x), f(y)) ≤ λ · d(x, y) for all x, y ∈ E
2. A := sup

x∈E
α(f(x)) < ∞.

Suppose for y : [0, T [−→ E that its mutation
◦
y(t) is nonempty for each t.

Then for every initial value x0 ∈ E, there exists a unique solution x(·) : [0, T [ −→ E of the
mutational equation

◦
x(t) 3 f(x(t)), i.e. x(·) is Lipschitz continuous and for almost every t ∈ [0, T [,

lim sup
h ↓ 0

1
h · d

(
x(t+ h), f(x(t)) (h, x(t))

)
= 0,

satisfying, in addition, x(0) = x0 and the inequality (for every t ∈ [0, T [)

d
(
x(t), y(t)

)
≤ d(x0, y(0)) · e(A+λ) t +

∫ t

0

e(A+λ) (t−s) · inf
ϑ ∈

◦
y(s)

D
(
f(y(s)), ϑ

)
ds. 2
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3 Generalizing mutational equations : Nonsymmetric distance

and distribution–like solutions.

3.1 Obstacles to first–order geometric evolutions due to boundaries

Applying the mutational analysis of Aubin to a metric space (E, d), obstacles are mostly related to the
continuity parameters of a transition ϑ

α(ϑ) Def.= sup
x 6= y

lim sup
h ↓ 0

(
d
(
ϑ(h, x), ϑ(h, y)

)
− d(x,y)

h d(x,y)

)+

< ∞,

β(ϑ) Def.= sup
x∈E

lim sup
h ↓ 0

1
h · d

(
x, ϑ(h, x)

)
< ∞.

In regard to first–order geometric evolutions, these difficulties arise when incorporating normal cones
into a distance function of compact subsets. We are going to use reachable sets ϑF (·, ·) of differential
inclusions ẋ(·) ∈ F (x(·)) a.e. as candidates for transitions on K(RN ). So the topological properties
of ϑF (t,K) may change in the course of time.

For the regularity in time : Ostensible metrics

Let us consider first the consequences of the boundary for the continuity of ϑF : [0, 1] × K(RN ) −→
K(RN ) with respect to time.
The key aspect is illustrated easily by an annulus K} ex-
panding isotropically at a constant speed. After a positive
finite time t3, the “hole” in the center has disappeared of
course.
In general, the topological boundary of ϑF (·,K) : [0,∞[ ; RN (with K ∈ K(RN )) is not continuous
with respect to dl. Furthermore, the normals of later sets find close counterparts among the normals of
earlier sets, but usually not vice versa. So we dispense with the symmetry condition on a metric :

Definition 3.1 Let E be a nonempty set. q : E ×E −→ [0,∞[ is called ostensible metric on E

if it satisfies the conditions :

1. ∀ x ∈ E : q(x, x) = 0 (reflexive)
2. ∀ x, y, z ∈ E : q(x, z) ≤ q(x, y) + q(y, z) (triangle inequality).

Then (E, q) is called ostensible metric space.

In the literature on topology (e.g. [55, Wilson 31], [33, Kelly 63], [53, Stoltenberg 69], [35, Künzi
92]), a quasi–metric p : E × E −→ [0,∞[ on a set E satisfies the triangle inequality and is positive
definite, i.e. p(x, y) = 0 ⇐⇒ x = y for every x, y ∈ E. A pseudo–metric p : E × E −→ [0,∞[ on
a set E 6= ∅ is characterized by the properties : reflexive (i.e. p(x, x) = 0 for all x), symmetric (i.e.
p(x, y) = p(y, x) for all x, y) and the triangle inequality. So this generalized distance of Definition 3.1
is sometimes called quasi–pseudo–metric (see [33, Kelly 63], [35, Künzi 92], for example), but just for
linguistic reasons we prefer the adjective “ostensible”.
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For the regularity with respect to initial states : the distributional notion

Applying now the steps of mutational analysis to an ostensible metric space (E, q), we encounter ana-
lytical obstacles soon. In particular, [0, 1] −→ [0,∞[, t 7−→ q

(
ϑ(t, x1), ϑ(t, x2)

)
need not be

continuous for arbitrary initial elements x1, x2 ∈ E.
Consider, for example, reachable sets ϑF (t,K1), ϑF (t,K2) of an
autonomous differential inclusion ẋ(·) ∈ F (x(·)) with initial sets
K1,K2 ∈ K(RN ) and a given map F ∈ LIPλ(RN ,RN ). The figure
on the right–hand side sketches a situation in which the distance
between topological boundaries t 7−→ dist (∂K2, ∂K1) cannot be
continuous. So even if we do not take normal cones into account, it
is difficult to find an ostensible metric on K(RN ) depending on the
boundary, but without such a lack of continuity.

As a first important consequence, we cannot apply the proof of key estimate (∗) (in Lemma 2.5) to
ostensible metric spaces immediately. A more general form of Gronwall’s Lemma is needed instead —
supposing semicontinuity (rather than continuity). Its easy indirect proof is presented in [41, 43].

When extending key estimate (∗) to transitions ϑ, τ on an ostensible metric space (E, q), the required
semicontinuity of t 7−→ q(ϑ(t, x), τ(t, y)) will be guaranteed by a further condition on generalized
transitions.

Lemma 3.2 (Lemma of Gronwall for semicontinuous functions I)

Let ψ : [a, b] −→ R, f, g ∈ C0([a, b[,R) satisfy f(·) ≥ 0 and

ψ(t) ≤ lim sup
h ↓ 0

ψ(t− h) for all t ∈ ]a, b],

ψ(t) ≥ lim sup
h ↓ 0

ψ(t+ h) for all t ∈ [a, b[,

lim sup
h ↓ 0

ψ(t+h)−ψ(t)
h ≤ f(t) · lim sup

h ↓ 0
ψ(t− h) + g(t) for all t ∈ ]a, b[.

Then, for every t ∈ [a, b], the function ψ(·) fulfills the upper estimate

ψ(t) ≤ ψ(a) · eµ(t) +
∫ t

a

eµ(t)−µ(s) g(s) ds with µ(t) :=
∫ t

a

f(s) ds.

Remark 3.3 (i) The condition lim sup
h ↓ 0

ψ(t+h)−ψ(t)
h ≤ f(t)·ψ(t) + g(t) (supposed in the widespread

forms of Gronwall’s Lemma) is stronger than the third assumption of this lemma due to the semiconti-
nuity condition ψ(t) ≤ lim sup

h ↓ 0
ψ(t− h).

(ii) This and the following subdifferential version of Gronwall’s Lemma also hold if the functions
f, g : [a, b[ −→ R are only upper semicontinuous (instead of continuous). The proof is based on upper
approximations of f(·), g(·) by continuous functions.

Corollary 3.4 (Lemma of Gronwall for semicontinuous functions II)

Let ψ : [a, b] −→ R, f, g ∈ C0([a, b[,R) satisfy f(·) ≥ 0 and

ψ(t) ≤ lim inf
h ↓ 0

ψ(t− h) for all t ∈ ]a, b],

ψ(t) ≥ lim inf
h ↓ 0

ψ(t+ h) for all t ∈ [a, b[,

lim inf
h ↓ 0

ψ(t+h)−ψ(t)
h ≤ f(t) · lim inf

h ↓ 0
ψ(t− h) + g(t) for all t ∈ ]a, b[.

Then, for every t ∈ [a, b], ψ(t) ≤ ψ(a) · eµ(t) +
∫ t

a

eµ(t)−µ(s) g(s) ds with µ(t) :=
∫ t

a

f(s) ds.
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Nevertheless, we have to exclude such a discontinuity of evolving boundaries – for short times at least.
In the geometric example about reachable sets, additional assumptions about K1 are needed. Suitable
conditions on F can guarantee that compact sets with C1,1 boundary preserve this regularity for short
times (see Appendix A.2) and, their topological properties do not change. Assuming further conditions
on one of the sets K1,K2 ∈ K(RN ) prevents us from applying the mutational analysis of Aubin, though.
So, we use the basic idea of distributions.
In an ostensible metric space, there are no obvious generalizations of linear forms or partial integration
and so, distributions in their widespread sense cannot be introduced. More generally speaking, however,
their basic idea is to select an important property and demand it for all elements of a given “test set”.

In the mutational analysis of a metric space (E, d), the estimate of Lemma 2.5

d
(
ϑ(h, x), τ(h, y)

)
≤ d(x, y) · eα(ϑ) h + h D(ϑ, τ) · eα(ϑ) h − 1

α(ϑ) h (∗)

(for arbitrary x, y ∈ E and h ∈ [0, 1[) represents the probably most important tool for constructing
solutions by means of Euler method. So it is our starting point for overcoming the recent obstacle,
i.e. we are interested in how to realize the formal estimate

q
(
ϑ(h, z), τ(h, y)

)
≤

(
q(z, y) + h Q7→(ϑ, τ)

)
· eα7→ h (∗∗)

for all points y ∈ E, every element z of a given “test set” D ⊂ E and h > 0 sufficiently small (depending
only on ϑ, z). In particular, the definitions of Q7→(ϑ, τ) and the parameter α 7→ have to be adapted.

3.2 Forward transitions

From now on, let E denote a nonempty set and fix D ⊂ E as set of “test elements” (for later
comparisons). Furthermore suppose q : E × E −→ [0,∞[ to be an ostensible metric on E.

Now we specify the primary tools for describing deformations in the tuple (E,D, q). A map ϑ : [0, 1]×
E −→ E is to define which point ϑ(t, x) ∈ E is reached from the initial point x ∈ E after time t.
Of course, ϑ has to fulfill some regularity conditions so that it may form the basis for a calculus of
differentiation.

Definition 3.5 A map ϑ : [0, 1]×E −→ E is a so–called forward transition on (E,D, q) if it fulfills
the following conditions

1. ϑ(0, ·) = IdE ,

2. ∀ x ∈ E, t ∈ [0, 1[: lim sup
h ↓ 0

1
h · q

(
ϑ(h, ϑ(t, x)), ϑ(t+ h, x)

)
= 0

∀ x ∈ E, t ∈ [0, 1[: lim sup
h ↓ 0

1
h · q

(
ϑ(t+ h, x), ϑ(h, ϑ(t, x))

)
= 0

3. ∃ α 7→(ϑ) <∞ ∀ z ∈ D, y ∈ E : lim sup
h ↓ 0

(
q
(
ϑ(h, z), ϑ(h, y)

)
− q(z,y)

h

)+

≤ α 7→(ϑ) q(z, y)

4. ∃ β(ϑ) <∞ ∀ s < t ≤ 1, x ∈ E : q
(
ϑ(s, x), ϑ(t, x)

)
≤ β(ϑ) · (t− s)

5. ∀ z ∈ D ∃ TΘ = TΘ(ϑ, z) ∈ ]0, 1] : {ϑ(t, z) | t ∈ [0, TΘ]} ⊂ D,

6. ∀ z∈D, y∈E, t∈ ]0, TΘ] : lim sup
h ↓ 0

q
(
ϑ(t− h, z), y

)
≥ q

(
ϑ(t, z), y

)
Here the term “forward” and the symbol 7→ (representing the time axis) indicate that we usually compare
the state at time t with the element at time t+ h for h ↓ 0.

Condition (2.) can be regarded as a weakened form of the semigroup property. It consists of two
demands as q need not be symmetric. Condition (3.) concerns the continuity properties of ϑ with
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respect to the initial point. In particular, the first argument of q is restricted to elements z of the “test
set” D and, α 7→(ϑ) may be chosen larger than necessary. Thus, it is easier to define α 7→(·) < ∞
uniformly in some applications like the first–order geometric example of § 4. In condition (4.),
all ϑ(·, x) : [0, 1] −→ E (x ∈ E) are supposed to be equi–Lipschitz continuous.
Condition (5.) guarantees that every element z ∈ D stays in the “test set” D for short times at least.
This assumption is required because estimates using the parameter α 7→(·) can be ensured only within
this period. Further conditions on TΘ(ϑ, ·) > 0 are avoidable for proving existence of solutions, but
they are used for uniqueness.

Condition (6.) forms the basis for applying Gronwall’s Lemma 3.2. Indeed, every function y : [0, 1] −→ E

with q(y(t−h), y(t)) −→ 0 (for h ↓ 0 and each t) satisfies
q
(
ϑ(t, z), y(t)

)
≤ lim sup

h ↓ 0
q
(
ϑ(t− h, z), y(t− h)

)
for all elements z ∈ D and times t ∈ ] 0, TΘ(ϑ, x)].

Definition 3.6 Θ7→(E,D, q) denotes a set of forward transitions on (E,D, q) supposing for all its
elements ϑ, τ ∈ Θ7→(E,D, q),

Q7→(ϑ, τ) := sup
z ∈D, y ∈E

lim sup
h ↓ 0

1
h ·

(
q
(
ϑ(h, z), τ(h, y)

)
− q(z, y) · eα7→(τ) h

)+

< ∞.

These definitions enable us to compare any element y ∈ E with a “test element” z ∈ D while
evolving along two forward transitions. Considering the bound in the next proposition, the influence
of the distances between initial points and between transitions is the same as for ordinary differential
equations. The key idea of right–hand forward solutions has been to preserve this structural estimate
while extending mutational equations to ostensible metrics and “distributional” features (in regard to
a test set D).

Proposition 3.7 Let ϑ, τ ∈Θ7→(E,D, q) be forward transitions, z∈D, y∈E and 0 ≤ t1 ≤ t2 ≤ 1,
h ≥ 0 satisfying t1 + h < TΘ(ϑ, z). Then,

q
(
ϑ(t1+h, z), τ(t2+h, y)

)
≤

(
q
(
ϑ(t1, z), τ(t2, y)

)
+ h · Q7→(ϑ, τ)

)
· eα7→(τ) h.

Proof. The auxiliary function ϕ : h 7−→ q(ϑ(t1+h, z), τ(t2+h, y)) has the semicontinuity property
ϕ(h) ≤ lim supk ↓ 0 ϕ(h− k) due to the assumptions of Θ 7→(E,D, q).

Moreover it fulfills lim sup
k ↓ 0

ϕ(h+k)− ϕ(h)
k ≤ α 7→(τ) · ϕ(h) + Q7→(ϑ, τ) for any h ∈ [0, 1[ with

t1 + h < TΘ(ϑ, z). Indeed, for all k > 0 sufficiently small, the triangle inequality leads to

ϕ(h+ k) ≤ q
(
ϑ(t1+h+ k, z), ϑ(k, ϑ(t1+h, z))

)
+ q

(
ϑ(k, ϑ(t1+h, z)), τ(k, τ(t2+h, y))

)
+ q

(
τ(k, τ(t2+h, y)), τ(t2+h+ k, y)

)
≤ 0 + Q7→(ϑ, τ) · k + ϕ(h) eα

7→(τ) k + 0 + o(k)

since t1 + h+ k < TΘ(ϑ, z) implies ϑ(t1+h, z), ϑ(t1+h+k, z) ∈ D.
Thus the claim results from Gronwall’s Lemma 3.2. 2
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3.3 Right–hand forward solutions

The next step is to define the term “right–hand forward primitive” for a curve ϑ(·) : [0, T ] −→
Θ7→(E,D, q) of forward transitions.
Roughly speaking, a curve x(·) : [0, T [−→ E represents a primitive of ϑ(·) if at each time t ∈ [0, T [,
the forward transition ϑ(t) can be interpreted as a first–order approximation of x(t+ · ). Combining
this notion with the key estimate of Proposition 3.7, a vague meaning of “first–oder approximation”
is provided : Comparing x(t + · ) with ϑ(t)(·, z) (for any test element z ∈ D), the same estimate
ought to hold as if the factor Q7→(·, ·) was 0. It motivates the following definition with the expression
“right–hand” indicating that x(·) appears in the second argument of the distances q in condition (1.).

Definition 3.8 The curve x(·) : [0, T [ −→ (E, q) is called right–hand forward primitive of a map
ϑ(·) : [0, T [−→ Θ7→(E,D, q), abbreviated to

◦
x(·) 3 ϑ(·), if

1. ∀ t ∈ [0, T [ ∃ α̂(t) ∈ [0,∞[ :

lim sup
h ↓ 0

1
h ·
(
q
(
ϑ(t)

(
h, z
)
, x(t+h)

)
− q(z, x(t)) · ebα(t)·h

)
≤ 0 for every element z ∈ D,

2. x(·) is uniformly continuous in time direction with respect to q, i.e. ∃ ω(·) : ]0, T [−→ [0,∞[

such that lim sup
h ↓ 0

ω(h) = 0 and q
(
x(s), x(t)

)
≤ ω(t− s) for 0 ≤ s < t < T.

Remark 3.9 Forward transitions induce their own primitives. To be more precise, every constant
function ϑ(·) : [0, 1[−→ Θ7→(E,D, q) with ϑ(·) = ϑ0 has the right–hand forward primitives [0, 1[−→ E,

t 7−→ ϑ0(t, x) with any x ∈ E — as an immediate consequence of Proposition 3.7. This property
is easy to extend to piecewise constant functions [0, T [ −→ Θ7→(E,D, q) and so it forms the basis for
Euler approximations.

Definition 3.10 For f : E × [0, T [−→ Θ7→(E,D, q) given, a map x : [0, T [−→ E is a right–hand
forward solution of the generalized mutational equation

◦
x(·) 3 f(x(·), ·) if x(·) is right–hand forward

primitive of f(x(·), · ) : [0, T [−→ Θ7→(E,D, q).

Constructing solutions of ordinary differential equations is usually based on completeness or com-
pactness. Here we prefer sequential compactness since the available estimates for transitions on (E,D, q)
hold only for elements of D in the first argument of q (as in Proposition 3.7). So there is no obvious
way of verifying the assumptions of Banach’s contraction principle in (E, q).
In Aubin’s mutational analysis on metric spaces, bounded closed balls are supposed to be compact, i.e.
for every bounded sequence (xn)n∈N in (E, d), there exist a subsequence (xnj )j ∈N and an element
x ∈E with d(xnj , x) −→ 0 (for j −→ ∞). Dispensing now with the symmetry of the distance,
sequential compactness is to consist of two conditions.

Definition 3.11 (E, q) is called two–sided sequentially compact if for any sequence (xn)n∈N in E

with supn q(x1, xn) < ∞, there exist a subsequence (xnj )j ∈N and an element x ∈ E such that
q(xnj , x) −→ 0, q(x, xnj ) −→ 0 for j −→∞.

Some ostensible metric spaces have this (rather local) compactness property in
common like (K(RN ), dl), but in general, it is too restrictive. Consider e.g. Kn :=
{ 1
n+1 ≤ |x| ≤ 1} and K := B1 satisfying dl(Kn,K) + dist(∂K, ∂Kn) −→ 0

(n→∞), but dist(∂Kn, ∂K) ≥ 1
2 .
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For this reason, we coin a more general term of sequential compactness. It is particularly adapted to the
aspects of Euler approximations as they are specified for proving the existence of solutions afterwards.
Furthermore, considering vanishing “perturbations in time” (here yn(hj)) will prove to be essential in
the main geometric example of § 4 about reachable sets of differential inclusions (see Proposition 4.17)
because the differential inclusions there will have “smoothening” effects on arbitrary boundaries (even
after an arbitrarily short period).

Definition 3.12 Let Θ denote a nonempty subset of forward transitions on (E,D, q).
The tuple (E, q, Θ) is called transitionally compact if it has the property:
Let the sequences (xn)n∈N in E, (hj)j ∈N in ]0, 1[ and (ϑn(·))n∈N in [0, 1] −→ Θ satisfy
1.) supn q(x0, xn) <∞,

2.) hj −→ 0 for j →∞,

3.) supn,t β(ϑn(t)) < ∞,

4.) each ϑn(·) : [0, 1] −→ Θ is piecewise constant, i.e. for each n ∈ N, there exists a finite partiction
0 = sn,0 < sn,1 < . . . < sn,kn = 1 such that ϑn(·) is constant in each [sn,i, sn,i+1[.

For each n ∈ N, define the function yn(·) : [0, 1] −→ E with yn(0) := xn in the piecewise way as
yn(t) := ϑn(sn,i) (t− sn,i, yn(sn,i)) for all t ∈ ]sn,i, sn,i+1].
Then there exist a sequence nk ↗∞ of indices and x ∈ E satisfying

lim sup
k−→∞

q(xnk
, x) = 0,

lim sup
j−→∞

sup
k ≥ j

q(x, ynk
(hj)) = 0.

A nonempty subset F ⊂ E is called transitionally compact in (E, q, Θ) if the same property
holds for any sequence (xn)n∈N in F (but x ∈ F is not required).

Remark 3.13 If (E, q) is two–sided sequentially compact, then (E, q, Θ) is transitionally compact
for every nonempty set Θ of forward transitions on (E,D, q).

Assuming transitional compactness, Euler method then provides the existence of solutions. It is an
important feature of this concept that all existence results can be extended to systems directly.

Proposition 3.14 (Existence of right–hand forward solutions) Assume that (E, q,Θ7→(E,D, q))
is transitionally compact. Let f : E × [0, T ] −→ Θ7→(E,D, q) fulfill

1. M := sup
t,y

α 7→
(
f(y, t)

)
< ∞,

2. c := sup
t,y

β(f(y, t)) < ∞,

3. ∃ ω(·) : Q7→
(
f(y1, t1), f(y2, t2)

)
≤ ω (q(y1, y2) + t2 − t1) for any 0 ≤ t1 ≤ t2 ≤ T, y1, y2 ∈ E

and ω(h) ↘ 0 for h ↓ 0.

Then for every initial element x0 ∈ E, there is a right–hand forward solution x : [0, T [ −→ E of
the generalized mutational equation

◦
x(·) 3 f(x(·), ·) with x(0) = x0.

Proof is based on Euler method for an approximating sequence (xn(·)) and Cantor diagonal construc-
tion for its limit x(·). For n∈N (2n>T ) set

hn := T
2n , tjn := j hn for j = 0 . . . 2n,

xn(0) := x0, x0(·) := x0,

xn(t) := f(xn(tjn), t
j
n)
(
t− tjn, xn(t

j
n)
)

for t ∈ ]tjn, t
j+1
n ], j ≤ 2n.

In particular, all xn(·) satisfy q
(
xn(s), xn(t)

)
≤ c · (t− s) for any 0 ≤ s < t < T + hn.
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Now for every t ∈ ]0, T [, choose a decreasing sequence (δk(t))k∈N in Q · T satisfying

0 < δk(t) < hk

2 , t+ δk(t) < T, c · δk(t) < hk.

Then, q
(
xn(t), xn(t+δk(t))

)
≤ hk −→ 0 for k −→∞ uniformly in n. The transitional compactness

provides sequences mk ↗ ∞, nk ↗ ∞ (mk ≤ nk) of indices and an element x(t) ∈ E satisfying for
every k ∈ N

∧


sup
l≥ k

q
(
xnl

(t), x(t)
)

≤ 1
k ,

sup
l≥ k

q
(
x(t), xnl

(t+ δmk
(t))
)

≤ 1
k .

(In particular, each mk, nk may be replaced by larger indices preserving the properties.) For arbitrary
κ ∈ N, these sequences mk, nk ↗∞ can even be chosen in such a way that the estimates are fulfilled
for the finite set of times t ∈ Qκ := ]0, T [ ∩ N · hκ simultaneously.

Now the Cantor diagonal construction (with respect to the index κ) provides subsequences (again
denoted by) mk, nk ↗∞ such that both mk ≤ nk and for every κ ∈ N, all s, t ∈ Qκ, k ≥ κ

∧


sup
l≥ k

q
(
xnl

(t), x(t)
)

≤ 1
k

sup
l≥ k

q
(
x(s), xnl

(s+ δmk
(s))

)
≤ 1

k

In particular, q(x(s), x(t)) ≤ c · (t− s) for any s, t ∈ QN :=
⋃
κ Qκ with s < t. Moreover, the

sequence (xnk
(·))k∈N fulfills q

(
xnk

(t), xnl
(t+ δml

(t))
)
≤ 1

k + 1
l for all κ ∈ N, t ∈ Qκ, k, l ≥ κ.

For extending x(·) to t ∈ ]0, T [ \QN, we apply the transitional compactness to ((xnk
(t))k∈N and

obtain a subsequence nlj ↗∞ of indices (depending on t) and some x(t)∈E satisfying

∧

 q
(
xnlj

(t), x(t)
)

−→ 0,

sup
i≥ j

q
(
x(t), xnli

(t+ δmj (t))
)

−→ 0
for j −→∞.

This implies the following convergence even uniformly in t

∧


lim sup
κ−→∞

sup
k>κ

q
(
xnk

(t− 2hκ), x(t)
)

= 0,

lim sup
κ−→∞

sup
k>κ

q
(
x(t), xnk

(t+ 2hκ)
)

= 0.
(∗)

Indeed, for κ ∈ N fixed arbitrarily and any t ∈ ]0, T [, there exists s = s(t, κ) ∈ Qκ with

t− 2hκ < s ≤ t− hκ and q
(
xnk

(s), xnl
(s+ δml

(s))
)
≤ 1

k + 1
l for all k, l ≥ κ.

So for any k, lj ≥ κ, we conclude from δmlj
(·) < 1

2 hmlj
≤ 1

2 hlj ≤
1
2 hκ

q
(
xnk

(t− 2hκ), x(t)
)

≤ q
(
xnk

(t− 2hκ), xnk
(s)
)

+ q
(
xnk

(s), xnlj
(s+ δmlj

(s))
)

+ q
(
xnlj

(s+ δmlj
(s)), xnlj

(t)
)

+ q
(
xnlj

(t), x(t)
)

≤ c · hκ + 1
k + 1

lj
+ c · 2hκ + q

(
xnlj

(t), x(t)
)

and j−→∞ leads to the estimate q
(
xnk

(t− 2hκ), x(t)
)
≤ 2 c · 2hκ + 2

κ .

The proof of lim sup
κ−→∞

sup
k>κ

q
(
x(t), xnk

(t+2hκ)
)

= 0 is analogous.

We reformulate the convergence property (∗) in the following notation: For each j ∈ N, there exists
some Kj ∈ N satisfying Kj > Kj−1 and for all s, t ∈ [0, T [, k ≥ κ ≥ Kj ,

∧

 q
(
xnk

(s− 2hκ), x(s)
)

≤ 1
j

q
(
x(t), xnk

(t+ 2hκ)
)

≤ 1
j .
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Subsequent Convergence Theorem 3.16 implies that x(·) is a right–hand forward solution of the
generalized mutational equation

◦
x(·) 3 f(x, ·).

Indeed, set Nj := nKj
as an abbreviation. Define gj : (y, t) 7−→ f

(
xNj (t

a+2
Nj

+2 hKj ), t
a+2
Nj

+2 hKj

)
for

taNj
≤ t<ta+1

Nj
and consider the sequence t 7−→ xNj (t+ 2hNj + 2hKj ) of solutions.

Obviously conditions (1.), (3.), (4.) of Proposition 3.16 result from the hypotheses here. Furthermore,
we obtain for any 0 ≤ t < t′ < T (with taNj

≤ t < ta+1
Nj

, tbNj
≤ t′ < tb+1

Nj
) and j ∈ N

Q7→
(
gj(y, t), gj(y′, t′)

)
= Q7→

(
f
(
xNj (t

a+2
Nj

+ 2hKj ), t
a+2
Nj

+ 2hKj

)
, f

(
xNj (t

b+2
Nj

+ 2hKj ), tb+2
Nj

+ 2hKj

))
≤ ω̂

(
q
(
xNj

(ta+2
Nj

+2hKj ), xNj (t
b+2
Nj

+2hKj )
)

+ (b−a) hNj

)
≤ ω̂

(
c · (t′−t+ 2hNj ) + t′−t+ 2hNj

)
−→ 0 for j −→∞, t′ − t ↓ 0 and all y, y′,

i.e. condition (2.) of Proposition 3.16 is also satisfied by (gj)j∈N.
Finally for verifying assumption (5.) of Convergence Theorem, we benefit from the convergence prop-
erties of (xNj

)j ∈N mentioned before. It ensures that for every t ∈ [0, T [ (with taNj
≤ t < ta+1

Nj
),

Q7→
(
f(x(t), t), gj(x(t), t)

)
= Q7→

(
f (x(t), t) , f

(
xNj (t

a+2
Nj

+2hKj ), t
a+2
Nj

+2hKj

))
≤ ω̂

(
q
(
x(t), xNj (t

a+2
Nj

+2hKj ))
)

+ 2 hKj + ta+2
Nj

−t
)

≤ ω̂
(
q
(
x(t), xNj (t+ 2hKj ))

)
+ c · 2 hNj + 2 hKj + 2 hNj

)
−→ 0 for j −→∞. 2

Remark 3.15 1. Assumption (2.) is only to guarantee the uniform continuity of the Euler ap-
proximations. If this property results from other arguments, then we can dispense with this assumption
and even with condition (4.) of Definition 3.5.

2. The proof in detail shows that the compactness assumption can be weakened slightly.
Considering the initial value problem for (E,D, q), we only need that all values of Euler approximations
(at positive times) are contained in a subset F that is transitionally compact in (E, q, Θ7→(E,D, q)).
In particular, it does not require any additional assumptions about the initial value.

Proposition 3.16 (Convergence Theorem) Suppose the following properties of
fm, f : E × [0, T [ −→ Θ7→(E,D, q) (m ∈ N)
xm, x : [0, T [ −→ E :

1. M := sup
m,t,y

α 7→(fm(y, t)) < ∞,

2. lim sup Q7→
(
fm(y1, t1), fm(y2, t2)

)
= 0 for m −→∞, t2−t1 ↓ 0, q(y1, y2) −→ 0,

3.
◦
xm (·) 3 fm(xm(·), ·) in [0, T [ ,

4. all xm(·) have a common modulus of continuity ω̂(·) with respect to q,

5. ∀ t1, t2 ∈ [0, T [, t3 ∈ ]0, T [ ∃ (mj)j∈N with mj ↗∞ and

(i) lim sup
j−→∞

Q7→
(
f(x(t1), t1), fmj (x(t1), t1)

)
= 0,

(ii) ∃ (δ′j)j∈N : δ′j ↘ 0, q
(
x(t2), xmj (t2+δ′j)

)
−→ 0,

(iii) ∃ (δj)j∈N : δj ↘ 0, q
(
xmj (t3−δj), x(t3)

)
−→ 0,

Then, x(·) is a right–hand forward solution of
◦
x(·) 3 f(x(·), ·) in [0, T [.
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Proof. Due to assumption (4.) and (5.), ω̂(·) is also the modulus of continuity of x(·).
Now let z ∈ D and t ∈ [0, T [, 0 < h < TΘ(f(x(t), t), z) be chosen arbitrarily. Condition (6.) of
Definition 3.5 ensures for all k ∈ ]0, h[ sufficiently small

q
(
f(x(t), t) (h, z), x(t+ h)

)
≤ q

(
f(x(t), t) (h−k, z), x(t+ h)

)
+ h2.

According to assumptions (5.i) – (5.iii), there exist sequences (mj)j∈N, (δj)j∈N, (δ′j)j∈N satisfying
mj ↗∞, δj ↓ 0, δ′j ↓ 0, δj+δ′j < k and Q7→

(
f(x(t), t), fmj (x(t), t)

)
≤ h2,

q
(
xmj (t+h−δj), x(t+h)

)
−→ 0, q

(
x(t), xmj (t+δ

′
j)
)
−→ 0.

Thus, subsequent Lemma 3.17 implies for all large j ∈ N (depending on z, t, h, k),

q
(
f(x(t), t) (h, z), x(t+ h)

)
≤ q

(
f(x(t), t) (h−k, z), xmj (t+δ

′
j + h−k)

)
+ q

(
xmj (t+δ

′
j + h−k), xmj (t+h− δj)

)
+ q

(
xmj (t+h− δj), x(t+h)

)
+ h2

≤ q
(
z, xmj (t+δ

′
j)
)
· eM ·(h−k) +

∫ h−k

0

eM ·(h−k−s) Q7→
(
f(x(t), t), fmj (xmj , ·)

∣∣
t+δ′j+s

)
ds

+ ω̂(k − δj − δ′j) + 2 h2

≤
(
q(z, x(t)) + h2

)
eM ·(h−k) + h eM h Q7→

(
f(x(t), t), fmj (x(t), t)

)
+ ω̂(k) + 2 h2 +

∫ h

0

eM ·(h−s) Q7→
(
fmj

(x(t), t), fmj
(xmj

(·), ·)
∣∣
t+δ′j+s

)
ds

Now j −→∞ and then k −→ 0 provide the estimate

q
(
f(x(t), t) (h, z), x(t+ h)

)
≤ q(z, x(t)) · eM h + const · h2 + h eM h · lim sup

j−→∞
sup

0≤ s≤h
Q7→

(
fmj

(x(t), t), fmj
(xmj

, ·)
∣∣
t+δ′j+s

)
.

Finally convergence assumption (2.) together with the equi-continuity of (xm(·))m∈N ensures

lim sup
h ↓ 0

lim sup
j−→∞

sup
0≤ s≤h

Q7→
(
fmj (x(t), t), fmj (xmj , ·)

∣∣
t+δ′j+s

)
≤ 0

and thus, lim sup
h ↓ 0

1
h ·

(
q
(
f(x(t), t)

(
h, z
)
, x(t+h)

)
− q(z, x(t)) · eM h

)
≤ 0. 2

Lemma 3.17 Suppose ψ ∈ Θ7→(E,D, q), z ∈ D, t1 ∈ [0, 1[, t2 ∈ [0, T [. Let the curve
x(·) : [0, T [−→ E be a right–hand forward primitive of ϑ(·) : [0, T [−→ Θ7→(E,D, q) such that

∧

{
α̂(·, x, ϑ) ≤ M(·),

Q7→(ψ, ϑ(·)) ≤ c(·),

with upper semicontinuous M, R, c : [0, T [−→ [0,∞[. Set µ(h) :=
∫ t2+h

t2

M(s) ds.

Then, for every h ∈ ]0, T [ with t1 + h < TΘ(ψ, z),

q
(
ψ(t1+h, z), x(t2+h)

)
≤ q

(
ψ(t1, z), x(t2)

)
· eµ(h) +

∫ h

0

eµ(h)−µ(s) c(t2+s) ds.

Proof follows essentially the same track as Proposition 3.7 – considering now the auxiliary function
ϕ : h 7−→ q(ψ(t1+h, z), x(t2+h)). Thus, it is not presented here in detail.

Finally, we are interested in bounds of the distance between solutions. However, estimating the
distance between points of forward transitions is available only for elements of D in the first argument
of q (as in Proposition 3.7). So we use an auxiliary function instead of the distance. Similarly to ordinary
differential inclusion, a Lipschitz condition on the right–hand side f comes into play. Furthermore,
lower bounds of the time parameter TΘ(·, ·) > 0 are assumed for the first time.
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Proposition 3.18 Assume for f : E × [0, T ] −→ Θ7→(E,D, q) and x, y : [0, T [−→ E

1.
◦
x(·) 3 f(x(·), · ),

◦
y (·) 3 f(y(·), · ) in [0, T [,

2. M := sup
t,v

α 7→(f(v, t)) < ∞,

3. ∃ ω̂(·), L : Q7→
(
f(v1, t1), f(v2, t2)

)
≤ L · q(v1, v2) + ω̂(t2 − t1)

for all 0 ≤ t1 ≤ t2 ≤ T, v1, v2 ∈ E and, ω(h) ↘ 0 for h ↓ 0.
Furthermore suppose for each t ∈ [0, T [ that the infimum ϕ(t) := inf

z ∈D

(
q(z, x(t)) + q(z, y(t))

)
< ∞

can be approximated by a minimizing sequence (zj)j ∈N in D satisfying supk > j q(zj ,zk)

TΘ(f(zj ,t), zj)

j→∞−→ 0.

Then, ϕ(t) ≤ ϕ(0) e(L+M) · t for every time t ∈ [0, T [.

Remark 3.19 1. In the case of symmetric q and D dense in (E, q), we obtain ϕ(t) = q(x(t), y(t)).

2. Proving the last proposition, the basic idea consists in estimating both

h 7−→ q
(
f(zm, t) (h, zm), x(t+h)

)
and h 7−→ q

(
f(zm, t) (h, zm), y(t+h)

)
(for small h > 0) with such a minimizing sequence (zm)m∈N for proving

lim inf
h ↓ 0

ψ(t+h)−ψ(t)
h ≤ (L+M) · ψ(t).

Roughly speaking, we need lower bounds of TΘ(f(zm, t), zm) here for “preserving” the information while
m −→ ∞. Finally, the second Lemma of Gronwall (Corollary 3.4) is applied to ϕ(·). We dispense
with the proof in detail since this estimate will not be used in § 4. (It is presented completely in [39, 43].)

4 Nonlocal evolution of compact subsets of RN

K(RN ) consists of all nonempty compact subsets of RN . The so–called Pompeiu–Hausdorff excess is a
first example of an ostensible metric on K(RN ) that is very similar to the Pompeiu–Hausdorff distance
dl, but not symmetric :

pe⊂(K1,K2) := supx∈K1
dist(x,K2)

pe⊃(K1,K2) := supy ∈K2
dist(y,K1).

for K1,K2 ∈ K(RN ). Obviously, the link to the Pompeiu–Hausdorff distance is

dl(K1,K2) = max { pe⊂(K1,K2), pe⊃(K1,K2)}

(see [2, Aubin 99: § 3.2] and [49, Rockafellar, Wets 98: § 4.C], for example).

In fact, reachable sets of autonomous differential inclusions provide an example of forward tran-
sitions on (K(RN ), K(RN ), pe⊃). The well–known Theorem of Filippov (as stated in [5, Aubin 91:
Theorem 5.3.1] or [54, Vinter 2000: Theorem 2.4.3]) forms the analytical basis – exactly as in Aubin’s
original presentation using the Pompeiu–Hausdorff distance dl [2, 3]. As this example is rather straight-
forward, we dispense with the details here (see [43, § 4.4.1]).
In the following, we prefer taking the boundaries into consideration explicitly. The Pompeiu–Hausdorff
excess pe⊃(K1,K2), however, does not distinguish between boundary points and interior points of the
compact sets K1,K2. Thus, an new ostensible metric qK,N on K(RN ) is defined in a moment. Strictly
speaking, we even use the first–order approximation of the boundary represented by the limiting nor-
mal cones of a set. Following the well–known definitions as in [54, Vinter 2000], these cones are specified:

Notation. Set Br(K) := {x ∈ RN | dist(x,K) ≤ r} for any K ∈ K(RN ) and radius r ≥ 0.
As further abbreviations, define Br := Br(0), B := B1(0) ⊂ RN , ‖K‖∞ := supz ∈K |z|.
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Definition 4.1 Let C ⊂ RN be a nonempty closed set.
A vector η ∈ RN , η 6= 0, is said to be a proximal normal vector to C at x ∈ C
if there exists ρ > 0 with Bρ(x+ ρ η

|η| ) ∩ C = {x}.
The supremum of all ρ with this property is called proximal radius of C at x in
direction η. The cone of all these proximal normal vectors is called the proximal
normal cone to C at x and is abbreviated as NP

C (x).
The so–called limiting normal cone NC(x) to C at x consists of all vectors η ∈ RN that can be
approximated by sequences (ηn)n∈N, (xn)n∈N satisfying

xn −→ x, xn ∈ C,

ηn −→ η, ηn ∈ NP
C (xn),

i.e. NC(x) Def.= Limsup y−→ x
y ∈ C

NP
C (y) (in the sense of Painlevé–Kuratowski).

As a further abbreviation, we set [NC(x) := NC(x) ∩ B = {v ∈ NC(x) : |v| ≤ 1}.

Convention. In the following we restrict ourselves to normal directions at boundary points, i.e.
strictly speaking, Graph NC and Graph [NC are the abbreviations of Graph NC |∂C , Graph [NC |∂C ,
respectively.

Definition 4.2 Set qK,N : K(RN )×K(RN ) −→ [0,∞[ ,

qK,N (K1,K2) := dl(K1,K2) + pe⊃(Graph [NK1 , Graph [NK2).

Obviously, the function qK,N is a quasi–metric on the set K(RN ) of all nonempty compact subsets of
RN , i.e. it is positive definite and satisfies the triangle inequality. The properties of qK,N with respect
to convergence depend on the relation between the normal cones of compact sets Kn (n ∈ N) and their
limit K = Limn→∞ Kn (if it exists). In general, they do not coincide of course, but each limiting
normal vector of K can be approximated by limiting normal vectors of a subsequence (Knj )j ∈N. Stating
this inclusion in the next proposition, we regard it as well–known (see e.g. [5, Aubin 91: Theorem 8.4.6]
or [22, Cornet, Czarnecki 99: Lemma 4.1]). As the inclusion might be strict, the tuple (K(RN ), qK,N )
is not two–sided compact in the sense of Definition 3.11.

Proposition 4.3 Let (Mk)k∈N be a sequence of closed subsets of RN and set M := Limsupk→∞Mk.

Then, 1. Graph NP
M ⊂ Limsupk→∞ Graph NP

Mk
,

2. Graph NM ⊂ Limsupk→∞ Graph NMk
. 2

Corollary 4.4 Let (Mk)k∈N be a sequence of closed subsets of RN whose limit M := Limk→∞Mk

exists. Then Graph NM ⊂ Liminfk→∞ Graph NMk
.

In particular, ∂M ⊂ Liminfk→∞ ∂Mk.

Proof is an indirect consequence of Proposition 4.3 due to M = Limk→∞Mk. 2

Now we focus on the evolution of limiting normal cones at the topological bound-
ary and use the Hamilton condition as a key tool. It implies that roughly speaking,
every boundary point x0 of ϑF (t0,K) and normal vector ν ∈ NϑF (t0,K)(x0)
have a trajectory and an adjoint arc linking x0 to some z∈∂K and ν to NK(z),
respectively.
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Furthermore the trajectory and its adjoint arc fulfill a system of partial differential
equations with the so–called Hamiltonian function of F : RN ; RN ,

HF : RN × RN −→ RN , (x, p) 7−→ sup
y ∈F (x)

p · y

Although the Hamilton condition is known in much more general forms (consider, for example, [54,
Theorem 7.7.1] applied to proximal balls), we use only the following “smooth” version — due to later
regularity conditions on F.

Proposition 4.5 Suppose for the set–valued map F : RN ; RN

1. F (·) has nonempty convex compact values,
2. HF (·, ·) is continuously differentiable on RN× (RN \ {0}),
3. the derivative of HF has linear growth on RN× (RN \ B1), i.e.

‖DHF (x, p)‖ ≤ const · (1 + |x|+ |p|) for all x, p ∈ RN , |p| > 1.

Let K ∈ K(RN ) be any initial set and t0 > 0.

For every boundary point x0 ∈ ∂ ϑF (t0,K) and normal ν ∈ NϑF (t0,K)(x0) \ {0}, there exist a
solution x(·) ∈ C1([0, t0],RN ) and its adjoint p(·) ∈ C1([0, t0],RN ) with{

ẋ(t) = ∂
∂p HF (x(t), p(t)) ∈ F (x(t)), x(t0) = x0, x(0) ∈ ∂K,

ṗ(t) = − ∂
∂x HF (x(t), p(t)), p(t0) = ν, p(0) ∈ NK(x(0)).

These assumptions give a first hint about adequate conditions on F : RN ; RN for inducing forward
transitions with respect to qK,N . Supposing DHF to be Lipschitz continuous (in addition) provides
some technical advantages such as global existence of unique solutions of the Hamiltonian system and
Remark 4.11 (1.).

Definition 4.6 For λ > 0, LIP(H)
λ (RN ,RN ) contains all set-valued maps F : RN ; RN with

1. F : RN ; RN has nonempty compact convex values,
2. HF (·, ·) ∈ C1,1(RN× (RN \ {0})),
3. ‖HF ‖C1,1(RN× ∂B1)

Def.= ‖HF ‖C1(RN× ∂B1) + Lip DHF |RN× ∂B1 < λ .

Lemma 4.7 For every F ∈ LIP(H)
λ (RN ,RN ) and K ∈ K(RN ), 0 ≤ s ≤ t ≤ T,

qK,N

(
ϑF (s,K), ϑF (t,K)

)
≤ λ (eλ T + 2) · (t− s).

Proof. Obviously, the Pompeiu–Hausdorff distance satisfies for every s, t ≥ 0
dl
(
ϑF (s,K), ϑF (t,K)

)
≤ sup

RN

‖F (·)‖∞ · (t− s) ≤ λ (t− s).

Proposition 4.5 guarantees that for every 0 ≤ s < t, x ∈ ∂ ϑF (t,K) and p ∈ [NϑF (t,K)(x) \ {0}, there
exist a solution x(·) ∈ C1([s, t],RN ) and its adjoint arc p(·) ∈ C1([s, t],RN ) satisfying{

ẋ(τ) = ∂
∂p HF (x(τ), p(τ)) ∈ F (x(τ)), x(t) = x, x(s) ∈ ∂ϑF (s,K),

ṗ(τ) = − ∂
∂x HF (x(τ), p(τ)), p(t) = p, p(s) ∈ NϑF (s,K)(x(s)).

Obviously, HF is (positively) homogeneous with respect to its second argument and thus, its definition
implies |ṗ(τ)| ≤ λ |p(τ)| for all τ. Moreover |p| ≤ 1 implies that the projection of p on any cone is
also contained in B1. So finally we obtain
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dist
(
(x, p), Graph [NϑF (s,K)

)
≤ |x− x(s)| + |p− p(s)|

≤ sup
s≤ τ ≤ t

(
| ∂∂x HF | + | ∂∂p HF |

)∣∣∣
(x(τ),p(τ))

· (t− s)

≤
(
λ eλ t + λ

)
· (t− s).

2

So the next question is whether the features of LIP(H)
λ (RN ,RN ) are already sufficient for forward tran-

sitions with respect to qK,N . An essential demand is that smooth compact subsets of RN stay smooth
for short times.

Definition 4.8 KC1,1(RN ) abbreviates the set of all nonempty compact N–dimensional
C1,1 submanifolds of RN with boundary.

A closed subset C ⊂ RN is said to have positive erosion of radius ρ > 0 if
there exists a closed set M ⊂ RN with C = {x ∈ RN | dist(x,M) ≤ ρ }.
Kρ◦(RN ) consists of all sets with positive erosion of radius ρ > 0 and, set

K◦(RN ) :=
⋃
ρ> 0

Kρ◦(RN ) .

Remark 4.9 The morphological term “erosion” is motivated by the fact that a set C = C◦ ⊂ RN

has positive erosion of radius ρ > 0 if and only if the closure RN \ C of its complement has positive
reach in the sense of Federer ([30]).
The relationship between positive reach and positive erosion implies a collection of interesting regular-
ity properties presented (for closed subsets of a Hilbert space) in [21, Clarke, Stern, Wolenski 95], [20,
Clarke, Ledyaev, Stern 97], [48, Poliquin, Rockafellar, Thibault 2000].

Proposition 4.10 Let F : RN ; RN be a map of LIP(H)
λ (RN ,RN ). For every compact N–

dimensional C1,1 submanifold K of RN with boundary, there exist a time τ > 0 and a radius ρ > 0
such that for all t ∈ [0, τ [,

1. ϑF (t,K) ∈ KC1,1(RN ) with radius of curvature ≥ ρ,

(i.e. ϑF (t,K) has both positive reach and positive erosion of radius ≥ ρ).

2. K = RN
∖
ϑ−F (t, RN \ ϑF (t,K)).

Remark 4.11 1. A complete proof is presented in the appendix (Propositions A.2, A.4). For
statement (1.), we use the evolution of Graph (NK(·)∩∂B) ⊂ RN ×RN along the Hamiltonian system
with HF . Indeed, Lemma A.3 specifies sufficient conditions on the system so that graphs of Lipschitz
continuous functions preserve this regularity for short times. Applying this lemma to unit normals to
reachable sets of K∈KC1,1(RN ) requires the Hamiltonian HF to be in C1,1(RN× (RN \ {0})) instead
of C1. In fact, this Lemma A.3 is an analytical reason for choosing KC1,1(RN ) as “test subset” of
K(RN ) — instead of compact sets with C1 boundary, for example.

2. Together with Proposition 4.5, statement (2.) provides a connection between the boundaries
∂K and ∂ ϑF (t,K) — now in both forward and backward time direction.
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Lemma 4.12 Assume for F, G ∈ LIP(H)
λ (RN ,RN ), K1, K2 ∈ K(RN ) and T > 0 that all the

sets ϑF (t,K1) ∈ KC1,1(RN ) (0 ≤ t ≤ T ) have uniform positive reach.
Then, for every t ∈ [0, T [,

qK,N
(
ϑF (t,K1), ϑG(t,K2)

)
≤ e(ΛF +λ) t ·

(
qK,N (K1, K2) + 6N t ‖HF −HG‖C1(RN× ∂B1)

)
with ΛF := 9 e2λT ‖HF ‖C1,1(RN× ∂B1) ≤ 9 e2λT λ < ∞.

Proof. [2, Proposition 3.7.3] concludes the following estimate of the Pompeiu–Hausdorff distance
directly from Filippov’s well-known Theorem about differential inclusions (with Lipschitz continuous
right-hand side)

dl
(
ϑF (t,K1), ϑG(t,K2)

)
≤ dl(K1,K2) · eλ t + sup

RN

dl
(
F (·), G(·)

)
· eλ t − 1

λ

≤ dl(K1,K2) · eλ t + sup
RN× ∂B1

|HF −HG| · t eλ t .

So now we need an upper bound of pe⊃
(
Graph [NϑF (t,K1), Graph [NϑG(t,K2)

)
.

Choose x ∈ ∂ ϑG(t,K2), p ∈ NϑG(t,K2)(x) ∩ ∂B1 and δ > 0 arbitrarily. According to Proposition 4.5,
there exist a solution x(·) ∈ C1([0, t],RN ) of G and its adjoint arc p(·) ∈ C1([0, t],RN ) with

ẋ(·) = ∂
∂p HG(x(·), p(·)) ∈ G(x(·)), ṗ(·) = − ∂

∂x HG(x(·), p(·)) ∈ λ |p(·)| · B
x(0) ∈ ∂K2, x(t) = x, p(0) ∈ NK2(x(0)), p(t) = p.

Gronwall’s Lemma guarantees
0 < e−λ t ≤ |p(·)| ≤ eλ t

and so, p(0) e−λ t ∈ [NK2(x(0)) \ {0}.
Now let (y0, q̂0) denote an element of Graph [NK1

with q̂0 6= 0 and∣∣(y0, q̂0) − (
x(0), p(0) e−λ t

)∣∣
≤ pe⊃

(
Graph [NK1 , Graph [NK2

)
+ δ.

Assuming that all ϑF (s,K1) ∈ K(RN ) (s∈ [0, t]) have
uniform positive reach implies the reversibility in time
due to Prop. A.4: RN\K1 = ϑ−F (t, RN\ϑF (t,K1)).
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timet

ϑG(t, K2)

s = 0

K2

K1 ϑF (t, K1)

x
x(0)

y0

y(t)

RN RN

So in particular, y0 is a boundary point of the (not compact) N–dimensional C1,1 submanifold
RN\

◦
K1 = ϑ−F (t, RN \ ϑF (t,K1)) with boundary and, − q̂0 belongs to its limiting normal cone at

y0. As a consequence of Prop. 4.5 again and due to H−F (z, v) = HF (z,−v) for all z, v, we obtain a
solution y(·) ∈ C1([0, t],RN ) and its adjoint arc q(·) satisfying

ẏ(·) = ∂
∂p HF (y(·), q(·)), q̇(·) = − ∂

∂y HF (y(·), q(·))
y(0) = y0, q(0) = q̂0 eλ t 6= 0,
y(t) ∈ ∂ ϑF (t,K1), q(t) ∈ NϑF (t,K1)(y(t)).

According to Lemma 4.13, the derivative of HF is ΛF –Lipschitz continuous on RN × (Beλ T \
◦
Be−λ T ).

Thus, the Theorem of Cauchy–Lipschitz leads to

dist
(
(x, p), Graph [NϑF (t,K1)

)
≤
∣∣(x, p) − (y(t), q(t))

∣∣
≤ eΛF · t ·

∣∣(x(0), p(0)) − (y0, q̂0 eλ t)
∣∣ + eΛF · t−1

ΛF
· sup

0≤ s≤ t
|DHF −DHG|

∣∣∣
(x(s), p(s))

.

HF and HG are positively homogenous with respect to the second argument and thus,∣∣ ∂
∂xj

(HF −HG)|(x(s), p(s))
∣∣ ≤ eλ t ‖DHF −DHG‖C0(RN×∂B1),∣∣ ∂

∂pj
(HF −HG)|(x(s), p(s))

∣∣ ≤ 3 · ‖HF −HG‖C1(RN×∂B1).
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So we obtain
dist

(
(x, p), Graph [NϑF (t,K1)

)
≤ e(ΛF +λ) t

∣∣(x(0), p(0) e−λ t) − (y0, q̂0)
∣∣ + eΛF t t · 6N eλ t ‖HF −HG‖C1(RN×∂B1)

and, since δ > 0 is arbitrarily small and |p| = 1,

pe⊃
(
Graph [NϑF (t,K1), Graph [NϑG(t,K2)

)
≤ e(ΛF +λ) t ·

{
pe⊃
(
Graph [NK1 , Graph [NK2

)
+ 6N t · ‖HF −HG‖C1(RN×∂B1)

}
. 2

Lemma 4.13 For every F ∈ LIP(H)
λ (RN ,RN ) and radius R > 1, the product 9 R2 λ is a

Lipschitz constant of the derivative DHF restricted to RN× (BR\
◦
B 1

R
).

Proof results from the fact that HF (x, p) is positively homogenous with respect to p. (For further
details see [43, Lemma 4.4.24].) 2

Proposition 4.14 For every λ ≥ 0, the reachable sets of the set–valued maps in LIP(H)
λ (RN ,RN )

induce forward transitions on (K(RN ), KC1,1(RN ), qK,N )

with α 7→(ϑF ) Def.= 10 λ

β(ϑF ) Def.= λ (eλ + 2),

Q7→(ϑF , ϑG) ≤ 6 N ‖HF −HG‖C1(RN× ∂B1) .

Proof. The semigroup property of reachable sets implies again

qK,N
(
ϑF (h, ϑF (t,K)), ϑF (t+ h, K)

)
= 0,

qK,N
(
ϑF (t+ h, K), ϑF (h, ϑF (t,K))

)
= 0

for all F ∈ LIP(H)
λ (RN ,RN ), K ∈ K(RN ), h, t ≥ 0 since qK,N is a quasi–metric.

According to Proposition 4.10, every set–valued map F ∈ LIP(H)
λ (RN ,RN ) and initial set K1 ∈

KC1,1(RN ) lead to a time TΘ(ϑF ,K1) > 0 and a radius ρ > 0 such that ϑF (t,K1) ∈ KC1,1(RN )
has positive reach of radius ≥ ρ for any t ∈ [0, TΘ(ϑF ,K1)].
So Lemma 4.12 guarantees for all K1 ∈ KC1,1(RN ) and K2 ∈ K(RN ) with K1 6= K2

lim sup
h ↓ 0

(
qK,N

(
ϑF (h,K1), ϑF (h,K2)

)
− qK,N

(
K1, K2

)
h qK,N

(
K1, K2

) )+

≤ lim sup
h ↓ 0

1
h

(
e(9 e

2 λ h λ+ λ) · h − 1
)

= 10 λ Def.= α 7→(ϑF )

and for every F,G ∈ LIP(H)
λ (RN ,RN )

Q7→(ϑF , ϑG) ≤ sup
K1 ∈ KC1,1 (RN )

K2 ∈ K(RN )

lim sup
h ↓ 0

(
qK,N (K1, K2) 1

h

(
e(9 e

2 λ h λ+ λ) · h − e10 λ h
)

+ 6 N · ‖HF −HG‖C1(RN× ∂B1) e
(9 e2 λ h λ+ λ) · h

)
= 6 N · ‖HF −HG‖C1(RN× ∂B1).

Moreover Lemma 4.7 states qK,N

(
ϑF (s,K), ϑF (t,K)

)
≤ λ (eλ + 2) · (t− s)

for any 0 ≤ s ≤ t ≤ 1 and K ∈ K(RN ).

Finally we have to show lim sup
h ↓ 0

qK,N
(
ϑF (t− h, K1), K2

)
≥ qK,N

(
ϑF (t,K1), K2

)
for all

F ∈ LIP(H)
λ (RN ,RN ), K1 ∈ KC1,1(RN ), K2 ∈ K(RN ) and 0 < t < TΘ(ϑF ,K1).

Proposition A.4 ensures the reversibility in time in the interval [0, TΘ(ϑF ,K1)[ , i.e.

RN
∖
ϑF (t− h,K1) = ϑ−F

(
h, RN \ ϑF (t,K1)

)
for every 0 < h < t < TΘ(ϑF ,K1).
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Due to standard hypothesis (H), the flow of the Hamiltonian system even induces a Lipschitz home-
omorphism between Graph NϑF (t−h,K1) and Graph NϑF (t,K1) since each limiting normal cone
contains exactly one direction and NϑF (t,K1)(·) = −NRN \ϑF (t,K1)

(·).
Thus, Graph NϑF (t,K1) = Limh ↓ 0 Graph NϑF (t−h,K1) and finally,

qK,N
(
ϑF (t,K1), ϑF (t− h, K1)

)
−→ 0 for h ↓ 0.

So the last claim results from the triangle inequality. 2

For applying Proposition 3.14 about the existence of right–hand forward solutions, we still need
sufficient conditions for the transitional compactness.

Definition 4.15 For any λ > 0 and ρ > 0 , the set LIP(Hρ
◦)

λ (RN ,RN ) consists of all set–valued
maps F : RN ; RN satisfying

1. F : RN ; RN has compact convex values in Kρ◦(RN ).
2. HF (·, ·) ∈ C2(RN× (RN \ {0})),
3. ‖HF ‖C1,1(RN× ∂B1)

Def.= ‖HF ‖C1(RN× ∂B1) + Lip DHF |RN× ∂B1 < λ .

Remark 4.16 LIP(Hρ
◦)

λ (RN ,RN ) is a subset of LIP(H)
λ (RN ,RN ) and its maps fulfill standard

hypothesis (Hρ
◦) (see Definition A.7). In particular, they make points evolve into sets of positive

erosion according to Proposition A.9.

Proposition 4.17

For any λ, ρ > 0, consider the maps F ∈ LIP(Hρ
◦)

λ (RN ,RN ) (i.e. their reachable sets, strictly speaking)
as forward transitions on (K(RN ), KC1,1(RN ), qK,N ).

Then K◦(RN ) is transitionally compact in
(
K(RN ), qK,N , LIP(Hρ

◦)
λ (RN ,RN )

)
in the following

sense (see Definitions 3.12, 4.8) : Let (Kn)n∈N, (hj)j ∈N be sequences in K◦(RN ) and ]0, 1[,
respectively with hj ↓ 0, supn qK,N (B1,Kn) < ∞. Suppose each Gn : [0, 1] −→ LIP(Hρ

◦)
λ (RN ,RN ) to

be piecewise constant (n ∈ N) and set

G̃n : [0, 1]× RN ; RN , (t, x) 7−→ Gn(t)(x),

Kn(h) := ϑ eGn
(h,Kn) for h ≥ 0.

Then there exist a sequence nk ↗∞ of indices and K ∈ K(RN ) satisfying
lim sup
k−→∞

qK,N (Knk
(0), K) = 0,

lim sup
j−→∞

sup
k≥ j

qK,N (K, Knk
(hj)) = 0.

Proof. Closed bounded balls in (K(RN ), dl) are known to be compact. So
there exist a subsequence (again denoted by) (Kn)n∈N and K ∈ K(RN ) with
dl(Kn,K) −→ 0 (n −→∞). Thus, dl(K,Kn(h)) ≤ dl(K,Kn) + λ h −→ λ h

for n −→∞. Furthermore Corollary 4.4 implies qK,N (Kn,K) −→ 0.

Now we want to prove that K satisfies the claim by choosing subsequences of (Kn) for countably
many times and finally applying the Cantor diagonal construction.
An important tool here is Proposition A.9. It ensures the existence of σ = σ(λ, ρ,K) > 0 and ĥ =
ĥ(λ, ρ,K) ∈ ]0, 1] such that ϑ− eGn(h− · , · )(h, z) has positive erosion of radius σ h for every h ∈]0, ĥ] and
z ∈ B1(K). In the following, we assume without loss of generality 0 < hj < ĥ and Kn(h) ⊂ B1(K)
for all j, n ∈ N, h ∈ [0, ĥ].
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So the asymptotic properties of pe⊃
(
Graph [NK , Graph [NKn(h)

)
(n −→∞)

have to be investigated for each h ∈ ]0, ĥ].
Due to Definition 4.1, every limiting normal cone results from the neighboring proximal normal cones,
i.e. NC(x) Def.= Limsup y−→ x

y ∈ C
NP
C (y) for all nonempty C ⊂ RN , x ∈ ∂C.

Thus, Graph NC = Graph NP
C and from now on, we confine our considerations to the excess

pe⊃
(
Graph [NK , Graph [NP

Kn(h)

)
for any h ∈ ]0, ĥ].

Pn,h := Kn ∩ ϑ− eGn(h− · , · )(h, ∂ Kn(h)) is a subset of ∂Kn. More
precisely, it consists of all points x ∈ Kn such that a trajectory of G̃n
starts in x and reaches ∂ Kn(h) at time h. In addition, every boundary
point y of Kn(h) is attained by such a trajectory.

Taking now adjoint arcs into account, the Hamiltonian system in Proposition 4.5 provides the following
estimate for every n ∈ N (similarly to Lemma 4.7)

pe⊃
(
Graph [NKn

∣∣∣ Pn,h
, Graph [NP

Kn(h)

)
≤ const(λ) · h.

The next step provides the identity of normals: Graph [NKn

∣∣∣ Pn,h
= Graph [NP

Kn

∣∣∣ Pn,h
.

Indeed, NP
RN\Kn

(x) 6= ∅ for all x ∈ ∂Kn, due to Kn ∈ K◦(RN ).

In particular, NP
Kn

(x) 6= ∅ for all x ∈ Pn,h since ϑ− eGn(h− · , · )(h, ∂ Kn(h)) has positive

erosion of radius σ h (Proposition A.9) and Kn ∩
(
ϑ− eGn(h− · , · )(h, ∂ Kn(h))

)◦ = ∅.
So, NP

RN\Kn
(x) = −NP

Kn
(x) contain exactly one direction for every point x ∈ Pn,h according to

[20, Clarke,Ledyaev,Stern 97: Lemma 6.4].
The positive erosion of Kn implies that RN \Kn has positive reach and thus, NP

RN\Kn
(x) =

NRN\Kn
(x) = NC

RN\Kn
(x) contain exactly one direction (with NC

M (x) denoting the Clarke normal

cone of M ⊂ RN at x). Due to a well–known result about Clarke normal cones of closed complements
in [19, Clarke 83], we obtain that NC

Kn
(x) = −NC

RN\Kn
(x) consist of exactly one direction for all

x ∈ Pn,h and so,

NC
Kn

(x) = NKn(x) = NP
Kn

(x).

In addition, the proximal radius of Kn at each x ∈ Pn,h (in its unique proximal direction) is ≥ σ h

since ϑ− eGn(h− · , · )(h, ∂ Kn(h)) has positive erosion of radius σ h.
As this lower bound of proximal radius does not depend on n (but merely on h, λ, ρ,K), it is easy to
prove indirectly for every h ∈ ]0, ĥ]

pe⊃
(
Graph [NK , Graph [NP

Kn

∣∣∣ Pn,h

)
−→ 0 (n −→∞).

So we obtain the estimate for every h ∈ ]0, ĥ],
lim sup
n−→∞

pe⊃
(
Graph [NK , Graph [NP

Kn(h)

)
≤ const(λ) · h.

For proving transitional compactness of K◦(RN ) in (K(RN ), qK,N , LIP(Hρ
◦)

λ (RN ,RN )), a sequence
(hj)j ∈N in ]0, ĥ] with hj −→ 0 is given. Applying the Cantor diagonal construction, we obtain a
subsequence (again denoted by) (Knk

)k∈N satisfying for every j ∈ N, k ≥ j

pe⊃
(
Graph [NK , Graph [NP

Knk
(hj)

)
≤ const(λ) · hj + 1

k ,

and thus, lim sup
j−→∞

sup
k≥ j

qK,N (K, Knk
(hj)) = 0.

2
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Corollary 4.18 Let f : K(RN )× [0, T ] −→ LIP(Hρ
◦)

λ (RN ,RN ) satisfy∥∥Hf(K1,t1) − Hf(K2,t2)

∥∥
C1(RN×∂B1)

≤ ω(qK,N (K1,K2) + t2 − t1)

for all K1,K2 ∈ K(RN ) and 0 ≤ t1 ≤ t2 ≤ T with a modulus ω(·) of continuity and consider the
reachable sets of maps in LIP(Hρ

◦)
λ (RN ,RN ) as forward transitions on (K(RN ), KC1,1(RN ), qK,N )

according to Proposition 4.14.

Then for every initial set K0 ∈ K(RN ), there exists a right–hand forward solution K : [0, T [ −→
K(RN ) of the generalized mutational equation

◦
K (·) 3 f(K(·), ·) with K(0) = K0, i.e.

a) lim sup
h ↓ 0

1
h ·
(
qK,N

(
ϑf(K(t), t) (h, M), K(t+h)

)
− qK,N (M, K(t)) · e10 λ h

)
≤ 0

for every compact N–dimensional submanifold M ⊂ RN with C1,1 boundary and t ∈ [0, T [.

b) qK,N (K(s), K(t)) ≤ const(λ, T ) · (t− s) for all 0 ≤ s < t < T.

Proof results from Proposition 4.17 along with Proposition 3.14 and Remark 3.15 (2.). 2

A Reachable sets of differential inclusions in RN

This appendix provides a collection of properties for the reachable sets of differential inclusions giving
a quite general example of shape evolution. In particular, we use adjoint arcs for describing the time–
dependent limiting normal cones and find sufficient conditions for preserving smooth boundaries (for
short times at least).
First we prove in Proposition A.2 that C1,1 boundaries are preserved for short times even under slightly
more general assumptions than F ∈ LIP(H)

λ (RN ,RN ). Then according to Proposition A.4, the same
hypothesis guarantees that the evolution of smooth sets is reversible in time. Finally, the conditions on
the Hamiltonian function HF are supposed to be stronger for guaranteeing that points evolve into sets
of positive erosion. Details are presented in Proposition A.9.

A.1 Hamiltonian system helps preserving C1,1 boundaries shortly

Definition A.1 For a set–valued map F : RN ; RN , the standard hypothesis (H) comprises the
following conditions on HF (x, p) := sup p · F (x)

1. F has nonempty compact convex values,
2. HF (·, ·) ∈ C1,1(RN× (RN \ {0})),
3. the derivative of HF has linear growth, i.e. there is some γF > 0 with∥∥DHF (x, p)

∥∥
L(RN×RN ,R)

≤ γF · (1 + |x|+ |p|) for all x, p ∈ RN (|p| ≥ 1).

Proposition A.2 Assume standard hypothesis (H) for F : RN ; RN . For every initial set K ∈
KC1,1(RN ), there exist τ = τ(F,K) > 0 and ρ = ρ(F,K) > 0 such that ϑF (t,K) is also a N–
dimensional C1,1 submanifold of RN with boundary for all t ∈ [0, τ ] and its radius of curvature is
≥ ρ (i.e. ϑF (t,K) has both positive reach and positive erosion of radius ρ).

The proof of Proposition A.2 is based on the following lemma :
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Lemma A.3 Suppose for H : [0, T ]×RN ×RN −→ R, ψ : RN −→ RN and the Hamiltonian system

∧

{
ẏ(t) = ∂

∂q H(t, y(t), q(t)), y(0) = y0

q̇(t) = − ∂
∂y H(t, y(t), q(t)), q(0) = ψ(y0)

(∗)

the following properties :

1. H(t, ·, ·) is differentiable for every t ∈ [0, T ],
2. for every R > 0, there exists kR ∈ L1([0, T ]) such that the derivative of

H(t, ·, ·) is kR(t)–Lipschitz continuous on BR × BR for almost every t,
3. ψ is locally Lipschitz continuous,

4. every solution (y(·), q(·)) of the Hamiltonian system (∗) can be extended to [0, T ]
and depends continuously on the initial data in the following sense :
Let each (yn(·), qn(·)) be a solution satisfying yn(tn) −→ z0, qn(tn) −→ q0

for some tn −→ t0, z0, q0 ∈ RN . Then (yn(·), qn(·))n∈N converges uniformly to
a solution (y(·), q(·)) of the Hamiltonian system with y(t0) = z0, q(t0) = q0.

For a compact set K ⊂ RN and t ∈ [0, T ], define

M 7→
t (K) :=

{
(y(t), q(t))

∣∣∣ (y(·), q(·)) solves system (∗), y0 ∈ K
}
⊂ RN × RN .

Then there exist δ > 0 and λ > 0 such that M 7→
t (K) is the graph of a λ–Lipschitz continuous function

for every t ∈ [0, δ].

Proof of Lemma A.3 follows exactly the same (indirect) track as [32, Frankowska 2002: Lemma 5.5]
stating the corresponding result for the Hamiltonian system with y(T ) = yT , q(T ) = qT given (without
mentioning the uniform Lipschitz constant λ explicitly).

Proof of Proposition A.2. Standard hypothesis (H) for F : RN ; RN implies conditions (1.), (4.)
of the preceding Lemma A.3 for the Hamiltonian HF .

Assuming that K ∈ K(RN ) is a N–dimensional C1,1 submanifold of RN with boundary, the unit
exterior normal vectors of K (restricted to ∂K) can be extended to a Lipschitz continuous function
ψ : RN −→ RN . Choosing some cut–off function ϕ ∈ C∞([0,∞[, [0, 1]) with ϕ|[0, 14 ] ≡ 0, ϕ|[ 12 ,∞[ ≡ 1,
H(t, x, p) := HF (x, p) · ϕ(|p|) satisfies condition (2.) of Lemma A.3 in addition.

For arbitrary x0 ∈ ∂K, consider now the differential equations

∧

{
ẋ(t) = ∂

∂p H(t, x(t), p(t)), x(0) = x0,

ṗ(t) = − ∂
∂x H(t, x(t), p(t)), p(0) = ψ(x0).

(∗)

Due to |ψ(·)| = 1 on ∂K and H ∈ C1,1, there is τ1 > 0 such that |p(t)| > 1
2 for all t ∈ [0, τ1] and

solutions (x(·), p(·)) of (∗) with x0 ∈ ∂K. Thus, H = HF close to (x(t), p(t)). Now Proposition 4.5
can be reformulated as

Graph NϑF (t,K)(·) ⊂
{

(x(t), λ p(t))
∣∣∣ (x(·), p(·)) solves system (∗), x0 ∈ ∂K, λ ≥ 0

}
,

for all t ∈ [0, τ1]. Furthermore Lemma A.3 yields τ ∈ ]0, τ1[ and λM > 0 such that

M 7→
t (∂K) :=

{
(x(t), p(t))

∣∣∣ (x(·), p(·)) solves system (∗), x0 ∈ ∂K
}

is the graph of a λM–Lipschitz continuous function for each t ∈ [0, τ ].

Then for every point z ∈ ∂ϑF (t,K), the limiting normal cone NϑF (t,K)(z) contains exactly one
direction and, its unit vector depends on z in a Lipschitz continuous way. (The Lipschitz constant is
uniformly bounded by 2λM since the choice of τ1 ensures |p(·)| > 1

2 on [0, τ1] for each solution of (∗).)
So the compact set ϑF (t,K) is N–dimensional C1,1 submanifold of RN with boundary for all t ∈ [0, τ ]
and its radius of curvature has a uniform lower bound. 2
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A.2 How to guarantee reversibility of C1,1 sets in time (shortly)

The Hamilton condition leads to a necessary condition on boundary points x ∈ ∂ ϑF (t,K) and their
limiting normal cones in Proposition 4.5. If each set ϑF (t,K) (0 ≤ t ≤ T ) has positive reach of radius
ρ, then standard hypothesis (H) turns adjoint arcs into sufficient conditions and, we conclude that the
evolution of reachable sets is reversible with respect to time — in the sense of Proposition A.4.

Proposition A.4 Suppose standard hypothesis (H) for the map F : RN ; RN .
Assume for K0∈K(RN ) and ρ > 0 that each compact set Kt := ϑF (t,K0) (0 ≤ t ≤ T ) has positive
reach of radius ρ.
Then for every 0 ≤ s ≤ t < T, Ks = RN

∖
ϑ−F (t− s, RN \Kt).

Here we even suppose a uniform radius ρ of positive reach for Kt
Def.= ϑF (t,K0). The essential advantage

for the proof is the relation between the boundaries of Kt ⊂ RN and Graph (t 7−→ Kt) ⊂ R × RN

stated in Proposition A.6 :

∂ Graph ϑF ( · ,K0)|[0,T ] = ({0} ×K0) ∪
⋃

0<t<T

({t}×∂ϑF (t,K0)) ∪ ({T}×ϑF (T,K0)) .

Proof of Proposition A.4 ϑF (s,K0) ⊂ RN \ ϑ−F (t− s, RN \Kt) is an easy indirect consequence
of definitions since it is equivalent to ϑF (s,K0) ∩ ϑ−F (t− s, RN \Kt) = ∅.

For proving the inverse inclusion indirectly at time s = 0 (w.l.o.g.), we assume the existence of a
time t ∈ [0, T [ and a point y0 ∈ RN with y0 /∈ K0 ∪ ϑ−F (t, RN \Kt).
As an immediate consequence of y0 /∈ ϑ−F (t, RN \Kt), the reachable set ϑF (t, y0) is contained in
Kt

Def.= ϑF (t,K0). Now set τ := inf {s ∈ [0, t] | ϑF (s, y0) ⊂ ϑF (s,K0)}.
In particular, τ > 0 due to y0 /∈ K0.

and ϑF (τ, y0) ⊂ ϑF (τ,K0) due to the continuity of the reachable sets.
There are sequences τn ↗ τ and (xn(·))n∈N in W 1,1([0, T ],RN ) satisfying

ẋn(·) ∈ F (xn(·)) a.e., xn(0) = y0, xn(τn) /∈ ϑF (τn,K0).
Standard hypothesis (H) and the compactness of trajectories (see e.g. [54, Theorem 2.5.3]) lead to
subsequences (again denoted by) (τn)n∈N, (xn(·))n∈N and a solution x(·) ∈ W 1,1([0, T ],RN ) of
ẋ(·) ∈ F (x(·)) (almost everywhere) with

xn(·) −→ x(·) uniformly in [0, T ], ẋn(·) −⇀ ẋ(·) in L1([0, T ], RN ).

In particular, (τ, x(τ)) has to be a boundary point of Graph ϑF (·,K0). Proposition A.6 and 0 < τ ≤
t < T ensure xτ := x(τ) ∈ ∂Kτ

Def.= ∂ ϑF (τ,K0).
Moreover, Kτ

Def.= ϑF (τ,K0) is supposed to have positive reach. So its limiting and proximal
normal cone coincide at each boundary point and thus,

∅ 6= NϑF (τ,K0)(xτ ) = NP
ϑF (τ,K0)

(xτ ) ⊂ NP
ϑF (τ, y0)

(xτ ).
For every unit vector ν ∈ NϑF (τ,K0)(xτ ), Proposition 4.5 leads to a solution z(·) ∈ C1([0, τ ],RN )
of F and its adjoint arc q(·) ∈ C1([0, τ ],RN ) satisfying the corresponding Hamiltonian system and
z(0) ∈ K0, z(τ) = xτ , q(τ) = ν. Besides, the same Cauchy problem is solved by x(·) and its
adjoint. HF ∈ C1,1 implies the uniqueness of solutions and, its consequence z(0) = x(0) /∈ K0 leads to
a contradiction. 2

Remark A.5 1. The map K(RN ) ; RN , K0 7−→ RN \ ϑ−F (t, RN \ϑF (t,K0)) generalizes
the morphological operation of closing (of sets in K(RN )) that was introduced by Minkowski and is
usually defined as P(X) ; X, K 7−→ (K − tB)	 (−tB) Def.= { y ∈ X | y − tB ⊂ K − tB }
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for a vector space X and fixed B ⊂ X, t > 0 (see e.g. [2, Aubin 99: Definition 3.3.1]).

2. In [9, Barron, Cannarsa, Jensen, Sinestrari 99], the viscosity solutions of the Hamilton–Jacobi
equation ∂t u+H(t, x,Du) = 0 are investigated and roughly speaking, the continuous differentiability
of u is concluded from the reversibility in time :
If u : [0, T ]× RN 7−→ R is a continuous viscosity solution of ∂t u + H(t, · , Du) = 0
and v(t, x) := u(T − t, x) is a viscosity solution of ∂t v − H(T−t, ·, Dv) = 0
then adequate assumptions of H ensure u ∈ C1(]0, T [×RN ).
Referring to the relation between reachable sets and level sets of viscosity solutions, we draw an inverse
conclusion as we assume smoothness and obtain the reversibility in time.

3. The reversibility in time (in the sense of Proposition A.4) can also be regarded as recovering the
initial data. Further results about this problem have already been published in [51, Rzeżuchowski 97]
and [52, Rzeżuchowski 99], for example, but they usually assume other conditions. Either the initial set
consists of only one point or the Hamiltonian function HF is of class C2.

Proposition A.6 Suppose for F : RN ; RN , K ∈ K(RN ) and ρ > 0 that the map [0, T ] ; RN ,
t 7−→ ϑF (t,K) is λ–Lipschitz continuous (with respect to dl) and each set ϑF (t,K) (0 ≤ t ≤ T ) has
positive reach of radius ρ.
Then the topological boundary of Graph ϑF (·,K)|[0,T ] in R× RN is

({0} ×K) ∪
⋃

0<t<T

({t} × ∂ϑF (t,K)) ∪ ({T} × ϑF (T,K)) .

Proof. The inclusion
({0} ×K) ∪

⋃
0<t<T

({t} × ∂ϑF (t,K)) ∪ ({T} × ϑF (T,K)) ⊂ ∂ Graph ϑF (·,K)|[0,T ]

is obvious. Due to the Lipschitz continuity of ϑF (·,K), we only have to show

∂ Graph ϑF (·,K) ∩ (]0, T [× RN ) ⊂
⋃

0<t<T

{t} × ∂ ϑF (t,K).
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RN

K

z

Graph ϑF (·, K)

ζ(t, z, pz)

t time

Every point z ∈ ∂ ϑF (t,K) (0 ≤ t ≤ T ) and any unit vector pz ∈
NP
ϑF (t,K)(z) = NϑF (t,K)(z) satisfy

◦
Bρ (z + ρ pz) ∩ ϑF (t,K) = ∅ and

thus,
(
{t}×

◦
Bρ (z + ρ pz)

)
∩ Graph ϑF (·,K) = ∅.

The λ–Lipschitz continuity of ϑF (·,K) implies
ζ(t, z, pz) ∩ Graph ϑF (·,K) = ∅

for ζ(t, z, pz) :=
{

(s, y) ∈ R× RN
∣∣ |z + ρ pz − y| < ρ− λ |s− t|

}
.

Now choose (t, x) ∈ ∂Graph ϑF (·,K) with 0 < t < T arbitrarily. The continuity of ϑF (·,K)
guarantees that Graph ϑF (·,K) is closed and thus, it contains (t, x).
Moreover there are sequences (tn)n∈N, (xn)n∈N in ]0, T [ , RN , respectively, satisfying (tn, xn) /∈
Graph ϑF (·,K) for every n ∈ N and (tn, xn) −→ (t, x) (n −→∞). For each n∈N, let zn be an
element of the projection ΠϑF (tn,K)(xn) ⊂ ∂ϑF (tn,K).

Then, 0 < |xn − zn| = dist(xn, ϑF (tn,K)) ≤ |xn − x|+ dist(x, ϑF (tn,K)) −→ 0
and pn := xn−zn

| xn−zn | ∈ NP
ϑF (tn,K)(zn) ∩ ∂B1.

As mentioned before, we obtain ζ(tn, zn, pn) ∩ Graph ϑF (·,K) = ∅ for each n ∈ N.
Considering adequate subsequences (again denoted by) (tn)n∈N, (xn)n∈N, (pn)n∈N leads to the addi-
tional convergence pn −→ p ∈ ∂B1 (n −→∞). So finally, ζ(t, x, p) ∩ Graph ϑF (·,K) = ∅.
In particular,

◦
Bρ (x+ ρ p) ∩ ϑF (t,K) = ∅ implies x ∈ ∂ ϑF (t,K). 2
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A.3 How to make points evolve into sets of positive erosion

Our aim consists in sufficient conditions for the positive erosion of ϑF (t,K). In [42, Lorenz 2005],
sufficient conditions on F have already been specified such that initial compact sets of positive erosion
stay in K◦(RN ). Weakening the assumption about the initial set (consisting now just of a single
point), however, requires stronger properties of the set–valued map F : RN ; RN than standard
hypothesis (H) (see Definition A.1).

Definition A.7 For any ρ > 0, a set–valued map F : RN ; RN satisfies the so–called standard
hypothesis (Hρ

◦) if it has the following properties :

1. F has convex values in Kρ◦(RN ),
2. HF (·, ·) ∈ C2(RN × (RN \ {0})),
3. the derivative of HF has linear growth, i.e. there is some γF > 0 with∥∥DHF (x, p)

∥∥
L(RN×RN ,R)

≤ γF · (1 + |x|+ |p|) for all x, p ∈ RN (|p| ≥ 1).

Remark A.8 Standard hypothesis (Hρ
◦) differs from its counterpart (H) in two respects : The

values of F have uniform positive erosion (additionally) and its Hamiltonian is even twice continuously
differentiable in RN × (RN \ {0}). This second restriction has the advantage that we can apply the
tools of matrix Riccati equation (mentioned in Lemma A.11 and A.12).

Proposition A.9 Let F1 . . . Fm : RN ; RN hold standard hypothesis (Hρ
◦) and

‖HFj‖C1,1(RN× ∂B1)
Def.= ‖HFj‖C1(RN× ∂B1) + Lip DHFj

|RN× ∂B1 < λ

for some λ, ρ > 0. Moreover for a partition 0 ≤ τ0 < τ1 < . . . < τm = 1 of [0, 1], define the map
G̃ : [0, 1[×RN ; RN as G̃(t, x) := Fj(x) for τj−1 ≤ t < τj .

Furthermore choose K ∈ K(RN ) arbitrarily.

Then there exist σ > 0 and a time τ̂ ∈ ]0, 1] (depending only on λ, ρ,K) such that the reachable
set ϑ eG(t, x0) has positive erosion of radius σ t for any t ∈ ]0, τ̂ [, x0 ∈ K.
As an immediate consequence, ϑ eG(t,K1) has positive erosion of radius σ t for all t ∈ ]0, τ̂ [ and each
initial subset K1 ∈ K(RN ) of K.

The proof of this proposition uses matrix Riccati equations for Hamiltonian systems, but these tools
of Lemma A.11 consider initial values induced by a Lipschitz function ψ. So roughly speaking, we
exchange the two components (x(·), p(·)) (of a trajectory and its adjoint) preserving the Hamiltonian
structure of their differential equations:

Lemma A.10 Assume the Hamiltonian system for x(·), p(·) ∈W 1,1([0, T ],RN )
ẋ(t) = ∂

∂p H1(t, x(t), p(t)), ṗ(t) = − ∂
∂x H1(t, x(t), p(t)) a.e. in [0, T ]

with sufficiently smooth H1 : [0, T ]× RN × RN −→ R. Moreover set
y(t) := − p(t), q(t) := x(t) H2(t, ξ, ζ) := H1(t, ζ, − ξ).

Then the absolutely continuous functions (y(·), q(·)) satisfy the Hamiltonian system
ẏ(t) = ∂

∂q H2(t, y(t), q(t)), q̇(t) = − ∂
∂y H2(t, y(t), q(t)) a.e. in [0, T ]. 2
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Lemma A.11

In addition to the assumptions (2.)–(4.) of Lemma A.3, suppose for ψ : RN −→ RN , H : [0, T ]× RN ×
RN −→ R and the Hamiltonian system

∧

{
ẏ(t) = ∂

∂q H(t, y(t), q(t)), y(0) = y0

q̇(t) = − ∂
∂y H(t, y(t), q(t)), q(0) = ψ(y0)

(∗)

1’. H(t, ·, ·) is twice continuously differentiable for every t ∈ [0, T ].
Then for every initial set K ∈ K(RN ), the following statements are equivalent :

(i) For all t ∈ [0, T ], M 7→
t (K) :=

{
(y(t), q(t))

∣∣ (y(·), q(·)) solves (∗), y0 ∈ K
}

is the graph of a locally Lipschitz continuous function,

(ii) For any solution (y(·), q(·)) : [0, T ] −→ RN× RN of the initial value problem (∗)
and each cluster point Q0 ∈ Limsupz→ y0 {∇ψ(z)}, the following matrix
Riccati equation has a solution Q(·) on [0, T ]

∧


∂tQ + ∂2H

∂p ∂x (t, y(t), q(t)) Q + Q ∂2H
∂x ∂p (t, y(t), q(t))

+ Q ∂2H
∂p2 (t, y(t), q(t)) Q + ∂2H

∂x2 (t, y(t), q(t)) = 0,

Q(0) = Q0.

If one of these equivalent properties is satisfied and if ψ is (continuously) differentiable, then M 7→
t (K)

is even the graph of a (continuously) differentiable function.

Proof is given in [32, Frankowska 2002: Theorem 5.3], for the same Hamiltonian system but with
y(T ) = yT , q(T ) = qT given. So this lemma is an immediate consequence considering −H(T − · , · , · )
and (y(T − · ), q(T − · )). 2

For preventing singularities of Q(·), the following comparison principle provides a bridge to solutions
of a scalar Riccati equation.

Lemma A.12 (Comparison theorem for the matrix Riccati equation, [50, Theorem 2])
Let Aj , Bj , Cj : [0, T [−→ RN,N (j = 0, 1, 2) be bounded continuous matrix–valued functions such
that each Mj(t) :=

(
Aj(t)
Bj(t)T

Bj(t)
Cj(t)

)
is symmetric.

Assume that U0, U2 : [0, T [−→ RN,N are solutions of the matrix Riccati equation
d
dt Uj = Aj + Bj Uj + Uj B

T
j + Uj Cj Uj

with M2(·) ≥M0(·) (i.e. M2(t)−M0(t) is positive semi–definite for every t).
Then, given symmetric U1(0) ∈ RN,N with

U2(0) ≥ U1(0) ≥ U0(0), M2(·) ≥ M1(·) ≥ M0(·),

there exists a solution U1 : [0, T [−→ RN,N of the corresponding Riccati equation with matrix M1(·).
Moreover, U2(t) ≥ U1(t) ≥ U0(t) for all t ∈ [0, T [. 2

Proof of Proposition A.9. The uniform bound λ of ‖HFj‖C1,1(RN× ∂B1) (j = 1 . . . m) and Gronwall’s
Lemma lead to a radius R = R(λ,K) > 1 and a time T = T (λ,K) ∈ ]0, 1[
such that 1. ϑ eG(t,K) ⊂ BR for all t ∈ [0, 1],

2. for every trajectory x(·) of G̃ starting in K, each adjoint p(·) with
1
2 ≤ |p(0)| ≤ 2 fulfills 1

R < |p(·)| < R, |p(·)− p(0)| < 1
4R on [0, T ]

So a smooth cut–off function again provides a map H1 : [0, T ] × RN × RN −→ R that fulfills the
assumptions of Lemma A.11 and is identical to H eG in [0, T ]× RN × (RN \B 1

2 R
).
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Using the transformation of the preceding Lemma A.10, the auxiliary function
H2 : [0, T ]× RN × RN −→ R, (t, ξ, ζ) 7−→ H1(t, ζ, − ξ)

is still holding the conditions of Lemma A.11. As a consequence, we obtain for any initial point x0 ∈ K
and time τ ∈ ]0, T ] that the following statements are equivalent :

(i) For all t ∈ [0, τ ], the set M1
t of all points (p(t), x(t)) with solutions

(x(·), p(·)) ∈W 1,1([0, t],RN × RN ) of{
ẋ(s) = ∂

∂p H1(s, x(s), p(s)), x(0) = x0

ṗ(s) = − ∂
∂x H1(s, x(s), p(s)), p(0) ∈ B2 \

◦
B 1

2

is the graph of a continuously differentiable function ft.

(ii) For any solution (x, p) : [0, t] −→ RN× RN of the initial value problem (i)
(t ≤ τ), there exists a solution Q : [0, t] −→ RN×N of the Riccati equation

Q̇ − ∂2H1
∂x ∂p (s, x(s), p(s)) Q − Q ∂2H1

∂p ∂x (s, x(s), p(s))

+ Q ∂2H1
∂x2 (s, x(s), p(s)) Q + ∂2H1

∂p2 (s, x(s), p(s)) = 0,

Q(0) = 0.

Now we give a criterion for the choice of τ̂ : Setting

µ(λ,K) := sup
0 ≤ t ≤ T

|x| ≤ R
1
R

≤ |p| ≤ R

∥∥∥∥∥
(

∂2

∂p2 H eG(t, x, p) − ∂2

∂x ∂p H eG(t, x, p)

− ∂2

∂p ∂x H eG(t, x, p) ∂2

∂x2 H eG(t, x, p)

)∥∥∥∥∥
L(R2N ,R2N )

the comparison theorem for matrix Riccati equations (Lemma A.12) guarantees existence and uniqueness
of such a solution Q : [0, t] −→ RN×N for any t < min{T, π

2 µ} because for a = ±µ, the scalar Riccati
equation d

dt u = a+ a u2, u(0) = 0 has the solution u(t) = tan(a t) on [0, π
2 |a| [. Furthermore we

obtain ‖Q(t)‖ ≤ tan(µ t).

Standard hypothesis (Hρ
◦) for F1 . . . Fm implies a constant σ = σ(λ, ρ,K) > 0 with

ξ · ∂2

∂p2 H eG(t, x, p) ξ ≥ 4 σ
∣∣∣ ξ − ξ · p

|p|2 p
∣∣∣2

for all t ∈ [0, T ], |x| ≤ R, 1
R ≤ |p| ≤ R, ξ. Using the abbreviation

D(t, x, p) := − ∂2H eG
∂x ∂p (t, x, p) Q(t) − Q(t) ∂2H eG

∂p ∂x (t, x, p) + Q(t) ∂2H eG
∂x2 (t, x, p) Q(t) ∈ RN×N ,

choose τ̂ = τ̂(λ, ρ,K) > 0 small enough such that
τ̂ < min{T, π

2 µ ,
1
λ }, ‖D(t, x, p)‖ ≤ σ for every t ∈ [0, τ̂ ], |x| ≤ R, 1

R ≤ |p| ≤ R.

As a next step, we conclude that the solution Q(t) of (ii) (restricted to [0, τ̂ ]) satisfies Q(t) ≤
−σ t · Id in the (N−1)–dimensional subspace of RN perpendicular to p(t). Indeed, let (x(·), p(·)) ∈
W 1,1([0, τ̂ ], RN×RN ) be a solution of the Hamiltonian system (i) and choose an arbitrary unit vector
ξ ∈ RN with |ξ · p(0)| < 1

4R .

Then the auxiliary function ϕ : [0, τ̂ ] −→ RN , t 7−→ ξ ·Q(t) ξ + σ t
∣∣∣ ξ − ξ · p(t)

|p(t)|2 p(t)
∣∣∣2

satisfies ϕ(0) = 0 and is absolutely continuous with ϕ̇(·) ≤ 0 (due to |p(t) − p(0)| < 1
4R and

1
R ≤ |p(t)| ≤ R). So we obtain ϕ(t) ≤ 0 for all t ∈ [0, τ̂ ].

Finally we need the geometric interpretation for concluding the positive erosion of ϑ eG(t, x0) (of
radius σ t) for each t ∈ ]0, τ̂ [ and x0 ∈ K.
As mentioned before, the existence of the solution Q(·) on [0, τ̂ [ implies for all t ∈ [0, τ̂ [ that the set
M1
t is graph of a C1 function ft. Moreover Proposition 4.5 guarantees
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Graph Nϑ eG(t,x0) ⊂
{

(x(t), λ p(t))
∣∣∣ (x(·), p(·)) solves (i), λ ≥ 0

}
Def.=

⋃
λ≥ 0

Graph (λ f−1
t ).

So we obtain for every t ∈ ]0, τ̂ [ that each p ∈ RN \ {0} belongs to the limiting normal cone of
a unique boundary point z ∈ ∂ ϑ eG(t, x0) and, z = z(p) is continuously differentiable. In particular,
the projection on ϑ eG(t, x0) is a single–valued function in RN and thus, ϑ eG(t, x0) is convex for all
t ∈ ]0, τ̂ [ (see e.g. [21, Clarke,Stern,Wolenski 95: Corollary 4.12]). So it is sufficient to consider the
limiting normal cones of ϑ eG(t, x0) locally at every boundary point.
Well–known properties of variational equations (see e.g. [32, Frankowska 2002]) and the uniqueness of
solutions of the matrix Riccati equation (ii) imply that −Q(s) is the derivative of the C1 function fs
for 0 < s ≤ t < τ̂ (more details are presented in [43, Appendix A.7]). Thus for every time t ∈ ]0, τ̂ [,
the derivative of ft at p(t) is bounded by σ t from below in a (N−1)–dimensional subspace of RN .
Since ϑ eG(t, x0) is convex, it implies that ϑ eG(t, x0) has positive erosion of radius σ t. 2
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[6] Barles, G. & Ley, O. (2006): Nonlocal first-order Hamilton–Jacobi equations modelling dislocations
dynamics, Commun. Partial Differ. Equations 31, No.8, pp.1191–1208

[7] Barles, G., Soner, H.M. & Souganidis, P.E. (1993): Front propagation and phase field theory, SIAM
J. Control Optimization 31, No.2, pp.439–469

[8] Barles, G. & Souganidis, P. (1998): A new approach to front propagation problems: theory and appli-
cations, Arch. Ration. Mech. Anal. 141, No.3, pp.237–296

[9] Barron, E.N., Cannarsa, P., Jensen, R. & C. Sinestrari (1999): Regularity of Hamilton–Jacobi equations
when forward is backward, Indiana Univ. Math. J. 48, No.2, pp.385–409

[10] Bellettini, G. & Novaga, M. (1998): Comparison results between minimal barriers and viscosity solutions
for geometric evolutions, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 26, No.1, pp.97–131

[11] Bellettini, G. & Novaga, M. (1997): Minimal barriers for geometric evolutions, J. Differ. Equations 139,
No.1, pp.76–103

[12] Brakke, K. (1978): The motion of a surface by its mean curvature, Princeton University Press

[13] Bressan, A. (1980): On two conjectures by Hájek, Funkcial. Ekvac. 23, pp.221–227.
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[52] Rzeżuchowski, T. (1999): Continuous parameterization of attainable sets by solutions of differential
inclusions, Set–Valued Analysis 7, pp.347-355

[53] Stoltenberg, R.A. (1969): On quasi-metric spaces, Duke Math. J. 36, pp.65–71

[54] Vinter, R. (2000): Optimal Control, Birkhäuser-Verlag, Systems and Control
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